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Abstract   

Drift wood plays a significant role both on the ecology and morphology of a river. 

Therefore, quantifying the amount of wood in rivers is an important issue. During 

recent years, streamside video monitoring has been introduced as a feasible 

technique to evaluate the amount of wood in riverine environment. Beside many 

advances, there are still many questions needed to be address concerning this 

technique. Therefore, in this study, I focused on three major objectives. Firstly, I 

studied the relation between wood flux and flow discharge in order to create a model 

for predicting wood flux on invisible period of camera sight. Wood in-stream can 

show some different characteristics in some critical events, such as in two multi-peak 

floods, wood flux on the first peak of discharge is more than second one, and in a 

flood after a stronger windy day, wood flux can be activated by water elevation arise. 

In addition, the second major objective was implementation and validation the 

application of an automatic detection software. After training the software, it is used 

to extract wood flux automatically by its own surveillance. The third major objective 

was evaluating human-based uncertainties in video monitoring due to two limitations, 

first time limitation which results in sampling the videos and second limitation in 

visibility of the operator which results in bias between different operators. I expect the 

results of this thesis develop the application of streamside video monitoring 

technique for practical concerns. 

Keywords: Fluvial dynamics; Wood in river; Streamside video monitoring; 

Automatic detection; Uncertainty; Video sampling; Operator Bias 
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Résumé 

Le bois flotté joue un rôle important à la fois sur l'écologie et la morphologie 

d'une rivière. Par conséquent, la quantification de la quantité de bois dans les rivières 

est une question importante. Ces dernières années, la surveillance vidéo en bord de 

rivière a été introduite comme une technique pour évaluer la quantité de bois en 

milieu fluvial. Outre de nombreuses avancées, il reste encore de nombreuses 

questions à résoudre concernant cette technique. Par conséquent, dans cette étude, 

nous nous sommes concentrés sur trois objectifs majeurs. Dans un premier temps, 

nous avons étudié la relation entre flux de bois et débit d'écoulement afin de créer un 

modèle de prévision du flux de bois sur une période durant laquelle la caméra ne 

peut enregistrer le flux vidéo. Le bois dans les cours d'eau peut présenter des 

caractéristiques différentes lors de certains événements critiques, comme par 

exemple, lors de deux crues à plusieurs pics, le flux de bois sur le premier pic de 

débit est supérieur au second, et en cas d'inondation après une journée venteuse 

plus forte, le flux de bois peut être activé par l'élévation de l'eau. En outre, le 

deuxième objectif majeur était la mise en œuvre et la validation de l'application d’un 

logiciel de détection automatique. Après avoir entrainé l’algorithme de détection, il 

est utilisé pour extraire automatiquement les flux de bois de manière continue. Le 

troisième objectif majeur était d'évaluer les incertitudes d'origine humaine dans la 

surveillance vidéo en raison de deux principaux facteurs. La détection manuelle est 

extrêmement fastidieuse et longue et nécessite ainsi d’envisager une stratégie 

d'échantillonnage des vidéos. Le second problème nécessitant une évaluation de 

l’incertitude est lié à la capacité souvent variable de l'opérateur à détecter les 

flottants, qui se traduit par un biais de mesure entre les différents opérateurs. Nous 

espérons que les résultats de cette thèse permettront de diffuser l’usage de la 

technique de surveillance vidéo fluviale à des fins pratiques. 

Mots clés : Dynamique fluviale ; Bois dans les rivières ; Surveillance vidéo en 
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bord de rivière ; Détection automatique ; Incertitude ; Échantillonnage vidéo ; Biais de 

l'opérateur 
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CHAPTER I. Introduction 

1.1 Résumé du chapitre I : Introduction 

Dans ce chapitre, nous définirons d'abord le bois des rivières comme un élément 

important pour la nature et les êtres humains. Nous introduire du bois dans les 

rivières est également une composante essentielle des systèmes fluviaux qui peut 

influencer l'écologie des rivières et la géomorphologie des chenaux. Sur cette base, 

nous savons que le bois dans les rivières peut également intensifier les risques lors 

du transport de bois de gros diamètres en cas de crue énorme. Par conséquent, 

nous étudions plusieurs approches pour quantifier le transport du bois dans les cours 

d'eau. Dans la dernière section de ce chapitre, nous présentons les objectifs de ce 

travail d'étude et nous guidons à travers la structure du manuscrit. 

 

In this chapter, we shall first define wood in rivers as a significant element to 

nature and human beings. Introducing some wood in rivers is also an essential 

component of river systems that can influence river ecology and the channel 

geomorphology. Based on this, we know that wood in rivers can also intensify hazard 

during the transport of large wood in huge flood. Therefore, we investigate several 

approaches to quantify transport of wood in streams. In the final section of this 

chapter, we will introduce the objectives of this study work, which will guide us 

through the structure of the manuscript. 

1.2 Context 

Rivers are the natural flowing watercourse on the earth which play a significant 

role on the hydrological cycle. Along the river’s erosion and sedimentation process 

transport and deposit sediments (rocks and sands) as well as the pieces of wood 

which are provided by shrub and tree growing on vegetated bars, fluvial islands and 
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floodplains. These in-stream wood pieces can significantly influence over river 

morphology, sediment dynamics and fluvial ecosystems, which is a beneficial factor 

in context of natural cycle. 

Wood in rivers can also be a crucial element to human. Many civilizations have 

been built around the rivers. However, during recent decades, these rivers are 

stressed by human activities such as the control of the river banks, the construction 

of bridges, dams and other hydraulic structures along the rivers. Moreover, during the 

last few decades, forest cover has generally increased in many European regions 

due to the widespread abandonment of agricultural surfaces and changes in framing 

practices. This phenomenon within global climate change enhances wood supply and 

entrainment to the rivers. Therefore, over the last 40 years, as the role of wood in 

river ecosystems has become an increasingly important focus for research, the video 

monitoring of the rivers has been known as a feasible method to quantify the amount 

of wood in rivers. Though, video monitoring, by itself is an inexpensive and practical 

technique in riverine environment, however, annotating wood piece is still a time-

consuming process. Therefore, the aim of this thesis is to introduce some protocols 

and techniques to quantify the amount of wood in rivers by using the video 

monitoring technique which enables us to be able to monitor wood pieces in rivers 

automatically and all along the day time. 

1.3 Large wood in river channel 

1.3.1 Importance of large wood in river 

 In-stream wood can be as important as sediment for channel change (e.g., 

Massong and Montgomery, 2000; Brooks and Brierley, 2002; Abbe and Montgomery, 

2003; Le Lay et al., 2013). In-stream wood is also a significant and essential 

component of river systems that has a strong influence on stream and aquatic 

ecology, sediment transport, and the channel geomorphology along all along the river 

continuum (Montgomery et al., 1996).  
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The interactions between large wood and fluvial processes have significant 

implications for the ecology of river systems. Wood influences the functioning of 

aquatic and riverine ecosystems, enhances the biogeochemical cycling of carbon in 

ecosystems (Battin et al., 2008; Skalak and Pizzuto, 2010; Wohl et al., 2012), and 

provides food for invertebrate, fish communities and habitats during different stages 

of their life cycles (Sedell et al., 1984; Inoue and Nakano, 1998; Piégay et al., 2005). 

There are complex feedbacks between green wood, living trees and other riparian 

and aquatic plants. Living wood pieces transported by flowing water are deposited in 

and around wood logjam, which would create local regeneration niches for riparian 

vegetation (Steiger et al., 2001; Pettit and Naiman, 2006; Osei et al., 2015) and 

biogeochemical hotspots for microbial activity (Krause et al., 2014; Grabowski et al., 

2019). Furthermore, wood accumulated in-stream may play an important role in 

regulating water quality and in sustaining refuge habitats to protect biota during 

pollution episodes and floods (Gurnell et al., 2002). 

Large wood (LW) in rivers also facilitates diversification of river morphology and 

sediment dynamics (Montgomery et al., 2003; Wohl et al., 2012; Wohl and Scott, 

2017). The stable accumulation of wood has a direct influence over channel 

anabranching, platform geometry and floodplain topography. Some types of wood 

accumulation can also form stable in-stream which affects alluvial morphology (Abbe 

and Montgomery, 2003). Wood accumulation or large wood pieces in streams can 

bring more stabilization or mobilization to the river bed, bank or floodplain, it can also 

induce deposit of sediment and organic matter (Grabowski et al., 2019). Wood along 

the river corridors creates hydraulic resistance that can decrease flow velocity and 

transport capacity in the vicinity of the wood (Shields and Smith, 1992; Davidson and 

Eaton, 2013; Wohl et al., 2016). It can also provide surface roughness which declines 

floodplain surface flows, retains floating wood and deposits fine sediment (Dosskey 

et al., 2010). 

The important role played by the in-stream wood in ecology and morphodynamic 
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of the rivers, invites us to consider it as a key component in river restoration and the 

production of a variety of physical habitats (Gurnell, 2012, 2013). River restoration 

and management aim to improve physical natural form and processes of a river. The 

techniques to monitor and to manage large wood can reshape the natural habitat, 

control the riverbed, stabilize channel alignment and protect stream banks, these 

features are the important part of river restoration method (Pagliara and Kurdistani, 

2017; Cashman et al., 2019; Grabowski et al., 2019). For instance, Wohl and Scott 

(2017) indicated that more abundant in-stream wood and beaver populations can be 

used to restore rivers ecologically, due to the fact that they could accumulate more 

sediment within river corridors and maintain more residual pool volume.  

1.3.2 Problems associated with large wood in river 

Although wood in stream has an undeniable positive effect on river morphology 

and restoration, improving ecosystems, , it can also be an exacerbating hazard factor 

during the transport of large wood material in huge flood (Diehl, 1997; Comiti et al., 

2006; Lassettre and Kondolf, 2012; Ruiz-Villanueva et al., 2014a). The presence of 

wood in a river can increase flow stage, alter movement of sediment and patterns of 

erosion and deposition. Its transportation during the flood events, threatens not only 

human activities on rivers but also the populations and infrastructures (Lyn et al., 

2003; Piégay, 2003; Comiti et al., 2006; Wohl et al., 2016; De Cicco et al., 2018), 

especially in or near urban settings (Mazzorana et al., 2011; Ruiz-Villanueva et al., 

2014a; Wohl et al., 2016). Moreover, in the past few decades, the development of the 

urbanization has occupied massive infrastructures in endangered zones of mountain 

areas, such as the recreation areas, ski resorts, hiking paths, as well as buildings, 

roads and bridges. These infrastructures are totally exposed to the impact of flood 

event (Comiti et al., 2006; Versini et al., 2010; Mazzorana et al., 2011; Tacnet et al., 

2012; Mazzorana et al., 2018). 

Dead and living wood incorporated into the floodplain (e.g. Arseneault et al., 

2007) can form ‘hard points’ that are resistant to erosion, supports the longer-
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term development of riparian vegetation, especially those large trees that provide a 

future wood supply to the river system (Collins et al., 2012). Finally, sustained 

floodplain inundation induced by large wood accumulations can lead to tree mortality 

and subsequent enhanced wood delivery to the river (Brummer et al., 2006). It could 

increase the potential hazard for downstream bridge, river channel and 

infrastructures along the river. 

As mentioned above, wood transported in the river channel is a threatening 

process due to its progressive increase of flood hazard. Log jams are often a major 

element of stream morphology, and floating logs may generate a natural hazard 

(Manga and Kirchner, 2000; Kraft and Warren, 2003; Comiti et al., 2006; Mao et al., 

2008; Curran, 2010; Mazzorana et al., 2011; Turowski et al., 2013a). As shown on 

Figure I-1, the main potential hazard damage is logjam at the bridges, it reduces flow 

openings, causes blockage and inundation of nearby areas, which lead to 

infrastructures collapsing during floods (Ruiz-Villanueva et al., 2014a; Wohl et al., 

2016; De Cicco et al., 2018). By increasing resistance and obstructions to flow, large 

wood accumulations along one bank can deflect flow toward the opposite bank and 

accelerate bank erosion (Montgomery, 1997).  

 

Figure I-1: Wood accumulations on the river channel, a) in Everett, USA, wood jam at 

the bridge on the Snohomish River (2019); b) In Soquel, USA, after January 1982 storm, 

logjam obstructed the bridge (Lassettre et al., 2012). 

To predict in real system risk associated with wood, MacVicar and Piégay, (2012) 

emphasized the need to develop new approaches for documenting and monitoring 

fluvial wood transport. A better understanding of LW (Large wood) supply, transfer, 
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and deposition is necessary in order to balance the positive ecological factors of LW 

against the risks of increased flooding (Piégay and Gurnell, 1997). Therefore, it is 

necessary to detect and to monitor the amount of in-stream wood in a quantitative 

manner, to be able to evaluate the LW-related hazards. 

1.4 Definitions  

In this section, we introduce some parameters of in-stream wood. Firstly, the 

wood pieces, which refer to the objects whose size spans from tiny pieces to entire 

trees. In terms of different types of floating objects, we can distinguish them such as 

leaves, needles and wood fragments to twigs, branches and even entire trees with 

leaves and mud. Large wood in streams generally refers to wood pieces that have 

the size of at least 10 cm in diameter and 1 m in length, it could be utilized by various 

wood size on different river forms (Gurnell et al., 2002). 

Wood flux is the number of wood pieces that pass an observe point on the river 

per unit time. The wood flux is different from the wood discharge. The first one is a 

statistic for gathering the number of wood pieces, while the second one is defined by 

the volume of wood flux, it is the volume of transported wood per unit time. Wood 

budget is a quantitative framework for analyzing the mass budget of the pieces of 

wood. Wood budgeting at annual timescales encompasses several key elements, 

wood volumes and wood flux transport rate being crucial ones.  

Bankfull discharge (Qbf) is the flow that reaches the threshold between the 

channel and river floodplain and is thus a significant morphological parameter 

(Leopold et al., 2020). Bankfull discharge is usually estimated by 1 to 2 years peak 

flow (Dunne and Leopold, 1978; Harman et al., 1999), or 1.5 years on average 

(Rosgen, 1994; Castro and Jackson, 2001; Ghaffarian et al., 2020a). However, the 

use of Qbf for weighing the flood event often applies variable measurements, 

depends on different river channel scenario.      
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1.5 Quantifying in-channel wood fluxes 

 

Figure I-2: Illustration of variables used in wood budgeting analysis (Martin and Benda, 

2001) 

As mentioned on section 1.3.2, it is necessary to detect and monitor in-stream 

wood to be able to quantifiably evaluate the interaction between wood and river 

system, such as how wood decay and deposition could influence ecological habitat, 

how wood transportation and deposition influence river morphology, and how LW 

could relate with the natural hazard. 

Both Martin and Benda (2001), and Benda and Sias (2003) indicated a 

quantitative framework for evaluating fluvial transport of wood. The fluvial transport of 

wood has consistently identified three essential processes, namely wood recruitment 

(I), transport (QI and QO) and storage (D) (Figure I-2). Therefore, over 20 years of 

research into LW in streams, many different techniques were used to measure and 

monitor wood. These field data can lead the researchers to understand and quantify 

the three essential processes of wood transport in streams.  
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Turowki et al. (2013) used a bedload traps which consist of an aluminum frame 

and the automatic basket samplers which consist of metal cubes with 1 m edges to 

sampling wood flux during flood event. After the samples were classified and oven-

dried, the mass of wood flux can be as a non-linear function of discharge on 

Erlenbach Steam, Switzerland. Turowki et al.(2013) also suggest that the wood flux 

export for all size fractions can be estimated from the volumes of LW debris  

exported in a large event, for example by measuring piece sizes trapped in a 

reservoir or by video monitoring the passage of wood pieces (e.g., MacVicar and 

Piegay, 2012). To be more clear; while in the case of coarse wood, the wood 

discharge has a direct relation with Qf (Turowski et al. 2013), for the large woods 

Macvicar et al. (2012) found a big non-monotonic behavior at Qbf for large wood 

discharge. 

1.5.1 Use of imagery and video to quantifying wood flux  

Optical imagery is one of the most common remote sensing tools installed on 

different platforms and acquiring different combinations of spatial resolution area. 

The increasing spatial, temporal and spectral resolutions of imaging technologies are 

improving our ability to monitor river forms and processes. In the meantime more 

sophisticated analysis of the imagery obtained is providing new insights and 

understanding for river scientists (MacVicar et al., 2012). Aerial imagery allows larger 

reaches to be surveyed and could determine the changes in storage of wood in river 

channel on annual or decades (Lassettre et al., 2008). MacVicar et al., (2009) 

repeated wood surveys which were made from low-elevation high-resolution aerial 

images by using a drone aircraft on the Drôme River, France. These aerial imagery 

with high resolution could detect wood as small as 0.10 m in diameter. It allows us to 

calculate the change in wood deposition between flight dates and lateral outputs as a 

result of floodplain advancement. Boivin et al. (2015) estimated a  wood raft volume 

in channel by using a planimetric analysis of aerial photos. Using decadal and annual 

intervals, this study aims to examine the accumulation of wood in a large raft of the 
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Saint-Jean River and to conclude that the relationship between river discharges and 

wood volumes was not simple, explaining the river network can store or deliver wood 

in a variable manner during each of the flood events. 

Wood removal records from reservoirs are a significant data for the quantification 

of wood transport. Benacchio et al. (2017) have installed a camera to obtain ground 

camera images with 10 minutes interval on Génissiat Dam, located in the upstream 

reach of the Rhône River, France. A random forest algorithm makes a distinction 

between wood and water surface so as to extract automatically a wood raft area. 

Although it has provided a high accuracy classification rate and has established a 

good relationship between wood weights which based on mechanical wood 

extractions and wood raft surface area monitoring just before the extraction, it is not 

possible to apply this method to detect wood delivery, because changes in raft 

density and form are very significant so that the conversion of wood area into wood 

weight or wood discharge is not direct.  

Direct observation of wood movements is rare, the tracing of large wood 

movements is even less common. The first attempt at creating a wood transport 

curve used video monitoring of floods on the Ain River in France (MacVicar and 

Piégay, 2012). Researchers installed a video camera at the Pont de Chazey gauging 

station. The camera was located on one side of the river. The video feed was 

transmitted via remote servers to a computer at the University of Lyon and saved in 

movie jpeg format. For image processing, a semi-manual logging algorithm was 

written in MATLAB to extract the information of in-stream wood occurence from the 

videos. A rectification algorithm applying mapping coefficients was developed to 

transform the pixel coordinates of the wood into real coordinates. The wood length 

and diameter were calculated from real coordinates as a cylindrical shape for wood. 

Kramer et al. (2014) set a standard camera on the outside of a band, beyond the 

Slave River in Canada. On high-discharge and low-gradient River, monitoring LW 

transport with coarse interval (≥1 min) time-lapse photography enables the 
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deployment of monitoring cameras at large spatial and long temporal scales.  

Studying the wood flux by very high temporal resolution (in number of pieces per 

second) is a fairly recent method and there are only a few study-cases which 

consider such an issue. Video monitoring is a technique that provides continuous 

monitoring on rivers with a very high temporal resolution, which is applicable for 

monitoring wood fluxes, especially during the times when access to the river is 

difficult or even dangerous (e.g., during a flood event) (Kramer et al., 2017; Senter et 

al., 2017; Ruiz-Villanueva et al., 2019). Wood flux can be studied accurately during 

single, multi peak and flash floods by high temporal resolution. Especially in high 

gradient rivers, it is necessary to monitor wood fluxes in high temporal resolution e.g. 

1 frame per second (fps) or even more. Lyn et al. (2003) first time used two stream-

side video cameras for observing and detecting dramatic wood debris accumulation 

on bridge pier in the Eel River, USA. Due to storage issues, Lyn et al. (2003) 

decrease frame rate to 0.1 fps and also apply image compression by decreasing the 

quality of recorded frames during monitoring period. In more recent works, MacVicar 

et al. (2009), and MacVicar and Piégay (2012) recorded wood transport during floods 

in the Ain River (France). They compare LW dynamics with flood hydrograph and 

develop a quantitative relationship between wood and water discharges using data 

from a stream-side video camera. The monitoring results were found that a wood 

transport threshold occurs at 0.67% Qbf. MacVicar and Piégay (2012) and Ghaffarian 

et al. (2020a) provide some recommendations about using stream-side video 

cameras in rivers within different situations. By comparing the data provided by 

MacVicar and Piégay (2012) on the Ain River and two monitored floods on the Isère 

River (France), they have not only demonstrated the feasibility of the video 

monitoring approach in the riverine environment but has also showed its limits and 

constraints.  

