

Synthèse sol-gel non hydrolytique de catalyseurs stables pour l'hydrogénation en phase aqueuse de substrats biosourcés

Maroua Bouchneb Kerkoub

► To cite this version:

Maroua Bouchneb Kerkoub. Synthèse sol-gel non hydrolytique de catalyseurs stables pour l'hydrogénation en phase aqueuse de substrats biosourcés. Matériaux. Université Montpellier, 2019. Français. NNT: 2019MONTS147. tel-03203866

HAL Id: tel-03203866 https://theses.hal.science/tel-03203866v1

Submitted on 21 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L'UNIVERSITÉ DE MONTPELLIER

En Chimie et Physico-Chimie des Matériaux

École doctorale ED 459 Sciences Chimiques Balard

Unité de recherche UMR 5253 – Institut Charles Gerhardt de Montpellier, équipe Chimie Moléculaire et Organisation du Solide

Synthèse sol-gel non hydrolytique de catalyseurs stables pour l'hydrogénation en phase aqueuse de substrats biosourcés

Présentée par Maroua BOUCHNEB KERKOUB Le jeudi 28 Novembre 2019

Sous la direction de Johan ALAUZUN et Hubert MUTIN

Devant le jury composé de

Mme. Bénédicte LEBEAU-TALAMONA, Directeur de Recherche, IS2M-Mulhouse
M. Damien DEBECKER, Professeur, MOST-UCLOUVAIN
Mme. Michèle BESSON, Directeur de Recherche, CDFA-IRCELYON
Mme. Noémie PERRET, Chargée de recherche, CDFA-IRCELYON
M. Vasile HULEA, Professeur, MACS-ICGM
M. Johan ALAUZUN, Maître de Conférences, CMOS-ICGM
M. Hubert MUTIN, Directeur de Recherche, CMOS-ICGM

Rapporteur Rapporteur Examinatrice Invitée Examinateur Directeur de thèse Co-Directeur de thèse

UNIVERSITÉ

NF MONTPELLIER

Remerciements

Ce travail ne peut être clos sans remercier ceux qui ont de loin ou de près contribué à bien le mener.

Mes remerciements les plus distingués se tournent tout d'abord envers vous, mes encadrants, **Dr Hubert Mutin** et **Dr Johan Alauzun**. Merci d'avoir cru en moi et en mes compétences et su gérer mes faiblesses pendant ces trois années de thèse. Merci de m'avoir donné l'occasion d'accéder à ce poste et de m'avoir donné la chance d'accéder à tous les moyens matériels et immatériels nécessaires au bon déroulement de ce travail.

Merci de m'avoir transmis votre savoir-faire et d'avoir exigé le meilleur de moi me poussant toujours à dépasser mes limites. Je tiens à vous exprimer toute ma gratitude d'avoir répondu présents chaque fois que j'en avais besoin si bien sur le plan professionnel que personnel. Merci de m'avoir permis de découvrir d'autres horizons que je n'aurai pas eu l'occasion de voir autrement. J'espère avoir été à la hauteur pendant ces trois années et que vous soyez autant satisfaits de notre travail que moi.

Merci à nos collaboratrices au sein de IRCELYON ; Dr Michèle Besson, Dr Catherine Pinel et Dr Noémie Perret d'avoir cru en ce projet et d'avoir exigé le meilleur chaque fois que nous faisions des réunions. Merci de m'avoir accueillie dans vos locaux pendant une semaine. Merci aux Dr Michèle Besson et Dr Noémie Perret pour votre aide et pour le temps que vous m'avez consacré quand j'étais au sein de votre équipe.

Merci à mon partenaire M. Madjid Ouali, d'avoir contribué au bon déroulement de ce projet. Travailler avec toi fut un plaisir, merci pour tes encouragements et pour ta bienveillance.

Merci aux rapporteurs de cette thèse Dr Bénédicte Lebeau et Dr Damien Debecker ainsi qu'à l'examinateur Dr Vasile Hulea et aux deux invitées Dr Michèle Besson et Dr Noémie Perret. Vous me faites l'insigne honneur en acceptant de constituer le jury de ma soutenance et de juger trois années de travail approfondi.

Je tiens à exprimer ma reconnaissance envers ceux qui m'ont formée sur l'utilisation d'appareils de mesure et m'ont initié aux procédés techniques nécessaires aux expérimentations et qui m'ont gentiment offert leur aide et soutien technique. Je fais référence à M. Bernard Fraisse qui m'a formé sur l'utilisation de l'appareil de DRX et sur le logiciel WINPLOTER, M. Bertrand Rebière et M. Didier Cot pour les analyses sur l'EDX et le MEB. M. Christian Curtil et Dr Nicolas Brun pour m'avoir formé sur les appareils de physisorption d'azote et d'ATG. Mme. Christine Biolley pour son aide aux analyses d'ICP-AES, Mme. Léa Daenens pour les analyses par spectroscopie Raman. Merci à M. Serge Bertrand d'avoir mis à disposition les fournitures nécessaires pour le bon déroulement de cette thèse et surtout pour l'entretien de la boite à gants. Et enfin M. Luis Cardenas pour les analyses d'XPS au sein de IRCELYON.

Je tiens à remercier également Dr Hugo Petitjean et Dr Nathalie Tanchoux de l'équipe MACS de l'ICGM de m'avoir permis de caractériser mes supports par TPD-NH₃ et en utilisant la méthode de catalyse du méthylbutynol (MBOH). Merci au Dr Hugo Petitjean pour tout le temps qu'il a passé à me former sur le Bâti.

Merci au Pr Jiri Pinkas de m'avoir acceptée au sein de son équipe à Masarykova University, Brno en république tchèque pendant tout le mois de septembre 2018. J'ai pu y découvrir le CEITEC et tous les instruments d'analyses à disposition. Merci à M. Petr Machac pour son aide précieuse pendant tout le mois de travail. Et merci pour les analyses XPS.

Pendant ces trois années j'ai eu la chance de côtoyer des collègues qui sont devenus des amis, des personnes inspirantes et dévouées qui étaient là pour m'encourager quand le moral n'était pas au rendez-vous. A vous, Céline, Sofia, Maëlle, Maxime, Braham, Sahar, Melvyn, Clémence, Ekatarina, Adeline, Angel... à tous les moments forts que nous avons passés ensemble. Merci au Dr Karim Bouchmella pour son aide et ses conseils précieux. Et Merci à ma stagiaire Rimeh Mighri qui m'a été d'une grande aide pendant ses 6 mois de stage.

Et plus particulièrement à toi mon ami et collègue Dr Mohamed Baccour pour ton aide, tes conseils et ton amitié depuis de longues années.

Merci à celles qui ont facilité les opérations administratives Mme Fatima Razkallah et Mme Tvetelina Efermova.

Enfin, je dédie ce travail à mes parents Afef et Mahmoud et mon frère Khalil. Merci pour votre patience et pour vos encouragements éternels. A ma mère qui m'a toujours poussée à sortir le meilleur de moi, à dépasser mes peurs et à être plus forte et plus confiante jour après jour. A mon père qui m'a toujours inspirée par sa sagesse et ses mots justes. A toi, Amine, mon mari mon meilleur ami et mon confident sans qui toute cette aventure n'aurait pas eu lieu. Aucun mot ne pourra exprimer ma gratitude envers toi...

Liste des abréviations

μOndes	Micro-ondes
BDO	1,4-butanediol
BET	Brunauer, Emmett et Teller
ВЈН	Barrett, Joyner, and Halenda
BzOH	Alcool benzylique
Cal.	calcination
DRX	diffraction des rayons X
GBL	γ-butyrolactone
MEB	Microscopie éléctronique à balayage
TEM	Microscopie éléctronique à transmission
SGH	sol-gel hydrolytique
SGNH	sol-gel non hydrolytique
SUC	acide succinique
TC	taille des cristallites
THF	tétrahydrofurane
ТОРО	trioctylphosphine

Table des matières

Remerciements	i
Liste des abréviations	iii
Table des matières	iv
Liste des figures	vi
Liste des tableaux	ix
Liste des schémas	xi
Introduction générale	1
Chapitre 1 : Etat de l'art	5
1.1 Le procédé sol-gel	5
1.2 Le procédé sol-gel non hydrolytique	8
1.2.2 Historique	8
1.2.3 Principales voies de synthèse SGNH	9
1.2.4 Applications des différents oxydes synthétisés par SGNH	15
1.3 L'oxyde de titane TiO ₂	16
1.3.1 Généralités	16
1.3.1 Synthèse de TiO ₂ par procédé SGNH	18
1.4 L'oxyde de zirconium ZrO ₂	19
1.4.1 Structure et diagramme de phases	20
1.4.2 Transition de phase tétragonale / monoclinique	21
1.4.3 Stabilisation de la phase tétragonale de la zircone	21
1.4.4 Synthèse de la zircone par procédé SGNH	22
1.5 Caractéristiques des oxydes TiO ₂ -ZrO ₂ par SGNH	23
1.6 L'hydrogénation de l'acide succinique	24
1.6.1 Hydrogénation et valorisation de l'acide succinique	24
1.6.2 Catalyseurs utilisés pour la conversion de l'acide succinique	26
1.6.3 Vers une catalyse durable : hydrogénation de l'acide succinique en phase aqueuse	27
Chapitre 2 : Matériel et méthodes	29
2.1 Protocoles de synthèse et analyses	29
2.1.1 Matériel	29
2.1.2 Synthèses par sol-gel non hydrolytique des supports	29
2.1.2.1 Synthèse par voie éther	29
2.1.2.2 Synthèse type de zircone par voie acétophénone	33
2.1.2.3 Synthèse type par voie alcool de zircone et de zircone dopée	33
2.2 Techniques expérimentales de caractérisations	35
Chapitre 3 : Supports TiO ₂ et supports TiO ₂ promus par le rhénium ou le molybdène	41
3.1 Optimisation des conditions de synthèse et leurs effets sur la texture et la structure du TiO ₂	42
3.1.1 Influence de la température et du temps de synthèse sur la texture et la structure du TiO_2	2. 42

3.1.2 Influence de la nature du solvant sur la texture et la morphologie du TiO_2	45
3.1.3 Synthèse à plus grande échelle (13 g)	51
3.1.4 Stabilité hydrothermale du TiO ₂	53
3.2 Synthèse et caractérisation des supports TiO2 promus par le rhénium ou le molybdène	55
3.2.1 Synthèse et caractérisation des supports promus par le rhénium	55
3.2.2 Synthèse et caractérisation des supports promus par le molybdène	67
3.3 Hydrogénation en phase aqueuse de l'acide succinique	75
3.3.1 Catalyseurs Re-Pd-Ti	76
3.3.2 Catalyseurs Mo-Pd-Ti	
3.4 Conclusion	
Chapitre 4 : Supports ZrO ₂ et supports ZrO ₂ promus par le rhénium ou le molybdène	81
4.1 Synthèse de t-ZrO ₂ par voie éther	82
4.1.1 Optimisation des conditions de synthèse	82
4.1.2 Caractérisations de la zircone « optimisée » et mécanisme	86
4.1.3 Synthèse et caractérisations de zircones yttriées	
4.2 Synthèse de m-ZrO ₂ par voie acétophénone	100
4.3 Synthèse de m-ZrO ₂ par voie alcool	104
4.5 Supports ZrO ₂ promus par le rhénium ou le molybdène avec les voies éther et alcool	108
4.5.1 Synthèse et caractérisation des supports promus par le rhénium	108
4.5.2 Synthèse et caractérisation des supports promus par le molybdène	115
4.6 Supports solutions solides ZrO ₂ -TiO ₂	120
4.6.1 Synthèse et caractérisation de Ti _{0.5} Zr _{0.5} O ₂	120
4.6.2 Synthèse et caractérisation de $Zr_{0.9}Ti_{0.1}O_2$	123
4.7 Conclusion	125
Conclusion générale et perspectives	127
Références	129

Liste des figures

Figure 1.1: Description schématique du procédé sol-gel ³
Figure 1.2 : Les différentes phases cristallographiques à P_{atm} du TiO ₂ (a) Anatase, (b) Rutile ⁸⁷ 16
Figure 1.3 : Diagramme de phases de TiO ₂ -ZrO ₂ 152
Figure 1.4 : Conversion du SUC par hydrogénation en GBL (produit intermédiaire) puis en BDO et
THF ¹⁵⁰ 24 Figure 1.5, Stabilité (hadrathannale de construction and construction (The 400%C)) ¹⁷⁶ 27
Figure 1.5 : Stabilité nydrothermale des supports en eau supercritique $(1>400^{\circ}C)^{1/0}$
Figure 2.1.: a) Poudre de TIO ₂ apres synthese (110°C, 5 J, 10 IIIL CH ₂ Cl ₂). b) mononune de ZIO ₂ apres synthèse (110°C, 2 i 10 mL CH ₂ Cl ₂).
Figure 2.2 : Exemple d'affinement des aires des nics des différentes zircones avec le logiciel X'Pert
High score Gauche (tétragonale) droite (monoclinique) trait bleu m- ZrO_2 trait rouge t- ZrO_2 35
Figure 2.3 · Instrument d'adsorption désorption d'azote 3Flex MICROMERITICS (gauche) et station
de dégazage Smart CacPrep MICROMERITICS (droite)
La forme des isothermes d'adsorption-désorption est discutée à partir des recommandations récentes de
l'IUPAC ^{179,181} qui distingue 6 types principaux d'isothermes (Figure 2.4) et 5 types de boucles
d'hystérésis (Figure 2.5)
Figure 2.6 : Classification des isothermes d'adsorption physique donnée par l'IUPAC ^{179,181}
Figure 2.7 : Classification par l'IUPAC des différentes boucles d'hystérésis et schématisation des pores
correspondant ^{179,182}
Figure 3.1 : Diffractogrammes des différents échantillons de TiO ₂ calcinés et diffractogrammes
théoriques pour l'anatase (rouge) et le rutile (pointillé noir)
Figure 3.2 : Isothermes et distributions de taille de pores pour les échantillons préparés par chauffage
pendant I jour a differentes temperatures, puis calcines
Figure 3.3: Isothermes et distributions de taille de pores pour les echantilions calcines prepares par
Figure 3.4 : Images MEP des échantillons synthéticés à 110 °C en variant le temps de réaction (a) TiO
Figure 5.4. Images MEB des echantmons synthetises a 110°C en variant le temps de reaction. (a) 110_{2} - 110-1 (b) TiO_{2} -110-3 et (c) TiO_{2} -110-5
Figure 3.5 : Diffractogrammes des échantillons non calcinés (gauche) et calcinés (droite) en fonction
des différents solvants et diffractogrammes théoriques pour l'anatase (rouge) et le rutile (pointillé noir)
Figure 3.6 : Thermogrammes avant calcination des échantillons synthétisés à 110 °C, 3j (NS : sans
solvant, Tol : toluène, Squ : squalane, CH : cyclohexane, DC : dichlorométhane)
Figure 3.7 : Images MEB des échantillons de TiO ₂ calcinés (500°C /5h. 10°C.min ⁻¹) avec les différents
solvants synthétisés pendant 3 j à 110°C
Figure 3.8 : Isothermes et distributions de tailles de pores avant calcination (haut) et après calcination
(bas)
Figure 3.9 : Autoclaves utilises pour les differentes syntheses a) Parr inox 23 mL, b) Parr inox 45 mL,
c) chemises en terion pour les autoclaves Parr de 23 et 46 mL, d) reacteur Parr en Hastelloy® de 300
Figure 3.10 · Diffractogrammer TiO, commercial DT51 at TiO, synthétisé par SCNH 3 i 110 °C 10
mL CH ₂ Cl ₂ calciné 500 °C avant et après traitement hydrothermal (160 °C 48 h pH 2.5 $(m/10^{\circ})$ 53
Figure 3.11 · Isothermes et distributions de taille des pores des $TiO_2 sont et TiO_2 com avant et après$
traitement hydrothermal
Figure 3.12 : Images MEB de TiO _{2 com} et TiO _{2 SGNH} avant et après traitement hydrothermal (160 °C / 48
h/ pH 2,5)
Figure 3.13 : Rapports Re/Ti nominaux et rapports expérimentaux mesurés par EDX, et ICP-AES avant
et après calcination
Figure 3.14 : Thermogrammes des supports TiO ₂ et des différents supports de TiO ₂ promus par le Re
Figure 3.15 : Images MEB et EDX de:(a) TiO ₂ SGNH (b) TiO ₂ -0.0189ReO _{3.5} après calcination et sa
cartographie

Figure 3.16 : Isothermes de physisorption d'azote (à 77 K) et distributions de taille de pores (désorption,
méthode BJH) pour les différents supports TiO ₂ et TiO ₂ -Re ₂ O ₇
Figure 3.17 : Diffractogrammes RX des échantillons TiO ₂ promus par le Re et du TiO ₂ . Raies de TiO ₂
anatase (rouge) et les raies les plus intenses pour ReO _{3.5} (noir), ReO ₃ (bleu)
Figure 3.18 : Spectres LEIS de l'échantillon TiO ₂ -0.0189ReO _{3.5} calciné avec Cu (référence et support
du porte échantillon) à t1 : 140 s et t2 : 700 s
Figure 3.19 : Spectres XPS de l'échantillon TiO ₂ -0.0189ReO ₃ (4.1 wt% Re) non calciné (gauche) et
calciné (droite)
Figure 3.20 : Spectres Raman des échantillons hydratés (a) et déshydratés (b) présentés par Vuurman <i>et</i>
al^{189} 65
Figure 3.21 · Spectres Raman des différents échantillons de Ti Ω_2 promus avec Re et du Ti Ω_2 (après
calcination) a) entre 100 et 1100 cm ⁻¹ et h) entre 700 et 1100 cm ⁻¹ (agrandissement x 24) 66
Figure 3.22 : Les espèces d'oxyde de rhénium majoritaires présentes à la surface du TiO.
Figure 2.22 : Despectes d'oxyde de memuni majoritaires presentes à la surface du 1102
rigure 5.25. Rapports Wo/ 11 nonlinaux et experimentaux mesures par EDA et ICF-AES avant et apres
$\mathbf{T}_{\mathbf{r}}^{\mathbf{r}} = 2.24 \mathbf{T}_{\mathbf{r}}^{\mathbf{r}} \mathbf{T}_{\mathbf{r}}^{\mathbf{r}}} \mathbf{T}_{\mathbf{r}}^{\mathbf{r}} T$
Figure 3.24 : Thermogrammes des supports $11O_2$ et des différents supports de $11O_2$ promus avec Mo
(thermogrammes normes a 500 °C)
Figure 3.25 : Images MEB de l'echantillon 110_2 -0.036MoO ₃
Figure 3.26 : Isothermes de physisorption d'azote ($a^{7/7}$ K) et distributions de taille de pores (désorption,
méthode BJH) pour les différents supports T_1O_2 et T_1O_2 -MoO ₃
Figure 3.27 : Diffractogrammes RX des échantillons TiO ₂ -MoO ₃ et les raies de l'anatase (rouge) et les
raies les plus intenses du MoO ₃ 72
Figure 3.28 : Spectres Raman des différents échantillons de TiO ₂ promu par le Mo et du TiO ₂ (après
calcination). a) entre 100 et 1100 cm ⁻¹ et b) entre 700 et 1100 cm ⁻¹ (agrandissement x 45)
Figure 3.29 : Espèces d'oxyde de molybdène présentes à la surface du TiO ₂ ¹⁹⁵ 74
Figure 3.30 : Conversion de l'acide SUC par hydrogénation en GBL (produit intermédiaire) puis en
BDO et THF
Figure 3.31 : Comparaison des catalyseurs supportés sur TiO _{2 com} et TiO _{2 SGNH} et évolution des
concentrations en BDO et GBL du catalyseur 5.8% Re/2% Pd/TiO ₂ 77
Figure 3.32 : Hydrogénation de l'acide succinique pour des catalyseurs préparés sur différents supports
TiO_2 et TiO_2 promu au Re
Figure 3.33 : Rendement en acide succinique en fonction des différents supports promus au Mo 79
Figure 4.1 : Courbes ATG normés à 120 °C des échantillons ZrO ₂ synthétisés par la voie éther à 110,
150 et 180 °C
Figure 4.2 : Diffractogrammes RX entre 2 θ : 25 et 2 θ : 33 ° des différents échantillons ZrO ₂ synthétisés
à (90, 110, 150, 180 °C) et calcinés à (500, 550, 650, 700 °C) pendant 5 h. Phase tétragonale (code
I(SD : 01-088-1007) et monoclinique (code $I(SD : 00-037-1484)$
Figure 4.3 · Fraction volumique de la phase tétragonale et surface spécifique des zircones synthétisées
à différentes températures en fonction de la température de calcination
Figure 4.4 : Spectre RMN 1H du liquide de synérèse de $7r\Omega_{2}$ ⁱ P $_{2}\Omega$
Figure 4.5 : ATD de la zircone $7r\Omega_{2}$ ⁱ Dr ₂ Ω pour deux cycles de chauffe et de refroidissement 88
Figure 4.6. Different compared a $7\pi^{-1}$ Pr Ω at zero mentre $20 - 40$ at 45° (trait rouge to the compared at trait
Figure 4.0. Diffractogramme de Z_1O_2 - $P_{12}O$ et zoom entre $20 = 40$ et 45 (trait fouge tetragonale et trait
pointifie cubique)
Figure 4.7: Affinement selon la phase cubique (haut) et tetragonale (bas) de ZrO_2 - Pr_2O (calcinee a 500
°C) avec la methode WINPLOTR et la différence (bleu) entre l'affinement (noir) et le diffractogramme
experimental (rouge)
Figure 4.8 : Spectres Raman à 633 nm, 476 nm et 1064 nm et raies actives de la phase tétragonale de la
zircone dans ZrO_2 - Pr_2O
Figure 4.9 : (a) Images MEB et TEM de la ZrO_2 - Pr_2O calcinée à 500°C. (b) Structure tétragonale d'une
zircone avec paramètres et distances expérimentales ^{204,205}
Figure 4.10 : Isothermes d'adsorption désorption d'azote à 77 K et distributions de taille de pores de
ZrO ₂ -'Pr ₂ O, calcinée à 500 °C et non calcinée
Figure 4.11 : (gauche) Diagrammes d'équilibre du système ZrO2-YO1,5 selon différents auteurs : mise
en valeur de leurs divergences sur les domaines d'existence des phases. ²⁰⁸ (droite) diagramme de phase
métastable de ZrO ₂ -Y ₂ O ₃ comme rapporté par Chevalier <i>et al.</i> ^{207,209}

Figure 4.12 : ATD Zr _{0.988} Y _{0.012} -NC entre 400 et 1400 °C, vitesse de chauffe 10 °C.min ⁻¹
Figure 4.13 : Diffractogrammes (gauche) et spectres Raman à 633 nm (droite) de l'échantillon Zroges Yoouz calciné à 500, 700, et 1400 °C.
Figure 4.14 : Spectres Raman à 633 nm des échantillons $2r\Omega_{2}^{i}$ Pr $_{2}\Omega_{2}$ -700, $2r\Omega_{2}$ -200 et $2r$
700 calcinés à 700 °C, 5 h, 10 °C min ⁻¹
Figure 4.15 : Isothermes et distributions de taille de pores des zircones yttriées et calcinées à 500 et 700 °C
Figure 4.16 : Spectres RMN ¹ H de l'acétophénone et du liquide de synérèse après réaction de Zr(O ⁿ Pr) ₄ (70% dans ⁿ PrOH) avec l'acétophénone (autoclave, 18h, 240 °C)
Figure 4.17 : Autres molécules susceptibles d'être formées lors de la synthèse de la synthèse de ZrO ₂
par la voie acciopitenoite
rigure 4.16 : Diffractogrammes de ZiO ₂ -AP-NC et ZiO ₂ -AP et Affinement des parametres par A Pet
Et deconvolution des aires des pics de diffraction de ZrO_2 -AP
Figure 4.19 : Images MEB (a) et TEM (b et c) de ZrO_2 -AP
Figure 4.20 : Isothermes et distribution de taille des pores de l'échantillons ZrO ₂ -AP et ZrO ₂ -AP-NC
Figure 4.21 : Spectre RMN du liquide de synérèse de la synthèse de zircone à 150 °C, 3 jours par la voie éthanol ZrO ₂ -EtOH
Figure 4 22 : Diffractogramme de ZrO ₂ -EtOH non calciné et calciné à 500 °C. 5h 10 °C min ⁻¹ 107
Figure 4 23 : Images MEB et TEM de ZrO ₂ -EtOH
Figure 4.24 : Isothermes et distribution de tailles de pores de la zircone synthétisée par voie alcool avant
et après calcination à 500° C
Figure 4.25 : Diffractogrammes des supports $7r\Omega_0$ promus par le Re synthétisés par les voies éther et
alcool Trait pointillé poir $(m_2 T \Omega_2)$ trait bleu $(t_2 T \Omega_2)$ rouge et vert (Re Ω_2 et Re Ω_2) 110
Figure 4.26 : Isothermes et distributions de taille des pores des échantillons synthétisés par voie éther et
alcool avec les deux nourcentages en Re
Figure 4.27 : Images MEB de $7r_{0.0}$ 0.028Pa $_{0.2}$ EtOH (gauche) et $7r_{0.0}$ 0.034Pa $_{0.2}$ iProO (droite)
right 4.27. Inages MED de $Z_{102}^{-0.026}$ (d'one) et $Z_{102}^{-0.034}$ (d'one) et Z_{102}^{-0.034} (d'one) et $Z_{102}^{-0.034}$ (d'one) et Z_{102}^{-0.034} (d'one) et $Z_{102}^{-0.034}$ (d'one) et Z_{102}^{-0.034}
Figure 4.28 · Spectre XPS Af du Pe de $7r\Omega_{\circ}$ 0.04/Pe Ω_{\circ} · ¹ Pr Ω (calciné) 113
Figure 4.20: Spectres Paman des échantillons PacO-/7rO ₂ (a) déshudratés et (b) hydratés présentés par
$\frac{112}{112}$
Figure 4.30 · Spectres Paman des différents échantillons promus par la Pa synthétisés par les voies éther
at alcool
Figure 4.31 : Diffractogrammas das supports ZrO, promus par la Ma synthéticés par las voias éther at
Figure 4.51. Diffractogrammes des supports $\Sigma(O_2)$ promus par le two synthetises par les voies effect et alagoal. Troit pointillé poir (m ZrO ₂) troit blau (t ZrO ₂), troit vort (MoO ₂)
Eigure 4.22 : Jostharmas d'adsorntion/désorntion d'azote à 77 K et distribution des tailles de pares des
rigure 4.52. Isomerines a adsorption/desorption a azote a // K et distribution des tames de pores des
Echantinons Z_1O_2 promus par le two synthetises par voie ether et alcoor
Figure 4.55. Spectre APS du Mo Su dans l'echandhion Z_1O_2 -0.085M0O ₃ -Pl ₂ O
Weckhuysen ¹⁹⁵
Figure 4.35 : Spectres Raman des échantillons promus par le Mo synthétisés par la voie éther et alcool
entre 1100 et 700 cm ⁻¹
Figure 4.36 : Diffractogrammes (gauche) et spectres Raman à 633 nm (droite) de l'échantillon
$Zr_{0.5}Ti_{0.5}O_2$ calciné à 500 puis à 700 °C
Figure 4.37 : Isothermes et distributions de taille de pores de l'échantillon $Zr_{0.5}Ti_{0.5}O_2$ calciné à 500 °C et à 700 °C 122
Figure 4.38 · Images MEB de l'échantillon Zto 5Tio 5O2 calciné à 500 °C et à 700 °C
Figure 4.39 : Diffractogramme de $Zr_{0.9}Ti_{0.1}O_2$. Traits rouges : TiO ₂ anatase : traits noirs : m-ZrO ₂ : traits
roses : t-ZrO ₂
La structure de l'échantillon $Zr_{0.9}Ti_{0.1}O_2$ est très majoritairement tétragonale (Figure 4.40, Tableau 4.16).
Figure 4.41 : Isotherme d'adsorption-désorption d'azote et distribution de taille de pores de l'échantillon
Zr _{0.9} Ti _{0.1} O ₂
Figure 4.42 : Images MEB de $Zr_{0.9}Ti_{0.1}O_2$

Liste des tableaux

Tableau 1.1 : Oxydes mésoporeux synthétisés par voie SGNH et leurs applications ²²	5
Tableau 1.2 : Paramètres des phases anatase et rutile du TiO21'	7
Tableau 1.3 : Différentes voies de synthèse de TiO2 mésoporeux par SGNH et phases cristalline	S
obtenues, avant et après calcination	8
Tableau 1.4 : Différentes voies de synthèse de nanoparticules TiO ₂ par SGNH, taille des particule	S
obtenues	9
Tableau 1.5 : Caractéristiques des différentes phases de la zircone 20 20 20	0
Tableau 1.6 : Synthèse de nanoparticules de ZrO_2 par SGNH, phases, taille des nanoparticules e	et
références	2
Tableau 1.7 : Meilleurs taux publiés de la conversion du SUC en BDO en phase aqueuse	8
Tableau 2.1 : Produits chimiques utilisés pour la synthèse des supports	9
Tableau 2.2 : Nombre de moles et masses des réactifs utilisés pour la synthèse de TiO ₂ et des support	S
TiO ₂ promus au Re et Mo par la voie éther	0
Tableau 2.3 : Nombre de moles et masses des réactifs utilisés pour la synthèse de ZrO ₂ et des support	S
ZrO ₂ promus au Re et Mo par la voie éther	0
Tableau 2.4 : Nombre de moles et masses des précurseurs et du donneur d'oxygène utilisés pour l	a
synthèse des solutions solides Zr-Y	3
Tableau 2.5 : Nombre de moles et masses des précurseurs, donneur d'oxygène utilisés pour la synthès	e
de ZrO ₂ et des supports ZrO ₂ promus au Re et Mo par la voie alcool (EtOH)	4
Tableau 3.1 : Influence des paramètres sur la surface spécifique, le volume poreux, le diamètre des pore	S
et la taille des cristallites dans les échantillons calcinés4	2
Tableau 3.2 : Influence du solvant sur la surface spécifique, le volume poreux, le diamètre des pores e	et
la taille des cristallites dans les échantillons non calcinés et calcinés	б
Tableau 3.3 : Influence du solvant sur le taux de condensation du TiO ₂ entre 120 et 800 °C	8
Tableau 3.4 : Synthèse de TiO ₂ en quantité variant de 1 g à 13 g et propriétés texturales	2
Tableau 3.5 : Surface spécifique, diamètre des pores et volume poreux avant et après traitemen	it
hydrothermal (160 °C, 48 h, pH 2.5 _(eau/HCl)) pour TiO ₂ commercial DT51 et TiO ₂ synthetise par SGNH	I,
3 j, 110 °C, 10 mL CH ₂ Cl ₂ calciné 500 °C.	4
Tableau 3.6 : Compositions des supports TiO ₂ promus au Re avec différentes méthodes d'analyse avan	ıt
et après calcination.	б
Tableau 3.7 : Pourcentage de perte en masse de l'oxyde de rhénium entre 500-1000 °C pour le	S
différentes compositions d'oxydes promus avec leurs T _{ONSET} . Comparaison avec le pourcentage aprè	S
calcination et pourcentage nominal	9
Tableau 3.8 : Caractéristiques texturales des différents supports et taille des cristallites.	0
Tableau 3.9 : Composition atomique expérimentale de Ti O_2 -0.0189Re $O_{3.5}$ avant calcination (xérogel) e	et
après calcination à 500 °C. Valeurs normées à %Ti + %Re +%O = 100%6	1
Tableau 3.10 : Energies de liaison en eV pour Re4f des composés (Re ⁰ , ReO ₂ , ReO ₃ , Re ₂ O ₇). ¹⁸⁸ 62	3
Tableau 3.11 : Analyse des spectres XPS de l'échantillon TiO ₂ -0.0189ReO _{3.5} (4.1 wt% Re) avant et aprè	S
calcination en eV	3
Tableau 3.12 : Surfaces spécifiques et surfaces spécifiques corrigées des échantillons promus par le R	e
et densité at de Re/nm ² de TiO ₂	7
Tableau 3.13 : Compositions des supports TiO ₂ promus par le Mo avant et après calcination	8
Tableau 3.14 : Pourcentage nominal massique de MoO ₃ et perte de masse entre 500 et 1000 °C d'aprè	S
les courbes ATG	0
Tableau 3.15 : Caractéristiques texturales des différents échantillons promus au Mo et taille de	s
cristallites7	1
Tableau 3.16 : Composition atomique des supports calcinés à 500 °C / 5h / 10 °C.min ⁻¹ par EDX et XP	S
Tableen 2.17. Sunfaces on table and sunfaces on table from the table of the stilling second straight the state of the stilling second straight the state of the stilling second straight the state of th	3
1 adjeau 5.17 : Surfaces specifiques et surfaces specifiques corrigees des echantilions promus par le Me	C A
et defisite de MO/ fill ² de 1102	+
Tableau 4.1. Surfaces specifiques, volumes poleux et tame des cristannes des différents echantinon 7 O. synthétisés à (00, 100, 150, 180 °C), non coloinée et coloinée à (500, 550, 650, 700 °C).	5
210_2 symmetries a (30, 100, 150, 160, C_1 , non calcines et calcines a (500, 550, 050, 700, C_1	J

Tableau 4.2 : Paramètres de la maille de la zircone tétragonale selon la littérature et paramètres de la zircone ZrO ₂ - ⁱ Pr ₂ O
Tableau 4.3 : Raies actives en Raman des zircones t-ZrO ₂ et c-ZrO ₂ selon la littérature ; fréquences expérimentales ; et intensité de ZrO ₂ - ⁱ Pr ₂ O
Tableau 4.4 : Rapports atomiques, avant et après calcination des trois échantillons de zircones yttriées
Tableau 4.5 : Fraction volumique de la phase tétragonale et taille des cristallites de ZrO2-iPr2O et des deux zircones yttriées. 98
Tableau 4.6 : Caractéristiques texturales des supports yttriés calcinés à 500 et 700 °C, 5 h, 10 °C.min ⁻¹ .
Tableau 4.7 : Surface spécifique, volume poreux, diamètre des pores et taille des cristallites de ZrO2-AP-NC et calciné à 500 °C103
Tableau 4.8 : Caractéristiques texturales et taille des cristallites de ZrO ₂ -EtOH et de ZrO ₂ -EtOH-NC.
Tableau 4.9 : Compositions des supports ZrO ₂ promus au Re avec EDX avant et après calcination. 109 Tableau 4.10 : Caractéristiques texturales des différents supports calcinés à 500 °C, taille des cristallites
Tableau 4.11 : Composition atomique du support ZrO_2 -0.044ReO _{3.5} - ⁱ Pr ₂ O calcinés à 500 °C/5h/10 °C.min ⁻¹ par EDX et XPS. Valeurs normées à %Ti + %Re +%O = 100%
Tableau 4.13 : Caractéristiques texturales des différents supports calcinés à 500 °C, taille des cristalliteset fraction volumique des phases tétragonale et monoclinique.117Tableau 4.14 : Composition atomique des supports calcinés à 500 °C/5h/10 °C.min ⁻¹ par EDX et XPS.Valeurs normées à % Ti + % Mo +% O = 100%.118Tableau 4.15 : Surface spécifique, volume poreux, diamètre des pores et taille des cristallites del'échantillon Zr _{0.5} Ti _{0.5} O ₂ calciné à 500 °C et recalciné à 700 °C.121Tableau 4.16 : Surface spécifique, volume poreux, diamètre des pores et taille des cristallites deséchantillons Zr _{0.9} Ti _{0.1} O ₂ , comparées avec ZrO ₂ - ⁱ Pr ₂ O.123

Liste des schémas

Schéma 1.1: Réactions impliquées dans le procédé sol-gel hydrolytique dans le cas de précu	rseurs
alocoxydes: hydrolyse (1), condensation impliquant une oxolation (2) ou une alkoxolation (3)	6
Schéma 1.2 : Principales réactions impliquées dans le procédé SGNH ⁴⁰	10
Schéma 1.3 : Synthèse d'oxydes et d'solutions solides par voie alcoxyde et voie éther ³²	12
Schéma 1.4 : Formation de BaTiO ₃ par chauffage d'éthoxydes métalliques dans l'acétophénone ⁶⁸	15
Schéma 1.5 : Différentes utilisations du 1,4-butanediol sur marché ¹⁵⁷	25
Schéma 3.1 : Synthèse des supports TiO ₂ promus avec Re	56
Schéma 3.2 : Synthèse des supports TiO ₂ promus avec Mo	67
Schéma 3.3 : Schéma des imprégnations successives sur supports (TiO _{2 SGNH})et imprégnatio	on des
supports promus.	76
Schéma 4.1 : Synthèse de ZrO ₂ par voie éther.	82
Schéma 4.2 : Réaction de synthèse de ZrO ₂ par voie éther de la zircone optimisée	86
Schéma 4.3 : formation de ponts Zr-O-Zr par alcoxylation (1) et condensation (2)	87
Schéma 4.4 : Températures de début de changement de phase des différentes transformations	de la
zircone selon Yoshimura. ¹⁹⁸	88
Schéma 4.5 : Synthèse de zircones yttriées par voie éther, 110 °C, 3 jours	94
Schéma 4.6 : Synthèse de ZrO2 avec la voie acétophénone.	100
Schéma 4.7 : Synthèse de zircone avec la voie éthanol	104
Schéma 4.8 : Synthèse des supports promus par le Re selon les voies éther (¹ Pr ₂ O) et alcool (E	tOH).
	109
Schéma 4.9 : Synthèse des supports promus avec Mo selon les voies éther (ⁱ Pr ₂ O) et alcool (E	tOH).
	115
Schéma 4.10 : Synthèse des solutions solides Zr _{0.5} Ti _{0.5} O ₂ par voie éther, 110 °C, 3 jours	120
Schéma 4.11 : Synthèse de l'oxydes mixte Zr _{0.9} Ti _{0.1} O ₂ par voie éther, 110 °C, 3 jours	123

Introduction générale

Le pétrole, principale ressource fossile utilisée de nos jours pour de nombreuses applications, est la première source de production de gaz à effet de serre qui engendre des dérèglements climatiques. Selon un rapport dans le site *Révolution Energétique¹* qui date du 4 septembre 2019, les actionnaires des grands groupes pétroliers exigent des stratégies bas carbone. Fin 2017, *Shell* a officiellement adopté des objectifs environnementaux à long terme avec -20 % d'émission directe et indirecte de CO₂ d'ici à 2020. Depuis 2015, la banque européenne d'investissement finance de plus en plus de projets dans les énergies renouvelables.²

Afin de diminuer la surconsommation des ressources terrestres et les émissions de gaz à effet de serre, on se tourne actuellement vers des ressources alternatives et/ou renouvelables. On envisage également l'utilisation de nouvelles technologies plus respectueuses de l'environnement. Une des thématiques de recherche porte sur la transformation de ressources telle la biomasse en molécules d'intérêt.

Les bioraffineries de première génération (produite à partie des aliments qui généralement étaient destinés à la consommation) et de deuxième génération (parties non comestibles des plantes comme la lignine ou la cellulose) jouent un rôle majeur dans la production de molécules chimiques issues de la biomasse mais ceci est encore un concept naissant. La biomasse, particulièrement la biomasse lignocéllulosique qui nous intéressera dans ce travail, est complexe (mélange de nombreux polymères). Afin d'utiliser ce type de ressources « biosourcées », il est nécessaire de la transformer, via des fermentations ou des conversions chimiques, en molécules dites « plateformes ». Celles-ci seront-elles mêmes converties en molécules dites « d'intérêt » aux applications identiques à celles issues du pétrole (solvants, monomères).

Pour accroitre l'intérêt de ce procédé, la production de ces molécules plateformes doit avoir un impact écologique moindre. Les molécules « plateformes » étant généralement trop riches en oxygène, on privilégie des modes de transformation « verts », notamment via des procédés en phase aqueuse (procédé non-toxique, solvant non-inflammable et abondant). Il s'agit de réactions d'hydrogénation et de déshydratation, en catalyse hétérogène. Pour cela, il est nécessaire d'utiliser des catalyseurs qui soient stables en phase aqueuse et sélectifs.

Mon projet de thèse s'inscrit dans cette optique de recherche. L'objectif du projet collaboratif NHYSCAB est la conception et l'optimisation de catalyseurs efficaces et stables pour

Introduction générale

l'hydrogénation en phase aqueuse de molécules plateformes biosourcées, en particulier de l'acide succinique. Le projet NHYSCAB rassemble deux partenaires, l'IRCELYON et l'ICGM. Le plus grand marché pour l'acide succinique est la synthèse de 1,4-butanediol. Le 1,4-butanediol, utilisé industriellement comme solvant et pour la fabrication de polymère est une molécule prometteuse pour la valorisation de la biomasse. On peut noter qu'il s'agit d'un procédé déjà industrialisé par fermentation de l'amidon par la société *Roquette*. La production annuelle d'acide succinique bio-sourcé par cette entreprise est d'approximativement 10 000 tonnes depuis 2012 sous le nom de Reverdia e Italie.

