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INTRODUCTION

The theory of Backward Stochastic Differential Equations (BSDEs in short) is much studied from the beginning of 1990. Motivated by the connection with different stochastic mathematical problems like mathematical finance problems, optimal control problems, differential games problems, PDEs, etc, the interest of BSDEs studies has broadly increased. BSDEs with a linear driver is firstly introduced by Bismut in 1973 [START_REF] Bismut | Conjugate convex functions in optimal stochastic control[END_REF] in studying the adjoint equations of stochastic optimal control problems. Later, in 1990, Pardoux and Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] considered more general BS-DEs where the driver verifies mainly a non-linear Lipschitz condition.

BSDEs may also arise in combined financial and insurance applications. For example, El Karoui et al. [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF] introduced the connection between BSDEs and the theory of contingent claim valuation in a complete market. Dos Reis [START_REF] Gonçalo | On some properties of solutions of quadratic growth BSDE and applications in finance and insurance[END_REF] studied the insurance related derivatives on the financial markets, which can be represented in terms of solutions of FBSDEs with quadratic growth. Delong [START_REF] Delong | Backward stochastic differential equations with jumps and their actuarial and financial applications[END_REF] represented the linear BSDEs arising in life insurance and non-life insurance payment processes under systematic and unsystematic claims risk.

An overview of general results of BSDEs

Let T > 0 be a fixed real constant. Let (Ω, F , P) be a complete probability space which carries a d-dimensional Brownian motion B = (B t ) t∈[0,T] whose natural filtration is F 0 t := σ{B s , s ≤ t} 0≤t≤T . We denote by F = (F t ) 0≤t≤T the completed filtration of (F 0 t ) 0≤t≤T with the P-null sets of F , then it satisfies the usual conditions, i.e., it is complete and right continuous. On the other hand, we define P as the σ-algebra on [0, T] × Ω of the F-progressively measurable sets. Next, we define the following spaces:

• L 2 = {F T -measurable random variable ξ s.t. E(|ξ| 2 ) < ∞};

• S 2 = {P-measurable continuous processes φ = (φ t ) t∈[0,T] s.t. E(sup t∈[0,T] |φ t | 2 ) < ∞};

• A 2 = { Non-decreasing, continuous, P-measurable processes K = (K t ) t≤T s.t. K 0 = 0 and E[K 2 T ] < ∞ }; 

Classical results on standard BSDEs

Given an F T -measurable random variable ξ valued in R p and a driver or generator f (t, ω, y, z) : [0, T] × Ω × R p × R p×d → R p , P ⊗ B(R p+p×d )/B(R p )-measurable. A solution of the BSDE associated with ( f , ξ) is a pair (Y t , Z t ) t≤T of P -measurable processes valued in R p+p×d such that:

∀t ≤ T, Y t = ξ + T t f (s, Y s , Z s )ds - T t Z s dB s .
(1.1)

Next let us consider the following assumptions.

Assumption 1.1.1.

1. ( f (t, ω, 0, 0)) t≤T ∈ H 2,p and ξ is square integrable;

2. The generator f satisfies the Lipschitz condition, i.e. there exists a constant C such that for any t ∈ [0, T] and (y 1 , z 1 ), (y 2 , z 2 ) ∈ R p+p×d we have,

P -a.s., | f (t, y 1 , z 1 ) -f (t, y 2 , z 2 )| ≤ C(|y 1 -y 2 | + |z 1 -z 2 |). (1.2) 
We then have the following result related to existence and uniqueness of the pair (Y, Z).

Theorem 1.1.2 (Pardoux-Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF]). Under Assumption 1.1.1, the p-dimensional BSDE (1.1) has a unique solution (Y t , Z t ) t≤T such that:

E sup 0≤t≤T |Y t | 2 + T 0 |Z t | 2 < ∞. (1.3) 
Another useful result for solving different BSDEs with more general drivers is the comparison theorem. Indeed, one can compare the solutions of two BSDEs by comparing the drivers and the terminal conditions. This result is firstly introduced in one-dimensional case by El Karoui et al. [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF].

Theorem 1.1.3 (El Karoui-Peng-Quenez [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]). Assume p = 1. Let (Y 1 , Z 1 ), (Y 2 , Z 2 ) be two solutions of BSDEs associated respectively with ( f 1 , ξ 1 ) and ( f 2 , ξ 2 ) which satisfy Assumption 1.1.1. We also assume that for any t ∈ [0, T], Later, several works extend the classical results by relaxing the assumptions on the coefficients of BSDEs. By the construction of monotonic convergent sequences, the existence and eventually the uniqueness of the solution of BSDE are guaranteed:

• The coefficient f is locally Lipschitz and the terminal condition is bounded, Hamadène [START_REF] Hamadène | Equations différentielles stochastiques rétrogrades: Le cas localement lipschitzien[END_REF] proved the existence of the solution of one-dimensional BSDEs;

• f is of linear growth, continuous in (y, z) and the terminal condition is square integrable, Lepeltier and San Martin [START_REF] Lepeltier | Backward stochastic differential equations with continuous coefficient[END_REF] proved the existence of a minimal solution of onedimensional BSDEs;

• f is continuous in (y, z) and has a quadratic growth in Z and the terminal condition is also bounded, Kobylanski [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF] proved the comparison result, as well as the existence and a stability results for one-dimensional BSDEs.

BSDEs in the markovian framework

One of the important settings of BSDEs is constructed under the markovian framework, i.e., the randomness of the coefficient and the terminal value of the BSDE comes from a diffusion process (X t,x s ) s∈[t,T] which is the solution of a standard SDE: dX t,x s = b(s, X t,x s )ds + σ(s, X t,x s )dB s , s ∈ [t, T]; X t,x t = x.

(1.4)

Next let the processes (Y t,x , Z t,x ) solution of the following BSDE:

∀s ≤ T, Y t,x s = h(X t,x T ) + T s f (r, X t,x r , Y t,x r , Z t,x r )dr -T s Z t,x r dr.

(1.5)

The solution of (1.5) can be represented by a deterministic function u(t, x) and is called the markovian solution. We now provide sufficient conditions on the data b, σ, f and h for which this markovian representation holds: Assumption 1.1.4.

1. The functions b and σ are continuous and uniformly Lipschitz with respect to x, i.e. there exists a constant C that for any (t, x, x ) ∈ [0, T] × R k+k , |σ(t, x)σ(t, x )| + |b(t, x)b(t, x )| ≤ C|xx |.
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As a result b and σ are of linear growth with respect to (w.r.t. for short) x, i.e.

|b(t, x)| + |σ(t, x)| ≤ C(1 + |x|).

2. f is an R p -valued continuous function defined by:

f :[0, T] × R k × R p × R p×d → R p (t, x, y, z) → f (t, x, y, z).
Moreover it is uniformly Lipschitz in (y, z), i.e., there exists a constant C such that

| f (t, x, y 1 , z 1 ) -f (t, x, y 2 , z 2 )| ≤ C(|y 1 -y 2 | + |z 1 -z 2 |);
3. f (t, x, 0, 0) and h are of polynomial growth, i.e. there exist constants c and p such that

| f (t, x, 0, 0)| + |h(x)| ≤ c(1 + |x| p ).
Theorem 1.1.5 (El Karoui et al. [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]). Under Assumption 1.1.4, for any (t, x) ∈ [0, T] × R k there exists two measurable deterministic functions u(t, x) and d(t, x) such that Pa.s., ∀s ∈ [t, T], Y t,x s = u(s, X t,x s ), Z t,x s = σ(s, X t,x s ) d(s, X t,x s ).

In addition, if the coefficients b, σ, f , h are globally Lipschitz w.r.t (x, y, z), uniformly in t to f , then u is locally Lipschitz in x and 1/2-Hölder continuous in t. Moreover if b, σ, f , h are continuous differentiable with respect to (x, y, z) with bounded derivatives, then ∀0 ≤ t ≤ s ≤ T, x ∈ k R , Z t,x s = σ(s, X t,x s ) ∂ x u(s, X t,x s ) dP × ds a.s. (see Corollary 4.1 in [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF] for more details). Now let us focus on the following quasilinear parabolic partial differential equation (PDE in short): ∀(t, x) ∈ [0, T] × R k , ∂ x u(t, x) + Lu(t, x) + f (t, x, u(t, x), σ(t, x)∂ x u(t, x)) = 0; u(T, x) = h(x) (1.6) where L is the second order differential operator defined by

L := 1 2 d ∑ i,j=1 (σσ ) ij ∂ 2 ∂x i ∂x j + ∑ i=1 ∂ ∂x i .
The link between the solution of one-dimensional BSDE in the markovian framework (1.5) and the solution of the PDE (1.6) is the following: CHAPTER 1. INTRODUCTION Proposition 1.1.6 (El Karoui et al. [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]). Under assumption 1.1.4, suppose that u ∈ C 1,2 is the solution of the PDE (1.6), then the following representation holds true:

∀s ∈ [t, T], u(s, X t,x s ) = Y t,x s , σ(s, X t,x s ) ∂ x u(s, X t,x s ) = Z t,x s ,

where (Y t,x , Z t,x ) is the unique solution of BSDE (1.5).

The solution of the one-dimensional BSDE in the markovian framework (1.5) is also related to the solution of the PDE (1.6) in viscosity sense which we recall the definition in the following.

Definition 1.1.7. Let p = 1. Suppose that u ∈ C([0, T] × R k ) with u(T, x) = h(x), x ∈ R k . The function u is called a viscosity subsolution (resp. supersolution) of PDE 1.6 if for any (t, x) ∈ [0, T) × R d and φ ∈ C 1,2 ([0, T] × R k ) such that φ(t, x) = u(t, x) and u(t, x) is a local maximum (resp. minimum) of uφ, ∂φ ∂t + Lφ(t, x) + f (t, x, u(t, x), σ(t, x) ∂ x φ(t, x)) ≤ 0 (resp. ≥ 0).

Moreover, u is called a viscosity solution of PDE (1.6) if it is both a viscosity subsolution and a viscosity supersolution of (1.6).

Theorem 1.1.8 (Pardoux-Peng [START_REF] Pardoux | Backward stochastic differential equations and quasilinear parabolic partial differential equations[END_REF]). Assume Assumption 1.1.4 fulfilled. Then u(t, x) := Y t,x t is continuous and of polynomial growth, i.e.

∀(t, x) ∈ [0, T] × R k , |u(t, x)| ≤ C(1 + |x| p ),
where C and p are two constants. Moreover it is the unique solution of PDE (1.6) in the viscosity sense.

BSDEs and zero-sum stochastic differential games

BSDEs are also connected to control and game problems. The solution of BSDEs associated to optimal control problems is firstly introduced by Bismut in 1973, then generalized by Pardoux and Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF]. Later on, the BSDEs theory was well developed in various directions. Hamadène and Lepeltier [START_REF] Hamadene | Zero-sum stochastic differential games and backward equations[END_REF] introduced the connection of BSDEs with zero-sum stochastic differential games.

Definition 1.1.9.

1. χ := C([0, T]; R p ) the set of continuous functions from [0, T] into R p and P the Wiener measure on χ;

2. We define U, V two sets of progressive measurable processes with values in compact sets Ū and V respectively; u is called an admissible control if u ∈ U; the same for v ∈ V;

1.1. AN OVERVIEW OF GENERAL RESULTS OF BSDES 3. For 1 ≤ i, j ≤ p, σ ij : (t, x) ∈ [0, T] × χ → σ ij (t, x) ∈ R is progressively measurable; we denote by σ := (σ ij ) i,j=1,p and by a := σσ . We assume that σ is: (i) Lipschitz in x and of linear growth;

(ii) is invertible and its inverse is bounded. Next let (x t ) t≤T be the solution of the following SDE:

x t = x 0 + t 0 σ(s, x)dB s , t ≤ T and x 0 ∈ R p , where (B s ) s≤T is a Brownian motion on (χ, P).

4. f (t, x, ū, v) (resp. c(t, x, ū, v)) is a measurable bounded function with values in R p (resp. R);

5. For any u ∈ U, v ∈ V, P u,v is a probability defined on (χ, F T ) by:

dP u,v dP = exp{ T 0 σ -1 (s, x) f (s, x, u s , v s )dB s - 1 2 T 0 |σ -1 (s, x) f (s, x, u s , v s )| 2 ds}.
Then the process (x t ) t≤T is, under P u,v , a weak solution of dx t = f (t, x, u t , v t )dt + σ(t, x)dW u,v t where (W u,v t ) t≤T is a Brownian motion under P u,v ;

6. Let (u t ) t≤T , (v t ) t≤T be two admissible controls. The payoff between two players, a minimizer (resp. maximizer) that acts with u (resp. v) is given by J(u, v) = E u,v ξ + T 0 c(s, u s , v s )ds , where E u,v is the expectation w.r.t.P u,v .

Next for any (t, x, p, ū, v) ∈ [0, T] × χ × R p × Ū × V, we define the Hamiltonian of the game by H(t, x, p, ū, v) := pσ -1 (t, x) f (t, x, ū, v) + c(t, x, ū, v) and assume that the Isaacs condition is satisfied, i.e., for any (t, x, p) ∈ [0, T] × χ × R p , max v∈ V min ū∈ Ū H(t, x, p, ū, v) = min ū∈ Ū max v∈ V H(t, x, p, ū, v).

Then, by Benes selection Theorem (see [START_REF] Benes | Existence of optimal strategies based on specidied information, for a class of stochastic decision problems[END_REF]), there exists two P ⊗ B(R p )-measurable functions u [START_REF] Hamadene | Zero-sum stochastic differential games and backward equations[END_REF]). Assume that (H) is satisfied. Then the game has a saddle point (u * , v * ) ∈ U × V, i.e., ∀u ∈ U, v ∈ V, J(u * , v) ≤ J(u * , v * ) ≤ J(u, v * ).

* : [0, T] × χ × R p → Ū and v * : [0, T] × χ × R p → V,
Moreover, Y 0 = J(u * , v * ), where (Y, z) is the unique solution of the following BSDE:

-dY t = H(t, x, z t , u * (t, x, z t ), v * (t, x, z t ))dtzt dB t , t ≤ T;

Y T = ξ and (u * , v * ) := (u * (t, x, z t ), v * (t, x, z t )) t≤T .

The zero-sum stochastic differential game problems and the associated BSDEs have been well documented in several works, see for example [START_REF] Cvitanic | Backward stochastic differential equations with reflection and dynkin games[END_REF][START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF][START_REF] Hamadène | Reflected bsdes and mixed game problem[END_REF][START_REF] Hamadene | Zero-sum stochastic differential games and backward equations[END_REF][START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF][START_REF] Hamadène | Systems of reflected bsdes with interconnected bilateral obstacles: Existence, uniqueness and applications[END_REF][START_REF] Hu | Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations[END_REF].

RBSDEs and DRBSDEs with interconnected barriers

In this section we recall some results on Reflected BSDEs (RBSDEs in short) and Doubly

Reflected BSDEs (DRBSDEs in short), as well as the associated applications (see e.g. [START_REF] François | A note on existence and uniqueness for solutions of multidimensional reflected bsdes[END_REF][START_REF] Cvitanic | Backward stochastic differential equations with reflection and dynkin games[END_REF][START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF][START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF][START_REF] Djehiche | A finite horizon optimal multiple switching problem[END_REF][START_REF] Karoui | Reflected solutions of backward sde's, and related obstacle problems for pde's[END_REF][START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF][START_REF] Hamadène | Double barrier backward sdes with continuous coefficient. backward stochastic differential equations[END_REF][START_REF] Hamadène | Switching problem and related system of reflected backward sdes[END_REF][START_REF] Hu | Multi-dimensional bsde with oblique reflection and optimal switching[END_REF][START_REF] Hu | Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations[END_REF][START_REF] Topolewski | Reflected bsdes with general filtration and two completely separated barriers[END_REF]).

General results for reflected BSDEs in one-dimension

One-dimensional Reflected BSDE

Firstly let us recall some results of BSDEs with a reflecting obstacle. El karoui et al. [START_REF] Karoui | Reflected solutions of backward sde's, and related obstacle problems for pde's[END_REF] studied the reflected solution of BSDEs with a random lower obstacle. More precisely let ξ ∈ L 2 , f is the generator defined from [0, T] × R × R d into R and L a continuous, progressively measurable process satisfying E sup 0≤t≤T (L + t ) 2 < ∞. Then the triple (Y, Z, K) of processes is called a solution of the reflected BSDE associated with ( f , ξ, L) if:

               Y ∈ S 2 , Z ∈ H 2,d , K ∈ A 2 ; Y t = ξ + T t f (s, Y s , Z s )ds - T t Z s dB s + K T -K t , t ∈ [0, T]; Y t ≥ L t , t ∈ [0, T]; T 0 (Y t -L t ) dK t = 0.
(1.7) Assumption 1.2.1.

1. ξ ∈ L 2 ;

RBSDES AND DRBSDES WITH INTERCONNECTED BARRIERS

2. f (., 0, 0) ∈ H 2,1 , moreover there exists a constant C such that ∀t ∈ [0, T], y, y ∈ R, z, z ∈ R d , | f (t, y, z)f (t, y , z )| ≤ C(|yy | + |zz |);

3. E sup t∈[0,T] (L + t ) 2 < ∞;

4. L T ≤ ξ.

Theorem 1.2.2 (El Karoui et al. [START_REF] Karoui | Reflected solutions of backward sde's, and related obstacle problems for pde's[END_REF]). Under Assumption 1.2.1, the following results hold true:

1. The RBSDE (1.7) associated with ( f , ξ, L) has a unique solution (Y, Z, K) = (Y t , Z t , K t ) t≤T in S 2 × H where T is the set of stopping time dominated by T, and T t := {τ ∈ T ; t ≤ τ ≤ T};

3. E sup

t∈[0,T] Y 2 t + T 0 |Z t | 2 dt + K 2 T ≤ CE ξ 2 + T 0 f 2 (t, 0, 0)dt + sup t∈[0,T] (L + t ) 2 ;
4. Comparison result: Let (Y, Z, K) and (Y , Z , K ) be two solutions of (1.7) respectively associated with (ξ, f , L) and (ξ , f , L ) which satisfy Assumptions (1.2.1). If ξ ≤ ξ , ∀(y, z) ∈ R × R d , f (t, y, z) ≤ f (t, y, z) dP × dt and ∀t ∈ [0, T], L t ≤ L t a.s. then we have Y t ≤ Y t , ∀t ∈ [0, T] a.s.;

One-dimensional DRBSDE and related Dynkin games

Consider now two reflecting processes (L t ) t∈[0,T] and (U t ) t∈[0,T] under which the BSDE changes the direction once the solution touches either obstacle. This DRBSDEs is connected with the so-called zero-sum Dynkin game [START_REF] Cvitanic | Backward stochastic differential equations with reflection and dynkin games[END_REF]. To be more precise, the game involves two players with antagonistic goals (one wishes to maximize his profit while another wishes to minimize his lost). Before the end of the game, each of whom implements a strategy and the first who decides to stop pays or earns a certain amount. When the game finishes, two players share the same payoff. The main objective of this game problem is to find an optimal strategy (if it exists), i.e., a strategy such that this game is fair for both players. Definition 1.2.3. We say that (Y, Z, K + , K -) is a solution of Doubly Reflected BSDE associated with two reflected obstacles L and U, terminal condition ξ and the generator f if the following system holds CHAPTER 1. INTRODUCTION true:

               Y ∈ S 2 , Z ∈ H 2,d , K + , K -∈ A 2 ; Y t = ξ + T t f (s, Y s , Z s )ds - T t Z s dB s + K + T -K + t -(K - T -K - t ); ∀t ∈ [0, T]; L t ≤ Y t ≤ U t ; T 0 (Y t -L t ) dK + t = 0 and T 0 (Y t -U t ) dK - t = 0.
(1.9) Assumption 1.2.4.

1. ξ ∈ L 2 and ( f (t, ω, 0, 0)) t≤T ∈ H 

θ 2 t ] < ∞ such that: ∀t ≤ T, L ξ t ≤ h t -θ t + E[ ξ| F t ] ≤ U ξ t .
Theorem 1.2.5 ). Suppose that Assumption 1.2.4 holds true, then the DRB-SDE (1.9) has a unique solution (Y, Z, K

+ , K -) ∈ S 2 × H 2,d × A 2 × A 2 .
Next let us consider the connection between the solution (Y, Z, K + , K -) and the stochastic Dykin game. We denote by M t,T the class of F-stopping time, for σ, τ in class M t,T , we consider the following payoff: R t (σ, τ) := σ∧τ t f (r)dr + ξ1 (σ∧τ=T) + L τ 1 (τ<T,τ≤σ) + U σ 1 (σ<τ) .

(1.10) Proposition 1.2.6 (Cvitanic-Karatzas [START_REF] Cvitanic | Backward stochastic differential equations with reflection and dynkin games[END_REF]). Under Assumption (1.2.4), the stochastic Dynkin game has a value, noted V t , given by the unique solution of DRBSDEs (1.9), i.e.

V t = ess sup τ∈M t,T ess inf

σ∈M t,T E[R t ( σ, τ)| F t ] = ess inf σ∈M t,T ess sup τ∈M t,T E[R t ( σ, τ)| F t ] = Y t .
Moreover there exists a saddle point of the game (τ * , σ * ) ∈ (M t,T ) 2 given by: σ * := inf{s ∈ [t, T]; Y s = U s } ∧ T;
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τ * := inf{s ∈ [t, T]; Y s = L s } ∧ T.

Note that the Mokobodzki condition plays a crucial role when proving the unique solution of DRBSDEs. Since it is difficult to check the existence of a difference of non-negative supermartingales between the two barriers ( [START_REF] Cvitanic | Backward stochastic differential equations with reflection and dynkin games[END_REF][START_REF] Hamadène | Reflected bsdes and mixed game problem[END_REF]), Cvitanic and Karatzas [START_REF] Cvitanic | Backward stochastic differential equations with reflection and dynkin games[END_REF] provided another regularity condition on both of the obstacle processes which insures the existence and uniqueness of the solution of (1.9). Later Lepeltier, Hamadène and Matoussi [START_REF] Hamadène | Double barrier backward sdes with continuous coefficient. backward stochastic differential equations[END_REF] relaxed this latter condition by assuming it only on one of the obstacles:

Theorem 1.2.7 (Lepeltier et al. [START_REF] Hamadène | Double barrier backward sdes with continuous coefficient. backward stochastic differential equations[END_REF]). Assume that Assumptions 1.2.4-(1-3) are satisfied. If there exists a sequence of process (U n ) n≥0 such that for any t ≤ T, n ≥ 0, Then DRBSDE (1.9) has a unique solution.

Hamadène and Hassani [START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF] showed existence and uniqueness of the solution of the DRB-SDEs (1.9) by only assuming that the two obstacles are totally separated, i.e., L < U. However the processes K and Z are not necessarily integrable. Actually under this latter condition it is only shown that P-a.s. K T (ω) < ∞ and T 0 |Z s (ω)| 2 ds < ∞.

Multidimensional RBSDEs with interconnected obstacle or oblique reflection

In recent years, the RBSDEs problems are also studied in higher dimensions. In connection with the switching problem, Hamadene and Jeanblanc [START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF] introduced those RBSDEs in dimension 2. Later, Hu and Tang [START_REF] Hu | Multi-dimensional bsde with oblique reflection and optimal switching[END_REF] considered the multi-dimensional framework where the existence of the solution is obtained by penalization method, and the uniqueness of the solution derives from a verification theorem of the associated optimal switching problem. In the same year Hamadène and Zhang [START_REF] Hamadène | Switching problem and related system of reflected backward sdes[END_REF] studied a similar system of RBSDEs where the components of the driver depend on the solution. They showed that the unique solution of the multi-dimensional RBSDEs is also related to the value of an optimal switching problem. In this paper the monotonicity condition of the generator plays a key role while authors prove the existence of the solution by the penalization approach.

So let us introduce the following conditions:

Assumption 1.2.8. For m ≥ 2, i = 1, ..., m,

1. E[ T 0 | f i (t, ω, 0, 0)| 2 dt + |ξ i | 2 ] < ∞; CHAPTER 1. INTRODUCTION
2. f i (t, y, z) := f i (t, y 1 , y 2 , ..., y m , z) is uniformly Lipschitz continuous in (y i , z) and is continuous in y j for j = i and for i, j = 1, ..., m and j = i, h ij (t, y) is continuous in (t, y); 3. Let A i := {1, ..., m} -{i}, f i (t, y, z) is increasing in y j for j = i, h ij (t, y) is increasing in y for j ∈ A i ;

4. For i ∈ A j , h ji (t, y) ≤ y, moreover there does not exist a sequence j 2 ∈ A j 1 , ..., j k ∈ A j k-1 , j 1 ∈ A j k such that y 1 = h j 1 j 2 (t, y 2 ), y 2 = h j 2 j 3 (t, y 3 ), ..., y k = h j k j 1 (t, y 1 );

5. For i = 1, ..., m, ξ i ≥ max j∈A i h ij (T, ξ).

Theorem 1.2.9 (Hamadène-Zhang [START_REF] Hamadène | Switching problem and related system of reflected backward sdes[END_REF]). If Assumption 1.2.8 is fulfilled, then the following system of m-dimensional RBSDEs

           Y i ∈ S 2 , Z i ∈ H 2,d , K i ∈ A 2 ; Y i t = ξ i + T t f i (s, Y s , Z i s )ds - T t Z i s dB s + K i T -K i t ; Y i t ≥ max j∈A i h ij (t, Y j t ); T 0 Y i t -max j∈A i h ij (t, Y j t ) dK i t = 0, (1.11) 
has a solution.

