
HAL Id: tel-03205242
https://theses.hal.science/tel-03205242v1

Submitted on 22 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal methods for the analysis of cache-timing leaks
and key generation in cryptographic implementations

Alexander Schaub

To cite this version:
Alexander Schaub. Formal methods for the analysis of cache-timing leaks and key generation in
cryptographic implementations. Cryptography and Security [cs.CR]. Institut Polytechnique de Paris,
2020. English. �NNT : 2020IPPAT044�. �tel-03205242�

https://theses.hal.science/tel-03205242v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
0I

P
PA

T0
44 Méthodes formelles pour l’analyse de

fuites cache-timing et la génération de
clés dans les implémentations

cryptographiques
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (ED IP
Paris)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 7/12/2020, par

ALEXANDER SCHAUB

Composition du Jury :

David Naccache
Professeur, Ecole Nationale Supérieure (Département
d’Informatique) Président

Ingrid Verbauwhede
Professeur, KU Leuven (COSIC) Rapporteur

Avi Mendelson
Professeur, Technion (Faculty of Computer Science) Rapporteur

Joseph Boutros
Professeur, Texas A&M University at Qatar (Electrical and
Computer Engineering) Examinateur

Yuval Yarom
Assistan Professor, University of Adelaide (School of Computer
Science) Examinateur

Olivier Rioul
Professeur, Télécom Paris (ComNum) Co-directeur de thèse

Sylvain Guilley
Associate Professor, Télécom Paris (ComNum) Directeur de thèse

Pierre Loidreau
Ingénieur, Université Rennes 1 (IRMAR) Invité

Jean-Luc Danger
Directeur d’études, Télécom Paris (SSH) Invité

Formal methods for the analysis of cache-timing leaks and key
generation in cryptographic implementations

Alexander Schaub
Télécom Paris

Contents

Résumé en français xiii

Introduction xxi

1 State of the Art in Cache-Timing Attacks 1
1.1 General Computer Architecture Background 2

1.1.1 Virtual Memory . 2
1.1.2 Cache Architecture . 2
1.1.3 Cache Hierarchy . 3
1.1.4 Cache Organization . 4

1.2 Security Implications of the Cache . 4
1.2.1 Secret-dependent Memory Access 5
1.2.2 Secret-dependent Branching . 5
1.2.3 Exploiting Cache-Timing Leakages 7
1.2.4 Avoiding Cache-Timing Attacks . 9

1.3 Measurement Methods . 10
1.3.1 PRIME+PROBE . 10
1.3.2 EVICT+TIME . 12
1.3.3 FLUSH+RELOAD . 13
1.3.4 CacheBleed and MemJam . 13
1.3.5 BranchScope . 15

1.4 Attack Improvement Methods . 15
1.4.1 Performance Degradation Attacks 16
1.4.2 Methods Based on SGX . 17

2 STAnalyzer 19
2.1 Introduction . 19

2.1.1 Related Work . 20
2.1.2 Background in Dependency Analysis 20

2.2 Definitions and Notations . 22
2.2.1 Variables, Pointers and Values . 22
2.2.2 Dependency Graph . 25
2.2.3 Leakage Analysis . 26
2.2.4 Indirect Dependencies . 26

2.3 Description of the Algorithm . 28

iii

2.3.1 Abstract Syntax Tree (AST) . 28
2.3.2 Dependency Graph Interpretation 29
2.3.3 Expression Evaluation . 31
2.3.4 Instruction Interpretation . 32
2.3.5 Output Presentation . 38
2.3.6 Limitations . 38

2.4 Results . 39
2.4.1 Benchmarks . 39
2.4.2 Applications on Other Cryptographic Algorithms 40

2.5 Conclusion . 40

3 Applications of the Static Analysis Techniques 43
3.1 Collecting Ground Truth: Rediscovery of Known CVEs 43

3.1.1 CVE-2019-9494 and CVE-2019-9495 44
3.1.2 CVE-2018-124049 . 45

3.2 Analyzing 1st Round PQC Candidates . 46
3.2.1 Analysis Methodology . 47
3.2.2 Result Overview . 47
3.2.3 Analysis of Vulnerabilities . 48

3.3 Analyzing 2nd Round PQC Candidates . 50
3.3.1 LUOV . 50
3.3.2 Round5 . 52
3.3.3 qTesla . 53
3.3.4 MQDSS . 54
3.3.5 LEDAcrypt . 55
3.3.6 Picnic . 58
3.3.7 NTSKEM . 59
3.3.8 LAC . 61
3.3.9 SIKE . 62
3.3.10 Other Analyzed Candidates . 63
3.3.11 Summary . 65

3.4 Perspectives . 65

4 On the Stochastic Model of PUFs 69
4.1 An Introduction to Physically Unclonable Functions (PUFs) 69

4.1.1 “Weak” and “Strong” PUFs . 69
4.1.2 Toy Example: The Ring Oscillator 70
4.1.3 Description of the Analyzed PUF Designs 70

4.2 Stochastic Models for PUFs . 73
4.2.1 Delay Distribution . 73
4.2.2 Measurement Noise Distribution . 74

5 On the Reliability of PUFs 75
5.1 An Improved Analysis of Reliability and Entropy for Delay PUFs 75
5.2 Delay PUF Model . 76
5.3 Delay PUF Reliability and Entropy . 78

5.3.1 Reliability Assessment . 78
5.3.2 Reliability Enhancement by Delay Knowledge 81
5.3.3 Entropy After Filtering Out Unreliable Bits 84

5.4 The “Two-Metric” Method . 85
5.4.1 Motivation and Definition . 85
5.4.2 Reliability of the The “Two-Metric” Method 87
5.4.3 Security . 88
5.4.4 Entropy . 89

5.5 Translation for Various PUF Architectures 89
5.5.1 RO-PUF . 89
5.5.2 RO sum PUF . 90
5.5.3 Loop PUF . 90

5.6 Experiments and Validation with Real Silicon 91
5.6.1 Architecture of the Test Circuit . 91
5.6.2 BER and Entropy Measurement . 91

5.7 Effect of Environmental Changes: Temperature 93
5.7.1 Assumptions . 93
5.7.2 Average BER . 94
5.7.3 Effect on Delay PUFs . 94
5.7.4 Impact on the “Two-Metric” Method 95

5.8 Conclusion . 95
5.A Verifying the Reliability of a PUF . 97

5.A.1 Illustrating Example . 97
5.A.2 Finding n and t . 97

6 Entropy Estimation of PUFs via Chow Parameter 101
6.1 Introduction . 101

6.1.1 Notations and Definitions . 102
6.1.2 Motivation . 104
6.1.3 State of the Art . 106
6.1.4 Our Contributions . 107

6.2 Closed-form expressions . 107
6.2.1 Preliminaries . 107
6.2.2 Case n = 3 . 109
6.2.3 Case n = 4 . 109

6.3 The Chow Parameters of PUFs . 111
6.3.1 All PUFs are Attainable . 111
6.3.2 Chow Parameters Characterize PUFs 112
6.3.3 Consequence on the Max-Entropy 113
6.3.4 Order and Sign Stability of Chow Parameters 114

6.4 Equivalence Classes and Chow Parameters 115

6.5 Monte-Carlo Algorithm . 117
6.6 Entropies Estimation . 118

6.6.1 Estimating the Max-Entropy H0 . 118
6.6.2 Estimating the Shannon Entropy H1 119
6.6.3 Estimating the Collision Entropy H2 119
6.6.4 Estimating the Min-Entropy H∞ 120

6.7 Conclusions and Perspectives . 122

List of Figures

1 Organisation du cache (exemple) . xiv
2 Évolution du taux d’erreur moyen en fonction du rapport signal sur bruit . xvi
3 Compromis entropie-fiabilité après filtrage par seuil xvii
4 Taux d’erreur binaire en utilisant deux paires de seuils xviii
5 Estimation des entropies des PUFs pour différentes valeurs de n xix

1.1 Cache architecture on a modern hyper-treaded quadcore processor 3
1.2 Cache lines and sets (2-way associativity) 4
1.3 Victim and attacker process access data at different cache lines. 6
1.4 Victim accesses memory mapped to the cache line observed by the attacker. 6
1.5 Attacker incurs a cache miss because its data has been evicted by the victim. 6

2.1 Comparison between source (a) and compiled (b) code (gcc with -02 opti-
mizations) . 21

2.2 Example of a control flow graph with influence regions 27
2.3 AST of the program described in Listing 2.5 29
2.4 Visualization of Algorithm 2.3.1 applied to the dependency graph in Table 2.3 30
2.5 Example of C code with tagged variable 32
2.6 Example C code with variable swapping 37
2.7 Output from STAnalyzer on mbedtls’ Blowfish implementation 39
2.8 Example code falsely reported as leaking 39

3.1 Total number of potential vulnerabilities found for each analyzed candidate 48

4.1 An oscillating chain of 5 inverters . 70
4.2 Ring Oscillator PUF . 71
4.3 Arbiter PUF . 72
4.4 RO-sum PUF . 72
4.5 Loop PUF . 73

5.1 pdf of ∆ and noise for a given challenge C. 79
5.2 Polar representation of X and Y. 80
5.3 Expected BER as a function of the SNR. 80
5.4 Attacking the helper data by using unreliable bits as pivot 82
5.5 Unreliable area vs distributions of ∆C and the noise Z. 82
5.6 Remaining average entropy after filtering unreliable bits as a function of

the BER to reach. 84

vii

5.7 Metric M0: Bit extraction according to a and the pdf of ∆ 85
5.8 Metric M1: Bit extraction according to −T1, T2 and the pdf of ∆C 86
5.9 Metric M2: Bit extraction according to −T2, T1 and the pdf of ∆C 86
5.10 Choice of metric and extracted bit value. 88
5.11 Average BER with and without two-metric helper data 89
5.12 Experimental validation of the SNR and remaining entropy. 92
5.13 Distribution of temperature dependency coefficients (for 49 distinct oscil-

lators, as well as 64 challenges of the same oscillator, for three different
oscillators) . 94

5.14 Average BER when Σ is known or unknown at measurement stage 96
5.15 Rejection probability as a function of PUF error rate (n = 107, t = 120) . . 98
5.16 Rejection probability as a function of PUF error rate (n = 227168250, t = 2382) 99

6.1 Distribution of delays obtained via circuit simulation 105
6.2 Entropy estimates for n ≤ 10. The upper bound of the min-entropy (dashed

line) is taken from [1]. 122

ACKNOWLEDGEMENTS.
First and foremost, I would like to thank my PhD advisors, Oliver Rioul and Sylvain

Guilley, for their invaluable advice, patience and enthousiasm during my PhD study. Our
fruitful collaboration started back in 2013, saw the publication of numerous papers, and
allowed me now to earn a PhD. I will always remain grateful for all the time and effort
they spent to help me in my studies.

I would also like to thank the reviewers, Ingrid Verbauwhede and Avi Mendelsson, for
accepting to review my manuscript, and all the jury members, David Naccache, Yuval
Yarom, Joseph Boutros, Pierre Loidreau and Jean-Luc Danger, for attending my defense.
I appreciated your thoughtful remarks and suggestions, and found the discussion we had
very enriching.

I would like to extend my gratitude to all the faculty members from COMELEC I
had the pleasure to interact with during my time at Télécom Paris - especially Jean-Luc
Danger, whose technical knowledge of PUFs and their designs has been invaluable for my
work.

These three and half last years would have been much more dull without all the great
colleagues with whom I shared my joys and doubts. Michael Timbert, Sébastien Carré,
Thuy Ngo, and all the others: thank you very much for all the time we spent together, in
front of a whiteboard or around a beer.

Finally, I would like to thank my family for their support, and my soon-to-be wife Luce-
Marie for being there for me, brightening my days during this exhausting but stimulating
journey !

Rennes, 2021

Glossary

BTF Boolean Treshold Function. xvi, 107, 111, 113, 115, 118, 122

CPU Central Processing Unit. 1–3, 16, 17

KiB kibiobyte = 1024 bytes. 2, 3, 11

MiB mebiobyte = 220 bytes. 3, 11

OS Operating System. 2, 13, 16–18

PUF Physically Unclonable Function. iv, vii, xiv–xvi, 69–74, 97, 101–107, 111–121

RAM Random Access Memory. 1, 2, 4

SGX Security Guard Extensions. 17, 18

VM Virtual Machine. 11

xii

Résumé en français

La cryptographie est omniprésente dans notre monde actuel hyperconnecté, protégeant
nos communications, sécurisant nos moyens de paiement. Alors que les algorithmes
cryptographiques sont en général bien compris, il est bien plus compliqué de les implémenter
correctement. Les failles Spectre et Meltdown ont fini de nous convaincre qu’il est
extrêmement complexe de gérer la sécurité sur un processeur moderne. Cependant, des
attaques par canaux auxiliaires reposant sur des principes similaires ont été utilisés pour
casser les implémentations cryptographiques logicielles plus d’une décennie plus tôt et
continueront d’être exploités bien après que ces deux failles ne soient plus qu’un lointain
souvenir.

Alors que des preuves de sécurité sont devenues un prérequis pour la publication
d’algorithmes cryptographiques, leurs implémentations ont été vérifiées avec moins d’insistance.
De ce fait, les avancées théoriques dans la cryptanalyse de primitives modernes se font
relativement rares: depuis sa standardisation, AES a perdu un total de deux (!) bits de
sécurité théoriques, RSA avec un module de 2048 bits restera très probablement sécurisé
jusqu’à être rattrapé par la puissance de calcul des ordinateurs. Cependant, les implémen-
tations ont été cassées bien plus souvent. AES, RSA, DSA, ECDSA - des implémentations
largement déployées ont été cassées à cause de canaux auxiliaires logiciels. Des erreurs
dans la génération de clés RSA ont causé le rappel de millions de cartes à puce produites
par Infineon. En bref, la sécurité des implémentations pourrait fortement bénéficier de
meilleurs garanties théoriques.

Dans cette thèse, j’ai appliqué ce raisonnement à deux sujets différents, l’un portant
sur la sécurité logicielle, l’autre sur la sécurité matérielle.

La première moitié de la thèse explore les canaux auxiliaires logiciels dits "cache-timing".
Ce genre de vulnérabilités apparaît lorsque la durée d’une opération cryptographique,
ou l’état du cache après cette opération, dépend d’une information sensible et peut être
récupérée par un programme tiers. C’est le cas lorsqu’une opération de branchement
dépend d’une information secrète comme une clé privée, ou si la mémoire est accédée à
une adresse qui dépend de cette information secrète.

En effet, sur des processeurs modernes, le temps d’accès du processeur à la mémoire
principale (la RAM) est relativement long. Afin d’améliorer la performance des processeurs,
différents niveaux de cache sont utilisés. Ce sont des mémoires plus petites (de l’ordre
de la centaine de kilo-octets pour les plus petits à une dizaine de méga-octets pour les
plus grands) mais beaucoup plus rapides que la RAM. En général, trois niveaux de cache
sont présents: du plus petit et rapide, au plus grand et plus lent, il s’agit du cache L1, du
cache L2 (tous deux propres à chaque cœur d’un processeur multicœur) et le cache L3 (en
général partagé entre tous les coeurs).

xiii

xiv RÉSUMÉ EN FRANÇAIS

L3 (unified, inclusive)

L1d L1i

L2 (unified)

Core #0 / #1

L1d L1i

L2 (unified)

Core #2 / #3

L1d L1i

L2 (unified)

Core #4 / #5

L1d L1i

L2 (unified)

Core #6 / #7

Figure 1: Organisation du cache (exemple)

Bien que les systèmes d’exploitation mettent en œuvre une séparation de la mémoire
en fonction des processus qui s’exécutent sous son contrôle, une telle séparation n’est
pas implémentée pour le cache. Ainsi, tous les programmes s’exécutant sur le même
cœur (pour les caches L1 et L2) voire le même processeur (pour le cache L3) partagent
le même cache. Un programme malveillant peut alors manipuler l’état du cache pour
déduire des informations sur l’état d’exécution d’un programme ciblé. Plus précisément,
des informations concernant les adresses mémoire accédées par le programme cible peuvent
être retrouvées. Il peut s’agit des indices utilisés pour accéder à des tableaux, mais aussi
des directions des branchements. En effet, les instructions exécutées par un programme
sont également mis dans le cache, et en fonction de la direction des branchements, seules
les instructions d’une des deux branches (branche if ou branche else) sont exécutées, et
donc chargées.

L’objectif principal de la thèse est de détecter et prévenir ce genre de fuites. A cet
égard, j’ai développé un outil qui effectue une analyse de dépendance sur des programmes
écrits en C afin de déterminer quelles variables contiennent des valeurs dépendant d’un
secret, et lève une alerte lorsqu’une telle variable risque de fuiter (branchement ou accès
à une adresse mémoire dépendant de sa valeur). Le fonctionnement de cet outil est le
suivant.

Tout d’abord, les données sensibles doivent être identifiées et annotées. Il s’agit
principalement des clés privées d’implémentations cryptographiques et de l’aléa secret
utilisé par certains algorithmes. Ensuite, l’outil détermine l’ensemble des variables qui
dépendent de ces données sensibles. Pour cela, un graphe bipartite est construit, reliant
les variables définies dans le programme en C à analyser, à un certain nombre de valeurs.
La première valeur est la valeur spéciale secret, qui indique que la variable contient des
données sensibles. Ce n’est pas la seule valeur à considérer, cependant. Premièrement,

xv

pour des raisons de performance, il est préférable d’analyser chaque fonction séparément.
Or, lors de l’analyse d’une fonction, on ne peut pas encore déterminer si les arguments
avec lesquels elle sera appelée dépendent de données sensibles ou non. Ainsi, les valeurs
initiales (abstraites) des arguments de fonctions sont également considérés comme des
valeurs dans cette analyse. Cela permet de composer l’analyse de fonctions en substituant
les valeurs initiales par les valeurs des variables lorsque celle-ci est appelée. Finalement, il
faut aussi déterminer quelles variables peuvent être référencées par les pointeurs définis
dans le programme en C. Pour cela, les adresses mémoires de toutes les variables sont
également des valeurs considérées dans le graphe de dépendance. Bien sûr, la valeur exacte
des adresses est inconnue puisque le programme analysé n’est jamais exécuté. À la place,
une valeur abstraite est employée pour désigner l’adresse de chaque variable. Ce graphe
de dépendance est ensuite mis à jour lors de l’analyse du code source fourni.

En parallèle, les fuites sont enregistrées: il s’agit des valeurs entrant dans le calcul
des adresses mémoires accédées (comme les indices de tableaux) ainsi que les valeurs
utilisées pour calculer le résultat d’un branchement conditionnel. Le programme analysé
est considéré comme sûr lorsque la valeur spéciale sensible ne fuite pas.

Cet outil est ensuite utilisé pour analyser la plupart des candidats du processus de stan-
dardisation de cryptographique post-quantique initié par le NIST. Comme les ordinateurs
quantiques seraient capables de casser les algorithmes à clé publique actuellement déployés
(comme RSA et ECDSA), il est nécessaire de trouver des primitives cryptographiques
alternatives. Puisque ces nouveaux algorithmes sont relativement récents, leurs implémen-
tations ont été moins scrutés jusqu’à présent. Parmi les 21 soumissions qui ont pu être
traités, environ un tiers contenaient de potentielles fuites exploitables par des attaques
"cache-timing".

La deuxième moitié de la thèse est consacrée aux "physically unclonable functions",
ou PUFs. Ce sont des circuits dont on peut extraire des identifiants imprédictibles mais
stables. De petites variations incontrôlables dans les propriétés des semi-conducteurs sont
amplifiés pour produire un comportement imprédictible. Cela permet, par exemple, de
générer des clés cryptographiques. Des garanties théoriques pour deux caractéristiques
fondamentales des PUFs sont présentées dans cette thèse, applicables à une large famille
de PUFs: la stabilité de l’identifiant, perturbée par des bruits de mesure, et l’entropie
disponible, dérivée du modèle mathématique du PUF.

Le principe de fonctionnement des PUFs est le suivant: afin de générer un bit
d’identifiant, un challenge est envoyé au PUF. Ce challenge correspond à une suite
de n bits, où n dépend des caractéristiques du PUF. Dans l’idéal, la réponse que constitue
ce bit d’identifiant est stable (toujours identique pour un même PUF et challenge) mais
imprédictible (on ne peut pas le “deviner” avec moins de 50% de chances de se tromper,
même en connaissant les réponses à d’autres challenges pour un même PUF ou ceux à
n’importe quel challenge pour un PUF différent).

Le défaut de stabilité provient essentiellement des bruits de mesure. En effet, les PUFs
que j’ai considérés dans cette thèse sont basés sur des boucles d’inverseurs, permettant
de construire des oscillateurs dont la fréquence varie légèrement d’une instance à l’autre.
La réponse du PUF est ensuite obtenue en calculant la différence entre deux fréquences
d’oscillations dans le PUF. Cela peut provenir de deux oscillateurs distincts dans le circuit,
comme pour le RO-sum PUF [93] ou le Ring Oscillator PUF [95], ou de deux configurations

xvi RÉSUMÉ EN FRANÇAIS

0 1000 2000 3000 4000
SNR

10 2

10 1

BE
R

Figure 2: Évolution du taux d’erreur moyen en fonction du rapport signal sur bruit

différentes d’un même oscillateur comme pour le Loop PUF [92]. En modélisant la fréquence
d’oscillation et le bruit de mesure par des lois normale, modélisation vérifiée par des mesures
et des simulations, ont peut obtenir des expressions explicites du taux d’erreur binaire (ou
BER pour Bit Error Rate). Si la fréquence des oscillations suit une loi normale centrée de
variance Σ2 et le bruit gaussien additif une loi normale centrée de variance σ2, alors, en
définissant le ratio signal sur bruit (ou SNR pour Signal to Noise Ratio) par Σ2

σ2 , on peut
montrer que le taux d’erreur moyen du PUF est égal à

B̂ER = 1
π

arctan(1√
SNR

).

Même pour des valeurs élevées du SNR, cette valeur reste relativement importante
(voir Figure 2), de l’ordre de quelques pour cents même pour des valeurs du SNR au-dessus
de 4000.

Ce taux d’erreur élevé provient principalement des quelques challenges aux réponses
instables. En effet, comme la différence de fréquences, utilisée pour calculer le bit de
réponse, suit une loi normale, une proportion non négligeable de ces différences ont une
valeur autour de 0, résultant en un taux d’erreur très important pour ces réponses, autour
de 50%. Une première méthode pour améliorer la fiabilité du PUF consiste alors à filtrer
les challenges qui résulteraient en une différence de fréquence inférieure, en valeur absolue,
à un seuil égal à un multiple de σ, par exemple Wσ. On peut alors montrer que le taux
d’erreur moyen des challenges restants après le filtrage est égal à

B̂ERfilt = 2
erfc(W√

2
√

SNR)

(
T (W, 1√

SNR
) + 1

4 erf(W√
2
√

SNR
)(erf(W√

2
)− 1)

)

où erf et erfc représentent respectivement la fonction d’erreur et la fonction d’erreur

xvii

10 14 10 12 10 10 10 8 10 6 10 4 10 2

BER

40

50

60

70

80

90

100
Av

er
ag

e
%

 o
f r

em
ai

ni
ng

 e
nt

ro
py

SNR = 100
SNR = 200
SNR = 500
SNR = 1000

Figure 3: Compromis entropie-fiabilité après filtrage par seuil

complémentaire, et T la fonction T d’Owen:

T (h, a) = 1
2π

∫ a

0

e−
1
2h

2(1+x2)

1 + x2 dx.

Ce filtrage, cependant, diminue l’entropie utile du PUF: comme certains challenges sont
mis de côté, la taille des identifiants générés est plus petite. En moyenne, on montre que,
en supposant que le PUF sans filtrage fournit n bits de réponse indépendants, l’entropie
restante après filtrage est égale à

H = n · erfc(W√
2SNR

).

En combinant ces deux formules, on peut caractériser entièrement le compromis
fiabilité-entropie défini par le filtrage par seuil (voir Figure 3). En général, le SNR est
fixé pour un modèle de PUF donné. La caractérisation permet alors de prévoir comment
dimensionner le PUF pour obtenir une fiabilité et une entropie donnée.

Une deuxième méthode pour améliorer la fiabilité de ces PUFs consiste à changer de
métrique pour obtenir un bit de réponse: au lieu de prendre le signe de la différence de
fréquences, on peut définir deux seuils et considérer que la réponse du PUF est de 0 si la
différence de fréquence est comprise entre ces deux seuils, et de 1 sinon. En choisissant
bien ces seuils, qui dépendent de la variance des fréquences σ2, l’entropie par réponse
reste de 1 bit. En choisissant judicieusement deux paires de deux seuils, et en appliquant
la paire de seuils en fonction de la différence de fréquences de façon à minimiser le taux
d’erreur, on peut améliorer la fiabilité du PUF sans diminuer son entropie (voir Figure 4).
Les désavantages de cette méthode sont la complexité supplémentaire introduite par les
comparaisons aux seuils, et surtout la nécessité de déterminer précisément la variance des

xviii RÉSUMÉ EN FRANÇAIS

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
SNR

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

M
ea

n
BE

R

Use of two-metric method
Raw BER (no helper data)

Figure 4: Taux d’erreur binaire en utilisant deux paires de seuils

différences de fréquence. En effet, une mauvaise estimation de cette grandeur biaiserait la
réponse des PUFs.

Enfin, la dernière partie de la thèse concerne l’estimation de l’entropie des PUFs.
Dans la précédente partie, nous avons supposé que toutes les réponses des PUFs étaient
indépendantes. Or, pour une large famille de PUFs, comprenant les Arbiter PUF [91],
les RO-sum PUFs [93] et les Loop PUFs [92], il n’est pas possible d’extraire plus de n
réponses indépendantes pour un PUF de taille n, alors qu’il existe 2n challenges possibles.
En autorisant l’utilisation de challenges pour lesquels les réponses sont liées, l’entropie que
l’on peut extraire d’un tel PUF est alors augmentée. Cependant, calculer cette entropie
n’est pas évidente. En effet, chaque réponse à un challenge pouvant prendre deux valeurs
différentes, il pourrait existe au total jusqu’à 22n PUFs différents. Cependant, tous ces
PUFs ne sont pas tous réalisables. En effet, la réponse d’un PUF à un challenge donné
suit, pour les PUFs considérés, la formule suivante:

b = sign(
n∑

i=1
cixi) = sign(c · x)

où ci représente la i-ème bit du challenge (−1 ou +1) et xi représente une différence de
fréquences "élémentaire", distribuée selon une loi normale. Dans ma thèse, je rapproche
cette formulation des fonctions booléennes à seuil (ou BTF pour Boolean Threshold
Function). Ceci permet de démontrer, d’une part, que l’entropie de ces PUFs, même
en considérant tous les 2n challenges possibles, ne peux dépasser n2. D’autre part, en
utilisant les propriétés de symétrie établies pour les BTFs, j’ai pu développer un algorithme

xix

2 4 6 8 10
of delay elements (n)

0

10

20

30

40

50

bi
ts

Max-entropy H0
Shannon entropy H1
Collision entropy H2
Min-entropy H1
Min-entropy upper-bound

Figure 5: Estimation des entropies des PUFs pour différentes valeurs de n

efficace d’estimation de l’entropie des PUFs par simulation. Ceci a permis d’obtenir des
estimations fiables des différentes entropies (entropie de Shannon, entropie de collision,
min-entropie) pour des PUFs jusqu’à la taille n = 10 (voire Figure 5).

Cependant, les PUFs utilisés habituellement ont des tailles bien plus élevés, de l’ordre
de n ≈ 100 ou plus. La simulation de l’entropie n’est alors plus possible. Cependant, les
résultats obtenus semblent indiquer que l’entropie de Shannon suit approximativement la
max-entropy, asymptotiquement équivalente à n2. Si cette tendance est confirmée, cela
montrerait que l’on peut théoriquement extraire bien plus de n bits d’entropie d’un PUF
de taille n. Pour appliquer ces résultats en pratique, il faudrait également déterminer
quels sont les challenges optimaux à choisir. En effet, pour un PUF de taille par exemple
n = 32, il n’est pas envisageable de produire un identifiant en utilisant tous les 232 ≈ 4 ·109

challenges possibles. La question est alors de savoir si c’est possible de choisir, par exemple,
k1 · 322 challenges pour obtenir une entropie de k2 · 322 bits, avec k1 et k2 des constantes
qui restent à déterminer.

xx RÉSUMÉ EN FRANÇAIS

Introduction

Buying products on the Internet, chatting online with friends and family, or working
remotely from anywhere on earth: these activities are part of our everyday life. They would
not be possible without modern cryptography. It prevents our credit card information
from being stolen, our private conversations to be shared with strangers, and industrial
secrets from being revealed.

Such accidents still happen, because getting the security of any system right is a
challenging problem. The news is filled with reports of data breaches, credentials thieves
and stolen credit card numbers. However, the underlying cryptography is almost never
at fault. For instance, 20 years after is has been standardized, the best-known attacks
against the popular Advanced Encryption Standard (AES) reduce its theoretical security
by a mere two bits. While the key sizes for RSA have had to be increased in order to
account for algorithmic advances and increases in computing power, large key sizes (2048
bits and above) are still considered out of reach for even the most powerful attackers. As
of today, the confidence in the currently deployed cryptographic algorithms remains high.

But the same cannot be said for the implementations of these cryptographic algorithms.
The first practical side-channel attacks against a specific implementation of AES were
published in 2005 and improved ever since. A weak method of generating private RSA
keys, revealed in 2017 under the name ROCA vulnerability, compromised the security of
millions of smartcards and other sensitive devices. Cache-timing side-channels have been
used to break all kinds of cryptographic algorithms: RSA, ECDSA, AES, BLISS,

Therefore, securing the concrete implementation of cryptographic algorithms constitutes
today a major challenge. While there are proofs of security for numerous cryptographic
algorithms, less effort has been put into at least verifying that the implementations are
also safe.

A significant number of causes can compromise the security of an implementation:
timing leaks, data leaks through the cache, numerous ”classical“ programming errors, bad
handling of edge cases and invalid values, . . .Whether a given cause leads to a cryptographic
break depends on numerous external factors: the hardware on which the program runs,
the presence or absence of an operating system, the type of operating system, the general
mitigations that have been implemented, and more.

Furthermore, the emergence of quantum computers poses a new threat to traditional
cryptographic algorithms. Public-key cryptography needs to be redesigned in order to resist
against attacks using these new machines when they will become available. Algorithms that
can resist against quantum computers are known as post-quantum cryptography algorithms,
and designing such algorithms is currently an active field of research. Implementing these

xxi

xxii INTRODUCTION

algorithms securely is another challenge. Indeed, the implementations are very recent
and have therefore been analyzed much less than the implementations of traditional
cryptographic algorithms. The risk of remaining implementation errors or side-channel
leaks is quite high.

Verifying that an implementation cannot be compromised therefore amounts to a
daunting task, given the variety of existing implementations and the compounding com-
plexity of the causes and contexts that need to be taken into account. While it is possible
to verify that an implementation is safe on a specific context—processor model and version,
operating system version and configuration—the effort becomes almost infeasible when
multiplied by the number of different contexts that can be encountered in the real world.

A more feasible approach consists in first abstracting the whole complexity of the
context in order to create a simpler model, and then show interesting properties on this
model. The drawback incurred by this approach is a loss of precision in the analysis.
However, the results obtained by such an analysis are much more broadly applicable–on
every system that fits the description of that model.

A similar approach can be applied to another crucial component of implementation
security: the generation of keys. It ultimately requires a physical source of randomness,
but assessing the entropy of that source with high confidence is not trivial. Statistical
test suites can help to find some biases but offer no theoretical guarantees for the quality
of the random generator. However, one can abstract the architecture of the generator in
order to obtain a model which these guarantees can be derived from.

In this thesis, we will apply this line of reasoning to two independent problems in
security, one in software security, the other in hardware security. The first half of this
thesis will explore the automatic detection of cache-timing attacks. It will feature a tool
written during my thesis that performs abstract execution of programs written in the C
programming language in order to detect potential cache-timing leaks, as well as extensive
case reports highlighting its performance on real-world code and in particular on the
implementations of post-quantum cryptography algorithms.

The second half of this thesis deals with physically unclonable functions, or PUFs. These
are hardware security primitives that ideally exhibit unpredictable physical properties
(propagation delays, bias in memory cells, . . .) that can be exploited to obtain a consistent
identifier (a bitstring) from a given PUF. Two fundamental characteristics of a PUF
are therefore the measure of unpredictability of the properties and the consistency of its
response. These two characteristics are the subjects of two chapters in the second half of
this thesis. The distribution of both the PUF characteristics and the measurement noise
are modeled for a certain class of PUFs, which allows us to compute their entropy—a
measure of the unpredictability—and the bit error rate (BER) of the identifier generated
using different methods—a measure of the response consistency. For the first time, this
provides theoretical guaranties on the PUF behavior, allowing for more efficient designs
and higher confidence in the security of the PUFs.

This manuscript is divided into six chapters, of which the first three cover cache-timing
side-channel attacks and the next three cover PUFs.

Chapter 1 consists of an introduction to cache-timing side-channel attacks. These
attacks threaten the security of cryptographic implementations executed on any processor

xxiii

that possesses a cache. Because the cache is often shared between programs executing
on the same processor, sometimes even on different processor cores, they constitute a
shared state between an attacker and its victim process. If the state of the cache depends
on sensitive information handled by the victim process, such as cryptographic keys or
sensitive randomness, then the attack can break the security of that implementation by
strategically probing the cache. This is the case when the victim process branches on a
sensible value, or accesses memory at an address that depends on a sensitive value (such
as an array access at a sensitive offset). Several ways of probing the cache have been
published during the last few years, and this chapter summarizes a few of them. They
differ in both scope (vulnerable cache type, applicable processor families) and performance
(period between two probing events, false positives and negatives).

Chapter 2 presents a methodology for automatically detecting potential cache-timing
leakages in programs written in the C programming language. It consists in a static
analysis in two parts, which are performed in parallel. The first is a dependency analysis,
which determines which variables might contain sensitive values. It has to take into account
pointer aliasing, dependency tracking through function calls, and indirect dependency
flow. The second part consist in recording which variables govern the program control
flow and which ones are used to compute addresses for memory accesses. If such a variable
depends on a sensitive value, a leakage is reported. This methodology is implemented in
the tool STAnalyzer which is available from https://gitlab.telecom-paris.fr/sen/
stanalysis.

Chapter 3 summarizes the results obtained with this tool on several real-world examples:
known cache-timing vulnerabilities on the NSS and wpa_supplicant libraries, as well as
most candidates of the first and second-round candidates for the NIST post-quantum
cryptography standardization process. All known vulnerabilities were caught by this tool,
although a larger number of unrelated warnings were also triggered by the NSS library.
Some may be false positives, while others are potential vulnerabilities that cannot be ruled
out by static analysis. A large number of the first round post-quantum candidates found
to have potential vulnerabilities, while the updated implementations of the second round
candidates were generally more robust to cache-timing attacks. The tool proved to be
useful on these real-world examples, uncovering real issues without being overwhelmed by
false positives.

Chapter 4 introduces PUFs, and explains what they are used for and how they can be
build. Several kinds of PUFs are presented, with a special emphasis on so-called delay
PUFs. These exploit delay differences in oscillating circuits, so that each manufactured
circuit exhibits a different oscillation frequency. Numerous PUF designs are based on this
basic building block: arbiter PUF, ring-oscillator (RO) PUF, RO-Sum PUF, loop-PUF
among others. These designs are described in more detail in this chapter.

Chapter 5 presents results about the reliability of PUFs, especially delay PUFs. Because
of inherent fluctuations of the oscillating frequency, different PUF measurements might
lead to different identifiers, which defeats the purpose of a PUF. The authentication of the
PUF might fail, and if the error rate is too high, it might never succeed at all. Different
methods to improve the PUF reliability are presented in this chapter. For instance, one
can filter out “unreliable” elements from the PUF response. After proposing a model for

xxiv INTRODUCTION

the PUF noise and delay distribution, we present a closed-form formula to determine the
new error rates after filtering. This provides a more efficient way to predict the reliability
of a PUF and therefore choose the right design parameters for a given application. Another
method that consists in changing the way delay measurements are performed in order to
obtain the PUF identifier is also presented, and we compute the reliability for this method.
The theoretical results are then compared with measurements from real PUF circuits.

Chapter 6 presents results about the entropy of delay PUFs. The abstract description
of these PUFs reveals a link between them and a class of boolean functions called boolean
threshold functions (BTF). Using theoretical results from the study of BTFs, we derive an
efficient algorithm that allows us to estimate the entropy of the PUF distribution up to
PUFs of size 10. These results suggest a quadratic increase in entropy with the PUF size.
While we show that the entropy is indeed bounded by a quadratic function of the PUF
size, the asymptotic behavior for the Shannon entropy remains an open question.

Chapter 1

State of the Art in Cache-Timing
Attacks

Know yourself and know your enemy, and
you will never be defeated.

Sun Tzu, The Art of War.

Modern CPUs utilize numerous optimizations in order to increase their performance.
The instructions that need to be executed and the data that these instructions are working
with need to be loaded from memory. Usually, these reside in the main memory or RAM.
However, accessing the RAM is slow, taking about 100 to 150 cycles before the first bytes
can be read [2]. In order to overcome this bottleneck, CPUs include several layers of much
faster cache, with access times as low as 4 cycles [2]. Programs that make use of them can
see a significant improvement in performance. However, the lack of isolation between the
cache lines accessed by different processes (see Section 1.1.2) can lead to security risks, as
described in the next sections.

The security threat created by the caches is exacerbated by other performance opti-
mizations. Speculative execution is a mechanism by which the CPU executes instructions
before it can be determined whether they should be executed or not. For instance, in-
structions that try to access data for which the process has no access rights should cause
the process to be aborted. Because checking for the access rights takes time, and access
rights violations are fairly rare in most programs, it makes sense, from a performance
point of view, to continue executing instructions while simultaneously checking for the
access rights. In case of a violation, the executed instructions are then rolled back before
the process is stopped. Speculative execution can also happen when the CPU executes
a branching operation, which is used to implement conditional statements and loops.
Because determining which branch should be executed (the if or the else branch, loop
continuation or loop exit) might also be slow in some situations, the CPU can choose
to execute the instructions in one branch, and roll back the state if it chose the wrong

1

2 CHAPTER 1. STATE OF THE ART IN CACHE-TIMING ATTACKS

branch. However, the cache state is often not rolled back, and it might reveal sensitive
informations. This is the main cause of the Spectre and Meltdown attacks, major security
vulnerabilities that affected a wide variety of computer systems around the world [3, 4],
which exploit speculative execution respectively after a branch misprediction and an access
right violation.

