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A B S T R A C T

How sensory information is encoded and processed by neuronal circuits is a central
question in computational neuroscience. In many brain areas, the activity of neurons is
found to depend strongly on some continuous sensory correlate; examples include simple
cells in the V1 area of the visual cortex coding for the orientation of a bar presented to
the retina, and head direction cells in the subiculum or place cells in the hippocampus,
whose activities depend, respectively, on the orientation of the head and the position of
an animal in the physical space.

Over the past decades, continuous attractor neural networks were introduced as an ab-
stract model for the representation of a few continuous variables in a large population of
noisy neurons. Through an appropriate set of pairwise interactions between the neurons,
the dynamics of the neural network is constrained to span a low-dimensional manifold
in the high-dimensional space of activity configurations, and thus codes for a few contin-
uous coordinates on the manifold, corresponding to spatial or sensory information.

While the original model was based on how to build a single continuous manifold in an
high-dimensional space, it was soon realized that the same neural network should code
for many distinct attractors, i.e., corresponding to different spatial environments or con-
textual situations. An approximate solution to this harder problem was proposed twenty
years ago, and relied on an ad hoc prescription for the pairwise interactions between neu-
rons, summing up the different contributions corresponding to each single attractor taken
independently of the others. This solution, however, suffers from two major issues: the
interference between maps strongly limit the storage capacity, and the spatial resolution
within a map is not controlled.

In the present manuscript, we address these two issues. We show how to achieve
optimal storage of continuous attractors and study the optimal trade-off between capacity
and spatial resolution, that is, how the requirement of higher spatial resolution affects the
maximal number of attractors that can be stored, proving that recurrent neural networks
are very efficient memory devices capable of storing many continuous attractors at high
resolution.

In order to tackle these problems we used a combination of techniques from statistical
physics of disordered systems and random matrix theory. On the one hand we extended
Gardner’s theory of learning to the case of patterns with strong spatial correlations. On
the other hand we introduced and studied the spectral properties of a new ensemble of
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random matrices, i.e., the additive superimposition of an extensive number of indepen-
dent Euclidean random matrices in the high-density regime.

In addition, this approach defines a concrete framework to address many questions,
in close connection with ongoing experiments, related in particular to the discussion
of the random remapping hypothesis and to the coding of spatial information and the
development of brain circuits in young animals.

Finally, we discuss a possible mechanism for the learning of continuous attractors from
real images.
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R É S U M É

La manière dont l’information sensorielle est codée et traitée par les circuits neuronaux
est une question centrale en neurosciences computationnelles. Dans de nombreuses ré-
gions du cerveau, on constate que l’activité des neurones dépend fortement de certains
corrélats sensoriels continus ; on peut citer comme exemples les cellules simples de la
zone V1 du cortex visuel codant pour l’orientation d’une barre présentée à la rétine, et
les cellules de direction de la tête dans le subiculum ou les cellules de lieu dans l’hippo-
campe, dont les activités dépendent, respectivement, de l’orientation de la tête et de la
position d’un animal dans l’espace physique.

Au cours des dernières décennies, les réseaux neuronaux à attracteur continu ont
été introduits comme un modèle abstrait pour la représentation de quelques variables
continues dans une grande population de neurones bruités. Grâce à un ensemble appro-
prié d’interactions par paires entre les neurones, la dynamique du réseau neuronal est
contrainte de s’étendre sur une variété de faible dimension dans l’espace de haute dimen-
sion des configurations d’activités, et code ainsi quelques coordonnées continues sur la
variété, correspondant à des informations spatiales ou sensorielles.

Alors que le modèle original était basé sur la construction d’une variété continue unique
dans un espace à haute dimension, on s’est vite rendu compte que le même réseau neu-
ronal pouvait coder pour de nombreux attracteurs distincts, correspondant à différents
environnements spatiaux ou situations contextuelles. Une solution approximative à ce
problème plus difficile a été proposée il y a vingt ans, et reposait sur une prescription ad
hoc pour les interactions par paires entre les neurones, résumant les différentes contribu-
tions correspondant à chaque attracteur pris indépendamment des autres. Cette solution
souffre cependant de deux problèmes majeurs : l’interférence entre les cartes limitent
fortement la capacité de stockage, et la résolution spatiale au sein d’une carte n’est pas
contrôlée.

Dans le présent manuscrit, nous abordons ces deux questions. Nous montrons com-
ment parvenir à un stockage optimal des attracteurs continus et étudions le compromis
optimal entre capacité et résolution spatiale, c’est-à-dire comment l’exigence d’une réso-
lution spatiale plus élevée affecte le nombre maximal d’attracteurs pouvant être stockés,
prouvant que les réseaux neuronaux récurrents sont des dispositifs de mémoire très effi-
caces capables de stocker de nombreux attracteurs continus à haute résolution.

Afin de résoudre ces problèmes, nous avons utilisé une combinaison de techniques
issues de la physique statistique des systèmes désordonnés et de la théorie des matrices
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aléatoires. D’une part, nous avons étendu la théorie de l’apprentissage de Gardner au cas
des modèles présentant de fortes corrélations spatiales. D’autre part, nous avons introduit
et étudié les propriétés spectrales d’un nouvel ensemble de matrices aléatoires, c’est-à-
dire la superposition additive d’un grand nombre de matrices aléatoires euclidiennes
indépendantes dans le régime de haute densité.

En outre, cette approche définit un cadre concret pour répondre à de nombreuses ques-
tions, en lien étroit avec les expériences en cours, liées notamment à la discussion de
l’hypothèse du remapping aléatoire et au codage de l’information spatiale et au dévelop-
pement des circuits cérébraux chez les jeunes animaux.

Enfin, nous discutons d’un mécanisme possible pour l’apprentissage des attracteurs
continus à partir d’images réelles.
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O V E RV I E W O F T H E C H A P T E R S

This thesis work is organized as follows.

— First of all, in Chapter 1 we discuss the close link between statistical physics and
computational neuroscience, thus justifying our approach.

— Afterwards, we start providing motivations for our work by discussing in detail the
low-dimensional manifold hypothesis, the cornerstone of the whole thesis. That’s
the content of Chapter 2.

— Once we have clarified the approach and motivations of the thesis, we are going
to introduce its subject in Chapter 3, i.e., recurrent neural networks and attractors.
This pedagogical introduction to the subject is always accompanied by links with
statistical physics and experimental evidences in the field of neuroscience that justify
the development of the models themselves.

— In Chapter 4 we go into the heart of the thesis, where we propose and study in detail
a new theory with the aim of solving the problems on continuous attractor neural
networks to store multiple manifolds presented in the previous Chapter 3. In par-
ticular this has given us the opportunity to generalize Gardner’s classic theory for
the capacity of the perceptron to the case of patterns with strong spatial correlation.

— The theory presented in Chapter 4 led to the introduction of a new ensemble of
random matrices, i.e., the superimposition of an extensive number of independent
random Euclidean matrices in the high-density limit. Chapter 5 is devoted to a
detailed study of the spectral properties of this new class of matrices.

— In Chapter 6 we report additional details on the theory studied in Chapter 4. We
also propose a generalization of the results found so far, in particular by inserting
biological constraints into the model. Links with ongoing experiments are made
as well as another application of our setting is shown in the context of storing
continuous attractors in a recurrent neural network starting from real images.

— Finally, Chapter 7 contains a summary of the results obtained in this work as well
as indications for lines of research to follow in the near future.
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1
S TAT I S T I C A L P H Y S I C S M E E T S C O M P U TAT I O N A L
N E U R O S C I E N C E

Since this is a thesis in theoretical (statistical) physics with applications to computa-
tional neuroscience, it is worth reminding the reader of the strong link, both from
an historical and methodological point of view, between these two apparently very
distant fields of research. This is the purpose of this short Chapter.

Statistical physics was born from thermodynamics towards the end of the nineteenth
century and later developed in the field of condensed matter physics [106, 129, 192].

The main objective of this research area is to deduce easily measurable macroscopic
quantities as a result of microscopic laws and also to explain collective phenomena such
as phase transitions [113, 138, 189]. Its spirit can be summed up in the concise and famous
P.A. Anderson phrase of 1972: “more is different”, or in other words, when we move from
an individual level of description of nature, i.e., a single molecule of water, to a collective
level, i.e., a bottle full of water, new and non-trivial phenomena appear, i.e., liquid-solid
transition.

In the case of thermodynamics and condensed matter physics, there are basically two
reasons for the development of statistical physics:

— what is observed in experiments is usually on a macroscopic scale, so one is gener-
ally interested in macroscopic quantities;

— it is often not possible to calculate microscopic quantities because of the huge num-
ber of parameters.

A statistical approach therefore manages to reconcile well what is needed with what is
feasible.

Systems with multiple levels of description are omnipresent in nature, which is why
the tools of statistical physics in recent decades have been used in many research fields,
even seemingly far from physics, i.e., sociology [52], economics [42, 148], finance [40],
biology [33], immunology [6, 10, 34], route planning [263] and neuroscience [14, 145].

In particular, this thesis concerns applications of statistical physics to the field of neu-
roscience, i.e., the study of the brain.
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2 statistical physics meets computational neuroscience

It is now evident the union between these two fields that seemed at first sight very
different: the brain is formed by microscopic units, the neurons, which are interconnected
in a network, via synapses, and each of them follows its own local microscopic dynamics
and from this we want to deduce the global states.

This problem is very reminiscent of magnetic systems in physics in which the spins
(magnetic moments) interact with each other so that long-range ferromagnetic order can
arise from the local couplings between them: the spins are schematized as binary vari-
ables, i.e., they can be in both up and down state, as well as a simplified model of a
neuron can be active or silent. There is therefore a direct mapping between the celebrated
Ising model [117], which is the milestone for magnetic system models, and the schematic
representations of neural networks [65].

To complete the analogy just think that real neural networks have randomness factors
both in the network structure (“quenched noise”) and in the response of each neuron
(“fast noise”, equivalent to a temperature parameter). Therefore, all the mathematical
tools developed by statistical physicists can be used to investigate neuroscience problems.

It is therefore no coincidence that many works in the literature have tried to address
computational neuroscience problems with statistical physics techniques such as mod-
els of neural networks that reproduce observations of brain activity or that are able to
perform specific functions [14, 67, 89].

Today, applications of techniques from the 1980s of statistical physics of disordered
systems, i.e., spin glasses, to real and artificial neural networks [18, 128] are a very hot
topic for two main reasons:

— the first is to understand the success of machine learning algorithms, particularly
in the field of deep learning [97]. In fact, in recent years these algorithms have
brought to the state of the art performance in several fields such as image [107,
135, 218] and speech recognition [99, 110], natural language processing [61, 159],
text translation [22, 137, 226], computational medical diagnosis [72] and artificial
image/video generation [98, 199];

— the second comes from the incredible improvement of experimental techniques in
neurobiology, such as electrophysiological and fluorescence-based functional record-
ings of neurons, that allow now to study in a quantitative way what in the 1980s
was only speculative [222].



2
T H E L O W- D I M E N S I O N A L M A N I F O L D H Y P O T H E S I S

Before starting this long journey it is essential to spend a few pages for discussing the
low-dimensional manifold hypothesis, which encapsulates the key motivations that
inspired this thesis. Although the reasons of this work are coming from computational
neuroscience, we discuss here the emergence of this hypothesis also in the context of
machine learning in order to emphasize its generality and importance.

The low-dimensional manifold hypothesis states that real-world high-dimensional data
may lie on low-dimensional manifolds embedded within the high-dimensional space [75].
This definition may seem complicated at first sight but in reality its meaning is very
intuitive. In the following we introduce this hypothesis in the field of machine learning
and computational neuroscience respectively so as to concretize this abstract statement
with concrete examples.

2.1 in machine learning

Representing and interpreting efficiently noisy high-dimensional data is an issue of
growing importance in modern machine learning. A common procedure consists of
searching for representations of data in spaces of (much) lower dimensions, an approach
known as manifold learning [32, 53, 118, 146].

Manifold learning’s approach has as a key assumption the low-dimensional manifold
hypothesis which states that although many data are a priori high-dimensional, in reality
they are intrinsically of much lower dimension. There are several reasons in favour of this
hypothesis, for example:

— this can result from physical laws such as translation, rotation, change of scale and
so on. If we consider a real image, whose dimensionality (the number of pixels
constituting the photo) is usually very high and we apply the above mentioned
transformations, it is clear that all the variants of the starting photo are linked to-
gether by a number of parameters much smaller than the number of pixels, i.e., each
parameter corresponding to a particular physical law. So in the end we have that
the different photos live in a space of dimensionality much lower than the a priori
very high number of pixels, see Fig. 1(a);

— moreover, if we consider a classic data-set used in machine learning like MNIST
[140], see Fig. 1(b), it is possible to estimate the intrinsic dimension, that is the
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4 the low-dimensional manifold hypothesis

number of variables needed in a minimal representation of the data, of its digits by
looking at the number of local transformations required to convert a number into
another one of its variants, and it turns out that this number is ' 10 [63], much less
than the number of pixels of the images that make up MNIST, equal to 784.

The same goes for a more complicated example, let’s consider a data-set consisting
of photos of a person’s face in different poses, Fig. 1(c); each picture is made of, say,
1000× 1000 pixels. It is clear that this data-set is a very small subset of all possible
colored pictures, which is defined by a 3 · 106–dimensional vector 1. The reason is
that, for a given face, there are only ∼ 50 varying degrees of freedom (the position
of all muscles), a very small number compared to 106 [139]. Hence, all data points
lie in a (non-linear) manifold, of very low dimension compared to the one of the
initial pixel space.

We can therefore generally conclude that even though data may be high-dimensional,
very often the number of relevant dimensions is much smaller.

The low-dimensional manifold hypothesis explains (heuristically) why machine learn-
ing techniques are able to find useful features and produce accurate predictions from
data-sets that have a potentially large number of dimensions (variables) bypassing the
curse of dimensionality problem. In fact, when the dimension of data increases, the
volume of the configuration space grows so fast (exponentially) that the available data
become sparse and this sparsity is problematic for any method that requires statistical
significance. The fact that the actual data-set of interest really lives in a space of low
dimension, means that a given machine learning model only needs to learn to focus on a
few key features of the data-set to make decisions. However, these key features may turn
out to be complicated functions of the original variables. Many of the algorithms behind
machine learning techniques focus on ways to determine these (embedding) functions
[194].

A simple example of application of this hypothesis comes from the context of super-
vised learning [35, 96, 97], that is the fitting of input-output relation from examples, with
neural networks for high-dimensional data classification because if the data actually live
in manifolds of much smaller dimension, it is necessary to classify the manifolds [58], see
Fig. 1(a).

1. The factor 3 comes from the RGB color channels.
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(a) (b) (c)

Figure 1 – (a) The set of variations associated with the image of a dog form a continuous manifold
of dimension much lower than the pixels space. Other object images, such as those
corresponding to a cat in various poses, are represented by other manifolds in same
space. Figure adapted from [58]; (b) Examples of digits corresponding to the number
two in the MNIST data-set. Figure taken from [152]. (c) Pictures of a person with
various facial expressions. They lie in a very low dimensional manifold of the vector
space of pictures with 1000× 1000 pixels. Figure taken from [139].

2.2 in computational neuroscience

Low-dimensional representations of high-dimensional data are not restricted to ma-
chine learning, and are encountered in other fields, in particular, computational neuro-
science [1, 86, 250].

In fact, what is typically done in a neuroscience experiment is to measure with elec-
trodes the activity of neurons in a real neural network, see Fig. 2(a). By looking at the
population of measured neurons one can often find that the activity of the network can
be explained in terms of relative activation of groups of neurons, called neural modes
or cell assemblies, see Fig. 2(b). This means that even if the network activity is a priori
high-dimensional, if one looks at its trajectory in the space of neural configurations as
a function of time, it will be confined to live in a linear (or even non linear) manifold
of much smaller dimension D � N, being N the number of neurons that make up the
network, see Fig. 2(c) and Fig. 2(d).

It is now legitimate to ask what the dimensions of the manifold mean. One of the most
reliable hypothesis is that these collective coordinates generated by the neural network
activity in the D-dimensional manifold encode sensory correlates, i.e., they encode some
external stimulus, as the orientation of a bar presented to the retina [114, 115], and can be
used for example from the motor cortex to make decisions and/or produce actions [86].



6 the low-dimensional manifold hypothesis

Also related to this is the fact that low-dimensional continuous attractors provide a
paradigm for analog memories, in which the memory item is represented by an extended
manifold, i.e., the cognitive map of a place in a certain context, see Section 3.3.

A crucial question to answer is therefore, as we will investigate in detail in the next
Chapters, how to engineer the connections in a network of interconnected neurons such
as to map a low-dimensional dynamics to the high-dimensional one of the units that
make up the net [23].

(a)

(b)

(c)

(d)

Figure 2 – (a) Neural modes as a generative model for population activity. The relative area of the
blue/green regions in each neuron represents the relative magnitude of the contribution
of each cell assembly to the neuron’s activity; (b) Spikes from three recorded neurons
during task execution as a linear combination of two neural modes; (c) Trajectory of
time-varying population activity in the neural space of the three recorded neurons
(black). The trajectory is mostly confined to the neural manifold, a plane shown in gray
and spanned by the neural modes u1 and u2; (d) A curved, nonlinear neural manifold,
shown in blue. Figure adapted from [86].



3
R E C U R R E N T N E U R A L N E U R A L N E T W O R K S A N D AT T R A C T O R S

Once we have presented in Chapter 2 the fundamental hypothesis on which this work
is based, we can introduce the subject of this thesis, i.e., recurrent neural networks and
attractors, through a pedagogical illustration of a series of models introduced in the
field of computational neuroscience. These models are always presented together
with the experimental evidence that led to their formulation and the connections
with statistical physics are also explained in detail, see Chapter 1 for a discussion on
the link between statistical physics and computational neuroscience. The aim of this
Chapter is therefore to place the work of this thesis in a very precise context within
the literature, stressing the problems of the current theory and therefore the need for
it.

3.1 discrete and continuous attractors in recurrent neural networks

Let’s start by defining in a pictorial way what a recurrent neural network (RNN) is,
what an attractor is, and the difference between discrete and continuous attractors 1.

A RNN is a kind of non-linear dynamical system defined by a set ofN activity variables
(neurons) σi, i = 1, . . . ,N, interconnected via pairwise synapses {Wij} (in the following
we will never consider the case of self-connections, i.e.,Wii = 0, ∀ i), where, depending on
the models, both neurons and synapses can assume binary or continuous values and also
respect from time to time different constraints of biological nature that we will discuss
later, see Fig. 3(a).

In addition, the activity variables are updated over time, which can also be considered
discrete or continuous as the circumstances require, following a non-linear dynamics
dictated by the connectivity matrix W (or even by external fields), whose choice obviously
defines the network properties in a crucial way.

The state of the RNN can therefore be represented by a point evolving in a very high-
dimensional space, the space of neural configurations of dimension N. In particular we
will be interested in studying the trajectory of this point after a long time, especially in
the case where the dynamics of the network remains blocked on different fixed points

1. As it will become clearer during the thesis, in this context we will always use the terms manifold, map,
environment and continuous attractor with the same meaning.

7
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depending on the initial condition of the neurons activity variables: these fixed points are
the celebrated attractors.

According to the choice of the synapses (without considering the presence of any exter-
nal fields) we can have different scenarios for the structure of these fixed points:

— we can have that the different fixed points (specific configurations of the network
activity variables where the dynamics get stucked) are isolated from each other and
divided by attraction basins, that define according to the initial condition which will
be the fixed point to which the dynamics of the network will converge: this is the
case of discrete attractors, also called point attractors or 0-dimensional attractors,
see Fig. 3(b);

— moreover, we can also have situations where the attractors instead of being isolated
points, are composed of a continuous set of fixed points (manifolds) living in a D-
dimensional space, where typically D� N: this is the case of continuous attractors,
see Chapter 2. Also here it is possible to have several continuous attractors as
fixed points of the same network and divided by attraction basins, where, however,
now depending on the initial condition of the network in an attraction basin, the
dynamics of the RNN can remain blocked at any point of the relative attractor, see
Fig. 3(c). As we discussed in Section 2.2, the important thing is to understand the
physical meaning of the collective coordinate r which represents the state of the
network onto the continuous attractor, that is a D-dimensional vector.

It is important to note that the dynamics really gets stucked 2 to a fixed point if it is
noise free (deterministic), i.e., zero temperature Glauber dynamics [91], otherwise there
will be fluctuations around the fixed points that will depend on the level of the neural
noise. In particular, as we will see later, with the right temperature it is possible to spon-
taneously generate for the state of the network transitions between one fixed point and
another in the case of discrete attractors and the same is true also in the case of contin-
uous attractors where, however, in addition to transitions between different attractors, a
diffusive dynamics of the collective coordinate r on the attractors themselves is present as
well.

Questions that we will answer in the following concern how to engineer the choice of
synapses in order to build attractors with ad hoc (biological) properties and in particular
what is the maximum number of attractors that can be stored in a recurrent network.

2. Note that in general a dynamical system can have other types of attractors such as periodic or chaotic
attractors [248] that we will not consider in this thesis, in fact we will always be interested, both in the case
of discrete and continuous attractors, in fixed points where the dynamics of the system remains stuck in the
absence of small noise or external fields (stable or indifferent equilibrium points).
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Figure 3 – (a) Sketch of a recurrent neural network (RNN) with N = 6 neurons and connectiv-
ity matrix W; (b) Schematic diagram of the space of configurations of a RNN (N-
dimensional space) in which the connections have been chosen to store multiple dis-
crete attractors. The dashed lines indicate the attraction basins between the different
fixed points while the arrows are examples of possible trajectories for a deterministic
dynamics (converging to the nearest fixed point depending on the initial condition) of
the network, for different initial configurations; (c) Same as (b) but in the case of mul-
tiple continuous attractors. r is a D-dimensional collective coordinate that describe the
“position” along one of the manifolds. Figure adapted from [28].

We will also give below a strong emphasis to the experimental evidence (direct and
indirect) of these mechanisms in the brain, especially in the context of memory, where
memories correspond to the above mentioned attractors.

3.2 hopfield model : multiple point-attractors

Undoubtedly the milestone in this field of research is the seminal work of J.J. Hopfield
in 1982 [112] where the model named after him was formulated.

He showed that the computational properties used by biological organisms or for the
construction of computers may emerge as collective properties of systems that have a
large number of simple equivalent components (or neurons).

In practice J.J. Hopfield had proposed a practical way to choose connections in a RNN
with many neurons in order to build multiple 0-dimensional attractors, showing that a
very simple model of interacting binary neurons was able to have non-trivial collective
properties, in particular to build autoassociative memories.

Basically there are two main ways to store information on a device: addressable and
autoassociative memory.
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— The first way consist in comparing input search data (tag) against a table of stored
data, and returns the matching one [188];

— the second is any type of memory that enables one to retrieve a piece of data from
only a tiny sample of itself.

The Hopfield model together with all the models we will see in the following are
autoassociative memories, and are particularly important to study because they are more
biologically plausible than addressable ones.

Moreover, this model has remarkable properties as the robustness to the removal of a
certain number of connections, the ability to correct patterns (memories) presented with
errors, the ability to store patterns with a time sequence and recall them in the right order,
although the single elementary components had independent dynamics without a clock
that synchronized them [112].

Before we discuss the Hopfield model in detail, let us recall the fundamental ingredi-
ents of biological inspiration that led to its formulation.

3.2.1 Ingredients of the model

The model is an extremely simplified schematization of a real neural network, where
the basic units are binary spins 3 inspired by the Ising model of ferromagnetism from
statistical physics [117], see Chapter 1. These units or better neurons are therefore binary
variables, i.e., σi = ±1 4, where the state −1 represents a silent neuron while the state +1

an active neuron.

In reality, neurons are more complicated because they are cells whose activity is given
by the difference in potential between the inner and outer part of their membrane. Typ-
ically this potential difference is about -70 mV when the neuron is silent, and when the
neuron becomes active a very sharp electrical wave (action potential) localized in time is
emitted and propagated along the axon which is the output of the neurons. The dura-
tion of this wave is of the order of a millisecond and if we properly discretize the time
it is possible to distinguish if the neuron is active or not depending on the presence of
this wave, see Fig. 4(a) for a schematic representation of two interconnected neurons and
Fig. 4(b) for a schematic plot of an action potential.

3. In the following we will use the terms spins, neurons, activity variables and units indiscriminately.
4. All the following can be trivially formulated with the notation σi = 0, 1 which we will use afterwards.

Here we consider the notation σi = ±1 because the Hopfield model was historically introduced in this way.
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(a) (b)

Figure 4 – (a) Schematic representation of two interconnected neurons. The contact areas where
the information is transmitted are called synapses. A signal from the presynaptic cell
is transmitted through the synapses to the postsynaptic cell. Figure taken from [230];
(b) Approximate plot of a typical action potential shows its various phases as the action
potential passes a point on a cell membrane. The membrane potential starts out at
approximately -70 mV at time zero. A stimulus is applied at time ' 1 ms, which raises
the membrane potential above -55 mV (the threshold potential). After the stimulus is
applied, the membrane potential rapidly rises to a peak potential of 40 mV at time ' 2

ms. Just as quickly, the potential then drops and overshoots to -90 mV at time ' 3 ms,
and finally the resting potential of -70 mV is reestablished at time ' 5 ms. Figure taken
from [253].

The different neurons then communicate with each other via these electrical signals that
pass through the connections between the neurons called synapses 5. The important thing
about synapses is that when electric waves arrive at the end of the axons and come into
contact with them, they may or may not amplify this signal depending on the strength
and type of synaptic interaction. There are basically two types of synapses, excitatory
(positive) and inhibitory (negative), the former tend to amplify the signal, while the latter
tend to weaken it.

Moreover, a neuron is connected to many other neurons and therefore receives from
all of them the different electrical signals coming from axons and then modulated by
synapses at a fixed time. What happens in the neuron is therefore a weighted sum of
these signals which is then compared to a threshold, if this threshold is exceeded the
neuron will emit an action potential, so it will be active, otherwise it will remain in its

5. From now on we will also use the terms synapses, weights, connections and interactions indiscrimi-
nately.
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resting state, so it will be silent. This dynamics can be represented by the following simple
equation:

σi(t+ 1) = sign
(∑
j6=i

Wijσj(t) − θi
)
, (3.1)

where σi(t+ 1) represents whether neuron i at the discrete time step t+ 1 is active or
silent, Wij represents the synapse between neuron i and neuron j which can be both
excitatory and inhibitory, θi represents the threshold associated with neuron i and sign
is the sign function defined as:

sign(x) :=

−1, if x < 0

+1, otherwise
. (3.2)

Once we have defined the dynamics of the model in Eq. (3.1), starting from an initial
configuration for the activity of the neurons and a choice for the synaptic coefficients
everything is well defined. The next step is then how to determine the choice of synapses.
To do this J.J. Hopfield took inspiration from D. Hebb’s seminal work “The organization
of behavior" of 1949, in particular the idea that “neurons that fire together wire together”
[108] or rather, quoting him directly:

let us assume that the persistence or repetition of a reverberatory activity (or “trace")
tends to induce lasting cellular changes that add to its stability . . . . When an axon
of cell A is near enough to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.

In practice the idea is that if neurons have a tendency to be synchronously active to-
gether, then the connection between them will be strengthened over time. If, on the other
hand, the opposite happens, i.e., that there is no synchronicity in the activity of some
neurons, the connections between them will be weakened.

It is interesting to note that this mechanism is different from what we typically have in
physics where the connections in an interacting system are usually given in the Hamilto-
nian in a static way, while here they are dynamically modified during dynamics through
this mechanism of feedback of neuron activity on synapses. In this case it is as if the
Hamiltonian of the system self-modifies itself according to the dynamics it has produced
in previous times.

It is also important to mention that since Hebb’s original theoretical formulation, many
experimental studies, both in vitro and in vivo, have investigated the physiological ba-
sis of synaptic potentiation. The long-lasting strengthening of the synaptic connection
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between two neurons is called long-term potentiation, or LTP [36, 37, 170, 176]. In the
hippocampus, a region of the brain that we will later discuss in Section 3.3, the best-
known mechanism that enables LTP is the transduction of electrical signals into chemical
ones that activate the potentiation mechanisms in both the pre-synaptic and post-synaptic
neurons, mediated by the N-methyl-D-aspartate (NMDA) receptor complex [151]. Note
that a similar mechanism occurs for the weakening of synapses, called long-term depres-
sion or LTD. It should be noted, however, that synaptic plasticity is still the subject of
much research and several plausible mechanisms have been proposed, see as an example
[160].

3.2.2 Model details and properties

Now that we have described all the ingredients properly we can define the Hopfield
model in detail.

Let’s suppose we want to store a certain set of neuron activity configurations (patterns),
where by store we mean that these configurations must be the fixed points for the dynam-
ics established in Eq. (3.1). These patterns are defined as ξµi = ±1, where i is the neuron
index, which goes from 1 to N as usual, and µ is the pattern index, which ranges from 1

to P. The individual elements of the patterns are sampled randomly and independently
of each other. ξµi = +1 corresponds to an active neuron, while ξµi = −1 corresponds to a
silent neuron.

Formalizing therefore in mathematical terms the idea of D. Hebb we can write the
following prescription for the connectivity matrix of the RNN that must memorize these
patterns obtaining so the famous Hebb rule 6:

Wij =
1

N

∑
µ

ξ
µ
i ξ
µ
j , (3.3)

where this matrix is of rank P and where the hebbian mechanism is clear, in fact, if two
neurons in a pattern are in the same state the connection between them is strengthened,
otherwise weakened.

The question to ask now is that if with this ad hoc choice of the weights, Eq. (3.3), the
patterns are actually fixed points of the dynamics (3.1) 7.

In the case P = 1 it is easy to understand why this works because this situation is
equivalent to the Curie-Weiss model of statistical physics [113, 123, 189, 201, 202, 215, 239],
which is basically a mean field version of the Ising model where we take all interactions

6. Note that thus the network presents both excitatory and inhibitory synapses.
7. For simplicity we consider the case without external fields, θi = 0, ∀i.
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equal to Wij = 1
N , ∀ i 6= j. So we know that dynamics (3.1) will take the network to a

state with non-zero magnetization, that is:

1

N

∑
i

σi = +1 or
1

N

∑
i

σi = −1 , (3.4)

depending on the initial activity configuration. It’s interesting to note that in this situation
the network will be organized in the configuration with all 1s or all -1s after some time,
i.e., we have stored the pattern with all the components equal to ξµi = −1 and the pattern
with all the components equal to ξµi = 1 (the network state after a long time has maximum
overlap with one of the two memorized patterns).

Now that we have seen how to store trivial configurations we can go further and try to
understand how to memorize more interesting patterns. It can be done by multiplying
the couplings in the Curie-Weiss model by a global gauge: this is the Mattis model [113,
123, 189, 201, 202, 215, 239]. In particular, now we choose interactions like

Wij =
1

N
ξ1iξ

1
j , (3.5)

where by a simple change of variables we have stored a richer pattern, like the ones we
would like to store in the Hopfield model. In fact, also in this case the dynamics (3.1) will
bring the network to a magnetized (with maximum overlap) state, for the same reason as
in the Curie-Weiss model, but now on the pattern with components ξ1i or the opposite
one according to the initial condition of the network.

The idea behind the Hopfield model then is that if the patterns to memorize are orthog-
onal enough so that they don’t interact too much 8, we could put together many Mattis
models (one for each pattern to store) and memorize simultaneously in the same network
multiple patterns, from this comes the rule in Eq. (3.3).

In addition, the dynamics in Eq. (3.1) is simply a zero temperature updating rule that
is equivalent to minimize the following energy 9 [14, 109]:

E[{σi}] = −
1

2

∑
i<j

Wijσiσj +
∑
i

θiσi . (3.6)

We immediately recognize that this is the energy of a spin glass (frustrated 10 disordered
magnetic systems) with local fields generated by the local thresholds {θi}. So we know

8. For this reason the patterns in the Hopfield model are chosen randomly.
9. This is true if there are no self-connections and if the connectivity matrix is symmetric, as in this case.

10. In the Hopfield model the frustration comes from the Hebb rule (3.3), which leads both to excitatory
and inhibitory couplings.
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that this dynamics will converge after some time to the nearest local minimum depending
on the initial condition, and the question is whether or not these minima are related to
the patterns we want to store, see Fig. 5(a). The answer to this question was found
first numerically by Hopfield himself [112] and then analytically by the seminal work of
Amit, Gutfreund and Sompolinsky (AGS) [17] using techniques of statistical physics of
disordered systems, i.e., the replica method [51, 78, 157]. This answer is affirmative, in
the limit of large N (thermodynamic limit), if the number of patterns to be mamorized
divided by the number of neurons that make up the network is not too big, more precisely
if α = P

N , that is called load, is less than the critical capacity 11 αc ' 0.138 (without
considering the presence of external fields, i.e., θi = 0, ∀i), see Fig. 5(b).

Moreover, AGS [17] generalized the dynamics of the system from deterministic, see Eq.
(3.1), to stochastic by introducing a temperature T such that the system obeys the detailed
balance according to the Hamiltonian (3.6).

In this setting, always in the absence of external fields, they were able to find a phase
diagram in the thermodynamic limit that includes different phases. In particular at high
temperatures we have a paramagnetic phase (PM) in which the spins are substantially
random and uncorrelated, therefore an uninteresting phase. If instead we look at lower
temperatures we see the presence of two phases, the ferromagnetic phase (FM) and the
spin glass phase (SG). At not too high values of α we find ourselves in the FM phase
where the minimums of the energy (3.6) actually correspond to the stored patterns. If
instead we consider values of α too big we enter the SG phase in which the local minima
of (3.6) have nothing to do with the stored patterns and then our network stops being an
associative memory, this is due to the fact that when we want to store to many patterns
in the connectivity matrix at a certain point the interference between them becomes so
strong to generate this catastrophic loss of memories, see Fig. 5(c).

3.2.3 Why is it important to study simple models?

Before moving on to the next topic it is important to stress that the Hopfield model is
extremely simplified and far from achieving a good level of biological realism 12, for ex-
ample the neurons are schematized as simple spins, the connectivity matrix is symmetric
and this is not true in general in real neural networks, the network is a priori fully-
connected while generally biological networks are quite sparse, there is no constraint on
the sign of weights while in neuroscience there is a clear difference between excitatory
neurons that are connected by positive synapses and inhibitory neurons connected by

11. This is trivially true in the case of large N and finite P, so α = 0 [109].
12. For more sophisticated and biologically plausible models of RNNs that store descrete attractors see for

instance [48, 154, 169].
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Figure 5 – (a) Energy landscape of a Hopfield network, highlighting the current state of the net-
work (up the hill), an attractor state to which it will eventually converge, a minimum
energy level and a basin of attraction shaded in green. Note how the update of the
Hopfield network is always going down in energy. Figure taken from [254]; (b) Average
percentage of errors in the Hopfield model as a function of α = P

N at zero temperature
and with no external fields. Figure taken from [17]. (c) Phase diagram, temperature T
vs load α = P

N , of the Hopfield model in the absence of external fields. The continuous
line represents the transition line between paramagnetic (PM), ferromagnetic (FM) and
spin glass (SG) phases. Figure adapted from [17, 155].

negative synapses according to Dale’s rule [66] and there is no adaptation mechanism in
the dynamics of the network [14, 67, 89, 109].

Nevertheless, this model is recognized as a milestone in the field of theoretical neuro-
science because it is one of the few paradigms that combine Hebb’s rule with attractors.
It is also interesting because with this model it is possible to engineer the connectivity
matrix to allow different states of activity for the network. Moreover, after the work of
AGS [17] the Hopfield model paved the way for the application of spin glass theory [157]
beyond physics (together with simulated annealing [128] in computer science and engi-
neering) starting to create a strong sociological impact in the statistical physics community
towards theoretical biology and computer science.
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Nonetheless, generalizations of the Hopfield model are nowadays a hot topic of re-
search both in regards to neuroscience problems [73], but also machine learning thanks
to the mapping between this model and (Restricted) Boltzmann Machines [3, 4, 238] or
even immune networks applications [2, 5].

3.3 representation of space in the brain

So far we have discussed in detail the Hopfield model (Section 3.2) which, as we have
seen, is the milestone of recurrent neural network models to store multiple discrete at-
tractors, on the other hand we have introduced motivations for another class of attractors
found for example in computational neuroscience, i.e., continuous attractors, see Section
2.2 and Fig. 3(c).

Before going on with the models on continuous attractor neural networks, however, it
is necessary to give the reader more specific biological motivations. For this reason in the
following we introduce the hippocampus, a very important part of the brain where the
presence of the mechanisms discussed in Section 2.2 is hypothesized in particular for the
representation of space in the brain [235, 236], where the activity of a recurrent network
of noisy neurons (CA3 region of the hippocampus) that is high-dimensional, encodes for
a continuous variable of low dimension as the position in an environment of an animal,
and then we focus on the specific case of the special neurons that perform this task, i.e.,
place cells [173].

