
HAL Id: tel-03202679
https://theses.hal.science/tel-03202679v1

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic verification of higher-order functional
programs using regular tree languages

Timothée Haudebourg

To cite this version:
Timothée Haudebourg. Automatic verification of higher-order functional programs using regular
tree languages. Programming Languages [cs.PL]. Université Rennes 1, 2020. English. �NNT :
2020REN1S060�. �tel-03202679�

https://theses.hal.science/tel-03202679v1
https://hal.archives-ouvertes.fr

Thèse de doctorat de

l’Université de Rennes 1

École doctorale № 601
Mathématiques et Sciences et Technologies de l’Information
et de la Communication

présentée par

Timothée Haudebourg

Automatic Verification of Higher-Order
Functional Programs using Regular Tree
Languages

Thèse présentée et soutenue à Rennes, le 15 Décembre 2020
Unité de recherche: 6074 (IRISA)
Thèse №: 1000

Rapporteurs avant soutenance :

Naoki Kobayashi Professeur, University of Tokyo
Mihaela Sighireanu Professeur, ENS Paris-Saclay

Composition du Jury :

Examinateurs : Jasmin Blanchette Professeur assistant, Vrije Universiteit Amsterdam
Sophie Pinchinat Professeur, Univ Rennes

Dir. de thèse : Thomas Genet Maître de conférences, Univ Rennes
Codir. de thèse : Thomas Jensen Directeur de recherche, Inria

1

2

Contents

Remerciements 7

Résumé en Français 9

1 Introduction 15
1.1 Motivation . 16

1.1.1 Testing . 16
1.1.2 Proof Assistants . 17
1.1.3 Automated Verification Techniques 18
1.1.4 Regular Verification Problems 19

1.2 Our Verification Framework . 20
1.2.1 Term Rewriting Systems . 20
1.2.2 Tree Automata and Regular Languages 21

1.3 Contributions . 21
1.3.1 Equational Abstractions for Higher-Order Programs 22
1.3.2 Regular Type Inference . 22
1.3.3 Regular Relations . 22
1.3.4 Summary . 22

2 Preliminaries 25
2.1 Trees, Term and Patterns . 25
2.2 Rewriting Systems . 27

2.2.1 Definitions . 27
2.2.2 Properties of TRSs . 28
2.2.3 Usage in Functional Program Verification 29

2.3 Tree Languages, Grammars and Automata 32
2.3.1 Regular Tree Languages . 33
2.3.2 Bottom-Up Tree Automata 33
2.3.3 Beyond Regularity . 35

2.4 Automated Verification and Abstraction 37
2.4.1 Formalization as Model Checking 37
2.4.2 Verification via Abstraction 39

3 State of the Art 43
3.1 Static Type Systems . 43

3.1.1 Intersection and Set Theoretic Types 43
3.1.2 Dependent and Refinement Types 44
3.1.3 Deep Specification . 46

3.2 Higher-Order Trees Model Checking 47
3.2.1 Higher Order Recursion Schemes 47

3

4 CONTENTS

3.2.2 Predicate Abstraction . 49
3.3 Regular Verification . 50

3.3.1 HORS Extensions . 50
3.3.2 Regular Tree Languages based Techniques 53

4 Higher-Order Equational Abstractions 59
4.1 Introduction . 59
4.2 Tree Automata Completion Algorithm 60

4.2.1 Core Algorithm . 61
4.2.2 Properties of the TAC Algorithm 63
4.2.3 Equations . 63
4.2.4 Contracting Equations . 65

4.3 Termination Criterion Using Contracting Equations 68
4.3.1 The Role of Contracting Equations 69
4.3.2 The Role of Transitive Equations 70

4.4 A Class of Analyzable Programs . 71
4.4.1 Bounded Applications Stacks 71
4.4.2 Type System . 72
4.4.3 The K-TRS Class . 74

4.5 Verification Procedure . 82
4.5.1 Contracting Equations Generation 82
4.5.2 Equations Exploration . 84

4.6 Experiments . 86
4.6.1 Test Suite . 86
4.6.2 Experimental Results . 86
4.6.3 Related Work . 90

4.7 Conclusion . 90

5 Regular Language Type Inference 93
5.1 Introduction . 93

5.1.1 Abstraction solution: regular abstract interpretation 93
5.1.2 Modularity solution: regular language types 94
5.1.3 Inference solution: Regular language learning 95

5.2 Regular Abstract Interpretation . 96
5.2.1 Regular Abstract Domain . 97
5.2.2 Abstract Semantics . 97
5.2.3 Abstraction Inference Challenges 100

5.3 Regular Language Types . 101
5.3.1 Type Partitions . 105
5.3.2 Inference Algorithm . 106
5.3.3 Non-Recursive TRS . 108
5.3.4 Invariant Learning . 112

5.4 Experiments . 118
5.4.1 Implementation Details . 119
5.4.2 Test Suite . 120
5.4.3 Experimental Results . 120

5.5 Conclusion . 122

CONTENTS 5

6 Regular relations 125
6.1 Introduction . 125
6.2 String Automatic Relations . 126
6.3 Tree Automatic Relations . 127

6.3.1 Standard Convolution . 127
6.3.2 Full Convolution . 129

6.4 Relations Inference . 132
6.4.1 Constrained Horn Clauses Solving 133
6.4.2 ICE-Based Verification . 133
6.4.3 The Teacher . 136
6.4.4 The Learner . 140
6.4.5 Soundness and Completeness 143

6.5 Experiments . 144
6.5.1 Test Suite . 144
6.5.2 Experimental Results . 145

6.6 Conclusion . 146

7 Conclusion and Future Work 147
7.1 Non-Terminating Programs . 148
7.2 Non-Safety Problems . 148
7.3 Integration in Higher-Order Functional Languages 151
7.4 Polymorphic Lifting . 152
7.5 Regular Relations and Higher-Order 154

Bibliography 163

6 CONTENTS

Remerciements

Je veux tout d’abord exprimer ma gratitude envers mes deux encadrants Thomas
Genet et Thomas Jensen, qui m’ont supportés et guidés tout au long de ces trois
années de thèse. Ils ont su me faire confiance dans les longs moments d’incertitudes
et j’ai toujours pu trouver la porte de leur bureau ouverte pour y trouver conseil. Je
n’aurai pas pu imaginer meilleurs encadrants pour diriger ma thèse.

Je tiens aussi à remercier mes rapporteurs Naoki Kobayashi et Mihaela Sighireanu
pour leur intérêt porté à mes travaux ainsi que leur retours de qualité. Je remercie
aussi Jasmin Blanchette d’avoir accepté sa place d’examinateur au sein de mon jury
de thèse, et Sophie Pinchinat d’avoir présidé ce jury. Merci pour leur intérêt porté à
ma présentation, et leur retours.

Merci aussi à David Pichardie et Delphine Demange pour m’avoir ouvert les portes
de l’ENS de Rennes et dirigé vers la recherche à l’époque ou je cherchai encore ma
voie. J’ai passé au sein de l’ENS, puis de l’IRISA, des année passionnantes.

Je remercie aussi toute l’équipe Celtique qui m’a accueilli pendant ma thèse,
en particulier mes différents co-bureaux, Alix Trieux d’abord et Thomas Rubiano
enfin mon compagnon d’escalade. Merci aussi à Lydie Mabil puis Stephanie Gosselin
Lemaile pour leur aide dans mes démarches administratives.

Merci enfin à ma famille et mes amis qui ont eu la force de rester confinés
chez eux pendant la pandémie, qui auraient tant voulu venir m’encourager pendant
ma soutenance mais qui ont dû se contenter de m’observer derrière l’écran de leur
ordinateur.

7

8 CONTENTS

Résumé en Français

L’objectif de cette thèse est d’étudier l’usage des langages d’arbres réguliers combinés
aux systèmes de réécriture, appliqué à la vérification automatique de propriétés sur
des programmes fonctionnels d’ordre supérieur dans le but de faciliter la détection et
correction de bugs. Si les bugs sont souvent associés à des épisodes catastrophiques
comme la destruction de la fusée Ariane 5 à cause d’un bug dans le programme de
guidage, de tels événements ont tendance à cacher la présence massive des bugs dans
les programmes communs, où leurs effets sont moins spectaculaires. En 1978, Lientz
et al. [LST78] ont montré que les programmeurs concentrent 17% de leur effort de
développement à la correction de bugs. Une étude similaire réalisée par Amit et al.
en 2020 [AF20] a montré que sur la plateforme de développement partagée GitHub,
20% des changement appliqués aux projets (« commits ») sont dédiés à la correction
d’un ou plusieurs bugs. Bien que peu dangereux, il est estimé [RTI02] que ces bugs
coûtent en moyenne 59 milliard de dollars par ans à l’économie Étasunienne seule
(soit 0.6% de leur PIB), en plus d’être passablement agaçants pour les utilisateurs. De
nombreux outils comme Nitpick [BN10] ont été développés pour aider les développeur
à tester leur programmes et traquer les bugs. Malheureusement sauf dans de rare
cas, le test est insuffisant pour garantir l’absence de bugs. Le reste du temps, une
approche plus formelle doit être utilisée pour prouver que le programme est correct.
En pratique cependant, même en utilisant des assistants de preuve comme Coq [Inr16]
ou Isabelle HOL [NPW02], construire la preuve de correction d’un programme
demande beaucoup de temps et d’expertise, un investissement difficile à consentir
dans l’industrie du développement. Cette thèse s’intéresse à la création de techniques
de preuve complètement automatisées permettant de réduire cette investissement.
En particulier nous nous intéressons à la vérification automatique de propriétés de
sécurité sur des programmes purement fonctionnels d’ordre supérieur, famille de
programmes plus naturellement adaptée à la vérification formelle. Plus précisément
encore, nous nous intéressons à la famille des propriétés « régulières » (dont la nature
est précisée plus bas) pour laquelle nous montrons qu’il est toujours possible de
prouver ou d’improuver la propriété complètement automatiquement.

Il existes déjà de nombreuses techniques détaillées dans le Chapitre 3 permettant
d’automatiser des parties ou l’entièreté de la vérification, mais sans garantie de résultat
sur une famille de propriété particulières. La plupart de ces techniques reposent sur
la recherche d’une abstraction de l’exécution du programme permettant de vérifier
la propriété donnée. Parmi ces méthodes d’abstraction, Genet et al. [GR10,Gen16]
propose d’utiliser des systèmes de réécriture combinés à l’algorithme de complétion
d’automate d’arbre pour générer des abstraction régulières. Cette méthode permet
ainsi d’envisager le développement d’une technique de vérification complète sur les
propriété régulières. C’est l’objectif de cette thèse dans laquelle

• nous étendons la méthode d’abstraction proposée par Genet et al. pour vérifier
des propriétés sur les programmes d’ordre supérieur et étudions ses limites,

9

10 CONTENTS

• nous repoussons ces limites en définissant une nouvelle méthode d’abstraction
basée sur l’algorithme de complétion d’automate ainsi qu’une procédure de
vérification complète sur les propriété régulières basée sur celle-ci,

• enfin nous étendons notre méthode d’abstraction pour vérifier des propriété
relationnelles non-régulières, toujours à l’aide de langages réguliers

Termes, réécriture et vérification régulière

Nous posons ici les outils formels utilisés dans cette thèse pour représenter et analyser
les programmes fonctionnels d’ordre supérieur et les propriété régulières que nous
vérifions sur ceux-ci. L’exécution d’un programme est communément décrite par la
succession des états visités pendant le calcul. Dans notre cas, nous utilisons la théorie
des termes pour représenter ces états. Un terme est un arbre étiqueté de la forme
f(t1, . . . , tn) où f est un symbole et chaque ti in sous-terme (sous-arbre). On note
T (Σ) l’ensemble des termes étiquetés par les symboles inclus dans Σ. Les termes sont
utiles pour représenter à la fois les états de l’exécution d’un programme fonctionnel,
et les valeurs manipulées. Pour représenter et raisonner sur un programme fonctionnel,
nous utilisons les systèmes de réécriture de termes (TRS). Cette représentation est
à la fois proche des langages fonctionnels utilisés en pratique, et assez épurée pour
simplifier le raisonnement formel. Un TRS, noté R, est composé de règles de réécritures
de la forme g → d où g et d sont des motifs : des termes contenant des variables.
Si X est un ensemble de variables, on note T (Σ,X) l’ensemble des motifs étiquetés
par les symboles de Σ et contenant des variables de X . Par exemple, considérons le
programme OCaml suivant représentant la fonction de tri par insertion :

let rec sort = function
| [] -> []
| x::l -> insert x (sort l)

and insert x = function
| [] -> x::[]
| y::l -> if x y then x::y::l else y::(insert x l)

Ce programme peut être représenté par le TRS R suivant (les variables sont souli-
gnées) :

sort(nil)→ nil

sort(cons(x, l))→ insert(x, sort(l))
insert(x, nil)→ cons(x, nil)

insert(x, cons(y, l))→ ite(leq(x, y), cons(x, cons(y, l)), cons(y, insert(x, l)))

Ici l’ensemble des symboles Σ est par convention séparé en deux sous-ensembles
F = {sort, insert} contenant les « symboles de fonctions » et C = {0, s, nil, cons}
contenant les « symboles constructeurs » permettant de représenter les valeurs du
programme.

En complément, let systèmes de réécritures peuvent êtres utilisés pour représenter
des ensembles réguliers de termes, appelés « languages réguliers », à l’aide d’automates
d’arbres. Un automate d’arbre, noté A, est un quadruplet 〈Σ,Q,Qf ,∆〉 où Σ est
un ensemble de symboles, Q un ensembles d’états de l’automate, Qf ⊆ Q un sous
ensemble d’état finaux et ∆ un TRS défini sur les motifs T (Σ,Q) définissant les
transitions de l’automate. Le langage reconnu par A, noté L(A) contient tous les
termes t ∈ T (Σ) tel que t →∗∆ q où q est un étal final de l’automate. Par exemple,

CONTENTS 11

l’automate suivant peut être utilisé pour reconnaitre l’ensemble des listes d’entiers
naturels :

nil→ qlist cons(qN, qlist)→ qlist

0→ qN s(qN)→ qN

Ici l’état qlist est un état final de l’automate, et qN un état intermédiaire reconnaissant
tous les entiers naturels. Le termes cons(s(0), nil) est reconnu grâce à la séquence de
réécriture suivante :

cons(s(0), nil)→ cons(s(qN), nil)→ cons(qN, nil)→ cons(qN, qlist)→ qlist

La combinaison des termes de réécritures avec les automates d’arbre nous servent a
représenter nos propriétés à vérifier sur les programmes d’ordre supérieur. Par exemple,
si nous voulons vérifier la propriété suivante sur le programme de tri par insertion :
« pour toute liste l, sort l retourne toujours une liste triée ». Cette propriété peut
être exprimée comme suit à l’aide du système de réécriture R défini plus haut :

∀l. sorted(sort(l)) 6→∗R false

où sorted est défini à l’aide des nouvelles règles de réécriture suivantes :

sorted(nil)→ true
sorted(cons(x, nil))→ true

sorted(cons(x, cons(y, l)))→ and(leq(x, y), sorted(cons(y, l)))

Une méthode commune pour vérifier ce type de propriétés dites « de sûreté » est
de calculer une abstraction du programme sur-approchant son comportement sur
l’ensemble des entrées d’intérêt. Dans notre contexte, l’ensemble des entrées d’intérêt
est I = { sorted(sort(l)) | l ∈ List }. Notre objectif est donc de calculer un ensemble
de termes O tel que

• R∗(I) ⊆ O, où R∗(I) = { u | s→∗R t, s ∈ I } ; et

• false 6∈ O

Si un tel O existe, celui-ci prouve la validité de notre propriété. Dans le cas des
problèmes réguliers dans le quel nous nous plaçons, O est régulier et peut être
représenté à l’aide d’un automate d’arbre.

Abstractions équationnelles

Une première idée pour calculer un tel ensemble O est d’utiliser l’Algorithme de
Complétion d’Automate [Gen16]. En partant d’un automate A0 reconnaissant I, cet
algorithme est capable de calculer une série d’automates A1,A2, . . . convergeant vers
A∗ reconnaissant R∗(I). Tel quel, la terminaison de cet algorithme n’est pas garantie
pour tout automate initial A0 [Gen16]. De plus, l’abstraction obtenue via A∗ peut
être trop large pour vérifier une propriété donnée. Par exemple dans notre cas, avoir
false ∈ L(A∗) ne permet pas de vérifier notre propriété sur le tri par insertion.

Un solution proposée par Genet [GR10] est de guider l’algorithme de complétion
à l’aide d’équations sur les termes. Pour un ensemble d’équation E donné l’idée est
la suivante : pour chaque équation u = v ∈ E (où u et v sont des motifs), si s = uσ

12 CONTENTS

et t = vσ alors s et t seront reconnus par le même état dans A∗. Ce système permet
effectivement de contrôler finement la qualité de l’abstraction réalisée. Pour en plus
assurer la terminaison de l’algorithme, Genet propose de considérer E composé de
trois ensembles d’équations [Gen16] :

• Ec un ensemble d’équations « contractantes » de la forme t = t|p (où t|p est
le sous-terme de t à la position p). Ces équations permettent de contrôler
l’abstraction réalisée par l’algorithme.

• ER = { u = v | u→ v ∈ R }

• Er = { f(x1, . . . , xn) = f(x1, . . . , xn) | f ∈ Σ } assurant le déterminisme de
l’abstraction.

Genet montre que si T (C) a un nombre fini de formes normales par rapport à
~Ec = { u→ v | u = v ∈ Ec }, alors l’Algorithme de Complétion d’Automate termine
toujours en utilisant l’ensemble d’équations E = Ec∪ER∪Er. En théorie, résoudre un
problème régulier revient alors à trouver le bon ensemble d’équations Ec. En pratique
cependant, cette méthode ne marche que dans le cas des programmes de premier
ordre. Dans le cas des programmes d’ordre supérieur, les fonctions deviennes des
valeurs comme les autres. La séparation entre symboles de fonction (F) et symboles
constructeurs (C) n’a plus de sens. Pour garantir la terminaison de la procédure, il
est donc nécessaire de trouver un ensemble Ec contractant sur tout T (Σ) et non pas
seulement T (C). Malheureusement chercher un ensemble d’équations contractantes
sur un si grand ensemble est trop coûteux en pratique.

Pour cette raison, dans le Chapitre 4 de cette thèse, nous définissons une nouvelle
classe de TRS représentant des programmes d’ordre supérieur et continuant d’assurer
la terminaison de l’algorithme de complétion avec Ec contractant sur les valeurs
non fonctionnelles. En combinaison avec la définition d’une procédure de recherche
d’équations implémentée dans Timbuk 3 [Tbk3], nous somme capable de résoudre
automatiquement une variété de problèmes réguliers sur des programmes d’ordre
supérieur [Exp3]. Un résultat majeur de la formalisation de cette procédure et de
nos expérience est la démonstration de l’incomplétude de cette technique sur les
problèmes réguliers. La cause de cette incomplétude est l’introduction des ensembles
d’équations ER et Er. D’un coté Er limite l’ensemble des abstractions atteignables
aux abstractions « functionelles », dans lesquelles chaque terme est abstrait par un
unique élément. De l’autre, ER limite l’ensemble des abstractions atteignables aux
abstractions « éfondrantes », dans lesquelles chaque deux termes liés par la relation
de réécriture →R sont abstraits par le même élément. Nous montrons que parce que
les abstractions générées sont à la fois fonctionnelles et éffondrantes, cette procédure
ne permet pas de résoudre n’importe quel problème régulier.

Inférence de types réguliers

Pour résoudre les problèmes engendrée par notre première technique, nous introduisons
dans le Chapitre 5 une nouvelle technique de vérification automatique, complète
sur les problèmes réguliers. Cette nouvelle procédure est fondée sur l’interprétation
abstraite du système de réécriture représentant le programme vérifié. Celle-ci est
composée de deux éléments :

• Un domaine abstrait Λ = 〈Σ#,∆#〉 (un automate) définissant l’abstraction de
T (Σ), où Σ# est un ensemble de valeur abstraites et ∆# un système de réécriture

CONTENTS 13

composé de règles de la forme f(v#
1 , . . . , v

#
n)→ v# avec v, v1, . . . , vn ∈ Σ#. Un

terme t de T (Σ) est abstrait par v# ∈ Σ# ssi t→∗
∆# v#.

• Un système de réécriture R# définissant l’abstraction de R, composé de règles
de la forme f(v#

1 , . . . , v
#
n)→ v# avec v, v1, . . . , vn ∈ Σ#.

En considérant une nouvelle fois notre propriété sur le tri par insertion :

∀l. sorted(sort(l)) 6→∗R false

Dans notre contexte d’interprétation abstraite, prouver cette propriété revient à
trouver Λ et R# tel que :

sorted(sort(l#)) 6→∗R#∪∆# false#

où l# abstrait toutes les listes et false# abstrait la valeur false. Cette nouvelle formu-
lation fait disparaitre la quantification universelle. Pour trouver automatiquement
Λ et R# à partir de cette nouvelle formulation nous proposons une procédure d’in-
férence de type consistant à typer le terme d’intérêt (ici sorted(sort(l))) ainsi que
le reste du TRS R avec des types réguliers. Cette procédure d’inférence de type
est une analyse arrière, analysant chaque fonction du programme pour lui trouver
une signature régulière. Par exemple, notre procédure d’inférence de type affecte la
signature suivante aux fonction de notre programme de tri par insertion :

insert(ab#, sorted#)→ sorted#

sort(l#)→ sorted#

sorted(sorted#)→ true#

où sorted# est une nouvelle valeur abstraite (un langage régulier) inférée par notre
analyse pour typer les liste triées. Cette valeur, ajoutée dans Λ, est « apprise » en
analysant la fonction récursive sort avec l’aide de notre nouvelle procédure d’ap-
prentissage d’invariants réguliers : une procédure de raffinement d’abstraction guidée
par les contre exemples et assistée par un solveur SMT. Dans notre exemple, les
signatures trouvées permettent d’affecter l’annotation de type suivante (et seulement
cette annotation) au terme d’intérêt, prouvant ainsi la validité de notre propriété :

sorted(sort(l : l#) : sorted#) : true#

À la fin de l’analyse, les types affectés au TRS constituent une abstraction Λ valide,
tandis que les signatures de chaque fonction constituent une abstraction R# du
programme validant la propriété. Les abstractions générées par cette technique sont
toujours déformantes, mais ne sont pas fonctionnelles contrairement à notre précédente
technique, permettant ainsi la résolution de n’importe quel problème régulier.

Relations régulières

Si la technique proposée au Chapitre 5 permet de traiter n’importe quel problème
régulier, la portée de ceux-ci ne permet pas de vérifier des propriétés établissant
des relations entre les variables du programme. Par exemple, considérons le langage
Eq = { eq(s, t) |s ∈ N, t ∈ N, s = t } représentant la relation d’égalité sur les entiers
naturels. Ce langage n’est pas régulier : il ne peut pas être représenté par un automate
d’arbre. Par conséquent, un problème dont la résolution dépend de la représentation

14 CONTENTS

de ce langage n’est pas un problème régulier. De manière générale, si le problème
considéré nécessite la vérification d’une relation inductive entre deux valeurs (ou plus),
alors celui n’est pas régulier. Il est donc en dehors du champ des deux techniques de
vérifications proposées jusqu’ici.

Dans la Chapitre 6 nous proposons une technique de vérification automatique
permettant de contourner cette limitation. Cette technique repose sur l’inférence
automatique de « relations régulières » : des langages réguliers encodant des relations
à l’aide d’un opérateur de convolution sur les arbres. Dans ce contexte, la relation
Eq mentionnée plus haut peut-être indirectement représentée par le langage régulier
Eq⊕ = { s ⊕ t | eq(s, t) ∈ Eq } où ⊕ est un opérateur de convolution sur les
arbres [Tata]. Celui-ci est défini comme la « superposition » des arbres s et t illustrée
comme suit :

f

g

a

g

a

⊕

f

a f

a a

=

f
f

g
a

a
·

g
f

a
a

·
a

Contrairement aux techniques précédentes, les problèmes considérés sont décrits à
l’aide de systèmes de clauses de Horn contraintes (CHC) : un ensemble de clauses de
la forme

∀X . α1 ∧ · · · ∧ αn ⇒ αn+1

où chaque αi correspond à l’application d’une relation abstraite p(x1, . . . , xm) sur
des variables de X , où m est l’arité de la relation p. Résoudre un tel problème revient
à trouver un modèle M (une instanciation de chaque relation) tel que M satisfait
le système CHC. Dans notre cas, chaque instanciation de relation est donnée sous
forme d’une relation régulière tel que défini plus haut. Par exemple, considérons le
problème suivant :

eq(0, 0)⇒ true ∀x. eq(s(x), 0)⇒ false
∀x, y. eq(x, y)⇒ eq(s(x), s(y)) ∀y. eq(0, s(y))⇒ false

Ici eq est une relation abstraite. La seule solution à ce problème est le modèle M
tel que M(eq) = Eq⊕. Pour inféré automatiquement ce langage nous définissons la
première procédure d’inférence de relations régulière, basée sur ICE [GLMN14] : une
technique d’apprentissage par implications et contre exemples. Cette procédure est
composée de deux algorithmes appelés en boucle jusqu’à ce que la procédure converge
vers une solution :

• un « étudiant » chargé de proposer de nouveaux modèles candidats à partir
d’un ensembles de contraintes d’apprentissages (initialement vide)

• un « enseignant » chargé d’évaluer les modèles proposés par l’étudiant et, tant
que ceux-ci sont invalides, générer de nouvelles contraintes d’apprentissage.

Nous proposons une implémentation pour chacun de ces deux composants. Pour
l’étudiant, nous définissons une variation de notre algorithme d’inférence de langage
définit dans le Chapitre 5 adapté aux relations régulières. Pour l’enseignant, nous
définissons un algorithme de recherche de contre-exemples basé sur la recherche de
« chemins synchronisés » dans des automates d’arbres. Nous montrons qu’en posant
quelques hypothèses sur le système CHC considéré, cette procédure permet d’inférer
n’importe quel modèle régulier.

Chapter 1

Introduction

This thesis studies how regular languages of trees combined with term rewriting systems
can be used to automatically verify properties on higher-order purely functional
programs to facilitate the detection and correction of software bugs. Many tools has
been developed to help developers testing their programs and tracking down the bugs.
Unfortunately, except in rare cases, testing is not sufficient to guarantee the absence
of bugs. In most cases a more formal approach is required to prove the correctness
of the program. In practice however, using proof assistants such as Coq [Inr16] or
Isabelle/HOL [NPW02] to help the developer carry out the proof still requires a lot
of time and expertize. Such an investment can be hard to consent in the software
development world. Our goal in this thesis is to develop new techniques and tools for
the programmers to develop safer programs while reducing the time and expertize
needed to verify them. In particular, we focus on the automatic verification of regular
safety properties, a family of properties for which completely automatic verification
can be achieved; and on higher-order purely functional programs, a family of programs
naturally suited to formal verification.

There already exists many techniques detailed in Chapter 3 whose purpose is to
automate parts of the verification process. However most of the time they do not
provide any guarantees of completeness on any family of properties. All of these
techniques rely on the construction and analysis of an abstraction of the program
execution allowing the verification of the given property. Among these abstraction
methods, Genet at al. [GR10,Gen16] suggests to use term rewriting systems combined
with the Tree Automata Completion algorithm to generate regular abstractions of
the program execution, which allows us to foresee a complete verification procedure
for regular properties. However the proposed method is not yet complete and cannot
handle higher-order programs. This is the purpose of this thesis where:

• We extend the abstraction method proposed by Genet et al. in order to verify
regular properties on higher-order programs. We then discuss the limits of this
technique.

• We go beyonds these limits by developing a new abstraction procedure based
on the Tree Automata Completion algorithm and SMT solving. This helps
us design a entire verification procedure that is complete on regular safety
properties and complete in refutation.

• We then extend this abstraction procedure to go beyond regular properties and
verify relational properties, still using regular tree languages.

15

16 CHAPTER 1. INTRODUCTION

1.1 Motivation

Bugs are everywhere. They are often associated to catastrophic failures such as the
destruction of the Ariane 5 rocket prototype due to a bug in the guidance program,
but such major events often hide the massive presence of bugs in non-critical software
where their effect is much less spectacular. In 1978, [LST78] showed that programmers
focus 17% of development effort in fixing bugs. On the GitHub development platform,
20% of program changes (commits) across projects are dedicated to fixing bugs [AF20].
Even though rarely deadly, it is estimated [RTI02] that software bugs cost $59 billion
per year for the U.S. economy alone (0.6% GDP), in addition to being fairly annoying
for users. Development methodologies are often used to try to avoid the apparition
of bugs, without eradicating them. This motivates the development of methods to
detect and fix bugs before they can create damage.

1.1.1 Testing

The most natural way of finding and correcting bugs is by experimenting. The
program is verified on a series of inputs, by comparing the resulting output against
the expected result given by the programmer. Writing tests is considered as a good
practice, and a discipline on its own: all tests are not useful, some are redundant and
it is easy to miss the ones that are truly important.

Example 1.1.1. Consider the following (buggy) program written in the higher-order
functional programming language OCaml:

let rec sort leq = function
| [] -> []
| x::l -> insert leq x (sort leq l)

and insert leq x = function
| [] -> x::[]
| y::l -> if leq x y then x::(insert leq y l) else y::x::l

We want to check that the sort function always outputs a sorted list which can be
formally stated as:

∀l. sorted leq (sort leq l) = true

where sorted is a predicate function checking that its given list is sorted. To simplify
we will consider lists of As and Bs for which the comparison function leq given to
sort is defined as follows (where A takes precedence over B):

let leq x y = match x, y with
| B, A -> false
| _, _ -> true

To test this property, one can evaluate sorted leq (sort leq l) with different values
of l to ensure that it always return true. However choosing the wrong values for l
can be treacherous and give a wrong vision of the behavior of sort. For instance here,
every l of length 0, 1 and 2 verifies our property. One could be tempted to generalize
this observation and conclude that it is verified for any length.

Many tools have been developed to help programmers in their testing process,
proposing new tests and analyzing the relevance of existing tests. One of the goals is
generally to ensure that every line of code is tested (visited during the process of at
least one test input), and that every edge case is captured. Our previous exemple

1.1. MOTIVATION 17

shows that it is not enough: the property on sort is verified for the edge case (the
empty list []), and for A::B::A::[] for which every part of the code is visited. The
property remains incorrect in general.

Testing can filter common mistake, such as syntax errors, divisions by zero, invalid
bounds, etc. However unless the program is tested on every possible inputs (which
is usually far from being practicable) this does not give any general warranties on
the program’s correctness. This is why bugs continue to be spotted even on heavily
tested programs. Detecting those bugs requires a more formal approach.

1.1.2 Proof Assistants

The only way to ensure the absence of bugs in a program is to formally prove its
correctness. This require being able to formally state the specification the program
implements, and also being able to reason about the program itself. If historically
such proof have mostly be done by hand on paper, proof assisting tools are now
regularly used to help the user through the development of the formal proof. The
assisting can take multiple forms, from the verification and diagnostic of program
annotations to the verification of complete proof edifices.

Mechanized proof assistants are the most complete form of program verification.
An interactive theorem prover such as Coq [Inr16] or Isabelle/HOL [NPW02] can
collaborate with the user to build and check complex proof of a wide range of
properties. In this settings, the development is usually staged in three phases: the
program definition generally as a higher-order functional program, the specification
and the proof. For instance, the following code defines the insert-sort algorithm (not
buggy this time) in the Coq proof assistant using the Gallina language:

Fixpoint insert T (leq : T -> T -> bool) e l :=
match l with

| nil => e::nil
| x::l’ => if leq e x

then e::x::l’
else x::(insert T leq e l’)

end.

Fixpoint sort T (leq : T -> T -> bool) l :=
match l with

| nil => nil
| x::l => insert T leq x (sort T leq l)
end.

Once again we want to specify and prove that the output of the sort function is
always a list sorted with respect to the input ordering function leq. This can be done
in Coq by first defining the inductive predicate sorted that can then be used in our
specification lemma:

Inductive sorted T leq : list T -> Prop :=
| sorted_nil : sorted T leq nil
| sorted_single x : sorted T leq (x::nil)
| sorted_more x y l : leq x y = true -> (sorted T leq (y::l))

-> sorted T leq (x::y::l).
end.

Lemma sort_sorts : forall T leq l, sorted T leq (sort T leq l).

The proof of the latter lemma, sort_sorts, is then developed in a specific envi-
ronment, using a variety of proof commands understood by Coq (defined in The
Vernacular [Inr16]). This includes starting a proof by induction (using the induction

18 CHAPTER 1. INTRODUCTION

command), simplifying the current proof goal (simpl) or applying definitions, lemma
and theorems (apply), etc.

Proof.
intros T leq l. induction l.

+ simpl. apply sorted_nil.
+ simpl. apply insert_preserves_sorting. assumption.

Qed.

Proof assistants have been successfully used to develop and prove the correctness
of critical softwares such as the certified C compiler CompCert [Inr05] and seL4
micro-kernel [KEH+09].

However powerful, proof assistants completely depend on the user to carry out
the proof. A certain degree of automation is possible through the use of tactics,
but even simple proofs still need to be detailed, in particular to explicit the needed
invariants of every loop of the program. For instance the preceding proof requires the
definition and proof of the intermediate lemma insert_preserves_sorting ensuring
the needed invariant on the insert function that it preserves “sortedness”. The proof
of this auxiliary lemma is in fact the main difficulty of the overall proof:

Lemma insert_preserves_sorting : forall T leq e l, sorted T leq l ->
sorted T leq (insert T leq e l).

Proof.
intros T leq e l l_sorted.
induction l_sorted.

+ unfold insert. apply sorted_single.
+ unfold insert. destruct (leq e x) eqn:Hleq.

* apply sorted_more. auto.
apply sorted_single.

* apply sorted_more. auto.
apply sorted_single.

+ simpl. destruct (leq e x) eqn:Hleq.

* apply sorted_more. auto.
apply sorted_more. assumption. assumption.

* destruct (leq e y) eqn:Hleq’.
- apply sorted_more.

auto. apply sorted_more. auto.
assumption.

- apply sorted_more. assumption.
simpl in IHl_sorted.
destruct (leq e y).

** apply diff_true_false
in Hleq’.
contradiction.

** assumption.
Qed.

Overall the high level of expertize and the amount of work needed to design the
proofs and to master the interactions with the assistant may discourage users to use
such proof assistants to verify non critical softwares. It is not always clear that the
cost due to the presence of bugs is worth such an investment.

1.1.3 Automated Verification Techniques

To reduce the cost of the proof, a wide variety of techniques has been developed that
introduce degrees of automation in the verification process. Of course, automation
has a cost: the less manual work remains for the user, the narrower the range of
verifiable properties is. On one side of this spectrum, proof assistants are polyvalent
tools that can verify a wide range of properties but with little to no automation. The

1.1. MOTIVATION 19

user needs to write most of the proof. One the other side of this spectrum, we can
put for instance the Hindley-Milner type inference algorithm [Hin69,Mil78]. It is a
completely automatic verification algorithm for higher-order functional programs that
can verify only one simple property: type safety. Type safety consist in separating the
values into exclusive families, types, and verifying that at all points in the programs,
the input and output of each function call matches the expected types, so that the
program never stops before reaching the result of the computation. Type safety does
not verify that the sort function above returns a sorted list, but it can at least ensure
that the output is a list.

We will see in Chapter 3 that there are numerous techniques developed in between,
balancing automation and expressiveness. All of them are based on some abstraction
procedure, simplifying the description of the program execution. The Hindley-
Milner type inference algorithm itself can be seen as an abstraction procedure where
each program execution state is abstracted into a type (the type of the value it
returns). Many of the verification techniques such as [MI13,RKJ08] are based on
more sophisticated type inference systems where types can describe more complex,
non exclusive, family of values. But such techniques require the user to annotate the
program in order to carry out the proof.

1.1.4 Regular Verification Problems

A verification problem is the conjunction of a program and a property. Solving a
problem consists in proving or disproving that the program verifies the property. It is
impossible to define the family of problems that can be automatically verified without
requiring some hints of any form from the user. We know that such problem exists,
type safety being one of them. In addition, there already exists some verification
techniques explored in Chapter 3 such as [Kob09b,KSU11b,SK17] that can already
solve problems automatically. Such techniques however focus on relational properties
over numerical data-types which is already far more challenging than type safety
properties. They are generally not good at verifying regular problems that involve non-
relational properties on algebraic data-types (trees). In some ways regular problems
are simpler as they do not involve any relations between the variables of the program.
Instead they can be solved with a regular abstraction of the program, in which each
abstract state can be described by a regular language. Type safety is a good example
of a regular problem where each state can be abstracted by its type usually defined
as a regular language in the program itself. However in general, the abstraction
depends on the property to verify and can be far more complex. This makes the
verification of regular problems generally far more complicated than simple type safety
checking. Our previous sort example is a typical regular problem that could easily
and automatically be solved by such verification technique. This is because as long as
the values in the lists are taken from a finite domain of values (for instance { A,B }
in our initial example), there exists a regular abstraction of the program in which
sort outputs sorted lists. Note that regular problems still represent a small fraction
of all the verification problems needed to prove the correctness of a program. The
development of automated regular verification techniques does not aim at replacing
proof assistants. However it can benefits proof assistants by adding more degrees of
automation. In addition the software development process can be sped up by reliably
filtering more bugs without spending time writing exhaustive tests.

20 CHAPTER 1. INTRODUCTION

1.2 Our Verification Framework

In Chapter 3 we see that many theoretical frameworks have been used to tackle the
verification of higher-order functional programs with various degrees of automation.
Since this thesis focuses on regular problems where execution states are abstracted
by regular tree languages, we naturally chose to focus on tree automata [Tata],
themselves built on top of term rewriting system [BN98]. Tree automata provide a
simple representation of regular tree languages and, thus, of algebraic data types found
in functional programs. Meanwhile, term rewriting systems provide a convenient way
of representing higher-order functional program execution in interaction with tree
automata.

1.2.1 Term Rewriting Systems

TRSs are a widely used theoretical representation of computational systems [BN98]
that is especially convenient to model features found in modern functional program-
ming languages, such as pattern matching.

Example 1.2.1 (From OCaml to TRS). Here is an example of the translation of the
insert-sort algorithm written in OCaml (on the top) to a term rewriting system (on
the bottom). This time for the sake of readability the comparison function leq is not
a parameter of the functions, but is defined elsewhere in the program.
1 let rec sort = function
2 | [] -> []
3 | x::l -> insert x (sort l)
4

5

6 and insert x = function
7 | [] -> x::[]
8 | y::l -> if leq x y
9 then x::y::l

10 else y::(insert x l)

sort(nil)→ nil

sort(cons(x, l))→ insert(x, sort(l))
insert(x)→ nil

insert(cons(x, l))→ ite(leq(x, y), cons(x, cons(y, l)), cons(y, insert(x l)))

Each case of each function is translated into one rewriting rule.

In this framework, terms appearing on both sides of each rule represent states of
the execution, and rewriting rules represent the logic, or semantics, of the program.
If we name R the TRS modeling the insertion sort algorithm along with the sorted
predicate function, our previous property on the sort function can then be restated
as a rewriting problem as follows:

∀l. sorted(sort(l)) 6→∗R false

where →∗R is the reflexive, transitive closure of the rewriting relation with regard to
R. We want to check that for any list l, the term sorted(sort(l)) never rewrites to
false using R (it is a short way of ensuring it always either diverges or rewrites to
true assuming the program is type safe). Another way to express our problem is by
using sets of terms later called languages of terms. If we name L the language of all
lists (of As and Bs), and I the language of input states { sorted(sort(l)) | l ∈ L }
then we want to check:

false 6∈ R∗(I)

1.3. CONTRIBUTIONS 21

where R∗(I) is the set of terms that are reachable from I using the TRS R defined
as { u | t ∈ I ∧ t →∗R u }. Solving this problem can then be done by computing
R∗(I). In our setting, we require I to be a regular language which means it can be
represented using a Tree Automaton.

1.2.2 Tree Automata and Regular Languages

Tree automata [Tata] are a convenient way of representing regular languages of
terms. A tree automaton is defined as a rewriting system rewriting terms into states,
representing the nature of the term. We say that a state “recognizes” a term when
the term rewrites into this state.

Example 1.2.2. We previously named L the language of all lists of As and Bs. Here
is a tree automaton recognizing L:

A→ ab nil→ list

B → ab cons(ab, list)→ list

Here ab and list are states of the automaton recognizing the languages {A,B} and L re-
spectively. For instance, the term cons(A, cons(B,nil)) of L is recognized by list using
the following rewriting sequence: cons(A, cons(B, nil))→ cons(A, cons(B, list))→
cons(A, cons(ab, list))→ cons(A, list)→ cons(ab, list)→ list.

By definition, any regular language can be represented using a tree automaton.
In addition, the combination of tree automata and rewriting systems has already
lead to several algorithms designed for the computation of R∗(I) when I is regular
and R satisfies some properties. One of them is the Tree Automata Completion
(TAC) algorithm [Gen16]. Remember that computing R∗(I) where I is the set of
initial states of a program is the key to the verification of safety properties. If I is
recognized by a tree automaton A, then the TAC algorithm aims at computing a new
automaton A∗ that recognizes R∗(I) by completing A with the right transitions. Of
course, computing such A∗ is not possible in general, in particular when R∗(I) is not
regular. In this case, instead the TAC algorithm will compute an over-approximation
of R∗(I). In [GR10], this is done by abstracting the program execution using a set
of equations over terms. A safety problem is regular when there exists a regular
over-approximation of R∗(I) precise enough to solve it. In theory then, given the right
set of equations any regular problem can be solved using the TAC algorithm [Gen18].
However there exists no automatic method to find the correct equations given a
regular problem. Some leads are given by Genet at al. [Gen16] to facilitate the search
of equations for first-order programs using “contracting” equations, but this does
not guarantee the termination of the TAC algorithm while analyzing higher-order
programs.

1.3 Contributions

In this thesis we explore new automatic verification techniques dedicated to the
solving of regular problems on higher-order functional programs, using term rewriting
systems and tree automata.

22 CHAPTER 1. INTRODUCTION

1.3.1 Equational Abstractions for Higher-Order Programs

We pursue the development of the equations-based abstraction procedure defined
in [Gen16]. To go beyond the lack of termination guaranties for higher-order functional
programs, we state and prove a general termination theorem for the Tree Automata
Completion algorithm using contracting equations. From the conditions of the
theorem we characterize a class of higher-order functional programs for which the
completion algorithm terminates using contracting equations. In addition we formally
define and discuss the completeness of the abstraction procedure based on contracting
equations and show its functional collapsing regular completeness and completeness
in refutation. In other words, if there exists a set of contracting equations able to
solve the given safety problem, the procedure will eventually find it, and if there
exists a counter-example to the verified property, the procedure will eventually find it.
Through our OCaml implementation of the procedure in Timbuk 3 [Tbk3], we show
how contracting equations allows us to solve regular safety problems even with such
a simple procedure. However we also see the limitations of contracting equations, the
lack of modularity and their inability to capture many regular abstractions.

1.3.2 Regular Type Inference

To solve these problems we present a new fully automatic verification technique
for higher-order functional programs targeting regular safety problems. We solve
the incompleteness arising from the use of contracting equations by defining a
regular abstract interpretation framework where abstractions are directly and more
precisely defined as non-deterministic tree automata. We solve the scalability issue by
modularizing the analysis of each function of the program. To do that we formulate
the abstraction procedure as regular type inference procedure, where each type is a
regular language represented by a state of the tree automaton abstraction. Finally
we improve the abstraction inference procedure itself by designing an actual regular
invariant learning procedure, able to iteratively learn regular languages from examples
and counter examples. We show that the resulting abstraction procedure is regularly
complete and complete in refutation. We implemented this new verification technique
in a new version of Timbuk (4) and compared it against Timbuk 3. The results
show that it can handle more regular problems in comparable times while greatly
improving the memory usage.

1.3.3 Regular Relations

In a final chapter we show how to extend our abstraction inference procedure to
verify non-regular relational properties with regular tree languages. This is done by
using tree automatic relations [Tata], a representation of relations where each item
of the relation is stored as a convoluted term in a regular language. We propose an
extension of the convolution operator to capture more relations, and design a regular
Constrained Horn Clauses (CHC) solver able to automatically infer such relations
based on the ICE inference procedure [GLMN14]. We provide a Rust implementation
of this regular CHC solver tested on several case studies.

1.3.4 Summary

The rest of the thesis is structured as follows. Chapter 2 gives the required definitions
of terms, rewriting systems and tree automata used throughout the document. It

1.3. CONTRIBUTIONS 23

also gives an entry point to automated verification techniques from the point of view
of model checking, and show how it can be used to formally define different family of
problems (such as regular problems) in terms of program abstractions. Chapter 3
gives an overview of the literature focusing on automatic verifications techniques
on higher-order functional programs. Chapter 4 explores the use of contracting
equations to define regular abstraction while guaranteeing the termination of the
Tree Automaton Algorithm. In this chapter we define a general termination criteria
for the TAC algorithm and a class of higher-order functional programs for which
contracting equations can be used without diverging. In Chapter 5 we tackle the
shortcomings encountered at the end of the previous chapter with the definition
of a novel verification technique based on the inference of regular languages types.
Chapter 6 moves away from regular problems to discuss how regular languages can be
used to verify relational properties that are out of the scope of the previously defined
techniques. Finally, Chapter 7 concludes this thesis.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

This chapter introduces general notions of terms, rewriting systems and tree languages
that we use throughout this document. We show how terms can be used to model
program states, how term rewriting systems can model program semantics, and how
tree grammars can model program execution. We describe the automatic verification
of higher-functional programs from a model checking point of view as the abstraction
of individual states into tree languages.

2.1 Trees, Term and Patterns

Definition 2.1.1 (Tree). A finite ordered tree over a set of labels E is a mapping
P 7→ E where P ⊆ N∗ is a prefix-closed set of positions which represent a path from
the root of the tree to the target node.

The rest of the section defines a special family of trees, called terms, that are
particularly well suited to the modeling of higher-order functional program states,
and algebraic data types values. Terms are labeled by ranked alphabets.

Definition 2.1.2 (Ranked Alphabet). A ranked alphabet Σ is a finite set of symbols
(labels) attached to an arity function ar : Σ → N. For simplicity, we write f ∈ Σn

when f ∈ Σ and ar(f) = n, and { f1 : n1, . . . , fk : fk } to define the ranked alphabet
{ f1, . . . , fk } where ar(fi) = ni for each i.

In the context of functional program modeling, symbols of the ranked alphabet
are used to represent algebraic data type constructors such as nil or cons, function
names and applications.

Definition 2.1.3 (Term). Let Σ be a ranked alphabet. A term over Σ has the form:

f(t1, . . . , tn)

where f is a symbol of Σn and for each i, 1 ≤ i ≤ n, ti is also a (sub)term. The set
of terms over Σ is written T (Σ).

Every state (expression, values) of higher-order functional programs can be
encoded using terms.

Example 2.1.1 (Terms as Values). Consider the ranked alphabet Σ = { nil : 0, cons :
2, 0 : 0, s : 1 }. This alphabet can be used to build terms representing lists of natural
numbers where nil and cons are list constructors, and 0 and s natural number

25

26 CHAPTER 2. PRELIMINARIES

constructors using Peano’s numbers. For instance, the OCaml list value 3::1::2::[]

is modeled by the term cons(s(s(s(0))), cons(s(0), cons(s(s(0)), nil))). We sometimes
use the following graphical tree representation to represent such terms:

cons

s

s

s

0

cons

s

0

cons

s

s

0

nil

Example 2.1.2 (Terms as Execution States). Every state of a higher-order functional
program execution is an expression waiting to be reduced into a value. For instance,
consider the following OCaml expression if a then b else c. It can be represented
using the term ite(a, b, c) where ite ∈ Σ is introduced to encode the if-then-else

control flow structure.

Definition 2.1.4 (Yield). Let Σ be a ranked alphabet. The yield of a term t of T (Σ),
Y ield(t), is a word of Σ∗ that is the concatenation of every symbol of the tree from
left to right. It can be inductively defined as follows:

Y ield(f) = f if f ∈ Σ0

Y ield(f(t1, . . . , tn)) = f . Y ield(t1) Y ield(tn)

where “.” is the concatenation operator.

Definition 2.1.5 (Depth). The depth of a term t ∈ T (Σ), written |t| is inductively
defined as

|f | = 0if f ∈ Σ0

|f(t1, . . . , tn)| = 1 +max(|t1|, . . . , |tn|)

Definition 2.1.6 (Position). A position in a term t is a prefix-closed word of N∗
pointing to a subterm of t. We write t|p for the subterm of t at position p. It is
defined by:

t|λ = t

f(t1, . . . , tn)|i.p = ti|p

where λ is the empty word and “.” in i.p is the concatenation operator. We name
Pos(t) the set of valid positions p in t for which t|p is defined. A term can then be
seen as a tree defined by the mapping Pos(t) 7→ Σ giving the head symbol of the tree
at a the given position. In addition we write t[s]p for the term t where the subterm at
position p has been replaced by s.

t[s]λ = s

f(t1, . . . , tn)[s]i.p = f(t1, . . . , ti[s]p, . . . , tn)

Example 2.1.3. Let Σ = {cons, nil}, t = cons(x, cons(y, nil)) and p the position
p = 2.1. Then, t|λ = t, t|p = y and t[nil]p = cons(x, cons(nil, nil)).

2.2. REWRITING SYSTEMS 27

Definition 2.1.7 (Subterm Ordering). We write s�t or t�s if there exists a position
p ∈ Pos(s) such that s|p = t. In other words, t is a subterm of s. We write s� t of
t� s when p is not λ (s 6= t). For all set of terms L ⊆ T (Σ), we write L� for the
smallest superset of L closed by subterm.

Definition 2.1.8 (Pattern). Let Σ and X be two disjoint ranked alphabets where X is
a set of constants of arity 0 called variables. A term of T (Σ ∪ X) is called a pattern.
We write Var(p) the set of variables occurring in the pattern p (Var(p) ⊆ X). The
set of patterns is also written T (Σ,X) to clearly distinguish the symbols from the
variables.

A term without variables is not a pattern and is called a closed term. To avoid any
confusion we avoid the use of “term” to qualify patterns.

Definition 2.1.9 (Linearity). A pattern p is linear if the multiplicity of each variable
in p is at most 1.

Definition 2.1.10 (Substitution). Let Σ be a ranked alphabet and X a set of variables.
A substitution σ is a partial application of X 7→ T (Σ,X), mapping variables to terms.
We write Dom(σ) the set of variables for which σ(x) is defined (Dom(σ) ⊆ X). We
tacitly extend every substitution σ to the endomorphism σ : T (Σ,X) 7→ T (Σ,X)
where pσ is the result of the application of the pattern p to the substitution σ.

Definition 2.1.11 (Context). Let Σ be a ranked alphabet. A context C[] is a term of
T (Σ∪{�}) where � is a special “hole” symbol. Here we consider contexts containing a
unique symbol �. We note C[t] = C[][t]p where p is the position such that C[]|p = �.

2.2 Rewriting Systems

We have seen that terms are useful to describe execution states of higher-order
functional programs. However it does not describe how states are connected one to
each other. In this section, we define Term Rewriting Systems, a theoretical framework
to describe transition systems between terms using rewriting reduction rules. Most
of the definitions in this section are found in Term Rewriting Systems [TeReSe] and
Term Rewriting and All That [BN98] by Baader and Nipkow.

2.2.1 Definitions

Definition 2.2.1 (Rewriting rule). Let Σ be a ranked alphabet and X a set of
variables. A rewriting rule defined over Σ and X is a pair 〈l, r〉 where l and r are
patterns of T (Σ,X). We write l→ r for such rewriting rule. The pattern l must not
be a variable, and each variable occurring in r must occur in l: Var(l) ⊇ Var(r).

Definition 2.2.2 (Term Rewriting System). Let Σ be a ranked alphabet and X
a set of variables. A term rewriting system (TRS) R over Σ and X is a set of
rewriting rules (over Σ and X). It defines a rewriting relation →R in which for all
terms s, t ∈ T (Σ) we have s →R t iff there exists a rule l → r ∈ R, a substitution
σ : X → T (Σ) and a position p ∈ Pos(s) such that s|p = lσ and t = s[rσ]p. In other
words we have →R= { (C[lσ], C[rσ]) | l→ r ∈ R }.
Definition 2.2.3 (Rewriting path). Let R be a TRS defined over Σ and X . For all
n ∈ N we write →n

R the smallest relation such that

s→0
R t ⇐ s = t

s→n+1
R t ⇐ s→n

R u ∧ u→R t ∧ u 6= t

28 CHAPTER 2. PRELIMINARIES

We write →∗R for the transitive and reflexive closure of →R such that for any two
terms s, t we have s→∗R t iff there exists some n ∈ N such that s→n

R t. We say that
there exists a rewriting path between s and t using R iff s→∗R t.

Definition 2.2.4 (Reachable Terms). If s→∗R t we say that t is reachable from s. If L
is a set of term (a tree language, as seen in Section 2.3), then Rn(L) is the set of terms
reachables from L in n steps or less: Rn(L) = { t | s ∈ L, t ∈ T (Σ), k ≤ n. s→k

R t }.
By extension we write R∗(L) for the set of terms reachables from L in any number
of steps: R∗(L) = { t | s ∈ L, t ∈ T (Σ). s→∗R t }.

Definition 2.2.5 (Irreducible Terms and Normal Forms). Let R be a TRS over Σ
and X . A term s is irreducible w.r.t. R, if it cannot be rewritten: for all term t, if
s→∗R t then s = t. We write IRR(R) the set of terms that are irreducible w.r.t. R.
For all terms s, any irreducible term t such that s→∗R t is called a normal form of
s. We then write s→! t. If t is the unique normal form of s then we write −→s ! = t.
Finally we say that the term s diverges iff it has no normal forms.