Le choix du catalyseur est évidemment primordial pour la conversion sélective en phase aqueuse de l'acide succinique en 1,4-butanediol. Les meilleurs résultats ont été obtenus par nos partenaires avec des catalyseurs à base de palladium promus par du rhénium et supportés sur un TiO_2 commercial.

Mon rôle au sein de l'ICGM a été de synthétiser et de caractériser des supports et des supports « promus » (TiO₂, ZrO₂, TiO₂-Re₂O₇, TiO₂-MoO₃, ZrO₂-Re₂O₇, ZrO₂-MoO₃, Ti_xZr_{1-x}O₂) en utilisant le procédé sol-gel non hydrolytique (SGNH). J'essaierai de montrer dans ce manuscrit de thèse l'intérêt de ce procédé et son efficacité pour la synthèse de ces nombreux oxydes et solutions solides mésoporeux.

Dans la suite du projet, ces supports sont utilisés par M. Madjid Ouali, doctorant à l'IRCELYON, pour préparer des catalyseurs pour l'hydrogénation de l'acide succinique, à base de palladium.

Chapitre 1 : Etat de l'art

Dans ce premier chapitre nous présentons d'abord une vue d'ensemble du procédé sol-gel non hydrolytique, des réactions mises en jeu et des oxydes et solutions solides synthétisés par ce procédé. Après des généralités sur les oxydes TiO₂ et ZrO₂ nous passons en revue les différents exemples de synthèse de ces oxydes par procédé SGNH. La dernière partie porte sur l'hydrogénation de l'acide succinique et les catalyseurs utilisés pour l'hydrogénation en phase aqueuse tout en montrant l'importance du choix des supports.

Chapitre 2 : Matériel et méthodes

Ce chapitre décrit la synthèse des différents oxydes, les quantités de réactifs utilisés pour chacun des supports, ainsi que l'appareillage utilisé pour la caractérisation des supports.

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

Dans ce chapitre, nous décrivons d'abord l'optimisation de la synthèse de supports TiO_2 (influence de la température, du temps de réaction, de la nature du solvant, synthèse à plus grande échelle), et leur stabilité hydrothermale dans les conditions de la réaction qui nous intéresse. Ensuite, nous présentons la synthèse dans les conditions optimales des différents supports de TiO_2 promus au Re ou au Mo ainsi que leur caractérisation. Enfin, nous résumons les principaux résultats des tests catalytiques utilisant ces supports (tests effectués à IRCELYON par M. Madjid Ouali).

Chapitre 4 : Supports ZrO₂ et supports ZrO₂ promus par le rhénium ou le molybdène

Dans ce chapitre, notre premier objectif a été de trouver les conditions permettant de préparer des zircones mésoporeuses de structure tétragonale ou monoclinique contrôlée. Trois voies de synthèse SGNH différentes ont été utilisées : la voie éther (ⁱPr₂O), la voie acétophénone et la voie alcool (EtOH). Nous décrivons ensuite la synthèse et la caractérisation de zircones et de zircones promues par le rhénium et le molybdène, de structures tétragonale et monoclinique.

Introduction générale

Chapitre 1 : Etat de l'art

Dans cette partie je présenterai brièvement le procédé sol-gel, et l'état de l'art sur la chimie du procédé sol-gel non hydrolytique. Ensuite je présenterai les caractéristiques des oxydes TiO_2 et ZrO_2 que nous allons utiliser comme support de catalyse pour l'hydrogénation en phase aqueuse d'acide succinique, ainsi que les différentes voies non hydrolytiques utilisées pour les préparer.

1.1 Le procédé sol-gel

Le procédé sol-gel est une méthode de synthèse d'oxydes basée sur la formation de ponts oxo par polymérisation de précurseurs moléculaires (alcoxydes de silicium, alcoxydes ou sels métalliques). Les premières étapes conduisent à la formation d'une solution colloïdale, appelée « sol », la poursuite des condensations conduit à la formation d'un « gel », c'est-à-dire d'un réseau oxyde emprisonnant une phase liquide (Figure 1.1).

Figure 1.1: Description schématique du procédé sol-gel³

C'est une méthode dite « douce » qui permet d'obtenir des verres ou des céramiques à relativement basse température (par comparaison aux procédés classiques de frittage à haute température ou coprécipitation d'hydroxydes).

Ces basses températures peuvent permettre d'éviter le frittage, la croissance des grains, et/ou la conversion vers les phases thermodynamiques et donc permettre l'accès à des nanoparticules, des matériaux poreux,⁴⁻⁶ des phases cristallines « hors équilibre »⁷ ou encore à des matériaux hybrides organique-inorganique.

Dans la très grande majorité des cas, la formation des ponts oxo implique l'hydroxylation des précurseurs, suivie de leur polycondensation (Schéma 1.1). L'hydroxylation provient soit de l'hydrolyse des alcoxydes en solvant organique ou de la variation du pH dans le cas de solutions aqueuses de sels. On parle alors de sol-gel aqueux ou hydrolytique (SGH).

La première synthèse sol-gel aurait été réalisée par Ebelmen⁸ dès 1845. Il décrivait « la conversion en verre solide de l'acide silicique exposé à l'air humide ». Il a fallu attendre les années 1930, pour que la société allemande Schott-Glaswerke⁹ utilise pour la première fois ce procédé pour fabriquer des récipients en verre.

Les précurseurs les plus couramment utilisés (au moins dans les publications) sont les alcoxydes, alcoxydes de silicium, de zirconium, de titane, d'aluminium, *etc.* Dans ce cas, lors de l'étape d'hydrolyse les groupements alcoxydes (M-OR) subissent une attaque nucléophile de l'eau présente dans le milieu réactionnel, libérant un alcool et conduisant à la formation de groupements hydroxyles. La réaction de condensation entre deux groupements hydroxyles conduit à la formation des liaisons M-O-M en libérant une molécule d'eau (oxolation), tandis que la réaction entre un groupement hydroxyle et un alcoxyde conduit à la formation des liaisons M-O-M en libérant une molécule d'eau (oxolation), tandis que la réaction entre un groupement hydroxyle et un alcoxyde conduit à la formation des liaisons M-O-M en libérant une molécule d'eau (oxolation) des liaisons M-O-M en libérant une molécule d'eau (oxolation), tandis que la réaction entre un groupement hydroxyle et un alcoxyde conduit à la formation des liaisons M-O-M en libérant une molécule d'eau (oxolation) des liaisons M-O-M en libérant une alcoxyde conduit à la formation des liaisons M-O-M en libérant une alcoxyde conduit à la formation des liaisons M-O-M en libérant une alcoxyde conduit à la formation des liaisons M-O-M en libérant une alcoxyde conduit à la formation des liaisons M-O-M en libérant une alcoxyde conduit à la formation des liaisons M-O-M en libérant une alcoxyde conduit à la formation des liaisons M-O-M en libérant une alcoxyde conduit à la formation des liaisons M-O-M en libérant une alcoxyde conduit al la formation des liaisons M-O-M en libérant une alcoxyde conduit à la formation des liaisons M-O-M en libérant une alcoxyde conduit al la formation des liaisons M-O-M en libérant une alcoxyde conduit alle formation des liaisons M-O-M en libérant une alcoxyde conduit alle formation des liaisons M-O-M en libérant une alcoxyde conduit alle formation des liaisons M-O-M en libérant une des liaisons M-O-M en libérant une des des des des des des des des des d

Schéma 1.1: Réactions impliquées dans le procédé sol-gel hydrolytique dans le cas de précurseurs alocoxydes: hydrolyse (1), condensation impliquant une oxolation (2) ou une alkoxolation (3)

Ce procédé est particulièrement adapté à la synthèse de matériaux siliciés (silice, matériaux hybrides organo-siliciés).^{8,9} En effet, les réactions d'hydrolyse-condensation des alcoxydes de silicium sont lentes, il est généralement nécessaire de catalyser la réaction (catalyse acide, basique ou nucléophile).

Au contraire, les alcoxydes de métaux de transition qui possèdent des sites de coordination vacants et une électropositivité supérieure à celle du silicium sont beaucoup plus réactifs. Par exemple, la cinétique globale des réactions d'hydrolyse-condensation est environ 10⁵ fois plus rapide pour le titane que pour le silicium.¹⁰ En conséquence, il est souvent nécessaire de ralentir les réactions d'hydrolyse-condensation des alcoxydes métalliques, par exemple en ajoutant des agents chélatants (acétylacétone, acide acétique). Ces différences de cinétique entre précurseurs siliciés et métalliques compliquent la synthèse d'solutions solides (par exemple SiO₂-TiO₂).^{11,12} Il faut dans ce cas bien contrôler les vitesses de réactions des deux précurseurs afin d'obtenir des gels homogènes. On peut par exemple pré-hydrolyser le précurseur le moins réactif (en général celui du silicium) et/ou ajouter des agents chélatants pour diminuer la réactivité des précurseurs les plus réactifs.

L'un des avantages du SGH est la facilité de mise en œuvre et la possibilité de mise en forme du matériau par exemple sous forme de monolithes, de films, de fibres ou de poudres de taille nanométrique, en tirant parti des propriétés rhéologiques du sol et du gel (Figure 1.1). Des matériaux à porosité contrôlée voire ordonnée (mésoporeux, macroporeux ou à porosité hiérarchique) peuvent être facilement obtenus par SGH grâce à l'ajout d'agents structurants (tensioactifs, polymères *etc.*) lors du processus de gélification.¹³⁻¹⁵

Le procédé SGH présente néanmoins plusieurs inconvénients liés aux cinétiques d'hydrolysecondensation des différents précurseurs qui peuvent conduire à la formation de précipités, de phases (oxo)hydroxydes ou de gels mal condensés. Dans ce dernier cas, le séchage par évaporation peut conduire à un effondrement de la texture et à la formation des xérogels microporeux. En jouant sur les paramètres de synthèse (pré-hydrolyse, utilisation d'agents chélatants, d'agents structurants, vieillissement des gels, calcination, séchage en conditions supercritiques, *etc.*) il est possible d'éviter ces inconvénients, mais ceci peut augmenter très fortement le coût de revient des matériaux.

Une autre stratégie consiste à utiliser le procédé sol-gel non hydrolytique (SGNH), qui par définition met en œuvre d'autres donneurs d'oxygène que l'eau et donc des réactions différentes en milieu non aqueux.^{7,16-22}

1.2 Le procédé sol-gel non hydrolytique

1.2.2 Historique

Il est difficile de donner une date précise du début des investigations menant aux synthèses d'oxydes par des voies non hydrolytiques.¹⁹

Les premiers exemples publiés remontent à 1928, lorsque Dearing and Ried présentèrent leur travail sur les «orthosilicates d'alkyles».²³ Ils ont étudié la réaction de SiCl₄ avec différents alcools et mentionnent que dans le cas de l'alcool isopropylique, il n'y a pas formation de l'alcoxyde correspondant, mais de propène et de chlorure d'isopropyle. Ils rapportent également la formation de diéthyl-phtalate et de (EtO)₂SiO par réaction de Si(OEt)₄ avec l'anhydride phtalique; la formation de silice n'est cependant pas mentionnée.

Par contre en 1949, Ridge et Todd²⁴ décrivent clairement la formation de silice par réaction de SiCl₄ sur ^tBuOH avec élimination de ^tBuCl et H₂O.

D'autres groupes ont poursuivi ces thématiques de recherche, notamment Gerrard et collaborateurs, qui ont publié de nombreux articles sur l'interaction de chlorures de silicium ou de bore avec des alcools, des éthers^{25,26} ou des trialkylphosphates (pour la synthèse de phosphates de bore ou de silicium).²⁷ On peut également citer la synthèse d'oligosiloxanes par réaction de chlorosilanes dans le dimethylformamide²⁸ ou avec le benzaldéhyde.²⁹

C'est à partir des années 1990 que le concept a été vraiment développé et généralisé, à travers les travaux du Professeur André Vioux et collaborateurs (groupe du Professeur Corriu) à Montpellier. Dans leurs premiers articles, publiés en 1992, ils mentionnent pour la première fois le terme « Sol-Gel Non Hydrolytique », et décrivent la synthèse d'une large variété d'oxydes mésoporeux :

- de silice par réaction d'halogénures de silicium avec différents donneurs d'oxygène organiques (tertiobutanol, alcool benzylique, dibenzyléther et benzaldéhyde),³⁰

- d'oxydes métalliques (M = Ti, Al) par réaction d'un halogénure métallique avec un alcoxyde du même métal,³¹

- d'solutions solides (Si/Al, Si/Ti, Si/Zr, Ti/Al) par réaction d'un chlorure ou d'un bromure métallique avec un alcoxyde d'un autre métal.¹⁰

Ces travaux ont été poursuivis, à Montpellier ou par d'autres groupes de recherche, et la première revue d'André Vioux en 1997¹⁶ a posé les bases du procédé sol-gel non hydrolytique,

qui est maintenant reconnu notamment pour la synthèse en une seule étape d'oxydes et d'solutions solides mésoporeux (non ordonnés)^{18,32} ainsi que pour la synthèse de nanocristaux de taille voire de forme bien définies, en présence ou non de tensioactifs.^{33,34} Le procédé SGNH a également été utilisé pour préparer des polysiloxanes,³⁵ des matériaux hybrides organiqueinorganique,³⁵⁻³⁷ des phosphonates métalliques,³⁸ ainsi que pour le dépôt de films fins par ALD (atomic layer deposition).³⁹

1.2.3 Principales voies de synthèse SGNH

De nombreuses voies SGNH ont été proposées, impliquant la réaction en milieu anhydre de précurseurs métalliques (halogènures, alcoxydes, acétylacétonates, amidures, *etc.*) avec un donneur d'oxygène organique (alcoxydes, éthers, alcools, anhydrides d'acide, cétones, *etc.*).

On peut classer les voies SGNH selon la nature du donneur d'oxygène ou la nature de la molécule éliminée (chlorure d'alkyle, éther, ester, acétamide, *etc.*).¹⁷ Les voies les plus utilisées sont certainement celles basées sur la réaction de chlorures avec des alcoxydes ou des éthers avec élimination de chlorure d'alkyle (voie alcoxyde et voie éther), et celles basées sur la réaction de différents précurseurs (chlorures, alcoxydes, acétylacétonates, *etc.*) en milieu alcool benzylique (voie alcool benzylique).

1.2.3.1 Réactions mises en jeu

Les principales réactions impliquées dans les diverses voies SGNH sont listées dans le Schéma 1.2. Les voies SGNH impliquent des réactions de condensation dites non hydrolytiques. On distingue les condensations aprotiques (Schéma 1.2 : (1-4)), n'impliquant pas de groupements hydroxyles, des condensations protiques, mettant en jeu des groupements hydroxyles (Schéma 1.2 : (8)). Ces hydroxyles peuvent être formées par des réactions d'hydroxylation non hydrolytiques (Schéma 1.2 : (9-13)) dont le mécanisme peut être complexe. Les groupements alcoxydes peuvent être formés *in situ* par éthérolyse ou alcoolyse (alcools primaires ou secondaires) (Schéma 1.2 : (5-6)), et les groupements acétates peuvent être formés par réaction avec un anhydride (Schéma 1.2 : (7)). Il ne faut pas oublier que dans tous les cas des réactions d'échanges (Schéma 1.2 : (14)) interviennent, et qu'elles sont bien plus rapides que les réactions de condensation. Enfin, nous avons mentionné la possibilité de former de l'eau par déshydratation des alcools en éthers ou en alcènes (Schéma 1.2 : (15, 16)). Ces réactions peuvent intervenir à haute température et elles sont catalysées par les acides (HCl, acides de Lewis, oxydes acides).

Condensations aprotiques Condensations impliquant des hydroxyles M-Y + M-OH → M-O-M + H-Y (8) Elimination d'halogénure d'alkyle $(Y = OH, CI, OR, OAc, NR_2...)$ $M-X + M-OR \longrightarrow M-O-M + R-X$ (1) Hydroxylation non-hydrolytique $(X = CI, Br; R = Me, Et, Pr, iPr, PhCH_2...)$ $\left\langle H \xrightarrow{T >_{180} \circ C} M - OH + \right\rangle = \langle 0 \rangle$ Elimination d'éther M-OR + M-OR → M-O-M + R-O-R (2) (10) **Elimination d'ester** M-OAc + PhCH₂OH \longrightarrow M-OH + $M-OR + M-O-Ac \longrightarrow M-O-M + Ac-OR$ (3) (11)OH Elimination d'acétamide M-OiPr + PhCH₂OH ──── M-OH + (12) $M-NR_2 + M-O-Ac \longrightarrow M-O-M + Ac-NR_2$ (4) M-OR + 2 Me₂CO \longrightarrow M-OH + ROH + \swarrow _/ (13) Formation in situ de groupements OR **Réactions d'échange** $M-X + R-O-R \longrightarrow M-OR + R-X$ (5) → M-Y + M'-X M-X + M'-Y (14) $M-X + R-OH \longrightarrow M-OR + H-X$ (6) (X, Y = CI, Br, OR, OAc, NR₂, OH...) (R = Me, Et, Pr, iPr...) Formation d'eau in situ à partir du solvant Formation in situ de groupements OAc 2 R-OH $\xrightarrow{T>_{150} \circ C}$ R-O-R + H₂O (15) $M-OR + Ac_2O \longrightarrow M-OAc + Ac-OR (7)$ OH $\xrightarrow{T>_{180} \circ C}$ \rightarrow \rightarrow + H₂O (16)

Schéma 1.2 : Principales réactions impliquées dans le procédé SGNH⁴⁰

La différence majeure entre SGH et SGNH provient des cinétiques des réactions de condensation. Les condensations non hydrolytiques impliquent généralement la coupure de liaisons C-O alors que le sol-gel classique repose sur le clivage des liaisons O-H. Ceci ralentit fortement le processus et permet de contrôler très simplement la condensation en jouant sur la température de réaction. Le milieu réactionnel est aussi complètement différent puisqu'avec le SGNH on travaille en milieu organique, théoriquement en absence d'eau. Les températures de réactions de condensation dans le procédé SGNH dépendent de la voie utilisée, mais sont généralement comprises entre 100 et 250 °C, donc bien supérieures à celles utilisées en SGH. Les réactions sont donc fréquemment effectuées sous pression autogène dans des autoclaves ou des tubes scellés, et il est en principe nécessaire de travailler en conditions anhydres.

1.2.3.2 Voies alcoxyde et éther

Les voies alcoxydes et éthers impliquent toutes deux des condensations avec élimination d'halogénure d'alkyle (Schéma 1.2 : (1)). Les précurseurs utilisés sont généralement des

chlorures (SiCl₄ ou chlorure métallique), les donneurs d'oxygène sont soit des alcoxydes soit des éthers (ex : éther diisopropylique).

Cette réaction de condensation aprotique est très générale. Elle intervient à des températures comprises entre 80 et 150 °C dans un grand nombre de cas : métaux (Al, Sn), métaux de transition (Ti, Zr, Hf, V, Nb, Cr, Mo, W, Re, Fe), métalloïdes (B, Si), et non métal (P).

Le silicium est un cas particulier ; en l'absence de catalyseur, la condensation Si-Cl / Si-OR n'est observée qu'avec des groupements R tertiaires ou benzyliques. Dans le cas de groupements R primaires ou secondaires la condensation nécessite d'être catalysée par des acides de Lewis (FeCl₃, AlCl₃, ZrCl_{4...}).

Les groupements alcoxydes peuvent être formés *in situ* en faisant réagir les précurseurs chlorures avec un éther (Schéma 1.2 : (5)). Cette réaction libère également un chlorure d'alkyle. Comme la voie alcoxyde, la voie éther est donc strictement non hydrolytique, car ni eau, ni groupements hydroxyles ne sont formés lors des différentes réactions. Cependant, si l'on utilise des températures trop élevées (>180 °C) la décomposition des groupements alcoxydes peut conduire à la formation de groupements hydroxyles avec libération d'un alcène (Schéma 1.2 :(9)).

On peut également former *in situ* des groupements alcoxydes par réaction d'un chlorure avec un alcool primaire ou secondaire (Schéma 1.2 : (6)). Mais dans ce cas le sous-produit de la réaction (HCl) peut catalyser de nombreuses réactions secondaires, notamment la déshydratation de l'alcool avec formation d'eau (Schéma 1.2 : (15-16)). Une hydroxylation non hydrolytique avec élimination de chlorure d'alkyle peut également intervenir, en particulier pour les alcools tertiaires ou benzyliques (Schéma 1.2 : (10)).

Une hydroxylation peut aussi avoir lieu à des températures plus élevées (> 180-200 °C). Dans ce cas, certains groupements alcoxydes se décomposent avec élimination d'alcènes (Schéma 1.2 : (6)). Les groupes M-OH résultants peuvent alors condenser soit avec les groupes M-Cl (ou M-OR) (Schéma 1.2 : (7)) soit avec d'autres groupes M-OH (Schéma 1.2 : (8)) induisant cette fois-ci une formation d'eau.

Ces deux voies de synthèse sont très utilisées pour préparer en une seule étape des oxydes et des solutions solides mésoporeux (Schéma 1.5). Les degrés de condensation obtenus par ces voies sont souvent élevés comparé à ceux obtenus par la voie SGH.⁷

Schéma 1.3 : Synthèse d'oxydes et d'solutions solides par voie alcoxyde et voie éther³²

Il est possible d'obtenir très simplement des textures mésoporeuses désordonnées, sans utiliser d'agents porogènes ou de séchage en conditions supercritiques. Les surfaces spécifiques et les volumes poreux peuvent être très élevés, comparables et dans certains cas supérieurs à ceux obtenus pour des matériaux mésoporeux ordonnés voire des aérogels.^{41,42}

Dans le cas des solutions solides, ces voies permettent un très bon contrôle de la composition. Les xérogels (avant calcination) sont en général homogènes (dispersion aléatoire des différents composants), y compris dans le cas de silicates (SiO₂-MO_n, M = Ti, Zr, Al, *etc.*). Ceci provient de la catalyse des réactions autour du silicium par les espèces métalliques acides de Lewis. L'homogénéité est maintenue après l'étape de calcination pour les oxydes les plus réfractaires comme SiO₂, TiO₂, Al₂O₃ ou ZrO₂, mais dans les systèmes Ti-V(-W)(-Mo), Si-Al-Mo, Si-Al-Re et Si-W, on observe une migration vers la surface des espèces du vanadium, du molybdène ou du rhénium durant la calcination. Cette migration expliquée par la faible température de Tammann des oxydes correspondants.⁴³⁻⁴⁶

Les solutions solides mésoporeux préparés par les voies alcoxyde et surtout éther ont été utilisés avec succès pour des applications en catalyse hétérogène où l'interconnexion entre les mésopores peut être un avantage. On peut par exemple citer les solutions solides mésoporeux tels que SiO₂-Al₂O₃-Re₂O₇ et SiO₂-Al₂O₃-MoO₃ pour la catalyse en métathèse, SiO₂-TiO₂, Al₂O₃-Fe₂O₃, SiO₂-V₂O₅-Nb₂O₅ pour l'oxydation, TiO₂-V₂O₅-Al₂O₃ pour la catalyse DeNOx ou SiO₂-ZrO₂ pour les catalyses acides³² (*cf.* Tableau 1.1, §1.2.4).

La voie alcoxyde a été dès 1999 utilisée par Colvin et collaborateurs pour préparer des nanoparticules de TiO_2^{47} en présence de trioctylphosphine. Cette voie a été également utilisée pour préparer des nanoparticules de ZrO_2 , HfO_2 et $Hf_xZr_{1-x}O_2$ à l'échelle de plusieurs grammes,^{48,49} et des nanoparticules de TiO_2 de forme bien contrôlée.^{50,51} La voie éther a été

plus récemment utilisée pour synthétiser en l'absence de tensioactif des nanoparticules organosolubles, amorphes (SiO₂, SiO₂-TiO₂)⁵² ou cristallines (TiO₂, SnO₂).^{53,52}

1.2.3.3 Voie alcool benzylique

La voie « alcool benzylique » a été particulièrement développée par le groupe de Markus Niedeberger afin de synthétiser des nanocristaux d'oxydes métalliques simples ou d'solutions solides.^{19,20,54-56} Il s'agit de réactions solvothermales, dans lesquelles les précurseurs (chlorures, alcoxydes, acétylacétonates, voire des métaux alcalins) sont chauffés dans l'alcool benzylique de 80 à 200 °C pour les chlorures et à des températures pouvant atteindre 250 °C (le point d'ébullition de l'alcool benzylique est de 205°C) pour les autres précurseurs, en général dans un autoclave. Les mécanismes de réaction sont complexes et dépendent des précurseurs utilisés.^{20,21} La nature des précurseurs et des conditions de synthèse influencent la taille et la morphologie des nanoparticules.^{57,58}

La réaction de précurseurs chlorurés dans l'alcool benzylique peut mettre en jeu différentes réactions,²¹ principalement d'hydroxylation (Schéma 1.2 : (10), d'alcoxylation (Schéma 1.2 : (6)), de condensation M-OH / M-Cl (Schéma 1.2 : (8)) ou avec élimination de chlorure d'alkyle (Schéma 1.2 : (1)), d'élimination de dibenzyléther (Schéma 1.2 : (2)), mais le dibenzyléther peut aussi résulter de la déshydratation de l'alcool benzylique (Schéma 1.2 : (15)) catalysée par HCl, comme l'ont montré De Keukeleere et collaborateurs,⁵⁹ qui ont observé la présence d'une phase aqueuse en fin de réaction.

La formation d'éther dibenzylique est également observée lors de la réaction de différents alcoxydes (Ti(OⁱPr)₄, Zr(OⁿPr)₄,ⁿPrOH, Hf(OEt)₄, Nb(OEt)₅, Sn(OtBu)₄) avec l'alcool benzylique. Cette formation d'éther peut provenir de la formation d'espèces M-OCH₂Ph, suivie d'une condensation selon l'équation (2) dans le Schéma 1.2, mais étant donné les températures de réaction utilisées (200-250 °C) elle peut aussi provenir de la déshydratation de l'alcool benzylique (Schéma 1.2 : (15)) éventuellement catalysée par les espèces métalliques.^{21,60}

Lors de la formation de pérovskites $BaTiO_3$ et $SrTiO_3$ la présence d'espèces basiques (alcoxydes de baryum ou de sodium) conduit à un couplage C-C entre les ligands alcoxydes et l'alcool benzylique.^{55,61}

Avec cette voie alcool benzylique, outre la synthèse classique solvothermale, il est aussi possible d'élaborer des nanoparticules en utilisant la synthèse par micro-ondes. Ceci permet de

diminuer le temps de réaction et d'augmenter les quantités de nanoparticules produites pour des oxydes tels que ZnO dopé par Co, Ni, Fe, Mn ou V.⁶²

1.2.3.4 Autres voies non hydrolytiques

4 Elimination d'éther

L'élimination d'un éther entre deux précurseurs alcoxydes métalliques est difficile et n'a été utilisée que pour préparer des molybdates et des tungstates de métaux alcalins.³³(Schéma 1.2 : (2))

Elimination d'ester

L'élimination d'ester entre un alcoxyde métallique et un carboxylate métallique ou de silicium (Schéma 1.2 : (3)). Cette voie a été utilisée pour la synthèse de ZrO₂ et de SiO₂-ZrO₂.⁶³ Elle est cependant limitée par le faible nombre d'acétates métalliques anhydres commerciaux. La formation *in situ* de groupements acétates (Schéma 1.2 : (7)) par réaction d'un alcoxyde avec l'anhydride acétique à 200 °C permet d'éviter cette limitation.⁶⁴ Les acétates réagissent également avec des esters d'acide phosphorique ou phosphoniques (éthyl ou triméthylsilyl esters), et cette réaction a été utilisée pour préparer des phosphosilicates et des matériaux hybrides.⁶⁵

4 Elimination d'acétamide

La condensation induite par l'élimination d'acétamide entre un amide métallique et un acétate métallique ou de silicium (Schéma 1.2 : (4)) a été développée par le groupe du Pr J. Pinkas. Elle permet de préparer de nombreux métallo-silicates SiO₂-MO_n (M = Ti, Zr, Al, Sn, Ta).⁶⁵⁻⁶⁷

4 Voie cétone

Plusieurs exemples de formation d'oxydes par SGNH en utilisant la réaction de précurseurs alcoxydes avec des cétones (ou des aldéhydes) existent. Les mécanismes peuvent être complexes et sont toujours débattus.²¹ La synthèse de TiO₂ par une condensation aldolique entre l'acétone et l'alcoxyde de titane a par exemple été décrite (Schéma 1.2 : (13)). Dans ce cas, l'élimination d'eau et la formation de carbonyl α - β insaturés a été prouvée. Avec d'autres cétones (2-butanone, 3-pentanone) une réaction secondaire de type Meerwein-Verley-Ponndorf conduit à la formation d'acétone à partir de Ti(OiPr)₄.²¹

Pazik et collaborateurs ont obtenu des nanoparticules de BaTiO₃ et MFe₂O₄ (M= Mn, Fe, Co, Co, Ni) bien cristallisées simplement en chauffant les alcoxydes (éthoxydes) métalliques dans l'acétophénone (Schéma 1.4).⁶⁸

Schéma 1.4 : Formation de BaTiO₃ par chauffage d'éthoxydes métalliques dans l'acétophénone⁶⁸

1.2.4 Applications des différents oxydes synthétisés par SGNH

Quelques exemples d'applications potentielles d'oxydes mésoporeux obtenus par sol-gel non hydrolytique sont présentés dans le tableau suivant. Il existe au moins une application industrielle : la mousse isolante d'alumine poreuse produite depuis 1999 par la compagnie Cellaris, mousse utilisée pour isoler des fours⁶⁹ par chauffage de AlCl₃.ⁱPr₂O dans le CH₂Cl₂.⁴¹

Oxydes et solutions solides	Voie de synthèse non hydrolytique	Application	Référence
Fe-Al	-	Ovudation mánagáa avac HaOa	70
Co-Al-Si			71
Mo-Ti-V		Oxydation totale du benzène et du	11 15
W-Ti-V	-	chlorobenzène	44,45
Mo-Al-Si	_	Mátathàga d'aláfinag	43,72,73
Re-Al-Si	-	Wetathese d'Olennies	46
N7 T :	Voia áthan (iDn. O)	Batteries Li-ion	74
V-11	voie etiler (PI2O)		75,76
Ag-Al	chlorure d'alkyle	Réduction sélective des NO _x	77
Ag-Nb-Al			
Ti-Si-MeSi	_		78
Ti-Si-Me3Si		Oxydation ménagée ou sélective	
Ti-Si	Voie alcoxyde/	-	11
TiO ₂	élimination de	Photocatalyse, dopé par S, N	79
SiO ₂	chlorure d'alkyle	Support de estelves	80,81
Si-P	Elimination d'ester	Support de cataryse	65
ZnO	Voie benzyl alcool /	Semi-conducteur magnétique dopé	62
SnO ₂ /GO	synthèse par micro- onde	Batteries Li-ion	82

Tableau 1.1 : Oxydes mésoporeux synthétisés par voie SGNH et leurs applications ²²

1.3 L'oxyde de titane TiO₂

1.3.1 Généralités

Dû à ses nombreuses propriétés (structurale, texturale, faible toxicité, bas coût de production, *etc.*), TiO₂ est utilisé dans des domaines très variés : stockage d'énergie,^{83 84} photo-catalyse,⁸⁵⁻⁸⁷ catalyseur,⁸⁸ électrolyse (craquage) de l'eau,⁸⁹ support en catalyse,⁹⁰ *etc*.

Dans la nature, le TiO₂ peut se trouver sous différentes formes cristallographiques : rutile, anatase ou brookite. A température et pression ambiantes, le rutile est la phase stable du TiO₂, quant aux phases anatase et brookite, elles sont métastables.^{91,92} Il existe d'autres phases formées à plus hautes pressions et températures :

-TiO₂II ou srilankite, une structure orthorhombique de l'anatase -cubique-fluorite -pyrite -monoclinique baddeleyite -cotunnite

Toutes ces phases ainsi que la brookite étant peu répandues, nous allons nous focaliser par la suite sur les phases anatase et rutile.

Dans ces deux phases, le TiO₂ est sous une forme octaédrique TiO₆, mais qui diffèrent par la distorsion des octaèdres, les points de contact et les liaisons entre ceux-ci (Figure 1.2).⁹³ Les paramètres structuraux des phases anatase et rutile sont indiqués dans le Tableau 1.2.

Figure 1.2 : Les différentes phases cristallographiques à P_{atm} du TiO₂ (a) Anatase, (b) Rutile ⁸⁷

Dans le cas de l'anatase, les octaèdres sont arrangés « en zigzag » selon l'axe (221) et partagent 4 arêtes. Dans la phase rutile, les octaèdres partagent 2 arêtes et sont connectés « en chaines »

linéaires selon l'axe (001).⁹⁴ Ces différences conduisent à des masses volumiques différentes et influent sur les propriétés physico-chimiques.

Phase Groupe d'espace	Rutile P42/mnm	Anatase I41/amd	
Système cristallin	Tétragonale	Tétragonale	
Motif (Z)	2	4	
	a = 0,458	a = 0,782	
Paramètres ^{95,96}	$\mathbf{b} = \mathbf{a}$	$\mathbf{b} = \mathbf{a}$	
	c = 0,2954	c = 0,9502	
Masses volumiques (g/cm ³)	4,250	3,894	
Bande interdite (eV)	3	3,2	

Tableau 1.2 : Paramètres des phases anatase et rutile du TiO2

La phase la plus couramment obtenue par synthèse sol-gel est l'anatase.^{97,98} Plusieurs raisons à cela : La phase anatase est structurellement favorisée par rapport à la phase rutile en raison des faibles contraintes moléculaires de construction.⁹⁹ Comme nous l'avons vu dans le paragraphe précédent, les octaèdres sont en effet arrangés en longues chaines ordonnées. L'anatase cristallise plus vite grâce à sa faible énergie de surface. L'énergie de surface constitue une grande partie de l'énergie libre totale des nanoparticules et l'anatase est favorisée pour des tailles de particules faibles inférieures à environ 14 nm.¹⁰⁰ Il est possible de convertir la phase anatase en rutile.¹⁰⁰ Cette transformation cinétique de la phase anatase en rutile n'est pas spontanée, elle est fonction du temps et de la température de traitement, et elle est également irréversible. Pour un TiO₂ anatase non dopé, les facteurs à considérer sont : la taille des particules, la surface spécifique, le volume de l'échantillon, la vitesse de chauffe et les impuretés éventuellement présentes. La transformation d'anatase en rutile n'est donc pas observée à une température précise mais dans une gamme comprise entre 400 et 1200 °C.92 L'utilisation de méthodes de synthèse de TiO₂ « douces », comme l'hydrolyse de TiCl₄ à température ambiante,¹⁰¹ les procédés sol-gel hydrolytique ou non hydrolytique à température proche de l'ambiante,^{102,103} conduisent donc généralement à des phases anatase ou amorphe.

Il est possible de former directement du TiO₂ rutile par traitement à haute température (synthèses solvothermales par exemple).¹⁰⁴ Il s'agit de processus qui induisent un murissement d'Oswald formant la phase thermodynamiquement stable. Il existe enfin quelques exemples de synthèses de TiO₂ rutile à température ambiante, par sol-gel hydrolytique (à pH acide suivi d'une trempe à basse température)⁹⁸ ou par sol-gel non hydrolytique, en présence de HCl (*cf.* § 1.3.1 suivant).

1.3.1 Synthèse de TiO2 par procédé SGNH

Comme nous l'avons vu précédemment, le procédé sol-gel non hydrolytique permet de synthétiser des oxydes métalliques avec des phases stables ou métastables par contrôle des conditions de synthèse.

Le Tableau 1.3 et le Tableau 1.4 présentent les phases obtenues par synthèse SGNH pour des TiO_2 mésoporeux et pour des nanoparticules.

Tableau 1.3 : Différentes voies de synthèse de TiO_2 mésoporeux par SGNH et phases cristallines obtenues, avant et après calcination

Réaction	Phase(s) avant calcination	Phase(s) après calcination	SBET après calcination	Réf.
TiCl ₄ +1 Ti(OiPr) ₄		500 °C	$180 \text{ m}^{2}/\text{g}$	
10 jours 110 °C		Anatase	100 m /g	105
TiBr4+1 Ti(O ⁱ Pr)4/CH2Br2		400 °C	$158 m^{2/\alpha}$	105
8 jours 110 °C		Anatase	138 m²/g	
TiCl ₄ +2 ⁱ Pr ₂ O	Anatase	500 °C	$120 \text{ m}^{2}/\sigma$	
7 jours 110 °C		Anatase	120 m²/g	
TiCl4+ 2 THF	Anotoco	500 °C	$72 m^{2/\alpha}$	
7 jours 110 °C	Allalase	Anatase	/5 m²/g	
TiCl ₄ + 2 EtOH	Dutila	500 °C	$10 m^{2}/a$	
7 jours 110 °C	Rutile	Rutile	10 m²/g	106,107
	Dutila	500 °C		
$\frac{11014+2}{7} \frac{110}{90}$	Rutile+	Rutile +	23 m²/g	
7 jours 110 C	DIOOKILE	Brookite	_	
TiCl ₄ + 2 ⁿ BuOH	American	500 °C	12	
7 jours 110 °C	Anatase	Anatase	45 m²/g	
TiCl ₄ + 2 ⁱ Pr ₂ O ou 2THF	American	500 °C	40 2/~	100
4 jours 180 °C	Anatase	Anatase	40 m²/g	108
Ti(O ⁱ Pr) ₄ +2 Ac ₂ O	Amataaa	380 °C	100 2/~	64
200 °C	Anatase	Anatase	$180 \text{ m}^2/\text{g}$	04

Réaction	Phase(s) avant	Phase(s) après calcination Taille des cristallites	Réf.	
	calcination	Sbet		
TiCl ₄ + BzOH (solvant)		450 °C		
$7 \ge 21$ jours ≥ 40 °C	Anatase	Anatase 13,5 nm	109	
7 a 21 jours a 40°C		S _{BET} 115 m ² /g		
TiCl ₄ + Ti(O ⁱ Pr) ₄ TOPO/heptadécane	Anatase		110	
5 minutes, 300 °C				
Ti(O ⁱ Pr) ₄ + Acétone	Anatase	15 nm		
1 jour, 130 °C		15 mm	111	
Ti(O ⁱ Pr)4 + Acétophénone	Anatase	11 nm	111	
3 jours, 200°C		11 1111		
TiCl4 : Acétone < 1:15 12 heures, 110°C	Anatase	8,6 nm	110	
TiCl₄ : Acétone 1:10 12 heures, 110°C	Rutile	9,9 nm	112	
Ti(O ⁱ Pr)4 +Acide oléique		Déduction / 100 m ² /a		
1 :3,5	Anatase	$\frac{190 \text{ m}^2}{2}$	113	
2h , 270 °C		3 nm		

Tableau 1.4 : Différentes voies de synthèse de nanoparticules TiO_2 par SGNH, taille des particules obtenues

Dans presque tous les cas (voies éther, alcoxyde et n-butanol avec TiCl₄, voie alcool benzylique avec TiCl₄, voie acétone avec Ti($O^{i}Pr$)₄ et TiCl₄ dilué, voie acétophénone avec Ti($O^{i}Pr$)₄), seule la phase anatase est obtenue ; même après calcination à 500 °C.

La phase rutile est obtenue seulement à partir de TiCl₄ par la voie éthanol et la voie acétone. Un mélange brookite/rutile est enfin obtenu avec la voie ^tBuOH avec TiCl₄.

D'après les travaux de Arnal *et al*¹¹⁴ la formation de la phase brookite serait due à la formation de groupes hydroxyles Ti-OH lors de l'alcoolyse de TiCl₄ et le ^tBuOH, avec libération de ^tBuCl (Schéma 1.2 : (10)). En ce qui concerne la formation de la phase rutile avec l'éthanol, elle est attribuée à la libération de HCl dans le milieu durant la synthèse.

1.4 L'oxyde de zirconium ZrO₂

La zircone est une céramique qui présente une combinaison unique de propriétés mécaniques et électriques. Elle est utilisée dans divers domaines : revêtement (barrières thermiques),¹¹⁵ dispositifs optiques,¹¹⁶ capteurs d'oxygène,¹¹⁷ catalyseurs (propriétés acido-basiques) ou supports en catalyse (stabilité chimique et thermique).¹¹⁸⁻¹²¹ Tout comme TiO₂, les propriétés physico-chimiques et mécaniques de ZrO₂ sont directement liées à sa structure cristalline.