For other examples in the brain of the presence of the continuous attractor mechanism
see Section 3.8.

3.3.1 Hippocampus

The hippocampus is a part of the mammalian brain that is located in the medial tem-
poral lobe and is part of the limbic system, see Fig. 6. It is composed of about 30 million
neurons in humans and about 0.3 million neurons in rats. All vertebrate species, includ-
ing reptiles and birds, have an homologous region. This part of the brain is one of the
most studied by psychologists and neuroscientists because of its crucial role in spatial
navigation and episodic memory.

The first evidence we have of the use of the hippocampus in a memory process was
observed in the famous case of the patient H.M., who suffered from severe anterograde
amnesia after receiving bilateral ablation of the hippocampus as a treatment for epilepsy
[213]. This first evidence was followed by many others that confirmed the strong correla-
tion between hippocampal damage/injury and problems with declarative, i.e., involving
conscious recall, memory formation and consolidation by human patients [11, 266].
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In rodents, the hippocampus has been highly studied because of its role in spatial
navigation and memory, i.e., the process of memorizing and recalling the cognitive map
associated with an environment in a certain context. The term “cognitive map”, coined by
the American psychologist Edward Tolman [232], refers to an allocentric representation
of the surroundings embedded in a Euclidean metric, which enables navigation through
the cognition of the spatial distances between locations and objects. Tolman himself gave
the first strong experimental evidence for a map-based navigation system in rodents by
showing the ability of the rats to devise shortcuts to a known prize position. [233]. In
general, the role of the hippocampus in the formation and recall of cognitive maps (spa-
tial memories) has been demonstrated many times in experiments that required specific
positions to be memorized in an environment. An important example is the Morris water
maze where a rat, who is an able swimmer but dislikes being in the water, is trained
to swim to an hidden platform in a specific location within a pool of milky water. An
healthy animal quickly learns the position of the platform in the sense that the average
time to reach the goal decreases rapidly with the number of trials [171]. Morris and
co-workers compared the results of healthy rats to those in which the hippocampus had
previously been injured, showing that in the latter case the performance was drastically
reduced [172].

Now without going into too much detail about the anatomy of the hippocampus, for
which we refer to [20], it is important to say that a sub-part of it, called CA3, is practically
a network of neurons with many recurrent connections, like those of the models discussed
in Section 3.1, so that it is natural to try to formulate a mathematical model for this part
of the brain [235, 236].

3.3.2 Place cells and place fields

The fundamental connection between the hippocampus, including the CA3 region, and
spatial navigation is due to the crucial discovery in 1971 by O’Keefe (who won the Nobel
Prize in physiology or medicine for this finding in 2014) and Dostrovsky of a population
of pyramidal cells 13 (a type of excitatory cells) which are active only when an animal is
in specific positions of an environment [186]. The sharp firing specificity of these neurons
granted them the name of “place cells”, and their spatial receptive fields were named
“place fields”, see Fig. 13(a).

If, for example, we consider a rat exploring a square arena there will be a neuron in
the hippocampus that will be very active when the rat is at some specific position and
practically silent outside, and the same goes for other neurons with other positions in the

13. The name of pyramidal cells comes from their shape.
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(a) (b)

Figure 6 – Main structures of the human and rodent limbic system. (a) Human brain showing the
amygdala (green), bed nucleus of stria terminalis (BNST, blue), hypothalamus (yellow),
and hippocampus (pink). The hippocampus (pink) attaches to the mamillary bodies
(orange) through the fimbria-fornix. Olfactory inputs are received by the olfactory
bulbs (MOB, purple). Other structures include the nucleus accumbens (NuAc), ventral
tegmental area (VTA), and the periaqueductal gray (PAG). (b) Similar structures are
found in rodents. Figure and caption adapted from [221].

environment. The area of space such that the neuron is highly active is exactly the place
field 14 associated with that particular neuron (place cell) [178], see Fig. 7

15.

From the seminal discovery of place cells the number of research works exploded in the
following years in order to characterize their different properties. In a given environment
the locations of the place fields corresponding to the different place cells are randomly
positioned and the whole population of place cells is able to cover the whole surroundings
[182, 255]. Another very important property of place cells is the stability of their activity
over time, in the sense that after an animal has memorized an environment, i.e., has
associated place fields to some place cells (cognitive map), if it returns to visit the same
setting after weeks the correspondence between place cells and place fields is almost
unchanged [231]. In addition, the place fields are quite robust to small disturbances and
transformations of external landmarks [105, 143, 175].

14. Note that in the case of animals like rats the place fields are two-dimensional while in the case for
example of bats, which can fly, the latter are three-dimensional as they have access to an additional spatial
dimension [262].

15. We recommend the reader to watch the attached video in which the activity of some place cells in a rat
is recorded while exploring a track: https://www.youtube.com/watch?v=lfNVv0A8QvI. The measurements
were made in the Wilson lab at MIT.

https://www.youtube.com/watch?v=lfNVv0A8QvI
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Figure 7 – Schematic of a rat exploring a square arena. The place fields corresponding to two
particular place cells of the rat are shown. When the rat is located inside a place field
the corresponding place cell will be very active, otherwise it will be almost silent.

Moreover, it is known that external inputs, like visual inputs, are very important for the
formation of a place field by a place cell but are not necessary to maintain their activity.
This property is clear in the experiment of Quirk and collaborators [198], who showed
that the correspondence between place cells and place fields in an environment stored
by a rat was almost unchanged if the light was turned off (no visual input) so that the
animal was still able to maintain a good correlation between its position and the activity
of the place cells measured. This mechanism of the rodent to integrate its linear and
angular self-motion in order to maintain correlation between where it is and where the
cells should activate is called path integration [153].

Finally, it is worth discussing the experiment of Buzsaki and colleagues [69], who
showed that the activation sequences of groups of place cells can be generated inter-
nally by the network itself and is not necessarily due to physical inputs, in fact, they
found that before performing an action in a known environment a rat activates in order,
during a planning phase of the action, the same set of place cells that then will actually
activate during the motion (but in a time scale about 20 times less than the physical time).
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A similar mechanism occurs if the planned action is successful, with the difference that
this time the sequence of place cells activity is reproduced in reverse. This process is
called backward replay and is associated with a mechanism of plasticity of the synapses
(learning) in the sense that the activity of the neurons is reproduced in order to strength-
en/weaken the connections for example with a Hebb mechanism, see Section 3.2, or more
sophisticated ones, i.e., bidirectional synaptic plasticity [160]. So it is important to stress
that the activity of place cells is not only generated by external physical inputs but can be
generated internally by the network.

Thanks to said properties, namely spatial selectivity, stability over time, and so on, the
place cells population has been proposed as a suitable candidate for the neurological basis
of the cognitive map [187].

We have therefore seen that the CA3 region of the hippocampus can be anatomically
schematized by a recurrent neural network in which neurons (place cells) enjoy special
properties such as the fact that their activity is linked to the position of an animal in
physical space, recalling the mechanisms proposed in Section 2.2 and Fig. 3(c) in the
context of continuous attractors [235, 236]. How is it possible to design a model that
reproduces this phenomenology? This is the purpose of the next Section 3.4.

3.4 storing a single continuous attractor

We thus begin to present models of recurrent neural networks that qualitatively re-
produce what was discussed in Section 3.3, i.e., how to store a continuous attractor in a
RNN.

There is certainly no shortage in literature of models of this type called continuous
attractor neural networks (CANN) in which a large and noisy population of neurons
can reliably encode “positions" in low-dimensional sensory manifolds and continuously
update their values over time according to input stimuli [12, 31, 81–83, 237, 265].

The first model ever of this type is the one of Amari [12] of 1977 in which we consider a
recurrent neural net composed of N neurons arranged in a ring structure and connected
through excitatory couplings whose strength decays with the distance between the neu-
rons (therefore local excitation), together with another neuron connected with all the
others that is excited from these but that in turn inhibits all the others (global inhibition).
From these two fundamental ingredients of local excitation and global inhibition, given
an initial condition of the network through an external input, it is possible to generate a
localization of the activity (bump or cell assembly). A mechanism of this type explains
well what happens in the head-direction cells system or in the ellipsoid body of the flies,
see Section 3.8, in which a ring attractor encodes the angle of the head of an animal (one
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dimensional continuous attractor), in which simultaneously active neurons encode for
close angles while the others are silent.

Without going too much into the details of Amari’s model, for which we refer to the
original article [12], in the following we will focus on another CANN model of funda-
mental importance that contains the same ingredients of the ring attractor one but has
been developed specifically to explain the phenomenology of place cells and place fields
presented in Section 3.3, namely the model of Tsodyks and Sejnowsky [237].

Afterwards we will focus on how to translate these concepts into a statistical physics
framework and at the end we will discuss the importance of the concept of continuous
attractor.

3.4.1 Tsodyks and Sejnowsky’s model

Here we consider the CANN model introduced by Tsodyks and Sejnowsky [237] in
1995 as a model of the hippocampus CA3 network that produce place selective activity in
an environment, see Section 3.3.

Let’s so consider a recurrent neural network defined by the following rate equations:

dvi
dt

= −vi + g
(∑
j6=i

Wijvj + Ii

)
, (3.7)

Wij =W0 exp
(
−

|ri − rj|
∆

)
−W1 , (3.8)

where vi is the average spiking rate 16 of the neuron i, Ii is it’s external sensory input,
g is the gain function of the neurons (like a ReLU function), Wij is the strength of the
synaptic coupling between the neurons i and j coding for locations (centers of the place
fields) ri and rj respectively in the physical space and ∆ is the diameter of the place fields,
see Fig. 7. The excitatory connections in the model are mainly local and the coupling
matrix Wij is an exponential function of the distance between their place fields centers.
The uniform inhibitory inputs W1 can be considered as a global feedback inhibition.

If in Eq. (3.7) we do not consider the g term, we get a relaxation equation, this means
that after some time the firing rate of all the neurons is zero. What makes the system
non-trivial is the fact that the neurons are connected via the couplings {Wij}, and possibly
an {Ii} external input. If we choose the couplings intelligently so that to have a mapping
between the neurons in the network and the position they encode in physical space by

16. Note then that this is a model with continuous and positive neurons, unlike the standard Hopfield
model defined with binary units, see Section 3.2.
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choosing excitatory couplings if the distances in physical space are small and inhibitory
otherwise, we will be able to create a bump of activity that means that neurons that are
active at the same time encode for close positions in physical space. Moreover, this bump
can move due to the introduction of an eventual noise term in the dynamics (3.7) or to
weak inputs {Ii}, thus defining a way to move along the attractor.

3.4.2 CANN and statistical physics: Lebowitz and Penrose’s model

Now let’s try to put together the ideas just presented and formalize a very simple
model with which we can make a mapping with a classic model of statistical physics, the
Lebowitz and Penrose’s model [141].

Hence, we start as usual with defining a set of N binary neurons, which can take
either σi = 1 or σi = 0 depending on whether they are active or silent. Moreover, these
neurons are interconnected through an appropriate matrix of connectivity {Wij} (without
self-connections), see Fig. 3(a).

The weights of the net in this case must be chosen in order to store a continuous
variable such as the position of an animal in an environment, as we have seen in Section
3.3. To do this we start by defining a simplified cognitive map model to be memorized,
that is, we consider a square environment 17 of unitary area and with periodic boundary
conditions 18 where we associate to each neuron a place field 19, i.e., a fixed radius disk 20

located in a random position ri of the environment, see for example one of the two
environments in Fig. 14(b).

It is important to note that there is no relationship between the arrangement of the
different place fields in an environment and the arrangement of the corresponding place
cells in the neural network also because, as we will discuss in Section 3.5, the same
network must store different environments in which the different place fields associated
with the same neuron do not have any correlation (global random remapping).

17. Here we focus on the two-dimensional case in analogy with the place cells and place fields in rodents
discussed in Section 3.3, but the following is trivially generalizable to any finite dimension D.

18. The use of periodic boundary conditions is justified only in the modeling of head-direction cells where
the attractor to be memorized is actually a ring in D = 1, see Section 3.8. Already in the case of place cells
this assumption is no longer valid because the presence of edges (walls) in an environment is important, see
Section 3.8, nevertheless we will continue to use this assumption for theoretical convenience.

19. In general it is not true that in a given environment each neuron has a place fields, in fact typically
about thirty percent of neurons have it while the others do not (silent cells) [9], for now we do not take into
account this aspect for simplicity.

20. From experiments it is known that place fields can have different shapes, but for the moment we
consider place fields all the same and circular with the same radius for simplicity.
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Once an environment model has been defined, it is necessary to associate the possible
locations with a corresponding network activity status. If we consider a specific position
r on the map we will consider that the neuron i is active if the distance between the
position r and the center of the corresponding place field ri is less than the radius of the
place field, i.e., the position is within the place field associated with neuron i, see Fig. 7.

To memorize an environment we mean that the set of patterns associated to the dif-
ferent positions, which are obviously spatially correlated by construction, must be fixed
points of the network dynamics and this defines a continuous attractor, see for example
one of the manifolds in Fig. 3(c).

Now it is important to understand how to choose the synapses of the network to mem-
orize this continuous attractor. In the simple case of the Mattis model, see Section 3.2, we
had that interactions were only a function of the specific pattern to store, see Eq. (3.5),
but now we are interested in memorizing all the different positions associated with the
spatial map.

The standard way to do this, following what already seen in Tsodyks and Sejnowski’s
model, is to consider a connectivity matrix in which the synapses between neuron i and
neuron j are a function of the distance between the respective place fields in the environ-
ment with centers located in ri and rj, that is:

Wij = w
(
|ri − rj|

)
, (3.9)

where | · | denotes the distance in the map. If w is sufficiently excitatory at short distances
and inhibitory at long ones, a bump state spontaneously emerges, in which active neurons
tend to code for nearby positions in the map. Classic examples of kernels w are for
instance exponential, step function or Gaussian ones.

It is important to note that the mechanism presented in Eq. (3.9) is reminiscent of
Hebb’s rule as the concept that neurons that fire together wire together remains valid.
In fact, neurons that have place fields nearby will often be active together so we need to
strengthen the connection between them, while neurons whose place fields are far apart
will hardly be active together so it is better to have a weak connection between them.

To start studying the distribution of neural activity configurations associated to this
kind of model what is missing is the definition of a dynamics associated to the network.
We consider here a scheme of the same type already used in the Hopfield model, see
Section 3.2, but with the introduction of a finite temperature, given by the following
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formula that explain how neuronal states are updated stochastically according to the
probabilities

Prob
(
σi(t+ 1)|{σj(t)}

)
=

1

1+ exp
[
− 1
T

(
2σi(t+ 1) − 1

)
(
∑
j( 6=i)

Wij σj(t) − θi)

] , (3.10)

where T is a temperature parameter to be set such that a bump of activity may form and
sustain itself 21.

The thresholds {θi} in this dynamics are simply effective fields that keep the activity of
the network at a fixed level typically giving an inhibitory contribution (they are negative
and somehow schematize the effect of the interneurons) and are necessary because the
connections between place cells in Eq. (3.9) are instead excitatory (positive).

It is interesting to note that a model of the kind just presented is very similar to a very
old model of statistical physics introduced in 1966 by Lebowiz and Penrose to explain the
liquid/vapor transition [141, 168].

Consider a D-dimensional lattice, whose N sites xi can be occupied by a particle (σi =
1), or left empty (σi = 0) 22. The energy of a configuration {σi} is given by the Ising-like
Hamiltonian

E
[
{σi}, {xi}

]
= −
∑
i<j

w
(
|xi − xj|

)
σi σj , (3.13)

where w is a positive and decaying function of its argument, i.e., of the distance between
sites. At fixed number of particles and low enough temperature T translation invariance
on the lattice is spontaneously broken: particles tend to cluster in the x-space, and form a
high density region (liquid drop) surrounded by a low-density vapor. The density profile
of this “bump” of particles hardly fluctuates, but its position can freely move on the
lattice, and defines a collective coordinate for the microscopic configuration of particles,
see Fig. 8.

21. Note that in the null temperature limit, i.e., T = 0, we obtain a deterministic dynamics of the type:

σi(t+ 1) = Θ
(∑
j6=i

Wijσj(t) − θi
)
, (3.11)

where Θ is the Heaviside step function defined as:

Θ(x) :=

0, if x < 0

1, otherwise
. (3.12)

So exactly the same dynamics as the Hopfield model rewritten for spins 0 or 1 instead of ±1, see Section 3.2.
22. The fact that the particles are on a grid here whereas previously we have seen that place fields have

random positions in the environment does not change the phenomenology of the model in the large N limit.
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Fixing the number of particles here is equivalent to find in our model of CANN an
inhibitory threshold that keeps the number of active neurons in the network constant.

Figure 8 – Phase diagram of Lebowitz and Penrose’s theory of the lquid/vapor transition, in di-
mension D = 1 (periodic boundary conditions). Insets show the density of particles
ρ(x) as a function of position over space, x ∈ [0; 1]. Note the coexistence between the
homogeneous and bump states at intermediate temperatures. The location of the bump
is arbitrary. Figure taken from [60].

3.4.3 Continuous attractors and population coding

From the neuroscience point of view, the existence of a collective coordinate, weakly
sensitive to the high stochasticity of the microscopic units, is central to population coding
theory.

It should now be clear the equivalence between the RNN models to store a continuous
attractor and the Lebowiz and Penrose model. The key in both cases is in fact to have
synapses that are functions of some distance, in the first case the distance between the
place fields in the environment and in the second case the distance between the particles.
Moreover, the fact of creating a liquid droplet at low temperatures in the second case
is equivalent to create a bump of activity in the first case in which the neurons that are
active at the same time code for nearby positions in the map.

Since the system is invariant under translation, the bump of activity can spread both
because of the temperature in the dynamics and because of a weak external input and
explore all the positions associated with the environment which are equivalent to each
other (no preferred positions), this means that with this choice of the connectivity matrix
we have actually managed to store a continuous attractor.
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Moreover, the shape of the bump is determined by the Hamiltonian of the system but
its position is totally random. So we got exactly what we wanted, a model of a population
of noisy neurons in which we have the emergence of a collective coordinate (the position
of an animal in an environment) that is robust to the error of the single neuron, i.e., a
robust encoding. Obviously the number of coded coordinates is equal to the dimension
of the stored map and it is also important to note that the activity bump may persist in
the absence of external input, exactly as we saw for the place cells in Section 3.3.

In addition, we notice that we can have two points of view with this kind of models,
either we look at a fixed time to the activity of the neuron population and we see the
emergence of this collective variable coding for the position in the map, see Fig. 9, or we
look at the activity of a single neuron and we see that this is active when the distance of
the collective variable, i.e., the position of the animal in the environment, is close to the
center of the place field of the neuron considered, which is instead what we typically see
in experimental measurements, see Section 3.3.

Figure 9 – An example network of N neurons (small circles) with 1D continuous attractor dynam-
ics. Local excitatory and global inhibitory connections (not shown) between all neurons
stabilize population states that are local activity bumps (i.e., blue bump A or B; gray:
transient/unstable activity profiles). Figure adapted from [264].

In general models of CANNs have many computationally appealing properties, such
as efficient population decoding, smooth tracking of moving objects, and implement-
ing parametrical working memory. The computational advantages of CANNs and their
successes in modeling brain functions have suggested that CANNs serve as a canonical
model for neural information representation [260].
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3.5 why is it necessary to store multiple continuous attractors?

We have therefore seen in detail how to store a continuous attractor in a recurrent neural
network, see Section 3.4, that could correspond to the memorization of a cognitive map of
an environment by a network of place cells, see Section 3.3. In reality, however, the story
is more complicated than this because the hippocampus needs to contain simultaneously
several cognitive maps corresponding to different environments and also, for the same
environment, to different contexts. But first of all, how do the different cognitive maps
relate to each other?

For different environments, place fields associated to different place cells can re-position
in a supposedly random way, a property called “global remapping” 23 [121, 143, 175, 185],
or rather, given a certain place cell this can encode positions (have a place field) in differ-
ent environments and the location of the different place fields, corresponding to the same
cell, seems to be totally random without any correlation between the various maps.

The fact that the different maps are unrelated because of random remapping will be
one of the key elements to model a recurrent neural network that stores multiple continu-
ous attractors, see Section 3.6, because in this way the configurations of neurons encoding
different positions in different environments are orthogonal to each other with high prob-
ability, this recalls the case of the Hopfield model, i.e., multiple discrete attractors, where
random (orthogonal) patterns were chosen in order to limit the interference between them,
see Section 3.2, here the idea is exactly the same.

An important example of this mechanism is provided by the experiment of Alme and
collaborators [9] in which rats are trained to store eleven different rooms. Once these
environments have been memorized the animals are able to recall the cognitive maps
according to the room they are in, and the different maps present the above mentioned
random remapping phenomenon for the place fields in the various rooms associated to
the same place cell. This experiment shows how the hippocampus can store several maps
at the same time, raising the natural theoretical question, obviously very complicated to
study experimentally and of which we do not have biologically plausible estimates, on the
maximum number of continuous attractors that a network of this type can store (critical
capacity), which we will start to deal with in Section 3.6. It has to be said, however, that
despite the difficulty of experimentally measuring the network capacity, we know that,
for example, wild rats (and not only laboratory ones) are able to navigate perfectly in

23. Regarding the hippocampal region CA3 we have only global remapping. In reality, however, there is
also another type of remapping, called “rate remapping”, in which a place fields vary in the frequency of
spikes of the respective place cells without changing its position in the map, which is present in another
region of the hippocampus, that is CA1 [20] (which we will not consider in the models presented in this
thesis).
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many environments, so it is reasonable to think that they are able to store a large number
of cognitive maps in their hippocampus.

Moreover, the specific positioning of place fields are flexible and might shift or entirely
re-arrange upon drastic changes in external landmarks and boundaries [130, 175], odors
[8], or even abstract variables such as contextual conditions or the task to be performed
[8, 122, 124, 220].

Finally, it is important to note that it is possible to have different cognitive maps also
depending on the sensory modalities used by the animal, for example Geva-Sagiv et
al. [90] showed in bats that they used different cognitive maps (which differed through
global remapping) for the same environment depending on whether the animal used as
external inputs the visual one or echolocation. Other examples where global remapping
is observed by changing or combining different input modalities, such as visual and path
integration, include experiments performed in virtual reality where one has full control
over the different input modalities to which the animal is subject [56].

At this point it is therefore obvious that the next step is to try to combine the Hopfield
model for multiple discrete attractors, see Section 3.2, with what we have seen in Sec-
tion 3.4 for single continuous attractors in order to have a model that can reproduce the
phenomenology just discussed. This will be the purpose of the next Section 3.6.

3.6 the case of multiple continuous attractors

We discussed in Section 3.4 how to store a single D-dimensional attractor in a recurrent
network, but it is clear from Section 3.5 that it may be necessary to have a model of a
RNN that stores many continuous attractors in the same connectivity matrix. To solve
this problem Samsonovich and McNaugthon presented the following RNN model [208]
in 1997 that is kind of a mix between the Hopfield model to store multiple discrete attrac-
tors, see Section 3.2, and the model presented in Section 3.4 to store a single continuous
attractor [208].

Then we will present a version of this model inspired by statistical physics, that is the
model of Rosay and Monasson [166], with which it is possible to study in particular the
critical capacity of RNN that store multiple continuous attractors, that is the maximum
number of D-dimensional attractors L that can be stored in a network of N neurons.
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3.6.1 Samsonovich and McNaugthon’s model

In the models presented for a single continuous attractor, like the model of Tsodyks and
Sejnowsky (Section 3.4), we have seen how to memorize a map it is essential to choose
connections between place cells so that they are a function of the distance between the
centers of the place fields in the map of the respective neurons, see Eq. (3.8). Now
instead of storing only one map, we want to memorize L of them in the same connectivity
matrix, where the different maps differ because of the random remapping phenomenon
discussed in Section 3.5, i.e., given a place cell, this encodes a position (has a place field)
in each map and these positions are totally random and uncorrelated in the different
maps. Based on this fact and also the Hebb rule presented in the Hopfield model where
the contributions of the different patterns were summed in the connectivity matrix, see
Eq. (3.3), Samsonovich and McNaugthon proposed the following rule for the couplings
matrix of a RNN that must store multiple continuous attractors [208]:

Wij =

L∑
`=1

exp
(
−

|r`i − r`j |
2

∆2

)
, (3.14)

where ` = 1, . . . , L and r`i is the location of the place-field center of the cell i in the map
`. Moreover, using a network dynamics of the type defined in Eq. (3.7) they showed that
when one cognitive map is retrieved, the activity is organized as a coherent 2D bump on
the corresponding map, while looking scattered and uninformative on all the other maps
(how it must be given that at a fixed time an animal is in a specific map position and also
because of the random remapping the different maps are orthogonal to each other).

3.6.2 Rosay and Monasson’s model

From the model discussed above we can therefore understand that to store multiple
continuous attractors in one RNN we can in general use the rule defined in Eq. (3.9)
for each of the maps separately and then consider as connectivity matrix the sum of the
connectivity matrices of the single environments, obtaining in this way, assuming each
one of the L maps contributes equally to the learning process, a rule of type

Wij =

L∑
`=1

w
(
|r`i − r`j |

)
, (3.15)

where r`i is the center of the place field of neuron i in environment `.
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In particular, what we mean to store more than one map in the same connectivity matrix
is precisely the fact that if we consider the dynamics of network 24 (3.10) with rule (3.15)
at some time we will have a bump of activity in one of the maps (the map of which we are
recalling some specific position) and basically noise in the others or rather that the fixed
points associated with dynamics (3.10) at the zero temperature are all the configurations
of the neurons built starting from a position r in one of the maps in which the place cells
associated with the place fields close to r are active and the others silent. Obviously we
will have the bump only in one of the maps at a fixed time because the different maps
are orthogonal to each other (random remapping), i.e., the activity patterns that encode
for the positions of a specific map will substantially give noise in the other maps or better
that the patterns encoding for the different positions in the different maps are orthogonal
with high probability.

In the following we consider the model of Rosay and Monasson 25 [166], inspired by
the model of Lebowitz and Penrose (Section 3.4), in which the issue of storing multiple
continuous attractors in a RNN is set as a statistical physics problem.

So we consider a network of binary neurons where the N place cells are modeled by
binary units σi equal to 0 (silent state) or 1 (active state). These neurons interact together
through excitatory couplings {Wij}. Moreover, they interact with inhibitory interneurons,
whose effect is to maintain the total activity of the place cells to a fraction f of active
cells (global inhibition). We also assume that there is some stochasticity in the response
of the neurons, controlled by a noise parameter T . All these assumptions come down
to considering that the network states are distributed according to the Gibbs distribution
associated to the Hamiltonian

EW [{σi}] = −
∑
i<j

Wijσiσj , (3.16)

restricted to configurations of spins {σi} such that

∑
i

σi = fN . (3.17)

We want to store L+ 1 environments in the coupling matrix, indexed by `, each defined
as a random permutation π` of the N neurons’ place fields that are initially arranged
on a D-dimensional grid (the case of only one map is reminescent of the Lebowitz and

24. From now on we will continue to use only binary neurons, not as in the above mentioned model of
Samsonovich and McNaugthon.

25. See as well the Battaglia and Treves’s model [27] which has several points in common with the one we
are describing.
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Penrose’s model). This schematize the random remapping of place fields from one map
to the other. With this definition, an environment is said to be stored when activity pat-
terns localized in this environment are stable states of the dynamics. In other words, the
configurations where active neurons have neighbouring place fields in this environment
are equilibrium states. To make this possible, we assume a Hebbian prescription for the
couplings {Wij} that is a straightforward extension of the Hopfield synaptic matrix, see
Section 3.2, to the case of quasi-continuous attractors. This rule is described as follows:

— additivity: Wij =
∑L
`=1W

`
ij where the sum runs over all the environments.

— potentiation of excitatory couplings between units that may become active together
when the animal explores the environment:

W`
ij =

1

N
if d`ij 6 dc , 0 if d`ij > dc , (3.18)

where d`ij is the distance between the place field centers of i and j in the environment
`. dc represents the distance over which place fields overlap. This distance is chosen
in such a way that each neuron i is connected to the same number of other neurons
j, regardless of the spatial dimension D. If ŵN is this number: ŵ (� 1) is the
fraction of neurons to which each neuron is connected. So for example dc = ŵ

2N in

D = 1 and dc =
√
ŵN
π in D = 2. The 1

N factor in Eq. (3.18) ensures that the total
input received by a cell remains finite as N goes to infinity.

Rosay and Monasson 26 were able to show in this model that in the thermodynamic
limit it is possible to store an extensive number of maps L (at fixed dimension D) with a
recurrent neural network composed of N neurons if the ratio α = L

N is less than a critical
capacity αc(D), where this quantity is of order 1. It’s important to note that while in the
Hopfield model, see Section 3.2, the load parameter α was defined as the ratio between
the number of patterns P to store divided by the number of neurons N, now here we
have the number of maps L at the numerator (each of which corresponds a priori to many
patterns, one for each position in the map to store).

We show in Fig. 10 the phase diagram associated with this model in the case D = 1, f =
.1 and ŵ = .05 27. It is then interesting to make a comparison of this phase diagram with
the one concerning the Hopfield model, see Fig. 5(c). In both phase diagrams there are
different phases depending on temperature, in the Rosay and Monasson case in particular
the clump phase (CL), the paramagnetic phase (PM) and the spin glass phase (SG). This
CL phase is the equivalent in the Hopfield model of the ferromagnetic phase, and is the

26. See [166] for all the details on the replica computation which led to finding the phase diagram of the
model. This computation is somehow a generalization of the AGS one for the standard Hopfield model, see
Section 3.2.

27. The phase diagram remains qualitatively similar to variations in model parameters, see [166].
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region of the phase diagram interesting to consider in order for the neural network to
function as associative memory. The neural configurations allowed in the CL region are
those in which a bump of activity is able to form in a random position of one of the
maps, in the other phases this is not possible. At high noise level (high T), the system is
in the PM phase, where no coherent representation is formed and the population activity
is comparable to random. Finally, when the number of stored maps exceeds the critical
capacity (αc(D, T)) the system falls into the SG phase, a behavior characterized by the
presence of many local minima where the effective noise induced by the competition
between maps freezes the activity and no spatial or map selectivity is achieved.

In addition, from a qualitative comparison with the Hopfield model it seems here that
the system is more robust against noise, in fact, the ferromagnetic region of the Hopfield
model has a triangular shape while the CL phase in this case is more squared, suggest-
ing that the storage of correlated patterns is more robust against noise than completely
random patterns.

Figure 10 – (a) Phase diagram in the (T, α = L
N ) plane in D = 1, f = .1 and ŵ = .05 for the Rosay

and Monasson’s model. Thick lines: transitions between phases. Figure taken from
[166].

Besides the static properties of the model, Rosay and Monasson have also studied its
dynamical features [167] that are much richer than in the standard the Hopfield setting.
First of all, in the case of a single environment, i.e., α = 0, we have the emergence of
a quasi-particle (the bump) with an activated diffusion, expected from what we have
discussed in Section 3.4; furthermore, in the case of several maps, i.e., α > 0, in addition to
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the diffusion of the bump within a map we have as well spontaneous transitions between
the different maps 28, see Fig. 11

29.

In fact, a dynamics at a moderate noise level will most of the time tend to move in
the space of the configurations in one of the manifolds (composed of a set of spatially
related fixed points) dictated by the initial condition, but occasionally it may jump to
another set of fixed points corresponding to another map, see Fig. 3(c). In the case of the
Hopfield model instead the situation was much simpler because the different patterns
corresponded to different isolated fixed points so there may be only, with a sufficient
level of noise, drastic jumps between a fixed point and another, see Fig. 3(b).

3.7 issues with current theory

The type of models discussed in Section 3.6 represent the state of the art to date on how
to store multiple continuous attractors in a recurrent neural network by using the ad hoc
prescription defined in Eq. (3.15) for the pairwise interactions between neurons, despite
the presence of the following important problems both from a practical and theoretical
point of view.

1. First of all, due to interferences (crosstalk) between the different manifolds, the
attractors are not continuous any longer, and are effectively discrete. How to practi-
cally learn smooth attractors and ensure a prescribed level of spatial resolution, i.e.,
in a nutshell the typical distance between nearest neighbour fixed points in every
attractor, is an open issue.

In fact, as soon as we want to store more than one map in the RNN, the activity
bump gets stuck in some preferred locations in the retrieved map due to the inter-
ferences coming from the other non-retrieved maps [54]. In other words, rule (3.15)
does not define truly continuous attractors, as large barriers oppose the motion of
the bump along the map [167].

To better understand this phenomenon, we refer to the case of having to memorize
only one continuous attractor. In this case, in fact, as we have seen in Section 3.4,
there is invariance under translation, in the sense that if we consider two neurons
coding for two positions (so having their place fields centered in that positions)
on the map, the interaction between them depend only on the distance between
these positions, see Eq. (3.9), consequently, an activity bump can be located in
any position of the environment at the same cost, see Eq. (3.13). But as soon

28. A full characterization of the phenomenology of these spontaneous transitions can be found in [168].
29. See also the video at https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.115.

098101. Note that the circles of different colors represent the centers of the place fields whose corresponding
place cells are active at some time in the different maps.

https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.115.098101
https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.115.098101
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(a) (b)

Figure 11 – Time evolution of a 1D network with N = 1000 units and 2 stored environments ob-
served in a Monte Carlo simulation at T = 0.007, illustrating the coexistence of dif-
fusion within one map and transitions between maps. Each black dot represents an
active unit. Both panels represent the same data, they only differ by the ordering
of the units along the x-axis (remapping of the place fields). (a) the units i are ar-
ranged according to their place field centres in environment 1. (b) they are arranged
according to their place field centres in environment 2. The y-axis represents time (in
Monte Carlo rounds). Between time 0 and time ∼ 1000 the activity is localized in map
2 and delocalized in map 1. Then it undergoes several transitions between 1 and 2.
Between times ∼ 2000 and ∼ 3700, the network is in attractor 1 and the bump diffuses
within this attractor. Finally, it ends up and diffuses in map 2. Note the abruptness of
the transitions between maps dynamics of quasi-continuous attractors is much richer
than in the case of more basic models as the Hopfield network, where the only pos-
sible evolution is to transit from one attractor to the other, see Fig. 3(b). Figure taken
from [167].

as we try to store in the same connectivity matrix more than one map with rule
(3.15), and consider a bump of activity that has formed in one of the maps, we will
break this invariance under translation because in the connections there will be the
contributions of the other maps (that we are not recalling) that will act as a noise
term, this can be described with the fact that in the case of a single manifold the
bump is travelling in an effective flat free energy landscape while in the case of
multiple maps this landscape is rough due to this crosstalk term, see Fig. 12 and
[167]. This means that if we are at a low level of neural noise (low temperature)
the bump will remain stuck in one of the free energy minima, in other words we
have no longer stored a continuous attractor but only a discrete set of positions that
correspond to the minima of this free energy.
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F

r
Figure 12 – Sketch of the effective free energy landscape probed by the bump of neural activity

(dashed bump) moving through an environment in the case of storing multiple con-
tinuous attractor in a RNN. Figure taken from [167].

2. This issue of spatial resolution is also unclear from a theoretical point of view. Ca-
pacity calculations [27, 166] require that a bump can form in any of the memorized
maps, in at least one position: they offer no guarantee about the existence of other
memorized positions, that is, we have no explicit control over which positions we
actually have stored in each map (what are precisely the fixed points of the neural
dynamics?).

3. Moreover, theoretical studies [27, 166, 168] show that the maximal capacity corre-
sponding to the prescription (3.15) is very low, see Fig. 10. It is reasonable to expect
that the optimal storage capacity could be much higher: a ∼ 15-fold increase was
found from the Hebb-rule critical capacity, ' 0.138 [17], to the optimal capacity,
αc = 2 [87] in the case of 0-dimensional attractors, corresponding to the Hopfield
model [112].

Where by optimal capacity we mean that the weights of the neural net have been
chosen to maximize the number of attractors (number of maps at fixed number of
stored positions per map) to memorize, rather than making an a priori choice for
the couplings and then see how many maps can be memorized with that choice
following the Hebb-like rules (3.15) approach.
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4. Optimal learning could also provide detailed insights on the statistical structure of
the neural couplings {Wij}, which could be compared to the physiological distribu-
tion of synaptic connections [46].

The purpose of this thesis is to solve these problems. In fact, as we shall see in the
next Chapters, we will show how to achieve optimal storage of continuous attractors
and study the optimal trade-off between capacity and spatial resolution, that is, how the
requirement of higher spatial resolution affects the maximal number of attractors that can
be sustained in a RNN.

