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autres. Ensuite, merci à Maël avec qui j’ai repris le rythme de la musique et qui m’a par-
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notre séjour dans le grand Ouest et Céline, tu es mon pilier et je suis heureux de repartir
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The subsurface is rich in resources of a variable and intertwined nature, whether as
food and water resources (agriculture, drinking water), energy (fossil fuels, geothermal en-
ergy) or for technological development (ores, rare earths). It is also a constantly changing
environment, subjected to fluid flows that modify the properties of rocks in their path
and link spatially separated geological bodies with very distinct physico-chemical proper-
ties. In this dynamic environment, an important biosphere develops in interaction with
physical and chemical processes (Amundson et al., 2007; Chapelle, 2000). The subsurface
is therefore naturally at the center of more and more interdisciplinary research, with the
aim of unraveling the many processes that make it such a perpetually evolving environ-
ment. Several studies have shown that these confined environments contain a significant
part of the Earth biomass in the form of microorganisms (Bar-On et al., 2018; Whitman
et al., 1998). Bacteria in the subsurface have been the subject of many studies since
decades (Dobbins et al., 1992; Dong, 2010; Langwaldt and Puhakka, 2000; Magnabosco
et al., 2018). However, the question of the influence of the physical environment on
the bacterial dynamics (e.g. flow and concentration gradients) is just starting to be
addressed (Boano et al., 2014; Borer et al., 2018; Rusconi and Stocker, 2015; Tél et al.,
2005). This is the focus of the present Ph.D. thesis.

1.1 The subsurface and its biogeochemical cycles

1.1.1 Biogeochemical cycles

Microorganisms play a critical role in Earth biogeochemical cycles since they trigger
and accelerate a range of geochemical reactions (Thullner and Regnier, 2019). They
are abundant in subsurface environments ranging from the soil and vegetation to the
saturated and unsaturated bedrock. These environments are highly heterogeneous and
are a place for many interactions between rocks, soil, air, water, and living organisms
(Akob and Küsel, 2011). Figure 1.1a gives an insight on how ecological and biogeochemical
cycles have coupled pathways. The life cycle of carbonic residues is driven by two main
series of processes: surface and subsurface processes. A first input, from the surface, is
linked to the photosynthesis-linked cycles, bringing organic carbon into the ground. In
the case of carbon cycles, organic carbon residues are also produced through subsurface
dynamics such as the fixation of CO2 by bacteria in anoxic conditions (environments
with low oxygen concentrations). Then, bacteria and fungi are responsible for the fate of
these organic compounds in the various cycles of organic matter decomposition, both in
aerobic and anaerobic conditions. Subsurface soils are heterogeneous in terms of mineral
composition and also because of the temporal variations of groundwater fluxes bringing
different geobodies into contact, as shown in Figure 1.1b (Brantley et al., 2007). Indeed,
the subsurface is composed of an upper unsaturated zone with surface soil overlying altered
rocks. Below the groundwater table, the subsurface is saturated with water (Figure 1.1b).
The limit between these two main zones is heterogeneous both in term of space and time.
As a result, the microbial habitat’s complexity depends on the weathering of rocks
and nutrients transports, carried out by water fluxes (Chorover et al., 2007).
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Figure 1.1: The subsurface biological cycle and physical structure. (a) Illustration
of the major pathways in which fixed carbon enters (solid arrows) and leaves (dashed
arrows) the subsurface. The intensity of each pathway varies depending on location and is
reflected by the size of the arrow. Arrows in green indicate the contribution of processes
to surface habitats, whereas arrows in red reflect contributions to subsurface habitats. (b)
The portion of the biosphere ranging from the outer extent of vegetation down through
the lower limit of groundwater, including the soil, altered rock, the unsaturated zone, and
the saturated zone (from Akob and Küsel (2011)).

1.1.2 Transport and reaction hotspots

Bacteria need electron donors and acceptors to produce the energy needed for their
metabolism, by catalyzing electron transfers in redox reactions (Thullner et al., 2007).
In the natural environment, their are often spatially segregated in different water bodies,
for example electron acceptors such as oxygen in surface water and electrons donors such
as dissolved minerals in deep waters. By bringing together reactants that are otherwise
segregated and inducing chemical desequilibria, mixing fronts can often act as hotspots
for biogeochemical reactions. Mixing fronts are areas with strong and evolving chemical
gradients (McClain et al., 2003), that by definition cannot be fully understood and de-
scribed by conventional assumptions of well-mixed chemical systems (Rolle and Le Borgne,
2019). As shown in Figure 1.2, these mixing and reaction fronts appear naturally in the
subsurface at the interface of groundwater bodies with seas, rivers or other groundwater
flows. Other sources of contaminants such as anthropogenic activities (agricultural use of
pesticides, sites pollution with industrial wastes) can bring together reactants in the sub-
surface. Reaction rates have been observed to be much larger in these reactive areas than
in the homogeneous parts of water bodies (Martinez-Landa et al., 2012; McMahon, 2001).
Therefore, these mixing fronts can control key geochemical processes in the subsurface
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and concentrate bacterial development around reactive interfaces (McAllister et al., 2015;
McClain et al., 2003). In the context of contaminant hydrology, these reactive interfaces
are situated at the fringe of plumes of contaminants entering water bodies. The chemical
remediation, assured by microbial-mediated redox reactions of pollutant degradation is
highly dependent on these mixing area (Chapelle et al., 1995; Christensen et al., 2000).
Reaction hotspots appear at the fringe of contaminant plumes when necessary substrates
for microbial metabolism of indigeneous microorganisms are mixed, such as an organic
contaminant and dissolved oxygen.

Figure 1.2: Schematic of groundwater contamination and mixing processes in
the subsurface, showing the wide variety of mixing processes that can lead to reaction
hotspots and bacterial communities development (from Rolle and Le Borgne (2019)).

These reaction hotspots have been observed on field sites and have been shown to host
specific biogeochemical cycles, that are sustained by transport processes. Bochet et al.
(2019) have shown that specific biofilms develop at the interface of iron-rich and oxygen-
rich waters in a borehole situated in the Ploemeur long term hydrological observatory
(Britain, France). These biofilms were abundant in the upper part of the borehole and
then localized on the main fractures (see Figure 1.3). They formulated a model for the
formation of reactivity hotspots, driven by mixing between oxidant and reduced
groundwater (Bochet et al., 2019).
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Figure 1.3: Biofilm development on fractures in a borehole. Video camera log and
optic diagraphy images. Continuous presence of the rust-colored biofilm is visible in the
borehole from top to about 60 m depth, where surface waters are rich in oxygen. Deeper
in the borehole, the oxygen concentration is greatly reduced, except at the vicinity of
fractures. At these precise locations where oxygenated and iron-rich waters are mixed,
biofilms composed of iron-oxidizing bacteria are sustained (from Bochet et al. (2019)).

Spatial and temporal scales affecting bacteria dynamics

The physical environment that bacteria see at the micro-scale are controlled by the
transport of substrates at multiple scales (Figure 1.2). In addition, transport and reaction
processes that occur in the natural environment of a bacteria occur over a large range of
temporal scales in the subsurface. Figure 1.4 illustrates the wide range of spatial scales
considered in biogeochemical transport phenomena studies. At the scale of a drainage
basin (tens to hundreds of kilometers), the surface transport of water is carried out by
river systems. Constant exchanges with the atmosphere through precipitation and evap-
otranspiration, and with the soil through infiltration, compose the complex water cycle.
At this scale, hydrological systems (surface and groundwater fluxes) are coupled with
ecosystems (evapotranspiration) and climate (precipitation). At the field scale (tens to
hundreds of meters), the exchanges between the surface and the subsurface are driven by a
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coupling of surface infiltration, groundwater fluxes and the heterogeneity of the hydrody-
namical properties of geobodies (Figure 1.4). The transport processes follow preferential
flow paths that are compelled by heterogeneities at the Darcy scale (tens to hundreds of
centimeters) and induce mixing patterns, depending on the heterogeneity of the velocity
fields. Subsequently, these heterogeneities impact the interactions between minerals, pore
water and microbes at the pore scale (tens to hundreds of micrometers), by controlling
the fluid velocities and the transport of chemical species (Figure 1.4). These processes can
have an impact up to the nano-scale, which is the relevant scale for chemical interactions
between the fluid, the minerals and the bacteria growing in these environments.

Figure 1.4: A variety of length scales in the subsurface. The transport of chemical
species or nutrients for bacterial populations is impacted over a wide range of scales by
the heterogeneities of the subsurface, from the field scale to the Darcy scale and to micro-
and nano-scales (from Hubbard and Linde (2010)).
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Coupling reactive transport and biological cycles adds time scales peculiar to each
reaction or to the biomass growth of a microbial population responsible for substrate
metabolism. Considering only the pore scale, which is the spatial scale relevant for
biogeochemical exchanges and biologically driven reactions, one can already draw the
map of time scale variations in the life of a biofilm shown in Figure 1.5. The motion of
bacteria in fluids and their initial interactions with surfaces are processes that take place
in the order of the second. Then, the irreversible attachment of bacteria to a surface and
the processes of growth of a mature biofilm with production of exopolymeric substances
can take hours to days, while being always exposed to variations of the environment
and depending on chemical reactions at faster time scales (Figure 1.5). Ultimately, the
spreading of bacteria and the colonization of their environment can occur over days or
months.

Figure 1.5: Relevant time scales for bacterial growth. Processes underlying biofilm
growth can be sorted into one of three categories: hydrodynamics (orange), mass transport
(blue), and biofilm development (purple). Hydrodynamic processes typically occur over
timescales of 10−1-101 s; mass transport over 10−3-101 s (chemical reactions) and 101-103

s (nutrient diffusion); and biofilm growth, decay, and detachment over 104-107 s. Detach-
ment is divided into two main categories: detachment of individual bacteria (erosion) and
detachment of large pieces of biofilms with bacteria and polymeric substances (sloughing).
Processes generally occur over the indicated timescales but may occur continuously, con-
temporaneously, and over a wide range of timescales (from Conrad and Poling-Skutvik
(2018)).

1.1.3 First order microbial growth models

Understanding microbial processes in the subsurface requires finding a way to model
metabolism processes of high complexity. For that, many studies have been made to
describe microbial biomass change rates with mathematical expressions that are simple,
yet based on strong assumptions (Thullner and Regnier, 2019).

Michaelis–Menten and Monod kinetics

Microorganisms generate the energy needed for their metabolism needs and their
biomass production by catalyzing the transfer of electrons from an electron donor sub-
strate (ED, of concentration eD) to an electron acceptor (EA of concentration eA) (Thull-
ner and Regnier, 2019). In natural environments, the electron donors are usually reduced
carbons bound in more complex organic molecules. Many examples of metabolic redox
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reaction require oxygen as the electron acceptor (Thullner et al., 2007). Redox reactions
catalyzed by bacteria are usually described by the well-known Michaelis–Menten kinet-
ics (Van Cappellen and Gaillard, 1996). This model describes a kinetics that saturates
with the increase of electron donor and acceptor availability. The reaction rate for such
metabolic pathway is given by

deD
dt

= −k eD
KD + eD

eA
KA + eA

, (1.1)

where k is the maximum reaction rate and Ki is the half saturation constant for species
i. When dealing with biogeochemical reactions, the microbial biomasses often need to
be explicitly included in the reaction rate expressions, as they scale the redox dynamics.
This allows studying the coupled effect of environmental conditions and biomass growth,
but also to add a variability in the microbial species considered, that can compete for the
same substrate (Wirtz, 2003). Many microbial growth models rely on the growth equation
of Monod (1949). It stipulates that the biomass dependence can be taken into account
by transforming the constant rate k into a biomass related term µmaxB. It is also based
on the assumption that the substrate for carbon source, S, is the only limiting nutrient,
which gives

dB

dt
= µB = µmaxB

s

KS + s
, (1.2)

where B is the biomass, dB
dt is the biomass production rate, µ is the specific growth

rate and µmax the maximum specific growth rate, s the concentration of substrate S
and KS is the Monod half-saturation constant, defined as the substrate concentration
when µ = µmax/2. These biomass growth expressions are suitable for global growth rate
estimations in well mixed environments and considering planktonic and isolated cells with
supply of electron acceptor in excess (usually oxygen). The choice of such a growth rate
for bacterial growth under carbon-source-limiting conditions is based on thermodynamic
principles applied to biomass production (Smeaton and Van Cappellen, 2018). Electrons
supplied by electron donors are used for both biomass synthesis and energy production,
the balance of which depending on the stoichiometry of the redox reactions involved in
the catabolism and anabolism processes. Catabolism is the metabolic process of breaking
molecules into smaller units that are used to produced energy or directly into anabolic
reactions. Anabolism is the metabolic process of creating new molecules from smaller
units, which in general requires the consumption of energy.

Decay, maintenance and saturation kinetics

The next step to consider more realistic global kinetics is to take into account the
decay of bacterial populations with death rates. The death of microorganisms can be
easily included by considering a first-order decay rate constant µd (Dale et al., 2006). The
second process that needs to be included in a more realistic model is the maintenance cost
necessary to maintain biological functions in low substrate concentration environments. In
the case of low nutrients availability, biomass can be consumed to ensure these elementary
functions. Herbert (1958) and Pirt (1965) proposed models for maintenance consideration
that are still used to separate the metabolic cost of producing new biomass from that
of performing all maintenance functions. The difference between these models is mostly
based on the origin of maintenance energy, which is coming from biomass reduction or
additional substrate consumption, respectively. The difficulty that is often encountered in
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modeling microbial lifestyles concerns the variations that can be observed between these
origins of energy depending on environmental conditions (Van Bodegom, 2007).

Considering these limitations, a combined model was proposed by Wang and Post
(2012), describing biomass growth rate as

dB

dt
= µmaxB

s

KS + s
−mB

(
1− s

KS + s

)
− µdB, (1.3)

where m is the specific maintenance rate. The term in parenthesis tends to zero when
the substrate is in sufficient concentration, such that bacterial biomass is consumed for
maintenance only in critical environmental conditions.

As these models are usually well-suited to describe the behavior of batch cultures of
bacteria in limited space or nutrient concentrations, a saturation can be reached when
bacteria reach a maximal sustainable concentration in the medium. This phenomenon is
usually described by a logistic growth rate (Fujikawa et al., 2004) of the form

dB

dt
= µ∗B

(
1− B

Bmax

)
, (1.4)

where Bmax is the maximum sustainable bacterial concentration and µ∗ can be any of the
above growth rate expressions, depending on the study.

Bacterial dormancy

The bacterial processes that were described in previous paragraphs assume that the
considered biomass is always in an active state. It has been shown that microorganisms can
enter dormancy when facing unfavorable environmental conditions, which means that they
switch to a dormant phase with a reduced mobility, reduced maintenance requirements
and reduced metabolic activity, thus leading to a better survival chance for the cells. The
efficiency of this strategy is based on the possibility of transitioning back to an active
growing state when environmental conditions become favorable again (Dworkin and Shah,
2010). The transition between the active and dormant state of a fraction of the microbial
population is usually modeled with a desactivation rate and the transition from dormancy
to active state by a reactivation rate (Bär et al., 2002; Wang et al., 2014). Other approaches
start to emerge for the modeling of dormancy transition, using switch functions depending
on environmental conditions over long time scales (Bradley et al., 2019).

Overall, the classical models for biomass growth rely on global rates that try to mod-
ulate the growth and reach the complexity of metabolism functions with simple assump-
tions, such as growth, decay, maintenance, or dormancy ratio. In the end, these global
descriptions always assume well mixed environments or substrate availability changes on
very long time scales. As we have already seen, the temporal and spatial evolution of
nutrients availability are direct functions of the hydrodynamical conditions of the envi-
ronment. Besides, bacterial population in their natural habitat cannot be considered as
free swimming cells that are isolated from one another. All these constraints oblige us to
consider more complex models for modeling bacterial dynamics in flows.

Well-mixed models such as the growth law of Monod have been widely used to describe
the dynamics of microorganisms. In their natural environment, transport processes are
imposing heterogeneous conditions for biomass growth. A key scientific challenge
that we wish to address is to take into account these fluctuations in space and time at the
single-cell level to understand the coupling between flow, nutrient transport and bacterial
activity.
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1.2 Microbial dynamics at the single-cell level

1.2.1 Biofilms growth on surfaces

In their natural environment, bacterial communities can rarely be observed as sus-
pended cells but rather grow from surfaces and form biofilms (Horn and Lackner, 2014).
Biofilms are aggregations of microbial cells and extracellular polymeric substances (EPS)
forming aggregates of biomass on surfaces (Costerton, 1999). When growing on surfaces,
not all bacteria are exposed to the same environmental conditions, depending on their
position in the colonies and on the temporal and spatial scales of the variations of these
conditions (Figure 1.5). In particular, variations at a small scale near surfaces may expose
microorganisms to conditions that differ greatly from the average environment described
by well-mixed models (Semple et al., 2004).

Once bacteria have reached the surface, they might attach and start building micro-
colonies and later form complex biofilms (see Figure 1.6). In addition to giving the oppor-
tunity to grow biofilms, surfaces have other characteristics that protect cells from predation
or other environmental threats, and facilitate the conversion from swimming to duplicat-
ing and EPS producing phenotypes (Tuson and Weibel, 2013). Adhering to surfaces gives
many advantages to bacterial cells, first of which is the greater availability of nutrients in
substrate depleted environments (Zobell, 1943), because of the higher local concentrations
captured on surfaces. It has already been shown experimentally that increasing the sur-
face area of a culture container could enable bacterial growth at substrate concentration
too low to support growth in well mixed cultures (Heukelekian and Heller, 1940). These
conditions are favorable for a change of characteristics in bacterial populations that favor
adhesion in nutrient poor environments (Poindexter, 1981).

Once bacteria are integrated into a biofilm, they may specialize in specific biological
functions not addressed by other cells in other locations within the biofilm (Queck et al.,
2006). The increase of cells density is also favorable to the production of chemical mes-
sengers used to trigger interactions between cells, through a phenomenon called quorum
sensing (Ng and Bassler, 2009). The increase in concentration of these small molecules
triggers physiological changes within the cells of the biofilm but also enables communica-
tion between distant biofilms (Liu et al., 2017; Osmekhina et al., 2018) and can trigger
bacterial dispersion (Hong et al., 2012). Conversly, adhering to surfaces can also bring dis-
advantages to bacterial communities, including the inhibition of motility that can be due
to the limitation of flagella formation while genes coding for EPS production are activated
(Blair et al., 2008; Caiazza et al., 2007). In this sense, using surfaces to produce mature
biofilms and then detaching groups of bacteria proves to be a significant improvement in
the bacterial population sustainability by reactivating bacterial community spreading from
bacteria that have lost their individual motility (Butler et al., 2010). Then, detached bac-
teria (or groups of bacteria) can be swept by the flow and find new favorable environments
to colonized (illustrated in Figure 1.6).

The modeling of bacterial growth on surfaces needs to account for mass transfer be-
tween the bulk fluid containing spatially distributed substrate concentrations and micro-
bial biomass. The simpler approach is to consider that bacteria growing on the surface
are represented by a reactive layer of no thickness, at the interface of liquid and solid
elements (Gharasoo et al., 2012). Then, as mass transfers at the interface are decisive for
biomass production, a laminar layer between the flow of substrate and the surface can be
used to account for diffusive effects near surfaces; it is often called the Diffusion Boundary
Layer (DBL) (Elberling and Damgaard, 2001). However, experimental measurements have
shown that advective transport could not be neglected in such boundary layer (Zhang and
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Figure 1.6: The biofilm life cycle. Microscopic analysis has led to a general description
of biofilm formation as a temporal process involving transition through distinct stages of
multicellular organization. These stages have been operationally identified as (i) plank-
tonic (or suspended) stage, (ii) attachment, first reversibly then irreversibly, (iii) micro-
colony formation, (iv) macrocolony, also called biofilms and (v) dispersal in the bulk fluid.
In the biofilm stage, different forms can be observed, due to the hydrodynamic conditions
(from Monds and O’Toole (2009)).

Bishop, 1994).

Methods of increasing complexity can be used to consider the biofilm on surfaces as
a diffusive layer with gradients of substrate consumption by bacteria, inner velocity fields
and even various bacterial metabolism depending on the position of cells in the biofilm.
Many of these simulations used Particle Based Models, modeling bacterial cells one at a
time and trying to capture their interactions (Kreft and Wimpenny, 2001; Picioreanu et
al., 2004). Another possibility is to describe the biofilm as a combination of a porous solid
phase (microorganisms and particular materials) and a liquid phase (dissolved components
such as substrates or oxygen) (Stoodley et al., 1998).

1.2.2 Bacterial strategies under flow

Bacterial swimming

Most bacteria are able to swim in water (Blair, 1995), using extracellular appendages
like flagella (Silverman and Simon, 1974), as illustrated in Figures 1.5 and 1.7. Bacteria like
Escherichia coli are able to swin with velocities ranging from 15 to 30 µm.s−1, depending
on the flow conditions (Kaya and Koser, 2012; Molaei and Sheng, 2016). Their motility,
which can seem random when observed in homogeneous concentration fields with no flux,
is in facts strongly shaped by the substrates concentration gradients (Berg, 2000). Bacteria
use membrane-embedded receptors to detect the concentration of extracellular molecules
and move along the chemical gradients, either to reach higher concentrations of nutri-
ents or to avoid high concentrations of repellent or toxic species (Sourjik and Armitage,
2010). The detailed study of this process called bacterial chemotaxis, in arbitrary shaped
gradients of dissolved nutrients or gas, is made possible thanks to recent developments in
microfluidic techniques (Ahmed et al., 2010). This motility allows bacterial populations to
relocate into areas with more favorable conditions. In addition to nutrient gradient sens-
ing, bacteria can also produce chemoattractants triggering the chemotactic self-attraction
of bacterial species and promoting their aggregation (Mittal et al., 2003). The modeling of
chemotactic behaviors has recently permitted to predict spreading (Saragosti et al., 2010)
or aggregation patterns (Centler et al., 2011) at various scales and is a necessity to fully
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understand bacterial behavior in flows. It has also been observed that bacterial motility
is altered upon approaching surfaces (Lauga et al., 2006).

Surfaces sensing and adhesion

While reaching surfaces, motile bacteria swim through 3 regions of the bulk fluid: (1)
the bulk fluid where they are subjected to the velocity field of the fluid but not to the effect
of a nearby surface, (2) near-surface bulk-fluid where hydrodynamic effects such as velocity
gradients and shear stress start to become apparent and (3) near-surface constrained fluid,
where hydrodynamic forces are strong and physiochemical effects are felt, such as Van der
Waals and electrostatic forces (Vigeant et al., 2002). It has been shown experimentally that
motile bacteria have a wider range of adhesion capability than non-motile bacteria that
are deprived of flagella (McClaine and Ford, 2002a,b). It means that they can attach to
surfaces at higher flow velocity and this behavior relies on the holding of fully functionning
flagella.

Surface sensing will trigger morphological changes that can facilitate attachment to
surfaces, such as the promotion of EPS production metabolism in Escherichia coli cells
(Eboigbodin et al., 2006). Upon contacting surfaces, cell attachment usually occurs in two
phases. The initial stage of attachment occurs rapidly, in a time scale of 1 min. It involves
hydrodynamic and electrostatic interactions, with rapidly increasing adhesive forces but
maintains a relative reversibility (Boks et al., 2008). The increase in negative charge
on cell membranes may favor the interaction with surfaces during the initial stages of
biofilm formation, as it has been observed for Escherichia coli bacteria (Eboigbodin et al.,
2006). The second step is chemical adhesion and irreversible bounding to surfaces
involving Van der Waals interactions between the surface and the cell membrane (Renner
and Weibel, 2011). It occurs on a time scale of several hours and is facilitated in the case
of EPS production. Figure 1.7 shows a summary of bacterial membrane compartments
called organelles that can be used for surface sensing and of the main interactions between
bacterial membranes and surfaces. The different organnelles presented in Figure 1.7 are
not necessarily produced at the same time, since their functions may vary. For instance,
flagella are needed for bacterial motility and their production is stopped upon adhesion to
a surface, to the advantage of the production of pili allowing cells to migrate on surfaces
(Dunne, 2002; Garrett et al., 2008).

Attachment of bacteria to a surface does not necessary lead to irreversible bounding
to the surface. In the case of Escherichia coli, Bouckaert et al. (2006) have shown that
the initial weak adhesion was facilitated by the production of adhesin FimH molecules at
the tip of pili organelles, thus enabling cells to roll over the surface. Then, the attachment
process is highly dependent on thermodynamics. The surface energy of bacteria being
typically smaller than the surface energy of liquids in which they are suspended, they
tend to attach preferentially to materials with lower surface energies, such as hydropho-
bic materials (Absolom et al., 1983). One good example of hydrophobic material is the
polydimethylsiloxane (PDMS) used for the fabrication of microfluidic devices (Jin et al.,
2005).
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Figure 1.7: Surface interactions and bacterial adhesion (a) Bacterial surface or-
ganelles. (b) Interactions between substrate and bacterial cells (adapted from Renner and
Weibel (2011)).

Growth of a structured biofilm

Modeling the growth of bacteria into biofilms on surfaces is a challenging prospect, due
to the complexity of adhesion processes (Figure 1.7). Two major methods have been used
to achieve numerical simulations of biofilm growth with structural heterogeneities. The
first and older form is the use of cellular automata, with growth and decay of bacterial
populations giving spatial heterogeneities based on rules applied on a 2D or 3D grids
(Picioreanu et al., 2000). This method allows seeing spatial and temporal heterogeneities
in biofilm formations, but it is limited to the resolution of the grid. A second approach
was made possible with the increasing computational power and is called Individual-Based
or Particle-Based Modeling. Kreft et al. (2001) were the first to develop a model focused
on single-cells as individual particulate units and to generate biofilm structures with a
realistic distribution of bacteria, within a biofilm matrix made of extracellular polymeric
substances (EPS). These two types of models have shown similar results, except in fine
biofilm shape variations and spatial distribution of minority species when dealing with the
competitions of multiple organisms. (Abbas et al., 2012).

Bacterial dispersal from surfaces and biofilms

Attachment and detachment of cells are commonly simulated using first-order rates
depending on environmental parameters such as flow velocity or the shear forces associated
with velocity gradients near surfaces, the structure of biofilms or the surface properties
of individual bacteria (Ginn et al., 2002). Detachment rates depend on many factors
and are therefore difficult to predict (Xavier et al., 2005), especially in mature biofilms,
where cells start to produce extracellular polymeric substances (EPS) (Tay et al., 2001).
The other way around, bacteria can also trigger detachment from surfaces depending on
changes in nutrient availability (Ginn et al., 2002). Complex forms of biofilm structuring
and bacterial spreading can emerge from the interaction of biofilms growing on surfaces
and hydrodynamics of the flow in a porous medium, such as streamers that have been
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observed recently in microfluidic experiments (Das and Kumar, 2013; Drescher et al.,
2013; Hassanpourfard et al., 2014). Using biofilm plasticity to form streamers allows
bacterial communities to explore more space in the pore space and benefit of the carrying
capacity at the larger scale of the porous system (Scheidweiler et al., 2019), which means
that the porous network can be colonized more efficiently.

The difficulty in detachment prediction lies precisely in that unsolved problem consist-
ing of a combination of hydrophysical constraints and microbiological metabolism.
A classical method to describe the detachment in biofilms is to represent it in terms of
erosion or sloughing (see Figure 1.5). Erosion corresponds to the detachment of small
particles, whereas sloughing involves the removal of large parts of biofilm structures (de-
scribed in Figure 1.5). Surface sensing and adhesion facilitate morphological changes that
can produce cooperative behaviors, rapid growth and migration of groups of bacteria after
a detachment by sloughing (Patrick and Kearns, 2012). Detachment usually occurs when
external forces such as shear stress are larger than the internal strength of the biofilm
matrix (Horn et al., 2003). As a result of being caused by a combination of biological,
chemical and physical processes (Stewart et al., 2000), detachment must often be incor-
porated into biofilm models with simplifying assumptions. The simplification consisting
of considering a constant biofilm thickness has already been cited. One can add a more
physical approach focusing on shear stress (Rittman, 1982) or the change of shear stress
(Peyton and Characklis, 1993). Although these models tend to explain the effect of ex-
ternal forces on biofilm structures, they usually do not incorporate the coupling between
fluid dynamics and biofilm evolution. This is for the most part due to the difficulty lying
in the difference of time scales to be considered (see Figure 1.5). To address this problem,
relevant parameters must be defined, such as the Young modulus of the biofilm, shear
rate and shear stress at the interface, adhesive or tensile strength within the biofilm
(Möhle, 2008). However, the understanding of interactions between flow dynamics and
biofilm growth are of major importance, since flow is the main cause of substrate transport
and biofilm dynamics adaptation to the flow can produce better resistance to shear and
better substrates harvesting (Taherzadeh et al., 2010, 2012).

1.2.3 Microfluidics

Many of the results presented in this state of the art introduction owe to new experi-
mental tools among the family of micromodels (see the review paper in Appendix A). In
this thesis, we are interested in microfluidics for the study of bacterial and biofilm dynam-
ics, which has been used extensively in experiments on biofilm streamers (Hassanpourfard
et al., 2015) or bacterial chemotaxis (Yawata et al., 2016), for instance. These experi-
ments have several advantages, among them are the design of porous media at the pore
scale, the observation of single bacterial cells or the control over transport phenomena.
The interest in controlling fluid flows comes from the understanding that it has a double
impact on growing bacterial communities. In addition to imposing substrate concentra-
tions through the transport of chemical species, it is also the cause of mechanical stress
and forced detachment from surfaces. This double effect has recently been observed in
microfluidic experiments where colonization patterns of biofilms were modified by shear
and nutrient transport (Thomen et al., 2017).

In the last decades, transport experiments at the pore scale have also known a technical
breakthrough with the spreading of micromodels (experimental studies at the pore scale)
such as microfluidic experiments (Gervais and Jensen, 2006; Kirby, 2010). Microfluidic
cells are used to observed transport phenomena at the real scale under a microscope,
without the need to work in equivalent environments or to use scaling methods. The
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combination of microfluidic experiments and pore scale modeling have been extensively
used in recent investigations of transport and reaction mechanisms, from conservative
to reactive transport and to dissolution or precipitation of mineral materials (De Anna
et al., 2014; Yoon et al., 2012). Numerous experiments have used this technology to
focus on bioreactive transport and growth of microbial populations (Knutson et al., 2007;
Tartakovsky et al., 2013; Zhang et al., 2010).

In this thesis, we will take advantage of microfluidics to tackle unanswered questions
relating to these bacterial dynamics in heterogeneous flows. It is our main experimental
tool and will be coupled with numerical simulation, in order to ensure the control of the
environmental conditions during the experiments.

Bacteria usually attach to surfaces, where they can grow into colonies and biofilms. The
initial surface sensing, attachment and development phases are crucial for the
success of such a strategy. Since subsurface environments are subjected to flow, individual
bacteria must adapt to flow-induced constraints in order to be able to grow on
surfaces. The study of these processes requires challenging experimentations to reveal the
impact of flow on the early stages of bacterial development on surfaces.
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1.3 Incomplete mixing and concentration gradients in the
subsurface

1.3.1 Mixing dynamics at the pore scale

The models described in this introduction for bacterial growth rely on the assumption
of well-mixed conditions in terms of nutrients concentrations. In a porous network, at
the spatial scale that is relevant for bacterial activity, the arrangement of grains generate
heterogeneous velocity distributions (De Anna et al., 2013), which lead to chemical fronts
deformation and incomplete mixing (see Figure 1.8a). Therefore, subsurface porous
media are by nature poorly mixed environments, where water flows are mostly dominated
by viscous forces. These conditions of small inertial forces compared to viscous forces are
described as Stokes flow or creeping flow in the literature (Leal, 2007).

The dilution of solutes, which is to say their distribution over increasingly large volumes
or water fluxes, and the mixing processes are controlling reactive processes (Rolle and Le
Borgne, 2019). Dilution through dispersion of a given chemical species results from the
combined effect of diffusion and advection. These terms are usually highly anisotropic,
depending on the flow direction and on its intensity. At the pore scale, since the pore
geometry is known, the flow problem is described by the continuity equation and the Stokes
equation, which is a simplification of the Navier-Stokes equation for an incompressible fluid
and disregarding inertia effects (Leal, 2007). The inertial term, or momentum-flux term,
is negligible with respect to the viscous dissipation term in typical porous media flows
characterized by low Reynolds numbers (flow dominated by viscous forces, compared to
inertial forces). The Stokes equation is given by

µ∇2v = ∇p− ρg, (1.5)

with µ the dynamic viscosity of the fluid, v the fluid velocity vector, p the pressure, ρ
the fluid density and g the constant of acceleration due to gravity. When dealing with
incompressible fluids with homogeneous density, the continuity equation expressing the
fluid mass conservation can be written as

∇ · v = 0. (1.6)

In these velocity fields, substrate concentrations are transported at the pore scale according
to the advection-diffusion-reaction equation, given by

∂c

∂t
= ∇ · (D∇c)−∇ · (vc) + r, (1.7)

with c the substrate concentration, D its diffusion coefficient in the considered fluid and r
a source or reactive term. Because of the strong coupling between the processes of spread-
ing and mixing due to velocity fluctuations (Villermaux, 2018), stochastic (or random)
approaches have been developed to quantify mixing in flows (Dentz et al., 2011).

1.3.2 Mixing-induced reaction enhancement

The stretching of these chemical fronts by the velocity gradients can enhance reac-
tivity by increasing interface lengths and therefore diffusive transfers, or by steepening
concentration gradients (Le Borgne et al., 2014). Figure 1.8 shows the theoretical defor-
mation in a stratified flow and an experimental evidence of lamellar structure in a porous
network, which is a physical deformation due to velocity gradients that arises naturally
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in hydrodynamical environments with fluid stretching (Ottino, 1982). These phenomena
of incomplete mixing are the reason why well-mixed theories do not describe mixing and
associate reaction kinetics efficiently (Gramling et al., 2002).

b c

a

d

Figure 1.8: Lamella description of transport in porous media. (a) Evolution of
the concentration field of a product of reaction, produced at the interface of moving
reactants (flow from left to right) and developing a lamellar structures at the pore scale in
a millifluidic setup containing a 2D granular porous medium (in gray) (from De Anna et al.
(2014)). λ is the characteristic pore size and images are taken at 0.5τa, 1.6τa and 3.5τa,
with τa the characteristic advection time. (b) Concentration map of a conservative solute
in a stratified random flow field, deformed by velocity heterogeneities and developing a
lamellar structure at the continuum scale. (c) Reaction rate at the interface normalized by
reaction rate for a homogeneous flow (from Le Borgne et al. (2014)). (d) Concentration
field of a conservative tracer injected continuously in a porous media and inset on the
concentration gradient computed at the interface, which is responsible for the enhanced
reactivity (from De Anna et al. (2014)).

In order to predict the transport and associated reactivity in porous media, a La-
grangian framework called the lamellar theory of mixing has been developed (follow-
ing a fluid parcel, by opposition to Eulerian frameworks). In this framework, the mixing
interface is discretized into a series of elements called lamellae. These lamellae deform
actively according to the local velocity field and control the distribution of concentrations
and reaction rates (Ranz, 1979). Working with the lamellar theory of mixing applied to
a linear stretching of a reactive front, Bandopadhyay et al. (2017) have shown that reac-
tion kinetics, and therefore the mass of reaction products, strongly depend on the mixing
dynamics (see Figure 1.9). In this figure, Pe is the Péclet number (ratio of diffusion time
scale over advection time scale), Da is the Damköhler number (ratio of diffusion time
scale over reaction time scale), t is a nondimensional time and mc is the mass of reaction
products.

These observations show that substrate transport is the main mechanism con-
trolling the nutrients availability in the subsurface. Therefore, it is also controlling
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Figure 1.9: Phase diagram of reaction kinetics in a shear flow. Diagram synthe-
sizing the different regimes predicted for the scaling of the mass of product by the lamella
theory with a linear shear flow applied on a reactive front with second order kinetics of

the form of A + B
k−−→ C. mc is the mass of reaction product. The y-axis represents

the vertical separation between weak stretching and strong stretching. The x-axis is also
demarcated into the regimes of negligible shear and strong shear (from Bandopadhyay
et al. (2017)).

the possibility for microbial populations to grow significantly by controlling the nutrients
availability. The coupling between chemical transport processes and microbial activity is
yet to be described and understood. Indeed, mixing processes in the subsurface are respon-
sible for highly heterogeneous nutrient concentration fields and must have a non-negligible
impact on the bacterial growth dynamics.

The natural habitat of bacteria in the subsurface is highly heterogeneous. Transport
processes are controlling the availability of nutrients in the porous media at the relevant
scale for bacterial dynamics. The understanding of the coupling between mixing pro-
cesses and bacterial activity is a challenge, that must be addressed in order to know
if these processes are responsible for the enhancement of microbial development observed
in reactive fronts.
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1.4 Scientific questions addressed in this thesis

The study of bacterial dynamics is complex and requires an understanding of phenom-
ena that are multidisciplinary by nature. As it has been demonstrated in this state of the
art chapter, early models for a global description of bacterial growth are still relevant in
many applications. The best example is the well-studied Monod law of growth, which is
based on the Michaelis–Menten kinetics law. These laws have strong assumptions con-
cerning the well-mixed state of the bacterial environment, whereas natural environments
like the subsurface are poorly mixed. Indeed, bacteria live in hydro-dynamically active
environments, which exhibit flows that are heterogeneous in space and sporadic in time.
Fluid flows give rise to velocity gradients, especially strong at the vicinity of solid surfaces,
where bacteria must attach to be able to develop micro-colonies and biofilms. The flow
also acts as a generator of chemical species heterogeneities, by various mixing phenomena
leading to strong chemical gradients.

In order to understand microbial life cycles in their natural environment, some critical
steps of their development in these hydrodynamical heterogeneities remain to be under-
stood. In this thesis, we focus on the early stages of bacterial development on surfaces,
after they have reached a surface but before they were able to develop complex extracel-
lular structures and form biofilms. We study the influence of the hydrodynamical hetero-
geneities of the bacterial environment, which result in substrate and velocity gradients.
We wish to answer the following questions:

• What are the effects of nutrient limitations on bacteria attached to surfaces?

• How do colonization patterns on surfaces depend on flow ?

• How does microbial growth depend on mixing dynamics ?

We develop an argumentation based on 5 chapters.
In the first chapter, we describe the methodology applied for the micro-fabrication of

microfluidic designs for pore scale experiments. We explain how numerical simulations
should be used beforehand in the design process to estimate nutrient availability in the
microfluidic channels.

In the second chapter, we use a first set of microfluidic experiments to observe the
effective growth rates of recently attached individual bacteria in microfluidic channels
with constant flow rate and nutrients renewal. We use Escherichia coli bacterial strains
and glucose as a carbon source with varying initial concentrations across experiments. We
show that the classical Monod rate law can be used for growth estimation in the limit of
small fluid velocities.

Based on these observations, we focus on bacterial growth under various shear stresses
in the third chapter. Thanks to physical measurements at the single-cell scale in microflu-
idic experiments, we show that the effective growth rate of bacteria is affected by the flow.
We use a second set of experiments with higher temporal resolution to access bacterial
motility and we describe different colonization patterns resulting from detached bacterial
trajectories.

In the fourth chapter, we use numerical simulations to show that mixing enhances
bacterial consumption of available substrates, by changing the effective reaction rate in
a Monod kinetics. We develop an analytical framework to study regimes of reaction
and diffusion limited kinetics. We also derive a semi-analytical solution for the reaction
kinetics in between. Then, we add the effect of stretching on concentration gradients
with analytical solutions for typical scenarios, namely a nutrient front and a nutrient
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pulse. Finally, we explore the impact of the stretching on the previously described reaction
kinetics.

In the fifth chapter, we describe a number of projects that have been initiated during
this thesis and that deserve to be continued in the future.

Here is a list of the main tasks that I have been responsible for during this thesis work:

• setting up of a microfluidic laboratory: choice of the equipment, discussion with
providers, quotations and purchase, organization and management of the laboratory
consumables,

• designing the microfluidic cells (including numerical simulations) and handling the
micro-fabrication process,

• running the experiments,

• writing the Matlab programs for image processing and the Python programs for
statistical data analysis,

• doing mathematical developments and writing the Matlab programs for the study
of reaction kinetics enhancement by mixing processes.

This work has been funded by the European project Reactive Fronts (ERC consolidator
grant 648377) directed by Tanguy Le Borgne in Geosciences Rennes.
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In this chapter, we focus on the design of the microfluidic experimental devices, through
a process including the fluid flow control and numerical simulations for various designs
susceptible to be useful. The first step of the process is the in-depth comprehension of
the physics underlying flows in microfluidic channels. Once a design is proposed, a 3D
numerical model is built using the Comsol Multiphysics software to test the hypothesis.
If the fluid flow simulations for gas and liquids are satisfactory, the design goes through
a mold production process using the soft lithography method, and the mold is used for
microfluidic channels replication. We also present in this chapter the main image analysis
tools that will be used in the following chapters, as well as the numerical simulations used
to choose the experimental parameters.

2.1 Flow and solute transport in confined geometries

2.1.1 Flow description

The Navier-Stokes equations

The Navier-Stokes equations for incompressible flow express the conservation of mass
and the conservation of momentum for a velocity field that is conservative:

∂tρ+ ∇ · (ρv) = 0, (2.1a)

ρ((v ·∇)v + ∂tv) = −∇P + µ∆v + ρg, (2.1b)

where ∂t = ∂
∂t is a notation of the partial time derivative and, ρ is the density (in kg.m−3),

v the velocity vector (in m.s−1), P the fluid pressure (in Pa), µ the absolute or dynamic
viscosity (in Pa.s) and g the standard acceleration due to gravity (9.807 m.s−2). ∇ is
the Nabla operator, or differential operator in a Cartesian coordinate system, defined by
∇ = i ∂∂x + j ∂∂y + k ∂

∂z , where i,j and k are the unit vectors of the reference frame. ∆ is the

vector Laplace operator, defined for a vector u as ∆u = ∇2u = ∇(∇ ·u)−∇× (∇×u),
or equivalently in Cartesian coordinates ∆u = (∇2ux,∇2uy,∇2uz). For permanent flow,
∂tv = 0 and the continuity equation (Equation (2.1a)) becomes ∇ · v = 0.

Depending on the geometry of the system, gravity force may be ignored. In our case
of a linear microfluidic chamber of length l, width w and height h, such that l � w � h,
the velocity field is following a Poiseuille profile and gravity-driven effects are negligible
against viscous forces, giving v(x, y, z) ∼ v(z) and v = (vx, vy, vz) = (vx, 0, 0). Therefore,
no gravity effect is to be considered in the vertical component of the velocity (Jong et al.,
2007).

Reynolds number

The Reynolds number (Re) is a dimensionless quantity that is used to help to predict
flow properties in different fluid flow situations. It is an estimate of the ratio of the inertial
forces to the viscous forces. From equation (2.1a), we define:

Re ≡ [ρ(v ·∇)v]

[µ∆v]
. (2.2)

Since the velocity gradient is proportional to the velocity divided by the characteristic
length L of the medium (v ·∇)v ∝ u2

L and ∆v ∝ u
L2 , with u a characteristic velocity of

the system, then

Re =
ρuL

µ
. (2.3)
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For increasing Reynolds numbers, four flow regimes can be distinguished: Stokes flow
(Re� 1), laminar flow, transitory flow and finally turbulent flow (Re > 2000). In turbu-
lent flows, Navier-Stokes equation is non-linear and convective phenomena are dominating.
In Stokes flow, diffusion of momentum is dominating. In Stokes conditions (Re� 1) the
Navier-Stokes momentum equation becomes the linear Stokes equation, which, for steady
flow, reads as

µ∆v = ∇P − ρg. (2.4)

2.1.2 Description of solute transport

Advection-Diffusion-Reaction equation

When dealing with the time evolution of a chemical or biological species in a flowing
medium such as water, solute transport and reaction are described at the hydrodynamic
scale by the advection-diffusion-reaction equation. It expresses solute mass balance and
describes the evolution of concentration as a partial differential equation (PDE). Let c(x, t)
be the concentration of a given chemical species with space coordinates x and time coor-
dinate t, then the advection-diffusion-reaction equation is given by

∂tc(x, t) = −∇ (v(x, t)c(x, t)) + ∇ (Dm(x, t)∇c(x, t)) + r(x, t, c(x, t)), (2.5)

with v the velocity vector, used to define the advective term of the equation, which repre-
sents the transport of the species by the flow. Dm is the molecular diffusivity coefficient of
the quantity in the considered fluid. It is used to define the diffusion term of the equation
and is often considered constant in all spatial directions as well as stationary for simpli-
fication. r is a source or, often in our cases, a reactive term that usually is a function of
the considered concentration, at least to some extent.

Péclet number

The Péclet number is defined as the ratio of the contributions to mass transport by
convection to those by diffusion and is generally defined as

Pe =
τd
τa
, (2.6)

with τd the characteristic diffusion time scale and τa the characteristic advection time
scale.

Huysmans and Dassargues (2005) have shown that many definitions are used for the
same idea of Péclet number, each for a particular case. In low permeability environments,
transport by advection is often neglected based on a Péclet number criterion. The Péclet
number is an estimate of the ratio of the advective to dispersive terms in Equation (2.5).
The Péclet number corresponding to this equation with a characteristic flow velocity u
and characteristic length L is:

Pe =
uL

D
. (2.7)

Damköhler number

The Damköhler number (Da) is the ratio of the reaction timescale to the mass transport
timescale through the reactor. It is usually defined as

Da =
τd
τr
, (2.8)
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with τd the characteristic diffusion time scale and τr the characteristic reaction time scale.
For a general chemical reaction A→ B of nth order, the Damköhler number for a convective
flow system is defined as:

Da = krC
n−1
0 tr, (2.9)

with C0 the initial concentration, tr the mean residence time and kr the kinetics reaction
rate constant, which unit depends on the reaction order.

2.1.3 Properties of microfluidic equipment

Flow control

One of the main characteristics of microfluidic experiments is the precise control of
pressure drop along the channels and of associated flow rates. Typical flow rates injected
in the devices are in a range of 1 to 104 µL.h−1. To achieve such level of control, two main
tools are widely used: pressure controllers and syringe pumps. Positive pressure controllers
are connected to a source of compressed gas and to a closed fluid container on the input
side of the system. The equipment increases the pressure in the head-space of the container
and forces the fluid down into the microfluidic tubings. Negative pressure controllers are
connected to a vacuum pump and to a fluid container at the output side of the system. The
equipment decreases the pressure in the container and therefore applies a suction force on
the fluid in the microfluidic device. Both controllers allow precise control of the pressure
drop between both sides of the system and the fluid flow rate then depends on the system’s
hydraulic resistance. It may vary if the hydraulic resistance changes. Syringe pumps are
used to control the injection into the system of fluids contained in glass syringes. The
flow rate is imposed independently of pressure changes in the microfluidic channels. Both
types of equipments are connected to the workstation and can be programmed to deliver
changing flow rates over time.

Microfluidic system

The main tubing used for the experiments is PTFE tubing from Elveflow, with Outer
Diameter OD = 1/16” and Inner Diameter ID = 1/32”. The flow control was first achieved
using pressure controllers such as MFCS-EZ (Fluigent) two +25 mbar channels and one
+1 bar channel (positive pressures, connected to the building compressed air system)
combined with Fluigent XS and S flow-units to stabilize pressures in real time and obtain
a constant flow rate (see Table 2.1). Later on, when pressure controllers were used to
control gas flow, constant flow rates were achieved with Cetoni syringe pumps.

Table 2.1: Fluigent Flow Units specifications

FLOW UNIT XS S

Range 0±1.5 µL.min−1 0±7 µL.min−1

Accuracy 10% m.v. above 75 nL.min−1 5% m.v. above 0.42 µL.min−1

(m.v. = measured value) 7.5 nL.min−1 below 75 nL.min−1 21 nL.min−1 below 0.42 µL.min−1

Hydraulic resistance in the system

The hydraulic resistance (Rh) is the resistance to flow within a pipe. Its total value
in the microfluidic system has a direct impact on the needed pressure drop between both
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ends of the entire setup. For a given system, the relation between hydraulic resistance,
fluid flow Q and pressure drop ∆P is

∆P = RhQ. (2.10)

In a series of different channels, the total hydraulic resistance is Rtot =
∑

i

Ri. For a

circular channel,

Rh =
8µl

πr4
h

=
128µl

πd4
h

, (2.11)

with l the sample length, rh the hydraulic radius and dh the hydraulic diameter. For a
rectangular channel,

Rh ≈
12µl

wh3(1− 0.63 hw )
, (2.12)

with w the sample width, h the sample height (valid only for h� w).

Application to water

Table 2.2: Hydraulic resistance of components of the microfluidic circuit

Component l (mm) w (µm) h (µm) dh(µm) Rh (Pa.s.m−3)

Microfluidic chip 8 625 50 – 1.3× 1012

XS flow-unit 35 – – 25 3.66× 1015

S flow-unit 35 – – 150 2.82× 1012

2-switch 15.28 – – 1000 6.24× 108

We clearly see from Table 2.2 that some components of the circuit will restrict the
pressure ranges that we can use. The following table gives the needed pressure drop for
several fluid flow rates. To compare to the microfluidic chip, note that its volume is 0.25
µL.

Table 2.3: Minimal pressure drop needed for specific flow rates in specific systems (∆P ,
mbar)

aaaaaaaaaaa
System

Q(µL.min−1)

0.005 0.025 0.100 0.250 0.500 1.000 10.000

XS FlowUnit 3.048 15.241 60.966 152.414 304.828 609.656 6096.556

S FlowUnit 0.002 0.012 0.047 0.118 0.235 0.470 4.704

Microfluidic chip 0.0011 0.0054 0.0216 0.0540 0.1081 0.2161 2.1610

2-switch < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0001 0.0001 0.0010

Based on these calculations and experimental trials, we decided that syringe pumps
were more suitable to work at the very low flow rates needed for the set of experiments
with various wall shear stress. Indeed, flow rates sensors have the disadvantage of needing
special tubing with small inner diameter (high pressure PEEK tubing, 1/32” OD, 0.25
mm ID) and the inner volume of the sensors themselves is so small that the pressure drop
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needed to achieve even small flow rates is much higher than 1 bar. In addition, these
flow controllers with small inner volumes are more prone to clogging because of bacterial
growth within the equipment. We worked with low pressure syringe pumps from Cetoni
(neMESYS 290N), able to control flow rates up to 1 nL.min−1 with our 1mL syringes.
Positive pressure controllers were still used in every experiment with gas control in the
microfluidic top layer, as oxygen source injectors, since they were connected to a clean air
source.

Diffusion coefficient of chemical species in water

The Einstein-Smoluchowski equation gives the diffusion coefficient (D) of a particle as
a function of absolute temperature (T in K):

D = ηkbT, (2.13)

with kb the Boltzmann constant and η the molecule mobility coefficient.

For low Reynolds numbers (Re � 1, referred as Stokes flow), the diffusion process
corresponds to the random motion of particles suspended in a fluid and resulting from
their collisions with one another, also called Brownian motion. The diffusion process is
described by the Stokes-Einstein equation, deriving from Equation (2.13):

D =
kbT

6πµR
, (2.14)

with µ the dynamic viscosity of the solvent (also function of T ) and R the diffusing particle
radius. With simple derivations from these formula, we can easily estimate the distance
over which a chemical species will diffuse in the direction transverse to the flow direction
in a microfluidic channel. This can also be simulated, as shown in Figure 2.1, where the
process of transverse diffusion is illustrated for a chemical species subjected to advection
and diffusion in a microfluidic coflow channel.

Inlet C=0

Inlet C=1

Oulet

a

b c

Velocity (m.s-1) Normalized concentration

2 mm
250 μm

Q
W

r(t)

d

Figure 2.1: Distance of diffusion. (a) Sketch of a coflow in Comsol Multiphysics. Two
fluids are flowing alongside, with different initial concentrations in the chemical species
C. (b) Velocity field computed for the geometry in 2D. (c) Normalized concentrations of
the chemical species transported by advection and diffusing in the previous velocity field.
This particular setup allows the settling of a stationary transverse gradient within the
microfluidic channel and illustrates transverse diffusion processes.
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The relation between the distance of diffusion orthogonal to the flow, r(t), and the
diffusion coefficient D is:

r2(t) = nDt, (2.15)

with n = 2, 4 or 6 for 1, 2 or 3 dimensional diffusion. In our case, n=4 gives:

r(t) = 2
√
Dt, (2.16)

and thus,

t =
r2

4D
. (2.17)

In order to determine the length needed in the channel to allow diffusive particles to
reach the lateral walls, we must find the time for a particle in the center of the channel
to travel across the distance that separates its position to the lateral walls by transverse
diffusion. If we write tf the time at which rf = r(tf ) = w

2 , we can find the distance d in
the channel with the simple equation d = vtf . This gives:

d =
ur2

f

4D
=
u(w2 )2

4D
. (2.18)

The mean velocity of fluid in the simple rectangular cell is related to the volumetric flow
rate measurement by the relation u = Q

wh . Hence we obtain:

d =
Qw

16hD
. (2.19)

2.2 Creation of a microfluidic device

2.2.1 Initial design and simulations

We used the layering software CleWin to design the microfluidic devices. This software
is used to draw electronic networks and has therefore a precision suited to microfluidic
channels design. Since their production is time consuming, all designs were tested before-
hand with 3D flow simulations.

As shown in Figure 2.2a, designs are usually grouped together in order to maximize
space usage and minimize fabrication time. Since the microfluidic channels will be fabri-
cated on 3” circular silicium wafers, we used a circular marker during the designs drawing
phase, in gray in Figure 2.2a. Then, individual designs are exported from PNG files ex-
tracted from CleWin into DXF format to be reloaded into the simulation software Comsol
Multiphysics in order to perform numerical simulations. The procedure is described in
Figure 2.2b-d. From there, regions of interest are converted from curves to solids and
combined in a workplane, which is extruded in the third dimension with desired height.
Work materials, conditions and governing equations are fixed and a mesh is generated
accordingly. Mesh properties, and especially local refinement near surfaces, will have a
major impact on the simulations precision and on the estimation of hydrodynamical pa-
rameters. In Comsol Multiphysics, the flow field in rectangular parts of the channels are
computed from pressure drop calculations, by taking the divergence of the momentum (or
Stokes) equation and using the continuity equation (∇ · v = 0) to get a Poisson equation
for pressure:

∇2P = f. (2.20)
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a

b

c

d

Figure 2.2: Design procedure. (a) Designs are drawn in CleWin and organized on
wafer masks. (b) CleWin drawings are converted from PNG to DXF format and imported
in Comsol Multiphysics. (c) DXF are converted to curves, and regions of interest are
combined. The design is scaled properly and the 2D shape is extruded in 3D with desired
height. (d) After having set the materials and governing physical equations, an appropriate
meshing is performed and simulations can be run in the 3D domain.