2.2.2 Properties of TRSs

We present here some special properties of term rewriting systems that will be useful
throughout the document.

Definition 2.2.6 (Linearity). A rewriting rule l→ r is left-linear (resp. right-linear)
if l (resp. r) is linear. A TRS R is left-linear (resp. right-linear) if all its rewriting
rules are left-linear (resp. right-linear).

Left linearity in particular is often found in functional programing languages where it
is not possible to use the same name for multiple parameters of the same function (so
as to express that they must be the same value) without hiding previous same-name
bindings. For instance in the OCaml function definition let f x x = x, the first x
parameter is hidden by the second x parameter, they are not the same. It is equivalent
to let f x y = y. This implies that any TRS encoding an OCaml program will be
left-linear.

Definition 2.2.7 (Termination). A TRS R is terminating if every term has a normal
form with regard to R.

Definition 2.2.8 (Determinism). A TRS R is deterministic if every term has at
most one normal form with regard to R.

Definition 2.2.9 (Confluence). A TRS R is confluent if for each term s and each
terms u, v, if s→∗R u and s→∗R v then there exists a term t such that u→∗R t and
v∗Rt:

u
∗

��
s

∗
??

∗

��

t

v

∗
??

It is easy to show that a confluent term rewriting system must also be a deterministic
rewriting system since two different normal forms could not be joined by confluence.

2.2. REWRITING SYSTEMS 29

Definition 2.2.10 (Orthogonality). A TRS R is orthogonal if it is left-linear and
has no overlapping rules: for every two different rules l1 → r1, l2 → r2 of R, there is
no position p and substitution σ : X 7→ T (Σ,X) such that l1|p = l2σ. In other words,
each rule application is independent.

Any orthogonal TRS is confluent, which in turns means it is deterministic. The
study of orthogonal rewriting systems plays a great role in the study of functional
programming languages. The term rewriting system extracted from a purely func-
tional program is indeed orthogonal since each rule describes the application of an
independent function on independent reduced values. This is not the case however
for non-purely functional programs introducing side effects or “non-deterministic
functions” such as a random number generator.

2.2.3 Usage in Functional Program Verification

We now explore in more details the definition and properties of TRSs encoding
first-order and higher-order functional programs, and how it can be used to formalize
program verification problems.

First-Order

A first-order functional program can be encoded using a first-order functional TRS
defined as follows.

Definition 2.2.11 (First-Order Functional TRS). A TRS R is a first-order functional
TRS iff it is a left-linear TRS defined over a ranked alphabet Σ = C ∪ F and each
rule is of the form

f(p1, . . . , pn)→ r

where f ∈ Fn, pi ∈ T (C,X) for each i ∈ [1, n] and r ∈ T (Σ,X).

In this definition, F is a ranked alphabet of function symbols where the arity of
the symbol is the arity of the corresponding function, while C is a ranked alphabet
of constructor symbols building values. Each rule of a first-order functional TRS
defines the application of a function represented by a function symbol on its value
parameters.

Example 2.2.1 (From OCaml to first-order functional TRS). Consider the following
OCaml program defining the insertion-sort algorithm on lists:

let rec sort = function
| [] -> []
| x::l -> insert x (sort l)

let rec insert x = function
| [] -> x::[]
| y::l -> if x <= y then x::y::l else y::(insert x l)

30 CHAPTER 2. PRELIMINARIES

This program can be translated into a first-order functional TRS as follows:

sort(nil)→ nil

sort(cons(x, l))→ insert(x, sort(l))

insert(x, nil)→ cons(x, nil)
insert(x, cons(y, l))→ ite(leq(x, y), cons(x, cons(y, l)), cons(y, insert(x, l)))

ite(true, x, y)→ x leq(0, y)→ true

ite(false, x, y)→ y leq(s(x), 0)→ false

leq(s(x), s(y))→ leq(x, y)

The symbols ite and leq are introduced to encode the if-then-else control structure
and built-in comparison operator <= (here on natural numbers only). The associated
rules on those symbols are not extracted from the program but from the OCaml language
specification.

Definition 2.2.12 (Values). Let R be a first-order functional TRS defined over
Σ = C ∪ F . The set T (C) engendered by the constructor symbols alphabet C is called
the set (or language) of values. It represents all the possible data values manipulated
by the program. Note that no rule can apply on a value alone: T (C) ⊆ IRR(R).

Definition 2.2.13 (Determinism). Because of the constraints applied on the rules,
a first-order functional TRS is deterministic iff it is orthogonal, in which case it is
also confluent as we have previously seen.

Definition 2.2.14 (Completeness). A first-order functional TRS R is complete iff
IRR(R) = T (C): every non-value can be rewritten. In other words, every function
of the program is exhaustive.

Completeness is a strong property that almost never applies to functional programs.
To ensure that the execution never stops before reaching a value, most functional
languages provide a weaker completeness property on a subset of terms: well-typed
terms, which notion usually depends on the type system employed by the language.
In our case, all we are interested in is completeness, we thus derive well-typedness
from completeness.

Definition 2.2.15 (Well-Typed Terms). A term is well typed w.r.t. a TRS R if
its normal forms (if any) are values. We write W(Σ)R the set of terms that are
well-typed w.r.t. R, or just W(Σ) when there are no ambiguities on R. If R is defined
over Σ = C ∪ F we have:

W(Σ)R = { s | s→!
R t ⇒ t ∈ T (C) }

Note that diverging terms that have no normal forms are well-typed.

Higher-Order

To encode higher-order functional programs we must be able to partially apply
functions. However using our previous encoding for first-order programs, this leads
to the apparition of malformed terms.

2.2. REWRITING SYSTEMS 31

Example 2.2.2. Let us consider the following OCaml program defining the higher-
order map function:

let rec map f = function
| [] -> []
| x::l -> (f x)::(map f l)

One may be tempted to translate this program into the following TRS:

map(f, nil)→ nil

map(f, cons(x, l))→ cons(f(x),map(f, l))

However this is not a valid TRS. Since f is a variable we should have ar(f) = 0, it is
hence impossible to write f(x).

This problem is solved by Reynolds [Rey69] by introducing a special application
symbol @, where @(f, x) encodes the (partial) application of a function f on its
first parameter x. Of course, applications can be stacked to fully apply a function:
@(@(@(f, x), y), z).

Example 2.2.3. In the previous example, the map program can be translated into
the following (valid) TRS using @:

@(@(map, f), nil)→ nil

@(@(map, f), cons(x, l))→ cons(@(f, x),@(@(map, f), l))

This time every use of x is valid by encoding f(x) into @(f, x).

This leads to a more sophisticated definition for higher-order functional TRSs.

Definition 2.2.16 (Higher-Order Functional TRS). A TRS R is a higher-order
functional TRS over a ranked alphabet Σ = C ∪ F if it is a left-linear TRS defined
over Σ ∪ { @ } and such that for all rule l → r there exists some k > 0 such that
l ∈ LHSk. The set LHSk is inductively defined for all k as the smallest set such
that:

f(t1, . . . , tn) ∈ LHS0 ⇐ f ∈ Fn, t1, . . . , tn ∈ T (C,X)

@(t1, t2) ∈ LHSk+1 ⇐ t1 ∈ LHSk, t2 ∈ T (C,X)

The arity of a function symbolized by f , written Ar(f) is defined as follows:

Ar(f) = n⇐⇒ ∀@(@(. . .@(f, p1), . . .), pi)→ r ∈ R. i = n

Note that in general the arity of a symbol differs from the arity of the function it
represents, Ar(f) 6= ar(f). For all symbols f appearing in a higher-order functional
TRS, Ar(f) must always be defined.

We still make the distinction between functional and constructor symbols, however
the set of values is extended to include partially applied functions. In fact, any
irreducible term can be considered as a valid value, which complicates the definition
of completeness for higher-order functional TRSs.

Definition 2.2.17 (Completeness). A higher-order functional TRS R defined over
Σ = C ∪ F is complete iff for all functional symbol f ∈ F , for all terms t1, . . . , tn
where n = Ar(f) the term @(@(. . .@(f, t1), . . .), ti) is reducible.

32 CHAPTER 2. PRELIMINARIES

Higher-order functional TRS are often filled with @ symbols, which can make
them hard to read. For the sake of readability in this document we use a lighter
notation for higher-order functional TRSs where @(t1, t2) is simply written t1 t2.

Example 2.2.4 (Higher-order notation). The higher-order functional TRS defined
in the previous example can be simplified into the following:

map f nil→ nil

map f cons(x, l)→ cons(f x,map f l)

Remember that this is still a first-order term rewriting system as the special application
symbol @ is used underneath.

2.3 Tree Languages, Grammars and Automata

A set of term is called a tree language. Tree languages can be possibly infinite, but
even then can have a finite presentation: we can describe the whole set in a finite
manner. The preferred representation for string language is through grammars. We
hereby describe its extension to tree languages: tree grammars. Most of the definitions
of this section can be found in Tree Automata Techniques and Applications [Tata].

Definition 2.3.1 (Tree Grammar). A tree grammar is a quadruple 〈Σ, N, S,∆〉 where
Σ is a ranked alphabet of symbols called terminals, N a ranked alphabet of symbols
called non-terminals (disjoint from Σ) with S ∈ N a special starting non-terminal
such that ar(S) = 0. Finally, ∆ is a set of production rules, a term rewriting system
defined over Σ ∪N .

A term t is produced by a grammar G if there exists a rewriting path of the form
S →∗∆ t, from the starting non-terminal S to the term. The language produced
by G is written L(G) and defined as { t ∈ T (Σ) | S →∗∆ t }. Tree grammars are
basically term rewriting systems producing the terms of the described language from
a single starting symbol. The family of languages that can be produced using a tree
grammar is called “recursively enumerable” tree languages. Such tree language can
be recognized using a Turing machine. Recursively enumerable languages are closed
under union, intersection and complement.

Example 2.3.1. The output of a functional program is always a recursively enumer-
able language (which also explains why a Turing machine is necessary to recognize
such language). For instance consider again the TRS R defined in the previous
Example 2.2.1 and extracted from the OCaml insert-sort program. We can describe
the output of this program as a tree grammar G = 〈Σ, N, S,∆〉 where ∆ is the union
of R with the following TRS:

S → sort(L)

L→ nil L→ cons(N,L)

N → 0 N → s(N)

The additional rules produce all the initial states of the program (in our case, it
is any call to the sort function with any list). We can the show that L(G) =
R∗({ sort(L) | L a list }). The outputs can be isolated by intersection with IRR(R).

Just as with string languages, we distinguish multiple families of tree languages by
the complexity of the term rewriting system needed to define the grammar producing
them.

2.3. TREE LANGUAGES, GRAMMARS AND AUTOMATA 33

2.3.1 Regular Tree Languages

The first and simplest family of tree languages are called “regular” tree languages. It
is defined as the class of languages that can be produced by regular tree grammars.

Definition 2.3.2 (Regular Tree Grammar). A regular tree grammar G is a tree
grammar 〈Σ, N, S,∆〉 where for all non-terminal A ∈ N , ar(A) = 0 and each rule of
∆ is of the form A→ β where A is a non-terminal and β a tree of T (Σ ∪N).

Example 2.3.2. Regular tree grammars are often found in modern functional pro-
gramming languages as a mean to describe algebraic data types. For instance, consider
the following OCaml type definition for lists of colors:

type color = Red | Green | Blue

type list =
| Nil
| Cons of color * list

This in fact directly encodes the following tree grammar G = 〈Σ, list, {color, list},∆〉
where Σ = { Red : 0, Green : 0, Blue : 0, Nil : 0, Cons : 2} and ∆:

color → Red list→ Nil

color → Green list→ Cons(color, list)

color → Blue

For instance, the term Cons(Red,Cons(Green,Cons(Blue,Nil))) is generated by G
because of the following rewriting path in ∆:

list

→ Cons(color, list)

→ Cons(Red, list)

→ Cons(Red,Cons(color, list))

→ Cons(Red,Cons(Green, list))

→ Cons(Red,Cons(Green,Cons(color, list)))

→ Cons(Red,Cons(Green,Cons(Blue, list)))

→ Cons(Red,Cons(Green,Cons(Blue,Nil)))

Note that contrarily to the OCaml definition, we generally prefer to use lowercase for
symbols (red, green, blue, nil, cons) and capitals for non-terminals (Color, List).

Regular tree grammar are more closely related to context-free string grammars
than regular string grammars. In particular, if we note Y ield(L) the string language
defined as { Y ield(t) | t ∈ L }, then Y ield(L) can be generated using a context-free
string grammar, but may not by a regular string grammar (it is a context-free string
language). One can see regular tree languages as a sub-family of well-parenthesized
context-free string languages. Regular languages are closed under union (L1 ∪ L2),
intersection (L1 ∩ L2) and complement (L).

2.3.2 Bottom-Up Tree Automata

Bottom-up tree automata are another structure for representing regular tree languages.
Just as we can make a direct correspondence between regular string grammar defining

34 CHAPTER 2. PRELIMINARIES

regular string languages and nondeterministic finite string automata recognizing
them, we can make a direct correspondence between regular tree grammars and
nondeterministic finite tree automata. While tree grammars can define regular
languages, tree automata are more suited to answer membership queries.

Definition 2.3.3 (Bottom-Up Tree Automaton). A (bottom-up) tree automaton A
is a quadruplet 〈Σ, Q,Qf ,∆〉 where Σ is a ranked alphabet of symbols, Q a set of
states, Qf ⊆ Q a set of final states and ∆ a set of transitions (a rewriting system)
of the form p→ q where q ∈ Q is a state and p a pattern, called a configuration, of
T (Σ,Q).

A term t is recognized by a tree automaton A in state q if there exists a rewriting
path of the form t →∗∆ q. We write L(A, q) the language recognized by A in q:
{ t | t→∗∆ q }. We say that A is reduced if it has no state q such that L(A, q) = ∅.
A term t is recognized by a tree automaton A if it is recognized by a final state. We
write L(A) the language recognized by A. It is a regular tree language. To simplify,
we write →A instead of →∆ when the components of A are not explicitly defined.

A regular tree grammar can easily be translated into a tree automaton by using
non-terminal as states, the starting non-terminal as final state and by inverting the
direction of each production rule and use them as transitions.

Example 2.3.3. The regular tree grammar G defined in the previous example can be
translated into the following tree automaton A = 〈Σ,Q,Qf ,∆〉 where ∆ is defined as

red→ qcolor nil→ qlist

green→ qcolor cons(qlist, qcolor)→ qlist

blue→ qcolor

with qlist a final state in Qf . We have L(A) = L(G). For instance, the term
cons(red, cons(green, cons(blue, nil))) is recognized by A (into the final state qlist)
because of the following rewriting path in ∆:

cons(red, cons(green, cons(blue, nil)))→
cons(red, cons(green, cons(blue, qlist)))→
cons(red, cons(green, cons(qcolor, qlist)))→

cons(red, cons(green, qlist))→
cons(red, cons(qcolor, qlist))→

cons(red, qlist)→
cons(qcolor, qlist)→

qlist

Using tree automata instead of tree grammars offers several technical advantages.
For instance, a tree automaton can have a deterministic transition system while still
representing an infinite language, which is not the case with regular tree grammars.

Definition 2.3.4 (Determinism). We say that a tree automaton A = 〈Σ,Q,Qf ,Σ〉
is deterministic if its transition system ∆ is deterministic: for all terms t ∈ T (Σ,Q),
there is at most one state q ∈ Q such that t→∗∆ q.

Definition 2.3.5 (ε-Transitions). Let A = 〈Σ, Q,Qf ,∆〉 a tree automaton. An
ε-transition of A is a transition of the form q → q′ in ∆ where q and q′ are two

2.3. TREE LANGUAGES, GRAMMARS AND AUTOMATA 35

states of Q. We write t →ε,∗
∆ q when there is a ∆-rewriting path from t to q using

only ε-transitions. Conversely, we write t →�ε,∗
∆ q when there is a ∆-rewriting path

from t to q using no ε-transitions.

We say that A is ε-free if it has no ε-transitions. We say that A is �ε-deterministic
if for all terms t ∈ T (Σ,Q) there is at most one state q ∈ Q such that t→�ε,∗

∆ q. We
use the abbreviation “REFD” for reduced, ε-free deterministic tree automata.

Definition 2.3.6 (Normalized Transitions). Let A be a tree automaton. A transition
f(p1, . . . , pn) → q of A is normalized if p1, . . . , pn are states. We say that A is
normalized if all its transitions are normalized.

It is always possible to normalize a tree automaton by adding new states recognizing
sub-terms of non-normalized configuration. For this reason we often suppose that the
automata considered in the proofs are normalized since it is easier to reason about
normalized transitions.

2.3.3 Beyond Regularity

This thesis focus on the use regular languages to verify regular properties over higher-
order functional programs. In order to understand the contour of regular problems
(cf. Definition 2.4.6) this section discusses the limits of regular languages and what
lies beyond them.

Non-Regular Languages

We have seen how regular languages are closely related to the algebraic data type
definitions that can be found in modern functional programming languages. In
addition, terms found in regular languages are sufficient to represent any state of a
functional program execution. Combined with the apparent simplicity of the structure
representing regular languages (grammars and automata), this motivates our interest
in regular languages applied to program verification. However we can already discuss
what regular languages are not good for: relations. Most infinite tree languages
expressing relations between sub-terms of the same tree are not regular. This is
particularly true for inductive relations. The simplest example of such inductive
relation is the equality relation between trees.

Example 2.3.4. Consider the following TRS R defining the equality operator eq
over natural numbers:

eq(0, 0)→ true eq(0, s(y))→ false

eq(s(x), s(y))→ eq(x, y) eq(s(x), 0)→ false

The tree language recognizing all and only terms of the form eq(s, t) rewriting to true
is not regular. It is not possible to build a tree automaton recognizing such language.
This is because rewriting steps at the core of tree automata and regular tree grammars
are essentially local operation, whereas the equality decision is essentially a global
operation. For the same reason, the comparison operators ≤ and ≥ cannot be captured
by regular languages.

The direct consequence of this example is that any property whose proof relies
on such relation is out of the scope of the techniques presented in Chapters 4 and 5.
However an extension dealing with such relation will be discussed in Chapter 6. Note

36 CHAPTER 2. PRELIMINARIES

that comparison predicates defined over a finite domain are not inductive relations
and can be represented using a regular language.

Example 2.3.5. Replacing natural numbers with a finite domain, such as { a, b } is
sometimes sufficient to transform a non-regular problem into a regular one. With this
domain, the equality predicate is no longer inductive and can be defined with a simple
cases enumeration:

eq(a, a)→ true eq(a, b)→ false

eq(b, b)→ true eq(b, a)→ false

Also note that in many cases, even when such relations are involved, they are not
required in the proof. A regular approximation of the relation may be sufficient to
verify the property.

Example 2.3.6. Consider the following TRS R:

f(x)→ not(or(eq(0, x), eq(s(0), x)))
or(false, false)→ false or(true, false)→ true

or(false, true)→ true or(true, true)→ true

not(true)→ false not(false)→ true

Assume we want to verify that for all n > 1, f(n) rewrites to true. This property
involves eq, however it does not require to compute exactly the problematic irregular
language { eq(s, t) | eq(s, t)→∗R true }. This is because eq is only used in two special
cases where one of the compared value is known. Instead, it is sufficient to compute
{ eq(0, t) | eq(0, t)→∗R true } and { eq(s(0), t) | eq(s(0), t)→∗R true } that are both
regular.

Hierarchy of languages

In Three models for the description of language [Cho56], Chomsky define a hierarchy
of string languages. It is possible to transpose this hierarchy to tree languages as
pictured on Figure 2.1.

Recursively enumerable

Context-free

Regular

Figure 2.1: Hierarchy of tree language families

We have already seen two member of this hierarchy: Recursively enumerable
tree languages can be produced by non constrained tree grammars and recognized
by Turing machines, while regular tree languages can be produced by regular tree
grammars and recognized by tree automata. Between them we can distinguish
the family of context-free tree languages that are recognized by context-free tree
grammars.

2.4. AUTOMATED VERIFICATION AND ABSTRACTION 37

Definition 2.3.7 (Context-Free Tree Grammar). A context-free tree grammar G is a
grammar 〈Σ, N, S,∆〉 where each production rule in ∆ is of the form A(x1, . . . , xn)→ t
where A is a non-terminal of arity n, x1, . . . , xn are variables of X and t a pattern
of T (Σ ∪N,X).

The difference with regular grammars lies in the possibility for non-terminals to be
defined with variables. Context-free tree grammars are strictly more powerful than reg-
ular grammars and can recognize non regular languages. However it is not yet powerful
enough for instance to recognize the irregular languages { eq(s, t) | eq(s, t)→∗R true }
seen in the previous examples.

2.4 Automated Verification and Abstraction

In order to prove or disprove a given property on a program, automated verification
techniques generally rely on the automatic abstraction of a representation of the
program execution. The representation in itself and the abstraction method depend
on the considered technique. For higher-order functional program, we have seen that
representing the program execution using term rewriting systems and tree languages
offer several advantages, but many other representations have been successfully used
over the years in various techniques. To offer a point of comparison, in this section we
chose to present the common principles underlying automated verification techniques
from the point of view of model checking, which is general enough to be easily related
to all the verification techniques presented in Chapter 3.

2.4.1 Formalization as Model Checking

Model Checking is a high-level program verification framework introduced in 1982
by Clarke and Emerson [CE82a], where a program execution, modeled as a directed
graph1, is searched for elaborate patterns in order to check its compliance to a given
specification. All the techniques presented in Chapter 3 can be seen as some sort of
Model Checking. This point of view is useful to compare the expressive power of
each technique, but first requires a proper introduction to the theoretical instruments
used in Model Checking.

Model

Formally, if P is a set of propositions, a model M is defined as triple 〈S,→, V 〉 (called
a Kripke structure) where S is a set of states, → the transition relation between the
states (the program’s logic) and V a function mapping each proposition to the set of
states for which the proposition is true.

Example 2.4.1. In our case we consider programs represented as term rewriting
systems. If R is a TRS defined over a ranked alphabet Σ and I ⊆ T (Σ) a set of initial
terms, this can be viewed as a model 〈R∗(I),→R, V 〉 where an execution state is a
reachable term (the expression currently evaluated), and the transition relation is the
rewriting relation w.r.t. R. For instance, consider the following TRS R representing
the even and odd predicates:

even 0→ true odd 0→ false
even s(n)→ odd n odd s(n)→ even n

1We consider here a simplified version of Model Checking for non labeled transition systems.

38 CHAPTER 2. PRELIMINARIES

Using the initial language I = {even n | n ∈ N} it encodes the following (infinite)
model 〈R∗(I),→R, V 〉:

. . . // odd s(0) // even 0 // true

. . . // even s(0) // odd 0 // false

In order to perform any kind of verification on a model, one must first express
the property to be checked against the execution graph. In Model Checking, this
is traditionally done using modal logics, such as CTL∗ [EH83] an extension of
Computational Tree Logic [CE82b], or Modal µ-Calculus [SdB69].

Modal Logics

Modal logics extend the propositional logic that can only be used to produce assertions
about a single execution state by introducing modalities that can be used to produce
assertions about whole execution paths. As an example, we explore in more details
here the Modal µ-Calculus [SdB69] (Lµ) that will be useful later in Section 3.2.

If P is the set of propositions, and X a set of variables, the set F of valid modal
µ-calculus formula is given by the smallest set including

x | p | ¬φ | φ ∧ ψ | φ ∨ ψ | 2φ | 3φ | νx. φ | µx. φ

where x is a variable of X , p a proposition of P and φ and ψ are formula. For a
given model M and variable environment σ mapping a variable to a set of states, the
semantics [[φ]]σ of a formula φ gives the set of states in which the formula is verified:

[[x]]σ = σ(x) [[φ ∧ ψ]]σ = [[φ]]σ ∩ [[ψ]]σ [[¬φ]]σ = S/[[φ]]σ
[[p]]σ = V (p) [[φ ∨ ψ]]σ = [[φ]]σ ∪ [[ψ]]σ

The formula 2φ (and its dual 3φ) holds in any state such that φ holds in every (resp.
some) of its successors:

[[2φ]] = { q ∈ S | ∀q′. q → q′ ⇒ q′ ∈ [[φ]] }
[[3φ]] = { q ∈ S | ∃q′. q → q′ ⇒ q′ ∈ [[φ]] }

The formula νx. φ (and its dual µx. φ) gives the greatest (resp. least) fixed point of
[[φ]]σ[x7→T]. It holds in any set of states T such that when x is bound to T , φ holds
for T :

[[νx. φ]] =
⋃
{ T ⊆ S | T ⊆ [[φ]]σ[x7→T] } greatest fixed point

[[µx. φ]] =
⋂
{ T ⊆ S | [[φ]]σ[x7→T] ⊆ T } least fixed point

Example 2.4.2. Consider the model 〈R∗(I),→R, V 〉 given in the previous example
above representing the execution of the even/odd program. We want to show that
for every even number 2k, (even 2k) never returns false. Note that in the previous
we haven’t explicitly defined V along with the set of propositions P . To verify this
property, we now consider P with the only proposition False that only holds for the
state false: V (False) = { false }. Our property can now be verified by checking that

2.4. AUTOMATED VERIFICATION AND ABSTRACTION 39

every term of the form (even 2k) is not contained in the semantics of the following
formula:

φ = µx. False ∨3x “false can be reached”

Following the semantics of Lµ, we are looking for the smallest set of states for which
we have, for each state, either False holds, or φ holds in some of its successors.
First, we note that [[False]] = V (False) = { false } (by definition of V). Hence we
know that false ∈ [[φ]]. Since false is a successor of (odd 0) we have (odd 0) ∈ [[3x]],
hence (odd 0) ∈ [[φ]]. Similarly, we have that (even s(0)) ∈ [[φ]] and by induction for
all k, (even 2k+1) ∈ [[φ]] and (odd 2k) ∈ [[φ]]. Because we used the least fixed point
operator 2, no other state is included from which we can conclude that this model
verifies our property: (even 2k) never returns false.

Verification Problems

Using the concepts defined above, we can finally formally define verification problems.

Definition 2.4.1 (Verification Problem). A verification problem P is a triple 〈M,φ, I〉
where M = 〈S,→, V 〉 is a model, φ a formula and I ⊆ S an set of initial states. The
conjunction of φ and I describes the property to verify on M . Solving P consists in
deciding if I ⊆ [[φ]]∅. If it is, the property is verified.

From the different existing families of problems, the verification techniques devel-
oped in this thesis all focus on the family of safety problems.

Definition 2.4.2 (Safety Property and Problem). A formula φ describe a safety
property if it can be stated as

¬(µx. ψ ∨3x)

A problem P = 〈M,φ, I〉 is a safety problem if φ describes a safety property. One can
see ψ as a formula capturing “bad” states. A safety problem then consists in verifying
that a bad state can never be reached from an initial state.

In our settings it is useful to restate this definition using term rewriting systems
and tree languages.

Definition 2.4.3 (TRS Safety Problem). Let R be a term rewriting system and I,
O two tree languages. We note 〈R, I, O〉 the safety problem over R that consists in
verifying the following property: R∗(I) ⊆ O (every reachable term is safely contained
in O).

A TRS safety problem 〈R, I, O〉 can be expressed as a standard safety problem
〈M,φ, I〉 where M = 〈R∗(I),→R, V 〉 and φ = ¬(µx. unsafe ∨3x) with unsafe the
proposition such that V (unsafe) = O.

2.4.2 Verification via Abstraction

In general, for a given model 〈S,→, V 〉 the set of states S is infinite which makes
the program’s model checking difficult. This is the case in the previous example.
Instead the common approach is to first abstract the model into a simplified model
〈S′,→′, V ′〉 depending on the property of interest that is easier to analyze.

2Using the greatest fixed point operator ν, every term of R∗(I) would have been included: if x is
replaced by T (Σ) in (False ∨3x) then it is verified by every state/term.

40 CHAPTER 2. PRELIMINARIES

Definition 2.4.4 (Program Abstraction). Let P a program modeled by 〈S,→, V 〉. A
program abstraction is defined by an abstraction relation ;⊆ S × S′ and a (abstract)
model 〈S′,→′, V ′〉 such that for all t ∈ S, t′ ∈ S′ such that t; t′ then V (t) ⊆ V ′(t′)
and if there exists u ∈ S such that t→ u then there exists u′ ∈ S′ such that t′ →′ u′
with u; u′:

t u

t′ u′

We also say that ; defines a simulation of 〈S,→, V 〉 in 〈S′,→′, V ′〉.

This new model holds an abstraction of the program execution, where each node
of the graph represent one or more possible execution state, and each edge a possible
transition between those abstracted states.

Example 2.4.3. The execution of the previous even/odd can be finitely abstracted
with, for instance, one of the following three models each exposing different properties
of the program (the abstraction relation yielding each abstract model is given below):

bool
even N

true odd N

false even E

true odd O

even O false

odd E

even n; bool

odd n; bool

even n; even N
odd n; odd N
true; true
false; false

even 2k ; even E
even 2k+1 ; even O

odd 2k ; odd E
odd 2k+1 ; odd O

true; true
false; false

The first abstraction essentially abstracts every reachable state into its type,
bool. Since the type of a term is in principle preserved by execution, this effectively
collapses execution sequences into one single state. Even if the control flow is lost
during the transformation, we will see later that the result can still be used to verify
safety properties. On the other side of the spectrum, the third abstraction makes the
distinction between even and odd numbers. It can be used to verify the same property
as in Example 2.4.2 using the same modal µ-calculus formula but on a finite model
instead.

This example shows how program abstraction is a critical step in program verifi-
cation. The range of properties verifiable by the technique depends on which ways a
given verification technique can abstract a program.

State Abstraction: Regular and Relational Properties

As we have seen in Example 2.4.1, when a higher-order functional program is rep-
resented as term rewriting system, a state of the execution is a term representing
the currently evaluated expression. This means that for a given model 〈S,→, V 〉
abstracted into 〈S′,→′, V ′〉, each abstract state q ∈ S′ in the abstraction defines a
tree language L(q) = {t | t; q} that can be represented by a tree grammar. Hence,

2.4. AUTOMATED VERIFICATION AND ABSTRACTION 41

verification techniques can be compared against the family of grammars the states
can be abstracted into. This can be done using the Chomsky Hierarchy [Cho56]
comparing the expressiveness of different classes of grammars. Can the verification
technique generate regular grammar abstractions? Context free grammars? etc. In
this document we mainly consider two classes of grammars determining the class of
properties verifiable by a verification technique.

Regular Problems

Definition 2.4.5 (Regular Abstraction). An abstraction; into 〈S′,→′, V ′〉 is regular
when for every abstract state q ∈ S′, L(q) is regular.

In a regular abstraction, each state can be stored as a regular tree grammar, or tree
automaton. This allows the verification of a specific family of problems: regular
problems.

Definition 2.4.6 (Regular Problem). A regular problem is a problem that can be
solved using a regular abstraction of the program. Conversely, non-regular problems
cannot be solved without the need of at least context-free grammars abstractions.

In this thesis we are particularly interested in the verification of the combination
of both safety and regular problems using term rewriting systems.

Definition 2.4.7 (TRS Regular Safety Problem). Following Definitions 2.4.3 and 2.4.6,
a TRS regular safety problem 〈R, I, O〉 (or just regular safety problem for short)
is a safety problem that can be solved using a regular abstraction of the program.
In our setting this means that I, O are regular languages such that R∗(I) ⊆ O.
In other words, a regular safety problem can be solved by either finding a regular
over-approximation L of R∗(I) such that

R∗(I) ⊆ L ⊆ O

or by finding a counter-example term of R∗(I) outside of O. Since I and O are
regular languages, we sometimes replace them by tree automata.

Relational Properties Incidentally, we will see in the next chapter that all the
automatic verification techniques that can solve non-regular problems are generally
not good at verifying regular problems (they are unable to generate arbitrary regular
abstractions). These techniques can capture relations between the values, but not the
regular structure of those values. In this case, we use the term “relational properties”
to qualify the range of properties verifiable by these techniques.

Another useful abstraction family to consider is functional abstractions.

Definition 2.4.8 (Functional Abstractions). An abstraction ; into 〈S′,→′, V ′〉 is
functional when ; is a function. This means that each state is abstracted into (at
most) a unique abstract state. All states of S′ are disjoint.

Control Flow Abstraction

The way the program is abstracted can also affect what kind of logic can be discerned
by the verification technique. For instance we have seen that when states are
abstracted by their types, execution paths collapse and the control flow information
disappears. Only safety properties can be verified against the resulting model. From

42 CHAPTER 2. PRELIMINARIES

a modal µ-calculus point of view, it means that every formula φ is equivalent to a
simpler formula φ′ expressed in propositional logic (without 2 nor 3): [[φ]]σ = [[φ′]]σ.
Hence, the modal logic cannot be discerned from the non-modal propositional logic,
which narrows the range of problems the technique can solve. We name this family
of abstractions “collapsing abstractions”.

Definition 2.4.9 (Collapsing Abstraction). Let 〈S,→, V 〉 be an execution model.
An abstraction ; of 〈S,→, V 〉 into 〈S′,→′, V ′〉 is said to be collapsing when →′ is
empty. This implies that for all t, u ∈ S and t′, if t; t′ and t→ u then u; t′. The
language L(t′) is closed w.r.t. →. As a consequence, the resulting abstraction can
only be used to verify safety properties.

When ; is a collapsing abstraction into 〈S′,→′, V ′〉 with P (the set of propositions)
empty, we often write that ; is an abstraction into S′ as both →′ and V ′ are known
to be empty.

Completeness of Verification Techniques

A verification technique is complete w.r.t. to a family of abstractions if it can
automatically build any abstraction of this family. For instance, a “regularly complete”
verification technique can automatically solve any regular verification problem by
generating any necessary regular abstraction of the program.

In the next chapter we explore different automated verification techniques that
can be compared against the family of abstractions they can build (regular, relational,
etc.) and against the family of logic they can discern (propositional, modal, etc.).

Chapter 3

State of the Art

This chapter summarizes the state of the art of the automatic verification of higher-
order functional programs. The techniques presented in this chapter sacrifice expres-
siveness in favor of automation: the range of verifiable properties is restricted, but
the user only needs to state the desired property and is not required to annotate the
program or to participate in the proof in any ways. The common approach between
these technique consists in finding a finite abstraction (or at least an abstraction with
a finite representation) that over-approximates the execution of the program, and
then solve the verification problem on the resulting finite abstract model. Techniques
are then distinguished by the family of abstractions they are able to automatically
generate. One is generally exclusively well suited to solve either relational problems
on numerical values using non-regular abstractions, or regular problems on algebraic
data types using regular abstractions. At the same time one may allow the user to
verify temporal properties over the program, while others are restricted to safety
properties.

3.1 Static Type Systems

The use of type annotations statically checked by a type checker can be seen as
the most basic kind and most widely used program verification method that does
not require program execution. The initial motivation behind the introduction of
type systems and type annotations is to ensure the “well-behaveness” of the program
execution, i.e. ensure that no execution path leads to a state not covered by the
program’s semantics: “well-typed programs cannot go wrong” [Mil78]. In practice,
the goal is to ensure that at each execution step, the current state of the memory
matches the expected memory layout. In this context, a type represents the memory
layout of a data value, shared by all the values of the same type. Rapidly the interest
grew over the possibility to express more and more complex types describing more
than just a memory layout in order to verify more and more complex properties, not
only to ensure well-behaveness but also correctness.

3.1.1 Intersection and Set Theoretic Types

One way to extend simple type systems is to allow one term to have multiple types at
once. This idea was first proposed by Coppo and Dezani-Ciancaglini [CDC78,CDCS79]
in 1978 as a way to assign a type to λ-terms that would normally be impossible to
type in simply typed λ-calculus (for instance, W∗ = λx. (x x)). The result of this
study is a static type system in which terms such that W∗ are not assigned a single

43

44 CHAPTER 3. STATE OF THE ART

type, but are necessarily given multiple types (potentially infinitely many). The
idea was then carried on [Rey91,CD80,CDV81,Hin82], giving rise to Intersection
Types [BCD83, DCM84, RV84, Roc88], where the type of a term is given by the
conjunction (denoted with ∩ or ∧) of multiple other types. Intersection Types have
been found useful not only with λ-calculi to capture the terminating properties of
terms, but also as an interesting programming language feature [Rey96] introducing
ad-hoc polymorphism. For instance, where classical ML type systems require two
different addition operators for integers and floats (+ of signature int -> int -> int

and +. of signature float -> float -> float in OCaml), Intersection Types can be
used to define a single + operator whose signature would be

(int -> int -> int) ∩ (float -> float -> float)

From there, intersection types have been extended with all the usual set operations
(union, complement, difference, etc.) giving rise to Set Theoretic Types [HVP00,
HP01,HP03,BCF03,FCB02,CPN16] with their own inference algorithm [CNX+14].
However, even if they can be used to describe more complex types, Set Theoretic
Types cannot be used to express any regular language or to express relations between
the values.

3.1.2 Dependent and Refinement Types

Focusing on theses issues, Refinement Types have been developed on top of the
extensively studied foundations of Dependent Types [Nec97,ADLO10,FP91,McK06,
OTMW04] to express relational and structural properties over a program. They
have already been implemented in a number of programming languages such as
Agda [Nor09], Cayenne [Aug98], Coq [Inr16], F* [MI13], Idris [Bra13], etc. In their
original form, Refinement Types allow the introduction of predicates in the types, and
dependencies between the variables. It has been primarily used to remove runtime
array bound checking by encoding the range of integer variables in their type [XP98].
For instance, if we consider the following nth function that returns the nth element
of a given list. It is possible to statically enforce that n is in bounds by specifying
the following signature for nth:

a:int list -> { n: n >= 0 ∧ n < length a }:int -> int

Refinements types are specified as the conjunction of qualifiers applied to the
subject variable. In the previous example, the two qualifiers n >= 0 and n < length ?

are used (where ? can be replaced by any variable). Note that the occurrence of >=
and length in the qualifier does not refer to the actual >= and length functions, but
have their own semantics defined by the refinement type checker: the language of type
qualifier is disjoint form the programing language. In 2008, the development of Liquid
Types [RKJ08,VSJ14] allow for the relatively automatic inference of refinement types.
The inference procedure is able to compose refinement types using a combination of
qualifiers picked from a set of predefined qualifiers given by the user, or scrapped from
(selected by looking at) the input program. It is further extended in [VRJ13,VBJ15]
to allow higher-order refinements, with the presence of predicate variables. In our
previous nth example, it can be used to transfer a property verified by every element
of the list to the returned element:

∀(p : int -> bool). ({ e: p(e) } int) list -> int -> { e: p(e) } int

By internally manipulating predicate variables as uninterpreted function symbols, this

3.1. STATIC TYPE SYSTEMS 45

extension does not require the use of higher-order logics hence preserving decidability
of the checking procedure. In parallel, efforts are made to capture structural properties
over algebraic data types using Recursive Refinements [KRJ09] which allows the
application of qualifiers on the subterms of an inductive type. In addition to the usual
notation { x: p(x) } used to refine a type τ , authors introduce a new notation1

{ x1, ..., xn: p1(x1), ..., pn(xn) } to define a products refinement on the value
x1, ..., xn whose type is the product τ1 × · · · × τn. This is further extended to
encompass sum types with the notation { x1: p1(x1) | ... | xn: pn(xn) } which
refines the sum type τ1 ∨ · · · ∨ τn. For instance let’s consider the following type
definition of lists of integers:

type ilist = nil | cons of int * ilist

Using this pseudo-Caml syntax, it becomes clear that this type is defined as a sum
(written |) of products (written *) between int and (recursively) ilist. Then the
following recursive refinement can be used to denote a list whose first element is
positive: { _ | v, _: v >= 0 } int list. The first _ is the product refinement for
the nil constructor, the first term of the sum (product refinements of each term are
given in the order of the type definition). It is an empty product so we write _ to
ignore it. the variable v refers to the first component of the cons constructor. It
must be positive. Finally the last _ refers to the tail of the list which we ignore. This
principle can be used to design more complex recursive types, for instance the type
of sorted integer lists:

type sorted_ilist =
nil

| cons of v:int * { _ | w, _: w >= v } sorted_ilist)

Note however that Recursive Refinements are only able to capture “local” recursive
relations. They are not capable to capture the global shape of a value, that is to
describe any regular language. For instance, it is impossible to describe a list whose
first part is exclusively composed of even numbers, and second part of odd numbers.

To summarize, we have seen that the different flavors of refinement types allow the
expression of various properties on program by encoding them in the type signatures
of the functions. However refinement types suffers from several limitations. First,
some properties that cannot be expressed with dependent types are out of the scope
of the previously detailed Refinement Types techniques. For instance let’s consider
the following find function taking a predicate p and integer i as parameters, and
returning the smallest integer after i satisfying p. We are not interested in p, but
want to prove that the returned integer is necessarily greater or equal to i. This can
be expressed with the following signature:

let find :: p:(int -> bool) -> i:int -> { r: r >= i }:int =
if p i then i else find p (i + 1)

Now instead of returning the value directly, we reformulate find so as to take a
continuation k as a parameter, and call the continuation when the value is found:

1This is not the actual notation used by the authors [KRJ09], but one may find it easier to
process than the one used in the original paper.

46 CHAPTER 3. STATE OF THE ART

let find :: p:(int -> bool) -> k:(int -> ’a) -> i:int -> ’a =
if p i then k i else find p (i + 1)

This time however, because k occurs before i in the signature, there is no way to
specify that the integer passed to the continuation is greater that i. This problem
is tackled in [VBJ15] by introducing Bounded Refinement Types, adding a new
layer of complexity to the type system while not covering every cases. Moreover,
while well-suited to the verification of relational properties over integers, refinement
types can hardly be used to verify structural properties over algebraic data types
which compose the most part of regular problems. Finally, contrarily to simple type
systems and even set theoretic types for which there exists well known inference
algorithms [Hin69,Mil78,CNX+14], the inference of refinement types is undecidable in
general. This requires the user to annotate the program to help the type checker, which
may jeopardize the readability of the source code and require expertize. The type
inference mechanism introduced by Liquid Types [RKJ08] alleviating the number
of needed manual annotations is only able to compose refinement types using a
combination qualifiers that must be given by the user, or scrapped from the program.
Knowing what qualifiers are necessary to infer the refinement type requires expertize
while not completely removing the need for annotations.

3.1.3 Deep Specification

The lack of expressiveness of Refinement Types comes from the constrained shape of
the predicates (qualifiers) allowed in the refinements. In particular, the language of
qualifiers is disjoint from the programming language. This ensure the decidability
of the checking procedure at the cost of reducing the range of verifiable specifica-
tions. Some language implementation using dependent types such as Dafny [Lei10],
F* [MI13] or Halo [VJCR13] have been described as “deep” specification and verifica-
tion languages in [Vaz16], as opposed to the “shallow” specification of Refinement
Types. In these languages, user defined functions can be embedded in the types,
extending the range of specification. For instance, the “sortedness” property of a
sorting function can be specified by first defining a sorted predicate in the language
itself, and using it in the signature of the sorting function:

let sorted = function
| nil -> true
| x::nil -> true
| x::y::l -> x <= y && sorted y::l

let sort :: l:int list -> { r: sorted(r) }:int list = ...

However powerful, this comes at the cost of losing most of the type inference capabili-
ties, and in particular the inference of auxiliary function invariants. For instance in F*,
the verification of the insertion sort algorithm is not possible using only the preceding
specification. For the type checker to successfully verify the given signature of sort,
one must also give the signature of the intermediate function insert, exposing the
necessary invariant (insertion preserves sorting):

3.2. HIGHER-ORDER TREES MODEL CHECKING 47

let insert :: e:int -> { l: sorted(l) }:int list ->
{ r: sorted(r) }:int list = ...

(* type checking this will fail if not given the signature of insert *)
let sort :: l:int list -> { r: sorted(r) }:int list = ...

Moreover in addition to losing automation, the type checking procedure becomes
undecidable in general. The later limitation is solved by Vazou et al. [Vaz16] using
Refinement Reflection [VJ16a, VJ16b] to import deep specifications into Haskell.
The idea is to use uninterpreted function symbols to encode user defined functions,
preserving a decidable verification procedure. In addition, the authors provide a set of
function combinators that can be used to compose proof in the programing language
itself, effectively turning Haskell into a theorem prover. The drawback is the lost of
automation compared to Liquid Haskell, and a more convoluted proof development
mechanism compared to domain specific languages such as F* or Coq.

3.2 Higher-Order Trees Model Checking

Higher-Order Tree Model Checking is a family of automatic verification techniques
concerned with the Model Checking of (possibly infinite) trees representing a program
execution. These trees are generated by Higher-Order Recursion Schemes (HORS),
a kind of higher-order typed tree generating grammar [Ong06]. Contrarily to static
type systems seen in the previous section, this technique can preserve the control flow
of the program and discern modal logics.

3.2.1 Higher Order Recursion Schemes

According to Ong06, a (deterministic) HORS G is a tuple 〈Σ,N , S,R〉 where Σ is a
ranked alphabet of terminal symbols, N is a finite set of typed non-terminals, S ∈ N
is a distinguished start symbol of type o and R is a finite set of rewriting rules for
each non-terminal of the form

F x1 . . . xn → e

where F is a non-terminal of type τ1 → . . .→ τn → o, each xi is a variable of type
τi, and t is a pattern built from terminals, non-terminal and variables. The type
system distinguish trees (of type o) from functions (whose types include →). The
order of a HORS is given by the highest order of its non-terminal, where the order of
a non-terminal symbol is given by the order of its type:

order(o) = 0

order(τ1 → τ2) = max(order(τ1) + 1, order(τ2))

Trees are generated by successively rewriting non-terminal symbols following the rules
of R, starting with S. For instance, let’s consider the following order-1 HORS taken
from [Kob09b]

S → F c

F x→ br x (a (F (b x)))

48 CHAPTER 3. STATE OF THE ART

br

c a

br

b

c

a

br

b

b

c

a

. . .

Here F is a non-terminal of type o→ o. The start symbol
S is rewritten as follows: S → F c→ br c (a (F (b c)))→
br c (a (br (b c) (a (F (b (b c))))))→ If we ignore the
br terminal symbol, the generated tree pictured on the side
includes all the paths of the form anbnc. Overall, HORSs
can be viewed as a kind of simply typed lambda calculus
with recursion and tree constructors (but no destructor),
where any lambda term (λx. t) can be modeled by adding
the (lambda-lifted) rule F x→ t to the HORS. They are
hence well suited to model higher-order programs. Note
however that, contrarily to term rewriting systems, the lack
of tree destructor means that HORSs do not provide any
pattern matching mechanism as in most modern higher-order functional programing
language, complicating the translation to HORSs. For instance, this implies that the
simplest data values such as booleans must be encoded using functions, following the
Church encoding.The HORS encoding the if-then-else control structure becomes:

IF c x y → c x y

T x y → x

F x y → y

In his paper [Ong06], Ong proves that, considering finite base types, the modal
µ-calculus model-checking of trees generated by HORSs is decidable, turning them
into an appealing candidate for program verification. Despite the k-EXPTIME
theoretical complexity for order-k HORSs, multiple practical HORS model checker
implementations [BK13,Kob09a,RNO14,TK14] have been developed that do not
always suffer from the k-EXPTIME bottleneck.

The use of HORS applied to higher-order functional program verification started in
2009, when Kobayashi [Kob09b] introduced a novel method for verifying resource usage
problems in higher-order functional programs. His technique consists in a program
transformation to HORS that preserves relevant control flow features relative to the
resource usage verification. For instance, let’s consider the following program taken
from the original paper [Kob09b]:

let rec g x = if _ then close(x) else (read(x); g(x)) in
let d = open_in "foo" in g(d)

This program opens a file “foo” and manipulates it in the function g, either by reading
it recursively, or closing it. We want to verify that the file is always closed, and that
no further reading occurs after closure.

br

close

•
read

br

close

•
read

br

close

•
read

. . .

To do that, Kobayashi’s technique transforms the program
into the following HORS:

G x k→ br (close k) (read (G x k))
S → G d •

This HORS is very similar to the input programs where
the rule g is represented by the non-terminal G, and
br a non-deterministic branching (the exact branching
condition is lost during the translation). The program
is now in Continuation-Passing Style (CPS): the non-

terminal G takes an extra k parameter, a continuation, necessary to encode sequences

3.2. HIGHER-ORDER TREES MODEL CHECKING 49

of instructions in a purely functional manner. The • terminal is the final continuation,
denoting the end of the program. The tree generated by this HORS, visible on the
side, summarizes all the possible sequences of read and close that can happen during
the program execution. Using existing HORS model checkers, the output tree can be
automatically checked against the following two modal µ-calculus formula expressing
our verification problem:

µx. close ∨2x the file is eventually closed
¬(close ∧3(µx. read ∨3x)) no read occurs after a close

Although useful to verify such resource usage problems, this first endeavor into
HORS-based program verification shows the limitation of directly translating programs
into HORSs. Since the model-checking of HORS-generated trees is only decidable
with finite base types, this technique alone is not capable of dealing with infinite data
types such as integers, lists or trees. As always, the program must first be abstracted
into a finite base types program before being verified.

3.2.2 Predicate Abstraction

Building on his work on HORSs [Kob09b,Kob09a,KTU10], Kobayashi [KSU11b]
and his coauthors define in 2011 an effective way of abstracting functional programs
into finite base types HORSs, using Predicate Abstraction. In this setting, the
input program is first abstracted into a higher-order boolean program where each
(numerical) value v is abstracted into its predicates satisfaction. For a set 〈P1, . . . , Pn〉
of predicates, v is replaced by 〈b1, . . . , bn〉 (where bi is the result of Pi(v)). We directly
note b instead of 〈b1〉 when considering a single predicate. For instance, let’s consider
the following program taken from [KSU11b]:

let f x g = g (x+1) in
let h y = assert (y > 0) in

let k n = if n > 0 then f n h else () in k(randi())

The assert instruction fails if its parameter is false and the function randi returns
a pseudo-random integer value. We want to verify that the program never fails
(assert false is never evaluated). Using the predicate P (x) = x > 0, the following
boolean program is generated:

let f x g = g true in
let h y = assert y in

let k y = if y then f true h else () in k(randb())

All the integer variables have been replaced by their boolean satisfaction of P . Note
how randi has been replaced by randb, generating pseudo-random booleans values.
As with the technique presented in the previous section 3.2.1, the obtained boolean
program is then lambda-lifted and put in CPS form to translate it into an HORS.
The later is finally model checked (using the TRecS [Kob13] model checker in
the original paper) to verify that assert never fails. Here we have succeeded with
P (x) = x > 0, however in general it is not obvious what predicates should be used
to verify a given property. Hence the main difficulty here is to find the correct
abstracting predicates. To do that, Kobayashi et al. defines a Counter-Example
Guided Abstraction Refinement (CEGAR) procedure. The idea is as follows: starting
with no predicates, at each iteration of the procedure the program is abstracted and
verified. If a spurious counter example is found, a new predicate is added to the

50 CHAPTER 3. STATE OF THE ART

abstraction extracted from the spurious rewriting path. The procedure continues
adding new predicates until a real counter example is found, or the property is verified.
The entire procedure, later improved for scalability [SK17], has been implemented in
MoCHi [KSU11a], and been used to successfully and automatically verify a number
of relational properties over higher-order functional program manipulating numerical
values. However it is not well suited to solve regular verification problems over tree
processing programs. This is the purpose of the techniques presented in the next
section.

3.3 Regular Verification

As we have seen using our model-checking reference point in Section 2.4, the range
of properties verifiable by a technique depends on the range of abstraction it can
generate. The techniques presented in the previous sections all focus on the automatic
verification of relational properties. This means they can generate various abstractions
of the program states, even though it is no clear what exact family of abstraction
it can generate. The regular abstraction family on the other hand is holding much
attention when it comes to modern higher-order functional programs. Because
regular tree languages can be easily represented using grammars or automata there is
hope to find an efficient procedure that can generate arbitrary regular abstractions
automatically. And since algebraic data types define regular tree languages of values,
regular abstractions are particularly useful to verify tree processing programs. In
this section we explore techniques focusing on the generation of arbitrary regular
abstractions of a program, aiming at providing an automatic and complete verification
of regular problems.

3.3.1 HORS Extensions

Since the beginning of HORS-based program verification, HORS have been criti-
cized [OR11,KTU10] for their intrinsic inability to represent tree processing program,
blaming the lack of tree destructor in this formalism. Algebraic data types can be
constructed but never destructed through mechanisms similar to pattern matching,
present in most modern functional programing languages. Early after Ong’s work on
HORSs [Ong06], extensions are proposed to introduce tree destruction mechanisms.
On one side, Kobayashi introduces Higher-Order Multi-Parameter Tree Transduc-
ers [KTU10], an extension of HORS where the right hand side of each rule can contain
a pattern matching term of the form:

match x

case1 ⇒ t1

. . .

casen ⇒ tn

where each casei is a pattern of the form a y1 . . . ym where a is a terminal symbol
of arity m and each yi a variable. This term reduces to one of ti when x matches
the pattern casei. The main limitation of HMTTs is the distinction made between
input trees and output trees : Where HORSs define only one base type o representing
trees (composable with → to denote functions), HMTTs define two base types i for
input trees and o for output trees. In this definition, each rule of a HMTT takes
input trees, and reduces to an output tree. Only input tree may be destructed with
a match, and only output trees may be constructed. For instance, let’s consider

3.3. REGULAR VERIFICATION 51

the following HMTT composed of two rules concatenating two lists of as and bs
together (to simplify we allow the use of terminals instead of variables in the matching
patterns):

App x y→ match x

nil ⇒ Copy y
cons a x′ ⇒ cons a (App x y′)
cons b x′ ⇒ cons b (App x y′)

Copy x→ match x

nil ⇒ nil

cons a x′ ⇒ cons a (Copy x′)
cons b x′ ⇒ cons b (Copy x′)

The non-terminal symbol App defines the append function. The non-terminal Copy
performs the copy of an input tree (of type i) to an output tree (of type o). This
function is necessary because inputs and outputs cannot be mixed up in HMTTs.
This also explains why we need to explicitly distinguish the two cases for a and b in
App instead of just having the case cons v x′. The (almost) automatic translation
from functional programs to HMTT is explored in [UTK10]. Under some linearity
conditions, and given correct abstractions for the input trees x and y in the non-
terminal App it is then possible to reduce the problem to the verification of a
finite base types HORS. Here the abstractions of input variables are defined as tree
automata recognizing all the possible input terms. However no procedure is given to
automatically find the correct abstractions needed to verify a given property on the
program.