3.8 experimental evidences for continuous attractors

Before presenting a solution to the problems posed in Section 3.7, it is important to
provide other examples in the brain of neurons whose activity depends strongly on some
continuous sensory correlates in addition to the place cells that we have already discussed
in detail, see Sections 3.3 and 3.5.

3.8.1 Head-direction cells

The place cells we have already described are not the only example of neurons in
the brain showing a sharp spatial selectivity in their activation properties. In fact, after
their discovery, the head-direction (HD) cells in the septal presubiculum were found [200,
227]. These cells have the surprising property of being active or silent depending on the
orientation of a rodent’s head with respect to a reference direction of the environment,
see Fig. 13(b).

Neurons responsive to the direction of the motion have later been discovered in other
regions, such as the entorhinal cortex [209], the anterior and lateral dorsal thalamic nuclei
[162], the lateral mammillary nucleus [216], the retrosplenial cortex [57] and the striatum
[252], suggesting that the directional signal can be calculated in regions of the brain
outside the hippocampal formation [243].

Since HD cells fire allocentrically and depending only on the ongoing direction of the
animal, and not on the specific location within the environment, they have been inter-
preted as the “compass” used for navigation in the cognitive map [227]. HD cells primar-
ily rely on external landmarks to represent the motion direction [228, 229], although they
are known to respond to self-motion cues [95] as well as contextual conditions [119] when
visual information is unavailable or unreliable [130].
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3.8.2 The fruit fly central complex

It is also very important to mention experimental evidence in animals simpler than
rodents, here in fact we will focus on the fruit fly, in fact even insects are excellent in
space navigation but at the same time they are much simpler than rodents and this allows
to study the neural circuits really in detail with state-of-the-art experimental techniques
such as two-photon calcium imaging in head-fixed walking flies and optogenetics in order
to get a mechanistic description of the latter. In particular here we will discuss neurons
that are equivalent to HD cells previously discussed for rodents giving the first direct
experimental evidence of the mechanism of continuous attractors in the brain.

Specifically, let’s consider a part of the brain of the fruit fly, called central complex,
common with some variations to a large class of insects, and in particular let’s focus on
a sub-part called ellipsoid body, where are arranged in a ring a type of neurons named
compass cells or E-PG neurons (similar to HD cells).

Looking at the activity of these neurons Seelig et al. [214] have identified that this ring
structure presents a single activity bump that acts as an abstract representation of the fly
orientation and where the activity of the network is confined to move on this ring in the
neural activity space. Moreover, this representation persists in the absence of visual and
self-motion cues.

Then, using the fact that in this context we have a compass network with a strong
topography, that it is possible to monitor the activity of entire populations of cell types,
that it is possible to selectively perturb the activity of specific neurons and that one has
access to both structural and functional connectivity, Kim et al. [127] have been able to
demonstrate that the neural circuitry of the ellipsoid body of the fly must be implemented
by a recurrent network with local excitation and uniform inhibition, i.e., the same type of
models discussed in Section 3.4, giving for the first time direct evidence of this mechanism
in the brain.

Another important question to be understood from a mechanistic point of view is how
the bump formed in the compass network can move in the absence of visual stimuli (in
the dark). To do this Turner et al. [241], always using two-photon calcium imaging and
electrophysiology in head-fixed walking flies, were able to identify in the central complex
another population of neurons, called P-ENs, that simultaneously encodes heading and
angular velocity, and is excited selectively by turns in either the clockwise or counter-
clockwise direction. They showed how these mirror-symmetric turn responses combine
with the neurons’ connectivity to the E-PG neurons to create a mechanism for updating
the fly’s heading representation when the insect turns in absence of visual inputs.
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It should now also be clear that the study of animals as simple as drosophila is essential
to understand the functioning of neural circuits from a mechanistic point of view (much
more complicated thing to do in more complex brains like those of mammals) and in fact
this line of research is proving extremely fruitful today [103, 126]. In addition, mecha-
nisms similar to those presented for insects have been successful even in more complex
animals such as mammals (bats) [77].

3.8.3 Grid cells

Another key example is the one provided by the grid cells discovered by E. and MB.
Moser (also Nobel Prize winners together with O’Keefe in 2014 for this finding) in the
medial entorhinal cortex (mEC) [85, 105]. These neurons have the particular property of
exhibiting triangular, periodic grid-like spatial selectivity, see Fig. 13(c).

The grid cells can be described by the orientation and period of the grid. These cells en-
joy a property called “topography” which consists in the fact that neighboring neurons in
the mEC have similar period, or grid spacing, while this increases along the dorsoventral
axis of the cortex [45]. Moreover, grid cells have the fundamental property of not chang-
ing their mutual relationship in different environments, namely that the superimposition
of their firing fields is constant regardless of external conditions, since the firing fields
translate and rotate coherently in different familiar environments [84].

The independence of spatial encoding from the context of grid cells, as opposed to the
complex variability of place cells, has led to their interpretation as a putative substrate
for the representation of a universal metric for navigation [105, 153, 184, 264]. A context-
independent metric is essential to perform path integration, i.e., the process of updating
one’s cognition of self-location based on the estimation of linear and angular direction and
velocity from proprioception and vestibular information, which allows for navigation in a
known environment even in the absence of visual guidance, as we had already mentioned
in Section 3.3.

Moreover, since anatomically mEC projects into the hippocampus, it is thought that the
weighted sum of grid cells activity can produce localized activity (place field) in the hip-
pocampus and also that changes in these weights may be responsible for the phenomenon
of random remapping. The process of formation of place cells from grid cells is an hot
topic of study today, in fact, for example, based on the above, it is not clear why in new-
born animals are observed place cells before the emergence of grid cells. Experiments
in which the activity of neurons is measured simultaneously in mEC and hippocampus
could help to better understand this fundamental problem [49].

It is important to note, from the point of view of mathematical models of recurrent
neural networks that store continuous attractors, that the key difference between single
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activity bump models such as place cells or even head-direction cells and models with
multiple bumps (in this case the bumps are located on the triangular lattice), lies on the
fact that in the first case we have a global inhibition mechanism, while in the other case we
must have an inhibition that depends on the distance, so a local and not global inhibition
(just having a local excitation is not enough) [217, 223].

3.8.4 Prefrontal cortex

Indirect evidence for the continuous attractor mechanism is present as well in the pre-
frontal cortex (PFC), a part of the mammalian brain that subserve higher cognitive func-
tions like decision making and working memory, during the delay period in an oculomo-
tor delayed response task.

Indeed, Wimmer at al. [256] analyzed behavioral and electrophysiological data from
monkeys performing a spatial working memory task and tested predictions from a contin-
uous attractor hypothesis, see Sections 2.2 and 3.4, for spatial memory maintenance. Their
analysis support the idea that PFC activity represents spatial memories in a fixed-shape
bump of activity that is used for guiding behavior, but is liable to cumulative encoding
errors as a result of random fluctuations.

Thus validating the concept of prefrontal persistent activity as the basis of spatial work-
ing memory, supporting the continuous (or finely discretized) nature of spatial memory
encoding in PFC, and being consistent with bump attractor dynamics mediating cognitive
function in the cortex.

3.8.5 Other examples

Other examples for the mechanism of continuous attractors in the brain include:

— simple cells in the V1 area of the visual cortex coding for the orientation of a bar
presented to the retina, see Hubel and Wiesel (Nobel prize winners in physiology
or medicine in 1981) experiments [114, 115];

— border cells [183] responsive to the walls of an environment were reported in several
regions of the hippocampal formation, see Fig. 13(d);

— speed cells [136] that are neurons which firing rates depend on an animal’s speed
through its environment;

See [131, 260] for nice reviews on the topic.



3.8 experimental evidences for continuous attractors 41

(c)(a) (b) (d)

Figure 13 – Spatial cognition requires having a cognitive map, i.e., an internal representation of
the outside world [232]. Single neuron recordings have led to the discovery of various
neuronal cell assemblies, each with its own specific function, in the hippocampus and
the enthorhinal cortex. The different biological features of each serve different specific
functions, and have been found to provide the neural basis of spatial navigation. The
activity of a place cell (a), a head direction cell (b), a grid cell (c) and a border cell (d)
in environments of different sizes are illustrated in the spike plots from left to right.
Figure taken from [150].





4
O P T I M A L C A PA C I T Y- R E S O L U T I O N T R A D E - O F F I N M E M O R I E S O F
M U LT I P L E C O N T I N U O U S AT T R A C T O R S

After Chapter 3 it should be clear that recurrent neural networks are powerful tools
to explain how attractors may emerge from noisy, high-dimensional dynamics. We
study in this Chapter how to learn the ∼ N2 pairwise interactions in a recurrent neural
network with N neurons to embed L manifolds of dimension D � N, showing that
the capacity, i.e., the maximal ratio L/N, decreases as | log ε|−D, where ε is the error
on the position encoded by the neural activity along each manifold, or in other words,
that recurrent neural networks are flexible memory devices capable of storing a large
number of manifolds at high spatial resolution. These results rely on a combination
of analytical tools from statistical physics of disordered systems and random matrix
theory, extending Gardner’s classical theory of learning to the case of patterns with
strong spatial correlations.

All the findings presented in this Chapter have been published in [28].

4.1 introduction

At this stage it should be evident the objective of the thesis, namely how to store
multiple continuous attractors in a recurrent neural network (RNN). Furthermore, after
the reading of Chapter 3, the reasons for this kind of research should be understood from
the point of view of computational neuroscience, see Section 3.5, as well as the problems
with the current theory on the subject should be clear, see Section 3.7. Recall in fact that in
the last twenty years no theoretical progress has been made on this fundamental problem
despite the presence of several critical aspects of popular models such as:

— due to interferences between the different manifolds stored in the same network,
the attractors are not continuous any longer, and are effectively discrete. How to
practically learn smooth attractors and ensure a prescribed level of spatial error ε,
where by spatial error we indicate the typical distance on the maps between two
nearby positions where the activity bump can get stuck (actually memorized map
positions), is an open issue.

— Moreover, theoretical studies [27, 166, 168] show that the critical capacity (maximal
number of maps that can be memorized in a RNN) corresponding to the standard
Hebbian-like prescription (3.15), an ad hoc learning rule for the pairwise interac-
tions between neurons summing up the different contributions corresponding to

43
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each single attractor taken independently of the others, see Section 3.6, is very low.
In addition, these studies do not convey any information about the spatial error
with which the different continuous attractors are encoded in the sense that it is not
clear in the different maps which and how many positions are really stored.

Is it possible to define not a priori learning rules for the network connectivity matrix
in order to have control over the spatial error with which the different maps are actually
stored? Also, once this is done, is it possible to understand the optimal trade-off between
capacity and spatial error? Answering these questions is of fundamental importance also
because one might be interested in very different scenarios, i.e., to store in a RNN a few
maps but with very small spatial error or maybe to store many maps in a coarser way. In
the following we present a theory in order to bypass these problems.

4.2 the model

To answer the questions mentioned in Section 4.1 and Section 3.7 we introduce the
following model with which we want to study the optimal storage of multiple quasi-
continuous manifolds with prescribed spatial error ε in a RNN with N binary neurons
(σi = 0, 1) and real-valued, oriented connections Wij, same scheme as Figs. 3(a) and (c).

Inspired by the phenomenology of place cells and place fields, see Section 3.3, we
define in this context a map as a D-dimensional cube with unitary volume and periodic
boundary conditions 1 in which each neuron i = 1, . . . ,N of the RNN has a randomly
located input (place) field (PF), i.e., a D-dimensional sphere of volume φ0 < 1, centered
in position ri, see one of the two maps in Fig. 14(b).

We want than to store in the network L = αN (as usual we define the parameter
α = O(1) as the load, see Section 3.6) maps that differ through random rearrangements
of the PF center positions, r`i, ` = 1, . . . , L (see Fig. 14(b)). Imposing random remapping
between the different maps is essential to make them orthogonal as we already discussed
in Section 3.5, where by orthogonal maps we mean that the activity configurations of the
neurons coding for the positions of the different environments are orthogonal to each
other, and thus avoid as much interference between them as possible.

Now instead of trying to memorize the different maps with a priori learning rules as
Hebbian-like ones (3.15), see Section 3.6, where by a priori we mean here that the learning
of the maps through the choice of the connectivity matrix is done without having an
explicit control on the positions actually stored in the different environments (what are
the fixed points of the network dynamics in the different maps?), we approximate each

1. The more realistic case of environments in which we remove periodic boundary conditions is discussed
in Section 6.2.
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map ` through a collection of p random positions r̂`,µ, µ = 1, . . . , p, and we will define
in the next Section 4.3 how to store in the connectivity matrix of the RNN explicitly these
positions. The spatial error ε, which is an index to the accuracy of how each map is stored,
is defined as the typical distance between nearest neighbor positions on an environment,
see Fig. 14(a), and in this setting where we have approximated the maps with p random
positions it scales as ε ' p− 1

D [55]. In this way we can have control on the accuracy of the
coding because increasing p correspond to decrease the spatial error ε, and in particular
we will be able to store quasi-continuous attractors in the large p limit.

At this stage for every position in every map, r̂`,µ, we extract an N-dimensional pattern
of activity to be stored in the network: the neuron i is active (σ`,µi = 1) if the distance
between this position and the center of the PF associated with the neuron i in map `,
|r̂`,µ − r`i |, is smaller than the PF radius rc, and silent (σ`,µi = 0) otherwise, see Fig. 14(b).
Also this way of building the patterns to memorize is clearly inspired by the mechanism
of place cells and place fields discussed in Section 3.3. We end up with a data-set of p× L,
N-dimensional, binary patterns {σ

`,µ
i }, where i is the neuron index, ` the environment

index and µ the index of the position to be stored in map `.

It is essential to note that each pattern built in this way corresponds to a bump state
for the network in the sense that precisely by construction, given a position in a certain
environment, the related pattern has active neurons corresponding to PFs in that map
that are close to the position itself (those that contain it), while the other neurons whose
PFs are far away from the position (those that do not contain it), are silent.

Then, by storing a map in a RNN we mean that the patterns associated to the sampled
positions on that map must be fixed points of the network dynamics and we will see in
the next Section 4.3 how to learn the connections between neurons for this to be possible.

4.3 learning the optimal couplings

How do we store the different maps, that is the patterns generated in the previous
Section 4.2, in the RNN?

Before discussing this we need to define a dynamics for the network. In this specific
case we consider the standard sequential zero temperature Monte Carlo dynamics [25, 79,
91, 239]:

σi(t+ 1) = Θ
(∑
j6=i

Wijσj(t)
)
, (4.1)

where Θ is the Heaviside step-function and at every time step t+ 1 we choose uniformly
at random the neuron i to update among the N ones, exactly the same kind of dynamics
encountered in the previous Chapter 3 with 0 or 1 spins and without considering this time



46 optimal capacity-resolution trade-off in memories of multiple ca

(a)

r1

r2
r3

×

× ×
×
×

×

×

××
ε

(b)

r1

r2
r3

(a)

×

× ×
×
×

×

×

×
×

ε

σi

σj

Wij

N-dimensional	space	of	activity	configurations	{σi}

0      0 0 0 0 1
0 0 0 1 0 1
0 1 0 0 0 1
0 0 1 1 1 0
0 1 1 0 0 0

(b)

(a)

(b)

Figure 14 – (a) Sketch of a manifold to store in the RNN, see Fig. 3(c). We require to memorize
p points (left, red crosses) on the manifold, whose separation defines the spatial error
ε. (b) Place fields (PF) of N = 5 neurons in two maps. Each color identifies one
neuron; the corresponding PF define the regions (with periodic boundary conditions)
in the maps in which the neuron is active. The table lists, for each map, p = 3 activity
patterns corresponding to the marked points.

the local external threshold fields, in this case we don’t need any threshold because as we
will see the connectivity matrix will have both positive and negative interactions and this
is enough to keep the network activity fixed. Moreover it is important to recall, as we saw
in Section 3.2, that such a noiseless dynamics converges from any initial configuration of
the neurons to its nearest fixed point, i.e., a configuration of the network neurons activity
such that the dynamics remain stuck.

At this point we want to choose minimal conditions for the connectivity matrix W
such that the patterns generated in the previous Section 4.2 are fixed points of the neural
dynamics (4.1), that is they are stored in the RNN. This property is equivalent to impose
for every pattern in the data-set

∆
`,µ
i ≡

(
2σ
`,µ
i − 1

)∑
j6=i

Wijσ
`,µ
j > 0 , ∀ i , ` , µ , (4.2)
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where ∆`,µi is defined as the stability of the neuron i for the pattern associated with the
map ` in position µ.

If we now look carefully at the definition of the RNN it is easy to realize that since we
don’t have self-connections (Wii = 0 , ∀ i), if we focus on a single neuron i and wonder
what is the connectivity matrix row Wi, an (N− 1)-dimensional vector, that satisfies (4.2),
we immediately realize that this problem is a perceptron problem [206, 207] with neuron
i as output and the other N− 1 neurons as input, see Fig. 15(a). In particular we have
N independent perceptron problems to solve, one for each output neuron i, so that to
consider all the rows of the connectivity matrix that after learning will be non-symmetric
a priori. The important thing is that even though we have N distinct problems to solve,
learning is done on the same data-set with the only difference being to change the output
and input neurons in the different perceptrons, which after the learning phase will not be
uncorrelated and will produce a well defined dynamics for the whole network.

In order for the patterns to be fixed points of the dynamics according to (4.2) we have
to solve the N classification problems associated to the different perceptrons. In fact,
if we look at the p × L binary patterns in the (N − 1)-dimensional input space of one
of the perceptrons, we see that the patterns are divided into two classes: the class that
includes the patterns in which the output neuron is active and the class in which it is
silent. Choosing the row of the connectivity matrix Wi that satisfies (4.2) for a fixed
output neuron i is equivalent to find the hyperplane that linearly separates the two classes.
This problem, if solvable, admits infinite solutions (all solutions that can be reached by
the perceptron algorithm [71, 109]), and among all these solutions we are interested in
finding the hyperplane that maximizes the distance between the two classes, this problem
therefore corresponds to a convex optimization problem with an unique solution [43],
where this optimal distance is called maximal stability [21, 132] or in machine learning
terminology hard margin, because this particular solution to the perceptron problem is
equivalent to a support vector machine (SVM) with a linear kernel and hard margin [35,
62, 211], see Fig. 15(b).

This choice of Wi ensure the biggest basins of attraction in the pattern space, i.e., ro-
bustness against thermal noise [16, 132, 133], because the optimal hyperplane ensures that
every perceptron is as robust as possible in the classification of the two classes (smallest
generalization error).

To put in formulas these concepts, we are interested in finding the connectivity matrix
W that maximizes the stabilities of the patterns to be stored

κ = max
W

min
{i=1...N,`=1...L,µ=1...p}

[(
2σ
`,µ
i − 1

) ∑
j( 6=i)

Wij σ
`,µ
j

]
, (4.3)
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Figure 15 – (a) One of the N perceptrons that make up the RNN with N = 5 neurons and where
the output neuron is the one correspondent to the index i = 1. (b) Example of a learn-
ing problem for a perceptron where the aim is to find the hyperplane separating the
two classes, class (0) and class (1), while maximizing its distance from them (in the
maximum margin setting). It is clear from the figure that the problem of linearly sep-
arating the two classes with an hyperplane admits infinite solutions when the classes
are linearly separable.

where all the rows of W are normalized to 1, i.e.,
∑
j( 6=i)W

2
ij = 1 ∀ i, for details on the

SVM algorithm see Appendix A.1.

It is interesting to note that usually SVMs are used in supervised learning (fit of input-
output relation from examples typically in high dimensions) problems where in general
the output is simply a label associated to the input [58] while in this specific setting
we are using the same technique in an unsupervised (find statistical features of data
for clustering, dimensional reduction and so on) way in the sense that here the output
neurons are part of the activity patterns to be stored that are composed of input and
output together.

4.4 results of numerical simulations

Now that we have well defined the model in Section 4.2 and the dynamics of the
network together with the learning rule in Section 4.3 we can start studying the results of
simple numerical simulations and see if qualitatively the typical characteristics of RNNs
that store continuous attractors are reproduced, see Sections 3.4 and 3.6.
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4.4.1 Couplings obtained by SVM

First, we report some qualitative features of the couplings obtained by SVMs after the
training process (Section 4.3) on the specific data discussed in Section 4.2.

— As shown in Fig. 16(a) and (c) the couplings Wij are correlated with the distances
d`ij = |r`i − r`j | between the PF centers of the neurons i and j in the different maps `.
Note that the dependence on distance is less marked in the single environments as
the number L of maps increases, due to the interferences between the maps encoded
in the same connectivity matrix, see Section 3.6.

— In order to sustain a bump state with average activity φ0 (obviously for construction
the average activity of the patterns to memorize is equal to the area of the PFs),
couplings are excitatory at short distances, up to roughly the radius rc of the PF, and
inhibitory at longer ones. The sign of the couplings can be intuitively understood.
Two neurons at short distances have largely overlapping PFs: their activities are
likely to be equal, and having a large coupling helps increasing the stability, see
(4.2). If the distance is bigger than rc, the activities are likely to be different, hence
inhibitory (negative) couplings would increase the stability, see Fig. 16(a) and (c).

— Moreover, in Fig. 16(b) and (d) we show the histograms of the couplings and it
seems that the amplitudes decay with N. In agreement with [165] we expect the
average values and standard deviations to scale, respectively, as 1/N and 1/

√
N, see

Sections 4.6 and 6.7.

4.4.2 Finite temperature dynamics (T > 0)

Second, once the coupling matrix {Wij} has been learned, we may perform Monte Carlo
simulations to investigate the behavior of the network. Instead of considering the natural
dynamics of the network without noise (4.1), we implement a noisy dynamical scheme,
the same introduced in Section 3.4, but now without the threshold terms (see Section 4.3),
where neuronal states are updated stochastically according to the probabilities [25, 79, 91,
239]

Prob
(
σi(t+ 1)|{σj(t)}

)
=

1

1+ exp
[
− 1
T

(
2σi(t+ 1) − 1

)∑
j( 6=i)

Wij σj(t)

] , (4.4)

with T as a temperature parameter to be set such that a bump of activity may form and
sustain itself. This happen when T is comparable to, or smaller than the stability κ of the
network. All that in order to show the diffusion of the activity bump within a map and
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Figure 16 – Couplings obtained after training with SVM for L = 1 (a) and (b) and L = 2 (c)
and (d) maps. Left: dependence of the average coupling with the distance between
the corresponding neurons; the vertical line locates the radius rc of the place fields.
Averages were computed over 500 samples of the p positions per map at fixed PF
centers; N = 1000 neurons. Right: histograms of the couplings, for sizes N = 100

(blue) and N = 1000 (orange) Parameters: D = 2, φ0 = .3 and p× L = N.

the transitions between maps [167, 168, 208] as already seen previously in Sections 3.1
and 3.6. We illustrate the dynamical properties of the model with two examples 2:

2. The examples mentioned below can be viewed at: https://journals.aps.org/prl/supplemental/10.
1103/PhysRevLett.124.048302. In the attached videos the red crosses represent the stored positions of the

https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.124.048302
https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.124.048302
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— first, we consider a network with N = 1000 neurons, in which we store one map
(L = 1) in dimension D = 2 and with average activity φ0 = .3. We consider then the
case in which the learning is done on a small number of points, p = 30, resulting in
a large value of the stability (as we will see in fact the stability of the network de-
creases as the constraints that the connectivity matrix must satisfy increase, so L and
p), κ = 1.7. And then the case in which p = 300 is higher, and the stability is smaller:
κ = .6. Our noise parameter T is set to .8 to allow the bump to form in both cases.
In the large κ case, the bump, which is possible to visualize by looking at which
are the PFs that correspond to the active neurons at a given time, gets stuck very
quickly in one of the p training positions, depending on the initial configuration, see
videos LargeKappaL1.mp4 and LargeKappaL1Bis.mp4. In the small κ case, the bump
diffuses on the map, see video SmallKappaL1.mp4. For larger p, the bump can easily
travel through the environment, with a large diffusion coefficient; in contrast, in the
small p case, the stability landscape is very rough (only the stored positions have
a very high positive stability value, the others can have a priori negative stabilities,
which is why the dynamics remain locked, see Fig. 34(a)) and the bump is stucked
close to the stored positions.

— In the second example we consider the case of L = 2 maps and p = 150 points. The
other parameters have the same values as in the first example, i.e., the stability is
fixed to κ = .5. In the video SmallKappaL2.mp4 we see that, as κ is small, the bump
diffuses in one maps and sporadically jumps to the other map, as it should be due
to the fluctuations induced by the temperature and a reasonable number of stored
positions per map. In fact, since the two maps are orthogonal by construction, if we
focus on which are the PFs that correspond to the active neurons at a given time,
we observe that in one of the two maps these are clustered and therefore form a
bump of activity (the position in one of the maps we are recalling at that time),
while in the other map we have that these PFs are basically random, as it should be
given that the bump must be located in one of the maps only 3. Moreover, since the
dynamics has a noise level, it is possible to observe the transitions of the bump from
one map to another simply by noticing that at a given time the network activity has
PFs clustered in one map and random in the other, and when a transition occurs
the opposite happens.

different environments in the connectivity matrix of the neural network and the blue circles represent the
centres of the PFs whose corresponding neurons are active at a fixed time (the PFs whose neurons are silent
at a certain time are not shown). Also note the presence of periodic boundary conditions in the maps that
can sometimes make the bump not easy to visualize.

3. The case of having activity bumps located at the same time in multiple maps is possible if they are
correlated. Since in our model the PFs are random in the different maps (global remapping) this situation is
unlikely to be possible by construction.
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Moreover, the fact that the stored attractors can be continuous depends primarily on the
number of place cells encoding the map and the size of the PFs, as these parameters define
the possible number of distinct patterns and therefore the positions that can be stored in
the map itself. Once the map is defined, the dynamical properties of the activity bump
are basically fixed by the number of positions memorized per map and if the difference
between the points is a fraction of the bump’s width, the discretization in practice is no
longer perceived. To test if our model is able to do the tracking of moving inputs we
made a simulation where, starting from a RNN of N = 1000 neurons, we learn L = 2

maps in D = 1, where the size of the PFs is fixed at φ0 = .2 and where are stored p = 250

positions per map. Then we go to study the dynamics of the network with a temperature
T = .5 and also add an external input that acts on individual neurons in the following way:

Ii(t) = exp(− |x`i−x(t)
`|

φ0
), where x(t)` represents the center of the input at a given time in

one of the two maps. From Fig. 17 it is clear that the center of the activity bump 4 (blue
points) follows the input (orange curve) very well, even if the input is abruptly moved
from one map to another. From this example we can see that the continuous tracking of
moving inputs is achieved in our model.

4.4.3 Zero temperature dynamics (T = 0) and spatial error ε

Now instead, if we are interested in calculating the spatial error ε with which the maps
have been stored, we consider the natural dynamics of the network (4.1). Starting from
an initial activity configuration, we track the system dynamics for at most N2 Monte
Carlo steps (N sweeps), and retain the visited configuration with the minimum number
of violated constraints, i.e., with the highest number of non-negative stabilities 5

∆i = (2σi − 1)
∑
j( 6=i)

Wij σj > 0 . (4.5)

We generate L environments and p points in each of them, learn the coupling matrix
corresponding to these p× L patterns. We then pick at random a position in one of the
learned maps, and use that position to construct the initial activity configuration of the
dynamics. After the dynamics described above is done we keep the final configuration
and use it to decode the final position on that map, as the center of mass of the PFs
(on the map) of the active neurons in the final configuration. The distance between this

4. See the next paragraph for details on how to decode the position of the center of the bump from
network activity.

5. The choice of N sweeps as a maximal simulation time is empirical: we do not find that significantly
better results are obtained by increasing this bound. Actually, the dynamics often ends up in a fixed point
with stabilities ∆i > 0 for all neurons i in much less sweeps. Nevertheless, it is necessary to set a maximum
number of sweeps because the learned connectivity matrix is not a priori symmetrical and therefore the
convergence of dynamics is not ensured.
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ℓ = 1

ℓ = 2

Figure 17 – Tracking a moving input. The x(t) represent the centers of the bump decoded by the
activity of the place cells in the two environments (taking into account the periodic
boundary conditions). Every temporal step t in the simulation corresponds to a Monte
Carlo sweep (that is to the attempt to update N neurons chosen at random following
the dynamics (4.4) that includes the external input) and consequently the plot reported
corresponds to a single dynamics, and not to the average on different samples of
possible trajectories.

estimated position and the initial one (taking care of the periodic boundary conditions),
after averaging over many initial positions (100 in the figures showed), defines the spatial
error ε with which the maps have been stored (the spatial error is roughly the same in all
the environments since p is the same in all maps and the positions are random).
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Fig. 18(a) 6 shows that ε becomes quite large as L increases if we use Hebbian-like
learning rules (3.15) for the connectivity matrix. However, with the maximal-stability
learning rule (Section 4.3), the spatial error ε can be tuned at will by varying p. For a
fixed p, ε remains remarkably stable as the load increases until its critical value is reached.
This is in sharp contradistinction with the Hebb rule case (3.15), for which ε quickly
increases with the number of maps. The p patterns form a discrete approximation of the
map, with average spatial error scaling as ε = p−1/D, i.e., as the typical distance between
neighboring points [55], see Fig. 18(b).

(a) (b)

(a) (b)

Figure 18 – (a) Spatial error ε vs number L of two-dimensional maps in a network of N = 1000

neurons. Black: rule (3.15), with w(d) = e−d/0.01 + w0, where w0 < 0 enforces
a fraction φ0 = .3 of active cells. Colors: SVM results for different numbers p of
prescribed positions. Line widths show the error bars. (b) spatial error ε vs number
p of positions in a network of N = 1000 neurons storing L = 5 maps, in dimensions
D = 1, 2, 3. Lines show the expected scalings ε ∼ p−1/D in log-log scale.

It is therefore clear now that by increasing p we can control the accuracy of the cod-
ing by decreasing the spatial error ε. It is obvious, however, that requiring small ε for
the maps has a cost in terms of how many maps can be stored because there are more

6. In this figure we show only the case of an exponential kernel (where the parameters have been chosen
such that to have zero spatial error in case of a single map) for the Hebbian rule, but it can be seen from
Fig. 19 that for example a Gaussian kernel has similar performance as the exponential one. In general it
is true that the specific value of the spatial error depends on the choice of the kernel (and its parameters),
however the important point to note is that regardless of the kernel used, a Hebbian type rule has a spatial
error that increases with the number of maps while the key to our approach is to have a method that can
maintain the same level of spatial error even when storing multiple maps (obviously until the critical capacity
is reached).
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constraints that must be taken into account by the connectivity matrix. The goal now is
therefore to understand this trade-off between capacity and resolution.

4.4.4 Comparison with Hebb rule

Before studying how the optimal stability κ defined in Eq. (4.3) and obtained from
SVMs (Section 4.3) behaves as a function of α = L

N and p, as a sanity check, we show that
it is always much higher than the maximal stability achievable with Hebbian-like rules
(3.15), even after the optimization over the interaction kernel w. In fact, this should be
true by construction, see Section 4.3.

In order to show that we consider the cases of an exponential kernel,

w(d) = a e−d/b − 1 , (4.6)

and of a Gaussian kernel,

w(d) = a e−d
2/b − 1 . (4.7)

We then optimize over a and b; the value of the negative offset at large distance is arbi-
trary, since couplings are normalized row by row. Results for a typical sample are shown
in Fig. 19. The stability for the best kernel w is always much lower (and negative in the
examples considered here) than the optimal stability κ found with SVM.

4.4.5 Capacity-Resolution trade-off

The optimal stability κ (4.3) is shown in Fig. 20(a) as a function of the load α and of
the number p of prescribed fixed points. As expected, κ(α, p) is a decreasing function
of α and p: increasing the number of maps or enforcing finer spatial error reduces the
stability.

The value of the load α at which κ(α, p) vanishes defines the critical capacity αc(p),
that is, the maximal load sustainable by the network as a function of the required spatial
error. Fig. 20(a,inset) shows that αc(p) decreases proportionally to 1/p at low p, and
then much more slowly as p grows, see Appendix A.2 for details on how we estimated
numerically the critical capacity.

For small p, all L× p patterns are roughly independent, and we have αc(p) ' αc(1)
p ,

where αc(1) is the capacity of the perceptron with independent, biased patterns having a
fraction φ0 of active neurons [87]. As p gets large, substantial redundancies between the
p patterns within a map appear, as nearby positions define similar patterns, see Fig. 14,
and the capacity is expected to decrease less quickly with p. The cross-over takes place at
pc.o. ∼ 1/φ0, see Fig. 20(b).
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(a)
Hebb Hebb

(b)

Figure 19 – Stabilities obtained with the Hebb rule with exponential (a) and Gaussian (b) kernels
on a given representative sample. The kernel parameters a and b vary from 0 to 10
with a step of .01. Parameter values: N = 1000, D = 2, φ0 = .3, α = .1 and p = 5. The
optimal value of the stability on that sample obtained by SVM is κ ' .55.

The nontrivial behavior of αc(p) when p� pc.o. will be characterized in the analytical
study in Section 4.5 and Section 4.6.

4.5 gardner’s theory for rnn storing spatially correlated patterns

As we have just discussed in Section 4.4, increasing p corresponds to decrease the
spatial error ε, but we can easily understand that increasing p, and therefore the number
of constraints that must be satisfied by the connectivity matrix has a cost in terms of
how many maps the RNN can store. In order to try to understand this trade-off between
capacity and spatial error analytically we used, as a first attempt, Gardner’s approach
developed in the 1980s [87, 88].

The idea is to look at the space of all possible connectivity matrices that have our
patterns, see Section 4.2, as fixed points of the network dynamics (4.1), i.e., all possible
hyperplanes that linearly separate the two classes for all N perceptrons, see Section 4.3.
In this feasible set of solutions there will be as well the one that corresponds to the
connectivity matrix with maximal stability κ, namely the solution with the maximum
margin for every perceptron, see Section 4.3. When we increase α = L

N at fixed p the
logarithm of the volume of this set of solutions decrease until it shrinks to a single point,
as we will explain in detail below. When this happens we found the critical capacity
because adding a new constraint would make the problem impossible to solve.
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Figure 20 – (a) Optimal stability κ as a function of the load α and the number p of positions

obtained from SVM. Parameter values: D = 2, φ0 = 0.3, N = 1000 for SVM. Inset:
αc(p) decreases proportionally to 1/p (straight line) at low p, and much more slowly
for large p. Dots indicate results from SVM (N = 5000), averaged over 50 samples;
the dot size indicates the maximal error bar. (b) Scaling cross-over of αc(p) vs p for
different values of φ0. The vertical lines correspond to the values of pc.o. ∼

1
φ0

. We use
for this results D = 2, N = 5000, and we have averaged over 50 different realization
of the environments and different realizations of the p positions. Parameter values:
N = 5000, p = 100, Samples= 25.

So here we are going to extend the Gardner theory for the capacity of the perceptron
(SVM with linear kernel and hard margin) to the case of continuous attractors.

We shall consider the now usual RNN consisting of N neurons, with p × L binary
(0 or 1) patterns {σ

`µ
i } constructed by drawing randomly p positions in each of the L

environments, see Section 4.2, so that the resulting patterns are spatially correlated and
to be stored as fixed points of the network dynamics

σi(t+ 1) = Θ

(∑
j6=i

Wijσj(t)

)
. (4.8)

For the storage of the patterns a strong characterization of fixed points is provided by

∆
`,µ
i ≡

(
2σ
`,µ
i − 1

)∑
j6=i

Wijσ
`,µ
j > κ , ∀ i, `, µ (4.9)

which ensures a finite radius of attraction for κ > 0 [87, 88, 125, 132–134]. Then we can
choose to normalize W’s by enforcing the “spherical" constraint∑

j6=i
W2
ij = 1 , ∀ i , (4.10)
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for each row of the matrix of couplings.

The volume in the space of couplings {Wij} that corresponds to admissible solutions
of the storage problem, i.e., the partition function, can be written, up to a normalization
factor, in the form [109]

Z =

∫∞
−∞

N∏
i 6=j

dWij
∏
i

δ

( ∑
j( 6=i)

W2
ij − 1

)∏
i,`,µ

Θ
(
(2σ`µi − 1)

∑
j( 6=i)

Wij σ
`µ
j − κ

)
(4.11)

and is equal to the product of the N single-site volumes Zi, with i = 1, . . . ,N. So we may
focus for example on the volume associated with i = 1:

Z1 =

∫∞
−∞

N∏
j=2

dWj δ

(∑
j>2

W2
j − 1

)∏
`,µ

Θ
(
(2σ`µ1 − 1)

∑
j>2

Wj σ
`µ
j − κ

)
, (4.12)

where Wj ≡W1j.

