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Thomas Botzung
Study of strongly correlated one-dimensional systems with

long-range interactions

Résumé Durant cette thèse, nous étudions des systèmes unidimensionnels avec des couplages
longue-portée. Dans la première partie, nous démontrons que ces couplages entraînent une
décroissance algébrique des corrélations dans des fils quantiques désordonnés. Deuxièmement,
nous analysons un modèle étendu de Hubbard où les particules interagissent via un potentiel
« soft-core » générant de nouvelles phases exotiques. Dans le troisième chapitre, nous démon-
trons que restaurer l’extensivité a une influence sur les propriétés de basse énergie de modèle
quantique dans la limite thermodynamique. Finalement, nous présentons des résultats prélim-
inaires sur la modification de la localisation d’Anderson en présence d’un couplage avec une
cavité.
Mots clés: Systèmes quantiques à N corps, Physique de la matière condensée, Méthodes
numériques, Interactions à longue portée.

Abstract During this Ph.D, we studied one-dimensional systems with long-range couplings.
In the first part, we demonstrate that power-law couplings lead to an algebraic decay of cor-
relations at long distances in disordered quantum wires. In the second chapter, we analysed
an extended Hubbard model where particles interact via a finite-range potential that induces
frustration and new exotic phases. In the third chapter, we demonstrated that restoring energy
extensivity has an influence on the low-energy properties of quantum model in the thermody-
namic limit. Finally, we provide preliminary results on the modification of Anderson localization
due to the coupling to a cavity mode.
Keywords: Quantum Many-Body Systems, Condensed Matter Physics, Numerical Methods,
Long-Range Interactions.





Résumé
Les interactions à longue-portée sont intrinsèques à une myriade de systèmes physiques,

allant des amas auto-gravitants des matériaux ferromagnétiques, des plasmas non-neutres,
des systèmes de cavités-QED ou encore des chaines d’atomes/spins à 1D. En raison de
leurs fascinantes propriétés, elles jouent un rôle prépondérant dans la recherche actuelle,
aussi bien sur le plan théorique qu’expérimental. Récemment, de nombreux travaux
théoriques ont mis en lumière des effets intriguant pour ces systèmes, incluant par ex-
emple des nouvelles phases quantiques, des propagations anormales des fonctions de cor-
rélations et de l’intrication quantique. En outre, de nos jours, les récents progrès pour
réaliser des réseaux artificiels de gaz d’atomes froids offrent une plateforme idéale pour
créer et étudier une variété de modèles longue-portée fortement corrélés, qui sont utilisés
en matière condensée. En particulier, les modèles unidimensionnels constituent souvent
un candidat fantastique pour explorer à la fois le rôle des interactions et révéler de nou-
veaux phénomènes. Qui plus est, utiliser une dimensionnalité réduite rend généralement
le problème suffisamment simple pour être résolu à l’aide de méthode spécifique telle la
bosonization. De surcroît, des simulations numériques de haute précision peuvent être
réalisées via la méthode de Density Matrix Renormalisation Group (DMRG) afin de car-
actériser les phases quantiques exotiques à une dimension. Cette thèse est axée autour
de quatres thèmes essentiels : (i) une étude de l’impact des couplages longue-portée sur
le phénomène de la localisation d’Anderson, (ii) la recherche de phase quantique exotique
induite par une interaction à portée finie et par effet de frustration, et enfin (iii) la com-
préhension de l’extensivité de l’énergie sur les phases quantiques dans des systèmes à une
dimension avec des interactions de longue-portée.

La localisation d’Anderson [1], à savoir la localisation des ondes électroniques de Bloch
dûe aux interférences dans un milieu désordonné, est un phénomène fondamental dans la
nature. En particulier, la présence d’un désordre suffisamment important peut mener à
une complète absence de diffusion dans l’échantillon désordonné, où les ondes quantiques
sont alors localisées exponentiellement. Bien que pour les systèmes avec interaction à
courte-portée cette description ait été confirmée par pléthore d’études expérimentales et
théoriques, une question cependant émerge, que deviennent les propriétés des modèles
localisés en présence de couplages longue-portée ? Récemment, cette question a reçu un
intérêt considérable, déclenché par la possibilité expérimentale de contrôler à la fois la
portée et la forme de l’interaction. Par exemple, le modèle d’Ising avec des interactions
de spins en loi de puissance 1/lα où l’exposant α est contrôlable entre 0 et 3, a été réalisé
dans des expériences révolutionnaires en utilisant des réseaux d’ions froids générés par
un laser [2–6] ou également avec des atomes piégés par un guide d’ondes à cristaux pho-
toniques [7, 8]. Afin d’examiner plus en détail cette question, dans la première partie de
la thèse nous analysons l’interdépendance entre le désordre et les potentiels longue-portée
dans des fils quantiques de fermions et de spins où l’interaction décroît avec la distance l
comme une loi de puissance. Plus spécifiquement, nous nous concentrons en premier lieu
sur un modèle sans interaction de fermions sans spin où les particules peuvent sauter de
sites en sites (seulement entre plus proches voisins) et sont soumises à un appariement
longue-portée. Par souci de complétude, nous considérons un modèle avec du désordre
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dans le terme de saut ou dans le terme d’appariement, que nous nommons modèle I et
modèle II, respectivement. Ces systèmes correspondent à une extension du modèle de
Kitaev avec des appariements longue-portée, qui ont déjà été étudié dans [9]. Ce dernier a
l’avantage significatif de rester quadratique en terme d’opérateur fermionique et ce faisant
de rester exactement soluble. En combinant des résultats analytiques et numériques, nous
nous sommes concentrés sur les fonctions de corrélations à un corps et deux corps, dé-
couvrant plusieurs nouvelles caractéristiques : (i) les fonctions de corrélations décroissent
algébriquement à longue distance dans toutes les phases localisées et ce pour tout α. (ii)
L’exposant caractérisant la décroissance dépend exclusivement de α et non par exemple
de la force du désordre. Ce dernier point a été notamment démontré par un résultat an-
alytique, en parfait accord avec le numérique. (iii) De manière intéressante, nous avons
également trouvé que la fonction d’onde, habituellement localisée exponentiellement dans
le phénomène de localisation d’Anderson, présente ici une localisation algébrique à longue
distance. Finalement, nous avons étudié un système avec interaction via le modèle d’Ising
longue-portée dans un champ transverse. Puisque ce dernier n’est pas intégrable, nous
avons utilisé un algorithme de Density Matrix Renormalisation Group pour résoudre le
problème. De façon tout à fait remarquable, nous avons noté que les mêmes prédictions
analytiques restent valides pour les corrélations de la chaine d’Ising. Ces résultats ap-
paraissant parallèlement dans des modèles sans et avec interaction suggèrent l’existence
d’un comportement universel dû aux couplages longue-portée.

En général, les systèmes à une dimension sont décrits par la classe universelle des Tomonaga-
Luttinger Liquids (TLL). Dans cette théorie, le comportement à basse énergie des modèles
interagissant de fermions, bosons et spins peuvent être transposé sur un modèle de boson
libre. Cette description est souvent la clef pour comprendre la plupart des systèmes de
matière condensée à une dimension. Ces derniers comprennent diverses systèmes tels que
des matériaux organiques, des nano-fils, des nanotubes de carbone, les modes de bords
dans des matériaux à effet Hall quantique. Cependant, des travaux récents [10–14] ont sig-
nalé une possible défaillance de la théorie TLL. En outre, une question cruciale demeure,
comprendre la robustesse du paradigme conventionnel TLL dans des systèmes soumis
à différents types de potentiel. Dans la deuxième partie de la thèse, nous investigons
méthodiquement le diagramme de phase à température nulle (T = 0) d’une variante
étendue du modèle de Hubbard à une dimension dans laquel un système de fermions avec
spin peut interagir à la fois avec un potential sur site U mais également avec un potentiel
répulsif V fini dans une certaine region de longueur rc. Le cas pour une interaction entre
proches voisins (rc = 1) est effectivement bien décrit par la théorie de TLL, toutefois,
quand la portée de l’interaction est étendue sur quelques sites (rc > 1), un effet de frus-
tration peut apparaître et la situation devient alors dramatiquement différente. En effet,
la commensurabilité entre la densité de particule et la portée du potentiel peut mener à
la formation d’amas de particules qui sont alors libres de se déplacer dans leur ensemble,
conduisant à un nouveau type de phases non-gappées que nous définissons comme un
TLL d’amas, et nommons ces dernières Cluster Luttinger Liquid (CLL). En variant la
force des interactions U et V (assumées répulsives U, V > 0), nous sommes amenés à
rencontrer différents type d’amas et ce faisant différentes type de phases CLL. Les sim-
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ulations numériques ont été réalisées via un algorithme de DMRG [15], néanmoins en
raison du haut degré de frustration inhérent au modèle et au fait qu’il se trouve toujours
dans une phase critique, atteindre une haute précision au sein de ces simulations est un
challenge considérable. Malgré ces contraintes, nous avons démontré que pour des faibles
valeurs de U et V la phase est bien décrite par un liquide standard TLL. Par contre,
pour U < V , nous trouvons une phase CLL dans laquelle les amas contiennent une
particule ou un couple de particule proches voisins. A contrario dans le cas V < U , nous
avons une phase avec des doublons, ou les amas peuvent être constitués d’une particle ou
d’un site doublement occupé. Ces deux phases sont respectivement dénommées CLLnn
et CLLd (c.f. figure 4). Au niveau semi-classique, nous avons trouvé que la transition
entre ces deux liquides apparait à V = 2/3U . De plus, en réalisant un étude intensive
de l’entropie d’intrication et des degrés de liberté de basse énergie au point critique de la
transition entre le liquide conventionnel TLL et CLLnn , nous y avons prouvé l’émergence
d’un mode super-symétrique. Autrement dit, en ce point critique, les vitesses des modes
bosonic et fermionic deviennent équivalentes. Finalement, nous avons noté que pour de
faibles valeurs U et fortes/intermédiaires magnitudes de V , le système a tendance à
former un liquide avec seulement des sites doublement occupés. Ces travaux vont être
publiés à SciPost dans les semaines à venir.

Dans la troisième partie, nous portons notre attention vers l’étude des étonnantes pro-
priétés émergeantes dans le régime de « forte » longue-portée. Un système physique est
dit interagissant à longue-portée quand le potentiel V entre les particules décroît comme
une loi de puissance avec la distance r : V (r) ∝ 1/rα avec α > 0. Plus particulièrement,
le régime de « forte » longue-portée pour un système d-dimensionnel avec un volume V
est atteint quand α < d. Ce dernier est typiquement associé avec des propriétés ther-
modynamiques inhabituelles telle que la non-extensivité de l’énergie E ∼ V2−α

d , menant
notamment à une limite thermodynamique mal défini. De manière intéressante, ces sys-
tèmes présentent aussi une non-additivité, c’est-à-dire que l’énergie totale ne peut pas être
obtenue en sommant les énergies des différents sous-systèmes comme c’est généralement le
cas en présence d’interaction à courte-portée [16]. Tandis que cette non-additivité appa-
raît comme une propriété essentielle pour les systèmes longue-portée [16, 17], l’extensivité
quant à elle peut être restaurée en appliquant un rescale du potentiel d’interaction avec
un facteur Λ dépendant du volume, connu sous le nom de la prescription de Kac. Cette
dernière est par exemple systématiquement utilisée pour étudier les propriétés thermo-
dynamiques des modèles classiques de spin avec interactions à longue-portée. Dans les
systèmes quantiques de matière condensée, cependant, le rescaling de Kac n’est habituelle-
ment pas considéré, ce qui pose l’intéressante et ouverte question de savoir si l’extensivité
de l’énergie peut modifier les propriétés fondamentales des systèmes quantiques longue-
portée. Pour ce faire, nous analysons les propriétés de l’état fondamental d’un mod-
èle à une dimension de boson de coeur dur interagissant via un potentiel longue-portée
en utilisant la méthode de DMRG. Nous avons démontré que restaurer l’extensivité de
l’énergie dans le système, via la prescription de Kac, a une profonde influence sur les
propriétés de basse énergie du système. Dans la limite thermodynamique, il apparaît
en effet qu’en absence de rescale la phase est isolante tandis qu’en appliquant la pre-
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scription sus-mentionnée la phase est métallique pour toute valeur finie de l’interaction.
Nous avons réalisé notre analyse en combinant des résultats issus à la fois de la théorie
de Luttinger et du numérique. Nous démontrons également que le mode de plasmon est
supprimé quand l’extensivité de l’énergie est restaurée tout en préservant le caractère
longue-portée du potentiel.

Finalement dans la dernière partie de cette thèse, nous étudions la modification de la
localisation d’Anderson en présence d’un couplage avec un mode de cavité. Nous choisis-
sons un modèle d’Anderson composé de N émetteurs quantiques sur un réseau cubique
en trois dimensions. En premier lieu, nous analysons plusieurs observables telle que la
probabilité de retour, ou l’inverse du ratio de participation. Ces deux quantités, nous
donnent des mesures qualitatives du degré de localisation dans notre système. Nous mon-
trons des différences importantes dans le régime de fort désordre (W ≫ J) et de couplage
fort (g

√
N ≫ W/2), que nous caractérisons comme une phase semi-localisée (à opposer à

la phase localisée sans couplage avec une cavité). En effet, dans ce régime, la statistique
des niveaux montre un comportement Semi-poissonien, caractérisée par une repulsion de
niveau (comme dans la phase métallique) et un comportement exponentiel dans la partie
à longue distance (comme dans la phase localisée). Qui plus est, en traitant le désordre
comme une perturbation, nous avons obtenu des estimations analytiques pour les vecteurs
propres et valeurs propres de notre systèmes. Ces dernières reproduisent parfaitement
le comportement de la statistique des niveaux dans la phase semi-localisée. Enfin, dans
l’optique d’étudier les propriétés de transport au sein de ce système, nous nous concen-
trons sur la diffusion (c’est à dire l’évolution temporelle de l’écart quadratique moyen),
que nous analysons à la fois numériquement et analytiquement. Nous trouvons que les
polaritons determinent l’évolution à court terme tandis que les états sombres sont re-
sponsables d’une évolution anormale (sous-diffusif) à long terme. Nous terminons notre
discussion par l’analyse de la moyenne (sur le désordre) de la probabilité de transfert
d’une excitation. En séparant les contributions des polaritons et des états sombres, nous
montrons que les polaritons se comportent en ∼ 1/N2 et les états sombres en ∼ 1/N .
Ces derniers rappellent notamment le comportement des fonctions de Bloch dans les sys-
tèmes localisés. Ainsi, la phase semi-localisée présente à la fois des propriétés localisées
similaire à ceux d’un isolant et des propriétés de transfert d’excitations similaire à une
phase délocalisée.

Dans cette thèse, nous avons mis en lumière des nouveaux phénomène induits par des
couplages longue-portée dans des systèmes à une dimension inspirés de la physique AMO
(Atomic Molecular Optic). En premier lieu, nous avons établi qu’un couplage en loi de
puissance peut fortement modifier la localisation d’Anderson, donnant lieu à une local-
isation algébrique. Puis, en explorant le diagramme de phase d’un modèle étendu de
Hubbard avec des interactions « soft-shoulder », nous avons démontré l’existence de nou-
velles phases exotiques de liquides quantiques. Ensuite, nous nous sommes concentrés sur
une propriété intrinsèque des systèmes longue-portée, nommément la non-extensivité de
l’énergie.Nous avons notamment montré que restaurer l’extensivité a un impact profond
sur les phases des systèmes quantiques. Finalement, nous avons étudié la modification
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de la localisation d’Anderson en présence d’un couplage avec un mode de cavité. Nous
avons notamment démontré l’apparitions d’une nouvelle phase semi-localisée aux pro-
priétés partagées entre ceux d’un isolant et d’une phase délocalisée.
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Riassunto
Le interazioni a lungo raggio sono intrinseche ad una miriade di sistemi fisici, a par-

tire da cluster auto-gravitanti, materiali ferromagnetici, plasmi non neutri, fino a sistemi
QED in cavità o a catene di atomi o spin monodimensionali. A causa delle loro af-
fascinanti proprietà, queste svolgono un ruolo preponderante nella ricerca attuale, sia
teorica che sperimentale. Recentemente numerosi lavori teorici hanno messo in luce ef-
fetti nuovi ed intriganti per questi sistemi, tra cui, ad esempio, nuove fasi quantistiche o
una propagazione anormale delle funzioni di correlazione e dell’entanglement quantistico.
Inoltre, i recenti progressi nella realizzazione di reticoli artificiali di gas atomici freddi of-
frono al giorno d’oggi una piattaforma ideale per la creazione e lo studio di una molteplice
varietà di modelli a lungo raggio altamente correlati di interesse per la fisica della materia
condensata. In particolare, i modelli monodimensionali sono spesso ottimi candidati per
l’esplorazione del ruolo delle interazioni e per rivelare nuovi fenomeni. Inoltre, l’utilizzo
della ridotta dimensionalità di solito rende il problema abbastanza semplice da poter es-
sere risolto utilizzando metodi specifici come, ad esempio, la bosonizzazione. Per questi
sistemi, è inoltre possibile eseguire simulazioni numeriche di alta precisione utilizzando
il metodo DMRG (Density Matrix Renormalization Group) per caratterizzare nuove ed
esotiche fasi quantistiche. Questa tesi si concentra su quattro argomenti essenziali: (i)
uno studio sull’impatto degli accoppiamenti a lungo raggio sul fenomeno della localiz-
zazione di Anderson, (ii) la ricerca di fasi quantistiche esotiche indotte da interazioni a
raggio finito e dall’effetto della frustrazione, ed infine (iii) la comprensione dell’estensività
dell’energia sulle fasi quantistiche nei sistemi monodimensionali con interazioni a lungo
raggio.

La localizzazione di Anderson [1], ovvero la localizzazione delle onde elettroniche di Bloch
a causa di interferenze in un ambiente disordinato, è un fenomeno fondamentale in natura.
In particolare, la presenza di un disordine sufficientemente grande può portare a una com-
pleta mancanza di diffusione nel campione disordinato, in cui le onde quantistiche sono
quindi localizzate in modo esponenziale. Sebbene per i sistemi con interazione a corto
raggio questa descrizione sia stata confermata da numerosi studi sperimentali e teorici,
emerge tuttavia un’importante domanda: cosa succede alle proprietà dei modelli local-
izzati in presenza di accoppiamenti a lungo raggio? Recentemente, questa domanda ha
suscitato notevole interesse, innescato dalla possibilità di controllare, negli esperimenti,
sia il raggio che la forma dell’interazione. Ad esempio, il modello Ising con interazioni
di spin che decadono algeibraicamente con la distanza come 1/lα in cui l’esponente α è
controllabile tra 0 e 3, è stato realizzato in esperimenti rivoluzionari utilizzando reticoli di
ioni freddi generati da un laser [2–6] o ancora con atomi intrappolati da una guida d’onda
a cristalli fotonici [7, 8]. Al fine di esaminare in maniera più dettagliata questa domanda,
nella prima parte della tesi analizziamo l’interdipendenza tra disordine e potenziali a
lungo raggio nei fili quantistici di fermioni e di spin in cui l’interazione diminuisce alge-
braicamente con la distanza l. Più specificamente, ci concentriamo dapprima su un un
modello di fermioni senza spin in assenza di interazioni. In questo modello le particelle
possono saltare tra i diversi siti (solo tra siti primi vicini) e sono soggette ad un accop-
piamento a lungo raggio. Per completezza, consideriamo un modello con disordine nel
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termine di salto o nel termine di accoppiamento, che chiamiamo rispettivamente Mod-
ello I e Modello II. Questi sistemi corrispondono ad un’estensione del modello di Kitaev
con accoppiamenti a lungo raggio, che sono già stati studiati in [9]. Questo modello ha
il vantaggio significativo di rimanere quadratico in termini degli operatori fermionici e
quindi di essere esattamente solubile. Combinando sia risultati analitici che numerici, ci
siamo concentrati su funzioni di correlazione ad singolo corpo e a due corpi scoprendo
diverse nuove caratteristiche: (i) le funzioni di correlazione diminuiscono algebricamente
su lunghe distanze in tutte le fasi localizzate per tutti i valori di α. (ii) L’esponente che
caratterizza il decadimento dipende esclusivamente da α e non, ad esempio, dalla inten-
sità del disordine. Quest’ultimo punto è stato dimostrato in particolare da un risultato
analitico, in perfetto accordo con i risultati numerici. (iii) È interessante notare che ab-
biamo anche scoperto che la funzione d’onda, solitamente localizzata esponenzialmente
nel fenomeno della localizzazione di Anderson, presenta in questo caso una localizzazione
algebraica a lungo raggio. Infine, abbiamo studiato un sistema con interazione tramite
il modello Ising a lungo raggio in campo trasversale. Poiché quest’ultimo non è integra-
bile, abbiamo usato un algoritmo di Density Matrix Renormalization Group per risolvere
il problema. Abbastanza sorprendentemente, abbiamo notato che le stesse previsioni
analitiche rimangono valide per le correlazioni della catena Ising. Questi risultati, che
appaiono in parallelo nei modelli senza e con interazione, suggeriscono l’esistenza di un
comportamento universale a causa di accoppiamenti a lungo raggio.

In generale, i sistemi monodimensionali sono descritti dalla classe universale dei liquidi
Tomonaga-Luttinger (Tomonaga Luttinger Liquid o TLL). In questa teoria, il compor-
tamento a bassa energia dei modelli interagenti di fermioni, bosoni e spin può essere
trasposto su un modello a bosone libero. Questa descrizione è spesso la chiave per com-
prendere la maggior parte dei sistemi unidimensionali di materia condensata. Questi
includono vari sistemi come materiali organici, nanofili, nanotubi di carbonio, modalità
edge nei materiali quantistici di Hall. Tuttavia, recenti lavori [10–14] hanno riportato
un possibile fallimento della teoria TLL. Inoltre, un importante questione rimane ancora
aperta: comprendere la solidità del paradigma TLL convenzionale nei sistemi soggetti
a diversi tipi di potenziale. Nella seconda parte della tesi, analizziamo metodicamente
il diagramma di fase a temperatura zero (T = 0) di una variante estesa del modello
unidimensionale di Hubbard in cui un ensemble di fermioni con spin può interagire sia
on-site (con intensità U) sia con un potenziale repulsivo V in una determinata regione di
raggio rc. Il caso di un’interazione tra primi vicini (rc = 1) è in effetti ben descritto dalla
teoria TLL, tuttavia, quando l’ambito dell’interazione viene esteso su alcuni siti (rc > 1),
possono entrare in gioco effetti di frustazione che rendono la situazione drammaticamente
diversa. In effetti, la commensurabilità tra densità delle particelle e intervallo potenziale
può portare alla formazione di gruppi di particelle che sono quindi liberi di muoversi
insieme, portando a un nuovo tipo di fase gapless che definiamo come un TLL di clus-
ter e quindi denominiamo come Cluster Luttinger Liquid (CLL). Variando la forza delle
interazioni U e V (nel caso repulsivo U, V > 0), siamo portati ad incontrare diversi tipi
di cluster e quindi ad osservare diversi tipi di fasi CLL. Le simulazioni numeriche sono
state eseguite tramite un algoritmo DMRG [15], tuttavia a causa dell’elevato grado di
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frustrazione insito nel modello e del fatto che si trova ancora in una fase critica, ot-
tenere un’alta precisione all’interno di queste simulazioni diventa una sfida considerevole.
Nonostante questi vincoli, abbiamo dimostrato che per bassi valori di U e V la fase è
ben descritta da un liquido TLL standard. D’altra parte, per U ≫ V , troviamo una fase
CLL in cui i cluster contengono una particella o una coppia di particelle prime vicine. Al
contrario, nel caso V ≫ U , abbiamo una fase con doublons, in cui i cluster possono essere
costituiti da una o da due particelle sullo stesso sito. Queste due fasi sono rispettivamente
chiamate CLLnn e CLLd (vedi Figura 4). A livello semi-classico, abbiamo dimostrato che
la transizione tra questi due liquidi appare a V = 2/3U . Inoltre, conducendo uno stu-
dio intensivo sull’entropia entanglement e sui gradi di libertà a bassa energia nel punto
critico della transizione tra il fluido TLL e CLLnn convenzionale, abbiamo dimostrato
l’emergenza di un modo supersimmetrico. In altre parole, in questo punto critico, le ve-
locità dei modi bosonico e fermionico diventano equivalenti. Infine, abbiamo notato che
per bassi valori di U e forti o intermedie magnitudini di V , il sistema tende a formare
un liquido con solo siti doppiamente occupati. Questo lavoro sarà pubblicato su SciPost
nelle prossime settimane.

Nella terza parte, rivolgiamo la nostra attenzione allo studio di incredibili proprietà emer-
genti nel cosiddetto regime forte per le interazioni a lungo raggio. Si dice che un sistema
fisico interagisca a lungo raggio quando il potenziale V tra le particelle diminuisce come
una legge di potenza con la distanza r: V (r) ∝ 1/rα con α > 0. In particolare, per queste
interazioni, il cosiddetto regime "forte" a lungo raggio per un sistema d-dimensionale con
un volume V viene raggiunto quando α < d. Quest’ultimo è in genere associato a insolite
proprietà termodinamiche come la non estensibilità dell’energia E ∼ V2−α

d , portando in
particolare ad un limite termodinamico mal definito. È interessante notare che questi
sistemi sono anche non additivi, vale a dire che l’energia totale non può essere ottenuta
sommando le energie di diversi sottosistemi, come generalmente accade in presenza di
interazioni a corto raggio [16]. Mentre questa non additività appare come una proprietà
essenziale per i sistemi a lungo raggio, l’estensività può essere ripristinata applicando un
rescaling al potenziale di interazione con un fattore, Λ, dipendente dal volume e noto con
il nome nome di prescrizione Kac. Quest’ultima è ad esempio sistematicamente utiliz-
zata per studiare le proprietà termodinamiche dei modelli di spin classici con interazioni a
lungo raggio [16, 17]. Nei sistemi quantistici di materia condensata, tuttavia, il rescaling
di Kac di solito non viene preso in considerazione. Ciò solleva l’interessante e aperta
questione di come l’estensività dell’energia possa alterare le proprietà fondamentali dei
sistemi quantistici a lungo raggio. Per provare a rispondere a questa domanda, in questa
parte della tesi, utilizziamo il metodo DMRG per analizzare le proprietà dello stato fon-
damentale di un modello unidimensionale di bosoni hardcore che interagiscono attraverso
un potenziale a lungo raggio. Così facendo siamo riusciti a dimostrare che il ripristino
dell’estensività dell’energia nel sistema, attraverso la prescrizione di Kac, ha una pro-
fonda influenza sulle proprietà a bassa energia del sistema. Nel limite termodinamico,
sembra infatti che in assenza di tale rescaling la fase sia isolante mentre applicando la sud-
detta prescrizione la fase è metallica per qualsiasi valore finito dell’interazione. Abbiamo
eseguito la nostra analisi combinando i risultati sia della teoria di Luttinger che nu-
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merici. Dimostriamo anche che i modi plasmonici vengono soppressi quando l’estensività
dell’energia viene ripristinata preservando il potenziale a lungo raggio.

Infine, nell’ultima parte di questa tesi, studiamo l’alterazione del fenomeno della localiz-
zazione di Anderson in presenza di un accoppiamento con i modi normali di una cavità.
Scegliamo un modello Anderson costituito da N emettitori quantistici su un reticolo cu-
bico tridimensionale. Innanzitutto, analizziamo diversi osservabili come la probabilità
di ritorno o l’inverso del rapporto di partecipazione. Queste due quantità ci forniscono
misure qualitative del grado di localizzazione nel nostro sistema. Mostriamo importanti
differenze nel regime forte disordine (W ≫ J) e forte accoppiamento (g

√
N ≫ W/2),

che caratterizziamo come una fase semi-localizzata (a contrasto con la fase localizzata
senza accoppiamento con una cavità). Infatti, in questo regime, le statistiche dei livelli
mostrano un comportamento semi-poissoniano, caratterizzato da una repulsione di livello
(come nella fase metallica) e da un comportamento esponenziale nella parte a lunga dis-
tanza (come nella fase localizzata). Inoltre, trattando il disordine in modo perturbativo,
abbiamo ottenuto stime analitiche per gli autovettori e gli autovalori del nostro sistema.
Questi ultimi riproducono perfettamente il comportamento delle statistiche dei livelli
nella fase semi-localizzata. Infine, al fine di studiare le proprietà di trasporto all’interno
di questo sistema, ci concentriamo sulla diffusione (ovvero l’evoluzione temporale dello
scarto quadratico medio), che analizziamo sia numericamente e analiticamente. Scopri-
amo che i polaritoni determinano l’evoluzione a breve termine mentre gli stati dark sono
responsabili dell’evoluzione anormale (sub-diffusiva) a lungo termine. Terminiamo la nos-
tra discussione analizzando la media (sul disordine) della probabilità di trasferimento di
una singola eccitazione. Separando i contributi dei polaritoni e degli stati oscuri, mostri-
amo che i polaritoni si comportano come ∼ 1/N2 e gli stati oscuri come ∼ 1/N . Questi
ultimi richiamano in particolare il comportamento delle funzioni di Bloch nei sistemi lo-
calizzati. Pertanto, la fase semi-localizzata ha proprietà localizzate simili a quelle di un
isolante e proprietà di trasferimento di eccitazione simili a una fase delocalizzata.

In questa tesi, abbiamo messo in evidenza nuovi fenomeni indotti da accoppiamenti a
lungo raggio in sistemi monodimensionali ispirati alla fisica AMO (Atomic Molecular
Optic). In primo luogo, abbiamo stabilito che un accoppiamento della legge di potenza
può modificare fortemente il fenomeno della localizzazione di Anderson, dando origine
a una localizzazione algebrica. Quindi, esplorando il diagramma di fase di un modello
Hubbard esteso con interazioni soft-shoulder, abbiamo dimostrato l’esistenza di nuove
fasi esotiche di liquidi quantistici. Successivamente, ci siamo concentrati su una propri-
età intrinseca dei sistemi a lungo raggio, vale a dire la non estensibilità dell’energia. In
particolare, abbiamo dimostrato che il ripristino dell’estensività ha un profondo impatto
sulle fasi dei sistemi quantistici. Infine, abbiamo studiato l’alterazione del fenomeno della
localizzazione di Anderson in presenza di un accoppiamento con i modi normali di una
cavità. In particolare, abbiamo dimostrato la comparsa di una nuova fase semi-localizzata
con proprietà condivise tra quelle di un isolante e una fase delocalizzata.
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Introduction

Begin at the beginning, the King said, very gravely, and go on till you come
to the end: then stop.

