
HAL Id: tel-03205109
https://theses.hal.science/tel-03205109

Submitted on 22 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Batching Computing and Communication
Tasks : Theoretical Foundation and Algorithm Design

Hehuan Shi

To cite this version:
Hehuan Shi. Scheduling Batching Computing and Communication Tasks : Theoretical Foundation and
Algorithm Design. Computer Arithmetic. Université Paris-Saclay, 2021. English. �NNT : 2021UP-
ASG025�. �tel-03205109�

https://theses.hal.science/tel-03205109
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
G
0
2
5

Scheduling Batching Computing
and Communication Tasks

Theoretical Foundation and Algorithm Design

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, sciences et technologies de
l’information et de la communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: Université Paris-Saclay, CNRS, Laboratoire

interdisciplinaire des sciences du numérique, 91405, Orsay, France
Référent: Faculté des sciences d’Orsay

Thèse présentée et soutenue à Paris-Saclay, le 29 Mars 2021,
par

Hehuan SHI

Composition du jury:

Marco DI RENZO Président
Professeur, Directeur de recherche, L2S CNRS, FRANCE
Ken CHEN Rapporteur & Examinateur
Professeur, Université Paris 13, FRANCE
Francesco DE PELLEGRINI Rapporteur & Examinateur
Professeur, Laboratoire Informatique d’Avignon, Univer-
sité d’Avignon, FRANCE
Tijani CHAHED Examinateur
Professeur, Telecom SudParis, FRANCE
Anastasios GIOVANIDIS Examinateur
Chargé de recherche, LIP6 CNRS, FRANCE

Lin CHEN Directeur de thèse
Maître de Conférences (HDR), Université Paris-Saclay
(LISN), FRANCE

Acknowledgements

First of all, I would like to extend my sincere gratitude to my supervisor, Prof. Lin

Chen, who illuminates my way to science. Thank him for giving me the opportunity

to study for my doctorate four years ago. Thank him for giving me the most patience.

When I started my PhD, I was totally a beginner on doing research, on writing paper,

especially on research field I have focused on. He has given me many valuable and

pertinent suggestions, and spent loads of time and efforts on helping me revise my

paper word by word. I have earned a lot from both on how to be a researcher and how

to research. I am very proud to be one of the students of Prof. Lin Chen. For four

years, I have believed that a good teacher influences his students for a lifetime. I feel

extremely lucky and want to sincerely say thank you from the bottom of my heart.

My special thanks then go to my country which funds me to study for my doctorate

in France.

I would also like to give my gratitude to all of my friends and colleagues both in

China and France from whom I have benefited enormously. Particularly, I would like to

thank Dr. Jihong Yu, Dr. Jia Liu, Dr. Shen Peng who helped me start living in France

and offered me lots of suggestions on my research. I would like to thank Dr. Chuan

Xu, Dr. Yanpei Liu, Dr. Yifei Zhu, Dr. Rongrong Zhang, Dr. Ruqi Huang, Dr. Yue

Ma and Yangke Sun for sharing a lot of great moments in Paris. I would also like to

thank Chuang Yu, Zejun Deng, Heng Li, Rupu Yang, Huan Xu and so on for sharing

many wonderful basketball time with me and making my life rich and colorful. I would

also like to thank Prof. Duyan Bi, Prof. Yuelei Xu, and Dr. Linyuan He who are my

former supervisors or teachers and who have been very concerned about my study and

life.

Last but not least, I would like to devote the most deep gratitude to each member

of my family: my parents, my parents-in-law, my elder sister, and my wife for their

unconditional love, support and encouragement. Especially, I want to express the most

special gratitude to my wife Jing Wang. Thanks for being at my side for all these years.

I

II

Résumé

Dans cette thèse, nous formulons et analysons une classe de problèmes fondamentaux

d’ordonnancement des tâches découlant d’une variété de systèmes informatiques et de

communication émergents : les tâches sont divisées en groupes; celles d’un groupe

peuvent être mises en lots et exécutées simultanément; l’objectif de l’ordonnanceur est

de concevoir des algorithmes d’ordonnancement maximisant l’utilité globale du système.

Sous le parapluie générique ci-dessus, nous étudions différentes classes de problèmes

d’ordonnancement de tâches par lots, en établissant le cadre théorique correspondant,

en concevant des algorithmes d’ordonnancement hors ligne et en ligne, et en illustrant

leur application dans la planification des tâches de communication et d’informatique.

Nous commençons par le scénario de base de l’ordonnancement des tâches par lots.

Il y a un ensemble de tâches à exécuter sur un certain nombre de machines. Cer-

taines tâches peuvent être exécutées simultanément sur une seule machine, tandis

que d’autres nécessitent l’utilisation exclusive d’une machine entière. Nous recher-

chons une politique d’ordonnancement optimale pour maximiser l’utilité globale du

système. Nous développons un cadre algorithmique pour le problème d’ordonnancement

ci-dessus dans la forme générique qui peut atteindre 1/2-optimality, surperformant le

résultat le plus connu. La technicité de base de notre conception est un mécanisme

de relaxation LP adapté et une approche d’arrondissement et de coloration qui trans-

forme la solution de la relaxation LP en une politique d’ordonnancement optimale

de 1/2. Nous démontrons ensuite l’application de notre cadre algorithmique pour

résoudre le problème de diffusion proportionnelle généralisée en développant un al-

gorithme d’approximation déterministe produisant une politique d’ordonnancement

lmin/(2(lmin + 1))-optimale, alors qu’il n’existe que des algorithmes randomisés dans

la littérature.

Nous formulons et analysons ensuite un problème fondamental d’ordonnancement de

transmission en liaison descendante dans les systèmes de communication sans fil, com-

posé d’une station de base et d’un ensemble d’utilisateurs, chacun demandant un pa-

III

quet à servir dans une fenêtre de temps. Certains paquets sont demandés par plusieurs

utilisateurs et peuvent être servis simultanément en raison de la nature de médium

sans fil. Par rapport au modèle de base, il y a deux particularités. Premièrement,

chaque demande peut être servie par un sous-ensemble de stratégies de transmission.

Deuxièmement, les demandes doivent être servies de la manière FIFO. Nous recher-

chons un algorithme de planification de transmission en liaison descendante maximisant

l’utilité globale du système. Nous établissons d’abord sa dureté en prouvant que (1) le

problème hors ligne est NP-hard et (2) le problème en ligne est inapproximable dans sa

forme générique. Compte tenu du résultat de dureté, nous développons ensuite des algo-

rithmes d’approximation avec une garantie de performance mathématiquement prouvée

en termes d’approximation et de rapports compétitifs pour les paramètres hors ligne et

en ligne, respectivement.

La troisième contribution de cette thèse concerne l’ordonnancement des tâches par

lots de ressources contiguës, qui est un problème bidimensionnel d’ordonnancement des

tâches. Un ensemble de tâches doit être exécuté sur un pool de ressources contin-

ues, chacune nécessitant un certain temps et une ressource contiguë ; certaines tâches

peuvent être exécutées simultanément en lot en partageant la ressource, tandis que

d’autres nécessitent une utilisation exclusive de la ressource ; les tâches sont servies de

la manière FIFO. Nous recherchons une allocation optimale des ressources et la poli-

tique d’ordonnancement connexe maximisant l’utilité globale du système. Ce problème

se pose dans une variété de domaines de l’ingénierie, où les ressources de communi-

cation et de stockage sont des goulots d’étranglement potentiels et doivent donc être

soigneusement programmés. Les deux problèmes précédents peuvent être considérés

comme les cas dégénérés du problème d’ordonnancement des tâches de mise en lots des

ressources contiguës. Deux exemples motivants sont le problème de liaison du spectre

dans les systèmes d’accès au spectre et le problème d’allocation de stockage dynamique

dans les systèmes informatiques. Nous fournissons une analyse algorithmique complète

sur le problème en établissant sa dureté et en développant des algorithmes de program-

mation d’approximation pour les paramètres hors ligne et en ligne avec une garantie de

performance éprouvée.

IV

Abstract

In this thesis we formulate and analyze a class of fundamental task scheduling prob-

lems arising from a variety of emerging computing and communication systems: tasks

are partitioned into groups; those in a group can be batched and executed simultane-

ously; the goal faced by the scheduler is to design scheduling algorithms maximizing

the overall system utility. Under the above generic umbrella, we investigate different

classes of batching task scheduling problems, establishing the corresponding theoretical

framework, designing both offline and online scheduling algorithms, and illustrating

their application in scheduling communication and computing tasks.

We start by the baseline scenario of batching task scheduling. There is a set of tasks

to be executed on a number of machines. Some tasks can be executed simultaneously

on a single machine, while others require exclusive use of an entire machine. We seek

an optimal scheduling policy to maximize the overall system utility. We develop an

algorithmic framework for the above scheduling problem in the generic form that can

achieve 1/2-optimality, outperforming the best known result. The core technicality in

our design is an adapted LP relaxation mechanism and a rounding and coloring ap-

proach that turns the solution of the LP relaxation to a 1/2-optimal feasible scheduling

policy. We then demonstrate the application of our algorithmic framework to solve the

generalized proportional broadcast problem by developing a deterministic approxima-

tion algorithm outputting an lmin/(2(lmin + 1))-optimal scheduling policy, while there

exist only randomized algorithms in the literature.

We then formulate and analyze a fundamental downlink transmission scheduling

problem in wireless communication systems, composed of a base station and a set of

users, each requesting a packet to be served within a time window. Some packets are

requested by several users and can be served simultaneously due to the broadcast nature

of the wireless medium. Compared to the baseline model, there are two particularities.

First, each request can be served by a subset of transmission strategies. Second, requests

need to be served in the FIFO manner. We seek a downlink transmission scheduling

V

algorithm maximizing the overall system utility. We develop an algorithmic framework

of the formulated downlink data transmission scheduling problem in both offline and

online settings. We first establish its hardness by proving that (1) the offline problem

is NP-hard and (2) the online problem is inapproximable in its generic form. Given

the hardness result, we then develop approximation algorithms with mathematically

proven performance guarantee in terms of approximation and competitive ratios for the

offline and online settings, respectively.

The third contribution of this thesis concerns the contiguous-resource batching task

scheduling, which is a two-dimensional task scheduling problem. A set of tasks need to

be executed on a pool of continuous resource, each requiring a certain amount of time

and contiguous resource; some tasks can be executed simultaneously in batch by sharing

the resource, while others requiring exclusive use of the resource; tasks are served in

the FIFO manner. We seek an optimal resource allocation and the related scheduling

policy maximizing the overall system utility. This problem arises in a variety of en-

gineering fields, where communication and storage resources are potential bottlenecks

and thus need to be carefully scheduled. The previous two problems can be regarded as

the degenerated instances of the contiguous-resource batching task scheduling problem.

Two motivating examples are the spectrum bonding problem in spectrum access sys-

tems and the dynamic storage allocation problem in computer systems. We deliver a

comprehensive algorithmic analysis on the problem by establishing its hardness and de-

veloping approximation scheduling algorithms for both offline and online settings with

proven performance guarantee.

VI

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Thesis Overview and Organization . 2

2 Related Work 5

2.1 Broadcast Scheduling . 6

2.2 Task Scheduling . 7

2.2.1 Task Scheduling without Batching 7

2.2.2 Task Scheduling with Batching 8

2.3 Downlink Transmission Scheduling . 8

2.4 Bandwidth and Storage Allocation Problems 9

2.4.1 Bandwidth Allocation Problem 10

2.4.2 Storage Allocation Problem . 11

2.5 Conclusion . 11

3 Batching Task Scheduling: Baseline Algorithmic Framework 13

3.1 Introduction . 13

3.2 System Model and Problem Formulation 15

3.2.1 System Model . 15

3.2.2 Problem Formulation . 16

3.3 Our Algorithmic Framework . 18

3.3.1 Task Graph Construction . 18

3.3.2 From Task Scheduling to MWIS 20

3.3.3 LP Relaxation . 20

3.3.4 Constructing a Feasible Scheduling Policy: Rounding and Coloring 22

3.3.5 Approximation Ratio Analysis 23

3.4 The Case of Unbounded Batching . 24

VII

3.4.1 Task Graph Construction . 24

3.4.2 LP Relaxation . 25

3.4.3 Approximation Algorithm . 26

3.5 Applying Our Algorithmic Framework to Solve Generalized Proportional

Broadcast Scheduling Problem . 26

3.5.1 Problem Statement . 27

3.5.2 Deterministic Approximation Scheduling Algorithm 29

3.5.3 Approximation Ratio Analysis 34

3.6 Numerical Analysis . 35

3.6.1 Baseline Scenario of Batching Task Scheduling Problem 36

3.6.2 Proportional Broadcast Scheduling Problem 37

3.7 Conclusion . 38

3.8 Appendix . 39

3.8.1 Proof of Lemma 3.1 . 39

3.8.2 Proof of Lemma 3.2 . 40

3.8.3 Proof of Theorem 3.1 . 41

3.8.4 Proof of Lemma 3.3 . 42

3.8.5 Proof of Theorem 3.3 . 43

3.8.6 Proof of Lemma 3.4 . 44

3.8.7 Proof of Lemma 3.5 . 44

3.8.8 Proof of Theorem 3.4 . 45

4 Downlink Transmission Scheduling with Data Sharing 49

4.1 Introduction . 50

4.2 System Model and Problem Formulation 51

4.2.1 System Model . 51

4.2.2 Problem Formulation . 53

4.3 The Offline Case . 55

4.3.1 Problem Hardness . 55

4.3.2 Request Graph . 56

4.3.3 From Downlink Transmission Scheduling to Maximum Weighted

Independent Set . 60

4.3.4 LP Relaxation . 61

4.3.5 Approximation Scheduling Algorithm Design 63

4.3.6 Performance Analysis . 64

VIII

4.4 The Online Case . 65

4.4.1 Problem Inapproximability . 65

4.4.2 Online Scheduling Algorithm Design 66

4.5 Numerical Analysis . 68

4.5.1 Scenario 1 . 69

4.5.2 Scenario 2 . 70

4.5.3 Scenario 3 . 71

4.6 Conclusion . 72

4.7 Appendix . 72

4.7.1 Integer Linear Problem Formulation of Offline Downlink Trans-

mission Scheduling . 72

4.7.2 Proof of Theorem 4.1 . 73

4.7.3 Proof of Lemma 4.1 . 74

4.7.4 Proof of Lemma 4.2 . 76

4.7.5 Proof of Theorem 4.2 . 77

4.7.6 Proof of Theorem 4.4 . 78

5 Contiguous-resource Batching Task Scheduling 81

5.1 Introduction . 82

5.2 System Model . 83

5.3 The Offline Case . 87

5.3.1 Problem Formulation and Hardness 87

5.3.2 Request Graph . 88

5.3.3 From Channel Bonding to Maximum Weighted Regular Indepen-

dent Set . 92

5.3.4 LP Relaxation . 93

5.3.5 Approximation Scheduling Algorithm 97

5.3.6 Performance Analysis . 100

5.4 The Online Case . 102

5.4.1 Inapproximability . 103

5.4.2 Online Scheduling Algorithm Design 103

5.4.3 Performance Analysis . 106

5.5 Numerical Analysis . 107

5.5.1 Scenario 1 . 107

5.5.2 Scenario 2 . 108

IX

5.5.3 Scenario 3 . 109

5.6 Conclusion and Perspective . 110

5.7 Appendix . 111

5.7.1 Integer Linear Problem Formulation of Offline Channel Bonding 111

5.7.2 Proof of Theorem 5.1 . 112

5.7.3 Proof of Lemma 5.1 . 112

5.7.4 Proof of Lemma 5.2 . 113

5.7.5 Proof of Lemma 5.3 . 115

5.7.6 Proof of Lemma 5.4 . 116

5.7.7 Proof of Lemma 5.5 . 118

5.7.8 Proof of Lemma 5.6 . 119

5.7.9 Proof of Theorem 5.2 . 119

5.7.10 Proof of Theorem 5.4 . 120

6 Conclusion and Prospective 123

6.1 Thesis Summary . 123

6.2 Open Questions and Future Work . 124

6.2.1 Dependent batching task scheduling 124

6.2.2 Flexible FIFO model . 125

X

Chapter 1

Introduction

This chapter provides a high-level description of the problems investigated in this

thesis. It starts off by giving the background and motivation, then presenting the

problems we address in this thesis, concluding with an overview of the organization of

the thesis.

1.1 Background and Motivation

It is widely understood that communication and computing resources are potential

bottlenecks in many emerging information systems. This is driven by the ever increasing

number of communication and computing devices densely deployed today, which further

underscores the necessity for efficient allocation and sharing of the common resources.

Scheduling is the process of allocating a pool of resources among a set of tasks such that

specific predefined objectives are achieved or optimized. Being an important branch in

combinatorial optimization and theoretical computer science [25, 27, 29, 46], scheduling

can be regarded as a decision-making process for optimizing one or more objectives.

In emerging computing and communication systems, the scheduling problems con-

sider a set of tasks, each of which submits its request by requiring certain amount of

specified resources for a specific time interval. The purpose of the problems is to op-

timally allocate limited resources to execute the tasks over time in order to achieve

specific scheduling objectives, which can take many forms such as maximizing the sys-

tem utility, minimizing makespan, minimizing the total delay cost, and so on [29]. More

precisely, a schedule is a subset of the Cartesian product of three sets [46].

• A set of tasks (What) that should be executed.

1

• A set of time periods (When), intervals [start, end] with start ≤ end, where

start and end are real-valued. Intuitively, one can associate with a task the time

period during which it is executed.

• A set of resources that tasks occupy as they are executed. We denote this set

as Where. It includes not only geographically localized resources, but also raw

materials and other resources.

A schedule is a subset of What×When×Where. Intuitively, it specifies the re-

sources that each task needs and when it needs them such that specific predefined

objectives are achieved or optimized.

Unfortunately, most of scheduling problems are proven to be strongly NP-hard.

Thus, unless P=NP, there are no efficient algorithms to find optimal scheduling policy

for such problems, where an efficient algorithm is one that runs in time bounded by a

polynomial in its input size [47]. A common approach for solving this problem is to

relax the requirement of polynomial-time solvability. We try to find a scheduling policy

that closely approximates the optimal scheduling policy in terms of system utility, but

the goal is to relax the requirement as little as we possibly can.

In this thesis, we formulate and analyze a class of fundamental scheduling prob-

lems arising from a variety of emerging computing and communication systems, where

tasks to be scheduled are partitioned into groups, and tasks in the same group can be

batched and executed simultaneously. The goal is to design scheduling algorithms that

maximize the system utility. Each of the problems, which is proven to be NP-hard, has

its own particularities and calls for specific analysis that cannot draw upon existing re-

sults. For the considered problems, we consider approximation algorithms with proved

performance guarantee.

1.2 Thesis Overview and Organization

In this section, we provide a high-level overview of our thesis. We first review

the related literature in Chapter 2, and then describe the contributions of the thesis,

which are presented sequentially in Chapters 3-5. Specifically, we start by investigating

the baseline scenario of batching task scheduling problem in Section 3, and then we

formulate and analyze the problems of downlink transmission scheduling with data

sharing and contiguous-resource batching task scheduling, which are significant varieties

2

and extensions of the baseline scenario of batching task scheduling problem, in Sections

4 and 5, respectively. Figure 1.1 illustrates the structure of our thesis.

Batching Task Scheduling:

Baseline Algorithmic Framework

Chapter 3

Downlink Transmission

Scheduling with Data Sharing

Chapter 4

Contiguous-resource

Batching Task Scheduling

Chapter 5

Conclusion

Chapter 6

Related Work

Chapter 2

Introduction

Chapter 1

Figure 1.1: Thesis organization

Chapter 3: Batching Task Scheduling: Baseline Algorithmic Framework.

This chapter investigates the batching task scheduling problem in its baseline form and

develops an algorithmic framework. There is a set of tasks to be executed on a number

of machines. Some tasks can be executed simultaneously on a single machine, while

others require exclusive use of an entire machine. We seek an optimal scheduling policy

to maximize the overall system utility. We develop an algorithmic framework for the

above scheduling problem in the generic form that can achieve 1/2-optimality, outper-

forming the best known result. The core technicality in our design is an adapted LP

relaxation mechanism and a rounding and coloring approach that turns the solution of

the LP relaxation to a 1/2-optimal feasible scheduling policy. We then demonstrate the

application of our algorithmic framework to solve the generalized proportional broad-

cast problem by developing the first deterministic approximation algorithm outputting

an lmin/(2(lmin + 1))-optimal scheduling policy, while there exist only randomized algo-

3

rithms in the literature.

Chapter 4: Downlink transmission scheduling with data sharing. This

chapter formulates and analyzes a fundamental downlink transmission scheduling prob-

lem in a wireless communication system, composed of a base station, a set of trans-

mission strategies and a set of users, each requesting a packet to be served within a

time window. Some packets are requested by several users and can be served simulta-

neously due to the broadcast nature of the wireless medium. Compared to the baseline

scenario of batching task scheduling, there are two particularities. First, each request

can be served by a subset of transmission strategies. Second, requests should be served

in the FIFO model. We seek a downlink transmission scheduling algorithm maximiz-

ing the overall system utility. In this chapter, we develop an algorithmic framework

of the formulated downlink data transmission scheduling problem in both offline and

online settings. We first establish its hardness, and then develop approximation algo-

rithms with mathematically proven performance guarantee in terms of approximation

and competitive ratios for the offline and online settings, respectively.

Chapter 5: Contiguous-resource batching task scheduling. This chapter

formulates and analyzes the contiguous-resource batching task scheduling problem: a

set of tasks need to be executed on a pool of continuous resource, and each task requires

a certain amount of time and contiguous resource; some tasks can be executed simul-

taneously in batch by sharing the resource, while others requiring exclusive use of the

resource; tasks are served in the FIFO manner. We seek an optimal resource allocation

scheduling policy maximizing the overall system utility. In this chapter, we investigate

both offline and online scheduling settings. In both cases, we establish the problem

hardness and develop approximation algorithms with proven performance guarantee.

4

Chapter 2

Related Work

This thesis investigates a class of fundamental batching scheduling problems. From

the algorithmic perspective, the problems we address are mostly related to the broad-

cast scheduling problem. This chapter reviews the related literature by starting with the

broadcast scheduling problem in Section 2.1. We then extend the broadcast scheduling

problem to the task scheduling problem by giving the overview of the task schedul-

ing problems with and without batching in Section 2.2. To better understand the re-

search status of the downlink transmission scheduling with data sharing and contiguous-

resource task scheduling problems we address in the thesis, we review the previous works

on these two topics in Section 2.3 and Section 2.4, respectively. Section 2.5 concludes

the chapter.

Before presenting the related work, we introduce the following definitions.

Definition 2.1 (Feasible Scheduling Policy). We call a scheduling policy feasible for a

problem if the policy satisfies all constraints of the problem.

Definition 2.2 (Offline Scheduling Problem). The offline scheduling problem seeks an

optimal feasible scheduling policy for the offline scheduler with the full knowledge of

request/task information.

Definition 2.3 (Online Scheduling Problem). The online scheduling problem seeks an

optimal feasible scheduling policy for the online scheduler with only the current schedul-

ing backlog.

In the analysis for the maximum problems, the standard definitions of approximation

factor and competitive ratio, which are used to quantify the efficiency of any offline and

online algorithm respectively, are provided as below.

5

Definition 2.4 (Approximation Factor). An algorithm Π is said to have approximation

factor ρ > 1 if, for any problem instance σ, the system utility generated by Π, denoted

by VΠ(σ), is within factor ρ of the maximum system utility OPT (σ), i.e., ρ · VΠ(σ) ≥
OPT (σ). We say that Π is a 1/ρ−approximation algorithm.

Definition 2.5 (Competitive Ratio). An online algorithm Π is said to have competitive

ratio ρ > 1 if, for any problem instance σ, the system utility generated by Π, denoted by

VΠ(σ), satisfies ρ · VΠ(σ) ≥ OPT (σ). We say that Π is a 1/ρ−competitive algorithm.

2.1 Broadcast Scheduling

In the broadcast scheduling problem, a server broadcasts unit-size packets to a set

of users, each requesting one of the packets with a time window, during which the

requested packet needs to be received. Multiple users requesting a same packet can be

served simultaneously if the packet is broadcast in the overlapped interval of their time

windows. The problem faced by the central scheduler is to design a scheduling policy

maximizing the system utility.

The broadcast scheduling problem has been considered in several papers. Gandhi et

al. [18] developed a randomized rounding approach for fractional vectors defined on the

edge-sets of bipartite graphs and provided a 3/4-approximation for the problem where

the profit of each task is a fixed value (i.e., the value does not change with the time),

and provided a (1− 1/e)-approximation for the case where each task has an arbitrary

time-window (instead of an interval) in which it must be processed, via a natural LP

relaxation. Im and Sviridenko [24] gave a randomized (0.5 − 0.75/e)-approximation

algorithm that improved the previous 3/4-approximation. Bansal et al. [4] gave an

algorithm with an approximation ratio of 6/5 without proof that was unfortunately

wrong. Chekuri et al. [12] adapted the ideas of [18] to obtain a 3/4-approximation for

profit maximization with unimodal profit functions and a (1− 1/e)-approximation for

the case where each task is associated with an arbitrary non-negative profit function.

The broadcast scheduling problem can be regarded as a degenerated instance of each

of our scheduling problems we address in this thesis.

6

2.2 Task Scheduling

2.2.1 Task Scheduling without Batching

Given a set of tasks, each of which is associated with a time window and, if admitted,

needs to be executed within the window, the canonical task scheduling problem seeks

a scheduling algorithm maximizing system utility, with the assumption that any pair

of tasks cannot be executed simultaneously. This unbatching task scheduling problem

has been considered in several related works [5, 7, 10, 42]. Spieksma [42] considered

the interval scheduling problem on a single machine. In the problem, the possible in-

stances of a task are given explicitly as a set of time intervals. The goal is to pick

a set of maximum number of nonintersecting time intervals so that at most one in-

terval from each set of task instances is picked. This problem can be viewed as the

discrete version for a special case of our problem. Spieksma [42] proved that the prob-

lem, to which the MAX 3-SAT-3 problem can be cast, is MAX-SNP hard, and gave

a 1/2-approximation algorithm, and showed that the integrality gap of a linear pro-

gramming formulation for this problem approaches 1/2 as well. Chuzhoy et al. [14]

provided a randomized (1− 1/e)-approximation algorithm. Bar-Noy et al. [7] provided

a deterministic approximation algorithm with approximation ratio 2 via LP that was

implicit in the weighted case, and they also proved that the LP-based approximation

algorithm achieved 1/3-approximation for contiguous input, where there are two in-

stances of tasks so that one terminates within time slot t and the other starts within t.

Berman and DasGupta [10] proposed combinatorial two-phase algorithm that achieves

ratio 2. Bar-Noy et al. [5] gave a 1/2-approximation algorithm via local ratio technique

for discrete input and a 1/(2 + ε)-approximation algorithm for continuous input in the

weighted case with arbitrary profits. Consider that tasks can be executed in multiple

machines. In the case of unrelated machines, where the profit and processing time of

each task are not identical in different machines, Bar-Noy et al. [7] demonstrated a

greedy 1/2-approximation algorithm for the unweighted, and gave a 1/3-approximation

factor for discrete weighted input and 1/4 for continuous weighted input. Bar-Noy et

al. [5] achieved 1/2-approximation for discrete input and 1/(2+ ε) for continuous input.

Berman and DasGupta [10] also gave a 1/2-approximation algorithm. In the case of

K identical machines, i.e., where the profit and processing time of each task are the

same for all machines, Bar-Noy et al. [7] achieved (1 − 1/(1 + 1/K)K)-approximation

for discrete input and (1 − 1/(1 + 1/(2K))K)-approximation for continuous weighted

7

input. A (1− (K/(K+1))K)-approximation algorithm was also implicit in Berman and

DasGupta [10].

2.2.2 Task Scheduling with Batching

The works presented in Section 2.2.1 study a special case of the scheduling problem,

where any pair of tasks cannot be executed simultaneously. In the generic scheduling

problem, tasks are organized in groups such that those in the same group can be

executed simultaneously. We call the simultaneously executed tasks a batch. The goal

is to find a scheduling with batching that maximizes the total weight of the scheduled

tasks. The number of tasks that can be batched simultaneously can be either bounded

or unbounded. Both cases of the scheduling problem with batching are strongly NP-

hard. Bar-Noy et al. [6] gave a 1/4-approximation algorithm that was based on the

local ratio technique for discrete time input instance and 1/(4 + ε)-approximation for

continuous time input instance in the bounded case. When the batch size is unbounded,

the approximation factor for the algorithm provided by Bar-Noy et al. [6] was reduced to

2 and (2+ ε) for discrete and continuous time inputs, respectively. Moreover, they have

extended the algorithm to multiple machines and obtained the same approximation

factor.

2.3 Downlink Transmission Scheduling

The downlink transmission scheduling problem has been extensively explored in

the telecommunication literature. In a typical formulation in wireless communication

systems, the scheduler schedules packet transmission based on their requests and quality

of service (QoS) requirements. The objective of the scheduler is to maximize the system

utility. Many of the downlink transmission scheduling algorithms can be regarded as

“gradient-based” algorithms. The key idea is to select the transmission rate vector to

maximize the projection onto the gradient of the total utility [1, 2, 22,30,43].

Delay is arguably the most common constraint in download scheduling. In this

regard, Sandrasegaran et al. [38] proposed a delay-prioritized scheduling algorithm to

support real-time traffic in the downlink 3GPP LTE system maximizing the system

throughput. Neely [32] considered the problem of maximizing throughput with random

packet arrivals and time-varying channel reliability, and designed a utility maximization

algorithm that used explicit delay information from the head-of-line packet at each user.

8

More generically to address the general QoS requirements, Andrews et al. [3] pro-

posed an efficient way to support QoS of multiple real-time users sharing a wireless

channel, and developed a scheduling policy to maximize channel capacity. Ryu et

al. [36] proposed an urgency and efficiency based wireless packet scheduling algorithm

to maximize throughput satisfying the QoS requirement, where the algorithm used

the time-utility function as a scheduling urgency factor and the relative status of the

current channel to the average one as an efficiency indicator of radio resource usage.

Song [41] investigated downlink data scheduling with QoS provisioning over multiple

channels, which, from a network point of view, provided line flexibility and granularity

for resource allocation, and proposed corresponding scheduling algorithms achieving the

maximum aggregate network utility. Ramli ea al. [34] investigated the performance of

packet scheduling algorithms developed for single carrier wireless systems from a real-

time video streaming perspective, and provided an algorithm achieving a high system

throughput and supporting a large number of users by considering user fairness.

In more sophisticated settings, Rubio et al. [35] formulated a general multi-objective

optimization problem and presented an approach to solve the non-convex optimization

problem in multiuser MIMO broadcast networks implementing simultaneous wireless

information and power transfer. Eisen et al. [16] considered the design of optimal

resource allocation policies in wireless communication systems, modeled as a functional

optimization problem with stochastic constraints, to maximize system utility; deep

neural networks was trained with a primal-dual method to learn the resource allocation

policy and optimize the primal/dual variables.

2.4 Bandwidth and Storage Allocation Problems

Consider the following generic setting. There is a set of independent users accessing

a common frequency band whose width is F . Each user i submits its bandwidth request

in the form of a quadruple (ai, di, fi, li), where ai is the arrival time of the request and

di is the deadline before which the request needs to be served, fi with 0 < fi ≤ F is

the quantity of frequency band requested by i, and li is the number of slots the user

requests to use the frequency band. If request i is served, a reward wi is generated to

the system.

The Bandwidth Allocation Problem (BAP) is to decide which requests to be served

so as to maximize the total weight of total reward of served requests subject to the

constraint that the total size of served requests at any time must not exceed capacity

9

F and the frequency band allocated any request does not need to be contiguous [13].

The Storage Allocation Problem (SAP) is a variant of BAP, in which there are three

additional constraints: (1) the specific portion of the resource allocated to a request

cannot change during the time interval of the request, and (2) the allocation of resource

must be contiguous, and (3) the two spatial intervals allocated to any two accepted

requests should be disjoint if the reservation periods of the two requests intersect in

their interior [8]. In the above two problems, the frequency band allocated to any pair

of requests should not overlap and di − ai + 1 = li for each request i.

2.4.1 Bandwidth Allocation Problem

The BAP has been extensively explored in the literature, however, without system-

atically taking into account spectrum reuse, a key difference compared to the problem

we address in the Chapter 5. In different contexts, the BAP is termed differently,

such as resource allocation [11], resource-constrained scheduling [44], call admission

control [20], etc.. We refer the readers to these references for detailed description of

the specific context and problem setting. Via LP rounding, Phillips et al. [33] ob-

tained a 1/6−approximation algorithm. By the local ratio technique, Bar-Noy et al. [5]

provided a 1/4−approximation algorithm. Using a different idea, Chen et al. [13] pro-

vided a 1/3−approximation algorithm in the special case where the weight of each

request i is (di− ai)fi. Bar-Yehuda et al. [8] presented a deterministic polynomial-time

approximation algorithms, whose approximation factor was (2 + 1/(e − 1)) ≈ 2.582.

Based on the LP relaxation, Calinescu et al. [11] showed that the BAP could be

(1/2 − ε)−approximated in polynomial time, which improved upon earlier approxi-

mation results. Darmann et al. [15] considered a special case, where the rewards for all

requests are identical, i.e., the goal is to maximize the number of served requests. They

gave a deterministic (1/2 − ε)−approximation algorithm. Shachnai et al. [40] induced

the flexible bandwidth allocation problem (FBAP), where each request consists of a

minimal and a maximal resource requirement, for the duration of its execution, as well

as a profit accrues per allocated unit of the resource. In FBAP, the goal is to assign

the available resource to a subset of requests such that the total profit is maximized.

They presented a 1/3−approximation algorithm by adapting the local ratio technique

for FBAP.

10

2.4.2 Storage Allocation Problem

A geometric expression of SAP is to interpret each request as an axis-aligned rectan-

gle that has a fixed weight, a fixed size (height and length), and can be moved vertically

but not horizontally. The goal is to pack a subset of non-overlapping rectangles in a

rectangular frame of given size, so as to maximize the total weight of the chosen rect-

angles [13]. Phillips et al. developed a 1/35−approximation algorithm for the SAP.

Leonardi et al. [28] obtained a 1/12−approximation algorithm. Bar-Nay et al. [5] gave

an approximation algorithm that yielded an approximation factor of 7 based on the

local ratio technique. Chen et al. [13] studied a special case where all resource require-

ments were multiple of 1/K for some integer K ≥ 1. They provided a polynomial-time

approximation algorithm for the special case with an approximation factor of e
e−1

by

assuming that the maximum resource requirement of any request was O(1/K). Bar-

Yehuda et al. [9] gave a randomized 1/(2 + ε)−approximation algorithm, along with

a deterministic (e−1
2e−1
− ε)−approximation algorithm for any fixed ε > 0. Mömke and

Wiese [31] studied the generalized version of SAP, and presented a randomized LP-

based approximation algorithm with expected performance ratio of 2 + ε for any ε > 0.