Solving the Poisson equation for a Newtonian fluid in a straight channel in steady-state
using Fourier series decomposition yields the analytical solution for spatial dependency of
the velocity field given below (Mortensen et al., 2005),

v(y, z) =
∆p

µL

4H2

π3

∞∑

n=1,3,5...

1

n3

(
1− cosh(nπy/H)

cosh(nπW/2H)

)
sin(nπz/H), (2.21)

with ∆p the pressure drop along the channel (in Pa), µ the dynamic viscosity of the fluid (in
Pa.s), L,W,H the length, width and height of the channel (in m). This expression can be
compared to Comsol Multiphysics simulations for the straight channels part of microfluidic
designs and can be used directly to compute the velocity field in a rectangular channel
with an estimated pressure drop. The shear rate γ̇ (in s−1) and the wall shear stress τw

(in Pa) are defined as

γ̇ =
∂v

∂z
, (2.22)

and

τw = µ
∂v

∂z

∣∣∣∣
z=0

. (2.23)

Growing bacteria colonies are attached to the surface on the channel floor and are
subjected to a shear stress, due to the flow in the microfluidic device. In Chapter 4 we will
investigate the impact of the shear stress on their dynamics. We thus consider shear stress
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values in the vicinity of the channel floor, from z = 0 to z = 3 µm. The values of wall
shear stress were obtained at y = W/2 by computing the linear velocity gradient along
the Poiseuille velocity profile obtained with the Comsol Multiphysics simulations, between
these two vertical positions. Note that water viscosity highly depends on temperature
and so does the wall shear stress. Working with Escherichia coli strains, we set the
channels and fluid temperatures to 37°C and used corresponding water viscosity value of
µ(37°C)=0.691 mPa.s obtained from Kestin et al. (1978). The validity of Equation (2.21)
was checked in the longitudinal direction for a straight rectangular channel. According
to Ahmad and Hassan (2010), entrance length has to be considered in microfluidic flow
development and this perturbed distance can be approximated to 0.63dh in the case of
small Reynolds numbers (Stokes flow), with dh the hydraulic diameter of the channel.
In the case of the majority of our designs, the characteristic length of the system is the
microfluidic channel height, which is the smaller dimension. In this direction, flow velocity
forms a Poiseuille profile (Bruus, 2008) and wall shear stress is uniform on the floor of the
channel, providing that observations are not made at some microns from the lateral walls.
Figure 2.3 shows a velocity profile computed with Comsol Multiphysics in the (xz)-plane
with a 50 µm height. In this context, entrance effects are supposed to be negligible after
approximately 30 µm, which is indeed observed in the simulation.
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Figure 2.3: Velocity field simulation. (a) Fluid velocity simulation in Comsol Mul-
tiphysics for a rectangular channel of reduced length 300 µm and height 50 µm. (b)
Vertical Poiseuille profile of longitudinal velocity along the transverse line shown in the
left panel. References are made to the positions used to compute the wall shear stress
from the vertical velocity gradient.

Equation (2.21) was also used to compute the effect of the channel geometry on shear
rate and wall shear stress. With the geometry dimensions, the pressure drop was com-
puted from Equation (2.10) for a classical value of flow rate Q=100 µL.h−1, channel width
W=625 µm, channel length L=1 mm and variable heights H. The results of these sim-
ulations are shown in Figure 2.4a for H=50 µm and H=250 µm. These velocity profiles
are valid only for rectangular channels with known pressure drop and after the entrance
length. They are useful to get a quick idea of the flow and shear regimes of a given set of
hydrodynamical parameters. From these profiles, wall shear rate and shear stress can be
computed, using Equations (2.22) and (2.23) between z=0 and z=3 µm, where the velocity
gradient is linear. The shear rate and wall shear stress obtained along the channel width
are given in Figure 2.4b for 4 different heights from 50 to 500 µm. As discussed in previous
paragraphs, the shear stress at the bottom of a microfluidic channel is a function of the
fluid velocity gradient in the vertical direction. More complex, 2D shear stress can appear
in the first tens of microns near channel walls. In depth simulations with Comsol Multi-
physics are still essential for more complex geometries, where the pressure drop cannot be
computed as easily as in a rectangular channel.



Chapter 2 Microfluidic cell development and numerical tools 40

Z
 (
μm

)

Y (μm)

Z
 (
μm

)

1

0.5

0

a

b

v/vmax

Figure 2.4: Shear stress computation in a microfluidic channel of rectangular cross-
section. (a) Fluid velocity normalized by the maximal velocity in a yz section, transverse
to the flow direction. Velocity maps are shown for heights H=250 µm (top) and H=50 µm
(bottom). The thinner the height of the channel, the sharper the velocity gradients. (b)
Shear rate and shear stress at the bottom of microfluidic channels with various heights
(given in µm).

2.2.2 Fabrication of microfluidic devices by soft lithography

We produced our microfluidic devices with the micro-fabrication process known as soft
lithography (Xia and Whitesides, 1998). The first step consists in creating a master mold
using the masks obtained from the CleWin designs in the photo-lithography procedure.
The process requires a clean room and was carried out at the Institut de Physique de
Rennes (IPR) facility each time new designs were made. Photo lithography is used to
create the master mold used to cast polydimethylsiloxane (PDMS) microfluidic devices in a
few steps (Figure 2.5). The master mold is made from a photoresist (SU8, a photocurable
epoxy) cured with UV light through the chrome mask on which the desired geometry
is printed. A first thin (some microns) and uniform film of SU8 (microchem) resin is
spin-coated on the silicium wafer as an undercoat. The thickness is determined by the
characteristics of the resin given by the manufacturer and the spinning speed, the fastest
the spinning, the thinnest the SU8 layer. After heating and fully curing the undercoat
with UV light, the actual resin layer is spin-coated on the wafer. The typical rotation
speed in our case is around 3000 rotations per minute (rpm) to obtain a desired thickness
of 50 µm. The new resin layer is baked for 15 min at a temperature increased from 50 °C
to 65 °C. This step is called soft baking, it allows the solvent to evaporate from the resin
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prior to exposition to the UV light.
The next step consists in curing the desired areas of the resist to create our pattern.

To do so, we expose the wafer to collimated UV light through the chrome mask with an
aligner. The exposure time determines the verticality of the walls, since an overexposure
can lead to lateral curing under the mask due to diffraction, resulting in trapezoidal
shapes to the channels. Conversely, an underexposure will result an incomplete curing of
the patterns. In the worst scenario, it results in the vanishing of the patterns during the
developing. Wafers were exposed 60 seconds for 50 µm heights.

Figure 2.5: Soft lithography process. A master mold is crafted on a silicium wafer
with the masks using SU8 photoresist resin and UV exposure. The coated wafer can be
used multiple times to mold PDMS microchannels.

We then baked the wafer once again for 15 min at 75°C. This step is called the post-
exposure bake and reduces the standing wave phenomena caused by interferences of the
incoming UV light. We remove the non-exposed resin using a PGMEA (Propylene glycol
monomethyl ether acetate) developer. Finally the coated wafer is immersed in a bath
of the developer which removes the uncured resin, rinsed with isopropanol to stop the
developing process and then dried with acetone. The final step consists of a hard bake to
solidify resin and reduce surface cracks. The hard bake lasts 10 to 30 min at 150°C.

The actual microfluidic flow cell was made by replicating the SU8 master with a silicone
polymer. We used polydimethylsiloxane (PDMS), which is commonly used for microfluidic
devices fabrication (Anderson et al., 2000; McDonald and Whitesides, 2002). The mains
benefits of PDMS are its ability to be poured over the substrate over a large area, its
facility to be unmoulded and that it is homogeneous, isotropic and optically transparent
over a wide range of wavelengths. It is also permeable to gas, impermeable to liquids
and biocompatible (Fujii, 2002; Mata et al., 2005). It was prepared as a mixture of ratio
1:10 in weight of curing agent, uniformly mixed and degased in a vacuum chamber for 30
minutes before being used in the molding process. The PDMS is poured over the master
wafer in a petri-dish and degassed again for another 15 min. We then put the petri-dish
in an oven at 65°C for 1h30 for curing. After peeling off the PDMS from the mold, we
obtain a faithful replica of the SU8 master. We punch holes into the PDMS to allow
connection of the inlet and outlet and seal the PDMS device to a microscope slide spin-
coated with a thin layer of PDMS, so that the four walls of the channels are composed of
PDMS. Irreversible bond between PDMS surfaces is achieved by exposing them to oxygen
plasma (or corona treatment) to develop covalent bounds upon contact. Such a seal can
withstand up to 3 bars of air pressure. As the silanol groups are polar in nature, they make
the exposed surface highly hydrophilic and the exposed parts of the device not bounding
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remain hydrophilic until after a 48h recovery. We reduce this recovery time by placing the
device in the oven at 65°C overnight.

Among the many designs we tried out, some were specifically conceived to control gas
transfert from gas channels to bulk fluids. Based on the work of Lu et al. (2017), we
superimposed two layers of microfluidic channels. The underlying channels were classical
designs used for liquid flow, and containing dissolved nutrients and bacteria. The upper
designs were gas channels where flow was fixed by pressure controllers. Between these two
sets of microfluidic channels, a thin PDMS membrane allows both superposition of the
channels and gas exchanges by diffusion through the PDMS. In the following sections, we
describe how we optimize this PDMS layer thickness with studies on the hydrodynamical
behavior of the system (see Section 2.3.2) and how we settled on using mostly PDMS
membranes with thickness between 100 and 150 µm. Here, we focus on the production
point of view and on how we calibrated the PDMS membrane thickness. We used mi-
croscope slides on which PDMS with ratio 1:10 and 1:20 in weight of curing agent was
poured and spin-coated at various speeds for 180 seconds. 10 slides were used for each
condition. Then, microscope slides were heated on hot plates at 150°C for 15 minutes to
allow the PDMS to cure. Thin slivers of PDMS were cut off, dropped off on their edges
on clean microscope slides and put under a microscope. This allows us to measure with
great precision the thickness of each slice and get the calibration curve shown in Figure
2.6. From this data, we selected the appropriate rotation speed in order to get 150 µm
thick membranes, which is 300 rpm at the chosen spin coating duration of 180 s.

150 μm
a b

Figure 2.6: PDMS membrane thickness calibration. (a) 10 measurements on dif-
ferent membranes were used for each point. Two ratios of mixing with the curring agent
were used: 1:10 for the blue curve and 1:20 for the black curve. (b) The thickness of each
membrane was obtained by looking at a cross-section under the microscope with known
conversion of magnification to actual size. Three measurements such as the one identified
by the black arrows were made on each membrane.
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2.2.3 Microfluidic designs used during this thesis

Microfluidic design 1

The first set of experiments was focused on controlling the flow velocity in a microflu-
idic channel in order to control the flux of nutrients brought to bacteria attached on the
bottom of the channel. The supply of nutrients through advection by the flow, basically
glucose and oxygen, is controlled by the flow rate imposed in the experimental channel.
The design used in the first set of experiments consists of a simple rectangular channel
with fixed dimensions: length l = 8 mm, width w = 625 µm and height h = 50 µm. With
such a simple geometry and the microscope automation (see Section 2.4), it is useful to
parallelize experiments. We designed the microfluidic channels such that two experiments
with different conditions might be run at the same time, as shown in Figure 2.7. In this
design, inward blue arrows correspond to nutrient inlets, inward green arrows to the injec-
tion of bacteria and the outward blue arrows indicate the outlets during the experiment.
The channels are sufficiently close to each other for us to easily switch from one to the
other during the automated images acquisition process, but they are not connected with
each other.

Figure 2.7: Design for nutrient experiments. Two identical designs are assembled
together to be used simultaneously, in order to parallelize experiments. The inward blue
arrows correspond to nutrient inlets, inward green arrows to the injection of bacteria and
the blue outward arrows are the outlets.
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Microfluidic design 2

For a given fluid viscosity, the wall shear stress is proportional to the velocity gradient
at the surface. As the shear stress is maximal near surfaces, where bacteria happen to
be attached, we suspected that it may influence the growth patterns of Escherichia coli
bacteria in our microfluidic experiments.

We designed a second microfluidic device, using the method described in Section 2.2
to produce a thin membrane of PDMS between two microfluidic channels. The resulting
microfluidic device is shown in Figure 2.8. It has been designed to resolve some of the
issues encountered with the first set of experiments. The dimensions of the three bulk
fluid channels are 10 mm in length, 150 µm in height, and widths between 200 µm, 600
µm and 1000 µm. This combination of wider and higher channels allows the use of higher
flow rates, which is a simple way to avoid the backward rise of air bubbles in the channels
during the experiments, simply by maintaining a higher pressure in the flow chamber. The
use of wide channels enabled us to add three different aspect ratios for the three channels,
in order to study the impact of confinement on local wall shear stress at the bottom of the
channels. The upper (red) channels are used to circulate compressed air with a pressure
drop of 10 mPa. The 150 µm thick membrane allows oxygen to diffuse into the bulk fluid
and enables oxygen concentration renewal during the experiments. The gas diffusion in
the PDMS and in the bulk fluid in motion was simulated in Comsol Multiphysics before
hand, to ensure a right choice of parameters (see Figure 2.9). Even with a high flow rate
range, the design maintains a high concentration of oxygen at the bottom of the channel
in the worst scenario where no oxygen would be brought by advection (see Figure 2.9d).
In the low flow rate scenarios, vertical diffusion of oxygen through the PDMS membrane
is sufficient to renew the oxygen level during the experiments. The gas channels design
has been cut into 5 smaller channels to increase the contact between the second layer of
microfluidic design and the PDMS membrane and therefore to limit the risk of collapse.

As in the first set of experiments, bacteria are injected from the nutrient inlet (down-
ward blue arrow) until the saturation of the channels. The microfluidic device goes through
a vacuum for 15 minutes in a vacuum chamber prior to any liquid injection, such that the
process of saturating the channels with liquids is helped by the PDMS switching back to
an equilibrium and sucking up the air bubbles. This air bubbles dispel can be enhanced
by applying a slight suction through the PDMS membrane by means of a vacuum pump
connected to the gas channels, the opposite ends sealed. This is especially useful to clean
the thinner central channel. The same settling period of 30 minutes is used, in order to
allow bacteria to attach to the bottom surface. Then, the circuit is switched to the nutri-
ent inlet with an external two-ways switch (Fluigent). We wash in this way the channel at
low flow rate for 15 minutes in order to remove the most of swimming bacteria. At that
point, the experiments can be started.
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Figure 2.8: Design for shear experiments. Blue channels for liquids, nutrients and
bacteria, and red channels for air circulation, are separated by a 150µm thick PDMS
membrane. Bacteria are injected along the blue downward arrow, given time to settle
down and attach to the walls. Nutrients are then injected by the same inlet and air is
flown in the gas channels for oxygen renewal.
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Figure 2.9: Simulation of oxygen advection-diffusion in the microfluidic design.
(a) Import of the design in Comsol Multiphysics and definition of the materials: blue is
water, red is air and gray is PDMS. (b) Velocity field on a xy-plane in the nutrient channels,
flow goes from left inlet to right outlet. Velocity (and shear stress) are lower in the thin
central channel. (c) Normalized oxygen concentration field in the nutrient channel and
PDMS walls, which is stationary. The oxygen concentration is more homogeneous in this
channel due to the proximity of porous PDMS walls. (d) Normalized oxygen concentration
profile on a xz-plane along the black dashed line in (c), in the worse scenario of high flow
rate where no oxygen in brought by advection. The black arrow indicates the direction of
flow in the lower part of the device.
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2.3 Numerical tools: Hydrodynamical simulations for pa-
rameter exploration

2.3.1 Numerical simulations for physical parameter exploration: veloc-
ity field around bacteria

The shear stress produced by flow at the surfaces of our microfluidic devices is a
function of the local velocity gradient. Therefore, it is critical to know if these gradients are
affected by the presence of bacteria on the surface, in order to have a better estimation of
local shear forces as the number of bacteria grows in our experiments. We used the Comsol
Multiphysics simulation software to build up a simple 3D simulation of the velocity field
around a bacterial micro-colony. We chose a slightly eccentric shape with a lengthening
in the direction of flow with 2 layers of bacteria, which are modeled as rod-shaped cells
of length 2 µm and diameter 0.5 µm. This configuration is typical of some experiments,
where the impact of shear stress is studied (see Chapters 3 and 3). In Figure 2.10, we
show the numerical simulation of the 3D velocity field around such a bacterial colony and
around an isolated bacterium. The inflow velocity norm was chosen to reflect a scenario
with high shear, giving a reference shear rate of around 100 s−1 at the surface. It shows
that the variation in shear rate (and proportionately shear stress) downstream of a 2-layer
colony can be neglected as close as 2 µm downstream of the colony. It also shows that
the shear stress imposed on bacteria by the flow is higher than that computed for an
empty channel, since the local variations of velocity due to the roughness resulting from
the presence of bacteria is contained in a few microns in height.

2.3.2 Numerical simulations for physical parameters exploration: oxy-
gen consumption

As shown by multiple studies, oxygen concentration has a major impact on bacte-
rial growth capacity (Borer et al., 2018; Skolimowski et al., 2010; Thomen et al., 2017).
Escherichia coli bacteria are known to be able to transit from aerobic to anaerobic
metabolisms in the case of low oxygen concentrations, but the transition is slow and
their metabolism efficiency is reduced (Partridge et al., 2007). Here, we consider bacteria
grown in aerobic conditions and we want to estimate the effect of oxygen availability on
bacterial growth. The model is computed with a in-house Python program. The interest
of these light numerical simulations is to be based on an open source programming lan-
guage and to be very fast to run, in order to get a first glance at the consumption and
renewal dynamics. We use a simple numerical approach to get a first estimation of the
efficiency of diffusion and advection to bring oxygen in a control volume where bacteria
are consuming it. We use parameters taken from the literature (see Table 2.4) and an
average growth rate for E coli bacteria (Corman and Pave, 1983; Füchslin et al., 2012;
Monod, 1949; Senn et al., 1994; Shehata and Marr, 1971).

Table 2.4: Parameters and corresponding references

Name Symbol Value SI unit Reference

Consumption rate of O2 by E Coli k 8.33.10−20 m3.s−1.b−1 Martin (1932)

Diffusion coefficient of O2 in PDMS at 37°C DO,PDMS 1.3.10−9 m2.s−1 Adler et al. (2010)

Maximum growth rate µmax 2.10−4 s−1 (Monod, 1949)

Monod O2 half-saturation constant for E Coli KO 7.7.10−4 kg.m−3 Molz et al. (1986)

Solubility of O2 in water at 37°C SO,w 6.6.10−3 kg.m−3 Weiss (1970)
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Figure 2.10: Velocity field around a colony. (a) Structure of a simulated micro-colony
composed of 35 bacteria over 2 layers and 1 bacteria upstream. Each bacterium is 2 µm
long and has a diameter of 0.5 µm. (b) Velocity field in the xz-plane at y=W/2, from which
local shear stress can be extracted. (c) Velocity field in the xy-plane at z=1 µm, showing
how the presence of bacteria can affect local values of velocity and over what range these
changes occur. (d) Relative variation of the velocity field in the xz-plane computed from
3D velocity fields with (U, in m.s−1) and without the bacterial colony (Uref ), showing the
3 µm extend of local variations of velocity around the colony. (e) Shear rate (γ̇ in s−1)
and relative variation of shear rate extracted from local velocity gradients showing that
bacteria experience a higher shear than that computed for an empty channel.

To solve for oxygen consumption in our microfluidic chip, we consider an elementary
volume of the channel V = ∆x.∆y.∆z and a bacteria (respectively, oxygen) concentration
B(t) (respectively, O(t)), with the following initial conditions:

B(t = 0) = B0, (2.24a)

O(t = 0) = SO,w. (2.24b)

Scenario 1: Closed system

In this first scenario, the microfluidic channel is closed and isolated from the atmo-
sphere. The bacterial population will grow and consume the oxygen in the channel, without
any potential source of renewal. As there is no input of gas, the oxygen concentration will
constantly decrease until it reaches zero. Our hypotheses in this scenario are as follow:

• The carbon source is always in excess.

• Bacterial growth is of Monod type, only controlled by oxygen availability.

• Bacteria do not die at low nutrient concentration so we don’t have to consider a
death rate.
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The bacterial population is considered to evolve according to a Monod growth law (see
Section 1.1.3) of maximum growth rate µmax and oxygen half-saturation constant KO.
Therefore, the oxygen is consumed according to a Michaelis–Menten kinetics with reaction
rate k. The system is described in Figure 2.11a and the governing expressions are

dB(t)

dt
= µmax

O(t)

KO +O(t)
B(t), (2.25a)

dO(t)

dt
= −k O(t)

KO +O(t)
B(t). (2.25b)

We solve these equations numerically using an explicit scheme with temporal discretization
of the type du

dt = O(t+∆t)−O(t)
∆t , with ∆t the numerical time step, thus obtaining

B(t+ ∆t) = B(t)

(
1 + µmax

O(t)

KO +O(t)
∆t

)
, (2.26a)

O(t+ ∆t) = O(t)

(
1− k

KO +O(t)
∆tB(t)

)
. (2.26b)

Scenario 2: Diffusion

In the second scenario, we consider that the microfluidic channel is under a PDMS
layer of thickness HPDMS. Within this layer, the oxygen diffuses with a diffusion coefficient
DO,PDMS . The top of the PDMS layer is always at equilibrium with the atmosphere so
that its oxygen concentration is always considered to be Oatm. This case is described in
Figure 2.11b.

Our hypotheses in this scenario are the same as in scenario 1 with the additional
following:

• Instantaneous equilibrium between top of the PDMS layer and atmosphere.

The governing expressions for this system are given by

dB(t)

dt
= µmax

O(t)

KO +O(t)
B(t), (2.27a)

∂O(t)

∂t
= DO,PDMS

∂2O

∂z2
− k O(t)

KO +O(t)
B(t), (2.27b)

We solve these equations with the same numerical method as for scenario 1, using the
following space discretization for the diffusive flux through the PDMS layer: ∂2O

∂z2 =
Oatm−O(t)
H2

PDMS
. Hence, we obtain the following numerical scheme

B(t+ ∆t) = B(t)

(
1 + µmax

O(t)

KO +O(t)
∆t

)
, (2.28a)

O(t+ ∆t) = O(t)

(
1−∆t

[
k

KO +O(t)
B(t) +

DO,PDMS

H2
PDMS

])

+
DO,PDMS

H2
PDMS

Oatm∆t. (2.28b)

Scenario 3: Advection-Diffusion

In the last scenario, we consider that the microfluidic channel is open to an incoming
flow of oxygen concentration Oin with average velocity u. This case is described in Figure
2.11c.
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Figure 2.11: Case study of the bacterial oxygen consumption versus renewal.
The control volume is saturated with oxygen at the initial time. (a) Closed system, no
source is available for renewal. (b) Diffusive system, oxygen is renewed by diffusion from
a top layer of PDMS. The rate of supply in oxygen depends on the PDMS layer thickness.
(c) Advective-diffusive system, oxygen is renewed by diffusion from a top layer of PDMS
and by flow circulation. The rate of supply in oxygen depends on the PDMS layer thickness
and on the flow rate.

Our hypotheses in this scenario are the same as in scenario 2. The governing expres-
sions for this system are given by

dB(t)

dt
= µmax

O(t)

KO +O(t)
B(t), (2.29a)

∂O(t)

∂t
= DO,PDMS

∂2O

∂z2
− u∂O

∂x
− k O(t)

KO +O(t)
B(t). (2.29b)

We solve these equations with the same numerical method as for scenario 1 with the
space discretization in the advective term ∂O

∂x = Oin−O(t)
∆x . Hence, we obtain the following

numerical scheme

B(t+ ∆t) = B(t)

(
1 + µmax

O(t)

KO +O(t)
∆t

)
, (2.30a)

O(t+ ∆t) = O(t)

(
1−∆t

[
k

KO +O(t)
B(t) +

DO,PDMS

H2
PDMS

+
u

∆x

])

+

(
DO,PDMS

H2
PDMS

SO,w +
u

∆x
Oin

)
∆t. (2.30b)
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Modeling results

We simulated the three scenarios described in the previous section and we tested
various PDMS heights for the diffusive-only case. The control volume chosen for the
modeling has the following dimensions: ∆x=10 µm, ∆y=625 µm and ∆z=50 µm. From
the modeling we get the variation of oxygen in the control volume over time. We also
obtain the growth of the bacterial population, starting from B0 = 4.1012 b.m−3. This
bacterial concentration corresponds to 1 cell in the control volume at time t = 0. This
is consistent with the mean bacterial concentration observed in our experiments. Figure
2.12 shows the resulting oxygen and bacterial concentrations evolution.

In the closed-system scenario (’noAD’ ), it takes around 7 hours for the growing bacte-
rial population to consume the oxygen contained in the channel. After 7 hours, as there is
no input of oxygen, the growth stops and the bacterial population remains stable because
of our no-dying hypothesis. In the diffusive-only scenario (’DnoA’ ), the results show a
huge impact of the PDMS height. With a 5 mm thick PDMS diffusive layer on top of the
channel, the system response is almost the same as in the previous case. The difference is
still noteworthy as the bacterial growth has not been totally shut down at the end of the
experiment (10 hours). With a 50 µm thick PDMS layer, oxygen decrease in the channel
would take more than 10 hours to affect the bacterial growth.

The advective-diffusive scenario (’AD’ ) is computed with the intermediate PDMS
height (500 µm). The flow rate for the advection-diffusion scenario is 100 µL.h−1. It
shows that the oxygen supply by longitudinal advection is decisive and makes the diffu-
sion through PDMS negligible. After 10 hours, there is still no variation in the oxygen
concentration even with the exponential growth of the bacterial population, which has
been increased by 5 orders of magnitude.
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Figure 2.12: Bacterial growth as a function of oxygen supply. (a) Oxygen concen-
tration in the control volume as a function of time. (b) Bacterial concentration in the
control volume as a function of time. Three different PDMS heights were tested on the
second scenario and the intermediate height was used for the advective case.

The modeling of oxygen consumption by a bacterial population gives us a better under-
standing of the impact of confinement on nutrient availability. In the case of a Monod-type
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exponential growth of bacteria, an input of oxygen is needed to sustain the growth. Dif-
fusion of oxygen in PDMS is not as instantaneous as we might have thought. At this
first order approach, advection proves to be much more effective than diffusion to renew
oxygen in the control volume, given classical millimeter dimensions of PDMS layers atop
microfluidic channels. In this quick modeling, some important factors are ignored, such
as the effect of flow rate on oxygen diffusing through the PDMS layer or the fact that at
low flow rates, bacteria upstream will start to consume much of the oxygen, which will
never reach downstream colonies. These colonies might depend more on diffusion through
PDMS.

2.3.3 Numerical simulation of effective bacterial oxygen consumption in
microfluidic channels

The numerical simulations shown in previous section are interesting in regard to the
understanding of the balance between advective and diffusive oxygen fluxes, as well as their
quick and simple implementation. In this section, we use the Comsol Multiphysics simula-
tion software to develop a more realistic approach to the problem of oxygen consumption
and renewal in a microfluidic channel.

Problem description: coupled PDE

Our model needs to describe the coupling of nutrients transport and bacterial growth,
the latter been based on nutrients consumption. The domain is a microfluidic channel
of length L=3000 µm and of height H=50 µm. A laminar flow goes from x=0 to x=L
in the channel and transports both nutrients (glucose G and oxygen O). At the inlet,
glucose is at fixed concentration G0 and oxygen at O0 (in kg.m−3), see (1) in Figure 2.13.
At the outlet, glucose and oxygen are transported out of the system with the boundary
condition on pressure P=0, see (2) in Figure 2.13. Bacteria are attached to the bottom
of the channel from x=500 µm to x=2500 µm, with initial surface concentration B0 (in
cell.m−2). The walls of the channel are composed of PDMS. Thus, the upper wall is a
source of oxygen due to its diffusion from surrounding air, see (3) in Figure 2.13. The
bottom wall is the sink of both glucose and oxygen due to bacterial consumption, see
(4) in Figure 2.13. To overcome numerical errors at the boundaries with flux, leading to
negative concentrations of oxygen due to coarse spatial and temporal discretization, we
built an adaptive boundary layer on the first 2 microns from the bacterial surface. This
trick allows us to keep reasonably fine spatial discretization in the entire domain and to
concentrate finer mesh cells dimensions around the areas of known high variability.

Bacteria grow following a Monod law (Michaelis–Menten kinetics). The system of
coupled PDE is therefore given by

∂G

∂t
= ∇.(DG∇G)− u∇G− µG

G

KG +G

O

KO +O
B, (2.31a)

∂O

∂t
= ∇.(DO∇O)− u∇O − µO

G

KG +G

O

KO +O
B + SO(z), (2.31b)

∂B

∂t
= µmax

G

KG +G

O

KO +O
B, (2.31c)

where Di, i ∈ {G,O}, is the diffusion coefficient of nutrient i (in m2.s−1), µi is the
consumption rate of nutrient i (in kg.cell−1.s−1), Ki is the Monod half-saturation constant
(in kg.m−3) and µmax is the maximum growth rate of bacteria (in s−1). SO is a source
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term describing the oxygen diffusing through the upper wall. It is thus equal to a net flux
FO,top at z=50 µm and is zero everywhere else in the domain.

3000 μm

50 μm

500 μm

(1)
(2)

(3)

(4)

z
x

(5)
Figure 2.13: Comsol Multiphysics design. (1) Water inlet with initial concentrations
of both glucose and oxygen (G0 and O0) and inlet velocity as boundary condition. (2)
Water outlet with null pressure as boundary condition. (3) Inward oxygen flux FO,top due
to oxygen diffusion through a PDMS membrane. (4) Outward flux of glucose and oxygen
(FG and FO) due to bacterial consumption on red surfaces. (5) Zoom on the adaptive
spatial discretization with finer meshing on reactive boundaries.

Comsol Multiphysics implementation

To solve this with COMSOL, we defined the domain and used the Laminar Flow
module to compute the flow field, with a normal inlet velocity U0 and outlet constraint
P=0. Then, we used the Transport of Diluted Species module to transport G and O in this
flow field. Inlet is defined with Dirichlet boundary conditions at the left wall with G = G0

and O = O0. Outlet is the right wall. We imposed a diffusive flux of oxygen FO,top at
the upper boundary, using the same space discretization as defined for Equation (2.28)b,
hence obtaining

FO,top = SO(50µm) = DO,pdms
O0 −O
H2

PDMS

, (2.32)

with DO,pdms the oxygen diffusion coefficient in PDMS (in m2.s−1) and HPDMS the PDMS
height (in m). We imposed nutrients consumption by bacteria as a flux at the bottom
wall defined by

FG = −µG
G

KG +G

O

KO +O
B, (2.33a)

FO = −µO
G

KG +G

O

KO +O
B. (2.33b)

We used the Boundary ODEs and DAEs module to compute the bacterial growth on the
bottom wall of the channel. As mentioned above, bacteria are in the initial condition at
the lower wall in the surface concentration B0, between x=500 µm and x=2500 µm. There
are no bacteria outside this interval. The source term for bacterial growth is the right
term of Equation (2.31c).
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Simulation parameters

Table 2.5: Simulation parameters

Name Value Unit

L 3E − 3 m

H 5E − 5 m

Hpdms 1E − 2 m

U0 1.11E − 3 m.s−1

G0 2E − 3 kg.m−3

O0 1E − 3 kg.m−3

KG 6.6E − 5 kg.m−3

KO 2.24E − 4 kg.m−3

µG 6.3E − 20 kg.cell−1.s−1

µO 1.2E − 17 kg.cell−1.s−1

B0 2E8 cell.m−2

µmax 1.9E − 4 s−1

DG 9.4E − 10 m2.s−1

DO 3.24E − 9 m2.s−1

DO,pdms
(a) 3.25E − 9 m2.s−1

tmax
(b) 30000 s

T (c) 310.15 K
(a) Markov et al. (2014) have shown that plasma treatment of PDMS surfaces might
decrease oxygen diffusion to 2.5E-9 m2.s−1 and diffusion recovery would then be function
of time and storage conditions.
(b) small time scales are about tmax=10 s and long time scales are from tmax=10 min up
to tmax=10 h.
(c) all experiment are performed at 37°C.

Simulation results

We run simulations for flow rates equal to 50, 100 and 400 µL.h−1 and we varied the
PDMS membrane thickness between 100 µm and 1 cm. These thicknesses correspond to
the most classical cases of a thin membrane spin-coated on the experimental channels
and covered with air-flowing channels on one hand, and to a 1 layer microfluidic device
covered with PDMS that equilibrates directly with surrounding atmosphere. Bacterial
growth is tracked at 3 locations along the channel floor at x=600 µm, 1500 µm and
2400 µm. These positions are chosen to avoid edge effects at the bacterial boundaries
(x=500 µm and x=2500 µm). The simulations exhibit little change in glucose concentration
over time, since the initial concentrations are large and the flow rates are sufficient to
renew its concentration in the channel. As a result, these concentration profiles are of
little interest and are not shown here. On the other hand, oxygen concentrations are
very sensitive to the simulation parametrization. The oxygen concentration profiles at
t=500 minutes are shown in Figure 2.14 for all situations described before. The color
scale has been chosen to mask the range of high concentrations in the bulk fluid and
to better highlight gradients near surfaces of interest. With a strong advective oxygen
flux (Q=400 µL.h−1), the effect of diffusion through the top PDMS membrane is small,
making a slight difference in the end of the channel length and on the vertical oxygen
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gradient. Oxygen is maintained at relatively high concentrations even at the bottom of
the microfluidic channel. With decreasing flow rate and thus decreasing advective flux, the
farthest along the channel floor, the more upstream bacteria will have consumed oxygen
and the less efficient advective concentration renewal is. However, diffusive flux from the
PDMS becomes much more efficient at sustaining vertical gradients of oxygen. In the case
of a thin membrane (HPDMS=100 µm), the high diffusive flux enables the settling of a
stationary vertical gradient and thus, enables constant renewal of oxygen at the bottom
of the channel. In the case of a thick membrane (HPDMS=1 cm), this flux is so limited
that bacterial consumption of nutrients at the channel floor prevents the settling of such
a gradient and bacteria are exposed to very low oxygen concentrations.

Figure 2.14: Oxygen profile given for a set of simulations pair of flow rate Q and PDMS
menbrane thickness HPDMS. The color scale has been chosen to highlight oxygen gradients
at low concentrations and mask high values. The red, blue and black dots on the channel
floor indicate the positions x = 600 µm, 1500 µm, and 2400 µm at which bacterial growth
is being monitored (see Figure 2.15).

At the tracked positions, bacterial growth is recorded over the whole simulation time.
The resulting growth curves are shown in Figure 2.15, with panels corresponding to the
parameters of the same panels in previous figure, and colors corresponding to the positions
x=600 µm, 1500 µm and 2400 µm in red, blue and black respectively. The first observation
is that whatever the conditions, the bacteria growing at x=600 µm are not significantly
impacted by the variations of nutrient availability. This is explained by the fact that
they always get nutrients in their initial concentration by advection, since no upstream
bacteria has consumed it. Then, as distance increases along the channel length, bacteria
are more and more affected by the decrease in nutrients availability. In the case of a thin
membrane, bacteria growth decrease is limited up to a certain rate allowed by the vertical
oxygen diffusive flux shown in Figure 2.14. As a consequence, at low flow rate (Q=50
µL.h−1), the position in the channel length after 1500 µm has no impact on growth rate
since the oxygen concentration renewal is entirely handled by vertical diffusion from the
PDMS membrane. In the case of a thick membrane however, the inability to establish
such vertical gradient against bacterial oxygen consumption leads to dead area, where
bacterial growth is greatly reduced, due to the lack of nutrients. With increasing distance
along the channel length, oxygen is consumed by upstream bacteria and at x=2400 µm,
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bacterial growth is nearly stopped after 400 to 500 minutes.

Figure 2.15: Bacterial growth at x=600 µm, 1500 µm and 2400 µm in red, blue and
black respectively, given for a set of simulations pair of flow rate Q and PDMS menbrane
thickness HPDMS. Bacterial surface concentrations are given in bacteria.m2 and initial
concentrations correspond to the initial coverage of the microfluidic channel floor in our
experiments.

2.4 Numerical tools: Image analysis

2.4.1 From live videos to raw image sequences

Acquisition parameters

Live images are acquired with the Leica Microsystems software LAS X. Table 2.6 makes
an inventory of the modules used to allow controlling the inverted microscope and camera.

Table 2.6: LAS X modules names and functions.

Module Name Function

Enviconmental control Control of the i8 incubator for CO2, O2 pressure and temperature

Mark and Find Acquisition with multiple stage locations

Multi-channel Multiple channel acquisition for combined bright field and fluorescence imaging

Non-Leica camera control Control of the Hammamatsu Orca-Flash 4.0 V3+ camera

Time-Lapse Acquisition of images time series

XY Stiching Acquisition of image mosaic in one Z plane and big picture recompilation

Z-Control and Autofocus Control of the board for best contrast or maximal intensity search and Z stacking

For the typical experiment of bacterial growth at the single-cell, regions of interest
(ROI) are defined along the microfluidic device, so that the zoom level is high enough to
distinguish individual cell, but also that hundreds to thousands of squared micrometers
are observed in a given ROI. Those regions are each composed of several xy locations for
stitching and recompilation, in order to have higher statistics in each acquisition. The
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best focus is found on bacteria already attached to the microfluidic channel bottom. A z
stack of 4 to 10 µm is defined around this central position to account for bacterial vertical
motion and focus variations due to the XY slide holder plate movements. Time-lapse
parameters are defined and the images acquisition can begin.

Images pre-processing

The pre-processing steps are :

1. Time and Z cropping to lower the size of saved data sets

2. Mosaic merging into single images

Those pre-processing steps are performed on LAS X software before saving movies as image
sequences. The images with fixed name formats may then be loaded into custom-made
Matlab processing programs.

2.4.2 Raw image processing

I wrote a Matlab program to perform the following processing steps:

1. Computation of rot and crop parameters to define the study area,

2. X and Y arrays for board deviation correction over time,

3. Selection of Z series to follow the best focus over time in the saved Z stack,

4. Time filter to clear common background from all images,

5. Space filter to clear random noise and objects bigger than individual bacteria,

6. Intensity thresholding to convert filtered images into binary regions,

7. Extract multiple characteristics from individual bacteria, based on area and elliptic-
ity, using the Matlab binary blob processing toolbox,

8. Saving of all computed parameters into loadable MAT files.

These MAT files are stored for further processing and comparison of experiments.

Rot, crop and spatial deviation parameters

A sample image, usually the last of a given image sequence, is open in a Matlab figure,
where the user is asked to draw a line. This line corresponds to the wanted horizontal
reference and allows to compute a rotation angle for corrections. A new figure opens and
displays consecutively five images taken in regular intervals from the first to the last time,
where the user is asked to locate and follow a fixed remarkable point. The five positions are
used to compute arrays containing spatial deviation amplitudes, used to correct the spatial
deviation of the automatized board, using second order polynomial interpolation. A new
figure opens with the rotated sample image and the user is asked to draw a rectangular
region to define the study area. The rotation angle, X-Y arrays and rectangle coordinates
are saved in a separate file and reloaded by the next function, which will apply those
corrections to all loaded images.
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Z series selection in the Z stack

During images acquisitions over several hours, a slight vertical drift of the microscope
stage can lead to loose the focus on bacteria attached to the floor of the microfluidic
channel. Z stacks are used to fix this drift in the image processing steps. Remarkable
changes of the focus over time are pointed and a linear interpolation is used to fix an
eventual drift.

Time filtering

Common background is defined as objects or channel walls that are present in every
frame and never changing over time. Using spatial average of multiple images, these
objects are isolated and then subtracted from every single frame to obtain time filtered
images. We generally used the first 10 images of an image sequence instead of a moving
time filter frame, in order to avoid erasing later developed bacterial colonies, which might
cease to move after several hours of growth. This classical type of adaptive time filter
is well suited to image sequences where the aim is to follow moving objects on a steady
background.

Space filtering

The selected space filter is a 2D band-pass filter. It consists of the difference of 2 low-
pass filters. Each of these low-pass filters is computed by convolution of the time-filtered
image and a 2D gaussian image. Equation (2.34) gives the expression used in the 2D
gaussian, as a function of the standard deviation σ in pixels.

Gaussian 2D = exp

(
− x2

2σ2
− y2

2σ2

)
(2.34)

Binary processing

An intensity threshold is defined so that every bacterium can be seen as an isolated
area in the resulting binary image, see Figure 2.16b. The thresholds are chosen depending
on the color of focused bacteria (black or white) after applying time and space filtering,
see gray scale in Figure 2.16d. We apply Matlab regionprops function from the image
processing toolbox to extract the geometrical properties of each bacterium.

We are only interested in some of the possible outcomes of this function, which are:
Area, Centroid, Eccentricity, Orientation and Perimeter (see Figure 2.16c for the latter,
represented on the corresponding raw image). Some bacteria might be too close to be dis-
tinguished, even after filtering and thresholding, and more frequently as bacterial colonies
grow and get denser. To consider these events, a criterion based on the total area of a blob
is chosen. It is used to recognize areas larger than an individual bacterium and to count
this blob as the appropriate number of individual bacteria to produce a relevant growth
curve. The geometrical properties as well as the total growth rate over time are saved to
external files in the MAT format for later reuse in the data processing programs.
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Figure 2.16: The main steps of image processing (a) raw image, (b) binary image
after time filtering, space filtering and intensity thresholding, (c) bacterial perimeters
found with the binary regions analysis and (d) count as 1 (dark blue) or 2 (light blue)
individual bacteria based on region area. Gray scales on images a and c are raw data in
pixel intensity on a 16 bits depth scale (0 to 65565), image b is binary (0 or 1) and image
d is in pixel intensity after applying the filters.

2.4.3 Statistical processing

Pre-processed images were processed with a in-house Python program to compute
the edges of groups of bacteria and colony-level statistics. Data acquired for individual
bacteria were analyzed to compute growth laws, statistics on geometrical attributes and
particle tracking.

Colony-level statistics

Individual bacteria are initially counted one by one based on geometrical attributes.
At the x640 magnification with the 16 bits camera, each pixel covers an area of 0.01 µm2.
Considering Escherichia coli bacteria with a length of 1.5 to 2 µm and a diameter up to 1
µm, each bacterium covers an area of approximately 200 pixels. This area depends on the
actual position of the bacteria in the flow: if the bacterium is lying on the channel floor,
it will be rod-shaped, if it is attached by one pole and swung by the flow, it will appear
more round-shaped. Therefore, a threshold on eccentricity e was also applied, keeping cells
found with e ∈[0.25,0.99]. Pre-processed images were processed using the Python scikit-
image and scipy libraries. Images were smoothed using a uniform filter with a kernel
of size 15 pixels and an intensity threshold to recompose binary regions from groups of
nearby bacteria. The result of the colonies identification from individual bacteria edges
is shown in Figure 2.17. From there, the geometrical attributes can be extracted at the
colony-size level, such as area distribution over time, eccentricity and distance between
colonies.
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Figure 2.17: Colony-level statistics are achieved by merging (a) single-cell boundaries
obtained from the Matlab pre-processing into (b) colony objects. Dimensions on the
axis are given in µm. Geometrical attributes are computed on these new objects to get
colony-size level statistics.

The area of each colony is originally obtained in units of pixels and can therefore be
immediately converted into squared micrometers, providing that the conversion factor is
known. In our experiments, we used x640 magnification for the low frame rate experiments
(sets of experiments used up to Section 4.3.1 in this thesis) and x400 magnification for
the high frame rate experiments (from Section 4.3.2). In the x640 magnification case, the
conversion is given by 1px = 0.106 µm. In the x400 magnification case, the conversion
is given by 1px = 0.170 µm. In the case of the x640 magnification that we used for
the experiments about colony-scale statistics, one squared pixel corresponds to 10−2 µm2.
With this conversion in mind, we can compare the areas in number of bacteria directly
with the areas in squared pixels.

Precision on the single-cell level statistics

The precision of measurements at the single-cell level depends on many factors. As
we work with phase contrast imaging, the boundaries of cells are less well-defined than
they would be with fluorescence imaging. In Figure 2.18, we show an example of bacterial
identification with boundaries drawn in green and the major axis of the ellipsoid fitted
on each bacterium is drawn in red. It shows clearly that some bacteria are too closed to
each other to be separated by the filters applied on the image. On the global count of the
number of bacteria, this is not challenging since the average surface covered by bacteria
can easily be obtained from the data. Therefore, based on area segregation, bigger shapes
can be counted as the actual number of individual bacteria they contain. This is more
challenging when dealing with bacterial orientation, since a correction is harder to apply
on the orientation detected for the pack of bacteria. In this case, potentially erroneous
measurements are simply ignored when the same size threshold is met. Statistical analysis
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can then be used to produce useful outcomes, such as the radial histogram presented as
an insert in Figure 2.18, based on geometrical parameters computed on bacteria selected
with the previously described criteria. On this picture, 228 shapes were identified. From
area estimations, 15 of these shapes were considered to contain two or more individual
cells, leading to a total count of 243 bacteria on the image. Looking at the image, we find
8 fuzzy shaped blobs that could have been taken as bacteria but are not. Therefore, on
this set of data, we estimate the error of measurements to be around 3%.

a

b

5 μm

Figure 2.18: Estimation of statistics precision. Filtered imaged of a bacterial colony
superimposed with detected bacterial boundaries in green and major axis of the fitted
ellipsoid in red. Dimensions shown on axis are given in pixels. (a) Polar distribution of
orientation of bacteria measured on reliably isolated bacteria. Zero degree is the direction
of flow in this given setup and values on the plot are percents. (b) Zoom on a shape
containing at least 3 bacteria, colored in yellow. Close to it, circled in yellow, there is a
fuzzy shape that is probably a bacteria missed by the image processing due to an intensity
area above intensity threshold that is smaller than the area threshold.
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Particle tracking at high frame rate

In order to get a better understanding of the individual bacteria dynamics, we run
some experiments with high frame rate, up to 10 frames per second (fps). From these
experiments, the identification of bacterial boundaries allow us to compute a center of
mass (centroid) for each bacterium in each frame. Then, we used the trackpy Python
library to build up bacterial trajectories (Allan et al., 2015). Trackpy is a package for
tracking blob-like features in video images, following them through time, and analyzing
their trajectories. Its usage can be summed up as separate tracking of particles into
three steps. In the first step, initial feature coordinates are obtained from each image, in a
process that can be easily parallelized. Subsequently, sub-pixel precision is obtained thanks
to coordinate refinement. Finally, the coordinates are linked in time which yields the
feature trajectories, using a prediction framework by correlating particle velocity between
frames. From the trajectories, we extract instantaneous velocities but also Mean Squared
Displacements (MSD), which analysis allows to extract diffusion coefficient of particles
undergoing Brownian motion (Michalet, 2010). This analysis tool has recently been used
by Vissers et al. (2019) to distinguish various populations of bacteria based on motion
criteria into 3 categories: swimmers with high and constant MSD slope higher than 1 in
log scale, diffusers with MSD slope of the order of 1 and adherers with weak motion and
a MSD slope near zero (see Figure 2.19). For such observations, lag times are relatively
restricted, up to 4 s in this study. To use this tool as a growth dynamics estimator, we
will use much higher lag times. We define the MSD (or 〈∆r2〉) with the definition given
by Calandrini et al. (2011) as

〈∆r2〉(τ) = lim
T→∞

1

T

∫ T/2

−T/2
dt(x(τ + t)− x(t))2, (2.35)

where T is the trajectory length, x is the particle position and τ the lag time of observation.
The lag time is the interval of frames over which the MSD is computed along the whole
trajectory. We adapt the study of MSD to the centers of mass for growth estimation but
also to bacterial poles movements to compare their level of attachment.

Figure 2.19: Mean squared displacements as a motion analysis tool. Based on the
slope in logarithmic scale, 3 populations can be distinguished: swimmers with high slopes,
diffusers with slopes around 1 and adherers with low slopes (from Vissers et al. (2019)).
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2.5 Conclusion

In this chapter, we have explored the main constitutive equations for fluid flows and
concentrations transport at the pore scale, which is the working scale within microfluidic
devices. We have seen what components of the experimental setup will have an impact on
hydraulic resistance in the channels and shear forces on the PDMS surfaces.

We have seen how the microfluidic devices are fabricated, using the well known soft
lithography method. We use a spin-coater to prepare microscope slides with a thin PDMS
cover and to build PDMS membranes of 150 µm over a first layer of microfluidic channels.

We have presented Comsol Multiphysics, the simulation software that we use to try
out the microfluidic designs before sending them into the micro-fabrication process. The
software is used to import the exact geometries of the microfluidic devices and perform
3D simulations to get the stationary velocity field. Wall shear stress values are computed
from vertical profiles taken out of these simulations. Then, the velocity field is used to
compute transitory evolutions of dissolved nutrients or gas concentrations. This protocol
allows to check if nutrients renewal is sufficient to insure that they will never become
limiting during the bacterial growth.

Last but not least, we described the main image processing and statistical analysis
tools that were used, either in Matlab or Python in-house programs that were written
during this thesis.
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Escherichia coli bacteria have been extensively studied to better understand of bac-
terial growth dynamics (Grilli et al., 2018; Monod, 1949; Senn et al., 1994; Shehata and
Marr, 1971). Recent work has been focused on experiments and simulations of varying nu-
trients concentrations, up to nanomolar concentrations (Lendenmann et al., 1999; Stolper
et al., 2010). Recently, studies have started to address the fact that natural habitats of
these bacteria usually involve complex spatial and temporal hydrodynamics, which must
be taken into account to describe the nutrient availability (Balagaddé et al., 2005; Hor-
nung et al., 2018; Hron et al., 2014). However, many of these studies focus on large scale
measurements of bacterial spreading or even biofilm formation (Peszynska et al., 2015;
Sternberg et al., 1999). What is missing in the literature is a precise description of the
combined effect of nutrient availability and flow conditions on the early stages of bacte-
rial growth and biofilm initiation. In this chapter, we focus on a first set of experiments
with the aim of better understanding the growth dynamics of Escherichia coli bacteria in
microfluidic channels, under various nutrient concentrations and constant flow rate. We
start by describing the experimental method procedure with a focus on initial conditions
that are common for all experiments. Then, we show the evolution of bacterial growth
dynamics with various substrate concentrations. A Monod growth law is fitted to the
experimental data, with more or less accuracy depending on the flow conditions. In a last
section, we discuss how the flow conditions could change the nutrients harvesting capacity
of bacteria.

3.1 Experimental method procedure

3.1.1 Bacterial culture conditions and sample preparation

The Escherichia coli ATCC®11775 strain was cultivated in 20 mL of M9 medium (per
liter : NA2HPO4 6g ; KH2HPO4 3 g ; NCl 1 g ; NaCl 0.5 g ; CaCl2 1M 30 µL) incubated
at 37°C in a 150 mL flask agitated at 150 rpm. A bacterial suspension stock was obtained
by inoculating a culture with a Vitroids disc and incubating for 24h. This ”stock” was
stored at 4°C for a maximum of 3 weeks. The growth rate of these bacteria in batch
experiments was measured with triplicates over a range of glucose concentration added to
the M9 medium. At given times, micro-samples were removed from the culture and their
optical density (OD) was measured using a spectrophotometer. The optical density in a
liquid culture medium is proportional to the bacterial density (Sezonov et al., 2007). The
bacterial growth rate µ (in h−1) is defined by

µ =
1

OD

dOD

dt
. (3.1)

We assume that the number of bacteria B follows a Monod growth law, hence we define

µ(S) = µmax
S

KS + S
, (3.2)

with µmax the maximum growth rate (in h−1), S the substrate concentration (here glucose,
in kg.m−3) and KS the Monod half-saturation constant (in kg.m−3). To measure the
growth rate of batch experiments, we thus fit an exponential of the following form to the
OD curves, which is the solution to Equation (3.1),

OD(t) = OD(0)eµt. (3.3)

The resulting fits on the triplicates are shown in Figure 3.1a for all initial concentrations.
As expected, the growth of Escherichia coli (from the growth of OD) is exponential until
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the nutrients are fully consumed in the batch reactor. Therefore, exponential functions are
fitted from the initial time up to the last time before the OD plateau. Then, we compute
the global growth rate µ for our Escherichia coli strain in batch culture with Equation
(3.2), fitted on the growth rates, for each initial concentration. To estimate the error on
this fit, we use the concept of propagation of uncertainty, which states that the variance
σ2
f of any given non-linear but differentiable function f of two independent variables a and
b, provided that the covariance between the parameters is negligible and that individual
variances of each parameter are small, can be expressed as

σ2
f ≈

∣∣∣∣
∂f

∂a

∣∣∣∣
2

σ2
a +

∣∣∣∣
∂f

∂b

∣∣∣∣
2

σ2
b , (3.4)

with σ2
i the variance of parameter i. In the case of µ(µmax,KS), as defined in Equation

(3.2), the global standard deviation is estimated from the uncertainties on µmax and KS

(σµmax and σKS , respectively)

σ =

√(
S

S +KS

)2

σ2
µmax +

(
µmax

S

(S +KS)2

)2

σ2
KS
, (3.5)

where σµmax and σKS are obtained from the fitting method scipy.optimize.curve fit in
Python. The resulting global growth rate is shown in Figure 3.1b and the values obtained
are µmax=0.72 h−1, which corresponds to a doubling time of approximately 58 minutes,
and KS=9.78x10−3 kg.m−3.

a b

Figure 3.1: Batch kinetics of Escherichia coli. (a) Optical Density (OD) measured
for each triplicate at six different given concentrations of glucose (S, in kg.m−3). Each
color corresponds to an initial concentration in nutrient. The initial OD growth is fitted
with an exponential growth of parameter µ up to the slope break due to full consumption
of the nutrients in the culture. Measured data are dots and fitted exponential curves
are dashed lines. (b) Fit of experimental growth rates µ to obtain the Monod growth
parameters µmax and KS for our Escherichia coli strain in batch cultures. Fitted µmax
(in h−1) is shown by the dashed blue curve and fitted global growth rate µ is shown by
the dashed black curve with standard deviation.

For each microfluidic experiment, a culture was inoculated at 2% with the stock so-
lution and incubated for 7 hours, hence getting an OD600nm of approximately 0.1 in the
culture. This bacteria suspension was diluted into fresh M9 medium to an OD of 0.05 and
transfered into a syringe (Cetoni glass syringe).
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3.1.2 Initial conditions

Before using the microfluidic device described in Section 2.2.3, it was put under vacuum
in a desiccator for 10 minutes. This procedure ensures that air bubbles are easily swept
out of the microfluidic channels since gas diffuses through the porous material, which
is in equilibrium with the surrounding atmosphere after having been vacuumed. The
microfluidic chip was placed in a Leica Incubator 8 temperature control chamber, ensuring
temperature stabilization at 37±0.1°C of the PDMS but also microfluidic tubings and
circulating fluids. The bulk fluid and the solution containing bacteria were introduced in
the system with syringe pumps neMESYS Low Pressure modules 290N (Cetoni). First,
bulk fluid composed of clean M9 medium with the desired glucose concentration was
injected through the nutrient inlet (inward blue arrows in Figure 2.7) so that the nutrient
channel is fully saturated. This step is necessary to ensure that air bubbles will not be
flown downstream when the nutrient flux are switched on during the experiment. Bacteria
were then injected into the microfluidic cells (inward green arrows in Figure 2.7), while a
light flow was maintained in the nutrient inlet, so that all flow streamlines stay directed
towards the channel outlet (outward blue arrows in Figure 2.7). Then, all flows were
stopped for 30 minutes to let bacteria settle down and attach to the floor of the channels.
After that waiting period, some bacteria have reached the floor of the microfluidic channel
and have attached to the PDMS. Given the replicable environmental conditions and sample
preparation, the density of bacteria attached to the floor of the channel was considered
to be sufficiently unchanging to be compared. Once bacteria have been given the time to
settle down, nutrients were injected by the nutrient inlet at the desired flow rate for 15
minutes before recordings were started.