Uniqueness of the solution to the system of RBSDEs (1.11) is proved when for any i = 1, . . . , m, f i is Lipschitz w.r.t. ( y, z). Later this existence and uniqueness result is generalized by Chassagneux et al. [START_REF] François | A note on existence and uniqueness for solutions of multidimensional reflected bsdes[END_REF] to the framework where f i is no longer monotonic but only Lipschitz w.r.t. its components (, z).

Besides, in the markovian framework, one can find the connection between the system of multi-dimensional RBSDEs and a specific system of PDEs. Indeed, let (X t,x s ) s∈[t,T] be the diffusion process satisfying (1.4) and let us introduce the following items:

• Let Γ := {1, 2, ..., m} the set of available switching modes;

• ∀i, j ∈ Γ, i = j, g ij : (t, x) ∈ [0, T] × R k → g ij (t, x) ∈ R + represents the switching cost function from mode i to mode j;

• ∀i ∈ Γ, h i : x ∈ R d → h i (x) ∈ R represents the terminal condition function;

• f i : (t, x, y, z) ∈ [0, T] × R k+m+d → f i (t, x, y 1 , ..., y m , z) ∈ R is the generator of the system of RBSDEs.

We denote by Γ -i := Γ -{i}.
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Definition 1.2.10. Let i ∈ Γ, t ∈ [0, T]. The following triples (Y i;t,x , Z i;t,x , K i;t,x ) ∈ R 2 × H 2,d × A 2 , i = 1, . . . , m, are called solution of the m-dimensional RBSDEs with interconnected obstacles associated with ( f i , h i , (g ij ) j∈Γ -i ) if: For any i = 1, . . . , m, ∀s ∈ [t, T], 

               Y i;t,x s = h i (X t,x T ) + T s f i r, X
∈ [0, T], x, x ∈ R k , |σ(t, x) -σ(t, x )| + |b(t, x) -b(t, x )| ≤ C|x -x |.
As a result b and σ are of linear growth, i.e. 

≥ 0, ∀(t, x) ∈ [0, T] × R k , y, y ∈ R |Γ| , z, z ∈ R d , | f i (t, x, y 1 , ..., y m , z) -f i (t, x, y 1 , ..., y m , z )| ≤ C |y 1 -y 1 | + ... + |y m -y m | + |z -z | ; 3. Monotonicity: ∀j ∈ Γ -i , y j ∈ R → f i (t,
∀(t, x) ∈ [0, T] × R k , g ij (t, x)
≥ 0 and is of polynomial growth;

5. The non-free loop property: For any (t, x) ∈ [0, T] × R k and any sequence i 1 , ..., i p such that i 1 = i 2 , i 1 = i p and card{i 1 , ..., i p } = p -1, we have

g i 1 i 2 (t, x) + g i 2 i 3 (t, x) + ... + g i k-1 i k (t, x) > 0, ∀(t, x) ∈ [0, T] × R k .
By convention we set g ii = 0, ∀i ∈ Γ;
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is of polynomial growth and satisfies the consistency condition, i.e., ∀x ∈ R k ,

h i (x) ≥ max j∈Γ -i h j (x) -g ij (T, x) .
Theorem 1.2.12 (Hamadène-Morlais [START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF]). Under Assumption 1.2.11, the system (1.12) has a unique solution (Y i;t,x , Z i;t,x , K i;t,x ) i∈Γ . Moreover, there exists deterministic continuous functions

(v i (t, x)) i∈Γ of polynomial growth such that ∀i ∈ Γ, s ∈ [t, T], Y i;t,x s = v i (s, X t,x s ).
Moreover (v i (t, x)) i∈Γ are the unique solution in viscosity sense of the following system of PDEs with interconnected obstacles: ∀i ∈ Γ, t ∈ [0, T]

       min{v i (t, x) -max j∈Γ -i (v j (t, x) -g ij (t, x)); -∂ t v i (t, x) -Lv i (t, x) -f i (t, x, v 1 (t, x), ..., v m (t, x), σ(t, x) D x v i (t, x))} = 0; v i (T, x) = h i (x). (1.13)
The multi-dimensional RBSDEs are connected to the multi-modes switching problems.

In applications, the study of the optimal strategy related to the investment of multi-portfolio (e.g. [START_REF] Tang | Optimal switching of one-dimensional reflected bsdes and associated multidimensional bsdes with oblique reflection[END_REF][START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF]), or even to find the optimal control in the natural resource industry (e.g. [START_REF] Djehiche | A finite horizon optimal multiple switching problem[END_REF][START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF]), one can apply the multidimensional RBSDEs model where its unique solution is nothing but the value function of the problem.

The stochastic switching problems

In accordance to the connection between multi-dimensional RBSDEs and the stochastic switching problems, Hamadène and Jeanblanc [START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF] introduced the two-mode switching problem by investigating into the real options problem, called reversible investment problem. By means of Snell envelop method, they showed that such a problem has an optimal strategy, under which the value of the problem is related to the 2-dimensional RBSDEs. Later this problem has been extended by a lot of researchers, for example, Hamadène and Hdhiri [START_REF] Hamadène | The stopping and starting problem in the model with jumps[END_REF] studied the two-mode switching problem when the corresponding processes are driven by both a general Brownian filtration and an independent Poisson process; Porchet, Touzi and Warin [START_REF] Porchet | Valuation of power plants by utility indifference and numerical computation[END_REF] studied this problem by assuming that the payoff function is given by an exponential utility function.

Later the multiple switching problems are also studied. Djehiche, Hamadène and Popier [START_REF] Djehiche | A finite horizon optimal multiple switching problem[END_REF] considered a real switching problem of a power plant. They show the existence of the optimal strategy and the link with the unique solution of the system of RBSDEs. In this work
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the driver f is path-independent. Some more general cases of f , for example, the driver and the obstacle are interconnected to the solution of the RBSDEs, are also studied under different conditions (e.g. [START_REF] Hu | Multi-dimensional bsde with oblique reflection and optimal switching[END_REF][START_REF] Hamadène | Switching problem and related system of reflected backward sdes[END_REF][START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF][START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF]). Now we introduce some results on the multiple stochastic switching problems for later use. We stick to the markovian framework as the extension to the general one is immediate.

Definition 1.2.13.

• We define a strategy (δ, ξ) := ((τ n ) n≥0 , (ξ n ) n≥0 ) as 1. (τ n ) n≥1 is a non-decreasing sequence of F-stopping times; we set τ 0 = 0; 2. (ξ n ) n≥0 the Γ-valued and F τ n -measurable random variable, and ξ 0 represents the initial state of the switching problem.

• we say that (δ, ξ)

:= ((τ n ) n≥0 , (ξ n ) n≥0 ) is admissible if P[τ n < T, ∀n ≥ 0] = 0; • (α t ) t≤T the indicator process defined by ∀t ∈ [0, T], α t = 1 [0,τ 1 ) (t) + ∑ n≥1 ξ n 1 [τ n-1 ,τ n ) (t);
• (A α s ) s≤T the cumulative cost function given by ∀s < T, A α

s := ∑ n≥1 g ξ n-1 ,ξ n (τ n , X t,x τ n )1 τ n ≤s , A α T = lim s→T A α s ; • D i s := {α = ((τ n ) n≥0 , (ξ n ) n≥0 ) ∈ D, ξ 0 = i, τ 0 = s,

and E[A α

T ] < ∞} the set of admissible strategies.

Theorem 1.2.14 ). Assume that Assumption 1.2.11-(1-2,4-6) is satisfied, then:

(i) the switching problem has an optimal strategy, denoted α * = (δ * , ξ * ), i.e.,

sup α∈D i 0 J α = J α * , where α = (δ, ξ) and J α = E[ T 0 f α s (s, X t,x s )ds -A α T ]. (ii) For any i ∈ Γ, s ∈ [0, T] Y i s = ess sup s∈D i s (P α s -A α s ),
where P α is the solution of the following BSDE of non-standard type:

   P α RCLL and E[sup s≤T |P α s | 2 ] < ∞, Q α ∈ H 2,d ; P α s = h α (X t,x T ) + T s f α (r, X t,x r , v r , Q α r )dr - T s Q α r dB r -(A α T -A α s ), ∀s ≤ T.
Note that similar results are also shown in Hu and Tang [START_REF] Hu | Multi-dimensional bsde with oblique reflection and optimal switching[END_REF].

Systems of reflected BSDEs with interconnected bilateral obstacles: Existence, uniqueness and applications

Chapter 2 is a published co-work with Hamadène (ref. [START_REF] Hamadène | Systems of reflected bsdes with interconnected bilateral obstacles: Existence, uniqueness and applications[END_REF]).

Motivation

The main objective of this work is to study the system of multidimensional DRBSDEs with doubly interconnected barriers, then we connect the unique solution of DRBSDEs to the system of PDEs with doubly interconnected obstacles. The novelties of this work are: (i) firstly we obtain the existence of the solution via the penalization method in the general framework and not only the markovian one; (ii) secondly by relaxing the assumption of monotonicity on the driver f ij and applying the results of the first part and the connection with switching game as well, we obtain the existence and the uniqueness of the solution of the system of DRBSDEs; (iii) thirdly we apply the unique solution of DRBSDEs in the second part to show the existence and the uniqueness of the system of PDEs in the viscosity sense.

Preliminaries

Let Γ 1 , Γ 2 be the finite sets of the whole switching modes available for the controllers or players. Let Γ := Γ 1 × Γ 2 and we denote by Λ its cardinal, i.e., Λ :

= |Γ| = |Γ 1 | × |Γ 2 |. On the other hand for (i, j) ∈ Γ 1 × Γ 2 , we define (Γ 1 ) -i := Γ 1 -{i} and (Γ 2 ) -j := Γ 2 -{j}. A function Ψ : (t, x) ∈ [0, T] × R k → Ψ(t, x) ∈ R is called of polynomial growth if there exists two non-negative real constants C and γ such that ∀(t, x) ∈ [0, T] × R k , |Ψ(t, x)| ≤ C(1 + |x| γ k ).
Hereafter this class of functions is denoted by Π g .
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Next let us denote by y the generic element (y ij ) (i,j)∈Γ of R Λ and let us introduce the following items: for any i, k ∈ Γ 1 and j, l ∈ Γ 2 , i)

f ij : (t, ω, y, z) ∈ [0, T] × Ω × R Λ × R d → f ij (t, ω, y, z) ∈ R ; ii) g ik : (t, ω) ∈ [0, T] × Ω → g ik (t, ω) ∈ R + ; iii) g jl : (t, ω) ∈ [0, T] × Ω → g jl (t, ω) ∈ R + ; iv) ξ ij is a r.v. valued in R and F T -measurable.
Finally let us introduce the following assumptions on f ij , g ik and g jl for i, k ∈ Γ 1 and j, l ∈ Γ 2 .

Assumption 1.3.1.

For any

(i, j) ∈ Γ 1 × Γ 2 ,
a) There exists a positive constant C and a non negative P-measurable process (η t ) t≤T which satisfies

E[sup s≤T |η s | 2 ] < ∞ such that: P-a.s, ∀( y, z) ∈ R Λ+d , t ∈ [0, T], | f ij (t, y, z)| ≤ C(1 + η t + | y|),
where | y| refers to the standard Euclidean norm of y in R Λ (the same for |z| below). Note that this implies that E[

T 0 | f ij (t, 0, 0)| 2 dt] < ∞; b) f ij
is Lipschitz continuous with respect to (w.r.t for short) ( -→ y , z) uniformly in (t, ω), i.e. P-a.s., for any t ∈ [0, T], ( -→ y 1 , z 1 ) and ( -→ y 2 , z 2 ) elements of R Λ+d , we have

| f ij (t, -→ y 1 , z 1 ) -f ij (t, -→ y 2 , z 2 )| ≤ C(| -→ y 1 --→ y 2 | + |z 1 -z 2 |),
where C is a fixed constant.

For any

(i, j) ∈ Γ, a) E(|ξ ij | 2 ) < ∞;
b) ξ ij , as the terminal condition at time T, satisfies the following consistency condition: P-a.s.,

max k∈(Γ 1 ) -i ξ kj -g ik (T) ≤ ξ ij ≤ min l∈(Γ 2 ) -j ξ jl + g jl (T) .
3. For all i 1 , i 2 ∈ Γ 1 (resp. j 1 , j 2 ∈ Γ 2 ) and t ∈ [0, T], the process g 

i 1 i 2 (resp. g j 1 j 2 ), ( 
(s)| 2 ] < ∞.   resp.    g j (t) = g j (0) + t 0 b j (s)ds + t 0 σ j (s)dB s , t ≤ T, with σ j ∈ H
(s)| 2 ] < ∞.   .

Monotonicity:

For any (i, j) ∈ Γ and (k, l) ∈ Γ -ij := Γ -{(i, j)}, the mapping y kl → f ij (t, -→ y , z) is non- decreasing when the other components (y pq ) (p,q) =(k,l) and z are fixed.

Definition 1.3.2.

A family (Y ij , Z ij , K ij,+ , K ij,-) (i,j)∈Γ is said to be a solution of the system of reflected BSDEs with doubly interconnected barriers associated with (( f ij ) (i,j)∈Γ , (ξ ij ) (i,j)∈Γ , (g ik ) i,k∈Γ 1 , (g j, ) j, ∈Γ 2 ), if it satisfies the followings: ∀(i, j) ∈ Γ,

               Y ij ∈ S 2 , Z ij ∈ H 2,d , K ij,± ∈ A 2 ; Y ij t = ξ ij + T t f ij (s, ω, (Y kl s ) (k,l)∈Γ 1 ×Γ 2 , Z ij s )ds- T t Z ij s dB s + K ij,+ T -K ij,+ t -(K ij,- T -K ij,- t ), ∀t ≤ T; L ij t ≤ Y ij t ≤ U ij t , ∀t ∈ [0, T]; T 0 (Y ij t -L ij t )dK ij,+ t = 0 and T 0 (U ij t -Y ij t )dK ij,- t = 0, (1.15) where L ij t := max k∈(Γ 1 ) -i {Y kj t -g ik (t)} and U ij t := min l∈(Γ 2 ) -j {Y il t + g jl (t)}, ∀t ≤ T.

Main results of this paper

Existence of solution under monotonicity condition

In the first place we prove the existence of a solution of (1.15) under Assumption 1.3.1. For this purpose we penalize both barriers in the following way: ∀m, n ∈ N, (i, j) ∈ Γ,
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   Y ij,m,n ∈ S 2 , Z ij,m,n ∈ H 2,d ; Y ij,m,n t = ξ ij + T t f ij,m,n s, (Y kl,m,n s ) (k,l)∈Γ 1 ×Γ 2 , Z ij,m,n s ds - T t Z ij,m,n s dB s , t ≤ T, (1.16) 
where

f ij,m,n t, (y kl ) (k,l)∈Γ 1 ×Γ 2 , z = f ij (t, y, z) + n y ij t -max k∈(Γ 1 ) -i y kj t -g ik (t) - -m y ij t -min l∈(Γ 2 ) -j y il t + g jl (t) + , (x + = x ∨ 0 and x -= (-x) ∨ 0, x ∈ R).
For all (i, j) ∈ Γ, the sequence (Y ij,m,n ) n≥0 increasingly converges to a process in S 2 , denoted ( Ȳij,m ) m≥0 . As the terminal condition of this sequence stays the same, the monotonic result is obtained by simply comparing the generators ( f ij,m,n ) n≥0 . On the other hand, the process (Z ij,m,n ) n≥0 → n→∞ Zij,m in H 2,d , the penalized part of the lower obstacle also converges in S 2 , we denote by Kij,m,+

t := lim n→∞ t 0 n Y ij,m,n s -max k∈Γ -i [Y kj,m,n s -g ik (s)] - ds, t ≤ T,
thus the triple ( Ȳij,m , Zij,m , Kij,m ) (i,j)∈Γ is the unique solution of RBSDEs associated with (ξ ij , f ij,m , (g ik ) k∈Γ 1 ) (i,j)∈Γ where

f ij,m (s, (y kl ) (k,l)∈Γ , z) := f ij (s, (y kl ) (k,l)∈Γ , z) -m y ij -min l∈(Γ 2 ) -j [y il + ḡjl (s)] + .
The following step is to prove that the sequence

( Ȳij,m ) (i,j)∈Γ convergences to Y ij in S 2 , ∀(i, j) ∈ Γ.
Here the difficulty derives from the continuity of this limit process. In another word, if we can prove the uniform convergence of ( Ȳij,m ) (i,j)∈Γ in S 2 , then Y ij holds the continuity. However the penalized term m y ijmin

l∈(Γ 2 ) -j [y il + ḡjl (s)]
+ is a little bit troublesome when making calculus. Then we introduce the equivalent RBSDEs (Y ij,m , Z ij,m , K ij,m ) (i,j)∈Γ where the driver is the following:

f ij,m (t, y, z) := f ij (t, (y kl ) (k,l)∈Γ , z) -m   y ij -∑ l∈(Γ 2 ) -j [y il + ḡjl (t)]   + . CHAPTER 1. INTRODUCTION
The equivalence (if one converges, the other one does so to the same limit) between (Y ij,m , Z ij,m , K ij,m ) (i,j)∈Γ and ( Ȳij,m , Zij,m , Kij,m ) (i,j)∈Γ is proved by the comparison theorem.

In the following we need to prove the convergence of (Y ij,m ) (i,j)∈Γ . For this purpose we rely on the link with switching problems and introduce the following definitions:

• (σ n ) n≥0 : increasing sequence of stopping times s.t. P[σ n < T, ∀n ≥ 0] = 0;

• δ n : Γ 1 -valued and F σ n -measurable random variable;

• u := (σ n , δ n ) n≥0 an admissible switching strategy;

• A u t := ∑ n≥1 g δ n-1 δ n (σ n )1 (σ n ≤t) the cumulative switching cost and A u T := lim t→T A u t ; • a t := δ 0 1 (σ 0 ) (t) + ∑ n≥1 δ n-1 1 (σ n-1 ,σ n ] (t); • A i t := {u = (σ n , δ n ) n≥0 admissible strategy such that σ 0 = t, δ 0 = i and E[(A u T ) 2 ] < ∞}
Thus there exists (U aj,m , V aj,m ), ∀a ∈ A i t , j ∈ Γ 2 , the unique solution of a non-standard type BSDE associated with (ξ a t j , f ij,m , A a ):

         U aj,m is rcll, E sup t≤T |U aj,m t | 2 < ∞ and V aj,m ∈ H 2,d ; U aj,m t = ξ a T j + T t 1 (s≥σ 0 ) f aj,m s, (Y kl,m s ) (k,l)∈Γ , V aj,m s ds - T t V aj,m s dB s + A a T -A a t ,
where

f aj,m (s, (Y kl,m s ) (k,l)∈Γ , z) = ∑ n≥1   ∑ q∈Γ 1 f qj (s, (Y kl,m s ) (k,l)∈Γ , z) -m ∑ l∈(Γ 2 ) -j (Y qj,m s -Y ql,m s -g jl (t)) + }1 {δ n-1 =q}   1 {σ n-1 ≤s<σ n } .
(1.17)

Then we have:

Y ij,m t = ess sup a∈A i t U aj,m t -A a t .
Afterwards by Itô's calculus, we obtain the following estimate:

Proposition 1.3.3. For any(i, j) ∈ Γ, t ≤ T, m 2 E ∑ l∈Γ 2 -{j} {(Y ij,m t -Y il,m t -g jl (t)) + } 2 ≤ C. (1.18)
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This estimate implies that the discontinuity points of Y ij := lim m→∞ Y ij,m stem from the discontinuities of lim m→∞ K ij,m,+ . But by the uniqueness of the solution (Y ij,m , Z ij,m , K ij,m ) (i,j)∈Γ of the system of RBSDEs associated with (ξ ij , f ij,m , (g ik ) k∈Γ 1 ) (i,j)∈Γ , the estimates on f ij (Assumption 1.3.1, 1.a)) and the regularity of the switching costs, as in Proposition 1.3.3, we show that K ij,m,+ has a density w.r.t. dt which uniformly bounded in H 2,1 . Therefore lim m→∞ K ij,m,+ is a continuous non-decreasing process. It implies that Y ij is a continuous process and the convergence of

(Y ij,m , Z ij,m , K ij,m ) (i,j)∈Γ and ( Ȳij,m , Zij,m , Kij,m ) (i,j)∈Γ to (Y ij , Z ij , K ij,+ , K ij,-) (i,j)∈Γ in the appropriate spaces holds (especially the convergence of (Y ij,m ) m to Y ij in S 2
). Finally we obtain:

Theorem 1.3.4. Under Assumption 1.3.1, the process (Y ij , Z ij , K ij,+ , K ij,-) (i,j
)∈Γ is a solution of the system of reflected BSDEs (1.15).

Existence and Uniqueness without monotonicity

The results of this subsection are based on the existence of the value function of a zero-sum stochastic differential game whose payoff is given by:

J ij t (γ(u, v)) = E ξ π T + T t f π (s)ds -∑ n≥1 g γ (1) n-1 γ (1) n (ρ n ) -g γ (2) n-1 γ (2) n (ρ n ) F t , (1.19) 
where γ(u, v) is the coupling of (u, v). The construction of the model is well detailed in [START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF] where the authors relate the solution Y ij of the system of DRBSDEs (1.15) to this zero-sum stochastic switching game, when the generators f ij do not depend neither on y nor on z. They show that the value of the game is nothing but Y ij , solution of the DRBSDEs, when the controlled system under the switchings of the two players starts from (i, j).

For this purpose we introduce the following assumptions:

Assumption 1.3.5.
1. The processes (g ik ) i,k∈Γ 1 and (g j, ) j, ∈Γ 2 verify the non free loop property, that is to say, if (i k , j k ) k=1,2,...,N is a loop in Γ, i.e., (i N , j N ) = (i 1 , j 1 ), card {(i k , j k ) k=1,2,...,N } = N -1 and for any k = 1, 2, ..., N -1, either i k+1 = i k (resp. j k+1 = j k ), we have:

P -a.s., ∀t ≤ T, N-1 ∑ k=1 G i k j k (t) = 0, (1.20 
)

where ∀k = 1, ...N -1, G i k j k (t) = -g i k i k+1 (t)1 i k =i k+1 + g j k j k (t)1 j k =j k+1 .
This assumption makes sure that any instantaneous loop in the switching mode set Γ 1 × Γ 2 , of the players (or deci-sion makers), is not free i.e. one of the controllers needs to pay something when the system is switched and comes back instantaneously to the initial mode. Note that (1.20) also implies: for any

(i 1 , ..., i N ) ∈ (Γ 1 ) N such that i N = i 1 and card{i 1 , i 2 , ..., i N } = N -1, P N-1 ∑ k=1 g i k i k+1 (t) = 0 = 0, ∀t ≤ T,
and for any (j 1 , ..., j N ) ∈ (Γ 2 ) N such that j N = j 1 and card{j 1 , j 2 , ..., j N } = N -1,

P N-1 ∑ k=1 g j k j k+1 (t) = 0 = 0, ∀t ≤ T.
2. For any (i, j) ∈ Γ, the function f ij does not depend on z. 

(Y ij , Z ij , K ij,+ , K ij,-) (i,j)∈Γ , i.e., for any (i, j) ∈ Γ and t ≤ T,                Y ij ∈ S 2 , Z ij ∈ H 2,d , K ij,± ∈ A 2 ; Y ij t = ξ ij + T t f ij s, ω, (Y kl s ) (k,l)∈Γ 1 ×Γ 2 ds - T t Z ij s dB s + K ij,+ T -K ij,+ t -(K ij,- T -K ij,- t ) ; L ij t ≤ Y ij t ≤ U ij t ; T 0 Y ij t -L ij t dK ij,+ t = 0 and T 0 U ij t -Y ij t dK ij,- t = 0 (1.21) where L ij t := max k∈(Γ 1 ) -i Y kj t -g ik (t) and U ij t := min l∈(Γ 2 ) -j Y il t + g jl (t) . Moreover it is unique in the following sense: if (Y ij , Z ij , K ij,+ , K ij,-) (i,j)∈Γ 1 ×Γ 2 is another solution of (1.21), then for any (i, j) ∈ Γ, Y ij = Y ij , Z ij = Z ij , K ij,+ -K ij,-= K ij,+ -K ij,-.
The sketch of the proof is the following: We firstly define a mapping Φ from H 2,Λ to itself by Φ( φ) := (Y φ,ij ) (i,j)∈Γ . Then we consider two different solutions (Y φ,ij ) (i,j)∈Γ and (Y ψ,ij ) (i,j)∈Γ of the systems of DRBSDEs (the existence of the solution is proved in the previous subsection).