Shachnai et al. [40] introduced the flexible storage allocation problem (FSAP), which

was a variation of FBAP, and presented a 1/(2 + ε)−approximation algorithm.

2.5 Conclusion

In this chapter, firstly, we have defined the offline and online scheduling problems

and provided the standard definitions of approximation factor and competitive ratio,

which are used to quantify the efficiency of any offline and online respectively. Then,

we have reviewed the previous works on the problems of broadcast scheduling, task

scheduling, downlink transmission scheduling, and bandwidth and storage allocation.

We have a more in-depth understanding of research status on the problems, based

on which, the thesis investigates a class of batching task scheduling problems in its

baseline form, and extends the baseline scenario of batching task scheduling problem to

the problems of downlink transmission scheduling with sharing and contiguous-resource

batching task scheduling. The thesis focuses on developing approximation algorithms

with proved performance guarantee for the problems, which are proven to be NP-hard.

11

12

Chapter 3

Batching Task Scheduling: Baseline

Algorithmic Framework

This chapter investigates the batching task scheduling problem in its baseline form,

where there is a set of tasks to be executed on a number of machines, and some tasks

can be executed simultaneously on a single machine, while others require exclusive

use of an entire machine. The goal is to develop an optimal scheduling policy to

maximize the overall system utility. We develop a baseline algorithmic framework

for the above scheduling problem in the generic form that can achieve 1/2-optimality,

outperforming the best known result [6]. The core technicality in our design is an

adapted LP relaxation mechanism and a rounding and coloring approach that turns the

solution of the LP relaxation to a 1/2-optimal feasible scheduling policy, while the best

existing result is a 1/4-approximation algorithm. We then demonstrate the application

of our algorithmic framework to solve the generalized proportional broadcast problem

by developing a deterministic approximation algorithm outputting an lmin/(2(lmin+1))-

optimal scheduling policy, while there exist only randomized algorithms in the literature.

3.1 Introduction

Consider the following canonical broadcast scheduling problem1 [12,18,24]. A server

broadcasts a set of unit-size packets to a set of users. Each user requests one of the

packets with a time window, during which the requested packet needs to be received.

1Strictly speaking, the problem corresponds more to the multicast setting from a networking per-
spective. In this thesis, we stick to the term broadcast to be coherent to the related literature on this
problem.

13

Multiple users can be served simultaneously if they request the same packet and the

packet is broadcast in the overlapped interval of their time windows. The server ob-

tains a unit reward for each served user. The problem faced by the server is to find an

optimal scheduling algorithm maximizing her overall reward. This so-called pull-based

broadcast scheduling problem has attracted significant research attention because of

its neat formulation going far beyond the broadcast context and its profound algorith-

mic implication: it represents a class of scheduling problems concerning how to group

requests over time so as to optimize or satisfy certain scheduling objective or constraint.

Another example fitting in the above formulation is the lock scheduling problem

arising from concurrency control [45]. In modern software and computing systems,

objects (e.g., data, memory) are usually shared and concurrently accessed by a large

number of applications or transactions, termed as tasks. Ensuring consistency of the

shared objects in this context is of fundamental importance. A widely used mechanism

is to rely on a lock manager to efficiently schedule the object access to ensure both

data correctness and system efficiency. More specifically, consider an object accessed

by multiple tasks, a task can access the object only if it is granted a lock. There are two

types of locks: shared and exclusive locks. Shared locks are granted to tasks that do

not modify the object, e.g., reading a data item in a database, while exclusive locks are

given to tasks modifying the object, e.g., writing or updating a data item. The object

can be accessed simultaneously by multiple tasks with shared locks, but only one single

task with exclusive object. Given a number of tasks, each requiring to access the object

within a certain period of time, the problem of lock scheduling consists of granting locks

to them to maximize system utility, e.g., maximizing the number of executed tasks.

Motivated by the above two examples, we formulate the following baseline scenario

of batching task scheduling problem. There is a set of tasks to be executed on a number

of machines. Some tasks can be executed simultaneously by a single machine, while

others require exclusive use of an entire machine. We seek an optimum scheduling

policy to maximize the overall system utility.

• From a theoretical point of view, the baseline scenario of batching task scheduling

problem is a significant generalization of the broadcast and lock scheduling prob-

lems. By casting the tasks into the packet requests such that the tasks that can be

executed simultaneously correspond to the requests concerning the same packet

to be broadcast, our problem degenerates to the broadcast scheduling problem.

By regarding the sharing of machines as shared locks, the task scheduling problem

14

readily degenerates to the lock scheduling problem.

• From a practical point of view, the baseline scenario of batching task scheduling

problem we formulate arises in a variety of engineering fields where computing,

communication, and storage resources are potential bottlenecks and thus need to

be carefully scheduled.

In this chapter, we establish an algorithmic framework on the above task schedul-

ing problem in its most generic form. Our algorithmic framework allows to develop

scheduling policies with guaranteed performance bound in a variety of scheduling con-

texts. Methodologically, we start with the baseline scenario without any assumption

on the system setting to build our algorithmic framework in its generic form. We

then demonstrate how our algorithmic framework can be adapted to solve other batch

scheduling problems by analyzing the proportional broadcast scheduling problem, where

a portion of the utility is obtained by a task even if it is not executed in totality.

Our main results in this chapter can be summarized as below.

• For the baseline scenario of batching task scheduling, we develop a 1/2-approximation

algorithm, while the best existing result is a 1/4-approximation algorithm.

• For the proportional broadcast scheduling problem, we develop the first deter-

ministic scheduling algorithm with constant approximation factor, while in the

literature, there exist only randomized algorithms providing average performance

guarantees.

3.2 System Model and Problem Formulation

3.2.1 System Model

As stated in the Introduction, we put the canonical broadcast scheduling problem

in a generic context by considering the following task scheduling problem. We have a

system composed of a set K of K machines, indexed from 1 to K. A set N of tasks,

indexed from 1 to N , |N |, are submitted to the system. Each task i is submitted at

time ai, the release time, and should be finished by time di, the deadline or due date;

di − ai + 1 is called its slackness. Let Ki denote the set of machines, on each of which

task i can be scheduled. For each machine k ∈ Ki, we denote li,k the execution time

of task i on machine k. The tasks are divided into B non-overlapping groups, indexed

15

from 1 to B; the tasks in the same group can be executed simultaneously on a same

machine; we use bi (1 ≤ bi ≤ B) to denote the group index of task i; let Nb ∈ N denote

the set of tasks belonging to group b. If a task i is successfully executed on machine

k before its deadline, a reward wi,k is generated to the system. For the tasks that can

be executed simultaneously on a same machine, we say that they form a batch. Let

πk ≤ N denote the maximum batch size that can be supported by each machine k, i.e.,

at most πk tasks of a same group can be executed simultaneously on each machine k.

The problem is called bounded if πk < N and unbounded otherwise. We seek an optimal

scheduling policy to maximize the overall reward within a time horizon T . Table 3.1

lists the main notations in the chapter.

3.2.2 Problem Formulation

In practice, modern computing and communication systems operate on slotted time,

where time is discretized into slots and scheduling is performed at the slot level. We

thus concentrate ourselves on the discretized model, under which, by normalizing the

slot duration to unit time, all the parameters and variables in the problem formulation

are restricted to integers. In this case, our problem, denoted by P1, can be formulated

as an integer linear programming (ILP) as below.

P1: maximize
∑
i∈N

∑
k∈Ki

wi,k · xi,k

subject to

tj,k − ti,k ≥ li,k, ∀i, j ∈ N , bi 6= bj, xi,k = xj,k = 1, ti,k < tj,k∑
i∈N ,ti,k≤t≤ti,k+li,k−1

xi,k ≤ πk, ∀0 ≤ t ≤ T, 1 ≤ k ≤ K

∑
k∈Ki

xi,k ≤ 1, ∀i ∈ N

ai ≤ ti,k ≤ di − li,k + 1, ∀i ∈ N , xi,k = 1, k ∈ Ki

xi,k ∈ {0, 1}, ∀i ∈ N , k ∈ Ki.

where xi,k is the binary variable indicating whether task i is executed or not on machine

k, and ti,k is the time to start executing task i on machine k if xi,k = 1. The first

constraint implies that if task i cannot be executed simultaneously with task j on a

same machine, i.e., bi 6= bj, the allocated time to execute them cannot overlap; The

16

Table 3.1: Main notations

N task set
N number of tasks, N = |N |
T time horizon in number of time slots
B number of task groups
K number of machines in the system
πk maximum batch size supported on machine k
π max1≤k≤K πk
Nb set of group b tasks
ai arriving time of task i
di deadline of task i
bi group index of task i
Ki set of machines on which task i can be executed
li,k number of slots task i needs to be executed on machine k
wi,k reward of task i if it it executed on machine k
xi,k binary variable indicating whether task i is executed on machine k
ti,k time to start executing task i on machine k
G task graph G = (V , E)
Vi set of vertices of task i
Vi,k set of vertices in Vi corresponding to machine k
Vi,k(t) set of vertices v ∈ Vi,k with tv ≤ t ≤ tv + lv − 1
Vi,k,r set of vertices in Vi corresponding to sub-machine r on machine k
Vi,k,r(t) set of vertices u ∈ Vi,k,r with tu ≤ t ≤ tu + lu − 1
tv start-time of the interval corresponding to vertex v
lv length of the interval corresponding to vertex v
wv weight of vertex v
δi,k di − ai − li,k + 2
δ

∑
i∈N

∑
k∈Ki δi,k

yv binary variable indicating whether vertex v is selected
qb,t,k binary variable indicating whether a task of group b is executed at

slot t on machine k
q∗b,t,k value of qb,t,k in the LP relaxation
y∗v value of yv in the LP relaxation

N̂ scaling factor. N̂ = Rδ1+ε and δ1+ε for bounded and unbounded
batching

C ordered set of 2N̂ − 1 colors
Cb,t,k set of colors already used to color the vertices v with tv ≤ t ≤

tv + lv − 1 corresponding to group b and machine k

V̂ set of vertices output by Algorithm 1

17

second constraint indicates that at most πk tasks can be executed together at the same

time on each machine k; The third constraint indicates that each task i is executed at

most once; The fourth constraint is the time constraint to execute task i.

When K = 1 and π1 = N , we can cast the Knapsack problem with integer weights

to P1. It then follows from the NP-completeness of the Knapsack problem with integer

weights [23] that P1 is NP-complete.

3.3 Our Algorithmic Framework

Given the hardness of our problem, we naturally focus on developing approximate

algorithm. At the high level, our idea is to construct a graph, termed as task graph, to

capture the relationships between tasks and cast P1 to the Maximum Weighted Inde-

pendent Set (MWIS) problem [37]2 in the task graph. To solve the MWIS, we construct

an LP relaxation and solve the relaxed linear programming (LP) problem. By exploit-

ing the structural properties of the task graph, we develop a coloring algorithm to find

an independent set (IS) of the task graph that can map to a feasible scheduling policy,

where we then prove the policy to be 1/2-approximation of the optimal solution of P1.

The feasible scheduling policy for the baseline scenario of batching task scheduling is

defined as below, concisely termed as feasible policy.

Definition 3.1 (Feasible Scheduling Policy for the Baseline Scenario of Batching Task

Scheduling). We call a scheduling policy feasible if

• each task is executed at most once;

• the time intervals for executing any pair of tasks from different groups do not

overlap on a same machine;

• at most πk tasks of a same group can be executed simultaneously on each machine

k.

3.3.1 Task Graph Construction

We divide each machine k into πk sub-machines. At most one task is allowed to

be executed on each sub-machine at the same time. We then construct an undirected

2An independent set of a graph is a set of vertices, no two of which are linked by an edge. The
maximum weighted independent set is to find the independent set maximizing the sum of weights of
the vertices in the independent set.

18

graph G = (V , E) capturing the relationships among tasks, termed as task graph, by

defining its vertices and edges as below.

Vertices. Consider each task i ∈ N . For each sub-machine r (1 ≤ r ≤ πk) on

each machine k ∈ Ki, we create a vertex v for each time interval of length li,k in the

time interval [ai, di]. We say that v covers i, and v corresponds to sub-machine r and

machine k. If the scheduler decides to execute i on sub-machine r of machine k in

the time interval corresponding to v, we say that i is instantiated by v. Let Vi denote

the set of vertices of task i; let Vi,k,r denote the set of vertices in Vi corresponding to

sub-machine r and machine k. For each vertex v ∈ Vi,k,r, we define a weight wv and

assign wv to wi,k. Let tv and lv denote the left boundary (i.e., starting time) and the

length of the time interval corresponding to vertex v.

Let π , max1≤k≤K πk. Denote δi,k , di − ai − li,k + 2 and δ ,
∑

i∈N
∑

k∈Ki δi,k. For

each task i, there are
∑

k∈Ki πkδi,k vertices in Vi. We can thus upper-bound the number

of vertices in G by πδ.

Edges. The edges in G capture the relationship among tasks and the number of

tasks in each batch. We distinguish two types of edges.

Intra-task edges. For each task i, we construct an edge between each pair of

vertices in Vi. The intra-task edges model the constraint that any task is executed at

most once.

Inter-task edges. This type of edges are further classified into two sub-categories.

• Inter-task edges characterizing conflicts among tasks. For each machine

k and each pair of tasks i and j that cannot be executed simultaneously, i.e.,

bi 6= bj, we construct an edge between any pair of vertices v ∈ Vi and u ∈ Vj if v

and u correspond to machine k and if the time intervals corresponding to v and

u overlap, indicating that instantiating task i by v and instantiating task j by u

cannot both happen in any feasible scheduling policy.

• Inter-task edges modeling bounded batching. For each machine k, each

sub-machine r and each pair of tasks i, j with bi = bj and k ∈ Ki ∩ Kj, we

construct an edge between each pair of vertices v ∈ Vi,k,r and u ∈ Vj,k,r if the time

intervals corresponding to v and u overlap, making it impossible to instantiate i

by v and also j by u.

19

3.3.2 From Task Scheduling to MWIS

We cast P1 to the MWIS problem [37] in G. An IS of a graph is a set of vertices, no

two of which are linked by an edge. The MWIS problem is to find an IS maximizing the

sum of weights of the vertices in the IS. By choosing an IS in G we mean to execute the

tasks instantiated by the vertices in the IS. We first show that there exists a one-to-one

mapping between an IS of G and a feasible scheduling policy. To make our analysis

more stream-lined, we put all the proofs in Appendix 3.8 and give proof sketch in the

main text.

Lemma 3.1. Each feasible scheduling policy maps to an IS of G, and vice versa.

Proof Sketch. The sufficiency proof consists of deriving a contradiction if there exists a

feasible policy mapping to a subset of vertices in V containing two neighboring vertices.

The necessity proof is based on the construction of edges in G, where each type of edges

ensures a kind of constraints for the feasible scheduling policy.

Lemma 3.1 immediately leads to the following corollary.

Corollary 3.1. P1 can be cast to the MWIS problem on G, whose ILP formulation is

given below.

max
∑
v∈V

wv · yv

s.t. yu + yv ≤ 1, ∀uv ∈ E

yv ∈ {0, 1}, ∀v ∈ V

where yv is the binary variable indicating whether vertex v is selected in the IS.

3.3.3 LP Relaxation

Given the NP-hardness of the MWIS problem, we design an approximation algorithm

by rounding the solution of LP relaxation of P1. To this end, we need to exploit the

particular structure of our problem. This section is focused on the construction of the

LP relaxation of P1.

We first replace the constraint yv ∈ {0, 1} with yv ≥ 0. It is well-known that the

LP relaxation of the MWIS problem suffers the so-called half integer effect due to the

edge constraint [39]. To mitigate this effect, we use the following constraints to replace

the constraint yu + yv ≤ 1 such that (1) any feasible scheduling policy is still feasible

20

in the relaxed problem, (2) non-feasible scheduling policies are eliminated as many as

possible to facilitate the rounding process and to ensure the quality of the rounded

integer solution.

• First, in any feasible scheduling policy, each task is executed at most once, leading

to the following constraints.

∑
v∈Vi

yv ≤ 1, i ∈ N . (3.2)

• Second, to model the resource constraint, we introduce a set of binary variable

qb,t,k, where b ∈ [1, B], t ∈ [0, T] and k ∈ [1, K], to indicate whether at least one

task of group b is executed or not at slot t on machine k. In the LP relaxation we

have 0 ≤ qb,t,k ≤ 1. Any pair of tasks from different groups cannot be executed

simultaneously on each machine, leading to the following constraint.

∑
1≤b≤B

qb,t,k ≤ 1, ∀0 ≤ t ≤ T, 1 ≤ k ≤ K. (3.3)

• Third, consider each machine k and each of its sub-machines r. In any feasible

scheduling policy, for each slot t and each group b, at most one task belonging to

group b can be served on the sub-machine if qb,t,k = 1. Therefore, the sum of yv’s

of vertices v ∈ {Vi,k,r(t)}i∈Nb , which are adjacent to each other, is upper-bounded

by qb,t,k, where Vi,k,r(t) , {u : u ∈ Vi,k,r, tu ≤ t ≤ tu + lu + 1}. Mathematically we

have the following constraint.

∑
i∈Nb

∑
v∈Vi,k,r(t)

yv ≤ qb,t,k, ∀1 ≤ k ≤ K, 1 ≤ r ≤ πk, 1 ≤ b ≤ B, 0 ≤ t ≤ T. (3.4)

By combining the above analysis, we construct the following LP relaxation of the

formulated MWIS problem, denoted by P1’.

P1′ : max
∑
v∈V

wv · xv

s.t. (3.2), (3.3), (3.4)

yv ≥ 0, ∀v ∈ V

qb,t,k ≥ 0, ∀1 ≤ b ≤ B, 0 ≤ t ≤ T, 1 ≤ k ≤ K.

21

There is no need to explicitly add the constraints yv ≤ 1 and qb,t,k ≤ 1 since they are

implied by (3.2) and (3.3), respectively. It is easy to see that any feasible scheduling

policy is a feasible solution of P1’. Hence, an optimal fractional solution of P1’ is an

upper bound of the utility of any optimal feasible scheduling policy.

3.3.4 Constructing a Feasible Scheduling Policy: Rounding

and Coloring

We now present our approximation algorithm that rounds the solution of P1’ and

constructs a feasible scheduling policy. Our approach generalizes the rounding and

coloring technique developed in [7] adapted to our context, addressing the following

two constraints in our problem: (1) task batching, (2) resource sharing. At a high level,

we first solve P1’, and then color the graph G based on the solution of P1’ such that

each color induces an IS that can be mapped into a feasible scheduling policy.

Let N̂ , πδ1+ε. To make our analysis concise, we assume that N̂ is an integer,

otherwise we need to round it to the nearest integer. Let C denote an ordered set (or a

vector) of (2N̂ − 1) colors. For each slot t, each machine k and each group b, let Cb,t,k
denote the set of colors already used to color the vertices v ∈ V with tv ≤ t ≤ tv + lv−1

corresponding to group b and machine k.

We solve P1’ and denote the solution by {y∗v}v∈V , where y∗v is the value of yv in the

LP relaxation. Clearly, we have 0 ≤ y∗v ≤ 1,∀v ∈ V . Then, we color all vertices in V
with as few colors as possible such that (1) each vertex v ∈ V receives bN̂y∗vc colors, (2)

any color used to any vertex v is not used to color any neighbor of v. Technically, we

first sort the vertices in V non-decreasingly by their left boundaries, i.e., their starting

time, with ties broken randomly. Step 2 is then executed in iterations. In each iteration,

we color a vertex in V . For each vertex v ∈ V from left to right with respect to the

above ordering. Let b denote the group to which the task covered by v belongs, and let

k denote the machine to which vertex v corresponds. Let Ĉ denote the set of colors in

Cb,tv ,k not yet used by any neighbor of v. If there are at least bN̂y∗vc colors in Ĉ, i.e.,

|Ĉ| ≥ bN̂y∗vc, we color v using the first bN̂y∗vc colors in Ĉ; otherwise, we color v using

colors in Ĉ and the first bN̂y∗vc − |Ĉ| colors in C not yet used by any neighbor of v.

The pseudo-code of our algorithm is given in Algorithm 1. Our algorithm outputs

the set of vertices sharing one common color with maximum weight. As each vertex

corresponds to a task, the final scheduling policy is to execute the tasks corresponding

to these vertices. In the algorithm, we use the functions, which are briefly described

22

as follows. As the functions are graph algorithms that can be coded straightforwardly,

the detailed implementation is thus omitted in the pseudo-code.

• SameGroupColors(b, t, k, C) returns the set of colors in C already used to color

the vertices u with tu ≤ t ≤ tu +u −1 corresponding to group b and machine k.

• AvailableSameGroupColors(v, C∗) returns the set of colors in C∗ not yet used

by any neighbor of v if such colors exist, and ∅ otherwise.

• AvailableColors(v, n, C∗) returns the first n colors in C∗ not yet used by any

neighbor of v.

Algorithm 1 Batching task scheduling: executed by the scheduler

1: Input: task graph G = (V , E), solution of P1’ {y∗v}v∈V , a vector C of (2N̂ − 1)
colors

2: Output: set of vertices in V̂ . The corresponding scheduling is to execute the
tasks corresponding to the vertices in V̂

3: sort the vertices in V non-decreasingly by their start-time, with ties broken ran-
domly

4: for each v ∈ V with by∗vN̂c ≥ 1 from left to right with respect to the above ordering
do

5: let b denote the group to which the task corresponding to v belongs
6: let k denote the machine to which vertex v corresponds
7: Cb,tv ,k ← SameGroupColors(b, tv, k, C)
8: Ĉ ← AvailableSameGroupColors(v, Cb,tv ,k)
9: if |Ĉ| ≥ by∗vN̂c then . Properly color v

10: color v using the colors AvailableColors(v, by∗vN̂c, Ĉ)
11: else
12: color v using the colors in Ĉ and the colors AvailableColors(v, by∗vN̂c −
|Ĉ|, C)

13: end if
14: end for
15: Return set of vertices in V sharing one common color with maximum weight

3.3.5 Approximation Ratio Analysis

This subsection is dedicated to the theoretical analysis of our approximation algo-

rithm. We first prove that each vertex v ∈ V with by∗vN̂c ≥ 1 is colored by by∗vN̂c
colors in Lemma 3.2, based on which we further establish the approximation ratio of

Algorithm 1 in Theorem 3.1.

23

Lemma 3.2. Each vertex v ∈ V with by∗vN̂c ≥ 1 is colored by by∗vN̂c colors by Algo-

rithm 1.

Proof Sketch. For each vertex v ∈ V with by∗vN̂c ≥ 1, we prove that there are at least

by∗vN̂c available colors in C that can be used by Algorithm 1 to color v.

Theorem 3.1. Algorithm 1 outputs a 1
2

(
1− 1

δε

)
-optimal feasible scheduling policy.

Proof Sketch. We establish the relationship between the IS output by Algorithm 1 and

the utility of an optimal scheduling policy, which allows us to further bound the ap-

proximation ratio.

Asymptotically, by choosing a large δ, the approximation ratio of our algorithm

approaches 2. Note that the best approximation ratio in the literature is 4 [6].

We conclude this section by analyzing the complexity of Algorithm 1. Since the

number of vertices in V is upper-bounded by πδ, the complexity of the sorting process

is upper-bounded by O(πδ log(πδ)). The number of colors received by each vertex is

O(N̂), and thus the coloring of vertices in V can be done in O(πδN̂) time. It then

follows from N̂ = πδ1+ε that the complexity of Algorithm 1 is O(π2δ2+ε). In the case

where π is constant, the complexity of Algorithm 1 scales approximately quadratically

to the number of requests N .

3.4 The Case of Unbounded Batching

In this section, we describe how our algorithmic framework can be adapted in the

unbounded case πk = N, ∀1 ≤ k ≤ K. Note that the unbounded batching task schedul-

ing problem is still P-complete. Our objective is to adapt our algorithmic framework

to produce a 1/2-optimal feasible scheduling policy.

Different from the bounded case, the bottleneck on the number of simultaneously

executable tasks on any machine does not exist any more in the unbounded case. As

a consequence, the task graph has simpler structure in the unbounded case; the LP

relaxation process can then be adapted accordingly. The above adaptation enable us to

derive the asymptotic approximation ratio of 2 in unbounded case. In the rest of this

section, we briefly explain the main adaptation in the unbounded case.

3.4.1 Task Graph Construction

The task graph G = (V , E) is constructed below.

24

Vertices. Consider each task i ∈ N . For each machine k ∈ Ki, we create a vertex

v for each interval of length li,k in the time interval [ai, di]. We say that v covers i and

the machine corresponding to v is k. We denote Vi the set of vertices covering i, and

let Vi,k denote the set of vertices in Vi corresponding to machine k. For each vertex

v ∈ Vi,k, we define a weight wv and assign wv to wi,k.

Edges. We distinguish the types of edges.

• Intra-task edges. For each task i, we construct an edge between each pair of

vertices in Vi.

• Inter-task edges. Consider each machine k and any pair of tasks i, j ∈ N with

bi 6= bj and k ∈ Ki ∩ Kj. For any pair of vertices v ∈ Vi,k and u ∈ Vj,k, we

construct an edge between v and u if their corresponding time intervals overlap.

Based on the proof of Lemma 3.1, we can see that there exists a one-to-one mapping

between an IS of G and a feasible scheduling policy for unbounded batching without

conflict. The unbounded batching scheduling problem is thus transformed into finding

a MWIS in G, the formulation of which is the same as in Corollary 3.1.

3.4.2 LP Relaxation

The construction of the LP relaxation in the unbounded case can be significantly

simplified. For each slot t, let Vi,k(t) denote the set of vertices v ∈ Vi,k with tv ≤
t ≤ tv + lv − 1. Consider each machine k. For each slot t and each group b, at any

feasible scheduling policy, any task belonging to group b can be served at slot t on

machine k if and only if qb,t,k = 1. Therefore, for each task i ∈ N , the sum of yv’s of

vertices v ∈ Vi,k(t) is upper-bounded by qbi,t,k. Mathematically we have the following

constraints.

∑
v∈Vi,k(t)

yv ≤ qbi,t,k, ∀i ∈ N , 0 ≤ t ≤ T, 1 ≤ k ≤ K. (3.5)

We construct the following LP relaxation of the formulated MWIS problem.

max
∑
v∈V

wv · xv

s.t. (3.2), (3.3), (3.5)

yv ≥ 0, ∀v ∈ V

25

qb,t,k ≥ 0, ∀1 ≤ b ≤ B, 0 ≤ t ≤ T, 1 ≤ k ≤ K.

3.4.3 Approximation Algorithm

Armed with the task graph and the LP relaxation, we then set N̂ = δ1+ε in Algo-

rithm 1. We first prove that each vertex v ∈ V with by∗vN̂c ≥ 1 is colored by bŷ∗vN̂c
colors by Algorithm 1 in Lemma 3.3, based on which, we can establish the performance

of Algorithm 1 in Theorem 3.2.

Lemma 3.3. Each vertex v ∈ V with by∗vN̂c ≥ 1 is colored by bŷ∗vN̂c colors by Algo-

rithm 1.

Proof. For each vertex v ∈ V with by∗vN̂c ≥ 1, we prove that there are at least bŷ∗vN̂c
available colors in C that can be used by Algorithm 1 to color the vertex.

We can then establish the performance bound of Algorithm 1 in the unbounded

case. The proof follows the same way as that of Theorem 3.1.

Theorem 3.2. Algorithm 1 outputs an asymptotically 1/2-optimal feasible scheduling

policy for the unbounded batching scheduling problem.

In the single-machine case, i.e., K = 1, when the task slackness is constrained such

that di − ai + 1 < 2li,1 for each task i, Algorithm 1 is a PTAS. This result implies that

our algorithm is a PTAS for the canonical broadcast scheduling problem in this case.

Theorem 3.3. When K = 1, if di − ai + 1 < 2li,1, ∀i ∈ N , Algorithm 1 is a PTAS.

Proof Sketch. We first prove that Algorithm 1 uses at most N̂ colors to color all vertices

in G. Then, we prove that Algorithm 1 outputs a (1−1/δε)-optimal feasible policy.

3.5 Applying Our Algorithmic Framework to Solve

Generalized Proportional Broadcast Scheduling

Problem

In this section, we demonstrate how the developed algorithmic framework can be

adapted to solve other scheduling problems. Technically, we consider the generalization

of the proportional broadcast scheduling problem formulated in [18] as described below.

26

3.5.1 Problem Statement

In the original proportional broadcast scheduling problem, we are given a set N of

N tasks. Each task i is submitted at time ai, requires li slots (the length of task i) to

complete. The deadline of task i is di. Different from the standard broadcast scheduling

problem, each task does not need to be executed completely and the execution can be

interrupted and can be resumed at the last execution point. A reward wi is generated to

the system if task i is executed li slots during the time interval [ai, di]. In the case where

task i is not completely executed, the system still gets a reward that is proportional

to the execution time γi, i.e., wi(γi) = γi
li
wi. Tasks are divided into B non-overlapping

groups. Tasks in the same group can be executed simultaneously. The goal is to

maximize the total reward of the executed tasks. In the original formulation of Gandhi

et al. [18], the lengths of all tasks are identical, i.e., li = l,∀i ∈ N . A randomized

approximation algorithm via dependent rounding scheme is proposed in [18] achieving

an expected approximation ratio 4l
4l−1

. Table 3.2 lists the notations used in Section 3.5.

In this section, we consider a generic formulation with heterogeneous task lengths.

We develop a deterministic approximation algorithm by integrating the idea developed

in [18] into our algorithmic framework. Our algorithm is the first deterministic algo-

rithm for the proportional broadcast scheduling problem and achieves an asymptotic

approximation ratio of 2(lmin + 1)/lmin, where lmin , mini∈N li.

Our generalized proportional broadcast scheduling problem, denoted by P2, can be

formulated below [18].

P2 : max
∑
i∈N

wi
γi
li

s.t.

di∑
t=ai

qbi,t ≥ γi, ∀i ∈ N (3.6)

∑
1≤b≤B

qb,t ≤ 1, ∀0 ≤ t ≤ T (3.7)

γi ∈ {0, 1, · · · , li}, ∀i ∈ N

qb,t ∈ {0, 1}, ∀1 ≤ b ≤ B, 0 ≤ t ≤ T

where qb,t is a binary variable indicating whether at least one task of group b is executed

or not at slot t. The first constraint ensures that whenever a task i is executed γi slots,

there are at least γi time slots to execute the tasks of group bi during the interval [ai, di].

27

Table 3.2: Additional notations used in Section 3.5

γi number of slots executing task i
li length of task i
wi reward of task i if it is executed completed
qb,t binary variable indicating whether at least one task of group b is

executed at slot t
q∗b,t value of qb,t in LP relaxation
Tb set of slots {t1, t2, · · · , tm} such that ti < ti+1, q

∗
b,ti

> 0
mb

⌈∑
t∈Tb q

∗
b,t

⌉
Wb

k window consisting of slot t with zbt,k > 0
G0 bipartite graph G0 = (U ,V , E0)
G1 bipartite graph G1 = (U ,V , E1)
G2 bipartite graph G2 = (U ,V2, E2)
E0 set of edges in G0

E1 set of edges in G1

E2 set of edges in G2

U set of vertices, each of which corresponds to a slot
ut vertex in U corresponding to slot t
V set of vertices {vb1, vb2, · · · , vbmb}1≤b≤B
vbk vertex in V corresponding to group b and window Wb

k

V2 set of vertices in G2

vi,k vertex in V2 corresponding to task i and window Wbi
k

zbt,k weight of the edge utv
b
k in graph G0

λi di − ai + 1
λ

∑
i∈N λi

N̂ scale factor. N̂ = λ1+ε for the proportional broadcast scheduling
problem

Ê set of edges output by Algorithm 2

Êi set of edges in Ê covering task i
lmin mini∈N li
γ∗i value of γi in LP relaxation
we weight of edge e in E2

28

The second constraint ensures that any pair of tasks from different groups cannot be

executed simultaneously.

The feasible scheduling policy for the generalized proportional broadcast schedul-

ing is defined as below. Our objective in P2 is to find a feasible scheduling policy

maximizing the system reward.

Definition 3.2 (Feasible Scheduling Policy for Generalized Proportional Broadcast

Scheduling). We call a scheduling is feasible for generalized proportional broadcast schedul-

ing if

• each task i ∈ N is executed at most li slots;

• executions of any pair of tasks belonging to different groups do not overlap in time.

3.5.2 Deterministic Approximation Scheduling Algorithm

We first solve the LP relaxation of P2. To this end, we let all variables γi and

qb,t to be reals. Specifically, we replace the constraints γi ∈ {0, 1, · · · li},∀i ∈ N with

0 ≤ γi ≤ li,∀i ∈ N and qb,t ∈ {0, 1} by qb,t ≥ 0. There is no need to explicitly add the

constraint qb,t ≤ 1 since it is implied by (3.7).

The core part of our algorithm is to round the solution of the LP relaxation to a

feasible scheduling policy. Gandhi et al. developed a randomized rounding algorithm

in [18]. However, their algorithm assumes identical li and only gives average perfor-

mance guarantee. In order to design a deterministic scheduling algorithm, we apply our

algorithmic framework, more precisely, the rounding and the related coloring technique

we develop in previous sections. Our algorithm also integrates the idea used in [18]

adapted in our context.

At a high level, our main idea is to construct a series of bipartite graphs, in which

each edge captures the relationship between a slot and tasks of a same group. Each

graph is constructed based on its predecessor to gradually arrive at a feasible schedul-

ing policy. Instead of coloring vertices, our algorithm now colors the edges in the

constructed graphs so that each color induces a matching of the graph or maps to a

feasible scheduling policy. Specifically, our algorithm first constructs a bipartite graph

G0 based on the optimum solution of the LP relaxation. Then, we generate an auxiliary

bipartite graph G1 from G0, and we color the edges in G1 such that each color induces

a matching of the graph G1. Finally, we construct another edge-colored auxiliary bi-

partite graph G2 based on the colored graph G1 such that each color in G2 induces a

29

feasible scheduling policy. The algorithm is composed of five steps, which are exposed

sequentially. The first step essentially follows the procedures in [18], which are adapted

below in the context of our problem.

Step 1: Construct a bipartite graph G0 = (U ,V , E0). Let {γ∗i }i∈N and

{q∗b,t}1≤b≤B,0≤t≤T denote the solution of the LP relaxation of P2. G0 contains two

sets of vertices U and V , constructed as follows.