1.5.2 Detecting wood flux from a stream-side video camera. 

Videography means to capture a series of images of the interested object. It can 
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capture the movement of objects within the image frame to be distinguished 

(MacVicar et al., 2012). This technique can be practiced either manually (known as 

annotation) or automatically (known as detection). 

A semi-manual logging algorithm is used to record the position, velocity, 

dimensions, and other details about detected wood pieces in the video (MacVicar et 

al., 2009; MacVicar and Piégay, 2012). This algorithm advances the video one frame 

at a time. The observer manually marks the endpoints and the edges of the wood. 

The time is then read from the image, and the coordinates of the wood are 

transformed using a rectification algorithm to obtain the size of wood (Figure I-3). 

However, there is a weakness for detecting wood manually in the rivers. Since the 

video is advanced frame by frame to detect wood flux in front of the camera, the 

observer is obliged to check more than 150 thousand frames per day, which is a 

huge piece of work. Although Kramer and Wohl (2014) increased sampling interval to 

monitoring large volume in a low gradient river, it still costs a long time for annotating 

wood flux on long-term survey.  

 

Figure I-3: Wood detection procedure showing: a) definition of a region of interest (ROI) 

based on a visual detection of wood including measurement of data and time from time 

stamp, b) precise location of end and side points to define the piece length, diameter, 

and first position, c) definition of second position after advancing a number of frames 

to allow calculation of velocity and angular velocity (MacVicar and Piégay, 2012). 

 

Ali and Tougne (2009) developed an unsupervised method to identify floating 

wood in videos by applying intensity, gradient and temporal masks and then tracked 
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the objects through the frame to ensure that they followed the direction of flow. An 

analysis of about 35 minutes of video showed that approximately 90% of the wood 

was detected (i.e. about 10% of detections were missed), which confirmed the 

potential utility of this approach. An additional set of false detections related to 

surface wave conditions amounted to approximately 15% of the total detections. 

However, the developed algorithm was not always stable, and was found to perform 

poorly when applied to a larger data set.  

 

1.5.3 Challenges in video-monitoring of wood discharge 

Despite the advantages of video monitoring techniques, there are always some 

gaps. The first one is about the visibility of the camera (e.g., lack of light during the 

night time or in cloudy weather or connection lost in case of online cameras (Muste et 

al., 2008; MacVicar et al., 2009; MacVicar and Piégay, 2012; Ghaffarian et al., 

2020a). Although the stream-side camera can monitor wood flux with high temporal 

resolution, visual detection is still limited to wood pieces that can be clearly 

distinguished on an annotated frame. Conditions such as night time, cloudy weather, 

fog, rainfall, snow or dirty lens, affect monitoring quality for several hours. In these 

cases, modeling wood fluxes would be an effective and low-cost solution so as to get 

a good estimate of wood flux per contributing event.  

The second challenge is about the complexity of the natural environment that 

has many constraints constantly. The flow of water in rivers contains turbulences and 

waves which could influence the precision of automatic function. In addition, the 

cloud movement in sky could alter the luminosity of the river surface. The difference 

of the brightness plays an important rule of unsupervised monitoring as well. Then, 

our aim is to overcome these gaps by using models and reduce uncertainties in wood 

piece censing. 
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1.6 Objectives 

As mentioned above, to be able to quantify wood flux, it is important to detect the 

huge number of wood pieces for a long-term. Therefore, here study follows three 

main objectives: 

1- Create a model to predict wood flux during entire flood events. 

The current study aims to find the relation between wood flux and flow 

discharge to simplify the monitoring procedure, and to verify whether or not 

the wood transport threshold is influenced by other weather conditions beside 

floods. Moreover, we need to explore wood flux in darkness or lens blocked 

period, in order to estimate whole wood discharge during flood events. 

2- Implementation and validation of wood automatic detection software 

Although methods for monitoring and tracking wood are progressing 

rapidly (MacVicar and Piégay, 2012; Ravazzolo et al., 2015a), the temporal 

dynamics of in-stream wood and long-term observations are extremely rare 

(Iroumé et al., 2014; Ruiz-Villanueva et al., 2016a). Therefore, the 

implementation and validation of wood monitoring application are very 

necessary for detecting wood fluxes continuously. 

3- Evaluate human-based uncertainties in video monitoring  

We still need manually collected wood flux data to train the automatically 

wood detection algorithm, and to compare them with different river monitoring 

data. Analyzed operator bias is very important for considering a patch on the 

video frames as wood piece is different. 
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CHAPTER II. Video monitoring of in-channel wood 

fluxes: critical events, flux prediction, and sampling 

window 

2.1 Résumé 

Le flux de bois (nombre de pièces par intervalle de temps) est un paramètre clé 

pour comprendre la budgétisation du bois, déterminer les facteurs de contrôle et 

gérer le risque d'inondation dans un bassin hydrographique. Des données 

quantitatives sur les flux de bois sont indispensables pour améliorer la 

compréhension de la dynamique du bois dans les rivières et estimer le débit de bois 

dans les cours d'eau. Dans cette étude, la technique de vidéographie en bord de 

rivière a été appliquée pour détecter le passage du bois et mesurer les taux 

instantanés de transport du bois. L'objectif était de mieux comprendre comment les 

flux de bois réagissent aux inondations et aux vents. Au total, un vent exceptionnel et 

7 crues ont été surveillés sur l'Ain, en France, et environ 24 000 morceaux de bois 

ont été détectés manuellement. Nous trouvons une relation empirique entre la 

fréquence du bois et le rejet de bois, qui est utilisée pour simplifier la procédure de 

suivi. Il existe un lien univoque entre la fraction de morceaux de bois détectés et le 

paramètre adimensionnel «temps de passage × framerate», qui fournit une ligne 

directrice générale pour la conception des stations de surveillance. Il est confirmé 

qu'en général, il existe un seuil de mouvement du bois dans la rivière égal à 60% du 

débit à pleine rive. Cependant, lors d'une inondation suivant une journée venteuse, 

aucun seuil évident de mouvement du bois n'a été observé, ce qui confirme que le 

vent est important pour la préparation du bois pour le transport entre les crues. Lors 

de deux crues à plusieurs pics, environ les deux tiers de la quantité totale de bois ont 

été livrés au premier pic, ce qui confirme l'importance du temps entre les crues pour 

prédire les flux de bois. L'ensemble de données est utilisé pour développer un 
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modèle de régression forestière aléatoire pour prédire la fréquence du bois en 

fonction de trois variables d'entrée dérivées de l'hydrogramme d'écoulement. Le 

modèle calcule le volume total de bois pendant la journée ou la nuit en se basant 

pour la première fois sur la technique de surveillance vidéo, ce qui élargit son utilité 

pour la budgétisation du bois dans un bassin versant. 

2.2 Abstract 

Wood flux (piece number per time interval) is a key parameter for understanding 

wood budgeting, determining the controlling factors, and managing flood risk in a 

river basin. Quantitative wood flux data is critically needed to improve the 

understanding of wood dynamics in rivers and estimate wood discharge in streams. 

In this study, the streamside videography technique was applied to detect wood 

passage and measure instantaneous rates of wood transport. The goal was to better 

understand how wood flux responds to flood and wind events. In total, one 

exceptional wind and 7 flood events were monitored on Ain River, France, and 

around than 24000 wood pieces were detected manually. We find an empirical 

relation between wood frequency and wood discharge, which is used to simplify the 

monitoring procedure. A one-to-one link exists between the fraction of detected 

pieces of wood and the dimensionless parameter “ 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 × 𝑓𝑟𝑎𝑚𝑒𝑟𝑎𝑡𝑒 ”, 

which provides a general guideline for the design of monitoring stations. It is 

confirmed that, in general, there is a threshold of wood motion in the river equal to 60% 

of bankfull discharge. However, in a flood following a windy day, no obvious 

threshold for wood motion was observed, confirms that wind is important for the 

preparation of wood for transport between floods. In two multi-peaks floods, around 

two-thirds of the total amount of wood was delivered on the first peak, which confirms 

the importance of the time between floods for predicting wood fluxes. The data set is 

used to develop a random forest regression model to predict wood frequency as a 

function of three input variables that are derived from the flow hydrograph. The model 
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calculates the total wood volume either during day or night based on the video 

monitoring technique for the first time, which expands its utility for wood budgeting in 

a watershed.  

2.3 Introduction 

Floating wood in rivers, known as driftwood is a significant component of 

catchments, notably in forested temperate regions (Ruiz-Villanueva et al.  2016a; 

Wohl, 2013). It is delivered in the rivers by a set of processes (landslides, debris 

flows, blowdown, bank erosion and so on) which vary from upstream to downstream 

(Nakamura and Swanson, 1993; Montgomery et al., 1996; Abbe and Montgomery, 

2003; Gurnell and Petts, 2006). Among different recruitment processes, bank erosion 

probably delivers most of the large organic material into larger lowland rivers (Keller 

and Swanson, 1979). These large pieces of wood (i.e., 1m length, 10cm diameter), in 

a river induce variations in hydraulic and sediment dynamics, and contribute flow 

resistance and obstructions within the channel (Young, 1991; Gippel, 1995; Shields 

and Gippel, 1995; Wilcox and Wohl, 2006; Comiti et al., 2008). Especially during a 

flood, the transport and deposition of large wood pieces could represent a potential 

increase in the destructive power of floods, which increases the potential risks to 

human populations and infrastructures ( Lassettre and Kondolf, 2012; De Cicco et al., 

2018; Mazzorana et al., 2018). For instance, a flow obstruction due to wood 

accumulation can lead to upstream bed aggradation, channel avulsion, and local 

scouring processes, which can in turn cause embankment or bridge collapse and 

floodplain inundation (Diehl, 1997; Lyn et al., 2003; Fischer, 2006; Waldner et al., 

2007; Mao et al., 2008; Mazzorana et al., 2009; Comiti et al., 2012; Ruiz-Villanueva 

et al., 2014a). Therefore, quantifying wood inputs, transport, deposition, and 

budgeting in general is crucial for understanding and managing wood risk in rivers. 

Understanding the variability and the process-scale dynamics which control 

wood delivery and transport rate is also a critical challenge (Martin and Benda, 2001; 
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Benda et al., 2003; Marcus et al., 2011; Schenk et al., 2014; Boivin et al., 2015). 

Wood budgeting can be explored at different time scales. The wood recruitment sites 

are often observed close to the preferential sites of deposition (Schenk et al. 2014; 

Ravazzolo et al. 2015), but not systematically, as shown along the Isère River, 

France (Piégay et al., 2017). Some pieces of wood can be transported over very long 

distances during a single flood (Gurnell et al., 2002; Gurnell, 2012; Comiti et al., 2016; 

Kramer and Wohl, 2017). Moreover, the amount of wood can be documented at 

multi-annual and annual time intervals over long time periods by historical data (Seo 

et al., 2008; Seo and Nakamura, 2009; Ruiz-Villanueva et al., 2014b). Based on this 

long time scale, however, it is not possible to record continuous series and study 

wood transport processes during shorter but critical hydrological events such as 

floods, exceptional wind events, and landslides, which are known to drive wood 

fluxes in rivers (Lassettre and Kondolf, 2012; Ruiz Villanueva et al., 2014a). 

To generate wood input series in shorter time scales, Moulin and Piégay, (2004) 

used weekly time steps to measure the wood stored in a reservoir. The results 

quantified the timing and magnitude of Large Wood (LW) export during flood events 

in the reservoir and allowed the recruitment and transport processes of LW at the 

watershed scale to be better understood. Benacchio et al. (2017) monitored wood 

delivery and calculated wood weight in a reservoir by an automated image 

processing technique using much finer time intervals (10 min). In addition to the 

reservoir-based monitoring, Kramer and Wohl,  (2014) showed that in high-discharge, 

low-velocity rivers, the deployment of monitoring cameras with coarse frame rates (≥ 

1 min) enables monitoring of LW transport at large spatial and long temporal scales. 

However, in smaller and steeper rivers the velocity of wood pieces is higher or the 

field of view is too small such that low frame rate photography cannot provide 

accurate estimates of wood delivery.  

Video monitoring of the water surface can be used to continuously monitor wood 

flux at a high temporal resolution. Lyn et al., (2003) were the first to apply this 
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technique, using two stream-side video cameras to observe and detect wood 

accumulation on bridge pier in the Eel River, Unites States. Due to data storage 

issues, Lyn et al., (2003) downgraded the frame rate to 0.1 fps (frame per second) 

and applied image compression to the recorded frames through the monitoring 

period. Such issues were overcome by MacVicar et al. (2009), and MacVicar and 

Piégay (2012) who established a monitoring station at the Ain River, France, but 

transferred the full resolution images recorded at 5 fps to a remote server for analysis. 

The high quality and frequency of the data, which is likely necessary in high gradient 

rivers, allowed them to compare LW dynamics with flood hydrograph and develop a 

quantitative relation between wood and water discharges. Other studies have 

implemented similar approaches (Boivin et al., 2015; Kramer et al., 2017; Senter et 

al., 2017; Ruiz-Villanueva et al., 2018; Ghaffarian et al., 2020a) but overall the 

technique remains undersubscribed and models of the wood flux as a function of the 

flow hydrograph remain poorly parameterized.  

Overall, the success of a particular monitoring station will be determined by 

issues of wood size and image resolution (MacVicar and Piégay, 2012; Ghaffarian et 

al., 2020a). Ghaffarian et al. (2020a) monitored floods on the Isère River (France) 

and demonstrated the generalizability of technique to other rivers along with some 

limits, constraints, and methodological recommendations. The oblique angle of the 

camera means that it is particularly important to understand where wood will pass 

relative to the camera position (Ghaffarian et al., 2020a). Moreover, a problem 

remains that there are gaps within the data. Such gaps can occur due to the poor 

visibility in low light or cloudy weather, lost connections where data is transferred to a 

remote server for storage (Muste et al., 2008; MacVicar et al., 2009; MacVicar and 

Piégay, 2012; Ghaffarian et al. 2020a), or simply to the time required to extract 

information about floating wood from videos. Despite some efforts at automatic 

extraction (Ali and Tougne, 2009; Lemaire et al., 2014), the procedure to date 

remains predominantly manual. Improved modeling of wood fluxes as a function of 
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flow hydrographs or other environmental conditions could be an effective strategy to 

reduce sampling effort and fill in missing data such that wood fluxes could be 

integrated over time to support wood budgeting in watersheds. 

The aim of the current study is to advance the video monitoring technique for 

wood flux measurement by addressing the following questions: i) Is wood transported 

only during floods (approximately two thirds of the bankfull discharge (MacVicar and 

Piégay, 2012)) and, if so, is the transport threshold discharge a function of 

antecedent conditions? ii) Can wood flux be modeled as a function of the flood 

hydrograph? and iii) Can we accurately estimate wood flux from sampling? The 

analysis uses the database assembled by MacVicar and Piégay  (2012) of sampled 

periods during three floods on the Ain River but significantly adds to this work by 

performing a complete analysis of the daytime videos from four new flood events and 

one period with the low flow but an exceptional wind condition, which was then 

followed by a flood event. This much larger database comprises nearly 180 hours of 

annotated videos or around than 24,000 annotated wood pieces including 18 hours 

videos and 7800 wood pieces monitored by MacVicar & Piégay (2012). The windy 

day event with 35-year return period allowed us to address the first research question. 

A random forest (RF) model was used to answer the second question. 

2.4 Study site 

The study site is located on the lower Ain River, a sixth-order piedmont river 

flowing through a forested corridor in France. The channel is typically single thread 

with occasional islands, and a wandering system with prominent meander scrolls and 

cutoff channels (Figure II-1.a) (MacVicar et al., 2009). The hydrograph shows a 

strong seasonal pattern, with low flows in the summer and most of floods occurring 

between October and April. Bed material sizes are gravel–cobble mix with a median 

size of 2.5 cm. The unvegetated channel width is 65 m in average at the study site, 

actively shifting so that significant amount of wood is delivered by bank erosion. Tree 
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species established in the floodplain are a mix of soft and hardwood species 

dominated by black poplar (Populus nigra) that can reach up to 75 cm in diameter 

and 25 m in height (MacVicar and Piégay, 2012). Along the study site, wood influx 

has been estimated over several decades from the analysis of aerial photographs at 

18 to 38 m3/km/yr (Lassettre et al., 2008).  

Floating wood was counted on the river at Pont de Chazey, where a stream 

gauge is maintained by a regional authority (Figure II-1.b, c). Along the river, the 

characteristic discharge of 1.5-year return period was 𝑄1.5 = 840 m3/s (Ghaffarian et 

al., 2020a), and at this study site, an estimated bankfull discharge (𝑄𝑏𝑓) of 530m3/s 

was confirmed by visual observation (MacVicar and Piégay, 2012). At this point the 

flow discharge is calculated based on the water elevation measured at the gauging 

station. These data are available online from 1959 at (www.hydro.eaufrance.fr). 

Mean daily wind speed is also available from the Meteorological Station of Lyon-Bron 

(1949-2020) (see Figure II-2). 
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Figure II-1. Study site at Pont de Chazey: a) Location of the Ain River course in France 

and location of the gauging and meteorological stations, b) camera position and its 

view angle in yellow, c) overview of the gauging station with the camera installation 

point, d) view of the River channel from the camera 

2.5 Material and Methods 

2.5.1 Stream-side video camera 

Wood pieces were monitored at Pont-de-Chazey gauging station using an AXIS 

P221 Day/Night™ fixed network camera installed in the spring of 2007. Figure II-1.d 

shows the camera field of view on the river surface. The video camera can supply 

high resolution (HDTV720P) surveillance even in extreme low-light, though not at 

night time. The camera was located on the side of the river closest to the thalweg to 

provide a maximum resolution where the majority of wood pieces are observed. The 

camera elevation is 9.84 m above the base flow surface at a sufficiently wide angle to 
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afford a view of the entire river width during most periods. Ethernet connectivity 

enables the automatic transfer of recorded videos to a central server where located 

at CNRS UMR 5600 – Environment Ville et Société, Site of École Normale 

Supérieure, Lyon, France. Videos were recorded continuously at a maximum 

frequency of 3 to 5 fps. Data was recorded with this camera from 2007 to 2011 at a 

resolution of 640×480 pixels and from 2012 to 2016 at 768×576 pixels. The first three 

floods (events F1 to F3) thus have a lower resolution than the final four floods and 

windy period (events F4 to F7 and W1). At minimum compression, each video 

segment occupied approximately 94Mb of memory and approximately 15 minutes so 

that a 4TB hard drive stored approximately one year of video. Flood levels were 

reviewed every few days and videos of interest were saved for later analysis. 

2.5.2 Monitored events 

In total, 7 flood events were monitored in this study (Table II-1). Three flood 

events from 2007 to 2008 were collected from MacVicar & Piégay (2012), referred to 

herein as events F1 to F3 (Figure II-2.a, red lines). A video camera has been 

recorded video at this location more or less continuously from 2007. For the current 

work, four additional flood events between 2012 to 2014 were selected for study and 

sampling and are referred to as events F4 to F7 (Figure II-2.a, blue lines). The floods 

range from 578 m3/s (≅ 𝑄𝑏𝑓) to 1020 m3/s (≅ 2𝑄𝑏𝑓). Event F7 was selected to assess 

whether wind has an effect on the wood delivery because it occurred just two days 

after an exceptional windy day. The windy day occurred on December 24, 2013 and 

is referred to herein as event W1 (Figure II-2.b). The average daily wind speed on 

this day was 13.6 m/s, which is considered to be a one in 35 year event based on a 

Gumbel distribution of the over 70 years of record (Yue et al., 1999).  
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Table II-1 Wood sampling statistics at the Pont de Chazey for different events. 

Flood periods 
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* Number of floating woods 

total daylight Rising limb falling limb 

22 to 24-Nov-2007 F1 578 576 6.6 06:15 09% 2800 38 

10 to 12-Dec-2007 F2 616 616 6.3 03:45 05% 968 93 

10 to 13-Apr-2008 F3 1050 1007 3.8 07:45 08% 3331 584 

01 to 07-Jan-2012 F4 808 807 4.9 57:00 34% 3681 1641 

15 to 16-Dec-2012 F5 932 821 4.9 17:15 36% 6901 798 

01 to 06-Feb-2013 F6 701 701 8.5 56:30 39% 1040 473 

24 to 25-Dec-2013 W1 134 134 13.6 08:45 37% 8 - 

25 to 27-Dec-2013 F7 600 580 5.6 25:45 36% 1443 43 

* Monitored fraction = monitored duration / total duration of an event 

 

Figure II-2. Monitored events a) the daily mean discharge series monitored by MacVicar 

& Piégay (2012) (red lines) and monitored in this work (blue lines) on the discharge 

series from 2007 to 2014. b) The daily mean wind velocity series from 1977 to 2013. 

