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Chapter 1

Introduction

1.1 Context

The numerical simulation of complex physical phenomena still nowadays challenges the limits of
modern computer capabilities. Indeed, many mathematical models describing these phenomena
rely on partial di�erential equations and boundary value problems, whose explicit solutions often
have to be numerically approximated. This leads to the numerical inversion of linear systems.
Depending on the problem and on the requested solution accuracy, the solving may require massive
computations.

In practice, the matrices involved in these linear systems may verify certain properties. When
dealing with boundary integral equations which correspond to a boundary integral form of a given
boundary value problem, the product by these matrices has a strong relation with the N -body prob-
lems. A N -body problem corresponds to the task of computing all pairwise interactions between two
sets of particles according to a physical law. Their complexity is quadratic, which quickly becomes
prohibitive when the problem size increases. The boundary integral equations being formulated
on the boundaries of a domain, the particles coming from the discretization of these equations are
distributed on surfaces (see Fig. 1.1). This somehow reduces the dimension of the studied problem,
transforming a volumic formulation into a surfacic one. Another important feature of the integral
equations is their ability to deal with unbounded domains.

During the mid-80's has emerged a family of methods, said to be hierarchical and aiming at
reducing the complexity of solving N -body problems [23,30,115]. One of the most popular among
them [85] is the Fast Multipole Method (FMM) [115], that paved the way to the evaluation of
particular N -body problems with linear complexity, but at the cost of the introduction of a control-
lable error in the result. The hierarchical aspects of the FMM algorithms are related to the data
structures used to represent the particle distributions (i.e. the particle point clouds, referred to as
source and target particle distributions). These structures are tree representations of space referred
to as 2d-trees (binary trees in 1D, quadtrees in 2D and octrees in 3D). For a given target particle,
these 2d-trees permit to separate a near and a far �elds, corresponding to a partition of the source
particle distribution in two domains. Hence, the interactions between the target particle x and the
source particles in the near �eld of x are computed directly and the interactions with the source
particles in the far �eld are approximated.

One of the reasons of the FMM e�ciency is its multilevel structure: through various traversals
of the 2d-tree structures (see Fig. 1.2), multilevel approximations of the far �eld contributions can
be obtained and e�ciently evaluated. These multilevel representations of the far �eld contributions
exist both for the source and the target particles. By using the links between the di�erent levels,
fast reconstructions of the far �eld in�uence may be derived.

The e�ective realization of the 2d-tree structure leads to di�erent traversal algorithms depending
on the construction strategy. These traversals are a main component of the FMM algorithm since
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Figure 1.1: Result of a wave scattering simulation using boundary integral equations in an un-
bounded exterior domain with spherical interior boundaries.

they are directly related to the complexity estimates. There are two main kinds of FMM to con-
sider: the uniform algorithms mainly designed for uniform particle distributions and the adaptive
algorithms aiming at dealing with any particle distribution. These two approaches usually rely on
di�erent data structures.

Nevertheless, strong di�culties appear when one considers oscillatory problems, such as those
appearing in acoustics or electromagnetics. The explicit approximation of oscillatory kernels in
the high-frequency regime needs speci�c developments to be e�ciently applied. For the FMM
designed to evaluate the Helmholtz kernel in the high-frequency regime (i.e. corresponding to
highly oscillatory problems), the far �eld approximations lead to the explicit diagonalization of large
matrices [184]. The multilevel FMM algorithm is obtained in this context through interpolations of
the data for each 2d-tree node. As opposed to the hierarchical methods for non-oscillatory problems,
the application costs of these diagonal matrices and of these interpolations increase from the leaves
to the root of the 2d-tree, impacting the complexity of the overall method. There is thus a need for
optimizing these steps. In practice, speci�c integral discretizations over the sphere allow to achieve
a fast evaluation of the diagonal matrices while keeping fast evaluations of the data interpolations
through Fast Fourier Transform (FFT) applications.

On the other side, many FMM formulations are nowadays designed for any non-oscillatory N -
body problems. These methods are said to be kernel-independent. The multivariate polynomial
interpolation is an example of the techniques that can be used to derive kernel-independent FMM
formulations [103]. When such formulation is directly applied to oscillatory problems, their perfor-
mances deteriorate with the increase of the computational domain size in terms of wavelength. In
practical engineering applications, these domains can be several hundreds or thousands wavelength
wide. Fortunately, combined with a directional approach [94,174] that consists in modifying the far
�eld shape, compared to the non-directional methods, to take into account the oscillatory behavior
of the approximated functions, these kernel-independent methods can be extended to oscillatory
problems in the high-frequency regime. An interesting property of these approaches is that they
preserve the e�ciency of the formulation in the low-frequency regime.

The polynomial interpolation-based FMMs rely on additional fast algorithms for the far �eld
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Figure 1.2: Three level quadtree representation of a particle distribution (blue dots).

contribution evaluations. These algorithms are often based on low-rank approximations. However,
other options have emerged in the literature, such as FFT-based techniques exploiting the property
of cartesian interpolation grids (i.e. composed of equispaced nodes along each spatial axis) and
the properties of the interpolated functions. These last techniques were still not investigated in a
directional context.

1.2 Present work

The work presented in this manuscript focuses on the hierarchical methods for oscillatory kernels
arising in acoustics or electromagnetics with a particular interest for the high-frequency regime.
The main objective is to include a hierarchical method able to e�ciently deal with oscillatory
kernels into a solver for integral equations. There is an important constraint to take into account to
produce an e�cient code: the particle distributions we deal with are non-uniform, corresponding to
point clouds over surfaces. Hence, we want to end up with a method able to handle this (possibly
high) non-uniformity. Indeed, the particle distribution may result in a performance bottleneck on
meshes with local density variations, as resulting from mesh re�nements, if the non-uniformity is
neglected. In the same time, in realistic applications, local parts of the particle distributions may
prevent the use of hierarchical methods designed for the high-frequency regime only. We thus want
to implement an e�cient wideband (i.e. able to treat both the low- and high-frequency regimes)
method that can e�ciently handle highly non-uniform distributions.

We are strongly concerned by the implementation of such method on modern architectures
for high performance computing (HPC). Hence, we explored the state-of-the-art optimizations of
the hierarchical methods we opted for. There exists numerous methods, with corresponding case-
speci�c optimized implementations. This lead us to the design of a high-level approach for the
symmetry-based optimizations exploited in many FMM codes. In a more general way, we aim at
presenting general tools to work on the hierarchical methods regardless to the speci�cities of each.
The applications of this study however mainly concerns the FMMs. Indeed, we are mainly interested
in these last methods because they o�er the best complexities when dealing with oscillatory kernels
in the high-frequency regime, compared to other hierarchical methods.
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This work explores various FMM formulations, providing various optimizations or extensions in
mainly two of them. Most of our ideas are based on the same symmetries (namely, those associated
to the hyperoctahedral group) but in di�erent contexts. Each application of these symmetries leads
to di�erent algorithms. Hence, we show to what extent the symmetries can be exploited in di�erent
FMM formulations.

Last but not least, we present the entire realization of a C++ FMM library, named defmm
for Directional Equispaced interpolation-based Fast Multipole Method, discussing the theoretical
aspects and the algorithmic design as well as several numerical optimizations for modern HPC archi-
tectures. Our library aims at combining several e�cient approaches in the literature that have never
been associated. Namely, we apply the FFT techniques for a polynomial interpolation-based FMM
in a directional context in order to e�ciently deal with the wideband aspects of our problems while
handling the non-uniform distributions through an adaptive 2d-tree construction and using relevant
tree traversal algorithms. Numerous numerical results on one CPU core illustrate the sequential
performances of our library, depending on general criteria such as the computational domain size in
terms of wavelength or the uniformity of the particle distribution, including a numerical comparison
with a state-of-the-art FMM library.

1.3 Contributions

Several contributions are introduced in this thesis. We give here a quick overview of these.

High-level approach of the hierarchical methods. In this manuscript, we deal with di�erent
FMM formulations. The need of handling the general aspects of the FMM and of the other standard
hierarchical methods (such as the treecodes or theH-matrices) led us to the design of a mathematical
uni�ed framework. We use this framework to express any FMM formulation as an explicit matrix
factorization.

Structure of the FMM. We propose a high-level approach regarding the symmetries with FMM
formulations on 2d-tree. This allows to express a set of abstract results on the structure of the FMM
factorization matrices regardless of the FMM formulation. Some of these results are already used in
practical implementations of di�erent FMM formulations for case speci�c optimizations, justifying
this generalization.

Lebedev rules in hf-fmm. As a �rst realization of the results provided in our high-level descrip-
tion of the structure of the FMM on 2d-trees, we propose to handle the cubature of the propagating
planewave expansion in hf-fmm (a kernel-explicit FMM for highly oscillatory problems) using the
Lebedev cubature rules. Compared to standard cubature choices, the use of Lebedev rules reduces
the computation of far �eld interactions to a quasi-optimal one and lowers the memory footprint
while extending the method to the entire possible set of 2d-tree symmetries.

However, such application of the Lebedev rules to hf-fmm strongly complicates the polynomial
interpolation problem over the sphere arising in this context. We propose a new purely algebraic
approach to deal with this problem thanks to group-invariant cubature grids. Our method applies
to the usual choices of cubature rules, somehow extending the FFT-based fast algorithms for the
interpolation over the sphere to a large class of operators. In the same time, this allows to block-
diagonalize the interpolation operator when using Lebedev rules, accelerating its application. Our
methodology also applies to the other quasi-optimal cubature rules over the sphere, with potential
gain depending on their exact structure.

We propose an implementation exploiting the matrix-matrix products to e�ciently apply the
block-diagonal form of the interpolation operator on the sphere using our method. The scheme we
introduce is based on the explicit data redundancies appearing in the factorization thanks to the
group representation theory.
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Finally, we propose a fast switching strategy allowing to bene�t from the varying e�ciency of
the Lebedev and product cubature rules on the di�erent FMM operators, depending on the tree
level.

New directional interpolation-based FMM library. An important part of our work was
dedicated to the realization of a FMM for oscillatory kernels. We present a new FMM library
(defmm) which is:

• Kernel-independent, using polynomial interpolation techniques;

• Wideband, in the sense that both the low- and high-frequency regime can be e�ciently treated
thanks to a directional approach;

• Accelerated through FFTs for the far �eld evaluation, using polynomial interpolations on
cartesian grids;

• Adaptive, i.e. able to deal with arbitrary particle distributions with a similar e�ciency thanks
to a new reformulation of a recursive tree traversal (the so called Dual Tree Traversal) in a
directional context and to a precomputation step based on blank tree traversals.

Optimizations. Several novel optimizations of our library are proposed to further accelerate the
performances. The way of applying the numerous FFTs, of evaluating the near �eld or the reinter-
polation operator (needed in the multilevel interpolation-based FMM scheme) and the expansion
storage are discussed. For these optimizations, we tried to exploit at best the architecture of one
CPU core (SIMD parallelism, BLAS routines, arithmetic intensity). We also provide another refor-
mulation of the Dual Tree Traversal algorithm exploiting extra FMM operators to better process
highly non-uniform distributions.

Consistency proof of interpolation process using equispaced grids on well-separated
sets. The polynomial interpolation on grids composed of equispaced nodes su�er from (at least
numerical) instabilities. However, such an interpolation on cartesian grids is widely used in hierar-
chical methods, without stability issues in practice. Since we also base our library on interpolation
on cartesian grids, we provide a consistency proof of the interpolation process on these grids under
the usual assumptions of the hierarchical methods, hence justifying the practical convergence of the
approximations.

Combining FFT techniques and symmetries. Our library exploits the symmetries of the
FMM on 2d-trees. We extend the symmetries already used in the polynomial interpolation-based
FMM in the Fourier domain in order to combine them with the FFT techniques using cartesian
interpolation grids. This leads to the explicit construction of the associated permutation repre-
sentations. We propose a new way of exploiting these permutation representations in the far �eld
evaluation, allowing to apply a single permutation instead of two. However, the far �eld evaluation
becomes more di�cult to vectorize when using these symmetries, generating Hadamard products
with indirections. We thus introduce a new method based on group orbits in order to tackle this
issue in a general manner and we propose complete numerical tests on it. The performances lead
us to a comparison of the vectorized variants for the Hadamard products using modern compilers.

Comparison of approaches. A careful and complete comparison between our library and a
state-of-the-art one, namely dfmm [1] is provided. This allows to discuss the di�erent algorithmic
choices, i.e. the far �eld evaluation or the tree construction methods. Since the directional FMMs
are quite emerging but still not widely used in the literature, the numerous tests we provide also
enable us to discuss the behavior of these methods according to the frequency regime and to the
particle distribution.
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1.4 Overview

This manuscript is composed of three parts. The �rst part I is dedicated to the background on
hierarchical methods for N -body problems with a special focus on FMM dealing with oscillatory
kernels in the high-frequency regime. The second part II of this thesis is concerned by theoretical
aspects about the general FMM formulations and by abstract considerations on symmetries. This
leads to applications in the particular context of methods for the high-frequency Helmholtz kernel.
The third and last part III is concerned by the entire realization of a FMM for arbitrary radial
oscillatory kernels.

State of the art. This �rst part is divided into three chapters. In Chap. 2 are presented the
general notions on N -body problems and kernels. We explain how such problems appear when
dealing with integral equations. Then, we present the tree structures that are the bases of the
hierarchical methods and we describe the main hierarchical algorithms. Among these families, we
are particularly interested in the FMM. Indeed, these methods o�er e�cient multilevel strategies to
deal with highly oscillatory kernels, through explicit diagonalization of large matrix blocks for the
kernel-explicit methods and through directional approaches for the kernel-independent approaches.
The multilevel strategies usually are the key to reach the linearithmic complexities. Hence, the two
other chapters in the state of the art are dedicated to the FMM for the kernels we are considering.
In Chap. 3 we present the kernel-explicit method for 3D Helmholtz problems in the high-frequency
regime, paying a particular attention to the interpolation problem over the sphere appearing in
such a context. The main fast algorithms dealing with this problem are described. In Chap. 4, we
present the kernel-independent methods based on polynomial interpolation and an e�cient strategy
allowing to extend these methods to oscillatory kernels, namely the directional technique. We also
describe in Chap. 4 the main acceleration strategies for the evaluation of the far �eld interactions
when using polynomial interpolation.

Symmetries in Fast Multipole Method. This second part is composed of two chapters. In
Chap. 5, we are interested in a high-level matrix formulation of the hierarchical algorithms allowing
to write any FMM formulation as a matrix factorization. The main other hierarchical methods
described in Chap. 2 are also rewritten using the tools we introduced. We also provide a set of
results on the symmetries in the FMM formulations based on a particular tree structure: the 2d-
trees. Some of these results are built on a group invariance of particular interest associated to the
hyperoctahedral group. Then, in Chap. 6, we extend the kernel-explicit method described in Chap.
3 to this entire group invariance by introducing the Lebedev rules in this context. We describe a
block-diagonalization method to tackle the interpolation problem on the sphere with the Lebedev
rules. This approach is based on the group representation theory.

A new Fast Multipole Method library for oscillatory kernels. This third part is composed
of one single chapter. In Chap. 7, we present a new FMM library (defmm), based on FFT techniques
and on the directional polynomial interpolation approach, all presented in Chap. 4. These FFT
techniques are based on polynomial interpolation of cartesian grids. We give a consistency proof
of the approximation method and show how to extend the symmetries studied in Chap. 5 in the
Fourier domain in this context. We then propose a group theory based permutation approach to
deal with the array indirection problems appearing when numerically exploiting these symmetries
in the Fourier domain. We also present several optimizations of our library. A detailed comparison
between defmm and the other directional polynomial interpolation-based FMM is provided. Hence,
in Chap. 7 are discussed the theory, the algorithmic design, the implementation and the validation
of our new FMM library.
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Chapter 2

N-body problems
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The computation of all pairwise interactions among N -bodies with regard to a speci�c kernel
(describing the interactions between any two bodies) is a computationally intensive task leading
to a O(N2) operation count for a naive implementation. This prohibitive numerical cost quickly
becomes a limit in many applications such as astrophysics, molecular dynamics or solvers for integral
equations. The aim of N -body algorithms is to break this complexity.

This chapter is dedicated to the presentation of the N -body problems arising in the context of
integral equations. We �rst de�ne in Section 2.1 what a N -body problem refers to and describe
how the integral equation framework leads to this kind of problems. This ends with an overview of
the main non-hierarchical methods trying to deal with these N -body problems. Then, in Section
2.2, we present a set of hierarchical methods achieving the same goal with less drawbacks in our
application context. As opposed to the non-hierarchical methods, the studied ones are based on
a recursive space partitioning and are said to be hierarchical. There exist a lot of hierarchical
methods and we are particularly concerned by the Fast Multipole Methods (FMMs) for which we
will describe explicit mathematical tools that allow to derive e�cient methods in two particular
explicit cases.
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2.1 Problem formulation

Among the families of numerical methods solving Partial Di�erential Equations (PDEs), the Bound-
ary Element Methods (BEMs), designed to approximate the solutions of Boundary Integral Equa-
tions (BIEs), are widely used in acoustics, electromagnetics, elastodynamics and thermoelastody-
namics (see [29] for a large amount of references on the applications). This family of methods
reformulates a volumic problem into a surfacic one. Hence, the dimensions of the new problem
being lower than the original ones, its numerical treatment generates smaller systems. However,
as opposed to the usually sparse matrices generated by the Finite Element Method (FEM) [99],
the BEM generates fully populated matrices. This last point can be a performance bottleneck in
practice, despite the dimensional reduction. Fortunately, there exists a strong analogy between the
product by these dense matrices and the N -body problems, as explained in 2.1.2. Before describing
this link, we recall in Section 2.1.1 the de�nition of a general N -body problem and a set of ker-
nels involved in common BIEs. In Section 2.1.3, we quickly provide a general overview of a set of
non-hierarchical methods designed for N -body problems.

2.1.1 The summation problem

Let d ∈ N∗ be the dimension of the problem we are looking at. Given two point clouds X,Y ⊂ Rd,
q : Y → C and a kernel G : Rd×Rd → C, the N -body problem between X and Y with the kernel
G refers to the problem of computing p : X → C de�ned by:

p(x) :=
∑
y∈Y

G(x,y)q(y). (2.1)

In all this document, the elements of a point cloud X or Y are referred to as particles. Notice that
this de�nition of the N -body problem for a kernel with scalar values can be extended to kernels
with vector values (namely with values in Cd).

In the BIE context, G corresponds to a Green's kernel. This means that G is the fundamental
solution of a PDE. We recall here the expressions of such a G in two of the most common cases.

Kernel PDE Expression

Laplace −∆G(x) = δ(x)


1

2πx
ln (x) in 2D

1

4πx
in 3D

Helmholtz −∆G(x)− κ2G(x) = δ(x)


i

4
H

(1)
0 (κx) in 2D

eiκx

4πx
in 3D

where δ refers to Dirac's distribution, H(1)
0 to the Hankel function of the �rst kind (see [178] Chapter

10 Paragraph 2) and κ ∈ C is named the wavenumber. The inverse of the wavenumber multiplied
by 2π is named the wavelength. Only a single argument is needed in these kernels because of their
translational and rotational invariances. Such kernels are said to be radial. We choose x equal to
r de�ned by:

r := |x− y|

to �t with the notations of Eq. 2.1, |z| :=
(

d∑
k=1

z2
k

)1/2

. As opposed to smooth kernels, such as the

Gaussian one given, for a �xed parameter σ, by G(r) := exp
(
− 1

2

(
r
σ

)2)
, the Laplace and Helmholtz

kernels are singular at r = 0, meaning that their expression tends to +∞ around this singularity.
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Figure 2.1: From left to right: Gaussian kernel (smooth) with σ = 1, Laplace kernel (asymptotically
smooth and singular), Helmholtz kernel (asymptotically smooth, singular and oscillatory) with
κ = 25.

Because such singular kernels are not de�ned on the singularity, a common practical choice consists
in arbitrarily �xing G(0) = 0. Moreover, the Laplace, Helmholtz and Gaussian kernels are all
asymptotically smooth [46,47] and this feature allows in practice a fast approximated evaluation of
Eq. 2.1.

De�nition 2.1.1. ( [44] Def. 4.5) Let G : Rd×Rd → R. The function G is said to be asymptoti-
cally smooth if there exist three non-negative constants Cas > 0, σ ∈ N and c0 > 0 such that, ∂νp de-

noting the νth directional partial derivative in direction p (i.e. with ∂pf(x); = limt→0
f(x+tp)−f(x)

t ),

|∂νpG(x,y)| ≤
{
Cas

(ν+σ−1)!
(σ−1)!

cν0 |p|
ν

|x−y|σ+ν if σ > 0

Cas(ν − 1)!
cν0 |p|

ν

|x−y|σ+ν if σ = 0

holds for all ν ∈ N∗, x,y ∈ Rd, x 6= y, and all directions p ∈ Rd × Rd.

Particular kernels, such as the Helmholtz one because of the complex exponential, have an
oscillatory behavior with regard to r. The frequency of the oscillations depends on κ. These
oscillations may result in numerical di�culties when trying to deal with. Notice that for a given
interval, the Helmholtz kernel stops oscillating if κ is less than the interval size. In addition, the
limit case κ = 0 exactly corresponds to the Laplace kernel. Representations of these kernels are
given in Fig. 2.1. We mainly restrict ourselves to the kernels with scalar values, but gradients of
these kernels may also be considered, leading to other kernels but with range in Rd.

2.1.2 From integral equations to N-body problems

Suppose that we want to solve the following problem for a given domain Ω and a given di�erential
operator L, Γ := ∂Ω being the boundaries of Ω (see Fig. 2.2 for a two-dimensional model example):

Lu = 0 in Ω

γD · u = g on Γ

Other conditions at in�nity if Ω is an exterior unbounded domain

(2.2)

where γD · u refers to the interior Dirichlet trace of u with respect to Ω and g : Γ → C refers
to a given known function. If Ω ⊂ R3, the standard volumic approaches that rest on a volume
discretization of Ω by means of a mesh, such as the Finite Element Method (FEM), can generate
too large meshes for practical applications. In addition, in the case of exterior unbounded Ω, these
methods are not su�cient and have to be further adapted. However, there exists a family of methods
able to deal with this kind of limitations: the BEMs.
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Ω

Γ

Figure 2.2: Model example of domain Ω (left) and an example of discretization of the boundaries
Γ (right).

2.1.2.1 Boundary integral equations

In this paragraph G is assumed to be a Green kernel. An excellent introduction on how N -body
problems arise in the numerical solution of BIE is proposed in [162]. First, we have to introduce
layer potentials and associated Sobolev spaces (see [187]). We do not give much details on the
potential theory since we only want to show in this paragraph how N -body problems stem from
BIEs.

De�nition 2.1.2. Let Ω be a domain in Rd and Γ := ∂Ω be the boundaries of Ω. The Sobolev trace
space H1/2(Γ) is de�ned by

H1/2(Γ) := {v : Γ→ C | ||v||2H1/2(Γ) :=

∫
Γ×Γ

|v(x)− v(y)|2
|x− y|3 dσ(x,y) <∞}.

The dual of H1/2(Γ) is the Sobolev space H−1/2(Γ) := H1/2(Γ)∗.

These Sobolev spaces are used to de�ne the layer potentials.

De�nition 2.1.3. The Single Layer Potential (SLP) denoted by SL is de�ned for any x ∈ Rd\∂Ω
and any φ ∈ H−1/2(Γ) by the formula

SL[φ](x) :=

∫
Γ

G(x,y)φ(y)dσ(y)

for any bounded Lipschitz domain Ω ⊂ Rd.

De�nition 2.1.4. The Double Layer Potential (DLP) denoted by DL is de�ned for any x ∈ Rd\∂Ω
and any φ ∈ H1/2(Γ) by the formula

DL[φ](x) :=

∫
Γ

n(y) · ∇yG(x,y)φ(y)dσ(y)

for any bounded Lipschitz domain Ω ⊂ Rd, where n(y) denotes the outward normal vector with
regard to Γ at point y.

Then, the Green's representation formula is given by the following theorem.

Theorem 2.1.1. (Green's Representation Formula) Suppose that φ is a solution of Pb. 2.2 de�ned
in Ω. If Γ is smooth, then:

SL[γN · φ](x)−DL[γD · φ](x) = φ(x)1Ω(x)
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for any x ∈ Rd, where γN · φ and γD · φ denote the interior Neumann and Dirichlet traces of φ
respectively and with

1Ω(x) =

{
1 if x ∈ Ω

0 otherwise
.

When considering the interior Dirichlet trace of the representation formula in Thm. 2.1.1, one
obtains

γD · SL[γN · φ]− γD ·DL[γD · φ] = γD · φ. (2.3)

Now, let K be the operator de�ned by

−γD ·DL[v] = (Id/2−K) v.

Proposition 2.1.1. Let v ∈ H1/2(Γ), we have

K[v](x) = lim
δ→0

∫
Γ\B(x,δ)

n(y) · ∇yG(x,y)v(y)dσ(y)

where B(x, δ) is a ball centered in x with radius δ, for any x ∈ Γ.

Let V be de�ned by
V := γD · SL.

Since γD · φ = g thanks to Pb. 2.2 and using Eq. 2.3, we obtain the following BIE:{
Find γN · φ ∈ H−1/2(Γ) such that
V (γN · φ) = (Id/2−K) (g) on Γ

. (2.4)

If the solution of Pb. 2.4 is known, one can construct the solution of Pb. 2.2 by means of the
representation formula in Thm. 2.1.1. Since g is known (see Pb. 2.2), the right-hand side in the
equality in Pb. 2.4 is known. Hence, to solve Pb. 2.4, one has to invert V .

2.1.2.2 Discretization and solvers for integral equations

We are concerned by the Boundary Element Method (BEM) [187,195] for the discretization of BIEs.
The idea of these methods consists in approximating the surface Γ with a mesh {τj | j ∈ [[1, n]]},
∪nj=1τj ≈ Γ, and then to approximate the solution of the equation on each τj . We focus on
the Galerkin BEM, that is on a variational approach to solve Pb. 2.4. Such method leads to a
discretization of Pb. 2.4 as a linear system of the form Av = f with unknown v and a dense matrix
A ∈ Cn×n such that (using piecewise constant approximations)

Ak,l :=

∫
τk

φk(x)

∫
τl

G(x,y)ψl(y)dσ(y)dσ(x)

for any k, l = 1, ..., n, where φk and ψl vanish outside τk and τl respectively and are constant in τk
and τl respectively. Denoting v = (v1, ..., vn), we thus have

(Av)k =

n∑
l=1

(∫
τk

φk(x)

∫
τl

G(x,y)ψl(y)dσ(y)dσ(x)

)
vl

=

∫
τk

φk(x)

n∑
l=1

∫
τl

G(x,y)ψl(y)vldσ(y)dσ(x).

(2.5)

To evaluate the integrals in Eq. 2.5 in practice, one has to apply quadrature rules, i.e. to approx-
imate the integrals by a weighted sum of nodal evaluations of the integrands. Suppose that each
quadrature uses S points. The quadrature of (Av)k thus writes

S∑
p=1

ωp(τk)φk(xp)

n∑
l=1

S∑
q=1

G(xp,yq) (ωq(τl)ψl(yq)vl) (2.6)
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where ωp(τk) (resp. ωq(τl)) denotes the weight of the pth (resp. qth) quadrature node xp (resp. yq)
in τk (resp. τl). The computation of the red part of Eq. 2.6 corresponds to a N -body problem.

There exist two main families of methods to solve a linear system:

• Direct methods, inverting A explicitly or factorizing A in such a way that the product by
A−1 can be easily evaluated (for instance by means of LU decomposition [81,113,120]);

• Iterative methods, generating a sequence of approximations of the solution of the system
until a certain convergence is reached (see for instance [121]).

In the general case, direct methods lead to cubic costs in the dimension of the system that become
too expensive for large systems. Modern techniques can provide approximated direct solvers based
on hierarchical procedures (for instance in [18�20,33,149,198]) for particular structured matrices. In
this thesis, we are concerned by iterative solvers based on Krylov subspaces [121]. Krylov methods
construct a sequence vj converging to the solution v of the system. Among the large family of
Krylov methods, we are interested in the Generalized Minimum Residual (GMRes) method [185]
that is able to deal with the non-symmetric matrices that arise in the BEM context. GMRes is
an iterative algorithm constructing such a sequence of vj and stopping when a certain convergence
criterion is veri�ed. In practice, few iterations may be su�cient to recover an approximated solution
with a small error. The cost of each of these iterations is dominated by a product by A. According
to Eq. 2.6, a product by such a matrix A can be somehow interpreted as a N -body problem. Hence,
the cost of GMRes applied to a BEM problem is dominated by evaluations of N -body problems.
In other words, one can accelerate the resolution using a fast method for N -body problems.

2.1.3 Non-hierarchical methods

We present here a set of examples of methods that do not require a hierarchical space decomposition
to solve N -body problems. The general overview given by the following list of non-hierarchical
methods for N -body problems is by no means exhaustive.

2.1.3.1 Direct computation

The most naive way for solving aN -body problem consists in computing all the pairwise interactions
between particles with regard to the kernel G. This results in a quadratic complexity which quickly
becomes prohibitive when trying to deal with large point clouds. When no other method is available,
the direct computation still remains an option for numerically solving a given N -body problem. A
hardware implementation of this computation has been done for example in [145] in the particular
context of gravitational forces.

2.1.3.2 The cut-o� method

One of the simplest methods for the approximation of the results of N -body problems involving
asymptotically smooth kernels (such as 1/r) is the cut-o� method [14]. The idea is simply to neglect
the in�uence of the particles lying outside a ball of �xed radius around each target particle. In
matrix terms, this consists in sparsifying a dense matrix by setting an important amount of entries
to zero. This can also be seen as a direct method where a large part of the computation is omitted.
This can however induce an important error (see [92,225]).

2.1.3.3 Particle-Mesh methods

For the Poisson's equation, the Particle-Mesh (PM) method (and its extensions to non-uniform
particle distributions) uses Fast Fourier Transforms (FFTs) combined with interpolation on regu-
lar grids in order to solve the related N -body problems [137]. Thanks to the complexity of the
FFTs, this class of methods reduces the quadratic complexity of the treated N -body problems to a
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linearithmic one. The main issue of this method is its e�ciency that deteriorates on non-uniform
distributions [218]. There exists an extension to the PM method designed to tackle this issue,
namely the Particle-Particle/Particle-Mesh (P3M) method [137]. Basically, this consists in com-
bining a direct method for the near interactions and the PM method for the far interactions. This
enhancement also increases the precision on high particle density areas.

2.1.3.4 Ewald's summation

Periodic systems can bene�t from another method: the Ewald's summation [101,106]. This method
also uses a di�erent treatment of the near and far interactions. The computations are performed
using Fourier techniques, assuming that the system is in�nitely periodic.

2.1.3.5 Precomputed FFT

A kernel independent non-hierarchical method based on interpolation on grids composed of equi-
spaced points and FFT, named precomputed FFT, exploits the Toeplitz structures coming from
the discretization of radial kernels on such grids [177,215,216]. This leads to an overall complexity
between O(N logN) and O(N1.5 logN), depending on the particle distribution (see [215]).

2.1.3.6 Sparse Cardinal Sine Decomposition

The Sparse Cardinal Sine Decomposition (SCSD) [15, 16] approximates a radial Green kernel G
with a sum of cardinal sines (�rst line of Eq. 2.7). Then, the use of the integral expression of
such functions on the unit sphere (second line of Eq. 2.7) allows to obtain an approximation of
this expression by means of cubatures (third line of Eq. 2.7) and, by means of Non-Uniform Fast
Fourier Transform (NUFFT) [32, 90, 91, 160], a fast algorithm can be derived. This approximation
is not valid in the whole computation domain, so a correction for near interactions has to be applied
in order to recover the �nal result. The approximations read:

G(x,y) ≈
∑
p

αpsinc(ηp|x− y|)

= C
∑
p

αp

∫
Sd−1

eiηp〈x−y,λ〉dλ

≈ C
∑
p

αp
∑
q

ωqe
iηp〈x,λq〉e−iηp〈y,λq〉

(2.7)

with C being a given constant, αp ∈ C, ωq ∈ R the cubature weights and λq the cubature nodes. The
complexity of such a method is related to the numberK of needed cubature points to achieve a given
accuracy. Thanks to the NUFFT, this results in a linearithmic complexity with respect to K if the
correction step can be evaluated in at most the same cost. Notice that K 6= N in general. A similar
method is proposed in [27] for two-dimensional kernels verifying the radial property. A particular
interest of this method is its ease of implementation. However, because the transformation takes
into account the whole computational domain at once, this method does not adapt to the particle
distribution. In consequence, the e�ciency with regard to the number of particles strongly depends
on their distribution and highly non-uniform distributions cannot be treated e�ciently this way.

2.2 Hierarchical methods

Hierarchical methods for N -body problems refer to a family of algorithms based on hierarchical
decompositions of the particle spaces, represented as trees. Originally deriving from an algorithm
proposed in [23] in astrophysics, the hierarchical methods are based on two main ideas:
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• The domain encompassing the particle sets can be represented by a tree whose nodes are
labeled by restrictions of this domain;

• The far interactions can be approximated e�ciently by easily evaluable expansions and only
the near interactions have to be computed directly to reach a reasonable accuracy.

In Sect. 2.2.1 we present the tree structures used in hierarchical methods and in Sect. 2.2.2 we
de�ne the near and far �elds that represent, for each particle, the amount of particle interactions
that will be approximated with respect to this particle. These two ingredients are then used in
Sect. 2.2.3 to present the �rst hierarchical method considered in this manuscript: the treecodes. In
the scope of this section, the treecodes are used as a simple illustration of the concepts introduced
in the paragraphs below. Their particularities will be further used in Chap. 5 where a generalized
approach for hierarchical method will be presented. Then, we describe the Fast Multipole Methods
(FMMs) in Sect. 2.2.4, providing explicit formulas that are used to derive fast algorithms for
Laplace and Helmholtz kernels. In Sect. 2.2.5 are �nally presented the algebraic counterpart of the
FMM and its main generalizations.

2.2.1 Tree structures

The hierarchical aspects we mentioned in the introduction of Sect. 2.2 are related to a recursive
space decomposition. Let Ω be a domain in Rd and Ω1,Ω2 ⊆ Ω be such that {Ω1,Ω2} forms a
partition of Ω. Each Ωi, i = 1, 2 can be further partitioned, for instance in two subdomains we

denote by Ωi,1 and Ωi,2. Hence we obtain ∪
i,j=1,2

Ωi,j = Ω1 ∪
(
∪

j=1,2
Ω2,j

)
=

(
∪

j=1,2
Ω1,j

)
∪Ω2 = Ω

which provide other partitions of Ω. There exists a set of links between these partitions: starting
from any partition of Ω, another partition is obtained by replacing any of its members by a partition
of it. This leads to a structure that can be easily represented.

2.2.1.1 Tree representation of space

The toy example we described is very simple to represent. Suppose that an element of a parti-
tion is �connected� to the domain (or subdomain) being partitioned. This leads to the following
representation

Ω

Ω1

Ω1,1 Ω1,2

Ω2

Ω2,1 Ω2,2

which corresponds to a tree whose nodes are labeled by a domain or a subdomain. This graph
structure is what we call a tree representation of Ω. Hence, the root of this tree is the entire original
domain and any subdomain that is not further partitioned is named a leaf. Each node of such a
tree is named a cell and each cell c′ that is directly connected (through only one single edge) to
another one c that is closer to the root is said to be a son of c, c being the father of c′. We denote
by Sons(c) the set of sons of c and by Father(c′) the cell c. The ancestors of a cell c′ is the set of
cells Ancestors(c′) closer to the root than c′ but containing c′. If c is an ancestor of c′ then c′ is
said to be a descendant of c. There exist di�erent manners of deriving such a tree starting from a
given domain of Rd and di�erent kinds of trees, depending on the way this domain is recursively
decomposed. We present in the following paragraphs the main realizations of hierarchical tree
representations of a domain in hierarchical methods. For any cell c, the center of c, denoted by
ctr(c), refers to the center of the smallest ball encompassing c and the radius of c, rad(c) refers to
the radius of this ball. The root of a tree representation T of a domain refers to this domain itself
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Figure 2.3: Particle distribution in 2D (left) with bounding box (dashed lines left) and regular
hierarchical quadtree splitting (right) on the same point cloud. Cells of the �rst level (black),
second level (orange) and third level (dashed+red) are illustrated.

and is denoted Root(T ). The levels of a tree are indexed from the root to the leaves, starting by
0. The depth of a tree refers to the greatest index. The total number of levels in the tree is thus
equal to the depth of this tree plus one.

2.2.1.2 Splitting space

First, because we deal with point clouds (particle sets, i.e. �nite sets of Rd, d = 1, 2, 3), the domain
that has to be considered is any closed set encompassing these point clouds. In practice, a cuboid or
a d-cube1 is usually chosen [23,30] and referred to as a bounding box, as illustrated on Fig. 2.3. In
the original method of Appel [23], particular binary trees (named kd-trees [39]) are used to represent
a two-dimensional domain. This tree is constructed by recursively applying bisections according
to each axis2, dividing each time a particle set into two other ones. Another approach has been
adopted for the Barnes & Hut algorithm presented in [30], where 2d-trees space representations3

are considered. The particles are bounded by the boundaries of a d-cube in dimension d (that is
a square in 2D as in Fig. 2.3 and a cube in 3D as in Fig. 2.5). Then, this d-cube is decomposed
into (up to) 2d other equally-sized d-cubes. This process is repeated recursively until a stopping
criterion is validated. As opposed to the kd-trees, the 2d-trees operate the decomposition of a cube
in an arbitrary way without considering the particle sets. In general, the stopping criterion can
basically be based on

1. a maximal depth. This criterion is referred to as MaxDepth.

2. a maximal number of particles per leaf, that is a threshold above which the cell is divided
into other ones. This criterion is referred to as Ncrit.

A space decomposition using a tree with the MaxDepth criterion is illustrated in Fig 2.3 and the
related perfect tree4 is depicted in Fig 2.4.

On its own, the space decomposition is not su�cient to obtain a fast scheme: this still has to
be combined with an approximation strategy.

1A d-cube is a cuboid in dimension d with equally sized sides.
2Separations hyperplane which is parallel to d− 1 axes.
3A quadtree in 2D or an octree in 3D
4A 2d-tree is said to be perfect if all its non-leaf nodes have 2d sons and if all the leaves appear at the same tree

level.
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Figure 2.4: Perfect quadtree representation of the space decomposition of Fig 2.3 with a maximal
depth equal to 3 and with the storage of all cells. The same colors as in Fig 2.3 are used for each
level.

Figure 2.5: Three level octree space splitting.

2.2.2 Near and far �elds

Like the Ewald summation mentioned in Section 2.1.3.4, the idea of the hierarchical methods is to
divide the computation of Eq. 2.1 for each target particle x in two sums:

1. A near �eld part N (x), corresponding to the close particle interactions whose contributions
are evaluated directly (i.e. exactly). In practice, this near �eld corresponds to a set of source
particles that are geometrically �close� to the target particle x.

2. A far �eld part F(x), composed of the complementary of the near �eld part. The contribution
of the particles in the far �eld is approximated.

In other words, Eq. 2.1 gives:

∑
y∈Y

G(x,y)q(y) =

 ∑
y∈N (x)

G(x,y)q(y)

+

 ∑
y∈F(x)

G(x,y)q(y)


and the second term of the right-hand side of this equation is supposed to be e�ciently approximated
using a fast method. This fast evaluation of the far �eld is one of the keys of the e�ciency of
hierarchical methods. The near and far �elds are always de�ned according to a target, so there are
as many near and far �elds to be de�ned as the number of target objects (i.e. particles at this stage
of the presentation). The hierarchical space decomposition comes into play in this de�nition: this
allows to e�ciently assemble N (x) and F(x) for any target x in terms of unions of cells.

2.2.3 Treecodes

Originally, the idea of the treecodes can be found in the method of Appel [23] and one of the most
famous algorithms is presented in [30]. These methods are based on a tree decomposition of the
target point cloud and these trees are generally constructed using the Ncrit criterion. Basically,
three tools have to be de�ned to present a treecode method for a given kernel:

1. An acceptance criterion that de�nes the near and far �elds;
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Figure 2.6: Exclusion areas of the red and the
orange cells for θ = 0.7 (continuous lines) and θ =
1 (dashed lines). We assumed here that the center
of mass of the particles in these cells coincide with
the center of these cells.

l

|x− u|

x

u

Figure 2.7: Schematic representation of the Barnes & Hut acceptance criterion

2. A way of approximating the kernel on the far �eld;

3. An appropriate tree traversal allowing for each particle to e�ciently determine the near and
far �eld parts.

2.2.3.1 Acceptance Criterion

In the Appel's algorithm, an explicit approximation of the kernel is used for a target particle x and
a cell c, with an error controlled by the condition

rad(c)

|x− ctr(c)| ≤ θ (2.8)

for a constant θ ∈ R+ (in practice θ ∈ [1/2, 1]). Such a c is in the far �eld of x. For any target
particle x, the leaf cells that do not respect the ratio in Eq. 2.8 are in the near �eld of x. The
smaller θ, the larger the near �eld. The in�uence of θ on the near �eld is depicted on Fig. 2.6. In
the Barnes & Hut algorithm [30], the radius of the cell is replaced by the length l of the cell (see
Fig. 2.7). The center of the cells is chosen to be the center of mass of the particles in this cell.

These two criteria are referred to as acceptance criteria (AC) and are de�ned using purely
geometric elements. In other words, the AC does not consider the particles in a cell but the cell
itself. When the AC is veri�ed for a given particle and a given cell, this particle-cell pair can
be approximated in the treecode algorithm. Such a pair (x, c) is said to be well-separated and
c lies in the far �eld of x if none of the ancestors of c is well-separated from x. In practical
implementations, an AC is a boolean function that returns true if and only if the tested particle-cell
pair is well-separated [211].
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2.2.3.2 Algorithms

The next step in order to derive a fast method consists in aggregating the contributions of the
particles lying in the same cell. In the Barnes & Hut algorithm, the charges of the particles of a
cell are simply added. This procedure is denoted Aggregate(c) for any cell c. The result of such
a procedure operating on a non-leaf cell c can be based on the results of Aggregate(c′) for each
c′ ∈ Sons(c), which reduces the aggregation cost. An algorithm for this aggregation process is
denoted by Upward Pass and a formulation is given in Alg. 1.

The computation of a particle-cell interaction on a well-separated particle-cell pair (x, c) is
realized by a procedure denoted Approx_Interact(x, c). The direct computation of the con-
tribution to the N -body problem of two particles x and y is computed using the procedure
Direct_Interact(x,y). Hence, in Alg. 2 is described the tree traversal allowing for any par-
ticle to evaluate the near and far �eld contributions. Finally, a �naive� global treecode algorithm is
summarized in Alg. 3. We recall that the target point cloud is denoted X and the source one Y .

Algorithm 1 UpwardPass
1: // Input: c ∈ S with S a tree representation of Y
2: // Output: ∅
3: procedure UpwardPass(c)
4: if c is not a leaf then
5: for c′ ∈ Sons(c) do
6: UpwardPass(c′)
7: end for
8: end if
9: Aggregate(c)

10: end procedure

Algorithm 2 STT (Single Tree Traversal)
1: // Input: x ∈ X, c ∈ S with S a tree representation of Y
2: // Output: ∅
3: procedure STT(x, c)
4: if AC(x, c) then
5: // The approximation can be used
6: Approx_Interact(x, c)
7: else
8: if c is a leaf then
9: // Direct computation.
10: // The intersection c ∩ Y refers to the particles of Y included in c
11: for y ∈ (c ∩ Y ) do
12: Direct_Interact(x,y)
13: end for
14: else
15: // Explore the deeper tree levels
16: for c′ ∈ Sons(c) do
17: STT (x, c′)
18: end for
19: end if
20: end if
21: end procedure
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Algorithm 3 Treecode
1: // Input: X, S a tree representation of Y
2: // Output: ∅
3: procedure Treecode(X,S )
4: // Aggregate approximations
5: UpwardPass(Root(S ))
6: // Traverse source tree for each target particle
7: for x ∈ X do
8: STT(x, Root(S ))
9: end for
10: end procedure

Remark 2.2.1. The method given in Alg. 3 does not minimize the number of tree traversals.
Instead of this algorithm considering individually each target particle, groups of clustered target
particles can be considered [31,88]. In this case the distance involved in the AC (that is the denom-
inator in Eq. 2.8) becomes the distance between the boundaries of the smallest cuboid encompassing
this group of particles and the center of mass of the source cell.

2.2.3.3 Complexity

The popularity of treecodes stems from their ease of implementation and their complexity. We
consider in this paragraph the complexity of Algs. 1, 2 and 3. Let N be the size in terms of
particles of the two point clouds X and Y . The complexity of Barnes & Hut algorithm is of order
O(NlogN) (i.e. linearithmic complexity). The intuitive idea for obtaining this complexity is based
on the fact that the number of levels in the tree representation of the source point cloud that need
to be traversed in the STT (Alg. 2) is equal (in mean) to O(logN). Hence, the average cost of
a STT is O(logN). Because there is a number of STT in Alg. 3 equal to the number of target
particles, that is N , we obtain the mentioned O(NlogN). The complexity of the Upward Pass
is also O(NlogN) because the same argument in the number of levels can be applied: there are
O(logN) levels so the number of cells is O(NlogN) and the Upward Pass (which is assimilated to
a depth-�rst search algorithm) traverses each cell once, leading to a O(NlogN) complexity. Hence,
the overall complexity is O(NlogN). See also [100] for the complexity analysis of the Appel's
algorithm.

2.2.3.4 Extensions

The Appel and Barnes & Hut algorithms were designed for astrophysical applications, but there
exist many other kinds of treecodes, designed for other kernels (see for instance [24, 102]). Quite
recently, kernel-independent treecodes [146,168,205,209] were introduced and allow to deal with a
single code with arbitrary (non-oscillatory) kernels.

Remark 2.2.2. To our knowledge, there is no treecode with O(N log(N)) complexity for the
Helmholtz kernel in the high-frequency regime.

2.2.4 Fast Multipole Methods

In [115], Greengard & Rokhlin describe an algorithm named the Fast Multipole Method (FMM)
that paves the way for a new kind of hierarchical methods, able to deal with a N -body problem
in a linear time. The FMM is one of the ten algorithms cited in [85]. The algorithm in [115]
treats two-dimensional uniform distributions (uniform FMM). In [55] is proposed a version of the
FMM adapted to non-uniform distributions (adaptive FMM). Three-dimensional extensions of these
methods are introduced in [118]. The adaptive three-dimensional case is considered in [65].
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Since its introduction for the Poisson equation, the FMM has been extended to many other
kernels such as the Lennard-Jones potential [82, 92], the Helmholtz kernel [60, 70, 97, 114] and
Maxwell equations [75], the Yukawa potential [117, 140, 223], the Stokes equations [201, 207], the
elastodynamics equations [58,59], the Gaussian kernel [119,194,208], etc... Because of its e�ciency
and its ability to cover a large spectrum of applications, the FMM has become a very popular
algorithm, declined in many ways. We restrict our presentation in the following paragraphs to the
algorithm itself, putting aside its inclusion in other methods.

2.2.4.1 Uniform algorithm

At the most abstract level, the idea of the FMM is to introduce a second type of approximation in
addition to the far �eld approximation of the treecodes, combined with a tree representation of the
target point cloud in addition to the source tree representation already used in treecodes. The �rst of
these elements takes the form of local approximations that are only valid (up to a certain error) in the
cells in which they are de�ned. Hence, the particle-cell interactions of the treecodes are replaced by
cell-cell interactions that aim at transforming the far �eld approximations into local ones. Because
the particles are not anymore directly involved in this process between approximations, an additional
computational gain is obtained. Finally, the FMM algorithm operates a last tree traversal on the
target tree to transform the local expansions into contributions to the �nal sum. In other words, the
results of the cell-cell interactions are aggregated into local approximations that are transformed
into contributions at the particle level only at the end of the whole process. We describe here the
uniform algorithm �rst presented in [115].

On the use of two trees. Because the FMM considers a tree representation of both the target
and source point clouds, it is convenient to adopt the following strategy: de�ning a cubic box B
encompassing the two point clouds, two 2d-trees, S and T , with Root(S ) = Root(T ), can be
constructed, S being a tree representation of the source point cloud Y and T one of the target
point cloud X. Hence, the positions of the cells of the two trees coincide if they are non-empty, but
they play di�erent roles. A consequence is that they can be both represented with the same tree.
For instance, if we choose X = Y , the cells represented on Fig. 2.3 correspond to target and source
cells, but one has to keep in mind that two trees exist.

Expansion types. In the FMM, as opposed to treecodes, the contribution of each cell-cell in-
teraction involving the same target cell is converted into and added to an approximation valid in
this cell. The FMM uses user chosen approximation orders. Hence, the far �eld approximations
are vectors with a size dictated by this order. The term multipole expansion is used to refer
to such a far �eld approximation. The behavior of the in�uence of the far �eld of a cell on it is a
function that can also be approximated by an appropriate expansion named local expansion. The
cell-cell interactions consist in transforming the multipole expansions into local ones. The amount
of work needed to compute the contribution of the far �eld of a target cell is no more related to
the number of particles that are included in it but only on its geometric characteristics and on the
approximation method. These transformation processes between expansions are depicted on Fig.
2.8. To each source (resp. target) cell is attached a unique multipole (resp. local) expansion, so
that we can speak about the multipole (resp. local) expansion of a cell.

Once all the necessary cell-cell interactions are computed, the local expansions in each target
cell contains the information about the far �eld of this cell. In the FMM algorithm, an additional
step is needed to recover the contribution to the �nal sum. This is done by adding the information
contained in the local expansions of the ancestors of a cell to its own local expansion and, if the
target cell is a leaf, by transforming this information into an e�ective contribution of the far �eld
of each particle in this cell. If the cost of a cell-cell interaction is approximately constant at each
tree level, it is straightforward that the lower the 2d-tree level of an interacting cell-cell pair, the
better the computational e�ciency for the indirectly involved target particles.
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Particles

Multipole expansion

Particles
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Particles

Local expansion

Particles

Local expansion

Multipole expansion Local expansion

Figure 2.8: Links between expansions. Multipole expansions are assembled at the leaf level (black
arrows from particles to multipole expansions) and aggregated to multipole expansions in the upper
levels (orange arrows from multipole expansions to multipole expansions). Multipole expansions
are then transformed into local ones (blue arrow). Local expansions are then transformed into
another local expansions in lower cells (top-down orange arrows) and �nally converted into e�ective
contributions at the particle level (top-down black arrows).

However, each of these approximations has a restricted convergence domain. Their manipulation
has to be done according to a criterion preserving a global controlled error. The de�nition of this
criterion is quite di�erent than the AC of treecodes since the two arguments of it are both cells.

Multipole Acceptance Criterion. Instead of Acceptance Criterion, the term Multipole Ac-
ceptance Criterion (MAC) is used in the context of the FMM. The MAC can be seen as a boolean
function testing two cells. If a pair of target and source cells is well-separated, in the sense that
the conversion of a multipole expansion associated to the source cell into a local one associated to
the target cell can be safely computed, the MAC returns true. If this is not the case, the MAC
returns false. In the original FMM algorithm (uniform case), this MAC is implemented as a simple
criterion: two cells are supposed to be well-separated if and only if their distance, de�ned as the
minimal distance between a point of the �rst cell and a point of the second one, is strictly positive5.
This means that two cells at the same level are well-separated if and only if there exists a cell
between them. A two-dimensional example is given in Fig. 2.9. This criterion is refered to as the
strict MAC.

This MAC is used under the assumption that the cell-cell interactions only involve pairs of cells
belonging to the same level of the 2d-trees. Two well-separated cells do not necessarily lead to a

5Still considering that 2d-tree representations sharing the same root are used for both X and Y
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Figure 2.9: Target cell t (red) and its well-separated source cells (blue and white). Near �eld of
t (green). t only interacts at this level with blue cells. Beyond the red separation line, cell-cell
interactions involving the space part containing t are realized at upper levels of the trees. This
situation corresponds to the strict MAC used in the uniform algorithm of the FMM.

cell-cell interaction since a pair of their ancestors may already be well-separated.

Interaction lists. The set of source cells interacting with a target one is a crucial concept in the
FMM that needs a proper de�nition.

De�nition 2.2.1. Let t be a target cell. The set of source cells interacting with t is composed of the
source cells s that are well-separated from t and such that there is no pair (a, b) ∈ Ancestors(t) ×
Ancestors(s) such that a and b are well separated. This set is named the interaction list of t and
is denoted by Λ(t). In a mathematical form, this reads:

Λ(t) := {s ∈ S |MAC(s, t) = true and ∀a ∈ Ancestors(t), ∀b ∈ Ancestors(s), MAC(a, b) = false}.

Remark 2.2.3. An analogous de�nition when using the strict MAC (that can be found in [115])
consists in starting from the de�nition of a neighbor of a cell. Let c1 be a cell. A cell c2 is in the
neighborhood of c1, denoted Neigh(c1), if and only if MAC(c1, c2) = false. Hence we have

Λ(t) = {s ∈ S |MAC(s, t) = true and Father(s) ∈ Neigh(Father(t))}.

We easily see (referring to Fig. 2.9) that for any target cell t, the strict MAC of the uniform
algorithm bounds the cardinal of Λ(t), #Λ(t), with regard to the dimension d in the following way:

#Λ(t) ≤ 6d − 3d.

The way the interaction lists are determined is one of the critical steps of the FMM. In the
method of Greengard & Rokhlin [115], these interaction lists are implicitly known because the 2d-
trees are supposed to be perfect, considering the relative positions between the cells at a same given
level. No additional method is needed to recover these interaction lists in the uniform algorithm.
Notice that in this original method, the MaxDepth criterion is used to construct the 2d-trees.

Operators. Before describing the algorithms of the uniform FMM, we quickly provide the general
terminology for the FMM expansion transformations. This is summarized in a set of six (linear)
operators that are listed below. The expressions of these operators are speci�c to each kernel.
Explicit formulas for the Laplace and Helmholtz kernels are given in 2.2.4.3.
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Figure 2.10: Schematic representation of FMM operators: P2M (orange), M2M (red), M2L
(magenta), L2L (pale blue), L2P (blue). Circles represent cells and dashed circles represent the
fathers of the cells they encompass. There are two kinds of incoming contributions to each target
cell t: the L2L operator one (from its father) and the M2L operator ones (from well-separated
cells in the interaction list of t).

1. P2M (Particles-to-Multipole): takes a source cell s in argument and assemble the mutlipole
expansion in s from the charges of the particles in s.

2. M2M (Multipole-to-Multipole): takes a source cell s and s′ ∈ Sons(s) in argument and
adds to the multipole expansion in s the contribution of the multipole expansions in s′. This
can be understood in the same way as the aggregation routine (see Section 2.2.3.2) of the
treecodes.

3. M2L (Multipole-to-Local): takes a source cell s and a target cell t in argument and transforms
the multipole expansion in s into a local expansion in t, then adds the results to the local
expansion of t. The application of a M2L operator corresponds to a cell-cell interaction.

4. L2L (Local-to-Local): takes a target cell t′ and t := Father(t′) in argument and converts the
local expansion in t into a local expansions in t′, then adds the result to the local expansion
in t′.

5. L2P (Local-to-Particles): takes a target cell t in argument and transforms the local expansion
in t into an e�ective contribution of the far �eld of t to each particles in t.

6. P2P (Particles-to-Particles): takes a target cell t and a source cell s in argument and com-
putes all the particle-particle interactions between the particles of t and those of s. This
computation is done directly (i.e. using direct kernel evaluations).

A schematic representation of the action of these operators is provided in Fig. 2.10. In the
uniform algorithm, the operators P2M, L2P and P2P are only applied at the deepest level. One
may notice that there is no cell-cell interaction at the two highest levels (the root and its sons) since
no pair of cells at these levels are well-separated. Using all these de�nitions, we are in position to
provide the algorithms corresponding to the FMM in its uniform version.

Algorithms. The FMM is usually presented through two algorithms: an upward pass during
which the multipole expansions are computed (i.e. the P2M andM2M operators are applied) and
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a downward pass where the cell-cell interactions are performed (i.e. the M2Ls are applied) and
the local expansions transformed into local ones in lower cells or into e�ective contributions at the
particle level (i.e. the L2L and L2P operators are applied). The upward pass is described in Alg.
4 and the traditional downward pass in Alg. 5, where we denote by lvlmax the user chosen depth of
the 2d-trees, T|l the restriction to the cells at level l of any tree T and Leaves(T ) the set of leaves
of T . We also use, for any target cell t, the notation N (t) to refer to the set of leaves that are not
well-separated from t.

Algorithm 4 Upward Pass
1: // Input: S the 2d-tree representation of Y
2: // Output: ∅
3: procedure UpwardPass(S )
4: // Assemble the multipole expansions at the leaf level
5: for s ∈ Leaves(S ) do
6: P2M(s)
7: end for
8: // From the leaf level to the root...
9: for l = lvlmax − 1, ..., 0 do
10: // ...assemble the multipole expansions
11: for s ∈ S|l do
12: for s′ ∈ Sons(s) do
13: M2M(s, s′)
14: end for
15: end for
16: end for
17: end procedure
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Algorithm 5 Downward Pass
1: // Input: T the 2d-tree representation of X, S the one of Y
2: // Output: ∅
3: procedure DownwardPass(T , S )
4: // At each level, from the root to the leaves...
5: for l = 2, ..., lvlmax − 1 do
6: // for each cell on this level...
7: for t ∈ T|l do
8: // ...evaluate the interaction list...
9: for s ∈ Λ(t) do
10: M2L(t, s)
11: end for
12: // ...and transmit the information to the sons.
13: for t′ ∈ Sons(t) do
14: L2L(t′, t)
15: end for
16: end for
17: end for
18: // For each leaf cell...
19: for t ∈ T|lvlmax do
20: // ...compute far �eld using the local expansion...
21: L2P(t)
22: // ...and perform the direct computation for the near �eld.
23: for s ∈ N (t) do
24: P2P(t, s)
25: end for
26: end for
27: end procedure

Complexity. The complexities of Algs. 4 and 5 depend on the costs of the P2M, M2M, M2L,
L2L and L2P operators (the cost of the P2P operator being only dictated here by the particle
distribution). In the original FMM for the Poisson's equation, the complexity of each of these
operators is only linked to the approximation order which is considered to be O(1) (the size of a
multipole/local expansion is supposed to be a constant). In addition, in this method, the cost of
an operator is the same for each level. To achieve the linear complexity, one has to assume that
the number of particles N divided by the number C(N) of cells for the deepest level is such that

∃a ≤ b ∈ R+∗,
N

C(N)
∈ [a, b] (2.9)

where a and b are constants independent of N . Because the size of the interaction list is bounded
(by a constant), the application of the M2L operators involving the same target cell costs O(1).
The assumption 2.9 ensures that the application of all the P2P operators is O(N). The complexity
of each P2M and L2P operator is O(1) using the same assumption. Finally, all other operators
are applied once per non-leaf cell. The total number of cells is also O(N) thanks to the assumption
2.9 which allows to conclude that the overall FMM costs O(N).

An important remark concerns the choice of the method. The complexities we gave are valid only
if the operators have a cost O(1) at each level. This is not the case in every FMM formulations.
For instance, the FMMs designed for the Helmholtz kernel in the high-frequency regime involve
operators whose cost depend on the level in a way that impacts the global complexity. This will be
further discussed in Chap. 3.

The assumption 2.9 is somehow related to a uniform particle distribution. This version is
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t

Cell t and its interaction lists:

U list:

V list:

W list:

X list:

Y list:

Figure 2.11: Adaptive FMM interaction lists, following [55].

obviously not well suited to deal with highly non-uniform distributions. Hence, there exists a
popular variant that tackles this issue.

2.2.4.2 Adaptive algorithm

The adaptive algorithm of the FMM was originally proposed in [55] and then enhanced in [65], based
on the same ideas than in the algorithm presented in [83]. In such an adaptive FMM, the 2d-trees
are constructed using the Ncrit criterion (see Sect. 2.2.1.2): the leaves are no more determined by
their level in the trees but by the number of particles they contain. The resulting 2d-trees are not
perfect. The idea is to match the cases in which the assumption 2.9 is not veri�ed, which arises in
many applications, such as in the BEM context. The main di�erence with the uniform algorithm
is that the interaction lists will di�er because of the non-perfectness of the trees. The adaptive
FMM still reaches the O(N) complexity, assuming that the operators all cost O(1) to apply6, when
dealing with average non-uniform distributions. The global error of the FMM depends on many
parameters: the distribution, the expansion types, the formulation of the operators... In practice,
the error estimates are given relatively to a particular FMM formulation. However, we may mention
that in [93] is given a quite general error analysis.

UVWXY-lists approach. Because the leaf cells may now appear at any level, the simple inter-
action list and the neighborhood of a cell (involving only cells at the same level) are not relevant
anymore. In [55] are introduced �ve di�erent lists that are depicted in the two-dimensional case on
Fig. 2.11, allowing to distinguish all required interactions. We brie�y describe these lists.

• The U -list, only de�ned for leaf cells, contains the set of all direct neighbors of t (see Fig.
2.11). This list corresponds to the set of source cells s such that the interaction between t
and s is computed directly, using the P2P operator.

• The V -list, which is composed of the set of source cells s at the same level of t well-separated
from t but with MAC(Father(t), Father(s)) = false and such that the interaction between
t and s is computed using the M2L operator. This corresponds to the de�nition we gave of
Λ(t).

• The W -list, denoted by W (t) and de�ned for the leaf cells only, contains the set of source
cells s such that the distance between s and t veri�es dist(t, s) ≥ w(s), where w(s) denotes
the side length of s. This means that the multipole expansion in s can be converted into a

6The FMM for high-frequency Helmholtz kernel does not veriry this assumption.
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contribution to the paticles in t, which is done by using an additional operator named M2P
(Multipole-to-Particles).

• The X-list, never explicitly built when the target and source point clouds are the same, is
composed of the source cells s such that t ∈ W (s). Hence, the contribution of the particles
of s can be added to the local expansion in t, which is done, again by a new operator named
P2L (Particles-to-Local).

• The Y -list, never explicitly built, contains the source cells s such that ∃c ∈ Ancestors(t) with
MAC(c, s) = true and the cell-cell interaction between c and s has already been computed
using a M2L operator. This means that the in�uence of s on the ancestors of t is contained
in the local expansions of c and will be transmitted to t by applying the L2L operator.

Remark 2.2.4. The application cost of a M2P or P2L is related to the FMM expansion expres-
sions. In practice, the application of a P2P operator can be less costly than a M2P or a P2L

if the number of involved particles is smaller than a threshold. In practical implementation, this
distinction may take the form of a simple test deciding what is the best operator to apply in term
of complexity. This optimization is described in [65].

The upward and downward passes presented in the uniform case in Section 2.2.4.1 can be written
under the adaptive FMM context using a recursive form that takes into account the non-perfect
trees. The construction of the U , V and W lists may have a cost: depending on the distribution,
some of these lists may be unbounded.

Dual Tree Traversal. Interaction lists di�erent from the one of the uniform algorithm can be
found for instance in [43, 53, 147]. In the adaptive FMM algorithm, the way the distance between
well-separated cells is controlled is obtained in the same manner than for the treecodes (see Sec-
tion 2.2.3.1), introducing an appropriate ratio. We here give the criterion provided in [92], for a
parameter θ ∈ R+∗ and two cells t and s:

rad(t) + rad(s)

|ctr(t)− ctr(s)| ≤ θ. (2.10)

This criterion is referred to as the adaptive MAC. If a pair (t, s) veri�es 2.10, then this pair is
well-separated.

The construction of the interaction list from a given MAC can be achieved in a recursive way
by traversing the source and target trees. This is the purpose of the Dual Tree Traversal (DTT)
algorithm [79, 212, 220]. We provide in Alg. 6 the DTT algorithm, where the routine Explore
returns (t, Sons(s)) if rad(t) > rad(s) and (Sons(t), s) otherwise. Notice that the interaction lists
are not constructed anymore using the DTT.
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Algorithm 6 DTT (Dual Tree Traversal)
1: // Input: Target cell t ∈ T , source cell s ∈ S
2: // Output: ∅
3: procedure DTT(t, s)
4: if MAC(t, s) then
5: M2L(t, s)
6: else
7: if isLeaf(t) or isLeaf(s) then
8: P2P(t, s)
9: else
10: T,S = Explore(t, s)
11: for t′ ∈ T do
12: for s′ ∈ S do
13: DTT(t′, s′)
14: end for
15: end for
16: end if
17: end if
18: end procedure

Remark 2.2.5. The M2P and P2L operators can be included in the DTT with only small modi-
�cations: tests are added after the MAC application deciding if such an operator can be e�ciently
applied.

The main advantages of the Dual Tree Traversal are its simplicity and its ability to deal with
variable or various MACs combined with trees built using the Ncrit criterion without strong algo-
rithmic modi�cations.

Alternatives. When dealing with non-uniform distributions, the 2d-trees generated using the
MaxDepth criterion may have cells containing no particle. The number of empty cells can be
important enough in practical applications to impact the complexity if they are stored and/or
treated by the algorithm. However, they should not involve computations since they have no e�ect
on the other cells. 2d-trees based on MaxDepth avoiding the computations in empty cells are
considered in [176, 183]. The notion of adaptive cell, as a cell that has more than a single non-
empty son, is used to evaluate only the needed cells: a non-adaptive cell can be replaced by its son.
A data structure well suited for both uniform and non-uniform distributions using this adaptive
version has been introduced in [73], named octree with indirections. Another method based on a
particular structure named compressed octree has been proposed in [17,133,134,190].

One may notice that for non-uniform distributions, the approach based on the MaxDepth
criterion has the disadvantage of generating cells with a greatly varying number of particles, which
may deteriorate the performances of hierarchical algorithms such as the Fast Multipole Method
(this argument is expressed, for instance, in [179]). A comparison between di�erent hierarchical
codes (treecodes and FMMs) usingMaxDepth and Ncrit on uniform and non-uniform distributions
has been done in [104], illustrating the behavior of the di�erent approaches and suggesting that
the Ncrit criterion is better suited than MaxDepth for non-uniform distribution since it naturally
adapts to the particle distribution.