1.4.1 Structure et diagramme de phases

A pression atmosphérique, la zircone existe sous trois formes cristallines : monoclinique, tétragonale (ou quadratique) et cubique. On peut aussi la trouver sous la forme orthorhombique lors de traitements à des pressions élevées.¹²²

A température et pression ambiantes, la phase thermodynamiquement stable de la zircone est la phase monoclinique (m-ZrO₂), décrite dans le groupe d'espace P2₁/c. Dans cette structure, le cation Zr⁴⁺ est en coordinance 7 avec les anions O²⁻. Entre 1130°C et 2300°C la phase stable est la phase tétragonale (t-ZrO₂) qui a aussi une structure de type fluorite distordue, décrite dans le groupe d'espace P4₂/nmc. Cette zircone tétragonale possède deux longueurs de liaisons Zr-O distinctes (d(Zr-O_I) = 2,08 Å et d(Zr-O_{II}) = 2,38 Å)¹²³ avec les ions zirconium en coordinance 8 (4&4). Elle est tétragonale, faces centrées et le rapport c/a est proche de 1,026.

Au-dessus de 2300 °C la zircone est cubique (c- ZrO_2) avec une structure fluorite (CaF₂, cubique faces centrées) Fm3m, dans laquelle les ions zirconium sont en coordinance 8 avec des liaisons Zr-O équidistantes. Toutes ces caractéristiques sont décrites dans le Tableau 1.5.

Structure Cristalline	Monoclinique P21/c	Quadratique P42/nmc	Cubique Fm3m		
Représentation schématique ¹²⁴ *					
Température de stabilité à P _{atm}	Inférieure à 1130 °C	Entre 1130 °C à 2300 °C	De 2300 °C à 2710 °C		
Paramètres ¹²⁵	a = 5,156 Å b = 5,21 Å c = 5,31 Å β =99,2°	a = b = 5,05 Å c = 5,18 Å c/a = 1,026	a = b = c = 5,09 Å		
Distance Zr-O ¹²⁶	2,16 Å	2,26 Å (2,065 & 2,455 Å)	2,28 Å		
Coordinance Zr	7	8 (4 & 4)	8		
Densité	5,830 g.cm ⁻³	6,100 g.cm ⁻³	6,090 g.cm ⁻³		

Tableau 1.5 : Caractéristiques des différentes phases de la zircone

*Les atomes d'oxygène sont en bleu et les atomes de zirconium en rouge selon Hannink et al.

Dans le cas de nanocristaux il est difficile de différencier les phases tétragonale et cubique par diffraction des rayons X. En effet, les deux phases ont des paramètres de maille proches et la position des pics de diffraction sont presque identiques. La spectroscopie Raman peut s'avérer être une technique efficace pour distinguer ces deux phases.

1.4.2 Transition de phase tétragonale / monoclinique

Dans certains cas, la phase t-ZrO₂ a de meilleures propriétés mécaniques et catalytiques que la m-ZrO₂.¹²⁷ En pratique, ce sont les germes cristallins de la phase métastable tétragonale qui se forment initialement, puis ce n'est qu'après traitement thermique à ~500°C qu'ils se transforment en m-ZrO₂ (la phase la plus stable thermodynamiquement).¹²⁸ On peut donc envisager, en modifiant les conditions de synthèse, d'obtenir cette phase tétragonale métastable.

1.4.3 Stabilisation de la phase tétragonale de la zircone

La transformation de la phase t-ZrO₂ vers la m-ZrO₂ à des températures supérieures à ~500 °C dépend de plusieurs facteurs,¹²⁹ à savoir : la taille des cristallites, les contraintes de réseau, les défauts de structure, *etc*.^{129,130} Garvie *et al* ont été les premiers à montrer l'importance de la microstructure de la zircone pour la stabilisation de la phase tétragonale métastable à température ambiante. En synthétisant la zircone en solution aqueuse par précipitation, ils ont observé une corrélation entre la phase tétragonale et la taille des cristallites.¹³¹ La stabilisation de la phase t-ZrO₂ se fait grâce à la faible énergie de surface de la phase tétragonale comparé à la phase monoclinique. Garvie¹³⁰ propose ainsi une taille de cristallite critique d'environ 30 nm au-dessus de laquelle la phase tétragonale métastable ne peut pas exister à température ambiante. Cette taille peut varier dans deux conditions. La première dans le cas d'une contrainte hydrostatique (ou pression), la taille du diamètre critique augmentera avec la contrainte.¹³² La deuxième est fonction de l'agglomération des particules (la taille critique des particules varie de 35 nm à 10 nm selon qu'elles sont isolées ou agrégées).¹³²

Tredici ¹³³ *et al.* ont par exemple montré que la taille critique était de 30 nm pour une poudre de zircone frittée. Mitsuhashi *et al* ¹³⁴ Shukla *et al* ¹³⁵ parlent d'une taille supérieure à 30 nm dans le cas de particules agrégées et de 10 nm pour un monocristal.¹³⁶

Par ailleurs, les phases t-ZrO₂ ou c-ZrO₂ peuvent être stabilisées en introduisant des cations bi ou trivalents comme Ca²⁺, Y³⁺, Gd³⁺, La³⁺, Al³⁺, Mg²⁺ (en remplacement des cations Zr⁴⁺). Le cas le plus connu est celui de l'yttrium (zircone yttriée). La taille de l'élément inséré peut aussi influencer les paramètres de maille de la zircone et donc sa phase.

1.4.4 Synthèse de la zircone par procédé SGNH

Dans le cas de la zircone, le procédé SGNH a été utilisé principalement pour préparer des nanoparticules, initialement par la voie alcoxyde puis par la voie alcool benzylique (Tableau 1.6). Seon et Coll.¹³⁷ ont utilisé la voie alcoxyde pour préparer des films isolants pour l'électronique. Il n'y a pratiquement pas d'exemples de la préparation de zircone mésoporeuse: Jansen and Guenther ont préparé t-ZrO₂ par élimination d'ester ;⁶³ la surface spécifique des poudres n'a pas été rapportée. Récemment, Warwar Damouny *et al* ont utilisé la voie éther pour préparer de la zircone tétragonale dopée par Ni et Si, mais la zircone non dopée présentait un mélange de phases t et m phases, et une faible surface spécifique.¹³⁸

Tableau	1.6 :	Synthèse	de	nanoparticules	de	ZrO_2	par	SGNH,	phases,	taille	des	nanoparticules	et
référence	es												

OBEL		
ZrCl4+	48,139	
$\mathbf{Zr}(\mathbf{O^{i}Pr})\mathbf{4.^{i}PrOH}$ non $\mathbf{t^{a}}$ 4 nm 4		
2heures, 340°C,TOPO		
Zr(OiPr)4. ⁱ PrOH +	140,141	
BzOH non c^b 3 nm 1^b		
48 heures, 210 °C		
$Zr(O^{n}Pr)_{4}$, 70% in 55 wt% t (220 °C) 2.0.3.5 nm (t)		
ⁿ PrOH + BzOH >90 wt%t (240 $2.9-5.5$ mm (t) $2.75.2$ mm (m)	142	
72heures, 270 °C °C) 5.7-5.5 IIII (III)		
Zr(OⁿPr)4, 70% dans 85 v% t (6 h, 270		
ⁿ PrOH + BzOH °C); 80 v% m (27 $\frac{2.7-4.0 \text{ mm}(t)}{2.6.6.1 \text{ nm}(m)}$	143	
6h-6 jours, 220-270 °C h 240 °C) 5.0-0.1 mm (m)		
Zr(O ⁱ Pr)4. ⁱ PrOH +		
BzOH, non c 3.0 nm	144	
6 heures, 230 °C µOndes		
ZrCl ₄ + BzOH,		
6 heures, $230 \degree C$ non m 3.8 nm	144	
μOndes		
ZrCl ₄ + BzOH non t XRD 2.1 nm	145	
$- 7 \text{ heures, } 200 \text{ °C} \qquad \text{hom} \qquad t+m \text{ (Raman)} \qquad 2.1 \text{ hm}$		
Zr(OiPr)4. ⁱ PrOH		
+ $ZrCl_4$ 600 °C t 16 nm in films	146	
(2 metoxy éthanol) $\frac{1}{10}$ $\frac{10}{10}$		
2heures, 340 °C		
$Zr(O^{n}Pr)_{4} + Zr(OAc)_{4}$		
(Toluène) $500 ^{\circ}\text{C}$ t nr^{d}	63	
72 heures, 110 °C		
$ZrCl_4 + 2 Pr_2O$,		
(CH ₂ Cl ₂) 800 °C 74% m ^c + 26% t $16 \text{ m}^2/\text{g}$	138	
3 heures, 110 °C		

*Calcination, atétragonale, bcubique, cmonoclinique, dnon-renseigné
La voie alcool benzylique a été particulièrement étudiée. De Keukeleere et collaborateurs¹⁴⁴ ont réussi à préparer des nanoparticules de ZrO_2 de faible taille (<4 nm) de phase contrôlée en jouant sur le précurseur. Ils observent des nanoparticules de structure cubique avec $Zr(O^iPr)_{4,i}PrOH$ et des nanoparticules de structure monoclinique avec $ZrCl_4$. La formation de la phase stable monoclinique avec $ZrCl_4$ est attribuée au dégagement de HCl durant la synthèse (Schéma 1.2 : (6)). Garnweitner et collaborateurs^{142,143} ont utilisé $Zr(O^nPr)_4$ à 70% dans ⁿPrOH. Ils montrent qu'en jouant sur la température et le temps de réaction ils ont un certain contrôle sur la phase cristalline et la taille des particules, la phase monoclinique étant favorisée aux plus faibles températures et la phase tétragonale aux plus hautes températures.

1.5 Caractéristiques des oxydes TiO₂-ZrO₂ par SGNH

Comme nous avons pu le voir précédemment, les oxydes de titane et de zirconium ont été largement étudiés comme catalyseurs¹⁴⁷ ou comme supports en catalyse hétérogène.¹⁴⁸ Plus récemment, les solutions solides TiO₂-ZrO₂ (Ti-Zr) ont été étudiés dans ces mêmes applications. Ils ont en effet des surfaces spécifiques plus élevées et possèdent des propriétés acido-basiques intéressantes.¹⁴⁹ Ils ont été aussi utilisés pour de nombreuses applications catalytiques (déshydratation sélective de l'isopropanol en propène, oxydation partielle du méthanol, *etc.*).¹⁵⁰

L'intermédiaire TiZrO₄ a eu un plus grand intérêt pour ses propriétés diélectriques. Ses propriétés font de lui un bon candidat pour des applications mobiles (téléphones ou GPS),¹⁵¹ mais aussi comme support en catalyse ou directement comme catalyseur de nombreuses réactions.¹⁵⁰ Le diagramme de phases des solutions solides TiO₂-ZrO₂ est montré dans la figure1.3 qui suit.

Figure 1.3 : Diagramme de phases de TiO₂-ZrO₂¹⁵²

De nombreuses publications relatent la synthèse de ces systèmes Ti-Zr, par co-précipitation¹⁵⁰ qui est la voie la plus répandue, par voie sol-gel hydrolytique¹⁵³ et par synthèse solvothermale,¹⁵⁴ mais elles sont beaucoup plus rares par sol-gel non hydrolytique. Le Dr. M. Andrianainarivelo dans le groupe du Prof. R. Corriu et du Dr P. H. Mutin fut le premier à synthétiser ces systèmes binaires Ti-Zr par SGNH¹⁵⁵ en 1997. Dans cette étude, il a fait varier les taux de chlorures et d'alcoxydes (de Zr et de Ti), a essayé différents donneurs d'oxygène et a également modifié les ratios Ti : Zr : Ox.

Toutes ces synthèses étaient réalisées en tubes scellés, à 110 °C durant 3 jours. Il a réussi grâce à ce procédé à contrôler la composition de ces gels de TiZrO₄ à relativement basse température (110 °C). La température de cristallisation du TiZrO₄ correspond à la température attendue (<700°C). Dans ce sens, le sol-gel non hydrolytique a encore une fois prouvé son efficacité pour la synthèse d'solutions solides bien condensés avec un mode opératoire simple et des précurseurs peu coûteux.

1.6 L'hydrogénation de l'acide succinique

1.6.1 Hydrogénation et valorisation de l'acide succinique

L'acide succinique (abrévié SUC) est une molécule dite « plateforme », qui permet l'élaboration de nombreuses molécules d'intérêt, comme montré dans la Figure 1.4.

Figure 1.4 : Conversion du SUC par hydrogénation en GBL (produit intermédiaire) puis en BDO et $$\rm THF^{156}$$

La γ -butyrolactone (GBL), le 1,4-butanediol (BDO), et le tétrahydrofurane (THF) présentés ci-dessus sont utilisés comme solvants, comme précurseurs de molécules pharmaceutiques ou pour la synthèse de polymères.

L'acide succinique est classiquement produit à partir du butane, lui-même issu des ressources fossiles. Dans le cadre du développement d'une chimie durable, l'acide succinique est

également produit à partir de la biomasse ligno-cellulosique (par fermentation de l'amidon du blé, du glycérol du sucre, et l'amidon des céréales, d'hydrolysats de bois, de mélasse de canne à sucre, du petit lait, *etc.*). On obtient dans ce cas l'acide succinique en solution aqueuse diluée, et il est important de développer des procédés de conversion en milieu aqueux. Ceci implique le développement de catalyseurs compatibles avec ces procédés qui impliquent des températures élevées et des pH acides.

De nombreux catalyseurs à base de nanoparticules métalliques supportées ont été développés pour convertir totalement l'acide succinique, mais il reste le problème de sélectivité en GBL, BDO ou THF.¹⁵⁶ Dans le cadre du projet NHYSCAB, nous nous sommes focalisés dans cette thèse sur la conversion sélective de l'acide succinique en BDO.

En plus d'être utilisé comme solvant dans l'industrie, le BDO a des débouchés comme précurseur de polymères (polybutylène téréphtalate ou polybutylène succinide), pour la fabrication de polyuréthane (pare-chocs de voitures), pour les fibres d'élasthanne et surtout pour l'obtention de THF qui représente 40% de l'utilisation de BDO (marché en pleine croissance).¹⁵⁷

Schéma 1.5 : Différentes utilisations du 1,4-butanediol sur marché¹⁵⁷

1.6.2 Catalyseurs utilisés pour la conversion de l'acide succinique

Les catalyseurs utilisés pour l'hydrogénation de l'acide succinique sont généralement des catalyseurs monométalliques et bimétalliques à base de nanoparticules d'Au, Pd, Re, et Ru dispersées sur un support. La sélectivité et l'activité des catalyseurs dépendent : de la nature du métal (ou des métaux) et de sa (leur) dispersion sur le support, de la nature du support (acidité), des conditions de réaction (nature du solvant, température, pression et pH).

4 Nature du catalyseur et les conditions de la réaction

En étudiant la littérature, on peut observer que les catalyseurs monométalliques supportés contenant de l'Au ou du Pd favorisent la formation de la GBL. Le rendement peut dépasser 94% en utilisant certains catalyseurs : Au/TiO₂,¹⁵⁸ Pd/AlOOH,¹⁵⁹ Pd/TiO₂.¹⁶⁰ La GBL est convertie en BDO à 30% avec un catalyseur Pd/MCM-4.¹⁶¹

Les catalyseurs à base de Re favorisent la formation directe de THF avec un rendement de 62% pour le Re/C,^{162,163} en utilisant le dioxane comme solvant. On peut noter qu'aucune conversion n'est observée dans l'eau avec un catalyseur Re/TiO₂¹⁶⁴ ou Re/C.¹⁶⁵

Les catalyseurs à base de Ru conduisent à différents produits en fonction des conditions de la réaction. Les catalyseurs au Ru sont connus pour être plus actifs que ceux au Pd mais, ils peuvent favoriser les réactions de craquage. Avec un catalyseur Ru/C, Hong et collaborateurs ont obtenu 46% de THF en travaillant dans le dioxane, à 240°C et à 60 bar de H_2 .¹⁶⁶ A plus basse température et plus forte pression (180 °C, 150 bar), la GBL est formée en premier, mais il y a une très grande perte au niveau du bilan carbone (63%).

4 Propriétés du catalyseur

La sélectivité du catalyseur dépend fortement de la dispersion du métal sur la surface du support (Pd,^{160,161,167} Ru¹⁶⁶ et Re¹⁶⁸). Elle dépend donc de la nature du précurseur, de la méthode de préparation du catalyseur et d'activation du métal qui affectent la distribution de taille des particules et donc l'interaction entre métal/support.¹⁶⁰ Quant à l'acidité de surface, Hong *et al* ont montré que les propriétés acides du support favorisent la déshydratation de la réaction et la formation de la GBL.¹⁶⁹

4 Utilisation d'un promoteur, catalyseur bimétallique

L'addition d'un métal non noble appelé « promoteur oxophile » au métal noble peut favoriser la conversion du SUC en BDO. L'utilisation du Re par exemple, avec les catalyseurs supportés à base de Pd ou Ru favorise l'ouverture du cycle dans le cas de catalyseurs Re-Pd/C et diminue la « sur-hydrogénation » pour Re-Ru/C.^{165,170} Comme pour les catalyseurs monométalliques, l'augmentation de l'activité est associée à une diminution des tailles des particules (exemples :Re-Pd/TiO₂,¹⁷¹ Re-Ru/C¹⁶⁵). La méthode de préparation a aussi un effet sur la localisation et la dispersion des particules de Re et sur son degré d'oxydation.¹⁶⁴

1.6.3 Vers une catalyse durable : hydrogénation de l'acide succinique en phase aqueuse

1.6.3.1 Stabilité hydrothermale des supports

La stabilité hydrothermale des supports est primordiale pour les réactions en phase aqueuse. Les supports utilisés en général pour ce genre de réactions sont SiO₂, γ -Al₂O₃, TiO₂ ou C. Malheureusement, les catalyseurs qui sont stables dans les conditions vapeurs ne sont pas nécessairement stables en phase aqueuse. SBA-15 est stable pendant 120 h sous vapeur de N₂ contenant 30 vol% de vapeur d'eau à 400 °C,¹⁷² mais sa surface spécifique est divisée par 25 après 12 h dans l'eau à 200 °C.¹⁷³ Sous ces même conditions, γ -Al₂O₃ subit une hydratation et se transforme en boehmite [AlO(OH)], avec une faible surface spécifique.¹⁷⁴ Quant aux zéolites, elles se transforment en matériaux amorphes.¹⁷⁵

Contrairement à ces matériaux, la Figure 1.5 montre que les supports TiO₂ et ZrO₂ sont très stables (aussi stables que le carbone) même dans l'eau supercritique (T > 400 °C, P > 218 bar).¹⁷⁶ Dernièrement, il a été démontré qu'un catalyseur Pt/ZrO₂ était stable lors de la transformation de solution aqueuse alcaline de glycérol à 180 °C sous 30 bar d'atmosphère inerte avec une très grande sélectivité en l'acide lactique.¹⁷⁷

Figure 1.5 : Stabilité hydrothermale des supports en eau supercritique (T>400°C)¹⁷⁶

Un support stable dans les conditions de la réaction est donc primordial pour la catalyse de l'hydrogénation de l'acide succinique à 160 °C, 150 bar d'H₂ dans l'eau. Les supports les plus utilisés dans ces conditions sont le C et TiO₂ et ZrO_2 .

1.6.3.2 Hydrogénation de l'acide succinique en phase aqueuse

La littérature sur l'hydrogénation de l'acide succinique en milieu organique (alcool, dioxane) est abondante mais il n'existe que peu d'exemples de l'hydrogénation de l'acide SUC en phase aqueuse (Tableau 1.7). Dans l'eau, le meilleur taux de conversion en BDO (82-83%) a été obtenu pour les catalyseurs utilisant un promoteur : Re-Pd/TiO₂¹⁶⁴ et Sn-Ru/C.¹⁷⁸

Catalyseurs	Taux de conversion	T °C	P bar	Concentration masse %	Références
Pd/TiO ₂	95% GBL	160	150	5	160
Re/C	63% THF	240	80	10	163
Re-Pd/C	65% THF	240	80	10	162
Re-Pd/TiO ₂	82% BDO	160	160	5	164
Sm Dur/AC	83% BDO	180	100	2	170
Sn-Ku/AC	71% BDO ^a	170	124	5	1/8

Tableau 1.7 : Meilleurs taux publiés de la conversion du SUC en BDO en phase aqueuse

a : flux continu

La plupart de ces réactions catalytiques ont été conduites en mode « batch » (ou discontinu) sauf pour les expériences menées par Verdon *et al*¹⁷⁸ qui les ont effectuées en flux continu.

Le recyclage du catalyseur a été étudié dans quelques cas, une légère perte en performance est généralement observée. Cette désactivation ne serait pas due à un problème de lixiviation du catalyseur mais plutôt à une augmentation de la taille des particules métalliques par frittage.¹⁶⁰

Chapitre 2 : Matériel et méthodes

2.1 Protocoles de synthèse et analyses

2.1.1 Matériel

Le Tableau 2.1 regroupe l'ensemble des réactifs, solvants et donneurs d'oxygène utilisés lors des synthèses décrites dans cette thèse.

Produit Chimique	Formule chimique	Fournisseur	Pureté
	Précurseurs		
Tétrachlorure de titane	TiCl ₄	Merck	99%
Tétrachlorure de zirconium	ZrCl ₄	Stream	99,95%
Pentachlorure de rhénium	ReCl ₅	Alfa Aesar	99,9%
Pentachlorure de molybdène	MoCl ₅	Merck	95%
nPropoxyde de zirconium	$Zr(O^{n}Pr)_{4}$	Merck	(70 wt% 1-propanol)
	Donneurs d'oxygè	ne	
Diisopropyl éther	ⁱ Pr ₂ O	Fisher	99+%
		scientific	
Ethanol	CH ₂ OH	VWR	
Acétophénone	C ₆ H ₅ COCH ₃	Prolab	98%
	Solvants		
Dichlorométhane	CH_2Cl_2	TCI	>99.8%
Toluène	C_7H_8	Merck	99,7%
Cyclohexane	$C_{6}H_{12}$	Merck	99,5%
Squalane	$C_{30}H_{62}$	Alfa Aesar	98%
	Solvant de lavag	e	
Dichlorométhane	CH ₂ Cl ₂	Carlo Erba	99,8%

Tableau 2.1 : Produits chimiques utilisés pour la synthèse des supports

ⁱPr₂O et CH₂Cl₂ ont été séchés dans un système de purification Pure Solve MD5. Tous les autres donneurs d'oxygène ou solvants ont été séchés sur un tamis moléculaire. Les teneurs en H₂O, mesurées par analyse Karl Fisher, étaient toujours inférieures à 20 ppm.

2.1.2 Synthèses par sol-gel non hydrolytique des supports

2.1.2.1 Synthèse par voie éther

Tous les matériaux ont été préparés en boite à gants sous atmosphère inerte (quantité d'eau et d'oxygène <10 ppm) dans des autoclaves inox (Parr Instruments, 23 mL) avec une chemise en téflon. ⁱPr₂O a été utilisé comme donneur d'oxygène, en excès d'environ 5% par rapport à la stœchiométrie (environ 0,5025 moles de ⁱPr₂O pour 1,00 mole de chlore provenant des précurseurs). Après réaction, les gels (TiO₂ et ZrO₂ sont éventuellement lavés avec du

dichlorométhane), puis séchés sous vide (1 h à température ambiante et 5 h à 120 °C) et enfin calcinés sous air à 500 °C pendant 5 h. Les matériaux promus au Re et Mo n'ont pas été lavés pour éviter la perte du promoteur lors du lavage.

Le Tableau 2.2 présente les quantités de réactifs utilisés pour supports TiO₂ et TiO₂ promus. Quant au tableau 2.3, il présente les quantités des réactifs utilisés pour la synthèse des supports ZrO₂ et ZrO₂ promus. Les supports promus (solutions solides) sont nommés TiO₂-xMoO₃, TiO₂-xReO_{3.5}, ZrO₂-xMoO₃ et ZrO₂-xReO_{3.5} où x est le rapport Re/Ti ou Mo/Ti atomique attendu (nominal) d'après les masses de précurseurs utilisées lors de la synthèse. Le pourcentage massique nominal en Re ou Mo est également mentionné.

Tableau 2.2 : Nombre de moles et masses des réactifs utilisés pour la synthèse de TiO_2 et des supports TiO_2 promus au Re et Mo par la voie éther

	TiO	TiCl ₄		ReCl ₅		MoCl ₅		ⁱ Pr ₂ O	
	mmol	g	mmol	g	mmol	g	mmol	g	
TiO ₂	12,520	2,374					26,293	2,686	
TiO2-0.0085ReO3.5 1.9 wt% Re	12,206	2,315	0,103	0,037			26,014	2,658	
TiO ₂ -0.0189ReO _{3.5} 4.1 wt%Re	11,842	2,246	0,223	0,081			25,690	2,625	
TiO ₂ -0.0285ReO _{3.5} 6.1 wt%Re	11,542	2,185	0,328	0,119			25,406	2,472	
TiO2-0.018MoO3 2 wt%Mo	12,128	2,300			0,218	0,059	26.157	2,672	
TiO2-0.036MoO3 4 wt%Mo	11,758	2,230			0,423	0,116	26.027	2,569	
TiO2-0.055MoO3 6 wt%Mo	11,386	2,159			0,629	0,172	25.896	2,646	
TiO2-0.098MoO3- 9.3 wt%Mo	10,774	2,043			9,697	0,265	25,680	2,624	

Tableau 2.3 : Nombre de moles et masses des réactifs utilisés pour la synthèse de ZrO_2 et des supports ZrO_2 promus au Re et Mo par la voie éther

	ZrCl ₄		ReCl ₅		MoCl ₅		ⁱ Pr ₂ O	
	mmol	g	mmol	g	mmol	g	mmol	g
ZrO ₂ - ⁱ Pr ₂ O	8,115	1,891					17,042	1,741
ZrO2-0.028ReO3.5- ⁱ Pr2O 4.0 wt% Re	7,772	1,798	0,216	0,078			16,776	1,714
ZrO ₂ -0.044ReO _{3.5} - ⁱ Pr ₂ O 6.1 wt% Re	7,508	1,749	0,330	0,120			16,05	1,699
ZrO2-0.055MoO3- ⁱ Pr2O 4.0 wt% Mo	7,765	1,783			0,420	0,115	17.171	1,745
ZrO2-0.085MoO3- ⁱ Pr2O 6.0 wt% Mo	7,419	1,729			0,630	0,172	17.236	1,761

4 Synthèses types des supports TiO₂ et ZrO₂

TiO₂: TiCl₄ (2,37 g, 12,52 mmol) est introduit à la seringue dans la chemise en téflon de l'autoclave. On ajoute ensuite 10 mL de dichlorométhane sec puis ⁱPr₂O (2,68 g, 26,29 mmol) goutte à goutte, également à l'aide d'une seringue. L'autoclave est ensuite fermé puis sorti de la boite à gants et chauffé dans une étuve à 110 °C pendant 3 jours sous pression autogène. Après refroidissement, l'autoclave est ouvert dans les conditions ambiantes hors boite à gants. Le solide blanc formé (Figure 2.1) est immédiatement lavé 3 fois par 50 mL de dichlorométhane, puis séché sous pression réduite (5.10⁻² mbar) pendant 6 heures à 120 °C. Le xérogel est broyé dans un mortier en agate puis calciné dans un four à moufle sous air ambiant à 500 °C pendant 5 h avec une vitesse de chauffe de 10 °C min⁻¹. On obtient 0,96 g de TiO₂ sous forme de poudre blanche (rendement de 96 %).

ZrO₂-ⁱPr₂O: ZrCl₄ (solide, 1,89 g, 8,11 mmol) est introduit dans la chemise en téflon, puis on ajoute le solvant (10 mL de CH₂Cl₂) et enfin ⁱPr₂O (1,410 g, 17,042 mmol) goutte à goutte à la seringue. L'autoclave est ensuite fermé puis sorti de la boite à gants et chauffé dans une étuve à 110 °C pendant 3 jours sous pression autogène. Après refroidissement, l'autoclave est ouvert hors boite à gants dans les conditions ambiantes, on obtient un gel monolithique blanc cassant (Figure 2.1). Le gel est lavé 3 fois par 50 mL de dichlorométhane, puis séché sous pression réduite (5.10^{-2} mbar) pendant 6 heures à 120 °C. Le xérogel est broyé dans un mortier en agate puis calciné dans un four à moufle sous air ambiant à 500 °C pendant 5 h avec une vitesse de chauffe de 10 °C min⁻¹. Le rendement après séchage, lavage et calcination est de 98 %.

Figure 2.1 : a) Poudre de TiO₂ après synthèse (110 °C, 3 j, 10 mL CH₂Cl₂). b) monolithe de ZrO₂ après synthèse (110 °C, 3 j, 10 mL CH₂Cl₂)

4 Synthèse type des supports TiO₂ et ZrO₂ promus par le Re ou le Mo

Les supports promus sont obtenus dans les mêmes conditions, mais les supports promus au Re sont calcinés dans un four tubulaire sous air sec pour minimiser la perte de rhénium, alors que les supports promus au Mo sont calcinés dans un four à moufle sous air ambiant.

TiO₂**-0.0189ReO**_{3.5:} TiCl₄ (2,246 g, 12,206 mmol) est introduit à la seringue dans l'autoclave. On ajoute ensuite ReCl₅ (solide, 0,081 g, 0,223 mmol), 10 mL de solvant (CH₂Cl₂), et enfin ⁱPr₂O (2,625 g, 25,069 mmol) à l'aide d'une seringue (goutte à goutte). L'autoclave est fermé puis chauffé à 110°C dans une étuve pendant 3 jours sous pression autogène. Après refroidissement l'autoclave est ouvert hors de la boite à gants dans les conditions ambiantes, le solide noir formé est filtré, séché sous pression réduite (5,10⁻² mbar) pendant 6 h à 120 °C, broyé et finalement calciné à 500 °C, 10 °C.min⁻¹ dans un four tubulaire sous air sec (80 % N₂, 20 % O₂), débit 120 mL/min

ZrO₂**-0.085MoO**₃**-**ⁱ**Pr**₂**O**: ZrCl₄ (solide, 1,729 g, 7,419 mmol) est introduit dans l'autoclave. On ajoute ensuite MoCl₅ (solide, 0,172 g, 0,630 mmol), 10 mL de solvant (CH₂Cl₂), et enfin ⁱPr₂O (1,761 g, 17,236 mmol) à l'aide d'une seringue (goutte à goutte). Les réactions sont effectuées à 110°C dans une étuve pendant 3 jours sous pression autogène. Après refroidissement et ouverture de l'autoclave, le solide grisâtre formé est filtré, séché sous pression réduite (5,10⁻² mbar) pendant 6 h à 120 °C et finalement calciné à 500 °C (10 °C.min⁻¹) sous air ambiant dans un four à moufle. La couleur finale de la poudre est gris-vert.

4 Synthèse type des supports ZrO₂-Y₂O₃

Les zircones yttriées obtenues par voie éther (*cf.* §4.1.3) ont été synthétisées dans les mêmes conditions (3 jours, 110 °C). Les quantités exactes utilisées pour les différentes compositions sont reportées dans le Tableau 2.4 ci-dessous. Les échantillons sont notés $Zr_{1-x}Y_x$ où x est le rapport molaire Y/Zr attendu.

Zr_{0.97}**Y**_{0.03}: ZrCl₄ (1,742 g, 7,477 mmol) puis YCl₃ (0,126 g, 0,650 mmol) sont introduits dans l'autoclave puis CH₂Cl₂ (10 mL) et enfin ⁱPr₂O (3,047, 29,817 mmol) sont ajoutés goutte à goutte à la seringue. Après ouverture de l'autoclave, le gel blanchâtre est filtré, lavé 3 fois par 50 mL de dichlorométhane, puis séché sous pression réduite (5.10⁻² mbar) pendant 6 heures à 120 °C et finalement calciné à 500 °C (10 °C.min⁻¹) sous air ambiant dans un four à moufle. On obtient une poudre blanchâtre (blanc-gris) avec un rendement de 98 %.

	Zr	ZrCl4		C l 3	ⁱ Pr ₂ O	
	mmol	g	mmol	g	mmol	g
Zr0.988Y0.012	8,019	1,868	0,097	0,019	29,772	3,042
Zr0.97Y0.03	7,887	1,835	0,244	0,047	29,788	3,043
Zr _{0.92} Y _{0.08}	7,477	1,742	0,650	0,126	29,817	3,047

Tableau 2.4 : Nombre de moles et masses des précurseurs et du donneur d'oxygène utilisés pour la synthèse des solutions solides Zr-Y

4 Synthèse type des supports ZrO₂-TiO₂

Ti_{0.5}**Zr**_{0.5}**O**₂: ZrCl₄ (1,147 g, 4,924 mmol) puis TiCl₄ (0,933 g, 4,924 mmol) sont introduits dans l'autoclave puis CH₂Cl₂ (10 mL) et enfin ⁱPr₂O (2,113 g, 20,685 mmol), goutte à goutte à la seringue. Après ouverture de l'autoclave, le gel blanc est lavé 3 fois par 50 mL de dichlorométhane, puis séché sous pression réduite (5.10⁻² mbar) pendant 6 heures à 120 °C filtré sous air ambiant dans un four à moufle. On obtient une poudre blanche avec un rendement de 99 %.

Zr0.9Ti0.1O2 : ZrCl₄ (1,891 g, 7,570 mmol) puis TiCl₄ (0,159 g, 0,841 mmol) sont introduits dans l'autoclave puis CH₂Cl₂ (10 mL) et enfin ⁱPr₂O (1,716 g, 17,664 mmol), goutte à goutte à la seringue. Après ouverture de l'autoclave, le gel blanc est lavé 3 fois par 50 mL de dichlorométhane, puis séché sous pression réduite (5.10^{-2} mbar) pendant 6 heures à 120 °C filtré sous air ambiant dans un four à moufle. On obtient une poudre blanche avec un rendement de 98 %.

2.1.2.2 Synthèse type de zircone par voie acétophénone

Nous avons utilisé des conditions opératoires similaires à celles décrites en 2.1.2.1 pour la synthèse de zircone en voie acétophénone.

ZrO₂-AP : Zr(OⁿPr)₄ à 70 wt. % dans le 1-propanol (3,65 g, 3,1 mmol) puis l'acétophénone (3,89 g, 32,4 mmol) sont introduits dans l'autoclave chemisé Téflon. Après fermeture, l'autoclave est chauffé à 240 °C pendant 18 h dans une étuve. Le gel marron obtenu est filtré puis séché sous pression réduite (5,10⁻² mbar) pendant 6 h à 120 °C et finalement broyé et calciné à 500 °C (10 °C.min⁻¹) sous air ambiant dans un four à moufle. On obtient une poudre blanchâtre (blanc-beige) avec un rendement de 99 %.

2.1.2.3 Synthèse type par voie alcool de zircone et de zircone dopée

Dans cette voie de synthèse, les précurseurs chlorures (ZrCl₄ et éventuellement MoCl₅ ou ReCl₅) sont d'abord introduits dans un tube de Schlenk en boite à gants. L'addition d'éthanol

est effectuée hors de la boite à gants car elle conduit à un dégagement de HCl qui est évacué par un léger balayage d'argon. Quand le dégagement de HCl est terminé et que les précurseurs sont dissouts dans d'éthanol, le tube de Schlenk est réintroduit dans la boite à gants et la solution est transférée dans l'autoclave. Après fermeture, l'autoclave est chauffé à 150 °C pendant 3 jours. Le matériau obtenu est séché (pas de lavage), broyé puis calciné à 500 °C dans les mêmes conditions que celles décrites précédemment. Les quantités exactes de précurseurs utilisés sont reportées dans le Tableau 2.5.

la synthèse de ZrO2 et des supports ZrO2 promus au Re et Mo par la voie alcool (EtOH)								
	ZrCl ₄		ReCl5		MoCl ₅		EtOH	
	mmol	g	mmol	g	mmol	g	mmol	g
ZrO ₂ -EtOH	8,111	1,891					101,8	4,693
ZrO ₂ -0.034ReO _{3.5} -EtOH	7,606	1,772	0,258	0,093			101,7	4,687
4.8 wt% Re								
ZrO2-0.050ReO3.5- EtOH	7,389	1,721	0,369	0,134			101,7	4,685
6.8 wt%Re								
ZrO2-0.055MoO3-EtOH	7,625	1,777			0,419	0,114	102,1	4,705
4.0 wt% Mo								
ZrO2-0.085MoO3-EtOH	7,382	1,720			0,627	0,171	102,2	4,711
6.0 wt% Mo								

Tableau 2.5 : Nombre de moles, masses des précurseurs et donneurs d'oxygène utilisés pour la synthèse de ZrO2 et des supports ZrO2 promus au Re et Mo par la voie alcool (EtOH)

ZrO₂-EtOH : ZrCl₄ (1,891 g, 8,111 mmol) est introduit en boite à gants dans un tube de Schlenk de 100 mL qui est fermé puis retiré de la boite à gants. Hors de la boite à gant le tube de Schlenk est relié à une arrivée d'argon et à un bulleur. EtOH (4,693 g, 101,8 mmol) est ajouté goutte à goutte à la seringue, provoquant un dégagement d'HCl. Après 20 min d'agitation le tube de Schlenk est réintroduit dans la boite à gants et la solution limpide obtenue est transférée dans l'autoclave (chemise Téflon de 23 mL). Après fermeture, l'autoclave est chauffé à 150 °C pendant 3 jours dans une étuve. Après refroidissement, l'autoclave est ouvert et le gel blanc obtenu est filtré puis séché sous pression réduite ($5,10^{-2}$ mbar) pendant 6 h à 120 °C et finalement calciné à 500 °C (10 °C.min⁻¹) sous air ambiant dans un four à moufle. On obtient une poudre blanche avec un rendement de 98 %.

ZrO₂-0.085MoO₃-EtOH : ZrCl₄ (1,720 g, 7,382 mmol) et MoCl₅ (0,1721 g, 0,627 mmol) sont introduits en boite à gants dans un tube de Schlenk de 100 mL qui est fermé puis retiré de la boite à gants. Hors de la boite à gant, le tube de Schlenk est relié à une arrivée d'argon et à un bulleur. EtOH (4,711 g, 102,2 mmol) est ajouté goutte à goutte à la seringue, provoquant un

dégagement d'HCl. Après 20 min d'agitation le tube de Schlenk est réintroduit dans la boite à gants et la solution limpide obtenue est transférée dans l'autoclave (chemise Téflon de 23 mL). Après fermeture, l'autoclave est chauffé à 150 °C pendant 3 jours dans une étuve. Après refroidissement l'autoclave est ouvert et le gel blanc obtenu est filtré puis séché sous pression réduite ($5,10^{-2}$ mbar) pendant 6 h à 120 °C et finalement calciné à 500 °C (10 °C.min⁻¹) sous air ambiant dans un four à moufle. On obtient une poudre blanche avec un rendement de 99 %.

2.2 Techniques expérimentales de caractérisations

2.2.1 Diffraction des rayons X (DRX)

La diffraction des rayons X (DRX) sur poudres a été réalisée sur un diffractomètre PANalytical X'Pert Pro avec la radiation Cu K α (λ =1,5418 Å). Les diffractogrammes ont été enregistrés avec un pas de 0,033°-0,05° (2 θ) entre 20 et 70° (2 θ). La taille moyenne des cristallites a été estimée en utilisant l'équation de Scherrer. Dans le cas de TiO₂ anatase nous avons utilisé la moyenne entre la raie la plus intense, soit la raie (101) (25,28° 2 θ) et les raies (103) (004) et (112) et (200). Dans le cas des zircones, nous avons utilisé les raies les plus caractéristiques de la phase monoclinique :m(-111) (28,24° 2 θ) et m(111) (31,46° 2 θ) ou de la phase tétragonale : t(101) à (30,13° 2 θ). Toutes les analyses des diffractogrammes (indexation, affinement, largeur des pics, pourcentage des différentes phases) ont été effectuées avec les logiciels X'Pert HighScore. Le logiciel WINPLOTR a été utilisé pour simuler les diffractogrammes de l'échantillon ZrO₂-iPr₂O avec les paramètres de t-ZrO₂ ou de c-ZrO₂.

Figure 2.2 : Exemple d'affinement des aires des pics des différentes zircones avec le logiciel X'Pert High score. Gauche (tétragonale) droite (monoclinique), trait bleu m-ZrO₂, trait rouge t-ZrO₂

2.2.2 Spectroscopie Raman ou diffusion Raman

Les analyses par spectroscopie Raman ont été effectuées par Mme Léa Daenens de la plateforme technique de l'ICGM sur un appareil Horiba Jobin Yvon LabRAM ARAMIS avec un détecteur CCD refroidi par un module à effet Peltier. Nous avons utilisé différents lasers : 473 nm et 633 nm afin d'éviter la fluorescence. L'analyse de l'échantillon de l'oxyde de zirconium ZrO₂-ⁱPr₂O avec le laser 1064 nm a été réalisée au sein du laboratoire Charles Coulomb Montpellier par le Pr Eric Anglaret.