When calculating the difference between (Y φ,ij ) (i,j)∈Γ and (Y ψ,ij ) (i,j)∈Γ , we relate to the corresponding values of the games whose payoffs are J φ,ij and J ψ,ij to get rid of the switching cost.

Next using stantard Itô's calculus we prove that Φ is a contraction mapping from H 2,Λ into itself under an appropriate norm, then the solutin of the DRBSDEs is the unique fixed point of Φ.

SYSTEMS OF REFLECTED BSDES WITH INTERCONNECTED BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS

Connection with system of PDEs with bilateral interconnected obstacles

We are now going to decline Assumptions 1.3.1 and 1.3.5 in the markovian framework of randomness. Let us introduce deterministic functions f ij (t, x, y), h ij (x), g ik (t, x) and ḡjl (t, x), i, k ∈ Γ 1 , j, l ∈ Γ 2 and t, x, y in [0, T], R k and R Λ respectively. Assumption 1.3.7.

For any (i, j) ∈ Γ,

i) There exists non negative constants C and γ such that

| f ij (t, x, y)| ≤ C(1 + |x| γ + | y |).
ii) f ij is Lipschitz continuous w.r.t. y uniformly in (t, x), i.e. there exists a constant C such that for any y 1 ,

y 2 ∈ R Λ , | f ij (t, x, y 1 ) -f ij (t, x, y 2 )| ≤ C| y 1 -y 2 |.
2. For any (i, j) ∈ Γ, the function h ij , which stands for the terminal condition, is continuous w.r.t.

x, belongs to class Π g and satisfies the following consistency condition: ∀(i, j) ∈ Γ and x ∈ R k ,

max k∈(Γ 1 ) -i (h kj (x) -g ik (T, x)) ≤ h ij (x) ≤ min l∈(Γ 2 ) -j
(h il (x) + g jl (T, x)).

(1.22)

3. For all i 1 , i 2 ∈ Γ 1 (resp. j 1 , j 2 ∈ Γ 2 ), the function g

i 1 i 2 (resp. g j 1 j 2 ) i) is non-negative, continuous and belong to Π g ; ii) For any k ∈ Γ 1 (resp. ∈ Γ 2 ) such that |{i 1 , i 2 , k}| = 3 (resp. |{j 1 , j 2 , }| = 3) it holds: ∀(t, x) ∈ [0, T] × R k , g i 1 i 2 (t, x) < g i 1 k (t, x) + g ki 2 (t, x) resp. g j 1 j 2 (t, x) < g j 1 (t, x) + g j 2 (t, x) ; (1.23)
iii) The functions (g ik ) i,k∈Γ 1 and (g jl ) j,l∈Γ 2 verify the non free loop property, that is to say, if (i k , j k ) k=1,2,...,N is a loop in Γ, i.e., (i N , j N ) = (i 1 , j 1 ), card {(i k , j k ) k=1,2,...,N } = N -1 and for any k = 1, 2, ..., N -1, either i k+1 = i k or j k+1 = j k , we have:

∀t ≤ T, N-1 ∑ k=1 G i k j k (t, x) = 0, (1.24 
)

where ∀k = 1, ...N -1, G i k j k (t, x) = -g i k i k+1 (t, x)1 (i k =i k+1 ) + g j k j k (t, x)1 (j k =j k+1 ) .
This assumption makes sure that any instantaneous loop in the switching mode set
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free, i.e. one of the controllers needs to pay something when the system is switched and comes back instantaneously to the initial mode.

Note that (1.24) also implies: for any (i 1 , ..., i N ) ∈ (Γ 1 ) N such that i N = i 1 and card{i 1 , i 2 , ...,

i N } = N -1, N-1 ∑ k=1 g i k i k+1 (t, x) > 0, ∀(t, x) ∈ [0, T] × R k ,
and for any (j 1 , ..., j N ) ∈ (Γ 2 ) N such that j N = j 1 and card{j 1 , j 2 , ..., 

j N } = N -1, N-1 ∑ k=1 g j k j k+1 (t, x) > 0, ∀(t, x) ∈ [0, T] × R k . 4. For any i, k ∈ Γ 1 (resp. j, l ∈ Γ 2 ), g ik (resp. g jl ) is C 1,2
         g ik (s, X t,x s ) = g ik (t, x) + s t L X (g ik )(r, X t,x r )dr + s t D x g ik (r, X t,x r )σ(r, X t,x r )dB r , s ∈ [t, T]; g ik (s, X t,x s ) = g ik (s, x), s ≤ t.     resp.        g jl (s, X t,x s ) = g jl (t, x) + s t L X (g jl )(r, X t,x r )dr + s t D x g jl (r, X t,x r )σ(r, X t,x r )dB r , s ∈ [t, T]; g jl (s, X t,x s ) = g jl (s, x), s ≤ t.    
In this subsection, we study the existence of the unique solution of the following system of PDEs in the viscosity sense: for any (i,

j) ∈ Γ, t ∈ [0, T],              min v ij (t, x) -max k∈(Γ 1 ) -i [v kj (t, x) -g ik (t, x)]; max v ij (t, x) -min l∈(Γ 2 ) -j [v il (t, x) + g jl (t, x)]; -∂ t v ij (t, x) -L X (v ij )(t, x) -f ij (t, x, (v kl (t, x)) (k,l)∈Γ ) = 0; v ij (T, x) = h ij (x).
(1.25)

The infinitesimal generator L X is given by: for any (t,

x) ∈ [0, T] × R k , φ ∈ C 1,2 ((.) is the transpose), L X φ(t, x) : = 1 2 k ∑ i,j=1 (σσ (t, x)) i,j ∂ 2 x i x j φ(t, x) + k ∑ i=1 b i (t, x)∂ x i φ(t, x). (1.26)
Before proving the existence of the unique solution of (1.25), we firstly show the connection is the unique solution of the following system of DRBSDEs with doubly interconnected obstacles:

                     Y ij;t,x ∈ S 2 , Z ij;t,x ∈ H 2,1 , K ij,±;t,x ∈ A 2 ; Y ij;t,x s = h ij (X t,x T ) + T s f ij r, X t,x r , (Y kl;t,x r ) (k,l)∈Γ dr - T s Z ij;t,x r dB r + K ij,+;t,x T -K ij,+;t,x s -(K ij,-;t,x T -K ij,-;t,x s ); L ij;t,x s ≤ Y ij;t,x s ≤ U ij;t,x s ; T 0 (Y ij;t,x s -L ij;t,x s )dK ij,+;t,x s = 0 and T 0 (Y ij;t,x s -U ij;t,x s )dK ij,-;t,x s = 0 (1.28) where L ij;t,x s := max k∈(Γ 1 ) -i Y kj;t,x s -g ik (s, X t,x s ) and U ij;t,x s := min l∈(Γ 2 ) -j Y il;t,x s + g jl (s, X t,x s ) , s ∈ [0, T].
The proof is composed of two steps. Firstly we assume that the coefficients f ij (t, x, 0, 0) and h ij (x) are bounded. By constructing a Picard iterations process (Y ij,n,t,x ) (i,j)∈Γ = Φ((Y ij,n-1,t,x ) (i,j)∈Γ ), we prove the uniform convergence of (Y ij,n,t,x ) n≥0 in S 2 and ∀s ∈ [t, T], Y ij,n,t,x s = v ij,n (s, X t,x s ) with v ij,n a continuous function. Then we show the uniform convergence of v ij,n to v ij which implies that v ij is continuous. In the second place, we relax the boundedness condition of f ij (t, x, 0, 0) and h ij (x), i.e. they are of polynomial growth. By applying Itô's formula with Ỹij := Y ij;t,x s

(1 + |X t,x s | 2 ) -γ , we fall in the previous framework. Therefore we deduce that Y ij has the previous representation (1.27) with v ij continuous and of polynomial growth.

Then we prove the existence of the unique viscosity solution of (1.25). Theorem 1.3.9. Assume that Assumptions 1.3.5-(2.) and 1.3.7 are fulfilled. Then the Λ-tuple of continuous functions (v ij ) (i,j)∈Γ of (1.27) is a viscosity solution of (1.25). Moreover it is unique in the class of continuous functions which belong to Π g .

The proof is divided into two steps. Firstly thanks to Proposition (1.3.8) we show that (v ij ) (i,j)∈Γ is a viscosity solution of (1.25) . Secondly we prove the uniqueness of this solution by using the uniqueness of the solution (Y ij;t,x ) (i,j)∈Γ of the system (1.28).

Zero-sum Switching Game, Systems of Reflected Backward SDEs and Parabolic PDEs with bilateral interconnected obstacles

Chapter 3 is a preprint joint work with Hamadène (ref. [START_REF] Hamadène | Zero-sum switching game, systems of reflected backward sdes and parabolic pdes with bilateral interconnected obstacles[END_REF]). In this work we study a specific zero-sum switching game and its verification theorems expressed in terms of either a system of RBSDEs with bilateral interconnected obstacles or a system of parabolic PDEs with bilateral interconnected obstacles as well. The framework is markovian. We show that each one of the systems has a unique solution. Then we show that the game has a value.

Framework setting

First let us additionally denote by: -A loc : the set of P-measurable continuous non-decreasing processes K = (K t ) t≤T with K 0 = 0 such that Pa.s.,

, K T (ω) < ∞; -H 2,d loc (d ≥ 1) : the set of P-measurable R d -valued processes φ = (φ t ) t∈[0,T] such that P -a.s., T 0 |φ t | 2 dt < ∞;
Next we define Γ := {1, 2, ..., p} and for any i ∈ Γ, let us set Γ -i := Γ -{i}. For y := (y i ) i∈Γ ∈ R p and ŷ ∈ R, we denote by ( y -i , ŷ) the element of R p obtained in replacing the i-th component of y with ŷ.

We now introduce the following deterministic functions: for any i ∈ Γ,

-f i : (t, x, y, z) ∈ [0, T] × R k+p+d → f i (t, x, y, z) ∈ R, -g i,i+1 : (t, x) ∈ [0, T] × R k → g i,i+1 (t, x) ∈ R, -g i,i+1 : (t, x) ∈ [0, T] × R k → g i,i+1 (t, x) ∈ R, -h i : x ∈ R k → h i (x) ∈ R.
Next let us consider the following assumptions which, sometimes, we use only partly. 

| f i (t, x, y 1 , z 1 ) -f i (t, x, y 2 , z 2 )| ≤ C(| y 1 -y 2 | + |z 1 -z 2 |); b) ∀j ∈ Γ -i
, the mapping y j → f i (t, x, y, z) is non-decreasing when the other components (y k ) k∈Γ -j , t, x, z are fixed.

c) f i is continuous in (t, x) uniformly in ( y, z) and f i (t, x, 0, 0) belongs to Π g .

Motivation

This paper is related to zero-sum switching games, systems of reflected backward differential equations (RBSDEs) with bilateral interconnected obstacles and systems of variational inequalities of min-max type with interconnected obstacles, namely the Hamilton-Jacobi-Bellman (HJB for short) system associated with the game.

First let us describe the zero-sum switching game which we will consider in this paper. Let Γ be the set {1, ..., p}. Assume we have a system which has p working modes indexed by Γ. This system can be switched from one working mode to another one, e.g. due to economic, financial, ecological reasons, etc, by two players or decision makers C 1 and C 2 . The main feature of the switching actions is that when the system is in mode i ∈ Γ, and one of the players decides to switch it, then it is switched to mode i + 1 (hereafter i + 1 is 1 if i = p). It means that the decision CHAPTER 1. INTRODUCTION makers do not have their proper modes to which they can switch the system when they decide to switch (see e.g. [START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF] for more details on this model). Therefore a switching strategy for the players are sequences of stopping times u = (σ n ) n≥0 for C 1 and v = (τ n ) n≥0 for C 2 such that σ n ≤ σ n+1 and τ n ≤ τ n+1 for any n ≥ 0. On the other hand, the switching actions are not free and generate expenditures for the players. Loosely speaking at time t ≤ T, they amount to A u t (resp. B v t ) given by:

A u t = ∑ σ n ≤t g ζ n ,ζ n +1 (σ n ) (resp. B v t = ∑ τ n ≤t ḡθ n ,θ n +1 (τ n )).
The process g i,i+1 (s) (resp. ḡi,i+1 (s)) is the switching cost payed by C 1 (resp. C 2 ) is she makes the decision to switch the system from mode i to mode i + 1 at time s while ζ n (resp. θ n ) is the mode in which the system is at time σ n (resp. τ n ). Next when the system is run under the control u (resp. v) for C 1 (resp. C 2 ), there is a payoff J(u, v) which is a profit (resp. cost) for C 1 (resp. C 2 ) given by:

J(u, v) = E[ T 0 f δ s (s)ds -A u T + B v T + ζ δ T ].
where δ := (δ s ) s≤T is the process valued in Γ which indicates the working modes of the system along with time. If at time s the system is in mode i 0 , then δ s = i 0 . It is bind to the controls u and v implemented by both players. On the other hand, for i ∈ Γ, the process f i is the utility of the system in mode i and finally ζ δ T is the terminal payoff or bequest.

The problem we are interested in is to know whether or not the game has a value, i.e., roughly speaking, if the following equality holds:

inf v sup u J(u, v) = sup u inf v J(u, v).
In case of equality we say that the game has a value. Finally we say that the game has a saddlepoint (u * , v * ) if, for any u and v, controls of C 1 and C 2 respectively, we have:

J(u, v * ) ≤ J(u * , v * ) ≤ J(u * , v).
Note that in such a case, the game has a value. From the probabilistic point of view, this zero-sum switching game problem turns into looking for a solution of its associated system of reflected BSDEs with interconnected bilateral obstacles.

A solution for such a system are adapted processes (Y i , Z i , K i,± ) i∈Γ such that for any i ∈ Γ and s ≤ T, 

           Y i and K i,± continuous; K i,± increasing; (Z i (ω) t ) t≤T is dt -square integrable; Y i s = ξ i + T s f i (r)dr - T s Z i r dB r + K i,+ T -K i,+ s -(K i,- T -K i,- s ); L i ( Y) s ≤ Y i s ≤ U i ( Y) s ; T 0 (Y i s -L i ( Y) s )dK i,+ s = 0 and T 0 (Y i s -U i ( Y) s )dK i,- s = 0, (1.33 
(Y i ) i∈Γ ; c) L i ( Y) s = Y i+1 s -g i,i+1 (s) and U i ( Y) s = Y i+1 s + ḡi,i+1 (s).
Actually the solution of the previous system provides the value of the zero-sum switching game which is equal to Y i 0 if the starting mode of the system is i. Roughly speaking, system (1.33) is the verification theorem for the zero-sum switching game problem. Usually it is shown that the value functions of the game is the unique solution of (1.33).

In the Markovian framework, i.e., when randomness stems from a diffusion process X t,x ((t, x) ∈ [0, T] × R k ) which satifies:

dX t,x s = b(s, X t,x s )ds + σ(s, X t,x s )dB s , s ∈ [t, , T] and X t,x s = x, for s ≤ t, (1.34) 
and the data of the game are deterministic functions of (s, X t,x s ), the Hamilon-Jacobi-Bellman system associated with this switching game is the following system of partial differential equations (PDEs in short) with a bilateral interconnected obstacles

: ∀i ∈ Γ, ∀(t, x) ∈ [0, T] × R k ,      min{v i (t, x) -L i ( v)(t, x); max v i (t, x) -U i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x) } = 0; v i (T, x) = h i (x).
(1. [START_REF] Hamadène | Systems of reflected bsdes with interconnected bilateral obstacles: Existence, uniqueness and applications[END_REF] where: a

) v = (v i ) i∈Γ ; b) L i ( v)(t, x) := v i+1 (t, x) -g i,i+1 (t, x), U i ( v)(t, x) := v i+1 (t, x) + g i,i+1 (t, x); c) L X is the infinitesimal generator of X.
This work is originated by an article by N.Yamada [START_REF] Yamada | A system of elliptic variational inequalities associated with a stochastic switching game[END_REF] where the author deals with the system of PDEs (1.35) in the case when the switching costs are constant and for bounded domains Ω. By penalization method, the author proved existence and uniqueness of the solution of (1.35) in a weak sense (actually in a Sobolev space). Then he gives an interpretation of the solution of this system as a value function of the zero-sum switching game described previously.

A saddle-point of the game is also given. However neither this interpretation nor the existence of the saddle-point are clear because the question of admissiblity of the controls which are supposed to realize the saddle-point property is not addressed. In zero-sum switching games this issue of admissibility of those controls, defined implicitely through (Y i ) i∈Γ , is crucial (see e.g. [START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF]). Note also that there is another paper by N.Yamada [START_REF] Yamada | Viscosity solutions for a system of elliptic inequalities with bilateral obstacles[END_REF] where the solution of system (1.35) is considered in viscosity sense. Once more by penalization, he shows existence and uniqueness of the solution on bounded domains Ω.

Therefore the main objective of this paper is to show that: i) the system of reflected BSDEs with interconnected obstacles (1.33) has a unique solution in the Markovian framework.

ii) the zero-sum switching game described above has a value in different settings.
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iii) The system of PDEs (3.3) has a unique solution.

Main results

Actually under Assumptions 1.4.1, (H2), (H3) and (H5) we show that the following system has a unique solution in the class Π g :

     min{v i (t, x) -L i ( v)(t, x); max v i (t, x) -U i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x, (v l (t, x)) l∈Γ , σ(t, x) D x v i (t, x) } = 0; v i (T, x) = h i (x), (1.36)
where for any i ∈ Γ, L i ( v)(t, x) := v i+1 (t, x)g i,i+1 (t, x) and U i ( v)(t, x) := v i+1 (t, x) + g i,i+1 (t, x). This system generalizes system (1.35).

The proof is based on Perron's method and the construction of this solution (more or less the same as in [START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF]) proceeds as follows: a) we first introduce the processes (Y i,m , Z i,m , K ±,i,m ) i∈Γ , m ≥ 1, solution of the system of reflected BSDEs with interconnected lower barriers associated with

{ f i (r, X t,x r , y, z i ) -m(y i -y i+1 -ḡi,i+1 (r, X t,x r )) + , h i (X t,x T ), g i,i+1 (r, X t,x r )} i∈Γ (see (3.57))
. It is a decreasing penalization scheme. As the framework is Markovian then there exist deterministic functions continuous and of polynomial growth (v i,m ) i∈Γ such that the following Feynman-Kac representation holds: For any i ∈ Γ, m ≥ 1 and s ∈ [t, T], Y i,m s = v i,m (s, X t,x s ).

As for any i ∈ Γ, m ≥ 1, Y i,m ≥ Y i,m+1 then we have also v i,m ≥ v i,m+1 . Now if we define v i = lim m v i,m , then (v i ) i∈Γ is a subsolution of (3.3) and for any fixed m 0 , (v i,m 0 ) i∈Γ is a supersolution of (3.3). Next it is enough to use Perron's method to show that (3.3) has a unique solution since comparison principle holds. Finally, by uniqueness this solution does not depend on m 0 and is (v i ) i∈Γ . Additionally for any i ∈ Γ, v i is of polynomial growth and continuous.

Next for (t,

x) ∈ [0, T] × R k , i ∈ Γ and s ∈ [t, T], let us set: Y i,t,x s = v i (s, X t,x s ).
With the help of the previous result, mainly continuity of (v i ) i∈Γ , we show the following theorem:

Theorem 1.4.2. Assume that assumptions 1.4.1-(H2), (H3) and (H5) are fulfilled and that for any i ∈ Γ, f i does not depend on z. Then for any (t, x) ∈ [0, T] × R k , there exists adapted processes K i,±,t,x
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and Z i,t,x valued respectively in R + and R d such that, in combination with Y i,t,x , verify: For any i ∈ Γ, i) K i,±,t,x are continuous non decreasing and P-a.s.

T 0 |Z i,t,x s | 2 ds < ∞ ; ii) ∀s ∈ [t, T],                          Y i s = h i (X t,x T ) + T s f i (r, X t,x r , (Y l r ) l∈Γ )dr - T s Z i,t,x r dB r +K i,+,t,x T -K i,+,t,x s -(K i,-,t,x T -K i,-,t,x s ); L i s ((Y l ) l∈Γ ) ≤ Y i s ≤ U i s ((Y l ) l∈Γ ); T t (Y i s -L i s ((Y l ) l∈Γ ))dK i,+ s = 0 and T 0 (Y i s -U i s ((Y l ) l∈Γ ))dK i,- s = 0, (1.37) 
where for s

∈ t ≤ T, L i s ((Y l ) l∈Γ ) := Y i+1 s -g i,i+1 (s, X t,x s ) and U i s ((Y l ) l∈Γ ) := Y i+1 s + ḡi,i+1 (s, X t,x s ).
The existence of the solution of (1.37) is proved by the penalization method combined with the continuous solution of (1.36). Indeed, we introduce the following processes ( Ȳi,m ) m≥0 : ∀i ∈ Γ,

           Y i,m ∈ S 2 , Z i,m ∈ H 2 , K i,m,+ ∈ A 2 ; Y i,m s = h i (X t,x T ) + T s f i,m (r, X t,x r , (Y l,m ) l∈Γ )dr - T s Z i,m r dB r + K i,m,+ T -K i,m,+ s , s ≤ T; Y i,m s ≥ L i (( Ȳl,m s ) ł∈Γ ), s ≤ T; T 0 (Y i,m s -L i (( Ȳl,m s ) ł∈Γ ))dK i,m,+ s = 0, (1.38) 
where f i,m (s, X t,x s , y) = f i (s, X t,x s , y)m(y i -[y i+1 + g i,i+1 (s, X t,x s )]) + . Then we have: For any i ∈ Γ and m ≥ 0, the processes Ȳi,m,t,x have the following representation (see e.g. A4 in [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF] for more details): For any s ∈

[t, T], Ȳi,m,t,x s = ess sup σ≥s ess inf τ≥s E[h i (X t,x T )1 (σ=τ=T) + σ∧τ s f i (r, X t,x r , ( Ȳl,m,t,x r ) l∈Γ )dr + L i σ (( Ȳl,m,t,x ) l∈Γ )1 (σ<τ) + {U i τ (( Ȳl,m ) l∈Γ ) ∨ Ȳi,m,t,x τ }1 (τ≤σ,τ<T) |F s ].
(1.39)

Moreover there exist deterministic continuous functions ( vi,m ) i∈Γ such that for any m ≥ 0, i ∈ Γ and s ∈ [t, T] we have: Ȳi,m,t,x s = v i,m (s, X t,x s ).

But for any i ∈ Γ, v i,m v i which, by Dini's Theorem, implies that this convergence holds uniformly on compact subsets of [0, T] × R k . Take now the limit w.r.t. m in (1.39) and use the facts that X t,x has moments of any order and that v i,m and v i have uniform polynomial growth to obtain that:

CHAPTER 1. INTRODUCTION Y i,t,x s = ess sup σ≥s ess inf τ≥s E[h i (X t,x T )1 (σ=τ=T) + σ∧τ s f i (r, X t,x r , (Y l,t,x r
) l∈Γ )dr

+ L i σ ((Y l,t,x ) l∈Γ )1 (σ<τ) + U i τ ((Y l,t,x ) l∈Γ )1 (τ≤σ,τ<T) |F s ].
(1.40)

But we have also the following inequalities: For any s ∈ [t, T] and i ∈ Γ,

U i s ((Y l ) l∈Γ ) ≥ Y i s ≥ L i s ((Y l ) l∈Γ ).
On the other hand by Assumption (H3)-a),

U i s ((Y l,t,x ) l∈Γ ) -L i s ((Y l,t,x ) l∈Γ ) = ḡi,i+1 (s, X t,x s ) + g i,i+1 (s, X t,x s ) > 0,
which means that the obstacles U i ((Y l,t,x ) l∈Γ ) and L i ((Y l,t,x ) l∈Γ ), for any i ∈ Γ, are completely separated. Therefore by Theorem 3.7 in [START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF], there exist progressively measurable processes Y i,t,x , K i,±,t,x and Z i,t,x valued respectively in R, R + and R d such that: i) Y i,t,x ∈ S 2 ([t, T]), K i,±,t,x are continuous non decreasing and K i,±,t,x t = 0 ; P-a.s.