Using the replica method [51, 156, 157, 181, 242], we compute the average of logZ1 over
the patterns as

〈logZi〉 = lim
n→0

〈Zni 〉− 1
n

, (4.13)

where 〈.〉 represent the quenched average over the data distribution, so we get

〈Zn1 〉 =
∫∞
−∞
∏
j,a

dWja
∏
a

δ

(∑
j>2

W2
ja−1

)〈 ∏
`,µ,a

Θ
(
(2σ`µ1 −1)

∑
j>2

Wja σ
`µ
j −κ

)〉
, (4.14)

where a = 1, . . . , n is the replica index.

Let us now introduce the integral representation of the Heaviside functions and exploit
the statistical independence of the different maps so that we can write

〈Zn1 〉 =
∫∞
−∞
∏
j,a

dWja
∏
a

δ
(∑
j

W2
ja − 1

)
χ(W)αN (4.15)

where L = αN and with χ(W) equal to∫ p∏
µ=1

dr̂µ
∫ N∏
j=1

drj
∫∞
κ

∏
µ,a

dtµa

∫∞
−∞
∏
µ,a

dt̂µa

2π
e

i
∑
µ,a
t̂µatµa∏

j

e
−i
∑
µ,a
t̂µa(2σ

µ
1−1)Wjaσ

µ
j
,

(4.16)

where r̂µ denotes the p prescribed locations in the environment, and rj theN PF centers of
the neurons in the map (these variables must be integrated on the map, i.e.,D-dimensional
cube with periodic boundary conditions).
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Let Φ(r) be the indicator function of the PF centered in 0: Φ = 1 if |r| < rc, where rc is
the radius of the PF (with

∫
drΦ(r) = φ0), and 0 otherwise. Let Γ(r) =

∫
dr ′Φ(r ′)Φ(r− r ′)

be the correlation function of Φ and σ(r1 − r̂µ) = 2Φ(r1 − r̂µ) − 1. Given p points r̂µ,
µ = 1, . . . , p drawn uniformly at random in space, we define the p× p Euclidean random
matrix 7 [158] with entries

Γµ,ν
(
R̂ ≡ {r̂µ}

)
= Γ
(
r̂µ − r̂ν

)
−φ20 . (4.17)

We first carry out explicitly the integrals over the PF centers with indices j = 2, 3, ..., N,
leaving the integrals over r1 and all r̂µ in χ(W) so that we obtain

χ(W) =

∫ p∏
µ=1

dr̂µ
∫
dr1
∫∞
κ

∏
µ,a

dtµa

∫∞
−∞
∏
µ,a

dt̂µa

2π
e

i
∑
µ,a
t̂µatµa

×e
−iφ0

∑
µ,a,j

Wjat̂µaσ(r1−r̂µ)
e
− 1
2

∑
µ,ν,a,b,j

WjaWjbΓµ,ν(R̂)t̂µat̂νb
. (4.18)

We can now introduce the order parameters

ma =
∑
j>2

Wja , ∀a (4.19)

and

qab =
∑
j>2

WjaWjb , a < b (4.20)

to be added with the standard trick of inserting the integral representation of Dirac delta
functions and fix their values through integration and rewrite

〈Zn1 〉 =
∫∞
−∞
∏
ja

dWja

∫∏
a

dûa

4πi
e

∑
a

ûa

2 (1−
∑
j

W2
ja)
∫∏
a

dm̂adma

2πi
e

∑
a
m̂a(ma−

∑
j

Wja)

×
∫ ∏
a<b

dq̂abdqab

2πi
e

∑
a<b

q̂ab(qab−
∑
j

WjaWjb)

χ(W)αN
(4.21)

where ûa are the Lagrange multipliers enforcing the spherical constraints, m̂a the ones
that enforce the definition of ma and q̂ab the ones that enforce the definition of qab, and
they simply come from the integral representation of the Dirac delta functions.

It is possible then to rewrite χ(W) as

χ({ma, qab}) =

∫∏
µ

dr̂µ
∫
dr1
∫∞
κ

∏
µ,a

dtµa√
2π

∫∞
−∞
∏
µ,a

dt̂µa√
2π
e
− 1
2

∑
µ,ν,a,b

qabΓµ,ν(R̂)t̂µat̂νb

e
−i
∑
µ,a
maφ0t̂µaσ(r1−r̂µ)+i

∑
µ,a
t̂µatµa

,

(4.22)

7. See Chapter 5 for details on Euclidean random matrices.
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where due to translation invariance, the integral over r1 is irrelevant, and we can set
r1 = 0.

We can also define from (4.21) the quantity Y({ûa, m̂a, q̂ab}) as∫∞
−∞
∏
ja

dWjae

∑
a

ûa

2 (1−
∑
j

W2
ja)

e

∑
a
m̂a(ma−

∑
j

Wja)

e

∑
a<b

q̂ab(qab−
∑
j

WjaWjb)

(4.23)

so that we can write (4.21) as

〈Zn1 〉 =
∫∏
a

dûa

4πi

∫∏
a

dm̂adma

2πi

∫ ∏
a<b

dq̂abdqab

2πi
Y({ûa, m̂a, q̂ab})χ({ma, qab})αN .

(4.24)

It is possible now make the Replica Symmetric (RS) Ansatz [51, 157] (expected to be
valid since the domain of suitable couplings is convex, see Section 4.3) on the structure of
the order parameters so that

m̂a = m̂ , ∀a , (4.25)

q̂ab = q̂ , a < b , (4.26)

and the same for the conjugate variables and as well the Lagrange multipliers associated
to the normalization of the weights.

We can therefore write within the limit of large N and small n:

1

nN
log Y =

û

2
−
qq̂

2
+ lim
n→0

1

n
log
∫∞
−∞
∏
a

dWae
− û
2

∑
a
W2
a−q̂

∑
a<b

WaWb−m̂
∑
a
Wa

. (4.27)

It is now possible to compute the Gaussian integrals over {Wa} and take the small n
limit so we get:

1

nN
log Y =

û

2
−
qq̂

2
−
1

2
log (û− q̂) +

m̂2 − q̂

2(û− q̂)
. (4.28)

We are now able to calculate the remaining integrals over the order parameters and
their conjugated variables with the saddle-point method. So we start by writing the
saddle-point equations relative respectively to m̂, û and q̂ from the above equation:

m̂ = 0 , (4.29)
1

û− q̂
= 1− q , (4.30)

q̂ =
−q

(1− q)2
. (4.31)
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By solving this equations we finally find:

m̂ = 0 , (4.32)

q̂ =
−q

(1− q)2
, (4.33)

û =
1− 2q

(1− q)2
. (4.34)

By injecting these results in (4.28) we found that when q → 1, so when the volume
associated with the admissible solutions is reduced to one point and therefore we are at
critical capacity, we have:

1

nN
log Y ' 1

2(1− q)
. (4.35)

As for the term χ this can be rewritten in the RS ansatz and using a Gaussian integral
trick as:

χ =

∫∏
µ

dr̂µ
∫∏
µ

dzµ√
2π

exp
(
− 1
2

∑
µ,ν

zµΓ(R̂)
−1
µ,νzν

)
√

det Γ(R̂)
(4.36)

×
{∫∞

κ

∏
µ

dtµ

∫∞
−∞
∏
µ

dt̂µ

2π
e
− 1
2 (1−q)

∑
µ,ν
t̂µΓµ,νt̂ν

e
i
∑
µ
t̂µ(zµ

√
q+tµ−mφ0σ(r1−r̂µ)))

}n
.

After performing the Gaussian integral in {t̂µ}, taking the small n limit and the q → 1

limit we get:

logχ
n
' −

1

2(1− q)

∫∏
µ

dr̂µ
∫∏
µ

dzµ√
2π

exp
(
− 1
2

∑
µ,ν

zµΓ(R̂)
−1
µ,νzν

)
√

det Γ(R̂)

× min
{tµ>κ}

∑
µ,ν

[
tµ − (zµ +mφ0σ(r1 − r̂µ)

]
Γ(R̂)−1µ,ν

[
tν − (zν +mφ0σ(r1 − r̂ν)

]
. (4.37)

Putting all together we get:

〈Zn1 〉− 1
nN

' 1

2(1− q)

{
1−α

∫∏
µ

dr̂µ
∫∏
µ

dzµ√
2π

exp
(
− 1
2

∑
µ,ν

zµΓ(R̂)
−1
µ,νzν

)
√

det Γ(R̂)

× min
{tµ>κ}

∑
µ,ν

[
tµ − (zµ +mφ0σ(r1 − r̂µ)

]
Γ(R̂)−1µ,ν

[
tν − (zν +mφ0σ(r1 − r̂ν)

]}
.

(4.38)
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We finally obtain the expression for the critical capacity αc(κ, p) = max
m

αc(m; κ, p),

where αc(m; κ, p) is the load α cancelling the terms inside the curly brackets in (4.38).

We can rewrite this final expression for the maximal load at fixed κ and p like

αc(κ, p) = 1/min
m
〈Ep(R̂,Z,m; κ,φ0)〉R̂,Z (4.39)

where the minimum is taken over m =
∑
j( 6=i)

Wij. In the formula above, 〈·〉 denotes the

average over the vectors R̂ = (r̂1, ..., r̂p) of p positions r̂µ drawn uniformly at random
in the D-dimensional cube with periodic boundary conditions, and Z = (z1, ...zp) drawn
from the multivariate centered Gaussian distribution with R̂-dependent covariance matrix
Γµ,ν(R̂) = Γ

(
r̂µ − r̂ν

)
−φ20. Here, Γ(d) is the overlapping volume between two PF, whose

centers are at distance d from one another, hence, Γ(0) = φ0. The function Ep in Eq. (4.39)
is defined through

Ep(R̂,Z,m; κ,φ0) = min
{tµ>κ}

∑
µ,ν

[
tµ − (zµ +mφ0σ(r̂µ)

]
Γ(R̂)−1µ,ν

[
tν − (zν +mφ0σ(r̂ν)

]
(4.40)

where σ(d) = 1 if d < rc, -1 otherwise and we have set r1 = 0 for traslation invariance. rc
is the radius of the PF, i.e., the smallest number such that Γ(2 rc) = 0.

In practice, computing αc(κ, p) from Eq. (4.39) is quite involved from a numerical point
of view, as it requires to solve the p-dimensional semi-definite quadratic optimization
problem [43, 68] in Eq. (4.40), as well as to average over the random vectors R̂ and Z. This
can be accurately done for small enough p, with results in excellent agreement with the
SVM simulations, see Fig. 21.

Notice that as already mentioned in Section 4.4, for p = 1, our calculation reproduces
Gardner’s critical capacity αc(κ, 1) for independent and biased patterns [87]. This is
expected as spatial correlations between patterns within a map appear when p > 2, see
Appendix A.3.

4.6 quenched input fields theory

In order to compute the capacity αc(κ, p) with the Gardner approach in Section 4.5 we
have to solve a p-dimensional constrained quadratic optimization problem, depending on
p correlated Gaussian random variables, see Eqs. (4.39) and (4.40), and then average over
p random positions on the map. This task becomes quickly intractable in practice as p
increases.
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Figure 21 – Optimal stability κ as a function of the load α and the number p of positions. Dots,
SVM results; dashed lines, Gardner’s theory (4.39). Parameter values: D = 2, φ0 = 0.3,
N = 1000 for SVM.

In other words Eq. (4.39) seems, unfortunately, intractable for large p. The intricate de-
pendence on p, i.e., showing up through the Gaussian correlations between the p random
fields zµ in Eq. (4.40), stems from the average (in each map `) over the N PF centers {r`i}
at fixed positions {r`,µ}.

To avoid introducing these correlations and having an explicit dependence on the pa-
rameter p, we consider an alternative calculation scheme, where the p positions in each
map are averaged out, while keeping the L×N centers quenched.

To further simplify the calculation we neglect in the effective action all terms of order >
3 in the couplings {Wij} following closely [165] but, as we will discuss later, this Gaussian
approximation is expected to be exact in our setting in the large-p limit.

A potentially interesting feature of this approach is that it holds at fixed PFs, instead of
averaging over them as in Section 4.5, and could be applied to specific situations, i.e., sets
of PFs measured in experiments.
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4.6.1 Replica calculation

Starting from the replicated volume 〈Zn1 〉 in (4.15), we now perform first the average
over each one of the p locations in χ(W) in (4.16) as follows

∫
dr̂µ exp

−i
∑
a

t̂µa(2σ
`,µ
1 − 1)

∑
j>2

Wja σ
`,µ
j

 =

exp

(
−i
∑
a

ma` t̂µa −
1

2

∑
a,b

t̂µa(q
ab
` −ma`m

b
` )t̂µb +O(t̂

3)

)
(4.41)

where we have reintroduced the map index ` to underline that the PFs are kept fixed here.
The order parameters in the formula above are

ma` =
∑
j>2

Wja

(
2 Γ
(
|r`j − r`1|

)
−φ0

)
(4.42)

and

qab` =
∑
j,k>2

WjaWkb Γ
(
|r`j − r`k|

)
, (4.43)

to be introduced as in Section 4.5.

We then simplify the calculation with two approximations:

— We truncate the expansion in powers of t̂ in (4.41) to the second order, and omit
all higher order terms. This amounts to approximate the distribution of couplings
{Wij} (at fixed PFs) by a Gaussian. This approximation is valid only if the couplings
fluctuate weakly around their means, which is the case in the large-p limit, see
Section 4.6.3.

— We also neglect the dependence of the order parameters m` and q` above on the
map `. The histograms of the overlaps q` measured by SVM are shown in Fig. 22.
As can be seen from the figure, the distribution of overlaps is not concentrated in the
large-N limit at fixed p. Therefore, while ma` = ma and qab` = qab is a valid Ansatz
for the saddle-point equations of the log. partition function (due to the statistical
equivalence between the maps), we expect Gaussian fluctuations to be relevant even
in the infinite-N limit. However, as p increases, these fluctuations are smaller and
smaller, and are asymptotically negligible. The order parameters then reduce to,
after summation over the maps ` = 1, . . . , L,

ma ≡ 1

L

L∑
`=1

ma` =
∑
j>2

Wja

(
2C1j

(
{r`j}
)
−φ0

)
(4.44)



4.6 quenched input fields theory 65

and

qab ≡ 1

L

L∑
`=1

qab` =
∑
j,k>2

WjaWkb Cjk
(
{r`j}
)

. (4.45)

The N×N multi-space Euclidean random matrix C appearing in the expressions
above is defined by

Cjk
(
{r`i}
)
=
1

L

L∑
`=1

Γ
(
|r`j − r`k|

)
. (4.46)

In the following, we denote by ρ(λ) the density of eigenvalues λ of C. This density
is self-averaging when the PFs are randomly drawn in the large L,N double limit.
Its resolvent, defined as

g(U) =

∫
dλ

ρ(λ)

λ+U
, (4.47)

where the integral runs over the support of ρ(λ), is solution of the implicit equation

U = −
1

g(U)
+
∑
k 6=0

α Γ̂(k)
α+ g(U) Γ̂(k)

, (4.48)

where the Γ̂(k)’s are the components of the Fourier transform of Γ on the
D-dimensional infinite reciprocal cube, as we will see in detail in Chapter 5

8.
Within the RS Ansatz, the overlap matrix qab is fully characterized by its diagonal and

off-diagonal elements that we denote by, respectively, s and q:

s =
∑
i,j>2

〈Cij [W1iW1j]〉 , q =
∑
i,j>2

〈Cij [W1i] [W1j]〉 . (4.49)

where, as in Section 4.5, the brackets denotes the average over the random patterns, and
the square parenthesis stand for the average over all couplings satisfying the inequalities
(4.9).

8. In Chapter 5 we will show (Section 5.2) how to compute the expression for the implicit equation of the
resolvent g(U), that is Eq. (4.48), associated to the matrix C defined in Eq. (4.46), see the result in Eq. (5.21).
An alternative derivation of the same result is presented in Section 5.3. It is important to note however
that the notations in Chapter 4 and Chapter 5 are slightly different in the sense that g(U) in the former
corresponds to s(z) in the latter.
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Figure 22 – Distributions of the overlaps q` for different values of N and p. It is clear that the
histograms are roughly Gaussian. We use for this results D = 2, φ0 = .3, α = .1, and
we have averaged over 500 realization of the p positions at fixed PF.

Following closely [165], we obtain the expression of the average logarithm of the vol-
ume,

〈logZ1〉
N

= −
1

2
qq̂+ sŝ+mm̂+ û−

1

2

∫
dλρ(λ)

[
log(2û+ (2ŝ− q̂)λ) +

q̂λ

2û+ (2ŝ− q̂)λ

]
+

m̂2 Ξ

2(2ŝ− q̂)
+αp

∫
Dz logH

(
z
√
q−m2 −m+ κ√

s− q

)
(4.50)

where Dz denotes the Gaussian measure, H(x) =
∫∞
x Dz =

1
2 erfc( x√

2
), and the ·̂ Lagrange

parameters enforce the definitions of the order parameters (û enforces the normalization
condition over the rows of the W matrix). The quantity Ξ is a function of the argument 9

U =
2û

2ŝ− q̂
, (4.51)

and is defined as

Ξ(U) =
∑
j,k>2

Hj

(
U Id +C

)−1
jk
Hk with Hj = 2C1j −φ0 , (4.52)

9. The physical meaning of U is to represent the eigenvalues of the multi-space Euclidean random matrix
associated to the different environments, similar to the pattern correlation matrix in [165]. Always in the
same reference it is possible to better understand the relationship between U and κ on the critical line, see for
example the Eq. (17) associated, where ν corresponds to our U. Moreover, in Section 3.4 of [164] (a work prior
to [165]) it is shown how ν is also found from the modified Hebb rule to take into account the correlations.
The presence of ν is not specific of the replicas, but is also found in simpler approaches (Hebb + denoising)
and allows to interpolate between K equal to the identity matrix for very high ν and K equal to the inverse
of the correlation matrix of the patterns for ν → 0 according to the constraints that one puts on denoising,
see Eq. (3.31) of [164].
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where Id is the identity matrix of sizeN− 1. In the above equation, the inverse is intended
over the (N− 1)-dimensional restriction of the matrix U Id + C to entries j, k > 2. The
quantity Ξ(U) can be calculated, we report in Appendix A.4 the details, with the result:

Ξ(U) = 1+ 4U−
4

g(U)
. (4.53)

4.6.2 Log. volume and saddle-point equations close to the critical line

As α reaches its maximal value (at fixed κ and p), the set of couplings satisfying the
inequalities (4.9) shrink to a single solution, and we expect s, q to reach the same value
according to Eq. (4.49). We therefore look for an asymptotic expression for 1

N2
〈logZ〉 in

Eq. (4.50) when

ε = s− q , (4.54)

is very small and positive 10. In this regime, we expect the conjugated Lagrange parame-
ters to diverge as inverse powers of ε. More precisely, calling

ε̂ = 2ŝ− q̂ , (4.55)

we assume that

ε̂ =
V

ε
and q̂ =

T

ε2
, (4.56)

as ε→ 0. To the leading order, we obtain

1

N
〈logZ1〉 =

F(α)

2ε
+O

(
| log ε|

)
, (4.57)

where F(α) is the extremum over m, q, U, V, T of F(α;m,q,U, V, T) that is equal to

V

(
q+U−

m2

Ξ(U)

)
+ T

(
1−

1

V

∫
dλρ(λ)

λ

λ+U

)
−αp(q−m2)

∫∞
x

dz√
2π
e−

z2

2 (z− x)2

(4.58)

10. Note that here ε is defined as the difference between the order parameters s− q, where we restrict our
analysis to the critical line αc(κ, p) at fixed p so that s− q = ε → 0+. Hence, in this case ε is different from
the spatial error considered in the rest of the manuscript which is defined in the limit of p large as ε ∼ p−

1
D .
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with x = m−κ√
q−m2

and U defined in (4.51). Note that, in order to obtain (4.58), the saddle

point equation over m̂ in (4.50) was derived and solved for m̂ explicitly. Extremizing over
U, T, V , we obtain

V =

∫
dλρ(λ)

λ

λ+U
, (4.59)

T = −

(
q+U−

m2

Ξ(U)

) ∫
dλρ(λ)

λ

λ+U
, (4.60)

1+
m2

Ξ(U)2
dΞ

dU
=

(
q+U−

m2

Ξ(U)

) ∫
dλρ(λ)

λ

(λ+U)2
. (4.61)

Note that the derivative of Ξ with respect to U can be easily computed from the deriva-
tive of g with respect to U according to Eq. (4.53). Following the implicit equation over g
in Eq. (4.48), we find

dg

dU
(U) =

1∑
k 6=0

α Γ̂(k)
(α+ g Γ̂(k))2

−
1

g2

. (4.62)

We may now write the saddle-point equations over q and m, which give, after some
elementary manipulation,

αpH(x) =

∫
dλρ(λ)

λ

λ+U
, (4.63)

m

m− κ

(
1

Ξ(U)
− 1

)
=

1√
2π x ex

2/2H(x)
− 1 . (4.64)

The three coupled equations (4.61,4.63,4.64) allows one, in principle, to compute q,m,U,
and therefore T, V and F(α). In addition, the optimization of 〈logZ〉 in (4.57) over ε
immediately gives F(α) = 0, hence, a fourth equation to determine the critical value of α
at fixed κ and p. This last equation read, after the simplification according to Eq. (4.64),

U

κ
= m

(
1

Ξ(U)
− 1

)
. (4.65)

Resolution of these equations gives access to κ(α, p), in very good agreement with the
numerical results obtained with SVM, see Fig. 23(a). Small deviations can, however, be
noticed and diminish with increasing p as expected, see Section 4.6.3.

In addition, the order parameters q and m are shown as functions of p in Fig. 24, in
good agreement with SVM results for large p (� pc.o.).
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Figure 23 – (a) Optimal stability κ as a function of the load α and the number p of positions.
Dots, SVM results; dashed lines dashed-dotted lines, quenched PF theory. Parameter
values: D = 2, φ0 = 0.3, N = 1000 for SVM. Inset: αc(p) vs p. Dots indicate results
from SVM (N = 5000), averaged over 50 samples; the dot size indicates the maximal
error bar. The dashed-dotted line shows the predictions from the quenched PF theory.
(b) Critical capacity obtained by SVM vs φ0 for different values of D in log-log scale.
Parameter values: N = 5000, p = 100, Samples= 25.

Furthermore, the value of p at which the confluence between the results from the
quenched theory and SVM takes place is a decreasing function of the PF size φ0 and
of the map dimension D, see Appendix A.5.

4.6.3 Large-p behavior of the critical capacity

We now focus on the maximal capacity, obtained when κ → 0. According to (4.65), U
vanishes, and equations (4.63,4.64) as a well as the implicit Eq. (4.48) on the resolvent g
give a set of two coupled equations for x and the resolvent g:

1

g
=
∑
k 6=0

Γ̂(k)
1+ gpH(x) Γ̂(k)

, (4.66)

1−
4

g
= x
√
2πH(x) ex

2/2 . (4.67)

from which the capacity can be computed as a function of the number p of points,

αc(p) =
1

pH(x)
. (4.68)



70 optimal capacity-resolution trade-off in memories of multiple ca

(b)(a)

Figure 24 – Order parameters m (a) and q (b) vs p. Dots, SVM results (N = 2500), averaged over
50 samples; dashed-dotted lines, quenched PF theory. Parameters: D = 2, φ0 = 0.3,
α = 0.02 (top) and 0.05 (bottom), for which up to, respectively, pc ' 2500 and pc ' 250
points can be memorized.

In practice, we can choose x at will, compute g from (4.67), then p from (4.66), and,
finally, αc(p) from (4.68), see Fig. 23(a,inset) for the results of the numerical resolution of
these equations.

Remark that equation (4.66) can be rewritten as

pH(x) = G
(
gpH(x)

)
with G(y) =

∑
k 6=0

y Γ̂(k)
1+ y Γ̂(k)

. (4.69)

According to dimensional analysis, the large momentum scaling of the Fourier coefficients
is given by

Γ̂(k) ∼
φ20(

kφ
1
D

0

)D+1
=
φ
1− 1

D

0

kD+1
, (4.70)

where k = |k| and D is the dimension of the physical space. We deduce that, for large
arguments y,

G(y) ∼ A1(D) φ
D−1
D+1

0 y
D
D+1 with A1(D) =

∫
dDu

|u|D+1 + 1
. (4.71)
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In addition, using the asymptotic expansion of the erfc function, we have

x
√
2πH(x) ex

2/2 ' 1− 1

x2
(4.72)

for large x.

Combining these expressions allows us to obtain the asymptotic relation between x and
y,

y
1

D+1 = 4A1(D)φ
D−1
D+1

0 x2 . (4.73)

and, to the leading order in p,

x '
√
2 logp−

(
D+

1

2

) log logp√
2 logp

. (4.74)

We then deduce the asymptotic scaling of the critical capacity

αc(p) ∼ A(D)
φ
−(D−1)
0

(logp)D
(p→∞) , (4.75)

with

A(D) =
1

8DA1(D)D+1
. (4.76)

Equation (4.75) is the main result of this thesis. Informally speaking, the very slow decay
of the critical capacity with p, see Fig. 23(a,inset), means that recurrent neural nets can
efficiently store multiple spatial maps, even at high spatial resolution. More precisely,
enforcing a strong reduction of the spatial error, such as ε → ε2, results in a moderate
drop of the maximal sustainable load, αc → αc/2

D.

In addition, the capacity is predicted to be a decreasing function of the PF size in di-
mensionsD = 2, 3, but not in dimensionD = 1. This asymptotic statement is qualitatively
corroborated by SVM results, even for moderate values of p, see Fig 23(b).

Moreover, the scaling for x in Eq. (4.74) entails the following relation between the order
parameters q and m in the large–p regime,

q

m2
− 1 ∼

1

2 logp
. (4.77)
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To interpret the consequences of the equation above, we consider a set of replicated
couplings, {Wia}. For any random position r in map ` defining the pattern σ, we define
the rescaled and centered random variable

B
(
r|{Wia}

)
=

1

ma`

((
2σ`i − 1)

∑
j>2

Wja σ
`
j −m

a
`

)
. (4.78)

By definition of the order parameter m, the average value of B vanishes:〈
B
(
r|{Wia}

)〉
r = 0 . (4.79)

Equation (4.77) implies that the variance of B is

〈
B
(
r|{Wia}

)2〉
r '

1

2 logp
, (4.80)

as p gets large and the load takes its maximal value (critical capacity). In other words,
the standard deviation of B scales as (logp)−1/2 for large p. We thus expect that the
kth cumulant of B will scale as (logp)−k/2. Under this assumption, the distribution
of the stability t has mean value m and fluctuations of the order of ∆t = m/

√
logp.

These fluctuations are negligible in the large–p limit, since resolution of the saddle-point
equation (4.61) shows that

m ' D
4
−

D2

256 (logp)3
+ o

(
1

(logp)3

)
(4.81)

at the critical point. Hence, ∆t ∼ (logp)−1/2 is smaller and smaller as p increases, and the
distribution of t is well approximated by a Gaussian in the large–p limit. The Gaussian
approximation obtained by discarding all powers of t̂ of order > 3 in Eq. (4.41) in our
quenched PF theory is therefore expected to be exact in this limit.
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S P E C T R U M O F M U LT I - S PA C E E U C L I D E A N R A N D O M M AT R I C E S

This Chapter is dedicated to a detailed investigation of the spectral properties of the
random matrix introduced in Section 4.6, namely in Eq. (4.46), given by the superim-
position of an extensive number of independent random Euclidean matrices in the
high-density limit. More specifically, we calculate analytically its resolvent both with
free probability theory techniques and with the replica method from statistical physics
of disordered systems. The results for the spectrum and eigenmodes are shown in
the particular case of the model presented in Section 4.2, and are corroborated by
numerical simulations.

All the findings presented in this Chapter have been published in [29].

5.1 introduction

In the twenty years following their introduction, Euclidean Random Matrices (ERM)
have been studied in a variety of contexts in physics [44, 158, 219] and mathematics [38,
64, 70]. Examples of applications of ERM include the theoretical description of vibrations
in topologically disordered systems [100, 101, 190], wave propagation in random media
[92, 219], relaxation in glasses [59], Anderson localization [13] and many more [93]. There
is also no lack of ERM applications in the modeling of biological networks [102, 174].

While determining the spectral properties of ERM is generally quite involved due to
the existence of correlations between the entries of these matrices, a well-understood limit
is the so-called high-density regime [38, 158]. Assume N points ri are drawn uniformly at
random in a bounded space, i.e., the unitD-dimensional hypercube HD, and define theN-
dimensional ERM M(1) with entriesM(1)

ij = Γ(|ri− rj|)/N. Here, | · | denotes the Euclidean
distance (with periodic boundary conditions over HD), and Γ is a given function that
depends only on the distance | · | and that has a finite range, independent ofN. In the large-
N limit (for fixed D), the points effectively form a dense, statistically uniform sampling
of the hypercube; the eigenmodes of M(1) are well approximated by Fourier plane waves
[93, 158], with eigenvalues

Γ̂(k) =
∫
HD

dr e−i2πk·r Γ(|r|) , (5.1)

where the components of k = (k1, k2, ..., kD) are integer-valued.

73
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Hereafter, we consider a novel statistical ensemble of ERMs in the high-density regime
obtained by mixing multiple spaces. Instead of having a single set of N random points ri,
we consider L such sets, r`i, with ` = 1, ..., L (and i = 1, ..., N as usual). Each index ` points
to a different “space" (hypercube), and for simplicity all points are drawn uniformly at
random in the different spaces. We define the superimposition of all the ERM attached to
the spaces, with entries

Cij =
1

L

L∑
`=1

Γ
(∣∣r`i − r`j

∣∣) . (5.2)

The random matrix (5.2) has not yet been considered in statistical physics and is of ex-
actly the same type as the one we encountered in Eq. (4.46) and called Multispace-ERM
(MERM).

Let us briefly recall the motivation coming from the field of computational neuroscience
that led us to introduce (Section 4.6) and study in detail MERM, more precisely, the need
to understand how the hippocampal place-cell network [173] can account for multiple
cognitive maps, coding for various environmental and contextual situations. From a
model perspective the points r`i correspond to the positions of the centers of the place
field of place cell i in map `. The resulting statistical ensemble for MERM is sketched in
Fig. 25. An important issue is the maximal number L of maps the hippocampal recurrent
neural network (with N neurons) can sustain, more precisely, the maximal ratio

α =
L

N
, (5.3)

called critical capacity. This capacity depends on the dimension of the maps, D� N, and
of their spatial accuracy (the precision with which N-dimensional neural configurations
encode D-dimensional positions along the map). In Section 4.6 we have shown how the
critical capacity could be determined from the knowledge of the resolvent of C. A non
trivial statistical setting is obtained when the number L of spaces is of the order of the
matrix size, N. More precisely, we consider herefater the double infinite size limit L,N→∞ at fixed ratio α. This choice corresponds to the assumption that the hippocampal
network activity can code for many different environments [9] or different contexts [122],
and operates, as hypothesized for other cortical areas [24, 46, 47], in a regime close to
maximal capacity.

This Chapter is organized as follows. The spectrum of MERM is computed using
arguments borrowed from free probability theory in 5.2, and re-derived using the replica
method in 5.3. Finally we show the results for the spectrum and eigenmodes for the
choice of Γ corresponding to Fig. 25 and compare with numerical simulations in 5.4.

The reader unfamiliar with random matrix theory can find in Appendix B a brief sum-
mary of the key concepts needed to understand the following.



5.2 spectrum of merm : free-probability-inspired derivation 75

r`i

r`j r`j

r`i

r`i

r`j

` = 2` = 1 ` = 3

` = 1 ` = 2 ` = 3

Figure 25 – Basic statistical ensemble of MERM considered in this Chapter, same as the one de-
fined in Eq. (4.46) corresponding to the model defined in Section 4.2. L = 3 sets of
N = 6 points, r`i, with ` = 1, ..., L and i = 1, ..., N are drawn uniformly at random
in unit squares H2 (dimension D = 2). Points are represented by crosses, whose col-
ors identify their indices i. The MERM is defined through (5.2), where Γ is a generic
function of the distance between points. A possible choice for Γ , inspired from the
place cells in neuroscience, is the overlap (common area) between pairs of disks (place
fields) of surface φ0 < 1 and having centers r`i in each space `.

5.2 spectrum of merm : free-probability-inspired derivation

Let us consider an extensive number L of spaces, see (5.3), with

M
(L)
ij =

1

N

L∑
`=1

Γ
(∣∣r`i − r`j

∣∣) , (5.4)

where the points are independently drawn from one space ` to another and where the
single elements of the sum are ERM defined fromN points r`i drawn uniformly at random
in the D-dimensional unit hypercube HD:

M
(1)
ij =

1

N
Γ(|r`i − r`j |) . (5.5)

Before computing the spectrum of (5.4) we recall how to derive the spectral properties
of (5.5) in the high-density regime heuristically, for a mathematically rigorous derivation
see [38].

For any ERM M(1), we can always formally write
∑N
j=1M

(1)
ij vj(k) = Γ̂i(k)vi(k) with

vi(k) = eik·ri√
N

and

Γ̂i(k) =
1

N

N∑
j=1

e−ik·(ri−rj)Γ(|ri − rj|). (5.6)
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In the large N limit the phase −ik · (ri − rj) vary weakly between neighboring points ri
and rj so that the sum in Eq. (5.6) can be approximated by an integral, thus Γ̂i(k) does
not depend anymore on i, becoming an eigenvalue of M(1), Γ̂(k) = NΓ̂0(k), where

Γ̂0(k) =
1

N

∫
HD

dr e−i2πk·r Γ(|r|) (5.7)

is the Fourier transform of Γ(|r|). This eigenvalue is associated with the eigenvector
(e

ik·r1√
N
, . . . , e

ik·rN√
N

). In fact, given a Fourier mode k, the associated Fourier eigenvectors
define a two dimensional space (linear combinations of sine and cosine corresponding to
k), and we denote by v⊥ the projection of the eigenvector v of M(1) orthogonal to this two
dimensional-space. We show the squared norm of v⊥ in Fig. 26 (averaged over several
random realization and for the specific model defined in Fig. 25 but for D = 1 and L = 1)
vs N in log-log scale. It is clear from Fig. 25 that the squared norm of the orthogonal
projection of v scales as 1

N ; hence, each orthogonal squared component scales as 1
N2

, and
each orthogonal component as ± 1N . This indicates that the eigenvectors of M(1) are well
approximated by Fourier modes (to the order 1√

N
) in the large N limit.

5.2.1 Case of the extensive eigenvalue - k=0

We would like to compute the resolvent (Stieltjes transform) of M(L) using arguments
from free-probability theory [144, 161, 180, 246]. Heuristically, asymptotic freeness be-
tween the different ERMs relies on the fact that their eigenvectors basis are mutually
incoherent. In the N → ∞ limit, the eigenvalues of M(1) in space ` are given by (5.1)
with associated eigenvectors of components vi(k) ' ei2πk·r`i/

√
N [38, 93, 158]. All ERMs

defined in the sum in (5.4) have mutually incoherent eigenbasis only if we restrict the
analysis to the subspace orthogonal to the uniform mode attached to k = 0, shared by all
the spaces. Though this argument is not rigorous, we expect this restriction to allow us
to find all the eigenvalues of M(L), except the one corresponding to the asymptotically
uniform eigenvector.

Furthermore it is easy to determine the leading behavior (when N is large) of the eigen-
value of M(L) corresponding to k = 0. As the corresponding eigenvector is expected to
have all components equal to N−1/2, we find that the corresponding eigenvalue is exten-
sive in N and approximately equal to Λ = Nα Γ̂(0). For the matrix C the corresponding
eigenvalue is zext = Λ

α = N Γ̂(0).

From now on we concentrate on calculating the spectrum of M(L) corresponding to
k 6= 0; the term “resolvent" will refer to the resolvent in the k 6= 0 subspace.
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Figure 26 –
∑
i(v
⊥
i )
2 vs N in log-log scale for the specific model defined in Fig. 25 but for D = 1,

L = 1 and for the top 3 eigenvectors corresponding to k = 1, 2, 3. Each point is
averaged over Samples = 500 realizations and the errorbars are simply given by the
standard deviation divided by

√
Samples− 1. The fits are of the form logy = a+

b log x.