• Each vertex in U represents a time slot. Let ut denote the vertex in U correspond-

ing to time slot t.

• Each vertex in V represents a group. For each group b, we seek the time slots, at

each of which tasks of group b are executed fractionally in the LP solution, and

we denote these time slots by Tb = {t1, · · · , th, · · · }, where th < th+1 and q∗b,th > 0.

We construct mb ,
⌈∑

t=Tb q
∗
b,t

⌉
vertices in V , denoted by {vb1, vb2, · · · , vbmb}. Each

vertex vbk, 1 ≤ k ≤ mb, corresponds to a window, denoted by Wb
k, as described

later.

• Edges. Consider each group b. We group these slots into mb windows, denoted

by Wb
k, 1 ≤ k ≤ mb. To this end, we recursively define non-negative numbers

zbth,k, 1 ≤ h ≤ |Tb| and 1 ≤ k ≤ mb, as follows.

zbth,k ,

A1 if

h−1∑
s=1

q∗b,ts < k and
h∑
s=1

q∗b,ts > k − 1

0 otherwise

,

where zbth,0 = 0 and

A1 = min

q∗b,th − zbth,k−1, 1−
∑

t′<th,t′∈Wb
k

zbt′,k

 .

The time slots t with zbt,k > 0 form the windowWb
k. We can check that

∑
t∈Wb

k
zbt,k =

1 for ∀1 ≤ k ≤ mb − 1. In this regard, zbth,k represents the amount of fractional

value to execute tasks belonging to group b at slot th ∈ Wb
k. We connect each

vertex vbk ∈ V , 1 ≤ k ≤ mb, to each vertex in U corresponding to time slots in the

window Wb
k. The weight of the edge utv

b
k is set to zbt,k.

The construction of G0 is illustrated in Figure 3.1, in which a subgraph of G0 related

to a single group b is shown.

30

t

i

j

t t

1

b
W 2

b
W 3

b
W 4

b
W

1

bv 2

bv 3

bv 4

bv

0.3 0.3 0.4 0.1 0.5 0.2 0.2 0.7 0.3 0.5

1t
u

2t
u

3t
u

4t
u

5t
u

6t
u

7t
u

Figure 3.1: Illustration of a subgraph of G0 related to group b: q∗b,th , 1 ≤ h ≤ 7, are
0.3, 0.3, 0.5, 0.5, 0.2, 0.9, 0.8

Step 2: Generate an auxiliary bipartite graph G1 = (U ,V , E1). We construct

G1 by duplicating the vertices in G0. Let N̂ , λ1+ε, where λ ,
∑

i∈N λi, and λi ,

di − ai + 1. To make our analysis concise, we assume that N̂ is an integer, otherwise

we need to round it to the nearest integer. Concretely, for each edge utv
b
k ∈ E0, we

construct
⌊
zbt,kN̂

⌋
new edges, each of which connects ut with vbk in G1, and add the

constructed edges to E1. Each constructed edge is a duplicate of the original edge and

has the same endpoints. By the definition of zbt,k in the first step, we have 0 ≤ zbt,k ≤ 1

for any triple (t, k, b). Therefore, each original edge in G0 is duplicated to at most N̂

edges in G1.

Step 3: Color G1. We color each edge in G1 by a color such that no adjacent edges

are of the same color. Let C denote an ordered set of (2N̂ − 1) colors. The coloring

process runs in iterations. In each iteration, we color an edge using the first color in C
not yet used to color any neighbor of it.

Step 4: Construct another edge-colored auxiliary bipartite graph G2 =

(U ,V2, E2) based on G1.

• Vertices in V2. Consider each task i ∈ N . For each integer k ∈ [1,mbi], if the

windowWbi
k includes at least one slot t ∈ [ai, di] with zbit,k > 0, i.e.,Wbi

k ∩ [ai, di] 6=
∅, we create a vertex vi,k, and add it to V2.

• Edges in E2. Consider each task i and each integer k ∈ [1,mbi]. IfWbi
k ∩ [ai, di] 6=

31

∅, for each slot t ∈ Wbi
k ∩ [ai, di], we choose an arbitrary set of

min

⌊
zbit,kN̂

⌋
,max

0, liN̂ −
<k∑
k′=1

t∑
t′=ai

⌊
zbit′,k′N̂

⌋
−

∑
t′∈Wbi

k ,t
′<t

⌊
zbit′,kN̂

⌋

colored edges in E1 between ut ∈ U and vbik ∈ V to connect vi,k ∈ V2 with ut ∈ U ,

and add them to E2. We say that these edges cover task i, and assign wi/li as

the weight for each of them. Let we denote the weight of edge e in E2.

Step 5: Seek a set of edges, denoted by Ê, of the same color with maximum

total weight and map them to a feasible scheduling policy. The final scheduling

policy is to execute the tasks at the slots corresponding to the edges in Ê after a pruning

process. To see the necessity of pruning Ê , let Êi denote the edges in Ê covering task

i. We can upper-bound |Êi| by li + 1. This is because there are at most liN̂ edges

in E2 covering i; hence the slots corresponding to the liN̂ edges belong to at most

li + 1 windows Wbi
k , k ∈ [1,mbi] by noticing

∑
t∈Wbi

k

zbit,kN̂ = N̂ , 1 ≤ k < mbi and∑
t∈Wbi

mbi

zbit,mbi
N̂ ≤ N̂ . However, as each edge in Ê maps to a slot and each task i is

executed at most li slots, we need to remove an edge from Êi if |Êi| = li + 1. We thus

run a pruning procedure by removing the edge corresponding to the latest slot. We will

prove in Lemma 3.5 that the edges in Ê after pruning map to a feasible policy.

The pseudo-code of our scheduling algorithm is given in Algorithm 2. The algorithm

outputs a set of edges Ê . For each edge in Ê , one of its endpoints corresponds to a time

slot, and the other point corresponds to a task. Thus, the final scheduling is to execute

the tasks at the time slots corresponding to the set of edges output by Algorithm 2.

In the algorithm, the following functions are invoked. Their implementation is rather

straightforward and omitted here.

• Color(e, C) returns the first color in C not yet used to color any neighbor edge of

e.

• ExecutedSlots(b) returns an ordered set of slots {t1, t2, · · · , th, · · · }, th < th+1,

at each of which the tasks of group b are executed fractionally in the LP solution,

i.e, q∗b,th > 0.

32

• Edges(t, ut, v
b
k, E1) returns an arbitrary set of

min

⌊
zbit,kN̂

⌋
,max

0, liN̂ −
<k∑
k′=1

t∑
t′=ai

⌊
zbit′,k′N̂

⌋
−

∑
t′∈Wbi

k ,t
′<t

⌊
zbit′,kN̂

⌋

colored edges in E1 between ut ∈ U and vbk ∈ V .

• MaxWeightEdges(E2) returns the set of edges in E2 of a same color with maxi-

mum weight.

• EdgesCoverTask(i, Ê) returns the set of edges in Ê covering task i.

• LatestEdge(Êi) returns the edge in Êi corresponding to the latest slot.

Algorithm 2 Proportional broadcast scheduling: executed by the scheduler

1: Input: solution of LP relaxation of P2 {q∗b,t}1≤b≤B,0≤t≤T , N̂ = λ1+ε, a vector C of

2N̂ − 1 colors
2: Output: Ê . The scheduling is to execute the tasks at slots corresponding to the

edges in Ê
3: U ← ∅,V ← ∅, E0 ← ∅ . Construct a bipartite graph G0 = (U ,V , E0)
4: for each slot t do
5: create a vertex ut, and add ut to U . U consists of vertices representing slots
6: end for
7: for each group b do
8: Tb ← ExecutedSlots(b)
9: mb ←

⌈∑
t∈Tb q

∗
b,t

⌉
10: for k = 1 to mb do
11: create a vertex vbk, and add it to V
12: Wb

k ← ∅
13: for h = 1 to |Tb| do
14: if

∑h−1
s=1 q

∗
b,ts

< k and
∑h

s=1 q
∗
b,ts

> k − 1 then

15: zbth,k ← min
{
q∗b,th − z

b
th,k−1, 1−

∑
t′<th,t′∈Wb

k
zbt′,k

}
16: else
17: zbth,k ← 0
18: end if
19: if zbth,k > 0 then

20: create an edge e between uth and vbk
21: add e to E0

22: add th to Wb
k

23: end if
24: end for
25: end for
26: end for

33

27: E1 ← ∅ . Construct an auxiliary bipartite graph G1 = (U ,V , E1)
28: for each edge utv

b
k ∈ E do

29: construct
⌊
N̂zbt,k

⌋
edges between ut ∈ U and vbk ∈ V , and add them to E1

30: end for
31: for each edge e ∈ E1 do . Properly color the constructed edges
32: color e using the color Color(e, C)
33: end for

34: V2 ← ∅, E2 ← ∅ . Construct another auxiliary bipartite graph G2 = (U ,V2, E2)
35: for each task i ∈ N do
36: for k = 1 to mbi do
37: if Wbi

k ∩ [ai, di] 6= ∅ then
38: create a vertex vi,k, and add vi,k to V2

39: for t = min{Wbi
k ∩ [ai, di]} to max{Wbi

k ∩ [ai, di]} do
40: Ē ← Edges(t, ut, v

bi
k , E1)

41: use the edges in Ē connect vi,k ∈ V2 with ut ∈ U
42: assign wi/li to the weight for each of the edges in Ē
43: add Ē to E2

44: end for
45: end if
46: end for
47: end for

48: Ê ← MaxWeightEdges(E2)
49: for each task i ∈ N do . Prune the edges in Ê
50: Êi ← EdgesCoverTask(i, Ê)
51: if |Êi| == li + 1 then
52: remove the edge LatestEdge(Êi) from Ê
53: end if
54: end for
55: return Ê

3.5.3 Approximation Ratio Analysis

In this subsection we derive the theoretical performance guarantee of Algorithm 2.

We first prove that all edges in E1 are colored in Lemma 3.4, and Algorithm 2 outputs

the set of edges mapping to a feasible scheduling policy in Lemma 3.5. We are then

able to establish the approximation factor of Algorithm 2 in Theorem 3.4. We conclude

this subsection by giving the complexity of Algorithm 2.

Lemma 3.4. All the edges in E1 are colored by Algorithm 2.

Proof Sketch. For each edge in E1, we prove that there is at least one available color in

C that can be used by Algorithm 2 to color the edge.

34

Lemma 3.5. The scheduling policy corresponding to the edges in Ê output by Algo-

rithm 2 is feasible.

Proof Sketch. We first prove that any pair of tasks belonging to different groups are not

executed simultaneously in the scheduling policy at the same slot. We then prove that

there are at most li time slots to execute task i in the scheduling policy. The feasibility

of the output scheduling policy follows from the above results.

Theorem 3.4. Algorithm 2 outputs an asymptotic lmin
2(lmin+1)

-optimal feasible scheduling

policy.

Proof Sketch. We first establish the relationship between the total weight of Ê before

pruning, i.e., Ê at line 48 of Algorithm 2, and the utility of the optimal scheduling

policy. We then establish the relationship between the the total weight of Ê before

and after pruning. Combining the above obtained result allows us to establish the
lmin

2(lmin+1)
-optimality of Algorithm 2.

To conclude this section, we analyse the complexity of Algorithm 2. Because there

are at most λi time slots at which each task i is executed fractionally in the LP relax-

ation, the number of time slots in Tb is O(
∑

i∈Nb λi). Based on the construction of G0,

each slot in Tb refers to at most two edges in E0 corresponding to group b, and thus

the number of edges in G0 is O(
∑

i∈N λi) = O(λ). Thus, the construction of G0 can

be done in O(λ) time. As each edge utv
b
k ∈ E0 is duplicated by bzbt,kN̂c edges in E1,

the number of edges in E1 is O(λ · N̂), and thus it follows from |C| = O(N̂) that the

complexity for coloring of the edges in E1 is O(λ · N̂2). Since the number of edges for

each task i is upper-bounded by liN̂ , the number of edges in E2 can be upper-bounded

by O(
∑

i∈N liN̂). It then follows from N̂ = λ1+ε that the complexity of Algorithm 2 is

O(λ3+2ε), asymptotically O(λ3).

3.6 Numerical Analysis

In this section, we conduct numerical analysis to evaluate the performance of the

constant-factor scheduling approximation algorithms we develop. In our simulation,

we trace the following metric to evaluate the performance of the optimum scheduling

policy compared to our algorithms:

Υ ,
system utility of our algorithm

system utility under optimal policy

35

=
total reward of requests served by our algorithm

total reward of requests served by optimum policy
(3.8)

Specifically, we trace the maximal, average, and minimal values of Υ in our simula-

tions. We simulate the baseline scenario of batching task scheduling problem including

bounded case, unbounded case, and the problem of proportional broadcast scheduling,

respectively.

3.6.1 Baseline Scenario of Batching Task Scheduling Problem

In our simulation, the time horizon T is set to 200, and there are 5 machines in

the system. We set lmax = 5 and lmin = 1. We randomly choose the parameters

ai, di, li, bi, wi such that di − ai + 1 ≥ li,∀i ∈ N , and each request can be executed on

any of machines. In the bounded batching case, the maximum batch size that can be

supported by each machine is set to 10. In the unbounded batching case, the number

of requests in each batch is no limit. We vary the number of requests N in the system

from 50 to 500. For each N , we perform 50 simulation runs for each parameter setting.

The simulation results of the bounded case and the unbounded case are illustrated in

Figures 3.2(a) and 3.2(b). We also analyze our algorithm performance using mean,

variance confidence intervals (CI), which are listed in Table 3.3 and 3.4.

50 100 150 200 250 300 350 400 450 500
0.7

0.75

0.8

0.85

0.9

0.95

1

Ymax
Yavg
Ymin

P
er
fo
rm
a
n
ce
g
a
in

Number of requests N

(a) Bounded case

50 100 150 200 250 300 350 400 450 500
0.7

0.75

0.8

0.85

0.9

0.95

1

Ymax
Yavg
Ymin

P
er
fo
rm
a
n
ce
g
a
in

Number of requests N

(b) Unbounded case

Figure 3.2: Performance gains of Algorithm 1

From the simulation results, we make the following observations.

• Our algorithm achieves at least 76.84% of the optimal utility even in the worst

case in the bounded case and at least 73.62% in the unbounded case, which are

in accordance to the theoretical results we derive.

36

Table 3.3: Mean, variance and confidence intervals in bounded case

N 50 100 150 200 250

Mean 0.9843 0.9356 0.8828 0.8940 0.8771

Variance 0.0144 0.0155 0.0230 0.0212 0.0315

CI (95%) [0.9788,0.9897] [0.9297,0.9415] [0.8740,0.8915] [0.8860,0.9021] [0.8652,0.8891]

N 300 350 400 450 500

Mean 0.8678 0.8487 0.8535 0.8544 0.9058

Variance 0.0424 0.0292 0.0429 0.0484 0.0449

CI (95%) [0.8517,0.8839] [0.8376,0.8598] [0.8373,0.8698] [0.8360,0.8728] [0.8887,0.9229]

Table 3.4: Mean, variance and confidence intervals in unbounded case

N 50 100 150 200 250

Mean 0.9881 0.9295 0.8913 0.8933 0.8747

Variance 0.0149 0.0210 0.0289 0.0276 0.0297

CI (95%) [0.9824,0.9937] [0.9215,0.9374] [0.8802,0.90224] [0.8828,0.9038] [0.8634,0.8860]

N 300 350 400 450 500

Mean 0.8642 0.8625 0.8430 0.8639 0.9078

Variance 0.0375 0.0434 0.0326 0.0549 0.0351

CI (95%) [0.8499,0.8784] [0.8460,0.8789] [0.8306,0.8553] [0.8431,0.8847] [0.8944,0.9211]

• When the number of requestsN increases, the performance gains slightly decrease,

but our algorithm always maintains a good results.

• The small variances and confidence intervals indicate the reliability and stabiliza-

tion of our algorithm.

3.6.2 Proportional Broadcast Scheduling Problem

In our simulation, the time horizon T is set to 200, and we set lmax = 10 and lmin = 1.

We randomly choose the parameters ai, di, li, bi, wi such that di−ai+1 ≥ li,∀i ∈ N . We

vary the number of requests N in the system from 50 to 500. For each N , we perform 50

simulation runs for each request parameter. The simulation results of the proportional

broadcast scheduling problem are illustrated in Figure 3.3. Mean, variance confidence

intervals (CI) are listed in Table 3.5.

From the simulation results, we make the following observations.

• Our algorithm achieves at least 92.08% of the optimal utility, which is in accor-

dance to the theoretical result we derive.

• Wen the number of requestsN increases, the performance gains also increase. This

37

50 100 150 200 250 300 350 400 450 500
0.9

0.92

0.94

0.96

0.98

1

Ymax
Yavg
Ymin

P
er
fo
rm
a
n
ce
g
a
in

Number of requests N

Figure 3.3: Performance gains of Algorithm 2 for the proportional broadcast scheduling
problem

is because, when the number of requests is large, there are more opportunities to

execute more tasks at each slot due to the nature of the proportional broadcast,

which potentially improves the system performance.

Table 3.5: Mean, variance and confidence intervals for proportional broadcast schedul-
ing

N 50 100 150 200 250

Mean 0.9718 0.9678 0.9729 0.9685 0.9762

Variance 0.0140 0.0211 0.0166 0.0154 0.0142

CI (95%) [0.9677,0.9758] [0.9617,0.9738] [0.9682,0.9776] [0.9641,0.9729] [0.9721,0.9803]

N 300 350 400 450 500

Mean 0.9839 0.9871 0.9889 0.9917 0.9913

Variance 0.0115 0.0109 0.0108 0.0077 0.0092

CI (95%) [0.9806,0.9871] [0.9840,0.9902] [0.9857,0.9919] [0.9894,0.9938] [0.9887,0.9939]

3.7 Conclusion

Motivated by the classic broadcast scheduling problem, we have investigated a class

of batching task scheduling problems in its baseline form. We have developed an algo-

rithmic framework achieving 1/2-optimality, outperforming the best known result [6].

The core technicality in our design is an adapted LP relaxation mechanism and a

rounding and coloring approach that turns the solution of the LP relaxation to a fea-

sible 1/2-optimal scheduling policy. We have then demonstrated the application of

our algorithmic framework to solve the proportional broadcast problem. In this re-

38

gard, we have developed the first deterministic approximation algorithm outputting a

lmin/(2(lmin + 1))-optimal scheduling policy. We have complemented our theoretical

analysis with numerical simulations that demonstrate the effectiveness of our algo-

rithms. In the following chapters, we investigate two fundamental scheduling problems,

which are significant varieties and extensions of the baseline scenario of batching task

scheduling problem.

3.8 Appendix

3.8.1 Proof of Lemma 3.1

To prove that each feasible scheduling policy maps to an IS of G, assume by con-

tradiction that there exists a feasible scheduling policy mapping to a subset of vertices

V in G: among these vertices there are two neighboring vertices u and v connected by

an edge denoted by e. In the construction of graph G:

• e cannot be an intra-task edge, otherwise u and v correspond to the same task,

contradicting with the constraint that each task is executed at most once at any

feasible policy.

• e cannot be an inter-task edge characterizing interference conflicts among tasks,

otherwise u and v interfere with each other, contradicting with the constraint that

the time intervals for executing any pair of interfere tasks on each machine never

overlap at any feasible policy.

• e cannot be an inter-task edge modeling bounded batching, otherwise u and v cor-

respond to the same sub-machine and the same machine, and their corresponding

time intervals overlap, contradicting with the constraint that at most one task

can be executed in each sub-machine of each machine at a same time.

The above analysis demonstrates that e cannot exist, thus proving via contradiction

that each feasible scheduling policy maps to an IS of G.

We then prove that each IS of G maps to a feasible scheduling policy.

• The construction of intra-task edges ensures that for each task, at most one vertex

covering it is chosen.

39

• The construction of inter-task edges characterizing conflicts among tasks ensures

that the time intervals for executing any pair of interference tasks on each machine

(e.g., tasks are not from the same group) never overlap.

• The construction of inter-task edges modeling bounded batching ensures that at

most one task can be executed at each sub-machine of each machine at the same

time, further ensures that each batch contains at most πk tasks on each machine

k.

It then follows that each IS of G maps to a feasible scheduling policy.

3.8.2 Proof of Lemma 3.2

Consider any vertex v ∈ V with by∗uN̂c ≥ 1. Denote the task corresponding to v by

i and the machine corresponding to v by k. Let q∗b,t,k denote the value of qb,t,k in the

LP relaxation. The neighbors of v can be divided into the following two classes.

The first class of neighbors consist of the vertices that are connected with

v by inter-task edges. Consider the subgraph, denoted by G1, of G, in which we

remove the intra-task edges from G. Clearly, G1 includes all first class of v’s neighbors.

When Algorithm 1 colors v, all vertices u ∈ V with tu < tv are already colored, while

any vertex u ∈ V with tu > tv is not yet colored. Hence, any color, which cannot be

used to color v, already occupied by the first class of neighbors must be already used

to color some vertices u ∈ V corresponding to machine k with tu ≤ tv ≤ tu + lu − 1.

Consider the time slot tv and each group b. For each sub-machine r of machine k, it

follows from the constraint (3.4) that

∑
j∈Nb

∑
u∈Vj,k,r(tv)

by∗uN̂c ≤

 ∑
u∈Vj,k,r(tv),j∈Nb

y∗uN̂

 ≤ ⌊q∗b,tv ,k · N̂⌋ .
It then holds that the number of colors already used to vertices in {Vj,k,r(tv)}j∈Nb is

upper-bounded by
⌊
q∗b,tv ,k · N̂

⌋
.

Consider each group b. For any pair of sub-machines r1, r2, it follows from the con-

struction of edges inG that any vertex in {Vj,k,r1(tv)}j∈Nb and any vertex in {Vj,k,r2(tv)}j∈Nb
are not adjacent to each other in G1. Therefore, Algorithm 1 uses at most

⌊
q∗b,tv ,k · N̂

⌋
colors to color all vertices u in G1 with tu ≤ tv ≤ tu + lu − 1 corresponding to machine

k and group b.

40

It follows from the constraint (3.3) that Algorithm 1 uses at most N̂ colors to color

the vertices u in G1 with tu ≤ tv ≤ tu + lu − 1. Mathematically,

∑
1≤b≤B

⌊
q∗b,tv ,k · N̂

⌋
≤
∑

1≤b≤B

q∗b,tv ,k · N̂ ≤ N̂ . (3.9)

Since the above analysis includes vertex v, we can upper-bound the number colors

already used to color the neighbors of v in G1 by N̂ − by∗vN̂c.

The second class of neighbors consist of the vertices that are connected

with v by intra-task edges. Consider the subgraph, denoted by G2, of G, in which we

remove the inter-task edges from G. For each task j, it follows from the constraint (3.2)

that there are at most N̂ vertices in G2 covering task j. Mathematically,

∑
u∈Vj

⌊
y∗u · N̂

⌋
≤
∑
u∈Vj

y∗u · N̂ ≤ N̂ . (3.10)

For any pair of tasks j1, j2, there is no inter-task edge between any vertex in Vj1 and

any vertex in Vj2 . Therefore, Algorithm 1 uses at most N̂ colors to color G2, and the

number of colors already used to color the second class of neighbors is upper-bounded

by N̂ − by∗vN̂c.

By combining the above analysis, when Algorithm 1 colors v, there are at most

2(N̂ − by∗vN̂c) colors already used to color the neighbors of v. As |C| = 2N̂ − 1 and

by∗uN̂c ≥ 1, there are at least by∗uN̂c available colors that can be used by Algorithm 1

to color v.

3.8.3 Proof of Theorem 3.1

It is straightforward to observe that each color induces an IS of G. Denote the utility

of an optimal scheduling policy by OPT . Let I∗ denote the IS output by Algorithm 1.

As each vertex v ∈ V is replaced by by∗vN̂c vertices, we have

∑
v∈I∗

wv ≥
N̂

|C|

(∑
v∈V

wvy
∗
v −

∑
v∈V

wv

N̂

)

≥ N̂

|C|

(
OPT − 1

δε
max
v∈V

wv

)
=

N̂

2N̂ − 1

(
OPT − 1

δε
max
v∈V

wv

)
.

41

As it holds trivially that OPT ≥ maxv∈V wv. We then have

∑
v∈I∗

wv ≥
N̂

2N̂ − 1

(
1− 1

δε

)
OPT >

1

2

(
1− 1

δε

)
OPT.

The theorem is thus proved.

3.8.4 Proof of Lemma 3.3

Consider any vertex v ∈ V with bŷ∗vN̂c ≥ 1. Denote the task corresponding to v by

i and the machine corresponding to v by k. The neighbors of v can be divided into the

following two classes.

The first class of neighbors consist of the vertices that are connected

with v by inter-task edges. Consider the subgraph, denoted by G1, of G, in which

we remove the intra-task edges from G. Any color, which cannot be used to color v,

already occupied by the first class of neighbors must be already used to color some

vertices u ∈ V corresponding to machine k with tu ≤ tv ≤ tu+ lu−1. Consider the time

slot tv and the machine k. For each task j ∈ N , it follows from the constraint (3.5)

that

∑
u∈Vj,k(tv)

by∗uN̂c ≤

 ∑
u∈Vj,k(tv)

y∗uN̂

 ≤ ⌊q∗bj ,tv ,k · N̂⌋ . (3.11)

It follows from the above inequality that the number of colors already used to color

vertices in Vj,k(tv) is upper-bounded by
⌊
q∗bj ,tv ,k · N̂

⌋
.

Consider each group b. For any pair of tasks j1, j2 ∈ Nb, any vertex in Vj1,k(tv) and

any vertex in Vj2,k(tv) are not adjacent to each other in G1. Therefore, Algorithm 1

uses at most bq∗b,tv ,k · N̂c colors to color all vertices u in G1 with tu ≤ tv ≤ tu + lu − 1

corresponding to machine k and group b.

It follows from (3.9) that Algorithm 1 uses at most N̂ colors to color the vertices u

in G1 with tu ≤ tv ≤ tu + lu− 1. Then, we can upper-bound the number colors already

used to color the neighbors of v in G1 by N̂ − bŷ∗vN̂c.
The second class of neighbors consist of the vertices that are connected

with v by intra-task edges. It follows from the proof of Lemma 3.2 that the number

of colors already used to color the second class of neighbors is upper-bounded by N̂ −
bŷ∗vN̂c.

By combining the above analysis, when Algorithm 1 colors v, there are at most

42

2(N̂ − bŷ∗vN̂c) colors already used to color the neighbors of v. As |C| = 2N̂ − 1 and

bŷ∗vN̂c ≥ 1, there are at least bŷ∗vN̂c available colors that can be used by Algorithm 1

to color v.

3.8.5 Proof of Theorem 3.3

To prove the theorem, we first prove that Algorithm 1 uses at most N̂ colors to color

all vertices in G in the following lemma.

Lemma 3.6. Algorithm 1 uses at most N̂ colors to color all vertices in G.

Proof. Consider each vertex v ∈ V . Denote the task corresponding to v by i. As

dj−aj+1 < 2lj,1,∀j ∈ N , any already colored vertex u ∈ Vi satisfies tu ≤ tv ≤ tu+lu−1.

Hence, any color, which cannot be used to color v, must be already used to color some

vertices u ∈ V with tu ≤ tv ≤ tu + lu − 1. For the time slot tv, each task j ∈ N and

the machine k = 1, the number of colors already used to color the vertices in Vj,1(tv) is

upper-bounded by
⌊
q∗bj ,tv ,1 · N̂

⌋
because of (3.11).

Consider each group b. For any pair of tasks j1, j2 ∈ Nb, any vertex in Vj1,1(tv) and

any vertex in Vj2,1(tv) are not adjacent to each other in G. Therefore, Algorithm 1

uses at most
⌊
q∗b,tv ,1 · N̂

⌋
colors to color all vertices u ∈ V with tu ≤ tv ≤ tu + lu − 1

corresponding to group b. It follows from the (3.9) that Algorithm 1 uses at most N̂

colors to color the vertices u ∈ V with tu ≤ tv ≤ tu + lu − 1 including vertex v. The

lemma is thus proved.

Let I∗ denote the IS output by Algorithm 1. As each vertex v ∈ V is replaced by

by∗vN̂c vertices, we have

∑
v∈I∗

wv ≥
N̂

N̂

(∑
v∈V

wvy
∗
v −

∑
v∈V

wv

N̂

)
≥
(
OPT − 1

δε
max
v∈V

wv

)
.

As it holds trivially that OPT ≥ maxv∈V wv. Because Algorithm 1 uses at most N̂

colors to color all vertices in V ′, we then have

∑
v∈I∗

wv ≥
(

1− 1

δε

)
OPT.

The theorem is thus proved.

43

3.8.6 Proof of Lemma 3.4

Consider each edge utv
b
t ∈ E1. The neighbors of utv

b
t can be divided into two classes

based on the construction of the bipartite graph G1.

• The first class of neighbors consist of the edges that are adjacent to

utv
b
k because of vertex ut. For the slot t, it follows from the constraint (3.7)

that

∑
1≤b≤B

∑
1≤k≤mb

⌊
zbt,kN̂

⌋
− 1 ≤

∑
1≤b≤B

∑
1≤k≤mb

zbt,kN̂ − 1

≤
∑

1≤b≤B

q∗b,t · N̂ − 1

≤ N̂ − 1

Thus, the number of the first class of neighbors is upper-bounded by N̂ − 1.

Therefore, when Algorithm 2 colors the edge utv
b
t , the number of colors that have

been used to color the first class of neighbors is upper-bounded by N̂ − 1.

• The second class of neighbors consist of the edges that are adjacent to

utv
b
k because of vertex vbk. The window corresponding to vertex vbk is Wb

k. It

follows from the definition of the windows that
∑

t∈Wb
k
zbt,k ≤ 1,∀b, k. Therefore,

the total number of neighbors in E1 because of vbk is at most N̂−1. Mathematically

∑
0≤t≤T

bzbt,kN̂c − 1 ≤
∑

0≤t≤T

zbt,kN̂ − 1 ≤ N̂ − 1.

Therefore, the number of colors used to color the second class of neighbors is

upper-bounded by N̂ − 1.

By combining the above analysis, when Algorithm 2 colors the edge utv
b
t , the number

of colors that have been used to its neighbors is upper-bounded by 2(N̂ − 1). As

|C| = 2N̂ − 1, there is at least one available color that can be used by Algorithm 2 to

color the edge utv
b
t .

3.8.7 Proof of Lemma 3.5

To prove the lemma, we first prove that any pair of tasks belonging to different

groups are not executed simultaneously by the scheduling policy at a same slot. For each

44

slot t, any pair of edges, whose endpoints in U are ut, use different colors. Therefore, for

any pair of edges in Ê corresponding to slot t, the tasks covered by them must belong

to the same group, otherwise, the edges receive the different colors and cannot both

belong to Ê . Therefore, the tasks are executed by the scheduling policy at the same

slot must belong to the same group.

Then, it follows from Step 5 that there are at most li edges in Ê covering task i.

Therefore, there are at most li slots to execute task i in the final scheduling.

By combining the above analysis, we can derive that the scheduling policy is feasible.

3.8.8 Proof of Theorem 3.4

For each task i, it follows from the constraint (3.6) and the construction of G0 that

di∑
t=ai

q∗bi,t · N̂ =
∑

1≤k≤mbi

∑
t∈Wbi

k ,[ai,di]∩W
bi
k 6=∅

zbit,k · N̂ ≥ γ∗i · N̂ . (3.12)

Because each edge utv
b
k ∈ E0 is duplicated by bzbt,kN̂c edges in the construction of

G1, it holds that

zbt,kN̂ − 1 ≤ bzbt,kN̂c ≤ zbt,kN̂ ≤ bzbt,kN̂c+ 1.

Recall the construction of G2. There are

min

liN̂ ,
∑

1≤k≤mbi

∑
t∈Wbi

k ,[ai,di]∩W
bi
k 6=∅

bzbit,k · N̂c

edges in E2 covering task i.

There are at most λi slots in the interval [ai, di] to execute the tasks belonging to

group bi fractionally in the LP solution, and each slot belongs to at most two windows

corresponding to the group bi. Therefore, there are at most 2λi edges utv
bi
k in E0 with

zbit,k > 0 and t ∈ [ai, di], 1 ≤ k ≤ mbi , i.e.,
∑

1≤k≤mbi
|{t : t ∈ Wbi

k ∩ [ai, di]}| ≤ 2λi. The

total weight of edges covering task i is

wi
li
·min

liN̂ ,
mbi∑
k=1

∑
t∈Wbi

k ∩[ai,di]

bzbit,k · N̂c

45

≥wi
li
·min

liN̂ ,
mbi∑
k=1

∑
t∈Wbi

k ∩[ai,di]

(zbit,k · N̂ − 1)

≥wi
li
·min

liN̂ ,
mbi∑

k=1

∑
t∈Wbi

k ∩[ai,di]

zbit,k · N̂

− 2λi

≥wi
li
· f ∗N̂ − 2λi ·

wi
li
.

where the last inequality is because of (3.12) and li ≥ γ∗i .

It follows from Lemma 3.4 that there are at most 2N̂ − 1 colors in G2. For each

color c, 1 ≤ c ≤ 2N̂ − 1, let Ēc denote the set of edges in E2 colored by c. We have

2N̂−1∑
c=1

∑
e∈Ēc

we =
∑
i∈N

wi
li
·min

liN̂ ,∑
i∈N

mbi∑
k=1

∑
t∈Wbi

k ∩[ai,di]

bzbit,k · N̂c

≥
∑
i∈N

(
f ∗wi
li
· N̂ − 2λi ·

wi
li

)

=N̂

(∑
i∈N

f ∗wi
li
−
∑
i∈N

2wiλi/li
λ1+ε

)

≥N̂

(∑
i∈N

f ∗wi
li
− 2OPT

λε

)

≥N̂
(

1− 2

λε

)
OPT

The second inequality follows from
∑

i∈N
2wiλi/li
λ1+ε

≤ maxi∈N 2wi/li
λε

≤ 2OPT
λε

since executing

only the most valued task is a trivial feasible scheduling. The last inequality follows

from that the value of an optimal fractional LP solution is an upper bound on the value

of the feasible scheduling.

By convexity, the set of edges of the same color with maximum weight before prun-

ing, denoted by Ê∗, satisfy

∑
e∈Ê∗

we ≥
N̂

2N̂ − 1

(
1− 2

λε

)
OPT >

1

2

(
1− 2

λε

)
OPT

We then show the relationship between Ê output by Algorithm 2 and Ê∗. For each

task i ∈ N , it follows from Step 5 that at most one edge in Ê∗ covering task i is removed

from Ê∗, and the weight of the edge covering i is wi
li

, which is at most 1
li+1

of the total

46

weight of the edges in Ê∗ covering task i. Therefore, it holds that

∑
e∈Ê

we ≥ W (Ê∗)− 1

li + 1
W (Ê∗)

≥ 1

2
(1− 1

li + 1
)

(
1− 2

λε

)
OPT

≥ 1

2
(1− 1

lmin + 1
)

(
1− 2

λε

)
OPT

=
lmin

2(lmin + 1)

(
1− 2

λε

)
OPT,

leading to an asymptotic approximation factor of lmin/2(lmin + 1).