2.2.3 Physisorption de diazote à 77K

Les poudres ont été caractérisées par physisorption d'azote à 77 K sur un appareil Micromeritics 3Flex. Les échantillons sont préalablement dégazés sur une station de dégazage SmartVacPrep pendant environ 6h (1h 100 °C puis 5h à 300 °C). Les deux instruments pour l'analyse et le dégazage sont présentés dans la Figure 2.3 qui suit. La surface spécifique est déterminée par la méthode BET (Brunauer, Emmett et Teller)¹⁷⁹ dans l'intervalle de P/P⁰ 0,01 à 0,25. La distribution en taille des pores et la détermination de la taille des pores sont déterminés par la méthode de BJH (Barrett, Joyner et Halenda)¹⁸⁰ à la désorption.

Figure 2.3 : Instrument d'adsorption désorption d'azote 3Flex MICROMERITICS (gauche) et station de dégazage Smart CacPrep MICROMERITICS (droite)

La forme des isothermes d'adsorption-désorption est discutée à partir des recommandations récentes de l'IUPAC^{179,181} qui distingue 6 types principaux d'isothermes (Figure 2.4) et 5 types de boucles d'hystérésis (Figure 2.5).

Figure 2.6 : Classification des isothermes d'adsorption physique donnée par l'IUPAC^{179,181}

Les isothermes de **type I** sont caractéristiques des solides microporeux. Ceux de **type I**(a) relèvent d'un adsorbat ayant uniquement des micropores < 1nm alors que ceux de **type I**(b) concernent un adsorbat avec une distribution de taille de micropores plus large.

Les isothermes de **type II et III** sont caractéristiques des solides non poreux ou macroporeux, avec une forte interaction adsorbant-adsorbat pour le Type II, et une faible interaction adsorbant-adsorbat pour le Type III.

Les isothermes de **type IV** sont typiques des matériaux mésoporeux. Le **type IV**(**a**) présente une boucle d'hystérésis indiquant la présence de pores de taille supérieure à environ 4 nm, contrairement au **type IV**(**b**). Les isothermes de **type V** sont observés pour des solides micro- ou mésoporeux avec une faible interaction adsorbant-adsorbat, par exemple pour l'adsorption d'eau sur des adsorbants hydrophobes.

Les isothermes de **type VI** « à marches » sont caractéristiques de l'adsorption couche par couche sur une surface très uniforme non poreuse (cas de l'adsorption du krypton sur des noirs de carbone graphitisés).

Figure 2.7 : Classification par l'IUPAC des différentes boucles d'hystérésis et schématisation des pores correspondant ^{179,182}

Selon la forme des mésopores, différentes boucles d'hystérésis de type H1, H2(a) et H2(b) sont rencontrées dans les isothermes de type IV(a). L'hystérésis H1, présentant des courbes d'adsorption et de désorption parallèles et presque verticales indique une distribution très étroite des tailles des mésopores plus ou moins cylindriques. Les boucles H2(a) et H2(b) sont représentatives de matériaux mésoporeux ayant des pores interconnectés ou en forme de bouteille avec une plus large distribution de taille d'ouverture des pores surtout pour H2(b).

La boucle d'hystérésis **H3** est rencontrée dans les isothermes de type II, sans palier de saturation. La courbe de désorption dans ce cas n'est pas reproductible et dépend de la quantité adsorbée. On l'observe pour des agrégats non rigides de particules formant des feuillets (par exemple certaines comme des argiles, ou pour des solides macroporeux.

La boucle d'hystérésis **H4** est proche de H3, mais la branche d'adsorption est intermédiaire entre Type I et Type II (adsorbants comportant à la fois de micropores et de mésopores).

Enfin la boucle d'hystérésis type **H5** est typique de matériaux mésoporeux comportant un mélange de mésopores ouverts et partiellement bloqués.

La désorption brusque de l'azote dans les mésopores à faible pression partielle ($P/P_0 \approx 0,4 - 0,5$) observée dans les boucles H2, H3, H4 et H5 provient généralement d'un phénomène de cavitation dans des pores possédant une ouverture inférieure à environ 5 nm. Dans ce cas, il n'est pas possible d'obtenir une information quantitative sur la taille de ces ouvertures ni sur leur distribution.

2.2.4 Spectroscopie de photoélectrons X (XPS) et Low energy ion scattering (LEIS ou ISS)

Les spectres XPS et LEIS de l'échantillon TiO₂-0.0189ReO_{3.5} (3.8 wt% Re) calciné et non calciné ont été réalisés par M Luis Cardenas à IRCELYON en utilisant un spectromètre AXIS ULTRA DLD de KRATOS ANALYTICAL. Deux types de sources X sont utilisées, Al K α et Mg K α . Pour le LEIS, un canon à ions permet de réaliser des profils de concentration par abrasion ionique (Ar) sur les premières couches atomiques et de caractériser l'extrême surface par technique de rétrodiffusion d'ions lents (He, Ne).

Les autres analyses XPS ont été réalisées au CEITEC à l'Université de Brno, avec un spectrophotomètre KRATOS-XPS-analytical avec une source de RX Al Ka de 25 W.

2.2.6 Microscopie électronique à balayage (MEB)

Les différentes caractérisations par microscopie électronique à balayage ont été réalisées à l'IEM à Montpellier par M Didier Cot (plateforme de caractérisation Balard). Les différentes poudres ont été analysées sur un microscope Hitachi S4800 avec une tension d'accélération entre 5 et 15 kV.

Certains matériaux ont dû être métallisés avec un plasma de carbone avec un métalliseur Quorum Technologies, avant d'effectuer l'analyse.¹⁴³

2.2.7 Spectroscopie à rayons X à dispersion d'énergie, analyse (EDX)

Les différentes caractérisations par EDX ont été réalisées à l'IEM par M Bertrand Rebiere (plateforme de caractérisation Balard) sur un microscope électronique à balayage à pointe LaB₆ avec un détecteur d'électrons secondaires et rétrodiffusés Oxford Instruments X-Max N SDD.

La résolution variait de 1,9 à 30 kV. Le traitement des données est effectué avec le logiciel d'analyse Oxford AZTEC. Généralement, nous effectuons 4 à 5 mesures sur chaque échantillon afin d'améliorer la précision des résultats.

2.2.8 Analyse thermogravimétrique / Analyse thermique différentielle (ATG/ATD)

Les analyses ATG/ATD ont été réalisées sur un appareil NETZSCH STA 409 PC avec une vitesse de chauffe de 10 °C/min et un balayage d'air sec de 50 mL.min⁻¹.

2.2.9 Spectrométrie d'émission atomique à plasma à couplage inductif (ICP-AES)

L'analyse par ICP-AES a été réalisée par Mme Christine Biolley à l'IUT de Montpellier, antenne de Sète. Les matériaux ont été minéralisés par attaque acide (HNO₃/HCl).

2.2.10 Résonnance magnétique Nucléaire liquide ¹H et ¹³C

Les spectres ont été réalisés sur les spectromètres BRUKER 400 MHz et 600 MHz au sein du laboratoire de Mesure Physique du bâtiment 17 de l'Université de Montpellier en utilisant comme solvant le DMSO ou le CDCl₃.

2.2.11 Mesure de la teneur en eau (méthode de Karl Fischer)

L'appareil utilisé pour la mesure de la quantité d'eau dans les solvants ou dans les liquides de synérèse est le Titrator TitroLine KF trace. C'est un appareil coulométrique pour la titration en utilisant la solution Hydranal Coulomat AK pour les solutions contenant de l'acétone et la solution Hydranal Coulamt E pour tout le reste des solutions. Sa gamme de détection va du 1 ppm au 5% (10 μ g à 100 mg).

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène.

Les meilleurs catalyseurs pour l'hydrogénation sélective de l'acide succinique en BDO dans l'eau sont des catalyseurs bimétalliques à base de Pd promus par Re et supportés sur TiO₂ commercial (Re-Pd/TiO₂).¹⁶⁴ Ce type de catalyseur est préparé par imprégnations successives du Pd puis du Re. Bien que le rhénium soit considéré comme le meilleur promoteur oxophile, son coût élevé et sa tendance à la lixiviation sont problématiques. Une possibilité intéressante serait de remplacer cet élément par le molybdène, moins cher et plus stable.

Notre objectif dans ce chapitre est de synthétiser en une seule étape par SGNH, des supports TiO_2 et des supports TiO_2 promus avec soit du rhénium, soit du molybdène (solutions solides TiO_2 -Re₂O₇ et TiO_2 -MoO₃) en contrôlant la composition finale des oxydes promus. Plusieurs voies de synthèse ont été utilisées pour la synthèse de TiO_2 (*cf.* § 1.3.1). Nous avons choisi la voie éther, avec le diisopropyléther (ⁱPr₂O) comme donneur d'oxygène, qui est la plus utilisée pour préparer des oxydes et des solutions solides mésoporeux pour la catalyse.⁴²

Dans un premier temps nous avons essayé d'optimiser les différents paramètres de synthèse dans le cas de TiO_2 , puis nous avons utilisé les conditions optimales pour synthétiser les supports promus.

Ces supports ont été utilisés par M. Madjid Ouali à IRCELYON pour préparer des catalyseurs par imprégnation de Pd (et dans le cas du support non promu par imprégnation du Pd puis de Re ou Mo). Ces catalyseurs ont ensuite été testés par M. Madjid Ouali, dont quelques résultats seront exposés à la fin de ce chapitre.

3.1 Optimisation des conditions de synthèse et leurs effets sur la texture et la structure du TiO_2

3.1.1 Influence de la température et du temps de synthèse sur la texture et la structure du ${\rm TiO}_2$

Afin d'optimiser la texture des supports, nous avons d'abord fait varier la température de synthèse (90 °C, 110 °C, et 180 °C) pendant 1 jour, puis le temps de synthèse (1 j, 3 j, 5 j à la température la plus intéressante) (Tableau 3.1).

Les synthèses sont effectuées dans le dichlorométhane (10 mL pour 1,00 g de TiO₂), dans des autoclaves de 23 mL sous pression autogène. Les xérogels obtenus ont été calcinés sous air à 500 °C pendant 5 h à 10 °C/min.

Les échantillons calcinés sont nommés TiO₂-X-Y, où X est la température de réaction et Y le temps de réaction en jours. Les échantillons synthétisés pendant 1 jour ont tout d'abord été caractérisés par diffraction des RX et par physisorption d'azote. Quelle que soit la température de synthèse, tous les échantillons sont bien cristallisés selon la même structure anatase (ICSD 00-021-1272) (Figure 3.1). La taille des cristallites, calculée à partir de l'équation de Scherrer, varie entre 10 et 17 nm.

Tous les échantillons préparés à 90 et 110 °C présentent des isothermes de type IV(a), et une distribution de taille de pores comprise entre 5 et 7 nm relativement étroite. Seul l'échantillon préparé à 180 °C montre un isotherme de type II (boucle d'hystérésis H3) et une distribution de taille de pores très large. La surface spécifique maximale est obtenue pour l'échantillon préparé à 110 °C (Figure 3.2).

Nom	Par	amètres	5	Sbet ^a m²/g	Vp ^b cm ³ /g	Dp ^c nm	Taille des cristallites ^d nm
	Solvant	T °C	Temps jours				
TiO ₂ -90-1		90	1	70	0,13	5	16
TiO ₂ -110-1		110	1	85	0,19	6	10
TiO ₂ -180-1	CH.CL	180	1	70	0,21	9	17
TiO ₂ -110-3	CH_2CI_2	110	3	100	0,22	7	9
TiO ₂ -110-5		110	5	75	0,19	7	15

Tableau 3.1 : Influence des paramètres sur la surface spécifique, le volume poreux, le diamètre des pores et la taille des cristallites dans les échantillons calcinés

^aValeurs S_{BET} arrondies à $\pm 5 \text{ m}^2/\text{g}$.^bVP: volume poreux total à P/P0 = 0,99.^cDP : Diamètre moyen des pores (BJH, désorption). ^dTaille des cristallites calculée avec l'équation de Scherrer (anatase)

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

Figure 3.1 : Diffractogrammes des différents échantillons de TiO₂ calcinés et diffractogrammes théoriques pour l'anatase (rouge) et le rutile (pointillé noir)

Figure 3.2 : Isothermes et distributions de taille de pores pour les échantillons préparés par chauffage pendant 1 jour à différentes températures, puis calcinés

Nous avons ensuite fixé la température à 110 °C et fait varier le temps de réaction. La taille des cristallites, la surface spécifique S_{BET} et le volume poreux Vp augmentent lorsque l'on passe de

1 jour à 3 jours puis diminuent à 5 jours de réaction. La Figure 3.3 montre les isothermes et la distribution de taille des pores des différents échantillons.

Figure 3.3 : Isothermes et distributions de taille de pores pour les échantillons calcinés préparés par chauffage à 110 °C pendant 1, 3 et 5 jours

Les images MEB des échantillons sont présentées en Figure 3.4 : Dans tous les cas on constate que les nanoparticules d'anatase sont agrégées pour former des particules secondaires plus ou moins sphériques, elles même agrégées. Les mésopores proviennent des espaces entre particules primaires.

Figure 3.4 : Images MEB des échantillons synthétisés à 110 °C en variant le temps de réaction. (a) TiO_2 -110-1 ,(b) TiO_2 -110-3 et (c) TiO_2 -110-5

3.1.2 Influence de la nature du solvant sur la texture et la morphologie du TiO2

Cette partie a fait l'objet d'un article publié dans *Molecules* en novembre 2018 en collaboration avec le Dr Yanhui Wang.¹⁸³

Le dichlorométhane est un solvant aprotique polaire qui ne réagit pas avec les précurseurs. Il a déjà été utilisé pour la synthèse de TiO_2 mésoporeux.⁵³ Mais aucune synthèse n'a été faite dans des solvants aprotiques apolaires (toluène, squalane, cyclohexane).

Pour étudier l'influence du solvant sur la texture et la morphologie de TiO₂, nous avons préparé différents échantillons, sans solvant, ou avec différents solvants (5 mL pour 1 g théorique de TiO₂). Toutes les réactions sont effectuées à 110 °C pendant 3 j dans des autoclaves de 23 mL.

Les échantillons calcinés (sous air 5 h à 500 °C) sont nommés TiO₂-X, où X correspond au solvant (NS : sans solvant, DC : dichlorométhane, Tol : toluène, Squ : squalane, CH : cyclohexane). Les xérogels (non calcinés, NC) sont dénommés TiO₂-X- NC comme montré dans le Tableau 3.2. Pour cette étude le volume est fixé à 5 mL.

Tableau 3.2 : Influence du solvant sur la surface spécifique, le volume poreux, le diamètre des p	pores et
la taille des cristallites dans les échantillons non calcinés et calcinés	

Nom	Solvant		Sbet ^a m²/g	Vp ^b cm ³ /g	Dp ^c nm	Taille des cristallites ^d nm
	Nature	V(mL)				
TiO ₂ -NS-NC		0	138	0,28	5	9
TiO ₂ -NS		0	70	0,19	9	23
TiO ₂ -DC-NC		F	130	0,20	6	10
TiO ₂ -DC	CH ₂ Cl ₂	5	75	0,20	9	16
TiO ₂ -Tol-NC	Toluène	5	130	0,10	4	8
TiO ₂ -Tol		5	60	0,15	7	28
TiO ₂ -Squ-NC	Squalane	5	170	0,31	7	8
TiO ₂ -Squ	Squalanc	5	80	0,24	10	17
TiO ₂ -CH-NC	Cruelahawara	5	130	0,18	5	13
TiO ₂ -CH	Cyclonexane		50	0,14	9	28

^aValeurs S_{BET} arrondies à \pm 5 m²/g.^bVP : volume poreux total à P/P0 = 0,99.^cDP : Diamètre moyen des pores (BJH, désorption). ^dTaille des cristallites calculée avec l'équation de Scherrer.

Les échantillons ont tout d'abord été caractérisés par diffraction des RX et physisorption d'azote. Quelle que soit la nature du solvant, tous les échantillons sont bien cristallisés selon la même structure anatase (ICSD 00-021-1272) avant et après calcination (Figure 3.5). Les pics des diffractogrammes sont plus fins après calcination, s'accompagnant d'une augmentation de la taille des cristallites. La taille des cristallites, calculée à partir de l'équation de Scherrer, varie

entre 5 et 10 nm pour les échantillons non calcinés et entre 8 et 28 nm pour les échantillons calcinés.

Figure 3.5 : Diffractogrammes des échantillons non calcinés (gauche) et calcinés (droite) en fonction des différents solvants et diffractogrammes théoriques pour l'anatase (rouge) et le rutile (pointillé noir)

Nous avons utilisé l'analyse thermogravimétrique (ATG) pour déterminer si le solvant avait une influence sur le taux de condensation. Les différentes courbes ATG sous air sont montrées dans la Figure 3.6. Etant donné que tous les échantillons sont séchés sous pression réduite à 120°C, les thermogrammes sont normés à 120 °C. Comme nous pouvons l'observer, tous les échantillons ont une perte de masse comprise entre 6 et 10% entre 120 et 800 °C.

Si on considère qu'avant calcination la composition des xérogels est $TiO_{2-x}(O^{i}Pr)_{x}Cl_{x}$ et qu'après calcination (à 800 °C) la composition est TiO₂, on peut calculer **x** à partir de la perte en masse. La masse molaire de TiO_{2-x}(OⁱPr)_xCl_x = perte de masse = M₁₂₀-M₈₀₀ / M₁₂₀, où M₁₂₀ est la masse molaire de l'échantillon séché à 120 °C et M_{800°C} la masse molaire de TiO₂.

$$x = \frac{79,9\left(\frac{M120-M800}{M120}\right)}{38,8\left(1-\frac{M120-M800}{M120}\right)}$$

Équation 3.1 : Estimation de x à partir de la perte de masse entre 120 °C et 800 °C

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

Les valeurs de x et les taux de condensations %**cond.** = $(1 - \frac{x}{2})*100$ % sont reportés dans le Tableau 3.3.

Figure 3.6 : Thermogrammes avant calcination des échantillons synthétisés à 110 °C, 3j (NS : sans solvant, Tol : toluène, Squ : squalane, CH : cyclohexane, DC : dichlorométhane)

Le taux de condensation pour les différents échantillons est d'environ 94-97%, tous les échantillons sont donc très bien condensés, quel que soit le solvant.

	Perte de masse ^a % 120-800 °C	X	TiO _{2-x} (OR) _x Cl _x ^b	Taux de condensation
TiO ₂ -NS-NC	7	0,076	TiO _{1.92} (OR) _{0.08} Cl _{0.08}	96%
TiO ₂ -Tol-5-NC	6	0,064	TiO _{1.94} (OR) _{0.06} Cl _{0.06}	97%
TiO ₂ -Squ-5-NC	8	0,088	TiO _{1.91} (OR) _{0.09} Cl _{0.09}	96%
TiO ₂ -CH-5-NC	7	0,076	TiO _{1.92} (OR) _{0.08} Cl _{0.08}	96%
TiO ₂ -DC-5-NC	10	0,112	$TiO_{1.89}(OR)_{0.11}Cl_{0.11}$	94%

Tableau 3.3 : Influence du solvant sur le taux de condensation du TiO2 entre 120 et 800 °C

^aMesurée à partir des thermogrammes ATG entre 120 et 800 °C. ^ben supposant un environnement du Ti avec autant de OⁱPr que de Cl.

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

 $\label{eq:Figure 3.7: Images MEB des échantillons de TiO_2 calcinés (500°C /5h. 10°C.min^{-1}) \ avec \ les \ différents solvants synthétisés pendant 3 j à 110°C$

La morphologie des échantillons calcinés dépend de la nature du solvant. Les images MEB de la Figure 3.7 montrent dans tous les cas la présence de nanocristaux, avec des morphologies très variées, allant de nanoparticules arrondies dans le cas du dichlorométhane jusqu'à des aiguilles de plusieurs centaines de nm de long dans le cas du toluène. Tous les échantillons présentent des particules secondaires sphériques sauf l'échantillon TiO₂-Tol. Ces particules secondaires apparaissent pleines pour TiO₂-NS, TiO₂-Squ et TiO₂-DC, mais sont souvent creuses dans le cas de TiO₂-CH. Il est bien connu qu'en ajoutant des ligands on peut modifier la morphologie de cristallites de TiO₂, y compris par procédé SGNH.¹⁸⁴ Dans notre cas, la

morphologie pourrait dépendre de la présence de groupements résiduels organiques à la surface des cristallites, dont la nature dépendrait des conditions de synthèse (impuretés, produits de dégradation). Comme il a été déjà mentionné auparavant pour la synthèse de nanoparticules par la voie alcool benzylique,¹⁸⁵ cette sensibilité aux conditions de réaction offre la possibilité de contrôler la morphologie des échantillons, mais prédire la forme reste à ce jour impossible.

Tous les échantillons présentent des isothermes de type IV(a), avant et après calcination, quel que soit le solvant (Figure 3.8). Néanmoins la surface spécifique dépend de la nature du solvant mais aussi de la calcination. En fait, la surface spécifique du réseau formé par les nanoparticules dépend de la taille des particules primaires et de leur degré de frittage. La taille des particules primaires augmente avec la calcination provoquant une diminution de la surface spécifique d'un facteur 2 à 3 (*cf.* Tableau 3.2).

La surface spécifique géométrique de nanoparticules d'anatase sphériques non frittées est donnée par la formule $S_{géo} = 6000/(\rho \times D)$, où ρ est la masse volumique (en g.cm⁻³) et D le diamètre (en nm) de particules. Par exemple pour l'anatase ($\rho = 3.9 \text{ g.cm}^{-3}$), cette relation donne $S_{géo} = 154 \text{ m}^2/\text{g}$ pour un diamètre de nanoparticules de 10 nm, $S_{géo} = 62 \text{ m}^2/\text{g}$ pour un diamètre de nanoparticules de 10 nm, $S_{géo} = 62 \text{ m}^2/\text{g}$ pour un diamètre de 25 nm. Dans notre cas, pour les échantillons calcinés TiO₂-NS, TiO₂-CH et TiO₂-Squ, la surface spécifique géométrique estimée par la taille des cristallites calculée à partir des diffractogrammes de DRX est proche de la surface spécifique mesurée pas la méthode BET. Cela indique qu'il n'y a que peu de frittage des particules pour ces échantillons.

Figure 3.8 : Isothermes et distributions de tailles de pores avant calcination (haut) et après calcination (bas)

3.1.3 Synthèse à plus grande échelle (13 g)

Afin d'effectuer des synthèses à plus grande échelle, nous avons augmenté le volume de l'autoclave : 23, 45 et 300 mL. Au vu des différents résultats obtenus précédemment, nous avons fixé pour la synthèse de nos supports TiO₂ et des supports promus les conditions suivantes : 110 °C, 3 jours et 10 mL de dichlorométhane par g de TiO₂. Pour toutes ces synthèses le taux de remplissage de l'autoclave est approximativement de 65 %. Le donneur d'oxygène est toujours utilisé en léger excès. Le Tableau 3.4 récapitule l'ensemble des conditions et les résultats obtenus.

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

mTiO ₂	Vautoclave mL	TiCl4 mol ^a	ⁱ Pr2O mol ^a	V CH2Cl2 mL	Sbet ^b m²/g	Vp ^c cm ³ /g
1 g	23	0,012	0,026	10	105	0,21
2 g	45	0,025	0,061	20	90	0,23
4 g	45	0,050	0,100	10	80	0,22
13 g	300	0,149	0,300	130	140	0,35
<u>13 g</u>	300	0,149	0,300	130	140	0,35

Tableau 3.4 : Synthèse de TiO₂ en quantité variant de 1 g à 13 g et propriétés texturales

^avaleurs nominales. ^barrondi à \pm 5 m²/g. ^cVP : volume poreux total à P/P0 = 0,99

L'autoclave de 300 mL est un réacteur Parr en *Hastelloy*®, les autoclaves de 23 mL et 46 mL sont des bombes de minéralisation Parr en acier inox avec des chemises en téflon à l'intérieur (Figure 3.9 suivante).

Figure 3.9 : Autoclaves utilisés pour les différentes synthèses a) Parr inox 23 mL, b) Parr inox 45 mL, c) chemises en téflon pour les autoclaves Parr de 23 et 46 mL, d) réacteur Parr en *Hastelloy*® de 300 mL

Les matériaux n'ont pas été calcinés dans les mêmes conditions. Pour les petites quantités en TiO_2 de (1, 2, 4 g), les échantillons sont calcinés dans un four à moufle sous air ambiant à 500 °C durant 5 h avec une vitesse de chauffe de 10 °C.min⁻¹. Lorsque nous avons préparé 13 g de TiO₂, les échantillons ont été calcinés dans un four tubulaire vertical sous air sec (80 % N₂, 20% O₂) avec un débit de 120 mL /min.

Tous les échantillons sont cristallisés selon la phase anatase avant et après calcination. Aucune différence significative n'est observée en faisant l'upscaling (synthèse à grande échelle) dans les autoclaves de 23 et 45 mL. Pour la synthèse de 13 g, l'augmentation de 25 % de surface

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

spécifique et de 40 % de volume poreux mesurés sont peut-être dû à une meilleure homogénéité à l'intérieur du réacteur de 300 mL en *Hastelloy*®.

3.1.4 Stabilité hydrothermale du TiO2

La stabilité hydrothermale de nos supports a été testée dans les conditions de la réaction d'hydrogénation de l'acide succinique (soit : 160 °C, 48h, pH 2.5) sous pression autogène dans un autoclave de 23 mL avec 500 mg de produit et 10 mL d'eau, pour un taux de remplissage de 43 %. Nous avons effectué des tests comparatifs avec un TiO₂ commercial Degussa P25.

Figure 3.10 : Diffractogrammes TiO₂ commercial DT51 et TiO₂ synthétisé par SGNH, 3 j, 110 °C, 10 mL CH₂Cl₂, calciné 500 °C, avant et après traitement hydrothermal (160 °C, 48 h, pH 2,5 _(eau/ HCl))

Les résultats n'ont montré aucune modification significative de la structure (Figure 3.10) et de la texture (Figure 3.11). Après traitement hydrothermal, les différents échantillons ne changent pas de phase cristallographique anatase. La taille des cristallites augmente légèrement pour les deux oxydes après traitement hydrothermal. Cela est dû à un phénomène de dissolution/précipitation (murissement d'Ostwald) lors du recuit hydrothermal. L'espace interparticulaire résultant donne lieu à des mésopores plus larges et la diminution de la surface spécifique est expliquée par le grossissement des nanoparticules qu'on peut remarquer dans la Figure 3.12. Les propriétés texturales et structurales sont reportées dans le Tableau 3.5.

Tableau 3.5 : Surface spécifique, diamètre des pores et volume poreux avant et après traitement hydrothermal (160 °C, 48 h, pH 2,5_(eau' HCl)) pour TiO₂ commercial DT51 et TiO₂ synthétisé par SGNH, 3 j, 110 °C, 10 mL CH₂Cl₂ calciné 500 °C

Echantillon	Sbet ^a m²/g	Vp ^b cm ³ /g	Dp ^c nm	Taille des cristallites nm
TiO ₂ com	65	0,25	14	29
TiO _{2 com} TH	55	0,20	13	32
TiO ₂ sgnh	100	0,22	8	9
TiO ₂ sgnh TH	70	0,24	11	20

^aValeurs S_{BET} arrondies à \pm 5 m²/g.^bVP : volume poreux total à P/P0 = 0,99.^cDp : Diamètre moyen des pores (BJH, désorption). ^dTaille des cristallites calculée avec l'équation de Scherrer.

Figure 3.11 : Isothermes et distributions de taille des pores des $TiO_{2 SGNH}$ et $TiO_{2 com}$ avant et après traitement hydrothermal

Les isothermes des TiO₂ synthétisés par sol-gel non hydrolytique et le TiO₂ commercial sont différents. TiO₂ _{SGNH}, présente un isotherme de type IV(a) alors que le TiO₂ _{com} présente un isotherme de type II avec une boucle d'hystérésis H3. Après traitement hydrothermal, tous les isothermes sont de type II et leur distribution de taille de pores des deux TiO₂ s'élargit.

Figure 3.12 : Images MEB de TiO_{2 com} et TiO_{2 SGNH} avant et après traitement hydrothermal (160 °C / 48 h/ pH 2,5)

Les morphologies du TiO_{2 com} et du TiO_{2 SGNH} sont différentes (Figure 3.12 ci-dessus). Avant traitement hydrothermal, TiO_{2 com} présente des nanoparticules primaires bien distinctes, agrégées entre elles pour former des boules de TiO₂ pas très bien définies. Le TiO_{2 SGNH} quant à lui, présente des particules primaires plus petites et bien sphériques. Après traitement hydrothermal, TiO_{2 com} présente toujours la même morphologie avec des particules primaires plus agrégées. TiO_{2 SGNH} présente des particules primaires plus grandes et facettées à la surface des sphères de TiO₂. Le traitement hydrothermal a donc une influence sur la morphologie du TiO₂.

3.2 Synthèse et caractérisation des supports TiO₂ promus par le rhénium ou le molybdène

3.2.1 Synthèse et caractérisation des supports promus par le rhénium

Les supports promus, avec différents pourcentages massiques de Re dans l'oxyde, sont synthétisés selon la voie éther comme montré dans Schéma 3.1. Pour les calculs, nous avons supposé que l'oxyde de rhénium obtenu est le ReO_{3.5} (oxyde ayant le plus haut degré d'oxydation).

 $TiCl_4 + xReCl_5 \xrightarrow{iPr_2O, CH_2Cl_2} \xrightarrow{Sechage} TiO_2 - xReO_{3.5}$

Schéma 3.1 : Synthèse des supports TiO2 promus avec Re

Comme indiqué précédemment, nous avons utilisé les conditions optimales de synthèse (3 jours à 110 °C avec 10 mL de dichlorométhane comme solvant). Après synthèse, tous les échantillons ont été ouverts dans la boite à gants, séchés dans un tube de schlenk sous pression réduite, puis calcinés dans un four tubaire sous air sec (80 % N₂, 20% O₂) afin d'éviter tout contact avec l'air humide conduisant à la perte du Re.¹⁸⁶ Différents pourcentages massiques du métal ont été demandés par nos collaborateurs afin de trouver le pourcentage optimal pour la conversion de l'acide succinique en 1,4-butanediol. Les quantités de réactifs mises en jeu sont indiquées dans le Tableau 2.2. La couleur des poudres après calcination varie du gris clair au gris foncé suivant le taux de rhénium.

3.2.1.1 Composition des oxydes

Nos partenaires nous ont demandé de préparer 3 échantillons avec des pourcentages en masse de rhénium de 2, 4 et 6%. Dans le Tableau 3.6 suivant, les échantillons sont dénommés :TiO₂-xReO_{3.5} où x est le rapport Re/Ti (atomique) attendu d'après les masses de précurseurs effectivement utilisées pour la synthèse (Re/Ti nominal) suivi du pourcentage massique nominal du Re.

Echantillon	Non calciné			Calciné		
	Re/Ti Nominal	Re/Ti EDX	Re/Ti ICP-AES	Re/Ti EDX	Re/Ti ICP-AES	wt% Re EDX
TiO2-0.0085ReO3.5 1.9 wt% Re	0,0085	0,0083	0,0077	0,0076	0,0076	1,7
TiO2-0.0189ReO3.5 4.1 wt% Re	0,0189	0,0172	0,0171	0,0169	0,0169	3,7
TiO2-0.0285ReO3.5 6.1 wt% Re	0,0285	0,0290	0,0241	0,0244	0,0231	5,2

Tableau 3.6 : Compositions des supports TiO_2 promus au Re avec différentes méthodes d'analyse avant et après calcination

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

L'oxyde de rhénium Re₂O₇ étant très sensible à l'humidité et à la température (il sublime à 250 °C), il est possible d'avoir une perte en Re lors de la synthèse et/ou lors de la calcination. Nous avons quantifié le rhénium avant et après calcination par deux méthodes d'analyse: ICP-AES (après mise en solution par attaque acide) et spectroscopie EDX. Les 2 méthodes donnent des valeurs très proches pour les rapports Re/Ti.

Pour les échantillons non calcinés, les rapports obtenus par analyse élémentaire sont proches des rapports nominaux, il ne semble pas que l'on perde du rhénium au cours de la synthèse. On a donc un très bon contrôle de la composition des xérogels par cette méthode de synthèse.

Après calcination, les rapports Re/Ti sont légèrement inférieurs aux rapports nominaux, suggérant une perte en Re lors de la calcination. Par rapport au rapport nominal, la perte en Re serait d'environ 10 % (à la limite de l'erreur expérimentale) pour les échantillons TiO₂-0.0085ReO_{3.5} et pour TiO₂-0.0169ReO_{3.5}, et une perte un peu plus significative de 18-19 % pour TiO₂-0.0285ReO_{3.5}. Il semblerait donc que la perte de Re à la calcination augmente pour les fortes teneurs en Re (Figure 3.13).

Figure 3.13 : Rapports Re/Ti nominaux et rapports expérimentaux mesurés par EDX, et ICP-AES avant et après calcination

Nous avons utilisé l'analyse thermogravimétrique pour obtenir de nouvelles informations (Figure 3.14). Le rhénium est éliminé au-delà de 500 °C. Les courbes ATG des échantillons normés à 500 °C montrent que plus le taux de Re est élevé dans l'échantillon, plus la perte est importante et plus elle débute tôt. Les valeurs reportées dans le Tableau 3.7 confirment que tout l'oxyde de rhénium est éliminé entre 550 et 1000 °C (aux erreurs expérimentales près). La température de début de perte (« T_{Onset} ») à partir de laquelle l'oxyde de rhénium sublime, n'est que de 570 °C (pour une vitesse de chauffe de 10 °C/min) pour l'échantillon avec la plus forte teneur en rhénium. Ce qui explique probablement la perte d'environ 20% observée lors de la calcination (5 h à 500 °C, 10 °C/min). La perte de Re est d'autant plus importante et intervient d'autant plus tôt que les interactions entre les espèces ReO_X et le support sont faibles. La perte significative observée pour TiO₂-0.0285ReO_{3.5} suggère que pour des teneurs en Re supérieures à 4 wt%, les interactions entre support TiO₂ et espèces oxyde de rhénium diminuent. Ce qui rejoint les résultats trouvés dans la littérature pour des systèmes Re₂O₇/Al₂O₃.¹⁸⁷ On peut donc supposer qu'il est préférable de ne pas augmenter fortement le taux de rhénium dans les échantillons, sous peine d'en perdre de grande quantité lors des traitements thermiques.

Figure 3.14 : Thermogrammes des supports TiO₂ et des différents supports de TiO₂ promus par le Re
Echantillon	ReO _{3.5} (wt%) nominal (EDX)	Tonset °C	ReO _{3.5} (wt%) après calcination (EDX)	Perte de masse % 500-1000°C (ATG)
TiO2-0.0085ReO3.5 1.9 wt% Re	2,5	700	2,3	2,1
TiO2-0.0189ReO3.5 4.1 wt% Re	4,9	670	4,8	3,6
TiO2-0.0285ReO3.5 6.1 wt% Re	7,9	570	6,8	5,8

Tableau 3.7 : Pourcentage de perte en masse de l'oxyde de rhénium entre 500-1000 °C pour les différentes compositions d'oxydes promus avec leurs T_{ONSET} . Comparaison avec le pourcentage après calcination et pourcentage nominal

Tonset : température de début de décomposition

Pour conclure, ces résultats montrent que le SGNH permet un excellent contrôle de la composition des solutions solides. Nous sommes parvenus à ne pas perdre le Re lors de la calcination des oxydes sauf pour un taux élevé (6,1 wt% Re).

3.2.1.2 Morphologie, texture et structure

Les caractérisations morphologiques ont été effectuées sur l'échantillon TiO₂-0.0182ReO_{3.5}.

Figure 3.15 : Images MEB et EDX de:(a) TiO₂ SGNH (b) TiO₂-0.0189ReO_{3.5} après calcination et sa cartographie

Les images MEB (Figure 3.15) montrent des particules secondaires d'environ 5 μ m pour TiO₂-0.0189ReO_{3.5}, contre environ 3 μ m pour TiO₂. La cartographie montre une dispersion homogène du Re sur les particules de TiO₂.

Fahantillan	SBET ^a	Vp ^b	Dpc	Taille des cristallites ^d
Echantinon	m ² / g	cm ³ /g	nm	nm
TiO ₂	100	0,22	8	9
TiO ₂ -0.0084ReO _{3.5} 1.9 wt % Re	62	0,21	10	18
TiO ₂ -0.0189ReO _{3.5} 4.1 wt % Re	93	0,39	15	22
TiO2-0.0285ReO3.5 6.1 wt % Re	57	0,21	13	23

Tableau 3.8 : Caractéristiques texturales des différents supports et taille des cristallites

^aValeurs S_{BET} arrondies à \pm 5 m²/g. ^bVP : volume poreux total à P/P0 = 0,99. ^cDP : Diamètre moyen des pores (BJH, désorption). ^dTaille des cristallites calculée avec l'équation de Scherrer

Figure 3.16 : Isothermes de physisorption d'azote (à 77 K) et distributions de taille de pores (désorption, méthode BJH) pour les différents supports TiO₂ et TiO₂-Re₂O₇

Selon la nomenclature IUPAC récente,¹⁸⁰ les isothermes de physisorption d'azote (à 77 K) sont de type IV(a), avec une boucle d'hystérésis de type H2(a) (Figure 3.16). Tous les supports promus sont mésoporeux, avec des surfaces spécifiques comprises entre environ 60 et 100 m²/g, et des diamètres de pores moyens compris entre 10 et 15 nm. Le plus grand volume poreux est observé pour l'échantillon promu avec Re : TiO₂-0.0189ReO_{3.5} et les distributions des tailles de pores pour tous les supports promus sont larges. Les surfaces spécifiques pour les supports promus sont plus faibles que le TiO₂ et les distributions de tailles de pores sont plus larges. Le rhénium a donc une influence sur la texture des supports promus.

Les diffractogrammes RX (Figure 3.17) montrent une structure anatase pour toutes les compositions. L'absence de pics de diffraction correspondant à Re_2O_7 ou ReO_3 est en faveur d'une bonne dispersion du Re. La taille des cristallites augmente avec le taux de rhénium, de 14 nm pour TiO₂ à 24 nm pour TiO₂-0.0285ReO_{3.5}. Le rhénium n'a pas d'influence sur la structure mais sur la taille des cristallites.

Figure 3.17 : Diffractogrammes RX des échantillons TiO₂ promus par le Re et du TiO₂. Raies de TiO₂ anatase (rouge) et les raies les plus intenses pour ReO_{3.5} (noir), ReO₃ (bleu)

Pour des catalyseurs Si-Al-Re, on sait que le rhénium migre vers la surface lors de la calcination.⁴⁶ Nous avons utilisé la spectroscopie XPS et LEIS pour savoir si cette migration intervenait aussi dans notre cas, et pour connaître le degré d'oxydation du rhénium dans nos supports. Ces analyses ont été réalisées à l'IRCELYON par Luis Cardenas pour l'échantillon TiO₂-0.0189ReO_{3.5} (4.1 wt% Re).

Tableau 3.9 : Composition atomique expérimentale de TiO₂-0.0189ReO_{3.5} avant calcination (xérogel) et après calcination à 500 °C. Valeurs normées à %Ti + %Re +%O = 100 %

	Non o	Non calciné		Calciné		
	EDX	XPS	EDX	XPS		
At% Ti	33,7	45,8	36,2	36,7		
At% Re	0,6	0,1	0,6	1,3		
At% O	62,6	50,0	63,3	61,5		
Re/Ti	0,0171	0,0032	0,0166	0,0346		

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

Si tout le Re était bien dispersé dans le volume de l'échantillon le rapport Re/Ti serait de 0,0171 comme mesuré par EDX. L'analyse par XPS montre un rapport Re/Ti beaucoup plus faible (0,0032) avant calcination, suggérant que le rhénium serait plutôt au cœur de l'échantillon qu'en surface. Après calcination, le rapport Re/Ti obtenu par XPS est le double de celui attendu, indiquant cette fois que le rhénium a migré vers la surface du TiO₂.

Quant aux analyses par LEIS, pour l'échantillon non calciné, le rhénium n'est pas détecté, quel que soit le temps de décapage. Par contre, après calcination, le rhénium est bien détecté (Figure 3.18). De plus, le rapport des aires des pics correspondant au Re et au Ti diminue avec le temps de décapage, ce qui montre que le Re est présent à l'extrême surface de l'échantillon. En prenant en compte les facteurs de sensibilité, on trouve approximativement 70 % Ti, 30% Re après 140 s et 83 % Ti, 17 % Re après 700 s de décapage.