The remainder of this chapter is organized as follows. First, I will explain the cache
architecture of modern CPUs and the security implications of their organization. I will
then present different methods that allow an attacker to infer information about the cache
state, before presenting a brief overview of published attacks that use these methods.

1.1 General Computer Architecture Background

1.1.1 Virtual Memory
The OS has to deal with two memory spaces: physical and virtual memory.

Physical memory represents the memory available to the operating system, and depends
on the hardware it runs on. It corresponds to the amount of RAM available to the processor
(plus, optionally, some reserved hard disk space which is not relevant to the discussion).

Processes running on the OS, however, do not have directly access to the physical
memory. Instead, memory accesses are done via virtual memory, and the translation
between physical and virtual memory is performed by the OS. There are two main reasons
for this design. Firstly, it reduces the complexity of the memory allocation for processes, as
they would otherwise need to know what memory is used by all other processes. Second,
it allows for isolating the memory between processes, so that one rogue process cannot
read or modify sensitive data of another process.

The operating system presents to each process a virtual address space of size 264 bits,
which might or might not be addressable in its entirety1 . When a process accesses a
valid virtual address for the first time, the operating system will provision some physical
memory, and record the mapping between the virtual address, the identifier of that process,
and the address of the provisioned physical memory. Since provisioning and recording
the mapping causes a delay, it is not done at the individual byte level. Rather, a whole
page is provisioned at once. Their size is usually 4 KiB but depending on the system
configuration, may be bigger. The mapping between virtual and physical addresses is
encoded in so-called page tables, and cached in the Translation Lookaside Buffer (TLB).

1.1.2 Cache Architecture
A cache is a reserved set of fast memory, used to improve the performance of a CPU.
Contrary to the RAM, programs cannot directly access the content of a cache. Instead,
every time the CPU needs to fetch data from RAM, it first checks whether it is already
present in one cache. If so, the program experiences a lower latency for accessing the data
- this is called a cache hit. If not, the latency is higher, but the data is saved into one

1For 64-bit operating systems. In practice, only 248 bits are addressable on most common processors.

1.1. GENERAL COMPUTER ARCHITECTURE BACKGROUND 3

or more caches in order to speed up subsequent memory accesses, and this constitutes a
cache miss.

Albeit some details of the cache implementation are hidden by the CPU manufacturers,
the general behavior is well documented and of particular importance for programmers
wishing to optimize their implementation, as well as those, as we will see, that care about
their security.

1.1.3 Cache Hierarchy

L3 (unified, inclusive)

L1d L1i

L2 (unified)

Core #0 / #1

L1d L1i

L2 (unified)

Core #2 / #3

L1d L1i

L2 (unified)

Core #4 / #5

L1d L1i

L2 (unified)

Core #6 / #7

Figure 1.1: Cache architecture on a modern hyper-treaded quadcore processor

Modern processors make use of three distinct levels of cache, named L1, L2 and L3.
The L1 cache is the fastest, but also smallest, of the three levels. Every processor

core possesses two L1 caches, one for caching data (L1D cache), the other for caching
instructions (L1I cache). Their size is in general around 32KiB each, and the latency
can be as low as 4 cycles [5, §2.1.3]. This cache being private to each physical processor
core, processes executing on distinct cores do not have access to each other’s L1 cache.
However, two processes executing on different virtual cores, but on the same physical core
on hyper-threaded processors, do share the L1 cache.

The L2 cache is slightly larger than the L1 cache, at around 256KiB. It has also a
higher access time of 12 cycles [5, §2.1.3], and is private to each physical processor core.
Only one cache for both data and instructions is present on modern processors.

Finally, the L3 cache (or LLC, for Last Level Cache) is shared among all processor
cores. Its size varies depending on the CPU model, but it is generally comprised between
8MiB and several dozen MiB [6] for modern consumer-oriented CPUs. Also, the L3 cache
is inclusive, that is, any data stored in the L1 or L2 cache of any core must be also present
in the L3 cache.

4 CHAPTER 1. STATE OF THE ART IN CACHE-TIMING ATTACKS

Both the L2 and L3 caches are unified, meaning they can hold indifferently instruction
or data.

1.1.4 Cache Organization
Caches are organized into so-called cache lines (sometimes called cache blocks). The cache
line is the smallest unit of memory that is replaced in the cache, and their size is usually
64 bytes. Whenever data is loaded from the RAM into the cache, or from one cache to a
smaller cache, the data corresponding to a whole cache line is transferred. Similarly, when
a cache line is evicted from the cache, due to a special assembly instruction (clflush) or
to make room for new data, the whole cache line is removed at once. This mechanism
serves to reduce the number of transfers between the main memory and the caches.

Cache lines themselves are organized into cache sets. The 64 bytes starting at a given
64-byte aligned (physical or virtual) address can only be saved to a limited number of
cache lines. These cache lines form the cache set of that address. For a given cache, the
number of those cache lines is fixed and the same for every address, but it might vary
between the different caches of the same processor. If there are n possible cache lines for a
given address, the cache is said to have a n-way associativity (see Figure 1.2). If this set
is determined from the physical address of the concerned memory region, then it is called
physically indexed, and virtually indexed otherwise.

Cache lines
line 1
line 2
line 3
line 4

Addresses
add 1
add 2
add 3
add 4

1st cache set

2nd cache set

Figure 1.2: Cache lines and sets (2-way associativity)

Under certain conditions, data can be loaded into the cache even though no data from
the cache line has been accessed. This is known as data prefetching [5, §2.3.5.4]. For
instance, if the memory is accessed sequentially, two cache lines might be loaded into the
cache on every cache miss - the line corresponding to the accessed data, as well as the
next 64 bytes of memory (or the previous ones, if the memory is accessed sequentially but
in reverse order).

1.2 Security Implications of the Cache
The cache constitutes a shared resource between processes. By default, no isolation is
enforced between cache memory belonging to different processes. This opens up the
possibility of side-channel attacks exploiting the cache.

If an attacker is able to determine the state of the cache after or during the execution
of a program (see Section 1.3 for details), and if the state of the cache depends on some
sensitive values handled by the program, then the attacker is able to gain knowledge about

1.2. SECURITY IMPLICATIONS OF THE CACHE 5

these sensitive values. We speak of leakages if the cache state depends on sensitive values.
Leakages arise for mainly two reasons.

1.2.1 Secret-dependent Memory Access
One reason for leakages to happen are secret-depend memory accesses. These occur if a
program accesses memory at an address that depends on secret data, either via pointer
arithmetic, or by accessing an array at a secret-dependent index. For instance, one round
of the popular AES [7] encryption algorithm consists in a bytewise substitution, which is
most efficiently implemented using a lookup table, and the index of the lookup operation
depends on the secret key.

Secret-dependent memory accesses can lead to two kinds of vulnerabilities caused by
the cache. First, the total execution time of the victim process might vary depending
on sensitive data. For instance, this behavior has been demonstrated by Bernstein on a
(now outdated) AES implementation found in OpenSSL [8] and lead to a full key recovery
attack. It is due to the fact that the number of cache misses during the execution of
an AES encryption varies depending on the key and plaintext. Therefore, although the
number of instructions executed during AES encryption remains constant, the encryption
time varies.

The second kind of vulnerability can only be exploited by an attacker running unprivi-
leged code on the same processor as the victim. If the victim and attacker processes share
the same cache, then the cache-access pattern of the victim can influence the behavior of
the attacker process, and vice-versa.

For instance, the attacker process could identify a memory address that might be used
by the victim, depending on certain properties of sensitive data. They then identify an
other memory address that maps to the same cache line as the memory of the victim
process2 (Figure 1.3). When the victim process indeed accesses that specific address, it
occurs a cache-miss and evicts the cache line owned by the attacker process (Figure 1.4).
This has two effects: first, the attacker process will observe that loading the memory will
now take longer, as the requested data is not in the cache anymore and has to be fetched
from slower main memory (Figure 1.4). Second, the victim process incurs a cache miss
that it would not have incurred without the attacker process. Therefore, the execution
time of the victim might depend on which address is repetitively accessed by the attacker.
If they are able to correlate this behavior with sensitive data manipulated by the victim,
then they might be able to recover it.

1.2.2 Secret-dependent Branching
The second reason for leakages to occur are secret-depending branching operations. These
are caused by programs executing certain instructions conditionally on some sensitive
data. For instance, a loop can be executed a variable number of times, or the condition of
an if-else branch could depend on that sensitive data. In some cases, this can cause the
execution time of a program to vary depending on sensitive information, and such behavior

2or a set of n memory addresses that map to the n possible cache lines of the victim memory address
in case of a cache with n-way associativity

6 CHAPTER 1. STATE OF THE ART IN CACHE-TIMING ATTACKS

RAM

Cache

Victim Attacker

Figure 1.3: Victim and attacker process access data at different cache lines.

RAM

Cache

Victim Attacker

Figure 1.4: Victim accesses memory mapped to the cache line observed by the attacker.

RAM

Cache

Victim Attacker
×

Figure 1.5: Attacker incurs a cache miss because its data has been evicted by the victim.

has been exploited in numerous attacks, to construct decryption oracles for TLS [9, 10] or

1.2. SECURITY IMPLICATIONS OF THE CACHE 7

to attack various cryptographic primitives [11, 12].
Cache-timing attacks are even more powerful, and can reveal information about sensitive

data even when the two branches of an if-else branch execute the same functions [13].
This is due to the fact that any instruction executed by a program is saved into the cache,
so that when the instruction is executed again, it does not need to be loaded from main
memory. However, this implies that the cache state depends on the instructions that have
been executed. For instance, two branches can call the same functions, but the instructions
preparing the function arguments and executing the function calls are considered different
for caching purposes. Therefore, an attacker that can determine the cache state of the
victim might be able to determine which branch was taken.

1.2.3 Exploiting Cache-Timing Leakages
In many cases, a successful cache-timing attack can allow the attacker to fully recover the
victim key. How this is done, however, depends on the algorithm executed by the victim
and the sensitive information leaked to the attacker.

Leakage of the key On some implementations, the state of the cache directly depends
on the key. This is for instance the case for unprotected RSA implementations. In RSA,
the decryption step consists in a modular exponentiation with the secret key. The most
straightforward implementation consist in implementing this operation via modular fast
exponentiation, also called “square-and-multiply”.

Algorithm 1.2.1 RSA “square-and-multiply”
Input: n: public key, d: private exponent, c: ciphertext
Output: cd mod n
x← 1
for i = blog2(d)c down to 0 do

x← x ∗ x mod n
if d& (1� i) 6= 0 then

x← c ∗ x mod n
end if

end for
return x

The total execution time depends on the secret exponent d, but it only depends
on the number of bits set to 1. In contrast, a cache-timing attack with high enough
resolution would be able to determine for each round of the loop whether the extra
modular multiplication by c is executed or not. However, the timing variations were
actually enough to retrieve the secret key in older reference implementations of RSA [11].

Because of these vulnerabilities, “square-and-multiply” has not been used to imple-
ment RSA decryption in a long time, and other fast exponentiation algorithms such as
Montgomery multiplication [14] are preferred. These resisted simple timing attacks but
were ultimately broken using modern cache-timing attacks [15, 16].

8 CHAPTER 1. STATE OF THE ART IN CACHE-TIMING ATTACKS

Leakage of the nonce In some cryptographic implementations, protecting the random
nonce generated during the signature is of paramount importance. This is mainly the
case for ECDSA signatures [17] using non-deterministic nonces. Nonce misuse was used
in order to break digital signatures on the Sony PlayStation 3 [18] or to steal Bitcoins
from insecure Android wallets [19]. Similarly, recovering even partial or approximate
information about the nonce allows to recover the secret key [13, 20, 21]. In [13], a
cache-timing attack is performed on an ECDSA implementation using Montgomery ladder
for point multiplication. The pseudocode for this procedure is given in Algorithm 1.2.2.
The algorithm works in a similar fashion as traditional fast multiplication, but does not
exhibit timing variations as a point addition and a point doubling is executing for every
bit of the input parameter k, regardless of the value of that bit. However, the code still
branches on the value of the bits of k. When the instructions on the two branches map to
distinct cache lines, as is the case in the OpenSSL implementation attacked by Yarom et
al., then a cache-timing attack can reveal the value of k. Once most bits of the nonce are
known, the private key can be recovered.

Algorithm 1.2.2 Elliptic curve point multiplication using Montgomery ladder
Input: k: nonce ∈ N, P : curve point
Output: kP
R0 ← O . Additive zero
R1 ← P
for i = blog2(k)c down to 0 do

if n& (1� i) = 0 then
R1 ← R0 +R1
R0 ← 2R0

else
R0 ← R0 +R1
R1 ← 2R1

end if
end for
return R0

Leakage of the randomness More generally, the randomness used to perform crypto-
graphic operations must be kept secret when it is not part of the output. When side-channel
leaks reveal this private randomness, then the key might be recovered. Such a vulnerability
was exploited in order to break implementations of the post-quantum signature scheme
BLISS [22] (as well as the variant BLISS-B [23]) using cache-timing attacks [24, 25]. We
will here quickly describe the attack against the strongSwan [26] implementation of BLISS.

In BLISS, public and private keys are elements of the ring R2q = Z2q[x]/(xn + 1).
Elements of this ring we will be denoted in bold for the remainder of this section. In
particular, the public key is an element a ∈ R2q while the secret key is a pair of sparse
elements (s1, s2) ∈ R2

2q. Crucially, the signature contains an element of R2q equal to

z1 = y1 + (−1)bs1 · c mod 2q

1.2. SECURITY IMPLICATIONS OF THE CACHE 9

where y1 is generated according to a n-dimensional discrete Gaussian distribution, b is
chosen uniformly at random in {±1}, and c ∈ {0, 1}n ⊂ R2q corresponds to a hash of
the message and other values (and is also included in the signature). Now, because the
elements of c are equal to 0 or 1, the ring multiplication s1 · c actually correspond to
a vector-matrix multiplication s1 · C where C is a matrix with entries in {−1, 0, 1}. In
particular, the i-th coordinate of s1 · c is equal to the scalar product 〈s, ci〉 where ci is the
i-th column of C.

The cache-timing attack now works as following. The generation of y1 is done
component-wise using a precomputed cumulative density table which contains the proba-
bilities that an integer sampled from a discrete half-Gaussian is lower than k for values
up to a fixed cutoff (the sign of the Gaussian is sampled separately). The strongSwan
implementation of BLISS has the distinctive property that this table is not accessed when
the sampled value is equal to 0, and this event can therefore easily be detected using a
cache-timing attack.

Now suppose that for a given i, we know thanks to the cache-timing attack that
y1,i = 0 and we also have that z1,i = 0 by inspecting the signature. We then deduce
that 〈s1, ci〉 = 0 mod 2q. Furthermore, due to the sparseness constraint in s1 and the
choice of q in the actual implementations, the absolute value of 〈s1, ci〉 is much smaller
than q and therefore, this equality must hold in Z, not merely in Z2q. Because ci can
also be recovered from the signature, we have learned one vector of the nullspace of s1.
Once enough such vectors have been collected, s1 can be computed, either by solving a
system of linear equations, or by applying the LLL algorithm [27] in order to cope with
the measurement errors that might occur. Because s2 can actually be recovered from s1,
the key is then fully recovered.

1.2.4 Avoiding Cache-Timing Attacks
Several countermeasures have been proposed in order to thwart cache-timing attacks. Most
of them target specific methods to read the cache state. For instance, disabling simultaneous
multithreading (SMT) makes reading the L1 cache more difficult (see Section 1.3.1), and
disabling memory sharing between processes can avoid attacks based on the clflush
instruction (see Section 1.3.3). However, these countermeasures reduce the performance of
the whole system, and do not prevent all attacks. Other suggestions include performing
cache flushes after any process finishes, which would only work in conjunction with the
aforementioned techniques and would further slow down the system, or degrade the
performance of available timer functions, which has been tried and was circumvented [28].

Adding more randomness to the cryptographic operations is another possibility. One
can either resort to masking, as is done to prevent physical side-channel attacks [29], or
add random slowdowns in order to minimize timing differences. When using masking,
one has to be careful to avoid higher-order attacks [30] which could reveal the mask and
render the countermeasure useless. Random slowdowns have to be implemented with care:
the maximum slowdown and the granularity of the waiting periods need to be sufficiently
high [10]. Also, they mainly work against timing attacks, and it is not clear how they can
prevent cache-timing attacks from succeeding.

An other direction consists in detecting cache-attacks rather than preventing them.

10 CHAPTER 1. STATE OF THE ART IN CACHE-TIMING ATTACKS

Most measurement methods induce a higher than usual number of cache misses, and these
can be detected by using performance counters [31]. However, it is not clear what to do
once a cache-timing attack is detected - if the system shuts down, then the false positive
rate of such methods needs to be extremely low for them to be useful. Furthermore, new
measurement methods that circumvent these detectors could be designed, rendering them
useless.

Finally, the most promising solution is to implement cryptographic algorithms without
secret-dependent branching and memory accesses. This solution provably protects from
cache-timing leakages and can be implemented without any other hardware or software
modifications. Verification tools that assess the absence of leakages can provide a much-
needed help for implementing constant-time algorithms. We designed and implemented
such a tool. It is described in Chapter 2 and various results obtained thanks to the tool
are provided in Chapter 3.

1.3 Measurement Methods
Cache-timing attacks exploit the dependency between the state of the cache and the value
of sensitive data of a program, such as keys or security-relevant randomness. However, an
attacker cannot directly access the state of the cache. In order to determine which memory
addresses were accessed by the victim program, indirect methods have to be employed.

1.3.1 PRIME+PROBE
The first method that was described to perform cache-timing attacks is presumably
PRIME+PROBE [32]. The first versions targeted the L1 cache, and therefore, the
processes of the victim and the attacker need to run on the same physical core. This
method is comprised of two phases:

• PRIME phase: the attacker accesses memory from its own memory space in order to
completely fill the L1 cache with data under its control. They first need to determine
how memory addresses are translated into cache sets (see Figure 1.2), and then
accesses one memory address per cache set.

• PROBE phase: after the victim process has executed, the attacker records the access
times for all the memory addresses accessed during the PRIME phase. If the access
time is short, the data is still present in the cache. Therefore, the victim process has
not accessed a memory address that maps to the same cache set. On the contrary, if
the access time is slow, the data was evinced from the cache, and thus the victim
process did access a memory address that maps to the same cache set. After all
addresses have been accessed and the access time recorded, the attacker process
waits for a while for the victim to execute before performing a new PROBE phase.

The order of operations is therefore:
PRIME 7→ wait 7→ PROBE 7→ wait 7→ PROBE . . .
Because the L1 data and instruction caches are separated on most Intel and AMD

processors, an attacker targeting the L1 instruction cache must execute instructions at

1.3. MEASUREMENT METHODS 11

addresses that will map to all the addresses in the monitored cache sets, instead of just
accessing the memory [33].

The main advantage of the PRIME+PROBE attack is that it does not need shared
memory between the attacker and the victim process. Only the cache needs to be shared,
which requires the two process to run on the same physical core. On the other hand,
PRIME+PROBE is fairly slow compared with newer methods, and is also noisier. Indeed,
the attacker cannot make the difference between two memory accesses (or instruction
executions) of different virtual addresses that map to the same cache set. This method
therefore does not achieve a granularity of one cache line. Also, background tasks unrelated
to the victim process may also access the same cache sets as the victim, adding more noise
to the measurements.

PRIME+PROBE on L3 cache The PRIME+PROBE attack has also been extended
to the L3 cache [34, 35, 36]. The main advantage is that this attack works across cores
and even VMs [36] with no simple mitigation. However, two complications arise when
applying PRIME+PROBE to the L3 cache:

• The L3 cache is much larger than the L1, at a few MiB compared to about 32 KiB
for the L1 caches. Therefore, priming and probing the whole L3 is much slower. This
would reduce the time-resolution of this method by several orders of magnitude.
Therefore, this attack requires a profiling phase, in which the attacker determines
which cache sets are relevant for their attack.

• The L3 cache of modern Intel processors is partitioned into so-called slices. These
slices span several cache sets, and the slice which will contain a given data will
depend on its physical address. However, the function that maps physical addresses
into slice indices is not public and depends on the processor family. However, this
mapping can be reverse-engineered [37, 38, 35, 39], or the attack can be build in
such a way to be independent of this mapping [34].

PRIME+ABORT A variant of PRIME+PROBE is called PRIME+ABORT [40].
It uses Intel’s Transactional Synchronization Extension (TSX) to improve the timing
resolution of the PRIME+PROBE side-channel, and targets either the L1 or the L3 cache.

TSX allows a program to execute a series of instructions inside a transaction, such
that either all instructions are executed, or none of them. Because any operation that
writes to memory during a transaction might be reverted during an abort, the processor
needs to buffer all write operations that occur during the transaction. These operations
are actually buffered in the L1 data cache.

Therefore, an issue occurs if any cache line that is written during the transaction is
evinced from the L1 cache. This causes the transaction to abort, and causes a callback
to a user-defined function. The PRIME+ABORT measurement techniques exploits this
design in order to improve on the PRIME+PROBE techniques. It works as follows for the
L1 cache:

• PRIME: the attacker starts a transaction, and writes to addresses spanning a whole
cache set of L1 memory. Then, they wait in a loop. This phase is similar to

12 CHAPTER 1. STATE OF THE ART IN CACHE-TIMING ATTACKS

the PRIME phase from PRIME+PROBE, except that it is done inside a TSX
transaction, and the attacker writes to the memory addresses, instead of reading
from them. Also, only one cache set will be monitored.

• ABORT: When the transaction aborts, the attacker knows that a cache line from the
monitored cache set was evicted. The attacker records this event, and then executes
the PRIME code again.

There are mainly two advantages for this method. The first one is that no profiling
phase is necessary to determine thresholds for “slow” and “fast” memory accesses. Second,
there is a performance improvement over PRIME+PROBE. Indeed, the overhead of the
attack is lower, as there is no probing phase, and the callback on transaction abortion is
very fast. As a consequence, PRIME+ABORT is less likely to miss memory accesses from
the victim. Furthermore, according to their authors [40], the number of false positives is
also lower.

The L3 variant is similar, and shares the weaknesses with the PRIME+PROBE on the
L3 cache. Notably, caches slices need to be determined before the attack can be launched.
The other difference with the L1 variant is that a transactional abort happens also when
data that was read during a transaction is evinced from the L3 cache, as opposed to only
data that is written to the L1 cache. During the PROBE phase, the attacker therefore
only needs to read data, in the same way as in the PRIME+PROBE technique.

1.3.2 EVICT+TIME
EVICT+TIME [32] infers the cache access pattern of a victim process by slowing it down
selectively. The attack works as follows:

• Setup: the attacker executes the victim process, ensuring that the cache is filled
with data used by that program.

• EVICT: using the same technique as PRIME+PROBE, the attacker pollutes a
specific cache set, replacing data cached by the victim program with its own.

• TIME: the attacker runs the victim process again and measures the time it takes to
complete. A fast execution time reveals that the evinced data would not have been
accessed during the execution of the victim.

This attack works best on the L1 cache, because determining all addresses belonging
to a given cache set is straightforward. While this attack is hard do detect and mitigate
against, there are several shortcomings. Only the first access to the evinced data is slowed
down (if it is accessed), so the attacker cannot distinguish between one or more accesses to
the targeted cache set. Also, only one measurement is possible per execution of the victim
process. More modern techniques, such as CacheBleed and MemJam (see Section 1.3.4)
slow down the victim program proportionally to the number of memory accesses to the
targeted addresses. Furthermore, they allow to target specific addresses even inside a
cache line, instead of targeting all addresses belong to the cache set.

1.3. MEASUREMENT METHODS 13

1.3.3 FLUSH+RELOAD
The FLUSH+RELOAD [41] technique is a more modern measurement technique, that
targets the L3 cache. The main advantage is that this method is able to monitor individual
cache lines, as opposed to whole cache sets as in the different PRIME+PROBE variants. It
is also faster, easier to implement, and subject to a low rate of false positives. Furthermore,
several cache lines can be monitored at the same time. It works as follows:

• FLUSH: the attacker select a series of virtual addresses corresponding to data shared
with the victim. This can be code shared with the victim, if they make use of
dynamically-linked libraries, or read-only data if the OS uses page sharing. They
then execute the clflush instruction on these addresses, causing them to be evinced
from the L3 cache, and thus also from the L1 and L2 caches due to the inclusiveness
of the L3 cache.

• RELOAD: After the victim process has executed for a while, the attacker accesses the
addresses selected in the first phase. If the access is fast, then the victim has accessed
data corresponding to the same address. Else, because the data had previously been
evinced from all caches, the access is slow. Once all addresses have been accessed,
the attacker executes the FLUSH phase again.

The order of operations is therefore as follows:
FLUSH 7→ wait 7→ RELOAD 7→ FLUSH 7→ wait 7→ RELOAD 7→ FLUSH . . .
Because this attack targets the L3 cache, it works in a cross-core setting: victim and

attacker do not need to execute on the same physical core. The only weakness of this
method is that victim and attacker need to share code. If page sharing is disabled by the
OS, this can only happen when the victim uses dynamically-linked libraries.

FLUSH+FLUSH FLUSH+FLUSH [42] is a variant of the FLUSH+RELOAD attack.
They mostly share the same weaknesses and advantages, with FLUSH+FLUSH having
a slightly lower precision but also a lower latency. Furthermore, it causes far less cache
misses than FLUSH+RELOAD, making an attack harder to detect.

In this attack, the RELOAD phase is replaced by a second, modified FLUSH phase:

• FLUSH2: After the victim process has executed for a while, the attacker times the
clflush operation on the selected addresses. If the operation is fast, then nothing
needed to be done: the data was not present in the cache, and the victim did not
access it. If it was slower, then the data was present in the cache, because it was
accessed by the victim process.

The order of operations is therefore as follows:
FLUSH 7→ wait 7→ FLUSH2 7→ wait 7→ FLUSH2 . . .

1.3.4 CacheBleed and MemJam
All previously listed measurement techniques have a resolution of either a cache line, or a
cache set. CacheBleed [43] and MemJam [44] are two techniques that provide a resolution
finer than a cache line - up to 4 bytes in the case of MemJam.

14 CHAPTER 1. STATE OF THE ART IN CACHE-TIMING ATTACKS

CacheBleed CacheBleed uses cache bank contention to slow down a victim program
that accesses memory located at a specific offset of a cache line. In order to speed up
cache access, older Intel architectures (up to Ivy Bridge) make use of so-called cache banks.
Every cache line is divided into several cache banks, which can be accessed concurrently.
Therefore, if one program accesses data at different offsets of a cache line, the data can be
fetched from the cache simultaneously. However, concurrent accesses to the same cache
bank causes one of the two accesses to stall, increasing the latency. The authors use this
observation to break the RSA encryption routine from OpenSSL 1.0.2f, which accesses the
same cache lines, but not cache banks, regardless of the secret key.

MemJam Newer Intel processors (Haswell architecture and newer) do not use cache
banks anymore. However, the MemJam technique is able to achieve a similar functionality
as CacheBleed using so-called false dependencies.

True dependencies arise on a write and a subsequent read on the same memory address.
These two operations cannot be reordered, because the result of the read operation depends
on that of the write operations. Therefore, there is a dependency between those operations
- the read must be executed after the write - and those two operations cannot be executed
simultaneously. Therefore, executing those two operations is slower than a write and a
read to two different memory locations.

False dependencies can arise when two independent operations are wrongly considered
as being dependent by the CPU. One such type of false dependencies is called 4K aliasing [5,
§11.8], where a write and read to two distinct memory addresses that are a multiple 4096
bytes apart are falsely considered by the CPU as being dependent.

Because the translation between virtual and physical memory is done at the page level
(see Section 1.1.1) which usually have a size of 4096 bytes, the 123 last bits of the physical
and virtual memory addresses are identical. Therefore, addresses that differ in the last 12
bits cannot refer to the same physical address. However, if the last 12 bits are identical,
aliasing is possible, and verifying whether the two virtual addresses refer to the same
physical address requires to perform a virtual-to-physical-address translation first. Because
of the additional delay introduced by the translation, the CPU considers that a read and
a write operation to these addresses are dependent, and starts executing the first one
instead of waiting for the result of the translation before deciding whether both can be
executed simultaneously. The consequence is that a write and a read these two addresses,
even if they do not represent the same data, are slower than operations to addresses that
are not a multiple of 4096 apart.

MemJam exploits this additional latency by selectively slowing down a victim process,
depending on the last bits of the addresses being accessed. It works by repetitively writing
data to a given address, which slows down memory accesses to addresses being a multiple
for the victim process. In order to be effective, the attacker and victim process must share
the same physical core, and should thus execute on the two virtual cores of some physical
hyper-threaded core.

The granularity of the attack is thus finer than a cache line, at 4 bytes instead of
64 bytes. Indeed, all memory accesses fetch a word-sized chunk of memory, totaling

312 = log2(4096)

1.4. ATTACK IMPROVEMENT METHODS 15

4 bytes, thus memory accesses that are part of the same word-sized chunk cannot be
distinguished. This method allows the authors to break various block ciphers from
Intel’s IPP cryptographic library [45], which accesses the same cache lines regardless of
the encryption key. The attack compares the encryption times for a program using an
unknown key with those of a program using a chosen key and plaintext, and retrieves the
encryption key after 2 million recorded encryption durations.

1.3.5 BranchScope

In order to avoid the performance penalty caused by branch mispredictions, modern CPUs
implement mechanisms to predict the branch to be taken based on previous executions of
the branches. The rationale is that if one branch has been taken during the most recent
executions, then that branch is very likely to be taken again during the next one. To
implement this mechanism, for every branching instruction, the CPU records how often
the branch was taken or not among the last few executions. Depending on this value,
during the next execution, either the taken or the not-taken path will be speculatively
taken, and upon success or failure, the counter will be updated. In practice, this counter
is a 2-bit saturating counter, meaning that it can be in 4 different states: Strongly Non
Taken (SN), Weakly Non Taken (WN), Weakly Taken (WT) and Strongly Taken (ST).
When the branch is taken during some execution, the counter transitions from SN to WN,
from WN to WT or from WT to ST. Conversely, if the branch is not taken, it transitions
from ST to WT, from WT to WN or from WN to SN. Meanwhile, the branch predictor
will always predict that during the next execution, the branch will be taken if the counter
is in the ST state, and will not be taken if it is in the SN state. The decision for the two
intermediary states depends on the architecture.

The counter is tied to the virtual address of the branching instruction. Therefore, two
branches in two distinct processes may refer to the same counter if the code is loaded at
the same virtual address. The BranchScope [46] side-channel exploits this observation. It
works as follows. First, the attacker saturates the counter by repetitively taking a branch
loaded at the same virtual address than the target branch of the victim process. Then, it
waits for the victim process to execute this branch once. Finally, the attacker executes the
branch again, recording the execution time of these instructions. A slower execution time
indicates a branch miss, which allows to infer the direction of the branch taken by the
victim process.

1.4 Attack Improvement Methods

No measurement technique is able to perfectly capture all cache accesses. Cache line
prefetching [5, §2.4.4.2] can cause false positives, long execution times of the attacker code
can lead to false negatives, and system activity can cause either false positives or false
negatives, depending on the measurement method. In order to improve their precision,
several methods have been developed, targeting either the victim or the attacker process.

16 CHAPTER 1. STATE OF THE ART IN CACHE-TIMING ATTACKS

1.4.1 Performance Degradation Attacks
In addition to the methods enabling an attacker to determine the state of the processor
cache, micro-architectural side-channel attacks generally make use of techniques known
as performance degradation attacks. Determining the cache state takes at least several
hundred cycles (FLUSH+FLUSH), but it might be much slower (PRIME+PROBE). If
the victim process accesses the cache several times in a short time, some of these accesses
might be missed by the attacker. The attacker can try to slow down the execution of the
victim process, increasing the time between two cache accesses and reducing the number
of missed ones. Two mechanisms to achieve such a slowdown have been proposed in order
to mount micro-architectural side-channel attacks.

Attacking the scheduler One technique to slow down the victim process is to cause
it to run for only a short time period before it is preempted by the OS [47]. It specifically
targets the Linux OS and the scheduler known as the Completely Fair Scheduler.

One crucial task performed by the OS is that of scheduling. In general, at a given point
in time, more processes have been launched and need to run to completion than there
are cores to execute them. In this situation, a given number of processes are running,
ideally as many as there are CPU cores, while other are either blocked and are awaiting
some external event (such as the release of some lock), or ready and could run if some
processor core becomes available. The role of the scheduler is to decide when processes
should execute on an available core, and when they should wait so that other processes
can make progress towards completion.

To decide in which order the processes should be run, the CFS scheduler associates a
virtual time τ to every process. When a process is executed, its virtual time increases.
When the difference in virtual time between the running process and the process with the
lowest virtual time attains a given threshold ∆τmax, the process is stopped and one of the
processes with the lowest virtual time is scheduled instead. This ensures that unfairness,
defined by the maximum difference in the amount of CPU time allocated to any two
processes, is upper-bounded.

Blocked processes are special cases. Because they cannot be executed unless an external
event happens, the difference in virtual time between the currently executing process,
τrun, and any blocked process can exceed ∆τmax. However, as soon as a blocked process
becomes ready to run, its virtual time is updated and set to τrun −∆τmax if its virtual
time was lower than this value. Thus, a process that was blocked for a long time will be
immediately scheduled to run when it is no longer blocked.

This behavior can be abused if an attacker is able to schedule multiple threads to run
on the same core as the victim process. Suppose that the attacker launches N ' 100
threads, numbered from 1 to N , which are all blocked for a long amount of time: each
thread i+ 1 waits on a signal that will eventually be send by the thread i, and the first
thread busy-waits for a long period of time before launching the attack. While the attack
is active, thread i:

• Measures the cache state as specified by the attack (for instance using
FLUSH+RELOAD), and

1.4. ATTACK IMPROVEMENT METHODS 17

• Sets a POSIX timer to send a signal to unblock thread i+ 1 after a set number of
cycles, and

• Returns into a blocked state.

The number of cycles for setting the timer is chosen in such a way that the victim process
(ideally) executes a single memory access, before the next thread becomes unblocked.
Because of its low virtual time, it then preempts the currently running victim thread.
This ensures that the attacker will not miss any memory access.

While very powerful if correctly executed, this attack is rater complex to implement.
First, it requires to precisely determine the time when the next thread is awoken. This
time depends on the duration of the necessary context switch, which might be variable.
Also, the attacker cannot ensure that the victim process will be scheduled next, as other
processes might be simultaneously runnable on the same CPU. Finally, it is not entirely
clear how CPUs with multiple cores should be handled.

Slowing down the execution A second technique consists in making the victim’s
instructions take more time to execute. If the attacker and victim process share resources
on the same processor core, then an intensive utilization of these resources by the attacker
processes can slow down the execution of the victim process. Possible target resources
could be the cache or the execution ports. Note that this observation can be used to design
microarchitectural side-channel attacks: cache contention is used for the EVICT+TIME
attack [32], while execution port contention forms the basis of the PORTSMASH attack [48].

In order to improve the precision of microarchitectural side-channel attacks, cache
contention has been shown to be fairly effective [49]. This method consists in having a
helper process repeatedly evincing cache line corresponding to code executed by the victim
process. It works best if the victim spends time executing a small number of instructions
in a loop with a large number of iterations. In this case, the helper process can evince the
instructions making up the loop body on every iteration. This can slow down the execution
time of that loop by a factor up to 40, which corresponds to the ratio between the latency
of a memory access from main memory and that of an access from L1 cache [49]. Because
the victim process is slowed down, the attacker is less likely to miss memory accesses from
the victim process.

The method is easier to implement (the helper process only consists in a loop of
clflush instructions) and does not depend on the scheduler and OS used. It requires a
preparation phase in order to determine which instructions from the victim process to
flush, but these do not need to be adjusted during an attack. There are is mainly one
major drawback: the factor by which the victim code is slowed down largely depends on
the structure of this code. When no tight loop is present, the slow-down factor might be
low and the precision of the attack might not be improved enough.

1.4.2 Methods Based on SGX
SGX is a technology created by Intel that allows programs to create secure enclaves. Code
executed inside an enclave writes to encrypted memory zones, so that programs executed

18 CHAPTER 1. STATE OF THE ART IN CACHE-TIMING ATTACKS

outside the enclave, even the OS, cannot spy on programs executing inside the enclave.
The adversarial model SGX consider thus also comprises processes running with higher
privilege level, such as programs run as the system administrator or super-user. While
SGX should prevent the OS from recovering sensitive information of programs running in
a secure enclave, this protection can be breached in practice using cache-timing attacks.
These attacks mainly use the measurement methods methods previously described, but
their efficiency can be improved by using methods that are specific to victim code running
on a SGX enclave.

CacheZoom [50] The CacheZoom attack makes use of two techniques that improve the
precision of the cache measurements. First, it uses a mechanism called “process isolation”
to isolate a physical processor core from processes other than the victim and attacker
process. This reduces the measurement noise caused by other processes accessing the cache
while an attack is carried out. While this technique is not specific to SGX, it requires
the attacker to run with administrator rights, which is possible in the threat model SGX
targets. The second technique consists in setting a very short timer interrupt delay on the
enclave running the victim process. This causes it to be interrupted often, ideally once
between every two memory accesses, and allows the attack to measure the cache state
without missing a victim memory access. Thus, this technique is somewhat similar to an
attack on the scheduler, described in Section 1.4.1. CacheZoom is however easier to set
up, while also requiring a more powerful attacker.

The main drawback of CacheZoom is that the victim process may detect the frequent
interruptions, and thus abort its execution. Countermeasures based on this property have
already been proposed [51, 52].