Lewis Carroll, Alice in Wonderland

A physical system is said to be long-range interacting when the coupling between its
constituents decays slowly, e.g., algebraically with the distance separating them. Long-
range interactions naturally appear in the fundamental laws governing the universe such
as gravitational and electromagnetic forces. Electromagnetism describes interactions be-
tween charged particles and plays a fundamental role in the cohesion of matter in solids.
The latter typically consist of severals atoms, ions, or molecules forming a lattice and
bound together via molecular (dipole-dipole and Van der Waals interactions), ionic, or
covalent bondings. These interactions lie at the heart of condensed matter physics.

In classical physics governing the dynamics of gravitational systems, the presence of
long-range interactions leads to the emergence of exotic statistical and dynamical prop-
erties compared to systems with short-range interactions [18, 19]. When the potential
experienced by two particles decays with an exponent smaller than the dimension of the
space, the thermodynamic limit is ill-defined due to the energy non-extensivity [20, 21].
Another property of this strong long-range regime is referred to as non-addivity, i.e., the
total energy of the system can not be obtained by summing up the energies of different
subsystems. Non-addivity typically leads to unusual behaviors including the breaking of
ergodicity, the existence of slow relaxation processes towards the thermodynamic equilib-
rium, and the inequivalence of statistical ensembles [22–24]. These properties have been
widely studied in the context of classical spin models with long-range interactions, which
are used to describe magnetism in solids. At low temperature, however, quantum theory
is needed to describe certain magnetic properties due to, e.g., itinerant electrons [25–27].
Indeed, quantum fluctuations play a crucial role in this case because the De Broglie wave-
length of the electrons is typically larger than the lattice spacing.

The development of quantum mechanics across the twentieth century has led to remark-
able successes in the description of condensed matter systems. The band theory for
electrons in solids is a canonical example. For instance, most of metallic materials are
rather well described by independent electron models treating Coulomb interactions as a
perturbation [28–30]. Nevertheless, each order of the perturbative series diverges due to
the long-range character of the Coulomb potential. This issue was solved with the "ran-
dom phase approximation" (RPA) which consists of summing up the most divergent terms
resulting in a finite limit [31–34]. This method in fact captures the collective response of
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2 Introduction

the electron gas, linear combination of the individual excitations, which is responsible for
the screening of electrostatic potentials that become effectively short-range [35]. More
generally, the relevance of perturbative approaches relies on the concept of quasi-particle
introduced by Landau in 1956 [36]. The main idea is here to focus on the low-energy
properties of the system which are governed by independent electrons “dressed” by their
mutual interactions. Within this paradigm called “Fermi liquid”, correlations between
particles are completely neglected.

Strongly correlated phases of matter beyond the Fermi liquid description have been iden-
tified since the seminal paper of Bardeen, Cooper, and Schrieffer (BCS) in 1957 [37]. In
1911, K. Onnes discovered that the resistivity of mercury suddenly dropped to zero below
a certain critical temperature of about 4 K [38]. The BCS theory interpreted this phe-
nomenon as a phase transition where electrons spontaneously form “Cooper” pairs below
the critical temperature. In parallel, the phenomenological description of such phase tran-
sitions was provided by Ginzburg and Landau who interpreted them as resulting from
a spontaneous symmetry breaking and the emergence of a local order parameter [39].
Another famous example is the transition from a paramagnetic to a ferromagnetic state
below the Curie temperature. In strongly anisotropic magnetic materials, such a transi-
tion can be described by the simple Ising model for 1/2 spins aligned along a given axis
with nearest neighbor couplings [40, 41]. At zero temperature, Coulomb interactions can
solely drive a material that is metallic according to band theory towards an insulating
phase where electrons can not move due the strong repulsion, which is denoted as Mott
insulator transition [42]. The simplest model which features such a quantum phase tran-
sition is called the Hubbard model, where particles in a two-dimensional lattice can tunnel
between nearest neighboring sites and experience an on-site interaction. When the lat-
ter is repulsive and tuned above a critical value the system undergoes a metal-insulator
transition [43–47]. All these developments introduced the fundamental idea that some
emergent properties of condensed-matter systems can not be described by perturbative
approaches based on Fermi liquid theory.

Strongly correlated phases arise in particular in low-dimensional materials. For instance,
in one dimension all excitations are collective since an electron cannot move without
affecting the motion of all the other ones. In addition, the screening of the Coulomb po-
tential typically becomes less efficient as the dimensionality is reduced, and one recovers
the issues related to the divergence of the perturbative series. Theoretical descriptions of
these materials have been notably developed by Tomonaga and Luttinger in 1950s [48, 49],
who realized that the low-energy sector of one-dimensional metals fall into a new uni-
versal class referred to as Luttinger Liquids. A useful microscopic description was later
introduced by Haldane in 1981 [50], who expressed the collective excitations of many
fermions in one dimension in terms of bosonic modes. For this reason this approach
is nowadays denoted as bosonization. The latter has been successfully applied to quasi-
dimensional materials which include organic conductors such as Bechgaard salts [51], car-
bon nanotubes [52–54], as well as the edge states of quantum Hall systems [55, 56]. This
Luttinger liquid behavior has also been observed in artificial materials using cold gases
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of atoms [57–60]. Over the past decades, developments of efficient numerical techniques
such as the density matrix renormalization group for one-dimensional systems [61, 62]
and the quantum Monte Carlo algorithm [63, 64] for bosons in higher dimensions, have
allowed better understanding of strongly correlated materials.

The work of Haldane in the 80’s has led to the identification of another type of phase
transitions that are not captured by the Ginzburg-Landau theory, the so-called topologi-
cal phase transitions associated with non-local order parameters [65]. A famous example
at finite temperature is the Berezinsky-Kosterlitz-Thouless transition in two dimensions
that is not associated to any spontaneous symmetry breaking and where topological ex-
citations are vortices [66]. Another model has been introduced by Kitaev in 2001 and
consists of one-dimensional spinless fermions with nearest-neighbor hopping and pairing
terms [67]. This model was shown to feature a topologically ordered phase characterized
by two or more degenerate low-energy states localized at the edges of the open chain,
which correspond to topologically protected Majorana fermions. This phase can be seen
as a superconductor exhibiting Cooper pairs with p-wave symmetry. The Kitaev model
with long pairing has been addressed in recent work [9]. It was found that starting from
the paramagnetic phase where the system features a short-range order for nearest neigh-
bor electron pairing, increasing the range of this pairing term leads to the emergence of
a quasi long-range order at large distance [9, 68].

In the last decades, advances [69, 70] in cooling and trapping neutral atoms, ions, and
molecules, have opened the possibility of quantum emulation of strongly correlated ma-
terials [71–74]. A quantum simulator is a controllable quantum system that mimics the
dynamics or static properties of a quantum model that cannot be simulated efficiently
with a classical computer [75]. For instance, optical lattices [76, 77], which are artificial
crystals created by standing wave light, are an ideal platform to engineer large arrays of
atoms or molecules (100-106) due to the ac-Stark effect, and to confine them in a vari-
ety of low-dimensional lattice geometries. Furthermore, the possibility of controlling the
microscopic parameters via external lasers and magnetic fields (with, e.g., Feshbach reso-
nances [78]) allows to explore experimentally many quantum phases and quantum phase
transitions. An illustrative example is provided by the realization of the Hubbard model
for bosons and the associated transition from a superfluid to a Mott insulating phase [79].

Cold atoms experiments are also an ideal platform to simulate certain transport proper-
ties of condensed-matter systems. For instance, the localization phenomena introduced
by Anderson in 1957 is characterized by an absence of diffusion stemming from the in-
terference between multiple scattering paths of quantum waves moving in a disordered
lattice [1]. Since this effect relies on quantum coherence, cold atomic gases with long
coherence time (∼ 100 ms) have emerged as ideal candidates to observe Anderson lo-
calization experimentally, in contrast to condensed-matter systems where the excitation
lifetime is strongly limited by electron-phonon and electron-electron interactions. Such
metal-insulator transition purely induced by disorder was reported in Ref [80, 81]. In the
experiment of Ref. [81], the one-dimensional model originally introduced by Anderson
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was simulated by a bichromatic lattice. A main standing wave was used to generate the
optical lattice trap for the atoms, while changing its intensity allows to control the tun-
nelling rate. A second optical lattice with a different period that is non-commensurate
with the first one was then added to induce a disorder potential. Note that the impact
of Coulomb interactions on the Anderson localization phenomena is a complicated issue
that is still actively debated [82, 83].

Cold atomics gases also offer the possibility to tune the range and the shape of the
interactions. In particular, contact-like interactions (e.g. Van der Waals ∼ r−6) can lead
to a rich variety of phenomena and has been notably used to realize Bose Einstein con-
densates (BEC) [84–87] and degenerate Fermi gases of atoms experimentally. In addition,
long-range dipole-dipole interactions (∼ r−3) can be engineered by manipulating the large
permanent dipole moments naturally present in heteronuclear polar molecules [88–94] and
magnetic atoms [95, 96]. Other examples include pairwise interactions between Rydberg
atoms in their excited states [97–101]. Rydberg atoms are also an ideal platform to study
intermediate regimes between long-range and short-range interactions, e.g., finite-range
(∼ few sites) interactions by exploiting the Rydberg blockade mechanism [102–106]. The
latter stems from the suppression of simultaneous excitations of two atoms in the Ryd-
berg excited state within a finite-range. This type of potential has been recently shown
to lead to highly frustrated regimes in many-body systems of trapped particles where
the ground state is degenerate. This frustration can generate phases featuring a self-
assembly of clusters of particles and intertwined orders, e.g., crystalline and superfluid,
which is referred to as a supersolid phase [107–110]. Moreover, following earlier theoreti-
cal works [111, 112], analogue quantum simulation of long-range interacting spin systems
have been realized in recent experiments with cold trapped ions. Electrically confined
cold ions in, e.g., a Penning trap, naturally form a stable crystal due to Coulomb repul-
sion, and some of their internal states can be selected to act as effective spins. These
internal states can then mediate a spin-spin interaction via collective vibrational modes
of the Coulomb crystal that can be tuned by lasers. Effective long-range interactions with
power law exponent 0 < α < 3.5 have been for instance generated in arrays of laser-driven
cold ions [2–6]. These effective spin models can be mapped onto interacting hard-core
bosons with hopping and/or density-density interaction in the strong long-range regime.

Another type of systems where long-range couplings can be achieved is provided by
cavity quantum electrodynamics (cavity-QED), which is the study of the interaction be-
tween light and atoms confined in a cavity. In a famous experiment, S. Haroche used
Rydberg atoms with long coherence time (∼ 10 ms) embedded in a superconducting
high-finesse cavity [113], and demonstrated that an energy exchange between the atomic
cloud and the cavity takes place when the atom-cavity coupling exceeds the decay rates.
This regime is denoted as strong coupling [114]. In the dispersive regime where the
detuning between the atomic transition and the cavity mode is larger than the coupling
strength, it is possible to generate an effective interaction between the atoms mediated
by the cavity mode [7, 8, 115, 116]. For instance, the case α = 0 (infinite-range potential)
is typically obtained when the extent of the atomic cloud is much smaller that the cavity
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mode wavelength [117–119].

During my Ph.D, I studied different many-body one-dimensional systems with long-range
couplings. I investigated how these long-range couplings can affect the ground state quan-
tum phases and lead to exotic transport properties and new type of orders in strongly
correlated models. The manuscript is organized as follows.

• In the first chapter, we analyze the effects of disorder on the correlation functions
in extensions of the Kitaev and Ising models in one dimension with long-range
couplings and interactions. Using a combination of analytical and numerical results,
we demonstrate that power-law couplings generally lead to an algebraic decay of
correlations at long distances in disordered-localized phases. We also demonstrate
that the decay exponent of the correlations is insensitive to the disorder strength
and depends only of the power law exponent. The decay of the wave functions in
the Kitaev model is also shown to present an algebraic behavior.

• In the second chapter, we investigate the zero temperature phase diagram of a
variant of the one-dimensional extended Hubbard model where particles interact via
a finite-range soft-shoulder potential. We show that this type of potential typically
gives rise to frustration in the system, leading to the emergence of new phases that
are not captured by the conventional Luttinger Liquid theory. Using a full numerical
analysis based on the density matrix renormalization group, we demonstrate that
these phases consist of liquids made of clusters of particles.

• The third chapter is devoted to a study of one-dimensional hard-core bosons inter-
acting via a variable long-range repulsive potential in the strong long-range regime.
We demonstrate that restoring energy extensivity in the system, which is done by
rescaling the interaction potential with a suitable size-dependent factor known as
Kac’s prescription, has a profound influence on the low-energy properties in the
thermodynamic limit. Using the density matrix renormalization group, we find
that while an insulating phase occurs in the absence of Kac’s rescaling, the latter
leads to a new metallic phase that does not fall into the conventional Luttinger
liquid paradigm.

• In the last chapter, we consider a disordered spin model with nearest neighbor
couplings and where the spins interact with a common cavity mode. We provide
preliminary results on the modification of Anderson localization due to the coupling
to the cavity. By computing observables characteristic of the Anderson localization
phenomenon using exact diagonalization in the single excitation subspace, we find
that the coupling to the cavity gives rise to a novel semi-localized phase with pe-
culiar level spacing distribution. Further physical insights are obtained using a
perturbative treatment of the disorder. We also demonstrate that this new phase
exhibits transport properties close to the ones of a delocalized phase.
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The results respectively presented in the first, second, and third chapters of this thesis
have been published in the three following papers:

• Thomas Botzung, Davide Vodola, Piero Naldesi, Markus Müller, Elisa Ercolessi,
Guido Pupillo Algebraic Localization from Power-Law Interactions in Disordered
Quantum Wires arXiv:1810.09779

• Thomas Botzung, Guido Pupillo, Pascal Simon, Roberta Citro, Elisa Ercolessi One-
dimensional extended Hubbard model with soft-core potential

• Thomas Botzung, David Hagenmüller, Guido Masella, Jérôme Dubail, Nicolò De-
fenu, Andrea Trombettoni, Guido Pupillo Effects of energy extensivity on the quan-
tum phases of long-range interacting systems arXiv:1909.12105

The work presented in the fourth chapter is still in progress and will lead to a first
publication in the next months.
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Chapter 1
Algebraic localization from power-law couplings in dis-
ordered quantum wires

It is not good to try to stop knowledge from going forward. Ignorance is never
better than knowledge.

Enrico Fermi

Anderson localisation, the localisation of electronic Bloch waves due to interference
in disordered potentials, is one of the fundamental phenomena in nature. Since the
first seminal work [1] much theoretical interest has been devoted to the appearance of
localized phases and of localization-delocalization phase transitions in non-interacting
and interacting systems [120–137].

While for short-range couplings, it is well etablished that disordered one-dimensional
systems feature localization phenomena, recent experiments with cold magnetic atoms,
electronically excited Rydberg atoms and polar molecules have raised the question of
the nature of localisation in the presence of long-range interactions that decay alge-
braically with distance ℓ as 1/ℓα. These long-range interactions are now subjected to
an intense research as they provide novel physical effects and can be engineered in a
variety of systems ranging from ground-state neutral atoms [138–141], where dipolar-
type 1/ℓ3 or van-der-Waals-type 1/ℓ6 have been experimentally demonstrated, to Ryd-
berg atoms [97, 98, 101, 105, 106, 142–151], polar molecules [88–90], ions and nuclear
spins [152]. In solid state materials, power-law hopping is of interest for, e.g., excitonic
materials [153–165]; long-range 1/ℓ coupling is found in helical Shiba chains [166, 167],
made of magnetic impurities on an s-wave superconductor, while planar arrays of Joseph-
son Junctions [168, 169] can effectively realize long-range extensions of the Kitaev chain
for spinless fermions [67].

In the absence of disorder, theory and experiments have provided evidence for novel
enticing static and dynamic phenomena in these systems, such as, e.g., the non-local prop-
agation of correlations [170–173], time crystal phases [174], novel topological effects [175–
180], and exotic behaviors of equal-time correlations, such as hybrid exponential and
power-law decays within gapped phases, related to the violation of the area law for the
entanglement entropy [9, 181–183]. However, in many of these systems, disorder - in
particles’ positions, local energies, or coupling strengths - is an intrinsic feature. Under-
standing its effects on the above phenomena and in the context of single-particle and
many-body localization remains a fundamental open question.

For non-interacting models, it is generally expected that long-range hopping induces
delocalization in the presence of disorder for α < d, while for α > d all wave-functions
are exponentially localized [1, 184–190]. However, recent theoretical works with posi-
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tional [191] and diagonal [190] disorder have demonstrated that localization can survive
even for α < d. Surprisingly, wave-functions were found to be localized only algebraically
in these models, in contrast to the usual Anderson-type exponential localization expected
from short-range models. How these finding translate to the behavior of wave-functions
and, crucially, correlation functions in many-particle systems is not known.

This chapter is devoted to studying the interplay between disorder and long-range
potential in quantum wires of fermions and spins. In this way, it has been natural to
choose models providing both physical insights of the long-range effect and immediate
experimental interest. These are extensions of the Kitaev chain with long-range pairing [9,
68, 168] and the Ising model in a transverse field [192]. In the Sec. 1.1 we first introduce
the models of interest, namely the disordered long-range Kitaev models (LRK) and the
random long-range Ising Hamiltonian in a transverse field (LRI). We then turn to the
localized properties of the fermionic Hamiltonians by looking at the inverse participation,
the entanglement entropy of excited states, and the energy scaling. In the Sec. 1.3, we give
particular attention to the properties of the correlations functions and the wave function
within the localized phases, providing clear evidence, both analytically and numerically,
of an algebraic localization in non-interacting and interacting models.

1.1 Disordered models

We consider the following Hamiltonians for one-dimensional long-range fermionic models

HI,II = H0 + VI,II (1.1)

where H0 is a homogeneous Hamiltonian given by

H0 = −t
L∑

j=1

(
a†jaj+1 +H.c.

)
+ µ

L∑

j=1

nj

+
∑

j,ℓ

∆

ℓα
(ajaj+ℓ +H.c.)

(1.2)

that describes a p-wave superconductor with a long-range pairing, and the indices I, II

refer to the two different types of Hamiltonians we consider, namely

VI =
L∑

j=1

Wj

(
a†jaj+1 +H.c.

)
(1.3)

that corresponds to a random hopping and

VII =
∑

j,ℓ

Wj

ℓα
(ajaj+ℓ +H.c.) (1.4)

that corresponds to a random long-range pairing. In the previous equations, a†j (aj) is
a fermionic creation (annihilation) operator on-site j, µ is the chemical potential, ∆ is
the strength of the fermion p-wave pairing, nj = a†jaj and Wj are i.i.d random variables

8
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drawn from a uniform distribution of width 2 and zero mean value. In the following, we
will also assume open boundary condition. The Hamiltonian 1.1, even with long-range
pairing and disorder is still quadratic and thus exactly solvable. By diagonalizing it and
averaging over several realizations of disorder, we are able to determine the phase dia-
gram and to analyze the correlation functions and the wave-function within the localized
regions.

As an interacting model, we introduce the following random long-range Ising Hamiltonian
in transverse field,

HLRI =
∑

j,ℓ

(sin θ +Bj,j+ℓ)
σx
j σ

x
j+ℓ

ℓα
+

L∑

j=1

(cos θ +Wj)σ
z
j , (1.5)

where σν
j (ν = x, z) are Pauli matrices for a spin-1/2 at site j and Bj,j+ℓ are i.i.d.

random variables drawn from a uncorrelated uniform distribution of width 2B and zero
mean value. We choose open boundary condition and θ = π/5, corresponding to a
paramagnetic phase for Bj,j+ℓ = Wj = 0 [9]. Different values of θ will not change the
results we find in the following. Since this class of Ising models appears in a variety of
natural context, many localization properties have already been studied. First of all, in
the limit, of α → ∞ the LRI (and LRK) model reduces to an exactly nearest-neighbors
Ising model and the system is known to be an Anderson insulator. When the value of the
exponent α ≥ 2d (d is the dimensionality) the model Eq. (1.5) has been shown to display a
many-body localized (MBL) phase [193–196]. For α ≤ 2d, recent studies [197, 198] seems
to corroborate the absence of localization. However, since this work aims at studying the
interplay between the long-range interaction and the localization induced by disorder, we
restrict the analysis to any α ≥ 2.

1.2 Localized phases of disordered fermions

We start our analysis by first determining the regime of localization for the disordered
fermionic systems (Eq. (1.2)). By combining information from the numerical calcula-
tion of the inverse participation (IPR), the entanglement entropy, and an energy scaling
analysis, we draw a complete phase diagram of the models.

1.2.1 Inverse participation ratio

Let us consider the IPR, which gives a measure of the localization with respect to a
preferential basis by providing information about the spatial extension of single-particle
states. It is defined as:

IPR(En) =

∑L
i=1 |Ψn(xi)|4

(
∑L

i=1 |Ψn(xi)|2)2
, (1.6)

where Ψn(xi) is the wave function corresponding to the energy En. Using the integrability
of the fermionic model, the IPR can be compute semi-analytically. Indeed, the random

9



10
Chapter 1. Algebraic localization from power-law couplings in disordered quantum

wires

hamiltonian 1.2 can be cast in the diagonal form by means of a generalized Bogoliubov
transformation [199]:

ηq =
∑

j

(gq,jaj + hq,ja
†
j). (1.7)

In this basis, the hamiltonian read as:

HI,II =
L−1∑

q=0

Λqη
†
qηq (1.8)

with Λq the energies of the single-particle states labelled by q. The ground state |Ω⟩ is
then the vacuum of all quasi-particles ηq and the matrix elements gq,j and hq,j can be
identified with the wave functions of the two fermionic modes η†q and ηq, respectively.
Thus, the IPR in the diagonal basis 1.8 becomes:

IPRq =
L∑

j=1

[|gq,j|4 + |hq,j|4], (1.9)

for a normalized state with energy Λq. The IPR constitutes a measurement of the degree
of localization in a system. It has two different behavior, (i) for extended states, the IPR
tends to zero for increasing the system size L while (ii) for localized states it remains
finite. So it is crucial to realize a finite-size scaling analysis to conclude about the nature
of the phase. Furthermore, if a value for the energies Λq exists that separates extended
states from localized states the system is said to display a (single-particle) mobility edge.
In order to compare the IPR of states with different energies (due to the randomness),
we define a dimensionless relative energy from the Λq (obtained for approximatively 200

disorder realizations) according to

ϵq =
Λq − Λmin

Λmax − Λmin
, (1.10)

with Λmax (Λmin) the maximum (minimum) value of the energies Λq. We then bin the
different levels into groups with equal energy width and we average the IPR within each
bin. Finally, to obtain the phase diagrams, we perform a finite-size scaling of the obtained
IPR with size L as large as L = 104.

In Fig. 1.1, we present the IPR for a fixed system size L = 2000 as a function of W and
ϵ for model Eqs. (1.1) (I) [for α = 3 and 0.8 in panels (a) and (b), respectively], and (II)
[for α = 3 in panel (c)] together with examples of finite-size scaling [panels (d-e)]. In the
first model with disordered hopping for α > 1 [panel(a)] essentially all states are localized
for a finite value of the disorder. This behavior presents strong similarity with the one
expected for purely short-range interactions (α → ∞) and the usual Anderson localization
phenomenon in 1D. However, in the same system, when the interaction becomes truly
long-range, i.e. for α < 1 panel (b)] , we notice that, at W fixed, there seems to exist
a surprising mobility edge below (above) which all the states are localized (delocalized).
Regarding the second model [panel (c)] with disordered pairing, we see that when α > 1

localized states are present at all energies if W ≳ 2, while we find a mobility edge for
α > 1 and W ≲ 2 fixed: all states are delocalized at low energy ϵ and localized for

10
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Figure 1.1: Left panels: IPR in the thermodynamic limit as a function of the disorder
strength W and the rescaled energy ϵ for (a) α = 3 and (b) α = 0.8 for the model (I) with
random hopping and (c) for α = 3.0 for the model (II) with random pairing. In panel
(b) the solid black line marks the region where the number of extended states is too low
for a meaningful data analysis. Only in these panels, for drawing purpose, the IPR has
been rescaled to 1 in correspondence of its maximum value. Right panels: Scaling of the
IPR as a function of the system size L for ϵ = 1/2 and different W for (d) α = 3 and
(e) α = 0.8 for the model (I) and (f) for α = 3.0 for the model (II). In panels (a-c) the
symbols indicate the values of W and ϵ we choose to plot the IPR in panels (d-f).

higher ϵ. In relation to the panel (a)-(c), the finite-size analysis presented in panel (e)-(f)
corroborate the aforementioned phases.

While, in general, one-dimensional models can not exhibit a single-particle mobility
edge, as all states are localized for any finite disorder strength (e.g. panel (a) and panel
(d)), we remark that single-particle mobility edges have also been observed in other
1D models, e.g. in the presence of quasi-periodic potential [127, 200–202] or correlated
disorder [203]. So, it is a crucial question to confirm the existence or the absence of
this mobility-edge with different approaches. In what follows, we focus arbitrarily on the
model (I) and study in-depth the presence of the single particle mobility-edge. In order
to do so, we combine information from the entanglement entropy and the energy scaling
analysis.
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1.2.2 Entanglement entropy

Further insight on the localization properties of the states of Hamiltonians (I) can be
extract by analysing the entanglement properties of their eigenmodes. Measures of en-
tanglement have been widely used to characterise the properties of ground state of many-
body quantum systems [204] as well as to quantify the degree of localisation for ground-
and excited states of disordered models [135]. A non-trivial measure of the rate of entan-
glement for a state |ϕ⟩ is the von Neumann entropy

SvN(ϕ, ℓ) = −Tr ρℓ log2 ρℓ, (1.11)

where ρℓ = TrL\ℓ |ϕ⟩ ⟨ϕ| is the reduced density matrix of the state |ϕ⟩ that contains ℓ
sites of the entire lattice. SvN is known to follow an area-law scaling for localized states
ψloc [i.e. SvN(ψloc, ℓ) ∼ ℓ0], while for extended states ψext it follows a volume law, e.g. it
scales as SvN(ψext, ℓ) ∼ ℓ [129, 205, 206]. Previously we have seen that some high excited
states in the model (I) remains extended despite the presence of impurities, suggesting
the appearance of a single particle mobility edge. In order to confirm this observation, we
study the entanglement entropy for a particular class of excited states. In the following,
we compute SvN semi-analytically for a bipartition of the chain into two equal halves
(ℓ = L/2) for the excited states. An excited state of the Hamiltonians HI,II is defined by
assigning a set of occupied modes n = {n1, n2, . . . , nL } with nq = 0, 1 and then creating
single quasi-particles η†q on the ground state |Ω⟩ if the mode q is occupied

|n⟩ =
L−1∏

q=0

[η†q]
nq |Ω⟩ . (1.12)

In the thermodynamic limit the set of occupied mode can be approximated by a
occupation density N (θ) such that N (θ)dθ is the number of states with momentum
between θ and θ + dθ. In particular in [207], they derive a scaling law for a general
eigenstates of a translational invariant Hamiltonian. This scaling for a single block ℓ read
as :

S(ϕ, ℓ) = Aℓ+B log(ℓ) + C, (1.13)

with
A =

1

2π

∫ π

−π

f(1, 2N (θ)− 1)dθ, (1.14)

where
f(x, y) = −x+ y

2
log
(x+ y

2

)
− x− y

2
log
(x− y

2

)
(1.15)

From the previous equation, we can see directly that S(ϕ, ℓ) has a term proportional to
the block length ℓ (A), as expected from an extensive quantity as entropy, a logarithmic
contribution (B) specific to one dimensional critical systems [208] and a finite contribution
C. Interestingly, we notice that if the coefficient A goes to zero for some peculiar states,
the volume law scaling will not be observable. This happens precisely when N(θ) = 0 or
N(θ) = 1, corresponding respectively to a state with no single excitation and maximum
occupation. As a consequence, we compute the entanglement entropy for a particular
class of excited states where A is finite.

12
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Figure 1.2: von Neumann entropy SvN for the many-particle excited states of Hamiltonian
(I) as a function of the system size L for different energies ϵ and W = 1: (a) states |n⟩
from Eq. (1.16), (b) states |n′⟩ from Eq. (1.17). For α = 3.0, as all single-particle modes
are localized, the entropy of the states for all energies does not depend on the system
size (i.e the von Neumann entropy satisfies an area law). For α = 0.5, the scaling of
the entanglement entropy depends on the energy of the excited states |n⟩ and |n′⟩: it
goes from approximately constant for the low-energy states (depicted in blue), while it
is found to follow a volume law (i.e., SvN ∼ L) for the high-energy ones (depicted with
green lines).

The two classes of excited states that we consider for computing the von Neumann
entropy are given by

|nν⟩ = |0 . . . 0  
ν

11 . . . 11  
L/4

0 . . . 0⟩ (1.16)

|n′
ν⟩ = |0 . . . 0  

ν

1010 . . . 1010  
L/4

0 . . . 0⟩ . (1.17)

We study the scaling of the von Neumann entropy as a function of the energy e(ν) =∑
q nqΛq and the system size L.
Following Ref. [209], we compute the entropy of the excited states as a function of

their energy and, by changing ν, we can explore the whole energy spectrum. This will
provide a complete understanding of the different scalings of SvN with L for high- and
low-energy states.

In order to compare the entropies of different eigenmodes, we first rescale the energies
by introducing ϵ = [e(ν) − Emin]/(Emax − Emin), where Emin (Emax) is the minimum
(maximum) among the energies of the excited states of Eqs. (1.16) or (1.17). We then
average the entropies, after binning them into groups of equal energy width.

In Fig.. 1.2 we show the entanglement entropy of the excited states of Hamiltonian (I)
as a function of the system size L for a given choice of W = 1 and for α = 3 and α = 0.5.
Panel (a) shows the entropy for the excited states |n⟩ defined in Eq. (1.16) while panel
(b) shows the entropy for the excited states |n′⟩ defined in Eq. (1.17). For α = 3, the
entropy shows an area-law behavior (i.e., SvN ∼ L0) for both the types of excited states
at all energies. That behavior can be explained by the localisation of all single-particle
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modes. For α = 0.5, instead, the scaling of the entanglement entropy depends on the
energy of the excited states |n⟩ and |n′⟩: it goes from approximately constant for the low-
energy states (depicted in blue), while it is found to follow a volume law (i.e., SvN ∼ L)
for the high-energy ones (depicted with green lines). We notice that the changing in the
behavior of the entropy from area law to volume law is enhanced for the states |n′⟩. This
behaviour is compatible with the presence of a mobility edge for all α < 1 that separates
localized low-energy states from extended high-energy ones.

1.2.3 Energy scaling analysis

In addition to the numerical analysis, we give now an analytical insight (based principally
on Ref. [188]) on the different behaviors of the IPR (plotted in Fig. 1.1) of the single-
particle states for the Hamiltonians 1.2 when α > 1 and α < 1. The key idea is to
compare the magnitude of the scattering matrix, which couples bared extended states
and the level spacing of the homogenous hamiltonian.