2.5.3 Monitoring process 

In total 183 hours of video were analyzed, including 18 hours monitored by 

MacVicar & Piégay (2012) (Table II-1). After detecting each piece of wood in a video 

frame, the position of wood was annotated manually frame by frame.  

Two methods were applied for counting piece number: (i) 15 minutes sampling 
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for events (F1 to F3) and (ii) continuous monitoring for events (F4 to F7 and W1). In 

the first approach, from each one hour, only 15 minutes video segment was 

monitored e.g. from 8:30 to 8:45, and then from 9:30 to 9:45, etc. until the end of the 

day (5:30 pm) when video monitoring was impossible due to the lack of light. Then by 

multiplying the number of detected pieces by 4 the total number of wood pieces 

during each hour was extrapolated. It should be noted that, in this approach, it is not 

obvious if the selected 15 min appropriately represents the wood flux for the entire 

one hour which is a source of uncertainty. In the second approach, all daytime (from 

8:30 am to 5:30 pm) was monitored continuously by an operator.  

Considering the detection time for each piece of wood (this time is indicated on 

top of each frame, see Figure II-4.a) wood flux is defined as the number of wood 

pieces within a time interval. In the current study, a 1 hr time interval was selected to 

model the wood fluxes through the flood events (sections 2.6.1, and 2.6.2). This 

interval was found to minimize uncertainty due to short term variability in wood fluxes 

(Ghaffarian et al., 2020a). Then, to study these short-term events (e.g. delivery of a 

large number of wood pieces in a short time, known as wood pulses) 1 and 10-

minute time intervals were selected in section 2.6.3. 

2.5.4 Observer bias  

The analyzed events in this work are based on two different operators (MacVicar 

and Zhang). During the detection process, the operator bias can play a role in the 

quantity of wood fluxes. To check this effect, 13 segments of 15-minute videos from 

events F1 to F3 were selected and wood was detected by both operators following 

the process used by Ghaffarian et al. (2020a). These video segments were selected 

such that they cover different light conditions (e.g. sunshine or cloudy weather or 

different day times) to evaluate the operator visions in different conditions. Also, the 

amount of wood pieces varies greatly among videos (from 0 to more than 300 

pieces). 
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Overall, there was about a 7% difference in wood flux estimates between the two 

observers, with most discrepancies occurring when many small wood pieces pass 

through the image within a short time interval.  

2.5.5 Modeling wood flux  

A random forest (RF) non-linear regression algorithm was applied to model the 

link between wood flux and flow discharge in this study. It produces multiple decision 

trees (here, 500), each of which is trained on a randomly selected subset of the data 

(in-bag portion) while the remaining subset is used to test the regression and assess 

its performance (out-of-bag portion)(Breiman, 2001; Hastie et al., 2009; Belgiu and 

Drăguţ, 2016). The RF error corresponds to the residual sums of squares averaged 

across all the out-of-bag portions of the regression trees. The importance of a 

variable in the RF model can be assessed through a score that corresponds to the 

total decrease in error due to splits on that particular variable, averaged across all 

trees (Breiman, 2001). 

For the current study, the response variable was the wood flux and the predictor 

variables were all derived from the flow time series. We considered three predictors 

that could influence the wood flux during flood including: (i) flow discharge 𝑄(𝑡), (ii) 

the time elapsed since the last time that 𝑄 was higher or equal to 𝑄(𝑡), known as 𝑇𝑄, 

and (iii) the gradient of discharge over a time lag (5 min) 𝑑𝑄 𝑑𝑡⁄ . The application of 

these predictors in the model is presented in the results (section 2.6.2). Due to gaps 

in sampling (e.g., during night time), periods where the time interval between two 

consecutive detections exceeded 10 hr were removed from the data. In cases when 

several pieces of wood were annotated in the same image frame, we assume a time 

interval of 0.5 s between wood pieces.  

The RF and all related data-wrangling were carried out using the R software (R 

Core Team, 2019) and the Random Forest package (Liaw and Wiener, 2002). The 

random forest consisted of a default number of trees set to 500 and the sampling of 
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in-bag/out-of-bag samples was made with replacement. The R notebook gathering all 

RF-related commands is available from https: ://github.com/lvaudor/wood_flux. 

2.5.6 From wood flux to wood discharge 

In the study by MacVicar and Piégay (2012), wood discharge was calculated as 

m3/s by estimating the length and diameter of all detected floating wood pieces. This 

process is time consuming, and a decision was made for the current study that, 

rather than completing the size measurements, the wood pieces would only be 

counted for floods F4 through F7. The wood count allowed the calculation of the 

wood flux as a frequency (pieces/minute). This approach was justified by considering 

Figure II-3, which shows that there was a strong correlation between wood flux and 

wood discharge for the 15 min video segments (see section 2.5.3) sampled by 

MacVicar and Piégay (2012) for F1, F2 and F3 (𝑅2 = 0.83). This strong relation gives 

confidence that wood discharge and the total wood volume can be reliably estimated 

from the wood flux to allow comparison with other studies and models of the wood 

budget. Extrapolating this relation for other rivers would be an open question that can 

be the objective of future comparative works. 

 

Figure II-3. Wood discharge as a function of wood flux 
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2.5.7 Sampling strategy 

Taking advantage of high temporal resolution videography, it is possible to 

capture all variations of wood flux during a critical event, while low framerate 

photography can be used to detect only a fraction of wood fluxes in the river. To 

understand the link between the detected wood fluxes and the framerate, here the 

concept of passing time (𝑃𝑇) is introduced as the time that one piece of wood passes 

through the camera field of view. As the camera has a large oblique view, 𝑃𝑇 varies a 

lot from the foreground to background (right side of Figure II-4.a). Therefore, to 

measure 𝑃𝑇, the position where most of wood pieces’ pass is used. As it is seen in 

the left side of Figure II-4.a, more than 75% of wood pieces pass from 150 to 250 

pixels on j direction. The passing time at this region is around 𝑃𝑇 ≅ 5𝑠 (right side of 

Figure II-4.a). Theoretically, in one snapshot of the camera corresponds to time 𝑡𝑖 , 

this object can be detectable from 𝑡𝑖 −
𝑃𝑇

2
 to 𝑡𝑖 +

𝑃𝑇

2
. 
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Figure II-4. a) wood flux position on video frame b) link between video time laps ∆𝐭 and 

the passing time 𝑷𝑻 

By introducing the framerate (of frame per second 𝑓𝑝𝑠) as one over the time 

between two consecutive frames (𝑓𝑝𝑠 =
1

∆𝑡
=

1

𝑡𝑖+1− 𝑡𝑖 
), all the objects that pass from 

𝑡𝑖 −
𝑃𝑇

2
 to 𝑡𝑖 +

𝑃𝑇

2
 or from 𝑡𝑖+1 −

𝑃𝑇

2
 to 𝑡𝑖+1 +

𝑃𝑇

2
 can be detected by the observer at 

each camera snapshot (see Figure II-4.b). Consequently, if ∆𝑡 > 𝑃𝑇, there can be 

some pieces that cannot be detected by the camera (red region in Figure II-4.b, top), 

while if ∆𝑡 < 𝑃𝑇 we can be sure that no wood piece is missed between each pair of 

frames (Figure II-4.b, bottom). Therefore, the fraction of the detected wood pieces 

can be defined as the ratio between detected wood pieces in the green region in 

Figure II-4.b and the summation of detected (green region) and missed pieces (red 
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region). To study the link between the frame rate and the fraction of detected wood 

pieces, all detections in Table II-1 was used. Knowing ∆𝑡 = 0.2𝑠 (5 𝑓𝑝𝑠) and 𝑃𝑇 ≅ 5 𝑠 

on the Ain river, we can be sure that ∆𝑡 ≫ 𝑃𝑇 means that there is enough overlap 

between each pair of frames (the condition presented in the bottom of Figure II-4.b) 

and all detectable pieces (not pieces that are not visible by an operator e.g. small 

pieces far from the camera) are taken into account. Then, knowing the exact 

detection time for each piece of wood (it is indicated on top of each frame (e.g. 

Figure II-4.a)) by artificially changing the framerate, the number of detected wood 

pieces at different framerates from 0.001  to 5 𝑓𝑝𝑠  ( 0.2𝑠 < ∆𝑡 < 1000𝑠 ) has been 

estimated and will be presented in section 2.6.3. 

2.6 Results 

2.6.1 Estimate of wood fluxes during critical events 

Overall, the results show 3-stages of (i) rising from a threshold of motion, (ii) high 

but flat at discharges above the bankfull, and then (iii) around one order of magnitude 

lower on the falling limb (Figure II-5 and Table II-1). In Figure II-5 the blue scatters 

from the new events are quite consistent with the events in red from MacVicar and 

Piégay (2012) which validates the sampling technique.  
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Figure II-5. Comparison between wood flux based on sampling (red) and continuous 

(blue) monitoring and flood hydrograph (black line). The gray boxes show the night 

time when video monitoring was impossible. Different symbol shapes show different 

events. 

During the exceptional windy day (W1 from 8 to 17 hr) almost no wood was 

detected on the river (Table II-1). This means that the wood flux is only observed 
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during flood events. As it is seen in Figure II-5 in all cases but F7, there are almost 

no wood pieces in the river for flow discharge less than ~300 m3/s. In the case of the 

flood event F7 following W1 (the exceptional wind event), however, the threshold 

appears to be much lower or non-existent. For this event only, the wood flux 

increases immediately following the increase in flow discharge, which demonstrates 

the potential effect of W1, not in terms of transport of floating wood downstream, but 

in the wood transfer from the river banks to the channel where it can be readily 

mobilized in the subsequent flood.  

In Figure II-5, events F4 and F6 are characterized by multi-peak hydrographs. 

Event F4, for example, is characterized by three peaks with similar discharges (Table 

II-2), during which 3098, 1134 and 839 pieces of wood were observed respectively in 

the first to third peaks. Event F6 is characterized by two slightly lower peaks, and 995 

and 427 pieces of wood were observed in two peaks, respectively (Table II-2). 

Despite some differences in the timing of the floods with respect to daylight hours, 

these results do indicate that around two-thirds of the wood are mobilized in the first 

peak of a multi-peak flood. As the number of peaks increases, it also appears that 

the amount of transported wood progressively decreases. 

Table II-2 Wood flux in multi peak floods F4 and F6 

Flood event F4.1(Peak1) F4.2(Peak2) F4.3(Peak3) F6.1(Peak1) F6.2(Peak2) 

Qmax (m
3/s) 801 808 786 701 627 

Pieces number 3098 1134 839 995 427 

Fraction* 61% 23% 16% 71% 29% 

Flux on rising limb (num/hr) 268 211 82 97 35 

* Fraction = piece number during one peak / total piece number during an event. 

2.6.2 Predicting wood fluxes during night time  

As described in section 2.5.5 three predictors derived from the flow hydrograph 

that were thought to influence the wood flux during the flood were used to develop an 

RF model. The examination of the relationship between the number of trees and R2 

showed that the number of trees used here (500) was by far sufficient for R2 to be as 

high as possible. The average R2 for the out-of-bag portion across all trees was 
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49.5%. When carrying out cross-validation for the RF as a whole (with 80% of the 

data randomly sampled –without replacement- as the training set and 20% as the 

test set) the R2 for training set was 49.5% on average across all trees for the training 

set (estimated on the out-of-bag data) and 69.8% on the test set. Figure II-6 shows 

the link between (i) flow discharge (𝑄(𝑡)) (Figure II-6.a), (ii) the gradient of discharge 

over 5 min time lag (𝑑𝑄 𝑑𝑡⁄ ) (Figure II-6.b), and (iii) the time elapsed since the last 

time that 𝑄 was higher or equal to 𝑄(𝑡) (𝑇𝑄) (Figure II-6.c) from one hand, and the 

wood flux from the other hand. Regarding the first predictor, as is seen in Figure 

II-6.a, 𝑄(𝑡) has a non-linear positive relationship with the wood flux. Wood flux starts 

to respond to 𝑄(𝑡)  from a threshold almost equal to 450 m3/s and reaches its 

maximum value at around 850 m3/s. These values are in agreement with observed 

values in Figure II-5. For the second predictor, a comparison between positive and 

negative values of 𝑑𝑄 𝑑𝑡⁄  (rising and falling limb) in Figure II-6.b shows that while 

there is a strong effect of flow discharge gradient on the rising limb, there is almost 

no effect of the discharge gradient on the falling limb. Finally, as seen in Figure II-6.c 

even with a strong initial fluctuation, the wood flux increases with increasing inter-

flood time. 

 

Figure II-6 Predicted value of wood flux (in red) as a function of  a) flow discharge 𝑸 

(m3/s), b) discharge gradient 𝐝𝑸 𝒅𝒕⁄  (m3/s/1hr) and c) the time elapsed since the last 

time that 𝑸 was higher or equal to 𝑸(𝒕),  𝑻𝑸 (days). Dashed lines indicate the 90% and 

10% quantiles of the data. 

Figure II-7 compares the observed and the modelled wood fluxes time series 

(aggregated by hour) for continuous (blue) and sampled (red) videos. The strength of 
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modeling wood flux as a function of flow discharge compared with direct observation 

is that modeled flux is continuous and provides information during nighttime. To 

assess the efficiency of the model more objectively, Figure II-8 compares observed 

and modeled data on the rising and falling limbs of the hydrograph at each event. 

Each data point represents the sum of wood flux values over the entire limb of the 

flood during the daylight. As shown, the model predicts the observations with a 

precision estimated to about 95%.  

 

Figure II-7. Wood fluxes based on continuous (blue) and sampled (red) videos and 

modeled wood fluxes (green line) using RF model as a function of time.  
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Figure II-8. Comparison between observed and modeled piece number: filled and 

empty scatters show data on the rising and falling limbs of the hydrograph, 

respectively. Data are compared with a 1:1 line. There are 3 points for F4 and 2 points 

for F6 due to multiple pick floods. 

Based on the field observations and the RF modeled wood fluxes, it is possible 

to check both the wood mobility during the night and the critical threshold of motion. 

The critical threshold of motion is defined by the discharge which initiates the mobility 

of wood flux on the rising limb of the flood. Moreover, to be able to compare the wood 

volume in two different approaches (observation and model) the process described in 

section 2.5.6 was used. 

The new phenomenon that is observed here is the exceptional windy day W1 

with low flow (𝑄 < 0.18𝑄𝑏𝑓) which is followed by a flood (𝑄 > 𝑄𝑏𝑓) F7. During this 

wind event, almost no wood flux was detected at the video monitoring station (only 2 

m3). Then it is observed that in the following flood, the threshold of wood motion 

decreased to 0.2𝑄𝑏𝑓  (95 m3/s). Table II-3 also presents the critical threshold of 

motion for all events either by the field observation or by the model. This table 

confirms that the threshold of wood motion is almost at 60% of the 𝑄𝑏𝑓  except as a 

result of exceptional antecedent conditions (F7).  
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Table II-3 Wood volume and threshold of wood motion, modeled (M) or observed (O). 

Event F1 F2 F3 F4 F5 F6 W1 F7 

Modeled wood volume* (m3) 218.69 84.95 680.68 347.08 412.54 52.81 1.88 77.11 

Observed wood volume (m3) 88.75 32.41 120.01 118.29 235.05 26.12 0.03 29.36 

Threshold(m3/s) 275 300 300 300 350 356 <95 95 

Modeled/Observed M O O M M M O O 

* Modeled wood volume includes volume both during day and night time. 

2.6.3 Validation optimal wood flux estimate from sampling  

The temporal resolution of video monitoring plays a significant role on the 

quantity of monitored data. By introducing the passing time 𝑃𝑇 and the framerate 

1 ∆𝑡⁄  (as shown in Figure II-4, section 2.5.7), Figure II-9 shows the link between the 

fraction of detected wood fluxes as a function of the dimensionless parameter 𝑃𝑇 ∆𝑡⁄ . 

Based on this figure, to be able to catch all pieces of wood along the time, it is 

necessary to select framerates less than the passing time. It should be noted that 

Figure II-9 shows only the numerical link between framerate, passing time, and the 

fraction of detected objects while in practice there can be some other sources of 

uncertainty which are discussed in section 2.7. 

 

Figure II-9. Effect of framerate and passing time on the fraction of detected wood 

pieces. 

In addition to the fraction of detected wood pieces, the time interval can affect 
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the detection of some short events like wood pulses. By selecting an appropriate time 

interval, the wood pulse can be defined qualitatively as the delivery of large amount 

of wood in a short time period (in the order of minutes). Figure II-10.a is an example 

of detected pulses in the event F4. In this figure, the wood flux is presented based on 

1 min intervals and as it is seen beside the regular wood flow, there are always some 

pulses that flux is much higher than the average in a very short time interval. To 

check the quality of detection for such short events Figure II-10.b shows one day 

detection of wood with one pulse at 10am 3th Jan 2012. As it is seen, the possibility to 

detect wood pulse decreases by decreasing framerate (from red to blue).  

 

Figure II-10. a) Wood fluxes as observed in 1-minute intervals. Beside short 

fluctuations of wood flux, pulses of wood can be defined qualitatively as the delivery of 

large amount of wood in a short period of time. The gray boxes show the night time 

when video monitoring was impossible. b) Effect of the temporal resolution on 

detecting short time events (a wood pulse). 
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2.7 Discussions and conclusions 

2.7.1 The link between flow pattern and the wood fluxes 

Our observations confirm that, most of the wood pieces are mobilized on the 

rising limb of the hydrograph than the falling limb following MacVicar and Piégay, 

(2012), Kramer and Wohl, (2014) and Ghaffarian et al. (2020a). The peak in wood 

flux is generally reached before the flood peak. These observations demonstrate 

some hysteresis of water discharge that agrees with MacVicar and Piégay, (2012) 

and Ghaffarian et al. (2020a), who state that the peak discharge and peak of wood 

flux do not occur simultaneously and normally wood transport rate decreased before 

the peak of hydrograph. This result has also been confirmed by the model of Ruiz-

Villanueva et al.  (2016a). They show that wood flux increases with discharge until it 

attains an upper threshold or tipping point and then decreases or increases much 

more slowly.  

A flood hydrograph can be characterized by several peaks. We observed that the 

second or the third peaks, even when more intense, carry lower amounts of wood 

(Table II-2). This result agrees with Moulin and Piégay (2004) who indicate that the 

deposited wood on floodplain from last event (such as: flood, wind and ice (Boivin et 

al., 2015)) is transmitted by the first rising of water depth. In addition, Kramer et al. 

2017 show that the sequence of peaks and the magnitude and characteristics of the 

rising limb of individual floods can decline the amount of wood during a flood. As it is 

seen in the Table II-2, more than 60% of wood pieces are carried out on the first 

peak and then, only 30~40% of wood pieces are observed. This decrease in the 

wood flux by increasing the peaks of the flood can be related to the rate of bank 

erosion. The first peak of hydrograph washes most of the woods along the river, it 

just deposits few wood fluxes near the bank as new bank erosion. There is also less 

green wood which is recruited by a new bank erosion process in the next peaks of 

hydrograph. 

Moulin and Piégay (2004) show that the wood flux during flood events is not 
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independent from previous floods. Events F5 and F6 are the examples which happen 

after one year and two months from a big flood event respectively. F5 benefits from 

recent previous small floods which may have introduced some wood pieces that are 

flashed by F5. This event carries 5 times more wood pieces than F6 which occur 

right after F5 which may have less material available. Therefore, wood flux can be a 

combination of fresh material as well as in-channel stored material. This agrees with 

Ruiz-Villanueva et al. (2016a) which shows a lot of wooden material in Genissiat 

Dam spent time in the river before being delivered to the reservoir. Moreover, some 

other processes like exceptional wind events before a flood can play a role on wood 

delivery. Event F7 in this study is the example that carries the wood pieces provided 

by W1.  

This result indicates that during a windy period, pieces of wood are recruited into 

the river, but there is not enough flow velocity and depth for moving these wood 

pieces further downstream. Then as soon as water depth and the wetted area of the 

river starts to increase, the river washes away these wood pieces, regardless of the 

regular threshold of wood motion (0.6𝑄𝑏𝑓). Therefore, while the wind is not directly 

related to the mobility of wood, it can decrease the threshold of motion and prepare 

wood material to be exported during the next flood. This result is the first example in 

which we were able to detect the effective role of a potential driver within the upper 

catchment.  