Software Grand Exposure [53] A second set of techniques, dubbed Software Grand
Exposure [53], exploits the additional attacker capabilities under the SGX threat model
while minimizing the risk for the attacker to be detected. In addition to isolating the
victim and attacker thread from other processes, as in [50], Software Grand Exposure
proposes mainly two new techniques to improve the precision of cache measurements.
First, it disables OS interrupts for both the attacker and victim processes, and increases
the delay between timer interrupts. Thus, the victim and attacker processes are very likely
to run uninterrupted while the attack takes place. The advantage is twofold: avoiding
interruptions of the victim process reduces the noise caused by restarts of the enclave, and
running uninterrupted reduces the number of missed cache accesses by the attacker process.
The second method consists in using hardware counters, instead of timestamp counters,
to detect whether a cache-hit or cache-miss took place. These allow the attacker to count
the number of cache misses, which is more precise than using timing-based methods to
determine if a cache miss took place. These counters, however, cannot be used by an
unprivileged attacker.

Chapter 2

STAnalyzer: Static Analysis for
Cache-Timing Vulnerability
Detection in C Programs

But life is short and information endless: nobody has
time to everything. In practice we are generally forced
to choose between an unduly brief exposition and no ex-
position at all. Abbreviation is a necessary evil and the
abbreviator’s business is to make the best of a job which,
although intrinsically bad, is still better than nothing. He
must learn to simplify, but not to the point of falsifica-
tion. He must learn to concentrate upon the essentials
of a situation, but without ignoring too many of reality’s
qualifying side issues.

Aldous Huxley

2.1 Introduction
When implementing cryptographic algorithms in software, timing attacks represent a great
risk to the security of the algorithm. For instance, the total execution time can depend
on the key, which can be revealed by multiple measurements [12]. More subtle attacks
exploit the latency difference between the fast processor cache and the slower main memory
(RAM). These attacks are collectively known as cache-timing side-channel attacks. They
can determine, on a branching operation, which branch is being executed even if the
branches are balanced and execute the same instructions [13]. They can also reveal the
address of memory accesses [24]. These attacks can be mitigated if some simple guidelines
are followed: no memory access and no branching operation should depend on sensitive
values. A code that follows these guidelines is said to be constant-time and immune to
cache-timing attacks. In this chapter, we propose an algorithm that is able to determine

19

20 CHAPTER 2. STANALYZER

whether a program written in the C programming language follows the constant-time
guideline. This algorithm is implemented in our tool STAnalyzer.

2.1.1 Related Work
There are several ways to verify that a program follows the constant-time guidelines. It
can be checked during program execution, this is called a dynamic analysis. One popular
tool is ctgrind, an extension of the valgrind1 profiler tool. The program executable can be
annotated, and the program can be executed in a virtualized environment, where memory
accesses and branching operations are monitored. While this approach has the advantage
of analyzing real program behavior, and thus minimizing false positives, it is in general
not possible to explore all program paths. This might actually lead to false negatives, i.e.
missed constant-time policy violations.

Another approach consists in analyzing the program code. One can either inspect
directly the C source code [54], the compiled assembler instructions [55], or work with an
intermediate representation of the program code [56, 57, 58]. Analyzing the assembler
instructions has the advantage of taking into account compiler optimizations that might
lead to either vulnerability removal or insertion, but has not been fully implemented for Intel
x86 or x86-64 assembly, probably due to the complexity of the Intel assembly language [59].
A more common approach is to analyze intermediate representations, either in the LLVM
intermediate language [60] or the Single Statement Assignment (SSA) form [56]. Both
of these representations are emitted by the compiler after some optimization has been
applied. Therefore, it accounts for some removals or insertions of timing leakages by the
compiler, while being easier to analyze than a program written in low-level assembly.
However, the link to the original source code is somewhat lost, and it is not necessarily
easy from such an analysis to understand where the leaks originate from. Finally, working
directly on the source code is also possible. However, the only existing tool [54] does
not allow to specify sensitive variables and requires a manual inspection of the leaking
variables. We propose an alternative that allows for a fine-grained tracking of sensitive
values. At the same time, we leverage the information in the C source code files to provide
a meaningful explanation for any source of leakage.

Because the algorithm works directly on the source code, compiler transformations
cannot be taken into account. While some leakages might be missed due to the compiler
adding branches to the code, this does not seem to occur often in practice; more often,
the compiler seems to actually remove some leakages. For example, the C code shown in
Figure 2.1 uses a conditional branch, but the compiler replaces it with a conditional set
instruction (setg), a constant-time operation. In the rest of this chapter, compiler-specific
behavior is considered out-of-scope.

2.1.2 Background in Dependency Analysis
A program can be defined as a series of operations acting on the program state. For
programs written in higher-level languages such as C, the state is defined by a set of
variables. These variables can take different values, and the execution of a program consists

1https://github.com/agl/ctgrind/

2.1. INTRODUCTION 21

1 int sign(int value) {
2 int ret;
3 if (value > 0) ret = 1;
4 else ret= −1;
5 return ret;
6 }

(a)

1 xor %eax,%eax
2 test %edi,%edi
3 setg %al
4 lea −0x1(%rax,%rax,1),%eax
5 retq
6 nopl 0x0(%rax)

(b)

Figure 2.1: Comparison between source (a) and compiled (b) code (gcc with -02 optimiza-
tions)

in manipulating these values and assigning them to different variables. For the sake of our
analysis, we will ignore other effects of program execution, notably I/O operations (screen
printing, network and file operations, etc.).

Static analysis tools infer properties of the program execution from source code only,
without actually executing it. Usually, the actual values manipulated by the program
are not known. Instead, special abstract values are assigned to the variables, and the
result of operations manipulating these values have to be defined. For instance, we can
define two values, H and L, where H represents high security values, and L low security
ones. The result from any binary operation ◦ can then be defined as such: L ◦ L = L and
H ◦ L = L ◦H = H ◦H = H.

Information flow analysis consists in determining the values that might influence the
variables in a program. For example, variables and values could be assigned security
classes. This idea has been adapted by Rodrigues et al. [61] to create FlowTracker, a
tool which performs information flow analysis in order to determine whether cache-timing
leakages occur in a given program. Both these methods operate on the Static Single
Assignment (SSA) format of a program. Rodrigues et al. consider two security classes,
high and low, and their program determines whether any value of the high security class
leaks due to branching instructions or memory access. As already noted by Denning and
Denning [62], in this model, function calls need to be treated with care. Indeed, they
might create new dependencies between variables which should be accounted for. Also,
since they might be called with arguments of high or low security class, it is not clear
which leakages should be reported.

We propose a different idea: instead of tracking only two security classes, we define
more abstract values: one for the initial value of any function arguments, for global
variables and sensitive values. This makes it possible to track leakages and dependencies
across multiple function calls, and allows to present more information about the flow of
information inside a program.

The rest of the chapter is organized as follows.Section 2.2 provides the definitions
and notations used in the remainder of this chapter. Section 2.3 provides a high-level
description of the dependency analysis performed by our tool. Section 2.4 presents some
of the results we obtained using it. Finally, Section 2.5 concludes.

22 CHAPTER 2. STANALYZER

2.2 Definitions and Notations
In this section, we will introduce the objects manipulated during the static leakage analysis.
Table 2.1 explains the different notations styles used in the remainder of this paper. They
serve to distinguish between actual C code, generic elements of the C language, and the
objects abstracted from the C code which are used by the leakage analysis.

Table 2.1: Notation styles used in the remainder of this paper

Notation Description
int x = y; Concrete C code example
expr Abstract element of the C language
var Symbolic object manipulated by the static analysis

2.2.1 Variables, Pointers and Values
In order to determine whether sensitive values might leak during the execution of a
program, one needs to determine which variables of a C program might actually hold
sensitive values. Performing a so-called dependency analysis solves this problem. This
consists in determining, for any variable of a given program, what other variables might
influence its value. In this section and the next, we will introduce the different notions that
are required to describe how to perform this dependency analysis. It consists in defining
a set of special symbolic values, and determining for any memory location, labeled by a
variable, which values its content might depend on.

Definition 1 (Variable). A variable is an identifier in a C program. It references a memory
location. A variable will be denoted by its name, such as varname. In addition to all
variables declared in the analyzed function, we also refer to the special \RET variable,
which represents the return value of a function.

Definition 2 (Memory location). A memory location is an independent region of memory
that can store one or more values, as well as the addresses of other memory locations. A
memory location will be denoted by the variable that references it, and we will use the
same notation for both the variable and the memory location it refers to.

Listing 2.1: C code with variables
1 int foo(int a, int b) {
2 int c = a + b;
3 return c;
4 }

For instance, the code of Listing 2.1 defines three 4 variables: a, b, c and \RET. Each
variable also defines a memory location with the same name.

2.2. DEFINITIONS AND NOTATIONS 23

Definition 3 (Value). A value is a specific symbol which will be tracked during the
dependency analysis. The set of values depends on the function being analyzed. These
values are:

• the special \SECRET value, which should not be leaked by the program execution
and represents some sensitive value,

• all global variables, and

• the initial values of all function arguments (in order to compose the analysis of
several functions). The initial value corresponding to the variable varname is denoted
by varname0 to distinguish it from the variable it originally refers to.

Listing 2.2: C code example
1 int foo(int a, int b) {
2 int j = a;
3 int i[2];
4 i[0] = b; i[1] = a;
5 return i[0]+i[1]+j;
6 }

As an example, consider the C code in Listing 2.2. The state of the memory locations,
at the end of the function execution, can be represented as in Table 2.2.

Variable
(memory location) Values

a a0

b b0

i a0, b0

j a0

\RET a0, b0

Table 2.2: State of the memory locations for the code in Listing 2.2

Definition 4 (Pointer). A pointer is a variable referencing one or more other memory
locations. If the C code defines a pointer named varname, we will denote the variable by
&varname if it is a pointer on an integral type, by &&varname if it is a pointer on a pointer
on an integral type, etc. The referenced value will in any case be denoted by varname.

Definition 5 (Pointer indirection). The pointer indirection level of a variable is the length
of the pointer chain until the referenced value is attained. As such, indir(varname) = 0,
indir(&varname) = 1, indir(&&varname) = 2, etc.

Pointer dereferencing and the address of operation change the indirection level of a
variable. Therefore,

24 CHAPTER 2. STANALYZER

• &(varname) = &varname

• *(&varname) = varname

During our analysis, we consider that every variable declaration of any pointer simul-
taneously initializes a corresponding memory location of sufficient size. In a real program,
this has to be done via a call to malloc or a similar function. Issues related to uninitialized
memory are therefore out of scope of this analysis.

Note that according to that definition, a pointer may point to more than one memory
location. There are two reasons for this definition. The first is to accommodate arrays
of pointers. Such a variable can contain pointers to several memory locations. Our
analysis will not be able to determine which one will be accessed when the variable will be
dereferenced, and we will have to assume that all of them will be accessed or modified.

The second reason is that, depending on the program execution, a pointer might point
to one among several memory locations. Our static analysis must consider all of these
possibilities. In order to simplify the analysis, we will again consider that all memory
locations will be accessed or modified when the pointer is dereferenced.

An example of C code containing pointers is provided in Listing 2.3, and the state of
all memory locations at the end of the function execution is given in Table 2.3.

Listing 2.3: C code example with pointers
1 int foo(int a, int b) {
2 int j = a;
3 int i[2];
4 i[0] = b; i[1] = a;
5 int ∗∗k = malloc(2∗sizeof(int ∗));
6 k[0] = i; k[1] = &j;
7 return i[0]+i[1]+j;
8 }

Note the fact that k is listed among the possible memory locations for the pointer &k
is an artifact of our hypothesis that any pointer initializes sufficient memory - we suppose
that &k points to some allocated memory location before any other operation is performed.
This is not the case in this example, and there is no actual memory location bound to k.

Structures Structures are special types of C variables. A structure defines one or more
fields, which will be bound to a single variable. We will consider the different fields as
belonging to distinct memory locations. While it is possible to read or modify data of
one field by accessing another field, through a buffer overflow for instance, the result of
such an operation is arguably undefined behavior. Such techniques should not be used in
cryptographic code.

Therefore, in order to handle structures, our analysis will simply consider different
fields as corresponding to different variables, and track the dependencies of all the fields
independently. One issue, however, arises with self-referential structures, i.e. structures
that contain a pointer to a field of the same type as themselves. Such structures are

2.2. DEFINITIONS AND NOTATIONS 25

Variable
(memory location) Values Pointed memory

locations
a a0 –
b b0 –
i a0, b0 –
&i – i
j a0 –
&j – j
k – –
&k – i, j, k
&&k – &k
\RET a0, b0 –

Table 2.3: State of the memory locations for code in Listing 2.3

common when implementing linked lists for example. A static analysis cannot know how
many distinct memory locations such a structure references. We solve this problem by
detecting such types of structures and stop considering new memory locations past a
certain recursion depth.

2.2.2 Dependency Graph
The dependency graph encodes the mapping between memory locations (variables),
abstract values (see Definition 3) and referenced memory locations (see Definition 4).
Table 2.3 provides an example of such a mapping that can be directly encoded into a
dependency graph.

Definition 6 (Dependency graph). The dependency graph G is a directed graph, where
the vertices are memory locations (variables) and abstract values. Edges in G are only
possible from memory locations to values and to other memory locations (or equivalently,
there are no outgoing edges from values, only from memory locations). An edge between
a memory location and an abstract value signifies that the data stored at that memory
location might depend on the abstract value, and an edge from a memory location A to B
means that A might contain the address of the memory location B.

Definition 7 (Dependency graph notations). For a variable varname, we denote by
G(varname) the neighbor vertices (memory locations and values) of varname in G.
GM(varname) (resp. GV (varname)) represents the set of memory locations (resp. the
set of values) among all the neighbors of varname in G. These notations are naturally
extended for a set of variables S,

G(S) =
⋃

varnanme∈S
G(varname),

and a similar extension holds for GM and GV .

26 CHAPTER 2. STANALYZER

Definition 8 (Dependency graph operations). Given two dependency graphs G1 and G2,
the union of these two graphs is denoted by G1 ∪G2. The vertex set (resp. edge set) of
this graph is equal to the union of the vertex sets (resp. edge sets) of G1 and G2.

Given a variable varname and a set of variables and values E, we denote by {varname→
E} the graph with vertices E ∪ {varname} and edges {(varname, e)|e ∈ E}. Furthermore,
given a graph G, we denote by [varname→ E]G the graph obtained from G after removing
all the edges starting from varname and adding the edges {(varname, e)|e ∈ E}.

2.2.3 Leakage Analysis
If the cache access pattern of a program changes depending on their input, then information
about that input might be recovered by a spy process. Conversely, if the cache access
pattern is constant, then no information might be retrieved by such methods. The cache
access pattern depends on:

• the program control flow, because it changes the access pattern to the instruction
cache, and

• the addresses of dereferenced pointers, because they change the access pattern to
the data cache.

The cache access pattern need not be entirely constant for a program to be secure.
Rather, it should not depend on sensitive values. For a signature algorithm for instance,
the access pattern may depend on the data being signed, but not on the secret key that is
used. Furthermore, some cryptographic algorithms rely on the output of an RNG, and an
attacker able to recover enough information about that RNG might retrieve the secret
key [24].

The objective of the leakage analysis is therefore to detect cache access patterns,
which we will simply call leakages, that depend on sensitive values. However, because
our analysis will be performed function by function, the leakage of other values need also
to be tracked, namely the values of the function parameters, as well as global variables.
These correspond exactly to the symbolic values tracked by the dependency analysis, as
defined in Definition 3. Determining the leakages of these values is necessary in order to
determine the leakages caused by function calls.

Definition 9 (Leakages). The leakages of a function is the set of values that might change
the control flow and the addresses of dereferenced pointers during the execution of the
function. This includes the leakages caused by all the called functions.

2.2.4 Indirect Dependencies
Indirect dependencies are a particular type of implicit dependency [61]. Take for example
the C code in Listing 2.4. The value returned by this function should depend on the value
a0, but this cannot be inferred by considering only the assignments made to the variable
b. Instead, one has to note that the control flow is controlled by the value of the variable
a and can lead to an assignment to b.

2.2. DEFINITIONS AND NOTATIONS 27

Listing 2.4: Indirect dependency flow example
1 int foo (int a) {
2 int b = 1;
3 if (a > 0)
4 b = −1;
5 return b;
6 }

One way to resolve the indirect dependencies is to keep track of all the values that
might influence the control flow leading to a given region of the control flow graph. Once
that region has been analyzed, one should consider that all variables modified during the
analysis of that region depend on the values that influence the control flow graph directly
leading to that region.

Region #1

Region #2

BB1
if (b > 0)

BB2

BB3 end-if
BB4

end-if ...if (a > 0)...

Figure 2.2: Example of a control flow graph with influence regions

In the more complex example represented by Figure 2.2, two regions are highlighted.
For the region 2, any variable modified during the execution of either BB2 or BB3 depends
on the value of b at the beginning of BB4. Similarly, for region 1, any variable modified
during the execution of either BB1, BB2, BB3 or BB4 depends on the value of a before
the next basic block is executed.

It is not immediately obvious why tracking indirect dependencies in order to perform
leakage analysis is necessary. Indeed, keeping track of non-sensitive indirect dependencies
is not useful, and when indirect dependencies are sensitive, the analyzed program cannot
be constant-time. This would imply that the control flow depends on sensitive values,
which contradicts the constant-time requirements. However, there are two reasons why it
still might be be useful to consider indirect dependencies.

First, the aim of our program is to determine all constant-time violations. When
indirect dependencies are not considered, then some variables might falsely be considered
non-sensitive, and leakages caused by them are missed. Second, some branching operations
are compiled into constant-time code by modern compilers, and thus do not necessarily
result in a constant-time violation (see Figure 2.1). Our tool allows the user to flag
branches as being safe, i.e. do not result in a constant-time violation. In this case,

28 CHAPTER 2. STANALYZER

indirect dependencies must be tracked in order to avoid underestimating dependencies
and potentially missing leakages.

2.3 Description of the Algorithm
The program implementing the leakage analysis mainly follows the Visitor pattern [63].
It maintains a global state, comprised of the dependency graph and the set of currently
leaking values, which is updated after evaluating every node of the AST representing the
program to be analyzed. It also computes, for every node, which variables the expression
represented by this node depends on.

To define the algorithm, it is thus sufficient to describe how the different tracked objects
are updated when evaluating a given node, and how to determine which variables a given
expression depends on. Notations that are introduced in this section are summarized
below in Table 2.4.

Table 2.4: Notation used in this section

Notation Description
G Dependency graph
L Set of leakages

〈expr〉 Variables that expr depends on
〈expr〉R Variables that expr depends on

when considering read operations
〈expr〉W Variables that expr depends on

when considering write operations
φ(G,L; inst) =

(φG(G,L; inst),φL(G,L; inst))
Updated dependency graph
(φG(G,L; inst)) and leaking
values (φL(G,L; inst)) after
the instruction inst has been
analyzed.

The algorithm verifies that no sensitive values is used in a leaking operation. In a
real-world setting, the cache architecture, size and eviction policy have to be taken into
account in order to determine if a leakage is exploitable, as well as the implemented
countermeasures. In contrast, our algorithm does not take these implementation-specific
details into account. As a consequence, a program found to be constant-time will be secure
regardless of the configuration of the cache (assuming no leakages were introduced by the
compiler). On the other hand, not all leakages found by our tool might be exploitable on
every cache configuration.

2.3.1 Abstract Syntax Tree (AST)
An AST is an abstract representation of the source code of a program. In such a graph,
every node represents an element of the programming language, and the edges connect

2.3. DESCRIPTION OF THE ALGORITHM 29

these elements with their arguments. Consider for instance the C code represented in
Listing 2.5.

Listing 2.5: Example C code
1 int foo (int a, int b) {
2 int c;
3 if (a > 0)
4 c = a+b;
5 else
6 c = a − b;
7 return c;
8 }

int foo Compound

Decl.

0

If

1

Return

2

Decl. list

Decl.

0

Decl.

1

Function decl.

ret. type name body arguments

int

type

a

name

int

type

b

name

int

type

c

name

Assignment

if-branch

Binary op

condition

Assignment

else-branch

ID: c

lvalue

=

op

Binary op

rvalue

ID: a

left

+

op

ID: b

right

ID: a

left

>

op

Constant: 0

right

ID: c

lvalue

=

op

Binary op

rvalue

ID: a

left

-

op

ID: b

right

ID: c

expr

Figure 2.3: AST of the program described in Listing 2.5

The corresponding (simplified) AST is represented in Figure 2.3. It can be noted that
this is a direct translation of the source code - there is only ”one“ way to build an AST
from a given source code, whereas there can be several ways to compile the source code
into, for example, x86 machine code.

2.3.2 Dependency Graph Interpretation
The dependency graph encodes the dependencies between variables and values, and as
such, can be queried to determine the set of memory addresses and values that a given
variable depends on. However, for a variable varname, this set is not equal to G(varname).
Indeed, suppose that the dependency graph can be represented as in Table 2.3 and that

30 CHAPTER 2. STANALYZER

the dependencies of k need to be determined. A wrong answer would be G(k), as this is
the empty set. Instead, one should walk down the dependency graph, starting from the
node &&k, to determine that in fact, the dependencies of k are equal to G(i) ∪ G(j) ∪
G(j) ={a0, b0}.

The algorithm to determine the dependencies of a given variable is described in
Algorithm 2.3.1. The result of this algorithm will be denoted by dep(G, varname). This
notation is extended to a set of variables in the following way:

dep(G,S) =
⋃

varname∈S
dep(G, varname).

Algorithm 2.3.1 Computing the dependency set for a given variable
procedure Dependencies(G, varname)

declVarname← varname with indirection level corresponding to that of its declaration
indirLevelDifference← indir(declVarname) - indir(varname)
nodesToExplore← {declVarname}
newNodesToExplore← ∅
if indirLevelDifference < 0 then

return varname
end if
for i = 1 to indirLevelDifference do

for node ∈ nodesToExplore do
newNodesToExplore← newNodesToExplore ∪G(node)

end for
nodesToExplore← newNodesToExplore
newNodesToExplore← ∅

end for
return {G(node)|node ∈ nodesToExplore}

end procedure

The example of computing dep(G, k) is visualized in Figure 2.4, where the set
nodesToExplore is colored in gray.

Initialization i = 1 i = 2 Algorithm Output

k

&&k

a0

ii j

&k

j

&&k&&k&&k

&k

b0

k

&k

Figure 2.4: Visualization of Algorithm 2.3.1 applied to the dependency graph in Table 2.3

2.3. DESCRIPTION OF THE ALGORITHM 31

2.3.3 Expression Evaluation
Given an expression of the C language, it is necessary for the analysis to determine which
variables this expression refers to. A natural way to define them is explained in Table 2.5.

Table 2.5: Variable dependencies for various expressions

expr 〈expr〉
literal ∅
var {var}

expr1 op2 expr2 〈expr1〉 ∪ 〈expr2〉
op1 expr 〈expr〉

var = expr 〈expr〉
var op2= expr 〈expr〉 ∪ {var}

&expr {&var | var ∈ 〈expr〉}
∗expr {∗var | var ∈ 〈expr〉}

var [expr] {∗var} ∪ 〈∗expr〉

The objective is twofold: for operations that read values from memory, the analysis
needs to determine which memory locations are read from. Similarly, for operations that
write to memory it needs to determine which memory locations are modified. For the
same expression of the C language, these two sets are not necessarily identical.

Consider, for instance, a simple array access operation, arr[index], where arr is some
array and index some integer. Our analysis has to consider that arr represents a single
memory location and therefore, the values that this expression depends on are the same,
regardless of the value of index. This does not mean, however, that the value of the
expression does not depend of the value of index. For instance, arr could be a fixed array
used to implement some permutation. Because its content is fixed, no value is recorded
in the memory location corresponding to arr. However, the result of the operation does
indeed depend on the values recorded at that of index.

On the other hand, if arr[index] is part of an assignment operation, such as arr[index] = y,
then this operation should only update the values recorded at the memory location
corresponding to arr, not that of index.

In order to distinguish between these two cases, we define the dereference operation
on non-pointer variables as yielding a new variable with negative indirection level. They
can be interpreted as the variables which values are used to compute an address inside a
single memory location.

The negative indirection level will be indicated by a number of ∗ symbols. Thus, a
variable with indirection level −1 will be denoted by *varname, with −2 by **varname,
etc.

Thus, for a given expression expr, 〈expr〉 might contain variables of negative indirection
level. How they are interpreted depends on whether expr represents a memory location to
write to, or to read from:

• If expr should be read from, then the result might depend on the values of the
variables with negative indirection level. Therefore, in order to determine the read

32 CHAPTER 2. STANALYZER

set for expr, variables of negative indirection level have their indirection level set to
0. The resulting set is denoted by 〈expr〉R.

• Conversely, when the memory location for a write operation should be computed,
variables of negative indirection level should be removed. The resulting set is denoted
by 〈expr〉W .

Applying these rules to the previous example where the expression was arr[index], we get
that 〈arr[index]〉 = {arr, *index}. Therefore, 〈arr[index]〉R = {arr, index} and 〈arr[index]〉W
= {arr}.

2.3.4 Instruction Interpretation
The main algorithm visits each node of the AST and updates the dependency graph and
set of leaking instructions according to the semantics defined in this section. Indirect
dependencies are handled as explained in Section 2.2.4 and ignored in the description of the
semantics for the sake of clarity. The pair comprised of the modified dependency graph and
set of leakages, after analyzing the instruction inst, is denoted by φ(G,L; inst) where G
and L are respectively the initial dependency graph and leakages. The dependency graph
of this pair will be denoted by φG(G,L; inst) and the set of leakages by φL(G,L; inst).

Analyzing simple instructions

The modifications on the dependency graph G and leaking values L when analyzing
simple instructions are summarized in Table 2.6. φG (resp φL) represents the function
that computes the dependency graph (resp. the set of leaking values) given the previous
state of G and L, and the instruction to analyze. Note that the set L is only comprised
of values, not of memory addresses. As such, if E is a set comprised of both values and
memory addresses, L ∪ E is understood as the union of L and the values of E.

Flagging sensitive variables

As noted in Table 2.6, sensitive variables are flagged using a special pragma directive.
This directive creates a dependency between the targeted variable and a special value,
\SECRET. For instance, the code from Figure 2.5 will result in the dependency graph
represented in Table 2.8.

1 int foo2(int a, int b) {
2 int i=1, j = a;
3 #pragma STA secret i
4 return i+j;
5 }

Figure 2.5: Example of C code with tagged variable

The semantics for variable flagging are described in Table 2.7. Any leakage of the
special \SECRET value is reported as a violation of the constant-time policy.

2.3. DESCRIPTION OF THE ALGORITHM 33

Table 2.6: Dependency and leakage semantics for simple instructions

Instruction to analyze Result

var = expr φG
[
var→ dep(G, 〈expr〉R)

]
G

φL L

var op2= expr φG G ∪ {var→ dep(G, 〈expr〉R)}
φL L

inst1; inst2 φG φG(φG(G,L; inst1), L; inst2)
φL φL(φG(G,L; inst1), φL(G,L; inst1); inst2)

var [expr1] = expr2 φG G ∪ {〈∗(var + expr1)〉W → dep(G, 〈expr2〉R)}
φL L ∪ dep(G, 〈expr1〉R) ∪ dep(G, var)

return expr φG G ∪ {\RET→ dep(G, 〈expr〉R)}
φL L

Table 2.7: Dependency and leakage semantics for simple instructions

Instruction to analyze Result
#pragma STA secret var φG G ∪ {var→ \SECRET}

φL L

Table 2.8: Dependency graph at the end of function foo2

Variable
(memory location) Values Pointed memory

locations
a a0 –
j a0 –
i \SECRET –
b b0 –

\RET a0, \SECRET –

Analyzing branching instructions

If-else branches When an if-else branch is encountered, the set of leaking values
needs to be updated, and the two branches need to be analyzed. The latter part is however
not trivial, as the static analysis program cannot determine which branch will be taken
by the program flow during the execution. Instead, both branches need to be taken into
account simultaneously. There are two natural methods to do so:

• Run the analysis sequentially on one branch and then on all the instructions following
the branches. Then do the same with the second branch, and finally merge the
analysis state.

34 CHAPTER 2. STANALYZER

• Run the analysis on one branch, then on the other, and merge the analysis state.
Then continue the analysis on the instructions following the branches.

The first method approximates more closely how a real program execution takes place.
However, when applied on a code comprised of n adjacent if-else branches, 2n code paths
need to be considered. In the case of n adjacent if-else branches nested p levels deep,
this number grows to (2p)n = 2pn. Conversely, the second method might overestimate
dependencies, because in a real program execution, only one of the two branches are
executed, not both. While nested if-else branches are still expensive to analyze, n
adjacent if-else branches can be analyzed in time 2n only.

It is not clear how the second method could induce false positives for detecting the
leakage of sensitive values, and it is clearly computationally more efficient. That’s why
we choose the second option to be implemented in STAnalyzer. The corresponding
semantics are provided in Table 2.9.

Table 2.9: Dependency and leakage semantics for if-else branches

Instruction to analyze Result
if (expr) { inst } φG G ∪ φG(G,L; inst)

φL L ∪ dep(G, 〈expr〉R) ∪ φL(G,L; inst)
if (expr) { inst1 } else { inst2 } φG φG(G,L; inst1) ∪ φG(G,L; inst2)

φL
L ∪ dep(G, 〈expr〉R)∪

φL(G,L; inst1) ∪ φL(G,L; inst2)

Switch-case statements Switch-case statements represent the second conditional
branching statement available in C. Their analysis mostly resembles that of if-else
branches, and we choose the same time-precision tradeoff. In detail, each case instruction
block is analyzed separately, and the analysis state is then merged together before analyzing
subsequent instructions.

However, switch-case statement bring additional complexity because of the fallthrough
mechanism. If the control flow reaches the end of a case-block without encountering a break-
statement, then the next case-block is executed. This behavior needs to be accounted for,
as ignoring it might lead to missed leakages - for instance, one case-block might set some
variable to a sensitive value, and the next block leaks that variable. Furthermore, some
case-blocks might always terminate with a break-statements, some might never execute
them, and some other might terminate with a break-statements on some executions, and
fallthrough on other. The last case is even more complicated, as a precise analysis would
need to take into account that only a subset of the instructions of the case-block might
be performed before the next block is executed. At the risk of introducing some false
positives, we simplify the analysis of this third case and consider that all the instructions
of a case-block are executed before a fallthrough is performed. The semantics of the
switch-case statement however still depends on whether a break-statement will always,
never or sometimes be encountered during the execution of a case-block.

2.3. DESCRIPTION OF THE ALGORITHM 35

Additionally, a switch-case statement may have a default label, which will define the
instructions to execute if none of the case labels match. However, the default label is not
mandatory. If it is omitted an no label matches the value of expr, then no case-block is
executed.

In general, for a switch-case statement of the form
switch(expr) {

case expr1:
inst1
· · ·

case expr i:
insti

}

the semantics of that statement are defined by

φG(G,L; inst) =

⋃
i φ

i
G(G,L) if a default label is present

G ∪ ⋃i φiG(G,L) if no default label is present
φL(G,L; inst) = L ∪ dep(G, 〈expr〉R) ∪

⋃

i

φiL(G,L)

where φiG and φiL are given in Table 2.10.

Table 2.10: Dependency and leakage semantics for switch-case statements

Break encountered in insti Result

Always φiG φG(G,L; insti)
φiL dep(G, 〈expr i〉R) ∪ φL(G,L; insti)

Sometimes φiG
φG(G,L; insti)∪

φi+1
G (φG(G,L; insti), L)

φiL
dep(G, 〈expr i〉R) ∪ φL(G,L)∪

φi+1
L (φiG(G,L), L)

Never φiG φi+1
G (φG(G,L; insti), L)

φiL
dep(G, 〈expr i〉R) ∪ φL(G,L; insti)∪

φi+1
L (φiG(G,L), L)

Analyzing loops

Analyzing requires computing a fixed point in the dependency and leakage analysis.
Because our program does not perform any kind of value analysis, it cannot determine

36 CHAPTER 2. STANALYZER

how many times a loop will be executed. Therefore, the worst case situation, leading to
the most dependencies and leakages, must be determined. Let’s consider a while-loop of
the type while (expr) { inst } and define the function ψ as

ψ(G,L; expr ; inst) = (G ∪ φG(G,L; inst), L ∪ φL(G,L; inst) ∪ dep(G, 〈expr〉R))

The function ψ computes the updated dependencies and leakages after one execution
of the loop. Let n ≥ 0, the dependencies and leakages after n loop executions are defined
as

ψn(G,L; expr ; inst) = ψ(G′, L′; expr ; inst) where
(G,′ L′) = ψn−1(G,L; expr ; inst),

ψ0(G,L; expr ; inst) = (G,L).

Per its definition, the computed dependencies and leakages cannot decrease after
applying ψ and are of course upper-bounded. This guarantees that ψ has a fixed point.
Therefore, the resulting dependency graph and leakages after analyzing this instruction
are equal to

φ(G,L; while (expr) { inst }) = limn→∞ ψn(G,L; expr; inst).

Other Loops do−while loops are similar to while-loops, except that the instructions in
the loop are executed at least once. Similarly, for-loops execute a provided init statement
before first executing the loop instructions, and a step instruction after the loop body.
Table 2.11 summarizes the dependency graph and leakage set pair after analyzing a given
type of loop.

Table 2.11: Dependency and leakage semantics for loops

Instruction Result
while (expr) { inst } limn→∞ ψn(G,L; {expr ; inst})

do { inst } while (expr); limn→∞ ψn (φG(G,L; inst), L; {expr ; inst})

for (init; cond; step) {inst} limn→∞ ψn(G′, L′; {cond; inst; step})
where (G′, L′) = φ(G,L; init)

Overestimating Dependencies The fixed point calculation might lead to false positive
in some cases. Consider for instance the C code in Figure 2.6.

Depending on the parity of the variable c, the function bar returns either a or b.
Because the algorithm cannot determine the parity of c, the analysis will conclude that
the return value of bar depends on a and b (as well as, of course, c).

2.3. DESCRIPTION OF THE ALGORITHM 37

1 int bar(int a, int b, int c) {
2 int i = a, j = b, k = 0;
3 while (c > 0) {
4 k = i; i = j; j = k;
5 c−−;
6 }
7 return i;
8 }

Figure 2.6: Example C code with variable swapping

Function Calls

Function calls are more complex to handle. Indeed, a function call can modify any global
variable and modify the values of the arguments it is called with (in case pointers are
passed as arguments). The value returned by the function can also depend on global
variables and any function arguments. Finally, any argument or global variable might be
leaked. Because the values corresponding to function arguments and global variables are
tracked, our algorithm is able to determine their behavior after finishing analyzing any
function. When an already analyzed function is called, it is thus only necessary to perform
a translation from the called function argument names to the callee expressions in order
to determine the effect of the function call on G and L.

In the rest of this section, we consider an expression of the form

f(expr1, expr2, . . . , exprn)

where f has been previously declared as

f(&l1arg1,&l2arg2, . . . ,&lnargn).

Here, li represents the indirection level of argument argi.

Definition 10 (Variable translation). Let If = {(i, j) : i ∈ [|1;n|] ∧ j ∈ [|0; li]}. For
(i, j) ∈ If , the translation function τf is defined on memory addresses as

τf (&jargi) = 〈∗li−jexpr i〉R

and on values as
τf (arg0

i) = 〈∗liexpr i〉R.

The special \SECRET value and all global variables are translated as themselves.
The definition of τf is naturally extended to a set of values and memory addresses

related to the arguments of f as

τf (S) =
⋃

varname∈S
τf (varname).

38 CHAPTER 2. STANALYZER

Table 2.12: Dependency and leakage semantics for function calls

Expression Result
φL(G,L; f(. . .)) L ∪ dep(G, τf (Lf))
φG(G,L; f(. . .))

[⋃
(i,j>0)∈If

{
〈∗jexpr i〉W → dep(G, τf (dep(Gf ,&li−jargi))

}]
G

〈f(. . .)〉 τf (dep(Gf , \RET))

The semantics of function calls can then be defined with the help of τf as in Table 2.12.
In this table, f(. . .) is used as shorthand for f(expr1, expr2, . . . , exprn). Furthermore, Lf
and Gf represent respectively the the set of leaking values and the dependency graph
computed after analyzing f .

Variadic functions, that is, functions with a variable number of arguments, cannot
be analyzed by our tool. However, we implemented a mechanism that allows the user
to provide snippets of Python code to describe the behavior of variadic functions that
might be encountered during analysis. Finally, function pointers can be handled, if it is
clear from the analysis which function they point to. Since it is not easily possible to
determine this for function pointers that are passed as function arguments, they are always
considered as leaking all their arguments. This minimizes the risk of missing any source of
leakage.

2.3.5 Output Presentation
The aim of our tool is to detect all possible sources of leakages and present them in a
way that is easy to understand. To this purpose, two types of outputs are generated after
each analysis. The first one is a textual file. For each detected leakage, it describes the
function calls, dependencies between variables, and the instruction causing the leakage.
The second is an overview of the function call graph leading to the leaking instructions.

In this example, the function mbedtls_blowfish_crypt_ecb was chosen as the entry
point for our analysis. The variable ctx.P was flagged as sensitive, as it contains the
Blowfish encryption key. The structure ctx is passed to the function blowfish_enc. The
dependency analysis of that function determined that the variable Xl depends on the
value of ctx.P. The function F is then called, with Xl corresponding to its x argument.
Inside this function, b depends on the value of x, and this variable leaks on line 86. This
corresponds to the first reported leak. The second one is very similar, but this time the
leakage of the d, which also depends on the value of x, is reported.

2.3.6 Limitations
Our tool handles memory separation only between members of a structure, not between
elements of an array. Consider for instance the code in Figure 2.8. The element at index 1
of the variable values is considered sensitive, however, only elements stored at indexes that
are an even number leak on Line 8-11. Therefore, this code will not leak sensitive data,
but because all elements of an array share the same dependencies during our analysis, a
leakage will be reported by our tool, resulting in a false positive.