We consider a closed translationally invariant ring which let us to use a Fourier trans-
form for the fermionic operator a†j = 1√

N

∑
k e

ikja†k and impose anti-periodic boundary
condition. Then, we express Eq. 1.2 as the sum of a homogeneous part H0 and of a
random part VI:

H = H0 +
∑

kk′

Jk,k′(e
ika†kak′ + e−ik′a†k′ak) ≡ H0 + VI (1.18)

where Jk,k′ = −∑j e
i(k−k′)jWj/L and ak (a†k) are the fermionic operators in the space of

quasi-momenta k, with k = 2π(n+ 1/2)/L and 0 ≤ n < L.
In appendix 1.A, we show how the homogeneous Hamiltonian H0 can be diagonalised

via Fourier and Bogoliubov transformation as H0 =
∑

k λα(k)ξ
†
kξk, where ξk are Bogo-

lioubov quasi-particles with extended eigenmodes of energies and λα(k) is the spectrum
of excitation. The random term VI couples the bare (extended) eigenmodes of H0 to each
others and it can lead to localization if the mean fluctuation σI of Jk,k′ is much larger
than the level spacing δλα of the energies λα(k) of H0. Consequently, we see that:

• when the inequality σI ≪ δλα holds, states are weakly coupled and delocalized over
the whole systems.

• when the reverse inequality, σI ≫ δλα, is verified, the disorder strongly mixes states
and localized them within a region smaller than the system size.

• the equality σI ∼ δλα defines the single particle mobility edge.

First of all, the (square) mean fluctuation of the disorder σ2
I of Jk,k′ is defined as the

mean value of is square:
σ2

I := ⟨J2
k,k′⟩W (1.19)

where the brakets mean average on the uniform disorder distribution. After some algebra,
we obtain

⟨J2
k,k′⟩ =

1

L2

∑

i,ℓ

⟨WjWℓ⟩ei(k−k′)jei(k−k′)j. (1.20)
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The disorder is uncorrelated and knowing that the (squared) standard deviation for a
uniform disorder is σ2

uni = 2W 2/12, we deduce that ⟨WjWℓ⟩ = δj,ℓW
2/3 and we have

σ2
I = δk,k′

W 2

3L
. (1.21)

It is important that σ2
I scales inversely proportional to L.

We now turn to the level spacing δλα which can be computed analytically from λα(k)

( c.f. Appendix 1.A) and it strongly depends on α:

• If α > 1, λα(k) is finite for all k and we obtain λα(k) ∼ k2 both at the minimum and
at the maximum of the band. The corresponding level spacing thus scales with L

as δλα>1 ∼ 1/L2 and it decays faster than σI. In this case the extended states of H0

are coupled by the random part of VI and they will be localized. No mobility edge
is then expected for α > 1. The IPR computed for this case is shown in Fig. 1.1(a).

• If α < 1 the energy diverges for k → 0 as

λα(k) ∼ cos
πα

2

|Γ(1− α)|
|k|1−α . (1.22)

and the level spacing for the high-energy states grows as δλα<1 ∼ L1−α. The
fluctuation of the random couplings σI ∼ 1/

√
L is thus suppressed by δλα<1 and

the high-energy states of H0 remain extended. As the lowest-energy states can be
localised, a single-particle mobility edge can be then expected for all α < 1.

By the equality δλα<1 ∼ σI that defines the single-particle mobility edge, it is possible
to show that the number of extended states increases with L as Next ∼ L(3/2−α)/(2−α).
However, the fraction of delocalized states (found at high energy) Next/L vanishes as
∼ 1/L1/(4−2α) and approach the band edge for L→ ∞ [189]. This result implies that the
single-particle mobility-edge is defined only for a finite-system. The IPR for this case is
shown Fig. 1.1 (b).

The apparent discrepancy between the qualitative argument and the numerics can be
explained as follows: for finite system size and due to the necessity to average over small
energy windows, we always have a finite number of high energy states. These latter are
effectively delocalized as suggested by the entanglement entropy and the IPR. Neverthe-
less, the fact that their fraction vanishes in the thermodynamic limit leads ultimately to
the disappearance of the bandwidth in the usual sense and consequently of the mobility
edge.
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Figure 1.3: (a) Correlation function C(ℓ) for the model (I) as a function of the lattice
site ℓ for different values of α and for W = 5, L = 2000 and 400 disorder realizations.
The power-law tails are fit by the black lines scaling as 1/ℓ2−α (dashed) and 1/ℓα (solid)
in agreement with the analytical results in Eq. (1.56). (b) Same as panel (a) but for the
model (II).

1.3 Algebraic localization

So far we have drawn a general phase diagram of the localized phase in the fermionic
models, which enables us now to turn back to our primary goal, namely providing an
in-deep study of the decay of the correlations functions and the wave functions into the
phases mentioned above. Here, we would like to demonstrate that all these quantities
decay algebraically at large distance, for both interacting and non-interacting system. By
exploiting the integrability of the fermionic model (LRK), we extract insight of the long-
range effects and show that some of those results can still be exported to non-solvable
models (LRI).

1.3.1 Correlation functions in fermionic models

We consider the single-particle correlator

C(j, ℓ) = ⟨a†jaj+ℓ⟩W , (1.23)

for the two free-fermionic models of Eqs. (1.2) in the localized phases and where the
subscript W indicates averaging over the disorder distribution. Furthermore, we compute
the density-density correlation functions from the single-particle correlators ⟨a†jaj+ℓ⟩ and
⟨a†ja†j+ℓ⟩ via the Wick’s theorem

G(j, ℓ) = [⟨njnj+ℓ⟩ − ⟨nj⟩ ⟨nj+ℓ⟩]W = [|⟨ajaj+ℓ⟩|2 −
⏐⏐⏐⟨a†jaj+ℓ⟩

⏐⏐⏐
2

]W . (1.24)

It is known that for disordered systems with short-range interactions, the correlation
functions decay exponentially with the distance. Here, we are interested in the effects of
long-range interactions.
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Figure 1.4: (a) Decay exponent γ of the long-distance tail of the correlation function
C(ℓ) for the model (I) as a function of W and for α = 0.8 (cyan triangles), α = 1.6 (blue
circles), α = 3.0 (green diamonds). If W > 0, the decay exponent satisfies γ ∼ α for
α > 1 and γ ∼ 2 − α for α < 1 and it does not show significance dependence on W .
These data are obtained by computing the correlation function C(ℓ) numerically from
the full random Hamiltonian in Eq. (1.25) and then by fitting the long-range decaying
tail of C(ℓ) with 1/ℓγ. The black lines represent the expected exponents: γ = 1.2 for
α = 0.8, γ = 1.6 for α = 1.6, γ = 3.0 for α = 3.0. (b) Same as panel (a) but for the
localized phase (for W ≳ 2) of model (II).

We begin by looking numerically to the different correlations and focus in the localized
regime found in Sec. 1.2. Panel (a) and (b) of Fig. 1.3 show the correlator C(j0, ℓ) for
models HI and HII, respectively, for different values of α, a disorder strength W = 5 and
L = 2000. We impose j0 = L/4 far from the edges in order to minimize boundary effects
and average over 400 realizations. We observe that the tail at long-distance always decays
algebraically as C(ℓ) ∼ ℓ−γ for all α within localized phases. For α > 1, both models
present an hybrid behavior that is exponential at short distance and power-law at large
distance, with a decay exponent γ ∼ α, e.g. panels (a) and (b). For the model I and
α < 1, the decay is essentially algebraic at all distance with γ ∼ 2− α. Remarkably, we
notice that the values of the decay exponents of the power-law tails do not depend on the
disorder strength W as shown in Fig. 1.4 where we plot the decay exponents of C(ℓ) as a
function of W for different values of α. For completeness we show also the decay exponent
of the correlation function C(ℓ) for the model (II) with random long-range pairing.

Finally, examples ofG(ℓ) = G(j0, ℓ) with j0 = L/4 are shown in Fig. 1.5 for a system of
L = 2000 sites and for a disorder strengthW = 5. Expectedly, we find that in the localized
phases for model (I) when α < 1, G(ℓ) ∼ 1/ℓ2 while for both models G(ℓ) ∼ 1/ℓ2α when
α > 1. The first behaviour with a decay exponent that does not depend on α has been
already observed in Refs. [9, 68], while the second can be explained by looking at the
ℓ→ ∞ scaling of |C(ℓ)|2 ∼ 1/ℓ2α in Sec. 1.3.2 Eq. (1.56).

It has to be stressed that these data demonstrated an algebraic tail only for the ground
state. In order to demonstrate that this behavior is typical also for higher excited states,
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we build excited states as η†q |Ω⟩ and compute the corresponding correlation function
Cex(j, ℓ) = ⟨Ω|ηq a†jaℓ η†q|Ω⟩. The correlator for an excited state that lies in the middle of
the energy band for both the models (I) and (II) is plotted in Fig. 1.6, for the same set of
parameters of Fig. 1.3. Unambiguously, we see that the power-law decay is also present
in this case.
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(b) Model (II)

α = 1.6
α = 2.4
α = 3.0
∼ 1/`2α
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∼ 1/`2
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Figure 1.5: (a) Density-density correlation function G(ℓ) for the model (I) as a function
of the lattice site ℓ for different values of α and for W = 5, L = 2000 and 400 disorder
realizations. The power-law tails are fit by the yellow lines scaling as 1/ℓ2 (dashed) and
1/ℓ2α (solid). (b) Same as panel (a) but for the model (II).
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(a) Model (I)

α = 0.8
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∼ 1/`2−α

∼ 1/`α
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Figure 1.6: Correlation function Cex(ℓ) computed on the an excited state at the middle
of the energy band for the model (I) as a function of the lattice site ℓ for different values
of α and for W = 5, L = 1000 and 200 disorder realizations. The continuous lines are
guides to the eye and show that the power-law tails scales as 1/ℓ2−α (dashed) and 1/ℓ2α

(solid) also for that excite state. (b) Same as panel (a) but for the model (II).
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1.3.2 Perturbation theory

To understand in more detail the decay of the correlation, we take advantage of the
integrability of the fermionic models and we use a previous method developed in [9]. In
the following, we will provide an extension of the method by computing the correlations
functions analytically treating the disorder as a pertubation. Here we focus on the model
(I) and we recall that the Hamiltonian HI in Eq. 1.2 of the main text is formed by two
parts:

HI = H0 + VI (1.25)

where

H0 = −t
L∑

j=1

(
a†jaj+1 +H.c.

)
+ µ

L∑

j=1

a†jaj +
∑

j,ℓ

∆

ℓα
(ajaj+ℓ +H.c.) , (1.26)

and

VI = −t
L∑

j=1

Wj

(
a†jaj+1 +H.c.

)
. (1.27)

In order to compute the correlation function C(j, i) = ⟨Ω|a†jai|Ω⟩ on the ground state
|Ω⟩ of HI in Eq. (1.25), we first find the first-order correction |δΩ0⟩ to the ground state
|Ω0⟩ of H0 by treating VI as a perturbation.

The first-order correction |δΩ0⟩ to the ground state |Ω0⟩ of the Hamiltonian H0 due
to the perturbation VI is given by [210]

|δΩ0⟩ =
∑

n0

⟨n0|VI|Ω0⟩
E(n0)− E0

|n0⟩ (1.28)

where the quantities E(n0) and E0 are the energy of the states |n0⟩ and of |Ω0⟩, respec-
tively and |n0⟩ indicates an excited state of the homogeneous Hamiltonian H0 that can
be diagonalized via Fourier and Bogoliubov transformations as

H0 =
∑

k

λα(k)ξ
†
kξk. (1.29)

The ground state |Ω0⟩ of H0 is then the vacuum of all extended Bogolioubov quasi-
particles ξk. In Eq. (1.29) we have defined the single-particle energy

λα(k) = [(cos k − µ)2 + 4f 2
α(k)]

1/2 (1.30)

and the Bogolioubov quasi-particles ξk that are related to the original fermionic operators
ãk in momentum space via

ãk = vkξk − ukξ
†
−k (1.31)

with vk = cosφ(k) and uk = i sinφ(k) where tan 2φ(k) = fα(k)/[µ − cos k] and fα(k) =∑L−1
ℓ=1 sin(kℓ)/ℓα. We notice that the functions fα(k) when L → ∞ become fα(k) =[

Liα(eik)− Liα(e−ik)
]
/(2i), with Liα(z) =

∑
j z

j/jα a polylogarithm of order α. The
excited states |n0⟩ are defined by assigning a set of occupied modes n0 = {n1, n2, . . . , nL }
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Figure 1.7: (a) Energy density E|Ω⟩/L of the ground state of the Hamiltonian HI com-
puted numerically (blue circles) and the energy E|Ω̃0⟩/L (green triangles) computed by

perturbation theory. (b) Relative error defined as
⏐⏐⏐1− E|Ω̃⟩/E|Ω⟩

⏐⏐⏐. It is possible to see that
the difference between the true ground state energy and the perturbed one is bounded
by 8 · 10−3 when the disorder strength satisfies 0 ≤ W ≤ 3. For both panels we consider
α = 3.0 and a system of L = 400 sites and after averaging 200 disorder realizations.

with nq = 0, 1 and then creating single quasi-particles ξ†q on the ground state |Ω0⟩ if the
mode q is occupied

|n0⟩ =
L−1∏

q=0

[ξ†q ]
nq |Ω0⟩ . (1.32)

The first-order correction |δΩ0⟩ can now be obtained from Eq. (1.28) and the true
ground state |Ω⟩ becomes

|Ω⟩ = |Ω̃⟩+O(W 2)

= |Ω0⟩+ |δΩ0⟩+O(W 2)

= |Ω0⟩ −
∑

kk′ Jk,k′A(k, k
′)ξ†kξ

†
k′ |Ω0⟩+O(W 2),

(1.33)

where we have defined Jk,k′ = −∑j e
i(k−k′)jWj/L and A(k, k′) = 2(eik+e−ik′)vku

∗
k′/[λ(k)+

λ(k′)].

Validity of the perturbation theory

Before going further in the calculation, it is convenient here to check the validity of
the perturbation theory. To this end, we will compare the energy E|Ω⟩ of the ground
state of the Hamiltonian HI computed numerically with the energy E|Ω̃⟩ of the state
|Ω̃⟩ = |Ω0⟩+ |δΩ0⟩ coming from the first order correction given in Eq. (1.33).

The energy E|Ω̃⟩ can be obtained by considering that the first order correction to a
wave function gives a second order correction to the energy [211]. Therefore, the energy
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for the perturbed state |Ω̃⟩ is given by

E|Ω̃⟩ = E|Ω0⟩ +
∑

n0

|⟨Ω0|VI|n0⟩|2
E|Ω0⟩ − E|n0⟩

(1.34)

where E|Ω0⟩ is the ground state energy of the Hamiltonian H0, |n0⟩ denotes the excited
states of H0 from Eq. (1.32) and E|n0⟩ denotes their energy.

By computing the scalar product ⟨n0|VI|Ω0⟩ we get

E|Ω̃⟩ = E|Ω0⟩ −
∑

q1,q2

|Eq1,q2|2
λα(q1) + λα(q2)

(1.35)

where Eq1,q2 = 2Jq1,q2eiq1vq1u∗q2 + h.c. where vq1 and uq2 are defined after Eq. (1.31) and
Jq1,q2 after Eq. (1.33). The left panel of Fig.. 1.7 shows the values of the energy density
E|Ω⟩/L of the ground state of the Hamiltonian HI computed numerically (blue circles)
with the energy E|Ω̃0⟩/L (green triangles), while the right panel shows the relative error

defined as
⏐⏐⏐1− E|Ω̃⟩/E|Ω⟩

⏐⏐⏐ for a system of L = 400 sites and after averaging 200 disorder
realizations for α = 3.0. It is possible to see that the difference between the true ground
state energy and the perturbed one is bounded by 8 · 10−3 when the disorder strength
satisfies 0 ≤ W ≤ 3. Note that the minimum around W ≃ 2.5 corresponds in fact to a
accidental change of sign of the difference E|Ω̃⟩ − E|Ω⟩.

As seen, the perturbation theory is a valid approximation in a large range of W . We
now continue the derivation in order to obtain an analytical form for the different cor-
relators. Considering Eq. 1.33 for a single disorder realization, the correlation function
⟨Ω|a†jai|Ω⟩ takes the form

⟨Ω|a†jai|Ω⟩ = ⟨Ω0|a†jai|Ω0⟩+ ⟨δΩ0|a†jai|Ω0⟩+ ⟨Ω0|a†jai|δΩ0⟩+ ⟨δΩ0|a†jai|δΩ0⟩ . (1.36)

If we now average Eq. (1.36) over many disorder realizations, the cross terms ⟨δΩ0|a†jai|Ω0⟩
and ⟨Ω0|a†jai|δΩ0⟩ vanish as, due to the correction |δΩ0⟩, only one random term Wj (that
has mean value zero) appears in them. Therefore we get

⟨Ω|a†jai|Ω⟩W = ⟨Ω0|a†jai|Ω0⟩+ ⟨δΩ0|a†jai|δΩ0⟩W . (1.37)

The first term of the r.h.s. of Eq. (1.37) corresponds to the correlator for a homogenous
translationally-invariant system. By rewriting a†j and ai in momentum space and by using
Eq. (1.31) recalling that ξk |Ω0⟩ = 0 we obtain

C0(ℓ) := ⟨Ω0|a†jai|Ω0⟩ =
1

L

∑

k

eikℓR0(k) (1.38)

where ℓ = j − i and R0(k) = |uk|2.
In the second term of the r.h.s. of Eq. (1.37), as we are averaging on the disorder

configurations, we can expect that the disorder average ⟨δΩ0|a†jai|δΩ0⟩W will be transla-
tionally invariant, i.e. it will depend on the relative distance ℓ = j − i while the terms

21



22
Chapter 1. Algebraic localization from power-law couplings in disordered quantum

wires

s−
Γ−

Γ+

s+
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Figure 1.8: Integration contour for evaluating the asymptotic behaviors of the correlators
C0(ℓ) in Eq. (1.47) and C1(ℓ) in Eq. (1.53).

that depend on i and j separately will average out to zero (see §6.5 in Ref. [212] or §12.3
in Ref. [213]). By keeping only the terms that depend on ℓ, after rewriting a†j and ai in
momentum space and using again Eq. (1.31) recalling that ξk |Ω0⟩ = 0, the second term
becomes

C1(ℓ) := ⟨δΩ0|a†jai|δΩ0⟩W =
W 2

3L

∑

k

eikℓR1(k) (1.39)

where

R1(k) = c|uk|2 + U(k)|uk|2 − V (k)|vk|2, (1.40)

c =
∑

p

A(p, p)2 −
∑

p1p2

A(p1, p2)A(p2, p1), (1.41)

U(k) = 2
∑

p

A(p,−k)A(−k, p) = −fα(k)

λα(k)

∑

p

2 + 2 cos(p− k)

(λα(k) + λα(p))2
fα(p)

λα(p)
, (1.42)

V (k) = 2
∑

p

A(p, k)A(k, p) =
fα(k)

λα(k)

∑

p

2 + 2 cos(p+ k)

(λα(k) + λα(p))2
fα(p)

λα(p)
. (1.43)

We note that the quantity c does not depend on k.

Asymptotic behaviour

Finally, we show how the correlators C0(ℓ) and C1(ℓ) behave asymptotically for ℓ→ ∞.
Let us consider C0(ℓ) in Eq. (1.38) first. In the limit L → ∞ we can replace the

summation with an integral

C0(ℓ) =
1

2π

∫ ∞

−∞
dk eikℓR0(k). (1.44)

The asymptotic behavior of C0(ℓ) for ℓ → ∞ can be computed by considering the
integrals I+0 and I−0 on the complex plane in Fig. 1.8 that are

I+0 =
1

2π

∫

s+

dz eizℓR0(z) +
1

2π

∫

Γ+

dz eizℓR0(z) +
1

2π

∫ ∞

0

dk eikℓR0(k) (1.45)

I−0 =
1

2π

∫

s−

dz eizℓR0(z) +
1

2π

∫

Γ−

dz eizℓR0(z) +
1

2π

∫ 0

−∞
dk eikℓR0(k) (1.46)
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where we have chosen to put the branch cut of the complex logarithm [see the expansion
of the polylogarithm in Eq. (1.48)] on the imaginary positive axis.

By sending the radius r of the circles Γ± to infinity and by neglecting possible residues
inside the integration contour that will contribute only with exponential decaying terms
we have

C0(ℓ) = − 1

2π

∫

s+

dz eizℓR0(z)−
1

2π

∫

s−

dz eizℓR0(z)

=
i

2π

∫ ∞

0

dy e−yℓR0(ϵ+ iy)− i

2π

∫ 0

−∞
dy e−yℓR0(−ϵ+ iy)

=
1

π

∫ ∞

0

dy e−yℓ ImR0(iy)

(1.47)

where on the lines s± the complex variable is z = ±ϵ+iy with ϵ a small positive parameter
that we send to zero.

We are able now to evaluate the asymptotic behavior of C0(ℓ) by computing the
y → 0 part of Im[R0(iy)] and then integrating the last equality in Eq. (1.47). This is
done by recalling that the polylogarithm admits the series expansion [214, 215] for a
general complex number z as

Liα(z) = Γ(1− α)

(
ln

1

z

)α−1

+
∞∑

n=0

ζ(α− n)
(ln z)n

n!
(1.48)

that makes them non-analytical due to the presence of the complex logarithm and the
power-law. In Eq. (1.48), Γ(x) and ζ(x) are the Euler gamma function and the Riemann
zeta function, respectively.

By using the series expansion of the polylogarithms from Eq. (1.48) that yields

Liα(e−y)− Liα(ey) = Γ(1− α)
(
1 + eiπα

)
yα−1 − 2

∞∑

n odd

ζ(α− n)

n!
yn (1.49)

we can obtain the function R0(iy) on the imaginary axis:

R0(iy) =
µ− cosh y

2λα(iy)

∼ µ− 1

2
√

(µ− 1)2 − Γ2(1− α)(eiπα + 1)2y2α−2 − 4Γ(1− α)(eiπα + 1)ζ(α− 1)yα
.

(1.50)

The previous equation in the limit y → 0 gives

ImR0(iy) =

⎧
⎪⎪⎨
⎪⎪⎩

y1−α for α < 1

y2α−2 for 1 < α < 2

yα for α > 2

(1.51)

and, after performing the last integral in Eq. (1.47), the asymptotic behavior of C0 turns
out to be

C0(ℓ) ∼

⎧
⎪⎪⎨
⎪⎪⎩

1/ℓ2−α for α < 1

1/ℓ2α−1 for 1 < α < 2

1/ℓα+1 for α > 2.

(1.52)
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For the correlator C1(ℓ) in Eq. (1.39) we can use the same contour in Fig. 1.8 and get

C1(ℓ) =
W 2

3π

∫ ∞

0

dy e−yℓ ImR1(iy). (1.53)

For the asymptotic behaviour of C1(ℓ), we need again the y → 0 part of R1(iy). Let
us start by noting that from Eqs. (1.42) and (1.43) the y → 0 part of both U(iy) and
V (iy) is given by

Im[U(iy)|uiy|2] ∼ Im[V (iy)|viy|2] ∼ Im
fα(iy)(µ− cosh y)

λ2α(iy)
∼
{
y1−α for α < 1

yα−1 for α > 1.
(1.54)

The previous equation, by considering also the contribution coming from c|uiy|2 [see
Eq. (1.40)], gives

ImR1(iy) ∼
{
y1−α for α < 1

yα−1 for α > 1
(1.55)

and after integrating Eq. (1.53), we finally get the correlator

C1(ℓ) =

{
W 2/ℓ2−α for α < 1

W 2/ℓα for α > 1.
(1.56)

The asymptotic behavior coming from Eqs. (1.52), (1.56) can be checked by computing
the correlator C(ℓ) numerically as reported in Fig. 1.3.

The discussion above demonstrates the following surprising results:

• For α < 1 disorder does not modify the power of the algebraic decay of correlations,
rather it affects its strength.

• For α > 1, the decay of correlations due to disorder is always algebraic, with an
exponent that is smaller than for the homogeneous case with Wj = 0. This implies
that disorder enhances the algebraic localization in these gapped models.

• For α ≤ 2 we find the duality relation γ(α) = γ(2 − α) in the exponents of the
algebraic decay. This is reminiscent of the duality recently found for the decay expo-
nent of the wave functions of long-range non-interacting spin models with positional
disorder [191].

1.3.3 Correlations in LRI

We now consider the random interacting long-range Ising model within the MBL phase
with α > 1, and compute the spin-spin correlation function

Sν(j, ℓ) =
[
⟨σν

j σ
ν
j+ℓ⟩ − ⟨σν

j ⟩ ⟨σν
j+ℓ⟩

]
W
, (ν = x, z). (1.57)

To calculate the correlation Sν(j0, ℓ) (ν = x, z), we make use of a the density matrix
renormalization group (DMRG) as introduced in [61, 216]. Here we choose j0 = L/10 and
for the simulations, we use up to 400 local DMRG states, 16 sweeps and we average Sν(ℓ)
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over 100 disorder realizations. Strikingly, we find that Sν(ℓ) decays algebraically with ℓ as
Sν(ℓ) ∼ ℓ−γ with an exponent that is consistent with γ = α, in complete agreement with
the discussion above for non-interacting theories. As an example, Fig. 1.9(a) shows Sx(ℓ)

for different values of α, W = 5 sin(π/5) ≈ 2.93 and B = 0, while Fig. 1.9(b) shows Sz(ℓ)

for different values of α, W = 0 and B = 5 sin(π/5). The corresponding fits (continuous
lines) with 1/ℓα perfectly match the numerical results.
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Figure 1.9: (a) Correlation function Sx(ℓ) for the long-range Ising model with a random
transverse field [W = 5 sin(π/5)] and a constant interaction term (B = 0) for a system of
L = 100 spins and 50 disorder realizations. (b) Correlation function Sz(ℓ) for the long-
range Ising model with a random interaction [B = 5 sin(π/5)] and a constant magnetic
field (W = 0). In both panels, the power-law tails are fit by the black lines scaling as
1/ℓα.

The demonstration of algebraic localization found in long-range couplings in the pres-
ence of disorder is a central result of this work. We argue that the fact that these results
are found both for non-interacting and interacting models strongly suggests the existence
of a universal behavior due to long-range coupling.

1.3.4 Localization of the wave function

Further insight of the localised properties is given by the analysis of the decay of the single
particle-wave functions. While in the conventional Anderson model, the latter are expo-
nentially localized, here we expect changes due to the power law potential. Our numerical
results on the decay of the single-particle wave functions are obtained by considering the
mean value Φ(ℓ) =

∑N
q=1 |gq,ℓ−jM |/N where we average N = L/4 wave functions gq,ℓ with

lowest energies, shifted by the quantity jM that corresponds to the lattice site where |gq,ℓ|
shows its maximum value. We average Φ(ℓ) also over several disorder realizations (of the
order of 500).

Fig. 1.10 shows typical results of the decay of Φ(ℓ) as a function of the distance ℓ
within the localized phases of models (I) and (II) of Eqs. (1.1) [panels (a,b) and (c,d),
respectively].

Remarkably, we find that the wave functions decay algebraically at long distances
regardless of the strength W of the disorder, mimicking the scaling of the correlation
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Figure 1.10: (a) Decay of the averaged wave function Φ(ℓ) (absolute value, see text) of
localized states for the model (I): If α > 1 we find an hybrid exponential and power-law
behaviour. If α < 1 the exponential part is suppressed and only the power-law tail is
visible. The black lines correspond to fit of the data scaling as 1/ℓγwf . (b) Decay exponent
γwf for the model (I) of the long-distance tail of Φ(ℓ) as a function of W for different values
of α. The decay exponent satisfies γwf ∼ α and does not show significance dependence
on W . (c-d) Same as (a-b) but for the model (II) with random long-range pairing.

functions discussed above. However, for all α, i.e. both α > 1 and α < 1, Φ(ℓ) decays
at large distances as Φ(ℓ) ∼ ℓ−γwf , with an exponent γwf consistent with γwf ∼ α. This
is different from the results of Ref. [191] with positional disorder, where for α < 1 one
gets γwf ∼ 2 − α. For sufficiently large α > 1 this algebraic decay is preceded by an
exponential decay at short distances, reminiscent of the exponentially localized states of
short-range random Hamiltonians.

1.4 Conclusion

In this chapter, motivated by recent experimental advances in engineering long-range
couplings, we have analyzed the effect of disorder on the correlation functions of one-
dimensional quantum models of fermions and spins with long-range interactions, finding
several novels features. These include a new mechanism to create high-energy protected
states against localization at finite size and disordered phases where the tails of correlation
functions exhibit algebraic decay.

In the first part of the study, using a combination of analytical and numerical technics,
we have determined the phase diagram of the fermionic models, showing a non-trivial
interplay between long-range and disorder. In particular, we have demonstrated the
presence of an effective single-particle mobility edge that vanishes in the thermodynamic
limit. In the second part, we have investigated long-range interaction effect on the decay
of the correlations and the waves functions within the localized phases.

We have notably demonstrated that couplings that decay as a power-law with dis-
tance induce an algebraic decay of correlation functions and wave functions both in
non-interacting and interacting models in the presence of disorder. This behavior is in
stark contrast to results expected from short-range models and generalizes recent results
for the decay of wave-functions in quadratic models.
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Appendices

1.A Exact diagonalization and level spacing

Exact diagonalization

In this Appendix, we will review some results on the exact diagonalization of the Long-
range Kitaev model [9]. We consider the following quadratic Hamiltonian:

H0 = −t
L∑

j=1

(
a†jaj+1 +H.c.

)
+ µ

L∑

j=1

nj

+
∑

j,ℓ

∆

dαℓ
(ajaj+ℓ +H.c.)

(1.58)

where a†j (aj) is a fermionic creation (annihilation) operator on site j, nj = a†jaj, t the
tunneling rate and µ the chemical potential. ∆ is the strength of the p-wave pairing and
we can set without lost of generality that ∆ = 2t, different value of ∆/t simply rescale
the fermi velocity. The function dℓ specifies the distance between two fermions.

In the next, we consider a ring which is invariant by translation (dℓ = min(ℓ, L −
ℓ)), and we impose anti-periodic condition (aj = −aj+L). This choice of the boundary
condition directly comes from the pairing term. Indeed, because of the ring geometry,
the term ajaj+ℓ and aj+ℓaj+ℓ+L connect two fermions with the same distance. Then, if
we choose periodic boundary condition (aj = aj+L), these two terms, and so the pairing
term, will cancel out due to the anti-commutation of fermionic particles.