5.2.2 Case of a single space (L=1)

The resolvent of M(1) is defined as 1

s1(z) =
1

N

〈
Trace

(
M(1) − z Id

)−1〉
(1)
, (5.8)

1. To avoid ambiguity with the standard results presented in Appendix B.1 we must specify that the
resolvent considered in this work s(z) is defined as minus the resolvent used in the common notation in the
literature, i.e., s(z) = −g(z), obviously nothing changes if we are consistent with the notation.
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where 〈·〉(1) stands for the average over the distribution of the matrix (5.5). It is easy to
rewrite the resolvent when N� 1,

s1(z) = −
1

zN

(
N+

∞∑
`=1

∑
k 6=0

(|k|6N)

Γ̂(k)`
1

z`

)
= −

1

z
−

1

Nz
γ

(
1

z

)
(5.9)

with

γ(u) =
∑
k 6=0

u Γ̂(k)
1− u Γ̂(k)

(5.10)

and where the sum runs over ZD without the k 6= 0 term.

5.2.3 Case of multiple spaces (L = αN)

We now consider the case of M(L). It’s resolvent sL(z) is defined as

sL(z) =
1

N

〈
Trace

(
M(L) − z Id

)−1〉
(L)
, (5.11)

where 〈·〉(L) stands for the average over the distribution of the matrix (5.4), can be com-
puted through the following steps, as explained in Appendix B.2:

1. Invert (functionally) the resolvent s1(z) of M(1) 2: we first rewrite (5.9) into the
following implicit equation for the inverse resolvent:

z1(s) = −
1

s
−

1

Ns
γ

(
1

z1(s)

)
. (5.12)

We then send N to infinity in the above equation, and obtain that z1(s) = −1/s in
this limit. Using this expression for the argument of the γ function in (5.12) we
obtain the 1

N–correction to the inverse resolvent:

z1(s) = −
1

s
−
γ(−s)

Ns
. (5.13)

2. Compute the R-transform of M(1), defined through

R1(s) ≡ z1(−s) −
1

s
. (5.14)

Note the unusual presence of a minus sign in the argument of z1 in the above
equation, due to the fact that our resolvent is defined as the opposite of the standard
resolvent [144]. Using (5.13), we obtain

R1(s) =
γ(s)

Ns
+ o

(
1

N

)
. (5.15)

2. That is, calculate the Blue function, see Appendix B.1.
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3. Compute the R-transform of M(L) through 3

RL(s) = L R1(s) . (5.16)

Using (5.15), we obtain,

RL(s) = α
γ(s)

s
+ o(1) , (5.17)

where the corrections o(1) vanish when both N, L→∞ at fixed ratio α.

4. Write the functional inverse resolvent of M(L) through

zL(s) = RL(−s) −
1

s
= −

1+αγ(−s)

s
. (5.18)

5. Compute the resolvent sL(z) of M(L). From (5.18) and (5.10) we find the implicit
equation satisfied by sL:

z = α
∑
k 6=0

Γ̂(k)
1+ sL Γ̂(k)

−
1

sL
. (5.19)

Note that for what is needed in Section 4.6 we are interested in the spectral properties of
the matrix C with entries

Cij =
1

L

L∑
`=1

Γ
(∣∣r`i − r`j

∣∣) = 1

α
M

(L)
ij . (5.20)

Obviously, the resolvent s of C is related to the resolvent sL of M(L) through the equation
s(z) = αsL(αz), see Appendix B.1. Hence we obtain our fundamental implicit equation
for the resolvent of C 4:

z =
∑
k 6=0

α Γ̂(k)
α+ s Γ̂(k)

−
1

s
. (5.21)

3. Here the use of free-probability is crucial, see Appendix B.2. In fact, the important property to note is
that since the different ERM corresponding to single environments in the subspace k 6= 0 have orthogonal
eigenbasis with high-probability due to random remapping (they are asymptotically free), the R-transform
of the MERM (RL(s)) is simply given by the sum of the R-transforms of the single ERM (R1(s)), which are
equal to each other, so RL(s) = LR1(s).

4. That is the result we announced in Section 4.6. Note that compared to Eq. (4.48) there is only a change
of notation, what was previously g(U) has now become s(z).
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5.3 spectrum of merm : replica-based derivation

Here we re-derive the implicit equation (5.19) for the resolvent of M(L) defined in (5.11)
using the replica method coming from statistical physics of disordered systems. We start
by rewriting the definition of the resolvent, see Appendix B.1, as

sL(z) =
2

N
∂z

〈
log det

(
M(L) − z Id

)− 1
2

〉
(L)

, (5.22)

where 〈·〉(L) it’s still the average over the distribution of the matrix (5.4). With this repre-

sentation the determinant det
(
M(L) − z Id

)− 1
2 can be expressed as a canonical partition

function:

ZL(s) = det
(
M(L) − z Id

)− 1
2 =

∫∏
i

dφi√
2π

exp
(z
2

∑
i

φ2i −
1

2

∑
ij

φiM
(L)
ij φj

)
, (5.23)

where i, j go from 1 to N. Notice that it is legitimate to adopt a real-valued Gaussian
representation for the inverse square root of the determinant. Each ERM M(1) is a corre-
lation matrix, and have real, non-negative eigenvalues; consequently, M(L), which is the
sum of correlation matrices, also has real and non-negative eigenvalues.

Resolvent (5.22) can be calculated using the replica trick [156, 157, 181]:

sL(z) =
2

N
∂z
〈

logZL(s)
〉
(L)

=
2

N
∂z

[
lim
n→0

1

n
log
〈
ZL(s)

n
〉
(L)

]
(5.24)

with 〈
ZL(s)

n
〉
(L)

=

∫∏
ia

dφai√
2π

exp
(z
2

∑
a

∑
i

(φai )
2
)〈

exp
(
−
1

2

∑
a

∑
ij

φaiM
(L)
ij φ

a
j

)〉
(L)

,

(5.25)

where we have replicated the system n times, i.e., a goes from 1 to n.

In order to perform the average in (5.25) we rewrite (5.4) by considering the `-th space
ERM in its eigenbasis:

M
(L)
ij =

1

N

L∑
`=1

Γ
(∣∣r`i − r`j

∣∣) =∑
`

∑
k 6=0

v`ki Γ̂(k) v
`
kj , (5.26)

where ` goes from 1 to L, and the sum over k discards the k = 0 extensive mode be-
cause as discussed in the previous Section 5.2. The eigenvector components, v`ki '
1√
N

sin
(
2πk · r`i

)
, 1√

N
cos
(
2πk · r`i

)
, are real due to the symmetry Γ̂(k) = Γ̂(−k). Hence

we get〈
exp

(
−
1

2

∑
a

∑
ij

φaiM
(L)
ij φ

a
j

)〉
(L)

=
〈

exp
(
−
1

2

∑
a,`,k 6=0

Γ̂(k)
(∑
i

v`kiφ
a
i

)2)〉
(L)

. (5.27)
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We now use the Stratonovich trick to linearize (
∑
i

v`kiφ
a
i

)2:

〈
exp

(
−
1

2

∑
a,`,k 6=0

Γ̂(k)
(∑
i

v`kiφ
a
i

)2)〉
(L)

=
∏
`

∫ ∏
a,k 6=0

dua`,k√
2π

× exp
(
−
1

2

∑
a,k 6=0

(
ua`,k

)2)〈exp
(
− i
∑
a,k 6=0

√
Γ̂(k)ua`k

∑
i

φai v
`
ki

)〉
(L)

. (5.28)

Using the fact that 〈v`ki〉 = 0 and 〈v`kiv`k ′j〉 =
1
N δijδkk ′ it is easy to perform the average in

the above equation, with the result〈
exp

(
− i
∑
a,k 6=0

√
Γ̂(k)ua`k

∑
i

φai v
`
ki

)〉
(L)

= exp
(
−
1

2

∑
a,b

∑
k 6=0

Γ̂(k)qabua`ku
b
`k

)
(5.29)

where we have defined the overlap qab as

qab =
1

N

∑
i

φai φ
b
i (5.30)

to be fixed through

1 =

∫ ∏
a6b

dq̂abdqab

2πi
N

exp
(
N
∑
a6b

q̂abqab −
∑
a6b

q̂ab
∑
i

φai φ
b
i

)
. (5.31)

We can finally write
〈
ZL(s)

n
〉
(L)

as

∫ ∏
a6b

dq̂abdqab

2πi
N

exp

{
N

[
log
∫∏
a

dφa√
2π

exp
(z
2

∑
a

(φa)2 −
∑
a6b

q̂abφaφb
)

+
∑
a6b

q̂abqab +α log
∫ ∏

k 6=0,a

duak√
2π

exp
(
−
1

2

∑
k6=0,a

(uak )
2 −

1

2

∑
k 6=0

∑
a6b

Γ̂(k)qabuaku
b
k

)]} .

(5.32)

The Gaussian integrals over φa and uak can be easily computed. We then make the Replica
Symmetric (RS) Ansatz on the structure of the order parameters qab and their conjugate
variables q̂ab, so that

qab = r+ (q− r)δab (5.33)

and

q̂ab = r̂+ (q̂− r̂)δab . (5.34)
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The integrals over q, r, q̂ and r̂ are then estimated using the saddle-point method valid
for large N, and then taking the small n limit. The resulting expression for the resolvent
of (5.4) is

sL(z) = 2∂z

[
optq,r,q̂,r̂ lim

n→0
lim
N→∞ 1

nN
log
〈
ZL(s)

n
〉
(L)

]
= 2∂z

[
optq,r,q̂,r̂f(q, r, q̂, r̂)

]
,

(5.35)

where f is the free energy density equal to

f(q, r, q̂, r̂) = q̂q−
1

2
r̂r−

α

2

∑
k 6=0

[
log
(
1+ Γ̂(k)(q− r)

)
+

Γ̂(k)r
1+ Γ̂(k)(q− r)

]
−
1

2
log
(
2q̂− r̂− z

)
−

r̂

2(2q̂− r̂− z)

. (5.36)

The saddle-point equations obtained by optimizing f(q, r, q̂, r̂) with respect to q̂, r̂, q and
r read

q = −
r̂(

2q̂− r̂− z
)2 +

1

2q̂− r̂− z
, r = −

r̂(
2q̂− r̂− z

)2 ,
q̂ =

α

2

∑
k 6=0

(
Γ̂(k)

1+ Γ̂(k)(q− r)
−

r Γ̂(k)2(
1+ Γ̂(k)(q− r)

)2) ,
r̂ = −α

∑
k 6=0

r Γ̂(k)2(
1+ Γ̂(k)(q− r)

)2 . (5.37)

This system of equations admits r = r̂ = 0 as a solution, which gives, according to (5.35),
the following implicit equation satisfied by sL(z):

z = α
∑
k 6=0

Γ̂(k)
1+ sL Γ̂(k)

−
1

sL
. (5.38)

This equation is identical to (5.19) obtained using free probability theory.

It’s interesting to note that since we consider the solution corresponding to r = r̂ = 0,
an annealed computation where we directly bring the average of the different realizations
of M(L) inside the logarithm of the partition function, instead of keeping it out as in
our version of the quenched computation that led us to use the replica method, it would
have brought to the same result (obviously the quenched computation is a cleaner way to
proceed) [157].

Moreover, we should as well observe that in this setting we have not needed to use the
asymptotic freeness for the different ERMs M(1) as we did in the free-probability compu-
tation of the previous Section 5.2, so in this sense this approach seems more powerful. In
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fact, we can also use this method to study the case of MERM where the statistical features
of the L ERM’s are non-independent from space to space (in this case we can’t use free
probability because we lose the asymptotic freeness between the different ERMs because
the entries of these are correlated with each other), see Section 6.5.

5.4 application and comparison with numerics

5.4.1 Numerical computation of the spectrum

We now aim at solving the implicit equation (5.21) satisfied by the resolvent of C. We
show in Fig. 27(a) the representative curve of z as a function of s around the pole at the
origin (s = 0). A set of forbidden disjoint intervals, z ∈ [z

(m)
− , z

(m)
+ ], with m = 1, ...,M

is found, which cannot be reached for real-valued s; the number M of these intervals is
a decreasing function of the ratio α. When z lies in one of these intervals, we look for a
solution to equation (5.21) with

s = sr + i si , (5.39)

where the imaginary part si is strictly positive. For z = x+ i ε, the density of eigenvalues
at x is given by ρ(x) = limε→0 si(z)/π by virtue of well-known properties of the Stieljes
transform, see Appendix B.1. From now on we will indicate with z the eigenvalue and
with ρ(z) the correspondent density, bearing in mind the ε→ 0 limit.

The implicit equations fulfilled by sr and si for z ∈ [z
(m)
− , z

(m)
+ ], with m = 1, ...,M read

z =
∑
k 6=0

α2 Γ̂(k)(
α+ sr Γ̂(k)

)2
+
(
si Γ̂(k)

)2 , (5.40)

1

s2r + s
2
i

=
∑
k 6=0

α Γ̂(k)2(
α+ sr Γ̂(k)

)2
+
(
si Γ̂(k)

)2 , (5.41)

and can be solved numerically. Figure 28 shows the density of eigenvalues for various
values of α. We observe the presence of the disconnected intervals [z

(m)
− ; z(m)

+ ] corre-
sponding to non-zero density ρ(z), referred to as “connected components” below. These
connected components originate from the discrete spectrum of ERM (with eigenvalues
labelled by k) and progressively merge as α increases (Fig. 27(b)). We now discuss the
mechanism leading to merging in the large |k|, small α regime.
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(a)

z

(b)
z

↵s

(a) (b)

Figure 27 – (a) z vs s, see (5.21), close to the origin (s = 0), for different values of α. (b) Support of
the spectrum for different values of α: black segments show the interval of eigenvalues
z with non-zero density ρ(z). Results obtained by taking for Γ the overlap (common
length) between segments of length φ0 = .2, centered in points r`i randomly drawn in
the unit interval H1 (D = 1), more precisely Γ(|r`i − r`j |) = φ0 − |r`i − r`j |.

5.4.2 Merging of density “connected components”: behavior of the density at small α

For small α, we look for a solution of equation (5.21) near the poles, so that to consider
only a value k 6= 0 in the sum over the modes:

z(k) =
α Γ̂(k)

α+ s(k) Γ̂(k)
−

1

s(k)
. (5.42)

We find then s(k) such that dz(k)
ds(k) = 0, i.e., where the resolvent has singularities (eigenval-

ues), obtaining:

s±(k) = −
α

Γ̂(k)

(
1±
√
α
)
, (5.43)

this implies that the spectrum has the edges located at:

z±(k) =
Γ̂(k)
α

(
1± 2

√
α
)

. (5.44)

This means that when α become sufficiently small the spectrum develop a connected com-

ponent in correspondence of every k 6= 0 centered in zk = 1
2(z−(k) + z+(k)) =

Γ̂(k)
α and
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of half-width 1
2(z+(k) − z−(k)) =

2Γ̂(k)√
α

. In order now to understand how the density of
eigenvalues behaves inside these connected components we look to a solution of equation
(5.42) of the form

s(k) = sr(k) + i si(k) , (5.45)

so that to finally obtain the parametric equations for the density ρ(z) of eigenvalues equal
to z:

ρ(x; k) =
α
3
2

πΓ̂(k)

√
1− x2 , z(x; k) =

Γ̂(k)
α

(
1+ 2x

√
α
)
, (5.46)

where x ∈ [−1; 1]. This solution makes sense only for the modes k and ratios α such that
the local semi-circle distributions attached to two contiguous eigenvalues do not overlap.
More precisely, the ratio α should be smaller than

αmerging(k) '
(Γ̂(k) − Γ̂(kc))2

4(Γ̂(k) + Γ̂(kc))2
, (5.47)

where kc is the momentum vector corresponding to the closest eigenvalue to Γ̂(k). This
formula gives the values of the ratios at which the small connected components of ρ(z)
(Figs. 27(b) and 28) successively merge, and is asymptotically correct for large |k|.

When α is sufficiently large, all connected components have merged into a single con-
tinuous, semi-circle distribution, as could be expected from the vanishing correlation
between the matrix elements of C, centered in z1 = 1

2(z− + z+) = Γ̂1 and of half-width
1
2(z+ − z−) = 2

√
Γ̂2/α, with Γ̂1 =

∑
k 6=0

Γ̂(k) and Γ̂2 =
∑

k 6=0
Γ̂(k)2.

5.4.3 Eigenvectors of MERM and Fourier modes associated to the ERMs

We briefly discuss here the properties of the eigenvectors of MERM. We consider a
connected component of eigenvalues originated from the same ERM eigenvalue (labelled
by k), see previous Subsection 5.4.2. To quantify how much the MERM eigenvectors v are
related to the 2L eigenvectors (Fourier modes) of the L ERMs, we write

vi =

L∑
`=1

(
γ`

1√
N

cos (2πk · r`i) + δ`
1√
N

sin (2πk · r`i)
)
+ Ri , (5.48)

where γ` and δ` are the projection coefficients onto the 2L ERMs eigenvectors and R is
the component of v orthogonal to this subspace 5.

The distributions of the coefficients γ`, δ` and of the norm of R are shown in Fig. 29 in
the case L = 5 and for increasing values of N. We observe that

5. R is equivalent to v⊥ encountered in Section 5.2 in the case of single ERM (L = 1).
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Figure 28 – Density of eigenvalues of C, without the extensive eigenvalue zext, for various values
of α. Orange: results from (5.40). Blue: outputs of numerical diagonalization for
N = 2500. Same model as in Fig. 27.

— the magnitude of γ` and δ` seems to be independent ofN (Fig. 29(a)), which implies
that these coefficients remain finite as N → ∞. Conversely, the projections of v on
Fourier modes attached to a momentum k ′ 6= k vanishes with increasing N, see
Fig. 29(b). Hence, v retains some coherence with the 2L eigenvectors of the ERMs
attached to the connected component even in the infinite size limit (provided L

remains finite).
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— the norm of R seems to get peaked as N grows around a non-zero value. Therefore,
v has a substantial component outside the 2L-dimensional subspaces spanned by
the ERM eigenmodes.

Notice that the magnitudes of the γ, δ coefficients and of the norm of R are related to
each other through 〈γ2〉 = 〈δ2〉 = (1 − 〈R2〉)/L to ensure the normalization of v. The
results above were derived for finite L and large N; in the double scaling limit where both
L,N are large at fixed ratio α, we find that the coefficients γ, δ of the projections on the
Fourier modes attached to the connected component also scale as N−1/2, in accordance
with the number of those modes.
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Figure 29 – (a) Histogram of the coefficients γ` and δ` for different values ofN. Results correspond
to the k = 1 connected component of eigenvalues in dimension D = 1 and for L = 5

spaces, averaged over 50 samples. Same model as in Fig. 27. (b) Histograms of the
projections of eigenvectors v to the k = 2 Fourier modes of the ERMs. (c) Histograms
of the norm of the orthogonal component R, see (5.48).





6
T O WA R D S G R E AT E R B I O L O G I C A L P L A U S I B I L I T Y

In this Chapter we give additional details of the model presented in Chapter 4 and
also generalize the latter to take into account some constraints of biological nature.
In particular, we try to understand to what extent the main result of this thesis, the
scaling found in Eq. (4.75), is robust to variations of the model. We also try to propose
links of our theory with ongoing experiments. Finally, we present another application
of our setting to the case of storing continuous attractors in recurrent neural networks
starting from real images. Not all the results presented in this Chapter can be consid-
ered at a final stage and this will give us the opportunity to present in the Conclusions
different lines of research to follow in the near future, see Chapter 7.

Part of the findings presented in this Chapter have been published in [28] and [29].

6.1 introduction

In Chapter 4 we found a non-trivial result suggesting that recurrent neural networks are
very efficient devices in the storage of continuous attractors, contrary to what it seemed
in standard models based on Hebbian-like learning rules of the type (3.15), see Section
3.7. Despite this positive result, there is still work to be done especially in view of the
fact that the model presented in Chapter 4 should be a schematization of the recurrent
network of place cells in CA3 of the hippocampus, see Sections 3.3 and 3.5, in fact, we
have not considered different constraints of biological nature that this type of network
must meet, such as:

— take into account the border effects instead of simple periodic boundary conditions
as they are crucial in spatial navigation to identify the presence of walls in an en-
vironment [26], also remember the presence of cells with this specific function, the
border cells, see Section 3.8;

— make explicit the difference between excitatory and inhibitory synapses in the con-
nectivity matrix according to Dale’s principle [66], which basically states that a
neuron performs the same chemical action at all of its synaptic connections to other
cells, regardless of the identity of the target cell. In particular, it is known that
the connections between place cells are only excitatory and the network activity is
kept fixed thanks to the presence of the interneurons that are purely inhibitory and
whose only function is to balance the positive contribution of place cells;

89
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— consider more realistic models of place cells in which place fields can have different
sizes [116, 163], take into account the presence of silent cells [231], not all place
cells have a place field in a given environment, indeed only about thirty percent do,
and also consider that a place cell can have more than one place field in a given
environment, which is what usually happens when considering large maps [76, 193,
203];

— take into account that in the context of place cells and fields, it is known that neu-
rons have some individuality, that is, retain some properties in the different environ-
ments. In particular it was reported experimentally [142, 203] that each place cell
has its own propensity to have a place field per square meter: many neurons have
very low propensity values, i.e., have no place field at all in many maps, and few
neurons that have very high propensity and therefore tend to code almost all maps
even with more than one place field connected component per map;

— consider the sparse nature of synapses [104] and neuron activity observed in CA3

[9];

— consider that the positions to be stored in a map as well as the centers of the input
(place) fields do not necessarily have to be distributed uniformly in the different
environments. The latter is due to the lack of homogeneity of sensory inputs (visual,
auditory, olfactory and so on) and the former due to the trajectories of the animal,
which may prefer to spend more time in some areas than in others (reward areas)
[41, 111, 147]. Linked to this is also the fact to consider that maps can be stored with
different levels of spatial error.

It is therefore important to understand if the results found so far in Chapter 4 remain
valid also in the case of the above mentioned variations of the starting model.

Moreover, since the theory presented in Section 4.6 has been developed with quenched
place fields perhaps it is possible to propose some links with experiments in which we
have access to place fields dispositions in different environments, maybe in order to better
understand the phenomenon of random remapping, see Section 3.5.

In addition, another interesting topic to discuss is the learning dynamics of the network.
In fact, so far we have always considered offline SVM algorithms (in which the network
always has access to the whole data-set during the learning phase), instead of online
procedures (in which instead patterns are presented one at a time) that are definitely
more biologically plausible. This is a fundamental step in the perspective of wanting to
study the dynamics of learning in a recurrent neural network that progressively matures
continuous attractors and that could be connected to experiments on cognitive maps
formation performed on new born animals [74].
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Finally, we show an application of our setting in a different context of the place cells
network, in particular to understand how to store continuous attractors in a recurrent
neural network starting from real images [267].

6.2 border effects

Until now, periodic boundary conditions (PBCs) have been considered for the maps in
order to simplify the analytical calculations, i.e., translation invariance, see Section 4.2.
Here we try to discuss numerically what is the effect of removing PBCs in the model. In
particular, now for environment we really consider D-dimensional cubes and not torus,
the borders of the maps are rigid and any place field near the edge is a cut sphere accord-
ing to the proximity from the walls.

In Fig. 30 we compare using SVMs the optimal stability κ defined in Eq. (4.3) as a
function of the load α = L

N and of the number p of prescribed fixed points in case the
maps do not have PBCs with the case they do.

From simulations it seems that the scaling found in the setting with PBCs is also valid
if they are removed. However, at α and p fixed, κ increases slightly in the case PBCs are
not present. This can be explained heuristically by noting that when we don’t have PBCs
the possible configurations of the patterns on the map borders decreases compared to the
case of PBCs, so as p increases, the redundancy in the patterns starts to be seen first. Even
if the result of the simulations seems quite intuitive, unfortunately an analytical treatment
in case of removing PBCs becomes much more complicated.

The main problem is that removing the PBCs breaks the invariance under translation
in the model 4.2 and therefore, in the computation with Gardner approach, see Section
4.5, things get more complicated. In theory we could compute numerically the same
equations (4.39) but having to explicitly solve the integral on r1, that is not irrelevant any
longer, and also the expression of the matrix (4.17), that is

Γµ,ν
(
{r̂µ}

)
= Γ
(
r̂µ − r̂ν

)
−φ20 , (6.1)

becomes more complicated since the latter is no longer a standard ERM because it is no
longer a function only of the distance between the positions, but also of their center of
mass since the invariance under translations is broken, what happens at the edge of the
environment is different from what happens at the bulk.

The computation with quenched place fields in Section 4.6 does not seem possible as
well in this case for the same reason. We do not know how to calculate the spectrum of
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the matrices of single environment that are no longer ERM because of the presence of the
edges, consequently we do not have access to the spectrum of the MERM

Cjk
(
{r`i}
)
=
1

L

L∑
`=1

Γ
(
|r`j − r`k|

)
, (6.2)

see Eq. (4.46) and Chapter 5, and therefore to all the rest.

Figure 30 – Optimal stability κ as a function of the load α and the number p of positions obtained
with SVMs. Stars, results with PBCs; crosses, results without PBCs. Parameter values:
D = 2, φ0 = 0.3, N = 1000. Inset: αc(p) decreases proportionally to 1/p (straight
line) at low p, and much more slowly for large p. Stars indicate results from SVMs
(N = 5000), averaged over 50 samples, with PBCs. Crosses indicate the same in the
case without PBCs.

6.3 positive couplings constraint

Here we study the effect of the constraint on the sign of the couplings in the model pre-
sented in Chapter 4, in fact, as it is well known in neuroscience the connections between
pyramidal cells, place cells in our specific case, are only excitatory.

So in the following we generalize our model in order to take into account this constraint
and explicitly considering threshold terms {θi} in the RNN that effectively represents the
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inhibitory contribution coming from the network of interneurons that serve to keep the
network activity fixed.

Somehow, what we are trying to do here is a generalization of the maximal stability
perceptron approach with simple random patterns and sign-constrained synapses [24, 46,
47] to the case of patterns with strong spatial correlation.

In the case of random patterns it is known that the connectivity of a recurrent neural
network with the constraint of positivity on the weights is quite sparse [46], i.e., large
fraction of zero synaptic weights (“potential" synapses), and compatible with the physio-
logical distribution of synaptic connections observed in CA3 [104].

Moreover, always in the case of random patterns it is known that the capacity of a
recurrent neural network with the constraint on the sign of the weights is half of the
same quantity calculated for a not constrained RNN [15, 19, 50, 177, 245, 259]. What
happens in the case of spatially correlated patterns?

Before starting the analytical treatment we try to understand numerically what the
introduction of this constraint implies in our case. To do so we use a generalization of the
SVM algorithm with the restriction of having only positive weights, the details of which
are discussed in Appendix C.1.

6.3.1 Couplings obtained by SVMs with positive weights constraint

Hence, we report some qualitative features of the couplings obtained by SVMs with
the positive couplings constraint, see Section 4.4 for a comparison with the unconstrained
case.

— As shown in Fig. 31(a) and (c) the couplings Wij are, also in this case, correlated
with the distances d`ij = |r`i − r`j | between the PF centers of the neurons i and j in the
different maps `. Note that, also here, the dependence on distance is less marked as
the number L of maps increases, due to the interferences between the maps.

— In this case the couplings are always positive, so the role of the threshold θi < 0 is
fundamental to support bump states with an average activity φ0.

— Histograms of the couplings in Fig. 31 (b) and (d) show that the amplitudes decay
with N. Also in this case we get the average values and standard deviations to
scale, respectively, as 1/N and 1/

√
N. These results recall the ones already found in

[24, 46, 47] for the distribution of synaptic weights in the case of random patterns
and comparison with data in the cortex, suggesting also in this setting that synaptic
connectivity in a RNN that should memorize continuous attractors (like the CA3

network in the hippocampus) may be optimized to store their number in a robust
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fashion. Also here, in fact, it seems that a large fraction of weights is zero suggesting
a rather sparse connectivity compatible with what found in [104].

It is worth noting that the weights are of the same order in module both in the standard
case of SVM (histograms in Fig. 16 (b) and (d)) and the one where we introduce a con-
straint on the sign of the couplings (histograms in Fig. 31 (b) and (d)). So the contribution
coming from the thresholds must compensate that part of the connections that cannot be
negative in the second case. The bias terms however schematize the input coming from
a population of inhibitory neurons (the interneurons) whose function is only to keep
fixed the activity of the network, so it is reasonable to think that this contribution can
compensate the fact that now we consider only excitatory neurons keeping the system
biologically feasible, we are simply separating the role of the neurons of interest, that are
the place cells (only excitatory), from the population of interneurons schematized by the
thresholds.

6.3.2 Stability obtained by SVMs with positive weights constraint

In Fig. 32 we compare the optimal stability κpos defined as

κpos = max
{Wij>0,θi}

min
{i=1...N,`=1...L,µ=1...p}

{(
2σ
`,µ
i − 1

)[ ∑
j( 6=i)

Wij σ
`µ
j + θi

]}
(6.3)

with the positive weights constraint and where the rows of the connectivity matrix are
normalized as usual to unit, with the one in Eq. (4.3) of standard SVMs as a function of
the load α = L

N and of the number p of prescribed fixed positions per map (in the case of
SVMs with the weights sign constraint α has been multiplied by a factor of 2). It is clear
that the numerically calculated curves coincide. This means that the capacity obtained in
the constrained case turns out to be half of the unconstrained one.

This result is remarkable since the size of the space of possible couplings is strongly
reduced with this restriction and we lose only a finite fraction in term of capacity.

6.3.3 Adding the positive weights constraint in Gardner’s framework

After the numerical evidences just shown, here we are going to extend Gardner the-
ory for the capacity of the perceptron with sign-constrained synapses [15] to the case of
continuous attractors.

The substantial differences with the computation we have presented in Section 4.5 are
the fact to consider the integrals over the weights {Wij} from 0 to∞ instead of the whole
R and also the introduction of the threshold terms {θi}. Nevertheless we report below all
the details.
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(b)

(d)

(a)

(c)

Figure 31 – Couplings obtained after training with SVM with positive weights constraint for L = 1

(a) and (b) and L = 2 (c) and (d) maps. Dependence of the average coupling with the
distance between the corresponding neurons; the vertical line locates the radius rc of
the place fields. Averages were computed over 500 samples of the p positions per map
at fixed PF centers; N = 1000 neurons. Histograms of the couplings, for sizes N = 100

(blue) and N = 1000 (orange) Parameters: D = 2, φ0 = .3 and p× L = N.

As in Section 4.5, the training set consist of p× L binary patterns {σ
`µ
i } constructed by

drawing randomly p positions in each of the L environments, defined in Section 4.2, so
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Figure 32 – Optimal stability κ as a function of the load α and the number p of positions obtained
with SVMs. Dots, results with standard SVM of Sections 4.3 and A.1; squares, results
with positive weights constraint SVM, see Section C.25, in which α has been multiplied
by a factor of 2. Parameter values: D = 2, φ0 = 0.3, N = 1000, Samples = 50. Inset:
αc(p) decreases proportionally to 1/p (straight line) at low p, and much more slowly
for large p. Here N = 5000.

that the resulting patterns are spatially correlated. The stability of the i component of the
pattern that correspond to position µ in the environment ` is given by 1

∆
`µ
i = (2σ`µi − 1)

( ∑
j( 6=i)

Wij√
N
σ
`µ
j + θi

)
, (6.4)

where Wij > 0 and θi is the threshold term. The training set is said to be stored if all the
patterns have stabilities larger than some threshold κ > 0 2.

1. To notice that here we normalize the rows of the connectivity matrix to N instead of 1 but we have
scaled the weights of

√
N, therefore nothing changes regarding the computation presented in Section 4.5.

Moreover, as we have seen in Section A.1, the normalization of weights is irrelevant in our setting and we
can choose it arbitrarily.

2. From here until the end of the computation we will call κ what was previously called κpos to simplify
the notation.
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The volume in the space of couplings that corresponds to the admissible solutions of
the storage problem, is

Z =

∫∞
0

N∏
i 6=j

dWij
∏
i

δ

( ∑
j( 6=i)

W2
ij−N

)∏
i,`,µ

Θ
(
(2σ`µi − 1)

( ∑
j( 6=i)

Wij√
N
σ
`µ
j +θi

)
−κ
)

(6.5)

and is equal to the product of the N single-site volumes Zi, with i = 1 . . . ,N.

So we may focus for example on the volume associated with i = 1:

Z1 =

∫∞
0

N∏
j=2

dWj δ

(∑
j>2

W2
j −N

)∏
`,µ

Θ
(
(2σ`µ1 − 1)

(∑
j>2

Wj√
N
σ
`µ
j + θ

)
− κ
)
, (6.6)

where Wj ≡ W1j and θ ≡ θ1. Using the replica method [51, 157, 242], we compute the
average of logZ1 over the patterns. Introducing integral representations of the Heaviside
functions and exploiting the statistical independence of the different maps, we write the
average of the nth power of the volume,

〈Zn1 〉 =
∫∞
0

∏
j,a

dWja
∏
a

δ
(∑
j

W2
ja −N

)
χαN (6.7)

where a = 1, . . . , n is the replica index, and

χ =

∫ p∏
µ=1

dr̂µ
∫ N∏
j=1

drj
∫∞
κ

∏
µ,a

dtµa

∫∞
−∞
∏
µ,a

dt̂µa

2π
ei
∑
µ,a t̂µa(tµa−θ(2σ

µ
1−1))

×
∏
j

e
− i√

N

∑
µ,a t̂µa(2σ

µ
1−1)Wjaσ

µ
j , (6.8)

where r̂µ denotes the p prescribed locations in the environment, and rj the N PF of the
neurons in the map, as in Section 4.5.

We first carry out explicitly the integrals over the PF with indices j = 2, 3, . . . , N, leaving
the integrals over r1 and all r̂µ in χ. We then introduce, as in Section 4.5, the order
parameters

ma =
1√
N

∑
j>2

Wja (6.9)

and

qab =
1

N

∑
j>2

WjaWjb , (6.10)
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and rewrite 〈Zn1 〉 as∫∞
0

∏
j,a

dWj,a

∫∏
a

dûa

4πi
e
∑
a
ûa

2 (N−
∑
jW

2
ja)

∫∏
a

dm̂adma

2πi√
N

e
∑
a m̂

a(
√
Nma−

∑
jWja)

×
∫ ∏
a<b

dq̂abdqab

2πi
N

e
∑
a<b q̂

ab(Nqab−
∑
jWjaWjb) χαN

(6.11)

where we have used the integral representation of the Dirac-delta functions.

Still following what seen in Section 4.5, we consider Φ(r) to be the indicator function of
the PF centered in 0: Φ = 1 if |r| < rc, where rc is the radius of the PF (with

∫
drΦ(r) =

φ0), and 0 otherwise. Let Γ(r) =
∫
dr ′Φ(r ′)Φ(r − r ′) be the correlation function of Φ and

σ(r1 − r̂µ) = 2Φ(r1 − r̂µ) − 1. Given p points r̂µ, µ = 1, . . . , p drawn uniformly at random
in space, we define the p× p Euclidean random matrix with entries

Γµ,ν
(
R̂ ≡ {r̂µ}

)
= Γ
(
r̂µ − r̂ν

)
−φ20 . (6.12)

We can then rewrite χ as

χ =

∫∏
µ

dr̂µ
∫
dr1
∫∞
κ

∏
µ,a

dtµa√
2π

∫∞
−∞
∏
µ,a

dt̂µa√
2π
e−

1
2

∑
µ,ν,a,b q

abΓµ,ν(R̂)t̂µat̂νb

×e−i
∑
µ,a(m

aφ0+θ)t̂µaσ(r1−r̂µ)+i
∑
µ,a t̂µatµa . (6.13)

Due to translation invariance, the integral over r1 is irrelevant, and we can set r1 = 0.

We also define from (6.11):

Y ≡
∫∞
0

∏
j,a

dWj,ae
∑
a
ûa

2 (N−
∑
jW

2
ja)e

∑
a m̂

a(
√
Nma−

∑
jWja)e

∑
a<b q̂

ab(Nqab−
∑
jWjaWjb) .

(6.14)

It is possible now to make the RS Ansatz (expected to be valid also here since the
domain of suitable couplings is still convex) on the structure of the order parameters and
their conjugate variables.

We can therefore write within the limit of large N and small n:

1

nN
log Y =

û

2
+
qq̂

2
+ lim
n→0

1

n
log
∫∞
0

∏
a

dWae
− û
2

∑
aW

2
a+q̂

∑
a<bWaWb−m̂

∑
aWa (6.15)
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where we have changed q̂ in −q̂ for simplicity. After having inserted in the exponent of
the above expression (

∑
aWa)

2 and used a Gaussian integral trick, is it possible to solve
the integral, obtaining in the small n limit:

1

nN
log Y =

û

2
+
qq̂

2
+
1

2
log

π

2
−
1

2
log (q̂+ û)+

m̂2 + q̂

2(q̂+ û)
+

∫
Dz log erfc

m̂−
√
q̂z√

2
√
q̂+ û

, (6.16)

where Dz is the Gaussian measure and erfcy = 2√
π

∫∞
y dx e

−x2 .