2.4. RESULTS 39

mbedtls_blowfish_crypt_ecb

blowfish_enc

blowfish.c:248:9

blowfish_dec

blowfish.c:244:9

F

blowfish.c:108:14

89 y = ctx->S[0][a] + ctx->S[1][b];

90 y = y ^ ctx->S[2][c];

91 y = y + ctx->S[3][d];

blowfish.c:138:14

(a) Function call graph

Leakage of ctx.P (reason: PointerDeref) at:
(mbedtls_blowfish_crypt_ecb) blowfish.c:248:9

-> (blowfish_enc) blowfish.c:108:14
-> blowfish.c:96:13 (ctx.P secret)
-> blowfish.c:107:9 (Xl secret)

-> (F) blowfish.c:89:23
-> blowfish.c:77:17 (x secret)
-> blowfish.c:86:4 (b secret)

Dependencies leading to a secret variable:
blowfish.c:236:9 (ctx.P secret)

Leakage of ctx.P (reason: PointerDeref) at:
(mbedtls_blowfish_crypt_ecb) blowfish.c:248:9

-> (blowfish_enc) blowfish.c:108:14
-> blowfish.c:96:13 (ctx.P secret)
-> blowfish.c:107:9 (Xl secret)

-> (F) blowfish.c:91:12
-> blowfish.c:77:17 (x secret)
-> blowfish.c:82:4 (d secret)

Dependencies leading to a secret variable:
blowfish.c:236:9 (ctx.P secret)

...

...
(b) Textual output (excerpt)

Figure 2.7: Output from STAnalyzer on mbedtls’ Blowfish implementation

1 int bar(void) {
2 int values[] = {1,2,3};
3 int j;
4 #pragma STA secret j
5 values[1] = j;
6 for(int i = 0; i < 3; i++)
7 {
8 if (i%2 == 0){
9 // perform some operation

10 // that leaks values[i]
11 }
12 }
13 }

Figure 2.8: Example code falsely reported as leaking

2.4 Results

2.4.1 Benchmarks
In order to compare the performance of our approach to existing tools, we ran an analysis
of most algorithms mentioned in [57]. The results are given in Table 2.13 and were obtained

40 CHAPTER 2. STANALYZER

on a 2.4 GHz Intel i5 processor.

Implementation Execution time (s)
curve25519-donna 5.58
nacl_ed25519 7.39
nacl_salsa_20 1.05
nacl_sha512 3.44
mee-cbc 7.03
mbedtls_aes 46.50
mbedtls_sha256 2.87
mbedtls_blowfish 1.16
mbedtls_sha512 2.39
mbedtls_des 12.42
rlwe_sample 4.40

Table 2.13: Verification times for cryptographic algorithms

Violations of the constant-time policy were found for the mbedtls implementations,
and the constant-time property was verified for all other implementations. Because our
tool lists all constant-time violations, it takes longer to analyze implementations that
contain a lot of them. This is for instance the case for mbedtls_aes and mbedtls_des.

2.4.2 Applications on Other Cryptographic Algorithms
This tool was used in order to detect cache-timing vulnerabilities in the candidates for
post-quantum cryptography standardization. A detailed description of this analysis is
provided in Section 3.2 and Section 3.3 of the next chapter.

2.5 Conclusion
Folklore has it that you should never implement your own cryptographic algorithms. In
addition to the traditional bugs that you could introduce into your software, there are
several pitfalls one has to be aware of that are specific to cryptographic implementations,
such as side-channel attacks. However, someone does need to implement these algorithms,
and easy-to-use verification tools that can help to avoid those pitfalls can improve the
confidence in your implementation. Thankfully, the rules for avoiding cache-timing leakages
are relatively simple—never use sensitive data in a branch or for a memory access—and
can be checked through static analysis. Of course, it is impossible to verify this property
without introducing false positives. In designing our tool, we have tried to balance the
tradeoff between computationally complexity, ease-of-use and false positives, while ensuring
that no constant-time violation will be missed. The use cases on real-world code presented
in the next chapter show that the tool is useful both to find constant-time violations and
to verify their absence.

2.5. CONCLUSION 41

There a several directions for further improvements. First, additional sources of timing
variations could be taken into account, such as divisions, rotations or multiplications
taking a variable number of cycles to execute on some platforms [64]. Checking whether
these arithmetic operations are performed with sensitive data can be easily done by our
too, but this might lead to more reported leakages that are not necessarily exploitable.

In a similar fashion, there is currently no way to rank the severeness of the different
constant-time violations that were detected. This could be useful to prioritize the correction
of leakages, and could also help to filter out leakages that can be proven to be not
exploitable. How to determine useful heuristics for the leakage severity remains an open
research direction.

42 CHAPTER 2. STANALYZER

Chapter 3

Applications of the Static Analysis
Techniques to Post-Quantum
Cryptography and More

Bruce Schneier doesn’t use a keylogger. He’s
standing right behind you.

https://www.schneierfacts.com/

In this chapter, we present applications of our static analyzer tool. The goal is to
show that it can be applied on real-world cryptographic code without producing too many
false positives and without missing real leakages. Post-quantum algorithms provided an
interesting target for this study. Several new algorithms or variants have been designed
for the ongoing NIST post-quantum standardization process, and their implementations
have not yet been vetted as much as the implementations of more traditional algorithms
such as RSA or elliptic curve based cryptography. Furthermore, the implementations are
mostly self-contained, facilitating the analysis compared to whole cryptographic libraries .

This chapter is organized as follows. First, in Section 3.1 ground truth is established by
comparing the leakages reported by our tool on vulnerable programs to published sources
of cache-timing leakages. Section 3.2 is a summary of the findings published in [65] that
analyzed the first-round candidates of the NIST post-quantum standardization process.
Finally, a more detailed analysis of the second round candidates is provided in Section 3.3.

3.1 Collecting Ground Truth: Rediscovery of Known
CVEs

In order to validate the approach of using static analysis techniques to discover cache-timing
leakages, we ran the STAnalysis tool on known vulnerable code. The vulnerabilities were
chosen from the Common Vulnerabilities and Exposures list https://cve.mitre.org/.
More precisely, we explored the entries containing the keywords “side-channel”, ignoring
the CVEs concerning non cache-timing side channels, implementations in languages other

43

44 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

than C, or vulnerabilities concerning codebases deemed too large for the validation (e.g.
web browsers, the Linux kernel, etc.).

3.1.1 CVE-2019-9494 and CVE-2019-9495
These two vulnerabilities concern hostapd version 2.7, a program running on Wifi access
points. The vulnerabilities are found in the code that derivates a secret key from the
user-provided password. This code did not run in constant time, which could allow an
attacker to speed up dictionary attacks against the access point’s password.

For our analysis, we looked at the functions sae_derive_pwe_ecc, sae_derive_pwe_
ffc and compute_password_element. These functions implement the password derivation
and are therefore natural entry points for our analysis. For the ground truth, we looked
at the published patches1 and, by manual inspection, determined which branches and
timing-dependent function calls were removed because they could cause timing differences.

True positives First, the patches replaced three calls to the GMP-function BN_mod_exp
with calls to BN_mod_exp_consttime. Two such leaking calls were caught by our tool:
those at lines 1298 and 1442 of the file crypto/crypto_openssl.c. The third one, at
line 552 of the same file, was not found, because it was not called, either directly or
indirectly, by the three functions we chose as entry points, and was therefore outside the
code analyzed in this experiment.

Second, a call to the (potentially) variable-time os_memcp function is replaced by a
call with the constant-time const_time_memcmp. This leaking function call was detected
by our tool.

Third, a number of early returns in various functions were removed, in order to remove
timing differences. These are found in crypto/crypto_openssl.c at lines 1446 and 1448,
in eap_common/eap_pwd_common.c at lines 263 and 278, and finally in file common/sae.c
at line 513 and 237. While performing these corrections, a boolean assignment was
also changed in common/sae.c at line 260 to guarantee the absence of branching after
compiling, as shown in Listing 3.1. All the early returns were detected by our tool, but
not the boolean assignment. Such constructions could be reported, at the risk however of
increasing the number of false positives.

1 res = res == check ;
2 // Changed to
3 // mask = const_time_eq (res , check) ;
4 // r e s = const_time_se lect_int (mask , 1 , 0) ;

Listing 3.1: Boolean Assignment in hostapd

Finally, some loops that could run a variable number of times have been changes to a
fixed number of iterations. These are found in common/sae.c at line 602 and 619, and
were detected by our analysis tool.

1https://w1.fi/security/2019-1/ and https://w1.fi/security/2019-2/

3.1. COLLECTING GROUND TRUTH: REDISCOVERY OF KNOWN CVES 45

False positives False positives were present in the analysis, and they can be classified
into two main categories.

About half of the false positives are caused by the functions get_random_qr_qnr and
get_rand_1_to_p_1. They implement randomness generation in a rejection sampling-like
fashion. Although the code branches on randomly generated sensitive values, the sampled
value is independent from the direction of the branches taken. Similar false positives
are also caused by the function compute_password_element while sampling quadratic
residues and non-residues.

The second half of the false positives is caused by checking for error conditions - such as
failing to allocate memory, or very rare cases where generating random elements might fail.
For example, a function that should return a boolean value depending on its (potentially
sensitive) inputs, might also return −1 in order to signal a fatal error, which should happen
very rarely in practice. Checking this error code would trigger a leakage warning from our
tool, although no real leakage is present.

As a summary, about one third of the detected leakages are indeed security-relevant
cache-timing leakages, one third are caused by rejection sampling, and one third by checks
for error conditions. These false positives do fulfill the conditions of potentially vulnerable
code, but are not exploitable. As such, they are an artifact of the general approach and not
of the implementation of the static analysis. In order to avoid these kinds of false positives,
one could resort to heuristics to filter them out, at the risk of missing real cache-timing
leakages, or rely on annotations provided by the developers of the library.

3.1.2 CVE-2018-124049
This vulnerability affected Mozilla’s NSS cryptographic library. Variable-timing code
exposed the RSA decryption function to a Bleichenbacher-type attack [66] that could be
exploited using a cache-timing attack. Several other cryptographic libraries were affected
by similar weaknesses, but in this section, we will only focus on the NSS library.

True positives Two functions contain vulnerable code that can be exploited to mount the
attack. The first is mp_to_fixlen_octets which adds leading zeros to the representation
of a large integer. This is not done in constant-time, and this function is applied to
the decrypted plaintext. The second is RSA_DecryptBlock, which checks whether the
decrypted plaintext has been padded correctly according to the PCKS #1 v1.5 standard.
Different code is performed for conforming and non-conforming code, which allows an
attacker access to different kind of oracles that can be used to decrypt RSA-encrypted
ciphertexts.

The leakages in both functions were detected by our tool.

False negatives Numerous other potential leakages were reported by our tool - more
than 5000 in total. Some are caused by leakages of randomly generated blinding values,
which could potentially lead to multivariate attacks targeting the blinding and blinded
values simultaneously. However, no such cache-timing attacks have yet been reported,

46 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

and the feasibility of such an attack is unclear. Indeed, it is not possible to reduce the
measurement noise related to the blinding values, as they change on each execution.

Most of the other reported leakages concern functions of the big integer library used
by NSS. For instance, the code often branches depending on the sign of the operands.
This behavior may or may not lead to a cache-timing attack.

Finally, the error code returned by most functions is always checked. While this is
good practice in general, it can also lead to numerous false positives. For example, a
function could return a non-zero return code (indicating that an error has occurred) if
the values supplied as arguments are outside a valid range. If this function is called with
sensitive values that will always be in this valid range (by construction or because the
range is verified beforehand), a potential leakage will be reported by our tool although
none can happen in practice. However, one cannot simply ignore branching on all function
error codes, as they could in other cases cause real leakages. More advanced tools can
infer the range for the values of certain variables, such as [57]. It has however not yet been
demonstrated that this functionality is applicable to large integers handled by libraries
such as NSS.

In this example, the vast majority of the potential leakages discovered by our tool
were irrelevant to the reported vulnerability. While some of these leakages might be
problematic, the vast majority seem to be false positives. Reducing their number would
make our tool more useful for analyzing complex libraries. On the other hand, the false
positives do not seem to stem from programming errors in our tool, but rather from the
type of code found in NSS. As such, this library does not seem to be suitable for static
analysis in general, at least not in order to verify the constant-time property of the code.

3.2 Analyzing First Round Post-Quantum Cryptog-
raphy Candidates

The emergence of quantum computers in the medium term poses a particular threat
to public key cryptography. Shor’s algorithm [67] promises an exponential speedup for
operations such as integer factorization and discrete logarithm, once quantum computers
with a sufficient number of quantum bits are available. This would undermine the security
of most digital signature, public key encryption and key establishment algorithms deployed
today. Private key primitives, such as symmetric encryption or hash functions, would also
be affected by quantum computers, due to the Grover search algorithm [68]. However, the
speedup provided by this quantum search algorithm is only quadratic and can therefore be
offset by simpling doubling the key sizes.

It is thus crucial for public key algorithms resisting attacks by quantum computers to
be designed, implemented, tested and ultimately standardized in the near future. These
types of algorithms are collectively known as “post-quantum” algorithms, and aim at
replacing RSA and elliptic curve-based primitives. They are thus based on other hard
problems. The most promising candidates problems are:

1. LWE (Learning with Errors) [69], which gives rise to the family of lattice-based

3.2. ANALYZING 1ST ROUND PQC CANDIDATES 47

proposals;

2. the decoding problem, used in the code-based family of proposals, initiated by the
McEliece cryptosystem [70] and

3. multivariate polynomial systems solving [71], which is the cornerstone of the multi-
variate cryptography family.

For signatures, systems inspired by the Merkle signature scheme [72] are also proposed [73]
while other algorithms are based on more exotics constructions such as supersingular
elliptic curve isogenies [74].

In 2016, the Nation Institute of Standards and Technology (NIST) started the stan-
dardization process for post-quantum cryptography algorithms. This process is expected
to undergo three rounds, the first one which started in 2017 with the publication of the
specifications of 69 algorithms, along with implementations for every algorithm. The main
focus of the first round was to eliminate broken schemes, and the implementation security
was not yet of paramount importance. Nevertheless, we analyzed most of the submitted
candidates in order to determine which kind of side-channel leaks post-quantum algorithms
might be subject to .

3.2.1 Analysis Methodology
The submissions to the NIST contest have mostly similar structures, owing to predefined
templates for implementation. In particular, they all need to implement a main function
which creates and verifies Known Answer Tests (KATs). This function thus performs either
a signature and verification, or an encryption and decryption, with randomly generated
key pairs. Executing this function therefore provides a relatively good code coverage. For
the tagged variables, we simply choose to taint the randomness sources (which are also
required to respect some specific format), as these sources are used to generate the secret
keys as well as the randomness used during signature or encryption, which is probably
sensitive in most cases. An issue is that the public key would also be considered sensitive.
We mitigate this issue by automatically declaring safe any variable called pk. Of course,
a more individual analysis would be necessary if one wants to guarantee the constant
time property of a given implementation or, on the contrary, build a side-channel attack.
However, this first analysis allows us to gain first insights about the existing and probable
future difficulties of implementing constant time post-quantum schemes.

3.2.2 Result Overview
We present on Figure 3.1 the results for the 52 submissions we were able to perform static
analysis on. Out of these 52 candidates, vulnerabilities were found in 42 of them (80.8%).
17 candidates have more than 100 vulnerabilities reported and 3 have more than 1000
vulnerabilities reported. Ten submissions (Frodo, Rainbow, Hila5, Saber, CRYSTALS-
Kyber, LOTUS, NewHope, ntruprime, ThreeBears and Titanium) were found to be
correctly protected. A few submissions were almost perfectly constant time, and replacing,
for example, a small number of conditional branches with conditional move operations

48 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

would render these implementations perfectly constant-time (EMBLEM, Lima, Giophantus,
OKCN-AKCN in the MLWE variant). Also, false positives might have occurred, as it was
not possible, given the number of submissions and reported vulnerabilities, to manually
remove all false positives. The vast majority of the submissions, however, is not correctly
protected against cache attacks, due to recurrent programming oversights in the portions
of code handling sensitive data.

Figure 3.1: Total number of potential vulnerabilities found for each analyzed candidate

3.2.3 Analysis of Vulnerabilities
The detailed reports provided by the tool allowed us to classify the vulnerabilities into
several categories, which seem to occur frequently among the submissions:

1. Gaussian sampling leaks: similar to the issues reported with BLISS [24], imple-
menting a side-channel leakage free Gaussian sampler is not trivial to achieve. Some
proposals, such as Frodo, manage to avoid this issue by slightly modifying the dis-
tribution being sampled and implementing this sampling in a constant-time fashion.
If the use of a discrete Gaussian sampler is required, constant time implementations
[75] should be used.

2. Other sampling leaks: in general, when specific distributions need to be sampled,
one has to take care to avoid conditional branches and array accesses that depend
on the randomness source being used. There is no general solution to these type
of leaks, as every submission implements samplers for potentially different kinds of
distributions.

3. GMP library use: some submissions use GMP. This library does not seem to
implement operations in constant time (at least, according to the C code implementing

3.2. ANALYZING 1ST ROUND PQC CANDIDATES 49

the version we used for analysis, which is the latest version, at the time of writing, of
the mini-gmp variant), and thus functions defined by this library should not be used
on sensitive data without further inspection of their assembly level implementation.
In any case, the portable mini-gmp implementation should probably not be used in
implementations desiring to achieve the constant-time property.

4. Operations in finite fields: several implementations need to handle operations
in finite fields, notably multiplications. For small groups, this is often done via
log/anti-log tables, which might open these implementations to cache-attacks. Other
ways to implement these operations must be considered, such as bit-slicing [76].

5. Other: there were some potential leaks that we were not able to fit into one of the
other categories. For instance, some submissions provide their own implementation
of AES that use table accesses, or perform data-dependent branching for matrix
operations such as Gaussian elimination. Custom implementations of AES will
probably be replaced with calls to hardware-optimized instructions (such as AES-NI
[77]) on the platforms most commonly targeted by cache-timing attacks.

Table 3.1: Breakdown of vulnerabilities per type.

Vulnerability Type Occurrences
Gaussian sampling 3
Other sampling 13
Use of GMP 4
Unsecure GF operations 12
Other leakage sources 31

As shown in Table 3.1, vulnerable code appears relatively often when implementing
finite field operations and sampling specific distributions.

Code-based schemes are mainly affected by leakages due to finite field operations, as
they need to perform multiplications in extensions of GF(2). Additions in these groups are
less likely to cause side-channel leakages, as they can be implemented using constant time
bit shifts and XOR-operations. However a naïve implementation might be vulnerable, as
the conditional XOR, used during reduction, must also be executed in constant time, for
example by using a conditional move (cmove) instruction.

On the other hand, vulnerabilities in randomness sampling are mainly encountered
among lattice-based proposals. Perhaps surprisingly, vulnerabilities in Gaussian samplers
are relatively rare. The publication of attacks against BLISS [24] might have forced some
candidates to take special care in implementing the Gaussian sampler (DRS, qTesla,
although the implementation is not entirely constant-time), while others avoided discrete
Gaussian distributions altogether (CRYSTALS-Dilithium). However, other sampling
routines were not sufficiently protected, for example Bernoulli sampling.

50 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

3.3 Analyzing Second Round Post-Quantum Cryp-
tography Candidates

In January 2019, the NIST published a list of 17 candidates for public-key cryptography
and key-establishment (which will be referred to as KEM algorithms) and 9 candidates
for digital signatures that move to the second round of the post-quantum standardization
process [78]. Building on the insights gained during the analysis of first round candidates
and improvements on our static analysis tool, we present here a more detailed analysis of
21 post-quantum cryptography algorithms. In this analysis, we strive to clearly present all
potential causes of leakages found by our tool, as well as summarize the causes of false
positives. This can help to design improved analysis tools that can avoid the false positives,
and highlight where manual verification or code annotation is needed for verifying the
constant-time property of the implementations.

Compared with the analysis of the first round candidates, we found less vulnerabilities.
This is mainly due to two reasons: several submissions were updated with constant-time
implementations, and the manual inspection removed reported false positives.

Unless stated otherwise, the analyzed implementations are those submitted to NIST at
the beginning of the second round of the post-quantum standardization process. For some
proposals, updated implementations that specifically address cache-timing leakages were
made available (notably qTesla, Falcon and LAC), and those updated implementations
were analyzed instead.

3.3.1 LUOV
LUOV (the Lifted Unbalanced Oil and Vinegar signature scheme) is a post-quantum, mul-
tivariate quadratic signature scheme. As such, both signature verification and generation
need to perform additions and multiplications in different finite fields, of the form F2r -
F28 , F216 , F232 , F264 and F280 for the first version, F27 ,F247 ,F261 and F279 for an updated
version that addresses weaknesses in the original parameters choices that were discovered
during the standardization process [79].

Finite Field multiplication leakage In the optimized as well as the reference im-
plementations, finite field multiplications are not constant time. In the older version,
multiplications in F28 and F216 are implemented via log and antilog tables, as shown in
Listing 3.2. Multiplications in the larger groups are implemented using multiplications
over F216 , and are therefore also vulnerable.

In the newer version, multiplications in F27 are also implemented using log and antilog
tables, in a similar fashion as Listing 3.2. The larger groups implements carry-less
multiplication, as shown in Listing 3.3, which uses table accesses and is potentially
vulnerable to cache-timing attacks(see Line 11).

In addition to the reference and optimized implementations, an AVX2 optimized
implementation is provided, but only for the variants of LUOV using the smallest group
size: F28 for the original version, and F27 for the updated version. In this version, finite field
multiplication is implemented using iterative multiplication with unconditional reduction.

3.3. ANALYZING 2ND ROUND PQC CANDIDATES 51

1 f8FELT f8multiply (f8FELT a , f8FELT b) {
2 i f (a == 0 | | b == 0) return 0 ;
3 re turn f8antilog ((f8log (a) + f8log (b)) % f8units) ;
4 }
5
6 uint8_t f8log (f8FELT a) {
7 s t a t i c const uint8_t f8LogTable [2 5 6] = { . . . } ;
8 re turn f8LogTable [a] ;
9 }
10
11 uint8_t f8antilog (uint8_t a) {
12 s t a t i c const uint8_t f8AntiLogTable [2 5 6] = { . . . } ;
13 re turn f8AntiLogTable [a] ;
14 }

Listing 3.2: Implementation of multiplication in F28 in LUOV

1 uint64_t clmul (uint64_t a , uint64_t b) {
2 uint64_t table [1 6] = {0} ;
3 table [1] = a ;
4 // . . .
5 uint64_t b_lower = b & 0x0f0f0f0f0f0f ;
6 uint64_t b_upper = (b >> 4) & 0x0f0f0f0f0f0f ;
7
8 unsigned char ∗b_lower_nibbles = (unsigned char ∗) &b_lower ;
9 unsigned char ∗b_upper_nibbles = (unsigned char ∗) &b_upper ;
10
11 out_upper = table [b_upper_nibbles [3]] ;
12 out_lower = table [b_lower_nibbles [3]] ;
13 // . . .
14 out = (out_upper << 4) ^ out_lower ;
15 re turn out ;
16 }

Listing 3.3: Carryless multiplication in LUOV

As shown in [80], this routine could be sped up using Intel’s clmul instructions and
constant-time conditional reduction using cmov. In any case, finite field operations in the
AVX2 implementation are constant-time. However, no constant-time implementation
for the other parameter choices is provided.

Other Leaking Instructions After the solution to the multivariate quadratic system
has been computed, the solution needs to be transformed, and this transformation is
basically a multiplication by the secret linear map T. In the reference and optimized
implementations, both in the original and updated version, the code performing this
operation is shown in Listing 3.4. The code branches on the secret map T on Line 4, which
might induce a timing vulnerability. The AVX2 optimized code performs the multiplication
in a different way and is in fact constant time.

In a similar fashion, on the reference implementation, when building the augmented

52 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

1 // Convert in to a s o l u t i o n f o r P(x) = ta rg e t
2 f o r (i = 0 ; i <= VINEGAR_VARS ; i++) {
3 f o r (j = 0 ; j < OIL_VARS ; j++) {
4 i f (getBit (T [i] , j)) {
5 solution [i] = subtract (solution [i] , solution [VINEGAR_VARS+1+j]) ;
6 }
7 }
8 }

Listing 3.4: Multiplication by T

matrix representing the multivariate system, another matrix multiplication is implemented
in the same way and might potentially leak, as shown in Listing 3.5 (here, F2 depends
on the secret map T). The optimized implementation does not contain this branching
instruction. It uses strided matrix multiplication instead. However, this code in turn
performs array accesses in order to perform the two following functions:

b =
8∑

i=0
bi · 2i ∈ F28 7→ 255 ·

8∑

i=0
bi · 256i

b ∈ F28 7→ 255 ·
8∑

i=0
b · 256i

and is therefore not constant time.

1 f o r (i = 0 ; i <= VINEGAR_VARS ; i++) {
2 f o r (j = 0 ; j < OIL_VARS ; j++) {
3 i f (getBit (F2 [k] [i] , j)) {
4 A . array [16∗ x+k] [j] = add (A . array [16∗ x+k] [j] , vinegar_variables [i]) ;
5 }
6 }
7 }

Listing 3.5: Multiplication by F2

3.3.2 Round5
Round5 is a post-quantum lattice-based KEM scheme. It has the particularity of using
constant-time error correction, which prevents timing attacks that would be possible if
variable-time decoders were used (e.g. BCH codes). Despite some warnings emitted by
our analysis tool, the provided (optimized) implementation is actually constant-time. In
the rest of this section, we will explain which warnings were emitted, as a way to explain
how false positives can emerge.

Random permutation generation The first warning concerns the generation of a
random permutation. This is a countermeasure against backdoor attacks [81, §2.7.4].

3.3. ANALYZING 2ND ROUND PQC CANDIDATES 53

However, because this random permutation is only applied to a public matrix in order to
obtain an other public matrix, retrieving this permutation (or an equivalent one) is actually
possible using public data only, and a side-channel attack would not help a potential
attacker. This is therefore a false positive. For completeness, the code used to generate
this permutation is provided in Listing 3.6.

1 f o r (i = 0 ; i < params−>k ; ++i) {
2 do {
3 rnd = drbg_sampler16_2 (params−>tau2_len) ;
4 } whi l e (v [rnd]) ;
5 v [rnd] = 1 ;
6 row_disp [i] = rnd ;
7 }

Listing 3.6: Permutation generation

Ternary secret generation The second warning also concerns a randomness generation
routine: the generation of a sparse ternary random vector, in order to generate a random
matrix. The code that generates that vector in the reference implementation is given in
Listing 3.7. Note that the implementation uses rejection sampling (Line 4), which does not
fit the exact definition of constant-time but does not, in fact, cause any issue. However,
the creation of the ternary vector makes use of an array index at a sensitive location on
Line 5, which constitutes the potential leakage.

1 f o r (i = 0 ; i < h ; ++i) {
2 do {
3 idx = drbg_sampler16 (len) ;
4 } whi l e (vector [idx] != 0) ;
5 vector [idx] = (i & 1) ? −1 : 1 ;
6 }

Listing 3.7: Sparse ternary vector generation

The optimized implementation, when choosing to use the appropriate constant-time
matrix operations, is not concerned by this vulnerability, and is indeed constant-time.

3.3.3 qTesla
qTesla is a lattice-based post-quantum signature scheme. The signature generation requires
to sample from a discrete Gaussian distribution, which is however claimed to be constant-
time and thus not vulnerable to attacks such as those targeting BLISS [24, 25] or older
versions of Falcon [82]. Both the reference and optimized implementations are claimed to
be constant-time, and we will verify that this is the case in this section.

Uniform polynomial generation In addition to the discrete Gaussian sampler, qTesla
also implements a uniform sampler in function sample_y, in order to generate a polynomial

54 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

of N independent coefficients, uniformly distributed in [−B,B]. The code that implements
this sampler is given in Listing 3.8. This code performs branching on the potentially
sensitive values y_t[0] to y_t[4]. However, what is implemented here is actually rejection
sampling, and thus the final coefficients of the polynomial y are independent of the branches
taken during the execution of this code. Therefore, the uniform polynomial generation
is constant-time. A very similar implementation is found in function poly_uniform,
which is constant-time for the same reason.

1 // i n i t i a l i z a t i o n : i =0, buf conta in s random va lues
2 whi l e (i<PARAM_N) {
3 i f (pos >= nblocks∗nbytes ∗4) {
4 cSHAKE ((uint8_t ∗)buf , SHAKE_RATE , dmsp++, seed , CRYPTO_RANDOMBYTES) ;
5 pos = 0 ;
6 }
7 y_t [0] = (∗ (uint32_t ∗) (buf+pos)) & ((1<<(PARAM_B_BITS+1))−1) ;
8 y_t [0] −= PARAM_B ;
9 // . . . s im i l a r f o r y_t [1] , y_t [2] , y_t [3]

10 i f (y_t [0] != (1<<PARAM_B_BITS)) y [i++] = y_t [0] ;
11 // . . . s im i l a r f o r y_t [1] , y_t [2] , y_t [3]
12 pos += 4∗nbytes ;
13 }

Listing 3.8: Uniform polynomial generation

Other rejection sampling The main signature code also uses rejection sampling, and
branches on the return value of the functions test_correctness and test_rejection.
This does not cause side-channel leakages. test_rejection is itself constant-time, while
test_correctness leaks the position of the invalid coefficient - but per the comments,
this does not reveal anything about their values.

Leakage of public output Some functions leak data that depends on the secrets, but
is revealed as part of the signature anyways. This is the case for encode_c, which leaks
the public parameter c, as well as sparse_mul16, which leaks the positions and signs of
the non-zero coefficients of c.

3.3.4 MQDSS
MQDSS (Multivariate Quadratic Digital Signature Scheme) is a post-quantum, multivariate
quadratic signature scheme. It implements operations in F231 in constant-time, for all
implementation variants. The rest of the code can also be proven constant-time, with two
small exceptions that require manual inspection: rejection sampling is used three times,
and public data leaks once. This however does not prevent the analyzed reference and
optimized implementations from being considered constant-time.

Rejection sampling Rejection sampling is used three times in order to generate random
polynomials with coefficients in F231 in functions gf31_nrand and gf31_nrand_schar.

3.3. ANALYZING 2ND ROUND PQC CANDIDATES 55

The only difference is that gf31_nrand generates coefficients in [0; 30] while the coefficients
generated by gf31_nrand_schar lie in [-15; 15]. The sampling code is provided in
Listing 3.9. Finally, the main code in crypto_sign implements a similar rejection sampling
which we do not reproduce here for brevity.

1 whi l e (i < len) {
2 shake256_squeezeblocks (shakeblock , 1 , shakestate) ;
3 f o r (j = 0 ; j < SHAKE256_RATE && i < len ; j++) {
4 i f ((shakeblock [j] & 31) != 31) {
5 out [i] = (shakeblock [j] & 31) /∗−15 f o r gf31_nrand_schar ∗/ ;
6 i++;
7 }
8 }
9 }

Listing 3.9: Uniform polynomial generation

Leakage of public data As the last step of the signature generation, as per [83,
Fig. 7.2], the output of a hash function H2 is used to determine which commitments cji to
write out as part of the signature. The selection code is provided in Listing 3.10 and leaks
the output of that hash function, stored in the variable h1.

1 f o r (i = 0 ; i < ROUNDS ; i++) {
2 b = (h1 [(i >> 3)] >> (i & 7)) & 1 ;
3 i f (b == 0) { gf31_npack (sm , r0+i∗N , N) ; }
4 e l s e i f (b == 1) { gf31_npack (sm , r1+i∗N , N) ; }
5 // . . .
6 }

Listing 3.10: Commitment selection

While the value of h1 (ch2 in [83, Fig. 7.2]) depends on the secret key sk, it only
depends on the hash of sk, which is not necessary sensitive. Furthermore, after inspecting
the signature generation algorithm, it becomes clear that ch2 can be computed from public
output σ = (R, σ0, σ1, σ2), as well as the message M and the public key pk, as

ch2 = H2(H(pk||R||M), σ0, H1(H(pk||R||M), σ0), σ1)
Therefore, the leakage of h1 constitutes a leakage of public data, which is in fact not
sensitive. Thus, the provided MQDSS implementations are constant-time.

3.3.5 LEDAcrypt
LEDAcrypt is a post-quantum code-based KEM scheme. More specifically, it is based on
LDPC (low density parity-check) codes in order to obtain compact key sizes. Our analysis
applies to both the reference and optimized implementation provided by the LEDAcrypt
implementors. Since we performed the analysis, a new version of the implementation has
been made available in March 2020. The updated implementation has not yet been taken
into account.

56 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

Variable-time decoder The proposed error-decoding algorithm are not constant time.
This is the case for both the previously proposed Q-decoder [84, §1.5, Alg. 12] as well as
the standard bit-flipping decoder referenced by the latest version of the documentation [85,
§1.1.1, Alg. 1].

This can be already inferred from the description of the algorithms in the documentation.
For [84, §1.5, Alg. 12], on Line 16, qrow[k] depends on the private matrix Qtr, on Line 17,
similarity depends on qrow[k] and finally on Line 18, the algorithm branches on the
value of similarity, which we just showed depends on sensitive values. This leak is also
confirmed in the code.

For [85, §1.1.1, Alg. 1], Line 11 branches on the sensitive value syndrome, and Line 15
on unsatParityChecks[i], which depends on the sensitive value syndrome. Because the
code has not been updated to the new specifications yet at the time of the writing, we
could not verify that this leakage is also present in the code.

Variable-time finite field operations LEDAcrypt implements various operations on
elements in finite fields, notably for elements in extensions of finite fields with a sparse
representation in the base field. Several of these operations are in fact variable time.

left_bit_shift_n and left_bit_DIGIT_shift_n are two primitives used for modular
multiplication (function gf2x_mod_mul_dense_to_sparse). They shift the representation
of an extension field element by n places, implementing the multiplication by Xn. How-
ever, both leak the value n: left_bit_shift_n takes a shortcut for n = 0 (but otherwise
performs the shift in constant time), while left_bit_DIGIT_shift_n simply iterates a
number of times dependent on n.

gf2x_mod performs the modulo operation in finite field. A security-relevant part of
this function is provided as Listing 3.11. The leaks occurs on Line 4, where the bit-
representation of the array aux is leaked. This array contains a copy of the input array
representing the finite field element for which the modulo operation is to be performed.
The function gf2x_mod also contains a second, similar block of code, that leaks the values
of aux for analogous reasons. Therefore, gf2x_mod leaks its input parameter.

1 f o r (i = 0 ; i < nin−NUM_DIGITS_GF2X_MODULUS ; i += 1) {
2 f o r (j = DIGIT_SIZE_b−1; j >= 0 ; j−−) {
3 mask = ((DIGIT) 0x1) << j ;
4 i f (aux [i] & mask) {
5 aux [i] ^= mask ;
6 posTrailingBit = (DIGIT_SIZE_b−1−j) + i∗DIGIT_SIZE_b + P ;
7 maskOffset = DIGIT_SIZE_b−1−(posTrailingBit%DIGIT_SIZE_b) ;
8 mask = (DIGIT) 0x1 << maskOffset ;
9 aux [posTrailingBit/DIGIT_SIZE_b] ^= mask ;

10 }
11 }
12 }

Listing 3.11: Finite field modulo (excerpt)

gf2x_mod_mul_sparse performs the modular multiplication of its two input parameters

3.3. ANALYZING 2ND ROUND PQC CANDIDATES 57

A and B in F2P for some P , given as the list of the positions of non-zero coefficients of
their representative polynomial. Let us denote these positions with as {iA1 , iA2 , . . . iAnA} and
an equivalent notation for B. The multiplication algorithm works as follows:

1. Compute all the sums iAj + iBk mod P ,

2. Sort these values, and

3. Reduce this list by:

• Deleting the values that appear an even number of times
• Keeping exactly one of the values that appear an odd number of times

For any implementation, the first step is likely to leak nA and nB. The sorting algorithm
should be implemented in constant-time in order to avoid leaking the result, and the last
step is non-trivial to implement in constant time. The LEDAcrypt implementation performs
neither step in constant-time. The code for the first step is given in Listing 3.12 and
contains branches on the values of A and B. The sorting algorithm is a non constant-time
quicksort. Finally, the third step is not protected, as shown by the code in Listing 3.13.

1 f o r (i n t i = 0 ; i < sizeA ; i++){
2 f o r (i n t j = 0 ; j < sizeB ; j++){
3 uint32_t prod = ((uint32_t) A [i]) + ((uint32_t) B [j]) ;
4 prod = ((prod >= P) ? prod − P : prod) ;
5 i f ((A [i] != INVALID_POS_VALUE) && (B [j] != INVALID_POS_VALUE)) {
6 Res [lastFilledPos] = prod ;
7 } e l s e {
8 Res [lastFilledPos] = INVALID_POS_VALUE ;
9 }
10 lastFilledPos++;
11 }
12 }

Listing 3.12: Finite field multiplication (step 1)

1 whi l e (read_idx < sizeR && Res [read_idx] != INVALID_POS_VALUE) {
2 lastReadPos = Res [read_idx++];
3 duplicateCount=1;
4 whi l e ((Res [read_idx] == lastReadPos) && (Res [read_idx] != ←↩

INVALID_POS_VALUE)) {
5 read_idx++;
6 duplicateCount++;
7 }
8 i f (duplicateCount % 2) { Res [write_idx++] = lastReadPos ; }
9 }

Listing 3.13: Finite field modulo (step 3)

gf2x_mod_add_sparse implements sparse addition in F2P . The function takes as input
the list of indices of two elements in F2P , and output the list of indices of their sum.

58 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

As expected, this function involves quite a lot of comparing the input indices and is
not constant-time. This function could be rewritten by using techniques derives from
constant-time sorting algorithms.

Lastly, a less severe leakage appears in gf2x_transpose_in_place_sparse where A[0]
might leak, and rand_circulant_sparse_block implements a kind of rejection sampling
for generating random elements and matrices, which triggers a warning from our tool, but
no leakage actually happens.

AES re-implementation LEDAcrypt ships with an AES implementation, used in the
randomness generation code. It uses a T-table implementation which is not protected
from cache-timing leaks. However, a real installation of LEDAcrypt would very likely use
a system-specific and probably protected AES implementation, provided by OpenSSL or
similar libraries.