A practical recommendation that derives from this improved understanding of 

wood mobilization is that recording can largely be initiated strictly as a result of flow 

discharge, for example by setting the camera to record only when 𝑄 exceeds 0.6𝑄𝑏𝑓, 

which would minimize the storage needs for videos while capturing by far the largest 

contributions to the annual wood flux. However, the effect of wind that causes wood 

transport at lower discharges needs to be more deeply explored using longer time 

series to explain wood flux differences between floods.  
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2.7.2 Continues modeling of wood fluxes 

As it is described in section 2.5.5 a Random Forest model was used to model 

wood pieces during nighttime, when no wood piece is visible. Figure II-6 shows a 

meaningful correlation between the three predictors and wood flux.  

Regarding the first predictor 𝑄(𝑡), MacVicar & Piégay, (2012) and Ghaffarian et 

al. (2020a), both showed that the wood flux is expected to have a non-linear positive 

relationship with flow discharge, which was reflected in Figure II-6.a.  

Also, 𝑑𝑄 𝑑𝑡⁄ , as the second predictor, captures the effect of variations in water 

discharge on wood recruitment during rising (positive values) vs falling (negative 

values) limb. The direct link between 𝑑𝑄 𝑑𝑡⁄  and wood flux on the rising limb in Figure 

II-6.b suggests that increasing the water level during the rising limb of flow 

hydrograph can be considered as one of the key parameters on wood delivery in 

rivers as we used it here as a predictor.  

Finally, concerning the third predictor, 𝑇𝑄 was introduced as the input processes 

between floods. Other input processes between floods are also likely to be relevant 

for preparing wood for transport during floods. Here, these processes are lumped into 

the variable 𝑇𝑄, but greater understanding at the process scale may help to develop 

models that are more readily adapted for different catchments.  

Kramer et al. 2017 show the strong effect of this parameter on the pulses of 

wood exported from the Slave River, Canada. They showed the importance of flow 

history for estimating wood flux magnitude. In continue, Ghaffarian et al. (2020a) 

show that it is a significant parameter on the total amount of wood in rivers which has 

a logarithmic relation with wood flux. This logarithmic link was also confirmed in 

Figure II-6.c.  

As a conclusion, the good agreement between modeled and observed piece 

number in Figure II-8, indicates that using three predictors (𝑄 , 𝑇𝑄  and 𝑑𝑄 𝑑𝑡⁄ ), is 

relevant in the RF model to predict the wood fluxes all along with the event.  
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2.7.3 Selecting an optimized framerate 

There is always a trade-off between the temporal resolution of video and the 

recording and post-processing costs. Therefore, reducing the framerate can be 

another strategy to reduce recording storage. But in this case, we have to pay 

attention to the reduction of the detected pieces, so that by using, for example, 

framerate two times larger than the passing time, roughly 50% of wood pieces are 

detectable (Figure II-9). Figure II-11 shows the link between fraction of detected 

fluxes as a function of passing time 𝑃𝑇 based on the model presented in Figure II-9 

for three different framerates: (i) Kramer and Wohl, (2014) on the Slave River, 

Canada with 0.033 fps, (ii) Ghaffarian et al. (2020a) on the Isere River, France with 

1fps and (iii) MacVicar and Piégay, (2012) and this study on the Ain River, France 

with 5 fps. According to Ghaffarian et al. (2020a), both Ain and Isere Rivers have 

almost constant transverse position for passing wood with corresponding 𝑃𝑇 = 5𝑠 

and 10𝑠 respectively. While on the Slave River, the transport distance was reported 

from 20 to 100 m (Kramer and Wohl, 2014). Moreover, flow velocity on the Slave 

River is around 10 times less than Ain and Isere Rivers. Large variation in transport 

distance and low flow velocity both result in huge variation of 𝑃𝑇 on this river, roughly 

from 30𝑠 to 120𝑠.  

 

Figure II-11. Fraction of detected woods based on passing time in different rivers. 

Dashed lines show the estimated passing time on each river. 

As it is seen, on the Isere and Ain Rivers if the passing time exceeds 0.2 and 1 s 

 
  
  
  
 
  
  
 
 
 
 
  
  
 
  

 

   

   

   

   

 
   

 
 
                           

                           
 

                                       

                   

                                

                               



Critical events, flux prediction, and sampling window 42 

the observer can detect all wood pieces while in both cases 𝑃𝑇 ≫ 1𝑠. Therefore, in 

Ghaffarian et al. (2020a), MacVicar and Piégay, (2012) and this work, all “detectable 

wood pieces on video frames” are detected.  

To discuss about the Slave River, we need first to distinguish between time-

lapse photography and videography techniques. It is important to note that although 

time-lapse photography and video monitoring are basically the same approaches 

(photos are taken per unit time), time-lapse photography is simply a method on which 

to subsample wood flux, and missing data is expected and planned for, whereas 

video capture is a method to store and record the entire sample of wood flux. 

Consequently, the condition when 𝑃𝑇 ≅ ∆𝑇 is essentially a transition zone from time-

lapse photography to video monitoring. This transition zone can be accompanied by 

double-counting one piece in two different sides of the field of view. This is because a 

piece might be the same piece, but due to some problems like the operator bias, lack 

of clarity in frames, variation in buoyancy, and orientation of the piece of wood, 

surface reflections and variation in light condition along the field of view, it looks like a 

different piece. Therefore, it should be noted that Figure II-9 only presents a 

numerical link between framerate, passing time, and the fraction of detected objects 

while the mentioned problems are remaining questions in the video monitoring 

technique.  

On the Slave River, as it is seen in Figure II-11,having the framerate of 

0.033 𝑓𝑝𝑠 (∆𝑡 = 30𝑠)  and 30𝑠 < 𝑃𝑇 < 120𝑠  we are located on the transition zone 

from time-lapse photography to video monitoring which can result in double-counting 

uncertainty. As a practical recommendation, it is important to select an appropriate 

framerate for the camera, based on the scope of the study. For example, if the 

pattern of pulses or the source of wood pieces is important, the framerate should be 

large enough to continuously detect wood pieces, while if there is a limitation on 

storage or long-term data is needed it is recommended to decrease framerate. 
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In Figure II-11, increase of  𝑃𝑇  results in exponential increase of fraction of 

detected wood pieces which is governed by ∆𝑡 (Figure II-9). This exponential link is 

actually a strength point for this model which means that the fraction of detected 

wood pieces is not so sensitive to the 𝑃𝑇, so we do not need to select an exact ∆𝑡 

and it can be varied in the same order of magnitude. 

2.7.4 Wood pulses 

During our observations, it is seen that in some cases the wood flux is mobilized 

in a sharp pulse, which is typically accompanied by some large pieces of wood that 

may be recent tree falls or a jam suddenly mobilized. The clarity of these pulses in 

the video monitoring technique directly relates to the temporal resolution of the 

camera (Figure II-10.b). Moreover, such pulses are fully detectable only if continuous 

monitoring approach is applied. The difference between continuous monitoring and 

sampling is visible in Figure II-5 where the blue scatters show more consistency 

through each day, which likely is due to the continuous sampling method (samples 

were the total per hour rather than 15 min multiplied by 4 as for the red scatters).  

It can be hypothesized that; a wood pulse can potentially be a localized wood 

delivery. Presumably, in such cases of local mobilization, the source of wood could 

be close to the camera and so the wood would be tightly grouped in time. By contrast, 

the source of wood could be far upstream from the camera. In this case, the recruited 

pieces tend to clump up during transport over longer distances. This is because a 

wood piece will run into another one and then they are rafted and traveling together, 

this ‘raft’ or ‘clump’ then tends to attract other pieces that get stuck to it (Braudrick et 

al., 1997; Kramer et al., 2017). Therefore, due to the dissipation, the wood pulse 

spreads out during transport in long distances. The pulses at the camera location 

would therefore be very spread out and come more or less regularly, which could 

mean that the inputs are random or that the distribution has been randomized by 

dissipation during transport. By contrast, on the falling limb, despite the bank erosion 

due to the decrease in the soil pore pressure, the flow might not be enough to 
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transport this wood. Also, some wood pieces have already been deposited in the 

highest possible locations with other wood jams on the upstream floodplain (Ruiz-

Villanueva et al., 2016b; Wohl et al., 2018). A careful analysis of wood flux pattern 

thus provides some potentially key insights about the processes preparing wood 

stock within reach (e.g., wind introducing wood all along the channel length).  
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CHAPTER III. Automated quantification of floating 

wood pieces in rivers from video monitoring: a new 

software tool and validation. 

3.1 Résumé 

Le bois est une composante essentielle des rivières et joue un rôle important 

dans l'écologie et la morphologie. Elle peut également être considérée comme un 

facteur de risque dans les rivières en raison de son influence sur l'érosion et les 

inondations. La quantification et la caractérisation des flux de bois dans les rivières 

lors des crues amélioreraient notre compréhension des processus clés, mais sont 

entravées par des défis techniques. Parmi les diverses techniques de surveillance du 

bois dans les rivières, la vidéographie en bord de rivière est une approche puissante 

pour quantifier les différentes caractéristiques du bois dans la rivière, mais les 

recherches antérieures ont utilisé une approche manuelle qui a de nombreuses 

limites. Dans ce travail, nous introduisons un nouveau logiciel pour la détection 

automatique des morceaux de bois dans les rivières. Nous appliquons différentes 

techniques d'analyse d'images telles que les masques statiques et dynamiques, le 

suivi d'objets et la caractérisation d'objets pour minimiser les détections faussement 

positives et manquées. Pour évaluer les performances du logiciel, les résultats sont 

comparés aux détections manuelles de bois à partir des mêmes vidéos. Les 

paramètres clés qui affectent la détection sont évalués, notamment les réflexions de 

surface, les conditions d'éclairage, le débit, la position du bois par rapport à la 

caméra et la longueur des morceaux de bois. Les résultats préliminaires avaient un 

taux de détection de faux positifs de 36%, principalement en raison de la réflexion de 

la lumière et des vagues d'eau, mais le post-traitement a réduit ce taux à 14%. Le 

taux de détection manquée était de 71% du nombre de pièces dans le résultat 

préliminaire, mais le post-traitement a réduit cette erreur à seulement 6,5% du 
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nombre de pièces et 13,5% du volume. La haute précision du logiciel montre qu'il 

peut être utilisé pour augmenter massivement la quantité de données sur les flux de 

bois dans les rivières du monde entier, potentiellement en temps réel. L'impact 

significatif du post-traitement indique qu'il est nécessaire de former le logiciel dans 

diverses situations (lieu, durée, conditions météorologiques) pour garantir des 

résultats fiables. Il convient de noter que les annotations manuelles de ce travail ont 

nécessité plus d'un mois de travail humain. Le logiciel présenté, couplé à une étape 

de post-traitement appropriée, effectue une tâche comparable en temps réel (55 h) 

sur un ordinateur de bureau standard. 

3.2 Abstract 

Wood is an essential component of rivers and plays a significant role in ecology 

and morphology. It can be also considered as a risk factor in rivers due to its 

influence on erosion and flooding. Quantifying and characterizing wood fluxes in 

rivers during floods would improve our understanding of the key processes but is 

hindered by technical challenges. Among various techniques for monitoring wood in 

rivers, streamside videography is a powerful approach to quantify different 

characteristics of wood in the river, but past research has employed a manual 

approach that has many limitations. In this work, we introduce a new software for the 

automatic detection of wood pieces in rivers. We apply different image analysis 

techniques such as static and dynamic masks, object tracking, and object 

characterization to minimize false positive and missed detections. To assess the 

software performance, results are compared with manual detections of wood from 

the same videos. Key parameters that affect detection are assessed including 

surface reflections, lighting conditions, flow discharge, wood position relative to the 

camera, and the length of wood pieces. Preliminary results had a 36% rate of false 

positive detection, primarily due to light reflection and water waves, but post-

processing reduced this rate to 14%. The missed detection rate was 71% of piece 
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numbers in the preliminary result, but post processing reduced this error to only 6.5% 

of piece numbers, and 13.5% of volume. The high precision of the software shows 

that it can be used to massively increase the quantity of wood flux data in rivers 

around the world, potentially in real time. The significant impact of post-processing 

indicates that it is necessary to train the software in various situations (location, 

timespan, weather conditions) to ensure reliable results. It is worth noting that the 

manual annotations in this work took more than one human-month labor. The 

presented software, coupled with an appropriate post processing step, performs a 

comparable task at real time (55 hr) on a standard desktop computer. 

3.3 Introduction 

Floating wood has a significant impact on river morphology (Gurnell et al., 2002; 

Gregory et al., 2003; Wohl, 2013; Wohl and Scott, 2017). It is both a component of 

stream ecosystems and a source of risk for human activities (Comiti et al., 2006; 

Badoux et al., 2014; Lucía et al., 2015). The deposition of wood at given locations 

can cause a reduction of the cross-sectional area, which can both increase upstream 

water levels (and the risk for neighboring communities), and laterally concentrate the 

flow downstream, which can lead to damaged infrastructure (Lyn et al., 2003; 

Lagasse, 2010; Mao and Comiti, 2010; Badoux et al., 2014; V. Ruiz-Villanueva et al., 

2014d; De Cicco et al., 2018; Mazzorana et al., 2018). Therefore, understanding and 

monitoring the dynamics of wood within a river is fundamental to assess and mitigate 

risk. An important body of work on this topic has grown over the last two decades, 

which has led to the development of many monitoring techniques (Marcus et al., 

2002; MacVicar et al., 2009a; MacVicar and Piégay, 2012; Benacchio et al., 2015; 

Ravazzolo et al., 2015; Ruiz-Villanueva et al., 2018; Ghaffarian et al., 2020; Zhang et 

al., 2020)and conceptual and quantitative models (Braudrick and Grant, 2000; Martin 

and Benda, 2001; Abbe and Montgomery, 2003; Gregory et al., 2003; Seo and 

Nakamura, 2009; Seo et al., 2010). A recent review by Ruiz-Villanueva et al. (2016), 
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however, argues that the area remains in relative infancy compared to other river 

processes such as the characterization of channel hydraulics and sediment transport. 

Many questions remain open areas of inquiry including wood hydraulics, which is 

needed to understand wood recruitment, movement and trapping, and wood 

budgeting, where better parametrization is needed to understand and model the 

transfer of wood in watersheds at different scales. 

In this domain, the quantification of wood mobility and wood fluxes in real rivers 

is a fundamental limitation that constrains model development. Most early works 

were based on repeated field surveys (Keller and Swanson, 1979; Lienkaemper and 

Swanson, 1987), with more recent efforts taking advantage of aerial photos or 

satellite images(Marcus et al., 2003; Lejot et al., 2007; Lassettre et al., 2008; Senter 

and Pasternack, 2011; Boivin et al., 2017) to estimate wood delivery at larger time 

scales of 1 year up to several decades. Others have monitored wood mobility once 

introduced by tracking wood movement in floods (Jacobson et al., 1999; Haga et al., 

2002; Warren and Kraft, 2008). Tracking technologies such as active and passive 

Radio Frequency Identification transponders (MacVicar et al., 2009; Schenk et al., 

2014)or GPS emitters and receivers (Ravazzolo et al., 2015b) can improve the 

precision of this strategy. To better understand wood flux, specific trapping structures 

such as reservoirs or hydropower dams can be used to sample the flux over time 

interval windows(Moulin and Piégay, 2004; Seo et al., 2008; Turowski et al., 2013). 

Accumulations upstream of a retention structure can also be monitored where they 

trap most or all of the transported wood, as was observed by Boivin et al. (2015) to 

get wood flux at one flood event or annual scale. All these approaches allow the 

assessment of wood budget and the in-channel wood exchange between 

geographical compartments within a given river reach and over a given 

period(Schenk et al., 2014; Boivin et al., 2015, 2017). 

For finer scale information on the transport of wood during flood events, video 

recording of the water surface is suitable for estimating instantaneous fluxes and size 
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distributions of floating wood in transport(Ghaffarian et al., 2020). Classic monitoring 

cameras installed on the river bank have main advantages such that these cameras 

are cheap, and relatively easy to acquire, setup and maintain. As is seen in Table 1 

wide range of sampling, spatial and temporal scales have been used in different 

studies to assess the wood budget in rivers. MacVicar and Piégay (2012) and Zhang 

et al., (2020), for instance, monitored wood fluxes at 5 frames per second (fps) and a 

resolution of 640 × 480 up to 800 × 600 pixels. Boivin et al. (2017) used a similar 

camera and frame rate as MacVicar and Piégay(2012) to compare periods of wood 

transport with and without the presence of ice. Senter et al.(2017) analyzed the 

complete daytime record of 39 days of videos recorded at 4 fps and a resolution of 

2048 × 1536 pixels. Conceptually similar to the video technique, time-lapse imagery 

can be substituted when large rivers where surface velocities are low enough and the 

field of view is large. Kramer and Wohl (2014); Kramer et al. (2017) applied this 

technique in the Slave River (Canada) and recorded one image every 1 and 10 

minutes. Where possible, wood pieces within the field of view are then visually 

detected and measured using simple software to measure the length and diameter of 

the wood to estimate wood flux (piece/s) or wood volume (𝑚3/𝑠) (MacVicar and 

Piégay, 2012; Senter et al., 2017). Critically for this approach, the time it takes for the 

researchers to extract information about wood fluxes has limited the fraction of the 

time that can be reasonably analyzed. Given the outdoor location for the camera, the 

image properties depend heavily on lighting conditions (e.g. surface light reflections, 

low light, ice, poor resolution or surface waves) which may also limit the accuracy of 

frequency and size information(Muste et al., 2008; MacVicar et al., 2009a). In such 

situations, simpler metrics such as a count of wood pieces, a classification of wood 

transport intensity, or even just a binary presence/absence may be used to 

characterize the wood flux (Boivin et al., 2017; Kramer et al., 2017). 
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Table III-1 Characteristics of streamside video monitoring techniques in different 

studies. 

Article Sampling Temporal scales Camera 

resolution 

Study site 

MacVicar & Piégay 

(2012) 

15 min segments 3 floods/18 hr/5 fps 640 × 480 Ain, France 

Kramer & Wohl (2014) Total duration 32 days/12761 frames/0.017 fps   

Boivin et al. (2017)  3 floods/150 hr  St Jean, Canada 

Kramer et al. (2017) Total duration 11 months/0.0017 fps 1268 × 760 Slave, Canada 

Senter et al. (2017) 15 min segments 39 days/180 hr/4 fps 2048 × 1536 North Yuba, USA 

Ghaffarian et al. (2020) Total duration 2 floods/80 hr/1 fps 600 × 800 Isère, France 

Zhang et al. (2020) Total duration 7 floods & 1 windy period 

/183 hr/5 fps 

from 640 × 480  

up to 800 × 600 

Ain, France 

A fully automatic wood detection and characterization algorithm can greatly 

improve our ability to exploit the vast amounts of data on wood transport that can be 

collected from streamside video cameras. From a computer science perspective, 

however, automatic detection and characterization remain challenging issues. In 

computer vision, detecting objects within videos typically consists of separating the 

foreground (the object of interest) from the background(Roussillon et al., 2009; 

Cerutti et al., 2011, 2013). The basic hypothesis is that the background is relatively 

static and covers a large part of the image, allowing it to be matched between 

successive images. In the riverine environments, however, such an assumption is 

unrealistic because the background shows a flowing river, which can have rapidly 

fluctuating properties(Ali and Tougne, 2009). Floating objects are also partially 

submerged in water that has high suspended material concentrations during floods, 

making them only partially visible (e.g. a single piece of wood may be perceived as 

multiple objects) (MacVicar et al., 2009). Detecting such an object in motion within a 

dynamic background is an area of active research (Ali et al., 2012, 2014; Lemaire et 

al., 2014; Piégay et al., 2014; Benacchio et al., 2017). Accurate object detection 

typically relies on the assumption that objects of a single class (e.g. Faces, bicycles, 

animals, etc.) have a distinctive aspect or set of features that can be used to 

distinguish between types of objects. With the help of a representative dataset, 

machine Learning algorithms aim at defining the most salient visual characteristics of 
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the class of interest(Lemaire et al., 2014; Viola and Jones, 2006). When the objects 

have a wide intra-class aspect range, a large amount of data can compensate by 

allowing the application of deep learning algorithms(Gordo et al., 2016; Liu et al., 

2020). To our knowledge, such a database is not available in the case of floating 

wood. 

The camera installed on the Ain River in France has been operating more or less 

continuously for over 10 years and vast improvements in data storage mean that this 

data can be saved indefinitely (Zhang et al., 2020). The ability to process this image 

database to extract the wood fluxes allows us to integrate this information over floods, 

seasons and years, which would allow us to significantly advance our understanding 

of the variability within and between floods over a long time period. An unsupervised 

method to identify floating wood in these videos by applying intensity, gradient and 

temporal masks was developed by Ali and Tougne(2009) and Ali et al. (2011). In this 

model, the objects were tracked through the frame to ensure that they followed the 

direction of flow. An analysis of about 35 minutes of the video showed that 

approximately 90% of the wood pieces was detected (i.e. about 10% of detection 

were missed), which confirmed the potential utility of this approach. An additional set 

of false detection related to surface wave conditions amounted to approximately 15% 

of the total detection. However, the developed algorithm was not always stable and 

was found to perform poorly when applied to a larger data set. 

