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ont rendu cette période aussi agréable et enrichissante que possible.

Je souhaite évidemment remercier chaleureusement mes deux encadrants Florence et Claude
pour leur aide, leur soutien et leur disponibilité pendant ces trois années. Claude, travailler
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Introduction

Electrons in metals consist in a many body system of particles interacting through Coulomb
repulsion. Landau showed [2] that this can be described by an independent electron gas, the
Fermi liquid, whose excitations are independent fermionic particles, the quasiparticles. The
physical properties of the material are then well explained since the many body aspect of the
problem disappears except for the interaction between quasiparticles. Indeed, while delocalized
wave functions account well for the electron states of the Fermi liquid, quasiparticles undergo a
diffusion-like motion, interacting with lattice vibrations (phonons), defects, sample boundaries
and other quasiparticles over various material dependent lengthscales.

In the presence of an attractive interaction between electrons, the BCS theory [8] explains
the emergence of a superconducting state characterized by a condensate of paired electrons, the
Cooper pairs. Nevertheless, there are always thermal excitations called equilibrium quasiparti-
cles in a superconductor at a finite temperature. In the presence of an additional perturbation,
their concentration can be further increased by out of equilibrium quasiparticles.

Two types of non-equilibrium superconductivity [111] referred to as charge and energy imbal-
ance can be realized depending on the nature of the quasiparticles, which continuously changes
from hole-like (far below the Fermi level) to electron-like (far above the Fermi level). The type
of imbalance is related to the kind of perturbation, and determines the relaxation mechanisms
at stake (see Chapter 8). Moreover, in some peculiar situations, a perturbation which feeds
energy into the system can result in a counter intuitive enhancement of superconductivity (see
Chapter 3).

Therefore, understanding the out of equilibrium quasiparticles dynamics in superconduc-
tors is of fundamental interest. It is also important in various applications. Notably, given the
small value of their energy gap, superconductors were first considered as good candidates for
photon detection in the far-infrared range. Here, photo-excitation with light whose frequency is
sufficient to break a Cooper pair creates excess quasiparticles, which dynamics governs the effi-
ciency and sensibility of the detector [90]. In addition, the presence of excess out of equilibrium
quasiparticles which origin is not well understood [28] reduces the performances of supercon-
ducting circuits with dimensions comparable to the corresponding relaxation lengthscales. This
for instance limits the cooling power of micro refrigerators based on normal metal-insulator-
superconductor junctions [42] and the coherence of superconducting qubits [76, 91].

This is why substantial efforts have been made to reduce the quasiparticle density, using
for example normal metal islands [92] or magnetic vortices [82] to trap out of equilibrium
quasiparticles. The microscopic trapping mechanism is however not yet sufficiently understood
to account for experimental observations [99]. On another hand, the spatially inhomogeneous
density of states intrinsically present in disordered superconductors could explain the anomalous
electrodynamics responses measured in such materials [41, 16] in terms of quasiparticle trapping.
However, all these investigations have been performed by transport experiments, which only
probe macroscopic volumes rendering the explanation in terms of inhomogeneity difficult.

Surprisingly, the effect of quasiparticle injection on the critical current of superconduct-
ing nanowires has been very rarely investigated [115]. This is however interesting since few
is known and this may be related to the operation of existing devices, among which super-
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2 INTRODUCTION

conducting nanowires single photon detectors (SNSPDs) [90] and superconducting field effect
transistors (SuFETs) [27, 85].

In order to experimentally probe the microscopic mechanisms of quasiparticle dynamics,
tunnel junctions have been employed to inject out of equilibrium quasiparticles. Nonetheless,
lithographed tunnel junctions lack spatial resolution and do not allow to vary the bias voltage
and the tunneling current independently, which is a major drawback to whom wants to control
the rate and the energy range of injected quasiparticles. In order to overcome these two limita-
tions the novelty of this PhD work is to use a Scanning Tunneling Microscope (STM) working at
very low temperature (50 mK) as a quasiparticle injector. Thus, both the tip position and the
tunneling set-point are controlled. The resulting modifications of the superconducting proper-
ties are probed by measuring the critical current of thin superconducting nanowires. Special
care must be paid to surface quality in order to be compatible with the STM technique. There-
fore, we chose to study niobium layers capped with gold to prevent surface oxidation. The
deposit is performed on already nanostructured substrates to avoid resin residuals. Finally,
in addition to provide a quasiparticle injector, the STM allows to perform spatially resolved
spectroscopy, with in this PhD work, a supercurrent flow or an external magnetic field. Be-
cause of the supercurrent flowing in the nanowire during the experiment, it is interesting to
specify that the out of equilibrium state resulting from quasiparticle injection with the STM
tip results in an energy imbalance. This corresponds to the situation encountered in many
applications, including absorption of electromagnetic radiations. Besides, the spatial resolution
of the STM allows to probe inhomogeneous superconducting systems on the nanometer scale,
such as type II superconductors in the vortex state and disordered superconductors. Combined
with transport measurements, this allows to correlate local features with macroscopic transport
properties.

This PhD manuscripts is organized as follows. The first chapter begins with the description
of the experimental techniques employed during this PhD work. The principles, implementation
and limitations of tunneling microscopy and spectroscopy are introduced. Then, we present the
new technique consisting in measuring the critical current of superconducting nanowires under
injection of quasiparticles with a STM, that we called Scanning Critical Current Microscopy
(SCCM). Chapter 2 presents the theories of superconductivity required to interpret our results.
BCS theory deals with equilibrium properties of superconductors, while Usadel theory allows
to predict out of equilibrium properties, including the weakening of superconductivity due to
inverse proximity effect, supercurrent flow and out of equilibrium distribution functions. The
numerical computations performed during this PhD are based on this theoretical framework.
Chapter 3 reviews the existing literature experiments related to this PhD work. In particular,
focus is made on the properties of superconductors driven out of equilibrium by a supercurrent
flow and by quasiparticle injection. The ability to tune independently the bias voltage, tunnel-
ing current and position of the tunnel junction with a STM appears as a major improvement.
The focus of Chapter 4 is the equilibrium properties of the samples studied in this PhD. We
investigate the influence of the nanowires width and thickness, and of the proximity effect due
to the gold capping layer on the different lengthscales and superconducting properties charac-
terizing the samples. Chapter 5 deals with the effect of a supercurrent flow on the properties
of our nanowires, namely their critical current and local density of states in the presence of a
supercurrent. Chapter 6 describes the influence of quasiparticle injection on the critical cur-
rent and critical temperature of our superconducting nanowires. Experimental observations
evidence that a quasi equilibrium is reached in a broad range of experimental conditions. This
motivates the development of a heat diffusion model allowing to probe the quasiparticle dynam-
ics. Chapter 7 is dedicated to the study of magnetic vortices in our superconducting nanowires.
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Their motion is probed by scanning tunneling microscopy. The vortices also allow to investigate
the role of spatial inhomogeneities on quasiparticle dynamics. Chapter 8 is the continuation of
the study presented in Chapter 6 when the energy of the injected quasiparticles is close to the
gap energy. The superconducting device is in this case no longer in a quasi equilibrium state
described by an electronic temperature and a Fermi distribution. This allows us to extract
further information about quasiparticle relaxation far from equilibrium.
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Chapter 1

Experimental techniques

Contents
1.1 Low temperature scanning tunneling microscopy . . . . . . . . . . 5

1.1.1 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 The microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Cryogenics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Scanning tunneling spectroscopy . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Tunneling current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Differential conductance and energy resolution . . . . . . . . . . . . . 12

1.2.3 Imaging vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Scanning critical current microscopy . . . . . . . . . . . . . . . . . . 15

1.4 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

The first Scanning Tunneling Microscope (STM) was developed in 1981 by Binnig and
Rohrer [11]. It was worth to them the Nobel Prize in Physics five years later since it was a
huge breakthrough giving access to the local properties of surfaces down to atomic resolution.
Indeed, by scanning a very sharp and tiny probe (the tip) on the surface, a physical property
at each point of a grid can be measured. This usually allows to image the sample surface
roughness or to measure the local electronic density of states as it is respectively presented
in Section 1 and Section 2 of the present chapter. The novelty of this PhD work is to use
the STM tip as an electron injector to modify a physical property of the sample, namely the
superconducting critical current of a nanowire. Section 3 presents this new technique called
Scanning Critical Current Microscopy, which combines transport measurements and Scanning
Tunneling Microscopy at low temperature. Finally, Section 4 gives details on the fabrication of
the superconducting nanowires measured during the PhD.

1.1 Low temperature scanning tunneling microscopy

This section is dedicated to instrumentation and cryogenics. It explains how atomic resolu-
tion can be reached at sub Kelvin temperature giving technical details about the home made
microscope and its main elements (piezoelectric motors, electronics, cryogenic apparatus).

1.1.1 Working principle

A STM relies on the quantum tunneling of electrons between two conductive electrodes (the
tip and the sample) through an insulating barrier (vacuum). When the distance between the
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6 CHAPTER 1. EXPERIMENTAL TECHNIQUES

tip and the sample is small enough, the wave functions of their electrons spatially overlap, so
that a bias voltage triggers transfer of electrons from one electrode to the other through the
barrier by tunnel effect, resulting in a tunneling current.

The main feature of the tunnel effect is that the transfer probability and therefore the
tunneling current It depends exponentially on the distance d between the tip and the sample:

It ∝ e−2κd, κ =

√
2mφ

~2
(1.1)

with φ the work function of the electrodes (which is assumed to be the same for the sake of
simplicity), m the electron mass and ~ the reduced Planck’s constant. Typically, φ ∼ 5 eV

leading to κ ∼ 1 Å
−1

. This explains why very small spatial variations of the tip lead to
detectable changes of the tunneling current It. Fig. 1.1b schematizes the spatial resolution of a
STM which is sensitive to the electronic density of the atoms: the tip height is adjusted thanks
to a feedback loop in order to maintain a constant tunneling current while the sample surface
is scanned.

(a) (b)

Figure 1.1: Principle of a STM: (a) Energy diagram showing the overlap between the
vanishing wave functions Ψ1 and Ψ2 of the tip and the sample leading to electron tunneling
through a barrier of width d. (b) Schematics of the constant current operating mode: the tip
height keeping a constant tunneling current gives an image of the surface of the sample. Taken
from [37].

Because of the above reasons, Scanning Tunneling Microscopy is only compatible with con-
ducting samples and relies on the ability to control displacements down to the Angström scale
and measure accurately small currents. That is why special attention is paid to avoid oxida-
tion and pollution during sample and tip fabrication, the latest being hold by a piezoelectric
tube allowing very small displacements in three dimensions by applying a DC voltage on its
electrodes.

1.1.2 The microscope

Fig. 1.2 is a picture of the home made STM, with the main elements pointed out: the scanner
tube which holds the tip is glued on an Al2O3 (sapphire) disk, and the sample is fixed on a
sapphire prism.

Scanner tube

The STM tip is mechanically cut from a 0.5 mm diameter wire made of an alloy of platinum
and iridium (Pt0.9/Ir0.1). The advantage of this alloy is that it is corrosion proof, as platinum,



1.1. LOW TEMPERATURE SCANNING TUNNELING MICROSCOPY 7

Figure 1.2: Photograph and colored schematics of the microscope with the essential compo-
nents pointed out. The moving Al2O3 supports are in purple and the fixed microscope body in
white.

prevents oxide formation, and is also stiff, shifting mechanical resonance frequencies to higher
values outside the bandwidth we are interested in. The tip is glued with silver paste or embedded
in the scanner tube.

The tube is made of a piezoelectric material, PbTi1−xZrxO3 (with x close to 0.5). Its
inner and outer parts are covered with metal, see Fig. 1.3a. The outer part is divided in four
electrically isolated parts, forming four capacitors (≈ 4 nF) with the inner electrode. When a
voltage is applied between two facing electrodes (X+ and X− or Y + and Y −), the tube bends
laterally over a distance ∆x,y. The stretching ∆z of the tube is driven by the voltage of the
inner (Z) electrode, such as:

∆x,y =
1.8Vx,yd31L

2

ψt
∆z =

d31VzL

t
(1.2)

where Vx,y is the voltage between two facing electrodes, Vz is the inner electrode voltage, d31 a
piezoelectric coefficient, L the tube length, ψ its diameter and t its wall thickness.

The tube allows to control the tip to sample distance and to scan the (xy) plane with
high accuracy. Indeed, a 150 V applied voltage on the inner electrode stretches it by about
240 nm at 4 K. Nevertheless, thermal contractions during a cooling from 300 K to 4 K produce
displacements of the order of tens to a hundred of microns. Therefore, coarse approach motors
are required to move the sample with respect to the tip.

Z motors

During the cooling of a sample, and also at the very beginning of an experiment when one needs
to bring the sample to within a few hundred microns of the tip to less than the maximum tube
stretching length (to reach the tunneling regime), the prism holding the sample has to be moved
with respect to the tip. This is done thanks to piezoelectric shear motors (or legs) schematized
on Fig. 1.3b. These are made of a stack of polarized piezoelectric plates with copper foils as
contacting electrodes in between and a polished Al2O3 plate on top to minimize friction with
sapphire. The piezoelectric plates shear when a voltage is applied, causing lateral bending of
the leg. There are two ways to take advantage of this effect: the Pan mode (developed by S.
H. Pan et al. [83]) and the inertial mode.

• In Pan mode, each step movement of the prism is decomposed in several stages as shown
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(a) Tube (b) Leg (c) Pan mode step

Figure 1.3: Schematics of the piezoelectric components of the STM.

on Fig. 1.3c. The piezoelectric legs are deformed one by one from equilibrium to bending
position while the others are at rest (stage 1 to 4). The bending leg slides while the others
maintain the prism at rest. Then, the prism is moved when the legs are simultaneously
deformed to initial position (stage 5).

• In inertial mode, all the legs are abruptly deformed at the same time, so that they slide
on the prism which stays at rest, from stage 1 to 4 on Fig. 1.3c. The deformation is still
simultaneous but slower, dragging along the prism.

During approach and cooling processes, special attention must be paid to prevent a crash
between the tip and the sample, which could seriously damage both the apex and metallic prop-
erties of the tip, resulting in poorly resolved images and bad quality junction for spectroscopy
(see Section 1.2).

The inertial approach procedure is the following: the regulation is turned on and since no
tunneling current is measured, the tube is progressively stretched out. If a tunnel current is
detected in the tube range, the procedure is achieved, otherwise the tube is retracted and the
coarse approach motors make a few steps forward before the tube is stretched out again, and
so on. For the Pan mode approach, the tube stays stretched out to save time, the controlled
displacement speed (step 5 of Fig. 1.3c) allowing the feedback loop to prevent a crash of the
tip. The feedback loop settings that determine the response time when the tunnel regime is
reached and the stretching speed when no current is measured must be chosen carefully.

To prevent a crash during the cooling, a straightforward strategy is to withdraw sufficiently
the sample from the tip and make an approach after the cooling. Since the efficiency of the
motors at low temperature is not guaranteed, the sample is maintained the closest possible from
the tip thanks to the control mode. In this operation mode, the tube is fully extended and the
tip to sample distance is slightly larger than the tunneling range, so that the tunneling current
is zero. When thermal contractions due to the cooling bring the tip closer to the sample, a
tunnel current is detected, then the tube is retracted, the coarse approach motors make a few
steps back and the tube is stretched out again.

XY table

The efficiency of the piezoelectric actuators is lowered at low temperatures. Even if the break-
down voltage is a bit higher under vacuum and at low temperature, allowing to apply higher
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voltages, the scanning area of the tube goes from 30 µm × 30 µm at room temperature to
3 µm × 3 µm at low temperatures. Furthermore, the thermal contractions of the microscope
during the cooling randomly move laterally the tip over tens of microns relatively to the sample.
Then, a system to move the scan window of the tube on the surface of the sample is required,
especially if we want to find a specific area - a nanowire, for instance. The XY table is used
for that purpose and has a set-up similar to the Z motors as shown on Fig. 1.2, the XY motors
being in fact a stack of two motors tilted by 90 degrees allowing movement in x and y directions.

Sample holder and microscope body

The sample holder is a copper plate screwed on the copper mount glued on the sapphire prism.
The latter is firmly hold between the piezoelectric stacks by a strong spring press-plate to
ensure sufficient pressure between the motors and the supports and allow for high mechanical
stability. The copper mount ensures good thermalization, and holds a thermometer and a
heating resistor.

The microscope body is made of macor, a glass-ceramic material. It is rigid and with
comparable thermal contractions as the piezoelectric ceramics glued on it preventing them to
lift off at low temperature.

Electronics

A control electronics, Nanonis Scanning Probe Microscopy Control System, made by SPECSTM,
ensures the high voltage signals generation for the piezoelectric tube and motors, and provides
the feedback loop for the regulation of the tunneling current.

The tunneling current amplifier has a large gain and a bandwidth of a few kHz. It will
be further described in Section 1.3. The gain is given by the resistor value and in our case is
108 V/A, which allows to deal with current from approximately 10 pA to 10 nA. The bandwidth
is limited to a few kHz in order to regulate the tunneling current during the scan while rejecting
the high frequency noise.

Labview, a software manufactured by National InstrumentsTM, is used to drive and co-
ordinate the different instruments (Nanonis electronics, voltage sources, voltage and current
amplifiers, lock-ins).

1.1.3 Cryogenics

On top of allowing the study of superconductors, low temperatures increase the energetic res-
olution of spectroscopy (see Section 1.2) and prevent thermal drift between the tip and the
sample. The STM is cooled down in an inverted dilution fridge, called Sionludi. By contrast
with usual dilution systems which are plunged in a liquid 4He bath, the Sionludi is made of five
successive cryogenic stages (100 K, 10 K, 4 K, 1 K and 0.05 K). The coldest stage remains fixed
and is easily accessible as it is situated on the top of the cryostat, hence the name: Sionludi.
Each stage consists in a plate on which a thermal copper shield is screwed. The stages are
assembled like Russian dolls. This configuration aims to reduce thermal radiations. Each stage
is supported by epoxy glass tubes to be thermally decoupled from the others. One can see on
Fig. 1.4a the 5 stages and the 50 mK shield on top. Situated below the cryostat, a liquid 4He
dewar allows to make 4He flow from the 4 K to the 100 K stage. A mixture of 4He and 3He can
circulate in a separate closed loop circuit.

A stainless steel cover encloses hermetically the cryostat which is vacuumed before starting
the cooling process. The circulation of liquid 4He is next enabled, leading to cryopumping on
the cold parts of the 4 K stage. The cooling from 300 K to 4 K of the upper stages is ensured
by the fast circulation of the 3He/4He mixture thermalized by the 4He vapors and inside a 4 K
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(a) Picture of the Sionludi. (b) Schematics of the 50 mK stage.

Figure 1.4: Home built cryogenic apparatus.

pot. Then, a first injection impedance on the 3He/4He circuit allows to trigger a Joule-Thomson
relaxation and therefore to condense the mixture down to 1.5 K. The dilution regime and the
50 mK base temperature are eventually reached thanks to a second injection impedance.

The whole cooling process including the pumping last at least two days. Since the efficiency
of the piezoelectric motors decreases with the temperature and the steps of the motors generates
a non negligible amount of heat, the object of interest (e.g. the nanowire) is located on the
sample surface with the STM at 4 K before starting the 3He/4He mixture condensation process.
A clog in the mixture circuit (leading to a decrease of the flow and thus of the cooling power)
stopped an experiment at the beginning of the PhD. The installation of an hydrogen trap solved
the problem and no other clog happened again.

The STM is enclosed in a coil to generate perpendicular magnetic fields up to ∼ 50 mT.
The whole Sionludi setup lies on an air-cushioned table, and the coil is hanged on a bellow
in the 50 mK stage, ensuring mechanical damping as shown on Fig. 1.4b. One bar of 4He
exchange gas trapped between the bellow and the bell allows fast thermalization of the STM
down to 300 mK, but because of the bad thermal conductance of the stainless bellow, copper
foils between the bell and the flange holding the STM are required to reach 50 mK.

1.2 Scanning tunneling spectroscopy

Scanning Tunneling Spectroscopy (STS) is a powerful tool to probe the local Density Of States
(DOS) of a sample with the STM spatial resolution. For superconductors, one can directly
access the spectral gap of the quasiparticles. As mentioned before, the quality of the tun-
nel junction is at stake to obtain good images and spectroscopy measurements, because the
measured data depends on the tip density of states, which is fortunately constant for a metal.

1.2.1 Tunneling current

The most common way to theoretically describe the electron tunneling between two conducting
electrodes is to consider the tunneling probability as a perturbation of the eigenstates of both
electrodes. These states |l〉 and |r〉 of energies εl/r are respectively labeled by indices l and r
referring to left and right electrode. When a bias voltage Vb is applied to the junction, the
two energy distributions are shifted by a factor eVb, with e the electron charge. The transition
probability per unit time Γl→r for an electron in l to tunnel in r is then given by Fermi’s golden
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rule:

Γl→r =
2π

~
| 〈l|HT |r〉 |2δ(εl − εr − eVb) (1.3)

where:

• HT is the tunneling Hamiltonian treated as a perturbation, so that | 〈l|HT |r〉 |2 is the
transmission coefficient due to the coupling between left and right electrode electronic
states. This term represents the wavefunctions overlap and reflects the exponential decay
of the tunneling current with the distance between the electrodes (see Eq. 1.1). In a
typical experimental situation, it is reasonable to neglect the variations of the transmission
coefficient with respect to electron energy and momentum when the bias voltage Vb is small
compared to the Fermi energy EF .

• we consider elastic tunneling, where the electron transfer is only allowed between states
of same energy. Otherwise, one must replace the δ function by the probability P (E) to
exchange an energy E with the environment, for example by absorbing or emitting a
photon (for experimental evidence of such a process, see [88]).

The total tunneling rate ΓL→R is obtained summing over all the states of both electrodes,
taking into account their filling factors given by Fermi-Dirac distributions fl/r(ε):

ΓL→R =
∑
l,r

Γl→r(1− fr(εr)) fl(εl) (1.4)

The net current is then e(ΓL→R − ΓR→L). Transforming the sum into an integral and
replacing | 〈lHT r〉 |2 by its mean (constant) value |t|2 one finds:

It(Vb) =
4π2

eRQ

|t|2
∫ ∞
−∞

dE Nl(E) Nr(E − eVb) [fl(E)− fr(E − eVb)] (1.5)

where RQ = h/e2 is the quantum of resistance and Nl/r(E) the density of states in left and
right electrodes.

Consequence for a metallic STM tip. In a metal, the DOS varies on the Fermi energy
scale. Since the energies explored with the bias voltage are small compared to Fermi energy,
the DOS of the STM tip will be considered constant. Therefore, It only depends on four
parameters: the tip to sample distance d (through |t|2), the bias voltage Vb, the sample DOS
Ns(E) and the temperature T (through the Fermi-Dirac distribution). The temperature T is
particularly important when we deal with spectroscopy (see next paragraph).

Neglecting the effect of temperature (eVb � kBT with kB the Boltzmann constant), the
Fermi-Dirac distributions become step functions and we get:

It(Vb) ∝ |t|2
∫ eVb

0

dE Ns(E) (1.6)

In a STM experiment, the tunneling setpoint is consequently given by both the bias voltage
Vb and the target tunneling current It. The energy window that contributes to tunneling is
given by eVb. |t|2 governs the barrier transparency. Therefore, lowering Vb must be balanced by
reducing d in order to maintain a constant It. Similarly, one can reach a higher It at constant
Vb by lowering d.

Now differentiating It with respect to Vb at constant d yields to:

G(Vb) =
dIt
dVb

(Vb) ∝ Ns(eVb) (1.7)
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This quantity, called differential conductance is the basis of STS. Indeed, at low temperature
it is proportional to the sample DOS at an energy directly tuned by Vb. Experimentally, the
differentiation is done by synchronous detection: a given setpoint (It,Vb) is chosen and sets the
tip height. The feedback loop is then frozen to keep it constant, while a small AC modulation
δVb is added to a continuous Vb ramp and the resulting in phase variation δIt of It is detected
by a lock-in amplifier. The measured data during the DC Vb sweep is called spectrum.

1.2.2 Differential conductance and energy resolution

Considering that the DOS of the tip is energy independent and that the |t|2 coefficient is
constant, one can identify the left electrode with the sample and the right one to the tip and
derive Eq. 1.5 with respect to Vb:

G =
dIt
dVb
∝
∫ ∞
−∞

dE Ns(E) f ′t(E − eVb) (1.8)

with f ′(E) = −1
4kBT

cosh−2
(

E
2kBT

)
. This equation shows that the differential conductance is

actually the convolution of the sample DOS with a peaked function which depends on the
thermal distribution of the tip. The smaller T , the closer the differential conductance is to the
DOS of the sample. We thus define the energetic resolution by the full width at half maximum
of f ′(E) which is 2 ln(3 + 2

√
2)kBT ' 3.5kBT ≈ 15 µeV at 50 mK.

Case of a superconducting sample. In an electron gas at sufficiently low temperatures and
in the presence of an attractive potential, electrons near the Fermi surface tend to form Cooper
pairs, no matter how weak is the attractive potential. In conventional superconductors, this at-
traction is attributed to an electron-lattice interaction mediated by virtual phonons, which can
in some materials overcome Coulomb repulsion. In the frame of the Bardeen Cooper Schrieffer
(BCS) mean field theory, superconductivity and its effects are explained by the condensation
of Cooper pairs due to an attractive potential. Consequently, the quasiparticle (single particle
excitation) spectrum is modified near the Fermi energy where a band gap opens (excitations
are forbidden under a given energy called gap). The spectrum is given by Ek =

√
ε2k + ∆2

where εk is the kinetic energy of an electron in the state k, Ek is the quasiparticle excitation
energy and ∆ is the BCS superconducting gap [8]. Equalizing the density of states per unit
of momentum in the normal and superconducting state leads to Ns(E)dE = Nn(ε)dε. As the
density of states in the normal state varies little in the energy range of ∆ (of the order of the
meV) in the vicinity of EF , it will be replaced by its value at the Fermi level N0. One obtains
the density of states Ns(E) of unpaired electrons in the superconducting state:

Ns(E) = N0
dε

dE
=

{
N0

|E|√
E2−∆2 if |E| > ∆

0 if |E| < ∆
(1.9)

One often adds an imaginary part called Dynes parameter to the energy: E → E + iΓ. This
has the effect of smearing the BCS gap edge singularity and adding states in the subgap region,
and can be physically attributed to finite quasiparticle lifetime. Indeed, since the BCS ground
state relies on a coherent superposition of paired quasiparticles, their finite lifetime results in
a weakening of superconductivity and more single electron states are available. Even if this
finite lifetime can have many origins, such as recombination into Cooper pairs as it was first
introduced by Dynes [32], the microscopic origin of this effective pair breaking term is still
controversial. Nevertheless, Pekola et al. [88] showed later that the subgap current measured
in a tunnel junction between a normal metal and a superconductor can be due to photon
assisted tunneling. Furthermore, they demonstrated theoretically that under some conditions
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on the junction, the measured DOS leads exactly to the Dynes formula with Γ depending on
the temperature and impedance of the electromagnetic environment.

Consequences on energetic resolution. Tunneling spectroscopy allows to use well known
spectra, as for example BCS superconducting DOS, to extract the effective temperature of
the tip electron gas Teff from Eq. 1.8. An effective temperature of the tip higher than the
temperature measured by the thermometer accounts for the smearing of the spectra and the
associated (probable) reduced energy resolution (see top panel of Fig. 1.5). Different factors
decrease the resolution of our setup and may be responsible for this high effective temperature:

• The electrons of the tip may be poorly thermalized for two reasons: first, cooling of
electrons occurs through a coupling with phonons which is less and less efficient at low
temperature. Then, unfiltered electromagnetic radiations from environment can heat up
the tip, whose end is also a nanoscale object which may not be well coupled to the bulk.
That is why special care mut be taken to filtering (see Section 1.3).

• Likewise, voltage fluctuations or noise across the tunneling junction can also reduce the
energetic resolution and artificially reproduce the effect of a hot tip (see Fig. 1.5). In-
deed, the measured differential conductance Geff (Vb) differs from the sample differential
conductance at Vb because of the noise characterized by a probability density P (V ) for
the voltage to be shifted by V :

Geff (Vb) =

∫ ∞
−∞

dV P (V − Vb)
dIt
dVb

(V ) (1.10)

An improvement in the setup to lower such a noise was to set the voltage bias across the
junction thanks to a twin twisted coaxial cable to balance parasitic voltage and to add
low-pass RC filters at 50 mK. (see Section 1.3). Similarly, the modulation δVb must be
taken small enough compared to the energetic resolution.

Figure 1.5: Dots: normalized dif-
ferential conductance measured at
100 mK on Nb15nm\Au5nm with
δVb = 20 µV. Top panel: BCS
fit with Teff = 385 mK. Bottom
panel: BCS fit with Teff = 100 mK
convoluted with a gaussian volt-
age noise of standard deviation
Vnoise = 54 µV. Both fits leads to
the same gap ∆ = 885 µeV and neg-
ligible Dynes parameter.

• Finally, in non perfectly BCS-like superconductors, Teff plays the role of a fitting param-
eter as well as the Dynes parameter Γ. Indeed, in the thin Nb\Au samples studied in this
PhD work, both the small thickness (smaller than the superconducting coherence length)
and the inverse proximity effect can make the DOS deviate from BCS theory.



14 CHAPTER 1. EXPERIMENTAL TECHNIQUES

The cause of the difference between Teff and the thermometer is probably a mix of the three
above reasons. Indeed, previous measurements in the same fridge on boron doped diamond [96]
and graphene grown on rhenium [112], revealed a BCS like dependency of the superconducting
gap as a function of temperature with Teff ≈ 250− 300 mK. This large effective temperature
can be due to both poor electron thermalization and voltage noise but not to deviation from
the BCS theory. But in our Nb\Au samples, hotter effective temperatures were extracted from
thinner samples with larger gold to niobium ratio in Section 4.5, suggesting that the increase
of Teff is here mainly due to deviations from BCS theory. Nevertheless, whatever the values of
Teff , Γ and Vnoise used to perform a fit, the superconducting gap ∆, which is in most cases the
quantity of interest, remains unchanged. Teff and Vnoise fitting parameters being equivalent,
we will only use Teff , Γ and ∆ in the following.

1.2.3 Imaging vortices

The spectrum measurement previously described is performed with a motionless tip to maintain
the tunnel barrier width constant and probes the Local Density Of States (LDOS) under the tip.
In a common measurement protocol called Current Imaging Tunneling Spectroscopy (CITS),
the tip scans the sample surface at a given setpoint to record the topography and stops at each
point of a grid to acquire a spectrum, giving access to the spatial evolution of the LDOS.

(a) Schematics of a vortex lattice probed by a STM tip
and associated spectra: when the tip is between the
vortices (area a), the tip probes a superconducting

LDOS, whereas in a vortex core (area b), the LDOS is
flat. From [37].

(b) Topography.

(c) Differential conductance.

Figure 1.6: STM vortex imaging: (a) CITS mode. (b) and (c) Nb\Au 300 nm wide
nanowire topographic and differential conductance images recorded simultaneously in scanning
mode: when the tunneling bias setpoint is set such as eVb ≈ ∆ with a small AC modulation
δVb, the tip height is regulated in order to keep the mean value of It at the chosen current
setpoint and gives the topography of the sample, while a synchronous detection measures the
AC variations of It. The vortex cores (dark) have a lower LDOS at this energy due to the
absence of coherence peaks than the superconducting (bright) regions.

This technique can for instance be used to observe vortices: indeed, in a magnetic field and
for type II superconductors, magnetic vortices each carrying one superconducting flux quantum
φ0 = h

2e
penetrate the sample [1]. The vortex core is a normal area around which a supercurrent

flows in order to screen the magnetic field outside the core. In the dirty limit (ξ0 � l where ξ0 is
the superconducting coherence length and l the electron mean free path), the LDOS in the core
is flat as in a normal metal by contrast with the superconducting regions which exhibit a gap
(see Fig. 1.6a). However, a CITS is time consuming and the map of the LDOS at a well chosen
energy is sufficient to distinguish between a normal and a superconducting DOS. To save some
acquisition time and since it is impossible to get a tunneling current (and therefore to scan)
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in a superconductor when eVb < ∆, one can set the bias voltage close to the superconducting
coherence peak (eVb ≈ ∆) while recording the differential conductance to obtain an image of
the height of the coherence peak revealing the presence of vortices as on Fig. 1.6c.

1.3 Scanning critical current microscopy

A challenge in this PhD was to perform simultaneously transport and STM measure-
ments at low temperature on a single mesoscopic device, with highly resolved tunneling
setpoint. Fig. 1.7 schematizes the setup.

Figure 1.7: Scanning Critical Current Microscopy set-up.

Nanowire. It consists in a few micrometers long and a few hundred of nanometers wide wire
between two larger leads where four electrical contacts are made. The nanowire fits in the
low temperature STM scanning area. The superconducting to normal transition driven by the
current occurs in the region of interest constituted by the weakest section area. The expansions
between the pads and the nanowire are smooth widening to prevent any current crowding effect
due to sharp corners. The nanowire is at the center of a target of lines allowing to locate it by
STM.

Transport measurements. An optically driven voltage source and a resistor are used to
generate the current Iwire which is measured by a Trans-Impedance Amplifier (TIA). The
voltage across the wire Vwire is measured with a voltage amplifier. This allows to acquire the
DC current-voltage characteristics of the wire. By replacing the voltage source by the oscillating
output of a lock-in while recording both Iwire and Vwire with two lock-ins sharing the same clock,
one can also measure the resistance of the wire.

The lock-ins are two 7230 DSP Lock-in Amplifiers from AmetekTMand the TIA is a variable
gain and low noise current amplifier from FemtoTM(model DLPCA-200). The voltage source
delivering 0 to 5 V and the voltage amplifier with gain 10, 100 or 1000 are both home made.

Tunnel current. The tunneling junction is voltage biased by the current amplifier itself
thanks to two wires connected one to the tip and the other to the sample [69]. This way, the
tip is polarized to the electrical potential of the sample to which is added the bias voltage Vb.
Thus, whatever the value of Iwire - which because of the contact resistances shifts the wire
potential - the voltage across the junction is always Vb. A voltage proportional to the tunneling
current It is given to the electronics feedback loop. Thanks to this home made amplifier in this
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configuration, a controlled tunneling setpoint can be set to inject electrons from the tip to the
nanowire while performing any kind of transport measurement.

Cabling. All transport and voltage supply cables are six strands stainless steel cables insu-
lated by a teflon sheath inside a stainless steel shielding braid. The tunnel current cable and the
sample potential probing cable are made of a twisted coaxial pair with a brass core. The braids
are thermalized at all the dilution stages, and the strands and coaxial cores connect directly
the 300 K connectors to the kapton relays (polyimide foils) of the 50 mK stage. Both stainless
steel and brass are chosen to compromise low electrical impedance and high thermal resistance.
Besides, since the twisted pair is used to measure very low currents, it is sensitive to tribological
noise (the frictional vibrations of the braid induces charge fluctuations in the dielectric used to
insulate the core and therefore current fluctuations). That is why a conductive varnish covers
the dielectric and evacuates parasitic charges, making the cable a ”low noise” one. Finally, us-
ing a twin twisted coaxial cable allows to accurately set ”in situ” the bias voltage by balancing
potential fluctuations due to thermoelectric effects or electromagnetic noise.

The wires connecting the 50 mK stage to the microscope require peculiar attention. Indeed,
they must ensure good thermalization at low temperature while not transmitting mechanical
vibrations, and therefore be metallic, thin and flexible. They are then made of 0.15 mm diameter
copper wires except the tunnel current wire which was subject to experimentation. A coaxial
cable better screens 50 Hz electrical noise but turned out to cause low frequency mechanical
vibrations. It was finally replaced by a twisted pair of copper wires.

Power supply. Tunnel current amplifier, voltage source and amplifier power supply were
provided by 3 different batteries to get rid of the 50 Hz noise. It resulted in a significant
increase of the measured critical current. For the same reason, the voltage source was optically
driven.

Filters. In order to achieve good energetic resolution (see Section 1.2) and to avoid to trigger
unintentionally the superconducting to normal transition we are interested in, one must ensure
good thermalization of the microscope (more specifically of the tip and the sample) and filter
the external noise. To this purpose several kinds of noises have to be filtered:

• The radiations of the hot parts of the experiment to the cold ones. As explained above,
the Russian dolls configuration of the cryostat limits black body radiations from the
above stages, and it becomes negligible at low temperature since Stephan’s law predicts
an exchanged power varying as P ∝ T 4. However, electromagnetic radiations are also
transmitted through the wires. At low temperatures, the power transferred to an electron
bath by this process is P ∝ T 2

e − T 2
em [100], where Tem = hν/kB is the temperature of

the electromagnetic environment. All the wires are thus thermalized at all the dilution
stages. Nevertheless, in order not to heat up the 50 mK stage, low pass filters of cutoff
frequency kB × 50 mK/h ≈ 1 GHz should be added in the future.

• The high frequency noise from the environment (e.g. radio waves). Low pass filters of
cutoff frequency ∼ 1 MHz are added directly on the 300 K connectors to this end.

• The low frequency noise generated by the electronics and couplings to electromagnetic
fields. In order to filtrate this noise as close as possible to the sample, home made low
pass filters were installed on the 50 mK stage for each transport measurement wire (see
Fig. 1.8). The cutoff frequency depends on the sample resistance Rs and was adjusted in
order to allow transport and spectroscopy measurements at frequencies below 500 Hz.
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Figure 1.8: Transport measurement setup. Rc ≈ 115 Ω is the contact resistance due to the
cables connecting the instruments at room temperature (in green) and the filters on the 50 mK
stage (in blue). Rf = 510 Ω, Cf = 22 nF and Rs is the sample resistance which ranges from 0
(superconducting state) to 10-100 kΩ depending on the sample.

1.4 Sample fabrication

Scanning Tunneling Microscopy, especially when it is not carried out under Ultra High Vacuum
(UHV) conditions, is very sensitive to both tip and sample surface quality. That is why on the
one hand corrosion proof PtIr tips are used to preserve their flat metallic density of states. On
the other hand any oxidation or pollution of the sample must be avoided, so that any lithography
and etching after the deposit of the material under interest is prohibited to preserve the surface
from resist residual. Thus, the nanowire edges are patterned on the substrate before
the material deposition.

(a) Optical and SEM top views. (b) Schematics of the side view.

Figure 1.9: Typical sample (Bilayer of Nb caped with Au).

The pattern (see Fig. 1.9a) is beforehand designed all over the sample by etching the Si/SiO2

substrate (green and red on Fig. 1.9b). It consists in deep furrows forming on the one hand a
target of lines of about 200 nm wide and 300 µm long separated by 600 nm, and on the other
hand the nanowire edges. Then the superconductor under interest is deposited all over the
surface. On the figure Nb (in blue) and then Au (in yellow) have been evaporated, the latter
to prevent natural oxidation of Nb when the sample is exposed to ambient air. The furrows
avoid electrical short between the nanowire and the rest of the sample. Finally, four electrical
contacts are made and the sample is immediately put in the STM.