3.3.6 Picnic
Picnic is a post-quantum signature scheme based on zero-knowledge proofs-of-knowledge
(ZK-PoK), made non-interactive using standard transforms (Fiat-Shamir or the Unruh
transform). The particular ZK-PoK exploited in picnic consists in simulating a multi-party
computation (MPC) protocol T times, and selectively revealing some of the transcripts of
the MPC as part of the signature. Two variants, picnic and picnic2 are proposed, the latter
exploiting a more efficient ZK-PoK protocol. The principal advantage of this construction is
that the security of the scheme only relies on standard symmetric primitives (cryptographic
hash-functions and block ciphers). Thus, it is fairly unlikely that devastating attacks
breaking novel assumptions will be discovered any time soon. As such, is can be seen as an
alternative to stateless hash-based signature schemes, with which is shares the advantages
(confidence in the security) and drawbacks (fairly long signature times and sizes compared
with lattice-based solutions).

Two variants, picnic1 and picnic2, are implemented in the code submitted to NIST.
Our analysis applies to both versions and shows that they are constant-time.

Leakage of the commitment hashes The analysis revealed that the commitments
to the MPC traces can leak during various operations. They are stored inside a Merkle
tree, and search operations on the Merkle tree may leak the values of the commitments
that are searched for. However, because the commitments are either part of the signature,
or can be reconstructed from it, they should be considered as public output. Once the
commitments are flagged as public output, almost all leakages disappear. For the picnic1
variant, the values of the challenges et also leak during the proof-assembling phase (see [86,
§ 6.2; Step 5], the implementations branch on the values of et). However, since e = (et)t is
actually part of the signature, this is obviously a leakage of public output.

For the picnic2 variant, the only remaining leakages are concerning verifications against
corrupted public keys or fault injection attacks resulting in a failed MPC simulation
(see [86, § 8.4]). However, this behavior can be directly observed by interacting with the
program performing the signature, and no side-channel is required in order to determine

3.3. ANALYZING 2ND ROUND PQC CANDIDATES 59

whether a failure took place. The only remaining risk would be a simultaneous fault and
cache-timing attack: a fault attack could corrupt the secret key or other sensitive variables,
and the side-channel attack could reveal the faulted commitments. However, even in this
case, it is not clear how an attacker could exploit the knowledge of the commitments in
order to gain knowledge about sensitive values. In any case, fault attacks are out-of-scope
in this analysis, so the provided implementations are in fact constant-time.

Rejection sampling-like hashing The picnic1 variant uses a ternary hash function
H3 that generates a sequence of elements in {0, 1, 2}. As shown in [86, § 6.4.5], the ternary
hash function is build from a binary hash function by iterating over pairs of bits. The pair
(1, 1) is discarded, while the other pairs are converted into ternary elements. This implies a
branching operation on the pair of bits, which is potentially sensitive, as confirmed by the
code implementing this conversion in the reference implementation given in Listing 3.14
(the code for the optimized implementation is different but also branches on the value
of the bit pairs). However, this branch is actually benign: as in rejection sampling, the
values returned by H3 cannot be inferred from the direction of the branching operations.
Furthermore, the output of H3 is public, so this could also be considered as a leakage of
public output.

1 f o r (i n t j = 0 ; j < 8 ; j += 2) {
2 uint8_t bitPair = ((byte >> (6 − j)) & 0x03) ;
3 i f (bitPair < 3) {
4 setChallenge (challengeBits , round++, bitPair) ;
5 i f (round == params−>numMPCRounds) { goto done ; }
6 }
7 }

Listing 3.14: Ternary output generation

3.3.7 NTSKEM
NTSKEM is a code-based post-quantum key-encapsulation scheme build on Goppa codes.
It proved to be a challenge to analyze for three reasons:

• It makes heavy use of function pointers. While the initial version of our analysis tool
had very limited capabilities for handling function pointers, these were expanded in
an effort to try to handle the NTSKEM submissions. However, this ultimately proved
unsuccessful, in part because the NTSKEM code makes use of function pointers to
functions using themselves function pointers. This could be handled but requires
a greater rewriting effort. Thankfully, only a handful of such functions are used
by NTSKEM, exclusively for finite-field operations. These functions were manually
inspected and easily found to be constant-time. They could then be excluded from
the analysis.

• The implementations try to hide or abstract some implementation details via void ∗-
typed fields of structures related to the private key. These fields will themselves

60 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

hold an other structure, also related to the private key. Some of these secondary
fields, hidden behind the void ∗-field, are sensitive. However, because the information
about the structure fields is lost, our analysis tool must consider all fields as being
sensitive, which yields more false positives.

• The code makes use of generic data structures. More specifically, it makes use
of a stack implementation which is used for the Fast Fourier Transform (FFT).
Polynomials are saved into that stack, and the coefficients of some of them are to be
considered sensitive. However, the structure representing the coefficients also hold
non-sensitive data, such as their degree. Again, after passing by the void ∗ interface
of the stack implementation, all fields of the polynomial structure are considered
sensitive, which yields an unusually high amount of false positives.

A manual inspection found that most warnings emitted by our tool stem from false
positives due to the reasons mentioned above. However, in addition to some leakages
during key generation (which may be considered an issue or not), one potential leakage
could be confirmed.

Permutation leakage As part of the key-generation process, a permutation p is gener-
ated, which is part of the private key. The generation of the permutation itself is done via
Fisher-Yates shuffle [87] and is not constant-time. More importantly, the permutation is
used during the error-recovery step of the decapsulation to index the e_prime_ptr array,
as shown in the code of Listing 3.15 at Line 7, 12, and 18. This leakage is present in both
the reference and the optimized implementations of NTSKEM.

1 #de f i n e bit_value (v , i) (((v) [(i)>>LOG2] & (1ULL<<((i) & MOD))) >> ((i) & ←↩
MOD))

2
3 // . . .
4
5 f o r (i=0; i<NTS_KEM_PARAM_A ; i++) {
6 a = p [i] ;
7 bit_value = bit_value (e_prime_ptr , a) ;
8 bit_set_value (e_ptr , i , bit_value) ; /∗ Permute e_prime ∗/
9 }

10 f o r (; i<NTS_KEM_PARAM_K ; i++) {
11 a = p [i] ;
12 bit_value = bit_value (e_prime_ptr , a) ;
13 bit_set_value (e_ptr , i , bit_value) ; /∗ Permute e_prime ∗/
14 bit_toggle_value ((packed_t ∗)k_e , i−NTS_KEM_PARAM_A , bit_value) ; /∗ Step←↩

8 : r e cove r i ng k_e ∗/
15 }
16 f o r (; i<NTS_KEM_PARAM_N ; i++) {
17 a = p [i] ;
18 bit_value = bit_value (e_prime_ptr , a) ;
19 bit_set_value (e_ptr , i , bit_value) ; /∗ Permute e_prime ∗/
20 }

Listing 3.15: NTSKEM error decoding

3.3. ANALYZING 2ND ROUND PQC CANDIDATES 61

3.3.8 LAC
LAC (LAttice-based Cryptosystems) is a ring-LWE based post-quantum public-key en-
cryption and key-encapsulation scheme. The implementations submitted for the second
round NIST post-quantum contest made use of a variable-time BCH decoding algorithm
and was subsequently updated. Here, we therefore analyze the updated “LAC-v3a” variant
which, as we will see, is still non constant-time.

Finite field operations Multiplication in finite fields is implemented with table lookups,
similar to other non-constant-time implementations. For instance, the code for finite field
multiplication is given in Listing 3.16. This implementation avoids branching in order
to check if both a and b are zero and uses a ternary check as well as masking. While it
cannot be guaranteed that the compiled code does not contain any branching, we could
verify their absence by inspecting the compiled code. However, this property needs to
be checked again when using another compiler or compilation target. In any case, the
problem of a secret-dependent table access remains (see Line 4). Similar leakages are also
present in the functions gf_sqr and a_log.

1 s t a t i c inline unsigned i n t gf_mul (unsigned i n t a , unsigned i n t b)
2 {
3 unsigned i n t tmp , mask ;
4 tmp=a_pow_tab [mod_s (a_log_tab [a]+a_log_tab [b])] ;
5 mask=(a && b) ? 0xffffffff : 0 x0 ;
6 re turn tmp&mask ;
7 }

Listing 3.16: LAC finite field multiplication

Finite-field polynomial multiplication is also affected by secret-dependent memory
accesses. The secret corresponds to a sparse vector of +1 and −1 coefficients. In the
sparse representation, only the positions of those non-zero coefficients are stored. The core
multiplication code is given in Listing 3.17, where s_one (resp. s_minusone) represent
the positions of the coefficients equal to +1 (resp. −1). The address of both v1_p and
v2_p depends on these sensitive positions, and the array accesses at Line 5 resp. Line 6
thus constitute secret dependent memory accesses.

1 f o r (i=0;i<NUM_ONE ; i++) {
2 v1_p=v+DIM_N−s_one [i] ;
3 v2_p=v+DIM_N−s_minusone [i] ;
4 f o r (j=0;j<vec_num ; j++) {
5 sum1 [j] += v1_p [j] ;
6 sum2 [j] −= v2_p [j] ;
7 }
8 }

Listing 3.17: LAC finite field polynomial multiplication

62 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

BCH decoder array accesses and branching While the BCH decoder has been
improved for LAC-v3a, the provided code is still potentially vulnerable against cache-
timing attacks. The issues causing the vulnerabilities include:

• Use of primitives for finite fields that use table accesses (see above);

• “Solving” timing issues by duplicating code (see Listing 3.18), which does not protect
from e.g. BranchScope [46]. This is even more problematic as the compiled code for
the second branch is, for some reason, located far away from the rest of the function
code, making this section particularly vulnerable to cache-timing attacks in both
the reference and optimized implementation;

• Use of the ternary operator for masking, for the same reasons as exposed above.

1 i f (tmp > elp−>deg) { //memcpy cause 70 c y c l e s gap
2 gf_poly_copy(&pelp , &elp_copy , i) ;
3 elp−>deg = tmp ;
4
5 } e l s e {// j u s t f o r constant time
6 gf_poly_copy(&elp_copy , elp , i) ;
7 tmp = elp−>deg ;
8 }

Listing 3.18: LAC branch balancing

Decapsulation failure check The verification whether the received ciphertext is cor-
rectly decapsulated is not done in constant time (see Listing 3.19). This probably leads to
an attack against this implementation [88].

1 i f (memcmp (c , c_v , CIPHER_LEN) !=0)
2 {
3 //k=hash (hash (sk) | c)
4 hash ((unsigned char ∗)sk , SK_LEN , buf) ;
5 hash (buf , MESSAGE_LEN+CIPHER_LEN , k) ;
6 }

Listing 3.19: LAC decapsulation failure check

3.3.9 SIKE
SIKE (Supersingular Isogeny Key Encapsulation) is a post-quantum KEM scheme that
relies on the hardness assumption of finding isogenies between supersingular elliptic curves.
This is the only NIST-PQC candidate based on this novel assumption. Its main advantage
are short public keys and ciphertexts. This was one of the more complicated submissions
to analyze, for two reasons:

3.3. ANALYZING 2ND ROUND PQC CANDIDATES 63

• SIKE relies on GMP [89], a library for handling large integers. More specifically,
it relies on a subset implemented in a single 3400 lines-of-code file, mini-gmp.c,
which has to be analyzed by our tool. This somewhat increases the duration of the
analysis.

• The SIKE reference implementation makes liberal use of function pointers which
are passed around in structures representing the algorithm parameters. Thus, the
analysis tool had to be improved in to better handle function pointers, but the
support of this functionality is still experimental.

While the analysis is probably not as accurate as for the other candidates, we could
nevertheless make out two sources of potential leakages. These are only present in the
reference implementation; the optimized implementation is, at the best of our knowledge,
constant-time.

Point multiplication Point multiplication is implemented via the double-and-add
method and provided in the function mont_double_and_add. The core of this function
is presented in Listing 3.20. This code branches on the value of k, which represents the
secret key.

1 f o r (i = msb − 1 ; i >= 0 ; i−−) {
2 xDBL (curve , &kP , &kP) ;
3 i f (fp_IsBitSet (p , k , i)) {
4 xADD (curve , &kP , P , &kP) ;
5 }
6 }

Listing 3.20: Point multiplication via double-and-add

Use of GMP Because GMP is a generic multiprecision arithmetic library, it supports
operations with numbers, and specifically integers, of various sizes. Thus, the duration of
most operations depends on the size (in bytes or words) of the numbers being handled,
and their size depends on the value. Therefore, most GMP operations on sensitive inputs
are reported as leaking by our tool. However, whether this leakage actually weakens the
security of the implementation is not clear and would require further investigation on what
information can actually be learned from cache-timing attacks targeting GMP.

3.3.10 Other Analyzed Candidates
FrodoKEM FrodoKEM requires an AES implementation. Three variants can be used:
OpenSSL, AES-NI, or a provided standalone implementation. This last one is not constant-
time; it is a straightforward implementation that leaks during S-BOX access. However, in
practice, one of the other two options would be used, and they would be constant-time.
The rest of the code is constant time, with one exception: checking for decapsulation
failure is not done in constant-time, leading to an exploitable timing variation [88]. The
code has since been patched.

64 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

1 // I s (Bp == BBp & C == CC) = true
2 i f (memcmp (Bp , BBp , 2∗PARAMS_N∗PARAMS_NBAR) == 0 && memcmp (C , CC , 2∗←↩

PARAMS_NBAR∗PARAMS_NBAR) == 0) {
3 // Load k ’ to do s s = F(ct k ’)
4 memcpy (Fin_k , kprime , CRYPTO_BYTES) ;
5 } e l s e {
6 // Load s to do s s = F(ct s)
7 memcpy (Fin_k , sk_s , CRYPTO_BYTES) ;
8 }

Listing 3.21: Decapsulation failure check

SPHINCS The SPHINCS-Haraka implementations ship with their own AES imple-
mentation which leaks the S-BOX accesses, but a real deployment is very likely to use
a protected implementation or the AES-NI instruction set. Furthermore, warnings were
reported for the Haraka variant, but this is due to a limitation in our tool: the imple-
mentation of this hash function represents the internal state with an array s_inc of type
uint8_t[65], where the last byte represents the number of bytes that were not processed
yet. This is not a sensitive information, but because our analysis tool does not distinguish
between dependencies inside the same array, it is considered sensitive and leakages are
reported, but they are false positives. These false positives are also reported for the
shake256 variant, for similar reasons. Other than that, no leaks were reported, and we
conclude that the provided implementations are constant time.

Falcon While the original second round implementations included a variable-time Gaus-
sian sampler, it was replaced by a constant-time sampler in an updated version [90]. We
analyzed this update, and the only reported warnings concerned rejection sampling. Thus,
we verified that the updated implementation is indeed constant time.

NTRUPrime NTRUPrime uses AES, and the provided implementations exploit OpenSSL’s
implementation, which we assume is constant-time. The rest of the code was verified to
be constant time.

NTRU The provided implementation was verified to be constant time.

NewHope The rejection sampling used in NewHope triggers a warning from our tool,
but this is expected. Other than that, the code is constant time.

CRYSTALS-Kyber The rejection sampling used in CRYSTALS-Kyber triggers a
warning from our tool, but this is expected. Other than that, the code is constant time.

CRYSTALS-Dilitihium The use of rejection sampling in several functions, as well
as using recursive goto instructions to implement it, caused an unusually high number
of false positives. Manual inspection of these false positives confirmed that the code is
constant time.

3.4. PERSPECTIVES 65

ThreeBears The provided implementation was verified to be constant time.

rainbow The small number of false positives reported by our tool were causes by
difficulties handling union constructs. The provided implementation was nevertheless
verified to be constant time.

McEliece Ignoring the code present only for debugging purposes, the provided imple-
mentation was verified to be constant time.

SaberKEM The provided implementation was verified to be constant time.

3.3.11 Summary
Most round 2 candidates could be shown to be constant-time. Only LAC, LEDAcrypt and
NTS-KEM do not have constant-time implementations. For LUOV, not all parameter sets
have constant-time implementations, and these use the AVX2 instruction set. Therefore, on
platforms with no AVX2 support, no constant-time implementation is currently available.
Finally, the reference implementation of Round5 and SIKE are not constant-time, but
the provided optimized implementations are in fact constant-time. A summary of those
findings is provided in Table 3.2 for the KEM algorithms, and Table 3.3 for the signature
schemes.

3.4 Perspectives
The NIST post-quantum standardization process will undergo a third round before the
winners will be announced. New implementations will be provided, and analyzing the new
implementations will be necessary in order to verify the absence of cache-timing leaks.
Additionally, key generation could also be investigated. Depending on the usage that is
made of the cryptographic algorithms, new keys might be frequently generated, and the
cryptographic systems might be broken if an attacker gains knowledge about the keys. To
our knowledge, no cache-timing attacks on key generation have yet been published. This
could also be due to the fact that an attacker would have access to only one trace per key
generation, making attacks much harder. However, even partial information about the key
could lower the security provided by the schemes.

66 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

Table 3.2: NIST PQC Round 2 Submissions (KEM Algorithms)

Algorithm Reference Optimized Additional
Name Implementation Implementation Notes
BIKE ? ? Uses C11 features.

ClassicMcEliece 3 3

CRYSTALS-
KYBER 3 3

FrodoKEM 7 7

HQC ? ? Uses C++.
LAC 7 7

LEDAcrypt 7 7

NewHope 3 3

NTRU 3 3

NTRU Prime 3 3

NTS-KEM 7 7 Only one leakage found.
ROLLO ? ? Uses C++.
Round5 7 3

RQC ? ? Uses C++.
SABER 3 3

SIKE 7 3

Three Bears 3 3

3 Implementation verified to be constant time.
7 Constant-time violations found.
3 Implementation assumed to be constant-time.
? Not analyzed.

3.4. PERSPECTIVES 67

Table 3.3: NIST PQC Round 2 Submissions (Signature Algorithms)

Algorithm Reference Optimized Additional
Name Implementation Implementation Notes

CRYSTALS-
DILITHIUM 3 3

FALCON 3 3

GeMSS ? ? Uses C++.

LUOV 7 7
AVX2 Implementation

is constant-time.
MQDSS 3 3

Picnic 3 3

qTESLA 3 3

Rainbow 3 3

SPHINCS+ 3 3
Assuming AES-NI

is available.

3 Implementation verified to be constant time.
7 Constant-time violations found.
3 Implementation assumed to be constant-time.
? Not analyzed.

68 CHAPTER 3. APPLICATIONS OF THE STATIC ANALYSIS TECHNIQUES

Chapter 4

On the Stochastic Model of
Physically Unclonable Functions

Scientists have calculated that the chances of
something so patently absurd actually existing
are millions to one. But magicians have cal-
culated that million-to-one chances crop up
nine times out of ten.

Terry Pratchett.

4.1 An Introduction to Physically Unclonable Func-
tions (PUFs)

PUFs are electronic circuits whose behavior is unpredictable from one instantiation to
another. However, ideally, the behavior of a given manufactured PUF device is deterministic
and constant in time. These devices can be used as building blocks for hardware enabled
security protocols [91], requiring little computing power, and thus suitable for embedded
devices. However, the security and reliability properties are not yet well understood,
undermining the usability of protocols based on such hardware primitives. In the remainder
of this thesis, we will motivate the use of a stochastic model to predict and improve the
reliability and security of PUFs, with applications to the Loop-PUF [92] and other PUFs
sharing the same stochastic model (RO-sum PUF [93], Arbiter PUF [94], Ring-oscillator
PUF [95]).

4.1.1 “Weak” and “Strong” PUFs
There are two black-box ways to model a PUF. The first way consist in considering a PUF
as a device without input that produces an identifier when powered up. This is called a
weak PUF. This identifier can then be used, for instance, to generate a cryptographic
key, or be used to detect counterfeit devices.

69

70 CHAPTER 4. ON THE STOCHASTIC MODEL OF PUFS

The second way consists in considering a PUF as a device that takes an input, called
challenge, and in response to that challenge produces an output bit. Such a PUF is
called a strong PUF, and can be used, for instance, in challenge-response authentication
protocols.

Of course, one can always consider a weak PUF that produces an identifier of n bits
as a strong PUF with n possible challenges, and a strong PUF can become a weak PUF
if the set of admissible challenges is fixed and part of the PUF specification. However,
in general, a PUF is considered “weak” if the number of possible output bits is linear or
sub-linear in the PUF “size”, and “strong” if it is larger (for instance, exponential in the
PUF “size”).

4.1.2 Toy Example: The Ring Oscillator

Figure 4.1: An oscillating chain of 5 inverters

As an example of how to design a PUF, let’s consider a chain of an odd number of
inverters (NOT gates), where the output of the last gate is taken as the input of the first
gate. This is called a ring oscillator. After an impulse is applied as the input of the first
inverter, the voltage at any given point in the circuit will oscillate. The exact oscillation
frequency will depend on the physical characteristics of the inverters, and thus slightly
vary from one chain to another. For a given circuit, however, this frequency should be
relatively stable among several measurements. The frequency measurement can then be
converted into response bits. One could, for instance, take the most significant digit of the
measurement. However, it is not guaranteed that this number is uniformly distributed,
and it might be subject to measurement noise and intrinsic jitter [95]. Another solution is
to take two oscillators and compare their frequencies, yielding one output bit. This forms
the basis of the so-called Ring Oscillator PUF.

4.1.3 Description of the Analyzed PUF Designs
In the next chapters, we will analyze the stochastic model applicable to several PUF
designs exploiting the difference of delays in electronic circuits (“delay PUFs”)

Ring Oscillator PUF The Ring Oscillator PUF [91] (RO PUF) consists of N ring
oscillators with the same, odd number of inverters. It is considered a weak PUF, and
there are mainly two ways to extract an identifier from a RO PUF: either comparing the
frequencies of all ring oscillators, or comparing only the frequencies of bN/2c ring oscillator
pairs. In the first case, the output of the PUF consists in a permutation of N elements,
and assuming the oscillator frequencies follow an i.i.d. law, produces log2(N !) ' N log(N)

4.1. AN INTRODUCTION TO PHYSICALLY UNCLONABLE FUNCTIONS (PUFS)71

bits of entropy. However, encoding the permutation into log2(N !) independent bits is not
trivial. In the second case, the output are directly bN/2c independent bits. The circuit
description is summarized in Figure 4.2.

∼

∼

∼

∼

≶ ?

d1

d2

d3

dn

Figure 4.2: Ring Oscillator PUF

RO PUF output: We suppose here that the RO PUF is used to output n = bN/2c
independent bits. Let di denote the delay of the ring oscillator i. The RO PUF output is
then equal to

b = (sign(d2i+1 − d2i+2))i∈[0,n−1] .

Arbiter PUF The arbiter PUF [91] consists of two series of delay paths, with n mux
elements on each path, as depicted in Figure 4.3. Depending on the challenge bits
c1, c2, . . . , cn, the signals either cross from one path to another if ci = −1, or stay at the
same path if ci = 1. One bit of output is produced by determining whether the signal
injected into the circuit arrives first on the last mux of the upper path or of the lower
path.

Since there are 2n different possible challenges, the arbiter PUF is considered a strong
PUF. Compared to the RO PUF, it is however more complicated to implement, as all
sections of the delay path between consecutive mux elements need to be perfectly balanced,
as well as the cross links between the upper and lower path.

Arbiter PUF output: Let’s denote by di1 (resp. di−1) the delay incurred by the
signal traversing the i-th upper (resp. lower) delay element. The arbiter PUF output for a
given challenge c = (c1, c2, . . . , cn) is then equal to

b(c) = sign
(

n∑

i=1
dici·ci+1·...·cn −

n∑

i=1
di−ci·ci+1·...·cn

)
= sign

n∑

i=1

n∏

j=i
cj

 (di1 − di−1)

 .

Note that this slightly simplified model does not consider differences in delays caused
by the connections between delay elements and muxes. However, as in [96], these extra
delay differences can be taken into account into a model that is also linear in

(∏n
j=i cj

)
i
.

72 CHAPTER 4. ON THE STOCHASTIC MODEL OF PUFS

F
as

te
r

?

(c1, c2, . . . , cn) ∈ {±1}n

d1
1 +1

−1

d1
−1

d2
1

d2
−1

dn
1

dn
−1−1

+1

−1

+1

+1

−1

+1

−1

−1

+1

c1 c2 cn

Figure 4.3: Arbiter PUF

− ×c1

×c2

×cn

Σ

(c1, c2, . . . , cn) ∈ {±1}n

−

−

d1
1

d1
−1

d2
1

d2
−1

dn
1

dn
−1

Figure 4.4: RO-sum PUF

RO-sum PUF The RO-sum PUF [93] consists of n pairs of identical ring oscillators.
The frequency measured for one oscillator of a pair is subtracted from the frequency of
the other oscillator in the pair, multiplied by +1 or −1 depending on a challenge bit, and
summed with the other frequency differences, as described in Figure 4.4. The output bit is
then the sign of this sum. This design transforms 2n weak RO PUFs into one strong PUF.
The output is linear in the delays, as in the arbiter PUF. Using ring oscillators allows
to improve the reliability by improving the frequency measurement of the oscillator’s
frequency, whereas the arbiter PUF measurement cannot be improved. However, the
RO-sum PUF design requires 2n ring oscillators, n subtractors and multipliers, as well as

4.2. STOCHASTIC MODELS FOR PUFS 73

a summation element, and is thus more costly to build than an arbiter PUF.
RO-sum PUF output: Let’s denote by di1 and di−1 the delay of the two ring oscillators

of the i-th pair. The RO-sum PUF output for a given challenge c = (c1, c2, . . . , cn) is then
equal to

b(c) = sign
(

n∑

i=1
ci · (di1 − di−1)

)
.

Loop-PUF The loop-PUF [92], described in Figure 4.5, is a combination between the
arbiter PUF and the RO-sum PUF. It consists of n pairs of delay elements, separated by
n mux elements. Depending on the value of the i-th challenge bit, each mux will choose
to output the signal delivered by one or the other delay element of the previous pair. This
design is easier to implement than an arbiter PUF, since once a balanced pair of delay
elements has been designed, they are fairly easy to replicate. Similarly to the RO-sum
PUF, it is possible to amplify the differences in delay of the different delay elements by
measuring several oscillation cycles, improving the reliability.

+1

−1

d1
1

(c1, . . . , cn) ∈ {±1}n

∼

c1 c2 cn

d1
−1

d2
1

d2
−1

dn
1

dn
−1

+1

−1

+1

−1

Figure 4.5: Loop PUF

There are several ways in which one can obtain an output bit from a loop-PUF. We will
use the method described in [97] which consists in measuring the the delay for a codeword
c = (c1, c2, . . . , cn) ∈ {±1}n and its complimentary −c, and then taking the sign of the
difference in delays.

Loop PUF output: Let’s denote by di1 (resp. di−1) the delay incurred by the signal
traversing the i-th upper (resp. lower) delay element. The loop-PUF output for a given
challenge c = (c1, c2, . . . , cn) is then equal to

b(c) = sign
(

n∑

i=1
ci · (di1 − di−1)

)
.

4.2 Stochastic Models for PUFs
4.2.1 Delay Distribution
For the stochastic model of these PUFs, we will suppose, as in [98], that all delays dji
follow a i.i.d. Gaussian distribution. This assumption is justified by the statistical
analysis of the PUF circuit delays [92, 99].

74 CHAPTER 4. ON THE STOCHASTIC MODEL OF PUFS

Strong PUFs As a consequence, the PUF output for the strong PUFs (arbiter PUF,
RO-sum PUF and loop-PUF) can be rewritten as follows:

b(c) = sign(c · x)

where x = (d1
1−d1

−1, d
2
1−d2

−1, . . . , d
n
1 −dn−1) is distributed as an i.i.d. Gaussian vector. For

the arbiter-PUF, a one-to-one transformation of the challenge needs to considered before
the scalar product with the delay differences is taken. As this does not change the security
and reliability considerations, we will ignore this transformation for the sake of simplicity.

In general, the response bits for different challenges are not independent. Although
there can be as many as 2n possible challenges, we showed that the entropy cannot be
higher than about n2. Furthermore, for small values of n ≤ 10, the Shannon entropy is
actually close to its theoretical maximal value. These findings, along with a description
of the methods that allowed us to perform the simulations, are presented in Chapter 6,
which is based on two arte icles, one presented at Allerton Conference on Communication,
Control, and Computing (2019) [100], the other published in Advances in Mathematics of
Communications (2020) [101].

Weak PUFs The three aforementioned PUFs can be turned into weak PUFs by restrict-
ing the set of applicable challenges. As proven in e.g. [97], using a Hadamard matrix as
the challenge matrix allows to obtain independent response bits 1. Therefore, the model
of the weak PUF is

b = (sign(x1), sign(x2), . . . , sign(xn))
where x = (x1, x2, . . . , xn) is distributed as a vector of i.i.d Gaussian random variables.

4.2.2 Measurement Noise Distribution
PUF delay measurements are subject to several sources of noise. One such source is
the measurement noise, altering the measured delays. It can be modeled as an additive
Gaussian noise, independent from the circuit delays. Thus, the weak PUF model with
noise becomes

b = (sign(x1 + y1), sign(x2 + y2), . . . , sign(xn + yn))
where (y1, y2, . . . , yn) is distributed as a vector of i.i.d Gaussian random variables with
variance σ2, and similarly for the strong PUF model.

An analysis of the weak PUF model with noise, as well as the effect of reliability-
enhancing measures, is provided in Section 5.1, based on work published at Digital
System Designs (2018) [102]. Follow-up work that does not reduce the entropy as part of
the reliability-enhancing measures, but uses a function more complicated than the sign
function, is presented in Section 5.4 and is based on work published at IEEE International
Workshop on Advances in Sensors and Interfaces (2019) [103].

1Assuming that the delays are distributed as Gaussian random variables

Chapter 5

On the Reliability of Physically
Unclonable Functions

Insanity is doing the same thing over and
over again and expecting different results.

Unknown.

This chapter is based on the two articles “An improved analysis of reliability and entropy
for delay PUFs”, published in 21st Euromicro Conference on Digital System Design (DSD)
(2018) [102], and “Two-Metric Helper Data for Highly Robust and Secure Delay PUFs”,
published in IEEE 8th International Workshop on Advances in Sensors and Interfaces
(IWASI) (2019) [103], with coauthors Sylvain Guilley, Olivier Rioul and Jean-Luc Danger.

5.1 An Improved Analysis of Reliability and Entropy
for Delay PUFs

Designing a PUF involves a three-way tradeoff between entropy, reliability and complexity
(e.g., circuit size). Firstly, entropy is increased by adding more elements such as RAM cells
or oscillators, at the expense of an increased circuit size. Also, reliability is enhanced by
error-correcting codes (ECC), but their redundancy generally decreases the entropy. For
a given PUF design, it is not obvious how to precisely characterize the tradeoff between
these three parameters (entropy, reliability and circuit complexity). For instance, fuzzy
extraction [104] using error-correcting codes is implemented in the PUFKY [105] based
on the ROPUF [106]. However, for this design, and fuzzy extraction in general, it is very
hard to determine the bit error rate (BER) theoretically. Therefore, the actual parameter
selection for the fuzzy extractor is not straightforward. Bit-filtering [107] can also improve
the reliability but since the number of output bits is reduced as a result of the filtering,
this technique also decreases the entropy of the PUF. Thus, this technique, similar to
fuzzy extraction, is subject to a tradeoff between reliability and entropy.

The aim of this chapter is to build a framework to analyze this tradeoff for delay PUFs.
Maes [108] proposed such a framework for the reliability of SRAM PUFs which was ad hoc

75

76 CHAPTER 5. ON THE RELIABILITY OF PUFS

for a given PUF architecture and where the parameters’ identification was performed on
experimental data. Bhargava et al. [109] also perform filtering to improve the reliability of
their PUF design, but provide no theoretical model to predict the reliability that might be
obtained. In contrast, we aim at deriving a generic model using elementary assumptions,
where the three-way tradeoff is not fully determined by real measurements, but given
instead by closed-form expressions involving the signal-to-noise ratio (SNR). In this way,
additional estimations of the SNR yield new predictions for the tradeoff.

Our framework is applied to three popular delay PUFs: the RO-PUF [91], the RO sum
PUF [93] and the Loop PUF [92]. Two methods are chosen to improve the reliability:
bit-filtering in a manner similar to the η-out-of-λ scheme of Škoric et al. [107], and a novel
“two-metrics” method. Our contributions are as follows:

• a generic tradeoff analysis framework for delay PUFs;

• closed-form expressions for the BER and entropy for these PUFs, with and without
bit-filtering;

• an alternative method to improve reliability, based on two distinct metrics, as well
as reliability estimations for this method;

• an analysis of the RO-PUF, the RO sum PUF and the Loop PUF, using this
framework;

• real measurements of the delay PUFs on ASIC confirming our theoretical results.

The remainder of this chapter is organized as follows. Section 5.2 presents a theoretical
model for the delay PUFs. Closed-form expressions for reliability and entropy under bit-
filtering are derived in Section 5.3. The “two-metric” method is presented in Section 5.4.
The analysis framework is applied to various delay PUFs in Section 5.5. Section 5.6
provides an experimental validation on silicon. Section 5.8 concludes.

5.2 Delay PUF Model
In this section, we provide a black-box analysis for a generic delay PUF. Throughout this
chapter we use the following notations.

n number of delay elements in the
circuit

i index of a delay element
t index of a measurement
T total number of measurements
M total number of challenges
m index of a challenge

5.2. DELAY PUF MODEL 77

J number of circuits
j index of a circuit
cmi i-th challenge bit
Cm m-th challenge Cm = (cmi)i
djC,t total delay for challenge C (at measure t, for circuit j)
δjC,t δjC,t = djC,t − dj¬C,t
δjC δjC = 1

T

∑T
t=1 δ

j
C,t

∆C random variable modeling δC
Z additive Gaussian measurement noise

For simplification, sub- and superscripts (such as m, t, or j) may be dropped when this
does not introduce any confusion.

We model an ideal (noiseless) delay PUF as a deterministic algorithm PI that takes a
challenge C as input, and outputs a delay difference δC :

PI : C 7→ δC .

This delay is then, in general, discretized in order to extract one (or more) bit(s). Thus, the
final output is some function of the measured delay difference. For the sake of simplicity,
we consider the sign function as the bit-output of the PUF:

b = sign(δC).

The delay difference δC for a given challenge stems from a multitude of small delay
variations caused by technology dispersion, and is thus seen as a realization of a random
variable ∆C . Similarly to Lim et al. [98], we model this random PUF variable as Gaussian
∆C ∼ N (0,Σ2) for some positive deviation Σ > 0.

Such a delay PUF model is ideal since in practice, measurement noise is always present.
Following e.g., [98] we model this noise as additive and independent Gaussian. Our PUF
model becomes a probabilistic algorithm:

P : C 7→ δC + Z b = sign(δC + Z) (5.1)

where Z ∼ N (0, σ2) for some σ > 0. Since P(C) is the sum of a "signal" ∆C and noise Z,
the signal-to-noise ratio (SNR) can be defined

SNR = E[∆2
C]

E[Z2] = Σ2

σ2 . (5.2)

and the bit error rate is defined as

BER(δC) = P(sign(δC + Z) 6= sign(δC)). (5.3)

To simplify the reliability analysis, we make the additional assumption that all PUF
responses δC are mutually independent. In general this will only be satisfied approximately.
As shown below for each specific PUF, the independence assumption will hold accurately
for specific sets of challenges (at the order of n).

78 CHAPTER 5. ON THE RELIABILITY OF PUFS

In the model proposed by Maes [108], δC would correspond to the process variables
and Z to the noise variable. However, the output bits from a delay PUF do not precisely
correspond to a measurement of the process variables and further analysis is needed to
apply the Maes model to delay PUFs. Furthermore, rather than estimating the BER from
experimental data and then find the parameters using a top-down approach, we find it
more convenient to derive the BER from measures of simple system parameters such as
the SNR, in a bottom-up approach, as described in the next section. We feel that such a
determination is better theoretically justified since it requires less ad hoc assumptions.

5.3 Delay PUF Reliability and Entropy
When considering n challenges to generate n response bits, there is a high probability that
unreliable response bits are obtained. Katzenbeisser et al. [110] showed that there is 2%
to 15% unreliable bits, depending on the environment. Here we consider the proportion of
faulty bits, or, equivalently, the average probability that a PUF bit flips, as a metric to
characterize the PUF reliability. In contrast to an SRAM PUF, for which only the output
bit values are available, delays can be measured in a delay PUF to detect unreliable bits,
as we will explain in the next sections.

5.3.1 Reliability Assessment
The reliability of a delay PUF is directly related to the absolute value |δC | of the delay
difference δC associated to each challenge C. Indeed, the larger the value, the smaller the
probability to have a bit flip of the measured δC sign due to measurement error. More
formally, if we consider the Gaussian noise Z ∼ N (0, σ2) added to δC , the BER is the
probability to have a bit flip for challenge C, and is given by the following

Lemma 1. One has

BER(δC) = P
(
sign(δC + Z) 6= sign(δC)

)
= Q

(|δC |
σ

)
, (5.4)

where Q(x) = 1
2 erfc(x√

2).

Proof. Let Z ∼ N (0, σ2) and δC be a fixed value. Then

BER = P[sign(δC + Z) 6= sign(δC)]
= P[(δC + Z > 0, δC < 0)] + P[(δC + Z < 0, δC > 0)]
= P[Z > |δC |, δC < 0] + P[−Z > |δC |, δC > 0]

= P[Z > |δC |] = Q
(|δC |
σ

)

since Z is symmetrically distributed.

Figure 5.1 illustrates the distribution of ∆C and the noise distribution around the
value δC associated to the challenge C. In this example, an error occurs when δC + Z is
negative.

5.3. DELAY PUF RELIABILITY AND ENTROPY 79

δCError area

δC + Z ∼ N (δC, σ
2)

∆C ∼ N (0,Σ2)

PUF values (δC) distribution

Measurement (δC,t) distribution

Error probability

Figure 5.1: pdf of ∆ and noise for a given challenge C.

|δC |/σ value 0 1 2 3 4
BER 0.5 1.6 10−1 2.3 10−2 1.3 10−3 3.2 10−5

|δC |/σ value 5 6 7 8 9
BER 2.9 10−7 9.9 10−10 1.3 10−12 6.2 10−16 1.1 10−19

Table 5.1: BER for one bit according to the |δC |/σ value.

Table 5.1 gives the BER one can expect for a given challenge. For a set of challenges,
the BER has to be assessed on all the δC values, which are assumed to be independent.