47

48

Chapter 4

Downlink Transmission Scheduling

with Data Sharing

This chapter formulates and analyzes a fundamental downlink transmission schedul-

ing problem, which is a non-trivial extension of the baseline scenario of batching task

scheduling problem, in a wireless communication system, composed of a base station, a

set of transmission strategies and a set of users, each requesting a packet to be served

within a time window. Some packets are requested by several users and can be served

simultaneously due to the broadcast nature of the wireless medium. Each request can

be served by a subset of transmission strategies, and requests need to be served in the

FIFO model. We seek a downlink transmission scheduling algorithm maximizing the

overall system utility. The above problem is termed as downlink transmission scheduling

with data sharing problem.

Compared with existing works on the broadcast scheduling, batching task scheduling

and the downlink transmission scheduling problems in Sections 2.1 to 2.3, the down-

link transmission scheduling with data sharing problem has a stronger combinatorial

flavor, as the scheduler needs to decide which subset of users to serve and under which

transmission strategy. Moreover, the scheduling policy needs to comply with the FIFO

model. Therefore, a dedicated algorithmic framework is called for which cannot be built

on the existing models and approaches.

In this chapter, we develop an algorithmic framework of our downlink transmission

scheduling with data sharing problem in both offline and online settings. We first es-

tablish its hardness by proving that (1) the offline problem is NP-hard, (2) the online

problem is inapproximable in its generic form. Given the hardness result, we then de-

velop approximation algorithms with mathematically proven performance guarantee.

49

We further conduct numerical analysis to evaluate the performance of our approxima-

tion algorithms.

4.1 Introduction

Consider the following fundamental downlink transmission scheduling problem in a

generic wireless communication system composed of a base station and a set of users.

Each user requests a packet, which needs to be served within a time window. Some

packets are requested by several users, thus creating the opportunity for serving them

simultaneously by a single transmission due to the broadcast nature of the wireless

medium. The base station can choose from a set of transmission strategies, e.g., in

terms of combination of data rate and coding scheme, to serve the users, by taking

into account the data sharing opportunities. Each request can be served by a subset

of transmission strategies, e.g., those satisfying the SNR constraint related to the user.

When a user is served, a strategy-dependent utility is generated to the system. The

problem faced by the base station is to design a downlink transmission scheduling

algorithm maximizing the overall system utility.

The above downlink transmission scheduling problem significantly generalizes the

canonical broadcast scheduling problem [12,18,24], in which the base station can choose

only a single transmission strategy. Our problem is intuitively more challenging due to

the following two factors. Firstly, due to data sharing, we need to decide which subset of

users to serve, and under which transmission strategy; this is by nature a combinatorial

optimization problem which is notoriously difficult to solve. Secondly, the potential data

sharing opportunity further accentuates the combinatorial flavor, as we need to decide

whether to seize the opportunity, at the price of delaying the transmission of the shared

packet and also the subsequent packets. From a communication system perspective,

our problem involves two intertwined sub-problems: (1) admission control, i.e., which

user requests to serve? (2) transmission optimization, i.e., which transmission strategy

to use for each request?

Driven by the above design challenges, we embark in this chapter on an algorithmic

study of the above generic downlink transmission scheduling problem. We investigate

both offline and online settings. In both settings, we establish the hardness of the

scheduling problem by proving that (1) the offline problem is NP-hard, (2) the online

problem is inapproximable in its generic form. Given the hardness result, we then

focus on developing approximation algorithms with mathematically proven performance

50

guarantee in terms of approximation and competitive ratios, respectively.

• In the offline setting, we devise an algorithmic framework by constructing a graph,

termed as request graph, and mapping the offline problem to the MWIS problem

in the constructed graph by integrating the specific constraints posed by our prob-

lem; we then solve the LP relaxation of the IS problem in the graph; we further

develop a coloring-based algorithm that rounds the solution of LP relaxation to

an integer solution mapping to a feasible scheduling policy; we mathematically

establish its performance bound.

• In the online setting, we devise an iterative algorithm that greedily selects the

most profitable requests and serves them under a least robust strategy covering

the request; we prove that, as long as each request has a certain slackness (cf.

Section 4.4 for details), our algorithm can achieve a finite competitive ratio.

We further complement our theoretical analysis with numerical simulations that

demonstrate the effectiveness of our algorithms in a variety of system settings.

The rest of this chapter is organized as follows. We formally state our downlink

transmission scheduling problem in Section 4.2. In Section 4.3, we analyze the offline

case and devise the scheduling algorithmic framework. In Section 4.4, we investigate

the online case and present the design of an online scheduling algorithm. Section 4.5

conducts the simulation analysis evaluating the performance of our proposed algorithms.

Section 4.6 concludes the chapter.

4.2 System Model and Problem Formulation

4.2.1 System Model

We consider a time-slotted wireless communication system composed of a base sta-

tion and a set N of N users. We focus on the downlink transmission from the base

station to users. Specifically, each user requests a packet from the base station1. Each

request i (1 ≤ i ≤ N) is characterized by a couple (ai, di), where ai denotes the arrival

time of the request at the base station, di denotes its deadline, i.e., request i needs

to be finished by time di if it is served, di − ai + 1 denotes the slackness of i. Let bi

denote the packet requested by user i. A packet may be requested by multiple users,

1Our analysis extends straightforwardly to the case where a user can request more than one packets
by creating duplicates of the user and regarding each duplicated user as a new one.

51

creating potential data sharing opportunities due to the broadcast nature of the wireless

medium. Throughout our analysis, we use the terms user and request interchangeably.

There are B packets, indexed from 1 to B, in the base station. We normalize the slot

duration to 1 for notation conciseness and regard all the time instances such as ai and

di as integers, otherwise we can perform a straightforward rounding process. Table 4.1

lists the main notations in this chapter.

Table 4.1: Main notations

N user set
N number of users in N , N = |N |
T time horizon in number of time slots
R set of transmission strategies in the base station
R number of strategies in R, i.e., R = |R|
B total number of packets
ai arrival time of user i
di deadline of user i
bi packet requested by user i
wi,r reward of request i under strategy r
Ri set of transmission strategies covering request i
r∗i least robust strategy in Ri

τr,b number of slots to transmit packet b under strategy r
Nb set of users requesting packet b
Nb,t set of users in Nb active at slot t
N+
b,t(i, r) set of active users in Nb at slot t under r whose index ≥ i

N−b,t(i, r) set of active users in Nb at slot t under r whose index ≤ i

Nb,t(i, j; r1, r2) N+
b,t(i, r1) \ N+

b,t(j, r2)

G request graph
V set of vertices in G
E set of edges in G
wv weight of vertex v
Ri |Ri|
M max1≤b≤B |Nb|
δi di − ai −minr∈Ri τr,bi + 2
δ

∑
i∈N δi

βi priority under which request i is served
βv priority of vertex v, a lower β value indicates higher priority
ti starting time to serve request i
tv starting time of the interval corresponding to v
ri strategy under which request i is served
rv strategy corresponding to v
lv length of the interval corresponding to v
yv binary variable indicating whether v is selected in the IS

To improve transmission reliability and efficiency, the base station typically adapts

52

its transmission parameters, e.g., data rate, coding schemes, etc. To make our analysis

generic without relying on any particular system, we consider the setting where the

base station disposes a set R of R transmission strategies (e.g., in terms of combination

of data rate and coding scheme), from which it may choose. For a given transmission

strategy r ∈ R, the transmitted packet can be decoded at user i if the SNR perceived

by the user reaches a threshold. In this case, we say that user i can be reached or

covered by strategy r. Let Ri denote the set of transmission strategies covering request

i. For each strategy r ∈ R and each packet b ∈ B, we denote τr,b the time (in number

of slots) to transmit packet b under strategy r. A more robust strategy can reach more

users at the price of longer transmission time under a lower but more robust data rate.

Hence, any user reached by a strategy can also be reached by a more robust strategy.

For any pair of strategies r and r′, where r is less robust than r′, we denote r ≺ r′. We

consider a typical case where ≺ is a strict total order over R such that we can rank all

the strategies r1 ≺ r2 ≺ · · · ≺ rR, and hence τr1,b < τr2,b < · · · τrR,b for each packet b.

For each request i, let r∗i denote the least robust strategy in Ri. If request i is served

under strategy r, a reward wi,r is generated to the system. Under the above generic

model, we are interested in seeking an optimal scheduling policy for the base station to

maximize the total reward within a given time horizon T .

4.2.2 Problem Formulation

We are interested in both offline and online settings. In both cases the scheduler

should follow the first-in-first-out (FIFO) service model such that admitted requests are

queued at the scheduler in the same order they arrive and a request is cleared by the

scheduler when the corresponding user is served.2 Without loss of generality, we assume

that ai ≤ aj for any 1 ≤ i < j ≤ N . In case where ai = aj and i < j, user i should be

served first. Due to the broadcast nature of the wireless medium, the standard FIFO

model needs to be tailored in our context.

Definition 4.1 (Adapted FIFO Model). Any scheduling policy satisfying the following

requirement is called an adapted FIFO model. When starting serving request i under

strategy r at slot t, any low-priority request j > i requesting packet bi must be simulta-

neously served if r ∈ Rj and aj ≤ t ≤ dj − τr,bi + 1.

2In case of tie, a predefined rule is applied to determine the service order.

53

0 1 2 3 4 5 6

1

2

4

3

5

(a) Adapted FIFO model

0 1 2 3 4 5 6

1

2

4

3

5

(b) Standard FIFO model

Figure 4.1: Illustration of our adapted FIFO model vs. standard FIFO model

Example 4.1. To illustrate our adapted FIFO model against the standard FIFO model

policy, we consider an example composed of five requests (0, 1), (0, 3), (0, 3), (0, 6) and

(1, 3), indexed from 1 to 5, concerning the same packet, denoted by 1, where R =

{1, 2, 3}, R1 = {1, 2, 3}, R2 = {2, 3}, R3 = {1, 2, 3}, R4 = {3}, R5 = {2, 3}, and

τ1,1 = 1, τ2,1 = 2 and τ3,1 = 3. For each request i ∈ {1, 2, 3, 4, 5} and each strategy

r ∈ Ri, the reward of request i under strategy r is 1, i.e., wi,r = 1. The lines in

Figure 4.1 illustrate the possible executions of the requests, with the length being the

requested execution time.

• Figure 4.1(a) illustrates the optimal scheduling policy under the adapted FIFO

model, which starts serving requests 1 and 3 under strategy 1 at slot 0, requests 2

and 5 under strategy 2 at slot 1, request 4 under strategy 3 at slot 3. All the five

requests are served.

• Figure 4.1(b) illustrates the optimal scheduling policy under the standard FIFO

model, which starts serving request 1 under strategy 1 at slot 0, requests 2, 3 and

5 under strategy 2 at slot 1, while rejecting request 4, or starts serving request 1

under strategy 1 at slot 0, requests 2 and 3 under strategy 2 at slot 1, request 4

under strategy 3 at slot 3, while rejecting request 5. Different from our adapted

model, a request, if admitted, should be started no later than any admitted request

arriving later. We can check that under the standard FIFO model, at most four

requests can be served.

We remark that (1) the adapted FIFO model takes into account the packet transmis-

sion and is thus more flexible and naturally leads to better efficiency, as demonstrated

54

by the illustration example, (2) it is technically more involved than the standard FIFO

model. Our mathematical framework can be adapted if the standard FIFO model is

employed.

In the adapted FIFO model, for a number of requests served simultaneously, among

which the highest priority request is i, we say that these requests are served, or batched,

under priority i, and we call i the head of the batched requests. In the degenerated case

where i is served alone, its batch contains only itself, which is also the batch header.

We proceed by defining the feasible scheduling policy for downlink transmission

scheduling, concisely termed as feasible policy in this chapter. We say that a feasible

policy is optimal if it maximizes the system utility.

Definition 4.2 (Feasible Scheduling Policy for Downlink Transmission Scheduling).

We call a policy feasible if the following conditions are met.

• each request is served at most once;

• the base station does not transmit more than one packet simultaneously;

• the policy is an adapted FIFO model.

4.3 The Offline Case

In this section, we consider the offline downlink transmission scheduling problem,

denoted by P3. We refer the readers to Appendix 4.7 for a detailed integer linear

programming formulation of P3. In the following theorem, we prove that P3 is NP-

hard. To make our presentation more streamlined, we provide the proof sketch of the

lemmas and theorems in the main text and assemble the detailed proof in Appendix 4.7.

4.3.1 Problem Hardness

Theorem 4.1 (Hardness of P3). The offline scheduling problem P3 is NP-hard. Its

discrete version is NP-complete.

Proof Sketch. We prove that the classical 0-1 Knapsack problem can be reduced to P3.

It then follows from the NP-hardness of the 0-1 Knapsack problem that P3 is NP-hard.

It follows from the NP-completeness of Knapsack problem with integer weights that the

discrete version of P3 is also NP-complete.

55

Given the hardness of P3, we devote our efforts to designing our approximation

scheduling algorithm. Our central idea is to construct a graph, termed as request graph,

to capture the relationships among requests, given the users’ requests and the constraint

imposed by the adapted FIFO model. We then cast P3 to the MWIS problem in the

constructed request graph.

This section is organized as follows. We first construct the request graph and cast

P3 to the MWIS problem in the graph. We then explore the structural properties of the

constructed request graph to formulate the LP relaxation of P3. We further develop

an approximation algorithm based on rounding the solution of the LP relaxation to an

integer solution. The approximation ratio of our approximation algorithm is established

to complete the section.

4.3.2 Request Graph

We start with a few definitions to simplify subsequent presentation. For any slot t

and each strategy r, we call a user i active at t under r if r ∈ Ri and ai ≤ t ≤ di−τr,bi+1.

Intuitively, when starting serving user i at slot t under strategy r, the corresponding

request can be finished by its deadline di. We call a user active at slot t if there exists

at least one strategy r ∈ R, under which the user is active, and we call slot t an active

slot. Similarly, we call the packet b active at slot t if there is a user requesting packet

b that is active at slot t. For any packet b, let Nb denote the set of users requesting

packet b and Nb,t denote the set of users in Nb active at slot t. For any user i ∈ Nb,t
and any strategy r, let N+

b,t(i, r) denote the set of active users in Nb at t under r whose

indexes ≥ i, i.e., whose priorities are lower than or equal to that of i. Mathematically

N+
b,t(i, r) , {k : k ∈ Nb,t, k ≥ i, ak ≤ t ≤ dk − τr,b + 1}.

Similarly, define

N−b,t(i, r) , {k : k ∈ Nb,t, k ≤ i, ak ≤ t ≤ dk − τr,b + 1}.

For any pair of users i, j ∈ N and any pair of strategies r1, r2 ∈ R, we further define

Nb,t(i, j; r1, r2) , N+
b,t(i, r1) \ N−b,t(j, r2).

The request graph, denoted by G , (V , E), consists of the following vertices and

56

edges.

4.3.2.1 Vertices.

Each vertex in V maps to a time interval, a transmission strategy, and a priority, and

each vertex covers a set of users. Consider each active slot t, each packet b corresponding

to an active user at t, each user i ∈ Nb,t, and each strategy r ∈ Ri. We create the

following two types of vertices.

• Type-1 vertices. For each user j ∈ Nb,t with i < j, and each strategy r′ ∈ R\Ri,

we create a vertex, denoted by v, mapping to the time interval [t, t+ τr,b− 1], the

strategy r, and the priority i. Physically, the constructed vertex v corresponds

to a possible execution of the requests in Nb,t(i, j; r, r′) under strategy r. We

say that v covers the requests in Nb,t(i, j; r, r′). If the scheduler decides to start

transmitting packet b under strategy r at slot t to serve the requests covered by

v, we say that the requests in Nb,t(i, j; r, r′) are instantiated by v. We define a

weight wv for v and set wv ,
∑

k∈Nb,t(i,j;r,r′) wk,r.

• Type-2 vertices. We create a vertex v mapping to the time interval [t, t+τr,b−1],

the strategy r, and the priority i. It follows from the same notations as type-1

vertices that v covers the requests in N+
b,t(i, r). We define its weight as wv ,∑

k∈N+
b,t(i,r)

wk,r.

We use Vi to denote the set of vertices covering user i. For each constructed vertex

v, let tv and lv denote the starting time and the length of time interval corresponding

to v, let rv denote the strategy of v, and let βv denote the priority of v. Note that a

smaller β value indicates a higher priority.

Example 4.2. Figure 4.2 illustrates the vertex construction for the example in Fig-

ure 4.1(a). The left subfigure replots the possible cases to serve each request indepen-

dently. The right subfigure illustrates the created vertices, more precisely specified in

Table 4.2. The unique optimal scheduling policy, starting serving users 1 and 3 under

strategy 1 at slot 0, users 2 and 5 under strategy 2 at slot 1, user 4 under strategy 3 at

slot 3, maps to vertices v1, v10, and v17.

We now analyze the complexity of creating the vertices in G. Denote δi , di −
ai − minr∈Ri τr,bi + 2 for each user i requesting the packet b, and δ ,

∑
i∈N δi. Let

M , max1≤b≤B |Nb|. There are at most δi(R − |Ri|)|Nb| type-1 vertices and δi|Ri|

57

0 1 2 3 4 5 6

1

2

4

3

5

1
v

4
v

0 1 2 3 4 5 6

13
v

7
v

10
v

16
v

Figure 4.2: Illustration of vertex construction for Example 4.2

Table 4.2: Constructed vertices in Example 4.2

Vertex Covered user(s) Priority Time interval Strategy
v1 1,3 1 [0,1) 1
v2 3 3 [0,1) 1
v3 2,3 2 [0,2) 2
v4 3 3 [0,2) 2
v5 2,3,4 2 [0,3) 3
v6 2,4 2 [0,3) 3
v7 3,4 3 [0,3) 3
v8 4 4 [0,3) 3
v9 2,3,5 2 [1,3) 2
v10 2,5 2 [1,3) 2
v11 3,5 3 [1,3) 2
v12 5 5 [1,3) 2
v13 3 3 [1,2) 1
v14 4 4 [1,4) 3
v15 3 3 [2,3) 1
v16 4 4 [2,5) 3
v17 4 4 [3,6) 3

58

type-2 vertices whose priorities are assigned the priority level i. It then holds that the

total number of vertices sums up to O(δRM). Listing users in Nb, ∀1 ≤ b ≤ B takes

O(N) time. Consider each packet b and each corresponding active slot t. Among the

users in Nb, listing the set of users in Nb,t takes O(|Nb|) time. For each strategy r,

among the users in Nb,t, listing the set of active users at t under r takes O(|Nb,t|) time.

For all pair of users i, j ∈ Nb,t and all pair of r, r′ with r ∈ Ri and r′ ∈ R \Ri, further

listing users in Nb,t(i, j; r, r′) and N+
b,t(i, r) takes O(|Nb|2(R − |Ri|)|Ri|) = O(M2R2)

time. For each packet b, there are at most
∑

k∈Nb δk slots at which packet b is active

since there are δk slots at which each request k is active. Therefore, the construction of

the vertices can be completed in O(
∑

1≤b≤B
∑

k∈Nb δkM
2R2) = O(δM2R2) time.

4.3.2.2 Edges.

The edges in G can be categorized into the following three types.

Inter-user edges (type-1 and type-2). For any pair of vertices u and v not

covering any common user, we distinguish the following two subcategories.

• Type-1 edges. We construct an edge uv if the time intervals corresponding to u

and v overlap each other, indicating the impossibility of instantiating the requests,

which are covered by u, by u and also the requests, which are covered by v, by v.

• Type-2 edges. This type of edges are further classified into two cases, capturing

our adapted FIFO model. Specifically, we construct an edge between any pair of

nodes u and v if they satisfy the following conditions, with each set of conditions

corresponding to a case.

– βu < βv and tu > tv, or βu > βv and tu < tv.

– (1) the users covered by u and v request a same packet, (2) βv < βu, tv ≤ tu,

and (3) there exists a request j covered by u with rv ∈ Rj and aj ≤ tv ≤
dj − τrv ,bj + 1, i.e., request j fits into the time interval corresponding to v.

We clarify the implication of this case of edges via an example. Suppose

the requests covered by v are instantiated by v. It follows from the adapted

FIFO model that j must be served under the priority βv or batched with

another request with higher priority than βv. Hence, the requests covered

by v and request j cannot be both instantiated by v and u, respectively.

Intra-user edges (type-3). We construct an edge between each pair of vertices

59

covering at least a same user, i.e., ∀u, v ∈ Vi, uv ∈ E ,∀i ∈ N . The intra-user edges

model the constraint that any user is served at most once.

We then analyze the complexity of creating the edges in G. Noticing that there are

at most M requests in Nb, 1 ≤ b ≤ B, it follows from the definitions of Nb,t(i, j; r, r′)
and N+

b,t(i, r) that each constructed vertex covers at most M requests. Therefore, for

each pair of vertices, checking whether the condition for the second case of type-2 edges

is met takes O(M) time. As the number of vertices in G is O(δRM), the construction

of the edges in G can be completed in O(δ2R2M3) time.

4.3.3 From Downlink Transmission Scheduling to Maximum

Weighted Independent Set

Armed with the constructed request graph G, we now prove that our offline schedul-

ing problem can be cast to the MWIS problem of G. The following lemma establishes

the relationship between the feasible policies and the ISes of G. By choosing an IS in

G we mean to serve the requests covered by the vertices in the chosen IS.

Lemma 4.1. Each IS of G maps to a feasible policy. Each optimum feasible policy

maps to an IS of G.

Proof Sketch. The proof of each IS mapping to a feasible policy follows from the con-

struction of G, where each type of edges characterizes a constraint of the feasible

scheduling policy. To prove that each optimal feasible policy maps to an IS of G,

we consider an optimal feasible policy, and seek a subset of vertices in V covering all

requests served by the optimal feasible policy. Based on the vertex construction, we

prove that the subset of vertices is an IS. Therefore, each optimal feasible policy maps

to an IS.

Lemma 4.1 immediately leads to the following corollary.

Corollary 4.1. P3 can be cast to the MWIS problem, formulated below.

maximize
∑
v∈V

wvyv

subject to yv + yu ≤ 1, ∀uv ∈ E (4.1)

yv ∈ {0, 1}, ∀v ∈ V ,

60

where yv is the binary variable indicating whether v is selected in the IS. Constraint (4.1)

states that any pair of neighboring vertices cannot be chosen together.

4.3.4 LP Relaxation

To solve the MWIS problem formulated above, we first solve the linear program-

ming (LP) relaxation of MWIS problem and then round the fractional solution of LP

relaxation to an IS. In this subsection, we develop an LP relaxation approach tailored

to our problem. The next subsections are devoted to the rounding technique and the

mathematical performance analysis. Table 4.3 lists the additional notations used in

Sections 4.3.4 to 4.3.6.

Table 4.3: Additional notations in Sections 4.3.4 to 4.3.6

Vα(i) set of vertices v ∈ V with βv ≤ i and tv ≥ ai
N α(i) set of users containing at least one vertex in Vα(i)
ϕ maxk∈N (dk − ak + 1)
lmin min1≤b≤B minr∈R τr,b
lmax max1≤b≤B maxr∈R τr,b
N̂ RMδ1+ε

y∗v value of yv in the solution of LP relaxation
C ordered set (or vector) of colors

In the LP relaxation, for each vertex v ∈ V , we replace the constraint yv ∈ {0, 1}
by yv ≥ 0. There is no need to explicitly add the constraint yv ≤ 1 since it is implied

by the other constraints. We add the constraints
∑

v∈Vi yv ≤ 1 indicating that each

request i is served at most once. It is well-known that the LP relaxation of the MWIS

problem suffers the so-called half integer effect due to the edge constraint [39]. To

mitigate this effect, we construct the following two types of constraints to replace the

edge constraint (4.1), where each type concerns a particular type of inter-user edges

constructed in G, and thus is equivalent to the specific constraint of our scheduling

problem.

Type-1 constraints. The first type of constraints, as shown in (4.2), concerns the

vertices in V and type-1 edges. For each time slot t ∈ [0, T], we call a vertex v active at

slot t if t ∈ [tv, tv + lv − 1]. The intuition behind the definition of active vertex is that

if the corresponding requests are instantiated by an active vertex at slot t, then the

requests are still in serving at slot t. Recall the construction of the request graph G,

the vertices in V that are active at slot t are adjacent to each other. Type-1 constraints

61

state that at most one active vertex at slot t is chosen at any feasible scheduling policy.

Type-1 constraints:
∑

v∈V,v is active at slot t

yv ≤ 1, ∀t ∈ [0, T]. (4.2)

Let lmin , min1≤b≤B minr∈R τr,b and lmax , max1≤b≤B maxr∈R τr,b. For each slot

t′ ∈ [0, lmin − 2], the vertices active at slot t′ are also active at lmin − 1. Similarly, for

each slot t′ ∈ [T−lmin+2, T], each vertex active at slot t′ is also active at slot T−lmin+1.

Therefore, we just need to list type-1 constraints for slots t ∈ [lmin − 1, T − lmin + 1],

and each slot corresponds to at most one type-1 constraint. Hence, there are at most

T − 2lmin + 1, asymptotically O(T), type-1 constraints.

Type-2 constraints. The second type of constraints, as shown in (4.3), concerns

the vertices in V and type-2 edges. For each time slot t, we call a vertex v valid at slot

t if tv ≥ t. Any request instantiated by a valid vertex v at t does not start being served

earlier than t. For any user i, let Vα(i) denote the set of vertices v ∈ V satisfying: (1)

the priority of v is higher than or equal to the priority of i, i.e., βv ≤ i, (2) v is valid at

slot ai, i.e., tv ≥ ai. Mathematically, Vα(i) , {v : v ∈ V , βv ≤ i, tv ≥ ai}. Physically,

the set of vertices in Vα(i) includes all vertices v ∈ V satisfying: (1) the priority of v

is higher than or equal to the priority of i, (2) v is connected with a vertex in Vi by a

type-2 edge. Let N α(i) denote the set of users containing at least one vertex in Vα(i).

For each request i, any feasible scheduling policy can transmit at most maxk∈Nα(i)(dk−
ai + 1)/lmin packets during the time interval [ai,maxk∈Nα(i) dk] because the base sta-

tion does not transmit multiple packets simultaneously. Therefore, there are at most

maxk∈Nα(i)(dk − ai + 1)/lmin vertices in Vα(i) at any feasible scheduling policy, leading

to the following constraint.

Type-2 constraints:
∑

v∈Vα(i)

yv ≤
maxk∈Nα(i)(dk − ai + 1)

lmin
, ∀i ∈ N . (4.3)

We now derive the complexity for establishing type-2 constraints. For each user i,

there is at most one type-2 constraint. The complexity for listing all vertices in Vα(i) is

O(
∑

k∈Nb,k≤i δkRM). Hence, listing type-2 constraints takesO(
∑

i∈N
∑

k∈Nb,k≤i δkRM) =

O(M2R
∑

k∈N δk) = O(M2Rδ) time.

We now replace the edge constraint (4.1) by the above constructed constraints to

62

formulate the LP relaxation of the MWIS problem, denoted by P3’, as below.

P3’: maximize
∑
v∈V

wvyv

subject to (4.2), (4.3)∑
v∈Vi

yv ≤ 1, ∀i ∈ N

yv ≥ 0, ∀v ∈ V

By the analysis in this subsection, each optimal feasible scheduling policy is also a

feasible solution of P3’. Hence, the value of an optimum fractional solution of P3’ is

an upper bound for the utility of the optimal feasible policy.

4.3.5 Approximation Scheduling Algorithm Design

Our approximation algorithm first solves P3’ and then applies the rounding and

coloring technique developed in [7] adapted to our context. To make our presentation

streamlined and self-contained, we present and analyze the adapted rounding algorithm

in the context of our problem. At a high level, our algorithm colors the graph such

that each color induces an IS that can be mapped to a feasible scheduling policy. The

algorithm essentially follows the procedures in [7], which are adapted below in the

context of our problem. Some additional notations are used in this subsection. We

define ϕ , maxk∈N (dk − ak + 1). Let N̂ = RMδ1+ε. To make our analysis concise, we

assume that N̂ is an integer, otherwise we need to round it to the nearest integer. Let

C denote an ordered set (or a vector) of (1 + ϕ/lmin)N̂ − 1 colors.

We first solve P3’ and denote the solution by {y∗v}v∈V , where y∗v is the value of yv

in the LP relaxation. Clearly, we have 0 ≤ y∗v ≤ 1,∀v ∈ V . Then, we color the graph G

such that (1) each vertex v ∈ V receives bN̂y∗vc colors, and (2) any color used to color

any vertex v is not used to color any neighbor of v. Technically, we sort the vertices in

V non-decreasingly by their starting time with ties broken randomly. For each vertex

v ∈ V from left to right, we use the first bN̂y∗vc colors in C not used to color any neighbor

of v to color v. The algorithm outputs the set of vertices sharing one common color

with maximum weight.

The pseudo-code of our algorithm is given in Algorithm 3. As each vertex corre-

sponds to a request, the final scheduling is to serve the requests corresponding to the

set of vertices output by Algorithm 3. In the algorithm, the function Color(v, y∗v , C)

63

returns the first bN̂y∗vc colors in C that have not been used to color any neighbor of

v. Color is a graph algorithm that can be coded straightforwardly. The detailed

implementation is thus omitted in the pseudo-code.

Algorithm 3 Offline downlink transmission scheduling: executed by the scheduler

1: Input: request graph G = (V , E), solution of the LP relaxation {y∗v}v∈V , N̂ ←
RMδ1+ε, a vector C of (1 + ϕ/lmin)N̂ − 1 colors

2: Output: set of vertices . The final scheduling policy is to serve requests
corresponding to V̂

3: sort the vertices in V non-decreasingly by their starting time, breaking ties randomly
4: for each v ∈ V from left to right do
5: color vertex v using the colors Color(v, y∗v , C)
6: end for
7: return set of vertices in V sharing one common color with maximum weight

4.3.6 Performance Analysis

In this subsection we derive the theoretical performance guarantee of our approxi-

mation algorithm. We first prove that each vertex v ∈ V with by∗vN̂c ≥ 1 is colored by

by∗vN̂c colors in Lemma 4.2, based on which we are then able to establish the approx-

imation factor of Algorithm 3 in Theorem 4.2. We conclude this subsection by giving

the complexity of Algorithm 3.

Lemma 4.2. Each vertex v ∈ V with by∗vN̂c ≥ 1 is colored by by∗vN̂c colors by Algo-

rithm 3.

Proof Sketch. We first derive the upper bound of the number of colors that have been

used to the neighbors of v when Algorithm 3 colors v. Based on the number of colors

disposed in C, we can then derive that there are at least by∗vN̂c available colors that

can be used to color v.

Theorem 4.2. Algorithm 3 outputs an asymptotically 1/(1 + ϕ/lmin)−optimal feasi-

ble scheduling policy for our offline scheduling problem, i.e., Algorithm 3 is a 1/(1 +

ϕ/lmin)−approximation algorithm.

Proof Sketch. It follows from Lemma 4.1 and Lemma 4.2 that we get at most (1 +

ϕ/lmin)N̂ ISes of G. We prove that there exists an IS whose total weight is at least

1/(1 + ϕ/lmin) of the utility for the optimal feasible scheduling policy.

64

Theorem 4.2 demonstrates that the approximation factor of our algorithm only

depends on the ratio between the largest task slackness and lmin, i.e., its performance

does not degrade with the system size.

To conclude the analysis of our algorithm, we analyze its complexity. To that end,

we firstly need to compute the number of vertices in V . To that end, we can calculate

that the number of created vertices in V is at most δRM . The number of colors received

by each vertex is O(N̂), and thus the complexity of the color process is O(RMδN̂).

The complexity of the sorting process is O(RMδ log(RMδ)). Therefore, It follows from

N̂ = RMδ1+ε that the complexity of our algorithm is O(R2M2δ2+ε).

4.4 The Online Case

In this section, we consider the online scheduling problem, where the scheduler only

knows the current scheduling backlog. More specifically, the parameters ai, di, bi,Ri for

request i are known only at the moment of arrival. As the offline case, the online down-

link scheduling problem also takes into account our adapted FIFO model. Table 4.4

lists the additional notations used in Section 4.4.

Table 4.4: Additional notations in Section 4.4

T set of slots at which Algorithm 4 starts serving at least one request
O set of requests that are served by the optimal scheduling policy
Ωt set of ready requests at slot t
B(Ωt) set of packets, each requested by at least one user in Ωt

Bmax max1≤t≤T |B(Ωt)|
N ∗t set of requests that start being served by Algorithm 4 at slot t

In the online setting, we focus on the non-preemptive scheduling model: once a

request starts being served, it must be completed without interruption [17] [21]. We

note that the non-preemptive model is seamlessly compatible with our adapted FIFO

model.

4.4.1 Problem Inapproximability

We start by showing in the following theorem that the online problem in its generic

form cannot be approximated with any finite competitive ratio.

Theorem 4.3. For any ρ > 0, there exists an instance of our scheduling problem, where

the competitive ratio of any deterministic online algorithm Π is larger than ρ.

65

Proof. We consider the following instance of our online scheduling problem. There is

only one packet and one strategy in the base station; the station needs 2 slots to transmit

the packet under the strategy. In slot 0, a request with the couple (0, 1) arrives, and

its reward is 1 if it is served under the strategy. We distinguish two cases.

• If Π does not serve the request, then no more request arrives, leading to a com-

petitive ratio of infinity as the optimal solution is clearly to serve the request;

• If Π serves the request, a set of requests arrive, each characterized by the same

couple (1, 2), and the total reward of them is larger than ρ if they are served under

the strategy. Under this request sequence, the optimal scheduling policy serves

the requests arriving at slot 1, while Π only serves the request arriving at slot 0,

leading to a competitive ratio of larger than ρ.

Combining the above two cases completes our proof.

4.4.2 Online Scheduling Algorithm Design

Theorem 4.3 establishes the inapproximability of the online downlink scheduling

problem in the generic case. By examining the problem instance in Theorem 4.3,

we observe that the inapproximability is significantly due to the stringent deadline.

Consequently, an online algorithm is forced to make a decision immediately when the

requests arrive. Motivated by this observation, we slightly relax the slackness of the

requests, and design an online scheduling algorithm with bounded competitive ratio.