On the other side, Ong and Ramsay introduce Pattern-Matching Recursion
Schemes (PMRS) [OR11] another extension of HORSs providing a pattern matching
mechanism. This time, patterns are allowed to appear on the left-hand side of a
rewriting rule in place of the last rule variable. A PMRS rule is of the form:

F x1 . . . xn−1 p→ e

where p is a pattern again of the form a y1 . . . ym where a is a terminal symbol of arity
m. For a set of rules of the form F x1 . . . xn−1 pk → e, the term F t1 . . . tn reduces
into e when tn matches pk. For instance, let’s define again the append function, this
time using a PMRS:

App x y→ Pre y x

Pre x nil→ x
Pre x (cons y l)→ cons y (Pre x l)

Here we have two non-terminal symbols. App encodes the interface to the append
function. However since a pattern can only occur at the last position of a left-hand
side, append cannot be represented directly. Instead, we use the non-terminal Pre to
encode the prepend function. App defines the append function using Pre by swapping
x and y. This is necessary because of the restrictions imposed by this formalism. As
such, the translation to PMRS is not as direct as the translation to HMTTs. However
there is no need for a copy function here, as there is no distinction between inputs
and outputs, and the overall size of the model is reduced. In addition, contrarily to
HMTTs, in their paper [OR11] Ong and Ramsay propose a fully automatic mechanism
to abstract higher-order tree-processing programs so as to verify a given property using
PMRSs. However this abstraction mechanism is not complete. In this abstraction

52 CHAPTER 3. STATE OF THE ART

procedure, pattern matched variables are abstracted into regular grammars generated
by new non-terminals symbols. For instance, let’s consider the following Filter
function, filtering an input list of natural numbers according to a given predicate p.

Filter p nil→ nil

Filter p (cons x l)→ Ite (p x) (cons x (Filter p l)) (Filter p l)

We omit the definition of Ite representing the usual if-then-else control structure.
We want to verify that the output list of this PMRS never contains any odd number
when considering the following start symbol definition:

S → Filter Even L N → 0 L→ nil
N → s N L→ cons N L

The (non-deterministic) non-terminal L, combined with N defines all the possible
input values of Filter (here we consider all the possible lists of natural numbers). We
omit the definition of the non-terminal Even representing the predicate filtering even
numbers. The PMRS abstraction procedure starts by abstracting all pattern-matched
variables in the right-hand sides of each rules (p, x, l) by its associated non-terminal
according to the starting rule. Here Filter is called with Even and L, so the variable
p is abstracted by Even, l by L and x by N (by unfolding L). We get:

Filter p nil→ nil (3.1)
Filter p (cons x l)→ Ite (Even N) (cons N (Filter Even L)) (Filter Even L) (3.2)

A counter-example run is then searched in the abstraction. Here the following run
reduces to a list containing an odd number:

S →
Filter Even L→

Filter Even (cons N L)→
Ite (Even N) (cons N (Filter Even L)) (Filter Even L)→
Ite (Even 0) (cons N (Filter Even L)) (Filter Even L)→∗

(cons N (Filter Even L))→∗

(cons N nil)→∗

(cons (s 0) nil)

This is spurious counter-example, since this run is not valid in the original PMRS:
where we have reduced N into 0 and later into (s 0) in the abstraction hides in reality
a single variable x in the original PMRS, which cannot hold two different values
at once. Considering this spurious run, the abstraction is refined by unfolding the
non-terminal N so as to not mix up 0 and (s 0) anymore. As a result, rule (3.2) is
unfolded into:

Filter p (cons 0 l)→ Ite (Even 0) (cons 0 (Filter Even L)) (Filter Even L)

Filter p (cons (s x) l)→ Ite (Even (s N)) (cons (s N) (Filter Even L)) (Filter Even L)

The procedure continues searching for counter-examples and unfolding non-terminals
until a real counter-example if found, or the property is verified. This particular
example however shows that this procedure is unable to generate arbitrary regular
abstractions, and may diverge even for regular properties. In our example, it will
continue unfolding N into 0, (s 0), (s (s 0)), etc., missing the required separation
between even and odd numbers.

3.3. REGULAR VERIFICATION 53

3.3.2 Regular Tree Languages based Techniques

The interest over the fully automated verification of tree processing programs can be
traced back to Jones [JM79,JA07], who first proposed to abstract functional programs
using regular tree languages. In this setting, a higher-order functional program is
modeled using a term rewriting system R, and the set of input states as a regular
tree grammar G. For instance let us consider the following R (each rule is indexed
for later use):

1 : even(0)→ true 3 : odd(0)→ false
2 : even(s(n))→ odd(n) 4 : odd(s(n))→ even(n)

with the following input grammar G (where we call even with even numbers):

S → even(E)

E → 0 | s(O) O → s(E)

Jones and Andersen [JA07] then define an algorithm that computes a new grammar
G∗R over-approximating the set of states (or terms) reachable from G using R:

R∗(L(G)) ⊆ L(G∗R)

The grammar G∗R is computed by adding new derivations to G. For each rule a new
non-terminal will be added that represents (an over-approximation of) the set of
terms reachable from the rewriting rule. For each variable of the rule, a non-terminal
is added that represents (an over-approximation of) the set of possible instantiations.

Example 3.3.1. We want to verify that for all even number n, even(n) never
rewrite to false. To do that, let us build G∗R. From the rule 1 the derivation
R1 → true is added, where R1 is the non-terminal for this rule. From the rule 2
the derivation R2→ odd(R2n) is added where the non-terminal R2n represents the
possibles instantiations for the variable n in this rule. In the same way, from the
rules 3 and 4 the derivations R3 → false and R4 → even(R4n) are added. To find
the derivations rules of R2n and R4n we follow the initial grammar G. In the rule
S → even(E), since we have E → 0 and E → s(O), the subterm even(E) can be
rewritten using the rule 1 and 2. We hence add the derivations rules S → R1 and
S → R2 to the grammar. For rule 2 this means that R2n can be instantiated with the
non-terminal O. We hence add the rule R2n → O to the grammar. Now that we know
something new about R2n, we can consider the previously added rule R2→ odd(R2n).
Again, since R2n → O → s(E), the subterm odd(R2n) rewrites into even(E) with
rule 4. We hence add the rule R2→ R4 and R4n → E. By continuing this way, the
final grammar G∗R is defined by:

S → even(E) | R1 | R2

E → 0 | s(O) O → s(E)

R1→ true

R2→ odd(R2n) | R4 R2n→ O

R3→ false

R4→ even(R4n) | R1 | R2 R4n→ E

We can observe that in G∗R, there are no possible paths from S to false. Since we
have R∗(L(G)) ⊆ L(G∗R) we can deduce that our property is verified.

54 CHAPTER 3. STATE OF THE ART

The procedure that we have just illustrated continues until no new rules are
added to the grammar. Since a finite amount of non-terminals is added to G∗R, it is
guaranteed to terminate. However the way the abstraction G∗R is built is independent
of the verification goal. For a given program, only one abstraction is possible. It is
not at all guaranteed that this over-approximation will be enough to verify the input
property.

Example 3.3.2. Let us consider the new (non-deterministic) TRS R′ derived from
R with the additional rules

5 : ite(true, x, y)→ x 7 : rand(n)→ ite(even(n), n, rand(n))

6 : ite(false, x, y)→ y 8 : rand(n)→ rand(s(n))

Here rand is a non-deterministic function that generates random (even) numbers.
Let us consider G′ defined as

S → rand(0)

We want to verify that rand always generate numbers that are even. Note how-
ever that this time, the initial grammar G′ does not naturally separate even num-
ber from odd numbers. Using Jones’s algorithm we compute the grammar G′∗R
over-approximating R∗(L(G′)). From rule 7, G′∗R contains the derivation R7 →
ite(even(R7n), R7n, rand(R7n)). Because the variable n in this rule (represented by
the non-terminal R7n) can be instantiated with an even number, we have R7n → E.
This means that even(R7n) can be derived into true, which in turn means that
ite(even(R7n), R7n, rand(R7n)) can be derived into R7n. We have R7 →∗ R7n in
G′∗R. However n can also be instantiated with an odd number: R7n → O. Because of
that, in G′∗R we have S → R7→∗ R7n →∗ s(0). The computed abstraction contains an
odd number, which contradicts the property we want to verify. The over-approximation
G′∗R is too rough.

This issue can be addressed by using the more recent Tree Automata Com-
pletion Algorithm [Gen98, GR10]. Just like Jones’s algorithm, this algorithm’s
purpose is to compute the terms reachable from an input regular language, this
time using tree automata instead of regular tree grammars. The previously con-
sidered grammar G can be translated into the following tree automaton A =
〈{s, even, odd}, {q, qeven, qodd}, {q},∆〉 with ∆ defined by:

even(qeven)→ q 0→ qeven

s(qeven)→ qodd s(qodd)→ qeven

In its simplest form, given a TRS R and tree automaton A, the completion algorithm
is able to complete A using R into a new automaton A∗ recognizing exactly R∗(L(A)).

Example 3.3.3. Similarly to Jones’s algorithm, this algorithm works iteratively by
finding missing transitions in the automaton. In A we have even(0)→∆ even(qeven)→∆

q. Since even(0)→R true, then true should be recognized by A∗. The tree automata
completion algorithm proceeds by adding new transitions in A∗ to have true→∗∆∗ q.
One way is to add the two transitions true → qtrue and qtrue → q (where qtrue
is a new state). In A we also have even(s(qodd)) →∗∆ q. In the same way, since
even(s(qodd)) →R odd(qodd) we add the transitions odd(qodd) → q′ and q′ → q to
A∗. Finally, because of the newly added transitions we have odd(s(qeven)) →∗∆ q

3.3. REGULAR VERIFICATION 55

with odd(s(qeven)) →R even(qeven). We already have even(qeven) → q so no new
transitions are added. We have found every missing transitions and the completion
algorithm stops. The output A∗ is defined by:

even(qeven)→ q 0→ qeven

qtrue → q s(qodd)→ qeven

q′ → q s(qeven)→ qodd

odd(qodd)→ q′ true→ qtrue

One of the particularities of the Tree Automata Completion algorithm compared to
Jones’s algorithm is that this algorithm converges to a tree automaton A∗ recognizing
exactly R∗(L(A)) when L(A) is finite [GR10]. However contrarily to Jones’s algorithm,
the Tree Automata Completion algorithm is not guaranteed to converge when the
considered TRS is not terminating.

Example 3.3.4. Let us consider again R′ defined in Example 3.3.2, with the initial
automaton A defined by:

rand(q0
nat)→ q0

rand 0→ q0
nat

where q0
rand is the final state. It recognizes the same language as G′ from Example 3.3.2.

Again we want to verify that rand generates even numbers, this time using the
Tree Automata Completion algorithm. First, the algorithm detects that we have
rand(q0

nat) →R rand(s(q0
nat)) and rand(q0

nat) →R ite(even(q0
nat), q

0
nat, rand(q0

nat)).
New states and transitions are added to A∗R to have rand(s(q0

nat)) →∗A∗R q0
rand and

ite(even(q0
nat), q

0
nat, rand(q0

nat))→∗A∗R q
0
rand.

s(q0
nat)→ q1

nat even(q0
nat)→ q0

even

rand(q1
nat)→ q1

rand ite(q0
even, q

0
nat, q

0
rand)→ q0

ite

q1
rand → q0

rand q0
ite → q0

rand

Note how q1
nat now recognizes the term s(0) and q1

rand the term rand(s(0)). In the
next iteration, just like with q0

nat and q0
rand, because rand(q1

nat) →R rand(s(q1
nat))

and rand(q1
nat) →R ite(even(q1

nat), q
1
nat, rand(q1

nat)) the new state q2
nat and q2

rand

are added, then q3 and q3
rand, and so on. In fact, for each integer i, the following

transitions are added:

s(qi−1
nat)→ qinat even(qinat)→ qieven

rand(qinat)→ qirand ite(qieven, q
i
nat, q

i
rand)→ qiite

qirand → qi−1
rand qiite → qirand

The algorithm diverges.

As illustrated by this example, since R∗(A) is uncomputable in general, the
termination of the completion algorithm is not guaranteed. Multiple families of TRSs
have been identified for which the termination is ensured [Gen16]. However in general,
one must again rely upon an abstraction. In 2010 Genet et al. [GR10] proposes to
use equations between patterns to merge terms in equivalence classes, effectively
abstracting the program execution even when L(A) is finite.

56 CHAPTER 3. STATE OF THE ART

Example 3.3.5. In the previous example, we can force the completion algorithm to
terminate using the equation x = s(s(x)). During the completion process, it will detect
that state q0

nat recognizes 0 while state q2
nat recognizes s(s(0)). Because 0 = s(s(0))

(according to our equation), states q0
nat and q2

nat are merged in A∗R. As a consequence,
the states recognizing even numbers are merged together, while all the states recognizing
odd numbers are merged together. The infinite number of states collapses into a finite
number of states, and the Tree Automata Completion algorithm terminates.

The equation mechanism allows the completion algorithm to terminate, but it also
allows to precisely control the precision of the generated abstraction. For a given set
of equations E, the language recognized by A∗R follows the given inequality [Gen16]:

R∗(L(A)) ⊆ L(A∗R) ⊆ R/E∗(L(A))

where R/E is the rewriting relation defined by {s →R/E t | s =E u →R v =E t}.
The completion algorithm terminates as long as the number of equivalence classes
defined by E is finite [Gen16]. By carefully choosing the equivalence classes (E)
one can control the shape of the generated abstraction to solve any regular safety
verification problem. Some leads have be proposed to automatically find the correct
equivalence classes needed to solve a given problem. So far, existing equations
generation procedures are not complete and can only guarantee the termination of
the completion algorithm for first-order programs. On the other hand Matsumoto
et al. [MKU15] define a procedure to infer equivalence classes directly represented
with tree grammars, using a counter-example guided abstraction procedure. In this
setting, the program is typed with tree automata, and the values abstracted into tree
automata states. The tree automata types are then iteratively refined by looking for
spurious counter-examples in the abstraction using a higher-order recursion scheme
model checker. The refinement is performed by splitting the automata states following
the information gathered from the counter-examples and using an SMT solver.

Example 3.3.6. Consider the following TRS:

even(0)→ true even(s(0))→ false even(s(s(x)))→ even(x)
double(0)→ 0 double(s(x))→ s(s(double(x)))

Note that in the original paper, authors are not working with rewriting systems but with
their own representation of programs. This can be easily adapted to TRSs. Suppose
we want to verify that the output of double is always even: the term even(double(n))
never rewrites to false for all natural number n. Using this technique, the program is
first typed with tree automata and abstracted into a program manipulating states of
these automata. Here the functions are given the following signatures:

even : Anat → Abool
double : Anat → Anat

We start with the most general abstraction where Anat (on the left) and Abool (on the
right) are defined as follows:

0→ q true→ q′

s(q)→ q false→ q′

The initial TRS is then abstracted into a new TRS manipulating the states of the
automata as values:

even(q)→ q′ double(q)→ q

3.3. REGULAR VERIFICATION 57

There exists a rewriting sequence in the abstraction violating our property: even(q)→
q′ where q recognizes 0 and q′ recognizes false. However this counter example is
spurious since even(0) does not rewrite to false. In practice spurious counter example
are found using a higher-order model checker. Then the two abstracting tree automata
are refined so that this spurious counter example cannot occur in the next abstraction.
This is done by splitting each tree automaton state q into {q1, . . . , qn} (where n is
called the “split number”) and building the transitions of these new states following
constraints generated from the counter-example. Starting from 1, the split number
is increased until a collection of tree automata is found that satisfies the generated
constraints using an SMT solver. Here a solution exists for n = 2 where q is split
into {qeven, qodd} and q′ into {qtrue, qfalse} with the following transitions:

0→ qeven true→ qtrue

s(qeven)→ qodd false→ qfalse

s(qodd)→ qeven

Minimizing the split number allows this technique to reach any regular abstraction.
However because the split number affects every state, the generated abstraction may
not be the smallest possible (in the number of states). Moreover a unique type is given
to each function independently of the context which can again increase the number
of states needed to abstract the function in a way that suits every context. This can
become a problem considering that the number of states in the abstraction directly
impacts the price of the SMT-constraints solving, especially since the described
technique is not modular. In this thesis, we extend this series of work by going further
using regular tree languages abstractions and rewriting systems. We explore the
limits of the Tree Automata Completion algorithm (Chapter 4), design new ways of
generating regular abstractions improving on Matsumoto et al. (Chapters 4 and 5),
and define a modular verification technique for regular safety problems (Chapter 5).
Finally we extend the reach of regular languages to the verification of relational
properties (Chapter 6).

58 CHAPTER 3. STATE OF THE ART

Chapter 4

Higher-Order Equational
Abstractions

Since our goal is to verify tree-processing programs, we are mostly interested in
the regular verification techniques presented in Section 3.3. In particular the Tree
Automata Completion Algorithm (TAC) provides a flexible abstraction mechanism
using equations, that can theoretically allow us to reach any regular abstraction of a
program execution. However as of now, no automatic equations inference procedure
has been formalized, and the only leads given by Genet [Gen16] only apply to first-order
programs. In this chapter we pursue the work of Genet at al. [GR10,Gen16,Gen18]
and explore how the TAC algorithm can be used to automatically solve regular safety
problems over higher-order functional programs.

4.1 Introduction

Using the TAC algorithm a program is represented as a term rewriting system R
and the set of (possibly infinite) inputs to this program as a tree automaton A. The
TAC algorithm computes (an over-approximation of) R∗(L(A)), the set of reachable
terms, as a new automaton A∗R by completing A with the missing transitions. The
automaton A∗R effectively model the execution of the program, allowing us to solve
regular safety problems (cf. Definitions 2.4.3 and 2.4.6) of the form 〈R,L(A), O〉 for
some language O.

Example 4.1.1. The following term rewriting system R defines the filter function
along with the two predicates even and odd on Peano’s natural numbers.

filter p nil→ nil

filter p cons(x, l)→ ite(p x, cons(x, filter p l), filter p l)

even 0→ true odd 0→ false
even s(n)→ odd n odd s(n)→ even n

The rewriting rules of ite representing the if -then-else control structure are omitted.
This function filters out from the input list any element that does not satisfy the input
predicate p. We want to check that for all lists l of natural numbers, (filter even l)
filters out every odd numbers. One way to do this is to write a higher-order predicate,
for_all , and check that for all list l, (for_all even (filter even l)) never rewrites to
false. Let A be the tree automaton recognizing terms of form

59

60 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

(for_all even (filter even l)) where l is any list of natural numbers. We can verify
this property using the TAC algorithm to compute A∗R. If false is not recognized by
A∗R, since R∗(L(A)) ⊆ L(A∗R) we know in particular that for all list l, the input term
does not rewrite to false.

Since R∗(L(A)) is uncomputable in general, the TAC algorithm may diverge.
Genet at al. [GR10] proposes to group every term into a finite set of equivalence
classes using equations. These equations can force A∗R to converge into an over-
approximation of R∗(L(A)). Depending on the set of equations used, any regular
over-approximation can be reached, which means that any regular safety problem can
theoretically be solved using this technique.

To transform the TAC algorithm into a fully automatic verification technique for
regular safety problems, one must first develop a procedure that generates the correct
equations set that gives the correct over-approximation of R∗(I). In his paper [Gen16],
Genet draws the outline of a procedure able to quickly find such equations using
“contracting equations”. However using the generated equations, the termination
of the TAC algorithm is only guaranteed in the case of first-order programs. In
this chapter, we pursue the development of this equation generation procedure. We
propose a solution to shortcomings mentioned above with the following contributions:

• We state and prove a general termination theorem for the Tree Automata
Completion algorithm with contracting equations;

• From the conditions of the theorem we characterize a class of higher-order
functional programs for which the completion algorithm terminates using con-
tracting equations. This class covers common usage of higher-order features in
functional programming languages.

• We discuss the completeness of the abstraction procedure based on contracting
equations and propose a novel counter-example guided abstraction refinement
(CEGAR) procedure which guaranties regular completeness and completeness
in refutation.

The chapter is organized as follows: We start by giving a formal definition of the Tree
Automata Completion Algorithm and its properties in Section 4.2. We state and prove
a more general termination criterion for the TAC algorithm used with contracting
equations in Section 4.3. We use this termination criterion to define a class of higher-
order functional TRS on which there always exists a set of contracting equations
that makes the TAC algorithm terminate in Section 4.4. We then define our novel
abstraction procedure in Section 4.5. In Section 4.6, we present a series of experiments
validating our verification technique. Section 4.7 concludes the chapter.

4.2 Tree Automata Completion Algorithm

In this section we give more details about the Tree Automata Completion (TAC)
algorithm that computes, for a given TRS R and initial REFD tree automaton A0, an
over-approximation of R∗(L(A0)) as a new tree automaton A∗. Remember that, as
stated in Section 2.2, for any language L the set of reachable terms R∗(L) is defined
as R∗(L) = { t | ∃s ∈ L, s→∗R t }. If R represents a functional program and L(A0)
the set of initial states, then R∗(L(A0)) includes all intermediate computations and,
in particular, the outputs of the program. This can be used to verify regular safety
properties on the program.

4.2. TREE AUTOMATA COMPLETION ALGORITHM 61

4.2.1 Core Algorithm

The TAC algorithm proceeds by iteratively computing new automata A1,A2, . . .
such that Ai+1 = CR(Ai) until it reaches a fixed point, A∗. Here, CR(Ai) represents
one step of completion and is performed by searching the missing transitions in Ai
necessary to recognize R∗(L(Ai)). To do that, the algorithm completes the critical
pairs of Ai, corresponding to R-rewriting steps that are not taken into account in
the automaton.

Definition 4.2.1 (Critical Pair). Let R be a TRS and A a tree automaton whose
states live in Q. Given a rule l→ r ∈ R a substitution σ ∈ X 7→ Q and a state q ∈ Q.
The pair 〈rσ, q〉 is critical when lσ →∗Ai q and rσ 6→∗Ai q.To avoid redundancy, in the
rest of the document we note such critical pair 〈l→ r, q, σ〉 which gives all the needed
information. We name CP(R,A) the set of critical pairs in A w.r.t. R. Since Q and
X are finite, so is CP(R,A).

A critical pair is completed by adding new transitions in the automaton to have
rσ →∗Ai q as illustrated below:

lσ
R
//

∗Ai

��

rσ

q

⇒

lσ
R
//

Ai+1 ∗
��

rσ

Ai+1

∗nnq

Example 4.2.1. Let Σ = {0 : 0, s : 1, add : 2}. Let us consider the following TRS R:

add(0, y)→ x add(s(x), y)→ add(x, s(y))

Let A = 〈Σ,Q,Qf ,∆〉 the REFD tree automaton recognizing add(s(0), s(0)) using
the following transitions:

0→ q0
nat s(q0

nat)→ q1
nat add(q1

nat, q
1
nat)→ q1,1

add

Because of the rule add(s(x), y) → add(x, s(y)) and the substitution σ = {x 7→
q0
nat, y 7→ q1

nat} the pair 〈add(s(x), y)σ, q1,1
add〉 is critical because add(s(q0

nat), q
1
nat) is

recognized by q1,1
add in A, but add(q0

nat, s(q
1
nat)) is not. The pair can be completed by

adding the necessary transitions to recognize add(q0
nat, s(q

1
nat)) in q1,1

add.

In our case, the completion algorithm completes critical pairs by first adding or
reusing transitions in the automaton so to have rσ →�ε∗

Ai+1 q
′ for some state q′. It

then adds the ε-transition q′ →Ai+1 q symbolizing the rewriting step.

lσ
R //

Ai ∗
��

rσ

�ε∗ A
i+1

��
q q′
Ai+1
oo

Note that the algorithm keeps the automaton normalized. As such, it may not directly
add the transition rσ → q′ in Ai+1 since rσ may not be a normal configuration (of
the form f(q1, . . . , qn)). Instead the completion algorithms proceeds by using a
normalization procedure to ensure that rσ is recognized in q′ by adding or reusing
normal transitions.

62 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Definition 4.2.2 (Normalization). Let A = 〈Σ,Q,Qf ,∆〉 be a tree automaton. For
a given pattern t ∈ T (Σ,Q), the normalization function Norm(Q,∆, t) returns a
triple 〈Q′,∆′, q′〉 with Q′ ⊇ Q, ∆′ ⊇ ∆ and q′ ∈ Q′ such that in the automaton
A′ = 〈Σ,Q′,Qf ,∆′〉 we have t →�ε∗

∆′ q
′ using normalized transitions and preserving

�ε-determinism. The normalization may add new states taken from an arbitrary infinite
reserve of new states Q∗. For any Q, ∆ and t, the normalization function is defined
as follows:

Norm(Q,∆, q) = 〈Q,∆, q〉
Norm(Q,∆, f(t1, . . . , tn)) = 〈Qn ∪ { q′ },∆n ∪ { f(q1, . . . , qn)→ q′ }, q′〉

where for each i ∈ [1..n], 〈Qi,∆i, qi〉 = Norm(Qi−1,∆i−1, ti) with Q0 = Q, ∆0 = ∆,
and where q′ = q if f(q1, . . . qn)→ q ∈ ∆n, or q′ ∈ Q∗ \ Qn (a new state) otherwise.

Example 4.2.2. In the previous example, we need to add the term add(q0
nat, s(q

1
nat))

in A in order to complete the critical pair 〈add(s(x), y) → add(x, s(y)), σ, q1,1
add〉

where σ = {x 7→ q0
nat, y 7→ q1

nat}. To do that we use the normalization func-
tion: Norm(Q,∆, add(q0

nat, s(q
1
nat))). Transitions are added from bottom to top.

By definition we start by computing Norm(Q,∆, q0
nat) = 〈Q,∆, q0

nat〉. We con-
tinue with Norm(Q,∆, q1

nat) = 〈Q,∆, q1
nat〉. By definition Norm(Q,∆, s(q1

nat)) is
〈Q ∪ {q2

nat},∆ ∪ {s(q1
nat)→ q2

nat}, q2
nat〉 where q2

nat is a new state recognizing s(s(0))
which was not recognized in A. Finally by definition, Norm(Q,∆, add(q0

nat, s(q
1
nat)))

is

〈Q ∪ {q2
nat} ∪ {q

0,2
add},∆ ∪ {s(q

1
nat)→ q2

nat} ∪ {add(q0
nat, q

2
nat)→ q0,2

add}, q
0,2
add〉

where q0,2
add is a new state to recognize add(q0

nat, s(q
1
nat)).

Definition 4.2.3 (One Step Completion). Let A = 〈Σ,Q,Qf ,∆〉 be a tree automaton,
R be a left-linear TRS. The one step completed automaton is

CR(A) = 〈Σ,Q′,Qf ,∆′〉 with 〈Q′,∆′〉 = Join(Q,∆, CP(R,A))

where for any Q,∆ and set of critical pairs S, Join(Q,∆, S) is inductively defined
by:

Join(Q,∆, ∅) = 〈Q,∆〉
Join(Q,∆, {〈l→ r, q, σ〉} ∪ S) = Join(Q′,∆′ ∪ {q′ → q}, S)

with 〈Q′,∆′, q′〉 = Norm(Q,∆, rσ).

Example 4.2.3. Let us compute one step of completion for our add example. By
definition CR(A) = 〈Σ,Q′,Qf ,∆′〉 with 〈Q′,∆′〉 = Join(Q,∆, CP(R,A)). In our
case CP(R,A) is the singleton { 〈add(s(x), y)→ add(x, s(y)), σ, q1,1

add〉 }. Then by def-
inition we have Join(Q,∆, CP(R,A)) = 〈Q′,∆′ ∪ {q → q1,1

add}〉 with 〈Q
′,∆′, q0,2

add〉 =
Norm(Q,∆, add(q0

nat, s(q
1
nat))). We already have computed this in the previous exam-

ple to get Q′ = Q∪{q2
nat}∪{q

0,2
add} and ∆′ = ∆∪{s(q1

nat)→ q2
nat}∪{add(q0

nat, q
2
nat)→

q0,2
add}. The overall difference between A and CR(A) can be summarized as follows:

add(q1
nat, q

1
nat)

R //

A
��

add(q0
nat, q

2
nat)

CR(A)
��

s(q1
nat)

CR(A)

��
q1,1
add q0,2

addCR(A)
oo q2

nat

4.2. TREE AUTOMATA COMPLETION ALGORITHM 63

4.2.2 Properties of the TAC Algorithm

Lemma 1 (Soundness). All the definitions stated above ensure by construction that
each completion step i, the following properties are verified:

L(Ai) ⊆ L(Ai+1) and

s ∈ L(Ai) ⇒ s→R t ⇒ t ∈ L(Ai+1)

This implies that, if a fixed point A∗ is found, then it recognizes an over-approximation
of R∗(L(A)).

In the final automaton A∗ produced by the TAC algorithm, ε-transitions are
exclusively used to connect states that are connected by a rewriting relation. Two
states q and q′ are connected with an ε-transition q′ → q iff rewriting rule l→ r of
the considered TRS R and a substitution σ such that lσ ∈ L(A∗, q), rσ ∈ L(A∗, q′).
More precisely, ε-transitions represents rewriting step that occurs at the root of terms
(position λ). A direct consequence of this particular structure of A∗ is that terms
connected by rewriting steps that do not occur at the root are recognized by the
same state in A∗.

Lemma 2 (Subterm Collapse). Let u, v be two terms recognized by A∗. If there exists
a rule l → r a substitution σ and a position p ∈ Pos(u) such that p 6= λ, u|p = lσ
and v = u[rσ]p, then u and v are recognized by the same state in A∗.

Proof. Let q be the state recognizing u in A∗. Since A∗ is normalized, there exists a
context C and a state ql such that u = C[lσ], lσ →∗A∗ ql and C[ql]→∗A∗ q. Because
lσ →R rσ and A∗ is a fixed point to the TAC algorithm, there exists a state qr such
that rσ →∗A∗ qr with qr → ql. So v = C[rσ] →∗A∗ C[qr] →A∗ C[ql] →∗A∗ q, v is also
recognized by q.

If we transpose this lemma in the context of program verification, considering that
the TAC algorithm computes an over-approximation of the reachable states of the
program, this means that the TAC algorithm computes in fact an abstraction of the
program execution where multiple execution states are recognized by the same tree
automaton state. We call the particular abstraction realized by the TAC algorithm a
subterm-collapsing abstraction.

Definition 4.2.4 (Subterm-Collapsing Abstraction). Let Σ be a ranked alphabet. An
abstraction ; of 〈T (Σ),→, V 〉 into 〈Q,→′, V ′〉 is subterm-collapsing iff for all terms
t = f(t1, . . . , tn) of T (Σ) and u such that ti →∗ u for some i ∈ [1, n], then for all
q ∈ Q such that t; q we also have t[u]i ; q.

In addition, because A∗ is �ε-deterministic, the TAC algorithm can only generate
functional abstractions (cf. Definition 2.4.8).

4.2.3 Equations

It is in general impossible to compute a tree automaton recognizing exactly R∗(L(A)).
In most cases the TAC algorithm will compute an over-approximation of R∗(L(A))
(depending on the shape of the initial automaton), or diverge. In their paper [GR10],
Genet at al. propose to use equations to merge states during the completion algorithm,
which can enforce the termination of the algorithm and control the precision of the
approximation. From a program verification point of view, equations can precisely
control how execution states are abstracted.

64 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Example 4.2.4. This example shows how using equations can lead to approximations
in tree automata. Let A be the tree automaton defined by the set of transitions
∆ = {0→ q0, s(q0)→ q1}. This automaton recognizes the two terms 0 in q0 and s(0)
(also known as 1) in q1. Let E = {s(x) = x} containing the equation that equates a
number and its successor. For σ = {x 7→ 0} we have s(x)σ →A q1, xσ →A q0 and
s(x)σ =E xσ. Then in the completed automaton, q0 and q1 are merged. The resulting
automaton has transitions { 0→ q0, s(q0)→ q0 }, which recognizes N in q0.

Definition 4.2.5 (Equation Set). An equation set E is composed of equations of the
form l = r where l, r ∈ T (Σ,X). From E we derive the relation =E as the smallest
congruence such that for all terms l, r and substitution σ we have:

l = r ∈ E ⇒ lσ =E rσ

The set of equivalence classes defined by =E on T (Σ) is noted T (Σ)/=E.

In this chapter we also write ~E for the TRS { l→ r | l = r ∈ E }. The tree automata
completion algorithm is altered so that at each completion step, the algorithm
simplifies the automaton by merging states together according to E.

Definition 4.2.6 (Simplification Relation). Let A = 〈F ,Q,Qf ,∆〉 be a tree au-
tomaton and E be a set of equations. If s = t ∈ E, σ : X 7→ Q, q, q′ ∈ Q such that
sσ →�ε ∗A q, tσ →�ε ∗A q′ and q 6= q′ then A can be simplified into A′ = A{q′ 7→ q} (where
q′ has been substituted by q), denoted by A;E A′.

We write SE(A) for the unique [GR10] automaton (up to renaming) A′ such that
A ;∗E A′ and A′ is irreducible by ;E . One completion step is now defined by
Ai+1 = SE(CR(Ai)).

sσ
E

Ai ∗
��

tσ

Ai∗
��

q q′
⇒

sσ
E

Ai+1 ∗
��

tσ

Ai+1

∗
nnq

With the simplification phase, equations can be used to enforce termination of the
algorithm by over-approximating R∗(L(A)) even in cases where it would normally
diverge [Gen16]. Even better, equations can be used to control the precision of the
over-approximation as long as the initial automaton does not recognize multiples
equivalence classes of T (Σ)/=E without epsilon transitions with the same state: it is
R/E-coherent [Gen16].

Definition 4.2.7 (Coherent Automaton). Let R be a term rewriting system, A a tree
automaton and E a set of equations. The automaton A is said to be R/E-coherent iff
for all state q ∈ Q, for all terms s, t ∈ L(A, q) we have:

s→�ε ∗A q ∧ t→�ε ∗A q ⇒ s =E t

s→�ε ∗A q ∧ t→∗A q ⇒ s→∗R/E t

where R/E is the rewriting relation defined as { s→R/E t | s =E u→ v =E t}.

It is always possible to transform any tree automaton into a R/E-coherent automaton.
Moreover, R/E-coherence is preserved by completion and simplification. For this
reason in the rest of the chapter, we always assume the automata used in the TAC
algorithm to be R/E-coherent.

4.2. TREE AUTOMATA COMPLETION ALGORITHM 65

Theorem 17 in Gen16 (Precision). Let R be a term rewriting system, E a set
of equations and A an initial automaton. If the the Tree Automaton Completion
algorithm on R,A and E converges into A∗R, then the language recognized by A∗
verifies the given inequality:

R∗(L(A)) ⊆ L(A∗) ⊆ R/E∗(L(A))

Remember that because the output A∗R is �ε-deterministic, the TAC algorithm can
only generate functional abstractions (cf. Definition 2.4.8). Thankfully with this
theorem, Genet [Gen18] showed that any regular over-approximation (abstraction) of
R∗(L(A)) can be reached, given the right equations.

Theorem 32 in Gen18 (Completeness). Let R be a left-linear term rewriting system
and A an initial reduced ε-free automaton. Let L be a regular language such that
R∗(L(A)) ⊆ L. Then there exists a set of equations E such that L(A∗R/E) ⊆ L.

A consequence of this theorem is that the Tree Automata Completion algorithm
combined with equations can theoretically be used to solve any regular problem. The
main difficulty of this technique becomes finding E that ensure both termination and
verifiability of the considered property.

4.2.4 Contracting Equations

One naive way of finding equations E that ensure both termination and verifiability
of the property would be to simply enumerate every possible set of equations. The
enumeration must be fair so that if an equations set verifying the property exists,
it will eventually be found. This is not practicable of course because the number
of possibilities is too high. In his paper [Gen16], Genet proposes a method to
reduce the number of possibilities by considering only contracting equations over the
constructor terms (or values). The set of equations is then completed with reflexive
and R-transitive equations.

Definition 4.2.8 (Contracting Equations). Let L ⊆ T (Σ). A set of equations is
contracting for L, denoted by EcL, if all equations of EcL are of the form u = u|p with
u a linear term of T (Σ,X), p 6= λ and if the set of normal forms of L w.r.t the TRS
~EcL = { u→ u|p | u = u|p ∈ EcL } is finite.

Example 4.2.5 (Contracting Equations). Assume that Σ = { 0 : 0, s : 1 }. The
set EcL = { s(x) = x } is contracting for L = T (Σ) because the set of normal
forms of T (Σ) with respect to ~EcL = { s(x)→ x } is the (finite) set { 0 }. The set
EcL = { s(s(x)) = x } is contracting because the normal forms of { s(s(x))→ x } are
{ 0, s(0) }.

Combined with reflexive equations, contracting equations can enforce termination of
the TAC algorithm.

Definition 4.2.9 (Reflexive Equations). Let Σ be a ranked alphabet. We name Er
the set of reflexive equations defined as:

Er = { f(x1, . . . , xn) = f(x1, . . . , xn) | f ∈ Σn }

Theorem 62 in Gen16 (Termination with Contracting Equations). Let R be a
left-linear term rewriting system defined over T (Σ), A an initial automaton and
EcT (Σ) a set of contracting equations for T (Σ). If E ⊇ EcT (Σ) ∪ Er then the Tree
Automaton Completion algorithm terminates on R, A and E.

66 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Contracting equations alone are not enough to significantly reduce the equations
sets search space when it comes to solving a verification problem on a functional TRS.
When the considered TRS R is a first-order functional TRS defined over Σ = F ∪ C,
Genet proposes to focus on contracting the values manipulated by the program by
defining contracting equations over T (C) instead of T (Σ). In this setting, the set of
equations is then completed with R-transitive and reflexive equations to ensure the
termination of the TAC algorithm.

Definition 4.2.10 (R-Transitive Equations). Let R be a TRS. We name ER the set
of R-transitive equations defined as:

ER = { l = r | l→ r ∈ R }

Lemma 64 in Gen16 (Termination with Contracting Equations on Constructors).
Let R be a first-order function TRS defined over T (Σ) with Σ = F ∪ C, A an initial
automaton and EcT (C) a set of contracting equations for T (C). If E ⊇ EcT (C)∪ER∪Er
then the Tree Automaton Completion algorithm terminates on R, A and E.

This effectively reduce the search space for E by focusing the search on EcT (C), ignoring
function symbols.

Example 4.2.6 (Contracting equations in action). This example is derived from
Example 3.3.4 developed in Section 3.3.2. Consider the following first-order functional
TRS R defining a non-deterministic rand function generating an even random number
greater or equal to its input:

rand(n)→ ite(even(n),n, rand(n))

rand(n)→ rand(s(n))

The ite rules defining the standard if-then-else control structure are omitted but
can be found in the original example. We want to show that even(rand(0)) cannot
rewrite to false: false 6∈ R∗(I) with I = { even(rand(0)) }. Even if the input
language is finite, this cannot be decided simply by evaluating the initial term because
of the non-determinism of R. We hence use the TAC algorithm to compute an over-
approximation of R∗(I). The smallest initial automaton A recognizing I is defined by
the following transitions:

0→ q0 rand(q0)→ q0
rand even(q0

rand)→ q0
even

where q0
even is the unique final state. As shown in the original example, without

equations, the TAC algorithm will diverge while trying to generate all the possible
transitions of the form

s(qn−1
nat)→ qnnat even(qnnat)→ qneven

rand(qnnat)→ qnrand ite(qneven, q
n
nat, q

n
rand)→ qnite

qnrand → qn−1
rand qnite → qnrand

for each number n of N. To solve this verification problem, another set of equations
must be used. This is where contracting equations become handy. By using the
contracting equations set EcT (C) = { s(s(0)) = 0 }, even and odd number will be
merged into two separate equivalence classes, allowing the TAC algorithm to terminate

4.2. TREE AUTOMATA COMPLETION ALGORITHM 67

with a more precise over-approximation of R∗(I). By definition the full set of equations
E used during the completion is E = EcT (C) ∪ ER ∪ Er with

ER ⊇

{
rand(n) = ite(even(n),n, rand(n))

rand(n) = rand(s(n))

}

Here the initial automaton A is already R/E-coherent. Using this initial automaton
and equations, the TAC algorithm will merge every state of the form q2k

f in one
equivalence class and all the states of the form q2k+1

f in another class during the
simplification phase:

s(s(0))
E

Ai ∗
��

0

Ai∗
��

q2
nat q0

nat

⇒

s(s(0))
E

Ai+1 ∗
��

0

Ai+1

∗
ppq0

nat

The TAC algorithm will generate the following transitions when converging to A∗:

true→ q0
even

s(q1
nat)→ q0

nat even(q0
nat)→ q0

even

rand(q0
nat)→ q0

rand ite(q0
even, q

0
nat, q

0
rand)→ q0

ite

q0
rand → q1

rand q0
ite → q0

rand

false→ q1
even

s(q0
nat)→ q1

nat even(q1
nat)→ q1

even

rand(q1
nat)→ q1

rand ite(q1
even, q

1
nat, q

1
rand)→ q1

ite

q1
rand → q0

rand q1
ite → q1

rand

Note however that because of the set of R-transitive equations ER ⊆ E, states
connected by epsilon transitions are also be merged during the completion. The actual
transitions added into A∗ are:

true→ q0
even false→ q1

even

s(q1
nat)→ q0

nat even(q0
nat)→ q0

even

s(q0
nat)→ q1

nat even(q1
nat)→ q1

even

rand(q0
nat)→ qrand rand(q1

nat)→ qrand

ite(q0
even, q

0
nat, qrand)→ qite ite(q1

even, q
1
nat, qrand)→ qite

qrand → qrand qite → qrand

Note how false is recognized by the automaton, but not by the final state q0
even. The

over-approximation is more precise and proves that false is not in R∗(I), solving our
verification problem.

Because of the equation set ER, the resulting abstraction is not only subterm-
collapsing, but collapsing (cf. Definition 2.4.9). However this allows us to focus on
EcT (C) which considerably reduce the search space. Termination is ensured when
R is complete because every term eventually rewrites into a term of T (C) which is
captured by EcT (C). However this is not the case for higher-order functional TRSs

68 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

where the special symbol @ is used to encode higher-order functions into first-order
TRSs. This means that termination guaranties are lost on higher-order programs as
we show in the following example.

Example 4.2.7 (Unbounded partial applications stack). Let Σ = F ∪ C be a ranked
alphabet such that F = {f, g} and C = {a}. Consider the following higher-order
functional TRS R defined by the rules:

f x→ g (f x) g h y→ h y

We want to an over-approximation of the R∗(I) where I is the singleton { (f a) }.
This TRS is not terminating but it is still possible to find a set of equations E such
that the TAC algorithm terminates. The problem is that E cannot be of the form
EcT (C)∪ER∪Er where E

c
T (C) is a set of contracting equations over C. Since C contains

a single constant a, the only contracting equations set over C is EcT (C) = ∅. This is
not enough for the TAC algorithm to terminate on this instance. To see why, we can
use R to rewrite the initial term (f a) and get:

f a→ g (f a)→ g (g (f a))→ g (g (g (f a)))→ . . .

Note how g is never fully applied here. Contracting equations are only defined over
constructor symbols (a), but g and @ the hidden symbol encoding higher-order (cf.
Definition 2.2.16) are not constructor symbols. This means that each term of the form
g (. . . (g (f a))) is in its own unique equivalence class w.r.t. E. As a consequence,
the TAC algorithm will diverge trying to add infinitely many states in the automaton
to recognize these terms.

Of course one solution to solve this problem would be to extend the contracting
equation set to contract partial applications. However this greatly expands the
equations sets search space which makes it impracticable with current equations
inference techniques. Moreover in practice, because partial applications are often part
of total applications, contracting them often leads to many equations sets generating
poorly precise abstractions of the control flow. In the next section we see how to
preserve termination while keeping the equations search space small by defining a
more general termination theorem of the TAC algorithm with contracting equations.
We then define a general class of higher-order TRS for which the theorem applies
with contracting equation over the values (T (C)).

4.3 Termination Criterion Using Contracting Equations

In the previous section we have seen how equations can be used to control the precision
of the TAC algorithm. In particular how contracting equations on values can be used
to reduce the search space when looking for an equations set able to verify (prove
or disprove) a given (regular) property. Contracting equations have been proposed
by Genet et al. [GR10], and successfully used to rather efficiently verify first-order
programs. However as we have seen in the previous section, the termination of
the completion algorithm with contracting equations on values has only be proved
for first-order TRSs. In this section we prove a more general termination theorem
(Theorem 1) for the TAC algorithm with contracting equations, that does not rely
on the order of the considered TRSs. We show that termination of the completion
algorithm with a set of equations E is ensured under the following conditions: if (i) for
every step k of completion, Ak is reduced and �ε-deterministic (REFD); (ii) every

4.3. TERMINATION CRITERION USING CONTRACTING EQUATIONS 69

term of Ak can be rewritten into a term of a given language L ⊆ T (Σ) using R;
(iii) L has a finite number of equivalence classes w.r.t. E. Condition (i) is ensured by
showing that, in our verification setting, completion preserves REFD. Condition (ii)
is ensured for instance when R is terminating. To simplify, in the rest of the chapter
we assume that R is terminating. The last condition is ensured by having E ⊇ EcL
where EcL is a set of contracting equations over L (cf. Definition 4.2.8). The exact
theorem is as follows:

Theorem 1. Let A be an REFD tree automaton, R a left-linear TRS, E a set of
equations and L a language closed by subterms such that for all k ∈ N and for all
s ∈ L�(Ak), there exists t ∈ L s.t. s→∗R t. If E ⊇ Er∪EcL∪ER then the completion
of A by R and E terminates with a REFD A∗.

Remember that for any language L, following Definition 2.1.7 we write L� for the
smallest superset of L closed under the subterm relation. The idea of the proof
developed in this sections and represented on Figure 4.1 is the following: We identify
the set G of normal forms of L w.r.t. ~EcL. G is finite by definition of contracting
equations. We start by showing that, thanks to the contracting equations EcL, the
number of states in A∗ needed to recognize L is bounded by |G|. We then conclude
that, thanks to the R-transitive equations ER, the number of states in A∗ is bounded
by |G|.

~EcL

LL(A) L(A∗) G

R

Figure 4.1: Completion termination proof idea. Each cross is a term. Plain arrows are
rewriting steps and all terms along rewriting steps are equal w.r.t. ER. Dotted arrows
represent contractions over ~EcL. We show that by using EcL and ER the number of
equivalence classes (circled with dashed lines) is bounded by |G|.

4.3.1 The Role of Contracting Equations

To prove termination of the TAC algorithm, we first prove that it is possible to
bound the number of states needed in A∗ to recognize a language L by the number
of normal forms of L with respect to ~EcL (Lemma 4). In our case L will be the set of
output terms of the program. Since A∗ does not only recognize the output terms,
we need additional states to recognize intermediate computation terms. In the proof
of Theorem 1 we show that with ER, the simplification steps will merge the states
recognizing the intermediate computation with the states recognizing the outputs. If
the latter set of states is finite then using Lemma 4 we can show that A∗ is finite.

This theorem only holds for REFD tree automata. Thus we first need to prove
that completion preserves REFD. It is already known that completion preserves

70 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

�ε-determinism and �ε-reduction [Gen16]. Considering that an �ε-deterministic and �ε-
reduced automaton that is ε-free is REFD by definition, Lemma 3 proves preservation
of ε-freeness.

Lemma 3. Let A be an ε-free tree automaton and E a set of equations. If E ⊇ ER
then SE(CR(A)) is ε-free.

Proof. A is ε-free so for each critical pair 〈l → r, σ, q〉 we have lσ →�εA q. The
resolution of the critical pair only adds ε-transitions of form q → q′ with q′ a new
state [Gen16]. So, in CR(A), for every transition q → q′ such that q 6= q′ there exist
s, t such that s→�ε q, t→�ε q′ and s→R t. Now, since E ⊇ ER, we have s =E t, and
q and q′ are merged in the simplified automaton SE(CR(A)). The only ε-transitions
that remain after the simplification steps are of the form q → q and can be removed
without altering the recognized language.

The following Lemma 4 states that with an REFD tree-automaton A, the number
of states needed in SE(A) to recognize a language L is bounded by the number of
normal forms of L w.r.t. ~EcL.

Lemma 4. Let A be a REFD tree automaton, L a language and E a set of equations
such that E ⊇ Er ∪ EcL. Let G be the set of normal forms of L w.r.t. ~EcL. If G is
finite then SE(A) is a deterministic automaton such that terms of L are recognized
by no more states than terms in G.

Proof. First we prove that for all terms s ∈ L, if we additionally have s →∗SE(A) q
then there exists t ∈ G such that t →∗SE(A) q. We show this by induction on the

structure of s. If s ∈ G then it is trivially true. If s is not in normal form w.r.t. ~EcL
then there exists a subterm t of s such that s→ ~Ec

L
t. Since t is a subterm of s, there

exists a state q′ such that t→∗SE(A) q
′, and since s =Ec

L
t it guarantees that q = q′

in the simplified automaton SE(A). By hypothesis of induction, there exists term
t′ ∈ G of such that t′ →∗SE(A) q. SE(A) being deterministic (Lemma 3), for all terms
t ∈ G there is at most one state q such that t→∗SE(A) q. Moreover, we have just seen
that every state recognizing a term of L recognizes a term of G. Hence there are no
more states in SE(A) than terms in G.

4.3.2 The Role of Transitive Equations

We now show that by adding transitive equations ER (and reflexive equations Er),
the termination of the TAC algorithm is ensured. In the previous section we showed
that thanks to EcL each term of L is recognized by the same state as a term of G.
Here we show that thanks to ER each term of A∗ is recognized by the same state as
a term of L. This effectively show that the number of states in A∗ is bounded by |G|.
This is a proof of the general termination theorem, Theorem 1.

Proof. For every index k and state q of Ak, q satisfies at least one of the following
properties:

• P0(q): There exists a transition f → q in the automaton Ak, with f ∈ Σ0

• Pi+1(q): There exists a transition f(q1, . . . , qn)→ q in the automaton Ak such
that Pi(q1) ∧ · · · ∧ Pi(qn).

4.4. A CLASS OF ANALYZABLE PROGRAMS 71

If not, then L(A, q) = ∅ which contradicts the fact that A is reduced. We know there
are a finite number of states recognizing terms of L (Lemma 4). Let Q̃ be the set
of those states. First we prove that for every symbol f and index k such that Ak
contains a transition f(q1, . . . , qn) → q, with q1, . . . , qn ∈ Q̃, there exists an index
kf such that for all k′ > kf , if Ak

′ contains f(q1, . . . , qn) → q′, then q′ ∈ Q̃. By
hypothesis, for any term s such that s→∗Ak f(q1, . . . , qn)→Ak q, there exists a term
t ∈ L such that s →l

R t. After at most l successive completion steps, and because
E ⊇ ER, we will have q′ merged with a state qf of Q̃. Moreover, having E ⊇ Er
ensures that for every transition f(q1, . . . , qn)→ q ∈ Ak′ such that k′ ≥ k+ l we have
q = qf .

Let k̃ = max{ kf | f ∈ Σ }. We show, by induction on the property P , that
for all k ≥ k̃, all states of Ak are in Q̃. For every q such that P0(q), there exists
a transition f → q with f ∈ Σ0. Since k > kf , we have shown earlier that q ∈ Q̃.
Assume now that it holds for any state q and index i such that Pi(q). For every q such
that Pi+1(q), there exists a transition f(q1, . . . , qn) → q with Pi(q1) ∧ · · · ∧ Pi(qn).
By induction hypothesis, q1, . . . , qn ∈ Q̃. As already shown, this implies q ∈ Q̃. So,
after at most k̃ steps, all states of Ak are merged into Q̃. Since Q̃ is finite, and Ak
REFD for all k, the algorithm terminates.

4.4 A Class of Analyzable Programs

The next step is to identify a class of TRS and a language L for which Theorem 1
applies. One trivial possibility is to directly chose L = T (Σ) while providing a set
of contracting equations EcT (Σ). In this case, the termination theorem above proves
that the completion algorithm terminates on any functional program R. If this works
in theory, in practice we want to avoid introducing equations over the application
symbol (such as @(x, y) = y). Contracting equations on applications makes sense
in certain cases, e.g., with idempotent functions (@(sort,@(sort, x)) = @(sort, x)),
but in most cases, such equations dramatically lower the precision of the completion
algorithm. Hence, we want to identify a language L with no contracting equations
over @ in EcL. Such a language L still has to have a finite number of normal forms
w.r.t. ~EcL (required by Theorem 1). As a consequence it cannot include terms
containing an unbounded stack of applications. For instance, L cannot contain all the
terms of the form @(f, x),@(f,@(f, x)),@(f,@(f,@(f, x)), etc. The @ stack must
be bounded, even if the applications symbols are interleaved with other symbols (e.g.
@(f, s(@(f, s(@(f, s(x))))))). To do that:

1. we define a set Bd of all terms where the size of such stacks of @s is bounded
by d ∈ N;

2. we define a set Kn (where n depends on the considered TRS) and a class of
TRS called K-TRS such that for any TRS R in this class, Kn is closed by R
and Kn ∩ IRR(R) ⊆ Bk for some k. This is done by first introducing a type
system over the terms;

3. finally we define L = Bk ∩ IRR(R) that can be used to instantiate Theorem 1.