During the settling period, measurements were made at 10 fps in order to describe the
initial dynamics of the bacteria that attach to the PDMS surface and that constitute the
initial population for our experiments. Each bacterium was followed individually and its
displacement velocity was computed from the position vector between successive frames.
Our observations show that the bacteria that reach the PDMS surface and attach to it
usually come from the bulk fluid volume and settle down rapidly on the surface, as opposed
to a long run and tumble displacement on the surface before stopping. The mean velocity
of such bacteria is shown in Figure 3.2, with shades area corresponding to the standard
deviation of measurements. Here we represent only the velocities of bacteria that end up
attached to the surface and one see that the approach phase is relatively limited in time,
less than a minute on average.

We also measured the Mean Squared Displacements (MSD), using the method de-
scribed in Section 2.4.3. These results are shown in Figure 3.3, where we represent the
MSDs computed for 3 distinct experiments and the selected MSD curves corresponding
to attached bacteria. In Figure 3.3a, several behaviors can be extracted. The bacteria
swimming in the frame of observation have constant slopes in logarithmic scale and are
identified as swimmers. On the other hand, bacteria that attach to surfaces have MSDs
smaller by several orders of magnitude and MSDs tend to be constant once bacteria are
settled down on surfaces, we call these bacteria adherers. In between these two limit
behaviors, MSD trajectories have complex shapes when objects transition between dif-
ferent types of dynamics over time. We select the MSDs of bacteria that attach to the
PDMS floor of the microfluidic channels (Figure 3.3b), and compute the average MSD
for those bacteria. The value obtained, around 10−3 µm2 over a 100 s lag time, confirms
our observation that most bacteria become bluntly still once they reach the surface. We
barely observed any rotating behavior after single-pole adhesion or flipping on surfaces,
as described by Sharma and Conrad (2014) for instance.
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Figure 3.2: Velocity of bacteria during the deposition stage. Mean bacterial velocity
during the surface approach stage and after contact with the surface.
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Figure 3.3: MSD of swimming and attached bacteria. (a) Mean Squared Displace-
ment (MSD) of bacteria recorded during the deposition stage. Several behaviors can be
extracted from the shape of MSD curves, such as swimmers with a constant slope in
logarithmic representation, adherers with constant MSDs over time and complex mixed
behaviors with transitions between dynamics during the observation. (b) Selected MSD
of bacteria once then have reached the surface and started to attach. The mean behavior
is shown as a bold black line.
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3.2 Impact of the glucose concentration on bacterial growth

3.2.1 Monod fitting method

We performed a series of experiments where images were taken every minute in the
microfluidic channels to follow bacterial development under a fixed glucose concentration
in the nutrients solution and fixed flow rate. At first, every experiment was conducted at a
flow rate Q=100 µL.h−1 and glucose concentrations were chosen between S=2×10−4 and
S=2 kg.m−3 (or g/L). For each experiment at a given concentration, the growth curve of
the normalized number of bacteria was fitted to a delayed Monod law of the form

dB

dt
= H(t− τ)µB(t), (3.6)

with B the bacterial concentration (or number of bacteria on the surface), H the Heaviside
(or step) function, τ the time delay (in s), µ(S) the growth rate (in s−1). The solution of
Equation (3.6) that was actually fitted on data is given by

B(t) = B0 exp (µ(t− τ)H(t− τ)) , (3.7)

where µ(S) is defined as in Equation (3.2).
An initial set of fitted parameters (B0,init, τinit, µinit) were found using the QtGrace

software and this set of parameters was used as initial guess for the fit during data pro-
cessing in Matlab using the least-square fitting lsqcurvefit method.

An example of Monod growth law fit for various glucose concentrations is given in
Figure 3.4, where the plotted concentrations are 2, 1.5×10−2, 10−2 and 2×10−4 kg.m−3.
These data are fitted with Equation (3.7) and give a final set of parameters (B0, τ , µ) for
each experiment. We see on these plots the expected behavior of a Monod-type growth
law, which means an exponential growth intensity decaying with decreasing concentrations,
with a growth rate which is strongly decreased once the concentrations reach a level below
the threshold embodied by the Monod half-saturation constant KS . This parameter is
defined as the concentration at which the effective growth rate is half the maximum growth
rate, giving an insight on the sensibility of a bacterial population to the presence (or
absence) of a given nutrient source. As illustrated by the experiment at S=2 kg.m−3

(red curve), many experimental data have shown that a lag time of around 1 hour was
necessary, before bacteria initiate an exponential growth. Before that time, the variations
are more erratic. We focus the growth law fitting on the times between this initial lag
time and the time where bacterial growth turn from surface growth to growth in the bulk
fluid volume, in the form of multiple layers of bacteria in micro-colonies. As we work with
phase contrast imaging, our method is limited once micro-colonies start to be composed
of multiple layers of bacteria, where confocal imaging would be needed to keep a good
accuracy in depth at the cost of worse frame rate or worse surface coverage.
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Figure 3.4: Monod growth law fitting on experimental data at constant flow rate 100
µL.h−1 and various glucose concentrations S over the experiments. For each experimental
curve, a set of parameters are fitted (B0, τ , µ).

Once enough experiments have been done to cover a wide distribution of glucose con-
centrations, the set of (µ,S) is fitted using Equation (3.2) to obtain the Monod parameters
µmax and KS , which are constants for a given bacterial strain and nutrient source. The
result of such fit for the first set of experiments at Q=100 µL.h−1 is shown in Figure 3.5.

From this dataset, the Monod parameters values obtained are KS=5×10−3 kg.m−3 and
µmax=3.2×10−4 s−1 (or around 1.15 h−1), with a global standard deviation on the fitting
of µ, σµ, of 15%, computed from Equation (3.5). This maximum growth rate, with a 15%
standard deviation, corresponds to a doubling time between 30 and 40 minutes, which
is slightly quicker than the measure done on batch experiments with the same bacterial
strain. Therefore, we decided to carry out more experiments with the same experimental
setup but with different flow rates, since the flow is the main physical variation between
the two states that we have considered: batch and microfluidic experiments.

Q  = 100 μL.h-1

σμ ≈ 0.15 μ

Figure 3.5: Monod parameters fitting across nutrient experiments. Data points
are the sets of (µ,S) from each experiment, through which Equation (3.2) is fitted to
obtain a unique set of Monod parameters (µmax,KS). The fit is plain black line and the
global standard deviation of the fit, based on individual parameters standard deviations,
is shown as black dashed lines.



Chapter 3 Nutrient experiments 70

3.2.2 Monod parameters and first evidences of the effect of flow

Using the same setup, we carried out experiments with flow rates in the range between
0 µL.h−1 and 300 µL.h−1. For each experiment, the same procedure was applied for fitting
a Monod growth rate µ. Experiments with various glucose concentrations but identical
flow rate were then merged into datasets, from which global Monod parameters µmax and
KS were extracted. This final fitting procedure is illustrated in Figure 3.6 for 4 different
flow rates, including Q=100 µL.h−1 from the previous set of experiments.

Our first observation is that, while Monod-like kinetics seemed well fitted to the first
set of experiments at Q=100 µL.h−1, the shape of fits at higher or lower flow rates are
much less well-defined. This is also shown by the fast increase of global standard deviation
over the fitted growth rate, which is increasing to 30% for Q=50 µL.h−1, 50% for Q=0
µL.h−1 and around 45% for Q=300 µL.h−1. At such high levels of uncertainty, one starts
to disbelieve in the accuracy of this growth model under dynamic conditions.

a b

c d

Q  = 0 μL.h-1

σμ ≈ 0.5 μ

Q  = 50 μL.h-1

σμ ≈ 0.3 μ

Q  = 100 μL.h-1

σμ ≈ 0.15 μ
Q  = 300 μL.h-1

σμ ≈ 0.45 μ

Figure 3.6: Monod parameters fitting across flow rate experiments. Each experi-
ment at a given flow rate and inlet nutrient concentration enables the fitting of an effective
growth rate (data points). From multiple experiments at the same flow rate, the expres-
sion of the growth rate µ as a function of the nutrient concentration S can be extracted
(a) for experiments at Q=0 µL.h−1, (b) for Q=50 µL.h−1, (c) for Q=100 µL.h−1, and (d)
for Q=300 µL.h−1. Standard deviations are computed from parameter estimations and
represented by dashed black lines.

To investigate the weight of dynamic conditions imposed by the flow on growing bacte-
rial populations attached to the floor of a microfluidic channel, we started by plotting the
effective maximum growth rate for each experiment as a function of flow rate, regardless
of the glucose concentration provided that is was larger than the computed KS=5×10−3

kg.m−3, see diamonds points in Figure 3.7. As it was suggested by the above discussion,
the effective maximum growth rate exhibits a maximum value in the shape of a plateau
in a central range of flow rates, labeled area B.

In the low flow rate range, labeled area A, the decrease in effective growth rate would
be difficult to explain with physical constraints, since the shear forces are lower than in
area B. On the other hand, as shown in Section 2.3.2 in the low advective nutrient flow
scenarios, nutrients availability becomes the limiting parameter for bacterial growth. As
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shown in Section 2.3.3, oxygen is most probably the limiting nutrient in these scenarios,
compared to glucose, when glucose is initially in sufficient quantities, which it is in the
data chosen in Figure 3.7. We confirm this hypothesis later using a microfluidic design
with oxygen supply by diffusion from the top of the microfluidic channel (see Section ??),
and we add some data to confirm the hypothesis as the dots in Figure 3.7. The flow rate
used for these experiments is Q=15 µL.h−1. These data illustrate that with oxygen supply,
the effective growth rate of Escherichia coli rises to the same level as in the experiments
with enough advective flux to renew oxygen in the microfluidic channel. However, this
explanation does not hold in the higher advective flux regimes, where the flow is always
sufficient to renew glucose and oxygen concentrations during the experiments. In the
labeled area C, the effective growth rate decreases in spite of the high nutrient fluxes. To
explain this behavior, the impact of flow on the bacteria must be extensively studied, and
this will be the subject of the next chapter in this thesis.
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Figure 3.7: Effective maximum growth rate for various flow rates. Data shown as
diamonds points are the effective maximum growth rates of experiments for a given flow
rate, regardless of the glucose concentration provided that it is above the Monod half-
saturation constant. Black lines note the mean effective maximum growth rate and the
confidence interval defined by its standard deviation in this dataset. Black dots correspond
to a set of experiments with oxygen renewal from the top of the microfluidic channel. Red
dashed lines define three areas, A: low flow rate with low growth rate explained by lack of
oxygen renewal, B: maximum growth rate capacity, and C: high flow rate where nutrient
inflow cannot explain the decrease in effective growth rate.
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3.3 Exploration of the impact of flow on nutrients harvest-
ing

In order to investigate the impact of flow on bacterial growth, we keep focusing the
interaction between flow and nutrient availability. We have already seen that a lower
flow rate can bring down nutrients renewal and cause a decrease in bacterial growth rate.
Here, we study the impact of a higher flow rate on nutrient harvesting by bacteria using
the Microbial Transition State (MTS) theory, which states that bacterial growth is fully
determined by the quantity of nutrients needed to reach sufficient energy levels to initiate
division.

3.3.1 Definition of the growth rate using Poisson law

Based on the work of Desmond-Le Quéméner and Bouchez (2014), we define the ran-
dom variable K describing the number k of molecules arriving in the harvest surface of
a cell during a time interval 1/µmax. The harvest surface Aharv is defined as the surface
over which a bacterium can receive nutrients from the flow and integrate the substrates
into its metabolism, through membrane sensors. It would follow a Poisson probability law
of parameter AharvvS

µmax
, where v is the substrate velocity (m.s−1), S is the substrate concen-

tration (mol.m−3), µmax is the division probability per time unit of an activated microbe
(s−1), which is an equivalent definition to the Monod µmax coefficient, and Aharv is the
active cell surface used for capturing the substrate (m2). A Poisson law of parameter λ,
K ↪→ P(λ), is define by

P(K = k) =
λk

k!
e−λ, (3.8)

and describes the probability for an event to occur an exact number of times k in a time
interval, where its average of occurrence is λ. In the Microbial Transition State (MTS)
framework, each bacteria needs to successfully harvest a number of molecules k > klim to
reach the activated state, which means to overcome the energy barrier and allowing it to
divide. This limit klim is determined with the following relation,

E‡ = EM + Edis = klimEcat, (3.9)

where E‡ is the threshold catabolic energy, EM is the microbial energy (chemical energy
available in a unit of biomass, 5 × 102 kJ.C-mol−1 for E. coli and glucose), Edis is the
energy dissipated during growth (5× 102 kJ.C-mol−1 for E. coli and glucose), and Ecat is
the catabolic energy (chemical energy available for the microbe, 2.9× 103 kJ.mol−1 for E.
coli and glucose). These energy states are described in Figure 3.8 taken from the work of
Desmond-Le Quéméner and Bouchez (2014).

With these definitions, we can describe the growth rate µ of the bacterial population
with

µ = µmaxP(K > klim) = µmax(1− P(K ≤ klim)). (3.10)

P(K ≤ klim) is the repartition function of the Poisson law, such that

P(K ≤ klim) =

klim∑

k=0

λk

k!
e−λ

=
1

klim!
Γ(klim + 1, λ),

(3.11)
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Figure 3.8: Graphical representation of microbial energy levels along division co-
ordinates. Microbial energy (EM ) is augmented by the energy E‡ = klimEcat within the
harvesting volume symbolized as dots in a circle surrounding the microbe (from Desmond-
Le Quéméner and Bouchez (2014)).

with Γ the upper incomplete Gamma function define as

Γ(n, λ) = (n− 1)!e−λ
n−1∑

k=0

λk

k!
. (3.12)

Combining Equation (3.10) to (3.12) with a Poisson parameter λ = AharvvS
µmax

, we get the
growth rate of the bacterial population

µ = µmax

(
1−

Γ(klim + 1, Aharvvµmax
S)

klim!

)
. (3.13)

The result for µ/µmax with the trial values of klim = 100, Aharvvµmax
= 30000 and S ∈ [0, 0.007]

is given in Figure 3.9. On a first approximation, such a functional shape seems to be able
to fit our experimental data.

3.3.2 Issues encountered when applying the model to experimental data

Fitting to experimental data

We tried to fit our experimental data to a growth law of the type

dB

dt
= µH(t− t0)B, (3.14)

with µ the growth rate defined in Equation (3.13), t0 a time lag specific to each experiment
and H the Heaviside function. The solution of Equation (3.14) is of the form

B(t) = B0 exp

[
µmax(t− t0)H(t− t0)

(
1−

Γ(klim + 1, Aharvvµmax
S)

klim!

)]
. (3.15)
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Figure 3.9: Illustrative growth rate computed in the MTS framework. Growth
rate with the trial values of klim = 100, Aharvv

µmax
= 30000 and S ∈ [0, 0.007].

The only fixed parameters were µmax = 4 × 10−3 s−1 from previous fits on Monod laws,
S for each experiment and v = 4.2× 10−4 m.s−1 the average velocity between 0 µm and 5
µm above the microfluidic channel bottom for a flow rate Q=100 µL.h−1. This value for v
was found with a Comsol Multiphysics simulation of the Poiseuille profile in the channel.
Fitted parameters were therefore klim and Aharv. Even with a large error tolerance, no
good fit was found for these two parameters, thus signaling an ill-posed problem.

3.3.3 The klim definition problem

Looking at the space of parameters, we found that the main issue was how to define
the klim variable. In its definition related to Equation (3.10), klim must be a positive
integer corresponding to the number of molecules needed for bacterial division. However,
in the definition of Equation (3.9), klimEcat is defined as the energy barrier. It is not
clear what the units of klim should be in that case. If we accept the definition given in
Equation (3.10), then we should get an idea of how many molecules of glucose are in
the characteristic nutrients concentrations of the experiments. Let us start with a low-
concentration value S = 1 × 10−3 kg.m−3. The number of glucose molecules per volume
of solution NG is then given by

NG =
S

Mw,G
NA, (3.16)

with Mw,G = 180.2 × 10−3 kg.mol−1 the molar mass of glucose and NA = 6.022 × 1023

mol−1 the Avogadro number. In this configuration, we get NG > 3 × 1021 molecules per
cubic meter, which is NG ∼ 3×103 molecules per cubic micrometer. Since, each bacterium
can harvest nutrients in tens of cubic micrometers (Desmond-Le Quéméner and Bouchez,
2014), it becomes a numerical issue to have a factorial computation in the definition (klim!),
if this leads to an undefined expression. Indeed, in the numerical computing environment
Matlab for example, any value above 10309 cannot be represented and returns as Inf
for infinity. As a result, any k! with k > 170 returns Inf . Therefore, if the Gamma
function Γ computed on one side returns Inf , and is then divided by klim = Inf , the
expression becomes unedified. From this observation, it becomes mandatory to find a
new definition of klim as a number of events needed for bacterial division. We could for
example consider much smaller characteristic times for bacterial nutrients uptake but this
would mean storing the uptake history of bacteria to trigger division at some point after
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many uptake characteristic times. Another solution could be to define klim as the number
of minutes that a bacteria with a harvest area Aharv will spend in an environment with
enough nutrient flow before statistically starting to divide. It is also possible to avoid the
undefined expression if we don’t use the Gamma function expression and compute the raw
Poisson repartition function.

3.3.4 Probabilistic representation of nutrients harvest

The use of Poisson growth law aimed to match a probabilistic approach to a physical
phenomenon. The formulation in Equation (3.10) suggests that nutrients are brought
to bacteria by the flow. It is not obvious that this is the dominant phenomenon in our
microfluidic chips and it has to be verified.

Nutrients brought by advection

Our first experimental results suggested that bacteria subjected to a higher flow rate
tend to orient along a mean orientation that has the same direction than the flow direc-
tion. This behaviour is shown in Figure 3.10, where the mean orientation of bacteria is
represented for different flow rates.

Figure 3.10: Mean orientation of bacteria after 10 h of growth. (a) Flow rate 0
µL.h−1, (b) Flow rate 300 µL.h−1.

This could mean that at higher flow rate, bacteria are physically forced to rotate and
orientate in the direction of the flow. In that case, a smaller area would be available for
harvesting nutrients. There could be a balance between more nutrients brought by higher
flow rate and less surface for harvesting them. Furthermore, advection is not the only
driving phenomenon for substrate transport and might even not be the more significant.
In the next section, we will compare the relative influence of advection and diffusion in
nutrients transport at the micro-scale.

Advective and diffusive flows

In order to get a first intuition on the dominating phenomenon, we computed a local
Péclet number around the bacteria, PeB, to be compared to the Péclet number in the
microfluidic channel, Pe. This dimentionless quantity is defined as the ratio of diffusion
time scale over advection time scale, at the considered length scale. Pe and PeB are
defined as

Pe =
Hv0

D
, (3.17)
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where H is the microfluidic channel height (in m), v0 is the mean flow velocity (in m.s−1)
and D is the diffusion coefficient of the substrate (in m2.s−1), and

PeB =
lv

D
, (3.18)

where l is the characteristic length of a bacteria (in m) and v is the mean velocity near
bacteria (in m.s−1). Using Equations (3.17) and (3.18), we get Pe = 59 and PeB = 0.2,
using l = 2 × 10−6 m, v = 10−4 m.s−1, D = 9.4 × 10−10 m.s−1, H = 50 × 10−6 m, and
v0 = 1.11× 10−3 m.s−1.

Our previous formulation of the problem was based on a definition of the advective
flow Ja,

Ja = vS, (3.19)

where v is the mean velocity (in m.s−1) and S is the substratum concentration (in kg.m−3).
For the diffusive flow Fd, we use an expression based on the work of Taylor and Stocker
(2012), where the concentration gradient is supposed to be 1/r with r the equivalent
radius of a bacterium, supposing that every molecule of glucose touching the bacteria are
absorbed instantaneously, giving

Jd = D
dS

dz
. (3.20)

We compute numerical simulations of the total nutrient inflow J = Ja + Jd, for a
rotation of the bacteria between 0 and π

2 radians, with respect to the flow direction. Figure
3.11 represents the total nutrient inflow J under flow rates of Q = 50 µL.h−1 and Q = 500
µL.h−1. The quantity of nutrient harvested depends on the input glucose concentration
in the microfluidic channel. The white line represents the value of klim glucose molecules
harvested in a characteristic time 1/µmax.

Figure 3.11: Total inflow of substrate for bacteria J = Ja + Jd (in molecules per
characteristic time). The white line represents klim molecules harvested in a characteristic
time 1/µmax. (a) Flow rate 50 µL.h−1, (b) Flow rate 500 µL.h−1.
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Figure 3.11 confirms that a higher flow rate allows to have a lower input concentration
to reach klim. But in terms of impact, multiplying the flow rate by a factor 10 only
decreases the needed substrate concentration by 50%. For a higher flow rate, bacterial
orientation has more impact due to the quantity of nutrients brought by advection and
the variation of the surface exposed to the flow.

Probabilistic representation

To express these results in terms of probability, let us arbitrary define klim as the
number of hundred millions of molecules a bacteria needs to harvest in the characteristic
time 1/µmax to divide. With this definition, we get a new value of klim = 24, which is
a more reasonable order of magnitude for this parameter. If the variable K describes
the number of times a bacterium harvests 108 molecules of nutrient in this characteristic
time and follows a Poisson distribution of parameter λ = AavS

µmax
+ AdDS

rµmax
, with Aa the

effective harvest area exposed to the flow, Ad the harvest area exposed to diffusion, and
r the characteristic bacterial radius, then the events are more likely well described by a
Poisson distribution than in our previous descriptions. From Equation 3.11, we define the
complementary Cumulative Density Function (CDF) for this Poisson distribution as

P(K > klim) = 1− P(K ≤ klim) (3.21)

= 1− 1

klim!
Γ(klim + 1, λ), (3.22)

where λ = AavS
µmax

+ AdDS
rµmax

, with Ad and Aa remaining to be determined. This complementary
CDF represents the probability for a bacterium to harvest enough substrate molecules to
divide in the characteristic time 1/µmax.

Figure 3.12 shows a representation of a rode-shaped bacterium oriented in the flow,
making an angle θ with the flow direction and attached to a surface. The bacterium has
a total length of l and each pole is represented by a sphere of radius r.

In this representation, the harvest area exposed to diffusion from the bulk fluid is
considered to be the upper half of the bacterial surface. The effective area exposed to
advection is the part of the bacterium that is facing the incoming flow and is given by
Aa = A1 + A2 + A3 in this representation. It needs to take into account the fact that
this effective harvest area has access to a maximum of nutrients when the bacterium
is orthogonal to the flow direction and a minimum of nutrients when the bacteria is
oriented in the flow direction. Whatever the bacterium orientation, A1 + A3 = 2πr2,
which corresponds to the surface of half a sphere. The total surface of a bacteria of the
type E coli Ae is given by

Ae = 4πr2 + 2πr(l − 2r), (3.23)

then Ad and Aa are described respectively by

Ad =
Ae
2
, (3.24)

and

Aa(θ) = 2πr2 + sin(θ)πr(l − 2r). (3.25)

This gives the expected behavior for the effective harvest area by advection since Aa(0) =
A1 +A3 = 2πr2 and Aa(

π
2 ) = Ae

2 .
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Figure 3.12: Effective harvest area of a rode-shaped bacterium under flow. View
from above of a bacterium attached to a surface. The bacterium has an orientation θ with
respect to the flow direction. The flow streamlines reaching the bacterium are represented
by black arrows. The effective harvest surface by diffusion from the bulk fluid, Ad, is the
upper half of the bacterial surface, which is the gray area. The effective harvest surface
by advection, Aa = A1 + A2 + A3, depends on the bacterial orientation. When θ = 0,
A2 = 0 and Aa = 2πr, which is the surface of half a sphere of radius r corresponding to
the bacterial pole facing the flow. When θ = π/2, Aa = Ae/2, corresponding to the left
half surface of the bacterium when it is orthogonal to the flow.

Figure 3.13 shows the cumulative CDF defined in Equation (3.22), representing the
probability for a bacterium to harvest more than klim molecules of substrate in the char-
acteristic time 1/µmax. In the case of a flow rate Q=500 µL.h−1 and Q=50 µL.h−1, and
using the definition given in Equation (3.10), this probability distribution would give the
growth rates shown in Figure 3.14 for θ = 0 and θ = 2π rad.

Figure 3.13: Complementary cumulative density function of the variable K. The
white line represents P(K > klim). (a) Flow rate 50 µL.h−1. (b) Flow rate 500 µL.h−1.
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Figure 3.14: Normalized growth rate for orientations θ = 0 (in blue) and θ = π/2 rad
(in red). Plain lines correspond to flow rate 500 µL.h−1 and dashed lines to flow rate 50
µL.h−1.

These growth rate curves have a shape that could fit our data but the concentrations
are too small compared to the experimental observations. This could explain why we
could never fit these expressions on our experimental data. In this case, the impact of
bacterial orientation on their nutrient harvesting capacity has a major impact on the
effective growth rate when glucose concentrations are of order of 10−4 kg.m−3 or less,
which correspond to negligible concentrations compared to the usual range of nutrient
availability in our experiments or in the vast majority of studies in the literature.
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3.4 Conclusion

In this chapter we have described the growth parameters of batch cultures of Es-
cherichia coli bacteria, which are used thereafter in the microfluidic experiments (in this
chapter and Chapter 4).

Our first set of microfluidic experiments have provided the growth curves of Escherichia
coli bacteria in a dynamic environment. We used glucose as the carbon source for bacterial
metabolism and supplied glucose in constant concentrations in the inflow. We managed
to fit Monod growth law on the experimental data and got mean values for the Monod
parameters µmax, the maximum growth rate, and KS , the half-saturation constant.

Based on this, we investigated the impact of the flow rate on the average parame-
ters, when comparing batch and dynamic experiments, which is the flow rate. We have
shown that in an intermediate flow rate regime, effective growth rate reached its maximum
value. We have explained why the growth of Escherichia coli was slower in low flow rate
regimes by adding an oxygen source and thus illustrating the lack of oxygen renewal at
low advective flow that we had already shown numerically in the previous chapter.

Higher flow rates are more challenging to analyze with our current knowledge. The
nutrients renewal is much more efficient than in any other regime, for both oxygen and
glucose. We proposed a model of nutrient harvesting based on observations at the single-
cell level, which showed its interest in the very low nutrient concentrations under flow but
was unable to explain the growth rate decrease observed.

In the next chapter, we focus on single-cell level observations and high frame rate
measurements to investigate the effect of flow on growing Escherichia coli populations on
surfaces.
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Escherichia coli swimming hydrodynamics have been extensively studied in microflu-
idic flows (Hu et al., 2015; Schwarz-Linek et al., 2016). Some recent work have also been
more focused on the interaction of motile E. coli strains with surfaces in the presence of
flow (Berke et al., 2008; Molaei et al., 2014; Vissers et al., 2019). In this chapter, we
focus on the effect of flow, and more specifically on the effect of shear forces in the vicinity
of solid surfaces, on bacteria that are issued from already attached cells. We study the
growth dynamics of these early micro-colonies and how shear stress impacts the behavior
of bacteria at the single-cell level. We use high frame rate measurements to show the tran-
sition from an active dividing state to a strong attachment without divisions and we follow
bacterial explorers responsible of the colonies expension and colonization patterns. In our
opinion, the in-depth study of physical properties can bring a lot of information on growth
dynamics and attachment and therefore on how bacteria respond to physical constraints,
without resorting to mutants to understand the details of the biological processes.

4.1 Context of the study

The microbial habitat has flow

Bacterial communities composition is correlated to their environment(Magnabosco et
al., 2018), that is to the nutrients availability and to the hydrodynamical conditions. Mi-
crobial natural habitats are complex time-variant systems, where fluid flows play a major
role in bacterial transport and in the gathering of favorable conditions for bacterial devel-
opment, in aquatic environments (Roszak and Colwell, 1987) as well as in subsurface soil
(Dechesne et al., 2010) or in animal microbiomes (Kim et al., 2012a). The colonization
patterns developed by bacteria are spatially heterogeneous and influenced by hydrodynam-
ics (Augspurger et al., 2010), and their lifestyle can be adapted as a response to changes
in the environment (Niederdorfer et al., 2016).

Bacteria swim in these flows and attach to surfaces, where they mostly grow

Bacteria swim in flow and their concentration in the bulk fluid can be affected by
the presence of near immobile surfaces (Rusconi and Stocker, 2015). Bacteria such as
Escherichia coli change their orientation when approaching surfaces and their number
increases near walls (Berke et al., 2008). Complex dynamics are observed, such as trapping
on walls by the suppression of tumbles that leads to concentration depletion in the central
regions of fluid channels (Molaei et al., 2014; Rusconi et al., 2014). Before the irreversible
bounding to the surface usually preferred for biofilm growth (Fux et al., 2005), bacteria can
spend time rolling on surfaces with weak attachment periods depending on their ability to
bear the shear stress (Anderson et al., 2007). Swimming bacteria can exhibit the ability
to swim upstream even in moderate wall shear stress regimes (Kaya and Koser, 2012).
Adhesion on walls in itself is highly heterogeneous even for a single strain of bacteria
and depends on both hydrodynamic constraints and surface properties (Thomas et al.,
2004; Vissers et al., 2018). However, most bacteria need the attachment to surfaces to
start growing sustainable communities (Tuson and Weibel, 2013). Attachment gives many
advantages, especially in nutrient-weak environments, such as allowing them to remain
in local high concentration area (Zobell, 1943), enabling the production of extracellular
polymeric substances (EPS) (Donlan and Costerton, 2002), or creating local gradients of
chemicals used for bacterial communication in quorum sensing (Shrout et al., 2011).
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Flow induces shear forces, which have an impact on growing biofilms

Water flows can alter bacterial biodiversity in biofilms and change their physical prop-
erties (Han et al., 2018), raising the question of how different bacterial populations can
adapt to flows. For single strained populations as experimental Escherichia coli biofilms,
hydrodynamic surface interactions of motile bacteria are highly influenced by shear, which
determines the body angle of bacteria suspended near surfaces, and therefore their ability
to attach and grow (Hill et al., 2007). The complex interactions of bacteria with sur-
faces have already been described as a dynamic switching between attachment to walls,
movements on surfaces and migration with the bulk fluid enabling bacteria to explore the
porous space exposed to the flow. Under flow conditions where shear allows upstream
movement along walls, this behavior maximizes dispersal and colonization before estab-
lishing organized biofilms (Kannan et al., 2018; Siryaporn et al., 2015). Some bacterial
strains such as Pseudomonas aeruginosa have even exhibited increased residence time on
surfaces for increased shear, highlighting the heterogeneity of behaviors (Lecuyer et al.,
2011). For these bacteria, an optimal shear stress seems to allow cell adhesion on surfaces
as well as formation of extracellular polymeric substances (EPS) (Park et al., 2011), but
the lack of details at the single-cell scale does not enable a complete understanding of the
underlying physical processes involved. Once bacteria have settle down in the flow and
attached to a surface, the shear stress they are subjected to might also impact the bio-
logical diversity of the growing biofilm. With higher shear stress, bacterial diversity can
decrease within a biofilm and its maturation can be slowed down (Rochex et al., 2008).
This might happen due to genes expression being tuned by rheosensing (Sanfilippo et al.,
2019). In addition to the variations in genes expression, the study of biofilm rheology has
given insights on how shear stress can affect grown biofilms (Stoodley et al., 1999). To
provide a better understanding of wall shear stress effect on bacteria, microfluidic meth-
ods have been massively used in the last decade (Kim et al., 2012b) and are becoming
an indispensable tool for such experimental testings, as they offer control on both fluid
flow and gaz exchanges (Kou et al., 2011; Lu et al., 2017; Thomen et al., 2017; Yu et al.,
2014). However the interplay of all physical and biological processes responsible for the
early development of biofilms on solid surfaces under flow remains poorly understood.

Our approach

Here we will describe and rationalize the colonization of hydrophobic PDMS surfaces
by E coli under rather favorable nutrient conditions and under shear flow. In a first part,
we will focus on the bacterial growth features on surfaces under flow. Our results are
given in the form of a scientific paper. In a second part, we will determine the spatial
repartition of the colonies on the surface and their geometrical features, corresponding to
the colonization process.

Table 4.1: Flow-related parameters for experiments. There are four flow regimes
that have been identified. Flow rate Q for the microfluidic experiments and corresponding
wall shear stress τw, shear rate γ̇, and velocity u along the flow at heights 1, 2 and 3 µm.

Regime Q (µL.h−1) τw (mPa) γ̇ (s−1) u(1µm) (µm.s−1) u(2µm) u(3µm)

ulow 100 2 7.236 7 14 21

low 1000 20 28.944 29 58 87

med 2500 50 72.359 72 145 217

high 4000 80 115.774 116 232 347
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Abstract

Bacteria often live attached to surfaces, where they can form colonies and biofilms affording
them with multiple advantages. In such sessile form, fluid flow is a key component of their en-
vironments, renewing nutrients and transporting metabolic products and signaling molecules.
It is also considered to be an important factor controlling bacteria colonization patterns and
growth rates on surfaces, through physical processes including bacteria transport, attachment
and detachment. However, this view neglects the possibility that bacteria may modulate their
attachment and division behavior as a response to the flow they sense in their environment.
Here, we used microfluidic experiments to show that attached Escherichia coli cells can re-
spond to mechanical stress induced by flow by entering a growth arrest state coupled with
enhanced adhesion. Although we used clonal populations, this response was not uniform but
developed as a bistable dynamics, with co-existing subpopulations of non-dividing and actively
dividing bacteria. As the fraction of non-dividing bacteria increased with flow, this lead to
a significant drop in the average growth rate of bacteria populations on surfaces. Dividing
bacteria were attached asymmetrically, the “old” pole assuring most of the adhesion to the
surface. On the contrary, non-dividing bacteria were strongly attached to the surface by their
two cell poles, leading to a reduced risk of detachment by flow. At the scale of bacteria popula-
tions, this increase in phenotypic heterogeneity in response to flow allows colonies to combine
enhanced attachment with sustained growth, although at a reduced rate, which may be a sig-
nificant advantage in fluctuating flow conditions. These findings thus reveal a key component
of interaction between bacteria and their physical environment, opening new perspectives for
understanding, modeling and controlling microbial growth on surfaces.

Fluid flow is a common feature of bacterial
habitats in soils, rivers and lakes, or in animal

and plant bodies (Battin et al., 2016; Bochet et
al., 2019; Borer et al., 2018; Conrad and Poling-
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4.2 Growth and adhesion under flow

4.2.1 Paper: Fluid flow drives phenotypic heterogeneity in bacterial
growth and adhesion on surfaces



Skutvik, 2018; Hall-Stoodley et al., 2004). It
modulates their chemical environment via the
transport of nutrients, signaling molecules, and
toxic compounds (Kim and Or, 2016). Flow
near surfaces induces velocity gradients that
can direct bacteria towards surfaces but also
cause detachment of bound cells (Conrad and
Poling-Skutvik, 2018; Figueroa-Morales et al.,
2015; Nejadnik et al., 2008; Rusconi et al.,
2014; Secchi et al., 2020; Wang et al., 2018).

In mature biofilms, bacteria are protected from
the direct action of flow by the Extracellular
Polymeric Substances (EPS) and the interac-
tion of bacterial colonies with flow is mainly
controlled by the EPS mechanical properties
(Branda et al., 2005; Drescher et al., 2013;
O’Toole et al., 2000; Pearce et al., 2019;
Starkey et al., 2004; Sternberg et al., 1999). At
early stages of bacteria colonies, EPS is absent
and flow modulates the spatial patterns and
morphology of attached bacterial populations
by physical processes, including bacterial trans-
port, attachment and detachment, which are
considered to exert a strong influence on the fu-
ture architecture of biofilms (Persat et al., 2014;
Rossy et al., 2019). Bacteria can also sense
flow by mechano-sensing (Dufrêne and Persat,
2020; Janmey and McCulloch, 2007; Persat et
al., 2015; Sanfilippo et al., 2019) and modify
the types of bonds to surfaces to enhance their
adhesion depending on shear conditions (Berne
et al., 2018; Lecuyer et al., 2011; McClaine and
Ford, 2002; Sharma et al., 2016; Thomas et al.,
2002; Thomas, 2008). However it is not known
whether such biological response may influence
the colonization patterns and growth rates of
bacteria colonies on surfaces exposed to flow.

Here we investigate the effect of mechanical
stresses induced by flow on bacteria division
and attachment during early stages of sur-
face colonization by a clonal population of Es-
cherichia coli. We designed a microfluidic cell
allowing us to impose different levels of shear
stress while continuously providing nutrients
and oxygen to a monolayer of Escherichia coli
bacteria anchored onto the bottom surface of a
flow channel. We used high-throughput track-
ing to monitor the motion and division of bac-
teria at single-cell level during 10 consecutive

bacterial generations. Our single cell mea-
surements revealed an increase in phenotypic
heterogeneity as flow rate got stronger. Non-
dividing bacteria coexisted with dividing bac-
teria in attached colonies, the proportion of
the two subpopulation being tightly modulated
by shear force. Non-dividing bacteria were
characterized by a strong adhesion to the sub-
strate by their two poles, while dividing bacte-
ria were more asymmetrically attached. Hence,
our findings indicate that clonal populations
of bacteria can respond to flow by diversify-
ing their growth and attachment phenotypes,
which influences considerably their colonization
and growth rates on surfaces. By allowing a
combination of dividing bacteria, vulnerable to
erosion, and non-dividing bacteria, strongly an-
chored to the surface, this strategy may be a
key advantage for the resilience of microbial
colonies under variable flow conditions, a com-
mon situation that bacteria face in environmen-
tal and biological systems (Conrad and Poling-
Skutvik, 2018; Cremer et al., 2016).

Results

Shear induces heterogeneous division
rates in an isogenic bacteria population.
Using a microfluidic cell (see Methods and Sup-
plementary Fig. SI.1 and SI.2), we explored the
effect of fluid flow on bacterial growth and sur-
face colonization by monitoring the rate of di-
vision, cell motion and attachment and detach-
ment ratio of bacteria exposed to different flow
rates. Bacteria were injected in the chamber
and let to sediment and attach to the bottom
of the channel before experiments with different
flow rates were started (see Methods). The ini-
tial density of attached bacteria was similar for
all experiments and equal to about 10−2 bacte-
ria per μm2. The bacteria were submitted to a
horizontal flow inducing a shear rate γ̇ (s−1),

γ̇ =
∂v

∂z
, (1)

which results in a shear stress τw (Pa),

τw = µ
∂v

∂z
, (2)

Submission to Nature Communications 2

4.2 Growth and adhesion under flow 85



120 min 240 min 360 min

0

40

80

120

160

200

240

280

320

360

Time
interval
(min)

u
lo

w
lo

w
m

e
d

h
ig

h 50 μm

Flow direction

a b c

d e f

g h i

j k l

Figure 1: Spatial and temporal patterns of surface colonization by Escherichia coli
cells. Snapshots of bacteria spatial distribution at times 120, 240 and 360 minutes after the
start of the experiments. Dots represent bacterial cells. Colors correspond to the time interval
at which new bacteria resulting from the division of a mother cell appeared on the images.

where v is the fluid velocity in the channel, z
the vertical coordinate and µ the fluid viscos-
ity. The shear stress values affecting attached
bacteria were estimated by averaging the shear
rates from z = 0 to z = 3 μm, which corre-
sponds to the average height of a monolayer
of bacteria developing on the bottom of the
channels (see Methods). The temperature of
the setup was controlled to a value of 37◦C(see
Methods). The viscosity of water was there-
fore µ(37◦C)=0.691 mPa.s (Kestin et al., 1978).
We investigated the effects of four flow rates
(see Methods) leading to the following shear
rates applied to attached bacteria: γ̇1 = 7 s−1

(ultra-low shear rate denoted ulow regime), γ̇2

= 29 s−1 (low shear rate denoted low regime),
γ̇3 = 72 s−1 (medium shear rate denoted med
regime), and γ̇4 = 116 s−1 (high shear rate de-
noted high regime). The corresponding shear
stresses are respectively τw1= 2 mPa, τw2= 20
mPa, τw3= 50 mPa, τw4= 80 mPa. For each
flow rate, the experiment was divided in nine
successive time intervals of length forty min-
utes, which corresponds to the mean bacterial
division time, and the number of new bacteria
formed on the surface during each time interval
was determined. The spatial patterns of colo-
nization under the different flow rates followed
those described by (Rossy et al., 2019) (Fig. 1):
a transition from uniform colonization at ultra-
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low shear rate to a few clusters of bacteria ran-
domly distributed at high shear rate. However,
classifying bacteria according to when they had
divided (see Methods) revealed an unexpected
new element in these surface growth dynamics.

At ultra low shear rate (ulow regime), colonies
grew until they almost fully covered the sur-
face (Fig. 1a-c). Some colonies started to grow
a second layer after four to six hours of growth.
For each time interval, most bacteria attached
to the surface divided during one of the two
previous time intervals, i.e., during the last 80
minutes. Most bacteria present on the surface
at t = 240 minutes (Fig. 1b), had divided be-
tween t = 160 and t = 240 minutes as shown
by their green color, and very few bacteria had
achieved their last division before t = 160 min-
utes (blue color cells). Similarly, almost all bac-
teria present at t = 360 minutes (Fig. 1c), had
divided between t = 280 an t = 360 minutes
(red and orange colors). At low shear rate (low
regime), bacterial colonies were more sparse al-
though still fairly evenly distributed on the sur-
face. The heterogeneity in the temporal distri-
bution of division events increased significantly
(Fig. 1d-f). At t = 240 minutes (Fig. 1e), re-
cently divided bacteria (green colors) co-existed
with a significant proportion of older bacteria
that had not divided after t = 120 minutes
(blue colors). Many of these old bacteria still
persisted among recently divided bacteria (red
and orange colors) at t = 360 minutes (Fig.
1f). At medium shear rate (med regime) (Fig.
1j-l), only a few colonies grew mostly along the
flow direction, forming elongated patterns as
colonies started merging with each other. The
proportion of freshly formed bacteria at t = 240
minutes (green colors in Fig. 1k) and t = 360
minutes (red and orange colors in Fig. 1l) were
much lower than for the ulow and low regimes
and many ”old” bacteria that had only divided
in the first time intervals (blue colors) coexisted
with the growing colonies. At the highest shear
rate (high regime), old bacteria were dominant
and only small patches of freshly divided bac-
teria could be observed (Fig. 1j-l).

Shear can prevent bacteria from divid-
ing. Changes in the bacterial population
growth were assessed under the different shear

rates by measuring the ratio of the number
of newly formed cells to the initial number
of bacteria (B/B0) (dashed line in Fig. 2a-d).
In the ulow regime (Fig. 2a), the population
growth followed a regular exponential trend as
most bacteria divided to produce new daugh-
ter cells. For the other regimes, the popula-
tion growth rate decreased as the shear rate
increased (Fig. 2b-d). At any time, the global
population dynamics may be decomposed into
the growth of dynamics of successive bacteria
generations by counting the number of bacte-
ria that divided during each of the successive
time intervals. For each of them, the new-
to-initial ratio increased to reach a maximum
value and then decreased during the next time
intervals when recently formed bacteria divided
and were replaced by their daughter cells (col-
ored curves). For the ulow and low regimes, the
proportion of bacteria formed during the first
time interval decreased rapidly and these bac-
teria became a minority from the third time in-
terval on (t = 120−160 min). For the med and
high regimes, bacteria present in the first time
interval were much more persistent. For the
high regime, they became less numerous than
newly produced bacteria only after the 7th time
interval (t = 240− 280 min). At the end of the
experiment, a significant proportion of bacteria
present in the first time interval had still not di-
vided. Hence, an increasing proportion of cells
were not dividing as the shear rate increased.

Erosion is not the dominant factor limit-
ing surface colonization under flow. The
reduction of population growth and coloniza-
tion rate on surfaces exposed to flow has been
observed in other studies (Park et al., 2011;
Rossy et al., 2019; Thomen et al., 2017) and
explained by the balance between bacteria de-
tachment and attachment. Our observations
of bacterial division dynamics on surfaces sug-
gest that bacteria can also respond directly to
shear by stopping their division (Fig. 1 and 2).
To determine the contribution of these differ-
ent mechanisms, we quantified the detachment-
attachment dynamics of bacteria as a function
of the imposed shear rate.
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Figure 2: Growth dynamics of bacteria produced during each time interval under
flow. Number of bacteria present on the surface as a function of time, normalized by the initial
number of bacteria. The colored lines represent the number of bacteria produced during each of
the time intervals, dark blue denoting the first time interval and red the time interval for most
recently created bacteria. The grey dashed line indicates the total number of bacteria, which at
any given time is the sum of the data plotted as colored lines.

From high acquisition frame rate experiments
(see Methods), we counted the number of de-
tachment and attachment events for each shear
rate (Fig. 3a,b). The detachment ratio (num-
ber of bacterial detachment events to the to-
tal number of attached bacteria) increased with
shear from close to 0% in the ulow regime
to about 50% in the high regime (Fig. 3a).
Conversely, the attachment ratio (fraction of
detached bacteria that reattached) decreased
sharply with the shear rate. In the ulow regime,
the vast majority of bacteria that detached
from the surface reattached immediately after.
These were individual cells which moved 5 to
10 μm away from their original location. In
the low regime, approximately 70-80% of de-
tached bacteria reattached. This ratio dropped
to 40% in the med regime, in which the bac-
teria reattached exclusively at the tail of the
colonies along the flow direction. In the high

regime, less than 10% of detached bacteria were
able to reattach on the surface. Note that in
this regime, no attachment event from bacteria
originating from upstream of the observation
window was observed. Hence, bacteria that did
not reattach in the observation window were
unlikely to attach downstream.
We define the effective population growth rate
ηeff as the number of daughter cells newly
formed by division (including cells that then
detached from the surface) per unit of time,
normalized by the number of attached bacteria.
It is estimated from the observed growth rate
of cells attached to the surface, ηobs, corrected
from the effect of detachment and attachment,
as

ηeff = ηobs + ηd − ηa, (3)

where ηobs is the number of observed new bac-
teria attached to the surface per unit of time,
normalized by the number of attached bacte-
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Figure 3: Detachment/reattachment statistics and division rate (a) Bacterial detachment
ratio as a function of the shear stress regime. (b) Bacterial reattachment ratio as a function
of shear stress regime. The orange line represents the median of the distribution while the
whiskers of the box represent the lower and upper quartiles. (c) Measured detachment rate (ηd),
attachment rate (ηa), observed growth rate ηobs and effective growth rate of newly formed cells
(ηeff) in h−1 (observed growth rate corrected for detachment and attachment).

ria, ηd is the number of detachment events per
unit of time, normalized by the number of at-
tached bacteria, and ηa is the number of attach-
ment events per unit of time normalized by the
number of attached bacteria (Fig. 3c). For the
ulow and low regimes, the effective growth rate
ηeff was equivalent and approximately equal to
the observed growth rate ηobs ≈ 0.55 h−1. For
the med and high regimes, the observed growth
rate ηobs decreased to 0.4 and 0.25 h−1, re-
spectively, and the effective growth rate ηeff
decreased to 0.48 and 0.35 h−1, respectively.
Hence, in the med regime, the decrease of the
observed growth rate (-0.15 h−1) was due for
about half to the effect of erosion by detach-

ment and attachment (0.08 h−1) and half to
a lower production of cells by division (-0.07
h−1). In the high regime, the reduction of the
observed growth rate was -0.3 h−1 with a con-
tribution of one third from erosion (-0.1 h−1)
and two third from the reduction of bacterial
division (-0.2 h−1). As shear was increased, it
thus appears that the decrease of the average
division rate of bacteria in response to flow be-
came dominant over the effect of erosion, which
was so far thought to be the main mechanism
responsible for limiting bacteria colonization of
surfaces (Rossy et al., 2019).
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Figure 4: Growth behavior bistability as a function of applied shear stress. (a) Division
of a bacterium in the low shear stress regime, with fitted ellipsoid and centroid. During the
division, the cell elongates in the direction of the flow and the initial position of the centroid is
marked by the red circle. After the division, the initial bacterium has become two new cells,
colored according to the time interval in which the division occurred. (b) Dividers and non-
dividers ratio in the first time interval (Start) and in the last time interval (End) for all shear
stress regimes, with confidence intervals estimated from the standard deviations. (c) Cumulative
numbers of bacteria observed for each category (dividers and non-dividers) and in each shear
stress as a function of time, with confidence interval estimated from the standard deviation of
the measurements. (d) Schematic representation of the spatial distribution of bacteria growing
on surfaces under flow. Continuous dividers (blue) divide at the same average rate whatever
the shear. Lagged dividers (green) have an initial lag phase before they start growing at the
same rate as dividers. Non-dividers do not divide at all over the period of observation. Dividers
produce stochastically a fraction of non-dividers.

Mechanical cues induce bistability in
growth and attachment. Analysis of the
mean square displacement (MSD) of the bac-
teria center of mass (centroid) allowed tracking
of division events of attached bacteria at the
single-cell level (Fig. 4a and Methods). Two

groups of bacteria were identified based on the
MSD of their centroid. Bacteria of the first
group showed MSD on the order of 1 µm2

and corresponded to actively dividing bacteria,
which we named dividers. Bacteria in the sec-
ond group had MSD about two orders of mag-
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Figure 5: Statistics of bacterial division times (a) Probability Density Functions P (τd) of
division times τd for each shear rate and each division time interval (see colorscale). The dashed
line indicates the exponential distribution p(τd) = exp (λτd), corresponding to a Poisson process
of rate λ, with λ−1 = 40 minutes. The gray area indicates the range of division times that are
not captured by the exponential tendency, which correspond to the lagged dividers. ‘ (b) Average
division time as a function of observation time for the different shear rates. Standard deviations
are indicated by the shaded color areas. For all shear rates, the average division time converges
to λ−1 = 40 minutes (dotted line)

nitude smaller indicating that they did not di-
vide during the observation time. Bacteria of

this group were named non-dividers. Hence,
two phenotypes coexisted in this isogenic pop-
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dividers and (c) non dividers . For each bacterium, a pole with larger displacement (max) and a
pole with smaller displacement (min) are identified. For the dividers, the max and min correspond
respectively to the “new” pole formed at the division site and the “old” pole, inherited from the
mother cell. Central markers represent the median of each distribution. The boxes extend to the
upper and lower quartiles. The whiskers extend to 1.5×IQR (Interquartile Range) added to the
corresponding quartile. (d) Schematic representation of adhesion modes for continuous dividers,
lagged dividers and non-dividers.

ulation. This phenotypic heterogeneity devel-
oped from the first time interval when the flow
was turned on and the spatial distribution of
both groups was relatively uniform (Supple-
mentary Fig. SI.4a,d,g,j). The initial propor-
tion of non-dividers increased with the shear
intensity (Fig. 4b). In the regimes associated
with the three lower shear rates, non-dividers
remained a minority with more than 80% of di-
viders in the population. As the bacteria pop-
ulation grew with time, the fraction of non-
dividers remained constant, indicating that a
fraction of dividers continuously produced non-
dividers (Fig. 4c). In the high regime, non-

dividers were initially in majority, represent-
ing 65% of the population. Their fraction de-
creased with time to reach a value of 35% at
late times (Fig. 4b). Hence for all shear rates,
a steady fraction of dividers continuously pro-
duced non-dividers, ranging from 4% in the low
regime to 35% in the high regime. We summa-
rize the bacteria growth behavior under shear
in Fig. 4d.

Bacteria can switch from non-dividing to
dividing. Within the dividers group, divi-
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sion times of individual cells were highly vari-
able, ranging from 10 minutes to 300 minutes
(Fig. 5a). These distributions were similar for
all shear rates, indicating that dividers had sim-
ilar growth dynamics for all shear rates. In the
low division time range (less than 160 minutes),
the distributions of division times were approx-
imately exponential,

p(τd) = λ exp (λτd), (4)

This distribution corresponds to the expected
Poisson process resulting from independent
events occurring at a constant rate λ, were
λ−1 = 40 min is the expected mean division
time of the considered bacteria. In the large
division time range (t > 160 minutes), the di-
vision time distributions departed from the ex-
ponential distribution. In the first time inter-
vals, a small fraction of dividers showed longer
division times which were not captured by the
exponential distribution (grey area in Fig. 5a),
for all shear rates. We call this sub-group the
lagged dividers and the other dividers the con-
tinuous dividers. For all shear rates, the slower
division of lagged dividers can be explained by
a delay phase, preceding the division phase.
During division, the elongation rate was con-
stant and similar to that of dividers � ≈ 1/40
μm.min−1 (Fig. SI.5a). The initial proportion
of lagged dividers, between 10% and 15% of the
global population, was similar in all shear rates
(Fig. SI.5b). Because lagged dividers had much
larger division times, they affected the initial
average division time of the population, which
ranged between 65 and 105 minutes (Fig. 5b).
As lagged dividers disappeared in time, the dis-
tribution of division times tended to conform
to the exponential distribution (equation (4))
and the mean division time of dividing bacte-
ria decreased for all shear rates to reach a value
of about 40 minutes independent of shear (Fig.
4d and 5b).

Non-dividing bacteria are more uni-
formly and more strongly attached. The
division of Escherichia coli has been shown to
be associated with an asymmetric adhesion to
the surface by filamentous appendages that are

located at cell poles (Duvernoy et al., 2018).
The “old” pole, inherited from the mother cell,
tends to be more strongly attached to the sur-
face than the “new” pole formed at the divi-
sion site. From the analysis of the mean square
displacements (MSD) of bacteria cell poles, we
confirmed this behavior for the continuous di-
viders (Fig. 6a). Whatever the shear rate, the
”old” pole of continuous dividers moved about
twice less than the new one. There was no
such significant difference between the poles for
the non-dividers (Fig. 6b). For lagged dividers,
the MSD of the two poles were fivefold greater
than those of the non-dividers (Fig. 6b) mean-
ing that the substrate adhesion for those two
groups were significantly different. The mag-
nitude of displacement of the two poles of the
lagged dividers was similar to the less mobile
pole of the continuous dividers. We summarize
the attachment modes of bacteria categories in
Fig. 6d.