We shall now concentrate on the saddle-point equations to determine m̂, û and q̂ as a
function of q. We shall assume that as q → 1, so when the space of solutions reduces
to the optimal coupling matrix, q̂

q̂+û diverges and m̂√
q̂
→ 0, and verify that the solution

satisfies this condition. In this limit it is possible to solve
∫
Dz log erfc m̂−

√
q̂z√

2
√
q̂+û

because

when z < 0 we can use the following asymptotic expansion erfcy ' e−y
2

√
πy

, and when z > 0
we get trivially a constant. In the end we can write:

1

nN
log Y =

û

2
+
qq̂

2
−
1

4
log (q̂+ û) +

m̂2 + q̂

4(q̂+ û)
−
1

4
log (q̂) + const . (6.17)

It is possible then to write the saddle-point equations relative respectively to m̂, û and
q̂ from the above equation:

m̂ = 0 , (6.18)

1

2
=
m̂2 + 2q̂+ û

4(q̂+ û)2
, (6.19)

q

2
=
1

4q̂
+

m̂2 + q̂

4(q̂+ û)2
. (6.20)

By solving this equations we finally find:

m̂ = 0 , (6.21)

q̂ =
−2+ 3q+

√
−4+ q(4+ q)

4(1− q)2
, (6.22)

û =
4+ q2 − q(6+

√
−4+ q(4+ q))

4(1− q)2
, (6.23)

so that our assumptions are indeed consistent. By injecting these results in (6.17) we find
that when q→ 1, we have:

1

nN
log Y ' 1

4(1− q)
. (6.24)
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As for the term χ this can be rewritten in the RS ansatz and using a Gaussian integral
trick as:

χ =

∫∏
µ

dr̂µ
∫∏
µ

dzµ√
2π

exp
(
− 1
2

∑
µ,ν zµΓ(R̂)

−1
µ,νzν

)√
det Γ(R̂)

{∫∞
κ

∏
µ

dtµ

∫∞
−∞
∏
µ

dt̂µ

2π

(6.25)

×e− 1
2 (1−q)

∑
µ,ν t̂µΓµ,ν(R̂)t̂νei

∑
µ t̂µ(zµ

√
q+tµ−(mφ0+θ)σ(r1−r̂µ)))

}n
.

After performing the Gaussian integral in {t̂µ}, taking the small n limit and the q → 1

limit we get:

logχ
n
' −

1

2(1− q)

∫∏
µ

dr̂µ
∫∏
µ

dzµ√
2π

e−
1
2

∑
µ,ν zµΓ(R̂)−1µ,νzν√
det Γ(R̂)

min
{tµ>κ}

×

(6.26)∑
µ,ν

[
tµ − (zµ + (mφ0 + θ)σ(r1 − r̂µ)

]
Γ(R̂)−1µ,ν

[
tν − (zν + (mφ0 + θ)σ(r1 − r̂ν)

]
.

Putting all together we obtain:

〈Zn1 〉− 1
nN

' 1

2(1− q)

{
1

2
−α

∫∏
µ

dr̂µ
∫∏
µ

dzµ√
2π

e−
1
2

∑
µ,ν zµΓ(R̂)−1µ,νzν√
det Γ(R̂)

min
{tµ>κ}

×

(6.27)∑
µ,ν

[
tµ − (zµ + (mφ0 + θ)σ(r1 − r̂µ)

]
Γ(R̂)−1µ,ν

[
tν − (zν + (mφ0 + θ)σ(r1 − r̂ν)

]}
.

After absorbing intom either φ0, either θwe finally obtain the expression for the critical
capacity αc(κ, p) = max

m
αc(m; κ, p), where αc(m; κ, p) is the load α cancelling the terms

inside the curly brackets in (6.27).

By comparing the last expression with the one found in Eq. (4.38) it is therefore clear
that in this case the capacity is then only half of the one in which we do not consider the
restriction on the sign of weights, see Section 4.5.

It is important to note that since the introduction of this constraint brings in the final
equations only the difference of a factor 2, the results found in the theory with quenched
place fields, see Section 4.6, remains valid also in this setting and therefore the scaling in
Eq. (4.75) it is still preserved, despite the introduction of this strict constraint of biological
nature. In other words this restriction limits the capacity of a finite factor not causing any
problem to the theory developed so far.
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6.4 variants of the place cell model

In order to see how much the scaling of αc(p) in Eq. (4.75) is robust against the choice
of the parametrization Φ(r) of the manifolds, we are going to show that reducing the
number of active neurons in each map, allowing for variations in the sizes of the PFs
from neuron to neuron and consider place cells with more than one spatial connected
components per map do not affect it.

The function Γ we have considered so far corresponds to the simple model defined in
Fig. 25. In a unit cube HD in D dimensions with periodic boundary conditions, a set of N
positions r`i (centres of D-dimensional spheres, place fields, of volume φ0 < 1) are drawn

uniformly and independently at random for each map `. The term Γ
(∣∣∣r`i − r`j

∣∣∣) entering
in the correlation matrix (5.2) is simply the overlap (common volume) between the two
place fields in the same environment, see Fig. 25. We consider below three variants of this
model of interest for a more realistic modeling of the CA3 recurrent place cells network.

6.4.1 Dilution

Let us first consider single-space ERM in which a fraction ρ0 of theN place cells (chosen
at random among 1, . . . ,N) carry vanishingly small place fields, and the remaining cells
have normally place fields of volume φ0 whose centers are randomly located on the map,
see Fig. 33(a). All the entries of the ERM M

(1)
ij = Γ(|ri − rj|)/N such that i or j belongs

to the first subset (with point-like PFs) are equal to zero. We are left with a block matrix
of dimension (1− ρ0)N× (1− ρ0)N, equal to the ERMs considered so far with the model
of Fig. 25, see Chapter 5. As a consequence, in the large N limit, the eigenvalues of this
block-ERM are equal to ρ0 Γ̂(k), while the remaining eigenvalues are equal to zero.

The resolvent of this diluted version of ERM in the high-density regime has the same
form as (5.9):

s1(z) = −
1

zN

(
ρ0N+

∞∑
`=1

∑
k6=0

(|k|6ρ0N)

Γ̂(k)`
1

z`
+ (1− ρ0)N

)
= −

1

z
−

1

Nz
γ

(
1

z

)
(6.28)

where

γ(u) =
∑
k 6=0

uρ0Γ̂(k)
1− uρ0Γ̂(k)

. (6.29)
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The computation of the functional inverse of the resolvent (blue function) of the dilute
MERM can be done as in the standard case, see Chapter 5, and we get:

z =
∑
k 6=0

αρ0Γ̂(k)
α+ s ρ0Γ̂(k)

−
1

s
. (6.30)

We can now solve equation (6.30) in order to get the density of eigenvalues. The agree-
ment with the spectrum obtained from numerical simulations is excellent, see Fig. 33(d).

Place cells with vanishingly small place fields serve to model the fact that not all place
cells take part in the coding of a given environment (a neuron that presents vanishingly
small PF can be seen as a silent cell because it is never active). The hippocampus has
about 30M neurons in humans and .3M neurons in rodents, so it is reasonable to think
that to effectively store an environment we do not need to use all the cells available, in
fact in the experiments it is clear that about 40% of the cells measured in the hippocampus
are actually place cells, i.e., they have at least one PF in the environment [231].

6.4.2 Place fields of different volumes

We now discuss the case of a multinomial distribution of place fields volumes. We
consider first that, in each space, a fraction ρ1 of the N PFs have volume φ1, while the
remaining fraction ρ2 = 1− ρ1 have volume φ2, see Fig. 33(b). For every space we build
a matrix composed of 4 blocks:

M(1) =
1

N

Γ11 Γ12

Γ21 Γ22

 , (6.31)

where the block Γab is a ρaN× ρbN ERM depending on the overlaps between PFs of
volumes φa and φb, and with a, b taking values 1 or 2.

We look for eigenvectors of M(1) of components vi(k) ∝ ei2πk·ri multiplied by αa for
the site i in the fraction ρa, with a = 1, 2. We obtain the following eigen-system:ρ1 Γ̂11(k) α1 + ρ2 Γ̂12(k) α2 = λ(k) α1

ρ1 Γ̂21(k) α1 + ρ2 Γ̂22(k) α2 = λ(k) α2
. (6.32)

In the system above Γ̂ab(k) = γ̂a(k)γ̂b(k) with a, b taking value 1 or 2 and

γ̂a(k) =
∫
HD

drγa(r) e−i2πk·r (6.33)
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with γa(r) being the indicator function of the place field of volume φa 3. We find αa ∝
γ̂a(k) and λ(k) = ρ1(γ̂1(k))2 + ρ2(γ̂2(k))2.

This result immediately extends to more than two PFs types. If we have K finite (as
N → ∞) types of PFs, with associated volumes φa and fractions ρa, with a = 1, . . . , K,
the eigenvalue of ERM attached to the momemtum k is given by

λ(k) =
K∑
a=1

ρa (γ̂(k))2 . (6.34)

It is straightforward to write the resulting self-consistent equation for the MERM resol-

vent by simply changing Γ̂(k)→
K∑
a=1

ρa (γ̂aa(k))2 in Eq. (5.21). In Fig. 33(e) we show the

perfect agreement of this theoretical result with numerical simulations.

Place cells with PFs of different volumes are particularly important in the study of
heterogeneous environments, i.e., environments in which there are areas of interest (food,
water, etc.) and areas of disinterest for the animal that stores it. Typically the areas of
interest have a higher density of PFs with a small size, while the areas of disinterest have
less PFs but with a larger size [41]. Obviously the size of PFs determines the accuracy
with which different parts of the environment are stored, as they determine the width of
the activity bump.

6.4.3 Multiple place fields per cell in each space

We extend the above setting to the case of multiple place fields per cell in each space.
More precisely, we assume that for each place cell i = 1, . . . ,N, there are c centers r`i,m of
PFs, with m = 1, . . . , c in each space `, see Fig. 33(c); we assume that c remains finite as
N, L are sent to infinity. The associated MERM is defined as follows

Cij =
1

L

L∑
`=1

c∑
m,m

′
=1

Γ
(∣∣∣r`i,m − r`

j,m
′

∣∣∣) . (6.35)

To better understand what happens in this setting we consider the limit case of a single
map:

M
(1)
ij =

1

N

c∑
m,m

′
=1

Γ
(∣∣∣ri,m − rj,m ′

∣∣∣) . (6.36)

3. γa(r) is the same as Φ(r) in Section 4.5 in the case where all the PFs of the different neurons have the
same volume in all the maps.
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In the high-density regime the eigenvectors of this ERM have components approximately
equal to vi(k) ∝

∑
m
ei2πk·ri,m , with eigenvalues given by c Γ̂(k) (for k 6= 0).

The only change to the functional inverse of the correspondent MERM resolvent is
Γ̂(k)→ c Γ̂(k), so that we obtain:

z =
∑
k 6=0

αc Γ̂(k)
α+ s c Γ̂(k)

−
1

s
. (6.37)

We have solved equation (6.37) in order to get the density of eigenvalues; results are in
excellent agreement with numerics, see Fig. 33(f).

Place cells that have multiple PFs serve to model large environments in which this
phenomenon is observed [76, 193, 203]. Since the locations in an environment are stored
by the entire population of place cells encoding it, having multiple PFs is not harmful
as long as there are no problems in decoding the different positions and it may be more
convenient to avoid unnecessary cells that are silent in a given map having to take part in
encoding it. One is used to think that a place cell can only have one PF in an environment
because typically the experiments were done in small rooms where it was not possible to
observe this quite common feature. Moreover, the fact that place cells can have more than
one PFs in a given environment is not related to grid cells because PFs have centers placed
randomly and not on a triangular grid covering the whole environment, see Section 3.8.

6.4.4 Putting everything together

As already discussed, in the CA3 region of the hippocampus, neurons may have place
fields in some environment and none in other maps, which corresponds to the dilute
model presented above. In addition, we have introduced other variants, in which the
radius of place fields varies or a place field is made of more than one connected spatial
component, as seen in large environments [203]. While the variants of the model consid-
ered here lead to different densities of eigenvalues z, the behaviours of these densities for
z → 0 and α → 0 seem qualitatively robust, which suggests that the storage capacity of
recurrent neural networks is a robust property of the space-to-neural activity encoding.

In fact, the quenched place field theory in these cases extends in a trivial way 4 with
respect to the computation presented in Section 4.6, indeed the only irrelevant differences
in these situations are the average activity of the network that is different and the spec-
trum of the associated MERMs which do not change its behaviour for small eigenvalues

4. The new kind of disorders introduced here always enter the correlation matrix that defines the order
parameters of the single environments, which also remains in the ERM class. Therefore the picture presented
in Fig. 22 remains unchanged in the large p limit where self-averaging properties still apply.
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Figure 33 – Top panels: sketches of the model variants, respectively (a) dilution, (b) place fields
of different sizes and (c) multiple place fields per cell in a given map. Bottom panels:
(d) Density of eigenvalues for the MERM for φ0 = .2 with different dilution fractions
ρ0. (e) Density of eigenvalues of MERM with different fractions ρφ0=.2 of PF with
volume φ0 = .2 and ρφ0=.4 of PF with volume φ0 = .4 in each space. (f) Density
of eigenvalues of MERM for φ0 = .2 with c = 2 PF for each index i in each map.
Parameters: N = 2500,D = 1, α = 1. In all cases we do not show the extensive
eigenvalue.

so that the scaling in Eq. (4.75) remains valid even in these contexts of greater biological
relevance.

6.5 individuality of neurons

Until now we have always considered that the different place cells in our recurrent neu-
ral network all behave the same way, in the sense that they all have the same propensity
to have place fields in different maps. As the experiments in [142, 203] show, however, it
doesn’t seem to be properly so, in fact each place cells looks to have its own propensity
to have a place field per square meter and in particular this propensity seems to be main-
tained in different environments. In the following we try to extend our model taking this
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aspect into consideration together with the variants of the place cells model presented in
the previous Section 6.4

In particular, here we want to study the consequences of non-independence between
the elementary ERMs composing the MERM on the density of eigenvalues taking into
account a biologically plausible statistics for PF propensities that will automatically imply
in an elegant way the constraint on the sparsity in the activity of the neurons observed in
CA3 [9].

Moreover, since in this case the elements in the same position of the ERMs correspond-
ing to different environments are correlated, we can no longer use the free probability
theory approach to derive the spectral properties of the associated MERM (we no longer
have the property of asymptotic freeness), but fortunately the calculation can be per-
formed in this case using the replica method, see Sections C.2.1 and C.2.3.

Technically, in the following we generalize the computations presented in Section 4.6
and 5.3 to consider these more biologically relevant settings and also this time try to
understand if the scaling found in (4.75) remains preserved even in case of taking into
account the individuality of the place cells.

Let’s consider therefore a simple schematization of what said above, that is to consider
a network of N neurons that are divided in M = O(1) groups with βρN neurons each
and

∑M
ρ=1 βρ = 1. Neurons belonging to the same group have cρ PFs per map of area

φρ,m with m = 1, . . . , cρ. In this way we explicitly consider that there are neurons that
have many place fields (of various areas) in the different maps and others that have few
or none.

The MERM that we have to take in consideration in this setting is the following:

Cij =
1

L

L∑
`=1

ci∑
m=1

cj∑
m ′=1

Γ(i,m),(j,m ′)

(∣∣r`i,m − r`j,m ′
∣∣) , (6.38)

where Γ(i,m),(j,m ′)

(∣∣∣r`i,m − r`j,m ′
∣∣∣) represents the overlap in the map ` of the spatial com-

ponents m and m
′

associated with place cells i and j with areas that depend on the group
of neurons to which they belong.

Before proceeding to the generalization of the quenched place field theory it is neces-
sary to calculate the resolvent of (6.38), the details of the computation can be found in
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Appendices C.2.1 and C.2.3 and putting together these results we obtain the following
system of equations that allows us to find this resolvent:g(U) =

∑M
ρ=1 qρ ,

U = −
βρ
qρ

+
∑

k 6=0
α
∑cρ
m=1 Γ̂(k)ρ,m

α+
∑M
ν=1 qν

∑cθ
m ′=1 Γ̂(k)θ,m ′

, ∀ρ ,
(6.39)

where we defined an overlap qρ for each group of neurons, ρ = 1, . . . ,M.

Now using this result and following closely Appendices C.2.2 and C.2.4 we can gen-
eralize to this case the theory presented in Section 4.6 and obtain finally the asymptotic
scaling of the critical capacity in the large p limit:

αc(p) ∼
A(D)

(logp)D
( M∑
ρ=1

βρ∑cρ
m=1φ

1− 1
D

ρ,m

)D
(p→∞) . (6.40)

It is interesting to note that in case D = 1 the critical capacity does not seem to depend
on the size of the PFs and also that we find in the limit cases trivially the results of 4.6,
C.2.2 and C.2.4.

6.6 non uniform distribution of positions

Another trivial but at the same time important generalization of our theory is to con-
sider the case of variable spatial error from map to map. In fact, as already discussed in
Section 4.1, it is legitimate to think of storing in a RNN different environments with differ-
ent levels of accuracy depending on the needs and importance (some maps or some areas
in a map may be more important to remember for an animal as they may correspond to
points of interest such as home, food or a reward in general).

This can be done simply by substituting p with its average value over the maps in Eq.
(4.75) fo the model presented in Chapter 4 and suggests that the fraction of maps with
finest spatial resolution ε should not exceed ∼ εD when ε → 0, in order not to affect too
much the critical capacity, thus keeping unchanged the results found so far.

Moreover, while we have assumed in Chapter 4, for the sake of simplicity, that the
distribution of positions was statistically uniform across space, there is no need for this to
be so in practice. Experiments have shown that spatial representations of environments
are enriched in PFs close to spots of interests (such as water pots [111] or objects [41]) with
respect to void regions. We report in the following numerical simulations showing that
increasing the density of prescribed positions in regions of the physical space allows us
to carve specific attractors in the neural activity space, representing preferentially those
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regions. This result is compatible with recent studies establishing the link between PFs
distribution and behavioral place preference [147].

More precisely, up to now we have considered for simplicity that the p positions were
drawn uniformly at random to produce statistically homogeneous maps, i.e., without pre-
ferred positions. It is straightforward to extend this setting to the case of heterogeneous
densities of prescribed positions.

Figure 34 shows the spatial distribution of stabilities for homogeneously scattered
points (a) and an heterogeneous repartition of points, densely packed in a subregion
(diagonal) (b). In the latter case, the strong heterogeneity in the local distribution of
stabilities will favor the location of the bump along the zones with a major density of
positions. As a consequence, a 1D-attractor is effectively built in the D = 2-dimensional
space.

(a) (b)Δ Δ

Figure 34 – Distribution of local stabilities after the learning of a map with SVMs. (a) Homoge-
neous case: the p positions of the data-set are drawn randomly. (b) Heterogeneous
case: here the data-set has 150 positions on the diagonal of the maps and the other
150 positions are drawn at random. Here, D = 2, φ0 = .3, N = 1000, p = 300 and
L = 1. We show the contour map made from 2500 realization of random positions, for
which we evaluate the stabilities of the corresponding patterns. The overall network
stabilities (minimal pattern stabilities) in the homogeneous and heterogeneous cases
are, respectively, κ ' .44 and κ ' .53 for the samples considered here.

In order to better understand this mechanism we show an example of Monte Carlo
simulation SmallKappaL1Hetero.mkv 5 that corresponds to the heterogeneous distribution

5. The mentioned example can be viewed at: https://journals.aps.org/prl/supplemental/10.1103/

PhysRevLett.124.048302. As in the videos presented in Section 4.4, also here the red crosses represent the

https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.124.048302
https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.124.048302
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of positions shown in Fig. 34(b) and that was obtained with the same parameters as in
SmallKappaL1.mp4, see Section 4.4, but with 150 out of the p = 300 positions drawn on
the diagonal of the map; the stability of the network was κ = .5.

Actually in this case it is expected that the dynamics of the network is favored to move
along the diagonal of the map, i.e., the favorite patterns are those that correspond to have
active place cells associated with PFs near the diagonal of the map, or in other words
PFs such that if we calculate their center of mass (center of the bump) that corresponds
to the position decoded at a given time, this is near the diagonal. This happens because
the positions to be stored in the map are concentrated on the diagonal (heterogeneous
distribution of positions) and after the learning process they have typically high stability
values compared to the a priori not stored positions, see Fig. 34(b). Since the dynamics
of the network is favored towards patterns that have a high stability value, the bump is
confined to move mostly on the diagonal, in this sense we say that we have learned a 1D
attractor from a 2D map. Moreover, considering that patterns coding for positions near
the diagonal are favoured in dynamics, the activity of place cells whose PFs are near the
diagonal is higher 6.

Although the results of numerical simulations seem reasonable, also here, as in Section
6.2 for the periodic boundary conditions, an analytical treatment in which we consider
that the positions inside the maps are not homogeneously distributed becomes much
more complicated for the same reason, i.e., lack of invariance under translations that
technically makes hard the calculation of the ERM spectrum of single environment [191].

6.7 comparison between svm and theoretical couplings

Interestingly, the quenched PF theory developed in Section 4.6 can be applied to any
particular set of PFs, not necessarily homogeneously distributed over space; knowledge
of the PF characteristics, i.e., from experimental measurements, allows us to determine
the multispace correlation matrix C defined in Eq. (4.46) and to make specific predictions.
We show here a proof of principle of this approach where we compare the couplings
found with SVMs and the ones given by our quenched PF theory on synthetic data, see
Section 4.2.

Figure 35 shows how the couplings {Wij} depend on the size of the network, N, and of
the distances between the PF centers of neurons i, j in the maps. We generally find that
the couplings Wij obtained by SVMs and the “thermal” averages [Wij] predicted by the

stored positions of the different environments in the connectivity matrix of the neural network and the blue
circles represent the centres of the PFs whose corresponding neurons are active at a fixed time (the PFs whose
neurons are silent at a certain time are not shown).

6. Maybe from the video it doesn’t seem so because PFs cover 30% of the area of the environment so even
place cells with PFs quite far from the diagonal can be active.
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quenched PF theory, see Section 4.6, for a fixed set of PF centers are in excellent agreement,
see equations (23) and (24) in [165] for details on the calculation of the average couplings
and associated standard deviations.

— Both sets of couplings have mean values scaling as 1
N and standard deviations scal-

ing as 1√
N

.

— The sign of couplings depend on the distance between their PF centers in the maps.

We get excitatory couplings for distances up to the radius of the PFs (rc =
√
φ0
π in

D = 2), and inhibitory interactions for larger distances.

Furthermore, a direct application of our quenched PF theory could be to investigate
in detail the phenomenon of global random remapping. During all this work we have
always assumed random remapping between cognitive maps associated to different en-
vironments, i.e., orthogonal maps in which a given place cell presents place fields in
different environments in totally random positions without any correlation with other
maps. It is difficult to think that this is completely true especially in the case of two
maps associated to very similar environments, see for example [204]. It might therefore
be interesting to compare the theoretical MERM spectrum assuming random remapping
with a numerical spectrum built from real data for example from the Alme et al. [9]
experiment and see if there are really differences in the spectrum compared to the as-
sumption of totally random place fields. A technical problem in this sense would be
that the numbers presented for example in the above mentioned experiment are very far
from the thermodynamic limit with which the theory was developed, in fact, only about
N = 30 place cells are measured simultaneously in the different rats that have memo-
rized only L = 11 environments, so it will be crucial to understand the finite size effects
while waiting for better data. In fact, thanks to new generation electrodes (neuropixels)
or calcium imaging techniques it is now possible to simultaneously record the activity of
thousands of neurons for long periods of time and therefore it is in principle possible to
estimate the correlation matrix from PFs measured in different environments and reach
L and N values in accordance with the thermodynamic limit with which the theory was
developed.

6.8 dynamics of learning

Another extremely interesting topic in which here we limit ourselves to providing a
first step, is the study of the learning dynamics of the network model presented in Chap-
ter 4. More precisely the dynamics of the weights of a recurrent neural network such that
starting from discrete attractors, i.e., maps in which few positions have been stored, pro-
gressively we get to store continuous attractors, i.e., increasing the number of memorized
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(a) (b)

(c) (d)

Figure 35 – Comparison of couplings obtained with SVM (a) and (c) and with the Quenched PF
Theory (b) and (d). Top: Dependence of couplings on N. Bottom: Dependence of the
couplings on distance; The vertical line locates the radius rc of the PF. These results
were obtained for D = 2, φ0 = .3, α = .1, p = 5; we have averaged over 100 differ-
ent realizations of the p positions at fixed PF centers for the SVM results. Space was
divided in 50 bins with values ranging from 0 to

√
2/2 (the maximal distance achiev-

able in unit square with periodic boundary conditions). Couplings were then put in
the corresponding bins for all maps, and the averages and standard deviations were
plotted as functions of the bin centers. Average couplings and associated standard
deviations with quenched PF theory were computed with (23) and (24) of [165], with
the substitution αc → pαc as the number of patterns is here p× L.
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positions per map thus decreasing sufficiently the spatial error with which the maps are
encoded.

In particular here we show that the number of presentations of the patterns needed to
stabilize a map is approximately proportional to p.

In fact, the SVM algorithm exposed in Sections 4.3 and A.1 is offline: all the patterns
are available to the learning procedure at all times, which is not biologically realistic.
As a preliminary attempt to understand how maps are learned, we have implemented
an online learning scheme, which is an adaptive version of the perceptron algorithm
(adatron) [21], see Appendix C.3 for details. In this procedure, patterns are presented one
after the other. We may choose the order of presentation, as well as the learning rate η. In
order to study the time needed for the algorithm to store a map, we have run the online
learning scheme in the simplest case of a single environment (L = 1). We have monitored
the stability of the network during this learning phase as a function of the number of
training rounds, a round corresponding here to the presentation of all the patterns in the
data-set. In Fig. 36, we show that the number of rounds needed to stabilize a map is
roughly proportional to p/η (for a fixed ratio p/N).

It would be interesting to relate this finding to biological results. Let us remark that the
presentation of repeated rounds considered here could be realistic for an animal exploring
the same environment several times, in particular a 1D corridor in which the sequence of
visual inputs remains roughly unchanged from one exploration to another. Experiments
show that changes in the environment (insertion of one object) lead to the production of
a new representation, which is stabilized over 4-5 explorations, see [41].

Moreover, it would be extremely important to study plausible learning rules that could
ultimately elucidate how the network progressively maturates to account for more and
more fixed points and eventually defines a quasicontinuous attractor, as seems to be the
case during the first weeks of development in rodents [74]. In fact, the authors showed
that when a newborn rat need to learn a new environment, initially it seems that its repre-
sentation of the map is more similar to a discrete attractor (a map where few positions are
stored), but as the days pass it looks like that the attractors become progressively more
continuous (this is due to the fact of starting to store more positions in the same map so
as to reduce the spatial error with which the map is stored).

Finally, another important study with practical application would be the analysis of the
diffusion coefficient of the bump of activity (which can be measured experimentally, see
[225]) to tie it with the number of positions stored in a map and also understand the time
it takes to store these positions online. From measurements of the activity bump during
sleep of a rodent that has previously explored an environment we may be able to link
these quantities and have access to a deeper mechanism of learning the maps themselves.
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Figure 36 – Number of rounds required for adatron to reach the same stability value obtained
with the standard SVM algorithm vs. the ratio p

η at fixed p
N . The values of N range

between 1000, 1500 and 2000, while the ones of η between .5, 1 and 1.5. The other
parameters are set to L = 1, D = 1, φ0 = .3, Samples = 100.

6.9 learning continuous attractors in rnn from real images

In this Section we present an application of the model presented in Chapter 4 in a
different context than seen so far, that is how to memorize continuous attractors in a
recurrent neural network starting from real images, inspired by the work of Zou et al.
[267]. In particular the authors of [267] have proposed a biologically plausible scheme of
a neural system that stores continuous attractors based on two fundamental steps.

— The first is how to generate high-level representations of objects such that the cor-
relations between the neural representations reflect the semantic representations
between them, using for this purpose a deep neural network trained on a large
number of real images [218].
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— The second is how to learn correlated patterns in an RNN, using an orthogonal
Hebb rule [224], where as usual the representations between the neural patterns are
encoded in the weights of the network.

In the end they were able to show with this procedure that if the images presented to
the network are linked by a continuous feature a continuous attractor is efficiently stored
in a RNN.

In the following we present preliminary results in which instead of the orthogonal Hebb
rule we use SVM learning, see Sections 4.3 and A.1, to memorize correlated patterns.

Moreover, besides showing results for a single continuous attractor stored in a RNN, as
in [267], we will try also to understand if it is possible to store more than one in the same
connectivity matrix (in this case two).

Let’s start by discussing what we have done in detail. So far we have always learned
continuous attractors starting from ad-hoc patterns, in the sense that by construction, see
Section 4.2, near positions in an environment had similar neural configurations (with
a large overlap), while positions corresponding to different environments have neural
configurations with almost no overlap (this is due to the random remapping between the
different maps).

If we consider now the case of real images this situation is not so immediate, consider
for example the data shown in Fig. 37 where there are photos of objects (a guitar and
a sax) on a black background and rotated by different angles, in particular we have an
image per angle, then p = 360 data per object 7.

As already noted by Zou et al. [267] however, representations of images of the same
category in different positions, maybe rotated by a certain angle, can be more different
(low overlap between the pixel vectors associated with the corresponding images) than
representations of images belonging to different categories. This is due to the fact that
the initial representations do not have a semantic meaning but only a spatial one, so for
example two guitars rotated by 90 degrees can have almost no overlap. It is therefore
important to extract from the data high-level representations so that data belonging to
the same category always have very correlated representations while data belonging to
different categories always have quite orthogonal representations, as it should be.

Following closely [267], in order to extract these representations with a semantic mean-
ing we use the convolutional deep neural network VGG16 [218] that has been trained
on a very large number of real images mimicking somehow the dorsal visual pathway

7. Actually the images that we will use in the following have a lower resolution that is 224× 224× 3
pixels, the factor 3 represents the RGB color scale, and where the values of the different pixels are normalized
between 0 and 1 so that to fit the input of the deep neural network that we are going to use [218].
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(b)

(a)

Figure 37 – Examples of the images that we are going to use for the learning phase. (a) Images of
a guitar rotated by different angles on a black background, in particular we will have
a figure for each angle from 1 to 360 degrees. (b) The same of (a) but for images of a
sax.

[261]. In particular the representations of the images obtained on the deepest layer before
the classifier contain exactly what we are looking for. In the case of the specific network
VGG16 these high-level representations have size N = 4096.

So now we present the images of the data-set in Fig. 37 to VGG16 extracting all the
high-level representations. Using our standard notation we have therefore patterns of
size N = 4096 corresponding to two maps L = 2, one for the guitar and one for the sax,
where we have a certain level of spatial resolution given by the number of data per map,
p = 360, one image per angle, and we would like to store these data in a recurrent neural
network with the procedure used so far with SVMs, see Sections 4.3 and A.1 8.

8. A technical problem is that the representations extracted from VGG16 have real non negative compo-
nents while in our procedure we need binary patterns, so we had to binarize the data by hand hoping not to
lose too much information with this operation.
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Once built the data-set we can perform the learning with SVMs and then try to study
the dynamics of the associated recurrent neural network with the finite temperature
scheme defined in Section 4.4.

First of all we show in Fig. 38 the results of the network dynamics after learning a
single map, the one associated with the guitar, in which we display the findings in the
bi-dimensional space corresponding to the first two principal components extracted from
the training data with PCA [257].

It is interesting to note that although we projected the data in a two-dimensional space
these seem to be arranged on a circle, so a one-dimensional manifold, this makes sense
since the different guitars differ from each other only by one variable (an angle).

We start the dynamics from an initial configuration corresponding to one of the initial
images and set a temperature of the order of the network stability. If we look at the
evolution of the network state in the space where we projected the training data, it appears
that this remains confined to the manifold defined by the data themselves, as it should
be, see Fig. 38. Moreover, it seems as well that close points in the manifold correspond to
guitars rotated more or less of the same angle.

Even more interesting is the case of storing two manifolds in an RNN at the same time,
considering the data-set with both guitar and sax images. Also here we show after the
learning phase with SVMs the results of Monte Carlo simulations at finite temperature.
The first important thing to note in the examples that will follow is that after projecting the
data of the two objects on the first two principal components obtained from PCA carried
out on all the data together, the data corresponding to different classes are clustered and
this shows that therefore the high-level representations obtained from VGG16 are able to
distinguish the different categories going to capture the semantic meaning of the different
objects.

In addition, in the videos Tsmall.mp4 and Thigh.mp4 9 we show two examples of the
dynamics initialized from the same image but starting from different temperatures. In the

9. The video of the simulation at lower temperature can be seen at: https://www.dropbox.com/s/

e14acuw075k3ggi/T_small.mp4, while the one corresponding to higher temperature can be seen at: https:

//www.dropbox.com/s/7kds8vs4g1lhx7d/T_high.mp4. In the above videos we present in the left panel the
data projections in the two-dimensional space of the first two principal components extracted from the entire
data-set. The blue dots correspond to the images of the guitars while the orange dots correspond to the
images of the sax, the red star instead corresponds to the state of the network projected on the same space
that evolves over time, a frame of the videos corresponds to a Monte Carlo sweep. While the central and
right panels show the normalized overlap of the network state at a certain time with respect to the images of
the data-set as a function of the angle of rotation of the guitar and the sax respectively. The red star present
at every time in one between the central and right panels corresponds to the data-set image with greater
overlap with respect to the current network state, identifying the location of the bump in one of the two
maps.

https://www.dropbox.com/s/e14acuw075k3ggi/T_small.mp4
https://www.dropbox.com/s/e14acuw075k3ggi/T_small.mp4
https://www.dropbox.com/s/7kds8vs4g1lhx7d/T_high.mp4
https://www.dropbox.com/s/7kds8vs4g1lhx7d/T_high.mp4
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t

Figure 38 – Study of the dynamics of a RNN after learning through SVMs the high-level data
representations extracted from VGG16 and associated with the different images of
guitars rotated by different angles. The blue dots represent the data on which the
learning was done projected on the first two principal components extracted from the
data with PCA. The photos associated with the red stars correspond to 2 images of
the data-set, in particular it seems that close points in this space correspond to guitars
rotated almost of the same angle. In addition, the crosses represent the dynamics of
the network starting from one of the images of the data-set and in which we have a
temperature of the order of the stability of the network. The colors of the crosses go
from dark purple to yellow with the passing of time of the dynamics, in particular we
have a cross every Monte Carlo sweep, see Section 4.4.

case of the simulation at lower temperature the dynamics remains confined to diffuse on
the starting manifold, while in the example with a little higher temperature in addition
to seeing diffusion on the individual manifolds we see as well transitions between them
as we already saw in Section 4.4.

So in the end it seems, at least from this preliminary analysis, that our method is able to
store continuous attractors in RNN even in more generic situations instead of the artificial
data studied in the rest of the thesis. Moreover, we believe that this method allows also
here to overcome the issues presented in Section 3.7, provided that we have extracted
good representations of the data to store.





7
C O N C L U S I O N S

In this Chapter we sum up the work that has been done in this manuscript by sum-
marizing the main results obtained and by giving a cue for future lines of research.

Let us begin by summarizing the results of this thesis.

Certainly the main finding of this work has been to show how to achieve optimal
storage of multiple continuous attractors in recurrent neural networks together with the
study of the optimal trade-off between capacity and spatial resolution, that is, how the
requirement of higher spatial resolution affects the maximal number of attractors that can
be stored, thus overcoming the theoretical problems left unsolved in the last twenty years,
see Section 3.7.

Using a combination of state-of-the-art statistical physics and random matrix theory
tools, we showed that the capacity decreases very slowly with the spatial error, more
precisely as the inverse Dth power of the logarithm of the spatial error, where D is the
dimension of the manifolds, see Section 4.6.

This non trivial scaling proves that recurrent neural networks are very efficient memory
devices capable of storing many continuous attractors at high resolution.

Moreover, also if the motivations of this work come from the field of computational
neuroscience, in particular how to model the CA3 recurrent network in the hippocampus,
this setting gave us the opportunity to generalize Gardner’s theory, a milestone in statis-
tical physics of disordered systems, to the case of patterns with strong spatial correlation.
The study of data with structure is nowadays a very hot topic instead of considering in
theoretical approaches simple random patterns, not only in the field of neuroscience but
also the one of machine learning [94].

In addition, in this work we have introduced a novel statistical ensemble for Euclidean
random matrices (ERM), see Chapter 5, where the element i, j of the matrix depend on
the distances between representative points of i and j in more than one space. Using
a combination of heuristic assumptions, analytical and numerical calculation, we have
shown that the high-density limit is non trivial when the number L of spaces and the
size N of the matrix are sent to infinity, with a fixed ratio α = L/N. We have analytically
studied the density of eigenvalues of this Multiple-space–ERM (MERM) ensemble, based
on free-probability identities and on the replica method.