 $\label{eq:Figure 3.18} Figure \ 3.18: Spectres \ LEIS \ de \ l'échantillon \ TiO_2-0.0189 ReO_{3.5} \ calciné \ avec \ Cu \ (référence \ et \ support \ du \ porte \ échantillon) \ à \ t1: 140 \ s \ et \ t2: 700 \ s$

Les analyses par XPS nous donnent une idée du degré d'oxydation du Re. L'écart entre les composantes des doublets Re $4f_{7/2}$ et Re $4f_{5/2}$ est de ≈ 2.43 eV. L'intensité relative du pic $4f_{5/2}$ est égale à ³/₄ de celle du pic $4f_{7/2}$ de Re. On considère que les largeurs à mi-hauteur des

« photopics » de Re sont égales. Les déconvolutions des spectres XPS du xérogel et de l'échantillon calciné sont présentés dans la Figure 3.19 ci-dessous. Nous comparons les énergies des liaisons trouvées par rapport aux énergies des liaisons des composés de Re dont le degré d'oxydation est connu (Re⁰, ReO₂, ReO₃, Re₂O₇). Le Tableau 3.10 donne les données des énergies de liaisons de référence selon Tysoe *et al.*¹⁸⁸

Figure 3.19 : Spectres XPS de l'échantillon TiO₂-0.0189ReO_{3.5}(4.1 wt% Re) non calciné (gauche) et calciné (droite).

Tableau 3.10 :	Energies de	liaison, en eV	', pour Re4f de	es composés ($(\mathrm{Re}^0, \mathrm{ReO}_2, 1)$	$ReO_3, Re_2O_7)^{-18}$	88
----------------	-------------	----------------	-----------------	---------------	--------------------------------------	-------------------------	----

Composé	4f 5/2	4f 7/2
Re ⁰	42,3	39,7
ReO ₂	45,0	42,5
ReO ₃	47,2	44,9
Re ₂ O ₇	49,5	46,7

Tableau 3.11 : Analyse des spectres XPS de l'échantillon TiO₂-0.0189ReO_{3.5} (4.1 wt% Re) avant et après calcination, en eV

	Non ca	alciné	Calciné		
	Position(FWHM)	Pourcentage des degrés d'oxydation	Position(FWHM) / degré d'oxydation Re 4f	Pourcentage des degrés d'oxydation	
Re 4f 5/2	45,74(2,11)	D • 4+ • • •	46,7(2) / 6+ 48,51(2,6) / 7+	$\mathbf{D}_{2}^{7+}(600/)$	
Re 4f _{7/2}	43,3(2,11)	$Re^{5+}(100\%)$	44,17(2) / 6+ 46.0 (2.6) / 7+	$Re^{6+}(31\%)$	

FWHM : largeur à mi-hauteur des pics.

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

Pour l'échantillon avant calcination, d'après les énergies de liaison des photopics du Re $4f_{7/2}$ et Re $4f_{5/2}$ de la Figure 3.19 gauche, le rhénium serait dans un degré d'oxydation intermédiaire (degré 4 ou 5), mais nous sommes proche des limites de détection et les simulations sont peu fiables. Après calcination, Figure 3.19 droite, le Re est principalement au degré d'oxydation 7, la simulation donne \approx 70% degré d'oxydation 7 et \approx 30% degré 6, mais cet état d'oxydation est lié à l'environnement des voisins du Re. Le Tableau 3.11 résume toutes les positions et les degrés d'oxydation du Re avant et après calcination.

Tous ces résultats confirment la présence d'espèces oxyde de rhénium (principalement au degré d'oxydation 7) à la surface de notre support TiO₂-0.0189ReO_{3.5} (calciné). Pour identifier ces espèces (monomères ou dimères) nous avons effectué une étude par spectroscopie Raman des différents supports préparés.

Vuurman *et al.* ¹⁸⁹ sont parmi les premiers à avoir étudié par spectroscopie Raman et IR des espèces oxyde de rhénium présentes sur les oxydes Al₂O₃, TiO₂, ZrO₂ et SiO₂ dans des conditions ambiantes et après déshydratation *in situ*. Dans des conditions ambiantes, l'oxyde de rhénium est hydraté et possède une structure tétraédrique analogue à celle de l'ion ReO₄⁻ en solution, caractérisée par une bande intense à \approx 970 cm⁻¹ et une bande de faible intensité à \approx 920 cm⁻¹ (Figure 3.20b).

Au contraire, dans les conditions anhydres, l'oxyde de Re est présent sous forme d'espèces $Re(=O)_3O$ -, de symétrie C_{3v} avec trois liaisons Re=O terminales et une liaison Re-O-support. Une étude par TPR a montré que plus le pourcentage de Re₂O₇ augmentait (1, 4,9 et 5,3%) plus cette liaison Re-O-Support était faible. La force de cette liaison diminue aussi suivant les supports, selon l'ordre : $Al_2O_3 > SiO_2=ZrO_2>TiO_2$.

Dans le cas de $\text{Re}_2\text{O}_7/\text{TiO}_2$, pour un taux de rhénium de 1% les spectres Raman montrent un pic fin à 1005 cm⁻¹ attribué à des espèces $\text{Re}(=\text{O})_3\text{O}$ - en forte interaction avec TiO₂, et pour un taux de 5,3% un pic plus large à 1009 cm⁻¹ attribué à des espèces $\text{Re}(=\text{O})_3\text{O}$ - en plus faible interaction avec TiO₂ (Figure 3.20a).¹⁸⁹

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

Figure 3.20 : Spectres Raman des échantillons hydratés (a) et déshydratés (b) présentés par Vuurman *et al* ¹⁸⁹

Les spectres Raman de nos échantillons sont présentés en Figure 3.21. Nous avons normé les spectres par rapport au pic le plus intense du TiO₂. Les pics à 142, 195, 393, 515 et 638 cm⁻¹ Figure 3.21a correspondent aux modes de vibration de TiO₂ anatase.

La Figure 3.21b montre les spectres entre 700 et 1100 cm⁻¹. Le pic de faible intensité à \approx 795 cm⁻¹ visible dans tous les spectres, y compris celui de TiO₂ et correspond à un pic du TiO₂.¹⁸⁹ Les échantillons contenant du rhénium montrent un pic au-dessus de 1000 cm⁻¹ attribué à la vibration v_s[Re=O] dans des espèces Re(=O)₃O- de symétrie C_{3v}. On peut exclure la présence d'espèces ReO₄⁻ hydratées (pas de bande à \approx 970 cm⁻¹ (Figure 3.20a). Par contre, nous observons des bandes très larges à \approx 900 cm⁻¹ et \approx 830 cm⁻¹, dont l'intensité augmente avec le taux de rhénium. Ces bandes ne sont pas observées par Vuurman *et al.*¹⁸⁹, mais Secordel *et al.*¹⁹⁰ ont déjà décrit ces bandes inhabituelles et ils les ont attribuées à la présence d'espèces Re⁶⁺, ce qui serait en accord avec les 30% de Re^{VI} trouvés par XPS. Les espèces d'oxyde de rhénium présentes sont donc majoritairement des espèces Re(=O)₃O- de symétrie C_{3v} comme montré dans la Figure 3.22.

Figure 3.21 : Spectres Raman des différents échantillons de TiO₂ promus avec Re et du TiO₂ (après calcination). a) entre 100 et 1100 cm⁻¹ et b) entre 700 et 1100 cm⁻¹ (agrandissement x 24)

Figure 3.22 : Les espèces d'oxyde de rhénium majoritaires présentes à la surface du TiO2

Il est intéressant de calculer le pourcentage de Re par nm² de TiO₂. Anderson R. J. et Boudart M.¹⁸⁷ ont rapporté que pour un catalyseur Re₂O₇/Al₂O₃ une monocouche de Re₂O₇ correspondrait à 2,9 Re/nm² de Al₂O₃, quant à Okal *et al*,¹⁹¹ ils ont rapporté qu'une monocouche correspondrait à 2,3 Re/nm² de Al₂O₃ pour 10 % wt Re. Enfin, Sécordel *et al*.¹⁹² ont montré que pour 6,9 wt% ReO_x/TiO₂ et une surface spécifique de TiO₂ 93 m²/g, ils avaient 2,7 Re/nm².

Echantillon	Sbet ^a m²/g	Sbet corrigée ^b m ² /g	Re2O7 wt %	Densité at de Re Re/nm ²
TiO2-0.0084ReO3.5 1.9 wt % Re	62	63	2,3	1,1
TiO2-0.0189ReO3.5 4.1 wt % Re	93	98	4,8	1,4
TiO2-0.0285ReO3.5 6.1 wt % Re	57	61	6,8	3,3

Tableau 3.12 : Surfaces spécifiques et surfaces spécifiques corrigées des échantillons promus par le Re et densité at de Re/nm^2 de TiO_2

^aValeurs S_{BET} arrondies à \pm 5 m²/g. ^b S_{BET} corrigées par g de TiO₂

On peut dire que dans notre cas, nous atteignons la mono couche pour approximativement 1,4 Re/nm². En augmentant le pourcentage de Re, on va vers les multicouches. Dans ce cas, les interactions entre les espèces oxydées de Re et le support sont faibles. Ce qui est en corrélation avec les résultats trouvés par ATG (plus on augmente le pourcentage de Re, la perte se fait plus tôt et elle est d'autant plus importante).

3.2.2 Synthèse et caractérisation des supports promus par le molybdène

Nous avons également synthétisé des supports promus avec différents pourcentages massiques de Mo selon la voie éther comme montré dans le Schéma 3.2, en supposant que l'oxyde de molybdène obtenu après calcination est MoO₃.

 $TiCl_4 + xMoCl_5 \xrightarrow{iPr_2O,CH_2Cl_2} \xrightarrow{Sechage} TiO_2 - xMoO_3$

Schéma 3.2 : Synthèse des supports TiO₂ promus avec Mo

Les différentes synthèses sont effectuées dans les mêmes conditions que celles utilisées précédemment, avec un léger excès de donneur d'oxygène (+5%). Pour 1 g de TiO₂, nous avons utilisé 10 mL de dichlorométhane et un autoclave de 23 mL. Les autoclaves sont ouverts sous la hotte, séchés et calcinés 5h à 500 °C dans un four à moufle. Comme pour le Re, différents pourcentages massiques du métal ont été proposés par nos collaborateurs afin de trouver le pourcentage optimal pour la conversion de l'acide succinique en 1,4-butanediol. Les quantités de réactifs mises en jeu sont indiquées dans le Tableau 2.2 du chapitre 2. La couleur des poudres après calcination est gris-vert.

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

3.2.2.1 Composition des oxydes

Nous avons synthétisé 4 échantillons avec différents pourcentages en masse de molybdène : ≈ 2 , 4, 6 et 10 %. Les échantillons sont dénommés TiO₂-xMoO₃ où x est le rapport Mo/Ti (atomique) attendu d'après les masses de précurseurs effectivement utilisées pour la synthèse (Mo/Ti nominal) suivi du pourcentage en poids de Mo nominal dans l'oxyde.

Echantillon		Non calciné		Calciné	
	Mo/Ti nominal	Mo/Ti EDX	Mo/Ti EDX	Mo/Ti ICP-AES ^a	wt% Mo EDX
TiO2-0.018MoO3 2 wt% Mo	0,018	0,0098	0,010	0,014	2,1
TiO2-0.036MoO3 4 wt% Mo	0,036	0,032	0,033	0,040	4,1
TiO2-0.055MoO3 6 wt% Mo	0,055	0,055	0,053	na*	6,0
TiO2-0.098MoO3- 9.3 wt% Mo	0,097	0,086	0,090	0,097	9,3

Tableau 3.13 : Compositions des supports TiO2 promus par le Mo avant et après calcination

*non analysé

L'oxyde de molybdène est beaucoup moins sensible à l'humidité que l'oxyde de rhénium et ne sublime qu'à une température supérieure à 700 °C. Nous avons quantifié le molybdène avant et après calcination pour vérifier que l'on ne perdait pas de molybdène lors des étapes de la synthèse.

Pour les échantillons non calcinés ou calcinés, les rapports obtenus par EDX (ou ICP-AES) sont proches des rapports nominaux. Aux erreurs expérimentales près il n'y a donc pas de perte de molybdène lors de la synthèse ou de la calcination, quel que soit le pourcentage en molybdène. Ces résultats sont repris dans la Figure 3.23 ci-dessous.

Figure 3.23 : Rapports Mo/Ti nominaux et expérimentaux mesurés par EDX et ICP-AES avant et après calcination

Figure 3.24 : Thermogrammes des supports TiO_2 et des différents supports de TiO_2 promus avec Mo (thermogrammes normés à 500 °C)

L'analyse thermogravimétrique Figure 3.24, des échantillons montre des pertes de masse audelà de 700 °C attribuées à une perte en molybdène. Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

Echantillon	MoO3 (wt%) nominal	Perte de masse (%) 500-1000°C
TiO2-0.055M0O3 6 wt% Mo	9,0	2,3
TiO2-0.098MoO3 9.3 wt% Mo	13,9	12,8

Tableau 3.14 : Pourcentage nominal massique de MoO_3 et perte de masse entre 500 et 1000 °C d'après les courbes ATG

Pour l'échantillon TiO₂-0.055MoO₃, on observe une seule perte de masse à partir de 850 °C. Cette perte de masse est nettement inférieure à la masse de l'oxyde MoO₃ (Tableau 3.14) ce qui montre que les espèces du Mo ne sont pas totalement éliminées même à 1000 °C. Pour l'échantillon TiO₂-0.098MoO₃, la courbe ATG montre deux pertes successives à partir de 735 °C puis 858 °C. La somme des pertes entre 500 et 1000 °C est proche de la masse de l'oxyde MoO₃ dans l'échantillon. La perte de MoO₃ pour l'échantillon TiO₂-0.098MoO₃ débute donc à bien plus basse température que pour l'échantillon TiO₂-0.055MoO₃ contenant moins de molybdène. Ce qui suggère que les interactions support-oxyde diminuent quand on augmente le pourcentage en Mo.

3.2.2.2 Morphologie, texture et structure

Les échantillons TiO₂-MoO₃ calcinés à 500 °C/ 5h, ont été caractérisés par MEB. Quel que soit le taux de Mo les images sont similaires et montrent des particules primaires de petite taille agrégées entre elles formant des blocs sans forme particulière On ne retrouve donc pas les particules secondaires plus ou moins sphériques observées pour TiO₂ et TiO₂-Re₂O₇ (Figure 3.15) (Images MEB de l'échantillon TiO₂-0.036MoO₃ Figure 3.25).

Figure 3.25 : Images MEB de l'échantillon TiO₂-0.036MoO₃

Figure 3.26 : Isothermes de physisorption d'azote (à 77 K) et distributions de taille de pores (désorption, méthode BJH) pour les différents supports TiO₂ et TiO₂-MoO₃

Selon la nomenclature IUPAC récente,¹⁸⁰ la Figure 3.26 montre des isothermes de physisorption d'azote (à 77 K) selon type IV(a), avec une boucle d'hystérésis de type H2(a). Tous les supports promus TiO₂-MoO₃ sont mésoporeux, avec des surfaces spécifiques comprises entre environ 80 et 210 m²/g et des diamètres de pores moyens autour de 8 nm. Les volumes poreux varient entre 0,44 et 0,22 cm³/g. Les distributions de taille de pores sont étroites pour les échantillons à plus grande teneur en molybdène (6 et 9,3 wt% Mo) et beaucoup plus larges pour les échantillons à plus faible teneur en Mo. Le molybdène a une influence sur la texture des oxydes.

Echantillon	S _{BET} ^a m²/g	Vp ^b cm ³ /g	Dp ^c nm	Taille des cristallites ^d nm
TiO ₂	100	0,22	7	9
TiO2-0.018MoO3 2 wt% Mo	81	0,20	8	17
TiO2-0.036MoO3 4 wt% Mo	87	0,20	9	15
TiO2-0.055MoO3 6 wt% Mo	130	0,25	7	7
TiO ₂ -0.098MoO ₃ 9.3 wt% Mo	211	0,44	8	9

Tableau 3.15 : Caractéristiques texturales des différents échantillons promus au Mo et taille des cristallites

^aValeurs S_{BET} arrondies à \pm 5 m²/g. ^a Surface spécifique. ^bvolume poreux total à P/P₀ = 0,99. ^cDiamètre moyen des pores (BJH, désorption). ^dTaille des cristallites calculée avec l'équation de Scherrer

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

Figure 3.27 : Diffractogrammes RX des échantillons TiO₂-MoO₃ et les raies de l'anatase (rouge) et les raies les plus intenses du MoO₃

Les diffractogrammes RX des différents échantillons de la Figure 3.27 montrent la formation d'anatase. Aucune raie attribuable à un oxyde molybdène MoO₃ n'est observée. Le molybdène semble donc bien dispersé sur le TiO₂, quel que soit le pourcentage en poids de Mo. La taille des cristallites calculée par l'équation de Scherrer diminue avec le pourcentage en masse de Mo, passant de 17 nm pour l'échantillon à 2 wt% Mo jusqu'à 9 nm pour l'échantillon à 9,3 wt% Mo.

Pour les catalyseurs Si-Al-Mo, on sait que le Mo migre vers la surface après calcination.⁴³ Nous avons utilisé la spectroscopie XPS pour savoir si cette migration intervenait aussi dans notre cas. Ces analyses ont été réalisées par le groupe du Pr J. Pinkas à Brno sur deux échantillons TiO₂-0.018MoO₃ et TiO₂-0.055MoO₃ (calcinés) que nous comparons dans le Tableau 3.16 avec les analyses EDX.

Chapitre 3 : Supports TiO₂ et supports TiO₂ promus par le rhénium ou le molybdène

	TiO ₂ -0.0	TiO2-0.018MoO3		055MoO3
	EDX	XPS	EDX	XPS
At% Ti	32,4	29,46	22,95	27,18
At% Mo	0,37	0,90	1,25	4,13
At% O	62,4	63,81	87,7	68,73
Mo/Ti	0,01	0,03	0,05	0,15

Tableau 3.16 : Composition atomique des supports calcinés à 500 °C / 5h / 10 °C.min⁻¹ par EDX et XPS

Si tout le Mo était réparti dans la masse de l'échantillon le rapport Mo/Ti mesuré par XPS serait identique à celui mesuré par EDX. Pour ces échantillons calcinés, les rapports déterminés par XPS sont 3 à 5 fois plus élevés que ceux obtenus par EDX, ce qui montre que le molybdène a bien migré à la surface du TiO₂ lors de la calcination. Les spectres XPS montrent des énergies de liaisons de 235,9 eV et 232,6 eV pour les pics Mo 3d_{3/2} et Mo 3d_{5/2} qui indiquent que le Mo dans les deux échantillons calcinés est au degré d'oxydation 6, comme dans MoO₃.^{193,194}

Ensuite, une étude par spectroscopie Raman a été effectuée afin d'étudier la nature des espèces présentes à la surface des supports calcinés. La Figure 3.28 qui suit montre les différents spectres entre 100 et 1100 cm⁻¹ et 700 et 1100 cm⁻¹. Les spectres sont normés par rapport au pic le plus intense de TiO₂. Les spectres entre 100 et 1100 cm⁻¹ montrent les bandes caractéristiques de l'anatase à 142, 195, 393, 515 et 638 cm⁻¹.

Selon Weckhuysen *et al*,¹⁹⁵ dans des oxydes de molybdène supportés sur un oxyde métallique les espèces du molybdène sont sous forme de dimères (Figure 3.29) et leur spectre Raman montre deux bandes principales à 996 et 850 cm⁻¹. La bande à 970 cm⁻¹ correspond à la vibration v_s [Mo=O] alors que celle à 843 cm⁻¹ correspond aux vibrations v_{as} [M-O-M] ou v_s [(O-M-O)_n].

Figure 3.29 : Espèces d'oxyde de molybdène présentes à la surface du TiO₂¹⁹⁵

La teneur en molybdène influence la forme géométrique tétraédrique ou octaédrique des espèces molybdène de surface. Les espèces monomères tétraédriques prédominent à faible teneur, jusqu'à une densité d'environ 1 Mo/nm². Pour des teneurs intermédiaires des espèces octaédriques sont favorisées et pour des teneurs encore plus élevées des multicouches voire de MoO₃ massif.^{187,196}

Le Tableau 3.17 montre la densité de Mo/nm² pour tous les échantillons promus au Mo. Même à faible teneur en Mo, nous avons une densité supérieure à 1 Mo/nm², impliquant la présence d'espèces octaédriques (en coordinence 6), ce qui rejoint les résultats trouvés par spectroscopie Raman. A partir de 4 wt% Mo, la densité de Mo/nm² se stabilise, suggérant une saturation en monocouche de Mo à 2,8 Mo/nm².

Echantillon	Sbet ^a m²/g	Sbet corrigée ^b m ² /g	MoO3 wt%	Densité de Mo Mo/nm ²
TiO2-0.018M0O3 2 wt% Mo	80	85	3,1	1,6
TiO2-0.036MoO3 4 wt% Mo	85	95	5,9	2,7
TiO2-0.055MoO3 6 wt% Mo	130	145	9,1	2,6
TiO2-0.098MoO3 9.3 wt% Mo	210	245	14,1	2,3

Tableau 3.17 : Surfaces spécifiques et surfaces spécifiques corrigées des échantillons promus par le Mo et densité de Mo/ nm² de TiO₂

^aValeurs S_{BET} arrondies à \pm 5 m²/g. ^bS_{BET} corrigée par g de TiO₂.

3.3 Hydrogénation en phase aqueuse de l'acide succinique

L'hydrogénation en phase aqueuse de l'acide (Figure 3.30) a été effectuée par M. Madjid Ouali à IRCELYON. Elle se fait à 160 °C, 150 bars d'hydrogène pendant 48h pour une solution à 5% en masse (450 mmol) d'acide succinique. Pour rappel, la GBL est un produit intermédiaire, pour le BDO et le THF sont les principaux produits de la réaction et les sous-produits sont : l'acide butyrique, l'acide propionique et le n-butanol.

Figure 3.30 : Conversion de l'acide SUC par hydrogénation en GBL (produit intermédiaire) puis en BDO et THF

Le pourcentage en poids de Pd est fixé à 2 % pour tous les catalyseurs (pourcentage déjà optimisé par IRCELYON dans d'autres thèses). M. Madjid Ouali a fait varier le pourcentage en poids de Re et Mo sur les différents supports ($TiO_{2 \text{ com}}$, $TiO_{2 \text{ SGNH}}$) pour étudier l'influence du taux de promoteur sur la conversion de l'acide succinique et la sélectivité en BDO.

Les catalyseurs préparés à IRCELYON par imprégnations successives du Pd puis Re sur un support TiO_{2 SGNH} sont nommés : $X/2\%Pd/TiO_2$ sGNH et sur un TiO₂ commercial : $X/2\%Pd/TiO_2$ com, X étant le pourcentage expérimental (par ICP) en poids de Re ou de Mo dans l'oxyde. Quant aux catalyseurs préparés sur nos supports promus au Re ou Mo, ils sont nommés selon la nomenclature déjà utilisée dans les paragraphes précédents avec un suffixe 2%Pd. Exemple 2%Pd/TiO₂-0.0285ReO_{3.5} (6.1wt% Re).

Les imprégnations successives sur les supports et les imprégnations du Pd sur les supports promus sont décrites dans le Schéma 3.3 qui suit.

Evaporation du toluène

Réduction 3h à 450 °C

Catalyseur bimétallique

Schéma 3.3 : Schéma des imprégnations successives sur supports (TiO_{2 SGNH}) et imprégnation des supports promus

3.3.1 Catalyseurs Re-Pd-Ti

Dans le cas de TiO_{2 com}, pour une conversion proche de 100% de SUC, la meilleure sélectivité en BDO (83% / 47 h) est obtenue avec 4 wt% Re. Avec ≈6 % massique de Re la sélectivité en BDO n'est que de 40% après 48 h.

Dans le cas de notre support TiO₂ préparé par SGNH, le catalyseur obtenu après dépôt de Pd $(\approx 2 \text{ wt\%})$ et de Re ($\approx 6 \text{ wt\%}$) et est nettement plus actif que les catalyseurs déposés sur TiO₂ com (conversion totale en 28h contre 48h) et sa sélectivité en BDO (87% en 28h) est légèrement supérieure à celle obtenue avec le catalyseur 3.9% Re/2% Pd/ TiO_{2 com}. La courbe de conversion du SUC en GBL et BDO en fonction du temps de réaction par le catalyseur 5.8% Re/2% Pd/TiO₂ est montrée dans la Figure 3.31b.

Le catalyseur 6.1% Re/2% Pd/TiO_{2 com} est beaucoup moins sélectif (Figure 3.31a), ce qui suggère que la dispersion du Re est moins bonne probablement parce que la surface spécifique (65 m²/g) est plus faible que celle du TiO_{2 SGNH} (100 m²/g).

b) Evolution des concentrations en BDO en fonction du temps pour 5.8% Re/2%Pd/TiO_{2 SHNH}

Figure 3.31 : Comparaison des catalyseurs supportés sur $TiO_{2 \text{ com}}$ et $TiO_{2 \text{ SGNH}}$ et évolution des concentrations en BDO et GBL du catalyseur 5.8% Re/2% Pd/TiO₂.

Ensuite, M. Madjid Ouali a préparé différents catalyseurs bimétalliques en utilisant les différents supports promus au Re (solutions solides TiO_2 -Re₂O₇) avec 2, 4 et 6.1% massique en Re que nous avons envoyés.

La Figure 3.32a montre les rendements pour les trois catalyseurs. Le meilleur taux de conversion et la meilleure sélectivité en BDO (93 % / 24 h) sont obtenus avec le 2%Pd/TiO₂-0.0285ReO_{3.5} (6.1 wt% Re) (Figure 3.32b).

Pour la conversion du SUC en BDO, les supports $TiO_{2 SGNH}$ non promus ou promus permettent donc d'obtenir des catalyseurs plus actifs et plus sélectifs que le support $TiO_{2 com}$.

Le catalyseur supporté sur TiO₂ promu SGNH (2%Pd/TiO₂-0.0285ReO_{3.5}, 6.1 wt% Re) est le plus actif et le plus sélectif, probablement grâce à une meilleure dispersion du rhénium lors de la migration pendant la calcination.

 a) Rendement en GBL, BDO et THF pour les catalyseurs supportés sur des supports
TiO₂-Re₂O₇ préparés par SGNH: avec différents taux de Re.

b) 2%Pd/TiO₂-0.0285ReO_{3.5} (6.1 % wt Re)

3.3.2 Catalyseurs Mo-Pd-Ti

M. Madjid Ouali a préparé par imprégnations successives sur TiO_{2 com} différents catalyseurs au Pd (2 wt%) puis au Mo (\approx 2, 4 et 6 wt%). Il a également préparé des catalyseurs avec le même taux de Pd en utilisant nos supports promus TiO₂-MoO_{3 SGNH}. Avec le support commercial le meilleur rendement en BDO (52 % en 48 h) a été obtenu avec le catalyseur 4%Mo/2%Pd/TiO₂ com. Avec les supports promus SGNH (Figure 3.33), on obtient un bien meilleur rendement en BDO (73 % en 48 h) avec le catalyseur 2%Pd/TiO₂-0.036MoO₃ (4 wt% Mo).

a) Rendement en fonction des supports promus

Figure 3.33 : Rendement en acide succinique en fonction des différents supports promus au Mo

Les supports TiO₂-MoO₃ préparés par SGNH sont donc très prometteurs. Cependant le Mo est moins efficace que le Re pour la réaction qui nous intéresse. Le molybdène, peu coûteux pourrait être une alternative au Re mais il reste à optimiser les paramètres de la catalyse pour améliorer la sélectivité.

3.4 Conclusion

Le sol-gel non hydrolytique est une méthode simple et efficace pour la préparation de supports bien cristallisés ayant une bonne texture. Dans ce chapitre nous avons fait tout d'abord, une optimisation des paramètres de la réaction de synthèse de TiO₂ (temps, température, volume du solvant, nature du solvant). Nous avons utilisé ces paramètres pour la synthèse de supports promus TiO₂-Re₂O₇ et TiO₂-MoO₃ avec différents pourcentages en poids de métal de transition (promoteur).

Les paramètres optimaux pour la synthèse de 1g de TiO₂ sont : 3 jours, 110 °C, et 10 mL CH_2Cl_2 . Dans ces conditions, la surface spécifique est de l'ordre de 100 m²/g et nous avons fait des synthèses en quantité relativement importante (jusqu'à 13 g de TiO₂ par synthèse). Pour les supports promus, nous avons montré que le promoteur avait une influence sur la texture et la morphologie de l'oxyde mais pas sur la structure (anatase). Nous avons montré que dans les deux cas l'oxyde du métal de transition migrait à la surface lors de la calcination. Les espèces présentes à la surface sont principalement monomères pour les supports promus TiO₂-ReO_{3.5} et

dimères pour les supports promus TiO₂-MoO₃, quel que soit le pourcentage en masse du métal de transition.

Le TiO₂ et les supports promus ont été par la suite utilisés comme supports de catalyseurs de la réaction d'hydrogénation en phase aqueuse de l'acide succinique. Nos supports ont été comparés au TiO₂ commercial. Différentes teneurs en Mo et Re ont été utilisées. Pour cette réaction, les catalyseurs bimétalliques obtenus avec les supports solutions solides promus au Re ou au Mo sont plus actifs et sélectifs que les catalyseurs équivalents préparés à partir de TiO₂ commercial ou TiO_{2 SGNH}, probablement grâce à une meilleure dispersion du métal de transition (Re ou Mo) à la surface du TiO₂.

Chapitre 4 : Supports ZrO₂ et supports ZrO₂ promus par le rhénium ou le molybdène

L'objectif du travail décrit dans ce chapitre est de synthétiser en une seule étape par SGNH des supports ZrO_2 et des supports ZrO_2 promus par Re ou Mo en contrôlant la composition et la structure finale après calcination (tétragonale ou monoclinique) en variant le donneur d'oxygène.

Différentes voies de synthèse ont été utilisées à cet effet. La voie éther « standard » a été utilisée pour la synthèse de la phase tétragonale. Nous avons pu obtenir une zircone monoclinique par la voie alcool en choisissant l'éthanol comme donneur d'oxygène ou par voie cétone en utilisant l'acétophénone.

Ensuite nous avons synthétisé en une seule étape par SGNH, des supports ZrO_2 et des supports ZrO_2 promus avec soit du rhénium, soit du molybdène (solutions solides ZrO_2 -Re₂O₇ et ZrO_2 -MoO₃) avec les voies éther et alcool.

Enfin, nos supports et nos supports promus ont été utilisés par M. Madjid Ouali à IRCELYON pour préparer des catalyseurs pour l'hydrogénation en phase aqueuse de l'acide succinique.

Les résultats de la catalyse ne sont pas présentés dans ce chapitre car les tests sont encore en cours durant la rédaction de ce manuscrit.

4.1 Synthèse de t-ZrO₂ par voie éther

La voie éther a déjà été utilisée pour la synthèse de nanoparticules de ZrO_2 , un mélange 74 % m-ZrO₂ et 26% t-ZrO₂ avec 16 m²/g de surface spécifique,¹³⁸ mais pas pour la synthèse de ZrO_2 mésoporeuse tétragonale.

4.1.1 Optimisation des conditions de synthèse

Nous avons utilisé le ZrCl₄ comme précurseur et le diisopropyléther ⁱPr₂O comme donneur d'oxygène, en excès de 5% par rapport à la stœchiométrie. Les synthèses sont effectuées dans des autoclaves de 23 mL sous pression autogène pendant trois jours avec 10 mL de dichlorométhane pour 1 g de ZrO₂. Les quantités de réactifs utilisées sont décrites dans le tableau 2.3 du chapitre 2. Afin d'optimiser la texture et la structure tétragonale des supports, nous avons tout d'abord fait varier la température de synthèse (90 °C, 110 °C, 150 °C) puis la température de calcination (500, 550, 650, 700 °C) en fixant la vitesse de chauffe à 10 °C min⁻¹ et le temps de calcination à 5 h comme présenté dans le Schéma 4.1.

$$ZrCl_4 \xrightarrow{iPr_2O,CH_2Cl_2} \underbrace{Sechage}_{120 \ \circ C, \ P_{red}, \ 6 \ h} \xrightarrow{T^{\circ} Calcination}_{5h, \ 10 \ \circ C.min^{-1}} ZrO_2 \xrightarrow{iPr_2O}_{2h}$$

Schéma 4.1 : Synthèse de ZrO₂ par voie éther

Les échantillons calcinés sont nommés ZrO₂-ⁱPr₂O-X-Y, où X est la température de synthèse et Y la température de calcination. Les xérogels (non calcinés, NC) sont dénommés ZrO₂- ⁱPr₂O-X-NC.

Une étude par analyse thermogravimétrique montre une perte de masse plus importante, se poursuivant à plus haute température pour la synthèse à 180 °C. Nous ne pensons pas que ceci soit lié au taux de condensation, qui logiquement devrait augmenter avec la température, mais plutôt due à une augmentation de la quantité de sous-produits carbonés (ex : polymères issus de réactions secondaires du ⁱPrCl formé), comme cela a été montré récemment pour la synthèse de nanocomposites TiO₂-C.¹⁰⁸

Figure 4.1 : Courbes ATG normés à 120 °C des échantillons ZrO2 synthétisés par la voie éther à 110, 150 et 180 °C

Nous avons fait varier la température de calcination de 500 °C à 700 °C pour les quatre échantillons. Les diffractogrammes en fonction de la température de calcination sont présentés dans la Figure 4.2. La fraction volumique v_t de ZrO₂ tétragonale est calculée à partir des aires pics Équation des les plus intenses des deux phases selon les 4.1 et Équation 4.2.

 χ est le rapport des aires des pics (101) de la phase tétragonale et des pics (-111) et (111) de la phase monoclinique selon Toyra.¹⁹⁷ L'aire des pics est déterminée par affinement avec le logiciel X'Pert High score (*cf.* §2.2.1).

$$\chi = \frac{I_t(101)}{I_m(111) + I_t(101) + I_m(-111)}$$
Équation 4.1
$$V_t = \frac{1.311\chi}{1 + 0.311 * \chi} \quad V_m = 1 - V_t$$
Équation 4.2

Chapitre 4 : Supports ZrO₂ et supports ZrO₂ promus par le rhénium ou le molybdène

 $\begin{array}{l} \mbox{Figure 4.2: Diffractogrammes RX entre 20: 25 et 20: 33 ° des différents échantillons ZrO_2 synthétisés à (90, 110, 150, 180 °C) et calcinés à (500, 550, 650, 700 °C) pendant 5 h. Phase tétragonale (code ICSD : 01-088-1007) et monoclinique (code ICSD : 00-037-1484) \\ \end{array}$

Les diffractogrammes montrent que les xérogels sont amorphes pour les températures de synthèse 90 °C,110 °C, et 150 °C contrairement au xérogel synthétisé à 180 °C où le diffractogramme avant calcination montre un pic très large correspondant aux plans (101) de t-ZrO₂ (code ICSD : 01-088-1007). En augmentant la température de calcination, les zircones commencent à changer de phase jusqu'à avoir un mélange de phase tétragonale/monoclinique (code ICSD : 00-037-1484) (*cf.* Tableau 4.1).

La Figure 4.3 gauche montre les fractions de la phase tétragonale en fonction de la température de calcination. A la température de calcination de 500 °C, toutes les zircones sont cristallisées selon la phase tétragonale pratiquement pure $v_t > 0,95$. Les zircones synthétisées à 110, 150 et 180 °C restent tétragonales jusqu'à une température de calcination de 650 °C, alors que pour celle synthétisée à 90 °C, la fraction de phase tétragonale v_t est inférieure à 0,8.

Figure 4.3 : Fraction volumique de la phase tétragonale et surface spécifique des zircones synthétisées à différentes températures en fonction de la température de calcination

En augmentant la température de synthèse, la surface spécifique chute considérablement (Figure 4.3, droite). A $T_{cal} = 500$ °C, S_{BET} pour la ZrO₂-180-500 est inférieure à 10 m²/g alors qu'elle est supérieure à 50 m²/g pour les autres échantillons. Ceci pourrait provenir de la présence de résidus carbonés bloquant les pores.

Pour tous les échantillons : $ZrO_2-{}^iPr_2O-90$, $ZrO_2-{}^iPr_2O-110$ et $ZrO_2-{}^iPr_2O-150$, la surface spécifique diminue en fonction de la température de calcination jusqu'à devenir inférieure à 10 m²/g à 700 °C. Cette diminution provient en grande partie de l'augmentation de la taille des cristallites.

Echantillon	Sbet m²/g	Vp cm ³ /g	Taille des cristallites t nm	Taille des cristallites m nm
ZrO ₂ - ⁱ Pr ₂ O-90-NC	20	0,04		
ZrO ₂ - ⁱ Pr ₂ O-90-500	55	0,14	17	
ZrO ₂ - ⁱ Pr ₂ O-90-550	20	0,06	15	
ZrO ₂ - ⁱ Pr ₂ O-90-650	16	0,04	21	21
ZrO ₂ - ⁱ Pr ₂ O-90-700	5	0,02	23	24
ZrO ₂ - ⁱ Pr ₂ O-110-NC	21	0,04		
ZrO ₂ - ⁱ Pr ₂ O-110-500	95	0,20	12	
ZrO2- ⁱ Pr2O-110-550	40	0,09	13	19
ZrO2- ⁱ Pr2O-110-650	40	0,11	17	31
ZrO ₂ - ⁱ Pr ₂ O-110-700	20	0,07	25	25
ZrO ₂ - ⁱ Pr ₂ O-150-NC	80	0,03		
ZrO ₂ - ⁱ Pr ₂ O-150-500	60	0,07	6	
ZrO ₂ - ⁱ Pr ₂ O-150-550	45	0,06	13	
ZrO ₂ - ⁱ Pr ₂ O-150-650	40	0,13	30	16
ZrO ₂ - ⁱ Pr ₂ O-150-700	10	0,03	34	25
ZrO ₂ - ⁱ Pr ₂ O-180-NC	np*	np*	3	
ZrO ₂ - ⁱ Pr ₂ O-180-500	8	0,01	15	
ZrO ₂ - ⁱ Pr ₂ O-180-550	7	0,01	18	
ZrO ₂ - ⁱ Pr ₂ O-180-650	8	0,03	18	18
ZrO ₂ - ⁱ Pr ₂ O-180-700	6	0,02	17	18

Tableau 4.1 : Surfaces spécifiques, volumes poreux et taille des cristallites des différents échantillons ZrO₂ synthétisés à (90, 100, 150, 180 °C), non calcinés et calcinés à (500, 550, 650, 700 °C)

*non-poreux

La température de synthèse et la température de calcination ont donc une influence sur la texture et la structure de la zircone synthétisée par la voie éther. Les conditions optimales pour la synthèse de t-ZrO₂ avec une surface spécifique la plus élevée possible sont donc celles de l'échantillon ZrO₂-110-500 (S_{BET} = 95 m²/g, $v_t \approx 1$).

Ce sont les conditions utilisées pour la suite de ce travail pour la synthèse des échantillons de t-ZrO₂ nommés ZrO₂-ⁱPr₂O.

4.1.2 Caractérisations de la zircone « optimisée » et mécanisme

Plusieurs caractérisations sont effectuées sur la zircone tétragonale optimisée **ZrO₂-ⁱPr₂O** (Schéma 4.2).

$$ZrCl_{4} \xrightarrow{iPr_{2}O,CH_{2}Cl_{2}} \underbrace{\frac{Séchage}{110 \circ C, 3 j}}_{120 \circ C, P_{réd}, 6 h} \xrightarrow{Calcination}_{500 \circ C} ZrO_{2} \xrightarrow{i}Pr_{2}O$$

Schéma 4.2 : Réaction de synthèse de ZrO2 par voie éther de la zircone optimisée

Afin d'élucider le mécanisme de la réaction, le liquide de synérèse de ZrO_2 -ⁱ Pr_2O a été analysé par RMN ¹H. Le spectre montre la présence d'ⁱPrCl (88 % molaire), du donneur d'oxygène ⁱ Pr_2O (12 % molaire) et bien sûr du solvant de la réaction CH₂Cl₂ (*cf.* Figure 4.4). De plus l'analyse par Karl Ficher donne une quantité d'eau < 10 ppm.

Figure 4.4 : Spectre RMN 1H du liquide de synérèse de ZrO₂-ⁱP₂O

Cela démontre que la formation de zircone par la voie éther est bien non hydrolytique et résulte de réactions d'alcoxylation et de condensation, avec élimination de chlorure d'isopropyle comme montré dans le Schéma 4.3.