The average proportion of bit flips is the expectation of the BER over ∆C , and is given
by the following

Lemma 2. One has

B̂ER = E[BER(∆C)] = 1
π

arctan(1√
SNR

). (5.5)

Proof. As shown in the proof of Lemma 1,

B̂ER = P[sign(∆C + Z) 6= sign(∆C)]
= P[Z > |∆C |]

= P[Z
σ
> |∆C

Σ |
√

SNR].

Note that this probability is taken jointly over ∆C , Z and that these are independent
Gaussian variables, ∆C ∼ N (0,Σ2), Z ∼ N (0, σ2). Therefore, X = ∆C

Σ and Y = Z
σ
are

independent and follow standard normal distributions, and the formula becomes

B̂ER = P[Y > |X|
√

SNR].

80 CHAPTER 5. ON THE RELIABILITY OF PUFS

Since the probability distribution of (X, Y) is isotropic, it is easily seen that B̂ER equals

X

Y

θ = arctan(1√
SNR

)

(1,
√
SNR)

Y > |X|
√
SNR

Figure 5.2: Polar representation of X and Y.

the proportion of the hatched area on Fig. 5.2. This proportion is simply 2θ/2π, where
tan(θ) = 1/

√
SNR by the geometric definition of the tan function. Thus, we simply have

that
B̂ER = 1

π
arctan(1√

SNR
).

The expected BER is represented as a function of the SNR in Fig. 5.3. Although the
expected BER (5.3.1) vanishes with the noise:

lim
SNR→+∞

B̂ER = 0,

it is easily seen that the expected BER remains quite high, > 10−3, even for large values
of SNR (several thousands).

0 1000 2000 3000 4000
SNR

10 2

10 1

BE
R

Figure 5.3: Expected BER as a function of the SNR.

5.3. DELAY PUF RELIABILITY AND ENTROPY 81

5.3.2 Reliability Enhancement by Delay Knowledge
A classical and efficient method to enhance (reduce) the BER is to take advantage of
ECCs, like the secure sketch methods presented by Dodis [104] and exploited by reliable
architectures like PUFKY [105]. With this method, an enrollment phase takes place once,
just after manufacturing, in order to build a public "helper data". The helper data, also
called "secure sketch", can be either a n bit code-offset or a n− k bit syndrome. During
PUF usage, noise might corrupt the PUF value, but thanks to the secure sketch, the
potential errors can be corrected by the ECC decoder.

We will investigate here another method to improve the reliability of the PUF that
uses the knowledge of the δC values to filter out unreliable bits. Therefore, ECC may not
be necessary or at least less complex, which helps to reduce circuit complexity.

The BER can be decreased discarding the challenges which generate unreliable bits.
These challenges are recorded during the enrollment phase in the helper data. This helper
data is then used during the reconstruction phase of the PUF. This construction resembles
the η-out-of-λ scheme by Škoric et al. [107]. However, to make the computations tractable,
instead of removing a fixed number of challenges, we remove bits that whose reliability is
lower than a given threshold. Below we compute the resulting average reliability in terms
of mean BER, and the average remaining entropy after bit-filtering.

Security Considerations From the security point of view, this helper data does not
unveil any information of the response bits, since the PUF responses to challenges are
assumed independent. However, if an attacker could modify the helper data, she could
reconstruct the PUF response, for example using an attack similar to the one described
by Hiller et al. [111].

An attacker could use the unreliable bits as a pivot to retrieve the key generated by
the PUF. Indeed, suppose the attacker can exchange the reliability of bit i in and bit i− 1
in the helper data, as shown in Fig. 5.4. If she noticed that the cryptographic result has
not changed, that means that the key bits i− 1 and i have the same value on average,
as the unreliable bit is always biased towards ‘1’ or ‘0’ (the probability that it is exactly
balanced is negligible). If she does the same with bits i and i+ 1, she can deduce whether
key bits i and i + 1 are the same, and consequently (by transitivity) if the reliable bits
i− 1 and i+ 1 are the same. This method allows the attacker to retrieve the whole key.

For the attack to work, it suffices that the attacker knows whether the key is properly
generated or not. In this respect, any prior knowledge about the value of the (secret) key
is unnecessary, only whether or not it can be used, e.g., whether a secure boot (based on a
master key derived from the PUF) unfolds well. In this respect, this attack is equivalent to a
safe error attack in the field of embedded devices security [112]. A natural countermeasure
would be to have the helper data be checked for integrity (e.g., with a CRC). However, in an
adversarial context, the attacker can change the helper data along with its CRC. Therefore,
we have to assume that the helper data can only be read by an attacker, but cannot
be modified. This can, for example, be achieved by storing it on ROM memory on the PUF.

The declaration of "unreliability" is given at enrollment phase when the delay |δC | for a
challenge C is below a threshold Th, which has to be chosen to take into account the noise

82 CHAPTER 5. ON THE RELIABILITY OF PUFS

R UR R

1 2

ii-1 i+1 R: Reliable

U: Unreliable

Figure 5.4: Attacking the helper data by using unreliable bits as pivot

level σ. In what follows, we set Th = W · σ, where W expresses the capacity to filter the
unreliable bits. Increasing W decreases the BER, but reduces the number of bits, hence
the entropy.

Figure 5.5 illustrates the distributions of ∆C and the noise. It points out the unreliable
area in the window [−Th,+Th] of width 2Wσ.

δC

δC + Z ∼ N (δC, σ
2)

δC ∼ N (0,Σ2)

Unreliable area

-Th Th

2Wσ

Reference values (δC) distribution (static randomness)

PUF delay distribution (with dynamic randomness)

Figure 5.5: Unreliable area vs distributions of ∆C and the noise Z.

The average BER reduction after filtering the unreliable bits depends directly on
Th = Wσ and is given by the following

Lemma 3.

B̂ERfilt = 2
erfc(W√

2
√

SNR)

(
T (W, 1√

SNR
) +

1
4 erf(W√

2
√

SNR
)(erf(W√

2
)− 1)

)
(5.6)

5.3. DELAY PUF RELIABILITY AND ENTROPY 83

where T represents Owen’s T function:

T (h, a) = 1
2π

∫ a

0

e−
1
2h

2(1+x2)

1 + x2 dx.

Proof. For the sake of simplicity, we will drop the subscript C from the random variable
∆C .

By definition of the filtered BER, we have that:

B̂ERfilt =
∫ +∞

−∞
p(∆ | |∆| > Th) · BER(∆) d∆.

This generic formulation, or very similar ones, have already been found before, for example
by Delvaux [113] (Eq 4.41). However, we will apply it here to a specific PUF, and
can therefore derive a more explicit formulation. Indeed, we can find a closed form of
E(BERfilt) after filtering the bits as:

B̂ERfilt =
∫ +∞

−∞
p(∆ | |∆| > Th)BER(∆) d∆

=
∫ +∞

−∞
1|∆|>Th(∆) p(∆)

P(|∆| > Th)BER(∆) d∆

= 2
P(|∆| > Th)

∫ +∞

Th
p(∆) · BER(∆) d∆

= 2
P(|∆| > Th)

1
2
√

2πΣ

∫ +∞

Th
e
−∆2
2Σ2 erfc(∆

σ
√

2
) d∆.

Using the following integral value for x, k > 0:
∫
e−x

2 erfc(kx) dx =

− 1
2
√
π(4T [

√
2kx, 1

k
] + erf(x)(erf(kx)− 1) + 1) + constant

(where T is Owen’s T function, first introduced by Owen [114]), and using a change of
variables, we get that

B̂ERfilt = 2
P(|∆| > Th)(T (Th

σ
,

1√
SNR

)+

1
4 erf(Th√

2Σ
)(erf(Th√

2σ
)− 1))

or, since P(|∆| > Th) = erfc(W√
2
√

SNR) and Th

Σ = Wσ

Σ = W√
SNR

,

B̂ERfilt = 2
erfc(W√

2
√

SNR)

(
T (W, 1√

SNR
) +

1
4 erf(W√

2 ·
√

SNR
)(erf(W√

2
)− 1)

)
.

84 CHAPTER 5. ON THE RELIABILITY OF PUFS

5.3.3 Entropy After Filtering Out Unreliable Bits
The proportion of unreliable bits is given by

P(Bit unreliable) = P(|∆| < Th) = erf(Th√
2Σ

)

= erf(W√
2SNR

). (5.7)

In other words, the average remaining entropy of a circuit with n elements (thus, of
complexity proportional to n) is equal to

H(n,W)SNR = n · erfc(W√
2SNR

). (5.8)

With this method, it is necessary to increase the number of elements to generate a given
entropy. The expected number of elements n, with n > h, to consider in order to obtain h
bits of entropy is given by:

n = h

1− P(Bit unreliable) = h

erfc(W√
2SNR)

. (5.9)

Figure 5.6 represents the average remaining entropy for a circuit, depending on the SNR
and the target BER. This characterizes the tradeoff between reliability and entropy.

10 14 10 12 10 10 10 8 10 6 10 4 10 2

BER

40

50

60

70

80

90

100

Av
er

ag
e

%
 o

f r
em

ai
ni

ng
 e

nt
ro

py

SNR = 100
SNR = 200
SNR = 500
SNR = 1000

Figure 5.6: Remaining average entropy after filtering unreliable bits as a function of the
BER to reach.

If ever it is not possible to reach the required entropy, the device is discarded. The
probability of this happening can also be computed. Since the obtained delays are
independent (when choosing a Hadamard matrix for the challenges), the number of
unreliable bits is given by a binomial distribution B(n, erf(W√

2SNR
)) on a PUF with n

elements. Thus,

5.4. THE “TWO-METRIC” METHOD 85

pdiscard =
n∑

i=n−h+1

(
n

i

)
erf(W√

2SNR
)i erfc(W√

2SNR
)n−i

= Ipd(n− h+ 1, h) (5.10)

where Ix(a, b) is the regularized incomplete beta function and pd is the probability of
discarding a bit, pd = erf(W√

2SNR).

5.4 The “Two-Metric” Method

5.4.1 Motivation and Definition
Instead of extracting one PUF bit from the delay difference δC as the sign of δC , it can
also be done by considering the interval between the first and third quartile of the ∆C

distribution:
b = 1{δC ∈ [δ1/4, δ3/4] = [−aΣ,+aΣ]}

where a = 0.674489... Let us call this method the “metric” M0.
Figure 5.7 with Σ = 1 illustrates the bit extraction by the method M0 according to

the value of ∆. The entropy is still of one bit with this metric M0 as the area for bit=0
and bit=1 is the same, namely 1/2.

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

-a a

b = 0
b = 1

Figure 5.7: Metric M0: Bit extraction according to a and the pdf of ∆

But this alternative extraction method does improve neither the security against the
helper data attack nor the reliability as there is still uncertainty around the values −a
and a.

86 CHAPTER 5. ON THE RELIABILITY OF PUFS

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

-T1 T2

b = 0
b = 1

Figure 5.8: Metric M1: Bit extraction according to −T1, T2 and the pdf of ∆C

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

-T2 T1

b = 0
b = 1

Figure 5.9: Metric M2: Bit extraction according to −T2, T1 and the pdf of ∆C

Let us consider now two metrics M1 and M2 as illustrated by Fig. 5.8 and Fig. 5.9
respectively. These metrics use two constants, T1 > T2, such that

∫ T1

−T2
φ(x) dx =

∫ T2

−T1
φ(x) dx = 1

2

and ∫ T2

0
φ(x) dx = 1

8 .

5.4. THE “TWO-METRIC” METHOD 87

Hence, as shown in Fig. 5.10, there are eight octiles in the pdf of ∆ which are:

[−∞,−T1[, [−T1,−a[, [−a,−T2[, [−T2, 0],
]0, T2],]T2, a],]a, T1],]T1,+∞].

Using this observation, we can now define a more refined bit extraction method, dubbed
the “two-metric” method.

During the PUF enrollment phase, if we determine that the PUF response would
be unreliable with metric M1, i.e. δC is around −T1 or T2, we choose the metric M2.
On the other hand, if δC is around −T1 or T2, we choose the metric M2. The helper
data now indicates the type of metric rather than the reliability. More formally, as∫ T2

0 φ(x) dx =
∫ a
T2 φ(x) dx, the choice of the metric is given by Alg. 5.4.1 and summarized

in Fig. 5.10.

Algorithm 5.4.1 Proposed PUF enrollment
Input: Threshold a, related to the expected reliability
Output: Vector of metric choices M ∈ {M1,M2}

metric ∈ {M1,M2}N
for i ∈ {1, . . . , N} do ∆← PUF(ci)

if ∆ ∈ [−a, 0] or ∆ > a then
metrici ←M1
else

metrici ←M2
end if

end for
return metric

5.4.2 Reliability of the The “Two-Metric” Method
Supposing that the initial measurement ∆ is done without noise, we can deduce from
Fig. 5.10 that the challenges with the highest bit error rate BER are those where ∆ is
either close to 0, or around ±a. Computing those error rates, we find that the challenges
with ∆ around 0 are actually those with the highest BER.

In the general case, where a, T1 and T2 must be multiplied by Σ, the probability to get
a bit error is thus upper-bounded by

BER <
∫ +∞

T2Σ

1√
2πσ

e−
x2
2σ2 dx+

∫ +∞

T1Σ

1√
2πσ

e−
x2
2σ2 dx

<
1
2 erfc(T2

√
SNR√
2

) + 1
2 erfc(T2

√
SNR√
2

)

For instance, for a typical value
√
SNR = 15 (SNR ≈ 220, see Section 5.6), this yields

BER < 10−6 .

88 CHAPTER 5. ON THE RELIABILITY OF PUFS

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

-T1 -T2 T2 T1
-a a

Use metric 1
Use metric 2
b = 0
b = 1

Figure 5.10: Choice of metric and extracted bit value.

A simulation shows that the average BER, for
√
SNR = 15, is actually less than 10−8.

The results of these simulations are shown in Fig. 5.11, and compared to the BER rates
without helper data. These results have a relative margin of error of less than 1% for all
estimates at the 95% confidence level1.

5.4.3 Security
The Helper Data contains the choice of a metric amongst M1 and M2. The question is
to know if an attacker can retrieve the key by inverting the metric of the Helper Data,
as explained above and illustrated in Fig. 5.4. Here we assume the attacker changes the
metric metrici of bit i from M1 to M2. Let us call bit−1, the bit value before the attack
and bit the bit value after the attack. The attacker can not retrieve any information if:

P(bit = 0|bit−1 = 0) = P(bit = 1|bit−1 = 1)

and
P(bit = 1|bit−1 = 0) = P(bit = 0|bit−1 = 1)

For the two-metric method, these probabilities are all equal to 1
2 regardless of the

value of the key bit when changing from one metric to the other. Therefore, there is no
possibility for the attacker to gain any information about the key bits by changing the
metric. Consequently the two-metric method is natively robust against such attacks.

1That is, for any BER estimate b, the confidence interval is included in the interval [b−0.01b, b+0.01b].

5.5. TRANSLATION FOR VARIOUS PUF ARCHITECTURES 89

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
SNR

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

M
ea

n
BE

R

Use of two-metric method
Raw BER (no helper data)

Figure 5.11: Average BER with and without two-metric helper data

5.4.4 Entropy
As all the bits are used, there is no loss of entropy as it is the case when using a single
metric.

5.5 Translation for Various PUF Architectures
When applying our results on real PUF architectures, we must suppose that the output
bits are independent and non-biased. By restricting the set of possible challenges, we can
prove, under the assumption that the theoretical model describing the PUF is accurate,
that the remaining output bits are indeed independent and non-biased. However, this is no
longer true when the PUF behavior deviates from that predicted by its model. It is possible
to ensure that the output bits are not biased and uniform using standard test suites, for
instance those provided by NIST [115]. If these tests fail, bias and correlation can be
corrected by applying fuzzy extractor techniques [116] prior to using reliability-enhancing
methods.

5.5.1 RO-PUF
The RO-PUF has been first described by Suh and Devadas [91]. In the general case, it uses
a certain number of oscillating loops for which the oscillation frequencies are measured
and compared. In the setting that we will analyze, and that had already been described in
this seminal work, we will use 2n ring oscillators to generate n bits. To describe this PUF

90 CHAPTER 5. ON THE RELIABILITY OF PUFS

in our unified framework, we will define a challenge C as any n-bit string with Hamming
weight exactly 1. If Cm is such that cmi = 1 iff m = i, then the delay difference δCm will
correspond to the frequency difference between oscillators 2m and 2m+ 1. Thus, the δCm
will be mutually independent. Therefore, our framework can be directly applied in order
to estimate the reliability-entropy tradeoff in case filtering is used.

5.5.2 RO sum PUF
The RO sum PUF, or recombined oscillator, has been proposed by Yu and Devadas [93].
Instead of comparing the oscillator frequencies, they are measured, added or subtracted,
before one bit is generated from the sign. More precisely, the 2n oscillators are divided
into n pairs. Let C = (ci)i be a challenge of length n. If di is the delay difference for the
two oscillators of the i-th pair, then the total delay is obtained as

δC =
n∑

i=1
di(−1)ci .

Here, di should be modeled as a realization from a normal law, with variance Σ2
0. Therefore,

we will have that ∆C ∼ N (0, nΣ2
0 = Σ2). There are 2n possible challenges, however, the

delays for all these challenges will not be independent. It has been shown by Rioul et al.[97],
for a different PUF but the same delay model, that the challenges are mutually independent
if, when converted to {±1} vectors instead of {0, 1} vectors, they are orthogonal. We can
therefore find a subset of n challenges that are independent if a Hadamard matrix of rank
n exists. This is always the case if n is a power of two or a multiple of 4 smaller than 668
[117]. Assuming this is the case, we can choose any such subset of challenges for the n
possible challenges. Our framework can then be applied to this PUF.

5.5.3 Loop PUF
The Loop PUF, described by Cherif et al. [92], strongly resembles the RO sum PUF, with
the exception that one configurable ring oscillator is used, instead of 2n simple ROs for the
RO sum PUF. For the Loop PUF, each RO comprises n configurable and balanced delay
element pairs. During delay measurement, the signal only passes through one half of the
delay elements, this half being determined by the input challenge. The same measurement
is then done for the complementary challenge, so that the signal passes through the other
half of the delay elements, and the delay difference is then computed. The mathematical
model is thus very similar to that of the RO sum PUF, with some minor differences.
For example, in the RO sum PUF, the delays for the individual ring oscillators are first
quantified and then added, which might lead to some rounding errors. This is less the
case for the Loop PUF, since a total delay is directly measured. Thus, there are only two
delay quantifications for the Loop PUF.

As shown by Rioul et al. [97], in order to obtain independent delay differences, and
thus independent bits, the challenges need to be orthogonal, in the same sense as before.
Thus, an entropy of n bit can be obtained by choosing a n× n Hadamard matrix for the
challenges, if a Hadamard matrix of this size exists.

5.6. EXPERIMENTS AND VALIDATION WITH REAL SILICON 91

5.6 Experiments and Validation with Real Silicon
In this section, results are presented only for bit filtering. Because the two-metric method
is not “tunable” and the SNR of the tests circuits is high, too many measurements would
have been necessary in order to obtain a sufficient number of bit-flips to reliably estimate
the BER.

5.6.1 Architecture of the Test Circuit
We used Loop PUFs with n = 64 delay cells for our experiment. The cells use 65 nm
CMOS technology, and each test chip contains 49 PUFs, embedded in a 7 × 7 matrix.
We performed the delay measurements during L = 214 oscillation periods of the reference
clock at fref = 100 MHz. This allows us to simulate:

• 49 Loop PUFs with 64 delay elements, or

• 64 RO-PUFs with 24 delay elements, or

• 64 RO sum PUFs with 48 delay elements.

Following [97], we choose a 64×64 Hadamard matrix as the challenge matrix to control
the 49 Loop PUFs. The 64 challenge responses can therefore be considered independent.
We perform T = 1000 measurements for each challenge and each PUF per chip. This
directly yields the responses for the Loop PUF. In order to simulate a RO-PUF, we fix a
challenge index m and consider the 24× T response delays:

{
δ2j
m,t − δ2j−1

m,t , j ∈ [1, 24]
}
.

In a similar fashion, for the RO sum PUF we choose a 48× 48 Hadamard matrix C̃.
For a fixed challenge index m of the Loop PUF, we then obtain 48× T response delays:

C̃ ·

δ1
m,t

δ2
m,t
...

δ48
m,t

.

5.6.2 BER and Entropy Measurement
Results

Six test chips have been analyzed, and the measured BER and remaining entropy have
been plotted in Fig. 5.12.

The error bars represent the range of values obtained among the tested chips. Although
they do not share the exact same SNR, a middle value has been chosen, so that a simple
comparison is possible. The SNR was calculated by estimating the variance of ∆C and Z
from the delay measurements of the test chips. Moreover, the range of measured SNRs is
relatively small (between 180 and 250).

92 CHAPTER 5. ON THE RELIABILITY OF PUFS

0 1 2 3 4 5
w (normalized threshold for bit filtering)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Bi
t e

rro
r r

at
e

RO-PUF
Theoretical BER (SNR=220)
Measured BER

0 1 2 3 4 5
w (normalized threshold for bit filtering)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Bi
t e

rro
r r

at
e

RO-Sum PUF
Theoretical BER (SNR=220)
Measured BER

0 1 2 3 4 5
w (normalized threshold for bit filtering)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Bi
t e

rro
r r

at
e

Loop PUF
Theoretical BER (SNR=220)
Measured BER

0 1 2 3 4 5
w (normalized threshold for bit filtering)

75

80

85

90

95

100

Re
m

ai
ni

ng
 e

nt
ro

py
 (%

)

RO-PUF
Theoretical remaining
entropy (SNR=220)
Measured remaining
entropy

0 1 2 3 4 5
w (normalized threshold for bit filtering)

75

80

85

90

95

100

Re
m

ai
ni

ng
 e

nt
ro

py
 (%

)

RO-Sum PUF

Theoretical remaining
entropy (SNR=220)
Measured remaining
entropy

0 1 2 3 4 5
w (normalized threshold for bit filtering)

75

80

85

90

95

100

Re
m

ai
ni

ng
 e

nt
ro

py
 (%

)

Loop PUF
Theoretical remaining
entropy (SNR=220)
Measured remaining
entropy

Figure 5.12: Experimental validation of the SNR and remaining entropy.

Discussion

For the remaining entropy, the measured and predicted values match quite closely. This
seems to confirm the hypothesis of a Gaussian distribution for the average delay values.
For the bit error rate however, the interpretation of the results seems more complicated.
Indeed, while the BER for small filtering thresholds, and thus "large" BERs, seems to
match our prediction, this is not the case for larger thresholds, at least for the RO-PUF
simulation and the Loop PUF. We can see two explanations for this:

First, the sample size is probably not large enough to reliably estimate probabilities
around 10−8. Indeed, for each chip, we record about 3 million samples, and thus, even one
bit error would yield a BER, for that circuit, of more than 3 · 10−7. Therefore, the BERs
for parameters W ≥ 4 come with a fairly large uncertainty.

The small sample size does not explain everything, however. When further analyzing
the delay measurements, we notice that the noise distribution does not perfectly follow a
Gaussian distribution. Indeed, on some chips, we observe multiple measurements that are
more than 7σ away from the computed mean delay value, as taken over 1000 measurements.
This should not happen more than once in about 500 million measurements, if the noise
was truly Gaussian. Thus we must admit that the noise is not exactly Gaussian. More
exactly, it seems to be more heavy-tailed than a Gaussian noise. This could be an artifact
of our experimental setup. Indeed, it forces us to wait a relatively long time span between
measures, and the outliers could be explained, for example, with voltage fluctuations
(the Loop PUF is relatively sensible to supply voltages changes). On the other hand, it
should not come to a great surprise that a physical phenomenon does not exactly follow
a Gaussian distribution. In order to derive a more precise model, other types of noise

5.7. EFFECT OF ENVIRONMENTAL CHANGES: TEMPERATURE 93

distributions need to be considered.
One can further notice that the divergence from the expected BER is almost absent

from the RO sum PUF simulation. This can be easily explained. A simulated delay
measurement for the RO sum PUF corresponds to the sum of 48 independent Loop PUF
delay measurements. If only one Loop PUF measure is an outlier relative to the expected
Gaussian noise distribution, this will less affect the whole sum. This also explains why
the RO-PUF exhibits less divergent behavior than the Loop PUF, as any outlier will be
summed with another delay measurement. These results, however, are possibly artifacts of
our experimental setup, if we suppose that external factors cause these outlier measures.
Indeed, in a real RO-PUF or RO sum PUF, all measures would certainly be done in
parallel, and might be affected by the same glitch at the same time. Therefore, this does
not say anything about the intrinsic robustness of these three PUF types.

5.7 Effect of Environmental Changes: Temperature

PUFs are not necessarily used in the same environmental conditions they were enrolled at.
Mainly two factors seem to be able to affect their behavior: temperature and input voltage
[118]. We will assume that the input voltage can be controlled, via an voltage regulator
for instance, and not further investigate in this direction. However, it is more complicated
to control the temperature at which the PUF will be used, and it would therefore be
helpful if it was possible to model the PUF-response dependency on temperature. In this
section, we propose and test such a model. A similar model has been proposed by Maes
[108], but for delay PUFs, it is possible to more directly test the model and make more
straightforward predictions.

5.7.1 Assumptions

Given our experiments, we think that it is safe to make the following assumption: The
delay response of a given oscillator is linearly dependent on the temperature, but the
proportional constant might vary among ring oscillators. Testing on the Loop PUF circuits
yielded a linear regression R2 score above 0.999 for every oscillator. In addition, we will
assume that this proportional constant follows a normal law. The curve for different
oscillators in Figure 5.13 seems to validate this kind of distribution. Since in general, only
the differences between ring oscillators are being considered (for the RO-PUF as well as
the RO sum PUF), we can suppose that the probability distribution is centered. More
formally, let’s denote the temperature by θ, and the linear dependency coefficient by `,
where ` is a realization of a random variable L ∼ N (0, σθ) . We therefore have the model
for the temperature dependent PUF:

Pθ : C 7→ δC + Z + `θ, b = sign(δC + Z + `θ) (5.11)

94 CHAPTER 5. ON THE RELIABILITY OF PUFS

24.0 24.5 25.0 25.5
Oscillations increase per ◦C (domain [0◦C, 80◦C])

0

1

2

3

4

5

6

E
st

im
at

ed
p

ro
b

ab
il
iy

d
en

si
ty

` dist., same oscillator

` distr., same oscillator

` distr., same oscillator

` distr., different oscillators

Figure 5.13: Distribution of temperature dependency coefficients (for 49 distinct oscillators,
as well as 64 challenges of the same oscillator, for three different oscillators)

5.7.2 Average BER
We can now try to compute the average bit error rate over all average delays δC and
dependency coefficients `. As a reminder, the BER is defined here as

B̂ERθ = P [sign(∆ + Z + Lθ) 6= sign(∆)] (5.12)

Since Z and Lθ are two centered independent Gaussian random variables, with variance
respectively σ2 and θ2σ2

θ , the sum is also a Gaussian random variable with variance
σ2 + θ2σ2

θ . Therefore, the result for the average BER obtained in 5.3.1 can be directly
applied, by replacing σ with

√
σ2 + θ2σ2

θ :

B̂ERθ = 1
π

arctan(

√
σ2 + θ2σ2

θ

Σ) (5.13)

Thus, for the average BER, using the PUF at a temperature that is different from the
enrollment temperature is equivalent to a loss of SNR. Of course, for individual delay
measurements, this is not true, as the BER can exceed 0.5 if an inversion of the average
sign happens due to the temperature difference, but it remains true for the average BER.

5.7.3 Effect on Delay PUFs
The RO-PUF and RO sum PUF are equally affected by the temperature dependency of
the ring oscillators on the temperature. Indeed, for the RO-PUF, the delay difference
is simply the difference of delay among two oscillators, and the model can be directly

5.8. CONCLUSION 95

applied as is. For the RO sum PUF, the total delay difference is actually the sum of a
larger number of ring oscillator-pair delays. However, since the sum of Gaussian random
variables still follows a Gaussian distribution, the same formula applies for the RO sum
PUF, where σ, σθ and Σ are simply multiplied by the square root of the number of ring
oscillator pairs. Since the average BER only depends on the ratio between these quantities,
the BER formula is unchanged.

The case of the Loop PUF is a little different. Indeed, the delay differences are
measured on the same oscillator, and different challenges should have a similar temperature
dependency. However, as Figure 5.13 shows, this is not exactly the case. While the
temperature dependency coefficients vary less between challenges of the same oscillator
than between oscillators, the variance is not zero. The model seems also applicable to the
Loop PUF, albeit with a lower standard deviation σθ.

5.7.4 Impact on the “Two-Metric” Method
The “two-metric” method is more sensitive to a change in the variance of the delays, as
both the helper data generation and the bit extraction depend on it. One solution is
to systematically assess the value of Σ before transforming the delay difference into a
response bit. For instance the estimation can be carried out as per:

Σ̂ =

√√√√ 1
N

N∑

i=1
∆2
i

where N is the number of challenges and ∆i the time difference of the Delay PUF measured
for each challenge i.

Assuming a change in temperature and voltage only amounts to a change in Σ and σ,
one can determine the new BER by simulation. The BER actually depends on the number
of challenges, as shown in Fig. 5.14, because this number determines the precision of the
estimate Σ̂.

While the BER is increased in this setting, it stays below 5 · 10−8 for
√
SNR equal to

15 and 128 challenges, and below 6 · 10−7 for 64 challenges.
Because Σ is estimated using noisy measurements, Σ̂ will actually overestimate Σ.

Indeed, it is easy to see that
E[Σ̂] =

√
Σ2 + σ2.

If the SNR is expected to be constant across different voltages and temperatures, this
information could be used to improve the estimation of Σ. In any case, this requires more
experiments to really assess the voltage and temperature impact on the SNR. Furthermore,
because the value of Σ also influences the helper data generation, it is not easy to determine
how the “two-metric” method is affected when enrollment and response generation are
performed under different environmental conditions.

5.8 Conclusion
This chapter first presents the formalism to express the entropy and reliability of multiple
delay PUFs: the RO-PUF, the RO sum PUF and the Loop PUF. We obtained a closed-

96 CHAPTER 5. ON THE RELIABILITY OF PUFS

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
SNR

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

M
ea

n
BE

R

Known variance
64 challenges
128 challenges

Figure 5.14: Average BER when Σ is known or unknown at measurement stage

form expression of the reliability which shows that the BER cannot go lower than about
10−3 even with large SNRs. The gain provided by the bit-filtering method that discards
unreliable bits at enrollment phase has been formalized, giving a BER which can go to
less than 10−10.

The tradeoff between BER, entropy and complexity has been characterized. The
resulting parameter selection for a given application is quite straightforward and simple.
Practical experiments on few hundred PUFs designed in 65 nm CMOS process validate
the theory. Testing the effect of temperature on the different types of PUFs is difficult
when simulating with Loop PUFs. Tests with "native" PUFs might be necessary for a
more thorough validation.

A second improvement technique, the “two-metric” method has also been proposed.
This method is immune against helper-data tampering attacks and preserves the whole
entropy while obtaining very low bit error rates. However, it is more sensitive to changes
in environmental conditions. This poses an interesting challenge which, once solved, could
make this method more practical to use.

The Gaussian model for process and noise variables are validated by these experiments
up to a certain threshold. Beyond, the Gaussian model may not be valid at the far tail of
the noise distribution, and an adequate model for the noise distribution is a subject for
future work. Such a model would allow more efficiently designs of PUFs with very low
error rates. In particular, this model for reliability (also sometimes termed steadiness) is a
suitable metric for stochastic models being developed in ISO/IEC 20897 project [119].

5.A. VERIFYING THE RELIABILITY OF A PUF 97

5.A Verifying the Reliability of a PUF
Once a PUF has been designed, regardless of the methods employed to enhance its
reliability, it is natural to verify that the key (or bit) error rate is sufficiently low for its
intended application. In general, when given a PUF, the goal is to test whether its failure
probability p is below some threshold ε. Suppose that we consider the PUF as a black
box here: all we can do is request an identifier and check if the generated identifier is the
expected one. How many times (say n) do we need to generate an identifier that is wrong
no more than t times in order to be certain that the needed reliability is attained ?

Actually, as such, the problem is not well-posed. There is always the chance for an
unreliable PUF to pass any stochastic testing, and for a reliable PUF to fail it. Therefore,
we must specify the following parameters:

• What proportion of reliable PUFs (p ≤ ε) are allowed to be rejected ? Let us denote
this proportion with α.

• What proportion of unreliable PUFs (p > ε) are allowed to pass ? Let us denote
this proportion with β.

Now, the problem is as a hypothesis testing problem, but it is still ill-posed. That
is because for any stochastic testing method that takes finite time, the probability of
rejecting a PUF is a continuous function of its failure probability p. However, if α < 1− β
(which should be the case for any reasonable choice of these parameters), then the rejection
probability would be discontinuous for p = ε, which is not possible. The second requirement
thus needs to be somewhat relaxed. The final, well-posed problem is thus the following:
given ε and δ, α and β, such that

• a proportion α of reliable PUFs (p ≤ ε) might be rejected and

• a proportion β of unreliable PUFs (p > ε+ δ) might pass,

how should the stochastic testing parameters n and t be chosen ?

5.A.1 Illustrating Example
For example, take n = 107 and t = 120, that is, 107 identifiers are generated by a PUF,
and the PUF is rejected when there is a mismatch between the expected and generated
identifier more than 120 times. The PUF rejection probability, as a function of its true
error rate p, is computed in Figure 5.15. It shows a steep transition from a rejection rate
of almost 0 to a rejection rate of almost 1 around p = t

n
= 1.210−5. For instance, a PUF

with error probability 10−5 will be rejected with probability 2.27% while a PUF with error
probability 1.5 · 10−5 will pass with probability 0.66%.

5.A.2 Finding n and t

As shown in the previous example, for fixed ε, δ, n and t, it is easy to compute α and β.
However, it is more useful to fix α and β, and then compute the corresponding n and t.

98 CHAPTER 5. ON THE RELIABILITY OF PUFS

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
PUF failure probability p 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

PU
F

re
je

ct
io

n
pr

ob
ab

ilit
y

Figure 5.15: Rejection probability as a function of PUF error rate (n = 107, t = 120)

An exact solution is possible but it requires testing several values of n and t. For this
procedure to be more efficient, it is better to start with a good approximate solution,
and then exploring neighboring values. The simplest way to do so is to approximate the
binomial distribution B(n, p) with the Gaussian distribution N (np,

√
np(1− p)2). Then, t

can be fixed as a function of n.
In order to do so, the z-score corresponding to α needs to be computed first. In other

words, we need to determine zα such that

P(N (0, 1) > zα) = α

This value can be found in standard tables or computed using the inverse error function
provided in numerous mathematics-oriented function libraries. When using standard
tables, it is important to mention that most are two-tailed standard normal tables, while
a one-sided z-score is needed here. This corresponds to the z-score for 2 ∗ α in a two-tailed
standard normal table such as https://www.sheffield.ac.uk/polopoly_fs/1.43999!
/file/tutorial-10-reading-tables.pdf.

Because of the scale invariance property of the normal distribution, we also have that

P[N (np, np(1− p)) > np+ zα
√
np(1− p)] = α.

Setting p = ε, the minimum number of failures to tolerate among n tries in order to reject
less than a proportion α of reliable PUFs can be easily determined:

t ≥ bnε+ zα
√
nε(1− ε)c.

5.A. VERIFYING THE RELIABILITY OF A PUF 99

A similar reasoning can be applied to fix n given β. First, a value zβ needs to be determined
that verifies

P(N (0, 1) > zβ) = β.

We then have that

P[N (np, np(1− p)) < np− zβ
√
np(1− p)] = β.

Setting p = ε+ δ, we then find a second constraint for t that is required in order to pass
no more than a proportion β of non-reliable (p ≥ ε+ δ) PUFs:

t ≤ dn(ε+ δ)− zβ
√
n(ε+ δ)(1− (ε+ δ))e

Ignoring the fact that both t and n need to be integers, we can solve for n and find an
approximation as

n ≈ 1
δ2

(
z2
αε(1− ε) + z2

β(ε+ δ)(1− ε− δ) + zαzβ
√
ε(1− ε)(ε+ δ)(1− ε− δ)

)

As an example, for ε = 10−5, δ = 10−6, α = β = 1%, we get zα = zβ ≈ 2.326 and
n = 227168250, t = 2382. The graph for those parameters provided in Figure 5.16. The
passing and rejection probabilities are respectively 1.044% and 0.9574%, which is quite
close to the target values of α and β.

0.6 0.8 1.0 1.2 1.4
PUF failure probability p 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

PU
F

re
je

ct
io

n
pr

ob
ab

ilit
y

Figure 5.16: Rejection probability as a function of PUF error rate (n = 227168250, t =
2382)

100 CHAPTER 5. ON THE RELIABILITY OF PUFS

Chapter 6

Entropy Estimation of Physically
Unclonable Functions via Chow
Parameters

Anyone who attempts to generate random
numbers by deterministic means is, of course,
living in a state of sin.

John von Neumann

This chapter merges the contributions published in collaboration with Olivier Rioul,
Jean-Luc Danger, Sylvain Guilley and Joseph J. Boutros.

A physically unclonable function (PUF) is an electronic circuit that produces an intrinsic
identifier in response to a challenge. These identifiers depend on uncontrollable variations
of the manufacturing process, which make them hard to predict or to replicate. Various
security protocols leverage on such intrinsic randomness for authentication, cryptographic
key generation, anti-counterfeiting, etc. Evaluating the entropy of PUFs (for all possible
challenges) allows one to assess the security properties of such protocols.

In this chapter, we estimate the probability distribution of certain kinds of PUFs
composed of n delay elements. This is used to evaluate relevant Rényi entropies and
determine how they increase with n. Such a problem was known to have extremely high
complexity (in the order of 22n) and previous entropy estimations were carried out up
to n = 7. Making the link with the theory of Boolean threshold functions, we leverage
on the representation by Chow parameters to estimate probability distributions up to
n = 10. The resulting Shannon entropy of the PUF is close to the max-entropy, which is
asymptotically quadratic in n.