Now one can rewrite the hamiltonian 1.58 by using a Fourier transform of the fermionic
operators a†j =

1√
N

∑
k e

ikja†k. It takes the form

H = −
∑

n

(
t cos kn +

µ

2
a†knakn + a†−kn

a−kn

)

+ i∆
∑

n

fα(kn)
(
akna−kn − a†−kn

a†kn
) (1.59)

where kn = 2π
L
(n+ 1

2
) and fα(kn) =

L−1∑
ℓ=1

sin(knℓ)
ℓα

.

Formally, we can write our Hamiltonian into a more compact form as:

H =
1

2

L−1∑

n=0

(
a†kn a−kn

)(−(2t cos kn + µ) i∆fα(kn)

−i∆fα(kn) (2t cos kn + µ)

)(
akn
a†−kn

)
(1.60)
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By means of a Bogolyubov transformation each blocks of momentum kn can be diag-
onalized:

(
akn
a†−kn

)
= U†

(
ξkn
ξ†−kn

)
(1.61)

with

U =

(
cosφkn i sinφkn

i sinφkn cosφkn

)
(1.62)

and φkn is given by

tan(2φkn) = − ∆fα(kn)

2t cos kn + µ
(1.63)

Finally, in the Bogolyubov basis the hamiltonian read as:

H =
1

2

L−1∑

n=0

λ(kn)ξ
†
kn
ξkn (1.64)

and its single-particle energy

λ(kn) =
√
(2t cos kn + µ)2 + (∆fα(kn))2 (1.65)

Level spacing and polylogarithmic

In order to qualitatively understand the level spacing, we should analyse in more details
the spectrum of excitations. While the first part corresponds to the usual free fermions,
the second part with function fα(k) contains all the informations about the long-range.
Below, we focus on some mathematical properties of this function.

The series defining fα(k) is :

fα(k) =
L−1∑

ℓ=1

sin(kℓ)

ℓα
(1.66)

When L→ ∞, i.e in the thermodynamic limit, fα(k) reads as

fα(k) =
1

2i

∞∑

ℓ=1

eiℓk − e−iℓk

ℓα
= − i

2
(Liα(e

ik)− Liα(e
−ik), (1.67)

with

Liα(z) =
∞∑

ℓ=1

z

ℓα
(1.68)

the polylogarithm of complex z of order α. Interestingly, in our case, z = eik and |z| = 1,
the convergence of the previous serie is α dependent. For α > 1, the serie converges,
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whereas for α < 1, the serie converge only for z ̸= 0, i.e for k ̸= 0 but diverges for k = 0.
For two particular case, α = 0 and α = 1, one can obtained for Liα(z):

Li0(z) =
z

z − 1
Li1(z) = ln(1− z) (1.69)

and fα(k)

f0(k) = cot

(
k

2

)
f1(k) = π − k. (1.70)

Let us consider, the maximum k = π and the minimum k = 0 of the band:
(i) for α > 1, for k → 0 and k → π, fα(k) → 0. In this case, the dispersion relation

is close to the one of free fermions, and we obtain λα(k) ∼ k2

(ii) For α < 1, at the minimum of the band (k = π) , fα(k = π) → 0. However, as
mentioned previously the series diverge for k → zero.

In the following we study the divergence k → 0 when α < 1. We start by introducing
the series expansion:

Liα(e
ik) = Γ(1− α)(−ik)α−1 +

∞∑

n=0

ζ(α− n)

n!
(ik)n (1.71)

Liα(e
−ik) = Γ(1− α)(ik)α−1 +

∞∑

n=0

ζ(α− n)

n!
(−ik)n (1.72)

valid for all not integer α and where ζ(s) is the zeta Riemann function. Then we have,

fα(k) = 2 cos
πα

2
Γ(1− α)(k)α−1 + 2

∞∑

n=1

sin
πn

2

ζ(α− n)

n!
(k)n (1.73)

and

f 2
αk) = 4 cos2

πα

2
Γ2(1− α)(k)2α−2 + 8 cos

πα

2
ζ(α)Γ(1− α)kα

+ 4ζ2(α)k2 +O(k3)
(1.74)

In this way when α < 1 and k → 0, we have

λα(k) ∼ cos
πα

2

|Γ(1− α)|
|k|1−α . (1.75)

1.B Correlation functions of the clean long-range models

1.B.1 LRK

In this appendix, we briefly review the method introduced in [9, 217] to compute the
ground state correlation functions of the Long-range Kitaev model 1.58. In particular,
we will show, that the correlations present a hybrid behavior for α > 1 and a purely
algebraic decay for α < 1. We focus on the single-particle Green function ⟨a†Ra0⟩ and the
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anomalous one ⟨a†Ra†0⟩. As the hamiltonian is quadratic, higher-order correlations, such
as density-density correlations ⟨nRn0⟩ can easily be built via the Wick’s theorem, e.g

⟨nRn0⟩ = ⟨a†RaRa†0a0⟩
= ⟨nR⟩ ⟨n0⟩ − ⟨a†Ra†0⟩ ⟨aRa0⟩+ ⟨a†Ra0⟩ ⟨aRa†0⟩

(1.76)

In the limit L → ∞, both correlators take the form of an integral on the Brillouin
zone:

⟨a†Ra0⟩ = − 1

2π

∫ 2π

0

dk eikR Gα(k), (1.77)

and

⟨a†Ra†0⟩ =
1

2π

∫ 2π

0

dk eikR Fα(k) (1.78)

with
Gα(k) =

cos k + µ

2λα(k)
and Fα(k) = i

fα(k)

2λα(k)
(1.79)

In the following, we remind the main ideas and results of the calculations, neglecting
most of the technical details that the interested readers can found in [217]. We first
consider the one-body correlation function ⟨a†Ra0⟩. In order to evaluate the integral in
Eq. (1.77), we apply the Cauchy Theorem to a contour in the complex plane which is
defined in Fig. 1.11,

⟨a†Ra0⟩ = − 1

2π
lim

M→∞

(∫

C0
+

∫

L−

+

∫

L+

+

∫

C2π

)
dz eizR Gα(z) (1.80)

with M specified in Fig. 1.11.

0 2ππ

π + iξ1

C0

C2πL− L+

C⊥
iM

C ′⊥

ε

π + iξ2

Figure 1.11: Deformed integration contour to evaluate the integral in Eq. (1.77). The
dashed line is the branch cut of the square root in the denominator of the integrand.

The contours L± are chosen in accordance with the square root in denominator of
Eq. (1.79) which is a multivalued function and displays two complex roots π+ i ξ1,2 given
by the solutions of the equation

(µ− cosh ξ1,2)
2 + fα(π + iξ1,2)

2 = 0. (1.81)

A branch cut arises between the roots above, as shown in Fig. 1.11. Here, different con-
tributions can be inferred from the various path on the contour integration. First of all,
the contributions from C⊥ and C ′

⊥ vanish when M → ∞, thus we can neglect them. Then,
we distinguish two main contributions that we analyze separately.
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Power law part

The contribution parts coming from the momenta k → 0 (C0) and k → 2π (C2π) are
responsible for the power law decay at long distance. The integral on the line C0 read as

IC0 = − 1

2π

∫

C0
eizR Gα(z)dz = − i

2π

∫ ∞

0

e−yR Gα(ϵ+ iy)dy, (1.82)

while on C2π (with z = 2π − ϵ+ iy)

IC2π = − 1

2π

∫

C2π
eizR Gα(z)dz =

i

2π

∫ ∞

0

e−yR Gα(2π − ϵ+ iy)dy. (1.83)

The sum on the integrals lines on C0 and C2π gives

IC0 + IC2π =
1

π

∫ ∞

0

dy e−yR Im(Gα(iy)). (1.84)

An explicit calculation of the previous integral can be obtained by integrating in the
y → 0 and gives

IC0 + IC2π = Bα(µ) ·

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

Rα+1
if α > 2;

1

R2α−1
if 1 < α < 2;

1

R2−α
if 0 < α < 1.

(1.85)

Exponential part

The L± parts with k → π are responsible for the exponential decay at short distance. If
ξ1 < y < ξ2 we have Gα(π

+ + iy) = G∗
α(π

− + iy) due to the branch cut of the square root
in Eq. (1.79). The integrals on the two lines L− and L+ give

IL− + IL+ =
eiπRe−ξ1R

π

∫ ξ2

0

dy e−yR ImGα(π
+ + i(y + ξ1)). (1.86)

Evaluating this integral yields

IC0 + IC2π = Aα(µ)
eiπR√
π

e−ξ1R

√
R

(1.87)
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By collecting all the contributions we finally obtain:

⟨a†Ra0⟩ = Aα(µ)
eiπR√
π

e−ξ1R

√
R

+ Bα(µ) ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Rα+1
if α > 2;

1

R2α−1
if 1 < α < 2;

1

R2−α
if 0 < α < 1.

(1.88)

The parameter ξ1 is the smallest real solution of λα(iπ + ξ1) = 0 and depend on µ and α
in an implicit way and the coefficients A(α, µ) and B(α, µ) can be found in Ref. [217]. It
is possible to see that the correlation function shows a hybrid decay, i.e. exponential at
short distances, followed by an algebraic tail whose decaying exponent depends on α.

Anomalous correlation function and other correlations

The anomalous correlation function ⟨a†Ra†0⟩, which is given by the Eq. 1.78, can be com-
puted along the same line. Using the same integration contour as for ⟨a†Ra0⟩, we get:

⟨a†Ra†0⟩ =
eiπRe−ξ1R

π

∫ ∞

0

dy e−yRFα(π
+ + i(y + ξ1))−

1

π

∫ ∞

0

dy e−yR ImFα(iy), (1.89)

showing both the exponential and the power-law contributions. In Eq. (1.89) ξ1 is again
the smallest solution of Eq. (1.81). One obtains finally

⟨a†Ra†0⟩ = Aano
α (µ)

eiπR√
π

e−ξ1R

√
R

+ Bano
α (µ) ·

⎧
⎪⎪⎨
⎪⎪⎩

1

Rα
if α > 1;

1

R
if 0 < α < 1.

(1.90)

Furthermore, by combining the correlators, g1(R) and ga1(R) one can now compute
the two-point connected correlation function gc2(R) = ⟨nRn0⟩ − ⟨nR⟩ ⟨n0⟩. We find that
the latter behave as

gc2(R) ∼

⎧
⎪⎪⎨
⎪⎪⎩

1

R2α
if α > 1;

1

R2
if 0 < α < 1.

(1.91)

Fig. 1.12 shows a comparison between analytical estimation and fitted decay exponent
of the one-body (γ) and two body (δ) correlators as function of α. These results are in
perfect agreement with the numerical simulation of Eq. 1.80.

It has to be stressed that for α < 1, even though the correlation functions have still
two contributions, one can show that the exponential part tends to zero and we effectively
notice that this one is unobservable.
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Figure 1.12: Exponents (a) γ and (b) δ of the algebraic decay of the one-body and two-
body correlation functions vs. α, obtained by fitting with power-law functions, namely,
g1(R) ∼ R−γ and g2(R) ∼ R−δ. The equations of the two straight lines in (a) are 2α− 1

and α + 1.

1.B.2 LRI model

For completeness, we also compute the correlation functions of the long-range Ising model
in a transverse field without disorder. Specifically, we focus on the correlation on the type

Sν(j, ℓ) =
[
⟨σν

j σ
ν
j+ℓ⟩ − ⟨σν

j ⟩ ⟨σν
j+ℓ⟩

]
W
, (ν = x, z). (1.92)

with ν = x, z. An example is shown in Fig. 1.13(a) for Sx(R) ≡ Sx(R, 0). The exponent
γx [shown in Fig. 1.13(b)] of the long-distance decay displays three difference behaviours:
(i) for α > 2 it fulfils γx = α;
(ii) for 1 < α < 2 a hybrid decay is observed and the algebraic tail decays with an
exponent γ that depends linearly on α with a slope consistent with ∼ 0.55;
(iii) for α ≲ 1, γx ∼ 0.25α. The correlator Sz(R) is shown in Fig. 1.13(c) and it also
displays an algebraic tails that decays as 1/Rγz where γz ∼ 2α for α > 1.

1.C Entropy from correlation function

In this Appendix, we give some details on the technique for computing the entanglement
spectrum and the von Neumann entropy for a fermionic quadratic Hamiltonian. We
follow closely Ref. [218–222].

Consider a fermionic quadratic Hamiltonian,

H =
∑

c†i tijcj +
(
c†iUijc

†
j + h.c.

)
(1.93)

one expects that the density matrix of the ground state has the same functional form:

ρ =
e−H

Z
(1.94)
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Figure 1.13: (a) Sx(R) correlation for the long-range Ising model (Eq. (5) of the main text)
for Bij = Wij = 0 (θ = 0.2π and L = 60), showing the hybrid exponential and power-law
behavior for α ≳ 1 and a purely power-law for α ≲ 1. (b) Decaying exponent γx of the
algebraic tail of Sx(R) fitted as 1/Rγx . Three different behaviours for γx, corresponding
to the three dashed black lines are observed. (c) Sz(R) correlation for the long-range
Ising model (Eq. (5) of the main text) for Bij = Wj = 0 and θ = 0.207π, L = 100 and
different α.

with
H =

∑
c†iAijcj +

(
c†iBijc

†
j + h.c.

)
(1.95)

to reproduce the expectation value in the ground state.
This means that all the information about the density matrix is encoded in the cor-

relator matrices
Cij = ⟨c†icj⟩ Fij = ⟨c†ic†j⟩ . (1.96)

They are easily computed from the ground state of the Hamiltonian (1.93), as the latter
is readily diagonalized with a Bogoliubov transformation.

Then, one can relate the correlation matrices with the eigenvalues of the “Hamiltonian”
(1.95) and so with the density matrix ρ.

To compute those matrices, we first diagonalize (1.95) with a Bogoliubov transforma-
tion: (

η

η†

)
=

(
g h

h g

)(
c

c†

)
(1.97)

where g and h are N × N real matrices, satisfying, because of the anticommutation
relations:

ggT + hhT = 1 (1.98)

ghT + hgT = 0 (1.99)

gT means the transpose of the matrix g.
The “Hamiltonian” H takes the form

H =
∑

εkη
†
kηk (1.100)

and the density matrix ρ = ⊗ρk, with :

ρk =
e−εkη

†
kηk

1 + e−εk
=

(
(1 + eεk)−1 0

0 (1 + e−εk)−1

)
(1.101)
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as the particles are independent.
Now to compute the correlation matrices, we have to invert the Bogoliubov transfor-

mation: (
c

c†

)
=

(
gT hT

hT gT

)(
η

η†

)
(1.102)

and we have to note that

⟨η†kηk′⟩ = Tr
[
ρ η†kηk′

]
=

e−εk

1 + eεk
δkk′ (1.103)

We define C the matrix ⟨c†icj⟩ and F the matrix ⟨c†ic†j⟩, so we have

C = gTΛg + hT Λ̄h (1.104)

F = gTΛh+ hT Λ̄h (1.105)

where Λ, Λ̄ are diagonal matrices with elements

Λij =
δij

1 + eεi
Λ̄ij =

δij
1 + e−εi

(1.106)

Note that Λ + Λ̄ = 1. Let us define ∆ = Λ − Λ̄, so, by using (1.98) we can write the
correlators as

C =
1
2
+

1

2

(
gT∆g − hT∆h

)
(1.107)

F =
1

2

(
gT∆h− hT∆g

)
(1.108)

Now, from the anticommutation relations (1.98), one has (note that ∆ij = − tanh (εi/2) δij)

W ≡
(
C − 1

2
+ F

)(
C − 1

2
− F

)
=

1

4
(g − h)T ∆2 (g − h) (1.109)

By defining a matrix ψ = g − h one has ψTψ = 1 so ψ is orthogonal and, from the
previous equation one has

W =
1

4
ψT∆2ψ (1.110)

that is the eigenvalues of W are ζi = 1
4
tanh2( εi

2
). From these one gets the eigenvalues of

H:
εi = 2arctanh

(
2
√
ζi

)
(1.111)

Entropies

Von Neumann entropy

From the entanglement spectrum and the density matrix (1.101), the von Neumann
entropy is defined as

SvN = −Trρ log2 ρ = −
ℓ∑

m=1

Trρm log2 ρm (1.112)
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with

ρm log2 ρm =

(
1

1+eεm ln 1
1+eεm 0

0 1
1+e−εm ln 1

1+e−εm

)
(1.113)

and the entropy take the form

SvNe
m = −

ℓ∑

m=1

[ ln(1 + eεm)
1 + eεm

+
ln(1 + e−εm)

1 + e−εm

]
(1.114)

Rényi entropy

The Rényi entropy of order α reads as follows

SRe
m,α =

1

1− α
lnTr ραm

withραm =

(
(1 + eεm)−α 0

0 (1 + e−εm)−α

)
(1.115)

and becomes
SRe
m,α =

1

1− α
ln
[
(1 + eεm)−α + (1 + e−εm)−α

]
(1.116)

Entropy of excited states

In the previous section we have only considered entropy for the ground state. Let us
consider excited state |E⟩ which is defined by assigning a set of occupied modes K =

|n1, n2, . . . , nL⟩ with nj = 0, 1 and then creating single quasi-particles η†n on the ground
state |Ω⟩ of Hamiltonian (1.93)

|E⟩ =
∏

n∈K
η†n |Ω⟩ (1.117)

For computing the entanglement entropy for this state one needs the correlation func-
tions evaluated on the state |E⟩ by means of the Bogoliubov transformation:

⟨E|c†icj|E⟩ =
∑

n∈K
n=1

gingnj +
∑

n∈K
n=0

hinhnj (1.118)
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Chapter 2
One-dimensional extended Hubbard model with soft-
core potential

Laughter and tears are both responses to frustration and exhaustion. I myself
prefer to laugh, since there is less cleaning do to do afterward.

Kurt Vonnegut

In general, one-dimensional interacting models fall into the universal class of the
Tomonaga-Luttinger Liquids (TLL) [223]. There the low energy behavior of interacting
fermionic, bosonic, and spin models can be mapped onto free bosonic ones [50, 223–
227]. One remarkable example of 1d phenomenon that can be inferred from the TLL
theory is the so-called spin-charge separation [228–233], i.e., uncoupled collectives modes
of spins and charges excitations. The decoupled nature of these modes notably implies
that the spin and charge degrees of freedom can propagate independently along the
chain [223, 234]. Such a picture allows us to understand the low-energy behavior of the
majority of fermionic quantum models in one-dimension. However, this framework is
mainly verified for short-range systems such as the Hubbard model and its extension.
Understanding the robustness of the TLL paradigm over various type of potential re-
mains a crucial question. In particular, models with finite-range interactions were shown
to provide a pathway to the realization of novel quantum phases beyond the TLL de-
scription [10, 235, 236]. That emergent phase arises from a combination of the commen-
surability and frustration effect that concurs to stabilize a new liquid phase, where the
fundamental elements of the liquid are not single-particles but rather clusters of particles.

The present chapter is intended to study an extended version of the Hubbard model
on a chain, where fermions with spin can tunnel between neighboring sites with tunnel-
ing amplitude t and interact via both an on-site U -potential and an off-site repulsion
of strength V , which is finite within a spatial range of length rc. The case for rc = 1

has been the subject of intense investigations and is known has the extended Hubbard
model [237]. The most interesting features of this model generally arise at commensurate
filling (e.g. half filling or quarter filling) and where lattice effects play a role. A little
attention has been devoted to small lattice filling, since the presence of empty sites seems
to lead irremediably to a standard metallic phase. However, when the range of the inter-
action is extended to few inter-particles distance (rc > 1), frustration effect can appear
and the situation is then drastically different. Such effects lie at the heart of this chapter.

We start by introducing the model in Sec. 2.1, and emphasize its relevance in Rydberg-
dressed cold gases in Sec. 2.1.1. We then focus on the classical limit (t = 0) of our model
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38 Chapter 2. One-dimensional extended Hubbard model with soft-core potential

in Sec. 2.1.2, which provides physical insights on the frustration mechanisms at play and
allows to predict some of the phases in our system. In Sec. 2.1.3, we introduce the ob-
servables, such as the static structure factor, the low-energy degrees of freedom and the
entanglement entropy, which are used to describe the ground state of the quantum model.
In Sect. 2.2, we analyse in details the different phases in the whole-range of parameter U ,
V , by computing numerically the different observables introduced in the previous section,
leading to the complete phase diagram of the model. In particular, we demonstrate that
the ground state corresponds to a standard TLL phase for low values of U and V , while
it consists of new types of liquids made of clusters of particles for large U and large V , in
agreement with the classical prediction (Secs. 2.2.1 and 2.2.2). We investigate in details
the transition between the different phases for an intermediate value of U in Sec. 2.2.3,
and show in Sec. 2.2.4 that for very low U and intermediate V , the system tends to form
a liquid phase that features more doubly occupied sites than the standard TLL phase
and is not captured by the classical approximation. Details on the numerical analysis are
provided in Appendix 2.A.

2.1 The model

In this work, we consider an extended Hubbard chain with on-site and finite-range soft-
shoulder repulsion, described by the Hamiltonian

H = −t
∑

i,σ

(c†i,σci+1,σ + h.c) + U
∑

i

ni↑ni↓ + V
∑

i

rc∑

ℓ=1

nini+ℓ, (2.1)

where c†iσ, ciσ are creation/annihilation operators of fermionic particles with spin σ =↑, ↓
on the site i and ni = ni,↑ + ni,↓. The coefficient t represents the tunneling matrix
element (and will be taken to be unitary in the following), while U gives the strength of
the on-site interaction between two fermions on the same site (and opposite spin) and V
that of the soft-core density-density interaction. This density-density interaction yields a
contribution V only if two occupied sites lie within a distance rc of each other, and zero
otherwise. Here, we assume only purely repulsion interactions with U, V > 0 and impose
antiperiodic boundary condition.

2.1.1 Soft-core potential in Rydberg-dressed atoms

The Hamiltonian Eq. (2.1) mimics the soft-core interaction achieved experimentally in
Rydberg-dressed cold gases [99].

Rydberg atoms [238, 239] are highly excited atoms with one or two valence electrons
in orbit with a large principal quantum number n ≫ 1. Due to these large electronic
orbitals, the effect of the nucleus and ionic core electrons are well approximated by an
elementary positive point charge. Hence, they display properties close to the hydrogen
atoms. Moreover, the typical size of the electronic wave function scales with n ∼ n2,
giving rise to numerous outstanding properties, e.g. a large atomic size (of the order
of 10−6 m for n ∼ 100), a long lifetime, scaling as n3, and a significant dipole moment
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µ ∼ n2. These latter give to the Rydberg atoms an extreme sensitivity to external
field and make them polyvalent to generate a wide variety of potential between atoms.
For instance, an external electric field can induce permanent electric dipole moments in
the excited states, leading to a strong dipole-dipole interaction scaling ∼ r−3. On the
contrary, when no external field is applied, the Rydberg-Rydberg interactions are given
by Van-der-Waals (VdW) forces, scaling as C6/r

6, where C6 ∼ n11. Because of the strong
C6 ∼ n11 scaling of the VdW coefficient, such Rydberg-Rydberg atom interactions are
orders of magnitude larger than those of ground state atoms.

In the next, we will only consider a repulsive interaction (attractive interaction can
also be engineered by choosing different Rydberg states) and as a further assumption, we
describe the Rydberg atoms as a two-level system, with a ground state |g⟩ coupled to an
excited state |e⟩ with a resonant Rabi laser frequency Ω and detuning ∆.

An essential consequence of the strong interactions between Rydberg atoms is the Ry-
dberg excitation blockade phenomenon, which inhibits double excitation within a specific
range. Roughly speaking, in a case of two atoms, the ground state |gg⟩ can be resonantly
coupled to a state containing a single excitation, e.g. |eg⟩ or |ge⟩. However, the doubly-
excited |ee⟩ is shifted out of resonant by the strong VdW interactions between the two
atoms. This mechanism prevents a simultaneous excitation for small enough distance
between the atoms.

The Rydberg blockade can notably be used to generate Rydberg-dressed states [107,
240–244], i.e. superposition of ground state and excited states. In particular, in the
weak-dressed regime, Ω << ∆ and with red detuning (∆ < 0), the effective resulting
interaction as function of the distance r can be obtained via perturbative expansion in
Ω/∆ [100, 241] and is given by:

Vdd(r) =
Ω4

8∆3

1

1 + ( r
rc
)6
, (2.2)

where rc = (C6/2|∆|)1/6 and r the interatomic distance. Experimental realisations of
this interaction between spins have been reported in Refs. [145, 150]. At large distance
r ≫ rc, the potential Vdd(r) turn into the usual VdW interaction, reduce by the factor
Ω4

8∆3 to excite both atom at the same time. However, for r < rc, due to the blockade,
double excitation is forbidden and Vdd(r) saturates to a constant value for r → 0. Fig. 2.1
shows the Rydberg potential (blue) and the approximate box potential used in Eq. (2.1)
(red).

2.1.2 Classical analysis

Before going into the detailed analysis of the quantum phase diagram of Eq. (2.1), it is
convenient to first consider the exact solution of the ground state in the classical limit
(t = 0). In this regime, the main physics can be inferred by looking at the competition
between the soft-shoulder potential, the on-site interaction and the two relevant length
scales, namely the cut-off radius rc and the mean spacing between particles r∗ = 1/ρ,
where ρ = N/L is the particle density (N and L are the total number of particles and
the size of the chain, respectively).
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Figure 2.1: The blue line is the Rydberg potential as function of the interatomic distance
in the weak-dressed regime Ω << ∆ and with red detuning (∆ < 0). The red dotted line
is the approximate box potential used in Eq. (2.1).

Let us first consider the regime U ≫ V which prevents double occupancy. In this case,
the model becomes substantially the same as a spinless fermionic model. It was shown
in Ref. [10] that the latter exhibits a rich phase diagram with three different phases:
(i) for r∗ > rc, the particle density is small and the ground state corresponds to a liquid
type phase.
(ii) for r∗ = rc, particles are equally space every rc + 1 lattice site, corresponding to a
crystalline order.
(iii) The most interesting situation occurs for r∗ < rc, the competition between r∗ and
rc leads to frustration and particles have tendency to self-assemble into clusters (blocks).
These effects result in the formation of a highly degenerate ground state because these
different types of clusters can be assembled in many different ways, thus leading to a
liquid of clusters.

In order to describe the classical ground state of (iii) in a one-dimensional system, we
extend the cluster exchange model introduced in [10]. The key idea is to identify the
cluster of particles and holes in the configuration with lowest energy. First, the block
with zero energy consists of one particle followed by a number of rc of empty sites. We
denote this cluster as A [see Fig. 2.2].

Secondly, we want to identify the blocks with the smallest finite energy. To do so, we
have to take the competition between the on-site (U) and soft-core (V ) potentials into
account. When U ≫ V , a cluster made by two nearest-neighbors followed by rc empty
sites is energetically favoured, with an energy V . The latter is denoted as cluster B [see
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Fig. 2.2]. When U ≪ V , the cluster made of a doubly occupied site followed by rc empty
sites is favoured with an energy U . We refer to this cluster as B’ [see Fig. 2.2]. Other
blocks with higher energy are discarded. Since exchanging two of these blocks let the
energy unchanged, the classical ground state thus consist of all permutations of blocks
A and B or A and B’ (e.g. [ABAB],[AABB], or [AB’AB’],[AB’B’A]...). Introducing the
total number of blocks M for a system of length L as

M = L(1− ρ)/rc, (2.3)

the ground state degeneracy grows exponentially with M (see below). Furthermore, the
blocks themselves are degenerate due to the presence of the additional spin degree of
freedom. This is responsible for an increase of the ground state degeneracy compared to
the spinless case [see Fig. 2.2].

In this work, we focus on the case rc = 2 and choose a particle density ⟨n↑⟩ = ⟨n↓⟩ =
1/5. A convenient graphical representation illustrating the classical ground state config-
urations for rc = 2 is presented in Fig. 2.3. This specific density corresponds to a ratio
of nA block A and nB block B or nB′ block B’ equal to nB/nA = nB′/nA = 1/2. As
already mentioned the presence of the on-site interaction will slightly modify the classical
picture. In particular, a transition can occur between a liquid made of clusters AB and
a liquid made of clusters AB’. To gain physical insight, we define the energetical gain to
transform all B → B′ by ∆B→B′ = nBV − nB′U . When ∆B→B′ < 0 (> 0) , B’(B)-clusters
are favoured. One can note that the size of cluster B’ (rc + 1) is one site smaller than
cluster B (rc+2 ). Thus, changing 3 cluster B to 3 cluster B’ gives 3 vacant spaces, which
corresponds precisely to the size of cluster A with zero energy. As a consequence, the
3 B cluster effectively transform into 2 cluster B’ and 1 cluster A, lowering the energy
by ∆B→B′ = 3V − 2U and changing the ratio nB′/nA = 1/4. The transition is therefore
found at V = 2

3
U . In the same manner one can find a generalization for arbitrary rc with

the transition given by V = rc
rc+1

U . From this argument, two situations can arise:

(i) V < 2
3
U , the cluster type B is favored with respect to the B’. The classical blocks

configuration can be ordered in many different ways leading to an exponential degeneracy
of the ground state d = M !/[(M/3)!(2M/3)!], without considering the spin degeneracy.
Fig. 2.3, panel (a), presents the corresponding cluster exchange.

Lattice site

spin up spin down

Cluster type B’ Cluster type A Cluster type B

rc

EB = VEA = 0

EB’ = U

Figure 2.2: Graphical representation of the different possible blocks structure for the case
rc = 2.

41



42 Chapter 2. One-dimensional extended Hubbard model with soft-core potential

A

AA

A B

B

⇢ =
2

5
V

rc

A

AA

A B’

B’

⇢ =
2

5
V

rc

V >
2

3
U

V <
2

3
U

(a)

(b)

0 π
4

π
2

3π
4 π

k

0

2

4

6

8

10

S(
k) N=60

0 π
4

π
2

3π
4 π

k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S(
k) N=60

…

…

…

…

U

Figure 2.3: Graphical representation of a classical ground state configuration for the
CLLnn phase in panel (a) and the CLLd phase in panel (b). As an example, we show in
each panel, the corresponding peak in the structure factor.

(ii) V > 2
3
U , B’-clusters of double occupied sites are now favoured, with the same expo-

nentially degenerate ground state. This case is presented in Fig. 2.3 panel(b).

For the rest of this chapter, we will denote (i) CLLnn the phase with nearest-neighbor
(B) cluster whereas (ii) the phase with doubly occupied sites will be refer to CLLd.
Clearly commensurability between the size of the clusters and the total size of the system
is important. In the following analytical and numerical calculations we always assume
that L contains an integer number of clusters, namely L = 20, 30, 40, 50, 60.