T t |Z i,t,x s | 2 ds < ∞ ;
ii) The processes (Y i,t,x , K i,±,t,x , Z i,t,x ) verify: ∀s ∈ [t, T],

                         Y i,t,x s = h i (X t,x T ) + T s f i (r, X t,x r , (Y l,t,x r ) l∈Γ )dr - T s Z i,t,x r dB r +K i,+,t,x T -K i,+,t,x s -(K i,-,t,x T -K i,-,t,x s ); L i s ((Y l,t,x ) l∈Γ ) ≤ Y i,t,x s ≤ U i s ((Y l,t,x ) l∈Γ ); T t (Y i,t,x s -L i s ((Y l,t,x ) l∈Γ ))dK i,+,t,x s = 0 and T 0 (Y i,t,x s -U i s ((Y l,t,x ) l∈Γ ))dK i,-,t,x s = 0. (1.41)
Moreover Y i,t,x has the following representation: ∀s ∈ [t, T],

Y i,t,x s = ess sup σ≥s ess inf τ≥s E[h i (X t,x T )1 (σ=τ=T) + σ∧τ s f i (r, X t,x r , (Y l r ) l∈Γ )dr + L i σ ((Y l,t,x ) l∈Γ )1 (σ<τ) + U i τ ((Y l,t,x ) l∈Γ )1 (τ≤σ,τ<T) |F s ].
(1.42) Thus for any s ∈ [t, T], Y i,t,x = Y i,t,x and then by (1.41), (Y i,t,x , K i,±,t,x , Z i,t,x ) verifies (1.37) for fixed i. Finally as i is arbitrary then (Y i,t,x , K i,±,t,x , Z i,t,x ) i∈Γ is a solution for the system of reflected BSDEs with double obstacles (1.37). The proof of existence is then stated.

In the case when f i , i ∈ Γ, do not depend on y, the link with a specific zero-sum switching game is the following: 

(θ(u, v)) s := E{h θ(u,v) T (X t,x T ) + T t f θ(u,v) r (r, X t,x r )dr -C θ(u,v) ∞ |F s },
and A

(1)

t (resp. B (1) 
t ) is the set of admissible integrable controls which start from i at t, and finally θ(u, v) is the coupling of (u, v).

This theorem tells us also that the solution of (1.37) is unique when f i , i ∈ Γ, do not depend on y. Next to show that the solution is unique in the general framework of Theorem 1.4.2 it is enough to consider the mapping Φ from H 2,p into itself by Φ( φ) := (Y φ,i ) i∈Γ . Then we consider two different solutions (Y φ,i ) i∈Γ and (Y ψ,i ) i∈Γ of the systems of DRBSDEs (the existence of the solution is already proved). When calculating the difference between (Y φ,i ) i∈Γ and (Y ψ,i ) i∈Γ , we relate to the relations of Theorem 1.4.3 to get rid of the switching cost. Next using standard Itô's calculus we prove that Φ is a contraction mapping from H 2,p into itself, then the solution of the DRBSDEs (1.37) is unique.

Mean-field Doubly Reflected backward stochastic differential equations

Chapter 4 is a preprint joint work with Chen and Hamadène (ref. [START_REF] Chen | Mean-field doubly reflected backward stochastic differential equations[END_REF]). In this work we investigate into a Doubly reflected BSDE of Mean-field type (MF-DRBSDE in short). In two different frameworks, we show the existence and uniqueness of the MF-DRBSDE where the two barriers are interconnected to the solution .

Overview of Mean-field theories

Mean-field games and MF-BSDEs

Motivated by classical mean-field approaches in Statistical Mechanics and Physics, in particular the study of systems composed of a very large number of particles, Lasry and Lions [START_REF] Lasry | Mean field games[END_REF] introduced the so-called mean-field model. Later the mean-field game has attracted a significant attentions in the last decades, in particular motivated by the linear McKean-Vlasov PDE, Buckdahn et al. [START_REF] Buckdahn | Mean-field backward stochastic differential equations and related partial differential equations[END_REF]6,[START_REF] Buckdahn | A general stochastic maximum principle for sdes of mean-field type[END_REF] introduced a new class of BSDEs of Mean-field type with the driver f := f (ω , ω, t, y , z , y, z) : 

Ω 1+1 × [0, T] × R 1+1 × R d+d → R

For any

t ∈ [0, T], y 1 , y 2 , y 1 , y 2 ∈ R, z 1 , z 2 , z 1 , z 2 ∈ R d , there exists a constant C such that | f (t, y 1 , z 1 , y 1 , z 1 ) -f (t, y 2 , z 2 , y 2 , z 2 )| ≤ C(|y 1 -y 2 | + |z 1 -z 2 | + |y 1 -y 2 | + |z 1 -z 2 |) 2. f (., 0, 0, 0, 0) ∈ H 2,1
F ⊗F t (0, T; R) Theorem 1.5.2. [Buckdahn et al. [6], [START_REF] Buckdahn | Mean-field backward stochastic differential equations and related partial differential equations[END_REF]] Under Assumptions 1.5.1 the following MF-BSDE has a unique adapted solution: for any t ∈ [0, T],

   ξ ∈ L 2 (Ω, F t , P), Y ∈ S 2 F (0, T; R), Z ∈ H 2,d F (0, T; R d ); Y t = ξ + T t E [ f (s, Y s , Z s , Y s , Z s )]ds - T t Z s dB s (1.43)
where E is an operator defined by E (γ(., ω)) := Ω γ(ω , ω)P(dω ), ∀γ ∈ L 1 (Ω 1+1 , F ⊗ F , P ⊗ P).

They also provided the corresponding comparison result and the converse comparison result for MF-BSDE, as well as the research to McKean-Vlasov PDE and related Dynamic Programming Principle (DPP in short).

In this context, Li [START_REF] Li | Reflected mean-field backward stochastic differential equations. approximation and associated nonlinear pdes[END_REF] introduced a class of MF-Reflected BSDEs which makes the connection between the results of classical RBSDEs (e.g. [START_REF] Karoui | Reflected solutions of backward sde's, and related obstacle problems for pde's[END_REF]) and those of MF-FBSDEs (e.g. [START_REF] Buckdahn | Mean-field backward stochastic differential equations and related partial differential equations[END_REF]6]). Later after that, Djehiche, Elie and Hamadène [START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF] deepened the MF-RFBSDEs results by adding the dependence on the distribution of the Y-component of the solution in the barrier.

The motivation comes from insurance problems. So let us consider the following system of reflected MF-BSDEs:

Definition 1.5.3. [Djehiche et al. [START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF]] The triple of progressively measurable processes

(Y t , Z t , K t ) t∈[0,T] is called a solution of the MF-reflected BSDE associated with ( f , ξ, h) if: (1) When p > 1,                    Y ∈ S p , Z ∈ H p,d and K ∈ S p i ; Y t = ξ + T t f (s, Y s , E[Y s ])ds + K T -K t - T t Z s dB s , 0 ≤ t ≤ T; Y t ≥ h(t, Y t , E[Y t ]), ∀t ∈ [0, T]; T 0 (Y t -h(t, Y t , E[Y t ]))dK t = 0.
(1.44)
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(2) When p = 1,

                   Y ∈ D, Z ∈ ∪ q∈(0,1) M q and K ∈ S 1 i ; Y t = ξ + T t f (s, Y s , E[Y s ])ds + K T -K t - T t Z s dB s , 0 ≤ t ≤ T; Y t ≥ h(t, Y t , E[Y t ]), ∀t ∈ [0, T]; T 0 (Y t -h(t, Y t , E[Y t ]))dK t = 0, (1.45) 
where D is the class of adapted continuous of class [D] processes and M q is the set of Pmeasurable processes (z t ) t≤T such that E[(

T 0 |z s | 2 ds) q/2 ] < ∞.
Next let us recall the following necessary conditions: Assumption 1.5.4. [Djehiche et al. [START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF]] The coefficients f , h and ξ satisfy:

1. f := f (t, y, z) : [0, T] × R 1+1 → R such that ( f (t, 0, 0)) t∈[0,T] is P-measurable and belongs to H p,1 , in addition f is Lipschitz continuous w.r.t (y, y ) uniformly in (t, ω), i.e. there exists a positive constant C such that ∀t ∈ [0, T], y 1 , y 1 , y 2 , y 2 ∈ R, | f (t, y 1 , y 1 ) -f (t, y 2 , y 2 )| ≤ C(|y 1 -y 2 | + |y 1 -y 2 |);
2. The mapping h := h(y, y ) : R 1+1 → R is Lipschitz continuous w.r.t. (y, y ), i.e. there exists two positive constants γ 1 and γ 2 such that

∀x, y, x , y ∈ R, |h(x, x ) -h(y, y )| ≤ γ 1 |x -y| + γ 2 |x -y |; 3. ξ is F T -measurable and R-valued random variable such that E[ξ p ] < ∞ and ξ ≥ h(ξ, E[ξ]).
Theorem 1.5.5. [Djehiche et al. [START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF]] Suppose that Assumptions 1.5.4 is fulfilled, 1. for p > 1, the mean-field reflected BSDE (1.44) has a unique solution if the following condition holds true:

(γ 1 + γ 2 ) p -1 p ( p p -1 ) p γ 1 + γ 2 1 p < 1;
2. for p = 1, the mean-field reflected BSDEs (1.45) has a unique solution if

γ 1 + γ 2 < 1.
Based on the results of [START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF], we investigate into the mean-field doubly reflected BSDEs.

Motivation and problem setting

Motivation

In this work we are concerned with the problem of existence and uniqueness of a solution of the doubly reflected BSDE associated with the quadruple ( f , ξ, h, g):

             Y t = ξ + T t f (s, Y s , E[Y s ])ds + K + T -K + t -K - T + K - t - T t Z s dB s , 0 ≤ t ≤ T; h(Y t , E[Y t ]) ≤ Y t ≤ g(Y t , E[Y t ]), ∀t ∈ [0, T]; T 0 (Y s -h(Y s , E[Y s ]))dK + s = 0, T 0 (Y s -g(Y s , E[Y s ]))dK - s = 0. (1.46)
Those BSDEs are of mean-field type because the generator f and the barriers depend on the law of Y t through its expectation.

There have been several papers on mean-field BSDEs including ( [START_REF] Buckdahn | Mean-field backward stochastic differential equations and related partial differential equations[END_REF]6,[START_REF] Briand | Bsdes with mean reflection[END_REF][START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF][START_REF] Li | Reflected mean-field backward stochastic differential equations. approximation and associated nonlinear pdes[END_REF]). Those equations are connected with several motivations of which the representation of a utility of an agent inside an economy ( [START_REF] Buckdahn | Mean-field backward stochastic differential equations and related partial differential equations[END_REF]6,[START_REF] Li | Reflected mean-field backward stochastic differential equations. approximation and associated nonlinear pdes[END_REF]), the assesment of the risk of a financial position ( [START_REF] Briand | Bsdes with mean reflection[END_REF]), the representation of set of portfolios in life-insurance ( [START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF]), etc.

As previously mentioned, in [START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF], the authors consider the case of one reflecting barrier of (1.46). They prove existence and uniqueness of a solution via the fixed point method and the penalization one as well. Those methods do not allow for the same framework. For example, the fixed point method does not allow generators which depend on z while the penalization does at the price of some additional regularity properties which are not required by the use of the first method.

Notations

Let T be a fixed positive constant. Let (Ω, F , P) denote a complete probability space with B = (B t ) t∈[0,T] a d-dimensional Brownian motion whose natural filtration is (F 0 t := σ{B s , s ≤ t}) 0≤t≤T . We denote by F = (F t ) 0≤t≤T the completed filtration of (F 0 t ) 0≤t≤T with the P-null sets of F , then it satisfies the usual conditions. On the other hand, let P be the σ-algebra on [0, T] × Ω of the F-progressively measurable sets.

For p ≥ 1 and 0 ≤ s 0 < t 0 ≤ T, we define the following spaces:

• L p := {ξ : F T -measurable radom variable s.t. E[|ξ| p ] < ∞}; • H m loc := {(z t ) t∈[0,T] : P -measurable process and R m -valued s.t. P -a.s. T 0 |z s (ω)| 2 ds < ∞}; • S p := {(y t ) t∈[0,T] : continuous and P-measurable process s.t. E[sup t∈[0,T] |y t | p ] < ∞}; 40 1.
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• A := {(k t ) t∈[0,T] : continuous, P-measurable and non-decreasing process s.t. k 0 = 0};

• T t := {τ, Fstopping time s.t. Pa.s.τ ≥ t};

• D := {(φ) t∈[0,T] : F -adapted, R -valued continuous process s.t. φ 1 = sup τ∈T 0 E[|y τ |] < ∞}.
Note that the normed space (D, . 1 ) is complete.

We introduce the following assumptions on ( f , ξ, h, g):

Assumption 1.5.6.

(i) The coefficients f , h, g and ξ satisfy:

(a) the process ( f (t, 0, 0)) t≤T is Pmeasurable and such that

T 0 | f (t, 0, 0)|dt ∈ L p (dP); (b) f is Lipschitz w.r.t (y, y ) uniformly in(t, ω), i.e.
, there exists a positive constant C f such that P-a.s. for all t ∈ [0, T], y 1 , y 1 , y 2 and y 2 elements of R,

| f (t, ω, y 1 , y 1 ) -f (t, ω, y 2 , y 2 )| ≤ C f (|y 1 -y 1 | + |y 2 -y 2 |). (1.47) 
(ii) h and g are mappings from R 2 into R which satisfy:

(a) h and g are Lipschitz w.r.t. (y, y ) i.e., there exist pairs of positive constants (γ 1 , γ 2 ), (β 1 , β 2 ) such that for any x, x , y and y ∈ R,

|h(x, x ) -h(y, y )| ≤ γ 1 |x -y| + γ 2 |x -y |, |g(x, x ) -g(y, y )| ≤ β 1 |x -y| + β 2 |x -y |. (1.48) (b) h(x, x ) < g(x, x ), for any x, x ∈ R; (iii) ξ is an F T -measurable, R-valued r.v., E[ξ p ] < ∞ and satisfies h(ξ, E[ξ]) ≤ ξ ≤ g(ξ, E[ξ]).
Definition 1.5.7. We say that the quaternary of P-measurable processes (Y t , Z t ,

K + t , K - t ) t≤T is a solu- tion of the mean-field reflected BSDE associated with ( f , ξ, h, g) if : Case: p > 1                    Y ∈ S p , Z ∈ H d loc and K + , K -∈ A; Y t = ξ + T t f (s, Y s , E[Y s ])ds + K + T -K + t -K - T + K - t - T t Z s dB s , 0 ≤ t ≤ T; h(Y t , E[Y t ]) ≤ Y t ≤ g(Y t , E[Y t ]), ∀t ∈ [0, T]; T 0 (Y s -h(Y s , E[Y s ]))dK + s = 0, T 0 (Y s -g(Y s , E[Y s ]))dK - s = 0. (1.49) CHAPTER 1. INTRODUCTION Case: p = 1,                    Y ∈ D, Z ∈ H d loc and K + , K -∈ A; Y t = ξ + T t f (s, Y s , E[Y s ])ds + K + T -K + t -K - T + K - t - T t Z s dB s , 0 ≤ t ≤ T; h(Y t , E[Y t ]) ≤ Y t ≤ g(Y t , E[Y t ]), ∀t ∈ [0, T]; T 0 (Y s -h(Y s , E[Y s ]))dK + s = 0, T 0 (Y s -g(Y s , E[Y s ]))dK - s = 0.
(1.50) 

Main results of this paper

(γ 1 + γ 2 + β 1 + β 2 ) p-1 p p p -1 p (γ 1 + β 1 ) + (γ 2 + β 2 ) 1 p < 1 (1.51)
then the mean-field doubly reflected BSDE (4.2) has a unique solution (Y, Z, K + , K -).

Theorem 1.5.9. Let f , h, g and ξ satisfy Assumption 1.5.6 for p = 1 and suppose that

γ 1 + γ 2 + β 1 + β 2 < 1. (1.52)
Then, there exists δ > 0 only depending on C f , γ 1 , γ 1 , β 1 and

β 2 such that (1.50) has a unique solution (Y, Z, K + , K -) ∈ D × H d loc × A × A.

PAPER 1: SYSTEM OF REFLECTED BSDES WITH INTERCONNECTED BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS

This chapter is a published joint work with Hamadène (ref. [START_REF] Hamadène | Systems of reflected bsdes with interconnected bilateral obstacles: Existence, uniqueness and applications[END_REF]).

Introduction

This paper is related to the study of systems of reflected backward stochastic differential equations (BSDEs in short) with interconnected bilateral obstacles. A solution for such a system is a family of adapted processes (Y ij , Z ij , K ij,+ , K ij,-) (i,j)∈Γ such that: For any (i, j) ∈ Γ and t ≤ T,

                     Y ij t = ξ ij + T t f ij s, ω, (Y kl s ) (k,l)∈Γ 1 ×Γ 2 , Z ij s ds - T t Z ij s dB s + T t (dK ij,+ s -dK ij,- s ) ; L ij t ≤ Y ij t ≤ U ij t ; T 0 (Y ij t -L ij t )dK ij,+ t = 0 and T 0 (U ij t -Y ij t )dK ij,- t = 0, (2.1) 
where:

a) Γ := Γ 1 × Γ 2 = {1, ..., m 1 } × {1, ..., m 2 } ; b) L ij t := max k∈Γ 1 -{i} {Y kj t -g ik (t)} and U ij t := min l∈Γ 2 -{j} {Y il t + g jl (t)}; c) f ij , ξ ij , g ik
and g jl are given data of the problem which are described precisely later;

d) K ij,± are non-decreasing processes such that K ij,± 0 = 0.
This system introduced first in [START_REF] Hu | Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations[END_REF] is related to the zero-sum stochastic switching game, as shown later in some papers including [START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF][START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF]. On the other hand, note that the above BSDEs have two reflecting barriers which depend on the solution (Y ij ) (i,j)∈Γ .

CHAPTER 2. PAPER 1: SYSTEM OF REFLECTED BSDES WITH INTERCONNECTED BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS

A stochastic optimal switching control problem of a system (which can be a portfolio in market, a power plant, etc.) is a discrete stochastic optimal control where a strategy σ is pair

of sequences ((τ n ) n≥0 , (ζ n ) n≥0
) such that for any n ≥ 0, τ n is a stopping time such that τ n ≤ τ n+1 and ζ n are random variables valued in the set of modes under which the system is run. Roughly speaking at time τ n the controller decides to switch the system from its current mode to the new one denoted by ζ n . The switching actions are not free and generate expenditures.

When a strategy σ is implemented, it induces a payoff which is equal to J(σ) and then the problem is to find a strategy σ * which realizes sup σ J(σ). This problem is related to systems of reflected backward stochastic differential equations (RBSDEs in short) with interconnected one lower obstacles to which reduces (2.1) in the case when g jl = +∞. There are several papers on this topic including [START_REF] François | A note on existence and uniqueness for solutions of multidimensional reflected bsdes[END_REF][START_REF] Carmona | Valuation of energy storage: An optimal switching approach[END_REF][START_REF] Djehiche | A finite horizon optimal multiple switching problem[END_REF][START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF][START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF][START_REF] Hamadène | Switching problem and related system of reflected backward sdes[END_REF][START_REF] Hu | Multi-dimensional bsde with oblique reflection and optimal switching[END_REF][START_REF] Tang | Optimal switching of one-dimensional reflected bsdes and associated multidimensional bsdes with oblique reflection[END_REF][START_REF] Vathana | A mixed singular/switching control problem for a dividend policy with reversible technology investment[END_REF][START_REF] Zervos | A problem of sequential entry and exit decisions combined with discretionary stopping[END_REF][START_REF] Timothy | The explicit solution to a sequential switching problem with non-smooth data[END_REF] (see also the references therein) in connection with energy, finance, etc.

Next, one has a zero-sum switching game if there are two decision makers π 1 and π 2 which intervene on the system by both choosing its joint working mode (i, j) ∈ Γ (π 1 and π 2 choose i ∈ Γ 1 and j ∈ Γ 2 respectively). The interests of the decision makers are antagonistic, that is to say, when π 1 (resp. π 2 ) implements the strategy σ 1 (resp. σ 2 ) there is in-between a payoff J(σ 1 , σ 2 ) which is a profit (resp. cost) for π 1 (resp. π 2 ). The zero-sum switching game (especially issues of existence of the value, a saddle point, etc.) is connected with the solutions of systems of reflected BSDEs of types (2.1) (see e.g. [START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF][START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF]). This is the main motivation to study this system (2.1).

There are only very few papers which deal with the problem of existence of a solution for system (2.1). The question of uniqueness is even less studied. According to our best knowledge, system (2.1) is studied in two papers only which are [START_REF] Hu | Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations[END_REF] and [START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF]. In [START_REF] Hu | Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations[END_REF], the authors have shown existence of a solution for this system (2.1) when the switching costs g ii) We show that system (2.1) has a unique solution in the case when the processes g ik and g jl are Itô processes and the functions f ij do no depend on z. We do not require the monotonicity assumption on these latter functions ;

iii) When randomness is Markovian and comes from a diffusion process X t,x , we show that the Feynman-Kac representation formula holds for (Y ij ) (i,j)∈Γ , the first component of the solution of system (2.1), i.e., there exist deterministic continuous functions (v ij ) (i,j)∈Γ such that for any (i,

j) ∈ Γ, s ∈ [t, T], Y ij;t,x s = v ij (s, X t,x s )
. Moreover the functions (v ij ) (i,j)∈Γ are the unique solution of the following system of PDEs with bilateral interconnected obstacles:

∀(i, j) ∈ Γ,          min{v ij (t, x) -max k∈Γ 1 -{i} [v kj (t, x) -g ik (t, x)]; max[v ij (t, x) -min l∈Γ 2 -{j} [v il (t, x) + g jl (t, x)]; -∂ t v ij (t, x) -L X (v ij )(t, x) -f ij (t, x, (v kl (t, x)) (k,l)∈Γ ) } = 0; v ij (T, x) = h ij (x). (2.2)
The monotonicity assumption of the functions ( f ij ) (i,j)∈Γ is no longer required as in [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF][START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF][START_REF] Ishii | Viscosity solutions for monotone systems of secondorder elliptic pdes[END_REF][START_REF] Yamada | A system of elliptic variational inequalities associated with a stochastic switching game[END_REF], etc. This result on PDEs improves also substantially the existing literature in this domain (see the previous references). System (2.2) can be seen as the Hamilton-Jacobi-Bellman-Isaacs system associated with the zero-sum switching game when utilities are implicit or depend on the values.

The chapter is organized as follows: In Section 2.2, we give some statements and assumptions.

In Section 2.3 we introduce and analyse, under the monotonicity assumption on the functions ( f ij ) (i,j)∈Γ , the approximating schemes of (2.1) obtained by penalization. We show that the penalization terms are bounded in appropriate space. We then show that the penalization schemes converge and their limits provide solutions for (2.1). In Section 2.4, by the zero-sum stochastic representation, we show that, the system (2.1) has a unique solution when ( f ij ) (i,j)∈Γ does not depend on z. Finally in Section 2.5, we deal with application of the result of Section 2.4 in the field of PDEs. We first show that the processes (Y ij ) (i,j)∈Γ enjoy the Feynman-Kac representation through deterministic continuous with polynomial growth functions (v ij ) (i,j)∈Γ . Moreover the functions (v ij ) (i,j)∈Γ are the unique solution in viscosity of system of PDEs with obstacles (2.2) of min-max type. They are also the unique solution of the dual system to (2.2)

which is of max-min type.

Statements, assumptions and preliminaries

Let T > 0 be a fixed real constant. Let (Ω, F , P) be a complete probability space which carries a d-dimensional Brownian motion B = (B t ) t∈[0,T] whose natural filtration is F 0 t := σ{B s , s ≤ t} 0≤t≤T . We denote by F = (F t ) 0≤t≤T the completed filtration of (F 0 t ) 0≤t≤T with the P-null sets of F , then it satisfies the usual conditions, i.e., it is complete and right continuous. On the other hand, we define P as the σ-algebra on [0, T] × Ω of the F-progressively measurable sets. Next, we denote by: BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS -S 2 : the set of P-measurable continuous processes φ

= (φ t ) t∈[0,T] such that E(sup t∈[0,T] |φ t | 2 ) < ∞; -A 2 : the subset of S 2 of non-decreasing processes K = (K t ) t≤T such that K 0 = 0; -H 2,k (k ≥ 1): the set of P-measurable, R k -valued processes φ = (φ t ) t∈[0,T] such that E( T 0 |φ t | 2 k dt) < ∞.
To proceed, let Γ 1 , Γ 2 be the finite sets of the whole switching modes available for the controllers or players. As mentioned previously Γ := Γ 1 × Γ 2 and denote by Λ its cardinal, i.e.,

Λ := |Γ| = |Γ 1 | × |Γ 2 |. On the other hand for (i, j) ∈ Γ 1 × Γ 2 , we define (Γ 1 ) -i := Γ 1 -{i} and (Γ 2 ) -j := Γ 2 -{j}.
Next let us denote by y the generic element (y ij ) (i,j)∈Γ of R Λ and let us introduce the following items: For any i, k ∈ Γ 1 and j, l

∈ Γ 2 , i) f ij : (t, ω, y, z) ∈ [0, T] × Ω × R Λ × R d → f ij (t, ω, y, z) ∈ R ; ii) g ik : (t, ω) ∈ [0, T] × Ω → g ik (t, ω) ∈ R + ; iii) g jl : (t, ω) ∈ [0, T] × Ω → g jl (t, ω) ∈ R + . iv) ξ ij is a r.v. valued in R and F T -measurable.
Finally let us introduce the following assumptions on f ij , g ik and g jl for i, k ∈ Γ 1 and j, l ∈ Γ 2 :

[H1] For any (i,

j) ∈ Γ 1 × Γ 2 ,
a) There exists a positive constant C and a non negative P-measurable process (η t ) t≤T which satisfies E[sup s≤T |η s | 2 ] < ∞ and such that:

P-a.s, ∀( y, z) ∈ R Λ+d , t ∈ [0, T], | f ij (t, y, z)| ≤ C(1 + η t + | y|),
where | y| refers to the standard Euclidean norm of y in R Λ (the same for |z| below).