119
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Even though we have introduced MERM in a specific setting we hope that this ensemble
of random matrices will find applications and be of interest in other fields, i.e., in applied
mathematics or in information theory. In particular, our results could be used for func-
tions Γ with a dependence on the pairwise distances different from the ones considered
in this work.

Finally, as we began to discuss in Chapter 6, there are several lines of research to pursue
in the near future based on these results.

— An important aspect that we have not considered in this work is the extension to
recurrent neural networks with continuous neurons, for example threshold linear
[212, 234], instead of simple binary units. A generalization in this sense would not
only be useful in view of more biologically plausible models, that would also allow
to investigate another type of remapping seen in other regions of the hippocampus
as CA1, namely rate remapping [84], but also for example in the application we
have shown in Section 6.9 about learning continuous attractors from real images
where high-level representations extracted from deep neural networks have usually
positive continuous components.

— Moreover, from a theoretical point of view, it would be very interesting to try to
understand how to solve the problem of breaking the invariance under translation
in the calculation of ERM spectrum in the high-density limit, with consequent appli-
cations in our model to the study analytically of maps without periodic boundary
conditions (Section 6.2), heterogeneous distributions of positions (Section 6.6) and
non-uniform distributions of the PFs in the different maps.

— Taking into account the fact that the different maps are not independent but can
have correlations both in terms of PFs centers and positions is certainly an important
problem to study, see [204]. Numerically it is easy to implement, just generate
maps that are properly correlated with each other, for example assuming that only
a fraction of PFs remap or that the different maps are generated from a common
one in which the PFs centers are slightly shifted with a displacement extracted
from a Gaussian distribution centered in zero and with a variance smaller than the
diameter of the PFs. It is also possible to generate positions in different maps on
similar trajectories, but this adds correlation between the patterns in different maps
only if they have correlated PFs. In general it makes sense to assume maps with
correlated PFs in order to store similar environments (with similar external inputs
such as visual, auditory, etc.) and also to assume similar trajectories in similar maps
as there may be common points of interest where an animal is interested to go
(such as food or water). Analytically we are now working on this problem for a
better understanding of the phenomenon of random remapping that is not clear is
completely random especially in the case of very similar environments, see Section
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6.7. Our theory is developed at quenched PFs and this allows us in principle to
consider more complicated cases of random PFs provided that we can analytically
calculate the spectral properties of the associated MERM (which is not trivial when
taking into account correlations). Nevertheless, introducing correlations in general
means to have patterns even more similar to each other compared to the case studied
in the thesis and this can only increase the capacity of the network (with patterns
that contain less information content due to these redundant representations).

— Furthermore, always making reference to how much seen in Section 6.7, it could
be interesting to qualitatively compare the theoretical weights with the synapses
measured experimentally in CA3 [104], in particular to try to understand if the
real connectivity matrix is more compatible with the fact to have the connections
proportional to the correlation matrix between the patterns (Hebb rule) or, as the
quenched PF theory predicts, see in particular the Eqs. (23) and (24) in [165], as the
inverse of the correlation matrix (optimal connectivity).

— A crucial aspect that we have started to discuss in Section 6.8 is the development
of a biologically plausible learning rule for the study of the learning dynamics of a
RNN, that could be compared with experimental data of newborn animals that pro-
gressively mature continuous attractors starting from discrete ones [74]. In Section
6.8 we started to study an online algorithm but still far from being compared with
experimental data. This kind of study could be useful in order to answer questions
such as how much time is needed to mature a continuous attractor, what is a reason-
able value to choose for the learning rate, what is a reasonable initial configuration
of the weights to choose, how should the environment be explored from an animal
to memorize it more efficiently, how much does previous knowledge of other envi-
ronments help to memorize a new one and so on. Moreover, in this context we can
try to answer a question about the fact that when an animal is facing the learning
of a new environment that can be similar to an old environment, it should decide
whether to learn the new environment as a new map, or learn it as a reinforcement
of an old map. A key ingredient in this direction can be found in [7] where the
authors show how an attention modulator (coming from the dentate gyrus which is
an area external to the hippocampus) allows to discriminate between similar maps
depending on whether or not it is behaviorally important for the animal.

— It would also be extremely interesting to study models in which the propensities
of place cells are stochastic and not deterministic as in Section 6.5, in particular
referring to the salt and pepper distribution introduced in [142] by Lee et al..
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— More generally, our quenched PF theory (Section 4.6) relies essentially on the activity-
activity correlation matrix:

Cij =
1

L

L∑
`=1

〈Φi(r)Φj(r)〉(`)r , (7.1)

where the average 〈·〉(`)r is taken over the random positions r of points in the mani-
fold corresponding to map `. What matters in the parametrization of the manifolds
and determines the asymtotics of the capacity is the behaviour of the density of
eigenvalues of C, ρ(λ), for eigenvalues λ → 0. It would be very interesting to clas-
sify the possible behaviours of ρ and obtain the corresponding scalings of αc(p) for
example, considering more complicated geometries for the environments than sim-
ple cubes, considering in the maps additional dimensions beyond spatial ones, such
as variables corresponding to olfactory or auditory stimuli, or considering more gen-
eral contexts for continuous attractors and not restrict ourselves to cognitive maps
as in [58].

— We could also extend the model to study the grid cells, see Section 3.8. To do this
we should assume that each neuron has fields that are arranged on a triangular grid
instead of having one or a few fields per environment, so a position can activate a
specific neuron whenever it is inside one of the fields associated with the grid cell.
Following [223] we could also study the critical capacity of a model of this type in
which the weights are not chosen in Hebbian way and try to understand the optimal
trade-off between capacity and spatial resolution. While in the case of place cells
this analysis is more motivated because it is known that animals store many maps
associated with different environments and contexts, in the case of grid cells this is
not so obvious as it seems at the moment that they define a single map (a single
continuous attractor) and then it may not be necessary to study RNN that stores
an extensive number of continuous attractors based on grid cells, but certainly an
interesting theoretical problem to study.

— A very important aspect that we have not discussed in this thesis is the effect of the
θ rhythm in the hippocampus which is considered essential for memory formation
and navigation [149, 205, 251]. In biologically plausible models of RNN this rhythm
is usually modeled with the introduction of an oscillating external field that acts
on the dynamics of the neurons, it would be interesting to see how the dynamical
properties of our model depend on the introduction of external fields like the latter.

— Finally it would be crucial as well to study in our model both the effect of a possible
noise during the learning phase [258], as we have developed both simulations and
theory at zero temperature and from a biological point of view it is a great simplifi-
cation, and to consider at the same time network dynamics with learning dynamics
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(i.e, to consider dynamical synapses) [80, 249], since we have always studied the
dynamical properties of RNNs after the learning of the connectivity matrix (which
remains quenched during the network dynamics).

From this long to-do list it is clear that there is still a lot of research work to be done,
particularly from the point of view of the biological plausibility of our model. Neverthe-
less, our results allow to give possible theoretical explanations to the fact that animals in
real life (and not in the laboratory) are very able to navigate many environments with
great accuracy, since they can in principle store in the CA3 network of their hippocampus
a large number of cognitive maps with a good level of spatial resolution. This statement,
although clear from an experimental point of view, was difficult to show in terms of
standard theories on multiple continuous attractor neural networks, so we hope that our
results have clarified this fundamental point.

To conclude, it is important to note that throughout the work we have focused on study-
ing a model of the CA3 network without considering its interaction with other relevant
areas of the brain. For example, as discussed in Sections 3.3 and 3.8, in the brain it is
present the path integrator (PI), capable of integrating proprioceptive, vestibular and vi-
sual flow inputs and possibly supported by the grid-cell network in the medial-enthorinal
cortex (mEC), that allows the animal to update the neural representation during naviga-
tion. It lacks therefore a generalization of our model in order to understand how contex-
tual and PI inputs are combined by the hippocampal network to produce cognitive maps
and accurate positional encoding [196].





A
A P P E N D I X - C H A P T E R 4

The purpose of this Appendix is to facilitate the reading of Chapter 4. Indeed, we
report here some details about the support vector machine algorithm, numerical sim-
ulations and also the calculations, both for Gardner’s approach and for the quenched
input (place) field theory. In addition, we propose again some results already pre-
sented in Chapter 4 but changing the model parameters in order to show the robust-
ness of our findings.

a.1 support vector machine learning

As seen in Section 4.3 the problem of learning the connectivity matrix in our RNN
can be decomposed into N independent problems of support vector machine (SVM) with
linear kernel and hard margin [39, 62, 210, 211, 244]. So let’s focus now on one of the
SVMs, say the one with output neuron i, and discuss the algorithm in detail.

We begin with the two-class classification problem, see Fig. 15(b), of the form

hi =
∑
j6=i

Wijσj , (A.1)

where {σj} are the input components of the SVM, that is a (N-1)-dimensional vector con-
sidering that j 6= i, taking binary values 0 or 1. While {Wij} are all connections that arrive
on neuron i and are a priori real numbers (either positive, negative or null), see Fig. 15(a).

The training data-set, see Section 4.2, comprises p× L input binary vectors of compo-
nents {σ

`,µ
j } ∈ {0, 1}, ` = 1, . . . , L, µ = 1, . . . , p and j 6= i, with corresponding target values

2 {σ
`,µ
i }−1 ∈ {1,−1}. A new data point is classified according to the sign of hi and we shall

assume for the moment that the training data-set is linearly separable in the input space,
so that by definition there exists at least one choice of the (N− 1)-dimensional vector Wi

(decision boundary) such that a function of the form (A.1) satisfies h`,µi =
∑
j6=i
Wijσ

`,µ
j > 0

for points having 2 σ`,µi − 1 = 1 and h`,µi < 0 for points having 2 σ`,µi − 1 = −1, so that
the stabilities ∆`,µi ≡ (2 σ`,µi − 1)h`,µi > 0 are positive for all the training data points.

There may of course exist many such solutions that separate the classes exactly, like the
ones that can be found from the perceptron algorithm, see Section 4.3. Moreover, as we
have already discussed (Section 4.3), among all the possible solutions to this problem that
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allow us to correctly classify the training data-set, a good idea is to choose the one with
the smallest generalization error (the hyperplane that maximizes the distance between
classes). The SVM approaches this problem through the concept of the margin, which
is defined to be the smallest distance between the decision boundary and any of the
samples. In SVMs the decision boundary is then chosen to be the one for which the
margin is maximized, as illustrated in Fig. 15(b).

The perpendicular distance of an input pattern from an hyperplane defined by hi = 0,

where hi takes the form (A.1), is given by |h
`,µ
i |√∑

j6=i
W2
ij

, see Fig. 15(b). Furthermore, we are

only concerned in solutions for which all input patterns are correctly classified, so that
∆
`,µ
i > 0 ∀ `, µ. Thus the distance of an input pattern to the hyperplane is given by

(2σ`,µi − 1)h`,µi√∑
j6=i
W2
ij

=

(2σ`,µi − 1)
∑
j6=i
Wijσ

`,µ
j√∑

j6=i
W2
ij

. (A.2)

The margin we are interested in is determined from the distance to the closest input
pattern of the data-set, and we wish to optimize the vector Wi in order to maximize this
distance. Hence the maximum margin solution is found by solving

max
Wi

{
1√∑

j6=i
W2
ij

min
`,µ

[
(2σ`,µi − 1)

∑
j6=i

Wijσ
`,µ
j

]}
, (A.3)

where we have taken the factor 1√∑
j6=i
W2
ij

outside the optimization over `, µ because Wi

does not depend on them.

Direct solution of this optimization problem would be very complex, and so we shall
convert it into an equivalent problem that is much easier to solve. To do this we note
that if we make the rescaling Wi → κiWi, then the distance from any input point to the

decision surface, given by (2σ`,µi −1)h`,µi√∑
j6=i
W2
ij

, is unchanged. We can use this freedom to set

(2σ`,µi − 1)
∑
j6=i

Wijσ
`,µ
j = 1 (A.4)

for the input data that is closest to the surface. In this case, all data points satisfy the
constraints

(2σ`,µi − 1)
∑
j6=i

Wijσ
`,µ
j > 1, ∀ `, µ . (A.5)
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This is known as the canonical representation of the decision hyperplane. In the case
of input data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there is always at
least one active constraint, because there is always a closest point, and once the margin
has been maximized there are at least two active constraints. The optimization problem
then simply requires that we maximize 1√∑

j6=i
W2
ij

, which is equivalent to minimize
∑
j6=i
W2
ij,

and in the end we have to solve the optimization problem

min
Wi

1

2

∑
j6=i

W2
ij (A.6)

subject to the constraints given by (A.5). The factor of 12 in (A.6) is included for later
convenience. This is an example of a quadratic programming problem in which we are
trying to minimize a quadratic function subject to a set of linear inequality constraints
[30, 43, 179].

In order to solve this constrained optimization problem, we introduce Lagrange multi-
pliers {λ`µ}, with one multiplier for each of the constraints in (A.5), giving the Lagrangian
function

L(Wi, {λ`µ}) =
1

2

∑
j6=i

W2
ij −
∑
`,µ

λ`,µ

{
(2σ`,µi − 1)

∑
j6=i

Wijσ
`,µ
j − 1

}
. (A.7)

Note the minus sign in front of the Lagrange multiplier term because we are minimiz-
ing with respect to Wi and maximizing with respect to {λ`µ}. Setting the derivatives of
L(Wi, {λ`µ}) with respect to Wi equal to zero, we obtain the following conditions

Wij =

L∑
`=1

p∑
µ=1

λ`µ (2σ
`µ
i − 1)σ`µj . (A.8)

Eliminating Wi from L(Wi, {λ`µ}) using these conditions then gives the dual representa-
tion of the maximum margin problem in which we maximize

L̃({λ`µ}) =

L∑
`=1

p∑
µ=1

λ`µ−
1

2

L∑
`,m=1

p∑
µ,ν=1

(2σ`µi − 1)(2σmνi − 1)λ`µλmν

N∑
j( 6=i)

σ
`µ
j σ

mν
j (A.9)

subject to the constraints

λ`,µ > 0, ∀ `, µ . (A.10)

This optimization problem can be solved using available numerical routines [68, 195].
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In the end, the only relevant data points for the learning process are the one correspond-
ing to λ`µ > 0 as they define the weights of the network according to the Eq. (A.8), they
infact correspond to points that lie on the maximum margin hyperplanes in the input
space, see Fig. 15(b), and are the so called support vectors.

Once we have obtained {λ`µ} we can then finally find the maximum margin as

κi =
1√∑

j6=i
W2
ij

(A.11)

using (A.8).

As an illustration of the learning procedure, we show in Fig. 39 how the number of
stored patterns (with positive stabilities) grows as a function of the number of iterations
of the quadratic optimization algorithm solving (C.3), until all p prescribed patterns are
stabilized.
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100

200

300

400

500

# 
i

0 

Figure 39 – Number of patterns with positive stabilities (y-axis) vs number of iterations of the
quadratic optimization solver (x-axis) for one map (L = 1) with p = 500 points stored
by a network with N = 1000 neurons, see Section 4.2 for details about the model and
how the patterns were built. Parameter values: D = 2, φ0 = .3.

We are thus now able to calculate the optimal couplings for an SVM and to find the
respective maximal margin κi. We can then use this algorithm to extract all the rows of
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the RNN connectivity matrix, one for each SVM, which therefore is not a priori symmetric.
We can as well derive all the margins κi ∀ i and at the end the margin associated to the
RNN is given by the minimum among all the margins of the single SVMs

κ = min
i
κi , (A.12)

see Section 4.3.

Note that formula (A.8) does not give normalized couplings to the unit and so, after
calculating the optimal margin with Eq. (A.11), we should eventually normalize them by
hand.

a.2 estimation of critical capacity from svms results

The critical capacity αc(p), that is the value of the load α = L
N at which the stability

κ(α, p) vanishes or, in other words, the maximal load sustainable by the network as a
function of the required spatial error, was estimated as follows from SVM results in all
the thesis figures in which it appears.

We computed the optimal stabilities κ (at fixed p) for M̃ different values of the load α
(obviously the values of α are chosen in a range such that the classes are linearly separable,
i.e., κ > 0), with M̃ generally equal to 20. Then we fitted these points with the empirical
function (depending on the parameters a, b, c)

κ =
a√
α
+ bα+ c , (A.13)

and extrapolated from the fit the value of the load at which the fitted function vanished;
this defined our estimate for αc(p). Note that the small α behaviour in equation (A.13)
above can be justified analytically from Gardner’s calculation [87], see Section 4.5.

a.3 recovering gardner results in case of one position per map

Here we show that, when only a single pattern is considered in each map (p = 1),
the equation (4.39) is equivalent to the celebrated Gardner critical capacity in the case of
biased patterns [87], where the bias comes from the PF area φ0, if for example this area
is half the area of the environments, i.e., φ0 = .5, then the corresponding patterns would
be unbiased.

For p = 1, the Euclidean random matrix Γ(R̂) defined in equation (4.17) reduces to the
scalar

Γ(R̂)1,1 = φ0(1−φ0) ≡
1−M2

4
, (A.14)
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whereM is the average activity of the binary pattern in ±1 notation, i.e., under the change
of variable σ(r̂1) = {0, 1}→ ξ = 2σ(r̂1) − 1 = {−1,+1}.

The convex optimization problem to be solved in (4.38) thus amounts to compute

F(z1, v, κ) = min
{t1>κ}

[
4

1−M2

(
t− (z1 + v ξ)

)2]
, (A.15)

where v = mφ0 and the Gaussian variable z1 in (4.38) has zero mean and variance
Γ(R̂)1,1.

The minimum over t1 in (A.15) can easily be determined, with the result

F(z1, v, κ) =


4

1−M2

(
κ− (z1 + v ξ)

)2 if κ > z1 + v ξ

0 otherwise.
(A.16)

As r̂1 is drawn uniformly at random, ξ is a random binary variable:

ξ =


+1 with probability

1+M

2
,

−1 with probability
1−M

2
.

(A.17)

We get, with the normalized Gaussian variable z = z1 × 2/
√
1−M2 and the measure

Dz = dz/
√
2π exp(−z2/2),

1

αc(v; κ, p = 1)
=

(A.18)

1+M

2

∫∞
2vM−2κ√
1−M2

Dz

(
2κ− 2vM√
1−M2

+ z

)2
+
1−M

2

∫∞
−2κ−2vM√
1−M2

Dz

(
2κ+ 2vM√
1−M2

+ z

)2
,

where v is chosen in order to maximize αc(v; κ, p = 1):

1+M

2

∫∞
2vM−2κ√
1−M2

Dz

(
2κ− 2vM√
1−M2

+ z

)
=
1−M

2

∫∞
−2κ−2vM√
1−M2

Dz

(
2κ+ 2vM√
1−M2

+ z

)
. (A.19)

These equations coincide with the results of [87] up to the change κ → 2κ due to the
fact that the neuron activities take here values 0,1 and not ±1.
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a.4 computation of Ξ(U)

Here we explain in detail the calculation of Ξ(U) defined in Eq. (4.52).

Expanding the terms in Ξ(U), we write Ξ(U) = Ξ1(U) + Ξ2(U) + Ξ3(U) with

Ξ1(U) = 4
∑
j,k>2

C1j

(
U Id +C

)−1
jk

C1k , (A.20)

Ξ2(U) = φ20

∑
j,k>2

(
U Id +C

)−1
jk
, (A.21)

Ξ3(U) = − 4φ0
∑
j,k>2

C1j

(
U Id +C

)−1
jk

. (A.22)

Computation of Ξ1: Consider the N×N matrix C(N), with entries Cij for i, j comprised
between 1 and N. Let us also define Id(N) as the identity matrix in dimension N, while
Id above referred to the identity matrix in dimension N− 1. Using block-matrix inversion
formulas, we write that(

U Id(N) +C(N)
)−1
11

=
1

U+C11 −
∑
j,k>2

C1j

(
U Id +C

)−1
jk

C1k

. (A.23)

The left hand side of the equation above is equal, in the large–N limit, to the resolvent
g(U) of C defined in (4.47). Using C11 = Γ(0) = φ0 and the definition of Ξ1(U), we obtain

Ξ1(U) = 4

(
U+φ0 −

1

g(U)

)
. (A.24)

Computation of Ξ2: Let |v+〉 be the normalized vector with N identical components,
(v+)i =

1√
N

. We have

Ξ2(U) = Nφ
2
0

〈
v+

∣∣∣(U Id +C
)−1∣∣∣v+〉 . (A.25)

For large N, |v+〉 is the top eigenvector of C, with (extensive) eigenvalue
λ+ = N

∫
dr Γ(r) = Nφ20. Hence,

Ξ2(U) = Nφ
2
0 ×

1

U+Nφ20
→ 1 , (A.26)

in the large-N limit (since U remains bounded, see Section 4.6).
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Computation of Ξ3: As Cjk with j, k > 2 does not depend on the locations r`1 of the
place fields associated to neuron i = 1 in the different maps `, we may substitute C1j in
Eq. (A.22) with its average over those positions, equal to φ20. We obtain

Ξ3(U) = − 4φ30
∑
j,k>2

(
U Id +C

)−1
jk

= − 4φ0 , (A.27)

in the large-N limit, see the calculation of Ξ2(U).

Expression of Ξ: Gathering the three terms above, we obtain

Ξ(U) = 1+ 4U−
4

g(U)
. (A.28)

a.5 dependence on φ0 and D.

Here we discuss the dependence of the results found in Section 4.6 on the size of the
place fields φ0 and the dimension of the maps D (as already stated in Section 4.2 the
dimension of the place fields is always the same as that of the environments).

In Fig. 40 we show that the value of p such that the results obtained with the quenched
PF theory and SVMs match increases as φ0 decrease.

In fact, an analysis of equations (4.66, 4.67), valid in the small φ0 limit, indicate that
this minimal value of p scales as

pmatch(φ0) ∼
e1/(8φ0)

φ
3/2
0

, (A.29)

and becomes very large as φ0 becomes small. Realistic values for the place fields area φ0
are reported in the experimental literature [163] and [116] to range between .2 and .3. We
stress that place fields are, however, continuous-valued rate fields for real neurons, while,
in our model (Section 4.2), they represent binary on/off values. The correspondence
between our model and experimental studies relies therefore on the introduction of a cut-
off value for the minimal firing rate of place cells; values of φ0 ranging between .2 and .3
seem to be reasonable in view of [163] and [116].

Moreover, Fig. 41 shows the spatial error of trained recurrent neural networks as a
function of the number of maps L, the optimal stability κ as a function of the load α = L

N

and the critical capacity αc(p) as a function of the number of stored positions per map,
everything for different values of p and for patterns generated starting from maps in di-
mensions D = 1 and 3, completing the results shown for D = 2 in Chapter 4. We observe
the faster decay of the critical capacity predicted by equation (4.75) with increasing values
of D.
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1 10 100
p

0.10

1.00

c(p
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Figure 40 – Scaling cross-over of αc(p) vs p for different values of φ0. Quenched PF Theory
(dashed-dotted lines) gets closer to SVM (scatter plots) as p increase, the value of p
for which quenched PF theory and SVM matches increase as φ0 decrease. We use for
this results D = 2, N = 5000, and we have averaged over 50 different realization of the
environments and different realizations of the p positions.
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(c)

(a) (b)

(d)

Figure 41 – Same results for spatial error and capacity presented in Chapter 4 but here for D = 1,
(a) and (c), and D = 3, (b) and (d). The other parameters are identical to the ones used
for the equivalent figures in D = 2, see Figs. 18(a), 21 and 23(a).
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This short Appendix is intended to remind the reader of the fundamental notions and
quantities of random matrix theory 1 needed to understand Chapter 5, i.e., the study
of MERM’s spectral properties.

b.1 resolvent, blue function and R-transform

The eigenvalues Λi of a N×N Hermitian matrix A, random or not, are real. Their
density,

p(Λ) =
1

N

〈
N∑
i=1

δ(Λ−Λi)

〉
, (B.1)

where 〈·〉 stands for the average over the distribution of the matrix A, can be obtained
from the (one-point) resolvent

g(z) =
1

N

〈
Trace

1

z Id − A

〉
=
1

N

〈
N∑
i=1

1

z−Λi

〉
, (B.2)

where Id is the identity matrix of size N.

Using the standard relation limε→0+ 1/(Λ+ iε) = P 1/Λ− iπδ(Λ) (P denotes the Cauchy
principal value), we can rewrite Eq. (B.2) as

g(Λ+ iε) = P
∫∞
−∞ dΛ ′

p(Λ ′)

Λ−Λ ′
− iπp(Λ) , (B.3)

so that p(Λ) may be reconstructed from either the imaginary or the real part of g(Λ+ iε):

p(Λ) = −
1

π
lim
ε→0+

Img(Λ+ iε) , (B.4)

P
∫∞
−∞ dΛ ′

p(Λ ′)

Λ−Λ ′
= Reg(Λ+ iε) . (B.5)

1. For a detailed analysis see for example [144, 197].
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In order to compute g(z), we can rewrite Eq. (B.2) in various forms. First, we note that

N∑
i=1

1

z−Λi
= ∂z ln

[
N∏
i=1

(z−Λi)

]
, (B.6)

and express the resolvent as

g(z) =
1

N
∂z 〈ln det(z Id − A)〉 . (B.7)

This expression will be used in the replica-based computation presented in Section 5.3.

Another interesting expression for g(z) is a decomposition in terms of the moments of
p(Λ),

〈Λm〉 =
∫∞
−∞ dΛp(Λ)Λm =

1

N
〈TraceAm〉 . (B.8)

For Hermitian matrices, g(z) is an holomorphic function of z ∈ C except for some cuts
along the real axis where eigenvalues of A are concentrated. Therefore, we can reconstruct
g(z) for all z by analytic continuation of its series expansion

g(z) =

∞∑
m=0

〈Λm〉
zm+1

, (B.9)

which, in general, converges only in the vicinity of |z|→∞.

Other important objects for us are the functional inverse of g(z), also called the Blue
function 2, and the R-transform:

B(z) ≡ g−1(z) , (B.10)

R(z) ≡ B(z) − 1
z

. (B.11)

Both of them are fundamental objects of the free random variable theory, see Section B.2.
In particular, R(z) is the generating function of the “free cumulants”.

Let us now mention a couple of properties useful for the analysis in Chapter 5. The
functions g(z), B(z), and R(z) obey the following scaling relations:

gcA(z) =
1

c
gA(z/c),

BcA(z) = cBA(c z) , (B.12)

RcA(z) = cRA(c z) ,

where c ∈ C∗ .

2. So named because it is defined as the functional inverse of the resolvent, the Green function.
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b.2 free probability theory in a nutshell

Free probability theory is a research field in mathematics started by Voiculescu in 1983

[246, 247]. The initial goal of this theory was to say something about the spectral proper-
ties of the sum of two matrices X1 + X2 from the knowledge of the spectral properties of
the individual ones X1 and X2. Unless the two matrices commute, knowing the spectrum
of the individual ones is not sufficient to find the spectrum of the sum. In any case free
probability theory identifies a sufficient condition, the so-called asymptotic freeness with
which this problem can be faced without resorting to the eigenvectors of the matrices.
This notion of asymptotic freeness is a generalization of the concept of statistical indepen-
dence for random variables when these variables, in our particular case the matrices, do
not commute.

Let us briefly recall the basic properties of independent variables. We denote by px the
probability density of the variable x, by gx(z) ≡ 〈ezx〉 =

∑
n>0 〈xn〉 zn/n! its character-

istic function, and by rx(z) ≡ lngx(z) =
∑
n>0 cx,n z

n its cumulant generating function.
For two independent real random variables x1 and x2, the following relations hold:

〈x1x2〉 = 〈x1〉 〈x2〉 , (B.13)

px1+x2 = px1 ∗ px2 , (B.14)

rx1+x2 = rx1 + rx2 , (B.15)

where “∗” denotes the convolution operation. We will see that these relations find their
equivalents for asymptotically free matrices.

By definition, two Hermitian matrices X1 and X2 are asymptotically free if for all l ∈N

and for all polynomials pi and qi (1 6 i 6 l), we have [240]

〈pi(X1)〉Λ = 〈qi(X2)〉Λ = 0

⇒ 〈p1(X1)q1(X2) . . . pl(X1)ql(X2)〉Λ = 0 , (B.16)

where the expectation value 〈·〉Λ is defined as

〈X〉Λ =
1

N
〈TraceX〉 . (B.17)

The interpretation of the formal definition (B.16) is the following: two matrices are asymp-
totically free if their eigenbases are related to one another by a random rotation, or said
differently, if their eigenvectors are almost surely orthogonal.

From the definition (B.16), it is easy to compute various mixed moments of X1 and X2.
Considering X̃i = Xi − 〈Xi〉Λ that obey 〈X̃1〉Λ = 〈X̃2〉Λ = 0, we obtain from Eq. (B.16):

〈X1X2〉Λ = 〈X1〉Λ 〈X2〉Λ . (B.18)
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Note that this last condition is not enough to define asymptotic freeness, since matrices
do not commute. For example, from Eq. (B.16), the forth moments read

〈X1X1X2X2〉Λ =
〈
X21
〉
Λ

〈
X22
〉
Λ
,

〈X1X2X1X2〉Λ =
〈
X21
〉
Λ
〈X2〉2Λ + 〈X1〉2Λ

〈
X22
〉
Λ

− 〈X1〉2Λ 〈X2〉2Λ . (B.19)

The free cumulants are defined such that the sum property (B.15) is preserved for the gen-
erating function of the free cumulants, the so-called R-transform [120, 240]. Interestingly,
the R-transform is simply related to the Blue function (B.10), i.e., the functional inverse of
the resolvent g(z), by Eq. (B.11). 3 The R-transform of the sum of two asymptotically free
matrices X1 and X2 obeys:

RX1+X2(z) = RX1(z) + RX2(z) . (B.20)

Hence, the problem of finding the eigenvalue distribution of the sum of two free random
matrices is straightforward. Applying successively Eqs. (B.10), (B.11), and (B.20), one
readily infers gX1+X2 from gX1 and gX2 . The steps of the algorithm are as follows:

gX1 , gX2 → BX1 , BX2 → RX1 , RX2 → RX1+X2

→ BX1+X2 → gX1+X2 . (B.21)

Moreover, the generalization to the sum of an arbitrary number of matrices is trivial.

3. Note that g(z) plays the role of a free characteristic function, see Eqs. (B.8) and (B.9).
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In this Chapter we report some details on the numerical, algorithmic and analytical
part of the results presented in Chapter 6 in order not to make the latter too heavy to
read.

c.1 svm algorithm with sign-constrained synapses

Here we generalize the algorithm of support vector machines presented in Sections 4.3
and A.1 to take into account the constraint on the sign of the synapses. In fact, the basic
algorithm does not consider this aspect admitting a priori connections of any sign.

After we have generated a data-set of activity patterns, as in Section 4.2, we want to
learn the connections {Wij} of the recurrent neural network that maximize the stability

κpos = max
{Wij>0,θi}

min
{i=1...N,`=1...L,µ=1...p}

{(
2σ
`,µ
i − 1

)[ ∑
j( 6=i)

Wij σ
`µ
j + θi

]}
(C.1)

defined already in Eq. (6.3) at fixed α and p. Indeed, as we have previously seen in
Sections 4.3 and A.1, this choice of the weights ensure the biggest basins of attraction in
the pattern space, i.e., robustness against thermal noise. In order to do that we implement
SVM learning [35, 211], but adding this time the positivity constraint on {Wij} and the
threshold terms {θi} (fundamental now that the weights are only positive to make the
problem linearly separable).

In practice, for each neuron i, we want to compute the connections {Wij} from the
other neurons j (with Wii = 0, ∀ i, no self-connections) and {θi}, which are solution of the
following primal constrained convex optimization problem

minimize
{Wij,θi}

1

2

∑
j( 6=i)

W2
ij ,

subject to (2σ`µi − 1)
( ∑
j( 6=i)

Wij σ
`µ
j + θi

)
> 1, ∀ `, µ ,

Wij > 0, ∀ j( 6= i) .

(C.2)
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We have to solve N such problems to extract all the rows of the coupling matrix and all
the threshold terms. The dual form of this problem is

maximize
{λ`,µ,cij}

L∑
`=1

p∑
µ=1

λ`µ −
1

2

L∑
`,m=1

p∑
µ,ν=1

(2σ`µi − 1)(2σmνi − 1)λ`µλmν

N∑
j( 6=i)

σ
`µ
j σ

mν
j

−
1

2

N∑
j( 6=i)

c2ij −

L∑
`=1

p∑
µ=1

(2σ`µi − 1)λ`µ

N∑
j( 6=i)

cijσ
`µ
j ,

subject to λ`,µ > 0, ∀ `, µ ,
cij > 0, ∀ j( 6= i) ,

L∑
`=1

p∑
µ=1

(2σ`µi − 1)λ`µ = 0 . (C.3)

where the {λ`µ}’s and {cij}’s are Lagrange multipliers enforcing respectively the first and
the second sets of constraints in defined in Eq. (C.2). This optimization problem can be
solved using available numerical routines [68], as the standard SVM, see Sections 4.3 and
A.1.

Once we obtain the {λ`µ}’s and {cij}’s we can compute the connections through

Wij = cij +

L∑
`=1

p∑
µ=1

λ`µ (2σ
`µ
i − 1)σ`µj . (C.4)

Using the fact that any support vector (data points that lies on the maximal hyper-
planes) satisfies

(2σ`
∗,µ∗

i − 1)
∑
j6=i

Wijσ
`∗,µ∗

j = 1 , (C.5)

we can determine the value of the threshold parameters {θi}’s thanks to

θi =
1

NS

∑
(`∗,µ∗)∈S

[
(2σ`

∗µ∗

i − 1) −
∑

(m∗,ν∗)∈S

λm∗ν∗(2σ
m∗ν∗
i − 1)

N∑
j( 6=i)

σ
`∗µ∗

j σm
∗ν∗

j

]
, (C.6)

where S is the set of support vectors and NS is their number.

We then normalize the rows of the couplings matrix to unity, i.e.,
∑
j( 6=i)W

2
ij = 1,

and divide by the same number also the thresholds {θi}’s. Finally, the stability κpos is
computed through the formula (6.3).
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c.2 analytical details on the individuality of neurons

Here we show a series of generalizations of the computations presented in Sections 5.3
and 4.6 that will allow us to include in the model introduced in Chapter 4 the individual-
ity of neurons discussed in Section 6.5 together with the variants on the place cell models
presented in Section 6.4.

c.2.1 Spectrum of MERM: multi-populations of neurons

As a first step in the above direction we consider the following MERM:

M
(L)
ij =

1

N

L∑
`=1

Γij
(∣∣r`i − r`j

∣∣) , (C.7)

in which the Γ function depend explicitly on the indices i and j, i.e., the N neurons are
divided in M finite groups with fractions of neurons βµ with µ = 1, . . . ,M. Every group
of neurons has a specific property, i.e., a fixed area for the place fields φµ.

We are going to compute the resolvent of M(L) using the replica method.

As in Section 5.3 we start by rewriting the definition of the resolvent as

sL(z) =
1

N

〈
Trace

(
M(L) − z Id

)−1〉
=
2

N
∂z

〈
log det

(
M(L) − z Id

)− 1
2

〉
, (C.8)

where 〈·〉 stands for the average over the distribution of the matrix (C.7). With this repre-

sentation the determinant det
(
M(L) − z Id

)− 1
2 can be expressed as a canonical partition

function:

ZL(s) = det
(
M(L) − z Id

)− 1
2 =

∫∏
i

dφi√
2π

exp
(z
2

∑
i

φ2i −
1

2

∑
ij

φiM
(L)
ij φj

)
, (C.9)

where i, j go from 1 to N.