2.1.3 Observables

Before investigating the influence of quantum fluctuation (t = 1) on the phase diagram in
Sec. 2.2, we first introduce the different observables targeting both the spin and the charge
sectors such as the structure factor, the low-energy degrees of freedom, and the entan-
glement entropy. In particular, we provide a classical interpretation of these observables
when possible.

42



2.1. The model 43

Structure factor

Two-points correlations between particles or spins are known to give valuable information
about the order and dynamics in condensed matter systems. The Fourier transform of the
correlations in real space, namely the structure factor, reveals the relevant length scales,
e.g., the periodicity along one and/or several axis arising from spontaneous symmetry
breaking. In particular, a peak in the structure factor at a specific momentum indicates
a precise spatial period.The charge and the spin structure functions are given by:

Sν(k) =
1

L

∑

ℓ,j

eik(l−j)g2,ν(ℓ− j)

with g2,ν(ℓ− j) the connected correlation function in the charge or spin sector (ν = c, s),
which reads:

g2,c(ℓ− j) = ⟨nℓnj⟩ − ⟨nℓ⟩⟨nj⟩

g2,s(ℓ− j) = ⟨Sz
ℓS

z
j ⟩ − ⟨Sz

ℓ ⟩⟨Sz
j ⟩

(2.4)

We expect that the formation of the clusters phases should be well captured by the
charge structure factor. Indeed, the charge modulation in the classical phase already
provides an estimate of the momentum peak’s position of the charge structure factor.
Within our classical approximation, we see in Fig. 2.3 that Sc(k) exhibits a peak located
at knn = 2πM/L = 3π/5 for the CLLnn [Fig. 2.3 (a)] and a peak at kd = 2π/3 for the
CLLd [Fig. 2.3 (b)] .

Low-energy degrees of freedom

The behaviour of the low-energy excitations is well captured by the charge and spin gaps
defined as:

∆c = E
(↑=↓)
N+2 (L) + E

(↑=↓)
N−2 (L)− 2E

(↑=↓)
N (L)

∆s = E
(↑=↓+2)
N (L)− E

(↑=↓)
N (L)

(2.5)

where E(↑=↓)
N (L) is the ground state energy in the case of N↑ = N↓ = Lρ, E(↑=↓)

N±2 (L) is the
energy of the state obtained by adding/removing two particles with opposite spin and
E

(↑=↓±2)
N (L) is the energy of the state obtained by flipping the spin of one particle. Also,

we consider the single particle gap:

∆sp = E
(↑=↓±1)
N+1 (L) + E

(↑=↓±1)
N−1 (L)− 2E

(↑=↓)
N (L) (2.6)

where E(↑=↓±1)
N (L) is the energy of the state obtained by adding/removing one particle.

In the usual LL, all these gaps are expected to vanish. However, this is different in the
cluster phase. In the following, we first compute these gaps in the classical limit (t = 0)
from the solution introduced in Sec. 2.1.2. For clarity, a graphical representation for the
single-particle and spin gap is presented in Fig. 2.4 (a) and (b).
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44 Chapter 2. One-dimensional extended Hubbard model with soft-core potential

(i) In the CLLnn phase, we consider a system size L = 10ℓ commensurate with the
cluster formation, nA = 2ℓ and nB = ℓ (see Sec), where ℓ labels the number of building
blocks. The classical energy of the system reads

E
(↑=↓)
N (L) = nBV = ℓV. (2.7)

(a) Single particle gap. Now, upon adding/removing one particle we obtain,

E
(↑=↓±1)
N+1 (L) = ℓV + 2V E

(↑=↓±1)
N−1 (L) = (ℓ− 1)V (2.8)

as the states cannot rearange properly due to the frustration. Thus, the single particle
gap is given by

∆sp = ℓV + 2V + (ℓ− 1)V − 2ℓV = V, (2.9)

which implies that the single particle gap is always open within the CLLnn [see Fig. 2.4
(a)].

(b) Spin gap. We see that upon a spin flip, classical energy remains unchanged.
Consequently the spin gap is always closed in this phase [see Fig. 2.4 (a)].

(c) charge (cluster) gap. Here, the situation is remarkably different, since extract-
ing/adding two particles allows the system to rearrange properly his configuration. For in-
stance, if we consider a ground state of the form BAABAABAABAA, extracting two par-
ticles changes 3 clusters B to 4 clusters A creating the new configuration AAAAAAAAABAA,
and lowering the energy by an amount 3V . Instead, the opposite process, i.e. doping
with two particles, changes 4 clusters A to 3 clusters B, thus increasing the energy by
3V :

E
(↑=↓)
N+2 (L) = ℓV + 3V E

(↑=↓)
N−2 (L) = V − 3V. (2.10)

The contributions associated to the insertion and extraction of a single cluster gap
therefore cancel out.

(ii) In the CLLd phase, we consider a system size L = 3 × 10ℓ commensurate with
the cluster formation, again we have nA = 2ℓ and nB = ℓ, where ℓ labels the number of
building blocks, which yields to a classical energy:

E
(↑=↓)
N (L) = nB′U = 2ℓU. (2.11)

(a) Single particle gap. Unlike the CLLnn phase, in this case, adding/removing a
particle cost exactly the same energy to the system, U . Because, we choose ⟨n↑⟩ = ⟨n↓⟩,
this effect is independent of the spin considered, and thus the single particle gap vanishes
[see Fig. 2.4 (b)].

(b) Spin gap. Due to the double occupancy, at first glance we expect spin effect to
be relevant. Nevertheless, since the number of cluster A is twice the number of clusters
B’, the system can be (at least classically) rearranged to have both spin flip contribution
exactly cancelling out. The spin gap is also zero in that phase [see Fig. 2.4 (b)].
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Figure 2.4: Graphical representation of the one-particle doping and spin-flip processes in
the two clusters phases, CLLnn in (a) and CLLd in (b).

(c) Charge (cluster) gap. In the same manner as the single particle gap, both contri-
bution will exactly cancel, leading to a vanishing cluster gap.

This investigation indicates that there must be a transition between the CLLnn phase
and the TLL where the single-particle gap ∆sp opens linearly with V , while the cluster
gap and spin gap remain gapless. The second transition between the CLLnn and the
CLLd, predicted at V = 2

3
U in Sec. 2.1.2, is characterized by the fact that single-particle

gap closes while the other gaps remain unchanged. We will show in the next Sec. 2.2 that
quantum fluctuations (t ̸= 0) lead to qualitatively similar physical properties.

Phases
Gaps

∆sp ∆c ∆s

TLL 0 0 0
CLLnn V 0 0
CLLd 0 0 0

Table 2.1: Summary table of the expected values of the gap inferred from the classical
analysis.

Von Neumann entropy

Entanglement plays a fundamental role in the study of strongly correlated systems and is
widely used to characterize their critical properties. In particular, a change in the ground
state entanglement allows to understand and locate a quantum phase transition. The
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46 Chapter 2. One-dimensional extended Hubbard model with soft-core potential

most common way to measure entanglement between two parts of a system is provided
by the Von Neumann entropy SL(ℓ), which is also called entanglement entropy. If we
consider a system of L sites that is divided into two subsystems A and B containing ℓ

and L− ℓ sites, respectively, SL(ℓ) is given by:

SL(ℓ) = −Trρℓ log ρℓ, (2.12)

where ρℓ is the reduced density matrix of the sub-interval ℓ with respect of the rest of
the chain.

In the thermodynamic limit, we have generally two different behaviors:
1. For gapped phases SL(ℓ) follows an area law, i.e. is proportional to the surface of

the block ℓ which is thus constant in 1D.
2. In critical gapless phases, the entropy diverges logarithmically, SL(ℓ) ∼ log(ℓ).

In particular, for a conformal invariant one-dimensional system with periodic boundary
condition, the entropy satisfies the following universal scaling law [208]:

SL(ℓ) =
c

3
ln
[L
π
sin(πℓ/L)

]
+ a0 +O(1/ℓα), (2.13)

where L is the system size of the system, c the central charge of the theory, a0 a non-
universal constant and ℓ the block length. There is also additional correction of the form
1/ℓα. From Eq. 2.13, we can extract the value of the central charge of the underlying
conformal field theory, which roughly speaking is a measure of the degrees of freedom
of the system, e.g., for a boson c = 1 and for a fermion c = 1/2. Since the low-energy
degrees of freedom of both the TLL and the CLL phases [10] are described by a conformal
field theory, we use Eq. 2.13 to obtain the entanglement properties of the ground state.
Note that the TLL theory predicts a separation of the spin and charge degrees of freedom,
which implies a central charge c = 2.

2.2 The phase diagram

We now study how the physical properties found in the previous section with our classical
approximation are modified in the presence of the tunneling term t ̸= 0. We use a Density
Matrix Renormalization Group (DMRG) algorithm [15] to investigate the quantum phase
diagram at zero temperature (T = 0) of the soft-shoulder Hubbard model (Eq. (2.1)) in
the whole range of the parameters U/t, V/t (where t is set to unity), for a potential range
rc = 2 and a fermionic density of ρ = 2/5[see Fig. 2.5]. In Sec. 2.2.1, we first characterize
the nearest-neighbor cluster phase (CLLnn) obtained in the large-U limit. In Sec. 2.2.2, we
then study the doublon cluster phase (CLLd) occuring for large V . In the next Sec. 2.2.3„
we consider the intermediate value of U = 10 and study the different phase transition
(TLL → CLLnn and CLLnn → CLLd ) occuring as V is increased. Finally, Sec. 2.2.4
is devoted to the study of the TLLd phase, found for small U for all V . Due to the
high degree of frustration inherent to the model, reaching a high precision in numerical
simulations is very challenging. Details on the numerical analysis are provided in the
appendix 1.4.
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Figure 2.5: Sketch of phase diagram of the extended Hubbard model with soft-core
potential. We choose a potential range rc = 2 and a fermionic density of ρ = 2/5. The
properties of the different phases will be discussed in the Sec. 2.2 . The shaded area
indicates where the numerical results are particularly hard to extract.

2.2.1 The large U-limit and the nearest-neighbor cluster phase
(CLLnn)

Classically, we have shown in Sec. 2.1 that the CLLnn phase appears when the on-site
interaction U is on a factor 3/2 larger than the soft-shoulder repulsion V . To observe
this phase, we consider a regime with U ≫ V ≫ t, and we therefore expect the spin gap
to be closed, as in the standard Hubbard model. Since, in this limit, double occupancy is
strongly avoided, the charge sector of our models mimics essentially a spinless fermionic
model with a density of particles given by ρ = ⟨n↑⟩ + ⟨n↓⟩, i.e., the model considered
in Ref. [235]. In order to see that the formation of the block structure introduced in
Sec. 2.1 survives with quantum fluctuation, we look at the numerical calculation of the
(static) charge structure function Sc(k), which should develop a peak at knn = 2πM/L

where M is the total number of clusters. In this case, denoted CLLnn in Sec. 2.1, we
have M/L = 3/10, so that knn = (3/5)π. In Fig.(2.6) panel (a), we show the behaviour
of Sc(k) for U = 50 and different values of V . The emergence of the peak is evident.

2.2.2 The large V -limit and the doublon cluster phase (CLLd)

We now turn to the second phase predicted in the classical limit, which appears for
V ≫ U ≫ t. Since the one-site interaction is finite it is necessary to take into con-
sideration the fact that we have two species of fermions and that we might now have
double occupied sites. Similarly to the previous case, we have to respect a certain density
constraint implying that nA = 4nB′ and we can order clusters of type A and B′ in many
different ways, leading to a liquid cluster phase which contains doubled occupied states.

47



48 Chapter 2. One-dimensional extended Hubbard model with soft-core potential

This phase was refer to the doublon cluster phase (CLLd) in Sec.2.1. A pictorial repre-
sentation of it is shown in the panel (b) of Fig. 2.3. One can check that now M/L = 1/3

(see Eq. (2.3)) for commensurate system size, we thus expect to see a peak in the charge
structure function at kd = 2πM/L = (2/3)π .
At the semiclassical level (t = 0), the discontinuity in the energy between the CLLnn

and the CLLd phases suggests a first order transition at 3V = 2U . Of course, strong
renormalization on the localization of the critical point is expected due to the presence
of the hopping term in the hamiltonian, nevertheless these phases should be qualitatively
the same. This can be checked, by examining what happens for an intermediate values
of V , say V = 8 and two different values of U , one large (say U = 50) corresponding to a
CLLnn phase and one intermediate (e.g. U = 10) corresponding to a CLLd phase. More-
over, we choose a system size L = 30 which exactly commensurates with both clusters
configuration. The predicted shift of the peak in the charge structure function is indeed
numerically verified as shown in Fig.2.6, panel (b).

It is essential to notice that the position of the different peaks indicates a clear break-
down of the TLL theory. Indeed, bosonization predicts a peak in the charge structure
factor independently of rc at

kc = 2πρ (2.14)

with ρ the total density. For a hard-core particle model [235], it has been established that
this breakdown is rooted in the classical frustration inherent from this type of finite-range
potential [see also Sec. 2.1.2]. Here, we have thus confirmed and extended this result to
fermionic models, and we have demonstrated that the spin degree of freedom can lead to
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Figure 2.6: Panel (a): The charge structure function Sc(k), evaluated for U = 50 and
V = 1, 3, 5, 8. The numerical simulation is performed with L = 50, a size allowing for
an exact number of clusters. Panel (b): The charge structure function Sc(k), evaluated
for V = 8 and U = 10, 50. The numerical simulation is performed with L = 30, a size
allowing for an exact number of clusters for both the CLLnn and the CLLd phases.
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a novel type of cluster phase. To go further in the analysis, we would like to see if the
presence of the spin degree of freedom also influences the transition between a TLL and
a CLLnn.

2.2.3 The phases for intermediate values of U

In the two previous subsections, we have confirmed the existence of the different cluster
phases inferred from the classical limit. Now, we would like to study in details the tran-
sition between the different aforementioned phases. In particular, we would like to see
possible novels effects on the transition TLL → CLLnn due to the presence of a spin. To
do so, in this subsection, we fix the on-site interaction to the intermediate value U = 10

and study in details the characteristics of the different cluster phases encounter by vary-
ing V . As mentioned previously, we expect now to find three phases: the TLL, the CLLnn

and the CLLd, in order of increasing values of V . In the first place, we distinguish TLL,
the CLLnn and the CLLd phases by looking at the peak in charge structure factor. In
Fig. 2.7 (a), we find that the position kc of the maximum peak in Sc(k) indicates the
three phases. First, at small V , kc is located at 4π/5 in agreement with a TLL liquid,
see Eq. (2.14). For an intermediate V , kc = 3π/5, corresponds to the classical charge
modulation of the CLLnn (see Fig. 2.3). Finally at strong V , kc is equal to π/3, which
corresponds to the CLLd phase (see Fig. 2.3). In general, a specific ordered phase is char-
acterized by a finite non-zero value of Sc(kc)/L in the thermodynamical limit. In order to
see that this is the case, we have examined the finite size scaling of the charge structure
factor Sc(k)/L. This is shown for instance in Fig. 2.7 panel (b) for several values of V .
Dotted lines are best fits of the form a+ b/L+ c/L2, where we have arbitrary considered
size correction up to the second order. From these data, it is evident that Sc(k)/L is
finite in the thermodynamic limit for V ≥ 5.5, whereas it goes to zero for smaller values
of the interaction. In Fig. 2.7 panel (c), we present the extrapolated infinite size Sc(kc)

value as a function of the interaction strength V .

To better understand the nature of the cluster phases, we now focus on the spin struc-
ture function Ss(k). By looking at Fig. 2.8 panel (a) and panel (b), we notice that, at
small and intermediate V , the position kc of the maximum peak of Ss(k) is located at
k0 = (2/5)π in correspondence with the one-particle density n = 1/5 and the TLL theory
(see Eq. (2.14)). In addition, with increasing V we observe the gradual increase of Ss(π)

which becomes dominant for large V . From that we can clearly conclude that:
i) In the CLLnn phase AF order is enhanced. This result can be easily understood if
we consider strong-coupling corrections to the large U limit. Indeed, for infinite U when
double occupancy is strictly avoided and the hopping term can be neglected, the different
spin sectors are exactly degenerate. For large but finite U , the spin configuration that
allows for the maximum energy gain due to hopping is indeed the one in which two spins
that are separated only by empty sites are AF ordered. However, this effect does not
correspond to a true long range order, as it can be inferred from the fact that the peak
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Figure 2.7: Panel (a) shows the position of the maximum momentum peak of Sc(k)

vs V . Lines are guides for eyes and correspond to the theoretical prediction of the
momentum peak for the LL (dotted), CLLnn (full) and CLLd (dash-dotted). Panel (b):
Finite size scaling of the density-density structure factor Sc(kc) for different values of V .
The extrapolated values are shown in panel (c). All simulations are performed at U = 10.
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tion strength V . Panel (b) shows the position of the maximum momentum peak of Ss(k)
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mentum peak for the LL (dotted), CLLnn (full) and CLLd. Panel (c): The extrapolated
values of Ss(k) in the infinite-size limit are presented for kc = π and kc = 3π/5.

at k = π goes to zero (or a very small value) in the thermodynamic limit, e.g. see panel
(c) of Fig. 2.8.
ii) In the CLLd phase the peak corresponding to the total density of (single) particles
is shifted to smaller values of the momentum, signalling that there is a formation of a
certain number of double occupied sites, effectively reducing the (single particle) spin
density. To confirm the latter point, we study the doubly occupancy d, defined as:

d =
1

L

∑

i

ni,↑ni,↓ − ρ, (2.15)

where ni,σ is the occupation of one species particle, and ρ the total average density.
Fig. 2.9 (a) shows the double occupancy as function of V . We find that the double
occupancy increases continuously with V up to a discontinuous jump around V ∼ 7.5,
which could indicate a first order transition between the CLLnn and the CLLd phases. In
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Figure 2.9: Panel (a) : the double occupancy (d) versus V for an on-site interaction
U = 10. We see that d increases with V , a jump occurs at V ∼ 7.5, indicating a possible
first-order transition. The dotted blue line is the expected doubly occupancy within
the CLLd phase. Panel (b): finite size analysis of the critical point extracted from the
maximum of the first derivative d(d) /dV .

Fig. 2.9 (b), we report the critical Vc(L) extracted from the maximum of the first deriva-
tive d(d) /dV as a function of 1/L. We then extrapolate the Vc in the thermodynamic
limit by doing a fit of the form a

L
+ b. We obtain Vc ≈ 6.85, in agreement with the semi

classical prediction V = 2U/3 ≈ 6.66.

Further insight can be obtained by looking at the ground state entanglement proper-
ties of the system. We consider the bipartite von Neumann entropy and extract the
central charge of the system according to formula (2.13). As said before, the numerical
calculations are very challenging: due to large frustration, convergence is very slow and
size effects are very strong (cf. appendix). Here we summarize our results in Fig. 2.10,
where we show the infinite size extrapolation of the central charge for different values of
V = 1− 8. From a detailed analysis of the scaling, we can conclude that:
i) the LL phase has c = 2, as it is expected from bosonisation which, for small values of
U and V , predicts a liquid of two bosonic species, with spin and charge separation;
ii) the CLLnn phase has also c = 2 (cf. caption in Fig. 2.10 and appendix): the liquid is
made up of clusters with only single occupied sites, with two species of fermions;
iii) the critical point separating the LL and the CLLnn phases is located at Vc ≃ 5.7,
where the central charge jumps to c = 5/2;
iv) even if numerical difficulties limit our simulations to values of V not larger than 9,
we see a second critical point V ≃ 7.4 at which the central charge is very high.

In order to understand the properties of the different low energy degrees of freedom,
we calculate the gaps in the CLLnn phase. Both the charge and the spin gaps are zero
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52



2.2. The phase diagram 53

in the thermodynamic limit, showing that indeed we are in a massless phase in both the
spin and charge sectors. As an example, the finite size behaviour of the spin gap and its
extrapolation in the thermodynamic limit are shown in Fig. 2.11 panel (a) and panel (b),
respectively. On the contrary, we can observe the opening of the single particle gap, as
shown in Fig. 2.12 (a) and (b). In Fig. 2.12 (a), we show the finite-size analysis in the
vicinity of the critical point where we perform a fit of the form a1/L

a2 +a0 to extrapolate
the single-particle gaps in the thermodynamic limit. We report these extrapolated values
in the Fig. 2.12 (b) as function of V and we see the linear opening of the single particle
gap. Then, we use the formula ∆ ∼ (V − Vc)

ν in order to extract the critical exponent
at the transition point. In the inset of Fig. 2.12 we show our numerical data, from which
we can extract the estimate ν ≃ 1, a value suggesting a transition belonging to university
class of 2D Ising model, which is compatible with the central charge behaviour seen before.
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Figure 2.11: Panel (a): Finite-size scaling of the spin gap for different magnitude V .
Lines are the best fit of the form a1/L

a2 + a0, with a0, a1 and a2 constant. Panel (b):
The thermodynamic extrapolation of the single particle gap as function of the interaction
strength. Errors are estimated with the least-square method and are of the order of 10−2

for large V .

We come now to the interpretation of the numerical results reported above.
First of all, let us notice that they are consistent with the fact that spin and charge
degrees of freedom are separated at all values of the interaction parameters, so extending
the prediction of (standard) bosonisation which describes the TLL phase.
Second, we also see that they are in agreement with what happens for the single species
case [235]. In the latter case, both the TLL and the CLL phase are characterised by a
central charge c = 1. The extended Hubbard model we consider here contains two species
of fermions and we find for both CLL phases a value of the central charge c = 2. Also, at
the TLL-CLLnn transition point (Vc ≃ 5.7), the value of the central charge is enhanced
by a factor of 1/2, signalling that an additional (real) fermionic degree of freedom is
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Figure 2.12: Panel (a): Finite-size scaling of the single particle gap near to the transition
point. Lines represent a best fit of the form a1/L

a2 + a0, with a0, a1 and a2 constant.
Panel (b): The thermodynamic extrapolation of the single particle gap as function of the
interaction strength. The red dotted line is a linear fit; its intersection with the horizontal
axis yields the critical point Vc ≃ 5.73. Errors are estimated with the least-square method
and are of the order of the marker size. The inset shows the estimation of the critical

exponent ν at the LL-CLLnn transition point.

becoming massless. For the single particle case, this sudden increase of the central charge
was interpreted [235] as a signal of an emergent supersymmetry between the compactified
bosonic degree of freedom of the liquid phase and of an Ising fermionic one that becomes
massless at the critical point. We can confirm that this is what happens also in our case
by looking at the sound velocities of the bosonic and fermionic modes at the transition.
We can define the sound velocities vc, vs, vsp respectively according to [245]:

∆c/2 =
2πvcdc
L

∆s/2 =
2πvsds
L

∆sp =
2πvspdsp

L

(2.16)

where dα is the conformal dimension of the corresponding vertex operator in the conformal
field theory that describes the low-energy continuum limit of our model. Notice that we
put a factor 1/2 in the formulae for the charge and spin gaps because their definition
implies the action of two vertex operators. The charge and spin bosonic modes are each
described by a c = 1 conformal field theory, which is completely fixed by the Luttinger
parameter Kc,s through the formula: dc,s = 1/4Kc,s [223, 246]. The SU(2) spin symmetry
implies that we should assume Ks = 4. If we also assume so for the charge sector Kc = 4,
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Figure 2.13: Rescaled sound velocities vrα = vα/vm, where vm is the maximum of the
three sound velocities in the L→ ∞ limit, as extracted from the low-energy spectrum.

then we can say that:

vc =
4∆cL

π

vs =
4∆sL

π

(2.17)

For the single particle gap, we use instead the conformal dimension of the first vertex
operator in the Ising model, xsp = 1/8, to get:

vsp =
8∆spL

π
(2.18)

As shown in Fig. 2.13, our numerical data confirms that all sound speeds become
the same at the TLL-CLL transition point, which is a signature of an emergent su-
persymmetry, i.e. a symmetry between bosons and fermions. At a supersymmetric
point, the number of bosonic and fermionic modes is equal, and a boson can be trans-
formed into a fermion under specific transformations known as supersymmetric transfor-
mations [129, 247, 248]. In our case, approaching the critical point, the granularity of the
liquid changes from a single-particle (fermionic mode) to a cluster of particles (bosonic
mode), which leads to a peculiar symmetry precisely at the critical point.
As a final remark, we want to comment on the value of the central charge at the second
transition V ≃ 7.4. Here numerical simulations are particularly hard and we can see from
Fig. 2.10 that we have not reached convergence yet, since c(L) is still increasing very fast
with the size of the system. Thus, within the accuracy of our data, we are not able to say
whether it is converging to a finite value. A divergent central charge might be the signal
that this transition is first order, as it is predicted by semi-classical considerations.
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2.2.4 The phases for small values of U

In the following, we consider the case of small on-site interaction by fixing U = 1.5. We
start our analysis by looking at the charge structure factor Sc(k) for several magnitudes
of the interaction V , presented in Fig. 2.14 panel (a). We observe (i) the usual TLL phase
(no peak) at small V , and, (ii) surprisingly, the emergence of a new peak at intermediate
value of V , see e.g V = 4, 7 in Fig. 2.14.

To understand in-depth the nature of the phase, we perform a finite-size scaling of
the peak of the charge structure factor Sc(k)/L. Fig. 2.14 panel (b) shows examples of
the scaling, where solid lines are linear fits. Our data show that Sc(kc)/L goes to zero in
the thermodynamic limit, signaling a liquid phase. Furthermore, as shown in Fig. 2.14
panel (c) the double occupancy increases with the interaction strength. We interpret
these combined results as an emergence of a "new" liquid phase where particles have
the tendency of forming pairs, which we call TLLd. Finally, in Fig. 2.15, we present the
central charge, extrapolated in the thermodynamic limit, as a function of the interaction
strength V . While for large V , the frustration prevents any real conclusion, at small and
intermediate V , the central charge is equal to 2, as expected for a TLL.

We notice that TLLd and CLLd appears to be distinct phases. In both cases, due to
the small value of the on-site interaction, clusters with doubly occupied sites (|200⟩) are
favored with respects to the ones with nearest neighbors. However, qualitatively in the
TLLd region, since U are on the same order of t (U ≳ t), extra pairs and thus vacant
spaces are easily formed. This effect provides higher mobility for the single-particles via
first or second-order hopping processes. In contrast, in CLLd, U ≫ t and the system tries
to minimize every cluster’s formation. In this case, the mobility of clusters can only be
assured by higher-order hopping processes as in [235].
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Figure 2.14: Panel (a): Density-density structure factor for a system size L = 40. The
black solid line indicates the semi-classical prediction for the CLLnn phase, the dashed
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finite-size scaling for the peak are shown, where the solid lines are a linear fit of the form
a
L
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dashed lines are guide for the eye and represent the maximum ratio of double occupancy
for the fix density ρ = 2/5 (black) and the expected value in the CLLd phase (blue),

respectively.
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Figure 2.15: The extrapolated central charge obtained from the Cardy-Calabrese formula
for U = 1.5 for different values of V = 0− 6.

2.3 Conclusion

In this work, we have studied in details the ground state phase diagram of a 1D Hubbard
model, where particles interact via soft-shoulder potential.

In the first part of the study, we have focused on the classical limit of our model
(t = 0), for which we have described the frustration mechanisms at play. We have
notably shown that these effects lead to the appearance of two cluster type phases, one
already known as the cluster luttinger liquid (CLL) and a second one made of on-site
pairs (CLLd). Interestingly, these phases are not captured by the standard TLL theory,
and we have found that the transition between the CLLnn and CLLd occurs at V = 2U/3

at this classical level.
In the second part of this work, using the DMRG method, we have studied the phase

diagram of our quantum (t ≡ 1) model in the whole range of the parameters U , V by
analysing in detail the properties of the different phases. We have notably demonstrated
that the standard TLL phase is the ground state for low values of U , V . At large U or
at large V , we have confirmed the existence of the cluster phases predicted classically.
Then, focusing on an intermediate value of U , we have characterized in more details the
different phases and the transition between them. In particular, we have shown that all
the phases present in our model are characterized by a central charge c = 2, consistent
with the separation of the spin and charge degrees of freedom in the TLL theory. However,
in the CLLnn we have shown that the single-particle excitation is gapped; hence we
have interpreted this phase as a TLL made of composite clusters particles. At low on-
site interaction U and intermediate V , we have found the presence of a liquid phase
characterized by the formation of more one-site pairs as compared to the standard TLL,
which we have qualitatively attributed to a strong competition between the tunneling
and the on-site repulsion.
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At the critical point between the conventional TLL and the CLLnn, we have carried out
an extensive investigation of the entanglement entropy and the low-lying energy degree of
freedom, providing evidence of an enhance of the central charge to c = 5/2 compared to
the usual TLL, indicating an emergent supersymmetry. Regarding the last point, we have
confirmed that the renormalized sound velocities of the emergent bosonic and fermionic
modes are indeed equivalent at the critical point within numerical accuracy. Finally, we
have shown numerically that the classical prediction for the transition between the CLLnn

and CLLd holds.
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Appendices

2.A Details about the numerics

In this appendix, we give an insight into the real computational challenge inherent to
frustrated systems considered in this work. Indeed, numerical results are hard to extract
with high precision, even with the state of art of techniques such as DMRG. In this work,
we use a DMRG code provided by ITENSOR [15], and we impose anti-periodic boundary
conditions to reduce boundary effects, keeping up to 9000 states per block and up to
20 sweeps. Furthermore, in order to keep commensurability with the cluster structure
(CLLnn), we considered only chains of size L = 10, 20, 30, 40, 50, 60. For comparison, in
the usual short-range Hubbard model convergence is reached with few hundred states
and few sweeps.

We now give an example of the problems we encountered, by showing how we tack-
led the problem of extracting the central charge. As an instance, we consider the point
U = 10, V = 6.4, which lies inside the CLLnn phase. Here, we compare the results of the
entanglement entropy by varying some numerical parameters, such as the bond dimen-
sions and the block length of Eq. 2.13. Using this approach, we are able to extrapolate
the central charge in the limit of infinite bond dimension and in the thermodynamic limit.
As we will see, the data strongly suggest that the central charge is equal to 2.

In Fig. 2.16 panel (a), we show the central charge versus the minimum block length
ℓ used in Eq. (2.13) for various D and fix L = 50. The strong dependence on the bond
dimension and the block length is evident. In particular, we find that keeping tiny blocks
in the Eq. (2.13) leads to an overestimation of the central charge, signaling the importance
of the non-universal effects. It is possible to estimate the central charge in the limit of
infinite number of local states by fitting with a function c(1 − be−aD), see e.g. Fig. 2.16
panel (b). This limit is reported as the black line in Fig. 2.16 panel (a).