Discussion

Phenotypic heterogeneity is a key compo-
nent of the ability of bacterial populations
to adapt and survive under environmental
stresses, such as antibiotic and antiseptic treat-
ment (ackermann2015functiona; Acar et
al., 2008; Balaban et al., 2004; Deris et al.,
2013; Locke et al., 2011; Patange et al., 2018;
Rotem et al., 2010). Our experimental results
reveal that mechanical stress induced by flow
exerts a strong control on phenotypic hetero-
geneity in isogenic populations of Escherichia
coli. We observed a significant deceleration in
the rate of surface colonization by bacteria with
the magnitude of fluid flow. This was partly
due to the expected effect of physical erosion.
However, a detailed analysis of bacteria divi-
sion rate and motion on surfaces showed that
a large part of the colonization slow-down had
a biological origin as a large number of cells
stopped growing and dividing. Thus, our ex-
periments uncover an unexpected bacterial re-
sponse to physiological stress induced by flow.

Although populations of genetically identical
cells were used in this study, the response to the
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shear stress induced by flow was not uniform.
In the four flow regimes, we observed the co-
existence of cells which divided actively during
the experiment and maintained the same av-
erage division time (∼ 40 min) and cells which
did not divide during the observation time (400
min). The two categories, the dividers and non-
dividers, were detected from the first time inter-
val. The abundance of non-dividers was about
one order of magnitude higher for the largest
shear stress (80 mPa) than for the smallest
shear stress (2 mPa), with a sharp increase be-
tween 50 and 80 mPa. These different growth
phenotypes were strongly correlated with at-
tachment phenotypes. Non-dividers were char-
acterized by their firm and symmetric adhe-
sion to the substrate while dividers displayed
an asymmetric adhesion and a larger motion
on the surface. Asymmetric adhesion is the
dominant mode of attachment in E.coli bac-
teria colonies growing on surfaces (Duvernoy
et al., 2018). However, the existence of phe-
notypic heterogeneity in attachment has also
been observed in the absence of flow (Vissers
et al., 2018), with a fraction of symmetrically
attached cells coexisting with asymmetrically
attached cells. Growth rate diversity with the
coexistence of dormant, slow- and fast-growing
cells is also a common feature of isogenic bac-
terial populations cultured in static, homoge-
neous conditions (Gangwe Nana et al., 2018;
Wallden et al., 2016). Our findings reveal that
phenotypic heterogeneity in surface adhesion
and growth are tightly linked and modulated
by change of hydrodynamic conditions, point-
ing to a force sensing mechanism regulating cell
attachment and growth rate.

The coexistence of subpopulations with distinct
phenotypes in clonal populations is controlled
at the cellular level by complex signaling and
regulatory systems allowing bacteria to inte-
grate multiple signals about their external en-
vironment as well as their physiological and
metabolic states (Ackermann, 2015; Jung et
al., 2019). Phenotypic heterogeneity thus arises
from the individual response of cells to signal
variability and stochastic fluctuations of the
cellular machinery (Ryall et al., 2012). The het-
erogeneity in attachment and division modes

observed in the absence of flow (Gangwe Nana
et al., 2018; Vissers et al., 2018), and confirmed
here at low flow rates, points to such stochastic
variations in transcriptional and translational
processes. The demonstration of a modulation
of the proportion of subpopulations by the in-
tensity of the shear stress, suggests that this
phenotypic heterogeneity is also driven by the
perception of mechanical cues. Between the
start and the end of the experiments, the num-
ber of non-dividers increased regularly (Fig.
4.c), indicating that phenotypic heterogeneity
was also present in new cells formed under flow.
However, the fraction of newly produced cells
that underwent growth arrest decreased signif-
icantly between the beginning and the end of
the experiment (Fig. 4.b). This suggests that
dividers may transmit their phenotypic state
to the next generation, possibly through epige-
netic inheritance (Veening et al., 2008a).

The growth arrest observed here in non-
dividing bacteria is comparable to the ”Vi-
able But Non-Culturable” (VBNC) state
(Bergkessel et al., 2016), a state in which
bacterial cells maintain viability but are not
able to form colonies when cultured on non-
discriminant media. It has been postulated
that the VBNC state helps bacteria surviving
hostile conditions of various types such as nutri-
ent deprivation (Li et al., 2014), UV exposure
(Zhang et al., 2014) or chlorination (Lin et al.,
2017). Although cell viability was not explic-
itly tested in this study, we may assume that
the non-dividing cells were still viable because
a shift in their center of mass was observed
during the experiments (Fig. 6.c). In such
laminar flows, dead cells would quickly reach
a stable position with no detectable change
in the MSD of their center of mass. One of
the key molecules involved in the regulation of
cell growth physiology is the small nucleotide
(p)ppGpp (guanosine tetraphosphate or guano-
sine pentaphosphate) (Magnusson et al., 2005).
It is involved in the induction of the stress re-
sponse in E.coli and may favor the stress re-
sistance of cells in the VBNC state (Li et al.,
2014). Interestingly, the concentration of this
molecule also controls the production of type
1 fimbriae for bacterial attachment and biofilm
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formation (Åberg et al., 2006). We thus postu-
late that cell growth arrest and enhanced sur-
face attachment may be two sides of the bacte-
rial response to flow-induced mechanical stress,
possibly regulated by the same molecule.
The uncovered phenotypic heterogeneity in
growth rate and adhesion modes regulated
by the flow intensity may be a type of bet-
hedging, whereby genetically identical organ-
isms develop heterogeneous phenotypes to pre-
pare for an uncertain future (Grimbergen et al.,
2015; Veening et al., 2008b). This strategy pro-
vides bacteria with the ability to combine, at
the colony scale, cells that divide, and are ex-
posed to the risk of detachment, and others that
minimize the detachment risk by developing a
strong attachment, at the expense of immediate
division. It is likely that bacteria have devel-
oped this strategy in environments where flow
is highly fluctuating (Acar et al., 2008), such
as soils or the gut (Conrad and Poling-Skutvik,
2018; Cremer et al., 2016). These finding hence
provide new insights on how bacteria manage
the trade off between division and attachment
under flow, a key component to understand the
dynamics of bacteria growth and colonization
in environmental, biological and medical sys-
tems.
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Methods

Bacterial strain and culture conditions.
The Escherichia coli ATCC R�11775

TM
strain

was cultivated in 20 mL of M9 medium (per
liter : NA2HPO4 6g ; KH2HPO4 3 g ; NCl 1 g
; NaCl 0.5 g ; CaCl2 1M 30 µL) incubated at
37◦C in a 150 mL flask agitated at 150 rpm. A
bacterial suspension stock was obtained by in-
oculating a culture with a VitroidsTMdisc, in-
cubating for 24h, and storing at 4◦C for a max-
imum of 3 weeks. For each microfluidic experi-
ment, a culture was inoculated at 2% with the
stock solution and incubated for 7 hours, giving
a final O.D600nm of approximately 0.1 after in-
cubation. This bacteria suspension was diluted
into fresh M9 medium to an O.D of 0.05 and
transfered into a syringe (Cetoni GmbH glass
syringe).

Microfluidic device fabrication. We fabri-
cated microfluidic devices using the well known
soft lithography technique (Xia and White-
sides, 1998). A polydimethylsiloxane (PDMS)
mixture (Sylgard 184, Neyco s.a.) was poured
into molds composed of embossed designs of
SU-8 epoxy-based negative photoresist (SU8-
2050, Neyco s.a.) on silicium wafers (BT Elec-
tronics). The microfluidic device consists of two
layers separated by a PDMS membrane (Sup-
plementary Fig. SI.1). The thickness of the
first PDMS layer was chosen, for each exper-
iment, so that the PDMS membrane atop the
culture channel be always 150 μm thick, in or-
der to maximize the efficiency of gas control.
For each geometry, a second layer of PDMS was
designed for gas control channel and fabricated
with the same method. The multi-channel cul-
ture chambers, in the first PDMS layer, have
the following geometrical properties: 10 mm
in length, 3 mm in total width and 150 μm in
height, with inner channels widths ranging from
200 to 1000 μm. The alignment of both PDMS
layers was achieved with a magnifier trinocu-
lar zoom microscope (France-Tech Prochilab)
using alignment patterns. The channels were
bonded together and to a microscope glass slide
covered by a thin layer of PDMS using a Corona

SB for surfaces plasma treatment (BlackHole
Lab).

For all geometries the flow fields were modeled
with Comsol Multiphysics beforehand to pre-
dict the pressure drops in each channel. To
estimate the shear rate and shear stress (equa-
tions (1) and (2)), the velocity v was computed
using the Stokes equation for Newtonian flow
in a straight cuboid channel.

Environment control and experimental
procedure. The bulk fluid and the solution
containing bacteria were introduced in the sys-
tem with syringe pumps neMESYS Low Pres-
sure modules 290N (Cetoni GmbH). The in-
jection of gas in the gas control channels was
performed with pressure controllers (25mbar
MFCS-EZ, Fluigent). The microfluidic chip
was placed in a Leica Incubator 8 temperature
control chamber, ensuring temperature stabili-
sation at 37±0.1◦C of the PDMS but also mi-
crofluidic tubings and circulating fluids. Bacte-
ria were injected into the microfluidic cells and
the flow was stopped for 30 minutes to let bac-
teria attach to the floor of the channels. Clean
M9 medium was then injected from another sy-
ringe at the desired flow rate for 15 minutes,
before recordings were started.

Images acquisition. We used a motorized in-
verted microscope (DMi8, Leica Microsystems)
to follow bacterial micro-colonies at the indi-
vidual scale with a HC Plan 10x/25M ocu-
lar, a HCX PL Fluotar L 40x/0.60 CORR ob-
jective and a x1.6 tube lens (Leica Microsys-
tems). Phase contrast images were acquired
at a frame rate of 1 image per minute with
a HPF-ORCA FLASH 4.0V3 camera (Hama-
matsu). In order to obtain good statistics of
bacterial counts, images were recomposed from
2 × 3 image mosaics acquired with the LAS X
stitching module, and best focus was guaran-
teed by performing a vertical scan over 8 μm
around the initial best focus position, with a
0.5 μm interval with the LAS X Z-control mod-
ule (Leica Microsystems). For quantifying de-
tachment/reattachment rates, a frame rate of
7 frames per second was used and the recorded
area was a rectangle of length 651 μm and
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height 434 μm. In this configuration, the tube
lens was replaced by a x1 tube lens (Leica Mi-
crosystems), and vertical stacks and horizontal
stitching were not used. Hence, the recorded
area was a square of side length 347 μm.

Images processing and analysis. Recom-
posed images were pre-processed with an in-
house Matlab program for orientation cor-
rection, cropping, best focus selection, space
and time filtering, individual bacteria identi-
fication and characterization (Supplementary
Fig. SI.2). These pre-processed images were
then processed with an in-house Python pro-
gram based on the scikit-image and scipy li-
braries to compute the edges of colonies. Those
data were analyzed to compute growth laws,
statistics on geometrical attributes and parti-
cle tracking. Individual bacteria were counted
one by one based on geometrical attributes. At
the x640 magnification with the 16 bits camera,
each pixel covers an area of 0.01 μm2. Consid-
ering Escherichia coli bacteria with a length
of 2 μm and a diameter of up to 1 μm, each
bacterium covers an area of approximately 200
pixels. This area depends on the actual posi-
tion of the bacterium in the flow: if it is ly-
ing on the channel floor, it will appear rod-
shaped on the image, while if it is attached by
one pole and swung by the flow, it will appear
more round-shaped. Therefore, an eccentricity
threshold was also applied, keeping cells found
with e ∈[0.25,0.99].

Detection of detachment and attachment
events. To quantify the rates of detachment
and attachment under different levels of ap-
plied shear, we performed experiments with a
high frame rate, around 10 frames/second, al-
lowing us to detect detachment events and fol-
low the bacteria’s trajectories after they had de-
tached. The frequency of bacterial detachment
and reattachment was estimated from three ex-
periments performed at each shear rate, and
corresponding to a total of at least a hundred
bacterial detachment events over the 6 hour-
long experimental period.

Mean Square Displacement (MSD).

The analysis of the mean square displacement
(MSD) of the center of mass of bacteria,

�
Δr2

�
,

has been recently used to distinguish swim-
ming, diffusing and anchored bacteria (Vissers
et al., 2018, 2019). Here we used this mea-
sure to identify dividing and non-dividing bac-
teria. The identification of bacterial boundaries
allowed us to estimate the position of the cen-
ter of mass (centroid) for each bacterium in
each frame. As a bacterium grows, we fit its
shape with an ellipse to track the growth of
bacteria during division and identify duplica-
tion events (Fig. 4a-4). During the duplication
process, when the separation into two bacte-
ria occurs the trajectory of the centroid of the
mother cell is lost and two new trajectories ap-
pear, corresponding to the two new daughter
cells. Hence the time over which the trajectory
of a bacterium centroid can be tracked before
separation corresponds to the division time.

The trackpy Python library was then used to
reconstruct bacterial trajectories x(t) (Allan et
al., 2015) and estimate the MSD as,

�Δr2�(τ) =
1

T

� T/2

−T/2

(x(τ + t) − x(t))
2

dt,

(5)
where T is the trajectory length and τ the lag
time of observation.

Once bacteria start dividing they also stop
translating or rotating around significantly.
Hence, during the division process, the vari-
ation in the MSD of a bacterium is mostly
due to bacterial elongation. Attached bacte-
ria grow until they have doubled their length
before dividing (Fig. 4a). Since one of their
pole is attached (Fig. 6a), their MSD increases
by around half a bacterium’s length,

�
Δr2

�
≈

1 μm2, until the division is complete (Sup-
plementary Fig. SI.3). The evolution of the
MSD is thus strongly correlated to the divi-
sion rate measured by the detection of division
events. Every trajectory showing a MSD larger
than 0.25 μm2 was thus considered to belong to
the divider population (see blue curves), while
smaller MSDs were considered to be represen-
tative of the non-dividers (yellow curves). Note
that the non-dividers are not dead cells. If
these cells were dead, we would not observe any
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displacement of their center of mass over time
in a laminar flow regime since even if dead cells
were shaken by the flow, they would soon reach
a stable equilibrium position and thus would
not move anymore.
We extended this procedure to study the mo-
tion of bacterial poles movements to compare
their level of attachment (Fig. 6).

Relative pole displacement. An ellipsoid
was fitted to each bacterium and on each frame.
From the fitted ellipsoid, two poles were iden-
tified. The evolution of the position of both
poles and of the bacterial centroid over time
yields a total displacement for these three ref-
erence points. The ratio of each pole’s displace-
ment over the centroid’s displacement is thus
obtained (see its statistics in Fig. 6).

Initial attachment phase. In the initial at-
tachment phase, the bacteria solution was in-
jected in the microfluidic cell and bacteria were
left to attach at the bottom of the channel un-
der no flow conditions for 30 minutes. After a
brief sedimentation phase, bacteria started to
adhere to the substrate. Observation of bac-
teria approaching the surface with the camera
objective focused on the bottom of the chan-
nels showed that their mean velocity dropped
from approximately 0.2 μm.s−1 to 10−3 μm.s−1

once attached A verifier Bacteria attaching to the
bottom of the channel never left the surface af-
terwards under any flow conditions. Once they
have settled down on the surface, bacteria do
not start the division process immediately, but
with a delay of around one hour, as previously
by Wang et al. (2015). This delay corresponds
to the initiation of an adhesion process on the
surface.
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Åberg, Anna, Shingler, Victoria, and Balsa-
lobre, Carlos (2006). “(p) ppGpp regulates
type 1 fimbriation of Escherichia coli by mod-
ulating the expression of the site-specific re-
combinase FimB”. In: Molecular microbiol-
ogy 60.6, pp. 1520–1533.

Acar, Murat, Mettetal, Jerome T, and Van
Oudenaarden, Alexander (2008). “Stochastic
switching as a survival strategy in fluctuat-
ing environments”. In: Nature genetics 40.4,
pp. 471–475.

Ackermann, Martin (2015). “A functional per-
spective on phenotypic heterogeneity in mi-
croorganisms”. In: Nature Reviews Microbi-
ology 13.8, pp. 497–508.

Allan, D, Caswell, T, Keim, N, and Wel, C van
der (2015). “Trackpy v0.3.2”. In: doi: 10.

5281/zenodo.1213240.
Balaban, Nathalie Q, Merrin, Jack, Chait,

Remy, Kowalik, Lukasz, and Leibler, Stanis-
las (2004). “Bacterial persistence as a
phenotypic switch”. In: Science 305.5690,
pp. 1622–1625.

Battin, Tom J, Besemer, Katharina, Bengts-
son, Mia M, Romani, Anna M, and Pack-
mann, Aaron I (2016). “The ecology and bio-
geochemistry of stream biofilms”. In: Nature
Reviews Microbiology 14.4, p. 251.

Bergkessel, Megan, Basta, David W, and New-
man, Dianne K (2016). “The physiology of
growth arrest: uniting molecular and envi-
ronmental microbiology”. In: Nature Reviews
Microbiology 14.9, pp. 549–562.

Berne, Cecile, Ellison, Courtney K, Ducret,
Adrien, and Brun, Yves V (2018). “Bacte-
rial adhesion at the single-cell level”. In: Nat
Rev Microbiol 16, pp. 616–27.

Bochet, O. et al. (2019). “Fractures sustain dy-
namic microbial hotspots in the subsurface”.
In: Nature Geosciences, accepted.

Borer, Benedict, Tecon, Robin, and Or, Dani
(2018). “Spatial organization of bacterial
populations in response to oxygen and car-
bon counter-gradients in pore networks”. In:
Nature Communications 9.1, p. 769.

Branda, Steven S, Vik, Åshild, Friedman, Lisa,
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Figure SI.1: Assembled microfluidic design. Blue channels are bacteria and nutrients inlets
and outlets and culture chambers with various wall shear stress. Red channels are gaz control
channels for fluids oxygenation. Both layers are 150 μm high and are separated by a 150 μm thick
PDMS membrane. Bacteria are injected down the blue path and settle down for 30 minutes while
flows are halted. The clean nutrient solution is then injected along the blue path at a constant
flow rate for 6 hours while air flows along the red path, enabeling constant oxygen renewal in
the liquid-filled blue channels.
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Figure SI.2: Main steps of image processing. (a) raw image, (b) binary image after temporal
filtering, space filtering and intensity thresholding, (c) bacterial perimeters found with the binary
regions analysis and (d) association to all such perimeters of a count of either 1 (dark blue) or 2
(light blue) individual bacteria depending on region area. Gray scales on images (a) and (c) are
raw data in pixel intensity on a 16 bit depth scale (0 to 65565), image (b) is binary (0 or 1) and
image (d) is in pixel intensity after applying the spatial and temporal filters.
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Figure SI.3: Segregation between dividers and non-dividers. Mean Squared Displacement
(MSD, �Δr2�) of the centroids of ellipsoids fitted around bacteria. Blue curves correspond to
dividers, with a final MSD higher than 0.25 μm2. Yellow curves correspond to the other category,
the non-dividers. Plain lines (−) correspond to the mean MSD of dividers and dashed lines (−−)
to the mean MSD of non-dividers.
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Figure SI.4: Snapshots of dividers vs non-dividers at times 120, 240 and 360 minutes.
Dividers are colored in blue, non-dividers in yellow. Dividers are defined by their final MSD,
which is higher than 0.25 μm2.
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Figure SI.5: Lagged dividers dynamics. (a) Example of the size evolution of lagged dividers ,
characterized by a delay phase with constant size followed by a linear elongation similar to that
of continuous dividers. The fit of a linear trend in the growth phase shows that the elongation
rate � is the same as for the continuous dividers. (b) Proportion of continuous dividers, lagged
dividers and non-dividers as a function of shear stress.
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4.3 Bacterial colonization patterns in shear flows

4.3.1 Colony-scale statistics

We decide to work with optimum bacterial growth conditions by providing continuously
oxygen and a high concentration of glucose to the colonies using a two level microfluidic
set-up (see Section 2.2.3). After 30 minutes inoculation period, which allow to a limited
number of bacteria to settle down and be strongly attached to the bottom part of the
channel, the flow is turn on for 15 minutes in order to remove all the other individuals
that were present the channel. At that point, the experiments start, keeping the same flow
rate. In the following we work with four flow conditions which do not modify the nutrient
intake to the bacteria. We used the image analysis process described in Section 2.4 to
merge single bacteria into colonies, whose geometrical attributes can then be extracted.
We first focus on the temporal evolution of the surface coverage for the various shear (see
Figure 4.7). Four different colonization patterns emerged for the different shear stress
regimes.

In the ulow and low regimes, the surface coverage is the most important. We observe
a broad distribution of the size of the colonies, that eventually merge after several hours
to fully cover the surface in the ulow regime, while it will happen for larger times in the
low regime.

In the med and high regimes, the evolution of the surface coverage is slower and only
few colonies grow over time, more significantly for the med regime.

As the shear stress increases, we find less colonies that have merged together but we
see also that the size of isolated colonies are different.
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Figure 4.7: Single cells merged into colonies. Bacterial single cells are numerically
merged into colonies and observed with 2 hours time intervals. The colonies are shown in
yellow. The flow direction is given by the red arrow. Each panel corresponds to a surface
of 50 µm in height and 150 µm in length.
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We got the global growth dynamics by computing the evolution of the channel bottom
coverage, averaged for each shear regime, scaled by the colonies total area (see Figure 4.8).
This quantitative analysis confirms our observation made from the previous figure, that
the relative surface coverage decreases with increasing shear stress, with a fine temporal
resolution. In the ulow shear regime, the fast exponential coverage growth is slowed down
after 4 hours and eventually reaches a plateau when the whole channel floor is covered. For
the other regimes, the growth is exponential with decreasing slopes as the shear increases.
In the high shear regime, the surface coverage seems to have a delay of 3 to 4 hours
compared to the other regimes before starting to grow.

Figure 4.8: Relative area coverage. Bacterial growth dynamics observed through rel-
ative area coverage over time for each shear stress regime, with the standard deviation
computed on three replica.

Since we expect that the shear will influence the geometrical features of the colonies,
as observed in previous studies (Hartmann et al., 2018; Persat et al., 2014; Rossy et al.,
2019), we compute the area, the eccentricity and the orientation with respect to the flow
direction.

We first look at the shape of the colonies. Contrary to the typical concentric growth
on agar plates, we observe that the colonies exhibit an elongated shape when they grow
under flow (see Figure 4.7). We use an eccentricity parameter, well adapted to slender
geometries. The eccentricity e of a colony is defined as the eccentricity of the ellipse that
best fits the shape of surface covered by the colony. A circle has an eccentricity of 0, while
a flat ellipse has an eccentricity of 1. More formally, the eccentricity is the ratio of the
focal distance to the major axis length, which can be written in terms of major axis length
a and minor axis length b as

e =

√
1− b2

a2
. (4.1)

Bacterial micro-colony eccentricities are centered on values around 0.8-0.9, which confirms
that colonies mainly grow with elongated shapes under flow, irrespective of the shear
intensity (see Figure 4.9b).
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a b

Figure 4.9: Colonies are shaped by the flow: orientation. (a) Probability Density
Functions (PDF) of the orientation of colonies in each shear stress regime with respect to
the flow orientation (denoted by θ = 0 rad). (b) Smoothed PDF of eccentricity for each
wall shear stress regime.

Since the colonies have an elongated shape, we can ask ourselves if they grow along the
flow direction, which can be quantified by the angle between the major axis of the fitted
ellipse and the flow direction. The probability density functions (PDFs) were obtained
from histograms over 500 to 2000 colonies depending on the wall shear stress regime,
with bins in the range [−π/2,π/2]. The histograms were fitted to the Gaussian function
described in Equation (4.2) and fitted parameters are given in Table 4.2.

PDF (θ) = a exp

(
−(θ − µθ)2

2σ2
θ

)
+ b (4.2)

The errors represented in Figure 4.9a are the estimated deviations of the fitting functions
based on each parameter standard deviation.

Table 4.2: Fitted parameters for the orientation probability density function.

Regime Parameter Value Error

ulow

µθ
σθ
a
b

−0.047
0.661
0.010
0.014

±0.114
±0.289
±0.003
±0.003

low

µθ
σθ
a
b

−0.018
0.584
0.013
0.013

±0.059
±0.118
±0.001
±0.001

med

µθ
σθ
a
b

0.001
0.149
0.032
0.015

±0.010
±0.010
±0.001
±0.000

high

µθ
σθ
a
b

−0.024
0.070
0.121
0.012

±0.005
±0.005
±0.008
±0.001
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In the ulow shear regimes, the orientation PDF is almost flat, which shows that even
if the colonies are eccentric, they are not necessarily aligned with the flow and can take
any orientation (see Figure 4.9). As shear stress increases, the standard deviations of the
fitted Gaussians are reduced and the colonies take the same orientation than that of the
flow. Even though the shear absolute value has little impact on the eccentricity of the
colonies, the flow dictates the shape of the colonies and their orientation.

Finally, we show on Figure 4.10a the distribution of the number of bacteria per colony
for each shear regime. As expected, the probability of getting larger colonies increases
over time, since the grows takes place only along the surface. However, we do not observe
that all the micro-colonies grow at the same rate until they touch each other and merge
to form large colonies. Instead, we also observe that there is always a bigger proportion
of small colonies on the overall growth period and whatever the shear, with a maximum
number of bacteria for a colony limited to 10 to 30 bacteria. The number of small colonies
rises between the first 2 intervals and then level off for ulow and low shear regimes, that
latter stage corresponding to the merging of some of them. We may suppose that the
shear is responsible for the smallness of the colonies, since it can detach bacteria which
may reattach elsewhere and start a new colony.

The maximum size of a colony at a given time is also dependent on the probability of
merging between nearby colonies. Figure 4.10b shows the maximum number of bacteria
the biggest colony (or indistinctly several colonies that have merged) after 5 hours of
experiment. In this figure, each point corresponds to the average of 3 experiments. There
is an exponential decrease of the maximum size reached after 5 hours with the shear. It
is worth noting that, for the ulow regime, all colonies end up merging and thus forming
a single large colony, which covers all the surface after 6 hours of experiment. Since
the detachment rate increases with the shear, the expansion of the colonies is therefore
limited. On the other hand, the reattachment rate decreases with the shear, which lowers
the probability of forming new colonies. Together, these two effects prevent the merging
of colonies.

Figure 4.10: Colonies are shaped by the flow: size. (a) Distribution of colony size
for each shear stress regimes in time periods of 2 hours. On the same graph, we merge the
distributions obtained for 3 experiments. (b) Maximum area reached by a colony in each
shear regime after 5 hours of experiment. Each point is the average of the measurement
in 3 distinct experiments. The error given is the standard deviation between each set of 3
experiments.

In the following, we use dedicated high frame rate experiments to track bacteria during
the colonization process to check the effect of the shear on the growth of the colonies.
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4.3.2 Bacterial trajectories at high frame rate

In order to explain the colonization patterns observed in the previous part, we per-
formed a new set of experiments for the same shear regimes but with a higher frame rate,
around 7 frames per second, and over 2-3 hours. We focused on smaller areas of the
bottom part of the channel with a lower magnification, x400 instead x640, to extend the
length, up to 300 µm, over which we can determine the bacteria motion along the flow.
Such an acquisition set-up also allow us to follow cells as they divide, when they may be
detached by the flow from the mother colony and reattached further downstream, with,
however, a smaller statistic than before.

Figure 4.11: Instantaneous velocity along trajectories of moving individual bacteria.
The same color mapping has been applied on instantaneous velocity values, highlighting
the velocity in the free swimming range in red, under it in blue and above it in green. The
space coordinates are the same in each plot. Trajectories always start at the origin of the
coordinates system. The flow direction is given by the red arrow. This figure records 20
to 35 trajectories depending on the shear regime. The starting point of each trajectory is
reported to the origin of the spatial coordinates.

We indeed observed that individuals are detached from their colony for the different
shear regimes as shown in Figure 4.11. In this figure we observe the change in bacteria
velocity just after their detachment within our measurement window, for 20 to 30 indi-
viduals for each regime. To fully understand these spatial evolutions of the velocities we
need to compare them to the swimming velocity of motile E coli. Kaya and Koser (2012)
have reported that the mean velocity of E coli without flow, in the bulk of the fluid, is
equal to 22.2 ± 2.6 µm.s−1. Molaei and Sheng (2016) and Molaei et al. (2014) found
velocity values around 15 ± 4 µm.s−1 µm.s−1 for bacteria swimming near a surface, 20
µm above it. They got the same value whatever the shear regime. It is worth noting that
(i) detached bacteria in our case are much closer to the surface, not more than 3 to 4 µm
from it, and (ii) the maximum shear rate considered in those studies (30 s−1) corresponds
only to the low regimes. Such velocity references help us to define the colormap of Figure
4.11, with a blue color for velocity smaller than 10 µm.s−1 , well below the free swimming
one, a red color for velocity between 15 and 30 µm.s−1 and even greater velocities are in
green.
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As the shear increases, more bacteria travel across the whole measurement window
with high velocities. These brown-green trajectories never decrease their velocity and
thus never reattach. Instead they are transported by the flow with a velocity too high
to allow them to swim. On the other hand, the trajectories that end up coming back in
the dark blue range represent bacteria that have first accelerated, after their detachment,
and slowed down just before they landed and reattach to the bottom of the microfluidic
channel.

To better illustrate how velocities vary along trajectories, we selected some trajectories
for each regime (Figure 4.12). Each graph has its own color mapping and range of spatial
coordinates to highlight the velocity variations and the trajectories. Figure 4.12b shows
the distributions of mean directions of the trajectories relative to the flow direction in each
shear regime. Whatever the shear, bacteria move on average in the direction of the flow,
with a loss of freedom of orientation with the shear.

We separated the tracked bacterial cells into those who end up reattaching to the
surface and those who don’t. We show the full velocity PDF along the trajectories in
Figure 4.13 with the averaged curves for both categories superimposed on the PDFs. In
order to compute the PDFs, we normalized the time of all trajectories and merged the
velocity profiles.

In the ulow regime, some bacteria leave their mother colony but they stop exploring
their surrounding rather rapidly. In average, these bacteria decelerate up to their final
destination (Figure 4.13). Typically, they travel an average of 5 µm from the edge of the
colony, following tortuous almost straight lines with no preferential direction and with a
velocity small enough such that we cannot consider that they swim. Indeed, for all the
tracked bacteria, the maximum velocity is always smaller than the swimming one (see
Figure 4.12c) with an average velocity below 3 µm.s−1 (see Figure4.13). In this regime,
the motion of the bacteria is not affected by the flow, i.e. bacteria are not detached by
it. Bacteria likely move thanks to their flagella and also other external appendages like
pili and fimbriae, which are in contact with the surface. This is confirm by the analysis of
the image which shows that bacteria stay on focus, i.e. their size is slightly increased and
thus they move not more than a couple of µm above the surface.

In the low shear regime, bacteria travel the same distances transversally to the flow
but much larger ones in the flow direction, up to 20 or 30 times greater and with a freedom
of orientation that is strongly reduced. The range of accessible velocities is greater and
there are two kind of populations. The majority of the cells stay attached to the surface at
the position where they originally divided. The other population is dragged along by the
flow, close to the surface and still in contact with it. As time goes on, they decelerate as
they adhere more strongly on the surface (Figure 4.13). Few other bacteria, belonging to
this second population, are partially detached and transported by the flow. Indeed, even
though bacteria reach velocity between 15 and 30 µm.s−1 (Figure 4.12c), corresponding
to the free swimming near a surface (Kaya and Koser, 2012; Molaei and Sheng, 2016),
here the distance from it is really small (around to 1 µm, see Table 4.1). Bacteria cannot
use properly their flagella to swim while being so close to a surface and they are dragged
along the surface with their flagella and other potential extracellular appendages still in
contact with it (Fronzes et al., 2008).
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Figure 4.12: Statistics on bacterial trajectories. (a) Instantaneous velocity of selected
trajectories of moving individual bacteria. For each shear stress regime, a custom color
mapping has been applied on instantaneous velocity values (plotted in µm.s−1), in order
to better highlight the variations of velocity along each trajectory. The space coordinates
are also different in each plot. Trajectories always start at the origin of the coordinates
system. The flow direction is given by the red arrow. In each plot, trajectories have
been selected to highlight typical behaviors of the regime. (b) Distributions of effective
directions taken by the trajectories with standard deviation values given in radians. The
boxes extend from lower to upper quartile of the effective direction distribution. The
orange line represents the median of said distributions and whiskers of the boxes extend
to the 10 and 90 percentiles. The direction of the flow is by definition the direction at 0
radians. (c) Maximal velocity reached along each considered trajectories, with • symbols
been bacteria that reattach to the microfluidic channel floor and � symbols been bacteria
lost in the flow. The gray area represents the free swimming velocity range.

In the medium regime all the bacteria also move preferentially in the flow direction,
still with the same two populations as in the low regime. The bacteria that eventually
reattach strongly have a ballistic-like motion, first accelerating and then decelerating until
they come into contact with the surface and become immobile. Their maximum velocities
lie again between 15 and 30 µm.s−1, thus bacteria are also dragged along the surface by
the flow while they are still in contact with the surface since they stay at distances of
the order of 1 µm. Therefore those bacteria cannot swim and thus there is no complete
detachment from the surface induced by the flow. The bacteria of the second population
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end up by being effectively detached and do not reattach further downstream. They keep
accelerating as they detach from the surface and leave the field of observation.

Finally the high regime is rather similar to the medium one with far more bacteria
detached by the flow. They also accelerate as they get detached from the surface and reach
higher velocity and leave the observation window. We expect that they might reattach
again if their trajectories encounter areas of lower velocity fields that enable swimming
out of the flow streamlines and approaching surfaces.

Figure 4.13: PDF of velocity along trajectories. Probability Density Functions (PDF)
of velocities along trajectories for each regime. The red curves are average velocity along
trajectories for each category. • symbols represent bacteria that reattach to the microflu-
idic channel floor and � symbols represent bacteria lost in the flow.

We have seen that the flow induced detachment modifies the colonization process
mainly in the medium and high regime, by transporting bacteria further downstream.
We will now consider the other mechanisms for each regime which are involved in the
colonization of the surface.

4.3.3 Story of a colonization

The colonization patterns in the ulow shear regime are governed by two types of
behavior (see Figure 4.14a). A first category of bacteria duplicate within their own colony,
the dividers, and they do not move otherwise, while those of the second category, the
explorers, move in the surrounding of the border of their mother colony before settling
and duplicating at their turn. At the beginning, dividers grow and increase the area of
the colonies and in a second time the explorers show up when the second layer of bacteria
start forming (Figure 4.15a) and less frequently near the edge of the mono-layer colonies.
We suppose that the initiation of this second layer corresponds to the moment when the
surface of the channel is crowded enough such that colonies ”see” each other likely by
quorum sensing (Wang et al., 2015). It may also come from the fact that, as in growth
on agar plate, it is easier to growth on the second layer rather than to push too many
cells around. As pictured in Figure 4.15a the explorers move not more than 5 to 10 µm
from the edge of the colony and then duplicate and form in this way a new colony which
will rapidly merge with the mother colony. As colonies grow on one hand by division of
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the bacteria that stayed on-site of their initial division and on the other hand by merging
with nearby new colonies formed by explorers, the surface of the channel is covered and
the number of explorers able to form new colonies decreases rapidly (see Figure 4.14b).

a b

Figure 4.14: Explorers are the sub-category of dividers going for colonization.
(a) Number of dividers observed over time for each shear regime and corresponding number
of explorers, which are defined as bacteria that detach from their original position upon
division and reattach further downstream before starting a new division process. (b)
Evolution of the ratio of explorers over the total number of dividers over time for each
shear regime.

In the low shear regime, the explorers exhibit slightly larger displacements from the
edges of the colonies which are also more constrained in the flow direction. Some specific
growth patterns also appear, that were only observed in this shear regime. Bacteria can
form chains which can contain up to 8 cells, formed over 2 to 3 generations (see Figure
4.15a-b). Those chains are strongly attached to the substrate by the mother cell and
swings periodically in the flow. At some point the chains are broken at their free edge.
During this detachment event more often several bacteria are removed at the same time
rather than one by one (see Figure 4.15c). Interestingly, we have never observed that
those tiny chains reattach further downstream. As discussed in the previous part few
bacteria act a bit like explorers since the flow drag them along the flow, which allow them
to reattach more strongly at a distance greater than for the previous regime.

In the medium regime the intensity of the flow limits more severely the growth of
the colony, by detaching partially some bacteria, as just mentioned above for the lower
regimes. Bacteria are detached just after the end of the duplication. Figure 4.16 shows
typical successive images of the colonization in this regime. The dividers that duplicate
within the colony are in red color, while the green and the blue ones are explorers that just
after their birth are detached, travel in the flow direction for tens of microns and strongly
adhere before starting new colonies. At that point the explorers become dividers since
they do not leave the new colony and duplicate. On the other hand, the new bacteria
produced by these freshly converted dividers behave like the explorers, and then at their
turn will explore tens of micrometers in the surrounding in the direction of the flow before
dividing. Since the growing colonies are much slower to cover the surface than in the
previous regimes, the number of explorers that spread and grow new colonies increases
and reaches a plateau (see Figure 4.14b). This shows that the ratio of explorers over the
total number of dividing bacteria stabilizes between 15 and 17 %.
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Figure 4.15: Specific growth patterns in low shear regimes. (a) Snapshots taken
between 2 and 4 hours of growth in experiments in ulow and low shear regimes. The
direction of the flow is shown by the red arrow. (b) Distribution of number of bacteria in
the chain-shaped features observed in the low shear regime. (c) Distribution of number
of bacteria that detach simultaneously from the chains.

In the high shear regime, the spatial spreading of colonies is very limited and new
bacteria are rapidly produced on a second layer. Those cells are systematically detached
by the flow and not reattach on our measurement window. Hence, the population of
explorers is nearly nonexistent in this regime (see Figure 4.14b). Those bacteria are most
probably useful for colonization in the sense that they travel across long distances with
the flow but they are still able to swim and attach on the surface in more welcoming
environments, where the shear in less intense. We illustrate this behavior with a shear
experiment during which we change the flow conditions from a high to low shear condition
(see Figure 4.17). During the first four hours small colonies grow on the surface, with
sizes typical of the high regime. The motion of bacteria at the edge of colonies is reduced,
while the bacteria in the center keep producing cells that are detached by the flow and
rarely reattach. After roughly 4 hours the flow rate is suddenly changed and we imposed
the flow conditions similar to that of the ulow regime. Bacteria that were transported by
the flow quickly start to deposit on the surface and grow new colonies at the growth rate
observed in the ulow regime.

In the same time, colonies that have grown in the high regime for 260 minutes do not
start to expand. Bacteria on the edges of these colonies stay still and those produced as a
second layer are detached and reattached in the vicinity of the initial colony, where they
start to grow in a ”ulow” fashion. This experiment shows that the strong attachment of
bacteria in the high shear regime after several hours is not reversible in the time scale of
our experiment. It also shows that, on the other hand, detached bacteria are able to attach
to surfaces and start new colonies as soon as they reach more favorable environments.
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5 μm

Figure 4.16: Story of a colonization. Spreading of bacteria detached from their initial
colony in the med shear stress regime. Red bacteria grow exclusively within the initial
colony. Green bacteria travel 20 µm before settling and dividing. Blue bacteria exhibit
increasing distance traveled by new cells. After reattachment on surface, old cells divide
while staying at the same spot and the new cells behave as explorers.
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Figure 4.17: Bacterial response to a change of shear. Number of bacteria on the
surface of a changing shear experiment. Shear stress is high in the first 260 minutes and is
instantaneously changed to ulow at the time shown by the red line. Snapshots are shown
for times 30, 210, 280 and 340 minutes. The direction of flow is given by the red arrow in
first snapshot.
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4.4 Conclusion

In this chapter, we have focused on the impact of flow on bacterial growth through wall
shear stress applied on attached bacteria. We used a new microfluidic design to ensure
the efficient transport of glucose and oxygen during the whole duration of experiments,
so that nutrients never became limiting factors of the bacterial growth. In this context,
we varied the flow rates and used precise modeling to compute the resulting shear forces
at the bottom wall of the microfluidic devices. We studied the dynamics of bacteria that
were initially attached to the PDMS floor and that grew in these conditions.

The patterns observed at the colony scale after several hours of experiments are linked
to the capacity of individual cells to explore and settle down in the channel. With ultra low
wall shear stress, bacteria expand their colonies in any direction by growing rapidly. Many
individual cells roll over the colonies and explore the nearby surroundings, while being still
in contact with surfaces. They explore a small area before settling and growing new micro-
colonies, which in turn are rapidly merged into nearby growing colonies. With increasing
shear stress, the freedom of detached bacterial trajectories’ orientation decreases, while the
traveled distances increase. New specific growth patterns emerge when detached bacteria
are forced to follow the flow direction but are still able to reattach downstream of their
initial colony, as it is clearly observed in the medium shear regime. Their, numerous
explorers enable the colonization of the surface step by step in the direction of flow. In
much higher shear stress regimes, detached bacteria are more abundant and are less able
to reattach in the channel under the same conditions. However, we have shown that
these bacteria are perfectly able to initiate the colonization of new surfaces as soon as the
environmental conditions become more favorable.

When investigating bacterial growth at a global scale, one can see that with increasing
wall shear stress, the total number of the observed bacteria grows slower in time. We used
image processing methods in order to identify individual cells and label each one of them
with a generation label, showing when their initial division occurred during the experiment.
From this identification, we have shown that with increasing shear stress, more bacteria
were swept away by the flow and never reattached to the microfluidic walls, thus leading to
a decrease in the observable population on the surfaces. Detailed measurements of division
times and elongation rates have shown that the shear stress had very limited impact on
the growth rates of bacteria. After 2 generations, most bacteria tend towards an average
division time around 40 minutes. However, shear stress had an impact on the delaying
behavior of bacteria. Even with the same elongation/division rate, more bacteria were
delaying their initiation of division within higher stress field.

With observations at high frame rate, we have shown that an increased proportion of
bacteria lost the will to duplicate and chose a survival by attachment strategy instead.
With measurements of their MSDs through time, we argue that these bacteria are not
dead, but rather strongly attached by both poles, in opposition to dividing bacteria which
usually have an attached pole and a free pole, with higher displacement over time and from
which the new bacterium emerges in the process of division. This increased proportion of
bacteria that do not contribute to global growth with increasing shear stress, combined
with the higher ratio of bacteria lost in the flow, will explain why the overall apparent
growth rate measured at the scale of the microfluidic channel is decreasing with increasing
shear stress.

We have seen that many characteristics can be extracted from the measurement of
physical properties, which would now benefit from adding control on genetic parameters
to identify the biological functions engaged in each of these behaviors.
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Effect of solute mixing on microbial
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The growth dynamics of bacteria is driven by chemical reactions producing energy or
using energy to produce biomass (Thullner et al., 2007). The kinetics of these reactions
depend on the availability of reactants in the environment of the bacteria (Thullner and
Regnier, 2019). In the subsurface, the combination of several mechanisms can modify
the state of mixing of the solutes transported by water fluxes in the porous media and
therefore can change the reaction kinetics (Rolle and Le Borgne, 2019). The first of these
mechanisms is dispersion, which combines the fundamental physical effects of diffusion and
advection within fluids. This mechanism is highly anisotropic due to the inherent difference
between longitudinal dispersion in the direction of flow and transverse dispersion in the
direction orthogonal to the flow. The strong heterogeneity of velocity fields at the pore
scale, due to the grains size distribution and grains arrangement (Dentz et al., 2018),
generates the deformation of the reactive fronts and the emergence of complex mixing
patterns (De Anna et al., 2013; Jiménez-Mart́ınez et al., 2017). The length of the reactive
interface can be increased by the resulting stretching of the fronts, hence increasing mass
transfers and concentrations gradients, and therefore the overall mixing rates (Le Borgne
et al., 2014). Some fingering patterns observed in porous media mixing can also lead to
the segregation of less mixed area (Jiménez-Mart́ınez et al., 2015). Because of the strong
coupling between all these effects, reaction kinetics in heterogeneous flow fields are not
well described by theories assuming well-mixed conditions. One solution developed by
Le Borgne et al. (2015) to take these phenomena into account is the lamella theory of
mixing, first developed on Darcy scale heterogeneities and later adapted to pore scale
hydrodynamics (De Anna et al., 2014; Jiménez-Mart́ınez et al., 2017).

In this chapter, we study this impact of mixing on monomolecular reactions, with a
focus on Monod (Michaelis-Menten-like) kinetics, which are typical of Escherichia coli
bacteria. In a first section, we present a numerical study on the impact of diffusive mixing
on this non-linear reaction kinetics. We show how mixing can enhance the reaction kinetics
by influencing the concentration profile, hence changing the average reaction rate. We
develop a semi-analytical framework for the case of a Monod kinetics and we describe
the main processes that control this enhancement of the reaction rate by mixing. We
summarize the results obtained for the impact of diffusive mixing on reaction kinetics
enhancement and we show how these results apply to natural environments. These results
are submitted as a paper for publication in Advances in Water Resources (AWR journal).
In the last part of this chapter, we go one step further in the exploration of the impact
mixing on reaction kinetics by adding advective processes to the concentration profile
dynamics, in the form of an exponential stretching, which is the characteristic deformation
observed in porous media.
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aUniv. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
bUniv. Rennes, CNRS, Institut de Physique de Rennes, UMR 6251, 35000 Rennes, France

Abstract
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kinetics is non-trivial, and it is not known how concentration gradients affect

the global effective kinetics. Here, we use numerical simulations and theoreti-
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diffusion and reaction lead to non-monotonic effective kinetics that differ sig-
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uncover the different regimes of effective kinetics as a function of the Damköhler

number and Michaelis–Menten parameters and derive a theory that explains and
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and diffusion. We illustrate the consequences of these findings on the acceler-
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5.1 Mixing enhancement of Monod-type reaction kinetics

5.1.1 Paper: Enhanced and non-monotonic effective kinetics of solute
pulses under Michaelis–Menten reactions



1. Introduction1

Michaelis–Menten kinetics [1] occur in many natural and engineered reac-2

tive systems. They were originally developed as a model of catalytic reactions,3

where the reaction of interest is mediated by binding to a catalyst, leading to4

saturation effects [1, 2]. This type of kinetics has found applicability in a variety5

of contexts, such as microbial growth [3, 4], chemotaxis [5], solute transport in6

biological tissues [6, 7, 8, 9], enzyme reactions [10], predator-prey models [11],7

and reaction-diffusion in electrodes [12]. In the context of bacterial growth,8

it is also known as Monod kinetics [13]. They have been used extensively to9

model biodegradation of contaminants in hydrological and groundwater sys-10

tems [14, 15, 16, 17, 18, 19]. These kinetics display a simple non-linearity:11

the reaction rate is proportional to concentration at low concentrations and12

saturates to a constant above a threshold concentration. Analytical solutions13

exist for the Michaelis-Menten kinetics in batch conditions [20, 21]. For non-14

homogeneous systems, the reaction-diffusion equation with Michaelis-Menten15

kinetics has been analyzed mathematically for different applications, leading to16

approximate solutions in some regimes [6, 7, 8, 22, 23, 24, 25, 26]. Here we17

analyze the effect of chemical gradients on the average kinetic laws for local18

Michaelis-Menten kinetics. We investigate whether non-homogeneities in con-19

centrations may lead to enhanced or reduced average reaction rates compared20

with batch kinetics, characterized by homogeneous concentrations.21

Under non-linear kinetics, unresolved concentration gradients lead to effec-22

tive macroscopic reactive transport laws that are different from microscopic23

laws [27, 28, 29, 30]. In the context of Michaelis-Menten reactions, the effect24

of mass transfer limitations on effective macroscopic kinetics has been studied25

with an emphasis on bioavailability limitations when micro-organisms are lo-26

cated on solid surfaces [31, 32, 33] or more generally distributed in space [34].27

Mixing limitation with Michaelis–Menten kinetics have also been investigated28

in the context of reactive fronts, where reactants are spatially segregated and29

mixing is the limiting step to bring reactants into contact [35, 36]. Here we30

2
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study situations where nutrients or reactants are released as discrete pulses in31

time and space, which encompasses a large spectrum of natural and engineered32

systems. Examples include pulse of nutrients in soil [37, 38], plants [39], aquifers33

[40] or catchments [41], which are often consumed by biological agents through34

Michaelis–Menten kinetics [42]. While other types of non-homogeneous initial35

conditions could be considered, we argue that the general impact of concentra-36

tion gradients on the average kinetics will be similar as for pulses.37

We study the effective kinetics of diffusing pulses of a single chemical species38

undergoing degradation with Michaelis–Menten kinetics. We assume that the39

local kinetics are uniform in space and hence focus on the effect of spatial40

and temporal changes in reactant concentration on the effective kinetics. We41

approximate these nonlinear kinetics by a sharp crossover from a linear depen-42

dency of the degradation rate on c for concentrations lower than the crossover43

concentration, to a saturated, constant rate above it. We investigate the de-44

pendency of the effective kinetics on the Damköhler number Da and the ratio45

α between the kinetics’ crossover concentration and the initial concentration.46

We develop a semi-analytical framework relying on a weak-coupling approx-47

imation regarding diffusion and reaction. The results compare favorably to48

numerical simulations of the coupled equations. Fully-analytical descriptions49

are also derived for asymptotic regimes corresponding respectively to reaction-50

and diffusion-dominated dynamics.51

In the following, we first present, in Section 2, a mathematical description52

of the dynamics, including the solution under well-mixed conditions, which will53

serve as the reference scenario. Next, Section 3 is concerned with analysing the54

dynamics of the effective reaction rate as a function of the Damköhler number55

and α based on numerical simulations. Section 4 is devoted to the derivation56

of the semi-analytical theory relying on the approximation of weakly-coupled57

diffusion and reaction. Section 5 explores the consequences of our results in58

the context of the consumption of nutrients by bacteria. Conclusions are drawn59

and the results discussed in terms of their relevance to natural systems in sec-60

tion 6. Additional technical derivations regarding the analytical theory and61

3
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details on the performance of the weakly coupled approximation may be found62

in appendix.63

2. Dynamics64

The dependence of local reaction rate on local concentration associated with65

Michaelis–Menten kinetics is given by66

r�(c�) =
µc�

K + c�
, (1)

where c� is the concentration, µ is the maximum reaction rate per unit con-67

centration, and K is the characteristic concentration for the transition between68

first-order and zero-order kinetics. The key qualitative features of these kinetics69

are (i) saturation of the reaction rate at high concentrations c� � K, and (ii)70

linear growth of the reaction rate at low concentrations c� � K.71

We define the normalized concentration and characteristic concentrations72

respectively as73

c = c�/c�0 (2)

and74

α = K/c�0, (3)

where c�0 is the initial concentration. We associate a characteristic reaction time75

with the low-concentration regime,76

τ� = K/µ, (4)

and we nondimensionalize time as77

t = t�/τ�. (5)

This leads to a dimensionless reaction rate r = τ�r
�/c�0, given as a function of78

dimensionless concentration by79

r(c) =
αc

α + c
. (6)

4
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In nondimensional terms, the saturation condition reads c � α, and the satu-80

rated rate value is likewise given by r(c) = α. In the following, we present and81

discuss our results in terms of nondimensional quantities, unless noted other-82

wise.83

For simplicity, in order to elucidate the main mechanisms driving the effec-84

tive kinetics describing the evolution of total mass under this type of scenario,85

we consider a piecewise-linear model of kinetics accounting for saturation,86

r(c) = cH(α− c) + αH(c − α), (7)

where H is the Heaviside step function. This corresponds to a linear increase,87

r(c) = c, of the reaction rate up to the critical concentration α, so that r(α) = α.88

Above the critical concentration, the reaction rate saturates and remains equal89

to its maximum value α (see Fig. 1). This model simplifies the analytical90

treatment, and allows us to focus on the key features of the interplay between91

transport-induced mixing and saturation. In Appendix F, we investigate nu-92

merically the effect of this simplification and show that it tends to slightly93

over-estimate the maximum effective reaction rates (Fig. F.16). However, re-94

sults are very similar since the piecewise-linear approximation is very close to95

the two regimes over orders of magnitudes in concentrations (Fig. 1 and F.17).96

2.1. Well-mixed kinetics97

We first consider the well-mixed case, corresponding to the conditions found98

in a batch reactor. The concentration c is then spatially homogeneous and99

depends only on time t. The dynamic equation describing concentration decay100

is the well-mixed rate law101

ċ = −r(c), (8)

which describes the decay resulting from the sharp crossover approximation of102

the Michaelis–Menten kinetics when the rate r(c) is defined according to Eq. (7).103

Throughout, the dot denotes (nondimensional-time) differentiation.104

If the initial concentration is sufficiently large (α < 1), reaction starts in105

the saturated regime. The reaction then proceeds at a constant rate for a106

5
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Figure 1: Nonlinear kinetics exhibiting saturation. Blue: Michaelis–Menten kinetics, Eq. (6).