Lithography and etching. The substrate is made of Silicon Over Insulator (SOI), with
250 nm of Si over 3 µm of SiO2. A 360 nm layer of resist (ZEP520A) is deposited by spin
coating at 4000 rpm. Then, the pattern is designed by e-beam lithography in a JEOL6300FS.
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Firstly, Reactive Ion Etching (RIE) is carried out, resulting in an efficient anisotropic etching
of the Si. It is a chemical and physical etching: the surface is bombarded for about 3 mn
under low pressure (6.3 mTorr) by a plasma made of Ar (75 sccm), SF6 (10 sccm) and CH2F2

(24 sccm) which will also chemically react with the substrate. A power of 450 W is applied
on the coil and a power of 16 W is applied on the pattern of the Inductively Coupled Plasma
(ICP) etcher (Plasmalab100 from Oxford). Then the resist is removed by O2 plasma cleaning
before chemical etch of the sample with HF vapor. HF almost does not react with Si and,
above all, this etching is isotropic, creating an undercut on the sidewall. About 220 nm of SiO2

is removed in 20 mn, thanks to a gaseous mixture of 300 sccm of HF, 1200 sccm of N2 and 338
µL/mn of alcohol under 75 Torrs.

Evaporation. the material under interest is evaporated over the already etched substrate.
For most of them, it consists in niobium caped with gold evaporated by electron gun in a
MEB550 from Plassys evaporator. Some amorphous indium oxide (InO) samples were also
prepared by e-gun evaporation of indium in controlled O2 environment.

Micro bonding. A 20 µm diameter Al:Si wire is used to make electrical contact between
the sample pads and the sample holder by ultrasonic welding. Since this kind of soldering is
difficult to perform on InO, and that the resulting bond often turned out to be poor at low
temperature or to lift off during the cooling, larger contact pads were used in order to glue the
wire with some epoxy.
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2.1 Thermal equilibrium: BCS theory

The BCS theory proposed in 1957 by Bardeen, Cooper and Schrieffer is the first microscopic
theory of superconductivity since its discovery in 1911 by H. Kamerlingh-Onnes. It implies
several important quantitative predictions confirmed by experiments, so its authors received
the Nobel Prize in Physics in 1972. Among them is the explanation for the isotope effect: the
critical temperature Tc of a superconductor was found in 1950 [78] to depend on the mass M
of ions forming the crystal lattice as Tc ∝ M−1/2. Such a dependence could occur if lattice
vibrations were at stake, and this helped to find a mechanism for electron pairing since up to
1957 none was believed to overcome Coulomb repulsion. Indeed, a phonon mediated interaction
between electrons occurs to be attractive in a narrow layer near the Fermi boundary.

Thus, the main point of BCS theory was that the attractive electron-electron interaction
and the screening of Coulomb repulsion in a Fermi gas gives rise to Cooper pairs (two electrons
of opposite spins and momenta), whose coherent superposition forms a macroscopic ground
state. Although, the microscopic details of the attractive electron-electron interaction do not
play a role in BCS theory, the implications include:

• The existence of a band gap in the single electron excitation spectrum under a given
critical temperature Tc. Both the spectrum (Eq. 1.9) and the temperature dependence
of this gap can be accessed and therefore confirmed experimentally in many supercon-
ductors (see Fig. 2.1: the experimental density of states as a function of energy and the
temperature dependence of the gap follow the BCS prediction).

19
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Figure 2.1: Superconducting gap of a BCS superconductor. Normalized differential
conductance measured by tunneling spectroscopy on graphene grown on rhenium at 50 mK.
Inset: temperature dependence of the superconducting gap. Blue dots: experimental measure-
ments. Red line: BCS prediction. From [112].

• The ratio between the superconducting gap at zero temperature ∆(T = 0) and Tc takes
an universal value: ∆(T = 0) = 1.764 kBTc. This relationship is approximately verified
in most of the known superconductors in 1957.

• A relation between the superconducting critical temperature and the pairing potential:

kBTc = 1.13 ~ωDe−1/(N0Veff ) (2.1)

where N0 is the density of states at Fermi level, Veff the (attractive) electron pairing
potential and ωD the Debye frequency. Since ωD ∝ M−1/2, this explains the isotope
effect.

• An explanation for the Meissner effect, the perfect diamagnetism displayed by supercon-
ductors. Indeed, by contrast with the phenomenological London equations developed in
1935, BCS theory justifies microscopically the expulsion of the magnetic field from super-

conductors over the London penetration depth λL =
√

m
µ0nse2

where µ0 is the magnetic

constant and ns the density of superconducting electrons.

• The existence of a characteristic length scale for the variations of the superconducting
density ns: the coherence length ξ. One must distinguish the clean case where ξ is also
equal to the quantity ξ0 = ~vF

π∆
where vF is the Fermi velocity, from the dirty (diffusive)

limit (l� ξ0 with l the electron mean free path) where ξ =
√

~D/∆ with D the electron
diffusion constant. Indeed, the superconducting state is a coherent superposition of paired
electron states with energies ±E compared to Fermi level with E ∼ ∆ (because the
electron-electron interaction turns out to be attractive for states with opposite momenta
in an energy ∼ ∆ around Fermi level). Therefore, a dephasing exp(−2Eit/~) between
the wavefunctions of these states occurs as the pair propagates. Coherence is then lost
after a time t ≈ ~/E, i.e. after having traveled a length vF t in straight line or

√
Dt by

diffusion.
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The superconductors verifying these implications are commonly called conventional (or
BCS-like) superconductors.

Now, one must stress out that BCS theory deals with thermal equilibrium properties of su-
perconductors, and has therefore limits. Indeed, let’s remind that a fundamental characteristic
of the superconducting state is that a supercurrent (a current with no resistance) can flow,
leading to specific depairing mechanisms. Besides, when the superconductor is driven out of
equilibrium - by local injection of electrons above Fermi level for instance - one must consider
inhomogeneous systems requiring a reformulation of the theory. Thus, a new formalism relevant
for out of equilibrium and inhomogeneous systems is presented below.

2.2 Out of equilibrium: Usadel theory

The Green functions allow to describe complex systems starting from a simpler one: in our
case, the many body electronic system that is a superconductor will be described by a free
electron system on which all the interactions will be added. Besides, in the Keldysh formalism,
out of equilibrium systems are described from the equilibrium Green functions. Applied to
superconductivity, this leads to Gorkov equations. Further simplifications were brought by
Eilenberger and later Usadel, which roughly consist in a first order expansion of the free energy
(whose validity is not at stake since the expansion parameter is ∆/EF and therefore negligible
for typical superconductors) and assuming diffusive motion for the electrons. The long and
complicated derivation1 is not presented in this thesis, but the equilibrium Usadel equations
and some related physical properties are introduced.

2.2.1 Usadel equations

By contrast with BCS theory which assumes no scattering, Usadel formalism is only valid in the
diffusive limit (mean free path l shorter than the superconducting coherence length ξ), which
is a good approximation in many cases and especially in thin films where electrons scatter from
the boundaries. Microscopically, electron states are no longer described by their wave vectors
(which appear in the BCS pairing potential) but through an energy variable ε more relevant
for a diffusive motion. Besides, Usadel equations are parameterized for practical purpose with
a pairing angle θ which is a function of the position and the energy. θ is complex
and ranges in magnitude from 0 to π/2 where θ = 0 corresponds to the normal
state. At equilibrium (when the distribution function of electrons is Fermi-Dirac) the equations
write [10, 104, 38]:

~D
2
∇2θ +

(
iε−

(
~

2τsf
+

~
2D

V 2
s

)
cos θ

)
sin θ + ∆e−iφ cos θ = 0

∇(Vs sin2 θ) = 0

(2.2)

where D is the diffusion constant, τsf is the spin flip time, φ is the superconducting phase,
−→
Vs

is the superfluid velocity:
−→
Vs = D

(
−→
∇φ− 2e

~
−→
A

)
(2.3)

and ∆ is the superconducting order parameter:

∆ = N0Veff

∫ ~ωD

0

dε tanh

(
ε

2kBT

)
=[sin θ]eiφ (2.4)

1Available in [18].
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with
−→
A the vector potential, N0 the density of states at Fermi level, Veff and ωD respectively

the pairing potential and the Debye frequency as defined in BCS theory, and T the temperature.
The notations = and < stand for the imaginary and real components, respectively.

As it will be discussed later, the superfluid velocity is affected by both supercurrent and
magnetic field while the superconducting order parameter is reinforced by the pairing strength.
Thus, pairing tends to make θ = π/2 while an excitation energy term iε and a term describing
pair breaking through spin flip scattering, current and magnetic field tend to make θ = 0
(normal state). Finally, a Dynes-like parameter can be added to the energy to account for
inelastic scattering: ε→ ε+ iΓin.

All physical quantities can be computed from the function θ which is obtained by solving
the self consistent set of equations Eq. 2.2, 2.3 and 2.4.

Single electron density of states

The quasiparticle density of states in the superconducting state Ns is related to the pairing
angle through:

Ns = N0<[cos θ] (2.5)

Let’s stress out that when some depairing processes are at stake, the order parameter
∆ can be very different from the gap observed in the Density Of States (DOS) by tunneling
spectroscopy. If so, the spectral gap (roughly the energy range over which there are no available
states for quasiparticles) can be zero while the material is still in the superconducting state
(see Fig. 2.2), for instance under a strong supercurrent flow. In the following, the BCS
superconducting gap at zero temperature (which is equal to the order parameter
in the absence of depairing) is noted ∆0.

Current density

For a bulk superconductor, the superconducting phase is real and determined by the boundary
conditions (i.e. the reservoirs connecting both ends of the superconducting wire in the one
dimensional case). At thermal equilibrium, the supercurrent density writes [10, 104]:

−→
Js =

σN
eD

∫ ∞
0

dε tanh

(
ε

2kBT

)
=
[
sin2 θ

−→
Vs

]
(2.6)

with σN the normal state conductivity.

Without any external magnetic field, one can set
−→
A =

−→
0 and hence

−→
Vs = D

−→
∇φ so if a phase

difference between the reservoirs is applied, one can notice from Eq. 2.6 that a supercurrent
flows.

Meissner effect

By contrast, when no phase difference is induced, under an external magnetic field,
−→
Vs = −2eD

~
−→
A

and one obtains London equation:

−→
Js = −2σN

~
Us
−→
A (2.7)

with:

Us =

∫ ∞
0

dε tanh

(
ε

2kBT

)
=[sin2 θ] (2.8)

Using Maxwell-Ampere law (
−→
∇ ×

−→
B = µ0

−→
J where

−→
B =

−→
∇ ×

−→
A ), Coulomb gauge (∇

−→
A = 0)

and the fact that for a BCS superconductor at low temperature (kBT � ∆0) Us = π∆0

2
(see
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Appendix B), one obtains:

∇2−→A =
1

λ2
L

−→
A (2.9)

with λL =
√

~
πµ0σN∆0

the London penetration depth. The magnetic field penetrates the su-

perconductor only over a length scale λL, where a supercurrent flows and create an induced
magnetic field which screens the external field in the bulk.

Out of equilibrium case

In the general case, Usadel equations are more complicated and not presented here. However,
the filling factor h = 1 − 2f where f is the distribution function can be decomposed as the
sum of an odd hod and an even hev functions of the energy. Qualitatively speaking, deviations
of hod from its thermal equilibrium value heqod(ε) = tanh(ε/(2kBT )) are related to an effective
temperature change whereas deviations of hev from its equilibrium value heqev(ε) = 0 are related
to an effective chemical potential shift.

The order parameter writes (see Appendix C and [4]):

∆ =
N0Veff

4i

∫ ~ωD

−~ωD

dε[hod(sin θ e
iφ − sin θ∗ eiφ

∗
)− hev(sin θ eiφ + sin θ∗ eiφ

∗
)] (2.10)

At thermal equilibrium and for a bulk superconductor (for which φ is real) one recovers
Eq. 2.4.

Similarly, for an arbitrary distribution function the current density writes (see Appendix C
and [4]):

−→
J =

−→
Js +

−→
JN +

−−→
Jimb

−→
Js =

σN
2De

∫ ∞
−∞

dε hod =
[
sin2 θ

−→
Vs

]
−→
JN =

σN
4e

∫ ∞
−∞

dε
−→
∇hev

(
1 + | cos θ|2 + | sin θ|2 cosh(2φ2)

)
−−→
Jimb =

σN
4e

∫ ∞
−∞

dε
−→
∇hod| sin θ|2 sinh(2φ2)

(2.11)

with φ = φ1 + iφ2.
−→
JS corresponds to the supercurrent, whereas

−→
JN and

−−→
Jimb are dissipa-

tive quasiparticle currents, the latter being associated with an imbalance between quasipar-
ticle excitations of type electrons and holes. At thermal equilibrium when the phase is real−→
JN =

−−→
Jimb =

−→
0 and one recovers Eq. 2.6.

For out of thermal equilibrium superconductors, both order parameter ∆ and

current density
−→
J depend on the distribution function f(ε) and not simply on the

temperature T .

2.2.2 Depairing induced by a supercurrent

Let’s remind that the superfluid velocity can be affected by both supercurrent (through the in-

duced phase gradient
−→
∇φ, see Eq. 2.6) and magnetic field (through the induced vector potential

−→
A ). We will now perform reasonable assumption corresponding to our experimental conditions:
we consider a superconducting wire whose width and thickness are small compared to London
penetration depth λL, carrying in thermal equilibrium a supercurrent without external mag-
netic field and connected at both ends to superconducting reservoirs with energy-independent
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real phases. Under these conditions,
−→
Vs = D

−→
∇φ and for simplicity we will assume an uniform

phase gradient along the wire. In the following we will also neglect the spin flip rate 1/τsf
2 and

define the depairing energy γ:

γ =
~

2D
V 2
s (2.12)

Thus, Eq. 2.2 simplifies to:

ε+ iγ cos θ = i∆
cos θ

sin θ
∇θ = 0

(2.13)

And Eq. 2.4 gives:

∆ = N0Veff

∫ ~ωD

0

dε tanh

(
ε

2kBT

)
=[sin θ] (2.14)

where we have set the origin of phases such as φ = 0 where the equations are solved.

NB: Without supercurrent nor magnetic field, γ = 0 and one recovers the BCS results (for
more details see Appendix B), as for instance the density of states from Eq. 2.13:

tan(θ) =
i∆

ε

⇒ Ns(ε) = N0 <(cos(θ)) =

{
N0

|ε|√
ε2−∆2 if |ε| > ∆

0 if |ε| < ∆

(2.15)

The BCS relation between gap and pairing ∆ = 2~ωD e−1/N0Veff and the universal ratio
∆0 = 1.764 kBTc stem from Eq. 2.14.

(a) (b)

Figure 2.2: Solution of Usadel equation with an homogeneous depairing energy
at T = 0. (a) Order parameter (solid line) and spectral gap (dashed line) in units of the
gap in the absence of pair breaking ∆0 as a function of depairing energy γ normalized to ∆0.
From [24]. (b) Density of states as a function of reduced energy for different values of the
depairing energy γ. Note that the spectral gap disappears completely for γ/∆0 > 0.45, while
gapless superconductivity survives up to γ = 0.5∆0.

2The spin flip term is negligible compared to the depairing energy in the cases of interest.
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Eq. 2.13 and Eq. 2.14 relate self consistently ∆ to θ. One can therefore perform a numerical
resolution and obtain the θ(ε) and ∆ for any value of γ and T . For instance, in the low
temperature limit (kBT � ∆0), the ∆(γ) curve obtained in [24] is plotted on Fig. 2.2a. The
θ(ε) function leads among other things to the density of states (Fig. 2.2b). Finally, the spectral
gap ∆G is defined to be the energy over which the density of states vanishes. It
writes [103, 24]:

∆G(T, γ) = ∆(T, γ)

[
1−

(
γ

∆(T, γ)

)2/3
]3/2

(2.16)

As shown on Fig. 2.2, there is a range of depairing energies (0.45 < γ < 0.5) over which the
superconductor is gapless. Above γ = 0.5, the order parameter vanishes and superconductivity
is suppressed.

Depairing energy due to the supercurrent

Neglecting the energy dependence of the superconducting phase φ Eq. 2.6 writes as follows:

−→
Js =

σN
eD

−→
VsUs (2.17)

Under the assumption of homogeneous current density the supercurrent writes Is = JsS with
S the wire section. Using Einstein relation σN = N0e

2D, one obtains the relation between the
depairing energy γ and the supercurrent Is:

Is
Iγ

=

√
γ

∆0

Us
∆0

(2.18a)

Iγ =
√

2S∆
3/2
0

√
N0σN
~

(2.18b)

The maximum value of the function Is(γ) corresponds to the depairing critical current Idp.
For T = 0 (plotted on Fig. 2.3), this leads to I0

dp = 0.53Iγ and to the theoretical zero temperature
critical current density:

J0
dp = 0.75∆

3/2
0

√
N0σN
~

(2.19)

Figure 2.3: Supercurrent versus depairing energy at T = 0.

The numerical computation of Idp(T ) based on Green functions (Eilenberger equations) has
first been implemented by Kupryanov and Lukichev (KL) [66] for arbitrary l/ξ0 ratios. Small
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differences are predicted for different mean free paths, but the numerical computation of Idp(T )
implemented here is based on Usadel equations and therefore corresponds to the very short mean
free path limit of KL result. It leads among other things to the zero temperature depairing
current density widely used in the literature J0

dp = 0.75∆
3/2
0

√
N0σN/~ and to the Ginzburg

Landau result near the critical temperature Jdp,GL(T ) ∝ (1 − T/Tc)
3/2. The approximations

can be summarized as follows:

• The superconductor is a wire in the dirty limit (l � ξ). Its transverse dimensions are
small compared to London length and the superconducting phase is real at both ends.

• A supercurrent is carried at thermal equilibrium without any external magnetic field.

• The concentration of magnetic impurities is small (τsf →∞) and the inelastic scattering
is negligible (Γin = 0).

The last approximation will be questioned in the following, and some inelastic scattering
will be considered in the Usadel equation:

ε+ iΓin + iγ cos θ = i∆
cos θ

sin θ
(2.20)

which will modify the density of states (see Section 4.5). The numerical computation of
Idp(T,Γin) will be confronted to experimental data in Section 5.1. Finally, as evidenced by
Eq. 2.20 the supercurrent (through γ) will also alter the DOS (see Section 5.2).

Depairing energy due to the magnetic field induced by the supercurrent

In the previous paragraph, we have neglected the magnetic field induced by the supercurrent.
However, the supercurrent flowing in the wire creates a magnetic field, which also causes some
depairing through the induced vector potential. The associated depairing energy is equal to

γA = 2De2

~ |
−→
A |2.

With an homogeneous current density in a parallelogram geometry with a thickness t and a
width w (see Fig. 2.4), and assuming the wire to be infinitely long and thin, the vector potential
in the wire can be taken as3:

−→
A = −µ0Isy

2

2wt
−→ux (2.21)

Since w is small compared to λL (the length scale for variation of
−→
A ), only an average effect of

the vector potential is seen, so averaging |
−→
A |2 over the cross section of the wire one gets:

γA =
De2µ2

0I
2
s

160~

(w
t

)2

(2.22)

For wires wider than London length, γA, θ and
−→
J are not homogeneous, and the depairing

energy is maximum on the side of the wire.
The ratio between the depairing energy due to an homogeneous supercurrent γI (Eq. 2.18)

and the one due to the induced magnetic field is (writing that Us = π
2
∆0 and λL =

√
~

µ0πσN∆0
):

γA
γI

=
1

320

(
w

λL

)4

(2.23)

3Since the wire is invariant by translation along z axis and t � w
−→
A =

−→
A (y). The current distribution is

antisymmetric with respect to any plane orthogonal to x and
−→
A is a polar vector so

−→
A = A(y)−→ux. The symmetry

of the current distribution with respect to (−→ux,−→uz) leads to A(y) = A(−y). Using again Maxwell-Ampere law

and Coulomb gauge one obtains ∇2−→A = −µ0
−→
J and choosing A(±∞) = 0 one gets the present equation.
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Figure 2.4: Scheme of a wire carrying an homogeneous supercurrent and associated vector
potential.

So that γA/γI � 1 under the assumption of w � λL. Note that in a cylindrical geometry
of diameter w � λL, one end up to the same conclusion (see Appendix A). Therefore, the
depairing energy due to the magnetic field induced by the supercurrent can be
neglected.

2.2.3 Superconducting proximity effect

In the following we consider a normal layer of thickness tN in contact with a superconducting
layer of thickness tS and critical temperature T Sc . We will investigate the superconducting
properties of the bilayer in the limit where both thicknesses are small compared to the coherence
length ξ (tN , tS � ξ).

The Cooper limit

The case of perfect interface between the layers (zero interlayer interface resistance) and
tN , tS � ξ is known as the Cooper limit. BCS theory relates the critical temperature to
the pairing potential and the density of states at Fermi level through Eq. 2.1. For the bare
superconductor it writes:

kBT
S
c = 1.13~ωDe

− 1
NSVS (2.24)

For a NS bilayer, the effective pairing term [NV ]NS is an averaged value with respect to the
number of states in the normal and superconducting layer [25]:

[NV ]NS =
VSN

2
StS + VNN

2
N tN

NN tN +NStS
(2.25)

where for i=N,S, Vi is the pairing potential, Ni is the density of states at Fermi level and ti is
the thickness. For simplicity, the pairing potential VN of the normal metal will be set to zero.
Then, the critical temperature Tc of the bilayer is given by:

Tc = T Sc exp

(
−NN tN
NStS

1

NSVS

)
(2.26)

The opposite case of infinite interface resistance corresponds to a critical temperature of the
superconductor unaffected by the presence of the normal layer. Thus, the two extreme limits of
interface resistance between normal and superconducting layers give upper and lower bounds
for the critical temperature of the bilayers.

General theory within Usadel framework: the Fominov model

We will now release the assumption of perfect interface resistance and consider the Usadel
equations in the two layers. We note the pairing angles in the normal and superconducting
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layer θN and θS. The layers are thin enough (tN , tS � ξ) to be considered as uniform, allowing
to set the order parameter ∆ equal to a constant in the superconducting layer (its phase is then
chosen to be zero) and ∆ = 0 in the normal one, although θN 6= 0 due to the proximity effect.

The Usadel equations of Eq. 2.2 take respectively in the normal and superconducting layer
the form:

~DS

2
∇2θS + iε sin θS + ∆ cos θS = 0

~DN

2
∇2θN + iε sin θN = 0

(2.27)

As it can be physically intuited, the strength of the proximity depends on the transparency
of the SN interface, which is controlled by the conductance per unit area at the interface gint
such as: gint = 2T NchGq where T is the interface transmission probability, Nch = (λF/2)−2

with λF the Fermi wavelength is the number of channels per unit area and Gq = e2/h is the
quantum of conductance. This conductance rules the boundary condition at the interface,
allowing to solve the Usadel equation for θS (the detailed resolution is not presented here, but
is available in [38]). θS and θN are nearly spatially constant, and Tc is the critical temperature
of the superconducting layer.

Critical temperature. Using the self consistent order parameter equation Eq. 2.4 and the
fact that near critical temperature |θ| � 1, the authors of [38] finally obtain:

ln

(
T Sc
Tc

)
=

τN
τS + τN

Ψ

(
1

2
+

~
2πkBTc

τS + τN
τSτN

)
−Ψ

(
1

2

)
− ln

√
1 +

(
τS + τN
τSτNωD

)2
 (2.28)

where T Sc is the critical temperature of the superconducting material (the one having a non
vanishing pairing potential N0Veff ), τN = 2σN tN

DNgint
and τS = 2σStS

DSgint
are the the residency times

in N and S layer, ωD is the Debye frequency and Ψ is the digamma function.

Density of states. In the limit of small interface resistance, corresponding to τSτN∆
τS+τN

� ~,
the DOS in the normal and superconducting layers are the same and one obtains the BCS-like
result:

cos θN = cos θs =
ε√

ε2 −∆2
g

(2.29)

where ∆g = τS∆
τS+τN

is the minigap4. This result arises from the fact than when the average
residency time is small compared to the time scale ~/∆, the quasiparticle states of energy
smaller than ∆ are delocalised over both layers and therefore all feel the pairing interaction.
Interestingly, the relation ∆g = 1.76kBTc is still fulfilled.

By contrast, in the limit of an opaque interface, the DOS in the S and N layers approaches
respectively the BCS and normal metal results.

4According to the literature, one can make the distinction between minigap and spectral gap. The term
minigap is often employed in the context of proximity effect and refers to the energy window over which no
quasiparticle state exists. The term spectral gap is employed when some depairing processes are at stake, and
refers to the gap feature observed in the DOS, no matter whether the DOS is strictly vanishing or not. In
both cases, the main point is that this quantity differs from the order parameter. In this PhD, the spectral gap
always designates the gap measured by STS (being sometimes different from the order parameter), since the
energy resolution of the STM junction does not allow to make the distinction between minigap and spectral
gap in many experimental situations.
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Thus, the measurement of the density of states by STS on the surface of the
normal layer allows to distinguish between the limits of transparent and opaque
interfaces.

Coherence length. In the limit of small interface resistance, the coherence length is the
lengthscale over which the pairing angles from Eq. 2.27 vary, which according to [38] is a
generalization of the BCS result:

ξ =

√
~ 〈D〉
Eg

(2.30)

with 〈D〉 = τSDS+τNDN

τS+τN
the averaged electron diffusion constant. In particular, the Ginzburg

Landau [111] result for the upper critical field Bc2 is still valid with this expression for ξ:

Bc2 =
φ0

2πξ2
(2.31)

with φ0 = h
2e

the superconducting flux quantum.

NB: Near Tc, Ginzburg and Landau obtained the following result:

ξ(T → Tc) ≈ 0.855
√
ξ0l

√
Tc

Tc − T
(2.32)

with ξ0 = ~vF
π∆0

. According to Eq. 2.30, the coherence length writes ξ =
√

~D/∆ =
√

π
3

√
ξ0l

for T � Tc. Although differing from a (small) numerical factor from the zero temperature
coherence length, the quantity ξGL = 0.855

√
ξ0l is easily accessible by measuring the upper

critical field near the critical temperature and will be called Ginzburg Landau coherence
length in the following.
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From the theoretical point of view, out of equilibrium superconductivity is interesting be-
cause the theory of equilibrium superconductivity is well established. In particular, this allows
to test theoretical models for quantum many body systems driven far from equilibrium. Besides,
phenomenon such as the enhancement of superconductivity are paradoxical and fascinating: in-
tuitively one would expect that the maximum superconducting gap or critical current manifests
in an unperturbed sample, but it turns out to exist out of equilibrium exceptions.

Aside from this theoretical interest, one could simply wonder how much supercurrent can
carry a superconductor. The study of out of equilibrium superconductivity can also be interest-
ing for applications such as photon detection, where the absorption of a photon breaks Cooper
pairs, leading to either an excess of quasiparticles or a transition to the normal state. Finally,
there is recently a strong concern in the electronic devices made of superconducting materials,
where the circuits are by construction driven out of equilibrium.

Thus, this chapter describes reported experiments on superconductors driven out of equi-
librium by a supercurrent flow or by tunnel injection of quasiparticles.

3.1 Critical pair breaking current

Measurements of the critical current density Jc
1 of nanowires (narrow and thin strips) have

first been reported in [93]. Aluminum had been chosen for its large London penetration depth
λL and coherence length ξ. Indeed, in order to ensure uniform current distribution along the
cross section, both width w and thickness t must be smaller than λL, otherwise the current
piles up at the edges and overcome the critical current density only locally. Similarly, ξ should
be larger than t and w to prevent vortex nucleation and therefore current induced vortex flow.

1In this PhD, the subscript c refers to the experimental critical current Ic or current density Jc whereas dp
refers to the theoretical depairing current Idp or current density Jdp.
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Good agreement between Kupryanov Lukichev (KL) theory in the small mean free path
limit and the critical current as a function of temperature has been observed. Notably, the
best agreement was obtained for samples having λL comparable or larger than w, and was
interpreted as an evidence of homogeneous current density limit (see Fig. 3.1). All samples
were small enough to prevent vortex nucleation. KL theory fitted better the data than the
phenomenological Bardeen formula [7] which is an extrapolation between the BCS result at
zero temperature and the Ginzburg Landau behavior in the vicinity of Tc where an analytic
treatment is possible:

Jdp,GL(T ) = J0
dp,GL

(
1−

(
T

Tc

)2
)3/2

(3.1a)

J0
dp,GL = 0.68∆

3/2
0

√
N0σN/~ (3.1b)

J0
dp,GL differs slightly from the KL result with l � ξ0

2: J0
dp = 0.75∆

3/2
0

√
N0σN/~ as ev-

idenced on Fig. 3.1. Indeed, (J0
dp/(2

√
2J0

c,GL))2/3 = 0.5× (0.75/0.68)2/3 ≈ 0.53, but this dif-
ference of about 10% is of the same order of magnitude than the uncertainty over J0

c of all
reported experiments. Finally, the ordinate axis of the figure was chosen to emphasize the

critical behavior near Tc: Jdp,GL(T → Tc) ≈ 2
√

2J0
dp,GL

(
1− T

Tc

)3/2

.

(a) (b)

Figure 3.1: Temperature dependence of the critical pair breaking current of narrow
strips. Experimental critical current density Jc normalized to the Ginzburg Landau pair
breaking current density as a function of reduced temperature for 300 nm wide aluminum
strips. The effective penetration depth λL is tuned by the thickness. Straight line is the
Ginzburg Landau result valid close to Tc. Adapted from [93]. (a) Illustration of the effect of
non homogeneous current: samples with w < λL (1,2,3,6) present lower Jc because the depairing
current density is exceeded locally on the edges where current is piling up. (b) Comparison
with theoretical predictions.

The depairing current predicted by Usadel theory of out of equilibrium superconductivity
in diffusive superconductors accounts well for the critical current measured in narrow strips.
However, the theory does not take into account the presence of vortices. We address in this
PhD work a different situation where vortex nucleation cannot be discarded.

2The critical current obtained by solving Usadel equations in previous chapter (Eq. 2.19) is equivalent to the
Kupryanov Lukichev result in the l� ξ0 limit.
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3.2 Density of states in the presence of supercurrent

Superconductivity is based on the pairing of electrons formed with mutually time reversed
states (states with opposite spins and momenta). A supercurrent flow or a magnetic field
breaks time reversal symmetry and therefore affects this pairing, resulting in a modification
of the superconducting properties, among which is the Density Of States (DOS). This effect
is described in the Usadel equations (Eq. 2.13) by a single parameter, the depairing energy.
Similarly to the effect of a supercurrent introduced above (Eq. 2.18), a perpendicular magnetic
field B also creates some depairing energy γ in a wire of width w with w � λL so that [4]:

γ

∆0

=

(
Is
Iγ

∆0

Us

)2

+

(
B

Bγ

)2

(3.2)

where Bγ =
√

6~∆0

ew
√
D

.

Only one experiment addresses the effect of a supercurrent on the DOS [4]. The differential
conductance of a current-biased superconducting wire placed in a perpendicular magnetic field
was measured with a lithographed tunnel probe junction. The probe being metallic, the dif-
ferential conductance is proportional to the density of states (disregarding Coulomb blockade
and finite temperature effects introduced below). Fig. 3.2 shows the good agreement between
experimental and theoretical behavior of the differential conductance upon application of both
magnetic field B and supercurrent Is.

Figure 3.2: Superconducting density
of states in the presence of depairing
mechanisms. Normalized differential con-
ductance RTdI/dV as a function of bias volt-
age V . Top panel: In the absence of magnetic
field (B = 0) for different supercurrents Is
flowing in the wire. Bottom panel: At Is = 0
for different magnetic fields. Solid lines are
dI/dV (V ) fits. Insets: Depairing energy γ as
a function of Is and B, deduced from the fits.
Solid lines: fits with Eq. 3.2. From [5]. In
this sample, I0

c = 106 µA.
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Usadel equations (Eq. 2.13) with the self consistent gap equation (Eq. 2.4) lead to the
pairing angle θ, from which the DOS Ns = N0<[cos θ] is deduced. Then, the depairing energy
γ can be extracted from the experiment as a parameter depending on B and Is. Eq. 3.2 gives
the theoretical γ behavior (where Us is given by Eq. 2.8). Good agreement between theoretical
and experimental determination of the depairing energy is found, evidencing that the effect of
both Is and B can be accounted for by the single parameter γ.

Coulomb blockade and finite temperature effects are also taken into account [5]. Indeed,
because of these two effects, the measured differential conductance slightly deviates from the
DOS in the wire. First, Coulomb blockade results from the finite impedance of the electromag-
netic environment: the tunneling electrons can absorb or emit some energy as mentioned in
Subsection 1.2.2 and [88]. Then, the probe electrode and the superconducting wire exchange
some energy through electron tunneling. Consequently, since the probe electrode is thermally
isolated, its temperature depends on the bias voltage V , which affects the measured differential
conductance.

Finally, the effect of supercurrent and magnetic field on the superconducting order is well
described by the Usadel theory of out of equilibrium superconductivity in diffusive supercon-
ductors, and depends on a single parameter, the depairing energy. In this PhD, the study
of the effect of supercurrent on the density of states is extended up to (almost) the
critical depairing current density with, in addition, a spatially resolved probe (see
Section 5.2).

3.3 Enhancement of superconductivity by quasiparticle

injection

The possibility of an enhancement of superconductivity is contained in the BCS gap equation [8]:

1

N0Veff
=

∫ ~ωD

∆

dE
1− 2f(E)√
E2 −∆2

(3.3)

with ∆ the superconducting order parameter, f the distribution function, Veff the electron
pairing potential, ωD the Debye frequency and N0 the density of states at Fermi level. This
equation is only valid for a symmetric distribution function. Because of the divergence of the
denominator, the contribution of the numerator to the integral is larger for small energies.
Then, lowering the distribution function f at these energies increases the integral and results
in a larger superconducting order parameter ∆. This can be interpreted as follows: at finite
temperature, quasiparticles close to the Fermi level block states that could be available for
Cooper pairs, so removing them leads to an enhancement of superconductivity. This effect
was first predicted by Parmenter [86]. Then, Eliashberg [33] proposed a mechanism, known
as the Eliashberg effect, where quasiparticles are redistributed to higher energies where they
are less effective in blocking states for the formation of additional Cooper pairs. Such an
out of equilibrium distribution function can be achieved by tunnel injection and extraction of
quasiparticles as in the experiments reported in this section, but also by absorption of microwave
radiation [110, 62].

3.3.1 Enhancement of the critical temperature

A superconducting gap was measured in aluminum up to temperatures exceeding considerably
its equilibrium critical temperature in [12]. The device consists in an aluminum film sandwiched
between two tunnel junctions with niobium electrodes. A model was then developed in [50] to
explain the gap enhancement in SIS’IS systems (S=superconductor, I=insulator).
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In a symmetric double barrier structure, the junction voltage between left and right niobium
electrodes is distributed equally over the two tunnel junctions. Thus, in the situation pictured
in Fig. 3.3a, for junction voltages in a specific range, quasiparticle extraction from Al to Nb
electrodes can be performed. It results in an out of equilibrium distribution function in Al
leading to an enhancement of the Al superconducting gap ∆Al as predicted by the Eliashberg
effect. This is only possible because the niobium superconducting gap ∆Nb is larger than the
one of aluminum.

Since enhancement implies an out of equilibrium distribution function, its relaxation time is
of particular importance as evidenced by the theoretical results plotted in Fig. 3.3b, where the
balance between injection rate and relaxation time is the driving parameter. As long as quasi-
particle extraction is sufficiently efficient to maintain Al out of equilibrium, a superconducting
gap can be observed even if the equilibrium state is a normal metal. Finally, ∆Al cannot exceed
its equilibrium value at zero temperature.

The samples presented on Fig. 3.3c have equilibrium critical temperatures lower than 2.4 K.
In the presence of tunneling enhancement of superconductivity, finite superconducting gaps have
been measured well above critical temperature. The gap values at low temperature are close
to the BCS prediction for the zero temperature superconducting gap3.

This enhancement of the superconducting gap can also be interpreted as an enhancement of
the critical temperature, since the material exhibits superconductivity for temperatures larger
than its equilibrium critical temperature.

Figure 3.3: Enhancement of superconductivity far above the critical temperature
in double-barrier tunnel junctions. (a) Energy diagram of the SIS’IS system. For a bias
junction V in the range 2(∆Nb − ∆Al) < eV < 2(∆Nb + ∆Al), quasiparticle extraction is
sufficiently effective to develop a gap in the Al electrode. The quasiparticles close to the Fermi
level are extracted to the right electrode while the quasiparticles injected from the left one to
ensure current conservation in the junction remain far from the Fermi level. (b) Theoretical Al
superconducting gap as a function of temperature at a bias corresponding to eV = 2∆Nb(T ) and
for different products of the injection rate Γ and the relaxation time of the out of equilibrium
distribution function τE. (c) Measured Al superconducting gap as a function of temperature
for several devices with different thicknesses and critical temperatures (unlike in most other
superconductors, the critical temperature of thin aluminum films increases with decreasing
thickness). Solid lines are the BCS temperature dependence of the thermal equilibrium gap for
the critical temperatures associated to the samples. From [50].

3Sample 2400/6 is the thickest and the measured gap corresponds to the gap value for Al. Samples 2761/1
and 2761/2 have a critical temperature of 2.2 and 2.3 K, and their gap corresponds to BCS prediction. Sample
2411/5 has the largest critical temperature (2.4 K) and its gap exceeds the BCS prediction. This large gap to
critical temperature ratio has been reported in thin granular aluminum [72]
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3.3.2 Enhancement of the critical current

An analytic perturbative treatment of the Eliashberg effect can be made close to the critical
temperature [116]. An enhancement of the critical current is then predicted under quasiparticle
injection, and was observed in [115]. Indeed, under quasiparticle injection, a critical current
larger than the one in the absence of injection was measured as shown on Fig. 3.4c.

Figure 3.4: Enhancement of the critical current by quasiparticle injection close to
the critical temperature. (a) Side and (b) top view of a narrow aluminum strip (S) subject
to quasiparticle injection from side electrodes (I+ and I−). (c) Critical current normalized to
its value in the absence of quasiparticle injection as a function of injection voltage for different
temperatures (dots). Solid lines are fit with the model of [116]. From [115].