4.4.1 Bounded Applications Stacks

First, if we want to forbid equations over the @ symbol encoding applications, we
need to control the maximum size of application stacks in IRR(R). That way

72 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

when equations are applied we still have a finite number of equivalence classes (the
abstraction is finite). In this perspective, we start by defining the set Bd of terms
where the size of each application stack is bounded by d.

Definition 4.4.1 (Bounded Applications Stacks). For a given alphabet Σ ∪ {@}, for
any depth d ∈ N, Bd is the smallest set defined by:

f(t1, . . . , tn) ∈ Bi ⇐ f ∈ Σn ∧ t1 . . . tn ∈ Bi

@(t1, t2) ∈ Bi+1 ⇐ t1, t2 ∈ Bi

Note that for any term t ∈ Bi implies t ∈ Bi+1. This is because the first rule applies
for any constant symbol f ∈ Σ0, for any i ∈ N.

In Section 4.5.1, we show how to produce a set of contracting equations over
Bd ∩ IRR(R), with a finite number of equivalence classes and no equations on @. To
be able to instantiate the termination theorem with L = Bd ∩ IRR(R), we still need
to ensure that every term encountered during completion reduces into a term of Bd.
More formally, for all completion step k, for all term t ∈ L�(Ak) we need to have a
term s ∈ Bd ∩ IRR(R) s.t. t→∗R s. However such bound d does not exist in general:
we can write programs that will generate unbounded stacks of partial applications (cf.
Example 4.2.7). As a consequence, Theorem 1 cannot be directly instantiated with
L = Bd ∩ IRR(R), not for any TRS R. Instead we define (i) a set Kn ⊆ T (Σ) and
function φ such that Kn ∩ IRR(R) ⊆ Bφ(n) and (ii) a class of TRS, called K-TRS for
which L�(Ak) ⊆ Kn�. In K-TRS, the right hand sides of TRS rules are constrained
to forbid the construction of unbounded partial applications during rewriting. If the
initial automaton A0 satisfies L�(A0) ⊆ Kn� then we can instantiate Theorem 1 with
L = Bφ(n) ∩ IRR(R) and prove termination.

4.4.2 Type System

Our goal is to make sure that when a term of Kn is reduced with a K-TRS, then the
size of partial application stacks is bounded by some φ(n). To do that we require
terms in Kn and K-TRS to be well-typed so applications are easier to keep track
of and control. Our type system definition closely follows the one of [BN98], where
partial application are annotated with arrow types, which will allow us to control the
construction and reduction of stack of applications.

Definition 4.4.2 (Types). Let A be a non-empty set of base types. The set of
types T is inductively defined as the least set containing A and all function types:

A ∈ T ⇐ A ∈ A

τ1 → τ2 ∈ T ⇐ τ1, τ2 ∈ T

The function type constructor → is assumed to be right-associative. The arity of a
type τ is inductively defined on the structure of τ by:

ar(A) = 0 ⇐ A ∈ A

ar(τ1 → τ2) = 1 + ar(τ2) ⇐ τ1 → τ2 ∈ T

Definition 4.4.3 (Typed Alphabet and Symbol Signature). Remember that a ranked
alphabet defines a set of symbols along with their arity. A typed alphabet Σ defines a
set of symbols along with their type. We write f : (τ1, . . . , τn)→ τ ∈ Σ for the symbol
f of arity n whose type signature is (τ1, . . . , τn) → τ . A single symbol f can have
multiple signatures in Σ but a single arity.

4.4. A CLASS OF ANALYZABLE PROGRAMS 73

Intuitively for a term t of the form f(t1, . . . , tn), τi give the type of each subterm ti
while τ is the type of t. For higher-order encoding TRSs, the special symbol @ has
multiple signatures of the form (τ1 → τ2, τ1) → τ2 to encode every possible typed
application.

Definition 4.4.4 (Type Environment). For a set of variable X , a type environment
Γ : X 7→ T associates each variable with its type.

Definition 4.4.5 (Well typed terms). Let Σ be a typed alphabet with X a set of
variables and Γ a type environment. We write Σ,Γ ` t : τ when the term t ∈ T (Σ,X)
can by typed with τ using Σ and Γ. The type judgment ` is inductively defined by:

cons
f : (τ1, . . . , τn)→ τ ∈ Σ Σ,Γ ` ti : τi

Σ,Γ ` f(t1, . . . , tn) : τ
var

Γ(x) = τ

Σ,Γ ` x : τ

We name WΓ(Σ,X) the set of all well-typed terms defined by

{ t | t ∈ T (Σ,X) ∧ ∃τ ∈ T . Σ,Γ ` t : τ }

Note that for higher-order encoding TRSs, the function application is just a special
case of the cons rule with the symbol @:

cons
@ : (τ1 → τ2, τ1)→ τ2 ∈ Σ Σ,Γ ` t1 : τ1 → τ2 Σ,Γ ` t2 : τ1

Σ,Γ ` @(t1, t2) : τ2

To simplify, when there are no ambiguities about which Σ and Γ are considered, we
directly write t : τ instead of Σ,Γ ` t : τ , and W(Σ,X) instead of WΓ(Σ,X). We
also write W(Σ) for well-typed closed terms.

Definition 4.4.6 (Typed Rewriting Systems). A term rewriting system R is (well)
typed w.r.t. a type environment Γ if for all rule l→ r ∈ R, there exists a single type
τ such that l : τ and r : τ . We then often write l : τ → r : τ . A typed functional TRS
is complete iff every well typed term reduces to a value (a term of T (C)).

In the same way, an equation s = t is well typed if both s and t have the same type.
In the rest of this chapter we only consider well typed equations and TRSs.

Types provide information about how a term can be rewritten. For instance we
expect every term of the form @(f : τ1 → τ2, t : τ1) : τ2 to be rewritten into a value
by every complete (no partial function) TRS R when ar(τ1 → τ2) = 1 and τ2 ∈ A
Furthermore, for certain types, we can guarantee the absence of partial applications
in the result of a computation using the type’s order.

Definition 4.4.7 (Order). For a given typed alphabet Σ = C ∪ F ∪ {@}, the function
ord : T 7→ N gives the order of each type. It is inductively defined as the unique
function that gives the minimum order for each type such that:

ord(τ ∈ A) = max{ max{ ord(τ1), . . . , ord(τn) } | f : τ1 → · · · → τn → τ ∈ Cn }
ord(τ1 → τ2) = max{ ord(τ1) + 1, ord(τ2) }

At first glance, it may seem strange that for τ ∈ A , ord(τ) depends on the constructor
symbols. Notice that constructor symbols are used to define the algebraic structure
of base types. In particular, it is not unusual in modern functional programming
languages to see algebraic data types embedding functions in their constructors. The
order of those functions must contribute to the order of the type.

74 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Example 4.4.1. Consider the two base types list and list′. The type list defines
lists of int (corresponding to the int list type in OCaml) with the constructor:

cons : int→ list→ list ∈ C

The second type list′ defines lists of functions (corresponding to the (int -> int)

list type in OCaml) with the constructor:

cons : (int→ int)→ list′ → list′ ∈ C

The importance of looking at the signatures of cons in the definition of ord(list) and
ord(list′) is manifest here: In the first case a fully reduced term of type list cannot
contain any partial application (no @ symbol in the term) whereas in the second case it
can. It is reflected by the order of the types: ord(list) = max{ord(int), ord(list)} = 0
and ord(list′) = max{ord(int→ int), ord(list′)} = 1.

Lemma 5. If R is a complete functional TRS and τ a type such that ord(τ) = 0,
then all closed terms t of type τ are rewritten into an irreducible term with no partial
applications:

∀s ∈ IRR(R), t→∗R s⇒ s ∈ B0.

Proof. By induction on the length of the rewriting path. If t = s then we proceed
by induction on the structure of s. Since ord(τ) = 0, we can’t have s = @(f, u).
Otherwise because R is a functional TRS we would have s 6∈ IRR(R) which contradict
the hypothesis. Thus s = f with f : τ ′ ∈ F0 and by definition s ∈ B0. Now if
t→k+1

R s. If t = @(f, u) then we know that there is v : τ such that t→R v since R
is a functional TRS. Then u→k

R s and by hypothesis of induction, s ∈ B0. If t = f ,
as previously we have by definition s ∈ B0.

4.4.3 The K-TRS Class

Recall that we want to define (i) a setKn ⊆ T (Σ) and φ such thatKn�∩IRR(R) ⊆ Bφ(n)

and (ii) a class of TRSs, K-TRS, for which L�(Ak) ⊆ Kn�. Assuming that L�(A) ⊆
Kn� we instantiate Theorem 1 with L = Kn� ∩ IRR(R) and prove termination.

Definition 4.4.8 (K-TRS). Let Σ ∪ {@} be a typed alphabet. A TRS R is part of
K-TRS if it is functional TRS and if for all rules l → r ∈ R, r ∈ K where K is
inductively defined by:

x ∈ K ⇐ x ∈ X
f(t1, . . . , tn) : τ ∈ K ⇐ f ∈ Σn ∧ ti ∈ K ∧ arity(τ) = 0

f(t1 : τ1, . . . , tn : τn) : τ ∈ K ⇐ f ∈ Σn ∧ ti ∈ K ∧ ord(τi) = 0 (4.1)
@(t1 : τ1 → τ2, t2 : τ1) : τ2 ∈ K ⇐ t1 ∈ Z, t2 ∈ K ∧ arity(τ2) = 0 (4.2)
@(t1 : τ1 → τ2, t2 : τ1) : τ2 ∈ K ⇐ t1, t2 ∈ K ∧ ord(τ1) = 0 (4.3)

with Z defined by:

t ∈ Z ⇐ t ∈ K
@(t1, t2) ∈ Z ⇐ t1 ∈ Z, t2 ∈ K

By constraining the form of the right hand side of each rule of R, K defines a
set of TRS that cannot construct unbounded partial applications during rewriting.

4.4. A CLASS OF ANALYZABLE PROGRAMS 75

The definition of K takes advantage of the type system and Lemma 5. The rules
(4.2) and (4.3) ensure that an application @(t1, t2) is either: (4.2) a total application,
and the whole term can be rewritten; or (4.3) a partial application where t2 can be
rewritten into a term of B0 (Lemma 5). Rule (4.1) can be seen as the uncurryfied
version of (4.3). In (4.2), Z allows partial applications inside the total application of
a multi-parameter function.

Example 4.4.2. Consider the classical map function over lists of elements of type
A, where A is a base type of order 0. A typical call to this function is @(@(map, f), l)
of type list, where f is a mapping function, and l a list.

@ : list

@ : list→ list

map : (A→ A)→ list→ list f : A→ A

l : list

The whole term belongs to K because of rule (4.2): list is a base type (arity(list) = 0)
and its subterm @(map, f) : list→ list framed above, belongs to Z. This subterm
is a partial application, but there is no risk of stacking partial applications as it is
part of a complete call (to the map function).

Example 4.4.3. Consider the higher-order functional TRS R defining a function
stack as follows:

@(@(stack, x), 0)→ x
@(@(stack, x), s(n))→ @(@(stack,@(g, x)),n)

Here g is a function of type (A→ A)→ A→ A. The stack function returns a stack
of partial applications whose height is equal to the input parameter:

@(@(stack, f), s(s(s . . . s︸ ︷︷ ︸
k

(0) . . .)))→∗R @(g,@(g,@(g, . . .@(g︸ ︷︷ ︸
k

, f) . . .)))

The depth of partial applications stacks in the output language is not bounded. With
no equations on the @ symbol, the completion algorithm may not terminate. Notice
that x is a function and @(g, x) a partial application (represented by a solid frame
below). Hence the term @(stack,@(g, x)) (represented in a dashed frame) is not in Z,
which means that @(@(stack,@(g, x)),n) is not in K. The TRS R does not belong to
the K-TRS class.

@ : int

@ : int→ int

stack : A→ A→ int→ int

@ : A→ A

g : (A→ A)→ A→ A x : A→ A

n : int

76 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

This peculiar way of stacking partial applications may seem useless at first. How-
ever this programming pattern frequently appears on higher-order program written
in Continuation Passing Style (CPS), where each function is passed a continuation
function to be called with the output of the function. In this setting the partial appli-
cation stack contains the entire program’s execution stack. CPS is mostly used as an
intermediate representation useful for program analysis.

In the rest of this section we show how we can bound the size of partial application
stacks generated by K-TRSs. More precisely, we define a set of terms Kn ⊆ T (Σ) as
{ tσ | t ∈ K, σ : X 7→ Bn ∩ IRR(R) } and claim that if R is a K-TRS and if A is a
REFD tree automaton with L(A) ⊆ Kn then we can use Theorem 1 to prove that
the completion of A with R terminates.

Theorem 2. Let A be a Kn-coherent REFD tree automaton, R a K-TRS and E a
set of equations. Let L = Bn+2B ∩ IRR(R). If E = Er ∪EcL∪ER then the completion
of A by R and E terminates.

In this theorem, B is a fixed upper bound on the arity of all the types of the
program. The notion of Kn-coherence (cf. Definition 4.4.9) of a tree automaton
allows us to ensure that L�(A) ⊆ Kn. The idea of the proof developed in this section
is the following:

• First we prove that Kn� is closed by →R (Lemma 10).

• Prove that if L(A) ⊆ Kn�, then it is preserved by completion using the notion
of Kn-coherence of A (Lemma 17).

• Prove that Kn� ∩ IRR(R) ⊆ Bn+2B ∩ IRR(R) where B ∈ N is a fixed upper
bound of the arity of all the types of the program (Lemma 19).

• Finally, we use those three properties combined to instantiate Theorem 1 with
L = Bn+2B ∩ IRR(R) to prove Theorem 2.

The rest of this section is dedicated to the proof of each of these items, leading to
the proof of 2 at the end of the section. First, to prove that Kn is closed by →R, we
need some intermediate properties over Kn. In particular make sure that, when we
apply a rule, the considered substitution gives for each variable a term of Kn: all
rules are applied with a substitution of Kn.

Lemma 6. For all well typed constructor terms t ∈ W(C,X), For all terms s ∈ Kn,
if there exists σ such that tσ = s, then for all x ∈ Var(t), σ(x) ∈ Kn.

Proof. By induction on t.

• t = x. If tσ = s, s ∈ Kn, then σ(x) = s and σ(x) ∈ Kn.

• t = f(t1, . . . , tn), f ∈ Cn. If tσ = s, then s = f(s1, . . . , sn) = f(t1σ, . . . , tnσ).
By hypothesis of induction, for all ti, for all x ∈ Var(ti), σ(x) ∈ Kn. Since
Var(t) =

⋃n
i=1 Var(ti), then for all x ∈ Var(t), σ(x) ∈ Kn.

Lemma 7. For all terms t ∈ LHS (the left-hand side of a functional TRS, cf.
Definition 2.2.16), for all terms s ∈ Kn, if there exists σ such that tσ = s, then for
all x ∈ Var(t), σ(x) ∈ Kn.

4.4. A CLASS OF ANALYZABLE PROGRAMS 77

Proof. By induction on t.

• t = f(t1, . . . , tm), f ∈ Σm ∧ t1, . . . , tm ∈ W(C,X). For all ti, using Lemma 6 we
get for all variables x ∈ Var(ti), σ(x) ∈ Kn. Since Var(t) =

⋃m
i=1 Var(ti), then

for all x ∈ Var(t), σ(x) ∈ Kn.

• t = @(t1, t2) with t1 ∈ LHS and t2 ∈ W(C,W). Using Lemma 6 we get for all
variables x ∈ Var(t2), σ(x) ∈ Kn. By induction hypothesis, for all variables
x ∈ Var(t1), σ(x) ∈ Kn. Since Var(t) = Var(t1)∪Var(t2), then for all variables
x ∈ Var(t), σ(x) ∈ Kn.

Lemma 8. Let R be a functional TRS. For all rules l→ r ∈ R, For all terms t ∈ Kn,
if there exists σ such that lσ = t, then for all x ∈ Var(l), σ(x) ∈ Kn.

In other words, each time a rule is used, we know that all variables are substituted
with a term of Kn.

Proof. Since R is a functional TRS, we have l ∈ LHS (cf. Definition 2.2.16). Using
Lemma 7 we have for all x ∈ Var(l), σ(x) ∈ Kn.

Lemma 9. For all t ∈ Kn, for all rules l→ r ∈ R if there exists a position p and a
substitution σ with lσ = t|p, then t|p ∈ Kn, and for all terms s ∈ Kn, t[s]p ∈ Kn.

Proof. By induction on t.

• t ∈ Bn ∩ IRR(R). Since t ∈ IRR(R), there is no p and σ s.t. lσ = t|p.

• t = f(t1 : τ1, . . . , tn : τn) : τ, arity(τ) = 0. Two cases:

– if p = λ, then t|p = t, and t ∈ Kn. t[s]p = s, s ∈ Kn.
– if p = i.q, Since ti ∈ Kn, by induction hypothesis we have ti|q ∈ Kn and
ti[s]q ∈ Kn.
t|p = ti|q, so t|p ∈ Kn. t[s]p = f(t1, . . . , ti[s]q, . . . , tn), and since ti[s]q ∈
Kn, t[s]p ∈ Kn.

• t = f(t1 : τ1, . . . , tn : τn) : τ with ord(τ1) = 0, . . . , ord(τn) = 0. We can use
exactly the same reasoning (note that the order of the arity of each type never
change).

• t = @(t1 : τ1, t2 : τ2) : τ with ord(τ2) = 0, t1, t2 ∈ K. We can use exactly the
same reasoning.

• t = @(t1 : τ1, t2 : τ2) : τ with arity(τ) = 0, t1 ∈ Z, t2 ∈ K. We can use the same
reasoning if p = λ or p = 2.q. If p = 1.q we have t1 ∈ Zn and t|p = t1|q. Let us
prove by induction on t1 that we have t1|q ∈ Kn, and t1[s]q ∈ Zn.

– t1 ∈ Kn. By induction hypothesis (on t), t1|q ∈ Kn, t1[s]q ∈ Kn, and since
Kn ⊆ Zn, t1[s]q ∈ Zn.

– t1 = @(t′1, t
′
2) : τ ′.

∗ If q = λ, then since R is a functional TRS, arity(τ ′) = 0, which
means t1 ∈ Kn, and by induction hypothesis (on t), t1|q ∈ Kn and
t1[s]q ∈ Kn. So t1[s]q ⊆ Zn.

78 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

∗ If q = 1.q′, then by induction hypothesis on t1, t1|q ∈ Kn and t1[s]q ∈
Zn.

∗ If q = 2.q′, then by induction hypothesis on t, t1|q ∈ Kn and t1[s]q ∈
Kn. So t1[s]q ⊆ Zn.

t[s]p = @(t1[s]q, t2), and since t1[s]q ∈ Zn, t2 ∈ Kn and arity(τ) = 0, then by
definition t[s]p : τ ∈ Kn.

Lemma 10 (Kn is closed by →R). Let assume that for all rules l→ r ∈ R we have
r ∈ K. For all t ∈ Kn, for all u such that t→R u we have u ∈ Kn.

Proof. By induction on t.

• If t ∈ Bn ∩ IRR(R) then t is irreducible.

• If t = f(t1, . . . , tn), f ∈ Σn. For all rules l → r ∈ R and position p such that
lσ = t|p and u = t[rσ]p. By definition of functional TRS, there is no rule for
such term at the root, p cannot be λ. So p = p′.q. Let us define t′ = t|p′, and
u′ = t′[rσ]q. We have u = t[u′]p′ . By induction hypothesis, u′ ∈ Kn, so using
Lemma 9 we have t[u′]p′ ∈ Kn.

• t = @(t1 : τ → τ ′, t2 : τ) : τ ′ with ord(τ) = 0, t1, t2 ∈ Kn. We can use exactly
the same reasoning. For all rules l→ r ∈ R and position p such that lσ = t|p
and u = t[rσ]p. Two cases:

– if p = λ, for all x ∈ Var(l), t � xσ, which implies xσ ∈ Kn (Using
Lemma 8). Finally, rσ ∈ Kn.

– if p = p′.q, we can use the same reasoning as above.

• t = @(t1, t2) : τ ′ with arity(τ ′) = 0, t1 ∈ Zn, t2 ∈ Kn. For all rules l → r ∈ R
and position p such that lσ = t|p and u = t[rσ]p. Two cases:

– if p = λ, we can use the same reasoning as above.

– if p = 1.q, using Lemma 9 again we have t1|q ∈ Kn, and by induction
hypothesis, t′1 = t1[rσ]q ∈ Kn, thus @(t′1, t2) ∈ Kn.

– if p = 2.q, let us define t′2 = t2[rσ]q. We have u = @(t1, t
′
2). By induction

hypothesis, t′2 ∈ Kn, so @(t1, t
′
2) ∈ Kn.

In the same way we can prove that Zn is closed by →R. To prove that after each
step of completion the recognized language stays in Kn, we require the considered
automaton to be Kn-coherent.

Definition 4.4.9 (Kn-Coherence). Let L ⊆ W(Σ) and n ∈ N. L is Kn-coherent if

L ⊆ Kn ∨ L ⊆ Zn \ Kn

Note that Kn-coherence is preserved by inclusion (any subset of L is also Kn-coherent).
By extension we say that a tree-automaton A = 〈Σ,Q,Qf ,∆〉 is Kn-coherent if the
language recognized by all states q ∈ Q is Kn-coherent.

4.4. A CLASS OF ANALYZABLE PROGRAMS 79

If Kn-coherence is not preserved during completion, then some states in the completed
automaton may recognize terms outside of Kn�. Our goal is to show that it is preserved
by CR(·) (Lemma 15) then by SE(·) (Lemma 16).

Lemma 11 (Normalization preserves Kn-coherence). For all k ∈ N, k > 0, for all
REFD A = 〈Σ,Q,Qf ,∆〉, A′ = 〈Σ,Q∪Q′,Qf ,∆∪∆′〉 such that 〈Q∪Q′,∆∪∆′, q〉 =
Norm(Q,∆, t) with t ∈ T (Σ,Q). If {tσ | σ ∈ Q 7→ T (Σ)} is Kn-coherent and A is
Kn-coherent, then A′ is Kn-coherent.

Proof. We need to check that for each new state q ∈ Q′, L(A′, q) is Kn-coherent and
that for each old state q ∈ Q, L(A′, q) is still Kn-coherent.

The later one is easy to prove since by definition of Norm, no transitions of the
form u → q are created in ∆′ with q ∈ Q. For each old state q ∈ Q, L(A′, q) is
unchanged and remains Kn-coherent. As for q ∈ Q′, by definition of Norm each such
new state recognizes a subset of {tσ | σ ∈ Q 7→ T (Σ)}. By hypothesis, this set is
Kn-coherent. Since Kn-coherence is closed by inclusion, L(A′, q) is Kn-coherent.

Lemma 12. For all context C and terms s : τ, t : τ such that s, t ∈ Zn \ Kn or
s, t ∈ Kn, C[s] ∈ Kn ⇐⇒ C[t] ∈ Kn.

Proof. This can be done by induction on the context C by seeing in the definition of
K that we can swap a subterm of a Kn term as long as the type of the subterm is
the same, and that a Kn term is not replaced by a Zn term.

Lemma 13 (Linking two states together preserves Kn-coherence). Let consider the
tree automata A = 〈Σ,Q,Qf ,∆〉 and A′ = 〈Σ,Q,Qf ,∆′〉 such that ∆′ = ∆ ∪ {qa →
qb} and L(A, qb) ⊆ Kn ⇐⇒ L(A, qa) ⊆ Kn, with both languages sharing the same
type τ . If A is Kn-coherent, then A′ is Kn-coherent.

Proof. For all state q ∈ Q, for all term s, t ∈ Kn� such that we have C[t] →∗∆
C[qa]→∆′ C[qb]→∗∆ q with C[s]→∗∆ C[qb]→∗∆ q. C[t] is recognized in q with only
one transition qa → qb. Let us prove that L(A, q) ∈ Kn ⇐⇒ C[t] ∈ Kn. If s ∈ Kn
(or t ∈ Kn), then since A is Kn-coherent, L(A, qb) ⊆ Kn (or L(A, qa) ⊆ Kn). Then
since by hypothesis L(A, qb) ⊆ Kn ⇐⇒ L(A, qa) ⊆ Kn, s ∈ Kn and t ∈ Kn. Using
Lemma 12 we have that C[s] ∈ Kn ⇐⇒ C[t] ∈ Kn. If L(A, q) ∈ Kn then C[s] ∈ Kn
and then C[t] ∈ Kn. We can use the exact same reasoning if s, t ∈ Zn \ Kn. We can
generalize this reasoning to any number of qa → qb transitions in the derivation paths
and see that L(A′, q) remains Kn-coherent, for any state q. A′ is Kn coherent.

Lemma 14 (Solving a critical-pair preserves Kn-coherence). Let A = 〈Σ,Q,Qf ,∆〉
a REFD automaton that contains the critical pair 〈l → r, q, σ〉 and A′ = 〈Σ,Q ∪
Q′,Qf ,∆ ∪∆′ ∪ {q′ → q}〉 where 〈Q ∪ Q′,∆ ∪∆′, q′〉 = Norm(Q,∆, rσ). If A is
Kn-coherent, then A′ is Kn-coherent.

Proof. LetA beKn-coherent. LetA′′ the tree automaton 〈Σ,Q∪Q′,Qf ,∆∪∆′′〉 result
of the normalization. By Lemma 11 we know that A′′ is Kn-coherent. By definition
of a critical pair we have lσ →∗∆ q and lσ →R rσ. Since Kn is closed by →R we have
lσ ∈ Kn ⇒ rσ ∈ Kn. Because A is Kn-coherent, lσ ∈ Kn ⇐⇒ L(A, q) ⊆ Kn, and
L(A, q) ⊆ Kn ⇒ rσ ∈ Kn ⇒ L(A, q′) ⊆ Kn. We can do the opposite demonstration
do deduce that L(A, q′) ∈ Kn ⇒ L(A, q) ∈ Kn by first showing that Zn \ Kn is
closed by rewriting. So we have L(A, q)⇐⇒ L(A, q′). Since typed TRSs preserves
type by rewriting we know that L(A, q) and L(A, q′) share the same type. Using
Lemma 13 we deduce that adding the transition q → q′ preserve Kn-coherence, so A′
is Kn-coherent.

80 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Lemma 15 (CR(A) preserves Kn-coherence). Let A be a REFD tree automaton. If
A is Kn-coherent, then CR(A) is Kn-coherent.

Proof. LetA = 〈Σ,Q,Qf ,∆〉. By definition, CR(A) = 〈Σ,Q′,Qf ,∆′〉 where 〈Q′,∆′〉 =
Join(Q,∆, CP(R,A)). Let us proceed by induction on the structure of CP(R,A).

• CP(R,A) = ∅. Then CR(A) = A, which is Kn-coherent.

• CP(R,A) = { 〈l → r, q, σ〉 } ∪ S. Join(Q,∆, CP(R,A)) = JoinS(Q′′,∆′′ ∪
{q → q′}, S) with 〈Q′′,∆′′, q′〉 = Norm(Q,∆, rσ). Let A′ = 〈Σ,Q′′,Qf ,∆′′ ∪
{q → q′}〉. By Lemma 14, A′ is Kn-coherent. By definition CP(R,A′) = S. By
hypothesis of induction CR(A′) is Kn-coherent. Also note that Join(Q′′,∆′′ ∪
{q → q′}, CP(R,A′)) = Join(Q′′,∆′′ ∪ {q → q′}, S) so CR(A) = CR(A′). Thus
CR(A) is Kn-coherent.

Lemma 16 (SE(A) preserves Kn-coherence). Let A,A′ two REFD tree automata,
R a K-TRS and E a set of equations such that E = Er ∪Ecn ∪ER. If A;E A′ and
A is Kn-coherent then A′ is Kn-coherent and SE(A) is Kn-coherent.

Proof. Let us name qa and qb the two states merged from A to A′. The proof
is based on the idea that merging those two states is equivalent to adding the
transitions qa → qb and qb → qa. Let A′′ be the tree automaton defined from
A by 〈Σ,Q,Qf ,∆ ∪ {qa → qb, qb → qa}〉. Note that for all states q ∈ Q \ {qa},
L(A′, q) = L(A′′, q). Let us show that A′′ is Kn-coherent instead of A′. First we
show that L(A, qa) ⊆ Kn ⇐⇒ L(A, qb) ⊆ Kn. Since qa and qb are being merged, it
means that there exists two terms s and t such that s→∗∆ qa, t→∗∆ qb and s =E t.
Here we have three cases.

1. s =Er t, then s = t and s ∈ Kn ⇐⇒ t ∈ Kn.

2. s =Ec
n
, then t = s|p for some p meaning that there is an equation u = u|p and a

substitution σ such that uσ = s and u|pσ = t. Recall that we restrain ourselves
to well-typed equations where u ∈ W(C,X). Then using the definition of Kn
we have s ∈ Kn ⇐⇒ s|p ∈ Kn.

3. s =ER t, then s →R t and using Lemma 10 (and its equivalent with Zn) we
have s ∈ Kn ⇐⇒ t ∈ Kn.

So we have s ∈ Kn ⇐⇒ t ∈ Kn. Now since A is Kn-coherent, L(A, qa) ⊆ Kn ⇐⇒
L(A, qb) ⊆ Kn. By Lemma 13 we have A′′ Kn-coherent. By extension since for
all states q ∈ Q \ {qa}, L(A′, q) = L(A′′, q), A′ is Kn-coherent and SE(A) is Kn-
coherent.

By using Lemma 15 and Lemma 16, we can prove that the completion algorithm,
which is a composition of CR(A) and SE(A), preserves Kn-coherence.

Lemma 17 (Completion preserves Kn-coherence). Let A0 = 〈Σ,Q,Qf ,∆〉 an initial
REFD tree automaton for the completion algorithm, R a fK-TRS and E a set of
equations. If E = Er ∪ EcL ∪ER with L = Bn+2B ∩ IRR(R) and A0 is Kn-coherent
then for all k ∈ N, Ak is Kn-coherent. In particular, A∗ is Kn-coherent.

4.4. A CLASS OF ANALYZABLE PROGRAMS 81

Proof. By induction on k. If k = 0, by hypothesis A0 is Kn-coherent. If k = i+ 1, by
definition Ai+1 = SE(CR(Ai)). By hypothesis of induction Ai is Kn-coherent. We
then apply Lemma 15 to show that CR(Ai) is Kn-coherent, and Lemma 16 to show
that SE(CR(Ai)) is Kn-coherent. We conclude that if A∗ exists, it is Kn-coherent.

By construction we can prove that the depth of irreducible Kn� terms is bounded,
which correspond to the following lemmas.

Lemma 18. Let B ∈ N be the maximum function arity in the program. For all
t : τ ∈ Kn, t : τ ∈ IRR(R)⇒ t : τ ∈ Bn+B−arity(τ).

Proof. By induction on t : τ .

• t : τ ∈ Bn. Since B is the maximum program arity, arity(τ) ≤ B, so n ≤
n+B − arity(τ). Then t : τ ∈ Bn+B−arity(τ).

• t = f(t1 : τ1, . . . , tn : τn) : τ, arity(τ) = 0. Since R is a functional TRS, if
t ∈ IRR(R) and arity(τ) = 0 then f ∈ Cn. By induction hypothesis, for all
ti, ti ∈ Bn+B−arity(Ti), with Bn+B−arity(Ti) ⊆ Bn+B. This implies t1, . . . , tn ∈
Bn+B, so by definition, t ∈ Bn+B. Since arity(τ) = 0, t ∈ Bn+B−arity(τ).

• t = f(t1 : τ1, . . . , tn : τn) : τ with order(τ1) = 0, . . . , order(τn) = 0. If
arity(τ) = 0 then we can use the same reasoning. Otherwise, for all ti since
order(Ti) = 0 we have ti ∈ B0, so t ∈ B1. Since n > 0, then B > 0, B > arity(τ)
and 1 ≤ n+B − arity(τ). So by definition, t ∈ Bn+B−arity(τ).

• t = @(t1 : τ1, t2 : τ2). Since R is a functional TRS, if t ∈ IRR(R) then we can’t
have arity(τ) = 0, so by definition of Kn, order(τ2) = 0 and t1, t2 ∈ Kn. More-
over, since t2 ∈ IRR(R), t2 ∈ B0, t2 ∈ W(C). By induction hypothesis, since
t1 ∈ IRR(R) we have t1 ∈ Bn+B−arity(τ2). By definition, t ∈ Bn+B−arity(τ2)+1,
and since arity(τ2) = arity(τ)− 1, t ∈ Bn+B−arity(τ).

Lemma 19. For all t : τ ∈ Kn�, t : τ ∈ IRR(R)⇒ t : τ ∈ Bn+2B−arity(τ).

Proof. Note that if t ∈ Kn� then t ∈ Zn. We reason by induction on t : τ .

• t : τ ∈ Kn, then by Lemma 18 we have t : τ ∈ Bn+B−arity(τ), thus t : τ ∈
Bn+2B−arity(τ).

• t = @(t1 : τ1, t2 : τ2) : τ with t1 ∈ Zn, t2 ∈ Kn. By Lemma 18 we have
t2 : τ2 ∈ Bn+B. By induction hypothesis we have t1 : τ1 ∈ Bn+2B−arity(τ2).
Since arity(τ2) = arity(τ) + 1, t1 : τ1 ∈ Bn+2B−arity(τ)−1.

No that know the depth of t1 and t2, we can deduce the depth of t by taking the
maximum depth of t1 and t2, which gives us t : τ ∈ Bmax(n+2B−arity(τ),n+B+1).

However arity(τ2) ≤ B implies arity(τ) < B and then B − arity(τ) − 1 ≥ 0.
Thus n+B + 1 ≤ n+ 2B − arity(τ). Finally t : τ ∈ Bn+2B−arity(τ).

Reminder of Theorem 2. Let A be a Kn-coherent REFD tree automaton, R a
K-TRS and E a set of equations. Let L = Bn+2B ∩ IRR(R). If E = Er ∪ EcL ∪ ER
then the completion of A by R and E terminates.

82 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Proof. According to Lemma 17, for all k ∈ N, the completed automaton Ak is Kn-
coherent. By definition this implies that L�(Ak) ⊆ Kn�. Moreover, we know that
IRR(R) ∩ Kn� ⊆ Bn+2B (Lemma 19). Let L = Bn+2B ∩ IRR(R). R is terminating,
so for every term s ∈ L�(Ak) there exists t ∈ L such that s→∗R t. Since the number
of normal form of L is finite w.r.t. ~E, Theorem 1 implies that the completion of A
by R and E terminates.

4.5 Verification Procedure

In the previous section we have identified a class of TRS, K-TRS, for which contracting
equations over the values can be used while preserving termination of the TAC
algorithm. We now want to automatically generate those contracting equations to
abstract the program execution using the TAC algorithm and solve a given regular
safety problem (cf. Definition 2.4.7).

4.5.1 Contracting Equations Generation

Theorem 2 states a number of hypotheses that must be satisfied in order to guarantee
termination of the TAC algorithm:

• The initial automaton A must be REFD and Kn-coherent for some n.

• R is a K-TRS. This is a straightforward syntactic check. If it is not verified,
we can reject the TRS before starting the completion.

• R must be terminating.

• The set of equations E must be of the form EcL∪Er∪ER with L = Bn+2B . That
is what we want to automatically generate here. The equation sets Er and ER
are determined directly from the syntactic structure of R (cf. Definitions 4.2.10
and 4.2.9). However, there is no unique suitable set of contracting equations
EcL. This set must be generated carefully in order to prove or disprove a given
property.

In this section, we describe a method for generating all possible sets of contracting
equations EcL. Following the previous section, L should be replaced by Bn+2B (cf.
Theorem 2). However to simplify we only present the case where L =W(C) (with
IRR(R) ⊆ W(C), i.e., all results are first-order terms). We generate the contracting
equations iteratively, as a series of equation sets Eck where the equations only equate
terms of depth at most k.

Recall that according to Definition 4.2.8, a contracting equation is of the form
u = u|p with p 6= λ, i.e., it equates a term with one of its strict subterm (of the
same type). A set of contracting equations over the set W(C) is then generated
as follows: (i) generate the set of left-hand side of equations as a covering set of
patterns [Kou92], so that for each term t ∈ W(C) there exists a left-hand side u of an
equation and a substitution σ such that t = uσ. (ii) for each left-hand side, generate
all possible equations of the form u = u|p, satisfying that both sides have the same
type. (iii) from all those equations, we build all possible EcL (with L =W(C)) such
that the set of normal forms of W(C) w.r.t. ~EcL is finite. Since ~EcL is left-linear and
L =W(C), this can be decided efficiently [Com00].

4.5. VERIFICATION PROCEDURE 83

Example 4.5.1. Assume that C = { 0 : 0, s : 1 }. For k = 0, E0
c = ∅ because

there is no covering set of terms with depth 0. Thus, there is no set EcL satisfying
Definition 4.2.8 for k = 0. For k = 1, the covering set is {s(x), 0} and E1

c = {{s(x) =
x}}. For depth 2, the covering set is {s(s(x)), s(0), 0} and E2

c = E1
c ∪ {{s(s(x)) =

x}, {s(s(x)) = s(x)}, {s(0) = 0}, {s(0) = 0, s(s(x)) = x}, {s(0) = 0, s(s(x)) =
s(x)}}. All equation sets of E1

c and E2
c satisfy Definition 4.2.8 and lead to different

approximations.

To find every left-hand side we use the notion of covering set of patterns inspired
by Kounalis [Kou92].

Definition 4.5.1 (Covering Patterns). A set of patterns P ⊆ W(Σ,X) is covering
for t ∈ W(C,X) if for all substitution σ, there exists a term s ∈ P and a substitution
σ′ such that tσ = sσ′. Similarly, P is covering for a type τ if it is covering for the
set {t | t : τ}. We write Pk(τ) the set of patterns of depth (at most) k covering the
type τ . It is inductively defined by:

P0(τ) = { { x } }
Pk+1(τ) = { f(t1, . . . , tn) | f : (τ1, . . . , τn)→ τ ∧ ti ∈ Pk(τi) }

Note that in Pk(τ), each term of {t | t : τ} is covered by exactly one pattern.

From a pattern u of type τ we can extract a set of possible contracting equations,
C(u : τ) defined as:

C(u : τ) =

{
∅ if u is closed
{ u = u|p | u : τ ∧ u|p : τ } otherwise

For any k > 0, the set of depth-k contracting equation set Eck is the smallest set such
that:

Ec ∈ Eck ⇐ ∀τ. ∀u ∈ Pk(τ). ∃! u = u|p ∈ C(u : τ) s.t. u = u|p ∈ Ec

By construction, for each contracting set Ec in Eck, ~Ec is deterministic, complete over
W(C) (it can rewrite any term of W(C)) with a finite number of normal forms. In
each Ec, the set Pk(τ) control the number of normal forms for each type τ while the
normal form attributed to each term u depends on what equation have been picked
from C(u : τ). In the following, we demonstrate that by choosing the right k and by
picking the right equations in C(u : τ), any regular abstraction of W(C) can be built.
In other words, for any regular abstraction of W(C), there exists k such that some
equation set in Eck produces this abstraction (Lemma 21).

Note that a regular abstraction of W(C) can be represented by a tree automaton
where each state recognizes one element (equivalence class) of the abstraction. We
first show that for any of such automaton, it is possible to find k such that each state
of type τ is covered by different patterns in Pk(τ).

Lemma 20. Let A be a deterministic and reduced tree automaton recognizing terms
of W(C). Let us assume that A is type-coherent, meaning that for all state q there
exists a unique base type τ ∈ A such that, L(A, q) ⊆ {t | t : τ} which we write q : τ .
Let us write Qτ = {q | q : τ}. Then there exists k ∈ N for which for each base type
τ ∈ A , there exists a partition P of Pk(τ) such that each state q ∈ Qτ is covered
by a different element of P . In other words, each pattern of Pk(τ) cover (part of) a
unique state of A.

84 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Proof. We can show this by contradiction. If no such k exists, it means that for all
k ∈ N, for all partition P of Pk(τ) there is always two states q and q′ covered by the
same element of P . This means that there is a pattern p ∈ P and two substitutions
σ, σ′ such that pσ →∗A q and pσ′ →∗A q′. Since this is true for all k, it must be because
the same term t is recognized by both states. However this is not possible because A
is deterministic.

Lemma 21 (Any regular abstraction is in Eck). For any regular abstraction of W(C),
there exists k such that some equation set in Eck produces this abstraction.

Proof. A regular abstraction can be represented with a tree automaton A where each
equivalence class (abstraction) is represented by a state. We already showed with
Lemma 20 that there exists k for which Pk(·) generates a covering set that covers
each state of the A with different patterns. Let us name Pk(q) the set of patterns
covering state q. We now need to prove that there exists some k′ ≥ k for which there
exists Ec ∈ Ek′c where each state q are represented by different normal forms in ~Ec.
We show that there exists k′ ≥ k with the following properties:

• For each recursive state q, with k′ we have in addition that each covering pattern
u in Pk′(q) uses recursion: there exists some position p such that for all σ, u|pσ
is also recognized by q. We write Recq(u) (one of) such position for a given
covering pattern u.

• For each non-recursive state q, with k′ we have in addition that for each covering
pattern u in Pk′(q) if there exists a substitution σ, a context C and recursive
state q′ such that uσ →∗A C[q′] →∗A q then there exists some position p such
that for all σ, u|pσ is also recognized by q′. We write Recq(u) = p (one of) such
position for a given covering pattern u.

Using the contracting equations Ec = { u = u|Recq(u) | q ∈ Q ∧ u ∈ Pk′(q) }, we
ensure that every term recognized by q are represented by the same term, unique
to q. Note that for each state q, for each u ∈ Pk′(q) we have u ∈ Pk′(τ) with q : τ
and u = u|Recq(u) ∈ C(u : τ). By definition this means that we have Ec ∈ Ek′c .
Note that there are potentially multiple solutions for Ec since there are potentially
multiple candidates for each Recq(u). The generated Ec gives in general a more
precise abstraction compared to the one represented by A. Two terms represented by
the same state may rewrite to two different normal forms w.r.t. ~Ec.

4.5.2 Equations Exploration

In the following, we define a simple verification procedure that uses the Tree Automata
Completion algorithm and the equation generation method described in the previous
section to verify regular safety problems of the form 〈R,A, O〉 where R is a K-TRS,
A a Kn-coherent tree automaton (where n follows Theorem 2) and O some regular

4.5. VERIFICATION PROCEDURE 85

language.

Input :A regular safety problem 〈R,A, O〉
Output : Success if the problem’s property is verified or

Fail if a counter-example is found.
1 forall k from 1 to ∞ do
2 A∗k ← CompletionR(Ak);
3 if L(A∗k) 6⊆ O then
4 return Fail;
5 else
6 forall Ec ∈ Ekc do
7 E ← Er ∪ ER ∪ Ec;
8 A∗ ← CompletionR,E(A);
9 if L(A∗) ∩O = ∅ then

10 return Success;
Algorithm 1: Verification Procedure

The procedure defined by Algorithm 1 searches for a set of contracting equations Ec

such that verification succeeds, i.e. L(A∗) ⊆ O. Starting from k = 1, we apply the
following algorithm:

1. We first complete the tree automaton Ak recognizing the finite subset of L(A)
of terms of maximum depth k. Since L(Ak) is finite and R is terminating, the
set of reachable terms is finite, completion terminates without equations and
computes an automaton A∗k recognizing exactly the set R∗(L(Ak)) [GR10].

2. If L(A∗k) does violates the property, i.e. L(A∗k) 6⊆ O, then verification fails: a
counterexample is found.

3. Otherwise for all Ec of Ekc , we try to complete A with R and E = Er ∪ER∪Ec
and check the property on the completed automaton. If A∗ ⊆ O then verification
succeeds. Otherwise, we try the next Ec.

4. If no Ec remains, we start again with k = k + 1.

Because of ER the generated abstraction is necessarily closed w.r.t. R which
makes the abstraction collapsing (cf. Definition 2.4.9). Furthermore, because the
tree automaton generated by the TAC algorithm is �ε-deterministic, the generated
abstraction is necessarily functional (cf. Definition 2.4.8).

Theorem 3 (Functional & Collapsing Regular Completeness). Let P = 〈R,A, O〉 a
regular safety problem over K-TRS. Let L be the contracted language as defined in
Theorem 2. If there exists a set of contracting equations EcL such that Er ∪ ER ∪ EcL
is able to verify P , this algorithm will eventually find Ec′L such that Er ∪ER ∪Ec

′
L is

also able to verify P .

Proof. First note that each use of the completion algorithm terminates. For each
k, The completion of Ak without equations terminates because L(Ak) if finite. The
completion of A with E terminates because R is a K-TRS (Theorem 2). EcL represents
a regular abstraction of W(C). Thanks to Lemma 21 we know there exists some k
such that Ekc contains some Ec′L representing the same abstraction. Then if Ec′L is
enough to verify P , so is Ec′L . Since this algorithm does an exhaustive exploration
of k and Ekc , and since because R is a K-TRS each use of the completion algorithm
terminates, it will eventually find it.

86 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Theorem 4 (Completeness in Refutation). Let P = 〈R,A, O〉 a regular safety
problem over K-TRS. Let L be the contracted language as defined in Theorem 2. If
there is a counter-example to P , this procedure will eventually find it.

Proof. At each step k, we complete Ak to find counter-examples. If there exists a
term in L(A) that rewrites outside of O, then there exists some k such that this term
is recognized by Ak.

4.6 Experiments

The verification technique described in this chapter has been integrated in the Timbuk
library [Tbk3] (version 3.2). We implemented the naive equation generation procedure
described in Section 4.5.2 where all possible equation sets Ec are enumerated. Despite
the evident scalability issues of this simple version of the verification procedure,
we have been able to verify a series of properties on several classical higher-order
functions such as map, filter , exists , forall , foldLeft , foldRight as well as higher-order
sorting functions parameterized by an ordering function.

4.6.1 Test Suite

Our test suite, publicly available on Timbuk’s website [Exp3], is composed of positive
and negative regular safety problems of the form 〈R,A, O〉 where R is a K-TRS
representing the functional program, A a Kn-coherent tree automaton representing
the possible initial states, and O a regular language. The goal for Timbuk is to prove
the safety of the program by proving that R∗(L(A)) ⊆ O, or disprove it by finding
a counter example. Most problems are taken from or inspired by [OR11,KSU11a],
and Tons of Inductive Problems [CJRS15]. We expect some problem instances to be
similar to the ones used in [MKU15]. However this cannot be verified since the test
suite used in this paper is not publicly available.

Timbuk will prove the input property by exhibiting some tree automaton A∗
over-approximating R∗(L(A)) using the verification technique described in this
chapter. For each problem 〈R,A, O〉 in the test suite, we have been able to verify the
correctness of the verification, i.e. the fact that R∗(L(A)) ⊆ L(A∗), using a proof
assistant embedding a formalization of rewriting and tree automata [BGJ08]. To do
that, it is enough to prove that (a) L(A∗) ⊇ L(A) and that (b) for all critical pairs
〈l → r, σ, q〉 of A∗ we have rσ →∗A∗ q. Property (a) can be checked using standard
algorithms on tree automata. Property (b) can be checked by enumerating all critical
pairs of A∗ (there are finitely many) and by proving that all of them satisfy rσ →∗A∗ q.
Since there exists algorithms for checking properties (a) and (b), the complete proof
of correctness can automatically be built in the proof assistant. For instance, the
automaton A∗ can be used as a certificate to build the correctness proof in Coq [Inr16]
and in Isabelle/HOL [NPW02]. Besides, since verifying (a) and (b) is automatic, the
correctness proof may be run outside of the proof assistant (in a more efficient way)
using a formally verified external checker extracted from the formalization. All our
(successful) verification attempts has been certified automatically using an external
certified checker defined in Coq [BGJ08].

4.6.2 Experimental Results

Table 4.1 and 4.2 give the results of our experiments with Timbuk on an Intel®
i7-7600U CPU, 4 2.80GHz cores. The first column gives the name of the problem.

4.6. EXPERIMENTS 87

Name Time (s) Memory (MiB)

Completion Equations Total

allA 0.0 0.0 0.001 ±0.0 4.93
iteEvenOdd 0.0 0.0 0.001 ±0.0 5.58
mult 0.0 0.0 0.001 ±0.0 5.83
delete 0.0 0.01 0.01 ±0.0 6.24
plusEven 0.01 0.0 0.01 ±0.0 5.71
headReverse 0.02 0.0 0.03 ±0.0 8.92
insertionSort 0.02 0.05 0.07 ±0.03 8.96
reverse 0.01 0.07 0.08 ±0.01 7.24
appendTheorem 0.03 0.06 0.09 ±0.0 10.18
makelist 0.4 0.01 0.42 ±0.08 99.56
reverseImplies 0.09 0.45 0.54 ±0.12 9.61
insertionSort2 0.44 0.21 0.65 ±0.07 109.94
incTree 0.07 0.92 0.99 ±0.08 46.12
treeDepth 0.45 1.0 1.45 ±0.13 118.89
orderedTreeTraversal 0.08 1.44 1.52 ±0.12 11.83
orderedTree 0.1 5.14 5.24 ±0.48 13.8
memberAppend 18.38 2.38 20.76 ±2.37 2971.76
square 47.02 0.12 47.15 ±2.77 3997.26
deleteImplies - - Timeout -
equalLength - - Timeout -
evenOdd - - Timeout -
heightTree - - Timeout -
insertTree - - Timeout -
memberTree - - Timeout -
mergeSort - - Timeout -
replaceTree - - Timeout -
split - - Timeout -
zipUnzip - - Timeout -

simple 0.0 0.0 0.001 ±0.0 3.42
appendTheoremBug 0.01 0.0 0.01 ±0.0 6.36
memberAppendError 0.01 0.0 0.01 ±0.0 6.69
plusEvenError 0.01 0.0 0.01 ±0.0 6.06
reverseBUGimplies 0.01 0.0 0.01 ±0.0 6.09
deleteBUG 0.06 0.0 0.06 ±0.0 7.41
insertionSort2BUG 0.09 0.0 0.09 ±0.01 9.18
orderedTreeTraversalBug 0.18 0.0 0.18 ±0.05 8.96
orderedTreePredicate2 0.72 0.01 0.73 ±0.04 12.78

Table 4.1: First-order problems

88 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Name Time (s) Memory (MiB)

Completion Equations Total

foldRightMult 0.01 0.0 0.01 ±0.0 6.53
foldDiv 0.02 0.0 0.03 ±0.04 8.59
forallLeq 0.01 0.01 0.03 ±0.0 8.47
forallNotEqNotExists 0.02 0.0 0.03 ±0.01 8.9
mapPlus 0.01 0.06 0.07 ±0.0 8.89
filterNz 0.02 0.1 0.12 ±0.01 8.95
insertionSortHO 0.04 0.1 0.14 ±0.01 9.82
forallImpliesExists 0.04 0.13 0.17 ±0.01 9.91
filterEquivExists 0.04 0.13 0.18 ±0.01 9.15
foldLeftPlus 0.01 0.19 0.2 ±0.01 8.95
filterEven 0.03 0.28 0.31 ±0.0 8.98
mapFilter 0.03 0.36 0.39 ±0.88 8.98
map2AddImplies - - Timeout -
mapSquare - - Timeout -
mapTree - - Timeout -
mergeSortHO - - Timeout -

forallImpliesExists2 0.0 0.0 0.001 ±0.0 3.74
forallNotEqNotForall 0.0 0.0 0.001 ±0.0 3.93
filterEvenBug 0.1 0.0 0.1 ±0.01 8.96
insertionSortHObug 0.35 0.0 0.35 ±0.16 9.54
mergeSortHObug 0.42 0.0 0.42 ±0.04 10.91

Table 4.2: Higher-order problems

4.6. EXPERIMENTS 89

The next three columns give the execution time before reaching a solution or finding
a counter example, averaging on 10 executions: the time spent by the Tree Automata
Completion algorithm, the time spent generating equations and the total time (±
standard deviation). The timeout threshold is set to 120s. The last column gives
the memory usage of Timbuk. Each table is split in two, with on the top positive
problems where the property is proved, and on the bottom negative problems where
the property is disproved.

Execution Time

The tables show mostly low execution times (far below the second) for most problems,
in particular when dealing with lists or incorrect properties. However we see that
simply enumerating all possible equations sets becomes a problem when dealing with
binary trees (treeDepth, orderedTreeTraversal, orderedTree) where the execution time
start rising above the second. This cannot be improved without developing a more
efficient equation generation procedure that doesn’t need to go through all possible
equations.

Memory Usage

We also see that the memory usage is extremely volatile, ranging from 4MiB in the
best case to 4GiB in the worst case. This happens because the whole program is
analyzed at once, on the whole set of inputs. It makes the Tree Automata Completion
algorithm generate huge automata, especially during the exact completion phase
(without equations) in the equation generation procedure, Algorithm 1 (line 2). This
could be improved be adding modularity, analyzing each function separately when
possible (which is one of the purposes of the next chapter).

Completeness

Finally, many problems has not been solved before the timeout threshold. For the
most part, this is because this technique is not regularly complete (does not cover
every regular safety problem). We proved in the previous section the “functional
and collapsing” completeness of this technique (Theorem 3), which means that it
can prove any regular problem which can be proved using a collapsing functional
abstraction, i.e. each term is abstracted into a unique equivalence class and each
class is R-closed. It is enough to handle non-trivial problems such as proving that
the output of the insertion-sort algorithm is sorted (insertionSort). However it is not
enough to prove the merge-sort algorithm. In fact, it is not even enough to verify
some simpler functions.