Schéma 4.3 : formation de ponts Zr-O-Zr par alcoxylation (1) et condensation (2)

4.1.2.1 Structure

La structure cristalline de la zircone ZrO_2 -ⁱ Pr_2O a été confirmée par des études d'analyse thermique différentielle (ATG/ATD), par DRX et par spectroscopie Raman. L'ATD permet de suivre l'évolution de la cristallisation de la zircone et les changements de phases cristallines entre 600 et 1400 °C. La m-ZrO₂ est stable thermodynamiquement jusqu'à 1130 °C, t-ZrO₂ est stable de 1130 °C jusqu'à 2300 °C, et c-ZrO₂ est stable à partir de 2300 °C. Chapitre 4 : Supports ZrO₂ et supports ZrO₂ promus par le rhénium ou le molybdène

Selon Yoshimura¹⁹⁸ la transformation m-ZrO₂ vers t-ZrO₂ intervient en chauffant à 1170 °C alors qu'au refroidissement la transformation t-ZrO₂ vers m-ZrO₂ s'effectue à \approx 950 °C (Schéma 4.4).

Schéma 4.4 : Températures de début de changement de phase des différentes transformations de la zircone selon Yoshimura¹⁹⁸

Figure 4.5 : ATD de la zircone ZrO₂-ⁱPr₂O pour deux cycles de chauffe et de refroidissement

La Figure 4.5 montre l'évolution de la cristallisation de ZrO_2 -ⁱ Pr_2O (calcinée à 500 °C). Lors de la première chauffe on observe un premier pic large endothermique à $T_{onset} \approx 663$ °C correspondant à la transformation de la t-ZrO₂ métastable en m-ZrO₂ stable. Le deuxième pic endothermique fin à $T_{onset} \approx 1179$ °C correspond à la transformation de la m-ZrO₂ vers la t ZrO_2 . Lors du premier refroidissement, le pic exothermique à $T_{onset} \approx 969$ °C correspond à la transformation de la t-ZrO₂ en m-ZrO₂. Ces températures sont en assez en accord avec celles de la littérature (Schéma 4.4). Lors de la deuxième chauffe, on n'observe qu'un seul pic endothermique à $T_{onset} \approx 1173$ °C correspondant à la transformation m-ZrO₂ vers la t-ZrO₂. Ceci montre que la transformation vers une phase tétragonale métastable est impossible.

La structure cubique de la zircone est très proche de la structure tétragonale et pour des nanocristaux il est très difficile de distinguer les deux structures à partir des DRX. Selon la littérature, la phase tétragonale se distingue de la cubique par la présence d'un pic de faible intensité à $2\theta = 42.8^{\circ}$ et par la présence de raies doubles comme (002)/(110), à 2θ : 34,79 et 35,24 °, 2θ : (112)/(200) à 2θ : 50,36 et 50,69 ° et (211)/(202) à 2θ : 61,19 et 62,96 °.

Afin d'observer au mieux ces différences, nous avons augmenté le temps d'analyse DRX de la zircone ZrO_2 -ⁱ Pr_2O , et enregistré un diffractogramme spécifiquement entre 40 et 45° 2 θ .

Figure 4.6 : Diffractogramme de ZrO_2 - ⁱ Pr_2O et zoom entre $2\theta = 40$ et 45° (trait rouge tétragonale et trait pointillé cubique)

La Figure 4.6 montre les deux diffractogrammes entre 2θ = 20 et 70° et 40 et 45°. Le pic de diffraction à 42,8° est bien visible et confirme que nous avons une zircone tétragonale et non pas cubique. Pour mettre en évidence les raies doubles dont nous avons discuté précédemment,

le diffractogramme expérimental a été affiné en utilisant le logiciel X'Pert (*cf.* § 2.2.1) afin de trouver la phase exacte qui lui correspond et d'évaluer la taille des cristallites. Le diffractogramme expérimental concorde avec le diffractogramme de Málek *et al.*¹⁹⁹ pour une zircone tétragonale métastable. Deux affinements selon les phases tétragonale et cubique ont été aussi effectués avec le logiciel WINPLOTR, en utilisant les paramètres du groupe d'espace P4₂/nmc (tétragonal) (paramètres de maille de Málek)¹⁹⁹ et les paramètres de maille d'une zircone Fm3m (cubique)²⁰⁰ (Figure 4.7).

Les deux affinements montrent une légère contribution de phase monoclinique (-111). Cette contribution est trop faible ($\nu m < 5\%$) pour permettre un affinement optimal. Néanmoins, l'accord est nettement meilleur avec les paramètres de la zircone tétragonale.

Figure 4.7 : Affinement selon la phase cubique (haut) et tétragonale (bas) de ZrO₂-ⁱPr₂O (calcinée à 500 °C) avec la méthode WINPLOTR et la différence (bleu) entre l'affinement (noir) et le diffractogramme expérimental (rouge)

Ceci est surtout observable au niveau des pics dédoublés (002)/(110) à 20 : 34,79 et 35,24° et (211)/(202) à 20 : 61,19 et 62,96°, et bien sûr du pic à 42,8°. Ceci confirme que ZrO₂-ⁱPr₂O est bien essentiellement tétragonale, avec une très faible proportion de phase monoclinique.

Le Tableau 4.2 montre les paramètres expérimentaux obtenus pour une phase métastable et ceux de la littérature (Málek *et al*).¹⁹⁹ Les paramètres expérimentaux calculés par la méthode WINPLOTR diffèrent légèrement des paramètres de la littérature (zircone préparée par sol-gel classique), au niveau du paramètre c qui est plus grand dans notre cas.

	Littérature 199	Expérimental (WINPLOTR)
a =b (Å)	3,5984	3,5958(3)
c (Å)	5,1520	5,1782(7)
$\boldsymbol{\alpha} = \boldsymbol{\beta} = \boldsymbol{\gamma} (^{\circ})$	90	90

Tableau 4.2 : Paramètres de la maille de la zircone tétragonale selon la littérature et paramètres de la zircone ZrO_2 -ⁱ Pr_2O

Comme nous l'avions énoncé dans le chapitre 1 (§ 1.4.1), la spectroscopie Raman est une méthode utile pour trancher entre les deux phases. Selon la théorie des groupes, les phases monoclinique, tétragonale et cubique ont respectivement 18 ($9A_g+9B_g$), 6 ($1A_{1g}+2B_{1g}+3E_g$) et 1(T_{2g}) modes actifs en Raman. Nous avons donc analysé par spectroscopie Raman à température ambiante l'échantillon ZrO_2 -ⁱ Pr_2O en utilisant trois lasers de longueurs d'onde différentes (473, 633 et 1064 nm) (en accumulant pendant 1 heure).

La Figure 4.8 montre les trois spectres Raman. Avec le laser à 1064 nm, les bandes sont très faibles probablement à cause de la faible énergie d'excitation. A 633 nm, on distingue les bandes correspondant aux vibrations de symétrie E_g (149 cm⁻¹) et A_{1g} (268 cm⁻¹). Malgré la fluorescence, le meilleur spectre est obtenu avec le laser 473 nm qui a la plus grande énergie d'excitation. On observe 5 des 6 bandes attendues pour une zircone tétragonale. L'absence de la vibration de symétrie E_g (vers 600 cm⁻¹) est probablement dûe à une plus grande symétrie de notre zircone tétragonale par rapport aux autres zircones de la littérature.²⁰¹ Les différences entre les fréquences expérimentales et théoriques sont reportées dans le Tableau 4.3.

Figure 4.8 : Spectres Raman à 633 nm, 476 nm et 1064 nm et raies actives de la phase tétragonale de la zircone dans ZrO₂-ⁱPr₂O

Tableau 4.3 : Raies actives en Raman des zircones t- ZrO_2 et c- ZrO_2 selon la littérature ; fréquences expérimentales ; et intensité de ZrO_2 -ⁱ Pr_2O

Nombre d'onde (Intensité) ²⁰² cm ⁻¹ m-ZrO ₂	Fréquence (Intensité) ²⁰³ cm ⁻¹ t-ZrO ₂	Nombre d'onde ²⁰¹ cm ⁻¹ c-ZrO2	Fréquence expérimentale (Intensité) Laser 473 nm cm ⁻¹ <u>ZrO₂-ⁱPr₂O</u>
$\begin{array}{c} 638 \ (m) \\ 617 \ (m) \\ 559 \ (f)^c \\ 538 \ (f) \\ 502 \ (f) \\ 476 \ (i) \\ 382 \ (m) \\ 348 \ (m) \\ 337 \ (m) \\ 307 \ (m) \\ 223 \ (f) \\ 192 \ (i) \\ 180 \ (i) \\ 104 \ (m) \end{array}$	149 (m) ^a 269 (i) ^b 319 (m) 461(m) 602 (m) 648 (m)	250-280 464-490 530-640(max550)	146 (m) 268 (i) 316 (m) 460 (m) 646 (m)

^amoyenne, ^bintense, ^cfaible, ^dlarge

Chapitre 4 : Supports ZrO₂ et supports ZrO₂ promus par le rhénium ou le molybdène

4.1.2.2 Morphologie et texture

La morphologie et la texture de l'échantillon ZrO₂-ⁱPr₂O ont été étudiées par MEB et physisorption d'azote.

L'image MEB de la Figure 4.9(a) de la zircone ZrO₂-ⁱPr₂O montre de fines particules primaires, avec des particules secondaires en forme de bloc. L'image TEM de la même figure montre des cristaux d'environ 12,5 nm, très proche de la taille des cristallites calculée précédemment par l'équation de Scherer à partir des diffractogrammes RX (12 nm). Selon l'image TEM (Figure 4.9 a), l'espace inter-réticulaire est de 2,99 Å. Ceci correspond à la distance entre les atomes selon le plan (101) d'une zircone tétragonale (d'après la littérature cette distance vaut 2,95 Å).¹⁹⁹

Figure 4.9 : (a) Images MEB et TEM de la ZrO₂-ⁱPr₂O calcinée à 500°C. (b) Structure tétragonale d'une zircone avec paramètres et distances expérimentales ^{204,205}

La Figure 4.10 montre l'isotherme d'adsorption/désorption d'azote et la distribution en taille de pores du ZrO_2 -ⁱ Pr_2O synthétisé à 110 °C, calciné à 500 °C et non-calciné. On remarque que la calcination a « libéré » la porosité. L'isotherme de cette zircone calcinée montre que le matériau est mésoporeux avec un isotherme de type IV(a) et une boucle d'hystérésis de type H1. La surface spécifique selon la méthode BET à la désorption est de **94 m²/g** et le volume poreux de **0,20 cm³/g** selon la méthode BJH à P/P°= 0,99. La distribution en taille de pores montre une distribution homogène relativement large avec un diamètre moyen de **7.0 nm**.

 $\label{eq:Figure 4.10} Figure \ 4.10: Isothermes \ d'adsorption \ désorption \ d'azote \ a \ 77 \ K \ et \ distributions \ de taille \ de \ pores \ de \ ZrO_2-^iPr_2O, \ calcinée \ a \ 500 \ ^{\circ}C \ et \ non \ calcinée$

4.1.3 Synthèse et caractérisations de zircones yttriées

Deux zircones yttriées avec différents pourcentages atomiques ont été synthétisées par la voie éther en utilisant des quantités stœchiométriques (avec 5 % d'excès) pour obtenir 1 g. Nous avons utilisé les conditions optimales déjà choisies précédemment (3 jours, 110 °C, 10 mL CH₂Cl₂), dans un autoclave de 23 mL. D'après la littérature, un faible taux d'yttrium permet de stabiliser la phase tétragonale métastable jusqu'à des températures de calcination de 800 °C. Au contraire, des taux supérieurs à 8 at% facilitent la formation de la phase monoclinique. Nous avons donc varié les pourcentages en yttrium selon l'équation du Schéma 4.5, et calciné les oxydes à différentes températures afin de voir l'effet de l'yttrium sur la structure (stabilité de la phase tétragonale) et sur la texture.

$$1-x \operatorname{ZrCl}_{4+} x \operatorname{YCl}_{3} \xrightarrow{i \operatorname{Pr}_{2} \operatorname{O}, \operatorname{CH}_{2} \operatorname{Cl}_{2}} \underbrace{ \begin{array}{c} \operatorname{S\acute{e}chage} \\ 120 \ ^{\circ}\operatorname{C}, \ \operatorname{P}_{r\acute{e}d}, \ 6 \ h \end{array}} \xrightarrow{ \begin{array}{c} \operatorname{Calcination} \\ \hline \operatorname{T}^{\circ}\operatorname{C}, \ 10 \ ^{\circ}\operatorname{C.min}^{-1} \end{array}} Zr_{1-x} \operatorname{Y}_{x}$$

Schéma 4.5 : Synthèse de zircones yttriées par voie éther, 110 °C, 3 jours
4.1.3.1 Composition des oxydes

Différents pourcentages atomiques d'yttrium ont été choisis 1, 3 et 8 at%. Les échantillons sont nommés selon le pourcentage atomique $Zr_{1-x}Y_x$. Les résultats d'EDX avant et après calcination sont reportés dans le Tableau 4.4. Avant calcination, on détecte la présence de Cl.

Echantillon	Y/Zr nominal	Non calciné	Calciné (500 °C, 5h, 10 °C. min ⁻¹)	
		Y/Zr (EDX)	Y/Zr (EDX)	
Zr0.988Y0.012	0,012	0,013	0,013	
Zr0.97Y0.03	0,031	0,268	0,246	
Zr0.92Y0.08	0,086	nd*	nd*	
*				

Tableau 4.4 : Rapports atomiques, avant et après calcination des trois échantillons de zircones yttriées

^{*}non-détecté

La totalité de l'yttrium est perdue à la synthèse pour l'échantillon $Zr_{0.92}Y_{0.08}$ contrairement aux synthèses à 1,2 et 3 at% d'Y. Dans ces cas la perte d'yttrium est très faible ou nulle, que ce soit lors de la synthèse ou lors de la calcination.

4.3.1.2 Structure, texture et morphologie

Le diagramme ZrO₂-YO_{1.5} est complexe et très difficile à déterminer. Il existe plusieurs phases en-dessous de 1200 °C (Figure 4.11 gauche) et selon Yashima²⁰⁶ la diffusion des cations (Y³⁺/Zr⁴⁺) est tellement lente qu'il faut 7 ans à ces cations pour parcourir 3 µm à 1200 °C. Donc à T<1200 °C, les traitements thermiques conventionnels ne permettent pas d'atteindre l'équilibre. Par ailleurs, dans le cas de synthèses sans frittage, à partir de précurseurs hydroxydes par exemple, la pression partielle en oxygène, les réactions chimiques et la présence d'eau peuvent affecter la stabilité des phases.²⁰⁶ Les scientifiques ont dû introduire un diagramme de phase métastable²⁰⁷ (lignes en pointillés fines indiquant T₀ dans la Figure 4.11 de droite).

Figure 4.11 : (gauche) Diagrammes d'équilibre du système ZrO₂-YO_{1,5} selon différents auteurs : mise en valeur de leurs divergences sur les domaines d'existence des phases.²⁰⁸ (droite) diagramme de phase métastable de ZrO₂-Y₂O₃ comme rapporté par Chevalier *et al*.^{207,209}

Ces diagrammes s'appliquent pour des frittages de poudres nanométriques homogènes. Les courbes ATD obtenues pour $Zr_{0.988}Y_{0.012}$ sont dans la Figure 4.12.

Figure 4.12 : ATD Zr_{0.988}Y_{0.012}-NC entre 400 et 1400 °C, vitesse de chauffe 10 °C.min⁻¹

Le pic endothermique large correspondrait à un réarrangement des cristaux dans la phase tétragonale métastable suivie d'une augmentation de la taille des cristallites (*cf.* Tableau 4.5). Lors de la chauffe, $Zr_{0.988}Y_{0.012}$ reste tétragonale, on n'observe pas la conversion en phase

monoclinique vers 950 °C. Lors du refroidissement, un pic exothermique fin à T_{onset} =564 °C marque le changement de la phase tétragonale vers la phase monoclinique.

Pour confirmer ces transformations de phases, des caractérisations par DRX et spectroscopie Raman à 633 nm (moyenne énergie) ont été réalisées après calcination à 500 °C, 700 °C et à 1400 °C pendant 5 h avec une vitesse de chauffe de 10 °C.min⁻¹. La Figure 4.13 gauche montre que l'échantillon Zr_{0.988}Y_{0.012} calciné à 500 °C ou à 700 °C possède une structure tétragonale. Ce n'est qu'après calcination à 1400 °C (et refroidissement) qu'elle change de phase et se transforme à 85 % en monoclinique. Les spectres Raman (Figure 4.13 droite), concordent avec les résultats obtenus par DRX de la Zr_{0.988}Y_{0.012} calcinée à 500, 700 et 1400 °C.

On peut observer des spectres qui correspondent à une t- ZrO_2 et à un mélange (t et m) pour la $Zr_{0.988}Y_{0.012}$ -1400 °C (Tableau 4.5). Une fluorescence importante est observée au niveau du spectre Raman à 633 nm de la $Zr_{0.988}Y_{0.012}$ -500 °C, et le spectre n'est pas exploitable.

 $\label{eq:Figure 4.13} Figure \ 4.13: Diffractogrammes \ (gauche) \ et \ spectres \ Raman \ à \ 633 \ nm \ (droite) \ de \ l'échantillon \\ Zr_{0.988}Y_{0.012} \ calciné \ à \ 500, \ 700, \ et \ 1400 \ ^{\circ}C$

Les valeurs reportées dans le Tableau 4.5 montrent que les deux zircones yttriées $Zr_{0.988}Y_{0.012}$ et $Zr_{0.97}Y_{0.03}$ sont stabilisées selon la phase tétragonale jusqu'à une température de calcination de 700 °C, contrairement à ZrO_2 -ⁱ Pr_2O . La taille des cristallites augmente avec la température de calcination.

Echantillon	T calcination $^{\circ}C$	vt ^a %	Taille des cristallites ^b nm	
			t	m
	500	98	9	-
ZrO ₂ - ⁱ Pr ₂ O	700	34	27	32
	1400	0	-	831
	500	100	7	-
Zr0.988Y0.012	700	100	16	-
	1400	14	85	72
	500	100	6	-
Zr0.97Y0.03	700	100	9	-
	1400	30	124	48

Tableau 4.5 : Fraction volumique de la phase tétragonale et taille des cristallites de ZrO_2 -ⁱ Pr_2O et des deux zircones yttriées

^afraction volumique de la phase tétragonale ; ^bCalculé à partir de l'équation de Scherrer

La Figure 4.14 qui suit, montre les spectres Raman de zircones $Zr_{0.988}Y_{0.012}$ -700, $Zr_{0.97}Y_{0.03}$ -700 et de la ZrO_2 -ⁱ Pr_2O calcinée à 700 °C. Les spectres Raman des zircones yttriées montrent uniquement les 6 bandes correspondantes à la structure tétragonale de la zircone.²¹⁰ Quant à ZrO_2 -ⁱ Pr_2O -700 °C, elle présente bien un mélange t et m.

 $\begin{array}{l} \mbox{Figure 4.14: Spectres Raman à 633 nm des échantillons ZrO_2-$^{i}Pr_2O -700, $Zr_{0.988}Y_{0.012}$-700 et $Zr_{0.97}Y_{0.03}$-700 calcinés à 700 °C, 5 h, 10 °C min^{-1} $ \end{array}$

Les échantillons $Zr_{0.988}Y_{0.012}$ -700 et $Zr_{0.97}Y_{0.03}$ -500 et $Zr_{0.97}Y_{0.03}$ -700 présentent des isothermes d'adsorption d'azote de type IV(a) contrairement à l'échantillon $Zr_{0.988}Y_{0.012}$ -500 qui présente

un isotherme de type II. Les distributions sont larges pour tous les échantillons sauf le $Zr_{0.988}Y_{0.012}$ -500.

Figure 4.15 : Isothermes et distributions de taille de pores des zircones yttriées et calcinées à 500 et 700 $^{\circ}\mathrm{C}$

Les deux échantillons de zircones yttriées, calcinés à 500 °C montrent des surfaces spécifiques comprises entre 95 et 150 m²/g. La surface spécifique et le volume poreux les plus élevés étant obtenues pour l'échantillon ayant le plus grand pourcentage atomique en yttrium. Après calcination à 700 °C, bien que la phase tétragonale soit stable, la surface spécifique diminue fortement (à cause de l'augmentation de la taille des cristallites de la phase tétragonale) (Tableau 4.6).

Febertiller	S bet ^a	Vp ^b	Dpc
Echantinon	m ² / g	cm ³ /g	nm
Zr0.988Y0.012-500	95	0,18	7
Zr0.988Y0.012-700	45	0,33	25
Zr0.97Y0.03-500	150	0,47	14
Zr _{0.97} Y _{0.03} -700	90	0,38	16

Tableau 4.6 : Caractéristiques texturales des supports yttriés calcinés à 500 et 700 °C, 5 h, 10 °C.min⁻¹

^aValeurs S_{BET} arrondies à $\pm 5 \text{ m}^2/\text{g}$. ^bVP ; volume poreux total à P/P0 = 0,99. ^cDP : Diamètre moyen des pores (BJH, désorption). ^dTaille des cristallites calculée avec l'équation de Scherrer.

4.2 Synthèse de m-ZrO2 par voie acétophénone

4.2.1 Conditions de synthèse et mécanisme

La synthèse par voie cétone est une méthode qui a été étudiée en collaboration avec le Dr Yanhui Wang, chercheur contractuel au laboratoire. Il s'agit d'une réaction à 240 °C pendant 18 h de $Zr(O^nPr)_4$ (à 70 % wt dans le ⁿpropanol) (< 500 ppm H₂O), en utilisant l'acétophénone (< 10 ppm H₂O) comme donneur d'oxygène et comme solvant (10,5 équivalents) (Schéma 4.6).

Schéma 4.6 : Synthèse de ZrO₂ avec la voie acétophénone

La zircone synthétisée par voie acétophénone et calcinée à 500 °C sera notée **ZrO₂-AP** (ZrO₂-AP-NC pour la zircone non calcinée). La synthèse de ZrO₂ par voie acétophénone met en jeu plusieurs réactions organiques. Nous avons essayé de mettre en évidence ces réactions en analysant le liquide de synérèse par RMN ¹H, GC-MS et par titration selon la méthode de Karl Fischer pour déterminer la quantité d'eau.

La Figure 4.16 montre les spectres RMN ¹H de l'acétophénone seule avant réaction et du liquide de synérèse après synthèse. Le spectre de l'acétophénone montre que le réactif ne contient pratiquement aucune impureté. Les signaux correspondants sont notés Ax sur les spectres. Le spectre du liquide de synérèse indique que plusieurs réactions se sont produites lors de la synthèse de la zircone. Nous n'avons pas réussi à attribuer tous les signaux, mais nous observons la formation entre autres de styrène (signaux notés Cx), de propène (Dx), de 1-phényléthanol (Ex) et probablement de polystyrène, montrant l'intervention de nombreuses réactions d'hydrogénation, de déshydratation, ou de polymérisation.

Chapitre 4 : Supports ZrO₂ et supports ZrO₂ promus par le rhénium ou le molybdène

Figure 4.16 : Spectres RMN ¹H de l'acétophénone et du liquide de synérèse après réaction de Zr(OⁿPr)₄ (70% dans ⁿPrOH) avec l'acétophénone (autoclave, 18h, 240 °C)

Grâce à l'utilisation de la GC-MS, on propose également la formation d'autres molécules comme le (oxybis(ethane-1,1-diyl))dibenzene, ou encore le di(n-propyl) éther (Figure 4.17). Dû au chevauchement des signaux en RMN ¹H, on ne pourra pas confirmer la formation de ces molécules.

Figure 4.17 : Autres molécules susceptibles d'être formées lors de la synthèse de la synthèse de ZrO₂ par la voie acétophénone

L'analyse par Karl Fischer confirme la formation d'eau au cours de la réaction (8000 ppm H_2O). Avant réaction le rapport molaire Zr : H_2O est de 1 : 0,02, après réaction il est de 1 : 0,57.

Nous ne pouvons donc pas confirmer le mécanisme de formation de ZrO_2 par la voie acétophénone car de très nombreuses réactions interviennent. Nous pouvons toutefois constater que la réaction avec l'acétophénone est loin d'être non hydrolytique car il y a formation d'eau *in situ*.

4.2.2 Caractérisation de ZrO₂-AP

Les caractérisations par DRX montrent que la zircone est déjà cristallisée selon une structure totalement monoclinique avant calcination. Cette structure est maintenue après calcination (Figure 4.18).

Figure 4.18 : Diffractogrammes de ZrO₂-AP-NC et ZrO₂-AP et Affinement des paramètres par X'Pert et déconvolution des aires des pics de diffraction de ZrO₂-AP

Pour le calcul de la taille des cristallites par l'équation de Scherrer, nous avons pris la moyenne des résultats obtenus à partir des largeurs à mi-hauteur des pics de (-111) et (111) dont les valeurs sont très proches.

Les images MEB et TEM (de la Figure 4.19) montrent que la zircone synthétisée par voie acétophénone est constituée de nanoparticules arrondies agrégées. L'image TEM montre qu'il y a différentes tailles de nanoparticules, allant d'environ 7 nm (en accord avec la taille de 6 nm déterminée par DRX), jusqu'à 10 nm. Elles sont orientées différemment selon m-ZrO₂ monoclinique avec différentes distances inter-réticulaires.

Figure 4.19 : Images MEB (a) et TEM (b et c) de ZrO₂-AP

Tableau 4.7 : Surface spécifique, volume poreux, diamètre des pores et taille des cristallites de ZrO₂-AP-NC et calciné à 500 $^\circ C$

Echantillon	Sbet ^a m ² /g	Vp ^b cm ³ /g	Dp ^c nm	Taille des cristallites ^d
	/8	· / 8		nm
ZrO ₂ -AP-NC	125	0,10	3	5
ZrO ₂ -AP	120	0,24	7	6

^aValeurs S_{BET} arrondies à $\pm 5 \text{ m}^2/\text{g}$. ^bVP : volume poreux total à P/P0 = 0,99. ^cDP : Diamètre moyen des pores (BJH, désorption). ^dTaille des cristallites calculée avec l'équation de Scherrer

Figure 4.20 : Isothermes et distribution de taille des pores de l'échantillons ZrO2-AP et ZrO2-AP-NC

La Figure 4.20 présente les isothermes d'adsorption désorption d'azote des deux échantillons calciné et non calciné. L'isotherme de l'échantillon non calciné est de type IV(a) avec une boucle d'hystérésis de type H2(a) (attribuée à des pores en forme de « bouteille »). Après calcination, l'allure de l'isotherme et la distribution des tailles de pores changent complètement. L'isotherme est de type II, la taille des pores augmente et la distribution de taille des pores est très large. La calcination, permet de libérer la porosité en éliminant les restes organiques. Par contre, la surface spécifique passe de 150 m²/g à 120 m²/g après calcination à 500 °C (

Tableau 4.7) avec un volume poreux de $0,24 \text{ cm}^3/\text{g}$ et un diamètre de pores moyen de 7 nm.

La voie acétophénone est donc une voie prometteuse pour la synthèse de supports de zircone monoclinique mésoporeux.

4.3 Synthèse de m-ZrO₂ par voie alcool

4.3.1 Conditions de synthèse et mécanisme

Avec M^{lle} Rimeh Mighri, stagiaire M2, nous avons étudié la synthèse de ZrO₂ monoclinique par voie alcool. Nous avons utilisé différents précurseurs et différents alcools, et étudié l'influence du solvant et du lavage. Ces résultats sont détaillés dans le rapport de M2 de M^{lle} Rimeh Mighri.

Les conditions choisies pour la synthèse de m-ZrO₂ par voie alcool mettent en jeu ZrCl₄ comme précurseur de zircone et EtOH qui joue le rôle de donneur d'oxygène et de solvant (excès de 12.8 équivalents). Il est à noter que ZrCl₄ n'est pas soluble dans les conditions stœchiométriques (2 équivalents). La température de synthèse a été fixée à 150 °C et le temps de réaction à 3 jours dans un autoclave de 23 mL sous pression autogène pour la synthèse de 1 g de ZrO₂, selon le Schéma 4.7.

$$ZrCl_4 \xrightarrow{EtOH} \underbrace{Sechage}_{150 \text{ °C}, 3 \text{ j}} \xrightarrow{Sechage} \underbrace{Calcination}_{2rO_2-EtOH} ZrO_2-EtOH$$

Schéma 4.7 : Synthèse de zircone avec la voie éthanol

Le mécanisme de formation de ZrO_2 par la voie éthanol (ZrO_2 -EtOH) a été étudié par RMN ¹H du liquide de synérèse. Le spectre donné en Figure 4.21 montre la présence de chloroéthane (EtCl, signaux notés Ax), de diéthyléther (Et₂O, Cx), d'éthanol (EtOH, Bx) et d'**H**₂O. Le rapport molaire EtCl/Et₂O/EtOH vaut 1,64/2,57/6,02. L'analyse par Karl Fischer du liquide de

synérèse montre qu'on a approximativement 10000 ppm de H₂O, soit 1% massique d'eau dans le liquide de synérèse.

Figure 4.21 : Spectre RMN du liquide de synérèse de la synthèse de zircone à 150 °C, 3 jours par la voie éthanol ZrO₂-EtOH

La formation d'EtCl montre qu'il y a un mécanisme non hydrolytique avec formation de groupement OEt (alcoxylation) *in situ* suivi d'une condensation avec un groupement Zr-Cl (Équations 4.3).

La formation d'eau et de diéthyléther suggère une déshydratation de l'éthanol au cours de la synthèse selon l'Équation 4.4.

2 EtOH \longrightarrow Et₂O + H₂O

Équation 4.4

Cette eau permet la formation de ponts Zr-O-Zr par hydrolyse-condensation des groupements Zr-Cl (Équation 4.5).

La réaction de synthèse de ZrO₂ par la voie éthanol n'est donc pas totalement non hydrolytique. D'après les quantités mises en réaction, la composition du mélange de départ est

ZrCl₄ + 12,80 EtOH

A partir des intégrations ¹H RMN on peut écrire le bilan suivant :

Pour un mécanisme purement non hydrolytique (Équations 4.3) on aurait formation de 2 moles de EtCl par mole de Zr :

$ZrCl_4 + 2 EtOH \longrightarrow ZrO_2 + 2 HCl + 2 EtCl$

On a formation de 1,64 moles d'EtCl pour 1 mole de Zr, ce qui correspond à environ 82 % de condensation non hydrolytique. Les 18 % restants résultent d'un mécanisme hydrolytique (Équation 4.5).

4.3.2 Caractérisations de ZrO₂-EtOH

La caractérisation par DRX montre que ZrO_2 -EtOH est cristallisé selon une structure purement monoclinique, avant et après calcination (Figure 4.22). La taille des particules augmente fortement après calcination, passant de 4 à 8 nm (Tableau 4.8).

Figure 4.22 : Diffractogramme de ZrO2-EtOH non calciné et calciné à 500 °C, 5h, 10 °C.min⁻¹

Les images MEB montrent que la zircone synthétisée par voie éthanol est sous forme d'agrégats sans forme définie d'environ 50 à 150 nm. L'image TEM de la Figure 4.23 montre que ces agrégats sont constitués de particules primaires cristallines d'approximativement 8 à 10 nm, en adéquation avec la taille des cristallites calculée par l'équation de Scherrer. Les distances interréticulaires correspondent aux distances attendues pour une zircone monoclinique.

Figure 4.23 : Images MEB et TEM de ZrO₂-EtOH

Tableau 4.8 : Caractéristiques texturales et taille des cristallites de ZrO₂-EtOH et de ZrO₂-EtOH-NC

	SBET ^a	Vpb	Dp ^c	ТС
	m²/g	cm³/g	nm	nm
ZrO ₂ -EtOH-NC	350	0,23	4	4
ZrO ₂ -EtOH	130	0,25	6	8

^aValeurs S_{BET} arrondies à $\pm 5 \text{ m}^2/\text{g}$. ^bVP : volume poreux total à P/P0 = 0,99. ^cDP : Diamètre moyen des pores (BJH, désorption). ^dTaille des cristallites calculée avec l'équation de Scherrer.

Les isothermes d'adsorption-désorption d'azote sont intermédiaires entre les types II et IV(a) (Figure 4.24). La surface diminue après calcination à 500 °C, passant de 350 m²/g à 130 m²/g, avec un volume poreux de 0,24 cm³/g. La distribution de taille de pores avant calcination montre la présence de petits mésopores (et micropores) de taille inférieure à 5 nm. Après calcination la distribution est beaucoup plus large, avec des mésopores de tailles comprises entre 3 et 25 nm, pour un diamètre moyen de 6 nm.

La voie éthanol est aussi une voie prometteuse pour la synthèse de supports de zircone monoclinique mésoporeux, c'est celle que nous avons choisi aussi pour la synthèse de supports promus.

Figure 4.24 : Isothermes et distribution de tailles de pores de la zircone synthétisée par voie alcool avant et après calcination à 500 °C

4.5 Supports ZrO₂ promus par le rhénium ou le molybdène avec les voies éther et alcool

4.5.1 Synthèse et caractérisation des supports promus par le rhénium

Les supports promus, avec différents pourcentages massiques de Re dans l'oxyde, sont synthétisés selon les voies éther (ⁱPr₂O) et alcool (EtOH) (Schéma 4.8). Pour les calculs, nous avons supposé que l'oxyde de rhénium obtenu est sous la forme ReO_{3.5} (Re⁷⁺, le plus haut degré d'oxydation du rhénium). Les matériaux sont synthétisés suivant les conditions optimales décrites auparavant avec ces deux voies de synthèse.

Schéma 4.8 : Synthèse des supports promus par le Re selon les voies éther (ⁱPr₂O) et alcool (EtOH)

Après synthèse, tous les échantillons ont été ouverts en boite à gants, séchés dans un tube de schlenk sous pression réduite, puis calcinés dans un four tubulaire sous air sec ($80 \ \% \ N_2$, 20% O_2) afin d'éviter tout contact avec l'air humide qui favorise la perte de Re.¹⁸⁶ Les quantités de réactifs mises en jeu sont indiquées dans les Tableau 2.5 et 2.3 du chapitre 2. La couleur des poudres après calcination varie du gris clair au gris foncé suivant le taux de rhénium.

4.5.1.1 Composition des oxydes

Nous avons préparé 4 échantillons avec deux différents pourcentages en masse de rhénium (\cong 4 et \approx 6%) et en utilisant nos 2 voies de synthèse. Dans le Tableau 4.9, les échantillons sont dénommés ZrO₂-xReO_{3.5}-Y où x est le rapport Re/Zr (atomique) attendu d'après les masses de précurseurs effectivement utilisées pour la synthèse (Re/Zr nominal) et Y le donneur d'oxygène utilisé. Suivi du pourcentage massique nominal du Re dans l'oxyde.

Echantillon		Non calciné	Cal	lciné
	Re/Zr	Re/Zr	Re/Zr	wt% Re
	Nominal	EDX	EDX	EDX
ZrO2-0.028ReO3.5- ⁱ Pr2O 4.0 wt% Re	0,028	0,027	0,025	3,6
ZrO ₂ -0.044ReO _{3.5} - ⁱ Pr ₂ O 6.1 wt% Re	0,044	0,043	0,042	5,8
ZrO ₂ -0.034ReO _{3.5} -EtOH 4.8 wt% Re	0,034	0,034	0,033	4,7
ZrO ₂ -0.050ReO _{3.5} -EtOH 6.8 wt% Re	0,050	0,049	0,048	6,7

Tableau 4.9 : Compositions des supports ZrO₂ promus au Re avec EDX avant et après calcination

Nous avons quantifié le rhénium avant et après calcination par EDX afin de déterminer la perte éventuelle de cet élément lors de la synthèse ou durant l'étape de calcination. Les résultats sont rapportés dans le Tableau 4.9. Pour les échantillons non calcinés comme pour les échantillons calcinés les rapports obtenus par EDX sont proches des rapports nominaux, il n'y a donc pas

de perte de rhénium à la synthèse ou à la calcination. On a donc un très bon contrôle de la composition des xérogels par ces deux méthodes de synthèse.

4.5.1.2 Structure, texture et morphologie

Le pourcentage de Re n'a pas d'influence sur la structure cristalline de la zircone, qui reste tétragonale pour les échantillons promus au Re synthétisés avec la voie éther et monoclinique pour les échantillons synthétisés par la voie alcool (EtOH) (Figure 4.25). Aucune raie ne correspond à l'oxyde de rhénium ReO₃ ou Re₂O₇. Le Re est bien dispersé sur tous les échantillons.

Figure 4.25 : Diffractogrammes des supports ZrO₂ promus par le Re synthétisés par les voies éther et alcool. Trait pointillé noir (m-ZrO₂) trait bleu (t-ZrO₂), rouge et vert (ReO₃ et Re₂O₇)

La texture des échantillons promus par le Re et calcinés à 500 °C dépend du taux de Re (Figure 4.26,

Tableau 4.10). Les deux isothermes d'adsorption désorption d'azote (à 77 K) des échantillons synthétisés par voie éther sont de type IV(a), avec une boucle d'hystérésis de type H2(a) et une distribution de taille de pores relativement étroite. Les deux échantillons sont bien cristallisés selon la phase tétragonale et la taille des particules reste proche de 10 nm.

Echantillon	Sbet ^a	Vp ^b	Dpc	ν_t^d	Vm ^e	Taille cristal	e des llites ^f
Lenuntinon	m²/σ	m²/σ	nm	%	%	nr	n
	m /s	m /8	11111	70	70	t	m
ZrO ₂ - ⁱ Pr ₂ O	95	0,20	7	100	-	12	-
ZrO ₂ -0.028ReO _{3.5} - ⁱ Pr ₂ O	70	0.12	6	100		12	
4.0 wt% Re	/0	0,15	0	100	-	15	-
ZrO2-0.044ReO3.5- ⁱ Pr2O	00	0.27	10	05	5	10	
6.1 wt%Re	90	0,27	12	95	5	10	-
ZrO ₂ -EtOH	130	0,24	6	-	100	-	6
ZrO ₂ -0.034ReO _{3.5} -EtOH	140	0.22	F		100		5
4.8 wt% Re	140	0,22	5	-	100	-	5
ZrO2-0.050ReO3.5- EtOH	160	0.21	F		100		2
6.8 wt%Re	100	0,21	5	-	100	-	3

Tableau 4.10 : Caractéristiques texturales des différents supports calcinés à 500 °C, taille des cristallites et fraction volumique des phases tétragonale et monoclinique

^aValeurs S_{BET} arrondies à ± 5 . ^bVp : volume poreux total à P/P0 = 0,99. ^cDP : Diamètre moyen des pores (BJH, désorption). ^dfraction volumique de la phase tétragonale. ^efraction volumique de la phase monoclinique. ^fTaille des cristallites calculée avec l'équation de Scherrer.

Quant à la surface spécifique des deux échantillons promus au Re synthétisés par la voie EtOH est supérieure à celle de ZrO₂-EtOH dû à une diminution de la taille des cristallites, surtout pour l'échantillon contenant 6,8 wt% de Re.

Figure 4.26 : Isothermes et distributions de taille des pores des échantillons synthétisés par voie éther et alcool avec les deux pourcentages en Re

Les images obtenues par MEB des échantillons ZrO₂-0.034ReO_{3.5}-EtOH et ZrO₂-0.028ReO_{3.5}-ⁱPr₂O (Figure 4.27) montrent des morphologies différentes. Avec ⁱPr₂O les particules primaires semblent être agrégées pour former des fibres alors qu'avec EtOH, on a des agrégats denses (comme pour la zircone non dopée). La voie de synthèse a donc une influence non seulement sur la structure de la zircone mais aussi sur sa morphologie.

Figure 4.27 : Images MEB de ZrO₂-0.028ReO_{3.5}-EtOH (gauche) et ZrO₂-0.034ReO_{3.5}-ⁱPr₂O (droite) calcinés à 500 °C,5 h,10 °C.min⁻¹

La composition de « surface » de l'échantillon ZrO₂-0.044ReO_{3.5}-iPr₂O a été déterminée par XPS. Après calcination, le rapport Re/Zr obtenu par XPS n'est que légèrement supérieur à celui déterminé par EDX, alors que pour les supports TiO₂-Re₂O₇, il était 2 fois supérieur (Tableau 4.11). Ceci peut s'expliquer par la plus faible taille des cristallites dans l'échantillon ZrO₂-0.044ReO_{3.5}-iPr₂O, environ 10 nm, contre 22 nm pour l'échantillon TiO₂-0.00182ReO_{3.5}. La profondeur d'analyse étant comparable à la taille des cristallites, on ne peut plus parler d'analyse de surface. Il n'est donc pas possible de démontrer par cette méthode si le Re a migré vers la surface. La migration des espèces de Re a cependant déjà été observée dans le cas de solutions solides TiO₂-Re₂O₇ (ce travail) et Si-Al-Re.⁴⁶ Il est donc très probable qu'elle intervienne également pour ces solutions solides ZrO₂-Re₂O₇.