In this experiment, quasiparticles are injected in the superconducting strip S through a
tunnel barrier from the two side electrodes I+ and I− which are also superconducting but with
a larger critical temperature than S. A dual tunnel injection geometry was chosen in order to
ensure both homogeneous distribution function within the cross section of the superconducting
strip, and to discard charge imbalance4. However, the authors mention that their measurements
are to be compared with theoretical predictions for a single junction (with a quasiparticle injec-
tion current Iinj flowing between one electrode, e.g. I+, and S and without the second electrode
represented on Fig. 3.4a and b). They are therefore also comparable to the experiments carried
out in this PhD work except for the fact that our STM tip is not superconducting but normal.

The critical current is determined by the weakest section of the strip, which is unfortunately
located within one of the two sections which are not covered by the injection junctions because
of the proximity effect induced by the side electrodes. This makes the analysis more complex
since one has to consider the diffusion of the injected quasiparticles between the injection
junctions and the weakest section of the strip.

4Charge imbalance will be introduced in Chapter 8, but for now the absence of charge imbalance ensure a
filling factor which is an even function of the energy so that Eq. 3.3 applies.
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The agreement between theory and experiment is satisfactory for injection voltages lower
than 200 µV and larger than 400 µV5. Both the enhancement of the critical current with respect
to the unperturbed value at subgap injection voltages and its decrease when the injection
voltage is increased far above the gap are unambiguously evidenced in Fig. 3.4. However, the
sudden downturn of the critical current when the injection voltage is around 300 µV which is
theoretically predicted is not experimentally observed in [115]. This is also an Eliashberg effect
that we observed in this PhD work and which will be described and discussed in Chapter 8.

By comparison with the experiments carried out in this PhD by Scanning Critical Current
Microscopy (SCCM), measurements from [115] are only performed very close to the critical
temperature (Tc = 1.291 K) of the strips. In addition, the injection current Iinj is comparable
to the critical current. This is not the case in this PhD work as it will be shown in the next chap-
ters, the tunneling current injected from the STM tip being many orders of magnitude smaller
than the critical current. Also, the injection rate and energy of the quasiparticles cannot be
set independently. Eventually, the use of lithographed junctions instead of a STM prevents
from injecting quasiparticles locally and especially in the weakest section of the strip. Never-
theless, the use of superconducting injection electrodes allows to enhance superconductivity.
Indeed, injection of quasiparticles with a normal electrode (or STM tip) can still create out of
equilibrium distribution functions, but without leading to an enhancement of superconductivity.

The sharp decrease of the critical current for injection of quasiparticles with an
energy close to the gap predicted but not observed in [115, 116] has been measured
during this PhD and is presented in Chapter 8.

The enhancement effects presented in this section are due to out of equilibrium
distribution functions.

The use of a STM instead of lithographed junctions in this PhD work allows to
tune independently the injection rate and the energy of the injected quasiparticle,
in addition to provide spatial resolution.

3.4 Modulation of the critical current by a gate voltage

Suppression of the critical current of a superconducting wire by an external electric field has
first been reported in [27]. An electrostatic field is generated by a gate voltage Vb and modulates
the critical current of the superconducting wire as shown on Fig. 3.5.

Technologically speaking, this result has applications in the field of superconducting elec-
tronics. Indeed, the device pictured in Fig. 3.5a acts as a superconducting field effect transistor
(SuFET). The same modulation of the current have been investigated with SNS structures
(SNS FET) [26] and Dayem-bridges playing the role of a Josephson weak link (JoFET) [85, 84,
89] instead of superconducting wires. In all cases, such a gate-tunable transistor is all metallic,
and therefore takes advantage of the simplicity (in comparison with its semiconducting coun-
terparts) and scalability of its fabrication process. Furthermore, it is believed to be faster and
more energy efficient than current semiconductor devices.

On the fundamental physics side, the authors claim that this discovery deeply question our
understanding of superconductivity. Indeed, according to conventional theory of electrostatic
screening [6], electric fields in metals and superconductors are screened over the Thomas-Fermi
screening length (typically smaller than 1 nm) so that it should not affect superconductivity.

Although a microscopic description has not been found yet, a phenomenological theory
(based on the modification of Ginzburg Landau functional due to the electrostatic energy) is

5In between these values, the clear discrepancy is due to experimental issues preventing from biasing properly
the injection voltage. The existence of several theoretical branches is due to the fact that there are several meta-
stable solutions of the gap equation.
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Figure 3.5: Electrostatic field dependence of the superconducting field effect tran-
sistor. Taken from [27]. (a) Schematic of a device. Back and side gate voltages (Vb and Vs) are
used to apply electrostatic fields while the I − V characteristics of the wire is recorded thanks
to a conventional four probe measurement setup. In experiments, either Vs = Vb ≡ Vg or Vs = 0
and Vb ≡ Vg (b) Critical current Ic versus Vg at different bath temperatures T of a titanium
wire.

developed in [27] to account for experimental results. Questioning of the validity of this theory
is beyond the scope of this PhD work. Nevertheless, the superconducting field effect transistor
reported in [27] and [89] is discussed in Section 6.8. In light of the experimental results
of this PhD work, we suggest that the modulation of the critical current by a gate
voltage is rather due to quasiparticle overheating than to field effect.
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As detailed in Section 1.4, the samples studied by STM in this PhD are 300 nm wide
nanowires connected at both ends to wider leads, the whole sample consisting in an evapo-
rated bilayer of niobium capped with gold. This chapter presents the dependence of the main
equilibrium superconducting parameters on both width and thickness of the nanowires.

Firstly, both niobium and gold thicknesses tNb and tAu have an influence on the supercon-
ducting properties. Notably, the critical temperature is strongly reduced due to disorder and
low dimensionality when tNb becomes very thin. Incidentally, due to inverse proximity effect,
the capping layer decreases further the critical temperature. Besides, capping the samples with
gold prevents surface oxidation, preserving both the quality of the tunnel junction and the
superconducting character of the samples: indeed, while a Nb5nm\Au5nm bilayer has typically
a critical temperature of ≈ 2.5 K (see Table 4.2.), an uncapped Nb5nm sample does not become
superconducting down to 50 mK. Finally, the width of the nanowires also turned out to play a
role on the critical temperature despite its large value compared to other length scales.

39
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4.1 Critical temperature

Specific samples have been fabricated to investigate the width dependence of the critical tem-
perature. They consist in a series of three wires with different widths and lengths (300 nm
wide × 20 µm long, 600 nm × 10 µm and 1.5 µm × 120 µm wires). The connections between
the different wire parts are smooth widenings such as in the STM-designed samples to prevent
current crowding effects. Eight contact pads allow to measure simultaneously the resistance of
the different parts of the sample using the same current. Finally, such a design guarantees a
constant thickness for all the three wires which rules out the thickness as a possible origin of
critical temperature variations. Fig. 4.1 shows the resistance as a function of temperature of
the three parts of a single wire with different widths. Both normal state resistivity and critical
temperature present a monotonic dependency with the width (see Table 4.1).

Figure 4.1: Square resistance R� versus temperature for different widths w of sample T1.
Dashed lines are linear extrapolations to extract the critical temperature Tc. Inset: Scheme of
the sample (not to scale).

Sample tNb (nm) tAu (nm) w (nm) Tc (K) ρN (µΩ.cm) l (nm) ξGL (nm)
300 1.300 34.3 0.79 30

T1 3 3 600 1.365 32.2 0.84 31
1500 1.394 29.3 0.92 32

Table 4.1: Parameters of the different sections of a NbtNb
\AutAu

sample. tNb and tAu are the
nominal niobium and gold thicknesses, w is the width of the section, the critical temperature
Tc is the extrapolation to R = 0 in linear scale of the resistance drop and ρN is the normal state
resistivity. l is the mean free path computed from Eq. 4.1 and ξGL is the Ginzburg Landau
coherence length computed from Eq. 2.32.

Consequently, the critical temperature is unambiguously lowered by a reduction of the wire
width.

This behavior leads to a two step superconducting transition of the STM-designed samples
because their geometry (detailed on Fig. 1.9) consists in a 300 nm wide nanowire connected at
both ends to wider leads. Two examples are shown in Fig. 4.2. The incomplete superconducting
transition with the higher critical temperature comes from the leads, whereas the resistance
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drop to zero at lower temperature corresponds to the superconducting transition of the nanowire
itself. Therefore the resistance of the sample at high temperature is given by Rnw

N +Rlead
N , where

Rnw
N is the resistance of the nanowire and Rlead

N is the resistance of the leads, whereas the value
of the resistance plateau in the middle of the transition is determined by Rnw

N alone. This
scenario can be quantitatively confirmed by considering the aspect ratio of the nanowire and
of the leads. They correspond respectively to a number of squares Nnw and N lead in series.
Accordingly we observe Rnw

N /(Rnw
N + Rlead

N ) = Nnw/(Nnw + N lead). Thus, we identify two
transition temperatures: T leadc and T nwc , defined as the extrapolation to R = 0 in linear scale
of the resistance drop from respectively Rlead

N to Rnw
N and Rnw

N to zero.

(a) N08.

(b) N05.

Figure 4.2: Resistance versus temperature of typical samples. (a) N08. Inset: Scheme
of the nanowire, with colored area used to compute Nnw. (b) N05. Inset: Zoom on the
resistance plateau. N08 leads are wider (4 µm with respect to 2.3 µm) and shorter (smaller
target) than those of N05, while the nanowire dimensions are the same, so their contribution
to the total normal state resistance is smaller.

As we will see in Section 4.5, the critical temperature difference with respect to the width
of the wire is too small compared to the energetic resolution to be revealed unambiguously by
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Scanning Tunneling Spectroscopy through spectral gap variations. Besides, the determination
of the slope of the leads transition can result in some uncertainty on T leadc (see Fig. 4.2a),
so that two extreme values are extracted for some samples, but we will use the smallest one
for all computations. Table 4.2 contains general experimental parameters about the Nb\Au
nanowires studied by STM in this PhD, showing that the critical temperature is also lowered
by a reduction of the thickness of the wire.

Then, one can notice in Table 4.2 that for the same niobium and gold nominal thick-
nesses, the critical temperature varies significantly from one sample to another. This is mainly
attributed to uncontrolled thicknesses variations due to the fabrication process: for
low thicknesses, the amount of material deposited relies only on the (short) evaporation time,
which is calibrated with thicker deposits using a quartz microbalance. Therefore the calibration
is not very accurate and may overlook a potential non superconducting seedlayer. Also, the
metallic ingots of the sources are regularly removed from the evaporation chamber to change the
materials available for the deposition, which does not help to maintain ultimate and constant
purity, and therefore reproducible critical temperatures. Indeed, the bulk critical temperature
of niobium is very sensitive to small oxygen contamination for instance [31].

Sample tNb tAu T leadc T nwc I0
c ρN l ξGL kNb

F lNb

(nm) (nm) (K) (K) (µA) (µΩ.cm) (nm) (nm)
N01 15 5 6.09 6.07 1000 18.2 1.1 16 2.1
N02 10 5 4.32 4.19 301 23.1 0.92 18 1.4
N03 5 5 2.66-2.68 2.43 96.3 18.5 1.5 29 1.4
N04 5 5 2.65 2.54 103 18.4 1.5 29 1.4
N05 3 3 1.38 1.19 15.7 24.8 1.1 35 1.0
N06 3 3 1.53 1.39 18.5 24.7 1.1 33 1.0
N07 3 3 2.01-1.95 1.72 - 31.3 0.87 26 0.8
N08 4 4 2.32-2.29 2.14 60 22.7 1.2 28 1.1
N09 3 3 1.72-1.68 1.55 - 30.2 0.90 28 0.8
N10 3 3 1.32-1.31 1.16 14.9 25.2 1.1 35 1.0
N13 3 3 0.820-0.810 0.790 6.8 31.2 0.87 40 0.8
N14 4 4 3.09 2.93 105 22.5 1.2 24 1.1
N15 3 3 1.44∗ 1.36∗ 18.3 36.8 0.74 28 0.7
N16 3 3 1.00-0.980 0.960 10.2 31.9 0.85 36 0.8

Table 4.2: Transport parameters of the samples studied by STM: tNb and tAu are the nominal
niobium and gold thicknesses, T leadc and T nwc are the critical temperature of the leads and the
nanowire, I0

c is the zero temperature critical current, ρN is the bilayer normal state resistivity,
l is the bilayer mean free path computed1from Eq. 4.1, ξGL the Ginzburg Landau coherence
length computed from Eq. 4.4 and the kNb

F lNb product is computed from the normal state
properties of the Nb layer alone (see Section 4.2). For all the samples, the nanowire is 300 nm
wide. All leads are 2.3 µm wide except N08’s whose leads width is 4 µm. N07 critical current
has not been measured down to very low temperatures before being damaged by the tip, and
only transport measurements under magnetic field have been performed on N09. ∗The case of
N15 is discussed in Appendix E.

The critical temperature of the nanowires is lowered by a reduction of either
their width or their thickness. To better understand this dependence, we will then inves-
tigate the two characteristic lengths in a diffusive superconductor, namely the electron mean
free path and the superconducting coherence length.

1Using T leadc and ρn.
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4.2 Mean free path and normal state resistance

Within the Drude-Sommerfeld framework, valid in the normal (metallic) state, the normal state
resistivity ρN gives information about the electron mean free path l. Indeed, Drude’s law writes
ρ−1
N = N0e

2D with D = vF l/3 the diffusion constant in three dimensions and N0 the density of
states at Fermi level, leading to:

l =
3

ρNN0vF e2
(4.1)

Nevertheless, the electronic properties of the system differ between normal and supercon-
ducting states. As it will be demonstrated later, the transparency of the interface between Nb
and Au is high and the coherence length is larger than the total thickness of the samples, so
that superconductivity is sensitive to the bilayer mean free path l according to Eq. 2.30, consid-
ering the bilayer as a single material with averaged electronic properties. In the normal state
however, the two layers behave as parallel resistors with different transport properties. The
superconducting, metallic or even insulating character of the niobium layer alone disregarding
the inverse proximity effect of gold is determined by its square resistance RNb

� and mean free
path lNb in the normal state and will be discussed in Subsection 4.7.1.

Computation of the bilayers mean free path

The bilayer normal state resistance directly stems from resistivity measurements of Fig. 4.2
through ρN = (tAu + tNb)R

Nb\Au
� with R

Nb\Au
� = (Rnw

N + Rlead
N )/(Nnw + N lead). The value

vF = 1.4× 106 m.s−1 will be used for the Nb\Au bilayer, since both materials have similar
Fermi velocities [6]: vAu

F = 1.4× 106 m.s−1 and vNb
F = 1.37× 106 m.s−1. On the other hand, an

averaged value weighted by the thicknesses tAu and tNb will be taken for N0:

〈N0〉 =
tNbN

Nb
0 + tAuN

Au
0

tNb + tAu

(4.2)

because the density of states at Fermi level differs by one order of magnitude between
gold and niobium: NAu

0 = 5.8 × 1046 J−1.m−3 and NNb
0 = 5.6 × 1047 J−1.m−3 [43], in

agreement2 with the values reported in [55].
This difference in the density of states at Fermi level can be attributed to different electronic

interactions in these materials, which accounts for dissimilar effective masses m∗. Indeed,
in a free electron gas model, N0 = m2

∗vF/(π
2~3), so that with comparable Fermi velocities,

mNb
∗ /m

Au
∗ =

√
NNb

0 /NAu
0 ≈ 3.1. A thickness independent effective mass of 1.0 ± 0.03 m was

measured for gold in [106] and although ”niobium is a transition metal and its Fermi surface
has a complicated topology”, mNb

∗ = 3.2 according to [60]. Consequently, these values give
a starting estimate, but have to be taken with caution since they do not take into account
possible variations with the thickness.

The mean free path l of the bilayer considered as a whole can be computed with the averaged
density of states at Fermi level (Eq. 4.2). The results are reported in Table 4.2. The fact that
the mean free path l is only equal to a few lattice parameters shows that the diffusion
motion of the electron is quite reduced by some kind of disorder, which can have several origins,
such as lattice defects or boundary scattering on the surface of the films so that l . t. Then,
one should remind that the evaporation technique does not provide ultimately pure niobium
and gold, neither a perfect interface between the two layers reducing again l.

Surprisingly, the normal state resistivity ρN slightly increases when the width w
is lowered at constant thickness t (see Table 4.1), despite the fact that l� w. This may be

2Many studies reported in [55] give NNb
0 ∈ [18; 30] Ry−1.atom−1, which leads to

NNb
0 ∈ [4.6; 7.6]× 1047 J−1.m−3 taking a molar mass MNb = 92.9 g.mol−1 and a density of 8.57 for

body-centered cubic niobium.
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due to a small reduction of l (although boundary scattering on the wires sides sounds unlikely)
and/or a modification of the Fermi surface. Nonetheless, this increase of ρN is compatible with
an over etching leading to smaller effective widths: assuming a constant resistivity equal to
the one measured in the widest part for sample T1 leads to effective widths of ≈ 250 nm and
550 nm for the narrow parts, while the nominal widths are respectively 300 nm and 600 nm.
However, a bare reduction of the actual width of the samples could not explain the decrease
of the critical temperature which is more likely related to a width dependence of the electronic
properties.

Eventually, l� w, t validates the three dimensional character of the electron gas
and that the electron diffusion constant writes D = 1

3
vF l.

Computation of the normal state resistance of niobium only

Since the resistivity of gold is lower than the one of niobium, the measured bilayer square
resistance in the normal state R

Nb\Au
� is essentially equal to the one of gold. Considering

the two layers as parallel resistors, one can extract the square resistances of the two layers
Ri
� = ρi/ti where ρi is the resistivity and ti the thickness of the layer for i=Nb, Au. Then,

RNb
� = R

Nb\Au
�

(
1 +

ρNbtAu

ρAutNb

)
(4.3)

The determination of the ratio ρNb/ρAu is subject to large uncertainties. As we already men-
tioned, the layers thicknesses are not well known because of the fabrication process. In addition
to this, the resistivity strongly depends on thickness (as reported for instance in thin niobium
samples [45]) and also probably on the deposition conditions. Thus, we will assume for sim-
plicity that the ratio ρNb/ρAu is equal to its bulk value ρNb/ρAu ≈ 5 [6]. Then, RNb

� allows to
extract the mean free path in the niobium layer in the normal state lNb using Eq. 4.1. Since

Fermi wavevector in Nb is about 0.5 Å
−1

[77, 47], this leads to the estimate of the kNb
F lNb

products of our samples given in Table 4.2.

4.3 Coherence length

4.3.1 Computation from resistivity and critical temperature

Given the theoretical values of Fermi velocity and density of states at Fermi level (Eq. 4.2), the
normal state resistivity gives access to l (Eq. 4.1). Approximating3 ∆0 by 1.76kBTc, the critical
temperature of a sample allows to compute ξ0 = ~vF

π∆0
. Therefore, the experimental parameters

ρN and Tc leads to the Ginzburg Landau coherence length given in Table 4.2:

ξGL(ρN , Tc) = 0.855
√
ξ0(Tc)l(ρN) (4.4)

In order to test the validity of such a computation, one can take advantage of the measurement
of the upper critical field.

4.3.2 Determination by upper critical field measurements

The Ginzburg Landau coherence length can be extracted from the variations of the upper
critical field Bc2 near Tc. Indeed, using Eq. 2.32:

dBc2

dT
(T → Tc) = − φ0

2πξ2
GLTc

(4.5)

3Such an approximation allows to compute ξGL for all samples with the same method, but one could replace
∆0 by the superconducting gap measured by STS at low temperatures in the absence of depairing when it is
available (see Table 4.3). This would only modify ξGL by a few percents.
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Sample N06. In that respect, Fig. 4.3 shows the resistance of sample N06 as a function of
temperature under different magnetic fields. The resistance is plotted in log scale to better
distinguish the Rnw

N plateau which tends to disappear when the magnetic field is increased,
but the same linear extrapolation than before is performed to extract the critical temperatures,
leading to the Bc2(T ) dependence plotted in the inset. Values resulting from the linear behavior
of Bc2(T ) near Tc are: ξleadGL,Bc2 = 31 nm and ξnwGL,Bc2 = 32 nm for the lead and the nanowire
respectively. These values are in good agreement with the Ginzburg Landau coherence length
computed from ρN and T leadc : ξleadGL = 33 nm.

Figure 4.3: Resistance versus temperature under different magnetic fields of sample N06.
Inset: Extracted upper critical fields as a function of temperature of the lead and the nanowire.
The resulting coherence lengths (Eq. 4.5) are ξleadGL,Bc2 = 31 nm and ξnwGL,Bc2 = 32 nm.

Sample N09. Measurements up to larger magnetic fields have been performed on sample N09
and will be further discussed in Section 4.4. The behavior close to Tc leads to ξGL,Bc2 = 22 nm
using Eq. 4.5. This value is compatible with the coherence length computed from normal state
resistivity: ξGL = 28 nm (see Table 4.2). The difference may be due to the uncertainties for
instance over effective thicknesses, whose values affects the density of states and the resistivity
of the samples which are used for the computation (an uncertainty of 1 nm over tNb results in
a 20% change on ξGL for the present sample).

To summarize, upper critical field measurements were performed on two samples (N06 and
N09). The extracted coherence length is in agreement with the above computation which
depends on the averaged electronic properties of the samples through the bilayer mean free
path. This confirms that the bilayer can be considered as a whole.

Since ξGL ∼ 30 nm (see Table 4.1 and 4.2), t ≤ 20 nm and w ≥ 300 nm, it demonstrates that
the characteristic length scale for the variations of the order parameter ξ is about one order of
magnitude smaller than the nanowires width w. It is also larger than the total thickness t of the
samples. Thus, the nanowires can be considered as two dimensional superconductors.

4.4 Low temperature upturn of the upper critical field

Within conventional BCS theory, the upper critical field Bc2(T ) is expected to saturate at
low temperatures. The WHH [49, 118] theory adds a little distinction between clean and
dirty superconductors, with a reduced collision parameter λ ≈ 0.88ξ0/l varying from 0 (clean
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(a) (b)

Figure 4.4: Low temperature anomaly of the upper critical field Bc2. Reduced
critical field b = Bc2/(−dBc2/dt|t = 1) versus reduced temperature t = T/Tc. (a) Indium oxide
samples whose thickness is indicated in brackets. Solid line is the conventional BCS result.
From [98]. (b) Nb\Au sample (N09) with different criterion to determine Tc: 90%Rlead

N (blue),
10%Rlead

N (green) and linear extrapolation to R = 0 for R < Rnw
N (red). The three criteria lead

respectively to ξGL,Bc2 = 20; 21 and 22 nm and exhibit an anomalous temperature dependence
of the upper critical field Bc2. Solid lines are the WHH theory in clean and dirty limits.

limit) to ∞ (dirty limit). Nonetheless, a larger upper critical field than the one predicted by
conventional theory of superconductivity is measured at low temperature for sample N09 as
shown on Fig. 4.4b. This non classical behavior has been observed in disordered superconductors
made of InOx and MoGe [98] (see Fig. 4.4a).

Upturns of the upper critical field at low temperature have already been re-
ported in disordered superconductors and will be discussed in Subsection 4.7.1.

4.5 Superconducting gap

The STS technique presented in Section 1.2 allows to probe locally the DOS of the samples,
since the differential conductance of the tunnel junction (Eq. 1.8) is proportional to the DOS
convoluted with a function reflecting some broadening due to the finite energetic resolution.

Within the Usadel framework, the DOS is given by Ns = N0<[cos θ] where the pairing angle
θ follows Eq. 2.20. In the absence of any supercurrent and magnetic field (γ = 0), the DOS is
equivalent to the Dynes form (see Appendix B):

Ns(ε) =

 N0

∣∣∣∣< [ ε+iΓin√
(ε+iΓin)2−∆2

]∣∣∣∣ if |ε| > ∆

0 if |ε| < ∆
(4.6)

ThusNs is a function of the energy ε with respect to Fermi level, and depends on two parameters:
∆ and Γin. The thermal broadening is characterized by an effective temperature Teff .

Fig. 4.5 shows the differential conductance measured on different samples at low bath tem-
peratures T in the absence of depairing (γ = 0). Fit of experimental data with the theoretical
expression for the differential conductance allows to extract ∆0, Γin and Teff (see Table 4.3).
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(a) N04. T=60 mK (b) N13. T=100 mK

(c) N14. T=55 mK (d) N15. T=57 mK

Figure 4.5: Normalized differential conductance as a function of bias voltage in the
absence of depairing. T is the bath temperature. Solid red line is Eq. 1.8 with ∆0, Γin and
Teff parameters given in Table 4.3.

Theoretical predictions for the DOS in a diffusive superconductor in the absence of depairing
are in good agreement with experimental data using an effective electronic temperature Teff
larger than the bath temperature T (temperature of the sample holder).

The ratio ∆0/(kBT
nw
c ) - which is equal to 1.76 for a BCS superconductor - is plotted on

Fig. 4.6 as a function of T nwc . The ratio ∆0/(kBT
nw
c ) slightly increases from the 1.76 BCS value

to 2.4 as the critical temperature T nwc decreases from ∼ 6 K to ∼ 0.8 K.
Incidentally, only small spatial variations of the superconducting gap were detected in the

nanowires. These variations (of about 10 µeV) are of the order of the energetic resolution
(defined in Subsection 1.2.2 by 3.5kBT and equal to 15 µeV at a bath temperature T = 50 mK)
so that the DOS of the nanowires can be considered homogeneous within experimental accuracy.
Furthermore, the critical temperature difference between leads and nanowires, which is typically
≈ 200 mK would result for a BCS superconductor in a 1.76 kB × 200 mK ≈ 30 µeV difference
in the superconducting gaps. Therefore, variations in the DOS between the leads and the
nanowire are difficult to detect due to our finite energetic resolution.

Besides, the effective energetic resolution is different than the theoretical 3.5kBT value as
discussed in Subsection 1.2.2. This is partly due to the fact that Teff is larger than T : both
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Sample N01 N03 N04 N05 N06 N07 N08 N10 N13 N14 N15 N16
∆0 (µeV) 885 370 380 220 235 290 355 205 160 430 225 180
Γin/∆0 0 0.02 0.02 0.05 0.03 0.015 0.01 0 0.1 0.01 0.001 0.001
Teff (mK) 385 556 450 570 540 680 660 430 1000 650 460 400
tNb (nm) 15 5 5 3 3 3 4 3 3 4 3 3
tAu (nm) 5 5 5 3 3 3 4 3 3 4 3 3

Table 4.3: Spectral parameters of the samples: ∆0 is the superconducting gap, Γin the inelastic
scattering term and Teff the effective temperature of the tip. tNb and tAu are the nominal
thicknesses of niobium and gold.

Figure 4.6: ∆0/(kBT
nw
c ) ratio

versus T nwc . Error bars are given
by the energetic resolution at 50 mK
(15 µV, see text) leading to an un-
certainty over ∆0.

voltage fluctuations across the tunnel junction and poor thermalization of the STM tip electrons
decrease the resolution by increasing Teff . Nonetheless, since Teff affects dI/dV , it also can
account for deviations of the DOS from theory. In this respect, Fig. 4.6 suggests that a deviation
from BCS theory goes together with a decrease of T nwc . As discussed in Subsection 4.7.1, this
decrease is due to the combination of thickness reduction and proximity effect. Since these two
effects weaken superconductivity, they are all reasons to alter the BCS character of the DOS
with subgap states, leading to a smearing of the DOS coherence peaks which can be accounted
for by large Teff values.

Fig. 4.7 presents the temperature profile of the differential conductance dI/dV (Vb). It evi-
dences that the superconducting gap vanishes at T nwc .

The bilayers behave as BCS-like superconductors with nonetheless a smeared
gap in the density of states.

4.6 Influence of the wire width

The present experimental work demonstrates that the critical temperature clearly depends on
the wire width, but the explanation remains an open question. Possible interpretations include:

• Variations of evaporated films critical temperature have already been attributed to some
strain due to differential thermal contractions between the substrate and the film [13, 56,
113]. One could imagine that down to small widths and thicknesses, the wire is subject
to some width dependent strain affecting its critical temperature.
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Figure 4.7: Temperature dependence of the density of states. Normalized differential
conductance as a function of bias voltage Vb for different temperatures, measured in the center of
the nanowire. Each spectrum is normalized to its large bias value. Black solid line corresponds
to the nanowire critical temperature T nwc . Sample N06.

• The fact that the lowering of the critical temperature Tc goes together with an increase
of the normal state resistivity ρN can be related to a modification of the density of states
at Fermi level N0. Indeed, ρ−1

N = N0e
2D and BCS theory relates the critical temperature

to the pairing potential Veff and the density of states at Fermi level through Eq. 2.1.
Then, an increase of ρN could be a manifestation of a lowering of N0, which would also
decrease the critical temperature Tc. However, further quantitative investigations are
complex. The microscopical reasons leading to such a change in N0 while the transverse
dimension w is large compared to the mean free path are not understood, and are difficult
to disentangle from the influence of other parameters such as l, vF and Veff . Finally,
modifications of the Fermi surface are not independent from strain.

• At first sight, no dimensional crossover occurs when the width is lowered since one always
have ξGL (the extension of a Cooper pair) much smaller than w, so that Cooper pair
motion remains unaffected4. Nevertheless, because of the divergence of the coherence
length near Tc, superconducting fluctuations can lead to such a crossover, as illustrated
by the simple following computation:

We note T2D the critical temperature of an infinite two dimensional film of uniform

thickness and ξ(T ) = ξ2D

√
T2D

T2D−T
its coherence length. Let’s assume for simplicity that

a wire of width w is in the normal state when w � ξ and superconducting when w � ξ,
the transition occuring when ξ(T ) ≈ w/α with α of order unity. Then, one obtains the
following crossover temperature T 1D−2D

cross from a 1D metallic state to a 2D superconducting

4One may argue that the effective width could be reduced by side oxidation where the niobium is not
protected by gold (see Fig. 1.9b), but probably not on more than ∼ 10 nm thick since 15 nm thick uncapped
niobium films coming from the same source turned out to be superconducting.
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state:
T 1D−2D
cross

T2D

≈ 1− α2

(
ξ2D

w

)2

(4.7)

Figure 4.8: T nwc /T leadc ratio as a function of
(ξGL/w)2 of samples N01 to N16 (circles) and of
sample T1 (triangles). The color corresponds to
the ∆0/kBT

nw
c ratio when available. Dashed line is

Eq. 4.7 with α = 3.

Approximating T2D by T leadc for
samples of Table 4.2 (the lead be-
ing the widest part of the wire for
sample T1), one can plot T nwc /T leadc

as a function of (ξGL/w)2 (see
Fig. 4.8). The experimental crit-
ical temperatures of our samples
correspond approximately to the
1D to 2D crossover with α = 3.
This can be interpreted as follows:
at low temperatures, the coher-
ence length is smaller than w so
the wire is two dimensional, and
therefore superconducting. For
T 1D−2D
cross < T < T leadc , the coherence

length increases and when it ap-
proaches w, the wire becomes quasi
one dimensional and therefore nor-
mal. It is worth noticing that the
points which are the furthest from
the crossover line in Fig. 4.8 corre-
spond to the samples with the highest ∆0/(kBT

nw
c ) ratio. This may point out a non-BCS

behavior of the thermal dependance of the coherence length in these bilayers.
Then, the simple model presented here shows that the superconducting fluctuations
near critical temperature, manifested by the divergence of the coherence length near
Tc, could explain the effect of the wire width on the superconducting critical tem-
perature. Moreover, it is likely that these fluctuations only manifest close to the
transition, affecting T nwc but leaving unchanged the low temperature properties such
as the superconducting gap at T = 0. This is consistent with the fact that no vari-
ations of the latter have been measured between the leads and the nanowire in Section 4.5.

A size dependence of the transport properties of superconducting indium oxide nanowires has
also been observed close to the disorder-driven superconductor-insulator transition [79]. Inter-
estingly, thermally activated phase slips, i.e. one dimensional superconducting fluctuations, are
invoked to explain the low temperature residual sheet resistance which value increases when
the width of the nanowire is reduced. However, we think that this effect cannot explain the
variations of the critical temperature with the wire width observed in our samples.

The width dependence of the critical temperature remains an open question.

4.7 Influence of disorder

To begin with, one should distinguish two different mechanisms which rule the superconducting
properties of the Nb\Au bilayers: the inverse proximity effect of gold on niobium and the level
of disorder in the niobium layer alone. In this section, we investigate the role of disorder
disregarding the proximity effect.
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4.7.1 Anderson localization and disorder-enhanced Coulomb repul-
sion

In the literature, the degree of disorder is usually defined by the kF l product, where kF is the
Fermi wavevector and l the mean free path. This parameter roughly makes the distinction
between a metal and an insulator, the transition occurring when l is of the order of Fermi
wavelength λF . In weakly disordered systems (kF l � 1), Anderson’s theorem [3]
states that superconductivity is not affected by weak disorder as long as it is static
and non magnetic (we already mentioned the sensitivity of niobium bulk critical temperature to
oxygen contamination, we should also notice that eventual residuals of magnetic metals in the
evaporation chamber would have the same effect). This thus extended the BCS framework to
diffusive superconductors (l� ξ0) by renormalizing the coherence length (ξGL ≈

√
ξ0l), before

the development of Usadel equations [114].
However, Anderson’s theorem does not hold in the strong disorder limit. Indeed, when

kF l ≈ 1, electrons are localized over small length scales. In the worst case where kF l � 1, kF
and l no longer make sense, the electrons are localized and do not participate to conduction:
the material is insulating at T = 0. As for superconductivity, one may wonder how far in the
insulating regime the overlap between localized wave functions of opposite spin and momenta
is sufficient to allow the formation of Cooper pairs.

Besides localization, interactions can also play a role in the disorder-induced superconductor-
insulator transition (SIT). One can distinguish two main classes of materials exhibiting distinct
behaviors when the transition is approached depending on the range of Coulomb interaction:

• granular films (the granularity refers to their electronic phase, not necessarily to their
morphology, and may be due to Anderson localization) are composed of superconducting
islands coupled by tunnel junctions. The transition is interpreted as a competition be-
tween the inter-grains Josephson coupling, the charging energy and the thermal energy.
They are characterized by a constant superconducting onset temperature, correspond-
ing to the critical temperature of each grain. When the film disorder is increased, the
superconducting transition first broadens due to phase fluctuations between the order pa-
rameter of each grain, and then the film become insulating, with an exponential increase
of the resistance with decreasing temperature for the most disordered samples (Fig. 4.9a).
In the vicinity of the critical disorder, these films also often exhibit re-entrance features
of the resistance as the temperature decreases (see Fig. 4.9a, the resistance first start
to drop when the temperature decreases as in a superconducting transition before rising
again).

• homogeneously disordered superconductors exhibit a sharp transition, translated without
broadening when the disorder is increased (Fig. 4.9b). The transition is interpreted as a
competition between electron pairing and disorder-enhanced Coulomb repulsion, leading
to a continuous destruction of the order parameter by the disorder. In this model, the
mobility of electrons is affected so that dynamical charge screening is less efficient, en-
hancing Coulomb repulsion and so lowering the effective pairing potential and the critical
temperature.

Experimentally, granular systems are generally metals deposited on a substrate at low tem-
perature without any particular precaution regarding the film wetting. Homogeneously dis-
ordered systems include amorphous alloys (a-MoGe, a-NbSi,...) and metals deposited at low
temperature on a thin a-Ge underlayer. Indeed, the a-Ge underlayer increases the films wetting
allowing the materials to grow homogeneously: Pb films grown on two different substrates (SiO
and a-Ge) exhibit either granular or homogeneous behavior [39]. To conclude, the deposition
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Figure 4.9: Square resistance ver-
sus temperature for different thick-
nesses of granular and homogeneous
films. (a) Granular films (granular
gallium deposited on quartz, taken
from [54]). (b) Homogeneous films
(amorphous bismuth deposited on an
a-Ge underlayer, taken from [48]).

(a) (b)

process plays as well as the substrate an important role for pure metals, the low temperature
deposition process providing highly disordered materials for instance.

When the thickness is sufficiently low as in our Nb\Au samples, it is reasonable to wonder
whether the decrease of the critical temperature is due to Anderson localization or disorder-
enhanced Coulomb repulsion. The resistance versus temperature curves of our samples do not
show any characteristic of granular systems such as re-entrance or disorder-independent onset
of a critical temperature, so they are believed to be homogeneously disordered (see Fig. 4.2).
The broadening of the transition observed in some samples may be attributed to some thickness
inhomogeneities (roughness) along the leads due to the evaporation process. Superconducting
fluctuations can also broaden the transition because of the nucleation of superconducting do-
mains of size ∼ ξGL in the metallic phase. The effect becomes non negligible when the coherence
length is reduced, by disorder for instance, and in two dimensions the fluctuations occur on a
temperature range δTc/Tc ≈ R�e

2/(23~) [68].
In any case, our Nb\Au films are neither granular nor highly inhomogeneous, so we will

therefore discuss in the following the two remaining possible models: the fermionic scenario of
homogenously disordered films with Coulomb repulsion, and the bosonic scenario of localized
Cooper pairs without repulsive interaction.

The ”Fermionic” scenario

The fact that in two dimensions the degree of disorder (usually defined by kF l) is directly related
to the square resistance R� = h/(e2kF l) led to consider the latest as a direct measurement of
the disorder level in homogeneously disordered thin films. A full theoretical description of the
competition between superconductivity and disorder embracing the homogeneous case and the
pure granular case is still lacking, but Finkelstein explained the destruction of superconductivity
in two dimensional homogeneously disordered superconductors (ts � ξGL) as a function of the
normal state square resistance R� [36]. His theory gives Tc(R�) as a function of only two
parameters: the bulk critical temperature T bulkc and the elastic scattering time τ , while R�
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Figure 4.10: Destruction of superconducting
transition temperature in amorphous Mo79Ge21

thin films as a function of R�. Solid line: result
of Finkelstein’s adjustment. From [36].

Figure 4.11: Nb\Au bilayers critical temper-
ature as a function of the normal state square
resistance attributed to the niobium layer RNb

� .
Dashed line is Eq. 4.8 with τ = 1.6 10−18 s and
T bulkc = 6.5 K.

captures the effect of the weakening of dynam-
ical Coulomb screening:

Tc = T bulkc eγ

(
1/γ −

√
r/2 + r/4

1/γ +
√
r/2 + r/4

)1/
√

2t

(4.8)

with r = R�e
2

πh
and γ = ln

(
h

kBT bulk
c τ

)
. Excel-

lent agreement was found with the data mea-
sured previously on amorphous MoGe thin
films [44] (see Fig. 4.10).

An increase of the normal state square re-
sistance of the bilayers R

Nb\Au
� together with a

decrease of the critical temperature T leadc was
observed. Within Finkelstein theory, the level
of disorder of the niobium layer is given by
its square resistance RNb

� extracted in Eq. 4.3
with non negligible uncertainties5. Fig. 4.11
gives a rough estimate of the T leadc (RNb

� ) be-
havior, but the critical sheet resistance for
which superconductivity is destroyed, RNb

�,c ≈
500 Ω, is comparable to the one given in [30]
and [21] for pure Nb.