Black dashed: Piecewise-linear kinetics, Eq. (7).

dimensionless duration σB , defined such that c(σB) = α. For α > 1, the batch107

starts in the linear regime and σB = 0. Thus,108

σB = max

�
0,

1 − α

α

�
. (9)

For t > σB , standard linear dynamics apply, and the concentration decreases109

exponentially. The total mass corresponding to a homogeneous batch of width110

s0 is given, in one dimension, by M �
B(t) = s0c

�(t), which we nondimensionalize111

as MB(t) = M �
B(t)/M �

B(t = 0). Hence, expressed in nondimensional terms, the112

temporal evolution of the total mass of reactant is given by113

MB(t) =





1 − αt, t � σB

min{α, 1}e−(t−σB), t > σB

. (10)

2.2. Diffusing pulses of reactive solutes114

We now consider a pulse of a reactant diffusing in a solution and locally115

subject to the piecewise-linear reaction rate r(c) defined in Eq. (7). Our goal116

6
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is to compare the effective reaction kinetics under these conditions to the well-117

mixed batch reaction kinetics for the same initial mass of reactant and the118

same initial concentration. For simplicity, we consider transport in one spatial119

dimension, but the approach can be extended to three dimensions. The initial120

condition is taken to be homogeneous within a region of width s0, centered at121

x� = 0. For a total initial mass of M �
0, the initial concentration corresponding to122

this injection is c�0 = M �
0/s0. In dimensional terms, the corresponding dynamical123

equation is124

∂t�c
� = D∂2

x�c� − r�(c�), (11)

where D is the diffusion coefficient. Here and throughout, the notation ∂y de-125

notes the partial derivative with respect to a variable y. Note that equation126

(11) is also relevant for one-dimensional dispersion when substituting the diffu-127

sion coefficient by a dispersion coefficient. Hence results derived here for one-128

dimensional diffusion also apply to one-dimensional dispersion, which would be129

relevant for instance for reactive pulses released in porous media columns under130

flow [43]. In Appendix G we also discuss the effect of dimensionality by solving131

the reactive transport equation in spherical coordinate for three-dimensional132

diffusion. Since the surface available for diffusion is larger in three-dimensions,133

the effect of average kinetics enhancement is found to be even more pronounced134

for three-dimensional pulses than for one-dimensional pulses (Fig. G.18 and135

G.19).136

As above, we nondimensionalize concentration as c = c�/c�0 and time as137

t = t�/τ�. Furthermore, we normalize position as x = x�/s0. We introduce138

also the diffusion time τD = s2
0/(2D), corresponding to the characteristic time139

needed to homogenize the width of the initial condition, i.e., to homogenize a140

unit length in dimensionless units. We then define the Damköhler number as141

Da =
τD

τ�
=

s2
0µ

2DK
, (12)

which quantifies the relative importance of reaction versus diffusion and is also142

simply the diffusion time in dimensionless units. The dynamical equation then143
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becomes144

∂tc =
∂2

xc

2 Da
− r(c), (13)

where r(c) is given by equation (7) and the initial condition is145

c(x, 0) = H (x + 1/2) H (1/2 − x) . (14)

Since under diffusion and degradation the maximum concentration cannot146

increase, once the latter reaches the value α the kinetics become linear every-147

where and are identical to the well-mixed scenario. Similarly to above, we denote148

by σ the time at which the maximum concentration reaches α. For t � σ, we149

have150

M(t) = M(σ)e−(t−σ) (15)

and151

Ṁ(t) = −M(σ)e−(t−σ). (16)

As for the batch problem, α > 1 means all mass starts in the linear regime,152

corresponding to the linear reaction problem for all times. Furthermore, for any153

value of α, the limit Da → ∞ reduces to the batch problem. This happens154

because, in this limit, all mass reaches the linear regime through reaction before155

diffusion has time to deform the initial uniform concentration distribution. Note156

that we consider a pulse in a formally infinite domain. This means that our157

results for the total mass are valid so long as deformation of the pulse by diffusion158

does not extend to the spatial domain boundaries, at least while the saturated159

regime lasts. In a finite domain, the limit Da → 0 reduces to a batch of the size160

of the domain (as opposed to the initial pulse size), corresponding to the initial161

pulse becoming homogeneous over the entire domain before reaction becomes162

important.163

2.3. Effective kinetics of diffusing pulses164

In order to quantify the effective kinetics of diffusing pulses, we study the165

evolution of the total mass of reactant. In dimensionless terms, the effective166
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reaction rate as a function of time is given by167

rt(t) = −Ṁ(t). (17)

We analyze the evolution of the effective reaction rate rt as a function of time168

and as a function rM of the mass itself,169

rM (m) = −Ṁ [T (m)], (18)

where T (m) is the time at which the total mass M [t = T (m)] is equal to m.170

Under well-mixed conditions, the effective kinetics governing the total mass171

always coincide with the local kinetics, irrespective of the latter. In the pulse172

scenario and for nonlinear kinetics, however, the mixing state, as encoded in173

the concentration profile, changes the nature of the effective reaction rate. As174

we will see, this is reflected in a qualitatively different behavior of rM (m) when175

compared to the local kinetics r(c) seen as a function of concentration.176

Note that, formally, T is the inverse of M , that is, M [T (m)] = m and177

T [M(t)] = t. This inverse exists for our problem because the mass as a function178

of time is monotonic for degradation kinetics, meaning that a value of mass179

corresponds to exactly one value of time and vice-versa. If this were not the case,180

multiple rates would be associated with a given value of mass, and the effective181

kinetics would exhibit hysteresis. We do not address this type of scenario in the182

present work.183

3. Numerical simulations184

Before proceeding with the theoretical discussion, we illustrate some key185

aspects of the dynamics using numerical simulations. To this end, we numeri-186

cally integrated Eq. (13) with a square pulse initial condition, as described in187

Section 2.2, using Matlab’s pdepe method.188

Figure 2 illustrates the evolution of the concentration profile for all com-189

binations of values of Da ∈ {10−3, 1, 103} and α ∈ {0.01, 0.05, 0.26}. These190

parameter combinations are representative of the different qualitative dynamics191
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Figure 2: Temporal evolution of the concentration profile for a square-pulse initial condition,

for varying Damköhler number Da and maximum batch rate α. Five evenly-spaced times

between t = 0 and t = σ are represented by color-coded profiles. The value of α is shown as

a dashed red line.

which may be observed. For high Da and high α (top right panel), reaction192

dominates over diffusion and the shape of the initial profile remains relatively193

unchanged until the onset of the linear regime. In fact, this is expected for194

sufficiently high Da, whatever the value of α. Indeed, in the limit of high Da,195

diffusion becomes slow compared to reaction, so that each region of the pulse196

becomes essentially independent, and the pulse behaves as a set of independent197

batches. Hence, for sufficiently high Da and a square pulse initial condition, the198

pulse remains homogeneous for the duration of the saturated regime and the ef-199

fective kinetics tend towards the batch kinetics. For low Da and high α (bottom200

right), diffusion dominates and the profile approaches a Gaussian before relevant201

reaction occurs. For decreasing α and increasing Da (left and center panels),202

corresponding to an initial condition higher above the saturation threshold and203

faster reaction, there is an enhanced interplay between diffusion and reaction,204

and the evolution of the concentration profile becomes more complex.205

Figure 3a compares the evolution of the total mass over time for diffusing206
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pulses and well-mixed batch conditions. The interplay between diffusion and207

nonlinear reaction in pulses leads to an enhancement of the effective reaction208

rate when compared to the batch reaction. The well-mixed conditions are the209

least efficient, in the sense that the remaining mass is always higher at a given210

time. This is consistent with the above discussion regarding the convergence211

to batch behavior at high Da. For low Da, when the effect of diffusion is most212

pronounced, the effective reaction rate initially increases with time to reach213

a maximum before decaying at larger times (Fig. 3b). These non-monotonic214

effective kinetics contrast with the well-mixed scenario, which mimics the local215

kinetics (constant rate followed by exponential decay, see Eq. (16)).216

Figure 3c compares the evolution of the effective reaction rate as a function217

of total mass with the local kinetics. The initial value of the reaction rate,218

corresponding to M = 1, is always the same as the initial batch reaction rate,219

because the initial conditions are identical. Then, the reaction rate increases220

up to a maximum value, before decreasing and reaching the linear regime when221

the peak concentration drops below α. The maximum reaction rates increase222

markedly with decreasing Da, and the local kinetics are recovered at high Da.223

Note that the reaction rate is maximum when the mass of the pulse is distributed224

such that all concentrations lie below α. Local concentrations then obey ċ = −c,225

which upon spatial integration leads to Ṁ = −M . This linear dependence226

corresponds to the upper envelope of rM (m), as seen in Fig. 3c. In Appendix A,227

we present a series of additional numerical simulations and discuss the sensitivity228

of the non-monotonic effective kinetics on Da and α (Fig. A.11).229

The maximum reaction rate rmax increases with decreasing Da and increasing230

α (Fig. 4a). Therefore, the region of maximum reaction rate corresponds to a231

regime where diffusion dominates over reaction and where the linear regime232

dominates over the saturated regime for most of the dynamics (see Fig. 1). The233

time tmax at which this maximum reaction rate occurs is largest for high Da and234

low α, which corresponds to relatively low values of rmax, see Fig. 4b. Note that235

α corresponds to the maximum reaction rate for well-mixed batch dynamics.236

Thus, increasing α leads to an increase in rmax, but also in the maximum batch237
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0.05 for a square initial condition. The well-mixed batch behavior is shown as dashed blue
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mass. (b) Time-evolution of the effective reaction rate. Note that, due to the logarithmic
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(a). (c) Effective reaction rate as a function of total mass.
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Figure 4: (a) Dependence of the maximum reaction rate rmax on Da and α. (b) Similar

results for the time tmax at which the rate is maximum, rt(tmax) = rmax.

To evaluate the reaction enhancement relative to the batch kinetics, we define239

the instantaneous reaction rate enhancement as240

r̃(t) =
Ṁ(t)

ṀB(t)
. (19)

Because of the nature of Michaelis-Menten kinetics, the batch reaction rate241

ṀB(t) is maximum at initial time and equal to α until the time t = σB when242

the concentration reaches the transition concentration K. In contrast, the max-243
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imum reaction rate of the pulse kinetics Ṁ(t) is always maximum at an in-244

termediate time tmax < σB (Fig. 3). Hence the maximum reaction rate en-245

hancement is r̃max = Ṁ(tmax)/α (Fig. 5). The maximum enhancement of the246

effective reaction is found in the limit of low Da and α. This corresponds to the247

case of diffusion processes dominating over reaction processes with a saturation248

concentration far below the initial concentration. Conversely, the minimum en-249

hancement of effective reaction by mixing is found in the opposite limit of high250

Da, where reaction dominates the dynamics, and high α. In Appendix A,251

we present an analysis of the late time surviving masses to quantify the global252

reaction enhancement as a function of Da and α. The behavior of the global253

reaction enhancement follows the same tendencies as the instantaneous reaction254

enhancement (Fig. 5) described above: it is maximum for low Da and low α255

(Fig. A.12).256
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4. Theory257

We will now develop a theoretical description in order to better understand258

and quantify the numerical results discussed in the previous section. Since the259

dynamics for the mass are trivially identical to the batch problem whenever260

there is no saturated regime, we assume in what follows that the initial concen-261

tration maximum is larger than α. To develop the theory, we first introduce two262

key quantities governing the dynamics of the diffusion–reaction system, relat-263

ing to the dynamics of the spatial boundary between the linear and saturated264

kinetic regimes. We then develop a weak-coupling approximation to predict the265

evolution of total mass under reaction and diffusion.266

4.1. Transition between saturated and linear regimes267

For times t < σ, at which the peak concentration is above the saturation268

threshold α, the spatial domain may be divided into regions in which either the269

linear or the saturated reaction dynamics are taking place. In this framework,270

the first key quantity is the position of the interface between these domains. If271

the concentration profile is symmetric at the initial time, it will remain so at272

all times. If, further, over the half-space of positive x the initial concentration273

profile c(x, t = 0) decreases monotonically (i.e., ∂xc < 0 for x > 0), the profile274

will remain monotonically decreasing at all times. Hence, the saturated region275

occurs around x = 0, and is separated from the linear region by an interface276

at positions ±ξ(t), where ξ(t) is the positive solution to c[ξ(t), t] = α. We may277

thus separate the concentration field into two terms corresponding respectively278

to these two regions: c(x, t) = c�(x, t) + cs(x, t), with279

cs(x, t) = c(x, t)H[ξ(t) − |x|], c�(x, t) = c(x, t)H[|x| − ξ(t)], (20)

where s stands for saturated and � for linear kinetics. The total mass is given280

by281

M(t) =

∞�

−∞

dx c(x, t) = Ms(t) + M�(t), (21)
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where the masses in each regime are given by the integrals of the corresponding282

concentrations.283

The second key quantity is the total diffusive flux across the interface be-284

tween the regions (i.e., between reaction regimes). The net diffusive flux into285

the linear regime, considering the contributions at both ±ξ(t), is given by286

f(t) =
|∂xc(x, t)|x=ξ(t)

Da
. (22)

For t � σ, when the full profile is in the linear reaction regime, we set ξ(t) =287

f(t) = 0. Then, c(x, t) = c�(x, t), and therefore M(t) = M�(t).288

Mass transfer between regimes is governed by the direct effect of the diffusive289

flux across the interface, as well as by the displacement over time of the interface290

position due to both reaction and diffusion. By the Leibniz integral rule for291

differentiation under the integral sign, we have292

Ṁs(t) =

�

|x|�ξ(t)

dx ∂tc(x, t) + 2αξ̇(t), Ṁ�(t) =

�

|x|>ξ(t)

dx ∂tc(x, t) − 2αξ̇(t). (23)

The first term for each mass is due to the dynamical change of concentration,293

whereas the second is directly due to the time-dependence of the interface po-294

sition. As shown in Appendix B, this leads to295

Ms(t) = Ms(0) − R(t) − F (t) − B(t), (24a)

M�(t) = M�(0)e−t + G(t) + H(t), (24b)

where296

R(t) = 2α

t�

0

du ξ(u), (25a)

F (t) =

t�

0

du f(u) (25b)

are the saturated-regime mass losses due respectively to reaction and diffusive297

flux at the boundaries,298

B(t) = −2α

t�

0

du ξ̇(u) = 2α[ξ(0) − ξ(t)] (25c)
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is the saturated mass loss due directly to the changing position of the interface,299

and300

G(t) =

t�

0

du e−(t−u)f(u), (25d)

H(t) = −2α

t�

0

du e−(t−u)ξ̇(u) (25e)

correspond to the amount of mass which was transferred to the linear regime at301

some time u < t by diffusion and directly by change of the interface position,302

respectively, and then survived (exponential) decay until time t.303

In order to simplify the analytical treatment, it is convenient to consider304

a Gaussian initial condition. The role of the initial condition on the effective305

reaction kinetics will be discussed shortly. In dimensionless units, we consider306

an initial profile with unit mass and variance,307

c(x, 0) = exp
�
−x2/2

�
/
√

2π. (26)

Note that the corresponding initial masses are308

Ms(0) = erf
�
ξ(0)/

√
2
�
, M�(0) = erfc

�
ξ(0)/

√
2
�
, (27)

where erf and erfc are the error function and the complementary error function,309

respectively. The initial position of the interface is given by310

ξ(0) =
�

− ln (2πα2). (28)

The numerically-computed time evolution of the total mass and effective311

reaction rate for the Gaussian initial condition are shown in Fig. 6. For small Da,312

when diffusion dominates, the behavior is the same as for the square-pulse initial313

condition because diffusion quickly deforms the initial profile into a Gaussian314

shape, before appreciable reaction takes place In the limit of small Da, reaction315

approaches the linear regime for masses arbitrarily close to the initial mass. For316

high Da, however, the initial condition controls the kinetics, because diffusion317

cannot deform it substantially before the linear regime is reached. In this case,318
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reaction is much more efficient than for the batch scenario, since a relevant319

portion of the mass starts in the linear regime, whereas the well-mixed batch320

is fully saturated. This effect is more pronounced for low α, since, as discussed321

above, it corresponds to a longer duration of the saturated regime.322

In what follows, we will develop approximations to quantitatively analyze323

the dynamical behavior of the diffusion–reaction system under the unit Gaussian324

initial condition. It should be kept in mind that the high-Da limit exhibits a be-325

havior which differs from the square-pulse initial condition, which, as discussed326

above, is identical with a well-mixed batch in this limit.327
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Figure 6: Total mass and reaction rate, computed numerically for the Gaussian initial con-

dition. The maximum batch rate is α = 0.05. The equivalent batch dynamics are shown as

dashed blue lines. (a) Time evolution of total mass. (b) Time evolution of the reaction rate.

(c) Reaction rate as a function of total mass; the unit-slope dashed green line corresponds to

linear kinetics.

4.2. Weak-coupling approximation328

As formalized in Eqs. (24) and (25), determining the dynamics of the to-329

tal mass of reactant M(t) reduces to computing the temporal evolution of the330

position of the regime interface ξ(t) between the linear and saturated regimes,331

along with the diffusive flux f(t) thereat. To solve this problem, it is sufficient332

to develop an approximation for the concentration distribution in the saturated333

regime cs(x, t), because the reaction dynamics in the linear regime are indepen-334

dent of the concentration profile.335

In the saturated regime, the local reaction rate r(c) is constant and equal to336
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α, and the corresponding reactive transport equation is337

∂tcs =
∂2

xcs

2 Da
− α. (29)

Defining, for |x| < ξ(t), cD = cs + αt, cD solves the conservative equation338

∂tcD =
∂2

xcD

2 Da
. (30)

Solving this equation is not trivial in general, since it depends on the boundary339

condition at the interface x = ±ξ(t) with the linear regime. Neglecting the effect340

of the boundary condition on the shape of the saturated part of the profile, we341

obtain, for |x| < ξ(t), the solution342

cD(x, t) ≈
�

Da

2π(Da +t)
e−

Da x2

2(Da +t) , (31)

and343

cs(x, t) = [cD(x, t) − αt]H[ξ(t) − |x|]. (32)

Thus, assuming that the linear regime does not significantly influence the344

shape of the profile in the saturated regime leads to a weak-coupling approx-345

imation for the dynamics of diffusion and reaction: the concentration in the346

saturated regime is the result of superimposing a linear concentration decay347

−αt corresponding to the constant rate r(c) = α on the conservative diffusion348

problem. This leads, for the interface behavior, to349

ξ(t) ≈
�

Da +t

Da
ln

�
Da

2πα2(1 + t)2(Da +t)

�
, (33a)

f(t) ≈ αξ(t)
1 + t

Da +t
, (33b)

valid for t � σ, the duration of the saturated regime. For t � σ, we set350

ξ(t) = f(t) = 0 as discussed before.351

As mentioned above, we consider configurations for which the saturated352

regime is present initially, which means that the maximum initial concentration353

is above α. For the Gaussian initial condition, this means α <
√

2π. Time354

σ then corresponds to the time when the peak of the concentration profile, at355
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x = 0, reaches α. It follows that σ solves ξ(σ) = 0, which gives356

(1 + σ)2(Da +σ) ≈ Da

2πα2
. (34)

This is a cubic equation for σ with a single positive root. An analytical solution357

exists, but it is not particularly useful or insightful, and the root can easily be358

found numerically.359

Under the weak coupling approximation, the saturated-regime mass has the360

analytical solution361

Ms(t) = erf

��
Da

Da +t

ξ(t)√
2

�
− 2αtξ(t). (35)

While we are not aware of a general closed-form solution for the mass in the lin-362

ear regime, the latter can easily be obtained by numerically computing the inte-363

grals in Eq. (24b). The total mass is then the sum of the two regime masses, and364

the effective kinetics rM can be computed from Eq. (18). In the diffusion- and365

reaction-dominated limits, analytical solutions can be obtained; these regimes366

are discussed in detail in Appendix C.367

4.3. Effective kinetics368

We compare the results for the total mass and the temporal effective kinet-369

ics rt(t) under the weak coupling approximation against numerical simulations370

in Fig. 7. Overall, the approximation provides very good predictions. Unsur-371

prisingly, Da ∼ 1 together with low values of α leads to the most discrepancy372

between simulations and semi-analytical solutions, since it corresponds to a373

long saturated regime with reaction and diffusion acting on similar timescales.374

Nonetheless, the weakly-coupled formulation provides a reasonable approxima-375

tion even in this regime, capturing the main features of the dynamics of the376

total mass. A more detailed analysis of the performance of this approximation377

in terms of the interface dynamics is provided in Appendix D.378

We now use the weak-coupling approximation to gain insight into the en-379

hancement and non-monotonic behavior of the effective kinetics. The latter can380
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be understood by examining the derivative drM/dm. In particular, the condi-381

tion for non-monotonic effective kinetics is drM (m = 1)/dm < 0, because the382

linear regime is always reached for small masses m, so that drM (m)/dm = 1 > 0.383

Using the chain rule in Eq. (18) for the effective mass kinetics, we obtain for384

the change in reaction rate with total mass385

drM (m)

dm
=

M̈ [T (m)]

rM (m)
. (36)

As shown in Appendix E, the first and second times derivatives of the total386

mass are given by387

Ṁ(t) = −M�(t) − 2αξ(t), (37a)

M̈(t) = M�(t) − f(t). (37b)

The interpretation of the first result is straightforward: The total rate of loss of388

mass is the sum of the reactive mass loss rates in each regime, with the linear389

regime being characterized by a rate proportional to mass, and the saturated390

regime consuming concentration at a constant rate α within a region of length391

2ξ. The remaining terms involved in the change of the mass in each regime392

correspond to transfer between regimes and therefore do not affect the total393

mass. The result for the temporal change M̈ in the rate Ṁ of mass consumption394

is more subtle, because it is affected by transfer processes. The rate in the linear395

regime changes according to the negative of the change of mass therein due to396

the linear character of the reaction. In the saturated regime, the reaction rate397

changes as 2αξ̇ due to change in size of the saturated region; thus, the rate of398

change of mass, which is the negative of the reaction rate, changes as −2αξ̇. In399

turn, the mass in the linear regime changes as −2αξ̇ due to movement of the400

boundary, compensating the change in saturated-regime rate. Finally, the mass401

in the linear regime also increases according to the diffusive flux f(t). The net402

rate change resulting from these processes is given by M�(t) − f(t).403

The result for Ṁ(t) leads, according Eq. (18), to404

rM (m) = M�[T (m)] + 2αξ[T (m)], (38)
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and, using the result for M̈(t), we find405

drM (m)

dm
=

M�[T (m)] − f [T (m)]

M�[T (m)] + 2αξ[T (m)]
. (39)

The initial condition, corresponding to unit mass m = 1 and time T (m = 1) = 0,406

is characterized by407

drM (m)

dm

�����
m=1

=
M�(0) − f(0)

M�(0) + 2αξ(0)
. (40)

Thus, if M�(0) � f(0), the initial change is the reaction rate is nonnegative,408

and the maximum reaction rate occurs for m = 1 (t = 0). For M�(0) < f(0),409

the effective kinetics are non-monotonic and the maximum reaction rate occurs410

at some intermediate value mc = M�(tc) = f(tc), corresponding to some time411

0 < tc � σ.412

We will now identify three qualitative Damköhler number regimes of reaction413

enhancement. These are characterized by two transition Damköhler numbers,414

Da1 and Da2, such that the three regimes correspond to Da � Da1, Da1 < Da <415

Da2, and Da � Da2. We consider first the upper transition number Da2. Using416

Eqs. (27), (28), and (33b) for the initial masses, interface position, and boundary417

flux under the weak-coupling approximation, the condition M�(0) < f(0) for418

drM/dm to switch signs at some intermediate mass mc becomes Da < Da2,419

where420

Da2 =
α
�
− ln(2πα2)

erfc[
�

− ln(2πα2)/2]
. (41)

We note that this criterion is well approximated by the small- and large-α421

expansions422

Da2 ≈




− ln(

√
2πα2), α � 1

�
1−

√
2πα2

π , 1 −
√

2πα2 � 1

, (42)

with the crossover between these two α-dependencies occurring for α ≈ 0.2.423

For a given α and Da � Da2, the effective kinetics are monotonic and the424

maximum rate occurs at m = 1. It is given by rM (1) = Ml(0) + 2αξ(0) (from425

Eq. (38)). Using Eqs. (27) and (28), we obtain for the maximum enhancement,426
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r̃max = rmax/α,427

r̃max = α−1 erfc
��

− ln(2πα2)/2
�

+ 2
�

− ln(2πα2). (43)

Note the independence on Da. This expression is well approximated by the low-428

and high-α expansions429

r̃max ≈





2 1−ln(2πα2)√
− ln(2πα2)

, α � 1

√
2π
�
1 + (1 −

√
2πα2)

�
, 1 −

√
2πα2 � 1

, (44)

with the crossover occurring for α ≈ 0.1.430

Next, we consider the limit of small Da for a given α. For sufficiently431

small Da, we have Da < Da2, so that the effective kinetics are non-monotonic.432

Diffusion-dominated dynamics occur for Da � πα2, see Eq. (Appendix C.23)433

in Appendix C.2. In this regime, we have M�(t) ≈ 1 for t � σ. Us-434

ing Eqs. (Appendix C.20) and (Appendix C.22) for the boundary position435

and flux under diffusion-dominated dynamics, we obtain tc ≈ σD, see also436

Eq. (Appendix C.21). We conclude that rmax ≈ M�(σ) ≈ 1. This means437

that, in agreement with the trend observed in Fig. 6c, in the limit of small Da438

at fixed α the maximum reaction rate is approximately unity and occurs after439

diffusion has placed roughly all the mass in the linear regime, with little loss440

due to reaction. Thus, in this limit, the maximum reaction enhancement is441

r̃max = 1/α, (45)

independent of Da to leading order. Since this regime occurs for Da � πα2, we442

set443

Da1 = πα2/10, (46)

so that the regime is characterized by Da � Da1.444

For a given α, the dependence of the maximum effective reaction rate on Da445

thus follows three regimes: (i) a plateau of maximum enhancement for low Da446

below a first transition Damköhler Da1; (ii) a decrease of the maximum reac-447

tion rate up to a second transition Damköhler Da2; and (iii) a second plateau448
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at large Damköhler. The weak coupling approximation accurately captures the449

non-monotonic behavior of the effective kinetics (Fig. 8a) and their enhance-450

ment relative to the batch kinetics (Fig. 8b). The weak coupling approximation451

allows for deriving analytical expressions for the two plateaus and the associated452

transition Damköhler numbers, and for accurate and efficient numerical compu-453

tation of the complex intermediate-Da behavior. We summarize these findings454

in Fig. 9.455
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Figure 7: Temporal evolution of the effective reaction rate for a Gaussian initial condition,

computed from simulations (black) and based on the weak-coupling approximation (dashed

red).

5. Accelerated consumption of nutrient pulses by bacteria456

To illustrate the phenomena described above, we compute effective reaction457

rates for nutrient pulses consumed by bacteria under Michaelis–Menten kinetics458

and investigate the influence of pulse size on the maximum reaction rate. We459

consider Michaelis–Menten parameters representative of nutrient consumption460

by E. coli [44], see Eq. (1) and Table 1.461

23

5.1 Mixing enhancement of Monod-type reaction kinetics 145



0.001

0.01 

0.1  

1    

10   

100  

1000 

R
e
a
ct

io
n
 r

a
te

 r
M
(m

)

Mass m

a

lo
g

(r
m̃

a
x
)

b

100 10210-210-4

0.389

0.259

0.172

0.115

0.076

0.051

0.034

0.023

0.015

0.001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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predictions are shown as solid lines and the results of numerical simulations as squares. (a)

Effective reaction rate as a function of mass for maximum batch rate α = 0.05 and varying

Damköhler number Da. (b) Maximum reaction rate as a function of Damköhler number Da

for different α; the dashed lines show the analytical predictions for the high- and low-Da

plateaus, occurring respectively for Da � Da1 and Da � Da2.

We consider a pulse of nutrient in a solution of homogeneous bacterial con-462

centration B. We assume here that the bacterial concentration does not evolve463

in time, which requires the division rate to be much slower than the nutrient464

consumption rate. The nutrient is introduced as a pulse of width s0 in the di-465

rection x and uniform in the y and z directions. In the x direction, the spatial466

domain is assumed much wider than the pulse at all times, and in the y–z plane467

the latter is assumed to occupy the full available area S. While we focus here468

on the one-dimensional problem, the derivations above could easily be extended469

to localized pulses in three-dimensional systems by expressing Eq. (13) in radial470

coordinates. The nutrient pulse thus diffuses in the x direction and follows the471

reactive transport equation (13), where the maximum consumption rate µ is a472

function of the concentration B of bacteria,473

µ = µcB, (47)

with µc the rate of consumption of the nutrient by a single bacterium. For a474

given initial (dimensional) mass M �
0 of nutrient, the initial nutrient concentra-475

24

Chapter 5 Effect of solute mixing on microbial growth dynamics 146



Da1

Da2

monotonic
effective kinetics

non-monotonic
effective kinetics

Figure 9: Regimes of effective kinetics in the α–Da space for a Gaussian initial pulse. The

dotted line shows the first transition Damköhler number Da1, which marks the upper limit of

the maximum-enhancement regime. The dashed line shows the second transition Damköhler

number Da2, which determines the onset of the second (lowest) reaction enhancement plateau

associated with monotonic effective kinetics. Analytical solutions for r̃max in the end-member

regimes below Da1 and above Da2 are indicated.

tion is c�0 = M �
0/(s0S). Therefore, α is given by476

α = s0KS/M �
0, (48)

covering a broad range of values depending on pulse size.477

Figure 10a shows the Damköhler number associated with a given pulse width478

s0 and bacterial concentration B, expressed as a fraction of the maximum bac-479

terial concentration Bmax [45]. Since the Damköhler number is proportional to480

s2
0µ, see Eq. (12), it varies broadly with pulse size and bacterial concentration.481

Expressing s0 in terms of α, the system’s trajectory in the Da–α plane when482

varying s0 is therefore characterized by the relation483

Da =
M �2

0 µ

2DK3S2
α2. (49)
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We show these trajectories for different bacterial concentrations in Fig. 10b.484

When varying the initial pulse size of a pulse of given mass, all the different485

regimes discussed in the previous sections are explored, from low Da and α for486

small pulses, which corresponds to the maximum enhancement relative to the487

batch, to large Da and α, which corresponds to the reaction-dominated regime,488

where the global and local kinetics are identical. For large s0, and therefore489

low c0, most of the mass is initially in the linear regime. In this situation, the490

effective reaction rate is therefore maximum. Similar reaction rates are however491

reached in the opposite situation of sharp and highly concentrated pulses due492

to the effects discussed above. The system thus exhibits two optima at low493

and high s0. The lowest effective reaction rate is reached for intermediate pulse494

sizes (blue area in Fig. 10b), where a large portion of the mass remains in the495

saturated regime for a long time.496

For this simple, yet very common, scenario of a nutrient pulse consumed by497

bacteria, these results illustrate some of the non-trivial consequences of our find-498

ings. For different pulse sizes, a broad range of the Da–α space is explored where499

the different regimes uncovered in our analysis occur. Our results could there-500

fore provide a guide for understanding natural systems or designing bacterial501

cultures under non-uniform nutrient conditions. In practice, these phenomena502

should be expected to be coupled to other important processes such as bacterial503

growth, chemotaxis, or biofilm development, which further increase the system’s504

complexity.505

26

Chapter 5 Effect of solute mixing on microbial growth dynamics 148



Table 1: Parameters used to investigate the effective kinetics of nutrient pulses under consump-

tion by bacteria, relating to E. coli [44]. Values are representative of glucose consumption.

Parameter Value Unit

D 10−9 m2.s−1

s0 10−5–10−1 m

M �
0 10−6 kg

µc 5.10−20 kg.cell−1.s−1

Bmax 1015 cell.m−3

S 10−2 m2
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Figure 10: (a) Damköhler number Da as a function of pulse size s0 for different bacterial

concentrations. (b) Trajectories in the Da–α plane corresponding to varying the pulse size s0

from 10 µm to 10 cm for a given nutrient mass. Solid lines correspond to different bacterial

concentrations B, superimposed on the corresponding maximum effective reaction rate rmax.
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6. Conclusions506

We have investigated the kinetics of solute pulses locally subject to a Michaelis–507

Menten reaction, which occur in many natural and industrial systems. We have508

analyzed the effective (i.e., global) kinetics of such pulse reactors by represent-509

ing the rate of mass change as a function of mass. While for linear local kinetics510

the global effective kinetics are also linear, under nonlinear kinetics the global511

behavior differs from the local kinetics. In the present problem, the nonlinearity512

arises from the transition from linear to constant local reaction rate due to sat-513

uration. Spatial heterogeneity in the concentration profile causes the transition514

to occur at different times for different spatial locations. This fact underlies the515

difference between local and global kinetics.516

The coupling of diffusion and nonlinear kinetics can lead to non-monotonic517

effective kinetics, characterized by an initial enhancement of the effective reac-518

tion rate up to a maximum, followed by a linear decay of the reaction rate. This519

enhancement is mediated by diffusion, which transfers mass from regions where520

the kinetics are saturated to others where it is is linear, i.e., where the reaction521

rate is locally proportional to concentration. This mechanism can significantly522

accelerate the effective kinetics of pulse reactors relative to a batch reactor of523

the same size as the initial pulse, in which reactants are spatially homogeneous.524

The precise kinetics depend on the initial condition, as illustrated by comparing525

the square initial pulse (Fig. 3) to the Gaussian initial pulse (Fig. 6) but the en-526

hancement of effective kinetics through the coupling of diffusion and reaction is527

expected to be a general result. For any non-uniform initial condition, diffusion528

always accelerates the transfer of mass from the saturated regime to the linear529

kinetics regime, leading to faster average kinetics than in batch conditions.530

We have numerically explored the different regimes that emerge from this531

nonlinear reactive transport problem, and shown that they can be adequately532

understood and quantified using a weak-coupling approximation. This approxi-533

mation leads to analytical expressions that predict the transitions between differ-534

ent regimes and quantify the enhancement of reaction rates in the end-member535

29

5.1 Mixing enhancement of Monod-type reaction kinetics 151



scenarios. We have considered here a piecewise-linear approximation of the536

Michaelis-Menten kinetics to facilitate analytical derivations. Our methodology537

could be extended to more complex analytical solutions of full Michaelis-Menten538

kinetics [21, 20] for a more precise analysis of reaction enhancement close to the539

transition between first-order and zero-order kinetics. The mechanisms of reac-540

tion enhancement discussed here for one-dimensional diffusion are qualitatively541

similar as those occurring in three dimensions as discussed in Appendix G and542

analytical solutions in spherical coordinates can be derived following the same543

approach. Since the diffusion-reaction equation is the same of the diffusion-544

reaction equation studied here, the mechanisms described here are also relevant545

for conventional dispersion processes. The effect of more complex mixing pat-546

terns induced by shear and stretching [46] could be investigated using a similar547

approach by considering stretching enhanced diffusion captured by lamella mix-548

ing models [47].549

We have illustrated the consequences of these findings by investigating the550

dynamics of consumption of nutrient pulses by bacteria. Varying the bacterial551

concentration and pulse size allows for exploring the different regimes of non-552

linear effective kinetics. For a given mass of nutrient, the consumption kinetics553

are characterized by two maxima, respectively for localized, highly concentrated554

pulses and for wide, dilute pulses. A minimum consumption rate is obtained555

for intermediate pulse sizes and concentrations. These findings provide new556

clues to understand natural bio-reactive systems and potentially optimize en-557

gineered bacterial cultures, either to maximize or minimize consumption rates558

under non-uniform nutrient landscapes. Furthermore, these results provide a559

new framework to understand and model the effective kinetics of Michaelis–560

Menten reactions in non-homogeneous concentration fields. While these kinetics561

are well known in batch reactors, we have uncovered a rich array of behaviors562

that arise from the coupling of concentration gradients and nonlinear kinetics.563

These results are relevant to a broad range of reactive systems characterized by564

saturating kinetics and non-uniform concentration landscapes.565
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Appendix A. Sensitivity of the effective kinetics on Da and α710

In this appendix, we provide additional numerical results illustrating how the711

effective kinetics depend on Da and α. The non-monotonic nature of the effective712

kinetics is enhanced for decreasing Da and increasing α (Fig. A.11). For low713

Da (Fig. A.11a), the maximum reaction rate initially increases markedly with714

decreasing mass before converging to linear decay. For high Da (Fig. A.11c), the715

effective kinetics approach the local kinetics. For increasing α at fixed Da, the716

maximum reaction rate increases and occurs for higher masses (Fig. A.11d-f).717

At late times, once the peak concentration drops below α, both the pulse718

and batch kinetics are linear. The transition to linear kinetics happens at time719
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Figure A.11: Reaction rate as a function of total mass. Batch kinetics are shown as dashed

lines for each value of the maximum batch rate α. Linear kinetics are indicated by dashed

green lines with unit slope. The top row shows the behavior for different values of α at

three fixed Damköhler number Da values. Conversely, the bottom row shows the behavior for

varying Da at three fixed α values, with the corresponding batch kinetics represented by a

dashed blue line.

σ for the diffusive problem and σB for the batch problem. When all the mass720

is in the linear regime, mass and reaction rates decay exponentially at unit rate721

regardless of the mixing state, see Eqs. (15) and (16). Thus, r̃(t) is constant at722

times larger than both σB and σ and given by the ratio of surviving masses,723

λ = r̃(t) =
M(t)

MB(t)
, t � max{σB , σ}. (Appendix A.1)

Asσ is always smaller than σB , the value of λ can be obtained by evaluating the724

mass ratio for any time t � σB . Taking t = σB and using Eqs. (10) and (15),725

we find726

λ =
M(σ)

α
e−(σB−σ), (Appendix A.2)

and η = 1 − λ is thus a measure of the overall enhancement of the effective727

reaction rate. The larger η, the more efficient the diffusing-pulse reactor is728

when compared to the batch reactor, with η = 1 (λ = 0) being the largest729
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possible value. A value of η = 0 (λ = 1) means that mixing has no effect730

on the overall reaction efficiency. Negative values of η would mean that the731

incompletely-mixed system is less efficient than the batch, but these do not732

occur for Michaelis–Menten reactions.733

We show the dependence of the overall reaction enhancement η on Da and734

α in Fig. A.12. When α is low, both the diffusion and batch problems start735

from highly-saturated conditions. These conditions correspond to less-efficient736

overall reaction when compared to linear kinetics, since the effective kinetics are737

constant rather than linearly increasing with total mass. In the batch problem,738

exiting the saturated regime requires mass to be consumed until the uniform739

concentration drops below α, which means reaction proceeds under saturated740

conditions for a long time. On the other hand, when Da is low, diffusion can741

quickly deform the concentration profile so that a significant portion of mass742

reacts under linear conditions, leading to substantially increased overall reac-743

tion efficiency. Increasing α corresponds to less-saturated initial conditions; the744

duration of the saturated regime is reduced, and the difference between the two745

scenarios decreases. As Da increases, diffusion becomes less important until the746

linear regime is reached, so that pulse and batch reactors behave similarly.747

a b Da
0.389

0.259

0.172

0.115

0.076

0.051

0.034

0.023

0.015

0.001

Figure A.12: Overall reaction enhancement η relative to the equivalent batch system. (a)

Overall reaction enhancement as a function of Da for different α. (b) Overall reaction en-

hancement as a function of maximum batch rate α for different Damköhler numbers Da.
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Appendix B. Analytical solution for concentration in terms of bound-748

ary dynamics749

In this appendix, we provide details on the derivation of the concentration750

dynamics under diffusive transport, in terms of the boundary position ξ(t) and751

the mass flux f(t). The nondimensional dynamical equations for the saturated752

and linear regimes may be written as753

∂tcs(x, t) =
∂2

xcs(x, t)

2 Da
− αH[ξ(t) − |x|], (Appendix B.1a)

∂tc�(x, t) =
∂2

xc�(x, t)

2 Da
− c�(x, t), (Appendix B.1b)

with the boundary conditions754

cs[±ξ(t), t] = c�[±ξ(t), t] = α, (Appendix B.2a)

∂xcs(x, t)
��
x=±ξ(t)

= ∂xc�(x, t)
��
x=±ξ(t)

= ∓Da f(t) (Appendix B.2b)

and a given initial condition c(x, 0).755

We write ĥ(k, t) =
�∞
−∞ dx exp(−ikx)h(x, t) for the Fourier transform of a756

function h with respect to position, in terms of the Fourier variable k. Note757

that758

ĉs(k, t) =

�

|x|�ξ(t)

dx exp(−ikx)cs(x, t), (Appendix B.3a)

ĉ�(k, t) =

�

|x|>ξ(t)

dx exp(−ikx)c�(x, t), (Appendix B.3b)

and, according to the Leibniz rule for differentiation under the integral sign,759

�

|x|�ξ(t)

dx exp(−ikx)∂tcs(x, t) = ∂tĉs(k, t) − 2αξ̇(t) cos[kξ(t)],

(Appendix B.4a)
�

|x|>ξ(t)

dx exp(−ikx)∂tc�(x, t) = ∂tĉ�(k, t) + 2αξ̇(t) cos[kξ(t)].

(Appendix B.4b)
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Using these results, along with integration by parts for the spatial second760

derivatives,761

∂tĉs(k, t) = −k2ĉs(k, t)

2 Da
− ĝ(k, t) − 2αk−1 sin[kξ(t)], (Appendix B.5a)

∂tĉ�(k, t) = −
�

1 +
k2

2 Da

�
ĉ�(k, t) + ĝ(k, t), (Appendix B.5b)

where762

ĝ(k, t) = f(t) cos[kξ(t)] − αk sin[kξ(t)]

Da
. (Appendix B.6)

Thus, in Fourier space, we obtain linear ordinary differential equations with the763

boundary dynamics playing the role of a time-dependent forcing. The standard764

form of the solutions is765

ĉs(k, t) = ĉs(k, 0) −
t�

0

du exp

�
− k2

2 Da
(t − u)

�

×
�
ĝ(k, u) + 2αk−1 sin[kξ(u)] + 2αξ̇(t) cos[kξ(u)]

�
,

(Appendix B.7a)

ĉ�(k, t) = ĉ�(k, 0) +

t�

0

du exp

�
−
�

1 +
k2

2 Da

�
(t − u)

�

×
�
ĝ(k, u) − 2αξ̇(t) cos[kξ(u)]

�
. (Appendix B.7b)

In order to obtain the total masses in each regime, it suffices to set k = 0, since766

Ms,�(t) = ĉs,�(0, t), see Eq. (Appendix B.3). This leads directly to Eq. (24) in767

the main text.768

Appendix C. Analytical solutions for asymptotic regimes769

In this appendix, we identify and describe reaction- and diffusion-dominated770

dynamical regimes. We obtain closed-form analytical solutions for the behavior771

of the total mass under the weak coupling approximation introduced in section 4.772
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Appendix C.1. Reaction-dominated dynamics773

If we neglect the effect of diffusion on the shape of the concentration profile,774

we have cs(x, t) ≈ cR(x, t) for |x| � ξ(t), where775

cR(x, t) = c(x, 0) − αt =
e−

x2

2√
2π

− αt. (Appendix C.1)

Comparing to Eq. (32) for the shape of the profile, we see that we must require776

Da � σ, so that diffusion effects may be neglected for the duration σ of the777

saturated regime.778

The approximate interface position is given by ξ(t) ≈ ξR(t), where779

ξR(t) =
�

− ln [2πα2(1 + t)2]. (Appendix C.2)

We thus have a duration of the saturated regime σ ≈ σR such that ξR(σR) = 0,780

so that781

σR =
1 −

√
2πα2

√
2πα2

. (Appendix C.3)

For the diffusive flux, we have f(t) ≈ fR(t), with782

fR(t) = αξR(t)
1 + t

Da
. (Appendix C.4)

For consistency, we must also require f(t) � 2αξ(t), so that the diffusive flux783

from the saturated to the linear regime is negligible compared to the saturated784

mass loss by reaction. This leads to the reaction-dominated condition785

Da � 1√
2πα2

, (Appendix C.5)

which also ensures Da � σR.786

For the saturated-regime mass, Eq. (35) becomes787

Ms(t) ≈ erf
�
ξR(t)/

√
2
�
− 2αtξR(t). (Appendix C.6)

For the linear-regime mass, neglecting the diffusive contribution G(t) in Eq. (24b)788

and using Eq. (27) for the initial mass, we have789

M�(t) ≈ H(t) + erfc
�
ξR(0)/

√
2
�
e−t. (Appendix C.7)
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Integrating Eq. (25e) for H(t) by parts, we obtain790

H(t) ≈ 2α




t�

0

du e−(t−u)ξR(u) + ξR(0)e−t − ξR(t)


 . (Appendix C.8)

We are not aware of an exact closed-form solution, but a useful approximation791

can be developed. Note that792

σR�

0

du e−(σR−u)ξR(u) =

1−
√

2πα2�

0

du
e−u/

√
2πα2

√
2πα2

�
ln

�
1

(1 − u)2

�
.

(Appendix C.9)

If 1 −
√

2πα2 � 1, we have u � 1 due to the integral bounds. If, on the other793

hand,
√

2πα2 � 1, we still have u � 1 for the dominant contributions due to794

the exponential cutoff. Thus, we expand the logarithm for small u and obtain795

σR�

0

du e−(σR−u)ξR(u) ≈
√

2(2πα2)1/4

σR�

0

du e−u
√

u (Appendix C.10)

≈ (2πα2)3/4

2α

�
erf (

√
σR) − 2e−σR

�
σR

π

�
,

(Appendix C.11)

so that796

H(σR) ≈ (2πα2)3/4

�
erf (

√
σR) −

�
4σ

π
e−σR

�
+ 2αξR(0)e−σR .

(Appendix C.12)

It turns out this approximation works well for all values of α. A similar approach797

yields798

H(t) ≈ 2α

�
ξR(0)e−σR − ξR(t)

+

�
2

1 + t
e

1+t
2 ξR(t)2

�
Γ

�
3

2
,
1 + t

2
ξR(t)2

�
− Γ

�
3

2
, t +

1 + t

2
ξR(t)2

���
,

(Appendix C.13)

where Γ(a, x) =
�∞

x
dt ta−1e−t is the upper incomplete gamma function. This799

approximation is somewhat less accurate for intermediate α values (α ∼ 0.1)800
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and intermediate times (t ∼ σR/2). We also find the limiting forms801

H(σ) ≈





(2πα2)3/4,
√

2πα2 � 1

2√
π

�
1 −

√
2πα2

�1/2

, 1 −
√

2πα2 � 1

. (Appendix C.14)

For the mass at the transition to the fully linear regime, we obtain802

M�(σ) = H(σR) + erfc

�
ξR(0)√

2

�
e−σR , (Appendix C.15)

with the limits803

M�(σ) ≈





�
2πα2

�3/4
,

√
2πα2 � 1

√
2πα2, 1 −

√
2πα2 � 1

. (Appendix C.16)

This leads to a reaction enhancement804

η ≈





1 −
�
8π3
�1/4 √

αe−(σB−σR) erf
�√

σR

�

−2e−σB

�
ξR(0) +

erfc
�

ξR(0)√
2

�

2α − (8π)1/4√ασR

�
, α < 1/

√
2π

1 − e−σB/α, 1/
√

2π � α < 1

0, α � 1

,

(Appendix C.17)

which has the limiting behaviors805

η ≈





1 −
�
8π3α2

�1/4
e
−

√
2π−1√
2πα2 ,

√
2πα2 � 1

1 −
√

2πe−(
√

2π−1)
�
1 − (

√
2π − 1)

�
1 −

√
2πα2

��
1 −

√
2πα2 � 1

0, α � 1

.

(Appendix C.18)

Appendix C.2. Diffusion-dominated dynamics806

We now neglect the effect of reaction on the saturated-regime concentration807

profile, which corresponds, for |x| � ξ(t), to808

cs(x, t) ≈ cD(x, t) =

�
Da

2π(Da +t)
e−

Da x2

2(Da +t) . (Appendix C.19)
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Taking into account that the lowest value of concentration in this regime is α,809

comparison to Eq. (32) shows the approximation holds for t � 1. The position810

of the interface is now approximated by811

ξD(t) =

�
Da +t

Da
ln

�
Da

2πα2(Da +t)

�
. (Appendix C.20)

From this, we find σ ≈ σD, where812

σD = Da
1 − 2πα2

2πα2
. (Appendix C.21)

The condition to ensure the validity of this regime for all relevant times is thus813

σD � 1. The diffusive flux is approximately given by814

fD(t) =
αξD(t)

Da +t
. (Appendix C.22)

In this case, the condition 2αξ(t) � f(t) that the reactive contribution to mass815

loss in the saturated regime be negligible compared to the diffusive contribution816

for all times t < σ is thus Da +σD � 1/2. This leads to the diffusion-dominated817

condition818

Da � πα2, (Appendix C.23)

which also ensures σD � 1,819

The condition σD � 1 implies that the amount of reaction in the linear820

regime is negligible for t < σD. Thus, we find that G(t) ≈ F (t) and H(t) ≈ B(t).821

As expected for a diffusive profile, we obtain, for t � σD,822

Ms(t) ≈ erf

�
ξD(t)√

2

�
, (Appendix C.24a)

M�(t) ≈ erfc

�
ξD(t)√

2

�
, (Appendix C.24b)

so that M�(σ) ≈ 1 (no appreciable reaction). The corresponding reaction en-823

hancement is824

η ≈





1 − e−σB

α , α < 1

0, α � 1

. (Appendix C.25)
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Appendix D. Interface dynamics under the weak-coupling approxi-825

mation826

In this appendix, we assess the performance of the weak coupling approxi-827

mation in predicting the time evolution of the linear–saturated regime interface828

position ξ(t) and the diffusive mass flux f(t) between regimes. A comparison of829

the evolution of the interface position according to Eq. (33a) to full numerical830

simulations is shown in Fig. D.13. We show also the analytical solutions corre-831

sponding to the diffusive and reactive limits obtained in the previous appendix,832

Eqs. (Appendix C.20) and (Appendix C.2), respectively. In the limit of high833

Da, for all α, the numerical and semi-analytical solutions show good quanti-834

tative agreement and are also well approximated by the reaction-dominated835

solution. For high α, for all Da, Eq. (33a) also provides accurate predictions.836

It interpolates between the diffusion- and reaction-dominated at low and high837

Da, respectively, but differs substantially from both at intermediate Da. As ex-838

pected, low α leads to a worse quantitative approximation, except at high Da, for839

which the reaction-dominated approximation provides a good description. Note840

how low α and low Da lead to more complex dynamics, with a non-monotonic841

evolution of the interface position. This occurs because the interface evolution842

results from the competition of diffusion and reaction, with diffusion leading to843

both a widening and a reduction in the maximum of the concentration profile.844

Despite the worse quantitative agreement at low α, qualitative features such as845

non-monotonicity are well captured under the weak coupling approximation.846

Figure D.14 shows a similar comparison for the diffusive flux f(t) at the in-847

terface computed according to Eq. (33b). The diffusion- and reaction-dominated848

limits (Equations (Appendix C.22) and (Appendix C.4), respectively) are also849

shown. In this case, low Da or high α both lead to good quantitative agreement.850

When Da ∼ 1 and α is low, the weak coupling solution predicts non-monotonic851

behavior, whereas numerical simulations show that the diffusive flux is more852

closely described by the monotonically-decreasing diffusion-dominated predic-853

tion at early times. Nonetheless, the weak coupling approximation captures854
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Figure D.13: Temporal evolution of the saturated–linear regime interface position. Analytical

solutions for ξ(t) in the diffusive and reactive limits are shown as solid black and red lines,

respectively. The weak-coupling-based semi-analytical approximation is shown as a dashed

blue line and the numerical simulations as a green line with square markers.

the transition time to fully linear kinetics well, whereas the diffusion-dominated855

approximation does not. Note that, as shown in Fig. D.15, the mass predictions856

at high Da are accurate, despite the quantitative deviations observed for f(t) at857

low α. This is due to the fact that the magnitude of the diffusive flux is small858

in this limit, and therefore has a negligible effect compared to reaction.859

Appendix E. Temporal derivatives of total mass860

In this appendix, we present details on the calculation of the first and sec-861

ond derivatives of the total mass, Eq. (37). Taking the temporal derivative of862

Eq. (24), using the definitions in Eq. (25), we obtain863

Ṁs(t) = −2αξ(t) − f(t) + 2αξ̇(t), (Appendix E.1a)

Ṁ�(t) = −M�(0)e−t − G(t) − H(t) + f(t) − 2αξ̇(t). (Appendix E.1b)

Using Eq. (24b) for the linear-regime mass, the latter equation reads864

Ṁ�(t) = −M�(t) + f(t) − 2αξ̇(t), (Appendix E.2)
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Figure D.14: Temporal evolution of the diffusive flux f(t) at the saturated–linear regime

interface. Results shown and color schemes are analogous to Fig. D.13.
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Figure D.15: Temporal evolution of total mass (black), mass in the saturated regime (green),

and mass in the linear regime (red). The solid lines represent the weak-coupling approxima-

tion, and the markers are numerical simulations.

which has a simple interpretation: The first term characterizes the linear-regime865

reaction, the second refers to change in mass due to diffusive flux, and the third866
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quantifies the direct effect of boundary movement. Using Eq. (Appendix E.1a),867

this equation leads to868

Ṁ�(t) + Ṁs(t) = −M�(t) − 2αξ(t), (Appendix E.3)

which, since Ṁ = Ṁ� + Ṁs, yields Eq. (37a) for the first time derivative of the869

total mass.870

Next, we differentiate Eq. (37a), yielding871

M̈(t) = −Ṁ�(t) − 2αξ̇(t). (Appendix E.4)

Substituting Eq. (Appendix E.2) for Ṁ�(t) leads to Eq. (37b).872

Appendix F. Simulations of reactive pulses with full Michaelis–Menten873

kinetics874

In order to evaluate the effect of the piecewise linear approximation for875

the local reaction kinetics (equation (7)), we performed additional numerical876

simulations using the full Michaelis–Menten reaction kinetics (equation (6)).877

The temporal evolution of the mass with full Michaelis–Menten kinetics is found878

to be very close to the one simulated with the piecewise linear approximation879

(Fig. F.16.a). For low Da, the maximum reaction rate is slightly smaller than880

for the approximated kinetics and it occurs a bit earlier (Fig. F.16.b and F.16.c).881

The maximum reaction enhancement r̃max is however very similar for the full882

and approximated kinetics for a large range of Da and α (Fig. F.17).883

Appendix G. Simulations of three-dimensional reactive pulses884

In this Appendix, we investigate the sensitivity of our findings to dimension-885

ality. We thus consider a reactive pulse diffusing in three dimensions and solve886

numerically the reactive transport equation in spherical coordinates,887

∂c

∂t
=

1

2 Da ρ2

∂

∂ρ

�
ρ2 ∂c

∂ρ

�
+ r(c), (Appendix G.1)
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(a) Time evolution of total mass. (b) Time evolution of the reaction rate. (c) Reaction rate

as a function of total mass.
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(a) piecewise linear reaction kinetics (equation (7)) and (b) full Michaelis–Menten reaction

kinetics (equation (6)).

with ρ the radial distance from the initial pulse of mass M0 = V0c0 = 1. The888

evolution of the mass and effective reaction rates is found to be similar for889

one-dimensional and three-dimensional pulses (Fig. G.18). In three-dimensions,890

the maximum reaction rate tends to be larger and to occur earlier (Fig. G.18.b891

and G.18.c). This is due to the fact that diffusion is more efficient at diluting892

a pulse in three-dimensions than in one-dimension. This enhanced diffusive893
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flux accelerates the transfer of mass from the saturated to the linear regime894

and thus tends to increase the effective reaction enhancement compared to one-895

dimensional pulses, with similar trends as a function of Da and α (Fig. G.19)896
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dimensional pulses (equation (13)) presented in the paper. (a) Time evolution of total mass.

(b) Time evolution of the reaction rate. (c) Reaction rate as a function of total mass.
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5.1.3 Conclusion on the impact of diffusive mixing

In the first part of this chapter, we have studied the impact of mixing on the effective
kinetics of a non-linear reaction, for a diffusive pulse, with a reaction kinetics defined as
an approximation to the well known Michaelis–Menten kinetics, characteristic of bacterial
dynamics under the form of Monod law of growth. We have shown that, depending on
the value of the Damköhler number Da, which represent the ratio of diffusion time scale
over reaction time scale, several regimes can emerge.

We developed a theoretical framework with new metrics to investigate configurations
of weak coupling between reaction and diffusion, which we summarize in Figure 9 of the
paper. Fully-analytical solutions have been derived for the case of a Gaussian initial pro-
file diffusing in 1D, in the asymptotic limits of dominant reaction and dominant diffusion.
Semi-analytical expressions have been computed with the assumption of reaction and dif-
fusion processes acting in parallel but being weakly coupled, as if both processes were
happening at the same time but as if the resulting effect was the sum of both processes
taken separately. We obtained analytical expressions, some terms of which need to be com-
puted numerically, hence the semi-analyticity. We have shown that these semi-analytical
expressions explain the evolution of the total mass for fully-reactive, fully-diffusive and
intermediate scenarios involving both effects coupled, with slight errors appearing in the
limit of low α and Da ∼ 1. However, the evolution of the total mass in the system, as well
as the time of transition into a fully linear kinetics regime were predicted with accuracy.