There exists a third approach considering binary trees instead of 2d-trees and realizing another
kind of adaptivity with respect to the distribution. This family of methods is named balanced
tree FMM [49, 93, 138] and realizes an adaptive FMM algorithm based on balanced trees: non-leaf
nodes are decomposed according to the local particle distribution using well chosen median planes,
keeping constant the number of tree levels.
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2.2.4.3 Mathematical foundations of kernel explicit multipole and local expansions

In this section, we present two three-dimensional realizations of the Fast Multipole Method: one
for the Laplace kernel and one for the Helmholtz kernel (focusing on the high-frequency regime),
both based on explicit expansions of kernels using special functions in three dimensions. Originally,
the FMM was designed for Poisson's equation using explicit formula only valid in this particular
case (a speci�c kernel and a given dimension), and the early FMM versions for other kernels were
also based on explicit expansions of these particular kernels. Hence, these methods are referred to
as kernel-explicit methods. We are mainly concerned here by the exact formulas, the discretization
of the Helmholtz method leading to technical di�culties, which will be discussed in Chapter 3. To
be more precise, we present in the following how the continuous P2M, M2M, M2L, L2L and
L2P operators are de�ned. The presentation of these two methods are motivated by the following
points:

• They give concrete instances of the de�nitions of the FMM operators.

• They lead to the same global algorithm but using quite di�erent tools, which shows the desire
of a uni�ed framework (see Chapter 5).

• These two formulations are discretized in di�erent manners, which explains how the kernel-
explicit method implementations are speci�c to a particular case.

• The Laplace case illustrates the techniques used in a large panel of FMMs for non-oscillatory
kernels (including the low-frequency Helmholtz kernel) and Helmholtz one illustrates the
di�culties appearing for the highly oscillatory kernels (see Chapter 3).

We may emphasize that we present the FMM operators in these two cases in a non-standard
way: the theorems leading to their de�nitions are used in the same manner than in the literature
but we de�ne them as mathematical operators, acting on application sets. This formulation actually
prepares to the general formulation we propose in Chapter 5.

Operators for the 3D Laplace kernel. First, following [97]

1

|x− y| =

+∞∑
n=0

rn<
rn+1
>

Pn

(〈
x

|x| ,
y

|y|

〉)
where x and y are expressed in spherical coordinates (rx, θx, φx) and (ry, θy, φy) respectively,
r> := max{rx, ry}, r< := min{rx, ry} and Pn denotes the Legendre polynomial of order n (see [178]
Chap. 14 Paragraph 7).

We may then mention the classical spherical addition theorem (see [118]) which expresses such
evaluations of Legendre polynomials in terms of spherical harmonics (see [178] Chap. 14 Paragraph
30(i) ).

Theorem 2.2.1. (Spherical harmonics addition theorem [178] Chap. 14 Paragraph 30(iii)) De-
noting by Y ml the spherical harmonic of order m and degree l, the following holds:

Pl(〈η, ξ〉) =
4π

2l + 1

l∑
m=−l

Y ml (θη, φη)Y m∗l (θξ, φξ)

∀ η, ξ ∈ R3 with |η| = |ξ| = 1.

Now, we introduce the following quantities (see [97])
Oml (r, θ, φ) := (−1)li|m|

Aml r
l+1 Y

m
l (θ, φ)

Iml (r, θ, φ) := i−|m|Aml r
lY ml (θ, φ)
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∀(l,m) ∈ N× Z, 0 ≤ |m| ≤ l, with Aml := (−1)l√
(l−m)!(l+m)!

.

Then, for any x,y ∈ R3, the following theorem expresses the Laplace kernel as a series of
separable expressions.

Theorem 2.2.2. (Classical translation theorem [97]) If |x| > |y|, then

1

|x− y| =

+∞∑
m=0

m∑
l=−m

(−1)mOlm(x)I−lm (y). (2.11)

We denote by NZ the restriction of N× Z such that

NZ := {(m, l) ∈ N× Z, 0 ≤ |l| ≤ m}. (2.12)

The multipole and local expansions will be applications from NZ → C.

Remark 2.2.6. In practice, the series
p∑

m=0

m∑
l=−m

(−1)mOlm(x)I−lm (y)

pointwise converges exponentially fast in p to 1
|x−y| so the discretization is done only by truncating

Eq. 2.11. Notice that the convergence is exponential on well-separated sets (with regard to the
adaptive MAC given in Eq. 2.10), implying that only a small number of terms are needed for a
reasonable accuracy. Hence, one only has to replace NZ by the induced restriction (i.e. {(m, l) ∈
NZ , m ≤ p}) in the de�nitions of the 3D Laplace FMM operators given in the following to obtain
the discrete version, used in practical algorithms.

Two other theorems allow to de�ne the classical operators of the FMM in the 3D Laplace kernel
case.

Theorem 2.2.3. (Outer-to-outer and Outer-to-Inner Laplace translation theorem [97]). Assuming
|x| > |y|, the following holds

Olm(x− y) =

+∞∑
j=0

j∑
k=−j

(−1)jOl+km+j(x)I−kj (y)

∀(m, l) ∈ NZ .

Theorem 2.2.4. (Inner-to-Inner Laplace translation theorem [116])

I lm(x− y) =

m∑
j=0

j∑
k=−j

(−1)jI l−km−j(x)Ikj (y)

∀(m, l) ∈ NZ .

Following Thm. 2.2.2, we have∑
y∈Y

q(y)

|x− y| =
∑
y∈Y

+∞∑
m=0

m∑
l=−m

(−1)mOlm(x)I−lm (y)q(y)

=

+∞∑
m=0

m∑
l=−m

(−1)mOlm(x)
∑
y∈Y

I−lm (y)q(y).

Because the convergence of the truncated multipole expansions deteriorates near the singularity, this
sum cannot be directly applied: the MAC is needed to control its convergence. However, following
the FMM algorithm, this formula may be applied on restrictions of Y , namely on the particles of a
leaf cell. We list in the following the di�erent FMM operators for the 3D Laplace kernel, that are
obtained using Thms. 2.2.3 and 2.2.4.
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De�nition 2.2.2. (3D Laplace P2M) Let s be a cell and q : Y ∩s→ C, where Y ∩s is the (�nite)
set of particles contained in s. The P2M operator in s is the application P2M[s] : (Y ∩ s→ C)→
(NZ → C) such that ∀ (j, k) ∈ NZ

(P2M[s] q) (j, k) := (−1)j
∑

y∈Y ∩s
Ikj (y − ctr(s))q(y).

The result of the application of a P2M operator is a multipole expansion. The multipole
expansions are aggregated together to form multipole expansions in all the non-leaf cells of the
source tree by using the M2M operator.

De�nition 2.2.3. (3D Laplace M2M) Let s be a cell and q : NZ → C. The M2M operator from
s′ to s is the application M2M[s, s′] : (NZ → C)→ (NZ → C) such that ∀ (j, k) ∈ NZ

(M2M[s, s′] · q) (j, k) :=

j∑
m=0

m∑
l=−m

|k−l|≤j−m

Ik−lj−m(ctr(s)− ctr(s′))q(l,m).

The multipole expansion in s is then equal to∑
s′∈Sons(s)

M2M[s, s′] · M[s′]

whereM[s′] is the multipole expansion in s′.

De�nition 2.2.4. (3D Laplace M2L) Let t and s be two well-separated cells and q : NZ → C.
The M2L operator from s to t is the application M2L[t, s] : (NZ → C)→ (NZ → C) such that

(M2L[t, s] · q) (j, k) :=

+∞∑
m=0

m∑
l=−m

O−k−lj+m (ctr(t)− ctr(s))q(m, l).

The result of such an application of a M2L operator is a local expansion in t.

De�nition 2.2.5. (3D Laplace L2L) Let t be a cell and p : NZ → C. The L2L operator from s
to t is the application L2L[t′, t] : (NZ → C)→ (NZ → C) such that

(L2L[t′, t] · p) (j, k) :=

+∞∑
m=j

m∑
l=−m

|l−k|≤m−j

I l−km−j(ctr(t
′)− ctr(t))p(m, l).

De�nition 2.2.6. (3D Laplace L2P) Let t be a leaf cell and p : NZ → C. The L2P operator in t
is the application L2P[t] : (NZ → C)→ (X ∩ t→ C) such that ∀x ∈ t ∩X

(L2P[t] · p) (x) :=

+∞∑
j=0

j∑
k=−j

Ikj (x− ctr(t))p(k, j). (2.13)

Our notation choice is justi�ed by the �chain� appearing when one wants to look at the in�uence
of the far �eld generated by s′ ∈ Sons(s) on t′ ∈ Sons(t) such that MAC(t, s) = true. Indeed, this
in�uence is approximated in the FMM algorithm by

L2P[t′] · L2L[t′, t] ·M2L[t, s] ·M2M[s, s′] ·P2M[s′] · q|s′

where q|s′ denotes the vector of charges of the source particles in s′.
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Operators for the 3D Helmholtz kernel. The same form of operators can be obtained when
the Helmholtz kernel in the high frequency regime is considered, but based on di�erent mathematical
tools. The results of this paragraph can be found in [70] and the formulas on special functions
can be found in [7]. The FMM described in a continuous way in this paragraph is known, after
discretization, as hf-fmm.

Theorem 2.2.5. (Gegenbauer's addition theorem [70]) Let jl be the spherical Bessel function of
order l ( [178] Chap. 10 paragraph 47(ii)), Pl be the Legendre polynomial of order l and h

(1)
l be the

�rst kind spherical Hankel function of order l ( [178] Chap. 10 paragraph 47(ii)). The following
holds:

eiκ|t+z|

|t + z| = iκ

+∞∑
l=0

(−1)l(2l + 1)jl(κ|z|)h(1)
l (κ|t|)Pl

(〈
t

|t| ,
z

|z|

〉)
.

To develop a multipole method, t has to be understood as the di�erence between the center of
interacting source and target cells and z as the di�erence between the coordinates of the source
and target particles given relatively to the center of the cell in which they lie. To be more precise,
considering x ∈ X and y ∈ Y , X and Y being the target and source point clouds respectively, and
two cells s and t such that x ∈ s and y ∈ t:

x− y = [(x− ctr(t))− (y − ctr(s))] + [(ctr(t)− ctr(s))]
=: z + t

with ctr(s) being the center of s and ctr(t) the center of t. We need another result to derive the
continuous algorithm for the Helmholtz kernel.

Theorem 2.2.6. (Propagating plane wave expansion [70])

4πiljl(κ|z|)Pl (〈t/|t|, z/|z|〉) =

∫
S2

eiκ〈z,λ〉Pl(〈t/|t|, λ〉)dλ

S2 := {x ∈ R3 | |x| = 1} denoting the unit sphere.
By combining Thms. 2.2.5 and 2.2.6, we obtain (see [184])

eiκ|t+z|

|t + z| = lim
n→∞

iκ

4π

∫
S2

Tn(t, λ)eiκ〈z,λ〉dλ (2.14)

where we used

Tn(t, λ) :=

n∑
l=0

(2l + 1)ilh
(1)
l (κ|t|)Pl(〈t/|t|, λ〉). (2.15)

The complex exponential can then be decomposed, giving for any ε > 0 the existence of n ∈ N
such that for any cell s:∑

y∈s∩Y
G(x,y)q(y) =

∑
y∈s∩Y

(
iκ

4π

∫
S2

Tn(t, λ)eiκ〈x̂−ŷ,λ〉dλ

)
q(y) +O(ε)

=
iκ

4π

∫
S2

Tn(t, λ)eiκ〈x̂,λ〉
∑

y∈s∩Y
e−iκ〈ŷ,λ〉q(y)dλ+O(ε)

which draws the shape of the associated FMM algorithm. The next de�nitions provide expressions
for the hf-fmm operators.

De�nition 2.2.7. (hf-fmm P2M) Let s be a cell, Y ∩ s be the (�nite) set of particles in s and
q : Y ∩ s → C. The P2M operator in s is de�ned by P2M[s] : (Y ∩ s→ C) →

(
S2 → C

)
such

that ∀λ ∈ S2

(P2M[s] · q) (λ) :=
∑

y∈s∩Y
e−iκ〈ŷ,λ〉q(y).
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De�nition 2.2.8. (hf-fmm M2M) Let s be a cell and q : S2 → C. The M2M operator from
s′ ∈ Sons(s) to s is de�ned by M2M[s, s′] :

(
S2 → C

)
→
(
S2 → C

)
such that ∀λ ∈ S2

(M2M[s, s′] · q) (λ) := e−iκ〈ctr(s)−ctr(s
′),λ〉q(λ).

De�nition 2.2.9. (hf-fmm M2L) Let t and s be two well-separated cells and q : S2 → C. The
M2L operator from s to t is de�ned by M2L[t, s] :

(
S2 → C

)
→
(
S2 → C

)
such that ∀ λ ∈ S2

(M2L[t, s] · q) (λ) := Tn(ctr(t)− ctr(s), λ)q(λ).

De�nition 2.2.10. (hf-fmm L2L) Let t be a cell, t′ ∈ Sons(t) and p : S2 → C. The L2L operator
from s to t is de�ned by L2L[t′, t] :

(
S2 → C

)
→
(
S2 → C

)
such that ∀ λ ∈ S2

(L2L[t′, t] · p) (λ) := eiκ〈ctr(t
′)−ctr(t),λ〉p(λ).

De�nition 2.2.11. (hf-fmm L2P) Let t be a leaf cell and p : S2 → C. The L2P operator in t is
de�ned by L2P[t] :

(
S2 → C

)
→ (X ∩ t→ C) such that ∀ x ∈ X ∩ t

(L2P[t] · p) (x) :=

∫
S2

eiκ〈x−ctr(t),λ〉p(λ)dλ. (2.16)

As for the Laplace case, the in�uence of the far �eld generated by s′ ∈ Sons(s) on t′ ∈ Sons(t)
such that MAC(t, s) = true is approximated in hf-fmm using the following �chain�:

L2P[t′] · L2L[t′, t] ·M2L[t, s] ·M2M[s, s′] ·P2M[s′] · q|s′ .

After discretization of the integral, the expressions of the M2M and L2L operators have to
be reformulated, which will be explained in detail in Chapter 3. This is a consequence of the
varying cubature grids used among the tree levels, inducing an interpolation step on S2. hf-fmm is
a special case of FMM in which the number of needed terms in the expansions grows with the size
of the interacting cells to preserve a reasonable accuracy, although the diagonal expression of M2L
operators [184] (see Def. 2.2.9) allows to evaluate these cell interactions e�ciently. The overall
complexity of hf-fmm is at least O(NlogN) on surfacic particle distributions [56] because of the
increasing cost of the FMM operators from the leaves to the root of the 2d-trees.

Low-frequency FMMs. The discretization and the numerical evaluation of special functions
involved in Eq. 2.14 make this formula impossible to use for the low-frequency regime [135], that is
when the product Cκ is less than a critical threshold, where C denotes the size of the computational
domain. In many FMMs, this threshold is chosen so that there is no oscillation in the Helmholtz
kernel in the low-frequency regime, that is Cκ ≤ 1 (see [174]). The classical approaches use
plane-wave expansions in the low-frequency regime, adding an evanescent wave to the plane wave
expansion of the kernel [114]. These methods are referred to as lf-fmm and have been studied
in [78,206].

Wideband FMM. The expansions used in hf-fmm becoming unstable in the low frequency
regime while the use of the expansions of lf-fmm in the high-frequency regime is suboptimal (see
[66]), the need of combining lf-fmm and hf-fmm is of important concerns. Indeed, the di�erent cells
of a given octree may lie in di�erent regimes. The cells verifying wκ ≤ 1, with w the size of the cell,
are said to be in the low-frequency regime and those not verifying this inequality are said to be in
the high-frequency regime. To handle both low and high frequency regimes, a standard approach
( [60,66]) consists in adding a conversion between low-frequency and high-frequency expansions once
the boundary between the two regimes is reached during the tree traversals. Another wideband
FMM for the Helmholtz kernel with complex wavenumber is presented in [68].
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2.2.5 Algebraic hierarchical methods

Algebraic generalizations of hierarchical algorithms have been widely studied and has led to the
de�nition of a set of formats: panel-clustering methods [128, 129], H-matrices [35, 123, 127], H2-
matrices [124,127], hierarchical semi-separable matrices [214]... The basic idea is to represent a N -
body problem in a (dense) matrix form where particular blocks of the matrix can be approximated
by low-rank factorizations. See also [28] for a presentation of hierarchical formats.

2.2.5.1 Matrix form

The starting point is to consider Eq. 2.1 as a matrix-vector product with a matrix A ∈ CM×N
and the vector q ∈ CN , where M := #X is the cardinal of X and N := #Y is the cardinal of Y .
Indeed, denoting by xk the kth element of X and by yl the lth element of Y , we can de�ne

Ak,l := G(xk,yl)

and
ql := q(yl)

such that Eq. 2.1 becomes equivalent to the computation of p ∈ CM such that

p = Aq. (2.17)

This formulation does not directly lead to a computational gain and the storage of the entire
A requires O(MN) memory instead of O(N + M) for a direct computation (because only the
source and target particles can be stored since the kernel G can be evaluated on-the-�y). However,
the matrix form of the N -body problem allows to consider the acceleration methods from linear
algebra viewpoint, which provides an interesting link between well-separated sets and low-rank
approximations.

2.2.5.2 Low-rank matrices

Suppose that there exists r ∈ N∗ such that

A =

r∑
n=1

unv
T
n

with un ∈ CM , vn ∈ CN . We thus have

Aq =

(
r∑

n=1

unv
T
n

)
q

=

r∑
n=1

un
(
vTnq

)
which costs O(r(M +N)) operations to compute. If r << min(M,N), this formulation results in
a reduction of the cost of the matrix-vector product.

For arbitrary point clouds X and Y , the matrix A does not admit such a decomposition. How-
ever, the restrictions of A to well-separated groups of particles (i.e. groups of particles lying in pairs
of cells that are well-separated with regard to a well chosen MAC, by analogy with the FMM) may
be approximated using low-rank factorizations. These low-rank factorizations can be derived from
the following theorem.

Theorem 2.2.7. ( [125] Lemma C.5) Let B ∈ CM×N . There exist unitary matrices U ∈ CM×M
and V ∈ CN×N such that

B = UΣV (2.18)
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where Σ ∈ (R+)M×N such that Σk,l 6= 0⇔ k = l, σk := Σk,k and σk ≥ σk+1 ∀k = 1, ...,min(M,N)−
1. The σk's named singular values of B. The factorization of Eq. 2.18 is referred to as the Singular
Value Decomposition (SVD) of B.

Because of the decaying of the singular values with regard to their index, a natural idea to obtain
a low-rank approximation of an arbitrary matrix consists in replacing the singular values by zeros
up to a given index. Such truncation is named a truncated SVD. The approximation truncation
threshold can be estimated by means of the Eckart-Young-Mirsky theorem.

Theorem 2.2.8. (Eckart-Young-Mirsky theorem [113] Th. 2.5.3) Let B(r) be the truncated SVD
of B keeping the �rst r singular values of B. The following hold:

min
C∈CM×N | rank(C)=r

||B − C||2 = ||B −B(r)||2 = σr+1,

min
C∈CM×N | rank(C)=r

||B − C||F = ||B −B(r)||F =

√√√√min(M,N)∑
j=r+1

σ2
j ,

where || · ||2 denotes the spectral norm and || · ||F denotes the Frobenius norm.

The SVD can be explicitly computed numerically in order to produce optimal low-rank approxi-
mations, but there exists several alternatives in practice, less costly in terms of numerical resources
such as Rank-Revealing QR [62] or randomized techniques [130]. Popular methods in the BEM
context are also able to compute in a fast manner the low-rank approximations: these are detailed
in Chap. 4.

2.2.5.3 Hierarchical matrices

The hierarchical matrix format (H-matrix) only consists in applying low-rank approximations of
blocks of A that correspond to well-separated sets. This results in a O(r(NlogN + MlogM))
algorithm for both application and storage, where r denotes the maximal rank of the low-rank
approximations.

The H-matrices usually rely on tree decompositions of the point clouds and a traversal of these
trees to determine the blocks of the global matrix that need to be compressed. An optimization
of the H-matrix format is obtained by taking into account the links between the cells of the target
and source trees. This last format is named H2-matrices and can be interpreted as an algebraic
generalization of the FMM. In [48], a comparison between H-matrices and FMM is described in the
particular case of two Helmholtz problems (in low and high frequency regimes). Precomputation
timings are better using the FMM and the memory consumption is in favor of the FMM. Hence,
because the results show better application timings for the H-matrices than the FMM, the number
of needed matrix-vector products to obtain overall better timings with the H-matrices are given:
at least a few hundred applications.

Remark 2.2.7. In its purely algebraic form, there is no constraint in the type of tree representation
of the computational domain in the H-matrix format. Hence, this tree does not have to be a 2d-tree
and can be, in practice, a binary tree (see for instance the code htool [2, 169]).

Remark 2.2.8. The rank of the blocks corresponding to cells in the high-frequency regime for oscil-
latory kernels increases with the frequency. Hence, the rank of these blocks tends to be proportional
to their sizes (see [66]).
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Kernel-explicit Fast Multipole

Methods for highly oscillatory

problems
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In this chapter, we present the discretization of the Gegenbauer formula (Th. 2.2.5) exploited
in the kernel-explicit FMM for the Helmholtz kernel in the high-frequency regime (that is the
method hf-fmm). This leads to a high level discussion on the cubature problem on the sphere and
to a presentation of the product rules used in practice in the hf-fmm context. We also present
the di�culties of the treatment of the polynomial interpolation over the sphere in the multilevel
algorithm appearing as a consequence of these cubatures over the sphere in Sect. 3.1. A set of fast
algorithms designed to tackle the complexity of this interpolation is described in Sect. 3.2.
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3.1 Discretization

To numerically deal with the kernel expansion in Eq. 2.14

eiκ|t+z|

|t + z| = lim
n→∞

iκ

4π

∫
S2

Tn(t, λ)eiκ〈z,λ〉dλ,

two di�erent approximations are needed. First, as we already discussed in Sect. 2.2.4.3, one has to
�x an integer L ∈ N∗ and to remove the limit, keeping TL only. In addition, the integral over the
unit sphere cannot be directly computed and needs to be approximated through cubatures (that
are quadratures in more than one dimension). This leads to an approximation of restrictions of the
N -body problem with Helmholtz kernel in Eq. 2.1 of the form

∑
y∈s∩Y

eiκ|x−y|

|x− y| q(y) ≈ iκ

4π

QL∑
p=1

ωpe
iκ〈x̂,λp〉TL(t, λp)

∑
y∈s∩Y

e−iκ〈ŷ,λp〉q(y) (3.1)

for any x ∈ t where t, s are well-separated cells with regard to the strict MAC of Sect. 2.2.4.1,
using x̂ := x − ctr(t), ŷ := y − ctr(s) and where the set {(ω1, λ1), ..., (ωQL , λQL)} ⊂ R × S2 refers
to a cubature rule over the unit sphere. The de�nition of cubature, along with examples of usual
cubature rules, are provided in Sect. 3.1.1. The discretization of the integral in Eq. 3.1 a�ects
the de�nition of the hf-fmm operators. In Sect. 3.1.2, we present how the cubature rule is chosen
according to the requested accuracy for the discretizedM2L operator and in Sect. 3.1.3, we discuss
the impact of the cubature on the M2M/L2L operators.

3.1.1 Cubature on the sphere

The design of accurate cubature rules with a minimal number of cubature nodes is still nowadays a
very hard task for complex domains. A survey of the general cubature problem is provided in [71]
and the principal methods on the sphere are compared in [37]. We �rst recall how this cubature
problem writes on the sphere.

3.1.1.1 Spherical harmonics

The set of polynomials on the sphere corresponds to the set of spherical harmonics. A cubature rule
of order L and size QL on the sphere refers to a �nite set of QL ∈ N∗ pairs formed by a real scalar
(weight) and a point on the sphere (cubature node), i.e. a set {(ωq, λq) ∈ R× S2 | q ∈ [[1, QL]]} such
that

∀l ∈ [[0, L]],m ∈ [[−l, l]],
∫
S2

Y ml (λ)dλ =

QL∑
q=1

ωqY
m
l (λq).

In other terms, such rule integrates exactly all the spherical harmonics with orders and degrees up
to L by using QL points. Giving this QL number of points in a cubature rule and the location of
the cubature nodes, one may �nd the weights by solving a Vandermonde-like system of the form

Y 0
0 (λ1) . . . Y 0

0 (λQL)
Y −1

1 (λ1) . . . Y −1
1 (λQL)

Y 0
1 (λ1) . . . Y 0

1 (λQL)
Y 1

1 (λ1) . . . Y 1
1 (λQL)

...
...

...
Y LL (λ1) . . . Y LL (λQL)


ω1

...
ωQ

 =



∫
S2
Y 0

0 (λ)dλ∫
S2
Y −1

1 (λ)dλ∫
S2
Y 0

1 (λ)dλ∫
S2
Y 1

1 (λ)dλ
...∫

S2
Y LL (λ)dλ


=


√

4π
0
...
0



which is well-known to be highly ill-conditioned, the second equality being obtained by using∫
S2 Y

m
l (λ)Y m

′
l′ (λ)dλ = δm,m′δl,l′ and Y 0

0 ≡ 1√
4π
. Finding a cubature rule by solving a Vander-

monde's system assumes that the cubature nodes are already known, which is often not the case.
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In practice, the problem of designing a cubature rule can be simpli�ed, relying on the properties of
the integration domain.

3.1.1.2 Product of uniform rules

The most naive way to obtain a cubature on the sphere is to consider products of one-dimensional
quadrature in both spherical angles (see for instance [26]). Indeed, the analytic expression of the
spherical harmonics gives:

∫
S2

Y ml (λ)dλ =

∫
θ∈[−π2 ,

π
2 ]

∫
φ∈[0,2π]

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos(θ))eimφdθdφ

=

√
2l + 1

4π

(l −m)!

(l +m)!

∫
θ∈[−π2 ,

π
2 ]

Pml (cos(θ))dθ

∫
φ∈[0,2π]

eimφdφ

(3.2)

where Pml denotes the associated Legendre function. Then, by using{
φj := 2π

2L+1j ∀ 0 ≤ j ≤ 2L

ωφj := 2π
2L+1

we obtain [197] ∑
0≤j≤2L

ωφje
imφj =

{
2π i� m = 0;

0 otherwise.

Such pairs (ωφj , φj) de�ne an appropriate quadrature rule over the azimuthal axis, i.e. a quadrature
of the red integral in Eq. 3.2. The blue integral can also be evaluated exactly for m = 0 (which is
the only term that is not removed by a product with the quadrature of the red integral in Eq. 3.2)
by using a rule {(ωθk , θk)}k with 2L + 1 uniformly sampled points (uniform rule). The weights of
this rule have to be found by solving, once again, a Vandermonde-like system:

 P0(cos(θ1)) . . . P0(cos(θ2L+1))
...

. . .
...

P2L(cos(θ1)) . . . P2L(cos(θ2L+1))


 ωθ1

...
ωθ2L+1

 =


2
0
...
0

 . (3.3)

The resulting product rule is obtained by combining these two uniform rules, giving{
{(θk, φj) | k, j ∈ [[1, 2L+ 1]]} (cubature nodes)
{ωθkωφj | k, j ∈ [[1, 2L+ 1]]} (cubature weights) .

This generates a cubature rule that integrates exactly the spherical harmonics up to the order 2L
with size (2L+ 1)2.

3.1.1.3 Gauss-Legendre product rules

There exists a better way of integrating the Legendre polynomials up to a certain order than a
uniform sampling. Following [203], one may replace the uniform sampling of the polar axis in the
product uniform rules of Sect. 3.1.1.2 by a Gauss-Legendre formula with L+1 nodes. This generates
a cubature rule on the sphere with size (L + 1)(2L + 1) and that integrates exactly the spherical
harmonics of order up to 2L. This cubature rule will be refer to as the product Gauss-Legendre
cubature rule. This last rule is used in many versions of hf-fmm [60, 66,77,184,197].
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3.1.2 M2L operator

After having applied the discretization summarized in Eq. 3.1, a hf-fmm M2L evaluation (see Sect.
2.2.4.3) consists in computing TL(t, λ)q(λ) for any (ω, λ) ∈ Q ⊂ R × S2, Q being a cubature rule
on the sphere, t being the di�erence between the interacting cell centers and q being a (discretized)
mutlipole expansion (i.e. an application from Q to C). Let L be the truncation order of the limit
in Eq. 3.1. This M2L operator is often said to be diagonal by analogy with its matrix expression:TL(t, λ1)

. . .
TL(t, λQL)


 q(λ1)

...
q(λQL)

 .
The complexity in terms of multiplications/additions of the application of a single M2L matrix,
assuming that the entries of the diagonal matrix are already known, is exactly equal to the number
of cubature nodes, that is equal to QL. As a direct consequence, by minimizing the number of
cubature nodes, one also minimizes the application cost of the M2L operators.

In practice, the truncation order L is chosen accordingly to the radii of the interacting cells (that
are supposed to be equal since hf-fmm uses the strict MAC, see Sect. 2.2.4.1) in order to preserve
a global accuracy for the overall method. This order L thus varies between the tree levels (meaning
that the cubature grids also do). In particular, L has to be large enough to ensure the convergence
of the Gegenbauer series but small enough to avoid the divergence of TL at in�nity (see [66]). A
su�cient criterion for the convergence of the Gegenbauer series [56] consists in choosing L > κw,
where w is the diameter of the interacting cells. The choice of the parameter L has been studied
in [54,67,70,77]. A usual option [56,69,135] is given by

L ≈ κw + (1.8d0)
2/3

(κw)
1/3

d0 denoting the number of requested digits of accuracy. This heuristic choice for L illustrates the
dependence with the levels, since the diameter of the cells are �xed by their tree level.

3.1.3 M2M/L2L operators

Because the cubature grids change at each level of the octrees, one needs to de�ne a way of interpo-
lating the data associated to a set of cubature nodes to another set. Indeed, the hf-fmm M2M/L2L
operators in Sect. 2.2.4.3 were diagonal. However, this diagonal form only exists because the input
and output sets (i.e. the entire unit sphere) were the same. Because these sets are di�erent after
the discretization of the integral on the unit sphere1 as in Eq. 3.1, this diagonal form does not hold
any more.

The (discretized) M2M/L2L operators are decomposed into two steps: a translation (Sect.
3.1.3.1) and an interpolation over the sphere (Sect. 3.1.3.2).

3.1.3.1 Translation

The �rst step of the M2M and L2L operators consists in decentering the cubature grid. Indeed, a
cubature grid is attached to a given cell, centered in the center of this cell. When moving the data
from a cell to another one, a shifting has to be operated (the positions of x̂ and ŷ are given relatively
to the centers of interacting cells in Eq. 3.1). This can be done by applying a diagonal matrix
product with complex exponentials to the multipole/local expansion. Let {(ωq, λq) | q ∈ [[1, QL]]}
be a cubature grid associated to the cell c. Let c′ ∈ Sons(c) and q be a multipole expansion
associated to c. The translation from c′ to c in the M2M operator can be written ase

−iκ〈ctr(c′)−ctr(c),λ1〉

. . .
e−iκ〈ctr(c

′)−ctr(c),λQL 〉


 q(λ1)

...
q(λQL)

 . (3.4)

1Since the cubature rule depends on the tree level.
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An equivalent formula is obtained for the L2L operator by reversing the roles of c′ and c, i.e. by
taking the conjugates of the entries of the matrix in Eq. 3.4. This shifting is a diagonal operation.

3.1.3.2 Interpolation between cubature grids

Once decentered, the expansions de�ned on a cubature grid of the incoming level have to be inter-
polated into expansions in the cubature grid of the new level (since the cubature nodes are not the
same and the cubature rules have di�erent size). This can be performed using Lagrange-like inter-
polation over the sphere (see [10]). We describe in the following how this interpolation is derived
for band-limited functions in L2(S2) [197].

Let f ∈ L2(S2) be a band limited function with bandwidth L. We have

f(λ) =

L∑
l=0

l∑
m=−l

Al,mY
m
l (λ)

where
Al,m := 〈f, Y ml 〉L2(S2)

where 〈·, ·〉L2(S2) refers to the scalar product in L2(S2).
Let Q be a cubature rule on the sphere integrating exactly the integral in Al,m. We obtain

f(λ) =

L∑
l=0

l∑
m=−l

 ∑
(ωq,λq)∈Q

ωqf(λq)Y
m∗
l (λq)

Y ml (λ)

=
∑

(ωq,λq)∈Q

ωq

(
L∑
l=0

l∑
m=−l

Y ml (λ)Y m∗l (λq)

)
f(λq)

=
∑

(ωq,λq)∈Q

ωq

(
L∑
l=0

2l + 1

4π
Pl(〈λq, λ〉)

)
f(λq)

and the red term will be refered to as the interpolation operator on the sphere, denoted by IS2 :
S2 × S2 → R, that is

IS2(µ, λ) =

L∑
l=0

2l + 1

4π
Pl(〈µ, λ〉).

The value of f on µ ∈ S2 is given by

f(µ) =
∑

(ωq,λq)∈Q

IS2(µ, λq) (ωqf(λq)) . (3.5)

This allows to interpolate the values of any expansion on a cubature grid to another cubature grid
by taking as values for µ all the nodes of the new cubature grid. The expression in Eq. 3.5 for all
µ can trivially be expressed a matrix-vector product. The involved matrix is a dense one and its
dimension is equal to the product of the number of nodes in the two involved cubature grids. Hence,
this matrix-vector product is costly for large cubature rules, that is for high truncation orders L in
the computation of TL. To be more precise, this cost increases from the leaves to the roots of the
2d-trees because of the choice of L as discussed in Sect. 3.1.2.

3.2 Fast algorithms for the polynomial interpolation over the

sphere

In practice, the naive application of the M2M/L2L operators as dense matrices becomes too
prohibitive for the highest levels of the octrees (i.e. close to the root). To tackle this issue, many
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approaches were proposed in the literature. We describe in the following paragraphs how these
products act on the global complexity of hf-fmm (Sect. 3.2.1) and the main methods, to our
knowledge, aiming at accelerating these products (Sect. 3.2.2).

3.2.1 Impact on the total complexity

The crucial point is that the cost of the M2M/L2L operations has, in hf-fmm, to be balanced
with the cost of the M2L operations because of the varying ratio between M2L and M2M/L2L
numbers at each level of the octrees and because the cost of these operators increases di�erently
from the leaves to the root. If no optimization technique is used, the cost of aM2M/L2L operation
at a given octree level associated to a truncation order L for the Gegenbauer series is O(L4) and
the one of a M2L operation at the same level is O(L2). Hence, as mentioned for instance in [56],
a naive application of such M2M/L2L operators leads to a global complexity of O(N

2
3 ), that can

be reduced to O(Nlog2N) or O(NlogN) based on choices of fast interpolation algorithms on the
sphere [56], where N denotes the number of source and target particles and where the particle
distributions are supposed to be surfacic.

Near the deepest octree levels, the cubature grids usually only involve a low number of points
(because of the small diameter of the involved cells and assuming that the leaves have a side length
of approximately one wavelength). Only a single M2M/L2L operation is performed per cell,
compared to up to 189 M2L per cell [76]. Hence, this M2M/L2L cost can be negligible at these
deepest levels. On the opposite, as the level number diminishes, the number of involved cells also
does, so there also are less M2L operations to apply at the highest levels. The (naive) M2M/L2L
application cost may dominate the FMM evaluation cost on these levels. Fortunately, there exists
a set of algorithms designed for the acceleration of the M2M/L2L operators.

3.2.2 Fast schemes

In the following paragraphs are listed fast methods to perform the interpolation over the sphere
needed in the M2M/L2L operators (see Sect. 3.1.3.2). We denote by L the truncation order of
the Gegenbauer formula as in Eq. 3.1.

3.2.2.1 Threshold method

A method that does not preserve the exactness of the interpolation but leads to an overall linearith-
mic complexity for hf-fmm (evaluating approximated interpolations over the sphere in O

(
L2
)
�ops)

is presented in [75, 76]. The idea is to sparsify the M2M/L2L matrices by discarding all the en-
tries that have a "small" module, according to a user chosen threshold. This somehow corresponds
to a non-local operator approximation with a local one. Notice that the error induced by the
sparsi�cation has to be taken into account in the overall error estimate when using such a method.

3.2.2.2 Local Lagrange interpolation

Another local method can be obtained by using localized Lagrange interpolation on the sphere [98].
This technique also reduces the interpolation complexity to a quasi-linear one: O(L2p2), where p is
the number of interpolation nodes in the neighborhood of a node in each of the spherical directions
and is chosen to be small in practice. Once again, this method adds an additional approximation
to the error induced by the truncation of the Gegenbauer series that has to be taken into account
in the global accuracy estimate.

3.2.2.3 Jakob-Chien-Alpert's algorithm

This paragraph is dedicated to the fast algorithm proposed in [144]. Let us suppose that all the
considered cubature grids are product grids (in spherical coordinates), that is product uniform (see
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Sect. 3.1.1.2) or Gauss-Legendre (see Sect. 3.1.1.3) rules. The main point is that IS2 can be
written in term of spherical harmonics thanks to the spherical harmonic addition theorem ( [178]
Sect. 14.30(iii) Eq. 14.30.9):

IS2(µ, λ) =

L∑
l=0

l∑
m=−l

Y ml (µ)Y m∗l (λ). (3.6)

Denoting by (θu, ψu) the spherical angles of u ∈ {µ, λ}, this form allows the exploitation of the

product structure of the cubature grids. Let Qml (x) :=
√

2l+1
4π

(l−m)!
(l+m)!P

m
l (x), with Pml the associated

Legendre polynomial indexed by (l,m) (see [7] Chap. 8). Let q(θλ, ψλ) := ωf(λ) for any cubature
node λ with associated weight ω in the cubature rule Q (see Eq. 3.5), where (θλ, ψλ) are the
spherical angles of λ expressed in spherical coordinates. Thanks to Eq. 3.6, we have:∑

(ω,λ)∈Q

IS2(µ, λ)ωf(λ) =
∑
θλ

∑
ψλ

L∑
l=0

l∑
m=−l

eimψµQml (cosθµ)Qml (cosθλ)e−imψλq(θλ, ψλ)

=

L∑
m=−L

eimψµ
∑
θλ

∑
|m|≤l≤L

Qml (cosθµ)Qml (cosθλ)

∑
ψλ

e−imψλq(θλ, ψλ)


=

L∑
m=−L

eimψµ
∑
θλ

Cm(θµ, θλ)

∑
ψλ

e−imψλq(θλ, ψλ)


(3.7)

with Cm(θµ, θλ) :=
√

(L+1)2−m2

4(L+1)2−1

QmL+1(cosθλ)QmL (cosθµ)−QmL+1(cosθµ)QmL (cosθλ)

cosθλ−cosθµ obtained with the well-
known Christo�el-Darboux formula (see [178] Sect. 18.2(v)). The algorithm is divided into three
steps:

• for each m and each θλ, compute Fm(θλ) :=
∑
ψλ
e−imψλq(θλ, ψλ) using FFT,

• for each m, compute Gm(θµ) :=
∑
θλ
Cm(θµ, θλ)Fm(θλ),

• for each (θµ, ψµ), compute
∑L
m=−L e

imψµGm(θµ) using FFT.

The second step can be interpreted as dense matrix-vector products. This method is referred to
as the Jakob-Chien-Alpert's algorithm. It is possible to accelerate this step using 1D FMMs [144],
allowing an asymptotic cost reduction. This algorithm has a complexity of O(L3) �ops without
1D FMM, and a complexity of O(L2logL) with this optimization (asymptotically). One can notice
that the use of 1D FMMs also adds a new error to the global hf-fmm scheme which has to be taken
into account in the global accuracy estimate.

3.2.2.4 Fast Spherical Transforms

Combining Eq. 3.6 and Eq. 3.5, the interpolation on the sphere becomes

f(µ) =
∑

(ωq,λq)∈Q

IS2(µ, λq) (ωqf(λq))

=

L∑
l=0

l∑
m=−l

Y ml (µ)
∑

(ωq,λq)∈Q

Y m∗l (λq) (ωqf(λq))

for any µ in the target cubature grid with a source cubature grid Q. This can be evaluated e�ciently
using the Fast Spherical Transforms (FST) [69]. This reduces the complexity of the interpolation
on the sphere to O(L2log L). However, as mentioned in [56], the accuracy and stability of such a
method still has to be studied. The overall complexity of hf-fmm using FST is O(N) for volumes
and O(Nlog2N) for surfaces.
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3.2.2.5 Two-dimensional FFTs

In [56], using a tensorized Fourier basis in both spherical angles on trigonometric polynomial rep-
resentation of TL, product uniform rules allow to use FFT in both spherical angles (instead of only
one using the Alpert's algorithm). This leads to O(L2log L) interpolations on the sphere with
numerical stability. The drawback of this method is that the number of involved cubature nodes is
large compared to the Jakob-Chien-Alpert's algorithm with Gauss-Legendre rules. Filtering tech-
niques are used to reduce this number of points. The main advantage of this approach is that the
interpolation on the sphere is fast (with complexity O

(
L2logL

)
) and exact.

3.2.2.6 Ahrens-Beylkin's method

In [10] is presented a method dealing with cubature grids invariant under the action of the icosahe-
dral group. As in the Jakob-Chien-Alpert's algorithm, the Christo�el-Darboux formula is used after
an application of the spherical harmonics addition's theorem to discard the sum over the spherical
harmonics degrees. Unfortunately, because of the non-product structure of the considered grids,
the factorization does not lead to the same asymptotic complexity than the Jakob-Chien-Alpert's
algorithm using 1D FMMs and requires O

(
L3
)
operations. This algorithm is not an exact interpo-

lation since 1D FMMs are used. One may notice that the article [10] also proposes, for the same
grids and with the same complexity, an algorithm using Unequally Spaced Fast Fourier Transforms,
based on an expression of the interpolation kernel on the sphere in terms of Fourier series [90,160].
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Chapter 4

Kernel-independent Fast Multipole

Methods for highly oscillatory

problems
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In this chapter we are interested in the kernel-independent FMM formulations and in particular
in the polynomial interpolation based methods. We describe such methods and the techniques
used to accelerate their running times in practice. This chapter also presents the general approach
to deal with oscillatory kernels in the high-frequency regime in a kernel-independent formalism,
namely the direction-based approaches.
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With the deployment of FMMs to a large diversity of scienti�c areas (see Sect. 2.2.4), many
kernel-independent formulations [57,94,95,103,164,170,218,219,224] have emerged in the literature.
One of the most popular of these approaches, namely kifmm, is described in App. B.1 and diagonal
kernel-idependent approaches are presented in App. B.2. In this chapter, we are mostly interested in
the interpolation-based FMMs for oscillatory kernels and especially on the polynomial interpolation
techniques allowing to derive a fast summation scheme. In Sect. 4.1, we introduce basic notions
on multivariate polynomial interpolation and present a FMM formulation deriving from it. In
Sect. 4.2, we describe the directional approach for the treatment of the highly oscillatory kernels,
extending the kernel-independent interpolation-based FMM formulations to such kernels.

4.1 Interpolation-based FMMs

Interpolation techniques are exploited in many ways in hierarchical methods [89, 122, 217]. Deriv-
ing from multivariate polynomial interpolation, e�cient hierarchical summation schemes can be
obtained [51,103,111,126].

Function interpolation using polynomials is a large topic (see [108] for a pedestrian survey of
the multivariate polynomial interpolation problem). In this section, we restrict ourselves to the
multivariate Lagrange problem. We are especially interested in the FMM formulations that can be
derived from Lagrange interpolation.

4.1.1 Polynomial interpolation

Let X ⊂ Rd and Y ⊂ C be two point clouds with N points each. Let xi ∈ X be the ith element
of X and yi be the ith element of Y. Let Πd be the space of d-variate polynomials. The Lagrange
interpolation problem can be stated as

Given V ⊂ Πd �nd p ∈ V such that ∀i ∈ [[1, N ]], p(xi) = yi. (4.1)

The xi's are referred to as the interpolation nodes, X as the interpolation grid and p as the inter-
polation polynomial.

4.1.1.1 Lagrange formula

For d = 1 and any such X = {x1, ..., xN},Y = {y1, ..., yN}, provided that X is composed of
distinct points, an explicit form of the interpolation polynomial is known, following the Lagrange
interpolation formula. Indeed, we have

p =

N∑
i=1

yiSi ∈ V := Π1
N−1

where Π1
N−1 refers to the set of polynomials of degree at most N − 1 and

Si(x) :=

N∏
j=1
j 6=i

x− xj
xi − xj

.

The term Si is referred to as the Lagrange polynomial associated to the interpolation node xi.
Since for such a �xed pair (X ,Y) the interpolation polynomial is unique, we can talk about the
interpolation polynomial p and of the Lagrange polynomials on the grid X .
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4.1.1.2 Function interpolation and Lebesgue constant

Let f ∈ C0([−1, 1]) be a continuous function de�ned on [−1, 1] and X ⊂ [−1, 1] be a �nite point
cloud (still composed of N points). The polynomial interpolation of f on X , denoted by IX [f ] ∈
V = Π1

N−1, is the solution of the Lagrange interpolation problem with X , Y := {f(xi) | i ∈ [[1, N ]]}.
A direct application of the Lagrange formula gives

IX [f ](x) =

N∑
i=1

f(xi)Si(x)

that solves the interpolation problem in Eq. 4.1. Using these notations, IX denotes a mapping from
C0([−1, 1]) to Π1

N−1([−1, 1]) the set of polynomials of degree at most N − 1 on [−1, 1] (actually IX
is linear and is a projection).

De�nition 4.1.1. Let f ∈ C0([−1, 1]). The uniform norm of f , denoted by ||f ||∞,[−1,1], is de�ned
by the following formula:

||f ||∞,[−1,1] := sup
x∈[−1,1]

|f(x)| = max
x∈[−1,1]

|f(x)|.

Now let the uniform norm of IX on [−1, 1] be de�ned by

Λ(X ) := ||IX ||∞,[−1,1] = max
x∈[−1,1]

N∑
i=1

|Si(x)|.

A result on the accuracy of the interpolation process can be derived and is expressed in Prop. 4.1.1.

Proposition 4.1.1. ( [141]) ||f − IX [f ]||∞,[−1,1] ≤ (Λ(X ) + 1)||f − p∗||∞,[−1,1], where p∗ ∈ Π1
N−1

is the best uniform polynomial approximation of f in Π1
N−1.

Λ(X ) is called the Lebesgue constant and its growth rate with regard to the number of interpo-
lation nodes (that is with regard to the cardinal of X ) gives an idea on the interpolation process
stability when using the grid X .

A well known example of quickly diverging Lebesgue constant is given by uniform samplings
(equispaced interpolation nodes on [−1, 1]). The interpolation of functions on equispaced nodes may
diverge with regard to the number of interpolation orders (i.e. the number of interpolation nodes).
Regularization methods may thus be needed when trying to deal with equispaced nodes. However,
one may keep in mind that, even if the interpolation may not converge uniformly on equispaced grids
(with an error growing exponentially on the endpoints, corresponding to the Runge phenomenon),
the Lebesgue constant only gives an upper bound on the interpolation error.

4.1.1.3 Chebyshev polynomials

The Chebyshev polynomials (of the �rst kind) are polynomials de�ned as in Def. 4.1.2.

De�nition 4.1.2. Let Tn be the trigonometric polynomial such that

Tn(x) = cos(nacos(x)), ∀x, |x| ≤ 1.

Such Tn is called a Chebyshev polynomial (of the �rst kind) of order n.

The set of roots of any given Chebyshev polynomial is known and its elements are referred to
as Chebyshev nodes. The roots of Tn on [−1, 1] are given by{

cos

(
2k − 1

2n
π

)
|k ∈ [[1, n]]

}
.
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The Lagrange polynomials on Chebyshev nodes are given by

Sl(x) :=
1

n
+

2

n

n−1∑
k=1

Tk(x)Tk(xl)

where xl is the lth Chebyshev node (see for instance [41,172]). Such interpolation polynomials are
widely used in numerical methods and the reason is expressed in Thm. 4.1.1.

Theorem 4.1.1. ( [148]) For every absolutely continuous function f on [−1, 1], the sequence of
interpolating polynomials constructed on Chebyshev nodes converges uniformly to f .

4.1.1.4 Mappings

To work with interpolation rules de�ned on [−1, 1] on arbitrary intervals [a, b], a, b ∈ R, a ≤ b, the
simplest solution consists in introducing an invertible mapping γa,b : [−1, 1]→ [a, b] de�ned by

γa,b(x) =

(
a+ b

2
− a
)
x+

a+ b

2
(4.2)

and
γ−1
a,b(x) =

2x− b− a
b− a . (4.3)

Hence, if the interpolation nodes X and the interpolation polynomials Sl's are de�ned on [−1, 1]
and if f : [a, b]→ C, the interpolation of f on [a, b] can be derived from the polynomials and nodes
on [−1, 1] by means of the mappings in Eqs. 4.2 and 4.3, following

IX [f ](x) =

N∑
i=1

f(γa,b(xi))Si(γ
−1
a,b(x)).

4.1.1.5 Multivariate polynomial interpolation with tensorized 1D interpolation rules

A naive but convenient approach for solving the interpolation problem in Eq. 4.1, provided that
the interpolation domain is the tensorization of intervals (that is a cuboid), consists in using a
tensorized grid formed by 1D interpolation grids along each interval (see [108]). Let C ⊂ Rd a
cuboid such that

C = [a1, b1]× . . .× [ad, bd]

with ai ≤ bi, ∀i ∈ [[1, d]]. Let Xi =: {x(i)
l }l, #Xi =: Ni be a set of interpolation nodes in [ai, bi]

and {S(i)
l }l be the associated interpolation polynomials. The tensorized rule is composed of nodes

xl ∈ Πd
i=1Xi for any multi-index l = (l1, ..., ld) ∈

d∏
i=1

[[1, Ni]] de�ned by

xl := (x
(1)
l1
, . . . , x

(d)
ld

)

and associated to the polynomials Sl such that, ∀x = (x1, ..., xd) ∈ C, l = (l1, ..., ld)

Sl(x) :=

d∏
i=1

S
(i)
li

(xi).

Sl is referred to as the Lagrange polynomial associated to the node xl. Since the cells of any 2d-tree
as de�ned in Sect. 2.2.1.2 are cuboids, these tensorized interpolations rules can be used in the cells
of a 2d-tree. Notice that error bounds for the tensor product interpolation using Chebyshev rules
are known [109,112].
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4.1.2 Black-box-FMM

For the reasons discussed in Sects. 4.1.1.3 and 4.1.1.5, in [103] has been proposed a FMM based on
multivariate tensorized Chebyshev polynomials, called black-box-FMM (bbfmm). In this section,
we �rst show how a multilevel fast multipole algorithm is derived from the polynomial interpolation
(Sect. 4.1.2.1). We then describe the operators of the corresponding FMM formulation (Sect.
4.1.2.2).

4.1.2.1 Multilevel polynomial interpolation-based algorithm

The general idea exploited in bbfmm is to substitute the kernel function G on pairs of cells (t, s) ⊂
Rd×Rd in 2d-trees that are well-separated with regard to the strict MAC (see Sect. 2.2.4.1) by its
interpolation on t×s. When using tensorized interpolation grids on t×s, one obtains 2d-dimensional
multivariate Lagrange polynomials that are products of one-dimensional Lagrange polynomials (see
Sect. 4.1.1.5). Each term of this product can be associated to t or s only, depending on the axis in
R2d that is covered by the corresponding one-dimensional interpolation rule. This divides the whole
set of interpolation nodes into two parts: the multivariate nodes that are in t and those in s. Both
of them can be considered leading to di�erent interpolation rules with grids K := {x1, ...,xLd} and
L := {y1, ...,yLd} respectively, assuming that the one-dimensional interpolation orders are all equal
to L ∈ N\{0, 1}. Hence, there exists a set of multivariate (d-dimensional) Lagrange polynomials
associated to K ⊂ t only (we denote by Tk the polynomial associated to the node xk) and associated
to L ⊂ s only (we denote by Sl the polynomial associated to the node yl). This gives the following
approximation of G:

G(x,y) ≈
∑
xk∈K

Tk(x)
∑
yl∈L

G(xk,yl)Sl(y) (4.4)

∀(x,y) ∈ t × s. The expression in Eq. 4.4 actually corresponds to a 3-terms approximation
represented in Eq. 4.5:

G(x,y) ≈
[
T1(x) . . . TLd(x)

]  G(x1,y1) . . . G(x1,yLd)
...

. . .
...

G(xLd ,y1) . . . G(xLd ,yLd)


 S1(y)

...
SLd(y)

 . (4.5)

Denoting by Y|s the particles of the source point cloud Y that are included in the cell s (i.e. the
set Y ∩ s), the approximation in Eq. 4.4 directly leads to∑

y∈Y|s

G(x,y)q(y) ≈
∑
xk∈K

Tk(x)
∑
yl∈L

G(xk,yl)
∑
y∈Y|s

Sl(y)q(y)

︸ ︷︷ ︸
=:M[s](yl)

(4.6)

for any x ∈ t. M[s] can be interpreted as an application de�ned on L giving the terms of the
multipole expansion in s. Actually Eq. 4.6 de�nes a single level FMM.

A multilevel algorithm can then be obtained by observing thatM[s] can be also considered as
a continuous function of s (as a weighted sum of polynomials). Its interpolation on s′ ∈ Sons(s)
can be performed. The same also holds for

∑
y∈Y|s G(x,y)q(y) as a function of x, that can be

interpolated in t′ ∈ Sons(t). Applying recursive interpolations, we �nally come up with a hier-
archical representation of the approximation of G on t × s that depends on the leaves in Desc(t)
and Desc(s) (the descendants of t and s) and on the links between the elements of these two sets
independently. This allows to describe the FMM operators as done in Sect. 4.1.2.2

4.1.2.2 bbfmm operators

In this section we present the general form of the bbfmm operators as we did in Sect. 2.2.4.3 for
di�erent kernel-explicit formulations, but G refers here to any kernel (in the low-frequency regime).
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P2M/L2P operators. Let s be a leaf. Let q : Y|s → C be a vector of charges on the particles
of s. The P2M operator on s can be written as

(P2M[s] · q) (yl) :=
∑
y∈Y|s

Sl(y)q(y)

∀yl ∈ L, where Sl is the Lagrange polynomial associated to yl and L the interpolation grid on s.
The red color is used to separate the elements depending on the particles from the one depending on
the interpolation grid. The L2P operator on a leaf cell t is actually the transpose of the P2M one:
instead of summing over the particles, the summation is applied on the interpolation polynomials
(or equivalently on the interpolation nodes they are associated to). This can be written, for any
local expansion de�ned on the interpolation grid K on t, i.e. any application p : K → C, as

(L2P[t] · p) (x) :=
∑
xk∈K

Tk(x)p(xk)

where xk is the interpolation node in the grid K ⊂ t associated to the Lagrange polynomial Tk and
x ∈ t is a particle.

M2M/L2L operators. TheM2M operator is de�ned similarly than the P2M one, replacing the
particles by the interpolation nodes of the son's interpolation grid. Let q be a multipole expansion
in the cell s′ ∈ Sons(s), i.e. an application from the interpolation grid L′ := {y′1, ...,y′Ld} ⊂ s′ to
C. The M2M operator from the cell s′ to s can be expressed as

(M2M[s, s′] · q) (yl) :=
∑
y′u∈L

Sl(y
′
u)q(y′u)

∀yl ∈ L, the interpolation grid in s, where Sl refers to the Lagrange polynomial associated to yl. The
L2L operator is also obtained by transposing theM2M one. Hence, denoting by K′ := {x′1, ...,x′Ld}
the interpolation grid on the cell t′ ∈ Sons(t), by K := {x1, ...,xLd} the interpolation grids in t and
by p a local expansion in t, i.e. an application from K to C, the L2L operator between t and t′ can
be written as

(L2L[t′, t] · p) (x′u) :=
∑
xk∈K

Tk(x′u)p(xk)

where Tk is the Lagrange polynomial associated to xk and x′u ∈ K′.

M2L operator. Let t and s be two well-separated cells. Let q be a multipole expansion in s, i.e.
an application from the interpolation grid L in s to C. The M2L operator between t and s, with
an interpolation grid K on t, can be written as

(M2L[t, s] · q) (x) :=
∑
y∈L

G (x,y) q(y) (4.7)

∀ x ∈ K. Notice that this M2L operator de�nition strongly recalls the direct computation in Eq.
2.1. Indeed, the problem of evaluating a M2L operator actually is a small N -body problem, where
the particles are the interpolation nodes of the source and target cell interpolation grids.

4.1.3 Compressions

The interpolation process can be seen as a �rst coarse low-rank approximation of the approximated
kernel, the ranks being equal to the number of points in the interpolation grids. In practice, the
matrix representations of theM2L operators are still too large for highly e�cient computations with
reasonable targeted accuracy. However, the low-rank property of the non-oscillatory asymptotically
smooth kernels restricted to well-separated cells can be exploited to add another level of low-rank
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approximation. In this section, we present techniques that are used for the compression of the
M2L matrices. It is important to keep in mind that these compressions are costly, but they are
performed only during a precomputation step and supposed to be known and stored when the FMM
application step runs.

4.1.3.1 Singular Value Decomposition

As presented in Sect. 2.2.5.2, the SVD algorithm provides an explicit way for constructing low-rank
approximations with controlled errors. This algorithm gives the optimal low-rank approximation
when truncating accordingly to a given targeted error. Because the matrix to be compressed has
to be entirely known to run the SVD factorization algorithm, if G can be evaluated on any pair
(x,y) ∈ K × L in O(1) operations for interpolation grids K and L on well-separated cells t and s
respectively, the needed memory and operation count to generate the input of the SVD algorithm
are both O(#K#L). In addition, the SVD algorithm complexity is O(#K3 + #L2#K+ #L#K2).
Thus, the SVD-based compressions are costly. A low-rank approximation approach based on SVDs
has been considered in [103].

4.1.3.2 Adaptive Cross Approximation

A well known e�cient alternative to SVDs in the context of matrices generated by kernel evaluations
(such as the M2L matrices) is the Adaptive Cross Approximation (ACA) [34�36]. The purpose of
ACA is to approximate the SVD of matrices obtained by discretizing integral operators on well-
separated sets. An interesting variant of ACA, called partially pivoted ACA does not need to know
the entire approximated matrix. One only needs to be able to generate the entries of the compressed
matrices on-the-�y. This is easy to do in the context of bbfmm (the kernel G and the interpolation
grids are known). The complexity of the partially pivoted ACA algorithm applied to aM2L matrix
associated to interpolation grids K and L is O(r2(#K+ #L)) (see [163]), where r is the rank of the
computed low-rank approximation. The approximations obtained by (partially pivoted) ACA are
not optimal: for a �xed targeted accuracy the SVD algorithm �nds the minimal numerical rank,
which is not the case of ACA. However, because of its complexity compared to the SVD algorithm,
this is a classical choice in the implementations of fast hierarchical methods. In the context of
bbfmm, ACA has been used for instance in [174].

4.1.3.3 Block-compression

A method compressing at once all theM2L matrices at a tree level is proposed in [103] using SVDs
and adapted in [174] with ACA applications. These compressions allow to approximate each M2L
matrix Kt,s between well-separated cells t and s at a �xed level l of the 2d-tree as a product of the
form

Kt,s ≈ JlCt,sFl (4.8)

where ∃r ∈ N∗ such that Jl ∈ CLd×r, Ct,s ∈ Cr×r, Fl ∈ Cr×Ld and Jl, Fl are the same for all such
Kt,s, L being the interpolation order in a single axis and supposed to be equal in each direction.
This compression is more costly than an individual compression of each possible M2L matrix of
the interaction lists up to permutations (see [173]), but this reduces the size of multipole and local
expansions for the M2L application step (from Ld to k) as well as the overall cost of the M2L
evaluation step, which is known to be the most time consuming of the (low-frequency) FMM far
�eld computation.

4.1.3.4 Recompression

The block-compression of Sect. 4.1.3.3 can be further optimized by adding another level of com-
pression (see [173]). The idea is simple since this only consists in applying a SVD on each of the
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Ct,s's of Eq. 4.8. If these Ct,s's have a low rank, this may result in an additional acceleration in
the M2L evaluation step. Notice that SVDs are applied to relatively small matrices.

4.1.3.5 Proper Generalized Decomposition

Another kind of compression is proposed in [161], based on the Proper Generalized Decomposition
(PGD), aiming at reducing the cost of the SVDs in the precomputation step. The kernel is ap-
proximated by a sum of Hadamard products. Authors show better performances using the PGD
algorithm than SVDs.

4.1.4 Fast Fourier Transform techniques

In [41, 42, 188, 199], the idea of considering uniformly sampled interpolation nodes (grids referred
to as equispaced grids) in cells of same radius in 2d-trees is used to obtain a Toeplitz structure for
eachM2L matrix in bbfmm. The same kind of trick is used for instance in [219] applied to another
kind of multipole methods. Indeed, if G veri�es a translational invariance property

G(x,y) = G(x− y) = G(x1 − y1, ..., xd − yd)

for any x,y ∈ Rd, then the M2L matrices of bbfmm are block-Toeplitz. This structure can be
exploited to break down the complexity of the matrix-vector product (see [159]). We present in
this section the reasons of this optimization. In the following set of de�nitions, rows and columns
of considered matrices are indexed from 0 to P − 1, P ∈ N.

De�nition 4.1.3. A Toeplitz matrix is a matrix T ∈ CL×L such that

∃ t : [[−(L− 1), L− 1]]→ C

with
Ti,j = t(j − i)

∀i, j ∈ [[0, L− 1]].

De�nition 4.1.4. A circulant matrix is a Toeplitz matrix C ∈ CP×P such that

∃
{
c̃ : [[0, P − 1]]→ C
c : [[−(P − 1), P − 1]]→ C

verifying ∀k ∈ [[−(P − 1),−1]], c(k) = c̃(k + P ) and

Ci,j = c(j − i)

∀i, j ∈ [[0, P − 1]].

De�nition 4.1.5. A block-0-Toeplitz (resp. block-0-circulant) matrix is a Toeplitz (resp. circulant)
matrix. For any d ∈ N∗, a block-d-Toeplitz (resp. block-d-circulant) matrix is a block matrix,
Toeplitz (resp. circulant) by block and whose blocks are (d − 1)-block-Toeplitz (resp. (d − 1)-block-
circulant).

Hence, any (block-)Toeplitz matrix A ∈ CL×L can be embedded in a (block-)circulant one, and
by applying a zero-padding, one can express A as the restriction of a larger circulant matrix. In the
simple block-0-Toeplitz case (which corresponds to the 1D case), this larger matrix has P := 2L−1
rows and columns and may read

C =

[
A Ã

Â Ā

]
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where the applications c and c̃ generating the entries of the circulant matrix C (as in Def. 4.1.4)
are obtained by periodizing the application t generating the Toeplitz matrix A (as in Def. 4.1.3).
This can be written

c̃(i) =

{
t(i) if i ∈ [[0, L− 1]]

t(i− 2L+ 1) if i ∈ [[L, 2L− 1]]
.

One may notice that this circulant embedding is not unique. Nevertheless, assuming that we
want to compute Av, v ∈ CL, and denoting by ṽ ∈ CP the zero-padding of v on the P − L last
coordinates, we obtain

Cṽ =

[
A Ã

Â Ā

] [
v
0

]
=

[
Av

Âv

]
whose restriction to the �rst L coordinates gives the targeted result.

Any circulant matrix C ∈ CP×P can be explicitly diagonalized in a Fourier basis, that is

∃! D ∈ CP×P , Di,j = 0 ∀i 6= j | C = F∗DF

where F ∈ CP×P and

Fk,l = e2iπ klP .

The crucial point is that the products by F and F∗ can be applied with complexity O(P log P )
by means of Fast Fourier Transforms (FFT) and Inverse Fast Fourier Transforms respectively.
However, the gain on the precomputation step is only obtained if D can be e�ciently computed.

Theorem 4.1.2. Let C ∈ CP×P be a circulant matrix and D be the diagonal matrix such that
C = F∗DF. We have,

Dl,l = C0,0 +

P−1∑
k=1

C0,P−ke
2iπ lkP (4.9)

∀l ∈ [[0, P − 1]].

The Eq. 4.9 can be interpreted as the Discrete Fourier Transform of the application c generating
the entries of C (as in Def. 4.1.4). All the values of c are listed in both the �rst row and the �rst
column of C. In other words, using matrix notations, we have

D = diag(FC0) (4.10)

where C0 refers to the �rst column of C. Because the product by F can be accelerated using FFT,
the assembly of D from C0 costs O(P log P ) operations. In practice, because the matrix A we
are dealing with corresponds to an array of nodal evaluations of the Green kernel G on (di�erences
between) interpolation nodes, we have to add the cost of P evaluations ofG to this cost. Fortunately,
since G can be evaluated in O(1) �ops in practice, this cost can be neglected.

This circulant embedding process applied to the multivariate tensorized interpolation on equi-
spaced grids generates block-(d− 1)-Toeplitz matrices for a problem in Rd such that, denoting by
⊂ the embedding into a block-(d− 1)-circulant matrix:

A ⊂ C = F∗dDFd

where Fd := F⊗d, i.e. the tensorization of F d times (see App. A). An example of a block-
1-Toeplitz matrix (i.e. for d = 2) and its circulant embedding is provided in Eq. 4.11, where
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a, b, c, d, e, f, g, h, i ∈ C.


[
a b
c a

] [
d e
f d

]
[
g h
i g

] [
a b
c a

]
 ⊂



a b c
c a b
b c a

 d e f
f d e
e f d

 g h i
i g h
h i g

g h i
i g h
h i g

 a b c
c a b
b c a

 d e f
f d e
e f d

d e f
f d e
e f d

 g h i
i g h
h i g

 a b c
c a b
b c a




(4.11)

Remark 4.1.1. The entry (k, l), k, l ∈ [[0, P − 1]]d of the multivariate Fourier matrix seen as a
block-matrix is given by e2iπ

〈k,l〉
P , using multi-index notations.

There are many advantages of using these FFT techniques instead of the low-rank approxima-
tions:

• The M2L matrices are evaluated exactly ;

• Only Ld kernel evaluations are needed per M2L matrix, where L is equal to the one-
dimensional interpolation order, compared to (Ld)2 using SVD techniques;

• Due to the cost of FFT, each diagonalization costs O(dP dlog(P ));

• Highly e�cient FFT applications can be performed using state-of-the-art implementations
[107];

• The matrices F and F∗ are commonly applied to each multipole and local expansion respec-
tively. This means that their application cost can be counted only once per expansion, and
they can be applied before and after the M2L evaluation step, resulting in diagonal M2L
matrix applications with complexity O(P d) = O(2dLd) which is linear with respect to the
number of interpolation nodes at a �xed dimension.

The main drawback of the circulant embedding techniques in the bbfmm context comes from
the induced memory footprint. Due to the zero-padding, the multipole and local expansions are
larger than in bbfmm (that uses the low-rank methods of Sects. 4.1.3.4 and 4.1.3.3). In [41,
210], a comparison between low-rank approximations and FFT techniques is provided, exhibiting
better FFT performances when the interpolation order is greater than 4 in each dimension for the
implementation used in [210].

4.2 Directional approaches

The traditional methods for kernel-independent FMMs struggle to fastly approximate highly oscil-
latory kernels in the high frequency regime. Fortunately, there exists an approach that allows to
extend a kernel-indepedent FMM formulation for non-oscillatory kernels to oscillatory ones. We
describe in this section on which mathematical bases this extension relies (Sect. 4.2.1) and how a
FMM can be derived from these, providing explicit formula in the bbfmm context (Sect. 4.2.2).