Finkelstein analysis leads to the parame-
ters τ = 1.6 × 10−18 s and T bulkc = 6.5 K.
The obtained T bulkc is lower than the theo-
retical bulk value for Nb (9.2 K), but can
be explained by the proximity effect of gold
on niobium and by the deposition conditions
(magnetic impurities or oxygen pollution). In
contrast, the value of τ is unrealistic since it
would lead to a mean free path vF τ ∼ 1 pm
far too low compared to the mean free path of
the niobium layer lNb extracted in Table 4.2
(kNb
F lNb ≈ 1 leads to lNb of the order of a

few angstroms with kNb
F = 0.5 Å

−1
). Thus,

Finkelstein theory does not apply here, so the enhancement of Coulomb repulsion is not
the main cause for the destruction of superconductivity in our samples. Some work
on Nb [30], NbSi, [21] and TiN [46], where the disorder has also been tuned by the thick-
ness, also report that although describing well the Tc(R�) curves, Finkelstein theory provides
unrealistic values of τ .

Besides, the scaling theory of localization [70] predicts a metal-insulator transition (MIT)
for a value of R� of the order of the quantum of resistance. Then, the fact that RNb

�,c is lower
than the quantum of resistance indicates that the most disordered samples are on the metallic
side of the MIT. This is also confirmed by the fact that kNb

F lNb ≈ 1 (see Table 4.2) for our
samples.

It is interesting to specify that Finkelstein theory accounts for the destruction of su-

5Using more refined expressions for the resistivities ρi ∝ t−1
i as in [45] does not change RNb

�,c of more than a
factor 2 neither the order of magnitude of the τ value extracted from Finkelstein analysis.
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perconductivity by disorder-enhanced Coulomb repulsion, assuming that the bulk
properties of the electron gas remain unchanged.

Incidentally, some work report the following counter-intuitive result in highly disordered su-
perconductors (Pb, Bi or Ga) covered with a normal metal (Ag) [15, 67]: instead of weakening
the superconductivity by proximity effect, the normal overlayer increases the critical tempera-
ture. This is attributed to an enhancement of the electron screening due to the quasiparticles
brought by the normal metal, and reminds that the gold layer modifies the electronic properties
of niobium. In addition to induce some inverse proximity effect, the presence of gold may also
reinforce dynamical Coulomb screening.

The ”Bosonic” scenario

In contrast with the Fermionic scenario, the SIT can be explained as a competition between
localization and Cooper pairing disregarding Coulomb interactions [35]. At the transition, the
superconducting order parameter is predicted to be inhomogeneous as observed through spatial
variations of the spectral gap by STS [94]. Unusually large ∆/(kBTc) ratios are expected [94]
(up to 4 or 5). Above critical temperature, a regime of superconducting fluctuations and of
preformed Cooper pairs is also expected, resulting in a noticeable depression in the DOS, the
pseudogap. Temperature evolution of the superconducting DOS revealed that such a pseudogap
persists relatively far from the SIT [95].

Then, the kNb
F lNb ≈ 1 products of our samples (see Table 4.2) show that the niobium layer

in the normal state is strongly disordered. The slight increase of the ∆/(kBTc) ratio together
with a decrease of the critical temperature suggests that the Bosonic scenario for the SIT could
apply here. Moreover, the upturn of the upper critical field Bc2 at low temperature described
in Section 4.4 goes in this direction. Indeed, this effect has already been measured in indium
oxide, a superconductor where Cooper pairs become localized by disorder on the verge of the
SIT [97]. This upturn of Bc2 is attributed to the thermal fluctuations of the vortex glass,
strongly pinned by the spatial fluctuations of the order parameter due to disorder [98].

Nevertheless, STS measurements (see Section 4.5) revealed an homogeneous gap, suggest-
ing that the fluctuations of the order parameter are relatively small. This could however be
sufficient to account for the upturn of Bc2 since the effect was observed in samples far from
the disorder-tuned SIT [98]. Also, one can explain the upturn of the upper critical field of our
samples in light of other mechanisms leading to vortex pinning as discussed in Subsection 7.3.2.
Anyhow, the fact that no detectable spatial variations of the spectral gap are measured indi-
cates that our samples are far from the SIT. This is also confirmed by the fact that ∆/(kBTc)
remains relatively close to the BCS value and that no pseudogap is observed in our samples as
shown on Fig. 4.7.

To conclude, we think that regarding the SIT, the samples studied in this PhD are
not in the vicinity of the transition so that electrons are not completely localized
and Coulomb interactions are relatively well screened.

4.7.2 Special role of thickness

Experimental evidence

Further investigation on the SIT is of particular interest in NbxSi1−x films, where the disorder
can be tuned not only by the thickness but also by the stoechiometry (x) and an eventual
annealing (the annealing temperature being the third disorder tuning parameter). Fig. 4.12
shows that Tc is not uniquely determined by R� in Nb18Si82 samples. In fact, the complete
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study demonstrates the specific role of the thickness: whereas a disorder change due to ei-
ther composition or annealing relates one to one Tc and R�, the same reduction of Tc can be
reached for a given stoechiometry through thickness or annealing whereas the corresponding
R� is completely different. Thereby, there is no univocal parameter to measure the
level of disorder.

Figure 4.12: Critical temperature
as a function of square resistance
for several Nb18Si82 samples. Each
symbol (set of aligned points) repre-
sents one thickness, and each color
(from top to bottom) represents one
annealing temperature θa. From
[23].

Since neither the square resistance nor the thickness is an univocal parameter to measure
the level of disorder, it is interesting to look for phenomenological models. By analyzing the
data published over several decades on different materials, Ivry and coworkers [53] propose the
following phenomenological scaling law for superconducting films:

tsTc = AR−B� (4.9)

which applies for several systems [53]. ts is the superconducting film thickness and A and B are
fitting parameters. This law confirms that the specific role of thickness on critical temperature
is not enclosed in the square resistance.

Figure 4.13: Niobium thickness ts
times critical temperature Tc versus
square resistance R� of: • Nb sam-
ples from [119] • Nb samples from
[45] and • Nb\Au samples from this
PhD work. Dashed line: scaling
law of Eq. 4.9 with A = 611 and
B = 0.761.

According to Ivry et al. [53], the fitting parameters for niobium are A = 611 and B = 0.761.
We plot in Fig. 4.13 this fitting law together with experimental data taken from reported
experiments ([45] which gave the fitting parameters according to Ivry et al. and [119]) and
our own results with Nb\Au bilayers. As shown on Fig. 4.13, this scaling law applies similarly
for Nb and Nb\Au samples. The small difference between these two materials suggests that
the inverse proximity effect of gold slightly decreases the critical temperature of niobium. This
effect will be discussed in Section 4.8.
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Models for the depletion of critical temperature with thickness

It is well known experimentally that the critical temperature of a superconductor starts to
decrease when its thickness becomes smaller than its coherence length, but only a few theories
account for such an effect. An explanation consists in considering a non superconducting surface
layer of thickness a, although there is no consensus since the existence of such a layer is neither
experimentally confirmed or theoretically motivated in the literature. However in our case, one
could imagine some diffusion of silicon from the substrate leading to a non superconducting NbSi
alloy, or some boundary condition for the surface atoms where dynamical Coulomb screening
is perturbed.

The first way to take into account such a layer consists in considering the induced proximity
effect of the surface layer on the superconductor in the Cooper limit. The proximity effect
is described theoretically in Subsection 2.2.3, and the relevant assumptions of the present
description are as follows. The surface layer is assumed to be metallic (not insulating) at zero
temperature. For the sake of symmetry, one usually considers two surface layers of thickness
a on both sides of the film of total thickness t, so that the normal layer thickness is tN = 2a.
For simplicity, the density of states of the normal layer NN is taken equal to the one of the
superconductor NS. Then, Eq. 2.26 leads to:

Tc = T bulkc e−
dc

t−2a (4.10)

with dc = 2a
NSVS

, T bulkc the critical temperature of the infinitely thick superconductor and VS its
BCS pairing potential.

The second way developed by Simonin in [102] is a more general approach using Ginzburg
Landau free energy with a modified boundary condition on the film surface. This leads to:

Tc = T bulkc

(
1− dc

t

)
(4.11)

with dc = 2a
NSVS

and a approximately equal to Thomas-Fermi screening length. This result is

consistent with the Cooper limit in the large thickness range and reproduces well the Tc ∝ t−1

behavior observed in different materials (see Fig. 4.14).

Figure 4.14: Reduced critical temperature
versus reduced inverse thickness for different
materials and substrates. Nb: � (dc = 36 Å)
and � (dc = 22 Å), Pb: • (dc = 8 Å) and N
(dc = 20 Å) and Bi: + (dc = 12 Å). Solid
line: Eq. 4.11. Dashed line: Cooper limit.
From [102].

One should notice that the dc value is substrate dependent, that is why two values are given
for Nb and Pb (corresponding to two sets of experiments on different substrates). This is not
surprising since disorder (through the deposition method, the substrate, etc...) can affect the
critical temperature independently of the thickness. For instance, an increase of dc together
with an increase of the disorder (tuned through the composition and at constant thickness) was
reported in NbSi [22].

Thereby, although there is no complete microscopical theory for this, the thickness is a
main knob to tune the critical temperature of Nb films.
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4.8 Influence of the inverse proximity effect

Since we have to deal with proximity effect, the relevant parameters are both niobium and
gold thicknesses. It is important to note that both niobium and gold thicknesses are
small compared to the coherence length: tAu, tNb � ξGL. Then, the models presented
in Subsection 2.2.3 to describe a normal metal-superconductor (NS) bilayer can be applied, and
the order parameter should be nearly constant with respect to the perpendicular direction to
the films.

The other parameter playing an important role in the proximity effect is the interface resis-
tance between the layers. The two extreme limits of interlayer interface resistance correspond
to the Cooper limit (perfect interface) and to a superconducting layer unaffected by the pres-
ence of the normal layer (opaque interface). Fominov model encloses the intermediate values
of interface resistance.

Combined effect of thickness and proximity effect

Independently from the proximity effect, the thickness of the superconducting layer has an
influence on its critical temperature (see Subsection 4.7.2). Thus, Simonin’s theory gives the
critical temperature of a bare niobium layer as a function of its thickness tNb:

TNb
c (tNb) = T bulkc

(
1− dc

tNb

)
(4.12)

From this, Cooper limit and Fominov model (see Subsection 2.2.3) give the critical temper-
ature of the NS bilayer obtained by depositing a tAu thick layer of gold on top of niobium. The
superconducting layer critical temperature T Sc in Eq. 2.26 (Cooper limit) and 2.28 (Fominov
model) has to be replaced by the thickness dependent niobium critical temperature TNb

c (tNb).
In the Cooper limit, this leads to:

TNb\Au
c = TNb

c (tNb) exp

(
−NAutAu

NNbtNb

1

NNbVNb

)
(4.13)

where NNb and VNb must fulfill the BCS relationship TNb
c (tNb) = 1.13ΘDe

−1/(NNbVNb) where ΘD

is the Debye temperature.
Finally, NAu and NNb may depend respectively on tAu and tNb. In the following, we will

assume for simplicity that for samples where tAu = tNb the ratio NAu/NNb is constant and equal
to the bulk value used to compute Eq. 4.1.

Fig. 4.15 displays the critical temperature as a function of the inverse thickness for samples
where tAu = tNb and the theoretical predictions of Simonin’s law, Cooper limit and Fominov
model. Simonin’s law gives an upper bound for the critical temperature of the NS bilayer
(corresponding to the case where the S layer remains unaffected by proximity effect). Cooper
limit gives a lower bound corresponding to the case of perfect interface between N and S layers
(maximal influence of the proximity effect). In between these two extreme cases, Fominov
model gives the critical temperature as a function of the interface resistance.

T bulkc , dc and T (characterizing the interface transparency) are subject to fluctuations in
the fabrication process. Additionally, tNb and tAu probably deviate from their nominal values,
that’s why one can only conclude that the critical temperature of the samples is roughly de-
termined by the niobium thickness through Simonin’s law, from which it is slightly lowered by
inverse proximity effect. This is confirmed by the comparison between the critical temperature
of our samples and of Nb layers taken from the literature as shown on Fig. 4.13. Furthermore,
this is also confirmed by our tunneling spectroscopy experiments. Indeed, in the limit of large
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interface resistance, the gold (normal) layer must show a metallic density of states and the
niobium (superconducting) layer must remain roughly unaffected by the proximity effect, while
in the limit of small interface resistance, both layers must exhibit a superconducting DOS [38].
Thus, the superconducting gaps of the order of 1.76kBTc probed by STS on the
surface of gold (for experimental data see Section 4.5), are an evidence of small interface
resistance. Additionally, the compensation of a large ∆0/(kBTc) ratio in the superconducting
layer by a poor interface is excluded since ∆0/(kBTc) = 1.83 [81] in niobium.

Figure 4.15: Critical temperature of the leads as a function of inverse niobium thickness
for samples where tNb = tAu. The blue dashed line is Simonin’s curve for niobium computed
with Eq. 4.12 with dc = 22 Å and T bulkc = 7.5 K. The yellow dashed line is the Cooper limit
computed from Eq. 4.13 with ΘD = 275 K (typical value for Nb [43]). The solid lines represent
Fominov model with intermediate interface resistance values computed from Eq. 2.28 with T Sc
given byEq. 4.12, ΘD = 275 K, NAu

0 = 5.8 1046 J−1.m−3, NNb
0 = 5.6 1047 J−1.m−3, λF = 5 Å

and T = 0.001 ; 0.005 ; 0.02 and 0.05 from top to bottom.

The inverse proximity effect slightly decreases the critical temperature of the
Nb layer alone, which depends on the Nb thickness in first approximation.

4.9 Conclusion

Disorder, geometry and inverse proximity effect have an influence on the critical temperature of
the nanowires studied in this PhD. Specifically, the superconducting properties of the samples
are efficiently tuned by their thickness. Because the latter is small compared to the coherence
length and the interface resistance between gold an niobium is also small, the bilayers behave
as one superconducting material as confirmed by upper critical field and spectroscopy mea-
surements. Disorder induces mechanisms weakening superconductivity but the samples remain
far from the superconductor-insulator transition so that the DOS is spatially homogeneous.
Finally and unexpectedly, the nanowire width turns out to affect the critical temperature.
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The ability to tune the superconducting properties with the width and the thickness of
the nanowires was introduced in the previous chapter. On the one hand, the total thickness
t had to be small for several reasons. Firstly, whether to probe or modify the properties of
superconducting nanowires by STM/STS or Scanning Critical Current Microscopy (SCCM),
the tunneling junction is located on the surface of the sample so lowering t allows to be more
sensitive to the bulk and not only to the surface properties. Furthermore, it helps to prevent
overheating when the critical current is reached (a Joule power RNI

2
c is then dissipated in the

normal wire of resistance RN). Indeed, the superconducting gap ∆0 decreases with t (Table 4.3)
and according to Ginzburg Landau (Eq. 3.1b) and Kupryanov Lukychev (Eq. 2.19) depairing
current densities, RNI

2
c ∝ ∆3

0t, so lowering t reduces Joule overheating. On the other hand, a
small width compared to London penetration depth ensures homogeneous current density.

This chapter describes measurements of thin superconducting nanowires critical current.
The results are then compared to Usadel theory in the limit of uniform current density. Then,
the modification of the superconducting order by a supercurrent flow is investigated by STS,
up to values as close as possible to the critical current.

5.1 Evolution of the critical current with temperature

Fig. 5.1 shows typical current-voltage characteristics for different temperatures T near the
nanowire critical temperature T nwc . The wire current Iwire is successively ramped up and down
while the wire voltage Vwire is monitored. For T < T nwc , during the rising ramp, a first voltage
jump occurs for a Iwire value defined as the nanowire critical current Ic. Then, a resistive
behavior is observed (Vwire ≈ Rnw

N Iwire where Rnw
N is the nanowire normal state resistance, see

59
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Fig. 4.2). A second voltage jump occurs at a higher current that corresponds to the leads
critical current. For larger Iwire, Vwire equals (Rlead

N +Rnw
N )Iwire where Rlead

N is the leads normal
state resistance. During the decreasing ramp, the wire voltage goes down to zero for a Iwire
value defined as the retrapping current Ir ≤ Ic. For temperatures close to Tc this hysteretic
behavior is washed out, Ic = Ir and the jump at Ic becomes less steep.

For T � T nwc , the Iwire(Vwire) characteristics is very difficult to monitor as soon as Ic
is exceeded, because the bath temperature T (temperature of the sample holder) cannot be
maintained at a constant value since Joule overheating overcomes the cooling power at the
sample holder. Near T nwc , the currents at play and therefore the power dissipated are far
smaller, and the cooling power is also higher. In this respect, Ir quickly saturates when the
temperature is lowered because the local temperature is higher than T during the decreasing
ramp. Ic however, can be measured down to low temperatures: Iwire is ramped up and when
Vwire overcomes a threshold value (slightly above noise level), the current is immediately set
back to zero and the operation is repeated several times to perform statistical averaging.

Figure 5.1: Current-voltage characteristics for different temperatures near T nwc .
The current is raised and decreased in order to show the hysteretic loop. Black dashed lines
correspond to the resistive behaviors associated to the total normal state resistance Rlead

N +Rnw
N

and the resistance attributed to the nanowire Rnw
N . Sample N07.

In the following we will only consider the critical temperature of the nanowire and we define
Tc = T nwc . Fig. 5.2 presents the reduced critical current Ic/I

0
c (where I0

c is the extrapolation
of Ic to T = 0) versus reduced temperature T/Tc in the absence of any perturbation due
to the STM (withdrawn tip). The numerical solution of Usadel equations in the presence of
inelastic scattering Γin, whose model is presented in Subsection 2.2.2, fits well the measured
temperature dependence of Ic for finite Γin. In addition, experimental data for all samples merge
on an universal curve, which makes the measurement of the critical current a thermometer for
the electronic temperature.

One should thus discuss the validity of the model presented in Subsection 2.2.2 leading
to the numerical computations performed here. Both homogeneous current distribution and
absence of dissipation due to vortex flow must be ensured. London penetration depth is given
by λL =

√
~/(πµ0σN∆0). For films much thinner than λL, the effective penetration depth is
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(a) N06 (b) N14

(c) N16 (d) All samples

Figure 5.2: Reduced critical current Ic/I
0
c versus reduced temperature T/Tc. Solid

lines: numerical solution of Usadel equations for several values of inelastic scattering Γin.

increased by a factor λL/t [63]:

λeff = λL coth

(
t

λL

)
≈ λ2

L

t
if t� λL

(5.1)

Table 5.1 contains computed values for all the samples. The effective penetration depth is
well larger than both width and thicknesses of all samples, ensuring homogeneous current
distributions.

In contrast, the theoretical critical width below which no vortex can penetrate in an infinitely
long wire is 4.4ξGL [73] (this result valid for long wires with respect to ξGL is known as the
Likharev limit). Although the model developed in [73] is subject to deviations depending on
whether the vortices are generated by an external magnetic field or by a supercurrent (in the
latter case the critical width becomes larger than 4.4ξGL), our 300 nm wide nanowires fulfill
the inequation w > 4.4ξGL (see the estimation of the coherence lengths in Table 5.1) so the
nucleation of vortices under the action of current cannot be fully discarded.

Besides, the values of Γin required to fit the Ic(T ) curves (Γin ∼ 0.1∆0) are larger than the
values extracted from the Density Of States (DOS) probed by STS (≈ 0.05∆0, see Section 4.5).
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Moreover, on Fig. 5.1 and when T/Tc approaches 1, Vwire increases with current before the
transition (T/Tc = 0.91 and T/Tc = 0.95 curves), which suggests some dissipation in the
superconducting state below Ic. If such dissipation lowers the measured Ic, this would be
compatible with an overestimate of Γin since the predicted depairing current density decreases
together with Γin. One could therefore blame vortex flow and this topic will be discussed in
Subsection 7.3.2.

Sample N01 N02 N03 N04 N05 N06 N08 N10 N13 N14 N15 N16
J0
c (MA.cm−1) 17 6.7 3.2 3.4 0.87 1.0 2.5 0.83 0.38 4.4 1.0 0.57
J0
c /J

0
dp 0.82 0.68 0.75 0.75 0.69 0.63 0.74 0.67 0.62 0.85 0.80 0.70

λeff (µm) 1.65 4.04 8.37 7.96 38.2 32.5 14.6 40.0 72.3 10.5 51.4 60.9
ξGL (nm) 16 18 29 29 35 33 28 35 40 24 28 36

Table 5.1: Critical current parameters: J0
c is the experimental critical current density at low

temperatures, J0
dp is the theoretical depairing current density at zero temperature (Eq. 2.19),

λeff is the effective penetration depth (Eq. 5.1) and ξGL the coherence length (Eq. 4.4). For all
samples, the nanowire width is 300 nm. All leads are 2.3 µm wide except N08’s whose leads
width is 4 µm.

The measured critical current allows to extract the critical current density Jc with non
negligible uncertainty since thickness is not very accurately known1. The experimental critical
current density at low temperatures J0

c is close to the zero temperature theoretical depair-
ing current density J0

dp for all samples as shown in Table 5.1. Indeed, J0
c is in the range

[0.62; 0.85]× J0
dp. Firstly, the uncertainty over thickness explains the scattering of this value:

for instance an uncertainty of ≈ 0.5 nm over the two layers thicknesses of a Nb3nm\Au3nm leads
to an uncertainty of about 17 % over J0

c . On the other hand, the fact that J0
c is always smaller

than J0
dp is often explained in the literature by fluctuations of the minimum cross section of the

wire, since both width and thickness are subject to fluctuations due to roughness. This expla-
nation can account for an experimental J0

c value smaller than the depairing current density J0
dp

because in this case the critical current density is only reached locally in the minimum cross
section. Then, if such a weak link was present in the nanowire, the reduction of the critical
current by quasiparticle injection must be driven by the distance between the injection position
and the weak link. Nonetheless, this does not correspond to experimental observations, since
what matters in Fig. 6.4 is the distance between the injection position and the leads. The hy-
pothesis of homogeneous current distribution made from the estimate of the penetration depth
will be confirmed by measurements of the DOS at different positions (see Fig. 5.5). Then, the
difference between J0

c and J0
dp cannot be explained either by a current density locally larger at

the edges. By contrast, a systematic overestimate of the thickness due to an eventual seedlayer
during the deposition could account for such a difference.

The temperature dependence of the reduced critical current merge on an uni-
versal curve which provides a reliable thermometer for the electronic temperature.
It is also in good agreement with Usadel predictions for the depairing current.

1To get rid of this uncertainty, the authors of [93] use the resistance ratio between room and cryogenic
temperatures. Because of the gold capping layer, this ratio is close to 1 in Nb\Au samples and is therefore
unexploitable. Furthermore, the uncertainty over thickness mainly concerns the niobium layer: because it is a
refractory metal, its evaporation is performed at very high temperatures and also faster than for other materials,
which makes the evaporation time very short and therefore lowers the accuracy over the thickness. One would
then be interested in the resistance ratio of the niobium only, which is difficult to disentangle from the one of
the bilayer.
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5.2 Modification of the density of states by a supercur-

rent flow

5.2.1 Local measurement close to the critical current

The superconducting order is affected by a supercurrent flow, so that when the critical current
is reached superconductivity is destroyed. Usadel equation (Eq. 2.20) predicts how the super-
conducting properties determined by the pairing angle θ are altered by some depairing energy
γ. In the superconducting state and in the absence of external magnetic field, ∆ is related to
θ by Eq. 2.4 and the wire current Iwire is related to γ through Eq. 2.18.

The dependence of the DOS as a function of the wire current is investigated here to test the
validity of this model. Fig. 5.3a shows the differential conductance for different wire currents
of sample N03 at T = 100 mK. The low noise and the quality of the junction allowed here to
perform measurements for values of Iwire very close to I0

c (the critical current in the absence of
tunnel current between the STM tip and the sample).

Within Usadel framework, the differential conductance depends on four parameters: γ, ∆,
Γin and Teff . Indeed, the density of states of the sample is proportional to <[cos θ] and is
determined by a set of γ, ∆ and Γin solution of the self consistent equations Eq. 2.20 and 2.4.
The differential conductance (Eq. 1.8) is then the convolution of the density of states with a
thermal broadening function depending on the effective temperature Teff of the tunnel junction.
For Iwire = 0, γ can be set to 0 and one recovers the same analysis than in Section 4.5, leading
to ∆0 = 370 µV, Γin = 0.02∆0 and Teff = 556 mK. As discussed before, Teff is larger than T
and this can be related to both a finite energetic resolution or a non BCS behavior. However,
we will assume in the following that Teff is independent of Iwire. Similarly, whether it reflects
some inelastic scattering of the quasiparticles or some interaction with the electromagnetic
environment (see Subsection 1.2.2 and [88]), Γin will be taken constant. Then, only γ and ∆

Figure 5.3: DOS as a function of the supercurrent flow. Left panel: Normalized differ-
ential conductance as a function of bias voltage of sample N03 for different wire currents Iwire
at 100 mK. Dashed horizontal line: threshold used to extract ∆G plotted in Fig. 5.4b. Right
panel: Theoretical fits: the Iwire = 0 spectrum (for which γ is set to 0) leads to Γin = 0.02∆0

and kBTeff/∆0 = 0.13. Γin and Teff are then fixed to fit all the spectra with γ and ∆ as free
parameters. I0

c is the zero temperature critical current in the absence of any perturbation due
to the STM tip.
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(a) (b)

Figure 5.4: Depairing energy and spectral gap as a function of the supercurrent
flow. (a) Dots: Normalized differential conductance as a function of bias voltage of sample N03
for different wire currents. Solid line: Theoretical fits (see legend of Fig. 5.3). (b) Top panel:
Spectral gap ∆G as a function of wire current Iwire. Solid line: theoretical behavior (Eq. 2.16).
Bottom panel: Depairing energy γ as a function of wire current. Solid line: Eq. 2.18 with
Γin/∆0 = 0.02, T = Teff = 556 mK and Iγ = 186 µA. Dashed vertical line: zero temperature
critical current in the absence of tunnel current I0

c = 96.3 µA.

will be taken as free parameters to fit the experimental data for Iwire 6= 0. The inferred fits
reproduce well the dI/dV (Vb) measurements as shown on Fig. 5.3 and Fig. 5.4a.

The γ(Iwire) dependency extracted from the fits is shown on bottom panel of Fig. 5.4b.
Usadel prediction is given by Eq. 2.18 and depends notably on Γin and on the temperature
of the sample T . Since the function Us(γ) is almost independent of temperature and inelastic
scattering in the range kBT � ∆0 and γ < 0.2 (as is ∆), the solution presented here takes the
values given by the Iwire = 0 fit: Γin = 0.02∆0 and T = Teff . By contrast, Usadel prediction of
Eq. 2.18 is sensitive to the value of Iγ and compares well to experimental data for Iγ = 186 µA.
For Γin = 0.02∆0 as deduced by the DOS measurements when Iwire = 0, the numerical solution
of Usadel equations leads to I0

c = 0.51Iγ, which corresponds to 0.51Iγ = 94.9 µA. Consequently,
this value extracted from fits of the normalized conductance in the presence of supercurrent is
in very good agreement with the measured critical current at low temperatures I0

c = 96.3 µA.
Finally, one can extract the spectral gap ∆G (which is different from ∆ in the presence

of depairing). To do so, we define ∆G as the energy range for which the DOS is lower than
the threshold plotted in dashed line on Fig. 5.3a. The chosen threshold leads to ∆G = ∆0 for
Iwire = 0 as predicted by theory and the resulting ∆G(Iwire) dependency is plotted on top
panel of Fig. 5.4b. The numerical solution of Usadel equations and Eq. 2.16 give the theoretical
dependency of ∆G. This simple experimental determination of the spectral gap follows well the
expected behavior.

5.2.2 Dependence on the position across the section

The STS technique is especially interesting to probe locally the DOS at different positions across
the width of the nanowire. We will therefore perform the above experiment at two different
positions to extract the local depairing energy.

Fig. 5.5a shows the differential conductance as a function of wire current at two different
positions. First of all, one can notice that the superconducting gap is slightly larger at the
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(a) (b)

Figure 5.5: Influence of the position across the wire width. (a) Normalized differential
conductance as a function of bias voltage of sample N06 at 100 mK at two different positions.
Top panel: edge of the nanowire where ∆0 = 205 µeV. Bottom panel: center of the nanowire
where ∆0 = 230 µeV. (b) Depairing energy γ as a function of wire current. Solid line: Eq. 2.18
with Γin/∆0 = 0.03, kBT/∆0 = 0.21 and Iγ = 39 µA. Dashed vertical line: zero temperature
critical current I0

c = 18.5 µA.

center of the nanowire (∆0 = 230 µV) than at the edge (∆0 = 205 µV). As discussed in
Section 4.5, althoug remaining rather small (comparable to the energetic resolution), such a
difference is probably due to local inhomogeneities of the DOS. Here, such an inhomogeneity
may be caused by a thickness difference between the center and the edge of the nanowire, since
both the etching and deposition processes can lead to round edges.

Unfortunately, it revealed more difficult to perform the experiment than in previous para-
graph. For wire currents close to critical current, the superconducting state is metastable, so
the sample switches quickly to the normal state while measuring the dI/dV (Vb). To overcome
this difficulty, we used another measurement strategy. Instead of acquiring the full dI/dV (Vb)
curve at a fixed Iwire, we recorded the differential conductance at a given bias voltage value
for all wire currents.2 Finally, this sample (N06) is thinner than the one of previous paragraph
(N03), so that the DOS presents lower coherence peaks and more rounded DOS shape at subgap
energies. Therefore, the wire current affects less the differential conductance, which provides
less features for the fit and the extraction of γ.

Despite the ∆0 difference between the center and the edge of the nanowire, the extracted
depairing energy versus wire current dependency is similar. This confirms that the current
distribution is homogeneous. Indeed, if it was not the case, one would expect that current
piles up at the edges, so that the depairing energy would be larger there, which is not what we
observe.

Furthermore, the similar evolution of the depairing energy at different positions shows that
there is no weak link within the nanowire: within experimental accuracy, when the transition
to the normal state driven by a supercurrent occurs, the depairing current density is reached
everywhere. This observation will be interesting when we will trigger such a transition with

2This is done by applying an initial tunneling setpoint before freezing the feedback loop (to keep constant
tunneling resistance) like in a conventional spectroscopy measurement. The bias voltage is then changed and
set to the value at which the dI/dV will be recorded while ramping Iwire. The limitation of this technique is
now the response time of the lock-in used to record the differential conductance.
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the STM tip, the weak link being in this case under the tip.

We found a excellent agreement with Usadel predictions for the DOS in our
Nb\Au nanowires. In particular, the agreement persists up to the depairing current
and at different positions.

5.2.3 Discussion of the results and future prospects

By contrast with Anthore experiment [5] presented in Section 3.2, Coulomb blockade has been
neglected. Also, finite temperature effects are not taken into account. On the one hand,
Anthore et al. performed measurements at a lower phonon bath temperature (the temperature
given by the thermometer): 25 mK while in our case it is 100 mK. Thus, the cooling of
electrons is more efficient in our experiment, especially since the effective temperature of the
STM tip electrons is more likely to be around 300 mK as discussed in Subsection 1.2.2. On
the other hand, while the probe electrode is thermally isolated from the larger contact pads
by superconducting connections in [5], our STM tip is metallic and therefore well thermally
coupled to the cold parts of the cryostat. Finally, our energetic resolution is probably not good
enough to be sensitive to a dependence of Teff on Vb due to Coulomb blockade (because Teff is
large and also because STS is much more sensitive to mechanical vibrations than lithographed
tunnel junctions employed in [5]).

Anthore et al. demonstrated the consistency of Usadel theory upon both the application of a
magnetic field and a supercurrent flow. Moreover, they also accounts for Coulomb blockade and
finite temperature effects. Their experiment was performed on aluminum with larger thickness,
larger mean free path (l ≈ 10 nm) and larger coherence length (approximately equal to the
width) than in our case. Unfortunately, they were not able to record differential conductance for
Iwire larger than 80%I0

c , and the use of lithographed tunnel junction prevent from measuring the
DOS at different positions. Thus, our experiment extends the experimental validity of Usadel
theory to wire current values closer to I0

c . What’s more, we introduced finite values of Γin
which account well for the measured dI/dV (Vb) curves and Iγ. Finally, the spatial resolution
allowed to probe the DOS in different positions. Then, a future prospect could be to probe the
DOS in different positions where a change is expected: either because of an non homogeneous
current distribution (for instance in a wire wider than λL) or because of variations of ∆0 (for
instance in a disordered superconductor or in the presence of vortices3).

5.3 Computation of the thermal dependence of the spec-

tral gap at critical current

The numerical solution of Usadel equations gives the order parameter ∆ as a function of T , γ
and Γin. Eq. 2.18 translates the depairing energy in wire current and Eq. 2.16 gives the spectral
gap as experimentally checked in previous paragraphs.

A striking behavior is then foreseen by Usadel equations when extracting ∆G for Iwire = Ic(T ).
As shown on Fig. 5.6, the spectral gap at critical current is predicted to be non
monotonous as a function of temperature. In the absence of depairing however, ∆G = ∆
and ones recover the conventional BCS behavior.

Unfortunately, this theoretical behavior could not be experimentally addressed during the
course of this PhD. Although such a measurement is complex to perform (because of the

3Vortices would indeed induce the largest ∆0 variations (since ∆0 = 0 in the core), but it makes the
theoretical description more complex.
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Figure 5.6: Non monotonicity of spectral gap at critical current. Numerical solution
of Usadel equations for Γin = 0. Top panel: Spectral gap as a function of wire current and
temperature. Bottom panel: Spectral gap as a function of temperature in the absence of wire
current (∆G is then equal to the order parameter) and at critical current.

metastability of the superconducting state close to critical current and the good tunnel junction
quality required to get exploitable data), forthcoming experiments could check this prediction.
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Chapter 6

Out of equilibrium superconductivity
driven by tunnel injection of
quasiparticles in Nb\Au nanowires
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In addition to allow spatially resolved tunneling spectroscopy, the STM technique provides
a three dimensional control of the tunnel junction with an atomic resolution. The STM tip
height modifies the tunnel resistance allowing to tune independently the setpoints parameters
It and Vb. The control of its position on the surface of the sample provides a spatially resolved
injector of quasiparticles. Notably, in thin and narrow wires, the density of quasiparticles
injected by the tip is sufficiently high to cause measurable perturbations. This chapter addresses
the role of the perturbations induced by the STM on the critical temperature and the critical
current of superconducting Nb\Au nanowires. Then, a model of heat diffusion by quasiparticles
and phonons is developed. Finally, the physical interpretation of superconducting field effect
transistors is discussed.

6.1 Modulation of the critical temperature

Fig. 6.1 shows the resistance as a function of temperature of a Nb3nm\Au3nm nanowire for
different tunneling currents injected by the tip. The blue curve corresponds to the case where

69
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the tip is withdrawn and therefore no tunneling current is injected. As the tunneling current It
injected in the central part of the nanowire (point A of the image) is increased, while maintaining
a constant voltage bias Vb, the superconducting transition is shifted to lower temperatures.
Note that the tunneling quasiparticle injection only affects the lowest temperature transition.
When the injection is realized in a less constrained area (point B of the image) almost no
change is observed compared to without injection. As a consequence, it first confirms that the
plateau corresponds to the nanowire normal resistance (as discussed in Fig. 4.2) and further
that the injection occurs only under the tip, making it a perfect tool to study the diffusion of
quasiparticles. Finally, this shows that the leads can be considered as good reservoirs, and this
approximation will be discussed later.

Figure 6.1: Resistance versus temperature for different tunneling currents. Inset:
STM image of the nanowire for It = 100 pA and Vb = 1 V tunneling setpoint. A and B indicate
the positions of the tunneling current injection It. Curves: Resistance versus temperature of
sample N07 for no current injection in blue and injection at B-position in green (superimposed
right curves), and for current injection at A-point (red) from left to center: It = 1.5 nA, 1.0 nA
and 0.5 nA. For all curves, Vb = 200 mV.

Here, T is the temperature of the sample holder measured by the RuO thermometer glued
on it. The fact that the measured T nwc is lowered under quasiparticle injection suggests that if
a temperature can be defined in the nanowire (assumption of quasi equilibrium), it is locally
higher than T when quasiparticles are injected in it. Therefore we will call T the bath tempera-
ture in the following. We will write it Tb in order to stress that its value only gives information
about the temperature of the sample holder. Indeed, under certain conditions (as in Fig. 6.1)
the nanowire is not in thermal equilibrium with the sample holder.

Tunneling injection of quasiparticles reduces the nanowire critical temperature.

6.2 Drastic decrease of the critical current

Fig. 6.2a displays the critical current measured under quasiparticle injection at one fixed posi-
tion (in the middle of the nanowire) for various tunneling setpoints (It, Vb). Increasing either
Vb (x axis direction) or It (from top to bottom) reduces Ic. One should notice the impressive
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effect of quasiparticle injection: the critical current is substantially decreased even when It is 6
orders of magnitude lower than I0

c .

Figure 6.2: Critical current as a function of bias voltage and injected power. (a) Crit-
ical current as a function of bias voltage Vb for different tunneling currents It at T = 250 mK.
Sample N03. Without injection current, I0

c = 96.3 µA. (b) Same data as a function of ItVb.
For large eVb compared to the superconducting gap ∆0 = 370 µeV, the injected power equals
P = ItVb/2.

Fig. 6.2b evidences that the critical current is controlled by the injected power P = ItVb/2:
all the data merge onto an universal curve when displayed as a function of ItVb. The injected
power acts as a heating source reducing the critical current from its thermal equilibrium value
Ic(Tb) to Ic(Te) with Te > Tb.

The critical current is substantially decreased even when the tunneling current
is six orders of magnitude lower than the critical current in the absence of injection.

The critical current is controlled by the injected power.

6.3 Interpretation with an electronic temperature

On the one hand and as already discussed in Section 5.1, at thermal equilibrium and in the
absence of quasiparticle injection, the normalized critical current Ic/I

0
c as a function of reduced

bath temperature tb = Tb/Tc collapse on an universal curve for every sample (see Fig. 6.3a).
On the other hand, the critical current under injection of tunnel current is the same as if
the nanowire was at an higher electronic temperature Te. Moreover, the fact that Te is fully
determined by the injected heating power P = ItVb/2 and not by the average energy of the
injected quasiparticles (equal to eVb/2 at large Vb) suggests that some kind of relaxation towards
a quasi equilibrium characterized by Te occurs. Then, Te is the local electronic temperature
of the nanowire where the transition to the normal state first occurs, i.e. below the STM tip
where the quasiparticles are injected (we will discuss later other situations where the transition
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does not occur at the injection location). As a consequence, the critical current plays the role
of a thermometer: an electronic temperature Te can be associated to the out of equilibrium
reduced critical current Ic(Te) measured when quasiparticles are injected.