Thanks to the analytical developments, we have shown that the evolution of the total
mass depends on the motion of the boundary between the saturated and linear kinetics
regimes, as well as on the amplitude of the diffusive flux at this boundary. Our results
also suggest that the initial condition considered in such studies has a major impact on
the measured enhancement of reaction kinetics. Indeed, in the case of the initial Gaussian
profile that was used to obtain fully analytical solutions, the initial condition was the
origin of an heterogeneity in the masses distribution that produced an enhancement of
the reaction kinetics on its own, whatever the reaction or diffusion dominating process.
Thus, for the description of reaction enhancement, we focused on the case of an initially
homogeneous pulse injection to compare to a well-mixed batch and to ensure that we
observed the impact of mixing alone, without any disruption due to the initial conditions.
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5.2 Influence of stretching on reaction kinetics.

In this section, we investigate the effect of chaotic mixing on a reaction characterized
by Michaelis–Menten (Monod) kinetics. We resolve the problem numerically, using Matlab
pdepe function (see Appendix B).

5.2.1 Stretching enhanced mixing

In environments with heterogeneous flow velocity fields, the transport of solutes is
strongly impacted by advective processes and results in complex mixing patterns, follow-
ing stretched lamellar structures (see Figure 5.11). The lamellar theory of mixing was
introduced for the prediction of turbulent mixing (Meunier and Villermaux, 2010) and
adapted to the mixing of solutes in porous media (Le Borgne et al., 2015). It is a La-
grangian framework, where the solute plumes are discretized into a series of elements with
the form of lamellae in 2D. These elements are deformed by the flow, according to the
local velocity field (see Figure 5.11). These deformations control the distribution of con-
centrations and lead to forms of incomplete mixing, with the enhancement of concentration
gradient.

Analytical developments have already demonstrated the impact of linear stretching,
associated to shear flows, on the reaction kinetics of a mixing front (Bandopadhyay et al.,
2017). In three dimensional porous media, it has been shown recently that the hydrody-
namical properties of the stack of beads lead to complex velocity fields exhibiting chaotic
mixing associated to exponential stretching (Turuban et al., 2019). These characteristic
chaotic deformation patterns have been recently observed in 3D experiments with conser-
vative transport of fluorescent chemicals (Heyman et al., 2019), as shown in Figure 5.11a.
Experimental Lyapunov exponents were estimated, thus characterizing the exponential
deformation and the chaotic behavior of the velocity field.

In Figure 5.11a, we illustrate these phenomena with the experimental data obtained by
Heyman et al. (2019) and showing the formation of lamellae in a slice from a 3D experiment
with conservative transport. In this experiment, a punctual injection of a fluorescent
marker is transported along a column with stacked grains whose optical index is matched
with that of the fluid, rendering the column fully transparent. A laser sheet is used to
obtain the spatial distribution of fluorescence on transversal planes at various distances
from the injection point along the flow direction. After a distance of 9 characteristic pore
diameters, the fluorescent dye has been deformed by an exponential stretching and the
plume takes the form of stretched lamellae. The characteristic parameters useful for the
study of stretching conditions are well described by Villermaux (2018), from whom we take
Figure 5.11b to illustrate the impact of stretching on a local concentration of substrates. A
blob of concentration deformed by an exponential stretching is elongated exponentially in
one direction (y-direction in Figure 5.11b) and compressed exponentially in the transverse
direction (x-direction in Figure 5.11b). A lamella in these conditions is compressed up
to a characteristic scale called the Batchelor scale, where diffusion balances compression
(Batchelor, 1959).
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ba

1 mm

Figure 5.11: Lamellae stretching in a porous medium. (a) Experimental evidence of
lamellae formation, typical of chaotic mixing, in a porous medium (adapted from Heyman
et al. (2019)). Pores are in dark blue between black grains, which are stacked in an
experimental milli-fluidic column where fluorescent dye is transported with a flow from a
punctual injection and observed in cross-section of the bead stack with a laser sheet. The
image is taken at 9 pore diameters downstream of the injection point. (b) Stretching (along
y) and compression (along x) of the lamella (right) compared to the isotropic diffusion of
a blob (left) in an environment devoid of mixing (from Villermaux (2018)).

5.2.2 Governing equations

We use the lamellar theory of mixing to quantify the coupling of stretching, diffusion
and reaction. The change of coordinates presented below allows to solve the problem of a
stretched concentration lamella in a new coordinate system where the equations are written
in the form of a classical diffusion equation. Firstly, we consider the case of conservative
transport.

Parametrization for conservative transport

We consider a chemical species C of concentration c in a 2D spatial domain of coordi-
nates (x,y). The conservative transport of the species concentration c is described by an
advection-diffusion equation of the form

∂c

∂t
= −v ·∇c+D∆c, (5.1)

where t is the time, v the velocity field, and D is the diffusion coefficient of the species C in
the surrounding fluid, and ∆ is the Laplacian operator. We take the initial concentration
profile as Gaussian of characteristic initial width s0, which is not a restrictive choice
but allows to localize the lamella in space (Meunier and Villermaux, 2010). We define the
Lagragian coordinate system as aligned on the main elongation and compression directions
respectively so that the species C is compressed in the x-direction and stretched in the
transverse y-direction (see Figure 5.11b). Therefore, the velocity field can be written using
a Taylor expansion at first order of the flow around the spatial position (see Meunier and
Villermaux (2010)), as

vx =
x

s

ds

dt
, (5.2)

vy = −y
s

ds

dt
+
∂vy
∂x

x, (5.3)

with s the width of the Gaussian profile in the compressed direction (the x-direction),
as shown in Figure 5.11b, and which is a function of time. We use these expressions for
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the velocity field, which contains neglected terms but holds in flows which tend to form
elongated structures (Meunier and Villermaux, 2010). Since concentrations gradients are
maximum in the compressed direction (x-direction), the mass transfer due to diffusion
processes in the transverse direction can be neglected (y-direction of the elongation) (Ranz,
1979). The deformation caused by the flow is concentrated in the term defined as the
stretching rate γ, such that

γ(t) = − 1

s(t)

ds(t)

dt
=

1

ρ(t)

dρ(t)

dt
, (5.4)

where ρ is the relative elongation of the lamella defined as

ρ(t) =
l(t)

l0
=

s0

s(t)
, (5.5)

with l the length of the lamella in the elongated direction (the y-direction) of initial value
l0, as shown in Figure 5.11b. Hence, combining the above expressions leads to the following
conservative transport equation close to the position of the lamella

∂c

∂t
= γx

∂c

∂x
+D

∂2c

∂x2
. (5.6)

where the first term on the right hand side represents the effect of compression and the
second term the effect of diffusion, both in the direction transverse to the elongation.

Dynamical equations with advection and nondimensionalization

In this framework, we can apply any source term that is defined by the reaction rate of
the considered kinetics (Bandopadhyay et al., 2017, 2018; Ranz, 1979). In what follows,
we use the approximation of Michaelis–Menten (Monod) kinetics already introduced in
Equation (1) of the paper (p.126). We couple the lamella description of mixing introduced
in Equation (5.6) in the Lagrangian framework moving with stretched solute lamellae with
this approximation of the reaction rate and obtain the dynamical equation

∂c

∂t
= γx

∂c

∂x
+D

∂2c

∂x2
− µc

α
1{c:c<α}(c)− µ1{c:c>α}(c). (5.7)

where x is the Lagrangian coordinate moving with the lamella (see Figure 5.11b) in the
direction of maximum compression. The first term on the right hand side represents the
effect of compression, the second term the effect of diffusion and the two last terms the
effect of reaction in the linear (c < α) or in the saturated (c ≥ α) kinetics regime. We
define the characteristic advection time τA = 1/γ and we obtain the new nondimensional
parameter Pe = τD/τA as the Péclet number. We keep the definitions of τD = s2

0/(2D),
τ` = α/µ and Da = τD/τ`. Nondimensionalizing Equation (5.7) by s0 for space and τ` for
time leads to the following dynamical equation

∂t∗c∗(x∗, t∗) =
Pe

Da
x∗∂x∗c∗(x∗, t∗)+

1

2 Da
∂x2∗c∗(x∗, t∗)−c∗(x∗, t∗)1a`∗(t∗)(x∗)−α∗1as∗(t∗)(x∗),

(5.8)

In these conditions, the new parametrization for using the pdepe function is given in
Appendix B.2.
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5.2.3 Numerical evidence of the impact of stretching on reaction kinetics

We carried out numerical simulations with a square pulse injection as initial condi-
tion for the nutrient concentration, as we used in the paper. We explored the space
of (Pe,Da,α) with values of Pe, Da and α taken logarithmically spaced in the ranges
[10−3,103], [10−3,103], and [10−2, 1√

2π
], respectively.

In Figure 5.12a, we show the evolution of the total mass M over the range of Pe
for fixed Da = 10 and α = 0.1. For values of Pe < 1, the evolution of the total mass
is controlled by diffusion and reaction processes, with all the implications discussed in
the paper. However, the increase of Pe number over 1 induces a strong elongation of
the lamella in the direction transverse to the concentration profile, that in turn induces
a fast decrease of the maximum concentration (see Figure C.2 in Appendix C for the
impact of stretching on the concentration profile in the direction of compression). This
impacts the reaction rate by reaching faster the more efficient linear kinetics regime as Pe
increases (see Figure 5.12a). In these simulations, increasing Pe values led to the increase
of numerical errors. Therefore, we show only the part of curves with sufficient confidence
in Figure 5.12. In Figure 5.12a, increasing Pe induces that the concentration profile is
dragged down by the exponential elongation of the lamella into the linear regime. In this
regime, the analytical solution for the evolution of the mass is known and does not depend
on the spatial distribution of the concentrations (see Equation (15) in the paper, p.130).
Therefore, we extended the curves with the missing points computed from Equation (15)
in the paper (p.130) after the outbreak of numerical issues.
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Figure 5.12: Evolution of total mass for a pulse under exponential stretching.
The curves are shown for fixed Da=10 and α=0.1. The range of Pe is represented according
to the colorscale. The curves are stopped when numerical issues are encountered, i.e. for
low masses in high Pe regimes. (a) Evolution of the total mass as a function of time for
different values of Pe. As Pe increases, the mass is consumed faster in the early times
but all regimes end up with the same slope, which corresponds to the linear kinetics.
The curves stopped for numerical issues are completed with the expected linear kinetics.
(b) Reaction rate as a function of the total mass. For increasing Pe, the stretching of
the lamella brings the kinetics faster in the linear regime, which is more efficient for the
reaction.

The effective reaction rates for the range of values of Pe are shown in Figure 5.12b.
For values of Pe < 1, the advective mixing has less impact than diffusive mixing and
the reaction rate has the same behavior as observed in Figure 3c in the paper for the
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diffusive mixing (p.134). In accordance with the variation of the total mass shown in
Figure 5.12a, the effective reaction rate reaches the linear kinetics faster with a higher
value of Pe number. In the extreme case of Pe = 103, the exponential deformation of the
profile makes the transition to the linear regime almost instantaneous.

5.2.4 Mixing-induced enhancement of reaction under stretching

We now compute the mixing-induced relative enhancement η, as defined in Equation
A.2 in the paper (p.159) for a Gaussian pulse subjected to exponential stretching, for which
we have analytical solutions obtained for diffusive mixing (see Equations (C.17) and (C.25)
in the paper, p.165-166). We show the values of η as a function of α in Figure 5.13, where
we superimpose the analytical solutions for mixing-induced relative enhancement in the
asymptotic limits of reaction- and diffusion-dominated regimes taken from Figure A.12
in the paper (p.160). In the limit of Pe < 1, the mixing-induced relative enhancement
follows the same tendancy as in the regimes without stretching. In the limit of high Pe,
however, the mixing-induced relative enhancement is maintained at values close to 1 even
for increasing α.

This behavior of reaching values of mixing-induced relative efficiency of the reaction η
higher than the asymptotic diffusive limit was not observed in the other studies presented
in this chapter. From such observations, one can conclude that applying an exponential
stretching is a powerful reaction kinetics enhancer that can outreach the enhancement of
reactivity relying on diffusion-driven processes.

Pe

Figure 5.13: Mixing-induced relative enhancement in a Gaussian under expo-
nential stretching. The whole range of Pe is colorized with the color mapping. Mixing-
induced relative enhancement is shown as a function of α for fixed Pe values. Analytical
solutions for mixing-induced relative enhancement in the asymptotic limits of reaction and
diffusion are shown in plain red and black lines, respectively.
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5.2.5 Application to reaction kinetics in porous media

In natural porous media, the arrangement of grains impacts the velocity fields and leads
to a chaotic mixing, characterized by the exponential elongation of lamellae (Turuban et
al., 2019). In order to know if our results on the impact of mixing on the reaction kinetics
are relevant for measured kinetics in porous media, we reintroduce some dimensions in our
model and compare with experimental results on the exponential stretching of a lamella.
Heyman et al. (2019) have shown that the elongation of a lamella in an arrangement of
grains is defined by

ρ = exp
(
λe
x

d

)
, (5.9)

where x is the spatial dimension in the direction of the flow, d is the average diameter of
the grains and λe is the Lyapunov exponent. The authors have measured experimentally
the value of λe ≈ 0.21. We define an average velocity v, so that, x = vt. Then, comparing
Equation (5.9) with the definition of ρ = eγt, we obtain the relation

γ = λe
v

d
. (5.10)

The definition of the Batchelor scale sB given by Villermaux (2018) reads

sB =

√
D

γ
, (5.11)

with D the diffusion coefficient of the solute transported by the flow. Combining Equations
(5.10) and (5.11), we obtain

sB
d

=

√
λ−1
e Pe−1

∗ , (5.12)

with Pe∗ a typical Péclet number defined by

Pe∗ =
vd

D
. (5.13)

Using Equation (5.12) and searching the domain where sB/d < 1, which defines incomplete
mixing, Heyman et al. (2019) found that it arises for Pe∗ > 5. In this domain, the
Batchelor scale is smaller that the average grain or pore size, which leads to persistent
incomplete mixing.

To know if this behavior is significant for our application, we take characteristic num-
bers for transport experiments, such as D ∼ 10−9 m.s−2, v ∼ 10−4 m.s−1, and d ∼ 10−3

m. Using these typical values and λe ≈ 0.21 found by Heyman et al. (2019), we obtain
γ = 2.1 × 10−2 s−1. Hence, if a lamella has an initial width s0 = 10−3 m, and using our
definition of the Péclet number, we obtain

Pe =
τD
τA

= γ
s2

0

2D
≈ 10. (5.14)

This shows that the incomplete mixing will arise in the typical experimentation of trans-
port of a pulse of substrate in a porous medium (see Figure 5.12) and that the mixing-
induced reaction enhancement must be taken into account in the case of a non-linear
reaction kinetics. Indeed, as shown in Figure 5.13, the mixing-induced relative enhance-
ment of the reaction due to advective mixing is significant for Pe > 1.
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5.3 Conclusion

In this chapter, we have used numerical simulations and analytical techniques to study
the impact of mixing and stretching on reaction kinetics. We have focused on the well-
known Michaelis–Menten kinetics, relevant for the study of bacterial populations following
a Monod law. This monomolecular kinetics is of particular interest since it is non-linear.
Therefore, the concentration profiles subjected to the impact of mixing will change the
local reaction rate. We developed a framework with metrics to describe the key parameters
in the case of a batch experiment, of a discrete injection subjected to mixing, and of a
classical Gaussian profile injection.

The key dynamical quantities were found to be the position of the boundary ξ between
the saturated regime and the linear kinetics regime, and the diffusive flux f across the
boundary ξ. From there, we developed analytical solutions for asymptotic limits of reaction
and diffusion dominating scenarios. We also proposed a semi-analytical expression for
the evolution of masses, based on the assumption that reaction and diffusion processes
could be considered in parallel, in a weakly-coupled model. We explored the space of
Damköhler number Da, characterizing the ratio of characteristic times of reaction and
diffusion processes, as well as the space of α, which defines the relative importance of
saturated and linear kinetics regime domains.

In order to quantify the behavior of reaction kinetics in this two dimensional parameter
space, we introduced the mixing-induced relative enhancement of the reaction kinetics η.
Depending on the values taken by η, one get the information of which of the batch or
of the diffusive pulse is the more efficient for reaction kinetics. We concluded that the
mixing-induced relative enhancement was increased in the limit of low Da, where diffusive
phenomena were able to spread mass from the saturated into the linear kinetics regime.
These results are submitted for publication in the journal Advances in Water Resources.

We then introduced the lamellar model framework to add the effect of advective stretch-
ing to the mixing processes, thus adding a new physical ingredient to the description. After
validating our numerical framework for the conservative case, we used our numerical model
to investigate the effect of stretching on effective kinetics. We showed that an increase of
mixing through exponential stretching prevailed on other characteristics by increasing the
mixing-induced relative enhancement over the asymptotic diffusive limit.
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During this thesis, I have worked on multiple projects to go beyond the ongoing experi-
ments. Many ideas have been tried out using the simulation software Comsol Multiphysics.
We pushed on the numerical simulations by adding an aspect of bacterial growth, forcing
the use of coupled PDEs. In this chapter, we present the main prospects that can be
considered to look deeper into the coupling between reactive fronts, nutrient gradients,
velocity gradients, biological activity and shear stress impact.

6.1 Nutrient fronts control: Gallionella bacteria and double
gradients

Bochet et al. (2018) have observed the formation of biofilms in boreholes, at the specific
locations of fractures. The main composition of these biofilms was identified to be iron-
oxydizing bacteria (FeOB) belonging to the Gallionellaceae family such as Gallionella
ferruginea and Ferriphaselus amnicola. These bacteria grow biofilms on fractures locations
where oxygen-rich and iron-rich waters meet and produce reactive fronts with favorable
concentrations of both nutrients. We have designed a microfluidic device to produce a
steady double gradient in two nutrients, one being a dissolved species and the other coming
from the diffusion of a gas. This device is presented in Figure 6.1. Injecting a dissolved
iron-rich solution in one of the blue downward arrow and a dissolved iron-poor solution
in the other, a steady co-flow is formed in the microfluidic channel. In the same manner,
injecting gas with rich and poor oxygen concentrations in each of the red downward arrows
allows establishing an oxygen gradient. Both gas channels act like fixed concentration
boundaries and a steady oxygen gradient settles in the PDMS between those channels, in
a direction transverse to the liquid flow direction in the underlaying channel. By diffusion
through a thin PDMS membrane, this steady concentration gradient is imposed from
above in the bulk fluid. The small height dimension of the microfluidic channels ensures
that the gradient is applied up to the bottom of the channel in short distances, even for
relatively high flow rates (1000 to 4000 µL.h−1 in our previous studies). As in the previous
experiments, the same injection protocol can be applied for bacteria, injected from the
green downward arrow.

We used this microfluidic device to try out the capability of the design to control
dynamic oxygen gradients. We injected the oxygen-sensitive dye ruthenium tris(2,2’-
dipyridyl) dichloride hexahydrate (RTDP), the fluorescence of which is quenched at high
oxygen concentrations. We injected air in the left gas channel and pure nitrogen in the
left gas channel. At some point during the experiment, gas injections were suddenly in-
verted to measure the inversion of fluorescence intensity resulting from the reaction of
the RTDP in the fluid flow channel. Figure 6.2a shows the fluorescence measurements,
given in arbitrary units of intensity (a.u.). We built a model of the device in the Comsol
Multiphysics simulation software, taking into account the slight misalignment of the ex-
perimental channels: the right gas channel is 100 µm away, transversely from the central
flow channel, whereas the left gas channel border is superimposed with the fluid channel.
The result from the simulation is shown in Figure 6.2b at the same time. The shape of
the experimental profiles is thus well captured. The absolute fit values require a proper
calibration of RTDP fluorescence quenching in our microfluidic devices. In Figure 6.2c,
we show the same data presented as a topography over the (y, t) space, illustrating that
the concentration inversion is effective in less than 20 seconds.
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Figure 6.1: Oxygen-Iron double gradient design. Injections of various concentrations
in the bulk liquid and gas channels allows us to establish a steady double gradient of
dissolved nutrients. Both layers of PDMS are aligned with alignment glyphs composed of
multiple circles drawn on each PDMS layer.
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Figure 6.2: Oxygen gradient experiment with RTDP quenching. (a) Experimental
measurement of RTDP fluorescence during oxygen gradient inversion. (b) Numerical
simulation of the oxygen inversion in the same conditions. (c) Same as (b) represented as
a topography over the (y, t) space, illustrating the quick inversion of oxygen concentration
in the bulk fluid channel.
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From these results, various prospects are planned:

• designing an experimental procedure to calibrate the RTDP’s fluorescence quenching
and get measurements of absolute values of oxygen concentration in the microfluidic
device during experiments,

• growing Gallionella ferruginea in micro-aerobic conditions in microfluidic cells using
our design, as a proof of concept,

• studying the impact of nutrient gradients and dynamic changes in nutrient concen-
trations on the population growth and biofilm formation of iron-oxydizing bacteria
obtained on a field site.

6.2 Velocity and shear stress heterogeneities: porous media

In Chapter 4, we described in details the influence of flow-induced shear stress on early
stages of micro-colonies development. We have seen that the shear felt by the bacteria can
generate complex division, attachment on surfaces and exploration behaviors. However in
their natural environment, bacteria deal with much more complex velocity fields, which
are heterogeneous in space and intermittent in time. For instance, porous media, with
their highly heterogeneous velocity fields and therefore heterogeneous shear stress fields,
produce flow channelization and will also compel bacterial spreading in preferential paths
in the early stages of bacterial exploration of the environment and attachment to surfaces.
In such heterogeneous media, the coupling between transport and reactivity is strong, as
we have shown with our numerical studies in Chapter 5. The initial velocity heterogeneities
produce an heterogeneous transport of nutrients, limiting their availability for bacterial
populations. When bacteria have attached to surfaces, flow-induced shear forces impact
the bacterial development in the early stages of the formation of bioflims. Once biofilms
are formed, their presence can have a retroactive impact on the flow and on the velocity
field heterogeneities (Bottero et al., 2013). Therefore, it is crucial to understand how our
results on the impact of shear on the early stages of bacterial colonies development can
influence the later development of mature communities and large biofilms.

It is straightforward to design 2D porous media in microfluidics with controlled geo-
metrical properties such as grains size distribution or pores aspect ratio, from a minearl
model of the geometry. Therefore, velocity and shear stress fields can be known a priori
and modeled with simulation softwares. The spreading and colonization patterns of the
early stages of bacterial growth in the microfluidic channel could be observed and de-
scribed in such geometries. One can assume that the behaviors that we have observed in
this thesis will lead to fast spreading on surfaces in low shear areas and fast exploration
of the porous network in high shear areas, enabling colonization of lower shear places
downstream of the main flow channels. We illustrate these ideas in Figure 6.3, where we
show a Comsol Multiphysics simulation of a granular porous medium that can directly be
converted into a microfluidic device with soft lithography. In this velocity field resulting
from fluid flow between grains of 3 different sizes, channels of high velocities surround
areas of low velocities between grains.
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Figure 6.3: Velocity heterogeneities in a 2D porous medium The velocity field is
computed with the Comsol Multiphysics simulation software.

From these ideas, the next steps that can be planned are:

• micro-fabricating new microfluidic devices with 2D porous media,

• checking how the behaviors observed in this thesis will affect bacterial spreading and
colonization patterns in a highly heterogeneous velocity field,

• adding any kind of gas gradient on top of the device with our method of double
PDMS layers separated with a thin membrane to add nutrient gradients in the
velocity field.
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6.3 Stretching of a reactive front: saddle point experimental
setup

One feature of porous media flow which is of particular interest, as shown in the
work of Heyman et al. (2019) and Turuban et al. (2019), is the exponential stretching
due to fluid flow in a 3D porous medium. This particular deformation, which cannot be
observed with a 2D porous medium similar to the one shown in the previous section, can
be obtained using another hydrodynamical phenomenon: the stagnation, or saddle point.
This particular configuration occurs in front of and behind grains, where the flow field
diffracts or merges and a point of zero velocity occurs. From this position, the stretching
is exponential in all directions taken by the spreading flow.

We designed a microfluidic device to produce a saddle point and we illustrate this work
in Figure 6.4. The whole design is shown in Figure 6.4a, with two opposite inlets for fluid
flow (blue downward arrows) and two opposite outlets (blue upward arrows). An inlet for
bacterial injection is provided (downward green arrow), with a thin channel that should
not modify the velocity field once it is used up and closed. The diverging shapes after
each inlet indicate filters composed of three rows of micro-pillars, useful to avoid PDMS
fragments or other filth to get captured by the saddle point and wreck the experiment. The
long and thin channels plugged at each branch of the saddle point ensure enough hydraulic
resistance, so that the flow comes perfectly aligned with the theoretical streamlines, rather
than being diverted by any pressure instability due to tubing connexions, twisted inlet or
outlet holes and so on. The simulated field of velocity magnitude in this hyperbolic
channel, obtained with Comsol Multiphysics, is shown in Figure 6.4b and the associated
streamlines and vectorial velocity field in Figure 6.4c. They illustrate the stagnation in the
center of the design, where velocity is zero and from which all streamlines are diverging.
Looking at the vectorial velocity field, one gets the feeling of the exponential increase of
velocities from the stagnation point, which is responsible for the exponential stretching
along the y direction.

We used this simulated velocity field to simulate solute transport. Figure 6.4d shows
the cut-lines over which concentrations will be plotted. As we inject a normalized con-
centration of a chemical species with glucose-like diffusion properties from the left inlet
and zero concentration from the right inlet, we see the formation of the nutrient front
in the center of the device in Figure 6.4e. Following the streamlines, the concentration
diverges between both outlets. Using a small inflow velocity, diffusion has enough time
to occur and to start mixing the concentrations along the y-axis. In Figure 6.4f, we show
the concentration profiles along each cut-line of Figure 6.4d. The concentration gradient
decreases with increasing position in the y direction. If inflow velocity were increased, the
exponential stretching would oppose nutrient diffusion and reduce its lateral expansion,
leading to sharper gradients along the y-axis.

We have produced and tried this experimental setup using the fluorescent dye fluores-
cein and we show the results in Figure 6.4g and h. Fluorescein was injected from the left
inlet at high velocity and a cross section in the x-direction is extracted at the center of
the device. The resulting profile is a sharp and stationary intensity gradient, as expected
with the simulations.
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Figure 6.4: Saddle point design and experimental exponential stretching. (a)
Microfluidic design with 2 opposite inlets, 2 opposite outlets and 1 deported bacterial
inlet. Filters are added at each inlet (see inset) and long thin channels prevent pressure
instabilities. (b) Simulated field of velocity magnitude within the design. (c) Streamlines
and vectorial velocity field corresponding to the same simulation. (d) Cut-lines for plotting
concentration profiles, from the center to the far values along the y-axis. (e) Concentration
field with normalized concentration injected from the left inlet. (f) Concentration profiles
along the cut-lines. (g) Experimental observation of fluorescein concentration in the saddle
point design with the same conditions as mentioned for every other plot. (h) Sharp and
stationary fluorescence intensity (in gray value from 0 to 65535) along the yellow profile
in the experimental saddle point.

From these results, the next steps can be:

• running particle tracking experiments to get experimental validation of the velocity
field,

• using the device to study the bacterial behavior in sharp nutrient gradients,

• adding any kind of gas gradient on top of the device with our method of double
PDMS layers separated with a thin membrane to add gas gradients in the velocity
field.
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6.4 One step forward in reaction kinetics modeling: bacte-
rial growth and coupled PDEs

In Chapter 5, we used numerical simulation and analytical developments to obtain
an in-depth description of Michaelis–Menten-like kinetics and its enhancement by mixing.
We started with the dispersion of a Gaussian profile and then added the exponential
stretching, which characterizes chemical species transport in porous media. The natural
next step is to couple the constitution equation of chemical transport to the evolution
of the bacterial population, whose concentration impacts the reaction rate. This step is
theoretically easy to make with our model parametrization. Dealing with a single nutrient
C of concentration c (but it could be several nutrients) and Monod-type growth of bacteria
with concentration b, we need to solve the following coupled system of equations

∂c

∂t
= γcx

∂c

∂x
+Dc

∂2c

∂x2
− µcb

c

c+ α
, (6.1a)

∂b

∂t
= γbx

∂b

∂x
+Db

∂2b

∂x2
+ µmaxb

c

c+ α
. (6.1b)

with γi the stretching rate applied to species i, Di the diffusion coefficient of species i,
µc the consumption rate of the nutrient C by the bacterial population B, µmax and α the
Monod parameters, namely the maximum growth rate of bacterial population B and the
half-saturation constant for B relative to the nutrient C, respectively.

If bacteria are blown away by the flow in the exponential stretching, then γb = γc = γ.
Else, if bacteria are attached to the surface, γb = Db ∼ 0. This system can be simplified
to a sharp transition of the kinetics with the method described in Chapter 5 by Equation
?? to give

∂c

∂t
= γcx

∂c

∂x
+Dc

∂2c

∂x2
− µcbc

α
1{c:c<α}(c)− µcb1{c:c>α}(c), (6.2a)

∂b

∂t
= γbx

∂b

∂x
+Db

∂2b

∂x2
+
µmaxbc

α
1{c:c<α}(c) + µmaxb1{c:c>α}(c), (6.2b)

In these conditions, more work has to be done on the nondimensionalization of the
problem, since we can’t define a characteristic reaction time τ` with b varying in time. We
define two new characteristic times: τb = 1/µmax the characteristic maximal growth time
scale for bacteria and τc = c0/(µcb0) the characteristic time scale for the consumption of
the initial concentration by initial bacteria. The expressions are then nondimensionalized
using the following parametrization: c∗ = c/c0, t∗ = t/τc, b∗ = b/b0; the characteristic
diffusion times τD,c = s2

0/(2Dc) and τD,b = s2
0/(2Db); the characteristic advection times

τA,c = 1/γc and τA,b = 1/γb. The Damköhler numbers are defined as Dac = τD,c/τc and
Dab = τD,b/τb and the Péclet numbers are defined as Pec = τD,c/τA,c and Peb = τD,b/τA,b.
We also introduce a new nondimensional parameter, that we called the Growth number
Gr and define it as the ratio of the consumption time scale of initial nutrients versus the
bacterial max growth time scale, Gr = τc/τb. High Gr values mean that bacterial growth
is going to be very fast within a given nutrient availability. Low Gr values mean that
all nutrients will be consumed before bacteria have a chance to grow significantly. The
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nondimensional expressions become

∂c∗
∂t∗

=
Pec
Dac

x∗
∂c∗
∂x∗

+
1

2 Dac

∂2c∗
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− b∗
α∗
1{c∗:c∗<α∗}(c∗)− b∗1{c∗:c∗>α∗}(c∗), (6.3a)
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b∗c∗
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1{c∗:c∗<α∗}(c∗) + Gr b∗1{c∗:c∗>α∗}(c∗).

(6.3b)

This coupled system of equation can be solved using the same protocol with Matlab pdepe
method. To stick with Equation (B.1) formulation, the problem has to be parametrized
as follow


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(6.4)

From these results, one could:

• check the new parametrization by reproducing results of Chapter 5,

• explore the (α∗,Pec,Peb,Dac,Dab,Gr) parameter space to find domains where the
bacterial growth dynamics will affect the conclusions which we obtained considering
only advection and dispersion. We assume that non-trivial effects will occur in the
high and intermediate Gr values limit,

• approach more representative modeling of the biogeochemical kinetics by adding a
necessary second substrate, such that we obtain an electron donor-acceptor couple,
with various diffusion and Monod half-saturation properties. This scenario has been
described in Chapter 5 from the point of view of the stretching of conservative
components. Adding this to the parametrization will bring up new nondimensional
parameters αi, Pei, Dai and Gri for each new component,

• design an experimental measurements in a column containing grains, where an in-
jection of nutrient would be transported in a medium loaded with bacteria. Using
bacterial activity markers, such as Fluorescein Diacetate (FDA) (see Bochet (2017)),
we could verify our results on the impact of mixing on a reaction kinetics with the
shape of a Monod growth.
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Chapter 7

General conclusion

This work originates in several observations. At first, transport processes in the sub-
surface are responsible for flow heterogeneities at a large range of spatial scales. These flow
heterogeneities at the large scale bring spatially segregated chemical species into contact.
At the pore scale, flow heterogeneities induce mixing and change the efficiency of chemical
reaction but also enhance the development of specific bacterial communities. The classical
models applied to bacterial growth are usually based on the assumption that the envi-
ronmental conditions are well mixed in terms of nutrient availability. It is clear that the
natural environment is much more complex than this, and flow heterogeneities produce
velocity gradients and nutrient concentration gradients. These phenomena are observed
on the field in boreholes and have been linked to fractures that drive the groundwaters
mixing processes and therefore the development of specific bacterial biofilms (Bochet et
al., 2019). From there, in-depth understanding of the underlying processes requires stud-
ies at the pore scale, where flow heterogeneities and mixing processes actually occur and
where microbial communities must find their way into mature biofilm developments. In
this work, we have addressed these questions in two ways. We used microfluidic experi-
ments to understand the impact of the flow on the early stages of bacterial development
on surfaces, and we used numerical simulations to explore the effect of mixing on reactions
kinetics that are representative of bacterial growth dynamics.

We developed a framework for designing the microfluidic devices, where each microflu-
idic cell was modeled in the Comsol Multiphysics simulation software. Thanks to these
simulations, we tested various geometries and fluid flow properties, in order to ensure good
control on the liquid velocity field, and, have a good control on the velocity gradients and
on the resulting shear forces applied to the bacteria attached to the surfaces. We have also
used these simulations to estimate the consumption of nutrients by the bacteria growing
on the surfaces. The simulations demonstrate that Escherichia coli bacteria growing in
our microfluidic devices with glucose and oxygen as electron donors and acceptors are
consuming the available oxygen far quicker than the glucose, which limits their growth in
long time periods. In order to ensure a sufficient oxygen renewal for low flow rate exper-
iments (and thus low oxygen renewal by advection), we designed a microfluidic cell with
two layers of PDMS, allowing a strong diffusive flux of oxygen from the top of the device
and thus a sufficient oxygen renewal for the experiments.

After the long phase of building up the microfluidic lab, three main series of experi-
ments were run during this thesis. The first series was focused on the evaluation of the
growth dynamics of E coli bacteria attached to a PDMS surface. The goal was to check if
bacteria growing on a surface and under flow exhibited the same Monod growth dynamics
as bacterial liquid cultures. We fitted Monod parameters to the experiments and saw
that the quality of the fits was decreasing with increasing flow rate. We tried to explain
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this result with a theory based on bacterial metabolism and the variation of its nutrient
harvesting capacity under flow, but we concluded that this aspect could not be sufficient
to explain the decrease in growth rate observed at higher flow rates.

A second series of experiments was designed to study specifically the effect of shear
stress on bacterial development on surfaces. The first immediate observation was that with
increasing shear, the number of bacteria that were detached from their initial colony upon
division is increasing. Also, within those detached bacteria, the number of cells that were
able to reattach downstream was decreasing with increasing shear. Overall, accounting
for this process was not sufficient to explain the global decrease in growth rate observed
with increasing shear. Therefore, we followed the division process of individual bacteria
in order to evaluate their growth dynamics under flow. Our results show that the division
time of active bacteria was the same, whatever the shear. However, some bacteria delayed
their division process (what we called delayed dividers versus the continuous dividers),
and more bacteria were not dividing with increasing shear. The study of this non-dividers
population revealed that they are strongly attached by both poles, thus preventing the
initiation of division. On the contrary, the dividers were weakly attached and their newest
pole is always more motile than the older one, allowing for an asymmetrical division
process while ensuring that they stay attached to the surface.

A third series of experiments was performed at higher frame rate to be able to follow
detached bacteria and study their trajectories. The results have shown that the coloniza-
tion patterns under flow can be explained by the dynamics at the single-cell. In the lower
shears, bacteria travel small distances in any direction and at very low velocities, thus
suggesting that they were never really detached but rather moving on surfaces, slowed
down by the dragging of their extracellular appendages. This behavior, combined with
the negligible ratio of bacteria leaving the surface due to flow detachment, leads to fast
covering of the surface by merging many small colonies. Conversely at the higher shear,
detached bacteria are wiped away by the flow, always in the flow direction, and at ve-
locities much higher than their swimming velocity and therefore never had a chance to
reattach downstream in the same flow conditions. In the intermediate range of shear, a
specific colonization pattern emerged, due to the fact that detached bacteria were always
forced in the direction of the flow but were able to reattach for most of them, tens of
micrometers away from their original position. This leads to the creation of small colonies
aligned along the flow direction, downstream of an initial colony. When they eventually
merge, these colonies produce elongated patterns in the direction of the flow.

The second aspect of transport and mixing, relative to the impact of chemical gradients,
has been studied numerically and with analytical developments. The emphasis was placed
on the study of reaction enhancement by mixing in the case of a Michaelis–Menten kinetics,
which is of interest because of its relevance for biogeochemical reactions but also because of
its non-linearity. We compared the reaction rates between a batch kinetics and a dispersive
profile. We have shown that when diffusion time scales are smaller than reaction time
scales (low Damköhler numbers) the mixing enhancement of the reaction is maximum,
since diffusion processes can actively distribute reactant masses in domains with linear
kinetics, that are more efficient than the saturated reaction rate corresponding to high
concentration conditions. Analytical solutions were derived for the asymptotic limits of
reaction and diffusion dominated regimes. A semi-analytical model was proposed, which
is based on the motion of the boundary between the saturated and the linear regime and
describes well the reaction kinetics in each asymptotic regime, as well as in the case of
coupled kinetics.

In a second phase of the numerical study, we added advective mixing processes and
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derived analytical solutions for conservative transport of typical scenarios under exponen-
tial stretching, which is characteristic of mixing processes in a porous media. With new
numerical simulations investigating the impact of the Péclet number (advective processes),
we have shown that mixing a reactive front by exponential stretching led to an increase
of reactive efficiency by a factor that cannot be reached with diffusive processes.

The results obtained during this thesis are encouraging and give many ideas for future
studies on the coupling between mixing processes of reactive fronts and bacterial dynamics.
During this work, we investigated several solutions for further developments, such as a
microfluidic designs to impose chemical gradient conditions for future experiments on the
iron-oxidizing bacteria growing in the specific mixing conditions described by previous
works on field sites (Bochet et al., 2019). These gradients can take many forms, thanks
to the flexibility of microfluidics, and we also conceived and tested a device creating the
exponential stretching of a mixing front. These aspects can be studied in parallel with the
numerical framework that we introduced in this thesis and we already suggested a new
parametrization that would enable the study of the coupled effects of bacterial dynamics
with advective and diffusive mixing processes.
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(2017). “Impact of saturation on dispersion and mixing in porous media: Photobleach-
ing pulse injection experiments and shear-enhanced mixing model”. In: Water Re-
sources Research 53.2, pp. 1457–1472.

Jin, Meihua, Feng, Xinjian, Xi, Jinming, Zhai, Jin, Cho, Kilwon, Feng, Lin, and Jiang, Lei
(2005). “Super-hydrophobic PDMS surface with ultra-low adhesive force”. In: Macro-
molecular rapid communications 26.22, pp. 1805–1809.



Jong, WR, Kuo, TH, Ho, SW, Chiu, HH, and Peng, SH (2007). “Flows in rectangular
microchannels driven by capillary force and gravity”. In: International communications
in heat and mass transfer 34.2, pp. 186–196.

Kannan, Anerudh, Yang, Zhenbin, Kim, Minyoung Kevin, Stone, Howard A, and Sirya-
porn, Albert (2018). “Dynamic switching enables efficient bacterial colonization in
flow”. In: Proceedings of the National Academy of Sciences 115.21, pp. 5438–5443.

Kaya, Tolga and Koser, Hur (2012). “Direct upstream motility in Escherichia coli”. In:
Biophysical journal 102.7, pp. 1514–1523.

Kestin, Joseph, Sokolov, Mordechai, and Wakeham, William A (1978). “Viscosity of liquid
water in the range -8 C to 150 C”. In: Journal of Physical and Chemical Reference
Data 7.3, pp. 941–948.

Kim, Hyun Jung, Huh, Dongeun, Hamilton, Geraldine, and Ingber, Donald E (2012a).
“Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-
like motions and flow”. In: Lab on a Chip 12.12, pp. 2165–2174.

Kim, Junghyun, Park, Hee-Deung, and Chung, Seok (2012b). “Microfluidic approaches to
bacterial biofilm formation”. In: Molecules 17.8, pp. 9818–9834.

Kirby, Brian J (2010). Micro-and nanoscale fluid mechanics: transport in microfluidic
devices. Cambridge university press.

Knutson, Chad, Valocchi, Albert, and Werth, Charles (2007). “Comparison of continuum
and pore-scale models of nutrient biodegradation under transverse mixing conditions”.
In: Advances in water resources 30.6-7, pp. 1421–1431.

Kou, Songzi, Pan, Leiting, Noort, Danny van, Meng, Guixian, Wu, Xian, Sun, Haiying,
Xu, Jingjun, and Lee, Imshik (2011). “A multishear microfluidic device for quantitative
analysis of calcium dynamics in osteoblasts”. In: Biochemical and biophysical research
communications 408.2, pp. 350–355.

Kreft, J-U and Wimpenny, JW (2001). “Effect of EPS on biofilm structure and function
as revealed by an individual-based model of biofilm growth”. In: Water Science and
Technology 43.6, pp. 135–135.

Kreft, Jan-Ulrich, Picioreanu, Cristian, Wimpenny, Julian WT, and Loosdrecht, Mark
CM van (2001). “Individual-based modelling of biofilms”. In: Microbiology 147.11,
pp. 2897–2912.

Langwaldt, JH and Puhakka, JA (2000). “On-site biological remediation of contaminated
groundwater: a review”. In: Environmental pollution 107.2, pp. 187–197.

Lauga, Eric, DiLuzio, Willow R, Whitesides, George M, and Stone, Howard A (2006).
“Swimming in circles: motion of bacteria near solid boundaries”. In: Biophysical journal
90.2, pp. 400–412.

Le Borgne, T, Dentz, M, and Villermaux, E (2015). “The lamellar description of mixing
in porous media”. In: Journal of Fluid Mechanics 770, pp. 458–498.

Le Borgne, Tanguy, Dentz, Marco, Bolster, Diogo, Carrera, Jesus, De Dreuzy, Jean-
Raynald, and Davy, Philippe (2010). “Non-Fickian mixing: Temporal evolution of the
scalar dissipation rate in heterogeneous porous media”. In: Advances in Water Re-
sources 33.12, pp. 1468–1475.

Le Borgne, Tanguy, Ginn, Timothy R, and Dentz, Marco (2014). “Impact of fluid defor-
mation on mixing-induced chemical reactions in heterogeneous flows”. In: Geophysical
Research Letters 41.22, pp. 7898–7906.

Leal, L Gary (2007). Advanced transport phenomena: fluid mechanics and convective trans-
port processes. Vol. 7. Cambridge University Press.



Lecuyer, Sigolene, Rusconi, Roberto, Shen, Yi, Forsyth, Alison, Vlamakis, Hera, Kolter,
Roberto, and Stone, Howard A (2011). “Shear stress increases the residence time of
adhesion of Pseudomonas aeruginosa”. In: Biophysical journal 100.2, pp. 341–350.

Lendenmann, Urs, Snozzi, Mario, and Egli, Thomas (1999). “Growth kinetics of Es-
cherichia coli with galactose and several other sugars in carbon-limited chemostat
culture”. In: Canadian journal of microbiology 46.1, pp. 72–80.

Lide, David R (2004). CRC handbook of chemistry and physics. Vol. 85. CRC press.
Liu, Jintao, Martinez-Corral, Rosa, Prindle, Arthur, Dong-yeon, D Lee, Larkin, Joseph,
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Thomen, Philippe, Robert, Jérôme, Monmeyran, Amaury, Bitbol, Anne-Florence, Douarche,
Carine, and Henry, Nelly (2017). “Bacterial biofilm under flow: First a physical struggle
to stay, then a matter of breathing”. In: PloS one 12.4, e0175197.

Thullner, Martin and Regnier, Pierre (2019). “Microbial Controls on the Biogeochemi-
cal Dynamics in the Subsurface”. In: Reviews in Mineralogy and Geochemistry 85.1,
pp. 265–302.

Thullner, Martin, Regnier, Pierre, and Van Cappellen, Philippe (2007). “Modeling micro-
bially induced carbon degradation in redox-stratified subsurface environments: con-
cepts and open questions”. In: Geomicrobiology Journal 24.3-4, pp. 139–155.

Turuban, R., Lester, D.R., Heyman, J., Le Borgne, T., and Méheust, Y. (2019). “Chaotic
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Abstract

In the last decades, micromodel experiments have been used increasingly to investigate fluid flow, mass transfer, and
biogeochemical processes in subsurface environments, with an important surge in the last ten years coinciding with the
development of microfluidic techniques. We review here recent advances in the pore scale visualization and quantification,
as well as upscaling, of transport, mixing and reaction processes through micromodel experiments. We first discuss how
the micromodel’s geometry may impact the interpretration of (reactive) solute mixing and transport experiments. We
then describe various types of designs used for micromodels, in particular those based on microfluidic techniques; the
majority of which are (quasi-)two-dimensional. We proceed with discussing the types of pore scale measurements that
can be achieved in such experiments, including velocity and concentration fields, Lagrangian particle trajectories, local
reaction rates, local activity of microbiological processes, and the dynamics of fluid-mineral and fluid-fluid interfaces. We
discuss how the experimental results can be scaled to dimensions characteristic of the natural medium, using appropriate
non-dimensional numbers such as the Reynolds number, capillary number, Péclet number, or Damköhler number. We
then provide an account of recent micromodel experiments which have resulted in advances in the understanding of solute
dispersion and mixing, and of its relation to reactive and microbial processes, in subsurface permeable media.We finally
discuss the prospective future evolution of micromodels towards microfluidic setups made out of geological materials,
and towards fully three-dimensional imaging systems.

Keywords:

1. Introduction

Solute dispersion, mixing and reactive transport are
ubiquitous processes in subsurface environments, playing
a key role in biogeochemical cycles, contaminant transport
and degradation, soil remediation operations, geological
CO2 storage, geothermal systems or enhanced oil recovery
(Dentz et al., 2011; Li, 2019; Rolle and Le Borgne, 2019).

The large scale phenomena and subsurface applications
are controlled by pore scale processes, where flow, trans-
port and reaction are non-linearly coupled(Gramling et al.,
2002; de Anna et al., 2014b), which has motivated the de-
velopment of micromodels allowing quantitative pore scale
measurements.

Micromodels experiments have been increasingly used
for this aim in the last decade In this review, we focus pri-
marily on synthetic porous micromodels allowing optical
measurements of fluid phase distributions, local velocities,

∗Corresponding author
Email address: yves.meheust@univ-rennes1.fr (Yves

Méheust)

concentrations, reaction rates, and/or biological activity
at the pore scale. The latter requirement implies that the
geometry be two-dimensional (2D). Flow cells filled with
a granular medium (either synthetic or natural, e. g., sand
(Levy and Berkowitz, 2003)), thus do not fall into this cat-
egory. As prospects we shall however discuss recent devel-
opments allowing for quantitative pore scale measurements
in three-dimensional (3D) micromodels.

The ancestor of all micromodels is the Hele-Shaw cell,
which is a cuboid flow cell with one dimension that is
much smaller than the other two (Hele-Shaw, 1898). Hele-
Shaw cells (Saffman and Taylor, 1958; Saffman, 1986; Lev-
aché and Bartolo, 2014), or similar cells where the two
walls are at a small angle from each other (Al-Housseiny
et al., 2012) have been used as an analog model for two-
dimensional porous media, in particular to study fluid-
fluid interface instabilities . In order to account for the
geometrical complexity of porous media, centimetric mi-
cromodels of porous media have been designed by first in-
corporating obstacles inside a flow cell resembling a Hele-
Shaw, e. g., in the form of a square network of channels
(Lenormand and Zarcone, 1985) or of a mono-layer of glass
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beads (Måløy et al., 1985; Måløy et al., 1988). Such mi-
cromodels allow precisely measuring the two-dimensional
spatial distribution of immiscible fluid phases at and be-
low (Moura et al., 2017) the pore scale. More recently, the
development of microfluidics has made lithography tech-
niques widely available, which allow reproducing synthetic
porous media from any 2D geometry (Ferrari et al., 2015),
with micromodel size ranging from less than 1 mm to a
few dm.

In this paper we review studies which have used 2D mi-
cromodel flow experiments to address transport and mix-
ing of solutes in porous media, and their link to chemical
reactions and biological activity. In section 2 we review the
various micromodel designs and related fabrication meth-
ods, also providing a discussion of how the ratio of the cell
thickness to the typical pore/channel width in the 2D ge-
ometry affects the interpretation of the measurements in
terms of solute transport. We also present which physical
quantities can be measured in such experimental setups,
and how. The upscaling of experimental data to the scale
of natural porous media is also discussed. In section 3 we
review the various advances in the understanding of cou-
pled solute mixing, reactions and biological activity, which
have been obtained with such micromodel experiments. In
section 4 we present future prospects, including the use
of geomaterials-based micromodels and the development
of studies in three-dimensional micromodels. Conclusions
are drawn in section 5.

2. Methods

2.1. Micromodel designs

2.1.1. From the Hele-Shaw cell to 2D analogous models of
porous media

In the Hele-Shaw cell steady single-phase parallel lam-
inar flow can be considered to be a plane Poiseuille flow
characterized by a parabolic velocity profile across the
smallest cell dimension (the gap d) (Hele-Shaw, 1898),
which we shall denote by unit vector ẑ here. For creeping
flow (i.e., at Reynolds number much smaller than 1), con-
finement by the two parallel walls that are perpendicular
to ẑ forces the velocity profile across the gap to remain
parabolic even when the direction and magnitude of local
velocities vary in the vectorial plane (x̂, ŷ) perpendicu-
lar to ẑ. Consequently, the two-dimensional (2D) velocity
field defined in that vectorial plane by averaging fluid ve-
locities across the cell gap can be considered to be related
to the 2D pressure field in that plane by a Darcy law with
an intrinsic permeability equal to d2/12. This makes the
Hele-Shaw cell an interesting analog to study flows, de-
scribed at the continuum (i.e., Darcy) scale, in 2D porous
media. It has been much used for that purpose, for ex-
ample by Saffman and Taylor (1958) to characterize the
instability (of either viscous or gravitational nature) be-
tween two immiscible fluids when one displaces the other
in a porous medium.

By filling the space between the two walls parallel to
(x̂, ŷ) with a porous medium of any geometry that is in-
variant along ẑ, one obtains what we denote micromodel
in the following, i.e., a 2D analogous porous medium. The
2D concentration field measured as a local average of the
concentration across the gap of the cell is the fundamental
data allowing analysis of solute transport and mixing by
flows through the 2D porous medium. How the time evo-
lution of this concentration field should be interpreted in
terms of 2D diffusive process depends on the relative mag-
nitudes of the cell gap d and the typical confining distance
λ in the (x̂, ŷ) plane, that is, the typical distance between
obstacles or typical channel width. If d � λ, for example
in the case of cylindrical posts whose height is significantly
larger than the typical distance between them, the hori-
zontal confinement by the solid walls is dominant and the
velocity profile along ẑ is mostly uniform, except in two
thin limit regions in the vicinity of the two flat walls paral-
lel to (x̂, ŷ) (Bruus, 2008, section 2.4.5). This means that
the fluids’ velocity field is mostly 2D, and velocity gradi-
ents in the flow occur mostly in the (x̂, ŷ) plane. In this
configuration, provided that the injected concentration is
uniform across the cell gap (along ẑ), pore scale solute
transport by creeping flow is well described by advection
by a 2D velocity field which is the solution of a Stokes
equation, coupled to 2D molecular diffusion in the (x̂, ŷ)
plane alone; it is therefore a very good analog to study
solute transport/mixing in a 2D pore scale flow.

In the other limit, d� λ, on the contrary, the flow re-
mains mostly confined by the two walls along (x̂, ŷ), as for
the Hele-Shaw cell without obstacles, so the original Hele-
Shaw description remains valid: the velocity profile across
the gap remains mostly parabolic everywhere, and the 2D
flow velocity, defined as the fluid velocity averaged over the
gap, and pressure field P (x, y), can be considered to be re-
lated to each other by a Darcy law, except in the very close
vicinity of the obstacles. As a consequence of the parabolic
velocity profile along ẑ, Taylor dispersion sets in, i.e., the
coupling between advection by that velocity profile and
molecular diffusion along ẑ quickly leads to homogeniza-
tion of the concentrations across the gap (within a typical
time tTA = d2/Dm), and subsequently the solute plume
can be considered 2D and subjected to a 2D advection-
diffusion equation featuring a diffusion coefficient that is
the Taylor-Aris dispersion coefficient U2d2/Dm (Taylor,
1953; Aris, 1956). Note that since in this situation the
2D pore scale flow measured in the experiment is not gov-
erned by the Stokes equation, it is not easy to assess how
the measured 2D dynamics of the transport and reaction
processes at play relates to that of pore scale processes in
a 3D porous medium.

2.1.2. Microfluidic fabrication techniques

Nowadays the fabrication of most 2D micromodels of
mean pore size a and channel height H between a few µms
and 1 mm is based on lithography techniques. These tech-
niques rely on the use of (i) UV curable resins and (ii) a
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mask on which the porous structure is printed. The mask
consists of a transparent plastic or, respectively, glass, slide
onto which the geometry (or its negative) is printed in
black ink or, respectively, as a chrome deposit, with a very
high resolution (up to 128 kdpi for plastic-ink masks and
512 kdpi for glass-chrome masks). When UV light is shone
at the mask, it passes through its transparent regions only,
thus allowing the resin beneath to cure. The great ad-
vantage of lithography techniques is that any type of 2D
geometry (and therefore, porosity and tortuosity) can be
printed onto the mask and thus used to fabricate a micro-
model.

Three different standard lithography procedures are
typically used. 1) Soft lithography, which requires a clean
room facility (McDonald et al., 2000), is used to produce
polydimethylsiloxane (PDMS) micromodels (Fig. 1A). A
negative resin is first spin-coated and heated to remove
solvents, then the mask is positioned on top of the resin,
which is exposed to UV light. The resin is then heated
up again to improve the curing. Finally the coated wafer
is immersed in a bath of developer which removes the
uncured resin, and dried. The resulting wafer mold is
then immersed in a liquid PDMS that is cured by heat-
ing (usually around 65℃) and subsequently cut to extract
the molded PDMS micromodel, through which holes are
punched to enable connection to the fluid circulation sys-
tem. Finally the PDMS micromodel is bonded on a trans-
parent substrate, usually a glass slide, which completes it.
2) A PDMS micromodel obtained in this manner except
for the last step, but with a shape corresponding to the
negative of the desired porous geometry (i. e., a mold),
can also be used to obtain a hybrid NOA-silica-glass mi-
cromodel (Fig. 1B). With this aim in view, the UV curable
resin NOA61 or 81 (Norland) photopolymer is squeezed be-
tween the PDMS mold and another, flat, PDMS slab, and
cured by the UV light. The PDMS mold is then removed,
a procedure which is made easy by the weak adhesion of
PDMS on the cured resin. The resulting porous medium
is then put in contact with a transparent substrate and
bonded to it by UV curing (only for the NOA), before the
flat PDMS slab is removed. 3) Photopatterning can also
be used to fabricate micromodels. It consists in filling the
space between two glass plates or between a glass plate and
a PDMS plate (Fig. 1C) (de Anna et al., 2014b), or the
volume of a microfluidic channel (Lee et al., 2015, 2016)
with a UV-curable resin (i.e., photopolymer), and shining
the UV light through the mask resting on the top surface of
the top plate. The remaining liquid resin is then removed
by flowing a solvent (ethanol, or mixture of ethanol and
acetone in minute quantity) between the plates. Thanks
to this method Lee et al. (2016) have fabricated reactive
calcium carbonate micromodels by mixing the UV resin to
CaCO3.