The objectives of the presented work are to describe and validate a new 

algorithm and computer interface for quantifying floating wood pieces in rivers. First, 

the algorithm procedure is introduced to show how wood pieces are detected and 

characterized. Second, the computer interface is presented to show how manual 

annotation is integrated with the algorithm to train the detection procedure.  Third, the 

procedure is validated using data from the Ain River. The validation period occurred 

over six days in January and December 2012 where flow conditions ranged from 

~400 𝑚3/𝑠 , which is below bankfull discharge but above the wood transport 
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threshold, to more than 800 𝑚3/𝑠 . The developed algorithm can be used to 

characterize wood pieces for a large image database at the study site.  Future 

applications of this approach at a wide range of sites should lead to new insights on 

the variability of wood pieces at the reach and watershed scales in world rivers. 

3.4 Methodological procedure for automatic detection of 

wood 

The algorithm for wood detection comprises a number of steps that seek to 

locate objects moving through the field of view in a series of images and then identify 

the objects most likely to be wood. The algorithm used in this work modifies the 

approach described by Ali et al., (2011). The steps work from a pixel to image to 

video scale, with the context from the larger scale helping to assess whether the 

information at the smaller scale indicates the presence of floating wood or not. In a 

still image, a single pixel is characterized by its location within the image, its color 

and its intensity. Looking at its surrounding pixels, on an image scale, allows that 

information to be spatially contextualized. Meanwhile, the video data adds temporal 

context, so that previous and future states of a given pixel can be used to assess its 

likeliness of representing floating wood. Since an image is only a discrete 2D 

representation of the real 3D world, details about the camera parameters such as 

optical image deformations, geographic situation, perspective deformations or 

behavior regarding luminosity can be used to infer what wood should look like and 

where it should occur. On a video scale, the method can embed expectations about 

how wood pieces should move through frames, how big they should be, and how 

lighting and weather conditions can evolve to change the expectations of wood 

appearance, location, and movement. The specific steps followed by the algorithm 

are shown in a simple flow chart (Figure III-1.a). An example image with a wood 

piece in the middle of the frame is also shown for reference (Figure III-1.b).  
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Figure III-1 a) Flowchart of the detection software and b) an example of frame on which 

these different flowchart steps are applied. 

3.4.1 Wood probability masks  

In the first step, each pixel was analyzed individually and independently. The 

static probability mask answers the question “is one pixel likely to belong to a wood-

block, given its color and intensity?”. The algorithm assumes that the wood pixels can 

be identified by pixel light intensity (𝑥 ) following a Gaussian distribution (Figure 

III-2.a). To set the algorithm parameters, manual annotations of wood are used to 

obtain a representative sample of wood pixels, from which both the mean (𝜇) and 

standard deviation (𝜎) are calculated.  This procedure produces a static probability 

mask (Figure III-2.b). From this figure, it is possible to identify the sectors where 

wood presence is likely, which includes the floating wood piece seen in Figure III-1.b, 

but also includes standing vegetation in the lower part of the image and a shadowed 

area in the upper left. The advantage of this approach is that it is computationally 

very fast. However, misclassification is possible, particularly when light condition 

changes. 
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Figure III-2 Static probability mask, a) Gaussian distribution of light intensity range for 

a piece of wood, b) employment of probability mask on the sample frame. 

The second mask, dynamic probability, outlines each pixel’s recent history. The 

corresponding question is: “is this pixel likely to represent a woodblock now, given its 

past and present aspects?”. Again, this step is based upon a simple observation 

made on our database: it is assumed that a wood pixel is systematically darker than 

a water pixel. Depending on lighting conditions like shadows cast on water or waves, 

water pixels can be as dark as wood pixels. However, pixels displaying successively 

water then wood tend to become immediately and significantly darker, while pixels 

displaying wood then water tend to become significantly lighter. Meanwhile, pixels 

that keep on displaying wood tend to be rather stable. Thus, we proposed to assign 

pixel probability according to an updated version of the function proposed by Ali et al. 

(2011) (Figure III-3.a) that takes 4 parameters. This function 𝐻  is an updating 

function, which produces a temporal probability mask from the inter-frame pixel value. 

On a probability map, a pixel value ranges from 0 (likely not wood) to 1 (likely wood). 

The temporal mask value for a pixel at location (𝑥, 𝑦)  and at time 𝑡  is 

𝑃𝑇(𝑥, 𝑦, 𝑡)= 𝐻(∆𝑡 , 𝐼) + 𝑃𝑇(𝑥, 𝑦, 𝑡 − 1). We apply a threshold to the output of 𝑃𝑇(𝑥, 𝑦, 𝑡) 

so that it always stays within the interval [0,1]. The idea is that a pixel that becomes 

suddenly and significantly darker is assumed to be likely wood. 𝐻(∆𝑡, 𝐼) is such that 

under those conditions, it increases the pixel probability map value (parameters 𝜏 and 

𝛽 ). A pixel that becomes lighter over time is unlikely to correspond to wood 
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(parameter 𝛼). A pixel which intensity is stable and that was previously assumed to 

be wood shall still correspond to wood, while a pixel which intensity is stable and 

which probability to be wood was low is unlikely to represent wood now. A small 

decay factor (𝛿 ) was introduced in order to prevent divergence (in particular, it 

prevents noisy areas from being activated too frequently). 

 

Figure III-3 Dynamic probability mask, a) updating function 𝑯(∆𝒕, 𝑰) adapted from Ali et al. (2011) and b) employment of 

probability mask on the sample frame. 

The final wood probability mask is created using a combination of both the static 

and dynamic probability masks. Wood objects thus had to have a combination of the 

correct pixel color and the expected temporal behavior of water-wood-water color. 

The masks were combined assuming that both probabilities are independent, which 

allowed us to use the Bayesian probability rule in which the probability masks are 

simply multiplied, pixel by pixel, to obtain the final probability value for each pixel of 

every frame. 

3.4.2 Wood object identification and characterization  

From the probability mask it is necessary to group pixels with high wood 

probabilities into objects and then to separate these objects from the background to 

track them through the image frame. For this purpose, pixels were classified as high-

or low-probability based on a threshold applied to the combined probability mask. 

Then, the high-probability pixels were grouped into connected components (that is, 

small, contiguous regions on the image) to define the objects. At this stage, a pixel 
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size threshold was applied on the detected objects and the bigger objects were 

generally the most likely it is to represent a woody object on the water surface 

(Figure III-4.a the big white region at the middle). A number of smaller components 

were often related to non-wood objects, for example waves and reflections, or noise 

from the camera sensor or data compression.  

In the next level, movement direction and velocity were used as filters to 

distinguish real objects from the false detections. The question here is, “is this object 

moving through the image frame the way we would expect floating wood to move?”. 

After extracting the objects that are most likely to be a wood piece by applying a pixel 

size threshold, the spatial and temporal behavior of components were analyzed. First, 

to deal with partly immersed objects, we associated connex components within 

frames, based on a threshold on the distance separating them. Second, as a 

primitive tracker for wood objects, we associated connex components between 

successive frames as it is shown in Figure III-4.b. If a component could be tracked on 

several frames, and if its motion was compatible with a motion that was expected 

from driftwood, it was classified as a wood object. In our case, tracking wood is rather 

difficult for classical object tracking approaches in computer vision: the background is 

very noisy, the acquisition frequency is low and the objects appearance is highly 

variable due to temporarily submerged parts and highly variable 3D structures. With 

that respect, we preferred to use very basic rules for this step. They are based on 

loose expectations, in terms of pixel intervals, on the motions of the objects, 

depending on the camera location and the river properties. How many pixels from left 

to right when proceeding to the next frame? How many pixels from top to bottom? 

How many appearances are required for a block? How many frames can we miss 

because of temporary immersions? Thus, computational cost remains low and is 

real-time compatible, while the software keeps providing rather efficient results. 
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Figure III-4 a) Object extraction by (i) combining static and dynamic masks and (ii) applying a threshold to retain only high-

probability pixels. b) Object tracking as a filter to deal with partly immersed objects and to distinguish between moving 

objects from static waves. 

The final step was to characterize the objects. using this algorithm an object (be 

it annotation or detection) appears several times as a sequence of occurrences. 

Therefore, it is needed to pick one single occurrence or use a statistic tool to retrieve 

characterization data. Here among different detections for the same piece the biggest 

occurrence, in terms of pixels number, was considered as the most representative 

state. It is assumed that a bigger number of pixels corresponds to a better or a fuller 

view (the object is less immersed than on other occurrences, for instance). When 

annotating the flood, we tend to pick the view where the object covers the largest 

area. Thus, in this paper, every object was characterized by its size and its location, 

using those of its biggest occurrence. 

3.4.3 Image rectification 

Warping the images according to the perspective transform results in important 

quality loss. On warped images, areas of the image farther to the camera provide 

little detail and are overall very blurry and non-informative. Therefore, given the 

topology of our images, image rectification is necessary for calculating wood length, 

velocity, volume and other characteristics. To do so, first, the fisheye lens distortion 

was corrected. A fisheye lens distortion is a characteristic of the lens that produces 

visual distortion intended to create a wide panoramic or hemispherical image. This 
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effect has been corrected by a standard Matlab process using the 

ComputerVisionToolboxTM. 

Ground-based cameras have also an oblique angle of view, which means that 

pixel to meter correspondence is variable and images should be orthorectified before 

analysis (Muste et al., 2008). Orthorectification refers to the process by which image 

distortion is removed and the image scale is adjusted to match the actual scale of the 

water surface. Translating from pixels to actual metric measurements required us to 

make the following assumptions: our camera follows the pinhole camera model, and 

the river can be assimilated to a plane of constant altitude. Under such conditions, it 

is possible to translate from pixel coordinates to a metric 2D space thanks to a 

perspective transform assuming a virtual pinhole camera on the image and 

estimating the position of the camera and its principal point (center of the view). An 

example of orthorectification on a detected wood piece in a set of continuous frames 

and pixel coordinates (Figure III-5.b) is presented in Figure III-5.c in metrics 

coordinates. The transform matrix is obtained with the help of at least 4 non-colinear 

points (Figure III-5.a blue GCPs (Ground Control Points) acquired with DGPS) from 

which we know both the relative 2D metric coordinates for a given water level (Figure 

III-5.c blue points), and their corresponding localization within the image(Figure III-5.b 

blue points). To achieve better accuracy, it is advised to acquire additional points and 

to solve the subsequent over-determined system with the help of a Least Square 

Regression (LSR). Robust estimators such as RANSAC can provide useful to 

prevent acquisition noise. After identifying the virtual camera position, the perspective 

transform matrix then becomes parameterized with the water level. Handling the 

variable water level was performed for each piece of wood, by measuring the relative 

height between the camera and the water level at the time of detection.  
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Figure III-5 Image rectification, process. 3D view of non-colinear GCPs in metric coordinates (a), their corresponding 

localization within the image (b), and the relative 2D metric coordinates for a given water level (c). (b,c) A practical example 

of the transformation of the coordinates is presented. The different solid lines represent the successive detection in a set of 

consecutive frames. 

3.5 User interface 

The software was developed to provide a single environment for the analysis of 

wood pieces on the surface of the water from streamside videos.  It consists of four 

distinct modules: Detection, Annotation, Learning, and Performance. The home 

screen (see Figure III-6) allows the operator to select any of these modules. From 

within a module, a menu bar on the left side of the interface, allows operators to 

switch from one module to another. In the following, the operation of each of these 

modules will be presented. 
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Figure III-6 User interface of the detection software. 

3.5.1 Detection 

The detection module is the heart of the software. This module allows, from 

learned or manually specified parameters, the detecting of floating objects without 

human intervention (see Figure III-7). This module contains two main parts: (i) 

Detection tab, which allows operator to open, analyze and export the results from 

one video or a set of videos, and (ii) Configuration tab, which allows operator to load 

and save the software configuration by defining the parameters of wood detection (as 

described in section 3.4), saving and extracting the results, and the display of the 

interface.  

The detection process is intended to work as a video file player. The idea is to 

load a video file (or a stream url), and to let the software read the video until the end. 

When required, the reader generates a visual output, showing how the masks 

behave by adding color and information to the video content (see Figure 7). A small 

textual display area shows the frequency of past detections. Meanwhile, the software 

generates a series of files summarizing the positive outputs of the detection. They 

consist in YAML and CSV files, as well as image files to show the output of different 

masks, the original frames, etc. A configuration tab is available, and provides many 

parameters organized by various categories. The main configuration tab, is divided in 

seven parts. The first part is dedicated to the general configurations such as frame 

skipped between each computation, defining the useless parts of the frame by 

ignoring some pixels from each side or defining a patch where there is no wood there 

(e.g. bridge pier or river bank). In the second and third parts, the parameters of the 

intensity and temporal masks are introduced (see section 3.4.1). The default values 
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are 𝜇 = 0.2, 𝜎 = 0.08 for intensity mask and 𝜏 = 0.25, 𝛽 = 0.45 for temporal mask. In 

the fourth and fifth parts object tracking and characterization parameters are defined 

respectively as described in section 3.4.2. Detection time is defined in the sixth part 

using OCR (Optical character recognition) technique. Finally, the parameters of the 

orthorectification (see section 3.4.3) are defined in the seventh part. The detection 

software can be used to process videos in batch (“script” tab), without generating a 

visual output to save computing ressource. Thus, it can process important amounts 

of data with minimum human work. 

 

Figure III-7 User interface of the detection module of automatic detection software. 

3.5.2 Annotation 

As mentioned in Sec. 2, the detection procedure requires the classification of 

pixels and objects into wood and non-wood categories. To train and validate the 

automatic detection process, a ground-truth or set of videos with manually 

annotations are required. Such annotations can be performed through many different 

manners. For example, objects can be identified with the help of a bounding box or 
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selection of endpoints, as in MacVicar and Piégay(2012); Ghaffarian et al., (2020), 

Zhang et al., (2020). It is also possible to sample wood pixels without specifying 

instances or objects, or to sample pixels within annotated objects. Finally, objects 

and/or pixels can be annotated multiple times in a video sequence to increase the 

amount and detail of information in such an annotation database. However, such 

annotation becomes extremely time-consuming and it is not clear how much 

information will be required to obtain reliable results for different lighting conditions, 

camera parameters, wood properties, and river hydraulics. 

Given that the tool is meant to be as flexible as possible, the annotation tool was 

developed to allow operator to perform as fine annotation as they wish. As it is shown 

in Figure III-8 this module contains three main parts: (i) The column on the far left 

allows operator to switch to another module (detection, learning or performance), (ii) 

the central part consists of a video player with a configuration tab for extracting the 

data, and (iii) the right part which concentrates the functionality, allowing to generate, 

create, visualize and save annotations. This way of annotating allows us to make 

rather quick coarse annotation, as in MacVicar and Piégay (2012) and Boivin et al., 

(2015) or finer grain annotation. 
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Figure III-8 User interface of the annotation module of automatic detection software. 

The principle of this module is to associate annotations with the frames of a 

given video. Annotating a piece of wood is like drawing its shape, directly on a frame 

of the video, using the drawing tools provided by the module. It is possible to add a 

text description to each annotation. Each annotation is linked to a single frame of the 

video; however, a frame can contain several annotations. An annotated video, 

therefore, consists of a video file, as well as a collection of drawings, possibly with 

textual descriptions, associated with frames. It is possible to link annotations from 

one frame to another to signify that they belong to the same piece of wood. These 

data can be used to learn the movement of pieces of wood in the frame. 

3.5.3 Learning 

The Learning module makes it possible, from manual annotation data, to 

determine the optimal parameters (described in Sec. 2) for the automatic detection of 

pieces of wood. The principle is to load a series of manual annotation data and to 

start learning based on this data. The user interface of this module is presented in 

Fig. 6(d) 
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3.5.4 Performance 

The performance module allows the operator to set rules to compare automatic 

and manual wood detection results. This section also allows the operator to specify 

the orthorectification matrix, so that the operator can extract metrics directly from the 

output of an automatic detection, or a bare, pixel-wise annotation.  

For this module an automatic detection file is first loaded and then the result of 

this detection is compared with a manual annotation for that video, if the latter is 

available. Comparison results are then saved in the form of a summary file (*.csv 

format), allowing the operator to perform statistical analysis of the results or the 

performance of the detection algorithm. A manual annotation file can only be loaded 

if it is associated with an automatic detection result. 

The performance of the detected algorithm can be realized on several levels: 

• Object. The idea is to annotate one (or more) occurrences of a single object, 

and to operate the comparison at bounding box scale. A detected object may 

comprehend a whole sequence of occurrences, on several frames. It is 

validated when only a single occurrence happens to be related to an 

annotation. This is the minimum possible effort required to have an extensive 

overview of the object frequency on such an annotations database. This 

approach can however lead us to misjudge overall wrongly detected 

sequences as True Positives (see below), or vice-versa. 

• Occurrence. The idea is to annotate, even roughly, every occurrence of 

every woody object, the comparison then happening between bounding 

boxes rather than at pixel level. Every occurrence of any detected object can 

be validated individually. However less demanding than the next case, this 

option still requires a rather extensive annotation work. 

• Pixel, which is the most comprehensive option. This case implies that every 

pixel of every occurrence of every object is annotated as wood. It is very 



Developing video monitoring technique in riverine environment  65 

 

powerful in the event of evaluating the algorithm performances, and 

eventually refining its parameters with the help of some machine learning 

technique. However, it requires an extensive annotation work. 

3.6 Performance assessment 

To assess the performance of the automatic detection algorithm, we used a set 

of videos from the Ain River in France that were both comprehensively manually 

annotated and automatically analyzed. According to the data annotated by the 

observer, the performance of the software can be estimated in different conditions: (i, 

ii) light and darkness of the frame, (iii) daylight, (iv) flow discharge, (v, vi) wood X, Y 

position, (vii) its distance from the camera and (viii) its length. If for example software 

detects 1 cm piece 100 m far from the camera, there is a high probability that it is a 

wring detection. Therefore, knowing the performance of the software in different 

conditions, it is possible to develop some rules to enhance the quality of data.  The 

positive point of this approach is that all 8 parameters introduced here are accessible 

easily in the detection process. In this section the monitoring details and annotation 

methods are introduced before the performance of the software is evaluated by 

comparing the manual annotations with the automatic detections. 

3.6.1 Material and methods 

3.6.1.1 Monitoring site and annotation 

The Ain River is a piedmont river with a drainage area of 3630 𝑘𝑚2  at the 

gauging station of Chazey-sur-Ain, with a mean flow width of 65 m, a mean slope of 

0.15%, and a mean annual discharge of 120 𝑚3/𝑠 . The lower Ain River is 

characterized by an active channel shifting within a forested floodplain (Lassettre et 

al., 2008). An AXIS221 Day/NightTM camera with a resolution of 768 × 576 pixels was 

installed at this station to continuously record the water surface of the river at a 

maximum frequency of 5 fps (Figure III-9). This camera replaced a lower resolution 

camera at the same location used by MacVicar and Piégay (2012).  The specific 
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location of the camera is on the outer bank of a meander, on the side closest to the 

thalweg, at a height of 9.8 m above the base flow elevation. The meander and a 

bridge pier upstream help to steer most of the floating wood so that it passes 

relatively close to the camera where it can be readily detected with a manual 

procedure (MacVicar and Piégay, 2012).  The transformation matrix at the base flow 

elevation with the camera as the origin is shown in Figure III-10.  Straight lines near 

the edges of the image appear curved because the fisheye distortion has been 

corrected on this image (see section 3.4.3); conversely, a straight line, in reality, is 

presented without any curvature in the image. 

 

Figure III-9 Study site at Pont de Chazey: a) Location of the Ain River catchment in France and location of the gauging and 

meteorological stations, b) camera position and its view angle in yellow, c) overview of the gauging station with the camera 

installation point 
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Figure III-10 Rectifying transformation matrix at low flow level with camera at (0,0,0). 

The survey period on this river was during 2012 from which two periods, from 1st 

to 7th January and in 15th December was selected for annotation. A range of 

discharges from 400 𝑚3/𝑠 to 800 𝑚3/𝑠 occurred during these periods (Figure III-11), 

which is above a previously observed wood transport threshold of ~300 𝑚3/𝑠 

(MacVicar and Piégay, 2012). On January 3rd and 5th, a spider was active in front of 

the camera, which prevented a good video recording and these days were therefore 

removed from the database. Detection was only possible during the daylight. A 

summary of automated and manual detections for the six days is shown in Table III-1. 