Figure 6.3: Effect of the power injected by quasiparticles on the electronic temper-
ature. (a) Normalized critical current as a function of reduced temperature without quasipar-
ticle injection. (b) ItVb as a function of the reduced electronic temperature of the nanowires.
Vertical bottom lines represents the reduced bath temperature tb. Dashed lines correspond to
κ(t4e − t4b) with κ = 57, 59, 34, 41 pW.K−4 from left to right.

Hence, Fig. 6.3b shows the effect of the power P = ItVb/2 injected by the tip on the re-
duced electronic temperature te = Te/Tc for different samples and reduced bath temperatures
tb = Tb/Tc. The curves are fitted by a κ(t4e − t4b) equation. For all samples, κ is of the order
of 50 pW.K−4 and is independent of the thickness within our experimental accuracy. The
accuracy on the extracted value of κ is notably due to the scattering of the data, because of
uncontrolled fluctuations of the tunneling current during the measurement. Close to Tc, the
voltage jump at the transition is less sharp (see previous chapter) and the shape of the Ic(T )
curve (see Fig. 6.3a) induces more uncertainty on Te. Indeed, just like at low temperatures, a
small variation in Ic results in a larger variation of Te than for intermediate temperatures.

An universal power law is obtained for the power-electronic temperature char-
acteristics for all samples.

6.4 Influence of the injection position along the nanowire

So far, all the results presented in this section have been measured for quasiparticle injection
at a fixed position. In the present section however we will vary the injection position. This
is achieved since by contrast with lithographed tunnel junctions, the STM technique allows to
control the injection position of the quasiparticles with high spatial resolution. Fig. 6.4 shows
the effect of the injection position on the critical current. The STM tip scans the surface of the
nanowire with a fixed tunneling setpoint, and stops at different positions to measure the critical
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Figure 6.4: Influence of the injection position. (a) Nanowire shape. (b) Critical current
as a function of the STM tip position along the nanowire for different tunneling conditions
at T = 180 mK. (c) Map of the critical current as a function of the injection position at a
fixed tunneling setpoint (It = 500 pA and Vb = 40 mV; same data than bottom curve of (b)).
Without injection current, I0

c = 18.5 µA. Sample N06.

current. The direction of scan is parallel to the wire, and several lines are scanned, from one
lateral border of the nanowire to another. Panel (a) sketches the nanowire shape. Panel (b)
presents the critical current as a function of the x-position at various y-positions for different
tunneling conditions (It, Vb). Panel (c) shows a map of the critical current as a function of the
injection position (x, y) for a fixed tunneling setpoint. At first glance, while the x-position
modulates the critical current, the y-position has almost no influence (collapse of the curves
for a given color on panel (b)). However, looking more in detail, the SCCM technique allows
to detect small variations of the critical current on the injection position along y as shown
on panel (c). For a given tunneling condition, the critical current is further reduced as the
quasiparticle injection occurs close to the center of the nanowire.

Hence, the distance between the tip position and the leads matters and suggests that sig-
nificant heat conduction occurs from the injection position to the leads acting as reservoirs.
Indeed, if it was not the case, heat would only be evacuated through the substrate, and one
would expect a constant reduction of the critical current for a fixed setpoint as soon as the
injection occurs in the central (constant width) part of the nanowire.

The spatial dependence of the critical current on the injection position along
the nanowire evidences thermal diffusion towards the leads.
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6.5 Heat diffusion model in the quasi equilibrium limit

In this section, we develop a theoretical description of the quasiparticle diffusion process in thin
films reaching the quasi equilibrium limit.

6.5.1 Two temperatures model

Quasi equilibrium limit

Thermodynamically speaking, the thin superconducting films studied in this PhD can be di-
vided into two interacting systems: the electrons and the phonons (see Fig. 6.5). The heating
power coming from the tip is first injected locally to the electrons. Since the films are deposited
on insulating substrates, only the phonons are coupled to them. In contrast, heat conduction
can occur through the electron and phonon channels in the superconductor.

In the quasi equilibrium limit, the local distribution function for both electrons and phonons
always reaches thermal equilibrium, so that an electronic Te and a phonon Tph temperatures
can be defined at all points in space. We will assume that the substrate acts as a reservoir with
fixed bath temperature Tb, and that the system is in a steady state.

Figure 6.5: Schematics of the quasi equilibrium model.

Injected power

A power P0 is injected locally by the STM tip at a position x0 along the wire. Assuming perfect
spatial resolution for the STM tip, the power P injected in the wire at a position x is:

P (x) = P0 δ(x− x0) (6.1)

where δ is the Dirac delta function. The characteristic time scale for this process is the electron
injection rate τ−1

inj . For It = 1 nA, τinj = e/It ≈ 100 ps.

Electron phonon coupling

The electron and phonon subsystems are coupled by electron-phonon scattering and the net
power exchanged in a volume V is:

Pe−ph = ΣV (T pe − T
p
ph) (6.2)
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where Σ is the electron-phonon coupling constant and p = 5 in the clean limit [117] corre-
sponding to λph � l with λph and l respectively the phonon wavelength and the electron mean
free path. In the opposite disordered limits [101], p = 4 for a static disorder and p = 6 for a
vibrating disorder (dragged by phonons).

In the clean case (p = 5), and in the presence of static disorder (p = 4), only longitudinal
phonons interact with electrons [101]. We will thus use the longitudinal phonon velocity in
niobium [58] cls = 5.1 km.s−1 in the following for numerical computations. For vibrating
disorder (dragged by phonons), p = 6 and both transverse and longitudinal phonons interact
with electrons.

For most metals including gold [42], the order of magnitude of the coupling constant Σ is
∼ 109 W.K−5.m−1 for p = 5. Nevertheless, Karvonen et al. [61] found that Σ increases when
the thickness decreases. As for the exponent p, it depends notably on the ratio between the
electron mean free path l and the phonon wavelength λph. The order of magnitude of the
phonon wavelength strongly varies with the phonon energy E since λph ∼ hcs/E. Indeed, E is
typically equal to kBT for thermal phonons and to eVb for phonons resulting from scattering of
the injected electrons in our experiments. Therefore, λph ranges from about 2 µm for a thermal
phonon at T = 100 mK to a few lattices parameters (the Debye cutoff wavelength) when eVb
reaches hundreds of millivolts. In our samples, l ≈ 1 nm so that λph ≈ l for E ≈ 20 meV.
Since in our experiments eVb can vary from the gap energy (typically 200 µeV) to hundreds of
meV the ratio between l and λph can vary. For all of these reasons, the value of p cannot be
presumed.

Thermal conductivity

For both electron and phonon subsystems, we will assume Fourier’s law to be valid:

−−→
Jth,i = −ki

−→
∇Ti (6.3)

where
−→
Jth is the heat flux density, k the thermal conductivity and i = e, ph stands for electron

and phonon subsystem, respectively.

• The thermal conductivity of phonons writes [14]:

kph =
1

3
CphcsΛ (6.4)

where Cph = 2π2

5

k4BT
3
ph

~3c3s
is the specific heat of phonons at low temperature, cs the sound

velocity and Λ the phonon mean free path. As a result, kph goes as T 3
ph: kph = αphT

3
ph.

When Λ becomes larger than the sample’s dimensions (here the thickness t), boundary
scattering becomes more important. This is particularly true at low temperatures when
all the other scattering processes become more scarce, so one can make the assumption
Λ ≈ t (Casimir theory). In this case, for cs = 5.1 km.s−1 and 5 nm< t < 10 nm,
αph ∼ 10−5 W.K−4.m−1.

• The electronic thermal conductivity can be inferred from Usadel equations. In the quasi
equilibrium limit (see Appendix C), the thermal current carried by the electrons reads
−−→
Jth,e = −ke

−→
∇Te where:

ke =
σN
2e2

∫ ∞
−∞

dε
ε2

2kBT 2
e

(
1− tanh2

(
ε

2kBTe

))
cos(<[θ]) (6.5)

is the electronic thermal conductivity, with θ the pairing angle. Due to the condensation
of Cooper pairs in a superconductor, ke vanishes at low temperatures as shown on Fig. 6.6.
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In the normal state (θ = 0), one recovers the Wiedemann-Franz law1:

ke
σNTe

=
π2

3

(
kB
e

)2

(6.6)

which also reads similarly to the case of phonons ke = D Ce with Ce = π2

3
N0k

2
BTe the

electronic specific heat and D = 1
3
vF l the diffusion constant2.

Finally, using the normal state resistivity of Table 4.2, Eq. 6.6 leads to the follow-
ing order of magnitude for the electronic thermal conductivity at critical temperature:
ke(Tc)αe × Tc with αe ≈ 0.1 W.K−2.m−1.

Figure 6.6: Electronic thermal conductivity as a function of temperature. In the
Usadel framework, the thermal conductivity depends on the pairing angle, which is affected
by supercurrent. The Iwire = 0 curve corresponds to the absence of any current in the wire,
while the Iwire = Ic is the thermal conductivity when the current driven transition from su-
perconducting to normal state occurs. Computed by S. Sankhar∗. The normal metal curve
corresponds to the Wiedemann-Franz law (for a normal metal Tc is any arbitrary value of tem-
perature). ∗Université Grenoble Alpes, CEA, IRIG, PHELIQS, 17 Av. des Martyrs, 38000
Grenoble, France.

Kapitza coupling

The interface between film and substrate is characterized by the power transferred from the
phonon system to the substrate [74]:

PK = KA
(
T 4
ph − T 4

b

)
(6.7)

where A is the interface area, K = 2π5

15

k4Bη

~3c2s
and η is the interface transparency. For a Nb-Si

interface, η ≈ 0.1 [74, 58] and with cs = 5.1 km.s−1, K ∼ 5× 103 W.K−4.m−2.

1Using
∫∞
−∞ dx x2

cosh2(x) = π2

6 .
2At critical temperature, the electron specific heat is discontinuous as expected for a second order transition.

The magnitude of this jump is given by BCS theory [8]. Paradoxically, the relation ke = CeD is always valid
but the thermal conductivity is continuous at the transition [9]. Indeed, the effective speed of the electrons
in the diffusion constant falls off rapidly because of Cooper pairs condensation: the group velocity decreases
because of the opening of a gap in the dispersion relation.
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Electron temperature

In the following we investigate the case of quasi one dimensional diffusion along the nanowire
axis (see Fig. 6.7). Indeed, Fig. 6.4 evidences that heat conduction occurs in this direction
towards the leads.

Let’s consider a nanowire slice of length dx, width w and thickness t. Its volume is then
V = t × w × dx and its section S = w × t. In steady state, the electron temperature is time
independent and therefore the heat balance for the electron system writes:

S(Jth,e(x)− Jth,e(x+ dx))− ΣV (T pe (x)− T pph(x)) +

∫ x+dx

x

P (x′)dx′ = 0 (6.8)

where the first term corresponds to the heat flow carried by electrons through the wire section,
the second term is the net heat exchange with phonons in the volume V and the last term
represents the heat brought by quasiparticles injected with the STM tip. Rearranging the
terms and taking the limit dx→ 0 one obtains:

d

dx

(
wtke

dTe
dx

)
= Σwt(T pe − T

p
ph)− P (x) (6.9)

Phonon temperature

The same nanowire slice has an interface with the substrate of area A = w × dx. In steady
state, the heat balance for the phonon system writes:

S(Jth,ph(x)− Jth,ph(x+ dx)) + ΣV (T pe (x)− T pph(x))−KA(T 4
ph(x)− T 4

b ) = 0 (6.10)

where the first term is the heat flow carried by phonons through the wire section, the second
term corresponds to the net heat exchange with electrons and the last term represents the
heat flux through the interface with the substrate. Rearranging the terms and taking the limit
dx→ 0 one obtains:

d

dx

(
wtαphT

3
ph

dTph
dx

)
= −Σwt(T pe − T

p
ph) +Kw(T 4

ph − T 4
b ) (6.11)

6.5.2 Discussion of analytically soluble limiting cases

The heating power is injected locally by the tip at a position x = x0 and we will assume that
both electron and phonon temperatures tends towards the bath temperature in the reservoirs
at a distance xR: Te(±xR) = Tph(±xR) = Tb.

Figure 6.7: Schematics of the nanowire geometry (Scanning Electron Micrograph).
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Electron diffusion only

To begin with, one can consider for simplicity only the electron diffusion process, by neglecting
the power transferred to the phonons (Pe−ph = 0). In addition, assuming a normal-like electronic
thermal conductivity ke = αeTe, Eq. 6.9 becomes:

d

dx

(
wtαeTe

dTe
dx

)
= −P0δ(x− x0) (6.12)

which is analytically soluble (see Appendix D). It leads to T 2
e (x) − T 2

b = P0 f(x, x0) where f
is a function of positions x and x0 (tip position). In the case of constant width and when the
injection occurs in the middle of the nanowire, one gets the temperature at the tip position:

P0 =
wtαe
xR

(T 2
e (x0)− T 2

b ) (6.13)

In this case, the tip position is also the hottest location in the nanowire and is therefore where
the critical current is the most reduced.

This result does not correspond to the experimental behavior of Fig. 6.3 where P0 ∝ (T 4
e − T 4

b ).
Consequently, one should either release the assumption of normal like electronic thermal con-
ductivity, either consider the influence of phonons.

Phonon diffusion only

By contrast with the previous paragraph, one can consider the limit of strong coupling between
electrons and phonons. In this toy model, Te = Tph = T . By adding Eq. 6.9 and Eq. 6.11 one
obtains:

d

dx

(
(ke + αphT

3)wt
dT

dx

)
= −P0δ(x− x0) +Kw(T 4 − T 4

b ) (6.14)

If ke � αphT
3 and in the case of a constant width this leads to (see Appendix D):

P0 ≈
αphwt

2xR
exp

(
|x− x0|
xR

)
(T 4(x)− T 4

b ) (6.15)

This could account for the observed P0 ∝ (T 4
e − T 4

b ) behavior of Fig. 6.3.
However, the order of magnitude of κ is not consistent with theory: for the typical values

αph ∼ 10−5 W.K−4.m−1, t = 10 nm, w = 300 nm and with Te = T (x0), the experimental
κ ∼ 50 pW.K−4 values of Fig. 6.3 lead to xR < 1 nm. This is not coherent with the lengthscale
over which variations of the critical current are observed in Fig. 6.4.

Nevertheless, this is not really surprising since the assumption ke � αphT
3 is not valid

over the full temperature range. Indeed, although the function ke(Te) vanishes exponentially
at low temperature in a superconductor, the electron contribution to the thermal conductivity
ke = αeT in a normal metal widely exceeds the contribution of the phonons (given the above
orders of magnitude, αeT = αphT

3 for T ∼ 100 K). The situation for a superconductor with an
electronic temperature close to 1 K is therefore more complicated and requires further investi-
gation.

Then, the two limiting cases studied above show that a closer look to both the electron-
phonon coupling and the electronic thermal conductivity in the superconducting state must
be taken into account. In particular, no analytical solution can be found and we will have to
perform numerical computations.
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6.5.3 Discussion of the other cases

Phonon temperature

For a constant width w, Eq. 6.11 reads in adimensional units u = (Te/Tb)
2 and v = (Tph/Tb)

4:

d2v

dx2
= − 1

l2ph−e
(up/2 − vp/4) +

1

l2ph−s
(v − 1) (6.16)

• lph−s =
√
αpht/(4K) is the characteristic lengthscale of heat diffusion by phonons before

dissipation to the substrate. The resulting characteristic lifetime of a diffusive phonon
in the film is then τph−s = l2ph−s/(

1
3
csΛ) = 3

4π3 × t
csη

. For cs = 5.1 km.s−1, η = 0.1,

K = 5.103 W.K−4.m−2, αph = 10−5 W.K−4.m−1 and t = 5 nm we get τph−s ≈ 0.2 ps and
lph−s ≈ 1 nm.

• lph−e =
√
αph/(4ΣT p−4

b ) is the characteristic distance over which heat is carried by

phonons before being transferred to the electrons by scattering. Equating this to the

phonon electron scattering length
√

1
3
csΛτph−e one gets for typical values (Λ = t = 5 nm;

p = 5; Σ ∼ 109 W.K−5.m−3; Tb = 100 mK; cs = 5.1 km.s−1 and αph ∼ 10−5 W.K−4.m−1)
a phonon electron scattering time τph−e ≈ 3 ns and lph−e ≈ 150 nm.

Then, the escape time of phonons from the film to the substrate τph−s is smaller than the
phonon electron scattering time τph−e, so the ”hot” phonons emitted by electrons leave the
film before interacting with the electron system via phonon-electron scattering. However, the
situation is less clear for the phonon lifetime against pair breaking τB. Indeed in Nb and at
low temperatures, τB ≈ 4 ps for phonons with an energy 2∆ (which is just enough to break
a Cooper pair) and τB decreases for higher energy phonons [59]. Thus, it is very likely that
”hot” phonons (especially at high energies) can create quasiparticles by breaking Cooper pairs
before leaving the film.

Nevertheless, in order to distinguish the phonon population in the film from the one of
the substrate, the phonon wavelengths must be at least as short as the film thickness t. The
dominant phonon wavelength [14] (maximum spectral density of phonon black body radiation
obeying Planck’s law) being λdom = hcs/(2.82kBTph), λdom < t implies that the local phonon
temperature Tph must be larger than hcs/(2.82kBt) ≈ 17 K for t = 5 nm (typical thickness of
our samples). In our experiments, the external heat is deposited by the tip in the electron
system and we measure electronic effective temperatures smaller than a few Kelvins. It is
therefore unlikely that the phonon system of the film reaches much higher local temperatures.

Thus, either the phonon bath is not in quasi equilibrium (this case will be discussed below),
either it is at thermal equilibrium with the substrate and Tph = Tsub where Tsub is the tempera-
ture of the substrate at the interface with the film. In this latter situation, either the substrate
really acts a reservoir and Tph = Tsub = Tb are by definition independent of the position, either
the substrate has a spatially varying temperature which can be locally hotter than the base
temperature of the sample holder Tb (then, the diffusion problem in the substrate becomes
three dimensional and will not be investigated in this PhD work).

Electron temperature

We investigate here the case where an electron is injected by the STM tip with an energy
E ≈ eVb. Typically, E � ∆0 and ∆0 ≈ 200 µeV in our samples. The quasiparticle energy
relaxation rate τ−1

rel is the result of several processes:
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• inelastic electron-electron scattering. At low temperatures (kBT � E), electron-electron
scattering rate τ−1

e−e varies as E2/(~EF ) where EF is Fermi energy [2].

• electron-phonon scattering. This represents scattering processes of an electron with the
absorption or emission of a phonon. The associated scattering lifetime τe−ph increases
as the temperature is lowered owing to the decrease of the phonon population3. In a
superconductor, a quasiparticle at the gap edge cannot emit a phonon because it is in the
lowest energy state and we have τ−1

e−ph ∝ E3/(~ωD)2 for E � ∆0 [59].

• recombination to Cooper pairs. The timescale for recombination of two quasiparticles to
form a pair and whose excess energy is emitted as a phonon is noted τr.

Firstly, τe−e � τe−ph when E � (~ωD)2/EF ≈ 100 µeV for Nb [59]. This corresponds to
our experimental conditions since kBT < ∆0 � E and E � 100 µeV, so electron-electron
scattering can be neglected with respect to electron-phonon scattering4.

Thus, quasiparticles relax by transferring their excess energy to the crystal lattice by
electron-phonon and recombination processes. The emitted phonons have an energy of the
order of the one of the injected electron E ≈ eVb � ∆0. Because these phonons have a large
energy compared to the superconducting gap, they break Cooper pairs before leaving the film
(see previous paragraph), creating more quasiparticles which emit other phonons and so on.
Consequently, this avalanche scattering process continues until the resulting quasiparticles reach
low energy states so that the electron bath reaches a quasi equilibrium with an electronic tem-
perature Te. In addition, energy relaxation is ensured by electron-phonon scattering although
recombination processes still occur. Indeed, on the one hand electron-phonon scattering is
faster than recombination process [59] except for quasiparticles with an energy E lower than
≈ 2∆0 and T/Tc > 0.2. On the other hand, phonons resulting from recombination of high
energy quasiparticles are quickly reabsorbed by Cooper pairs, so they do not contribute to the
relaxation of energy. Finally, on top of these relaxation mechanisms one should keep in mind
that low energy phonons are escaping in the substrate without breaking Cooper pairs.

The quasiparticle energy relaxation time τrel is therefore governed by the electron-phonon
scattering time τe−ph and the phonon lifetime against pair breaking τB. As mentioned above,
τB decreases with E so that τB ≤ 4 ps for Nb [59]. Similarly, τe−ph ∝ E−3 and
τe−ph(E = 2∆0) ≈ 70 ps for Nb. As a result, τrel is of the order of a few picoseconds or less for
E � ∆0. During this time scale, quasiparticles diffuse over a distance (τrelvF l/3)1/2 . 10 nm
with l ≈ 1 nm and vF ≈ 106 m.s−1. This is small compared to the dimensions of the nanowire
(300 nm wide and 2 µm long) and to the lengthscale of the variations of the critical current
(see Fig. 6.4). Therefore, the assumption of local quasi equilibrium for the electron
system is valid when eVb�∆0 in our experimental situation.

Finally, since we inject quasiparticles with a tunnel junction, we are initially in a situation
where the branches of the quasiparticle excitation curve corresponding to quasiparticle wave
vectors less and greater than the Fermi wave vector are not equally occupied. In the present case
of injection of quasiparticles with large energies compared to the superconducting gap, there
is no branch imbalance since quasi equilibrium is reached (the distribution function is Fermi
Dirac with a local electronic temperature). The opposite limit is investigated in Chapter 8.

3In quasi equilibrium, τe−ph ∝ T p−2 and a power P = ΣV T p is dissipated to the lattice in a volume V (see
Eq. 6.2) where p = 5 in the clean limit [117] and p = 4 or p = 6 depending on the nature of the disorder [101].

4The model of [59] considers the clean limit (λph � l) of electron-phonon scattering with λph the phonon
wavelength and l the electron mean free path. However, [57] gives τe−e and τe−ph for a disordered metal
corresponding to the case p = 4 in Eq. 6.2 and we still have τe−e � τe−ph in the case of phonon-mediated
superconductivity (non negligible electron-phonon coupling).



6.5. HEAT DIFFUSION MODEL IN THE QUASI EQUILIBRIUM LIMIT 81

Numerical results

In the following, we will consider that there is no high energy out of equilibrium phonons,
meaning that the avalanche process described above is instantaneous and the quasi equilibrium
is established. As also discussed above, in these conditions the temperature of the phonon sys-
tem cannot be disentangled from the one of the substrate. We will then consider for simplicity
that the latter acts as a reservoir, so that Tph = Tsub = Tb everywhere. We will numerically
solve Eq. 6.9 and compare our results to experimental observations.

To begin with, one can extract from Eq. 6.9 a typical relaxation length for the electron tem-

perature (see Eq. D.10 in Appendix D) lR =
√
αe/(ΣT

p−2
b ). In our experimental conditions lR

depends on the values of the electron-phonon parameters p and Σ and on the bath temperature
Tb at which the experiment is performed but lR is typically equal to 100 µm at 100 mK and
10 µm at 1 K. This is larger than the nanowire dimensions and reflects the strong influence of
the electrons thermal conductivity ke(Te).

The numerical resolution of Eq. 6.9 (or equivalently Eq. D.10 in adimensional units) will be
performed as follows. The critical temperature Tc, the geometry of the wire (thickness t and
function w(x)), the bath temperature Tb and the value of the electronic thermal conductivity
at critical temperature ke(Tc) = αeTc (given by the normal state resistivity using Eq. 6.6) are
set constant and equal to nominal experimental parameters (see Table 4.2). The temperature
dependence of ke in the superconducting state is given by Usadel equations at critical current
(through Eq. 6.5). For simplicity we neglect its current density dependency and assume that the
critical current density is reached everywhere. This is an approximation which slightly affects
ke for two reasons. First, when the critical current is reached in the nanowire, a smaller current
density flows in the leads. Secondly, the current density is homogeneous in the nanowire, but
the local critical current density depends on the local electronic temperature. Therefore when
the current density is equal to the critical current density of the hottest part, it is however
smaller than the critical current density of the cooler parts. In any case, the error made on the
thermal conductivity is small since no matter the value of the current the thermal conductivity
at a given temperature Te is comprised between the blue and green curves of Fig. 6.6. The
boundary conditions are given by Te → Tb at infinity (see Appendix D for details). Finally, we
will adjust the parameters Σ and p and confront our theoretical solution to experimental data.

First, we address the situation where heat injection takes place at the middle of the nanowire.
The electronic temperature extracted from critical current measurements corresponds here to
the electronic temperature at the tip position Te(x0). Fig. 6.8a compares experimental data
of sample N03 with our numerical solution of Eq. 6.9 for several values of p. In contrast with
Fig. 6.3 whose axis scale is larger, one can notice some scattering of the data measured for
different It. This probably reflects two limitations to the thermal behavior discussed above.
On the one hand, the substrate does not always behave as a reservoir (this effect is investigated
in Section 6.7). On another hand, tunnel injection of electrons is not rigorously equivalent
to the deposition of a constant power when the injection rate It/e is small compared to the
energy relaxation time over the nanowire width. Indeed, in this limit electron injection rather
corresponds to power ”pulses” and therefore to a temporarily larger effective temperature.
This interpretation is consistent with the larger scattering of low It experimental data (see
It = 121 pA), but is however beyond the scope of this manuscript. Nevertheless, it is possible
to notice that better agreement is obtained for p = 5 and Σ = 6 ± 2 × 109 W.K−5.m−3. It is
important to emphasize here that the slope of the experimental P (Te) data in logarithmic scale
(i.e. the exponent 4 in the P = κ(T 4

e − T 4
b ) behavior) is different from the exponent p which

corresponds to the microscopic electron-phonon process. This is the numerical resolution of
Eq. 6.9 which indicates that the experimental behavior is better described by p = 5.
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Data scattering is even more important for sample N06 as evidenced by Fig. 6.8b, and is also
related to the value of It. Our numerical solution reproduces well experimental data for fixed
values of It as shown on Fig. 6.8c and d, except at the lowest temperatures. Two experimental
biases could explain such a discrepancy. First, a poor local thermalization of the substrate
under the nanowire with the sample holder5 would result in a poorer cooling of the electrons.
Secondly, at low temperatures a small reduction of the critical current due to excess noise on
the tunnel current (discussed above) results in a large variation of the electronic temperature
because of the shape of the Ic(T ) curve (used to extract Te from the measured Ic). Better
agreement is obtained for p = 6 although the solutions for p = 5 cannot be fully discarded.
The value of Σ depends on the tunnel current considered. If one restricts to the larger values of
tunnel current which are believed to be less sensitive to experimental offsets as discussed above,
the value Σ = 9± 3× 109 W.K−6.m−3 reproduces well experimental data (see Fig. 6.8b and d).

(a) Sample N03 with Σ = 6× 109 W.K−p.m−3. (b) Sample N06 with Σ = 9× 109 W.K−p.m−3.

(c) It = 200 pA curve of sample N06 with
Σ = 4× 109 W.K−p.m−3.

(d) It = 500 pA curve of sample N06 with
Σ = 9× 109 W.K−p.m−3.

Figure 6.8: Confrontation of the heat diffusion model to experimental power-
electronic temperature characteristics. Dots: Injected power P = ItVb/2 versus effective
temperature for samples N03 and N06 (same data than Fig. 6.3). Solid lines: temperature at
the tip position inferred from numerical solutions of Eq. 6.9.

5One the one hand, this could be due to the fact that at each current driven transition to the normal state,
a Joule power is locally dissipated for a short period of time before the current is set back to zero. On the
other hand, the substrate does not act as a perfect reservoir, which can manifests in a larger effective bath
temperature (see Section 6.7).
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The difference in Σ between N03 and N06 can be related to their thicknesses (respectively
10 and 6 nm), since it has been measured experimentally that Σ increases when the thickness
decreases [61], which is what we observe. For sample N03, the value p = 5 corresponds to the
clean case (phonon wavelength smaller than the electron mean free path). This is consistent
with our experimental conditions (which correspond here to values of Vb larger than 20 mV,
see Fig. 6.2a) and with the discussion below Eq. 6.2. For sample N06, the determination of p
is not enough accurate to draw any definitive conclusions.

Then, the numerical solution of Eq. 6.9 also provides a theoretical prediction for the spatial
dependence of the critical current on the injection position along the nanowire. Here, the
critical current is determined by the nanowire section with the largest electronic temperature
(which does not corresponds to the tip position when the latter is in the leads). We use the
values p = 6 and Σ = 9 × 109 W.K−6.m−3 extracted from the power-electronic temperature
characteristics of N06 in order to compute the spatial dependence of the critical current of the
same sample. Confrontation to experimental measurements on Fig. 6.9 shows that the lowest
bias voltage Vb curve (in blue) does not fit at all experimental data, but this corresponds to the
low energy regime (eVb ≈ ∆0) which will be treated in Chapter 8. In contrast, as evidenced by
the three other curves of Fig. 6.9 (for which eVb � ∆0), excellent agreement is found between
experimental measurements and our theoretical prediction while we do not use any adjustable
parameter for this computation. Notably, our model reproduces the absolute value of the
critical current both at the center and at the entrance of the nanowire, such as the difference
between the different curves measured for different injected powers. In particular, the value of
Ic at the entrance of the nanowire is not trivial given the value of lR: the electronic temperature
exceeds Tb over a larger lengthscale that the nanowire dimensions.

Figure 6.9: Confrontation of the heat diffusion model to the spatial dependence of
the critical current on the injection position. (a) Nanowire shape. (b) Dots: critical cur-
rent as a function of the STM tip position along the nanowire for different tunneling conditions
at T=180 mK: • It = 500 pA and Vb = 150 µV • It = 1 nA and Vb = 5 mV • It = 1 nA and
Vb = 10 mV • It = 500 pA and Vb = 40 mV (same data than Fig. 6.4). Dashed lines: critical
current obtained from the numerical solutions of Eq. 6.9 for p = 6, Σ = 9 × 109 W.K−6.m−3,
Tb = 180 mK and for an injected power P = ItVb/2. The relation between electronic temper-
ature Te and critical current Ic is obtained through the Ic(T ) curve in the absence of injection
(see Section 6.3). Sample N06 (∆0 = 235 µeV).
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In summary, the heat diffusion model developed in this section reproduces the P0 ∝ (T 4
e−T 4

b )
behavior (see Fig. 6.3) while the analytical solutions considered in Eq. 6.13 and 6.15 failed. In-
deed, heat diffusion by electrons is important (given the value of lR) so the thermal dependence
of the electrons thermal conductivity ke in a superconductor plays a major role. Thus, our
model where Usadel predictions for ke(Te) are considered is in agreement with experimental
measurements. In addition, our numerical solution of the heat diffusion model accounts consis-
tently for two types of measurements with the same parameters, namely the power and spatial
dependence of the critical current. Finally, it also allows to probe the microscopic electron-
phonon mechanism by extracting the values of p and Σ.

The heat diffusion model in a superconductor with an electronic thermal conduc-
tivity given by Usadel equations and in the presence of electron-phonon coupling
accounts for all experimental observations under local injection of quasiparticles.

6.6 Nanowires with a dead-end strip

Figure 6.10: Scanning Electron
Micrograph of a dead-end strip
geometry sample.

Nanowires with a dead-end strip have been fabricated
to investigate the diffusion process in a different geom-
etry. They consist in a 300 nm × 2.5 µm nanowire
connected in its center to a 600 nm × 8.5 µm dead-end
strip as pictured on Fig. 6.10. The left side furrows with
different lengths are landmarks for the STM images at
low temperature.

The influence of quasiparticle injection in the dead-
end strip with different tunneling setpoints and at dif-
ferent positions has been investigated as shown on
Fig. 6.11. Similarly to the result of Fig. 6.1, for a fixed
injection position, the superconducting transition of the
nanowire is shifted to lower temperatures by the injec-
tion of quasiparticles while the leads remain unaffected.
However, superconducting properties are not probed at
the STM tip position but rather at the junction be-
tween the nanowire and the dead-end strip. Therefore,
by moving the tip in the y direction, one can now study
the energy relaxation of the quasiparticles when they
diffuse along the dead-end strip. The effect of injected
quasi-particles on Tc is shown in Fig. 6.11c and 6.11d
for five different injection positions. As expected, for
a given position, the critical temperature is all the more weakened that the injected power is
increased (Fig. 6.11c). But this effect is less effective when the STM tip is moved away from
the nanowire as shown in Fig. 6.11d. This means that some of the injected power is lost and
never reaches the nanowire.

Then, this experiment gives some boundary conditions to the heat diffusion process: for
given heating conditions (injected power and tip position), the temperature T of the sample
holder has to be reduced down to Tc(It 6= 0) (lower than its value in the absence of injection
Tc(It = 0)) so that the temperature at the intersection between the dead-end strip and the
nanowire reaches Tc(It = 0).

Similarly to Fig. 6.4, the injection position of quasiparticles has also an influence on the
critical current Ic as evidenced on Fig. 6.12. Firstly, Ic is less reduced when the injection occurs
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(a) (b)

(c) (d)

Figure 6.11: Resistance versus temperature for different injection positions and
setpoints. (a) Schematics of the sample with indicated injection positions. y is the direction
perpendicular to the nanowire whose origin is located at the intersection between the nanowire
and the dead-end strip. (b) Resistance versus temperature for no current injection and for dif-
ferent tunneling conditions at position C. Rnw

N is the nanowire normal state resistance. Dashed
red lines are the linear extrapolations used to extract the critical temperatures. (c) Measured
critical temperature as a function of injected power P = ItVb/2 for injection positions A to E:
respectively 0, 1.8, 3.7, 5.5 and 7.4 µm above the nanowire from bottom to top. (d) Measured
critical temperature as a function of position along y for different injected powers. Sample N13.

further away along the dead-end strip. Since the value of the critical current is determined
by the electronic temperature in the nanowire, this provides spatially dependent boundary
conditions for the heat diffusion process at stake in our Nb\Au thin bilayers. Furthermore,
for the same injected power, the relative reduction of the critical current depends on the bath
temperature, i.e. the sample holder temperature tuned with a resistive heater and monitored
by a RuO thermometer. The fact that in our samples the critical current is less affected by a
given injected power as the temperature increases will be compared to literature experiments
in Section 6.8.
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(a) Fixed temperature. (b) Fixed power.

Figure 6.12: Critical current as a function of injection position. y is the ordinate of
the injection position with origin located on the nanowire axis. (a) Critical current normalized
to its value in the absence of quasiparticle injection at Tb = 100 mK as a function of injection
position for different injected powers. (b) Critical current normalized to the value in the absence
of quasiparticle injection as a function of position at different temperatures and for constant
injected power P = 10 pW. Sample N13.

(a) (b)

Figure 6.13: Effective electronic temperature as a function of power for different
injection positions. (a) Schematics of the sample with indicated injection positions. (b) ItVb
as a function of the reduced electronic temperature. Dashed lines indicate the ItVb = κ(tme −tmb )
curves with m = 4 and m = 6 for respectively κ = 118 pW.K−4 and κ = 2137 pW.K−6.
Sample N13.

Finally, Fig. 6.13 presents the effect of the power P = ItVb/2 on the reduced electronic
temperature te for different injection positions. As expected for a diffusion mechanism, for a
given power the electronic temperature in the nanowire decreases as the injection occurs fur-
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ther from the intersection between the dead-end strip and the nanowire. The observed behavior
corresponds to a κ(tme − tmb ) with a value of m increasing with the distance between the tip
and the nanowire. Consistently with the behavior observed in the previous experiments with
no dead-end strip, m = 4 when injection occurs at the intersection between the dead-end strip
and the nanowire.

The power-electronic temperature characteristic shows a power law dependence
with an exponent depending on the injection position in the dead-end strip.

Confrontation to the heat diffusion model

Firstly, the fact that P0 = κ(Tme − Tmb ) with a value of m increasing with the distance between
the tip and the nanowire confirms the analysis made in the straight nanowires geometry (see
below Eq. 6.15) where we discarded that heat could be carried out by phonons only. In the
present geometry, we address a different situation where the critical current probes the elec-
tronic temperature at a position different from the tip position. However, Eq. 6.15 still predicts
a constant m = 4 value and an increase of κ together with |x− x0| (which corresponds here to
the tip to sample distance y). Since we observe experimentally in Fig. 6.13 that the exponent
m varies with the distance y, we can again reject the mechanism of heat transport carried by
phonons only.

We will now solve numerically Eq. 6.9 with Tph = Tsub = Tb (same model than above).
As in the previous section, the critical temperature Tc and the value of the electronic thermal
conductivity at critical temperature ke(Tc) = αeTc will be taken equal to nominal experimental
parameters. Since no supercurrent is flowing between the tip and the nanowire, we will use the
temperature dependence of ke in the absence of supercurrent (see Fig. 6.6). This is however
an approximation since in the nanowire itself a current is flowing and ke may be different.
We will transpose for simplicity the two dimensional dead-end strip geometry to a quasi one

Figure 6.14: (a) Dead-end strip geometry. (b) Simplified geometry for numerical resolution
of the heat equation. (c) Example of numerical solution taken from Fig. 6.15b (P = 30 pW
and tip in y = 5.7 µm). lR is the characteristic relaxation length of Eq. 6.9 (see Eq. D.10).
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dimensional case (see Fig. 6.14). The boundary conditions are the following. At the top of

the dead-end strip (y = 8.5 µm), the heat flux density is zero (
−−→
Jth,e =

−→
0 ). Far away in the

reservoirs (y → −∞) the electronic temperature Te equals the bath temperature Tb. Finally,
the superconducting properties (critical temperature and critical current) will be given by the
value of Te at the intersection between the nanowire and the dead-end strip (y = 0 and green
cross of Fig. 6.14).

Fig. 6.15b compares experimental data and theoretical predictions of the power versus elec-
tronic temperature dependency for different injection positions along the dead end strip in
sample N13. By contrast with the previous section, adjusting only the values of p and Σ was
not sufficient to provide a satisfactory fit. Indeed, the solution presented here is computed for
Tb = 170 mK and t = 4 nm while the temperature of the sample holder during the experi-
ment was 110 mK and the nominal thickness of the sample is 6 nm. Nonetheless, an effective
thickness smaller than the nominal one is consistent with the relatively low critical tempera-
ture measured for N13 when compared to other samples with same nominal thicknesses (see
Table 4.2). Such an overestimate of the effective thickness is very possible given the uncertainty
over thickness during the deposition process. The discrepancy in Tb may be related to a poor
local thermalization of the substrate below the nanowire with the sample holder (because of
the heat briefly released by Joule effect when the critical current is reached, and because the
substrate is not a perfect reservoir as discussed in Section 6.7). However, the present set of
parameters Tb = 170 mK, t = 4 nm, p = 5 and Σ = 6 × 109 W.K−5.m−3 accounts for the
main experimental feature observed in the dead-end strip geometry, being the dependence on
the injection position of the slope of the power-electronic temperature characteristic. For large
injected powers, the increase of Te saturates. Indeed, when injection is performed at the top
of the dead-end strip and the temperature in the nanowire approaches Tc, the dead-end strip
is almost entirely in the normal state, and electronic cooling becomes then much more efficient
than when it was in the superconducting state. The values of p and Σ are consistent with the
ones extracted in previous section for similar samples.