The choice of the fabrication method is determined by
the mechanical properties and, for experiments including
multiphase flows, the wetting properties that are to be
achieved. PDMS is a soft transparent elastomer of Young

modulus between 0.3 and 5 MPa. It is naturally hydropho-
bic, but various surface treatments can be used to make
its surface hydrophilic (Wong and Ho, 2009; Trojer et al.,
2015; Zhao et al., 2016). NOA resins, on the contrary,
can sustain pressure differences of up to 20 bars without
significant deformations (Bartolo et al., 2008), and their
wettability can be tuned continuously from hydrophilic
to super-hydrophobic (Levaché et al., 2012; Levant et al.,
2018). Hence the procedure described in Fig. 1B is well
suited to fabricating non-deformable micromodels.

Non-deformable micromodels have also been produced
by etching the porous medium structure into glass or sil-
icon substrates using chemicals, or plasma/laser beams
(Karadimitriou and Hassanizadeh, 2012; Anbari et al., 2018).
Recently, Porter et al. (2015b) have even used 2 − 3 mm
thin slices of geomaterials (shale rock, siltstone, sandstone)
as micromodels; different kind of lasers were used to get
the desired porous structure within the slices, with small-
est pores of dimension ∼ 10 µm; this type of design is very
promising for transport experiments involving heteroge-
neous reactions.

2.1.3. Porous media geometries

As mentioned in section 1, lithography techniques allow
fabricating micromodels with any 2D geometry in a very
flexible manner, since the geometry is designed numer-
ically. Different types of geometries include granular ge-
ometries consisting of regular arrays or random spatial dis-
tributions of straight or staggered pillars/cylinders (Auset
and Keller, 2004; Grate et al., 2012; Jiménez-Mart́ınez
et al., 2015), synthetic pore networks consisting of pore
body-throat networks (Meybodi et al., 2011) or of irregularly-
interconnected channels (Osei-Bonsu et al., 2017; Soudmand-
asli et al., 2007), two-dimensional section of real pore net-
works or fractures reproduced from recordings of rock sam-
ples (Gunda et al., 2011; Karadimitriou and Hassanizadeh,
2012), as well as numerically-generated random geometries
that mimic statistical properties of, or are inspired by, nat-
ural media (Gauteplass et al., 2015; Porter et al., 2015a).

2.2. Measuring physical quantities at the pore scale in 2D
micromodels

The main motivation for using micromodels to study
solute transport and mixing and how they are coupled to
chemical reactions and biological activity in 2D porous
media, is that the processes at play can be characterized
quantitatively in a complete manner from measurements of
the different spatially-varying physical and chemical quan-
tities involved in these processes: spatial distributions of
fluid phases, velocity fields of the fluids, concentration
fields of solutes, local effective kinetics of chemical reac-
tions, and biological activity.

2.2.1. Spatial distributions of phases

Flows including the joint displacement of several im-
miscible fluids are common in subsurface environments, in
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Figure 1: Different soft lithography processes and fabrication stages used to make a micromodel. A – PDMS micromodel. B – Hybrid
NOA-silica-glass micromodel. C – Photopolymer micromodel sandwiched between glass plates or between a glass plate and a PDMS plate.
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Figure 2: Different types of pore scale measurements which can be performed in two-dimensional micromodels: (a) Velocity field in a sandstone
thin section with grain sizes ranging from 30 to 200 µm and pore throat sizes as narrow as 5 µm, obtained by micro-PIV (left), and comparison
to a numerical simulation of Stokes flow in the same geometry (right) (adapted from (Roman et al., 2016)).(b) Concentration field measured
during continuous injection of a fluorescent tracer in an unsaturated medium (S = 0.71) consisting of 4500 cylindrical posts, with average
pore size λ (adapted from (Jiménez-Mart́ınez et al., 2015)). The presence of the air cluster (in white) prevents transverse coalescence of the
solute fingers and forces the concentration gradients to remain normal to the mean flow direction, thus enhancing solute mixing and reactions
between the resident and injected liquids. (c) Local reaction rate measured within a similar porous medium and with the same flow/injection
conditions as in (b), using a chemo-luminescent reaction (adapted from (de Anna et al., 2014b)): the resulting temporal evolution of the mass
of product, estimated from the integral of light intensity over time (in inset), demonstrates the strong impact of mixing on effective reaction
rates when the Damköhler number is sufficiently high. (d) Here the basal areas of a similar 2D porous medium occupied by base biofilms and
streamers are captured and colored in red and blue, respectively (adapted from (Scheidweiler et al., 2019)).
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particular in the vadose zone where air and water coexist.
They are also commonly encountered in subsurface appli-
cations such as enhanced oil recovery (EOR) and aquifer
remediation (Mercer and Cohen, 1990; Thomas, 2008).
The identification of the different immiscible, usually mo-
bile, fluid phases in the pore space, and of immobile solid
phases, requires images with a sufficient optical contrast
between the different phases, and a proper segmentation
algorithm to identify them (Porter et al., 2009; Porter and
Wildenschild, 2010). Image segmentation or clipping refers
to the process of assigning all pixels with a light intensity
within a given range to a common intensity value in the
middle of that range, so as to obtain an image where the
different phases correspond to different intensity values.
The simplest case is for example when pixel values can
be assigned to either air and water from a single threshold
level, which is in general best chosen from the histogram of
intensity values in the image. If the background lightning
is not homogeneous over the flow cell, the threshold value
may have to be chosen locally and vary in space. More ad-
vanced segmentation methods/algorithms have been pro-
posed, e. g., based on local histograms, clustering, edge
detection, region-growing. The resulting spatial distribu-
tion of discrete intensity values assigned to the different
phases can then be analyzed in terms of connected regions
of identical pixel value, to obtain statistical information
on their morphology. Scientific image analysis software or
packages now include functions implementing such anal-
yses, usually based on the Hoschen-Kopelman algorithm
(Hoshen and Kopelman, 1976).

2.2.2. Fluid velocities

Accurate flow velocity quantification in micro-models
is crucial to relate bulk transport and mixing observables
(e.g., concentration fields) to the local flow structure and
magnitude (e.g., the flow velocities and their derivatives
in time and space). Numerical methods have been used
to back-calculate Stokesian flow velocities based on a to-
mographic reconstruction of the porous structure (Blunt
et al., 2013), but their computational cost make them pro-
hibitive for complex and large 3D models, so that a direct
measure of flow velocities is often mandatory. A popular
variety of methods is based on seeding the flow with small
solid fluorescent or light-refracting particles and recording
their motion via videography. These particles must not
be too small, since they must follow flow streamlines, i.e.,
not be much impacted by brownian motion. Widely used
in experimental fluid mechanics, notably in turbulent flow
studies, such techniques allows recording spatio-temporal
velocity fields (Adrian, 2005; Westerweel et al., 2013). Its
application to porous media flows is relatively recent in
comparison; see (Anbari et al., 2017) for an overview.
Two main families of image analyses have emerged to infer
flow velocities from the positions of seeded solid particles
(Cheezum et al., 2001): either based on the correlation be-
tween successive frames in interrogation sub-windows (par-
ticle image velocimetry or PIV), providing Eulerian veloc-

ity fields, or based on the individual detection and tracking
of particles in time (particle tracking velocimetry or PTV),
which provides Lagragian velocities. PTV has been shown
to provide finer results than PIV notably in the presence of
high velocity gradients caused by solid boundaries such as
the porous matrix (Kähler et al., 2012a,b; Heyman, 2019).
In contrast to PIV, it is also robust to heterogeneities in
the density of tracer particles (Schanz et al., 2016), possi-
bly caused by incomplete mixing in pores, and is readily
transferable to stereoscopic imaging to yield 3D trajec-
tories (Malik et al., 1993; Ouellette et al., 2006; Holzner
et al., 2015a; Shen and Ni, 2016). The choice of method
can however be rather challenging as PIV is, conversely,
more robust with respect to noise in the image data than
PTV (Alberini et al., 2017). Note that statistical distri-
butions of flow velocities in porous media can be equally
determined from PIV or PTV analysis, since Eulerian ve-
locity statistics are related to Lagrangian statistics pon-
derated by the velocity magnitude.

but their costs becomes rapidly prohibitive for complex
and large 3D models so that a direct measure of kinetics
is often mandatory. Among other methods, flow visualiza-
tion by recording the motion of small solid fluorescent or
light-refracting particles seeded in the flow, has exhibited
large applicability in several fluid mechanics areas, notably
in turbulence studies, and allowed recording instantaneous
velocity fields (Adrian, 2005; Westerweel et al., 2013). Its
use to characterize porous media flow paths is relatively
recent; see (Anbari et al., 2017) for an overview. Two
families of methods have emerged to process the image se-
quences of solid tracer motion (Cheezum et al., 2001); ei-
ther based on the correlation between successive images in
interrogation sub-windows (particle image velocimetry or
PIV), or on the individual detection and tracking of parti-
cles in time (particle tracking velocimetry or PTV). While
limited by the fact that tracking a large number of parti-
cles simulaneously requires a high acquisition frame rate,
PTV is known to provide better results (with sub-pixel
resolution) notably in the presence of high velocity gradi-
ents caused by solid boundaries (Kähler et al., 2012a,b).
In contrast to PIV, it is also robust to heterogeneities in
the density of tracer particles (Schanz et al., 2016), possi-
bly caused by incomplete mixing in pores, and is readily
transferable to stereoscopic imaging to yield 3D trajec-
tories (Malik et al., 1993; Ouellette et al., 2006; Holzner
et al., 2015a; Shen and Ni, 2016).

A recent velocimetry technique, the Ghost Particle Ve-
locimetry (GPV) (Buzzaccaro et al., 2013), based on imag-
ing and cross-correlating the scattering speckle pattern ob-
served on a near-field plane, releases the two main con-
straints imposed by PIV and PTV, as GPV does not re-
quire seeding the flow with solid particles if refractive index
fluctuations are sufficiently large in it, and as the method
also allows investigating turbid samples. In addition, it
can also measure 2D velocities at different position along
the third dimension, from 2D images.
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2.2.3. Concentration fields

The use of two-dimensional (2D) micromodels allows
measuring a 2D concentration field from optical pictures
of the micromodels, by relating the local signal intensity in
each pixel of the image to the amount of solute found in the
volume of the flow cell delimited by the pixel boundaries
and the cell thickness. Two methods are used to this aim.

Firstly, colorimetry techniques (Gouet-Kaplan and Berkowitz,
2011), in which the flow cell is illuminated homogeneously
from behind (with respect to the camera position) and a
colored solute (i.e., a dye) is used. The intensity of the
color recorded on a given pixel is then controlled by ab-
sorption of the incident light by the solute. Provided that
the solute concentration is sufficiently small and that the
optical path through the flow cell is not too large, the
relation between the light intensity I(x, y) for the pixel
corresponding to position (x, y) and the corresponding lo-
cal average concentrations Ci(x, y) = 〈Ci(x, y, z)〉z over
the cell thickness of N solute species (each denoted by a
different index i) is the Beer-Lambert, which states that

I(x, y)

I0
= e−

∑N
i=1 σia(x,y)Ci(x,y) , (1)

where I0 is the homogeneous incident light and σi (i ∈
{1;N}) the attenuation cross-section of the solute species.
For one absorbing solute, this relation can be inverted to
obtain C(x, y) from the measurement of I(x, y). In most
practical cases the mathematical relation between C and
log(I) is not exactly linear but weakly non-linear, but the
(even approximate) logarithmic nature of the relation be-
tween them renders the absolute uncertainty of measure-
ments for small concentration values very large.

Secondly, the use of fluorescent solute allows measur-
ing a signal that is (at least approximately) linearly de-
pendent on the average solute concentration, so that the
uncertainty of the measurements is as good for very small
concentrations as for large concentrations. This is partic-
ularly important when studying solute mixing.

For both types of methods the detailed relation be-
tween I and C̄ must be calibrated by saturating the flow
cell with solutions of various spatially-homogeneous con-
centrations, but the inferred concentration is the true pore
scale concentration averaged over the micromodel thick-
ness (de Anna et al., 2014b), which is not necessarily the
case when a thin cuboid flow cell is filled with a granu-
lar material (such as sand or glass beads), except when
there is close-to-perfect matching between the refractive
indices of the liquid and of the solid grains. Experimen-
tal approaches based on such granular media-filled flow
cells have been ubiquitous in the hydrology literature in
the last decades. In this respect one can consider that the
use of 2D micromodel constitutes an experimental break-
through, which has allowed studies of mixing dynamics,
as we shall show in the following, as opposed to dispersion
dynamics, which can be inferred from spatial moments of
the concentration field, and thus rather robust with re-
spect to uncertainty in the measurement of concentration.

On the contrary, solute mixing is typically characterized
from the concentration field gradient (Jiménez-Mart́ınez
et al., 2016), which is very sensitive to uncertainty on the
measurement. Note that it is possible to couple the mea-
surement of a concentration field at the pore scale and
that of the spatial distribution of two fluid phases, one of
which carries the solute whose concentration is measured
(see Fig. 2b).

Independently of the way the concentration field is
measured, its initial conditions strongly impact how trans-
port/mixing and reaction processes are probed. Continu-
ous line injection, where a solution at a constant concen-
tration is injected continuously at times t > 0 of the exper-
iment along a linear boundary of the porous medium and
displaces a resident liquid of lower (or null) homogeneous
concentration (Jiménez-Mart́ınez et al., 2015; Karadim-
itriou et al., 2016), is more easily achieved than pulse line
injection. For the latter, photobleaching (i.e., deactivation
of fluorescence by overexcitation) of an initially homoge-
neous concentration field of fluorescent tracer allows per-
forming pulse injections with arbitrary shapes of the ini-
tial plume (including pulse line injections, see (Jiménez-
Mart́ınez et al., 2017)), which would otherwise be very
difficult to achieve in the laboratory.

2.2.4. Local reaction rates and reaction product mass

Measuring the in situ kinetics of a chemical reaction
within a micromodel porous medium is not an easy task.
For homogeneous reactions, i.e., reactions between solute
species and whose products are also molecules in solu-
tion, a few experimental techniques have been proposed
to measure the spatial distribution of the reaction prod-
uct. Colorimetric techniques are based on reaction prod-
ucts whose colors are different from that of the reactants
(Oates and Harvey, 2006; Gramling et al., 2002), or on
acid-base reactions coupled to the presence in solution
of a pH color indicator (Rolle et al., 2009). Note that
Gramling et al. (2002) , though considering a granular
porous medium consisting of beads, ensured that light
would travel through the porous medium in straight line
by matching the solid grains’ refractive index to that of
the liquid, thus ensuring that the measured concentration
would be the averaged concentration in the pore space.
Measurements based on reactions leading to formation of
a fluorescent product have also been proposed (Willing-
ham et al., 2008). More recently, chemoluminescence re-
actions have opened a spectrum of possibilities to study
in situ homogeneous reactions. These reactions produce
photons, and therefore the amount of light measured at a
given position in the medium provides a measure of the lo-
cal in situ reaction rate (which is proportional to the time
derivative of the product mass); in addition, the chemical
kinetics of such reactions can often be tuned by varying
the relative quantity of the reactants, which allows vary-
ing the Damköhler number which quantities the ratio of
the characteristic time for transport and that for reaction.
Using a very fast reaction, de Anna et al. (2014b) have thus
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demonstrated and analyzed how pore scale mixing controls
local and global reactions rates at high Damköhler num-
bers (see Fig. 2c). Another recent non-invasive technique
allowing in situ measurements of reactions rate is based
on the use of optodes, which are polymer foils whose lu-
minescence is quenched in the presence of redox reaction,
or O2/CO2-based reactions (Blossfeld et al., 2013; Sant-
ner et al., 2015; Hoefer et al., 2017; Koop-Jakobsen et al.,
2018).

In environmental and industrial scenarios however, many
reactions are heterogeneous, i.e., they involve the solid
phase, the most common of them being reactions of dis-
solution and precipitation. Mineral precipitation and dis-
solution rates can vary along flow paths due to changes in
the fluid saturation index (Noiriel et al., 2016; Prasianakis
et al., 2017), but also to pressure and temperature changes
(Rege and Fogler, 1989) and bacterial activity (Schultz
et al., 2011; Lauchnor et al., 2013; Singh et al., 2015; Bai
et al., 2017). Precipitation and dissolution reactions in-
duce coupling between the flow and reactive transport
since they modify the boundary conditions for the flow.
Mineral or rock dissolution rates have traditionally been
obtained from batch experiments (Sjöberg and Rickard,
1983). However, to better predict large scale reaction
rates, which are usually one or several orders of magni-
tude smaller than those measured in batch experiments,
effective reaction rates in porous media are investigated
from the chemical analysis of fluids exiting the flow cell in
core experiments, as well as using non-in-situ X-ray micro-
tomography (micro-CT) measurements in carbonate cores
(Luquot and Gouze, 2009; Noiriel et al., 2016) and multi-
mineral assemblages (Smith et al., 2013) to infer the time
evolution of the solid-fluid interfaces. Recent advances in
micro-CT have also enabled time-resolved measurements
of the pore scale geometry of rock cores (Al-Khulaifi et al.,
2017). Micromodels (in particular, microfluidic flow cells)
can potentially allow addressing the very complex ques-
tion of the coupling between hydrodynamics, transport
processes and dissolution and precipitation processes, but
the latter potentially involve a role played by the third di-
mension when the confining solid plane boundaries may be
affected by the reactions. A few such experimental stud-
ies with in situ measurement of the wall topography exist,
based on phase shift interferometry (PSI) of interference
microscopy in simple channel configurations (Satoh et al.,
2007; Neuville et al., 2017), alongside more conventional
studies in which global reaction rates were obtained from
chemical analysis of the fluids at the outlet (e.g. (Ciceri
and Allanore, 2015)).

2.2.5. Microbiological processes

Micromodels with typical pore/channel sizes at the mi-
crometer scale (so-called microfluidic devices) allow imag-
ing of bacterial development in microchemostat systems
(Balagaddé et al., 2005; Tourovskaia et al., 2005; Halldors-
son et al., 2015), and are widely used for studying bacterial
biofilm growth (Kim et al., 2012). Bacteria can be counted

at the individual scale, and strains and generations can be
followed (Moller et al., 1995; Borer et al., 2018). Microflu-
idic setups provide precise control of the influential hy-
drodynamic and chemical environment, thus allowing for
the observation of bacterial motility and the determina-
tion of chemotaxis parameters (Mao et al., 2003; Ahmed
et al., 2010), which are keys to colonization capacity, from
the tracking of individual bacterias trajectories (similar to
PTV, see section 2.2.2). Furthermore, microfluidics en-
ables the optical determination of biological key parame-
ters, such as biofilm structure, thickness and detachment
rates using scanning electron microscopy (Lee et al., 2008)
and confocal microscopy (Heydorn et al., 2000) coupled to
image treatment. Using the same experimental techniques,
micromodels have also had a major impact on the study
of bacterial quorum sensing and of its influence on biofilm
growth (Boedicker et al., 2009; Hong et al., 2012). One of
the benefits of optical methods for bacterial properties as-
sessment is the use of fluorescence signal (Zhongwei et al.,
2013). In addition to live/dead detection (Meyer et al.,
2011), Fluorescein Diacetate (FDA) can be used to moni-
tor enzymatic activity in biological tissues at the single-cell
level (??) or bacterial activity (Bruchmann et al., 2015),
as its fluorescence is activated after the metabolism pro-
cess catalyzed by bacteria-produced enzymes.

Other innovative, non-optical, methods are being de-
veloped to maximize the benefits of using microfluidic chips.
Calorimetric biosensors within microchannels are one of
them (Zhang and Tadigadapa, 2004; Braissant et al., 2010);
they allow measuring real-time enthalpy changes of bio-
chemical reactions. Another method with has received
much attention relies on microelectrodes for electrical mon-
itoring of bacterial activity (Abdel Aal et al., 2004; Gomez-
Sjoberg et al., 2005; Richter et al., 2007).

2.3. Upscaling/downscaling experimental results to the scale
of the natural porous medium

The last decade has seen a increasing trend towards mi-
crocluidic studies, i.e., micromodel-based experiments in
which the entire micromodel is a few cm long and the typ-
ical pore/channel dimension λ in the micromodel is sim-
ilar to that of pores in natural subsurface porous media
(e.g. sedimentary rocks). In fact to answer most scien-
tific questions related to flow and solute (reactive) trans-
port, the typical scales in the micromodels do not need to
be identical to those in the real world. What matters is
that the experimental results be properly downscaled (or
upscaled) to the natural scale, according to the general
principle of similarity (Buckingham, 1914). Given typi-
cal scales for all physical quantities involved in the pro-
cesses under investigation (for examples, lengths, times,
fluid mass, solute mass), non-dimensionalizing the rele-
vant physical equations, such as the Navier-Stokes equa-
tion for flow and the advection-diffusion-reaction equation
for reactive transport, with respect to those typical scales,
yields non-dimensionalized versions of the equations with
numerical prefactors to each term in the equation that are
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characteristic of the relative magnitudes of the different di-
mensional terms in the original equations. For stationary
viscous flow in which gravity plays no role, one such non-
dimensional number, the Reynolds number Re = ρUλ/µ
(U being the typical flow velocity, µ the fluid’s dynamic
viscosity, and ρ its density), arises, which quantifies the ra-
tio of inertial forces to viscous forces, while for transport
and reactions equations two such non-dimensional num-
bers arise: the Péclet number Pe = Uλ/Dm (where Dm

is the molecular diffusivity of the solute), which quantifies
the ratio of the characteristic diffusion time to that for ad-
vection, and the Damköhler number Da = k λ/U (k being
the reaction rate constant), which characterizes the ratio
of the characteristic transport time (either advective or
diffusive) to that for chemical reaction. When considering
unsaturated flows the capillary number should also be con-
sidered, which quantifies the ratio of typical pressure dif-
ferences across fluid-fluid interfaces resulting from viscous
pressure drops to the typical capillary pressure threshold
of the medium, and is often computed as Ca = µU/γ
(where γ is the surface tension at the air-water interface)
but is better defined as Ca = µUK/(γλ2) (Méheust et al.,
2002) where K is the permeability of the porous medium.
Results from the micromodel experiments can be used to
predict processes in the natural environment at identical
values of the Péclet, Damköhler and capillary numbers.
In most cases one considers Stokes (i.e., creeping) flows
for which Re � 1, in which case the exact value of the
Reynolds number does not matter.

Ultimately the only micromodels for which the typical
length scales have to be identical to those in its natural
counterpart are those involving bacteria and micrometer-
sized solid particles, whose size is given and thus imposes
the λ scale in the micromodel.

3. Advances obtained through micromodel exper-
iments

3.1. Flow distribution and topology

The distribution of pore scale velocities is a key driver
for transport and reaction processes in porous media, in-
cluding: the dispersion of solutes and solid particles (de Anna
et al., 2013), solid-fluid reaction rates, which depend on
exposure times of fluids to solid interfaces (Ginn, 1999),
fluid-fluid reactions in mixing fronts, which are enhanced
by velocity gradients (de Anna et al., 2014b; Bandopad-
hyay et al., 2017), and the spatial distribution of micro-
organisms (Rusconi et al., 2014). Measured statistical dis-
tributions of flow velocities (see section 2.2.2) are thus typ-
ically used as input of stochastic models that predict solute
dispersion and mixing (Le Borgne et al., 2008; Dentz et al.,
2015).

The complex arrangement of grains and no-slip bound-
ary conditions at solid boundaries are expected to induce a
broad distribution of pore scale velocities and complex cor-
relation patterns along streamlines (de Anna et al., 2013).

Progresses have been recently made in relating the shape of
velocity probability density functions to the microporous
structure (Bijeljic et al., 2011; Alim et al., 2017; de Anna
et al., 2017). However, general formulations for obtaining
the pore scale velocity distributions from knowledge of the
structure in porous media have not been established yet,
and very few experimental measurements exist at the pore
scale. Porous micromodels offer opportunities to explore
this open question since they allow designing highly con-
trolled pore geometries and measuring the pore scale ve-
locity field, even in two-phase flows (Roman et al., 2016).

It is however important to bear in mind that, although
they exhibit a rich phenomenology and represent a conve-
nient model, velocity fields in two-dimensional micromod-
els are not necessarily representative of three-dimensional
velocity fields. Refractive index matching techniques have
been developed to perform velocimetry measurements in
three-dimensional porous media (Moroni and Cushman,
2001; Datta et al., 2013; Holzner et al., 2015b), as dis-
cussed in section 4.

3.2. Solute dispersion, mixing and reactions

Dispersion describes the continuous increase in time
of the spatial extent of a solute plume. Hydrodynamic
dispersion arises from the interaction between molecular
diffusion and the heterogeneity of the advecting pore scale
velocity field. In contrast, mixing is the process that in-
creases the actual volume occupied by the solute and even-
tually smoothes out concentration contrasts (Ottino, 1989;
Kitanidis, 1994; Dentz et al., 2011). The characterization
of dispersion is important to predict for example arrival
and residence times of contaminants in aquifers, however,
the knowledge of dispersion alone does not provide in-
formation about the actual mixing of solutes (i.e., how
the concentration distribution within the plume evolves
in time), which affects the rates of potential chemical re-
actions (Fluhler et al., 1996; Dentz et al., 2011; de Bar-
ros et al., 2012; Chiogna et al., 2012; de Anna et al.,
2014a). Recent studies have shown that micromodels al-
low studying the dynamics of solute dispersion and mixing
in both single (de Anna et al., 2014b) (see also the inset
of Fig. 2c) and multiphase (Karadimitriou et al., 2016;
Jiménez-Mart́ınez et al., 2017; Jougnot et al., 2018) flows
at pore scale. These studies demonstrated how incom-
plete mixing at pore scale leads to limitations of chem-
ical reactions’ local rates, and therefore to macroscropic
regimes of reaction rates that are improperly predicted
by theoretical descriptions defined at Darcy’s scale. The
multiphase experiments demonstrated increasing disper-
sion, mixing and global reaction rate as the pore volume
occupied by the air increases under continuous injection
(Jiménez-Mart́ınez et al., 2015, 2016; Karadimitriou et al.,
2016), while for finite volume injection the contrary is ob-
served (Jiménez-Mart́ınez et al., 2017). Note that for fast
reversible reactions, spatial distributions of the local re-
action rate can be inferred from the concentration fields
recorded in conservative transport experiments (de Simoni
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et al., 2005, 2007; Willmann et al., 2010; Jiménez-Mart́ınez
et al., 2015). Electrical measurements are also very sensi-
tive to the mixing of an electrically charged solute (e. g.,
a salt), and potentially allow monitoring solute transport,
also in unsaturated conditions (Jougnot et al., 2018).

When heterogeneous (fluid-solid) chemical reactions are
involved, the reaction rate (e.g., dissolution or adsorption)
depends not only on the nature and geometry of the sur-
face in contact between the reactant dissolved in the liquid
phase and the solid, but also on the interplay between hy-
drodynamics and chemical reactions close to the solid walls
(Ciceri and Allanore, 2015; Osselin et al., 2016; Neuville
et al., 2017). A particular case of reactive transport stud-
ied in microfluidics is the one in which the reaction of the
two fluid chemicals produces a solid product in between,
e.g., calcite precipitation and hydrates. The shape of the
resulting solid-liquid interfaces is controlled by the rheo-
logical properties of the two fluids and by the velocity of
the displacement of one fluid by the other (Haudin et al.,
2014; Barge et al., 2015). The propagation of this process
requires that the resistance offered by the solid interface
be overcome by breakage, followed by formation of a new
solid interface, i.e., self-sealing (Tohidi et al., 2001), and
so on.

3.3. Coupling of biological activity with mixing and reac-
tion

Microfluidic devices have brought new perspectives for
studying the interaction of flow, reactive transport and
chemical reactions with bacterial colonies and biofilms (Song
et al., 2014a). Hydrodynamical conditions but also nutri-
ent accessibility have a major impact on biofilm develop-
ment. Indeed, biofilm growth is highly impacted by fluid
flow-induced shear stress at each stage of the biofilm de-
velopment. Their biological diversification while growing
as well as their growth dynamics, have also been shown to
be dependent on shear (Rochex et al., 2008). Micromodels
such as microfluidic devices allow obtaining precise knowl-
edge of the fluid flow and more precisely of the shear rate
and stress applied along the solid-fluid boundaries. Fur-
thermore, both variations in carbon (Shrout et al., 2006)
or oxygen (Skolimowski et al., 2010) availability, either
spatial or temporal, may result in various differentiations
and structures of biofilms. Transport and mixing phe-
nomena in geometries that are heterogeneous at the pore
scale can lead to temporal and spatial heterogeneities in
chemical concentrations, which trigger the formation of
reaction hotspots and lead to spatial organization of bac-
terial populations (Borer et al., 2018; Scheidweiler et al.,
2019). Complex behaviors of biofilms in fluid flow, such
as streamers, have been observed thanks to microfluidic
micromodels (Drescher et al., 2013). These observations
show that biofilm expansion can go across streamlines for
a better colonization in the bulk fluid and not restricted
to the pore surfaces (see the streamers in Fig. 2d).

In addition to the impact of solute transport on biofilm
formation dynamics, the understanding of the feedback of

bacterial growth on flow (Song et al., 2014b) and solute
mixing has been a significant target in the last decade.
The inner structure of biofilms, as well as their overall
consumption, affect nutrients distribution and transport
rates (de Beer et al., 1994, 1996; de Beer and Schramm,
1999).

Microfluidics-based setups have also allowed demon-
stration and quantitative studies of quorum sensing, that
is, the regulation of gene expression in response to fluctu-
ations in cell-population density (Boedicker et al., 2009;
Hong et al., 2012). Its influence on biofilm growth is
starting to be better understood. Furthermore, even be-
tween distant colonies within a dynamic microfluidic flow,
bacteria have demonstrated coordination to share limited
resources (Liu et al., 2017) or counterintuitive forms of
growth to overcome resource competition (Coyte et al.,
2017). Micromodels will be the major tool to further inves-
tigate these phenomena as well as new couplings between
transport processes and biological activity.

More recently, attention has been drawn to model-
ing of these interactions at the micro scale (i.e., below
the pore scale). Modeling allows taking the transport of
biologically reacting solutes (Baveye and Valocchi, 1989)
into account to understand the roles of pore scale advec-
tion and diffusion (Picioreanu et al., 2000). Recent work
has shown the feasibility of numerical modeling of reactive
transport with biofilm interactions in highly complex envi-
ronments (Ebrahimi and Or; Henri and Fernàndez-Garcia,
2015; Peszynska et al., 2015). The mostly two-dimensional
spatialized-measurements performed in 2D micromodels
render them very suitable to comparison with 2D numeri-
cal simulations.

One of the most promising applications resulting from
the development of microfluidic cultures of biofilms is the
combination of solute transport with bacterial activity to
produce energy. This method is commonly referred to as
MFC (Microbial Fuel Cells) (Pant et al., 2010). It is used
to generate bioelectricity but also as a solution for wastew-
ater treatment (Mohan et al., 2008).

3.4. Fully coupled flow and transport

When the local density of the fluid-solute mixture de-
pends significantly on the local solute concentration, two-
way coupled flow and transport occurs, i.e., the velocity
field is impacted by the spatial distribution of the solute,
and, consequently, evolves in time. This coupling is of-
ten discarded when considering subsurface transport in hy-
drogeological contexts, even though small density changes
may have a significant impact on a plume’s fate (Tenchine
and Gouze, 2005; Bouquain et al., 2011). But it is central
to the question of saltwater intrusion in coastal aquifers
(Abarca et al., 2005, 2007), as seawater is denser than
freshwater, and to that of solubility trapping of CO2 in
deep aquifers. In the latter process, the mixture between
supercritical CO2 and the resident brine is denser than
the brine, which triggers a gravitationally-triggered con-
vection.
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To our knowledge no studies of saline intrusion based
on 2D porous micromodels has yet been reported in the
literature, but the standard Hele-Shaw has been a tool of
choice for studies related to solubility trapping of CO2, in
combination to Schlieren imaging of optical density con-
trasts (Thomas et al., 2016; Vreme et al., 2016; Budroni
et al., 2017), and 2D microfluidic cells have been developed
to tackle the high pressures and temperature that are char-
acteristic of deep aquifer environments towards studying
CO2 subsurface injection and sequestration (Morais et al.,
2016).

4. Prospects on micromodel studies of solute trans-
port, mixing and reactions

Geomaterial microfluidics. In the last two decades, ad-
vances in non-invasive measurement techniques such as
X-ray tomography have provided accessibility to the ge-
ometry (mostly) of opaque rock core samples, and to con-
centration field (to a lesser extent) of solute species trans-
ported through them, with a high spatial resolution. How-
ever, the temporal resolution of these techniques is still
limited to several hours when it comes to measuring con-
centrations (except at synchroton beamlines), and the vol-
umes that can be investigated with a good spatial resolu-
tion still limited. Two-dimensional micromodels provide
a much larger versatility in terms of what can be mea-
sured, as presented above, and with much more affordable
measurement equipements, but at the expense of reduc-
ing the geometry in which the various processus occur to
two dimensions. They are well suited to studying the cou-
pling between flow, solute transport and mixing, and bio-
logical activity, under very controlled conditions. This is
why recent developments have been directed towards ex-
tending the classic range of materials used to fabricate 2D
porous media and pore-networks micromodels from engi-
neering materials (e.g., glass or silicone) to geo-materials,
which are much more difficult to etch and seal. Despite
the expected numerous advantages, such as a much bet-
ter relevancy to the natural media in terms of asperity
geometry, wettability, matrix porosity, and mineral het-
erogeneity, only a few examples of such geomaterial-based
micromodels exist (Satoh et al., 2007; Song et al., 2014b;
Ciceri and Allanore, 2015; Porter et al., 2015a; Osselin
et al., 2016; Neuville et al., 2017; Singh et al., 2017). In
some cases the wetting properties of the micromodels can
be tuned a posteriori by chemical treatment (Lee et al.,
2016). A hybrid type of micromodels has also been re-
ported, where successive layers of clay crystallites are de-
posited onto the walls of PDMS porous media Zhang et al.
(2018). Further development and implementation of ge-
omaterial microfluidics are expected to bring significant
progress in the relevance to natural media of the conclu-
sions reached based on laboratory-scale approaches.

From 2D to 3D micromodel studies. Recent theoretical
and numerical studies on the advective dynamics of Stokes

flows (i.e., Newtonian creeping flows) in model continuous
(Lester et al., 2013) and granular (Turuban et al., 2018b,a)
porous media suggest that the dynamics of mixing is fun-
damentally different in three-dimensional (3D) porous me-
dia from what it is in 2D porous media. Indeed, the defor-
mation of fluid elements in Stokes flows through 3D porous
media has been found to be chaotic and hence grows ex-
ponentially in time (Turuban et al., 2018a), while linear
deformation occurs typically in 2D porous media (de Anna
et al., 2014a). These predictions for 3D flows have even
been confirmed by recent experimental findings (Heyman
et al., 2019). As advection dynamics forms the backbone
for the dynamics of a solute plume subjected to the joint
effect of advection and molecular diffusion, a change in the
fluid deformation law will strongly impact the macroscopic
properties of solute transport and mixing at finite Péclet
number (see e.g. (Le Borgne et al., 2015)).

These findings do set a limitation on the applicabil-
ity to natural porous media of quantitative predictions
obtained from 2D micromodels. However, recent stud-
ies based on 3D micromodels consisting of transparent
granular media coupled to refractive index-matching of
the fluid(s) to the solid phase, provide promising hints for
the future of micromodel investigations of solute (reactive)
transport. Measurement of 3D flow velocities using parti-
cle tracking velocimetry has been achieved (Morales et al.,
2017; Carrel et al., 2018). Measurements of 3D concen-
tration fields is more challenging but mandatory to tackle
the characterization of solute transport and mixing. Using
glass beads and a mixture of glycerol, Heyman et al. (2019)
have characterized fluid deformation from the time evolu-
tion of the concentration field at very high Péclet number
(105). Note however that (i) the measurement of 3D con-
centration fields in such 3D optical micromodels requires
recontruction from parallel 2D cuts of the solute plume,
which introduces a limitation on the largest acquisition
frequency that can be achieved, and (ii) any process that
renders the medium non-transparent (such as the growth
of a biofilm) on solid-liquid boundaries cannot be stud-
ied in such models. X-ray microtomography can be used
alternatively in some configurations, and its use fo study-
ing multiphase flow processes has been the topic of a wide
body of literature in the last twenty years, which is out
of the cope of the present review article. In any case,
optical 3D micromodels offer promising prospects for the
characterization of mixing in analogous 3D porous media,
provided that the technical challenges that they offer can
be overcome.

On the other hand, 2D micromodels, which allow spa-
tialized measurement of nearly all physical quantities at
play in (reactive) transport and mixing processes in porous
media with a high temporal resolution, as presented in this
paper, certainly possess a large potential for understand-
ing the various couplings between heterogeneous pore scale
flow, solute transport, chemical reactions, and biological
activity.
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5. Conclusion

The use of two-dimensional (2D) micromodels to quan-
titatively investigate pore scale coupling between monopha-
sic or multiphase flow, solute transport and mixing, reac-
tions between chemical species in solution and between so-
lutes and the solid matrix, and biological activity, has risen
considerably in the last decade, mainly due to two tech-
nological innovations: (i) the availability of lithographic
fabrication techniques which allow reproducing any 2D ge-
ometry; and (ii) optical measurements techniques based
on fluorescent solute species, solid particles, bacteria, and
probes. These techniques have allowed precise two-dimensional
measurement of fluid phase spatial distributions, fluid ve-
locities, solute species concentrations and reaction rates,
as well as bacteria growth, detachment, and activity. To
be easily interpretable in two dimensions, the measured
processes must occur in a porous medium whose charac-
teristic pore/throat size imposes a confinement which is
significantly larger than that imposed by the basal pla-
nar plates of the flow cell. While in many studies that
characteristic size is chosen similar to its value in natural
environments, this is not mandatory as experimental re-
sults can be upscaled or downscaled to the scale of the real
world provided that the characteristic numbers quantify-
ing the ratios of the various physical and chemical effects
at play, the capillary, Bond, Péclet, Damköhler numbers,
are identical in the experimental porous medium and in
the natural environment of which it is an analog model.
Configurations involving bacteria and large colloids are an
exception to this principle.

Such micromodel-based experiments have significantly
improved our understanding of phenomena such as the re-
lation between structural heterogeneity and fluid velocity
distributions, the limitation of local reaction rates between
solute species by their mixing, the impact of a porous
medium’s saturation on solute mixing and reactions in the
liquid phase, the retroaction of heterogeneous chemical re-
actions on pore scale flow, or the coupling between CO2

dissolution and gravitational convection in deep aquifers.
Advances regarding the interaction of bacteria with flows
have been possibly even greater, including the impact of
shear on the attachment of biofilms, of the availability of
nutrients and oxygen on the structure of biofilms, and of
quorum sensing on biofilm growth; how biofilm growth im-
pacts flow and thus solute transport in return; how biofilm
expansion occurs in flows across streamlines; and investi-
gations of competitition versus collaborative growths of
different strains of bacteria in porous media flows.

Recently, measurements of flow velocities and solute
concentration fields in three-dimensional (3D) granular porous
media, using refractive index matching of the liquid phase
to the solid matrix, have shown the feasability of future
extensions of some of these studies to 3D geometries. Due
to the different stretching laws imposed on liquids in 3D
porous media (as compared to 2D media), solute mixing
may be strongly impacted by the dimensionality of the

medium. Nevertheless, 2D micromodels still have much to
offer as a tool to characterize couplings between the var-
ious physical, chemical and biological process at play in
subsurface environments, and this all the more as recent
technical developments have demonstrated the possibility
of fabricating micromodels consisting of geological mate-
rials.
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Moura, M., Måløy, K.J., Flekkøy, E.G., Toussaint, R., 2017. Verifica-
tion of a dynamic scaling for the pair correlation function during
the slow drainage of a porous medium. Phys. Rev. Lett. 119,
154503.
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Appendix B

Matlab parametrization for solving PDE

MATLAB pdepe function is used to solve 1D Partial Differential Equations (PDEs) of
the form described by Equation (B.1). In this section, we use the notation proposed by
the function definition. It can easily be used to couple any number of PDEs and to solve
for u.

c

(
x, t, u,

∂u

∂x

)
∂u

∂t
= x−m

∂

∂x

(
xmf

(
x, t, u,

∂u

∂x

))
+ s

(
x, t, u,

∂u

∂x

)
(B.1)

We will see how to adapt this expression to match the various conditions of our problem. In
general terms, c=1 and m=0 coefficients will never change, f function will have to reflect
both diffusive and advective phenomena, while the s function will be needed to reflect
the reaction terms and an advective compensation, due to the definition of f . Initial
conditions are set by a condition at the initial time of simulation, such as:

u(x, t = 0) = u0(x), (B.2)

and boundary conditions are fixed by an expression of the type:

p(x, t, u) + q(x, t)f

(
x, t, u,

∂u

∂x

)
= 0. (B.3)

By defining the correct p and q functions, one can easily assign the classical Dirichlet
boundary condition u(±L, t) = g(±L) or Neumann boundary condition ∂u

∂x

∣∣
x=±L = g(±L).

B.1 Mixing enhancement of Monod-type kinetics by diffu-
sion

The parametrization for the problem studied in Section ??, according to the formalism
introduced above is given by





c = 1,
m = 0,

f = 1
2 Da

∂c∗
∂x∗

,

s = −min{α∗, c∗},
(B.4)

with Neumann boundary conditions ∂x∗c∗(±L∗
2 , t∗) = 0, where L∗ is the size of the domain

in nondimensional units, corresponding to
{
p = 0,
q = 1.

(B.5)
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B.2 Mixing enhancement of Monod-type kinetics by advec-
tion

The parametrization for the problem studied in Section 5.2, according to the formalism
introduced above is given by





c = 1
m = 0

f = 1
2 Da

∂c∗
∂x∗

+ Pe
Dax∗c∗

s = − Pe
Dac∗ −min{α∗, c∗}

(B.6)

with Neumann boundary conditions ∂x∗c∗(±L∗
2 , t∗) = 0, where L∗ is the size of the domain

in nondimensional units, fixed by

{
p = − Pe

Dax∗c∗
q = 1

(B.7)



Appendix C

Lamellar model framework and numer-
ical validations

C.1 Change of variable and diffusion equation in the new
coordinate system

The advection-diffusion Equation (5.6) in the lamellar framework can be changed into
a diffusion equation with by considering a reduced coordinate z and a wraped time θ
defined by the following variable transforms (Ranz, 1979)

z(t) =
x

s(t)
, (C.1a)

θ(t) =

∫ t

0

D

s2(τ)
dτ =

∫ t

0

D

s2
0

ρ2(τ)dτ. (C.1b)

The use of this transforms leads to rewrite the Equation (5.6) to the following form

∂c̃

∂θ
=
∂2c̃

∂z2
, (C.2)

where we relate the new concentration c̃(z, θ) to c(x, t) with c(x, t) = c̃[z(x), θ(t)] (Ban-
dopadhyay et al., 2017). The detailed development to go from Equation (5.6) to Equation
(C.2) is given in Appendix D for a general advection-diffusion-reaction in the same frame-
work.

The general solution for Equation (C.2) with known initial condition φ(z) = c̃(z, 0) on
the ]-∞;+∞[ spatial domain is obtained in Appendix E and is given by

c̃(z, θ) =
1√

4πDθ

∫ ∞

−∞
e−

(z−z′)2
4Dθ φ(z′)dz′. (C.3)

This analytical solution allows us to compare numerical simulations of a deformed lamella
or of a nutrient front to their true analytical solutions.
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C.2 Validation of the numerical simulations

In this section, we focus on validating the numerical simulation for the conservative
transport of concentration profiles due to the coupled effects of diffusion and stretching.
We compare the results obtained with numerical simulations using the MATLAB function
pdepe to the analytical solutions. Once the numerical solutions are validated for the
conservative case, we use them to simulate the reactive case, which does not have analytical
solutions (see Section 5.2). In order to be able to study several cases of interest, we develop
the numerical simulation and associated analytical solutions for 2 scenarios with nutrient
species A and B:

Scenario 1: opposite fronts of 2 nutrients (A and B),

Scenario 2: discrete injection of nutrient B in homogeneous nutrient A.

C.2.1 Scenario 1: Front

Scenario 1: Front, diffusion alone

Scenario 1 corresponds to a front of two nutrients, A and B, which are subjected to
diffusion and stretching. Therefore, the initial conditions are described with Heaviside
step functions H and with the initial concentrations a0 and b0 by

φA(z) = a0[1−H(z)], (C.4a)

φB(z) = b0H(z). (C.4b)

Using Equation (C.3) with D = 1 and the initial conditions defined by Equation (C.4),
and making the following changes of variables, τA = − z−z′√

2θ
and τB = z−z′√

2θ
, we obtain the

analytical solutions for a and b,

ã(z, θ) =
a0

2

[
1 + erf

( −z√
4θ

)]
, (C.5a)

b̃(z, θ) =
b0
2

[
1 + erf

(
z√
4θ

)]
. (C.5b)

Using the definition of ρ and θ from Equation (C.1), and writing Equation (C.5) in the
initial coordinate system gives

a(x, t) =
a0

2

[
1 + erf

(
−xρ(t)

s0

√
4θ(t)

)]
, (C.6a)

b(x, t) =
b0
2

[
1 + erf

(
xρ(t)

s0

√
4θ(t)

)]
, (C.6b)

where s0 in this scenario is a characteristic length of the system, as the initial with of a
lamella or a material line (see Bandopadhyay et al. (2017) for an example of usage). In
the negligible stretching situation, we consider ρ(t) = 1 for all t. Thus, Equation (C.1)
can be simplified into

z(t) =
x

s(t)
, (C.7a)

θ(t) =
D

s2
0

t. (C.7b)
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The analytical solution for nutrients diffusion is simplified to

a(x, t) =
a0

2

[
1 + erf

(
x√

4Dat

)]
, (C.8a)

b(x, t) =
b0
2

[
1 + erf

( −x√
4Dbt

)]
. (C.8b)

Scenario 1: Front, exponential stretching.

The exponential elongation of the lamella is described as ρ(t) = eγt = s0
s(t) . Using this

definition and Equations (C.1)b, we obtain new expressions for the change of variables,

z(t) =
x

s(t)
, (C.9a)

θ(t) =
D

2γs2
0

[e2γt − 1]. (C.9b)

Then with these new expressions and Equation (C.6), we get the corresponding analytical
solution for nutrient transport,

a(x, t) =
a0

2


1 + erf


 −xeγt√

2Da
γ [e2γt − 1]




 , (C.10a)

b(x, t) =
b0
2


1 + erf


 xeγt√

2Db
γ [e2γt − 1]




 . (C.10b)

Figure C.1 shows the evolution of two opposite nutrient fronts using diffusion coefficients
separated by one order of magnitude and over a period of 10 seconds. For these simulations
and thereafter, we take Da = 10−8 m2.s−1 and Db = 10−9 m2.s−1 which is of the order
of magnitude of the diffusion coefficient of glucose in water (Hobbie et al., 1977). Figure
C.1a represents the case of diffusion alone, while Figure C.1b gives the evolution of the
same fronts confronted to exponential stretching (of parameter γ=0.021 s−1, taken from
the parameter obtained experimentally by Heyman et al. (2019)). On both plots, the
correspondence between analytical solutions and numerical simulations is shown with the
superposition of the curves. In the case of stretching, stronger gradients are conserved
and reach a limit fixed by the diffusion coefficients and the Batchelor scale.
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Figure C.1: Advection-diffusion of nutrient fronts. Nutrient A (in red) and B (in
black) concentrations are normalized by their respective initial concentrations. The initial
front diffusion is shown at times 0, 2.5, 5, 7.5 and 10 seconds. Solid lines are the analytical
solutions, whereas bullets are the corresponding numerical simulations. (a) shows the
case of diffusion alone and (b) shows the evolution of the same profiles with diffusion and
exponential stretching.

C.2.2 Scenario 2: Square pulse

Scenario 2: Square pulse, diffusion alone

Scenario 2 corresponds to the injection of nutrient B in a medium filled with nutrient
A. The injection occurs at time t = 0 in the spatial domain described as [−z0; z0], with
z0 > 0 and small compared to the spatial domain length. In this case, the initial size of
the lamella is defined as s0 = 2x0. As in scenario 1, the initial conditions are described
with Heaviside step functions,

φA(z) = a0[1−H(z + z0) +H(z − z0)], (C.11a)

φB(z) = b0[H(z + z0)−H(z − z0)]. (C.11b)

Using Equation (C.3) with D = 1 and the initial conditions defined by Equation (C.11),
and making the following changes of variables τA1 = − z−z′√

2θ
, τA2 = z−z′√

2θ
and τB = z−z′√

2θ
,

we obtain the analytical solutions for a and b,

ã(z, θ) =
a0

2

[
2 + erf

(
−z + z0√

4θ

)
+ erf

(
z − z0√

4θ

)]
, (C.12a)

b̃(z, θ) =
b0
2

[
erf

(
z + z0√

4θ

)
− erf

(
z − z0√

4θ

)]
. (C.12b)

Using Equation (C.7), we write Equation (C.12) in the initial coordinate system to get

a(x, t) =
a0

2

[
2 + erf

(
−xρ(t) + x0

s0

√
4θ(t)

)
+ erf

(
xρ(t)− x0

s0

√
4θ(t)

)]
, (C.13a)

b(x, t) =
b0
2

[
erf

(
xρ(t) + x0

s0

√
4θ(t)

)
− erf

(
xρ(t)− x0

s0

√
4θ(t)

)]
. (C.13b)
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In the simple case of negligible shear rate (ρ(t) = 1 for all t), using Equation (C.7b)
simplifies Equation (C.13) into

a(x, t) =
a0

2

[
2 + erf

(
− x+ x0√

4Dat

)
+ erf

(
x− x0√

4Dat

)]
, (C.14a)

b(x, t) =
b0
2

[
erf

(
x+ x0√

4Dbt

)
− erf

(
x− x0√

4Dbt

)]
. (C.14b)

Scenario 2: Square pulse, exponential stretching

With exponential lamella elongation ρ(t) = eγt = s0
s(t) , we refer to the same expressions

for the change of variables as in Scenario 1 (see Equation (C.9b)). Substituting this
expression into Equation (C.13), we obtain the analytical solution for nutrients transport:

a(x, t) =
a0

2

[
2 + erf

(
− xeγt + x0

2Da
γ [e2γt − 1]

)
+ erf

(
xeγt − x0

2Da
γ [e2γt − 1]

)]
, (C.15a)

b(x, t) =
b0
2


erf


 xeγt + x0√

2Db
γ [e2γt − 1]


− erf

(
xeγt − x0

2Db
γ [e2γt − 1]

)
 . (C.15b)

The initial maximal concentrations of nutrients A and B are the same as in previous
the section but the initial fronts are replaced by the injection of B in a homogeneous
concentration field of nutrient A. The corresponding evolution over 10 seconds is shown
in Figure C.2. This time, both nutrient concentration fields are centered at x=0. The
addition of stretching shrinks the concentration profiles, sustaining higher concentration
gradients, up to the limit Batchelor scale. Then, the maximum concentration decreases
exponentially. The Batchelor scale is different for both nutrients, since it depends on the
diffusion coefficient.

C.2.3 Scenario 2bis: Gaussian pulse

Scenario 2bis: Gaussian pulse, diffusion alone

To keep consistency with the previous studies of this chapter, we also study the case
of a Gaussian pulse instead of a discrete injection with sharp edges. We give the solutions
for an initial Gaussian pulse of nutrient B in homogeneous nutrient A. Initial conditions
are then given by

φA(z) = a0

(
1− e− z

2

2

)
, (C.16a)

φB(z) = b0e
− z2

2 . (C.16b)

Using Equation (C.3) with D = 1, with the initial conditions defined by Equation (C.16),
we obtain the analytical solutions for a and b,

ã(z, θ) = a0

[
1− 1√

2θ + 1
exp

(
− z2

2 + 4θ

)]
, (C.17a)

b̃(z, θ) =
b0√

2θ + 1
exp

(
− z2

2 + 4θ

)
. (C.17b)
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Figure C.2: Advection-diffusion of nutrient pulse. Nutrient A (in red) and B (in
black) concentrations are normalized by their respective initial concentrations. The chem-
ical species B is introduced in an homogeneous concentration field of A. The diffusion of
the initial pulse is shown at times 0, 2.5, 5, 7.5 and 10 seconds. Solid lines are the ana-
lytical solutions, whereas bullets are the corresponding numerical simulations. (a) shows
the case of diffusion alone and (b) shows the evolution of the same profiles under diffusion
and exponential stretching.

Using Equation (C.7), we write Equation (C.17) in the initial coordinate system as

a(x, t) = a0

[
1− 1√

2θ + 1
exp

(
− x2ρ2(t)

s2
0(2 + 4θ(t))

)]
, (C.18a)

b(x, t) =
b0√

2θ + 1
exp

(
− x2ρ2(t)

s2
0(2 + 4θ(t))

)
. (C.18b)

In the case of diffusion alone (ρ(t) = 1), Equation (C.18) gives

a(x, t) = a0

[
1− s2

0√
2Dt+ s2

0

exp

(
− x2

2s2
0 + 4Dt

)]
, (C.19a)

b(x, t) =
b0s

2
0√

2Dt+ s2
0

exp

(
− x2

2s2
0 + 4Dt

)
. (C.19b)

Scenario 2bis: Gaussian pulse, exponential stretching

Using Equation (C.9), writing Equation (C.17) in the initial coordinate system gives
Equation (C.20) in the case of exponential stretching,

a(x, t) = a0


1− 1√

D
γs20

(e2γt − 1) + 1
exp

(
− x2e2γt

2s2
0 + 2D

γ (e2γt − 1)

)
 , (C.20a)

b(x, t) =
b0√

D
γs20

(e2γt − 1) + 1
exp

(
− x2e2γt

2s2
0 + 2D

γ (e2γt − 1)

)
. (C.20b)

We represent the corresponding nutrient concentration profiles in Figure C.3. As seen
before, stretching induces a spatial localization of nutrients profiles and the sustain of
higher concentration gradients.
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Figure C.3: Advection-diffusion of Gaussian nutrient pulse. Nutrient A (in red)
and B (in black) concentrations are normalized by their respective initial concentrations.
The chemical species B is introduced in an homogeneous concentration field of A. The
initial Gaussian pulse diffusion is shown at times 0, 2.5, 5, 7.5 and 10 seconds. Solid lines
are the analytical solutions, whereas bullets are the corresponding numerical simulations.
(a) shows the case of diffusion alone and (b) shows the evolution of the same profiles with
diffusion and exponential stretching.