Tableau	4.11 :	Compositio	n atomique	du si	upport	$ZrO_2-0.0$	$44 \text{ReO}_{3.5}$ - ⁱ Pr ₂ C	calcinés	à 500) °C/5h/10
°C.min ⁻¹	par ED	OX et XPS. V	/aleurs norm	ées à	1 % Ti +	%Re +%	O = 100%			

	ZrO ₂ -0.0441	ReO _{3.5} - ⁱ Pr ₂ O
	EDX	XPS
At% Zr	34,0	38,6
At% Re	1,2	1,8
At% O	64,8	59,5
Re/Zr	0,035	0,046

L'analyse XPS permet de confirmer le degré d'oxydation des espèces du Re dans notre échantillon. D'après la littérature, la position du pic attribué au Re $4f_{7/2}$ varie en fonction du degré d'oxydation, de 39,7 eV (Re⁰) jusqu'à 46,7 eV (Re⁷⁺) (Re₂O₇).²¹¹

Figure 4.28 : Spectre XPS 4f du Re de ZrO₂-0.044ReO_{3.5}-iPr₂O (calciné)

Dans notre cas, le pic Re $4f_{7/2}$ est situé à 45,7 eV, ce qui montre que le Re est principalement au degré d'oxydation 7 (Figure 4.28). Afin d'étudier la nature des espèces du Re dans nos différents échantillons, une analyse par spectroscopie Raman a été effectuée à 633 nm.

Figure 4.29 : Spectres Raman des échantillons Re₂O₇/ZrO₂ (a) déshydratés et (b) hydratés présentés par Vuurman *et al.*¹⁸⁹

D'après Vuurman *et al.*¹⁸⁹ en conditions ambiantes l'oxyde de rhénium est hydraté et possède une structure tétraédrique analogue à celle de l'ion ReO_4^- en solution. Ceci est caractérisé par une bande intense à \approx 970 cm⁻¹ et une bande de plus faible intensité à \approx 920 cm⁻¹ (Figure 4.29).

Au contraire, dans les conditions anhydres, l'oxyde de Re serait présent sous forme d'espèces $Re(=O)_3O$ -, de symétrie C_{3v} avec trois liaisons Re=O terminales et une liaison Re-O-support, conduisant à une bande intense entre 995 et 1009 cm⁻¹ selon le taux de Re (Figure 4.30).

Figure 4.30 : Spectres Raman des différents échantillons promus par le Re synthétisés par les voies éther et alcool

Les spectres Raman des échantillons préparés par voies éther et alcool sont différents. Pour les échantillons préparés par la voie alcool, nous observons deux bandes à 983 cm⁻¹ et 940 cm⁻¹ qui suggèrent que les espèces du Re sont hydratées. L'échantillon préparé par voie éther montre une bande à 1001 cm⁻¹, suggérant la présence d'espèces monomères $Re(=O)_3O$ - en forte interaction avec la zircone. La bande intense à 983 cm⁻¹ (la bande à 940 cm⁻¹ est par contre peu visible) indiquerait qu'une proportion importante des espèces du Re est hydratée.

4.5.2 Synthèse et caractérisation des supports promus par le molybdène

Nous avons synthétisé des supports promus avec différents pourcentages massiques de Mo en utilisant les voies éther (ⁱPr₂O) et alcool (EtOH) comme montré dans le Schéma 4.9. Pour nos calculs nous avons supposé que l'oxyde de molybdène obtenu après calcination soit MoO₃.

$$ZrCl_{4} + xMoCl_{5} \xrightarrow{iPr_{2}O,CH_{2}Cl_{2}} \xrightarrow{Sechage} ZrO_{2}-xMoO_{3}-iPr_{2}O$$

$$ZrCl_{4} + xMoCl_{5} \xrightarrow{EtOH} \xrightarrow{Sechage} ZrO_{2}-xMoO_{3}-EtOH$$

Schéma 4.9 : Synthèse des supports promus avec Mo selon les voies éther (ⁱPr₂O) et alcool (EtOH)

Les synthèses ont été effectuées dans les mêmes conditions que celles présentées précédemment. Pour la voie éther, on utilise un léger excès de donneur d'oxygène (5%). Pour 1 g de support promu, nous avons utilisé 10 mL de dichlorométhane pour la voie éther et un excès de 12,8 équivalents pour la voie alcool. Les autoclaves sont ouverts sous la hotte, séchés et calcinés 5 h à 500 °C dans un four à moufle. Les quantités de réactifs mises en jeu sont indiquées dans les Tableau 2.5 et 2.3 du chapitre 2. Toutes les poudres après calcination ont une couleur verdâtre.

4.5.2.1 Composition des oxydes

Nous avons préparé 4 échantillons avec des pourcentages en masse de molybdène de 4 et 6 % pour chaque voie de synthèse. Dans le tableau suivant les échantillons sont notés ZrO₂-xMoO₃-Y où x est le rapport Mo/Zr atomique attendu (d'après les masses de précurseurs utilisées pour la synthèse) et Y le donneur d'oxygène utilisé. Enfin, on peut trouver le pourcentage massique nominal du Mo dans l'oxyde.

Nous n'observons pas de perte en molybdène, ni lors de la synthèse, ni après l'étape de calcination (aux erreurs expérimentales près). Les deux méthodes de synthèse permettent donc un bon contrôle de la composition (Tableau 4.12).

Echantillon		Non calciné	Ca	lciné	
	Mo/Zr	Mo/Zr	Mo/Zr	wt% Mo	
	Nominal	EDX	EDX	EDX	
ZrO2-0.055M0O3- ⁱ Pr2O	0.055	0.051	0.051	27	
4.0 wt% Mo	0,055	0,031	0,031	5,7	
ZrO2-0.085M0O3- ⁱ Pr2O	0.085	0.081	0.078	57	
6.0 wt% Mo	0,085	0,081	0,078	5,7	
ZrO2-0.055MoO3-EtOH	0.055	0.052	0.052	2.8	
4.0 wt% Mo	0,033	0,032	0,032	5,8	
ZrO2-0.085M0O3- EtOH	0.085	0.085	0.085	6.0	
6.0 wt% Mo	0,085	0,085	0,085	0,0	

Tableau 4.12 : Compositions des supports ZrO₂ promus par le Mo avec EDX avant et après calcination

4.5.2.2 Structure et texture

Les échantillons synthétisés par la voie éther ont une structure majoritairement tétragonale avec environ 15 % de phase monoclinique (Figure 4.31,Tableau 4.13), contre moins de 5 % pour ZrO₂-ⁱPr₂O. Il semble donc que la présence de molybdène favorise la formation de zircone monoclinique. La taille des cristallites de la phase tétragonale diminue légèrement avec le taux de Mo (Tableau 4.13). Les échantillons synthétisés par la voie éthanol ont une structure totalement monoclinique avec une taille de cristallites qui diminue légèrement avec le taux de Mo.

Figure 4.31 : Diffractogrammes des supports ZrO₂ promus par le Mo synthétisés par les voies éther et alcool. Trait pointillé noir (m-ZrO₂) trait bleu (t-ZrO₂), trait vert (MoO₃)

	Sbet ^a m²/g	Vp ^b m²/g	Dp ^c nm	Vt ^d %	Vm ^e %	Taille crista (nr	e des llites ^f n)
						t	m
ZrO ₂ - ⁱ Pr ₂ O	94	0,20	7	98	2	12	
ZrO2-0.055MoO3- ⁱ Pr2O 4.0 wt% Mo	105	0,33	13	85	15	11	5
ZrO2-0.085MoO3- ⁱ Pr2O 6.1 wt% Mo	130	0,26	7	89	10	8	5
ZrO ₂ -EtOH	130	0,24	6		100		6
ZrO2-0.055MoO3-EtOH 4.0 wt% Mo	140	0,22	5		100		5
ZrO2-0.085MoO3- EtOH 6.0 wt% Mo	165	0,21	5		100		4

Tableau 4.13 : Caractéristiques texturales des différents supports calcinés à 500 °C, taille des cristallites et fraction volumique des phases tétragonale et monoclinique

^aValeurs S_{BET} arrondies à ±5 ; ^bVP : volume poreux total à P/P0 = 0,99. ^cDP : Diamètre moyen des pores (BJH, désorption) ; ^d fraction volumique de la phase tétragonale ; ^efraction volumique de la phase monoclinique ; ^ftaille des cristallites calculée avec l'équation de Scherrer à partir des réflexions (-111) et (111) de la m-ZrO₂ et (101) de la t-ZrO₂.

Les isothermes d'adsorption/désorption d'azote à 77 K dans la Figure 4.32 montrent des isothermes intermédiaires allant du type IV(a) au type II. La taille de pores moyenne varie de 5 nm (ZrO_2 -0.085MoO_3- EtOH) à 13 nm (ZrO_2 -0.055MoO_3- ⁱPr₂O).

Le pourcentage de Mo a peu d'influence sur la structure mais influence la texture. La surface spécifique augmente avec le pourcentage en poids de Mo, allant jusqu'à 130 m²/g pour ZrO₂-0.044MoO₃-ⁱPr₂O et 160 m²/g pour ZrO₂-0.044MoO₃- EtOH.

Figure 4.32 : Isothermes d'adsorption/désorption d'azote à 77 K et distribution des tailles de pores des échantillons ZrO₂ promus par le Mo synthétisés par voie éther et alcool

Une collaboration avec le groupe du Pr J. Pinkas (Brno, République Tchèque), nous a permis d'effectuer des analyses XPS de certains de nos échantillons (Tableau 4.14). Le rapport Mo/Zr obtenu par XPS pour les échantillons ZrO₂-0.055MoO₃-ⁱPr₂O et ZrO₂-0.085MoO₃-ⁱPr₂O après calcination montre un rapport supérieur d'environ 40% à celui déterminé par EDX, alors que pour les supports TiO₂-Re₂O₇, il était deux fois supérieur. Ceci peut s'expliquer par la plus faible taille des cristallites (4 à 11 nm) des échantillons ZrO₂-MoO₃; la profondeur d'analyse devenant comparable à la taille des cristallites. Il n'est pas possible de conclure que le molybdène a migré vers la surface. Mais il est très probable que cette migration intervienne, comme observé précédemment pour des catalyseurs Si-Al-Mo.⁴³

Le spectre de la Figure 4.33 sur l'échantillon synthétisé par la voie éther montre des pics à 235,9 eV et 232 eV, qui correspondent au Mo $3d_{3/2}$ et Mo $3d_{5/2}$, respectivement. La position des pics démontrent que le Mo est au degré d'oxydation 6^+ .¹⁹³

Tableau 4.14 : Composition atomique des supports calcinés à 500 °C/5h/10 °C.min⁻¹ par EDX et XPS. Valeurs normées à %Ti + %Mo +%O = 100%.

	ZrO ₂ -0.055	ZrO2-0.055MoO3- ⁱ Pr2O		5M0O3- ⁱ Pr2O
	EDX	XPS	EDX	XPS
At% Zr	31,1	37,3	31,4	36,1
At% Mo	1,6	2,7	2,1	3,7
At% O	67,3	60,0	66,6	60,4
Mo/Zr	0,05	0,07	0,07	0,10

Figure 4.33 : Spectre XPS du Mo 3d dans l'échantillon ZrO₂-0.085MoO₃-iPr₂O

Comme pour nos échantillons promus au Re, nous avons étudié la nature des espèces du Mo dans nos différents échantillons par spectroscopie Raman à 633 nm. Pour des catalyseurs MoO_3/m -ZrO₂, Weckhuysen¹⁹⁵ observe deux bandes à 996 cm⁻¹ et à 850 cm⁻¹. Il attribue la bande à 996 cm⁻¹ à la vibration v_s[Mo=O] et celle à 850 cm⁻¹ aux vibrations symétriques v_s[Mo-O-Mo] ou antisymétriques v_{as}[O-Mo-O] dans des espèces mono-oxo dimères ou polymères (Figure 4.34).

 $\label{eq:Figure 4.34} Figure \ 4.34: Espèces \ d'oxyde \ de \ molybdène \ monooxo \ dimère \ présentes \ à la \ surface \ du \ ZrO_2 \ selon \\ Weckhuysen^{195}$

Figure 4.35 : Spectres Raman des échantillons promus par le Mo synthétisés par la voie éther et alcool entre 1100 et 700 cm⁻¹

Les spectres Raman de nos zircones promues au molybdène (Figure 4.35) montrent dans tous les cas deux signaux larges, à environ 940 et 850 cm⁻¹ (voie alcool) et à environ 965 et 825 cm⁻¹ (voie éther). Les bandes à 940 ou 965 cm⁻¹ pourraient éventuellement correspondre à des vibrations v_s [Mo=O] et celles à 850 ou 825 cm⁻¹ aux vibrations v_s [Mo-O-Mo] ou v_{as} [O-Mo-O] dans des espèces monooxo dimères ou polymères (Figure 4.34).

Quoi qu'il en soit, les spectres dépendent clairement de la voie de synthèse utilisée et donc probablement de la structure de la phase zircone (monoclinique dans la voie alcool, tétragonale dans la voie éther).

4.6 Supports solutions solides ZrO₂-TiO₂

Deux solutions solides $Zr_{(1-x)}Ti_xO_2$ (x = 0,1 et 0,5) ont été synthétisés par la voie éther (ⁱPr₂O, 2,1 équivalents) dans les conditions présentées au début de ce chapitre (3 jours, 110 °C, dans le dichlorométhane).

4.6.1 Synthèse et caractérisation de Ti0.5Zr0.5O2

Après synthèse, l'échantillon a été calciné à 500 °C pendant 5 heures à 10 °C.min⁻¹ puis éventuellement calciné à nouveau jusqu'à 700 °C (mêmes conditions) afin de voir l'influence de la température de calcination sur la structure, la texture et la morphologie du matériau. Ces deux échantillons sont notés $Zr_{0.5}Ti_{0.5}O_2$ -X (X=500 ou 700) où X est la température de calcination (Schéma 4.10).

$$0.5 \operatorname{ZrCl}_{4+} 0.5 \operatorname{TiCl}_{4-} \underbrace{{}^{i}\operatorname{Pr}_{2}\operatorname{O}, \operatorname{CH}_{2}\operatorname{Cl}_{2}}_{110 \ ^{\circ}\operatorname{C}, 3 \ j} \xrightarrow{\text{Séchage}} \underbrace{\begin{array}{c} \operatorname{Séchage}}_{120 \ ^{\circ}\operatorname{C}, \ P_{r\acute{e}d}, \ 6 \ h} \xrightarrow{\text{Calcination}}_{T \ ^{\circ}\operatorname{C}, \ 10 \ ^{\circ}\operatorname{C.min}^{-1}, 5h} \operatorname{Zr}_{0.5}\operatorname{Ti}_{0.5}\operatorname{O}_{2}$$

Schéma 4.10 : Synthèse des solutions solides $\operatorname{Zr}_{0.5}\operatorname{Ti}_{0.5}\operatorname{O}_{2}$ par voie éther, 110 °C, 3 jours

TiZrO₄ a déjà été synthétisé en 1997 par la même réaction, mais effectuée en tube scellé et avec le chloroforme comme solvant.¹⁵⁵

Dans nos conditions de synthèse, le diffractogramme RX (Figure 4.36) du composé $Zr_{0.5}Ti_{0.5}O_2$ suggère que la solution solide est encore amorphe lorsqu'il est calciné à 500 °C. Cependant, le spectre Raman du même composé montre qu'il a déjà une structure très proche de celle de ZrTiO₄ orthorhombique. Ceci suggère qu'à 500 °C on a déjà formation de ZrTiO₄ mais que la taille des cristallites est très faible (< 2-3 nm).

Après la calcination à 700 °C, le diffractogramme montre une phase orthorhombique ZrTiO₄ avec une taille de cristallites de 11 nm (Figure 4.36,Tableau 4.15). Comme observé dans le Tableau 4.15, la surface spécifique du matériau chute assez fortement après la calcination à 700 °C.

Figure 4.36 : Diffractogrammes (gauche) et spectres Raman à 633 nm (droite) de l'échantillon $Zr_{0.5}Ti_{0.5}O_2$ calciné à 500 puis à 700 °C

Tableau 4.15 : Surface spécifique, volume poreux, diamètre des pores et taille des cristallites de l'échantillon $Zr_{0.5}Ti_{0.5}O_2$ calciné à 500 °C et recalciné à 700 °C

Echantillon	S _{BET} ^a m ² /g	Vp ^b m ² /g	Dp ^c nm	Taille des cristallites ^d nm
Ti0.5Zr0.5O2-500	170	0,31	5	
Ti0.5Zr0.5O2-700	60	0,22	10	11

^aValeurs S_{BET} arrondies à $\pm 5 \text{ m}^2/\text{g}$; ^bvolume poreux total à P/P0 = 0,99. ^cDP: Diamètre moyen des pores (BJH, désorption);^dtaille des cristallites calculée avec l'équation de Scherrer à partir de la réflexion (111) du O-TiZrO₄.

Les isothermes d'adsorption désorption d'azote à 77 K sont de type II pour $Zr_{0.5}Ti_{0.5}O_2$ -500 et de type VI(a) pour le $Zr_{0.5}Ti_{0.5}O_2$ -700. La distribution de taille de pores est relativement étroite dans les deux cas (Figure 4.37) avec une taille de pores centrée respectivement à 5 et 10 nm.

Figure 4.37 : Isothermes et distributions de taille de pores de l'échantillon $Zr_{0.5}Ti_{0.5}O_2$ calciné à 500 °C et à 700 °C

Les images MEB (Figure 4.38) montrent que la solution solide $Zr_{0.5}Ti_{0.5}O_2$ -500 est sous forme d'agrégats assez ouverts de taille variable avec des particules primaires sphériques agrégées. Il n'y a pas de changement de morphologie lors de la deuxième calcination à 700 °C.

Figure 4.38 : Images MEB de l'échantillon Zr_{0.5}Ti_{0.5}O₂ calciné à 500 °C et à 700 °C

4.6.2 Synthèse et caractérisation de Zr0.9Ti0.1O2

Nous avons synthétisé Zr_{0.9}Ti_{0.1}O₂ dans les mêmes conditions que Zr_{0.5}Ti_{0.5}O₂ (Schéma 4.11).

$$0.9 \operatorname{ZrCl}_{4+} 0.1 \operatorname{TiCl}_{4} \xrightarrow{i_{Pr_{2}O, CH_{2}Cl_{2}}} 110 \,^{\circ}\text{C}, 3 \,^{\circ}\text{J} \xrightarrow{\text{Séchage}} \frac{\text{Calcination}}{120 \,^{\circ}\text{C}, P_{\text{réd}}, 6 \,^{\circ}\text{h}} \xrightarrow{\text{Calcination}} \operatorname{Zr}_{0.9} \operatorname{Ti}_{0.1}O_{2}$$

Schéma 4.11 : Synthèse de l'oxydes mixte Zr_{0.9}Ti_{0.1}O₂ par voie éther, 110 °C, 3 jours

Le rapport atomique Ti/Zr mesuré par EDX après calcination correspond au rapport introduit. L'oxyde que nous avons synthétisé dans le CH_2Cl_2 cristallise selon la phase t-ZrO₂, avec une taille de cristallites de 15 nm (comme l'échantillon ZrO_2 -ⁱ Pr_2O synthétisé au début de ce chapitre). Nous n'observons pas de pic correspondant à la cristallisation de TiO₂ ni à la phase m-ZrO₂ (Figure 4.39).

 $\label{eq:Figure 4.39} \begin{array}{l} Figure \ 4.39: Diffractogramme \ de \ Zr_{0.9}Ti_{0.1}O_2. \ Traits \ rouges: TiO_2 \ anatase \ ; \ traits \ noirs: m-ZrO_2 \ ; \\ traits \ roses: t-ZrO_2 \end{array}$

Tableau 4.16 : Surface spécifique, volume poreux, diamètre des pores et taille des cristallites des échantillons $Zr_{0.9}Ti_{0.1}O_2$, comparées avec ZrO_2 -ⁱ Pr_2O

	Sbet ^a m ² /g	Vp ^b m²/g	Dp ^c nm	Vt ^d %	Taille des cristallites ^e nm
ZrO ₂ - ⁱ Pr ₂ O	94	0,20	7	98	12
Zr0.9Ti0.1O2	90	0,16	8	100	15

^aValeurs S_{BET} arrondies à ±5 m²/g ; ^bvolume poreux total à P/P0 = 0,99. ^cDP : Diamètre moyen des pores (BJH, désorption) ;^dfraction volumique de phase tétragonale ; ^etaille des cristallites calculée avec l'équation de Scherrer à partir de la réflexion (101) du t-ZrO₂.

 $\label{eq:Figure 4.41} Figure \ 4.41: Isotherme \ d'adsorption-désorption \ d'azote \ et \ distribution \ de \ taille \ de \ pores \ de \ l'échantillon \ Zr_{0.9} Ti_{0.1} O_2$

L'isotherme d'adsorption-désorption d'azote de $Zr_{0.9}Ti_{0.1}O_2$ est de type IV(a) prouvant la présence de mésopores (Figure 4.41). La distribution de taille de pores est relativement étroite et la surface spécifique est de 100 m²/g.

Figure 4.42 : Images MEB de Zr_{0.9}Ti_{0.1}O₂

Les images de $Zr_{0.9}Ti_{0.1}O_2$ obtenues par MEB (Figure 4.42) montrent des particules primaires fines agrégées pour former un bloc dense comme pour la zircone non dopée.

4.7 Conclusion

Dans ce chapitre nous avons fait varier le donneur d'oxygène pour contrôler la structure finale de la zircone (tétragonale ou monoclinique).

Nous avons tout d'abord optimisé la synthèse de ZrO_2 par réaction de $ZrCl_4$ avec ⁱPr₂O en milieu CH₂Cl₂ (voie éther). Nous avons caractérisé la zircone synthétisée dans les conditions optimales (110 °C, 3 jours). Par cette voie éther, nous obtenons une zircone très majoritairement tétragonale, mésoporeuse avec une surface spécifique de 90 m²/g. Nous avons ensuite utilisé ces conditions pour la synthèse de supports promus ZrO_2 -Re₂O₇ et ZrO_2 -MoO₃ avec différents pourcentages massiques du métal de transition (promoteur).

Pour obtenir une zircone monoclinique nous avons fait appel à d'autres synthèses sol-gel non hydrolytiques. La réaction à 240 °C, 18h, de $Zr(O^nPr)_4$ avec l'acétophénone (donneur d'oxygène et solvant) (voie cétone) conduit à une zircone monoclinique avec une surface de 120 m²/g. L'analyse du liquide de synérèse par RMN ¹H et par Karl Fisher a montré que la réaction n'est pas réellement non hydrolytique, de l'eau est formée au cours de la réaction.

Nous avons ensuite utilisé la réaction de ZrCl₄ avec l'éthanol, comme donneur d'oxygène et comme solvant (voie alcool). Dans les conditions de réaction choisies (150 °C, 3 jours), la zircone a une structure purement monoclinique et sa surface spécifique est supérieure à 100 m²/g. L'analyse du liquide de synérèse par RMN ¹H et par Karl Fisher montre là encore que la réaction n'est pas totalement non hydrolytique. Nous avons choisi cette voie pour la synthèse de supports promus ZrO₂-Re₂O₇ et ZrO₂-MoO₃ avec différents pourcentages en poids de métal de transition (promoteur).

Pour les supports promus, nous avons montré que le promoteur avait une influence sur la texture et morphologie de l'oxyde mais pas sur sa structure, qui est dictée par la voie de synthèse (tétragonale pour la voie éther (ⁱPr₂O), monoclinique pour la voie alcool (EtOH) et cétone (acétophénone)).

Des solutions solides $Zr_{0.5}Ti_{0.5}O_2$, $Zr_{0.9}Ti_{0.1}O_2$ et des zircones yttriées ont été synthétisées par voie éther (110 °C, 3 jours). Nous avons fait varier la température de calcination et nous avons prouvé que grâce au SGNH nous avions un bon contrôle de la composition finale, de la structure, et nous obtenions des textures mésoporeuses intéressantes.

Conclusion générale et perspectives

L'objectif de mon projet de thèse était de préparer par procédé sol-gel non hydrolytique des supports et des supports promus pour la conception de catalyseurs efficaces pour l'hydrogénation en phase aqueuse de molécules plateformes biosourcées, en particulier l'hydrogénation sélective de l'acide succinique en 1,4-butanediol. D'après la littérature, le catalyseur le plus sélectif pour cette réaction est un catalyseur à base de palladium promu par le rhénium et supporté sur TiO₂.

 TiO_2 et ZrO_2 étant les supports les plus stables (avec le carbone) dans les conditions de la réaction visée (160 °C, 150 bar H₂, milieu acide), ces oxydes ont été choisis comme supports. L'originalité de cette thèse est d'avoir exploré la possibilité de préparer en une seule étape des « supports promus », c'est-à-dire des solutions solides contenant directement le promoteur. Notre hypothèse était que cette approche conduirait à un meilleur contrôle de la dispersion et de la stabilité du promoteur, et donc à un catalyseur plus efficace.

Nous avons montré dans ce manuscrit l'intérêt du procédé sol-gel non hydrolytique (SGNH) pour la synthèse de supports (TiO₂, ZrO₂ et Ti_xZr_{1-x}O₂) et de supports promus (TiO₂-Re₂O₇, TiO₂-MoO₃, ZrO₂-Re₂O₇, ZrO₂-MoO₃). Dans tous les cas nous avons pu obtenir après calcination des supports mésoporeux avec une surface spécifique élevée, de structure et de composition contrôlée. En particulier, dans le cas de ZrO₂ nous avons exploré différentes voies « non hydrolytique » pour obtenir sélectivement des supports de structure tétragonale ou monoclinique.

Lors de la calcination, la migration des espèce ReOx ou MoOx vers la surface conduit à des espèces bien dispersées. La perte en Re est très faible.

Les premiers tests de catalyse effectués à Lyon montrent que les catalyseurs obtenus avec les supports promus au Re ou au Mo préparés par SGNH sont plus sélectifs que les catalyseurs équivalents préparés par imprégnation à partir de TiO₂ commercial, ce qui semble valider notre hypothèse de départ.

Nous avons également montré dans ce manuscrit que les synthèses de zircone par les voies éthanol ou acétophénone ne sont pas réellement non hydrolytiques car il y a formation d'eau lors de la réaction. La voie éther est quant à elle totalement non hydrolytique. Ces résultats suggèrent que c'est la formation d'eau qui favorise la formation de zircone monoclinique.

Les perspectives de ce travail concernent surtout la catalyse ; les tests catalytiques effectués à Lyon permettront de montrer si les supports à base de zircone sont aussi efficaces que ceux à base de TiO₂. De même, les surfaces spécifiques obtenues pour des supports $Ti_xZr_{1-x}O_2$ sont particulièrement élevées, il serait intéressant d'essayer de préparer des supports promus et de les utiliser pour préparer des catalyseurs.

La stabilité des catalyseurs au cours de la réaction est un point crucial. Les premiers tests de recyclage pour des catalyseurs supportés sur des solutions solides TiO₂-Re₂O₇ sont plutôt décevants. Les catalyseurs supportés sur des solutions solides TiO₂-MoO₃ devraient être plus stables, mais ils sont moins actifs et moins sélectifs.

Il nous semblerait important de tirer parti du procédé SGNH pour préparer des supports promus avec d'autres métaux de transition, afin de trouver si possible un promoteur conduisant à des catalyseurs réellement recyclables, plus actifs et plus sélectifs que ceux promus par le molybdène, et plus stables à la lixiviation que ceux promus par le rhénium.

Références

- (1) Claessens, B. Pétrole : les actionnaires des majors exigent des stratégies bas carbone. *Révolution énérgétique* **2019**.
- (2) Morgan, S. La Banque européenne d'investissement entame sa mue verte. *Euractiv* **2019**.
- (3) Brinker, C. J.; Scherer, G. W. *Sol-gel science: the physics and chemistry of sol-gel processing*; Academic press, 2013.
- (4) Ren, Y.; Ma, Z.; Bruce, P. G. Ordered mesoporous metal oxides: synthesis and applications. *Chemistry Society Reviews* **2012**, *41* (14), 4909.
- (5) Hench, L. L.; West, J. K. The sol-gel process. *Chem. Rev.* **1990**, *90* (1), 33.
- (6) Scherer, C. J. B. a. G. W. Sol-gel Science : the physics and chemistry of sol-gel processing, Academic Press, MA. **1990**.
- (7) Mutin, P. H.; Vioux, A. Recent advances in the synthesis of inorganic materials via nonhydrolytic condensation and related low-temperature routes. *Journal of Material Chemistry A* **2013**, *1* (38), 11504.
- (8) Ebelmen, M. Sur l'hyalite artificielle et l'hydrophane. *Comptes rendus de l'académie des Sciences* **1847**, *25*, 854.
- (9) Schott-Glaswerke.
- (10) Corriu, R. J. P.; Leclercq, D.; Lefèvre, P.; Mutin, P. H.; Vioux, A. Preparation of monolithic binary oxide gels by a non-hydrolytic sol-gel process. *Chemistry of Materials* **1992**, *4* (5), 961.
- (11) Lafond, V.; Mutin, P. H.; Vioux, A. Non-hydrolytic sol-gel routes based on alkyl halide elimination: toward better mixed oxide catalysts and new supports: Application to the preparation of a SiO₂-TiO₂ epoxidation catalyst. *Journal of Molecular Catalysis A: Chemical* **2002**, *182-183*, 81.
- (12) Audebert P., Techniques de l'ingénieur : Procédé sol-gel de polymérisation. 2005.
- (13) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. *Nature* **1992**, *359* (6397), 710.
- (14) Tanaka, N.; Kobayashi, H.; Nakanishi, K.; Minakuchi, H.; Ishizuka, N. Peer Reviewed: Monolithic LC Columns. *Analytical Chemistry* **2001**, *73* (15), 420 A.
- (15) Boscaro, P.; Cacciaguerra, T.; Cot, D.; Fajula, F.; Hulea, V.; Galarneau, A. C,N-doped TiO2 monoliths with hierarchical macro-/mesoporosity for water treatment under visible light. *Microporous and Mesoporous Materials* **2019**, *280*, 37.
- (16) Vioux, A. Nonhydrolytic Sol–Gel Routes to Oxides. *Chemistry of Materials* **1997**, 9 (11), 2292.
- (17) Mutin, P. H.; Vioux, A. Nonhydrolytic Processing of Oxide-Based Materials: Simple Routes to Control Homogeneity, Morphology, and Nanostructure. *Chemistry of Materials* **2009**, *21* (4), 582.
- (18) Debecker, D. P.; Mutin, P. H. Non-hydrolytic sol-gel routes to heterogeneous catalysts. *Chemistry Society Reviews* **2012**, *41* (9), 3624.
- (19) Niederberger, M.; Garnweitner, G. Organic Reaction Pathways in the Nonaqueous ynthesis of Metal Oxide Nanoparticles. *Chemistry a European Journal* **2006**, *12* (28), 7282.
- (20) Pinna, N. The "benzyl alcohol route": an elegant approach towards organic–inorganic hybrid nanomaterials. *Journal of Materials Chemistry* **2007**, *17* (27), 2769.

- (21) Deshmukh, R.; Niederberger, M. Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents. *Chemistry a European Journal* **2017**, *23* (36), 8542.
- (22) Styskalik, A.; Skoda, D.; Barnes, C.; Pinkas, J. The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review. *Catalysts* **2017**, *7* (6), 168.
- (23) Dearing, A.; Reid, E. E. Alkyl orthosilicates 1. *Journal of the American Chemical Society* **1928**, *50* (11), 3058.
- (24) Ridge, D.; Todd, M. 555. Studies in the formation mechanisms of alkyl orthosilicates. *Journal of the Chemical Society (Resumed)* **1949**, DOI:10.1039/JR9490002637 10.1039/JR9490002637(0), 2637.
- (25) Gerrard, W.; Woodhead, A. H. 110. Interaction of alcohols with silicon tetrachloride. *Journal of the Chemical Society (Resumed)* **1951**, DOI:10.1039/JR9510000519 10.1039/JR9510000519(0), 519.
- (26) Gerrard, W.; Woodhead, A. H. Interaction of alcohols with silicon tetrachloride. *Journal* of the Chemical Society **1951**, DOI:10.1039/jr9510000519 10.1039/jr9510000519, 519.
- (27) Gerrard, W.; Lappert, M.; Mountfield, B. 295. Interaction of boron trichloride with catechol, quinol, resorcinol, and pyrogallol. *Journal of the Chemical Society (Resumed)* **1959**, 1529.
- (28) Rochow, E. G.; Gingold, K. Conversion of chlorosilanes to siloxanes by dimethylformamide. *Journal of the American Chemical Society* **1954**, *76*, 4852.
- (29) Zappel, A. The Reaction of Chlorosilanes with Benzaldehyde. *Journal of the American Chemical Society* **1955**, 77 (16), 4228.
- (30) Corriu, R. J. P.; Leclercq, D.; Lefèvre, P.; Mutin, P. H.; Vioux, A. Preparation of monolithic gels from silicon halides by a non-hydrolytic sol-gel process. *Journal of Non-Crystalline Solids* **1992**, *146*, 301.
- (31) Corriu, R. J. P.; Leclercq, D.; Lefèvre, P.; Mutin, P. H.; Vioux, A. Preparation of monolithic metal oxide gels by a non-hydrolytic sol-gel process. *Journal of Material Chemistry* **1992**, *2* (6), 673.
- (32) Debecker, D. P.; Hulea, V.; Mutin, P. H. Mesoporous mixed oxide catalysts via nonhydrolytic sol-gel: A review. *Applied Catalysis A* **2013**, *451* (Supplement C), 192.
- (33) Niederberger, M.; Garnweitner, G. Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles. *Chemistry A European Journal* 2006, *12* (28), 7282.
- (34) Kwon, S. G.; Hyeon, T. Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides. *Account on Chemical Research* **2008**, *41* (12), 1696.
- (35) Bourget, L.; Corriu, R. J. P.; Leclercq, D.; Mutin, P.; Vioux, A. *Non-Hydrolytic Sol-Gel Routes to Silica*, 1998.
- (36) Hay, J. N.; Raval, H. M. Synthesis of organic-inorganic hybrids via the nonhydrolytic sol-gel process. *Chemistry of materials* **2001**, *13* (10), 3396.
- (37) Crouzet, L.; Leclercq, D.; Mutin, P. H.; Vioux, A. Organosilsesquioxane- Titanium Oxide Hybrids by Nonhydrolytic Sol- Gel Processes. Study of the Rearrangement of Si- O- Ti Bonds. *Chemistry of Materials* 2003, 15 (7), 1530.
- (38) Corriu, R. P.; Mutin, P. H Nonhydrolytic sol-gel routes to layered metal (IV) and silicon phosphonates. *Journal of Materials Chemistry* **1998**, *8* (8), 1827.
- (39) Ritala, M.; Kukli, K.; Rahtu, A.; Räisänen, P. I.; Leskelä, M.; Sajavaara, T.; Keinonen, J. Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources. *Science* 2000, 288 (5464), 319.
- (40) Vioux, A. Chemistry of Materials, **1997**, 9(11), 2292-2299.
- (41) Mutin, P. H.; Vioux, A. Nonhydrolytic Processing of Oxide-Based Materials: Simple Routes to Control Homogeneity, Morphology, and Nanostructure. *Chemistry of Materials* **2009**, *21* (4), 582.
- (42) Debecker, D. P.; Hulea, V.; Mutin, P. H. Mesoporous mixed oxide catalysts via nonhydrolytic sol-gel: A review. *Applied Catalysis A: General* **2013**, *451*, 192.
- (43) Debecker, D. P.; Bouchmella, K.; Poleunis, C.; Eloy, P.; Bertrand, P.; Gaigneaux, E. M.; Mutin, P. H. Design of SiO₂-Al₂O₃-MoO₃ Metathesis Catalysts by Nonhydrolytic Sol-Gel. *Chemistry of Materials* 2009, *21* (13), 2817.
- (44) Debecker, D. P.; Bouchmella, K.; Delaigle, R.; Eloy, P.; Poleunis, C.; Bertrand, P.; Gaigneaux, E. M.; Mutin, P. H. One-step non-hydrolytic sol-gel preparation of efficient V₂O₅-TiO₂ catalysts for VOC total oxidation. *Applied Catalysis, B* 2010, 94 (1-2), 38.
- (45) Debecker, D. P.; Delaigle, R.; Bouchmella, K.; Eloy, P.; Gaigneaux, E. M.; Mutin, P. H. Total oxidation of benzene and chlorobenzene with MoO₃- and WO₃-promoted V₂O₅/TiO₂ catalysts prepared by a nonhydrolytic sol–gel route. *Catalysis Today* 2010, *157* (1), 125.
- (46) Bouchmella, K.; Hubert Mutin, P.; Stoyanova, M.; Poleunis, C.; Eloy, P.; Rodemerck, U.; Gaigneaux, E. M.; Debecker, D. P. Olefin metathesis with mesoporous rhenium–silicium–aluminum mixed oxides obtained via a one-step non-hydrolytic sol–gel route. *Journal of Catalysis* 2013, 301, 233.
- (47) Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. Synthesis of TiO₂ Nanocrystals by Nonhydrolytic Solution-Based Reactions. *Journal of the American Chemical Society* **1999**, *121* (7), 1613.
- (48) Joo, J.; Yu, T.; Kim, Y. W.; Park, H. M.; Wu, F.; Zhang, J. Z.; Hyeon, T. Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals. *Journal of the American Chemical Society* **2003**, *125* (21), 6553.
- (49) Tang, J.; Fabbri, J.; Robinson, R. D.; Zhu, Y.; Herman, I. P.; Steigerwald, M. L.; Brus, L. E. Solid-Solution Nanoparticles: Use of a Nonhydrolytic Sol– Gel Synthesis To Prepare HfO₂ and Hf_x Zr1_x O₂ Nanocrystals. *Chemistry of Materials* 2004, *16* (7), 1336.
- (50) Jun, Y.-w.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO₂ Nanocrystals. *Journal of the American Chemical Society* **2003**, *125* (51), 15981.
- (51) Joo, J.; Kwon, S. G.; Yu, T.; Cho, M.; Lee, J.; Yoon, J.; Hyeon, T. Large-Scale Synthesis of TiO₂ Nanorods via Nonhydrolytic Sol–Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. *Journal of Physic and Chemistry B* 2005, *109* (32), 15297.
- (52) Aboulaich, A.; Lorret, O.; Boury, B.; Mutin, P. H. Surfactant-Free Organo-Soluble Silica-Titania and Silica Nanoparticles. *Chemistry of Materials* **2009**, *21* (13), 2577.
- (53) Aboulaich, A.; Boury, B.; Mutin, P. H. Reactive and Organosoluble Anatase Nanoparticles by a Surfactant-Free Nonhydrolytic Synthesis. *Chemistry of Materials* **2010**, *22* (16), 4519.
- (54) Niederberger, M.; Garnweitner, G.; Ba, J.; Polleux, J.; Pinna, N. Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals. *International Journal of Nanotechnology* **2007**, *4* (3), 263.
- (55) Niederberger, M.; Garnweitner, G.; Pinna, N.; Antonietti, M. Nonaqueous and Halide-Free Route to Crystalline BaTiO₃, SrTiO₃, and (Ba,Sr)TiO₃ Nanoparticles via a Mechanism Involving C–C Bond Formation. *Journal of the American Chemical Society* **2004**, *126* (29), 9120.
- (56) Pinna, N.; Garnweitner, G.; Antonietti, M.; Niederberger, M. Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process. *Advanced Material* **2004**, *16* (23-24), 2196.