Example 4.6.1. Consider the following TRS R defining a pred function computing
the predecessor of a natural number. The term pred(0) rewrites into the special error
state fail.

pred(0)→ fail pred(s(x))→ x

We want to show that pred(n) when n > 0 never fail. Using the technique described in
this chapter, the natural approach would be to (automatically) search for the contracting
equation set Ec = {s(s(0)) = s(0)} (or similar) that separates the natural numbers
into two equivalence classes O and N+. This doesn’t work because the generated set of
equation E contains Ec but also ER. This means that for all n ∈ N+, since pred(n)

90 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

rewrites into a natural number it must be abstracted into either O or N+. If we
take n = s(0) then pred(s(0)) rewrites into 0 so pred(s(0)) ∈ O. Now if we take
n = s(s(0)) then pred(s(s(0))) rewrites into s(0) so pred(s(s(0))) ∈ N+. However
both s(0) and s(s(0)) are in the same class N+, which means that pred(s(0)) and
pred(s(s(0))) should be in the same class, although we have just seen that they are
not (pred(s(0)) ∈ O and pred(s(s(0))) ∈ N+). This shows that there are no sets of
equations of the form Ec ∪ ER ∪ Er that can verify this function. As a result, this
verification technique is bound to diverge even on this simple problem. There are two
ways to solve this problem:

• A first solution is to remove ER so that the final abstraction may not be
collapsing. This would allow pred(s(0)) to not be automatically abstracted by O
but in a third abstract value N for instance, along with pred(s(s(0))).

• Another solution would be to generate non-functional abstractions, so that
pred(s(0)) can be abstracted by both O (because of ER) and N+.

This example shows that the only way to reach full regular completeness is to
generate either non-functional abstraction or non-collapsing abstractions [GR10].
Remember that by definition the Tree Automata Completion algorithm can only
generate functional abstractions. Generating non-collapsing abstractions would mean
generating equation sets without ER, which was introduced to reduce the number of
equations to consider [Gen16]. In the light of our experimental results this is to be
reconsidered.

4.6.3 Related Work

To our knowledge, the technique developed by Matsumoto et al. [MKU15] is the only
other fully automatic verification technique targeting regular safety problems. As
mentioned in Section 3.3.2, this paper defines a counter-example guided refinement
procedure to directly find equivalence classes represented as tree automata instead
of equations (each automaton recognizing one equivalence class). The abstraction
procedure is based on SMT solving and is regularly complete as it generates regular
abstractions that are not necessarily functional or R-closed. However because of
that, the abstraction procedure is computationally expensive. Even if in our case
enumerating equation sets can also be expensive, we seem to have overall better
performances. However this cannot be properly verified as neither the implementation
nor the test suite of used in the paper [MKU15] are publicly available.

4.7 Conclusion

In this chapter we have used the Tree Automata Completion algorithm to auto-
matically verify regular safety properties on higher-order functional programs. We
have defined the class of K-TRS defining higher-order functional programs on which
contracting equations on values could be used to generate regular abstractions without
compromising the termination of the completion algorithm. This has been used to
automatically verify regular properties on higher-order programs with good time
performances, in particular on list processing programs.

However we have seen with Example 4.4.3 that the K-TRS does not include higher-
order functional programs written in CPS form, which is an important family of
functional programs. Moreover we also showed that the current abstraction procedure

4.7. CONCLUSION 91

based on contracting equations can only generate functional, collapsing abstractions.
We have seen that this prevents us to reach regular completeness: some regular
problems as simple as the pred problem (cf. Example 4.6.1) cannot be handled.
We need to find another way to generate abstractions. We have seen that in their
paper [MKU15] Matsumoto et al. define a regularly complete abstraction procedure by
using tree automata instead of equations. However by generating regular abstractions
that are not necessarily functional or collapsing, this procedure seems expensive. In
the next chapter we show that we can still generate collapsing only abstractions while
preserving regular completeness. By using regular languages as types, we define a
new complete and modular verification technique designed to scale.

92 CHAPTER 4. HIGHER-ORDER EQUATIONAL ABSTRACTIONS

Chapter 5

Regular Language Type Inference

5.1 Introduction

In this chapter we design a novel technique for the verification of regular safety
properties on higher-order functional programs that is complete and modular. This
continues the effort developed in the last chapter where we ended off with three
problems to solve:

• (Abstraction) Using contracting equations on values with the Tree Automata
Completion algorithm can only generate abstractions that are both functional
and collapsing. We have seen with Example 4.6.1 that this prevents the use of
contracting equations in a regularly complete verification technique for safety
properties. We need a new way of abstracting the program in a non-functional
manner.

• (Inference) For now we used a very naive way of generating abstractions that just
enumerates all the possibles abstractions. This is relatively fast in practice for
small programs as shown in Section 4.6.2. However this is favored by the use of
contracting equations on values, which we cannot use in a complete verification
technique. We need to define a proper abstraction inference procedure.

• (Modularity) Finally, analyzing whole programs at once is surely not practicable
with larger programs. We need to design a modular verification procedure able
to break down the verification problem into smaller parts.

Our new technique is defined as a type inference system which aims at typing each
term of the input term rewriting system using regular languages as types.

5.1.1 Abstraction solution: regular abstract interpretation

Our first problem (Abstraction) is solved by explicitly defining the abstraction relation
; (cf. Definition 2.4.4) using term rewriting systems. This defines a framework of
regular abstract interpretation, a special case of abstract interpretation where: (a) the
concrete domain is T (Σ) the set of terms/states, (b) the abstract domain is Σ# a set
of abstract states, (c) the abstraction relation is defined as a rewriting system ∆#

that rewrites concrete terms into abstract states. We write Λ = 〈Σ#,∆#〉 the tree
automaton defining the abstraction of T (Σ). In this automaton, each Σ# recognizes
a regular language. (d) the abstract semantics of the program is defined by a TRS
R#, extracted from R, that rewrites abstract terms. The relation ; is defined as
→!

∆#∪R# (remember that we write s→!
R t when s→∗ t and t ∈ IRR(R)).
93

94 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

Example 5.1.1. Let us consider the following property over the TRS R defining a
filter function over lists of natural numbers (List). We want to verify that for each
list l, when filter is called with the even predicate, all odd numbers are filtered out of
the l in the output. This can be stated as follows using the for_all predicate function:

∀l ∈ List. for_all even (filter even l) 6→∗R false

All the functions (for_all , even, filter, etc.) are defined in R. To verify this particular
property, in the context of regular abstract interpretation we can restate our property
as

for_all even (filter even List#) 6; false#

where List# and false# are some elements of the abstract domain Σ# and ; the
relation →!

∆#∪R#. Each abstract value of Σ# recognizes a concrete language as
defined by ∆#:

0→ Nat# nil→ List# true→ true#

s(Nat#)→ Nat# cons(Nat#, List#)→ List# false→ false#

Note how the ∀ disappears. A solution to this problem is a complete definition of R#

(which was not yet given) and Λ = 〈Σ#,∆#〉 such that the new (abstract) property
is verified when ; is an abstraction of R in Σ#. In this case, a possible solution
contains ∆# defined by (in addition to the transitions above):

0→ Even# s(Even#)→ Odd# nil→ EvenList#

s(Odd#)→ Even# even→ even# cons(Even#, EvenList#)→ EvenList#

and R# defined as 1:

filter even# List# → EvenList#

for_all even# EvenList# → true#

In this abstraction, (filter even l) rewrites into EvenList# using ∆# and R#. In
the same way, (for_all even EvenList#) rewrites into true# and only true#, which
means that overall we have (for_all even (filter even List#)) 6; false#. (remember
that ; = →!

∆#∪R#).

The verification problem boils down to the problem of automatically finding Λ =
〈Σ#,∆#〉 and R# that proves or disproves the user’s property.

5.1.2 Modularity solution: regular language types

Note how each rule of ∆# andR# acts as a type signature for its associated constructor
symbol or function symbol respectively. To find Σ#, ∆# and R# we embrace the
type perspective by defining a modular type inference algorithm that can find the
type signatures of each symbol necessary to solve a given regular safety verification
problem. The algorithm is a backward static analysis that uses the input expression
target type to find the input type of each function call recursively.

1For ; to really be an abstraction of R according to Definition 2.4.4, some other rules are needed
in R# and ∆# to abstract intermediate states. This will be detailed later on.

5.1. INTRODUCTION 95

Example 5.1.2. Our previous (abstract) rewriting problem becomes a regular typing
problem stated as:

Λ,R#, π 6` for_all even (filter even x) : false#

where ` is our type judgment relation with Λ,R# the typing environment and π :
X 7→ Σ# the substitution binding each variable to its type. We want to make sure that
it is impossible to type this input term with false#. It can be resolved by inferring
every possible type for (for_all even (filter even x)) and its subterms, and check that
it is never typed with false#.

To solve this problem, we have developed a regular type inference procedure.
Given an input term (such as (for_all even (filter even x))) and a target type (such
as false#), this procedure is able to infer Λ,R# and all the possible type substitutions
π for which the given term is typed with the given type. This typing algorithm
analyzes each function separately, solving our modularity problem.

Example 5.1.3. To find Λ,R#, π such that (for_all even (filter even x)) can be
typed with the target type false#, our type inference algorithm starts by solving the
simpler problem of finding Λ,R#, π such that (for_all y z) can be typed with the
same target false#, which does not involve filter nor even. It will find/generate input
types for y and z that can then be recursively used to analyze the subterms even
and (filter even x), and so on. If it cannot find a suitable type for x (or any other
term), then we know (for_all even (filter even x)) cannot be typed with false# and
the property is verified.

In this algorithm, each function is analyzed separately. 2 For each function f , it
needs to solve the following problem: Given a target output type for f , infer all the
possible inputs types to the function that leads to this type. We see in Section 5.3.3
that for non-recursive functions, this can be done using well known operations on tree
automata by simply looking at the output type and the rewriting rules of the function.
For recursive functions however, a more complex invariant learning procedure is
needed.

5.1.3 Inference solution: Regular language learning

Analyzing a recursive function is much harder than non-recursive functions, as it
requires finding a regular fixpoint for the function. We do that by solving our last
problem (Inference) with the definition of a new regular invariant learning procedure.
The core of the invariant inference procedure is an example guided regular language
learning procedure, based on the Tree Automata Completion Algorithm [Gen16] and
SMT constraints solving. For a given symbol f and target regular language partition
P (a set of disjoint regular languages), our procedure is able to give, for all L ∈ P , all
the input regular languages L1, . . . ,Ln such that for all ti ∈ Li, f(t1, . . . , tn) rewrites
into a term belonging to L.

Example 5.1.4. Let us focus on the following fragment of the TRS R used in the
previous examples:

even 0→ true even s(x)→ odd x odd 0→ false odd s(x)→ even x

2More accurately, the typing algorithm analyzes mutually recursive functions at the same time.

96 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

By giving R, even, and the target partition {{true}, {false}} to our procedure, it
is able to automatically learn that the interesting input languages for even are the
languages Even = {n | n % 2 = 0} and Odd = N \ Even. It will also infer that
∀n ∈ Even. even n→∗ true and that ∀n ∈ Odd. even n→∗ false.

As we will see in Section 5.3.4, learning is done by providing a series of positive
and negative examples to the procedure. For instance by providing (even 0) and
(even s(0)), because both rewrite to two different elements of the target partition, we
learn that 0 and s(0) must be in different input languages. In practice, the target
language partition is given in terms of abstract values in an input abstraction domain.
In our example, the input partition would be {true#, false#}. Similarly, the output
of the invariant inference procedure is a refinement of the abstract domain (rules to
add to ∆#) and an abstract TRS R#. In our example, the output of the procedure
would be:

0→ Even# s(Even#)→ Odd# s(Odd#)→ Even# added to ∆#

even Even# → true# even Odd# → false# added to R#

oddOdd# → false# odd Even# → true#

Note that it also gives information about the odd function, since the definition of
even is mutually recursive with odd. In Section 5.3.4 we show that this procedure
is regularly complete and complete in refutation. This means that, if there exists a
regular abstraction (∆# and R#) that satisfies the input partition, then the procedure
will find it. In addition, if there exists an input term rewriting into two different
elements of the input partition P , the procedure terminates and provides such a
counter-example term.

The rest of the chapter is structured as follows. Section 5.2 introduces our regular
abstract interpretation framework. Section 5.3 presents the regular language type
system and the type inference algorithm. Section 5.4 exposes the results of our
experiments carried on a custom implementation of the technique in a new version of
Timbuk [Tbk4], and compare them with the technique defined in Chapter 4. Finally,
Section 5.5 concludes the chapter.

5.2 Regular Abstract Interpretation

In this section we define a regular abstract interpretation framework that adapts
classical abstract interpretation to term rewriting systems and regular languages.
In this framework, terms representing states of the execution are abstracted into a
regular language, denoted by a state of a tree automaton. For readability, we denote
those states by identifiers of the form name#, where name is an arbitrary symbol
whose role is to provide an intuition of the language recognized by name#. In the
following, we also call those states abstract values. The set of abstract value is the
abstract domain, denoted by Σ#. The semantics of the program R is represented by
an abstract TRS R# that operates over the abstract domain of regular languages.

We start with an example. Define I as the set {nil, cons(a, nil), cons(b, nil), ...}
of (not nested) lists of as and bs and assume that the safety property we wish to
verify is

(1) ∀l ∈ I. sorted (sort l) 6 →∗Rfalse
This can be translated into an abstract interpretation problem where the goal is to
find an abstract domain Σ# provided with an abstraction function α : T (Σ)→ P(Σ#)

5.2. REGULAR ABSTRACT INTERPRETATION 97

and a concretization function γ : Σ# → P(T (Σ)), and an abstract semantics →#

extracted from R which faithfully models R such that

(2) sorted (sort ab_list#) 6→#∗ false#

where ab_list# and false# are two abstract values of Σ# such that α(I) = {ab_list#}
and γ(false#) = {false}. Note that having an abstraction α returning a set of abstract
elements is non-standard in abstract interpretation but we have ensured that it is used
consistently throughout the chapter. In this particular first abstraction, all lists of a
and b are abstracted by the same abstract element ab_list# thus α(I) is the singleton
{ab_list#}. Since Σ# is finite, it is easier to verify property (2) than property (1).
Then, if the abstraction is correct and property (2) is true, we can then deduce that
property (1) is also true. In the rest of this section, we show how to define →#, α
and γ in terms of term rewriting systems and how to infer them with an abstract
domain Σ# which together will allow us to verify a given property. In the rest of this
chapter, we use σ to denote concrete substitutions from X to T (Σ), and π to denote
abstract substitutions from X to Σ#. In addition we name γ(π) the set of all concrete
substitutions extracted from π, i.e., γ(π) = { σ | ∀x ∈ Dom(π). σ(x) ∈ γ(π(x)) }.

5.2.1 Regular Abstract Domain

The concrete domain of a regular abstract interpretation is T (Σ). The elements of
the abstract domain of a regular abstract interpretation are arbitrary symbols, each
of them representing a regular set of terms of T (Σ). One originality of our approach
resides in representing an abstract domain by a tree automaton, where each state
corresponds to a regular set of terms. More precisely, an abstraction is represented
by a tree automaton Λ = 〈Σ,Σ#,Σ#,∆#〉 where Σ# is the set of abstract values
and ∆# a term rewriting system defining the associated abstraction function α that
describes how concrete terms are abstracted into abstract values. For readability, we
write Λ = 〈Σ#,∆#〉. In the previous example, Λ can be defined using the following
∆#:

a→ ab# b→ ab# nil→ ab_list# cons(ab#, ab_list#)→ ab_list#

Note that a configuration of Λ is a term of T (Σ,Σ#), a mix between abstract and
concrete terms which allows the transition from the concrete domain to the abstract
one. Each term of T (Σ,Σ#) is called an abstract pattern.

Definition 5.2.1 (Regular Abstract Domain). Let Σ be an alphabet. A T (Σ)-
abstraction Λ = 〈Σ#,∆#〉 is a regular abstract domain iff the corresponding tree
automaton 〈Σ,Σ#,Σ#,∆#〉 is normalized and complete. The abstraction and con-
cretization functions are then defined by

α(t) = {a# | t→∗∆# a#} γ(a#) = {t | t→∗∆# a#}

Note that in this definition α returns the set of all possible abstract values for
any term t. Since Λ can be non-deterministic, this set may contain more than one
abstract element.

5.2.2 Abstract Semantics

By rewriting a term t using ∆#, we can abstract some subterms of t by elements of
Σ#. However, this abstracted term can no longer be rewritten using R. We need

98 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

to introduce a new rewriting system R# as an abstraction of R, rewriting abstract
patterns while preserving the behavior of R. To deduce a property of R using R#,
the abstract R# must itself respect specific constraints w.r.t. R.

Definition 5.2.2 (Abstraction of a TRS). Let R be a TRS, Λ = 〈Σ#,∆#〉 a regular
abstract domain over IRR(R). Let R# be a TRS over T (Σ#). R# is an abstraction
of R over Λ iff

• every rule ofR# has the form f(a#
1 , . . . , a

#
n)→ a# with f ∈ Σn, a#

1 , . . . , a
#
n , a# ∈

Σ#;

• (soundness) for all rules f(a#
1 , . . . , a

#
n) → a# of R#, for all terms t of

{f(t1, . . . , tn) | ti ∈ γ(a#
i)}, for all terms u ∈ IRR(R) such that t →∗R u

then u ∈ γ(a#);

• (completeness) for all symbols f used in R#, for all terms t = f(t1, . . . , tn)

where ti ∈ IRR(R) for all i, there must exist some rule f(a#
1 , . . . , a

#
n) → a#

such that for each i, ti ∈ γ(a#). In other words, for a given used symbol, each
possible abstract input is mapped to at least one abstract output.

Theorem 5 (Correctness). Let R be a TRS, Λ = 〈Σ#,∆#〉 an abstract domain over
IRR(R). If R# is an abstraction of R over Λ then we have for all pattern p, abstract
substitution π and abstract value v# ∈ Σ#:

pπ →∗R#∪∆# u# ⇒ ∀σ ∈ γ(π). ∀u ∈ IRR(R). pσ →∗R u⇒ u ∈ γ(u#)

with γ(π) = { σ | ∀x ∈ Dom(π). σ(x) ∈ γ(π(x)) } the set of all possible concretized
substitutions.

Proof. This can be proved by a simple induction on the size of the (abstract) rewriting
path using the soundness property of R#. If pπ = u# then p is some variable x. For
all σ ∈ γ(π), pσ is a ground term. So for all u ∈ IRR(R) such that pσ →∗R u we have
u = pσ, with u ∈ γ(u#). Next, if pπ →k+1

R#∪∆# u#. By definition (of R# and Σ#),
there exists a context C, a pattern l = f(l1, . . . , ln) and an abstract value r# such
that p = C[l] and pπ →R#∪∆# C[r#] →k

R#∪∆# u#. Now let us consider σ ∈ γ(π)

and u ∈ IRR(R). Since C[l]π →R#∪∆# C[r#] then by definition of R# (soundness of
abstraction R#) there exists some term r such that lσ →∗R r so that C[l]σ →∗R C[r]
which we can write as (1) pσ →∗R C[r]σ. Finally let x be a fresh variable and π′

be the abstract substitution such that π′ = π ∪ {x 7→ r#}. By construction we
have C[r#]π = C[x]π′. Using the induction hypothesis on C[x]π′ →∗R#∪∆# u#,
we get that (2) ∀σ′ ∈ γ(π′). ∀u ∈ IRR(R). C[x]σ′ →∗R u ⇒ u ∈ γ(u#). Since
π′ = π ∪ {x 7→ r#}, for all σ′ ∈ γ(π′) there exists r ∈ γ(r#) and σ ∈ γ(π) such that
σ′ = σ ∪ {x 7→ r}. In this case, C[x]σ′ = C[r]σ and we can connect (1) and (2) to
obtain that pσ →∗R u⇒ u ∈ γ(u#).

Note that it is not sufficient to have some abstraction of R to be able to verify the
desired property. On our previous example, the following TRS is a correct abstraction
of R:

sort ab_list# → ab_list# sorted ab_list# → bool#

however since all lists of as and bs are always abstracted by the same element ab_list#,
this abstraction is too coarse to prove that for all list l, sorted (sort l) 6 →∗Rfalse. To
succeed, we need to make sure that our abstraction provides the additional property:

∀v#. sorted (sort v#) 6 →∗R#∪Λfalse
⇒ ∀l. sorted (sort l) 6 →∗Rfalse

5.2. REGULAR ABSTRACT INTERPRETATION 99

Another way to phrase it is for R# to be “complete” w.r.t. sorted (sort l) and false#,
according to the following definition:

Definition 5.2.3 (Complete abstraction). Let R# be a TRS abstraction of R over
Λ = 〈Σ#,∆#〉. We say that R# is complete with regard to a pattern p and abstract
value v# when for all term t ∈ γ(v#), for all substitution σ : X 7→ T (Σ), if pσ →∗R t
then there exists an abstract substitution π : X 7→ Σ# such that σ ∈ γ(π) and
pπ →∗

∆#∪R# v#. This can be seen as the the contraposition of Theorem 5 for a
particular case of p and v#.

In our example, for R# to be complete w.r.t. sorted (sort l) and false# we need at
least three elements to abstract lists of as and bs: sorted#, unsorted#, and b_list#

recognizing respectively sorted a and b lists, unsorted lists, and lists of bs. The
abstract domain Λ becomes:

a→ a# cons(b#, b_list#)→ b_list# cons(b#, sorted#)→ unsorted#

b→ b# cons(a#, b_list#)→ sorted# cons(b#, unsorted#)→ unsorted#

nil→ b_list# cons(a#, sorted#)→ sorted# cons(a#, unsorted#)→ unsorted#

and the abstract TRS R# becomes:

sort b_list# → b_list# sorted b_list# → true# sort sorted# → sorted#

sorted sorted# → true# sort unsorted# → sorted# sorted unsorted# → false#

Using those abstract elements, domain and TRS, we can show:

sorted (sort sorted#) 6 →∗R#∪Λ
false#

sorted (sort unsorted#) 6 →∗R#∪Λ
false#

sorted (sort b_list#) 6 →∗R#∪Λ
false#

 ⇒ ∀l ∈ I. sorted (sort l) 6 →∗Rfalse

To use this for verification, we need to infer Λ with an R# that is complete with
regard to our desired property: this is the inference problem we solve in this chapter.

Definition 5.2.4 (Inference problem). Assume that we are given a TRS R, a pattern
p ∈ T (Σ,X), an initial abstract domain Λ∗ = 〈Σ#

∗ ,∆
#
∗ 〉 and a target abstract value

v# ∈ Σ#
∗ . A solution to the inference problem is

1. an abstract domain Λ = 〈Σ#,∆#〉 such that Σ# ⊇ Σ#
∗ and ∆# ⊇ ∆#

∗ ;

2. an abstraction R# of R in Λ, complete w.r.t. p and v#;

3. the set Π of all the abstract substitutions π such that pπ →∗
∆#∪R# v#.

Intuitively, a solution provides a set of substitutions from variables to abstract values
such that if the pattern rewrites to a result that belongs to v# then there is an
abstract substitution in Π such that the pattern rewrites to v#. Note that if the
resulting set Π is empty, we can deduce that for all t ∈ γ(v#), for all substitution σ
we have pσ 6 →∗Rt.

100 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

5.2.3 Abstraction Inference Challenges

To automatically solve inference problems, we designed an abstraction refinement
procedure where an initial coarse abstraction is iteratively refined from the informa-
tions gathered at previous iterations, until it converges to a satisfying abstraction
able to prove or disprove the desired property. A classical approach to abstrac-
tion refinement is the Counter-Example Guided Abstraction Refinement (CEGAR)
procedure [CGJ+00], where the refinement information comes from spurious counter-
examples introduced by the considered abstractions. In our setting, using CEGAR
would mean to start the procedure with some initial abstractions R# and Λ, and
search for spurious counter-examples introduced by the abstraction to refine it. For in-
stance, consider the inference problem defined by p = (sorted l) and v# = false#. By
Definition 5.2.4 we want to find an abstract domain Λ = 〈Σ#,∆#〉 (with false# ∈ Σ#

and false→ false# ∈ ∆#) an abstraction R# of R in Λ that is complete w.r.t. p and
false#. Assume we start from the basic abstraction Λ where ∆# is defined by

true→ true# false→ false#

a→ ab# b→ ab#

nil→ ab_list# cons(ab#, ab_list#)→ ab_list#

and the initial abstraction R#:

sorted ab_list# → true# sorted ab_list# → false#

Obviously this abstraction is too coarse because it does not distinguish between sorted
and unsorted lists. As a result we get:

sorted ab_list# →∗R#∪Λ true#

even though there exists an (unsorted) list l ∈ γ(ab_list#) such that

sorted l 6→∗R true

R# is not a sound abstraction of R, which is required to be a valid solution of our
inference problem. We need to refine it. To do that using CEGAR, we need to find
such a (sorted l) that does not rewrite to true. It is a counter-example to the soundness
of the abstraction, and we must make sure it does not occur again in the refined
abstraction. For instance here, a possible counter-example is l = cons(b, cons(a, nil)),
where l ∈ γ(ab_list#) and sorted l 6→∗R true. In the next abstraction we need to
abstract l into an abstract value l# such that

sorted l# 6→∗R#∪Λ true#

To concretely design such a procedure we have to solve three problems. First,
building a new abstract domain by separating only one concrete value at each
refinement step may lead to non-termination. For instance in our example, one could
refine the abstraction by separating cons(b, cons(a, nil)) from the other lists, then
separating cons(a, cons(b, cons(a, nil))) at the next iteration and so on. If we do this,
we end up creating infinitely many abstract values, one for each unsorted list instead
of creating one single abstract value for all unsorted lists. Remember that this is the
cause of the incompleteness of the PMRS abstraction procedure designed by Ong et
al. [OR11] as showed in Section 3.3.1. Thankfully, there are ways to explore the set

5.3. REGULAR LANGUAGE TYPES 101

of possible abstractions so that the refinement procedure is guaranteed to terminate
if there exists a regular abstraction R# and Λ proving or disproving the property.
These exploration techniques generally uses SMT solvers to explore the set of possible
abstractions Σ# w.r.t. their cardinal [MKU15]. The second problem is that, given an
abstract domain, finding spurious counter-examples is not easy. Indeed, the TRS R#

does not explicitly encode the rewriting relation between terms. As a consequence,
even if we know that a counter-example may exist, extracting a concrete rewriting
sequence leading to the counter-example from R# and Λ is computationally expensive.
Moreover, in the above example, the rewritings only depend on a single function:
sorted. In practice, to find counter-examples on complex programs it is necessary to
explore a much larger abstraction of the whole program. Thus, the computational cost
for finding a counter-example grows with the size of the program to verify. Finally,
the third problem is that the “abstract and refine” procedure presented above is not
modular. From a set of constraints that we extract from a spurious counter-example,
the next abstraction is recomputed for the whole program. As a result the size of
the program directly and greatly impacts the efficiency of two main steps of the
procedure: the search for counter-examples and the abstraction refinement. This is
why we want to define a modular procedure able to analyze functions independently
and whose termination is guaranteed if there exists a regular abstraction satisfying
the property. As we will see in Section 5.3.4, contrarily to classical CEGAR, our
procedure extracts counter-examples directly from the concrete TRS itself instead of
the abstraction to reduce the computation cost. To ensure completeness, we also use
an SMT-based technique exploring possible abstractions w.r.t. the size of the abstract
domain Σ#. Finally for modularity, we design a type system attaching abstraction
information to each function (to each symbol of the TRS). In the next section, we
show how to translate the above inference problem into a type inference problem over
regular language types, that will allow us to design a modular inference procedure
for those types.

5.3 Regular Language Types

A convenient way of modularizing the abstract interpretation is by introducing a type
system to attach abstraction information to each term and symbol. In this approach,
the set of types is the abstract set of values Σ# and a term has type τ if it rewrites
to τ using ∆# and R#. In practice, each type represents a regular language. A type
substitution π ∈ X → Σ# maps variables to types. From this perspective, we say that
the abstract semantics R# is the type environment of symbols. In the following, we
define a typing judgment ` which can be used to give types to patterns, relative to a
given Λ,R# and substitution π which assigns a type to each variable of the pattern.
The typing judgment Λ,R#, π ` p : τ means that the pattern p ∈ T (Σ,X) can be
typed with τ ∈ Σ# using the substitution π, Λ and R#.

Definition 5.3.1 (Typing rules). Let Λ = 〈Σ#,∆#〉 be an abstraction of T (Σ), R# a
type environment and π a substitution from X to Σ#. We define the typing judgment
` via the following inference rules. In the rules we use the rewriting rules p→ τ of
∆# to deduce a type for constructor and function applications. Recall that Σ is the
disjoint union of constructor symbols C and function symbols F .

var
π(x) = τ

Λ,R#, π ` x : τ

102 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

constructor

Λ,R#, π ` p1 : τ1 . . . Λ,R#, π ` pn : τn
f ∈ C f(τ1, . . . , τn)→ τ ∈ ∆#

Λ,R#, π ` f(p1, . . . , pn) : τ

sub-typing
Λ,R#, π ` f(p1, . . . , pn) : τ ′ τ ′ → τ ∈ ∆#

Λ,R#, π ` f(p1, . . . , pn) : τ

application

Λ,R#, π ` p1 : τ1 . . . Λ,R#, π ` pn : τn
f ∈ F f(τ1, . . . , τn)→ τ ∈ R#

Λ,R#, π ` f(p1, . . . , pn) : τ

The var rule uses the type substitution π to type a single variable. The application
rule follows the abstract semantics R# to type a pattern which can be rewritten. The
constructor rule uses the abstraction Λ, and in particular ∆#, to give a type to
patterns built from a constructor symbol. The sub-typing rule does the same using the
ε-transitions of ∆#. From this rule we extract a sub-typing relation � where τ1 � τ2

means that τ1 →∗∆# τ2.

The typing judgment definition makes a bridge between the rewriting world and
the typing world. Each typing rule correspond to a rewriting step with either R#

which becomes the type environment, or ∆# which includes the types definitions.
The following lemma states the correctness of the type system using the abstract
interpretation defined in the previous section. Its proof uses the rewriting system
R#∪∆# as an intermediate step between the type system and abstract interpretation.

Theorem 6 (Correctness). Let R be a TRS, Λ = 〈Σ#,∆#〉 an abstraction of T (Σ)
and R# an abstraction of R over Λ. For all patterns p and types τ (which are abstract
values of Σ#) we have:

Λ,R#, π ` p : τ ⇐⇒ pπ →∗R#∪∆# τ

Proof. First, let’s show that Λ,R#, π ` p : τ implies pπ →∗R#∪∆# τ . We show this
with a simple induction on the type inference rules.

• (var) Λ,R#, π ` x : τ . Then π(x) = τ , p = x and thus pπ = τ .

• (constructor) Λ,R#, π ` f(p1, . . . , pn) : τ with f ∈ C. Then Λ,R#, π ` pi : τi.
By induction hypothesis piπ →∗R#∪∆# τi. By definition f(τ1, . . . , τn)→ τ ∈ ∆#

so f(p1, . . . , pn)π →∗R#∪∆# τ .

• (sub-typing) Λ,R#, π ` f(p1, . . . , pn) : τ with Λ,R#, π ` f(p1, . . . , pn) : τ ′ and
τ ′ → τ ∈ ∆#. By induction hypothesis we have that f(p1, . . . , pn)π →∗R#∪∆# τ ′.
Using τ ′ → τ ∈ ∆# we conclude that f(p1, . . . , pn)π →∗R#∪∆# τ .

• (application) Λ,R#, π ` f(p1, . . . , pn) : τ with f ∈ F . Then Λ,R#, π ` pi : τi.
By induction hypothesis, piπ →∗R#∪∆# τi. By def. f(τ1, . . . , τn)→ τ ∈ R# so
f(p1, . . . , pn)π →∗R#∪∆# τ .

Then we show that pπ →∗R#∪∆# τ implies Λ,R#, π ` p : τ , by strong induction
on the length of the rewriting path. If pπ = τ then p is a variable x and we have
π(x) = τ . By the inference rule (var) we have Λ,R#, π ` x : τ . Now if pπ →k+1

R#∪∆# τ ,
we have the following cases:

5.3. REGULAR LANGUAGE TYPES 103

• pπ →k
R#∪∆# f(τ1, . . . , τn) →∆# τ with f ∈ C and p = f(p1, . . . , pn). For all

i = 1 . . . n, we have piπ →ki
R#∪∆# τi with ki ≤ k. Applying the induction

hypothesis we get Λ,R#, π ` pi : τ for i = 1 . . . n. The constructor rule then
gives Λ,R#, π ` p : τ .

• pπ →k
R#∪∆# τ ′ →∆# τ . Using the induction hypothesis on pπ →k

R#∪∆# τ ′

we get that Λ,R#, π ` p : τ ′. We can then apply the sub-typing rule to get
Λ,R#, π ` p : τ .

• pπ →k
R#∪∆# f(τ1, . . . , τn) →R# τ with f ∈ F and p = f(p1, . . . , pn). For all

i = 1 . . . n, we have piπ →ki
R#∪∆# τi with ki ≤ k. Thus, we can apply the

induction hypothesis and get Λ,R#, π ` pi : τ for i = 1 . . . n. Applying the
application rule gives Λ,R#, π ` p : τ .

Remark 5.3.1. Recall that we encode higher-order programs using the dedicated @
symbol (Section 2.2.3). For instance @(@(f, x), y) is the total application of f on
two parameters x and y. A reader familiarized with usual ML-like type systems may
notice the lack of arrow type for partial applications such as @(f, x). We do not need
them in our type system as they can be represented using regular languages, just like
any other type. The ML-type τ1 → τ2 is represented by the regular language of all
terms t ∈ T (Σ) such that the application @(t, x) rewrites to a term of τ2 when x
rewrites to a term of τ1.

Example 5.3.1. Consider R defining a (buggy) delete function as

(d1) delete x nil→ nil

(d2) delete x cons(y, l)→ if (eq(x, y), delete x l, delete x l)

The definition of the equality predicate eq and of the if-then-else symbol if are omitted
but present in R. The delete function is supposed to remove every occurrence of x in
the given list. In the last rule however, we forgot to put y back in the list when x 6= y.
As a result, this delete function always returns nil . This can be spotted by noticing
that there exists an abstraction Λ and R# such that Λ,R#, π ` delete x l : nil# with
π(x) = ab# and π(l) = ab_list#. Let the abstraction Λ of T (Σ) be defined by

a→ ab# true→ bool# nil→ ab_list# nil→ nil#

b→ ab# false→ bool# cons(ab#, ab_list#)→ ab_list# nil# → ab_list#

and let the abstraction R# of R over Λ be defined by

eq(ab#, ab#)→ bool#

if (bool#, nil#, nil#)→ nil#

delete ab# ab_list# → nil#

It is then easy to show Λ,R#, π ` delete x l : nil# by the following typing derivation
(Λ,R#, π are omitted to preserve the readability):

π(x) = ab#

` x : ab#
π(l) = ab_list#

` l : ab_list# delete ab# ab_list# → nil# ∈ R#

` delete x l : nil#

104 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

It is possible to build an abstraction R# from Λ and R so as to give the most
precise regular type information to each function. The outline of the procedure is as
follows: For each function f of R, for every combination of input and output types,
make the hypothesis that this combination is valid and try to type both sides of
each rule defining f in R with this combination of types. If it is possible, then the
combination is valid. From the set of valid combinations, keep the most precise.

Example 5.3.2. In the previous example, the combination delete ab# ab_list# →
bool# is not valid for the delete function since it is impossible to type the right-hand-
side of the rule (d1) of delete with bool#. The combination delete ab# ab_list# →
nil# that has been selected is valid. The right-hand side of the rule (d1) of delete has
the type nil# by the typing derivation:

nil→ nil# ∈ ∆#

` nil : nil#

The typing judgment of the right-hand-side of rule (d2) with nil# comes from the fol-
lowing derivation (where we omit the rules of if , eq and delete in R# for readability):

π(x) = ab#

` x : ab#

π(y) = ab#

` y : ab#

` eq(x, y) : bool#

π(x) = ab#

` x : ab#
π(l) = ab_list#

` l : ab_list#

` delete x l : nil#

` if (eq(x, y), delete x l, delete x l) : nil#

Note that the combination (delete ab# ab_list# → ab_list#) is also valid for the
delete function, but is less precise than (delete ab# ab_list# → nil#).

This example illustrates that using this type system and a given abstraction Λ of T (Σ),
there exists a procedure to build an abstraction R# of R from Λ that gives precise
information about the functions of the program. In this example, it is convenient to
have nil# as part of Λ, allowing us to type the delete function with nil# as output,
which in turns allowed us to spot the mistake in delete (cf. Section 5.4). In general
however, Λ does not contain enough information to prove or disprove the wanted
property. The abstraction Λ must be refined along with R#. This transforms the
abstraction inference problem introduced in the previous section into the following
type inference problem.

Definition 5.3.2 (Regular Language Type Inference Problem). Let R be a term
rewriting system and p a pattern of T (Σ,X). Let Λ∗ = 〈Σ#

∗ ,∆
#
∗ 〉 be an initial abstract

domain, and τ ∈ Σ#
∗ a (target) type. A solution to the type inference problem is 1) an

abstract domain Λ = 〈Σ#,∆#〉 such that Σ# ⊇ Σ#
∗ and ∆# ⊇ ∆#

∗ ; 2) an abstraction
R# of R in Λ, complete w.r.t. p and v#; 3) the set Π of all the type environments π
such that Λ,R#, π ` p : v#.

Note that type inference problems are usually concerned with finding some type
substitution π such that π ` p : τ . In our case however, since we want to capture the
entire behavior of the input pattern with regard to the target type τ , we are interested
in finding an abstraction containing all such type substitutions, in Π. For instance if
we consider the pattern p = xor(x, y) with the target type τ = true#, a solution to
the regular language type inference problem must include Λ,R# with Π containing
π1, π2 such that π1 = {x 7→ true#, y 7→ false#} and π2 = {x 7→ false#, y 7→ true#}.
These two substitutions are necessary (and sufficient) to capture the entire behavior
of the xor function on its input with regard to the target type true#.

5.3. REGULAR LANGUAGE TYPES 105

5.3.1 Type Partitions

The type inference procedure we define in this chapter is fundamentally an inductive
inference procedure working on the structure of the given input pattern. However
having multiple possible type environments for a single pattern and target type is
not convenient, since we would need to analyze every case and “split” the analysis at
each induction step.

Example 5.3.3. We want to type the term xor(f(x), y) with target type true#. The
only possible abstraction for xor separating true and false is the following R#:

xor(true#, true#)→ false# xor(false#, true#)→ true#

xor(true#, false#)→ true# xor(false#, false#)→ false#

This means that to have xor(f(x), y) : true#, we may have either f(x) : true# or
f(x) : false#. We need to analyse both cases, splitting the analysis of f into two
branches. Then, depending on the definition of f , we may need to split again each of
the two branches to analyze x, etc. This can result into an exponential blow-up.

Instead, we would like to have one single environment to pass along. The fundamental
idea to achieve this is to use type partition environments instead of using type
environments. A type partition is a set of types which represent non-overlapping
(regular) sets of values and which together cover the whole domain of values.

Definition 5.3.3 (Type Partition). Let Λ = 〈Σ#,∆#〉 be an abstraction of T (Σ). A
set T = { τ1, . . . , τn } ⊆ Σ# is a type partition if for all i, j ∈ [1, n], γ(τi)∩γ(τj) = ∅
when i 6= j, and ⋃

τ∈T
γ(τ) = T (Σ)

We write P#(Λ) the set of type partitions defined over Λ. Type partitions form
a semi-lattice w.r.t. v, where T1 v T2 iff for all element a#

1 of T1 there exists an
element a#

2 of T2 such that γ(a#
1) ⊆ γ(a#

2). The greatest lower bound of two partitions
T1 and T2 is the partition T with the fewest elements such that T v T1 and T v T2.
Following tree automata usage, we call this the product T1 ⊗ T2.

Definition 5.3.4 (Type Partition Environment). Let Λ be an abstraction of T (Σ). A
type partition environment is a mapping from variables to type partitions X 7→ P#(Λ).
If Π is a set of type environments (X 7→ Σ#), then we write Π̃ the type partition
environment where for all variable x ∈ X , Π̃(x) is the product of all the types associated
to x in Π:

Π̃(x) = ⊗
π∈Π
{ π(x), π(x) }

where τ refers to the element of Σ# complement of τ such that γ(τ) = γ(τ) (we assume
such element exists since we can always add it otherwise). We call { π(x), π(x) } the
partitioned domain of the variable x in π.

Example 5.3.4. Let Σ# = { a#, b#, c#, ab#, bc# }. We assume that γ(ab#) =
γ(a#) ∪ γ(b#) and γ(bc#) = γ(b#) ∪ γ(c#). Let x be a variable, π1 = { x 7→ a# },
π2 = { x 7→ c# }, and Π = { π1, π2 }. The partitioned domain of x in π1 is
{ a#, bc# } since a# = bc#. The partitioned domain of x in π2 is { ab#, c# }. The
partitioned domain of x in Π is Π̃(x) = { a#, bc# } ⊗ { ab#, c# } = { a#, b#, c# }.

106 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

To solve the regular language type inference problem of a pattern p for the target
type τ , it is sufficient to compute Π̃ instead of Π. Indeed from Π̃ we can extract
another set of type environments, Π′ = { π | ∀x ∈ V ar(p). π(x) ∈ Π̃(x) }, for which
by construction for all π ∈ Π′ we have either π ` p : τ or π ` p : τ . So Π′ is a
super-set of Π extracted from Π̃. Hence in the rest of this chapter, we shall focus on
finding Π̃ instead of Π. This is the type partition inference problem.

Definition 5.3.5 (Regular Language Type Partition Inference Problem). Let R
be a term rewriting system and p a pattern of T (Σ,X). Let Λ∗ = 〈Σ#

∗ ,∆
#
∗ 〉 be

an initial abstract domain, and a target type partition T ∈ P(Σ#
∗). A solution to

the type partition inference problem is 1) an abstract domain Λ = 〈Σ#,∆#〉 such
that Σ# ⊇ Σ#

∗ and ∆# ⊇ ∆#
∗ ; 2) an abstraction R# of R in Λ, complete w.r.t. p

and every v# ∈ T ; 3) a type partition environment Π̃, from which we can derive
Π = { π | ∀x ∈ V ar(p). π(x) ∈ Π̃(x) } containing all the substitutions π such that
Λ,R#, π ` p : v# with v# ∈ T .

Example 5.3.5. We return to the previous xor example and type the term xor(f(x), y)

with the target type partition {true#, false#}. Again, the only possible abstraction for
xor in R# is to have

xor(true#, true#)→ false# xor(false#, true#)→ true#

xor(true#, false#)→ true# xor(false#, false#)→ false#

But now we only have one single inductive case to type f , which is to consider f(x) with
the type partition { true#, false# }. If we assume that f is the identity function, then
the result of the analysis gives Π̃ = { x 7→ { true#, false# }, y 7→ { true#, false# } }.
The resulting Π includes the four possible combinations, which are π1 = {x 7→
true#, y 7→ true#}, π2 = { x 7→ true#, y 7→ false# }, π3 = { x 7→ false#, y 7→ true# }
and π4 = { x 7→ false#, y 7→ false# }.

The rest of this section defines an inference procedure for solving this type
partition inference problem. We first present the general algorithm. We then present
the invariant learning procedure which uses SMT solving for minimizing the size of
the abstraction automaton.

5.3.2 Inference Algorithm

This section introduces the type inference algorithm for any TRS given on the next
page as Algorithm 2. The main function of this algorithm, partitions-inference is in
charge of solving the type partition inference problem, that is to find correct type
partitions for every variable of a given pattern we wish to type with a given type
partition. This algorithm uses the auxiliary functions analyze-function and merge.
The role of the merge function will be detailed below. The role of analyze-function
is to compute the type partitions signature of a given symbol f for a given output
type partition T . This correspond to the input type partitions needed for every term
t1, . . . , tn to type f(t1, . . . , tn) with the given output type partition T . For instance,
the expected type partition signature of xor of Example 5.3.5 for the output partition
{true#, false#} is ({true#, false#}, {true#, false#})→ {true#, false#}.

Definition 5.3.6 (Type Partitions Signature). Let R be a TRS, Λ = 〈Σ#,∆#〉 an
abstract domain, and R# an abstraction of R defined over Λ. Let f be a symbol of
Σ. Let T, T1, . . . , Tn be type partitions over Σ#. We say that (T1, . . . , Tn) → T is

5.3. REGULAR LANGUAGE TYPES 107

1 function partitions-inference
input :A TRS R, an abstraction Λ∗, pattern p, and type partition T .
output :A solution Λ, R# and Π̃ to the partition inference problem of

R,Λ∗, p and T .
2 match p with
3 when x then
4 return { x 7→ T }
5 when f(p1, . . . , pn) then
6 let Λ′,R′#, (T1, . . . , Tn)→ T = analyze-function(R,Λ∗, f, T);
7 foreach pattern pi do
8 let Λi,R#

i , Π̃i = partitions-inference(R′#,Λ′, pi, Ti);
9 return merge(Λ1, . . . ,Λn,R#

1 , . . . ,R
#
n , Π̃1, . . . , Π̃n)

Algorithm 2: Inference of Type Partitions

a type partition signature for f in Λ,R# if for all π, all patterns pi, and τi ∈ Ti,
such that π,Λ,R# ` pi : τi, for i = 1 . . . n, then there exists τ ∈ T such that
π,Λ,R# ` f(p1, . . . , pn) : τ .

The second auxiliary function merge deduces the final solution Λ = 〈Σ#,∆#〉,R#, Π̃

of the type partition inference problem from all the Λi = 〈Σ#
i ,∆

#
i 〉,R

#
i found for all

sub-patterns pi. It is defined as the smallest sets such that 1) Σ# ⊇ Σ#
1 ∪ · · · ∪ Σ#

n ;
2) ∆# ⊇ ∆#

1 ∪ · · · ∪∆#
n ; 3) R# = R#

∗ ∪R#
1 ∪ . . . ∪R

#
n ; 4) Π̃ = Π̃1 ∪ . . . ∪ Π̃n where

the union of two type partition environments Π̃ = Π̃1 ∪ Π̃2 is defined for each variable
of Dom(Π̃1) ∪Dom(Π̃2) by

Π̃(x) =

Π̃1(x) if x 6∈ Dom(Π̃2)

Π̃2(x) if x 6∈ Dom(Π̃1)

Π̃1(x)⊗ Π̃2(x) otherwise

Lemma 22 (Merge). Let p = f(p1, . . . , pn). Let (T1, . . . , Tn) → T be a type par-
titions signature for the symbol f in Λ∗ = 〈Σ#

∗ ,∆
#
∗ 〉, R#

∗ . Assume we have a
solution Λi, R

#
i , Π̃i to the type partition inference problem with R,Λ∗, pi, Ti. If

Λ = 〈Σ#,∆#〉,R# and Π̃ (the output of merge) are the smallest sets such that
1) Σ# ⊇ Σ#

1 ∪ · · · ∪ Σ#
n ; 2) ∆# ⊇ ∆#

1 ∪ · · · ∪∆#
n ; 3) R# = R#

∗ ∪ R#
1 ∪ . . . ∪ R

#
n ;

4) Π̃ = Π̃1 ∪ . . . ∪ Π̃n is defined in Λ. Then Λ,R# and Π̃ are a solution to the type
partition inference problem of p with T in Λ∗,R.

Proof. We prove that for all π ∈ Π, there exists a type τ ∈ T such that π,Λ,R# ` p : τ .
Let π ∈ Π. By definition of the union of type partition environments, for each i,
for each πi ∈ Πi, for each variable x ∈ V ar(pi) we have either π(x) = πi(x) or
there exists an epsilon transition π(x) → πi(x) ∈ ∆#. Hence we have τi ∈ Ti such
that π,Λ,R# ` pi : τi. Now by definition, since (T1, . . . , Tn) → T is a signature of
the symbol f in R#

∗ with R#
∗ ⊆ R#, we know that there exists τ ∈ T such that

π,Λ,R# ` p : τ .

Assuming that analyze-function is correct, we can then prove that the whole
partitions-inference algorithm is correct.

Theorem 7. Let R be a TRS, Λ∗ = 〈Σ#
∗ ,∆

#
∗ 〉 be an initial abstract domain, p a

pattern with T a partition of Σ#
∗ . If Λ,R#, Π̃ = partitions-inference(R,Λ∗, p, T) then

it is a solution to the type partition inference problem of p with T , Λ∗ and R.

108 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

Proof. By induction on the pattern p.

• If p = x, then the output of partitions-inference is Λ = Λ∗, R# = ∅ and
Π̃ = {x 7→ T}. We have (1) Σ# ⊆ Σ#

∗ by construction (2) R# is an abstraction
of R since it is empty (3) for all π ∈ Π, if we take τ = π(x) then π,Λ,R# ` x : π.

• In the other case, if p = f(p1, . . . , pn), then we have Λ′,R′#, (T1, . . . Tn) →
T = analyze-function(R,Λ∗, f, T). Since we assume that analyze-function is
correct, we known that (T1, . . . , Tn) → T is the type partitions signature of
f in Λ′,R′#. We write Σ#

i ,Λ
#
i , R

#
i and Π̃i for the outputs of partitions-

inference(R,Λ′, R′#, pi, Ti) for all i. By hypothesis of induction, we know those
are solutions to the type partition inference problem with R,Λ′, R′#, pi, Ti as
inputs. Then by definition of merge and Lemma 22, we conclude that the
returned Σ#,Λ, R#, Π̃ are solutions to the type partition inference problem of
p with Λ∗, R and T .

This algorithm is independent of the actual implementation of analyze-function.
We detail in Section 5.3.3 a direct implementation of analyze-function that efficiently
computes the input partitions signature, but only for non-recursive functions. In
Section 5.3.4, we propose an implementation of analyze-function based on a regular
language invariant learning procedure that can analyze any function, including
recursive functions. In our implementation (cf. Section 5.4), we combine the two
versions to be more efficient.

5.3.3 Non-Recursive TRS

In the case of non-recursive TRSs, it is possible to directly find a solution to the
type partition inference problem, without relying on any learning technique needed
in the general case. We give the following implementation of analyze-function as
Algorithm 3 that works in this specific setting. This algorithm makes the distinction
between two cases: constructor symbols for which no rules of R apply, and functional
symbols for which at least one rule apply. The constructor case is handled using
a projection operator whose idea is as follows: If a regular language L is shaped
as {f(t1, . . . , tn) | t1 ∈ L1, . . . , tn ∈ Ln}, then the projection of L on the symbol
f at position i is Li. For instance, if we consider the language of lists of As and
Bs defined by L = {nil, cons(A,nil), cons(B,nil), cons(A, cons(A,nil)), . . .}, then
proj(L, cons, 1) is {A,B} and proj(L, cons, 2) = L. In our case, since a type basically
represents a regular language, we directly define the projection on types. We then
further extend this definition to partitions of types.

Definition 5.3.7 (Type Projection). Let Λ = 〈Σ#,∆#〉. The projection of the type
τ ∈ Σ# on a given symbol f at position i is

proj(τ, f, i) = unify {τi | f(τ1, . . . , τi, . . . , τn)→∗ τ ∈ ∆#}

where unify is the type unification function. We write unify({τ1, . . . , τn}) for the
most precise type τ w.r.t. � such that for all i, 1 ≤ i ≤ n, τi � τ . 3By convention,
we write proj(τ, f, i) = ⊥ when the projection is not defined, that is when f is not

3Note that we can always build such unified type. In the worst case we can unify two arbitrary
types by introducing a new abstract value any# such that γ(any#) = T (F)

5.3. REGULAR LANGUAGE TYPES 109

1 function analyze-function
input :A TRS R, an initial abstract domain Λ∗, a symbol f ∈ Fn and

an output type partition T
output :An abstraction R# and a partitions signature (T1, . . . , Tn)→ T

of f in R#

2 Let Rf be the set of rules applicable on f ;
3 if Rf is empty then

/* f is a constructor symbol, for a value */
4 return (proj(T, f, 1), . . . , proj(T, f, n))

5 else
/* f is a function symbol that can be rewritten

*/
6 Let K ← |Rf |;
7 foreach rule;
8 rulek = f(p1, . . . , pn)→ r ∈ R do
9 Let Λk,R#

k , (Tk,1, . . . , Tk,n)← rule-signature(R,Λ∗, rulek, T);
10 Let Λ← Λ1 ∪ · · · ∪ ΛK ;
11 Let R# ← R#

1 ∪ · · · ∪ R
#
K ;

12 return merge-rules(Λ,R#, (T1,1, . . . , T1,n), . . . , (TK,1, . . . , TK,n))

Algorithm 3: Non-Recursive Function Analysis

recognized by τ in ∆#. If we consider the type partition T = τ1, . . . , τn, the projection
of T on the symbol f at position i is defined as

proj(T, f, i) = remove⊥{proj(τ1, f, i), . . . , proj(τn, f, i)}

where remove⊥ filters out the ⊥ element from the set. Note that proj(T, f, i) is also
a type partition.

The projection operator (Definition 5.3.7) is used in the algorithm to directly find
the type partition signature of a constructor symbol. We can show that picking the
projection of every sub-position of the constructor symbol on the target partition
gives us the type partition signature of this symbol for this target type partition.

Lemma 23 (Projection on Constructor). Let p = f(pi, . . . , pn) be a non-functional
pattern (without function symbol) and T a type partition. Then (T1, . . . , Tn) → T
where Ti = proj(Ti, f, i) is a type partitions signature of f .