6.1 Introduction
Suppose we are given a (nonlinear) (n,M) code C with M codewords ci ∈ {±1}n and n
i.i.d. standard Gaussian variables X1, X2, . . . , Xn ∼ N (0, 1). Let X = (X1, X2, . . . , Xn)

101

102 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

and consider the scalar products

ci ·X =
n∑

j=1
ci,jXj (i = 1, 2, . . . ,M) (6.1)

and the associated sign bits

Bi = sign(ci ·X) ∈ {±1} (i = 1, 2, . . . ,M). (6.2)

The question addressed in this chapter is the following: What is the joint entropy of the
sign bits

H(C) = H(B1, B2, . . . , BM)? (6.3)

In particular, can we evaluate the maximum entropy H(n) = maxC H(C) attained for the
full universe code C = {±1}n? Despite appearances, this problem turns out to be largely
combinatorial as shown below.

6.1.1 Notations and Definitions
Definition 11 (Challenge code). Let n > 0,M > 0 be two integers. A (n,M) challenge
code C is a subset C ⊆ {−1,+1}n of cardinality M . The elements of this subset are called
codewords, and the i-th codeword is denoted by ci. By an abuse of notation, we identify
the challenge code with the n ×M matrix C, called the challenge matrix, which rows
contain all codewords exactly once. The i-th row is ci, and conversely, for any codeword
c ∈ C, i(c) denotes its row index.

The motivation for this problem comes from hardware security. Modern secure in-
tegrated circuits make use of hardware primitives called physically unclonable functions
(PUFs) that can generate unique identifiers from challenges, such as described, for ex-
ample, by Maes [120]. More formally, a PUF is a function that takes several challenges
c1, c2, . . . , cM (the so-called challenge code) as inputs and returns the bitvector identifier
(b1, b2, . . . , bM). PUFs exploit small, uncontrollable physical variations of the manufacturing
process that cannot be replicated, hence the name “physically unclonable”.

Definition 12 (Physically unclonable function (PUF)). Let C be an (n,M) challenge
code. Let x = (x1, . . . , xn) ∈ Rn such that the scalar product c · x 6= 0 for all codewords
c ∈ C. Then the physically unclonable function (PUF) with parameter x is the function
fx : C → {−1,+1} defined as

fx(c) = sign(c · x), (6.4)

where sign is the sign function and · denotes the usual scalar product. Equivalently, fx is
given by the sign vector b = (b1, b2, . . . , bM) ∈ {−1,+1}M such that

bi = sign(ci · x) (i = 1, . . . ,M). (6.5)

The following notion of randomized PUF coincides with that of a PUF at a design
stage, when it is not yet instantiated by a foundry fabrication process (cf. [121, Fig. 1]).

6.1. INTRODUCTION 103

Definition 13 (Randomized PUF). For a fixed (n,M) challenge code, we define the
random PUF as fX , where X = (X1, X2, . . . , Xn) and Xi are i.i.d. standard normal
random variables Xi ∼ N (0, 1).

The corresponding random sign vector is then B = (B1, . . . , BM), where

Bi = sign(ci ·X) (i = 1, . . . ,M) (6.6)

with probability distribution

Pb = P[B = b] = P[B1 = b1, B2 = b2, . . . , BM = bM] (b ∈ {−1,+1}M).

We denote |supp(Pb)| the cardinality of the support of Pb.

To assess the security of a PUF, it is necessary that the entropy of the identifier’s
distribution is sufficiently high. The most natural definition is the Shannon entropy,
characterizing the uncertainty about the PUF distribution. Depending on the desired
application, other kinds of entropies may be relevant. The most conservative view is to
consider the min-entropy H∞, which can be interpreted as the “cloning” entropy in the
worst case, when the PUF to clone is obtained with probability maxb∈{±1} Pb. When using
a PUF to generate a key, the min-entropy also characterizes the security of the key, as
shown for example in [122]. In other settings, the collision entropy allows for a more
accurate security bound on the key derivation, as suggested by Skorski [123] and Dodis et
al. [124]. It accounts for PUF uniqueness, since it is related to the probability that no two
generated keys are the same. In contrast, the max-entropy H0 has no obvious practical
interest apart from being an easily computable upper-bound of the Shannon entropy (and
of all other Rényi entropies).

Definitions for the different kinds aforementioned entropies are given below. Each
depends on the choice of a challenge code C.

Definition 14 (Rényi entropies [125]). For α ≥ 0, the Rényi entropy of order α is defined
as

Hα(C) = 1
1− α log2

∑

b∈{±1}M
Pαb .

As special cases (taking the limits when α approaches 1 or infinity) we have

H0(C) = log2 |supp(Pb)| (max-entropy)

H1(C) = H(C) =
∑

b∈{±1}M
Pb log2

1
Pb

(Shannon entropy)

H2(C) = − log2
∑

b∈{±1}M
P2
b (collision entropy)

H∞(C) = − log2 max
b∈{±1}M

Pb (min-entropy).

A well-known property of the Rényi entropies is that Hα is non-increasing in α.
Thus, for any code C, H∞(C) ≤ H2(C) ≤ H(C) ≤ H0(C). It is also easily seen that
H2(C) ≤ 2H∞(C).

104 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

Definition 15 (Full entropy). For any α ≥ 0, we define the full entropy Hα(n) as the
Rényi entropy for the (n, 2n) challenge code that contains all possible codewords.

The full entropy is highest among all codes, as shown in the following lemma.

Lemma 4 (Full entropy is maximal). For any α ≥ 0 and any challenge code C,

Hα(n) ≥ Hα(C).

Proof. We prove a stronger result: For any challenge matrix C of an (n,M) challenge
code and challenge matrix C ′ of an (n,M + 1) challenge code where the first M lines are
identical to C, Hα(C ′) ≥ Hα(C).

Let b be a sign vector associated with C such that Pb > 0, and let b+ (resp. b−) the sign
vector associated with C ′ equal to (b1, . . . , bM , 1) (resp. (b1, . . . , bM ,−1)). By definition of
C ′, one has Pb = Pb+ + Pb− .

Assume α > 1. To prove that Pαb ≥ Pαb+ + Pαb− , consider
Pb+
Pb

and Pb−
Pb

. Since 0 ≤
Pb+
Pb
,
Pb−
Pb
≤ 1, we know that (Pb+Pb)α ≤ Pb+

Pb
and (Pb+Pb)α ≤ Pb+

Pb
. Therefore,

(Pb+
Pb

)α + (Pb−
Pb

)α ≤ Pb+
Pb

+ Pb−
Pb

= 1. (6.7)

which implies Pαb+ + Pαb− ≤ Pαb . Summing over all Pb we obtain
∑

b∈{±1}M
Pαb =

∑

b∈{±1}M
(Pb+ + Pb−)α ≥

∑

b∈{±1}M
Pαb+ + Pαb− ≥

∑

b∈{±1}M+1

Pαb . (6.8)

The assertion follows by taking the logarithm on both sides of this inequality and multi-
plying by the negative constant 1

1−α .
The case α < 1 is similar: The inequalities (6.7) and (6.8) are reversed because xα ≥ x

for x ∈ [0, 1], but the constant 1
1−α is positive. Therefore, the same assertion follows. The

cases α = 1 and α =∞ are established by taking limits.

Notice that the maximum entropy Hα(n) is always attained by a (n, 2n−1) challenge
code, by the following symmetry argument: since sign(c · x) = − sign ((−c) · x), the set
{±1}n can be partitioned into two opposite sets where codewords in the second set bring
no additional entropy. Indeed, adding a codeword c to a code C which already contains
−c does not change the probabilities of the sign vectors, only their labeling. This leaves
all Rényi entropies unchanged. Therefore, it is possible to obtain the maximum entropy
with any (n, 2n−1) code C satisfying c ∈ C =⇒ −c 6∈ C.

Table 6.1 summarizes the notations used in the remainder of this chapter.

6.1.2 Motivation
Definitions 12 and 13 correspond to a particular PUF that exploits the variability of n
distinct delay elements (a so-called “Loop PUF”), where X1, X2, . . . , Xn are independent
Gaussian delay differences. This type of PUF has been first described by Cherif et al. [92].
A previous modelization of the Loop PUF, obtained via Monte-Carlo simulations of the
possible circuit behaviors, showed a distribution of delays close to a Gaussian distribution,

6.1. INTRODUCTION 105

Table 6.1: Summary of Notations.

Notation Explanation
n number of delay elements in a PUF
Xi Gaussian random variable representing the delay difference of the

i-th delay element (i ∈ [1, n])
X X = (X1, X2, . . . , Xn)
xi realization of Xi

M number of challenges
C challenge code, a matrix defined by its rows (ci)i∈[1,M]
sign sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and sign(0) = 0.
Bi Bi = sign(ci ·X)
B B = (B1, B2, . . . , BM)
bi realization of Bi

b realization of B
Pb Pb = P[B = b]

Figure 6.1: Distribution of delays obtained via circuit simulation

as shown in Figure 6.1. Other types of simulations also suggest a Gaussian distribution of
process variations, and thus delay differences, in electronic circuits [99]. This motivates
the choice of modeling the delay differences of the Loop-PUF as independent Gaussian
variables.

Because they share the mathematical model with the Loop-PUF, definitions 12 and 13
also apply to the Arbiter PUF [94], for which the Gaussian model has been confirmed [126,
127], and to the RO-sum PUF [93].

These process variations can then be exploited in different ways. For example, it is
possible to build authentication protocols based on PUFs: an authentication server queries
a PUF via a set of challenges and checks the PUF answer against a whitelist. In this

106 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

way, counterfeit or overproduced chips can be detected. This requires no implementation
of costly asymmetric cryptography primitives, and is therefore adapted to low-cost IoT
devices. The PUF can also be used to generate a secret cryptographic key that is required
for secure storage or communications with other devices. Using a PUF is more secure
than directly storing the cryptographic key into memory, from where it might potentially
be read or written by an attacker.

6.1.3 State of the Art
Results on the min-entropy

An upper bound of the min-entropy has been derived for the so-called RO-sum PUF
by Delvaux et al. in [1]. Since this PUF shares the same mathematical bound as the
Loop-PUF, this result is also relevant for our analysis. The following upper-bound is valid
for odd values of n:

H∞(n) ≤ − log2

1

2

1−

√
n− 1
n

(n−3)/2∑

i=0

(2i)!
(i!)2(4n)i

 . (6.9)

This expression is not easy to interpret, but we have the following bound for practical
values of n:

H∞(n) ≤ 4n for n ≤ 251. (6.10)
The min-entropy is therefore at most linear in n for n ≤ 251. Because of the inequality
H2 ≤ 2H∞, valid for any distribution, we deduce the following bound on the collision
entropy:

H2(n) ≤ 8n for n ≤ 251. (6.11)

Exact values for small n

Exact results for the entropy and probability distribution of the Loop-PUF have been
obtained in certain special cases. Rioul et al. showed in [97] that the optimal challenge
code when M ≤ n is given by a Hadamard code1 C for which one can attain a uniform
distribution of the Loop-PUFs, giving

H(C) = n.

The exact calculation of the PUF distribution of n delay elements for M ≥ n can be
carried out only for very small values of n. Rioul et al. [97] give the exact values of the
Loop-PUF distribution, and thus H(C) for all n,M ≤ 3 using well-known closed-form
formulas for orthant probabilities of bi- and trivariate normal distributions (see Lemma 5).

Results on the max-entropy

The max-entropy H0(n) is simply the logarithm of the number of different Loop-PUFs of
n delay elements. This number has been computed for small values of n ≤ 10, because it

1When such a Hadamard code exists, which implies that n = 1, 2 or a multiple of 4.

6.2. CLOSED-FORM EXPRESSIONS 107

actually corresponds to the number of so-called Boolean Threshold Functions (BTF) of
n− 1 variables. This number was determined up to n = 8 by Winder [128], up to n = 9
by Muroga et al. [129] and finally up to n = 10 by Gruzling [130]. Asymptotic estimates
have also been published [131]. These results are recalled in Section 6.6.1.

Unfortunately, the quadratic behavior in n of the max-entropy H0(n) somehow overes-
timates the security of the PUFs, since it is much higher than the min-entropy, which is
approximatively linear in n.

6.1.4 Our Contributions
In this work, we extend previous results in two directions.

First, we provide the exact values of the distribution of the Loop-PUF (for all possible
challenges) for n = 3 and n = 4. This allows us to compute the exact values of all entropies
in these cases. Such an exact computation comes as a surprise since no closed-form
expression exists for the orthant probabilities of an M -dimensional Gaussian vector for
M ≥ 4. In our computation, we leverage on the discrete nature of the challenge code to
determine these probabilities up to M = 8.

Second, we introduce a novel algorithm for the simulation of equivalence classes (SEC).
The SEC algorithm also finds all equivalence classes of challenge codewords corresponding
to the same value of joint probabilities Pb. Interestingly, this problem is purely of discrete
combinatorial nature. The actual values of the corresponding probabilities are then
estimated by Monte Carlo simulation, which allows us to compute all relevant entropies.
We provide the resulting values of the entropies H0(n), H(n), and H2(n) up to n = 10.

The remainder of this chapter is organized as follows. Section 6.2 presents exact values
of the distributions and entropies for the cases n = 3 and n = 4. Section 6.3 recalls
results obtained from the study of Boolean threshold functions which allow to efficiently
characterize the symmetries of the PUF distribution. The SEC algorithm is presented in
Section 6.6 along with the entropies up to n = 10. Section 6.7 concludes.

6.2 Closed-form expressions
6.2.1 Preliminaries
In order to determine the closed-form expressions of the PUF distributions up to n = 4,
we need the following lemmas.

Lemma 5 (Orthant probabilities for the bi- and trivariate normal distribution). Let
n > 0, c1 and c2 two challenges, and Y1 = c1 ·X, Y2 = c2 ·X. Let ρ = E[Y1Y2]

n
the correlation

coefficient of Y1 and Y2. Then

P[Y1 > 0, Y2 > 0] = P++ = 1
4 + arcsin(ρ)

2π . (6.12)

Let c3 be a third challenge vector and Y3 = c3 ·X, and denote the correlation coefficients
between Yi and Yj by ρi,j = E[YiYj]

n
. Then

108 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

P[Y1 > 0, Y2 > 0, Y3 > 0] = P+++

= 1
8 + arcsin(ρ1,3) + arcsin(ρ1,2) + arcsin(ρ2,3)

4π .
(6.13)

The bivariate case was already known to Hermite [132]. The extension to the trivariate
case is a lesser known extension and can be found, for instance, in [133]. A short proof of
both formulas is given by Rioul et al. in [97].
Lemma 6 (Zero probabilities). Let b = (bi)i∈[1;M] be a sign vector. Then Pb = 0 if and
only if there exists α = (α1, . . . , αM) ∈ RM\{0}M such that sign(αi) = bi when αi 6= 0 and∑M
i=1 αici = 0.

Proof. Suppose that such a vector α exists. There is at least one component that is
different from 0. Without loss of generality, suppose that α1 6= 0. We then have

c1 = − 1
α1

M∑

i=2
αici.

In particular, this implies that

X · c1 = − 1
α1

M∑

i=2
αi(ci ·X).

Now, if ∀i > 1, such that αi 6= 0, sign(αi) = sign(ci ·X), the sign of the right-hand side of
the expression is the opposite sign of α1. Thus, α1 = − sign(c1 ·X), which contradicts our
hypothesis.

Conversely, suppose that Pb = 0. Therefore, the Gaussian vector (ci ·X)i is degenerate,
and its support is included in a sub-space of RM of dimension < M . In particular, it is
included in some hyperplane of equation ∑M

i=1 aixi = 0, where the ai are not all 0. Since
Pb = 0, this hyperplane is disjoint from the orthant defined by the signs of b, that is the
set x1b1 > 0, x2b2 > 0, . . . , xMbM > 0. Therefore, we have that all aibi have the same sign,
that we can take positive. Since the support is included in the hyperplane defined before,
we must have

M∑

i=1
ai(ci ·X) = (

M∑

i=1
aici) ·X = 0

for all X ∈ Rn, and therefore ∑M
i=1 aici = 0. By setting αi = ai, the αi have the same signs

as the bi and are not all 0, which concludes the proof.
Lemma 7 (Equivalence classes). Suppose that after permuting and/or changing the signs
of certain columns of C, one obtains a matrix C ′ that can be obtained by permuting, and
then optionally changing the signs, of certain lines from C. Denote the corresponding
permutation of the lines by σ ∈ SM , and the following change of signs of the lines by
si ∈ {±1}M . Then for any sign vector b = (bi)i∈[1;M], b has the same probability as

b′ = (s1bσ(1), s2bσ(2), . . . , sMbσ(M)).

Such b and b′ are then said to be in the same equivalence class, or simply equivalent.
Proof. Permuting the columns or changing corresponds to a permutation or sign changes
of the Xi. For any s = (s1, s2, . . . , sn) ∈ {−1,+1}n and σ ∈ Sn, the joint distribution of
X = (Xi)i and (siXσ(i)) are the same.

6.2. CLOSED-FORM EXPRESSIONS 109

6.2.2 Case n = 3
By considering the challenge matrix C3 =

(
1 1 1
1 1 −
1 − 1

)
, exact probabilities Pb can be derived

by using the formula for trivariate Gaussian, recalled in Equation (6.13). This yields an
entropy of

H(C3) = −
(1

4 − 3
arcsin 1

3
2π

)
log
(1

8 − 3
arcsin 1

3
4π

)
. (6.14)

For the matrix with four challenges C4 =

1 1 1
1 1 −
1 − 1
− 1 1

 and the two sign vectors +−−− and

−+ ++, we have that
P+−−− = P−+++ = 0.

By exploiting symmetries, it follows that eight sign vectors satisfy

P++++ = P++−− = P+−+− = P+−−+ = P−−−− = P−−++ = P−+−+ = P−++− = p

and for the six remaining sign vectors

P+++− = P++−+ = P+−++ = P−−−+ = P−−+− = P−+−−.

Furthermore, by adding complementary challenges, we have that p = p+ 0 = P+−−+ +
P+−−− = P+−−· = 1

8−3arcsin 1
3

4π using the generic formula for trivariate normal distributions.
These findings are summarized in the table below.

Table 6.2: Distribution for n = 3

Size of equivalence class Probability per element

8 1
8 − 3arcsin 1

3
4π

6 arcsin 1
3

π

Therefore,

H(C4) = H(3) =

−

1− 6

arcsin 1
3

π

 log

1

8 − 3
arcsin 1

3
4π

− 6

arcsin 1

3
π

 log

arcsin 1

3
π

.

(6.15)

6.2.3 Case n = 4
Similar techniques have been employed in order to compute entropies with n = 4. Because
arcsin(1

2)
π

is a rational number (it is in fact equal to 1
6), the results for n = 4 are much

simpler, compared to the case n = 3.
In order to compute the distribution for the maximal challenge code, we first determine

the distributions of smaller codes. Sign vectors with zero probability are determined

110 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

according to Lemma 6. Those of equal probability are found with the help of Lemma 7.
Using recurrence relations between the probabilities, we are then able to deduce the sign
vector distribution for larger codes, when adding one codeword each time.

The first four codewords that are chosen are the lines of a Hadamard matrix of order 4:

C4 =
(1 1 1 1
S1 − 1 −
1 1 − −
1 − − 1

)
.

As recalled before, the sign vector distribution is uniform for this challenge matrix.
The results when adding one additional codeword are summarized below. For the sign

vectors, it is understood that the opposite sign vectors are also present in each probability
class.

- Additional codeword (1 1 1 −):

Probability per sign vector Sign vectors
11
192 +++++,++−−+,+−+−+,+−−+−

1
192 ++++−,++−−−,+−+−−,+−−++

1
32 ++−++,++−+−,+−+++,+−++−,+−−−+,+−−−−

1
16 +++−+

- Additional codeword (1 1 − 1):

Probability per sign vector Sign vectors
10
192 ++++++,++−−+−,+−+−++,+−−+−+

1
192

+++++−,++++−+,++−−++,++−−−−,
+−+−+−,+−+−−+,+−−+++,+−−+−−

1
32 +++−++,+++−+−,+−++++,+−++−+

1
64

++−+++,++−++−,++−+−+,++−+−−,
+−−−++,+−−−+−,+−−−−+,+−−−−−

- Additional codeword (1 − 1 1):

Probability per sign vector Sign vectors
3
64 +++++++,++−−+−+,+−−+−++,+−+−++−

1
192

+++++−+,+−+−+−−,+−−++++,+−+−+++,

+−−+−−+,++−−−−+,++++++−,++++−++,

+−−−−−−,++−−+−−,+−−−+−+,+−−+−+−,
++−−+++,+−−−++−,+−+−−+−,+−−−−++

1
96 +−−−+++,+−−−−−+,+−−−−+−,+−−−+−−

1
64

++−+−++,+−++−++,+++−+−+,+++−++−,
++−++−+,+−++++−,+−++−+−,++−+−−+,

+++−+++,+−+++++,+++−+−−,++−++++

6.3. THE CHOW PARAMETERS OF PUFS 111

- Additional codeword (− 1 1 1): This code maximizes the entropies. As there are too
many sign vectors per equivalence class to enumerate them all, we give here only
their numbers.

Probability per sign vector Number of sign vectors
1
24 8
1

192 64
1
96 32

In summary for n = 1, 2, 3, 4:

Table 6.3: Exact entropies for n ≤ 4

n 1 2 3 4
H(n) 1 2 3.6655... 6.2516...
H0(n) 1 2 3.8073... 6.7004...
H2(n) 1 2 3.54615... 5.71049...
H∞(n) 1 2 3.20858... 4.58496...

6.3 The Chow Parameters of PUFs
In the remainder of this section, we will consider PUFs for which the challenge code C
contains all possible challenges. Seen as boolean functions, they correspond to a specific
type of so-called boolean threshold functions (BTF).

Definition 16 (Self-dual BTF [134]). Let x ∈ Rn be such that for all c ∈ {±1}n, c ·x 6= 0.
The self-dual BTF of size n and weight sequence x is the function fx : {−1,+1}n →
{−1,+1} defined as

fx(c) = sign(c · x) (6.16)
where c · x = ∑n

i=1 cixi is the usual scalar product.

This definition coincides with that of a PUF with n variables. In the remaining sections
of this chapter, we will thus use the term ”PUF“ to mean ”self-dual BTF“. BTFs have
been studied since the 1950’s as building blocks for Boolean circuits [135] and also find
applications in machine learning [136]. Leveraging the correspondence between PUFs and
BTFs, we adapt fundamental results from BTF theory to conveniently characterize PUFs.

6.3.1 All PUFs are Attainable
Recall that in our framework, the PUF parameters x ∈ Rn are realizations of a random
vector X ∈ Rn. Under this probabilistic model a PUF becomes a randomized mapping fX
such that fX(c) = sign(c ·X) for any (deterministic) challenge c ∈ {±1}n.

112 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

Lemma 8. For every PUF fx, we have P(fX = fx) > 0.

In other words, every PUF fx can be reached by a realization of weights X with positive
probability (even though one has P(X = x) = 0).

Proof. By assumption all components of X are i.i.d. with symmetric density of support
S containing 0. Hence the support Sn of the density of X is an n-dimensional manifold
containing the origin in its interior. Let x ∈ Rn be fixed and let Cx be the cone (scale-
invariant set) of all y ∈ Rn such that fx = fy. This cone Cx has apex 0 and contains the
intersection of all half-spaces {y | sign(c · y) = sign(c · x)} where c ∈ {±1}n. Therefore,
it is a n-dimensional manifold which intersects Sn with positive volume. Hence P(fX =
fx) = P(X ∈ Cx ∩ Sn) > 0.

6.3.2 Chow Parameters Characterize PUFs
First introduced by Chow [137] and later studied by Winder [135] who gave them their
name, the so-called Chow parameters uniquely define a Boolean threshold function. Their
definition is especially simple for PUFs:
Definition 17 (Chow parameters). The Chow parameters p = (p1, . . . , pn) ∈ Zn of a PUF
f of size n is defined as

p =
∑

c|f(c)=1
c (6.17)

where the vector sum is carried out componentwise.

We remark that for n ≥ 2, all Chow parameters are even integers. This is due to the
fact that a sum of even number of elements ±1 must be even. More precisely,

pi mod 2 ≡
∑

c|f(c)=1
ci mod 2 ≡

∑

c|f(c)=1
1 mod 2

≡ 2n−1 mod 2
≡ 0 mod 2.

Theorem 6.3.1 (Chow’s theorem [137]). Two PUFs with the same Chow parameters are
identical.

For completeness, we give a new proof of Chow’s theorem rewritten in our PUF
framework. Such proof turns out to be very simple.

Proof. Let fx and fy be two PUFs with identical Chow parameters:
∑

c|fx(c)=1
c =

∑

c|fy(c)=1
c. (6.18)

Simplifying this expression by
∑

c|fx(c)=1,
fy(c)=1

c, we obtain

∑

c|fx(c)=1,
fy(c)=−1

c =
∑

c|fx(c)=−1,
fy(c)=1

c, (6.19)

6.3. THE CHOW PARAMETERS OF PUFS 113

which is equivalent to ∑

c|fx(c)6=fy(c)
fx(c)c = 0. (6.20)

Taking the scalar product with x, we get
∑

c|fx(c)6=fy(c)
fx(c)c · x =

∑

c|fx(c) 6=fy(c)
|c · x| = 0 (6.21)

which implies c·x = 0 whenever fx(c) 6= fy(c). Now we assumed that c · x is never zero by
Def. 16. Thus fx = fy.

6.3.3 Consequence on the Max-Entropy
An upper bound on the max-entropy can be easily deduced from Chow’s theorem.

Corollary 1. There are no more than 2n2 PUFs of size n, i.e., the max-entropy of the
PUF of size n satisfies

H0(n) ≤ n2 (∀n ≥ 2). (6.22)

A more refined version, which can be rewritten as H0(n) ≤ (n − 1)2 + 1 for n > 1,
can be found in [138, Corollary 10.2]. The proof of (6.22) is again particularly simple for
PUFs.

Proof. The Chow parameters pi, i = 1 . . . n, satisfy

pi =
∑

c|f(c)=1
ci ≤

∑

c|f(c)=1,
ci=1

1 ≤ 2n−1 (6.23)

and similarly, pi ≥ −2n−1. Since there are 2n−1 + 1 even integers between −2n−1 and 2n−1,
there can only be (2n−1 + 1)n ≤ 2n2 different values taken by the Chow parameters. The
conclusion follows from Chow’s Theorem 6.3.1.

A lower bound on H0 is also easily found from the representation of Definition 16, as
given by the following Proposition. The corresponding bound for the number of BTFs was
first established independently by Smith [139] and Yajima et al. [140] in the 1960s.

Proposition 1. The max-entropy satisfies

H0(n) > (n− 2)2

2 (∀n ≥ 2). (6.24)

Proof. Recall from Lemma 8 that every PUF fx can be reached by a realization of weights
X with positive probability. Hence it is sufficient to consider all fx for all x ∈ Rn in order
to lower-bound the total number of PUFs.

Let fx a PUF of size n. Applying some small perturbation on x if necessary (without
affecting fx) we may always assume that all the c · x (c ∈ {±1}n) take distinct values.

114 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

Now let xn+1 ∈ R be such that 2xn+1 is different from all the c · x, and define
x′ = (x1, · · · , xn−1, xn − xn+1, xn+1). For any challenge c′ = (c1, . . . , cn, cn+1), we have

fx′(c′) =

fx(c1, . . . , cn) if cn = cn+1

sign(∑n
i=1 cixi − 2cnxn+1) otherwise.

(6.25)

Depending on how many of the 2n−1 values of c · x are smaller/larger than 2cnxn+1, we
can construct 2n−1 + 1 different PUF functions of size n+ 1. Hence each PUF of size n
gives rise to more than 2n−1 PUFs of size n+ 1. Therefore, H0(n+ 1) > n− 1 +H0(n).
The result follows by finite induction:

H0(n) > (n− 1)(n− 2)
2 +H0(2) > (n− 2)2

2 .

More recently, Zuev [131] has shown that, asymptotically, H0(n) > n2(1− 10
ln(n)).

Therefore, for the max-entropy, we have that H0(n) ∼ n2. As a result, instead of
evaluating the probabilities of 22n different PUFs, we will only have to evaluate about 2n2 .

As apparent in the proof of Zuev [131, Theorem 1] although through different geomet-
rical considerations on normal vectors of hyperplanes, we can further reduce the number
of PUFs to be considered down by a factor of about 2nn!. Section 6.4 will derive the exact
compression factor using the equivalence classes on Chow parameters.

6.3.4 Order and Sign Stability of Chow Parameters
An important property of the Chow parameters p is that their share the same signs and
relative order as the weights x.
Lemma 9. Let f = fx be a PUF with weight x ∈ Rn, and p ∈ Zn be the corresponding
Chow parameters. Then

• xi ≥ 0 =⇒ pi ≥ 0 and xi ≤ 0 =⇒ pi ≤ 0.

• xi ≤ xj =⇒ pi ≤ pj.

A similar result was shown by Chow in [137], although with another definition of Chow
parameters. Again we give a simplified proof in the PUF framework.

Proof. We first prove that xi ≥ 0 =⇒ pi ≥ 0, the other case xi ≤ 0 =⇒ pi ≤ 0 being
similar. Suppose that xi ≥ 0. Let E+

i (resp. E−i) be the set {c | f(c) = 1, ci = 1} (resp.
{c | f(c) = 1, ci = −1}). By definition,

pi =
∑

c|f(c)=1
ci = |E+

i | − |E−i |. (6.26)

We show the existence of an injective mapping from E−i to E+
i . Consider the one-to-one

mapping φ : {±1}n → {±1}n defined by

φ(c)j =

cj, j 6= i

−cj, j = i
(6.27)

6.4. EQUIVALENCE CLASSES AND CHOW PARAMETERS 115

For any c ∈ E−i , ci = −1, φ(c)i = +1 and
n∑

j=1
φ(c)jxj =

n∑

j 6=i
cjxj + xi

=
n∑

j=1
cjxj

︸ ︷︷ ︸
>0

+ 2xi︸︷︷︸
≥0

> 0.

Therefore, f(φ(c)) = 1 and φ(c) ∈ E+
i . Hence, the bijection φ induces an injection from

E−i to E+
i . This implies that |E+

i | ≥ |E−i | hence pi ≥ 0.
To prove the second part, assume that xi ≤ xj for j 6= i. Let f ′ : {±1}n−1 → {±1} be

a PUF given by f ′(c′) = sign(c′ · x′), where c′ ∈ {±1}n−1 is obtained from c by dropping
ci, x′` = x` for any ` 6= j, and x′j = xj − xi ≥ 0. Say the Chow parameters of f ′ is p′.
According to the first part of this lemma, we have p′j ≥ 0. Now, expand the expression of
pj − pi as

pj − pi =
∑

c|f(c)=1
cj −

∑

c|f(c)=1
ci

= 2
∑

c|f(c)=1,cj=−ci
cj

= 2
∑

c′|f ′(c′)=1
c′j = 2p′j ≥ 0.

6.4 Equivalence Classes and Chow Parameters
Since the Xi are i.i.d. symmetric random variables, the joint probability distribution of the
weights X = (X1, . . . , Xn) is invariant under permutations and sign changes. Therefore,
all PUFs fx that can be obtained from one another by permuting or changing signs of
their weights x1, x2, . . . , xn can be clustered together into equivalence classes of PUFs with
the same probability P(fX = fx).

We now establish several properties of these equivalence classes for PUFs, known as
“self-dual” classes [134] in the context of BTFs. Zuev [131] had already mentioned 2nn!
elements per class in a special case. Our generalization (Theorem 6.4.2) is mentionned in
a different form in [130, § 3.1.2] for calculating the total number of BTFs, yet we couldn’t
find formal proofs published in the literature.

We give a formal definition of the equivalence classes by the action of the group

Gn = Sn × {−1,+1}n (6.28)

where Sn is the symmetric group of order n!. An element g = (σ, s) ∈ Gn is determined
by the permutation σ ∈ Sn and the sign changes s ∈ {−1,+1}n.

116 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

Proposition 2. For any x = (x1, . . . , xn) ∈ Rn and g = (σ, s) ∈ Gn define g · x :
Gn × Rn → Rn such that

(g · x)i = sixσ(i). (6.29)

This defines a group action of Gn on Rn, where the inner product in Gn is defined by

(σ1, s
1) · (σ2, s

2) = (σ1 ◦ σ2, (s1
i s

2
σ1(i))i). (6.30)

Proof. Gn is clearly a group with identity e = (id, (1, · · · , 1)). For any (σ1, s
1), (σ2, s

2) ∈
Gn and x ∈ Rn,

(σ1, s
1) · ((σ2, s

2) · x) = (σ1, s
1) · (s2

ixσ2(i))i
= (s1

i s
2
σ1(i)xσ1(σ2(i)))i

= (σ1 ◦ σ2, (s1
i s

2
σ1(i))i) · x

= ((σ1, s
1) · (σ2, s

2)) · x.

This shows that g · x defines a group action of Gn on Rn.

Thus we can say that the group Gn acts on the PUFs of size n, the action being defined
as

g · fx = fg·x. (6.31)

In keeping with Lemma 9, we now show that the group action is carried over to Chow
parameters:

Theorem 6.4.1. Let fx a PUF of Chow parameters p, and let g ∈ Gn. The Chow
parameters of fg·x is g · p.

Proof. Let g = (σ, s) ∈ Gn. For any challenge c, we have that fx(g−1 · c) = fg·x(c). Thus,
∑

c|fg·x(c)=1
ci =

∑

c|fx(g−1·c)=1
ci =

∑

c|fx(c)=1
(g · c)i =

∑

c|fx(c)=1
sicσ(i)

= sipσ(i) = (g · p)i.

Changing the signs of the weights or permuting them is reflected by the same operation
on the Chow parameters. This allows us to compute the size of the equivalence classes:

Theorem 6.4.2. Let f be a PUF with Chow parameters p. Let mp(k) be the number of
Chow parameters equal to k or −k ∈ Z, and let Orb(f) = {g · f | g ∈ Gn} the orbit of f
by Gn, that is, the equivalence class containing f . Then

|Orb(f)| = 2nn!
(

2mp(0) ∏

k∈N
mp(k)!

)−1
. (6.32)

6.5. MONTE-CARLO ALGORITHM 117

Proof. By applying the well-known orbit-stabilizer theorem (see for instance [141, p. 89]),
we have

|Orb(f)| = |Gn|
| Stab(f)| = |{±1}n| × |Sn|

| Stab(f)| = 2nn!
| Stab(f)| (6.33)

where Stab(f) = {g ∈ Gn | g · f = f} is the stabilizer of f . The size of the orbit of f can
therefore be deduced from the size of its stabilizer. Now the latter can be easily computed:
Let g = (σ, s) ∈ Gn such that g · f = f . Since g · p = p, we have σ(i) = j ⇐⇒ pi = si · pj
and si = sign(pi) · sign(pσ(i)) except when pi = 0, in which case si is unconstrained. The
number of such g is exactly 2mp(0)∏

k∈Nmp(k)!.

6.5 Monte-Carlo Algorithm
As seen in the introduction to the previous section, all PUFs in one equivalence class
have the same probability. It follows that the probability of any particular PUF can be
deduced from the probability of the class to which it belongs. Therefore, to determine
the various entropies, it suffices to find a method that estimates the probabilities of the
various equivalence classes.

In this section, we propose an algorithm that exploits a definition of a canonical PUF
in any equivalence class in such a way that for given any PUF, it is trivial to determine
the corresponding canonical PUF. As expected, only about 2n2

/2nn! probabilities need to
be estimated, instead of approximatively 2n2 .

Definition 18 (Canonical PUF). A canonical PUF of n variables is a PUF whose Chow
parameters satisfy

p1 ≥ p2 ≥ · · · ≥ pn ≥ 0. (6.34)

The canonical form of a PUF f is the canonical PUF belonging to the same class, i.e.,
f ′ = g · f where g ∈ Gn is such that f ′ is canonical.

This notion was first introduced by Winder [135] and is related to the concept of
“prime” functions independently studied by Chow [137].
Proposition 3 (Unicity of the canonical PUF). Two canonical PUFs in the same class
are equal.

Proof. Since f and f ′ are in the same equivalence class, their Chow parameters are identical
up to sign changes and order. Since both are canonical, the signs and order are fixed.
Their Chow parameters are thus identical and f = f ′.

Proposition 4. Let x = (x1, . . . , xn) be a weight sequence of a PUF f = fx, and let
g ∈ Gn such that g · x = (x′1, . . . x′n) satisfies

x′1 ≥ x′2 ≥ . . . ≥ x′n ≥ 0. (6.35)

Then g · f is the canonical form of the PUF f .

118 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

Proof. Let us denote by p (resp p′) the Chow parameters of f (resp g · f). The PUF
obtained from weights x′ is g · f . From Lemma 9, the p′i satisfy the same ordinal relations
and have the same signs as the x′i. Therefore, f ′ is a canonical PUF.

These results allow us to efficiently estimate the PUF distribution by Monte-Carlo
methods, as described in Algorithm 6.5.1. Such an algorithm can be used for any i.i.d.
weight distribution with symmetric densities (not necessarily Gaussian).

Algorithm 6.5.1 How to estimate the PUF distribution.
Input: n > 0, nbRounds > 0
Output: Estimation of PUF probability distribution
Initialize HashMaps counts, proba, size
for i ∈ [1, nbRounds] do

Generate n realizations x1, . . . , xn
Sort the absolute values of the xi to obtain x′
Compute the Chow parameters p of fx′
if p ∈ counts then

counts[p]← counts[p] + 1
else

counts[p]← 1
end if

end for
for p ∈ counts do

size[p]← 2nn!
2mp(0)∏

kmp(k)!

proba[p]← counts[p]
size[p] ∗ nbRounds

end for
return (proba, size)

6.6 Entropies Estimation
In this section, we present the simulation results in the Gaussian case where the weights
Xi are i.i.d. ∼ N (0, 1). Exact values were already determined up to n = 4 in [142].

6.6.1 Estimating the Max-Entropy H0

According to Lemma 8, every PUF can be attained by some realization of weights.
Therefore, the max-entropy of the PUF distribution is simply the logarithm of the total
number of PUFs with n weights. This number is equal to the total number of BTFs of
n− 1 variables and has been computed up to n = 10 in [130, § 3.1.2], see Table 6.4.