The resolvent (C.8) can be calculated using the replica trick [157]:

sL(z) =
2

N
∂z
〈

logZL(s)
〉
=
2

N
∂z

[
lim
n→0

1

n
log
〈
ZL(s)

n
〉]

(C.10)

with〈
ZL(s)

n
〉
=

∫∏
ia

dφai√
2π

exp
(z
2

∑
a

∑
i

(φai )
2
)〈

exp
(
−
1

2

∑
a

∑
ij

φaiM
(L)
ij φ

a
j

)〉
, (C.11)

where we have replicated the system n times, i.e., a goes from 1 to n.
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In order to perform the average in (C.11) we rewrite (C.7) by considering the `-th space
ERM in its eigenbasis:

M
(L)
ij =

1

N

L∑
`=1

Γij
(∣∣r`i − r`j

∣∣) =∑
`

∑
k 6=0

v`ki Γ̂ij(k) v
`
kj , (C.12)

where ` goes from 1 to L, and the sum over k discards the k = 0 extensive mode as
discussed in Chapter 5, Γ̂ij(k) = γ̂i(k)γ̂j(k) with γ̂i(k) being the Fourier transform of the
indicator function of the place field of area φµ and the eigenvector components, v`ki '
1√
N

sin
(
2πk · r`i

)
, 1√

N
cos
(
2πk · r`i

)
, are real due to the symmetry Γ̂(k) = Γ̂(−k). Hence

we get〈
exp

(
−
1

2

∑
a

∑
ij

φaiM
(L)
ij φ

a
j

)〉
=
〈

exp
(
−
1

2

∑
a,`,k 6=0

(∑
i

v`kiφ
a
i γ̂i(k)

)2)〉 . (C.13)

We now use the Stratonovich trick to linearize (
∑
i v
`
kiφ

a
i γ̂i(k)

)2:〈
exp

(
−
1

2

∑
a,`,k 6=0

(∑
i

v`kiφ
a
i γ̂i(k)

)2)〉
=
∏
`

∫ ∏
a,k6=0

dua`,k√
2π

(C.14)

× exp
(
−
1

2

∑
a,k 6=0

(
ua`,k

)2)〈exp
(
− i
∑
a,k 6=0

ua`k

∑
i

φai v
`
kiγ̂i(k)

)〉
.

Using the fact that 〈v`ki〉 = 0 and 〈v`kiv`k ′j〉 =
1
N δijδkk ′ it is easy to perform the average in

the above equation, with the result

〈
exp

(
− i
∑
a,k 6=0

ua`k

∑
i

φai v
`
kiγ̂i(k)

)〉
= exp

(
−
1

2

∑
a,b

∑
k 6=0

ua`ku
b
`k

M∑
µ=1

qabµ γ̂µ(k)2
)

(C.15)

where we have used the fact that the N neurons are divided in M groups and we have
defined an overlap qabµ per group as

qabµ =
1

N

∑
i∈βµN

φai φ
b
i , ∀µ (C.16)

to be fixed through

1 =

∫ ∏
a6b

dq̂abµ dqabµ
2πi
N

exp
(
N
∑
a6b

q̂abµ qabµ −
∑
a6b

q̂abµ

∑
i∈βµN

φai φ
b
i

)
, ∀µ . (C.17)
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We can finally write
〈
ZL(s)

n
〉

as∫∏
µ

∏
a6b

dq̂abµ dqabµ
2πi
N

exp

{
N

[∑
µ

βµ log
∫∏
a

dφa√
2π

exp
(z
2

∑
a

(φa)2 −
∑
a6b

q̂abµ φaφb
)
+
∑
µ

∑
a6b

q̂abµ qabµ

+α log
∫ ∏

k 6=0,a

duak√
2π

exp
(
−
1

2

∑
k 6=0,a

(uak )
2 −

1

2

∑
k 6=0

∑
a6b

uaku
b
k

∑
µ

qabµ γ̂µ(k)2
)]}

. (C.18)

The Gaussian integrals over φa and uak can be easily computed. We then make the
Replica Symmetric (RS) Ansatz on the structure of the order parameters qabµ and their
conjugate variables q̂abµ , so that

qabµ = rµ + (qµ − rµ)δab, ∀µ (C.19)

and

q̂abµ = r̂µ + (q̂µ − r̂µ)δab, ∀µ. (C.20)

The integrals over qµ, rµ, q̂µ and r̂µ are then estimated using the saddle-point method
valid for large N, and then taking the small n limit. The resulting expression for the
resolvent sL(z) of (C.7) is

2∂z

[
opt{qµ,rµ,q̂µ,r̂µ} lim

n→0
lim
N→∞ 1

nN
log
〈
ZL(s)

n
〉]

= 2∂z

[
opt{qµ,rµ,q̂µ,r̂µ}f({qµ, rµ, q̂µ, r̂µ})

]
,

(C.21)

where f({qµ, rµ, q̂µ, r̂µ}) is the free energy density equal to

∑
µ

q̂µqµ −
1

2

∑
µ

r̂µrµ −
α

2

∑
k 6=0

[
log
(
1+
∑
µ

Γ̂µ(k)(qµ − rµ)
)
+

∑
µ Γ̂µ(k)rµ

1+
∑
µ Γ̂µ(k)(qµ − rµ)

]
−
1

2

∑
µ

βµ

[
log
(
2q̂µ − r̂µ − z

)
+

r̂µ

2q̂µ − r̂µ − z

] ,
(C.22)
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where Γ̂µ(k) = γ̂µ(k)2. The saddle-point equations obtained by optimizing f({qµ, rµ, q̂µ, r̂µ})
with respect to q̂µ, r̂µ, qµ and rµ read ∀µ

qµ

βµ
= −

r̂µ(
2q̂µ − r̂µ − z

)2 +
1

2q̂µ − r̂µ − z
, rµ = −

βµr̂µ(
2q̂µ − r̂µ − z

)2 ,
q̂µ =

α

2

∑
k6=0

(
Γ̂µ(k)

1+
∑
ν Γ̂ν(k)(qν − rν)

−
Γ̂µ(k)

∑
ν rν Γ̂ν(k)(

1+
∑
ν Γ̂ν(k)(qν − rν)

)2) ,
r̂µ = −α

∑
k 6=0

Γ̂µ(k)
∑
ν rν Γ̂ν(k)(

1+
∑
ν Γ̂ν(k)(qν − rν)

)2 . (C.23)

This system of equations admits rµ = r̂µ = 0, ∀µ as a solution, which gives, according to
(C.21), the following system of equations satisfied by sL(z):

sL(z) =
∑
µ qµ ,

z = −
βµ
qµ

+α
∑

k 6=0
Γ̂µ(k)

1+
∑
ν Γ̂ν(k)qν

, ∀µ .
(C.24)

Note that we are eventually interested in the spectral properties of the matrix C with
entries

Cij =
1

L

L∑
`=1

Γij
(∣∣r`i − r`j

∣∣) = 1

α
M

(L)
ij . (C.25)

Obviously, the resolvent s of C is related to the resolvent sL of M(L) through the equation
s(z) = αsL(αz). Hence we obtain our fundamental system of equations for the resolvent
of C: s(z) =

∑
µ qµ ,

z = −
βµ
qµ

+
∑

k 6=0
αΓ̂µ(k)

α+
∑
ν Γ̂ν(k)qν

, ∀µ .
(C.26)

c.2.2 Quenched PF theory: multi-populations of neurons

Here we are going to extend the Gaussian theory with quenched PF presented in Sec-
tion 4.6 to the case of multi-populations of neurons. By multi-populations of neurons we
mean that the N neurons are divided in M finite groups with fractions of neurons βρ
with ρ = 1, . . . ,M and every group of neurons with a specific property, i.e., a fixed area
for the place fields φρ < 1.
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The computation follows exactly what seen in Section 4.6 until the definition of the
order parameters that are now

ma` =
∑
j>2

Wja

(
2 Γ1j

(
|r`1 − r`j |

)
−φj

)
(C.27)

and

qab` =
∑
j,k>2

WjaWkb Γjk
(
|r`j − r`k|

)
, (C.28)

notice, in fact, that here the function Γ depend on the indices j and k of the neurons
not only for indicating the centers of the PFs in the different maps but also to explicitly
distinguish the properties of the different neurons and also φj varies from neuron to
neuron.

Now we make the same approximations as Section 4.6 and so we can write the final
expression of the order parameters after adding up all the maps:

ma ≡ 1

L

L∑
`=1

ma` =
∑
j>2

Wja

(
2C1j

(
{r`j}
)
−φj

)
(C.29)

and

qab ≡ 1

L

L∑
`=1

qab` =
∑
j,k>2

WjaWkb Cjk
(
{r`j}
)

. (C.30)

The N×N multi-space Euclidean random matrix C appearing in the expressions above is
defined as

Cij =
1

L

L∑
`=1

Γij
(∣∣r`i − r`j

∣∣) . (C.31)

In the following, we denote by ρ(λ) the density of eigenvalues λ of C. This density is self-
averaging when the PFs are randomly drawn in the large L,N double limit. Its resolvent,
defined as

g(U) =

∫
dλ

ρ(λ)

λ+U
, (C.32)

where the integral runs over the support of ρ, is solution of the following system of
equations, see Section C.2.1:g(U) =

∑M
ρ=1 qρ ,

U = −
βρ
qρ

+
∑

k 6=0
αΓ̂ρ(k)

α+
∑M
θ=1 Γ̂θ(k)qθ

, ∀ρ .
(C.33)
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From here on we obtain the same equations of what we saw in Section 4.6 except for
the quantity Ξ defined as

Ξ(U) =
∑
j,k>2

Hj

(
U Id +C

)−1
jk
Hk with Hj = 2C1j −φj , (C.34)

and Id is the identity matrix. In the above equation, the inverse is intended over the
N− 1-dimensional restriction of the matrix U Id +C to entries j, k > 2.

c.2.2.1 Computation of Ξ

Expanding the terms in Ξ(U) in Eq. (C.34) above, we write Ξ(U) = Ξ1(U) + Ξ2(U) +

Ξ3(U) with

Ξ1(U) = 4
∑
j,k>2

C1j

(
U Id +C

)−1
jk

C1k , (C.35)

Ξ2(U) =
∑
j,k>2

φj

(
U Id +C

)−1
jk
φk , (C.36)

Ξ3(U) = −2
∑
j,k>2

C1j

(
U Id +C

)−1
jk
φk − 2

∑
j,k>2

φj

(
U Id +C

)−1
jk

C1k . (C.37)

Computation of Ξ1: Consider the N×N matrix C(N), with entries Cij for i, j comprised
between 1 and N. Let us also define Id(N) the identity matrix in dimension N, while Id
above referred to the identity matrix in dimension N− 1. Using block-matrix inversion
formulas, we write that(

U Id(N) +C(N)
)−1
11

=
1

U+C11 −
∑
j,k>2

C1j

(
U Id +C

)−1
jk

C1k

(C.38)

The left hand side of the equation above is equal, in the large–N limit, to the resolvent
g(U) of C defined in (C.32). Using C11 = φ1 and the definition of Ξ1(U), we obtain

Ξ1(U) = 4

(
U+φ1 −

1

g(U)

)
. (C.39)

Computation of Ξ2: Let |v+〉 be the normalized vector withN identical components, (v+)i =
1√
N

. For large N, |v+〉 is the top eigenvector of C, with (extensive) eigenvalue λ+ =

N
∑M
ρ=1 βρφ

2
ρ. After the computation of the braket of this vector with the matrix of

components φj
(
U Id +C

)−1
jk
φk , and taking the large N limit we get:

Ξ2(U) =
N
∑M
ρ=1 βρφ

2
ρ

U+N
∑M
ρ=1 βρφ

2
ρ

→ 1 . (C.40)
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Computation of Ξ3: As Cjk with j, k > 2 does not depend on the locations r`1 of the place
fields associated to neuron i = 1 in the different maps `, we may substitute C1j and C1k in
Eq. (C.37) with their average over those positions, respectively equal to φ1φj and φ1φk.
We obtain

Ξ3(U) = −4φ1 Ξ2(U) = −4φ1 , (C.41)

in the large-N limit, see calculation of Ξ2(U) above.

Expression of Ξ: Gathering the three terms above, we obtain

Ξ(U) = 1+ 4U−
4

g(U)
. (C.42)

c.2.2.2 Large-p behavior of the critical capacity

The rest of the steps are the same presented in Section 4.6, in fact now we can directly
write the set of coupled equations for x and the resolvent g:

g =

M∑
ρ=1

qρ , (C.43)

βρ

qρ
=
∑
k 6=0

Γ̂ρ(k)

1+ pH(x)
∑M
θ=1 Γ̂θ(k)qθ

, ∀ρ , (C.44)

1−
4

g
= x
√
2πH(x) ex

2/2 . (C.45)

from which the capacity can be computed as a function of the number p of points,

αc(p) =
1

pH(x)
. (C.46)

In practice, we can choose x at will, compute g from (C.45), then p from (C.43) and (C.44),
and, finally, αc from (C.46).

Now we make the hypothesis that qρ = g rρ with rρ = O(1) ∀ρ so that we can write
(C.43) and (C.44) as:

1 =

M∑
ρ=1

rρ , (C.47)

βρ

g rρ
=
∑
k6=0

Γ̂ρ(k)

1+ pH(x)g
∑M
θ=1 Γ̂θ(k)rθ

, ∀ρ . (C.48)
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Summing all the equations (C.48) we get:

1

g
=
∑
k 6=0

∑M
ρ=1 Γ̂ρ(k)rρ

1+ pH(x)g
∑M
θ=1 Γ̂θ(k)rθ

. (C.49)

According to dimensional analysis, the large momentum scaling of the Fourier coefficients
is given by

Γ̂ρ(k) ∼
φ2ρ(

kφ
1
D
ρ

)D+1
=
φ
1− 1

D
ρ

kD+1
, ∀ρ , (C.50)

where k = |k| and D is the dimension of the physical space. Using (C.50), equation (C.49)
can be rewritten as

pH(x) = G
(
gpH(x)

∑
ρ

φ
1− 1

D
ρ rρ

)
with G(y) =

∑
k 6=0

y

kD+1 + y
. (C.51)

We deduce that, for large arguments y,

G(y) ∼ A1(D) y
D
D+1 with A1(D) =

∫
dDu

|u|D+1 + 1
. (C.52)

In addition, using the asymptotic expansion of the erfc function, we have

x
√
2πH(x) ex

2/2 ' 1− 1

x2
(C.53)

for large x. Combining these expressions allows us to obtain the asymptotic relation
between x and y,

y
1

D+1 = 4A1(D)
∑
ρ

φ
1− 1

D
ρ rρ x

2 . (C.54)

and, to the leading order in p,

x '
√
2 logp−

(
D+

1

2

) log logp√
2 logp

. (C.55)

We then deduce the asymptotic scaling of the critical capacity given by

αc(p) ∼
A(D)

(
∑
ρφ

1− 1
D

ρ rρ)D(logp)D
(p→∞) , (C.56)
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with

A(D) =
1

8DA1(D)D+1
. (C.57)

Now in order to show that the hypothesis of rρ = O(1) ∀ρ is consistent we notice using
(C.50) that (C.48) can be rewritten in the following way:

βρ ' Crρφ1−
1
D

ρ , ∀ρ , (C.58)

where C is fixed using (C.47) so that in the end we get:

rρ '
βρφ

1
D−1
ρ∑

θ βθφ
1
D−1

θ

, ∀ρ , (C.59)

and the hypothesis it’s verified. Moreover, once we know (C.59) we can rewrite the
asymptotic scaling of the critical capacity as

αc(p) ∼
A(D)(

∑
ρφ

1
D−1
ρ βρ)

D

(logp)D
(p→∞) , (C.60)

where we recover trivially the result in Section 4.6 for M = 1. Notice also that in D = 1

the critical capacity does not depend on the distribution of the sizes of the PFs.

c.2.3 Spectrum of MERM: multi-populations of neurons (multiple PFs per neuron on a map)

Let’s consider the following MERM:

M
(L)
ij =

1

N

L∑
`=1

ci∑
m=1

cj∑
m
′
=1

Γ
(∣∣∣r`i,m − r`

j,m
′

∣∣∣) , (C.61)

in which the N neurons are divided in M finite groups with fractions of neurons βµ with
µ = 1, . . . ,M. Every group of neurons has a specific property, i.e., cµ PFs per map. The
area of the PFs is fixed to φ0 < 1 for all the neurons for simplicity.

We are going to compute the resolvent of M(L) using the replica method coming from
statistical physics of disordered systems.

We start by rewriting the definition of the resolvent as

sL(z) =
1

N

〈
Trace

(
M(L) − z Id

)−1〉
=
2

N
∂z

〈
log det

(
M(L) − z Id

)− 1
2

〉
, (C.62)
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where 〈·〉 stands for the average over the distribution of the matrix (C.61). With this rep-

resentation the determinant det
(
M(L) − z Id

)− 1
2 can be expressed as a canonical partition

function:

ZL(s) = det
(
M(L) − z Id

)− 1
2 =

∫∏
i

dφi√
2π

exp
(z
2

∑
i

φ2i −
1

2

∑
ij

φiM
(L)
ij φj

)
, (C.63)

where i, j go from 1 to N. The resolvent (C.62) can be calculated using the replica trick
[157]:

sL(z) =
2

N
∂z
〈

logZL(s)
〉
=
2

N
∂z

[
lim
n→0

1

n
log
〈
ZL(s)

n
〉]

(C.64)

with〈
ZL(s)

n
〉
=

∫∏
ia

dφai√
2π

exp
(z
2

∑
a

∑
i

(φai )
2
)〈

exp
(
−
1

2

∑
a

∑
ij

φaiM
(L)
ij φ

a
j

)〉
, (C.65)

where we have replicated the system n times, i.e., a goes from 1 to n.

In order to perform the average in (C.65) we rewrite (C.61) by considering the `-th space
matrix in its eigenbasis:

M
(L)
ij =

∑
`

∑
k6=0

v`ki Γ̂(k) v
`
kj , (C.66)

where ` goes from 1 to L, and the sum over k discards the k = 0 extensive mode as
discussed in Chapter 5. The eigenvector components, v`ki ' 1√

N

∑ci
m=1 sin

(
2πk · r`i,m

)
,

1√
N

∑ci
m=1 cos

(
2πk · r`i,m

)
, are real due to the symmetry Γ̂(k) = Γ̂(−k). Hence we get〈

exp
(
−
1

2

∑
a

∑
ij

φaiM
(L)
ij φ

a
j

)〉
=
〈

exp
(
−
1

2

∑
a,`,k 6=0

Γ̂(k)
(∑
i

v`kiφ
a
i

)2)〉 . (C.67)

We now use the Stratonovich trick to linearize (
∑
i v
`
kiφ

a
i

)2:〈
exp

(
−
1

2

∑
a,`,k 6=0

Γ̂(k)
(∑
i

v`kiφ
a
i

)2)〉
=
∏
`

∫ ∏
a,k 6=0

dua`,k√
2π

(C.68)

× exp
(
−
1

2

∑
a,k 6=0

(
ua`,k

)2)〈exp
(
− i
∑
a,k 6=0

√
Γ̂(k)ua`k

∑
i

φai v
`
ki

)〉
.

Using the fact that 〈v`ki〉 = 0 and 〈v`kiv`k ′j〉 =
1
N ciδijδkk ′ it is easy to perform the average

in the above equation, with the result

〈
exp

(
− i
∑
a,k 6=0

√
Γ̂(k)ua`k

∑
i

φai v
`
ki

)〉
= exp

(
−
1

2

∑
a,b

∑
k 6=0

Γ̂(k)ua`ku
b
`k

M∑
µ=1

qabµ cµ

)
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(C.69)

where we have used the fact that the N neurons are divided in M groups and we have
defined an overlap qabµ per group as

qabµ =
1

N

∑
i∈βµN

φai φ
b
i , ∀µ (C.70)

to be fixed through

1 =

∫ ∏
a6b

dq̂abµ dqabµ
2πi
N

exp
(
N
∑
a6b

q̂abµ qabµ −
∑
a6b

q̂abµ

∑
i∈βµN

φai φ
b
i

)
, ∀µ . (C.71)

We can finally write
〈
ZL(s)

n
〉

as∫∏
µ

∏
a6b

dq̂abµ dqabµ
2πi
N

exp

{
N

[∑
µ

βµ log
∫∏
a

dφa√
2π
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(φa)2 −
∑
a6b

q̂abµ φaφb
)
+
∑
µ

∑
a6b

q̂abµ qabµ

+α log
∫ ∏
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duak√
2π
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(
−
1

2

∑
k 6=0,a

(uak )
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1

2

∑
k 6=0

Γ̂(k)
∑
a6b

uaku
b
k

∑
µ

qabµ cµ

)]}
. (C.72)

The Gaussian integrals over φa and uak can be easily computed. We then make the Replica
Symmetric (RS) Ansatz on the structure of the order parameters qabµ and their conjugate
variables q̂abµ , so that

qabµ = rµ + (qµ − rµ)δab, ∀µ (C.73)

and

q̂abµ = r̂µ + (q̂µ − r̂µ)δab, ∀µ. (C.74)

The integrals over qµ, rµ, q̂µ and r̂µ are then estimated using the saddle-point method
valid for large N, and then taking the small n limit. The resulting expression for the
resolvent sL(z) of (C.61) is

2∂z

[
opt{qµ,rµ,q̂µ,r̂µ} lim

n→0
lim
N→∞ 1

nN
log
〈
ZL(s)

n
〉]

= 2∂z

[
opt{qµ,rµ,q̂µ,r̂µ}f({qµ, rµ, q̂µ, r̂µ})

]
,

(C.75)
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where f({qµ, rµ, q̂µ, r̂µ}) is the free energy density equal to

∑
µ

q̂µqµ −
1

2

∑
µ

r̂µrµ −
α

2

∑
k 6=0
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log
(
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∑
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∑
µ cµrµ

1+ Γ̂(k)
∑
µ cµ(qµ − rµ)

]
−
1

2

∑
µ

βµ

[
log
(
2q̂µ − r̂µ − z

)
+

r̂µ

2q̂µ − r̂µ − z

] .

(C.76)

The saddle-point equations obtained by optimizing f({qµ, rµ, q̂µ, r̂µ}) with respect to q̂µ,
r̂µ, qµ and rµ read ∀µ

qµ

βµ
= −

r̂µ(
2q̂µ − r̂µ − z

)2 +
1

2q̂µ − r̂µ − z
, rµ = −

βµr̂µ(
2q̂µ − r̂µ − z

)2 ,
q̂µ =

α

2

∑
k6=0

(
Γ̂(k)cµ

1+ Γ̂(k)
∑
ν cν(qν − rν)

−
Γ̂(k)2cµ

∑
ν rνcν(

1+ Γ̂(k)
∑
ν cν(qν − rν)

)2) ,
r̂µ = −α

∑
k 6=0

Γ̂(k)2cµ
∑
ν rν cν(

1+ Γ̂(k)
∑
ν cν(qν − rν)

)2 . (C.77)

This system of equations admits rµ = r̂µ = 0, ∀µ as a solution, which gives, according to
(C.75), the following system of equations satisfied by sL(z):

sL(z) =
∑
µ qµ ,

z = −
βµ
qµ

+α
∑

k 6=0
Γ̂(k)cµ

1+Γ̂(k)
∑
ν qνcν

, ∀µ .
(C.78)

Note that we are eventually interested in the spectral properties of the matrix C with
entries

Cij =
1

L

L∑
`=1

ci∑
m=1

cj∑
m
′
=1

Γ
(∣∣∣r`i,m − r`

j,m
′

∣∣∣) =
1

α
M

(L)
ij . (C.79)

Obviously, the resolvent s of C is related to the resolvent sL of M(L) through the equation
s(z) = αsL(αz). Hence we obtain our fundamental system of equations for the resolvent
of C: s(z) =

∑
µ qµ ,

z = −
βµ
qµ

+
∑

k 6=0
αΓ̂(k)cµ

α+Γ̂(k)
∑
ν qνcν

, ∀µ .
(C.80)
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c.2.4 Quenched PF theory: multi-populations of neurons (multiple PFs per neuron on a map)

Here we are going to extend the Gaussian theory with quenched PF developed in
Section 4.6 to the case of multi-populations of neurons and multiple PFs per neuron in
the same map. By multi-populations of neurons we mean that the N neurons are divided
in M finite groups with fractions of neurons βρ with ρ = 1, . . . ,M and every group of
neurons with a specific property, i.e., cρ PFs with area φ0 < 1.

The computation follows exactly what seen in Section 4.6 until the definition of the
order parameters that are now

ma` =
∑
j>2

Wja

(
2

c1∑
m=1

cj∑
m
′
=1

Γ
(
|r`1,m − r`

j,m
′ |
)
− cjφ0

)
(C.81)

and

qab` =
∑
j,k>2

WjaWkb

cj∑
m=1

ck∑
m
′
=1

Γ
(
|r`j,m − r`

k,m
′ |
)

. (C.82)

Now we make the same approximations as Section 4.6 and so we can write the final
expression of the order parameters after adding up all the maps:

ma ≡ 1

L

L∑
`=1

ma` =
∑
j>2

Wja

(
2C1j

(
{r`j,m}

)
− cjφ0

)
(C.83)

and

qab ≡ 1

L

L∑
`=1

qab` =
∑
j,k>2

WjaWkb Cjk
(
{r`j,m}

)
. (C.84)

The N×N multi-space Euclidean random matrix C appearing in the expressions above is
defined as

Cij =
1

L

L∑
`=1

ci∑
m=1

cj∑
m
′
=1

Γ
(∣∣∣r`i,m − r`

j,m
′

∣∣∣) . (C.85)

In the following, we denote by ρ(λ) the density of eigenvalues λ of C. This density is self-
averaging when the PFs are randomly drawn in the large L,N double limit. Its resolvent,
defined as

g(U) =

∫
dλ

ρ(λ)

λ+U
, (C.86)
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where the integral runs over the support of ρ, is solution of the following system of
equations, see C.2.3:g(U) =

∑M
ρ=1 qρ ,

U = −
βµ
qµ

+
∑

k 6=0
αΓ̂(k)cµ

α+Γ̂(k)
∑
ν qνcν

, ∀ρ .
(C.87)

From here on we obtain the same equations of what we saw in Section 4.6 except for
the quantity Ξ defined as

Ξ(U) =
∑
j,k>2

Hj

(
U Id +C

)−1
jk
Hk with Hj = 2C1j − cjφ0 , (C.88)

and Id is the identity matrix. In the above equation, the inverse is intended over the
N− 1-dimensional restriction of the matrix U Id +C to entries j, k > 2.

c.2.4.1 Computation of Ξ

Expanding the terms in Ξ(U) in Eq. (C.88) above, we write Ξ(U) = Ξ1(U) + Ξ2(U) +

Ξ3(U) with

Ξ1(U) = 4
∑
j,k>2

C1j

(
U Id +C

)−1
jk

C1k , (C.89)

Ξ2(U) = φ
2
0

∑
j,k>2

cj

(
U Id +C

)−1
jk
ck , (C.90)

Ξ3(U) = −2φ0
∑
j,k>2

C1j

(
U Id +C

)−1
jk
ck − 2φ0

∑
j,k>2

cj

(
U Id +C

)−1
jk

C1k . (C.91)

Computation of Ξ1: Consider the N×N matrix C(N), with entries Cij for i, j comprised
between 1 and N. Let us also define Id(N) the identity matrix in dimension N, while Id
above referred to the identity matrix in dimension N− 1. Using block-matrix inversion
formulas, we write that(

U Id(N) +C(N)
)−1
11

=
1

U+C11 −
∑
j,k>2

C1j

(
U Id +C

)−1
jk

C1k

(C.92)

The left hand side of the equation above is equal, in the large–N limit, to the resolvent
g(U) of C defined in (C.86). Using C11 = c1φ0 and the definition of Ξ1(U), we obtain

Ξ1(U) = 4

(
U+ c1φ0 −

1

g(U)

)
. (C.93)
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Computation of Ξ2: Let |v+〉 be the normalized vector withN identical components, (v+)i =
1√
N

. For large N, |v+〉 is the top eigenvector of C, with (extensive) eigenvalue λ+ =

Nφ20
∑M
ρ=1 βρc

2
ρ. After the computation of the braket of this vector with the matrix of

components φ20cj
(
U Id +C

)−1
jk
ck , and taking the large N limit we get:

Ξ2(U) =
Nφ20

∑M
ρ=1 βρc

2
ρ

U+Nφ20
∑M
ρ=1 βρc

2
ρ

→ 1 . (C.94)

Computation of Ξ3: As Cjk with j, k > 2 does not depend on the locations r`1,m of the
place fields associated to neuron i = 1 in the different maps `, we may substitute C1j and
C1k in Eq. (C.91) with their average over those positions, respectively equal to φ20c1cj and
φ20c1ck. We obtain

Ξ3(U) = −4φ0c1 Ξ2(U) = −4φ0c1 , (C.95)

in the large-N limit, see calculation of Ξ2(U) above.

Expression of Ξ: Gathering the three terms above, we obtain

Ξ(U) = 1+ 4U−
4

g(U)
. (C.96)

c.2.4.2 Large-p behavior of the critical capacity

The rest of the steps are the same presented in Section 4.6, in fact now we can write the
set of equations coupled for x and the resolvent g:

g =

M∑
ρ=1

qρ , (C.97)

βρ

qρ
=
∑
k 6=0

Γ̂(k)cρ
1+ pH(x)Γ̂(k)

∑M
θ=1 cθqθ

, ∀ρ , (C.98)

1−
4

g
= x
√
2πH(x) ex

2/2 . (C.99)

from which the capacity can be computed as a function of the number p of points,

αc(p) =
1

pH(x)
. (C.100)

In practice, we can choose x at will, compute g from (C.99), then p from (C.97) and (C.98),
and, finally, αc from (C.100).
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Now we make the hypothesis that qρ = g rρ with rρ = O(1) ∀ρ so that we can write
(C.97) and (C.98) as:

1 =

M∑
ρ=1

rρ , (C.101)

βρ

g rρ
=
∑
k 6=0

Γ̂(k)cρ
1+ pH(x)gΓ̂(k)

∑M
θ=1 cθrθ

, ∀ρ . (C.102)

Summing all the equations (C.102) we get:

1

g
=
∑
k 6=0

Γ̂(k)
∑M
ρ=1 cρrρ

1+ pH(x)gΓ̂(k)
∑M
θ=1 cθrθ

. (C.103)

According to dimensional analysis, the large momentum scaling of the Fourier coefficients
is given by

Γ̂(k) ∼
φ20(

kφ
1
D

0

)D+1
=
φ
1− 1

D

0

kD+1
, (C.104)

where k = |k| and D is the dimension of the physical space. Using (C.104), equation
(C.103) can be rewritten as

pH(x) = G
(
gpH(x)φ

1− 1
D

0

∑
ρ

cρrρ

)
with G(y) =

∑
k 6=0

y

kD+1 + y
. (C.105)

We deduce that, for large arguments y,

G(y) ∼ A1(D) y
D
D+1 with A1(D) =

∫
dDu

|u|D+1 + 1
. (C.106)

In addition, using the asymptotic expansion of the erfc function, we have

x
√
2πH(x) ex

2/2 ' 1− 1

x2
(C.107)

for large x. Combining these expressions allows us to obtain the asymptotic relation
between x and y,

y
1

D+1 = 4A1(D)φ
1− 1

D

0

∑
ρ

cρrρ x
2 . (C.108)

and, to the leading order in p,

x '
√
2 logp−

(
D+

1

2

) log logp√
2 logp

. (C.109)
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We then deduce the asymptotic scaling of the critical capacity given by

αc(p) ∼
A(D)φ

−(D−1)
0

(
∑
ρ cρrρ)

D(logp)D
(p→∞) , (C.110)

with

A(D) =
1

8DA1(D)D+1
. (C.111)

Now in order to show that the hypothesis of rρ = O(1) ∀ρ is consistent we notice using
(C.104) that (C.102) can be rewritten in the following way:

βρ ' Crρ cρ, ∀ρ , (C.112)

where C is fixed using (C.101) so that in the end we get:

rρ '
βρ

cρ

1∑
θ
βρ
cρ

, ∀ρ , (C.113)

and the hypothesis it’s verified. Moreover, once we know (C.113) we can rewrite the
asymptotic scaling of the critical capacity as

αc(p) ∼
A(D)φ

−(D−1)
0 (

∑
ρ
βρ
cρ

)D

(logp)D
(p→∞) , (C.114)

where we recover trivially the result in Section 4.6 for M = 1 and c1 = 1.

c.3 adatron algorithm

Until now we have always used offline algorithms to solve SVM problems where the
patterns to be stored were presented all together to the network in an unrealistic way,
using standard packages to solve convex optimization problems [68, 195], see Section A.1.
Here we show a version of the SVM algorithm of online nature in which the patterns are
presented one at a time (more biologically plausible) and that would allow us to study
questions like what is the best way to present the patterns in order to stabilize them as
soon as possible, or even to present the patterns in such a way to represent the realistic
trajectories of an animal that explores one after the other the different environments. So
this is a first step for the study of learning dynamics in our model. Fortunately there are
already in literature algorithms of this type [21, 71, 132] and in particular in the following
we will consider the adatron algorithm of which we report here the details.

The adatron algorithm is equivalent to the support vector machine in the sense that
it converges to the same solution of the perceptron with optimal stability (maximum
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margin), but with the big difference that it is an online scheme inspired by the perceptron
algorithm itself, therefore more biologically plausible.

Below we report the algorithm, referring to [21, 71] for details on the algorithm conver-
gence demonstrations and links with other schemes such as minover or adaline.

Let’s consider the case of one of the RNN perceptrons for which we need to find the
optimal weights (as usual the different perceptrons are independent so the N problems
can be solved separately), see Section 4.3, say the one corresponding to neuron i = 1.

Let’s start by writing the net weights in the following way

W1j =
1

N
x
`,µ
1 (2ξ`,µ1 − 1)ξ`,µj (C.115)

where x`,µ1 are called the embedding strengths.

We can choose any value for x`,µ1 as long as they are non-negative, including the tabula
rasa case where they are all null.

Once the problem is initialized we start by presenting to the network one pattern at
a time in a sequential way (the algorithm can also be implemented in parallel) and we
update the x`,µ1 according to the following rule

δx
`,µ
1 = max{−x`,µ1 , η(1−∆`,µ1 )} (C.116)

where the η (learning rate) range must be between 0 and 2 to ensure convergence of the
algorithm and ∆`,µ1 is defined as usual as

∆
`,µ
1 = (2ξ`,µ1 − 1)

∑
j6=i

Wijξ
`,µ
j . (C.117)

Presenting several times the patterns to the net following this rule we will arrive to con-
vergence when the following conditions (Kuhn-Tucker conditions, see [43]) are satisfied,
that is

either (x`,µ1 > 0 and ∆
`,µ
1 = 1) or (x`,µ1 = 0 and ∆

`,µ
1 > 1) , (C.118)

for all the patterns.

These conditions are equivalent as those satisfied by the SVM algorithm, in fact once we
have reached convergence and normalized to one the weights, we find exactly the same
results. In addition, the speed of convergence to the perceptron with maximum stability
of this algorithm is exponential.
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ABSTRACT 

 

How sensory information is encoded and processed by neuronal circuits is a central 

question in computational neuroscience. In many brain areas, the activity of neurons is 

found to depend strongly on some continuous sensory correlate. Over the past decades, 

continuous attractor neural networks were introduced as an abstract model for the 

representation of a few continuous variables in a large population of noisy neurons. While 

the original model was based on how to build a single continuous manifold in an high-

dimensional space, it was soon realized that the same neural network should code for 

many distinct attractors. An approximate solution to this harder problem was proposed 

twenty years ago, and relied on an ad-hoc prescription for the pairwise interactions 

between neurons. This solution, however, suffers from two major issues: the interference 

between maps strongly limit the storage capacity, and the spatial resolution within a map 

is not controlled. In the present manuscript, we address these two issues using a 

combination of techniques from statistical physics of disordered systems and random 

matrix theory. We show how to achieve optimal storage of continuous attractors and 

study the optimal trade-off between capacity and spatial resolution. 

 

MOTS CLÉS 

 

Réseau Neuronal à Attracteur Continu, Physique Statistique, Théorie des Matrices 

Aléatoires, Neurosciences Computationnelles. 

RÉSUMÉ 

 

La manière dont l'information sensorielle est codée et traitée par les circuits neuronaux 

est une question centrale en neurosciences computationnelles. Dans de nombreuses 

régions du cerveau, on constate que l'activité des neurones dépend fortement de certains 

corrélats sensoriels continus. Au cours des dernières décennies, les réseaux neuronaux 

à attracteur continu ont été introduits comme un modèle abstrait pour la représentation 

de quelques variables continues dans une grande population de neurones bruités. Alors 

que le modèle original était basé sur la construction d'une variété continue unique dans 

un espace à haute dimension, on s'est vite rendu compte que le même réseau neuronal 

pouvait coder pour de nombreux attracteurs distincts. Une solution approximative à ce 

problème plus difficile a été proposée il y a vingt ans, et reposait sur une prescription ad 

hoc pour les interactions par paires entre les neurones. Cette solution souffre cependant 

de deux problèmes majeurs: l’interférence entre les cartes limitent fortement la capacité 

de stockage, et la résolution spatiale au sein d'une carte n'est pas contrôlée. Dans le 

présent manuscrit, nous abordons ces deux questions en utilisant une combinaison de 

techniques issues de la physique statistique des systèmes désordonnés et de la théorie 

des matrices aléatoires. Nous montrons comment parvenir à un stockage optimal des 

attracteurs continus et étudions le compromis optimal entre capacité et résolution 

spatiale. 

 

KEYWORDS 

 

Continuous Attractor Neural Network, Statistical Physics, Random Matrix Theory, 

Computational Neuroscience. 
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