Note that this implies that E[

T 0 | f ij (t, 0, 0)| 2 dt] < ∞; b) f ij is Lipschitz continuous with respect to (w.r.t for short) ( -→ y , z) uniformly in (t, ω),
i.e. P-a.s., for any t ∈ [0, T], ( -→ y 1 , z 1 ) and ( -→ y 2 , z 2 ) elements of R Λ+d , we have

| f ij (t, -→ y 1 , z 1 ) -f ij (t, -→ y 2 , z 2 )| ≤ C(| -→ y 1 --→ y 2 | + |z 1 -z 2 |)
where C is a fixed constant.

[H2] For any (i, j) ∈ Γ,

a) E(|ξ ij | 2 ) < ∞;
b) ξ ij , as the terminal condition at time T of system (2.1), satisfies the following consistency condition: P-a.s.,

max k∈(Γ 1 ) -i ξ kj -g ik (T) ≤ ξ ij ≤ min l∈(Γ 2 ) -j ξ jl + g jl (T) . [H3] a) For all i 1 , i 2 ∈ Γ 1 (resp. j 1 , j 2 ∈ Γ 2 ) and t ∈ [0, T], the process g i 1 i 2 (resp. g j 1 j 2 ), (i) is non-negative and continuous; (ii) For any k ∈ Γ 1 (resp. ∈ Γ 2 ) such that |{i 1 , i 2 , k}| = 3 (resp. |{j 1 , j 2 , }| = 3) it holds: P -a.s., ∀t ≤ T, g i 1 i 2 (t) < g i 1 k (t) + g ki 2 (t) resp. g j 1 j 2 (t) < g j 1 (t) + g j 2 (t) ; (2.3)
iii) By convention we set ∀(i, j) ∈ Γ, g ii = 0 and ḡjj = 0. Note that this convention implies the so-called non loop free property (see (2.39) and (2.40)).

[H4] For any (i, j), (k, ) ∈ Γ, g ik (resp. g j ) is an Itô process, i.e.,

   g ik (t) = g ik (0) + t 0 b ik (s)ds + t 0 σ ik (s)dB s , t ≤ T, with σ ik ∈ H 2,d and b ik , P-measurable and E[sup s≤T |b ik (s)| 2 ] < ∞.   resp.    g j (t) = g j (0) + t 0 b j (s)ds + t 0 σ j (s)dB s , t ≤ T, with σ j ∈ H 2,d and b j , P-measurable and E[sup s≤T |b j (s)| 2 ] < ∞.   .
[H5] Monotonicity:

For any (i, j) ∈ Γ and (k, l) ∈ Γ -ij := Γ -{(i, j)}, the mapping y kl → f ij (t, -→ y , z
) is non-decreasing when the other components (y pq ) (p,q) =(k,l) and z are fixed.

Definition 2.2.1. A family (Y ij , Z ij , K ij,+ , K ij,-) (i,j
)∈Γ is said to be a solution of the system of reflected BSDEs with doubly interconnected barriers associated with

(( f ij ) (i,j)∈Γ , (ξ ij ) (i,j)∈Γ , (g ik ) i,k∈Γ 1 , (g j, ) j, ∈Γ 2 ), if it satisfies the followings: ∀(i, j) ∈ Γ,                Y ij ∈ S 2 , Z ij ∈ H 2,d , K ij,± ∈ A 2 ; Y ij t = ξ ij + T t f ij (s, ω, (Y kl s ) (k,l)∈Γ 1 ×Γ 2 , Z ij s )ds- T t Z ij s dB s + K ij,+ T -K ij,+ t -(K ij,- T -K ij,- t ), ∀t ≤ T; L ij t ≤ Y ij t ≤ U ij t , ∀t ∈ [0, T]; T 0 (Y ij t -L ij t )dK ij,+ t = 0 and T 0 (U ij t -Y ij t )dK ij,- t = 0, (2.4) CHAPTER 2.
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where

L ij t := max k∈(Γ 1 ) -i {Y kj t -g ik (t)} and U ij t := min l∈(Γ 2 ) -j {Y il t + g jl (t)}, ∀t ≤ T.

Existence under the monotonicity condition [H5]

In this part we prove the existence of a solution for the system of reflected BSDEs (2.4) under

Assumptions [H1]-[H5]

. For this we first introduce penalization schemes which we analyse and show properties of the penalizing terms. Then by using the monotonicity assumption of the generator f ij (s, y, z), namely [H5], and comparison of the solutions we prove that the approximating schemes converge and their limits provide solutions of the system of reflected BSDEs with bilateral interconnected obstacles (2.4).

So let us consider the following sequence of BSDEs

: ∀m, n ∈ N, (i, j) ∈ Γ,    Y ij,m,n ∈ S 2 , Z ij,m,n ∈ H 2,d ; Y ij,m,n t = ξ ij + T t f ij,m,n s, (Y kl,m,n s ) (k,l)∈Γ 1 ×Γ 2 , Z ij,m,n s ds - T t Z ij,m,n s dB s , t ≤ T, (2.5) 
where

f ij,m,n t, (y kl ) (k,l)∈Γ 1 ×Γ 2 , z = f ij (t, y, z) + n y ij t -max k∈(Γ 1 ) -i y kj t -g ik (t) - -m y ij t -min l∈(Γ 2 ) -j y il t + g jl (t) + (x + = x ∨ 0 and x -= (-x) ∨ 0, ∀x ∈ R).
Since (2.5) is a standard BSDE without obstacles, thanks to the results by Pardoux-Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF],

the solution exists and is unique. Moreover we have the following comparison result based on a paper by Hu-Peng [START_REF] Hu | On the comparison theorem for multidimensional bsdes[END_REF] related to comparison of solutions of multi-dimensional BSDEs.

Proposition 2.3.1 ([18], pp.143). For any (i, j) ∈ Γ, f ij satisfies [H1] and [H5], ξ ij satisfies [H2] and (g ik ) i,k∈Γ 1 , ( ḡjl ) j,l∈Γ 2 satisfy [H3]-a), then for m, n ≥ 0, we have

P -a.s. Y ij,m+1,n ≤ Y ij,m,n ≤ Y ij,m,n+1 . (2.6)
Next we are interested in discussing the limit of Y ij,m,n in S 2 when n goes to +∞ for fixed m. Some similar results are already discussed in [START_REF] Hamadène | Switching problem and related system of reflected backward sdes[END_REF], [START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF], [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF], [START_REF] Hu | Multi-dimensional bsde with oblique reflection and optimal switching[END_REF], etc. Here we apply the same method as in Hamadène et al. [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF] to prove the convergence of Y ij,m,n in S 2 as n → ∞ and then we have:

Lemma 2.3.2. a) For any (i, j) ∈ Γ 1 × Γ 2 , the sequence (Y ij,m,n , Z ij,m,n ) n≥0 converges, as n tends to infinity, to ( Ȳij,m , Zij,m ) in S 2 × H 2,d ; b) For any (i, j) ∈ Γ 1 × Γ 2
and m ≥ 0, let Kij,m,+ be the following limit in S 2 (which exists, one can see [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF] for more details):

∀t ≤ T, K ij,m,+ t := lim n→∞ t 0 n Y ij,m,n s -max k∈(Γ 1 ) -i Y kj,m,n s -g ik (s) - ds
Then the triples ( Ȳij,m , Zij,m , Kij,m,+ ) (i,j)∈Γ is the unique solution of the following system of RBSDEs with lower interconnected obstacles: For any (i, j) ∈ Γ and t ≤ T,

                   Y ij,m ∈ S 2 , Z ij,m ∈ H 2 , K ij,m,+ ∈ A 2 ; Y ij,m t = ξ ij + T t f ij,m s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s ds - T t Z ij,m s dB s + K ij,m,+ T -K ij,m,+ t ; Y ij,m t ≥ max k∈(Γ 1 ) -i Y kj,m t -g ik (t) ; T 0 Y ij,m t -max k∈(Γ 1 ) -i [Y kj,m t -g ik (t)] dK ij,m,+ t = 0 (2.7)
where f ij,m (s, (y kl 

) (k,l)∈Γ , z) = f ij s, (y kl ) (k,l)∈Γ , z -m y ij -min l∈(Γ 2 ) -j y il + g jl (s) + . c) For any m ≥ 0 and (i, j) ∈ Γ, Y ij,m ≥ Y ij,m+1
(Y ij,m , Z ij,m , K ij,m,+ ) (i,j)∈Γ 1 ×Γ 2 is the
unique solution of the RBSDEs (2.7) can be performed in the same way as in Hamadène and

Zhang [START_REF] Hamadène | Switching problem and related system of reflected backward sdes[END_REF], we then omit the proof.

Next, we introduce another equivalent approximating scheme defined as follows : for m ≥ 0, let (Y ij,m , Z ij,m , K ij,m,+ ) (i,j)∈Γ be the unique solution of the following system of RBSDEs with lower interconnected obstacle:

∀(i, j) ∈ Γ,                    Y ij,m ∈ S 2 , Z ij,m ∈ H 2 , K ij,m,+ ∈ A 2 ; Y ij,m t = ξ ij + T t f ij,m (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s )ds - T t Z ij,m s dB s + K ij,m,+ T -K ij,m,+ t , t ≤ T; Y ij,m t ≥ max k∈(Γ 1 ) -i Y kj,m t -g ik (t) , t ≤ T; T 0 Y ij,m t -max k∈(Γ 1 ) -i (Y kj,m t -g ik (t)) dK ij,m,+ t = 0 (2.
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where

f ij,m (t, -→ y , z) := f ij (t, -→ y , z) -m ∑ l∈(Γ 2 ) -j y ij -y il -g il (t) + .
To proceed we are going to analyse the properties of this scheme (2.8) and its relationship with system (2.7) as well.

First note that for any (i, j) ∈ Γ, the sequence ( f ij,m ) m≥0 is non decreasing w.r.t. m, since for all m ≥ 0,

f ij,m (t, y, z) -f ij,m+1 (t, y, z) = ∑ l∈(Γ 2 ) -j y ij -y il -g il (.) + ≥ 0.
Therefore by applying comparison theorem of systems of reflected BSDEs (see [START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF]) we obtain

∀m ≥ 0, (i, j) ∈ Γ 1 × Γ 2 , Y ij,m ≥ Y ij,m+1 (2.9) 
i.e. (Y ij,m ) m≥0 is a non increasing sequence. Besides the following inequalities hold:

f ij,|Γ 2 |m = f ij (t, -→ y , z) -|Γ 2 |m y ij -min l∈(Γ 2 ) -j [y il + g jl (t)] + ≤ f ij,m ≤ f ij,m
where |Γ 2 | is the cardinal of Γ 2 . Therefore once more by the comparison result of solutions of systems we have

∀m ≥ 0, (i, j) ∈ Γ 1 × Γ 2 , Y ij,|Γ 2 |m ≤ Y ij,m ≤ Y ij,m . (2.10)
Consequently, as the sequences (Y ij,m ) m≥0 and (Y ij,m ) m≥0 are decreasing then if one of them converges then is so the other one to the same limit.

Finally we have the following estimate of the penalization term in (2.8). This estimate plays a crucial role in the proof of existence of the solution of (2.4).

Proposition 2.3.3. For any (i, j) ∈ Γ, ∀t ≤ T, m 2 E ∑ l∈Γ 2 -{j} {(Y ij,m t -Y il,m t -g jl (t)) + } 2 ≤ C (2.11)
where the constant C is independent of m.

Proof. First let us show that there exists a constant C independent of m such that for any (i, j) ∈ Γ,

E sup s≤T |Y ij,m s | 2 ≤ C. (2.12)
Actually taking into account of (2.10), it is enough to show that Ȳij,m satisfies the same estimate.

EXISTENCE UNDER THE MONOTONICITY CONDITION [H5]

But from (2.6) we have

P -a.s. Ỹij ≤ Y ij,m,0 ≤ Y ij,m,n (2.13) 
and the sequences (Y ij,m,0 ) m≥0 , (i, j) ∈ Γ, converge in S 2 respectively to Ỹij (one can see [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF], Prop.3.3, pp.149, for more details) where ( Ỹij , Zij , Kij ) (i,j)∈Γ is the unique solution of the system of reflected BSDEs wih interconnected upper obstacles associated with

( f ij ) (i,j)∈Γ , (ξ ij ) (i,j)∈Γ , ( ḡjl ) j,l∈Γ 2 . Now the claim follows since Ȳij,m S 2 = lim n Y ij,m,n and Ȳij,m+1 ≤ Ȳij,m .
Next in order to prove the boundedness of the penalized part of (2.8), we rely on the link between solutions of systems of reflected BSDEs with lower interconnected obstacles and optimal stochastic switching, which is well studied in the literature (see e.g. [START_REF] François | A note on existence and uniqueness for solutions of multidimensional reflected bsdes[END_REF][START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF][START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF][START_REF] Hamadène | Switching problem and related system of reflected backward sdes[END_REF][START_REF] Hu | Multi-dimensional bsde with oblique reflection and optimal switching[END_REF] etc). For this purpose, we set u := (σ n , δ n ) n≥0 an admissible strategy of switching, i.e., (σ n ) n≥0 is an increasing sequence of stopping times such that

P[σ n < T, ∀n ≥ 0] = 0, δ n is Γ 1 -valued and F σ n -measurable random variable. Next when u is implemented, we set the cumulative switching cost A u t := ∑ n≥1 g δ n-1 δ n (σ n )1 (σ n ≤t) for t < T and A u T := lim t→T A u t .
On the other hand, for t ≤ T, we set a t := δ 0 1 (σ 0 ) (t) + ∑ n≥1 δ n-1 1 (σ n-1 ,σ n ] (t) which stands for the indicator of the mode in which the system under switching is at time t. Note that a is in bijection with the strategy u.

Finally denote by A i t (t ∈ [0, T] and i ∈ Γ) the following set:

A i t := {u = (σ n , δ n ) n≥0 admissible strategy such that σ 0 = t, δ 0 = i and E (A u T ) 2 < ∞}.
Next for j ∈ Γ 2 and a ∈ A i t , let (U aj,m , V aj,m ) be the unique solution of the following BSDE which is not of standard form since A a is only rcll: ∀t ≤ T,

         U aj,m is rcll, E sup t≤T |U aj,m t | 2 < ∞ and V aj,m ∈ H 2,d ; U aj,m t = ξ a T j + T t 1 (s≥σ 0 ) f aj,m s, (Y kl,m s ) (k,l)∈Γ , V aj,m s ds - T t V aj,m s dB s + A a T -A a t .
(2.14) where for any s ≤ T, f aj,m is defined by: 

f aj,m (s, (Y kl,m s ) (k,l)∈Γ , z) = ∑ n≥1   ∑ q∈Γ 1 f qj (s, (Y kl,m s ) (k,l)∈Γ , z) -m ∑ l∈(Γ 2 ) -j (Y qj,m s -Y ql,m s -g jl (t)) + }1 {δ n-1 =q}   1 {σ n-1 ≤s<σ n } (2.
) (k,l)∈Γ , z) = f qj,m (s, (Y kl,m s ) (k,l)∈Γ , z) if at time s, a(s) = q.
Let us notice that the arguments of f aj,m are s, ω and z since (Y kl,m s ) (k,l)∈Γ is already fixed. Then the following representation holds true (see e.g. [START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF])

: ∀t ∈ [0, T], Y ij,m t = ess sup a∈A i t U aj,m t -A a t (2.16)
since, mainly, the switching costs verify the non free loop property (2.39).

Indeed let (Y ij,m , Z ij,m , K ij,m ) (i,j)∈Γ be the unique solution of the following system:

                               Y ij,m ∈ S 2 , Z ij,m ∈ H 2 , K ij,m,+ ∈ A 2 ; Y ij,m t = ξ ij + T t    f ij (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s ) -m ∑ l∈(Γ 2 ) -j (Y ij,m s -Y il,m s -g il (s)) +    ds - T t Z ij,m s dB s + K ij,m,+ T -K ij,m,+ t , t ≤ T; Y ij,m t ≥ max k∈(Γ 1 ) -i Y kj,m t -g ik (t) , t ≤ T; T 0 Y ij,m t -max k∈(Γ 1 ) -i Y kj,m t -g ik (t) dK ij,m,+ t = 0.
(2.17)

Therefore (see e.g. [START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF]) 

: ∀t ∈ [0, T], Y ij,m t = ess sup a∈A i t (U aj,m t -A a t ). (2.18) But (Y ij,m , Z ij,m , K ij,m ) (i,
) (k,l)∈Γ , V aj,m s ) -f al (s, (Y kl,m s ) (k,l)∈Γ , V al,m s ) + b jl (s) ds 2.3. EXISTENCE UNDER THE MONOTONICITY CONDITION [H5] - T t 1 (W a,jl,m s >0) e -θs V aj,m s -V al,m s -σ jl (s) dB s -m T t 1 (W a,jl,m s >0) e -θs    ∑ k∈(Γ 2 ) -j W a,jk,m,+ s -∑ k∈(Γ 2 ) -l W a,lk,m,+ s    ds (2.20)
where L w is the local time of W a,jl,m,+ at 0 and f aj (s, (Y kl,m s (2.15)). Next let us focus on the last term of the right side of (2.20

) (k,l)∈Γ , z) := f aj,0 (s, (Y kl,m s ) (k,l)∈Γ , z) (see
): ∀t ≤ T -m T t 1 (W a,jl,m s >0) e -θs    ∑ k∈(Γ 2 ) -j W a,jk,m,+ s -∑ k∈Γ 2 -{l} W a,lk,m,+ s    ds = m T t 1 (W a,jl,m s >0) e -θs    W a,lj,m,+ s -W a,jl,m,+ s + ∑ k∈Γ 2 -{j,l} (W a,lk,m,+ s -W a,jk,m,+ s )    ds. (2.21) Note that 1 (W a,jl,m s >0) W a,lj,m,+ s = 0 since {W a,jl,m s > 0} ∩ {W a,lj,m s > 0} = ∅ as ḡjl ≥ 0. Next by applying the inequality a + -b + ≤ (a -b) + we have: ∀s ≤ T 1 (W a,jl,m s >0) ∑ k∈Γ 2 -{j,l} W a,lk,m,+ s -W a,jk,m,+ s ≤ 1 (W a,jl,m s >0) ∑ k∈Γ 2 -{j,l} U al,m s -g lk (s) -U aj,m s + g jk (s) + .
Using the fact that g jl (s) + g lk (s) > g jk (s), by Assumption [H3]-(a),(ii), we deduce that 

W a,jl,m s < U aj,m s -U al,m s + g lk (s) -g jk (s) and then 0 ≤ 1 (W a,jl,m s >0) ∑ k∈Γ 2 -{j,l} (U al,m s -g lk (s) -U aj,m s + g jk (s)) + ≤ ∑ k∈Γ 2 -{j,l} 1 (U aj,m s -U al,m s +g lk (s)-g jk (s)>0) (U al,m s -g lk (s) -U aj,m s + g jk (s)) + = 0. Now going back to (2.21) we obtain: ∀t ≤ T, -m T t 1 (W a,jl,m s >0) e -θs    ∑ k∈(Γ 2 ) -j W a,jk,m,+ s -∑ k∈(Γ 2 ) -l W a,lk,m,+ s    ds ≤ -m T t 1 (W a,jl,m s >0) e -
) (k,l)∈Γ , V aj,m s ) -f al (s, (Y kl,m s ) (k,l)∈Γ , V al,m s ) + b jl (s) ds.
( 

) (k,l)∈Γ , V aj,m s ) -f al (s, (Y kl,m s ) (k,l)∈Γ , V al,m s ) + b jl (s)|ds F t ≤ E C 1 + sup s≤T |η s | + ∑ (k,l)∈Γ sup s≤T |Y kl,m s | + sup s≤T |b jl (s)| T t e -m(s-t) ds F t = 1 m (1 -e -m(T-t) )E C 1 + sup s≤T |η s | + ∑ (k,l)∈Γ sup s≤T |Y kl,m s | + sup s≤T |b jl (s)| F t . Now by (2.19), we get ∀t ≤ T, m(Y ij,m t -Y il,m t -g jl (t)) + ≤ CE 1 + sup s≤T |η s | + ∑ (k,l)∈Γ sup s≤T |Y kl,m s | + sup s≤T |b jl (s)| F t
and then squaring, using conditional Jensen's inequality and finally taking expectation to ob-

tain: ∀t ≤ T, m 2 E (Y ij,m t -Y il,m t -g jl (t)) + 2 ≤ CE 1 + sup s≤T |η s | 2 + ∑ (k,l)∈Γ sup s≤T |Y kl,m s | 2 + sup s≤T |b jl (s)| 2
which implies the desired result since the processes η and b jl are uniformly square integrable and by estimate (2.12).

Next we are going to show that K ij,m,+ is absolutely continuous w. Moreover there exists a constant C independent of m such that

E T 0 |α ij,m s | 2 ds ≤ C.
Proof. Let us consider the following system of BSDEs: for any (i, j) ∈ Γ,

           Ỹij,m,n ∈ S 2 , Zij,m,n ∈ H 2,d ; Ỹij,m,n s = ξ ij + T t f ij (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s ) -m ∑ l =j (Y ij,m s -Y il,m s -g jl (s)) + + n ∑ k∈(Γ 1 ) -i ( Ỹij,m,n s - Ỹkj,m,n s + g ik (s)) -ds - T t Zij,m,n s dB s , t ≤ T.
(2.24)

For (i, j) ∈ Γ, m ≥ 0 and s ≤ T let us set:

Φ ij,m (s) = f ij (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s ) -m ∑ l =j (Y ij,m s -Y il,m s -g jl (s)) + .
First note that by [H1], (2.11) and (2.12), there exists a constant C independent of m such that

E T 0 |Φ ij,m (s)| 2 ds ≤ C. (2.25)
On the other hand the sequences Ỹij,m,n , Zij,m,n , n

. 0 ∑ k∈(Γ 1 ) -i ( Ỹij,m,n s - Ỹkj,m,n s + g ik (s)) -}ds n≥0 ,
(i, j) ∈ Γ, converge when n goes to +∞ in S 2 × H 2,d × S 2 to ( Ỹij,m , Zij,m , Kij,m,+ ), (i, j) ∈ Γ, respectively. Moreover ( Ỹij,m , Zij,m , Kij,m,+ ) (i,j)∈Γ (see e.g. [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF] for more details) is solution of the following system: ∀t ≤ T,

             Ỹij,m t = ξ ij + T t f ij,m (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s )ds - T t Zij,m s dB s + Kij,m,+ T - Kij,m,+ t ; Ỹij,m t ≥ max k∈(Γ 1 ) -i Ỹkj,m t -g ik (t) ; T 0 Ỹij,m t -max k∈(Γ 1 ) -i ( Ỹkj,m t -g ik (t)) d Kij,m,+ t = 0. (2.26)
As the solution of this latter is unique and by

(2.8), (Y ij,m , Z ij,m , K ij,m,+ ) (i,j)∈Γ is also a solution then, Ỹij,m = Y ij,m , Zij,m = Z ij,m
and Kij,m,+ = K ij,m,+ for any (i, j) ∈ Γ.