In order to calculate the central charge in the thermodynamic limit, we now perform a
finite-size analysis at fixed block length ℓ ≤ 7 to avoid non-universal effects. In Fig. 2.17
panel (a), we plot the central charge as a function of 1/L for different bond dimensions.
Then, we extrapolate cL→∞ with a fit of the form c + a

L
+ b

L2 . As mentioned before, the
black line corresponds to the infinite bond limit and gives us a first estimation for the
central charge around ∼ 1.8. Numerically, we find here that convergence is particularly
hard to reach. The value of the central charge is still underestimated by considering 9000
states per block. Finally, in Fig. 2.17 panel (b), we show cL→∞ as a function of the local
states D. By fitting with a function c(1−be−ax) (blue line), we obtain a second estimation
of the central charge in the limit of infinite size and infinite local states: c ∼ 2.3. These
combined results indicate a central charge equal to 2 in the CLLnn region.
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Figure 2.16: Panel (a): central charge as function of the different block length kept for
different local bond dimension. The black line corresponds to an extrapolation in the
infinite local states limit. Panel (b): central charge versus D, the solid lines are fits of
the form c(1− be−aD), providing an extrapolated value of cL in the limit of infinite D.
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Figure 2.17: Panel (a) is the finite-size scaling, for block length ≥ 7, for different bond
dimension (colours cf. legend). As previously the black line is the infinite bond dimension
limit. In panel (b), we present the extrapolated central charge as function of the local

bond dimension.
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Chapter 3
Effects of energy extensivity on the quantum phases of
long-range interacting one-dimensional systems

Laws of Thermodynamics:
- This is the game
- You can’t win
- You can’t break even
- You can’t get out of the game

C.P. Snow

Long-range (LR) interacting systems are characterized by highly non-local couplings
between their constituents, typically decaying as a power law for large distances be-
tween them. LR models feature a wide variety of applications including self-gravitating
clusters [249], ferromagnetic materials [250], non-neutral plasmas [251], cavity-QED sys-
tems [117], and 1D quantum wires [252]. Recent progress in the realization of artificial
lattices of cold gases with sizable LR interactions has stimulated considerable interest [3–
6, 8, 93, 112, 115, 139, 253–260]. In parallel, theoretical studies of the ground state
of LR spin models have revealed anomalous critical exponents [261–263] and decay of
correlations [264–269], as well as the existence of new quantum phases [9, 110, 270–273].

The strong LR regime for a d-dimensional system with volume V is achieved when the
power-law exponent α entering the potential V (r) ∝ 1/rα experienced by two particles
separated by the distance r is such that 0 ≤ α ≤ d. This regime is typically associated
to unusual thermodynamic properties such as a non-extensive energy E ∼ V2−α

d lead-
ing to an ill-defined thermodynamic limit [18]. Furthermore, the total energy cannot be
obtained by summing up the energies of different subsystems as is usually the case for
short-range interactions [16, 274]. This non-additivity appears as a fundamental prop-
erty of LR models and leads to exotic behaviors including the breaking of ergodicity,
the existence of slow relaxation processes, and the inequivalence of statistical ensem-
bles [19, 22–24]. In contrast, extensivity can be restored by rescaling the interaction
potential with an appropriate volume-dependent factor Λ, which is known as Kac’s pre-
scription [275]. The latter is systematically used to study the thermodynamic properties
of classical spin models with LR interactions [17, 276–279]. In condensed-matter quan-
tum systems, however, Kac’s rescaling is usually not considered, and it is therefore an
open and interesting question to investigate whether energy extensivity can modify the
fundamental properties of LR quantum systems.

In this chapter, we focus on the impact of non-extensivity in quantum systems inter-
acting via repulsive potentials in the strong LR regime. In Sec 3.1, we start by reviewing
the different regimes of LR interacting systems, as well as their specific thermodynam-
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ics and dynamical properties. We then introduce the Kac’s prescription and explain its
relevance for classical systems. In Sec. 3.3, we investigate a specific LR quantum model,
namely a 1D periodic chain of hard-core bosons interacting via a repulsive potential in the
strong LR regime at half-filling. A particular case of this model (α = 1) has been already
studied in the context of 1D quantum wires and features interesting properties due to
its long-range nature. [280–288]. In Sec. 3.4 and 3.5, we use the Luttinger liquid (LL)
theory combined with Density Matrix Renormalization Group (DMRG) calculations [15]
for large system sizes (≳ 200 sites) to analyse the quantum phases of this model with
and without Kac’s prescription. We find that the latter has a profound influence on the
low-energy properties in the thermodynamic limit. In the absence of Kac’s rescaling, the
ground state is in a gapped insulating phase in the thermodynamic limit in the whole
range 0 < α ≤ 1, extending the results of Ref. [286] in the marginal case α = 1. In stark
contrast, we demonstrate that Kac’s rescaling leads to a metallic phase for any finite
strength of the interaction in the thermodynamic limit for 0 ≤ α ≤ 1. This finding raises
fundamental questions on how to study the thermodynamics of LR interacting quantum
systems, since different phases are obtained depending on whether Kac’s prescription is
used or not. Furthermore, we study the validity of the Luttinger Liquid theory in Sec. 3.6
by computing the Luttinger parameters from the single-particle correlation function, the
structure factor, the charge gap, and the charge stiffness. Interestingly, we find a discrep-
ancy between the results that make this metallic phase incompatible with a conventional
LL. Finally, in Sec. 3.7, we show that restoring extensivity eliminates the plasmon modes
while preserving the LR character of the potential, and with it some inherent properties
of the strong LR regime such as non-addivity.

3.1 Long-range system

In the two following sections, we briefly review the peculiar thermodynamic properties
of LR systems. In most physical systems with short-range interactions, the connection
between microscopic and macroscopic descriptions relies on the introduction of different
statistical ensembles, which in principle give equivalent predictions. However, one of the
most fascinating properties of LR systems is that these statistical ensembles are not always
equivalent. This discrepancy stems from the non-additivity and the non-extensivity of
the energy. Both are intimately related, as we will see in the section below.

3.2 Non-extensivity and non-additivity

In order to define more precisely what do we mean by a (truly) LR system, we consider
a model with N particles in a d-dimensional volume V interacting via a potential V
decaying as a power law of the inter-particle distance r: V (r) ∝ 1/rα , α > 0. When
α > d, the interaction potential decays rapidly at large distance, and the thermodynamic
and dynamical properties correspond to those of short-range systems. This regime is
usually referred to as weak LR. In contrast, the potential for α < d varies slowly with the
distance and has a more pronounced effect. In this case, the system is said to be truly
long-range or in the strong LR regime. To illustrate this point, we examine the potential
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R

�

Figure 3.1: Schematic picture of the domain considered for the evaluation of the energy
ϵ of a particle: A spherical shell of outer radius R and inner radius δ.

energy ϵ of a system consisting of one particle placed in the center of a sphere of radius R,
and an homogeneous particle density with density ρ. We exclude the small volume around
the central particle to regularize the potential at short distance (see Fig. 3.1) [17, 278].
The energy reads:

ϵ =

∫ R

δ

ddr
V

rα
= ρV Ωd

∫ R

δ

1

r1+α−d
dr =

ρV Ωd

d− α

[ 1

Rα−d
− 1

δα−d

]
, (3.1)

where Ωd is the angular volume in dimension d. In the weak LR regime α > d, the
energy ϵ tends to a finite value when increasing the radius R, and one can check that
the energy is extensive, i.e. it scales linearly with the volume V . In contrast, the energy
scales superlinearly with the volume as E ∼ V2−α

d (or logarithmically in the marginal
case α = 1) in the strong LR regime α < d. This implies that the system is non-extensive,
which leads to an ill-defined thermodynamic limit. Indeed, extensivity is responsible for
the competition between energy and entropy. This can be seen by introducing the free
energy F = E − TS. Since the entropy always scales linearly with the volume, the free
energy is dominated by the energy part which leads to a trivial thermodynamics [16, 274].
The thermodynamic limit can be however studied using a simple trick known as the Kac’s
prescription. This prescription restores energy extensivity and consists of rescaling the
potential by a volume dependent factor Λα = V1−α

d . Note that in a simple case where
we neglect the kinetic term, either the potential energy or the temperature T can be
equivalently rescaled.

Non-additivity is another inherent property of the strong LR regime and can be defined
as follows. Considering a system divided in two macroscopic parts 1 and 2 with energy E1

and E2, the total energy of the system cannot be obtained by summing the energy of each
part, i.e., Etot ̸= E1 + E2. This property stems from the energy Eint due to interactions
between the different parts of the system, which cannot be neglected in the strong LR
regime causing the system to be intrinsically non-additive. In contrast, in most physical
systems with short-range interactions (or in the weak LR regime), this interaction energy

63



64
Chapter 3. Effects of energy extensivity on the quantum phases of long-range

interacting one-dimensional systems

Eint goes to zero in the thermodynamic limit and the systems is thus said to be additive,
i.e., Etot = E1 + E2.

One can check that the energy scales linearly with the volume when Eint is neglected.
In other words, additivity implies extensivity. Note also that while non-extensivity im-
plies non-additivity, the converse statement is not true [17]. Indeed, one can show that
restoring extensivity does not systematically restores additivity. In order to illustrate
this point, we consider the following one-dimensional lattice model:

H =
∑

i>j

V

Λαrαi,j
, (3.2)

where ri,j = |i − j| is the distance between the sites [see Fig. 3.2]. The Kac’s factor Λα

is used to restore energy extensivity. For simplicity, we choose α = 0 and divide the
system of length L into two equal parts with two particles in each. We find that while
E1 = E2 = 2V/L, the total energy Etot = 6V/L ̸= E1+E2. This indicates that the system
is extensive but non-additive. We now investigate the consequences of Kac’s rescaling on
the dynamics of classical systems.

1 2

Eint

interface

Etot =
6V

L
6= E1 + E2

E1 =
2V

L
E2 =

2V

L

L

i j

V

Figure 3.2: Schematic picture of the Hamiltonian Eq. (3.2). A system of size L is divided
into two parts 1 and 2 with two particles in each. The potential is considered having
an infinite-range (α = 0). Since the total energy can not be obtained by summing the
energies of the two subsystems, the system is said to be non-additive.

3.2.1 Kac’s rescaling in classical systems

The Kac’s rescaling is systematically used to study the thermodynamic properties of
classical spin models with LR interactions [17, 276–279]. We now show that the dynamical
properties with and without Kac’s rescaling are the same provided the respective time
scales tres and t satisfy t = tres/

√
Λ [289, 290] (for an Hamiltonian with quadratic kinetic
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energy). We consider a general classical Hamiltonian H(q, p) = T+V , where T = p2/(2m)

the kinetic term, V the potential and q, p the set of canonical coordinates. The dynamics
of such classical system is then governed by the Hamilton equations:

ṗ = −∂H
∂q

q̇ =
∂H
∂p

.

(3.3)

For a quadratic kinetic energy, we can combine the previous equations to obtain

q̈ =
ṗ

2m
= − 1

2m

∂H
∂q

= − 1

2m

∂V

∂q
. (3.4)

If one now considers the new Hamiltonian Hres(q, p) = T+ V
Λ

with Kac’s rescaling, Eq (??)
becomes

q̈ =
ṗ

2m
= − 1

2m

∂H
∂q

= − 1

2mΛ

∂V

∂q
, (3.5)

which can be rewritten as

Λ
d2q

dt2res
= − 1

2m

∂V

∂q
, (3.6)

where tres is the time associated to the Hamiltonian Hres. Assuming that the time scales
satisfy tres =

√
Λt, we obtain immediately dt2res = Λdt2, and Eq. (3.6) is equivalent to

Eq. (3.4). This means that the two Hamiltonians H(q, p) and Hres(q, p) feature the same
dynamical and thermodynamic properties. However, it can be shown that the latter
statement does not hold true in quantum systems. Indeed, the quantum counterparts
of the Hamilton equations follow from the Ehrenfest theorem, but only involve the ex-
pectation values of the momentum and position operators. In contrast to the classical
situation, the dynamics of a quantum system with and without Kac’s rescaling are a priori
different. It is therefore an interesting question to investigate what other properties such
as ground state phases can be fundamentally modified by Kac’s rescaling in a generic
quantum system.

3.3 Model

We consider an archetypal and still actively studied LR quantum model which consists
of one-dimensional (1D) fermions interacting via a 1/r (unscreened) Coulomb potential.
Schulz showed using bosonization techniques that the ground state of this system is a
peculiar metal resembling a classical Wigner crystal, with very slow decay of the charge
correlations associated to the plasmon mode [280, 281]. This result was confirmed numeri-
cally using DMRG [291] and variational Monte Carlo methods [282–284]. In the presence
of a lattice at commensurate fillings, it was shown that while the metallic behavior is
surprisingly enhanced as compared to short-range interactions for small system size, the
ground state ultimately enters an insulating phase in the thermodynamic limit [285–288].
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In the following, we study an extension of this model, with a tunable interaction poten-
tial that allow us to explore the whole strong-long regime. We will emphasize striking
difference when Kac’s prescription is used or not. The Hamiltonian reads as

H = −t
L∑

i=1

(
a†iai+1 + h.c.

)
+
∑

i>j

V
(α)
i−j ninj, (3.7)

where the operator ai (a†i ) annihilates (creates) a hard-core boson on site i = 1, · · · , L,
and ni = a†iai is the local density. The interaction potential reads

V
(α)
i−j =

V

Λα(L)rαi−j

V > 0,

where ri−j = (La/π) sin(π|i− j|/L) for L ≫ 1 as we assume periodic boundary con-
ditions. A pictural representation of the circular chain is presented in Fig. 3.3. In the
following, the nearest neighbor hopping t and lattice spacing a are set to t ≡ a ≡ 1. Kac’s
rescaling of the interaction potential is included via the function Λα(L) = 1 for α > 1 (ab-
sence of Kac’s rescaling), Λα(L) = log(L) in the marginal case α = 1, and Λα(L) = L1−α

in the strong LR regime α < 1. Note that the XXZ Heisenberg model with LR cou-
pling along the z direction and short-range coupling along x and y can be mapped onto
hard-core bosons Eq. (3.7) or spinless fermions via a Jordan-Wigner transformation.

Lattice site

Hard-core 
boson

i

j

p

t

ri�j
V

r↵i�p

Figure 3.3: Sketch of the physical system described by the Hamiltonian Eq. (1) of the
main text, consisting of a circular chain (periodic boundary conditions).

3.4 Low-energy degree of freedom

We have seen previously that the Kac’s rescaling restores extensivity in the system.
It is therefore convenient to first compute the energy of the ground state E0(N) (for
N particles) and the single-particle gap ∆ = E0(N + 1) + E0(N − 1) − 2E0(N) for
α = 1 and different interaction strengths V . These results are shown in Fig. 3.4. The
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situation without Kac’s rescaling [Λ1(L) = 1, Fig. 3.4 (a)] has been already investigated
in Ref. [286], and features a non-extensive energy [Fig. 3.4 (b)]. In this case, we find
that the gap ∆(L ≫ 1) ̸= 0 for any V > 0, which indicates an insulating phase in
the thermodynamic limit consistently with the conclusion of Ref. [286]. These results
are drastically modified when using the Kac’s prescription. By rescaling the interaction
potential [Λ1(L) = log(L), Fig. 3.4 (d)], we find that while extensivity is clearly restored
[Fig. 3.4 (c)], ∆ ∼ 1/L for all V > 0. This result indicates a metallic behavior in the
thermodynamic limit observed in the whole range 0 < α ≤ 1 (not shown).
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Figure 3.4: Finite-size scaling of the single-particle gap ∆ computed with DMRG at half-
filling ⟨ni⟩ = 0.5, for α = 1 and different interaction strengths V (in units of the hopping
energy t). In the thermodynamic limit L → ∞, while an insulating phase (∆ ̸= 0) is
found without Kac’s rescaling (a), the latter leads to a metallic phase (∆ = 0) (b).
Extrapolation in the thermodynamic limit is obtained by fitting the numerical data with
∆(L) = b+ c

L
+ d

L2 (dotted lines). The ground state energy E0/L is shown in (c) & (d).
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3.5 Luttinger Liquid theory

Now, we have shown that restoring the extensivity drastically modified the ground state
properties, we would like to understand the physical origin of the significant difference
between the extensive and non-extensive models. To do so, we investigate the low-energy
properties of the system using the LL theory. A convenient bosonic representation of H
in terms of the continous variable x ≡ ja (with a → 0) can be obtained by treating the
interaction potential as a perturbation [252]

H =
1

2π

∫
dx uK (πΠ)2 +

u

K
∇2ϕ− g

πa2
cos (4ϕ) , (3.8)

where Π(x) and ϕ(x) and are canonically conjugate bosonic fields depending on the long
wavelength fluctuations of the fermion density. The so-called Luttinger parameters u and
K are related by the relations [286]

uK = vF

u

K
= vF +

1

π

L∑

r=1

V (α)
r [1− cos (2kFr)] (3.9)

where vF denotes the Fermi velocity and kF the Fermi wave vector. The first two
(quadratic) terms of Eq. (3.8) describe how the properties of the non-interacting LL
are renormalized by the interactions. In particular, K determines the decay of the single-
particle correlation function ⟨a†iaj⟩ ∼ r

−1/(2K)
i−j . The third term in Eq. (3.8) stems from

scattering processes across the Fermi surface where the particle momentum is conserved
up to a reciprocal lattice vector. It is usually denoted as umklapp term and scales with
the strength

g =
L∑

r=1

V (α)
r cos (2kFr) . (3.10)

For a finite g, it is possible to show using a renormalization-group study [252] of the
Hamiltonian Eq. (3.8) that the system goes from an insulating to a metallic phase as K
is increased above a critical value Kc. At half-filling, and neglecting multiple umklapp
scattering [292], the critical value is Kc = 0.5. Note that in the case of a nearest-neighbor
interaction α → ∞, such a metal-insulator transition occurs at V = 2t [293].

We consider a half-filled band ⟨ni⟩ = 0.5, which provides kF = π/2 and vF = 2. In
the absence of Kac’s rescaling, the first sum

∑
r V

(α)
r entering Eq. (3.9) diverges in the

thermodynamic limit ∼ log(L) for α = 1 and ∼ L1−α/(1− α) for 0 ≤ α < 1. The second
sum

∑
r V

(α)
r cos (2kFr) entering Eqs. (3.9) and (3.10) is bounded due to the alternating

sign. Therefore, while the umklapp scattering strength g remains finite, the Luttinger
parameter K → 0 for 0 < α ≤ 1 and V > 0 in the thermodynamic limit, consistently
with an insulating phase.

We find that rescaling the interaction potential with the factor Λα(L) = log(L) for
α = 1 and Λα(L) = L1−α for α < 1 strongly affects the competition between K and g.
In this case, the long-wavelength divergence is removed since limL→∞

∑
r V

(α)
r = V for

α = 1 and limL→∞
∑

r V
(α)
r = V/(1 − α) for α < 1. This suggests a metallic phase for
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Figure 3.5: Luttinger parameter K computed numerically at half-filling for α = 0.5 and
different V , by fitting the correlation function ⟨a†iaj⟩ [225]. The critical value Kc = 0.5

indicating the metal-insulator transition with nearest neighbor interaction is displayed as
a black dashed line. In the absence of Kac’s rescaling (a), K decreases when increasing
L, lying below the critical line for L → ∞ (insulating phase). In contrast, K increases
with L in the presence of Kac’s rescaling (b), and remains finite even for very large V
(metallic phase). Extrapolation in the thermodynamic limit is obtained by fitting the
data with the same function as in Fig. 3.4 (dotted lines).

0 < α ≤ 1, since K remains finite and g → 0 for any finite V > 0 in the thermodynamic
limit as seen from Eqs. (3.9) and (3.10).

The above arguments cannot be used in the case α = 0 since the series
∑

r V
(α)
r cos (2kFr)

does not have a unique limit for L→ ∞. Nevertheless, this particular case can be solved
exactly using a mean-field approach on the Hamiltonian Eq. (3.7), that we will discuss
in detail in a latter section. This leads to a free fermion (metallic) phase with charge
correlations ⟨a†iaj⟩ ∼ r

−1/2
ij , regardless of the presence or absence of Kac’s rescaling. How-

ever, since a finite gap ∆ = V + (2πt/L) is found for L → ∞ in the latter case, this
phase was refered to as a strange metal in Ref. [288]. Interestingly, we find that the Kac’s
prescription V → V/L leads to a vanishing gap for L → ∞, and the properties of the
ground state with extensive energy and α = 0 correspond to those of free fermions.

In order to obtain further insights, we first compute the Luttinger parameter K by
fitting the correlation function ⟨a†iaj⟩, and represent it in Fig. 3.5 for different V and
α = 0.5. We observe two opposite trends depending on whether Kac’s rescaling is present
or not. In the latter case [Fig. 3.5 (a)], K decreases when increasing L and lies below
the critical value Kc = 0.5 for L → ∞, which indicates an insulating phase. The case
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with Kac’s rescaling is shown in Fig. 3.5 (b), where a finite K is found for all V in the
thermodynamic limit.

Then, we compute the charge stiffness [252]

D = πL

⏐⏐⏐⏐
∂2E0(Φ)

∂Φ2

⏐⏐⏐⏐
Φ=0

, (3.11)

which is proportional to the Drude weight [294], and therefore provides valuable infor-
mation on the metallic or insulating properties of the system. Moreover, it also gives
a direct measure of the umklapp scattering strength. A large D corresponds to a good
metal, while an insulating phase features D = 0. The charge stiffness is computed nu-
merically from the ground state energy E0 by threading a flux Φ through the circular
chain, and represented in Fig. 3.6 as a function of 1/L2 for α = 0.5. In the absence of
Kac’s rescaling [Fig. 3.6 (a)], D decreases when increasing L for any finite V . The latter
drives the system towards an insulating phase (D → 0) in the thermodynamic limit.
In contrast, D increases with L in the presence of Kac’s rescaling [Fig. 3.6 (b)], which
confirms the existence of a metallic behavior.

In the thermodynamic limit, we find that D ≈ vF even for very large V , in surprisingly
good agreement with the LL prediction D = uK and Eq. (3.9). Note that we have
performed a full numerical study showing that the conclusions drawn from Figs. 3.5 and
3.6 can be unambiguously extended to the whole range 0 < α ≤ 1.
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Figure 3.6: Charge stiffness D computed numerically from Eq. (3.11) at half-filling, as
a function of 1/L2 for α = 0.5 and different V . The magnetic flux Φ is implemented
via the twisted boundary condition c1 = eiΦcL+1 [292]. Two opposite trends are observed
depending on whether Kac’s rescaling is present (b) or not (a). While D → 0 for L→ ∞
in the latter case (insulator), D remains finite in the former case (metal).
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3.6 Validity of the Luttinger Liquid theory

After having demonstrated in the previous section that the existence of this metallic
phase can be inferred qualitatively from the Luttinger liquid theory, it is now important
to study the validity of this theory. Up to now, we have only computed the Luttinger
parameter K from the single-particle correlation. It is then useful to compare K obtained
from different independent observables. Here, we present three of these methods.

The first one, already used in Sec. 3.5, comes from the one-body density matrix
Ai−j = ⟨a†iaj⟩. According to Ref. [225], for a Luttinger liquid on a chain with periodic
boundary condition, the one-body matrix depends on K as:

A(i− j) =n̄
( 1

n̄ri−j

) 1
2K×

×
[
c0 +

∞∑

m=1

cm

( 1

n̄ri−j

) 1
2K

cos(2πn̄m|i− j|)
] (3.12)

where cm are model-dependent coefficient and ri−j = (La/π) sin(π|i− j|/L) the chord
distance. Using this formula with two harmonics (m = 1, 2), we perform a fit in order to
extract K, denoted K1p in the following. In Fig. 3.7, we show an example of the decay of
the single-particle correlation fitted with eq (3.12) (black line), for α = 0.5 and a strong
V = 20. Note that this power-law behavior also confirms the metallic character observed
previously.
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Figure 3.7: Single-particle correlation function ⟨a†0ar⟩ fitted with Eq. (3.12) (black line),
for α = 0.5 and V = 20.

The second independent estimate is obtained from the static structure factor:

S(q) =
1

L

∑

i,j

eiqri−j (⟨ninj⟩ − ⟨ni⟩⟨nj⟩) , (3.13)
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which is predicted to scale linearly at small momenta q as

SL(q) ≈ q
K2p

2π
, (3.14)

where K2p is the size dependent Luttinger parameter. In a periodic chain with L sites,
the smallest non-vanishing momenta is q = 2π/L, which yields:

K2p = LSL(q = 2π/L) (3.15)

Note that these two parameters K1p and K2p are size dependent, and we use a standard
finite-size analysis in order to extract K in the thermodynamic limit.

Finally, combining the relations π u
K

= ∂∆
∂(1/L)

and uK = D stemming from the LL
theory [252], we obtain the third independent estimate:

K∆/D =

√
D

π ∂∆
∂(1/L)

. (3.16)

In Fig. 3.9, we check the validity of the LL theory by comparing the parameter K for
L → ∞ and α = 0.5 calculated from the single-particle correlation function Eq. (3.12),
the static structure factor Eq. (3.15) and from the relation Eq (3.16). In the absence of
Kac’s rescaling [Fig. 3.9 (a)], a discrepancy between the values of K extracted from the
two correlation functions is observed, which indicates the breakdown of the LL theory
related to the opening of a gap ensuing an insulating phase. The agreement obtained for
small V is attributed to the metallic character at finite L consistently with the data shown
in Fig. 3.5. In the presence of Kac’s rescaling [Fig. 3.9 (b)], the values ofK extracted from
the two correlation functions match well up to very large V . However, these values do not
match neither K obtained from ∆ and D nor the formula K = 1/

√
1 + V/[πvF(1− α)]

(dotted line) stemming from Eq. (3.9). In Fig. 3.9, we compare the difference K1p −K2p

and K1p −K∆/D as function of the exponent α for V = 1.5. While for short-range case
α ≫ 1 all these methods gives an equivalent results in agreement with standard the
Luttinger liquid theory, in the case α ≤ 1 a difference appears between the K1p = K2p

and K∆/D, which signals a breakdown of the conventional LL in the entire strong long-
range regime. For α > 0, this breakdown is only partial since numerics indicate that both
K∆/D and K1p,2p maintain the functional form

K =
1√

1 + γV/(πvF)
(3.17)

with γ finite for all V [see Fig. 3.9 (b)].
In order to gain physical insights we now focus on the extreme case α = 0, which has

the advantage to be exactly solvable. Here, we will see that the LL theory completely
breaks down since K1p,2p = 1 for all V , and thus differs significantly from the functional
form Eq. (3.17) (γ = 0). Interestingly, we find that K∆/D is correctly described by
Eq. (3.17) with γ = 1, which corresponds exactly to the analytic prediction obtained
from Eq. (3.9).
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Figure 3.8: Luttinger parameter K extrapolated in the thermodynamic limit versus V at
half-filling and for α = 0.5, without (a) and with (b) Kac’s rescaling. K is computed in
3 different ways: From the single-particle correlations (K1p), the structure factor (K2p),
and from the gap and the charge stiffness (K∆/D). The formula obtained from Eq. (3.9)
is displayed as a dotted line. Inset: |K1p−K2p| and |K1p−K∆/D| versus α for V = 1.5. A
discrepancy betweenK1p andK2p is observed without Kac’s rescaling, which indicates the
breakdown of the LL theory (insulator). In contrast, the property K1p = K2p observed
with Kac’s rescaling even for large V suggests a metallic phase, which is not captured
by the conventional LL theory since K∆/D does not match K1p,2p for α < 1. In the
short-range case α ≫ 1, one recovers K1p,2p = K∆/D in agreement with the standard LL
theory.

3.6.1 The extreme case α = 0

We consider the case α = 0 which is exactly solvable using a mean field approach on the
Hamiltonian Eq. (3.7). For simplicity, we consider a fermionic Hamiltonian but we note
that similar results are found with hard-core bosons.

H = −t
L−1∑

i=0

(
c†ici+1 + h.c.

)
+
V

2

∑

i ̸=j

ninj,

where ci (c†i ) annihilates (creates) a fermion on site i = 1, · · · , L, and ni = c†ici is the local
density. Writting the density-density interaction as ninj ≈ ni⟨nj⟩+nj⟨ni⟩−⟨ni⟩⟨nj⟩, the
mean-field Hamiltonian reads

Hmf =
∑

k

[(N − 1)V − 2t cos (k)] c†kck −
N (N − 1)V

2
, (3.18)

with N = L/2 the number of fermions (at half-filling), and ck = 1√
L

∑L−1
j=0 cje

−2iπkj/L. The
energy of the ground state for, e.g., N even, is derived from Eq. (3.18) with anti-periodic
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Figure 3.9: Differences |K1p −K2p| and |K1p −K∆/D| versus α for V = 1.5. In the short-
range case α ≫ 1, one recovers K1p = K2p = K∆/D in agreement with the conventional
LL theory. However, when α < 1, the difference observed between K1p = K2p and K∆/D

indicates a clear breakdown of the standard Luttinger liquid theory.

boundary conditions as

E0(N) =
N (N − 1)V

2

− 2t

L/4−1∑

k=−L/4

cos

[
2πk

L
+
(π
L

)]
=
N (N − 1)V

2
− 2t csc

(π
L

)
.

One then has to consider periodic boundary conditions for N ± 1 fermions, which leads
to

E0(N + 1) =
(N + 1)NV

2

− 2t

L/4∑

k=−L/4

cos

(
2πk

L

)
=

(N + 1)NV

2
− 2t cot

(π
L

)

E0(N − 1) =
(N − 1) (N − 2)V

2

− 2t

L/4−1∑

k=−L/4+1

cos

(
2πk

L

)
=

(N − 1) (N − 2)V

2
− 2t cot

(π
L

)
.

The charge gap thus reads ∆ ≡ E0(N + 1) + E0(N − 1) − 2E0(N) = V + 4t tan
(

π
2L

)
,

and becomes ∆ ∼ (V + 2πt) /L → 0 for L → ∞ when using the Kac’s prescription
V → V/L. The Luttinger parameters u/K and uK can be related to the first derivative
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of the single-particle charge gap as ∂∆
∂(1/L)

= π u
K

, and to the charge stiffness [252] as

D = πL

⏐⏐⏐⏐
∂2E0(N,Φ)

∂Φ2

⏐⏐⏐⏐
Φ=0

= uK

Here, Φ = 2πϕ/ϕ0 denotes a flux threading the (circular) chain in units of the flux
quantum ϕ0 = h/e. This flux can be taken into account by multiplying the hopping
energy by a phase factor e±iΦ/L as

H(Φ) = −t
L−1∑

i=0

(
eiΦ/Lc†ici+1 + h.c.

)
+
V

2

∑

i ̸=j

ninj.