6.6. ENTROPIES ESTIMATION 119

Table 6.4: Exact values of H0

n # PUFs H0 (bits)
1 2 1
2 4 2
3 14 3.8074. . .
4 104 6.7004. . .
5 1882 10.8781. . .
6 94572 16.5291. . .
7 15028134 23.8411. . .
8 8378070864 32.9640. . .
9 17561539552946 43.9974. . .
10 144130531453121108 57.0001. . .

6.6.2 Estimating the Shannon Entropy H1

For any PUF f , let [f] denote the equivalence class of f with cardinality |[f]|, P(f) its
probability, Fn the set of all PUFs and Fn/Gn the quotient group induced by the action of
the group Gn. Then, letting P([f ′]) = ∑

f∈[f ′] P(f), one has

H1(n)= −
∑

f∈Fn
P(f) log(P(f)) (6.36)

= −
∑

f ′∈Fn/Gn

∑

f∈[f ′]
P(f) log(P(f)) (6.37)

= −
∑

f ′∈Fn/Gn
P([f ′]) log(P(f ′)) (6.38)

= −
∑

f ′∈Fn/Gn
P([f ′]) log(P([f ′])) + E[log(|[fX]|)]. (6.39)

In other words, the Shannon entropy of the PUF distribution is simply the sum of the
entropy of the equivalence classes and the average of their logarithmic size. The latter
term can be estimated using the unbiased empirical mean, where a confidence interval
can be determined using Student’s t-distribution [143]. The former term, however, is an
entropy, for which no unbiased estimator exists [144]. The NSB estimator [145] has a
reduced bias and a low variance. However, because we generated much more PUFs than
equivalence classes (by a factor of at least 100000), the plug-in estimator, based on the
empirical frequency estimates, performs quite well: Its bias can be upper bounded as
described in [144] and was found to be less than 0.01 bit. The results are summarized in
Table 6.5.

6.6.3 Estimating the Collision Entropy H2

The collision entropy was estimated using an unbiased estimator adapted from [146,
§ 1.4.2]. Let N[f] be the number of PUF samples that belong to the equivalence class of [f]

120 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

Table 6.5: Confidence intervals at the 95% level for H1
(exact values up to n = 4).

n PUF Sample size H1 (bits)
1 — 1
2 — 2
3 — 3.6655. . .
4 — 6.2516. . .
5 1010 10.0134 – 10.0156
6 1010 15.1903 – 15.1925
7 1010 21.9856 – 21.9879
8 2 · 1010 30.5628 – 30.5645
9 2 · 1010 41.0367 – 41.0384
10 3 · 1012 53.4737 – 53.4740

among a number of Poisson-distributed PUFs with parameter N , and N2
[f] = N[f] ·(N[f]−1).

We can compute

E
[∑

f∈Fn/Gn

N
2
[f]

|[f]|N2

]
=

∑

f∈Fn/Gn
E
[N2

[f]

N2

] 1
|[f]| (6.40)

=
∑

f∈Fn/Gn

P([f])2

|[f]| (6.41)

=
∑

f∈Fn
P(f)2 (6.42)

where we used the fact that E [
N

2
[f]
N2] = P([f])2 from [146, § 2.2]. It follows that

∑

f∈Fn/Gn

N
2
[f]

|[f]|N2 . (6.43)

is an unbiased estimator for the power-sum ∑
f∈Fn P(f)2. As can be also checked, the

variance of this estimator admits the same upper bound as the one described in [146,
§ 1.4.2]. This allows us to determine confidence intervals for the collision entropy as shown
in Table 6.6.

6.6.4 Estimating the Min-Entropy H∞

In order to determine the min-entropy of the PUF distribution, one needs to estimate the
probability of the most likely PUF. Our experiments, as well as those of Delvaux et al. [1],
strongly suggest that for a Gaussian distribution of the weights, the most likely PUFs are
the 2n PUFs corresponding to the Boolean functions ci and ci, i = 1...n.

The maximum likelihood estimator of that probability is simply the sample frequency,
which is an unbiased estimator. A confidence interval for this estimator can be obtained

6.6. ENTROPIES ESTIMATION 121

Table 6.6: Confidence intervals at the 95% level for H2
(exact values up to n = 4)

n PUF Sample size H2 (bits)
1 — 1
2 — 2
3 — 3.5462. . .
4 — 5.7105. . .
5 1010 8.4551 – 8.4568
6 1010 11.5977 – 11.6023
7 1010 14.8819 – 14.89805
8 2 · 1010 18.5201 – 18.5753
9 2 · 1010 22.0309 – 22.4067
10 3 · 1012 25.9070 – 26.1983

using the Wilson score interval [147], which yields a confidence interval for the min-entropy
H∞.

Because we have already determined that there are exactly 2n PUFs in the equivalence
class of the most likely PUF, we only need to estimate a confidence interval on the sample
frequency of the equivalence class. Once such an interval was obtained, for instance
[p−, p+], then the confidence interval for the min-entropy is given by

[− log2(p+) + log2(2n),− log2(p−) + log2(2n)].

The confidence intervals of the min-entropy are presented in Table 6.7.

Table 6.7: Confidence intervals at the 95% level for H∞
(exact values up to n = 4)

n PUF Sample size H∞ (bits)
1 — 1
2 — 2
3 — 3.2086. . .
4 — 4.5850. . .
5 1010 6.1006 – 6.1008
6 1010 7.7352 – 7.7354
7 1010 9.4731 – 9.4735
8 2 · 1010 11.3020 – 11.3024
9 2 · 1010 13.2123 – 13.2132
10 3 · 1012 15.1899 – 15.1901

The results of the simulation, up to n = 10, are presented in Figure 6.2. The results
show that the Shannon entropy is close to the max-entropy, which as seen in Section 6.3 is
asymptotically equivalent to n2 as n increases.

122 CHAPTER 6. ENTROPY ESTIMATION OF PUFS VIA CHOW PARAMETER

2 4 6 8 10
of delay elements (n)

0

10

20

30

40

50

bi
ts

Max-entropy H0
Shannon entropy H1
Collision entropy H2
Min-entropy H1
Min-entropy upper-bound

Figure 6.2: Entropy estimates for n ≤ 10. The upper bound of the min-entropy (dashed
line) is taken from [1].

6.7 Conclusions and Perspectives
While it had been previously shown [97] that the entropy of the loop-PUF of n elements
could exceed n, the exact values were only known for very small values of n. Making
the link with BTF theory using Chow parameters, we have extended these results to
provide accurate approximations up to n = 10. Our results suggest that the entropy of
the loop-PUF might be quadratic in n: This would be a very positive result for circuit
designers, since it implies that the PUF has a very good resistance to machine learning
attacks. However, because the min-entropy and collision entropy are much smaller (on the
order of n) the resistance to cloning may not be as high as expected.

Two interesting theoretical aspects of the PUF entropy are still open: First, to what
extent does the entropy of the PUF stay close to the max-entropy for larger values of
n? Second, is it possible to obtain a quasi-quadratic entropy in n when choosing a small
subset of all 2n possible challenges? The latter point is of great practical interest since
it would reduce the time required to obtain the PUF identifier while maintaining a high
resistance to machine learning attacks.

For values of n larger than 10, our method seems to become too costly in space and
time to produce accurate estimates of the PUF probability distributions under reasonable
conditions. One could perhaps have recourse to entropy estimation methods that dispense
with learning the distribution itself, such as the NSB estimation [145]. This could be used
to check the predicted trend of the PUF entropy for increasing n.

Bibliography

[1] J. Delvaux, D. Gu, and I. Verbauwhede, “Upper bounds on the min-entropy of
RO sum, arbiter, feed-forward arbiter, and S-ArbRO PUFs,” in Hardware-Oriented
Security and Trust (AsianHOST), IEEE Asian, pp. 1–6, IEEE, 2016.

[2] 7-cpu.com, “Intel Haswell.” https://www.7-cpu.com/cpu/Haswell.html. Ac-
cessed: 2020-10-12.

[3] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, May 19-23, 2019, pp. 1–19, 2019.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel
memory from user space,” in Proceedings of the 27th USENIX Conference on Security
Symposium, SEC’18, (Berkeley, CA, USA), pp. 973–990, USENIX Association, 2018.

[5] Intel, “Intel 64 and IA-32 architectures optimization reference man-
ual.” https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf. Accessed:
2019-11-06.

[6] AMD, “AMD Ryzen 9 3950X.” https://www.amd.com/fr/products/cpu/
amd-ryzen-9-3950x. Accessed: 2019-11-06.

[7] J. Daemen and V. Rijmen, “AES proposal: Rijndael.” https://www.cs.miami.edu/
home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf, 1999.

[8] D. J. Bernstein, “Cache-timing attacks on AES.” http://palms.ee.princeton.
edu/system/files/Cache-timing+attacks+on+AES.pdf, 2005.

[9] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS and DTLS
record protocols,” in 2013 IEEE Symposium on Security and Privacy, pp. 526–540,
IEEE, 2013.

[10] M. R. Albrecht and K. G. Paterson, “Lucky microseconds: A timing attack on
Amazon’s s2n implementation of TLS,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pp. 622–643, Springer, 2016.

123

124 BIBLIOGRAPHY

[11] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” in Annual International Cryptology Conference, pp. 104–113,
Springer, 1996.

[12] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer Net-
works, vol. 48, no. 5, pp. 701–716, 2005.

[13] Y. Yarom and N. Benger, “Recovering OpenSSL ECDSA nonces using the
FLUSH+RELOAD cache side-channel attack.,” IACR Cryptology ePrint Archive,
vol. 2014, p. 140, 2014.

[14] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of
computation, vol. 44, no. 170, pp. 519–521, 1985.

[15] O. Acıiçmez and W. Schindler, “A vulnerability in RSA implementations due to
instruction cache analysis and its demonstration on OpenSSL,” in Cryptographers
Track at the RSA Conference, pp. 256–273, Springer, 2008.

[16] C. Chen, T. Wang, Y. Kou, X. Chen, and X. Li, “Improvement of trace-driven
I-cache timing attack on the RSA algorithm,” Journal of Systems and Software,
vol. 86, no. 1, pp. 100–107, 2013.

[17] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature
algorithm (ECDSA),” International Journal of Information Security, vol. 1, no. 1,
pp. 36–63, 2001.

[18] bushing, marcan, segher, and sven, “Console hacking 2010 - PS3 epic fail.”
https://web.archive.org/web/20200212033236/https://fahrplan.events.
ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_
2010.pdf. Accessed: 2020-05-19.

[19] K. Michaelis, C. Meyer, and J. Schwenk, “Randomly failed! The state of random-
ness in current Java implementations,” in Topics in Cryptology – CT-RSA 2013
(E. Dawson, ed.), pp. 129–144, Springer Berlin Heidelberg, 2013.

[20] N. Benger, J. Van de Pol, N. P. Smart, and Y. Yarom, ““Ooh aah... just a little
bit”: A small amount of side channel can go a long way,” in International Workshop
on Cryptographic Hardware and Embedded Systems, pp. 75–92, Springer, 2014.

[21] S. Fan, W. Wang, and Q. Cheng, “Attacking OpenSSL implementation of ECDSA
with a few signatures,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1505–1515, 2016.

[22] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice signatures and
bimodal Gaussians,” in Annual Cryptology Conference, pp. 40–56, Springer, 2013.

[23] L. Ducas, “Accelerating BLISS: the geometry of ternary polynomials.”
https://eprint.iacr.org/2014/874.pdf, 2014.

BIBLIOGRAPHY 125

[24] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom, “Flush, Gauss, and reload —
A cache attack on the BLISS lattice-based signature scheme,” in International Con-
ference on Cryptographic Hardware and Embedded Systems, pp. 323–345, Springer,
2016.

[25] P. Pessl, L. G. Bruinderink, and Y. Yarom, “To BLISS-B or not to be: Attacking
strongSwan’s implementation of post-quantum signatures,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pp. 1843–
1855, 2017.

[26] “strongSwan VPN.” https://www.strongswan.org/.

[27] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients,” Mathematische Annalen, vol. 261, pp. 515–534, 1982.

[28] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers and where to
find them: high-resolution microarchitectural attacks in JavaScript,” in International
Conference on Financial Cryptography and Data Security, pp. 247–267, Springer,
2017.

[29] H. Eldib and C. Wang, “Synthesis of masking countermeasures against side channel
attacks,” in International Conference on Computer Aided Verification, pp. 114–130,
Springer, 2014.

[30] M. Joye, P. Paillier, and B. Schoenmakers, “On second-order differential power
analysis,” in International Workshop on Cryptographic Hardware and Embedded
Systems, pp. 293–308, Springer, 2005.

[31] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya, “Performance
counters to rescue: A machine learning based safeguard against micro-architectural
side-channel-attacks.” Cryptology ePrint Archive, Report 2017/564, 2017. https:
//eprint.iacr.org/2017/564.

[32] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the
case of AES,” in Cryptographers Track at the RSA Conference, pp. 1–20, Springer,
2006.

[33] O. Acıiçmez, B. B. Brumley, and P. Grabher, “New results on instruction cache
attacks,” in Cryptographic Hardware and Embedded Systems, CHES 2010 (S. Mangard
and F.-X. Standaert, eds.), (Berlin, Heidelberg), pp. 110–124, Springer Berlin
Heidelberg, 2010.

[34] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in Security and Privacy (SP), 2015 IEEE Symposium on,
pp. 605–622, IEEE, 2015.

[35] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel, “A high-resolution
side-channel attack on last-level cache,” in Proceedings of the 53rd Annual Design
Automation Conference, p. 72, ACM, 2016.

126 BIBLIOGRAPHY

[36] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack that works
across cores and defies VM sandboxing – and its application to AES,” in 2015 IEEE
Symposium on Security and Privacy, pp. 591–604, May 2015.

[37] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic reverse engineering of cache
slice selection in Intel processors,” in 2015 Euromicro Conference on Digital System
Design, pp. 629–636, IEEE, 2015.

[38] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon, “Reverse
engineering Intel last-level cache complex addressing using performance counters,”
in International Symposium on Recent Advances in Intrusion Detection, pp. 48–65,
Springer, 2015.

[39] A. Andreou, A. Bogdanov, and E. Tischhauser, “Cache timing attacks on recent
microarchitectures,” in 2017 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 155–155, May 2017.

[40] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+Abort: A timer-
free high-precision L3 cache attack using Intel TSX,” in 26th USENIX Security
Symposium (USENIX Security 17), pp. 51–67, 2017.

[41] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low noise, L3
cache side-channel attack.,” in USENIX Security Symposium, pp. 719–732, 2014.

[42] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: a fast and
stealthy cache attack,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 279–299, Springer, 2016.

[43] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: a timing attack on OpenSSL
constant-time RSA,” Journal of Cryptographic Engineering, vol. 7, no. 2, pp. 99–112,
2017.

[44] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, “Memjam: A false
dependency attack against constant-time crypto implementations,” International
Journal of Parallel Programming, vol. 47, no. 4, pp. 538–570, 2019.

[45] Intel, “Developer reference for Intel integrated performance
primitives cryptography.” https://software.intel.com/en-us/
ipp-crypto-reference-symmetric-cryptography-primitive-functions.
Accessed: 2019-11-20.

[46] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev, “Branch-
scope: A new side-channel attack on directional branch predictor,” ASPLOS, vol. 53,
pp. 693–707, Mar. 2018.

[47] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games – bringing access-based cache
attacks on AES to practice,” in 2011 IEEE Symposium on Security and Privacy,
pp. 490–505, IEEE, 2011.

BIBLIOGRAPHY 127

[48] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and N. Tuveri, “Port
contention for fun and profit,” in 2019 IEEE Symposium on Security and Privacy
(SP), pp. 870–887, IEEE, 2019.

[49] T. Allan, B. B. Brumley, K. Falkner, J. Van de Pol, and Y. Yarom, “Amplifying
side channels through performance degradation,” in Proceedings of the 32nd Annual
Conference on Computer Security Applications, pp. 422–435, ACM, 2016.

[50] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX amplifies the
power of cache attacks,” in International Conference on Cryptographic Hardware
and Embedded Systems, pp. 69–90, Springer, 2017.

[51] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged side-channel
attacks in shielded execution with déjá vu,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pp. 7–18, 2017.

[52] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating controlled-
channel attacks against enclave programs.,” in NDSS, 2017.

[53] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi,
“Software Grand Exposure: SGX cache attacks are practical,” in 11th USENIX
Workshop on Offensive Technologies (WOOT 17), (Vancouver, BC), USENIX Asso-
ciation, Aug. 2017.

[54] “TIS-CT.” https://trust-in-soft.com/tis-ct/. Accessed: 2019-02-20.

[55] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “Cacheaudit: A tool for
the static analysis of cache side channels,” ACM Transactions on Information and
System Security (TISSEC), vol. 18, no. 1, p. 4, 2015.

[56] B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of variables
in programs,” in Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 1–11, ACM, 1988.

[57] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying
constant-time implementations.,” in USENIX Security Symposium, pp. 53–70, 2016.

[58] S. Blazy, D. Pichardie, and A. Trieu, “Verifying constant-time implementations by
abstract interpretation,” in European Symposium on Research in Computer Security,
pp. 260–277, Springer, 2017.

[59] Intel, “Intel 64 and IA-32 architectures software developer’s manual.”
https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf. Accessed: 2019-02-20.

[60] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization, p. 75,
IEEE Computer Society, 2004.

128 BIBLIOGRAPHY

[61] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse representation of
implicit flows with applications to side-channel detection,” in Proceedings of the 25th
International Conference on Compiler Construction, pp. 110–120, ACM, 2016.

[62] D. E. Denning and P. J. Denning, “Certification of programs for secure information
flow,” Communications of the ACM, vol. 20, no. 7, pp. 504–513, 1977.

[63] E. Gamma, Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

[64] T. Pornin, “Why constant-time crypto?.” https://bearssl.org/constanttime.
html. Accessed: 2020-05-22.

[65] A. Facon, S. Guilley, M. Lec’Hvien, A. Schaub, and Y. Souissi, “Detecting cache-
timing vulnerabilities in post-quantum cryptography algorithms,” in 2018 IEEE 3rd
International Verification and Security Workshop (IVSW), pp. 7–12, IEEE, 2018.

[66] E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong, and Y. Yarom, “The 9
lives of Bleichenbacher’s CAT: New cache attacks on TLS implementations,” in 2019
IEEE Symposium on Security and Privacy (SP), pp. 435–452, IEEE, 2019.

[67] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

[68] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC
’96, (New York, NY, USA), pp. 212–219, Association for Computing Machinery,
1996.

[69] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,”
Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[70] R. J. Mceliece, “A public-key cryptosystem based on algebraic coding theory,” Coding
Thv, vol. 4244, pp. 114–116, 1978.

[71] T. Matsumoto and H. Imai, “Public quadratic polynomial-tuples for efficient
signature-verification and message-encryption,” in Workshop on the Theory and
Application of of Cryptographic Techniques, pp. 419–453, Springer, 1988.

[72] R. C. Merkle, “A certified digital signature,” in Conference on the Theory and
Application of Cryptology, pp. 218–238, Springer, 1989.

[73] J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume, “Merkle
signatures with virtually unlimited signature capacity,” in Applied Cryptography and
Network Security, pp. 31–45, Springer, 2007.

[74] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies,” in International Workshop on Post-Quantum Cryptography,
pp. 19–34, Springer, 2011.

BIBLIOGRAPHY 129

[75] A. Karmakar, S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede, “Constant-
time discrete gaussian sampling,” IEEE Transactions on Computers, 2018.

[76] M. Matsui and J. Nakajima, “On the Power of Bitslice Implementation on Intel Core2
Processor,” in CHES 2007, Vienna, Austria, September 10-13, 2007, pp. 121–134,
2007.

[77] S. Gueron, “Advanced encryption standard (AES) instructions set.” http://www.
ferretronix.com/unigroup/intel_aes_ni/aes-instructions-set_wp.pdf,
2008.

[78] N. I. of Standards and Technology, “Post-quantum cryptography: Round 2
submissions.” https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-2-submissions, 2019.

[79] J. Ding, Z. Zhang, J. Deaton, K. Schmidt, and F. Vishakha, “New attacks on lifted
unbalanced oil vinegar,” in The 2nd NIST PQC Standardization Conference, 2019.

[80] J.-L. Danger, Y. El Housni, A. Facon, C. T. Gueye, S. Guilley, S. Herbel, O. Ndiaye,
E. Persichetti, and A. Schaub, “On the performance and security of multiplication
in GF (2n),” Cryptography, vol. 2, no. 3, p. 25, 2018.

[81] H. Baan, S. Bhattacharya, J. H. Cheon, S. Fluhrer, O. Garcia-Morchon, P. Gorissen,
T. Laarhoven, R. Olayer, R. Rietman, M.-J. O. Saarinen, Y. Son, L. Tolhuizen,
J. L. Torre-Arce, and Z. Zhang, “Round5:kem and pke based on (ring) learning
withrounding.” https://round5.org/doc/Round5_Submission042020.pdf.

[82] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon: Fast-fourier lattice-based
compact signatures over NTRU.” https://falcon-sign.info/, 2018. Accessed:
2020-04-29.

[83] M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and S. Peter, “MQDSS
specifications.” http://mqdss.org/files/MQDSS_Ver2.pdf.

[84] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “LEDAcrypt
specification revision 2.0.” https://www.ledacrypt.org/documents/LEDAcrypt_
spec_latest.pdf.

[85] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “LEDAcrypt
specification revision 2.5.” https://www.ledacrypt.org/documents/LEDAcrypt_
spec_2_5.pdf.

[86] M. Chase, D. Derler, S. Goldfeder, J. Katz, V. Kolesnikov, C. Orlandi, S. Ramacher,
C. Rechberger, D. Slamanig, X. Wang, and G. Zaverucha, “The picnic signature al-
gorithm - specification.” https://github.com/microsoft/Picnic/blob/master/
spec/spec-v2.1.pdf.

130 BIBLIOGRAPHY

[87] R. A. Fisher and F. Yates, Statistical tables: For biological, agricultural and medical
research. Oliver and Boyd, 1938.

[88] Q. Guo, T. Johansson, and A. Nilsson, “A key-recovery timing attack on post-
quantum primitives using the fujisaki-okamoto transformation and its application on
frodokem,” in Annual International Cryptology Conference, pp. 359–386, Springer,
2020.

[89] T. Granlund et al., “GMP: GNU multi precision library.” https://gmplib.org/,
2014. Accessed: 2020-04-29.

[90] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ri-
cosset, G. Seiler, W. Whyte, and Z. Zhang, “Updated falcon reference implemen-
tation.” https://falcon-sign.info/falcon-20190918.tar.gz, 2019. Accessed:
2020-04-29.

[91] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication
and secret key generation,” in 44th ACM/IEEE Design Automation Conference,
pp. 9–14, 2007.

[92] Z. Cherif, J. Danger, S. Guilley, and L. Bossuet, “An easy-to-design PUF based on
a single oscillator: The loop PUF,” in 2012 15th Euromicro Conference on Digital
System Design, pp. 156–162, Sep. 2012.

[93] M.-D. M. Yu and S. Devadas, “Recombination of physical unclonable functions,”
35th Annual GOMACTech Conference, March 2010. Reno, NV, USA.

[94] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Delay-based circuit authenti-
cation and applications,” in Proceedings of the 2003 ACM Symposium on Applied
Computing, pp. 294–301, ACM, 2003.

[95] A. Hajimiri, S. Limotyrakis, and T. H. Lee, “Jitter and phase noise in ring oscillators,”
IEEE Journal of Solid-state circuits, vol. 34, no. 6, pp. 790–804, 1999.

[96] J. Delvaux and I. Verbauwhede, “Side channel modeling attacks on 65nm arbiter
PUFs exploiting CMOS device noise,” in 2013 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 137–142, IEEE, 2013.

[97] O. Rioul, P. Solé, S. Guilley, and J.-L. Danger, “On the entropy of physically
unclonable functions,” in 2016 IEEE International Symposium on Information
Theory (ISIT), pp. 2928–2932, IEEE, 2016.

[98] D. Lim, J. Lee, B. Gassend, G. Suh, M. van Dijk, and S. Devadas, “Extracting secret
keys from integrated circuits,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 13, pp. 1200 –1205, oct. 2005.

[99] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering spatial cor-
relations using a single PERT-like traversal,” in Proceedings of the 2003 IEEE/ACM
International Conference on Computer-Aided Design, p. 621, IEEE Computer Soci-
ety, 2003.

BIBLIOGRAPHY 131

[100] A. Schaub, O. Rioul, and J. J. Boutros, “Entropy estimation of physically unclonable
functions via Chow parameters,” in 2019 57th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 698–704, IEEE, 2019.

[101] A. Schaub, O. Rioul, J.-L. Danger, S. Guilley, and J. Boutros, “Challenge codes
for physically unclonable functions with Gaussian delays: A maximum entropy
problem,” Advances in Mathematics of Communications, 2020.

[102] A. Schaub, J.-L. Danger, S. Guilley, and O. Rioul, “An improved analysis of reliability
and entropy for delay PUFs,” in 2018 21st Euromicro Conference on Digital System
Design (DSD), pp. 553–560, IEEE, 2018.

[103] J.-L. Danger, S. Guilley, and A. Schaub, “Two-metric helper data for highly robust
and secure delay PUFs,” in 2019 IEEE 8th International Workshop on Advances in
Sensors and Interfaces (IWASI), pp. 184–188, IEEE, 2019.

[104] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J. Comput.,
vol. 38, no. 1, pp. 97–139, 2008.

[105] R. Maes, A. Van Herrewege, and I. Verbauwhede, “Pufky: A fully functional
puf-based cryptographic key generator,” in Proceedings of the 14th International
Conference on Cryptographic Hardware and Embedded Systems, CHES’12, (Berlin,
Heidelberg), pp. 302–319, Springer-Verlag, 2012.

[106] L. Bossuet, X. T. Ngo, Z. Cherif, and V. Fischer, “A puf based on a transient
effect ring oscillator and insensitive to locking phenomenon,” Emerging Topics in
Computing, IEEE Transactions on, vol. 2, pp. 30–36, March 2014.

[107] B. Škoric, P. Tuyls, and W. Ophey, “Robust key extraction from physical uncloneable
functions,” in Applied Cryptography and Network Security, vol. 3531, pp. 407–422,
Springer, 2005.

[108] R. Maes, “An accurate probabilistic reliability model for silicon PUFs,” in Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, pp. 73–89,
Springer, 2013.

[109] M. Bhargava and K. Mai, “An efficient reliable PUF-based cryptographic key
generator in 65nm CMOS,” in Proceedings of the conference on Design, Automation
& Test in Europe, p. 70, European Design and Automation Association, 2014.

[110] S. Katzenbeisser, U. Kocabaş, V. Rožić, A.-R. Sadeghi, I. Verbauwhede, and
C. Wachsmann, “PUFs: Myth, Fact or Busted? A Security Evaluation of Physically
Unclonable Functions (PUFs) Cast in Silicon,” in CHES 2012, vol. 7428 of Lecture
Notes in Computer Science, pp. 283–301, Springer Berlin Heidelberg, 2012.

[111] M. Hiller, M. Weiner, L. Rodrigues Lima, M. Birkner, and G. Sigl, “Breaking Through
Fixed PUF Block Limitations with Differential Sequence Coding and Convolutional

132 BIBLIOGRAPHY

Codes,” in Proceedings of the 3rd International Workshop on Trustworthy Embedded
Devices, TrustED ’13, (New York, NY, USA), pp. 43–54, ACM, 2013.

[112] S.-M. Yen and M. Joye, “Checking before output may not be enough against fault-
based cryptanalysis,” IEEE Trans. Computers, vol. 49, no. 9, pp. 967–970, 2000.
DOI: 10.1109/12.869328.

[113] J. Delvaux, Security Analysis of PUF-Based Key Generation and Entity Authentica-
tion. PhD thesis, Shanghai Jiao Tong University, China, 2017.

[114] D. B. Owen, “Tables for computing bivariate normal probabilities,” The Annals of
Mathematical Statistics, vol. 27, no. 4, pp. 1075–1090, 1956.

[115] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E. B.
Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks, et al., “Sp 800-22 rev.
1a. a statistical test suite for random and pseudorandom number generators for
cryptographic applications,” 2010.

[116] J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, and M.-D. M. Yu, “Efficient fuzzy
extraction of puf-induced secrets: Theory and applications,” in International Con-
ference on Cryptographic Hardware and Embedded Systems, pp. 412–431, Springer,
2016.

[117] D. Ž. Ðoković, “Hadamard matrices of order 764 exist,” Combinatorica, vol. 28,
no. 4, pp. 487–489, 2008.

[118] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random func-
tions,” in Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS ’02, (New York, NY, USA), pp. 148–160, ACM, 2002.

[119] S. Guilley, S. Hamaguchi, and Y. Kang, “ISO/IEC NP 20897. Information tech-
nology – Security techniques – Security requirements, test and evaluation meth-
ods for physically unclonable functions for generating nonstored security parame-
ters.” http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.
htm?csnumber=69403.

[120] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study on the state
of the art and future research directions,” in Towards Hardware-Intrinsic Security,
pp. 3–37, Springer, 2010.

[121] J.-L. Danger, S. Guilley, P. Nguyen, and O. Rioul, “PUFs: Standardization and
evaluation,” September 23 2016. Proc. 2nd IEEE Workshop on Mobile System
Technologies (MST 2016 – http://www.mstworkshop.eu/), Milano, Italy. [Online
version]. DOI: 10.1109/MST.2016.11.

[122] Y. Dodis, K. Pietrzak, and D. Wichs, “Key derivation without entropy waste,” in
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 93–110, Springer, 2014.

BIBLIOGRAPHY 133

[123] M. Skorski, “Key derivation for squared-friendly applications: Lower bounds.,” IACR
Cryptology ePrint Archive, vol. 2016, p. 157, 2016.

[124] Y. Dodis and Y. Yu, “Overcoming weak expectations,” in Theory of Cryptography,
pp. 1–22, Springer, 2013.

[125] A. Rényi, “On measures of entropy and information,” in Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University
of California Press, 1961.

[126] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure pufs,” in
Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided
Design, pp. 670–673, IEEE Press, 2008.

[127] S. Tajik, E. Dietz, S. Frohmann, J.-P. Seifert, D. Nedospasov, C. Helfmeier, C. Boit,
and H. Dittrich, “Physical characterization of arbiter pufs,” in International Workshop
on Cryptographic Hardware and Embedded Systems, pp. 493–509, Springer, 2014.

[128] R. O. Winder, “Enumeration of seven-argument threshold functions,” IEEE Trans-
actions on electronic computers, no. 3, pp. 315–325, 1965.

[129] S. Muroga, T. Tsuboi, and C. R. Baugh, “Enumeration of threshold functions of
eight variables,” IEEE Transactions on Computers, vol. 100, no. 9, pp. 818–825,
1970.

[130] N. Gruzling, “Linear separability of the vertices of an n-dimensional hypercube,”
Master’s thesis, University of Northern British Columbia, 2008.

[131] Y. A. Zuev, “Methods of geometry and probabilistic combinatorics in threshold
logic,” Discrete Mathematics and Applications, vol. 2, no. 4, pp. 427–438, 1992.

[132] T. J. Stieltjes, “Extrait d’une lettre adressée à M. Hermite,” Bulletin of Science and
Mathematics, 2nd Series, vol. 13, no. 2, pp. 170–72, 1889.

[133] I. Abrahamson et al., “Orthant probabilities for the quadrivariate normal distri-
bution,” The Annals of Mathematical Statistics, vol. 35, no. 4, pp. 1685–1703,
1964.

[134] E. Goto and H. Takahasi, “Some theorems useful in threshold logic for enumerating
boolean functions.,” in IFIP Congress, pp. 747–752, 1962.

[135] R. O. Winder, “Single stage threshold logic,” in Symposium on Switching Circuit
Theory and Logical Design, pp. 321–332, IEEE, 1961.

[136] T. M. Cover, “Geometrical and statistical properties of systems of linear inequal-
ities with applications in pattern recognition,” IEEE Transactions on Electronic
Computers, no. 3, pp. 326–334, 1965.

[137] C.-K. Chow, “On the characterization of threshold functions,” in Symposium on
Switching Circuit Theory and Logical Design, pp. 34–38, 1961.

134 BIBLIOGRAPHY

[138] S.-T. Hu, Threshold Logic. Univ of California Press, 1965.

[139] D. R. Smith, “Bounds on the number of threshold functions,” IEEE Transactions
on Electronic Computers, pp. 368–369, June 1966.

[140] S. Yajima and T. Ibaraki, “A lower bound of the number of threshold functions,”
IEEE Transactions on Electronic Computers, vol. EC-14, pp. 926–929, Dec 1965.

[141] T. W. Hungerford, Algebra, vol. 73 of Graduate Texts in Mathematics. New York:
Springer-Verlag, 1980.

[142] A. Schaub, O. Rioul, J. J. Boutros, J.-L. Danger, and S. Guilley, “Challenge codes
for physically unclonable functions with Gaussian delays: A maximum entropy
problem,” Latin American Week on Coding and Information, UNICAMP-Campinas,
Brazil, pp. 22–27, 2018.

[143] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.

[144] L. Paninski, “Estimation of entropy and mutual information,” Neural computation,
vol. 15, no. 6, pp. 1191–1253, 2003.

[145] I. Nemenman, F. Shafee, and W. Bialek, “Entropy and inference, revisited,” in
Advances in Neural Information Processing Systems, pp. 471–478, 2002.

[146] J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi, “The complexity of estimating
Rényi entropy,” in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1855–1869, SIAM, 2014.

[147] E. B. Wilson, “Probable inference, the law of succession, and statistical inference,”
Journal of the American Statistical Association, vol. 22, no. 158, pp. 209–212, 1927.

Titre : Méthodes formelles pour l’analyse de canaux cachés logiciels et la génération de clés dans les
implémentations cryptographiques

Mots clés : Informatique, sécurité, canaux auxilliaires, cache, PUF

Résumé :
La cryptographie est omniprésente dans notre monde
actuel hyperconnecté, protégeant nos communica-
tions, sécurisant nos moyens de paiement. Alors que
les algorithmes cryptographiques sont en général
bien compris, leurs implémentations ont été vérifiées
avec moins d’insistance. Cela a mené à des attaques
contre les implémentations de la plupart des pri-
mitives modernes: AES, RSA, ECDSA. . . En bref,
la sécurité des implémentations pourrait fortement
bénéficier de meilleurs garanties théoriques.
Dans cette thèse, nous appliquons ce raisonnement à
deux sujets différents, l’un portant sur la sécurité logi-
cielle, l’autre sur la sécurité matérielle.œ
La première moitié de la thèse explore les ca-
naux auxiliaires logiciels dits ”cache-timing”. Ce genre
de vulnérabilités apparaı̂t lorsque la durée d’une
opération cryptographique, ou l’état du cache après
cette opération, dépend d’une information sensible.
C’est le cas lorsqu’une opération de branchement
dépend d’une information secrète comme une clé
privée, ou si la mémoire est accédée à une adresse
qui dépend de ce secret.

Nous avons développé un outil pour détecter et
prévenir ce genre de fuites dans des programmes
écrits en C, et l’avons appliqué à la plupart des can-
didats du processus de standardisation de cryptogra-
phie post-quantique initié par le NIST. Ce processus
vise à remplacer des primitives cryptographiques tra-
ditionnelles comme RSA ou ECDSA, vulnérables aux
ordinateurs quantiques, par des alternatives sûres.
Ces nouveaux algorithmes étant relativement récents,
leurs implémentations ont été moins scrutées. Dans
cette thèse, nous appliquons notre outil à la plupart de
ces algorithmes pour détecter des fuites d’information
potentielles, et expliquons comment les éviter.
La deuxième moitié de la thèse est consacrée
aux ”physically unclonable functions” (PUFs). De
ces circuits, on peut extraire des identifiants
imprédictibles mais stables, grâce à de petites va-
riations incontrôlables dans les propriétés des semi-
conducteurs. Des garanties théoriques pour deux ca-
ractéristiques fondamentales de certains PUFs sont
présentées dans cette thèse: la stabilité de l’identi-
fiant, perturbée par des bruits de mesure, et l’entropie
disponible, dérivée du modèle mathématique du PUF.

Title : Formal methods for the analysis of cache-timing leaks and key generation in cryptographic implemen-
tations

Keywords : Computer science, security, side-cannel, cache, PUF

Abstract : Cryptography is ubiquitous in today’s in-
terconnected world, protecting our communications,
securing our payment systems. While the cryptogra-
phic algorithms are generally well understood, their
implementations have been less subject to formal ve-
rification. This has lead to successful breakages of
implementions of most modern primitives: AES, RSA,
ECDSA. . . In general, cryptographic implementations
would benefit from stronger theoretical guarantees.
In this thesis, we apply this line of reasoning to two dif-
ferent topics, one in software security, and the other
in hardware security. The first half of this thesis ex-
plores cache-timing side channel vulnerabilities that
arise when the time taken by a cryptographic opera-
tion, or the cache state after this operation, depends
on sensitive information. This occurs if any branching
operation depends on secret information such as a
private key, or if memory is accessed at an address
that depends on that secret.
We developed a tool to detect and prevent such leaks
in programs written in the C programming language.

This tool is applied on most candidates of NIST’s
post-quantum standardization process in order to find
cache-timing leakages. This process aims at repla-
cing traditional cryptographic primitives such as RSA
or ECDSA, broken by quantum computers, by safer
alternatives. The development of such primitives is on
the way, but the security of their implementations has
received less scrutiny. We show how our tool is able to
detect potential cache-timing leaks in a majority of the
implementations and what mitigations are possible.
The subject of the second half of this thesis are the so-
called physically unclonable functions, or PUFs: ele-
mentary circuits from which stable but unpredictable
identifiers can be extracted. They rely on small, un-
controllable changes in the semiconductor properties
to exhibit unpredictable behavior. Theoretical guaran-
tees concerning two fundamental characteristics of
PUFs are derived in this thesis, for a large family of
PUFs: the stability of the identifier, related to circuit
noise, and the exploitable entropy, derived from the
mathematical PUF model.

Institut Polytechnique de Paris
91120 Palaiseau, France