4.2.1 Directional low-rank property

In [94], the ideas presented in [47] (and detailed in App. C) are adapted to derive a directional
low-rank property (called directional parabolic separation condition). See also [95,96]. The general



Chapter 4 61

approach consists in splitting the kernel G into a product of a smooth (far from its singularity)
kernel K and an oscillatory function:

G(x,y) = K(x,y)eiκ|x−y|,

where K is de�ned by K(x,y) := G(x,y)e−iκ|x−y|. Let u be a point on the unit sphere Sd−1 (which
is referred to as a direction). We have

G(x,y) = eiκ〈x,u〉
(
K(x,y)eiκ〈x−y,

x−y
|x−y|−u〉

)
︸ ︷︷ ︸

=:Ku(x,y)

e−iκ〈y,u〉

(4.12)

where the middle term does not oscillate, provided that | x−y|x−y| − u| ≤ 1
wκ , where |x − y|w ≤ 2π.

One approximation of the kernel Ku is performed for each needed u. In practice, the existence of
such a single u can be ensured (see [94]) for two cells s and t with the same radius provided that
their distance dist(s, t) is such that

dist(s, t) ≥ w2κ.

A simple computation in [50] illustrates these directional constraints. Indeed, the red part of
Eq. 4.12 gives

κ〈x− y,
x− y

|x− y| − u〉 = κ|x− y| − κ〈x− y, u〉

= κ|x− y|(1− cos∠(x− y, u))

≈ κ

2
|x− y|sin2∠(x− y, u)

where ∠(a,b) denotes the angle between a,b ∈ Rd. Thus, if ∠(x−y, u) tends to 0, κ〈x−y, x−y
|x−y|−u〉

also does. In this case, the argument of the middle exponential in Eq. 4.12 tends to 0 and the
oscillations stop at a certain point. This leads to Thm. 4.2.1, that expresses a directional low-rank
property.

Theorem 4.2.1. ( [94]) Let u be a direction. Let Yr := B(0, r) be a ball centered at 0 and let Xr

be such that
Xr := {x |∠(x, u) ≤ 1

rκ
, |x| ≥ κr2}. (4.13)

For any ε > 0, there exists a semi-separable approximation of eiκ|x−y|/|x−y| with T (ε) terms, were
T (ε) is independent of r, such that

∣∣∣eiκ|x−y|/|x− y| −
T (ε)∑
n=1

αn(x)βn(y)
∣∣∣ ≤ ε

∀x ∈ Xr, y ∈ Yr, where αn : Xr → C, βn : Yr → C.

Remark 4.2.1. A set Xr as in Thm. 4.2.1 is actually a wedge directed by u with angle 2
rκ and

apex located at the origin but deprived of its intersection with the interior of the ball of radius κr2.
This correspdonds to the set in red on Fig. 4.1. On this �gure, the blue set corresponds to Yr.

A method built on the property expressed in Thm. 4.2.1 is said to be directional. As opposed
to the Brandt's method (see App. C), for a given pair of well-separated cells, the directions are not
computed using interpolation in the directional approach of [38,50,52,94�96,174,204], but they are
extracted from a �nite direction set di�erent for each cell size.

The general method somehow consists, for a �xed direction, in �nding an approximation of the
kernel function in a wedge whose angle depends on the wavenumber and on the diameter of the
source cell. The number of such approximations grows with the size of the cells (in a similar way
than in the Brandt's method, see App. C): doubling the radius of a cell multiplies by a factor 2d−1

the number of directions associated to this cell in order to cover the sphere with wedges such as in
Thm. 4.2.1.
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w

κw2

Figure 4.1: Directional source (blue) and target (red) admissible sets.

4.2.2 Directional FMM

The directional low-rank property of Thm. 4.2.1 can be used to derive FMM-like algorithms, as
described in [94] in a kifmm framework (see App. B.1 for a high level description of kifmm) and
extended in [174] to the bbfmm case (see Sect. 4.1.2). When combined with a FMM formulation,
this directional property allows the de�nition of wideband methods that become directional in the
high frequency regime. We de�ne the high frequency regime in a 2d-tree as the levels in which the
radii of the cells in terms of wavelength are greater or equal than 1. Since the kernel-independent
methods converge in the low-frequency regime, they can be applied in the deepest levels of the 2d-
trees. Once the high-frequency levels are reached during the upward pass, the multipole expansions
become directional, in the sense that they depend on a direction and are valid for approximations
on a wedge related to this direction only. The transformation of a directional multipole expansion
into a local one (actually with the same direction) keeps this dependence.

4.2.2.1 Nested directions

The directional FMM relies in practice on links between directional approximations. To be more
precise, considering 2d-trees, when the (directional) multipole expansions of a cell are assembled
from its son's ones, we want a given multipole expansion corresponding to a given direction to
only depend on the multipole expansions of its sons corresponding to a single given (and easy to
determine) direction. Of course, the same discrete set of directions is chosen for all the cells sharing
the same radius. Let us denote by Dl this set of directions at level l of a 2d-tree (which is unique
because all the cells of a 2d-tree at a �xed level have the same radius denoted by wl, following the
description in Sect. 2.2.1.2). To provide these links, Dl has to verify two properties:

{
∀t, s cells of radius wl, Level(t) = Level(s), ∃u ∈ Dl such that | ctr(t)−ctr(s)|ctr(t)−ctr(s)| − u| ≤ 1

κwl
,

∀u ∈ Dl, ∃u′ ∈ Dl+1 such that |u− u′| ≤ 1
κwl

.

(4.14)
The �rst condition ensures that a su�cient amount of directions is considered to cover the sphere
using wedges with angles dictated by the associated tree level. The second one links the direction
sets of the di�erent levels in a hierarchical way. Indeed, denoting pred(u) a �xed choice of u′ ∈ Dl+1

verfying the second point of Eq. 4.14 for any u ∈ Dl, we can introduce a direction tree D whose
nodes are directions and respecting two assumptions on pred and D. Let u ∈ D be a node (a
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direction) in D. We have {
Level(u) = l⇒ u ∈ Dl
|pred(u)− u| ≤ 1

κwl

.

A similar construction is presented for instance in [50].

Remark 4.2.2. The direction tree D can be extended to a structure that also takes into account the
low-frequency regime, using "negative levels" corresponding to the low-frequency regime, where only
a single node exists with value 0 (which is technically not a direction). Because eiκ〈x,0〉 = 1, the
modi�cations involving the associated planewaves (complex exponentials with a dot product argument
scaled by the wavenumber and directed by vector in Rd) do not apply.

4.2.2.2 Complexity and directional MAC

Two new elements have to be considered in the complexity analysis of the directional FMM. First,
the MAC that can be derived from Thm. 4.2.1 is much more restrictive in the high frequency
regime than the low-frequency MACs such as the strict MAC of Sect. 2.2.4.1 or the adaptive one of
Sect. 2.2.4.2, due to the square factor in Eq. 4.13 and to the direction (i.e. the wedge) dependency.
In addition, the M2M/L2L operator application needs to take into account the relations between
the directional expansions combined with the links between cells in the 2d-trees. Because of the
increasing number of expansions associated to a cell when the tree level decreases (i.e. from the
leaves to the root), these M2M/L2L operator evaluations are much more time consuming in
the high-frequency regime than in the low-frequency one. Hence, O(N logN) complexities were
exhibited in [94, 174]. An important point is that this complexity does not depend on the particle
distribution [174].

In [50], an adaptive formulation of the directional MAC is provided, giving
κ
∣∣∣ ctr(t)−ctr(s)|ctr(t)−ctr(s)| − u

∣∣∣ ≤ η1

2 max{rad(t),rad(s)}

4 κmax{rad(t)2, rad(s)2} ≤ η2 dist(t, s)

2max{rad(t), rad(s)} ≤ η2 dist(t, s)

(4.15)

where η1, η2 > 0 and t, s are two cells. The increasing number of directions from the leaves to the
root of the 2d-trees is clear in the �rst point of Eq. 4.15: the right-hand side of the inequality tends
to 0 as the radii of t and s increase, meaning that the minimal number of directions u to verify this
�rst point for any t, s increases from the leaves to the root of the 2d-trees.

4.2.2.3 Generating directions

The problem of generating the directions can be solved by considering a polyhedron with vertices
lying on the unit sphere and by recursively splitting the faces of this polyhedron. The projections
of the barycenter of each cell of the induced mesh (or the projection of the vertices of this mesh as
in Fig. 4.2) on the unit sphere can then be used to generate a set of directions. This idea is used
in [50, 94, 174] with the unit cube on which each face is subdivided into four squares recursively in
3D. The generated set of directions is proven to be compatible with a directional approach [94].

4.2.2.4 Interpolation-based FMM with directional approach

In [174], the directional approach of [94] is formulated in the bbfmm case, resulting in a reformula-
tion of operators presented in Sect. 4.1.2.2, including the directional dependency. The stability of
the interpolation process between directional expansions in this context is studied in [52]. In this
section, we summarize these directional operators. The main di�erence between directional and
non-directional methods is that multiple expansions, each depending on a direction, are associated
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Figure 4.2: Recursive decomposition of the faces of the cube (grid on the lower face) and projection
(black) of vertices (blue) of the induced mesh (for the lower grid, the distance between vertices on
the cube and the sphere is represented in red).

to each cell. In addition, the cell-cell interactions can only be performed between expansions asso-
ciated to directions that verify the directional MAC in Eq. 4.15 when the high frequency regime is
reached. We exhibit in red the elements added in each operator by the directional approach to the
bbfmm formalism presented in Sect. 4.1.2.2.

Directional P2M/L2P operators. Let s be a leaf. Let q : Y|s → C be a vector of charges on
the particles of s. The directional P2M operator on s with direction u ∈ DLevel(s) can be written
as

(P2Mu[s] · q) (yl) := eiκ〈yl,u〉
∑
y∈Y|s

Sl(y)e−iκ〈y,u〉q(y)

∀yl ∈ L, where Sl is the Lagrange polynomial associated to yl and L the interpolation grid on s.
The de�nition of the directional L2P operator directly follows: for any local expansion de�ned on
the interpolation grid K on t, i.e. any application p : K → C

(L2Pu[t] · p) (x) := eiκ〈x,u〉
∑
xk∈K

Tk(x)e−iκ〈xk,u〉p(xk)
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where xk is the interpolation node in the grid K ⊂ t associated to the Lagrange polynomial Tk,
x ∈ t is a particle and u ∈ DLevel(t).

Directional M2M/L2L operators. Let q be a multipole expansion in the cell s′ ∈ Sons(s),
i.e. an application from the interpolation grid L′ := {y′1, ...,y′Ld} ⊂ s′ to C. The directional M2M
operator with direction u from the cell s′ to s can be expressed as

(M2Mu[s, s′] · q) (yl) := eiκ〈yl,u〉
∑
y′r∈L

Sl(y
′
r)e
−iκ〈y′r,u〉q(y′r)

∀yl ∈ L, the interpolation grid in s, where Sl refers to the Lagrange polynomial associated to yl
and ∀ u ∈ DLevel(s). In practice, such an operator is applied on a directional multipole expansion
associated to pred(u) in the direction tree D. Once again, the directional L2L operator de�nition
derives from the M2M one. Hence, denoting by K′ := {x′1, ...,x′Ld} the interpolation grid on the
cell t′ ∈ Sons(t), by K := {x1, ...,xLd} the interpolation grids in t and by p a (directional) local
expansion in t (with direction u′ ∈ Sons(u) in D), i.e. an application from K to C, the directional
L2L operator between t and t′ can be written as

(L2Lu[t′, t] · p) (x′r) := eiκ〈x
′
r,u〉

∑
xk∈K

Tk(x′r)e
−iκ〈xk,u〉p(xk)

where Tk is the Lagrange polynomial associated to xk and x′u ∈ K′, for any u ∈ DLevel(t′).

Directional M2L operator. The way we wrote theM2L in Sect. 4.1.2.2 can be used directly in
the directional framework. The handling of the directional aspect in the M2L operator evaluation
is of algorithmic concerns: the result of a (directional) M2L operator application to a directional
multipole expansion with direction u has to be added to a directional local expansion with direction
u. However, this does not a�ect the de�nition of this operator.
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The FMM formulations are usually described as algorithms instead of matrix factorizations. In
the same time, the di�erent FMM formulations bene�t from optimizations (e.g. symmetry based
optimizations [166, 173]) that can be generalized to other formulations. However, the lack of a
rigorous framework allowing to describe the matrix structure makes these generalizations sometimes
non trivial.

Early work on the matrix representation of the FMM has been proposed in [196] based on
explicit expansions (i.e. on a particular FMM formulation). The theoretical framework we describe
in Sect. 5.1 uses a quite di�erent approach and applies to various hierarchical methods.

We want to handle all the common aspects of the FMMs using a general theoretical framework
describing the algorithm, independently of the explicit realization of a FMM (i.e. independently of
the formulation, kernel or expansion types), which is the purpose of Sect. 5.2. We also present in
Sect. 5.3 a set of general results on the structure of the FMM according to the space representations
of the formulation.
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5.1 Matrix form

In this section, we describe the mathematical tools we use to derive the matrix form of the hier-
archical methods, i.e. the factorization of the matrices obtained using a method such as a FMM,
a hierarchical matrix or a treecode. In Sect. 5.1.1 we recall the general aspects of the N -body
problems from a linear algebra viewpoint. In Sect. 5.1.2 we reformulate the underlying idea of
the well-separateness and in Sect. 5.1.3 we present a general de�nition of the tree structures used
in the hierarchical methods. In Sect. 5.1.4, we introduce the key tools in our approach, that are
the concepts of freely generated vector spaces and rank distributions. Finally, in Sect. 5.1.5 we
reformulate the naive N -body problem using the objects presented in Sect. 5.1.4.

5.1.1 Spaces

We start with the matrix-vector product expression of a general N -body problem (see Sect. 2.2.5.1),
recalling �rst this expression using a slightly more abstract framework than in Sect. 2.2.5.1.

Let X be any �nite set. We denote by C[X ] the set of applications from X to C. Any element of
C[X ] can be represented by an element of C#X (actually C[X ] ≡ C#X where ≡ denotes that there
exists an isomorphism between the right term and the left one), that is it can be represented by a
vector. We can express the N -body problem of Sect. 2.1.1 (i.e. Eq. 2.1) using this notation. X and
Y still refer to the target and source point clouds respectively. Then, let p ∈ C[X] and q ∈ C[Y ].
We obtain that Eq. 2.1 is a linear mapping from C[Y ] to C[X], so this mapping can be represented
by a matrix A ∈ C#X×#Y . We have:

p = Aq. (5.1)

This actually corresponds to Eq. 2.17 in Sect. 2.2.5.1. Each entry of A is here an evaluation of
G on a point of X and one of Y . The di�erence between the two expressions lies in the spaces.
Indeed, vector and matrices were considered in Eq. 2.17 but we look at linear mapping between
applications in Eq. 5.1.

Denoting qy := q(y) and px := p(x), the source or target particles can be somehow used as index
sets for the entries of the vector representations of p and q. This allows to bypass the ordering of
the particles. Since A is linear, it can be represented in C#X×#Y with the matrix of Eq. 2.17 and
we naturally extend this index notation to A by

Ax,y := G(x,y)

for any x ∈ X and y ∈ Y , G being the kernel of the N -body problem.
We shall discuss in the rest of this chapter how these notations can be handled using a well

suited mathematical framework and how to extend them to deal with restrictions of this matrix A
according to particular space decompositions.

5.1.2 Approximability

At the most abstract level, hierarchical methods are based on the observation that, if a group
of target particles and a group of source particles are well-separated (or admissible), then the
corresponding part of Eq. 2.1 (or equivalently Eq. 5.1) can be e�ciently approximated (see Sect.
2.2.2).

Instead of tackling this problem by directly considering the particles, the idea is to consider
subsets of Rd in which some of these particles lie and to compare them (see Sect. 2.2.3.1 and
2.2.4.1). Because we restrict ourselves to subsets of Rd in which the particles can possibly lie, we
can consider the smallest balls containing the target and source point clouds. The application that
decides if two subsets are admissible is called here an approximability condition (which has
quite the same role as the MACs of Sect. 2.2.4.1 and 2.2.4.2). The purpose of the Def. 5.1.1 (see
below) is to formalize what exactly such an approximability condition will represent, even if we can
understand its role without introducing a detailed formalism.
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Indeed, when two subsets are admissible, the kernel G is supposed to be semi-separable (with
an error ε) on the restrictions of the target and source point clouds according to these admissible
subsets. This semi-separability means that, on admissible subsets t, s ⊂ Rd, G : t × s → C can be
decomposed (up to a certain error) as a sum of weighted products of applications of t → C and
s → C independently. These functions, with no additional assumption, depend on both t and s
and their number depends on the semi-separability of G on (t, s). The approximability condition is
chosen in practice so that only a small number of functions has to be chosen in order to retrieve a
"good" approximation of the kernel on (t, s). This is the reason why we consider that these numbers
are arguments of the approximability condition, so as the tolerance ε > 0. Formally, this reads:

De�nition 5.1.1. Let X̄, Ȳ ∈ Rd, RX , RY ∈ R∗+ such that X ⊂ B(X̄, RX) and Y ⊂ B(Ȳ , RY ).
For a �xed ε > 0, r0, r1 ∈ N∗, an approximability condition associated to the kernel G is an
application A : B(X̄, RX) × B(Ȳ , RY ) → {0, 1} such that ∀b = (t, s) ⊆ B(X̄, RX) × B(Ȳ , RY ),
A(t, s) = 1 if and only if

∃


Ψb : t→ Cr0 ,
Φb : s→ Cr1 ,
∆

(t,s)
b ∈ Cr0×r1

with
∀x ∈ t, ∀y ∈ s, |G(x,y)−Ψ∗b(x)∆bΦb(y)| ≤ ε. (5.2)

If t and s are such that A(t, s) = 1, they are said to be well-separated or admissible.

Remark 5.1.1. The term ∆b can actually be removed from Def. 5.1.1 and r0 can be chosen to be
equal to r1. However, this general approximation form with a three terms factorization will be used
to express in the same way various methods in the following of this chapter. For the sake of clarity,
we keep this general form all along this chapter.

All the elements of this decomposition a priori depend on t and s, justifying to tag each of them
using these subsets.

The restriction of the N -body problem to b = (t, s) such that A(t, s) = 1, i.e. the restriction of
Eq. 2.1 to (t, s) or equivalently the restriction of Eq. 5.1 to the block1 (t∩X)× (s∩Y ), allows the
approximate factorization of Eq. 5.2 to be exploited in order to reduce the application cost of the
considered subproblem. Indeed, we have∑

y∈s∩Y
G(x,y)q(y) ≈

∑
y∈s∩Y

Ψ∗b(x)∆bΦb(y)q(y)

= Ψ∗b(x)∆b

∑
y∈s∩Y

Φb(y)q(y)
(5.3)

for any x ∈ t (and especially for x ∈ t ∩ X) and where the notation ≈ is used to emphasize that
the O(ε) error in Eq. 5.2 is neglected in Eq. 5.3.

The term
∑

y∈s∩Y Φb(y)q(y) in the last line of Eq. 5.3 is a matrix-vector product and costs
O(#(s ∩ Y )r1) �ops to be evaluated. The product of the result with ∆b costs O(r0r1) �ops to
be evaluated and knowing the result, the remaining product by Ψb(x) costs O(r0#(t ∩X)) to be
performed for any x ∈ t ∩X. This three-steps scheme for this part of the whole computation has
a total complexity of O(#(s ∩ Y )r1 + r0#(t ∩ X) + r0r1) = O(2KM + K2) if we assume that
r0 = r1 = K and #(s∩ Y ) = #(t∩X) = M as opposed to the O(M2) for a naive evaluation. If K
is "small enough", this results in a lower operation count.

Thinking in terms of the matrix form in Eq. 5.1, this means that admissible blocks of A
corresponding to admissible restrictions of the target and source point clouds can be approximated
by factorizations. If K << M (see Rem. 5.1.2 for the precise condition), these factorizations are
low-rank factorizations (a schematic representation of this situation is depicted in Fig. 5.1).

1Since t, s may not be �nite sets in Def. 5.1.1, the intersection with the point clouds is needed to evaluate only
the target and source particles.
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Figure 5.1: Representation of the low rank approximation (purple, right of arrow) of a block (purple,
left of arrow) of an admissible couple of target set of particles (red) and source set of particles (blue)
for an uniform distribution of particles along [−1, 1]. Convex hull of these point clouds are printed in
green. The corresponding approximability condition is de�ned by A(t, s) = 1⇔ rad(t) + rad(s) ≤
|ctr(t)− ctr(s)| (i.e. the adaptive MAC of Sect. 2.10).

Remark 5.1.2. To obtain a lower operation count than the direct problem (without approximation),
we need to have at least

2KM +K2

M2
< 1⇔ 2K +

K2

M
< M

⇔ 2K(1 +
K

2M
) < M.

Since K ≤M (the rank of a square matrix cannot exceed its number of rows/columns), a su�cient
criterion is given by

K <
M

3
.

5.1.3 Hierarchical decomposition

From an abstract viewpoint, the idea of hierarchical methods is to �nd (and possibly maximize the
number or sizes of) patterns (t ∩ X, s ∩ Y ) ∈ B(X̄, RX) × B(Ȳ , RY ) (i.e. sub-blocks of A) such
that A(t, s) = 1, provided that r0 and r1 are su�ciently small to allow a cost reduction. To do so,
structured decompositions of B(X̄, RX) and B(Ȳ , RY ) separately are introduced as hierarchical
decompositions.

De�nition 5.1.2. A hierarchical decomposition of a convex subset E ⊂ Rd refers to a �nite
sequence (Uk)k of partitions of E where Uk is a collection of subsets of E, i.e. ∪

u∈Uk
u = E for any

k, verifying: {
U0 = E,

u ∈ Uk+1 ⇒ ∃! v ∈ Uk | u ⊆ v.
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To provide an intuitive idea on how this hierarchical decomposition (Uk)k of a set E ⊂ Rd is
made, one can point out that if u ∈ Uk, then its own hierarchical decomposition is contained in
Up, p > k. So a partition of u is contained in Up. In addition, because Up is a partition of E, this
partition of u is unique for a �xed p and stems from the partition of u in Up−1 (using the second
point of Def. 5.1.2). Examples of hierarchical decompositions are provided in Exp. 5.1.1. These
examples will be reused all along this chapter.

Example 5.1.1. Let us consider a non-uniform hierarchical decomposition (Uk)k, k = 0, ..., 3 of
the segment [−1, 1]:

k = 0 U0 = {[−1, 1]}
k = 1 U1 = {[−1, 0), [0, 1]}
k = 2 U2 = {[−1, 0), [0, 0.1), [0.1, 1]}
k = 3 U3 = {[−1, 0), [0, 0.01), [0.01, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 1]}.

Another hierarchical decomposition (Vk)k, k = 0, ..., 3 of the same segment is given by the following
sequence:

k = 0 V0 = {[−1, 1]}
k = 1 V1 = {[−1, 0), [0, 1]}
k = 2 V2 = {[−1,−0.5), [−0.5, 0), [0, 0.5), [0.5, 1]}
k = 3 V3 = {[−1,−0.75), [−0.75,−0.5), [−0.5,−0.25), [−0.25, 0), [0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1]}.

A crucial point here is that any hierarchical decomposition (Uk)k can be represented as a tree
whose nodes are elements of a hierarchical decomposition (i.e. subsets of Rd).

De�nition 5.1.3. The tree representation T of a hierarchical decomposition (Uk)k of a set E is
the tree such that any node n ∈ T veri�es:


n ∈ ULevel(n),

n ⊆ Father(n),

n = ∪
n′∈Sons(n)

n′,

[Level(n) = Level(n′) and n ∩ n′ 6= ∅]⇒ n = n′

where Father associates to a node of a tree the node of its parent in this tree, Sons associates to a
node the set of its sons in the tree and Level associates to a node its level in the tree.

Remark 5.1.3. This de�nition implies that Root(T ) ∈ U0 = {E}, so Root(T ) = E, where Root
associates to a tree its root node. In addition, T has a number of level equal to the number of terms
in the sequence (Uk)k.

Remark 5.1.4. There exists a bijection between the nodes at a �xed level k of the tree representation
of a hierarchical decomposition and the elements of the associated partition of E, i.e. with Uk.

Example 5.1.2. We present in Fig. 5.2 the tree representations of the hierarchical decompositions
of [−1, 1] in the example 5.1.1. These two decompositions are composed of 4 partitions of [−1, 1],
so the associated trees have 4 levels.
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Figure 5.2: Tree representation of (Uk)k (left) and (Vk)k (right)

The tree representation of (Vk)k coincides with a 21-tree (binary tree). Compared to Sect.
2.2.1.2, the problem of locating the particles lying in the boundaries of cells (for instance a par-
ticle located at 0) is addressed thanks to the fourth condition in Def. 5.1.3.

Relying on such simple structured multilevel representations of subsets of Rd, we can hierarchi-
cally compare corresponding nodes according to an approximability condition. The next de�nition
links our point clouds with these tree representations.

De�nition 5.1.4. A tree representation of a point cloud X refers to a tree representation C of
a hierarchical decomposition of the smallest ball encompassing X .

A node of C is also called a cell. We use the notation c ∈ C if c is a node (a cell) of C .

These node are di�erent from the particles lying in them. When considering a node, the in-
formation about the exact localization of the particles is (a priori) lost. The restriction of a point
cloud X with a tree representation C to the particles lying in c, c ∈ C , is thus given by c ∩ X .
Because we imposed the hierarchical decompositions to be formed by partitions, a single particle
lies in exactly one leaf of the tree representation (and in only one cell at each level of this tree
representation).

Remark 5.1.5. Using di�erent norms, the smallest ball encapsulating a point cloud may have
di�erent forms. In the case of 2d-trees, the L∞ norm is chosen.

We consider a tree representation of X (our target point cloud, see Sect. 5.1.1), that will be
denoted by T and one of Y (the source point cloud) which will be denoted by S . Let s ∈ S and
t ∈ T . Due to Def. 5.1.3 ∀c, c̃ ∈X , X = T ,S , Level(c) < Level(c̃):

c ∩ c̃ 6= ∅ ⇒ ∃K ∈ N∗, c′0, ..., c′K ∈X |


c′k+1 ∈ Sons(c′k), ∀k = 1, ...,K − 1

c′0 = c

c̃ ∈ Sons(c′K)

.

Such a c̃ is a descendant of c in X (see Sect. 2.2.1). Denoting by Desc(c) the set of descendants
of a cell c ∈X , we obtain that for any approximability condition A and any t ∈ T , s ∈ S ,

A(t, s) = 1⇒ A(t′, s′) = 1, ∀t′ ∈ Desc(t), s′ ∈ Desc(s)

because an approximation as in Def. 5.2 and applicable in t × s (so for any x ∈ t ∩ X and any
y ∈ s ∩ Y ) can be applied in any restriction of this set.

5.1.4 Freely generated vector spaces

Our goal is to present a matrix framework that allows calculus in a context where tree representa-
tions T and S come into play as index sets, so as the particles in each cell of those trees. Such index
sets are actually unordered, which makes the presentation slightly more abstract. This discussion
is based on the concepts of freely generated vector spaces and rank distribution.
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De�nition 5.1.5. Let X be a �nite set. A rank distribution r over X is a map r : X → N∗. If
∀x ∈ X , r(x) = 1, then r is said to be trivial and we denote 1X := r the trivial rank distribution
on X .

De�nition 5.1.6. Let X be a �nite set and r be a rank distribution over X . The freely generated

vector space C[r] is the vector space

C[r] :=
∏
x∈X

Cr(x)

where
∏

denotes the cartesian product.

Remark 5.1.6. For the trivial rank distribution on a �nite set X , we have that C[1X ] coincides
with C[X ] ≡ C#X .

In our context, X will either refer to a point cloud or the nodes of a tree. Let r be a rank
distribution over X . Any factor Cr(x) can be regarded as a subspace of C[r], so that we can write:

C[r] ≡ ⊕
x∈X

Cr(x).

De�nition 5.1.7. Let r be a rank distribution over X and u ∈ C[r]. The restriction of u to x ∈ X
is denoted by u|x ∈ Cr(x).

Next, let X and Y be two �nite sets, for any pair of rank distributions rX : X → N∗ and
rY : Y → N∗, a linear map η : C[rY ]→ C[rX ] can be de�ned by prescribing a family of linear maps
ηx,y : CrY(y) → CrX (x) for x ∈ X , y ∈ Y, and we have

η(u)|x =
∑
y∈Y

ηx,y(u|y). (5.4)

This expression is an abstraction of a matrix de�ned blockwise. We may now easily de�ne the
restriction of A (see Eq. 5.1) to a pair of cells. We drop the "|" notation since this does not induce
any ambiguity.

As presented in Sect. 5.1.1, A can be interpreted as a linear mapping from C[X] to C[Y ], that
is a linear mapping between C[1X ] to C[1Y ] thanks to Rem. 5.1.6. Hence, the mappings Ax,y,
Aut(C1) ≡ C (with Aut denoting the set of automorphisms) as de�ned in Eq. 5.4 are scalars, for
any x ∈ X and y ∈ Y . They can be easily deduced from the N -body problem formulation in Eq.
2.1: the element Ax,y refers to the kernel evaluation G(x,y). In addition, we have the isomorphisms{

C[1t∩X ] ≡ C[t ∩X] ≡ C[rX(t)]

C[1s∩Y ] ≡ C[s ∩ Y ] ≡ C[rY (s)]
(5.5)

where t ∈ T and a source cell s ∈ S and rX , rY are de�ned such that

rX(t) := # (t ∩X) , rY (s) := # (s ∩ Y ) . (5.6)

As a consequence of Eq. 5.5 we can consider the block of A corresponding to the N -body problem
restriction to the particles in t and s by means of the rank distributions in Eq. 5.6 (isomorphism
between the second and third terms in the two lines of Eq. 5.5). In particular, this implies that
T and S can be used as index sets to refer to the corresponding blocks At,s of A. In addition,
the sets t ∩ X and s ∩ Y can be used as index sets to refer to the elements of such a block At,s
(isomorphism between the �rst and second terms in the two lines of Eq. 5.5). Explicit formulas are
provided in Def. 5.1.8.
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De�nition 5.1.8. The restriction of A to a target particle x ∈ X and a source particle y ∈ Y is
the element Ax,y.

The restriction of A to a target cell t ∈ T and a source cell s ∈ S is the linear map At,s :
C[s ∩ Y ]→ C[t ∩X] such that ∀u ∈ C[s ∩ Y ] ≡ C#(s∩Y )

(At,su)x =
∑

y∈s∩Y
Ax,yuy

∀x ∈ t ∩X.

Remark 5.1.7. For this de�nition, we indeed used the trivial rank distributions on t∩X and s∩Y .
So At,s can be represented as a matrix in C#(t∩X)×#(s∩Y ) due to Rem. 5.1.6.

Thanks to Def. 5.2, any block At,s such that t ∈ T , s ∈ S are admissible with regard to
a given approximability condition can be factorized, up to a given error. In addition, due to the
hierarchical space decomposition structure, the blocks induced by sons of both t and s can be
regarded as restrictions of left and right factors of this factorization.

We can illustrate the hierarchical structure of the tree representations on such restrictions
through the relation:

(At,su)|t′ =
∑

s′∈Sons(s)

At′,s′us′

for any u ∈ C[s ∩ Y ], t′ ∈ Sons(t).
This formula is the bridge between restrictions of A and the hierarchical decomposition behind

the tree structures we introduced in Sect. 2.2.1.2. It is now possible to manipulate A from the view-
point of space decompositions. In the following, we will navigate in A not only from the viewpoint
of the hierarchical decompositions, but also according to a given approximability condition, which
will widely use this notion of freely generated vector spaces and non trivial rank distributions.

To be more precise, given two rank distributions rT and rS on T and S respectively, we will
consider operators S from C[rS ]→ C[rT ] and their adjoints S∗ with regard to the scalar product:

〈〈a, b〉〉rH :=
∑
c∈H

〈ac, bc〉

for any a, b ∈ C[rH ] and using 〈·〉 to denote the standard scalar product in the subspace CrH (c) of
C[rH ] for any �xed c ∈ H , H = T ,S . To emphasize how this notion is close to the standard
matrix adjoint notion, one may think in terms of matrix in all subspaces of C[rH ], H = T ,S
using the de�nition of this scalar product. S being a mapping between C[rS ] to C[rT ], we have:

〈〈a, Sb〉〉rT =
∑
c∈T

〈ac, (Sb)c〉

=
∑
c∈S

〈(S∗a)c , bc〉

=: 〈〈S∗a, b〉〉rS .

This de�nes S∗ as the adjoint of S.

5.1.5 Near and far �elds

Since a priori not the entire A will be e�ciently approximated by local factorizations, we want to
separate A into two parts: the �rst one will be composed of untouched blocks (i.e. non-admissible
blocks which will not be approximated) and approximated ones (i.e. a well chosen set of admissible
blocks). This untouched part is called the near �eld of A and can be characterized using an
approximability condition.
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De�nition 5.1.9. Let A be an approximability condition. Let t be a leaf cell of T . The near �eld
N (t) of t is the set {s ∈ S | A(t, s) = 0 and s is a leaf in S }.

Using the previously introduced notions, we can de�ne the near �eld part of A in Eq. 5.1 as the
application AN , where:

(AN )x,y :=

{
Ax,y if ∃t ∈ T , s ∈ S ,x ∈ t,y ∈ s,A(t, s) = 0 and t, s are both leaves,
0 otherwise.

This can be expressed more compactly, introducing the relevant rank distribution.

De�nition 5.1.10. The natural rank distribution of a tree representation H of a point cloud
X is the rank distribution NH such that

NH (c) := #(c ∩ X )

for any c ∈H .

In other words, NH counts for any cell c ∈H the number of particles of X lying in c. We then
obtain:

AN : C[NS ]→ C[NT ]

de�ned such that
(AN )t,s = At,sδleaf (t)δleaf (s)(1−A(t, s)) (5.7)

where δleaf is a boolean application with tree node arguments, which is equal to 1 if and only if its
argument is a leaf. Indeed, the right term in Eq. 5.7 vanishes on each admissible pair (t, s) with
regard to A and is equal to the restriction of A to t and s if (t, s) is a non-admissible pair of leaf
cells.

AN is composed of direct interactions between particles. Such interactions are depicted in
Fig. 5.3 where we considered two equal target and source point clouds, generated by a uniform
distribution over [−1, 1] (restricted in the source particles to the 4 �rst of them). This interaction
graph has a dashed line between a target and a source particle if and only if this interaction is
computed. This is a dense graph.

Figure 5.3: Interaction graph for direct computation between a target point cloud (top points) and
a source one (bottom points). Only the interactions involving the �rst four particles of the source
point cloud are depicted.
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Considering the tree representation viewpoint, each non-zero block of AN corresponds to a
source cell s and a target cell t such that such a dense interaction graph is drawn by the involved
computations (locally). Then, denoting the far �eld part of A by AF := A − AN , hierarchical
methods are based on the following assumptions:

• AN is a block sparse operator which can be applied in linear time;

• Blocks of AF can be e�ciently approximated by low-rank expressions.

To be more precise, the interaction graph between admissible cells will be modi�ed by the low
rank structure of admissible blocks and their shape will depend on the method. A series of examples
is given in Sect. 5.2, clarifying in di�erent manners the e�ective structure of AF for the hierarchical
methods we described in Chap. 2 (i.e. the treecodes, the FMMs and the hierarchical matrices).

An interesting result can already be provided, linking our de�nition of AF to a well known
sparse format.

De�nition 5.1.11. Let A be an approximability condition. Let t be a cell in T . The interaction
list ΛA(t) of t is the set {s ∈ S | A(t, s) = 1 and A(Father(t), Father(s)) = 0}.

As a block operator AF : C[NS ] → C[NT ], AF can be seen as a Compressed Sparse Row
(see [186] Sect. 3.4) operator providing ΛA(t) for any t ∈ T .

Remark 5.1.8. The set of admissible pairs (t, s) ∈ T × S overlaps in Rd × Rd. Without the
condition on the non-admissibility of the fathers in Def. 5.1.11, some interactions would be evaluated
more than one time (up to the number of levels in the tree representations).

To conclude this paragraph, we reformulate the approximated factorization in Eq. 5.2 using all
these new notations.

Lemma 5.1.1. Let A be an approximability condition. The following holds:

s ∈ ΛA(t) ⇒ ∃


Φb : C[Y ∩ s]→ Cr1

Ψb : C[X ∩ t]→ Cr0

∆b ∈ Cr0×r1
such that At,s = Ψ∗b∆bΦb +O(ε) (5.8)

for any t ∈ T and using b := (t, s).

5.2 Hierarchical formats

In this section, we prescribe the rank distributions to use in order to recover the hierarchical methods
described in Chap. 2. We will illustrate all the considered method through the scope of the same
toy example, that is the tree representation of the hierarchical decomposition (Vk)k introduced
in Exp. 5.1.1. This tree representation can be depicted as in Fig. 5.4. We then suppose that
each cell contains exactly 2 particles, generating a point cloud P. We want to solve the N -body
problem between P and itself with a given kernel G. Taking the strict MAC (see Sect. 2.2.4.1)
as approximability condition, two cells at the same tree level are admissible if and only if their
ancestors are not and they are separated by at least a cell. In Fig. 5.5, we depicted the interaction
lists of the cells encompassing the four �rst particles and the ones of their ancestors. When the
N -body problem is solved exactly, the computations needed to obtain the solution for these four
particles is the dense graph of Fig. 5.3. We will see how the hierarchical methods a�ect this graph.
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Figure 5.4: Tree representation (binary tree) of
the hierarchical decomposition of [−1, 1] given by
(Vk)k of Exp. 5.1.1. The colors are used to il-
lustrate the decomposition at each level (i.e. one
color per level).

5.2.1 H-matrix format

The simplest and more general hierarchical compression format for the considered matrices A is
the H-matrix format. It can be handled by the framework we presented, using appropriate rank
distributions. Let NT ×S ,Y : T ×S → N∗ and NT ×S ,X : T ×S → N∗ be two rank distributions
de�ned as

NT ×S ,Y ((t, s)) =

{
r1 if s ∈ ΛA(t)

0 otherwise

NT ×S ,X((t, s)) =

{
r0 if s ∈ ΛA(t)

0 otherwise

where r0 and r1 are the ranks in Eq. 5.8.

Remark 5.2.1. Since r0, r1 are de�ned for a particular admissible block (t, s) ∈ T ×S , they do
not have to be the same for all pairs of target/source cells.

The notations the factorization in Eq. 5.8 are also used in the following formulas. Let V,W be
two mappings such that {

V : C[X]→ C[NT ×S ,X ]

W : C[Y ]→ C[NT ×S ,Y ]

de�ned by

(Wq)b :=


∑

y∈s∩Y
Φb(y)q(y) if s ∈ ΛA(t)

0 otherwise

(V q̃)b :=


∑

x∈t∩X
Ψb(x)q̃(x) if s ∈ ΛA(t)

0 otherwise
.

or equivalently by

Wb,y :=

{
Φb(y) if s ∈ ΛA(t)

0 otherwise

Vb,x :=

{
Ψb(x) if s ∈ ΛA(t)

0 otherwise
.

for any b = (t, s) ∈ T ×S , q ∈ C[Y ], q̃ ∈ C[X]. Then, we de�ne the mapping S from C[NT ×S ,Y ]
to C[NT ×S ,X ] by

Sb0,b1 :=

{
∆b if b := (t, s) = b0 = b1 and s ∈ ΛA(t)

0 otherwise
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Figure 5.5: Interaction lists for the cells containing the �rst four target particles of the representation
in Fig. 5.4 with two particles per leaf cell using the strict MAC of Sect. 2.2.4.1. There is no well-
separated pairs of cells at the top two levels (i.e. levels 0 and 1) so only the two other levels are
depicted. The non pale cells of the source level corresponds to the cells in the interaction list of the
non pale one in the corresponding target level for each of the three illustrated cells.

for any b0, b1 ∈ T ×S . As a consequence of Lem. 5.1.1, we obtain

A = AN +AF

≈ AN + V ∗ · S ·W.
(5.9)

We used the notation ≈ to handle the terms O(ε) appearing in Prop. 5.1.1. This notation will be
reused in this chapter. The factorization of the far �eld of A in Eq. 5.9 leads to a sparse linear
operator (i.e. S) but lying in a di�erent space than A. Indeed, the index sets of S are the product of
nodes of T and S , not the particles. The cardinal of T ×S can be larger than the dimensions of
A (seen as a matrix) but the sparsity of S strongly compensates this di�erence for common choices
of approximability conditions (see the di�erent MACs in Chap. 2). The space mappings in the
factorization of AF in Eq. 5.9 can be listed as follows

C[Y ]
W→C[NT ×S ,Y ]

S→C[NT ×S ,X ]
V ∗→C[X].

Remark 5.2.2. The number of non-zero blocks in S is exactly equal to the number of cell-cell
interactions performed by the multiplication by the representation of A in the H-matrix format.

The index sets used for the spaces C[NT ×S ,Y ],C[NT ×S ,X ] being the product T × S , the
particles do not directly appear in the term S of Eq. 5.9. Since the low rank approximations used
in the hierarchical matrices are usually obtained through SVD (see Sect. 2.2.5.2) or ACA (see Sect.
4.1.3.2) applications, for a given pair of admissible cell (t, s) the ranks r0 and r1 are often equal in
practice. In this case, because the ACA factorization results in two terms and the SVD one also
does by multiplying one of the left or right matrices by the singular values, the blocks ∆b of Eq.
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Source tree level 1

Source tree level 2

Source tree level 3
Source particles

Target tree level 1

Target tree level 2

Target tree level 3

Target particles

Figure 5.6: Interaction graph for H-matrix with admissibility condition of Fig. 5.1 and the binary
tree representation of (V)k in Fig. 5.2 and illustrated in Fig. 5.4. The same colors than in Fig. 5.4
are used for each level of the tree representation. Near �eld interactions (gray dashed), interactions
at level 3 (red dashed), interactions at level 2 (orange dashed). The far �eld cell-cell interactions
are represented using blue dots.

5.8 actually are represented by identity matrices. Each of these identity matrices corresponds to a
cell-cell interaction in the far �eld. Hence, the term S can be avoided in Eq. 5.9, resulting in the
shorter factorization:

A ≈ AN + V ∗ ·W. (5.10)

This reduction can be understood di�erently by simply modifying the expression of W into W̃
de�ned by (

W̃ q
)
b

:=

∆b

∑
y∈s∩Y

Φb(y)q(y) if s ∈ ΛA(t)

0 otherwise
.

Regarding the interaction graph and symbolizing by nodes the non-zero elements of S, the new
shape can be drawn as in Fig. 5.6. These new nodes of course represent an amount of operation
depending on the numerical rank of the involved blocks of A, but supposed to be O(1).

5.2.2 Treecodes

The general H-matrix factorization of Sect. 5.2.1 is based on low rank approximations on each
admissible pairs (t, s) ∈ T ×S in which all the terms depend both on the target cell t and the
source one s. This generated mappings in large spaces (i.e. C[NT ×S ,Y ] and C[NT ×S ,X ]). To the
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contrary, the treecode method is built on the assumption that only the left and middle factors in
the factorization in Eq. 5.8 depends on both t and s but the right-hand one (i.e. Φb = Φs) only
depends on s (see Sect. 2.2.3).

As opposed to the hierarchical matrix format, treecodes perform particle-cell interactions in-
stead of cell-cell interactions. All rank distributions thus have to be adapted in order to represent
treecodes in terms of matrix factorization using our framework. To keep our de�nition of the ap-
proximability condition, we consider that a particle is a cell centered in its position with a radius
equal to zero. Because of the particle-cell interactions, we only have a tree representation S of the
hierarchical decomposition of the source space.

Let RS be a rank distribution over S such that for a well chosen approximability condition
(such as the MAC of Eq. 2.2.3.1), we have, for a target particle x ∈ X

s ∈ ΛA(x) ⇒ ∃
{

Φs : C[Y ∩ s]→ CRS (s)

Ψs(x) ∈ CRS (s) such that Ax,s = Ψs(x)∗Φs +O(ε). (5.11)

We thus want to de�ne linear mappings V,W such that the far �eld AF can be approximated by
the factorization AF ≈ V ∗ ·W . In terms of vector spaces, this may be written

C[Y ]
W→C[RS ]

V ∗→C[X]. (5.12)

The operators V and W can be de�ned by

Ws,y :=

{
Φs(y) if y ∈ s
0 otherwise

(5.13)

Vs,x :=

{
Ψs(x) if s ∈ ΛA(x)

0 otherwise

using the notations of Eq. 5.11. We obtain the same form as in Eq. 5.10 but with di�erent de�nitions
of V and W based on di�erent rank distributions according to the speci�c approximation used for
treecodes. However, this factorization is still not fully satisfactory since it hides the relations
between tree nodes in the upward pass (see Sect. 2.2.3.2). Indeed, we would like to factorize
W in such a way that this factorization handles the hierarchical structure inherited from the tree
representation of the underlying hierarchical space decomposition. This can be done by introducing
tree restrictions.

De�nition 5.2.1. Let H be the tree representation of a hierarchical decomposition. The tree
restriction Hl refers to the set Hl := {h ∈H | Level(h) ≥ l} for any l ∈ [[0, Depth(H )]].

The tree restriction Hl is composed of all cells of H that have a level greater or equal to l.

Remark 5.2.3. There exists a naive inclusion chain on tree restrictions:

HDepth(H ) ⊂HDepth(H )−1 ⊂ . . . ⊂H0 = H .

We are going to exploit the nestedness property of W which is properly de�ned in Def. 5.2.2.
This consists in a general abstract way of de�ning the relations between matrices associated to cells
and the blocks of W according to the links of the tree representation.

De�nition 5.2.2. Let ε > 0 be as in Eq. 5.11. Let X be a point cloud, H be the tree representation
of a hierarchical decomposition of the smallest ball encompassing X and rH be a rank distribution
over H . A mapping B : C[X ] → C[rH ] is said to verify the nestedness property if and only if
there exist rank distributions rHl

, mappings Bl : C[rHl
] → C[rHl−1

] for any l ∈ [[1, Depth(H )]],
B† : C[X ]→ C[rHDepth(H )

] such that

∃
{
Eh ∈ CrHl−1

(Father(h))×rHl
(h) for any h ∈H such that Level(h) 6= Depth(H )

Ẽh ∈ CrHDepth(H )−1
(Father(h))×#(X∩h) for any h ∈H such that Level(h) = Depth(H )
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verifying
B = B1 · . . . ·BDepth(H ) ·B† +O(ε) (5.14)

with rH0
= rH ,

(Bl)h0,h1
=


Id if h0 = h1

Eh1
if h1 ∈ Sons(h0)

0 otherwise

and ∀q ∈ C[X ], ∀h with Level(h) = Depth(H ),

(B† · q)h = Ẽh · q|X∩h.
The notation Bl,† := Bl · . . . ·BDepth(H ) ·B† is used to refer to the last Depth(H )− l+ 2 terms

of Eq. 5.14.

In this section, the matrices Ẽh are only de�ned for leaf cells (i.e. cells h such that Depth(H ) =
Level(h) using our de�nition of a tree representation provided in Def. 5.1.3). Actually, Def. 5.2.2 is
quite easy to understand. The nestedness property ofW guarantees the existence of linear mappings
Es, for any s ∈ S , such that

(W · q)s ≈
∑

s′∈Sons(s)

Es′ ·
(
WLevel(s)+1,† · q

)
s′

≈
∑

s′∈Sons(s)

Es′ ·
∑

s′′∈Sons(s′)

Es′′ ·
(
WLevel(s′)+1,† · q

)
s′′

≈ . . .
for any q ∈ C[Y ]. This may be written in a more compact form, reordering the terms of the
decomposition

Wh,s ≈ δh=s

∑
s′∈Sons(s)

Es′ ·
(
WLevel(s)+1,†

)
h,s′

≈ δh=s

∑
s̃∈Desc(s)

Level(s̃)=Depth(S )

 ∏
u∈Ancestors(s̃)

Eu


s,s̃︸ ︷︷ ︸

Uniquely de�ned with a �xed
element ordering imposed by

the chain in Rem. 5.2.3

Ẽs̃ (5.15)

where δh=s is equal to 1 if h = s and to 0 otherwise. Notice that the �rst line of Eq. 5.15 preserves
a factorization that disappears in the second line since the sum is placed out of the product.

Hence, any non-zero block of Wl,†, indexed with cells of Sl, is accessed using a cell of S and
can be obtained using the sons of this cell. This can be repeated recursively. We easily see that the
term Bl in Eq. 5.14 involves larger input and output vector spaces than Bl+1 since the sequence
(Sl)l veri�es Sl+1 ⊂ Sl. In other terms, the size of Bl increases as l decreases. Fortunately, Def.
5.2.2 implies that these operators are sparse assuming that each cell has O(1) sons.

The upward pass (see Sect. 2.2.3.2) of the treecode can be represented by assuming that the
term W in Eq. 5.13 veri�es the nestedness property. Hence, there exist mappings Wl, W† and
ranks distributions RSl

such that the chain 5.12 becomes

C[Y ]
W†→ C[RSDepth(S )

]
WDepth(S )→ . . .

W2→ C[RS2
]
W1→ C[RS ]

V ∗→C[X]

and the factorization in Eq. 5.10 gives

A ≈ AN + V ∗ ·W
= AN + V ∗ ·W1 · . . .W†.

In Fig. 5.7 is represented the interaction graph corresponding to the treecode approach.
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Source tree level 1

Source tree level 2

Source tree level 3
Source particles

Target tree level 1

Target tree level 2

Target tree level 3

Target particles

Figure 5.7: Interaction graph for the treecode. The near �eld part is represented in dashed gray.
The hierarchical assembly of far �eld approximations in the source cells are depicted with continuous
lines using the level colors of Fig. 5.4. The particle-cell interactions are represented with dashed
lines using the level colors of the involved cells. Concerning the MAC, we suppose that the particles
of a target cell are well-separated from a source cell if the two cells are well-separated with respect
to the strict MAC of Sect. 2.2.4.1 and as illustrated in Fig. 5.5.

5.2.3 Fast Multipole Method

The last method we want to present using our framework is the Fast Multipole Method, based on
an additional assumption on the structure of the approximation of the far �eld compared to the
treecode.

5.2.3.1 Matrix formulation

Actually, considering the theoretical framework we develop in this chapter, the FMM can be handled
using a combination of the hierarchical matrix and treecode formulations. Indeed, there are both a
target and a source tree and we want to represent cell-cell interactions in the factorization, which is
also the case in the hierarchical matrix format. We thus have a representation as in Eq. 5.9 using
rank distributions over the product tree T ×S

A ≈ AN + V ∗ · S ·W. (5.16)

However, the kernel approximation is �nner in the FMM case. As for the treecode, the source
approximations (the Φb = Φs's in Eq. 5.8) only depend on the source cell. The same is also
assumed for the target approximation, that only depends on the corresponding target cell. Hence,
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we �rst reformulate the kernel approximation exploited in the FMM. This time, we consider rank
distributions RT on T and RS on S . We have

s ∈ ΛA(t) ⇒ ∃


Φs : C[Y ∩ s]→ CRS (s)

Ψt : C[X ∩ t]→ CRT (t)

∆t,s ∈ CRT (t)×RS (s)

such that At,s = Ψ∗t∆t,sΦs +O(ε) (5.17)

with
(At,s)x,y = Ψ∗t (x)∆t,sΦs(y) +O(ε)

for any x ∈ t, y ∈ s. Hence, de�ning

V : C[X]→ C[RT ], W : C[Y ]→ C[RS ], S : C[RS ]→ C[RT ]

such that

Vx,t :=

{
Ψt(x) if x ∈ t
0 otherwise

, Wy,s :=

{
Φs(y) if y ∈ s
0 otherwise

, St,s :=

{
∆t,s(x) if s ∈ ΛA(t)

0 otherwise

we recover the approximation in Eq. 5.16 but with di�erent (smaller) spaces than with the hier-
archical matrix format. Indeed, instead of the product set T × S , the two sets T and S are
considered separately, giving

C[Y ]
W→C[RS ]

S→C[RT ]
V ∗→C[X].

This intermediate factorization corresponds to a single level FMM as sometimes referred to in the
literature (see for instance [70, 74, 174]). This is not su�cient to handle the full structure of the
(multilevel) FMM factorization. Indeed, by assuming that V and W both verify the nestedness
property according to T /RT and S /RS respectively, we end up with

A ≈ AN + V ∗ · S · W

≈ AN + V ∗† · . . . · V ∗1 · S ·W1 · . . .W†.
(5.18)

The linear maps involved in Eq. 5.18 have names in the FMM literature [131, 218] that we
already listed in Sect. 2.2.4.1. We summarize them in the following list.

1. (W†)s,y refers to the Particle to Multipole (P2M) operator on the cell s restricted to
y ∈ s ∩ Y ,

2. (Wk)s,s′ denotes the Multipole to Multipole (M2M) operator from s′ ∈ Sons(s) to s (at
level k),

3. St,s is the Multipole to Local (M2L) operator between target cell t and source cell s,

4. (V ∗k )t′,t denotes the Local to Local (L2L) operator from t to t′ ∈ Sons(t) at level k,

5.
(
V ∗†

)
x,t

refers to the Local to Particle (L2P) operator on the cell t restricted to x ∈ t∩X,

6. (AN )t,s is the Particle to Particle (P2P) operator between cells t and s.

As restrictions of linear maps in C-vector spaces, these operators can all be represented as
matrices, and we will use the same terminology for the matrices associated to these operators.
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Figure 5.9: Shape of S (left), W3 (center) and W2 (right) for equal binary trees using a standard
admissibility condition (only neighbors at each level are not admissible). Blue blocks correspond to
admissible blocks, magenta blocks are M2M matrices and cyan blocks represent identity matrices.
The input and output index sets of W3 are S3 and S2 respectively. Those of W2 are S2 and S1.
The trees (or tree restrictions) are somehow "�attened" to obtain index sets, as represented on the
left and on the top of the operator S.

Remark 5.2.4. These de�nitions of W† and V† are consistent with the two stopping criteria
MaxDepth and Ncrit (see Sect. 2.2.1.2) for the 2d-tree construction. This is straightforward
for MaxDepth and to extend it to Ncrit, one just has to notice that a hierarchical decomposition
does not have to be composed of same size elements at each level and that we allowed elements of a
level of a partition to be equal to another at the next level. This means that, under this framework,
all mappings between particles and multipole/local expansions are operated on the leaves of the tree
representation of the hierarchical decomposition, but a certain amount of tree nodes on entire tree
branches may be equal.

To be more precise, we compare on Fig. 5.8 the e�ective needed tree structure to store (Uk)k
(right) to its tree representations in Fig. 5.2 (left), used for the formulas we provided.

[−1, 1]

[−1, 0[ [0, 1]

[−1, 0[

[−1, 0[

[0, 0.1[ [0.1, 1]

[0, 0.01[ [0.01, 0.1[ [0.1, 0.2[ [0.2, 0.3[ [0.3, 1]

[−1, 1]

[−1, 0[ [0, 1]

[0, 0.1[ [0.1, 1]

[0, 0.01[ [0.01, 0.1[ [0.1, 0.2[ [0.2, 0.3[ [0.3, 1]

Figure 5.8: Tree representations of (Uk)k with (left) and without (right) storage of the redundant
elements.

Hence, W † is theoretically applied to the leaf [−1, 0[ of the tree representation H of (Uk)k
corresponding (i.e. at level Depth(H )) but this application can be practically done at the cell
corresponding to [−1, 0[ at the �rst tree level. This shortcut is taken on the e�ective tree structure.

Recalling in Fig. 5.4 the binary tree representation of (Vk)k of Exp. 5.1.1 and still using the
strict MAC, we can represent as in Fig. 5.9 the matrix form of these operators by �attening this
tree to index their input and output spaces.

In terms of interaction graph, we obtain something similar to the treecode graph, except that the
reuse of blocks both for interactions and assembly of other blocks adds another hierarchical aspect.
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Source tree level 1

Source tree level 2

Source tree level 3
Source particles

Target tree level 1

Target tree level 2

Target tree level 3

Target particles

Figure 5.10: Interaction graph for the FMM. The near �eld part is represented in dashed gray.
The hierarchical assembly of far �eld approximations in the source cells (i.e. application of W ) are
depicted with continuous lines using the level colors of Fig. 5.4. Using the same conventions, the
application of W ∗ is also depicted on the target using continuous lines. The cell-cell interactions
are represented with dashed lines using the level colors of the involved cells. Concerning the MAC,
we suppose that the particles of a target cell are well-separated from a source cell if the two cells
are well-separated according to the strict MAC of Sect. 2.2.4.1 and as illustrated in Fig. 5.5.

Such a graph is depicted on Fig. 5.10. One may notice that this interaction graph is sparser than
the treecode one (see Fig. 5.7), which is itself sparser than the hierarchical matrix one (see Fig.
5.6), which is obviously itself sparser than the dense matrix one (see Fig. 5.3). This illustrates how
the FMM approach can perform compared to the two other methods when considering in terms of
tree relations.

The multipole and local expansions, as well as the rest of the FMM terminology, can also be
de�ned using the framework we presented in this chapter (see Def. 5.2.3).

De�nition 5.2.3. Let s (resp. t) be a source (resp. target) cell. Then C[s∩ Y ] (resp. C[t∩X]) is
said to be the charges (resp. potentials) associated to C[s ∩ Y ] (resp. C[t ∩X]).
Let rS (resp. rT ) be a rank distribution over S (resp. T ). For any s ∈ S (resp. t ∈ T ), an
element of CrS (s) (resp. CrT (t)) is called a multipole (resp. local) expansion in the cell s (resp.
t).

In practice, starting from Eq. 5.18, the vector obtained by

(WLevel(s)+1,† · q)|s
is named the multipole expansion associated to a source cell s ∈ S , for q a vector of charges. In
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the same manner, the local expansion associated to t ∈ T is the vector given by

(S ·W · q)|t .

5.2.3.2 Grids

As charges or potentials are associated to particles, in practice the coe�cients of multipole/local
expansions correspond to elements of a given set associated to the involved cell, but not directly
linked with its geometry. To be more precise, depending on the FMM formulation, there often
exists a set H such that for any s ∈ S , ∃Gs ⊂ H (resp. t ∈ T , ∃Gt ⊂ H) withC[rS ] ≡ ⊕

s∈S
C[Gs]

C[rT ] ≡ ⊕
t∈T

C[Gt]
.

We emphasize that C[Gs] ≡ CrS (s) but the �rst term is more precise than the second one: it gives
an explicit index set to work with. Due to the de�nition of the rank distribution, #Gs <∞ (resp.
#Gt <∞).

For any cell c, such a Gc is called the grid associated to c. If c is a source cell, then Gc is a
grid associated to a multipole expansion and if c is a target cell, Gc is a grid associated to a local
expansion. To be even more precise, the rank distributions give the cardinal of these grids.

These grids may have (depending on H) useful interpretations (possibly geometric) which lead
to optimizations in e�ective FMM implementations. We present what these grids correspond to for
various FMM formulations.

hf-fmm presented in Chap. 3 is based on an integral expansion of the Helmholtz kernel on the
unit sphere. Hence, cubatures on the sphere with integration orders depending on the tree levels are
needed to derive practical algorithms. The terms of the multipole/local expansions are associated
to cubature nodes. Hence, the grids Gc in hf-fmm correspond to these cubature grids and H denotes
the unit sphere.

kifmm presented in Sect. B.1.2 is also based on the discretization of surface integrals (that
do not have to be spheres) on surfaces containing each tree cells. The amount of nodes in each
cubature does not necessarily have to vary. The grid of a cell corresponds to the cubature nodes
on the associated surface. H thus corresponds to the reference surface (the pattern used for each
cell relatively to its center)

Cauchy FMM presented in Sect. B.2.2 is also built through (contour) integral expressions.
Hence, the grids are, once again, formed by cubature nodes. Once again, H corresponds to the
contour in the integral.

Interpolation-based FMM In the case of interpolation-based FMM (see Sect. 4.1.2), the grid
of a cell is an interpolation grid with nodes located in this cell. FFT-based techniques exploit
tensorized equispaced grids (see Sect. 4.1.4) whereas the low-rank approximation approaches usually
use tensorized Chebyshev interpolation grids. H corresponds here to the cell itself.

Fourier-based FMM The FMM entirely expressed in the Fourier domain described in Sect.
B.2.1 has grids of the form {j ∈ Zd | |j| ≤ p} for �xed p < ∞ and d being the dimension. It is
straightforward to deduce that H is nothing more than Zd.
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3D Laplace FMM The expansion elements of the 3D Laplace FMM presented in Sect. 2.2.4.3
correspond to pairs of indices associated to a spherical harmonic with order and degree less than a
�xed integer (assuming that the approximation order does not vary from one cell to the next). Hence
the grids are the truncated NZ introduced in Sect. 2.12 (see Rem. 2.2.6). Here, H corresponds to
NZ .

Remark 5.2.5. The main important point to understand is that the grids are not necessarily
linked with a cell, only the reverse is true. Indeed, all the cells at a same tree level in hf-fmm have
the same grid (i.e. the cubature grid at this tree level, see Sect. 3.1.3). The case of the Fourier-
based FMM also simply illustrates this idea: the Fourier modes do not depend on a particular cell,
but all the multipole expansions in this method are expressed on given Fourier modes.

The interpolation-based FMM is a more di�cult case: the interpolation grids are unique in each
cell. However, since on 2d-trees, the interpolation grids are actually the same up to a translation
at a �xed tree level, one may consider that they are equal by expressing the interpolation nodes
relatively to the cell center. In this case, the translation is related to the cell but not to the grid.
This is one of the starting point of the considerations discussed in Sect. 5.3.

There may exist symmetries in the grids that can be exploited to obtain fast evaluations of the
M2L operators (or even of the other FMM operators): for instance, the equispaced grids used in the
FFT-based techniques in the interpolation-based FMM in order to perform FFTs and Hadamard
products instead of low-rank approximations and products (see Sect. 4.1.4). In practice, each
FMM formulation is optimized through its speci�c grids. Nevertheless, we wonder to what extent a
general approach for the treatment of the FMM operators through the grid spectrum and according
to the tree structure can be achieved. Derivation of such an approach is the purpose of Sect. 5.3.

5.3 Structure of the FMM

We discuss in this section how to take into account the symmetries inherited from well suited choices
of hierarchical decompositions and the corresponding tree representations (namely 2d-trees). Work-
ing outside the scope of a speci�c FMM formulation allows us to specify the necessary conditions
for a FMM formulation to exploit these symmetries in order to (possibly) reduce the computational
cost. To be more precise, we will work only on hypotheses on the entries of the matrices involved in
the FMM (P2M/M2M/M2L/L2L/L2P matrices) without speci�cation on how the coe�cients
are actually computed. This makes the discussion independent of the FMM formulation.

5.3.1 Symmetries

In this section, we consider two types of invariance on the M2L matrices that can be used in
practice in the FMM context. The �rst of them is a translational invariance and is described in
Sect. 5.3.1.1 and the second one is a more general group invariance and is described in Sect. 5.3.1.2.

5.3.1.1 Translational invariance

Let us suppose that the entries of St,s de�ned in Eq. 5.18, for any s ∈ S , t ∈ T , only depend on
an operator de�ned on the �nite grids Gs ⊂ H and Gt ⊂ H (as introduced in Sect. 5.2.3.2), where
the set H has to be de�ned according to the expansion type of the considered FMM formulation.
Let u := ctr(t)− ctr(s), with ctr(c) the center of the smallest ball containing the cell c, and let us
also assume that there exists an operator

Bu : H2 → C

such that for any x̂ ∈ Gt, ŷ ∈ Gs,
(St,s)x̂,ŷ = Bu(x̂, ŷ) (5.19)
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where St,s is regarded as an operator from C[Gs] to C[Gt] and such thatB veri�es a set of invariance
properties to be precised.

Remark 5.3.1. The notation x̂ and ŷ is used to emphasize that these points are not particles but
elements in the grids associated to the cells and given relatively to these cells. According to Rem.
5.2.5, in the case of the interpolation-based FMM, they correspond to interpolation nodes whose
positions are given relatively to the corresponding cell centers. In this case, the grids are the same
for all cells at a same 2d-tree level (see Rem. 5.2.5).

B is the operator that generates the entries of the M2L matrices according to the grids Gt and
Gs associated to each cell and the vector obtained by the di�erence u of the centers of the two
interacting cells. Actually, B can be seen as a complex valued function involving three variables.
The reason why we separate the arguments is because u, as the only term depending both on the
source and target cells, "speci�es" B for a pair of cells.

The main point is that the existence of such a same B for all pairs of cells imposes an invariance
property, which is described in Prop. 5.3.1 when the grids are equal (see Rem. 5.2.5).

Proposition 5.3.1. Suppose that there exists B as de�ned in Eq. 5.19 (the same for all pairs of
well-separated cells). Let s̃ = s + z be a cell, z ∈ Rd, and t̃ = t + z, with Gt = Gt̃ and Gs = Gs̃.
Then St,s = St̃,s̃.

Proof.
ctr(t̃)− crt(s̃) = ctr(t) + z− (ctr(s) + z)

= ctr(t)− crt(s)
which implies that for any (x̂, ŷ) ∈ Gt ×Gs,

(St̃,s̃)x̂,ŷ = Bctr(t̃)−crt(s̃)(x̂, ŷ)

= Bctr(t)−crt(s)(x̂, ŷ)

= (St,s)x̂,ŷ.

Remark 5.3.2. An operator B as in Eq. 5.19 exists in most application cases. For instance, in
the case of the interpolation-based FMM, one only has to assume that the approximated kernel is
translationally invariant to ensure that such B exists. If the kernel is not translationally invariant,
the M2L matrix between t and s and the M2L matrix between t+ z and s+ z are not equal in the
general case, even if the interpolation grids are the same.

As a corollary to Prop. 5.3.1, a �rst result on the structure of S linking a property on the trees
T and S with the restrictions of S to some particular blocks can be obtained.

De�nition 5.3.1. A Toeplitz-block matrix is a block matrix which is blockwise Toeplitz.

Remark 5.3.3. As opposed to the block-Toeplitz matrices of Def. 4.1.5, the blocks of a Toeplitz-
block matrix do not have to be Toeplitz themselves.

Proposition 5.3.2. Suppose that there exists B as de�ned in Eq. 5.19 (the same for all pairs of
well-separated cells). Let U := {t0, ..., tn} ⊂ T be a �nite set of cells such that Gti = Gtj for any
i, j ∈ [[0, n]], V := {s0, ..., sm} ⊂ S be a �nite set of cells such that Gsi = Gsj for any i, j ∈ [[0,m]].
If there exists γ ∈ Rd such that tk = t0 + kγ and sk = s0 + kγ, then

SU,V :=

St0,s0 . . . St0,sm
...