C.3 Scalar dissipation rate to quantify global mixing

One way to characterize mixing is to use an evaluation of scalar transport, where
the considered scalar has no impact on the flow. The scalar dissipation rate χ was first
introduced by Pope (2000). The scalar dissipation rate is referred to as a measure of
micromixing because it is a small-scale metric controlled by scalar gradient correlations
and represents molecular dissipation of scalar variance near the Batchelor scale (Fox and
Varma, 2003). It is tied to the variations of gradients and is therefore very sensitive to the
temporal evolution of reaction rates. The interest of this parameter has been shown in the
literature for various mixing problems (Bolster et al., 2011; Fedotov et al., 2005; Warhaft,
2000). Understanding the scaling behavior of the scalar dissipation rate is a first step in
the process of upscaling reactive transport phenomena. Here, we use the definition given
by Le Borgne et al. (2010), and written as

χ(t) =

∫

Ω
dxD∇c(x, t) · ∇c(x, t), (C.21)

where D is the constant diffusion coefficient and c is the local concentration, and where
the integrated term is called the mixing factor. Given our 1D model and our choice of
parametrization to study the impact of mixing on reaction rate (see Section ??), we define
a nondimensional scalar dissipation rate as

χ∗(t∗) = χ(t)
s2

0

Dc2
0

=

∫

Ω∗
dx∗

(
∂c∗
∂x∗

)2

, (C.22)

Scenario 1 : Front

In the case of an initial front of nutrient, which is diffusing but also stretched in
the transverse direction, using our parametrization such that the nondimensional space
coordinate is x∗ = x/s0, the concentration is c∗ = c/c0 and using the solution found in
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Equation (C.6), we obtain

c∗(x∗, t∗) =
1

2

[
1 + erf

(
x∗ρ(t∗)√

4θ(t∗)

)]
. (C.23)

Note that ρ and θ can both be expressed in nondimensional terms. By definition, under
exponential stretching, ρ(t) = eγt. We defined the advection time τA = 1

γ , nondimensional
time t∗ = t/τ`, such that Pe = τD

τA
, and Da = τD

τ`
with the diffusion characteristic time

τD =
s20
2D . The elongation can thus be written as

ρ(t∗) = e
Pe
Da
t∗ . (C.24)

Given Equation (C.9) for the definition of θ, we find

θ(t∗) =
1

4 Pe

(
e2 Pe

Da
t∗ − 1

)
=

1

4 Pe

(
ρ2(t∗)− 1

)
. (C.25)

Differentiating Equation (C.23) with respect to nondimensional space, we get

∂c∗
∂x∗

=
ρ(t∗)√
2πθ(t∗)

exp

(
−x

2
∗ρ

2(t∗)
4θ(t∗)

)
. (C.26)

Integrating the latter expression in Equation (C.22) gives the nondimensional scalar dis-
sipation rate for the front scenario

χf∗(t∗) =
ρ(t∗)

2
√

2πθ(t∗)
. (C.27)

Scenario 2 : Discrete pulse

Using the same approach and the solution found for a discrete pulse in Equation (C.13),
we find for this scenario the nondimensional concentration as

c∗(x∗, t∗) =
1

2

[
erf

(
x∗ρ(t∗) + x0,∗√

4θ(t∗)

)
− erf

(
x∗ρ(t∗)− x0,∗√

4θ(t∗)

)]
. (C.28)

Differentiating, we obtain

∂c∗
∂x∗

=
ρ(t∗)

2
√
πθ(t∗)

[
exp

(
−(x∗ρ(t∗) + x0,∗)2

4θ(t∗)

)
− exp

(
−(x∗ρ(t∗)− x0,∗)2

4θ(t∗)

)]
, (C.29)

and we obtain the nondimensional scalar dissipation rate for the discrete pulse scenario

χp∗(t∗) =
ρ(t∗)√
2πθ(t∗)

[
1− exp

(
−

x2
0,∗

2θ(t∗)

)]
. (C.30)

Scenario 2bis : Gaussian pulse

Using the same approach and the solution found for a Gaussian pulse in Equation
(C.18), we find for this scenario the nondimensional concentration as

c∗(x∗, t∗) =
1√

2θ(t∗) + 1
exp

(
− x2

∗ρ
2(t∗)

2 + 4θ(t∗)

)
. (C.31)
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Differentiating, we obtain

∂c∗
∂x∗

= − 2ρ2(t∗)x∗
(2 + 4θ(t∗))

√
2θ(t∗) + 1

exp

(
− x2

∗ρ
2(t∗)

2 + 4θ(t∗)
,

)
. (C.32)

and we obtain the nondimensional scalar dissipation rate for the Gaussian pulse scenario

χg∗(t∗) =
ρ(t∗)

√
π

2(1 + 2θ(t∗))3/2
. (C.33)

The scalar dissipation rate is usually observed for a conservative problem, in order to
give the information about the efficiency of mixing. In Figure C.4, we show the nondimen-
sional scalar dissipation rate computed from Equations (C.27) and (C.30), for a front of
nutrients and a discrete pulse injection, respectively. The analytical solutions fit well the
numerical simulation. Slight misfits appear in the limit of high Pe in the pulse scenario,
when the scalar dissipation rate drops very fast to values below 10−15 to 10−30, and where
numerical errors become not negligible (data not shown).

In the case of the front (Figure C.4a), a higher Pe leads to a conservation of a higher
scalar dissipation rate at late times. This is explained easily by our previous observations
that an exponential stretching applied to a nutrient front was able to preserve higher
gradients (see Figure C.1). In the limit of high Pe, the scalar dissipation rate reaches a

constant and so does the concentration gradient by definition of χf∗ . This is consistent
with the fact that the mixing front reaches an equilibrium scale called the Batchelor scale
(Batchelor, 1959; Villermaux, 2018).

In the case of a discrete pulse injection (Figure C.4b), the exponential stretching brings
maximum concentrations down rapidly, leading to the fast decrease of the scalar dissipation
rate and to a fast mixing.

Pe Pe

a b

0.001

0.01 

0.1  

1    

10   

100  

1000 

Pe

Figure C.4: Scalar dissipation rate for each scenario under stretching as functions
of time for fixed Pe. Numerical simulations are shown as symbols and analytical solutions
as solid lines. The whole range of Pe is shown with the same color mapping. (a) Nutrient
front. (b) Discrete pulse injection.
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Appendix D

Detailed change of coordinates for the
lamellar description

This appendix is derived from Ottino (1982) and adapted to our case of interest. We
will explain the change of variables and the development needed to obtain the lamellar
description of the advection-diffusion-reaction equation for a concentration C. We start
by writing the problem in classical Cartesian coordinates as

∂C

∂t
= γx

∂C

∂x
+D

∂2C

∂x2
+ r. (D.1)

We use the new variables z and θ and we start to define these variable with no a priori
information on their dependence on x and t:

θ = θ(x, t) x = x(z, θ)
z = z(x, t) t = t(z, θ)

Then, we decompose the three derivatives of C that will arise in the following develop-
ments, in terms of z and θ (see Equation (D.2), where we used chain rule once for (D.2a)
and (D.2b), and twice for (D.2c)),

∂C

∂t
=
∂C

∂θ

∂θ

∂t
+
∂C

∂z

∂z

∂t
, (D.2a)

∂C

∂x
=
∂C

∂θ

∂θ

∂x
+
∂C

∂z

∂z

∂x
, (D.2b)

∂2C

∂x2
=
∂C

∂θ

∂2θ

∂x2
+
∂2C

∂θ2

(
∂θ

∂x

)2

+ 2

(
∂2C

∂z∂θ

)
∂θ

∂x

∂z

∂x
+
∂C

∂z

∂2z

∂x2
+
∂2C

∂z2

(
∂z

∂x

)2

.

(D.2c)

From now on, we start to set some a priori information. First, we obtain Equation (D.3)
by the definition of θ,

∂θ

∂x
= 0. (D.3)

Then we impose Equations (D.4) by computing the time derivative of θ and then identi-
fying the spatial derivative of z

∂θ

∂t
= D

(
∂z

∂x

)2

. (D.4)
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Finally, we set the hypothesis defined as

∂z

∂t
= γx

∂z

∂x
+D

∂2z

∂x2
. (D.5)

Equation (D.3) imposes the restriction that θ = θ(t) and therefore, Equation (D.4) be-
comes Equation (D.6), where h is an unknown function of t only,

∂z

∂x
= h(t). (D.6)

Equation (D.6) leads to

∂2z

∂x2
= 0, (D.7)

and

z = xh(t) + k, (D.8)

where the constant k can be set as zero without loss of generality. Combining Equations
(D.5) and (D.7) leads to

∂z

∂t
= γx

∂z

∂x
. (D.9)

When we substitute Equations (D.4) and (D.6) into Equation (D.9), we get

dh(t)

dt
= γh(t), (D.10)

from there, we get 1
h
dh
dt = γ. As we define γ = −1

s
ds
dt , with s the lamella width function

of t, we finally get s(t) = 1/h(t). Substituting this relation in Equations (D.4) and (D.6)
gives us

dt

dθ
=
s2(t)

D
. (D.11)

Now, substituting Equations (D.2) into (D.1), and using Equations (D.3), (D.4), (D.5)
and (D.11) leads to the following solution:

∂C

∂θ
=
∂2C

∂z2
+
s2

D
r. (D.12)



Appendix E

Solution of the 1D diffusion equation

This appendix is dedicated to finding the general solution u(x, t) of the diffusion
equation (Equation (E.1)) on the ]-∞;+∞[ domain for x and a known initial condition
u(x, 0) = φ(x) using Fourier transform, a classical method for this well-studied problem,

∂u

∂t
= D

∂2u

∂x2
. (E.1)

We will need two facts that are proven using the definition of the Fourier transform. We
write the Fourier transform of u in Equation (E.2)a and the inverse Fourier transform
in Equation (E.2)b. We use the simplified derivative notation as follows, ut = ∂u

∂t and

uxx = ∂2u
∂x2 , and write for the Fourier transform and its inverse:

û(k, t) =

∫ ∞

−∞
u(x, t)e−ikxdx, (E.2a)

u(x, t) =
1

2π

∫ ∞

−∞
û(k, t)eikxdk. (E.2b)

Fact 1:
ût(k, t) =

∫∞
−∞ ut(x, t)e

−ikxdx
=
∫∞
−∞

∂
∂t [u(x, t)e−ikx]dx

= ∂
∂t

[∫∞
−∞ u(x, t)e−ikxdx

]

= ∂
∂t û(k, t)

Fact 2:
ûxx(k, t) =

∫∞
−∞ uxx(x, t)e−ikxdx

= −
∫∞
−∞ ux(x, t)[(−ik)e−ikx]dx

= (ik)
∫∞
−∞ ux(x, t)e−ikxdx

= (ik)2
∫∞
−∞ u(x, t)e−ikxdx

= (ik)2û(k, t)
(using integration by parts, twice)

The diffusion equation is ut −Duxx = 0, with D > 0, and we know the initial condition
u(x, 0) = φ(x). We take the Fourier transform of both of these equations and get Equation
(E.3), using the two previous facts,

∂

∂t
û(k, t) +Dk2û(k, t) = 0, (E.3a)

û(k, 0) = φ̂(k). (E.3b)
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We see that for Equation (E.3a), I(t) = eDk
2t is an integrating factor, which means that

I(t)Dk2 = ∂
∂tI(t). Therefore, multiplying both sides of the equation by I(t) and identifying

the product rule for derivatives (uv)’=u’v+uv’, we get

∂

∂t

(
eDk

2tû(k, t)
)

= 0. (E.4)

When we integrate the latter equation with respect to t only, Equation (E.4) becomes
eDk

2tû(k, t) = f(k), with f(k) an arbitrary function of k. This leads to û(k, t) = f(k)e−Dk
2t.

Using the initial condition û(k, 0) = φ̂(k), we get f(k) = φ̂(k) and Equation (E.4) becomes

û(k, t) = φ̂(k)e−Dk
2t. (E.5)

Now that we know the Fourier transform of the general solution u(x, t), we will proceed by
finding the function S(x, t), whose Fourier transform is Ŝ(k, t) = e−Dk

2t. Using Equation
(E.2)b, we get:

S(x, t) =
1

2π

∫ ∞

−∞
Ŝ(k, t)eikxdk =

1

2π

∫ ∞

−∞
e−Dk

2t+ikxdk. (E.6)

There are two methods to compute this integral. We could identify Ŝ as the Fourier
transform of a Gaussian function, or we could complete the square in the exponent. We
choose the latter and define ξ = k − ix

2Dt , so that dξ = dk. With this definition, we get

−Dtξ2 = −Dk2t+ ikx+ x2

4Dt . Therefore, we can find the identity (E.7) and write

e−Dk
2t+ikx = e−Dξ

2te−
x2

4Dt , (E.7)

S(x, t) =
1

2π
e−

x2

4Dt

∫ ∞

−∞
e−Dξ

2tdξ. (E.8)

Here we identify a Gaussian integral, which solution is
√

π
Dt and we get the solution for

S:

S(x, t) =
1√

4πDt
e−

x2

4Dt . (E.9)

The convolution theorem states that the Fourier transform turns convolutions into multi-
plications. Indeed, for f and g arbitrary functions of x, then

f ∗ g =

∫ ∞

−∞
g(x′)f(x− x′)dx′, (E.10)

=

∫ ∞

−∞
g(x′)

[
1

2π

∫ ∞

−∞
f̂(k)eik(x−x′)dk

]
dx′. (E.11)

Interchanging the order of integration leads to

f ∗ g =
1

2π

∫ ∞

−∞
f̂(k)

[∫ ∞

−∞
g(x′)e−ikx

′
dx′
]
eikxdk, (E.12)

=
1

2π

∫ ∞

−∞
f̂(k)ĝ(k)eikxdk, (E.13)

= F−1[f̂(k)ĝ(k)]. (E.14)
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with F−1 the inverse Fourier transform. Then, applying the Fourier transform to both
sides leads to

f̂ ∗ g(k) = f̂(k)ĝ(k). (E.15)

Therefore, as we have û(k, t) = φ̂(k)Ŝ(k, t) (Equation (E.5)), we must have the relation
u = φ ∗ S, which writes as

u(x, t) =

∫ ∞

−∞
S(x− y, t)φ(y)dy, (E.16)

Thus, we obtain

u(x, t) =
1√

4πDt

∫ ∞

−∞
e−

(x−y)2

4Dt φ(y)dy. (E.17)

Equation (E.17) is the general solution for Equation (E.1) with known initial condition
φ(x) = u(x, 0) on the ]-∞;+∞[ spatial domain.
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Appendix F

Toolbox

F.1 Constants and characteristic numbers

This section regroups the main constants and characteristic numbers used during the
thesis. It was a great tools and will be of substantial technical support for those who take
over this work.

Main physical constants

Name Symbol Value SI unit Equivalent unit

Avogadro constant NA 6.022× 1023 mol−1 -

Boltzmann constant kb 1.3807× 10−23 kg.m2.s−2 JK−1

Cole-cole exponent c 0 < c ≤ 1, 0.5 in the Warburg model - -

Gravity acceleration g 9.807 m.s−2 -

Ideal gas constant R 8.3144598(48) kg.m2.mol−1.K−1.s−2 J.mol−1.K−1

Density or Volumetric mass (ρ)

Type Name Symbol Temperature Value SI unit Reference

Liquid Water ρW 20°C 998.2 kg.m−3
(Lide, 2004)

Liquid Water ρW 25°C 997.0 kg.m−3
(Lide, 2004)

Liquid Water ρW 37°C 993.0 kg.m−3
(Lide, 2004)

Diffusion coefficient (D)

In the scenario of a particle much bigger than the solvent molecule size, Stokes-Einstein
equation gives the diffusion coefficient of that particle (D) as:

D =
kbT

6πµr
(F.1)

with r taken so that the approximated sphere has the same volume as the particle molar
volume: 2r = (VMNA )1/3. Using the following temperatures relation and Equation ??, we
get proportionality factors between diffusion coefficients at different temperatures:

T (K) = T (°C) + 273.15 (F.2)
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thus

D(20°C)

D(25°C)
= 0.87368 (F.3a)

D(37°C)

D(25°C)
= 1.3398 (F.3b)

Name Environment Symbol Temperature Value SI unit Reference

Dioxygen Air DO2−air 25°C 1.76× 10−5 m2.s−1
(Cussler, 2009)

Dioxygen PDMS DO2−PDMS room 1.3× 10−9 m2.s−1
(Adler et al., 2010)

Dioxygen PDMS DO2−PDMS 34.85°C 4.1× 10−9 m2.s−1
(Charati and Stern, 1998)

Dioxygen Water DO2 20°C 1.97× 10−9 m2.s−1 -

Fluorescein Water Dfluo 25°C 5.4× 10−10 m2.s−1 -

Fluorescein Water Dfluo 37°C 7.83× 10−10 m2.s−1 -

Glucose Agar gel Dglucose−agar 20°C 6.0× 10−10 m2.s−1
(Schantz and Lauffer, 1962)

Glucose Water Dglucose 20°C 5.86× 10−10 m2.s−1 -

Glucose Water Dglucose 25°C 6.7× 10−10 m2.s−1 -

Glucose Water Dglucose 37°C 9.4× 10−10 m2.s−1
(Lide, 2004)

Molar mass (M)

Name Molecular formula Symbol Value SI unit Reference

Fluorescein C20H12O5 Mfluo 332.311× 10−3 kg.mol−1 PubChem

Fluorescein Diacetate C24H16O7 MFDA 416.385× 10−3 kg.mol−1 PubChem

(D-)Glucose C6H12O6 Mglucose 180.156× 10−3 kg.mol−1 PubChem

Pressure conversions (P )

A brief reminder of SI unit equivalence: Pa = kg.m−1.s−2

Pa mmHg atm psi

1 Pa = 1 1
133.3

1
101325 1.4508×10−4

1 mmHg = 133.3 1 1
760 0.019339

1 atm = 101325 760 1 14.70

1 psi = 1.4508×104 51.709 0.068027 1

Viscosity (dynamic) (µ)

As shown by (Kestin et al., 1978), dynamic viscosity of water is temperature dependant.
They demonstrated that capillary viscometer are providing much more accurate values of
viscosity ratios than absolute viscosity. They derived the following empirical equation
from their experimentations, with a standard deviation of 0.02%.

log

{
µ(T (°C))

µ(20°C)

}
=

20− T
T + 96

{1.2364−1.37×10−3(20−T )+5.7×10−6(20−T )2}, 0°C ≤ T ≤ 40°C

(F.4)
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Type Name Symbol Temperature Value SI unit Equivalent unit

Liquid Water µW 20°C 1.0016× 10−3 kg.m−1.s−1 Pa.s

Liquid Water µW 25°C 0.89× 10−3 kg.m−1.s−1 Pa.s

Liquid Water µW 37°C 0.69099× 10−3 kg.m−1.s−1 Pa.s

F.2 Working with solution concentration

Working within an interdisciplinary research field led to complicated discussions in
terms of meaning of physical parameters and units. Solute concentration v/v is volume to
volume. Solute concentration w/v is weight to volume. 0.1% w/v is 1mg.mL−1 or 1g.L−1.

Name Symbol SI unit Equivalent unit

Avogadro constant NA mol−1 -

mass m 10−3 kg g

mass concentration C kg.m−3 -

molar concentration c 103 mol.m−3 mol.L−1

molar mass M g.mol−1 -

molecular mass (mass of 1 molecule) Mm 10−3 kg g

number of molecules N - -

number of moles n mol -

part per billion ppb 10−6 kg.m−3 10−6 g.L−1

part per million ppm 10−3 kg.m−3 1000 ppb

volume V 10−3 m3 L

Symbol Relation to other parameters

NA 6.022× 1023

m N ×Mm OR n×M
C m/V OR c×M
c n/V OR C/M

M m/n OR NA ×Mm

Mm fonction of chemical formula and atomic mass of each compound

N n×NA OR m/Mm

n N/NA OR m/M

V n/c OR m/C

F.3 Michaelis-Menten kinetics

F.3.1 Michaelis-Menten equation

The Michaelis-Menten model (Michaelis and Menten, 1913) gives the best-known ap-
proach to enzyme kinetics. A substrate S binds reversibly to an enzyme E to form an
enzyme-substrate complex ES, which then reacts irreversibly to generate a product P and
to regenerate the free enzyme E. This system can be represented schematically as follows:
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E + S
kf


kr
ES

kcat−→E + P (F.5)

The Michaelis-Menten equation for this system is:

v =
vmax[S]

KM + [S]
(F.6)

where v is the reaction velocity, vmax is the maximum velocity achieved by the system at
maximum (saturating) substrate concentrations, [S] is the concentration of the substrate
S, and KM is the Michaelis constant defined as:

KM = [S]v= vmax
2

(F.7)

The demonstration of Equation F.5 is as follow.
In Equation F.5, kf is the forward rate, kr the reverse rate and kcat the catalytic rate

that denote the reaction rate constants. These constants are dependant on temperature
and this relation is defined by Arrhenius equation:

k = A exp

(
Ea
RT

)
(F.8)

where A is the pre-exponential factor, Ea is the activation energy (in kJ.mol−1), R is
the universal gas constant and T the temperature (in K). This equation can be written
in terms of natural logarithms (used by Green et al. (2006) to determine the activation
energy as the negative slope of curve ln k vs ln 1/T ):

ln k = lnA− Ea
RT

(F.9)

With these definitions, the rate of change can be written for each chemical species.

d[S]

dt
= −kf [E][S] + kr[ES] (F.10a)

d[E]

dt
= −kf [E][S] + (kr + kcat)[ES] (F.10b)

d[ES]

dt
= kf [E][S]− (kr + kcat)[ES] (F.10c)

d[P ]

dt
= kcat[ES] (F.10d)

In the steady-state approximation, d[ES]
dt = 0. If we define the total amount of enzyme ET

following the relation [ET ] = [E] + [ES], then Equation F.10c gives:

[ES] =
[ET ][S](

kr+kcat
kf

)
+ [S]

(F.11)

And as v = d[P ]
dt = kcat[ES], we get:

v =
kcat[ET ][S](
kr+kcat
kf

)
+ [S]

(F.12)
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Since vmax is the reaction velocity at saturating substrate concentration, it is equal to
kcat[ES] when [ES] = [ET ]. We also define KM in terms of rate constants:

KM =
kr + kcat

kf
(F.13)

With this substitution, we get the Michaelis-Menten equation for the system (Equation
F.6).

F.3.2 Lineweaver-Burk transformation of Michaelis-Menten equation

Equation F.6 can be rewritten as :

1

v
=

KM

vmax
· 1

[S]
+

1

vmax
(F.14)

In this form, the relationship can be considered linear in the variables 1
[S] and 1

v .

F.4 Microscope Leica Dmi8 filters

Filter name Excitement (nm) Dichroic (nm) Emission (nm)

DAPI 350/50 400 460/50

FITC 480/40 505 527/30

RHOD 546/10 560 585/40

CY5 620/60 660 700/75

Fura2 340/26 400 510/80
and

380/11

Figure F.1: Light wavelengths
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Appendix G

French summary – Résumé en français

Le sous-sol est riche en ressources de nature variable, qu’il s’agisse de ressources ali-
mentaires (agriculture, eau potable), énergétiques (combustibles fossiles, géothermie) ou
de développement technologique (minerais, terres rares). C’est aussi un environnement en
constante évolution, soumis à des écoulements de fluides qui modifient les propriétés des
roches sur leur trajet et relient entre elles des structures géologiques séparés dans l’espace et
avec des propriétés physico-chimiques très distinctes. Dans cet environnement dynamique,
une biosphère importante se développe à la frontière entre les processus physiques et chim-
iques (Amundson et al., 2007; Chapelle, 2000). Le sous-sol est donc naturellement au cen-
tre d’une recherche de plus en plus interdisciplinaire, dans le but de démêler les nombreux
processus qui en font un environnement en perpétuelle évolution. Ces milieux confinés
contiennent une part importante de la biomasse terrestre sous forme de microorganismes
(Bar-On et al., 2018; Whitman et al., 1998). Les bactéries du sous-sol ont fait l’objet
de nombreuses études depuis des décennies (Dobbins et al., 1992; Dong, 2010; Langwaldt
and Puhakka, 2000; Magnabosco et al., 2018). Cependant, la question de l’influence de
l’environnement physique, par exemple les gradients de vitesse d’écoulement et de concen-
tration de nutriments, sur leur dynamique reste une question largement ouverte (Boano
et al., 2014; Borer et al., 2018; Rusconi and Stocker, 2015; Tél et al., 2005). C’est l’objet
de la présente thèse de doctorat.

G.1 Contexte de l’étude

Pour leur métabolisme, les bactéries ont besoin de donneurs et d’accepteurs d’électrons
(Thullner et al., 2007). Dans le milieu naturel, ces composants sont souvent séparés
spatialement (McAllister et al., 2015; McClain et al., 2003). Un accepteur d’électrons tel
que l’oxygène se trouve principalement dans les eaux de surface, alors que des donneurs
d’électrons tels que les minéraux dissous se trouvent plutôt dans dans les eaux profondes.
Par conséquent, les fronts de mélange entre les eaux de surface et les eaux profondes
sont souvent des zones de réactivité microbienne accrue. Par exemple, au niveau des
rivières ou des puits dans les aquifères, des zones de mélange de ce type sont propices
au développement de bactéries ferroxydantes (Bochet et al., 2018). Cette étude n’est pas
un cas isolé et les fronts de mélange peuvent apparâıtre pour de multiples raisons dans le
sous-sol. La Figure G.1 illustre la vaste diversité des événements pouvant engendrer des
hotspots, définis comme des zones de mélange propices aux réactions chimiques et/ou aux
développements bactériens dans le sous-sol.

Les hotspots de réaction sont liés à ces fortes hétérogénéités spatiales, mais ne pour-
raient pas exister sans les phénomènes de transport liés aux flux d’eau dans les sols.

253



Appendix G French summary – Résumé en français 254

Figure G.1: Diagramme des processus de mélange dans le sous-sol montrant la
grande variété de processus de mélange qui peuvent conduire à la forte localisation de
points de haute réactivité chimique et de croissance accrue de communautés bactériennes
(Rolle and Le Borgne, 2019).

Ces hotspots sont donc également hétérogènes dans leur temporalité, dans la mesure
où ils sont soumis aux variations temporelles des conditions hydrodynamiques des en-
vironnements souterrains. De plus, de nombreuses réactions chimiques dans le sol sont
catalysées par des espèces bactériennes, telles que la dénitrification (Boisson et al., 2013) ou
les réactions d’oxydoréduction du fer dissous ou des résidus de calcite (Hunter et al., 1998).
La croissance de ces populations est ainsi dépendante des variations liées au transport de
nutriments nécessaires à leur métabolisme. La dynamique des populations bactérienne
elle-même est composée d’étapes qui s’étendent sur des temps caractéristiques très variés.
La Figure G.2 présente les processus liés aux étapes de vie d’une population bactérienne
créant un biofilm sur une surface, ce qui correspond à un mode de développement classique
des bactéries dans le milieu environnemental.

Ainsi, le développement de bactéries dans leur milieu naturel est soumis aux condi-
tions de transport pour pouvoir créer un environnement favorable à la croissance, mais
les bactéries doivent également être en mesure de s’accrocher aux surfaces des roches
pour pouvoir créer des communautés complexes, plus aptes à survivre et à se disséminer
(Donlan and Costerton, 2002). Afin de comprendre les cycles de vie microbiens dans leur
environnement naturel, certaines étapes critiques de leur développement dans ces restent
à étudier. Les travaux antérieurs ont surtout porté sur (i) la nage bactérienne à l’approche
de surfaces (Berke et al., 2008) ou sous gradients de concentrations (Ahmed et al., 2010),
l’approche des surfaces et les processus de détection et d’adhésion (Berne et al., 2018), (ii)
la réaction des biofilms aux gradients de vitesse à débit contrôlé (Lecuyer et al., 2011) et
au transport des nutriments (Borer et al., 2018; Skolimowski et al., 2010).

Dans cette thèse, nous nous concentrons sur les premiers stades du développement
bactérien sur les surfaces, phase essentielle après que les bactéries aient atteint une sur-
face, mais avant qu’elles n’aient pu développer des structures extracellulaires complexes
et former des biofilms. Nous étudions l’influence des hétérogénéités hydrodynamiques de
l’environnement bactérien, qui se traduisent par des gradients de concentration en nutri-
ments et des gradients de vitesse. Nous souhaitons répondre aux questions suivantes :

• Quels sont les effets de la limitation des nutriments sur les bactéries fixées aux
surfaces ?

• Les stratégies de colonisation des surfaces par des bactéries dépendent elles des



G.2 Outils expérimentaux et numériques 255

Figure G.2: Temps caractéristiques de la dynamique de croissance bactérienne
sur une surface. Les processus sous-jacents à la croissance du biofilm peuvent
être classés en trois catégories : hydrodynamique (orange), transport de masse (bleu)
et développement du biofilm (violet). Les processus hydrodynamiques se produisent
généralement sur des échelles de temps de 10−1-101 s ; le transport de masse sur 10−3-
101 s (réactions chimiques) et 101-103 s (diffusion des nutriments) ; et la croissance,
la décomposition et le détachement des biofilms sur 104-107 s. Le détachement est di-
visé en deux grandes catégories : détachement de bactéries individuelles (érosion) et
détachement des morceaux importants de biofilms contenant des bactéries et des sub-
stances polymériques. Les processus se déroulent généralement sur les échelles de temps
indiquées, mais ils peuvent se dérouler en continu et en parallèle les uns des autres.

écoulements ?

• La croissance microbienne peut elle être accélérée par les processus de mélange ?

G.2 Outils expérimentaux et numériques

Au cours de cette thèse, nous utilisons des expériences de microfluidiques afin d’observer
et de décrire l’effet du flux sur la croissance de colonies microbiennes. Nous développons
des cellules microfluidiques à multiples couches afin d’assurer le contrôle des concentra-
tions de glucose et d’oxygène, nutriments nécessaires à la croissance des bactéries Es-
cherichia coli (voir Figure G.3). Afin d’assurer la qualité des designs utilisés, nous
simulons les phénomènes de transport par advection et diffusion dans les canaux mi-
crofluidiques et à travers les membranes de polydimethylsiloxane (PDMS) utilisées pour
la fabrication des cellules, grâce au logiciel Comsol Multiphysics. Dans la Figure G.4,
nous démontrons l’utilisation des simulations numériques afin de trouver les paramètres
nécessaires à l’établissement d’une concentration d’oxygène stable et suffisante pour la
croissance bactérienne malgré l’écoulement.

D’autres outils numérique ont été développés en Matlab ou Python durant cette
thèse, notamment pour le traitement d’images nécessaire à la description des phénomènes
bactériens observés. Ce traitement consiste principalement à suivre les bactéries in-
dividuelles sur des séries d’images représentant plusieurs heures de développement des
bactéries sous flux, permettant ainsi de déterminer les caractéristiques phénotypiques de
ces bactéries individuelles mais également d’étudier l’impact du flux sur les colonies à
travers des attributs géométriques.
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Figure G.3: Design microfluidique pour l’étude de l’effet du cisaillement sur
la dynamique de croissance bactérienne. Les canaux bleus sont pour les liquides,
les nutriments et les bactéries, et les canaux rouges pour la circulation de l’air. Ils sont
séparés par une membrane PDMS de 150 µm d’épaisseur. Les bactéries sont injectées le
long de la flèche bleue. Les nutriments sont ensuite injectés par la même entrée et de l’air
est insufflé dans les canaux supérieurs pour assurer le renouvellement de l’oxygène.
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Figure G.4: Simulation du transport d’oxygène par advection-diffusion dans
le design microfluidique. (a) Importation du design dans Comsol Multiphysics et
définition des matériaux : bleu pour les liquides, rouge pour l’air et gris pour le PDMS.
(b) Champs de vitesse sur un plan xy dans les canaux, le flux va de la gauche vers la
droite. La vitesse (et la contrainte de cisaillement) sont plus faibles dans le canal central
fin. (c) Champs stationnaire de concentration d’oxygène normalisée dans le canal central
et les parois de PDMS. La concentration d’oxygène est plus homogène dans ce canal en
raison de la proximité de parois poreuses de PDMS. (d) Profil de concentration d’oxygène
normalisée sur un plan xz le long de la ligne pointillée noire dans (c), dans le pire scénario
avec un débit élevé où l’oxygène n’est pas renouvelé par advection. La flèche noire indique
le sens d’écoulement dans la partie inférieure du design.
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G.3 Étude expérimentale de l’effet de l’écoulement sur la
croissance bactérienne

Dans un premier temps, nous avons cherché à comprendre si les modèles de croissance
bactérienne de type Monod pouvaient s’appliquer à des bactéries attachées à une surface
soumise à un flux. La cinétique de Monod est une cinétique de type Michaelis–Menten
appliquée à une population croissante de bactéries. Nous avons donc mesuré le taux de
croissance de populations bactériennes soumises à un flux dans un canal microfluidique,
en modifiant les concentrations de glucose injectées d’une expérience sur l’autre. Nous
avons ainsi pu déterminer que la cinétique de Monod était applicable dans une certaine
limite à ce type de croissance (résultats présentés dans la Figure G.5). Dans la limite des
faibles débits, la croissance sous flux est soumise à une diminution rapide de la quantité
d’oxygène disponible car son renouvellement par le transport est limité, réduisant ainsi
les taux de croissance observés. Dans la limite des débits élevés, les taux de croissance ne
suivent plus une loi de type Monod et la croissance globale observée est inférieure à celle
prédite par ces modèles. Nous avons donc décidé d’étudier plus en détail l’effet du flux et
donc de la contrainte de cisaillement imposée aux bactéries accrochées aux surfaces sur la
dynamique de colonisation des bactéries.
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Figure G.5: Taux de croissance effectif mesuré pour différents débits d’injection.
Les données présentées sous forme de diamants sont les taux de croissance maximums
effectifs des expériences pour un débit donné, quelle que soit la concentration de glucose,
à condition qu’elle soit supérieure à la constante de demi-saturation de Monod. Les lignes
noires indiquent le taux de croissance maximal effectif moyen et l’intervalle de confiance
défini par son écart-type dans cet ensemble de données. Les points noirs correspondent à
une série d’expériences avec renouvellement de l’oxygène assuré à partir du haut du canal
microfluidique. Les lignes pointillées rouges définissent trois zones, A : faible débit avec un
faible taux de croissance expliqué par le manque de renouvellement d’oxygène. Les cercles
noirs et la zone en transparence correspondent à ces expériences complémentaires réalisées
avec un apport constant d’oxygène, validant l’hypothèse d’une réduction de croissance par
manque d’oxygène. B : capacité maximale du taux de croissance, et C : débit élevé où
l’apport de nutriments ne peut pas expliquer la baisse du taux de croissance effectif.
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Nous avons donc mené plusieurs séries d’expériences de microfluidiques en variant les
débits imposés, permettant ainsi de tester plusieurs gammes de contrainte de cisaillement
imposée au fond du canal. Les gammes choisies correspondent à des contraintes de cisaille-
ment τw égales à 2 mPa pour le régime ulow, 20 mPa pour low, 50 mPa pour med et 80
mPa pour high. En suivant les bactéries individuellement, nous les avons classées en fonc-
tion de leur temps d’arrivée par division dans le champs d’étude (voir Figure G.6). Ainsi,
nous avons observé que les petites contraintes de cisaillement permettaient aux bactéries
de recouvrir rapidement la surface du canal microfluidique et que toutes les bactéries sem-
blent participer à l’effort de colonisation. Au contraire, dans les cas de contraintes de
cisaillement plus élevées, la croissance est moins rapide, la couverture de la surface réduite
et de nombreuses bactéries ne créent pas de colonies.

min

Figure G.6: Suivi des générations de bactéries en fonction de la contrainte de
cisaillement. Distribution spatiale des bactéries à des intervalles de 120, 240 et 360
minutes après le début des expériences. Les coordonnées spatiales sont données en mi-
cromètres. Les couleurs correspondent à l’intervalle de temps auquel chaque bactérie est
apparue sur les images. Après division, les deux nouvelles bactéries héritent de la couleur
correspondant au moment de leur séparation.

Nous avons utilisé des observations avec un haut taux d’acquisition pour suivre le
devenir des bactéries qui quittent leur colonie d’origine. Nous avons ainsi obtenu des taux
de décrochement qui augmentent avec la contrainte de cisaillement (Figure G.7). Parmi
ces bactéries décrochées, une proportion de plus en plus faible est capable de se raccrocher
à la surface lorsque le cisaillement augmente. En utilisant ces mesures, nous avons cherché
à corriger les taux de croissance globaux observés dans les canaux microfluidiques. Si les
taux de croissance sont d’ordres similaires pour les régimes de cisaillement ulow et low, les
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taux de croissance corrigés des effets du décrochement/raccrochement diminuent toujours
avec l’augmentation du cisaillement. Ce résultat démontre que le décrochement n’est pas
le seul impact de l’écoulement sur le taux de croissance global mesuré sur les populations
de bactéries attachées aux surfaces. Nous avons donc concentré la suite des observations
sur le comportement individuel des bactéries sous flux, notamment pour expliquer les
différences en terme de développement de colonies et de couverture de surface.

ba

c

Figure G.7: Taux de détachement et rattachement en fonction de la contrainte
de cisaillement. (a) Rapport du nombre de bactéries détachées de la colonie initiale sur
le nombre total de bactéries produites, en fonction du régime de cisaillement. La ligne
orange représente la médiane de la distribution et les extrêmes représentent les quartiles.
(b) Rapport des bactéries rattachées par rapport au nombre de bactéries détachées, qui
diminue avec l’augmentation de la contrainte de cisaillement. Un rapport proche de 1
pour le régime de contrainte de cisaillement ulow signifie que la plupart des bactéries qui
s’échappent de la colonie initiale se déposent à nouveau à la surface, tandis qu’un rapport
de 0.1 pour le régime de contrainte de cisaillement high signifie que la grande majorité
des bactéries détachées sont définitivement perdues dans le flux. (c) Taux de détachement
mesuré (µd), taux de rattachement (µr) et taux de croissance réel (µeff ) en h−1. µcorr est
µeff corrigé des bactéries perdues dans le flux.
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Lorsque chaque bactérie est identifiée, nous calculons une ellipse moyenne permettant
d’évaluer l’orientation de la bactérie, ses pôles ainsi que son centre de masse. Le mouve-
ment de ce dernier est suivi pour chaque bactérie et permet de calculer un déplacement
quadratique moyen (MSD). A l’aide de cette mesure, nous identifions un type de bactéries
qui est beaucoup moins mobile et qui ne se divise pas pendant toute la durée des expériences.
Ces bactéries, nommées non-diviseurs, sont plus nombreuses lorsque la contrainte de ci-
saillement augmente (Figure G.8). Elles sont caractérisées par un déplacement de leur
centre de masse plus faible d’un ordre de grandeur par rapport aux bactéries actives en
division. De plus, elles sont attachées par leurs deux pôles, alors que les bactéries en
division sont attachées plus fermement par un pôle. L’autre pôle, plus mobile, permet la
scission entre les deux nouvelles bactéries lors d’une division qui est donc asymmétrique.

1 μm

1 μm

a b c

d e

Figure G.8: Ségregation des diviseurs vs non-diviseurs. (a) Processus de division
d’une bactérie sous un régime de contrainte de cisaillement low avec son ellipsöıde et son
centröıde de référence. Pendant la division, la cellule s’allonge dans le sens de l’écoulement
et la position initiale du centröıde est marquée par le cercle rouge en tirets. Après la
division, la bactérie initiale est devenue deux nouvelles cellules, colorées en fonction de
l’intervalle de temps où la division a eu lieu. (b) Rapport antre diviseurs et non-diviseurs
dans le premier intervalle de temps (0 à 40 minutes) pour tous les régimes de contrainte
de cisaillement avec les écarts types. Les lignes reliant les points sont des guides pour les
yeux, soulignant l’inversion des rapports dans la limite du cisaillement élevé. (c) Nombre
cumulatif de bactéries observées pour chaque catégorie, avec écart-type des mesures. (d)
MSD moyen de la division des diviseurs en lignes pleines et des non-diviseurs en lignes
pointillées. (e) Évolution temporelle du rapport du nombre des non-diviseurs sur le nombre
total de bactéries pour chaque régime de cisaillement.

Afin de mieux comprendre la dynamique des bactéries en division sous flux, nous
avons mesuré les temps de division de chaque bactérie (Figure G.9a). Il apparâıt que la
distribution des temps de croissance suit une loi de probabilité de Poisson avec un temps
moyen autour de 40 minutes. Les queues de distribution quant à elles révèlent l’existence
de bactéries qui se divisent sur des temps beaucoup plus longs. A partir de ces données,
nous avons observé que les taux d’élongation sont globalement identiques pour toutes les
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bactéries, quelque soit le temps ou la contrainte de cisaillement (Figure G.9b). Les queues
de distribution des temps de division correspondent à une proportion de bactéries qui
démarrent leur processus de division avec un retard, après une phase d’accrochement sur
la surface plus longue.

a

b

Figure G.9: Evolution temporelle du temps de division et du taux d’élongation
en fonction du régime de cisaillement. (a) Distribution du temps de division pour
chaque régime de contrainte de cisaillement et chaque intervalle de temps. (b) Taux
d’élongation normalisé pour chaque régime de contrainte de cisaillement et chaque inter-
valle de temps obtenu à partir de l’évolution de la taille des bactéries dans le temps.
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Les effets du flux au travers de la contrainte de cisaillement sur la dynamique de crois-
sance étant maintenant connus, nous avons cherché à comprendre comment les différents
motifs de colonisation de surfaces en sont impactés. Nous avons commencé par étudier les
facteurs géométriques caractérisant les colonies (Figure G.10), tels que leur eccentricité,
leur orientation ou leur surface. Nous avons ainsi montré que les colonies d’Escherichia
coli poussant sur les surfaces de nos cellules microfluidiques sont toujours excentriques.
Avec une contrainte de cisaillement élevée, les colonies s’orientent toujours dans la direc-
tion du flux et sont limitées en taille, du fait du décrochement plus important de cellules
nouvellement formées par division.
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Figure G.10: Regroupement des bactéries en colonies. Les bactéries individuelles
sont fusionnées en colonies lors du traitement d’image. Le résultat affiché ici correspond
à des intervalles de 2 heures. Les colonies sont indiquées en jaune. Le sens d’écoulement
est indiqué par la flèche rouge. Chaque panneau correspond à une surface de 50 µm en
hauteur et 150 µm en longueur.

Afin de comprendre l’origine des motifs de colonisation, nous avons ensuite utilisé
des observations à haute fréquence d’acquisition pour suivre les trajectoires des bactéries
détachées (Figure G.11). Nous avons ainsi démontré que plus le flux est important, plus les
bactéries, nommées exploreurs, parcourent de grandes distances avant de se raccrocher. La
liberté d’orientation de leurs trajectoires est également beaucoup plus restreinte puisqu’elle
sont forcées de suivre la direction de l’écoulement. Les vitesses mesurées le long des
trajectoires sont inférieures à des vitesses typiques de nage libre et les déplacement de
bactéries qui parviennent à se raccrocher à la surface ne se font jamais hors du focus
des objectifs de microscopie. Ainsi, nous avons pu déterminer que ces bactéries ne sont
jamais réellement détachées, mais plutôt qu’elles se déplacent lentement sur la surface,
à moins d’un micromètre de hauteur, trâınant ainsi leurs organites extracellulaires qui
peuvent mesurer plusieurs microns sur la surface. A l’inverse, les bactéries qui atteignent
des vitesses de l’ordre de grandeur de celle d’une nage libre, qui gardent donc un contact
plus faible avec la surface, sont toujours emportées par le flux et ne sont pas retrouvées
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dans le canal. Avec une expérience à débit variable, nous avons montré que ces bactéries
sont capables de se raccrocher et de redémarrer la colonisation d’une surface rapidement
si elles retrouvent des conditions plus favorables en terme de contrainte de cisaillement.
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Figure G.11: Statistiques sur les trajectoires de bactéries détachées. (a) Vitesse
instantanée sur les trajectoires sélectionnées pour des bactéries en mouvement. Pour
chaque régime de contrainte de cisaillement, une cartographie couleur personnalisée a été
appliquée sur les valeurs de vitesse instantanée (tracées en µm.s−1), afin de mieux mettre
en évidence les variations de vitesse sur chaque trajectoire. Les coordonnées spatiales
sont également différentes dans chaque panneau. Les trajectoires commencent toujours à
l’origine du système de coordonnées. Le sens d’écoulement est indiqué par la flèche rouge.
Dans chaque panneau, des trajectoires ont été sélectionnées pour mettre en évidence les
comportements typiques du régime. (b) Distributions des directions effectives prises par
les trajectoires avec des valeurs d’écart-type données en radians. Les cases s’étendent du
quartile inférieur au quartile supérieur de la distribution de la direction effective. La ligne
orange représente la médiane de ces distributions et les extrêmes s’étendent jusqu’aux
percentiles 10 et 90. La direction du flux est par définition la direction à 0 radians.
(c) Vitesse maximale atteinte le long de chaque trajectoire considérée, avec les symboles •
pour les bactéries qui se rattachent au fond du canal microfluidique et � pour les bactéries
perdues dans le flux. La zone grise représente la plage de vitesse de nage libre.
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Les motifs de colonisation sur les surfaces sous écoulement découlent de deux phénomènes,
à la fois la capacité des bactéries à se dupliquer et leur capacité d’explorer l’espace autour
de la colonie initiale et de se rattacher pour former de nouvelles colonies. L’imagerie à
haute fréquence permet de suivre l’évolution de ces cellules responsables de l’exploration
et de la production de nouvelles colonies en aval de leur colonie d’origine (Figure G.12).
C’est bien par des étapes de déplacement de proche en proche que les bactéries explorent
les surfaces, en s’immobilisant chacune à leur tour afin de produire à la fois une nouvelle
colonie et de nouvelles cellules pour l’exploration.

5 μm

Figure G.12: Histoire d’une colonisation. Parcours de bactéries détachées de leur
colonie initiale dans le régime de contrainte de cisaillement medium. Les bactéries rouges
se développent exclusivement dans la colonie initiale. Les bactéries vertes voyagent 20 µm
avant de se déposer et de se diviser. Les bactéries bleues parcourent moins de distance.
Après rattachement sur la surface, les anciennes cellules se divisent tout en restant au
même endroit et les nouvelles cellules se comportent comme des bactéries exploratrices.
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G.4 Étude numérique de l’effet du mélange sur la cinétique
de réaction

Le flux a un effet mécanique sur les bactéries qui croissent sur une surface au travers
de la contrainte de cisaillement, mais il a également un rôle à jouer dans le transport
des nutriments nécessaires au métabolisme des bactéries. En particulier pour Escherichia
coli, qui répond à une loi de croissance de Monod en conditions favorables, le transport de
nutriments peut avoir un impact important sur la cinétique des réactions de production
de biomasse. En effet, le taux de réaction d’une loi de type Michaelis–Menten (ou Monod
pour des bactéries en croissance) peut être simplifié par une approximation qui le décrit
comme un taux constant aux fortes concentrations et linéaire avec la concentration après
un seuil (Figure G.13).

transition

|r(c)|=μ

|r
(c
)|
=
μc
/α

|r(c)|=μc/(c+α)

Saturated kinetics

Li
n
e
a
r 

ki
n
e
ti

cs

Figure G.13: Approximation du taux de réaction de type Michaelis–Menten.
Transition nette utilisée comme approximation de la cinétique de Michaelis-Menten. Les
paramètres utilisés pour ce dessin explicatif sont α=1 et µ=1.

Nous avons mené une étude numérique d’une réaction simplifiée de Michaelis–Menten
pour déterminer l’effet du mélange sur le taux de réaction. Nous comparons ainsi le cas
d’un milieu parfaitement homogène (ou ’batch’) avec une injection ponctuelle soumise à
du transport par diffusion. Selon les régimes considérés, l’évolution du profil initial de
concentration peut être contrôlée par la réaction, par la diffusion ou par un couplage en-
tre ces deux phénomènes (Figure G.14). L’exploration de ces différents régimes a révélé
que le mélange, représenté dans ce cas d’étude par la forte diffusion caractérisée par les
faibles nombres de Damköhler, pouvait être à l’origine d’une augmentation importante de
la cinétique de réaction, avec jusqu’à deux ordres de grandeur de différence (Figure G.15).
Ce résultat, valable pour des régimes où la phase de cinétique saturée est dominante, peut
se comprendre par l’effet du mélange permettant de répartir les masses de réactifs dans
le domaine de taux de réaction linéaire, plus efficace pour la réaction. Au contraire, un
réacteur de type ’batch’ nécessite de consommer toute la masse à un taux de réaction con-
stant jusqu’à atteindre une masse (ou concentration) critique pour passer à une cinétique
linéaire.
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Da

α

Figure G.14: Evolution temporelle d’un profil de concentration dans les
différents régimes pour l’état initial carré. 50 pas de temps sont représentés par des pro-
fils bleus. La valeur de α est représentée par une ligne rouge et la position de la frontière
ξ calculée numériquement à chaque pas est représentée par des cercles verts. Verticale-
ment, les valeurs pour Da sont (10−3,1,103). Horizontalement, les valeurs pour α sont
(0.01,0.05,0.26).
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Figure G.15: Amélioration du taux de réaction relatif par le mélange. Le taux de
réaction maximum est divisée par α pour mettre en évidence l’écart entre la cinétique de
type ’batch’ et la cinétique dans un milieu hétérogène avec processus diffusifs.
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A partir de ces observations, nous avons développé un modèle analytique permettant
de décrire l’évolution des masses de réactifs en fonction du régime considéré. Ce modèle se
base sur l’hypothèse forte que la cinétique peut être comprise en appliquant les effets de la
réaction et de la diffusion de manière parallèle mais faiblement couplée, i.e. les deux effets
existent mais ne communiquent pas entre eux. Des solutions analytiques complètes ont été
obtenues pour les cas extrêmes d’une réaction dominante ou d’une diffusion dominante.
Une solution semi-analytique a été développée pour tous les régimes intermédiaires et
s’est avérée être très efficace dans la prédiction de l’évolution de la masse de réactif. Cette
solution repose sur la connaissance de l’évolution de la position de la frontière entre les deux
régimes de réaction ainsi que sur le flux diffusif entre les deux régimes à cette frontière. La
Figure G.16 résume les conclusions obtenues pour les différents régimes, montrant que la
réaction est toujours maximale lorsque le régime linéaire, plus efficace, est plus important.
Cependant, l’ajout du transport et donc du mélange permettent de rendre les régimes avec
taux de réaction fortement non-linéaire beaucoup plus efficaces.
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Figure G.16: Diagramme récapitulatif de l’amélioration de la cinétique de
réaction par le mélange. Les régimes découplés ont été décrits avec des solutions
analytiques complètes et les autres régimes avec un modèle semi-analytique.

Dans une dernière partie, nous avons ajouté la notion de mélange par advection à celle
de mélange par diffusion, en considérant un cas typique des milieux poreux: la déformation
exponentielle retrouvée dans les modèles lamellaires de mélange. En utilisant une approche
numérique, nous avons démontré que cette forme de transport peut rapidement devenir
dominante dans son impact sur la réactivité et permet d’augmenter les taux de réaction
pour des régimes où la diffusion seule ne faisait pas varier significativement l’efficacité
d’une réaction de type Michaelis–Menten.
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G.5 Conclusion

Ces travaux trouvent leur origine dans l’observation que les processus de transport
dans le sous-sol sont responsables de l’hétérogénéité des flux à grande échelle spatiale,
entrâınant un mélange d’espèces chimiques et l’accélération du développement de commu-
nautés bactériennes spécifiques. Les modèles classiques appliqués à la croissance bactérienne
sont généralement basés sur l’hypothèse forte que les conditions environnementales sont
bien mélangées en termes de disponibilité du des nutriments. Il est clair que l’environnement
naturel est beaucoup plus complexe et que l’hétérogénéité des flux produit des gradients
de vitesse et des gradients de concentration du substrat, qui ne sont jamais stationnaires.
Ces phénomènes sont observés sur le terrain dans les forages et ont été liés à des fractures
qui entrâınent des fronts de mélange des eaux souterraines et donc le développement de
biofilms bactériens spécifiques. À partir de là, la compréhension approfondie des processus
sous-jacents nécessite des études à l’échelle des pores, là où les hétérogénéités de flux et
les processus de mélange se produisent réellement et là où les communautés microbiennes
doivent réussir à développer des biofilms matures. Dans ce travail, nous avons abordé ces
questions de deux façons. Nous avons utilisé des expériences de microfluidiques pour com-
prendre l’impact du flux sur les premiers stades du développement bactérien sur les surfaces
et nous avons utilisé des simulations numériques pour explorer l’effet du mélange sur la
cinétique des réactions qui sont représentatives de la dynamique de croissance bactérienne
en volume dans les liquides.

Nos résultats démontrent expérimentalement l’effet de la contrainte de cisaillement
sur la dynamique de croissance des bactéries en surface. Nous avons mis en évidence
l’existence d’une adaptation sous flux des bactéries sous la forme d’une variabilité de leur
adhésion et donc de leur capacité à se diviser. Nous avons également compris d’où provien-
nent les motifs de colonisation des surfaces par les bactéries en étudiant les déplacements
individuels des bactéries capables d’explorer leur environnement. En utilisant des sim-
ulations numériques et des développements analytiques, nous avons également démontré
que le transport, et à travers lui le mélange, peut engendrer des conditions de réactivité
accrues, pouvant expliquer les observations faites sur le terrain et consistant à focaliser le
développement d’espèces microbiennes sur des fronts de mélange.

Les résultats obtenus lors de cette thèse sont encourageants et donnent de nombreuses
idées pour des études futures sur le couplage entre les processus de mélange de fronts
réactifs et la dynamique bactérienne. Au cours de ces travaux, nous avons étudié plusieurs
solutions pour des développements ultérieurs, tels qu’une conception microfluidique pour
imposer des conditions de gradient chimique pour des expériences futures sur les bactéries
oxydant le fer qui se développent dans les conditions de mélange spécifiques décrites par
des travaux précédents sur des sites de terrain. Ces gradients peuvent prendre de nom-
breuses formes, grâce à la flexibilité des designs microfluidiques, et nous avons également
conçu et testé un dispositif créant l’étirement exponentiel d’un front de mélange. Ces
aspects peuvent être étudiés en parallèle avec le cadre numérique que nous avons introduit
dans cette thèse et nous avons déjà proposé une nouvelle paramétrisation qui permet-
trait d’étudier les effets couplés de la dynamique bactérienne sur les processus de mélange
advectif et diffusif.
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