Specifically, we assume that the slackness of each request i is at least lmax+minr∈Ri τr,bi−
1, i.e., di− ai + 1 ≥ lmax + minr∈Ri τr,bi − 1,∀i ∈ N . Moreover, for each user i and each

pair of strategies r, r′ ∈ Ri with r ≺ r′, we assume that wi,r ≥ wi,r′ .

We give a high-level overview of our online scheduling algorithm. For each slot t,

at which there is no request being served, our algorithm starts serving a set of users at

slot t requesting a same packet under the least robust strategy covering the users such

that the total reward of the users is maximum among the packets.

Technically, we introduce the following definitions. We say a slot free if there is

no request being served at the slot. For each slot t, we say a request k ready at slot

t satisfying: (1) k is active at slot t, i.e., ak ≤ t ≤ di − minr∈Ri τr,bi + 1, (2) k has

not been served before slot t, and (3) starting serving k at slot t does not violate the

adapted FIFO model. Let Ωt denote the set of ready requests at slot t, and let B(Ωt)

denote the packets, each of which is requested by at least one user in Ωt. We define

66

Bmax , max1≤t≤T |B(Ωt)|. We use a quadruple (i, ti, ri, βi) to denote each served request

i, where ti is the starting time to serve request i, ri and βi are the strategy and the

priority under which i is served.

The pseudo-code of our algorithm is given in Algorithm 4. Consider the current slot

t. If the slot t is not free or there is no ready request at slot t, i.e., Ωt = ∅, there is

no request that starts being served at slot t; otherwise, for each packet b ∈ B(Ωt), we

first seek the least robust strategy rb that can reach all users in Ωt requesting packet b,

i.e., rb = argminr∈Ri,i∈Ωt∩Nb τr,b. We then seek the packet b such that the total reward

of the users in Ωt ∩Nb under strategy rb is maximum among the packets in B(Ωt). Let

Γ denote the set of users in Ωt requesting packet b. Finally, we start serving the users

in Γ at slot t by transmitting packet b under the strategy r and the priority of request

mink∈Γ k.

We briefly describe the following functions used in our algorithm, which can be coded

straightforwardly. The detailed implementation is thus omitted in the pseudo-code.

• Packets(Ω) returns the set of packets, each of which is requested by at least one

user in Ω.

• UsersRequestPacket(Ω, b) returns the set of users requesting packet b.

• LeastRobustStrategy(Ω) returns the least robust strategy r that can reach all

requests in Ω, i.e., r = argminr∈Ri,i∈Ω τr,b.

• TotalReward(Ω, r) returns the total reward of requests in Ω under strategy r.

• HighestPriorityRequest(Γ) returns the highest priority request in Γ.

Algorithm 4 Online downlink transmission scheduling: executed by the scheduler at
each slot t

1: Input: Ωt: the set of ready requests at slot t
2: Output: N ∗t , the set of requests started being served at slot t, with each admitted

request i served under strategy ri and priority βi

3: Initialization: N ∗t ← ∅
4: if Ωt == ∅ then
5: return ∅
6: end if

7: B(Ωt)← Packets(Ω)
8: Γ← ∅ . Γ stocks the set of users that start being served at slot t
9: r = 1 . r, initialized by strategy 1, is the index of the strategy, under which users

in Γ are served

67

10: for each packet b ∈ B(Ωt) do
11: Γ∗ ← UsersRequestPacket(Ωt, b)
12: r∗ ← LeastRobustStrategy(Γ∗)
13: if TotalReward(Γ∗, r∗)>TotalReward(Γ, r) then
14: Γ← Γ∗

15: r = r∗

16: end if
17: end for
18: i← HighestPriorityRequest(Γ)
19: for each user k ∈ Γ do
20: tk = t, rk = r̄, βk = i . Start serving request k under strategy r̄ and priority i

at slot t
21: add (k, tk, rk, βk) to N ∗t
22: end for
23: return N ∗t

Theorem 4.4. If the slackness of each request is at least lmax + minr∈Ri τr,bi − 1, i.e.,

di − ai + 1 ≥ lmax + minr∈Ri τr,bi − 1,∀i ∈ N , the competitive ratio of Algorithm 4 is

upper-bounded by Bmax, i.e., Algorithm 4 outputs a 1/Bmax−optimal feasible scheduling

policy.

Proof. Let T denote the set of slots, at each of which Algorithm 4 starts serving at

least one request. We first prove that the utility of the optimal scheduling policy is

upper-bounded by the total reward of the requests, each of which is ready at a slot in

T . For each slot t ∈ T , we then derive the relationship between the total reward of the

requests starting being served by Algorithm 4 at slot t and the total reward of the ready

requests at slot t. Combining the above results allows us to establish Bmax−competitive

of Algorithm 4.

Theorem 4.4 shows that the performance of our algorithm only scales with the largest

B(Ωt), which only depends on the number of packets that are requested by the ready

users at the current slot t. Therefore, the global efficiency of our algorithm does not

degrade with the system size.

4.5 Numerical Analysis

In this section, we conduct numerical analysis to evaluate the performance of the

constant-factor offline and online scheduling approximation algorithms we develop. In

our simulation, we trace the metric (3.8) to evaluate the performance of the optimum

68

scheduling policy compared to our algorithms. Specifically, we trace the maximal,

average, and minimal values of Υ in our simulations.

In our simulations, the time horizon T is set to 200. For each strategy indexed by

r, the number of time slots to transmit each packet is r under strategy r. We simulate

three typical scenarios, in each of which we vary the number of requests N in the system

from 50 to 500. For each N , we perform 50 simulation runs for each request parameter

setting.

4.5.1 Scenario 1

In the first scenario, we randomly choose the parameters ai, di, bi,Ri such that di−
ai + 1 ≥ minr∈Ri τr,bi , and there are 5 strategies indexed from 1 to 5, i.e., R = 5. We

run three experiments with B = 5, 10 and 20 respectively. The simulation results of

the offline and online cases are illustrated in Figures 4.3 and 4.4.

0.5

0.6

0.7

0.8

0.9

1

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

B=5
B=10
B=20

50 100 150 200 250 300 350 400 450 500

(a) Maximum performance gains

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250 300 350 400 450 500

B=5
B=10
B=20

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

(b) Average performance gains

0.4

0.5

0.6

0.7

0.8

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

B=5
B=10
B=20

50 100 150 200 250 300 350 400 450 500

(c) Minimum performance gains

Figure 4.3: Performance gains of Algorithm 3 for the first scenario in offline case

0.45

0.55

0.65

0.75

0.85

0.95

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

50 100 150 200 250 300 350 400 450 500

B=5
B=10
B=20

(a) Maximum performance gains

0.35

0.45

0.55

0.65

0.75

0.85

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

50 100 150 200 250 300 350 400 450 500

B=5
B=10
B=20

(b) Average performance gains

0.3

0.4

0.5

0.6

0.7

0.8

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

00 50 100 150 200 250 300 350 400 450 500

B=5
B=10
B=20

(c) Minimum performance gains

Figure 4.4: Performance gains of Algorithm 4 for the first scenario in online case

From the simulation results, we make the following observations.

• Our algorithms achieve at least 43% of the optimal utility even in the worst case

in the offline setting and at least 33% in the online setting, which demonstrate

69

the theoretical results we derive.

• Our offline algorithm performs better compared to our online algorithm, as the

base station has the full knowledge of request information in the offline setting

and naturally achieves better performance.

• When the number of requests N increases, the average performance gain first

decreases in both offline and online settings, and then stabilize, indicating that

the resource pool approaches its capacity limit.

• The smaller the number of packets there is, the better performance our algorithms

achieve. This is because, when the number of packets is small, there are more

opportunities for serving requests simultaneously, which potentially improves the

system performance.

4.5.2 Scenario 2

In this scenario, we set B = 5 and randomly choose the parameters ai, di, bi,Ri,

and there are 5 strategies indexed from 1 to 5, i.e., R = 5. We run the experiments in

Scenario 2 including the following two settings: (1) di − ai + 1 ≥ minr∈Ri τr,bi , and (2)

di−ai+1 ≥ lmax+minr∈Ri τr,bi−1,∀i ∈ N . The simulation results for this scenario are

shown in Figures 4.5 and 4.6. From the results, we derive the following observations.

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

50 100 150 200 250 300 350 400 450 500

Setting 1
Setting 2

(a) Maximum performance gains

0.55

0.65

0.75

0.85

0.95

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

P
er
fo
rm
a
n
ce
g
a
in

00 50 100 150 200 250 300 350 400 450 500

Setting 1
Setting 2

(b) Average performance gains

0.45

0.55

0.65

0.75

0.85

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

500

Setting 1
Setting 2

50 100 150 200 250 300 350 400 450 500

(c) Minimum performance gains

Figure 4.5: Performance gains of Algorithm 3 for Scenario 2 in offline case

• Our algorithms achieve at least 51% of the optimal utility in offline case, and 42%

of the optimal utility in the online case.

• By comparing the performance gains between the two settings, as the slackness

of each request is relaxed, our algorithms in the second setting perform better

compared to the first setting.

70

0.55

0.65

0.75

0.85

0.95

50 100 150 200 250 300 350 400 450 500
Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1
Setting 2

(a) Maximum performance gains

0.45

0.55

0.65

0.75

0.85

0.95

50 100 150 200 250 300 350 400 450 500
Number of requests N

Setting 1
Setting 2

P
er
fo
rm
a
n
ce
g
a
in

(b) Average performance gains

00
0.35

0.45

0.55

0.65

0.75

0.85

50 100 150 200 250 300 350 400 450 500
Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1
Setting 2

(c) Minimum performance gains

Figure 4.6: Performance gains of Algorithm 4 for Scenario 2 in online case

4.5.3 Scenario 3

In this scenario, we set B = 5 and randomly choose the parameters ai, di, bi,Ri such

that di − ai + 1 ≥ minr∈Ri τr,bi ,∀i ∈ N . The experiments of Scenario 3 include the

following three settings: (1) there are 5 strategies indexed from 1 to 5, i.e., R = 5, (2)

there are 10 strategies indexed from 1 to 10, i.e., R = 10, and (3) there are 20 strategies

indexed from 1 to 20, i.e., R = 20. The simulation results of this scenario are illustrated

in Figures 4.7 and 4.8. From the results, we make the following observations.

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450 500

R=5
R=10
R=20

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

(a) Maximum performance gains

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250 300 350 400 450 500

R=5
R=10
R=20

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

(b) Average performance gains

0.4

0.5

0.6

0.7

0.8

R=5
R=10
R=20

50 100 150 200 250 300 350 400 450 500
Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

(c) Minimum performance gains

Figure 4.7: Performance gains of Algorithm 3 for Scenario 3 in offline case

0.45

0.55

0.65

0.75

0.85

0.95

50 100 150 200 250 300 350 400 450 500

R=5
R=10
R=20

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

(a) Maximum performance gains

0.35

0.45

0.55

0.65

0.75

0.85

50 100 150 200 250 300 350 400 450 500

R=5
R=10
R=20

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

(b) Average performance gains

0.3

0.4

0.5

0.6

0.7

0.8

50 100 150 200 250 300 350 400 450 500

R=5
R=10
R=20

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

(c) Minimum performance gains

Figure 4.8: Performance gains of Algorithm 4 for Scenario 3 in online case

71

• Our algorithms achieve at least 41% of the optimal utility in offline case, and 33%

of the optimal utility in the online case.

• As in the first scenario, the smaller the number of strategies there is, the better

performance our algorithms achieve.

4.6 Conclusion

In this chapter, we have formulated and analyzed the downlink transmission schedul-

ing problem with data sharing. We have studied both offline and online scheduling

scenarios. In both cases, we have established the problem hardness and developed de-

terministic approximation algorithms with mathematically proven performance guar-

antee. We have complemented our theoretical analysis with numerical simulations that

demonstrate the effectiveness of our algorithms in a variety of system settings.

4.7 Appendix

4.7.1 Integer Linear Problem Formulation of Offline Downlink

Transmission Scheduling

The offline downlink transmission scheduling with data sharing problem P3 can be

formulated as a network utility maximization (NUM) problem as below.

P3: maximize
∑

1≤i≤N

∑
r∈Ri

wi,rxi,r

subject to

ti − tj ≥ τrj ,bj , ∀i, j ∈ N , ti > tj, ri 6= rj, xi,ri = xj,rj = 1. (4.4a)

ti − tj ≥ τrj ,bj , ∀i, j ∈ N , ti > tj, bi 6= bj, xi,ri = xj,rj = 1. (4.4b)

tj > ti, ∀i, j ∈ N , βj > βi, xi,ri = xj,rj = 1. (4.4c)

tj = ti,

∀j ∈ N , βj = βi, xj,rj = 1,

i = min{k : xk,rk = 1, j ≥ k, k ∈ Nbj ,

rk ∈ Rj, aj ≤ tk ≤ dj − τrk,bj + 1}.

(4.4d)

ai ≤ ti ≤ di − τri,bi + 1, ri ∈ Ri, xi,ri = 1,∀i ∈ N . (4.4e)

xi,ri ∈ {0, 1}, ∀i ∈ N ,∀r ∈ Ri

72

where ti is the time to start serving user i if its request is admitted, xi,r is the decision

variable indicating whether to serve user i under strategy r, ri and βi are the transmis-

sion strategy and priority under which user i is served, respectively. Constraint (4.4a)

implies that if any pair of requests is served under different strategies, the time inter-

vals to serve them cannot overlap. Constraint (4.4b) implies that if any pair of served

users requests different packets, the time intervals to serve them cannot overlap. Con-

straints (4.4c) and (4.4d) correspond to the adapted FIFO model. Constraint (4.4c)

indicates that for any pair of request i and j, if request j is served under the lower

priority than the priority under which request i is served, the time to start serving j

cannot be earlier than the time to start serving i. Constraint (4.4d) implies that if

request j is served, it must be served under the priority of itself or batched with a

request with highest priority among the served users who request the same packet as j

and whose time intervals can fit for serving j. Constraint (4.4e) indicates that if user i

is served, i should be served under a strategy in Ri and there is enough time to transmit

the requested packet to user i by its deadline.

4.7.2 Proof of Theorem 4.1

To prove its hardness, we consider the 0-1 Knapsack problem which is known to be

NP-hard [26].

0-1 Knapsack problem. Given a positive capacity C and a set N of N elements

indexed from 1 to N , each with a positive weight ci(i ∈ {1, 2, · · · , N}), find a set

S ⊆ {1, 2, · · · , N} such that
∑

i∈S ci ≤ C and
∑

i∈S ci is maximized. The problem is

known to be NP-hard [26].

We now show that the 0-1 Knapsack problem defined above, we construct an in-

stance of P3 as follows: there are N users indexed from i = 1 to N , each submitting a

request (0, T), i.e., each request needs the whole time horizon; there is only one trans-

mission strategy that can cover all users in the base station, where each user requests

a distinguished packet; the time to transmit the packet requested by each user i is ci

under the transmission strategy; the reward of each user i is ci; as all requests are sub-

mitted at time 0, the service order is determined by user indexes. It is straightforward

to see that a solution of the constructed instance of P3 can be cast to a solution of the

0-1 Knapsack problem.

It then follows from the NP-hardness of the 0-1 Knapsack problem that P3 is NP-

hard.

73

In the disctete case where all the parameters and variables are restricted to integers,

we can apply the same procedure to cast the Knapsack problem with integer weights

to the discrete downlink transmission scheduling problem. It then follows from the NP-

completeness of Knapsack problem with integer weights [23] that the discrete version

of P3 is also NP-complete.

4.7.3 Proof of Lemma 4.1

First, we prove that each IS of G maps to a feasible policy.

• The construction of type 1 edges ensures that the base station does not transmit

multiple packets simultaneously.

• The construction of type 2 edges ensures that the priorities, under which the users

are served, never violate our adapted FIFO model.

• The construction of type 3 edges ensures that for each user, at most one vertex

covering it is chosen, i.e., each user is served at most once.

Therefore, each IS of G maps to a feasible policy.

We then prove the second property. Let N ∗ denote the set of users that are served

by an optimal feasible policy. Following our notation, we use a quadruple (i, ti, ri, βi)

to denote a request i served in N ∗, where ti denotes the starting time slot to serve

request i, ri denotes the strategy under which the request i is served, and βi denotes

the priority under which request i is served. We divide N ∗ into subsets such that the

requests belonging to the same subset are batched under the same priority. Let N ∗0
denote the set of batch headers. Clearly, each request in N ∗ belongs to a batch. It then

follows from the optimality of N ∗ that

N ∗ =
⋃
i∈N ∗0

N+
bi,ti

(i, ri).

It follows from the feasible of N ∗ that any pair of requests i, j ∈ N ∗0 with i < j satisfies

ti + τri,bi − 1 < tj ≤ dj − τrj ,bj + 1.

For each user i, a strategy r and a slot t, it follows from the definition of N+
bi,t

(i, r)

that the set of requests in N+
bi,t

(i, r) includes all requests k with k ≥ i, bk = bi that

fit into the time interval [t, t + τr,bi − 1]. Consider any packet b and any pair of users

i, j ∈ N ∗0 with j < i requesting the packet b. We now prove that rj ∈ R\Ri when there

74

exists a request in N+
b,ti

(i, ri) that can fit into the time interval [tj, tj + τrj ,b − 1], i.e.,

N+
b,tj

(j, rj) ∩ N+
b,ti

(i, ri) 6= ∅. Assume by contradiction that rj ∈ Ri when N+
b,tj

(j, rj) ∩
N+
b,ti

(i, ri) 6= ∅. For each request k ∈ N+
b,tj

(j, rj) ∩ N+
b,ti

(i, ri), it holds that i ≤ k and

ai ≤ ak ≤ tj because of the definitions of N+
b,ti

(i, ri) and N+
b,tj

(j, rj). It then follows from

rj ∈ Ri and tj + τrj ,b − 1 < ti < di that i fits into the time interval [tj, tj + τrj ,b − 1].

Based on the adapted FIFO model, request i must be batched with j or another request

with higher priority than j. It then indicates that i is not a batch header, i.e., i /∈ N ∗0 ,

contradicting with i ∈ N ∗0 , where the proof is completed.

We then prove that there is a subset of vertices in V , which is an IS, covering all

users in N ∗. Consider each packet b. For each request i ∈ N ∗0 requesting the packet

b, it follows from the construction of G that we can find a vertex in V , denoted by v∗i ,

corresponding to the time interval [ti, ti + τri,bi − 1], the strategy ri, and the priority i.

The requests covered by v∗i is distinguished into two cases.

• If i has the highest priority among the users in N ∗0 requesting packet b, i.e.,

i = mink∈N ∗0 ,bk=b k, then v∗i covers requests N+
b,ti

(i, ri).

• Otherwise, we select the request j = maxk∈N ∗0 ,k<i,bk=b k,

– if there is no user in N+
b,ti

(i, ri) that can fit into the time interval [tj, tj +

τrj ,bj −1], i.e., N+
b,ti

(i, ri)∩N+
b,tj

(j, rj) = ∅, then v∗i covers requests N+
b,ti

(i, ri).

– if there exists a user in N+
b,ti

(i, ri) that can fit into the time interval [tj, tj +

τrj ,bj−1], i.e.,N+
b,ti

(i, ri)∩N+
b,tj

(j, rj) 6= ∅, then v∗i covers requestsNb,ti(i, i∗; ri, rj),
where i∗ = maxk∈N+

b,ti
(i,ri)∩N+

b,tj
(j,rj)

k. It holds that rj ∈ R \ Ri.

We consider the set of vertices V∗ = {v∗i }i∈N ∗0 . It follows from the construc-

tion of vertices in V∗ that all requests in N ∗ are covered by the vertices in V∗, i.e.,⋃
i∈N ∗0
N (v∗i) =

⋃
i∈N ∗0
N+
bi,ti

(i, ri) = N ∗, where N (v) denotes the set of requests cov-

ered by v.

Next, we prove that the set of vertices in V∗ is an IS of G. Consider any pair of

vertices u, v ∈ V∗ with βu < βv. Since for any pair requests k1, k2 ∈ N ∗0 with k1 < k2

it holds that tk1 + τrk1 ,bk1 − 1 < tk2 , the time intervals corresponding to u and v do not

overlap, indicating that any pair of vertices in V∗ is not connected by the type 1 edge.

Based on the construction of the vertices in V∗, we can derive that (1) tu < tv and (2)

N (u) ∩ N (v) = ∅, indicating that any pair of vertices in V∗ is not connected by the

type 2 edge and type 3 edge.

75

By combining the above analysis, the set of vertices in V∗ is an IS of G and covers

all requests in N ∗, where the proof of the second property is completed.

4.7.4 Proof of Lemma 4.2

It follows from Algorithm 3 that the colors that cannot be used to v have been used

to the neighbors of v when Algorithm 3 colors v. We first prove that the number of colors

that have been used to the neighbors of v is upper-bounded by (1 +ϕ/lmin)N̂ −2by∗vN̂c
when Algorithm 3 colors v. The neighbors of v can be divided into the following three

classes.

The first class of neighbors consist of the vertices that are connected with

v by type 1 edges. When coloring the vertex v, all vertices u with tu < tv have been

colored and no vertex u with tu > tv is colored because we color the vertices in V in

non-decreasing order by their starting time. Thus, the colors, which cannot be used to

v, have been used to color the first class of neighbors of v that are active at slot tv. It

follows from the constraint (4.2) that

∑
u∈V,u is active at slot tv

by∗uN̂c ≤
∑

u∈V,u is active at slot tv

y∗uN̂ ≤ N̂ .

Therefore, the number of colors that have been used to color the first class of neighbors

of v is upper-bounded by N̂ − by∗vN̂c when Algorithm 3 colors v.

The second class of neighbors consist of the vertices that are connected

with v by type-2 edges. For each user k ∈ N , it follows from the constraints (4.3)

that

∑
u∈Vα(k)

by∗uN̂c ≤
∑

u∈Vα(k)

y∗uN̂ ≤
maxj∈Nα(k)(dj − ak + 1)

lmin
· N̂ ≤ ϕ

lmin
· N̂ ,

where the last inequality follows from maxj∈Nα(k)(dj − ak + 1) ≤ ϕ because of aj ≤
ak,∀j ∈ N α(k). Therefore, the colors that are used to the vertices in Vα(k) is upper-

bounded by ϕ
lmin
· N̂ .

For each request k, we assume that the vertices in Vα(k) are adjacent to each other

in the current proof. Clearly, the edges connecting each pair of vertices in Vα(k) include

all type-2 edges between the vertices in Vα(k).

Based on the construction of type-2 edges, there is no type-2 edge between any

vertex in Vα(k1) \ Vα(k2) and any vertex in Vα(k2) \ Vα(k1). When Algorithm 3 colors

76

the vertices in Vα(k2), all vertices u ∈ Vα(k1) \ Vα(k2) have been colored because of

tu < min{tν : ν ∈ Vα(k2)}. Therefore, the colors that are used to the vertices in

Vα(k1) \ Vα(k2) can be used to the vertices in Vα(k2) \ Vα(k1) if there is also no type 1

and 3 edge. Hence, the number of colors that have been used to color the second class

of neighbors is upper-bounded by ϕ
lmin
· N̂ − by∗vN̂c when Algorithm 3 colors v.

The third class of neighbors consist of the vertices that are connected

with v by type-3 edges. Consider each request k covered by v. For each vertex

u ∈ Vk, the priority of u is higher than or equal to the priority of k, and the vertices

in Vk are valid at slot ak. It then follows from the definition of Vα(k) that the vertices

in Vk are included by Vα(k). We derive the number of colors that are occupied by the

second class of neighbors based on that, for each request j ∈ N , the vertices in Vα(j)

are adjacent to each other. Therefore, the colors that have been used to the third class

of neighbors are included by the colors already used to the second class of neighbors.

By combining the above analysis, the number of colors that have been used to the

neighbors of v is upper-bounded by (1+ϕ/lmin)N̂−2by∗vN̂c. As |C| = (1+ϕ/lmin)N̂−1

and by∗vN̂c ≥ 1, there are at least by∗vN̂c available colors in C when Algorithm 3 colors

v. Thus, v is colored by by∗vN̂c colors. The lemma is thus proved.

4.7.5 Proof of Theorem 4.2

Denote the utility of the optimal solution of P3 by OPT . Clearly, the set of vertices

sharing a same color is an IS of G. It follows from Lemma 4.1 that each IS of G maps to

a feasible scheduling policy. It follows from Lemma 4.2 and |C| ≤ (1+ϕ/lmin)N̂−1 that

Algorithm 3 outputs a coloring of G using at most (1+ϕ/lmin)N̂−1 colors. We thus get

at most (1 +ϕ/lmin)N̂ − 1 ISes, denoted by Ii, 1 ≤ i ≤ I, where I ≤ (1 +ϕ/lmin)N̂ − 1.

Let I denote the IS output by Algorithm 3. Since each vertex v ∈ V receives bN̂y∗vc
colors, we have

∑
v∈I∗

wv ≥
N̂

|C|

(∑
v∈V

wvy
∗
v −

∑
v∈V

wv

N̂

)

>
1

1 + ϕ/lmin

(
OPT − RMδ

RMδ1+ε
max
v∈V

wv

)
=

1

1 + ϕ/lmin

(
OPT − 1

δε
max
v∈V

wv

)
.

where the second inequality follows that the value of an optimal fractional LP solution

is an upper bound on the value of an optimal feasible scheduling policy.

77

As it holds that maxv∈V wv ≤ OPT , we then have

∑
v∈I∗

wv >
1

1 + ϕ/lmin
(OPT − 1

δε
·OPT).

Noticing that asymptotically δ is sufficiently large, Theorem 4.2 is thus proved.

4.7.6 Proof of Theorem 4.4

Let O denote the set of requests that are served by the optimum scheduling policy.

We now prove that each request in O is ready at a slot in T . Consider each request

k ∈ O. If ak ∈ T , clearly, the priorities to serve requests that start being served before

slot ak is higher than the priority of request k. Therefore, request k is ready at slot ak,

i.e., k ∈ Ωak ; if ak /∈ T , let t = max{t′ : t′ ∈ T , t′ < ak}, and let τ ∗ denote the number

of slots to serve the users in N ∗t . We prove that request k is ready at slot t + τ ∗ and

t+ τ ∗ ∈ T . We prove it in the following three steps.

• Step 1: We prove that t < ak < t+τ ∗. Assume by contradiction that ak ≥ t+τ ∗.

It follows from t = max{t′ : t′ ∈ T , t′ < ak} and ak /∈ T that each slot in

[t + τ ∗, ak] is free when Algorithm 4 considers it. Because request k is ready at

slot ak, Algorithm 4 starts serving at least one request at slot ak, i.e., ak ∈ T ,

contradicting with ak /∈ T . It then holds that t < ak < t+ τ ∗.

• Step 2: We prove that request k is ready at slot t + τ ∗. Since the slackness of

each request i is at least lmax + minr∈Ri τr,bi − 1, we can derive that ak < t+ τ ∗ ≤
dk −minr∈Ri τr,bi + 1 because of t < ak < t+ τ ∗ and τ ∗ ≤ lmax. It also holds that

starting serving request k at slot t+ τ ∗ does not violate the FIFO model because

of aj ≤ t < ak and j < k for any j with tj < t+ τ ∗. Therefore, request k is ready

at slot t+ τ ∗, i.e., k ∈ Ωt+τ∗ .

• Step 3: We prove that t+ τ ∗ ∈ T . Because requests in N ∗t are served completely

at slot t + τ ∗ − 1, slot t + τ ∗ is free when Algorithm 4 considers it. Therefore,

Algorithm 4 starts serving at least one request at slot t + τ ∗ since k is ready at

slot t+ τ ∗, i.e., t+ τ ∗ ∈ T .

Based on the above analysis, the total reward of the optimum scheduling policy can

be upper-bounded by
∑

t∈T
∑

k∈Ωt
wk, i.e.,

∑
k∈O wk ≤

∑
t∈T
∑

k∈Ωt
wk.

Consider each slot t ∈ T . Because Algorithm 4 starts serving a set of users in Ωt,

which request the same packet, with the maximum total reward among the packets in

78

B(Ωt), the total reward of requests in Ωt is

∑
k∈Ωt

wk ≤ |B(Ωt)|
∑
k∈N ∗t

wk

Therefore, the total reward of the optimum scheduling policy can be upper-bounded

by

∑
k∈O

wk ≤
∑
t∈T

∑
k∈Ωt

wk ≤
∑
t∈T

|B(Ωt)|
∑
k∈N ∗t

wk ≤ Bmax ·
∑
t∈T

∑
k∈N ∗t

wk.

Theorem 4.4 is thus proved.

79

80

Chapter 5

Contiguous-resource Batching Task

Scheduling

This chapter investigates a two-dimensional task scheduling problem, where a set

of tasks need to be executed on a pool of continuous resource, each requiring a certain

amount of time and contiguous resource; some tasks can be executed simultaneously in

batch by sharing the resource, while others requiring exclusive use of the resource; tasks

are served in the FIFO manner. We seek an optimal resource allocation and the related

scheduling policy maximizing the overall system utility. The above problem is termed

as contiguous-resource batching task scheduling problem. The scheduling problems ad-

dressed in the previous two chapters can be regarded as the degenerated instances of the

contiguous-resource batching task scheduling problem, where tasks require the entire

resource in one of the dimension.

Compared with existing works on bandwidth and storage allocation problem in Sec-

tion 2.4, and task scheduling problem in Section 2.2, our contiguous-resource batching

task scheduling problem we address has the following constraints that has not been

holistically addressed before: (1) the allocated resource for each request must be con-

tiguous, (2) the requests are divided into non-overlapping groups, with those in the

same group executable in batched, (3) the requests should be served by the adapted

FIFO model. We note that it is the combination of these constraints that makes our

problem non-trivial and requires a systematical treatment.

In this chapter, we investigate both offline and online scheduling settings. In both

cases, we first establish the problem hardness and then develop approximation algo-

rithms with proven performance guarantee. We further complement our theoretical

analysis with numerical simulations that demonstrate the effectiveness of our algorithms

81

in a variety of system settings.

5.1 Introduction

As an instantiation of our work, we consider the channel bonding problem in wireless

networks. The proliferation of wireless mobile networks and the ever-increasing density

of wireless devices underscore the necessity for efficient allocation and sharing of the

radio spectrum resource. Spectrum bonding, or channel bonding, is widely regarded as

an effective enabling technique that combines contiguous spectrum fragments to create

a wideband channel for data transmission, thus significantly increasing the spectrum

efficiency.

In this chapter, we focus on the design and analysis of spectrum bonding and the

related transmission scheduling algorithms in dynamic spectrum access systems. Specif-

ically, we study a generic scenario where a number of users can access a continuous fre-

quency band; each user has a communication task and thus issues a request composed

of the amount of contiguous bandwidth needed to accomplish the task and the duration

of the task; admitted requests are served according to the FIFO model; non-interfering

users may be allocated overlapping spectrum bands simultaneously. We are interested

in designing spectrum bonding and the related scheduling algorithms maximizing the

overall system utility.

The above algorithmic problem also arises in the context of dynamic storage alloca-

tion in computer systems, where a pool of continuous memory space is shared among a

number of processes, each requesting to access a certain amount of contiguous memory

for a certain amount of time; a request can be of type either read or write; multiple read

requests may be served simultaneously, while a write request requires exclusive use of

the requested memory; admitted requests are served according to the FIFO model. The

central problem is to design memory allocation algorithms maximizing the aggregated

system utility, e.g., maximizing the number of admitted requests.

The above two examples further push us to formulate a generic task scheduling

problem, where a set of independent tasks need to be executed on a pool of continuous

resource, each requiring a certain amount of time and certain amount of contiguous

resource. Some tasks can be executed simultaneously in batch by sharing the resource,

while others requiring exclusive use of the resource. Tasks are served in the FIFO

manner. We seek an optimal resource allocation and scheduling policy maximizing the

overall system utility.

82

In this chapter, we embark on an algorithmic study of the above contiguous-resource

batching task scheduling problem by instantiating our analysis in the context of spec-

trum bonding for the sake of concreteness. We investigate both offline and online

scheduling settings. In both cases, we develop approximation algorithms with proven

performance guarantee in terms of approximation and competitive ratios, respectively.

Technically, we first demonstrate the hardness of our problem by showing that (1) the

offline problem is NP-hard, (2) the online problem in its generic form cannot be approx-

imated with any finite competitive ratio. Given the hardness of both the offline and

online problems, we then seek approximation algorithms. In the offline problem, we

develop an algorithmic framework by mapping the problem to a particular variant of

the MWIS problem, termed as maximum weighted regular independent set (MWRIS),

by integrating the specific constraints posed by our problem; we then solve the LP re-

laxation of MWRIS problem; we further develop a coloring-based algorithm that rounds

the solution of the LP relaxation to an integer solution and establish its performance

bound. In the online problem, we develop an iterative algorithm that greedily selects

the most profitable tasks and prove that, as long as each task has certain slackness (cf.

Section 5.4 for details), our algorithm can achieve finite competitive ratio.

The rest of this chapter is organized as follows. Section 5.2 formulates the contiguous-

resource batching task scheduling problem. Section 5.3 analyzes the offline setting and

develops the scheduling algorithmic framework. Section 5.4 studies the online setting

and presents the design of an online scheduling algorithm. Section 5.5 presents the

simulation results demonstrating the efficiency of our proposed algorithms. Section 5.6

concludes the chapter.

5.2 System Model

For the sake of concreteness, we present the system model of our problem in the

context of channel bonding. Nevertheless, as explained in the Introduction, the model

can be readily applied in a variety of task scheduling scenarios where a pool of resource

needs to be allocated to a set of tasks following the FIFO model, some of which can

be served together on common resource. Therefore, the following description and the

use of terms such as frequency band, user, transmission, etc., should be understood

generically.

We consider a dynamic spectrum access system where a setN of N users can access a

common frequency band. We focus on the discrete case where both time and frequency

83

bands are discretized. To make our analysis concise without losing generality, we assume

that time is divided to unit-length slots from 0 to T and the available frequency band,

aka white space, is normalized to [0, F] with the finest frequency granularity being 1.

Each user i submits its bandwidth request in the form of a quadruple (ai, di, fi, li),

where ai denotes the arrival time of the request at the spectrum broker that manages

the spectrum resource, di denotes the deadline before which the request needs to be

satisfied if admitted by the broker, fi is the quantity of contiguous frequency band

requested, li is the number of slots the user requests to use the spectrum, (di − ai + 1)

is the slackness of the user i. In other words, if the spectrum broker decides to serve

request i, it needs to reserve fi amount of contiguous frequency band to user i for li

contiguous slots in the time interval [ai, di], as illustrated in Figure 5.1. We associate a

reward wi for each request i.

a d

l

t

ia id t0

F

if

il

Figure 5.1: Illustration of an admitted request i

A particularity of radio resource is its reusability, meaning that multiple non-

interfering users can use the same spectrum simultaneously. Formally, we consider

a generic scenario where users are divided into B (1 ≤ B ≤ N) groups, and users in the

same group can be served simultaneously. We use bi (1 ≤ bi ≤ B) to denote the group

to which request i belongs. For any pair of requests i and j, request j can reuse the

spectrum of i if and only if bi = bj. Let Nb denote the set of requests in N belonging

to group b. Table 5.1 lists the main notations used in the chapter.