. . .
...

Stn,s0 . . . Stn,sm


has a Toeplitz-block structure.
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Proof. We only need to verify that for any indices (i, j) ∈ {0, ..., n− 1} × {0, ...,m− 1},

Sti+1,sj+1
= Sti,sj .

To do so, one only has to consider any pair (x̂, ŷ) ∈ Gt ×Gs and to observe that

(Sti+1,sj+1)x̂,ŷ = (St0+(i+1)γ,s0+(j+1)γ)x̂,ŷ

= Bt0+(i+1)γ−(s0+(j+1)γ)(x̂, ŷ)

= Bt0+iγ−(s0+jγ)(x̂, ŷ)

= (Sti,sj )x̂,ŷ.

To be more precise, if a set of cells in S and a set of cells in T can be obtained by the same
translation applied to its �rst element and to the result iteratively, then the restriction of S to these
cells is Toeplitz-block. Perfect binary trees restricted to a given level respect this property.

This proposition can be extended to a linear combination of vectors, as provided in Prop. 5.3.3.
Application examples of this result are detailed in Exp. 5.3.2.

De�nition 5.3.2. A Toeplitz-0-block matrix is a Toeplitz-block matrix. A block matrix A is Toeplitz-
P -block if and only if A is Toeplitz-block with blocks themselves Toeplitz-(P − 1)-block, P ∈ N∗.

Remark 5.3.4. Let n0, ..., nP ∈ N∗ such that #
(∏P

b=0[[0, nb]]
)

= # ([[0, N ]]) = N + 1. To extend
the result of Prop. 5.3.2 to linear combinations of P + 1 vectors γb's, the condition tk = t0 + kγ of
Prop. 5.3.2 becomes

tk = t0 +

P∑
b=0

Ib(k)γb

where Ib(k) denotes the bth component of (I0(k), ..., IP (k)) ∈ ∏P
b=0[[0, nb]] which is the kth element

in
∏P
b=0[[0, nb]] according to the lexicographical order, and where I : [[0, N ]] → ∏P

b=0[[0, nb]] is the
bijection associating to elements of

∏P
b=0[[0, nb]] their lexicographical index in [[0, N ]]. A similar re-

formulation has to be done for sl. Hence, the mappings I and J in Prop. 5.3.3 only aim at switching
between the linear combinations of vectors and the indexations of the sets U and V according to the
the lexicographical order.

Proposition 5.3.3. Suppose that there exists B as de�ned in Eq. 5.19. Let U := {t0, ..., tN} ⊂ T
be a �nite set of cells such that Gti = Gtj for any i, j ∈ [[0, N ]], V := {s0, ..., sM} ⊂ S be a �nite
set of cells such that Gsi = Gsj for any i, j ∈ [[0,M ]]. We consider the two mappings

I : [[0, N ]]→
P∏
b=0

[[0, nb]] and J : [[0,M ]]→
P∏
b=0

[[0,mb]]

such that N =

P∏
b=0

nb, M =

P∏
b=0

mb, ∀k ∈ [[0, N ]], I(k) = (I0(k), ..., IP (k)), ∀l ∈ [[0,M ]], J(l) =

(J0(l), ..., JP (l)) and

k =

P∑
b=0

Ib(k)

b∏
q=0

nq and l =

P∑
b=0

Jb(l)

b∏
q=0

mq.

If there exists γ0, ..., γP ∈ Rd such that tk = t0 +

P∑
b=0

Ib(k)γb and sl = s0 +

P∑
b=0

Jb(l)γb then SU,V

has a block-hierarchical-P -Toeplitz structure.
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Proof. Let

T :

P∏
b=0

([[0, nb]]× [[0,mb]])→ C

be de�ned as
T (k0, l0; ...; kP , lP ) := (SU,V)k,l

with the notation kr := Ir(k) and lr := Jr(l), for any r ∈ [[0, P ]]. Using Prop. 5.3.2, for any
r ∈ [[0, P ]], if ki 6= nr and lj 6= mr, ∀i, j, we have

T (k0, l0; ...; kr + 1, lr + 1; ...; kP , lP ) = T (k0, l0; ...; kr, lr; ...; kP , lP ) .

Hence, for any u = (u0, ..., uP ) ∈ {0, 1}P+1 with ur = 0 if kr = nr or lr = mr, we have

T (k0 + u0, l0 + u0; ...; kP + uP , lP + uP ) = T (k0, l0; ...; kP , lP ) .

This last expression corresponds to a characterization of a Toeplitz-P -block matrix.

Remark 5.3.5. The explicit de�nition of I and J are not needed if we allow the matrix SU,V to
be Toeplitz-P -block up to permutations.

Remark 5.3.6. Since any Toeplitz-block matrix can be transformed into a block matrix with Toeplitz
blocks, Fourier techniques can be applied on blocks corresponding to sets U and V as in Prop. 5.3.3.
We illustrate this kind of embedding in Exp. 5.3.1. Since the Fourier matrices can be evaluated with
linearithmic complexity, the use of such embedding may result in performance gains in practical
applications (see Sect. 4.1.4).

Example 5.3.1. The Toeplitz-block matrix in the left-hand side of Eq. 5.20 can be seen as a
matrix with blocks of size 2 × 2 that are all Toeplitz (see right-hand side of Eq. 5.20) by means of
the permutations Q0 and Q1. All these blocks can be embedded into circulant matrices (see Sect.
4.1.4) and explicitely diagonalized in a Fourier basis.

[
a b
c a

] [
d e
f d

]
[
g h
i g

] [
a b
c a

]


︸ ︷︷ ︸
Toeplitz-block matrix

= Q0


[
a d
g a

] [
b e
h b

]
[
c f
i c

] [
a d
g a

]


︸ ︷︷ ︸
Block matrix with Toeplitz blocks

Q1 (5.20)

This result may seem quite abstract. We keep a general formulation of this proposition so that
it can be exploited in very di�erent situations. One may simplify the conclusion saying that, under
the hypothesis of Prop. 5.3.3, SU,V is Toeplitz-block and each of its blocks also is. This can be
represented as a tree whose nodes refer to a block of SU,V and the links between nodes express
that a son is a block of the Toeplitz-block expression of its father. The number of levels of this
tree is equal to the number of terms in the linear combinations expressing tk and sl from t0 and s0

respectively. Therefore, according to Rem. 5.3.6, Fourier techniques involving tensor products of
Fourier matrices (whose number depends on the number of levels in the tree of the Toeplitz-block
decomposition) can be exploited in practice to evaluate a part of the product by SU,V .

Example 5.3.2. In Fig. 5.11 we present representations of sets U and V that can be used to obtain
Toeplitz-block structures if the FMM formulation veri�es the hypotheses of Prop. 5.3.3. According
to the notations of the proposition, the �rst (left) representation in Fig. 5.11 leads to a Toeplitz-0-
block structure since [[0, N ]] = [[0,M ]] ≡ [[0, 3]]. The middle representation uses [[0, N ]] ≡ [[0, 3]]×{0}
and [[0,M ]] ≡ [[0, 3]]× [[0, 1]] so there is a Toeplitz-1-block structure.

Finally, the representation on the right is a bit more complicated since it corresponds to [[0, N ]] =
[[0,M ]] ≡ [[0, 1]]2 but the block of SU,V corresponding to the interaction between the two hatched cells
has to be set to zero (since these two cells are not admissible).
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Figure 5.11: Three examples of patterns leading to Toeplitz-block structure on 22-trees using the
strict MAC (see Sect. 2.2.4.1). Blue: source cells; Red: target cells. The vectors γp's of Prop. 5.3.3
are represented on each corresponding group of cells using arrows. There are no cell-cell interaction
on the top two levels (because of the strict MAC). On the third one, all the red (target) cells of the
left and middle picture interact with all the blue (source) ones. On the right picture, the same is
true except for the pair of hatched cells (i.e. a single pair). If all the cell-cell interactions of one of
these �gures are handled together, Toeplitz-block structure appear thanks to Prop. 5.3.3.

A practical interesting case is the polynomial interpolation based FMM using equispaced inter-
polation grids (see Sect. 4.1.4) and 2d-trees. Indeed, the interactions between groups of neighboring
cell concatenations verify the hypothesis of Prop. 5.3.3 but this time, each block of SU,V is itself
(block-d)-Topelitz and a fully circulant embedding can be obtained.

5.3.1.2 Group invariance

Let G be a �nite group acting on Rd as a group of rotations. We also suppose that G acts on H. We
denote by g · z the result of the action of g ∈ G on z (where z ∈ Rd or z ∈ H). We also denote by
g ·Z the set of elements obtained by action of g on any point of a set Z (where Z ⊂ Rd or Z ⊂ H).

Proposition 5.3.4. If there exists a �nite group G acting both on Gt, Gs and Rd such that

∀g ∈ G, Bg·u(g · x̂, g · ŷ) = Bu(x̂, ŷ)

with g ·Gs = Gg·s and g ·Gt = Gg·t, then:

∀g ∈ G, ∃P (Left)
g ∈ {0, 1}#Gt×#Gt , P (Right)

g ∈ {0, 1}#Gs×#Gs

such that
Sg·t,g·s = P (Left)

g St,sP
(Right)
g

where P (Left)
g , P (Right)

g are permutation matrices.

Proof. Since g ·Gr = Gg·r, r = t, s, we have

Gr = g−1 ·Gg·r. (5.21)

We can thus construct a mapping P(r)
g from C[Gg·r] to C[Gr] such that(

P(r)
g

)
z′,z

=

{
1 if ẑ′ = g−1 · ẑ
0 otherwise

. (5.22)

We introduce the operator
B : Rd → C#Gt×#Gs

u 7→ B(u)
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with
B(u)x̂,ŷ := Bu(x̂, ŷ).

Let (x̂, ŷ) ∈ Gg·t ×Gg·s. Let (x̂′, ŷ′) ∈ Gt ×Gs such that (x̂′, ŷ′) = (g−1 · x̂, g−1 · ŷ). We have:

B(g · u)x̂,ŷ = Bg·u(x̂, ŷ)

(hypothesis) = Bu(g−1 · x̂, g−1 · ŷ)

= B(u)g−1·x̂,g−1·ŷ

= B(u)x̂′,ŷ′

(Eq. 5.22) =

(
P(t)
g B(u)

(
P(s)
g

)−1
)

x̂,ŷ

.

Since B(g · u) is the matrix form of the operator Sg·t,g·s from C[Gg·s] to C[Gg·t] and B(u) is the
matrix form of the operator St,s from C[Gs] to C[Gt], the result follows.

Remark 5.3.7. The mappings B(u) in the proof of Prop. 5.3.4 can be interpreted asM2L matrices.
Each of them is associated to one single u, i.e. to all the pairs of cells such that their center di�erence
is equal to u (this will be detailed in Sect. 5.3.3). The main point is that for any g ∈ G, such M2L

matrix B(g ·u) can be deduced from B(u) by means of permutations. If these matrices are supposed
to be precomputed in a FMM code, the result of Prop. 5.3.4 allows to reduce the cost of the these
precomputations (see Sect. 5.3.3).

The assumptions of Prop. 5.3.4 are called rotational invariance of B.
All the symmetry results are based on speci�c assumptions on the tree representations T and

S . To be illustrated, we need to specify such tree representations. This is the purpose of the next
section.

5.3.2 Symmetries in 2d-trees

The intensive use of symmetries to reduce the precomputation and application times is in practice
linked with 2d-tree representations of a (regular) hierarchical decomposition based on cubic boxes
because of the simple symmetric structure of these trees. We provide in Def. 5.3.3 a de�nition of
regular tree decompositions that handles more general trees than those presented in Chap. 2 (see
Sect. 2.2.1.2) but one can think in terms of 2d-trees as introduced in Sect. 2.2.1.2 in the remainder
of this chapter since this is our main application context.

De�nition 5.3.3. A hierarchical decomposition (Uk)k is regular if and only if ∃α ∈ R+ with
∀uk ∈ Uk, uk is convex,
∀uk, vk ∈ Uk, |uk| = |vk|,
∀uk+1 ∈ Uk+1,∃!uk ∈ Uk, R ∈ SO(d), T ∈ Rd such that uk+1 ⊂ uk, ūk = αR · ūk+1 + T

where |u| refers to the volume of u ∈ Rd, ū to the closure of u and SO(d) to the set of isometries
in Rd×d.

We denote by 2d-tree the tree representation of a regular hierarchical decomposition in the case
where α = 2d.

Because point clouds are easily encapsulated into d-cubes, the usual 2d-tree choice corresponds
to a regular hierarchical decomposition where all elements of all partitions are d-cubes (i.e. the
trees of Sect. 2.2.1.2). We are going to present general results in this context, but the same kind
of theory can be adapted to 2d-trees with d-simplices instead of d-cubes, modifying the underlying
group.

This abstract de�nition of 2d-trees hides the very simple and intuitive properties we want.
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Lemma 5.3.1. A non leaf node of a 2d-tree has 2d sons.

Proof. The third point of the de�nition gives

|uk| = α|uk+1| = 2d|uk+1| ⇒ |uk+1| =
|uk|
2d

because R is an isometry and T is a translation, so their application on the cell do not a�ect its
volume.

The volume |uk| is also equal to the sum of the volumes of its sons (due to the de�nition of a
hierarchical decomposition). So if the node uk has p sons, then

|uk| =
p−1∑
q=0

|uk|
2d

= p
|uk|
2d
⇒ p = 2d.

Remark 5.3.8. In practice, only the cells containing particles may be kept (see Sect. 2.2.1.2). The
reasoning of Rem. 5.2.4 still applies on the de�nition of 2d-trees provided in Def. 5.3.3.

LetDd be the group of isometries that keep the d-cube invariant, i.e. the set of linear applications
that sends the d-cube into itself. This group is referred to as the hyperoctahedral group in the
literature [110]. Let T be a 2d-tree representation of X with cubic cells and S be a 2d-tree
representation of Y with cubic cells (that is the 2d-trees presented in Chap. 2). Up to now and in
the rest of this chapter, we use this choice of 2d-trees. Let us also suppose that the roots of T and
S are equal. We easily check that if T (resp. S ) is perfect and centered at 0, then it is invariant
under the action of Dd.

Remark 5.3.9. If T (resp. S ) is not centered at 0, then there exists a translation of it verifying
the invariance property. Hence, any perfect 2d-tree with cubic cells is invariant under the action of
Dd.

The important well known result is the following one [110].

Lemma 5.3.2. Dd ≡
( Z

2Z
)d × Sd, where Sd is the group of permutations of a �nite set with d

elements.

There are two consequences to this lemma. First, there exists two groups of isometries of Rd,
D0
d and D1

d with

Dd > D0
d ≡

(
Z
2Z

)d
Dd > D1

d ≡ Sd

where > points out that the right-hand side is a subgroup of the left-hand side, and

∀g ∈ Dd, ∃h0 ∈ D0
d, h1 ∈ D1

d with g = h0h1,

∃h0 ∈ D1
d, h1 ∈ D0

d with g = h0h1

(the ordering of D0
d and D1

d are switched between the two lines), meaning that the linear represen-
tations of Dd can be obtained by products of linear representations of D0

d and D1
d (including the

corresponding isometries in Rd). In practice, due to the fact that Dd is not abelian for d ≥ 2, one
has to �x an application order on the isometries of D0

d and D1
d. The second consequence is that the

cardinal of Dd can be easily computed

|Dd| = |
(

Z
2Z

)d
| × |Sd|

= | Z
2Z
|d × d!

= 2dd!.
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This provides an explicit estimation of the expected computational gain using these symmetries.
It is important to visualize the action of isometries of both D0

d and D1
d on the unit hypercube in

order to distinguish them from a geometrical viewpoint because they do not play the same role in
the 2d-trees. A simple way of doing so consists in looking at the representations of these groups as
rotation matrices of Rd×d, i.e. as elements of SO(d).

Elements of D0
d can be seen as compositions of at most d re�ections with regard to hyperplanes

H0
k = 0 in Rd where

z = (z0, ..., zd−1) ∈ Rd, H0
k(z) := zk. (5.23)

Corresponding matrices are �lled by zeros, except on the diagonal, which is composed of −1 at entry
k if the re�ection with regard to the hyperplane H0

k is considered, and 1 otherwise. Because
( Z

2Z
)d

is a tensorized �nite abelian group, these matrices are commutative products of d diagonal matrices
with ±1 on the diagonal and at most one −1 on it, and each of these new matrices correspond to
one subgroup Z

2Z ≤
( Z

2Z
)d

(that is the re�ection with regard to one �xed hyperplane H0
k = 0).

Remark 5.3.10. This choice of hyperplanes corresponds to a �xed realization of the action of D0
d

on Rd. This is the realization we are looking at in the following, because it �ts with the symmetries
in 2d-trees, but one can keep in mind that rotations of these hyperplanes can be considered for other
realizations of this group.

Elements ofSd can be considered as permutations of natural axes of Rd. Corresponding matrices
are simply permutation matrices. They may also be seen as re�ections with regard to hyperplanes

z = (z0, ..., zd−1) ∈ Rd, H1
k,l(z) := zk − zl = 0, k 6= l.

Remark 5.3.11. These hyperplanes are unique up to the previous realization choice for D0
d.

All these hyperplanes can be easily represented in one, two and three dimensions, as on Fig.
5.12.

Figure 5.12: Re�ection plans for d = 1, 2, 3 on the d-cube. Re�ections of D0
d (resp. D1

d) are
represented in blue (resp. red).

The notion of orbit allows to understand how these hyperoctahedral symmetries can be used.

De�nition 5.3.4. Let G be a �nite group acting on a space R. Let x ∈ R. The set

〈x〉G := {g · x |g ∈ G}

denotes the orbit of x with regard to the action of G (sometimes called G-orbit of x).
The root of T and S , as well as all their cells, are cubes, so each of them are invariant under

the action of Dd. Each son c′ of a non-leaf cell c can be identi�ed from its father using the vector
ctr(c)− ctr(c′). There are at most 2d such di�erent vectors per level of T and S because all radii
of cells at a �xed level are equal. Giving a cell c, we have

{ctr(c)− ctr(c′) | c′ ∈ Sons(c)} = 〈ctr(c)− ctr(c̄)〉D0
d
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for any c̄ ∈ Sons(c). An example of such a set is given in Fig. 5.13.

Figure 5.13: Octree (23-tree) case: the set of colored vectors is generated by the red one under the
action of D0

3.

The set of vector depicted on Fig. 5.13 is invariant under the action of D0
3. Hence, the results

of Prop. 5.3.4 can be adapted to the M2M / L2L matrices: one can deduce a certain amount of
these matrices from others assuming that there exists an operator generating the entries of these
matrices that veri�es an invariance property under the action of D0

3.
However, we are mainly concerned by the M2L case. In Sect. 5.3.3, we present the main

application of Props. 5.3.1 and 5.3.4 when dealing with 2d-trees.

5.3.3 Set of M2L translations

In this section, we express an important result on the M2L matrices when dealing with 2d-trees.
We are interested in the minimal set of such di�erent matrices to be computed at each tree level.
To provide such result, we need to study the set of translation vectors (M2L translations) be-
tween source and target cells. For any cell c, we denote by rad(c) the radius of the smallest ball
encapsulating c and by R(c) the side length of c.

Proposition 5.3.5. Let H = T ,S . ∀h ∈ H , z ∈ Rd such that z = R(h)
∑d−1
k=0 ikek, with ek

being the kth natural basis vector of Rd and ik ∈ Z. The translation of h by z can be either a cell
h̄ of H or an empty set:

(h+ z) ∩H =

{
h̄ ∈H , Level(h̄) = Level(h)

∅ .

Also, if ∃z such that h+ z ∈H , then z = R(h)
∑d−1
k=0 ikek.

The result of Prop. 5.3.5 is straightforward because any level of a perfect 2d-tree with cubic
cells forms a �nite regular grid. However, this proposition characterizes the cells at a given tree
level in terms of translations of a single cell.

Proposition 5.3.6. Let ZR := {R∑d−1
k=0 ikek | ik ∈ Z ∀k ∈ {0, ..., d − 1}} ⊂ Rd. ∀R ∈ R+,

∀z ∈ ZR, 〈z〉Dd
⊂ ZR, where Dd acts on Rd as a group of rotations.

Proof. First, notice that ZR = RZd. Since −Z = Z, ZR is invariant under the action of D0
k. The

same is true for D1
k since ZR = RZd is the tensorization of the same space. Therefore, the orbit of

any point of ZR with regard to Dd is included into ZR.
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This result is important because the di�erence of the centers of two cells at a same 2d-tree level
(such as aM2L translation) is included in ZR, R being the side length of the cells at this tree level
(as a consequence of Prop. 5.3.5). To be more precise, such a di�erence is included in a particular
ball centered at zero and intersected with ZR.

Corollary 5.3.1. Let B∞(0,K) be the ball de�ned by the | · |∞ norm on Rd:

B∞(0,K) := {z = (z1, ..., zd)
∣∣ |z|∞ := max

k
|zk| ≤ K}.

For any K > 0, z ∈ B∞(0,K) ∩ ZR, we have 〈z〉Dd
⊂ B∞(0,K) ∩ ZR.

Proof. One only has to observe that the elements of Dd acting on Rd are isometries, so they preserve
the norm. The result thus follows Prop. 5.3.6.

The consequence of Cor. 5.3.1 on the FMM on 2d-tree with cubic cells is connected to theM2L
translations de�ned in Def. 5.3.5.

De�nition 5.3.5. Let T and S be 2d-trees with cubic cells and with equal roots. Let A be an
approximability condition. The set of M2L translations at a level E of T and S is the set

TA,E(T ,S ) := {ctr(t)− ctr(s) | Level(t) = Level(s) = E, t ∈ T , s ∈ S and A(t, s) = 1}.

The crucial point is that if Level(t) = Level(s) and A(t, s) = 1, then t = s + (ctr(t) − ctr(s)).
So there exists z ∈ TA,E(T ,S ) such that t = s + z. This means that ΛA(t) can be characterized
in terms of translations of t by vectors of TA,E(T ,S ). For a �xed target cell t, to each of the
vectors in TA,E(T ,S ) (i.e. to each M2L translation) is associated a unique M2L matrix. If the
hypotheses of Prop. 5.3.1 are veri�ed, i.e. if all M2L matrices corresponding to the same M2L
translation are equal for any t, only a small amount of them have to be computed.

De�nition 5.3.6. An approximability condition A is said to be normal if and only if ∃p0, p1 two
polynomials with non-negative coe�cients such that:

A(t, s) = 1⇔
{
p0(rad(t)) + p1(rad(s)) ≤ dist(t, s)
p0(rad(Father(t))) + p1(rad(Father(s))) > dist(Father(t), Father(s)).

The motivation behind the introduction of normal approximability conditions is to determine
the bounds (if they exist) of the associated interaction lists and their structure. The expression of
such a normal approximability condition allows us to provide the computations for the MACs of
Sect. 2.2.4.2

rad(s) + rad(t) ≤ η dist(s, t) and Level(s) = Level(t)

with η ∈ R+, but also the condition appearing in the directional one of Sect. 4.15 of the form

rad(s)2κ ≤ η dist(t, s) and Level(s) = Level(t)

where κ denotes the wavenumber of an oscillatory kernel, e.g. the Helmholtz kernel. These two
approximability conditions will be used in the next chapters.

With a normal approximability condition A and because

dist(t, s) = max{0, |ctr(t)− ctr(s)| − rad(t)− rad(s)},

explicit bounds can be found for the set TA,E(T ,S ) (see Def. 5.3.5). Indeed, Level(t) =
Level(s) ⇒ rad(t) = rad(s) and rad(Father(t)) = 2rad(t). In addition, in 2d-trees, if rad(t) =
rad(s),

dist(t, s) ≤ dist(Father(t), Father(s)) + 2
√
dR(t)
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thanks to Pythagora's theorem. So we obtain, for well-separated cells t and s:

p0(rad(t)) + p1(rad(s)) ≤ dist(t, s) ≤ dist(Father(t), Father(s)) + 2
√
dR(t)

⇔ p0(rad(t)) + p1(rad(s)) ≤ |ctr(t)− ctr(s)| − rad(t)− rad(s) ≤ dist(Father(t), Father(s)) + 2
√
dR(t)

⇔ p0(rad(t)) + p1(rad(t)) + 2rad(t)︸ ︷︷ ︸
=:C−A(E)

≤ | ctr(t)− ctr(s)︸ ︷︷ ︸
∈TA,E(T ,S )

| ≤ dist(Father(t), Father(s)) + 2
√
dR(t) + 2rad(t)︸ ︷︷ ︸

=:C+
A(E)

.

This gives a lower and an upper bound on the norm of the elements of TA,E(T ,S ), depending
only on the radii of cells of the level E. Indeed, we have

B∞(0, C−A(E)) ⊆ TA,E(T ,S ) ⊆ B∞(0, C+
A(E)).

Proposition 5.3.7. Let ZR be such as in Prop. 5.3.6 and A be a normal approximability condition.
For any h ∈ T ∪S such that Level(h) = E, the following holds:

TA,E(T ,S ) ⊆ {z ∈ ZR(h) | C−A(E) ≤ |z| < C+
A(E)}︸ ︷︷ ︸

=:T̃A,E(T ,S )

.

Such a T̃A,E(T ,S ) is invariant under the action of Dd thanks to Cor. 5.3.1 (applied on
B∞(0, C−A(E)) and B∞(0, C+

A(E))). This means that, if the hypotheses of Prop. 5.3.1 are veri�ed,
i.e. if all M2L matrices corresponding to the same M2L translation are equal, there are at most
#T̃A,E(T ,S ) di�erent M2L matrices at level E of the 2d-trees.

In addition, if the M2L matrices verify the assumptions of Prop. 5.3.4 with G ≡ Dd (i.e. the
grids are invariant under the action of Dd), it is clear that, by means of permutations, a certain
amount of these matrices can be deduced from others. Hence, only a prescribed amount of them
have to be computed to deduce all the matrices at a given level. This minimal set of matrices
corresponds to the M2L matrices associated to the M2L translations in a fundamental domain of
T̃A,E(T ,S ) under the action of Dd, i.e. a minimal set such that the action of Dd on this set allows
to recover T̃A,E(T ,S ).

De�nition 5.3.7. A fundamental domain of a topological space X under the action of a group
G is a minimal FG(X) ⊆ X such that

X = ∪
f∈FG(X)

〈f〉G .

A fundamental domain FDd
(T̃A,E(T ,S )) := FDd

(Rd) ∩ T̃A,E(T ,S ) is not unique and its
choice is arbitrary. Examples of fundamental domains for the hyperoctahedral group are depicted
in gray on Fig. 5.12.

The conclusions of this section are depicted on Fig. 5.14 in a two-dimensional case. Using the
strict MAC (see Sect. 2.2.4.1), there are four possible di�erent shapes of interaction lists (Fig. 5.14
left). Since we are interested in the relative positions between the source and target cells, the union
of the associated M2L translations corresponds to the entire set of M2L translations at this tree
level (the arrows in Fig. 5.14 middle). This set is invariant under the action of D2 (observing that
it is composed of "two squares centered at zero"). Hence, by considering only a suitable choice of
fundamental domain of D2 and keeping only theM2L translations in this fundamental domain, one
strongly reduces the size of the set of M2L translations (Fig. 5.14 right). If the FMM formulation
veri�es the hypotheses of Prop. 5.3.4, the matrices associated to otherM2L translations than these
last ones can be deduced from the matrices associated to theM2L translations in this fundamental
domain by means of permutations.
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Figure 5.14: Right: interaction lists (blue) of four di�erent target cells (red) using the strict MAC
of Sect. 2.2.4.1; Middle: representation of T̃A,E(T ,S ) for the strict MAC (source cell in blue and
possible target cells in red); Right: representation of FDd

(T̃A,E(T ,S )) (green).
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Group-invariant cubature grids in the
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In this chapter, we present a method to explicitly block-diagonalize the elements of a matrix
family verifying an invariance property with regard to the action of a given group. An important
application of this method is proposed for the kernel-explicit FMM applied to the Helmholtz kernel
in the high-frequency regime (i.e. hf-fmm). The presented block-diagonalization is used to derive
fast FMM operator evaluation based on particular non-product cubature rules. We would like to
warmly thank Francis Collino for his pertinent suggestions that made this study possible.
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As mentioned in Sect. 3.2.1, a fast accelerated evaluation of theM2M/L2L operators is needed
in hf-fmm to preserve an overall admissible cost. In practice, the most e�cient non-destructive
algorithms for these operators are based on FFT techniques allowed by the use of product cubature
grids on the sphere with an uniform sampling in at least one of the two spherical angles (see Sect.
3.2). Since the integration order of the underlying rules is dictated both by the targeted overall
accuracy of hf-fmm and by the size of the cells the rules are associated to (in terms of wavelength)
as presented in Sect. 3.1.2, the number of nodes in these rules is �xed at each tree level. Thanks
to the diagonal expression of the M2L matrices in hf-fmm (see Sect. 3.1.2), the M2L application
cost is exactly equal to the number of nodes in the rule associated to the cells of the corresponding
far �eld cell-cell interaction (which have to be at the same tree level). There are far more M2L
applications than M2M/L2L ones (at least for mean particle distributions) in the global FMM
algorithm. From a mathematical viewpoint, due to the diagonal form of the M2L operators, the
only way of reducing the cost of theM2L application is to minimize the number of cubature nodes.
The problem when doing so is that the best rules in terms of number of points prevent the use of
these fast exact algorithms for the M2M/L2L operators. Since the M2M/L2L cost dominates
on the upper levels of the 2d-trees in hf-fmm, such a choice of rules should become ine�cient in
practice.

In the hf-fmm approach, because the size of the multipole/local expansions grows with the radius
of the corresponding cells in the 2d-trees, the storage of these expansions may also be a problem
when dealing with large particle distributions in terms of wavelength. Hence, the multipole/local
expansions having a number of terms equal to the number of cubature nodes in the rule of their tree
level, minimizing the number of nodes in these rules also has an impact on the memory footprint
of the overall method.

We thus wondered to what extent the use of quasi-optimal cubature grids in terms of number
of nodes for a �xed integration order can be exploited in hf-fmm in order to reduce the M2L ap-
plication cost and the memory footprint while keeping reasonable M2M/L2L application timings.
To do so, we �rst consider the structure of these quasi-optimal cubature rules on the sphere as
presented in Sect. 6.1. A �rst purely algebraic fast algorithm for product rules is then presented
in Sect. 6.2 as an introduction to our approach. Then, we provide a purely algebraic approach
to exactly block-diagonalize the matrices coming from the discretization of group-invariant opera-
tors evaluated on group-invariant sets in Sect. 6.3. In Sect. 6.4, we detail how the interpolation
on the sphere problem using quasi-optimal rules can be written in the framework of our block-
diagonalization method and we describe the e�ective implementation we propose to test our ideas,
providing numerical results. This last point relies on a particular choice of quasi-optimal rules
particularly interesting in the FMM context and bene�ting from the results of Chap. 5.

6.1 Group-invariant cubature grids

In this section we present what are the best known cubature rules on the sphere, discussing �rst
the meaning of the optimality of cubature rules in Sect. 6.1.1. The structure of such rules is linked
to their construction. Therefore, we quickly recall the mathematical notions used to build these
rules in Sect. 6.1.2 and we describe this structure.

6.1.1 E�ciency of a cubature rule

First of all, we need to compare the existing cubature rules over the sphere. This is done by
introducing the e�ciency notion.
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6.1.1.1 McLaren's e�ciency

To compare the e�ciency of two cubature rules on the sphere in terms of number of points for a
�xed integration order, an e�ciency de�nition is introduced by McLaren in [171] and reads

E =
(p+ 1)2

3N
(6.1)

with p the order of the exactly integrated spherical harmonics and N the size (number of points)
of the considered cubature rule. This measures the quantity we want: the higher the e�ciency E,
the less operations is performed per M2L application in hf-fmm. One may notice that the factor 3
is heuristically chosen but leads to Conj. 6.1.1.

Conjecture 6.1.1. Asymptotically, to integrate exactly the spherical harmonics of order p, the
minimal number of nodes is N = (p+1)2

3 .

With regard to this de�nition and assuming the (asymptotic) validity of Conj. 6.1.1, the optimal
cubature rules have an e�ciency E close to 1.

6.1.1.2 Case of product rules

The product rules described in Sects. 3.1.1.2 and 3.1.1.3 and used in hf-fmm do not have an
e�ciency close to 1. Indeed, a quick computation reveals that the product uniform rule has an
e�ciency equal to 1

3 and the Gauss-Legendre rule has an e�ciency ≈ 2
3 . Hence, these rules are far

from the targeted quasi-optimality mentionned in Conj. 6.1.1.

6.1.1.3 Spherical t-design

Another kind of cubature grid is provided by spherical t-designs. A spherical t-design can be
de�ned [132] as a cubature grid with equal weights at for all nodes. There exists an explicit lower
bound on the number of nodes in such grids (see [132]). This means that the impact in hf-fmm of
the use of such rules is bounded. To our knowledge, the spherical t-design on the sphere does not
have an e�ciency close to one [21,37].

6.1.2 Invariant rules

An interesting point is that explicit expressions of quasi-optimal cubature rules (i.e. with e�ciency
approximately equal to 1 with regard to Conj. 6.1.1) exist. Starting from results given by Sobolev
we are going to recall, highly e�cient cubature rules can be designed [10, 153�158, 171]. All these
cubature rules are invariant under the action of given �nite groups of rotations acting on the sphere.

De�nition 6.1.1. (Invariant cubature rule [193]) Let G be a given �nite group of rotations, a
cubature rule invariant under the action of G is a cubature rule Q such that for any f : S2 → C
and for any g ∈ G ∑

(ω,λ)∈Q

ωf(g · λ) =
∑

(ω,λ)∈Q

ωf(λ).

Such a cubature rule is said to be G-invariant.

Hence, an invariant cubature rule under the action G refers to a cubature rule such that the set
of cubature nodes is invariant under the rotations of G.

Remark 6.1.1. The number of nodes in an invariant cubature rule is not equal, in general, to a
multiple of the group cardinality. Indeed, if an element of G does not modify the position of a node,
the node is not duplicated. Hence, the set of elements of G that do not modify the position of a
point does not lead to di�erent cubature nodes.
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Group Notation Cardinal Platonic solid Abelian
Tetrahedral A4 12 Tetrahedron No
Octahedral S4 24 Cube / Octahedron No
Dodecahedral A5 60 Dodecahedron / Icosahedron No
Cyclic Z/nZ n ∅ Yes
Dihedral D2n 2n ∅ No

Figure 6.1: Finite groups acting on the sphere. The three groups in blue correspond to invariance
groups of Platonic solids.

Remark 6.1.2. The de�nition 6.1.1 implies that for any (ω, λ) ∈ Q, g ∈ G, then (ω, g · λ) ∈ Q by

choosing f(µ) =

{
1 if µ = λ

0 otherwise
. To be more precise, the cubature weights of nodes corresponding

to di�erent rotations of G of a same single node are equal.

The following theorem can be found in [193] and [10].

Theorem 6.1.1. Let Q be a cubature rule invariant under G. Then

(Q integrates exactly all f ∈ YL)⇔ (Q integrates exactly all f ∈ YL,G)

with {
YL := {Y ml | l ∈ [[0, L]],m ∈ [[−l, l]]}
YL,G := {Y ml | l ∈ [[0, L]],m ∈ [[−l, l]] and Y ml (g · λ) = Y ml (λ), λ ∈ S2, g ∈ G} .

This theorem allows to reduce the size of the systems involved in the computation of an invariant
cubature rule and to obtain explicit expressions for large integration orders.

6.1.2.1 Finite invariance groups on the sphere

Because of Th. 6.1.1, to our knowledge, examples of cubatures on the sphere with e�ciency close
to (or even greater than) 1 are invariant under the action of a �nite rotation group on the sphere.

There only exists a small number of �nite rotation groups acting on the sphere. Following [226],
these groups are listed in the Tab. 6.1. All these groups are actually subgroups of SO(3) (see [226]),
which corresponds to the set of rotations in R3. The three blue groups of this array correspond to
the invariance groups of the �ve platonic solids. These solids are depicted on Fig. 6.2.

6.1.2.2 Usual grids

Cubature grids using the same rotational invariance as one of the Platonic solids (�nite groups in
blue in Tab. 6.1) have been studied in order to provide e�cient cubatures. Notice that the cube
and the octahedron, as the dodecahedron and the icosahedron, have the same invariance group. A
remarkable example of cubature grid with an e�ciency greater than one is given in [171], using the
icosahedral symmetry group, exact up to the 14th order. In [10] a way of constructing grids invariant
under the action of the icosahedral group for higher orders is provided, resulting in e�ciencies close
to 1.

In [153�158], the cubatures developed by Lebedev for a large variety of orders between 5 and
131 have also an e�ciency close to 1 and are invariant under the action of the octahedral group
(i.e. D3 using the convention of Sect. 5.3.2).

Because of their highly technical and time consuming computations, these rules have to be
tabulated in order to be used in a FMM scope. In addition, these rules do not have a product
expression. The only common structure of their grids comes from their rotational invariance under
a �nite group of rotations.
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Figure 6.2: Representation of the �ve platonic solids. From top left to bottom right: tetrahedron,
cube, octahedron, dodecahedron, icosahedron.

6.1.2.3 Structure and de�nitions

Thanks to Rem. 6.1.2, we know that many cubature nodes of these grids are associated to the
same cubature weight. We present the general form of an invariant cubature rule in this paragraph,
according to the underlying rotation group.

Let Q be a cubature rule with cubature grid N and F (Q) be the intersection between a funda-
mental domain of G acting on the sphere (see Def. 5.3.7) with N , i.e.

F (Q) := N ∩ FG(S2)

= argmin
N0⊆N
〈N0〉G=N

#N0

where 〈N0〉G := ∪
λ∈N0

〈λ〉G denotes the union of the G-orbits of elements of N0 (the G-orbit notion
has been introduced in Def. 5.3.4). We will also need in the following another de�nition provided
in Def. 6.1.2 and distinguishing two types of G-orbits.
De�nition 6.1.2. The G-orbit of λ is said to be regular if #〈λ〉G = |G|, where |G| refers to the
cardinal of G. In the other case, its orbit is said to be singular.

The set F (Q) is well de�ned using this second equality because Def. 6.1.1 implies that g ·N = N
for any g ∈ G. N0 may not be unique and its choice is arbitrary. Let ωλ be the cubature weight of
λ ∈ N . We may write the application of Q to f : S2 → C, denoted by Q[f ] as

Q[f ] :=
∑

λ∈F (Q)

ωλ
∑

g∈H(λ)

f(g · λ)

=
∑

λ∈F (Q)

ωλ
∑
g∈G

f(g · λ)δg∈H(λ)

(6.2)

where

δg∈H(λ) =

{
1 if g ∈ H(λ)

0 otherwise
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using
H(λ) := {g ∈ G |g · λ 6= λ} ∪ {id}.

The second equality in Eq. 6.2 somehow considers that all the cubature nodes have a regular G-orbit
but omits the multiple entries of f evaluated on the same points. If all the G-orbits are regular, the
two lines of Eq. 6.2 involve the same number of non-zero terms.

Since the only structure we can use in the case of general group invariant rules is this invariance
under the action of a certain group, we investigated the design of algorithms entirely based on the
symmetries, i.e. on the group structure. Actually, the product rules also are invariant rules and we
can start our presentation by studying this �rst simple case.

6.2 Example of product rules

Before detailing our approach to deal with the general invariant cubature rules for any (possibly
non-abelian) group G, we present our ideas in the well-known case of product rules, showing �rst
in Sect. 6.2.1 that these rules (see Sect. 3.1.1.3 and Sect. 6.1.1.3) are also invariant rules. We then
propose a �rst purely algebraic approach to accelerate the interpolation on the sphere in Sect. 6.2.2,
exhibiting in Sect. 6.2.3 the associated block-diagonalization. In Sect. 6.2.4 are �nally discussed
the links and di�erences between our approach and the existing algorithms dealing with product
rules.

6.2.1 Product rules as invariant rules

To �x ideas, we will focus on the Gauss-Legendre product rules of Sect. 3.1.1.3 with order 2L (i.e.
with (L+ 1)(2L+ 1) nodes), but the content of this paragraph is true for any cubature rule on the
sphere which is the product of an uniform one along the azimuthal angle and of a symmetric rule
with respect to zero in the polar angle. Here, the polar angle θ is covered by the Legendre nodes of
a given order while the azimuthal one φ is uniformly sampled. If we �x φ, we have a distribution of
nodes on an arc on the sphere whose half can be deduced from the other one by means of a polar
symmetry (i.e. a re�ection by the plane z = 0). This symmetry is depicted in Fig. 6.3. The group
behind this re�ection is an abelian group with two elements (since re�ection are involutive). This
group is isomorphic to Z

2Z . The corresponding isometry in SO(3) is

R0 :=

1 0 0
0 1 0
0 0 −1

 .
Notice that on a given arc, the only element that does not have a Z

2Z -orbit of size 2 is the one
on the hyperplane z = 0, i.e. corresponding to θ = π/2. Hence, the Gauss-Legendre rules of odd
orders only have regular Z

2Z -orbits (since L is odd and L+ 1 nodes are chosen in the polar axis for
each sample point on the azimuthal one, see Sect. 3.1.1.3) and the rules of even orders have a single
Z
2Z -orbit corresponding to the root 0 of the associated Legendre polynomial.

Because the azimuthal angle is uniformly sampled (with 2L+ 1 points, see Sect. 3.1.1.3), there
exists a rotation matrix (i.e. R1 ∈ SO(3)) expressed as

R1 :=


cos
(

2π
2L+1

)
−sin

(
2π

2L+1

)
0

sin
(

2π
2L+1

)
cos
(

2π
2L+1

)
0

0 0 1


such that the rest of the product cubature grid can be deduced from the arc in Fig. 6.3 by applying
the di�erent powers of R1. This is depicted in Fig. 6.4. The set {Rq1 | q ∈ N} = {Rq1 | q ∈ [[0, 2L]]} is
an abelian �nite group of rotations in SO(3) with 2L+1 elements and generated by R1. Hence, this
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Figure 6.3: Polar symmetry on an arc of a Gauss-Legendre product rule with even order. The
symmetry corresponds to a re�exion by the plane z = 0 (brown plan).

group is isomorphic to Z
(2L+1)Z . Because R1 commutes with R0, the overall group of rotation acting

on the sphere and preserving the Gauss-Legendre product rule is isomorphic to Z
2Z × Z

(2L+1)Z ≡
Z

(2L+1)Z × Z
2Z ≡ Z

2(2L+1)Z . The generator of this abelian cyclic group Z
2(2L+1)Z is given by R0R1.

This last point is true only because the number of elements in the discretization along the azimuthal
angle is odd1. See Fig. 6.5 for an intuitive representation. This �gure also represents the regular

Z
2(2L+1)Z -orbit of an element of the cubature grid that is not on the hyperplane z = 0.

Actually, this group is a subgroup of a larger one: the product between a dihedral group D2(2L+1)

and an abelian one with two elements Z/2Z. In Fig. 6.6 is represented a well chosen fundamental
domain of the group D2(2L+1) × Z/2Z acting on the sphere as well as the corresponding Gauss-
Legendre product rule on it. As one may notice, the original set generating the entire rule (the
half arc we started with) is entirely located on the boundaries of this fundamental domain. As
a consequence, the (D2(2L+1) × Z/2Z)-orbits of these nodes are singular, meaning that they are
invariant under a proper subgroup of D2(2L+1) × Z/2Z which is isomorphic to Z

2(2L+1)Z . This can

be understood by exploiting the symmetry of the fundamental domain of Z
2(2L+1)Z acting on the

sphere (see also Fig. 6.6 for a fundamental domain of Z
2(2L+1)Z ). Since this set is the projection on

the unit sphere of an isosceles triangle, there exists a trivial symmetry on this set: a re�ection by
the plane passing through the poles and through the middle of the projected base of this triangle.

We have shown how the product Gauss-Legendre rules can be understood as Z
2(2L+1)Z -invariant

(or even (D2(2L+1) × Z/2Z)-invariant) rules. The remaining question concerns the exploitation of
this information in order to de�ne e�cient schemes for the M2M/L2L operators. The existing
exact algorithms, at least those we are aware of, always use analytic knowledge on the interpolation
operator on the sphere. However, these methods fail for non-product rules or even for non-uniformly
sampled ones (along the azimuthal angle), so we came up with a novel approach, based on a property

1In the case of even discretization, the underlying rotation group is Z
(2L+1)Z and can be generated by R1 or R0R1

but with di�erent orbits.
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Figure 6.4: Schematic representation of the construction of the entire product Gauss-Legendre
cubature rule, starting from a single arc sampled with Gauss-Legendre nodes repeated along the
unit sphere by means of the rotation R1. Single application of R1 (top left), application of R1 and
R2

1 (top right), application of R1, R2
1 and R3

1 (bottom left), complete grid (bottom right).

of this operator that can be combined with the group invariant structure of the cubature grids. This
approach can be expressed for the product rules as well as for the non-product ones.

6.2.2 Block-diagonalization

In this section, we give a �rst look of our approach for the fast evaluation of the polynomial
interpolation over the sphere in the case of the product (Gauss-Legendre to �x ideas) rules on the
sphere. Because the underlying group is abelian (cyclic), the method only involves standard tools
in this particular case. This can be applied to a large variety of operators we are going to present.
However, there is an important limitation in the choice of the source and target cubature grids
when applying our approach to the product rules. We will describe and discuss this constraint.

First of all, we start by introducing a useful denomination.

De�nition 6.2.1. Let G be a (rotation) group acting on the unit sphere and FS2(G) be a �xed
choice of fundamental domain. Any element of FS2(G) is named a germ.

Hence, any G-invariant cubature grid is generated by a set of germs and the action of G on these
germs. The interpolation operator on the sphere (see Sect. 3.1.3.2)

IS2(µ, λ) =

L∑
l=0

2l + 1

4π
Pl(〈µ, λ〉),
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Figure 6.5: Z
2(2L+1)Z -orbit of the orange point with L = 2. The odd powers of the generator R0R1

are represented in blue and the even in red. The ordered set {(R0R1)q | q ∈ N} alternates between
the upper and lower hemispheres. The symmetry with respect to the hyperplan z = 0 of the orange
point corresponds to the application of (R0R1)

2L+1
= (R0R1)

5 to this point.

for µ, λ ∈ S2, has an interesting form. Indeed, this is a rotationally invariant operator, meaning
that for any R ∈ SO(3), we have

IS2(µ,R · λ) = IS2(R−1 · µ, λ).

This property is a consequence of the scalar product in the argument of the Legendre polynomial
in the expression of IS2 . This explicit expression of the interpolation operator will not be used
anymore: we are only interested in its rotational invariance property. To summarize, the key idea
is that in the interpolation problem using invariant grids, we are evaluating a rotationally invariant
operator (i.e. IS2) on rotationally invariant cubature grids. In the following sections, µ and λ will
be nodes in di�erent cubature grids. We shall refer to the cubature grid of λ as the source cubature
grid and the one of µ as the target one.

6.2.2.1 Single germ case

Suppose that target and source cubature grids, respectively Ξt and Ξs, are generated by a single
germ each time (x0 for the target grid and y0 for the source one) with regular orbits under the
action of the same abelian cyclic group of rotations A = {a0, ..., a|A|−1} = {a0, a

2
0, ...}. We express

this in a compact form using the notations Ξt = A · x0 and Ξs = A · y0. The corresponding matrix
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Figure 6.6: Fundamental domains (green) of the cyclic group (left) and of the dihedral group (right)
with the corresponding Gauss-Legendre product rule.

M ∈ C|A|×|A| for the interpolation step of the M2M/L2L, can be expressed as

Mk,l = IS2(ak · x0, al · y0)

(Rotational invariance) = IS2(a−1
l · (ak · x0),y0)

(A abelian) = IS2(ak−l · x0,y0)

(A cyclic) = IS2(a(k−l)%|A| · x0,y0).

This means that M is a circulant matrix. Hence, this matrix can be diagonalized explicitly in a
Fourier basis (see Sect. 4.1.4). Actually, the elements of the Fourier basis are the matrix form of
the irreducible representations of an abelian cyclic group. This notion will be detailed and extended
to other types of groups in Sect. 6.3.

The main point is that there exists a diagonal matrix D[M] such that M = F∗D[M]F, where F
is the matrix of the corresponding discrete Fourier transform. Such a matrix (and its inverse) can
be e�ciently computed using the FFT algorithm (see Sect. 4.1.4) with a linearithmic complexity
instead of a quadratic one. However, this toy example is clearly not realistic since in practice more
than one germ are involved in at least one of the target or source cubature grids.

6.2.2.2 Two-germ case

Suppose now that each grid is generated by two germs with regular orbits (x0,x1 for the target
grid and y0,y1 for the source one) and still under the action of A. In other words, T = (A · x0) ∪
(A · x1) =: A · {x0,x1} and S = A · {y0,y1}. Following the discussion on the single orbit case (see
Sect. 6.2.2.1), the matrix form of the interpolation step in the corresponding M2M/L2L operator
can be written as a block matrix composed of 4 circulant matrices. So there exist 4 diagonal
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matrices D0,0, D0,1, D1,0, D1,1 such that:

M =

[
F∗D0,0F F∗D0,1F
F∗D1,0F F∗D1,1F

]
=

[
F∗ 0
0 F∗

] [
D0,0 D0,1

D1,0 D1,1

] [
F 0
0 F

]

=

[
F∗ 0
0 F∗

]
P−1



D0,0
0,0 D0,1

0,0 0 0 . . .

D1,0
0,0 D1,1

0,0 0 0 . . .

0 0 D0,0
1,1 D0,1

1,1

. . .

0 0 D1,0
1,1 D1,1

1,1

. . .
...

...
. . .

. . .
. . .


︸ ︷︷ ︸

=:D[M]

P

[
F 0
0 F

]

where P is a well-chosen permutation matrix. This means that M can be block-diagonalized in a
basis involving a combination of a permutation and of a block-diagonal matrix with non-zero blocks
corresponding to Fourier matrices. Obviously, the number of diagonal blocks of D[M] is equal to
the number of rows (or columns) of the circulant matrices (i.e. |A| since the orbits are supposed to
be regular) and each of these blocks is a 2× 2 matrix.

6.2.2.3 General case with regular orbits

If we suppose now that Ξt = ∪
x∈Qt

A · x and Ξs = ∪
y∈Qs

A · y for sets of germs (with regular orbits)

Qt, Qs of the target and source cubature grids, the block-diagonalization result can be extended
to a larger block-diagonalization of M. The number of blocks is still equal to |A| but their size
are #Qt ×#Qs, the products of the number of germs in the two grids. The block-diagonal basis
is also still represented by the composition of a permutation matrix with a block-diagonal matrix
with non-zero blocks equal to the Fourier matrix of size |A| × |A|.

However, one has to keep in mind that we considered only the regular orbits, so only a single size
for the Fourier matrices was used. The extension of our approach to the singular orbits is provided
in Sect. 6.2.2.4.

6.2.2.4 Treatment of the singular orbit (single orbit case: �rst method)

In the case of product Gauss-Legendre rules with even order, we saw that the root 0 of the chosen
Legendre polynomial or odd degree leads to a singular orbit (see Sect. 6.2.1). Indeed, a correspond-
ing point on the sphere being in the hyperplane z = 0, the re�exion R0 keeps it invariant. Let z be
such a point. We then have

〈z〉 Z
2(2L+1)Z

= {(R0R1)
q | q ∈ N}

= {Rq1 | q ∈ N}
= 〈z〉 Z

(2L+1)Z

and Z
(2L+1)Z still is an abelian cyclic group. The single orbit case with singular orbits can thus be

written in the same way but with a smaller Fourier matrix (i.e. F2L+1 ∈ C(2L+1)×(2L+1) instead

of F2(2L+1) ∈ C(2(2L+1))×(2(2L+1)) since
∣∣∣ Z

(2L+1)Z

∣∣∣ = 2L+ 1). Now, still considering the single orbit

case, if only one of the two target or source orbits is singular (for instance the orbit of the source
germ), we can point out that the Fourier matrix F2L+1 is such that

F2L+1 = ITevenF2(2L+1)Ieven
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with Ieven a matrix such that

(Ieven)k,l =

{
1 if k = 2l

0 otherwise
.

This can be checked through a quick computation:

(F2L+1 q)p :=

2L∑
k=0

exp

(
2iπpk

2L+ 1

)
qk

=

2L∑
k=0

exp

(
2iπ(2p)k

2(2L+ 1)

)
qk

=

4L∑
k=0

exp

(
2iπ(2p)k

2(2L+ 1)

)
q̃k

=:
(
F2(2L+1) q̃

)
2p

with q̃ ∈ C2(2L+1) such that q̃k :=

{
qk/2 if k is even
0 otherwise

.

From an abstract viewpoint, Ieven can be seen as a mapping from C
[

Z
(2L+1)Z

]
to C

[
Z

2(2L+1)Z

]
that extends an application on a singular Z

2(2L+1)Z -orbit (i.e. here a
Z

(2L+1)Z -orbit) into an applica-
tion on a regular one, using zero padding. The main point is that there exists a circular embedding
of the corresponding matrix M ∈ C(2(2L+1))×(2L+1) of the interpolation step in the M2M/L2L
operator, denoted by C ∈ C(2(2L+1))×(2(2L+1)), such that M = PCIeven for a given permutation
P . This circulant embedding can be explicitly expressed using:

Ck,l := IS2

((
Rk0R

b k2 c
1

)
· x0,

(
Rl0R

b l2 c
1

)
· y0

)
.

We thus obtain
M = PCIeven

= PF∗2(2L+1)D[C]F2(2L+1)Ieven

with D[C] ∈ C(2(2L+1))×(2(2L+1)) a particular diagonal matrix. The methodology we just described,
i.e. consisting in completing the singular orbits in order to recover regular ones, is related to the
second line of Eq. 6.2, where the 'missing' nodes are replaced by zero weights. We may also have
dealt with the singular orbit problem in another way, which is the purpose of Sect. 6.2.2.5.

6.2.2.5 Treatment of the singular orbit (single orbit case: second method)

The second methodology we can use to treat the singular orbits does not rely on an extension of M
into a larger space. Actually, in this particular case, we can exploit the relation Z

(2L+1)Z <
Z

2(2L+1)Z ,

meaning that Z
(2L+1)Z is a subgroup of Z

2(2L+1)Z (simple application of the chinese remainder theo-

rem). In Fig. 6.7, we illustrate how a (regular) Z
2(2L+1)Z -orbit can be decomposed into two distinct

Z
(2L+1)Z -orbits. A consequence of Fig. 6.7, in terms of orbits and sets, is that we have the decom-
position

〈z〉 Z
2(2L+1)Z

= 〈z〉 Z
(2L+1)Z

∪ 〈R0 · z〉 Z
(2L+1)Z

for any z ∈ S2. If z is in the hyperplane z = 0, then these two Z
(2L+1)Z -orbits coincide but they are

strictly disjoints if z is not in this hyperplane.
Let x0 be the germ of the target grid, which is supposed to have a regular Z

2(2L+1)Z -orbit (i.e.
which is not on the hyperplane z = 0) and let y0 be the germ of the source grid with a singular
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Figure 6.7: The two Z
(2L+1)Z -orbits (red) included in the orange germ Z

2(2L+1)Z -orbit with L = 2.
The switching between the two orbits can be done by applying R0 (blue).

Z
2(2L+1)Z -orbit, i.e. with a regular Z

(2L+1)Z -orbit only. The matrix M of the interpolation step in
the M2M/L2L operators can be decomposed (up to a permutation P ) into a block matrix of the

form M = P

[
M0

M1

]
, with M0,M1 ∈ C(2L+1)×(2L+1) and such that

{
(M0)k,l := IS2

(
Rk1 · x0, R

l
1 · y0

)
(M1)k,l := IS2

(
Rk1 · (R0 · x0), Rl1 · y0

) .

Hence, M0 and M1 can both be diagonalized in the same Fourier basis with the matrix F2L+1,
giving

M = P

[
M0

M1

]
= P

[
F∗2L+1D[M0]F2L+1

F∗2L+1D[M1]F2L+1

]
= P

[
F∗2L+1 0

0 F∗2L+1

] [
D[M0]
D[M1]

]
F2L+1

with D[M0] and D[M1] two particular diagonal matrices. Compared to the �rst method for the
singular orbits (see Sect. 6.2.2.4), completing such orbits to regular ones, this second approach is

less costly to apply. Notice that, applying left and right permutations on
[
D[M0]
D[M1]

]
, we can still

obtain a block-diagonal matrix with block size equal to 2× 1.
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6.2.2.6 Treatment of the singular orbit (cases with more than one orbit)

Depending on the chosen approach among the two ones we proposed, handling the singular orbits
in the general case with more than one germ may need an adaptation of the general methodology
we described in Sect. 6.2.2.3. Indeed, if the �rst approach (extanding the singular orbit into regular
ones by means of zero padding in Sect. 6.2.2.4) is used, we end up with regular orbits only and the
method of Sect. 6.2.2.3 can be directly applied. One only has to be able to �nd the singular orbits
in order to extend them. The main drawback of this approach is that we lose the information about
these singular orbits in the �nal block-diagonalization.

On the other hand, the second approach (see Sect. 6.2.2.5) keeps the information on the singular
orbits and minimizes the size of the blocks of the �nal block-diagonalization. However, the structure
is more complicated since we have to distinguish the interactions (with regard to IS2) of the singular
orbits with other singular orbits, singular ones with regular ones and regular ones with other regular
ones.

6.2.3 The general approach

In this section, we provide the factorization we targeted for matrix of the interpolation over the
sphere between two product cubature grids using an uniform sampling along the azimuthal axis and
a symmetric one-dimensional rule with regard to 0 on the polar axis. We �rst extend the de�nition
of group invariant operators to matrices.

De�nition 6.2.2. Let G = {g1, ..., gα} be a group with α := |G|. A matrix M ∈ C(Mα)×(Nα) is
said to be G-invariant if and only if ∃X = {x0, ..., xM−1},Y = {y0, ..., yN−1} two �nite sets and an
operator I : X × Y → C such that G acts on X , Y and up to permutations, M is a block matrix
with (k, l)th block M̃k,l verifying: (

M̃k,l

)
i,j

:= I (gi · xk, gj · yl)

∀i, j ∈ [[1, R]] and
I (gi · x, gi · y) = I (x, y)

for any x ∈ X , y ∈ Y.

In Thm. 6.2.1 is summarized the block-diagonalization described in Sect. 6.2.2. We simplify
the result by assuming that all the orbits are regular, but as presented in Sects. 6.2.2.4, 6.2.2.5 and
6.2.2.6, one may easily adapt it to handle the singular orbits.

Theorem 6.2.1. Let α ∈ N∗ and M ∈ C(Mα)×(Nα) be a Z
αZ -invariant matrix. Then M can be

block-diagonalized with block-diagonal form D[M] with block size equal to N ×M and there exist
permutation matrices Q0, Q1, P0, P1 such that

M = Q0 diag (F∗α)P1D[M]P0 diag (Fα)Q1

where diag(Fα) is a block-diagonal matrix with diagonal blocks all equal to Fα, the matrix of the
discrete Fourier transform on α entries.

The result of Thm. 6.2.1 is a straightforward generalization of the content of Sect. 6.3, so we
do not provide a detailed proof of it. However, there is a direct application of Thm. 6.2.1 in the
context of interpolation between product Gauss-Legendre rules on the sphere. We start by giving
a general corollary of Thm. 6.2.1.

Corollary 6.2.1. Let α ∈ N∗ and M ∈ C(Mα)×(Nα) be a Z
αZ -invariant matrix. A product by M

can be evaluated in O (αMN + αlog(α)(N +M)) �ops.
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Proof. All the permutation matrices in the decomposition of M provided in Thm. 6.2.1 can be
applied with linear complexity by considering their sparse structure. The products by the block
diagonal matrices diag(F∗α) and diag(Fα) can be evaluated using the Fast Fourier Transforms with
a complexity O (αlog(α)(N +M)). The complexity of the product by D[M] is equal to O (αMN)
because M is a block-diagonal matrix with α diagonal blocks of size M ×N , which dominates the
overall cost.

Regarding the M2M/L2L operator cost, Cor. 6.2.1 can be reformulated into Cor. 6.2.2.

Corollary 6.2.2. Let L′ = 3L+1. The hf-fmmM2M/L2L operators mapping applications de�ned
on product Gauss-Legendre cubature grids of order L into applications de�ned on product Gauss-
Legendre cubature grids of order L′ can be evaluated in O

(
L2L′

)
�ops.

Proof. The interpolation over the sphere dominates the cost of the M2M/L2L operators. We
thus only focus on this step. Without loss of generality2, we assume that L′ is the order of the
target grid and L the one of the source one. Let M be the interpolation over the sphere matrix
between product Gauss-Legendre cubature grids of source and target orders L and L′ respectively.
Since Z

2(2L+1)Z <
Z

2(2L′+1)Z and following Sect. 6.2.2.4, the Z
2(2L′+1)Z -orbits can be decomposed into

(2L′+ 1)/(2L+ 1) (which is equal to 3 thanks to L′ = 3L+ 1) Z
2(2L+1)Z -orbits. Hence, M is a block

matrix with a single column of 3 blocks, each of size (L′ + 1)(2L+ 1)× (L+ 1)(2L+ 1).
Indeed, if L+ 1 is even, the source grid is composed of L+1

2
Z

2(2L+1)Z -orbits and if L+ 1 is even,

this source grid is composed of L2
Z

2(2L+1)Z -orbits and one single Z
(2L+1)Z -orbit. Hence, the number

of columns in each of the 3 blocks of M is L+1
2 × 2(2L+ 1) = (L+ 1)(2L+ 1) if L+ 1 is even and

L
2 × 2(2L+ 1) + (2L+ 1) = (L+ 1)(2L+ 1) if L+ 1 is odd. The same computation is done for L′,
giving the number of rows.

Suppose that L + 1 is even, so that there only are regular Z
2(2L+1)Z -orbits in the source and

target grids. Thus, the 3 blocks of M can be block-diagonalized (see Thm. 6.2.1) in a Fourier
basis, each with 2(2L + 1) blocks of size (L′ + 1)/2 × (L + 1)/2. The product with these blocks
dominate the evaluation cost thanks to the Fast Fourier Transforms that can be used to apply the
matrices of the discrete Fourier transforms. There are 3× 2(L+ 1) of these products by blocks of
size (L′ + 1)/2× (L+ 1)/2. The overall cost is therefore O ((2L+ 1)(L′/2)(L/2)) = O

(
L′L2

)
.

If L+ 1 is odd, the same conclusions hold by means of zero-padding (see Sect. 6.2.2.4).

This method imposes a strong constraint on the choice of the cubature rule orders (i.e. L′ =
3L+1). Notice that in practice, a good choice of relation between the cubature rules of consecutive
tree levels is a simple multiplication by a factor 2 of the rule orders. All the discussion we made in
this section can be extended to this case by rounding the number of nodes in the discretization of
the azimuthal angle to 2L+ 2 instead of 2L+ 1. With this rounding, the constraint on the orders
in Corl. 6.2.2 can become L′ = 2L and we are able to cover this case of doubling the order between
two consecutive tree levels. The result of Corl. 6.2.2 still holds in this last case, but the complexity
has a better constant (hidden in the "O" notation).

6.2.4 Positioning with regard to existing algorithms

Since we are interested in exact algorithms to perform interpolation over the sphere, we can compare
the method we provided in Sect. 3.2, which is referred to as the group invariant method, to the
other existing algorithms.

The method exploiting an uniform sampling along each spherical axis in Sect. 3.2.2.5 uses more
cubature nodes than the group invariant method and allows to deal with any integration orders.
The Jakob-Chien-Alpert's method (see Sect. 3.2.2.3) uses the same amount of nodes than the
group invariant method for the same integration orders3 with the same overall complexity, but has

2The other case is obtained by transposition.
3Actually, the cubature rules are the same in the Jakob-Chien-Alpert's method and in the group invariant one.
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no restrictions on the links between the orders of the source and target cubature grids. Hence, our
method may seem less interesting than the Jakob-Chien-Alpert's one.

However, our approach also has a lot of advantages. First of all, this can be applied to any
rotationally invariant kernel (i.e. not only IS2), as opposed to the Jakob-Chien-Alpert's method
that uses the explicit form of IS2 to derive a fast algorithm. In addition, the polar symmetry of the
Gauss-Legendre rules is handled with the symmetries of the azimuthal discretization at the same
time using the group invariant method. Finally, the full symmetries of the M2L operator can be
exploited if and only if the cubature grids are invariant under the action of D3, which is not true
for a product rule. However, an invariance under the action of a subgroup of D3 can be obtained
on product cubature grids by imposing a condition: the discretization of the azimuthal angle has
to be a multiple of 4 (see [197]). For an implementation of hf-fmm exploiting these symmetries as
discussed in Sect. 5.3.3 (we emphasize that in this case, only a subgroup of D3 can be used but not
the entire group when dealing with product cubature rules), the choice of doubling orders between
consecutive tree levels is relevant to preserve this structure if we restrict to this subgroup and these
product rules. This means that the constraint of our approach is not a drawback in practice.

To propose our �rst group invariant method, we used several strong assumptions on the in-
variance groups of the cubature grids. Thanks to their abelian properties and to the Fast Fourier
Transforms, we were able to derive a fast general method for the M2M/L2L with an overall cost
close to the one of the Jakob-Chien-Alpert's method. However, one can remember that the Gauss-
Legendre cubature rules are not optimal with regard to the e�ciency in Eq. 6.1. The exact methods
we are aware of are not designed for the quasi-optimal rules. We thus want to extend our approach
to any invariance group.

6.3 Explicit block-diagonalization of group-invariant matrices

We are targeting an explicit block-diagonalization of any G-invariant matrix. The general case
of an arbitrary (possibly non-abelian) group involves much more advanced tools than the abelian
one. This section aims at presenting these tools and how the e�ective block-diagonalization is
obtained with a general group G. Therefore, we present in Sect. 6.3.1 the bases of the �nite group
representation theory. In Sect. 6.3.2, we illustrate on the abelian cyclic case of Sect. 6.2 how the
objects we introduced allow to understand the block-diagonalization we already provided from the
�nite group representation theory. Then, the general case of arbitrary group is considered in Sect.
6.3.3, where we restrict ourselves to regular orbits. Finally, in Sect. 6.3.4, we describe how to take
into account the singular orbits.

6.3.1 Generalities on group representations

The general abstract tools we work with are the representations of �nite groups. Here we brie�y
recall the basic needed notions to use such tools. In all this section, G refers to an arbitrary �nite
group. For any vector space V , we denote by GL(V ) the general linear group over V , corresponding
to the set of isomorphisms on V .