(a) (b)

Figure 6.15: Confrontation of the heat diffusion model to dead-end strip geometry
experimental results. (a) Dots: critical temperature as a function of injection position along
y for different injected powers. Dashed lines: theoretical predictions of Eq. 6.9 with p =
5, Σ = 6 × 109 W.K−5.m−3 and t = 4 nm. (b) Dots: injected power P = ItVb/2 as a
function of electronic temperature for different injection positions along y (respectively y =0,
1.7, 5.7, 7.1 and 8 µm) displayed in the inset. Dashed lines: theoretical predictions with p = 5,
Σ = 6× 109 W.K−5.m−3, Tb = 170 mK and t = 4 nm. Sample N13, whose nominal thickness
is t = 6 nm.
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Good agreement between experimental data and theoretical predictions for the modulation
of the critical temperature with quasiparticle injection with the STM tip is found as shown on
Fig. 6.15a. We do not use any adjustable parameter for this computation: the values of p and
Σ are the same than the ones extracted for the same sample from critical current measurements
(Fig. 6.15b) Data are extracted from the resistance versus temperature curves of Fig. 6.11, and
Tc(P ) is defined as the bath temperature Tb for which Te(y = 0) is equal to the sample critical
temperature in the absence of injection Tc(It = 0) = 790 mK.

Therefore, as in previous section, the heat diffusion model provides consistently quantitative
predictions for two type of measurements (resistivity and critical current under quasiparticle
injection) in the same sample. However, we extended in this section the validity range of the
model. Indeed, in contrast with the straight nanowires geometry the temperature under the tip
can exceed Tc when quasiparticle injection is performed at large injected powers in the dead-
end strip. Furthermore, while the critical current measurements are performed at low bath
temperatures, the resistance versus temperature curves are measured close to Tc. Nonetheless,
the model still accounts well for experimental observations, notably thanks to the consistency
of Usadel prediction for the electronic thermal conductivity in the normal and superconducting
states.

The model of heat diffusion is also in good agreement with experimental obser-
vations in the dead-end strip geometry, and this even when the electronic temper-
ature exceeds the critical temperature.

6.7 Injection through the substrate

Thanks to the sample design, it is possible to perform STM for any position of the tip on the
surface of the sample, although the nanowire (and the dead-end strip) is electrically isolated

(a) (b)

Figure 6.16: Effect of the injected power on the effective temperature for injection
of quasiparticles in the dead-end strip and in the ground plane. (a) Schematics of
the sample with indicated injection positions. (b) ItVb as a function of effective temperature
for injection in the dead-end strip (circles) and in the ground plane (crosses) at T = 70 mK.
Sample N16.
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from the surrounding ground plane. Fig. 6.16 shows the effect of the injected power on the
effective temperature for quasiparticle injection in the dead-end strip and in the ground plane.
Interestingly, even though there is no electrical contact between the injection position and
the nanowire, we observe that quasiparticle injection in the ground plane affects the nanowire
electronic temperature. Then, the heat conduction mechanism necessarily goes through the
substrate, which is therefore locally not in thermal equilibrium with the thermometer of the
sample holder (Tsub 6= Tb). In addition, this behavior is not driven by the injected power
P = ItVb/2 but by both bias voltage Vb and tunneling current It: at a given power, larger
effective temperatures are reached for low It and large Vb than for high It and low Vb. As
for the case of injection in the dead-end strip, one recovers the thermal behavior presented
in previous sections, except for very large bias voltages (here the experiment is performed up
to Vb = 900 mV whereas in the previous experiments described in Section 6.5 and 6.6 the
maximum bias voltage was typically Vb = 50 mV for samples with a similar thickness and lower
than 400 mV for all the samples). In this regime, the electronic temperature Te is driven by
both It and Vb and is close to the one measured when injection is performed in the ground
plane. This means that for very large Vb, heat conduction through the substrate becomes
non negligible: for a given tunneling setpoint both conduction through the dead-end strip and
through the substrate contribute to the nanowire overheating.

Fig. 6.17 shows the effect of the injected power on the effective electronic temperature in the
nanowire for different injection positions in the ground plane. For a given tunneling setpoint,
the effective electronic temperature in the nanowire is only slightly affected by the injection po-
sition and therefore by the tip-nanowire distance (see Fig. 6.17a and b). In addition, although
heat conduction between the injection position and the electrons of the nanowire occurs through
the substrate, the presence of the ≈ 500 nm deep furrows on the left side of the dead-end branch
(low temperature STM landmarks) does not result in any detectable difference between the two
injection positions of Fig. 6.17c.

For large bias voltages, the substrate cannot be considered as a reservoir with
fixed temperature. The associated effect on the critical current is not driven by
the injected power but by both bias voltage and tunnel current, and is only slightly
dependent on the injection position.

Discussion

These experiments show that when quasiparticle injection occurs in the ground plane, the
nanowire is still overheated through its interface with the substrate. This means that some
phonons emitted during the energy relaxation process of the injected quasiparticles and trans-
mitted to the substrate reach the nanowire before being thermalized by the substrate phonon
bath (whose temperature Tb is fixed). There, they overheat the nanowire electron system by
creating excess quasiparticles. Therefore, our measurements allow to probe the dynamics of
the above phonons.

First, the fact that this overheating effect is only slightly dependent on the injection position
shows that the diffusion of phonons from the tip position to the nanowire is fast compared to
their thermalization with the sample holder at Tb. The relaxation lengthscale of the phonons
lphrel is therefore larger than the dead-end strip dimensions so that lphrel & 10 µm. Assuming a
ballistic motion at cs = 3− 5 km.s−1 for the phonons in the bulky substrate (the phonon mean
free path in the bulk is not limited by the thickness) this leads to a characteristic thermalization
time for the substrate phonons τ phrel & lphrel/cs ∼ 10 ns.

Then, since the presence of deep furrows has no influence at all it is likely that the wavelength
of the phonons traveling in the substrate and reaching the nanowire is larger than the depth
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(a) (b)

(c) (d)

Figure 6.17: Effect of the injected power on the effective electronic temperature
in the nanowire for injection of quasiparticles at different positions in the ground
plane. (a) Schematics of the sample with indicated injection positions of (b). (b) ItVb as
a function of effective temperature for injection at different positions in the ground plane at
T = 70 mK. From top to bottom, It = 5 nA, 1 nA, 200 pA and 50 pA. (c) Schematics of the
sample with indicated injection positions of (d). (d) ItVb as a function of effective temperature
for injection at different positions in the ground plane at T = 70 mK. From top to bottom,
It = 5 nA, 1 nA, 500 pA, 200 pA, 100 pA, 50 pA and 20 pA. Sample N16.

of the furrows (≈ 500 nm) otherwise they would be partially reflected. Because λph ∼ ~cs/E,
it corresponds to low energy phonons (E . 40 µeV). This is consistent with the quasiparticle
relaxation process considered in Section 6.5, according to which high energy phonons are quickly
absorbed by Cooper pairs in the vicinity of the injection position.

Notably, the electronic temperature in the nanowire is not governed by the injected power
but both by the injection rate (through It) and the energy (through Vb) of the injected quasi-
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particles. Indeed at fixed power, it is more efficient in overheating the nanowire to increase
the injected quasiparticles energy rather than the injection rate. This probably allows to probe
the energy dependence of the phonon scattering processes creating excess quasiparticles in the
nanowire, such as the phonon-electron scattering and pair breaking process. We are however
not aware of any theoretical model available for such a discussion.

Finally, these measurements clearly demonstrate that the substrate cannot be considered
as a reservoir with a fixed temperature equal to the one of the sample holder Tb. This therefore
reconsiders the model discussed in Section 6.5 and 6.6 where we assumed that Tph = Tsub = Tb.
This is all the more interesting since in the thin films considered in this PhD, the phonon
population of the film cannot be disentangled from the one of the substrate in the vicinity of its
interface with the film as discussed in Section 6.5. Whether the phonon system of the substrate
is locally in quasi equilibrium (with a spatially varying temperature Tph = Tsub larger than Tb),
or whether the temperature of the substrate (and therefore of the phonons of the film) is not
defined is not known. In any case, the electron system of the film should be sensitive to the
presence of out of equilibrium phonons in the substrate.

However, although we assumed the substrate to act as a reservoir in our model, the theo-
retical predictions made in previous sections reproduce well experimental measurements. This
could be explained as follows. First, as discussed above, it is believed that only few high energy
phonons are dissipated to the substrate because of their short lifetime against pair breaking.
Under this condition, the phonon population is therefore close to quasi equilibrium. Then, in
quasi equilibrium the electron-phonon coupling power is proportional to T pe − T

p
ph with p ≈ 5,

so that the error made on the phonon temperature only has a small influence on the exchanged
power when Te is larger than Tph. Furthermore, the small spatial dependence of the overheating
effect through the substrate (see Fig. 6.17) supports the above claim. Indeed, this suggests that
the phonon population of the substrate is independent of the position on the nanowire scale.
In this case, the substrate can be considered in first approximation as a reservoir but with a
larger temperature than the one of the sample holder. Finally, as experimentally evidenced on
Fig. 6.16, the substrate contribution to the heat diffusion between the tip and the nanowire
is negligible except at very large Vb. This means that in the typical experimental conditions
of this PhD work, the heat diffusion model developed in Section 6.5 accounts for the main
diffusion channel and is therefore accurate in its predictions.

The substrate phonon system carries heat over a larger lengthscale than the
nanowires dimensions before reaching equilibrium. Nevertheless, the phonon sys-
tem carries a negligible heat flow compared to the electron system of the super-
conducting film.

6.8 Discussion of field effect versus quasiparticle over-

heating

The modulation of the critical current by quasiparticle injection with a STM tip has to be
compared with the results introduced in Section 3.4. To begin with, there is no doubt that
the modulation of the critical current in our experiments is due to quasiparticle
overheating and not to field effect. Indeed, a major benefit of the STM technique is the
ability to tune independently the tunneling current It and the bias voltage Vb, by contrast
with lithographed junctions where the tunnel barrier width is fixed. Small variations of the
tip height (smaller than 1 Å) at fixed bias voltage result in an exponential modification of the
tunneling current while the electric field between the tip and the sample remains essentially
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constant (since the tip to sample distance is almost unchanged and the bias voltage is fixed).
Then, the data presented in Fig. 6.2a shows that for a fixed bias voltage (and therefore electric
field), the critical current Ic strongly depends on the tunneling current (the injection rate of
quasiparticles). Moreover, Fig. 6.2b demonstrates that the reduction of Ic is driven by the
power injected in the nanowire. Another big advantage of the STM is its spatial resolution.
Thus, the evolution of the critical current with respect to the injection position of quasiparticles
with a given power (Section 6.4) evidences the diffusion process of the injected quasiparticles
to the leads. A field effect would not involve heat diffusion and therefore the critical current
would not depend on the distance between the STM tip and the reservoirs (leads) and should re-
sult in a constant Ic plateau in the nanowire, by contrast with the behavior observed in Fig. 6.4.

As for the suppression of the critical current of superconducting wires or weak links reported
in [27, 85, 84, 26, 89], it is attributed to field effect. In each experiment, a gate electrode is used
to apply a gate voltage Vg which controls the critical current of the device (see Fig. 3.5a, 6.18a,
6.19a and 6.20a). The arguments given by the authors to discard the quasiparticle overheating
due to injection of electric current in the samples are discussed below. Comparisons with the
results obtained in this PhD work by SCCM are made. Finally, the alleged field effect reported
in literature is interpreted by quasiparticle overheating.

Argument of negligible leakage current and power

Some leakage current in the field effect transistors (FETs) upon biasing the gate electrodes is
measured in the reported experiments. However, the authors claim that the leakage currents
IL (as low as a few tens of pA) and the resulting dissipated powers (as low as hundreds of
pW), are too low to be considered as the origin of the suppression of Ic. In particular, the
leakage currents are typically IL ∼ 10−6Ic(Vg = 0) where Ic(Vg = 0) is the critical current in
the absence of perturbation.

Yet, our experiments demonstrate that such leakage currents as low as 10−6I0c
affect the critical current. Indeed, the injection of tunneling currents It as low as 10−6I0

c

allow to reduce the critical current of Nb\Au wires as shown on Fig. 6.2. Also, the injection
of hundreds of pW is sufficient to strongly reduce the critical current (see Fig. 6.2b) or even
completely suppress superconductivity for the samples with the lowest critical temperatures (see
Fig. 6.3). Additionally, most of the devices in which the field effect transistor is investigated
are made of titanium, which critical temperature (about 500 mK) is lower than that of all the
samples studied in this PhD. For the few aluminum (Tc ≈ 1.5 K) devices [27], the modulation of
the critical current by a backgate voltage is less efficient. Consequently, the orders of magnitude
of leakage powers and currents are sufficient to affect significantly the FETs critical current.
Besides, although IL ∼ 10−6Ic(Vg = 0), one should remind that the injected quasiparticles
have an energy of the order of eVg ∼ 30 eV, that is to say orders of magnitude larger than
the superconducting gap (∆0 ≈ 60 µeV for Ti), so that eVg ∼ 106∆0. By comparing the
characteristic energy of the superconductor and the injected quasiparticles energy, the argument
of negligible power does not stand.

Argument of independence of critical temperature upon application of backgate
voltage

Measurements of the critical temperature Tc under the application of a backgate voltage Vg
high enough to lead to almost full suppression of the critical current Ic showed that Tc was
independent of Vg within the experimental error [85]. Then, the authors assert that if quasi-
particle overheating occured, if some injected power led to a strong suppression of Ic it should
also reflect into a sizable decrease of Tc ([27] Supplementary).
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As a comparison, considering the modulation of the critical temperature of sample N07
presented in Fig. 6.1, an injected power P = ItVb/2 = 500 pA×200 mV / 2 = 50 pW is
required to shift the critical temperature to lower values. Such an injected power strongly re-
duces Ic at low temperature since it raises the effective temperature of the nanowire to ≈ 0.9Tc
(see Fig. 6.3b). Lower powers (a few pW) still reduce Ic but do not affect Tc within experi-
mental accuracy. Then, our experiment proves that for relatively small quasiparticle
overheating powers, the critical temperature can remain unchanged while the low
temperature critical current is affected. This is not surprising since at low temperature,
the electronic thermal conductivity of the superconductor is vanishing whereas near Tc, it ap-
proaches the normal metal value. Thus, the injected power is a small perturbation near critical
temperature since it is easily carried away (by heat diffusion to the leads) by contrast with low
temperatures.

Besides, in another experiment [84], the resistance of the FET does not go to zero upon
application of large backgate voltage (see Fig. 6.18). The authors develop a model responsible
for the emergence of an inhomogeneous superconducting state under the application of an elec-
tric field. Nevertheless, this could be a more trivial heating effect. The onset of the transition
in Fig. 6.18b is indeed independent of Vg, but this curve looks like the one measured with our
Nb\Au nanowires (Fig. 6.1): the critical temperature of the leads (530 mK in Fig. 6.18b) is
not affected by quasiparticle injection and the critical temperature of the Dayem bridge could
be below 480 mK. The value of the resistance plateau below 530 mK is governed by the normal
part of the Dayem bridge which increases together with the gate voltage.

Figure 6.18: Effect of gate voltage on superconducting Dayem-bridge field effect
transistor. (a) Scheme of the superconducting Dayem-bridge. The titanium device (blue) is
current biased and the voltage drop is measured while the gate voltages Vg1 and Vg2 are applied
to the bottom (green) and top (violet) lateral gate electrodes. (b) Normalized resistance R/RN

as a function of temperature T for different gate voltages Vg = Vg1 = Vg2. I is the bias current
used for the measurement. From [84].

Argument of the temperature evolution of the shape of the field effect transistor
Ic(Vg) characteristics

As in all FET experiments [27, 85, 84, 26, 89], the critical current of the superconducting
transistor (or the switching current of the Josephson junction for SNS transistors) monotonically
decreases for large values of Vg as shown in Fig. 3.5b for a SuFET and Fig. 6.19b for a SNS FET.
Increasing the value of the temperature increases the range of ineffectiveness of the electric field
on Ic (or Is), so that the plateau of constant critical current widens with temperature.
The same effect is observed upon increasing magnetic field6.

6For superconducting FETs only. A slight non monotonic narrowing of the plateau is measured in SNS FETs
under magnetic field [26].
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Furthermore, the effect of Vg on Ic disappears at large temperatures as shown on
Fig. 6.19c: for T > 350 mK, Vg has no influence on Is. Notably, the disappearance of the
effect of Vg on critical current occurs at ∼ 85%Tc for devices made of titanium and at ∼ 40%Tc
for similar devices made of aluminum [27]. The authors interpret this observation as a damping
of the electrostatic effect in the devices as they approach the normal state [26].

Finally, the critical backgate voltage V c
g leading to complete suppression of Ic is

independent of temperature for titanium FETs7 as shown on Fig. 3.5b.

Figure 6.19: Critical current plateau of a SNS FET. (a) Scheme of the SNS FET. The
Josephson junction consists in a copper wire proximitized at both ends by superconducting
aluminum. A voltage Vg can be applied to the side electrode. (b) Josephson switching current
Is as a function of Vg for different temperatures T . (c) Is versus T for different Vg. From [26].

The widening of the constant Ic plateau with temperature observed in FETs can be com-
pared to the data measured by SCCM and presented in Fig. 6.3b. When the bath temperature
at which quasiparticle injection is performed is increased, the required power to reduce the
critical current increases. Fig. 6.12b also shows that a given heating power affects less the
critical current when the temperature raises. Similarly to the discussion on the independance
of the critical temperature versus Vg, this is expected since we are dealing with overheating
effects: a given injected power is a bigger perturbation for the wire as the bath temperature
decreases. In addition, the weakening of superconductivity, whether due to an increase of tem-
perature or magnetic field, lowers the thermal resistance with the contacts(or leads). Then, the
sample is less sensitive to heating. That is also probably why Ic becomes unaffected by Vg at
large temperature. As for the independence of V c

g on temperature, the same result is obtained
by SCCM in Nb\Au wires: whatever the bath temperature, the effective temperature of the
wire (reflecting the reduction of Ic) follows a power law at large injected powers and is also
bath temperature independent. Eventually, the fact that the reduction of Ic is more efficient in
titanium than in aluminum supports the above claim: the leakage power is probably sufficient
to raise the temperature of the devices up to a few hundreds of mK, which almost completely
destroys superconductivity in titanium (Tc ≈ 500 mK) but has a limited impact on aluminum
(Tc > 1 K). Consequently, the evolution of the shape of the Ic(Vg) characteristics with
temperature can be explained by quasiparticle overheating.

Interpretation of the alleged field effect by quasiparticle overheating

Similarly to the analysis presented in Fig. 6.3 for our Nb\Au nanowires, one can plot the
leakage power dissipated in the FETs as a function of an effective temperature reflecting the
bath temperature required to observe the same critical current when Vg = 0. This curve
computed on the basis of experimental data extracted from [89] is shown on Fig. 6.20d. It
presents a trend PL = kT 2

eff .

7V cg is not always within the accessible Vg range as for example in Fig. 6.19b
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Figure 6.20: Possible quasiparticle overheating of a superconducting Dayem-bridge
field effect transistor. (a) Scheme of the superconducting Dayem-bridge (blue) and side gate
electrode (yellow). (b) Critical current Ic as a function of temperature T (dots). Solid line is a fit
with Bardeen’s formula [7] presented in Eq. 3.1a. (c) Top panel : Ic vs gate voltage Vg applied to
the side electrode at T = 20 mK. Bottom panel: Leakage current (red) and corresponding Joule
leakage power (green) as a function of Vg at the same temperature. (d) Leakage power versus
effective temperature extracted from data of top panel of (c) (dots). Dashed line corresponds
to PL = κ T 2

eff with κ = 3 nW.K−2. (a), (b) and (c) are taken from [89]. (d) is computed from
these data.

Since the lithographed junctions do not allow to adjust independently Vg and IL, one cannot
assert that some quasi equilibrium is reached by contrast with our SCCM study (see Fig. 6.2).
However, the fact that data are compatible with a power law trend suggests an overheating
of the sample. Furthermore, the PL = κT 2

eff trend corresponds to the mechanism of power
dissipation by quasiparticle diffusion only (see Eq. 6.13). The extracted κ = 3 nW.K−2 goes in
this direction. Indeed, according to Eq. 6.13, the value of κ corresponding to diffusion of heat
by quasiparticles for punctual power injection in the middle of a wire with constant width w
is κ = wtαe/xR where t the thickness, λe = αe × T the electronic thermal conductivity and xR
the distance to the reservoirs. Naturally, deviations are expected since neither the wire has a
constant width nor the power is injected punctually (the side gate electrode has a finite width
as shown on Fig. 6.20a). Yet, the theoretical value for κ is of the same order of magnitude than
the extracted one: taking w = 120 nm, t = 30 nm, xR equal to the length of the constriction
(150 nm) [89] and8 αe = 0.1 W.K−2.m−1 one finds κ = 2.4 nW.K−2.

To conclude, these arguments do not reject the potential existence of some unexpected
field effect, but they show that quasiparticle overheating can explain all experimental
features observed in superconducting FETs.

8This typical value for a metal at low temperature (the same as the one found in our Nb\Au samples) is
taken since the resistivity of the Ti samples of [89] is not given in the paper (this would have provided αe with
Wiedemann-Franz law).
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6.9 Conclusion

The tunnel injection of quasiparticles with a STM allows to vary both position and tunnel
resistance of the junction. Then, the ability to inject the same power with different tunneling
setpoints demonstrates the existence of some quasiparticle overheating and that a quasi equi-
librium characterized by an electronic temperature is reached for a broad range of tunneling
setpoints in Nb\Au nanowires. Furthermore, the spatial resolution of the SCCM technique
helps to probe the diffusion processes at stake. A heat diffusion model in the quasi equilib-
rium limit is then developed and accounts quantitatively for the all experimental features. It
also allows to extract microscopical parameters of the electron-phonon interaction. Further
investigation of the out of quasi equilibrium regime paves the way to the study of several pro-
cesses of quasiparticle dynamics such as electron-electron, electron-phonon, phonon-electron
and phonon-phonon interactions. Finally, these results reconsider the physical interpretation
of superconducting FETs given in literature.
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Chapter 7

Vortices in Nb\Au nanowires
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In a type II superconductor, magnetic vortices are one of the strongest inhomogeneity
of the density of states that can be found. In addition, at low temperatures the thermal
conductivity is expected to vary significantly between the vortex core and the superconducting
regions. Consequently, it is of fundamental interest to study the local injection of quasiparticles
and its influence on the critical current in type II superconducting nanowires under magnetic
field. Moreover, the magnetic field also allows to reduce the critical current in the absence of
quasiparticle injection. This reduction of the critical current helps to prevent overheating due
to Joule effect at the transition, and reduces the maximum Lorentz force exerted on vortices
so they are more likely to remain motionless when a supercurrent is flowing.

The presence of excess quasiparticles can be characterized by an effective electronic temper-
ature that exceeds the temperature of the phonon bath as discussed in the previous chapter. In
the field of superconducting electronics, this overheating limits the performances of mesoscopic
devices, causing for instance decoherence in qubit systems [76, 91] or decrease of the quality
factor in superconducting resonators [87, 29]. Since vortices are believed to act as quasiparticle
traps [109, 82], their physics is of particular interest for who wants to improve the performances
of superconducting circuits.

In this chapter we investigate the influence of magnetic vortices on the out of equilibrium
properties of our superconducting nanowires. We first explain how to locate by STM vortices
induced by a magnetic field and how to detect when a vortex is unpinned by the supercurrent.
Then we present Scanning Critical Current Microscopy (SCCM) experiments in the presence
of vortices. We interpret our results in terms of quasiparticle trapping by vortices. We also
interpret the influence of the magnetic field on the electronic thermal conductivity as a confir-
mation of the heat diffusion model developed in the previous chapter. Finally we discuss the
effect of vortex flow on the critical current in the absence of quasiparticle injection.

99
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7.1 Observation of vortices by STM

Fig. 7.1 shows images of vortex lattices in a Nb\Au nanowire for different magnetic fields.
The experimental technique of differential conductance measurement is described in Subsec-
tion 1.2.3. During a scan with the STM tip, both the topographic (Fig. 7.1a) and spectroscopic
(Fig. 7.1b) image of the same area are recorded. Here, the AC modulation for the spectroscopy
is only applied on the nanowire. Then, when the tip scans the ground plane on the left area of
Fig. 7.1b, no modulation of the tunneling current is recorded. However, when the tip is in the
right furrow separating the nanowire from the ground plane, a tunnel current flows between the
tip and the nanowire, so some differential conductance is measured. This difference between
the left and right part of the image is due to the asymmetrical shape of the STM tip. When
it is above a furrow, the tip apex cannot reach its bottom but the tunneling current is rather
established on the side of the tip with either the ground mass or the nanowire depending on
the sharpness of the tip on its right and left sides. This effect is however much less visible in
the topographic image because the tip is significantly lower above both furrows than when it
scans the nanowire or the ground plane.

(a) B=23 mT (b) B=23 mT (c) B=34 mT

Figure 7.1: Penetration of vortices in a nanowire. (a) and (b) Topographic and spec-
troscopic images (It = 500 pA ; Vb = 400 µV) of the same area for a perpendicular magnetic
field B = 23 mT. The color scale is in arbitrary units with light - respectively dark - colors
corresponding to large - respectively small - values of tip height and differential conductance.
Green dashed line indicates the (geometric) edges of the nanowire. (c) Spectroscopic image of
the same sample for a larger magnetic field B = 34 mT. Sample N04.

Fig. 7.1c shows the spectroscopic image of the same region than Fig. 7.1a, but recorded with
a larger magnetic field. The same effect than above occurs when the tip scans the right furrow
area. For both magnetic fields, a vortex lattice appears in the leads, whereas vortices penetrate
in the nanowire only for the larger magnetic field. Indeed, the critical field Bpen below which
no vortex can penetrate in a strip of width w varies as φ0/w

2 (see Eq. 7.5). For the present
sample, Bpen = 28 mT in the 300 nm wide nanowire, in agreement with the observed behavior.
When B increases, the lattices becomes denser, but the size of the vortices remains unchanged1.

1The color scale is chosen to provide the best contrast, but rigorously speaking the vortex core does not
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Fig. 7.2 shows the DOS in a vortex core for different wire currents Iwire. For Iwire = 0 the
DOS is flat, as expected, but when Iwire overcomes a value Ipin the DOS becomes gaped, as
in a superconducting region. This indicates that the vortex has moved under the effect of the
current flow. When one wants to measure the critical current of the nanowire while performing
quasiparticle injection in a vortex core this effect must be avoided. Then, one can look for
another vortex with a higher Ipin - the different forces governing vortex motion and therefore
the value of Ipin are discussed below in Subsection 7.3.2. Another strategy consists in increasing
the magnetic field to reduce the critical current to a value lower than Ipin.

Figure 7.2: Unpinning of a vortex
under the effect of a supercurrent
flow. Normalized differential conduc-
tance as a function of bias voltage for dif-
ferent wire currents measured in a vortex
core. When the current overcomes the
value Ipin the DOS goes from a normal
to a superconducting shape, indicating
the disappearance of the vortex at the
position of the tip. B = 23 mT. Sample
N04.

Vortices can be imaged by STM. They nucleate more easily in the leads than
in the nanowire. Their motion can be detected by STS.

7.2 Influence on critical current

In this section, we investigate how the DOS at the injection position - modulated by the presence
of vortices - affects the critical current. Since injected quasiparticles have an energy comprised
between 0 and eVb, we address the high and low quasiparticle energy regimes by adjusting the
bias voltage to eVb � ∆0 and eVb ≈ ∆0. Finally, we probe how the diffusion and relaxation
processes in the dead-end strip geometry are affected by the presence of vortices.

7.2.1 Injection of low energy quasiparticles

Fig. 7.3 shows the influence of the injection position around a vortex on the critical current of
the nanowire, for a constant tunneling setpoint. The vortex is located in the nanowire, and it
has first been ensured that Ipin is larger than the critical current in the absence of quasiparticle
injection by performing the same experiment than in Fig. 7.2 and observing a flat DOS up to
the critical current. Then, the tip scans the surface of the sample with the tunneling setpoint
(It = 1 nA; Vb = 400 µV) and both tip height and differential conductance are recorded to
provide Fig. 7.3a and 7.3b. The tip stops regularly at positions corresponding to the grid of
Fig. 7.3c (with a lower resolution). The setpoint is shifted to (IIct = 1 nA; V Ic

b = 500 µV) and
the critical current is measured several times to perform statistical averaging.

corresponds to the whole dark circles. Indeed, the spectroscopic image reflects the height of the coherence
peaks, which weakens in the vicinity of the vortex because of the screening currents around the vortex core.
However, only a smaller part of diameter 2ξ ∼ 60 nm inside the dark spot corresponds to the vortex itself, i.e.
a normal region with a nearly flat DOS.
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(a) (b) (c)

Figure 7.3: Tunneling injection of low energy quasiparticles in the vicinity of a
vortex. (a) STM topographic image of the nanowire with in red inset the area of the SCCM
measurement. The blue arrow indicates the direction of the current. (b) Spectroscopic image
at It = 1 nA and Vb = 400 µV recorded during the SCCM measurement. Dashed green line
indicates the position of the vortex. (c) Critical current as a function of injection position for
a constant tunneling setpoint IIct = 1 nA and V Ic

b = 500 µV. B = 46 mT, T = 100 mK and
∆0 = 380 µeV. Sample N04.

There is a correlation between the spectroscopic image and the critical current map: when
the injection is performed in the vortex region, the critical current is higher than when the
injection occurs in the superconducting regions. Nonetheless, the area of higher critical current
is slightly shifted in the direction of the current flow with respect to the vortex position. In this
experiment, quasiparticles are injected in the energy range [0; eV Ic

b = 500 µeV] for an energy
gap equal to ∆0 = 380 µV.

7.2.2 Injection of high energy quasiparticles

(a) (b) (c)

Figure 7.4: Tunneling injection of high energy quasiparticles in the vicinity of a
vortex. (a) STM topographic image of the nanowire with in red inset the area of the SCCM
measurement. The blue arrow indicates the direction of the current. (b) Spectroscopic image
at It = 1 nA and Vb = 400 µV recorded during the SCCM measurement. (c) Critical current as
a function of injection position for a constant tunneling setpoint IIct = 1 nA and V Ic

b = 400 mV.
B = 23 mT, T = 100 mK and ∆0 = 380 µeV. Sample N04.
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The same experiment than above is performed here with eV Ic
b = 400 meV� ∆0 = 380 µeV

(see Fig. 7.4). The injected quasiparticles have therefore on average an energy much larger
than the gap. Nevertheless, a correlation between the DOS at the injection position and the
measured critical current is still observed. Notably, the critical current is higher when the
injection occurs in a strip perpendicular to the current flow at the level of the vortex, and
this region is also slightly shifted in the same direction than Iwire with respect to the vortex
position.

7.2.3 Injection in the dead-end strip

In the dead-end strip geometry, the critical current is determined by the excess of quasiparticles
reaching the nanowire. When the injection occurs in the dead-end strip, where no supercurrent
is flowing, the determining processes are the relaxation and the diffusion of injected quasipar-
ticles in the path leading to the nanowire.

(a) (b) (c)

Figure 7.5: Influence of the DOS at the injection position in the dead-end strip
on the nanowire critical current. (a) Scheme of the sample with the scan area located
approximately 8 µm above the nanowire in green. (b) Recorded spectroscopic image during the
scan at It = 500 pA and Vb = 320 µV. (c) Critical current as a function of injection position
for a constant tunneling setpoint IIct = 500 pA and V Ic

b = 735 µV. B = 16 mT, T = 100 mK
and ∆0 = 255 µeV. Sample N15.

The influence of the DOS at the injection position is evidenced on Fig. 7.5. The remark-
able low noise conditions on this experiment show that the effect of DOS persists even when
the injection occurs far (≈ 8 µm) from the nanowire. Interestingly, no shift between the crit-
ical current map and the spectroscopic image is detected, and no supercurrent is flowing in
this region because of the sample geometry. The long acquisition time did not allow to finish
the measurement in between two helium fills (the tip is then retracted and the measurement
stopped because of the induced noise).

In Fig. 7.6, injection of quasiparticles at large energies compared to the superconducting
gap is performed at the same position in the absence (B = 0) and in the presence of vortices
(B = 16 mT) in between the tip position and the nanowire. For B = 16 mT, vortices are only
present in the dead-end strip and not in the nanowire2. The injection position is located 7 µm

2Accordingly to vortex penetration critical fields, since for sample N16 Bpen = 24 mT for the 300 nm wide
nanowire and Bpen = 9 mT for the 600 nm wide dead-end strip (see Eq. 7.5).
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(a) (b)

Figure 7.6: Influence of the presence of vortices on heat diffusion. (a) Scheme of the
sample with injection position (green cross). (b) ItVb as a function of electronic temperature for
two different magnetic fields. For B=16 mT vortices are present in the dead-end strip. Sample
N16 (Tc = 960 mK).

above the nanowire, and is chosen to be in a superconducting region (not in a vortex) for the
finite magnetic field measurement. The two Ic(T ) curves in the absence of tunnel injection by
the tip for B=0 and B=16 mT allow to extract the associated electronic temperatures from the
measured critical currents (as explained in Section 6.3). Then, we observe that for the same
injected power ItVb/2, the electronic temperature of the nanowire is higher in the presence
of vortices than in their absence. This effect is present at low electronic temperatures, and
becomes stronger in an intermediate regime (Te/T

nw
c ≈ 0.7). Finally, the difference disappears

when Te approaches T nwc .

For the same tunneling setpoint, the critical current is less reduced when quasi-
particle injection occurs in the vicinity of a vortex.

Overheating of the nanowire by injection of quasiparticles in the dead-end strip
is enhanced by the presence of vortices.

7.3 Discussion

Here we discuss how vortices affect the physical properties of our samples, depending on whether
vortices are generated by an external magnetic field or by a supercurrent flow.

7.3.1 Vortices induced by a magnetic field

To begin with, the fact that some vortices generated by a magnetic field can be unpinned
by a supercurrent flow lower than the critical current density as evidenced by Fig. 7.2 can be
related to the low temperature upturn of the upper critical field observed in similar samples (see
Section 4.4). Indeed, this upturn has been observed in dirty superconductors and explained by
the pinning of vortices by the spatial fluctuations of the order parameter due to disorder [98].
In this model, the transition to the normal state occurs when the vortex glass melts, but for a
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larger magnetic field than the one predicted by the mean field theory which does not take into
account the strong pinning of the vortices by disorder. In our Nb\Au samples, we observe a
regime where the vortex glass has at least partially melted since vortex motion is evidenced by
Fig. 7.2. Yet, perfect conductivity is not lost and the sample is still superconducting. Therefore,
this regime corresponds to vortex glass fluctuations in the superconducting state such as those
at the origin of the upturn of the upper critical field.

Influence on the critical current

To interpret the dependence of the critical current on the DOS at the injection position for a
constant tunneling setpoint, one should pay special attention to the power effectively deposited
by the tip into the nanowire. Indeed, the two situations where tunneling occurs in a vortex
core and in a superconducting region are very different at low bias energy. For instance, when
the bias voltage Vb is equal to ∆0/e in a superconducting region with a hard gap, only electrons
with an energy ∆0 can tunnel, whereas in a vortex core (with a nearly flat DOS), tunneling
is allowed for all electrons in the energy range [0; ∆0] and the average energy of tunneling
electrons is ∆0/2.

In the following we assume the tip to be perfectly metallic and therefore having a flat DOS
over the full energy range under consideration. The DOS is also assumed to be metallic in the
vortex cores and is be given by Usadel equations (see Subsection 2.2.2) in the superconducting
regions. We will consider elastic tunneling with a transmission coefficient independent of the
electron energy (see Section 1.2). Then, the tunnel current is given by Eq. 1.5 which simplifies
under our assumptions to:

It(Vb) =
1

eRT

∫ ∞
−∞

dE Ns(E)(fs(E)− ftip(E − eVb)) (7.1)

with RT the resistance of the tunnel junction, Ns the DOS of the sample and f the Fermi-Dirac
distribution where the subscripts tip and s refer respectively to the tip and the sample. Using
the same tunneling rates than in Section 1.2 leading to Eq. 1.5, but considering the energy and
not the charge transferred by the tunneling electrons, one obtains the net power transfer from
the tip to the sample [80]:

Pcool(Vb) =
1

e2RT

∫ ∞
−∞

dE (E − eVb)Ns(E)(ftip(E − eVb)− fs(E)) (7.2)

The subscript cool is used since this power is extracted from the tip to the sample and therefore
cools the tip. This effect will be addressed in Section 8.2. Since the source applying the bias
voltage dissipates a power ItVb in the tip-sample system, the power dissipated in the sample3

equals:
P = ItVb + Pcool (7.3)

Then, we define PS and PV as the powers effectively deposited in the sample when the tip
is located respectively in a superconducting region and a vortex region for the same tunneling
setpoint. Thus, for every value of Vb, RT in Eq. 7.2 has to be adjusted to provide the same It in
both cases (see Fig. 7.7a). Experimentally, this corresponds to the variations of the tip height.
Fig. 7.7b shows the ratio PS/PV as a function of bias voltage. As expected, a larger power is
injected in the superconducting regions than in the vortex regions for low bias voltages Vb. The
difference disappears for large Vb, where in both cases PS ≈ PV ≈ ItVb/2 as it was defined in
previous chapter. We took the base temperature of the fridge (50 mK) as the effective tem-
perature for the Fermi-Dirac distributions. This value has an influence on the divergence of

3In the case of a normal metal-normal metal junction the power is dissipated equally in both electrodes.
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(a) (b)

Figure 7.7: Influence of the DOS of the sample on the power injected by a normal
tip. (a) Illustration of the constant tunneling current mode: It− Vb characteristics of a tunnel
junction with a normal (N) and a superconducting (S) sample for different tunneling resistances
RT computed from Eq. 7.1. For a given setpoint (It, Vb) (black circle), the tunneling resistance
RT (driven by the tip height) has to be adjusted to different values depending on whether
the sample is normal (red) or superconducting (blue). In the example shown in the figure, the
tunneling resistance is doubled when the sample is normal. (b) Ratio between the power injected
in a superconducting region PS and the power injected in a vortex core (normal region) PV as
a function of bias voltage, for two different currents flowing in the superconductor. PV and PS
are computed from Eq. 7.2 for the same tunneling setpoint, and therefore for different tunneling
resistances RT . The sample DOS is flat in the vortex and is given by Usadel equations in the
presence of supercurrent in the superconducting region. An electronic temperature of 50 mK
for the Fermi-Dirac distributions and a typical ∆0 = 380 µeV are used (for larger electronic
temperatures, PS/PV is smaller). At low bias voltages, the tunneling current is exponentially
suppressed in the case of a superconducting sample, so PS is not defined unless RT vanishes,
which does not make sense in tunnel regime.