Next for s ≤ T, i, k ∈ Γ 1 and j ∈ Γ 

(X - t ) 2 + T t 1 {X s <0} d X s = (X - T ) 2 + 2 T t X - s dX s .
Therefore for any t ≤ T, (ρ ikj,m,n t

) 2 + T t 1 { Ỹij,m,n s - Ỹkj,m,n s +g ik (s)<0} Zij,m,n s - Zkj,m,n s + σ ik (s) 2 ds = -2 T t 1 { Ỹij,m,n s - Ỹkj,m,n s +g ik (s)<0} ρ ikj,m,n s Φ ij,m (s) -Φ kj,m (s) -b ik (s) ds + 2 T t 1 { Ỹij,m,n s - Ỹkj,m,n s +g ik (s)<0} ρ ikj,m,n s Z ij,m,n s -Z kj,m,n s + σ ik (s) dB s -2n T t 1 { Ỹij,m,n s - Ỹkj,m,n s +g ik (s)<0} ρ ikj,m,n s    ∑ l∈(Γ 1 ) -i ρ ilj,m,n s -∑ l∈(Γ 1 ) -k ρ klj,m,n s    ds.
(2.27)

We now focus on the last term of (2.27).
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T t 1 { Ỹij,m,n s - Ỹkj,m,n s +g ik (s)<0} ρ ikj,m,n s    ∑ l∈(Γ 1 ) -i ρ ilj,m,n s -∑ l∈(Γ 1 ) -k ρ klj,m,n s    ds = -2n T t 1 { Ỹij,
+ g ik (s) < 0} ∩ { Ỹkj,m,n s - Ỹij,m,n s + g ki (s) < 0} = ∅. Next by applying the inequality a --b -≤ (a -b) -we have ρ ikj,m,n s ∑ l∈Γ 1 -{i,k} ρ klj,m,n s -ρ ilj,m,n s = ρ ikj,m,n s ∑ l∈Γ 1 -{i,k} Ỹkj,m,n s - Ỹlj,m,n s + g kl (s)) --( Ỹij,m,n s - Ỹlj,m,n s + g il (s)) - ≤ ρ ikj,m,n s ∑ l∈Γ 1 -{i,k} Ỹkj,m,n s - Ỹij,m,n s + g kl (s) -g il (s) - = 1 { Ỹij,m,n s - Ỹkj,m,n s +g ik (s)<0} ρ ikj,m,n s ∑ l∈Γ 1 -{i,k} Ỹkj,m,n s - Ỹij,m,n s + g kl (s) -g il (s) - = 0 since by Assumption [H3]-(a),(ii), for any l ∈ Γ 1 -{i, k}, 1 { Ỹij,
) 2 ds = 2nE T t (ρ ikj,m,n s ) 2 ds ≤ 2E T t ρ ikj,m,n s |Φ ij,m (s) -Φ kj,m (s) -b ik (s)|ds ≤ nE T t (ρ ikj,m,n s ) 2 ds + 1 n E T t |Φ ij,m (s) -Φ kj,m (s) -b ik (s)| 2 ds (2.29)
which implies that

n 2 E T t (ρ ikj,m,n s ) 2 ds ≤ CE T t |Φ ij,m (s)| 2 + |Φ kj,m (s)| 2 + |b ik (s)| 2 ds . (2.30)
Then by (2.25) and Assumption [H4] on b ik we obtain:

n 2 E T 0 (ρ ikj,m,n s ) 2 ds ≤ C and n 2 E T 0 ( ∑ k =i ρ ikj,m,n s ) 2 ds ≤ C
for some constant C independent of n, m. It implies that for any (i, j) ∈ Γ, the sequence ((α ij,m,n s 1 . Thus one can extract a subsequence (still denoted by n) such that for any (i, j) ∈ Γ, ((α ij,m,n s ) s≤T ) n≥0 converges weakly in H 2,1 to some P-measurable process (α ij,m t ) t≤T which moreover satisfy: For any (i, j) ∈ Γ and m ≥ 0,

:= n ∑ k∈Γ 1 -{i} ρ ikj,m,n s ) s≤T ) n≥0 is bounded in H 2,
E T 0 (α ij,m s ) 2 ds ≤ C.
(2.31)

Additionally for any (i, j) ∈ Γ and any stopping time τ it holds:

K ij,m,+ τ = τ 0 α ij,m (s)ds. (2.32)
Actually this is due to the fact that the sequence ( 

τ 0 α ij,m,n s ds) n≥0 is also weakly convergent in L 2 R (Ω, F T ,
( t 0 ( s 0 α ij,m,n r dr) ηs dB s ) t≤T is a martingale due to E[{ T 0 ( s 0 α ij,m,n r dr) 2 | ηs | 2 ds} 1 2 ] < ∞. As the sequence ((α ij,m,n s ) s≤T ) n≥0 converges weakly in H 2,1 to α ij,m then E τ 0 E[ζ|F s ]α ij,m,n s ds -→ n→∞ E τ 0 E[ζ|F s ]α ij,m s ds = E ζ τ 0 α ij,m s ds
which is the claim. Proposition 2.3.5. There exist continuous adapted processes (Y ij ) (i,j)∈Γ and P-measurable processes (Z ij ) (i,j)∈Γ , such that for (i,

j) ∈ Γ 1 × Γ 2 : i) (Y ij,m ) m≥0 uniformly converges to Y ij in S 2 . ii) (Z ij,m ) m≥0 converges to Z ij in H 2,d .
Proof. First let us recall the process (Y ij,m ) (i,j)∈Γ in (2.8). Next fix (i, j) ∈ Γ and let Y ij be the optional process such that

P-a.s, ∀t ≤ T, Y ij t = lim m→∞ Y ij,m t
which exists since the sequence (Y ij,m ) m≥0 is decreasing (see (2.9)). On the other hand for any m ≥ 0 we have:

∀t ≤ T, Y ij,m t = ξ ij + T t f ij,m (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s )ds + T t α ij,m (s)ds - T t Z ij,m s dB s .
Then using Itô formula with (Y ij,m ) 2 and taking into account of (2.25)-(2.31), one deduces the existence of a constant C independent of m such that

E T 0 Z ij,m s 2 ds ≤ C. (2.33)
Next, let {m} be a sequence such that:

i) f ij (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s )) s≤T m≥0 converges weakly in H 2,1 to Φ ij ; ii) m ∑ l∈Γ 2 -{j} Y ij,m s -Y il,m s -ḡjl (s)) + s≤T m≥0 converges weakly to θ ij is H 2,1 ; iii) α ij,m m≥0 converges weakly to α ij is H 2,1 ; iv) Z ij,m m≥0 converges weakly to Z ij is H 2,d
. This sequence exists thanks to Assumption [H1] on f ij and (2.12), (2.11), (2.31) and finally (2.33).

Next let τ be a stopping time. Then as in the proof of Proposition 2.3.4, the following weak convergences in L 2 (dP), as m → ∞, hold true:

a) τ 0 f ij (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s )ds τ 0 Φ ij (s)ds, 58 2.3. EXISTENCE UNDER THE MONOTONICITY CONDITION [H5] b) τ 0 m ∑ l∈Γ 2 -{j} (Y ij,m s -Y il,m s -ḡjl (s)) + ds τ 0 θ ij (s)ds, c) τ 0 α ij,m (s)ds τ 0 α ij (s)ds, d) τ 0 Z ij,m s dB s τ 0 Z ij s dB s .
Therefore for any stopping time τ, we have:

Y ij τ = Y ij 0 - τ 0 Φ ij (s)ds + τ 0 θ ij (s)ds - τ 0 α ij (s)ds - τ 0 Z ij s dB s .
As Y ij is an optional process and this equality holds for any stopping time then the processes of the left and right-hand side are indistinguishable which means that Pa.s., ∀t ≤ T,

Y ij t = Y ij 0 - t 0 Φ ij (s)ds + t 0 θ ij (s)ds - t 0 α ij (s)ds - t 0 Z ij s dB s (2.34)
and the process Y ij is continuous. Thus by Dini's Theorem the convergence of the sequence of

(Y ij,m ) m≥0 to Y ij holds in S 2 i.e. lim m→∞ E sup t≤T |Y ij,m t -Y ij t | 2 = 0.
Next once more by the use of Itô's formula with (Y ij,m -Y ij,n ) 2 and taking into account of (2.25)-(2.31) one deduces that (Z ij,m ) m≥0 is a Cauchy sequence in H 2,d and then (Z ij,m ) m≥0 converges strongly to Z ij is H 2,d .

To proceed let us define for any (i,

j) ∈ Γ, t ≤ T, K ij,- t = t 0 θ ij s ds and K ij,+ t = t 0 α ij s ds.
We then give the main result of this section:

Theorem 2.3.6. The process (Y ij , Z ij , K ij,+ , K ij,-) (i,j)∈Γ is a solution of the system of reflected BSDEs (2.4).
Proof. First note that by (2.34) and since

Y ij T = ξ ij then for any (i, j) ∈ Γ, Y ij τ = ξ ij + T τ Φ ij (s)ds - T τ θ ij (s)ds + T τ α ij (s)ds - T τ Z ij s dB s
Now recall the definition of Φ ij and since the convergences of (Y ij,m ) m≥0 and (Z ij,m ) m≥0 hold in strong sense then

Φ ij (s) = f ij s, (Y kl s ) (k,l)∈Γ , Z ij s
, ds ⊗ dP BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS which implies that for any (i, j) ∈ Γ, P-a.s. for any t ≤ T,

Y ij t = ξ ij + T t f ij s, (Y kl s ) (k,l)∈Γ , Z ij s ds + (K ij,+ T -K ij,+ t ) -(K ij,- T -K ij,- t ) - T t Z ij s dB s .
Next from (2.8) we have

Y ij,m t = ξ ij + T t f ij,m (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s )ds - T t Z ij,m s dB s + K ij,m,+ T -K ij,m,+ t
which implies in taking expectation

mE T 0 ∑ ∈Γ-{i} (Y ij,m s -Y i ,m s -ḡj (s)) + = E -Y ij,m 0 
+ ξ ij + T 0 f ij (s, (Y kl,m s ) (k,l)∈Γ , Z ij,m s )ds + K ij,m,+ T . (2.35)
Then by Assumption [H1], (2.12),(2.31) and (2.32), there exists a constant C such that

E   T 0 ∑ ∈Γ 2 -{j} (Y ij,m s -Y i ,m s -ḡj (s)) +   ≤ Cm -1 (2.36) 
which implies that, in taking the limit as m → ∞, for any (i, 

(Y i s + ḡj (s))
.

Next E T 0 Y ij s -min ∈Γ 2 -{j} (Y i s + ḡj (s)) dK ij,- s = -E T 0 Y ij s -min ∈Γ 2 -{j} (Y i s + ḡj (s)) - α ij s ds (2.37) = lim m→∞ E T 0 Y ij,m s -min ∈Γ 2 -{j} (Y i ,m s + ḡj (s)) - α ij,m s ds = 0 since (α ij,m ) m is weakly convergent to α ij and (Y ij,m -min ∈Γ 2 -{j} (Y i ,m + ḡj )) m converges strongly in S 2 to Y ij -min ∈Γ 2 -{j} (Y i + ḡj )) -. As T 0 (Y ij s -min ∈Γ 2 -{j} (Y i s + ḡj (s)))dK ij,- s ≤ 0 then P -a.s., T 0 Y ij s -min ∈Γ 2 -{j} (Y i s + ḡj (s)) dK ij,- s = 0. 60 
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In the same way one can show that

P -a.s., T 0 Y ij s -max k∈Γ 1 -{i} (Y kj s -g kj (s)) dK ij,+ s = 0.
Thus the processes (Y ij , Z ij , K ij,+ , K ij,-) (i,j)∈Γ is a solution of the system of reflected BSDEs (2.4).

Remark 2.3.7.

(i) The constant C such that for any (i, j) ∈ Γ,

E T 0 (|α ij s | 2 + |θ ij s | 2 )ds ≤ C depends only on ( f ij ) (i,j)∈Γ , (ξ ij ) (i,j)∈Γ , (g ik ) i,k∈Γ 1 and ( ḡjl ) j,l∈Γ 2 .
(ii) In our construction of the solution of (2.4) through the penalization scheme (2.8), we have penalized the upper barriers. Had we taken the dual scheme of (2.8) where, instead, the lower barriers are penalized, we would have obtained another solution ( Yij , Žij , Ǩij,± ) (i,j)∈Γ of system (2.4). Additionally we have Yij ≤ Y ij for any (i, j) ∈ Γ.

(iii) The solutions of systems (2.4) which we have constructed are comparable. Actually let us consider ( f 1,ij ) (i,j)∈Γ , (ξ 1,ij ) (i,j)∈Γ , (g 1 ik ) i,k∈Γ 1 and ( ḡ1 jl ) j,l∈Γ 2 items which satisfy the same assumptions [H1]-[H5] receptively as ( f ij ) (i,j)∈Γ , (ξ ij ) (i,j)∈Γ , (g ik ) i,k∈Γ 1 and ( ḡjl ) j,l∈Γ 1 . Let us denote by (Y 1,ij , Z 1,ij , K 1,ij,+ , K 1,ij,-) (i,j)∈Γ the solution of system (2.4) associated with {( f 1,ij ) (i,j)∈Γ , (ξ 1,ij ) (i,j)∈Γ , (g 1 ik ) i,k∈Γ 1 , ( ḡ1 jl ) j,l∈Γ 2 } (which exists by Theorem 2.3.6). Assume that for any:

a) (i, j) ∈ Γ, f ij ≤ f 1,ij and ξ ij ≤ ξ 1,ij ; b) i, k ∈ Γ 1 , g ik ≥ g 1 ik ; c) j, l ∈ Γ 2 , ḡik ≤ ḡ1 ik .
Then we have: For any (i, j) ∈ Γ,

P -a.s., Y ij ≤ Y 1,ij .
This is actually a direct consequence of the constructions of Y ij and Y 1,ij since for any (i, j) ∈ Γ,

Y ij = lim m→∞ Y ij,m and Y 1,ij = lim m→∞ Y 1,ij,m
where (Y 1,ij,m ) (i,j)∈Γ are defined in the same way as (Y ij,m ) (i,j)∈Γ in (2.7) but with the items {( f 1,ij ) (i,j)∈Γ , (ξ 1,ij ) (i,j)∈Γ , But by comparison ( [START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF], pp.190 for more details) we have for any (i, j) ∈ Γ, Y ij,m ≤ Y 1,ij,m which implies the result in taking the limit as m → ∞.

Existence and uniqueness without monotonicity

In this section, we focus on the second main result of this paper. Actually we are going to

show that system of reflected BSDEs with inter-connected obstacles (2.4) has a unique solution without assuming the monotonicity Assumption [H5] on the functions ( f ij ) (i,j)∈Γ . Meanwhile in this section we shall need the following assumptions:

[H3] b) The processes (g ik ) i,k∈Γ 1 and (g j, ) j, ∈Γ 2 verify the non free loop property, that is to say, if (i k , j k ) k=1,2,...,N is a loop in Γ, i.e., (i N , j N ) = (i 1 , j 1 ), card {(i k , j k ) k=1,2,...,N } = N -1 and for any k = 1, 2, ..., N -1, either i k+1 = i k (resp. j k+1 = j k ), we have:

P -a.s., ∀t ≤ T, N-1 ∑ k=1 G i k j k (t) = 0 (2.38) where ∀k = 1, ...N -1, G i k j k (t) = -g i k i k+1 (t)1 i k =i k+1 + g j k j k (t)1 j k =j k+1 .
This assumption makes sure that any instantaneous loop in the switching mode set Γ 1 × Γ 2 , of the players (or decision makers), is not free i.e. one of the controllers needs to pay something when the system is switched and comes back instantaneously to the initial mode. Note that (2.38) also implies: For any (i 1 , ..., i N ) ∈ (Γ 1 ) N such that i N = i 1 and card{i 1 , i 2 , ..., i N } = N -1,

P N-1 ∑ k=1 g i k i k+1 (t) = 0 = 0, ∀t ≤ T, (2.39) 
and for any (j 1 , ..., j N ) ∈ (Γ 2 ) N such that j N = j 1 and card{j 1 , j 2 , ..., j N } = N -1,

P N-1 ∑ k=1 g j k j k+1 (t) = 0 = 0, ∀t ≤ T. (2.40) 
[H6] For any (i, j) ∈ Γ, the function f ij does not depend on z.

We highlight that in this section, the generator ( f ij ) (i,j)∈Γ is not monotonic any more, i.e. it does not verify [H5].

First let us temporarily assume that for any (i, j) ∈ Γ, the function f ij does not depend on ( y, z). Therefore by Theorem 2.3.6, there is a solution (Y ij , Z ij , K ij,± ) (i,j)∈Γ of the following 62 2.4. EXISTENCE AND UNIQUENESS WITHOUT MONOTONICITY system: ∀(i, j) ∈ Γ,

               Y ij ∈ S 2 , Z ij ∈ H 2,d , K ij,+ ∈ A 2 , K ij,-∈ A 2 ; Y ij t = ξ ij + T t f ij (s)ds - T t Z ij s dB s + K ij,+ T -K ij,+ t -(K ij,- T -K ij,- t ), ∀t ≤ T; L ij t ≤ Y ij t ≤ U ij t , ∀t ∈ [0, T]; T 0 Y ij t -L ij t dK ij,+ t = 0 and T 0 U ij t -Y ij t dK ij,- t = 0. (2.41)
where

L ij t := max k∈(Γ 1 ) -i Y kj t -g ik (t) and U ij t := min l∈(Γ 2 ) -j Y il t + g jl (t) , t ≤ T.
As pointed out previously we are going to represent the process Y ij as the value function of a zero-sum switching game which we describe briefly now.

Let us consider a system which has

Λ = |Γ 1 × Γ 2 | working modes indexed by Γ 1 × Γ 2 .
It means that a working mode is a pair (i, j) such that i ∈ Γ 1 and j ∈ Γ 2 . This system is controlled by two agents or players P1 and P2 by choosing their own appropriate working mode of the system and switch to another one when they make the decision to do so (e.g. according to profitability, etc.). The player P1 (resp. P2) chooses her modes in Γ 1 (resp. Γ 2 ). The features of the system is that when it works in mode (i, j) from time t to t + dt, it comes with a payoff which amounts to f ij (t)dt and which is a profit (resp. cost) for P1 (resp. P2). On the other hand when the player P1 (resp. P2) makes the decision at time t to switch from mode i (resp. j) to k ∈ Γ 1 -{i} (resp. l ∈ Γ 2 -{j}), she pays an amount which equals to g ik (t) (resp. ḡjl (t)). Therefore a switching control for P1 (resp. P2), denoted by u (resp. v) is a sequence of pairs u := (σ n , δ n ) n≥0 (resp. v := (τ n , ζ n ) n≥0 ) such that: ∀n ≥ 0, i) σ n is an F-stopping time such that σ n ≤ σ n+1 and δ n is a r.v. with values in Γ 1 and F σ n - measurable (resp. τ n is an F-stopping time such that τ n ≤ τ n+1 and ζ n is a r.v. with values in Γ 2 and F τ n -measurable) ;

ii) P[σ n < T, ∀n ≥ 0] = 0 (resp. P[τ n < T, ∀n ≥ 0] = 0) ; iii) Let us define the process A u (resp. B v ) by

A u t := ∑ n≥1 g δ n-1 δ n (σ n )1 (σ n ≤t) for t < T and A u T := lim t→T A u t (resp. B v t := ∑ n≥1 g ζ n-1 ζ n (τ n )1 (ζ n ≤t) for t < T and B v T := lim t→T B v t ) then E[|A u T | 2 ] < ∞ ( resp. E[|B v T | 2 ] < ∞). A control which satisfies the properties i)-iii) is called admissible. Next let A i t (resp. B j t ) be the set of admissible controls u := (σ n , δ n ) n≥0 (resp. v := (τ n , ζ n ) n≥0 ) for P1 (resp. P2) satisfying σ 0 = t, δ 0 = i (resp. τ 0 = t, ξ 0 = j).
To proceed let (u, v) ∈ A i t × B j t be a pair of switching controls of the players. We define BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS the coupling of (u, v) by γ(u, v) = (ρ n , γ n ) n≥0 as the modes under which the system is run along with time after t when P1 (resp. P2) implements u (resp. v). In our definition we give the priority of switching to player P1 in the case when both players make the decision to switch at the same time.

Precisely let:

i) r 0 = s 0 = 1, r 1 = s 1 = 1 and for n ≥ 2, r n = r n-1 + 1 (σ r n-1 ≤τ s n-1 ) , s n = s n-1 + 1 (τ s n-1 <σ r n-1 ) ; ii) ∀n ≥ 0, ρ n = σ r n ∧ τ s n ; iii) (γ n := (γ (1) 
n , γ (2) 
n )) n≥0 is a sequence of Γ-valued random variables defined as follows: γ 0 = (δ 0 , ζ 0 ) and for all n ≥ 1,

γ n =      (δ r n , γ (2) n-1 ) if σ r n ≤ τ s n and σ r n < T; (γ (1) n-1 , ζ s n ) if τ s n < σ r n ; γ n-1 if τ s n = σ r n = T.
We associate with γ(u, v) t the following process (π s ) s∈[t,T] which indicates in which pair of modes the system is along with time: ∀s ∈ [t, T],

π s = γ 0 1 [ρ 0 ,ρ 1 ] (s) + ∑ n≥1 γ n 1 (ρ n ,ρ n+1 ] (s)
where (ρ n , ρ n+1 ] = ∅ on {ρ n = ρ n+1 }.

Finally when the player P1 (resp. P2) implements the control u ∈ A i t (resp. v ∈ B j t ), the payoff in-between, which is a reward for P1 and a cost for P2, is given by:

J ij t (γ(u, v)) = E ξ π T + T t f π (s)ds -∑ n≥1 g γ (1) n-1 γ (1) n (ρ n ) -g γ (2) n-1 γ (2) n (ρ n ) F t (2.42)
where

ξ π T = ξ ij if at time T, π T = (i, j) and f π (s) = f ij if at time s, π(s) = (i, j), for any s ≤ T.
The following result is stated in [START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF]: 

Y ij t = ess sup u∈A i t ess inf v∈B j t J ij t (γ(u, v)) = ess inf v∈B j t
ess sup

u∈A i t J ij t (γ(u, v)).
As a by-product of this result we have the following one related to uniqueness of the solu- 

(Y ij 1 , Z ij 1 , K ij,± 1 
) (i,j)∈Γ be another solution of system (2.41), then for any (i, j) ∈ Γ,

Y ij = Y ij 1 , Z ij = Z ij 1 and K ij,+ 1 -K ij,- 1 
= K ij,+ -K ij,-.
Finally thanks to Theorems 2. 

(Y ij , Z ij , K ij,+ , K ij,-) (i,j
)∈Γ , i.e., for any (i, j) ∈ Γ and t ≤ T, 

               Y ij ∈ S 2 , Z ij ∈ H 2,d , K ij,± ∈ A 2 ; Y ij t = ξ ij + T t f ij s, ω, (Y kl s ) (k,l)∈Γ 1 ×Γ 2 ds - T t Z ij s dB s + K ij,+ T -K ij,+ t -(K ij,- T -K ij,- t ) ; L ij t ≤ Y ij t ≤ U ij t ; T 0 Y ij t -L ij t dK ij,+ t = 0 and T 0 U ij t -Y ij t dK ij,- t = 0, ( 2 
(Y ij , Z ij , K ij,+ , K ij,-) (i,j)∈Γ 1 ×Γ 2 is
another solution of (2.43), then for any (i, j) ∈ Γ,

Y ij = Y ij , Z ij = Z ij , K ij,+ -K ij,-= K ij,+ -K ij,-.
Proof. First let us define the following operator:

Φ : H 2,Λ → H 2,Λ φ := (φ ij ) (i,j)∈Γ → Φ( φ) := Y φ,ij (i,j)∈Γ (2.44)
where (Y φ,ij , Z φ,ij , K φ,ij,± ) (i,j)∈Γ is the solution of the following system (this solution exists and is unique by Theorem 2.3.6 and Corollary 2.4.2): ∀(i, j) ∈ Γ,

               Y φ,ij ∈ S 2 , Z φ,ij ∈ H 2,d , K φ,ij,± ∈ A 2 ; Y φ,ij t = ξ ij + T t f ij (s, φ(s))ds - T t Z φ,ij s dB s + K φ,ij,+ T -K φ,ij,+ t -(K φ,ij,- T -K φ,ij,- t ), ∀t ≤ T; L φ,ij t ≤ Y φ,ij t ≤ U φ,ij t , ∀t ∈ [0, T]; T 0 Y φ,ij t -L φ,ij t dK φ,ij,+ t = 0 and T 0 U φ,ij t -Y φ,ij t dK φ,ij,- t = 0 (2.45)
where L φ,ij and U φ,ij are defined as previously but with the processes (Y φ,ij ) (i,j)∈Γ . Let ψ := (ψ ij ) (i,j)∈Γ be another element of H 2,Λ and let (Y ψ,ij , Z ψ,ij , K ψ,ij,± ) (i,j)∈Γ be defined as in (2.45) but where φ is replaced with ψ.