De�nition 6.3.1. A representation ρ of G on the (�nite dimensional) vector space V over C is a
group homomorphism G → GL(V ).

In other words, ρ maps any g ∈ G on an element ρ(g) ∈ GL(V ) such that, for any g, h ∈ G,
ρ(gh−1) = ρ(g)ρ(h)−1. We will consider pairs (ρ, V ) to denote a representation of G on V . If W is
a vector subspace of V such that ρ(g) ·W ⊆W, ∀g ∈ G, then W is said to be G-invariant (or to be
a proper subspace of V ). The restriction (ρ,W ) of ρ on W is named a subrepresentation of (ρ, V ).
Fixing a basis for V , any representation can be expressed as a matrix. Hence, we often refer to the
matrix form of a representation instead of the representation itself.

The key element is that a representation can be decomposed into a set of subrepresentations,
up to a certain point.
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De�nition 6.3.2. A representation (ρ, V ) of G is said to be irreducible if and only if V 6= {0}
and there is no G-invariant vector subspace of V except {0} and V itself. If there is such a proper
subspace, then (ρ, V ) is said to be reducible.

This concept of reducibility has a direct linear algebra interpretation. Suppose that there exists
V1 and V2 two proper vector subspaces of V such that V = V1⊕V2. We denote by M(g) the matrix
form of ρ(g) in an arbitrary �xed basis of V and by M1(g) and M2(g) those of (ρ, V1) on g and
(ρ, V2) on g respectively. Then, there exists P ∈ GL(V ) with the equality :

P−1M(g)P = M1(g) +M2(g) =

[
M1(g) 0

0 M2(g)

]
(6.3)

where Mi(g) is a matrix of size dim(Vi) × dim(Vi), i ∈ {1, 2}. This expression can be interpreted
as a partial block-diagonalization of M(g) and such a form exists if (ρ, V ) is reducible. If at least
one of the subrepresentations (ρ, Vi), i ∈ {1, 2} is itself reducible, this procedure can be repeated
until irreducible representations are reached.

We are thus searching a decomposition of V of the form :

V = V1 ⊕ ...⊕ Vp (6.4)

where p ∈ N∗, each Vi is a G-invariant vector subspace of V , and we want the subrepresentation of
G on Vi to be irreducible. The relation in Eq. 6.3 being a matrix form of the decomposition, we
need to de�ne a similar concept for representations themselves. This is given by the sum of two
representations.

De�nition 6.3.3. Let (ρ, V1) and (η, V2) be two representations of G, V1 and V2 being two proper
subspaces of V . The sum of those two representations is the representation (µ, V1 ⊕ V2) such that
∀g ∈ G

µ(g) =

[
ρ(g) 0
0 η(g)

]
.

We use the notation µ =: ρ+ η.

The sum of representations on di�erent vector subspaces of a same vector space in Def. 6.3.3
uses an abusive notation referring to the inclusion in Eq. 6.3. To be more precise, giving bases B1

and B2 of V1 and V2 seen as subspaces of V respectively and a basis on V such that V1, V2 ⊆ V , the
sum ρ(g) + η(g) refers to the sum of the matrix form of ρ(g) and η(g) in B1 and B2 respectively.
Then, based on this de�nition, we can provide a �rst theorem that can be found in [189] and which
is a consequence of the Maschke's theorem (see also [180] Chap. 7 Sect. 1.3 Prop. 1.32).

Theorem 6.3.1. ( [189] Sect. 1.4, Thm. 2) Every representation is a sum of irreducible represen-
tations.

Since the number of irreducible representations of a �nite group is �nite, Thm. 6.3.1 claims that
any representation can be expressed as a �nite sum of irreducible representations. Let Irrep(G)
be the set of irreducible representations of G with cardinal p := #Irrep(G). Considering a repre-
sentation (ρ, V ), there exist Vi, i ∈ [[1, p]], vector subspaces of V such that (ρi, Vi) is an irreducible
representation of G with ρ =

∑p
i=1 ρi and

V = ⊕
i∈{1,...,p}

Vi. (6.5)

The dimensions of the decomposition elements in Eq. 6.5 are connected to G.

De�nition 6.3.4. Let (ρ, V ) be a representation of G. The degree d(ρ) of this representation is the
dimension of V .
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In the general case,
∑
ρ∈Irrep(G) d(ρ) does not have to be equal to

∣∣G∣∣. The link between the
degree d(ρ) of elements ρ ∈ Irrep(G) and the cardinal of G is expressed in Thm. 6.3.2.

Theorem 6.3.2. ( [189], Sect. 2.4, Corl. 2)
∣∣G∣∣ =

∑
ρ∈Irrep(G)

d(ρ)2.

There is an important consequence of this result. Fixing a basis, the expression in Eq. 6.3 is a
diagonal matrix if and only if the degree of the irreducible representations is always 1. This is not
true for an arbitrary group. This notion of degree does not depend on the basis choice but only on
the structure of G.

The elements of the decomposition in Eq. 6.5 can actually be classi�ed following the relations
between them. The idea is to group together all the elements of the decomposition of V that are
isomorphic.

De�nition 6.3.5. Two representations (ρ, V ) and (η,W ) of G are said to be isomorphic if there
exists an isomorphism ψ : V →W such that for any g ∈ G, ψ(ρ(g) · v) = η(g) · ψ(v), ∀v ∈ V .

Two representations are isomorphic if they are de�ned on vector spaces between which there
exists an isomorphism preserving the action of G. The irreducible representations can be grouped
into equivalence classes: two isomorphic representations belong in the same equivalence class. The
sum of all isomorphic irreducible representations in such a class is named an isotypic component.
Let m be the number of isotypic components of the representation (ρ, V ) of G and (ρi, Ṽi) be the
subrepresentation of (ρ, V ) associated to the ith isotypic component. Actually, m is equal to the
number of conjugacy classes (see Def. 6.3.6) of G ( [189] Sect. 2.5 Thm. 7).

De�nition 6.3.6. Let h, g ∈ G. We say that h and g are in the same conjugacy class if there exists
an element s ∈ G such that h = sgs−1.

We thus obtain a coarser decomposition of V than in Eq. 6.5 and that can be written:

V = Ṽ1 ⊕ ...⊕ Ṽm.

This decomposition is called the canonical decomposition of V . Each element Ṽl of the canonical
decomposition is itself a sum of the k irreducible representations in the associated isotypic compo-
nent, with k the cardinal of this isotypic component, all isomorphic to any �xed element in this
component. Denoting by V̄l a choice of such element, we use the notation Vl = kV̄l to emphasize
that there exist a set of isomorphisms between the elements of an isotypic component.

The number of irreducible representations of (ρi, Ṽi) is known ( [189] Sect. 2.3 Thm. 2) and does
not depend on the chosen decomposition ( [189] Sect. 2.3 Corl. 1). Therefore, we have (expressing
these numbers in terms of degrees of irreducible representations thanks to [189] Sect. 2.1 Prop 1)
the following expression of Eq. 6.4:

V = ⊕
i∈{1,...,m}

Ṽi

= ⊕
i∈{1,...,m}

⊕
j∈{1,...,d(ρi)}

Vi,j

= ⊕
i∈{1,...,m}

d(ρi)Vi,1

(6.6)

where Ṽi = ⊕
j∈{1,...,d(ρi)}

Vi,j and for a �xed i, all the Vi,j are isomorphic with dimension d(ρi).

We can thus �nd some bases of Vi,j and Vi,k in which the matrix expressions of the irreducible
representations on Vi,j and Vi,k are equal for any g ∈ G. A crucial point is that the �rst line of Eq.
6.6 (i.e. the canonical decomposition) does not depend on the initial choice of decomposition of V
into a sum of irreducible representations ( [189] Sect. 2.6 Thm. 8) but the second line does.

Explicit formulas for the projectors on the Ṽi's and the Vi,j 's are also provided by the group
representation theory. This is the tool we are interested in for our applications. Since the canonical
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decomposition does not depend on the initial decomposition of V , the projectors on the isotypic
components can be expressed independently of the choice of basis (see [189] Sect. 2.6 Thm. 8).
However, these projectors are not su�ciently �ne for our purpose and we need the expression of
the projectors on the Vi,j 's. Their general form is provided in Prop. 6.3.1.

Proposition 6.3.1. ( [189] Sect. 2.7 Prop. 8) Let (η, V ) be a representation of G. Let ω(l)(g) be
a matrix expression on a chosen basis of Vl,1. Let P

(l)
i,j [η] be the linear map between V and V given

by the formula:

P
(l)
i,j [η] =

d(ρl)

|G|
∑
g∈G

ω
(l)
i,j(g

−1)η(g). (6.7)

1. For any i = 1, ...,m, P (l)
i,i [η] is a projector, Im(P

(l)
i,i ) ⊂ Ṽl and P (l)[η] :=

∑
i P

(l)
i,i is a projector

on Ṽl.

2. The linear map P
(l)
i,j [η] vanishes on Ṽk, k 6= l, as well as on Vl,t, t 6= j. It de�nes an

isomorphism from Vl,j to Vl,i.

3. Let x1 ∈ Vl,1, x1 6= 0 and let xi := P
(l)
i,1 [η](x1) ∈ Vl,i. The xi are linearly independent and

generate a vector subspace W (x1) stable under G and of dimension d(ρl). For each s ∈ G, we
have

η(s)(xi) =
∑
j

ω
(l)
i,j(s)xj

and W (x1) is isomorphic to Wl.

4. If
(
x

(1)
1 , ..., x

(m)
1

)
is a basis of Vl,1, the representation Ṽl is the direct sum of the subrepresen-

tations W (x
(1)
1 ), ...,W (x

(m)
1 ) de�ned in 3).

The next diagram summarizes the action of the projectors and isomorphisms of Prop. 6.3.1.

V V

Vl,j Vl,i

P
(l)
j,j [η]

id

P
(l)
i,i [η]

P
(l)
i,j [η]

This formula relies on a choice of basis for V , i.e. explicit matrix forms for the ω(l).

6.3.2 Application to the cyclic case

In the abelian cyclic group case, all the notions we presented in Sect. 6.3.1 are straightforward to
de�ne. Indeed, all the irreducible representations of an abelian cyclic group are one-dimensional
(see [189] Sect. 5.1). Let (η, V ) be a representation of Z

NZ . Thanks to Eq. 6.6, all the isotypic

components of V are one-dimensional. Due to Thm. 6.3.2, we have
∣∣∣ Z
NZ

∣∣∣ = N =
∑

ρ∈Irrep( Z
NZ )

d(ρ)

which implies that there are N elements in Irrep
( Z
NZ
)
. Since the canonical decomposition and the

projectors on the isotypic components are independent of the initial decomposition of (η, V ) into
a sum of irreducible representations, their matrix forms do not depend on any basis and actually
correspond to the Fourier modes, i.e. the e2iπp kN (see [189] Sect. 5.1). Hence, the projectors of
Prop. 6.3.1 in the abelian cyclic case can be simply written. The ω(l)

i,j(g) in Eq. 6.7 corresponds to
the only entry in the matrices ω(l)(g) and using g = gk0 for a particular k ∈ [[0, N − 1]], g0 being a
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generator of Z
NZ , we obtain a reformulation of Eq. 6.7:

P (l)[η] =
1

N

∑
g∈G

ω(l)(g−1)η(g)

=
1

N

N−1∑
k=0

e−2iπl kN η(gk0 ).

(6.8)

To link this expression with the block-diagonalization we presented in Sect. 6.2.2, we have to
introduce the appropriate representations. Let g ∈ G, Ξs be the source product Gauss-Legendre
cubature grid on the sphere and f ∈ C[Ξs]. For any y ∈ Ξs, we de�ne the representation (ηs,C[Ξs])
of Z

NZ as
(ηs(g)f) (y) := f

(
g−1 · y

)
. (6.9)

Let Y be the set of germs of Ξs for the action of a group of rotations isomorphic to Z
NZ , i.e.

Ξs = Z
NZ · Y where N is the order of the abelian symmetry group of this grid and Z

NZ · Y :=

{z · y | z ∈ Z
NZ ,y ∈ Y}. For the sake of clarity, we assume that all the orbits are regular. De�ned

in the same manner, let Ξt = Z
NZ · X be the product Gauss-Legendre target cubature grid and let

(ηt,Ξt) be the associated representation. Let also f ∈ C
[

Z
NZ · Y

]
. A polynomial interpolation on

the sphere of a function f de�ned on Ξs to a function f̃ de�ned on Ξt by means of IS2 is thus a
mapping K : C

[
Z
NZ · Y

]
→ C

[
Z
NZ · X

]
de�ned by

f̃ (x) := K(f)(x)

:=
∑
y∈Ξs

IS2 (x,y) f (y)

for any x ∈ Ξt.
The main point is that we have P (l)[ηt(g)K(f)] = K

(
P (l)[ηs(g)f ]

)
for any l ∈ [[0, N − 1]]. This

can be veri�ed with a direct computation using Eq. 6.8:

P (l)
[
ηt(g)K(f)

]
(x) =

1

N

N−1∑
k=0

e−2iπl kN
(
ηt(g

k
0 )K(f)

)
(x)

=
1

N

N−1∑
k=0

e−2iπl kN
∑
y∈Ξs

IS2

(
g−k0 · x,y

)
f (y)

=
1

N

N−1∑
k=0

e−2iπl kN
∑

g−k0 ·z∈Ξs

IS2

(
g−k0 · x, g−k0 · z

)
f
(
g−k0 · z

)

=
1

N

N−1∑
k=0

e−2iπl kN
∑
z∈Ξs

IS2 (x, z) f
(
g−k0 · z

)
=
∑
z∈Ξs

IS2 (x, z)

(
1

N

N−1∑
k=0

e−2iπl kN f
(
g−k0 · z

))
= K

(
P (l)

[
ηs(g)f

])
(x) .

(6.10)

In addition, thanks to the orthogonality of the P (l)'s, we have for k 6= l

P (l)
[
P (k)

[
ηt(g)K(f)

]]
= 0. (6.11)
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In other terms, combining the results of Eqs. 6.10 and 6.11, the P (l)'s block-diagonalize the in-
terpolation matrix M corresponding to the matrix representation of K. Since the explicit form of
the representation of Z

NZ in Eq. 6.8 actually corresponds to the Fourier modes in the lth line of
a (scaled) Fourier matrix, we recovered the block-diagonal expression we provided in Sect. 6.2.2.
The exact block-diagonal structure will be detailed in Sect. 6.3.3.

6.3.3 General case

In the general case of a (possibly non abelian) group, the projectors are a bit more complicated
than in the abelian case. Their expression depends on the degree of the irreducible representations.
The projector formula provided in Sect. 6.3.1 has been exploited in di�erent forms in the literature
[11�13,45,191], associated with di�erent denominations. As in [11�13] we will use the matrix forms
of the projectors with a di�erent scaling than in Eq. 6.7. This matrix form is named restriction
matrices.

6.3.3.1 Projector construction

Let (η, V ) be a representation of G on V . Let

V = ⊕
l∈{1,...,m}

Ṽl

= ⊕
i∈{1,...,m}

d(ρi)Vi,1

be the associated decomposition into a sum of irreducible representations η =

m∑
i=1

d(ρi)ρi. Actually,

one may understand Eq. 6.7 as an improper matrix product:

P
(l)
i,j [η] =

d(ρl)

|G|
∑
g∈G

ω
(l)
i,j(g

−1)η(g)

=
d(ρl)

|G|
[
ω

(l)
i,j(g

−1
1 ) . . . ω

(l)
i,j(g

−1
|G|)
] η(g1)

...
η(g|G|)


using G = {g1, . . . , g|G|}. Hence, the concatenation of the matrices involved in the P (l)

i,j 's for �xed l
and i (i.e. varying j) generates a matrix of the form (up to a normalization)

E
(l)
k :=

√
d(ρl)

|G|


ω

(l)
k,1(g1) . . . ω

(l)
k,1(g|G|)

...
. . .

...
ω

(l)
k,d(ρl)

(g1) . . . ω
(l)
k,d(ρl)

(g|G|)

 .
These matrices are named elementary restriction matrices in [11�13]. As a consequence of the
orthogonality of the projectors in Prop. 6.7, we obtain the following result.

Proposition 6.3.2. Suppose that the matrices ω(l)(g) are unitary. The following assertions hold:

• E(l)
k

(
E

(l)
k

)∗
= Idd(ρl) where Idd(ρl) denotes the identity matrix.

• E(l)
k

(
E

(l′)
k′

)∗
= 0 for any l 6= l′ and any k, k′.



124

Proof. The �rst point is a simple application of Prop. 6.7. The second point follows a corollary of
Schur's lemma stating (see [189], Chap. 2 Corl. 3)

∑
g∈G

(
ω(l)(g)

)
p,i

(
ω(l)(g−1)

)
q,j

=

{
|G|
d(ρl)

if p = q, i = j

0 otherwise
.

Since the ω(l)(g) are unitary matrices, we have

ω(l)(g−1) = ω(l)(g)−1 = ω(l)(g)∗.

We thus obtain the targeted result.

Remark 6.3.1. Through a suitable choice of basis, one can always recover unitary matrix repre-
sentations of the irreducible representations (see [189] Sect. 1.3). Hence, the assumption "ω(l) is
unitary" of Prop. 6.3.2 is always veri�ed in practice.

Finally, by concatenating all elementary restriction matrices (i.e. for all l and corresponding
i's), we end up with a projector of the form

E =



E
(1)
1
...

E
(1)
d(ρ1)

...

E
(m)
1
...

E
(m)
d(ρm)



. (6.12)

Following Prop. 6.3.2, we obtain
EE∗ = Id|G|. (6.13)

The property in Eq. 6.13 is one of the key results in our block-diagonalization. To be used in
practice, the e�ective representations have to be expressed as matrices. The matrix E in Eq. 6.12
has to be adapted in order to o�er the projectors we need for a general G-invariant matrix. This
can be done after introducing the spaces we work on as well as the explicit representations we use,
which is the purpose of Sect. 6.3.3.2.

6.3.3.2 E�ective representations

Let Z be a (�nite) set of germs and G · Z be the �nite set generated by the action of G on Z.
Suppose that all G-orbits in Z are regular. We have the decompositions of C[G · Z]:

C[G · Z] = ⊕
g∈G

C[g · Z]

= ⊕
z∈Z

C[〈z〉G ].
(6.14)

The �rst line of Eq. 6.14 decomposes C[G · Z] in terms of group actions on the set of germs and
the second line decomposes this space into G-orbits of the set of germs. It is thus possible to
derive a representation of G on C[G · Z] through the representations of G in all the elements of the
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decompositions in Eq. 6.14. We introduce the representation (µz,C[〈z〉G ]) for any z ∈ Z such that
for any g ∈ G, µz(g) ∈ Aut (C[〈z〉G ]) and

(µz(g))z1,z2
:=

{
1 if g−1 · z1 = z2

0 otherwise
(6.15)

for any z1, z2 ∈ 〈z〉G . This corresponds to the de�nition we gave in Eq. 6.9. Representations of Eq.
6.15 can be exploited in order to recover a representation on C[G·Z] by means of the decompositions
in Eq. 6.14. Indeed, we have the isomorphism

⊕
z∈Z

C[〈z〉G ] ≡ C[Z × G]

where Z × G denotes the cartesian product between Z and G, since all G-orbits of elements of Z
are assumed to be regular. To be more precise, we associate to (z, g) ∈ Z × G the element g · z.

Let IdZ(z) be the matrix form of the element in Aut (C[Z]) such that

(IdZ(z))z1,z2
:=

{
1 if z = z1 = z2

0 otherwise
.

The representation (µ,C[G · Z]) such that for any g ∈ G

µ(g) :=
∑
z∈Z

IdZ (z)⊗ µz(g) (6.16)

is the one we are targeting. One may check that (µ,C[Z×G]) actually de�nes a representation of G
by observing that for any g ∈ G, µ(g) is a block diagonal matrix with the zth block equal to µz(g).
Thus, ∀g, h ∈ G, we have

µ(g)µ(h)−1 =

(∑
z∈Z

IdZ (z)⊗ µz(g)

)(∑
z∈Z

IdZ (z)⊗ µz(h)

)−1

(µ(h) block-diagonal) =

(∑
z∈Z

IdZ (z)⊗ µz(g)

)(∑
z∈Z

IdZ (z)⊗ µz(h)−1

)

(µz representation) =

(∑
z∈Z

IdZ (z)⊗ µz(g)

)(∑
z∈Z

IdZ (z)⊗ µz(h−1)

)
(block-diagonal structures) =

∑
z∈Z

(IdZ (z)⊗ µz(g))
(
IdZ (z)⊗ µz(h−1)

)
(product of tensor matrices) =

∑
z∈Z

IdZ (z)⊗
(
µz(g)µz(h−1)

)
(µz representation) =

∑
z∈Z

IdZ (z)⊗
(
µz(gh−1)

)
= µ(gh−1).

We have obtained representations on C[G · Z]. The next step consists in introducing the general
projectors on the proper subspaces of C[G · Z] with regard to G.

6.3.3.3 Invariant operator projection

Let Z be a (�nite) set of germs and G · Z be the �nite set generated by action of G on Z. Suppose
that all the G-orbits in Z are regular. To build our general projectors on the proper subspaces of
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C[G · Z] ≡ C[Z × G] with regard to G (i.e. as in Eq. 6.6), we may have a similar reasoning than in
Sect. 6.3.3.2. Indeed, let EZ ∈ Aut (C[Z × G]) be de�ned as

EZ := IdZ ⊗ E (6.17)

with IdZ the identity in Aut (C[Z]). As for µ(g) (see Eq. 6.16), EZ is a block-diagonal matrix with
all diagonal blocks equal to E (and the number of diagonal blocks is equal to the cardinal of Z).
Thus, the result of Prop. 6.3.3 holds.

Proposition 6.3.3. EZE∗Z = IdC[Z×G], where IdC[Z×G] denotes the identity in Aut (C[Z × G]).

Proof. We simply check the result with a direct computation:

EZE∗Z = (IdZ ⊗ E) (IdZ ⊗ E)
∗

= (IdZ ⊗ E) (IdZ ⊗ E∗)
= IdZ ⊗ (EE∗)

(Eq. 6.13) = IdZ ⊗ Id|G|
= IdC[Z×G].

Now, let X and Y be two sets of points with regular G-orbits. Let M be a linear mapping from
C[G ·Y] to C[G ·X ] and such that there exists a G-invariant operator I : (G · X )× (G · Y)→ C with

Mx,y := I (x,y) (6.18)

for any x ∈ G ·X and y ∈ G ·Y (that is M is a G-invariant matrix). Up to permutations, M de�nes
a mapping from C[X × G] to C[Y × G]. As a consequence of Prop. 6.3.3, we have

M = EX (E∗XMEY)︸ ︷︷ ︸
=:D[M]

E∗Y . (6.19)

Since the EZ , Z = X ,Y are projectors, a certain amount of entries of the matrix D[M] vanishes.
We exhibit in Sect. 6.3.3.4 a block-diagonal structure of D[M].

6.3.3.4 Block-diagonal form

In all this section we still suppose that all the orbits of the elements of X and Y are regular.

Index sets. According to the decomposition in Eq. 6.6, for any ρ ∈ Irrep(G), there exist d(ρ)
elements η ∈ Irrep(G) such that ρ and η are isomorphic and each of them is of course of degree
d(ρ). Hence, there are as many di�erent projectors in Prop. 6.7 (i.e. rows in E) as triplets in B
de�ned by

B := ∪
ρ∈Irrep(G)

∪
(p,i)∈[[1,d(ρ)]]2

{(ρ, p, i)}.

This set has the same cardinal as G (as a consequence of Thm. 6.3.2). The main point is that the
rows of E are each associated to a unique b ∈ B, so that we have

E : C[G]→ C[B].

Hence, thanks to Eq. 6.16, EZ can be interpreted as a mapping from C[Z × G] to C[Z ×B]. In
other words, D[M] can itself be seen as a mapping from C[Y ×B] to C[X ×B], where X and Y are
the target and source sets of germs respectively. We can thus identify the entries of D[M] through
the pairs (x, b) ∈ X ×B and (y, c) ∈ Y ×B.
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Non-zero entries of D[M]. Now, let D[M]b,c be the block (b, c) of D[M] (c, b ∈ B) de�ned by

(D[M]b,c)x,y := (D[M])(x,b),(y,c) , (6.20)

where D[M]b,c ∈ C#X×#Y . Let b = (ρl, p, i), c = (ρk, q, j) ∈ B, x ∈ X , y ∈ Y. We have,
following [12]:

(D[M]b,c)x,y =

√
d(ρl)d(ρk)

|G|
∑
g∈G

ω
(l)
p,i(g)

∑
g′∈G

ω
(k)
q,j (gg′)I(g · x, (gg′) · y)

(I is G-invariant) =

√
d(ρl)d(ρk)

|G|
∑
g∈G

ω
(l)
p,i(g)

∑
g′∈G

ω
(k)
q,j (gg′)I(x, g′ · y)

=

√
d(ρl)d(ρk)

|G|
∑
g∈G

ω
(l)
p,i(g)

∑
g′∈G

[ d(ρk)−1∑
t=0

ω
(k)
q,t (g)ω

(k)
t,j (g′)

]
︸ ︷︷ ︸
ω(k)(gg′)=ω(k)(g)ω(k)(g′)

I(x, g′ · y)

=

√
d(ρl)d(ρk)

|G|
∑
g′∈G

d(ρk)−1∑
t=0

ω
(k)
t,j (g′)

[∑
g∈G

ω
(l)
p,i(g)ω

(k)
q,t (g)

]
︸ ︷︷ ︸

=

{
|G|/d(ρl) if k = l, p = q, i = t

0 otherwise

I(x, g′ · y)

=


∑
g∈G

ω
(l)
i,j(g)I(x, g · y) if k = l, p = q

0 otherwise
.

(6.21)

Remark 6.3.2. The last line of Eq. 6.21 does not depend on i (nor j). This means that the d(ρl)
blocks of the block-diagonalization corresponding to Ṽl coincide (see [12]) for any l ∈ [[1,m]].

To be more precise, if b = (ρl, p, i), c = (ρk, q, j) ∈ B, then D[M]b,c = 0 if l 6= k or p 6= q. The
�nal non-zero blocks are of size (d(ρl)#X )× (d(ρl)#Y) for each ρl ∈ Irrep(G).

Theorem 6.3.3. Let X ,Y be �nite sets of points with regular G-orbits. Let M a G-invariant matrix
as in Eq. 6.18. We have

M = EX D[M]E∗Y

where for any b = (ρl, p, i), c = (ρk, q, j) ∈ B, D[M]b,c = 0 if l 6= k or p 6= q.

However, when D[M] is seen as a mapping from C[X ×B] to C[Y ×B], the entries of D[M]b,c
are not contiguous in D[M]. We thus need additional permutations to recover a real block-diagonal
structure.

Permutations. To represent D[M] as a block-diagonal matrix, one has to transform it into a
mapping from C[B × X ] to C[B × Y] by means of permutations. Indeed, the row and column
entries of D[M] are ordered in the following way, using Z = {z1, ..., z#Z} and B = {b1, ..., b#B},

(z1, b1), ..., (z1, b#B), (z2, b1), ..., (z#Z , b#B)

but we want them to be indexed as in the following sequence

(b1, z1), ..., (b1, z#Z), (b2, z1), ..., (b#B, z#Z)



128

for Z = X (rows) and Z = Y (columns). Hence, introducing PZ : C[Z ×B] → C[B × Z] such
that for any (b, z) ∈ B ×Z, (b′, z′) ∈ Z ×B

(PZ)(b,z),(z′,b′) :=

{
1 if z = z′ and b = b′

0 otherwise
,

we obtain the permutations we want.

Final result. We �nally obtained the block-diagonalization we were looking at and which is
summarized in Thm. 6.3.4, which speci�es the result of Thm. 6.3.3.

Theorem 6.3.4. Let X ,Y be �nite sets of points with regular G-orbits. Let M a G-invariant matrix
as in Eq. 6.18. We have

M = EX PX D̄[M]PTY E∗Y

where EX , E∗Y and D̄[M] := PTX D[M]PY are block-diagonal.

Remark 6.3.3. The result of Thm. 6.3.4 is a generalization of Thm. 6.2.1, corresponding to the
block-diagonalization for the product rules using abelian cyclic groups.

The assumption on the regular orbits in Thm. 6.3.4 can actually be relaxed. We discuss various
techniques to do so in Sect. 6.3.4.

6.3.4 Singular orbits

We are now able to express the representations exploited in Eq. 6.12 in terms of matrices when all
the orbits are regular. To adapt the formula in Eq. 6.16 to the possible singular orbits of a general
set Z on which G acts, it is useful to introduce the stabilizer of a group.

De�nition 6.3.7. Let Z be a �nite set and G be a group acting on Z. The stabilizer Stab(z) of
z ∈ Z is the set Stab(z) := {g | g · z = z, g ∈ G} ⊆ G.

For any z ∈ Z, if Stab(z) is normal4, the set H(z) := G
Stab(z) is such that H(z) ≤ G. Assuming

that Stab(z) is normal for any z, we have

G · Z = ∪
z∈Z
〈z〉G

= ∪
z∈Z
〈z〉H(z)

and the space C[G ·Z] is replaced in the general case by C
[
∪

z∈Z
〈z〉H(z)

]
. Hence, the representations

µz (see Eq. 6.15) are de�ned on H(z) only instead of G, i.e. ∀g ∈ H(z), µz(g) ∈ Aut
(
C[〈z〉H(z)]

)
.

With these modi�cations, the formula in Eq. 6.16 still holds in the case of possibly singular orbits.
The block sizes in the full block-diagonalization do not only depend on the group cardinal. Both

the degree of the irreducible representations (that may be greater than one in the general case) and
the singular orbits a�ect these sizes. There are two methods, as already explored in Sects. 6.2.2.4
and 6.2.2.5 in the abelian case, for the treatment of the singular orbits. The �rst approach consists
in completing a singular orbit into a regular one by means of zero-padding and leads to a matrix
embedding that can be block-diagonalized with Thm. 6.3.4. This is presented in Sect. 6.3.4.1. The
second method takes into account the zero entries appearing when the padding method is used to
reduce the size of the diagonal blocks and can be associated to optimal projectors in terms of size,
as explained in Sect. 6.3.4.2.

4Stab(z) is always a group and is normal if and only if ∀s ∈ Stab(z), ∀g ∈ G, gsg−1 ∈ Stab(z).
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6.3.4.1 Padding method

As for the abelian case, a naive way of taking into account the singular orbits is the padding
method. Let z0, z1 ∈ Z with possibly singular orbits. For each of these points we can identify a
set H(zi) =: {hi1, ..., hi#H(zi)

}, i ∈ {0, 1}. Hence, the matrix block M such that, for a G-invariant
operator I and (k, l) ∈ [[1,#H(z0)]]× [[1,#H(z1)]],

Mk,l := I
(
h0
k · z0, h

1
l · z1

)
can be embedded into a larger matrix M̃ (named a group embedding of M) such that

M̃i,j := I (gi · z0, gj · z1) (6.22)

where G = {g1, ..., g|G|} and (i, j) ∈ [[1, |G|]]2. This can be done by introducing the two matrices
Ileft : C[H(z0)]→ C[G] and Iright : C[G]→ C[H(z1)] such that

(Ileft)k,i :=

{
1 if h0

k = gi

0 otherwise
,

(Iright)j,l :=

{
1 if h1

l = gj

0 otherwise
.

Indeed, we obtain
M = Ileft M̃ Iright.

The di�erence between M and M̃ is that the second can be considered as a mapping between two
regular orbits. Hence, the padding method increases the size of the matrix M in order to recover
only regular orbits, that can all be treated using the same restriction matrix. The extension of the
padding method to any number of germs is straightforward. We have

C[G · Z] ≡ ⊕
z∈Z

C[〈z〉H(z)]. (6.23)

Remark 6.3.4. H(z) may not be a group in the general case (i.e. when Stab(z) is not normal)
so the notation 〈z〉H(z) is not rigourous. This notation actually refers to 〈z〉G, but insisting on the
cardinal de�ciency compared to regular orbits. In the general case, when Stab(z) is not a normal
subgroup of G, the relevant tools to work with are actually the cosets (see [189] Sect. 3.3)

Let IH(z),G ∈ {0, 1}|G|×#H(z) be the mapping from C[H(z)] in C[G] de�ned by

(
IH(z),G

)
h,g

:=

{
1 if h = g

0 otherwise
.

Hence, IH(z),G can be seen as a mapping from C[〈z〉H(z)] ≡ C[H(z) ·z] ≡ C[z×H(z)] to C[G]. Doing
so for all the orbits, the decomposition in Eq. 6.23 allows to construct the padding matrix for the
entire point cloud G · Z. This padding matrix IG,Z : ⊕

z∈Z
C[z × H(z)] → C[Z × G] for a general

point cloud Z can be written as

(IG,Z)(z′,g),(z,h) :=

{
1 if h = g, z = z′

0 otherwise

for any (z′, g) ∈ Z × G and z ∈ Z, h ∈ H(z). The content of Thm. 6.3.4 can be adapted to the
general case with singular orbits.

Theorem 6.3.5. Let X ,Y be �nite point clouds. Let M a G-invariant matrix as in Eq. 6.18. We
have

M = I∗G,X EX PX D̄[M̃] PTY E∗Y IG,Y

where D̄[M̃] is block-diagonal and M̃ is de�ned as in Eq. 6.22.

We refer to this treatment of the singular orbits as the padding method.
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6.3.4.2 Impact of padding on diagonal blocks and minimal projection method

In practice, a certain amount of entries corresponding to singular orbits in the diagonal blocks of
the block-diagonalization of the group embedding M̃ of M (presented in Sect. 6.3.4.1) may vanish.
This is explained by the following computation. For the sake of simplicity, we assume that Stab(y)
is normal in G. Therefore using b = (ρl, p, i), c = (ρl, q, j) ∈ B, we have(

D[M̃]b,c

)
x,y

=
∑
g∈G

ω
(l)
i,j(g)I(x, g · y)

(g = hs) =
∑

s∈Stab(y)

∑
h∈H(y)

ω
(l)
i,j(hs)I(x, (hs) · y︸ ︷︷ ︸

=h·y

)

=
∑

s∈Stab(y)

∑
h∈H(y)

[ d(ρl)∑
t=1

ω
(l)
i,t (h)ω

(l)
t,j(s)

]
I(x, h · y)

=

d(ρl)∑
t=1

 ∑
s∈Stab(y)

ω
(l)
t,j(s)

 ∑
h∈H(y)

ω
(l)
i,t (h)I(x, h · y).

If ρl|Stab(y) ∈ Irrep(Stab(y)), with ρl|Stab(y) the restriction of ρl to Stab(y), then the term∑
s∈Stab(y)

ω
(l)
t,j(s) vanishes unless ρl is trivial (as a consequence of the Schur's lemma). However,

in the general case, ρl /∈ Irrep(Stab(y)) (the Mackey's criterion allows to decide if the irreducibility
of the restricted representation holds, see [189] Sect. 7.4 Prop. 23). We thus do not have a conclu-
sion in the general case. Nevertheless, one can still obtain smaller projectors for singular orbits by
summing along the columns, according to the stabilizers, of the projectors of the full group. This is
used in [12] to derive new restriction matrices by applying a row-orthonormalization on extractions
of the resulting (rectangular) matrix. This is referred to as the minimal projection method.

Compared to the padding method, the minimal projection one is more tricky to implement in
the general case: one has to identify on which G-invariant subspaces the new restriction matrices
project. The block sizes in the non-zero blocks of the block-diagonalization of M directly depend
on these chosen G-invariant subspaces.

6.4 Lebedev rules in hf-fmm

We want to apply the block-diagonalization we presented in Thm. 6.3.5 to the existing quasi-optimal
cubature rules in the context of hf-fmm. As we described in Sect. 6.1, these rules are built with a
G-invariance where G is a rotation group that preserves one of the Platonic solids. None of these
groups is abelian, meaning that the projectors are not Fourier matrices anymore for these quasi-
optimal cubature rules (so the approach of Sect. 6.2 is not su�cient to handle them and we need
to rely on Sect. 6.3). A direct consequence is that the Fast Fourier Transforms exploited with the
product rules cannot be used. In other words, the projection step of the block-diagonalization when
dealing with quasi-optimal rules cannot be as e�cient as in the case of the abelian cyclic group, i.e.
of the product rules. However, since less cubature points are involved in the quasi-optimal rules
than in the product ones, the projection matrices are smaller. A similar discussion has to be done
on the e�ciency of the block-diagonalization compared to the optimal case of an abelian cyclic
group. In Sect. 6.4.1 we present the (quasi-optimal) Lebedev rules and numerical results on the
interpolation on the sphere using our group theory based explicit block-diagonalization combined
with such rules. In Sect. 6.4.2, we explain how the particularity in terms of group invariance of
the Lebedev rules are important in a FMM context. Then, based on the asymptotical behavior of
the di�erent exact fast algorithms for the interpolation on the sphere, we discuss in Sect. 6.4.3 a
switching between the Lebedev rules and the product ones during the same FMM application. A
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Order 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Number of nodes 6 14 26 38 50 74 86 110 146 170 194 230 266 302

Order 31 35 41 47 53 59 65 71 77 83 89
Number of nodes 350 434 590 770 974 1202 1454 1730 2030 2354 2702

Order 95 101 107 113 119 125 131
Number of nodes 3074 3470 3890 4334 4802 5294 5810

Table 6.1: Number of nodes in Lebedev cubature grids for the integration orders these grids are
tabulated for.

general discussion on the applicability of the Lebedev rules combined with block-diagonalizations
of the interpolation matrices on the sphere is done in Sect. 6.4.4.

6.4.1 Invariant rules in hf-fmm

In this section, we quickly motivate the use of tabulated Lebedev rules in the hf-fmm context (Sect.
6.4.1.1). We then provide an overview of the irreducible representations of the invariance group
of the grids in such rules (Sect. 6.4.1.2). Implementation details on the way of evaluating the
projectors are provided in Sect. 6.4.1.4, motivating the chosen treatment for the singular orbits.
Finally, in Sect. 6.4.1.5 are presented numerical experiments to illustrate the e�ect of our block-
diagonalization on the interpolation over the sphere.

6.4.1.1 Choice of the cubature rule

The �rst problem we face up when trying to use the quasi-optimal cubature rules is related to
their computation. Such rules have to be tabulated to be used in practical applications (such as
in hf-fmm). A construction method for the invariant rules under the action of the invariant group
of the icosahedron has been provided in [10]. This corresponds to the same invariance group than
the cubature proposed in [171] which has an e�ciency greater than 1. In addition, the underlying
group, the dodecahedral one (see Tab. 6.1) has the greatest cardinal among the invariance groups
of the Platonic solids5. However, there is a natural symmetry in the octrees under the action
of the octahedral group (see Sect. 5.3.3). This corresponds to the invariance group of the cube
(or equivalently the octahedron). There exist invariant rules under such group, named after V.
I. Lebedev who proposed various tabulations for some of them [153�158]. Not all the integration
orders have lead to e�ective computations, but these rules are tabulated up to the 131th order
with a large amount of intermediate values. See Tab. 6.1 for the number of nodes in each of the
tabulated Lebedev rules. In this thesis, we do not explore the numerical computation of group
invariant cubature rules, so we restrict ourselves to the existing and tabulated Lebedev rules.
Because they allow to exploit all the symmetries of the (hf-fmm) FMM operators while conserving
a quasi-optimality in the M2L application cost, we decided to apply our block-diagonalization to
the M2M/L2L matrices generated by these grids. The cardinal of D3, the invariance group of the
cube, is equal to 48 (using D3 ≡

( Z
2Z
)3×S3). Since D3 is not abelian, we have to provide a matrix

form of the irreducible representations of this group in well-chosen bases (the projectors of Prop.
6.7 relying on a basis choice).

5This group also has the largest irreducible representations in terms of degree (up to 5) among the invariance
groups of the Platonic solids. This implies that its cardinal is not su�cient to compare the e�ciency of the block-
diagonalization with the other groups.
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6.4.1.2 Irreducible representations of D3

The irreducible representations of the invariance groups of the Platonic solids are well known in
the group representation theory. See [191] for the details on the representations of D3. There exist
ten inequivalent irreducible representations of D3: four degree one representations ω(1), ..., ω(4),
two degree two representations ω(5), ω(6) and four degree three representations ω(7), ..., ω(10). This
means that there is a total of 4 + 2× 2 + 3× 4 = 20 elementary restriction matrices (as de�ned in
Sect. 6.3.3). In Fig. 6.8, we represent the shape of the block-diagonalization obtained in the single
orbit case with regular orbits and using the irreducible representations of D3.

Degree one representations. The �rst irreducible representation of D3 is given by the trivial
representation ω(1) which has a degree equal to one. It is de�ned as

ω(1)(g) := 1

for any g ∈ D3. The corresponding elementary restriction matrix is

E(1) :=
1√
48

(1, ..., 1) ∈ C1×48

because
∣∣D3

∣∣ = 48. The three other degree one irreducible representations of D3 can be found for
instance in [11,191].

Degree two representations. The degree two irreducible representations of D3 are the isome-
tries of SO(2) that preserve the square. There are 8 such matrices that are[

1 0
0 1

]
,

[
−1 0
0 1

]
,

[
1 0
0 −1

]
,

[
−1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 −1
1 0

]
,

[
0 1
−1 0

]
,

[
0 −1
−1 0

]
. (6.24)

The corresponding restriction matrices are built using the entries of the matrices in Eq. 6.24 and
can be explicitly found for instance in [11].

Degree three representations. The irreducible representations of degree 3 of D3 are the sim-
plest to understand and correspond to the rotations of SO(3) preserving the cube. Thanks to the
decomposition D3 ≡

( Z
2Z
)3 ×S3, these rotation matrices are obtained by combining the following

matrices (corresponding to
( Z

2Z
)3
)1 0 0

0 1 0
0 0 1

 ,
−1 0 0

0 1 0
0 0 1

 ,
1 0 0

0 −1 0
0 0 1

 ,
1 0 0

0 1 0
0 0 −1

 ,
−1 0 0

0 −1 0
0 0 1

 ,
1 0 0

0 −1 0
0 0 −1

 ,
−1 0 0

0 1 0
0 0 −1

 ,
−1 0 0

0 −1 0
0 0 −1


with these matrices (corresponding to S3)1 0 0

0 1 0
0 0 1

 ,
0 1 0

1 0 0
0 0 1

 ,
0 0 1

0 1 0
1 0 0

 ,
1 0 0

0 0 1
0 1 0

 ,
0 0 1

1 0 0
0 1 0

 ,
0 1 0

0 0 1
1 0 0

 .
See [11] for the explicit form of the restriction matrices for the degree three irreducible representa-
tions of D3.
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Figure 6.8: Shape of D[M] in the single orbit case using the representations of D3. Di�erent colors
indicate that the blocks have di�erent values. Thanks to Rem. 6.3.2, the d(ρl) isomorphic represen-
tations to ρl lead to equal blocks. Continuous black lines represent delimitations between isotypic
components (�rst line of Eq. 6.6) and dashed lines represent delimitations between isomorphic
irreducible representations in a given isotypic component.

6.4.1.3 Singular orbits of D3

In order to classify the elements of the cubature grids according to their stabilizers, we need to be
able to determine the singular D3-orbits on the sphere. Our choice of fundamental domain is the
set {(z1, z2, z3) ∈ S2 | z1 ≥ z2 ≥ z3}. The germs z = (z1, z2, z3) ∈ S2 that lead to a singular D3-orbit
are those verifying at least one of the following conditions:

1. ∃k 6= l such that zk = zl;

2. ∃k such that zk = 0.

The �rst point corresponds to a singular orbit with regard to a subgroup of S3 using D3 ≡
( Z

2Z
)3×

S3 and the second point to a singular orbit with regard to (at least) one Z
2Z . The combination of

the two types of singular orbits lead to another type of singular orbits. There are only two germs
on the sphere (up to group action, i.e. for a �xed fundamental domain) in the intersection of the
two conditions: 1

0
0

 and

1/
√

2

1/
√

2
0

 .

The �rst of these germs has a
( Z

2Z
)3
-orbit and the second one has a stabilizer isomorphic to S2× Z

2Z .

6.4.1.4 Implementation details

We decided to consider the padding method (presented in Sect. 6.3.4.1) instead of the minimal
projection one (see Sect. 6.3.4.2) because this �rst method is better suited to low-level optimizations.



134

First, we recall that the factorization of the interpolation matrix on the sphere M in Thm. 6.3.5
writes

M = I∗D3,X EX PX D̄[M̃] PTY E∗Y ID3,Y .

EZ is a block-diagonal matrix with a diagonal �lled by the same single block (that is E). Numerically,
a product by EZ with a vector v can be seen as a sequence of products by E on restrictions of the
input vector v. Splitting v into small parts of consecutive entries and of size |D3| = 48 (that is the
number of columns/rows of E), this matrix-vector product can be written as a matrix-matrix one,
that bene�ts from highly e�cient implementations. This technique is refered to as vector stacking
and is presented in App. D.2 in the FMM context. The same discussion is true for the conjugate
of EZ because of its block-diagonal structure. The matrices EX and EY in the factorization given
by Thm. 6.3.5 are evaluated this way in our implementation (i.e. using matrix-matrix product
reformulations).

The problem we face up is that the matrix D̄[M̃] is also block-diagonal but not in the same basis
than EX , EY . Since the amount of non-zero entries of D̄[M̃] is too high, the use of a sparse format
to store D̄[M̃] would be ine�cient (both in terms of memory footprint and application timings). We
thus apply the permutations PX and PTY (to switch between the bases on which the EZ , Z = X ,Y
are block-diagonal to the basis on which D̄[M̃] is) on-the-�y (with a linear cost). Each non-zero
block of a block-diagonal matrix is stored and applied as a dense matrix. Hence, the product by
D̄[M̃] is divided into a sequence of dense matrix-vector products (i.e. with the diagonal blocks of
D̄[M̃]).

6.4.1.5 Numerical results

In Fig. 6.9 we present application timings for various interpolations on the sphere using Lebedev
rules with and without block-diagonalization. We also provide timings using the FFT-based tech-
nique of Jakob-Chien-Alpert (see Sect. 3.2.2.3) with Gauss-Legendre grids (without 1D FMM).
Since not all the orders are available for the tabulated Lebedev rules, we choose the order of the
target rule to be the smallest one greater than twice the one of the source rule in the available orders
in Tab. 6.1. For the Gauss-Legendre rules, the order of the target rule is equal to twice the one of
the source rule. Only the order of the source grid is given (in the abscissa). We emphasize that the
matrices obtained using the Lebedev rules are smaller than the one obtained with Gauss-Legendre
rules when no optimization is used, but the second matrices bene�t from the FFT applications
and from a more e�cient block-diagonalization (using the product structure), which results in a
complexity reduction. The block-diagonalization on the Lebedev rules only reduces the constant
in the evaluation cost. We did not implemented our block-diagonalization in a complete hf-fmm
code. Hence, the results provided in Fig. 6.9 correspond to sequential timings on the isolated
interpolation step on the sphere. The numerical results we present are obtained on a Intel Xeon
Gold 6152 CPU. We used FFTW3 for the FFT applications and the MKL for the matrix-vector
and matrix-matrix products.

The results obtained with the block-diagonalization of the interpolation matrices using Lebedev
rules have a comparable application cost than the FFT-based techniques on Gauss-Legendre grids
for source grid orders lower or equal to L ≈ 30 (and target one L ≈ 60). For higher orders, the
block-diagonalization method on Lebedev rules becomes clearly less e�cient than the FFT-based
techniques. We are limited (in terms of interpolation orders) to the results provided in Fig. 6.9 with
the Lebedev rules, which is not the case for the Gauss-Legendre ones. However, since our block-
diagonalization method on Lebedev rules does not reduce the complexity of the interpolation over
the sphere (as opposed to the Jakob-Chien-Alpert's method), this tendency can be extrapolated to
even higher orders than those presented.

Notice that these are not negative results. Indeed, an important remark concerns the costs
presented in Fig. 6.9 compared to the overall cost of hf-fmm. The block-diagonalization we presented
in this chapter aims at reducing the timings for the interpolation step on the sphere using non-
product grids needed in the M2M/L2L operators (which is the more expansive step in these
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Figure 6.9: Sequential timings for the interpolation over the sphere using dense matrix-vector prod-
ucts and Lebedev rules (purple), block-diagonalization (BD) with Lebedev rules (green), indicative
FFT techniques with Gauss-Legendre rules (blue). The abscissa refer to the integration order of
the source cubature rule. 300 executions are performed for each tested order.

operators). However, the main motivation in the use of Lebedev rules is the quasi-optimality of
such rules that trivially reduces the M2L operator cost. In addition, there are far more M2L
applications than M2M/L2L ones in the deepest levels of the octrees (at least for most particle
distributions), that is for the lowest interpolation orders. Hence, the overall performances of the
Lebedev rules with block-diagonalization (M2L and M2M/L2L applications) in these deepest
levels should be better than the performances obtained using Gauss-Legendre product rules.

Remark 6.4.1. We are aware that our implementation is far from optimal. First, we considered
linear algebra operations on complex data only, even if the interpolation operator on the sphere
actually has a real range and the restriction matrices are composed of real entries. However, since
they are applied to complex vectors, we decided to keep this choice of complex data. One can have
written a slightly more complicated algorithm exploiting the real range of IS2 while better bene�ting
from the BLAS 3 operations (see App. D.2) using a trick that will be presented in Sect. 7.5.4.3 but
for another application. In addition, because a certain amount of diagonal blocks of D[M̃] are equal
to others, with known positions (according to Rem. 6.3.2), other matrix-matrix reformulations of
matrix-vector products could have been obtained (concatenating an amount of vectors equal to the
degree of each irreducible representation).

6.4.2 Full exploitation of D3 symmetries in hf-fmm

As mentioned in Sect. 6.2.4, the use of product rules prevents the exploitation of the full symmetry
group D3 as in Sect. 5.3.3, that is from reducing the number of truly needed M2L matrices at
each tree level. Notice that the computation cost of these matrices is quite important in hf-fmm
compared to other FMM formulations, such as the 3D Laplace one (see Sect. 2.2.4.3), at least
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for large cells in terms of wavelength. Hence, this optimization reduction has an impact on the
precomputation cost of the method.

To apply the methodology described in Sect. 5.3.3, that is in order to ensure that only 16
M2L matrices need to be precomputed at each tree level, one still has to verify the group invariant
property of the operator generating the entries of the M2L matrices, i.e. the operator introduced
in Eq. 2.15:

TL(t, λ) :=

L∑
l=0

(2l + 1)ilh
(1)
l (κ|t|)Pl(〈t/|t|, λ〉)

where t denotes the M2L translation vector (using the terminology of Sect. 5.3.3) and λ ∈ S2 is a
cubature node on the sphere. Suppose that the cubature rule is a Lebedev one and let g ∈ D3. We
have:

TL(g · t, λ) =

L∑
l=0

(2l + 1)ilh
(1)
l (κ|g · t|)Pl(〈g · t/|g · t|, λ〉)

(g is an isometry) =

L∑
l=0

(2l + 1)ilh
(1)
l (κ|t|)Pl(〈g · t/|t|, λ〉)

(Lebedev rules invariant w.r.t. D3) =

L∑
l=0

(2l + 1)ilh
(1)
l (κ|t|)Pl(〈t/|t|, g−1 · λ〉)

= TL(t, g−1 · λ).

The last line indeed corresponds to the targeted result since the M2L matrices are diagonal in hf-
fmm. The grids on the target and source cells are equal and are the same (Lebedev) cubature grid.
Thus, for any λ, µ in this grid, the operator B of Sect. 5.3.1.1 (Eqs. 5.3.1.1 and 5.19) corresponds
to

Bu (λ, µ) :=

{
TL(u, λ) if λ = µ

0 otherwise
.

Hence, the use of Lebedev rules in hf-fmm allows to fully exploit the symmetries of the octree
structure and the operator Bu in this context (see Sect. 5.3.3).

6.4.3 Switching between Lebedev and product grids

Since the use of Lebedev rules seems more promising at the deepest level than the Gauss-Legendre
rules in terms of overall application cost while the contrary holds for the top tree levels (see Sect.
6.4.1.5), one may wonder if it is possible to fastly switch between Lebedev and product rules. Based
on the group theoretical approach we proposed, this can be achieved thanks to Lem. 6.4.1.

Lemma 6.4.1. Any product cubature rule on the sphere with uniformly sampled azimuthal angle
using N points is invariant under the action of a subgroup of D3 isomorphic to

( Z
2Z
)3 ×S2 if

• 4 divides N ;

• The discretization of the polar angle is symmetric with regard to the hyperplane z = 0.

Proof. Let D be a product cubature grid on the sphere verifying the conditions of Lem. 6.4.1.
Since 4 divides N , for any z = (z1, z2, z3) ∈ D, the set {p = (p1, p2, p3) ∈ D | p3 = z3} forms an
uniform discretization of the circle invariant under the action of D2 ≡

( Z
2Z
)2 ×S2. Since there is a

polar symmetry (i.e. an additional invariance under Z
2Z ) due to the symmetry with regard to the

hyperplane z = 0, we obtain that D is invariant under the action of

Z
2Z
×
((

Z
2Z

)2

×S2

)
≡
(

Z
2Z

)3

×S2.



Chapter 6 137

Both the product Gauss-Legendre rules and the uniform ones verify the second condition listed
in Lem. 6.4.1. As we discussed in Sect. 6.2.4, the condition "4 divides N" is needed in practice
to exploit the symmetries of the octree structure and is an interesting choice. Hence, because the
Lebedev rules are invariant under the action of

( Z
2Z
)3×S2 < D3, it is possible to exploit the block-

diagonalization technique obtained in Thm. 6.3.5 to accelerate the interpolation between Lebedev
rules and these product Gauss-Legendre or uniform rules. Notice that the restriction matrices of( Z

2Z
)3 ×S2 can be deduced from the restriction matrices of D3.

6.4.4 Discussion on the practical applicability

The use of the Lebedev rules in hf-fmm allows to fully exploit the octree symmetries, which is not
the case of the product cubature rules. This reduces the minimal number of M2L matrices to
be precomputed from 34 (see [56, 197]) to 16 per level (on which the Lebedev rules are used). In
addition, the application cost of a (diagonal) M2L operator is quasi-optimal using the Lebedev
rules, contrary to the product ones. Actually, even the expansion sizes are reduced to their quasi-
optimal size using the Lebedev rules, which has a bene�cial impact on the memory footprint, still
compared to the product rules.

However, even if the theoretical sizes of theM2M/L2L matrices are reduced using the Lebedev
rules compared to the product ones, the theoretical complexity of these operators is greater using the
Lebedev rules. Thanks to the block-diagonalization method, the application of these operators can
be accelerated and practically becomes as costly as the M2M/L2L evaluations using the product
Gauss-Legendre rules for small and mean integration orders.

To summarize, the cost of many the FMM operators (i.e. P2M/M2L/L2P) are lower using
the Lebedev rules rather than the product Gauss-Legendre rules thanks to the quasi-optimality of
the Lebedev rules. However, the cost of the M2M/L2L operators is not optimal using Lebedev
rules on the top tree levels. The problem is that this last cost dominates the computations for
large integration orders (i.e. at the top octree levels). Hence, discarding the full exploitation
of symmetries on these top tree levels, the Gauss-Legendre rules may be more e�cient than the
Lebedev ones. In the end, we may distinguish two regimes such that the Lebedev rules should lead
to more e�cient FMM operator applications on the �rst one and the product rules should be better
suited on the second one. Since our group theoretical approach allows to de�ne a fast method
to switch between Lebedev and product rules (see Sect. 6.4.3), an hybrid approach, combining
the Lebedev rules for small and mean integration orders (i.e. on the deepest levels) with block-
diagonalization of the M2M/L2L matrices and product rules for the highest levels should result
in a highly e�cient hf-fmm algorithm.
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The cost of the hierarchical methods for highly oscillatory kernels in the high-frequency regime is
quite important. In this chapter, we present a new FMM library based on polynomial interpolations
on equispaced grids and on a directional approach. The optimization of the operators of this library
is detailed and comparisons with another directional interpolation-based FMM library are provided.
These numerical experiments complement theoretical studies on the consistency of the proposed
method and the way of combining Fourier techniques with the 2d-tree symmetries.
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7.1 A new directional FMM based on equispaced interpola-

tion

In this section, we present the main high-level di�culties we face up when dealing with N -body
problems and oscillatory kernels in the high-frequency regime (Sect. 7.1.1). Then, to handle these
di�culties, we motivate the need of a new FMM library and the related high-level approach choices
(Sect. 7.1.2). The principle particle distributions and the speci�c HPC architecture we work on are
given in Sect. 7.1.3.

7.1.1 The high frequency challenge

The treatment of the high-frequency regime when dealing with oscillatory kernels with a FMM
involves advanced methods that impact the overall complexity: modi�cation of the MAC for kernel-
independent directional methods (see Sect. 4.2.2.2) and diagonalization of large matrix blocks for
kernel-explicit methods (see Sect. 2.2.4.3). The other kernel-independent alternatives are based
on algebraic compression or diagonalization of large blocks in the high-frequency regime (see for
instance [188]). The complexity of the kernel-explicit and non-directional methods strongly depends
on the particle distributions: from O (N) on uniform distributions to O

(
N2
)
on three-dimensional

highly non-uniform ones (see [174]). Because of the ability of the directional kernel-independent
methods to treat all types of particle distributions with the same overall complexity (see Sect.
4.2.2.2), this choice of approach seems promising for our applications. The directional methods
appear as an extension of the kernel-independent method for low-frequency kernels themselves (see
Sect. 4.2.2.4), meaning that the treatment of the low-frequency regime is straightforward. In addi-
tion, the capacity of considering general oscillatory kernels using a kernel-independent directional
approach makes it very attractive. We therefore decided to focus on a directional kernel-independent
approach.

Among the family of kernel-independent directional methods in more than one dimension, we
have two options: the formulation based on kifmm presented in [38, 94�96] (see Sect. 4.2.1) or its
adaptation to the interpolation-based FMM presented in [172�174] (see Sect. 4.2.2.4). Despite of
the e�ciency of kifmm in the low frequency regime, we opted for the interpolation-based approach
for the following reasons:

• the polynomial interpolation tool is simple and can be applied to any (asymptotically) smooth
kernel, without the need of potential theory;

• the compression scheme given in [96] is based on a random sampling of the wedges involved
in the directional MAC (see Sect. 4.2.2.2), meaning that the compression scheme somehow
depends on the MAC when using such compression.

The dfmm1 library implementing the directional method described in [172�174], the only one
we are aware of and which implements such a directional-interpolation-based FMM, is written
following a list-based approach (see Sect. 2.2.4.1) and a tree construction using MaxDepth (see
Sect. 2.2.1.2). The interpolation rules used in dfmm are Chebyshev rules (see Sect. 4.1.1.3).

7.1.2 Motivations

In the polynomial interpolation-based FMMs, the interpolation process is used in practice with a
fast evaluation scheme for the M2L operators (see Sect. 4.1.3). The authors of dfmm provide
in [173] a set of methods for accelerating the (pre)computation and the evaluation of the M2L
operators involved in their method. Each of these approaches is based on low-rank approxima-
tions. Among them, we are interested in the two best approaches: dfmm-IAblk (meaning Individual

1We will use this denomination since the code was named dfmm by the authors but one may keep in mind that
this denomination was already used for the method proposed in [94].
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Approximation with BLocKing and which is a combination of low-rank approximations and vector
stacking using symmetries for BLAS 3 applications, see App. D.2) and dfmm-SArcmp (for Sin-
gle Approximation with ReCoMPression and which corresponds to global low-rank approximations
with additional recompressions, see Sect. 4.1.3.4). Notice that the e�ciency of dfmm-SArcmp in
terms of application timings has to be considered with its high precomputation cost.

The low-rank approximation methods are based on a parameter controlling the precision of
the approximation which has to be tuned according to the interpolation rule. On the opposite,
the methods based on interpolation grids composed of equispaced nodes (see Sect. 4.1.4) for non-
oscillatory kernels, bene�ting from FFT techniques to express theM2L matrices in diagonal forms,
provide an e�cient precomputation step with low memory requirements and a fast M2L operator
evaluation. The precomputation step of a directional method being far more costly in a very high
frequency regime than its low-frequency counterpart due to the increasing size of the interaction
lists (see Sect. 4.2.2.2), the use of interpolation grids with equispaced nodes appears as a favorable
choice. In addition, since FFTs are exact up to rounding errors, no additional threshold is needed
to control the accuracy as in the low-rank methods. To our knowledge, there exists no directional-
based FMM using FFT techniques for the M2L operator precomputation and evaluation. Because
of the comparison results in [41, 64, 210] between the FFT techniques and low-rank methods, we
expect an important computational gain by introducing the FFT techniques in the directional
approach.

More precisely, the complexity of the application of such a diagonal M2L using the FFT-based
methods is O

(
(2L− 1)d

)
, where L denotes the one-dimensional interpolation order (this notation

will be widely used in the rest of this chapter). We provide in Tab. 7.1 a cost comparison of the
storage, (pre)computation and application of a single M2L operator between dfmm-IAblk and the
FFT-based techniques. dfmm-SArcmp does not bene�t from a precise precomputation complexity
analysis in the directional case, where the sizes of the interaction lists grow with the wavenumber.

dfmm-IAblk FFT-based
Precomputation O

(
r2Ld

)
O
(
d2d(2L− 1)dlog((2L− 1))

)
Memory footprint 2rLd (2L− 1)d

Application 2rLd (2L− 1)d

Table 7.1: Complexity comparison of steps involving a single M2L operator between dfmm-IAblk
and the FFT-based methods. L denotes the one-dimensional interpolation order, r the low-rank
approximation for dfmm-IAblk and d the dimension.

Since (2L − 1)d ≤ 2dLd, the application of a M2L using the FFT-based methods involves less
operations than a product by a low rank matrix with rank 2d−1, that is than the dfmm-IAblk
method with r = 2d−1 (which corresponds to a very small numerical rank in practice, associated
to very low targeted accuracies). However, one has to keep in mind that using BLAS (see App.
D.2) the matrix-vector products (dfmm-IAblk) are more e�cient (because of a better use of cache
memory) than vector-vector operations (FFT-based methods). Because of the vector stacking (see
App. D.2), dfmm-IAblk may actually compute matrix-matrix products instead of matrix-vector
products, depending on the particle distribution, which further increases the BLAS performance.
This means that a comparison in terms of �ops is not su�cient to represent the application timings
and that dfmm-IAblk bene�ts from the uniformity of the particle distribution. Nevertheless, as
the interpolation order L grows, the required rank r to preserve the targeted overall accuracy of
the FMM using dfmm-IAblk increases and the theoretical complexity of the FFT-based methods
quickly becomes better than the one of low-rank approaches. In addition, relying on the modern
implementations of the FFT algorithm (such as in FFTW [107]), the precomputation step in the
FFT-based methods can be e�ciently performed. Our library thus relies on such FFT techniques
for the e�cient treatment of the M2L operators.

Finally, since we want to be able to apply our code to several non-uniform particle distributions,



Chapter 7 145

Figure 7.1: Particle distributions. Volume-uniform cube (left), surface-uniform sphere (right).

we choose to construct the trees with the Ncrit criterion (see Sect. 2.2.1.2). Indeed, this enables
us to naturally adapt to the non-uniformity of the particle distributions (see Sect. 2.2.4.2). We will
then use a relevant adaptive FMM strategy.

To summarize, on one hand the FFT-based methods on equispaced grids provide highly e�cient
performances (especially for the precomputation step), but these have not been investigated in a
directional framework. Moreover they discard the need for a threshold controlling the error of the
low-rank approximations. On the other hand the directional approach o�ers a kernel-independent
way of handling the oscillations in the high-frequency regime with a linearithmic complexity for
any particle distribution. We thus want to implement a directional-interpolation-based FMM using
these FFT-based methods for the M2L operators treatment. We expect these choices to have
important impacts on the performances.

To realize this new method, we developed our code, named defmm for "Directional Equispaced
interpolation-based Fast Multipole Method". Our new directional FMM library uses quite di�erent
algorithmic choices than the implementations we are aware of. This chapter is dedicated to the
theory on which our library is based, to its algorithmic design, to its implementation and to its
optimization. To be used in practice, the consistency of the interpolation based FMM using grids
with equispaced nodes has to be veri�ed. This is the purpose of Sect. 7.2. In Sect. 7.3 are presented
and motivated our design choices for defmm. We then provide in Sect. 7.4 how the symmetries are
exploited in defmm. In Sect. 7.5 are presented several optimizations that we have introduced in
defmm. We �nally provide in Sect. 7.6 performance results of defmm and a comparison with the
other directional interpolation-based FMM library we know, namely dfmm.

7.1.3 Particle distributions and test environment

To validate our code, we use a set of test cases presented here, starting from an uniform particle
distribution in a cube with 10077696 elements. This corresponds to a volume distribution. This
test case is referred to as the cube or as the uniform cube in the rest of this chapter.

The second test case we focus on is an almost uniform distribution over the surface of the sphere
with 10140000 elements, in the sense that the particles are sampled over the unit sphere with no
concentration around particular points. By considering such a distribution, the goal is to validate
our method on surface meshes, i.e. on the distributions arising in the BIE context (see Sect. 2.1).
Such a test case has been used to validate other FMM library, such as in [143]. This test case is
referred to as the sphere.

These two distributions are depicted on Fig. 7.1.
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The defmm library relies on other libraries widely used in an HPC context and that are listed
in the following:

• BLAS for the matrix-vector and matrix-matrix products. To be more precise, we run our
tests using the MKL (Math Kernel Library Version 2019.0.3).

• FFTW for the FFT computations. In practice, we use the MKL wrapper for FFTW3.

These are very standard dependencies in scienti�c computing. The defmm library will be compiled
with:

• g++ (Version 8.2.0) with �ags "-mprefer-vector-width=512 -Wall -O3 -g -�ast-math -mfma
-fno-trapping-math -fopt-info-optall -march=native -mtune=native -fverbose-asm -fopenmp-
simd -std=c++11".

• icpc (C++ Intel compiler, version 19.1.0.166) with �ags "-Ofast -qopenmp-simd -fma -xhost -
qopt-report=5 -qopt-report-phase=vec -qopt-zmm-usage=high -fPIC -g -DMKL_ILP64 -m64
-lpthread -lm -ldl -std=c++11".

The numerical results we present are obtained on an Intel Xeon Gold 6152 CPU with 384 GB of
RAM.

7.2 Consistency

According to the numerical results given in [41,64,210], the FFT-based techniques using interpola-
tion equispaced grids numerically lead to good accuracies, with a decreasing error as the interpola-
tion order increases. However, because of the Runge phenomenon (see Sect. 4.1.1.2), this choice of
grids is known to make the interpolation diverging in many applications, even when dealing with
analytic functions. This problem was mentioned in [41]. In this section, we verify the consistency
of the interpolation using equispaced grids in a FMM procedure for asymptotically smooth kernels.
In Sects. 7.2.1, 7.2.2 and 7.2.3, the consistency proof is provided and in Sect. 7.2.4, the numerical
stability of the method is discussed. We then give in Sect. 7.2.5 a few details on the way the
consistency proof is extended to oscillatory kernels.