The energy of the Hartree-Fock ground state is derived as

E0(N,Φ) =
N (N − 1)V

2
− 2t csc

(π
L

)
cos

(
Φ

L

)
,

which provides D = 2t = vF for L → ∞. The Luttinger parameters extracted from the
charge gap and from the charge stiffness thus read

uK = vF
u

K
= vF

[
1 +

V

πvF

]
, (3.19)

and coincide with prediction of the Luttinger liquid theory Eq. (3.9). Since the mean-field
Hamiltonian corresponds to that of free fermions, it is straightforward to calculate the
Luttinger parameter K from the single-particle correlation function

⟨c†icj⟩ =
1

L

∑

k

eik(i−j)nk =
1

2iπ

eikF(i−j)

i− j
∼ (i− j)−1, (3.20)

and from the long-wavelength limit of the static structure factor

S(q) ≡ 1

L

∑

i,j

eiq(i−j) (⟨ninj⟩ − ⟨ni⟩⟨nj⟩)

=
1

L

∑

k,k′

(
⟨c†kck−qc

†
k′ck′+q⟩ − ⟨c†kck−q⟩⟨c†k′ck′+q⟩

)

→q→0
1

L
.

(3.21)

Note that the only non-vanishing contribution to the last equation stems from the term
∝ ⟨c†kck′+q⟩⟨ck−qc

†
k′⟩, which is finite only at the two edges of the Fermi sea where nk =

1/2. Comparing Eqs. (3.20) and (3.21) to the predictions ⟨c†icj⟩ ∼ (i − j)−
K+(1/K)

2 and
K = LS(q → 0) of the Luttinger liquid theory, we thus find K = 1. In this case, the
free fermion result K = 1 extracted from the correlation functions is completely different
(γ = 0) from the functional form K = 1/

√
1 + γV/(πvF). However, K extracted from ∆

and D matches exactly the formula obtained from Eq. (3.9) (γ = 1). The demonstration
of this gapless, critical metallic phase that does not fall into the conventional LL theory
is a central result of this work.
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We have focused so far on the case of half-filling to take the lattice effects into account
via the so-called Umklapp scattering [see eq (3.10)]. However, we have seen that the latter
becomes completely irrelevant in the presence of Kac’s rescaling. This implies that this
new unconventional metallic phase actually appears for arbitrary filling. In particular, at
low density Schulz showed using bosonization techniques that the ground state of a similar
system is a peculiar metal resembling a classical Wigner crystal, with very slow decay
of the charge correlations associated to the plasmon mode. It is therefore interesting to
understand the impact of Kac’s rescaling on the plasmon dispersion relation.

3.7 Effect of energy extensivity on plasmon modes

3.7.1 One-dimensional Luttinger liquid

We consider a general one-dimensional system of length L containing N fermions inter-
acting via the LR potential

V α(x) =
V

(x2 + a2)α/2
0 < α ≤ 1.

Here, a denotes a short-distance cutoff that can be identified with, e.g., the lattice spacing.
In the vicinity of the Fermi level, the low-energy Hamiltonian can be decomposed into
the contributions of left (L) and right (R) movers as

H =
∑

k

∑

r=L,R

ℏvF (ηrk − kF) c
†
r,kcr,k +

1

2

∫
dxdx′ρ(x)V α(x− x′)ρ(x′), (3.22)

where vF is the Fermi velocity, kF the Fermi wave vector, ηR = +1, ηL = −1, and
ρ(x) =

∑
r=L,R ρr(x) with ρr(x) = 1

L

∑
k,q e

iqxc†r,k+qcr,k. Bosonization assumes that the
low-energy properties of the Hamiltonian Eq. (3.22) are governed by the long-wavelength
fluctuations of the density ρ(x). Using the standard techniques described in Ref. [252],
H can be approximately written (for L→ ∞) in the quadratic form

H =
1

2π

∑

q

u(q)K(q)π2Π(q)Π(−q) + u(q)

K(q)
q2ϕ(q)ϕ(−q),

where u(q) denotes the velocity of the excitations and K(q) is the Luttinger parameter
governing the decay of correlations at long distances. The latter satisfy the relations

u(q)K(q) = vF
u(q)

K(q)
= vF

[
1 +

V (α)(q)

πvF

]
. (3.23)

The Fourier transform of the interaction potential reads

V α(q) =

∫
dxV α(x)e−iqx = V

2
√
π

Γ
(
α
2

)
2

α−1
2

( |q|
a

)α−1
2

Kα−1
2
(a|q|), (3.24)
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and the two fields Π(q) =
∫
dxΠ(x)e−iqx and ϕ(q) =

∫
dxϕ(x)e−iqx are the Fourier trans-

forms of the canonically conjugate fields Π(x) = 1
π
∇θ(x) and ϕ(x) with

ϕ(x) = −(NR +NL)
πx

L
− iπ

L

∑

q ̸=0

1

q
e−β|q|/2−iqx (ρR(q) + ρL(q))

θ(x) = (NR −NL)
πx

L
+

iπ

L

∑

q ̸=0

1

q
e−β|q|/2−iqx (ρR(q)− ρL(q)) .

Here, β is a (small) cutoff regularizing the theory, Nr =
∑

k c
†
r,kcr,k − ⟨c†r,kcr,k⟩, and

ρr(q) =
∑

k c
†
r,k+qcr,k. The plasmon dispersion relation follows from Eq. (3.23) and reads

ω(q) = u(q)|q| = vF|q|
√

1 +
V (α)(q)

πvF
. (3.25)

The potential Eq. (3.24) exhibits a long-wavelength divergence (q → 0), namely V α(q) ∼
|q|α−1 for 0 < α < 1 and V α(q) ∼ log |q| for α = 1. In the latter case, Eq. (3.25) provides
the 1D plasmon dispersion ω(q) ∼ |q|

√
log |q| stemming from Coulomb interactions [280].

When rescaling the interaction potential by the Kac’s factor Λα(L) = L1−α for 0 ≤ α < 1

and Λα(L) = log(L) for α = 1, it is easy to check that the long-wavelength divergence
of the potential is removed by considering the limit q = 2π

L
→ 0. As a consequence,

one recovers the sound wave dispersion relation ω(q) ∼ |q| of a metal with short-range
interactions. This result is confirmed by looking at the upper bound of the excitation
spectrum Ω(q) = E(q)/S(q) in the Feynman approximation [295] represented in Fig. 3.10,
where E(q) = (t/L) [1− cos(q)] ⟨∑i a

†
iai+1+h.c.⟩ and S(q) is the structure factor defined

by Eq. (6) of the main text.

3.7.2 Generalization to higher dimensions

This result can be easily generalized to higher dimensions d = 2, 3 by looking at the zeros
of the dielectric function in the framework of the random phase approximation (RPA):

ϵ(q, ω) = 1− χ(q, ω)V α(q) = 0, (3.26)

where
χ(q, ω) =

1

V
∑

k

nk − nk+q

ℏω + Ek − Ek+q + iη

denotes the one-spin density-density response function (Lindhard function), V the volume,
and nk the occupation number of a state with wave vector k and energy Ek = ℏ2|k|2

2m
(m

is the particle mass). For α = 1, the Fourier transform of the Coulomb potential is

V 1(q) ∼ log |q| d = 1

V 1(q) ∼ 1

|q| d = 2

V 1(q) ∼ 1

|q|2 d = 3. (3.27)
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Figure 3.10: Upper bound of the excitation spectrum Ω(q) (in units of t) in the Feynman
approximation (colored lines) computed at half-filling for V = 0.5 in the strong LR
regime α = 0.5 (a), and in the short-range case α = 3 (b). The dispersion relation
Eq. (3.25) after Kac’s rescaling, namely ω(q) = vFq

√
1 + V/π for α = 0.5 and ω(q) =

vFq
√

1 + V/(
√
πΓ(3/2)vF) for α = 3 is represented as a black dotted line in the long-

wavelength regime q → 0. The proximity of the Mott transition (V = 2 for α → ∞) in
the short-range case is responsible for the more pronounced minimum at q = π (charge
density wave).

In the dynamical limit ω ≫ |q|vF, the Lindhard function can be approximated by
χ(q, ω) = ρ0|q|2

mω2 with ρ0 the average fermion density. Using this expression together
with Eq. (3.27) into Eq. (3.26), one finds the plasmon energies

ω ∼ |q|
√
log |q| d = 1

ω ∼
√

|q| d = 2

ω ∼ cst d = 3. (3.28)

When using the Kac’s prescription, namely dividing the potential by the factor Ld−1, the
long-wavelength divergence (q = 2π

L
→ 0) is removed and one recovers the sound wave

dispersion relation ω ∼ |q| for d = 1, 2, 3.

3.8 conclusion

In this chapter, we have investigated the ground state properties of one-dimensional
hard-core bosons interacting via a variable long-range potential using the density matrix
renormalization group.

In the first part of the study, we have demonstrated that restoring energy extensivity
in the system, which is done by rescaling the interaction potential with the Kac’s pre-
scription, has a profound influence on the low-energy properties of the system. In the
thermodynamic limit, while an insulating phase is found in the absence of Kac’s rescaling,
the latter leads to a metallic phase for finite interaction strengths. We have demonstrated
that the numerical results are consistent with the predictions of the Luttinger theory.
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In the second part, we have investigated the validity of the Luttinger theory by com-
paring the Luttinger parameter K obtained from three independent observables, namely
the structure factor, the one-body correlations, and the charge gap combined with the
charge stiffness. We have found a discrepancy between these parameters, which indicates
that the new metallic phase is not captured by the conventional Luttinger theory, al-
though the latter still provides the correct functional behavior in the strong LR regime
expect in the case α = 0.

In the last part of the study, we have shown that restoring extensivity eliminates
the plasmon mode while preserving the LR character of the potential, and with it some
inherent properties of the strong LR regime such as non-addivity.

79





Chapter 4
The fate of Anderson localization under large light-matter
coupling

Localization was a different matter: very few believed it at the time, and even
fewer saw its importance; among those who failed to fully understand it at
first was certainly its author. It has yet to receive adequate mathematical
treatment, and one has to resort to the indignity of numerical simulations to
settle even the simplest questions about it.

Philip W. Anderson, Nobel Lecture, 8 December, 1977

When a quantum emitter has an internal transition energy resonant with the fre-
quency of a cavity mode, a coupling g between the two can lead to the formation of
mixed light-matter states, known as "polaritons", and physics governed by the exten-
sively studied Jaynes-Cummings model [113, 296–298]. In the single-excitation limit the
physics is characterized by a vacuum Rabi splitting of two polariton modes proportional
to g. Importantly, for an ensemble of N coupled emitters [299, 300], this splitting is en-
hanced collectively and proportional to the collective coupling gc = g

√
N , which allowed

for experimental observations of vacuum Rabi splittings in optical cavities already in the
80s [301, 302]. The regime of strong coupling regime, i.e when the rate of energy exchange
between a cavity mode and the atoms exceeds the dissipation rates set by photon losses
and spontaneous emission [114], has been nowadays pursued throughout physics, e.g. in
atomic physics [303–306] and with artificial emitter-cavity systems in condensed matter
physics [307–314].

Recently, strong and even ultrastrong coupling of molecules [315] to a confined mode
of the electromagnetic field has become a promising research direction with possible
applications for modifying material properties or chemical reactions [316–325]. A partic-
ular interest has been the modification of transport properties for energy [326, 327] or
charges [328–333]. Two crucial aspects of molecular systems are the presence of molecular
vibrations and large amounts of disorder. Here we focus on heavily disordered, e.g. in
the local energy, ensembles of two-level quantum emitters.

While the effect of the disorder is known to hardly affect the polariton splitting [334],
it instead can modify the dark states significantly [335]. On the other hand, disordered
systems without a cavity have been extensively studied since the discovery of Anderson
localization [336, 337]. In this scenario, a disordered medium prevents the diffusion of
quantum waves, and the latter are generally localized exponentially by the disorder.
Furthermore, it is well known from scaling theory and numerical analysis that a metal-
insulator (MI) transition is present in three dimensional models.

Here, we analyze the fate of the Anderson transition between localized and extended
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82 Chapter 4. The fate of Anderson localization under large light-matter coupling

eigenstates for the dark states of a cavity coupled system.
In this chapter, we study an ensemble of disordered quantum emitters strongly coupled

to a cavity mode. In Sec. 4.1, we first introduce the model and restrict ourselves to a
Hilbert space with a single excitation in the system, which could be an electron-hole pair
in the exciton transport problem, for instance. When the excitation is coupled to a cavity
mode we already note striking differences for the spatial distribution of the excitation that
we analyse as a function of the collective coupling gc. Then to pursue further the analysis,
in Sec. 4.2 , we draw the phase diagram of our model using some localization quantifiers
such as the return probability or the inverse participation ratio. We find that in the
large coupling regime, a new semi-localized phase appears. We study in detail this novel
phase on the paradigm of the Anderson localization with a level statistic analysis and the
determination of the fractal dimension. Since we are mainly interested in the transport
properties of the system, we then focus on the diffusion in Sec. 4.4 and transfer probability
in Sec. 4.5. In both cases, we shed light on the important contribution of the dark states
and show that they can significantly enhance energy transfer properties in disordered
systems.

Since a deeper analysis of the presented results is still work in progress, this chapter
reviews the preliminary results we have obtained so far.

4.1 Model

We consider an Anderson localization model for an ensemble of N quantum emitters on
a 3D cubic lattice (lattice constant a ≡ 1). The Hamiltonian is Ĥ = ĤT + ĤD + ĤC with

ĤT = −J
∑

⟨i,j⟩
σ̂†
i σ̂j ĤD =

∑

i

wiσ̂
†
i σ̂i. (4.1)

Here, σ̂j = |g⟩ ⟨e|i destroys an excitation on emitter i = (ix, iy, iz) (3D lattice index).
ĤT governs hopping of excitations between nearest neighbors, indicated by the notation
⟨i, j⟩. ĤD contains on-site disorder, and wi is drawn randomly from a uniform distribution
wi ∈ [−W/2,W/2] with width W . Additionally the emitters couple to a cavity mode with
bosonic photon annihilation operator â with strength g via

ĤC = g
∑

i

(âσ̂†
i + â†σ̂i). (4.2)

Note that we will restrict ourselves to a Hilbert-space with a single excitation in the
system,

∑
i σ̂

†
i σ̂i+ â

†â = 1. Furthermore we consider the cavity frequency ωc in resonance
with the emitters ωe, and neglect the constant energy Ĥ0 = ωe

∑
i σ̂

†
i σ̂i + ωcâ

†â = (ωe)1
for ωe = ωc.

Without disorder the Hamiltonian can be brought to a diagonal form

ĤT + ĤC =
∑

q

ϵq b̂
†
q b̂q +

∑

µ=±
EµP̂

†
µP̂µ. (4.3)

Here, the two polariton operators are defined as P̂± = (â ± b̂0)/
√
2 and the quasi-

momentum operators are b̂q = (1/
√
N)
∑

i exp(−iq · i)σ̂i, where the discrete quasi-momentum
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index can assume values q = (qx, qy, qz), qx,y,z ∈ [−π, π] (we assume periodic boundary
conditions). The band energies are ϵq = −2J [cos(qx) + cos(qy) + cos(qz)]. The single
bright mode of the system, b̂0 = b̂(0,0,0), couples to the cavity forming the two polariton
modes with energy E± = ±g

√
N . Besides the two polaritons, there exist N − 1 dark

state modes b̂q ̸=0.
In the presence of disorder, the bright and the dark states will mix among each others

since in quasi-momentum space for large N

ĤD =
1

N

∑

q,k

∑

i

wie
i(k−q)·ib̂†q b̂k (4.4)

=
1

N

∑

q

b̂†q b̂q
∑

i

wi (4.5)

+
2

N

∑

q>k

∑

i

wi cos [(k − q) · i]
(
b̂†q b̂k + b̂†kb̂q

)
(4.6)

In the collective large coupling regime, i.e. if g
√
N ≫ J,W , the spectrum of the full

Hamiltonian still contains two distinct polariton states [334]. Here, we are interested in
the remaining N − 1 dark states in the presence of disorder. While without a cavity,
N single-excitation states exhibit the well-studied behavior of being either extended or
localized, we find that large collective coupling enforces the N − 1 dark states to spread
over N sites on average, which can have important implications as shown in the following.

In Fig. 4.1 panel (a) left and right, we present a sketch of the model without and with
the cavity, respectively. In panel (b), we show the disorder averaged (∼ 1000 realizations)
spatial density distribution of a single excitation, given by the absolute value of the
eigenvector |Ψj|2. In the left, we present the probability without cavity (red, gc = 0)
and small collective coupling (gc ̸= 0). We see that the excitation decays exponentially
in the absence of the cavity in agreement with the prediction of Anderson localization.
For small coupling gc < W/2, after the exponential decay, we observe the appearance of
a plateau that extends over all sites in the chain. The corresponding height scales with
the coupling gc. Roughly speaking, the decay can now be described by :

|Ψ|2W ≈ e−j/ζ + γ(gc) (4.7)

where the subscript W indicates averaging over the disorder distribution, ζ is the lo-
calization length and γ(gc) is here an unspecified function of gc. In the right panel, by
increasing the coupling up to gc > W/2, we find that the plateau saturates to a maximum
value. This situation corresponds to a large coupling regime. In the following, we focus
on the large coupling regime where the value of the γ(gc) in Eq. (4.7) is maximal. We
are interested in investigating its effects to Anderson localization in this regime.

In this chapter, we only focus on this large coupling regime.
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Figure 4.1: Panel (a) left: a strongly disordered system has a band of localized states
with a width given by the disorder strength W . Right: When strongly coupled to a
cavity mode, two polaritonic states appear (P− and P+). Here we study the modified
localization properties of the remaining dark states. Panel (b): disorder averaged (∼ 1000

realizations) spatial distribution of a single excitation, given by the absolute value of the
eigenvector |Ψj|2, for different collective coupling strength gc and a disorder strength
W = 25. Left : Without the cavity (red), we observe that |Ψj|2 decays exponentially as
expected by Anderson localization. For a small value of the coupling strength gc < W/2,
we see the appearance of a plateau whose height scales with gc and which is present after
an exponential decay at the center (j = 50). Right: for large gc > W/2, the plateau
saturates, becoming independent of gc.
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4.2 Phase diagram

In this section, we analyze the localization properties of our system by using the re-
turn probability, the inverse participation ratio, a level spacing analysis and the fractal
dimension.

4.2.1 Return probability and IPR

Let us first consider the so-called return probability that is the probability to stay at
the same site as a function of time t, which gives information about the localization
phenomenon. Indeed, when a system features the Anderson localization the excitation
remains exponentially localized where it was introduced initially, and thus the probability
tends to a maximum value of 1. On the contrary, in a diffusive system, the probability
to remain on a given site decreases with time due to the possibility to easily jump from
site to site.

We initialize the system as |ψ0⟩ = |c⟩, i.e. the excitation is initially located at the site
c. We compute the probability to stay at this site as

Pcc(t) = |⟨c|ψt⟩|2 = ⟨ψt|c⟩⟨c|ψt⟩.

This equation shows that the expectation value of the projector |c⟩⟨c| equals the proba-
bility to stay at the corresponding site with Pcc(0) = 1, by definition. The time-evolved
state can be generally written as

|ψt⟩ = e−iHt|c⟩ =
∑

α

e−iEαt|α⟩⟨α|c⟩

where |α⟩ are the eigenstates of the Hamiltonian H, H|α⟩ = Eα|α⟩, with eigenenergies
Eα. Using ⟨c|ψt⟩ =

∑
α exp(−iEαt)|⟨α|c⟩|2 the probability to stay at site c can be written

as

Pcc(t) =
∑

α,α′

e−i(Eα−Eα′ )t|⟨α|c⟩|2|⟨α′|c⟩|2 (4.8)

=
∑

α

|⟨α|c⟩|4 +
∑

α ̸=α′

e−i(Eα−Eα′ )t|⟨α|c⟩|2|⟨α′|c⟩|2.

From Eq. (4.8) and if one considers the situation of non-degenerate eigenstates, we can
compute the time-averaged probability Pcc(t) =

∫ t

0
dt′Pcc(t

′)/t to stay at site c as

Pcc(t) =
∑

α

|⟨α|c⟩|4 +
∑

α ̸=α′

(e−i(Eα−Eα′ )t − 1)

−i(Eα − Eα′)t
|⟨α|c⟩|2|⟨α′|c⟩|2

=
∑

α

|⟨α|c⟩|4 +
∑

α ̸=α′

sin[(Eα − Eα′)t]

(Eα − Eα′)t
|⟨α|c⟩|2|⟨α′|c⟩|2.

Then, the long-time limit of the time-averaged probability Pcc(t) is given by

Πcc = lim
t→∞

Pcc(t) =
∑

α

|⟨α|c⟩|4. (4.9)
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Figure 4.2: Panel (a): long-time disorder averaged (∼ 300 realizations) probability (Πcc)
to stay at the initial site as function of the disorder strength for different collective
coupling strengths gc and N = 53 size. For small coupling, we observe that the return
probability increases with the disorder, as expected for the Anderson localization. At
small finite disorder, this probability is small indicating a delocalized phase. However, in
the large coupling regime gc ≫ W/2 , we see the emergence of an intermediate region,
where the probability remains finite Πcc ∼ 0.4. Panel (b): exemplary wave functions for
a one-dimensional chain of N = 100 for one disorder realization, for gc = 0 (left), gc = 5

(middle), and gc = 50 (right).

Concerning the non-degeneracy of the eigenstates, we remark that in the case without
disorder and light-matter coupling, the eigenstates are known to be non-degenerate (Bloch
states and corresponding dispersion for open boundary conditions). We assume that this
also holds in the situation with disorder and light-matter coupling 1.

In Fig. 4.2, we show the long-time limit of the time-averaged probability Πcc as func-
tion of the disorder strength for different collective coupling strength g0 = 0, 1, 5, 10, 25, 50

and a cube of N = 53. The case without cavity (gc = 0) corresponds to the usual An-
derson model. In this case a metal-insulator transition should take place at Wc = 16.5

(for energy lying in the middle band spectrum) [338–342]. In Fig. 4.2, we observe two

1 except for a vanishingly small number of realizations
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regimes: I) at small disorder Πcc ∼ 0 indicates that the excitation spreads over the whole
sample, i.e. to extended states. II) For strong disorder, the Πcc tends to a maximum
value close to one, suggesting a complete localization of the excitation. The two regions
are separated by an interesting regime, where the probability rapidly increases with the
disorder strength. That region (15 < W < 30) corresponds roughly to the prediction
of the metal-insulator transition. When we turn on the cavity-coupling, we find that
at small collective coupling the behavior of Πcc is qualitatively similar despite a small
shift. Interestingly, for a large coupling strength, we observe the emergence of a new
intermediate region for Wc ≲ W ≲ 2gc, where Πcc ∼ 0.4 [see e.g. gc = 50].

(b) IPR(✏)
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Figure 4.3: Panel (a): Inverse participation ratio I2 for N = 53 as function of the disorder
strength and the dimensionless rescaled energy ϵ [see Eq. (4.12)], for gc = 0 (upper panel)
and gc = 30 (lower panel). Panel (b): finite-size scaling of I2 for different ϵ and disorder
strength W . The values we choose are indicated by the symbols in the lower panel in (a).

One can notice that the expression Eq. (4.9) is reminiscent of the inverse participation
ratio (IPR). The IPR quantifies how many sites participate to a given eigenstate, with
respect to a certain basis and thus gives a measure of the degree of localization in the
system. Here, if one considers the normalized eigenstates |α⟩, the IPR reads:

IPR(Eα) =
∑

c

| ⟨α|c⟩ |4, (4.10)

where Eα is the energy of the corresponding eigenstate |α⟩, c labels the site index.
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From the formula Eq. (4.9) and Eq. (4.10), we see that

1

N

∑

c

Πcc =
1

N

∑

c

∑

α

|⟨α|c⟩|4 = 1

N

∑

α

IPR(Eα). (4.11)

In other words, the mean survival probability is equal to the mean average IPR 2. So
far, we have shown that an intermediate plateau emerges in the survival probability in
the large coupling regime and since this observable is closely connected to the IPR, we
also expect that the latter changes. The IPR is widely used to characterize localization
properties as function of the energy spectrum, since an IPR scaling to a finite value in the
thermodynamic limit indicates a localized phase, while an IPR scaling to zero as 1/LD (D
is the dimension) indicates a delocalized phase. Furthermore, the IPR allows to observe
a separation in energy between localized and delocalized states, i.e. a mobility edge. It
is well known that a single-particle mobility edge is present in the standard Anderson
model, which according to the argument of Lifshitz appears first to the band tail [343].
It is therefore an interesting question to see how this picture is modified within the large
coupling regime. Here, in order to compare the energy between different states and over
different realizations of the disorder (∼ 200), we define a dimensionless energy:

ϵ =
Eα −min(Eα)

max(Eα)−min(Eα)
. (4.12)

When the polaritons are discarded, as in Fig. 4.3, then max(Eα) = W/2 and min(Eα) =

−W/2. In the numerics, we bin the IPR (∼ 100 realizations) into groups of equal energy
windows (ϵ± δϵ = 0.02) and average within each bin.

Fig. 4.3 (a) shows the Inverse Participation Ratio as function of the disorder strength
(in log scale) and the dimensionless energy for a cube of N = 53 sites. The upper panel
presents the standard Anderson model, where we see a clear separation between extended
and localized states as W increases. We can not identify precisely the mobility edge and
the transition point, which we attribute to important finite-size effects. In the lower panel,
gc = 30 and we find that a new intermediate region appears with a constant value of the
IPR close to 0.4 for all the spectrum [see Fig.4.2]. This large coupling regime corresponds
approximatively to Wc ≲ W ≲ 2gc as expected from the return probability [see Fig.4.2].
For a disorder 2gc ≲ W , the usual localized phase appears again, starting from the
band tails, which implies an energy separation between this new intermediate region and
the fully localized phases. Furthermore, we note that the IPR for mid-spectrum modes
remains close to values of about 0.4 up to very strong disorder, suggesting an important
robustness of this novel phase against disorder. In Fig. 4.3 (b), we then show a finite size
analysis in three regions [symbols in Fig. 4.3 panel (a)]. From that, we observe that the
IPR scales similarly in both regimes, without cavity (red) and in the large coupling regime
(blue). We however note a shift of the value of the IPR. This similar scaling suggests
at first glance that the localization properties are not deeply modified by the presence of
the cavity. In order to investigate this point in more detail, in the next section, we focus
on this novel intermediate region.

2The complete basis should be used to obtain this equality, which implies to take into account the
photon state, we expect that the latter is getting less relevant in the limit N ≫ 1.
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4.2.2 Energy level statistics & Fractal Dimension

By looking at the level spacing distribution and the fractal dimension, we now analyse
and characterize in detail this novel phase.

First, we consider the spectrum of the eigenenergies which is known to be qualitatively
different for an insulator (localized regime), a critical phase and a metal (delocalized
regime). The quantitative difference can notably be measured by looking at the level
spacing between subsequent eigenenergies:

sn = Eα
n+1 − Eα

n . (4.13)

Indeed, the probability distribution P (s) features diffferent behaviour depending on
whether the systems is metallic, critical or localized [344].

For a metallic system, the random matrix theory states that P (s) follows a universal
behaviour, which depends only on the physical symmetry present in the system. The
generalized distribution can be formulated as follows:

Pβ(s) = aβs
β exp

(
−bβs2

)
(4.14)

where β = 1, 2, 4, for orthogonal, unitary and symplectic symmetry, respectively. The
coefficient aβ and bβ are obtained from the normalization condition, i.e.

∫
dsP (s) =∫

dsP (s)s = 1. In our case, it can be shown that the eigenenergies of our Hamiltonian
H with small disorder are characterized by a function P (s) that belongs to the Wigner-
Dyson of the Gaussian Orthogonal Ensemble (GOE), which yields to the form (β = 1):

Pβ=1(s) =
π

2
s exp

(
− 4

π
s2
)

(4.15)

One important characteristic of the Wigner-Dyson distribution is the level repulsion, i.e.
P (s) → 0 for s→ 0, which implies an absence of degeneracy in the metallic (delocalized)
spectrum due to the overlap of the wave function.

For an insulator the situation is different as the spectrum is now governed by random
energies and thus the levels are completely uncorrelated. In this case, the distribution
P (s) is close to the Poisson distribution [345]:

Ploc(s) = exp(−s). (4.16)

Indeed, site with levels close in energies can now be separated by a large distance, prevent-
ing the overlap of their respective wave-functions. We then expect that in the localized
regime, the level spacing is Poisson distributed.

Interestingly, the transition between a metal and an insulator is characterized by a
universal (independent of the system size) statistics. At the critical point, the distribution
has been widely studied [341, 346–349]. Those studies suggest that P (s) features elements
from both Poisson and Wigner distribution. Despite the fact that the analytical form is
not known, the numerical analysis has shown that P (s) behaves as sβ=1 for s ≪ 1 and
with an exponential tail for s ≫ 1. Several predictions have been proposed to describe
the distribution of P (s), e.g. a simple distribution intermediate between the WD and
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90 Chapter 4. The fate of Anderson localization under large light-matter coupling

the Poisson distributions can be obtained by taking the middle of a Poissonian sequence.
The latter was denoted Semi-poisson [350] and is given by:

Psemi−poisson(s) = 4s exp(−2s) (4.17)

Unfortunately, even with numerical results the different predictions can not be distin-
guished [351]. One fundamental reason could be that boundary conditions play a crucial
role in the distribution behavior [352].

In order to study numerically the level spacing, we study a cube of different N and
different disorder strength. We diagonalize the corresponding Hamiltonian with open
boundary conditions for several disorder realizations and compute the rescaled energies
(see Eq. (4.12)). We consider only dimensionless energies close to 0.5, i.e. mid-spectrum,
where the density of states can be considered as constant. Then, we compute the con-
secutive energy difference sn = ϵαn+1 − ϵαn and normalize the latter by the mean spacing
average. Results of the level spacing are presented in Fig. 4.3, for two disorder strengths
W = 5 (left) and W = 50 (right). In panels (a) and (c), we consider the standard Ander-
son model for weak and strong disorder, respectively, and we find a complete agreement
with previous studies [353]. At small disorder (extended states, panel (a)) the distribu-
tion is Wigner-Dyson type while in the localized regime (strong disorder, panel (b)), P (s)
is Poissonian distributed. Hence, in panels (b) and (d) we consider the large coupling
regime gc = 30. First, we observe that in the delocalized [see panel (b)] regime, the
situation is similar to that without cavity. However, at strong disorder [see panel (d)]
P (s) has a semi-poissonian form, which confirms the presence of a new type of localized
phase that we denote semi-localized phase.