In the above generic model, we are interested in both offline and online optimal

spectrum bonding and scheduling policies for the spectrum broker to maximize the

total reward. Both policies follow the FIFO service model such that admitted requests

are queued at the broker in the same order they arrive and a request is cleared when

the corresponding user is served. Without loss of generality, we assume that ai ≤ aj for

any 1 ≤ i < j ≤ N ; in case where ai = aj and i < j, request i should be served first.

84

Table 5.1: Main notations

N request set
N number of requests, N = |N |
T time horizon in number of time slots
F frequency band in number of frequency granularity
B number of groups
ai arriving time of request i
di deadline of request i
fi quantity of contiguous frequency band requested by i
li number of slots user i requests to use the spectrum
bi group index of request i
wi reward of request i
G request graph
V set of vertices in G
E set of edges in G
V+
i set of the elementary vertices of request i
Vi set of the elementary vertices of request i plus the induced vertices

assigned to i
tv left boundary (i.e., starting time) of the rectangle corresponding to

vertex v
sv lower boundary (i.e., starting spectrum) of the rectangle correspond-

ing to vertex v
lv length of the rectangle corresponding to vertex v
hv height of the rectangle corresponding to vertex v
wv weight of vertex v
βv priority of v
βi priority under which request i is served
N+
v set of requests k with lower priority than i that can be served to-

gether with i, for each elementary vertex v ∈ V+
i

Nb set of requests in N belonging to group b
Fb maxk∈Nb fk
fb mink∈Nb fk
Lb maxk∈Nb lk
lb mink∈Nb lk
fmin mink∈N fk
fmax maxk∈N fk
lmin mink∈N lk
lmax maxk∈N lk
R max1≤b≤B(Fb − fb + 1)(Lb − lb + 1)
M max1≤b≤B |Nb|
δ

∑
i∈N (di − ai − li + 2)

yv binary variable indicating whether or not vertex v is selected in the
IS

85

In our problem, the standard FIFO model needs to be adapted as below to take into

account spectrum reuse.

Definition 5.1 (Adapted FIFO model). Any scheduling policy satisfying the following

requirement is called an adapted FIFO model. When serving request i, any request j > i

that can reuse the spectrum of i must also be served simultaneously with request i, as

long as j can fit in the service time of i and the spectrum allocated to i.

0 1 2

1

3

2

3

4

5

4

(a) Our FIFO model

0 1 2

1

3

2

3

4

5

4

(b) Standard FIFO model

Figure 5.2: Illustration of our adapted FIFO model vs. standard FIFO model.

Example 5.1. To illustrate the adapted FIFO model against the standard FIFO model,

we consider an example composed of five requests, indexed from 1 to 5, with the corre-

sponding request quadruples (0, 0, F, 1), (0, 2, F, 2), (0, 1, F, 1), (1, 3, F, 1) and (1, 2, F, 2),

respectively. Requests 1, 2, 3 and 5 belong to group 1, request 4 belongs to group 2. The

reward of each request is 1. The rectangles in Figure 5.2 illustrate the possible execu-

tions of the requests, with the height being the quantity of requested spectrum and the

length the requested execution time.

• Figure 5.2(a) illustrates the optimal scheduling policy under the adapted FIFO

model, which serves requests 1 and 3 in slot 0, requests 2 and 5 in slot 1, request

4 in slot 3. All the five requests are served.

• Figure 5.2(b) illustrates the optimal scheduling policy under the standard FIFO

model, which serves request 1 in slot 0, requests 2 and 3 in slot 1, request 4 in

slot 3, and rejects request 5, or request 1 in slot 0, requests 2, 3 and 5 in slot

1, and rejects request 4. Different from our model, a request, if admitted, should

86

be started no later than any admitted request arriving later. We can check that

under the standard FIFO model, at most four requests can be served.

We remark that (1) the adapted FIFO model takes into account the spectrum reuse

and is thus more flexible and naturally leads to better efficiency, as demonstrated by

the illustration example, (2) it is technically more involved than the standard FIFO

model.

In the adapted FIFO model, for a number of requests served simultaneously, among

which the highest priority request is i, we say that these requests are served, or batched,

under the priority i by reusing the spectrum allocated to i, and we call i the head of

the batched requests.

We conclude this section by defining the feasible scheduling policy for contiguous-

resource batching task scheduling.

Definition 5.2 (Feasible Scheduling Policy for Contiguous-resource Batching Task

Scheduling). We call a scheduling policy feasible if

• it is an adapted FIFO model;

• each request is served at most once;

• the time-frequency blocks allocated to any pair of requests from different groups do

not overlap.

5.3 The Offline Case

5.3.1 Problem Formulation and Hardness

In this section, we consider the offline channel bonding problem, denoted by P4. In

the following theorem, we prove that P4 is NP-hard. To make our presentation more

streamlined, we provide integer linear programming formulation of P4 and the proof

sketch of the lemmas and theorems in the main text and defer the detailed proof in

Appendix 5.7.

Theorem 5.1 (Hardness of P4). P4 is NP-hard. Its discrete version is NP-complete.

Proof Sketch. We prove that the classical 0-1 Knapsack problem can be reduced to P4.

It then follows from the NP-hardness of the 0-1 Knapsack problem that P4 is NP-hard.

It follows from NP-completeness of Knapsack problem with integer weights that the

discrete version of P4 is also NP-complete.

87

Given the NP-hardness of P4, we devote our efforts to designing approximation

algorithms. Our central idea is to construct a graph, termed as request graph, to capture

the relationships among requests, given spectrum reusability and the constraint imposed

by the adapted FIFO model. We then cast P4 to the MWIS problem in the constructed

request graph.

Conceptually, we can instantiate P4 on an Euclidean plan with the x-axis being

time and the y-axis being frequency. Each request i can then be cast to an axis-aligned

rectangle of height fi, length li whose reward is wi. In order to be served, the above

rectangular needs to be located within the rectangle [ai, di] × [0, F]. P4 thus maps

to the problem of finding a subset of rectangles corresponding to different requests

maximizing the total reward, by taking into account the adapted FIFO model and

spectrum reusability.

The main part of this section is organized in five subsections. We first construct the

request graph and cast P4 to the problem of MWIS. We then explore the structural

properties of the constructed request graph to formulate the LP relaxation of P4.

We further develop an approximation algorithm based on rounding the solution of the

LP relaxation to an integer solution. The approximation ratio of our algorithm is

established to complete the section.

5.3.2 Request Graph

The request graph, denoted by G , (V , E), consists of the following vertices and

edges.

5.3.2.1 Vertices

We construct the following two types of vertices.

Elementary vertices. For each request i ∈ N , we create a vertex for each rectangle

of height fi and length li in the rectangle [ai, di] × [0, F]. We call these vertices the

elementary vertices of i. Let tv and sv denote the left boundary (i.e., the starting time)

and the lower boundary (i.e., the starting spectrum) of the rectangle corresponding to

v. Let lv and hv denote the length and height of the rectangle corresponding to v.

Each elementary vertex v of i corresponds to the execution of i in the two-dimensional

time-frequency block [tv, tv + li−1]× [sv, sv +fi−1]. If the scheduler decides to execute

i using the time-frequency block corresponding to v, we say that i is instantiated by

v. To take into account the adapted FIFO model, each elementary vertex of request i

88

is assigned a priority level i. For each elementary vertex v of request i, let N+
v denote

the set of requests k > i, i.e., with lower priority, that can be served together with i by

reusing the time-frequency block of v, i.e.,

N+
v , {k : k > i, k ∈ Nbi , lk ≤ li, fk ≤ fi, tv + li − lk ≥ ak, dk − tv + 1 ≥ lk}.

Induced vertices. Consider each elementary vertex v of each request i. For each

request j ∈ N+
v , we create an induced vertex u for each rectangle of height fj and

length lj in the rectangle [sv, sv+fi−1]× [max{tv, aj},max{tv, aj}+ li − 1], and assign

u to j. We set the priority of u to i. We say that u reuses the time-frequency block

corresponding to v. We define u as a child of v, and inversely v as the parent of u,

denoted by v ≺ u. We note that an elementary vertex may have multiple children,

while an induced vertex has only one parent.

We denote Vi the set of the elementary vertices of request i plus the induced vertices

assigned to i. For each vertex v ∈ Vi, we say that v covers i. We define a weight wv for

v and set wv = wi. Let βv denote the priority of vertex v. Mathematically, a smaller β

indicates a higher priority.

0 1 2

1

3

2

3

4

5

4

1
v

11
v

3
v

5
v

7
v

9
v

0 1 2 3 4

13
v

Figure 5.3: Illustration of vertex construction for Example 5.2

Example 5.2. Figure 5.3 illustrates the vertex construction for the example in Fig-

ure 5.2(a). The left subfigure replots the possible cases to serve each request indepen-

dently. The right subfigure plots the created vertices, further listed in Table 5.2. The

unique optimal scheduling policy, starting serving requests 1 and 3 under the priority

89

of 1 in slot 0, requests 2 and 5 under the priority of 2 in slot 1, request 4 under the

priority of 4 in slot 3, maps to vertices v1, v4, v3, v13, and v12.

We now analyze the complexity of creating the vertices inG. DenoteR , max1≤b≤B(Fb−
fb + 1)(Lb − lb + 1), where Fb , maxk∈Nb fk, fb , mink∈Nb fk, Lb , maxk∈Nb lk, lb ,

mink∈Nb lk. Let fmin , mini∈N fi, M , max1≤b≤B |Nb|, and δ ,
∑

i∈N (di − ai − li + 2).

There are (F − fi + 1)(di− ai− li + 2) elementary vertices for each request i. The total

number of elementary vertices sums up to O((F − fmin)δ). For each elementary vertex

v, there are
∑

j∈N+
v

(lv− lj + 1)(hv− fj + 1) induced vertices reusing the time-frequency

block of v, and the complexity for listing the requests in N+
v is O(M). Hence, the total

number of vertices sums to O(RM(F − fmin)δ), and the construction of the vertices in

G takes O(RM(F − fmin)δ), asymptotically O(RMFδ), time.

Table 5.2: Constructed vertices in Example 5.2

Vertex v Covered user Priority Rectangle Parent
v1 1 1 [0, 1)× [0, F]
v2 2 2 [0, 2)× [0, F]
v3 2 2 [1, 3)× [0, F]
v4 3 1 [0, 1)× [0, F] v1

v5 3 2 [0, 1)× [0, F] v2

v6 3 3 [0, 1)× [0, F]
v7 3 2 [1, 2)× [0, F] v2

v8 3 2 [1, 2)× [0, F] v3

v9 3 3 [1, 2)× [0, F]
v10 4 4 [1, 2)× [0, F]
v11 4 4 [2, 3)× [0, F]
v12 4 4 [3, 4)× [0, F]
v13 5 2 [1, 3)× [0, F] v3

v14 5 5 [1, 3)× [0, F]

5.3.2.2 Edges

We construct the following three types of edges.

Type-1: inter-user edges characterizing interference among requests be-

longing to different groups. For each pair of elementary vertices v ∈ V+
i and u ∈ V+

j

with bi 6= bj, we construct an edge between v and u if their corresponding rectangles

overlap, making it impossible to instantiate i by v and also j by u.

Type-2: inter-user edges modeling adapted FIFO model. This type is fur-

ther classified into two cases.

90

• For each pair of elementary vertices v ∈ V+
i and u ∈ V+

j , we construct an edge

between v and u if i > j and tv < tu or i < j and tv > tu, indicating that their

corresponding requests cannot be both instantiated by u and v under the adapted

FIFO model.

• For any pair of elementary vertices v ∈ V+
i and u ∈ V+

j satisfying j ∈ N+
v and

tv ≤ tu, we construct an edge between them. The implication of this class of

edges is below. Suppose request i is instantiated by v. It follows from j ∈ N+
v

that request j can fit into the service time of i and the spectrum allocated to i.

It then follows from the adapted FIFO model that if request j is served, it must

be batched with i or another request with higher priority than i. Hence, i and j

cannot be both instantiated by v and u.

Type-3: intra-user edges. For each request i ∈ N , we construct an edge between

each pair of vertices in Vi. The intra-user edges model the constraint that any user is

served at most once.

We now analyze the complexity of creating the edges in G. As the number of elemen-

tary vertices in G is O((F −fmin)δ), the construction of type 1 and 2 edges can be com-

pleted in O((F −fmin)2δ2), asymptotically O(F 2δ2), time. For each request i, there are

at most RM(F−fi+1)δi vertices in Vi. Therefore, the construction of type 3 edges takes

O
(∑

i∈N δ
2
i (F − fmin)2R2M2 + F 2δ2

)
, asymptotically O

(
F 2R2M2

∑
i∈N δ

2
i

)
, time.

Example 5.3. Figure 5.4 illustrates the type-1 and type-2 edges in G corresponding to

Example 5.2 with the vertices listed in Table 5.2. Gray vertices are elementary vertices;

solid edges correspond to type-1 edges; dashed edges and grey edges correspond to the

two cases of type-2 edges.

t t t

t t t t t

k

k

k

k

k

kk

k

k

k

t t t

i

}

}

} }

}

}

k

k

k

i

}

}

}

t t

i

j
t t t

}

}

},t t

} t t

k

k

t t t

}1 2

}

}

}2 3

}

}

v

v

v

v

v

v

vv

v

v

v

v

v

v

v

v

v

a b c

t tt t¢ t¢
tt

a b
b 1

g 1

b 2

g 2

g 1

b 3

g 3

g 2

b 1

g 1

g l

=0

2 +g b 1 22 +g b l2 +g b

w 1 2w 2 1 lw 11

l

l l

l

l

b

gg

g

d

l l+g dg lg

=0 1 +1 W W w

=w w W

OPT

ALG

t tt
t t¢

lb

i

}

}

}

}

}

N ¢

G¢
G¢

G¢

G¢G¢

¢

¢

¢
v¢

¢

¢

G¢ G¢

¢
v¢

¢

¢

¢ ¢

v

vvvv

u u u

i

}

}

}

t t

i

j

t t t

}

}

}

t }

}

v v

vvvv

u u u

v v

vvvv

u u u

1v

2v 3v

4v 5v 6v 7v 8v 9v

10v 11v

14v13v

12v

Figure 5.4: Illustration of type-1 and type-2 edges in G

91

5.3.3 From Channel Bonding to Maximum Weighted Regular

Independent Set

Armed with the constructed request graph G, we can cast P4 to the MWIS prob-

lem, more precisely, a variant of the MWIS problem called maximum weighted regular

independent set problem. We start by defining the regularly independent set (RIS),

which can be regarded as an enhanced version of IS adapted to our problem with fre-

quency reuse. By choosing an IS in G we mean to serve the requests instantiated by

the vertices in the chosen IS.

Definition 5.3 (Regular Independent Set). Given the request graph G, a vertex set

V̂ ⊆ V is a regular independent set if it satisfies the following two properties.

• Any pair of vertices in V̂ is not adjacent to each other.

• The parent of any induced vertex in V̂ is also in V̂.

The first property corresponds to the standard IS definition. The second captures

spectrum reuse. In the following lemma, we show that each feasible scheduling policy

maps to a RIS in G.

Lemma 5.1. Each feasible scheduling policy maps to a RIS of G.

Proof Sketch. Consider any feasible policy mapping to a subset of vertices in V . We

first derive a contradiction if the subset of vertices contains two neighboring vertices,

indicating that each feasible policy maps to an IS. Based on the definitions of the

feasible scheduling policy and the adapted FIFO model, we then prove that the parent

of any induced vertex in the subset is also in the subset.

Therefore, if we can find a MWRIS and turn it into an optimal feasible scheduling

policy, the obtained scheduling policy is an optimal solution of P4. We thus concentrate

on the MWRIS problem formulated as below.

maximize
∑
v∈V

wvyv

subject to yv + yu ≤ 1, ∀uv ∈ E (5.1)

yu ≤ yv, ∀v ≺ u (5.2)

yv ∈ {0, 1}, ∀v ∈ V ,

92

where yv is the binary variable indicating whether vertex v is selected. Constraint (5.1)

states that any pair of neighboring vertices cannot be chosen together. Constraint (5.2)

states that an induced vertex can be chosen if and only if its parent is chosen.

5.3.4 LP Relaxation

To solve the MWRIS problem formulated above, we first solve its linear program-

ming (LP) relaxation and then round the LP solution to a RIS. In this subsection

we develop an LP relaxation approach tailored to our problem. The next subsection

is devoted to the rounding process. Table 5.3 lists the additional notations used in

Sections 5.3.4, 5.3.5, and 5.3.6.

Table 5.3: Additional notations in Sections 5.3.4, 5.3.5, and 5.3.6

Vα(t, s) set of active elementary vertices in V at (t, s)
Bα(t, s) set of active groups at (t, s)
Vc(i) set of elementary vertices valid at slot max{0, ai + lb − Lb}

corresponding to the request j with j ≤ i for a request i
Bc(i) set of groups, each of which has at least one vertex in Vc(i)
N c(i) set of requests, each of which has at least one vertex in Vc(i)
y∗v value of yv in the LP relaxation of the RIS problem
λ maxk∈N (dk − ak + 1)
lmin mink∈N lk
lmax maxk∈N lk
D1 (lmax − lmin + 1)2(fmax − fmin + 1) · b F

fmin
c · bλ−lmin+lmax

lmin
c

D2 max1≤b≤B(Lb + lb)(Lb − lb + 1)(Fb − fb + 2)/2

N̂ (F − fmin + 1)δ1+ε

V ′ set of auxiliary vertices generated from the vertices in V
C ordered set of (D1 + fmax ·D2)N̂ − fmax colors
Γv set of vertices including v to be colored in the iteration of

coloring v
Γ∗ set of vertices from which the vertices in Γ are generated
V ′k,v set of vertices generated from the vertices u ∈ Vk with v ≺ u,

for each elementary v ∈ V , each request k ∈ N+
v

In the LP relaxation, for each vertex v ∈ V , we replace the constraint yv ∈ {0, 1} by

yv ≥ 0. There is no need to explicitly add the constraint yv ≤ 1 since it is implied by

the other constraints. We add the constraint
∑

v∈Vi yv ≤ 1 to restrict that each request

i is served at most once. For each elementary vertex v, we replace constraint (5.2) by

93

constraint (5.3). We can check that (5.3) holds at any feasible scheduling policy.

∑
u∈Vj ,v≺u

yu ≤ yv, ∀v ∈ V+
i , ∀i, j ∈ N . (5.3)

It is well-known that the LP relaxation of the MWIS problem suffers the so-called

half integer effect due to the edge constraint [39]. To mitigate this effect, we add the

specific constraints of our scheduling problem to the LP relaxation. In this regard,

the pivotal technical challenge is to construct appropriate constraints such that (1)

any feasible scheduling policy is still feasible in the relaxed problem, (2) non-feasible

solutions are eliminated as many as possible to facilitate the rounding process and

to ensure the quality of the rounded integer solution. Given this challenge, we use

the following two types of constraints to replace the edge constraint (5.1), where each

type concerns a type of edges constructed in G, and thus corresponds to the specific

constraint of our problem.

Type-1 constraints. The first type of constraints, as shown in (5.4), captures

the interference among requests. For each resource block (t, s) ∈ [0, T] × [0, F], we

call a vertex v active at (t, s) if t ∈ [tv, tv + lv − 1] and s ∈ [sv, sv + hv − 1], i.e.,

(t, s) ∈ [tv, tv + lv − 1] × [sv, sv + hv − 1]. Basically, if the corresponding request is

instantiated by an active vertex v, then the resource (t, s) is still occupied by the request.

Similar, we call a request active at (t, s) if it has at least one active vertex at (t, s), and

a group active at (t, s) if it has at least one active request at (t, s). Let Vα(t, s) denote

the set of active elementary vertices in V at (t, s). Let Bα(t, s) denote the set of active

groups at (t, s). The type-1 constraints state that the size of Vα(t, s) at any feasible

scheduling policy is upper-bounded by maxb∈Bα(t,s)(Lb + lb)(Lb − lb + 1)(Fb − fb + 1)/2.

Type-1 constraints:∑
v∈Vα(t,s)

yv ≤ max
b∈Bα(t,s)

(Lb + lb)(Lb − lb + 1)(Fb − fb + 1)

2
,

∀0 ≤ t ≤ T, ∀0 ≤ s ≤ F. (5.4)

Lemma 5.2 proves that any feasible scheduling policy satisfies type-1 constraints.

Hence, imposing them does not lose any feasible scheduling policy.

Lemma 5.2. Any feasible scheduling policy satisfies type-1 constraints.

Proof Sketch. Consider each group b and each (t, s) pair. We first prove that the number

94

of elementary vertices in Vα(t, s) of group b at any feasible scheduling policy is upper-

bounded by (Lb + lb)(Lb − lb + 1)(Fb − fb + 1)/2. We then prove that the vertices in

Vα(t, s) at any feasible scheduling policy belong to a same group. Therefore, for each

(t, s) pair, the size of Vα(t, s) at any feasible scheduling policy is upper-bounded by

maxb∈Bα(t,s)(Lb + lb)(Lb − lb + 1)(Fb − fb + 1)/2.

Let lmin , mink∈N lk and lmax , maxk∈N lk. We next derive the number of type-

1 constraints. For each (t′, s′) pair, where t′ ∈ [0, lmin − 2] ∪ [T − lmin + 1, T] or

s′ ∈ [0, fmin − 2] ∪ [F − fmin + 1, F], without loss of generality, assume t′ ∈ [0, lmin − 2]

and s′ ∈ [0, F], the vertices active at (t′, s′) are also active at (lmin − 1, s′). Therefore,

we just need to list type-1 constraints for the pairs (t, s) ∈ [lmin − 1, T − lmin + 1] ×
[fmin − 1, F − fmin + 1]. As each pair corresponds to at most one type-1 constraint,

there are in total O((F −2fmin)(T −2lmin)), asymptotically O(FT), type-1 constraints.

Type-2 constraints. The second type of constraints, as shown in (5.5), captures

the adapted FIFO model. For each time slot t, we call a vertex v valid at slot t if tv ≥ t.

For any request i of group b, let Vc(i) denote the set of elementary vertices that are

valid at slot max{0, ai + lmin− lmax} and that correspond to requests j ∈ N with j ≤ i,

i.e., request i and requests in N with higher priority than i. For each elementary vertex

u of request k, based on the construction of G, the vertices, which are connected with u

by type 2 edges, are valid at slot max{0, ak+ lk− lv}. It follows from lk ≥ lmin, lv ≤ lmax

that ak + lk − lv ≥ ak + lmin − lmax. Therefore, Vc(i) includes all elementary vertices

v satisfying: (1) v is connected with one of the vertices in Vi by a type 2 edge, and

(2) βv ≤ i. Let Bc(i) denote the set of groups, each of which has at least one vertex

in Vc(i). Let N c(i) denote the set of requests, each of which has at least one vertex in

Vc(i).
For each group b ∈ Bc(i), Lemma 5.3 proves that the number of vertices in Vc(i)

belonging to group b is upper-bounded by (lmax − lmin + 1)2(fmax − fmin + 1) at any

feasible scheduling policy.

Lemma 5.3. For each group b ∈ Bc(i), there are at most (lmax − lmin + 1)2(fmax −
fmin + 1) vertices in Vc(i) belonging to group b at any feasible scheduling policy.

Proof Sketch. Consider each group b ∈ Bc(i). For each slot τ ∈ [max{0, ai + lmin −
lmax}, ai), we first prove that the number of vertices v ∈ Vc(i) belonging to group b

with tv = τ is upper-bounded by (lmax − lmin + 1)(fmax − fmin + 1) at any feasible

scheduling policy. Then, we prove that the number of vertices v ∈ Vc(i) belonging to

95

group b with tv ≥ ai is upper-bounded by (lmax − lmin + 1)(fmax − fmin + 1) at any

feasible scheduling policy. By combining the above analysis, the number of vertices in

Vc(i) belonging to group b is upper-bounded as (lmax − lmin + 1)2(fmax − fmin + 1) at

any feasible scheduling policy.

Let λ , maxk∈N (dk − ak + 1). Because the spectrum allocated to any pair of

requests belonging to different groups cannot overlap, the requests in N c(i) that are

served by allocating the time-frequency blocks in the spectrum [max{0, ai + lmin −
lmax},maxk∈N c(i) dk] × [0, F] are from at most b F

fmin
c · bmaxk∈Nc(i) dk−ai−lmin+lmax+1

lmin
c ≤

b F
fmin
c · bλ−lmin+lmax

lmin
c groups at any feasible scheduling policy, indicating the following

constraints.

Type-2 constraints:
∑

v∈Vc(i)

yv ≤ D1, ∀i ∈ N , (5.5)

where D1 = (lmax − lmin + 1)2(fmax − fmin + 1) · b F
fmin
c · bλ−lmin+lmax

lmin
c.

We now derive the complexity to establish type-2 constraints. For each user i, there

is at most one type-2 constraint. The complexity for listing all vertices in Vc(i) is

upper-bounded by
∑

k∈N ,k≤i δk(F − fk + 1). Hence, listing type-2 constraints takes

O(N
∑

k∈N ,k≤i δk(F − fk + 1)) = O(N
∑

i∈N δk(F − fk + 1)), asymptotically O(δNF),

time.

By combining the above analysis, we can replace the constraints (5.1) and (5.2) by

constraints (5.3), (5.4), (5.5) to transform the LP relaxation of the RIS problem to the

LP problem below, denoted by P4’.

P4’: maximize
∑
v∈V

wvyv

subject to (5.3), (5.4), (5.5)∑
v∈Vi

yv ≤ 1, ∀i ∈ N

yv ≥ 0, ∀v ∈ V

We do not have to explicitly add the constraint yv ≤ 1 since it is implied by the other

constraints. We have shown that any feasible scheduling policy is a feasible solution of

P4’. Hence, the value of an optimal fractional solution of P4’ is an upper bound of

the feasible scheduling policy.

96

5.3.5 Approximation Scheduling Algorithm

Our approximation scheduling algorithm first solves P4’, then applies the rounding

and coloring technique developed in [7] adapted to our context. To make our presen-

tation streamlined and self-contained, we present and analyze the adapted rounding

algorithm in the context of our problem. At a high level, our algorithm constructs a set

of auxiliary vertices based on the rounded solution of P4’ and then colors the auxiliary

vertices such that each color induces a RIS. We further adjust the optimal RIS among

the constructed RISes such that the set of resulting vertices still forms a RIS and thus

maps to a feasible scheduling policy. The algorithm is composed of three steps, which

are exposed sequentially. The first two steps essentially follow the procedures in [7],

which are adapted below in the context of our problem. In the third step, we adjust the

RIS such that the vertex set still forms a RIS and maps to a feasible scheduling policy.

Some additional notations are used in this subsection. Let D2 , max1≤b≤B(Lb +

lb)(Lb − lb + 1)(Fb − fb + 2)/2. Let N̂ , (F − fmin + 1)δ1+ε. To make our analysis

concise, we assume that N̂ is an integer, otherwise we need to round it to the nearest

integer. Let fmax , maxk∈N fk, and let C denote an ordered set (or a vector) of

(D1 + fmax ·D2)N̂ − fmax colors.

Step 1: Generating the auxiliary vertices. We solve P4’ and denote the

solution by {y∗v}v∈V . Clearly, we have 0 ≤ y∗v ≤ 1,∀v ∈ V . For each vertex v ∈ V , we

create a set of by∗vN̂c new vertices, termed as auxiliary vertices. Each generated vertex

is a duplicate of v, corresponding to the same rectangle, having the same priority and

covering the same request as v. Let V ′ denote the set of auxiliary vertices generated

from V . For each elementary v ∈ V and each request k ∈ N+
v , let V ′k,v denote the set of

auxiliary vertices in V ′ generated from the induced vertices u ∈ Vk with v ≺ u. We say

that the vertices in V ′k,v are the auxiliary children of v covering request k.

Step 2: Coloring the auxiliary vertices. We color each vertex in V ′ by a color

such that (1) any pair of vertices generated from a same vertex in V is not of the same

color; (2) any pair of vertices that are generated from the adjacent vertices in V is not

of the same color; and (3) an induced vertex has the same color as an elementary vertex

that is generated from its parent. Specifically, we first sort the elementary vertices in

V ′ such that for any pair of elementary vertices u, v ∈ V ′, v is left to u if tv < tu or

tv = tu, sv < su, with ties broken randomly. Step 2 is then executed in iterations. In

each iteration, we try to color an elementary vertex in V ′. For each elementary vertex

u ∈ V ′ from left to right, we stock the set of vertices to be colored in the current

97

iteration in Γ, which is initialized to {u}. Let v denote the vertex in V from which u is

generated. If N+
v 6= ∅, for each request k ∈ N+

v , if there is an uncolored induced vertex

in V ′k,v, we add the vertex to Γ. We finalize the coloring process of the elementary

vertex u by coloring all vertices in Γ using the first color in C that has not been used

to color any vertex generated from the vertices in Γ∗ and the neighbors of Γ∗, where Γ∗

stocks the set of vertices in V from which the vertices in Γ are generated.

Step 3: Adjusting the RIS. Based on the coloring result obtained in Step 2, we

choose a set of vertices of the same color with maximum total weight, and let V̂ denote

the set of vertices in V from which the chosen vertices are generated. We prove that

the set of vertices, from which the vertices of the same color are generated, is a RIS

in Lemma 5.5. However, V̂ may not map to a feasible policy. In this case, we adjust

V̂ such that it forms a RIS and maps to a feasible scheduling policy. Consider a RIS

mapping to a feasible scheduling policy. For each vertex u in the RIS, let i denote the

request covered by u. Based on the definition of the adapted FIFO model, u uses or

reuses the time-frequency block of the vertex with highest priority among u and the

elementary vertices v in the RIS with i ∈ N+
v . Technically, for each vertex ν ∈ V̂ , let k

denote the request covered by ν. If ν is an elementary vertex, we prove that there is no

elementary vertex v ∈ V̂ with βv < βν and k ∈ N+
v in Lemma 5.6. If ν is an induced

vertex, we first seek the set of elementary vertices v ∈ V̂ with k ∈ N+
v , and denote the

set of vertices by Φ. Since V̂ is a RIS, the parent of ν also belongs to Φ. We then pick

the vertex with highest priority among the vertices in Φ, denoted by µ. Because the

parent of ν belongs to Φ and µ has the highest priority among the vertices in Φ, the

priority of µ is higher than or equal to that of ν, i.e., βµ ≤ βν . If βµ = βν , request

k is instantiated by ν by reusing the time-frequency block of µ; if βµ < βν , request k

should be served by reusing the time-frequency block of µ under the priority of µ, and

we thus replace ν by an induced vertex in Vk whose parent is µ in V̂ . It follows from

the construction of vertices in G that there is at least one induced vertex in Vk whose

parent is µ as k ∈ N+
µ .

Example 5.4. We illustrate Step 3 by reconsidering Example 5.2, where we select

V̂ = {v1, v3, v8, v12, v13}. It can be noted that V̂ is a RIS of G but does not map to a

feasible scheduling policy, we replace v8 by v4 in V̂. Now V̂ maps to the unique optimal

scheduling policy.

We summarize that the key technicality in our algorithm is to color each induced

vertex using the same color as its parent, and then adjust the RIS to obtain a feasible

98

scheduling policy.

The pseudo-code of our algorithm is given in Algorithm 5. As each vertex corre-

sponds to a request, the final scheduling policy is to serve the requests corresponding

to the set of vertices output by Algorithm 5. In the following, we briefly describe the

functions used in our algorithm, most of which are graph algorithms that can be coded

straightforwardly. The detailed implementation is thus omitted in the pseudo-code.

• AuxiliaryChildren(v, k,V ′) returns the set of auxiliary vertices in V ′ generated

from the induced vertices in Vk whose parents are v, given the elementary vertex

v ∈ V , the request k ∈ N+
v and the set of auxiliary vertices V ′.

• SimultaneousColoredVertex(V ′k,v) returns an uncolored vertex in V ′k,v if such

vertex exists, ∅ otherwise, given the set of vertices V ′k,v.

• GeneratedfromVertices(V∗,V) returns the set of vertices in V , from which the

vertices in V∗ are generated, given the sets of vertices in V and V∗ ⊆ V ′.

• UsedColors(Γ∗) returns the set of colors that have been used to the colored

vertices generated from the vertices in Γ∗ and the neighbors of Γ∗, given the sets

of vertices in Γ∗.

• Color(C∗, C) returns the first color in C \ C∗, given the sets of colors in C and C∗.

• MaxWeightVertices(V ′) returns the set of vertices in V ′ of the same color with

maximum total weight, given the set of vertices in V ′.

• FittedVertices(i, V̂) returns the set of elementary vertices v ∈ V̂ with i ∈ N+
v ,

given the request i, and the set of vertices in V̂ .

• HighestPrioVertex(Φ) returns the vertex with the highest priority among the

vertices in Φ, given the set of vertices in Φ.

• InducedVertex(µ,Vi) returns an induced vertex in Vi whose parent is µ, given

the elementary vertex v and the set of vertices in Vi.

Algorithm 5 Offline scheduling policy: executed by the scheduler

1: Input: request graph G = (V , E), solution of the LP relaxation {y∗v}v∈V , N̂ =
(F − fmin + 1)δ1+ε, a vector C of (D1 + fmax ·D2)N̂ − fmax colors

2: Output: set of vertices V̂ . The corresponding policy is to serve the requests
corresponding to V̂

3: V ′ ← ∅ . V ′ stocks the set of auxiliary vertices generated from V

99

4: for each vertex v ∈ V do . Construct the auxiliary vertices V ′
5: construct by∗vN̂c new vertices, each of which is a duplicate of v, corresponding

to the same rectangle, having the same priority and covering the same request as v
6: add the constructed vertices to V ′
7: end for

8: for each elementary v ∈ V do
9: for each request k ∈ N+

v do
10: V ′k,v ← AuxiliaryChildren(v, k,V ′)
11: end for
12: end for

13: sort the elementary vertices v in V ′ lexicographically based on (tv, sv) with ties
broken randomly

14: for each elementary vertex u′ ∈ V ′ from left to right do
15: let u denote the vertex from which u′ is generated
16: Γ← {u′} . Γ stocks the set of vertices to be colored in the current iteration
17: if N+

u 6= ∅ then
18: for each k ∈ N+

u do
19: r ← SimultaneousColoredVertex(V ′k,u)
20: add vertex r to Γ
21: end for
22: end if
23: Γ∗ ← GeneratedfromVertices(Γ,V)
24: C∗ ← UsedColors(Γ∗)
25: color all vertices in Γ using Color(C∗, C)
26: end for

27: V̂ ← GeneratedfromVertices(MaxWeightVertices(V ′),V)
28: for each induced vertex ν ∈ V̂ do
29: let i denote the request corresponding to ν
30: Φ← FittedVertices(i, V̂) . Φ stocks the set of elementary vertices u ∈ V̂

with i ∈ N+
u

31: µ← HighestPrioVertex(Φ)
32: if βµ < βν then . i should be served by reusing µ’s time-frequency block

under the priority of µ
33: replace ν by InducedVertex(µ,Vi) in V̂
34: end if
35: end for
36: return set of vertices in V̂

5.3.6 Performance Analysis

In this subsection we derive the theoretical performance guarantee of our approxi-

mation algorithm. We first prove that all vertices in V ′ are colored by Algorithm 5 in

Lemma 5.4. Then, we prove that the set of vertices, from which the vertices of any

100

same color are generated, induces a RIS in Lemma 5.5, and Algorithm 5 outputs a set

of vertices mapping to a feasible scheduling policy in Lemma 5.6. We are then able to

establish the approximation factor of Algorithm 5 in Theorem 5.2. We conclude this

subsection by giving the complexity of Algorithm 5.