7.2.1 Main results

Because the FFT-based techniques for the M2L operators are only applied to radial kernels, we
consider a radial kernel G and two cells t and s such that Gu(x̂, ŷ) := G(x,y) with u := ctr(t) −
ctr(s), x̂ := x−ctr(t), ŷ := y−ctr(s). Suppose that t̂ = ŝ = [−a, a]d, where ĉ := {z−ctr(c) | z ∈ c}
for any cell c. Hence, t̂× ŝ = [−a, a]2d.

The consistency proof is based on Thm. 7.2.1, linking the MAC with the consistency of the
interpolation process using equispaced grids.

Theorem 7.2.1. Let A be a MAC such that

A(t, s) = 1⇒ Gu is analytic in each variable at any point in [−a, a]

with a convergence radius R such that R >
2a

e
.

The Lagrange interpolation of Gu on t × s using L equispaced points in each variable, denoted by
It×sL [Gu], veri�es

lim
L→+∞

∣∣∣∣It×sL [Gu]−Gu

∣∣∣∣
L∞(t×s) = 0

and the convergence is uniform.

The norm in Thm. 7.2.1 is de�ned as in Def. 7.2.1.
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2a R

Figure 7.2: Target (blue) and source (red) cells with corresponding L∞ balls (dashed lines) with
radius strictly greater than (1 + 2

e )a and strictly smaller than 2a.

De�nition 7.2.1. Let f ∈ C∞(t× s). The L∞(t× s) norm of f is de�ned by∣∣∣∣f ∣∣∣∣
L∞(t×s) = sup

z∈t×s
|f(z)|.

In the FMMs using equispaced interpolation grids presented in [41, 42, 64, 188, 210], the chosen
MAC is the strict MAC (see Sect. 2.2.4.1) of the uniform FMM that ensures, for two cuboid cells
with side length 2a along each axis:

∀ R ∈ [0, a), Gu is analytic on B∞(ctr(t), a+R)×B∞(ctr(s), a+R)

with B∞(z, r) := {v ∈ Rd | ||v− z||∞ ≤ r} the L∞ ball of radius r centered in z (see Fig. 7.2). We
can then provide the following corollaries of Thm. 7.2.1.

Corollary 7.2.1. For any r such that (1 + 2
e )a < r < 2a, we have:[

A(t, s) = 1⇒ Gu analytic on B∞(ctr(t), r)×B∞(ctr(s), r)

]
⇒
[
lim

L→+∞

∣∣∣∣It×sL [Gu]−Gu

∣∣∣∣
L∞(t×s) = 0

]
.

Notice that [0, 2a
e ) ⊂ [0, a) (see Fig. 7.2). This means that the assumptions of Thm. 7.2.1 are

veri�ed in practice using the strict MAC (see 2.2.4.1) on 2d-trees.

Remark 7.2.1. Since the adaptive MAC (see Sect. 2.2.4.2) is such that two cells with a zero
distance (i.e. sharing at least a point) are not well-separated, the result is also valid for such MAC
on the same kernels. Because the strict MAC is the worst case for the proof of Thm. 7.2.1, we will
consider this MAC in the rest of this section.

Corollary 7.2.2. Let A be the strict MAC. Then:[
A(t, s) = 1

]
⇒
[
lim

L→+∞

∣∣∣∣It×sL [Gu]−Gu

∣∣∣∣
L∞(t×s) = 0

]
.

The presented results can be exploited in numerical methods only if the convergence is fast. At
this stage, we have not discussed the speed of this convergence. To do so, we have to provide an
e�ective proof of Thm. 7.2.1.

7.2.2 Preliminary results

The sketch of the proof of Thm. 7.2.1 is quite simple. The main idea consists in combining
one-dimensional convergence estimates with the interpolation error results provided in [175]. Our
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convergence proof di�ers from the one of [103, 174] because we cannot use the properties of the
Chebyshev grids, which forces us to provide �ner estimates, explicitly based on the analytic property
of the interpolated function. We start by giving the theorem we are using to exploit one-dimensional
estimates together to obtain an error estimate for the product multivariate interpolation. We denote
by C∞(Ω) the space of multivariate functions f with bounded derivatives ∂βf := ∂β1f...∂β2d f on

Ω, ∀β ∈ N2d such that
2d
max
k=1

βk ≤ L for any domain Ω ⊂ R2d.

Theorem 7.2.2. ( [175] Thm. 2.1) For f ∈ C∞([−a, a]2d), the product interpolation with the
same one-dimensional rule in each variable is bounded in [−a, a]2d by∣∣∣∣∣∣∣∣f − I [−a,a]2d

L [f ]

∣∣∣∣∣∣∣∣
L∞([−a,a]2d)

≤
∑

α=(α1,...,α2d)∈{0,1}2d
||α||∞=1

ωᾱL

∣∣∣∣∣∣∂αLf ∣∣∣∣∣∣
L∞([−a,a]2d)

where αL = (α1L, ..., α2dL), ᾱ :=

2d∑
k=1

αk and ωL := 1
L!

∣∣∣∣∣∣ L−1∏
k=0

(· − xk)
∣∣∣∣∣∣
L∞([−a,a])

, xk being the kth

interpolation point of the one-dimensional rule.

Remark 7.2.2. The results that can be found in [175] are quite more general: they can be applied
to any cuboid and to di�erent interpolation orders in each variable and to a larger class of functions
(namely with essentially bounded weak derivatives). For the sake of simplicity, we restrict ourselves
to (2d)-cubes and to a same interpolation order in each direction in the scope of this section. Since
the kernels we are considering are in C∞(Ω) for any domain Ω that do not contains the origin,
which holds on any well-separated sets, the hypotheses we provided are su�cient.

In the particular case we are interested in (i.e. equispaced grids), the constant ωL can be
bounded using the following lemma.

Lemma 7.2.1. Let {xk := −a + 2ak/(L − 1) | k ∈ [[0, L − 1]]} ⊂ [−a, a] an interpolation grid of

equispaced point. We have ωL ≤
(

2a
L−1

)L
/(4L).

Proof. Let x ∈ [−a, a].∣∣∣ L−1∏
j=0

(x− xj)
∣∣∣ = (2a)L

∣∣∣ L−1∏
j=0

( x
2a
− xj

2a

) ∣∣∣
= (2a)L

∣∣∣ L−1∏
j=0

(
x

2a
− −a+ 2aj/(L− 1)

2a

) ∣∣∣
= (2a)L

∣∣∣ L−1∏
j=0

(
x− a

2a
− j

(L− 1)

) ∣∣∣
and we have y :=

(
x−a
2a

)
∈ [0, 1]. This leads to∣∣∣ L−1∏

j=0

(x− xj)
∣∣∣ ≤ (2a)L

∣∣∣ L−1∏
j=0

(
y − j

(L− 1)

) ∣∣∣
≤
(

2a

L− 1

)L ∣∣∣ L−1∏
j=0

y(L− 1)− j
∣∣∣.

Because y(L− 1) ∈ [0, (L− 1)],
∣∣∣ L−1∏
j=0

y(L− 1)− j
∣∣∣ is maximal for y ∈ (0, 1/(L− 1)). Majoring the

product by a product of distances, choosing y ∈ (0, 1/(L−1)) for the two �rst terms of the product
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and taking y = 0 for all the other terms, we get

L−1∏
j=0

∣∣∣y(L− 1)− j
∣∣∣ ≤ |y||y − 1|

L−1∏
j=2

j ≤ 1

4

L−1∏
j=2

j ≤ (L− 1)!

4

which implies that

ωL ≤
1

L!

(
2a

L− 1

)L
(L− 1)!/4 ≤

(
2a

L− 1

)L
/(4L).

We now want to bound the partial derivatives of the interpolated function. This is the purpose
of the following lemma.

Lemma 7.2.2. If f is analytic in all its variables at any point of [−a, a] with a convergence radius
R > 0, we have

||∂αLf ||∞ ≤
C

r2d

(
L!

rL

)ᾱ
with 0 < r < R, ᾱ :=

2d∑
k=1

αk, C ∈ R∗+ being a constant independent of L and α being de�ned as in

Thm. 7.2.2.

Proof. Since f is analytic in all its variables, we can apply the Cauchy integral formula (see Thm.
B.2.1), allowing us to write:

f(p) =

(
1

2πi

)2d ∫
Γ1

...

∫
Γ2d

f(z)

(z1 − p1)...(z2d − p2d)
dz1...dz2d

where Γj is a complex closed path encompassing [−a, a] and verifying on any pj ∈ Γj , R >
min

z∈[−a,a]
||z − pj ||∞ ≥ r. We thus have:

∣∣∣∣∣∣∂αLf(p)
∣∣∣∣∣∣
∞
≤ (2π)

−2d
∫

Γ1

...

∫
Γ2d

f(z)
∣∣∣∣∣∣∂αL 1

(z1 − p1)...(z2d − p2d)

∣∣∣∣∣∣
∞
dz1...dz2d

≤ (2π)
−2d |Γ1|...|Γ2d|

(
sup

z∈Γ1×...×Γ2d

∣∣∣f(z)
∣∣∣) ∣∣∣∣∣∣∂αL 1

(z1 − p1)...(z2d − p2d)

∣∣∣∣∣∣
∞
.

The term
(
supz∈Γ1×...×Γ2d

|f(z)|
)
is bounded due to the analyticity of f on a neighborhood of

[−a, a]2d encompassing the Γj 's with a convergence radius equal toR, meaning that ∃M(Γ1, ...,Γ2d) ∈
R+∗ such that, denoting by C(Γ1, ...,Γ2d) := (2π)

−2d |Γ1|...|Γ2d|M(Γ1, ...,Γ2d), where |Γj | denotes
the length of the path Γj , j ∈ [[1, 2d]],∣∣∣∣∣∣∂αLf(p)

∣∣∣∣∣∣
∞
≤ C(Γ1, ...,Γ2d)

∣∣∣∣∣∣∂αL 1

(z1 − p1)...(z2d − p2d)

∣∣∣∣∣∣
∞

(Since αk = 0, 1) ≤ C(Γ1, ...,Γ2d)

2d∏
k=1

(
L!αk

∣∣∣∣∣∣(zk − pk)
∣∣∣∣∣∣−Lαk−1

∞

)

≤ C(Γ1, ...,Γ2d)

2d∏
k=1

(
L!αkr−Lαk−1

)
︸ ︷︷ ︸

=( L!

rL
)
ᾱ
/(r2d)

where ᾱ :=

2d∑
k=1

αk.
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7.2.3 Proof of the main theorem

It is now possible to give a proof for Thm. 7.2.1.

Proof. Following Lem. 7.2.1 and Thm. 7.2.2, we have

∣∣∣∣∣∣It×sL [Gu]−Gu

∣∣∣∣∣∣
L∞([−a,a]2d)

≤
∑

α=(α1,...,α2d)∈{0,1}2d
||α||∞=1

(
2d∏
k=1

ωαkL

)∣∣∣∣∣∣∂αLGu

∣∣∣∣∣∣
L∞([−a,a]2d)

≤
∑

α=(α1,...,α2d)∈{0,1}2d
||α||∞=1

2d∏
k=1

((
2a

L− 1

)L
/(4L)

)αk ∣∣∣∣∣∣∂αLGu

∣∣∣∣∣∣
L∞([−a,a]2d)

which becomes, thanks to Lem. 7.2.2

∣∣∣∣∣∣It×sL [Gu]−Gu

∣∣∣∣∣∣
L∞([−a,a]2d)

≤ C
∑

α=(α1,...,α2d)∈{0,1}2d
||α||∞=1

2d∏
k=1

((
2a

L− 1

)L
L!

4rLL

)αk
r−1.

Now, by applying the Stirling inequality L! ≤ e−(L−1)LL+1/2, one obtains

∣∣∣∣∣∣It×sL [Gu]−Gu

∣∣∣∣∣∣
L∞([−a,a]2d)

≤ C
∑

α=(α1,...,α2d)∈{0,1}2d
||α||∞=1

2d∏
k=1

((
2a

L− 1

)L
e−(L−1)LL+1/2

4rLL

)αk
r−1

≤ C
∑

α=(α1,...,α2d)∈{0,1}2d
||α||∞=1

2d∏
k=1

((
2a

L− 1

)L
eLL+1/2

4(er)LL

)αk
r−1

≤ C
∑

α=(α1,...,α2d)∈{0,1}2d
||α||∞=1

2d∏
k=1

((
2a

re

)L(
L

L− 1

)L
e

4
√
L

)αk
r−1.

For L ≥ 2, we have
(

L
L−1

)L
≤ 4, which allows to write

∣∣∣∣∣∣It×sL [Gu]−Gu

∣∣∣∣∣∣
L∞([−a,a]2d)

≤ C
∑

α=(α1,...,α2d)∈{0,1}2d
||α||∞=1

2d∏
k=1

((
2a

re

)L
e√
L

)αk
r−1

≤ Cr−2d
∑

α=(α1,...,α2d)∈{0,1}2d
||α||∞=1

2d∏
k=1

((
2a

re

)L
e√
L

)αk
︸ ︷︷ ︸

=( 2a
re )

ᾱL
(

e√
L

)ᾱ

using ᾱ =

2d∑
k=1

αk. There is a �nite number of terms in this sum depending only on the dimension:

22d − 1 terms (because α = (0, ..., 0) does not verify ||α||∞ = 1). This estimate tends to zero when

L tends to in�nity if 2a
re < 1. Since r < R, this is veri�ed if 2a

e < R. Indeed,
(

e√
L

)ᾱ
≤
(
e√
2

)2d

since we assumed that L ≥ 2. In addition, each
(

2a
re

)ᾱL
can be majored by

(
2a
re

)L
since 2a

re < 1. We



Chapter 7 151

then have ∣∣∣∣∣∣It×sL [Gu]−Gu

∣∣∣∣∣∣
L∞([−a,a]2d)

≤
(
Cr−2d(22d − 1)

(
e√
2

)2d
)

︸ ︷︷ ︸
Does not depend on L

(
2a

re

)L
︸ ︷︷ ︸
→

L→+∞
0

.
(7.1)

This proof has a geometric interpretation. In the inequality 7.1, the term
(

2a
re

)L
somehow

corresponds to a MAC: a refers to the radius of an interacting cell (seen as a L∞ ball) and r is
related to the distance between the interacting cells. The greater this distance, the greater r and
the better this estimate. Another information we get from the inequality 7.1 is that the convergence
should be geometric in the one-dimensional interpolation order. This can be understood from the
viewpoint of the adaptive MAC (see Sect. 2.2.4.2). Considering θ := rad(t)+rad(s)

dist(t,s) , the estimate 7.1

somehow indicates that the error of the interpolation process is O
((

θ
e

)L)
.

7.2.4 Behavior at in�nity with �oating point arithmetic

There is still a problem arising when using �oating point arithmetic and equispaced grids, even if the
theoretical convergence is ensured. The ill-conditioning of the interpolation process on equispaced
grids may cause an exponential ampli�cation of rounding errors around the boundaries of the
interpolation domain (see [181,192]). We then cannot expect a numerical convergence for in�nitely
large orders. However, the question that remains is the following: for a given �oating-point precision,
above which interpolation order do the rounding errors cause divergence of the process?

We do not have a precise analysis of this error. Nevertheless, we present in Fig. 7.3 a numerical
experiment that links interpolation on equispaced grids on well-separated sets and arithmetic preci-
sion. The numerical experiments illustrate our theoretical result and the ill-conditioning when the
interpolation order becomes too large for the chosen arithmetic precision. To be more precise, the
interpolation converges numerically up to a certain point, and then diverges in practice due to the
accumulation of rounding errors. In practice, the interpolation order has to be chosen according
to these considerations. Our applications usually require between 10−4 and 10−12 relative errors,
which are correctly handled by the double precision format.

7.2.5 Oscillatory kernels

When the strict (or adaptive) MAC is used in the high-frequency regime, large degree polynomial
interpolation are required to recover a prescribed accuracy [52]. This is a consequence of the
di�culty of interpolating the complex exponential function for large arguments [202]. As explained
in Sect. 7.2.4, too large orders cause numerical stability issues and would become too costly to be
exploited in a fast method anyway. A directional approach [47, 50, 52, 94�96, 174] tackles this issue
by combining directional approximations and speci�c MAC such that the modi�ed interpolated
kernel does not oscillate (see Sect. 4.2.1). In our case, this means that low order polynomials can
still be used in the high-frequency regime when these hypotheses are veri�ed. Thus, the numerical
stability issue on large interpolation orders is not a problem. The directional MAC (see Sect.
4.2.2.2) used in this context also veri�es the assumptions on the results provided in Sect. 7.2.1
and the interpolation of the directionally modi�ed kernel on equispaced grids is correctly computed
under these assumptions.

7.3 Design choices

In this section, we discuss the design choices and the high-level algorithmic approaches we opted
for in defmm and their motivations. As opposed to dfmm that uses low-rank approximations
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Figure 7.3: Relative maximum interpolation error of the one-dimensional kernel 1
|x−y| on well-

separated sets according to the strict MAC (see Sect. 2.2.4.1) with respect to the interpolation
order for di�erent �oating-point precisions.

to e�ciently evaluate the M2L operators, we opted for FFT techniques in defmm, modifying
the M2L operator expression (in the Fourier domain, see Sect. 4.1.4). The expression of the
other operators actually remembers the de�nitions of the dfmm operators, except that we consider
tensorized equispaced grids instead of tensorized Chebyshev ones. In Sect. 7.3.1, we provide the
description of the procedures applying the FMM operators in defmm. In Sect. 7.3.2, we present
the tree structure we use. In Sect. 7.3.3 are given the explicit tree traversals exploited in defmm
and in Sect. 7.3.4 the tree construction algorithm is provided. In Sect. 7.3.5, we brie�y detail how
the directions are computed in our code. Finally, in Sect. 7.3.6 we described how the two frequency
regimes communicate in our method.

7.3.1 defmm operators

As opposed to the FMMs in the low-frequency regime, the directional FMM associates to each
high-frequency cell multiple expansions, themselves associated to di�erent directions. Thanks to
the direction tree (see Sect. 4.2.2.1), during the downward or upward passes, a given directional
expansion associated to a cell c with direction u only communicates in the tree with directional
expansions in Father(c) associated to u′ ∈ Sons(u) and the directional expansions in Sons(c)
associated to Father(u). Such links between expansions according to the direction tree are depicted
in Figs. 7.4 and 7.5.

There are di�erent ways for assembling the directional multipole expansions (and di�erent ways
for evaluating the local expansions): one may perform a single upward pass, assembling all the
directional expansions of a given cell when all the directional expansions of its sons are known; or
one may assemble a directional multipole expansion in a cell once the needed directional expansions
of its sons are known (for instance, compute the directional expansion (R, d001) in Fig. 7.5 when
(A, d00),(B, d00),(C, d00),(D, d00) are computed but not (A, d01),(B, d01),(C, d01),(D, d01)). The
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Figure 7.4: Quadtree splitting of [−1, 1]2 (right) and associated sets of directions (left) according
to the high-frequency level.

second approach requires the upward pass to traverse the source tree according to the direction
tree. On the opposite, the �rst approach does not impact the source tree traversal but the routines
called during this upward pass, requiring to treat multiple directional expansions at each call. We
decided to implement the �rst approach because this provides the same form of the upward pass in
both the low- and high-frequency regimes. Hence, the de�nitions of the directional interpolation-
based FMM operators as provided in Sect. 4.2.2.4 have to be further adapted into routines achieving
this goal.

Since we use FFT techniques for the fast evaluation of the M2L operators (see Sect. 7.1.2),
the multipole expansions used in Sect. 4.2.2.4 need to be transformed in the Fourier domain (and
the local expansions in the Fourier domain to be transformed back) by applying Fourier matrices.
In Sect. 7.3.1.1 we present two new operators that are introduced in defmm to perform these
applications of Fourier matrices. In Sect. 7.3.1.2 are explicitly described the routines applying the
FMM operators. Finally, in Sect. 7.3.1.3, we focus on the treatment of the M2L operators.

7.3.1.1 The M2F and F2L operators

In the FFT-based methods for the non-oscillatory kernels interpolated on equispaced grids (see
Sect. 4.1.4) as presented in [41], each M2M or P2M application is followed by a FFT (i.e. the
fast application of a Fourier matrix) and each L2L or L2P application is preceded by another
FFT. Actually, these FFTs were included in the P2M, M2M, L2L and L2P applications but are
independent of the (re)interpolation process.

Hence, to produce a general implementation of the directional interpolation-based FMM al-
lowing to easily add other fast methods and for low-level optimizations in the speci�c context of
the equispaced interpolation grids (see Sect. 7.5.6.1), we decided to separate the reinterpolation
process (i.e. the P2M, M2M, L2L, L2P operators) from the conversion of the expansions into
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Figure 7.5: Tree representations of the cells in Fig. 7.4 (top right) and of non-dashed directions
of Fig. 7.4 using the same colors (top left). Links between directional expansions according to the
tree structures (bottom). There is one (directional) expansion per circle (that is per cell-direction
pair at the same high-frequency level as in Fig. 7.4). Dashed lines link together the expansions
associated to a same cell.

the Fourier domain (or into any other format allowing a fast M2L evaluation). This results in two
new operators: the M2F and F2L ones (Multipole-to-Fourier and Fourier-to-Local). Since we
based our method on FFT techniques on equispaced grids, the M2F operator applies on a source
cell and transforms its multipole expansion into a multipole expansion in the Fourier domain. This
operator has to be applied after theM2M operator on this cell. In the same way, the F2L operator
transforms a local expansion in the Fourier domain into a local expansion in the real domain and
has to be performed before the evaluations of the local expansion (i.e. before the L2L evaluations
on the corresponding cell).

Due to the wideband formulation in our approach, to the low- and high-frequency regime tran-
sitions, and to low-level implementation considerations, our FMM library defmm is structured in
a speci�c way. Like for the other operators, two variants of the M2F and F2L operators exist in
defmm, depending on the frequency regime. In Fig. 7.6 is depicted a schematic view of the links
between all these operators.

7.3.1.2 Operator procedures

The procedures realizing the application of the operators in Fig. 7.6 are provided in Algs. 7-20.
They use the FMM operators of the polynomial interpolation-based FMM described in Sect. 4.1.2.1
and their directional counterparts provided in Sect. 4.2.2.4.

The de�nition of the high-level procedure applying aP2M operator on a cell in the low-frequency
regime directly follows the de�nition of this P2M as given in Sect. 4.1.2.1. This is detailed in Alg.
7.
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Figure 7.6: Links between expansions and operators in defmm. M: Multipole expansion, L: Local
expansion, �M: Multipole expansion in the Fourier domain, �L: Local expansion in the Fourier domain,
P: particles. An expansion Di, D ∈ {M,L, M̃, L̃}, corresponds to an expansion at level depth− i,
with depth the depth of the tree. The dashed red line corresponds to the boundary between high-
and low-frequency regimes. The names of the high-frequency variants of the operators are preceded
by �hf�. In order of application: construction and aggregation of multipole expansions (bottom-up
blue and orange arrows); conversion of the multipole expansions in the Fourier domain (left-right
gray arrows fromMi's to M̃i's, cell-cell interactions (horizontal magenta arrows forM2L operators
and black arrow for P2P one); conversion of local expansions in the Fourier domain into local ones
(gray arrows between L̃i's and Li's); forwarding and evaluations of local expansions (top-down blue
and orange arrows).

Algorithm 7 P2M. q|s refers to the restriction of the vector of charges to the particles of s. M[s]
refers to the multipole expansion in s.

1: // Input : cell s ∈ S
2: // Output: ∅
3: procedure P2M(s)
4: M[s] = P2M[s] · q|s . Assemble local expansion from charges and particles.
5: . The P2M operator applied on s is de�ned as in Sect. 4.1.2.1.
6: end procedure

In the high-frequency regime, things are a bit more complicated. We want to determine on-
the-�y which level of the direction tree D (see Sect. 4.2.2.1) is associated to a given cell (i.e. the
high-frequency level indicated in Fig. 7.4). This is performed by the function hflvl : H → N+,
H = T ,S , that associates to each cell the corresponding direction tree level plus one (since the
level of the root of a tree is zero and since the �rst high-frequency level corresponds to the root
of D). Once this level is known, directional P2M operators are applied to the charges for all the
directions associated to the considered high-frequency leaf. Such application is described in Alg. 8.
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Algorithm 8 hfP2M. q|s refers to the restriction of the vector of charges to the particles of s.
Mu[s] refers to the multipole expansion in s associated to the direction u.

1: // Input : cell s ∈ S
2: // Output: ∅
3: procedure hfP2M(s)
4: for u ∈ Dhflvl(s) do . For each direction associated to Level(s)...
5: Mu[s] = P2Mu[s] · q|s . ... assemble the directional multipole expansion.
6: . The P2M operator applied on s with
7: . direction u is de�ned as in Sect. 4.2.2.4
8: end for
9: end procedure

In Algs. 9 and 10, we provide the procedures evaluating the M2M operators in the low- and
high-frequency regimes, based on the same ideas than the P2M operators, except that the incoming
multipole expansions are themselves directional, meaning that they have to be correctly selected.
Thanks to the way the direction tree was constructed in Sect. 4.2.2.1, this can be easily done.

Algorithm 9 M2M. M[s′] refers to the multipole expansion in s′ ∈ Sons(s). M[s] refers to the
multipole expansion in s.

1: // Input : cell s ∈ S , cell s′ ∈ Sons(s)
2: // Output: ∅
3: procedure M2M(s, s′)
4: M[s]+ = M2M[s, s′] · M[s′] . The result is added, not only computed!
5: end procedure

Algorithm 10 hfM2M. Mv[s
′] refers to the multipole expansion in s′ ∈ Sons(s) with direction

v. Mu[s] refers to the multipole expansion in s with direction u.

1: // Input : cell s ∈ S , cell s′ ∈ Sons(s)
2: // Output: ∅
3: procedure hfM2M(s, s′)
4: for u ∈ Dhflvl(s) do
5: Mu[s]+ = M2Mu[s, s′] · Mpred(u)[s

′] . pred(u) is the father of u
6: . in the direction tree D
7: end for
8: end procedure

Recalling that, for any z = (z1, ..., zd) ∈ Rd, |z|∞ := max
i=1,...,d

|zi|, the M2F operators in the low-

and high-frequency regimes can be written as in Algs. 11 and 12 respectively. Their de�nition use
the tensorized structure of the interpolation grids G (with the same order along each axis, that is
G = Hd, with H a one-dimensional grid composed of L equispaced nodes) and the representation
of the multipole expansions as applications from G to C. Once again, the high-frequency algorithm
derives from the low-frequency one, only requiring a simple loop over the directions (since the
Fourier matrix does not depend on the direction).
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Algorithm 11 M2F. M[s] refers to the multipole expansion in s, M̃[s] is the Fourier multipole
expansion in s. F refers to the d-dimensional Fourier matrix of size (2L − 1)d × (2L − 1)d. H :=
{y1, ..., yL} is the interpolation grid generating the grid G in s by means of tensorization.

1: // Input : cell s ∈ T
2: // Output: ∅
3: procedure M2F(s)
4: Let p ∈ C(2L−1)d

5: for k = (k1, ..., kd) ∈ [[1, 2L− 1]]d do

6: pk :=

{
M[s]((yk1

, ..., ykd)) if |k|∞ ≤ L
0 otherwise

. Zero-padding of multipole expansion

7: end for
8: M̃[s] = F · p . Apply Fourier matrix (using FFT)
9: end procedure

Algorithm 12 hfM2F. Mu[s] refers to the multipole expansion in s associated to the direction
u, M̃u[s] is the Fourier multipole expansion in s associated to the same direction. F refers to the
d-dimensional Fourier matrix of size (2L − 1)d × (2L − 1)d. H := {y1, ..., yL} is the interpolation
grid generating the grid G in s by means of tensorization.

1: // Input : cell s ∈ T
2: // Output: ∅
3: procedure hfM2F(s)
4: for u ∈ Dhflvl(s) do
5: Let p ∈ C(2L−1)d

6: for k = (k1, ..., kd) ∈ [[1, 2L− 1]]d do

7: pk :=

{
Mu[s]((yk1

, ..., ykd)) if |k|∞ ≤ L
0 otherwise

8: end for
9: M̃u[s] = F · p
10: end for
11: end procedure

As we mentioned in Sect. 4.2.2.4, theM2L operator in the (directional) polynomial interpolation-
based FMM does not depend on the directionality. Actually, a high-frequency procedure is still
needed in practice since the operators have di�erent types of arguments depending on the frequency
regime: non-directional or directional (Fourier) local/multipole expansions. In the high-frequency
regime, the source multipole expansion has to be associated to the same direction in D than the
target local expansion to which is added the result of theM2L operator application. This selection
can be done outside the M2L operator application. In the low-frequency regime, only a single
expansion exists in each cell, so there is no choice to do. The corresponding procedures are given
in Algs. 13 and 14.
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Algorithm 13 M2L. M̃[s] is the Fourier multipole expansion in s, L̃[t] is the Fourier local expan-
sion in t.
1: // Input : cells s ∈ T , t ∈ T such that MAC(t, s) = 1
2: // Output: ∅
3: procedure M2L(t, s)
4: Dt,s := M2L Fourier diagonal matrix between t and s
5: for z ∈ [[1, 2L− 1]]d do . Perform the Hadamard product
6: L̃[t](z)+ = Dt,s(z)M̃[s](z)
7: end for
8: end procedure

Algorithm 14 hfM2L. u := min
v∈Dhflvl(s)

∣∣∣v − ctr(t)− ctr(s)
|ctr(t)− ctr(s)|

∣∣∣ M̃u[s] is the Fourier multipole ex-

pansion in s associated to the direction u, L̃u[t] is the Fourier local expansion in t associated to the
same direction.
1: // Input : cells s ∈ T , t ∈ T such that MAC(t, s) = 1
2: // Output: ∅
3: procedure M2L(t, s)
4: Dt,s := M2L Fourier diagonal matrix between t and s
5: for z ∈ [[1, 2L− 1]]d do
6: L̃u[t](z)+ = Dt,s(z)︸ ︷︷ ︸

Does not depend on u

M̃u[s](z)

7: end for
8: end procedure

The F2L operators are obtained by taking the hermitan transpose of the matrix representing
the M2F operators, i.e. applying inverse FFTs and reversing the zero-padding, as presented in
Algs. 15 and 16.

Algorithm 15 F2L. L[t] refers to the local expansion in t, L̃[t] is the Fourier local expansion in t.
F refers to the d-dimensional Fourier matrix of size (2L− 1)d × (2L− 1)d. H := {x1, ..., xL} is the
interpolation grid generating the grid G in t by means of tensorization.

1: // Input : cell t ∈ T
2: // Output: ∅
3: procedure F2L(t)
4: Let p ∈ C(2L−1)d

5: p = F∗ · L̃[t] . Apply inverse Fourier matrix through inverse FFT
6: for k = (k1, ..., kd) ∈ [[1, L]]d do
7: L̃[t]((xk1

, ..., xkd)) := pk . Reverse zero-padding
8: end for
9: end procedure
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Algorithm 16 hfF2L. Lu[t] refers to the local expansion in t associated to the direction u, L̃u[t]
is the Fourier local expansion in t associated to the same direction. F refers to the d-dimensional
Fourier matrix of size (2L− 1)d × (2L− 1)d. H := {x1, ..., xL} is the interpolation grid generating
the grid G in t by means of tensorization.

1: // Input : cell t ∈ T
2: // Output: ∅
3: procedure hfF2L(s)
4: for u ∈ Dhflvl(t) do
5: Let p ∈ C(2L−1)d

6: p = F∗ · L̃u[t] . Apply inverse Fourier matrix through inverse FFT
7: for k = (k1, ..., kd) ∈ [[1, L]]d do
8: L̃u[t]((xk1 , ..., xkd)) := pk . Reverse zero-padding
9: end for
10: end for
11: end procedure

The L2L operators being the adjoint operators of the M2M ones and the P2L operators being
the adjoint operators of the P2M ones, we directly obtain the de�nition of the corresponding
procedures, that are listed in Algs. 17, 18, 19 and 20. The only di�erence with the already
presented algorithms is that the directional expansions are aggregated together during the high-
frequency L2L operators application procedures, according to the links in the direction tree. This
leads to two loops instead of one when looping over the directions in the high-frequency L2L and
L2P operators.

Algorithm 17 L2L. L[t′] refers to the local expansion in t′ ∈ Sons(t). L[t] refers to the local
expansion in t.

1: // Input : cell t ∈ T , cell t′ ∈ Sons(t)
2: // Output: ∅
3: procedure L2L(t′, t)
4: L[t′]+ = L2L[t′, t] · L[t]
5: end procedure

Algorithm 18 hfL2L. Lv[t′] refers to the local expansion in t′ ∈ Sons(t) with direction v. Lu[t]
refers to the local expansion in t with direction u.

1: // Input : cell t ∈ T , cell t′ ∈ Sons(t)
2: // Output: ∅
3: procedure hfL2L(t′, t)
4: for u ∈ Dhflvl(t′) do
5: for v ∈ Sons(u) do
6: Lu[t′]+ = L2Lu[t′, t] · Lv[t]
7: end for
8: end for
9: end procedure
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Algorithm 19 L2P. p|t refers to the restriction of the vector of potentials to the particles of t.
L[t] refers to the local expansion in t.

1: // Input : cell t ∈ T
2: // Output: ∅
3: procedure L2P(t)
4: p|t+ = L2P[t] · L[t] . The result is added, as opposed to the P2M!
5: end procedure

Algorithm 20 hfL2P. p|t refers to the restriction of the vector of potentials to the particles of t.
Lu[t] refers to the multipole expansion in t associated to the direction u.

1: // Input : cell t ∈ T
2: // Output: ∅
3: procedure hfL2P(t)
4: for u ∈ Dhflvl(t) do
5: p|t+ = L2Pu[t] · Lu[s]
6: end for
7: end procedure

7.3.1.3 M2L operators treatment

The M2L treatment is done in defmm with FFT techniques based on equispaced interpolation
grids. The theoretical e�ciency of such scheme in terms of number of operations performed at each
step involving a M2L matrix however has to be discussed.

Centered expansions. The FFT techniques require the source and target interpolation grids to
be equal up to a translation in order to obtain a "small" circulant embedding of the M2L matrices
(see Sect. 4.1.4). This requires the well-separated pairs of cells to be composed of cells with the
same radius. This thus prevents the use of "decentering" techniques, consisting in shifting the cell
centers and to adapt their radii to the local particle distribution (i.e. to adapt the boundaries of
each shifting cell to the particles lying in it). Such technique has been used in [79]: its general idea
is depicted on Fig. 7.7. One of the advantages of the decentering is that it may reduce the total
number of M2L evaluations by maximizing the admissibility on the uppest tree levels.

On the other hand, when exploiting decentering techniques, the results of Sect. 5.3.3 on the total
number of di�erent M2L matrices per tree level do not hold. In the interpolation-based FMM, the
M2L matrices are (far) more costly to compute than to apply. For instance, the computation of the
diagonal M2L matrices obtained with the circulant embedding of Sect. 4.1.4 on equispaced grids
(i.e. the method used in defmm) requires O

(
d log(L)(2L− 1)d

)
�ops to be computed (see Eq. 4.10

where the Fourier matrix can be applied by using a FFT) but can be applied in O
(
(2L− 1)d

)
�ops

(as a sparse matrix with (2L− 1)d non-zero entries). In addition, the (2L− 1)d kernel evaluations
needed to assemble C0 in Eq. 4.10 also have a non-negligible cost. Hence, for these reasons, the
M2L (diagonal) matrices are precomputed in defmm without decentering techniques. This thus
allows the results of Sect. 5.3.3 to be exploited. The constraint of admissible cells with same radius
restrict ourselve to cell-cell interactions between cells of the same tree level (notice that dfmm uses
the same constraint even with low-rank approximations instead of FFT techniques).

Hadamard products. The diagonal M2L matrices Dt,s appearing in Algs. 13 and 14 are
obviously not stored as matrices in defmm but as vectors composed of their diagonal entries. Hence,
the diagonal matrix-vector product is a true Hadamard product in defmm (i.e. a vector-vector
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Figure 7.7: Adjacent cells (black) with clustered particles. These cells are not complying with the
strict MAC (see Sect. 2.2.4.1) or with the adaptive MAC (see Sect. 2.2.4.2). Hence, discarding the
gap between the smallest ball encompassing the particles in each cell, the resulting new cells (red)
are admissible (considering the adaptive MAC). Because the nodes of a 22-tree have 4 sons (gray),
this results in a single M2L call compared to 4 calls with centered expansions, the left cell having
all its sons being non-empty and the right one having only one single non-empty child.

operation2). As a consequence, low performance gains can be expected with vector stacking (see
App. D.2). We thus do not consider vector stacking for the M2L operator evaluations in our
implementation.

M2L tables. The number of (possibly) precomputed vectors storing the diagonal M2L matrices
Dt,s's is bounded at each tree level thanks to the results of Sect. 5.3.3 (even in the high-frequency
regime). Each of them can be uniquely identi�ed using the vector ctr(t) − ctr(s). Since we only
have cell-cell interactions between cells at the same level, this is equivalent than considering the
di�erence between the multi-indices locating t and s at their tree level. Hence, we referred to the
d-dimensional array associating to each such di�erence the corresponding Dt,s as the M2L table of
the corresponding tree level. There are as many M2L tables as tree levels.

7.3.2 Adaptive method

Since we decided to exploit the directional approach, multiple expansions are associated to the
same cell (but to di�erent directions). We thus want to implement an adaptive FMM based on
structures and traversals able to adapt to the (possibly highly non-uniform) particle distributions
while e�ciently handling the links of Fig. 7.5.

Ncrit criterion. We decided to use a tree construction based on the Ncrit criterion (see Sect.
2.2.1.2) to easily adapt to possibly (highly) non-uniform particle distributions (see Sect. 2.2.4.2).
Hence, the tree structure we are using does not store the empty cells: only the cells containing at
least one particle are constructed. This is a strong di�erence with dfmm, that uses the criterion
MaxDetph to build the 2d-trees.

Dual Tree Traversal. In Sect. 2.2.4.2 we described the two main approaches to determine the
interaction lists in the adaptive FMM: the list-based approach explicitly builds these interaction lists
before evaluating them, whereas the Dual Tree Traversal one traverses them implicitly by �nding the

2This operation actually does not have BLAS 1 (see App. D.2) implementation and then has to be written
explicitly.
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cell-cell interactions on-the-�y. Actually, because of the di�culty of �nding the cell-cell interactions
in the high-frequency regime, dfmm uses a DTT-like algorithm during a precomputation step to
explicitly construct the interaction lists. Then, a list-based approach is used during the FMM
application in dfmm.

On non-uniform distributions, the interaction lists may be sparse. Because the directional
aspects strongly complicate these lists (multiple lists for each cell with varying sizes), we decided to
implement a real DTT, meaning that the interaction lists are never built explicitly in defmm. The
DTT approach also allows to easily handle the di�erent MACs used in the wideband algorithm: the
directional MAC (see Sect. 4.2.2.2) and the strict or adaptive one (see Sect. 2.2.4.1 and 2.2.4.2)
provided that only the cell radii and distances are considered. This forces the directional MAC to
be written without depending on any direction. This can be realized because the M2L matrices do
not depend on the directions in a directional polynomial interpolation-based FMM (see [174] and
Sect. 4.2.2.4).

Our DTT is quite di�erent than the usual ones [79,150,220] because of the algorithmic choices
we made. First, because the cell-cell interactions are e�ciently treated with FFT techniques only
for cells at the same level, we split both the target and source cells each time the MAC fails. Second,
there are two frequency regimes with di�erent MACs to take into account. We use a variant of the
strict MAC (only considering a minimal distance criterion) in the low-frequency regime since this
is the less restrictive MAC preserving the consistency of Thm. 7.2.1. In the high-frequency regime,
we introduce the following new MAC derived from Eq. 4.15

max{rad(s)2κ, rad(t) + rad(s)}
dist(t, s)

≤ η (7.2)

with, in practice, η = 1 and provided that Level(t) = Level(s). If two cells in the high-frequency
regime are well-separated according to this last MAC, the cell-cell interaction is performed on the
best-suited directional expansions in t and s such that the MAC of Sect. 4.2.2.2 holds (i.e. the
directional expansions associated to the closest direction at Level(t) = Level(s) from ctr(t)−ctr(s)

|ctr(t)−ctr(s)| ).
Because the theoretical number of directions at each level is computed in order to ensure that at
least one direction veri�es the �rst condition of the directional MAC of Eq. 4.15, this is su�cient
to guarantee a controlled global accuracy and to justify the MAC of the inequality 7.2. With such
a formulation, the DTT does not depend on any direction.

In practice, since the search of the best suited-direction for a M2L operator application has a
non-negligible cost, but since the number of di�erentM2L operator is bounded at each tree level, we
�nd these best-suited directions when precomputing the M2L (diagonal) matrices, independently
of the interacting cells. This allows to use this information for each pair of well-separated cells
complying with the MAC in the inequality 7.2.

Arithmetic intensity The Hadamard product we perform in theM2Ls application are memory-
bound (see App. D.1). In the pvfmm library [166,167], a list-based method increasing the arithmetic
intensity for a FMM with M2L operators performed by Hadamard products is implemented: this
method groups in set of small matrices the entries of the expansions of the sons of a given cell (see
App. D.2.4). The potential gain is limited for highly non-uniform distributions since the small
created matrices are partially �lled by zeros to handle the missing cells or expansions, at the cost of
the expansion interleaving. Because we are interested in (highly) non-uniform particle distributions,
we do not considered this particular technique in defmm.

In dfmm, the arithmetic intensity is also increased (using the dfmm-IAblk variant) by trans-
forming BLAS 2 matrix-vector products into BLAS 3 matrix-matrix products [173]. Since we have
Hadamard products instead of matrix-vector one, we do not rely in defmm on such techniques in-
creasing theM2L arithmetic intensity. Hence, we do not need to complicate our DTT by imposing
constraint grouping particular M2L operator applications.
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Pass Traversal
Upward Bottom-up
m2f Any traversal (the order does not matter)

Horizontal Dual Tree Traversal
j2l Any traversal (the order does not matter)

Downward Top-down

Table 7.2: Tree traversals for di�erent passes.

7.3.3 The di�erent algorithmic passes

The global algorithmic of defmm is splitted into �ve main passes, traversing the trees in di�erent
ways. Because of the choices we made (see Sect. 7.3), we are interested in the adaptive traversals
based using recursive formulations (see 2.2.4.2). To the three passes used in the literature (upward
pass in Alg. 21, horizontal pass in Alg. 23 and downward pass in Alg. 25), we added two other
passes that respectively perform after the upward pass and before the downward one: the m2f
pass and the f2l pass, respectively applying the M2F and F2L operators. These two passes are
presented in Algs. 22 and 24. Each of these �ve passes corresponds to a speci�c tree traversal to
respect the data dependencies. These traversals are summarized on Tab. 7.2. We provide below
the high-level algorithms in their execution order, starting from the upward pass.

Algorithm 21 upwpass (Upward pass). This algorithm is called on the root of the source tree in
order to be applied on all the source cells.

1: // Input : cell s
2: // Output: ∅
3: procedure upwpass(s)
4: if isleaf(s) then
5: if isHF (s) then
6: hfP2M(s)
7: else
8: P2M(s)
9: end if
10: else
11: for s′ ∈ Sons(s) do
12: upwpass(s′)
13: if isHF (Level(s)) then
14: hfM2M(s, s′)
15: else
16: M2M(s, s′)
17: end if
18: end for
19: end if
20: end procedure

The upward pass applies on the source tree using the P2M/M2M operators (i.e. construct the
multipole expansion in the real domain), taking care on the frequency regime of each visited cell.

At the end of this pass, all the computed multipole expansions can be converted in the Fourier
domain. This is the purpose of the m2f pass, also applied on the source tree.
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Algorithm 22 m2fpass.

1: // Input : tree S
2: // Output: ∅
3: procedure m2fpass(S )
4: for s ∈ S do
5: if isHF(s) then
6: hfM2F(s)
7: else
8: M2F(s)
9: end if
10: end for
11: end procedure

Because all the multipole expansions are known when the m2f pass is applied, the cells can be
independently traversed in any manner. These Fourier multipole expansions are then transformed
into Fourier local ones by the horizontal pass.

Algorithm 23 hrzpass (Horizontal pass). This algorithm corresponds to a DTT and is called on
the roots of the target and source trees.

1: // Input : cells t and s
2: // Output: ∅
3: procedure hrzpass(t, s)
4: if isHF(t) and hfMAC(t, s) then . s is in the high-frequency regime if t is.
5: hfM2L(t, s)
6: return . Stop the recursion when a cell-cell interaction is performed.
7: else
8: if not isHF(t) and MAC(t, s) then
9: M2L(t, s)
10: return
11: end if
12: end if
13: if isLeaf(t) or isLeaf(s) then . The cell-cell interactions perform on cells
14: . at the same level, so if one of them is a leaf,
15: . we directly switch to the particle-particle interactions.
16: P2P(t, s)
17: return
18: end if
19: for t′ ∈ Sons(t) do
20: for s′ ∈ Sons(s) do
21: hrzpass(t′, s′) . Implies that Level(t′) = Level(s′).
22: end for
23: end for
24: end procedure

Only the cell-cell interactions involving cells at the same level are accelerated using FFT based
techniques and we prohibit the interactions between cells of di�erent levels (see Sect. 7.3.1.3).
Hence, we apply the P2P operator (that is we switch to particle-particle interactions instead of
cell-cell ones) when at least one of the two evaluated cells (line 13 of Alg. 23) is a leaf instead of the
two cells (like in other DTTs: see e.g. exafmm [3]). This allows to group multiple P2P applications
involving a same source or target cell and to maximize the size of this near �eld computation. This
has an impact of the performances because of the arithmetic intensity of the P2P routine: a single
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application on large entries should perform better than multiple calls on smaller entries (see Sect.
7.5.5.1).

Once all the cell-cell interactions and particle-particle interactions are computed, we transform
the Fourier local expansions in each target cell into local expansions in the real domain. This is
done by the f2l pass.

Algorithm 24 f2lpass.

1: // Input : tree T
2: // Output: ∅
3: procedure f2lpass(T )
4: for t ∈ T do
5: if isHF(t) then
6: hfF2L(t)
7: else
8: F2L(t)
9: end if
10: end for
11: end procedure

Finally, the downward pass properly evaluates the L2P/L2L operators on the target cells.

Algorithm 25 dwnpass (Downward pass). This algorithm is called on the root of the target tree
in order to be applied on all the target cells.

1: // Input : cell t
2: // Output: ∅
3: procedure dwnpass(t)
4: if isleaf(t) then
5: if isHF (t) then
6: hfL2P(t)
7: else
8: L2P(t)
9: end if
10: else
11: for t′ ∈ Sons(t) do
12: if isHF (t) then
13: hfL2L(t′, t)
14: else
15: L2L(t′, t)
16: end if
17: dwnpass(t′)
18: end for
19: end if
20: end procedure

7.3.4 Tree construction

The tree construction algorithm we use in our library is very similar to the one of Rio Yokota in
exafmm [3]. Mainly, this algorithm is based on a particle sorting according to the Morton index
(see App. D.3). All the source (resp. target) particles are stored in a single array and each cell
contains a pointer on the �rst particle along with the number of particles in this cell. The particles
of a given cell can then be directly accessed even for non-leaf cells. This particle sort is described in
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particle array

buffer

Particle distribution

Sort according to
the local theoretical cells.

Proceed recursively on each subarray

Figure 7.8: Schematic view of the recursive particle sort.

Alg. 26 and the process is illustrated on Fig. 7.8. The main di�erences between our implementation
and the one of exafmm [3] are listed in the following.

• Our version is written for any dimension;

• The cells are allocated and created after the entire particle sorting.

The particle sorting uses only two particle bu�ers that are switched at each recursive call (see
Alg. 26). This algorithm actually traverses the non-empty cells that will be created after the
particle sorting. The particles corresponding to a forthcoming cell are sorted in local subarrays on
which the recursive calls are done. We use the stopping criterion Ncrit.

After the particle sorting, the exact number of cells is known (by counting the non-empty cells
traversed by the sorting, i.e. the number of recursive calls to Alg. 26). We then allocate a cell array
of this size and a traversal of the ordered particle array allows to �ll this cell array but without
introducing extra memory.

Timings for the entire tree building and particle sorting process are reported in Tab. 7.3.

Distribution N Time (s) Time×107/N
Sphere 168931 0.08495 5.0
Sphere 1M 0.6054 6.1
Sphere 10M 6.40635 6.4
Cube 1M 0.5836 5.8
Cube 27M 17.4655 6.5
Cube 125M 87.891 7.0

Table 7.3: Timings of tree building (including the particle sorting) for several distributions.

By measuring the ratios between the tree construction timings and the number N of particles
(last columns of Tab. 7.3), the practical O (N logN) complexity for the tree building is veri�ed on
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Algorithm 26 Recursive particle sorting.

1: // Input : a particle bu�er Z storing the partially sorted particles, a particle bu�er B with the
same size (N), the number of theoretical levels lvl (set to zero for the �rst call) and a box C
encompassing the particles in Z.

2: // Output: Stored particle bu�er
3: procedure particleSort(Z,B,C,N, lvl)
4: if Stopping criterion is veri�ed then
5: if lvl is odd then
6: Return B
7: else
8: Return Z
9: end if
10: end if
11: Divide C into 2d equally-sized boxes Ci
12: Set to 0 the temporary number of particle ni in Ci
13: for z ∈ Z do
14: Tag z with the index i such that z ∈ Ci
15: Increment ni
16: end for

17: Set ki :=

i−1∑
j=0

nj and si = 0 for any i

18: for z ∈ Z do
19: Let j be the tag of z
20: Move the particle in the bu�er: B[kj + sj ] = z
21: Increment sj
22: end for
23: for i ∈ [[0, 2d − 1]] do
24: if ni 6= 0 then . The empty sons are not considered.
25: particleSort(B + ki, Z + ki, Ci, ni, lvl + 1) . Recursive calls on subarrays.
26: end if
27: end for
28: end procedure
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both surface (the sphere) and volume distributions (the cube). Moreover, the tree building timings
depend little on the particle distribution.

7.3.5 Direction generation

To keep a fast algorithm, a nested structure in the direction sets of the di�erent tree levels has to
be ensured [52, 94]. Indeed, this limits the links between directional expansions to those depicted
on Fig. 7.6, i.e. to the links between the directions of the direction tree. To construct such a
nested set of direction, the algorithm we use in practice consists in recursively subdividing the faces
of a d-cube and projecting the points obtained on the sphere. This corresponds to the algorithm
described in [50,94,96]. Only the projected centers of each of the d-cube faces are used as possible
directions for the deepest high-frequency level. The maximal number of directions is multiplied by
2d−1 on the next level. This choice of initial directions is su�cient to preserve the global targeted
accuracy.

Remark 7.3.1. As opposed to the directional method described in [94�96], the symmetries of the
direction sets do not impact the symmetries in the M2L tables (that are only linked with the 2d-tree
structure and the interpolation grids since the M2L matrices do not depend on the directions in
the interpolation-based FMM, see Sect. 4.2.2.4). Thus, any admissible nested set of direction such
that each direction has the same number of sons can be used in defmm without modi�cation of the
code.

As for the source and target trees, the direction tree (see Sect. 4.2.2.1) is computed once, dur-
ing a precomputation step. The �rst high-frequency level uses d! directions in our implementation,
corresponding to the barycenters of the d-cube faces. Hence, since the number of directions is multi-
plied by a factor 2d−1 at each new high-frequency level, the lth high-frequency level (corresponding
to the (l − 1)th level of the direction tree) have up to d!2l(d−1) possible directions.

In the high-frequency regime, the minimal distance between well-separated cells is proportional
to the square of the cell length (multiplied by the wavenumber, see the MAC in Eq. 4.2.2.2). This
implies that there may be no well-separated cells for the top levels: at least for the two top levels
(as for the strict MAC of Sect. 2.2.4.1) and possibly for other top levels. In defmm, the directions
are only computed for the high-frequency levels on which there may exist cell-cell interactions with
well-separated cells (we still allow the cell-cell direct interactions using P2P applications on these
upper levels). The number of upper tree levels with no far �eld interaction is found during the
precomputation step, before creating the direction tree.

7.3.6 Transition between the two regimes

We distinguished the low- and high-frequency M2M and L2L operators in our implementation
for e�ciency reasons: any low-frequency level can be seen as a high-frequency level with a (false)
direction equal to 0. Hence, all the evaluations of the planewaves directed by this direction are
equal to 1 and the directional process has no e�ect. However, this introduces additional useless
operations. We then considered that the low-frequency regime has no direction. There is a subtle
consequence: when the limit between the low- and high-frequency is reached and the high-frequency
FMM operators are applied, the expansions being non-directional, the formula in Sect. 4.2.2.4
have to be adapted. Our approach consists in considering the interpolation nodes on the low-
frequency regime cells as particles from the viewpoint of the high-frequency cells. Doing so, the
non-directional multipole expansions are transformed into directional ones by applying a high-
frequency P2M operator and the directional local expansions are evaluated on low-frequency cells
as L2P operations on the interpolation nodes of the low-frequency cell.
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7.4 Symmetries

If we omit the diagonalization of the M2L operators in the Fourier domain, these operators, when
applied to cells of the same levels of 2d-trees with the strict MAC (see Sect. 2.2.4.1), verify the
assumptions of Thm. 5.3.3. Hence, there exists a hyperoctahedral symmetry that can be exploited
to deduce some of them from a small set. This has a consequence on the precomputation cost of the
overall FMM and can be used to obtain block algorithm using vector stacking (see [173] and App.
D.2). In the Fourier domain, the vector stacking is no more justi�ed since matrix-matrix products
are performed with a left diagonal matrix, which does not lead to the same full exploitation of
BLAS 3 routines (see Sect. 7.3.2). However, we may wonder if the hyperoctahedral symmetries are
preserved in the Fourier domain that is if only a small set of M2L have to be precomputed. In Sect.
7.4.1, we illustrate the symmetries in the set of M2Lmatrices in the polynomial interpolation-based
FMM. In Sect. 7.4.2, we are interested in extending these symmetries in the Fourier domain and
an application to the M2L evaluation is provided in Sect. 7.4.3. In Sect. 7.4.4, we describe a new
method able to handle the indirection problem appearing in this context.

7.4.1 Symmetries in M2L matrices

The content of this section is a direct illustration of Sect. 5.3.3 in the particular context of poly-
nomial interpolation-based FMM. For the polynomial interpolation-based FMM applied to radial
kernels, any M2L matrix At,s between a target cell t and a source cell s of same radius in regular
2d-trees with same roots is given by

(At,s)k,l = G(xk,yl) (7.3)

where xk is the kth node of the interpolation grid ctr(t) + Ĝ on t and yl is the lth node of the
interpolation grid ctr(s) + Ĝ on s with Ĝ an interpolation grid obtained by product of the same
one-dimensional grid with L nodes on the cube centered on zero with side length equal to the one
of t and s. To be more precise, in the case of an equispaced grid:

Ĝ := {
d∑
k=1

a(−1 + 2pk/(L− 1))ek | p ∈ [[0, L− 1]]d}

with ek the kth basis vector of Rd and a is the half of the side length of the cells Ĝ applies on.
The two interpolation grids ctr(t) + Ĝ and ctr(s) + Ĝ are equal up to a translation r ∈ Rd, so

we obtain
(At,s)k,l = G(xk,yl)

= G(xk − yl)

= G(ŷk − ŷl + (ctr(t)− ctr(s)))

where ŷ := y − ctr(s) and ŷp denotes the pth node in Ĝ. Let Dd be the hyperoctahedral group in
dimension d, which is isomorphic to the group of rotations that preserve the d-cube and that can
be represented by a set of d× d rotation matrices.

Lemma 7.4.1. Let H be a one-dimensional interpolation grid on [−1, 1] with a symmetry with
regard to 0. Thus, the product rule Ĝ := Hd is invariant under the action of Dd.

Proof. Since Ĝ := Hd, for any u ∈ Ĝ, for any permutation P of coordinates of u, Pu is still an
element of Ĝ. Let D be a diagonal matrix with diagonal elements equal to ±1. Since for any h ∈ H,
−h ∈ H, thus Du ∈ Ĝ. Since

Dd ≡ {E ∈ Rd×d | ∃ a permutation P and a diagonal matrix D with ±1 on the diagonal such that E = DP},

the lemma holds.
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Remark 7.4.1. Both the Chebyshev rule and the uniform rule on [−1, 1] verify the assumption of
Lem. 7.4.1.

We suppose that Ĝ is such that in Lem. 7.4.1. If the same rotation g ∈ Dd is applied to these
interpolation grids of t and s, we have

g · xk − g · yl = g · (xk − yl)

= g · (ŷk − ŷl + r)

= g · (ŷk − ŷl) + g · r

with r := ctr(t)− ctr(s). This means that the following holds, for any g ∈ Dd:∣∣(ŷk − ŷl) + g · r
∣∣ =

∣∣g−1 · (ŷk − ŷl) + r
∣∣

since g can be interpreted as an isometry. Let Gr(x̂, ŷ) := G(|x̂− ŷ + r|), we have

(At,s)k,l = Gctr(t)−ctr(s)(x̂k, ŷl)

using Eq. 7.3, where x̂k, ŷl are respectively the kth and lth nodes of Ĝ. Hence, because the set

T := ∪
t∈T
{ctr(t)− ctr(s) | s ∈ Λ(t)} ⊂ Rd

using the strict, adaptive or directional MAC (see Sects. 2.2.4.1, 2.2.4.2 and 4.2.2.2 respectively)
on perfect trees T , S and with Λ(t) the interaction list of t (see Sect. 5.3.3) is such that

∀ g ∈ Dd, g · T = T

and there exists t′ ∈ T , s′ ∈ S , g ∈ Dd with ctr(t′)− ctr(s′) = g · (ctr(t)− ctr(s)) and

(At′,s′)k,l = Gctr(t′)−ctr(s′)(x̂k, ŷl)

= Gg·(ctr(t)−ctr(s))(x̂k, ŷl)

= Gctr(t)−ctr(s)(g
−1 · x̂k, g−1 · ŷl).

Because g preserves the interpolation grids, there exist k′, l′ such that Ĝ 3 x̂k′ = g · x̂k, Ĝ 3
ŷl′ = g · ŷl. In addition:

(At′,s′)k,l = Gctr(t)−ctr(s)(x̂k′ , ŷl′)

= (At,s)k′,l′ .

Hence, by permuting the interpolation nodes (i.e. applying the transformations k → k′ and l→ l′),
At′,s′ can be deduced from At,s as well as all matrices Ac0,c1 with c0 and c1 two cells of the same
level than t and s and such that there exists g ∈ Dd with ctr(c0) − ctr(c1) = g · (ctr(t)− ctr(s)).
An example is depicted on Fig. 7.9 in the case d = 2.

In [166], the possible symmetries of theM2L are exploited to increase the performances allowed
by the BLAS 3 with vector stacking. This last technique on symmetries has been used in many
implementations of many kinds of FMM (e.g. [151, 166, 173, 197]). Because the multipole and
local expansions are converted in the Fourier domain when exploiting FFT-based techniques on
equispaced grids, we have to determine the behavior of these permutations in the Fourier domain
in order to use them in defmm.

7.4.2 Permutations in the Fourier domain

To be able to use the symmetries in the Fourier domain, we need to verify that the Fourier ma-
trix (or its inverse) somehow commutes with any permutation matrix associated to a rotation of
the hyperoctahedral group. The sense of this assertion has to be detailed: because the circulant
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Figure 7.9: Goal: represent the interaction between the red and blue cells on the left �gure using
the data computed from the interaction between the red and gray ones. Left: target cell t (red)
interacting with a source cell (gray) which is equal to a rotation centered in the center of t of another
source cell (blue) with interpolation nodes (dots) on each cell. Right: E�ective rotation of the cells.
The positions of the interpolation nodes are permuted compared to the previous gray and red cells.

embedding (see Sect. 4.1.4) increases the M2L matrix size, the corresponding permutation ma-
trix has to be extended in a larger space. To be more precise, for any M2L matrix U ∈ CLd×Ld

between two well-separated cells of the same level in the interpolation-based FMM, there exists
χ ∈ {0, 1}(2L−1)d×Ld such that

U = χTF∗D[U ]Fχ

where D[U ] ∈ C(2L−1)d×(2L−1)d is a diagonal matrix and F := F2L−1,d denotes the Fourier matrix
in dimension d of size (2L− 1)d × (2L− 1)d. Let V be another M2L matrix that can be obtained
by permutation P from U , that is

V = PTUP

= PTχTF∗D[U ]FχP.

Because the extensions (resp. restrictions) in the Fourier domain and the Fourier matrix are applied
before (resp. after) the evaluation of the M2Ls (in the Fourier domain), we want the permutation
P to apply on D[U ] directly (notice that the two matrices have not the same size, so the de�nition
of the permutation has to be adapted).

Before going into the details about this, we just provide a useful de�nition.

De�nition 7.4.1. Let L ∈ N. I denotes the bijection from [[0, Ld − 1]] to [[0, L − 1]]d such that
I−1(I) :=

∑d
k=1 IkL

k−1, ∀ I := (I1, ...,Id).

Remark 7.4.2. In practice, this mapping I between indices and multi-indices being de�ned for any
L such as in Def. 7.4.1, we never specify the space this function acts on.

This mapping I can be interpreted as a space �lling curve and a representation of it is given in
Fig. 7.10.

Basically, I maps a multi-index into a one-dimensional one. This tool is particularly useful
to refer to the multivariate interpolation nodes using the elements of the decomposition Ĝ = Hd.
Because the entries of a multipole or local expansion correspond to interpolation nodes, I maps a
node to its corresponding entry in an expansion. The nodes of H = {hk}k∈[[0,L−1]] are supposed to
be indexed such that hk < hl ⇔ k < l. Denoting by N the mapping from the interpolation nodes
in Ĝ to their multi-indices, the following diagram can be drawn
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Figure 7.10: 2D mappings I from indices to multi-indices(left) and I−1 from multi-indices to indices
(right). In the left picture, the �rst element (with no incident arrow) is indexed by 0 in [[0, 2]] and
(0, ..., 0) ∈ Im(I).

C[Ĝ] C
[

[[0, L− 1]]]d
]

C
[

[[0, (L− 1)d]]]
]

N

I−1

and C[Ĝ] is the space in which the multipole/local expansions are. This allows to manipulate the
terms of the expansions from a geometrical viewpoint (using the correspondances with the nodes
of Ĝ) and in terms of vectors indexed by multi-indices at the same time.

We now show how to extend the permutations of Sect. 7.4.1 in the Fourier domain.

Theorem 7.4.1. Let t, s be well-separated cells with the same interpolation grid Ĝ. Let U be
the (Toeplitz) M2L matrix between t and s. Let F∗D[U ]F be the diagonalization of the circulant
embedding of U . For any g ∈ Dd with permutation representation Pg ∈ {0, 1}L

d×Ld in Aut(C[Ĝ]),
there exists Pg ∈ {0, 1}(2L−1)d×(2L−1)d such that

PTg UPg = PTg χ
TF∗D[U ]FχPg

= χTPTg F∗D[U ]FPgχ
=
(
χTF∗

) (
PTgD[U ]Pg

)
(Fχ) .

Remark 7.4.3. The permutations Pg can be explicitly computed by composing the representation

of the permutations restricted to
( Z

2Z
)d

< Dd whose expression is provided in the proof of Thm.
7.4.1, see Eq. 7.4 or Eq. 7.5, and the permutations Ph, h ∈ Sd < Dd.

Proof. First, we use Ĝ = Hd with H = {h0, ..., hL−1}, hi < hj ⇔ i < j, #H = L. A re�ection
with regard to 0 on hk ∈ H transforms hk into hL−1−k. We start with d = 1. The only possible
symmetry (di�erent than the identity) in dimension 1 is a re�ection with regard to zero in H.
The underlying group is isomorphic to Z

2Z = {id, g0} as an abelian group with two elements (the
re�ection of the re�ection being the identity). Its action on H is such that

g · hk =

{
hk if g ≡ id
hL−1−k otherwise.

This can be trivially extended into an action on NL := [[0, L− 1]] such that for any k ∈ NL

g · k =

{
k if g ≡ id
L− 1− k otherwise.
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Since Aut(C[Ĝ]) ≡ Aut(C[NL]) by means of the bijection I (trivial for d = 1), this gives an explicit
expression for Pg, writting this permutation as a representation of Z

2Z on Aut(C[NL]):

(Pg)k,p := δg·k=p

where δb :=

{
1 if b is true,
0 otherwise

.

Let V = PTg UPg. We have
Vk,p = UL−1−k,L−1−p

= Up,k

where the second equality is obtained using the Toeplitz structure of U . This means that V = UT .
Let U ∈ C(2L−1)×(2L−1) be the circulant embedding of U such that for χ de�ned by

χk,p := δk=pδk<L

we have U = χ∗Uχ.
Hence, there exist matrices W0 ∈ CL×(L−1),W1 ∈ C(L−1)×L,W2 ∈ C(L−1)×(L−1) such that

U :=

[
U W0

W1 W2

]
.

Since U is a circulant matrix, UT =: V also is and we have

V :=

[
UT WT

1

WT
0 WT

2

]
=

[
V WT

1

WT
0 WT

2

]
.

We obviously still have χ∗Vχ = V . Because V is circulant, its �rst row is su�cient to describe it.
Such a �rst row can be interpreted as a vector u ∈ C2L−1. Let u be this row, u ∈ C[N2L−1], we
are searching for Pg0

∈ Aut (C[N2L−1]) such that Pg0
u = v.

Because U is a circulant matrix, we have

U0,k = U2L−1−k,0δk 6=0 + U0,0δk=0

= V0,2L−1−kδk 6=0 + V0,0δk=0.

This gives an expression for Pg0 :

(Pg0
u)k =

{
u0 if k = 0

u2L−1−k otherwise.
(7.4)

Notice that this allows to de�ne the action of g ∈ Z
2Z on N2L−1 as

g · k :=
1

2
((ρ(g) + 1) k + (1− ρ(g)) ((2L− 1− k)δk 6=0 + kδk=0)) , (7.5)

ρ being the sign representation of Z
2Z , i.e. ρ(g) =

{
1 if g ≡ id
−1 otherwise

. Indeed, the blue term in Eq.