Proof. Let (τ1, . . . , τn) be a combination of (T1, . . . , Tn). Let τ ∈ T be the type
such that for all i, τi = proj(τ, f, i). Let π be a type environment such that
Λ#,R#, π ` pi : τi. By definition of the projection, we have f(τ1, . . . , τn) →∗

Λ# τ .
We can then conclude by construction of the type judgment rules that we have
Λ#,R#, π ` p : τ .

Finding the type partitions signature of a functional symbol is a bit harder since
it involves following the rewriting rules associated to this symbol. To do that that we
first introduce the notion of “rule type partitions signature”. Informally, for a given
rule of a symbol, a rule type partitions signature is a type partitions signature for
the symbol that is correct when considering this symbol’s rule alone. This allows
us to analyze every rule separately. We then show that we can merge all the rule
signatures into one symbol signature.

110 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

Example 5.3.6. Consider the following rules encoding the if -then-else:

ite(true, x, y)→ x ite(false, x, y)→ y

Consider the type nat# with two sub-types even# and odd# and the target type
partition T defined as T = {even#, odd#}. The rule signature of the first rule for
this target type partition would be ({true#, false#}, {even#, odd#}, {nat#}) → T .
For this rule, there is no constraints on y, so the most general partition {nat#}
is given. Conversely, the rule signature of the second rule for the same target
type partition would be ({true#, false#}, {nat#}, {even#, odd#})→ T . We can then
merge both rule-signatures into one input partitions signature for the symbol if by
using the product of each sub-partitions. The resulting input partitions signature is
({true#, false#}, {even#, odd#}, {even#, odd#})→ T .

The following gives the formal definition of rule signatures and shows how to
merge those rules signatures into a symbol signature for a given target type partition.
Note that we do not explicitly give an implementation of the merge-rules function
used in the algorithm and assume it strictly follows the merge instructions given by
Lemma 24.

Definition 5.3.8 (Rule Type Partitions Signature). Let R be a TRS, Λ = 〈Σ#,∆#〉
an abstract domain, and R# an abstraction of R defined over them. Let T be a type
partition over Σ#. Let l → r be a rule of R such that l = f(p1, . . . , pn). We say
that (T1, . . . , Tn) → T is the type partitions signature for this rule in Λ, R# if for
all τ1, . . . , τn where τi ∈ Ti there exists τ ∈ T such that for all π such that for all i,
π,Σ#,Λ#, R# ` pi : τi then we have π,Σ#,Λ#, R# ` r : τ .

Lemma 24 (From rule signatures to symbol signatures). Let R be a TRS, Λ =
〈Σ#,∆#〉 an abstract domain, and R# an abstraction of R defined over them. Let
T be a type partition over Σ# and f a symbol associated with a non-empty set of
rules Rf ⊆ R. Let us index each rule of Rf by k from 1 to |Rf | so that each rule is
of the form f(pk,1, . . . , pk,n)→ rk. For all rule k let’s write (Tk,1, . . . , Tk,n) the input
signature of this rule for T in Λ, R#. Let us define (T1, . . . , Tn) such that

∀i, 1 ≤ i ≤ n. Ti = T1,i ⊗ . . .⊗ T|Rf |,i

Let us write Tk,i(τ) the type τ ′ ∈ Tk,i such that τ � τ ′. For all τ ∈ Ti, by def-
inition this type should exists and be unique. Let us also write Πk(τ1, . . . , τn) =
{ π | ∀i. π,Σ#,Λ#, R# ` pk,i : Tk,i(τi) }. If we define R′# as

R#∪{ f(τ1, . . . , τn)→ τ | ∀i.τi ∈ Ti ∧ ∀k.∀π ∈ Πk(τ1, . . . , τn). π,Λ, R# ` rk : τ }

then R′# is an abstraction of R such that (T1, . . . , Tn) → T is the type partitions
signature of the symbol f .

Proof. For all f ′(τ1, . . . , τn)→ τ ∈ R′#. If f 6= f ′, soundness and completeness are
ensured by including R# in R′#. Otherwise if f = f ′, we first show that R′# is a
sound abstraction of R. Let t = f(t1, . . . , tn) such that ti ∈ γ(τi). Let us consider
u ∈ IRR(R) such that t →∗R u. Since we consider functional TRSs, there exists
a rule f(pk,1, . . . , pk,n) → rk ∈ R and a substitution σ : X 7→ IRR(R) such that
ti = pk,iσ and t →R rσ →∗R u. By definition we have pk,iσ ∈ γ(τ), but also by
construction, pk,iσ ∈ γ(Tk,i(τi)). Hence by definition there exists π such that for
all i, π,Λ, R# ` pk,i : Tk,i(τi). Note that by construction, π ∈ Πk(τ1, . . . , τn). Since

5.3. REGULAR LANGUAGE TYPES 111

(Tk,1(τ1), . . . , Tk,n(τn)) is a combination of the rule signature (Tk,1, . . . , Tk,n)→ T of
the rule k with Λ, R#, we know there exist a type τ ∈ T such that π,Λ, R# ` rk : τ .
Since R# is an abstraction of R for Λ, by definition this means that u ∈ γ(τ). Now
let’s show R′# is a complete abstraction of R. Let us consider any (τ1, . . . , τn) where
τi ∈ Ti. First note that Rf is not empty. Since the TRS is complete, there exists at
least one rule f such that Πk(τ1, . . . , τn) is not empty. Since R# is an abstraction
of R, there exists a unique τ such that for all rule k and all π ∈ Πk(τ1, . . . , τn),
π,Λ, R# ` rk : τ . Then by definition there exists the rule f(τ1, . . . , τn) → τ in
R′#.

The last missing piece left is the rule-signature algorithm that will allow us to
actually compute the signature of each rule. For the considered rule l → r, it will
type the right-hand-side r of the rule in order to find the type partition of each
variable (for this rule), and deduce a type for the left-hand-side from the found type
partitions.

1 function rule-signature
input :A TRS R, an initial abstract domain Λ∗, a rule

f(p1, . . . , pn)→ r ∈ R and an output type partition T
output :An abstraction R# and the rule signature (T1, . . . , Tn)→ T of

the given rule in R#

2 Let Λ,R#, Π̃← partitions-inference(R,Λ∗, r, T);
3 foreach sub-pattern pi do
4 Let Λi, Ti ← bottom-up-type-pattern(Λ, pi, Π̃);
5 Let Λ′ ← Λ1 ∪ · · · ∪ Λn;
6 return Λ′,R#, (T1, . . . , Tn)

The goal of the bottom-up-type-pattern function is to give a fitting type partition
to the left-hand-side of the rule from a given type partition environment. This type
can easily be built by typing the pattern from bottom to top.

Example 5.3.7 (Bottom-Up Typing). Let us imagine we wish to type the irreducible
pattern cons(s(x), y) with the type partition environment Π̃ = {x 7→ {0#, N+#}, y 7→
{[nat list]#}} where ∆# is

0→ 0# nil→ [nat list]#

s(0#)→ N+# cons(0#, [nat list]#)→ [nat list]#

s(N+#)→ N+# cons(N+#, [nat list]#)→ [nat list]#

Since Π̃(x) = {0#, N+#} we can create two new types [s(0)]# and [s(N+)]# in Σ#

with the associated rules s(0#) → [1]# and s(N+#) → [2+]# in ∆# such that a
valid type partition for s(x) is {[1]#, [2+]#}. We also need to add the sub-typing
rules [1]# → N+# and [2+]# → N+# in ∆#. Now that we have a partition for
s(x), we can continue up and type the whole pattern. This gives us the partition
{[cons(1, nat list)]#, [cons(2+, nat list)]#} associated to the rules

cons([1]#, [nat list]#)→ [cons(1, nat list)]#

cons([2+]#, [nat list]#)→ [cons(2+, nat list)]#

The actual specification of the bottom-up-type-pattern function is given by the
following definition.

112 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

Definition 5.3.9. Bottom-Up Typing Let R be a functional TRS. Let Λ be an abstract
domain and R# an abstraction of R defined over it. Let p be an irreducible pattern
and Π̃ a type partition environment. Let us name Π̃|p = {x 7→ Π̃(x) | x ∈ V ar(p)}
the projection of Π̃ on the variables of p (we discard other variables). The function
bottom-up-type-pattern returns Λ′, T such that there exists a bijection ξ : Π|p 7→ T
such that for all π ∈ Π|p, π,Λ,R# ` p : τ(π).

From this definition, it is possible to show that the rule-signature algorithm is
correct if we suppose the partitions-inference algorithm correct. We later see that it
is easy to prove this assumption while considering non-recursive TRSs.

Lemma 25 (rule-signature is correct). Let R be a TRS, Λ an abstract domain and
R# an abstraction of R on this domain. Let l → r be a rule of R, and T a type
partition. Let Λ′,R′#, (T1, . . . , Tn) → T = rule-signature(Λ,R#, l → r, T). Then
(T1, . . . , Tn) is an input signature for the rule for T over Λ′,R′#.

Proof. Let l = f(p1, . . . , pn). Let Λ#
r ,R#

r , Π̃r be the result of partitions-inference
called with R,Λ,R#, r and T . We can show by induction on the cardinal of R
that this recursive call to partitions-inference gives a valid solution to the type
partition inference problem for the right-hand side. First, if R is empty, then
partitions-inference is never called back from analyze-function. If R is not empty,
partitions-inference is called after using one rule l → r of R. Then, since R is not
recursive, we can consider that the result of partitions-inference will be equivalent
if called with R − {l → r}. By hypothesis of induction on the cardinal of R, it
is a valid solution. Now for each sub pattern pi of the left-hand side, let’s call
Λi, Ti = bottom-up-type-pattern(Λ#

r ,R#
r , Π̃r, pi). Let us name Λ′ = Λ#

1 ∪ . . . ∪ Λ#
n

Let us show that (Ti, . . . , Tn)→ T is a type partitions signature for the given rule
in Λ′,R#

r . Let (τ1, . . . , τn) be a combination of (T1, . . . , Tn). Let us prove that there
exists τ ∈ T such that for all π such that for all i, π,Λ′,R#

r ` pi : τi then we have
π,Λ′,R#

r ` p : τ . First we prove that there is only one π such that π,Λ′,R#
r ` pi : τi.

Let π1, π2 be two different type environments following this property. Let observe
that because ξi is a bijection we should have π1|pi = π2|pi , for all i. This can only
happen if π1 = π2 which contradicts our initial hypothesis that π1 6= π2. Now we
prove that for this π, there exists τ ∈ T such that π,Λ′,R#

r ` p : τ . By definition
of bottom-up-type-pattern we have that π ∈ Πr. Hence by construction there exists
τ ∈ T such that π,Λ′,R#

r ` r : τ .

Note that this definition of analyze-function only works for non-recursive functions.
Despite the amount of proofs needed to prove it correct, this algorithm combined
with partitions-inference only involves some basic operations on tree automata to
directly find a solution to the type partition inference problem. In the next section,
we introduce a new definition of analyze-function intended for recursive functions.

5.3.4 Invariant Learning

The main difficulty in functional program analysis is recursion, or in our case, the
analysis of functional symbols defined with mutually recursive rewriting rules. In
this section, we define an implementation of analyze-function based on an original
invariant learning procedure. For a given (recursive function) symbol and target
type partition, this procedure finds correct input regular languages partitions that
completes the symbol’s type partitions signature. It follows the standard outline
of a counter-example guided abstraction refinement (CEGAR) procedure, where

5.3. REGULAR LANGUAGE TYPES 113

a rough abstraction is iteratively refined using constraints learned from previous
iterations. Those new constraints are defined by finding a spurious counter-example
generated because of a faulty previous abstraction. Constraints are accumulated until
no spurious counter-example can be found in which case the invariant has been found,
or by finding a real counter-example. In this section we show how to use the Tree
Automata Completion Algorithm [GR10] to adapt this family of techniques to Term
Rewriting Systems and Regular Languages, allowing us to learn recursive symbol
partitions signatures.

1 function analyze-function
input :An input TRS R, an initial abstraction Λ∗, a function symbol

f , and a target type partition T .
output :An abstraction Λ ⊇ Λ∗,an abstraction R# of R over Λ and a

type partitions signature (T1, . . . , Tn)→ T of f in R#

2 let L = {f(t1, . . . , tn) | t1 . . . tn ∈ IRR(R)};
3 let A0 = finite-subset(L);
4 let i = 0;
5 forever

/* (1) Tree Automata Completion */
6 let A∗i = tree-automata-completion(Ai ,R);

/* (2) Counter-example/constraints generation */
7 let φ = S(A∗i , T);
8 if φ is unsatisfiable then return counter-example ;

/* (3) Abstraction */

9 let A#
i = φ(A∗i);

/* (4) Validity Check / Termination */

10 if A#
i is R-closed and IRR-complete then

11 let R# = { f(τ1, . . . , τn)→ τ | f ∈ F };
12 let ∆# = { f(τ1, . . . , τn)→ τ | f ∈ C };
13 let Λ = 〈states_of (A#),∆#〉;
14 let Ti = { τi | f(. . . , τi, . . .)→ τ ∈ R# };
15 return Λ,R#, (T1, . . . , Tn)→ T

16 else
17 Ai+1 = grow(Ai ,A#

i);
18 i = i+ 1;

Algorithm 4: Invariant Learning Procedure

To find a type partition signature for a symbol f with the target type partition T ,
the procedure showed as Algorithm 4 computes a series of tree automata A#

0 ,A
#
1 , . . .

according to the following outline: 1. We start by using the Tree Automata Completion
Algorithm on R and an automaton A0 recognizing a finite subset L0 of the language
L = {f(t1, . . . , tn) | t1 . . . tn ∈ IRR(R)}. The result is an automaton A∗0 recognizing
R∗(L0). This automaton is guaranteed to exist if R is terminating [GR10]. 2. We then
check for any counter-example: any input term that violate the target type partition
T by rewriting to two different types of the partition. For now, no abstraction
has been done. If a counter-example is found in A∗0 recognizing R∗(L0), it is a
real counter-example, no such signature exists for f and the property is disproved.
Otherwise, using A∗0 and T , we build a set of disequality constraints over its states.
3. We then merge the states of A∗0 according to those disequality constraints to build

114 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

an abstraction A#
0 as the smallest automaton respecting those constraints. 4. If A#

0

is complete and R-closed (cf. Definition 5.3.11), then we know it contains a valid
abstraction of R and Σ, and we can extract a signature for the symbol f . If not, we
need to start over from (1) with a new automaton A1, recognizing L1 another finite
subset of L such that L1 ⊃ L0. In Algorithm 4, this is done by the grow function (cf.
Definition 5.3.13). We continue until a counter-example is found, or a type partitions
signature is found.

Example 5.3.8. Consider again the TRS defined by

even(0)→ true odd(0)→ false even(s(x))→ odd(x) odd(s(x))→ even(x)

We want to find a partitions signature for the symbol even for the target type partition
T = {true#, false#}. The language L generated by this symbol is L = {even(n) | n ∈
N}. We start (1) with A0 recognizing L0 = {even(0)}, and use the tree automata
completion algorithm on it, which gives us a new tree automaton A∗0 recognizing the
reachable terms {even(0), true} and defined by:

(a) 0→ q0 even(q0)→ qe0 true→ qt qt → qe0

There is (2) no violation of T yet. Let S(A∗0, T) be the set of constraints to consider
to (3) build an abstraction from A∗0, in which terms typed with different types of T
are recognized by different states in the abstraction. For now, the only constraints to
consider are well-typedness constraints: S(A∗0, T) = {q0 6= qe0, qt 6= q0}. Indeed, q0

recognizes a fragment of type N and qt, qe0 a fragment of type bool, they must not
be merged. We then use an SMT solver to build the smallest renaming φ from Q to
Σ# respecting the given constraints. The result, φ(A∗0), is as follows (for the sake of
readability we give comprehensible names to the new elements of Σ#):

0→ nat# even(nat#)→ true# true→ true#

This automaton is not complete (4): the well-typed term even(s(0)) is not recognized.
We hence start over (1) with A1 recognizing L1 = {even(0), even(s(0))}. After using
the completion algorithm, A∗1 contains the transition set (a) plus the following new
transitions:

(b) s(q0)→ q1 even(q1)→ qe1 odd(q0)→ qe2 false→ qf qf → qe2 qe2 → qe1

Building the associated abstraction (3), we use the set of constraints S(A∗1, T) =
S(A∗0, T) ∪ {qe0 6= qe1, qe0 6= qe2, qe0 6= qf} ∪ {qt 6= qe1, qt 6= qe2, qt 6= qf} where we
separate qe0, qt from qe1, qe2, qf because they match two different elements of the type
partition T , respectively true and false. The resulting φ(A∗1) is

0→ nat# true→ true# even(nat#)→ true#

s(nat#)→ nat# false→ false# odd(nat#)→ false#

This automaton is not R-closed w.r.t. the rule odd(s(x))→ even(x): if we instantiate
x with nat#, since even(nat#) is recognized in true# and odd(s(nat#)) in false#,
for it to be R-closed it should include the transition true# → false#, which it does
not. So we start again (1) with A2 recognizing L2 = {even(0), even(s(0)), odd(s(0))}
where odd(s(0)) has been generated from odd(s(nat#)). After using the completion
algorithm, A∗2 contains transition sets (a), (b) and the new transition odd(q1)→ qe0.
The associated set of constraints is S(A∗2, T) = S(A∗1, T) ∪ {q0 6= q1 ∨ qe0 = qe1}.

5.3. REGULAR LANGUAGE TYPES 115

The new constraint q0 6= q1 is added because with the two transitions odd(q0)→ qe1
and odd(q1) → qe0 if the abstraction chooses q0 = q1 then the resulting abstraction
automaton would no longer be deterministic. The resulting φ(A∗2) is defined by

0→ 0# s(1#)→ 0# s(0#)→ 1#

true→ true# false→ false# even(0#)→ true#

even(1#)→ false# odd(0#)→ false# odd(1#)→ true#

This automaton is completed, R-closed and contains an abstraction of R and of Σ.
From it, we extract a symbol signature for even with output partition T = {true, false}
which is ({0#, 1#})→ T .

The rest of this section details each step of one iteration of the procedure fol-
lowed by proofs of correctness (Theorem 8), regular completeness (Theorem 9) and
completeness in refutation (Theorem 10).

Tree Automata Completion

Let R be a functional TRS, and f the symbol of Σ we are searching a type partitions
signature for. Each iteration i of the procedure starts by using the Tree Automata
Completion algorithm to complete the automaton Ai. This automaton is an ε-free tree
automaton in which each state q recognizes exactly one term. The language recognized
by Ai is a finite subset of R∗(L) where L = {f(t1, . . . , tn) | t1 . . . tn ∈ IRR(R)}. A
state q is final in Ai if it recognizes a term of L. We write A∗i for the output of this
step of the procedure. It is a new tree automaton recognizing exactly R∗(L(Ai)) and
having additional properties ensured by the Tree Automata Completion algorithm:
Ai is syntactically included in A∗i , and for all state q, q′ of A∗i and term t (resp. t′)
recognized by q (resp. q′), if t→R t′ then there exists a transition q′ → q in A∗i (t′ is
also recognized by q).

Counter-Example Finding and Constraints Generation

Since A∗i converges to R∗(L), it can be used to search for a counter-example. Note
that at this point, no abstraction has been made: a counter-example found in A∗i is
not spurious. Note also that the structure of a completed automaton allows us to
easily build the rewriting path from an initial term of L to its faulty outcomes.

Abstraction Generation

An abstraction A#
i is built from A∗i by first computing a set S(A∗i , T) of constraints

over the states of A∗i (which will depends on the target type partition T).

Definition 5.3.10 (SMT Constraints). For any tree automaton A = 〈Σ,Q,Qf ,∆〉
and type partition T , S(A, T) is the smallest set of SMT constraints such that:

(q 6= q′) ∈ S(A, T)⇐ ∃τ, τ ′ ∈ T.

q ∈ TA(τ) ∧
q′ ∈ TA(τ ′) ∧
τ 6= τ ′

(5.1)

(q1 6= q′1 ∨ · · · ∨ qn 6= qn ∨ q = q′) ∈ S(A, T)⇐

{
f(q1, . . . , qn)→ q ∈ A ∧
f(q′1, . . . , q

′
n)→ q′ ∈ A

(5.2)

(v 6= v′ ∨ q = q′) ∈ S(A, T)⇐ v → q ∈ A ∧ v′ → q′ ∈ A (5.3)

116 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

where TA(τ) = { qf | qf ∈ Qf ∧∃t ∈ γ(τ). t→∗A qf }. In other words, TA(τ) contains
all the final states recognizing terms of type τ .

In this definition, the first type of constraints (5.1) ensures that the target type
partition is respected: for any two final states q, q′ (recognizing each a term of
L), if they rewrite into members of two different types of T , then we must have
the constraint q 6= q′. The two other kind of constraints, (5.2) and (5.3), ensure
determinism. We then use an SMT solver to find the smallest renaming φ from Q to
Σ# such that A#

i = φ(A∗i) satisfies φ(S(A∗i , T)).

Termination

We stop the procedure when we detect that A#
i contains an abstraction of R. It is

the case when A#
i is R-closed and IRR-complete w.r.t. R.

Definition 5.3.11 (R-Closed Tree Automaton). Let R be a term rewriting system
and A a tree automaton. For all state q of A, rule l→ r of R and substitution σ of
X → Q such that lσ →∗A q, the pair 〈lσ, q〉 is called a critical pair. It is resolved if
there exists q′ such that rσ →∗A q′ and q′ = q or q′ → q ∈ A. A is R-closed if every
critical pair is resolved.

Definition 5.3.12 (IRR-Completeness). An automaton A is IRR-complete w.r.t.
R if for all symbols f in A, for every term t = f(t1, . . . , tn) with ti ∈ IRR(R) there
exists a state q such that t→∗A q.

Note that in our case, IRR(R) is easily computable since it is the language of values.
If A#

i is not IRR-complete and R-closed, we start a new iteration of the procedure
using Ai+1 = grow(Ai,A#

i) where the purpose of grow is to add new samples to the
completed automaton while eliminating the causes of the non-IRR-completeness and
non-R-closure.

Definition 5.3.13 (The grow Function). The automaton Ai+1 = grow(Ai,A#
i) is

defined as follows.

(i) if A#
i contains an unresolved critical pair 〈lσ, q〉 (not R-closed), then a rewriting

path has not been taken into account yet. Let t be a term such that t→∗
A#

i

lσ.
We add to Ai+1 the necessary transitions to recognize t, to ensure that this
critical pair will be solved in the next iteration.

(ii) if A#
i has no unresolved critical pair but it is not IRR-complete, then we know

that the set E = L \ L(A#
i) is not empty. Let t be one term of E having the

smallest number of symbols. Then we add to Ai+1 the necessary transitions to
recognize t. This ensures that in the next iteration, A#

i+1 recognizes it.

When A#
i = 〈Σ,Q,Qf ,∆〉 is IRR-complete R-closed it contains an abstraction

Λ = 〈Σ#,∆#〉 and an abstraction R# of R where Σ# is Q the set of states of A#
i ,

and where ∆# and R# are defined as

R# = {f(τ1, . . . , τn)→ τ | f ∈ F ∧ f(τ1, . . . , τn)→ τ ∈ ∆} ∆# = ∆ \ R#

Then A#
i is returned by analyze-function.

5.3. REGULAR LANGUAGE TYPES 117

Lemma 26 (The procedure outputs an abstraction of R). Let Σ = C ∪ F be
a ranked alphabet, with R a rewriting system, functional w.r.t. C and F . Let A
be a normalized, IRR-complete, and R-closed automaton that is ε-deterministic
(deterministic once ε-transitions are removed). Let φ be a renaming respecting the
constraints S(A, T). Let R# = {f(τ1, . . . , τn)→ τ | f ∈ F ∧ f(τ1, . . . , τn)→ τ ∈ ∆}.
If the resulting automaton φ(A) is R#-closed and is IRR-complete w.r.t. R, then
R# is an abstraction of R.

Proof. First we prove that for all terms t and type τ such that t →∗A τ , for all
k and all term u such that t →k

R u then u →∗A τ . We proceed by induction on
k. First if k = 0. Then t = u and since we already know that t →k

A τ , we have
u →∗A τ . Second, if k = k′ + 1. Then by definition there exists a rule l → r ∈ R,
a substitution σ and a position p such that t|p = lσ and t →R t[rσ]p →k′

R u. Since
t→∗A τ and A is normalized, there exists τp such that t|p →∗A τp. Since A is R-closed
and t|p →R rσ this also means that we have rσ →∗A τp. Note that we hence have
t[rσ]p →∗A t[τp]p →∗A τ . By induction hypothesis on k this means that u→∗A τ .

Now we prove thatR# is an abstraction ofR. For soundness, let f(τ1, . . . , τn)→ τ
be a rule ofR#. Let t = f(t1, . . . , tn) be such that for all i, ti ∈ γ(τi). Let u ∈ IRR(R)
a term such that t→∗R u. Then thanks to what we just proved, we know that u→∗A τ .
Since u is irreducible, we deduce that u →∗

∆# τ . By definition this means that
u ∈ γ(τ). To prove completeness, let t = f(t1, . . . , tn) be such that for i = 1 . . . n,
ti ∈ IRR(R). By assumption, we know that A is IRR-complete, thus there must
exist a rule f(τ ′1, . . . , τ

′
n)→ τ ′ such that ti ∈ γ(τ ′i) for i = 1 . . . n.

Theorem 8 (Correctness of the invariant learning procedure). Let Λ = 〈Σ#,∆#〉,R#

be the output of the invariant learning procedure of R with Λ∗ = 〈Σ#
∗ ,∆

#
∗ 〉, the pattern

p and type partition T . Let Π be the set of all substitutions π such that pπ →∗
∆#∪R# v#.

Then Λ, R, Π̃ is a solution to the type partition inference problem.

Proof. First, since transitions are successively added to the automata Ai, the facts
Σ# ⊇ Σ#

∗ and ∆# ⊇ ∆#
∗ are ensured by construction of Ai. Second, thanks to

Lemma 26 we know that R# is an abstraction of R. We need to show that this
abstraction is complete w.r.t. p and every v# of T (cf. Definition 5.2.3). Consider
v# ∈ T , a term t ∈ γ(v#) and a (concrete) substitution σ such that pσ →∗R t. Let
A be the last automaton considered during the inference procedure. Since φ(A)
is IRR-complete there must exist an (abstract) substitution π such that σ ∈ γ(π).
Since each term in A is recognized by a unique state, t will be abstracted in φ(A)
by a unique abstract value. By definition of S(A, T) this abstract value is v#. 4

Hence, if pπ 6→∗φ(A) v
this means that φ(A) is not complete, which contradicts our

hypothesis (otherwise the procedure would still continue). We have pπ →∗φ(A) v
and

by definition, pπ 6→∗
∆#∪R# v#.

By Theorem 8, if we let Ti denote the set {τi | f(τ1, . . . , τi, . . . , τn)→ τ ∈ R#}
then this procedure gives (T1, . . . , Tn)→ T as a correct signature of f in R# and Λ#.
We can thus replace the analyze-function algorithm in partition-inference with this
procedure when the input symbol is recursive, that is, its associated TRS fragment is
recursive. It is worth noticing that this procedure provides two guarantees: 1. regular
completeness, if there exists a regular abstraction R# providing a signature for f ,

4In practice, t could be abstracted into a more precise abstract value w# such that γ(w#) ⊂ γ(v#).
In this rare case, an epsilon transition w# → v# is added to the automaton to retain the information.
The rest of the proof is unchanged.

118 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

then we will eventually find it; and 2. completeness in refutation, if there exists a
counter-example, we will eventually find it.

Theorem 9 (Regular Completeness). If there exists a regular abstraction Λ =
〈Σ#,∆#〉 of T (Σ) and a regular abstraction R# of R providing a type partition
signature for f , Algorithm 4 will eventually find it.

Proof. In the following, given automata A and A′, A ⊆ A′ denotes that transitions of
A are included in transitions of A′ modulo state renaming. In the same way, A = A′
means that transitions sets are equal modulo state renaming. If Λ and R# exists,
then we can build A# defined with the union of ∆# and R#. At each cycle i of
the procedure, there exists a renaming φ respecting S(A∗i , T) such that φ(A∗i) ⊆ A#.
Since the procedure builds the smallest renaming φ′ respecting S(A∗i , T) (meaning
that φ′(A∗i) has the smallest number of states), and since there is a finite number
of automata for a given number of states, then we will eventually have φ = φ′.
The procedure stops when φ′(A∗i) is IRR-complete, which means we cannot have
φ′(A∗i) ⊂ A#, but only φ′(A∗i) = A#.

Theorem 10 (Completeness in Refutation). For a given input function symbol f
and target type partition T , if there exists a term f(t1, . . . , tn) that rewrites to two
different elements of T , Algorithm 4 will eventually find it.

Proof. By adding new terms in the automaton Ai at each new cycle in a fair manner
(smallest terms first in step (ii) of grow function), we guarantee that at some point
we will add the counter-example. It will be detected as a counter-example after the
tree automata completion phase.

Recall that our overall goal is to prove safety properties on programs, i.e., properties
of the form t 6→∗ false. For this, we can identify a subset of forbidden types (such
as false#) in the target type partition, and define a counter-example as a term t
typable with one of those forbidden types. In this way we can turn our type inference
algorithm into a verification tool for safety properties, as illustrated in the next
section.

5.4 Experiments

This section details our implementation [Tbk4] of the verification technique developed
in this chapter and the associated experimental results [Exp4]. It consists of an
OCaml program along with several libraries able to resolve together the regular
language type inference problem from an input term rewriting system R, pattern p
and target type partition T . It outputs an abstraction Λ and R# and all the possible
type substitutions π with the associated τ ∈ T such that Λ,R#, π ` p : τ . This
allows us to verify complex properties on programs by expressing the property using
a predicate defined in the program itself, and verifying that it can never be typed
with false#. For instance to prove that a list sorting function sort is correct (in the
sense that the output list is sorted), we first define a sorted predicate as

sorted(nil)→ true sorted(cons(x, nil))→ true

sorted(cons(x, cons(y, z)))→ if (leq(x, y), sorted(cons(y, z)), false)

and use our implementation with the input term sorted(sort(x)) with the target
type partition {true#, false#}. If all the output type substitutions π are such that
π ` sorted(sort(x)) : true#, then the property is verified.

5.4. EXPERIMENTS 119

5.4.1 Implementation Details

The implementation [Tbk4] follows the theoretical algorithms presented in this chapter
with some optimizations and limitations. We describe here the various specificities of
the implementation.

Preliminary Typing Phases To simplify our argumentation in this chapter,
we required every type partition to be a partition of IRR(R), the entire set of
possible values. In practice, trying to compute type partitions over IRR(R) would
be both inefficient and unnecessary since in most modern programming languages
functions can only take given subsets of values (types) as parameters. For this reason,
our implementation is equipped with a preliminary Hindley-Milner type inference
phase [Hin69, Mil78] with let-polymorphism. The first-order types used by this
inference phase are defined by the user as an input tree automaton where each state
is a type. From the input pattern, the term rewriting system is then monomorphized
so that we know the input domain of every function call, and thus the domain of
each type partition we are looking for. This greatly improves the performances of the
analysis.

Constants sub-typing phase Consider the simple term rewriting system defining
the equality predicate on natural numbers

eq(0, 0)→ true eq(s(x), 0)→ false eq(0, s(y))→ false eq(s(x), s(y))→ eq(x, y)

together with the initial abstract domain {true#, false#, nat#}. The problem of
finding the signature of eq for the target partition {true#, false#} is not regular if we
consider the input domains of the arguments of eq to be nat#. In practice however, if
eq is applied on a constant value, such as in eq(x, s(0)), we can reduce the domain of
the second parameter by adding an abstract value 1# abstracting s(0) in the initial
abstract domain. The only possible partition of 1# is {1#}, which transform the
problem of finding the (type partition) signature of eq for {true#, false#} into a
regular problem. Its solution is ({2+#, 1#, 0#}, {1#}). In our implementation, in
addition to the first-order types given by the user, we build precise types for the
constant values used in the program. This allows us to find a solution to otherwise
irregular problems. It is however a prototypical optimization that must be used with
caution since it may lead to a computational overhead.

Counter-examples When using our implementation to type a given input pattern
with a given type partition, it is possible to specify that some types in the partition are
invalid. For instance, while typing sorted(sort(L)) with the partition {true#, false#},
if the sort function is correct we expect the pattern to not be typable by false#. In
this case, once the analysis is finished, if we find a way to type the pattern with false#,
then we are able to generate a counter example: an instantiation of the input pattern
that rewrites to false. Note that this implementation choice has two drawbacks:
1. Since the “forbidden type” information is only used once the analysis is done, if
there is no regular types that satisfies the target type partition, our implementation
may diverge even though there is a counter example to the desired property. 2. In
the best case, even if everything is regular, this may still delay the finding of counter
examples. It is possible to insert the notion of forbidden type into the analysis to
avoid these issues, modulo some adaptations of the presented algorithms.

120 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

5.4.2 Test Suite

We tested our implementation over a collection of more than 80 problems [Tbk4] com-
ing from Timbuk 3 [Tbk3], some regular problems from the MoCHi test suite [KSU11a]
and some original challenges created for the occasion inspired by Tons of Inductive
Problems [CJRS15]. We expect some problem instances to be similar to the ones used
in [MKU15], although this cannot be verified since the test suite used in this paper is
not publicly available. The test suite, publicly available on Timbuk’s website [Exp4],
is composed of a variety of problems over first-order and higher-order tree-processing
functional programs including:

• Positive tests: regular properties intended to be proved by our implementation.
This includes properties such as ∀L.sorted(merge-sort(L)) = true where L
is a list of As and Bs, or ∀X,T. member(X,T)⇐⇒ member(X,mirror(T)))
where T is a binary tree, etc.

• Negative tests: false properties or buggy programs, where there exists a counter
example to the target property.

• Typing challenges with no property to verify but only regular language types
to find. E.g., using the input pattern only-As(L) and the target type partition
{true#, false#}, our implementation should type L with either the type “lists
of As” or “lists with at least one B”.

• Intentionally non-regular problems, for which we expect the invariant learning
procedure to diverge. For instance, ∀N : nat. N = N is not a regular property.

Even if some of the problems in our test suite are taken from the MoCHi test
suite [KSU11a], MoCHi does not handle regular languages and does not target the
same family of properties.

5.4.3 Experimental Results

Table 5.1 and 5.2 give the result of our experiments, comparing our implementation
over our test suite against Timbuk 3 which is, to our knowledge, the only higher-order
tree-processing program verification tool that is publicly available. In particular,
we have not been able to compare to the regular-complete verification procedure
presented in [MKU15] which does not offer a public implementation, even if it also
targets regular properties. Each table presents the time performances and memory
usage (averaged over 10 executions) of the two implementations over the compatible
regular test instances on a Intel® i7-7600U CPU, 4 2.80GHz cores. Positive instances
(first half of the table) and negative instances (second half of the table) are separated
by a line. A timeout is set at 120 seconds.

Execution Time & Completeness

The “Time” columns show that when it succeeds, Timbuk 3 is on average faster
than our implementation. This is expected since our preliminary typing phase and
sub-typing phase have a cost. However this also shows that in many cases, even
on first-order programs our implementation terminates where Timbuk 3 diverges.
In particular this is the case for the non-trivial mergeSort algorithm for which
we successfully identify the regular language of sorted lists. This is also the case
for binary-tree processing algorithms such as memberTree where we automatically

5.4. EXPERIMENTS 121

Name Time (s) Memory (MiB)

Ours Timbuk 3.2 Ours Timbuk 3.2

all-a 0.06 ±0.01 0.0 ±0.0 14.24 4.93
mult 0.13 ±0.03 0.0 ±0.0 14.39 5.83
plusEven 0.17 ±0.01 0.01 ±0.0 14.87 5.71
iteEvenOdd 0.18 ±0.01 0.0 ±0.0 14.86 5.58
appendTheorem 0.32 ±0.12 0.09 ±0.0 14.95 10.18
delete 0.37 ±0.04 0.01 ±0.0 14.99 6.24
evenOdd 0.4 ±0.02 Timeout 14.98 -
incTree 0.42 ±0.04 0.99 ±0.08 15.09 46.12
makelist 0.49 ±0.08 0.42 ±0.08 15.3 99.56
memberAppend 0.51 ±0.08 20.76 ±2.37 15.26 2971.76
square 0.55 ±0.09 47.15 ±2.77 15.12 3997.26
insertionSort 0.63 ±0.05 0.07 ±0.03 15.28 8.96
split 0.69 ±0.1 Timeout 15.81 -
deleteImplies 0.7 ±0.04 Timeout 15.44 -
replaceTree 0.75 ±0.1 Timeout 15.12 -
insertionSort2 0.82 ±0.08 0.65 ±0.07 15.8 109.94
treeDepth 0.92 ±0.15 1.45 ±0.13 15.06 118.89
headReverse 1.26 ±0.09 0.03 ±0.0 19.96 8.92
reverseImplies 1.4 ±0.12 0.54 ±0.12 18.42 9.61
mergeSort 1.53 ±0.13 Timeout 20.68 -
equalLength 1.63 ±0.14 Timeout 14.57 -
reverse 2.35 ±0.24 0.08 ±0.01 18.44 7.24
memberTree 4.25 ±0.42 Timeout 17.96 -
orderedTreeTraversal 4.72 ±0.47 1.52 ±0.12 21.54 11.83
orderedTree 7.1 ±0.81 5.24 ±0.48 14.73 13.8
heightTree Timeout Timeout - -
insertTree Timeout Timeout - -
zipUnzip Timeout Timeout - -

simple 0.05 ±0.0 0.0 ±0.0 5.69 3.42
plusEvenError 0.17 ±0.01 0.01 ±0.0 14.84 6.06
deleteBUG 0.32 ±0.03 0.06 ±0.0 14.98 7.41
appendTheoremBug 0.35 ±0.03 0.01 ±0.0 14.87 6.36
reverseBUGimplies 0.42 ±0.04 0.01 ±0.0 15.26 6.09
memberAppendError 0.5 ±0.09 0.01 ±0.0 15.42 6.69
insertionSort2BUG 0.82 ±0.1 0.09 ±0.01 15.61 9.18
orderedTreePredicate2 40.79 ±2.59 0.73 ±0.04 14.82 12.78
orderedTreeTraversalBug 47.85 ±6.55 0.18 ±0.05 39.66 8.96

Table 5.1: First-order problems

122 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

Name Time (s) Memory (MiB)

Ours Timbuk 3.2 Ours Timbuk 3.2

foldDiv 0.24 ±0.01 0.03 ±0.04 15.31 8.59
forallLeq 0.4 ±0.11 0.03 ±0.0 14.94 8.47
mapPlus 0.42 ±0.03 0.07 ±0.0 14.97 8.89
filterNz 0.42 ±0.04 0.12 ±0.01 15.01 8.95
filterEven 0.46 ±0.03 0.31 ±0.0 15.09 8.98
forallImpliesExists 0.53 ±0.04 0.17 ±0.01 14.9 9.91
forallNotEqNotExists 0.54 ±0.04 0.03 ±0.01 14.96 8.9
mapTree 0.56 ±0.03 Timeout 15.09 -
filterEquivExists 0.82 ±0.08 0.18 ±0.01 15.0 9.15
mapFilter 0.91 ±0.13 0.39 ±0.88 15.56 8.98
mergeSortHO 1.67 ±0.14 Timeout 20.61 -
map2AddImplies Timeout Timeout - -
mapSquare Timeout Timeout - -
foldRightMult Timeout 0.01 ±0.0 - 6.53

forallImpliesExists2 0.46 ±0.05 0.0 ±0.0 15.0 3.74
forallNotEqNotForall 0.51 ±0.04 0.0 ±0.0 15.04 3.93
filterEvenBug 0.54 ±0.12 0.1 ±0.01 15.03 8.96
mergeSortHObug Timeout 0.42 ±0.04 - 10.91

Table 5.2: Higher-order problems

show that it is invariant by mirroring. We see the same tendency on higher-order
programs where Timbuk 3 also diverges on the merge-sort algorithm (where this
time the comparison operator is a parameter of the sorting function), and on binary-
tree processing programs such as mapTree, where we succeed. Interestingly, our
implementation is unable to find a counter-example to a mergeSortBug property,
where we try to check that ∀L. sorted (≤) (merge-sort (≥) L), which is wrong.
Timbuk 3 is able to find a counter example, where we reach a timeout. As discussed
in Section 5.4.1 this is due to the fact that, in our current modular implementation,
counter-examples are searched once the whole analysis is finished.

Memory Usage

Another feature of our implementation is its consistent memory usage (which includes
the memory usage of the SMT solver), shown by the “Memory” columns in the
tables. Thanks to modularization, the memory footprint of our implementation
stays low even on time consuming instances. This is an improvement compared to
the non-modular Timbuk 3, where on some problems the memory usage can grow
up to several GB of data. The difference is especially visible for instance on the
memberAppend problem where the goal is to verify that for all lists L1, L2 and element
X, (member X (append L1 L2))⇐⇒ ((member X L1) ∨ (member X L2)).

5.5 Conclusion

We have developed a regular language type inference procedure on top of a regular
abstract interpretation of term rewriting systems. This allows us to automatically

5.5. CONCLUSION 123

verify safety properties on higher-order tree-processing functional programs. This
improves on existing verification techniques based on type annotations which generally
require considerable expertize to determine all the necessary annotations to carry out
the proof. For instance in F* it is necessary to give complex type annotations on every
intermediate functions in the definition of the merge-sort algorithm (corresponding
to intermediate lemma) for the type-checker to accept the program, only to show
that its output is sorted. On the other hand we can automatically carry out the same
proof with only the expected output type of the main function.

The type inference mechanism uses type partitions to reduce the complexity of
the underlying algorithms. For a given input term with variables and output type
partition, we compute, for each variable of the input term, the input type partitions
needed to respect the output partition. Using a type system allows for modularity: a
type partition signature is attached to each symbol, which summarizes the behavior of
associated rewriting rules. The type partition signature can be inferred independently
for independent functions. It can be inferred directly for non-recursive functions.
Recursive functions are handled using a novel invariant learning procedure based
on the tree automata completion algorithm, following the precepts of a counter-
example guided abstraction refinement procedure (CEGAR). This particular variant
of CEGAR allows us to refine the abstractions without the need of a complete
spurious counter-example rewriting sequence, at the price of requiring the input TRS
to be terminating. The resulting procedure is regularly-complete and complete in
refutation, meaning that if it is possible to give a regular language type to a term then
we will eventually find it, and if there is no possible type (regular or not) then we will
eventually find a counter-example. Regular completeness is achieved by the generation
of non-functional abstractions, which Timbuk 3 could not do. Our implementation
of this technique shows encouraging performances and is able to verify properties
that were not covered by previous similar techniques. In the following we list some
possible further improvements.

Using a more restricted type language helps us to enjoy more automation for type
inference. In particular, annotations for intermediate functions are automatically
inferred. For example, from a TRS encoding the insertion sort algorithm, and the final
term sorted(sort(x)), we automatically infer the type annotation for the insert function
as insert(any#, sorted#) → sorted# ∈ R#, where the abstract value sorted# is
inferred from the side analysis of the sorted symbol: sorted(sorted#)→ true# ∈ R#.
This annotation reveals a necessary intermediate proof step: we first need to prove
that when inserting any element into a sorted list, we obtain a sorted list. We believe
that starting from the two above generated rules of R# it is possible to infer the
adequate type annotations for F* or Liquid Types and automate the proofs, i.e., infer
the annotation insert(X : int, Y : {l : int list | sorted(l)}) : {l : int list | sorted(l)}.

Another strand of further work concerns the extension to properties on lazy
functional programs. Jones’ abstraction technique [JA07] can prove properties on
functional programs using call-by-name evaluation. With our current invariant
inference procedure we need for the input program to be terminating. However,
this inference part is not limited to call-by-value evaluation, as it is in [JA07]. We
could broaden the image computation technique so that unfinished non terminating
computations are taken into account. We experimented with this and there are some
interesting cases, like call-by-value evaluations, for which this is sufficient to build a
correct abstraction automaton.

There are known abstraction inference techniques for domains mixing structures
and base types [LGJ07], e.g., queues of integers. These techniques rely on an

124 CHAPTER 5. REGULAR LANGUAGE TYPE INFERENCE

extension of word automata called lattice automata. There exists a similar extension
for tree automata called lattice tree automata making it possible to abstract recursive
structures containing, e.g., integer values [GLGLM13].

The main limitation of our technique is the impossibility to express or verify
relational properties. There exists ways to use tree automata to represent relations
using, for instance, automatic structures [KN95, BG00]. The idea is to use one
automaton to represent multiple terms at once, or convolution of terms. For instance,
the equality relation can be recognized by the two automaton transitions

0⊗ 0→ q s⊗ s(q)→ q

where ⊗ is a convolution operator. Checking if two terms t1, t2 are equals is then
equivalent to testing if the convoluted term t1 ⊗ t2 is recognized by the automaton
above. Convolutions introduces however new challenges that remains to be solved in
order to integrate them into this technique. This is the topic of the next chapter.

Chapter 6

Regular relations

The contribution presented in this chapter has mainly been realized during a three
month collaboration with Prof. Naoki Kobayashi at the University of Tokyo.

6.1 Introduction

Until now, in the previous chapters we have seen how to use regular languages to
tackle regular problems, and in particular regular safety problems. One particularity
of regular problems is that they can be solved without exhibiting any relations between
the variables of the program. As a consequence, most problems involving arithmetic,
or any kind of structural comparison between infinite domain values, is not a regular
problem and cannot be handled by the techniques defined in the previous chapters.
For instance, consider the following term rewriting system R defining the equality
predicate eq over natural numbers:

eq(0, 0)→ true eq(s(x), 0)→ false
eq(s(x), s(y))→ eq(x, y) eq(0, s(y))→ false

We want to check that, for all n, eq is reflexive:

∀n. eq(n, n) 6→∗R false

As we have seen throughout the document, verifying this property requires computing,
or over-approximating, R∗(I) for I = { eq(n, n) | n ∈ N }. Since R is simple, we
know that R∗(I) is the union of I and { true }. However I is not a regular language,
and any regular over-approximation of I would add false to the over-approximation of
R∗(I). From the point of view of regular language typing, we can say that there exists
no regular language signature for eq for the target type { true }. This shows why
our problem is not regular. In general, any problem involving non-modulo arithmetic
is not regular.

This limitation is directly due to the non-regularity of tree languages representing
tree relations such as I. A similar problems arises in the world of string languages for
string relations. In the case of strings, this problem has been solved using automatic
relations [KN95,BG00]. This chapter discusses how string automatic relations can be
extended into tree automatic relations in order to represent relations between trees
using regular languages [Tata, Lin12]. We then propose a procedure to learn tree
automatic relations using ICE [GLMN14,GNMR16], a robust counter-example guided
learning model applied to constrained Horn clause (CHC) solving. We implemented

125

126 CHAPTER 6. REGULAR RELATIONS

a regular CHC solver [Hau19] based on this procedure and tested it on several case
studies.

The rest of the chapter is structured as follows. First we see in Section 6.2 what
are automatic relations on strings. We then extend this concept to tree automatic
relations in Section 6.3. In Section 6.4 we propose a learning procedure for tree
automatic relations based on ICE learning. In Section 6.5 we expose the results of
our implementation of this procedure in our Regular CHC solver. Finally, Section 6.6
concludes the chapter.

6.2 String Automatic Relations

Automatic Relations on strings have first been introduced in [KN95] as a mean to
present algebraic structures (on strings) using finite automata to encode the structure’s
operations and relations. For instance, consider the following structure 〈N,≤〉 where
N is the string language of natural numbers (0, s0, ss0, sss0, . . .) and ≤ the usual
comparison operator. One way to represent the relation ≤ is by considering the
string language Leq = {sn0sm0 |n ≤ m} that encodes every pair of the relation as its
concatenation. This is very similar to our previous example with the (tree) language
Eq: Leq is not regular as it cannot be recognized by a simple finite automaton (it
can be recognized by a finite push-down automaton). In [KN95], authors propose a
new way of encoding such relations using regular languages: instead of encoding each
pair of the relation by concatenation, each pair is encoded by convolution.

Definition 6.2.1 (String convolution). Let Σ be an alphabet. The convolution of two
words α, β of Σ∗, written α⊗ β, is recursively defined as:

aα ⊗ bβ = a
b (α⊗ β)

aα ⊗ ε = a
· (α⊗ ε)

ε ⊗ bβ = ·
b(ε⊗ β)

ε ⊗ ε = ε

where ε is the empty string, ab denotes the convolution of the two symbols a, b and · is
a special padding symbol not in Σ. The resulting string is defined over the alphabet
{ a
b | a, b ∈ Σ ∪ { · } }.

Example 6.2.1. Consider Σ = { a, b } with the two words α = ababa and β = baa.
The convolution α⊗ β is equal to a

b
b
a
a
a
b
·
a
· . It can easily be seen as the superposition

of the two strings on top of each other.

A string automatic relation, or regular relation, is defined as any relation for which
the convolution defines a regular language. Every element of this language represents
then a convoluted pair of the relation. A simple deconvolution can reconstruct the
two items of the pair.

Definition 6.2.2 (Regular Relation). A (binary) relation R over strings is regular
if the language L(R) = { x⊗ y | R(x, y) } is regular. Then it can be recognized by a
finite automaton. Such an automaton is called an automatic relation. This definition
extends to any n-ary relations.

Example 6.2.2. Let us consider again the structure 〈N,≤〉 of natural number provided
with the comparison operator ≤. the relation ≤ can be encoded with the language
L(≤) = { x⊗ y | x ≤ y }. This language contains for instance 0

0 ,
s
s

0
s
·
s
·
0 , but not

s
0

0
· .

We can show that L(≤) is regular since it can be recognized with the following finite
automaton:

6.3. TREE AUTOMATIC RELATIONS 127

q0start

q1 qf

s
s

0
s

0
0

·
s

·
0

The state q0 recognizes the common prefix between the two strings (the minimum of
the two numbers), while q1 recognizes the suffix (the difference of the two numbers).
The final state qf only accepts elements of the relation.

Contrarily to the concatenation encoding, Regular relations encoded with convo-
lutions are closed under union (L(R ∪ R′) = L(R) ∪ L(R′) is regular), intersection
(L(R ∩ R′) = L(R) ∩ L(R′) is regular), and under complement (L(Σ∗2 \ R) =
L(Σ∗2) \ L(R) is regular). In the rest of this chapter, we explore how we can extend
string automatic relations to tree automatic relations, and how to automatically learn
such relations.

6.3 Tree Automatic Relations

As we have seen in the previous section, the nature of automatic relations is closely
related to the definition of a convolution operator on the considered domain. In order
to generalize string automatic relations to trees, we must first define a convolution
operator on trees.

6.3.1 Standard Convolution

The standard definition of tree convolution [Tata] used to define tree automatic
relations consists in overlapping the two convoluted trees as pictured in Figure 6.1.

Definition 6.3.1 (Standard Convolution). Let Σ be a ranked alphabet. The standard
convolution of two terms s, t ∈ T (Σ) written s⊕ t is recursively defined by:

f(s1, . . . , sn)⊕ g(t1, . . . , tm) =
f

g
(s1 ⊕ t1, . . . , sN ⊕ tN)

where N = max(n,m) = ar(fg), for all i > n, si = · and for all i > m, ti = ·. Once
again, · is a special padding symbol not in Σ. The resulting term is defined over the
ranked alphabet Σ⊕ = { f

g | f, g ∈ Σ ∪ { · } } where ar(·) = 0.

Definition 6.3.2 (Regular Tree Relation). A tree relation R is regular (w.r.t. the
standard convolution) if the language L(R) = { x ⊕ y | R(x, y) } is regular. Then
it can be recognized by a finite tree automaton. Such a tree automaton is a tree
automatic relation. This definition extends to any n-ary relations. We name R⊕ the
set of regular relations w.r.t. the standard convolution.

This definition is very similar to regular string relations (Definition 6.2.2), and is
also closed under union, intersection and complement. It can be used to represent,
with a simple tree automaton, relations that are not regular otherwise.

128 CHAPTER 6. REGULAR RELATIONS

f

g

a

g

a

⊕

f

a f

a a

=

f
f

g
a

a
·

g
f

a
a

·
a

Figure 6.1: Standard convolution between the terms f(g(a), g(a)) and f(a, f(a, a)).
This shows how the convolution can be pictured as the overlapping of the two trees.

Example 6.3.1. Consider the = relation on trees defined over the alphabet Σ = {a :
0, b : 1, c : 2}. It is a regular relation as L(=) can be recognized by the following tree
automaton:

a

a
→ q

b

b
(q)→ q

c

c
(q, q)→ q

However this standard definition of convolution cannot capture relations between
trees that never overlap. For instance, consider the ranked alphabet Σ = {0 : 0, s :
1, nil : 0, cons : 2, a : 0, a : 0} ready to encode numbers from N and lists of as and
as from List. Then the relation R = {(l, n) | n ∈ N, l ∈ List. length(l) = n} that
relates every list with its length is not regular. This is because when convoluting a
number with a list, the tree branch representing the number does not overlap the tree
branch representing the list. One simple way to solve this case is to encode the lists

cons

a cons

b nil

⊕

s

s

0

=

cons
s

a
s

·
0

cons
·

b
·

nil
·

cons

cons

nil b

a ⊕

s

s

0

=

cons
s

cons
s

nil
0

b
·

a
·

Figure 6.2: Standard convolution between the terms s(s(0)) and cons(a, cons(b, nil))
(on top) and the terms s(s(0)) and cons(cons(nil, b), a) (below). The relation between
the length of the list and s(s(0)) cannot be captured on top because the two trees do
not overlap on relevant positions. This is resolved below by putting the recursion site
of lists at the first position of the cons symbol.

the other way around as shown on Figure 6.2, writing cons(cons(nil, b), a) instead
of cons(a, cons(b, nil)). In this case the relation can be represented by the following
tree automaton in the final state qR:

cons

s
(qR, qv)→ qR

a

·
→ qv

nil

0
→ qR

b

·
→ qv

6.3. TREE AUTOMATIC RELATIONS 129

This can be generalized to any algebraic datatype with a single recursion site such
as numbers and lists. However it doesn’t work with tree structure with multiple
recursion sites such as binary trees, where each node of the tree has two children (two
recursion sites). For instance, if we note BTree the set of binary trees, the relation
{ (t, n) | t ∈ Btree, n ∈ N. |t| ≤ n } is not regular w.r.t. the standard convolution.
This is because the term n cannot overlap all the branches of the tree t whatever the
encoding we choose for BTree.