Note that this semi-poisson distribution seems reminiscient of the universal distri-
bution encoutered at the metal-insulator (MI) transition. At this transition, the wave
functions undergo a multifractal behavior, as defined below, describing their strong fluc-
tuations at the criticality. In other words, the system shows scale invariance at the
criticality. This behavior can be observed using the generalized inverse participation
ratio which is given by

Iq(Eα) =
∑

c

| ⟨α|c⟩ |2q. (4.18)

In the thermodynamic limit, the generalized IPR scales according to:

Iq ∼ L−Dq(q−1), (4.19)

where Dq is the fractal dimension, D the dimension of the model considered and L the
system size. We then distinguish 3 different regimes:

I) Dq → D independenly of q indicates extended states.
II) Dq → γ(q), a finite value which depends of q. This is called a multifractal behavior.
III) Dq → 0 independently of q indicates fully localized states.
To determine if the wave function features a particular fractal behavior, we realize a

finite-size analysis of Iq to extract the fractal dimension in our model, for W = 50. In
Fig. 4.5 panel (a) and panel (b), we present a finite-size scaling analysis of the generalized
inverse participation ratio Iq, for eigenenergies lying in the middle of the spectrum, i.e.

90



4.2. Phase diagram 91

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
gc=0.00

Poisson

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
gc=0.00

Wigner-Dyson

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
gc=30.00

Wigner-Dyson
Semi-Poisson

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
gc=30.00

Wigner-Dyson
Semi-Poisson

(a) (c)

(b) (d)

W=50W=5

1 2 3 4 5
10�5

10�4

10�3

10�2

10�1

100

1 2 3 4 5
10�5

10�4

10�3

10�2

10�1

100

P
(s

)
P

(s
)

ss

1 2 3 4 5
10�5

10�4

10�3

10�2

10�1

100

1 2 3 4 5
10�5

10�4

10�3

10�2

10�1

100

Figure 4.4: Panel (a) and (c) : Level spacing distribution P (s) for the 3D Anderson
model ( gc = 0 (red circle)) for a disorder strength W = 5 and W = 50, respectively. At
small disorder the level spacing follows a Wigner-Dyson distribution [see (a) black line],
indicating a delocalized phase. At strong disorder the level spacing is Poisson distributed
[see (c) orange line], indicating a localized phase. These results are in agreement with
what we expect for the standard Anderson model. Panel (b) and (d), 3D Anderson model
coupled to a cavity mode in the large coupling limit ( gc = 30 (blue diamond) ) for a
disorder strength W = 5 and W = 50, respectively. At small disorder (b), the behavior
is similar that in (a) [see (b) black line], however, for strong disorder, the level spacing
follows now a Semi-Poissonian distribution [see (d) green line] in stark contrast with the
Poisson distribution observed in (c). Insets show the tail of the level spacing distribution
on a logarithmic scale.

91



92 Chapter 4. The fate of Anderson localization under large light-matter coupling

ϵ = 0.5 ± 0.02, for gc = 0 and gc = 30, respectively. We then perform a fit using
Eq. (4.19) to extract the effective fractal dimension Dq, and the resulting exponents are
shown in Fig. 4.5 panel (c). We find that both cases feature the same behavior; Dq

seems to go to 0 independently of q, which indicates an absence of multi-fractality in our
system. Here, due to the small value of Dq and the strong disorder, obtaining a relevant
precision is challenging. The results suggest that there is no multi-fractal behavior in the
large coupling regime. Note that, a similar analysis might become more relevant at the
transition point of the MI transition.

1.5 2.0 2.5 3.0
q

0.00

0.02

0.04

0.06

0.08

Dq

gc = 0
gc = 30

103 123 163 203
0.1

0.2

0.3

0.4

0.5

103 123 163 203
0.4

0.5

0.6

0.7

0.8

103 123 163 203
0.4

0.5

0.6

0.7

0.8

q = 1.5
q = 2.0
q = 2.5
q = 3.0

(a) (b)

(c)

gc = 0 gc = 30

q q

I q
(✏

=
0
.5

)

N N

Figure 4.5: Panel (a) and (b): Finite-size scaling for the generalized inverse participation
ratio Iq, averaged over eigenvalues in the middle of the spectrum ϵ = 0.5± 0.02, for two
collective coupling strength gc = 0 [see panel (a)] and gc = 30 [see panel (b)], respectively
and disorder strength W = 40. The dashed lines are a fit of the form Iq = N−Dq(q−1)/D,
and the resulting exponents are shown in the panel (c).

4.3 Limit of large coupling ( gc ≫ W/2 )

To obtain physical insights, we now perform a perturbation theory. In this work, the
dynamics is restricted to the single-excitation subspace, where |i⟩ denotes an excitation
at site i and |p⟩ a single-photon state, i.e. when the excitation is found in the light field.
We choose those states as the basis (of dimension N + 1) for a generic single-excitation
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4.3. Limit of large coupling ( gc ≫ W/2 ) 93

state

|ψ⟩ =
N∑

i=1

αi |i⟩+ β |p⟩ (4.20)

with
∑N

i=1 |αi|2 + |β|2 = 1. As discussed below, the light-matter coupling induces the
formation of two eigenstates with energy ±gc, where gc = g

√
N . In the following, we

are interested in the limit of large coupling and consider the parameter regime gc ≫
W ≫ J = 1. In order to get an insight in the structure of the eigenstates, we simplify the
analysis by neglecting the tunneling J , being a very small parameter in the problem. With
this, the problem becomes independent of the dimension. In this limit, the Hamiltonian
H ≃ H0 + V only includes the light-matter interaction

H0 = g
N∑

i=1

(
|i⟩⟨p|+ |p⟩⟨i|

)

and the on-site energies V =
∑N

i=1 ϵi |i⟩⟨i| . As gc ≫ W , we now consider a perturbation
theory with H0 as the dominant part and V as the perturbation. We first rewrite the
dominant part H0 as

H0 = gc
(
|B⟩⟨p|+ |p⟩⟨B|

)
,

where |B⟩ = 1√
N

∑
i |i⟩ is denoted as the bright mode. This shows that the light field only

couples to the bright mode, with a coupling strength gc. This coupling gives rise to the
formation of an upper polariton |u⟩ and a lower polariton |l⟩ as eigenstates of H0, here
defined as,

|u⟩ ≡ 1√
2

(
|B⟩+ |p⟩

)
, |l⟩ ≡ 1√

2

(
|B⟩ − |p⟩

)

with H0 |u⟩ = gc |u⟩ and H0 |l⟩ = −gc |l⟩.
The remaining eigenstates {|dj⟩}j=1...N−1 of H0 have to be orthogonal to |u⟩ and |l⟩,

and with this to each linear combination of both polaritons. They are thus orthogonal to
the photon state,

⟨p|dj⟩ = 0 (4.21)

with |p⟩ = 1√
2

(
|u⟩ − |l⟩

)
. In other words, the states |dj⟩ do not carry any photon weight

and are called dark states. The dark states |dj⟩ are also orthogonal to the bright mode,

⟨B|dj⟩ = 0 (4.22)

with |B⟩ = 1√
2

(
|u⟩+ |l⟩

)
.

According to the Eqs. (4.21) and (4.22), each normalized dark state |dj⟩ has to fulfill
the conditions

β = 0,
N∑

i=1

αi = 0,
N∑

i=1

|αi|2 = 1 . (4.23)
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94 Chapter 4. The fate of Anderson localization under large light-matter coupling

Each dark state has zero energy, H0 |dj⟩ = 0, and besides the conditions in Eq. (4.23),
the dominant part H0 does not impose any further restriction on the choice for a basis of
the dark-state subspace. The dark-state subspace is thus degenerate with respect to H0

and, as a consequence, degenerate perturbation theory has to be applied.
In order to remove the degeneracies, V will be diagonalized within the dark-states

subspace {|dj⟩}. We call the corresponding dark states {|Dj⟩} from now on. They fulfill
the conditions

⟨Di|V |Dj⟩ = λiδij . (4.24)

We are interested in the coefficients ⟨j|Di⟩ for the dark states as defined by the previous
conditions [354, 355]. Those states are also eigenstates of H in the limit gc/W → ∞.
Defining hj = ⟨B|V |Dj⟩, and using the completeness relation 1 =

∑
j |Dj⟩⟨Dj|+ |B⟩⟨B|+

|p⟩⟨p|, together with Eq. (4.24), we obtain

1√
N
hj = ⟨i|B⟩ ⟨B|V |Dj⟩ = ⟨i|

(
1−

∑

m

|Dm⟩⟨Dm| − |p⟩⟨p|
)
V |Dj⟩

= ⟨i|V |Dj⟩ −
∑

m

⟨i|Dm⟩λmδmj =
(
ϵi − λj

)
⟨i|Dj⟩

where we used ⟨p|V = 0. The amplitude of dark-state |Dj⟩ at site |i⟩ is thus given by

⟨i|Dj⟩ = Nj
1

ϵi − λj
, (4.25)

where hj enters the normalization Nj =
hj√
N

. According to Eqs. (4.23) and (4.25), one
finds

∑
i(ϵi−λj)−1 = 0 . The dark-state energies λj (j = 1, . . . , N −1) are thus the N −1

solutions of the equation

N∑

i=1

1

ϵi − λ
= 0. (4.26)

By using to Eq. (4.24) - Eq. (4.26), we can now compute the dark states and their
corresponding energies purely from a perturbation theory. In order to check validity of
this expansion in Fig. 4.6, we present the level spacing distribution for gc = 30 obtained
by full diagonalization of the Hamiltonian [see Sec. 4.1] (red circle) and obtained by the
perturbation theory (hexagon blue) by diagonalizing V within the dark-state subspace
Eq. (4.24). The agreement with the Semi-Poisson form of the level spacing distribution
is quite remarkable.

After having checked that perturbation gives a good agreement with the numerical
analysis, we would like to understand the origin of this specific distribution. In Fig. 4.7,
we sketch a graphical representation of N = 3 sites without cavity and in the large
coupling regime with cavity. From Eq. (4.26), we note that the N − 1 dark state energies
are distributed between the N initial random energies [334]. In a rough approximation,
we suppose that the distance between the two dark states are given by ∆ = x+y

2
, i.e. the

mean distance spacing between the N states. In addition, we know that without cavity
the distribution of the level spacing follows a Poissonian distribution (exp(−x)). Let us

94



4.4. Anomalous Diffusion 95

0 1 2 3 4 5
s

0.0

0.2

0.4

0.6

0.8

1.0

P(
s)

Perturbation
gc=30

Semi-poissonian

1 2 3 4 5
10�4

10�3

10�2

10�1

100

Figure 4.6: Comparison of the distribution of the level spacing from the complete Hamil-
tonian (red circle) and from the dark state build with the perturbation theory (blue
hexagon) for a disorder strength W = 50 and N = 100 sites. The green line is the ana-
lytical semi-poissonian distribution. Inset shows the tail of the level spacing distribution
on a logarithmic scale.

now derive the distribution of the dark states under this approximation. To do so, we
calculate

Pds(s) =
∫
x

∫
y
δ(∆− x+y

2
) exp(−x) exp(−y)dxdy

= 2
∫ 2∆

0
dy exp{−2∆} = 4∆exp(−2∆).

(4.27)

Remarkably, we find that Pds(s) is Semi-Poissonian distributed [356].
As a final comment, we note that when tunnelling is neglected, the perturbation theory

is valid at any dimension, which extends the aforementioned results (semi-localized phase)
to all dimensions (something we have checked, but which is not shown). In the end of
this chapter, for convenience, we restrict the analysis to a one-dimensional chain.

4.4 Anomalous Diffusion

In the previous section, we have emphasized some new properties within the large coupling
regime. We would now like to turn to transport properties, such as the diffusion of the
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96 Chapter 4. The fate of Anderson localization under large light-matter coupling
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Figure 4.7: Graphical representation of 3 levels and the corresponding dark states and
two polaritons when coupled to a cavity.

wave-packet or the transfer probability. In the Anderson model, a strong localization
leads to an absence of diffusion. The question is what happens to the diffusion properties
in the presence of a coupling to the cavity?

More specifically, we first focus on the dynamics and the long-time behavior of the
spreading (∆x)2t and we put the hopping term to zero (J = 0). In the following, we
restrict the analysis of the dynamics to the following initial condition

|ψ(0)⟩ = |N + 1

2
⟩, (4.28)

with N an odd number. By this, the system is initialized with one excitation in the
middle of the chain and no photon in the cavity mode. We will first focus on the quantity

(∆x)2t = ⟨x2⟩t − ⟨x⟩2t (4.29)

which measures the spreading of the excitation over the chain, where

⟨x⟩t =
N∑

j=1

jPj(t), ⟨x2⟩ =
N∑

j=1

j2Pj(t) (4.30)

and Pj(t) =
|αj(t)|2∑N
l=1 |αl(t)|2

. In the definition of the local density Pj of excitations we discard
the photon state |p⟩, as no position can be attributed to its global excitation character.

In Fig. 4.8 (a), we show the Mean Square Displacement (MSD) (∆x)2t as function
of the time t and different number of sites N = 60, 80, 100. The black line is a guide
for the eye presenting the scaling of the usual diffusive type propagation. We find that
a sub-diffusive propagation emerges in the presence of the cavity, despite an absence of
tunneling. Furthermore, in panel (b), we focus on the short-time dynamics, showing an
initial rapid oscillation of the MSD, that we relate to the Rabi-type oscillations due to
the polaritons (see black line and Eq. (4.31)).
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Figure 4.8: Panel (a) : Mean square displacement for gc = 50, a disorder strength W = 20

and different number of sites N = 60, 80, 100 (see color code). The hopping term J is set
to zero. We note the presence of a sub-diffusive behavior, the black line is a guide for
the eye and presents the diffusive scaling ∼ t. In panel (b), we zoom on the short-time
behavior (see panel (a)). The black line corresponds to the full polaritonic expansion
obtained in Eq. (4.32) and fits precisely the ultra-short time dynamics.

4.4.1 Diffusion due to polaritons

We here derive an expression for the ultra-short time behavior of the system’s dynamics
in the limit of large coupling. Its final result is given by Eq. (4.32), which is represented
by the black line in Fig. 4.8 (b).

The time evolution of the system is described by the state vector with

|ψ(t)⟩ = exp(−iHt) |ψ(0)⟩ =
N+1∑

α=1

exp(−iEαt) |α⟩⟨α| |ψ(0)⟩ ,

In the following, the system is initialized with a single excitation at site j0, |ψ(0)⟩ = |j0⟩,
chosen as the center of the chain of length N . In the limit of large light-matter coupling
in the disordered regime (g

√
N ≫ W ≫ J), the evolved state can be approximately

written as [see Sec. 4.3]

|ψ(t)⟩ =exp(−ig0t) |u⟩⟨u| |j0⟩+ exp(ig0t) |ℓ⟩⟨ℓ| |j0⟩+
∑

j

exp(−iλjt) |Dj⟩⟨Dj| |j0⟩

Using |u⟩⟨u|+ |ℓ⟩⟨ℓ|+∑N−1
j=1 |Dj⟩⟨Dj| = 1, this can be written as

|ψ(t)⟩ − |j0⟩ =
(
exp(−igct)− 1

)
|u⟩⟨u| |j0⟩

+
(
exp(+igct)− 1

)
|ℓ⟩⟨ℓ| |j0⟩

+
∑

j

(
exp(−iλjt)− 1

)
|Dj⟩⟨Dj| |j0⟩
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98 Chapter 4. The fate of Anderson localization under large light-matter coupling

We assume gc = g
√
N ≫ W/2 ≥ max{|λj|} and consider times |λj|t≪ 1. The amplitude

on site j is then given by

⟨j|ψ(t)⟩ − δj,j0 =
(
cos(gct)− i sin(gct)− 1

)
(2N)−1

+
(
cos(gct) + i sin(gct)− 1

)
(2N)−1

+O(λjt)

where we used ⟨u|j′⟩ = (2N)−1/2 = ⟨ℓ|j′⟩ for each site j′ = j, j0. Finally, one obtains

⟨j|ψ(t)⟩ = δj,j0 +N−1
(
cos(gct)− 1

)
+O(λjt).

The corrections due to the dark states O(λjt) are neglected from now on. The amplitude
at site j = j0 reads

αj0 = ⟨j0|ψt⟩ ≃ 1 +N−1
(
cos(gct)− 1

)
,

and with it the probability to be at site j = j0

Pj=j0 = |αj0|2 ≃
(
1 +N−1

(
cos(gct)− 1

))2
.

In contrast to this, the amplitude at each site j ̸= j0, different from the site j0 where the
excitation is found initially, reads

αj ̸=j0 = ⟨j ̸= j0|ψt⟩ ≃ N−1
(
cos(gct)− 1

)
,

and with it the probability to be at site j ̸= j0

Pj ̸=j0 = |αj ̸=j0|2 = N−2
(
cos(gct)− 1

)2
.

The chain is coupled to the light field. The corresponding amplitude β for the photon
state reads

β = ⟨p|ψ(t)⟩ =
(
cos(gct)− i sin(gct)− 1

)
⟨p|u⟩ ⟨u|j0⟩

+
(
cos(gct) + i sin(gct)− 1

)
⟨p|ℓ⟩ ⟨ℓ|j0⟩ .

As ⟨p|Dj⟩ = 0, this expression is exact when one considers the eigenstates
{
|u⟩ , |l⟩ , |Dj⟩j=1,...,N−1

}

in the limit g
√
N ≫ W . With ⟨p|u⟩ = 1/

√
2, ⟨p|ℓ⟩ = −1/

√
2 and ⟨j0|u⟩ = (2N)−1/2 =

⟨j0|ℓ⟩, one gets

β = ⟨p|ψ(t)⟩ =
(
cos(gct)− i sin(gct)− 1

) 1

2
√
N

+
(
cos(gct) + i sin(gct)− 1

) −1

2
√
N

=− i sin(gct)/
√
N

The probability for a photon reads

Pph = |β|2 = sin2(gct)

N
.
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With this, the probability to find the excitation within the chain is therefore given by

N∑

j=1

Pj =
N∑

j=1

|αj|2 = 1− |β|2 = 1− Pph = 1− sin2(gct)/N.

This allows to compute ’renormalized’ probabilities P̃j = Pj/
∑

j Pj for the excitation in
the chain

P̃j=j0 =

(
1 +N−1

(
cos(gct)− 1

))2

1− sin2(gct)/N
,

P̃j ̸=j0 =
N−2

(
cos(gct)− 1

)2

1− sin2(gct)/N
.

The spreading of the excitation over the chain for an odd number N = 2Ñ + 1 of sites is
given by

⟨
x2
⟩
t
=
∑

j

P̃j(ja)
2 = a2P̃j ̸=c2

Ñ∑

j=1

j2 ,

with a the lattice spacing. We here assume that the excitation is initially found at the
center j0 = c of the chain. Using the relation

∑Ñ
j=1 j

2 = Ñ(Ñ + 1)(2Ñ + 1)/6 with
Ñ = (N − 1)/2, one obtains

Ñ∑

j=1

j2 =
N − 1

2

N + 1

2

N

6
=
N3(1−N−2)

24
.

The spreading of the excitation thus reads

⟨x2⟩t
a2

= P̃j ̸=c
N3(1−N−2)

12
=
N−2

(
cos(gct)− 1

)2

1− sin2(gct)/N

N3(1−N−2)

12
(4.31)

which gives

⟨x2⟩t
a2

=
N
(
cos(gct)− 1

)2

12
(
1− sin2(gct)/N

)
(
1− 1

N2

)
≃ N

(gct)
4

48
, (4.32)

where the last expression is an approximation for sufficiently small times t ≪ g−1
c and

large N .

4.5 Transfer probability

Similarly to the derivation of the survival probability, we now investigate the probability
that an excitation is transfer to a site f , when the excitation was initially located at site
c. The transfer probability reads

Pc→f (t) = |⟨f |e−iHt|c⟩|2. (4.33)
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Figure 4.9: Panel (a): averaged probability to transfer an exciton from site 0 to r , with
r the site distance, for J = 0, a disorder strength W = 20, a collective coupling gc = 50

and for different number of sites N = 20, 60, 100 [see color code]. We see that this average
probability is constant for all site, independent of the distance, but its value varies with
the number of sites N . In panel (b), we report the average value of this plateau as
function of the number of total sites N . We have separated the contribution from the
dark states and the polaritons, showing that the two contributions scale differently. The
polaritons scale as ∼ 1/N2 (orange), while the dark states scale as ∼ 1/N (grey).

In the case of non-degenerate eigenstates, the long-time averaged transfer probability
Tc→f reads

Tc→f = lim
t→∞

∫ t

0

dt′Pc→f (t
′)/t =

∑

α

|⟨α|c⟩|2|⟨α|f⟩|2. (4.34)

Note that T0→0 corresponds to the return probability.

In Fig. 4.9 (a), we show the averaged (∼ 1000 realizations) transfer probability T0→r,
as function of the site distance r, for J = 0, a disorder strength W = 20, a collective
coupling gc = 50 and different number of sites N = 20, 60, 100 [see legend]. We observe
that this probability goes to a constant value for all distances [see panel (a)] but scales
with the total number of sites N [see panel (b)]. The dotted line in panel (a) corresponds
to the mean values of the plateau that we report as a function of N in Fig. 4.9 (b).
When separating the contribution of the dark states and polaritons, we find that the
polaritons scale as ∼ 1/N2 (orange), while the dark states scale as ∼ 1/N (grey). In
order to understand the dark states’ scaling, we postulate that the excitation can be (on
average!) equally distributed over all the sites except the initial one. We can then express
the average probability to transfer excitation on another site as (1−Πcc)/(N − 1). This
suggested scaling behavior is in good agreement with the numerical data [see dotted grey
line in Fig. 4.9 (b)].
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4.6 Conclusion

In this chapter, we have analysed the modification of the Anderson localization under the
coupling to cavity mode. We first investigated observables such as the return probability
and the inverse participation ratio. We have shown that striking differences are found in
the regime of strong disorder (W ≫ J) and large coupling limit (g

√
N ≫ W/2), which

we characterize as semi-localized phase. Indeed, in this regime, the level statistics shows
semi-poissonian behavior, charaterized by level repulsion (as in the metallic phase) and
exponential behavior in the long tail (as in the localized phase). The analysis of the
general inverse participation ratio shows no evidence for the behavior of multi-fractality.
Treating the disorder as a perturbation, we obtain analytic estimates for the eigenstates
as well as the statistics of eigenenergies, which well reproduce the numerical results dis-
cussed before. Finally, in order to study transport properties, we focus on the diffusion
(time-evolution of the mean square displacement), which we analyse both numerically
and analytically. It is found that the polaritons determine the short-time behavior, while
the dark states are responsible for diffusion in the long-time limit, that shows anomalous
behavior. We close the discussion with an analysis of the averaged transfer probability.
Here, we were able to separate the contributions from the polaritons (scaling as ∼ 1/N2)
and the dark states (scaling as ∼ 1/N). Interestingly, the latter scaling corresponds to
the one for Bloch states, which are present in the delocalized regime. Therefore, the semi-
localized phase shows localization properties similar to the insulator phase and transfer
properties similar to the delocalized phase. In this phase, in contrast to an exponential lo-
calization of the excitation in space, the structure of the dark states indicates a spreading
of the excitation that obeys an algebraic behavior according to the site energies.

It would be interesting to study localization and transport properties in the small
coupling regime (g

√
N < W/2) and at the crossover (g

√
N ∼ W/2), where we expect a

favorable mixing between polaritons and dark states. Furthermore, in the small coupling
regime, a perturbative approach for the cavity coupling [354] can give insight on the
plateau value observed in Fig. 4.1.
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I must finish what I’ve started, even if, inevitably, what I finish turns out not
to be what I began.

Salman Rushdie, Midnight’s Children

In this Ph.D work, I studied the impact of long-range couplings on the quantum
phases of strongly-correlated many-body systems. For this purpose, I have focused on
different one-dimensional systems with various long-range couplings.

In the first chapter, we investigated the interplay between long-range couplings and
the localization phenomenon induced by disorder. We have considered one-dimensional
disordered chains of fermions and spins with long-range interactions that decay with the
distance ℓ as a power-law 1/ℓα. We first considered an extension of the Kitaev model
with long-range pairing. By using the integrability of the model, we have determined its
complete phase diagram. The latter features rich properties including a new delocalized
regime with high energy states protected against disorder. The existence of this regime
can be traced back to the presence of a divergence in the excitation spectrum induced by
the long-range potential. It can however be shown that this phase disappears in the ther-
modynamic limit. We have shown that the correlation functions in the localized phase
display an algebraic decay at large distance, with an exponent that does not depends
on the strength of the disorder but only of the power law exponent α. The strength
of these results relies especially on an analytical evidence obtained from a perturbative
approach. We have also looked at the correlation functions in another model featuring
density-density interactions, namely the long-range Ising model in a transverse field. In-
terestingly, similar algebraic decay were observed. Our results are in stark contrast to the
results expected for short-range systems and generalize recent results for the decay of the
wave-functions in quadratic models. We argue that the fact that these results are found
for both non-interacting and interacting models suggests a possible universal behavior
due to long-range couplings. These results are of immediate interest for experiments
with cold ions, molecule, Rydberg atoms and quantum emitters embbeded in cavity-type
resonators. Since the initial Anderson model was devoted to the study of diffusion in a
disordered medium, understanding how the algebraic localization manifests itself in the
transport properties appears as a natural extension of this work.

In the second chapter, we studied an extension of the Hubbard model where fermions can
hop between nearest-neighboring sites with rate t, and interact via both an on-site poten-
tial U and a repulsive finite-range soft-shoulder potential V which typically extends over
a few sites of the lattice. This soft-shoulder potential is directly inspired by experiments
with Rydberg-dressed cold gases. Starting from the classical limit (t = 0), we have shown
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that the competition between the length scale associated to the range of the potential
and the average inter-particle distance can lead to a degenerate ground state. This effect
relies on frustration, i.e. when the system can not minimized simultaneously all the terms
present in the Hamiltonian, which leads to the appearance of two new phases made of
cluster of particles. The first phase corresponds to the so-called cluster Luttinger liquid
(CLL), and the second one to a CLL with on-site pairs of fermions (CLLd). Importantly,
these phases do not fall into the standard Tomonaga-Luttinger liquid (TLL) class. Fur-
thermore, we have found that a transition between these two phases occurs at V = 2

3
U .

Then focusing on the quantum model (t ≡ 1), we have determined the complete phase
diagram in the whole range of parameter U and V using a density matrix renormalization
group algorithm. At large V or large U , we have unambiguously demonstrated that the
cluster phases predicted classically survive in the presence of quantum fluctuations. At
intermediate U , we have characterized in detail the CLL phase and the TLL-CLL and
CLL-CLLd transitions. All the phases are characterized by a central charge c = 2, con-
sistent with a liquid phase featuring a separation between the spin and charge degrees
of freedom. However, since the single-particle gap is finite in the CLL, the granular-
ity of the liquid has been interpreted as clusters of particles instead of single particles.
We have found that the conventional Tomonaga Luttinger Liquid (TLL) is separated
by a critical line with a central charge c = 5/2, along which the two (spin and charge)
bosonic degrees of freedom (corresponding to c = 1 each) combine in a supersymmetric
way with an emergent fermionic excitation (c = 1/2). We have also demonstrated that
there are no significant spin correlations. Finally, we have provided evidences of a first-
order transition between the CLL and the CLLd. It would be an interesting question to
investigate the quantum phase transition in a two-dimensional model, and look for ex-
otic quantum phases such as frustration-induced super-stripes [110], superglass [357], and
emergent gauge fields [358]. Furthermore, the emergent supersymmetry between bosonic
and fermionic modes paves the way to identify the fundamental features that could lead
to new extended critical phases in higher dimensions. Since emergent supersymmetric
modes have been shown to be related to Majorana fermions, it could be also interesting
to investigate possible applications of these extended critical phases in the context of
quantum information.

In the third chapter, we have shown that restoring energy extensivity of a quantum
system in the strong long-range regime, which is done by rescaling the potential with
a volume-dependent factor called Kac’s prescription, has a profound influence on the
low-energy properties. We have considered a long-range quantum model consisting of
one-dimensional fermions interacting via a 1/rα potential at half filing. Using a com-
bination of bosonization and numerical results, we have demonstrated that the ground
state of the system strongly depends on whether Kac’s prescription is used or not. In
the thermodynamic limit, while an insulating phase is found in the absence of Kac’s
rescaling, the latter leads to a metallic phase for finite interaction strengths. Interest-
ingly, we have found that this new metallic phases is not completely captured by the
Luttinger theory, although the latter still provides the correct functional behavior except
for an infinite range potential (α = 0). In the latter case, we have demonstrated the full
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breakdown of the Luttinger liquid theory by solving the model exactly via a mean field
approach. Finally, we have shown that restoring extensivity eliminates the plasmon mode
while preserving the LR character of the potential, and with it some inherent properties
of the strong LR regime such as non-addivity. It is an interesting prospect to investi-
gate the properties of such an unconventional liquid with restored energy extensivity in
higher dimensions [359]. Since cavity-mediated two-body interactions are naturally LR
and extensive [117], another perspective of this work is the exploration of the non-trivial
thermodynamics of cold atoms in cavity-QED. For instance, the case α = 0 can be typ-
ically obtained when the spatial extent of the atomic cloud is much smaller than the
cavity wavelength [118].

Finally, in chapter 4, we have studied an three-dimensional Anderson localization model
with nearest-neighbor tunnelling J and random local energy disorder within [−W , W ].
We considered a situation where the excitation is collectively coupled to a common cav-
ity mode with strength gc = g

√
N , where N is the system size. Here, a cavity photon

can mediate long-range hopping between the individual sites. We put our focus on the
analysis of localization and transfer properties in the regime of large collective coupling
(gc ≫ W/2 ≫ J). In this parameter regime, we find the appearance of a novel semi-
localized phase, not present in the Anderson model, and which is characterized by a level
spacing distribution following a semi-poissonian distribution. Indeed, the eigenstates and
eigenenergies within this phase are computed via a perturbative treatment, from which we
can derive a semi-poissonian distribution for the level spacing under a certain simplifica-
tion. Moreover, we have found that the long-time limit of the diffusion shows anomalous
behavior. Crucially, we found that the modified dark states, besides polaritonic states
can play an important role for excitation transport. On average, those dark states can
spread the excitation over long distances in the chain, with a transmission probability
decaying only as ∼ 1/N .

In order to complete the analysis, it would be interesting to study the system in
the perturbative limit of small coupling (g

√
N < W/2) in more detail. Furthermore,

the crossover regime (g
√
N ∼ W/2) should be studied further. There, we expect a

favorable mixing between polaritons and dark states. This includes the appearance of
a possible novel phase transition between semi-localized and localized phase [354]. A
further perspective is the analysis of conductance and transfer properties with the help
of the Green’s functions. These findings can have impact on studies of cavity modified
transport properties in several experimental setup.
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