7.5 vanishes when g ≡ id, which gives g ·k = k. On the contrary, when g 6= id, the red term vanishes
and we have g · k = (2L− 1− k)δk 6=0 + kδk=0, corresponding to the expression in Eq. 7.4. We thus
have (Pg0

u)k = ug0·k. Notice that g0 · (g0 · k) = k, meaning that g−1
0 = g0. This can be seen both

from Eq. 7.5 or using that Z/2Z is an abelian group with 2 elements.
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One still has to verify that this permutation Pg commutes with the one-dimensional Fourier
matrix F of size (2L− 1)× (2L− 1). Let q ∈ C[N2L−1]. We want to verify that (FPgq)p = (PgFq)p
for any p. Because the result is trivial for g ≡ id, we focus on the case g = g0. For p = 0, we have
2L−2∑
k=0

e2iπ
p(g0·k)
2L−1 qk =

2L−2∑
k=0

qk that does not involve the action of g0, so the result is true. We assume

that p 6= 0. This gives:

(FPg0
q)p =

2L−2∑
k=0

e2iπ pk
2L−1 (Pg0

q)k

=

2L−2∑
k=0

e2iπ pk
2L−1qg0·k

(j := g0 · k) =

2L−2∑
j=0

e2iπ
p(g
−1
0 ·j)

2L−1 qj

(g−1
0 = g0) =

2L−2∑
k=0

e2iπ
p(g0·k)
2L−1 qk

(Eq. 7.5 and g0 6≡ id) =

2L−2∑
k=0

e2iπ
p(2L−1−k)

2L−1 qk

=

2L−2∑
k=0

e2iπ
p(−k)
2L−1 qk

=

2L−2∑
k=0

e2iπ
(−p)k
2L−1 qk

=

2L−2∑
k=0

e2iπ
(2L−1)k

2L−1 e2iπ
(−p)k
2L−1 qk

=

2L−2∑
k=0

e2iπ
(g0·p)k
2L−1 qk

= (Pg0Fq)p.

(7.6)

We thus obtained the result in dimension d = 1. The extension of this result in more than one
dimension (i.e. for arbitrary d ∈ N∗) is based on the following facts:

• The multivariate Fourier matrices are tensorized matrices;

• The interpolation grid is a product grid Ĝ = Hd;

• Dd ≡
( Z

2Z
)d×Sd ≡ Sd×

( Z
2Z
)d

where each Z
2Z corresponds to a possible re�ection with regard

to zero for a particular H of the decomposition of Ĝ.
Let q ∈ C[Nd

L] the mapping between the multi-indices of nodes of Ĝ and the terms of the multipole
expansion (i.e. the entries of vector in CLd).

First, the multivariate de�nition of χ can be written as:

χ : C[Nd
L]→ C[Nd

2L−1]

v 7→ χv

such that for any k ∈ Nd
2L−1

(χv)k :=

{
vk if ||k||∞ < L

0 otherwise
,
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where C[Nd
L]

I−1

≡ C[NLd ]
q≡CL

d

and C[Nd
2L−1]

I−1

≡ C[N(2L−1)d ]
χq≡ C(2L−1)d .

Thanks toDd ≡ Sd×
( Z

2Z
)d
, ∀ g ∈ Dd, ∃ g1 ∈ Sd, g(1), ..., g(d) ∈ Z

2Z such that g ≡ (g1, g(1), ..., g(d))
and

Pg = Pg1
Pg(1)

...Pg(d)
.

From a geometrical viewpoint, Pg1
permutes the coordinates of a node in Ĝ and the Pg(j)

's are
possible re�exions with regard to 0 according to each axis (because Ĝ = Hd).

As for the one-dimensional case, we de�ne U and V as the circulant embeddings of U and V
respectively such that {

U = χ∗Uχ
V = χ∗Vχ

.

The multivariate expressions of Pg(1)
, ...,Pg(d)

are obtained similarly to the one-dimensional case
using the decomposition Pg(k)

= Id⊗ ...⊗ Id⊗ P̃g(k)
⊗ Id⊗ ...⊗ Id︸ ︷︷ ︸

d terms

for any k ∈ [[1, d]] and where

P̃g(k)
∈ Aut(C[N2L−1]) is de�ned as in Eq. 7.4 and is the kth term of this decomposition. We

easily check that Pg(k)
χ = χPg(k)

. In addition, using z ∈
( Z

2Z
)d

so that z := (g(1), ..., g(d)) with

Pz :=

d∏
k=1

Pg(k)
, we have Pz :=

d
⊗
k=1

P̃g(k)
, thanks to the tensorized structure. The action of z on

Nd
2L−1 can be deduced from this tensorized expression and from Eq. 7.5.
χ preserves the coordinate exchanges of Pg1 , so Pg1 can be de�ned as

(Pg1
v)p = vη(g1)p

where η(g1) ∈ Cd×d denotes the isometry representation of g1 with Sd acting on the d-cube as a
set of rotations (exchanging the coordinates). This is equivalent to a permutation representation

on a set of d element (which is an isometry). Let Fd :=
d
⊗
k=1

F, with F the one-dimensional Fourier

matrix. We then have

(FdPgq)p = (FdPg1Pzq)p

=
∑

k∈Nd
2L−1

e2iπ
〈p,k〉
2L−1 (Pzq)η(g1)·k

=
∑

k∈Nd
2L−1

e2iπ
〈p,η(g1)−1·k〉

2L−1 (Pzq)k

(η(g1) isometry) =
∑

k∈Nd
2L−1

e2iπ
〈η(g1)·p,k〉

2L−1 (Pzq)k

= (FdPzq)p

= (Pg1FdPzq)p.

We conclude by exploiting the tensorized structure of the Fourier matrix:

FdPz =

(
d
⊗
k=1

F
)(

d
⊗
k=1

P̃g(k)

)
=

d
⊗
k=1

(
FP̃g(k)

)
(see Eq. 7.6) =

d
⊗
k=1

(
P̃g(k)

F
)

= PzFd,
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Figure 7.11: Evolution of the union of interaction lists (blue) of target cells (red) for increasing
high-frequency tree levels (from left to right).

the third equality being obtained thanks to the one-dimensional case proof. Hence, this gives
FdPg = PgFd.

7.4.3 Applying the permutations

The numerical exploitation of Thm. 7.4.1 allows to permute the expansions in the Fourier domain.
However, thanks to the diagonalM2L structure in this domain, these manipulations can be done in
a di�erent way than in the standard methods exploiting the symmetries (e.g. [173]). In this section,
we describe how the permutations are used in defmm.

7.4.3.1 Single permutation

Using these permutations, the multipole and local expansions are permuted respectively before and
after the evaluation of a M2L operator in [173]. On the contrary, we can reduce here this number
of applied permutations to only one thanks to the diagonal form of theM2L matrices in the Fourier
domain in defmm. Let � denote the Hadamard product and U ∈ C(2L−1)d . The permuted M2L
evaluation, for a multipole expansionM in the Fourier domain can be written as

PTg diag(U)PgM = PTg (U � (PgM))

=
(
PTg U

)
�
(
PTg PgM

)
=
(
PTg U

)
�M.

Hence, by explicitly programming these Hadamard products, only the vector storing the diagonal
values of the diagonalization of the M2L matrix has to be permuted. This reduces the number of
permutations from two to only one.

7.4.3.2 Compressed M2L tables

As opposed to the low-frequency FFT based techniques, the number of possible admissible source
cells with a �xed target one increases with the size of these cells in the high-frequency regime.
Because the M2L matrices of the polynomial interpolation-based FMM do not depend on the
direction (see Sect. 4.2.2.4), the directional MAC (see Sect. 4.2.2.2) somehow depends on the ratio
between the interacting cells distance and radii in the high-frequency regime (see Sect. 7.3.2). This
leads to a bounded set of theoretically di�erent M2L operators at each level which is invariant
under the action of Dd (see Fig. 7.11). Hence, by storing the permutations Pg for any g ∈ Dd, the
number of precomputedM2L in the Fourier domain is drastically reduced. This can be seen as the
quotient of the set of possible M2L by the symmetries of the 2d-trees, considering classes of M2L
by means of permutations. In other words, this corresponds to a reduction of the M2L tables of
Sect. 7.3.1.3. Because of the increasing size of the number of possible M2L matrices to compute
in the high-frequency regime, the exploitation of the symmetries is important to
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• Limit the precomputation time;

• Reduce the memory footprint.

In terms of application times, the use of symmetries does not increase the performance of theM2L
processing: actually one may think that the performances can be deteriorated by the introduction
of a permutation in the Hadamard product (see Sect. 7.4.3.1), especially when considering vector-
ization (see App. D.1). We thus propose a novel approach to obtain easy to vectorize code despite
the use of these permutations.

7.4.4 Aligning data according to group permutation

We adopt in this section a general viewpoint, considering any group G even if in practice we limit
ourselves to Dd. This is because the permutations we provided in Sect. 7.4.2 can be applied in a
larger context than the one we looked at. Let G be a �nite group acting on E := [[0, N − 1]] and for
any g ∈ G, let pg : E → C be a bijective map such that g ∈ G, x ∈ E, pg(x) = g · x. Obviously,
pg ∈ C[E] can be represented as a vector in CN . Let us consider three other arbitrary vectors in
CN , namely x, y and u.

We are concerned by the fast evaluation of the permuted Hadamard products of Alg. 27.

Algorithm 27 Permuted Hadamard product
1: procedure hadp(x, u, pg, y,N)
2: for i ∈ E do
3: x[i]+ = u[pg[i]] ∗ y[i]
4: end for
5: end procedure

Due to the array indirections induced by pg, the memory accesses are not predictable which
can prevent the vectorization of the loop in Alg. 27. Fortunately, the group invariance can help to
localize data in some cases we are going to describe. This could enable vectorization on subsets of
the set E.

7.4.4.1 G-orbits
The basic idea of this localization is to sort the data of each vector according to the G-orbits of the
elements of E. We recall the de�nition of G-orbit already provided in Def. 5.3.4.

De�nition 7.4.2. Let a ∈ E. The G-orbit of a, denoted by 〈a〉G, is the set

〈a〉G := {g · a | g ∈ G}.

Their may exist di�erent types of G-orbits depending on the position of a on a fundamental
domain (see Sect. 6.2.1). Each di�erent orbit will have a speci�c treatment. If a has a singular
G-orbit, there exists at least an element g ∈ G that keeps a invariant: g ·a = a. Any kind of singular
orbit can thus be characterized using this information.

De�nition 7.4.3. The set of invariants of a ∈ E is the set

IG(a) := {g ∈ G\{1G} | g · a = a}

where 1G refers to the identity element in G.

Notice that this de�nition di�ers from the stabilizers (see Sect. 6.3.4) since we excluded the
identity element. The classi�cation of orbits is done according to the set of invariants. We introduce
the orbit class of an element of E.
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De�nition 7.4.4. a, b ∈ E are said to lie in the same orbit class if and only if IG(a) = IG(b).
The orbit class of an element a ∈ E is denoted by C(a). The set of orbit classes of G is denoted by
C(G).

Finally, for any orbit, we can choose a generator representing all the orbit using actions of G.

De�nition 7.4.5. For any orbit 〈a〉G, a generator [a]G of this orbit is a �xed choice of element of
this orbit: ∀a0, a1 ∈ 〈a〉G, [a0]G = [a1]G.

Remark 7.4.4. A fundamental domain FE(G) of G on E can be de�ned as a (minimal) set of
generators of G-orbits of elements of E.

7.4.4.2 Removing the array indirections

Let N(c) be the number of di�erent orbits in the orbit class c ∈ C(G) and let ck be a generator of
the kth orbit of this class. We can rewrite Alg. 27 according to the classes and orbits as shown in
Alg. 28.

Algorithm 28 Permuted Hadamard product
1: procedure hadp(x, u, pg, y)
2: for c ∈ C(G) do . For each class...
3: for h ∈ G\IG(c) do . ...for each group action not keeping the class invariant...
4: for i ∈ [[0, N(c)− 1]] do . ...and for each orbit in this class...
5: x[h · ci]+ = u[pg[h · ci]] ∗ y[h · ci] . ... perform the permuted Hadamard product.
6: end for
7: end for
8: end for
9: end procedure

The key idea is that for any g, h ∈ G and any a ∈ E, due to the group property of G, ∃f :=
(gh) ∈ G such that:

pg[h · a] = g · (h · a)

= (gh) · a
= f · a.

The Hadamard product line 5 in Alg. 28 can be expressed as

x[h · ci]+ = u[f · ci] ∗ y[h · ci].

Now, for c ∈ C(G) and g ∈ G, let zc,g be the vector such that

(zc,g)i := z[g · ci],

i ∈ [[0, N(c) − 1]], z = u, x, y. In other terms, zc,g �xes the class c and the group action g and
concatenates the entries of z corresponding to the generators in c permuted by g. This set can
be interpreted as the set g · (FE(G) ∩ c), i.e. the permutation of the restriction of a fundamental
domain to the elements in the class c. This is depicted on Fig. 7.12 and all the other orbits types
are depicted on Fig. 7.13. We obtain, using these notations, the Alg. 29.
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Figure 7.12: c is the class invariant under the action of D0,1 ×D0,2 (horizontal and vertical sym-
metries). Each color represent a (FE(G) ∩ c) for x and y (left). Example of g · (FE(G) ∩ c) for u
(right). The Hadamard product without indirection groups the nodes of new same positions in the
two grids, one color set at a time.

Figure 7.13: All the other orbits (di�erent from the one of Fig. 7.12) for E under the action of
D2. Regular orbits (left); singular orbits of the identity element (middle); singular orbits of the
elements invariant under the action of D(d),1, which are the diagonal symmetries (right).

Algorithm 29 Permuted Hadamard product
1: procedure hadp(x, u, pg, y)
2: for c ∈ C(G) do
3: for h ∈ G\IG(c) do
4: for i ∈ [[0, N(c)− 1]] do
5: xc,h[i]+ = uc,gh[i] ∗ yc,h[i]
6: end for
7: end for
8: end for
9: end procedure

Clearly, in Alg. 29, the indirections have been removed, provided that the vectors are well sorted
according to the orbits and the group actions. This allows a straightforward vectorization by using
SIMD instructions to perform the line 5 of Alg. 29. Our method thus transforms the Hadamard
product with indirections of Alg. 27 into a sequence of smaller Hadamard products of varying sizes
(depending only on the underlying group structure) with no indirection (see Alg. 29). Actually,
the indirections of Alg. 27 are converted in Alg. 29 in the application order of the small Hadamard
products.
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7.4.4.3 Performance results

We applied such permutation without array indirection to the group appearing in our M2L appli-
cations in dimension three with the hyperoctahedral group Dd. The results are reported in Fig.
7.14. We only compared the application timings of the Hadamard product with indirections to the
product with permutations (without the indirections). For each of them, we ran in sequential 10000
Hadamard products on di�erent vectors randomly initialized at each application (to prevent the
data reuse in the cache memory). Our code is executed on the architecture described in Sect. 7.1.3,
that is on a CPU supporting AVX-512 SIMD units. These AVX-512 units can o�er an up to 8x
speedup on our double precision computations. Notice however that the Hadamard products are
memory-bound (see App. D.1.1.1), so the expected gain on such application should be limited. To
measure the performance impact of the vectorization (see App. D.1.2.2), we �rst use as reference
scalar timings the performances obtained by disabling the compiler vectorization. We then consider
the compiler auto-vectorization that relies only on the C++ code. Recalling that the compiler may
not be able to detect that the loop in the Hadamard product of Alg. 27 can be parallelized due
to the indirections, which may prevent the auto-vectorization, we also provide the results with
an OpenMP vectorized version (using a simple #pragma omp simd OpenMP directive). This
last version makes the compiler (correctly) assume that the loop is parallelizable and hence try to
enforce the vectorization. We may mention that we checked the assembly codes to verify that the
right SIMD registers were used as well as FMA instructions.

As shown in Fig. 7.14, the code with indirections is never vectorized using compiler auto-
vectorization (with none of the tested compilers presented in Sect. 7.1.3). By adding OpenMP
directives, the icpc compiler is able to vectorize the Hadamard product with indirections, and hence
o�ers performance gains, but the g++ compiler cannot. Concerning our method with permutation
(and no indirection), the two compilers are able to auto-vectorize the inner loop of Alg. 29. This
seems to con�rm our hypothesis: indirections prevent the compiler from understanding that the
loop can be parallelized. We also tested the OpenMP vectorized version of this inner loop, leading
to similar performances. Indeed, this inner loop vectorization is straightforward since our method
removes the indirections. Hence, relying on the auto-vectorization with the permuted Hadamard
product is su�cient for both compilers to obtain a vectorized code.

Actually, the code with indirections using OpenMP directives and the icpc compiler performs
quite well. Below order L = 12, the OpenMP vectorized Hadamard product with indirections (Alg.
27) with the icpc compiler is faster than our vectorized method without indirection (Alg. 29).
Above this order, our method starts being more e�cient and the permuted products (using g++
or icpc) start being as e�cient as the OpenMP vectorized products with indirections using icpc.
For extremely high orders (see Fig. 7.14), the permuted Hadamard products are always faster.
However, in practice, high orders like L = 10 are related to very high precisions and lead to high
computation times for the FMM. We believe that it is not relevant to consider such higher orders
in our application context.

The reasons of this limited e�ciency for low orders is that the vectors on which we apply the
Hadamard products with no indirection in Alg. 29 are too small. Some of them cannot fully bene�t
from the (AVX-512) SIMD units. Hence, we discarded the use of permutations without indirections,
and we rely in our �nal code on the Hadamard products with indirections and OpenMP directives,
using preferably the icpc compiler. According to Fig. 7.14, this version o�ers, with respect to the
Hadamard products with indirections but without OpenMP (and using icpc), performance gains
up to ≈ 16%.

Another important point to mention is that our permutation algorithm is independent of the
application context and can be applied to any group. Moreover, the data localization idea we
presented is not limited to the FMM scope.

Remark 7.4.5. The results given in Fig. 7.14 also show that the icpc compiler combined with
OpenMP directives is way better than the g++ one at vectorizing the Hadamard products with
indirections. This motivates the use of the icpc compiler (still combined with OpenMP directives)
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Figure 7.14: Relative timings of the di�erent approaches for the Hadamard products with regard
to the one-dimensional interpolation order L (i.e. the vectors are of size L3) and using di�erent
compilers: g++ (top) and icpc (bottom). The timings are all given relatively to the performances
obtained when disabling the compiler auto-vectorization ('No SIMD'). 'per': permutation method;
'ind': indirection method. OMP: relying on OpenMP vectorization.

in our tests on defmm.

7.5 Optimizations

In this section, we describe several optimizations we provide in defmm. Here is a summary of the
new optimizations we present:

• A way of e�ciently (pre)computing the P2M and L2P operators (Sect. 7.5.1)

• A storage strategy for the expansions taking into account the potential non-uniformity of the
particle distribution reducing all the accesses to O(1) operations (Sect. 7.5.2)

• A set of blank tree traversals to limit the precomputation and application costs by minimizing
the number of computed directional expansions according to the particle distribution (Sect.
7.5.3)
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• A set of fast algorithms for the M2M and L2L operators based on vector stacking and the
particular expression of the matrix form of these operators (Sect. 7.5.4)

• An e�cient SIMD vectorized code for the near �eld in the Helmholtz kernel case and a strategy
based on precomputation, BLAS 2 and particle sorting for applications of defmm to iterative
solvers (Sect. 7.5.5)

• An e�cient way of handling the numerous small FFTs involved in defmm, i.e. to speed up
the M2F/F2L evaluations (Sect. 7.5.6)

• A re�ned DTT with M2P and P2L operators for a better handling of highly non-uniform
particle distributions (Sect. 7.5.7)

7.5.1 Leaf operators optimizations

The interpolation-based tools and FFT techniques aim at providing a fast evaluation of most of the
FMM operators. However, the positions of the particles having non-predictable values, expansive
computations have still to be done on the leaves when applying the P2M/L2P operators. Their
e�cient treatment is the purpose of this section.

The M2M/L2L operators bene�t from a complexity reduction thanks to the nature of the
multivariate interpolation uniform grids, which are products of the same one-dimensional one (de-
tails are provided in Sect. 7.5.4). For the P2M/L2P operators, the product structure can also be
exploited. Let s be a source cell and let M ∈ RLd×N(s) be the matrix form of the P2M operator
on s, N(s) being the number of source particles in s. The same discussion, up to a transposition,
can be done for the L2P operators on target cells. We have

(M)k,l := L
(s)
k (yl)

where L(s)
k is the Lagrange polynomial associated to the kth nodes in the interpolation grid of s and

yl is the lth particle in s. Then we have the decomposition L
(s)
k = Πd

p=1 S
(s)
I(k)p

(
(yl)p

)
thanks to the

product grid, S(s)
I(k)p

being a one-dimensional interpolation polynomial and I being as in Def. 7.4.1.
Hence, the naive computation of M requires O

(
N(s)Ldd

)
one-dimensional polynomial evaluations,

each of them having a cost of O (L) �ops, resulting in an overall cost for the computation of a single
P2M equal to O

(
N(s)Ld+1d

)
. However, precomputing �rst the d sets Sp such that

Sp := {S(s)
q

(
(yl)p

)
| q ∈ [[0, L− 1]], l ∈ [[1, N(s)]]},

each entry of M is the product of one element of each Sp, p ∈ [[1, d]]. The computation of these sets
costs O

(
dL2N(s)

)
and allows to compute M in O

(
dN(s)Ld

)
�ops. If the FMM is supposed to be

applied many times, the precomputation of the P2M/L2P matrices can thus o�er an interesting
performance gain for the evaluation of M. This is the default method in our defmm since we are
supposed to include it in an iterative solver.

Notice that a similar method, exploiting the tensorized structure of the P2M / L2P matrices,
has been described in [126], but for storage optimization only.

Remark 7.5.1. The interpolation grid computation has a non-negligible cost and are needed for
both the M2L and P2M/L2P precomputations. Hence, because all the grids have the same in-
terpolation order and all the cells are d-cubes (whose radii depend only on the tree level, see Sect.
7.3.1.3), they can be deduced from a single grid by means of scaling. We then precompute this unique
interpolation grid. Following the same idea, the bijection I (see Def. 7.4.1) is intensively used in
our implementation of the precomputation step, so we also precompute the correspondences between
indices and multi-indices.
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7.5.2 Expansion storage

In the low-frequency regime, there exists at most one single expansion in each cell. This is no longer
valid in the high-frequency domain, where the number of expansions associated to a cell depends
on the number of directions used in the directional method. In this section, we explain how these
expansions are stored in defmm for fast accesses. We also present a global storage format mainly
designed to lower the precomputation cost of the global FMM.

7.5.2.1 Directional expansions

In the high-frequency regime, we only store the directional expansions that appear in at least one ef-
fective cell-cell interaction. These directional expansions are called e�ective directional expansions.
This strongly reduces the number of stored expansions for non-uniform distributions. Indeed, the
maximal number of possible directional expansions in each cell corresponding to the Eth direction
tree level (see Sect. 4.2.2.1) is of order O

(
2E(d−1)

)
while only a few e�ective directional expansions

may exist, depending on the distribution.

Remark 7.5.2. In terms of memory footprint and upward/downward pass costs, the uniform dis-
tribution case is the worst one in the high-frequency regime due to the important number of e�ective
directional expansions in most cells. On the other hand, elongated geometries (such as ellipsoids)
fully bene�t from the storage of only the e�ective directional expansions.

The directions, for a given cell size, are uniquely indexed using a global direction index de�ned
in accordance with the elements of the corresponding direction tree level. For any cell, we thus want
to be able to recover in O(1) operations the e�ective directional expansion corresponding to a given
direction index. In the same time, we also want to e�ciently enumerate the directions involved in
a given cell in the M2M/L2L operators, i.e. without having to test all possible directions. These
two points are achieved by associating an array and a list to each cell in the high-frequency regime.
The array has a size equal to the number of e�ective directional expansions for this cell c and its
kth entry is an integer l which is non-negative if and only if the directional expansion with direction
k is the lth expansion stored for c. This array is denoted by dir. The list, denoted by rid has a size
equal to the number of directional expansions stored in c and associates to each direction kept in c
its global direction index. Hence, we have{

rid[dir[k]] = k if the direction k is stored in c;
dir[k] < 0 otherwise.

The directional expansions used in a cell are stored in the same single array whose size is equal to
the number of positive elements in its rid array. This allows to compute the starting addresses of
the di�erent directional expansions of a cell in the high-frequency regime using only a single pointer
and the number of directions kept in this cell. Hence, we can use the same cell structure in both
the low- and high-frequency regime thanks to the reduction of directional expansions to store. It is
important to also discuss the way these arrays are allocated.

7.5.2.2 Global expansion arrays

The multipole and local expansions (and their conversions in the Fourier domain) are arrays of com-
plex numbers and were originally allocated independently in each cell and stored in non-contiguous
memory areas. However, this approach prohibited the design of certain batch algorithms (see Sect.
7.5.6.1) and generated numerous allocations, with an impact on the precomputation cost. We then
decided to group the expansions of all cells of a given tree into one single global array instead of
individual arrays for each cell. Two consecutive cells in the cell array (i.e. the array storing the cells
of a given tree, see Sect. 7.3.4) are ensured with our construction to have consecutive expansions in
the corresponding global array. Because both the multipole/local expansions and their conversion
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Figure 7.15: Timings (in seconds) of the allocation and zeroing of expansions for a one-dimensional
interpolation order equal to 4 without global arrays (individual) or with global arrays (global).
From left to right, denoting by K the geometry length multiplied by the wavenumber: cube K = 0,
cube K = 64, sphere K = 0, sphere K = 64, with 10M particles each, see Sect. 7.1.3.

into the Fourier domain are stored, we decided to declare one global array for each of the four types
of expansion.

The comparative timings for the allocation and initialization of the expansions depending on
the particle distribution with or without global arrays are reported in Fig. 7.15.

This modi�cation of the storage results in a substantial time reduction (up to 32%) of the
expansion allocations and zeroing with all the tested distributions. The only needed informations to
initialize the global arrays are the number of cells in a FMM 2d-tree, this being computed explicitly
during the tree construction (see Sect. 7.3.4), and the number of e�ective directional expansions in
each cell (see Sect. 7.5.2.1). This last element is computed during the blank horizontal pass (see
Sect. 7.5.3).

There is however a drawback with this approach in the case of moving particles, modifying the
structure of the FMM 2d-trees at each application. In this case, the number of e�ective directional
expansions in each cell may change, modifying the size of the global expansion arrays. Neverthe-
less, in our application case the e�ective directional expansions do not change between two FMM
applications.

7.5.3 Blank passes

As presented in Sect. 7.4.3.2, the size of the M2L tables can be reduced by "quotienting them" by
the rotations of the d-cube. However, in the high-frequency regime, because of the increasing size
of these tables and because only a small number of M2L matrices may be used with non-uniform
particle distributions, we precompute only theM2L (diagonal) matrices required by the horizontal
pass.
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7.5.3.1 Blank horizontal pass

To �nd the M2L matrices that are e�ectively used in the horizontal pass, we perform a "blank"
DTT during the precomputation step. To be more precise, by applying such a blank DTT, each
time a far �eld cell-cell interaction in the high-frequency regime should be realized with a relative
index in the corresponding M2L table associated to an element not already precomputed, the
blank DTT calls a routine that precomputes this M2L matrix. The algorithm only traverses the
high-frequency levels.

Because the symmetries presented in Sect. 7.4.1 also apply for the M2L matrices in the high-
frequency regime, we precompute such a matrix if and only if no other rotation of it has already
been precomputed. However, these M2L matrices are computed independently of the direction
of the cell-cell interaction. This information on the direction is needed to recover the directional
multipole and local expansions involved in the interaction. This corresponds to the best cone index
search for each cell-cell interaction.

7.5.3.2 Best cone index

When applying the blank DTT, the relative positions of the interacting cells are computed, meaning
that the best theoretical direction u for this interaction is known. This best direction corresponds
to the optimal theoretical interaction direction between the two cells, i.e. the normalized center
di�erence. Let D(E) be the set of directions at level E, E being the interacting cell level. We thus
�nd ũ ∈ D(E) such that

ũ = argmin
v∈D(E)

|u− v|. (7.7)

Notice that such a ũ may not be unique. We obtain ũ by using an exhaustive and naive search in
D(E), keeping the �rst direction minimizing Eq. 7.7 during the blank DTT. Then, we mark the
source and target interacting cells with the index of ũ in D(E). This corresponds to an update of the
list rid presented in Sect. 7.5.2.1. In the same time, we mark the M2L precomputed matrix with
this ũ. If a permutation of this matrix has already been computed, we store ũ in an array storing
these indices for all the permutations. This allows to use the same precomputed M2L matrix in
the high frequency regime for each cell-cell interaction that involves a permutation of this matrix
while recovering the global direction indices of the directional expansions in O (1) each time (a given
permutation of this matrix being associated to a single global direction index). This means that
during the FMM application, the high-frequency M2L operators only execute Hadamard products
as in low-frequency regime.

At the end of the blank DTT, each cell knows all the directions this cell is interacting with. The
set of e�ective directions (see Sect. 7.5.2.1) found by this process is not su�cient to run the overall
directional FMM scheme. Indeed, the e�ective directional multipole expansions of the ancestors
of a cell c are assembled from particular directional expansions in c which could be not among its
e�ective directions. Hence, we have to handle these missing directions by vertically communicating
this information in the source and target 2d-trees.

7.5.3.3 Blank downward pass

To complete the set of all required directions involved in a computation for a given cell, we added
two other phases in the precomputation step. This consists in two blank downward passes, one on
the source and one on the target 2d-trees, transmitting the information of the needed directions
from the root to the leaves. This can be performed e�ciently by correctly indexing the directions
of D(E) with regard to D(E + 1). Each v ∈ D(E) having an ancestor in D(E + 1) and each
w ∈ D(E + 1) having 2d−1 possible sons, if k denotes the index of v in D(E), thus the index of the
ancestor of v in D(E + 1) is supposed to be bk/2d−1c. Once again, the algorithm is only applied
on the cells in the high-frequency regime.
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After the application of all these blank passes, the entire and minimal3 set of required directional
expansions in each cell to perform the directional FMM is known.

7.5.4 High frequency M2M and L2L

Because of the directional aspects of defmm, the cost of the upward and downward pass is linearith-
mic for surface meshes (see [94]). As opposed to the FMM algorithms for non-oscillatory kernels,
these steps may not be so much faster to compute than the horizontal pass. There is thus a need for
carefully optimizing their application. We �rst rely on the algorithm used in [8] for the treatment
of the M2M and L2L operators exploiting the tensorized structure in the case of non-oscillatory
kernels (non-directional case).

As described in 7.5.4.1, we extend the idea presented in [8] to equispaced grids and to oscillatory
kernels, using vector stacking (see Sect. 7.5.4.2) and deinterleaved real and imaginary parts of input
vectors (see Sect. 7.5.4.3). We also investigate new other approaches based on the properties of
the Lagrange interpolation on equispaced grids (see Sect. 7.5.4.5) and on grouping M2M /L2L
operators (see Sect. 7.5.4.6).

7.5.4.1 Original algorithm

We �rst describe the tools needed to express a general version of the algorithm suggested in [8]. The
basic idea is that if the interpolation grid in a cell is the product of the same one-dimensional grid,
the matrix representation of theM2M and L2L operators are tensorized matrices. In other words,
let M ∈ RLd×Ld be the matrix representation of aM2M there exists M (p) ∈ RL×L, p ∈ [[1, d]], such

that M =
d
⊗
p=1

M (p). For any v ∈ CLd , we have

(Mv)i =

((
d
⊗
k=1

M (k)

)
v

)
i

=

Ld−1∑
j=0

d∏
p=1

M
(p)
I(i)p,I(j)p

vj

=
∑

J∈Im(I)

d∏
p=1

M
(p)
I(i)p,Jp

vI−1(J)

=
∑

J∈Im(I)

d−1∏
p=1

M
(p)
I(i)p,Jp

(
M

(d)
I(i)d,Jd

vI−1(J)

)

=
∑

J∈Im(I) | Jd=0

d−1∏
p=1

M
(p)
I(i)p,Jp

(
L−1∑
q=0

M
(d)
I(i)d,q

vI−1(J+qed)

)
where the sum on the left is a line of the result of a matrix-vector product of size L×L and with I as
in Def. 7.4.1. With i varying, this matrix-vector product is performed to Ld−1 di�erent restrictions
of v but involving each time the same matrix. Hence, there exists a permutation P ∈ RLd×Ld such
that

(Mv)i =
∑

J∈Im(I) | Jd=0

d−1∏
p=1

M
(p)
I(i)p,Jp

(
diag(M (d))Pv

)
I(i)d

and this process can be repeated d times, leading to an overall complexity of O
(
dLd+1

)
since the

permutations are applied in O(Ld) operations. Because the same permutation can be used each
time, M can actually be written as

M = (diag(M)P )
d
.

3According to a �xed direction tree.
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This method reduces the application cost of aM2M from O
(
L2d
)
to O

(
dLd+1

)
but can be further

improved from a computational viewpoint. Because the same matrix is applied to Ld−1 vectors,
these vectors can be stacked in order to perform matrix-matrix operations (see App. D.2), hence
bene�ting from the BLAS 3 compute e�ciency [8].

Remark 7.5.3. The L2L case is obtained similarly because the corresponding matrix representation
L is such that L = MT . We will not detail the L2L in the rest of this section.

Remark 7.5.4. Each time a block diagonal matrix with all blocks equals is applied to a vector
numerically, this vector stacking is possible and allows to perform the matrix-vector product as a
matrix-matrix one.

We will refer to this version as the tensorized method. In [8], this tensorized method is presented
for tensorized Chebyshev interpolation rules and non-oscillatory kernels. The extension of this
method to the equispaced grids of defmm is straightforward: these are still tensorized grids. The
directional tensorized method is simply obtained by remarking that the directional M2M matrix
M(u) with direction u can be written

M (u) = Dleft(u)

(
d
⊗
p=1

M (p)

)
Dright(u) (7.8)

with two diagonal matrices Dleft(u) and Dright(u) (see Sect. 4.2.2.4).

7.5.4.2 Directional operators and directional stacking

In the high-frequency regime, an optimization can be obtained using the similarity between the
directional M2M matrices. Starting from Eq. 7.8, for a given cell, if we consider two directions u
and u′ with corresponding directional multipole expansions v(u) and v(u′), we obtain

[
M(u)v(u)
M(u′)v(u′)

]
=

 Dleft(u)

(
d
⊗
p=1

M (p)

)
Dright(u)v(u)

Dleft(u
′)

(
d
⊗
p=1

M (p)

)
Dright(u

′)v(u′)



=

[
Dleft(u)

Dleft(u
′)

]
d
⊗
p=1

M (p)

d
⊗
p=1

M (p)

[Dright(u)v(u)
Dright(u

′)v(u′)

]

=

[
Dleft(u)

Dleft(u
′)

]
diag

(
d
⊗
p=1

M (p)

)[
Dright(u)v(u)

Dright(u
′)v(u′)

]
.

According to Rem. 7.5.4, the results of the multiplications of the directional expansions by the
right diagonal matrices can be stacked in order to get matrix-matrix products. Combined with the
optimization of Sect. 7.5.4.1, this leads to larger matrix-matrix products than with the tensorized

method when applying
d
⊗
p=1

M (p), which may further bene�t from the BLAS 3 e�ciency. Thanks to

the blank passes (see Sect. 7.5.3), the number of directional expansions stored in a cell is minimal
with regard to the direction tree and is known when the high-frequency M2M operator is applied.

Remark 7.5.5. The ideas discussed in this section are also used in order to obtain matrix-matrix
products in the high-frequency P2M/L2P instead of matrix-vector ones, hence exploiting the BLAS
3 e�ciency.

Remark 7.5.6. The evaluations of the complex exponentials needed in the computation of the
matrices Dleft and Dright are costly. Denoting by Ndir(E) the number of directions at the level E
of the 2d-trees, there are Ndir(E) such matrices. We thus precompute these diagonal matrices for all
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possible directions and for all levels. Notice that the diagonal matrices used in the L2L are obtained
using complex conjugate of the precomputed diagonal matrices of the M2M. This conjugate trick
can also be exploited in order to reduce the number of precomputed matrices Dleft and Dright (see
Eq. 7.8), provided that there exists a polar symmetry in the set of directions at any level (i.e. −u
is a direction at the same level than u for any direction u at any level). We do not use this last
symmetry on the directions in our implementation.

This method is referred to as the tensorized+stacking method. The potential gain with this
increase of the vector stacking size depends on the particle distribution and the wavenumber since
it is directly related to the number of expansions stored in each cell. We now present a method
that further increases the size of the vector stacking while modifying the type of the matrix-matrix
product, with no dependency on the particle distribution or on the frequency regime (i.e. also
optimizing the low-frequency M2M / L2L operators).

7.5.4.3 Real/complex matrix-matrix products

We propose another level of vector stacking for theM2M (or L2L) application, exploiting the space
of the matrices M (p). These matrices are real (since they are composed of evaluations of Lagrange
polynomials), but are applied to complex vectors in a directional method. For any v ∈ CLd , we
then have (

d
⊗
p=1

M (p)

)
v =

(
d
⊗
p=1

M (p)

)
(Re{v}+ iIm{v})

=

(
d
⊗
p=1

M (p)

)
Re{v}+ i

(
d
⊗
p=1

M (p)

)
Im{v}.

In consequence, by deinterleaving (see Fig. 7.16) the real and imaginary parts in the expansion
vectors, we can obtain a stacked matrix of real elements with twice the number of entries of the
matrices obtained with the stacking method but with no additional storage. This transforms the
complex matrix-matrix products of the tensorized algorithm and of the stacking method into larger
(in terms of number of real entries compared to number of complex entries) real ones. In the
same way, by discarding the imaginary part of the (real) M2M / L2L matrices, we reduce the
number of e�ective operations performed by these matrix-matrix products. Once again, relying
on the BLAS 3 e�ciency, we expect this optimization to further accelerate the M2M and L2L
application. This method is referred to as the tensorized+stacking+real method. The real method
can be actually seen as a matrix stacking. Notice that in the low-frequency regime, since there is
only one multipole/local expansion per cell, no stacking of the directional expansion is done and
the tensorized+stacking+real method is simply a tensorized+real one.

7.5.4.4 Performance results

In Figs. 7.17 and 7.18 are detailed the di�erent M2M timings for the variants we described on the
two test cases in Sect. 7.1.3.

On the sphere, according to Fig. 7.17, the most e�cient variant is clearly the last one we
proposed, i.e. the tensorized+stacking+real method. On this test case, the tensorized+stacking
and tensorized+stacking+real methods performs better than the tensorized method of [8]. The
tensorized+stacking method, exploiting the multiple directional expansions of a given cell, can
only be better than the tensorized method in the high-frequency regime. However, the ten-
sorized+stacking+real method also positively impacts the performances of the M2M / L2L oper-
ators in the low-frequency regime. On the sphere, the tensorized+stacking+real method performs
up to ≈ 2.16 times faster than the tensorized one.

Conclusions are di�erent on the cube test case, following the results of Fig. 7.18. In Fig. 7.18
(top), using the same wavenumber than on Fig. 7.17, all the tree levels are in the high-frequency
regime, so only high-frequencyM2M operators are performed. In this case, the tensorized+stacking
method performs better than the tensorized one. Indeed, the cube test case being an uniform
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Figure 7.16: Blue: real part of a complex number. Red: imaginary part of a complex number. Top:
inputM2M / L2L vector before deinterleaving of real and imaginary parts. Middle: Deinterleaving
process. Down: same data than in the middle, but seen as a column-major matrix. The input vector
corresponds to a multipole/local expansion in 2D with one-dimensional order equal to 3. The indices
in the arrays entries corresponds to the multi-indices of the corresponding interpolation nodes in
the grid.

distribution, many cells have the maximal number of e�ective directions, which maximizes the size
of the vector stackings. For an interpolation order equal to 3, the tensorized+stacking+real method
performs even faster (≈ 4 times faster than the tensorized method). However, in this test case,
the tensorized+stacking+real method is less e�cient than the tensorized+stacking one for larger
interpolation orders. Actually, since one of the two matrices in the matrix-matrix products is very
small (of size L×L, L being the one-dimensional interpolation order), the maximal e�ciency of the
vector stacking is obtained for relatively small sizes for the second matrix. Hence, the cost reduction
obtained by the additional vector stacking of the tensorized+stacking+real method and the lower
number of operations needed on real matrix-matrix products are not su�cient to balance the
interleaving cost in the uniform cube test case in the high-frequency regime. Nevertheless, in the low-
frequency regime, the deinterleaving still allows fasterM2M evaluations than the tensorized method
of [8] (recalling that there is no stacking on directional expansions in the low-frequency regime). In
practice, we only observed this performance drop of the tensorized+stacking+real method compared
to the tensorized+stacking one on the uniform cube, so we keep the tensorized+stacking+real
method by default in our implementation.

The same gains are obtained on the L2L operators.

7.5.4.5 Sparse M2M and L2L

When equispaced grids are used for the interpolation, the M2M matrix has many zeros. This
particular form is obtained if the same interpolation order is used in all the source tree cells, which
is the case in our implementation. Hence, some of the interpolation nodes of the sons of a cell c are
also interpolation nodes of c. Because the Lagrange polynomials are equal to 0 or 1 on such points,
this reduces the theoretical number of operations to be performed in order to recover the result of
a M2M application. However, the induced sparsi�cation of the full M2M matrix in itself is not
su�cient to obtain a competitive methods with the schemes presented in Sect. 7.5.4.1, 7.5.4.2 and
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Figure 7.17: Cumulative times (seconds) spent in all M2M operators for the di�erent M2M
variants on the sphere with κa = 64, where κ denotes the wavenumber and a the sphere diameter.
t : tensorized; t+s: tensorized+stacking; t+s+r : tensorized+stacking+real. From left to right, the
groups correspond to the one-dimensional interpolation orders equal to 3,4,5,6. The low-frequency
M2M operation (pale) are separated from the high-frequency ones (dark).

7.5.4.3.
One can still combine the tensorized method with the knowledge about the zeros and ones in

the small matrices involved (i.e. the matrices of the tensor product). For instance, if we consider
the matrix M (1) corresponding to Fig. 7.19, we have

M (1) =


1 ? 0 ? 0
0 ? 1 ? 0
0 ? 0 ? 1
0 ? 0 ? 0
0 ? 0 ? 0



=


1 0 0 ? ?
0 1 0 ? ?
0 0 1 ? ?
0 0 0 ? ?
0 0 0 ? ?

P
where ? denotes any non-zero real element and P is a well chosen permutation matrix. There exist
thus B0 ∈ RL×bL2 c and B1 ∈ RbL2 c×bL2 c such that

M (1) =

[
Id B0

0 B1

]
P.

This gives [
Id B0

0 B1

] [
v0

v1

]
=

[
v0 +B0v1

B1v1

]
.

This means that the in-place product by M (1) can be reduced to a permutation followed by two
BLAS calls on B0 and B1, where the result of the �rst call (on B0) is added to v0. The overall com-
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Figure 7.18: Cumulative times (seconds) spent in all M2M operators for the di�erent M2M
variants on the cube with κa = 64 (top) and κa = 0 (bottom), where κ denotes the wavenumber and
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3,4,5,6. The low-frequency M2M operation (pale) are separated from the high-frequency ones
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−1 1

Figure 7.19: Interpolation order equal to 5. Parent grid on [−1, 1] (red) and son grid on [−1, 0]
(blue).

plexity then drops from O
(
dLd+1

)
to O

(
d
(⌊
L
2

⌋)d+1
)
. This method is called the sparse method.

However, we need two extra arrays to call the BLAS on di�erent matrices and the new permutation
exchange the data in these arrays. In addition, the matrix-matrix product sizes are highly varying:
the left matrices are very small compared to the right one. Two BLAS calls on these sizes (for
instance 3× 2 and 2× 2 for L = 5) could be less e�cient than a single call on larger matrices. We
also wrote this algorithm without BLAS call, but with no computational gain.

In our tests, the sparse method leaded to less e�cient M2M evaluations than the tensorized+-
stacking+real method (even for large interpolation orders). Thus, we did not used this sparse
method in practice.

7.5.4.6 Son symmetries

One may consider a last optimization which is mainly useful for uniform distributions. This last
method consists in looking at the possible di�erent M (p) for cells on the same levels. Indeed,
there are only two such matrices, that is there exist M0 ∈ RL×L and M1 ∈ RL×L such that
M (p) ∈ {M0,M1}, ∀p ∈ [[1, d]]. Because of the symmetry of the one-dimensional interpolation
grid with regard to zero, there exists a permutation matrix P such that M1 = PTM0P . This
information can be used to obtain larger matrix products than with the tensorized+stacking+real
method, only introducing additional permutations and assuming that the cell has more than one son.
A complexity reduction compared to the tensorized algorithm and the tensorized+stacking+real
method can be obtained by looking at the common matrices in the decomposition M = ⊗dp=1M

(p)

of Sect. 7.5.4.1.
A cell has at most 2d sons that can be identi�ed using d bits. We suppose that all these sons

exist. Each son is uniquely indexed in [[0, 2d − 1]], also using d bits. These bits can be interpreted
as the indices of the matrices Mk that are applied to the corresponding multipole expansion in the
same order than their apparition order in the bit representation of the index of the son. Hence, after
the application of the �rst of these matrices, the same sequence of matrices is applied to groups of
two partial results. The results of these products are added at the end of the tensorized method
application. However, the sum can be done after the �rst product by aMk, reducing the number of
remaining expansions for the next product with a Mk by 2. This process can be repeated d times,
leading to a O

(
Ld+1

∑d
p=1 2d−p+1

)
= O

(
2(2d − 1)Ld+1

)
complexity if a cell has 2d sons instead

of O
(
d2dLd+1

)
.

We did not implement this variant since we target highly non-uniform distributions on which
the gain of this optimization should be limited. In addition, because we do not store the empty
cells in defmm (Ncrit criterion), we have to test the relative positions of the sons of a cell to recover
their index on a perfect tree. Finally, the complexity reduction is limited in our applications since
we are interested in three-dimensional cases, the complexity reduction appearing mainly for d > 3.

7.5.5 Near �eld computation

In this section, we describe a set of optimizations used for the fast evaluation of the near �eld (i.e.
the fast evaluation of the P2P operators). In Sect. 7.5.5.1 is presented the way the P2P operators
are grouped in defmm, thanks to the DTT. In Sect. 7.5.5.2, an e�cient SIMD vectorized code for
the Helmholtz kernel is described, allowing to fully bene�t from modern SIMD units. Finally, in
Sect. 7.5.5.3, we present a precomputation strategy, relying on the static particle distributions of
our application context.
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7.5.5.1 Grouping P2P

As we explained in Sect. 7.3.3, we proposed a formulation of the DTT in Alg. 23 that switches
to particle-particle interactions if at least one of the two tested cells is a leaf, as opposed to the
implementation of [3], allowing to handle the constraint on the cell-cell interactions on the same
level. Indeed, by considering a single P2P call instead of multiple ones, we bene�t more from the
O (N) arithmetic intensity (see App. D.1.1.1) of the near �eld computation (we will detail this in
Sect. 7.5.5.2), hence obtaining better applications timings than with multiple calls. To be e�cient,
this needs the particles of the descendant of a given cell to be stored in consecutives positions of
a global array, which is ensured by our tree construction, thanks to the particle sorting (see Sect.
7.3.4).

7.5.5.2 SIMD direct evaluation

The general form of the P2P operator, i.e. of the near �eld computation, is provided in Alg. 30.
There mainly exist two approaches to vectorize the near �eld direct computation: by vectorizing
either the outer loop over the target particles or the inner loop over the source particles of Alg.
30. Basically, a vectorization of the outer loop sums over the source particles for multiple target
particles and a vectorization of the inner loop consists in summing the contributions of di�erent
source particles into variables corresponding to the same target particle. By vectorizing the outer
loop, one avoids the additional reduction operations needed when vectorizing the inner loop.

Algorithm 30 nearfield

1: // Input : cell t, cell s
2: // Output: ∅
3: procedure nearfield(t, s)
4: for x ∈ t ∩X do
5: for y ∈ s ∩ Y do
6: p(x)+ = G(x,y)q(y)
7: end for
8: end for
9: end procedure

The SIMD treatment (see App. D.1) of the near �eld part has been studied in the context of
Laplace 3D FMM in many references (see [25, 63, 150, 220, 222]). Notice that, because the source
tree may di�er from the target one in defmm, we are not interested in mutual interactions, that is
in speci�cally optimizing the case in which the same sets of particles are both targets and sources.

In [143], a code allowing SIMD auto-vectorization for the Helmholtz P2P operator is described.
In this code, the outer loop of Alg. 30 is vectorized and a deinterleaving strategy of the real
and imaginary parts of the complex numbers is exploited. This deinterleave strategy consists
in deinterleaving the data in the registers and performing only real operations. For a given target
particle, the interleaving of real and imaginary parts is done once all the source particle contributions
have been added. Hence, inspired by the source code provided in [143], we wrote our SIMD
vectorized code, whose best version appears to be slightly di�erent. First, we help the compiler to
vectorize the outer loop (in practice using the OpenMP# pragma omp simd compiler directive).
We could have written our SIMD code by hand but the ease of implementation and the portability
for various SIMD architectures of the OpenMP vectorization leaded us to implement our near
�eld evaluation using these compiler directives (this is also one of the motivations of the auto-
vectorization exploited in [143]). Second, because we do not have integral over crossing elements
but only particles in our code, the singularity treatment consists in checking if two particles have
equal positions and to skip the interaction in this case (see Sect. 2.1). We do not want this test
to a�ect the SIMD vectorization, so we compute the norm of the di�erence of particle positions in
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1 void simdDeinterleaveP2P<3>( c e l l <3>& t , c e l l <3>& s ) {
2 int N = t . nprt ; // Number o f t a r g e t p a r t i c l e s
3 int M = s . nprt ; // Number o f source p a r t i c l e s
4 f l t ∗ pt ;
5 f l t ∗ ps ;
6 f l t pi4m1 = 1 ./ pi4 ;
7 f l t x , y , z , R, K, r , co , s i , pr , pi , qr , q i ;
8 cp lx ∗pp = g l oba l : : p+t . ind ; // Where to add the near f i e l d con t r i bu t i on
9 cplx ∗qq = g l oba l : : q+s . ind ; // Charges l o c a t i on s
10 #pragma omp simd
11 for ( int i = 0 ; i < N; i++){
12 pt = K_( t . prt [ i ] . pos ) ;
13 pr = 0 . ;
14 p i = 0 . ;
15 for ( int j = 0 ; j < M; j++){
16 ps = K_( s . prt [ j ] . pos ) ;
17 qr = qq [ j ] . r e a l ( ) ; // De in te r l eave data
18 q i = qq [ j ] . imag ( ) ;
19 x = pt [ 0 ] − ps [ 0 ] ;
20 y = pt [ 1 ] − ps [ 1 ] ;
21 z = pt [ 2 ] − ps [ 2 ] ;
22 R = x∗x+y∗y+z∗z ;
23 K = 1./ sq r t (R) ;
24 i f (R < 1 . e−16){K = 0 . ; }
25 r = K ∗ R;
26 r ∗= g loba l : : kappa ;
27 K ∗= pi4m1 ;
28 co = cos ( r ) ;
29 s i = s i n ( r ) ;
30 co ∗= K;
31 s i ∗= K;
32 pr += co∗qr − s i ∗ q i ;
33 p i += co∗ q i + s i ∗qr ;
34 }
35 pp [ i ] += cplx ( pr , p i ) ; // In t e r l e a v e data
36 }
37 }

Figure 7.20: C++ code for the near �eld using deinterleave of complex numbers and OpenMP
SIMD vectorization. flt is an alias for double and cplx is an alias for std :: complex < double >.

all cases (singular or not). When such a distance is equal to zero, a variable containing the inverse
distance is set to zero (line 24 of Fig. 7.20). Doing so, we keep a minimal instruction in the test
that may be processed with masks in the vectorized code. Hence, because all the computations
involving singular pairs are multiplied by zero, all the singular interactions generate the same
operations than the non-singular ones, but adding a zero contribution. We also tried the trick with
the "max" instruction used in [152] (in a GPU context) but to no avail. Finally, we used slightly
di�erent calls to mathematic functions compared to the code provided in [143].

It is important to notice that an Array-of-Structure (AoS) format for complex arrays is needed
for BLAS routines on complex data and for the FFTs with FFTW, so defmm uses AoS for both
the arrays of complex data and the arrays of particles. This means that an array of complex
numbers (more generally of a given structure) is declared with interleaved real/imaginary parts of
the elements stored in this array This has to be opposed to the Structure-of-Array (SoA) format
where one array is used for the real parts and another for the imaginary one (more generally, an
array is used for each �eld of the structures). The SIMD implementations usually bene�t from the
SoA format due to the aligned vector loads. Using AVX-512, e�cient gather instructions can limit
the AoS format loss of e�ciency compared to the SoA one (see [143]).

Results for our implementation and on comparison with a naive implementation (no deinter-
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Figure 7.21: Timings (in seconds and divided by the number of computed interactions) for near
�eld computation with regard to the number of computed interactions using the icpc compiler.
The same amount of target and source particles are considered each time. "naive" refers to a
naive implementation of the direct interactions (with complex numbers and complex arithmetic
operations) and "deinterleaved" refers to the code in Fig. 7.20. We prohibit the compiler auto-
vectorization for the variant "no SIMD" and we use OpenMP directives on the outer loop for the
variant "OMP". With no indication, we rely on the compiler auto-vectorization.

leaving of data) are provided in Fig. 7.21. We used the icpc compiler to get these results. We also
compiled our code using the g++ compiler, but it was not able to generate SIMD vectorized code,
neither relying on auto-vectorization nor on OpenMP directives. The icpc compiler vectorizes the
inner loop if no OpenMP directive is given and is able to vectorize the outer one if an OpenMP
directive is provided. We thus need this OpenMP directive in practice to obtain the vectorization
we are targeting. According to Fig. 7.21, without considering complex number deinterleaving, the
vectorization of the outer loop of Alg. 30 (using OpenMP) leads to slightly better performances
than the compiler auto-vectorization of the inner one.

We then emphasize that, except on very small sizes for which the number of target particles
is too small to fully exploit the SIMD vectorization, the OpenMP vectorized code in Fig. 7.20
(i.e. the deinterleaved version) clearly provides the best performance results. We believe that the
compiler struggles to vectorize the complex arithmetic operations, but manages to vectorize all real
ones. The vectorization of this code using OpenMP is 7.6 times more e�cient than the sequen-
tial version for a P2P with 512 source particles and 512 target particles. Since we used double
precision arithmetic on AVX-512 CPU, we can expect the acceleration factor to be of order 8,
which shows the very good speedup obtained in practice. The maximal e�ciency of the vectorized
codes (no deinterleaved+compiler auto-vectorization, no deinterleaved+OpenMP directives, dein-
terleaved+OpenMP directives) is reached for a number of interactions approximately equal to 105

which would corresponds to an ideal case with Ncrit ≈ 316 since Ncrit corresponds to the maximal
number of target or source particles in a single P2P operator.

Notice that large P2P operators (in terms of number of particles) rarely appear in a FMM.



196

Indeed, in defmm, the Ncrit criterion is usually chosen to be less than 128 in order to minimize
the overall FMM cost. However, thanks to the grouping of P2P we described in Sect. 7.5.5.1 and
exploited in defmm, the full e�ciency appearing in Fig. 7.21 for large amount of interactions can
be obtained in practice on non-uniform particle distributions with our implementation.

7.5.5.3 Precomputation

Our code is supposed to be included into an iterative solver, which implies that the same global
FMM will be applied many times until the convergence of this solver is reached. In that application
context, only the charges change, but the particle locations remain the same. This is the reason
why we can compute only once the near �eld part of the matrix representation of the FMM (that is
we adopt a H2-matrix like treatment of the near �eld, see Sect. 2.2.5, in which the P2P operators
are represented and stored as non compressed matrices). We implemented this precomputation
feature.

More precisely, by introducing the matrix Rt,s ∈ C(#t∩X)×(#s∩Y ) such that (Rt,s)x,y := G(x,y),
x ∈ t∩X, y ∈ s∩Y , Alg. 30 consists in applying (Rt,s) to a vector q|s ∈ C[s∩Y ] and in adding the
result to a vector p|t ∈ C[t ∩X] . Since the particles are supposed to be static, the entries of this
matrix (Rt,s) do not change between two FMM applications and Rt,s can thus be computed once
and reused. Hence, since the application of a P2P is resumed this way to a matrix-vector product,
BLAS 2 routines can be exploited. This requires the vectors p|t and q|s to exist or to be assembled
when Rt,s is applied.

To e�ciently bene�t from the BLAS 2 calls, we allocate two global vectors of complex numbers,
p ∈ C#X and q ∈ C#Y , such that the entry i of the vector q (resp. p) corresponds to the ith

source (resp. target) particle according to the Morton ordering induced by the tree construction
(see Sect. 7.3.4). p stores the potentials associated to the target particles (initialized with zeros
before applying the FMM) and q stores the charges associated to the source particles. Doing so, a
given leaf cell can interact with an entire group of possibly non-leaf cells in a single matrix-vector
product, which may be more e�cient than multiple small ones (see Fig. 7.22). Notice that the BLAS
2 routines being memory bound (see App. D.1.1.1), the performance impact of this optimization
depends on the particle distribution.

The precomputed near-�eld application can be easily separated from the far �eld application
and it is convenient to do so when the precomputed P2P matrices are exploited. Indeed, if the
precomputed P2P matrices are applied during the DTT, one has to be able to store them in such a
way that any given P2P matrix corresponding to a non well-separated pair of cells can be e�ciently
found knowing the indices of these cells in the global cell arrays. On the other hand, by applying
the precomputed P2P matrices outside the DTT, if each of them is tagged by the indices of the
corresponding source and target cells, one may �nd all the needed information in O (1) operation
count for each precomputed P2Pmatrix application (i.e. �nd the correct o�sets in p and q). During
the precomputation step, we thus tag each target cell t by the indices of the source cells s such
that the interaction between t and s is computed directly and we add to this tag a pointer on the
corresponding precomputed P2P matrix. This construction is done in practice using Alg. 31 which
corresponds to a blank DTT for the near �eld precomputation. This blank DTT can be fused with
the blank DTT of Sect. 7.5.3.1, but we did not do so in our implementation.
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Algorithm 31 nfbdtt (Near Field Blank Dual Tree Traversal)

1: // Input : cell t, cell s
2: // Output: ∅
3: procedure nfbdtt(t, s)
4: if isLeaf(t) or isLeaf(s) then
5: Tag t using the index of s
6: Allocate and �ll the local near �eld matrix using kernel evaluations
7: else
8: for t′ ∈ Sons(t), s′ ∈ Sons(s) do
9: nfbdtt(t′,s′)
10: end for
11: end if
12: end procedure

Trees p q
Figure 7.22: Schematic representation of the correspondences between cells and particle indices in
the global arrays p and q. Here, the source tree is equal to the target one but p di�ers from q
since the �rst of these arrays corresponds to the potentials of the target particles and the second
one to the charges of the source particles. Each entry of these arrays of a given color corresponds
to a particle of the cell of the same color thanks to the Morton ordering. All the particles in the
descendant of a cell have consecutive positions in these arrays (e.g. the blue cell containing the
gray and the magenta one). The matrix representing the near �eld between the red cell and the
gray one is then a restriction of the matrix of the near �eld between the red and blue cells. The
corresponding array of charges of the gray cell is a subarray of the one of the blue cell.

The precomputation of the near-�eld part is particularly well-suited in the case of kernels that
are costly to evaluate because it allows to switch all the kernel evaluations to the precomputation
step. Only the charges at the source particles change between two FMM applications with static
particles.

In Tab. 7.4, we compare the application timings of the precomputed P2P matrices (referred
to as precomputed NF ) and the SIMD vectorized direct evaluation of the P2P operators (referred
to as on-the-�y NF ) we described in Sect. 7.5.5.2. The application of the precomputed P2P
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Method Distribution Time
on-the-�y NF Cube 70.06

precomputed NF Cube 40.60
on-the-�y NF Sphere 53.47

precomputed NF Sphere 27.63

Table 7.4: Application timings (seconds) of the near �eld depending on the P2P evaluation method
and the particle distribution. on-the-�y NF corresponds to the direct evaluation of the near �eld
using the method described in Sect. 7.5.5.2 and precomputed NF refers to the BLAS 2 evaluation
using the near �eld precomputation.

matrices performs up to 50% faster than the direct on-the-�y NF (on the sphere test case). On
the uniform cube case, the gain is less important but still signi�cative (≈ 43% faster). On this
uniform volumic case, the on-the-�y NF performs better than on the sphere since the P2P involve
approximately the same number of target and source particle, which are themselves approximately
equal to Ncrit, which is not the case of the surfacic distributions on which a certain amount of cells
contain signi�cantly less particles than Ncrit.

Remark 7.5.7. The precomputation of the near �eld has an impact on the memory footprint of
the method. This may bound in practice the Ncrit values used with this optimization.

7.5.6 Handling the FFTs

Numerous FFTs are performed in defmm. We use the state-of-the-art implementation FFTW
[107] to compute them. The problem with these FFTs is that they operate on relatively small
vectors/arrays. We may specify that the FFT computation is divided into two parts in FFTW.
First, a "FFTW plan" is assembled, deciding on the best strategy to run the FFT on a speci�c
machine. This FFTW plan is then executed on the input and output data, performing the FFT.
The issue is that the FFTW plan creation is more costly than its execution for the FFT sizes we
are considering. Fortunately, these FFTW plans can be reused, provided that the input/output
arrays they are applying to have the same memory alignment. Since all the FFTs have the same
size because we keep the same interpolation order all along the FMM, only one single FFTW plan
has to be precomputed. The FFTs used in defmm perform on small arrays, on which the FFTW
plan construction is costlier than the execution of these plans. In this section, we present a solution
to handle these numerous small FFTs by using a FFTW routine (Sect. 7.5.6.1) and by intensively
reusing the same plan (Sect. 7.5.6.2). In Sect. 7.5.6.3, we provide performance results for the two
approaches.

7.5.6.1 Batched FFTs

The FFTW library proposes a function directly resulting in batch FFTs [4]. This function allows to
initialize a single FFTW plan for a set of equally sized FFTs. The only needed assumption for this
function to be applied is a regularity in the storage of the transformed arrays. These arrays have
to be stored with equal distances in the memory. This is obtained in our implementation by using
the global expansion arrays presented in Sect. 7.5.2.2 (the arrays on which the batch FFTs perform
are thus the global arrays corresponding to the expansions in the Fourier domain). To use these
batch FFTs, the expansion copies are performed all together, before or after FFT computation
(depending on the expansion type). We refer to this method as the batch method. According to the
FFTW3 documentation [4], the batch method can improve the performances compared to multiple
FFTW calls.
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Figure 7.23: Timings (in seconds) of the entire m2fpass corresponding to a one-dimensional inter-
polation order L = 4. From left to right, K being the particle distribution length multiplied by the
wavenumber: cube with K = 0, cube with K = 64, sphere with K = 0, sphere with K = 64.

7.5.6.2 Intensively reusing the FFTW plans

The directional expansions of a given cell are stored consecutively with a padding ensuring the
same memory alignment for each expansion (see Sect. 7.5.2.1). A simple loop over the e�ective
directions of a cell thus allows to evaluate the M2F or F2L operators on each of its directional
expansions. In addition, thanks to the m2f/f2l passes, a single loop on the global cell array is
needed to call these operators on each cell. Each M2F operator copies the multipole expansions
in a larger array (storing the expansion in the Fourier domain) with gaps corresponding to the
zero-padding introduced for the circulant embedding (see Sect. 4.1.4) and then performs a FFT on
this array using the precomputed FFTW plan. The F2L is treated in a similar way, with �rst the
FFT application and then the copy. We refer to this method as the intensive method.

Remark 7.5.8. A scaling is also needed in the F2L because of the output of the FFTW routines.
Since the data are also copied, we perform this scaling during these copies.

7.5.6.3 Comparison

The timings of the two variants (batch and intensive) are given in Fig. 7.23. The intensive method
is always less costly than the batch one on the two particle distributions and in the two frequency
regimes. The data are likely loaded only once with the intensive method and both the copies and
FFTs are performed in the cache memory (since the FFTs perform on small arrays). The batch
method needs these two steps to be applied separately, implying that the data are loaded twice.
Since the copies and FFTs are memory-bound (see App. D.1.1.1), this di�erence may explain the
costs on Fig. 7.23. By splitting the timings of the copies and of the FFT applications in the batch
method, we observe that the FFT application is approximately as costly as the overall cost of the
intensive method, which seems to con�rm our analysis. We observed the same timing di�erences
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for the other tested interpolation orders. We thus discarded the batch method and the intensive
one is the default choice in defmm.

7.5.7 M2P and P2L operators

The constraint of far �eld interactions performed only with cells at the same level (see Sect. 7.3.1.3)
can lead in practice to large P2P applications. Since the complexity of a P2P is quadratic, we want
to avoid the too large P2P operations. We then introduce the M2P and P2L operators that are
commonly used in FMM (see for instance [73, 80, 176, 221]). Notice that such operators have been
investigated in the polynomial interpolation-based FMM in [182] with a speci�c tree construction
and a list-based approach (see Sect. 2.2.4.2). Actually, our approach is slightly di�erent than these
original ones: instead of using these extra FMM operators to avoid the expansion creation for cells
containing a very small number of particles. We want to avoid here the too costly near �eld cell-
cell interactions by transforming (some of) them into far �eld interactions, which is somehow the
opposite strategy.

These new operators, described in Sect. 7.5.7.1, are able to perform far �eld interactions on
cells lying at di�erent tree levels. Because our global approach does not construct the interaction
lists, we reformulated our DTT (see Sect. 7.3.3) into a re�ned traversal, which is described in Sect.
7.5.7.2. The new operators can be also expressed in the high-frequency regime, leading however to
strong complications. We discuss in Sect. 7.5.7.3 the applicability of the two new operators in the
high-frequency regime. Numerical results are provided in Sect. 7.5.7.4.

7.5.7.1 Operator formulations

The main point of the fully adaptive approach as presented in Sect. 2.2.4.2 is the introduction
of two operators performing on cells on di�erent levels. As opposed to the other FMM operators,
these new operators perform interactions of di�erent natures: cell-particle interactions for theM2P
(Multipole-to-Particles) and particle-cell interactions for the P2L (Particles-to-Local). The �rst
transforms a multipole expansion of a cell c0 on direct far �eld contribution for the particles of a
given leaf c1 such that for any particle z ∈ c1, c0 and z are well-separated according to a criterion
that needs to be de�ned (see Sect. 7.5.7.2). In the same manner, the P2L operator directly adds to
the local expansion in a cell c0 the contribution of a set of particles of a leaf cell c1 well-separated
with c0 according to a criterion that needs to be de�ned. Assuming that a particle has a radius
equal to zero and a center equal to its position, the criterion of the adaptive MAC (see Sect. 2.2.4.2)
can be used. This leads to interaction patterns as illustrated in Fig. 7.24.