- (57) Pinna, N.; Antonietti, M.; Niederberger, M. A novel nonaqueous route to V₂O₃ and Nb₂O₅ nanocrystals. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **2004**, *250* (1), 211.
- (58) Pinna, N.; Garnweitner, G.; Beato, P.; Niederberger, M.; Antonietti, M. Synthesis of Yttria-Based Crystalline and Lamellar Nanostructures and their Formation Mechanism. *Small* **2005**, *1* (1), 112.
- (59) De Keukeleere, K.; De Roo, J.; Lommens, P.; Martins, J. C.; Van Der Voort, P.; Van Driessche, I. Fast and tunable synthesis of ZrO₂ nanocrystals: mechanistic insights into precursor dependence. *Inorganic Chemistry* **2015**, *54* (7), 3469.
- (60) Zimmermann, M.; Garnweitner, G. Spontaneous water release inducing nucleation during the nonaqueous synthesis of TiO₂ nanoparticles. *CrystEngComm* **2012**, *14* (24), 8562.
- (61) Niederberger, M.; Pinna, N.; Polleux, J.; Antonietti, M. A general soft-chemistry route to perovskites and related materials: synthesis of BaTiO₃, BaZrO₃, and LiNbO₃ nanoparticles. *Angewante Chemie International Edition English* **2004**, *43* (17), 2270.
- (62) Bilecka, I.; Luo, L.; Djerdj, I.; Rossell, M. D.; Jagodič, M.; Jagličić, Z.; Masubuchi, Y.; Kikkawa, S.; Niederberger, M. Microwave-Assisted Nonaqueous Sol–Gel Chemistry for Highly Concentrated ZnO-Based Magnetic Semiconductor Nanocrystals. *The Journal of Physical Chemistry C* 2011, *115* (5), 1484.
- (63) Jansen, M.; Guenther, E. Oxide Gels and Ceramics Prepared by a Nonhydrolytic Sol-Gel Process. *Chemistry of Materials* **1995**, *7* (11), 2110.
- (64) Wang, Y.; Kim, S.; Louvain, N.; Alauzun, J. G.; Mutin, P. H. Acetic Anhydride as an Oxygen Donor in the Non-Hydrolytic Sol–Gel Synthesis of Mesoporous TiO₂ with High Electrochemical Lithium Storage Performances. *Chemistry – A European Journal* 2019, 25 (18), 4767.
- (65) Styskalik, A.; Skoda, D.; Moravec, Z.; Barnes, C. E.; Pinkas, J. Surface reactivity of non-hydrolytic silicophosphate xerogels: a simple method to create Brønsted or Lewis acid sites on porous supports. *New Journal of Chemistry* **2016**, *40* (4), 3705.
- (66) Styskalik, A.; Skoda, D.; Pinkas, J.; Mathur, S. Non-hydrolytic synthesis of titanosilicate xerogels by acetamide elimination and their use as epoxidation catalysts. *Journal of Sol-Gel Science and Technology* **2012**, *63* (3), 463.
- (67) Skoda, D.; Styskalik, A.; Moravec, Z.; Bezdicka, P.; Bursik, J.; Mutin, P. H.; Pinkas, J. Mesoporous SnO2–SiO2 and Sn–silica–carbon nanocomposites by novel non-hydrolytic templated sol–gel synthesis. *RSC Advances* **2016**, *6* (73), 68739.
- (68) Pazik, R.; Tekoriute, R.; Håkansson, S.; Wiglusz, R.; Strek, W.; Seisenbaeva, G. A.; Gun'ko, Y. K.; Kessler, V. G. Precursor and Solvent Effects in the Nonhydrolytic Synthesis of Complex Oxide Nanoparticles for Bioimaging Applications by the Ether Elimination (Bradley) Reaction. *Chemistry - A European Journal* 2009, 15 (28), 6820.
- (69) Cellaris, La mousse qui remplace l'amiante isolant à haute température, ce matériau composé d'oxyde d'aluminium, est sans risque pour la santé. Il se pose en substitut de l'amiante. *L'Usine Nouvelle*.2001.
- (70) Ricci, G. P.; Rocha, Z. N.; Nakagaki, S.; Castro, K. A. D. F.; Crotti, A. E. M.; Calefi, P. S.; Nassar, E. J.; Ciuffi, K. J. Iron-alumina materials prepared by the non-hydrolytic sol-gel route: Synthesis, characterization and application in hydrocarbons oxidation using hydrogen peroxide as oxidant. *Applied Catalysis A: General* **2010**, *389* (1), 147.
- (71) Caetano, B. L.; Rocha, L. A.; Molina, E.; Rocha, Z. N.; Ricci, G.; Calefi, P. S.; de Lima, O. J.; Mello, C.; Nassar, E. J.; Ciuffi, K. J. Cobalt aluminum silicate complexes prepared by the non-hydrolytic sol–gel route and their catalytic activity in hydrocarbon oxidation. *Applied Catalysis A: General* **2006**, *311*, 122.

- (72) Debecker, D. P.; Bouchmella, K.; Stoyanova, M.; Rodemerck, U.; Gaigneaux, E. M.; Hubert Mutin, P. A non-hydrolytic sol-gel route to highly active MoO₃–SiO₂–Al₂O₃ metathesis catalysts. *Catalysis Science & Technology* **2012**, *2* (6), 1157.
- (73) Debecker, D. P.; Stoyanova, M.; Colbeau-Justin, F.; Rodemerck, U.; Boissière, C.; Gaigneaux, E. M.; Sanchez, C. One-Pot Aerosol Route to MoO₃-SiO₂-Al₂O₃ Catalysts with Ordered Super Microporosity and High Olefin Metathesis Activity. *Angewandte Chemie Interational Edition* **2012**, *51* (9), 2129.
- (74) Escamilla-Perez, A. M.; Louvain, N.; Kaschowitz, M.; Freunberger, S.; Fontaine, O.; Boury, B.; Brun, N.; Mutin, P. H. Lithium insertion properties of mesoporous nanocrystalline TiO₂ and TiO₂@V₂O₅ microspheres prepared by non-hydrolytic sol–gel. *Journal of Sol-Gel Science and Technology* **2016**, *79* (2), 270.
- (75) Popa, A. F.; Mutin, P. H.; Vioux, A.; Delahay, G.; Coq, B. Novel non-hydrolytic synthesis of a V_2O_5 -TiO₂ xerogel for the selective catalytic reduction of NO_x by ammonia. *Chemical Communication* **2004**, (19), 2214.
- (76) Mutin, P. H.; Popa, A. F.; Vioux, A.; Delahay, G.; Coq, B. Nonhydrolytic vanadiatitania xerogels: Synthesis, characterization, and behavior in the selective catalytic reduction of NO by NH₃. *Applied Catalyst B* **2006**, *69* (1-2), 49.
- (77) Petitto, C.; Mutin, H. P.; Delahay, G. A highly efficient silver niobium alumina catalyst for the selective catalytic reduction of NO by n-decane. *Chemical Communication* 2011, 47 (38), 10728.
- (78) Lorret, O.; Lafond, V.; Mutin, P. H.; Vioux, A. One-Step Synthesis of Mesoporous Hybrid Titania–Silica Xerogels for the Epoxidation of Alkenes. *Chemistry of Materials* **2006**, *18* (20), 4707.
- (79) Albrbar, A. J.; Djokić, V.; Bjelajac, A.; Kovač, J.; Ćirković, J.; Mitrić, M.; Janaćković, D.; Petrović, R. Visible-light active mesoporous, nanocrystalline N,S-doped and codoped titania photocatalysts synthesized by non-hydrolytic sol-gel route. *Ceramics International* 2016, 42 (15), 16718.
- (80) Fisch, A. G.; Cardozo, N. S. M.; Secchi, A. R.; Stedile, F. C.; Silveira, N. P. d.; Santos, J. H. Z. d. Investigation of silica particle structure containing metallocene immobilized by a sol–gel method. *Journal of Non-Crystalline Solids* **2008**, *354* (33), 3973.
- (81) Capeletti, L. B.; Dos Santos, J. H. Z.; Moncada, E.; Da Rocha, Z. N.; Pepe, I. M. Encapsulated alizarin red species: The role of the sol–gel route on the interaction with silica matrix. *Powder Technology* **2013**, *237*, 117.
- Baek, S.; Yu, S.-H.; Park, S.-K.; Pucci, A.; Marichy, C.; Lee, D.-C.; Sung, Y.-E.; Piao, Y.; Pinna, N. A one-pot microwave-assisted non-aqueous sol–gel approach to metal oxide/graphene nanocomposites for Li-ion batteries. *RSC Advances* 2011, *1* (9), 1687.
- (83) Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. *Chemical Reviews* **2007**, *107* (7), 2891.
- (84) Weng, Z.; Guo, H.; Liu, X.; Wu, S.; Yeung, K. W. K.; Chu, P. K. Nanostructured TiO₂ for energy conversion and storage. *RSC Advances* **2013**, *3* (47), 24758.
- (85) Lee, S. M.; Park, G. C.; Seo, T. Y.; Jung, S.-B.; Lee, J. H.; Kim, Y. D.; Choi, D. H.; Lim, J. H.; Joo, J. Facet-controlled anatase TiO₂ nanoparticles through various fluorine sources for superior photocatalytic activity. *Nanotechnology* **2016**, *27* (39), 395604.
- (86) Nasr, M.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications. *ChemSusChem* 2018, 11 (18), 3023.
- (87) Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. *Chemical Reviews* 2014, 114 (19), 9987.

- (88) Oi, L. E.; Choo, M.-Y.; Lee, H. V.; Ong, H. C.; Hamid, S. B. A.; Juan, J. C. Recent advances of titanium dioxide (TiO₂) for green organic synthesis. *RSC Advances* 2016, 6 (110), 108741.
- (89) Osterloh, F. E. Inorganic Materials as Catalysts for Photochemical Splitting of Water. *Chemistry of Materials* **2008**, *20* (1), 35.
- (90) Froeschl, T.; Hoermann, U.; Kubiak, P.; Kucerova, G.; Pfanzelt, M.; Weiss, C. K.; Behm, R. J.; Huesing, N.; Kaiser, U.; Landfester, K.et al. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. *Chemistry Society Reviews* **2012**, *41* (15), 5313.
- (91) Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. *Journal of Materials Science* **2011**, *46* (4), 855.
- (92) Dachille, F.; Simons, P. Y.; Roy, R. Pressure-temperature studies of anatase, brookite, rutile and TiO₂-II. *American Mineralogist* **1968**, *53* (11-12), 1929.
- (93) Ding, X. Z.; Liu, X. H.; He, Y. Z. Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders. *Journal of Materials Science Letters* **1996**, *15* (20), 1789.
- (94) Gopal, M.; Chan, W. J. M.; De Jonghe, L. C. Room temperature synthesis of crystalline metal oxides. *J. Mater. Sci.* **1997**, *32* (22), 6001.
- (95) Cromer, D. T.; Herrington, K. The structures of anatase and rutile. *Journal of the American Chemical Society* **1955**, 77, 4708.
- (96) Baur, W. H. Atomic distances and bond angles in brookite, TiO2. *Acta Crystallogr.* **1961**, *14*, 214.
- (97) Hwang, D. S.; Lee, N. H.; Lee, D. Y.; Song, J. S.; Shin, S. H.; Kim, S. J. Phase transition control of nanostructured TiO₂ powders with additions of various metal chlorides. *Smart Materials and Structures* **2005**, *15* (1), S74.
- (98) Shin, H.; Jung, H. S.; Hong, K. S.; Lee, J.-K. Crystal phase evolution of TiO2 nanoparticles with reaction time in acidic solutions studied via freeze-drying method. *Journal of Solid State Chemistry* **2005**, *178* (1), 15.
- (99) Matthews, A. The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions. *American Mineralogist* **1976**, *61* (5-6), 419.
- (100) Zhang, H.; F. Banfield, J. Thermodynamic analysis of phase stability of nanocrystalline titania. *Journal of Materials Chemistry* **1998**, 8 (9), 2073.
- (101) Fang, C.-S.; Chen, Y.-W. Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution. *Material Chemistry and Physic* **2003**, *78* (3), 739.
- (102) Sharma, S. D.; Singh, D.; Saini, K. K.; Kant, C.; Sharma, V.; Jain, S. C.; Sharma, C. P. Sol-gel-derived super-hydrophilic nickel doped TiO₂ film as active photo-catalyst. *Applied Catalysis A: General* **2006**, *314* (1), 40.
- (103) Li, G.; Li, L.; Boerio-Goates, J.; Woodfield, B. F. High Purity Anatase TiO2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry. *Journal of the American Chemical Society* 2005, *127* (24), 8659.
- (104) Jolivet, J. P. De la solution à l'oxyde, Inter CNRS 2nd Editions, Paris, 1994.
- (105) Corriu, R. J. P.; Leclercq, D.; Lefèvre, P.; Mutin, P. H.; Vioux, A. Materials chemistry communications. Preparation of monolithic metal oxide gels by a non-hydrolytic sol-gel process. *Journal of Materials Chemistry* **1992**, *2* (6), 673.
- (106) Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol–gel methods. *Journal of Materials Chemistry* **1996**, *6* (12), 1925.
- (107) Lou, F.; Qian, X.; Jin, Y.; Zhou, M. Characterisation of water-soluble TiO₂ and its photocatalytic activity under visible light. *Materials Research Innovations* **2015**, *19* (sup8), S8.

- (108) Escamilla-Pérez, A. M.; Louvain, N.; Boury, B.; Brun, N.; Mutin, H. Ethers as oxygen donor and carbon source in non-hydrolytic sol-gel: one-pot, atom-economic synthesis of mesoporous TiO₂-carbon nanocomposites. *Chemistry -A European Journal* 2018, 24 (19), 4982.
- (109) Niederberger, M.; Bartl, M. H.; Stucky, G. D. Benzyl Alcohol and Titanium TetrachlorideA Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles. *Chemistry of Material* **2002**, *14* (10), 4364.
- (110) Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions. *Journal of the American Chemical Society* **1999**, *121* (7), 1613.
- (111) Garnweitner, G.; Antonietti, M.; Niederberger, M. Nonaqueous synthesis of crystalline anatase nanoparticles in simple ketones and aldehydes as oxygen-supplying agents. *Chemical Communications* 2005, DOI:10.1039/B414510K 10.1039/B414510K(3), 397.
- (112) Wu, Y.; Liu, H.-M.; Xu, B.-Q. Solvothermal synthesis of TiO₂: anatase nanocrystals and rutile nanofibres from TiCl₄ in acetone. *Applied Organometallic Chemistry* **2007**, *21* (3), 146.
- (113) Joo, J.; Kwon, S. G.; Yu, T.; Cho, M.; Lee, J.; Yoon, J.; Hyeon, T. Large-Scale Synthesis of TiO₂ Nanorods via Nonhydrolytic Sol–Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. *The Journal of Physical Chemistry B* 2005, *109* (32), 15297.
- (114) Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods. *Journal of Material Chemistry* **1996**, *6* (12), 1925.
- (115) Gao, J.; He, Y.; Gao, W. Fiber-reinforced yttria partially stabilized zirconia thermal barrier coatings processed by sol-gel method. *High Temperatures Material Processes (Berlin, Ger.)* **2011**, *30* (4/5), 289.
- (116) Reisfeld, R.; Zelner, M.; Patra, A. Fluorescence study of zirconia films doped by Eu³⁺, Tb³⁺ and Sm³⁺ and their comparison with silica films. *Journal of Alloys Compounds* **2000**, *300-301*, 147.
- (117) Subbarao, E. C. Oxygen sensors. *Ferroelectrics* **1990**, *102* (1), 267.
- (118) Tanabe, K.; Yamaguchi, T. Acid-base bifunctional catalysis by ZrO₂ and its mixed oxides. *Catalisis Today* **1994**, *20* (2), 185.
- (119) Yamaguchi, T. Application of ZrO₂ as a catalyst and a catalyst support. *Catal. Today* **1994**, *20* (2), 199.
- (120) Gu, H.; Ding, J.; Zhong, Q.; Zeng, Y.; Song, F. Promotion of surface oxygen vacancies on the light olefins synthesis from catalytic CO₂ hydrogenation over Fe-K/ZrO2 catalysts. *International Journal of Hydrogen Energy* **2019**, *44* (23), 11808.
- (121) Chen, Z.; Peop. Rep. China . 2019.
- (122) Leger, J. M.; Tomaszewski, P. E.; Atouf, A.; Pereira, A. S. Pressure-induced, structural, phase transitions in zirconia under high pressure. *Physical Review B: Condensed Matter* **1993**, *47* (21), 14075.
- (123) Li, P.; Chen, I. W.; Penner-Hahn, J. E. X-ray absorption studies of zirconia polymorphs.
 I. Characteristic local structures. *Physical Review B: Condensed Matter* 1993, 48 (14), 10063.
- (124) Hannink, R. H. J.; Kelly, P. M.; Muddle, B. C. Transformation toughening in zirconiacontaining ceramics. *Journal of the American Ceramic Society* **2000**, *83* (3), 461.

- (125) Fabris, S.; Paxton, A. T.; Finnis, M. W. Relative energetics and structural properties of zirconia using a self-consistent tight-binding model. *Physical Review B (Condensed Matter and Materials Physics)* **2000**, *61* (10), 6617.
- (126) Li, P.; Chen, I. W.; Penner-Hahn, J. E. X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. *Physical Review B* **1993**, *48* (14), 10063.
- (127) Wu, N.-L.; Wu, T.-F.; Rusakova, I. A. Thermodynamic stability of tetragonal zirconia nanocrystallites. *Journal of Material Research* **2001**, *16* (3), 666.
- (128) del Monte, F.; Larsen, W.; Mackenzie, J. D. Stabilization of tetragonal ZrO₂ in ZrO₂– SiO₂ binary oxides. *Journal of the American Ceramic Society* **2000**, *83* (3), 628.
- (129) Li, P.; Chen, I. W.; Penner-Hahn, J. E. Effect of dopants on zirconia stabilization an x-ray absorption study: I. Trivalent dopants. *Journal of the American Ceramic Society* **1994**, 77 (1), 118.
- (130) Garvie, R. C. Stabilization of the tetragonal structure in zirconia microcrystals. *The Journal of Physical Chemistry* **1978**, 82 (2), 218.
- (131) Garvie, R. C. The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect. *The Journal of Physical Chemistry* **1965**, *69* (4), 1238.
- (132) Shukla, S.; Seal, S. Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. *International Materials Reviews* **2005**, *50* (1), 45.
- (133) Tredici, I. G.; Maglia, F.; Dapiaggi, M.; Spinolo, G.; Anselmi-Tamburini, U. Synthesis of bulk tetragonal zirconia without stabilizer: The role of precursor nanopowders. *Journal of the European Ceramic Society* **2012**, *32* (2), 343.
- (134) Mitsuhashi, T.; Ichihara, M.; Tatsuke, U. Characterization and Stabilization of Metastable Tetragonal ZrO₂. *Journal of the American Ceramic Society* **1974**, *57* (2), 97.
- (135) Shukla, S.; Seal, S.; Vij, R.; Bandyopadhyay, S.; Rahman, Z. Effect of Nanocrystallite Morphology on the Metastable Tetragonal Phase Stabilization in Zirconia. *Nano Letters* 2002, 2 (9), 989.
- (136) Shukla, S.; Seal, S. Thermodynamic Tetragonal Phase Stability in Sol–Gel Derived Nanodomains of Pure Zirconia. *The Journal of Physical Chemistry B* **2004**, *108* (11), 3395.
- (137) Lee, C.-K.; Cho, E.; Lee, H.-S.; Hwang, C. S.; Han, S. First-principles study on doping and phase stability of HfO₂. *Physical Reviews B: Condensed Matter Material. Physics*. 2008, 78 (1), 012102/1.
- (138) Warwar Damouny, C.; Khoury, C.; Gazit, O. M. Properties of t-zirconia prepared by a composite-assisted nonhydrolytic sol-gel. *Journal of the American Ceramic Society* **2019**, *102* (1), 456.
- (139) Goto, Y.; Omata, T.; Otsuka-Yao-Matsuo, S. Extremely Suppressed Grain Growth of Y2O3-Stabilized Zirconia Nanocrystals Synthesized by the Nonhydrolytic Sol-Gel Technique. *Journal of the Electrochemical Society* **2009**, *156* (1), K4.
- (140) Garnweitner, G.; Goldenberg, L. M.; Sakhno, O. V.; Antonietti, M.; Niederberger, M.; Stumpe, J. Large-Scale Synthesis of Organophilic Zirconia Nanoparticles and their Application in Organic–Inorganic Nanocomposites for Efficient Volume Holography. *Small* **2007**, *3* (9), 1626.
- (141) Gateshki, M.; Petkov, V.; Hyeon, T.; Joo, J.; Niederberger, M.; Ren, Y. Interplay between the local structural disorder and the length of structural coherence in stabilizing the cubic phase in nanocrystalline ZrO₂. *Solid State Communications* **2006**, *138* (6), 279.
- (142) Cheema, T. A.; Garnweitner, G. Phase-controlled synthesis of ZrO₂ nanoparticles for highly transparent dielectric thin films. *CrystEngComm* **2014**, *16* (16), 3366.
- (143) Stolzenburg, P.; Freytag, A.; Bigall, N. C.; Garnweitner, G. Fractal growth of ZrO₂ nanoparticles induced by synthesis conditions. *CrystEngComm* **2016**, *18* (43), 8396.

- (144) De Keukeleere, K.; De Roo, J.; Lommens, P.; Martins, J. C.; Van Der Voort, P.; Van Driessche, I. Fast and Tunable Synthesis of ZrO₂ Nanocrystals: Mechanistic Insights into Precursor Dependence. *Inorganic Chemistry* **2015**, *54* (7), 3469.
- (145) Tana, F.; Messori, M.; Contini, D.; Cigada, A.; Valente, T.; Variola, F.; De Nardo, L.; Bondioli, F. Synthesis and characterization of scratch-resistant hybrid coatings based on non-hydrolytic sol-gel ZrO2 nanoparticles. *Progress in Organic Coating* 2017, *103*, 60.
- (146) Seon, J.-B.; Cho, N.-K.; Yoo, G.; Kim, Y. S.; Char, K. Solution-processed amorphous ZrO2 gate dielectric films synthesized by a non-hydrolytic sol-gel route. *RSC Advances* 2018, 8 (68), 39115.
- (147) Yue, Y.; Zhao, X.; Hua, W.; Gao, Z. Nanosized titania and zirconia as catalysts for hydrolysis of carbon disulfide. *Applied Catalysis B: Environmental* **2003**, *46* (3), 561.
- (148) Kung, H. H.; Ko, E. I. Preparation of oxide catalysts and catalyst supports a review of recent advances. *The Chemical Engineering Journal and the Biochemical Engineering Journal* **1996**, *64* (2), 203.
- (149) Reddy, B. M.; Sreekanth, P. M.; Yamada, Y.; Xu, Q.; Kobayashi, T. Surface characterization of sulfate, molybdate, and tungstate promoted TiO₂-ZrO₂ solid acid catalysts by XPS and other techniques. *Applied Catalysis A: General* 2002, 228 (1), 269.
- (150) Reddy, B. M.; Khan, A. Recent Advances on TiO₂-ZrO₂ Mixed Oxides as Catalysts and Catalyst Supports. *Catalysis Reviews* **2005**, *47* (2), 257.
- (151) Zhang, S.; Li, J.; Cao, J.; Zhai, H.; Zhang, B. Effect of composition on sinterability, microstructure and microwave dielectric properties of $Zr_xTi_1-xO_4$ (x= 0.40–0.60) ceramics. *Journal of materials science letters* **2001**, *20* (15), 1409.
- (152) Tetsuo, N.; Masao, M. Phase Changes in the ZrO₂-TiO₂ System. *Bulletin of the Chemical Society of Japan* **1968**, *41* (12), 2895.
- (153) Mohammadi, M. R.; Fray, D. J. Synthesis and characterization of nanosized TiO₂-ZrO₂ binary system prepared by an aqueous sol-gel process: Physical and sensing properties. *Sensors and Actuators, B* **2011**, *155* (2), 568.
- (154) Uchiyama, H.; Matsumoto, K.; Kozuka, H. Solvothermal synthesis of micron-sized spherical particles in TiO₂-ZrO₂ binary system. *Journal of Crystal Growth* **2012**, *338* (1), 201.
- (155) Andrianainarivelo, M.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. Nonhydrolytic Sol-Gel process: Aluminium and zirconium titanate gels. *Journal of Sol-Gel Science and Technology* **1997**, *8* (1), 89.
- (156) Besson, M.; Gallezot, P.; Pinel, C. Conversion of Biomass into Chemicals over Metal Catalysts. *Chemical Reviews* **2014**, *114* (3), 1827.
- (157) Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. *Chemical Reviews* **2007**, *107* (6), 2411.
- (158) Budroni, G.; Corma, A. Gold and gold-platinum as active and selective catalyst for biomass conversion: Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone. *Journal of Catalysis* **2008**, *257* (2), 403.
- (159) Zhang, C.; Chen, L.; Cheng, H.; Zhu, X.; Qi, Z. Atomically dispersed Pd catalysts for the selective hydrogenation of succinic acid to γ-butyrolactone. *Catalysis Today* 2016, 276, 55.
- (160) Tapin, B.; Epron, F.; Especel, C.; Ly, B. K.; Pinel, C.; Besson, M. Study of Monometallic Pd/TiO2 Catalysts for the Hydrogenation of Succinic Acid in Aqueous Phase. ACS Catalysis 2013, 3 (10), 2327.

- (161) Chung, S.-H.; Park, Y.-M.; Kim, M.-S.; Lee, K.-Y. The effect of textural properties on the hydrogenation of succinic acid using palladium incorporated mesoporous supports. *Catalysis Today* **2012**, *185* (1), 205.
- (162) Shao, Z.; Li, C.; Di, X.; Xiao, Z.; Liang, C. Aqueous-Phase Hydrogenation of Succinic Acid to γ-Butyrolactone and Tetrahydrofuran over Pd/C, Re/C, and Pd-Re/C Catalysts. *Industrial & Engineering Chemistry Research* **2014**, *53* (23), 9638.
- (163) Di, X.; Shao, Z.; Li, C.; Li, W.; Liang, C. Hydrogenation of succinic acid over supported rhenium catalysts prepared by the microwave-assisted thermolytic method. *Catalysis Science & Technology* **2015**, *5* (4), 2441.
- (164) Ly, B. K.; Minh, D. P.; Pinel, C.; Besson, M.; Tapin, B.; Epron, F.; Especel, C. Effect of Addition Mode of Re in Bimetallic Pd-Re/TiO₂ Catalysts Upon the Selective Aqueous-Phase Hydrogenation of Succinic Acid to 1,4-Butanediol. *Topics in Catalysis* 2012, 55 (7-10), 466.
- (165) Di, X.; Li, C.; Zhang, B.; Qi, J.; Li, W.; Su, D.; Liang, C. Role of Re and Ru in Re-Ru/C Bimetallic Catalysts for the Aqueous Hydrogenation of Succinic Acid. *Industrial & Engineering Chemistry Research* 2017, 56 (16), 4672.
- (166) Hong, U. G.; Kim, J. K.; Lee, J.; Lee, J. K.; Song, J. H.; Yi, J.; Song, I. K. Hydrogenation of succinic acid to tetrahydrofuran over ruthenium-carbon composite catalysts: Effect of HCl concentration in the preparation of the catalysts. *Journal of Industrial and Engineering Chemistry* **2014**, *20* (5), 3834.
- (167) Hong, U. G.; Lee, J.; Hwang, S.; Song, I. K. Hydrogenation of Succinic Acid to γ-Butyrolactone (GBL) Over Palladium-Alumina Composite Catalyst Prepared by a Single-Step Sol-Gel Method. *Catalysis Letter* **2011**, *141* (2), 332.
- (168) Hong, U. G.; Park, H. W.; Lee, J.; Hwang, S.; Yi, J.; Song, I. K. Hydrogenation of succinic acid to tetrahydrofuran (THF) over rhenium catalyst supported on H₂SO₄treated mesoporous carbon. *Applied Catalysis, A* **2012**, *141*, 415.
- (169) Hong, U.-G.; Hwang, S.-H.; Seo, J.-G.; Lee, J.-W.; Song, I.-K. Hydrogenation of succinic acid to γ-butyrolactone (GBL) over palladium catalyst supported on alumina xerogel: Effect of acid density of the catalyst. *Journal of Industrial and Engineering Chemistry* **2011**, *17* (2), 316.
- (170) Minh, D. P.; Besson, M.; Pinel, C.; Fuertes, P.; Petitjean, C. Aqueous-Phase Hydrogenation of Biomass-Based Succinic Acid to 1,4-Butanediol Over Supported Bimetallic Catalysts. *Topics in Catalysis* **2010**, *53* (15), 1270.
- (171) Tapin, B.; Epron, F.; Especel, C.; Ly, B. K.; Pinel, C.; Besson, M. Influence of the Re introduction method onto Pd/TiO₂ catalysts for the selective hydrogenation of succinic acid in aqueous-phase. *Catalysis Today* **2014**, *235*, 127.
- (172) Cassiers, K.; Linssen, T.; Mathieu, M.; Benjelloun, M.; Schrijnemakers, K.; Van Der Voort, P.; Cool, P.; Vansant, E. F. A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas. *Chemistry of Materials* **2002**, *14* (5), 2317.
- (173) Pham, H. N.; Anderson, A. E.; Johnson, R. L.; Schmidt-Rohr, K.; Datye, A. K. Improved Hydrothermal Stability of Mesoporous Oxides for Reactions in the Aqueous Phase. *Angewandte Chemie International Edition* **2012**, *51* (52), 13163.
- (174) Ravenelle, R. M.; Copeland, J. R.; Kim, W.-G.; Crittenden, J. C.; Sievers, C. Structural Changes of γ-Al₂O₃-Supported Catalysts in Hot Liquid Water. ACS Catalysis 2011, 1 (5), 552.
- (175) Ravenelle, R. M.; Schüβler, F.; D'Amico, A.; Danilina, N.; van Bokhoven, J. A.; Lercher, J. A.; Jones, C. W.; Sievers, C. Stability of Zeolites in Hot Liquid Water. *The Journal of Physical Chemistry C* 2010, *114* (46), 19582.

- (176) Xiong, H.; Pham, H. N.; Datye, A. K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. *Green Chemistry* **2014**, *16* (11), 4627.
- (177) Ftouni, J.; Villandier, N.; Auneau, F.; Besson, M.; Djakovitch, L.; Pinel, C. From glycerol to lactic acid under inert conditions in the presence of platinum-based catalysts: The influence of support. *Catalysis Today* **2015**, *257*, 267.
- (178) Vardon, D. R.; Settle, A. E.; Vorotnikov, V.; Menart, M. J.; Eaton, T. R.; Unocic, K. A.; Steirer, K. X.; Wood, K. N.; Cleveland, N. S.; Moyer, K. E.et al. Ru-Sn/AC for the Aqueous-Phase Reduction of Succinic Acid to 1,4-Butanediol under Continuous Process Conditions. ACS Catalysis 2017, 7 (9), 6207.
- (179) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Pure and Applied Chemistry* **2015**, *87* (9-10), 1051.
- (180) Thommes, M.; Kaneko, K.; Neimark Alexander, V.; Olivier James, P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing Kenneth, S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Pure and Applied Chemistry* **2015**, *87* (9-10), 1051.
- (181) Rourquerol.F, J. R.; Beurroies.I, P. L.; Denoyel, R. Texture des matériaux divisés -Aire spécifique des matériaux pulvérulents ou nanoporeux. *Techniques de l'ingenieur* 2017.
- (182) Rouquerol.F, J. R.; Beurroies.I, P. L.; Denoyel, R. Texture des matériaux divisés -Taille de pores des matériaux nanoporeux par adsorption d'azote. *Techniques de l'ingenieur* **2017**.
- (183) Wang, Y.; Bouchneb, M.; Alauzun, G. J.; Mutin, H. P. Tuning Texture and Morphology of Mesoporous TiO₂ by Non-Hydrolytic Sol-Gel Syntheses. *Molecules* **2018**, *23* (11), 3006.
- (184) Jun, Y. W.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO₂ Nanocrystals. *Joural of the American Chemical Society* **2003**, *125* (51), 15981.
- (185) Pinna, N.; Niederberger, M. Surfactant-Free Nonaqueous Synthesis of Metal Oxide Nanostructures. *Angewandte Chemie International Edition* **2008**, *47* (29), 5292.
- (186) Bouchmella, K.; Stoyanova, M.; Rodemerck, U.; Debecker, D. P.; Mutin, P. H. Avoiding rhenium loss in non-hydrolytic synthesis of highly active Re-Si-Al olefin metathesis catalysts. *Catalysis Communications* **2015**, *58*, 183.
- (187) Anderson J. R.; Boudart M. Catalysis Science and Technology. 1987, 148.
- (188) Tysoe, W. T.; Zaera, F.; Somorjai, G. A. An XPS study of the oxidation and reduction of the rhenium-platinum system under atmospheric conditions. *Surface Science* **1988**, 200 (1), 1.
- (189) Vuurman, M.; Stufkens, D.; Oskam, A.; Wachs, I. Structural determination of surface rhenium oxide on various oxide supports (Al₂O₃, ZrO₂, TiO₂ and SiO₂). *Journal of molecular catalysis* **1992**, *76* (1-3), 263.
- (190) Secordel, X.; Berrier, E.; Capron, M.; Cristol, S.; Paul, J.-F.; Fournier, M.; Payen, E. TiO₂-supported rhenium oxide catalysts for methanol oxidation: Effect of support texture on the structure and reactivity evidenced by an operando Raman study. *Catalysis Today* **2010**, *155* (3), 177.
- (191) Okal, J.; Tylus, W.; Kępiński, L. XPS study of oxidation of rhenium metal on γ-Al₂O₃ support. *Journal of Catalysis* **2004**, *225* (2), 498.
- (192) Sécordel, X.; Tougerti, A.; Cristol, S.; Dujardin, C.; Blanck, D.; Morin, J.-C.; Capron, M.; Mamede, A.-S.; Paul, J.-F.; Languille, M.-A.et al. TiO₂-anatase-supported oxorhenate catalysts prepared by oxidative redispersion of metal Re⁰ for methanol

conversion to methylal: A multi-technique in situ/operando study. *Comptes Rendus Chimie* **2014**, *17* (7), 808.

- (193) Zhang, S.; Wang, G.; Jin, J.; Zhang, L.; Wen, Z.; Yang, J. Self-catalyzed decomposition of discharge products on the oxygen vacancy sites of MoO₃ nanosheets for low-overpotential Li-O₂ batteries. *Nano Energy* **2017**, *36*, 186.
- (194) Baltrusaitis, J.; Mendoza-Sanchez, B.; Fernandez, V.; Veenstra, R.; Dukstiene, N.; Roberts, A.; Fairley, N. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. *Applied Surface Science* 2015, 326, 151.
- (195) Weckhuysen, B. M.; Jehng, J.-M.; Wachs, I. E. In Situ Raman Spectroscopy of Supported Transition Metal Oxide Catalysts: ¹⁸O₂-¹⁶O₂ Isotopic Labeling Studies. *The Journal of Physical Chemistry B* **2000**, *104* (31), 7382.
- (196) Spevack, P. A.; McIntyre, N. S. A Raman and XPS investigation of supported molybdenum oxide thin films. Calcination and reduction studies. *Journal of Physical Chemistry* **1993**, *97* (42), 11020.
- (197) Toraya, H.; Yoshimura, M.; Somiya, S. Calibration curve for quantitative analysis of the Monoclinic-Tetragonal ZrO₂ system by X-ray diffraction. *Journal of the American Ceramic Society* **1984**, 67 (6), C.
- (198) Yoshimura, M. Phase stability of zirconia. *American Ceramic Society Bulletin* **1988**, 67 (12), 1950.
- (199) Málek, J.; Beneš, L.; Mitsuhashi, T. Powder diffraction data and Rietveld refinement of metastable t-ZrO₂ at low temperature. *Powder Diffraction* **2013**, *12* (2), 96.
- (200) Martin, U.; Boysen, H.; Frey, F. Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. *Acta Crystallographica Section B: Structural Science* **1993**, *49* (3), 403.
- (201) Davar, F.; Hassankhani, A.; Loghman-Estarki, M. R. Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol-gel method. *Ceramics International* **2013**, *39* (3), 2933.
- (202) Phillippi, C. M.; Mazdiyasni, K. S. Infrared and Raman spectra of zirconia polymorphs. *Journal of the American Ceramic Society* **1971**, *54* (5), 254.
- (203) Feng, J.; Wang, X. Y.; Ren, X. R.; Huang, Z. C.; Zhou, R.; Pan, W. Structure Characterization calculation of Tetragonal Zirconia. *IOP Conference Series: Materials Science and Engineering* **2011**, *18* (20), 202008.
- (204) Song, J.-H.; Lee, J.-H. Glycothermal synthesis and characterization of 3Y-TZP nanoparticles. *Korean Journal of Materials Research* **2009**, *19* (8), 412.
- (205) Teufer, G. The crystal structure of tetragonal ZrO₂. *Acta Crystallographica* **1962**, *15* (11), 1187.
- (206) Yashima, M.; Kakihana, M.; Yoshimura, M. Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. *Solid State Ionics* **1996**, *86*, 1131.
- (207) Scott, H. Phase relationships in the zirconia-yttria system. *Journal of Materials Science* **1975**, *10* (9), 1527.
- (208) Viazzi, C., Elaboration par le procédé sol-gel de revêtements de zircone yttriée sur substrats métalliques pour l'application barrière thermique, thèse de doctorat, Université de Toulouse III, 2007.
- (209) Chevalier, J.; Gremillard, L.; Virkar, A. V.; Clarke, D. R. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. *Journal of the American Ceramic Society* **2009**, *92* (9), 1901.
- (210) Barberis, P.; Merle-Méjean, T.; Quintard, P. On Raman spectroscopy of zirconium oxide films. *Journal of Nuclear Materials* **1997**, *246* (2), 232.

(211) Greiner, M. T.; Rocha, T. C.; Johnson, B.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: an in-situ XPS study. *Zeitschrift für Physikalische Chemie* **2014**, 228 (4-5), 521.

Synthèse sol-gel non hydrolytique de catalyseurs stables pour l'hydrogénation en phase aqueuse de substrats biosourcés

Pour un procédé plus respectueux de l'environnement, l'hydrogénation de molécules plateformes biosourcées comme l'acide succinique doit être effectuée en phase aqueuse. Etant donné les conditions de réaction (160 °C, 150 bar H₂, milieu aqueux acide), il est nécessaire de concevoir de nouveaux catalyseurs particulièrement stables. Les catalyseurs les plus actifs et les plus sélectifs décrits pour l'hydrogénation en phase aqueuse de l'acide succinique en 1,4butanediol sont des catalyseurs à base de palladium, promus par le rhénium et déposés sur un support TiO₂ anatase. Dans cette thèse, nous avons utilisé le procédé sol-gel non hydrolytique pour préparer différents supports oxydes et solutions solides à base de TiO₂ et de ZrO₂, qui sont les oxydes les plus stables en conditions hydrothermales. Ce procédé nous a permis d'obtenir en une étape des supports mésoporeux avec des surfaces spécifiques élevées, de structure cristalline et de composition contrôlées. En particulier, nous avons montré qu'il était possible par cette méthode d'obtenir en une seule étape des supports « promus » (TiO₂-Re₂O₇, TiO₂-MoO₃, ZrO₂-Re₂O₇, ZrO₂-MoO₃), incorporant le métal de transition promoteur, qui lors de la calcination migre vers la surface du support. Notre hypothèse était que cette approche conduirait à un meilleur contrôle de la dispersion voire même de la stabilité du promoteur, et donc à un catalyseur plus efficace. Les premiers tests de catalyse effectués par nos partenaires à IRCELYON montrent que les catalyseurs à base de palladium obtenus avec nos supports TiO₂ promus au Re ou au Mo sont plus sélectifs et plus actifs que les catalyseurs équivalents préparés par imprégnation de palladium puis de rhénium sur un support TiO₂, ce qui semble valider notre hypothèse de départ. Les tests catalytiques sur les supports à base de zircone sont en cours. Mots clés : Sol-gel non hydrolytique ; TiO₂ ; ZrO₂ ; supports mésoporeux ; supports promus ; solutions solides ; acide succinique ; xérogels ; hydrogénation en phase aqueuse

Non-hydrolytic sol-gel synthesis of stable catalysts for aqueous phase hydrogenation of biobased derivatives

For a more environmentally friendly process, the hydrogenation of biosourced platform molecules such as succinic acid has to be carried out in the aqueous phase. Considering the harsh reaction conditions (160 °C, 150 bar H₂, acid aqueous medium), the design of new, highly stable catalysts is needed. The most active and selective catalysts described for the aqueous phase hydrogenation of succinic acid to 1,4-butanediol are based on palladium promoted by rhenium, impregnated on a TiO₂ anatase support. In this thesis, the non-hydrolytic sol-gel process has been used to prepare different oxide and mixed oxide supports based on TiO₂ and ZrO₂, which are the most stable oxides under hydrothermal conditions. This process allowed the one-step synthesis of high specific surface area mesoporous supports with a controlled crystalline structure and composition. In particular, we showed that it was possible to prepare "promoted supports" (TiO₂-Re₂O₇, TiO₂-MoO₃, ZrO₂-Re₂O₇, ZrO₂-MoO₃), incorporating the transition metal promoter, which migrates toward the surface during the calcination. Our hypothesis was that this approach would lead to a better dispersion and possibly a better stability of the promoter, and thus to a more efficient catalyst. The first catalytic tests carried out by our partners at IRCELYON showed that the Pd-based catalysts obtained with our promoted TiO₂ supports were more selective and more active than the equivalent catalysts prepared by impregnation from Pd. Then the promoter on a TiO₂ support, which seems to validate our initial hypothesis. Catalysis tests on the promoted ZrO₂ and ZrO₂ substrates are ongoing.

Keywords: Non-hydrolytic sol-gel; TiO₂; ZrO₂; mesoporous supports; promoted supports; mixed oxides; xérogels; aqueous phase hydrogenation; succinic acid.