PS/PV when eVb < ∆0 but not in the eVb > ∆0 region which is the interesting regime for our
experimental conditions4.

In the experiment of Fig. 7.3, eV Ic
b ≈ 1.3∆0. For this value, PS ≈ 1.4PV when the critical

current is reached, so one cannot rigorously state that the experimental conditions are the same
since the average injected power is not constant. However, in this regime of injected powers
(P ≈ 0.5 pW), a change of 40% in P is not sufficient to explain a 30% difference in critical
current (for instance see Fig. 6.2b). Furthermore, such a correlation between the DOS and the
critical current as a function of the tip position persists even when the difference between PS
and PV is negligible (see below).

For eVb ≥ 3∆0, PS and PV differ by less than 10% at critical current. Since such a difference
corresponds roughly to the fluctuations of the tunneling current during the experiment, one
can consider that for eVb ≥ 3∆0 PS and PV are equal within our experimental accuracy.
This corresponds to the experimental situations of Fig. 7.4 and Fig. 7.5, so the higher critical

4To measure the critical current Ic under quasiparticle injection one needs to ramp Iwire from zero to Ic in
tunnel regime. For Iwire = 0, the absence of subgap states prevents a tunnel current to flow for too low bias
voltages values.
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current measured for quasiparticle injection in a vortex cannot be attributed to a smaller
injected power.

Then, this experimental observation must be due to the fact that the quasiparticle dynamics
depends on the local density of states. In contrast with the superconducting regions, the energy
gap is locally suppressed in the vicinity of the vortices, so that states with an energy below the
superconducting gap ∆ are available. Thereby some quasiparticles can loose energy (by any
inelastic process described in Section 6.5) and end up being trapped in the vortex region where
they are Andreev reflected at its boundaries and converted into Cooper pairs in the condensate.
This quasiparticle trapping therefore reduces the quasiparticle density in the superconducting
regions where the supercurrent flows so that the transport properties (such as the critical
current) are less affected.

It is interesting to notice that the correlation between the DOS at the injection position
and the critical current has been observed in the two completely different energy regimes where
eV Ic

b ∼ ∆0 and eV Ic
b � ∆0. In the case where eV Ic

b ∼ ∆0, a significant fraction of the
quasiparticle is directly injected by the tip in ”bound” states (where quasiparticles are trapped).
By contrast, when eV Ic

b � ∆0 the trapping of the quasiparticles injected in the vicinity of
the vortex involves relaxation processes. The relaxation time τrel is expected to be of the
order of the diffusion time towards the outside of the vortex since a non negligible fraction
of the quasiparticles is trapped. The diffusion time can be approximated by L2/D where L
is the vortex size and D the electron diffusion constant. With L ≈ 2ξGL this leads for our
samples5 to τrel ∼ 10 ps. This is consistent with our estimation of the relaxation time made
in Section 6.5 (p. 80) where we estimated τrel to be of the order of a few picoseconds when
eVb � ∆0.

The problem of vortex trapping was addressed theoretically in [99]. The quasiparticle
trapping rate of a single vortex is predicted to scale as γ1/3 where γ is the local depairing
energy. For an isolated vortex, γ = 1

2
∆( ξ

r
)2 where r is the distance to the vortex core and

∆ the superconducting gap far from the vortex. Because of this smooth spatial dependence,
the contribution of trapping in the peripheral regions may dominate the one in the vortex core
because these peripheral regions can be large. Their radius R is determined by the condition
∆ − ∆g(R) ≈ kBT where ∆g is the spectral gap. Indeed, beyond this distance thermally
activated quasiparticle escape overcomes quasiparticle trapping since the energy ”depth” of the
trap (approximated here by a potential well of height ∆−∆G) is too low.

Despite the refinement of the model, the authors of [99] could not account quantitatively for
experimental measurements of vortex trapping, the predicted ”vortex trapping power” being too
small by two orders of magnitude. Therefore, we think that the experimental results presented
in this PhD could provide further information about the trapping mechanism. Indeed, since
up to now experimental measurements probing vortex trapping are transport measurements
carried on with mesoscopic samples, the authors of [99] summed up the different contributions
to vortex trapping over the whole sample. In our experimental setup however, quasiparticle
injection is performed locally, which allows to distinguish between core and peripheral contribu-
tions. On the other hand, the problem is here theoretically more complex than the one treated
in [99] since both magnetic field and supercurrent are present. This requires new theoretical
developments which are beyond the scope of this PhD work.

Finally, we think that the shift between the vortex position and the trapping area, where
quasiparticle injection is less efficient in reducing the critical current, (see Fig. 7.3 and 7.4) could
be due to Doppler effect. This shift has been observed in the direction of the supercurrent flow,
and is absent in regions where there is no supercurrent (see Fig. 7.5). It is therefore probably
related to the supercurrent flow and its direction.

5For which ξGL ≈ 30 nm, l ≈ 1 nm and vF = 1.4× 106 m.s−1, see Table 4.2 and Section 4.2.
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In order to get a qualitative understanding of the situation, let’s consider the ballistic case
(mean free path larger than the coherence length). The effect of an uniform supercurrent flow
on the excitation spectrum can then be written as:

Ep =
√
ε2p + ∆2 + Edop (7.4)

with Ep the quasiparticle excitation energy, εp the kinetic energy of an electron in the state

described by its momentum −→p and Edop = −→p .
−→
Vs the Doppler energy where

−→
Vs is the superfluid

velocity [40]. The supercurrent density writes
−→
Js = ens

−→
Vs where ns is the density of super-

conducting electrons. Since the charge of the electron is negative, the Doppler energy Edop is
positive for quasiparticle states with a momentum in the opposite direction to the current flow,
and negative for states with a momentum in the same direction than the current. Thereby the
normalized single electron density of states dεp/dEp depends on the direction of the momentum
−→p (through the sign of Edop) as shown on Fig. 7.8a. In particular, electrons (quasiparticles
with a positive energy E ∼ ∆) occupying states with a momentum going in the direction of the
current (Edop < 0) can relax their energy and reach states with an energy slightly smaller than
the gap ∆. In contrast, electrons occupying states with a momentum in the opposite direction
to the current cannot. Reminding the definition of the spectral gap ∆G (energy below which
no energy states are available), this can be interpreted by a smaller spectral gap for electrons
going in the direction of the current.

(a) (b)

Figure 7.8: Influence of the Doppler energy on the trapping of electrons injected in
the vicinity of a vortex. (a) Normalized single electron density of states (DOS) computed
from Eq. 7.4 versus quasiparticle energy E for positive and negative values of the Doppler
energy Edop. For both curves, |Edop| = 0.1∆. (b) Schematics of a vortex in a current carrying
nanowire. The injection positions A and B are at the same distance to the vortex core. Two
available electron states are sketched by their momentum −→p . These two states have opposite
Doppler energies because of the different orientations of their momentum with respect to the

direction of the supercurrent flow (represented by the supercurrent density
−→
Js).

Then, let’s consider vortex trapping. Quasiparticles are trapped in a vortex when they
occupy energy states which are not available outside the vortex. This can be approximated by
a potential well, which ”depth” is the spectral gap far from the vortex ∆G. Therefore, assuming
that the trapping efficiency is proportional to the ”depth” of the potential well, electrons moving
in the direction of the current are less likely to be trapped than the ones moving in the opposite
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direction due to their spectral gap difference. Fig. 7.8b sketches electron injection by a STM
tip at two symmetric positions with respect to the vortex core. Electrons moving towards the
vortex are more efficiently trapped when injected in B than in A because of the orientation of
the current flow. Then, electron injection in B is less efficient in reducing the critical current
because of vortex trapping. This corresponds to the shift observed in Fig. 7.3 and 7.4.

Note that the local density of states probed by STS is an average over all momentum.
That is why as long as the Doppler energy is small compared to ∆, the main effect on the
density of states is a reduction of the peak height [64]. When the Doppler energy is large, this
also results in a modification of the order parameter and the situation is more complex [40].
This corresponds to the suppression of superconductivity by a supercurrent flow in the ballistic
limit. In contrast, our experiment corresponds to the diffusive case so the above analysis cannot
be straightforwardly applied. Indeed, the modification of the superconducting properties by a
supercurrent flow in the diffusive case is described by the depairing energy (see Subsection 2.2.2
for a theoretical description and Section 5.2 for experimental observation) instead of the Doppler
energy. By contrast with the Doppler energy, the depairing energy is proportional to the
square of the superfluid velocity, and is in our case of the order of 0.2∆0 at critical current.
This manifests by a significant modification of the density of states under a supercurrent flow.
Consequently, the influence of the Doppler effect on quasiparticle trapping in the diffusive
case rely on the following hypothesis. The electrons should be sensitive to a quasiparticle
density of states which depends on the direction towards which they are moving. This is
not straightforward since during a diffusive motion an electron often scatters and change its
momentum (at least its direction in the elastic case). However one can imagine than during
his displacement, the electron occupies energy states with a momentum which is in average
oriented in the direction of its displacement. Eventually, if this hypothesis is valid this would
explain the observed shift between the vortex position and the trapping area.

Influence on thermal conductivity

Fig. 7.6 shows that the nanowire overheating by quasiparticle injection in the dead-end strip is
enhanced by the presence of vortices in between the tip position and the nanowire. As in the
experiments described in Chapter 6, for large bias voltages6 the critical current is determined
by the electronic temperature where the transition driven by the current occurs, namely the
intersection between the nanowire and the dead-end strip in the present geometry. Since the
electronic thermal conductivity at a given temperature is higher when superconductivity is
destroyed as drawn in Fig. 6.6, the magnetic field increases the average electronic thermal
conductivity of the dead-end strip. Both the presence of normal regions (vortices) and the
finite depairing energy due to the magnetic field in the superconducting regions contribute to
this increase. Consequently, heat diffuses more easily from the tip to the nanowire, resulting in
a higher electronic temperature [17]. This also confirms the interpretation of our experiments
made in Section 6.5 according to which the contribution of the electrons to heat diffusion plays
a major role and exceeds the one of the phonons. Indeed, the phonon thermal conductivity is
rather decreased in the mixed state with regard to the zero field state, because the fluxoids act
as scatterers for the phonons [75]. Therefore, the increase of the total thermal conductivity can
only be due to the electrons contribution.

At intermediate temperatures (T ∼ 700 mK), the difference in electronic temperature with
and without magnetic field is larger. This suggests that the thermal conductance of the dead-
end strip further increases. This may be due to the decrease of the upper critical field Bc2

when temperature increases. This would result to a larger fraction of the dead-end strip in the

6For low bias voltages, one does not always observe a thermal behavior. The quasi equilibrium is then not
reached and the electronic temperature not defined. This is the subject of the following chapter.
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normal state, and therefore in a higher average thermal conductance.
Finally, when the electronic temperature approaches Tc, the difference disappears. In this

situation the local temperature between the tip and the nanowire probably exceeds Tc, so that
the dead-end strip is in the normal state no matter the value of B.

As expected, the magnetic field increases the electronic thermal conductivity.
Quasiparticle trapping by vortices has been evidenced at the microscopic scale

for the first time. This is of particular interest since the microscopic trapping
mechanisms remain not well understood theoretically.

The experiments revealing the motion of vortices under the action of a su-
percurrent while remaining in the superconducting state can be explained as a
manifestation of vortex glass fluctuations such as the upturn of the upper critical
field observed in Section 4.4.

7.3.2 Vortices induced by a supercurrent

As discussed in Section 5.1, the numerical solution of the Usadel equations in the presence of
inelastic scattering Γin presented in Subsection 2.2.2 fits well the experimental critical current
versus temperature behavior. Nevertheless, the values of Γin required to account for the critical
current thermal dependence are slightly larger than the ones extracted from STS. In addition, at
low temperatures the measured critical current density is about 20% smaller than the depairing
current density. In Section 5.1, we attributed this discrepancy to the uncertainty over the
thickness of the films. Since the presence of vortices induced by a supercurrent in our samples
cannot be discarded considering Likharev limit, we will consider here the possible influence of
vortex dissipation.

In order to cause such a dissipation, vortices must nucleate and be set in motion under the
effect of a supercurrent flow.

Vortex motion

Vortex motion is a complex topic since many interactions compete:

• The screening currents circulating around vortices create repulsive forces between them.
However, at fields above the lower critical field of a type II superconductor Hc1, it is
energetically favorable to keep the flux density constant, so the balance between these
two effects tend to create a vortex lattice.

• The disorder present in the system tends to pin the vortices on pinning centers (lattice
defects for instance) as the order parameter is already depressed there and the creation
of a normal core is less costly.

• When a current is flowing, the Lorentz force pushes the vortices in a direction perpendic-
ular to the current flow and the vortex axis (in the widthwise direction of the wire in our
geometry). When the current density overcomes a critical value Jpin, it sets the vortices
in motion.

• A viscous drag opposes the vortex flow, giving a constant velocity to the vortices.

• Finally, thermal energy helps the Lorentz force to overcome pinning.

The depairing critical current density Jdp computed in Subsection 2.2.2 is the ultimate
value for the supercurrent, at which the velocity of Cooper pairs becomes too high to carry
any additional current without dissipation. If Jpin < Jdp, when the current density overcomes
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Jpin, vortex flow induces an electric field parallel to the direction of the current, causing power
dissipation. Therefore perfect conductivity is lost and the measured Jc is not equal to Jdp.

Near critical temperature, the voltage across the wire Vwire increases with current before
the transition as discussed in Section 5.1 (see T/Tc = 0.91 and T/Tc = 0.95 curves of Fig. 5.1).
Besides, Fig. 7.9 displays the temperature dependence of the critical current density for several
samples together with theoretical curves computed with typical inelastic scattering rates Γin as
deduced from the DOS measurements (see Table 4.3: 0 < Γin/∆0 < 0.1). The inset shows the
critical behavior of Ic near Tc: Jc ∝ (1− T/Tc)3/2 but Jc is approximately half the value given
by Ginzburg Landau theory. One could rationally blame vortex flow dissipation for these two
observations. Indeed, Likharev [73] predicts that vortex flow should occur at about half the
depairing current.

Figure 7.9: Comparison between experimental critical current density and theoret-
ical models. Normalized critical current density (J0

dp,GL = 0.68∆
3/2
0

√
N0σN/~ is the Ginzburg

Landau result) versus reduced temperature T/T nwc . Dashed lines: numerical solutions of Usadel
equations for several values of inelastic scattering Γin. Solid line: Ginzburg Landau (GL) result
valid only near Tc: Jdp(t) = 2

√
2J0

dp,GL(1 − T/Tc)3/2. Inset: Jc/J
0
dp,GL versus 1 − T/Tc in log

scale.

However at low temperatures and within experimental accuracy, the measured critical cur-
rent density is close to the theoretical depairing current density for all samples7. Furthermore,
no detectable change in Vwire is observed at low temperatures (see Fig. 5.1) before the voltage
jump at Ic.

One should then distinguish two regimes for vortices: at low temperature vortex flow is
not detectable by contrast with high temperature (T/Tc close to 1). Nonetheless, if vortices
were present over the whole temperature range, their effect should be more dramatic at low
temperature where electronic cooling is weak (because of the low electronic thermal conductivity
at low temperature) and depinning force is strong (large current density). Experimental data
do not go in this direction. Furthermore, although the experiment described in Fig. 7.2 shows
that Ipin is smaller than Ic, no sign of vortex flow is detected at low temperature as opposed to

7The ratio between measured and theoretical critical current densities at low temperature is close to 1 as
evidenced by Fig. 7.9. The scattering of these values is attributed to the uncertainty over thickness and the fact
that the nominal thicknesses may include an eventual seedlayer could account for a systematic underestimate
(see Section 5.1).
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the vicinity of Tc. This suggests that vortices can penetrate under the action of a supercurrent
only near critical temperature.

Vortex nucleation

First of all, one should keep in mind that the stability of a vortex in a constrained geometry
depends on what it is originated from. Indeed, vortices induced by a supercurrent are theoret-
ically less stable than the ones created by an external magnetic field [73]. This explains the
counter intuitive statement that at low temperature vortices can nucleate under the action of
an external magnetic field while they cannot under the action of a current.

As expected by the Likharev limit, vortices turned out to nucleate much more easily in the
leads than in the nanowire under the action of a magnetic field (see Section 7.1). Since Likharev
limit is a bit versatile with respect to the vortex generation mechanism, another criterion can
be interesting. In narrow strips, a potential barrier opposes the vortex nucleation from the
edges (Bean-Livingston model). Thus, complete vortex expulsion occurs when the field is lower
than a barrier penetration field Bpen [105, 65]:

Bpen =
2φ0

πw2
ln

(
2w

πξ

)
(7.5)

with φ0 = h
2e

the superconducting flux quantum, w the strip width and ξ its coherence length8.
Without external magnetic field, the current density resulting in such a field on the edge of
the wire with λL � w, t and homogeneous distribution is9: Js = 2Bpen/(µ0w), leading to the
current density required for vortex penetration:

Jpen =
4φ0

πµ0w3
ln

(
2w

πξ

)
(7.6)

In the nanowires (w = 300 nm), one obtains Jpen = 14 MA.cm−2 using the typical value
ξ = 30 nm. For the 2.3 µm wide leads Jpen = 0.067 MA.cm−2.

In the nanowires, Jpen is about one order of magnitude larger than Jdp (see J0
c values in

Table 5.1). This estimation tends to confirm that current induced vortex flow does not occur
in the nanowire at low temperature since no vortex can nucleate.

As for the leads however, since their width is larger the current density reaches only about
10% J0

c but this value is close to Jpen. So, although we cannot exclude the nucleation of vor-
tices in the leads under the action of current, it is very unlikely that they are unpinned by the
Lorentz force because we observed in the nanowire that Jpin is of the order of Jdp. In any case,
the leads are behaving as thermostats and the dissipation due to the vortex motion would not
increase significantly the electronic temperature in the nanowire.

Near critical temperature, vortex flow induced by the supercurrent in the
nanowire can explain the slight difference between the measured critical current
and the theoretical depairing current. Although vortex nucleation in the leads
cannot be excluded, it does not affect the nanowire critical current.

8In the literature, the prefactor of Bpen varies since the critical field for complete vortex expulsion can
correspond to the field above which a vortex is absolutely stable (present result) or in a metastable equilibrium.
In any case, Bpen ∼ φ0/w

2.
9The vector potential within these conditions has already been computed using Maxwell-Ampere law and

Coulomb gauge: Eq. 2.21. The definition of the vector potential
−→
B =

−→
∇
−→
A leads to the present equation.
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As discussed in Chapter 6, the decrease of the critical current of our Nb\Au nanowires under
quasiparticle injection is driven by the injected power when the bias voltage is large compared
to the superconducting gap. A heat diffusion model in the quasi equilibrium limit accounts
quantitatively for the experimental observations.

In the present chapter, we investigate the case where the bias voltage is close to the gap
energy. In particular, we observe a non monotonic behavior of the critical current with respect
to the injected power when the bias voltage approaches the gap energy. This result is interpreted
by an out of equilibrium distribution function for the injected low energy quasiparticles due to
their slow energy relaxation rate.

8.1 Anomaly of critical current at low energy

Fig. 8.1 shows the measured critical current under injection of low energy quasiparticles in
the nanowire. Panels (a) and (b) correspond to two different positions. Data are displayed
as a function of bias voltage. For both panels, the left axis is the critical current for different
tunneling currents and the right axis is the measured normalized differential conductance (which
is proportional to the local DOS). For large bias voltages and a constant tunneling current, we
observe the same behavior than in Fig. 6.2: the critical current increases as Vb is lowered. This
is expected within the heat diffusion model developed in Section 6.5 since when the bias voltage
is reduced at constant tunneling current the power deposited in the sample and therefore the
overheating decreases. In contrast, when Vb becomes smaller than the energy gap we observe
a sharp decrease of the critical current despite the fact that the injected power continues
to decrease. Indeed, lowering Vb decreases the upper bound of the energy range over which
quasiparticles are injected, and the injection rate is fixed since the tunneling current is kept
constant. This non monotonous behavior of the critical current with Vb is all the more marked
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(a) (b)

Figure 8.1: Low energy anomaly. Left axis: critical current as a function of bias voltage
for different tunneling currents at T = 200 mK. Right axis: normalized differential conductance
versus bias voltage. (a) and (b) corresponds to two positions in the nanowire of sample N06.

that the tunneling current It is high. The observed behavior is symmetric with respect to the
sign of Vb, i.e. injecting electrons or holes with the STM tip as shown in Fig. 8.1b.

(a) It = 500 pA (b) It = 750 pA

(c) It = 1 nA (d) It = 2 nA

Figure 8.2: Low energy anomaly in the dead-end strip geometry. Left axis: critical
current as a function of bias voltage for quasiparticle injection at different positions. Right axis:
normalized differential conductance as a function of bias voltage. y is the distance between
the tip and the intersection between the dead-end strip and the nanowire. Panel (a) to (d)
correspond to different tunneling currents It (500 pA, 750 pA, 1 nA and 2 nA). Sample N15.
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In the dead-end strip geometry, we observe the same behavior as shown on Fig. 8.2. Nev-
ertheless, the anomaly weakens as the injection occurs further from the nanowire. Recent
measurements (not shown) show that the anomaly, although strongly weakened, is still visible
at the top of the dead-end strip. From this spatial dependence of the low energy anomaly, we
estimate the typical lengthscale for the disappearance of the anomaly to be comparable to the
dead-strip length (∼ 10 µm).

For injection of quasiparticles with an energy close to the gap, we observe a
low energy anomaly: the critical current sharply decreases when the bias voltage
is lowered although the injected power decreases.

8.2 Discussion of the fast thermalization regime

In this section, we discuss the anomaly in the fast thermalization regime. This corresponds
to the same assumption of quasi equilibrium than in Section 6.5, valid in the limit of a fast
energy relaxation rate for the injected quasiparticles: the electron system can be described
by an electronic temperature Te, corresponding to the measured critical current Ic(Te). We
therefore expect the temperature Te to be governed by the power deposited by the tip in the
sample consistently with our heat diffusion model of Section 6.5.

Figure 8.3: ItVb/2 as a function of electronic temperature Te. Dashed line is the large
bias thermal behavior ItVb = κ(T 4

e − T 4
b ). Same experimental data than Fig. 8.1b.

Fig. 8.3 presents the same experimental data than in Fig. 8.1b by plotting the product
ItVb/2 as a function of Te. The dashed line is the large bias thermal behavior discussed in
Chapter 6: ItVb = κ(T 4

e − T 4
b ) with κ = 59 pW.K−4 and Tb = 215 mK (see Fig. 6.3). For

eVb � ∆0, the injected power is in good approximation equal to ItVb/2 and one recovers the
thermal behavior. In contrast, for eVb ∼ ∆0 the power effectively deposited by the normal tip
in the superconducting sample differs from ItVb/2. Indeed, according to Eq. 7.2, this power
depends on the DOS Ns of the sample and on the tip and sample temperatures Ttip and Ts. As
illustrated by Fig. 8.4, when Vb approaches the energy gap ∆, only the most energetic electrons
of the tip can tunnel, resulting in an excess power deposited in the sample and a cooling of the
normal tip. Since this low bias voltage regime also corresponds to the low energy anomaly, one
has to take into account the heat flow in the normal-insulator-superconductor (NIS) junction
to correctly interpret the anomaly. We will also address the effect of inelastic tunneling on the
power deposited in the sample.
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Figure 8.4: Principle of NIS cool-
ing. Sketch of the energy-band diagram
of a Normal-Insulator-Superconductor
(NIS) junction biased by a voltage V .
When eV < ∆, only the most energetic
electrons (e) can tunnel into the super-
conductor, thus cooling down - respec-
tively heating up - the electron gas of
the N - respectively S - electrode. Taken
from [42].

Contribution of the heat flow in the NIS junction

To account for such an effect, one needs to compute the power P effectively injected in the
sample as a function of the tunneling setpoint (It, Vb) when the critical current is reached. This
can be done using Eq. 7.2 and 7.3 given the density of states of the sample at critical current
Ns, the tip and sample temperatures Ttip and Ts, and the tunneling resistance of the junction
RT . Indeed, the latter is adjusted experimentally by varying the tip height to keep the tunnel
current It constant when Vb is changed. Then, Usadel equations (see Subsection 2.2.2) give Ns

at critical current. Eq. 7.1 provides the tunneling resistance RT corresponding to the tunneling
setpoint (It, Vb), Ns, Ttip and Ts. By definition, Ts is taken equal to the electronic temperature
Te corresponding to the measured critical current Ic(Te). Finally, Ttip is the only adjustable
parameter.

(a) Ttip = 400 mK (b) Ttip = 900 mK

Figure 8.5: Effective power deposited in the sample P versus electronic tempera-
ture Te for different tip temperatures Ttip. Same experimental data than Fig. 8.1b.

Fig. 8.5 presents the same experimental data than in Fig. 8.1b by plotting P as a function
of Te for different tip temperatures. As suggested by Fig. 8.4, the hotter the tip, the greater
the excess power deposited in the sample. Nevertheless, the electronic temperature is not con-
trolled by P since experimental data do not merge on an universal curve on Fig. 8.5, even for
very large values of the tip temperature Ttip. Although the value of Ttip is not well known
experimentally (see Subsection 1.2.2), it is for sure lower than 900 mK otherwise the energetic
resolution would not allow to probe the superconducting gap by STS. In addition, the anomaly
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persists for every value of tunneling current It and appears specifically for low bias voltages Vb,
suggesting that the energy of the injected quasiparticles plays a role independently from the
injection rate.

Electronic heating by the NIS junction made by the STM-sample system cannot
explain the anomaly.

Contribution of inelastic tunneling

As discussed in Section 1.2, the expressions used above for the current and heat flowing in a
tunnel junction (Eq. 7.1, 7.2 and 7.3) are valid in the case of elastic tunneling. In the inelastic
case, the critical ingredient is the probability P (E) for a tunneling electron to exchange an
energy E with its environment. We will try to understand here whether the absorption of
energy by the tunneling electrons can explain the anomaly. We will first try to quantify the
average energy that can be absorbed and then estimate its influence.

It can be shown both theoretically and experimentally1 that the tunnel current versus bias
voltage It(Vb) characteristic of a NIS tunnel junction in the inelastic case is strictly equivalent
to the one obtained in the elastic case (without coupling to its environment) with a modified
density of states for the superconducting electrode. This modified density of states nmod(E)
is equal to the convolution between the effective density of states of the sample ns(E) and
the P (E) function. When measuring experimentally the density of states by tunneling spec-
troscopy, it is therefore impossible to distinguish between the influence of the coupling with
the environment (through P (E)) and the intrinsic properties of the superconductor (through
ns(E)), such as deviations from the BCS theory. In particular, photon assisted tunneling due
to a hot electromagnetic environment can be described2 by a Lorentzian form for P (E). The
convolution with this P (E) function transforms the BCS density of states into the Dynes form
of Eq. 4.6, where Γin is the half width maximum of P (E).

Consequently, in our case one cannot disentangle the possible origins of the finite inelastic
scattering term Γin necessary to fit the spectroscopy measurements (see Section 4.5). However,
these values of Γin allow to put an upper bound for the average energy that can be deposited
into the sample by inelastic tunneling due to the coupling with a hot environment. Indeed,
in the case where the only origin of the term Γin is then inelastic tunneling, the full width at
half maximum of the function P (E) characterizing the energy transfer from the environment
is equal to Γin. Since the intrinsic properties of the superconductor can also contribute to a
finite value of Γin, the value extracted from spectroscopy measurements is the largest possible
value of the full width at half maximum of the function P (E). Therefore, the average energy
exchanged by an electron during a tunneling event is at most of the order of the extracted
Γin ∼ ∆0/100 (see Table 4.3).

Then, in order to understand whether such an additional heat flow from the environment
can result in the low bias anomaly, we will consider the most favorable case: for each tunneling
event an additional energy of the order of the full width at half maximum of the function P (E)
(∼ Γin) coming from the environment is deposited in the sample. This consists in adding Γin to
the term E−eVb in the expression of the power transferred from the tip to the sample (Eq. 7.2).
Using the expression of the tunneling current (Eq. 7.1), the contribution of the environment
on the deposited power is equal to ItΓin/e ∼ 10−15 W with the typical values It = 1 nA and
∆0 = 200 µeV. The power coming from the environment by inelastic scattering is therefore

1Under the assumption of symmetric distribution function f(E) = 1−f(−E) and probability P (E) = P (−E),
see [88] supplementary.

2Under the assumption of a purely resistive environment in thermal equilibrium at Tenv, in parallel with
the capacitance of the junction. The energy exchanged during the tunneling event must also be smaller than
kBTenv, see [88].
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negligible compared to the total power deposited in the sample (see Fig. 8.5). Although this
argument is not a rigorous demonstration3, it addresses the influence of a hot environment and
suggests that it cannot explain the anomaly.

Finally, the anomaly cannot be explained by overheating effects in the quasi
equilibrium limit.

8.3 Discussion of the slow thermalization regime

By contrast with the previous section and Section 6.5, we discuss the case where a local elec-
tronic temperature cannot be defined because the distribution function of the electrons is out
of quasi equilibrium.

To begin with, when the energy of the injected quasiparticles E is approaching the gap
energy ∆, the energy relaxation process described in Section 6.5 becomes slower. In particular,
both electron phonon scattering and recombination times diverge for E → ∆ [59]. Therefore
the relaxation rate τ−1

rel becomes too small to ensure quasi equilibrium. Notably, this is in
agreement with the observation made in previous section: the critical current anomaly at low
bias voltages cannot be simply explained by the heat balance of the sample in quasi equilibrium.

Then, one should discuss the value of the bias voltage Vb corresponding to the crossover from
the quasi equilibrium regime (at large Vb) to the out of equilibrium regime (at low Vb). Such
a crossover occurs when the relaxation rate is not sufficient to ensure that quasi equilibrium is
reached over the lengthscale corresponding at least to the critical transition region which typical
scale is given by the nanowire width w. This leads to the inequation (τrelvF l/3)1/2 & w. Using
typical values: l ≈ 1 nm, vF = 1.4×106 m.s−1 and w = 300 nm one obtains τrel & 200 ps. More-
over, quasiparticles mainly relax their energy through electron-phonon scattering4. The associ-
ated rate τ−1

e−ph vanishes for energies close to the gap energy ∆: for Nb, τe−ph(E = 2∆) ≈ 70 ps
while τe−ph(E = 1.5∆) ≈ 500 ps and τe−ph(E → ∆) → ∞. Consequently, one expects the
crossover to occur for E = eVb ≈ 1.5∆0. Qualitatively, this corresponds to the emergence of
the critical current anomaly observed in Fig. 8.1 and 8.2. Quantitatively, the upturn is experi-
mentally observed for values closer to ∆0. This discrepancy can be understood by considering
the origin of the divergence of τe−ph. Indeed, at the gap edge the quasiparticles cannot scat-
ter and relax their energy by emitting a phonon because they are in the lowest energy state.
However, in the presence of depairing due to the supercurrent, additional low energy states are
available (see Section 5.2) and the coherence peaks of the DOS are weakened. One therefore
expect the divergence of τe−ph to be less sharp and to occur at lower energies than predicted
in [59], as measured experimentally here.

We will now investigate the role of the out of quasi equilibrium distribution function on
the superconducting properties of the samples. Two types of non-equilibrium can be realized
depending on the nature of the quasiparticles, which continuously changes from holes (far

3This would require to compute the power transferred to the sample in the inelastic tunneling framework
given the exact P (E) function. Nevertheless, the P (E) function is difficult to calibrate. Indeed, it depends on
the choice made to model the environment, and requires to perform spectroscopy measurements knowing the
density of states of both the tip and the sample. The environment characteristic can then be deduced from the
fit of Coulomb blockade effects for example. For a superconducting sample, one could imagine performing the
measurement above critical temperature or above upper critical field in order to obtain a flat density of states.
Unfortunately our energy resolution is not good enough to detect Coulomb blockade at high temperatures and
our experimental setup does not provide large enough magnetic fields.

4At low temperatures, both recombination time and electron-electron scattering times are larger than the
electron-phonon scattering time (see Section 6.5 and [59])
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from the Fermi level) to electrons (far above the Fermi level). Note the fractional charge of
quasiparticles within the range of the energy gap around the Fermi level.

The first type of non-equilibrium is referred to as charge imbalance and corresponds to the
case where populations of the electron-like and the hole-like quasiparticles branches do not
coincide. This results in a net quasiparticle charge density Q∗.

The second type of non-equilibrium is referred to as energy imbalance and is characterized
by a distribution function which is particle-hole symmetric. If this state can be approximated by
a quasiparticle temperature, one recovers the quasi equilibrium limit investigated in Section 6.5.

8.3.1 Branch imbalance

At low temperatures, injection of tunnel current in a superconductor induces an imbalance in
the population of electrons and holes5. The associated charge imbalance per unit volume Q∗ is
defined6 by:

Q∗ = eN0

∫ ∞
−∞

dε q(ε)f(ε)

= eN0

∫ ∞
0

dε
ε

E
(f(ε)− f(−ε))

(8.1)

where N0 is the density of states at Fermi level, E =
√
ε2 + ∆2

0 is the quasiparticle excitation
energy, ε is the normal state electron energy, q(ε) = ε/E is the effective quasiparticle charge
in units of the charge of the electron e and f(ε) is the quasiparticle distribution function [19].
This charge or branch imbalance relaxes over a timescale τQ called branch mixing time. Note
that charge neutrality is not broken since a variation of the Cooper pair density compensates
it.

Near critical temperature, relaxation of the branch imbalance is dominated by inelastic
processes involving a phonon: inelastic scattering of a quasiparticle from one branch to another
and pair breaking or recombination processes involving two quasiparticles of the same branch.
At low temperatures however, the associated timescale τ inQ diverges for quasiparticles close
to the gap edge [59]. Then, some elastic processes can also contribute to branch mixing.
For instance, at low temperature charge imbalance relaxation resulting from elastic impurity
scattering in the presence of pairing anisotropy dominates charge imbalance relaxation resulting
from inelastic processes [107]. External perturbations leading to pair breaking such as magnetic
field or supercurrent also contribute to branch mixing [71]. The associated rate for elastic pair
breaking expresses [52]:

1

τ elQ
≈ γ

~
∆2

0

E
√
E2 −∆2

0

(8.2)

where γ is the depairing energy7. In the case of an homogeneous supercurrent flow γ is
related to the current through Eq. 2.18. One can give an estimate for the branch mix-
ing time τ elQ in our samples since typically γ ∼ 0.2∆0 (see Fig. 2.3) and ∆0 ≈ 200 µeV:
τ elQ (E = 2∆0) ≈ 0.2∆0/~ ≈ 60 ps and this time decreases as E approaches ∆0. Thus, for E
close to ∆0 branch imbalance is suppressed over a timescale τ elQ of a few picoseconds corre-
sponding to a quasiparticle diffusion time of a few tens of nanometers.

5This is only possible in the presence of a superconductor and when kBT � ∆, so that for instance when
eV > ∆ (see Fig. 8.4), only electrons and no holes can be injected.

6As pointed out in [19], one can define Q∗ with or without weighting the branch imbalance effect by the
fractional effective charge of the quasiparticle q(ε). In the latter case, one gets Q∗ = eN0

∫∞
0
dε(f(ε)− f(−ε)).

7As discussed in previous note, the definition of Q∗ depends on whether we are considering the net charge
imbalance or the occupation number branch imbalance. Then, [108] gives a sightly different expression:

1/τelQ = 4γ
~

∆2
0E

(E2−∆2
0)3/2

. One still recovers both the same order of magnitude at large energies and the diver-

gence at the gap edge.
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Consequently, branch imbalance is negligible in our samples whatever the values
of bias voltage. Indeed, at large Vb the fast energy relaxation of the injected quasiparti-
cles ensures that quasi equilibrium is locally reached (see Section 6.5), and at low Vb, branch
imbalance is prevented by elastic quasiparticle scattering due to the supercurrent flow.

8.3.2 Energy imbalance

As discussed above, Q∗ = 0 and the electron-like (ε > 0) and hole-like (ε < 0) branches of
the quasiparticle spectrum are equally populated because of the fast (elastic) branch mixing
time. However, quasi equilibrium is not reached over the lengthscale of the nanowire width w
because of the slow (inelastic) energy relaxation time and this manifests experimentally by a
non thermal behavior of the critical current.

Then, the out of equilibrium state is characterized by an energy imbalance, which enters
the superconducting properties via the self consistent gap equation:

1 = N0Veff

∫ ~ωD

0

dε
1− f(ε)− f(−ε)√

ε2 + ∆2
(8.3)

where Veff is the BCS pairing potential, ωD the Debye frequency and f the distribution func-
tion which can deviate from the usual Fermi Dirac distribution [8]. This equation is valid in
the absence of depairing energy and within the approximation that the distribution function is
symmetric in electrons and holes with respect to the Fermi surface, which is a stronger approxi-
mation that simply Q∗ = 0. It gives however a good qualitative understanding of the situation.
Indeed, the system is driven out of quasi equilibrium when f(ε) + f(−ε)− 2fFD(ε) 6= 0 where
fFD is the Fermi Dirac distribution. In particular, ∆ is all the more affected as f differs from
fFD close to the Fermi level because of the energy denominator. This can either result in an
enhancement (see Section 3.3)8 or a destruction of superconductivity depending on whether
low energy quasiparticles are extracted or injected. The latter case corresponds to the regime
of injection of quasiparticles by the STM tip close to the gap energy and explains qualitatively
the low energy anomaly presented in Fig. 8.1.

For a quantitative understanding, we will deal with the more general gap equation given
by Eq. 2.10 where θ obeys Usadel equations (Eq. 2.2). Since branch imbalance has been
discarded, we will assume for simplicity that the distribution function f is symmetric with
respect to hole and electron like excitations (f(ε) = f(−ε) or equivalently f(E) = 1 − f(−E)
where E and ε are respectively the quasiparticle and normal-state electron energies). The gap
equation therefore follows:

∆ = N0Veff

∫ ~ωD

0

dE (1− 2f(E))=[sin θ] (8.4)

We will investigate the situation where a constant tunneling current is injected by the tip
(Eq. 7.1). This results in an excess population rate at each energy level equal to the current at
that level divided by the electronic charge:

1

e2RT

Ns(E)(f(E)− ftip(E − eVb)) (8.5)

where Ns = <[cos θ] is the normalized density of states of the superconductor, ftip the distri-
bution function of the tip and Vb and RT respectively the bias voltage and the normal state

8Eq. 8.3 keeps track of the electron or hole like character of the quasiparticles using ε instead of E =
√
ε2 + ∆2

as a variable. One can however recover Eq. 3.3 by making the associated variable change.
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resistance of the tip-sample tunnel junction. The inelastic relaxation of the injected electrons
is simply treated by a decay rate given by:

VN0Ns(E)
f(E)− fFD(E)

τrel
(8.6)

where V is the characteristic relaxation volume, N0 the density of states at Fermi level, fFD the
quasi equilibrium distribution function and τrel the energy relaxation time. The steady state
occupation of the levels at energy E is determined by the balance between Eq. 8.5 and Eq. 8.6:

f(E) =
fFD(E) + Γneqftip(E − eVb)

1 + Γneq
(8.7)

where Γneq = τrel/(VN0e
2RT ).