Lemma 5.4. All vertices in V ′ are colored by Algorithm 5.

Proof Sketch. We prove that any elementary vertex and any induced vertex is colored

by Algorithm 5.

Lemma 5.5. For any color c ∈ C, the set of vertices, from which the vertices colored

by c are generated, induces a RIS.

Proof Sketch. We first prove that any pair of vertices colored by c is not generated from

a same vertex or any pair of adjacent vertices, indicating that the set of vertices, from

which the vertices colored by c are generated, is not adjacent to each other, i.e., the

set of vertices satisfies the first property of RIS. For each induced vertex colored by c,

let u denote the vertex from which the vertex is generated. We then prove that there

is a vertex, which is generated from the parent of u, colored by c, indicating that the

set of vertices, from which the vertices colored by c are generated, satisfies the second

property of RIS. By combining the above analysis, the set of vertices, from which the

vertices colored by c are generated, induces a RIS.

Lemma 5.6. Algorithm 5 outputs a set of vertices that maps to a feasible scheduling

policy.

Proof Sketch. By Lemma 5.5, the set of vertices, denoted by V̂ , output by Algorithm 5

is a RIS of G. We prove that the set of vertices in V̂ follows the adapted FIFO model.

It then follows from the definition of feasible scheduling policy that the output of

Algorithm 5 maps to a feasible scheduling policy.

Theorem 5.2. Algorithm 5 outputs an asymptotically 1/(D1+fmax·D2)-optimal feasible

scheduling policy for the offline scheduling problem, i.e., Algorithm 5 is a 1/(D1 +fmax ·
D2)-approximation algorithm.

Proof Sketch. By Lemma 5.4 and Lemma 5.5, we get at most (D1 + fmax ·D2)N̂ − fmax
RISes of G. We prove that there exists a RIS whose total reward is at least 1/(D1 +

fmax ·D2) of the utility for the optimal feasible scheduling policy. The theorem is thus

proved.

101

Theorem 5.2 demonstrates that the approximation factor of our algorithm depends

on the largest request slackness and parameters lb, Lb, fb, Fb, lmax, lmin, fmax, fmin, F ,

where F is a constant. Thus, the performance does not degrade with the system size.

We conclude the analysis by giving the complexity of our approximation algorithm.

We first need to compute the number of vertices in V ′. To that end, we can calculate

the number of created vertices in V that is O(RMFδ). The total number of vertices

in V ′ sums to |V ′| = O(RMFδN̂). The complexity for the sorting of the elementary

vertices in V ′ is O(FδN̂ log(FδN̂)) since there are at most FδN̂ elementary vertices in

V ′. Therefore, it follows from N̂ = (F−fmin+1)δ1+ε that the complexity of Algorithm 5

is O(RMF 2δ2+ε + F 2δ2+ε log(Fδ)).

5.4 The Online Case

In this section, we consider the online scheduling problem, where the scheduler

only knows the current scheduling backlog. More specifically, ai, di, fi, li, bi, and wi

are known only at the moment when request i arrives. As the offline case, the online

scheduling problem also takes into account the adapted FIFO service model and the

spectrum reusability. Table 5.4 lists the additional notations in the online setting.

Table 5.4: Additional notations in Section 5.4

si frequency to start serving i
ti starting time to serve request i
Ωt set of active requests at the current slot
B(Ωt) set of groups containing at least a request in Ωt

Bmax max0≤t≤T |B(Ωt)|
N ∗t set of requests started being served at slot t by Algorithm 6
N−t set of requests started being served earlier than slot t
T set of slots, at which Algorithm 6 starts serving at least one

request under the priority of itself

In the online setting, we focus on the non-preemptive scheduling model: once a

request starts being served, it must be completed without interruption [19] [21]. We

note that the non-preemptive model is seamlessly compatible with our adapted FIFO

model. Our analysis can be extended to the other models such as the preemptive-resume

and the preemptive-restart models.

102

5.4.1 Inapproximability

We start by showing that the online problem in its generic form cannot be approx-

imated with any finite competitive ratio.

Theorem 5.3. For any ρ > 0, there exists an instance of our scheduling problem, where

the competitive ratio of any deterministic online algorithm Π on the instance is larger

than ρ.

Proof. We consider the following instance of our online scheduling problem. In slot 0,

request 1 belonging to group 1 with the quadruple (0, 1, 1, 2) arrives, whose reward is

1. We distinguish two cases.

• If Π does not serve the request, then there is no more request arriving, leading

to a competitive ratio of infinity as the optimal solution is clearly to serve the

request;

• If Π serves the request, a set of requests belonging to group 2 arrives, each charac-

terized by the same quadruple (1, 2lmax/lmin, F, 2lmax/lmin), and the total reward

of them is more than ρ. Under this request sequence, the optimum scheduling

policy serves the requests belonging to group 2 while Π only serves the request

belonging to group 1, leading to a competitive ratio larger than ρ.

Combining the above two cases completes our proof.

5.4.2 Online Scheduling Algorithm Design

Theorem 5.3 establishes the inapproximability of the online case of our scheduling

problem in the generic case. By examining the problem instance in Theorem 5.3, we

observe that the inapproximability is due to the stringent deadline constraint in the

instance. Consequently, any online algorithm is forced to make a decision immediately

when the requests arrive. Motivated by this observation, we slightly relax the slackness

of the requests, and design an online scheduling algorithm with bounded competitive

ratio. Specifically, we assume that the slackness of each request i is at least lmax+ li−1,

i.e., di − ai + 1 ≥ lmax + li − 1,∀i ∈ N .

We give a high-level overview of our online scheduling algorithm. At each slot t, our

algorithm starting serving the requests at slot t can be divided into two cases: (1) if

there is at least one request that is being served at slot t, we start serving each request

i at slot t by reusing the time-frequency block of a request with highest priority among

103

the served requests such that i can reuse the time-frequency block of the requests if

there is at least one such request, (2) if there is no request that is being served at slot

t, we start serving the requests at slot t belonging to one group after another according

to the total reward of the requests for each group under the constraint of the amount

of available frequency band.

Technically, we introduce the following definitions. We say a slot occupied if there

exists a request being served at the slot. For each slot t, we say a request k ready at

slot t satisfying: (1) ak ≤ t ≤ dk − lk + 1, (2) k has not been served before slot t, and

(3) starting serving k at slot t does not violate the adapted FIFO model. For each slot

t, let Ωt denote the set of ready requests at slot t. Let B(Ωt) denote the set of groups,

each of which has at least one request in Ωt. Let N−t denote the set of requests that

start being served earlier than slot t. We use a quadruple (i, ti, si, βi) to denote each

served request i, where ti and si are the starting time and the starting spectrum to

serve request i, and βi is the priority to serve i.

The pseudo-code of our online algorithm is given in Algorithm 6. Consider each slot

t where there exists at least one ready request, i.e., Ωt 6= ∅, we proceed by distinguishing

the following two cases.

• Slot t is occupied. For each request j ∈ Ωt, if there is at least one request

k ∈ N−t of group bj such that j fits into the time-frequency block [t, tk + lk− 1]×
[sk, sk + fk − 1], we pick the request with highest priority among the requests,

denoted by i; we serve j by reusing the time-frequency block of i under the priority

of i.

• Slot t is not occupied. Algorithm 6 runs in iterations. In each iteration, we

try to start serving the requests in Ωt belonging to a same group at slot t. Let f ∗

denote the amount of spectrum already occupied by the requests that start being

served at the current slot. We first pick the group such that the total reward of

the requests k ∈ Ωt with fk ≤ F − f ∗ + 1 of group b is maximum among all the

groups in B(Ωt). We denote the selected group by b. Mathematically,

b = argmax
b∈B(Ωt)

∑
k∈Ωt,bk=b,fk≤F−f∗+1

wk.

We then serve the requests k ∈ Ωt of group b with fk ≤ F − f ∗ + 1 in rounds. In

each round, we first pick the request i of the highest priority among the requests

104

k ∈ Ωt with fk ≤ F − f ∗ + 1 of group b, i.e.,

i = min
k∈Ωt,bk=b,fk≤F−f∗+1

k.

We serve each request k ∈ Ωt of group b with lk ≤ li, fk ≤ fi by allocating the

time-frequency block [t, t+ lk − 1]× [f ∗, f ∗ + fk − 1] under the priority of i, and

remove k from Ωt. We continue starting serving requests of group b at slot t until

there is no request k ∈ Ωt of group b satisfying fk ≤ F − f ∗ + 1.

We briefly describe the following functions used in our algorithm, which can be coded

straightforwardly. The detailed implementation is thus omitted in the pseudo-code.

• FittedRequests(i,N−t) returns the set of requests k ∈ N−t of group bi such that

i fits into the time-frequency block [t, tk + lk−1]× [sk, sk +fk−1] if such requests

exist, and ∅ otherwise, given the request i and the set of requests N−t .

• HighestPrioRequest(Φ) returns the highest priority request in Φ, given the set

of requests in Φ.

• MaxRewardGroup(Ωt, f
∗) returns the group such that the set of requests k ∈

Ωt of the group with fk ≤ F − f ∗ + 1 has the maximum total reward among the

groups in B(Ωt), given the set of requests Ωt, and the amount of spectrum f ∗

already occupied by the requests that start being served at the current slot.

Algorithm 6 Online scheduling policy: executed by the scheduler at each slot t

1: Input: Ωt: the set of ready requests at slot t; N−t : the set of requests already
starting being served

2: Output: N ∗t . N ∗t denotes the set of requests that start being
served at slot t, and each request i ∈ N ∗t is served by allocating the resource block
[t, t+ li − 1]× [si, si + fi − 1] under the priority of βi

3: Initialization: f ∗ = 0, N ∗t ← ∅
4: if Ωt == ∅ then
5: return ∅
6: end if

7: if slot t is occupied then
8: for each request k ∈ Ωt do
9: Ψ← FittedRequests(k,N−t)

10: if Ψ 6= ∅ then
11: i← HighestPrioRequest(Ψ)
12: tk = t, sk = fi, βk = i . Request k is served by reusing the

time-frequency block of i

105

13: add (k, tk, sk, βk) to N ∗t
14: end if
15: end for
16: return N ∗t
17: end if

18: while Ωt 6= ∅ do
19: b← MaxRewardGroup(Ωt, f

∗)
20: Φ← ∅ . Φ stocks the set of requests k ∈ Γ with bk = b and fk ≤ F − f ∗ + 1
21: for each request j ∈ Ωt do
22: if bj == b and fj ≤ F − f ∗ + 1 then
23: add j to Φ
24: end if
25: end for
26: if Φ == ∅ then . There is not enough spectrum to serve any request
27: break
28: end if
29: while Φ 6= ∅ do
30: i← HighestPrioRequest(Φ)
31: for each request k ∈ Φ do
32: if lk ≤ li, fk ≤ fi and bk == bi then
33: tk = t, sk = f ∗, βk = i . Serve request k by allocating resource block

[t, t+ lk − 1]× [f ∗, f ∗ + fk − 1] under priority of i
34: add (k, tk, sk, βk) to N ∗t
35: remove k from Φ and Ωt

36: end if
37: end for
38: end while
39: f ∗ ← f ∗ + maxk∈Φ fk . the amount of spectrum occupied by the requests in Φ

is maxk∈Φ fk
40: end while
41: return N ∗t

5.4.3 Performance Analysis

Theorem 5.4. If the slackness of each request i is at least lmax+li−1, i.e., di−ai+1 ≥
lmax + li − 1,∀i ∈ N , the competitive ratio of Algorithm 6 is upper-bounded by Bmax,

i.e., Algorithm 6 is a 1/Bmax-competitive, where Bmax , max0≤t≤T |B(Ωt)|.

Proof Sketch. Let T denote the set of slots, where each slot t ∈ T satisfies that: (1)

Algorithm 6 starts serving at least one request k at slot t, and (2) t is not occupied

when Algorithm 6 considers the slot t. We first prove that the utility of the optimal

scheduling policy is upper-bounded by the total reward of the requests, each of which

106

is ready at a slot in T . For each slot t ∈ T , we then derive the relationship between

the total reward of the requests starting being served by Algorithm 6 at slot t and the

total reward of the requests ready at slot t. Combining the above results allows us to

establish the competitive ratio upper-bound of Algorithm 6.

Theorem 5.4 shows that the performance of our algorithm only scales with the largest

size of B(Ωt), which only depends on the number of packets that are requested by the

ready users at the current slot t. Therefore, the global efficiency of our algorithm does

not degrade with the system size.

5.5 Numerical Analysis

In this section, we conduct numerical analysis to evaluate the performance of the

offline and online scheduling algorithms we develop. In our simulation, we trace the

metric (3.8) to evaluate the performance of the optimal scheduling policy compared to

our algorithms. Specifically, we trace the maximal, average, and minimal values of Υ

in our simulations.

The time horizon T is set to 200, the amount of frequency granularity F is set to

10; lmax = 10, lmin = 1. We simulate three typical scenarios, in each of which we vary

the number of requests N in the system from 50 to 500. For each N , we perform 50

simulation runs for each request parameter setting.

5.5.1 Scenario 1

In the first scenario, we randomly choose the parameters ai, di, fi, li, bi such that

1 ≤ fi ≤ F, di − ai + 1 ≥ li,∀i ∈ N . We run three experiments with B = 5, 10 and

20 respectively. The simulation results of the offline and online cases are illustrated in

Figures 5.5 and 5.6.

From the simulation results, we make the following observations.

• Our algorithms achieve at least 44% of the optimal utility even in the worst case in

the offline setting and at least 30% in the online setting, which are in accordance

to the theoretical results we derive.

• Our offline algorithm performs better compared to our online algorithm, as the

spectrum broker disposes more information in the offline setting and naturally

achieves better performance.

107

50 100 150 200 250 300 350 400 450 500
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

B=5
B=10
B=20

(a) Maximum performance gains

0 50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

B=5
B=10
B=20

(b) Average performance gains

50 100 150 200 250 300 350 400 450 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

B=5
B=10
B=20

(c) Minimum performance gains

Figure 5.5: Performance gains of Algorithm 5 for Scenario 1 in offline case

50 100 150 200 250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

B=5
B=10
B=20

(a) Maximum performance gains

50 100 150 200 250 300 350 400 450 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

B=5
B=10
B=20

(b) Average performance gains

50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

B=5
B=10
B=20

(c) Minimum performance gains

Figure 5.6: Performance gains of Algorithm 6 for Scenario 1 in online case

• When the number of requests N increases, the average and minimum performance

gains first decrease in both offline and online cases, and then stabilize, indicating

that the resource pool approaches its capacity limit.

• The smaller the number of groups there is, the better performance our algorithms

achieve. This is because, when the number of groups is small, there are more

opportunities for spectrum reuse, which potentially improves the system perfor-

mance.

5.5.2 Scenario 2

In this scenario, we set B = 5 and randomly choose the parameters ai, di, fi, li, bi

such that di − ai + 1 ≤ li,∀i ∈ N . The experiments of Scenario 2 include the following

two settings: (1) 1 ≤ fi ≤ F, ∀i ∈ N , and (2) fi = F, ∀i ∈ N , i.e., each user requests

the whole frequency band. The simulation results of this scenario are illustrated in

Figures 5.7 and 5.8. From the results, we make the following observations.

• Our algorithms achieve at least 47% of the optimal utility in offline case, and 38%

of the optimal utility in online case.

108

• Our algorithms achieve better performance in the first setting. This is because

the quantity of contiguous frequency band requested by each user i is fi ≤ F in

the first setting while each user requests the whole band in the second setting,

indicating that the spectrum resource can be allocated to more users in the first

setting.

50 100 150 200 250 300 350 400 450 500
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(a) Maximum performance gains

50 100 150 200 250 300 350 400 450 500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(b) Average performance gains

50 100 150 200 250 300 350 400 450 500
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(c) Minimum performance gains

Figure 5.7: Performance gains of Algorithm 5 for Scenario 2 in offline case

50 100 150 200 250 300 350 400 450 500
0.5

0.6

0.7

0.8

0.9

1

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(a) Maximum performance gains

50 100 150 200 250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

0.9

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(b) Average performance gains

50 100 150 200 250 300 350 400 450 500
0.3

0.4

0.5

0.6

0.7

0.8

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(c) Minimum performance gains

Figure 5.8: Performance gains of Algorithm 6 for Scenario 2 in online case

5.5.3 Scenario 3

In this scenario, we set B = 5, and randomly choose the parameters ai, di, fi, li, bi

such that 1 ≤ fi ≤ F, ∀i ∈ N . We run the experiments including the following two

settings: (1) di − ai + 1 ≥ li, and (2) di − ai + 1 ≥ lmax + li − 1. The simulation results

for this scenario are shown in Figure 5.9 and 5.10. From the results, we derive the

following observations.

• Our algorithms achieve at least 54% of the optimal utility in offline case, and 43%

of the optimal utility in online case.

109

50 100 150 200 250 300 350 400 450 500
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(a) Maximum performance gains

50 100 150 200 250 300 350 400 450 500
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(b) Average performance gains

50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(c) Minimum performance gains

Figure 5.9: Performance gains of Algorithm 5 for Scenario 3 in offline case

50 100 150 200 250 300 350 400 450 500
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(a) Maximum performance gains

50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(b) Average performance gains

50 100 150 200 250 300 350 400 450 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.95

Number of requests N

P
er
fo
rm
a
n
ce
g
a
in

Setting 1

Setting 2

(c) Minimum performance gains

Figure 5.10: Performance gains of Algorithm 6 for Scenario 3 in online case

• By comparing the performance gains between the two settings, as the slackness

of each request is relaxed, our algorithms in the second setting perform better

compared to the first setting.

5.6 Conclusion and Perspective

Motivated by the spectrum bonding problem, we have formulated and analyzed the

contiguous-resource batching task scheduling problem arising in a variety of engineering

fields, where communication and storage resources are potential bottlenecks and thus

need to be carefully scheduled. We have investigated both offline and online scheduling

settings. In both cases, we have established the problem hardness and developed ap-

proximation algorithms with proven performance guarantee in terms of approximation

and competitive ratios, respectively. We have complemented our theoretical analysis

with numerical simulations that demonstrate the effectiveness of our algorithms in a

variety of system settings.

110

5.7 Appendix

5.7.1 Integer Linear Problem Formulation of Offline Channel

Bonding

The offline optimum spectrum bonding problem P4 can be formulated as a network

utility maximization (NUM) problem as below.

P4: maximize
∑

1≤i≤N

wixi

subject to

tj − ti ≥ li or sj − si ≥ fi, ∀i, j ∈ N , bi 6= bj, ti < tj, si < sj, xi = xj = 1 (5.6a)

tj − ti ≥ li or si − sj ≥ fj, ∀i, j ∈ N , bi 6= bj, ti < tj, si > sj, xi = xj = 1 (5.6b)

ti − tj ≥ lj or sj − si ≥ fi, ∀i, j ∈ N , bi 6= bj, ti > tj, si < sj, xi = xj = 1 (5.6c)

ti − tj ≥ lj or si − sj ≥ fj, ∀i, j ∈ N , bi 6= bj, ti > tj, si > sj, xi = xj = 1 (5.6d)

tj ≥ ti, ∀i, j ∈ N , βj > βi, xi = xj = 1 (5.6e)

tj = max{ti, aj},
∀j ∈ N , βj = βi, xj = 1, i = min{k : tj + lj ≤ tk + lk,

bk = bj, fj ≤ fj, xk = 1, j ≥ k}
(5.6f)

0 ≤ si ≤ F − fi, ∀i ∈ N , xi = 1 (5.6g)

ai ≤ ti ≤ di − li + 1, ∀i ∈ N , xi = 1 (5.6h)

xi ∈ {0, 1}, ∀i ∈ N

where ti is the time to start serving user i if its request is admitted, [si, si + fi − 1]

is the allocated spectrum, xi is the decision variable indicating whether to serve user

i. Constraints (5.6a)-(5.6d) imply that if the user i cannot be served simultaneously

with user j, their allocated spectrum cannot overlap. Constraint (5.6e) implies that

if request j is served under the lower priority than the priority under which request i

is served, the time to start serving j cannot be earlier that the time to start serving

i. Constraints (5.6f) indicates that if request j is served, it must be served under

the priority of itself or batched with a request with highest priority among the served

users who belong to group bj and whose time-frequency blocks can fit for serving j.

Constraints (5.6g) and (5.6h) are the feasibility constraints in the frequency and time

domains.

Table 5.5 lists the additional notations in Appendix.

111

Table 5.5: Additional notations in the Appendix

xi decision variable indicating whether to serve user i
Vαb,τ (t, s) set of elementary vertices in Vα(t, s) of group b whose left

boundaries are slot τ
N α
b,τ (t, s) set of requests having at least one vertex in Vαb,τ (t, s)
Vcτ (i) set of elementary vertices in v ∈ Vc(i) with tv = τ
N c
τ (i) set of requests having at least one vertex in Vcτ (i)
O set of requests served by the optimal scheduling policy

5.7.2 Proof of Theorem 5.1

To prove its hardness, we consider the classical 0-1 Knapsack problem which is

known to be NP-hard [26].

0-1 Knapsack problem. Given a positive capacity C and a set N of N elements

indexed from 1 to N , each with a positive weight wi and size ci (i ∈ {1, 2, · · · , N}),
find a set N̂ ⊆ {1, 2, · · · , N} such that

∑
i∈N̂ ci ≤ C and

∑
i∈N̂ wi is maximized. The

problem is known to be NP-hard.

We now show that the 0-1 Knapsack problem can be reduced to P4. To this end,

consider an instance of the 0-1 Knapsack problem defined above, we construct an in-

stance of P4 as follows: there are N users indexed from i = 1 to N , each submitting a

request (0, T, F, ci), i.e., each request i needs the whole spectrum, the required service

time is ci; no spectrum reuse is possible; as all requests are submitted at time 0, the

service order is determined by user indexes; the reward of each request i is wi. It is

straightforward to see that a solution of the constructed instance of P4 can be cast to

a solution of the 0-1 Knapsack problem.

It then follows from the NP-hardness of the 0-1 Knapsack problem that P4 is NP-

hard.

In the discrete case where all the parameters and variables are restricted to integers,

we can apply the same procedure to cast the Knapsack problem with integer weights

to the discrete channel bonding problem. It then follows from the NP-completeness

of Knapsack problem with integer weights [23] that the discrete version of P4 is also

NP-complete.

5.7.3 Proof of Lemma 5.1

Consider any feasible scheduling policy mapping to a subset of vertices in V . We

first prove that the subset of vertices is an IS of G. Assume by contradiction that

112

among the subset of vertices there are two neighboring vertices u and v connected by

an edge denoted by e. Recall the construction of graph G:

• e cannot be a type 1 edge, otherwise u and v interfere with each other, contra-

dicting with the fact that the time-frequency blocks that are allocated to any pair

of interference users do not overlap.

• e cannot be a type 2 edge, otherwise, u and v violate the FIFO model, contra-

dicting with the fact that any feasible scheduling policy does not not violate the

FIFO model.

• e cannot be a type 3 edge, otherwise u and v correspond to the same request,

contradicting with the fact that each request is executed at most once at any

feasible scheduling policy.

The above analysis demonstrates that e cannot exist, thus proving via contradiction

that the subset of vertices maps to an IS of G.

We then prove that the parent of any induced vertex in the subset is also in the

subset. Based on the definitions of the feasible policy and the adapted FIFO model,

for each request instantiated by an induced vertex in the subset, it must reuse the

time-frequency block of a request instantiated by an elementary vertex in the subset.

It follows from the construction of the request graph that the elementary vertex is the

parent of the induced.

By combining the above analysis, each feasible policy maps to a RIS of G.

5.7.4 Proof of Lemma 5.2

Before giving the proof of Lemma 5.2, we first prove the following lemma.

Lemma 5.7. For any pair of elementary vertices v1 ∈ V+
k1

and v2 ∈ V+
k2

, where bk1 = bk2,

lv1 = lv2, hv1 = hv2, min{tv1 , tv2} ≥ max{ak1 , ak2}, k1, k2 ∈ N , it holds that at most one

of v1 and v2 can be chosen at any feasible scheduling policy.

Proof. Assume, by contradiction, that both v1 and v2 are chosen at a feasible scheduling

policy. We proceed by distinguishing the following two cases.

• Case 1: k1 = k2. v1 and v2 instantiate the same request, thus are connected by a

type 3 edge.

113

• Case 2: k1 6= k2. Without loss of generality, assume k1 < k2. If tv1 > tv2 , it

follows from the construction of G that v1 and v2 are connected by a type 2 edge.

If tv1 ≤ tv2 , it holds that k2 ∈ N+
v1

because of tv1 ≥ ak2 and tv1 + lv1 − 1 ≤
tv2 + lv2 − 1 ≤ dk2 , i.e., the request k2 fits into the time interval and the spectrum

corresponding to the vertex v1. It then follows from the construction of G that

v1 and v2 are connected by a type 2 edge.

In both cases, v1 and v2 are connected by an edge, contradicting to the fact that any pair

of vertices at any feasible scheduling policy is not adjacent to each other. Lemma 5.7

is thus proved.

Armed with the above lemma, we next prove Lemma 5.2.

Consider a group b and a (t, s) pair. For each slot τ ∈ [max{0, t − Lb + 1}, t], let

Vαb,τ (t, s) denote the set of elementary vertices in Vα(t, s) of group b whose left boundaries

are slot τ , i.e., Vαb,τ (t, s) , {u : u ∈ V+
k , ∀k ∈ Nb, tu = τ, u is active at (t, s)}. Noticing

that the length of the rectangle corresponding to each vertex of group b is at most Lb,

the left boundary of any active vertex at (t, s) falls into [max{0, t− Lb + 1}, t]. It then

follows from the definition of Vαb,τ (t, s) that the length of rectangle corresponding to

each vertex in Vαb,τ (t, s) is at least t − τ + 1, i.e., lv + τ − 1 ≥ t, ∀v ∈ Vαb,τ (t, s). Let

N α
b,τ (t, s) denote the set of requests having at least one vertex in Vαb,τ (t, s). It follows

from the definitions of Vαb,τ (t, s) and N α
b,τ (t, s) that ai ≤ τ, ∀i ∈ N α

b,τ (t, s).

Consider a group b. For each slot τ ∈ [max{0, t − Lb + 1}, t] and each (l, f) pair,

where l ∈ [max{t − τ + 1, lb}, Lb] and f ∈ [fb, Fb], because tv = τ, ∀v ∈ Vαb,τ (t, s) and

ai ≤ τ, ∀i ∈ N α
b,τ (t, s), it then follows from Lemma 5.7 that there is at most one vertex

v ∈ Vαb,τ (t, s) with lv = l and hv = f at any feasible scheduling policy. Therefore, there

are at most (Fb − fb + 1) min{Lb − lb + 1, Lb − (t− τ)} elementary vertices in Vαb,τ (t, s)
at any feasible scheduling policy.

By summing over (Fb−fb+1) min{Lb−lb+1, Lb−(t−τ)} for all slots τ ∈ [t−Lb+1, t],

the size of elementary vertices in Vα(t, s) belonging to group b at any feasible scheduling

policy is upper-bounded by

t∑
τ=t−Lb+1

(Fb − fb + 1) min{Lb − lb + 1, Lb − (t− τ)}

=(Lb + lb)(Lb − lb + 1)(Fb − fb + 1)/2.

We then prove that the vertices in Vα(t, s) at any feasible scheduling policy belong

114

to a same group. Assume by contradiction that for a (t, s) pair, there is a pair of

vertices u, v ∈ Vα(t, s) belonging to different groups at a feasible scheduling policy.

It follows from the construction of G that u and v are connected by a type 1 edge.

This contradicts to the fact that any feasible scheduling policy maps to a RIS of G.

Therefore, for each (t, s) pair, the size of Vα(t, s) at any feasible scheduling policy is

upper-bounded by maxb∈Bα(t,s)(Lb + lb)(Lb − lb + 1)(Fb − fb + 1)/2.

5.7.5 Proof of Lemma 5.3

Consider each group b ∈ Bc(i) and each slot τ ≥ max{0, ai + lmin− lmax}. Let Vcτ (i)
denote the set of elementary vertices v ∈ Vc(i) with tv = τ . Let N c

τ (i) denote the set

of requests having at least one vertex in Vcτ (i). It follows from the definition of Vcτ (i)
and N c

τ (i) that maxk∈N cτ (i) ak ≤ τ .

• For each slot τ ∈ [max{0, ai + lmin − lmax}, ai), because tv = τ, ∀v ∈ Vcτ (i) and

maxk∈N cτ (i) ak ≤ τ , i.e., tv ≥ maxk∈N cτ (i) ak,∀v ∈ Vcτ (i), it follows from Lemma 5.7

that for each (l, f) pair, where l ∈ [lmin, lmax] and f ∈ [fmin, fmax], there is at most

one vertex u ∈ Vτ (i) at any feasible scheduling policy with lu = l and hu = f .

It then follows from l ∈ [lmin, lmax] and f ∈ [fmin, fmax] that the size of Vcτ (i) at

any feasible scheduling policy is upper-bounded by (lmax− lmin+1)(fmax−fmin+

1). Therefore, the size of
⋃
t∈[max{0,ai+lmin−lmax},ai) V

c
t (i) at any feasible scheduling

policy is upper-bounded by (lmax − lmin + 1)(fmax − fmin + 1)(lmax − lmin).

• For the slots τ ≥ ai, it follows from the definition of Vc(i) that the arrival time

of any request having a vertex in Vc(i) is no later than slot ai. It then follows

from
⋃
τ≥ai V

c
τ (i) ⊆ Vc(i) that ak ≤ ai,∀k ∈

⋃
τ≥ai N

c
τ (i). Because of tv ≥ ai,∀v ∈

Vcτ (i), it follows from Lemma 5.7 that for each (l, f) pair, where l ∈ [lmin, lmax]

and f ∈ [fmin, fmax], there is at most one vertex u in
⋃
τ≥ai V

c
τ (i) at any feasible

scheduling policy with lu = l and hu = f . Therefore, the size of
⋃
τ≥ai V

c
τ (i) at any

feasible scheduling policy is upper-bounded by (lmax− lmin + 1)(fmax− fmin + 1).

By combining the above analysis, for each group b and each request i ∈ Nb, there are

at most (lmax−lmin+1)2(fmax−fmin+1) elementary vertices in
⋃
τ≥max{0,ai+lmin−lmax} V

c
τ (i)

at any feasible scheduling policy. Thus, it then follows from Vc(i) =
⋃
τ≥max{0,ai+lmin−lmax} V

c
τ (i)

that the size of elementary vertices in Vc(i) at any feasible scheduling policy is upper-

bounded by (lmax − lmin + 1)2(fmax − fmin + 1).

115

5.7.6 Proof of Lemma 5.4

We first prove that any elementary vertex in V ′ is colored by Algorithm 5. Consider

each elementary vertex v ∈ V ′ and the vertex set Γv, where let Γv denote the set of

vertices including v to be colored in the iteration of coloring v. We prove that each

vertex in Γv is colored by Algorithm 5 in Lemma 5.8. Let Γ∗v denote the set of vertices

from which the vertices in Γv are generated.

Lemma 5.8. Each vertex in Γv is colored by Algorithm 5.

Proof. In the iteration of coloring v, the color that cannot be used to Γv have been used

to color the vertices that are generated from Γ∗v and the neighbors of Γ∗v. The vertices

that are generated from Γ∗v and the neighbors of Γ∗v can be divided into the following

three classes. Let b denote the group to which the request covered by v belongs.

• The first class of vertices generated from the vertices in V that are

connected with Γ∗v by type 1 edges. When we color the vertices in Γv, it

follows from Step 2 that all elementary vertices r ∈ V ′ with tr < tv have been

colored and no elementary vertex r with tr > tv is colored. Therefore, the colors,

which cannot be used to Γv, have been used to color the elementary vertices in

V ′ active at (tv, s),∀s ∈ [sv, sv + hv − 1].

For each (tv, s), s ∈ [sv, sv + hv − 1] pair, it follows from the constraint (5.4) that

the number of active elementary vertices in V ′ at (tv, s) is upper-bounded by

∑
u∈Vα(tv ,s)

by∗vN̂c ≤
∑

u∈Vα(tv ,s)

y∗vN̂ ≤ D2 · N̂ .

By summing over the number of D2 ·N̂ active elementary vertices for all (tv, s), s ∈
[sv, sv+hv−1] pairs, there are at most hv ·D2·N̂ elementary vertices in V ′ including

v that are active at (tv, s),∀s ∈ [sv, sv + hv − 1] pairs. Therefore, the number of

colors, which cannot be used to Γv and which have been used to color all the first

class of vertices in the iteration of coloring v, is upper-bounded by hv ·D2 ·N̂−hv.
It follows from hv ≤ fmax that fmax ·D2 · N̂ − fmax.

• The second class of vertices generated from the vertices in V that are

connected with Γ∗v by type 2 edges. For each user k ∈ N , it then follows

116

from constraint (5.5) that

∑
v∈Vc(k)

by∗vN̂c ≤
∑

v∈Vc(k)

y∗vN̂ ≤ D1N̂ .

Therefore, the number of elementary vertices generated from the vertices in Vc(k)

is upper-bounded by D1N̂ .

We first note that the current proof is based on that the vertices in Vc(k) are

adjacent to each other. Clearly, the edges that connect each pair of vertices in

Vc(k) include all type 2 edges between the vertices in Vc(k).