6.3.2 Full Convolution

In the previous section we exposed the standard convolution operator definition
which can be found in Tata. In this section we extend this definition and define
a new convolution operator on trees designed to solve the overlapping problem of
the standard convolution operator. The idea of this new convolution is, instead of
relating each term of one tree with only one term of the other tree, to relate every
term of one tree with every term of the other tree at the same depth.

Definition 6.3.3 (Full Convolution). Let Σ be a ranked alphabet. The (full) convolu-
tion of two terms s, t ∈ T (Σ) written s⊗ t is recursively defined by:

f(s1, . . . , sn)⊗ g(t1, . . . , tm) =

f
g (s1 ⊗ ·, . . . , sn ⊗ ·) if m = 0

f
g (· ⊗ t1, . . . , · ⊗ tm) if n = 0, otherwise:

f
g (s1 ⊗ t1, . . . , s1 ⊗ tm, . . . , sn ⊗ t1, . . . , sn ⊗ tm)

where each symbol fg is derived from f and g such that:

ar(
f

g
) =

{
0 if ar(f) = ar(g) = 0

max(1, ar(f)) ∗max(1, ar(g)) otherwise

Once again, · is a special padding symbol not in Σ. The resulting term is defined
over the ranked alphabet Σ⊗ = { f

g | f, g ∈ Σ ∪ { · } } where ar(·) = 0. The binary
convolution operator can be extended into any n-ary convolution.

In the standard convolution definition, for every two terms f(s1, . . . , sn) and
g(t1, . . . , tm) each sub-term si, for i ∈ [1, n] is convoluted with ti (if it exists). In this
definition, each si is convoluted with every tj for j ∈ [1,m]. This allows us to capture
more relations with regular languages. We can hence extend the definition of regular
tree relations as follows.

Definition 6.3.4 (Regular Tree Relation). A tree relation R is regular w.r.t. the
full convolution if there exists a regular language L(R) such that for all terms s, t:

s⊗ t ∈ L(R)⇐⇒ R(s, t)

Then it can be recognized by a finite tree automaton. Such an automaton is a tree
automatic relation. Again, this definition extends to any n-ary relations. We name
R⊗ the set of regular relations w.r.t. the full convolution.

Example 6.3.2 (Binary tree depth). Let consider the ranked alphabet Σ = {0 : 0, s :
1, leaf : 0, node : 2} used to encode natural numbers into N and binary trees into
BTree. Consider the previously mentioned relation R = { (t, n) | t ∈ BTree, n ∈

130 CHAPTER 6. REGULAR RELATIONS

N. |t| ≤ n }. We saw earlier that this is not a regular relation with regards to the
standard convolution. However it is regular w.r.t. the full convolution. It can be
represented using the following tree automaton:

node

s
(q, q)→ q

leaf

s
(q)→ q

leaf

0
→ q

·
s

(q)→ q
·
0
→ q

For instance, the convolution of node(node(leaf, leaf), leaf) and s(s(0)) pictured
on Figure 6.3 is recognized by this automaton. On the contrary, the convolution
between node(leaf, leaf) and 0, which is node

0 (leaf· ,
leaf
·), is not recognized by this

automaton.

node

node

leaf leaf

leaf ⊕

s

s

0

=

node
s

node
s

leaf
0

leaf
·

leaf
·

node

node

leaf leaf

leaf ⊗

s

s

0

=

node
s

node
s

leaf
0

leaf
0

leaf
s

·
0

Figure 6.3: Difference between the standard convolution ⊕ (on top) and full convolu-
tion ⊗ (bottom) between the terms node(node(leaf, leaf), leaf) and s(s(0)). This
shows how the full convolution allows each branch to be in relation with every other
branch.

The full convolution is strictly more expressive that the standard convolution as
it can be used to encode more relations with regular languages. This extends the
concept of regular relations.

Theorem 11 (Standard Regular Relations are Full Regular Relations). The set
of standard regular relations is strictly included in the set of full regular relations:
R⊕ ⊂ R⊗.
Proof. For every relation R of R⊕, by definition L(R) is regular and can be represented
by a tree automaton A over ⊕ convoluted terms. To prove that R is also in R⊗
we proceed as follows. First we define a transformation [·]⊗ from A to a new tree
automaton [A]⊗ recognizing the same relation with ⊗ convoluted terms. We then
show the following property of the transformation:

∀s, t. s⊗ t ∈ L([A]⊗)⇐⇒ s⊕ t ∈ L(A)

Let Σ be an initial (before convolution) ranked alphabet. LetA = 〈Σ⊕,Q⊕,Qf ,∆⊕〉
where Σ⊕ follows Definition 6.3.1. Then [A]⊗ is defined as 〈Σ⊗,Q⊗,Qf ,∆⊗〉, where
Σ⊗ follows Definition 6.3.3, where Q⊗ is the smallest set such that

>
>
∈ Q⊗ q ∈ Q⊕ ⇐⇒ { q,

q

>
,
>
q
} ⊆ Q⊗

6.3. TREE AUTOMATIC RELATIONS 131

The state >> recognizes any term convolution and is associated to the following
transitions in ∆⊗:

f

g
∈ Σ⊕ ⇐⇒

f

g
(
>
>
, . . . ,

>
>

)→ >
>
∈ ∆⊗

f ∈ Σ⇐⇒ f

·
(
>
>
, . . . ,

>
>

)→ >
>
∈ ∆⊗

g ∈ Σ⇐⇒ ·
g

(
>
>
, . . . ,

>
>

)→ >
>
∈ ∆⊗

Similarly, states of the form q
> (resp. >q) can recognize every convolution s⊗ t if and

only if s ⊕ · (resp. · ⊕ t) is recognized by q in A. This is defined by the following
transitions in ∆⊗:

f

·
(q1, . . . , qn)→ q ∈ ∆⊕ ⇐⇒ ∀g ∈ Σ ∪ {·}. f

g
(
q1

>
, . . . ,

qn
>

)→ q

>
∈ ∆⊗

·
g

(q1, . . . , qm)→ q ∈ ∆⊕ ⇐⇒ ∀f ∈ Σ ∪ {·}. f
g

(
>
q1
, . . . ,

>
qm

)→ >
q
∈ ∆⊗

where m = ar(f) and n = ar(g). Finally the remaining transitions in ∆⊗ define the
transformation itself:

f

g
(q1, . . . , qN)→ q ∈ ∆⊕ ⇐⇒

{
f
g (q1, . . . , qN)→ q ∈ ∆⊗ if ar(f) = 0 ∨ ar(g) = 0, or:
f
g (q1,1, . . . , q1,m, . . . , qn,1, . . . , qn,m)→ q ∈ ∆⊗

where m = ar(f), n = ar(g), N = max(n,m) and for all (i, j), qi,j = qi if i = j,
qi,j = qi

> if i > m, qi,j = >
qj

if j > n and qi,j = >
> in other cases. Here we assume

that A is a REFD automaton. The idea of the transformation is to simulate the
standard convolution with the full convolution by using the states of A in [A]⊗ where
the terms overlap, and using >q and q

> otherwise when they don’t. Let us show that
for any term s, t, for any state q ∈ Q, if s⊕ t ∈ L(A, q) then s⊗ t ∈ L([A]⊗, q). We
do that by induction on the term s⊕ t.

• If s⊕ t = f
g . Then for all q such that s⊕ t ∈ L(A, q) because A is ε-free we have

f
g → q ∈ ∆⊕. By definition this means that f

g → q ∈ ∆⊗. Because s⊗ t = f
g ,

we have s⊗ t ∈ L([A]⊗, q).

• If s ⊕ t = f
g (T1, . . . , Tk), then by definition of ⊕, we have s = f(s1, . . . , sn),

t = g(t1, . . . , tm) with k = max(n,m) and for each i ∈ [1, k], Ti = si ⊕ ti
according to Definition 6.3.1. For all q such that s ⊕ t ∈ L(A, q), since A is
ε-free we have f

g (q1, . . . , qk)→ q ∈ ∆⊕ with for all i, si⊕ ti ∈ L(A, qi). Then by
hypothesis of induction we have si ⊗ ti ∈ L([A]⊗, qi). Here we have two cases:

– If ar(f) = 0 or ar(g) = 0 then by definition of [A]⊗ the transition
f
g (q1, . . . , qk) → q is in ∆⊗. Also by definition we know s ⊗ t is equal
to f

g (s1 ⊗ t1, . . . , sk ⊗ tk) (where every si or every ti is · according to
Definition 6.3.1 and 6.3.3). And we already know that si⊗ ti ∈ L([A]⊗, qi),
hence we conclude that s⊗ t ∈ L([A]⊗, q).

– If ar(f) > 0 and ar(g) > 0 then by definition of the transformation we
have f

g (q1,1, . . . , q1,m, . . . , qn,1, . . . , qn,m) → q ∈ ∆⊗. Moreover the term
s⊗ t is by Definition 6.3.3 f

g (s1⊗ t1, . . . , s1⊗ tm, . . . , sn⊗ t1, . . . , sn⊗ tm).
For all i ∈ [1, n], j ∈ [1,m], if i = j we have qi,j = qi and we already

132 CHAPTER 6. REGULAR RELATIONS

know si ⊗ ti ∈ L([A]⊗, qi) which means si ⊗ ti ∈ L([A]⊗, qi,j). If i > m
then by definition of ∆⊗ we have qi,j = qi

> . By definition of the standard
convolution, si ⊕ · ∈ L(A, qi) which implies si ⊗ t ∈ L([A]⊗, qi,j) for all t.
In particular si ⊗ tj ∈ L([A]⊗, qi,j). Similarly if j > n then by definition
of ∆⊗ we have qi,j = >

qj
. By definition of the standard convolution,

· ⊕ tj ∈ L(A, qj) which implies s⊗ tj ∈ L([A]⊗, qi,j) for all s. In particular
si ⊗ tj ∈ L([A]⊗, qi,j). Finally in any other cases qi,j = >

> which also
means si ⊗ ti ∈ L([A]⊗, qi,j) because >> recognizes any term. We conclude
that s⊗ t ∈ L([A]⊗, q).

We do a similar induction on the term s⊗ t to show that for any term s, t, for any
state q ∈ Q, if s⊗ t ∈ L([A]⊗, q) then s⊕ t ∈ L(A, q). Let us write s = f(s1, . . . , sn)
and t = g(t1, . . . , tm).

• If ar(f) = ar(g) = 0 then s⊗ t = f
g . Let q be the state such that f

g → q ∈ ∆⊗.
By definition of the transformation this means that there exists a transition
f
g → q ∈ ∆⊕. By definition of the standard convolution this means that
s⊕ t ∈ L(A, q).

• If ar(f) = n = 0 or ar(g) = m = 0 then s⊗ t = f
g (s1 ⊗ t1, . . . , sN ⊗ tN) with

N = max(n,m). (where every si or every ti is · according to Definition 6.3.1
and 6.3.3). Let q be the state such that fg (q1, . . . , qN)→ q ∈ ∆⊗ with si⊗ti ∈ qi.
By definition of the transformation this means that there exists a transition
f
g (q1, . . . , qN)→ q ∈ ∆⊕. An by hypothesis of induction, si ⊕ ti ∈ L(A, q). By
definition of the standard convolution this means that s⊕ t ∈ L(A, q).

• If ar(f) > 0 and ar(g) > 0 then s⊗ t is equal to f
g (s1⊗ t1, . . . , s1⊗ tm, . . . , sn⊗

t1, . . . , sn ⊗ tm). and it is recognized using the following transition in ∆⊗:
f
g (q1,1, . . . , q1,m, . . . , qn,1, . . . , qn,m)→ q where si ⊗ tj ∈ L([A]⊗, qij). By defini-
tion of the transformation this means there exists a transition f

g (q1, . . . , qN)→ q
in ∆⊕. Let us assume that n ≤ m. Then N = m. For all i ∈ [1, n] we have
qi,i = qi. By hypothesis of induction this means that si ⊕ ti ∈ L(A, qi). For all
i ∈ [n+ 1,m], we have qi,i = >

qi
, which implies · ⊕ si ∈ L(A, qi). By definition

of the standard convolution this means that s⊕ t ∈ L(A, qi). Similarly if we
assume that m ≤ n, then N = n and for all i ∈ [1,m] we have qi,i = qi. By
hypothesis of induction this means that si⊕ ti ∈ L(A, qi). For all i ∈ [m+ 1, n],
we have qi,i = qi

> , which implies ti ⊕ · ∈ L(A, qi). By definition of the standard
convolution this means that s⊕ t ∈ L(A, qi).

This proves that any relation of R⊕ is a relation of R⊗. Besides, we have already
exposed a regular relation of R⊗ that is not in R⊕ in Example 6.3.2. Overall this
proves that R⊕ ⊂ R⊗.

6.4 Relations Inference

In this section, we define a procedure to automatically learn regular tree relations
using the information gathered from the program definition. For instance, consider
the following (first-order) program defined with the following term rewriting system
R:

has-length(nil, 0)→ true has-length(cons(x, l), 0)→ false

has-length(nil, s(y))→ false has-length(cons(x, l), s(y))→ has-length(l, y)

6.4. RELATIONS INFERENCE 133

The function has-length associates a list with its length. We can easily translate
the rewriting system R into a system of constraints over has-length, expressed as
first-order logical formulas called Constrained Horn Clauses (CHC):

has-length(nil, 0)

∀y. ¬has-length(nil, s(y))

∀x, l. ¬has-length(cons(x, l), 0)

∀x, y, l. has-length(l, y)⇐⇒ has-length(cons(x, l), s(y))

Solving this constraint system gives us a definition of has-length that satisfies the
formulas. There already exists a plethora of techniques and tools to solve a CHC
system, some based on satisfiability modulo theories [dMB08, BCD+11] machine
learning approaches [GLMN14,CCKS18,CKS18], etc. However most of these methods
focus on numerical domains and are not well suited to infer regular relations on
algebraic data types. We define in this section a regular CHC solving technique
based on the ICE framework [GLMN14] that has already successfully been used on
numerical domains.

6.4.1 Constrained Horn Clauses Solving

Definition 6.4.1 (Constrained Horn Clause). Let Σ be a ranked alphabet of con-
structor symbols, and R be a ranked alphabet of relation symbols. Let M be a partial
model mapping some elements p of R to its interpretation, a relation M (p) of T (Σ)n

where ar(p) = n. We say that p ∈ R is concrete if M (p) is defined, and abstract
otherwise. A constrained Horn clause (CHC) over R and M is a first-order formula
ϕ of the form

∀X . α1 ∧ · · · ∧ αn ⇒ αn+1

where X is a set of variables, and each αi is either (i) a concrete formula, i.e.
composed of concrete relations and variables of X (ii) an abstract predicate application
over variables of X . In our case, a predicate application is a pattern of the form
p(t1, . . . , tn) where p ∈ R with t1, . . . , tn ∈ T (Σ,X). We often write ~t instead of
t1, . . . , tn and ~t⊗ for t1⊗ · · · ⊗ tn. The left hand side of the clause is called the “body”
of the clause, while the right hand side is the “head”.

We say that a model M satisfies a CHC ϕ, written M |= ϕ, if it is true considering
the interpretation of predicates provided by M . Solving a CHC system S (a set of
CHCs) defined over R and M consist in extending, or completing, the model M
into a new model M ′ by finding interpretations for the abstract predicates such that
M ′ satisfies every clause:

∀ϕ ∈ S. M ′ |= ϕ

We then write M ′ |= S. In our case, each predicate in the model, a regular relation,
is represented by a regular language. Our goal is to automatically infer the missing
regular languages that satisfy the input constraint system. To do that, we design an
ICE-based inference procedure for regular relations.

6.4.2 ICE-Based Verification

First introduced in [GLMN14], “Implication Counter-Example” (ICE) is a robust
framework for learning invariant that is particularly well suited to the resolution of

134 CHAPTER 6. REGULAR RELATIONS

CHC systems, and has already been used to infer invariants on higher-order functional
programs [CCKS18]. It works by combining a learner that iteratively produces
candidate models, and a teacher that verifies that the produced model satisfies the
CHC system. When a CHC is violated, the teacher produces learning constraints
guiding the learner during the process. The procedure can be summarized as follows.
Starting from the empty model M0 where each abstract predicate is mapped to empty
relations (in our case, empty tree automatic relations), the procedure generates a
series of models M1,M2, . . . where Mi+1 is given as

Learner(
⋃

k∈[0,i]

Teacher(Mk))

The learner uses every set of constraints provided by the teacher for the current
iteration and the previous ones. The procedure stops when Mi+1 = Mi. The output
of the teacher (and the input of the learner) is a set of constraints extracted from
Mi. We detail in this section the role of the teacher and the learner. The following
definitions are adaptations of the definitions found in [CCKS18] to the theory of
terms.

The Teacher

The teacher’s role is to ensure that the models produced by the learner come closer
and closer to the solution. Given the current model Mi, the teacher produces a set
of learning constraints to guide the learner. A solution has been found when the
output of the teacher is empty. Contrarily to a standard CEGAR procedure, in the
ICE framework learning constraints are not solely made of (counter-)examples. ICE
defines three different sorts of learning constraints depending on the form of the
violated formula.

Positive examples If the violated formula is of the form ∀X .p(~t), then the teacher
can extract an example of valuation for which p is not satisfied in the current model
(given by the learner), where it should.

Definition 6.4.2 (Positive example). Let X be a set of variables. Let Σ be a ranked
alphabet of constructor symbols, and R be a ranked alphabet of relation symbols. A
learning example is a pair 〈p(~t), σ〉 where p ∈ R is an abstract predicate, ~t are patterns
of T (Σ,X) and σ : X 7→ T (Σ) a substitution. An example 〈p(~t), σ〉 represents the
fact that p(~tσ) should be satisfied in the final model.

For instance, consider again the previous has-length example, and assume the learner
just produced a model in which has-length is instantiated as the empty predicate.
Then the CHC has-length(nil, 0) is violated. The teacher then produces the example
〈has-length(nil, 0), ∅〉 for the learner so that in the next iteration the model satisfies
has-length(nil, 0).

Negative constraint If the formula is of the form ∀X .α1 ∧ · · · ∧αn ⇒ false, then
the teacher can extract a negative constraint : a valuation for which the formula is
satisfied when it should not.

Definition 6.4.3 (Negative constraint). A learning negative constraint is a set of
pairs {〈p1(~t1), σ1〉, . . . , 〈pk(~tk), σk〉} where for each i ∈ [1, n], pi ∈ R is an abstract
predicate, ~ti are patterns of T (Σ,X) and σi : X 7→ T (Σ) a substitution. A negative

6.4. RELATIONS INFERENCE 135

constraint represents the fact that there must exists i such that pi(tiσi) is not satisfied
in the final model.

For instance, assume the learner just produced a model in which has-length is
instantiated as the true predicate (such that for all l, n, has-length(l, n) is satisfied).
Then the CHC ∀y.¬has-length(nil, s(y)) is violated. The teacher can then produce
the following negative constraint 〈has-length(nil, s(y)), {y 7→ 0}〉 for the learner so
that in the next iteration the model does not satisfy has-length(nil, s(0)).

Implication constraint The distinctive feature of the ICE framework is to make
use of formula of the form ∀X .α1 ∧ · · · ∧ αn ⇒ p(~t) where the head is an abstract
predicate application. If it is violated in the current model, then the teacher extracts
an implication constraint.

Definition 6.4.4 (Implication constraint). A learning implication constraint is a pair
(N, 〈p(~t), σ〉) where N is a negative constraint. An implication constraint represent
the fact that in the final model, if the negative constraint N is not satisfied, then p(~tσ)
must be satisfied.

For instance, assume the learner just produced a model in which has-length is
instantiated as the singleton {(nil, 0)} (which satisfies the constraints given in the pre-
vious examples). Then the CHC ∀x, y, l.has-length(l, y)⇒ has-length(cons(x, l), s(y))
is violated. The teacher can then produce the following implication constraint
({〈has-length(l, y), σ〉}, 〈has-length(cons(x, l), s(y)), σ′〉) for the learner, where
σ = {l 7→ nil, y 7→ 0} and σ′ = {x 7→ a, l 7→ nil, y 7→ 0}. Then in the next iteration
we have either has-length(cons(a, nil), s(0)) satisfied, or not has-length(nil, 0). Of
course the later is not possible because of the previous positive example, so the only
possibility is to have has-length(cons(a, nil), s(0)).

Definition 6.4.5 (ICE Constraints Satisfaction). For an ICE constraint s, we write
M |= s when the model M verifies s according to the following:

• If s is a positive example of the form 〈p(~t), σ〉, then M |= s iff M (p)(~tσ);

• If s is a negative constraint of the form { 〈p1(~t1), σ1〉, . . . , 〈pn(~tn), σn〉 }, then
M |= s iff there exists i ∈ [1, n] such that ¬M (pi)(~tiσi);

• If s is an implication constraint of the form ({ . . . , 〈pi(~ti), σi〉, . . . }, 〈p(~t), σ〉),
then M |= s iff either there exists i such that ¬M (pi)(~tiσi) or M (p)(~tσ).

For a set of ICE constraints I, we write M |= I when for each s ∈ I we have M |= s

The Learner

The learner’s goal is to output a candidate model (Mi+1) using as input the con-
straints issued by the teacher during the previous iterations (∪k∈[0,i]Teacher(Mk)). It
is completely driven by the teacher and does not have access to the CHC system itself.
This simplifies the role of the learner as it only has to focus on concrete examples.
In [CCKS18], the learner is implemented using a predefined set of qualifiers [RKJ08]
as in the original ICE framework [GLMN14]. Qualifiers are combined throughout the
procedure using a decision tree built using the teacher’s learning constraints. The
qualifiers generally includes usual relations between numerical values which make it
particularly well suited to learn numerical relations, but not regular relations on alge-
braic data types. In Section 6.4.4 we define a new SMT-based learner implementation
that can infer tree automatic relations as defined in Section 6.3.

136 CHAPTER 6. REGULAR RELATIONS

6.4.3 The Teacher

In this section we give some details on our implementation of the teacher in the
case of tree automatic relations (cf. Section 6.3). The complete formalization of
our implementation of the teacher is not yet ready, but this section tries to give
a general idea of the principles underlying our algorithm. Remember that tree
automatic relations are defined as regular relations represented using convoluted
regular languages. Hence in our setting, the model M given to the teacher is defined
as an application that maps each abstract predicate p to a regular language M (p).
From M and a CHC system S, our teacher can extract at least one learning constraint
for each violated CHC of S.

Synchronized Convoluted Runs

For a given CHC ϕ, the problem of finding a valuation that violates ϕ can be reduced
to synchronized search of terms in a set of languages. For instance, consider again the
CHC clause ∀y.¬has-length(nil, s(y)) with the model M such that M (p) = {l⊗n | l ∈
List, n ∈ N}. To find a negative constraint we need to search in the regular language
M (p) a term that matches the pattern nil ⊗ s(y). For example the term nil ⊗ s(0)
matches this pattern and gives us the negative constraint {〈has-length(nil, s(y)), {y 7→
0}〉}.

To generalize, for any CHC of the form ∀X . p1(~t1)∧· · ·∧pn(~tn)⇒ false, we need
to find a substitution σ such that for all i, (~tiσ)⊗ ∈M (pi). The same reasoning can
be applied with a little more work to other forms of CHC formula. If ϕ has the form
∀X . p(~t), the teacher can find an (counter-)example by looking for a substitution
σ such that (~tσ)⊗ 6∈ M (p) which can be done just as before by considering the
complement of M (p). What we want is then (~tσ)⊗ ∈M (p). Finally, if ϕ has the
form ∀X .p1(~t1) ∧ · · · ∧ pn(~tn) ⇒ p(~t), we need to find a substitution σ such that
(~tσ)⊗ ∈M (p) and for all i, (~tiσ)⊗ ∈M (pi). In all of these situations, finding σ is
done by finding a synchronized convoluted run in a set of tree automata.

Definition 6.4.6 (Synchronized Convoluted Run). Let Ω be a set of pairs 〈A,~t〉
where A is a tree automaton and ~t patterns of T (Σ,X). Note that ~t may not be linear.
A synchronized convoluted run over Ω is represented by substitution σ : X 7→ T (Σ)
such that for all 〈A,~t〉, (~tσ)⊗ ∈ L(A). We write SR(Ω) the set of synchronized
convoluted runs over Ω.

Our teacher works by searching for at least one element of SR(Ω) for each clause
of the system. If SR(Ω) is empty, the clause if verified. If SR(Ω) is not empty, the
clause is violated and we can use the extracted element of SR(Ω) to build a learning
constraint to give to the learner. In the rest of this section we give a constructive
definition of SR(Ω) that can be used to design a search algorithm. Note that the
algorithm itself is not given in this document. It closely follows the inductive definition
of SR(Ω) given below, but require the addition of a loop detection system to cope
with the infinite nature of SR(Ω). First, we start by decomposing the problem by
defining SR(Ω) as follows:

SR(Ω) =
⋂
〈A,~t〉

SR(A,~t)

where SR(A,~t) is the set of synchronized runs described by σ such that ~tσ⊗ ∈ L(A).

6.4. RELATIONS INFERENCE 137

In turn, SR(A,~t) can be further decomposed as:

SR(A,~t) =
⋂
q∈Qf

SR(A, q,~t)

where Qf is the set of final states of A, and SR(A, q,~t) the set of synchronized runs
described by σ such that ~tσ⊗ ∈ L(A, q). Our objective is now to define SR(A, q,~t)
in a constructive manner. We have seen in Section 6.3 multiple definitions of the
convolution operator. The definition of SR(A, q,~t) depends on the actual definition
of the convolution we use.

Standard Convolution

We focus here on the definition of SR(A, q,~t) for the standard convolution operator,
written SR⊕(A, q,~t). To simplify, we only consider binary relations. However all the
definitions and proofs can easily be extended to n-ary relations.

Definition 6.4.7. Let A be a tree automatic binary relation. For each q and pair
(s, t) ∈ T (Σ,X)2, SR⊕(A, q, (s, t)) is defined as the smallest set inductively defined
such that for each transition f

g (q1, . . . , qk)→ q in A:

(1) if s = x then if σ′ ∈ SR⊕(A, q, xσ, tσ) with σ = { x 7→ f(x1, . . . , xn) } then
σ′ ◦ σ ∈ SR⊕(A, q, (s, t)).

(2) if t = y then σ′ ∈ SR⊕(A, q, sσ, yσ) with σ = { y 7→ g(y1, . . . , ym) } then
σ′ ◦ σ ∈ SR⊕(A, q, (s, t)).

(3) if s = f(s1, . . . , sn) and t = g(t1, . . . , tm) (with n > 0 ∨ m > 0) then if
σ ∈ SR⊕(A, qi, (si, ti)) for all i ∈ [1,max(n,m)] then σ ∈ SR⊕(A, q, (s, t)).

(4) if s = f and t = g then ∅ ∈ SR⊕(A, q, (s, t)) (where ∅ is the empty substitution).

The idea of this definition is to build synchronized convoluted runs by unrolling the
input patterns following the transitions defined in A. Variables are either eliminated
and unrolled until none is left, in which case a synchronized run has been found and
can be added to SR⊕(A, q, (s, t)).

Example 6.4.1. Consider the following tree automatic relation A defining the equality
between natural numbers:

0

0
→ q

s

s
(q)→ q

We want to find a synchronized run in A for the patterns x and s(y)). To do that,
we follow the definition of SR⊕(A, q, (x, s(y))). Using (1) we start by “unrolling” the
variable x along the transition s

s(q)→ q of A: we build a substitution σ = { x 7→ s(x′) }
and search for a synchronized run in SR⊕(A, q, (s(x′), s(y))). Since both patterns
start with the same symbol (s), we use (3) to consume this symbol and search for a
synchronized run in SR⊕(A, q, (x′, y)). Now we can use (1) and (2) to unroll both
variables along the transition 0

0 → q of A: we build a substitution σ′ = { x′ 7→
0, y 7→ 0 } and search for a synchronized run in SR⊕(A, q, (0, 0)). According to (4),
∅ ∈ SR⊕(A, q, (0, 0)). Now we go back and compose all the produced substitutions
to find a synchronized run for our initial problem: ∅ ◦ σ′ ◦ σ ∈ SR⊕(A, q, (x, s(y)))
where ∅ ◦ σ′ ◦ σ = { x 7→ s(0), y 7→ 0 }.

138 CHAPTER 6. REGULAR RELATIONS

Theorem 12. Let Σ be a ranked alphabet, with A a tree automatic binary relation
for the standard convolution ⊕. For all terms s, t ∈ T (Σ,X) and state q of A:

sσ ⊕ tσ ∈ L(A, q)⇐⇒ σ ∈ SR⊕(A, q, (s, t))

Proof. First, we prove that for all s, t ∈ T (Σ,X), for all σ, for all state q, sσ ⊕ tσ ∈
L(A, q)⇒ σ ∈ SR⊕(A, q, (s, t)). We proceed by strong induction on the maximum
depth of both sσ and tσ, max(|sσ|, |tσ|).

• if max(|sσ|, |tσ|) = 1 then there exists some f and g such that sσ = f and tσ =
g. By applying (1) and (2) if s or t are variables we know that SR⊕(A, q, (s, t))
includes every substitution σσ′ with σ′ ∈ SR⊕(A, q, f, g). By (4), we know that
∅ ∈ SR⊕(A, q, f, g), hence we deduce that σ ∈ SR⊕(A, q, (s, t)).

• if max(|s|, |t|) > 1 then If s = x then we can decompose σ into σασβ
with σα = {x 7→ f(x1, . . . , xn)}. Using (1) we know that RA(q, (s, t)) in-
cludes every σασ

′ such that σ′ ∈ SR⊕(A, q, f(x1, . . . , xn), tσα). We need
to show that σβ ∈ SR⊕(A, q, (f(x1, . . . , xn), tσα)). If tσα = y then we can
decompose σβ into σγσδ with with σγ = {y 7→ g(y1, . . . , yn)}. Using (2)
we know that RA(q, (f(x1, . . . , xn), tσα)) includes every σγσ′ such that σ′ ∈
SR⊕(A, q, f(x1, . . . , xn)σγ , g(y1, . . . , yn)). We need to show that the substitu-
tion σδ is in SR⊕(A, q, (f(x1, . . . , xn)σγ , g(y1, . . . , yn))). By definition, since
f(x1, . . . , xn)σγσδ ⊕ g(y1, . . . , yn)σδ ∈ L(A, q), there exists a transition in A
of the form f

g (q1, . . . , qk) → q such that for each i, xiσγσδ ⊕ yiσδ ∈ L(A, qi)
(where xiσγσδ = · and yiσδ = · when undefined, according to Definition 6.3.1).
Since max(|xiσγσδ|, |yiσδ|) < max(|sσ|, |tσ|), by hypothesis of (strong) in-
duction we deduce that σδ ∈ SR⊕(A, qi, (xiσγ , yi)). By (3) we deduce that
σδ ∈ SR⊕(A, q, (f(x1, . . . , xn)σγ , g(y1, . . . , yn))). Going back we deduce that
σβ ∈ SR⊕(A, q, (f(x1, . . . , xn), tσα)) and that σ ∈ SR⊕(A, q, (s, t)). If s or t
are not variables, we can use the same reasoning without using (1) and (2) and
still get sσ ⊕ tσ ∈ L(A, q).

Now we prove that for all s, t, for all σ, σ ∈ SR⊕(A, q, (s, t)) ⇒ sσ ⊕ tσ ∈ L(A, q).
We proceed by induction on the maximum depth of both sσ and tσ, max(|sσ|, |tσ|).

• If max(|sσ|, |tσ|) = 1. If s = x, then using (1) σ can be decomposed into σασβ
with σβ ∈ SR⊕(A, q, f, tσα) and σα = {x 7→ f}. If tσα = y, then using (2) σβ
can be decomposed into σγσδ with σδ ∈ SR⊕(A, q, fσγ , g) and σγ = {y 7→ g}.
By definition we deduce there must exist a transition f

g → q in A, which means
that f

g ∈ L(A, q), f ⊕ g ∈ L(A, q). Because f = fσγ and g = yσγ we get
fσγ ⊕ yσγ ∈ L(A, q). Since both fσγ and yσγ are closed, we can apply σδ ans
still have fσγσδ⊕yσγσδ ∈ L(A, q). And because σγσδ = σβ we get fσβ⊕yσβ ∈
L(A, q). Now because y = tσα and f = sσα then sσασβ ⊕ tσασβ ∈ L(A, q).
Finally since σασβ = σ we deduce that sσ ⊕ tσ ∈ L(A, q). Again if s or t are
not variables, we can use the same reasoning without using (1) and (2) and still
get sσ ⊕ tσ ∈ L(A, q).

• If max(|sσ|, |tσ|) > 1 If s = x, then using (1) σ can be decomposed into
σασβ with σβ ∈ SR⊕(A, q, f(x1, . . . , xn), tσα) and σα = {x 7→ f(x1, . . . , xn)}.
If tσα = y, then using (2) σβ can be decomposed into σγσδ with σδ ∈
SR⊕(A, q, f(x1, . . . , xn)σγ , g(y1, . . . , ym)) and σγ = {y 7→ g(x1, . . . , yn)}. The
by definition, there exists a transition f

g (q1, . . . , qk) with k = max(n,m) such

6.4. RELATIONS INFERENCE 139

that for each i ∈ [1, k] we have σ ∈ SR⊕(A, qi, (xiσγ , yi)) where, follow-
ing (3), xiσγ = · if i > n and yi = · if j > m. Then by hypothesis of
induction we know that xiσγ ⊕ yi ∈ L(A, qi), from which we deduce that
f(x1, . . . , xn)σγ ⊕ g(y1, . . . , ym) ∈ L(A, q). Because σγ = {y 7→ g(x1, . . . , yn)}
we have f(x1, . . . , xn)σγ⊕yσασγ ∈ L(A, q). Because f(x1, . . . , xn)σγ and yσασγ
are closed, we can safely apply σδ is still have f(x1, . . . , xn)σγσδ ⊕ yσασγσδ ∈
L(A, q). Because σβ = σγσδ then f(x1, . . . , xn)σβ ⊕ yσασβ ∈ L(A, q). Be-
cause σα = {x 7→ f(x1, . . . , xn)} we have xσασβ ⊕ yσασβ ∈ L(A, q). Finally
because σ = σασβ we have xσ ⊕ yσ ∈ L(A, q) from which we conclude that
sσ ⊕ tσ ∈ L(A, q). Once again if s or t are not variables, we can use the same
reasoning without using (1) and (2) and still get sσ ⊕ tσ ∈ L(A, q).

The inductive definition of SR(Ω) is not quite sufficient to be directly translated
into an actual algorithm. Such an algorithm would also require the addition of a loop
detection system to cope with the infinite nature of SR(Ω), which is not given in
this document but implemented in our Regular CHC solver [Hau19]. If it follows our
definition of SR(Ω), we can still show that the teacher is sound and complete (when
it terminates), but have not yet proved its termination.

Conjecture 6.4.1 (Teacher Termination). For all CHC constraint system S and
model M of S, Teacher(M) is defined.

Theorem 13 (Teacher is Sound). Let S be a CHC constraint system and M a model
for S. For all ICE constraint s ∈ Teacher(M) we have M 6|= s.

Proof. If s is a positive example of the form 〈p(~t), σ〉 then σ ∈ SR({ 〈M (p),~t〉 })
which has been computed because there exists a clause ϕ ∈ S of the form ∀X .p(t).
By Theorem 12 this means that (~tσ)⊕ 6∈ L(M (p)) which means that M 6|= ϕ.
Otherwise if s is a negative example of the form { 〈p1(~t1), σ〉, . . . , 〈pn(~tn), σ〉 } then
σ ∈ SR({ 〈M (p1), ~t1〉, . . . , 〈M (pn), ~tn〉 }) which has been computed because there
exists a clause ϕ ∈ S of the form ∀X .p1(t1) ∧ · · · ∧ pn(tn) ⇒ false. By Theorem 12
this means that for all i, (~tiσ)⊕ ∈ L(M (pi)) which means that M 6|= ϕ. Otherwise s
is an implication constraint of the form 〈{ 〈p1(~t1), σ〉, . . . , 〈pn(~tn), σ〉 }, 〈p(~t), σ〉〉 then
SR({ 〈M (p1), ~t1〉, . . . , 〈M (pn), ~tn〉, 〈M (p),~t〉 }) which has been computed because
there exists a clause ϕ ∈ S of the form ∀X .p1(t1)∧· · ·∧pn(tn)⇒ p(~t). By Theorem 12
this means that for all i, (~tiσ)⊕ ∈ L(M (pi)) and (~tσ)⊕ 6∈ L(M (p)) which means that
M 6|= ϕ.

Theorem 14 (Teacher is Complete). Let S be a CHC constraint system. Let M be
a model. If there exists a clause ϕ ∈ S such that M 6|= ϕ then Teacher(M) 6= ∅

Proof. If ϕ is of the form ∀X .p(t) then by Theorem 12 there exists a substitu-
tion σ in SR({ 〈M (p),~t〉 }). Then 〈p(~t), σ〉 ∈ Teacher(M). Otherwise if ϕ is
of the form ∀X .p1(t1) ∧ · · · ∧ pn(tn) ⇒ false then by Theorem 12 there exists
σ ∈ SR({ 〈M (p1), ~t1〉, . . . , 〈M (pn), ~tn〉 }). Then { 〈p1(~t1), σ〉, . . . , 〈pn(~tn), σ〉 } ∈
Teacher(M). Otherwise ϕ is of the form ∀X .p1(t1)∧· · ·∧pn(tn)⇒ p(~t) then by Theo-
rem 12 there exists a substitution σ in SR({ 〈M (p1), ~t1〉, . . . , 〈M (pn), ~tn〉, 〈M (p),~t〉 }).
Then 〈{ 〈p1(~t1), σ〉, . . . , 〈pn(~tn), σ〉 }, 〈p(~t), σ〉〉 is in Teacher(M).

140 CHAPTER 6. REGULAR RELATIONS

Full Convolution

We can naturally define SR⊗(A, q,~t) be modifying Definition 6.4.7. The only part of
the definition that changes is the rule (3) which actually reflects the behavior of the
convolution operator.

Definition 6.4.8. Let A be a tree automatic binary relation. For each q and pair
(s, t), SR⊗(A, q, (s, t)) is defined as the smallest set inductively defined such that for
each transition f

g (q1, . . . , qk)→ q in A, it includes:

(1) if s = x then if σ′ ∈ SR⊕(A, q, xσ, tσ) with σ = { x 7→ f(x1, . . . , xn) } then
σ′ ◦ σ ∈ SR⊕(A, q, (s, t)).

(2) if t = y then σ′ ∈ SR⊕(A, q, sσ, yσ) with σ = { y 7→ g(y1, . . . , ym) } then
σ′ ◦ σ ∈ SR⊕(A, q, (s, t)).

(3) if s = f(s1, . . . , sn) and t = g(t1, . . . , tm) (with n > 0 ∨ m > 0) then if
σ ∈ SR⊕(A, qi, (sl(i), tr(i))) for all i ∈ [1, n × m] where l(i) = dk/me and
r(i) = k mod n (following Definition 6.3.3), then σ ∈ SR⊕(A, q, (s, t)).

(4) if s = f and t = g then ∅ ∈ SR⊕(A, q, (s, t)) (where ∅ is the empty substitution).

Theorem 15. Let Σ be a ranked alphabet, with A a tree automatic binary relation
for the full convolution ⊗. For all terms s, t ∈ T (Σ) and state q of A:

sσ ⊗ tσ ∈ L(A, q)⇐⇒ σ ∈ SR⊗(A, q, (s, t))

The proof of this theorem closely follows the one of Theorem 12.

6.4.4 The Learner

In this section we give an implementation of the learner, that uses learning constraints
from the teacher to find a model that verifies the CHC system. In our case, the
model maps each abstract predicate to a tree automatic relation, a tree automaton.
To learn those tree automata we use an SMT-based procedure similar to the one
developed in Section 5.3.4. However this time, we need to build multiple automata
at the same time, one for each abstract predicate. Let R be the considered set of
abstract predicates. We first define the working context for the learner at iteration
i, Ai, as a function that maps each predicate p to an automaton recognizing every
term for which we know something about p. Then, the constraints on terms emitted
by the teacher are translated into SMT constraints about the states of the automata
in the working context. As in Section 5.3.4, this gives us a candidate model for the
CHC system that is submitted back to the teacher.

Definition 6.4.9 (Learner’s Working Context). Let R be a set of abstract predicates.
A working context A is a function that maps each predicate p to a tree automaton
(a tree automatic relation). We write Ai the working context at iteration i of the
procedure, with A0 the empty working context that maps each predicate to the empty
automaton.

The language recognized by A (p) contains every term for which the learner knows
something. Note that this does not only include the members of the relation p but
also some other constrained terms (for instance terms that must not be members
of the relation). The automaton A (p) essentially recognizes terms from which the

6.4. RELATIONS INFERENCE 141

teacher has given the learner some information w.r.t. p. The working context is
meant to be enriched at each iteration from the data produced by the teacher starting
from A0, however to simplify here we can consider it empty at the beginning of each
iteration. The model Mi+1 outputted by the learner at iteration i+ 1 is generated
from:

1. The input of the learner, written I, which is the set of ICE constraints accumu-
lated from the teacher, ∪k∈[0,i]Teacher(Mk);

2. Ai the working context of the previous iteration;

3. 〈Ai+1,Γ〉 = Γ(Ai, I) where Γ is a set of SMT-constraints extracted from I
about the states of the automata defined Ai+1 derived from Ai; and

4. Ψ(Ai+1) an additional set of SMT-constraints required to keep the model
automata deterministic.

The model generated by the learner is defined as a minimal (with respect to the
number of generated constants) solution φ to the SMT-constraints Γ ∪Ψ(Ai+1):

Mi+1(p) = φ(Ai+1(p))

SMT constraints are composed of equality constraints between the tree automata
states, and of constraints of the form p(q) (or ¬p(q)) deciding if a state q belong to
the predicate p. The later constraints are used to decide which tree automata states
should be final in the generated model. For instance if (s⊗t) is recognized by the state
q in the automaton Ai+1(p), the SMT-constraint “p(q)” means that p(s, t) is true,
and q should be instantiated by a final state of Mi+1(p) so that (s⊗ t) ∈ L(Mi+1(p)).

Definition 6.4.10 (ICE to SMT Constraints). Let R be a set of abstract relations.
Let A be a working context mapping each abstract relation to a tree automaton. Let
s be a learning constraint emitted by the teacher. The following function Γ(A , s)
computes 〈A ′, γ〉 where γ is the (unique) SMT constraint associated with the sample s
in the new working context A ′ derived from A . SMT-constraints are written between
“ . ” in the following definition of Γ(A , s):

1. (positive example) Γ(A , 〈p(~t), σ〉) = 〈A [p 7→ A′], “ p(q) ”〉 where
〈A′, q〉 = Norm(A (p), ~tσ⊗);

2. (negative constraint) Γ(A , {〈p1(~t1), σ1〉, . . . , 〈pn(~tn), σn〉}) =
〈An, “ ¬pi(qi) ∨ · · · ∨ ¬pn(qn) ”〉 where A0 = A and for all i ∈ [1, n],
Ai = Ai−1[pi 7→ Ai] with 〈Ai, qi〉 = Norm(Ai−1[pi], ~tiσi);

3. (implication constraint) Γ(A , ({〈p1(~t1), σ1〉, . . . , 〈pn(~tn), σn〉}, 〈p(~t), σ〉)) =
〈An, “ pi(qi) ∧ . . . ∧ pn(qn)⇒ p(q) ”〉 where A0 = A [p 7→ A′] with
〈A′, q〉 = Norm(A, ~tσ) and for all i ∈ [1, n], Ai = Ai−1[pi 7→ Ai] with
〈Ai, qi〉 = Norm(Ai−1[pi], ~tiσi);

We write A [p 7→ A] for the new working context derived from A where p is now
associated with A. If I is a set of ICE constraints, then the set of SMT-constraints
associated with I (along with the updated working context), Γ(A , I), is simply defined
by successive applications of Γ(A , s) for each constraint s of I.

Definition 6.4.11 (Determinism Constraints). Ψ(A) is the smallest set such that
for all p ∈ R such that f(q1, . . . , qn)→ q ∈ A (p) and f(q′1, . . . , q

′
n)→ q ∈ A (p) then

q1 6= q′1 ∨ . . . ∨ qn 6= q′n ∨ q = q′ ∈ Ψ(A)

142 CHAPTER 6. REGULAR RELATIONS

A solution φ to an SMT constraint system gives a renaming (or interpretation) of
the working automata states into a new set of states Q for which the constraints are
respected. It also gives φ(p), the set of Q-states that belong to p according to the
SMT constraints. For each predicate p, the automaton φ(A (p)) is 〈Σ,Q, φ(p), φ(∆)〉
where ∆ is the TRS defining A (p), and φ(∆) is obtained by renaming the states in
∆ using φ.

Example 6.4.2. Consider the following CHC system specifying the equality predicate
eq on natural numbers:

eq(0, 0)

∀y. ¬eq(0, s(y))

∀x. ¬eq(s(x), 0)

∀x, y. eq(x, y)⇐⇒ eq(s(x), s(y))

Suppose that the teacher already issued to the learner the following ICE constraints
I about the eq predicate: one positive example eq(0, 0), one negative constraint
{ eq(0, s(0)) } and one implication constraint 〈{ eq(0, 0) }, eq(s(0), s(0))〉. We start
by building the working context A along with the SMT constraints γ derived from
the ICE constraints. This is done by computing 〈A , γ〉 = Γ(A0, I) where A0 is
the empty working context. Let us begin with the positive constraint by computing
Γ(A0, eq(0, 0)). According to Definition 6.4.10, the positive constraint is translated
into the SMT constraint “eq(q1)”, where q1 is the state recognizing the term (0⊗ 0) in
A1(eq), where A1 the new working context derived from A0, where we have added the
necessary states in A1(eq) to recognize (0⊗ 0) in q1. According to the same definition,
The SMT constraint associated with the negative ICE constraint { eq(0, s(0)) } is
“¬eq(q2)” where q2 is the state recognizing the term (0 ⊗ s(0)) in A2(eq) (derived
from A1). Finally the SMT constraint associated with the ICE implication constraint
〈{ eq(0, 0) }, eq(s(0), s(0))〉 is “eq(q1)⇒ eq(q3)” where q3 the state recognizing (s(0)⊗
s(0)) in A3(eq) (derived from A2). The final working context defines the following
automaton for eq:

0

0
→ q1

0

s
(q′2)→ q2

·
0
→ q′2

s

s
(q1)→ q3

associated with the following SMT constraints in γ:

eq(q1) ¬eq(q2) eq(q1)⇒ eq(q3)

A minimal solution φ to this constraint system is composed of two states q and q′ such
that φ(q1) = φ(q3) = q and φ(q2) = φ(q′2) = q′ with φ(eq) = { q } which correspond
to set final states of the following solution automaton φ(A (eq)) (once reduced):

0

0
→ q

s

s
(q)→ q

This tree automatic relation gives a candidate instantiation of the eq predicate that
satisfies the ICE constraints given by the teacher. In fact, this tree automatic relation
is a solution to our initial CHC system.

Theorem 16 (Learner is sound). Let I be a set of ICE constraints. Then we have
Learner(I) |= I.

Proof. Let M = Learner(I). For each s ∈ I we have M |= s.

6.4. RELATIONS INFERENCE 143

• If s is a positive example of the form 〈p(~t), σ〉 then by definition of 〈A , γ〉 =
Γ(A , I) there exists a unique state q of A ′(p) such that ~tσ⊗ ∈ L(A ′(p), q), and
γ contains the constraint “ p(q) ”. Then by definition of S(I) and φI , there
exists a unique state q of M (p) such that ~tσ⊗ ∈ L(M (p), q) and q is a final
state M (p). Then by definition, M |= s.

• If s is a negative constraint of the form { 〈p1(~t1), σ1〉, . . . , 〈pn(~tn), σn〉 } then
by definition of 〈A ′, γ〉 = Γ(A , I) for each i ∈ [1, n] there exists a unique state
qi of A ′(pi) such that ~tiσi⊗ ∈ L(A ′(pi), qi). And in addition, γ contains the
constraint “ ¬p1(q1)∨· · ·∨¬pn(qn) ”. Then by definition of S(I) and φI , for each
i ∈ [1, n] there exists a unique state qi of M (pi) such that ~tiσi⊗ ∈ L(M (pi), qi),
and there exists one i for which qi is not a final state of M (pi). Then by
definition, M |= s.

• If s is an implication constraint of the form { 〈p1(~t1), σ1〉, . . . , 〈pn(~tn), σn〉 }
then by definition of 〈A ′, γ〉 = Γ(A , I) for each i ∈ [1, n] there exists a unique
state qi of A ′(pi) such that ~tiσi⊗ ∈ L(A ′(pi), qi) and there exists a unique
state q of A ′(p) such that ~tσ⊗ ∈ L(A ′(p), q). And in addition, γ contains the
constraint “ ¬p1(q1)∨ · · · ∨¬pn(qn)∨ p(q) ”. Then by definition of S(I) and φI ,
there exists a unique state q of M (p) such that ~tσ⊗ ∈ L(M (p), q) and for each
i ∈ [1, n] there exists a unique state qi of M (pi) such that ~tiσi⊗ ∈ L(M (pi), qi).
And either there exists one i for which qi is not a final state of M (pi) or q is a
final state of M (p). Then by definition, M |= s.

Note the the learner does not depend on the actual definition of the convolution
operator. In fact, we can design the interaction between the teacher and the learner
in such a way that learning constraint are already expressed as convoluted terms.
This way, only the teacher needs to reason about convolutions. The learner only has
to reason about terms in simple tree automata.

6.4.5 Soundness and Completeness

We now show some important properties about the whole procedure combining the
defined teacher and learner. We show that it is sound and complete on regular models.
Remember however that we are still working under Conjecture 6.4.1.

Theorem 17 (Soundness). Let S be a CHC system and i such that Mi+1 = Mi.
Then Mi |= S.

Proof. If Mi+1 = Mi then by definition (Teacher)(Mi) = ∅. This means that for
each CHC in S, the teacher has not generated any ICE learning constraint. From
Theorem 14 we deduce this is because Mi |= S.

Theorem 18 (Completeness). Let S be a CHC system. If there exists some regular
model M (mapping each abstract predicate to a tree automatic relation) that verifies
S, then this procedure will eventually find it.

Proof. If there exists some regular model M such that M |= S, then it must verifies
every ICE constraint generated by the teacher and can be represented using a finite
number of automata states N . By definition, the learner always build a minimal
model (in the number of tree automata states) that verifies the ICE constraints

144 CHAPTER 6. REGULAR RELATIONS

generated by the teacher. Furthermore, because new constraints are introduced after
each iteration i if Mi 6|= S and old constraints are preserved, then Mi+1 is different
than every previously generated model. And since there are a finite number of models
with less than N automata states, we know the procedure will eventually produce
the solution with N states (or an equivalent solution with N states).

6.5 Experiments

We have implemented the tree automatic relation learning procedure described in
this chapter in our own Regular CHC Solver [Hau19] written in Rust and using
CVC4 [BCD+11] as our SMT solver backend for the learner (cf. Section 6.4.4). For
now, only the standard convolution operator has been implemented, but it is enough
to explore the practicability of the procedure. To our knowledge, this is the only
existing CHC solver designed to handle regular relations on algebraic data types.
Hence, the purpose of this section is not to compare our implementation with others,
but to simply witness the advantages and limits of our technique.

6.5.1 Test Suite

This time the test suite is different from the one used in the previous chapters. The
test suite used in this section, available on the solver’s repository [Hau19], is limited
to positive first-order regular relational problems. Each problem is expressed as a
CHC system written in the SMT-LIBv2 specification language format. We consider
here two categories of problems: relation inference, and relational safety property
verification.

Relation inference Relation inference problems consist in the exact inference of a
desired relation described using CHC constraints. It is the direct application of what
have been described in this chapter. For instance, one of the considered problems
consists in inferring the relation { (x, y) | x ∈ N, y ∈ N, x ≤ y } using the following
CHC system:

∀n. 0 ≤ n
∀n. ¬(s+ 1 ≤ 0)

∀n,m. n ≤ m⇐⇒ n+ 1 ≤ m+ 1

This relation is regular and can be exactly inferred using our CHC solver.

Relational safety property verification In the context of functional program
verification, most functions cannot be represented as regular relations. However
we can still use our regular CHC solver to infer regular over-approximations of a
given function and verify relational properties over it. For instance, consider the add
function defined by the following TRS:

add(0, y)→ y add(s(x), y)→ s(add(x, y))

This function can be represented by the ternary relation associating its inputs to
the correct output: R = { (x, y, z) | add(x, y)→∗ z }. This relation is not regular,
and cannot be exactly inferred by our CHC solver. However it is possible to infer a

6.5. EXPERIMENTS 145

regular over-approximation of the relation using the following CHC system:

∀y. add(0, y, y)

∀x, y. add(x, y, z)⇒ add(s(x), y, s(z))

This CHC can easily be derived from the rewriting system. A solution to this
problem is a regular relation that over-approximates R. It can be used to verify
safety properties over the rewriting system by adding supplementary clauses to the
system. For instance we can verify that add(s(x), s(y)) never rewrites to 0 by adding
the following clause:

∀x, y. ¬add(s(x), s(y), 0)

By providing an over-approximation of R, the solution model proves that add respects
the last constraint even though this relation is not regular.