Finally, we are interested in the value of the critical current. Assuming an homogeneous
current density (which is a reasonable approximation in our samples as discussed in Section 5.1),
the Usadel equation is given by Eq. 2.20, and the supercurrent writes Is = JsS with S the wire
section and Js the supercurrent density. The latter is given by Eq. 2.11 and this simplifies to:

Is
Iγ

=

√
γ

∆0

Uneq
s

∆0

(8.8)

where Iγ is given by Eq. 2.18b and Uneq
s =

∫∞
0
dε (1 − 2f)=[sin2 θ]. Eventually, the critical

current is given by the maximum of the function Is(γ).
Then, the above set of equations can be solved self consistently as follows. For a given Vb,

Eq. 8.7 gives the out of equilibrium distribution function f , which enters into the determination
of ∆ and θ through the gap (Eq. 8.4) and the Usadel (Eq. 2.20) equations. Since It (given
by Eq. 7.1) is set constant, RT has to be adjusted according to the variations of the density of
states Ns = <[cos θ] and finally, RT affects again f through Eq. 8.7.

The resolution can be performed for any of the following remaining parameters:

• The distribution function of the tip ftip. This distribution is taken equal to the equilibrium
Fermi-Dirac distribution at a temperature Ttip. The temperature of the tip is equal to
Teff extracted from spectroscopy measurements (see discussion of Subsection 1.2.2 and
values in Table 4.3).

• The distribution function fFD. This distribution is taken equal to the equilibrium Fermi-
Dirac distribution at a temperature Te. The temperature Te is the quasi equilibrium
temperature towards which the electron system relaxes by inelastic scattering.

• The inelastic scattering term Γin appearing in Usadel equation (Eq. 2.20). It is necessary
to account for the experimental tunnel current versus bias voltage It(Vb) and differential
conductance dI/dV measurements (see Section 4.5 and 5.2). It will be taken equal to the
value extracted by tunneling spectroscopy given in Table 4.3. Its physical interpretation
will be discussed below.

• The parameter Γneq. Physically, Γneq is related to the energy relaxation time τrel which
can be energy dependent.

Introducing the relaxation length of the out of equilibrium quasiparticles
√
Dτrel, one can

approximate the volume V explored by these out of quasi equilibrium quasiparticles by√
Dτrelwt (valid when

√
Dτrel > w, t) whereD = vF l/3 is the diffusion constant and w and

t are the width and thickness of the nanowire. This leads to Γneq =
√
τrel/(

√
DRTwtN0e

2).
Therefore, using N0 = 1047 J−1.m−3, vF = 1.4×106 m.s−1 and l = 1 nm (see Section 4.2),
we will deal in the following with the parameter τrel.
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First of all, we will check that this model can account for the measured critical current with
reasonable values for the relaxation time τrel. As discussed in Chapter 6, the quasi equilibrium
temperature of the sample Te is related to the injected power and drives the critical current
dependency for eVb > ∆0 (see Fig. 8.1 and 8.3). In order to investigate the eVb ≤ ∆0 regime,
we will set for simplicity, and only for the next computation, Te constant and equal to the
temperature of the sample holder. The numerical prediction of the model is compared to
experimental data on Fig. 8.6. Experimental results correspond to It = 1250 pA curve of
Fig. 8.1a (sample N06). The parameters Ttip = 540 mK, Γin = 0.03∆0, ∆0 = 235 µeV (see
Table 4.3) and Te = 200 mK are used in our model as already determined quantities. The
numerical solution is plotted for τrel = 40 and 90 ns9 (solid lines). The model predicts the
essential feature of the low energy anomaly, being the decrease of the critical current together
with Vb. The eVb > 1.5∆0 region is not investigated here since it is related to variations of Te.

Figure 8.6: Predictions for the
low energy anomaly with en-
ergy independent relaxation
time and fixed quasi equilib-
rium temperature. Crosses: ex-
perimental data. It = 1250 pA.
Sample N06. Solid lines: numerical
solution for two values of the relax-
ation time τrel. Circles correspond
to the curves extracted in Fig. 8.7.
Yellow arrow is an indicator for the
following discussion.

(a) τrel = 90 ns (b) τrel = 40 ns

Figure 8.7: Deviations of the distribution function from quasi equilibrium due to
quasiparticle injection. f − fFD as a function of quasiparticle excitation energy E. f is the
distribution function at critical current and in the presence of tunnel injection of quasiparticles
at a constant tunneling current It = 1250 pA and different bias voltages Vb. The two panels
correspond to two values of the relaxation time τrel. Extracted from the numerical computation
of Fig. 8.6.

9For these values, the assumption
√
Dτrel > w, t is readily checked.
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Selected distribution functions f obtained during the numerical computation of Fig. 8.6 are
plotted in Fig. 8.7. The two panels correspond to two values of the relaxation time τrel. f is
the distribution function of the sample at critical current and in the presence of quasiparticle
injection. Injection is performed at a fixed tunneling current and for different bias voltages
corresponding to the colored circles of Fig. 8.6. The longer the relaxation time τrel, the larger
the distribution function deviates from its quasi equilibrium value fFD. In addition, when the
bias voltage Vb decreases, the deviations from quasi equilibrium correspond to energy levels
closer to the Fermi energy. Accordingly to the discussion below Eq. 8.3, this results to a
weakening of superconductivity (which manifests here as a reduction of the critical current)
together with a decrease of the bias voltage Vb.

As a comparison, Fig. 8.2 shows that the low energy anomaly is smoothed when the in-
jection position is moved along the dead-end strip further away from its intersection with the
nanowire. This is therefore an indirect measurement of the energy relaxation time: as the
injected quasiparticles diffuse in the direction of the nanowire, they relax towards a quasi equi-
librium. When the quasi equilibrium is reached, the energy imbalance described above is absent
and the critical current recovers its thermal equilibrium value. We estimated from Fig. 8.2 the
typical lengthscale for the disappearance of the anomaly with the injection position to be of
about 10 µm. By equating this to the relaxation lengthscale

√
Dτrel, one can estimate τrel to

be of the order of one hundred of nanoseconds. This order of magnitude is consistent with the
values given by our crude model described above.

As discussed in the beginning of this section, we theoretically expect τrel to diverge at the
gap energy, the divergence being smoothed by the depairing due to the supercurrent flow. For
Nb, we estimated τrel(E = 1.5∆) ≈ 500 ps, but τrel must be much larger at lower energies,
in line with the values of τrel estimated above. Consequently, the model developed in this
section can reasonably account for the anomaly.

Now that we have demonstrated that a non thermal distribution function can account
qualitatively for the downturn of the critical current, it is time to refine our model for a
better description of our measurements. We will adjust the quasi equilibrium temperature Te
consistently with the expected behavior of the quasi equilibrium limit investigated in Chapter 6,
using the law ItVb = κ(T 4

e − T 4
b ). This will account for the critical current dependency in

the eVb > ∆0 region, and provide an extrapolation of the quasi equilibrium temperature Te
towards which the system relaxes in the eVb < ∆0 region (see Fig. 8.3). Then, we will fit the
experimental critical current with our model at each voltage bias Vb as a function of the only
parameter τrel. This will provide the energy dependence of the relaxation time τrel. As an
example, for Te = 200 mK, we would find that τrel = 90 ns at an injection voltage Vb = 650 µV
since the theoretical curve hits the experimental data point (Vb, Ic/I

0
c ) = (650 µV, 0.91) as

shown by the yellow arrow in Fig. 8.6.
Fig. 8.8 shows the relaxation time versus bias voltage dependency extracted from Fig. 8.1a

data (sample N06). Consistently with the thermal behavior observed at large bias volt-
ages on the same sample (see Fig. 6.3 and 8.3), we set Te so that ItVb = κ(T 4

neq − T 4
b ) with

κ = 59 pW.K−4 and Tb = 215 mK. For large bias voltages (eVb > ∆0), the extracted relaxation
time is almost constant. In contrast, for eVb < ∆0 we observe a clear raise of the relaxation
time τrel when Vb is lowered. It must be emphasized here that τrel(Vb) is not rigourously equiv-
alent to τrel(E = eVb), the relaxation time of a quasiparticle at an energy E = eVb. Indeed, in

the experimental measurements quasiparticles are injected in an energy window [∆
I0c
G , eVb] with

∆
I0c
G the spectral gap at critical current.

As discussed above, we think that the low energy anomaly is related to the divergence of
the electron-phonon scattering time at the superconducting gap edge, because of the absence
of lower energy states available for the quasiparticles. It manifests here by an increase of the
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Figure 8.8: Extracted relax-
ation time versus bias volt-
age. Dashed vertical line corre-
sponds to the spectral gap at crit-

ical current ∆
I0c
G (see Section 5.2)

Grey hatched region corresponds to
a regime where the out of quasi equi-
librium model does not apply. Sam-
ple N06.

relaxation time τrel when eVb is close to the spectral gap at critical current ∆
I0c
G . Indeed, ∆

I0c
G

corresponds to the energy below which the density of states vanishes. In addition, we also think
that the contribution of impurity scattering should result in a saturation of τrel. However, our
experimental setup does not allow to probe τrel for values of the bias voltage arbitrarily close

to ∆
I0c
G /e. Indeed, when the density of states of the sample between the Fermi energy and eVb

is too small, it is impossible to reach tunnel regime without damaging the tip.
Eventually, for eVb & ∆0 the extracted τrel is constant. This corresponds to a regime where

the injected power governs the quasi equilibrium temperature Te and the critical current Ic.
The deviations of the distribution function of the sample from quasi equilibrium are negligible
in this regime. Therefore the values of τrel computed in the gray hatched area of Fig. 8.8 are
not physically relevant. They simply palliate the discrepancy between the phenomenological
law obeyed by the quasi equilibrium temperature Te (ItVb = κ(T 4

e − T 4
b )) and the experimental

critical current dependency. This puts an accuracy in our determination of τrel(Vb) in the low
bias regime of about 10 ns. This is significantly more than the relaxation time in the quasi
equilibrium regime.

Finally, we used in this section the inelastic scattering term Γin as a phenomenological
parameter to describe the experimental tunnel current versus bias voltage It(Vb) characteristics.
However, as mentioned above (see Section 8.2), a finite Γin term (appearing in Eq. 2.20 or
equivalently in Eq. 4.6 and affecting the effective density of states) can have several origins.

Among them is the finite quasiparticle lifetime against inelastic scattering, hence its name.
We already discussed in Chapter 6 and in the present section the fact that this time depends
on the energy of the quasiparticles. However, when Γin is extracted from spectroscopy mea-
surements, it is adjusted to fit the coherence peaks features of the density of states, and should
therefore correspond to the quasiparticle lifetime at the gap energy. This time is of the order
of h/Γin. In our samples, the values extracted from spectroscopy measurements (see Table 4.3)
lead to h/Γin ≈ 1 ns.

This value of 1 ns is smaller than the expected relaxation lifetime at the gap energy in the
absence of supercurrent. Indeed, this time is supposed to diverge (see the discussion at the
beginning of the present section and [59]). This discrepancy may lie in the other potential
origins of Γin. As discussed in Section 8.2, deviations from standard superconducting theory
and inelastic tunneling can contribute to a finite value of Γin, resulting in an overestimate of
the contribution of inelastic scattering to Γin. In this case, the value h/Γin is therefore smaller
than the quasiparticle relaxation lifetime.
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The low energy anomaly can be explained with a non Fermi Dirac out of equi-
librium distribution function within Usadel framework.

Experimental data allow to probe the relaxation rate of the distribution func-
tion, and its dependency with the quasiparticles injection voltage.

8.4 Conclusion

We evidenced experimentally a low energy anomaly in the critical current dependency of our
samples when injection of quasiparticles is performed at an energy close to the superconducting
gap. Indeed, the reduction of the critical current turned out to be larger when reducing the
energy of the quasiparticles while the rate is kept constant. First, we discarded overheating
effects by considering the influence of inelastic tunneling and additional electronic heating
due to the difference in the density of states of the sample and the tip. This signals the
breakdown of the heat diffusion model in the quasi equilibrium limit developed in Chapter 6.
We demonstrated that describing the quasiparticles with an out of equilibrium distribution can
account for the anomaly. Finally, using a simple model describing the injection of quasiparticles
and their relaxation we extracted an energy dependent relaxation time for the out of equilibrium
quasiparticles. Ongoing theoretical developments may probe more accurately the microscopic
mechanisms at stake, being the competition between diffusion and relaxation in the presence
of a depairing mechanism.
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Conclusion

The goal of this PhD work was to study superconductivity driven out of equilibrium with a
STM. To this aim, substantial efforts were made to fabricate, contact, and locate with a STM
a superconducting nanowire. Measurements of the critical current were performed to probe the
superconducting state. The STM tip was used as a spatially resolved quasiparticle injector to
drive the superconductivity out of equilibrium. The STM also enables to vary independently
the quasiparticle energy and the injection rate through the bias voltage or the tunneling current.
This new Scanning Critical Current Microscopy technique allowed, for the first time, to map
the critical current tuned by local injection of quasiparticles and evidenced two remarkable
behaviors:

• the critical current is substantially reduced by the tunnel injection of a quasiparticle
current that is six orders of magnitude lower

• the critical current is less affected when quasiparticle injection is performed in the vicinity
of a vortex

We prove that, for injection at bias voltages larger than the superconducting gap, the re-
duction of the critical current is due to a local overheating scaling with the injected power. We
developed a heat diffusion model that accounts quantitatively well for our measurements and
allows to estimate the electron-phonon coupling in our superconducting nanowires. We showed
that heat is mainly carried by the electrons and partly by the phonons. Our quasi equilibrium
model no longer applies when the energy of the injected quasiparticles is close to the super-
conducting gap energy. In this regime, the critical current reduction does not scale with the
injected power, but it is even further reduced as the bias voltage is lowered at constant injection
rate. We explained these observations as an out of quasi equilibrium energy distribution of the
quasiparticles. The model we developed for this regime allows to estimate the relaxation rate
of the quasiparticles as a function of the injection energy. Eventually, we showed that vortices
modify the electronic thermal conductivity and act as quasiparticle traps.

We studied in this thesis superconducting nanowires made of thin bilayers of niobium capped
with gold. We chose a conventional superconductor with a homogeneous density of states
to valid our new technique, and to be able to use standard theories. The study of other
materials with significantly different electron-phonon timescales or electron diffusion constants
could be interesting in several respects. First, the difference in timescales could result in
completely different behaviors. Second, this would further characterize other materials used in
superconducting circuits. This could for instance allow to discriminate between the different
mechanisms proposed to account for the operation of superconducting photon detectors [90].

Besides, our development of the Scanning Critical Current Microscopy technique paves the
way to the study of inhomogeneous systems at the mesoscopic scale. Disordered supercon-
ductors might be interesting since their peculiar quasiparticle dynamics is believed to account
for anomalous electrodynamics responses [16, 41]. In addition, percolative models of current
distributions are also predicted in strongly disordered two dimensional systems [34] and could
be tested by Scanning Critical Current Microscopy..
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We focused in this PhD work on devices with geometries ensuring homogeneous supercur-
rent density because of the large London penetration depth. It would be probably interesting
to study different geometries with the Scanning Critical Current Microscopy technique. For
instance the use of a wider nanowire could allow to investigate the spatial dependence of the
current and of the density of states generated by an inhomogeneous current distribution. Pe-
culiar nanowires shapes with sudden expansions of the wire lead to the fascinating current
crowding effect [20, 51] which may also be studied by Scanning Critical Current Microscopy.

Finally, the presence of magnetic vortices in our nanowires led to the interesting phenomena
that are quasiparticle trapping and modulation of the electronic thermal conductivity. We hope
that further investigations could give a better understanding of the vortex trapping mechanism
which is not yet well understood since discrepancies between theory and experiments persist [99].



Appendix A

Depairing due to the magnetic field
induced by a supercurrent

With an homogeneous current density and in a cylindrical geometry of diameter w, the vector
potential created by the supercurrent Is can be taken as1:

−→
A =

µ0Is
πw2

r2−→uz (A.1)

where r is the distance from the center of the wire and z axis is directed in the direction of the
current.

When w � λL, only an average effect of the vector potential is seen, and the associated
depairing energy averaged over the cross section is:

γA =
2De2

~
1

π(w/2)2

∫ w/2

0

dr

∫ 2π

0

rdθ|
−→
A (r, θ)|2

=
De2µ2

0I
2
s

24~π2

(A.2)

For wider wires, γA and therefore θ and
−→
J are not homogeneous, and the depairing energy is

maximum on the side of wire.
The ratio between the depairing due to an homogeneous supercurrent and the one due to

the induced magnetic field is (writing that Us ' π
2
∆0 and λL =

√
~

µ0πσN∆
):

γA
γI
' 1

48π2

(
w

λL

)4

(A.3)

It is therefore negligible under the assumption of w � λL (homogeneous current density).

NB: The calculation of Anthore [4] is a bit different for the averaging (the formula for the
vector potential in a cylinder geometry is used but the cross section average is done in a
parallelogram geometry accordingly to the related experiment).

1The study of the invariances and symmetries lead to
−→
A = A(r)−→uz. The equation ∇2−→A = −µ0

−→
J and the

choice A(r → +∞) = 0 leads to the equation given in text.
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Appendix B

BCS superconductor in the Usadel
framework

Starting from the simplified Usadel equation valid in the case of a bulk superconductor (constant
superconducting phase and no magnetic field) or of a wire with transverse dimensions smaller
than London penetration depth (ensuring an uniform superfluid velocity):

ε+ iγ cos θ = ∆
cos θ

sin θ
∇θ = 0

(B.1)

One can recover the BCS results in the absence of supercurrent and magnetic field (γ = 0 and
therefore ∆(T = 0) = ∆0):

tan(θ) =
i∆

ε
(B.2)

leading to:

θ =

{
π
2

+ i arctanh
(
ε
∆

)
if |ε| < ∆

i arctanh
(

∆
ε

)
if |ε| > ∆

(B.3)

=⇒

{
cos(θ) = |ε|√

ε2−∆2

sin(θ) = ∆√
∆2−ε2

(B.4)

• One recovers the BCS density of states:

Ns(ε) = N0 <(cos(θ)) =

{
N0

|ε|√
ε2−∆2 if |ε| > ∆

0 if |ε| < ∆
(B.5)

Note: This result is also valid with a Dynes parameter (ε→ ε+ iΓ).

• Besides, the quantity =[sin2 θ] = ∆2

∆2−ε2 is non zero only for |ε| → ∆ yielding to: [38]

=[sin2 θ] =
π

2
∆ δ(ε−∆) (B.6)

So that for kBT � ∆:

Us =

∫ ∞
0

dε tanh

(
ε

2kBT

)
=[sin2 θ]

Us =
π

2
∆

(B.7)
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• Using the properties of the function arccosh1, the gap writes in the low temperature limit
kBT � ∆:

∆ = N0Veff

∫ ~ωD

0

dε tanh

(
ε

2kBT

)
=[sin θ]

= N0Veff

∫ ~ωD

∆

dε tanh

(
ε

2kBT

)
∆√

ε2 −∆2

= N0Veff∆

∫ ~ωD/∆

1

dx
1√

x2 − 1

= N0Veff∆ ln

√(~ωD
∆

)2

− 1 +
~ωD
∆


(B.8)

Leading to the BCS result (since ~ωD � ∆):

∆ = 2~~~ωDe−1/N0Veff (B.9)

• Finally, the critical temperature Tc is defined by ∆(T → Tc) → 0. Using the fact that
~ωD � kBTc:

∆(Tc) = N0Veff

∫ ~ωD

∆(Tc)

dε tanh

(
ε

2kBTc

)
∆(Tc)√

ε2 −∆(Tc)2

1 = N0Veff

∫ ~ωD

0

dε tanh

(
ε

2kBTc

)
1

ε

1 = N0Veff

∫ ~ωD/2kBTc

0

dx
tanh(x)

x

1 = N0Veff

( [
tanh(x) ln(x)

]~ωD/2kBTc

0
−
∫ ∞

0

dx
ln(x)

cosh(x)2

)
1 = N0Veff

(
ln

(
~ωD

2kBTc

)
− α

)
(B.10)

with α =
∫∞

0
dx ln(x)

cosh(x)2
≈ −0.81878. Using the above result of Eq. B.9 one finally get:

∆

kBTc
= 4eα

∆

kBTc
= 1.764

(B.11)

1arccosh(x) = ln(
√
x2 − 1 + x) and argcosh′(x) = 1√

x2−1



Appendix C

Out of equilibrium physical quantities
in the Usadel framework

The development of the quasiclassical theory of superconductivity starting from non equilibrium
Green functions in the Keldysh formalism is presented in [18]. The diffusive limit leads to the
Usadel equations which merge in an unified formalism both equilibrium and out of equilibrium
properties. The physical quantities of interest can be computed from retarded and advanced
Green functions R and A (which are 2 × 2 matrices depending on position and energy) and
filling factor h.

The filling factor can be decomposed in an odd hod and an even hev functions of the energy,
and is related to the distribution function of electrons f through h = 1 − 2f . At equilibrium,
f is given by Fermi-Dirac distribution so heqod(ε) = tanh(ε/(2kBT )) and heqev(ε) = 0.

The retarded and advanced Green functions R and A must obey some normalization con-
ditions, which allow to parametrize it for practical purposes. Then [104, 18]:

R =

(
cos θ sin θeiφ

sin θe−iφ − cos θ

)
(C.1)

From which A can be obtained through:

A = −τ3R
†τ3 (C.2)

where † denotes the Hermitian conjugate, and the τ matrices are equal to the identity and
Pauli matrices:

τ0 = 1, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
(C.3)

so that:

A =

(
− cos θ∗ sin θ∗eiφ

∗

sin θ∗e−iφ
∗

cos θ∗

)
(C.4)

Thus, the single particle density of states is given by:

Ns = N0
1

4
Tr {τ3(R− A)}

Ns = N0<[cosθ]
(C.5)

where Tr denotes the trace of the matrix.
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The superconducting order parameter reads:

∆ =
N0Veff

8i

∫ ~ωD

−~ωD

dε Tr {(τ1 − iτ2) (hod(R− A) + hev(Rτ3 − τ3A))}

∆ =
N0Veff

4i

∫∫∫ ~ωD

−~ωD

dε
(
hod(sinθe

iφ− sinθ∗eiφ
∗
)− hev(sinθeiφ + sinθ∗eiφ

∗
)
) (C.6)

leading to Eq. 2.10, and Eq. 2.4 at equilibrium for a bulk superconductor (=[φ] = 0).

Defining the quantities

Q =
1

4
Tr
{
τ3

(
R
−→
∇R− A

−→
A
)}

Q = =
[
sin2 θ

−→
∇φ
] (C.7)

and

Mij =
1

4
Tr {δijτ0 −RτiAτj} (C.8)

where δij is the Kronecker delta, the current density can be written as:

−→
Js =

σN
2e

∫ ∞
−∞

dε
(
M33

−→
∇hev +Qhod +M03

−→
∇hod

)
(C.9)

leading to Eq. 2.11 and Eq. 2.6 at equilibrium for a bulk superconductor (Im[φ] = 0).

The thermal current is given by:

−→
Jth =

σN
2e2

∫ ∞
−∞

dε ε
(
M00

−→
∇hod +Qhev +M30

−→
∇hev

)
(C.10)

When the system is at local thermal equilibrium, hod(x, ε) = tanh(ε/2kBT (x)) and hev(x, ε) = 0.
Then:

−→
∇hod =

dhod
dT

−→
∇T

=
−ε

2kBT 2

(
1− tanh2

(
ε

2kBT

))
−→
∇T

(C.11)

Note:

M00 =
1

2
{1 + cos θ cos θ∗ − sin θ sin θ∗ cosh(2=[φ])}

M33 =
1

2
{1 + cos θ cos θ∗ + sin θ sin θ∗ cosh(2=[φ])}

M03 =
1

2
sin θ sin θ∗ sinh(2=[φ])

M03 = −M30

(C.12)

When φ is real, M03 = M30 = 0, M33 = cos(=[θ]) and M00 = cos(<[θ]).

Finally, in the quasi equilibrium limit
−→
Jth = −ke

−→
∇T with:

ke =
σN

2e2

∫∫∫ ∞
−∞

dε
ε2

2kBT 2

(
1− tanh 2

(
ε

2kBT

))
cos (<[θ]) (C.13)



Appendix D

Diffusion equations

D.1 Analytical resolution

Normal electrons channel

For practical reasons, one needs to solve the following equation (heat diffusion by electrons in
the absence of electron-phonon coupling or heat diffusion by phonons in the case Te = Tph and
in the absence of Kapitza coupling):

d

dx

(
wtαT n

dT

dx

)
= −P0δ(x− x0) (D.1)

which gives:

wtαT n
dT

dx
=

{
Cl if x < x0

Cr if x > x0
(D.2)

where by integrating Eq. D.1 between x0 − ε and x0 + ε one gets Cl − Cr = P0. Finally,
integrating Eq. D.2 between x0 and the left and right reservoirs where T = Tb and subtracting
these two equations one finally gets:

αt

n+ 1

[
T n+1(x)− T n+1

b

]( 1∫ x
xL
dx/w(x)

+
1∫ xR

x
dx/w(x)

)
= P0

∫ x0
a
dx/w(x)∫ x

a
dx/w(x)

(D.3)

where a = xL if x > x0 and a = xR if x < x0.

Phonons channel

One also needs to solve (heat diffusion by phonons in the case Te = Tph and in the presence of
Kapitza coupling):

d

dx

(
αphT

3wt
dT

dx

)
= −P0δ(x− x0) +Kw(T 4 − T 4

b ) (D.4)

For a constant width and using the variable change v = ( T
Tb

)4 one obtains:

d2v

dx2
= −γδ(x− x0) +

1

l2ph−s
(v − 1) (D.5)

with γ = 4P0

wtαphT
4
b

and lph−s =
√
αpht/(4K). Defining v(k) = 1√

2π

∫∞
−∞ dx v(x)e−ikx the

Fourier transform of v(x), we have:
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−k2v(k) = − γ√
2π
e−ikx0 + l−2

ph−s(v(k)−
√

2πδ(k))

v(k) =
γ√
2π

e−ikx0

k2 + l−2
ph−s

+
√

2πδ(k)
l−2
ph−s

k2 + l−2
ph−s

v(x) = 1 +
lph−sγ

2
exp

(
−|x− x0|

lph−s

)
T 4(x)− T 4

b =
2P0lph−s
wtαph

exp

(
−|x− x0|

lph−s

)
(D.6)

In the case of weak Kapitza coupling compared to phonon diffusion, lph−s � |x− x0| and lph−s
is actually the distance to the reservoirs xR. One then recovers the result of previous paragraph
with n = 3 and x = x0:

P0 =
αphwt

2xR
(T 4(x)− T 4

b ) (D.7)

D.2 Numerical resolution

The aim is to solve Eq. 6.9 with Tph = Tb and ke(Te) given by Eq. 6.5 (see Fig. 6.6). This quasi
one-dimensional equation also depends on the geometry through the function w(x). Using the
variable change s = Te/Tb one gets:

d

dx

(
wtke

ds

dx

)
= ΣwtT p−1

b (sp − 1)− P0δ(x− x0) (D.8)

To begin with, we will solve this equation separately on the left x ∈ [−∞;x−0 ] and right
x ∈ [x+

0 ; +∞] side of the singularity (Dirac delta function), which we will treat as a boundary
condition. Then, solving Eq. D.8 will be equivalent to solve this same equation without the
last right hand term but with the boundary condition in x0. Integrating between x0 − ε and
x0 + ε and considering that the integral of the first term of the right hand of the equation is
necessarily equal to 0 when ε → 0 since it corresponds to the heat transfer between electrons
and phonons in a vanishing volume one obtains:[

wtke(s)
ds

dx

]x+0
x−0

= −P0 (D.9)

which provides a relation between the boundary conditions of the derivative of s on the left
and right side of the tip position x0.

Defining the function g such as ke(Te) = αeTb g(Te) Eq. D.8 writes:

d2s

dr2
+

1

w(r)

dw

dr

ds

dr
+

1

g(s)

dg

ds

(
ds

dr

)2

=
1

l2R
(sp − 1) (D.10a)

lR =

√
αe

ΣT p−2
b

(D.10b)

In order to numerically solve the problem on a domain, we will solve the above equation
with two boundary conditions: one over the derivative of s in x+

0 or x−0 and another on s to
infinity (we will then set s → 1 or equivalently Te → Tb). We will also take advantage of the
symmetry when the injection position is at the center of the nanowire, while when the problem
becomes asymmetric because of the tip position we will solve separately the equation on both
domains until it converges to a solution where s is continuous in x0.



Appendix E

Determination of N15 critical
temperature

For some reason not completely understood, the superconducting transition of sample N15 is
unusual compared to previous samples.

Figure E.1: Resistance versus temperature of sample N15 Inset: Zoom on the resis-
tance plateau attributed to the nanowire.

The resistance versus temperature curve of sample N15 is wide by contrast with other
samples. We define T leadc and T absc as the extrapolation to R = 0 in linear scale of respectively
the beginning and the end of the transition as shown on Fig. E.1. We attribute the resistance
plateau in the middle of the transition to the nanowire (this assumption will be discussed), and
thus define T nwc as the temperature for which the resistance drops of Rnw

N from the plateau.
This method is of course less accurate than for the other samples, but the value of T nwc is
consistent with the extrapolation of the Ic(T ) curve as explained below.

The Iwire(Vwire) curves near T absc are shown on Fig. E.2a. For T < T absc , during a rising ramp
of Iwire, the first voltage jump defines the critical current (in blue), and for larger values of Iwire,
Vwire increases exponentially (probably because of overheating) and we think that it prevents
from measuring the voltage jump corresponding to the nanowire. For T ≥ T absc , a voltage jump
appears while some dissipation already occurs (Vwire > 0). The associated resistance jump is
equal to Rnw

n , so we attribute this transition to the nanowire critical current.
Fig. E.2b confirms this assumption. Indeed, the Ic(T ) curve corresponding to the first volt-

age jump (the blue curve jump of Fig. E.2a) is represented in blue points on Fig. E.2b and
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(a) (b)

Figure E.2: (a) Current voltage characteristics of sample N15 near T absc . The dashed lines
indicates exponential increase of the resistance. (b) Reduced critical current versus reduced
temperature. All the samples except N15 are in black. The critical current corresponding to
the first voltage jump (in blue) vanishes at T = T absc . The critical current attributed to the
nanowire (in red, for more details see text) collapses with other samples data.

does not collapse with the other samples data. In contrast, the Ic(T ) curve corresponding to
the second voltage jump attributed to the nanowire (the red, yellow and green curve jumps
of Fig. E.2a) is represented in red in Fig. E.2b and collapse on an universal curve with other
samples data.

Let’s now discuss the possible reasons for such a difference with other samples.
Some inhomogeneity in the leads could create a weak link with a lower critical temperature

that T nwc . Then, at low temperatures, the leads section being larger, the measured critical
current would correspond to the one of the nanowire. At larger temperatures however, when
the leads become resistive they dissipate some heat preventing to measure Ic up to T nwc .

Even if some inhomogeneities in the leads could explain a widening of the R(T ) transition,
it is not very likely that this would lead to such a large one. Thus, another hypothesis would be
that one part of the leads is warmed up (by some electrical short or thermal leak in the fridge).
The cooling would therefore be inhomogeneous, the lead which is not heated up being first
superconducting, then the nanowire, and finally the lead being warmed up. The point reaching
effectively T leadc would move in the wire direction as the bath temperature T is lowered, so the
total resistance decreases. When this point reaches the nanowire, no further reduction of the
resistance is observed since the critical temperature of the nanowire T nwc is lower than T leadc .
When the temperature in the nanowire reaches T nwc , the Rnw

N resistance drop occurs and the
plateau ends, and the other lead transition starts. This also explains why the resistance plateau
corresponds to half the normal state resistance. In this scenario, near critical temperature,
because of the uncontrolled additional heat flux in one of the leads, the current flow triggers
the transition of the latter in the normal state before the nanowire critical current is reached,
explaining the observed reduction of the critical current near Tabs.

To conclude, the exact reason for such a weird transition is not well understood, but the
small width of the nanowire ensures that at low temperatures (T ≤ 0.8T nwc ) the transition
driven by the current occurs in the nanowire. The critical current cannot be measured up to
temperatures arbitrarily close to T nwc , but the Ic(T ) curve still provides a thermometer
for the electronic temperature in the nanowire.
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Eds. Springer US, Boston, MA, 1969, pp. 427–442. (pp. 108, 109)

[41] Gao, J., Vissers, M. R., Sandberg, M. O., da Silva, F. C. S., Nam, S. W., Pappas, D. P.,
Wisbey, D. S., Langman, E. C., Meeker, S. R., Mazin, B. A., Leduc, H. G., Zmuidzinas, J.,
and Irwin, K. D. A titanium-nitride near-infrared kinetic inductance photon-counting detector and its
anomalous electrodynamics. Applied Physics Letters 101, 14 (Oct. 2012), 142602. (pp. 1, 127)
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ductors in the low-temperature limit. Physical Review B 81, 18 (May 2010), 184524. (p. 119)

[53] Ivry, Y., Kim, C.-S., Dane, A. E., De Fazio, D., McCaughan, A. N., Sunter, K. A., Zhao,
Q., and Berggren, K. K. Universal scaling of the critical temperature for thin films near the
superconducting-to-insulating transition. Physical Review B 90, 21 (Dec. 2014), 214515. (p. 55)

[54] Jaeger, H. M., Haviland, D. B., Goldman, A. M., and Orr, B. G. Threshold for superconductivity
in ultrathin amorphous gallium films. Physical Review B 34, 7 (Oct. 1986), 4920–4923. (p. 52)

[55] Jani, A. R., Brener, N. E., and Callaway, J. Band Structure and Related Properties of Bcc
Niobium. Phys. Rev. B 38, 14 (Nov. 1988), 9425–9433. (p. 43)

[56] Jennings, L. D., and Swenson, C. A. Effects of Pressure on the Superconducting Transition Tem-
peratures of Sn, In, Ta, Tl, and Hg. Physical Review 112, 1 (Oct. 1958), 31–43. (p. 48)

[57] Kabanov, V. V., and Alexandrov, A. S. Electron relaxation in metals: Theory and exact analytical
solutions. Physical Review B 78, 17 (Nov. 2008), 174514. (p. 80)

[58] Kaplan, S. B. Acoustic Matching of Superconducting Films to Substrates. J Low Temp Phys 37, 3-4
(Nov. 1979), 343–365. (pp. 75, 76)

[59] Kaplan, S. B., Chi, C. C., Langenberg, D. N., Chang, J. J., Jafarey, S., and Scalapino, D. J.
Quasiparticle and Phonon Lifetimes in Superconductors. Phys. Rev. B 14, 11 (Dec. 1976), 4854–4873.
(pp. 79, 80, 118, 119, 124)



142 BIBLIOGRAPHY

[60] Karasik, V. R., and Shebalin, I. Y. Superconducting Properties of Pure Niobium. Sov. Phys. JETP
57, 6 (1970), 1973. [JETP Letters 30(6), 1068 (1970)]. (p. 43)

[61] Karvonen, J. T., Taskinen, L. J., and Maasilta, I. J. Observation of Disorder-Induced Weakening
of Electron-Phonon Interaction in Thin Noble-Metal Films. Phys. Rev. B 72, 1 (July 2005), 012302.
(pp. 75, 83)

[62] Klapwijk, T. M., and de Visser, P. J. The discovery, disappearance and re-emergence of radiation-
stimulated superconductivity. Annals of Physics 417 (June 2020), 168104. (p. 34)

[63] Klein, N., Chaloupka, H., Müller, G., Orbach, S., Piel, H., Roas, B., Schultz, L., Klein,
U., and Peiniger, M. The effective microwave surface impedance of high Tc thin films. Journal of
Applied Physics 67, 11 (June 1990), 6940–6945. (p. 61)

[64] Kohen, A., Proslier, T., Cren, T., Noat, Y., Sacks, W., Berger, H., and Roditchev, D.
Probing the Superfluid Velocity with a Superconducting Tip: The Doppler Shift Effect. Physical Review
Letters 97, 2 (July 2006), 027001. (p. 109)

[65] Kuit, K. H., Kirtley, J. R., van der Veur, W., Molenaar, C. G., Roesthuis, F. J. G.,
Troeman, A. G. P., Clem, J. R., Hilgenkamp, H., Rogalla, H., and Flokstra, J. Vortex
trapping and expulsion in thin-film YBa 2 Cu 3 O 7 - δ strips. Physical Review B 77, 13 (Apr. 2008),
134504. (p. 112)

[66] Kupryanov, M. Y., and Lukichev, V. F. Temperature dependence of pair-breaking current in super-
conductors. Fiz. Nizk. Temp. 6:4 (Apr. 1980), 445. [Sov. J. Low Temp. Phys. 6, 210 (1980)]. (p. 25)

[67] Landau, I. L., and Parshin, I. A. Increase in the superconducting transition temperature of thin films
as a result of a normal metal deposition on their surface. Physica B: Condensed Matter 194-196 (Feb.
1994), 2339–2340. (p. 54)

[68] Larkin (late), A., and Varlamov, A. Theory of Fluctuations in Superconductors. Oxford University
Press. (p. 52)

[69] le Sueur, H., and Joyez, P. Room-Temperature Tunnel Current Amplifier and Experimental Setup
for High Resolution Electronic Spectroscopy in Millikelvin Scanning Tunneling Microscope Experiments.
Review of Scientific Instruments 77, 12 (Dec. 2006), 123701. (p. 15)

[70] Lee, P. A., and Ramakrishnan, T. V. Disordered electronic systems. Reviews of Modern Physics 57,
2 (Apr. 1985), 287–337. (p. 53)

[71] Lemberger, T. R. One-to-one correspondence of charge-imbalance relaxing mechanisms with pair-
breaking mechanisms in superconductors. Physical Review B 29, 9 (May 1984), 4946–4950. (p. 119)

[72] Levy-Bertrand, F., Klein, T., Grenet, T., Dupré, O., Benôıt, A., Bideaud, A., Bourrion,
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