 
Figure III-11 Daily mean discharge series for monitoring period from 1st to 7th January and in 15th December. 
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3.6.1.2 Assessment Methodology 

Ghaffarian et al., (2020), Zhang et al., (2020)show that the wood discharge can 

be measured from flux. Therefore, here an object level (see section 3.5.4) was 

applied to annotate wood pieces. This approach stays relevant for the aim of our 

whole study, which is being able to sense driftwood pieces. Comparing automatically 

occurrences of objects and detected pixels, with a set of annotated data raises three 

main options: 

• True Positive (𝑇𝑃): an object was correctly detected and is available on 

both detection and annotation database 

• False Positive (𝐹𝑃): an object was incorrectly detected, and is available 

only on the detection database. 

• False Negative (𝐹𝑁): an object is not available on the detection database, 

while it figures in the annotations database. 

Determining an object as a True Positive (𝑇𝑃) means that we have to witness a 

co-occurrence of it into both the detections and the annotations databases. In the 

remaining of this paper, we set the co-occurrence threshold when at least 50% of 

detection and an annotation bounding box areas are common, or when at least 90% 

of a detection bounding box area is included in its annotation counterpart. 

In addition to the bare number of 𝑇𝑃𝑠, 𝐹𝑃𝑠, and 𝐹𝑁𝑠, we add the recall and 

precision rates as measures of the performances of the application. 

• The Recall Rate (𝑅𝑅) is the fraction of relevant objects that are detected 

(in opposition to False Negative, non-detected objects). Its mathematical 

formula is 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). 

• The Precision Rate (𝑃𝑅 ) is the fraction of detected objects that are 

relevant (in opposition to false alarms). Its mathematical formula is 

𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

The higher the 𝑃𝑅 and the 𝑅𝑅 are, the more accurate our application is. However, 
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both rates tend to interact. It is possible to design an application that displays a very 

high 𝑅𝑅 (which means that it doesn’t miss many objects), but suffers from a very low 

𝑃𝑅 (it outputs a high amount of inaccurate data), and vice-versa. Thus, we have to 

find a balance that seems relevant in our application case. 

3.6.1.3 Factors used to understand variation in performance 

It was well known from previous manual efforts to characterize wood pieces and 

develop automated detection tools that it is easier to detect certain wood objects than 

others.  In general, the ability to detect the wood objects in the dynamic background 

of a river in flood was found to vary with the amount and variability of the light, other 

weather conditions such as wind and rain, interference from other moving objects 

such as spiders, the size of the wood object, its position in the image frame, and the 

flow discharge.  In this section, we describe and define the metrics that were used to 

understand the variability of the detection algorithm performance.  

 

Figure III-12 Different light conditions during (a) morning, (b) noon and (c) late afternoon, results in different frame 

roughness’s and different detection performances. 

In general, more light results in better detection. The light condition can be varied 

by variation of a set of factors such as weather conditions or amount of sediment 

which is carried by the river. In any case, the daylight is a factor that can change the 

light condition systematically, i.e. low light early in the morning (Figure III-12.a), bright 

light at midday with potential for direct light and shadows (Figure III-12.b), and low 

light again in the evening, though different from the morning because the hue is more 

bluish (Figure III-12.c).  This effect of the time of day was quantified simply by noting 

the time of the image, which was marked on the top of each frame of the recorded 
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videos. 

Detection is also strongly affected by the frame ‘roughness’, defined here as the 

variation in light over small distances in the frame. The change in light is important for 

the recognition of wood objects, but light roughness can also occur when there is a 

region with relatively light pixels due to something such as reflection of the surface of 

the water, and dark roughness can occur when there is a region with relatively dark 

pixels due to something such as shadows from the surface water waves. Detecting 

wood is typically more difficult around light roughness, which results in false 

negatives, while the color-map of a darker surface is often close to that of wood, 

which results in false positives. Both of these conditions can be seen in Figure III-12 

which is highlighted in Figure III-12.a.  In general, the frame roughness increases in 

windy days or when there is an obstacle in the flow, such as downstream of the 

bridge pier in the current case. The light roughness was calculated for the current 

study by defining a light intensity threshold and calculating the ratio of pixels of higher 

value among the frame. The dark roughness is calculated in the same way, but in 

this case the pixels less than the threshold were counted. In this work thresholds 

equal to 0.9 and 0.4 were used for light and dark roughness, respectively. 

The oblique view of the camera means that in the photography technique the 

distance that a wood piece is detected is another important factor in detection (Figure 

III-13). However, the effect of distance on detection can be meaningful in relation with 

wood length, i.e. by going from near the camera toward the other bank due to the 

pixel size variation the shorter pieces of wood are not detectable(Ghaffarian et al., 

2020). Moreover, if a piece of wood passes through a region with high roughness 

(Figure III-13) or amongst bushes or trees (Figure III-13 right hand side) it is more 

likely that the software is unable to detect it. In our case, one day detection was 

removed due to the presence of a spider in front of the camera.  
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Figure III-13 Wood position can highly affect the quality of detection. Pieces that are passing in front of the camera are 

detected much better than the pieces far from the camera. 

Flow discharge is another key variable in wood detection. Increasing flow 

discharge generally means that water levels are higher, which brings wood in the 

foreground of the image closer to the camera and can make small pieces of wood 

more visible, but it also reduces the angle between the camera position and pixels 

increases the vertical motion of the flow that can decrease the visible region of the 

wood. It also increases the flow velocity which results in more roughness in a frame. 

Moreover, more suspended sediment is carried during high flow which can change 

water surface color. The flow discharge was extracted from the website 

(www.hydro.eaufrance.fr). 

3.6.2 Detection performance 

Following section 3.6.1.2, to evaluate the feasibility of the software it is important 

to first evaluate the 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 in an event which is automatically detected and 

then to evaluate both precision and recall rates. This section is dedicated to present 

these two steps. Table III-2 describes a summary of both annotation and detection. 

On average the operator annotates around 2 times more wood pieces than the 

software. While the software only detects 29% of all floating objects (Recall rate), 

among detected objects 36% have been false detections (𝑃𝑅 = 64%).  
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Table III-2 Summary of automated and manual detections 

Date 
discharge (𝑚

3
/𝑠) Water level (𝑚) Detection 

time (ℎ𝑟) 

Number Precision 

rate% 

Recall 

rate% 
Qmax Qmin hmax hmin annot. det. 

1/1/2012 718 633 -7.4 -7.8 7 to 17 2282 972 77 33 

2/1/2012 772 674 -7.2 -7.6 7 to 17 802 380 52 24 

4/1/2012 475 423 -8.4 -8.6 7 to 17 140 158 20 22 

6/1/2012 786 763 -7.2 -7.2 7 to 17 712 384 54 29 

7/1/2012 462 430 -8.5 -8.6 7 to 17 117 73 40 25 

15/12/2012 707 533 -7.5 -8.2 9 to 14 1296 503 72 28 

Total 786 423 -7.2 -8.6 55 ℎ𝑟 5349 2470 64 29 

Our analysis shows that some of the parameters that were used to evaluate the 

performance of the automatic detection software have a strong correlation. The 

correlation between each pair of parameters was calculated (Table III-3). As shown, 

dark/light roughness, length/distance and discharge/time have a high correlation 

( 𝐶𝑜𝑟𝑟. = 0.59, 0.46, 0.37  respectively). Thus, they are presented as a pair of 

parameters together. X/Y positions are presented together as the position of an 

object, and in-channel structures as well. It should be noted that though the 

correlation between time and dark roughness is higher than discharge/time but we 

used discharge/time as pair because discharge has a good correlation only with time. 

Therefore, four pairs of parameters are defined and justified, including: (i) light and 

dark roughness, (ii) daytime and flow discharge, (iii) X, Y coordinates of detection 

position, and (iv) distance of detection as a function of piece length (Figure III-14, 

Table III-3).  

Table III-3Correlation between each pair of parameters 
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Dark roughness 
 

0.59 -0.02 -0.04 0.04 0.1 0 0.57 

Light roughness 0.59 
 

-0.03 -0.03 0.03 0.09 -0.04 0.29 

Length -0.02 -0.03 
 

0.46 -0.45 -0.35 -0.02 -0.01 

Distance -0.04 -0.03 0.46 
 

-1 -0.16 0.14 -0.05 

X position 0.04 0.03 -0.45 -1 
 

0.15 -0.15 0.05 

Y position 0.1 0.09 -0.35 -0.16 0.15 
 

0 0.07 

Discharge 0 -0.04 -0.02 0.14 -0.15 0 
 

0.37 

Time 0.57 0.29 -0.01 -0.05 0.05 0.07 0.37 
 

Figure III-14. a, d, g, j shows the dispersion of piece number in different 

conditions. Based on these figures, it is possible to compare the software 
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performance with what happens in reality; for example in which condition most of the 

wood pieces were annotated (𝑇𝑃 + 𝐹𝑁, the green circles), how many pieces were not 

detected by the code (difference between blue and green circles) and the week 

points of the code (red circles). Normally the wood pieces are annotated for 

discharges greater than 600 𝑚3/𝑠 (Figure III-14.d green scatters). Most of the wood 

pieces have less than 10 m lengths and are annotated less than 30 m from the 

camera (Figure III-14.j). This is in agreement with the field survey by MacVicar and 

Piégay (2012) on the bridge pier upstream at the study site. For categorizing wood 

lengths, as MacVicar and Piégay (2012) proposed, log base 2 size categories were 

used, similar to what is done for sediment sizes. These figures show that the 

software has quite different performances in different conditions. For further analysis, 

we calculated the precision rate 𝑃𝑅 (Figure III-14 second column) and the recall rate 

𝑅𝑅 (Figure III-14 third column) of the software based on the 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 figures 

from the first column of Figure III-14. 
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Figure III-14 Correction matrices: a, b, c) light and dark roughness’s, d, e, f) flow discharges during the daytime, g, h, i) 

detection position and j, k, l) wood lengths as a function of the distance from the camera. The first column shows number of 

pieces as 𝑻𝑷 + 𝑭𝑵 (all annotated pieces), 𝑻𝑷 (correct detections) and 𝑭𝑷 (wrong detections). Second and third columns 

show Precision and Recall rates of the software respectively.  

By applying a linear interpolation on 𝑃𝑅 values, the second column of Figure 

III-14 shows the precision rate in different conditions. As expected, the software 

works much better in a smooth flow with low roughness (Figure III-14.b), and by 

increasing the roughness in a frame the precision of the software decreases. Also, 

Figure III-14.e shows that the software is much more precise during the morning 

when there is enough light rather than evening when the sunshine decreases. 
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However, at low flow (𝑄 < 550 𝑚3/𝑠) the software precision decreases significantly. 

Based on Figure III-14.h, the software precision is usually better on the right side of 

the frame than the left side. It would be reasonable, as the software requires to 

detect a patch at least in 5 continuous frames to recognize it as a piece of wood (see 

section 3.4.2 and Figure III-4 for more information). Therefore, most of the true 

positives are on the right side of the frame, where 5 continuous frames have already 

established. Also, the presence of the bridge pier (at X ≅ -30 to -40 m based on Fig. 

9) in the upstream, produces lots of waves that decreases the precision of the 

software. Finally, the results of Figure III-14.k indicate that first, the software is not so 

precise for small pieces of wood (less than the order of 1 m), and second there is an 

obvious link between wood length and the distance from the camera so that by 

increasing the distance from the camera, the software is precise only for larger 

pieces of wood. 

To estimate the fraction of wood pieces that the software did not detect, the 

recall rate 𝑅𝑅  is calculated in different conditions and a linear interpolation was 

applied on 𝑅𝑅 as it is presented in Figure III-14, third column. As it is seen, frame 

roughness, daytime, and flow discharge do not play a significant role in the recall rate 

(Figure III-14. C, f). There is, however, a slight effect of dark roughness, so that when 

the dark roughness of the frame is important (many shadows on the surface) the 

software detects many patches amongst which some are 𝑇𝑃. However, in this range 

of dark roughness software detects small number of wood pieces (Figure III-14.a) 

results in not accurate 𝑅𝑅. By contrast, the wood position and its length are the key 

parameters on the 𝑅𝑅. The 𝑅𝑅 is much better on the left side of the frame than on 

the right side. It can be because the operator’s eye needs some time to detect a 

piece of wood, so most of the annotations are on the right side of the frame (Figure 

III-14.i). Having a small number of detections on the left side of the frame results in 

the small value of 𝐹𝑁  which followed by high values of 𝑅𝑅  in this region (𝑅𝑅 =

𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). Therefore, while the position of detection plays a significant role in the 
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recall rate, it is completely dependent on the operator bias. Finally, according to 

Figure III-14.l, 𝑅𝑅 is fully dependent on piece length so that for the lengths at the 

order of 10 m (𝐿 = 𝑂(10)) 𝑅𝑅 is very good. By contrast when 𝐿 = 𝑂(0.1~1) the 𝑅𝑅 is 

too small. there is a transient region when 𝐿 = 𝑂(1) which is slightly depends on the 

distance from the camera. One can say, the wood length is the most crucial 

parameter that affects the recall rate independent of the operator annotation.  

Table III-3 shows why instead of simple histograms, pair of parameters were 

used and as it is seen in Figure III-14 second and third columns, the parameters are 

more meaningful when we use them in pairs. For example, it is possible to say the 

software works best in the morning, specifically if the flow discharge exceeds 600 

𝑚3/𝑠, or that the software can detect the pieces far from the camera only if the 

pieces are large enough. In summary, the software shows different precision and 

recall rates in different conditions. Therefore, it is important to evaluate the software 

in different conditions to know when it is possible to trust the software and when not. 

Besides, it is seen that the software is very sensitive to the piece length so that for 

very large woods, software works very well, while there are many small pieces 𝐿 =

𝑂(0.1 ~1) that the software could not detect them (𝐹𝑃𝑠). 

3.6.3 Post-processing 

This section is separated into two main parts. First, we show how to improve the 

precision of the software by a posteriori distinction between 𝑇𝑃  and 𝐹𝑃 . After 

removing 𝐹𝑃𝑠 from the detected pieces, in the second part, we show the process to 

predict the annotated data that software could not detect them i.e. false negatives. 

3.6.3.1 Precision improvement 

We first run the software and detect pieces, as described in section 3.5.1. Then 

for each piece, the eight key parameters described in section 3.6.1.3 were extracted. 

Thus, knowing the position of the object in each sub-figure of Figure III-14, the total 

precision for each object would be the average of four precisions. Finally, if the total 
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𝑃𝑅 is more than 50% the object will be categorized as 𝑇𝑃 otherwise it is considered 

as 𝐹𝑃. It should be noted that following a Bayesian approach and depending on the 

propose of study, this 50% threshold can be changed for one or all four pairs of 

parameters, so that if only the wood pieces are interested even if 𝐹𝑃  increases 

significantly, this threshold can be increased and vice versa. 

This process was used in two scenarios: (i) Cross-validation, by leaving one day 

out, calculating the precision matrices based on five other days, and apply these 𝑃𝑅 

matrices on the leaved day. (ii) Total training, by using all database for calculating the 

precision matrices, and apply these 𝑃𝑅 matrices on the database. The results of both 

scenarios are presented in Table III-4. As is seen in this table, after post-processing 

in both scenarios, the software precision rises to 85% (85 − 64 = 21% enhancement). 

No significant differences are observed between two scenarios (Cross-validation / 

Total training) which gives the confidence of using this process for new/not annotated 

events. It is interesting to note that the enhancements are not the same for different 

days (from 10 to 42%). In the cross validation, when one day is leaved out if the other 

days had the similar condition as the leaved day, the 𝑃𝑅 matrices are well trained 

and can highly distinguish between 𝑇𝑃 and 𝐹𝑃 (e.g. 2nd Jan with 42% enhancement), 

while the 𝑃𝑅 matrices are blind if different conditions in the leaved day were unique 

(e.g. 15th Dec with 10% enhancement). 
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Table III-4 Precision rate (PR) before and after post-processing 

 
1st strategy: cross validation 2nd strategy: 

Total training 1 Jan 2 Jan 4 Jan 6 Jan 7 Jan 15 Dec Total 

R
a
w

 d
a
ta

 

𝑇𝑃 745 196 31 206 29 363 1570 1570 

𝐹𝑃 227 184 127 178 44 140 900 900 

𝐹𝑁 1537 606 109 506 88 933 3779 3779 

𝑃𝑅% 77 52 20 54 40 72 64 64 

𝑅𝑅% 33 24 22 29 25 28 29 29 

P
o
s
t-

p
ro

c
. 

𝑇𝑃 658 150 30 178 22 315 1353 1362 

𝐹𝑃 64 10 60 39 11 68 252 244 

𝐹𝑁𝑝𝑝
1 87 46 1 28 7 48 217 208 

𝑃𝑅%  91 94 33 82 67 82 85 85 

𝑅𝑅𝑝𝑝
2% 88 77 97 86 76 87 86 87 

𝑃𝑅 improvement 14 42 13 28 27 10 21 21 

1 𝐹𝑁𝑝𝑝denotes the false estimations of the precision matrices which results in missing some 𝑇𝑃. 

2 𝑅𝑅𝑝𝑝denotes the recall rate of post processing which corresponds to 𝐹𝑁𝑝𝑝. 

In this process, the precision matrices may also have a false estimation, i.e. they 

detect a real object as a false positive or vice-versa. These kinds of objects are 

categorized as post-processed false negatives 𝐹𝑁𝑝𝑝  and their recall rate is 𝑅𝑅𝑝𝑝 . 

Based on Table III-4, this precision enhancement process, lost only around 14% of 

𝑇𝑃𝑠 (𝑅𝑅𝑝𝑝= 86, 87% for two different scenarios). 

Instead of using all eight key parameters (four 𝑃𝑅  matrices) to calculate the 

overall precision, it is also possible to use other configurations by combining different 

matrices as it is shown in Figure III-15. In this figure, the precision matrices 1 to 4 are 

the same as the matrices presented in Figure III-14 and different colors show 

different combinations of these matrices. As it is seen, some configurations (e.g. (2,4) 

or (1,3,4)) result in better precision and some cases (e.g. (1,2) or (1,3)) there is 

almost no difference between post-processed 𝑃𝑅 and the raw data. The reason that 

configurations like (2,4) or (1,3,4) with a better precision rate were not used here was 

that in these cases the post-processed recall rate RRpp was low (around 60%) 

meaning that by using these configurations many of true positives was removed. 

Therefore, to have the best precision enhancement with maximum post-processed 

recall rate all 4 different precision matrices are used (Figure III-15, dark red scatters). 
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Figure III-15 Effect of using different combinations of 𝑷𝑹 matrices on precision improvement compared with 1:1 line(no 

improvement), 10% and 20% improvement lines. 

3.6.3.2 Modeling missed wood pieces based on the recall rate 

Based on Table III-4 (Raw data) the software only detected 29% of data, which 

means that 71% of the wood pieces were missed. In the previous section, it was 

described how to enhance the precision of the software to be sure this 29% of total 

wood pieces are 𝑇𝑃𝑠. The following section is dedicated to describing how to model 

the rest of 71% missed pieces. 

Based on Figure III-14, the software works pretty well for very large objects 

everywhere, while it could not detect the smaller pieces. Therefore, among eight key 

parameters, the wood length is the most important factor governing the recall rate. 

Here, the idea is to identify a threshold length from which the software starts to 

deviate from annotations. To do so, first, the actual length distribution based on 

annotation (𝑇𝑃 + 𝐹𝑁, green line) and the raw results of the detection software (𝑇𝑃 +

𝐹𝑃, red line) are plotted in Figure III-16.a . Then, based on the process described in 

section 3.6.3.1 the false positives are removed from the raw data so that the dashed 

blue line shows only true positives that are detected by the software. At this stage, 

the difference between the dashed blue line and the green line are the false 

negatives that the software has missed. Comparison between the annotated data 

(green line) and software true positives (blue dashed line) show a threshold length 
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equal to 2.3 m, more than that, almost all pieces are detected by the software while 

below that some pieces are missed, as it is predicted above. To calculate this 

threshold, the correlation coefficient between green and blue lines is calculated for 

different thresholds, from 1 cm to 15 m length (Figure III-16.b) and 2.3 m length was 

defined as the optimum threshold length for recall modeling. Knowing the difference 

between software true positives (𝑇𝑃, blue dashed line) and operator annotations 

(𝑇𝑃 + 𝐹𝑁, green line), the next step is to model 𝑇𝑃 + 𝐹𝑁 based on software 𝑇𝑃𝑠 for 

the wood pieces less than 2.3 m lengths. Defining 𝑅𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  (section 

3.6.1.2) 𝑇𝑃 + 𝐹𝑁 = 𝑇𝑃/𝑅𝑅. In this relation, 𝑇𝑃 is known from the software detentions 

(blue dashed line). Following the same protocol as precision enhancement in section 

3.6.3.1, 𝑅𝑅  was calculated using the recall matrices in Figure III-14. Finally, by 

dividing 𝑇𝑃 by 𝑅𝑅 for the pieces less than the 2.3 m threshold, the total amount of 

wood pieces was modeled (Figure III-16.a, blue line). The result shows a good 

agreement between operator annotations (green line, totally 6249 pieces) and 

modeled wood pieces (blue line, totally 5841 pieces) which results in only 6.5% 

relative error in the total number of wood pieces. 