The new operators are formulated as direct computations where the target or source group of
particles corresponds to an interpolation grid Ĝ. The P2L operator with source cell s reads:

L(x̂)+ =
∑

y∈s∩Y
G(x̂ + ctr(t),y)q(y), ∀x̂ ∈ Ĝ,

where L denotes the local expansion in the target cell.

Remark 7.5.9. This formulation exactly corresponds to our implementation: because the inter-
polation nodes are given relatively to the cell center and because the particle positions are given in
exact coordinates, we need to add the target cell center.

The M2P operator with target cell t reads in the following way, the charges being replaced by
the multipole expansion elements and the interpolation nodes being the source particles:

p(x)+ =
∑
ŷ∈G

G(x, ŷl + ctr(s))M[s](ŷl), ∀x ∈ t ∩X,

whereM[s] ∈ C[Ĝ] denotes the multipole expansion in the source cell. The complexity of each of
these new operators is equal to O

(
LdNcrit

)
where L refers to the one-dimensional interpolation
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P2L

P2P

M2P

P2P

P2P

Figure 7.24: Schematic view of the M2P (orange arrow) and P2L (green arrow) operators. We
consider the interactions of the pale blue cell. Instead of computing the near �eld between this
cell and all the other leaves (bottom) with P2P operators (red arrows), we switch to particle-cell
interactions (top left) if the pale blue cell is a source cell and to cell-particle interactions (top right)
if it is a target cell.

order, provided that the kernel can be evaluated in O(1) operations. To be relevantly applied in
the FMM, we still need to give a precise criterion allowing to use such operator and we also have
to rewrite our DTT-based horizontal pass.

7.5.7.2 Wideband re�ned Dual Tree Traversal in defmm

The criterion we use in defmm to decide if the particles of a cell c0 are well-separated from another
cell c1 for a M2P or P2L application, where c0 and c1 are low-frequency cells, is given by

rad(c0) + rad(c1)

|ctr(c0)− ctr(c1)| ≤ η (7.9)

where η ∈ [0, 0.7]. A M2P or P2L operator is less costly than a P2P one only if the number of
interpolation node in the cell whose interaction is involved is strictly less than the particle number
contained in this cell. Before testing the criterion in the inequality 7.9, we check that this condition
on the number of particle is veri�ed. This leads to a MAC B(c0, c1) which is true if these two last
conditions are veri�ed.

Remark 7.5.10. From a programming viewpoint, the implementation of the M2P and P2L oper-
ators are directly based on the P2P one where one of the particle sets is an interpolation grid. We
then bene�t from the optimizations we discussed in Sect. 7.5.5.2 for the near �eld. The M2P and
P2L operators are then applied on-the-�y without any precomputation.

We then modi�ed the �rst horizontal pass we gave in Alg. 23 (in Sect. 7.3.3) into a more
�exible algorithm switching betweenM2L, P2L,M2P and P2P operators, depending on the local
distribution. In the high-frequency regime, no M2P or P2L operator is performed, as justi�ed in
Sect. 7.5.7.3. This new horizontal pass, named re�ned horizontal pass, is formulated explicitly
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in Alg. 32. The "outer if" takes into account the high-frequency regime. The adaptivity with
the new operators is speci�ed by testing which cell is a leaf when such a cell appears. According
to this information, if the MAC B fails, the non-leaf cell is splitted and the process continues
recursively. Because the roots of the source and target trees are supposed to be the same, the
condition Level(t) = Level(s) for theM2Ls in the high-frequency regime is ensured by calling Alg.
32 on these roots.
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Algorithm 32 rfndhrzpass (Re�ned Horizontal Pass). This algorithm is called on the roots of
the target and source trees.

1: procedure rfndhrzpass(t, s)
2: if isHF(t) or isHF(s) then
3: if hfMAC(t, s) then
4: hfM2L(t, s)
5: return
6: end if
7: if isLeaf(t) or isLeaf(s) then
8: P2P(t, s)
9: return
10: end if
11: else
12: if Level(t) = Level(s) and MAC(t, s) then . Apply M2L if possible, not P2P
13: M2L(t, s)
14: return
15: end if
16: if isLeaf(t) and isLeaf(s) then
17: P2P(t, s)
18: return
19: end if
20: if isLeaf(t) then
21: if B(t, s) then
22: M2P(t,s)
23: return
24: else
25: for s′ ∈ Sons(s) do
26: rfndhrzpass(t, s′)
27: end for
28: return
29: end if
30: end if
31: if isLeaf(s) then
32: if B(t, s) then
33: P2L(t,s)
34: return
35: else
36: for t′ ∈ Sons(t) do
37: rfndhrzpass(t′, s)
38: end for
39: return
40: end if
41: end if
42: end if
43: for t′ ∈ Sons(t) do
44: for s′ ∈ Sons(s) do
45: rfndhrzpass(t′, s′)
46: end for
47: end for
48: end procedure
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7.5.7.3 High-frequency constraints

A natural question concerns the de�nition of the M2P and P2L operators in the high-frequency
regime, that is the de�nition of directional versions of these operators. They can be easily written
from a mathematical viewpoint with a small modi�cation of the high-frequency (directional) MAC,
but their execution leads to technical di�culties and greater overall complexity. Indeed, two cells
that would be admissible for a M2P or P2L can involve di�erent directional expansions. This
reduces the e�ciency of the SIMD code we developed for the near �eld interactions and used for
theM2P and P2L operations. Since there is no precomputedM2L matrix for these two cells, these
directions have not been precomputed during the blank horizontal pass. Hence, one has to retrieve
them on-the-�y and the cost of this operation increases from the leaves to the root of the 2d-trees.
In addition, the corresponding directional expansions may not be stored, so one has to determine
them during the blank passes in order to allocate them before the FMM application. There is a
problem when doing so: directional expansions may be created only to support a M2P or P2L
operator, adding a cost on the upward and downward passes during the FMM application. This is
justi�ed for a M2L operation because of its low evaluation cost but the potential gain is unclear
when introducing high-frequency directional M2P or P2L operations. We thus considered only
a low-frequency re�ned DTT exploiting M2P/P2L operators in defmm (i.e. no high-frequency
M2P/P2L operators).

There is another reason for this choice: when dealing with integral equations in the high-
frequency regime and with meshing, a certain amount of elements in the boundary discretization is
needed for each wavelength in order to ensure a given accuracy. Hence, we expect the majority of
leaves to be in the low-frequency regime (or near the low- and high-frequency limit depending on the
Ncrit value). This means that above this limit, mainly far �eld M2L interactions are performed.
So we believe that the implementation of theM2P and P2L operators in the high-frequency regime
would lead to small computational gains for the practical applications.

7.5.7.4 Tests and discussion

The approach we provide in Sect. 7.5.7.2 is mainly justi�ed on highly non-uniform distributions (i.e.
with higher non-uniformity than the sphere test case we described in Sect. 7.1.3). Such case may
appear in the integral equation context when dealing with mesh re�nement (see for instance [61]).
We mimic the e�ect of a mesh re�nement in a highly non-uniform distribution on the boundaries
of the unit cube (the re�nement is done around the corners), as illustrated on Fig. 7.25. Our test
case is composed of 10124406 particles. We present in Tab. 7.26 the performance of defmm with
and without the re�ned horizontal pass on the test cases of Sect. 7.1.3 and on the re�ned cube.
Since only a single application is considered and because we only provide the application timings,
the P2P operators are evaluated on-the-�y using the code presented in Sect. 7.5.5.2.

On the uniform cube test case, the performances of our original horizontal pass and of our re�ned
horizontal pass are the same. Indeed, the leaves are almost all at the same tree level because of
the uniform distribution (and because the same value of Ncrit is used for all the leaves). Since the
chosen Ncrit value is greater than the number of interpolation nodes in the grids associated to the
leaves, noM2P or P2L is performed on the uniform cube test case. Hence, we just measure that the
additional tests in the re�ned horizontal pass (see Alg. 32) have a negligible cost compared to the
overall FMM application one. On the sphere test case, we observe that the re�ned horizontal pass
performs slightly better than the horizontal pass. Indeed, on this distribution, a certain (relatively
small) amount of cells leads to the application of M2P and P2L operators. On this distribution,
the maximal size of the P2P operators is still limited, which leads to only a small performance gain
of the re�ned horizontal pass over the original horizontal pass.

Conclusions are di�erent on the re�ned cube: when applying the horizontal pass on this test
case, large P2P operators are called due to the constraint of far �eld interaction at the same tree
level (and to the grouping strategy of Sect. 7.5.5.1). On this distribution, the re�ned horizontal
pass performs ≈ 2.7 times faster than the original horizontal pass, showing that our strategy is
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Figure 7.25: Illustration of a re�ned cube. The particles are concentrated around the corners and
the edges of the boundaries of the cube.

clearly justi�ed on highly non-uniform distributions.
Similar results were obtained for other tested interpolation orders, so we do not report them

here. When high frequencies are considered, the conclusions are the same, except that the e�ect
of the re�ned horizontal pass is less sensitive as the wavenumber increases since no M2P/P2L
operation is performed in the high-frequency regime in defmm. Notice that the precomputation
cost is not impacted by the re�ned horizontal pass.

Remark 7.5.11. For static particles, the M2P and P2L matrices can be precomputed as we did
for the P2P matrices in Sect. 7.5.5.3. This increases the precomputation time, but substantial
gain may be expected on highly non-uniform distributions. We did not implemented nor tested this
optimization.

7.6 Numerical results

In this section, we provide a set of performance and convergence numerical results obtained with
defmm. All codes run sequentially (the exact architecture has been described in Sect. 7.1.3). We
�rst check the error of the overall method in Sect. 7.6.1 as well as a complexity veri�cation. In
Sect. 7.6.2, we provide comparisons between defmm and dfmm.

7.6.1 Relative error and numerical complexity

Relative error First of all, we provide the convergence results of our global method. The non-
uniformity of the distribution, its size, the wavenumber and the interpolation order can have an
impact on the overall error. We then start by providing a convergence result measuring the impact
of the wavenumber on the error for a uniform cube test case in Fig. 7.27. The relative norms we use
are computed, for a vector of potential v = (v1, ..., vN ) ∈ CN and an approximation of v denoted
by ṽ ∈ CN , using ||v−ṽ||||v|| for a norm || · || on CN . The charges at the source particles are generated
randomly using an uniform rules on [0, 1].
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Figure 7.26: Application timings (seconds) of the FMM (κ = 0) when using the horizontal pass of
Sect. 7.3.3 (DTT) and the re�ned horizontal pass of Sect. 7.5.7.2 (re�ned DTT) depending on the
particle distribution (from left to right: sphere, cube, re�ned cube). We used a one-dimensional
interpolation order L = 4.
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Figure 7.28: Costs (seconds) of the precomputation (prcmp) and application (apply) steps of defmm
with regard to the number of source particles (equal to the number of target particles) for the
distributions of Sect. 7.1.3. The geometry length multiplied by the wavenumber is indicated with
K. A theoretical indicative O(N) curve is provided in red.

The convergence rate follows the estimate given in Sect. 7.2. We obtained similar results on the
sphere test case, so we do not report these results. Clearly, the convergence follows the same rate
in the two frequency regimes. However, for a �xed targeted accuracy, the requested interpolation
order in the high-frequency regime should be chosen slightly greater than in the low-frequency
regime. We believe that this is a consequence of the small initial set of directions we considered
in our implementation for e�ciency reasons (actually the same set than in dfmm), since the use of
re�ned sets of directions reduces the error (while increasing the overall cost of the FMM).

Numerical complexity. A classical test for the FMM library consists in measuring the appli-
cation timings with regard to the number of source (or target) particles (the two point clouds are
supposed the same size). Such results are provided in Fig. 7.28.

For a �xed wavenumber (i.e. only varying the number of particles), defmm provides a numerical
O(N) complexity on both surface and volumic distributions. Notice that this result does not
contradict the complexity estimates of the directional FMM, that are supposed to be O(NlogN) on
surface distributions. Indeed, the wavenumber should increase as the number of particle increases
to obtain this complexity. In Fig. 7.29, the number of particle per wavelength is chosen to be
approximately constant and we increase the wavenumber (i.e. the number of particles increases
with the wavenumber) on the unit sphere. Both the precomputation and the application steps of
defmm follow the O (NlogN) estimate.

7.6.2 Performance comparison with dfmm

In this section, we compare defmm with dfmm [1] on various geometries and for di�erent wavenum-
bers. The dfmm code implements the closest method to defmm and is, to our knowledge, one of the
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Figure 7.29: Costs (seconds) of the precomputation (prcmp) and application (apply) steps of defmm
with regard to the number of source particles on the sphere. The wavenumber is chosen so that
there is a constant number of particle per wavelength. A theoretical indicative O(Nlog(N)) curve
is provided in blue.

only available open source directional FMM libraries. We provide the comparison results with the
two best variants of dfmm [173]: dfmm-IAblk and dfmm-SArcmp, that were described in Sect. 7.1.2.
The dfmm-SArcmp method has a costly precomputation step but may lead to faster evaluations
than the second thanks to recompressions. The dfmm-IAblk method is based on a vector stacking
scheme combined with permutations, exploiting the e�ciency of the BLAS 3 routines. We recall
that dfmm uses the Chebyshev interpolation and relies in practice on explicit low-rank approxi-
mations of the M2L operators. Hence, the threshold in the low-rank approximations has to be
chosen carefully to preserve the global accuracy of the FMM. We followed the methodology used in
the tests in [174] and consisting in �xing the threshold to 10−L for a one-dimensional interpolation
order L. According to our tests, the accuracy of the Chebyshev interpolation is comparable to the
accuracy of the defmm equispaced one with such a choice.

Optimizations of defmm. Our goal in this section is to validate the defmm approach (di-
rectional FMM with equispaced interpolation grids) as well as our high-level algorithmic choices
(presented in Sect. 7.3). Hence, a certain amount of optimizations of defmm are not used for the
comparisons. Since the near �eld part is computed on-the-�y in dfmm, our comparison tests are
provided without precomputation of the near �eld for defmm (that is without the optimization
described in Sect. 7.5.5.3 but with the SIMD optimizations described in Sect. 7.5.5.2). As we
discussed in Sect. 7.5.5.3, the precomputation of the near �eld part is mainly interesting for mul-
tiple applications of the same FMM to di�erent vectors of charges and strongly modi�es the ratio
between the precomputation cost and the application one. Since we are only concerned by a single
application, this optimization has no mean here and would have prevent the e�ective comparison
of application and precomputation timings independently.

For similar motivations, because dfmm does not bene�t from the M2P and P2L operators, the
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Figure 7.30: Representation of the ellipse particle distribution.

re�ned horizontal pass presented in Sect. 7.5.7.2 (mostly useful for highly non-uniform distributions)
is not used here.

Test cases. Elongated objects are interesting for directional approaches especially with the dfmm
optimizations [174]. We then added to the test cases presented in Sect. 7.1.3 and to the re�ned cube
of Sect. 7.5.7.4 another distribution for our comparison with dfmm. This new test case, illustrated
on Fig. 7.30, is an ellipse with a concentration of nodes at the poles. This test case is composed of
10M particles.

Results. We are interested in this section by the performances of the di�erent libraries for a �xed
accuracy, which is obtained by chosing the same interpolation orders. In Figs. 7.31 and 7.32 are
presented the comparison between the two libraries with the two variants of dfmm for various parti-
cle distributions, wavenumbers and interpolation orders. Both the precomputation and application
timings are provided. We tuned the parameters (the number of levels, i.e. theMaxDepth criterion,
for dfmm and the Ncrit criterion for defmm) for both libraries in order to minimize the application
time (not the precomputation one). Actually, we were not able to run dfmm (neither dfmm-IAblk
nor dfmm-SArcmp) on the re�ned cube for one-dimensional interpolation orders greater than 4 be-
cause of the too high required memory. Hence, we only provide results on this particle distribution
for L = 4 with dfmm (Fig. 7.31). We limited ourselves to particle distribution such that κa ≤ 64
(κ being the wavenumber and a the length of the particle distribution) since, above this value, all
the leaves for the uniform cube test case are at high-frequency levels, which is not realistic for our
practical applications.
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Figure 7.31: Timings (seconds) for the precompute step (prcmp) and the application (apply) of the
di�erent methods for various distributions (from left to right: uniform cube, sphere, re�ned cube,
ellipse) and one-dimensional interpolation order equal to 4. From top to bottom, the geometry
lengths multiplied by the tested wavenumbers are: 0, 16, 64. IAblk corresponds to dfmm-IAblk and
SArcmp to dfmm-SArcmp.
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Figure 7.32: Timings (seconds) for the precompute step (prcmp) and the application (apply) of
the di�erent methods for various distributions (from left to right: uniform cube, sphere, ellipse)
and one-dimensional interpolation order equal to 6. From top to bottom, the geometry lengths
multiplied by the tested wavenumbers are: 0, 16, 64. IAblk corresponds to dfmm-IAblk and SArcmp
to dfmm-SArcmp.
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(a) 2D particle distribution on the unit circle com-
posed of 3 di�erent random uniform samplings: one
on the entire circle (black), a second on the upper half
circle (blue) and a third on a part of the north-east
quarter (red).

(b) Corresponding quadtree using Ncrit = 60.

(c) Corresponding quadtree using MaxDepth = 4.
(d) Corresponding quadtree using MaxDepth = 5.

Figure 7.33: Quadtree corresponding to a 2D non-uniform particle distribution (without stor-
ing/representing the empty cells) for di�erent tree construction strategies. The construction based
on Ncrit leads to a tree with 6 levels, and the two �rst sons of the root node only have descendants
up to the 3rd level. Using the MaxDepth criterion, even for maximal depth strictly less than 6,
these two �rst sons of the root have numerous descendants on the 4th and 5th levels. On each of
the corresponding leaves, the average local number of particles is less than Ncrit divided by the
number of descendants of the ancestor at the 3rd level. On the other hand, some leaves in the
descendants of the third son of the root contain more than Ncrit particles, by comparison with the
tree building using Ncrit.

Sensitivity to the particle distribution. Since all the tested distributions are composed of
10M particles (±1%), the results of Figs. 7.31 and 7.32 allow to measure the sensitivity of each
tested method to the particle distribution. Hence, we observe that, for K = 0 and K = 16, the
defmm timings are few sensitive to the particle distribution, which is not the case for (the two
variants of) dfmm. For instance, the minimal application costs for dfmm are obtained on the
sphere test case, but the dfmm performances are more than twice more costly on the uniform cube
and on the ellipse, and ≈ 4.6 times more costly on the re�ned cube for K = 0 and L = 4. This can
be explained by the di�erent tree construction strategies: defmm actually adapts its construction
to the particle distribution thanks to Ncrit criterion, but the MaxDepth criterion can lead for the
(highly) non-uniform distributions to the creation of numerous cells at the deepest levels with a
small amount of particles. Said di�erently, the number of particles contained in two di�erent leaf
cells can be drastically di�erent using MaxDepth, while Ncrit bounds the number of particles in
each cell while avoiding empty cells. This phenomenon is depicted on Fig. 7.33. As a consequence,
Ncrit is more suited to obtain a good balance between the costs of the far �eld and the near
�eld evaluations for any distribution: at the deepest levels, using the best MaxDepth value, cells
containing only a very small amount of particle may be treated using far �eld M2L interactions
while near �eld ones would be more e�cient. The re�ned cube actually corresponds to an extreme
case of the situation depticted on Fig. 7.33, which explains the strong di�erence of timings between
defmm and dfmm on this distribution. The performance of dfmm on the cube and on the sphere is
explained by the chosen values for MaxDepth, minimizing the application cost and generating far
more near �eld interactions on the cube than on the sphere.
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These results validate the Ncrit approach and the algorithmic we used to exploit the associated
tree structure according to the particle distribution, i.e. the DTT-based horizontal pass of Sect.
7.5.7.2 and the blank passes of Sect. 7.5.3.

On the uniform cube test case with the highest tested wavenumber (K = 64), we observe a
di�erent phenomenon: defmm becomes more costly on this distribution than on the other ones.
This is a consequence of the number of directional expansions in each cells: most cells store the
maximal number of expansions, which is costly to construct. This may also be seen on the results of
dfmm on this same distribution, which increases in the same manner. defmm still performs better
than dfmm in this situation (up to ≈ 2.5 times better, for L = 4).

We do not observe such cost increasing on the sphere, which is also supposed to be a di�cult
case for the directional methods according to [94].

The comparative behavior of dfmm and defmm on the ellipse test case also shows that defmm
is able to e�ciently handle the e�ective directions. In other words, the blank passes of Sect. 7.5.3
and the storage of e�ective directions of Sect. 7.5.2.1 are able to e�ciently process the directions
e�ectively induced by the particle distribution.

Sensitivity to the wavenumber. When �xing a particle distribution and varying the wavenum-
ber, one may observe similar di�erences between defmm and the variants of dfmm on almost all
distributions. Indeed, increasing the wavenumber on a �xed particle distribution only modi�es
the constant in the overall cost estimate. Since we based our methods on the same directional
approach, such behavior was expected. For L = 6 on the uniform cube, we observe that the cost
di�erence between defmm and the dfmm is reduced by increasing the wavenumber. We believe that
the BLAS 3 performance impact that bene�t from the uniform distribution for the dfmm-IAblk
variant explains this reduction since defmm does not bene�t from such optimization. However, the
same tendency is also observed when comparing to dfmm-SArcmp, so there is another element to
take into account. Since mostly the application cost is impacted in this situation with defmm, we
suspect that this di�erence reduction is related to the list-based approach of dfmm which bene�t
from the uniform distribution. Indeed, the lists being well �lled in such a test case, a given target
expansion can be kept in the cache memory while looping over the sources of the corresponding
interaction list. Our DTT approach do not guarantee such optimization. This e�ect can only be
observed on the uniform cube, which tends to con�rm that the list-based approach of dfmm bene�t
from this situation.

Behavior with regard to the interpolation order. Excluding the uniform cube test case, the
two variants of dfmm and defmm approximately behave in the same manner with regard to the
interpolation order (notice that we perform our tests for other interpolation orders with a smaller
particle number, up to L = 8, leading to the same conclusions). The cost of these methods increases
with the interpolation order. However, once again, the cube test case in the high-frequency regime
leads to a di�erent interpretation. The relative gain obtained with defmm compared to dfmm is
greater for L = 4 than for L = 6 on this uniform distribution. Since, once again, this relative
di�erence reduction appears on the application timings, we suspect that this is a consequence of
our e�cient SIMD code for the near �eld, whose e�ect is less sensible as the cost of the far �eld
increases (i.e. by increasing the interpolation order). This e�cient P2P operator implementation
bene�ts from the well �lled cells (in terms of particle) on the uniform distribution, for the near
�eld evaluation. At the same time, dfmm bene�ts from the uniform distributions for the well �lled
interaction lists (in terms of number of cells), for the far �eld evaluation. When modifying the
interpolation order, mostly the far �eld is impacted (the optimal MaxDepth does not change).
Hence, these considerations may explain the phenomenon we observed.

Remarks. We can provide high-level conclusions to these tests.

• defmm performs better than any variant of dfmm on all the tested cases, interpolation orders
and wavenumbers.
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• The uniform cube test case with high wavenumbers is by far the most time-consuming one for
our implementation. Notice that for the surfacic distributions coming from boundary integral
method, this uniform cube test case is not realistic. Hence, we will never see this particle
distribution in our applications.

• Except for the uniform cube with K = 64, the precomputation and application costs are
balanced with defmm.

• For highly non-uniform distributions, the higher memory footprint of the FFT-based tech-
niques compared to the low-rank approximation approaches is less critical than the higher
memory requirements of the MaxDepth-based approach compared to the Ncrit-based one
(since the tests on the re�ned cube cannot be performed for relatively large interpolation or-
der with the low-rank approaches of dfmm due to the memory footprint while defmm allows
to perform these computations). For the uniform cube test case in the high frequency regime
for high orders (K = 64 and L ≥ 7), the conclusions are di�erent: the memory footprint of
defmm is too high for the architecture described in Sect. 7.1.3 while dfmm uses less memory
in this case and can perform with K = 64 and L = 7 on this architecture.

• The application order of theM2L operator using the FFT-based approach does not impact the
performance as it does using the low-rank approaches since the Hadamard products obtained
by the FFT-based approach do not bene�t from BLAS 2/3 routines. The importance of the
application order for dfmm is illustrated by the uniform cube test case.

Impact of SIMD for P2P. The implementation of the P2P operator is not vectorized in dfmm.
The implementation of defmm exploits the SIMD optimization for the near �eld part we presented in
Sect. 7.5.5.2. Hence, we also wanted to measure the impact of this optimization on the comparison
between defmm and dfmm. Indeed, on the uniform cube, the optimal overall timing for dfmm is
obtained with a not well balanced ratio of M2L/P2P costs: approximately 85% of the application
timing is here spent by dfmm in the near �eld computation. We then did our tests again with defmm
but discarding the OpenMP SIMD vectorization (and still without using precomputed P2P).

By using smaller Ncrit values than for the results of Figs. 7.31 and 7.32, gains with defmm
compared to dfmm were still observed on the re�ned cube and the ellipse test cases (e.g. 4 times
faster using defmm on the re�ned cube and 2 times faster on the ellipse for L = 4,K = 0).
On the uniform cube and sphere test case, we ended up with higher application timings with
defmm than dfmm-IAblk in the low-frequency regime and relatively small interpolation orders
(L = 4,K = 0). For high-frequencies (L = 4,K = 64 or L = 6,K = 64) on the sphere, we ended
up with application timings higher than dfmm-IAblk ones but lower than dfmm-SArcmp ones. This
conclusion is in accordance with our interpretation: dfmm-IAblk fully bene�ts from the uniform
distribution (especially in the low-frequency regime) because of the e�cient BLAS 3 routines while
this is the worst case for defmm. The same holds for the uniform cube test case with L = 4,K = 64.

In conclusion, by discarding the SIMD computing for P2P operations in defmm, we obtain
similar performances than dfmm (better than dfmm-SArcmp but worse than dfmm-IAblk) on sur-
facic or volumic uniform distributions. Hence, on its own, the FFT-based techniques exploited in
defmm provide competitive results compared to the low-rank approaches of dfmm on these test
cases in terms of application timings. On (highly) non-uniform distributions, defmm performs bet-
ter. Hence, our method is better at handling the particle density variations in the two frequency
regimes than dfmm but needs to be optimized (with SIMD computing for P2P operations) in order
to become better than dfmm in the most regular distributions. We recall that the results in this
section are given without the re�ned horizontal pass of Sect. 7.5.7.4 since dfmm does not implement
the associated operators.

Conclusion. defmm is few sensitive to the particle distribution, for any interpolation order or
frequency regime, except for the uniform cube distribution which corresponds to the most di�cult
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case for the directional methods and particularly for our implementation. However, we still obtained
better timings on this distribution with defmm than with dfmm. In the general case, the main
reasons of our gains on the application timings are both the Ncrit+DTT+blank passes strategies
and the e�cient SIMD treatment of the near �eld. Mostly the precomputation step perfomance is
impacted by the FFT-based techniques, allowing to fastly precompute anyM2L (diagonal) matrix.
They also allow to obtain comparative timings with dfmm on the M2L applications.
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Chapter 8

Conclusion and perspectives

The contributions of this thesis are divided into three di�erent parts. The �rst part was dedicated
to a high-level approach for the hierarchical methods, with applications to treecodes, hierarchical
matrices and Fast Multipole Methods. In a second part, we described an algebraic approach to deal
with the polynomial interpolation problem on the sphere in order to optimize the kernel-explicit
FMM for the Helmholtz kernel in the high-frequency regime, namely hf-fmm, using quasi-optimal
cubature rules on the sphere. Finally, the third part was concerned by the theory, the algorithmic
design, the optimization and the validation of our directional FMM library, namely defmm.

High-level approach for the hierarchical methods. We developed a general framework,
based on the concept of freely generated vector spaces, allowing to represent the hierarchical meth-
ods in an abstract way. We came up with e�ective matrix factorization representations of these
methods. Because we are mainly interested in the FMM, we proposed a high-level presentation of
the FMM based on simple invariance assumptions on the operators generating the coe�cients of
the matrix forms of the FMM operators. The main application of this presentation is the general
treatment of symmetries appearing in the FMMs dealing with 2d-trees, which is widely applied in
the other parts of this thesis. While the exploitation of the symmetries in a FMM context is not
a new thing, we believe that our contribution made it not case speci�c anymore, allowing to rely
directly on assumptions on the FMM formulation rather than on the explicit form of the FMM
operators.

Among the perspectives associated to this work, the implementation of a general numerical
uni�ed framework for the design of hierarchical methods based on the tools we presented would be
a challenging task.

Lebedev rules in hf-fmm. To minimize the size of the diagonal M2L operators of hf-fmm and
in order to extend this FMM formulation to the full exploitation of the symmetries described in our
high-level presentation of the FMM structure, we proposed to use the Lebedev cubature rules on the
sphere for the cubature of the integral appearing in the propagating planewave expansion instead of
the product rules usually used in such a context. Our method reduces the complexity of the M2L
operators to a quasi-optimal one but strongly complicates the evaluation of the interpolations over
the sphere needed during theM2M / L2L applications. To tackle this issue, we developed a purely
algebraic approach for the block-diagonalization of the matrix form of the interpolation operator on
the sphere. We presented the applications of our method to the product cubature rules and to the
Lebedev rules. Using an e�cient BLAS-based strategy for the application of the block-diagonalized
matrices, we strongly reduced the application timings of the interpolation over the sphere using
Lebedev rules. We provided several ideas to further optimize the implementation we are using.

However, our method does not lower the theoretical complexity of the interpolation step, com-
pared to the fast interpolation algorithms using product rules. We thus proposed a switching
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strategy, allowing to fully exploit the Lebedev rules at the deepest octree level (to reduce the mem-
ory footprint, to accelerate theM2L applications and to exploit the entire set of symmetries in the
octrees) and the fast M2M / L2L applications that can be achieved when using product rules at
the upper levels (i.e. close to the root). This switching strategy also uses the block-diagonalization
we described. To decide on the e�ective e�ciency of the use of the Lebedev rules at the deepest
levels and on the maximal application range of such rules in hf-fmm while bene�ting from numerical
gain compared to product rules, one still needs to implement a full realization of hf-fmm using the
Lebedev rules with the fast interpolation scheme we developed.

The block-diagonalization approach we proposed is based on quite general ideas and can be
applied to other operators than the interpolation one, or to any other invariant cubature rules than
the Lebedev ones. However, this su�ers from a strong constraint: the invariant cubature rules
have to be tabulated, which is a di�cult task when one wants to obtain quasi-optimal rules. Since
the group-based approach we proposed supports the use of FFTs when abelian cyclic groups are
considered, it would be very interesting to investigate the design of non-product cubature based on
an abelian cyclic group invariance, with possibly better e�ciency than the Gauss-Legendre product
rules.

defmm. To face up the problem of evaluating oscillatory kernels in the high-frequency regime and
on highly non-uniform particle distributions through a FMM algorithm, we proposed our own FMM
library, named defmm, based on a directional kernel-independent polynomial interpolation approach
using FFT techniques. We gave a consistency proof of the interpolation process on interpolation
grids using equispaced nodes on well-separated sets. Then, we extended the symmetries presented
in the �rst part of the contributions of this thesis, and already exploited in the bbfmm method, to
the Fourier domain, leading to Hadamard products with indirections during the M2L evaluation
and to a reduction of the precomputation cost. We proposed a new general group-based approach
for the vectorization of these Hadamard products with indirections, that was however costlier than
a simple OpenMP based approach on the vector sizes we considered, even if we exhibited e�ective
cost reductions for larger vector sizes.

We were then concerned by the optimization of the di�erent operators of our library. We
introduced a new complex data deinterleaving and vector stacking based method for the M2M
/ L2L evaluation that showed signi�cant performance gains in most particle distributions. We
developed an e�cient SIMD vectorized code for the near �eld evaluation also based on deinterleaving
and a precomputed strategy for static particles. We proposed a new wideband Dual Tree Traversal
algorithm exploiting the common but non-standardM2P and P2L operators and a storage strategy
for the multipole expansions that better adapts to the particle distribution. Combined with a
precomputed step based on blank tree traversals, we obtained a method with performance few
sensitive to the particle distribution. We also investigated the most e�cient way of applying the
numerous small FFTs required in our interpolation-based FMM.

We �nally proposed a numerical comparison between defmm and the two best variants of dfmm
(a state-of-the-art interpolation-based FMM library), exhibiting important performance gains us-
ing defmm, especially for highly non-uniform distributions. We would now want to compare our
implementation with an implementation of the directional FMM presented in [38,94�96].

There are a lot of possible future work on defmm. Our code is supposed to be applied to BEM
problems in electromagnetism and we are curretly working on it. This should lead to a comparison
of the resolution timings with another hierarchical method, namely the hierarchical matrices for
the same BEM problem. Since the same FMM (or hierarchical matrix) is applied many times
to di�erent vectors in this context, the overall timings only consider one single precomputation
step (for both method) but multiple applications (which di�ers from the tests we provided in this
manuscript, considering only single applications).

We obtained early promising results for the OpenMP-based parallelization of defmm in a shared-
memory context using tasks. These results only concern the application step of defmm. We thus
plan to investigate the shared memory parallelization of the precomputation step using tasks on
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our blank passes and on the tree building, that should lead to important performance gain. The
di�culty when doing so concerns the con�icts when multiple threads write concurrently in theM2L
tables. We also plan to extend defmm to a distributed memory framework, taking into account
both the particle distribution and directionality when scattering the data in order to obtain a good
load balancing on non-uniform distributions while minimizing the communications.

The N -body problem formulated on derivatives of the kernel instead of direct kernel evaluations
frequently appears in the integral equation context. Such problem has been tackled when polynomial
interpolation is used (see [41, 172]). This feature can be easily added to defmm, but a careful
numerical stability analysis has to be done �rst.

Concerning the SIMD vectorization, we plan to extend our near �eld code based on complex data
deinterleaving to mutual interactions (when the input particles are both source and target particles).
We also consider to add the evaluation of singular integrals appearing in the Galerkin discretization
of integral equation directly in the P2P operators, which drastically complicates the vectorization.
For theM2L application, the adaptation of the interleaving strategy proposed in pvfmm [166,167]
on locally uniform 2d-tree parts may result in performance gain. In addition, an hybrid strategy,
combining FFT-techniques for M2L interactions at the same tree level (i.e. the method we are
currently using) with low-rank approximations when the tree levels of the well-separated cells di�er
may allow even faster far �eld evaluations.

The treatment of the symmetries in defmm is written for any dimension. We would like to
investigate to what extent defmm can be e�ciently used in more than three dimensions. Indeed,
the computation and storage of theM2Lmatrices can become critical in more than three dimensions
(for instance, 2320 M2L matrices have to be computed per low-frequency tree level in dimension
four if the symmetries are not used) and the use of symmetries may at least limit the impact of the
dimension on these two points.
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Appendix A

Tensor products

A.1 De�nition and notations

Let V and W be two vector spaces over the same commutative �eld. The tensor product of V and
W , denoted by V ⊗W is de�ned as in the following.

Theorem A.1.1. V ⊗W is the space (unique up to isomorphism) such that there exists a bilinear
application ⊗ : V × W → V ⊗ W such that for any vector space X and any application f :
V ×W → X, ∃! g : V ⊗W → X such that

∀v ∈ V,w ∈W, f(v, w) = g(V ⊗W ).

This space is unique up to isomorphism.

A.2 Kronecker's product

Let M,N,P,Q ∈ N∗. Let A ∈ CM×N and B ∈ CP×Q be two matrices over the same �eld with
possibly di�erent dimensions. The Kronecker's product of A and B is a particular case of the
general tensor product and refers to the linear map A⊗B ∈ C(MP )×(NQ) de�ned by

(A⊗B)P (i−1)+k,Q(j−1)+l := (A)i,j(B)k,l.

This corresponds to the block matrix

A⊗B =

 (A)1,1B . . . (A)1,NB
...

. . .
...

(A)M,1B . . . (A)M,NB


This matrix can be interpreted as a linear map from the tensor space CN ⊗ CQ to CM ⊗ CP .

More generaly, let d ∈ N∗ and A := {Ai ∈ CMi×Ni |Mi, Ni ∈ N∗, i ∈ [[1, d]]}. The Kronecker's
product of the matrices of A refers to

⊗
i∈[[1,d]]

Ai := A1 ⊗ . . .⊗Ad.

Notice that the order of the tensor products matters. Obviously we have ⊗
i∈[[1,d]]

Ai ∈ C(Πi∈[[1,d]] Mi)×(Πi∈[[1,d]] Ni).

If Mi = M1, Ni = N1, Ai = A1 ∀i ∈ [[2, d]], then the notation A⊗d1 can be substituted to
⊗i∈[[1,d]]Ai.
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Appendix B

Examples of FMM formulations

B.1 kifmm

B.1.1 Anderson's method

The use of integral representation formulas to obtain the multipole expansions in [22] paved the
way to an important family of kernel-independent methods. The idea of the Anderson's method,
presented in [22], is to represent the far �eld as the solution of an exterior Dirichlet problem on
a ball encompassing the particles thanks to the Poisson formula. The algorithm in [22] relies on
a discretization of the integral involved in this new problem over the sphere using appropriate
cubature rules. The potential induced by a group of particles is represented on the cubature nodes
only and can be evaluated on any point by simply evaluating this cubature. For a more complete
description and possible optimizations of the Anderson's method, see [165]. A schematic 2D view
of the Anderson's method is given in Fig. B.1.

In [40], a comparison between the Anderson's method and the classical FMM is proposed. Better
timings are observed using the Anderson's method than using the classical FMM. In addition,
the ease of implementation of the Anderson's method compared to the classical FMM makes it
attractive.

Even if the Anderson's method is not kernel independent and requires the analytic form of
the Green's function of the underlying kernel, which may not be available for arbitrary kernel in
practice, it expresses a representation of the potential that di�ers from the classical FMM and has
been used as the foundation of a few kernel-independent methods.

B.1.2 Kernel-Independent FMM

Anderson's ideas were used in [218,219] and extended to arbitrary kernels corresponding to second-
order constant coe�cient non-oscillatory elliptic partial di�erential equations. Their method relies
on expressing local Dirichlet problems in each cell. To be more precise, considering any leaf cell c, a
surface E(c) encompassing c is chosen. The potentials induced by the source charges and the points
of E(c) satisfying a PDE with a unique solution, these potentials are equal in c if they coincide in
any surface C(c) enclosing E(c). Some constraints coming from potential theory have to be imposed
on C(c) and E(c) and we refer to [218] for their description. Such E(c) are called equivalent surfaces
and such C(c) are called check surfaces (see Fig. B.2). The corresponding equation is:∫

E(c)

G(x,y)φc(y)dy =
∑

y∈Y ∩c
G(x,y)q(y), ∀x ∈ C(c)

where G refers to a Green kernel, φc is unknown and numerically computed by inverting this ill-
posed integral equation with a regularization (typically a Tikhonov regularization). The sampling
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Figure B.1: Schematic view of the multipole aggregations using Anderson's method. The particle's
charges (black dots) are switched to cubature nodes in each leaf cell (blue dots). The information
on cubature nodes is then transmitted to the cubature nodes of the father's cell (orange dots).

values of φc on cubature points over E(c) take the role of the terms of a multipole/local expansion
and are called densities. The way the densities are translated is obtained, once again, by solving
equations of the form

∫
E(s)

G(x,y)φs(y)dy =

∫
E(t)

G(x,y)φt(y)dy, ∀x ∈ C(t)

where s and t are two cells. The exact conditions on equivalent surfaces and check surfaces depend
on the type of translation (M2M, M2L, L2L). These translations are depicted in Fig. B.3. By
analogy with the classical FMM, the number of terms in each expansion (multipole or local) is equal
to the number of points in the discretization of the equivalent surface of the cell this expansion
corresponds to.

Only kernel evaluations are required, but no explicit analytic expression of it is needed. As a
consequence, the method is kernel independent, in the sense that the same code and methodology
can be used for a large family of kernels. This method is thus often referred to as kifmm for
Kernel-Independent-FMM.

In practice, equivalent and check surfaces are chosen so that they are spheres or boundaries of
a d-cube for fast evaluation motivations.
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Figure B.2: Equivalent (red) and check (dashed blue) surfaces associated to a cell (black square),
depending on the traversal of the tree (upward pass on the left and downward on the right). The
link between particles and the equivalent surface is the check surface (links are represented using
arrows).

s

t

E(t)

E(s) C(t)

s

t
E(s)

E(t)

C(t)

t

sE(t)

C(t)

E(s)

Figure B.3: Translations in kifmm. M2M (left), M2L between separated cells (middle) and L2L
(right).

B.2 Diagonal kernel-independent FMM

The previously described kernel-independent methods need acceleration techniques for fast M2L
applications to practically obtain e�cient algorithms. By minimizing the number of operations
performed in a M2L without modi�cation, one can hope a signi�cant computational gain. We
present in this section two methods that provide e�cient M2L operators in a diagonal form,
meaning that the matrix representations of these operators are diagonal.

B.2.1 Fourier-based FMM

In [224], a kernel-independent FMM based on Fourier series is introduced. The idea is to approxi-
mate a translationally invariant kernel by such series on well separated cells:

G(x,y) = G(x− y)

≈
∑

j∈Zd | j|≤p

γje
iα〈j,x−y〉 (B.1)

where α ∈ R is the fundamental frequency number (see [224]) and γj ∈ C.
Because the di�erence between point locations can be splitted in the exponential in the approx-
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imation provided in Eq. B.1, this directly lead to a fast algorithm:

∑
y∈s∩Y

G(x,y)q(y) ≈
∑

y∈s∩Y

 ∑
j∈Zd | j|≤p

γje
iα〈j,x−y〉

 q(y)

=
∑

j∈Zd | j|≤p

γje
iα〈j,x〉

∑
y∈s∩Y

e−iα〈j,y〉q(y)

where x ∈ t, t and s are well-separated cells and p is chosen so that the user's prescribed accuracy
is reached. Under this form, the transformation of a multipole expansion into a local one is clearly
diagonal.

The way of �nding this kind of kernel approximation is based on an adaptive sampling algorithm
using a sequence of resolutions of least square problems.

In this FMM formulation, the terms of the multipole/local expansions correspond to the multi-
indices j ∈ Zd with |j| ≤ p.

B.2.2 Cauchy FMM

In [57, 164], a kernel-independent FMM based on the Cauchy's integral representation formula, on
Laplace integrals and on accurate quadrature rules is presented. The aim of this method is to
provide a kernel-independent formulation using diagonal M2L matrix forms. We �rst recall the
following classical result in complex analysis.

Theorem B.2.1. (Cauchy's integral formula, [9] Chapter 2, Th. 6) Suppose that f is analytic in
an open disk ∆ and let γ be a closed curved in ∆. For any a ∈ γ

n(γ, a)f(a) =
1

2iπ

∫
γ

f(z)

z − adz,

where n(γ, a) is the index of a with respect to γ.

We present the main ideas of [164] in the one-dimensional case. Let us consider G an asymp-
totically smooth non-oscillatory translationally invariant kernel. The �rst step consists in writing
G on well separated sets by means of Cauchy's integral formula:

G(x− y) =
1

2iπ

∫
γ

G(z)

z − (x− y)
dz (B.2)

with a path γ such that the index is equal to 1.
Then, the denominator in the integrand may be expressed as an integral using the Laplace

transform:
1

z − (x− y)
=

eiθ

eiθ(z − (x− y))

= eiθ
∫ ∞

0

e−se
−iθ(z−(x−y))

where eiθ is used to rotate z− (x− y) in the complex plane such that the real part of this quantity
is positive. We then obtain, decomposing γ into a �nite (small) set of paths γk:

G(x− y) =
1

2iπ

∑
k

∫
γk

eiθkG(z)

∫ ∞
0

e−se
−iθk (z−(x−y))dz

=
1

2iπ

∑
k

∫
γk

eiθkG(z)

∫ ∞
0

e−se
−iθkxe−se

−iθkze−se
−iθk−ydz

=
1

2iπ

∑
k

eiθk
∫ ∞

0

e−se
−iθkx

(∫
γk

e−se
−iθkzG(z)dz

)
ese
−iθkydz

(B.3)
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with γ = ∪
k
γk, γk ∩ γj = ∅∀k 6= j and θk such that the positivity of the real part of eiθ(z− (x− y))

is veri�ed. The quadrature of Eq. B.3 de�nes a single level approximation scheme. The extension
of this scheme to a multilevel method is done by centering the expansions on the center of the
corresponding cells, and by switching these centers applying diagonal products.
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Appendix C

The Brandt's method

In [47], A. Brandt considers that an oscillatory asymptotically smooth kernel can be splitted into
an asymptotically smooth part and an oscillatory part:

G(x,y) = K(x,y)eiκ|x−y|.

This factorization allows to derive a fast summation scheme.

C.1 One dimensional case

Let X,Y ⊂ R be the target and source point clouds respectively. For any x ∈ X, the summation
problem expressed in Eq. 2.1 can be splitted into

p(x) =

∑
y∈Y

G+(x, y)q(y)

+

∑
y∈Y

G−(x, y)q(y)


where {

G+(x, y) = G(x, y)δx≤y

G−(x, y) = G(x, y)δx>y

and δB = 1 if B is true and 0 otherwise. This splitting is illustrated on Fig. C.1.

G− G+

x

Figure C.1: Decomposition of the source point cloud and according kernel splitting with regard to
a single target particle (in black).

Thus, considering any of those two new sums, for instance the �rst one, we have:∑
y∈Y

G+(x, y)q(y) =
∑
y∈Y

G+(x, y)e−κ(x−y)eκ(x−y)q(y)

= e−κx
∑
y∈Y

(
G+(x, y)eκ(x−y)

)
︸ ︷︷ ︸

Does not oscillate

(eκyq(y))
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where the new red kernel is clearly asymptotically smooth. In addition, e−κx and eκy are respectively
applied on the result of theN -body problem to each target particle and on the entries of this problem
for each source particle in order to recover the �nal result. Because this process has to be done twice
(once for G+ and once for G−), but involving di�erent target particles for each source particle, the
complexity of this method can be bounded by twice the cost of the N -body problem applied on
asymptotically smooth kernels.

The signs in the complex exponential is changed in G−, compared to G+, to recover an asymp-
totically smooth kernel:∑

y∈Y
G−(x, y)q(y) = eκx

∑
y∈Y

(
G−(x, y)e−κ(x−y)

) (
e−κyq(y)

)
so that the two directions x − y > 0 and x − y < 0 are treated di�erently, using di�erent direc-
tional approximations (meaning that the approximations depend on the direction +1 or −1) by a
given approximation method for asymptotically smooth kernels. These directional approximations
correspond to the result of any hierarchical method to the modi�ed kernel (in red on equations) by
using pre- and post-multiplications by complex exponentials. This directional idea is the key of the
method proposed by A. Brandt.

C.2 More than one dimensional case

To extend the algorithm to the multivariate case, one �rst need to adapt the de�nition of a direction
in more than one dimension.

De�nition C.2.1. Let Sd−1 ⊂ Rd be the unit sphere in Rd. Any point λ ∈ Sd−1 is named a
direction.

Clearly, for any x,y ∈ Rd, x−y
|x−y| ∈ Sd−1, so there exists a direction e ∈ Sd−1 (actually equal to

x−y
|x−y| ) such that

eiκ|x−y|e−iκ〈x−y,e〉 = eiκ〈x−y,
x−y
|x−y| 〉e−iκ〈x−y,e〉

= eiκ〈x−y,
x−y
|x−y|−e〉

= 1

which does not oscillate.
The problem is that if e explicitly depends on both x and y, we can not except a computational

gain, since all directional approximations will correspond to a single pair of target and source
particles. A. Brandt proposes to consider only a subset of the set of directions, E = {e1, ..., eP ∈
Sd−1}, P ∈ N∗ such that the distance between any two "neighbors" directions of E is bounded by
a parameter δ and such that, using interpolation on E, a directional approximation corresponding
to any direction can be e�ciently approximated from the directional approximations corresponding
to directions in E. For any function φ de�ned on E, this may be written as

φ(e) ≈
∑

l∈[[1,P ]]

wEl (e)φ(el)

where wEl denotes the interpolation function associated to el ∈ E.
The previous one-dimensional case corresponds to the case P = 2, with S0 = {−1, 1}, so that

no interpolation is needed by directly considering these two directions.



Appendix D

HPC for Fast Multipole Method

This appendix is dedicated to various methods that are exploited for implementations of the FMM
on HPC architecture. In Sect. D.1, we present fundamental notions on general HPC architectures.
In Sect. D.2, we present the vector stacking idea and in Sect. D.3, we describe how the cells may
be ordered in practical FMM implementations.

D.1 HPC architectures

Here we recall the bases on the HPC architectures and their programming. This high level overview
of HPC architectures is divided in two sections: we �rst present in Section D.1.1 considerations
about the lowest level of the architecture, i.e. the Central Processing Unit (CPU or processor);
then we introduce in Section D.1.2 the multiple parallelism levels. As main reference for the HPC
architectures, we refer to [136].

D.1.1 Central Processing Unit

The frequency of a CPU is not a su�cient notion in a HPC context to measure the e�ciency of
a program on a particular processor. Since the operations performed on data already loaded in
the registers can be performed much faster than memory accesses, a predominance of load/store
instructions prevents the theoretical peak performance of the processor to be reached. In addition,
because of the increasing size of the registers, the vectorization also has to be taken into account
for e�cient program implementations on general modern architectures. We here present a simple
model used to measure the e�ciency of an implementation in terms of memory accesses compared
to �oating point operations.

D.1.1.1 Memory gap and arithmetic intensity

In a computer, the di�erent memories are organized hierarchically in the way depicted on Fig. D.1.
The closer to the CPU the memory is, the faster the memory accesses are. The best performance
is reached by minimizing the main memory access and maximizing the use of data already stored
in the two levels of cache memories.

A useful tool to quantify the e�ciency of an algorithm in term of cache optimization is the
roo�ine model [213]. This model introduces the arithmetic intensity I of a routine, de�ned by

I =
W

Q

whereW expresses the amount of work operated by this routine in terms of �oating point operations
and Q refers to the tra�c, counting the number of bytes of memory transfers incurred during the
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Main memory

L2 cache

L1 cache

CPU

Figure D.1: Schematic view of the memory hierarchy.

Arithmetic intensity

F

PCPU

Figure D.2: Schematic representation of the roo�ine model. Before the dashed orange line, the
arithmetic is not su�cient enough to reach the CPU performance peak and the routine is memory-
bound. Beyond this line, the routine is compute-bound.

execution. This tra�c strongly depends on the architecture (namely on the cache memory). The
greater the arithmetic intensity, the faster the implementation, up to a certain limit dictated by
the cache memory size and the CPU frequency. The objective is thus to design algorithms able to
maximize this arithmetic intensity. Hence, the roo�ine model expresses the attainable number of
�oating point operations per second F as

F = min{PCPU , PMem × I} (D.1)

where PCPU denotes the theoretical peak �oating point operation performance of the CPU and
PMem denotes the peak memory bandwidth. If the minimum in Eq. D.1 is realized by PCPU , the
routine is said to be compute-bound : the practical limitation for a better e�ciency is only linked to
the CPU performance. In the other case, if the minimum in Eq. D.1 is realized by PMem × I, then
the routine is said to be memory-bound : the arithmetic intensity is not su�cient to fully bene�t
from the CPU performance. See Fig. D.2 for a representation of the model.

D.1.1.2 Fused Multiple Add instruction

An important feature in modern processors is the Fused Multiple Add (FMA) instruction [6]. The
idea is that the combination of the two instructions a = b× c and d = d+ a allows to perform both
operations at the cost of one. Potential performance gains can then be expected by favoring, for
instance in the C syntax, the instructions of the form "a = b ∗ c+ d;" "a = b ∗ c+ d".
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a0 = b0 * c0

a1 = b1 * c1

a2 = b2 * c2

a3 = b3 * c3

a0 = b0 * c0

a1 = b1 * c1

a2 = b2 * c2

a3 = b3 * c3

Time

Figure D.3: Schematic view of the di�erence between SIMD vector "multiply" ("*") operation and
scalar "multiply" operations on the vector data. Notice that the frequency can be slightly a�ected
(decreasing of a small factor) by the use of vector operations, so this representation is not fully
exact.

D.1.2 Multiple parallelism levels

Modern HPC architectures include multiple parallelism levels in their conception. Three di�erent
levels can be distinguished [136]:

• The Instruction-Level Parallelism (ILP);

• The Data-Level Parallelism (DLP);

• The Thread-Level Parallelism (TLP).

D.1.2.1 Instruction-Level Parallelism

The ILP refers to the parallel execution of a sequence of instructions belonging to a speci�c thread
of execution of a process. Practically, such parallelism can be obtained, for instance, through
instruction pipelining that consists in decomposing the incoming instruction �ow (i.e. a sequence of
instructions performed on a data set) into a series of sequential steps involving di�erent processor
units. Hence, independent steps involving di�erent processor units can be performed in parallel.
From the developer viewpoint, pipelining e�ects can be obtained with minimal e�ort by the use
of loop unrolling, consisting in repeating a certain amount of loop iterations1. Modern compiler
optimizations use the unroll technique to optimize the codes.

D.1.2.2 �SIMD Data�-Level Parallelism

The execution of the same instruction on di�erent data can be realized simultaneously on computers
with particular multiple processing elements (which is a form of DLP parallelism). This is referred to
as SIMD parallelism for Single Instruction Multiple Data. A code that includes SIMD instructions
is said to be vectorized. Basically, data are loaded into vector registers (SIMD registers) whose
length depends on the processor type2 and the operations are performed on these vectors directly,
all the entry at the same time, instead of a sequence of scalar operations performed on all these
entries (see Fig. D.3). The main requirement for vectorization is the data alignment, even if gather
instructions are able to �ll the SIMD registers. Bytes that are aligned in memory according to the
SIMD instruction set can be loaded and treated directly.

There exist several approaches to produce SIMD codes:

1This can also be achieved using precompiler directives, such as # pragma unroll with gcc.
2Up to 512 bits on processors supporting AVX-512.
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• Explicitly write SIMD instructions using processor speci�c functions called intrinsics (Ad-
vanced Vector Extensions AVX, Streaming SIMD Extensions SSE, ...);

• Add precompiler directives (e.g. # pragma omp simd with OpenMP using the C++
language)

• Call routines that are implemented using SIMD instructions (e.g. BLAS calls, see App. D.2);

• Rely on compiler auto-vectorization (see for instance [142]).

The potential SIMD performance gain depends on the architecture but may be important enough
to justify the modi�cation of a naive algorithmic: up to 8x speedup for double precision and 16x
speedup for single precision using AVX-512.

D.1.2.3 Thread-Level Parallelism

The last level of parallelism (TLP) corresponds to the simultaneous running of independent in-
struction �ows (threads). There exist multiple ways of exploiting the TLP. Di�erent threads can
be assigned to di�erent cores and their instructions performed in parallel, or a single core can si-
multaneously execute multiple threads (SMT ). The SMT idea consists in �lling the CPU pipelines
with instructions from di�erent threads. TLP can be obtained, from a programming viewpoint, by
using OpenMP [5] compiler directives. Another general paradigm in TLP is the task parallelism,
�rst introduced in Cilk and further improved in advanced task runtimes (see [200]). OpenMP also
supports task parallelism. One of the bottlenecks in shared-memory parallelism comes from the
synchronizations required when concurrent accesses are done by many threads to the same data.

In a distributed memory framework, the distant compute nodes communicate with messages.
In terms of programming, the Message Passing Interface (MPI) standard [105] is widely used to
write a single program executed on di�erent processes and whose behavior varies depending on the
process identi�er.

D.2 BLAS routines and vector stacking for Fast Multipole

Methods

The Basic Linear Algebra Subprograms (BLAS) [84, 86, 87] are highly e�cient implementations of
linear algebra operations. Depending on the operation type, a level is associated to these operations,
divided in three di�erent levels:

• Level 1: vector-vector operations (such as scalar product, scaling, addition, ...)

• Level 2: matrix-vector operations (such as matrix-vector product, ...)

• Level 3: matrix-matrix operations (such as matrix-matrix products, ...)

In practice, Level 3 BLAS routines are more e�cient than multiple applications of Level 2
BLAS routines. To be more precise, when a set of matrix-vector products can be formulated as
a matrix-matrix product (with the same number of mathematical operations), the matrix-matrix
BLAS product will be far more e�cient than the multiple matrix-vector BLAS products.

The idea of concatenating vectors in matrices to use BLAS 3 routines has been applied in the
FMM in di�erent ways. We refer to this technique as vector stacking. At the most abstract level,
the optimizations we describe in the following all rely on the fact that similar patterns are applied
many times in the FMM based on 2d-trees, involving each time a product with a same matrix on
di�erent entries [72,139,166,173].
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Figure D.4: Similar M2L interactions: all the blue cells interact with the red one according to
the purple arrows (left). Matrix-matrix interactions: concatenation of multipole expansions (blue),
M2L matrix (purple), resulting local expansions (red) after the matrix-matrix product (right).

D.2.1 Similar M2L interactions

When the target and source spaces are represented using 2d-trees with the same root, any target cell
has a position strictly equal to a possible source cell and reciprocally. Because of the regularity of
these trees, if the expansions are given relatively to a �xed position in the cells3, similarities in the
M2L operators may appear. To be more precise, in many FMM formulations, the M2L operators
between cells with the same relative positions are equal. An example of similar M2L interactions
is given in Fig. D.4.

In [72] is introduced a matrix form for the M2L of the 3D Laplace FMM and in [73] a way
of stacking vectors sharing a same M2L operator using an adaptive FMM. Focusing on the cells
of Fig. D.4, the high level idea of the associated optimization is to regroup these interactions
together. Because the M2L matrix does not change, the multipole expansions (seen as vectors)
can be concatenated into a matrix such that the task of computing all the interactions depicted in
Fig. D.4 corresponds to the computation of a matrix-matrix product. Hence, the use of BLAS 3
operations reduces the application time. We may notice that this method can be a�ected by the
cost of the copies of the expansions in the case of non-uniform distributions and performs better in
the case of uniform distributions.

D.2.2 Extension to other operators

The vector stacking idea can be used for the application of other FMM operators than the M2L
one. In [166], BLAS 3 are also applied to the P2P operator obtained by interpolating the charges
and the potentials considered as continuous functions. The evaluation of the W - and X-lists (see
Sect. 2.2.4.2) are also accelerated using vector stacking in [166].

D.2.3 Multiple right-hand-sides

The BLAS 3 operations can also be exploited when the matrix-vector product accelerated using
the FMM is applied to multiple right-hand-sides. This can be written as a matrix-matrix product
instead of multiple matrix-vector products. Hence, the FMM linear operators can be applied to
matrices instead of vector, which may transform matrix-vector products into matrix-matrix product.
This is done for instance in the case of interpolation-based FMM in [210].

D.2.4 Arithmetic intensity

In the FMM algorithm, the same data4 are used many times in di�erent computations. For in-
stance, a same multipole expansion can be used for M2L operations with 2 spatially close target

3i.e. centered in the center of these cells for the 3D Laplace FMM, using cubature on the sphere centered on this
center for HF-FMM or using the same interpolation nodes relatively to this center for the interpolation based FMM.

4e.g. multipole/local expansions or, if precomputed, the M2M/M2L/L2L matrices
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Figure D.5: All interactions (purple) between a source sibling group (blue) and a target one (red)

cells. Since these di�erent M2L interactions have no reason to be computed consecutively, this
multipole expansion may be loaded multiple times in the cache memory. Hence, by reordering the
computations in order to perform these di�erent M2L evaluations consecutively, one may increase
the arithmetic intensity.

In [166], associated to the FMM library pvfmm [167], is introduced the concept of sibling groups,
referring to the set of sons of a given node. By treating together the M2L interactions of each
member of a given sibling group with the members of another one (replacing the non-existing inter-
actions with multiplications by zeros), one may obtain an increasing arithmetic intensity. Indeed,
when the target and source expansions corresponding to two interacting siblings are loaded in the
cache memory (assuming that this memory is su�ciently large), groups of interactions involving
the same source and target cells (see Fig. D.5) can be realized alltogether without extra memory
accesses. A similar idea is described in [173]. These optimizations are rather suited for uniform
distributions.

The method presented in [166] adds another level of optimization. Since the M2L matrices
are diagonal in the associated FMM formulation, the entries of the grouped source/target cells
are interleaved in order to recover sequences of small matrix-matrix products instead of Hadamard
products during the M2L applications, bene�ting from a higher arithmetic intensity.

D.3 Indexing cells

Suppose that all the cells of a perfect 2d-tree are stored in a cell array. There exists e�cient ways
for indexing the cells in this array. This allows, for instance, to retrieve a given cell without tree
traversal. These techniques usually rely on space �lling curves.

D.3.1 Space Filling Curves

In the case of a perfect 2d-tree T , this problem of e�ciently storing the cells consists in indexing
these cells at level l of T using indices in [[0, 2dl − 1]]. Because these cells realize the partition of a
d-cube (an interval in 1D, a square in 2D and a cube in 3D), each of them can be trivially indexed
using a multi-dimensional index in [[0, 2l − 1]]d computed from their center and the number of cell
along each axis5. An array of size 2ld storing the cells on the lth level may then be declared. Hence,

5 the set of centers of cells of a given level being a regular grid in dimension d
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Figure D.6: 4-tree representation of the Morton on the left (resp. Hilbert on the right) ordering at
level 2 (red curve and black cells) and 1 (pale blue curve and purple cells)

the problem is to �nd an easily invertible application h such that the range of h veri�es

h([[0, 2l − 1]]d) = [[0, 2dl − 1]]

that associates to any cell with spatial multi-index in [[0, 2l − 1]]d its position in the cell's array. In
addition, we are concerned with

• a data locality : the spatial proximity of two cells has to be passed on in the cell ordering in
the sense that their indices have to be close;

• a hierarchical property : we want to be able to �nd the index of the father of a cell and the
indices of its sons.

The �rst example of such an ordering we present is the Morton ordering [183, 211] (sometimes
called Z-curve). The idea is to interleave the terms of the dyadic decomposition of the elements
of the multi-index I ∈ [[0, 2l − 1]]d to create an index i ∈ [[0, 2dl − 1]] called the Morton Index.
This process is illustrated on Eq. D.2, where h denotes the Morton mapping from [[0, 2l − 1]]d to
[[0, 2dl − 1]]. On Fig. D.6, the way the cells of a given level are traversed according to the induced
ordering in [[0,

(
2l − 1

)d
]] is depicted. Suppose that we want to �nd the Morton index of a cell

located on the level 4, its multi-index being equal to (4, 5, 2). On level 4 there are at most 24 cells
along each axis, so 4 bits are su�cient to represent each term of this multi-index, which can be
expressed as (0100, 0101, 0010). The Morton index is computed as

h(0100, 0101, 0010) = 000110001010 (D.2)

The computation of a Morton index from any multi-index and the reciprocal of this operation
are easy to implement using bit operations, leading to highly e�cient conversions which make this
ordering particularly popular. The second widely used ordering in the hierarchical method is the
Hilbert ordering, also represented on Fig. D.6. Compared to the Morton one, it is costlier to
compute.

D.3.2 Hashed OcTree

When the distribution is not uniform, there may exist cells of the 2d-trees that contain no particle
with the MaxDepth criterion (see Sect. 2.2.1.2). One wants to avoid their storage since they can
cause a signi�cant extra memory cost. To use the Morton or Hilbert ordering in such a case, the
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structures have to be adapted because the analogy between Morton/Hilbert index and index in the
cell's array does not handle any more. The hashed octree structure [211] is designed to store such
2d-trees with missing cells, by the use of hash tables and linked lists.
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Résumé

Nous nous intéressons dans ce manuscrit aux méthodes hiérarchiques pour l'accélération des réso-
lutions de systèmes linéaires issus de la méthode des éléments �nis de frontière pour des problèmes
hautements oscillants (tels qu'apparaissant en éléctromagnétisme). Une attention particulière est
portée aux méthodes multipolaires rapides (MMR). Nous détaillons une nouvelle approche abstraite
des méthodes hiérarchiques, en particulier des di�érentes formulations MMR, en présentant dans
quelle mesure les symétries des structures arborescentes de ces méthodes peuvent être exploitées
au sein des di�érentes MMR. A�n d'étendre le cadre de la formulation MMR explicite pour le
noyau de Helmholtz en haute fréquence à ces symétries, nous introduisons les règles de Lebedev
dans ce contexte. Cette modi�cation conduit à d'importantes di�cultés, compliquant les méth-
odes utilisées pour obtenir une MMR multi-niveaux. Pour pallier ce problème, nous proposons
une approche pour la diagonalisation par bloc de matrices particulières à ce contexte ainsi qu'une
stratégie pour l'évaluation rapide des produits par ces matrices. En�n, nous décrivons la réalisation
complète d'une bibliothèque MMR directionnelle kernel-independent usant d'interpolation sur des
grilles cartésiennes. Ce type d'interpolation autorise l'usage de transformées de Fourier rapides
dans le traitement des interactions approchées par la MMR. Les aspects théoriques sont abordés
(consistance de la méthode d'approximation, application des symétries de la MMR après applica-
tion des transformées de Fourier, ...) ainsi que les aspects algorithmiques et ceux liés au calcul
haute performance sur un c÷ur de calcul. Des résultats numériques et des comparaisons avec une
bibliothèque MMR directionnelle de référence illustrent les performances de notre implémentation.

Mots clés� méthodes multipolaires rapides, symétries, transformées de Fourier rapides, calcul haute

performance sur un c÷ur, noyaux hautement oscillants, distributions non-uniformes de particules

Abstract

We are interested in this manuscript in hierarchical methods for accelerating the resolution of linear
systems derived from the boundary element method for problems appearing in electromagnetism.
Particular emphasis is placed on the Fast Multipole Methods (FMMs). We detail a new abstract
approach for the hierarchical methods, and particularly for di�erent FMM formulations, presenting
in what extent the symmetries of the tree structures of these methods can be exploited within
di�erent FMM formulations. We extend the explicit FMM formulation for the Helmholtz kernel in
the high frequency regime to these symmetries, introducing the Lebedev's rules in this context. This
modi�cation leads to important di�culties when trying to obtain a multi-level FMM. To overcome
this problem, we propose an approach for the explicit block-diagonalization of speci�c matrices as
well as a strategy for the rapid evaluation of the products by these matrices. Finally, we describe
the complete realization of a kernel-independent directional FMM library using interpolation on
cartesian grids. Such interpolation allows the use of Fast Fourier Transforms in the processing
of the interactions approximated by the FMM. The theoretical aspects are discussed (such as
the consistency of the approximation method or the application of the symmetries in this FMM
formulation) as well as aspects related to algorithmics and to high-performance computing on
one CPU core. Results and comparisons with a state-of-the-art directional library illustrate the
performance of our implementation.

Keywords� fast multipole methods, symmetries, fast fourier transforms, high performance computing

on one CPU core, highly oscillatory kernels, non-uniform particle distributions
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