Consider any pair of requests k1, k2 with k1 < k2 and bk1 = bk2 . Based on the

construction of G, there is no type 2 edge between any vertex in Vc(k1)\Vc(k2) and

any vertex in Vc(k2)\Vc(k1). When Algorithm 5 colors the vertices generated from

Vc(k2), all vertices u generated from Vc(k1) \ Vc(k2) have been colored because of

tu < min{tν : ν ∈ Vc(k2)}. Thus, the colors that are used to the vertices generated

from Vc(k1) \ Vc(k2) can be used to the vertices generated from Vc(k2) \ Vc(k1)

if there is also no type 1 and 3 edge. Since for each request k ∈ N , the number

of elementary vertices generated from the vertices in Vc(k) is at most D1N̂ , the

number of colors used to the second class of vertices of a same group is upper-

bounded by D1N̂ .

• The third class of vertices generated from Γ∗v and the vertices in V that

are connected with Γ∗v by type 3 edges. For each vertex u ∈ Γv, let j denote

the request covered by u. Based on the definition of Vc(j), the elementary vertices

in Vj belong to Vc(j) and the parent of each induced vertex in Vj belongs to Vj.
Thus, any pair of vertices generated from Vj are not colored by a same color if

the vertices in Vc(j) are adjacent to each other. Because we derive the number of

colors that are occupied by the second class of vertices based on that the vertices

in Vc(k),∀k ∈ N are adjacent to each other, when Algorithm 5 colors Γv, the

colors that have been used to its third class of vertices are considered by the

analysis of the second class of vertices.

By combining the above analysis, it holds that the number of colors that have been

used to the vertices generated from Γ∗v and the neighbors of Γ∗v is at most (D1 + fmax ·
D2)N̂ − fmax − 1. Therefore, the vertices in Γv is colored by a color in C because of

|C| = (D1 + fmax ·D2)N̂ − fmax. The lemma is thus proved.

117

It then follows from Algorithm 5 and Lemma 5.8 that all elementary vertices in V ′

are colored.

We now prove that all induced vertices are also colored by Algorithm 5. Because

each induced vertex in V has only one parent, we just need to prove that for each

elementary vertex v ∈ V and each request k ∈ N+
v , when the vertices generated from v

are colored, all vertices generated from the induced vertices in Vk whose parents are v

are also colored.

Consider each elementary vertex v ∈ V and each request k ∈ N+
v . It follows from

the constraint (5.3) that

∑
ν∈Vk,v≺ν

by∗νN̂c ≤ by∗vN̂c.

Thus, the number of vertices in V ′k,v is upper-bounded by the number of vertices gen-

erated from v. When Algorithm 5 colors an vertex v′ generated from v, it follows from

Step 2 of Algorithm 5 that there is a vertex in V ′k,v is also colored using the same color

as v′ if there is at least one uncolored vertex in V ′k,v. Therefore, when all elementary

vertices generated from v are colored, all induced vertices in V ′k,v are also colored.

By combining the above analysis, it holds that all vertices in V ′ are colored by

Algorithm 5. Lemma 5.4 is thus proved.

5.7.7 Proof of Lemma 5.5

We first prove that the set vertices, from which the vertices colored by c are gen-

erated, is not adjacent to each other. For any elementary vertex v ∈ V ′ colored by c,

there is only one elementary vertex in Γv, and no two of vertices cover a same request.

Based on the construction of G, any pair of vertices in Γ∗v is not adjacent to each other.

It follows from Algorithm 5 that c is not used to color any other vertex generated from

Γ∗v and the neighbors of Γ∗v. Therefore, any pair of vertices colored by c is not generated

from a same vertex and any pair of adjacent vertices, indicating that the set of vertices,

from which the vertices colored by c are generated, satisfies the first property of RIS.

For any induced vertex u′ ∈ V ′ colored by the color c, let u denote the vertex from

which u′ is generated. By the proof of Lemma 5.4, their is a vertex, which is generated

from the parent of u, colored by c, indicating that the set of vertices, from which the

vertices colored by c are generated, satisfies the second property for RIS of G.

By combining the above analysis, it holds that the set of vertices, from which the

118

vertices colored by c are generated, induces a RIS. Lemma 5.5 is thus proved.

5.7.8 Proof of Lemma 5.6

It follows from Lemma 5.5 that the set of vertices, denoted by V̂ , output by Al-

gorithm 5 is a RIS. For each vertex v ∈ V̂ , let i denote the user corresponding to

v.

• Case 1: v is an elementary vertex. There is no elementary vertex u ∈ V̂ belonging

to group bi with βu < βv such that i can fit into the time-frequency block of

u. Assume, by contradiction, that there is an elementary vertex u ∈ V̂ of group

bi with βu < βv whose corresponding time-frequency block fits for serving i. If

tu > tv, u and v are connected by a type 2 edge because of βu < βv; if tu ≤ tv, u

and v are connected by a type 2 edge because i fits into the time-frequency block

of u, i.e., i ∈ N+
u . In both case, u and v are connected by an edge, contradicting

to the fact that V̂ is a RIS.

• Case 2: v is an induced vertex. There is no elementary vertex u ∈ V̂ belonging to

the same group as i with βu < βv such that i can fit into the time-frequency block

of u; otherwise, it follows from Step 3 that v has been replaced by an induced

vertex in Vi whose parent has the highest priority among the elementary vertices

µ ∈ V̂ belonging to group bi with i ∈ N+
µ .

Therefore, the set of vertices output by Algorithm 5 maps to a feasible scheduling

policy.

5.7.9 Proof of Theorem 5.2

Denote the utility of the optimal feasible scheduling policy by OPT . Let A ,

(D1 + fmax · D2). We have shown that each color induces a RIS of G in Lemma 5.5.

It follows from Lemma 5.4 that the coloring of V ′ uses at most AN̂ − fmax colors. We

thus get at most AN̂ − fmax RISes, denoted by V̂i, 1 ≤ i ≤ I, where I ≤ AN̂ . Let I∗

denote the RIS output by Algorithm 5. Since each vertex v in G is replaced by by∗vN̂c
new vertices, each of which is colored by Algorithm 5, we have

∑
v∈I∗

wv ≥
N̂

|C|

(∑
v∈V

wvy
∗
v −

∑
v∈V

wv

N̂

)

>
1

A

OPT − 1

δε
max
i∈N

max
v∈V+

i

(wv +
∑
j∈N+

v

∑
r∈Vj ,v≺r

wr)

119

where the second inequality follows that the value of an optimal fractional LP solution

is an upper bound on the value of the feasible scheduling policy and the total value

decreased by Step 1 is upper-bounded by

∑
v∈V

wv

N̂
=

1

(F − fmin + 1)δ1+ε

∑
i∈N

∑
v∈V+

i

(wv +
∑
k∈N+

v

∑
r∈Vk,v≺r

wr)

≤ (F − fmin + 1)δ

(F − fmin + 1)δ1+ε
max
i∈N

max
v∈V+

i

(wv +
∑
j∈N+

v

∑
r∈Vj ,v≺r

wr)

≤ 1

δε
max
i∈N

max
v∈V+

i

(wv +
∑
j∈N+

v

∑
r∈Vj ,v≺r

wr),

where the equal follows from that each induced vertex has only one parent, and the

first inequality follows from that there are at most (F − fmin + 1)δ elementary vertices

in V .

As it holds that

max
i∈N

max
v∈V+

i

(wv +
∑
j∈N+

v

∑
r∈Vj ,v≺r

wr) ≤ OPT,

we then have ∑
v∈I∗

wv >
1

A
(OPT − 1

δε
·OPT),

The theorem is thus proved.

5.7.10 Proof of Theorem 5.4

For a slot t ∈ T . Let O denote the set of requests that are served by the optimum

scheduling policy.

We now prove that each request in O is ready at a slot in T . Consider each request

k ∈ O. If ak ∈ T , it follows from the definition of ready request that k is ready at slot

ak, i.e., k ∈ Ωak ; if ak /∈ T , let t = max{τ : τ ∈ T , τ < ak} and l∗ = maxk∈N ∗t lk. We

prove that request k is ready at slot t+ l∗ and t+ l∗ ∈ T . We prove it in the following

three steps.

• Step 1: We prove that t < ak < t+l∗. Assume, by contradiction, that ak ≥ t+l∗.

It follows from t = max{τ : τ ∈ T , τ < ak} and ak /∈ T that each slot in [t+ l∗, ak]

is not occupied when Algorithm 6 considers it. Because request k is ready at

slot ak, Algorithm 6 starts serving at least one request at slot ak, i.e., ak ∈ T ,

contradicting with ak /∈ T . It then holds that t < ak < t+ l∗.

120

• Step 2: We prove that request k is ready at slot t + l∗. Since the slackness for

each request i is at least lmax + li− 1, we can derive that ak < t+ l∗ ≤ dk − lk + 1

because of t < ak < t+ l∗ and l∗ ≤ lmax. It also holds that starting serving request

k at slot t + l∗ does not violate the FIFO model because of aj ≤ t, ∀j ∈ N ∗t and

ak > t. Therefore, request k is ready at slot t+ l∗, i.e., k ∈ Ωt+l∗ .

Step 3: We prove that t+l∗ ∈ T . Because requests inN ∗t are served completely at

slot t+ l∗−1, slot t+ l∗ is not occupied when Algorithm 6 considers it. Therefore,

Algorithm 6 starts serving at least one request at slot t + l∗ since request k is

ready at slot t+ l∗, i.e., t+ l∗ ∈ T .

Based on the above analysis, we can derive that the total reward of the opti-

mum scheduling policy can be upper-bounded by
∑

τ∈T
∑

i∈Ωt
wi, i.e.,

∑
i∈O wi ≤∑

τ∈T
∑

i∈Ωt
wi.

Consider each slot t ∈ T . Because each request i satisfies fi ≤ F , in the first

iteration of slot t Algorithm 6 starts serving all requests in Ωt of group b∗ at slot t, i.e.,

{k : k ∈ Ωt, bk = b∗} ∈ N ∗t , where b∗ = argmaxb∈B(Ωt)

∑
k∈Ωt,bk=bwk, the total reward of

requests in Ωt is

∑
i∈Ωt

wi ≤
∑

b∈B(Ωt)

∑
k∈Ωt,bk=b

wk

≤ |B(Ωt)| ·
∑

k∈Ωt,bk=b∗

wk

≤ |B(Ωt)| ·
∑
i∈N ∗t

wi.

Therefore, the total reward of the optimum scheduling policy can be upper-bounded

by

∑
i∈O

wi ≤
∑
t∈T

∑
i∈Ωt

wi ≤
∑
t∈T

|B(Ωt)|
∑
i∈N ∗t

wi ≤ Bmax ·
∑
t∈T

∑
i∈N ∗t

wi.

It follows from the definitions of T and N ∗t that the utility of Algorithm 6 is at least∑
t∈T
∑

i∈N ∗t
wi. Hence, Algorithm 6 has Bmax competitive ratio if the slackness for

each request i is at least lmax + li − 1.

121

122

Chapter 6

Conclusion and Prospective

6.1 Thesis Summary

This thesis has dedicated to the fundamental batching task scheduling problems,

each of which has its own particularities and calls for specific analysis that cannot draw

upon existing results, at the theoretical modeling and analysis and the approximation

algorithm design, with Chapter 2 reviewing the related literature, Chapter 3 focusing on

developing an algorithmic framework for the baseline scenario of batching task schedul-

ing problem, Chapters 4 and 5 presenting approximation algorithms in both offline

and online settings with mathematically proven performance guarantee for the prob-

lems of downlink transmission scheduling with data sharing and contiguous-resource

batching task scheduling, respectively. More specifically, Chapter 3 has developed an

algorithmic framework achieving 1/2-optimality for the baseline scenario of batching

task scheduling problem, outperforming the best known result, and derived the first de-

terministic approximation algorithm outputting a lmin/(2(lmin+1))-optimal scheduling

policy for the generalized proportional broadcast problem by applying our algorithmic

framework to the problem. In Chapters 4 and 5, we have formulated and analyzed the

downlink transmission scheduling with data sharing and contiguous-resource batching

task scheduling problems, which significantly generalize the baseline scenario of batch-

ing task scheduling problem, respectively, and we have studied the problems in both

offline and online cases by establishing the problem hardness and developing determinis-

tic approximation algorithms with mathematically proven performance guarantee. We

have conducted numeric experiments under a variety of typical parameter settings to

demonstrate the effectiveness of our algorithms for the above problems.

By summarizing the previous problems, the core technicality in our design is an LP

123

relaxation mechanism and a rounding and coloring approach that turns the solution of

the LP relaxation to a feasible scheduling policy in offline case. In the online case, at

each slot, at which no request or task is being executed, our online algorithms start

serving a set of users requesting the same packet or belonging the same group such that

the total reward of the users is maximum.

6.2 Open Questions and Future Work

In this section, we develop the discussion on open issues and questions and future

work. The first is to extend the problems we address in Chapters 4 and 5 to the setting

of multiple resource pools, where each task is to be scheduled in one of them, thus

adding another dimension to the problems. Note that our algorithmic framework can

be easily extended to the setting of multiple resources. The second and third future

directions we expect to look into are to study dependent batching task scheduling and

to concern flexible FIFO model in the problems of downlink transmission scheduling

with data sharing and contiguous-resource batching task scheduling.

6.2.1 Dependent batching task scheduling

Throughout the full text, the tasks in the problems we address are independent. We

expect to look into a generic task scheduling problem: a set of interdependent tasks

need to be executed, each associated with a time window and, if admitted, needs to

be executed within the window by exclusively using the resource; some tasks can be

executed simultaneously by sharing the resource, while others require exclusive use of

resource. The dependency among tasks forms a directed acyclic graph such that each

task can be executed iff all the tasks preceding it are completely executed. The goal is

to seek an optimum scheduling algorithm maximizing the overall system utility. The

above scheduling problem arises in a variety of engineering fields where computing,

communication, and storage resources are potential bottleneck and thus need to be

carefully scheduled.

Despite its theoretical and practical importance, the problem of scheduling interde-

pendent batching tasks is still a largely unexplored area, where the challenges brought

by task dependency and batching execution need to be addressed holistically in the

design of scheduling algorithms maximizing the system overall utility. Thus, we expect

that the problems not only consider task batching, i.e., some tasks can be executed

124

simultaneously, but also task dependency, i.e., the dependency among tasks forms a

directed acyclic graph. This adds an even stronger combinatorial flavor to the problem

and deserves a careful investigation.

6.2.2 Flexible FIFO model

Our works presented in Chapters 3 and 4 focus on the adapted FIFO model illus-

trated in Figures 4.1 and 5.2, where when any scheduling policy serves user i, any user

j > i that requests the packet bi or belongs to group bi must be batched with request i,

as long as j can fit into the time interval or time-frequency block of i. In many practical

scenarios, admitted requests may be served according to a more flexible FIFO model.

Consider the contiguous-resource batching task scheduling problem. We now con-

sider a flexible FIFO model defined as below.

Definition 6.1 (Flexible FIFO model). When any scheduling policy serves request i,

any request j > i that belongs to group bi can but does not have to be served simulta-

neously with request i if j can fit in the service time of i and the spectrum allocated to

i.

Note that the flexible FIFO model for the problem of downlink transmission schedul-

ing with data sharing is similar.

0 1 2

1

3

2

3

4

5

6

(a) Flexible FIFO model

0 1 2

1

3

2

3

4

5

6

(b) Adapted FIFO model

0 1 2

1

3

2

3

4

5

6

(c) Standard FIFO model

Figure 6.1: Illustration of the flexible FIFO model vs. the adapted and standard FIFO
models

Example 6.1. To illustrate the flexible FIFO model against the adapted and standard

FIFO models, we consider an example composed of six requests, indexed from 1 to

125

6, with the corresponding request quadruples (0, 0, F, 1), (0, 1, F, 1), (0, 2, F, 1), (0, 0, F, 1)

and (1, 1, F, 1), (2, 2, F, 1), respectively. Requests 1,2,4 and 5 belong to group 1, and

requests 3,6 belongs to group 2. The reward of each request is 1. The rectangles in

Figure 6.1 illustrate the possible executions of the requests, with the height being the

quantity of requested spectrum and the length being the requested execution time.

• Figure 6.1(a) illustrates the optimal scheduling policy under the flexible FIFO

model, which serves requests 1 and 4 at slot 0, requests 2 and 5 at slot 1, requests

3 and 6 at slot 3. Request 2 is not served simultaneously with request 1 at slot 0

in order to serve request 5 at slot 1 under a higher priority.

• Figure 6.1(b) illustrates the optimal scheduling policy under the adapted FIFO

model, which serves requests 1,2 and 4 at slot 0, requests 3 and 6 at slot 2, or

requests 1,2 and 4 at slot 0, request 5 at slot 1, request 6 at slot 2. Different from

the adapted FIFO model, request 2 must be served simultaneously with request 1.

• Figure 6.1(c) illustrates the optimal scheduling policy under the standard FIFO

model, which serves requests 1,2 and 4 at slot 0, request 5 at slot 1, request 6 at

slot 2. Different from the flexible and adapted FIFO models, any admitted request

should be started no later than any admitted request arriving later.

We can check that under flexible FIFO policy, all the six requests are served; under the

adapted and standard FIFO models, at most five requests can be served.

The flexible FIFO model is more flexible than the adapted and standard FIFO

models and leads to better efficiency. The flexible FIFO model is technically more

involved than the adapted and standard FIFO models. Any mathematical framework

under the flexible FIFO model can be extended to the adapted and standard FIFO

models.

Based on the definition of flexible FIFO model, we expect to seek the optimal

scheduling policy maximizing the overall system utility for the problems of down-

link transmission scheduling with data sharing and contiguous-resource batching task

scheduling. We also expect to seek the optimal scheduling policy minimizing the total

delay cost or minimizing makespan for the problems.

126

Bibliography

[1] R. Agrawal, A. Bedekar, R. J. La, and V. Subramanian. Class and channel condi-

tion based weighted proportional fair scheduler. In Teletraffic Engineering in the

Internet Era, volume 4, pages 553 – 567. Elsevier, 2001.

[2] R. Agrawal and V. Subramanian. Optimality of certain channel aware scheduling

policies. In Proc. Allerton, 2002.

[3] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayaku-

mar. Providing quality of service over a shared wireless link. IEEE Communications

Magazine, 39(2):150–154, 2001.

[4] N. Bansal, D. Coppersmith, and M. Sviridenko. Improved approximation algo-

rithms for broadcast scheduling. SIAM Journal on Computing, 38(3):1157–1174,

2008.

[5] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. S. Naor, and B. Schieber. A unified

approach to approximating resource allocation and scheduling. Journal of ACM,

48(5):1069–1090, Sept. 2001.

[6] A. Bar-Noy, S. Guha, Y. Katz, J. S. Naor, B. Schieber, and H. Shachnai. Through-

put maximization of real-time scheduling with batching. In Proceedings of the

Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 742–

751, Philadelphia, PA, USA, 2002.

[7] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the through-

put of multiple machines in real-time scheduling. SIAM Journal on Computing,

31(2):331–352, 2001.

[8] R. Bar-Yehuda, M. Beder, and Y. Cohen. Approximation algorithms for bandwidth

and storage allocation. Technical report, 2005.

127

[9] R. Bar-Yehuda, M. Beder, Y. Cohen, and D. Rawitz. Resource allocation in

bounded degree trees. In Proc. ESA, 2006.

[10] P. Berman and B. Dasgupta. Multi-phase algorithms for throughput maximization

for real-time scheduling. Journal of Combinatorial Optimization, 4(3):307–323, Sep

2000.

[11] G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani. Improved approximation

algorithms for resource allocation. In Proc. IPCO, 2002.

[12] C. Chekuri, A. Gal, S. Im, S. Khuller, J. Li, R. McCutchen, B. Moseley, and

L. Raschid. New models and algorithms for throughput maximization in broadcast

scheduling. In Approximation and Online Algorithms, pages 71–82. Springer, 2011.

[13] B. Chen, R. Hassin, and M. Tzur. Allocation of bandwidth and storage. IIE

Transactions, 34(5):501–507, 2002.

[14] J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for the

job interval selection problem and related scheduling problems. Mathematics of

Operations Research, 31(4):730–738, 2006.

[15] A. Darmann, U. Pferschy, and J. Schauer. Resource allocation with time intervals.

Theoretical Computer Science, 411(49):4217 – 4234, 2010.

[16] M. Eisen, C. Zhang, L. F. O. Chamon, D. D. Lee, and A. Ribeiro. Learning optimal

resource allocations in wireless systems. IEEE Transactions on Signal Processing,

67(10):2775–2790, May 2019.

[17] S. P. Y. Fung, F. Y. L. Chin, and C. K. Poon. Laxity helps in broadcast scheduling.

In In Proc. 9th Italian Conference on Theoretical Computer Science, LNCS 3701,

pages 251–264, 2005.

[18] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent rounding

and its applications to approximation algorithms. Journal of ACM, 53(3):324–360,

May 2006.

[19] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified np-complete graph

problems. Theoretical Computer Science, 1(3):237 – 267, 1976.

128

[20] E. Gelenbe, Xiaowen Mang, and R. Onvural. Bandwidth allocation and call admis-

sion control in high-speed networks. IEEE Communications Magazine, 35(5):122–

129, 1997.

[21] H. Hoogeveen, C. N. Potts, and G. J. Woeginger. On-line scheduling on a sin-

gle machine: maximizing the number of early jobs. Operations Research Letters,

27(5):193 – 197, 2000.

[22] J. Huang, V. G. Subramanian, R. Agrawal, and R. A. Berry. Downlink schedul-

ing and resource allocation for OFDM systems. IEEE Transactions on Wireless

Communications, 8(1):288–296, 2009.

[23] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and

sum of subset problems. Journal of ACM, 22(4):463–468, Oct. 1975.

[24] S. Im and M. Sviridenko. New approximations for broadcast scheduling via vari-

ants of α-point rounding. In Proceedings of the Twenty-Sixth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’15, page 1050–1069, USA, 2015.

[25] S. A. Javadi. Analytical approaches for dynamic scheduling in cloud environments.

SIGMETRICS Perform. Eval. Rev., 47(3):14–16, Jan. 2020.

[26] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer,

1972.

[27] E. L. Lawler, J. K. Lenstra, A. H. Rinnooy Kan, and D. B. Shmoys. Chapter 9

sequencing and scheduling: Algorithms and complexity. In Logistics of Production

and Inventory, volume 4 of Handbooks in Operations Research and Management

Science, pages 445 – 522. Elsevier, 1993.

[28] S. Leonardi, A. Marchetti-Spaccamela, and A. Vitaletti. Approximation algorithms

for bandwidth and storage allocation problems under real time constraints. In

Foundations of Software Technology and Theoretical Computer Science, pages 409–

420. Springer, 2000.

[29] Z. Li and M. Ierapetritou. Process scheduling under uncertainty: Review and

challenges. Computers & Chemical Engineering, 32(4):715 – 727, 2008. Festschrift

devoted to Rex Reklaitis on his 65th Birthday.

129

[30] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.

IEEE/ACM Transactions on Networking, 8(5):556–567, 2000.

[31] T. Mömke and A. Wiese. A (2 + ε)-approximation algorithm for the storage allo-

cation problem. In Proc. ICALP, 2015.

[32] M. J. Neely. Delay-based network utility maximization. IEEE/ACM Transactions

on Networking, 21(1):41–54, Feb 2013.

[33] C. A. Phillips, R. N. Uma, and J. Wein. Off-line admission control for general

scheduling problems. In Proc. SODA, 2000.

[34] H. A. M. Ramli, R. Basukala, K. Sandrasegaran, and R. Patachaianand. Perfor-

mance of well known packet scheduling algorithms in the downlink 3GPP LTE

system. In Malaysia International Conference on Communications (MICC), pages

815–820, 2009.

[35] J. Rubio, A. Pascual-Iserte, D. P. Palomar, and A. Goldsmith. Joint optimization

of power and data transfer in multiuser mimo systems. IEEE Transactions on

Signal Processing, 65(1):212–227, 2017.

[36] S. Ryu, B. Ryu, H. Seo, and M. Shin. Urgency and efficiency based packet schedul-

ing algorithm for OFDMA wireless system. In Proc. ICC, volume 4, pages 2779–

2785 Vol. 4, 2005.

[37] S. Sakai, M. Togasaki, and K. Yamazaki. A note on greedy algorithms for the maxi-

mum weighted independent set problem. Discrete Applied Mathematics, 126(2):313

– 322, 2003.

[38] K. Sandrasegaran, H. A. Mohd Ramli, and R. Basukala. Delay-prioritized schedul-

ing (dps) for real time traffic in 3GPP LTE system. In Proc. IEEE WCNC, pages

1–6, 2010.

[39] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms

and Combinatorics. Springer, 2003.

[40] H. Shachnai, A. Voloshin, and S. Zaks. Flexible bandwidth assignment with ap-

plication to optical networks. Journal of Scheduling, 21(3):327–336, 2018.

130

[41] G. Song, Y. Li, L. J. Cimini, and H. Zheng. Joint channel-aware and queue-

aware data scheduling in multiple shared wireless channels. In Proc. IEEE WCNC,

volume 3, pages 1939–1944, 2004.

[42] F. Spieksma. On the approximability of an interval scheduling problem. Journal

of Scheduling, 2:215–227, 01 1999.

[43] A. L. Stolyar. On the asymptotic optimality of the gradient scheduling algorithm

for multiuser throughput allocation. Operations Research, 53(1):12–25, 2005.

[44] L. Thiele. Resource constrained scheduling of uniform algorithm. In Proc. Inter-

national Conference on Application Specific Array Processors, pages 29 – 40, Los

Alamitos, CA, USA, 1993.

[45] B. Tian, J. Huang, B. Mozafari, and G. Schoenebeck. Contention-aware lock

scheduling for transactional databases. Proc. VLDB Endow., 11(5):648–662, Jan.

2018.

[46] H. Van Dyke Parunak. Characterizing the manufacturing scheduling problem.

Journal of Manufacturing Systems, 10(3):241 – 259, 1991.

[47] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.

Cambridge University Press, 2010.

131

Titre: Planification des tâches de calcul et de communication par lots: base théorique et
conception d’algorithmes

Mots clés: Algorithmes d’approximation, Traitement par lots, Ordonnancement

Résumé: Dans cette thèse, nous formulons
et analysons une classe de problèmes fondamen-
taux d’ordonnancement des tâches découlant
d’une variété de systèmes informatiques et de
communication émergents : les tâches sont
divisées en groupes; celles d’un groupe peu-
vent être mises en lots et exécutées simultané-
ment; l’objectif de l’ordonnanceur est de con-
cevoir des algorithmes d’ordonnancement max-
imisant l’utilité globale du système. Sous le
parapluie générique ci-dessus, nous étudions dif-
férentes classes de problèmes d’ordonnancement
de tâches par lots, en établissant le cadre
théorique correspondant, en concevant des al-
gorithmes d’ordonnancement hors ligne et en
ligne, et en illustrant leur application dans la
planification des tâches de communication et
d’informatique.

Nous commençons par le scénario de base
de l’ordonnancement des tâches par lots. Il
y a un ensemble de tâches à exécuter sur
un certain nombre de machines. Certaines
tâches peuvent être exécutées simultanément
sur une seule machine, tandis que d’autres
nécessitent l’utilisation exclusive d’une ma-
chine entière. Nous recherchons une politique
d’ordonnancement optimale pour maximiser
l’utilité globale du système. Nous dévelop-
pons un cadre algorithmique pour le prob-
lème d’ordonnancement ci-dessus dans la forme
générique qui peut atteindre 1/2-optimality,
surperformant le résultat le plus connu. Nous
démontrons ensuite l’application de notre cadre
algorithmique pour résoudre le problème de dif-
fusion proportionnelle généralisée en dévelop-
pant le premier algorithme d’approximation
déterministe.

Nous formulons et analysons ensuite un
problème fondamental de programmation de
transmission en liaison descendante dans les sys-
tèmes de communication sans fil, composé d’une
station de base et d’un ensemble d’utilisateurs,
chacun demandant un paquet à servir dans une
fenêtre de temps. Certains paquets sont de-
mandés par plusieurs utilisateurs et peuvent être
servis simultanément. Dans le problème, chaque
demande peut être servie par un sous-ensemble
de stratégies de transmission, et les demandes
doivent être servies de la manière FIFO. Nous
recherchons un algorithme de programmation de
transmission en liaison descendante maximisant
l’utilité globale du système. Nous établissons
d’abord sa dureté, puis développons des algo-
rithmes d’approximation avec une garantie de
performance mathématiquement prouvée en ter-
mes d’approximation et de rapports compétitifs
pour les paramètres hors ligne et en ligne, re-
spectivement.

La troisième contribution concerne
l’ordonnancement des tâches de mise en lots des
ressources contiguës. Un ensemble de tâches
doit être exécuté sur un pool de ressources con-
tinues, chacune nécessitant un certain temps et
une ressource contiguë; certaines tâches peu-
vent être exécutées simultanément en lot en
partageant la ressource, tandis que d’autres
nécessitent une utilisation exclusive de la
ressource; les tâches sont servies de la manière
FIFO. Nous recherchons une allocation optimale
des ressources et la politique d’ordonnancement
connexe maximisant l’utilité globale du sys-
tème. Nous établissons la dureté du problème
et développons des algorithmes de programma-
tion d’approximation pour les paramètres hors
ligne et en ligne.

Maison du doctorat de l’Université Paris-Saclay
2ème étage aile ouest, Ecole normale supérieure Paris-Saclay
4 avenue des Sciences,
91190 Gif sur Yvette, France

Title: Scheduling Batching Computing and Communication Tasks: Theoretical Founda-
tion and Algorithm Design

Keywords: Approximation Algorithm, Batching, Task Scheduling

Abstract: In this thesis we formulate and
analyze a class of fundamental task schedul-
ing problems arising from a variety of emerging
computing and communication systems: tasks
are partitioned into groups; those in a group
can be batched and executed simultaneously;
the goal faced by the scheduler is to design
scheduling algorithms maximizing the overall
system utility. Under the above generic um-
brella, we investigate different classes of batch-
ing task scheduling problems, establishing the
corresponding theoretical framework, designing
both offline and online scheduling algorithms,
and illustrating their application in scheduling
communication and computing tasks.

We start by the baseline scenario of batching
task scheduling. There is a set of tasks to be exe-
cuted on a number of machines. Some tasks can
be executed simultaneously on a single machine,
while others require exclusive use of an entire
machine. We seek an optimal scheduling pol-
icy to maximize the overall system utility. We
develop an algorithmic framework for the above
scheduling problem in the generic form that can
achieve 1/2-optimality, outperforming the best
known result. We then demonstrate the appli-
cation of our algorithmic framework to solve the
generalized proportional broadcast problem by
developing the first deterministic approximation
algorithm.

We then formulate and analyze a fundamen-
tal downlink transmission scheduling problem
in wireless communication systems, composed
of a base station and a set of users, each re-
questing a packet to be served within a time
window. Some packets are requested by sev-
eral users and can be served simultaneously. In
the problem, each request can be served by a
subset of transmission strategies, and requests
need to be served in the FIFO manner. We seek
a downlink transmission scheduling algorithm
maximizing the overall system utility. We first
establish its hardness, and then develop approx-
imation algorithms with mathematically proven
performance guarantee in terms of approxima-
tion and competitive ratios for the offline and
online settings, respectively.

The third contribution concerns the
contiguous-resource batching task scheduling.
A set of tasks need to be executed on a pool
of continuous resource, each requiring a cer-
tain amount of time and contiguous resource;
some tasks can be executed simultaneously in
batch by sharing the resource, while others re-
quiring exclusive use of the resource; tasks are
served in the FIFO manner. We seek an optimal
resource allocation and the related scheduling
policy maximizing the overall system utility. We
establish the hardness of the problem and de-
veloping approximation scheduling algorithms
for both offline and online settings.

Maison du doctorat de l’Université Paris-Saclay
2ème étage aile ouest, Ecole normale supérieure Paris-Saclay
4 avenue des Sciences,
91190 Gif sur Yvette, France

	Introduction
	Background and Motivation
	Thesis Overview and Organization

	Related Work
	Broadcast Scheduling
	Task Scheduling
	Task Scheduling without Batching
	Task Scheduling with Batching

	Downlink Transmission Scheduling
	Bandwidth and Storage Allocation Problems
	Bandwidth Allocation Problem
	Storage Allocation Problem

	Conclusion

	Batching Task Scheduling: Baseline Algorithmic Framework
	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Our Algorithmic Framework
	Task Graph Construction
	From Task Scheduling to MWIS
	LP Relaxation
	Constructing a Feasible Scheduling Policy: Rounding and Coloring
	Approximation Ratio Analysis

	The Case of Unbounded Batching
	Task Graph Construction
	LP Relaxation
	Approximation Algorithm

	Applying Our Algorithmic Framework to Solve Generalized Proportional Broadcast Scheduling Problem
	Problem Statement
	Deterministic Approximation Scheduling Algorithm
	Approximation Ratio Analysis

	Numerical Analysis
	Baseline Scenario of Batching Task Scheduling Problem
	Proportional Broadcast Scheduling Problem

	Conclusion
	Appendix
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Theorem 3.1
	Proof of Lemma 3.3
	Proof of Theorem 3.3
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Theorem 3.4

	Downlink Transmission Scheduling with Data Sharing
	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	The Offline Case
	Problem Hardness
	Request Graph
	From Downlink Transmission Scheduling to Maximum Weighted Independent Set
	LP Relaxation
	Approximation Scheduling Algorithm Design
	Performance Analysis

	The Online Case
	Problem Inapproximability
	Online Scheduling Algorithm Design

	Numerical Analysis
	Scenario 1
	Scenario 2
	Scenario 3

	Conclusion
	Appendix
	Integer Linear Problem Formulation of Offline Downlink Transmission Scheduling
	Proof of Theorem 4.1
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Theorem 4.2
	Proof of Theorem 4.4

	Contiguous-resource Batching Task Scheduling
	Introduction
	System Model
	The Offline Case
	Problem Formulation and Hardness
	Request Graph
	From Channel Bonding to Maximum Weighted Regular Independent Set
	LP Relaxation
	Approximation Scheduling Algorithm
	Performance Analysis

	The Online Case
	Inapproximability
	Online Scheduling Algorithm Design
	Performance Analysis

	Numerical Analysis
	Scenario 1
	Scenario 2
	Scenario 3

	Conclusion and Perspective
	Appendix
	Integer Linear Problem Formulation of Offline Channel Bonding
	Proof of Theorem 5.1
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of Lemma 5.3
	Proof of Lemma 5.4
	Proof of Lemma 5.5
	Proof of Lemma 5.6
	Proof of Theorem 5.2
	Proof of Theorem 5.4

	Conclusion and Prospective
	Thesis Summary
	Open Questions and Future Work
	Dependent batching task scheduling
	Flexible FIFO model