 

Figure III-16 a) Steps to post-process software automatic detections: (i) raw detections (𝑻𝑷 + 𝑭𝑷 red line), (ii) Only true 

positives using the 𝑷𝑹 improvement process (𝑻𝑷 blue dashed line), and (iii) modeling false negatives (blue line). 

Operatorannotation (green line is used as a benchmark). b) The correlation coefficient between operator annotation and 

modeled 𝑻𝑷 to find an optimum threshold length for 𝑹𝑹 improvement. 

On the Ain River by separating videos to 15 min segments, MacVicar and Piégay, 
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(2012) and Zhang et al., (2020) proposed the following equation for calculating wood 

discharge from the wood flux: 

𝑄𝑤 = 0.0086𝐹1.24              (1) 

Where, Qw is the wood discharge (𝑚3/15𝑚𝑖𝑛) and F is the wood flux (piece 

number/15 min). Using this equation, the total volume of wood is calculated based on 

three different conditions: (i) operator annotation (𝑇𝑃 + 𝐹𝑁 ), (ii) raw data of the 

detection software (𝑇𝑃 + 𝐹𝑃) and (iii) post-processed data of the detection software 

(𝑇𝑃𝑚𝑜𝑑𝑒𝑙𝑒𝑑). Figure III-17 shows the comparison of the total volume of wood between 

operator annotation as the benchmark from one hand and raw data (red scatters) 

and post-processed data (blue scatters) from the other hand. As it is seen while for 

the raw detection (red scatters) there is almost one order of magnitude 

underestimation for the total volume of wood, after processing the detected data 

(blue scatters), the results are very similar to what operator annotates. In total 125 

𝑚3 wood was annotated by the operator; the software detects automatically 46 𝑚3 

(contain 𝐹𝑃𝑠) while after post-processing 142 𝑚3 wood is estimated in the river which 

results in 13.5% relative error. Note that, there is a slight difference for the very small 

volumes of woods (4, 7 Jan), but in practical works these values are negligible. 
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Figure III-17 Comparison of the total volume of wood between operator annotation as the benchmark and raw data (red 

scatters) and post-processed data (blue scatters), compared with a 1:1 line. 

3.7 Conclusion 

Here, we present new software for the automatic detection of wood pieces on the 

river surface. After presenting the corresponding algorithm and the user interface, an 

example of automatic detection was presented. Moreover, we annotate 6 days of 

flood events that are used to first, check the performance of the software and second 

reproduce the data that are possibly missed by the software. 

To evaluate the performance of the software, we used precision and recall rates. 

The automatic detection software detects around one third of all annotated wood 

pieces with 64% precision rate. Then using the operator annotations as the ultimate 

goal, the post-processing part was applied to extrapolate data extracted from 

detection results, aiming to come as close as possible to the annotations. It is shown 

that using four pair of key factors: (i) light and dark roughness of the frame, (ii) 

daytime and flow discharge, (iii) X, Y coordinates of detection position, and (iv) 

distance of detection as a function of piece length, it is possible to detect false 

positives and increase the software precision to 86% from one hand, and model the 
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missed wood pieces (false negatives) from the other hand, to increase the recall rate 

results in relative error of 6.5% for piece number and 13.5% for wood volume. The 

good agreement between cross-validated and total trained models confirms that this 

software coupled with an appropriate post-processing has a high potential to be used 

for the future flood events. 

This work shows the feasibility of the detection software to detect wood pieces 

automatically which significantly reduces the annotation costs. It can be a powerful 

tool for researchers as well as river managers to quantify the amount of wood in 

rivers. To develop this work, the next step would be to apply this software in other 

rivers to increase our experience in different contexts and enhance its accuracy. 
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CHAPTER IV. Operator based uncertainties in 

streamwise video monitoring technique 

4.1 Résumé 

Le bois fait partie intégrante des rivières qui jouent un rôle à la fois positif et 

négatif. Différentes techniques ont été développées pour quantifier le bois dans les 

rivières. Parmi eux, la technique de surveillance vidéo côté flux est une technique 

efficace pour surveiller des pièces de bois avec une résolution temporelle et spatiale 

relativement élevée pendant un temps infini et dans un certain endroit. Cependant, la 

détection visuelle des morceaux de bois dans les vidéos est entachée d'incertitudes 

dues à deux types de limitations; premièrement, le biais de l'opérateur (limite de 

vision), et deuxièmement, l'échantillonnage vidéo (c'est-à-dire le fait que seule une 

partie de la vidéo est utilisée pour évaluer le flux de bois, en raison de la nature 

chronophage de la tâche de détection visuelle). Pour évaluer ces incertitudes, 7 

crues et 13 segments vidéo correspondant à plus de 37 jours, et plus de 64 000 

morceaux de bois, ont été suivis sur deux rivières différentes, l'Ain et l'Allier, France. 

Les résultats montrent que s'il existe une grande différence entre les différents 

opérateurs pour détecter les petites pièces de bois (<1 m), tous les opérateurs 

détectent environ le même nombre de grandes pièces de bois (> 1 m). L'application 

d'une longueur de troncature (c'est-à-dire en considérant des pièces de bois d'une 

taille supérieure à un certain seuil) réduit considérablement l'incertitude du nombre 

de pièces, sans impliquer un changement significatif du volume total de bois. Bien 

que l'utilisation d'échantillons vidéo au lieu d'une surveillance continue puisse être 

très efficace en termes de temps, il est important d'ajuster une stratégie 

d'échantillonnage pertinente, avec une chronologie dynamique. Ici, nous détaillons 

une telle méthode, en utilisant à la fois une longueur de troncature et une stratégie 

d'échantillonnage pour réduire les coûts de détection, avec un impact limité sur 
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l'incertitude. 

4.2 Abstract 

Wood is an integral part of rivers which play both positive and negative role. 

Different techniques have been developed to quantify wood in rivers. Among them, 

stream-side video monitoring technique is an effective technique to monitor wood 

pieces with a relatively high temporal and spatial resolution during an infinite time 

and in a certain location. However, the visual detection of wood pieces in the videos 

is tainted by some uncertainties due to two kinds of  limitations; first, operator bias 

(vision limit), and second, video sampling (i.e. the fact that only a portion of the video 

is used to assess the wood flux, due to the time-consuming nature of the visual 

detection task). To assess these uncertainties, 7 flood events and 13 video segments 

corresponding to more than 37 days, and more than 64000 pieces of wood, were 

monitored on two different rivers, Ain and Allier, France. The results show that while 

there is a big difference between various operators to detect small wood pieces 

(<1m), all operators detect about the same number of large wood pieces (>1m). 

Applying a truncation length (i.e. considering wood pieces with a size superior to a 

certain threshold) reduces the piece number uncertainty significantly, without 

implying a meaningful change in the total volume of wood. Although using video 

samples instead of continuously monitoring could be highly time-effective, it is 

important to adjust a relevant sampling strategy, with a dynamic timeline. Here, we 

detail such a method, using both a truncation length and a sampling strategy to 

reduce detection costs, with a limited impact on uncertainty. 

 

4.3 Introduction 

Driftwood is a significant component of the riparian zone both ecologically and 

morphologically (Gonor et al., 1988; Abbe and Montgomery, 2003; Gregory et al., 
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2003; Montgomery et al., 2003; Wilcox and Wohl, 2006; Battin et al., 2008; Bocchiola, 

2011; Gurnell, 2013; Welber, 2013; Wohl, 2013; Wohl and Scott, 2017). Alongside 

many positive effects, the wood must also be considered as a risk factor in terms of 

flooding and infrastructure damage (Schmocker and Hager, 2011; Lassettre and 

Kondolf, 2012; Ruiz-Villanueva et al., 2013; De Cicco et al., 2018; Mazzorana et al., 

2018). Consequently, many attempts have been made to quantify the amount of 

wood in rivers experimentally (Lyn et al., 2003; Bocchiola et al., 2008; Ghaffarian et 

al., 2018, 2019), numerically (Yin et al., 2003; Virginia Ruiz-Villanueva et al., 2014b; 

Persi et al., 2018, 2019) and through field surveys (Gurnell et al., 2002; Piégay et al., 

2005; Wohl et al., 2005; Ruiz-Villanueva et al., 2016a; Piégay et al., 2019). 

The presence of wood in the riverine environment can be studied at different 

temporal and spatial scales using different monitoring techniques such as plastic tags 

(Lenzi, 2004; Warren and Kraft, 2008), passive or active radio frequency identifiers 

(RFID) (MacVicar et al., 2009) or GPS devices (Ravazzolo et al., 2013). Thanks to 

new platforms such as kites, microlights, drones, and satellites (Lejot et al., 2007; 

Carbonneau and Piégay, 2012), airborne and spaceborne multispectral and 

hyperspectral imaging systems (Marcus et al., 2002, 2003; Leckie et al., 2005) and 

terrestrial or aerial Light detection and ranging (Lidar) (Fleece, 2002; Boivin and 

Buffin-Bélanger, 2010), which are finding their way into riverine sciences, remote 

sensing is also widely used to monitor the amount of wood along rivers. 

Among various remote sensing studies on wood mobility, usually expressed in 

meters per year, or per flood event, videography is a technique that presents data 

per second or hour. Stream-side videography provides high temporal-resolution data, 

which is useful for computing rates of transport and fine-scale relationships between 

wood and water discharges, using a camera that is located in a safe position from 

flooding on a riverbank (Lyn et al., 2003; Muste et al., 2008; MacVicar et al., 2009; 

MacVicar and Piégay, 2012; Kramer and Wohl, 2014; Benacchio et al., 2017). During 

the recent years, there have been many advances on this technique such as: 
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measuring the volume of wood only by counting piece numbers (Ghaffarian et al., 

2020a; Zhang et al., 2020), estimating length distribution and transverse distribution 

of wood pieces (Ghaffarian et al., 2020a) or even predicting the pattern of wood 

recruitment in a river during flood events (with a threshold of motion at 60% of 

bankfull discharge -0.6Qbf-, much more recruitment during the rising limb of flood 

hydrograph rather than the falling limb, and a maximum value of wood recruitment at 

Qbf ; MacVicar and Piégay, 2012). Finally, automatic monitoring of wood with 

detection software (Ali and Tougne, 2009; Ali et al., 2012, 2014; Lemaire et al., 2014; 

Benacchio et al., 2017; Ghaffarian et al., 2020b) and continuous estimation of wood 

fluxes (piece number per time) even during the night, based on discharge 

descriptors(Zhang et al., 2020), make this technique a low cost, and highly efficient 

tool both for scientists as well as urban and river managers. 

Video monitoring includes two principal tasks: recording and detection. Each of 

these tasks comes with some uncertainties. Limits in the camera’s spatial and 

temporal resolution, as well as the problem of connection for remote cameras, or 

recording limitations, cause uncertainty in the results. However, there are some 

techniques to minimize these uncertainties (Ghaffarian et al., 2020a; Zhang et al., 

2020). Wood detection itself (either automatic or manual) also can be tainted by 

uncertainty. To reduce uncertainties in the wood automatic detection software, 

Ghaffarian et al. (2020b) used manual annotations to train the software and increase 

its precision. However, there is the remaining question about the uncertainties due to 

the visual detection and video annotation by operators. 

This study aims to estimate the human-based uncertainties in the video 

monitoring technique. These uncertainties are separated into two main categories: (i) 

operator bias: the vision of different operators and their criteria for considering a 

patch on the video frames as a wood piece is different; (ii) the sampling strategy: 

while an automatic detection software monitors the river surface during an infinite 

period, manually annotating wood piecesis time-consuming, so it is better to select 
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only a part of the video for annotation. Therefore, after introducing our material and 

methods, we first estimate operator-related uncertainties and then introduce some 

ways to minimize these uncertainties base on the project requirements. 

4.4 Study site 

To generalize our observations, the data were collected from two different sites, 

both in France: (i) the Ain river (Figure II-1). with 1.5-year flow discharge, Q1.5 = 840 

m3/s as the dominant flow, and (ii) the Allier river (Figure IV-2). with Q1.5 =460 m3/s.  

The study site in the Ain river is located on the lower Ain, a sixth-order piedmont 

river flowing through a forested corridor in France. The channel is typically single 

thread with occasional islands, and a wandering system with prominent meander 

scrolls and cutoff channels (Figure II-1.a) (MacVicar et al., 2009). The hydrograph 

shows a strong seasonal pattern, with low flows in the summer and most of the 

floods occurring between October and April. Bed material sizes are gravel–cobble 

mix with a median size of 2.5 cm. The unvegetated channel width is 65 m on average 

at the study site, actively shifting so that a significant amount of wood is delivered by 

bank erosion. Along the study site, the wood influx has been estimated over several 

decades from the analysis of aerial photographs at 18 to 38 m3/km/yr (Lassettre et al., 

2008). Floating wood was counted on the river at Pont de Chazey, where a stream 

gauge is maintained by a regional authority (Figure II-1.b). 
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Figure IV-1. Study site at Pont de Chazey: a) Location of the Ain River course in France 

and location of the gauging station, b) camera position and its view angle in yellow, 

The second study site is located in the lower Allier river, France, in the National 

Natural Reserve of the Val d’Allier. Here, the gravel bed meandering river 

experienced moderate anthropogenic impact and characterized by active lateral 

erosion up to tens of meters by year (Petit, 2006). The hydrological flow regime is 

pluvio-nival with peak discharge in winter and low flows in summer. The average 

active channel width varies between 100 and 176 m and we can observe a 

heterogeneous spatial distribution of vegetation patches of different sizes and ages 

(Geering et al., 2006). Floating wood was counted on the river at the bridge of 

Châtel-de-Neuvre, where a stream gauge is maintained by a regional authority 

(Figure II-1.b). 
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Figure IV-2. Study site at Châtel-de-Neuvre a) Location of the Allier River course in 

France, b) camera position and its view angle in yellow. 

Tree species established in both sites are a mix of soft and hardwood species 

dominated by black poplar (Populus nigra). The flow discharge is calculated based 

on the water elevation measured at the gauging station. These data are available 

online from 1959 on the Ain River and from 1986 on the Allier River at 

(www.hydro.eaufrance.fr). 

4.5 Materials and methods 

4.5.1 Stream-side video camera 

On the Ain river, wood pieces were monitored at Pont-de-Chazey gauging 

station using an A IS P221 Day/Night™ fixed network camera. The camera was 

located on the side of the river closest to the thalweg to provide a maximum 

resolution where the majority of wood pieces are observed. The camera elevation is 

9.84 m above the base flow surface at a sufficiently wide-angle to afford a view of the 

entire river width during most periods. Ethernet connectivity enables the automatic 

transfer of recorded videos to a central server located at CNRS UMR 5600 – 

Environment Ville et Société, Site of École Normale Supérieure, Lyon, France. 

http://www.hydro.eaufrance.fr/
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Videos were recorded continuously at a frequency of 3~5 fps and 640 × 480 pixels. 

On the Allier river, wood pieces were monitored at the Châtel-de-Neuvre gauging 

station using a Hikvision DS-2CD2T42WD-I8 6 mm fixed network camera. Videos 

were recorded continuously at a frequency of 6 fps and a resolution of 1920×1080 

pixels. As on the Ain river, the camera is positioned close to the thalweg, but installed 

on the bridge facing downstream at 11 m above the baseflow surface. 

Using the manual algorithm, written in Matlab R2017a, video playback was 

stopped by the user when a piece of wood was observed. Both ends of wood pieces 

were annotated. The video was then advanced frame by frame and the endpoints of 

the wood were detected again. 

4.5.2 Studied events 

According to the main purposes of this study, two different strategies were 

applied for monitoring: (i) monitoring 15min video segments and (ii) monitoring 

continuous flood events. As it is shown in Table II-1, five different operators 

monitored and detected 11 video segments on the Ain River and 2 video segments 

on the Allier River, in order to assess operator bias. The 15min video segments were 

selected such that they correspond to different light conditions (e.g. sunshine or 

cloudy weather or different day times), in order to evaluate the operator visions in 

different conditions. Also, the amount of wood pieces varies greatly across videos 

(from 0 to more than 300). Moreover, in order to assess the effect of sampling 

strategies on estimations and uncertainty, 7 flood events were continuously 

monitored, i.e. a total video of around 37 days with more than 64000 detected pieces 

(Table IV-2).  
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Table IV-1. Sampled videos statistics 

River Date Time 

Number of wood pieces detected by operators 

Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 

Ain 

22/11/2007 9:15 AM 0 0 0 0 0 

22/11/2007 11:15 AM 0 0 0 0 0 

22/11/2007 12:00 AM 1 0 1 0 1 

22/11/2007 3:56 PM 11 12 12 10 8 

22/11/2007 5:11 PM 4 4 5 5 3 

23/11/2007 7:56 AM 313 226 293 275 313 

23/11/2007 9:56 AM 354 313 386 358 326 

23/11/2007 10:11 AM 290 216 236 225 210 

23/11/2007 11:56 AM 337 175 243 253 183 

23/11/2007 2:26 PM 253 95 143 118 92 

23/11/2007 5:05 PM 271 136 216 179 130 

Allier 
25/11/2019 3:33 PM 672 - 643 366 408 

23/12/2019 11:15 AM 191 - 92 108 128 

Table IV-2. Continuous monitoring statistics 

River Flood periods 

𝑄𝑚𝑎𝑥 

(𝑚3/𝑠) 

Analyzed 

video (hr) 

Monitored 

fraction 

Total amount of wood 

number Volume(m3) 

Ain 

01 to 07-Jan-2012 808 57:00 34% 5316 281 

15 to 16-Dec-2012 932 17:15 36% 7697 504 

01 to 06-Feb-2013 701 56:30 39% 1465 105 

21 to 24-Dec-2018 1430 25:45 36% 8871 310 

Allier 

23 to 28/11/2019 494 70:00 41% 24587 1109 

15 to 16/12/2019 348 20:00 41% 3453 129 

21 to 30/12/2019 530 100:00 41% 12773 346 

4.5.3 Piece number and volume 

Piece number and volume are two main characteristics of wood flux in the river. 

While the first is the most readily available measure in video monitoring, the second 

also depends on the size of floating pieces.  Hence the uncertainty  in piece number 

results in some uncertainty in the estimated volume, but also selecting different pixels 

as the borders of a wood piece is another source of error for calculating the piece 

volume (Ghaffarian et al., 2020a).  

To calculate the volume of each piece of wood, first, the video frames were 

rectified and the coordinates transformed from pixel to cartesian (Ghaffarian et al., 

2020b). Having the metric coordinates, then the length distribution was calculated on 

both sites (Figure IV-3). The volume of each piece of wood was then calculated 

following the same approach proposed by Ghaffarian et al. (2020a) on the Ain River. 
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It should be noted that having (i) a similar wood length distribution (Figure IV-3), (ii) 

the same dominant species on both sites, and (iii) a good position for the camera 

(near the transverse position where most of the wood pieces are passing and with 

almost same pixel size distribution in both sites (Ghaffarian et al., 2020a)), comforts 

the use of the same relationship between length and volume on the Allier River. 

 

Figure IV-3. Comparison of the wood length distribution on two sites. 

4.5.4 Sampling time window (𝑻𝑾) 

To study the effect of sampling on the accuracy of data acquisition, a flood event 

duration was divided into equal time intervals, each with duration ∆𝑡 (Figure IV-4). 

Then among each ∆𝑡  period a sample time 𝑑𝑡  was selected. Therefore, the time 

window inside each time interval can be defined as 𝜏 =  𝑑𝑡 ∆𝑡⁄ . Then, if during the 𝑖𝑡ℎ 

time window, 𝑛𝑖 pieces of wood were detected, the corresponding total number of 

woods in this time interval is estimated to be 𝑛𝑖 𝜏⁄ .  