Lists alignment We have seen that with the standard convolution, it is not
directly possible to relate the length of a list with an integer because of alignment
considerations. As showed in Figure 6.2 it is possible to solve this problem by encoding
the lists tail first. We have used this solution in our test suite to verify some properties
such as length (make-list n) = n.

6.5.2 Experimental Results

Table 6.1 shows the results of our experiments. The first column gives a short
description of the inferred relation (first half of the table) or the regular safety
property verified (second half of the table). The second column shows the execution
time averaged over 10 runs on a Intel® i7-7600U CPU, 4 2.80GHz cores, with the
detailed contribution of the teacher and the learner. We observe that our regular

Time (s)

Relation/Property Learning Teaching Total

{ x | x ∈ N, x mod 2 = 0 } 0.01±0.0 0.0±0.0 0.01±0.0
{ (x, x) | x ∈ N } 0.0±0.0 0.0±0.0 0.0±0.0
{ (x, y) | x ∈ N, y ∈ N, x ≤ y } 0.0±0.0 0.0±0.0 0.0±0.0

length (make-list n) = n 0.0±0.0 0.01±0.001 0.02±0.0
length (insert-sort l) = length l 0.04±0.008 0.27±0.048 0.31±0.05
x + 0 = x 0.08±0.027 0.02±0.006 0.11±0.03
x + 0 = 0 + x 0.03±0.007 0.01±0.002 0.04±0.0
(cons x l) != l 0.0±0.0 0.0±0.0 0.0±0.0
length (rev l) = length l 0.04±0.008 0.77±0.183 0.82±0.18
length (tail l) = (length l) - 1 0.01±0.001 0.01±0.002 0.03±0.0
(length l = 0) ⇐⇒ l = nil 0.0±0.0 0.0±0.0 0.01±0.0
(length l > 0) ⇐⇒ l != nil 0.0±0.0 0.01±0.012 0.02±0.01
append l nil = l 0.04±0.012 1.99±0.094 2.03±0.1

Table 6.1: Experimental Results

CHC solver is able to verify regular relational properties that were out of the scope of
previous techniques with satisfying performances. For now, since only the standard

146 CHAPTER 6. REGULAR RELATIONS

convolution has been implemented, only relations over linear structures such as lists
and integers can be tested. However even if a degradation of the performances is to
be expected with the full convolution, these preliminary results are promising.

6.6 Conclusion

In this chapter we have built a Constrained Horn Clauses solver able to automatically
infer regular models. This regular CHC solver is built upon tree automatic relations,
an extension of string automatic relations that consists in representing relations as
regular languages of convoluted terms. We have seen that in the case of tree automatic
relations, multiple definitions of the convolution operator exist. In particular, we have
defined a general convolution operator that extends the standard definition and can be
used to represent strictly more tree relations as regular languages. Our regular CHC
solver is an instance of the ICE [GLMN14,GNMR16,CCKS18] procedure, a robust
framework for learning invariant using implication counter examples by conceptually
separating a teacher and a learner. In our case the teacher part, in charge of validating
candidate model, is reduced to the problem of finding synchronized convoluted runs
in multiple automata. We provide a constructive definition of the set of synchronized
convoluted runs for a given problem. On the other side, the learner, in charge of
generating new models using the teacher generated constraints, is defined as an SMT-
based tree automaton abstraction procedure similar to the one defined in Chapter 5
(Section 5.3.4). We have implemented our CHC solving technique in Rust, and used it
to both automatically infer regular relations and automatically verify relational safety
properties on tree-processing functional programs by over-approximating functions.
For now, only the standard convolution has been implemented, but preliminary results
are encouraging as it can verify relational properties on non-trivial function (such as
the insertion sort) that were out of the scope of previous chapters techniques in a
few millisecond. Some work remains to formally define the synchronized convoluted
runs finding algorithm used by the teacher to (in)validate candidate models, and
to adapt it to support the full convolution definition. Some more work remains to
modularize this technique which could allow it scale and would allow us to define a
more advanced regular language type system with relations.

Chapter 7

Conclusion and Future Work

In this thesis we have seen in details how regular tree languages and rewriting
systems can be used to automatically verify regular safety properties on higher-
order tree-processing functional programs. We showed that (1) it is possible to
design complete regular abstraction procedures to find an over-approximation of a
higher-order program’s reachable states suitable to verify a target property (Chapter 4
and 5), (2) it is possible to modularize the procedure to analyze functions separately
and handle more complex problems by stating the problem as a type inference
procedure (Chapter 5), (3) it is possible to extend our abstraction procedure to
automatically verify relational properties on functional programs without leaving the
realm of regular languages using tree automatic relations (Chapter 6).

Equational Abstractions In Chapter 4 we pursued the work on the state of the art
equational abstraction method based on the Tree Automata Completion algorithm and
extended it to handle higher-order programs while preserving termination guarantees.
We formally defined an automatic abstraction procedure based on this algorithm
and proved that it is complete on a subclass of regular properties and complete in
refutation. However we also showed that it is not possible to achieve full regular
completeness with equational abstractions.

Regular Type Inference For this reason in Chapter 5 we defined a new verification
technique based on the regular abstract interpretation of term rewriting systems.
Instead of equations, this new technique uses an SMT-based regular language learning
procedure to abstract the program execution, and can build non-functional regular
abstractions. This allows the procedure to tackle any regular safety problem. By
using this procedure as a component of a regular language types inference procedure,
the analysis can be modularized to scale better when facing more complex problems.
This technique has been implemented as the fourth version of the Timbuk [Tbk4]
verification tool that outperform the previous version on our test suite.

Regular Relations Finally in Chapter 6 we explored how regular languages can
be used to automatically verify relational properties. To do that we adapted our
SMT-based regular language learning procedure to learn regular tree relations, a family
of relations that can be encoded with regular languages by applying a convolution
operator over each element of the relation. We extended the standard convolution
operator into a full convolution operator that can be used to encode more relations
with regular languages. We then defined a regular relation inference procedure based
on the ICE framework dedicated to CHC solving and implemented it in our own

147

148 CHAPTER 7. CONCLUSION AND FUTURE WORK

Regular CHC solver [Hau19]. To our knowledge this is the first formalization and
implementation of a complete regular tree relation inference procedure.

Future Work In order to focus on the core issues related to regular language
inference, we focused on the verification of regular safety properties on terminating
programs already expressed as term rewriting systems and without polymorphism.
This offers plenty of future research directions to find out how the our techniques can
be extended to handle non-safety properties on non-terminating programs, on actual
functional programming languages with type polymorphism. In the following we give
some leads on how to approach these issues.

7.1 Non-Terminating Programs

The strong limitation imposed by our verification procedure so far is to require
the TRS encoding the program to be terminating. This is required by the Tree
Automata Completion algorithm used in our SMT-based iterative inference procedure
in Section 5.3.4. At each iteration, this algorithm is used to compute the set
terms reachable from a finite subset of the initial states of the program. Since
the computation is exact, termination of the program is needed to guarantee the
termination of the TAC algorithm. One possible way to lift this requirement is
to perform a finite number of TAC completion steps (cf. Definition 4.2.3) at each
iteration. If a term considered in the procedure has a normal form, it will eventually
be found at some iteration. By definition, no constraints (other than to ensure
determinism) will be generated over states of the completed automaton recognizing
terms without normal forms (or for which the normal form is not yet known). This
means that the resulting abstraction is not impacted by those states. This would
allow us to keep the same completeness properties without requiring the program to
terminate. However this may slow down the number of iterations necessary for the
procedure to converge to a valid abstraction.

7.2 Non-Safety Problems

For now we only have discussed the verification of safety regular properties of the
form (µx.¬φ∧2x) (cf. Definition 2.4.2). As stated in Section 2.4.2, safety properties
can be verified using a simpler family of abstraction: collapsing abstractions (cf.
Definition 2.4.9). For a program defined by a term rewriting system R, a collaps-
ing abstraction is an R-closed abstraction. In Chapter 4, the equation set ER is
responsible for the generation of collapsing abstractions, and it is the foundation
of the termination guarantees of the equational TAC algorithm. In Chapter 5, our
SMT-based regular language learning procedure is also designed to find collapsing ab-
stractions. However it can be adapted to find non-collapsing abstractions. Remember
that in this iterative procedure, a candidate abstraction is built from a finite REFD
automaton A〈Σ,Q,Qf ,∆〉 representing an R-closed fragment of R∗(I) where I is
an initial language (the set of initial states), and a target type partition T encoding
the safety property. The candidate abstraction is generated by solving the constraint
system S(A, T) (cf. Definition 5.3.10). The most important constraints of S(A, T)
required to solve the safety problem are of the form

q 6= q′ when ∃τ, τ ′ ∈ T. q ∈ TA(τ) ∧ q′ ∈ TA(τ ′) ∧ τ 6= τ ′

7.2. NON-SAFETY PROBLEMS 149

where TA(τ) = { q ∈ Qf | ∃t ∈ γ(τ). t →∗R q }. To simplify, consider T =
{true#, false#}. This constraint will separate final states that rewrites to true from
the ones that rewrite to false. From a model checking point of view, A defines a
model MA = 〈Q,∆ε, V 〉 using T as the set of propositions where ∆ε = { q′ → q | q →
q′ ∈ ∆ } (the direction of the arrow is changed to represent the rewriting relation)
and V (τ) = { q ∈ Q ‖ γ(τ) ∩ L(A, q) 6= ∅ }. From this point of view, the constraints
in S(A, T) will separate states that verifies the following property from those who do
not:

¬(µx. (false# ∨3x))

One can recognize the shape of a safety property, which explains why this procedure
can verify safety properties. A possible way to extend the abstraction procedure to any
property is to replace S(A, T) by an SMT-constraints system S(A, φ) directly defined
from the modal µ-calculus formula φ representing the property to verify. As with
S(A, T), the constraints of S(A, φ) must ensure determinism of the final abstraction
automaton, and the separation of the abstraction of the final states for which φ is
verified from those for which it is not. Note however that the generated abstraction
is still a subterm-collapsing abstraction of the model MR = 〈R∗(I),→R, V ′〉 (cf.
Definition 4.2.4). This is because the automaton A from which the constraints are
generated is already a subterm-collapsing abstraction of MR. One state of Q does not
recognize only one term of R∗(I): if q ∈ Q recognizes the term f(t1, . . . , tn), it will
also recognize every term of the form f(u1, . . . , un) where ti →∗R ui for each i. This is
a property inherited from the Tree Automata Completion algorithm that is also passed
on to the final abstraction. This means that even if generalized, this procedure can
only verify regular properties that can be verified with subterm-collapsing abstractions.
This is the case of regular safety properties. It is also the case of any other regular
property as long as the TRS encoding the program is expressed in continuation
passing style (CPS).

Example 7.2.1 (Resource usage problem). In this example we use the generalization
described above to verify a (non-safety) resource usage problem on a program. Consider
the following program first used in Section 3.2.1:

let rec g x = if _ then close x else (read x; g x)

The _ expression stands for a non-deterministic boolean value. We want to verify that
from the initial state (g file) (where file is an opened file) no read occurs after a
close. This program can be translated into a CPS term rewriting system as follows:

g x k→ br(close x k, read x (h x k))) h x k ()→ g x k
read x k→ k () br(x, y)→ x

close x k→ k () br(x, y)→ y

end x→ x

Each function now takes a new parameter k representing the continuation of the
program. The non-deterministic if-then-else control structure has been replaced by
the non-deterministic br rules. In this representation, read and close have no actual
effect we only want to track their use. The initial state of the program is represented
by the term (g file end) where end is the final continuation of the program (the
end). It is the only member of the initial set of states I. The model represented by R
and I is MR = 〈R∗(I),→R, V 〉 with the two propositions read and close such that
V (read) = { (read f k) | f, k ∈ T (Σ) } and V (close) = { (close f k) | f, k ∈ T (Σ) }.

150 CHAPTER 7. CONCLUSION AND FUTURE WORK

Our property can then be expressed as the following modal µ-calculus formula which
must hold for any final state:

φ = ¬µx. (close ∧3
a read eventually occurs︷ ︸︸ ︷

(µy. read ∨3y)︸ ︷︷ ︸
close then eventually read

) ∨3x no read occurs after a close

To verify it we use the generalization of the regular language learning procedure
described above. The principle is the same: we iterate through growing fragments of
R∗(I) recognized by the automata A0,A1, . . . to find candidate abstractions, starting
from the initial state (g file end) recognized by A0 in qg. Since R is not terminating
here, we use the method described in the previous section and only perform one step of
Tree Automata Completion at each iteration. After 4 iterations, A4 will be as follows:

iteration 1 : g qfile qend → qg file→ qfile

end→ qend

iteration 2 : br(qclose, qread)→ qbr qbr → qg

close qfile qend → qclose

read qfile qh → qread h qfile qend → qh

iteration 3 : qclose → qbr qread → qbr

qend qunit → q2 q2 → qclose

qh qunit → qh qh → qread

()→ qunit

iteration 4 : qunit → q2 qg → qh

Since this automaton is quite big, it is easier to look at the model MA4 = 〈Q,∆ε, V 〉
encoded by A4:

qgstart

qbr

qread

qh qclose qend qunit

In this model we have in particular: [[read]] = { qread }, [[close]] = { qclose } and
[[φ]] = Q ⊇ Qf . The valid abstractions of this model that preserves φ for the final
state (starting state in the model) are constrained by S(A, φ), which gives that the
final abstract automaton must have at least two states to separate read from close.
The smallest solution is pictured as follows:

q#
readstart q#

close

where qg, qbr, qread, qh are abstracted into q#
read and where qclose, qend, qunit are ab-

stracted into q#
close. The final abstract automaton is R-closed and IRR-complete, so

the procedure stops with an correct abstraction of R∗(I) that verifies our property.
Note that this abstraction is not a collapsing abstraction and preserve parts of the
control flow of the program execution.

7.3. INTEGRATION IN HIGHER-ORDER FUNCTIONAL LANGUAGES 151

Of course a lot of work remains to properly formalize this concept and prove its
correctness and completeness. It is also worth noticing that as it is defined above,
this cannot be directly used in a type oriented verification procedure such as the one
defined in Chapter 5, which can only express safety properties. Some more work
remains to modularize this idea to have a chance to handle larger programs.

7.3 Integration in Higher-Order Functional Languages

The abstraction procedures presented in Chapters 4 and 5 are based on a representation
of programs as term rewriting systems. Our goal however is not to impose this
representation to programmers but instead use it as an intermediate representation
for regular verification. This means that we must provide front-ends to real-world
higher-order functional programming languages such as OCaml or Haskell in charge
of translating from the original source code to TRS. There are multiple practicable
difficulties arising from the translation into TRS:

• Primitive data types and operations must be encoded using terms. For instance,
(positive) integers can be encoded using Peano’s number representation. The
expression x + 1 is translated into s(x).

• It is not possible to use anonymous functions in a rewriting system. Every
anonymous function must first be given a name so that rewriting rules can be
created for it. Local function definitions must also be given global names. For
instance, to translate the following OCaml expression (function x -> x + 1),
we must first give a name, f , to the anonymous function and produce the
following rewriting rule for it: @(f, x)→ s(x). This is commonly referred to as
a Lambda-lifting operation.

• Since local closures are lambda-lifted, we must find a way to preserve local
bindings. One way is to use function symbols with non-zero arity, where the arity
of a functional symbol f correspond to the number of locally bound variables
used by the function. For instance we can encode the expression (function y ->

x + y) (where x is a locally bound variable) by lambda-lifting the anonymous
function with the symbol f(x) and the rewriting rule @(f(x), y)→ add(x, y).

• In a pattern matching control structure, each matching case can be translated
as a rewriting rule. However it must first be disambiguated w.r.t. the other
cases since all the rules of a TRS have the same priority, whereas languages
such as OCaml gives more to priority to some cases depending on the order
of declaration in the pattern matching structure. For instance, the expression
match l with [] -> true | _ -> false can be translated into

m(nil)→ true m(x)→ false

However this is not a deterministic TRS: there is an ambiguity since both rules
can be applied on m(nil). A more accurate encoding of the OCaml semantics
needs to disambiguate the patterns by generating the following rules:

m(nil)→ true m(cons(x, y))→ false

Such disambiguation can be done, for instance, using Krauss’s pattern disam-
biguation method [Kra08].

152 CHAPTER 7. CONCLUSION AND FUTURE WORK

Having this translation into TRS would allow us to extend our test suite with real-
world programs and extensively test its scalability. Of course only purely functional
features can be translated into TRS. As a first step toward this, we wish to integrate
our verification technique in the OCaml interpreter. The idea is to add a new top
level expression of the form forall <variables>. <expression> that automatically
checks that the given OCaml expression always return true for all instances of the
input variables. Another less straightforward idea would be to allow users to directly
or indirectly specify regular language types in the signatures of functions. This could
be more flexible for the user and could be used to give hints to the regular language
type inference procedure. For instance, the signature of the sort function could be
given as follows:

sort : t list -> { l | sorted l }

Here { l | sorted l } indirectly refers to the regular language type of sorted lists
of type t list. It can be easily computed by our inference procedure using the
definition of sorted, as long as the type of list elements (t) is finite.

7.4 Polymorphic Lifting

Polymorphic types can be used in programming languages such as OCaml to define
functions working with arbitrary types. For instance, the signature of the higher-order
sort function can be generalized into

sort : (’a -> ’a -> bool) -> ’a list -> ’a list

where ’a -> ’a -> bool is the signature of the comparison function used to sort
elements of type ’a, a type variable universally quantified. Such type variables are
not currently supported by our verification procedure, every type must be known
when the analysis starts. This means that polymorphic functions can only be verified
on a finite set of type instances. Furthermore, depending on the considered property,
the verification problem may or may not be regular depending on the instantiation of
’a. In this example, if we consider the property forall cmp, l. sorted cmp (sort

cmp l) : true, we have seen that the verification problem stays regular as long as ’a
is replaced by a finite type but becomes irregular when replaced with an infinite type
such as int. Since sort works on polymorphic lists, its definition is independent of
the actual structure of the manipulated type. It is never constructed nor destructed
inside the function itself, so the correctness of sort and our ability to prove it should
not depend on the type variable instantiation. In other words, by proving the above
property on some (carefully chosen) finite instantiation T of ’a, we should be able to
deduce a proof for any type (even infinite ones):

forall cmp, l:T. sorted cmp (sort cmp l) : true

⇓
forall cmp. l:’a. sorted cmp (sort cmp l) : true

We can formally state our polymorphic problem in the following way. Let Σ
be a ranked alphabet and X a set of variables with p a pattern of T (Σ,X). We
want to show that pσ 6→∗R false for every substitution σ : X → T (Σ′) where Σ′ can
be any ranked alphabet (it is universally quantified to encode polymorphism). We
can safely ignore well-typedness considerations here and assume that pσ is always
well-typed (if not it would not rewrite to false). This proof cannot be directly

7.4. POLYMORPHIC LIFTING 153

handled by our technique since Σ′ is universally quantified. However we propose here
an indirect 3-steps method that works for such polymorphic problem where we (1)
choose a finite domain instantiation of each type variable (2) prove that property
is verified in this finite domain, (3) show that if the polymorphic property is not
verified (pσ →∗R false), then there exists an abstraction of the counter-example
into the chosen finite domain such that the property is not verified on this abstract
counter-example either. Since no such counter-example exists thanks to (2), the
polymorphic property must be verified.

Choosing a finite domain instantiation In the first step, we instantiate each
type variable with a finite domain type. For that we extend Σ with a finite set of
constants Σ# populating the finite domain. For a given set of variables, We write
Tx ⊆ Σ# the monomorphic regular language type associated to the variable x of
polymorphic type ’a. For example, in the sort example we can instantiate the type
variable ’a with the finite language type Tx = {A,B} ⊆ Σ#. Ideally we want to
choose the smallest number of constants that allows the verification of the given
polymorphic property. Note that we also need to populate polymorphic arrow types
such as ’a -> ’a -> bool (the comparison function’s type). This is done by again
adding new constants Tcmp = {cmp0, . . . , cmpf} ⊆ Σ# where each cmpi has type
{A,B} → {A,B} → bool. We then add the necessary rules in R so that (cmpi x y)
can be evaluated (into a Boolean). To be complete, we must represent every possible
function of this type. Thankfully since we only deal with finite languages this can be
easily constructed by enumerating every possible combination of inputs and outputs.
In this example, we need to generate the following rules for R:

cmp0 A A→ false cmp0 A B → false cmp0 B A→ false cmp0 B B → false

cmp1 A A→ false cmp1 A B → false cmp1 B A→ false cmp1 B B → true

cmp2 A A→ false cmp2 A B → false cmp2 B A→ true cmp2 B B → false

.

cmpd A A→ true cmpd A B → true cmpd B A→ false cmpd B B → true

cmpe A A→ true cmpe A B → true cmpe B A→ true cmpe B B → false

cmpf A A→ true cmpf A B → true cmpf B A→ true cmpf B B → true

Note that this can reduce the number of generated rules by removing symmetries.

Finite domain proof The next step is to show that our polymorphic property is
verified on this particular domain.

Property 1: For all substitution σ# : X 7→ Σ# such that σ#(x) ∈ Tx, pσ# 6→∗R false.

This can be verified using the technique described in Chapter 5.

Polymorphic lifting Once we have shown that pσ# 6→∗R false for each σ# in our
finite domain, the last step is to lift this proof to the polymorphic property. The
trick is to first show the following intermediate property over p and R.

Property 2: For all ranked alphabet Σ′ and substitution σ : X → T (Σ′), if pσ →∗R
false then there exists an abstraction Λ = 〈Σ#,∆#〉 of Σ′ such that α(σ(x)) ∈ Tx
and pσ →∗R∪∆# false.

154 CHAPTER 7. CONCLUSION AND FUTURE WORK

For instance, consider that the safety property on sort we want to verify is
not correct. The sort function preserves the elements of the list, but the output
is not sorted. Then there exists a type domain instance for ’a and an initial
state of the form sorted (sort l) such that sort l returns an unsorted list of
the form e1, . . . , ei, ej , . . . , en where (cmp ei ej = false) (which is why the list is
not sorted). Then we can abstract every element of the domain into the finite
abstract domain { A,B } and the comparison function into cmp# in such a way that
(cmp# α(ei) α(ej) = false) so that the result remains unsorted as pictured below.

cmp e5 e4 = false

e1 e2 e3 e5 e4 e6 e7 e8

A A A B A B B B

cmp# B A = false

α

If we can show this property then we can show by contradiction that ∀σ#. pσ# 6→∗R
false can be lifted for every Σ′ into the proof that ∀σ.pσ 6→∗R false. The idea of the
proof is as follows: if there indeed exists Σ′ and σ such that pσ →∗R false, then there
exists an abstraction such that pσ′ →∗R#∪∆# false. Since R has been extended with
the appropriate rules, this means there exists σ# such that pσ →∗

∆# pσ# →∗R false.
But we already know by hypothesis that pσ# 6→∗R false. This contradiction proves
that pσ 6→∗R false. Property 2 cannot be proved with our procedure because Σ′ is
universally quantified. Finding a way to show this property is the main difficulty
of this future work. We believe that it can be done with a relatively simple static
analysis of the program’s TRS. To be able to go through the last two steps, it may
be needed to iteratively increase the number of constants used in Σ# to abstract the
polymorphic type variables.

7.5 Regular Relations and Higher-Order

In Chapter 6 we have seen how first-order functions could be encoded as predicates
into Horn clauses systems in order to be verified. However this idea only works for
first-order functions. Another research direction could consist in finding ways to
adapt our relational verification technique to handle higher-order programs.

Bibliography

[ADLO10] T. Altenkirch, N. A. Danielsson, A. Löh, and N. Oury. πσ: Dependent
types without the sugar. In M. Blume, N. Kobayashi, and G. Vidal, editors,
Functional and Logic Programming, pages 40–55, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[AF20] I. Amit and D. G. Feitelson. The corrective commit probability code
quality metric. CoRR, abs/2007.10912, 2020, 2007.10912. URL https:
//arxiv.org/abs/2007.10912.

[Aug98] L. Augustsson. Cayenne - a language with dependent types. In M. Felleisen,
P. Hudak, and C. Queinnec, editors, Proceedings of the third ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’98),
Baltimore, Maryland, USA, September 27-29, 1998, pages 239–250. ACM,
1998. doi:10.1145/289423.289451.

[BCD83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. J. Symb. Log., 48(4):931–
940, 1983. doi:10.2307/2273659.

[BCD+11] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer,
editors, Proceedings of the 23rd International Conference on Computer
Aided Verification (CAV ’11), volume 6806 of Lecture Notes in Computer
Science, pages 171–177. Springer, July 2011. URL http://www.cs.stanford.
edu/~barrett/pubs/BCD+11.pdf. Snowbird, Utah.

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. Cduce: an XML-centric general-
purpose language. In C. Runciman and O. Shivers, editors, Proceedings
of the Eighth ACM SIGPLAN International Conference on Functional
Programming, ICFP 2003, Uppsala, Sweden, August 25-29, 2003, pages
51–63. ACM, 2003. doi:10.1145/944705.944711.

[BG00] A. Blumensath and E. Grädel. Automatic structures. In 15th Annual
IEEE Symposium on Logic in Computer Science, Santa Barbara, Califor-
nia, USA, June 26-29, 2000, pages 51–62. IEEE Computer Society, 2000.
doi:10.1109/LICS.2000.855755.

[BGJ08] B. Boyer, T. Genet, and T. Jensen. Certifying a tree automata completion
checker. In A. Armando, P. Baumgartner, and G. Dowek, editors, Auto-
mated Reasoning, pages 523–538, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

155

http://arxiv.org/abs/2007.10912
https://arxiv.org/abs/2007.10912
https://arxiv.org/abs/2007.10912
https://doi.org/10.1145/289423.289451
https://doi.org/10.2307/2273659
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://doi.org/10.1145/944705.944711
https://doi.org/10.1109/LICS.2000.855755

156 BIBLIOGRAPHY

[BK13] C. H. Broadbent and N. Kobayashi. Saturation-based model checking of
higher-order recursion schemes. In S. R. D. Rocca, editor, Computer Science
Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy,
volume 23 of LIPIcs, pages 129–148. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.129.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[BN10] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In M. Kaufmann and
L. C. Paulson, editors, Interactive Theorem Proving, pages 131–146, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[Bra13] E. Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. J. Funct. Program., 23(5):552–593,
2013. doi:10.1017/S095679681300018X.

[CCKS18] A. Champion, T. Chiba, N. Kobayashi, and R. Sato. Ice-based refine-
ment type discovery for higher-order functional programs. In D. Beyer
and M. Huisman, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 365–384, Cham, 2018. Springer International
Publishing.

[CD80] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic func-
tionality theory for the λ-calculus. Notre Dame Journal of Formal Logic,
21(4):685–693, 1980. doi:10.1305/ndjfl/1093883253.

[CDC78] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for λ-terms.
Archiv für mathematische Logik und Grundlagenforschung, 19(1):139–156,
Dec 1978. doi:10.1007/BF02011875.

[CDCS79] M. Coppo, M. Dezani-Ciancaglini, and P. Salle’. Functional characteriza-
tion of some semantic equalities inside λ-calculus. In H. A. Maurer, editor,
Automata, Languages and Programming, pages 133–146, Berlin, Heidelberg,
1979. Springer Berlin Heidelberg.

[CDV81] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional
characters of solvable terms. Math. Log. Q., 27(2-6):45–58, 1981.
doi:10.1002/malq.19810270205.

[CE82a] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In D. Kozen, editor, Logics of
Programs, pages 52–71, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[CE82b] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In D. Kozen, editor, Logics of
Programs, pages 52–71, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In E. A. Emerson and A. P. Sistla, editors,
Computer Aided Verification, pages 154–169, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.

https://doi.org/10.4230/LIPIcs.CSL.2013.129
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1007/BF02011875
https://doi.org/10.1002/malq.19810270205

BIBLIOGRAPHY 157

[Cho56] N. Chomsky. Three models for the description of language. IRE Trans. Inf.
Theory, 2(3):113–124, 1956. doi:10.1109/TIT.1956.1056813.

[CJRS15] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Tip: Tons of
inductive problems. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, and
V. Sorge, editors, Intelligent Computer Mathematics, pages 333–337, Cham,
2015. Springer International Publishing.

[CKS18] A. Champion, N. Kobayashi, and R. Sato. HoIce: An ICE-based non-linear
horn clause solver. In S. Ryu, editor, Programming Languages and Systems,
pages 146–156, Cham, 2018. Springer International Publishing.

[CNX+14] G. Castagna, K. Nguyen, Z. Xu, H. Im, S. Lenglet, and L. Padovani.
Polymorphic functions with set-theoretic types: part 1: syntax, semantics,
and evaluation. In S. Jagannathan and P. Sewell, editors, The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 5–18.
ACM, 2014. doi:10.1145/2535838.2535840.

[Com00] H. Comon. Sequentiality, monadic second-order logic and tree automata.
Inf. Comput., 157(1-2):25–51, 2000. doi:10.1006/inco.1999.2838.

[CPN16] G. Castagna, T. Petrucciani, and K. Nguyen. Set-theoretic types for
polymorphic variants. In J. Garrigue, G. Keller, and E. Sumii, editors,
Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016,
pages 378–391. ACM, 2016. doi:10.1145/2951913.2951928.

[DCM84] M. Dezani-Ciancaglini and I. Margaria. F-semantics for intersection type
discipline. In G. Kahn, D. B. MacQueen, and G. Plotkin, editors, Semantics
of Data Types, pages 279–300, Berlin, Heidelberg, 1984. Springer Berlin
Heidelberg.

[dMB08] L. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R. Ramakr-
ishnan and J. Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[EH83] E. A. Emerson and J. Y. Halpern. "sometimes" and "not never" re-
visited: On branching versus linear time. In J. R. Wright, L. Landwe-
ber, A. J. Demers, and T. Teitelbaum, editors, Conference Record of the
Tenth Annual ACM Symposium on Principles of Programming Languages,
Austin, Texas, USA, January 1983, pages 127–140. ACM Press, 1983.
doi:10.1145/567067.567081.

[Exp3] T. Genet and T. Haudebourg. Experiments with timbuk 3, 2018. URL https:
//people.irisa.fr/Thomas.Genet/timbuk/funExperiments/index.html.

[Exp4] T. Genet and T. Haudebourg. Experiments with timbuk 4, 2020. URL https:
//people.irisa.fr/Thomas.Genet/timbuk/timbuk4/experiments.html.

[FCB02] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping. In 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July
2002, Copenhagen, Denmark, Proceedings, pages 137–146. IEEE Computer
Society, 2002. doi:10.1109/LICS.2002.1029823.

https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1145/2535838.2535840
https://doi.org/10.1006/inco.1999.2838
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/567067.567081
https://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/index.html
https://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/index.html
https://people.irisa.fr/Thomas.Genet/timbuk/timbuk4/experiments.html
https://people.irisa.fr/Thomas.Genet/timbuk/timbuk4/experiments.html
https://doi.org/10.1109/LICS.2002.1029823

158 BIBLIOGRAPHY

[FP91] T. S. Freeman and F. Pfenning. Refinement types for ML. In D. S. Wise,
editor, Proceedings of the ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation (PLDI), Toronto, Ontario, Canada,
June 26-28, 1991, pages 268–277. ACM, 1991. doi:10.1145/113445.113468.

[Gen98] T. Genet. Decidable approximations of sets of descendants and sets of
normal forms. In T. Nipkow, editor, Rewriting Techniques and Applications,
pages 151–165, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[Gen16] T. Genet. Termination criteria for tree automata completion. J. Log. Alge-
braic Methods Program., 85(1):3–33, 2016. doi:10.1016/j.jlamp.2015.05.003.

[Gen18] T. Genet. Completeness of tree automata completion. In H. Kirchner, editor,
3rd International Conference on Formal Structures for Computation and
Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume 108 of LIPIcs,
pages 16:1–16:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.FSCD.2018.16.

[GLGLM13] T. Genet, T. Le Gall, A. Legay, and V. Murat. A completion algorithm
for lattice tree automata. In S. Konstantinidis, editor, Implementation and
Application of Automata, pages 134–145, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[GLMN14] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Ice: a robust frame-
work for learning invariants. In A. Biere and R. Bloem, editors, Computer
Aided Verification, pages 69–87, Cham, 2014. Springer International Pub-
lishing.

[GNMR16] P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning invariants
using decision trees and implication counterexamples. In R. Bodík and
R. Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, pages 499–512. ACM,
2016. doi:10.1145/2837614.2837664.

[GR10] T. Genet and V. Rusu. Equational approximations for tree automata comple-
tion. J. Symb. Comput., 45(5):574–597, 2010. doi:10.1016/j.jsc.2010.01.009.

[Hau19] T. Haudebourg. Regular chc solver. https://github.com/regular-pv/rchc,
commit 571346e, 2019.

[Hin69] R. Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146:29–60, 1969. URL
http://www.jstor.org/stable/1995158.

[Hin82] J. R. Hindley. The simple semantics for coppo-dezani-sallé types. In
M. Dezani-Ciancaglini and U. Montanari, editors, International Symposium
on Programming, pages 212–226, Berlin, Heidelberg, 1982. Springer Berlin
Heidelberg.

[HP01] H. Hosoya and B. C. Pierce. Regular expression pattern matching for
XML. In C. Hankin and D. Schmidt, editors, Conference Record of POPL
2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, London, UK, January 17-19, 2001, pages 67–80.
ACM, 2001. doi:10.1145/360204.360209.

https://doi.org/10.1145/113445.113468
https://doi.org/10.1016/j.jlamp.2015.05.003
https://doi.org/10.4230/LIPIcs.FSCD.2018.16
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1016/j.jsc.2010.01.009
https://github.com/regular-pv/rchc
http://www.jstor.org/stable/1995158
https://doi.org/10.1145/360204.360209

BIBLIOGRAPHY 159

[HP03] H. Hosoya and B. C. Pierce. Xduce: A statically typed XML pro-
cessing language. ACM Trans. Internet Techn., 3(2):117–148, 2003.
doi:10.1145/767193.767195.

[HVP00] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for
XML. In M. Odersky and P. Wadler, editors, Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP
’00), Montreal, Canada, September 18-21, 2000, pages 11–22. ACM, 2000.
doi:10.1145/351240.351242.

[Inr05] Inria. Compcert, 2005. URL https://compcert.inria.fr.

[Inr16] Inria. The coq proof assistant, 2016. URL https://coq.inria.fr.

[JA07] N. D. Jones and N. Andersen. Flow analysis of lazy higher-order
functional programs. Theor. Comput. Sci., 375(1-3):120–136, 2007.
doi:10.1016/j.tcs.2006.12.030.

[JM79] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of lisp-like
structures. In A. V. Aho, S. N. Zilles, and B. K. Rosen, editors, Conference
Record of the Sixth Annual ACM Symposium on Principles of Programming
Languages, San Antonio, Texas, USA, January 1979, pages 244–256. ACM
Press, 1979. doi:10.1145/567752.567776.

[KEH+09] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. sel4: formal verification of an OS kernel. In
J. N. Matthews and T. E. Anderson, editors, Proceedings of the 22nd
ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009, pages 207–220. ACM, 2009.
doi:10.1145/1629575.1629596.

[KN95] B. Khoussainov and A. Nerode. Automatic presentations of structures. In
D. Leivant, editor, Logic and Computational Complexity, pages 367–392,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[Kob09a] N. Kobayashi. Model-checking higher-order functions. In A. Porto and
F. J. López-Fraguas, editors, Proceedings of the 11th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Program-
ming, September 7-9, 2009, Coimbra, Portugal, pages 25–36. ACM, 2009.
doi:10.1145/1599410.1599415.

[Kob09b] N. Kobayashi. Types and higher-order recursion schemes for verification of
higher-order programs. In Z. Shao and B. C. Pierce, editors, Proceedings of
the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009,
pages 416–428. ACM, 2009. doi:10.1145/1480881.1480933.

[Kob13] N. Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20:1–
20:62, 2013. doi:10.1145/2487241.2487246.

[Kou92] E. Kounalis. Testing for the ground (co-)reducibility property in
term-rewriting systems. Theor. Comput. Sci., 106(1):87–117, 1992.
doi:10.1016/0304-3975(92)90279-O.

https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/351240.351242
https://compcert.inria.fr
https://coq.inria.fr
https://doi.org/10.1016/j.tcs.2006.12.030
https://doi.org/10.1145/567752.567776
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1599410.1599415
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1016/0304-3975(92)90279-O

160 BIBLIOGRAPHY

[Kra08] A. Krauss. Pattern minimization problems over recursive data types. In
J. Hook and P. Thiemann, editors, Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, ICFP 2008, Vic-
toria, BC, Canada, September 20-28, 2008, pages 267–274. ACM, 2008.
doi:10.1145/1411204.1411242.

[KRJ09] M. Kawaguchi, P. M. Rondon, and R. Jhala. Type-based data structure
verification. In M. Hind and A. Diwan, editors, Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages 304–315.
ACM, 2009. doi:10.1145/1542476.1542510.

[KSU11a] N. Kobayashi, R. Sato, and H. Unno. Mochi: Model checker for higher-order
programs, 2011. URL http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/.

[KSU11b] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR
for higher-order model checking. In M. W. Hall and D. A. Padua, editors,
Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, San Jose, CA, USA,
June 4-8, 2011, pages 222–233. ACM, 2011. doi:10.1145/1993498.1993525.

[KTU10] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-parameter tree
transducers and recursion schemes for program verification. In M. V.
Hermenegildo and J. Palsberg, editors, Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, January 17-23, 2010, pages 495–508. ACM,
2010. doi:10.1145/1706299.1706355.

[Lei10] K. R. M. Leino. Dafny: An automatic program verifier for functional cor-
rectness. In E. M. Clarke and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, pages 348–370, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[LGJ07] T. Le Gall and B. Jeannet. Lattice automata: A representation for languages
on infinite alphabets, and some applications to verification. In H. R. Nielson
and G. Filé, editors, Static Analysis, pages 52–68, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[Lin12] A. W. Lin. Accelerating tree-automatic relations. In D. D’Souza, T. Kavitha,
and J. Radhakrishnan, editors, IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS
2012, December 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs,
pages 313–324. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.
doi:10.4230/LIPIcs.FSTTCS.2012.313.

[LST78] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of
applications software maintenance. Commun. ACM, 21(6):466–471, 1978.
doi:10.1145/359511.359522.

[McK06] J. McKinna. Why dependent types matter. In J. G. Morrisett
and S. L. P. Jones, editors, Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2006, Charleston, South Carolina, USA, January 11-13, 2006, page 1.
ACM, 2006. doi:10.1145/1111037.1111038.

https://doi.org/10.1145/1411204.1411242
https://doi.org/10.1145/1542476.1542510
http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1145/1706299.1706355
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.313
https://doi.org/10.1145/359511.359522
https://doi.org/10.1145/1111037.1111038

BIBLIOGRAPHY 161

[MI13] Microsoft Research and Inria. F*, 2013. URL https://www.fstar-lang.org.

[Mil78] R. Milner. A theory of type polymorphism in programming. J. Comput.
Syst. Sci., 17(3):348–375, 1978. doi:10.1016/0022-0000(78)90014-4.

[MKU15] Y. Matsumoto, N. Kobayashi, and H. Unno. Automata-based abstraction
for automated verification of higher-order tree-processing programs. In
X. Feng and S. Park, editors, Programming Languages and Systems, pages
295–312, Cham, 2015. Springer International Publishing.

[Nec97] G. C. Necula. Proof-carrying code. In P. Lee, F. Henglein, and N. D.
Jones, editors, Conference Record of POPL’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers
Presented at the Symposium, Paris, France, 15-17 January 1997, pages
106–119. ACM Press, 1997. doi:10.1145/263699.263712.

[Nor09] U. Norell. Dependently Typed Programming in Agda, pages 230–266.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi:10.1007/978-
3-642-04652-0_5.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[Ong06] C. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In 21th IEEE Symposium on Logic in Computer Science (LICS
2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages 81–90.
IEEE Computer Society, 2006. doi:10.1109/LICS.2006.38.

[OR11] C. L. Ong and S. J. Ramsay. Verifying higher-order functional programs
with pattern-matching algebraic data types. In T. Ball and M. Sagiv, editors,
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, pages 587–598. ACM, 2011. doi:10.1145/1926385.1926453.

[OTMW04] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with
dependent types. In J.-J. Levy, E. W. Mayr, and J. C. Mitchell, editors,
Exploring New Frontiers of Theoretical Informatics, pages 437–450, Boston,
MA, 2004. Springer US.

[Rey69] J. Reynolds. Automatic computation of data set definitions. Information
Processing, 68:456–461, 1969.

[Rey91] J. C. Reynolds. The coherence of languages with intersection types. In
T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software,
pages 675–700, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

[Rey96] J. C. Reynolds. Design of the programming language forsythe. Technical
report, 1996.

[RKJ08] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In R. Gupta
and S. P. Amarasinghe, editors, Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementa-
tion, Tucson, AZ, USA, June 7-13, 2008, pages 159–169. ACM, 2008.
doi:10.1145/1375581.1375602.

https://www.fstar-lang.org
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/263699.263712
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1145/1926385.1926453
https://doi.org/10.1145/1375581.1375602

162 BIBLIOGRAPHY

[RNO14] S. J. Ramsay, R. P. Neatherway, and C. L. Ong. A type-directed ab-
straction refinement approach to higher-order model checking. In S. Ja-
gannathan and P. Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, pages 61–72. ACM, 2014.
doi:10.1145/2535838.2535873.

[Roc88] S. R. D. Rocca. Principal type scheme and unification for intersection
type discipline. Theor. Comput. Sci., 59:181–209, 1988. doi:10.1016/0304-
3975(88)90101-6.

[RTI02] Research Triangle Institute. The economic impacts of inadequate infrastruc-
ture for software testing. Technical Report Planning Report 02-3, National
Institute of Standards and Technology, Acquisition and Assistance Division,
Gaithersburg, 2002.

[RV84] S. R. D. Rocca and B. Venneri. Principal type schemes for an extended
type theory. Theor. Comput. Sci., 28:151–169, 1984. doi:10.1016/0304-
3975(83)90069-5.

[SdB69] D. Scott and J. W. de Bakker. A theory of programs. Unpublished
manuscript, IBM, Vienna, 1969.

[SK17] R. Sato and N. Kobayashi. Modular verification of higher-order functional
programs. In H. Yang, editor, Programming Languages and Systems, pages
831–854, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

[Tata] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications.
Available on: http://www.grappa.univ-lille3.fr/tata, 2007. release October,
12th 2007.

[Tbk3] T. Genet, Y. Boichut, B. Boyer, V. Murat, and Y. Salmon. Reachability
Analysis and Tree Automata Calculations. IRISA / Université de Rennes
1, 2001. URL http://people.irisa.fr/Thomas.Genet/timbuk/.

[Tbk4] T. Haudebourg. Timbuk 4: Regular verification framework based on tree
automata and term rewriting systems. https://gitlab.inria.fr/regular-pv/
timbuk/timbuk, commit 11c84f54, 2019.

[TeReSe] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[TK14] T. Terao and N. Kobayashi. A zdd-based efficient higher-order model
checking algorithm. In J. Garrigue, editor, Programming Languages and
Systems, pages 354–371, Cham, 2014. Springer International Publishing.

[UTK10] H. Unno, N. Tabuchi, and N. Kobayashi. Verification of tree-processing
programs via higher-order model checking. In K. Ueda, editor, Programming
Languages and Systems, pages 312–327, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[Vaz16] N. Vazou. Liquid Haskell: Haskell as a Theorem Prover. PhD thesis,
University of California, San Diego, USA, 2016.

https://doi.org/10.1145/2535838.2535873
https://doi.org/10.1016/0304-3975(88)90101-6
https://doi.org/10.1016/0304-3975(88)90101-6
https://doi.org/10.1016/0304-3975(83)90069-5
https://doi.org/10.1016/0304-3975(83)90069-5
http://www.grappa.univ-lille3.fr/tata
http://people.irisa.fr/Thomas.Genet/timbuk/
https://gitlab.inria.fr/regular-pv/timbuk/timbuk
https://gitlab.inria.fr/regular-pv/timbuk/timbuk

BIBLIOGRAPHY 163

[VBJ15] N. Vazou, A. Bakst, and R. Jhala. Bounded refinement types. In K. Fisher
and J. H. Reppy, editors, Proceedings of the 20th ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP 2015, Van-
couver, BC, Canada, September 1-3, 2015, pages 48–61. ACM, 2015.
doi:10.1145/2784731.2784745.

[VJ16a] N. Vazou and R. Jhala. Refinement reflection (or, how to turn your favorite
language into a proof assistant using SMT). CoRR, abs/1610.04641, 2016,
1610.04641. URL http://arxiv.org/abs/1610.04641.

[VJ16b] N. Vazou and R. Jhala. Refinement reflection (or, how to turn your favorite
language into a proof assistant using SMT). CoRR, abs/1610.04641, 2016,
1610.04641. URL http://arxiv.org/abs/1610.04641.

[VJCR13] D. Vytiniotis, S. L. P. Jones, K. Claessen, and D. Rosén. HALO: haskell
to logic through denotational semantics. In R. Giacobazzi and R. Cousot,
editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013, pages 431–442. ACM, 2013. doi:10.1145/2429069.2429121.

[VRJ13] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In
M. Felleisen and P. Gardner, editors, Programming Languages and Systems,
pages 209–228, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[VSJ14] N. Vazou, E. L. Seidel, and R. Jhala. Liquidhaskell: experience with refine-
ment types in the real world. In W. Swierstra, editor, Proceedings of the 2014
ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden, September
4-5, 2014, pages 39–51. ACM, 2014. doi:10.1145/2633357.2633366.

[XP98] H. Xi and F. Pfenning. Eliminating array bound checking through de-
pendent types. In J. W. Davidson, K. D. Cooper, and A. M. Berman,
editors, Proceedings of the ACM SIGPLAN ’98 Conference on Programming
Language Design and Implementation (PLDI), Montreal, Canada, June
17-19, 1998, pages 249–257. ACM, 1998. doi:10.1145/277650.277732.

https://doi.org/10.1145/2784731.2784745
http://arxiv.org/abs/1610.04641
http://arxiv.org/abs/1610.04641
http://arxiv.org/abs/1610.04641
http://arxiv.org/abs/1610.04641
https://doi.org/10.1145/2429069.2429121
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/277650.277732

164 BIBLIOGRAPHY

BIBLIOGRAPHY 165

Titre : Verification automatique de programmes fonctionnels d’ordre supérieur à l’aide de languages
réguliers d’arbres

Mot clés : Vérification, Ordre-supérieur, Languages fonctionnels, Languages réguliers d’arbres

Résumé : Nous étudions comment les langages
réguliers d’arbres peuvent être utilisés pour véri-
fier automatiquement des propriétés sur des pro-
grammes fonctionnels d’ordre supérieur. Notre but
est de développer de nouvelles techniques et out-
ils pour les programmeurs permettant de dévelop-
per des programmes plus sûrs tout en réduisant
le temps et l’expertise nécessaire pour les vérifier.
Cette thèse se concentre sur la vérification de pro-
priétés régulières, famille pour laquelle nous mon-
trons qu’une vérification complète et automatique
est possible. Notre méthode de vérification est
construite sur une procédure d’abstraction capable
d’apprendre des langages réguliers sur-approchant
les états atteignables d’un programme. En utilisant
les langages réguliers en tant que types, nous mon-
trons comment modulariser cette procédure pour

vérifier des propriétés complexes en les formulant
en tant que problèmes d’inférence des types. Nous
étudions ses performances au travers de notre im-
plémentation OCaml, Timbuk 4, sur plus de 80
problèmes de vérification. Nous montrons ensuite
que notre procédure d’abstraction peut être util-
isée pour vérifier des propriété relationnelles qui
semblaient hors de portée des langages réguliers.
Pour cela, nous utilisons et étendons un opérateur
de convolution sur les arbres pour représenter une
relation par langage régulier. Nous étendons en-
suite notre procédure d’apprentissage de langages
pour inférer automatiquement ces relations. Nous
proposons une implémentation de cette idée en
Rust en tant solveur de systèmes de clauses de
Horn contraintes et étudions ses performances sur
de multiples problèmes relationnels.

Title: Automatic Verification of Higher-Order Functional Programs using Regular Tree Languages

Keywords: Program Verification, Higher-order, Functional languages, Regular tree languages

Abstract: This thesis studies how regular tree
languages can be used to automatically verify prop-
erties on higher-order functional programs. Our
goal is to develop new techniques and tools for
the programmers to develop safer programs while
reducing the time and expertize needed to verify
them. In particular, we focus on the automatic
verification of regular safety properties, a family
of properties for which we show that completely
and fully automatic verification can be achieved.
Our verification method is build upon a regular
abstraction procedure that can automatically learn
regular tree languages that over-approximates of
the reachable states of a program, allowing the
verification of a target property. By using regular
languages as types we modularize this procedure
to verify complex properties by stating them as

type inference problems. In addition we study the
performances of the overall technique in our pro-
totype OCaml implementation in the Timbuk 4
verification framework over a test suite of more
than 80 verification problems. We then show how
our abstraction procedure can be used to verify
relational properties that seemed out of the scope
of regular tree languages. To do that, we use and
extend a convolution operator on trees to represent
every element of a relation into a regular tree lan-
guage. We can then extend our previously defied
regular language learning procedure to automat-
ically infer such regular relations. We propose a
Rust implementation of this idea as a regular solver
for Constrained Horn Clauses systems and study
its performance on several relational verification
problems.

	Remerciements
	Résumé en Français
	1 Introduction
	1.1 Motivation
	1.1.1 Testing
	1.1.2 Proof Assistants
	1.1.3 Automated Verification Techniques
	1.1.4 Regular Verification Problems

	1.2 Our Verification Framework
	1.2.1 Term Rewriting Systems
	1.2.2 Tree Automata and Regular Languages

	1.3 Contributions
	1.3.1 Equational Abstractions for Higher-Order Programs
	1.3.2 Regular Type Inference
	1.3.3 Regular Relations
	1.3.4 Summary

	2 Preliminaries
	2.1 Trees, Term and Patterns
	2.2 Rewriting Systems
	2.2.1 Definitions
	2.2.2 Properties of TRSs
	2.2.3 Usage in Functional Program Verification

	2.3 Tree Languages, Grammars and Automata
	2.3.1 Regular Tree Languages
	2.3.2 Bottom-Up Tree Automata
	2.3.3 Beyond Regularity

	2.4 Automated Verification and Abstraction
	2.4.1 Formalization as Model Checking
	2.4.2 Verification via Abstraction

	3 State of the Art
	3.1 Static Type Systems
	3.1.1 Intersection and Set Theoretic Types
	3.1.2 Dependent and Refinement Types
	3.1.3 Deep Specification

	3.2 Higher-Order Trees Model Checking
	3.2.1 Higher Order Recursion Schemes
	3.2.2 Predicate Abstraction

	3.3 Regular Verification
	3.3.1 HORS Extensions
	3.3.2 Regular Tree Languages based Techniques

	4 Higher-Order Equational Abstractions
	4.1 Introduction
	4.2 Tree Automata Completion Algorithm
	4.2.1 Core Algorithm
	4.2.2 Properties of the TAC Algorithm
	4.2.3 Equations
	4.2.4 Contracting Equations

	4.3 Termination Criterion Using Contracting Equations
	4.3.1 The Role of Contracting Equations
	4.3.2 The Role of Transitive Equations

	4.4 A Class of Analyzable Programs
	4.4.1 Bounded Applications Stacks
	4.4.2 Type System
	4.4.3 The K-TRS Class

	4.5 Verification Procedure
	4.5.1 Contracting Equations Generation
	4.5.2 Equations Exploration

	4.6 Experiments
	4.6.1 Test Suite
	4.6.2 Experimental Results
	4.6.3 Related Work

	4.7 Conclusion

	5 Regular Language Type Inference
	5.1 Introduction
	5.1.1 Abstraction solution: regular abstract interpretation
	5.1.2 Modularity solution: regular language types
	5.1.3 Inference solution: Regular language learning

	5.2 Regular Abstract Interpretation
	5.2.1 Regular Abstract Domain
	5.2.2 Abstract Semantics
	5.2.3 Abstraction Inference Challenges

	5.3 Regular Language Types
	5.3.1 Type Partitions
	5.3.2 Inference Algorithm
	5.3.3 Non-Recursive TRS
	5.3.4 Invariant Learning

	5.4 Experiments
	5.4.1 Implementation Details
	5.4.2 Test Suite
	5.4.3 Experimental Results

	5.5 Conclusion

	6 Regular relations
	6.1 Introduction
	6.2 String Automatic Relations
	6.3 Tree Automatic Relations
	6.3.1 Standard Convolution
	6.3.2 Full Convolution

	6.4 Relations Inference
	6.4.1 Constrained Horn Clauses Solving
	6.4.2 ICE-Based Verification
	6.4.3 The Teacher
	6.4.4 The Learner
	6.4.5 Soundness and Completeness

	6.5 Experiments
	6.5.1 Test Suite
	6.5.2 Experimental Results

	6.6 Conclusion

	7 Conclusion and Future Work
	7.1 Non-Terminating Programs
	7.2 Non-Safety Problems
	7.3 Integration in Higher-Order Functional Languages
	7.4 Polymorphic Lifting
	7.5 Regular Relations and Higher-Order

	Bibliography