Next let us introduce the following norm on H 2,Λ , denoted by . 2,α , and defined by

y 2,α := E T 0 e αt |y t | 2 dt 1 2 .
The space (H 2,Λ , . 

u∈A i t ess inf v∈B j t J φ,ij t (γ(u, v)) = ess inf v∈B j t
ess sup

u∈A i t J φ,ij t (γ(u, v))
where

J φ,ij t (γ(u, v)) = E ξ π T + T t f π (s, φ(s))ds -∑ n≥1 (g γ (1) n-1 γ (1) n (ρ n ) -g γ (2) n-1 γ (2) n (ρ n )) F t . (2.46)
Next let ψ := (ψ ij ) (i,j)∈Γ be another element of H 

u∈A i t J ψ,ij t (γ(u, v)) where J ψ,ij t is defined similarly as J φ,ij t but with ψ instead of φ. Therefore ∀t ≤ T, |Y ψ,ij t -Y φ,ij t | ≤ ess sup u∈A i t ess sup v∈B j t J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v)) . (2.47)
First, by the martingale representation theorem, there exists a predictable process ∆Z ψ,φ,π ∈ H 2,d (π depends on (i, j)) which is adapted with respect to (F t ) t≤T such that: ∀t ≤ T,

J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v)) = E T t ( f π (s, ψ(s)) -f π (s, φ(s)))ds F t = E T 0 ( f π (s, ψ(s)) -f π (s, φ(s)))ds F t - t 0 ( f π (s, ψ(s)) -f π (s, φ(s)))ds = C ψ,φ,π + t 0 ∆Z ψ,φ,π s dB s - t 0 ( f π (s, ψ(s)) -f π (s, φ(s)))ds. (2.48)
where

C ψ,φ,π := E T 0 ( f π (s, ψ(s)) -f π (s, φ(s)))ds . Thus ∀t ≤ T, d(J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v))) = -( f π (t, ψ(t)) -f π (t, φ(t)))dt + ∆Z ψ,φ,π t dB t . (2.49)
Next by applying Itô's formula, one has: ∀t ≤ T,

d e αt J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v)) 2 = αe αt J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v)) 2 dt + 2 J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v)) -f π (t, ψ(t)) -f π (t, φ(t)) dt + ∆Z ψ,φ,π t dB t .
(2.50)

Now let t ∈ [0, T] fixed. By integrating in (2.50) from t to T we obtain:

e αt J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v)) 2 + T t e αs |∆Z ψ,φ,π s | 2 ds = -α T t e αs J ψ,ij s (γ(u, v)) -J φ,ij s (γ(u, v)) 2 d + 2 T t e αs J ψ,ij s (γ(u, v)) -J φ,ij s (γ(u, v)) f π (s, ψ(s)) -f π (s, φ(s)) ds -2 T t e αs J ψ,ij s (γ(u, v)) -J φ,ij s (γ(u, v)) ∆Z ψ,φ,π s dB s . (2.51) 
Now let us apply the inequality 2ab ≤ αa 2 + α -1 b 2 , ∀α > 0, a, b ∈ R, then (2.51) yields

e αt J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v)) 2 + T t e αs |∆Z ψ,φ,π s | 2 ds ≤ 1 α T t e αs f π (s, ψ(s)) -f π (s, φ(s)) 2 ds -2 T t e αs J ψ,ij s (γ(u, v)) -J φ,ij s (γ(u, v)) ∆Z ψ,φ,π s dB s .
Then by Lipschitz condition of f we have

e αt J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v)) 2 ≤ C 2 ( f ) α T t e αs | ψ(s) -φ(s)| 2 ds -2 T t e αs J ψ,ij s (γ(u, v)) -J φ,ij s (γ(u, v)) ∆Z ψ,φ,π s dB s (2.52)
where

C( f ) = ∑ (i,j)∈Γ C ij with C ij is the Lipschitz constant w.r.t. f ij . Next ( s t e αr (J ψ,ij r (γ(u, v)) -J φ,ij r (γ(u, v)))∆Z ψ,φ,π r dB r ) s∈[t,T
] is a martingale. Then by taking the conditional expectation on both sides of (2.52) we obtain

E e αs J ψ,ij s (γ(u, v)) -J φ,ij s (γ(u, v)) 2 F t ≤ C 2 ( f ) α E T s e αr | ψ(r) -φ(r)| 2 dr F t .
(2.53) BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS Take now the limit as s → t in (2.53) yields

e αt J ψ,ij t (γ(u, v)) -J φ,ij t (γ(u, v)) 2 ≤ C 2 ( f ) α E T t e αr | ψ(r) -φ(r)| 2 dr F t , ∀t ≤ T. (2.54)
Let us recall now (2.47), then (2.54) implies that: ∀t ≤ T,

e αt Y ψ,ij t -Y φ,ij t 2 ≤ C 2 ( f ) α E T t e αs | ψ(s) -φ(s)| 2 ds F t (2.55)
Next take the expectation in both hand-sides of (2.56) (and replace t with 0 in the right one) to obtain:

E e αt Y ψ,ij t -Y φ,ij t 2 ≤ C 2 ( f ) α E T 0 e αs | ψ(s) -φ(s)| 2 ds . (2.56)
Finally by integrating (2.55) from 0 to T and summing over (i, j) ∈ Γ we get

T 0 ∑ (i,j)∈Γ e αt Y ψ,ij t -Y φ,ij t 2 dt ≤ C 2 ( f )TΛ α E T 0 e αs | ψ(s) -φ(s)| 2 ds (2.57) Now if we take α > C 2 ( f )TΛ then C 2 ( f )TΛ α < 1.
This implies that Φ is a contraction from H 2,Λ into itself, and then it has a fixed point which is the unique solution of (2.43). The proof is complete.

As a by-product of the above result we also have:

Corollary 2.4.4. The Λ-tuple of processes (Y ij ) (i,j)∈Γ is the unique fixed point of the mapping Φ on H 2,Λ .

Remark 2.4.5. Assume that for any (i, j) ∈ Γ, the function f ij does not depend on z and verify the monotonicity Assumption [H5], then the solution constructed in Section 3, Theorem 2.3.6, is unique.

Connection with systems of PDEs with bilateral interconnected obstacles

It is well-known that BSDEs, through the Feynman-Kac representation of solutions in the Markovian framework of randomness, provide solutions for partial differential equations. Similarly, in this section we are going to show that, in this very Markovian framework, the component (Y ij ) ij∈Γ of the solution of system (2.43), has a Feynman-Kac representation which, besides,

CONNECTION WITH SYSTEMS OF PDES WITH BILATERAL INTERCONNECTED OBSTACLES

provides a unique solution in viscosity sense of the following system of PDEs with bilateral interconnected obstacles: For any (i, j) ∈ Γ,

             min v ij (t, x) -max k∈(Γ 1 ) -i [v kj (t, x) -g ik (t, x)]; max v ij (t, x) -min l∈(Γ 2 ) -j [v il (t, x) + g jl (t, x)]; -∂ t v ij (t, x) -L X (v ij )(t, x) -f ij (t, x, (v kl (t, x)) (k,l)∈Γ ) = 0; v ij (T, x) = h ij (x).
(2.58)

So first let us fix the framework:

i) A function : (t, x) ∈ [0, T] → (t, x) ∈ R m (m ≥ 1)
has of polynomial growth if there exist two non-negative real constants C and γ such that

∀(t, x) ∈ [0, T] × R k , | (t, x)| ≤ C(1 + |x| γ ).
Hereafter this class of functions is denoted by 

Π g . ii) Let C 1,2 ([0, T] × R k )(or C
dX t,x s = b(s, X t,x s )ds + σ(s, X t,x s )dB s , s ∈ [t, T]; X t,x s = x, ∀s ≤ t.
(2.61)

Besides, X t,x satisfies the following estimates: ∀γ ≥ 1,

E sup s≤T |X t,x s | γ ≤ C(1 + |x| γ ) (2.62)
and its infinitesimal generator L X is given by: for any (t, 

x) ∈ [0, T] × R k , φ ∈ C
L X φ(t, x) : = 1 2 k ∑ i,j=1 (σσ (t, x)) i,j ∂ 2 x i x j φ(t, x) + k ∑ i=1 b i (t, x)∂ x i φ(t, x).
(2.63)

We are now going to decline the assumptions [H1]-[H4] of Section 2.2 in this markovian framework of randomness. So let us introduce deterministic functions f ij (t, x, y), h ij (x), g ik (t, x) and ḡjl (t, x), i, k ∈ Γ 1 , j, l ∈ Γ 2 and t, x, y in [0, T], R k and R Λ respectively.

[H1b]: For any (i, j) ∈ Γ, i) There exist non negative constants C and γ such that

| f ij (t, x, y)| ≤ C(1 + |x| γ + | y |).
ii) f ij is Lipschitz continuous w.r.t. y uniformly in (t, x), i.e. there exists a constant C such that for any y 1 ,

y 2 ∈ R Λ , | f ij (t, x, y 1 ) -f ij (t, x, y 2 )| ≤ C| y 1 -y 2 |.
[H2b]: For any (i, j) ∈ Γ, the function h ij , which stands for the terminal condition, is continuous w.r.t. x, belongs to class Π g and satisfies the following consistency condition: ∀(i, j) ∈ Γ and

x ∈ R k , max k∈(Γ 1 ) -i (h kj (x) -g ik (T, x)) ≤ h ij (x) ≤ min l∈(Γ 2 ) -j (h il (x) + g jl (T, x)).
(2.64)

[H3b]: For all i 1 , i 2 ∈ Γ 1 (resp. j 1 , j 2 ∈ Γ 2 ), the function g

i 1 i 2 (resp. g j 1 j 2 )
iii) is non-negative, continuous and belong to

Π g ; iv) For any k ∈ Γ 1 (resp. ∈ Γ 2 ) such that |{i 1 , i 2 , k}| = 3 (resp. |{j 1 , j 2 , }| = 3) it holds: ∀(t, x) ∈ [0, T] × R k , g i 1 i 2 (t, x) < g i 1 k (t, x) + g ki 2 (t, x) resp. g j 1 j 2 (t, x) < g j 1 (t, x) + g j 2 (t, x) ; (2.65)
v) The functions (g ik ) i,k∈Γ 1 and (g jl ) j,l∈Γ 2 verify the non free loop property, that is to say, if (i k , j k ) k=1,2,...,N is a loop in Γ, i.e., (i N , j N ) = (i 1 , j 1 ), card {(i k , j k ) k=1,2,...,N } = N -1 and for any k = 1, 2, ..., N -1, either i k+1 = i k or j k+1 = j k , we have:

∀t ≤ T, N-1 ∑ k=1 G i k j k (t, x) = 0 (2.66)

CONNECTION WITH SYSTEMS OF PDES WITH BILATERAL INTERCONNECTED OBSTACLES

where ∀k = 1, ..

.N -1, G i k j k (t, x) = -g i k i k+1 (t, x)1 (i k =i k+1 ) + g j k j k (t, x)1 (j k =j k+1
) . This assumption makes sure that any instantaneous loop in the switching mode set Γ 1 × Γ 2 is not free, i.e. one of the controllers needs to pay something when the system is switched and comes back instantaneously to the initial mode.

Note that (2.66) also implies: For any (i 1 , ...

, i N ) ∈ (Γ 1 ) N such that i N = i 1 and card{i 1 , i 2 , ..., i N } = N -1, N-1 ∑ k=1 g i k i k+1 (t, x) > 0, ∀(t, x) ∈ [0, T] × R k
and for any (j 1 , ..., j N ) ∈ (Γ 2 ) N such that j N = j 1 and card{j 1 , j 2 , ..., × R k , there exist processes (Y ij;t,x , Z ij;t,x , K ij,+;t,x , K ij,-;t,x ) (i,j)∈Γ unique solution of system of reflected BSDEs with bilateral interconnected obstacles associated with ( f ij , h ij , g ik , ḡjl ), i.e., for any (i, j) ∈ Γ BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS and s ∈ [0, T], 

j N } = N -1, N-1 ∑ k=1 g j k j k+1 (t, x) > 0, ∀(t, x) ∈ [0, T] × R k . [H4b] For any i, k ∈ Γ 1 (resp. j, l ∈ Γ 2 ), g ik (resp. g jl ) is C 1,2
                     Y ij;t,x ∈ S 2 , Z ij;t,x ∈ H 2,1 , K ij,±;t,x ∈ A 2 ; Y ij;t,x s = h ij (X t,x T ) + T s f ij r, X t,
:= min l∈(Γ 2 ) -j Y il;t,x s + g jl (s, X t,x s ) , s ∈ [0, T].
We are now going to focus on the properties of (Y ij;t,x ) (i,j)∈Γ . For simplicity reasons the quadruple of processes (Y ij;t,x , Z ij;t,x , K ij,+;t,x , K ij,-;t,x ) will be sometimes simply denoted by (Y ij , Z ij , K ij,+ , K ij,-). 

(v ij ) (i,j)∈Γ of polynomial growth, defined on [0, T] × R k such that for any (i, j) ∈ Γ, (t, x) ∈ [0, T] × R k , P -a.s., ∀s ∈ [t, T], Y ij;t,x s = v ij (s, X t,x s ). (2.68)
Proof. The proof is given in several steps.

A) We first assume that ∀(i, j) ∈ Γ, (t, x) ∈ [0, T] × R k , f ij (t, x, 0, 0) and h ij (x) are bounded.

We will prove that for any (i, j) ∈ Γ, for a fixed δ 1 there exists a bounded continuous deterministic function

v ij defined on [T -δ 1 , T] × R k such that for any (t, x) ∈ [T -δ 1 , T] × R k we have: P -a.s. for any s ∈ [t, T], Y ij s = v ij (s, X t,x s ).
Let us recall the system (2.67) and let ( Ȳ, Z) be the unique solution in S 2 × H 2,d of the following BSDE (it depends on t, x which we omit as there is no confusion):

Ȳs = h(X t,x T ) + T s Ψ( Ȳr )dr - T s Zr dB r , s ≤ T, where h(x) = ∑ (i,j)∈Γ |h ij (x)| and Ψ(y) := Λ 2 C (1 + |y|) where C = max{C( f ), C} with C is a uniform constant of boundedness of | f ij (t, x, 0)|.
It is well-known that there exists a bounded deterministic continuous function v such that P-a.s., ∀s ∈ [t, T], Ȳs = v(s, X t,x s ) (see e.g. [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]). Finally note that Ȳ ≥ 0 and then v ≥ 0. Now for any (i, j) ∈ Γ, we set ( Ŷij , Ẑij , Kij,+ , Kij,-) := ( Ȳ, Z, 0, 0). Therefore ( Ŷij , Ẑij , Kij,+ , Kij,-) is the unique solution of doubly reflected BSDEs associated with ( hij , Ψ, (g ik ) k∈(Γ 1 ) -i , ( ḡjl ) l∈(Γ 2 ) -j ) where Ψ(y) := Λ 2 C (1 + (y) + ). This actually holds in taking into account of: i) the backward equation satisfied by ( Ȳ, Z) ; ii) the fact that g ik and g jl are non-negative ; iii) the fact that Ȳ ≥ 0 and then | Ȳ| = Ȳ+ . Lastly let us notice that by Theorem 2.4.3, the solution of this system exists and is unique and then it is equal to ( Ȳ, Z, 0, 0) (i,j)∈Γ . Hence we also have P-a.s., for any s ∈ [t, T], Ŷij s = v(s, X t,x s ).

In the same way, setting ( Ỹij , Zij , Kij,+ , Kij,-) = (-Ȳ, -Z, 0, 0) for any (i, j) ∈ Γ, we obtain that the family ( Ỹij , Zij , Kij,+ , Kij,-) (i,j)∈Γ is the unique solution of reflected BSDEs associated with (-hij , Ψ2 , (g ik ) k∈(Γ 1 ) -i , ( ḡjl ) l∈(Γ 2 ) -j ) where Ψ2 (y) = -C Λ 2 (1 + (y) -). Next let us consider the following Picard iterations: for any (i, j) ∈ Γ, Y ij,0;t,x = 0 and for all n ≥ 1, (Y ij,n;t,x ) (i,j)∈Γ = Φ((Y ij,n-1;t,x ) (i,j)∈Γ ), where Φ is defined in (2.44). In other words the family (Y ij,n;t,x , Z ij,n;t,x , K ij,n,+;t,x , K ij,n,-;t,x ) (i,j)∈Γ (which sometimes is simply denoted by (Y ij,n , Z ij,n , K ij,n,+ , K ij,n,-) (i,j)∈Γ as no confusion is possible) is the unique solution of the following system of BSDEs: ∀(i, j) ∈ Γ and s ∈ [0, T], (2.69)

                             Y ij,n;t,x s = h ij (X t,x T ) + T s f ij (r, X t,x r , (Y kl,n-1;t,x r ) (k,l)∈Γ )dr - T s Z ij,n;t,x r dB r +K ij,n,+;t,x T -K ij,n,+;t,x s -(K ij,n,-;t,x T -K ij,n,-;t,x s ); max k∈(Γ 1 ) -i Y kj,n;t,x s -g ik (s, X t,x s ) ≤ Y ij,n;t,x s ≤ min l∈(Γ 2 ) -j Y il
Then we have the following inequalities: for any n ≥ 0, (i, j) ∈ Γ,

-Ȳ ≤ Y ij,n ≤ Ȳ (2.70)
Indeed when n = 0, (2.70) holds true since for any (i,

j) ∈ Γ, (t, x) ∈ [0, T] × R k , -Ȳ ≤ 0 ≤ Ȳ.
Next we assume that (2.70) holds for some n -1, i.e. for any (i,

j) ∈ Γ, Ỹij = -Ȳ ≤ Y ij,n-1 ≤ Ŷij = Ȳ.
Then by [H1b]-ii), the boundedness of f ij (t, x, 0) and the induction hypothesis we have:

f ij (s, X t,x s , (Y kl,n-1 s ) (k,l)∈Γ )) ≤ C (1 + ∑ (k,l)∈Γ |Y kl,n-1 s |) ≤ Ψ( Ŷij s ).
As h ij (x) ≤ h(x), then by the comparison result (Remark 2.3.7, iii)) between the solutions of equations ( Ŷij ) ij and (2.69), one deduces that for any (i, j) ∈ Γ, Y ij,n ≤ Ŷij . Similarly by the induction steps, one deduces that for any (i, j) ∈ Γ, Y ij,n ≥ Ỹij = -Ȳ. The proof of the claim (2.70) is complete. BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS Next once more by induction, using the result by Djehiche et al. [START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF] there exist deterministic continuous functions (v ij,n ) (i,j)∈Γ , n ≥ 0, such that ∀(i, j) ∈ Γ, (t, x) ∈ [0, T] × R k we have

P -a.s., ∀s ∈ [t, T], Y ij,n s = v ij,n (s, X t,x s ). (2.71)
Therefore from (2.70), we deduce that for any (t,

x) ∈ [0, T] × R k , -v(t, x) ≤ v ij,n (t, x) ≤ v(t, x),
for any (i, j) ∈ Γ. As a by-product the sequence (v ij,n (t, x)) n≥0 is uniformly bounded since v is so. Afterwards we just need to prove that ((v ij,n ) (i,j)∈Γ ) n≥0 is a Cauchy sequence for the uniform convergence norm.

Actually as shown in the proof of Theorem 2.4.3, the sequence

((Y ij,n ) (i,j)∈Γ ) n≥0 converges in H 2,d [0,T] to (Y ij ) (i,j)∈Γ since (Y ij ) (i,j
)∈Γ is the fixed point in H 2,Λ . On the other hand, for any t ∈ [0, T] and x ∈ R k , by (2.55) we have:

e αt |v ij,n (t, x) -v ij,q (t, x)| 2 ≤ C 2 ( f ) α E   T t ∑ (i,j)∈Γ |Y ij,n-1;t,x s -Y ij,q-1;t,x s | 2 ds   . (2.72)
But, as mentioned previously, the last term converges to 0 as n, q go to infinite. It follows that for any (i, j) ∈ Γ, the sequence (v ij,n ) n≥0 is of Cauchy type point-wise on [0, T] × R k . Therefore there exists a function v ij defined on [0, T] × R k such that for any (t,

x) ∈ [0, T] × R k , v ij (t, x) = lim n→∞ v ij,n (t, x). Moreover, -v(t, x) ≤ v ij (t, x) ≤ v(t,
x) which implies that the function v ij is bounded. Finally we have

∀ (i, j) ∈ Γ, Y ij;t,x s = v ij (s, X t,x s ), ds ⊗ dP on [t, T] × R k .
Next by the inequality (2.55) and taking expectation to obtain: For any (t, x) ∈ [0, T] × R k , (i, j) ∈ Γ and n, q ≥ 1,

|v ij,n (t, x) -v ij,q (t, x)| 2 ≤ C 2 ( f ) α E   T t e α(s-t) ∑ (i,j)∈Γ |v ij,n-1 (s, X t,x s ) -v ij,q-1 (s, X t,x s )| 2 ds   .
(2.73) Recall (2.73), for any (i, j) ∈ Γ and t ∈ [Tδ 1 , T] we have

∑ (i,j)∈Γ v ij,n -v ij,q 2 ∞,δ 1 ≤ C 2 ( f )Λ α e α(T-δ 1 ) T T-δ 1 e αs ds ∑ (i,j)∈Γ v ij,n-1 (t, x) -v ij,q-1 (t, x) 2 ∞,δ 1 = C 2 ( f )Λ(e αδ 1 -1) α 2 ∑ (i,j)∈Γ v ij,n-1 -v ij,q-1 2 ∞,δ 1
(2.74)

CONNECTION WITH SYSTEMS OF PDES WITH BILATERAL INTERCONNECTED OBSTACLES

Choose now δ 1 such that C 2 ( f )Λ(e αδ 1 -1)

α 2 = 3 4
, then, as a result, the sequence of continuous

functions (v ij,n ) (i,j)∈Γ is uniformly convergent on [T -δ 1 , T] × R k which implies that (v ij ) (i,j)∈Γ is continuous on [T -δ 1 , T] × R k .
Next by (2.55) and since Y ij,n t is deterministic then for any t ∈ [0, Tδ 1 ], x ∈ R k , we have:

|v ij,n (t, x) -v ij,q (t, x)| 2 = E[|Y ij,n t -Y ij,q t | 2 ] (2.75) ≤ C 2 ( f ) α E   T t e α(s-t) ∑ (i,j)∈Γ |v ij,n-1 (s, X t,x s ) -v ij,q-1 (s, X t,x s )| 2 ds   ≤ C 2 ( f ) α E   T-δ 1 t e α(s-t) ∑ (i,j)∈Γ |v ij,n-1 (s, X t,x s ) -v ij,q-1 (s, X t,x s )| 2 ds   + 3 4 ∑ (i,j)∈Γ v ij,n-1 -v ij,q-1 2 ∞,δ 1 (2.76)
The last inequality is valid thanks to (2.74). Now let (t,

x) ∈ [T -2δ 1 , T -δ 1 ] × R k .
Taking the supremum on (t, x) in (2.73) and summing over (i, j) ∈ Γ, yields:

∑ (i,j)∈Γ v ij,n -v ij,q 2 ∞,2δ 1 ≤ 3 4 ∑ (i,j)∈Γ v ij,n -v ij,q 2 ∞,δ 1 + 3 4 ∑ (i,j)∈Γ v ij,n-1 -v ij,q-1 2 ∞,2δ 1 .
But we know that ∑ (i,j)∈Γ v ij,nv ij,q ∞,δ 1 → 0 as n, q → ∞, therefore we have also:

∑ (i,j)∈Γ v ij,n -v ij,q ∞,2δ 1 → 0, as n, q → ∞.
It follows that for any (i, j) ∈ Γ, the sequence

(v ij,n ) n converges uniformly to v ij in [T -2δ 1 , T - δ 1 ] × R k . Consequently v ij is continuous in [T -2δ 1 , T -δ 1 ] × R k and then also on [T -2δ 1 , T] × R k since we have already shown that it continuous on [T -δ 1 , T] × R k .
Repeating now this procedure as many times as necessary on

[T -3δ 1 , T -2δ 1 ] × R k , [T -4δ 1 , T -3δ 1 ] × R k
and so on, we obtain that for any (i,

j) ∈ Γ, v ij is continuous on [0, T] × R k and then the processes (Y ij;t,x s ) s∈[0,T] and (v ij (s, X t,x s )) s∈[0,T] are indistinguishable, i.e., ∀ (i, j) ∈ Γ, P -a.s., ∀s ∈ [0, T], Y ij;t,x s = v ij (s, X t,x s ).
B) The general case: The functions f ij (t, x, 0) and h ij (x), (i, j) ∈ Γ, are of polynomial growth.

Let γ be a positive constant such that for any (i, j) ∈ Γ, 

| f ij (t, x, 0)| + |h ij (x)| + |g ij (t, x)| + |g ij (t, x)| ≤ C(1 + |x| γ ).
d Ỹij s = Y ij s dρ(X t,x s ) + ρ(X t,x s )dY ij s + d Y ij , ρ(X t,x ) s = Y ij s Lρ(X t,x s ) -ρ(X t,x s ) f ij (s, X t,x s , (Y kl s ) (k,l)∈Γ ) + D x ρ(X t,x s )σ(s, X t,x s )Z ij s ds + Y ij s D x ρ(X t,x s )σ(s, X t,x s ) + ρ(X t,x s )Z ij s dB s -ρ(X t,x s )dK ij,+ s + ρ(X t,x s )dK ij,- s .
(2.78)

Next for (i, j) ∈ Γ and s ∈ [t, T], let us set:

a) Zij s := Y ij s D x ρ(X t,x s )σ(s, X t,x s ) + ρ(X t,x s )Z ij s ; b) d Kij,+ s := ρ(X t,x s )dK ij,+ s and d Kij,- s := ρ(X t,x s )dK ij,- s ; c) f ij (s, X t,x s , -→ y ) := ρ(X t,x s ) f ij (s, X t,x s , (ρ -1 (X t,x s )y kl ) (k,l)∈Γ ) -ρ -1 (X t,x s )y ij Lρ(X t,x s ) -D x ρ(X t,x s )σ(s, X t,x s )ρ -1 (X t,x s )[ Zij s -y ij ρ -1 (X t,x s )D x ρ(X t,x s )σ(s, X t,x s )]; d) gij (s, X t,x s ) := ρ(X t,x s )g ij (s, X t,x s ) and gij (s, X t,x s ) := ρ(X t,x s )g ij (s, X t,x s ); e) hij (X t,x T ) := ρ(X t,x T )h ij (X t,x T ).
Then the family ( Ỹij , Zij , Kij,+ , Kij,-) (i,j)∈Γ is the unique solution of the system of reflected BS-DEs associated with (( f ij ) ij , ( hij ) ij , ( gik ) i,k∈Γ 1 , ( gjl ) j,l∈Γ 2 ).