   
 

   
 
 
 

   
 
 
 

   
 
 
 

   
 
 
 

 
 
 

          
                                                                              

         

            



Developing video monitoring technique in riverine environment  95 

 

 

 

Figure IV-4. Schematic view of the sampling time window (𝑻𝑾) 

Inside each time interval, we can slide 𝑑𝑡 from 𝑡0 = 0 to 𝑡0 = ∆𝑡 − 𝑑𝑡 (bottom of 

Figure IV-4), and calculate piece numbers for each condition. Therefore, the total 

piece number in each time interval based on the sampling strategy were calculated 

as: 

 𝑁𝑖
̅̅̅ =

∫ 𝑛𝑖 𝜏⁄
𝑡0=∆𝑡−𝑑𝑡

𝑡0=0
𝑑𝑡0

∆𝑡 − 𝑑𝑡
, (1) 

Due to the time excluded from sampling (from the start of ∆𝑡 to 𝑡0 and from 𝑡0 +

𝑑𝑡 to the end of ∆𝑡 (bottom of Figure IV-4)), 𝑁𝑖
̅̅̅ can be different from the total piece 

number in each time interval based on the real observations (𝑁𝑖), which is a source 

of error. The following equation was used to calculate this error inside the 𝑖𝑡ℎ time 

interval: 

 ∆𝑁𝑖
∗ = |

𝑁𝑖 − 𝑁𝑖
̅̅̅

∑ 𝑁𝑖
𝑚
1

| (2) 

where 𝑚 is the number of time intervals during a flood event. Therefore, this 

equation shows the difference between the total piece number in the 𝑖𝑡ℎ time interval 
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based on the real observations (𝑁𝑖) and sampling strategy (𝑁𝑖
̅̅̅) which is normalized 

by total number of wood pieces during a flood event (∑ 𝑁𝑖
𝑚
1 )  based on the real 

observations. Then ∆𝑉𝑖
∗ were calculated in the same way by substituting 𝑛𝑖 with 𝑣𝑖 as 

the detected wood volume in 𝜏. 

4.6 Results 

4.6.1 Uncertainty on piece number and volume 

The reliability of each operator would be the first and the most important step for 

checking the operator bias. To do so, two elements were checked: wood length 

distribution and transverse wood distribution, both should be unique in a cross-

section (Ghaffarian et al., 2020a). If the results of one of the operators were far from 

the reality (field measurements), it should be considered as an outlier and be 

removed from the database. Figure IV-5. a and b show these two elements on the 

Ain River. The data on this river have been already validated (black dashed line) by 

MacVicar & Piégay, (2012) and Ghaffarian et al. (2020a). As it is seen both wood 

length distribution (Figure IV-5.a) and wood transverse distribution (Figure IV-5.b) are 

almost in the same range as the black dashed line. Therefore, it is possible to rely on 

the data provided by all operators.  

 

Figure IV-5. Comparision of the results of different operators for a) cumulative 

distribution function of wood length and b) probability distribution function of 

transversal position of wood pieces on the Ain River, compared with the validated data 

(dashed line) from MacVicar & Piégay, (2012), Ghaffarian et al. (2020a). 
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As it is seen in Figure IV-5.a and b, there is however a slight difference between 

different operators. The question here is, where does this error come from? To 

address this question, the wood pieces in two rivers are classified based on their 

length. Figure IV-6.a shows the difference of piece number between different 

operators by showing the normalized standard deviation of piece number, as a 

function of wood length. As it is seen, most of the error comes from the Coarse 

Particulate Organic Matter (CPOM) (Turowski et al., 2013a) with less than 1m length. 

Furthermore, based on Figure IV-6.b, c, while more than half of wood pieces are in 

the CPOM class, they represent only around 7% of the total wood volume, which 

suggests the idea of using a truncation length 𝐿𝑡𝑟 to minimize these human-based 

errors. 

 

Figure IV-6. Classification of results based on piece length; a) the difference between 

different operators based on the normalized standard deviation of piece number 

(𝝈𝒊/ ∑ 𝝈𝒊), b) probability distribution function of piece number and c) volume. 

By applying a truncation length, pieces with length less than 𝐿𝑡𝑟 were removed 

from the database of each operator. Then the truncated piece number 𝑁𝑡𝑟 normalized 

by the total piece number 𝑁𝑡 and truncated volume 𝑉𝑡𝑟 normalized by total volume 

𝑉𝑡 were calculated for each operator.  

Figure IV-7.a, b shows the mean value (solid line) and the standard deviation 

(dashed line) of 𝑁𝑡𝑟/𝑁𝑡 and 𝑉𝑡𝑟/𝑉𝑡 respectively. We use the mean value to show the 

evolution of piece number and volume as a function of 𝐿𝑡𝑟 and the standard deviation 

to show the relative error between different operators. As it is seen in  

Figure IV-7.a, increasing truncation length causes an exponential decrease for 
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piece number and its relative error, while  

Figure IV-7.b shows that the link between truncation length and wood volume is 

almost linear. This means that applying a truncation length, decreases the 

uncertainties significantly on piece number without a significant change in total 

volume. 

  

Figure IV-7. Effect of applying a truncation length (𝑳𝒕𝒓) on piece number and volume: a) 

truncated piece number (𝑵𝒕𝒓) normalized by total piece number (𝑵𝒕), and b) truncated 

piece volume (𝑽𝒕𝒓) normalized by total piece volume (𝑽𝒕). Solid and dashed lines 

represent mean and standard deviation for the results of different operators.  

Figure IV-7.b for smaller truncation lengths (𝐿𝑡𝑟 < 2𝑚 ), the relative error on 

volume in both rivers is almost constant. This constant error can be more due to the 

blurry pixels around the object, especially far from the camera, which causes 

selecting different pixels as the limits of one single wood piece which results in a 

systematic error among different operators rather than bias on the number of 

detected pieces by different operators. 

4.6.2 Sampling time window (TW) 

Sampling a fraction of videos, reduce significantly monitoring costs. Following 

the method described in section 4.5.4, Figure IV-8.a shows a one by one link 

between the fraction of monitored videos and the fraction of detected wood pieces. 
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Figure IV-8. Link between time window 𝝉 and the fraction of detected wood pieces. 

There is however, an error due to the time excluded from sampling. Following 

section 4.5.4 this error is shown in Figure IV-9. a, b for total number and volume of 

wood pieces respectively. As mentioned in Table IV-2, totally 7 flood events were 

monitored in this study. So, to show the errors for all events together, solid and 

dashed lines represent the mean and maximum errors for different monitored floods 

respectively. As it is seen in this figure the relative error of both total piece number 

and total volume decrease rapidly by increasing 𝜏 up to 𝜏 ≅ 20%. It should be noted 

that though the error was different among different events (in the range of dotted 

lines in Figure IV-9), 𝜏 < 20%  always results in much larger error and is not 

recommended. 

 

Figure IV-9. Error due to time excluded from sampling as a function of time window  𝑻𝑾. 

Solid and dashed lines represent the mean and maximum errors for different 

monitored floods respectively. 
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There are many studies showing that, flow discharge has a significant effect on 

wood mobility (MacVicar and Piégay, 2012; Ghaffarian et al., 2020a; Kramer and 

Wohl, 2014). Therefore, to optimize the detection time based on flow discharge, 

Figure IV-10 shows the effect of flow discharge on the relative error in each time 

interval (∆𝑁𝑖
∗) only for 𝜏 = 50% as an example and then Figure IV-11 shows this 

effect on ∆𝑁𝑖
∗ and ∆𝑉𝑖

∗  for a range of 𝜏 from 0 to 100% on both rivers. As it is seen, 

despite big dispersion of data due to the random effects on the river, by increasing 

the flow discharge, the error always increases which is due to the increase in 

|𝑁𝑖 − 𝑁𝑖
̅̅̅| in Eq 2. It should be noted that the reason ∆𝑁𝑖

∗ shows rather small values 

(of the order 10−2 to 10−1) is that to be able to show the error due to the sampling 

strategy as a function of flow discharge in Figure IV-10 and Figure IV-11, for 

normalizing the difference between sampling and real detections in one time 

interval(|𝑁𝑖 − 𝑁𝑖
̅̅̅|), total number of wood pieces during a flood(∑ 𝑁𝑖

𝑚
1 ) was used as it 

is a unique parameter during one flood (see Eq 2). This gives the possibility to 

compare the errors at each time (correspond to a flow discharge) with the rest of 

flood. 

 

Figure IV-10. Relative error due to the sampling with 𝝉 = 𝟓𝟎% for different discharges 

as a function of flow discharge. Solid line shows the linear interpolation and dashed 

lines show the 95% confidence boundes on the Ain (red) and Allier (blue) Rivers. 

By repeating the process described in Figure IV-10 for different values of 𝜏 , 

Figure IV-11 shows the simultaneous effect of different sampling times (color bars) 
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and flow discharge (x axis) on the errors on pieces number (Figure IV-11. a, c) and 

volume (Figure IV-11. b, d) on both Rivers. These figures can be used to statistically 

limit the uncertainty for different discharges. An example for the application of these 

figures are presented in (section 4.7.2, Figure IV-12). The similarity between two 

rivers gives confidence in the application of these graphs. 

 

Figure IV-11. Relative error due to the sampling as a function of flow discharge. a, b) 

The errors on pieces number ;c, d) the errors on wood volume on two rivers. 

4.7 Discussion 

4.7.1 Bias of operator 

Based on our observations on two different rivers, reliability of video monitoring 

directly relates to the size of wood pieces. In the case of small pieces (<1m), there is 

more than 70% uncertainty on piece number among different operators (Figure 

IV-6.a). This uncertainty should be added to many other uncertainties e.g., 

transverse distribution of pixel size which limits the detection far from the camera 

(Ghaffarian et al., 2020a), immersed parts of the object, and so on. 
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By contrast, operator detection is quite reliable for detecting large wood pieces. 

By applying a truncation length, the uncertainty due to the operator bias drops down 

exponentially (e.g., from more than 20% when 𝐿𝑡𝑟 = 0 to less than 5% for 𝐿𝑡𝑟 = 1𝑚 

while the lost volume is limited to 5%). However, there is always a constant error on 

wood volume due to the optical limitations (resolution, luminosity, etc.) and natural 

conditions (immersed part, flow roughness, high discharge or exceptional wind and 

so on (MacVicar and Piégay, 2012; Ghaffarian et al., 2020b, Zhang et al., 2020)). 

The effect of wood length on the accuracy of acquired data was also observed 

by Ghaffarian et al. (2020a). They compare the results of the length distribution in 

two different conditions: (i) wood pieces pass just near the camera (on the Ain River) 

and (ii) wood pieces pass far from the camera (on the Isere River, France). Their 

comparison, reveals that while the length distribution for pieces more than 2m (𝐿𝑡𝑟 >

2𝑚 ) was quite similar, it was totally different for small pieces ( 𝐿𝑡𝑟 < 1𝑚 ). This 

confirms that first it is necessary to locate camera in the transient section where most 

of the wood pieces are passing and second using a truncation length is necessary for 

the accuracy of data. It should be noted that not only manual annotations affect the 

wood length, but also Ghaffarian et al. (2020b) showed the wood length is a crucial 

parameter in the accuracy of the automatic detection. They showed that by going 

away from the camera, this parameter becomes more and more important. 

4.7.2 Sampling videos 

Our observations showed that there is always a limitation of 𝜏 = 20%  below 

which monitoring is not reliable. For 𝜏 > 20% however using a constant value for 

𝜏might be a sub-optimal strategy since relative accuracy is higher for low discharges 

and lower for high discharges. Therefore, for sampling a video, defining an 

appropriate strategy is crucial. Figure IV-12 is an example of defining an optimum 

timeline according to Figure IV-11 and based on the needed accuracy both for piece 

number (Figure IV-12.a) and piece volume (Figure IV-12.b) on the Ain (solid line) and 

Allier (dashed line) Rivers. To prepare the sampling timeline first the acceptable error 
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should be defined. Here, 0.5, 1.0, 1.5 and 2% are selected for ∆𝑁𝑖
∗ (Figure IV-12.a) 

and ∆𝑉𝑖
∗ (Figure IV-12.a). Knowing the acceptable error, by passing an imaginary 

horizontal line on Figure IV-11, the needed 𝜏 for each 𝑄 𝑄1.5⁄  can be extracted. For 

practicality t, in Figure IV-12, 𝜏 is discretized in 20% groups. It is interesting to note 

that the timeline on both rivers are almost the same. 

 

Figure IV-12. An optimum timeline for sampling based on different accuracies (from 0.5 

to 2%) both for a) piece number and b) piece volume on the Ain (solid line) and Allier 

(dashed line) Rivers. 

It should be noted that this method only can be used as a rough guess to limit 

the errors and find an optimum timeline for sampling and due to the big dispersion of 

the data, as presented in Figure IV-10, calculating an accurate timeline for sampling 

is not practical and impossible. 

4.8 Conclusions 

Here we studied two sources of uncertainties due to operator limitations in video 

monitoring technique; first operator bias, vision limits, and second video sampling or 

time limits. To assess these uncertainties, 7 flood events and 13 video segments 

were monitored by 5 different operators on two different rivers, Ain and Allier, France. 

The results show that using a truncation length reduces the uncertainties on 

number of wood pieces significantly while total volume of wood remains almost 

constant. Regarding the video sampling, it is seen that selecting an appropriate 
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sampling timeline, reduces significantly monitoring time with a limited uncertainty. It 

should be noted that first the sampling time should be more than 20% and second, it 

is recommended to use a dynamic sampling time according to the flow discharge, 

rather than a constant value. 
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CHAPTER V. Summary and outlook 

    Dans cette étude, la technique de vidéographie en bord de rivière a été 

appliquée pour détecter le passage du bois et mesurer les taux instantanés de 

transport du bois. L'objectif était de mieux comprendre comment les flux de bois 

réagissent aux inondations et aux vents. Au total, un vent exceptionnel et 7 crues ont 

été surveillés sur l'Ain, en France, et environ 24 000 morceaux de bois ont été 

détectés manuellement. Nous trouvons une relation empirique entre la fréquence du 

bois et le rejet de bois, qui est utilisée pour simplifier la procédure de suivi. Il existe 

un lien univoque entre la fraction de morceaux de bois détectés et le paramètre 

adimensionnel «temps de passage × framerate», qui fournit une ligne directrice 

générale pour la conception des stations de surveillance. Il est confirmé qu'en 

général, il existe un seuil de mouvement du bois dans la rivière égal à 60% du débit 

à pleine rive. Cependant, lors d'une inondation suivant une journée venteuse, aucun 

seuil évident de mouvement du bois n'a été observé, ce qui confirme que le vent est 

important pour la préparation du bois pour le transport entre les crues. Lors de deux 

crues à plusieurs pics, environ les deux tiers de la quantité totale de bois ont été 

livrés au premier pic, ce qui confirme l'importance du temps entre les crues pour 

prédire les flux de bois. L'ensemble de données est utilisé pour développer un 

modèle de régression forestière aléatoire pour prédire la fréquence du bois en 

fonction de trois variables d'entrée dérivées de l'hydrogramme d'écoulement. Le 

modèle calcule le volume total de bois pendant la journée ou la nuit en se basant 

pour la première fois sur la technique de surveillance vidéo, ce qui élargit son utilité 

pour la budgétisation du bois dans un bassin versant. 

5.1 Summary 

5.1.1 Characteristic of wood flux in critical flood events 

In CHAPTER I, the wood flux is studied by a video monitoring technique on the 
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Ain River in France. In total, seven flood events and one exceptional wind event were 

surveyed by detection procedure. In this section, we find that the deposited wood in 

river channel from the last flood event can be transmitted by the first rising of water 

depth. Thus, in multipeak floods, wood flux decreases by increasing the number of 

peaks. Wood flux also can be a combination of fresh material as well as in-channel 

stored material. Moreover, some other processes like exceptional wind events before 

a flood can play a role on wood delivery. While the wind is not directly related to the 

mobility of wood, it can decrease the threshold of motion and prepare wood material 

to be exported during the next flood. This result is the first example in which we were 

able to detect the effective role of a potential driver within the upper catchment. In the 

current study, we installed a high-resolution camera to monitor fluvial transport of 

wood event in extreme low-light. However, this camera cannot support the function of 

nighttime surveillance. The lens of camera still has some possibilities of being 

blocked. Because of the camera was installed on the field and along the river, the 

site of the camera can be influenced by different problems, such as a spider net in 

front of the lens for several days. These two limitations in the camera monitoring can 

generate a censing gap as shown on Figure II-5.  The database of seven events is 

used to fit on a RF regression model. The model can calculate the total wood volume 

either during day, night or any other gaps. As shown on Figure I-2, this model can 

quantify the wood flux input and output on a surveyed river reach with the video 

monitoring technique.  

5.1.2 Implementation and validation of wood automatic detection 

software 

We annotated 7 days of flood events that are used to first, validate the 

performance of the software and second reproduce the data that are possibly missed 

by the software. Here, the application is evaluated by precision and recall rates. In 

section of software validation, the rates of precision and recall were 64% and 29%. 

Both low rates of precision and recall mean the software needs improvement. Four 
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key factors were used by researchers, such as: (i) light and dark roughness of the 

frame, (ii) daytime and flow discharge, (iii) X, Y coordinates of detection position, and 

(iv) distance of detection as a function of piece length. The result of implementation 

upgrades the rates from 64 to 83% (precision), 29 to 96% (recall). It only has 12% 

error on the total volume of wood estimated. The good agreement between cross-

validation and total training models confirms that this software coupled with 

appropriate post-processing has a high potential to be used for monitoring wood flux 

in riverine environments. 

5.1.3 Evaluate observer-based and sampling uncertainties in video 

monitoring 

In this study, researchers analyze two important sources of uncertainties coming 

from human limitations; first operator bias (vision limit), and second video sampling 

(time limit). The result indicates that the observer bias decline with the size of wood 

flux growing. Regarding the video sampling, it is seen that selecting an appropriate 

sampling timeline, reduces significantly monitoring time with a limited uncertainty. It 

should be noted that first the sampling time should be more than 20% and second, it 

is recommended to use a dynamic sampling time according to the flow discharge, 

rather than a constant value. 

 

5.2 Outlooks 

In continue, the following topics would further improve our understanding 

concerning the application of video monitoring in rivers.  

5.2.1 Validating the automatic software in different conditions 

Over the last years, the automatic detection software coupled with an 

appropriate post processing has been used to estimate wood flux and volume. 

Though this software provided original results on the Ain River, France (see 

CHAPTER III), it is important to note that our findings show that the software is 
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sensitive to different variables (e.g. light, discharge, day time, wood length and 

position). Therefore, to improve the performance of the software, it is necessary to 

extend its application on other riverine contexts.    

5.2.2 Present wood study in China 

In China, over 137 millions of unhabitants are under the risk of flooding 

(Rubinato et al., 2019). Many intense flash flooding events have been recorded in the 

China during recent years, and as it is shown on Figure V-1, the wood mobility during 

a flood event can be considered as a risk factor in China. However, there is a lack of 

data regarding the effects of in-stream woods in Chinese rivers. Therefore, this field 

of study which is relatively new all around the world, can be an interesting and 

important subject for future researches. 

 

Figure V-1 The wood hazard with flood in China: a)&b)  The flood and wood crush the 

building of village and wood push down a car into pool during flood, Sichuan, China 

(2012) (The news is reported by following link: 

http://news.cnr.cn/tttp/201008/t20100817_506906910_3.shtml); c)&d) flood broke the 

bridge and destroyed the road with wood and sediment, Shandong, China (2018) (The 

home-photo is caught by following link: 

https://dy.163.com/article/DPONQIDO0537094R.html?referFrom=) 

 

https://dy.163.com/article/DPONQIDO0537094R.html?referFrom
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5.2.3 Applying different steps of video monitoring technique together to 

calculate wood budgeting. 

During recent years, there have been different works concerning the 

development of video monitoring.In continue, the present work can be assembled as 

a methodology to estimate wood budgets for future work. There is a camera on the 

Ain river which has been recorded data almost continously since 2007. These videos 

contain more than 30 flood events with some exceptional ones (e.g. Q10). As a 

future work, it would be interesting to apply all different techniques together based on 

this rich database.  

5.2.4 Finding the source of wood pieces by analyzing wood pulses. 

The wood pulses were monitored as observed in 1-minute intervals on the Ain 

River, France. As it is seen on Figure II-10, the wood pulse can deliver amount of 

wood pieces in a short time period. This phenomenon can influence wood flux, 

potentially indicating sudden wood delivery by an acting process (e.g. sliding, bank 

erosion…). We then hypothesis the source of wood pieces can be found by analyzing 

the duration and the value of these pulses. In the future work, a long-term and high 

frame-rate automatic video monitoring technique can be used to detect this 

phenomenon.  
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