But for any (i, j) ∈ Γ, hij , f ij (t, x, 0), gik , gjl are bounded. Then thanks to the previous step, for any (i, j) ∈ Γ, one can find continuous bounded functions ( ṽij

) (i,j)∈Γ defined on [0, T] × R k such that Ỹij,t,x s = ṽij (s, X t,x s ), ∀s ∈ [t, T]. Therefore in setting, for (i, j) ∈ Γ and (t, x) ∈ [0, T] × R k , v ij (t, x) = ρ -1 (x) ṽij (t, x) makes that (v ij (t, x)) (i,j)∈Γ is continuous on [0, T] × R k , is of polynomial growth and verifies for any (i, j) ∈ Γ, Y ij;t,x s = v ij (s, X t,x s ), ∀s ∈ [t, T].
The proof is now complete.

We are now ready to give the main result of this section. Theorem 2.5.4. Assume that Assumptions [H1b]-[H4b] and [H6] are fulfilled. Then the Λ-tuple of continuous functions (v ij ) (i,j)∈Γ is a viscosity solution (see Appendix for the definition) of the following OBSTACLES system of variational inequalities with bilateral interconnected obstacles: For any (i, j) ∈ Γ,

             min{v ij (t, x) -max k∈(Γ 1 ) -i [v kj (t, x) -g ik (t, x)]; max v ij (t, x) -min l∈(Γ 2 ) -j [v il (t, x) + g jl (t, x)]; -∂ t v ij (t, x) -L X (v ij )(t, x) -f ij (t, x, (v kl (t, x)) (k,l)∈Γ ) } = 0; v ij (T, x) = h ij (x).
(2.79) Moreover it is unique in the class of continuous functions which belong to Π g .

Proof. We first prove that (v ij ) (i,j)∈Γ is a viscosity solution, then we prove the uniqueness.

Step 1: (v ij ) (i,j)∈Γ is a viscosity solution of (2.79). For convenience we recall the unique solution (Y ij , Z ij , K ij,+ , K ij,-) (i,j)∈Γ of (2.67): For any (i, j) ∈ Γ and s ≤ T,

                     Y ij s = h ij (X t,x T ) + T s f ij r, X t,x r , (Y kl r ) (k,l)∈Γ dr - T s Z ij r dB r + T s d(K ij,+ s -dK ij,- s ); L ij s ≤ Y ij s ≤ U ij s ; T 0 Y ij s -L ij s dK ij,+ s = 0 and T 0 Y ij s -U ij s dK ij,- s = 0.
(2.80) By (2.68), the system (2.80) can be decoupled as follows: for any (i, j) ∈ Γ and s ∈ [t, T],

                                       Y ij s = h ij (X t,x T ) + T s f ij (r, X t,x r , (v kl (r, X t,x r )) (k,l)∈Γ )dr - T s Z ij r dB r + T s d(K ij,+ s -dK ij,- s ); max k∈(Γ 1 ) -i v kj (s, X t,x s ) -g ik (s, X t,x s ) ≤ Y ij s ≤ min l∈(Γ 2 ) -j v il (s, X t,x s ) + g jl (s, X t,x s ) ; T t Y ij s -max k∈(Γ 1 ) -i [v kj (s, X t,x s ) -g ik (s, X t,x s )] dK ij,+ s = 0 T t Y ij s -min l∈(Γ 2 ) -j [v il (s, X t,x s ) + g jl (s, X t,x s )] dK ij,- s = 0.
(2.81) Applying Theorem 6.2 in [START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF] (see also Theorem A.3 in [START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF]), for any arbitrary (i, j) in Γ, v ij is a BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS viscosity solution of

       min{v ij (t, x) -max k∈(Γ 1 ) -i [v kj (t, x) -g ik (t, x)]; max v ij (t, x) -min l∈(Γ 2 ) -j [v il (t, x) + g jl (t, x)]; -∂ t v ij (t, x) -L X (v ij )(t, x) -f ij (t, x, (v kl (t, x)) (k,l)∈Γ ) } = 0; v ij (T, x) = h ij (x).
As (i, j) is arbitrary then (v ij ) (i,j)∈Γ is a viscosity solution of (2.79).

Step 2: Uniqueness Firstly let us suppose the existence of another solution ( ṽij ) (i,j)∈Γ of system (2.79) which is continuous and of polynomial growth. Next let ( ỹij ) (i,j)∈Γ be the process of H 2,Λ such that for any (i, j) ∈ Γ and s ≤ T,

ỹij s = ṽij (s, X t,x s ) (2.82)
We can now define another process ( Ỹij ) (i,j)∈Γ via the mapping Φ of (2.44) as follows:

( Ỹij ) (i,j)∈Γ := Φ ( ỹij ) (i,j)∈Γ (2.83)
By the definition of Φ, ( Ỹij ) (i,j)∈Γ is the first component of the unique solution of following doubly RBSDEs: For any (i, j) ∈ Γ and s ≤ T,

                       Ỹij s = h ij (X t,x T ) + T s f ij (r, X t,x r , ( ṽkl r (r, X t,x r )) (k,l)∈Γ )dr - T s Zij r dB r + T s d( Kij,+ s - Kij,- s ); max k∈(Γ 1 ) -i Ỹkj s -g ik (s, X t,x s ) ≤ Ỹij s ≤ min l∈(Γ 2 ) -j Ỹil s + g jl (s, X t,x s ) ; T 0 Ỹij s -max k∈(Γ 1 ) -i Ỹkj s -g ik (s, X t,x s ) d Kij,+ s = 0; T 0 Ỹij s -min l∈(Γ 2 ) -j Ỹil s + g jl (s, X t,x s ) d Kij,- s = 0.
As a result, by Theorem 2.5.3, there exist deterministic functions of polynomial growth, denoted (u ij ) (i,j)∈Γ , such that for any (t,

x) ∈ [0, T] × R k , (i, j) ∈ Γ and s ∈ [t, T], Ỹij s = u ij (s, X t,x s ).
Moreover by the result of Step 1, (u ij ) (i,j)∈Γ is a viscosity solution of the following system of variational inequalities with bilateral interconnected obstacles: ∀(i, j) ∈ Γ,

       min{u ij (t, x) -max k∈(Γ 1 ) -i [u kj t -g ik (t, x); max[u i (t, x) -min l∈(Γ 2 ) -j [u il t + g jl (t, x); -∂ t u ij (t, x) -Lu ij (t, x) -f ij (t, x, ( ṽkl (t, x)) (k,l)∈Γ )]} = 0; u ij (T, x) = h ij (x)
(2.84) 2.6. APPENDIX since the generators f ij (t, x, ( ṽkl (t, x)) (k,l)∈Γ ), (i, j) ∈ Γ, do not depend on the solution (u ij ) (i,j)∈Γ . But the solution of system (2.84) is unique in the class of continuous functions of Π g (see Theorem 3.2 in [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF] for more details) and ( ṽij ) (i,j)∈Γ is a solution in this class. Therefore, for any (i, j) ∈ Γ, u ij = ṽij and then 

P -a.s., ∀s ∈ [t, T], ỹij s = Ỹij s , ∀(i, j) ∈ Γ. ( 2 
(i, j) ∈ Γ, (t, x) ∈ [0, T] × R k , P -a.s., ∀ s ∈ [t, T], ṽij (s, X t,x s ) = ỹij s = Y ij s = v ij (s, X t,x s ). ( 2 

.86)

Take now s = t, leads to ṽij (t, x) = v ij (t, x) for any (i, j) ∈ Γ which means that the solution is unique.

Remark 2.5.5. The functions (v ij ) (i,j)∈Γ are also the unique solution in the class of continuous functions which belong to Π g , of the following system which is of max-min type and dual to (2.79): ∀(i, j) ∈ Γ,

       max{v ij (t, x) -max k∈(Γ 1 ) -i [v kj (t, x) -g ik (t, x)]; min[v ij (t, x) -min l∈(Γ 2 ) -j [v il (t, x) + g jl (t, x)]; -∂ t v ij (t, x) -L X (v ij )(t, x) -f ij (t, x, (v kl (t, x)) kl∈Γ )]} = 0; v ij (T, x) = h ij (x).
(2.87) This can be shown in considering (-Y ij , -Z ij , K ij,± ) (i,j)∈Γ which is the solution of the system of reflected BSDEs with inter-connected bilateral obstacles associated with ((f ij (t, x,y)) (i,j)∈Γ , (-h ij (x)) (i,j)∈Γ , (g jl (t, x)) j,l∈Γ 2 , (g ik (t, x)) i,k∈Γ 1 ) and then use the result of the previous Theorem 2.5.4 with (-v ij ) (i,j)∈Γ which implies that (v ij ) (i,j)∈Γ is also he unique solution of (2.87).

Appendix

The definition of the viscosity solution of system (2.79) is the following: Definition 2.6.1. Let v := (v ij ) (i,j)∈Γ be a Λ-tuple of continuous functions on [0, T] × R k .

A) We say that v is a viscosity supersolution (resp. subsolution) of (2.79) if for any fixed (i 0 , j 0 ) in Γ, BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS v i 0 j 0 is a viscosity supersolution (resp. subsolution) of the following PDE with bilateral obstacles:

             min{v i 0 j 0 (t, x) -max k∈(Γ 1 ) -i 0 [v kj 0 (t, x) -g i 0 k (t, x)]; max v i 0 j 0 (t, x) -min l∈(Γ 2 ) -j 0 [v i 0 l (t, x) + g j 0 l (t, x)]; -∂ t v i 0 j 0 (t, x) -L X (v i 0 j 0 )(t, x) -f i 0 j 0 (t, x, (v kl (t, x)) (k,l)∈Γ ) } = 0; v i 0 j 0 (T, x) = h i 0 j 0 (x), (2.88) that is to say: i) v i 0 j 0 (T, x) ≥ h i 0 j 0 (x) (resp. v i 0 j 0 (T, x) ≤ h i 0 j 0 (x)) ; ii) if (t, x) ∈ [0, T) × R k and φ ∈ C 1,2 ([0, T] × R k ) such that (t, x) is a local minimum (resp. maxi- mum) point of v i 0 j 0 -φ then    min{v i 0 j 0 (t, x) -max k∈(Γ 1 ) -i 0 [v kj 0 (t, x) -g i 0 k (t, x)]; max v i 0 j 0 (t, x) -min l∈(Γ 2 ) -j 0 [v i 0 l (t, x) + g j 0 l (t, x)]; -∂ t φ(t, x) -L X (φ)(t, x) -f i 0 j 0 (t, x, (v kl (t, x)) (k,l)∈Γ ) } ≥ 0 (resp. ≤ 0).
(2.89) B) We say that v := (v ij ) (i,j)∈Γ is a viscosity solution of (2.79) if it is both a supersolution and subsolution of (2.79).

PAPER 2: ZERO-SUM SWITCHING GAME, SYSTEMS OF REFLECTED BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED OBSTACLES

This chapter is a preprint joint work with Hamadène (ref. [START_REF] Hamadène | Zero-sum switching game, systems of reflected backward sdes and parabolic pdes with bilateral interconnected obstacles[END_REF]).

Introduction

This paper is related to zero-sum switching games, systems of reflected backward differential equations (RBSDEs) with bilateral interconnected obstacles and systems of variational inequalities of min-max type with interconnected obstacles, namely the Hamilton-Jacobi-Bellman (HJB for short) system associated with the game.

First let us describe the zero-sum switching game which we will consider in this paper. Let Γ be the set {1, ..., p}. Assume we have a system which has p working modes indexed by Γ. This system can be switched from one working mode to another one, e.g. due to economic, financial, ecological reasons, etc, by two players or decision makers C 1 and C 2 . The main feature of the switching actions is that when the system is in mode i ∈ Γ, and one of the players decides to switch it, then it is switched to mode i + 1 (hereafter i + 1 is 1 if i = p). It means that the decision makers do not have their proper modes to which they can switch the system when they decide to switch (see e.g. [START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF] for more details on this model). Therefore a switching strategy for the players are sequences of stopping times u = (σ n ) n≥0 for C 1 and v = (τ n ) n≥0 for C 2 such that σ n ≤ σ n+1 and τ n ≤ τ n+1 for any n ≥ 0. On the other hand, the switching actions are not free and generate expenditures for the players. Loosely speaking at time t ≤ T, they amount to A u t CHAPTER 3. PAPER 2: ZERO-SUM SWITCHING GAME, SYSTEMS OF REFLECTED BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED OBSTACLES (resp. B v t ) given by:

A u t = ∑ σ n ≤t g ζ n ,ζ n +1 (σ n ) (resp. B v t = ∑ τ n ≤t ḡθ n ,θ n +1 (τ n )).
The process g i,i+1 (s) (resp. ḡi,i+1 (s)) is the switching cost payed by C 1 (resp. C 2 ) is she makes the decision to switch the system from mode i to mode i + 1 at time s while ζ n (resp. θ n ) is the mode in which the system is at time σ n (resp. τ n ). Next when the system is run under the control u (resp. v) for C 1 (resp. C 2 ), there is a payoff J(u, v) which is a profit (resp. cost) for C 1 (resp. C 2 ) given by:

J(u, v) = E[ T 0 f δ s (s)ds -A u T + B v T + ζ δ T ].
where δ := (δ s ) s≤T is the process valued in Γ which indicates the working modes of the system along with time. If at time s the system is in mode i 0 , then δ s = i 0 . It is bind to the controls u and v implemented by both players. On the other hand, for i ∈ Γ, the process f i is the utility of the system in mode i and finally ζ δ T is the terminal payoff or bequest.

The problem we are interested in is to know whether or not the game has a value, i.e., roughly speaking, if the follwoing equality holds:

inf v sup u J(u, v) = sup u inf v J(u, v)
In case of equality we say that the game has a value. Finally we say that the game has a saddlepoint (u * , v * ) if, for any u and v, controls of C 1 and C 2 respectively, we have:

J(u, v * ) ≤ J(u * , v * ) ≤ J(u * , v).
Note that in such a case, the game has a value.

From the probabilistic point of view, this zero-sum switching game problem turns into looking for a solution of its associated system of reflected BSDEs with interconnected bilateral obstacles (see e.g. [START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF] for the case of proper modes of players). A solution for such a system are adapted processes (Y i , Z i , K i,± ) i∈Γ such that for any i ∈ Γ, and s ≤ T,

           Y i and K i,± continuous; K i,± increasing; (Z i (ω) t ) t≤T is dt -square integrable; Y i s = ζ i + T s f i (r)dr - T s Z i r dB r + K i,+ T -K i,+ s -(K i,- T -K i,- s ); L i ( Y) s ≤ Y i s ≤ U i ( Y) s ; T 0 (Y i s -L i ( Y) s )dK i,+ s = 0 and T 0 (Y i s -U i ( Y) s )dK i,- s = 0 (3.1)
where: a)

B := (B t ) t≤T is a Brownian motion; b) Y := (Y i ) i∈Γ ; c) L i ( Y) s = Y i+1 s -g i,i+1 (s) and U i ( Y) s = Y i+1 s + ḡi,i+1 ( 
s).

INTRODUCTION

Actually the solution of the previous system provides the value of the zero-sum switching game which is equal to Y i 0 if the starting mode of the system is i. Roughly speaking, system (3.1) is the verification theorem for the zero-sum switching game problem.

In the Markovian framework, i.e., when randomness stems from a diffusion process X t,x ((t, x) ∈ [0, T] × R k ) which satifies:

dX t,x s = b(s, X t,x s )ds + σ(s, X t,x s )dB s , s ∈ [t, , T] and X t,x s = x for s ≤ t (3.2)
and the data of the game are deterministic functions of (s, X t,x s ), the Hamilon-Jacobi-Bellman system associated with this switching game is the following system of partial differential equations (PDEs in short) with a bilateral interconnected obstacles

: ∀i ∈ Γ, ∀(t, x) ∈ [0, T] × R k ,      min{v i (t, x) -L i ( v)(t, x); max v i (t, x) -U i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x) } = 0; v i (T, x) = h i (x). (3.3) where: a) v = (v i ) i∈Γ ; b) L i ( v)(t, x) := v i+1 (t, x) -g i,i+1 (t, x), U i ( v)(t, x) := v i+1 (t, x) + g i,i+1
(t, x); c) L X , the infinitesimal generator of X, is given by:

L X φ(t, x) := 1 2 Tr[σσ (t, x)D 2 xx φ(t, x)] + b(t, x) D x φ(t, x).
Usually it is shown that the value functions of the game is a unique solution of (3.3).

This work is originated by an article by N.Yamada [START_REF] Yamada | A system of elliptic variational inequalities associated with a stochastic switching game[END_REF] where the author deals with the system of PDEs (3.3) in the case when the switching costs are constant and for bounded domains Ω. By penalization method, the author proved existence and uniqueness of the solution of (1.35) in a weak sense (actually in a Sobolev space). Then he gives an interpretation of the solution of this system as a value function of the zero-sum switching game described previously.

A saddle-point of the game is also given. However neither this interpretation nor the existence of the saddle-point are clear because the question of admissiblity of the controls which are supposed to realize the saddle-point property is not addressed. In zero-sum switching games this issue of admissibility of those controls, defined implicitely through (Y i ) i∈Γ , is crucial (see e.g. [START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF]). Note also that there is another paper by N.Yamada [START_REF] Yamada | Viscosity solutions for a system of elliptic inequalities with bilateral obstacles[END_REF] where the solution of system (3.3) is considered in viscosity sense. Once more by penalization, he shows existence and uniqueness of the solution on bounded domains Ω.

Therefore the main objectif of this work is to show that: i) the system of reflected BSDEs with interconnected obstacles (3.1) has a unique solution in the Markovian framework.
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ii) the zero-sum switching game described above has a value.

iii) The system of PDEs (3.3) has a unique solution.

Actually in this paper we show that system of PDEs (3.3) has a unique continuous with polynomial growth solution (v i ) i∈Γ in viscosity sense on [0, T] × R k . Mainly this solution is constructed by using Perron's method in combination with systems of reflected BSDEs with one lower interconnected obstacle and the Feynman-Kac representation of their solutions in the Markovian framework. Then we show that the following system of RBSDEs with interconnected bilateral obstacles has a unique solution: For any i ∈ Γ,

           Y i and K i,± are continuous; K i,± are increasing; (Z i (ω) t ) t≤T is dt -square integrable; Y i s = h i (X t,x T ) + T s f i (r, X t,x r )dr - T s Z i r dB r + K i,+ T -K i,+ s -(K i,- T -K i,- s ), s ≤ T; L i ( Y) s ≤ Y i s ≤ U i ( Y) s ; T 0 (Y i s -L i ( Y) s )dK i,+ s = 0 and T 0 (Y i s -U i ( Y) s )dK i,- s = 0 (3.4)
where X is the Markov process solution of (3.2)

, L i ( Y) s = Y i+1 s -g i,i+1 (s, X t,x s ) and U i ( Y) s = Y i+1 s + ḡi,i+1 (s, X t,x s ).
Finally we consider the zero-sum switching game and we show that when the processes Z i , i ∈ Γ, of (3.4) are: a) dt ⊗ dP-square integrable then Y i 0 is the value of the game under square integrable controls, i.e., E[(A u T ) 2 + (B v T ) 2 ] < ∞. b) only ω by ω, dt-square integrable then Y i 0 is the value of the game under integrable controls, i.e., E[A 

u T + B v T ] < ∞.

The paper is organized as follows:

In Section 2, we introduce the zero-sum switching game and especially the notion of coupling which is already used in several papers including [START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF][START_REF] Stettner | Zero-sum markov games with stopping and impulsive strategies[END_REF]. In Section 3, we show that the solution of (3.4) is the value of the zero-sum switching game over square integrable controls when Z i , i ∈ Γ, are dt ⊗ dP-square integrable. Without additional assumptions on the data of the problem, this property is rather tough to check in practice because it depends on the room between the barriers L i ( Y) and U i ( Y) which depend on the solution Y. For example, it is not clear how to assume an hypothesis like Mokobodski's one (see e.g. [START_REF] Cvitanic | Backward stochastic differential equations with reflection and dynkin games[END_REF][START_REF] Hamadène | Reflected bsdes and mixed game problem[END_REF]) since the barriers depend on the solution and this latter is not explicit. However by localiztion, we can show that in some cases, e.g. when the switching costs are constant, Y i 0 is actually the value function over square integrable controls even when we do not know that Z i , i ∈ Γ, are dt ⊗ dP-square integrable. In the case when for any i ∈ Γ and P-a.s. (Z i s (ω)) s≤T is dtsquare integrable only, which is the minimum condition to define the stochastic integral, Y i 0 is the value function of the zero-sum switching game over integrable controls. To show this 84
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property we proceed by localization. Section 4 is devoted to existence and uniqueness of the solution of system of PDEs (3.3) in a more general form. The result is given in Theorem 3.4.3, but the main steps of its proof are postponed to Appendix. This proof is based on Perron's method and the construction of this solution (more or less the same as in [START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF]) proceeds as follows: a) we first introduce the processes (Y i,m , Z i,m , K ±,i,m ) i∈Γ , m ≥ 1, solution of the system of reflected BSDEs with interconnected lower barriers associated with

{ f i (r, X t,x r , y, z i ) - m(y i -y i+1 -ḡi,i+1 (r, X t,x r )) + , h i (X t,x T ), g i,i+1
(r, X t,x r )} i∈Γ (see (3.57)). It is a decreasing penalization scheme. As the framework is Markovian then there exist deterministic functions continuous and of polynomial growth (v i,m ) i∈Γ such that the following Feynman-Kac representation holds:

For any i ∈ Γ, m ≥ 1 and s ∈ [t, T], Y i,m s = v i,m (s, X t,x s ). As for any i ∈ Γ, m ≥ 1, Y i,m ≥ Y i,m+1 then we have also v i,m ≥ v i,m+1 . Now if we define v i = lim m v i,m , then (v i ) i∈Γ is a subsolution of (3.
3) and for any fixed m 0 , (v i,m 0 ) i∈Γ is a supersolution of (3.3). Next it is enough to use Perron's method to show that (3.3) has a unique solution since comparison principle holds. Finally, by uniqueness this solution does not depend on m 0 and is (v i ) i∈Γ . Additionally for any i ∈ Γ, v i is of polynomial growth and continuous. In Section 5, we show existence and uniqueness of the solution of system of RBSDEs (3.1) and give some extensions. This proof is based on results on zero-sum Dynkin games and standard two barriers reflected BSDEs. The component Y i , i ∈ Γ, is just the limit of the processes (Y i,m ) m . We make use of the fact that, by Dini's Theorem, (v i,m ) m converges to v i uniformly on compact sets since v i is continuous and then the sequence (Y i,m ) m converges uniforly in L 2 (dP) to Y i , i ∈ Γ. As mentionned previously, this latter property stems from the PDE part. Note also that the following representation holds:

∀s ∈ [t, T], Y i s = v i (s, X t,x s ).
Here we should point out that since the switching of the system is made from i to i + 1 and the players do not have their proper sets of switching modes, then the method used e.g. in [START_REF] Hamadène | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF] cannot be applied in our framework. As a consequence of this fact, the question of a solution of (3.1) outside the Markovian framework still open. At the end of the paper there is the Appendix.

Preliminaries. Setting of the stochastic switching game

Let T be a fixed positive constant. Let (Ω, F , P) denote a complete probability space, B = (B t ) t∈[0,T] a d-dimensional Brownian motion whose natural filtration is (F 0 t := σ{B s , s ≤ t}) 0≤t≤T
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and we denote by F = (F t ) 0≤t≤T the completed filtration of (F 0 t ) 0≤t≤T with the P-null sets of F . Then it satisfies the usual conditions. On the other hand, let P be the σ-algebra on [0, T] × Ω of the F-progressively measurable sets.

Next, we denote by: -S 2 : the set of P-measurable

continuous processes φ = (φ t ) t∈[0,T] such that E(sup t∈[0,T] |φ t | 2 ) < ∞;
-A 2 : the subset of S 2 with all non-decreasing processes K = (K t ) t≤T with K 0 = 0; -A loc : the set of P-measurable continuous non-decreasing processes K = (K t ) t≤T with

K 0 = 0 such that P -a.s. K T (ω) < ∞; -H 2,d loc (d ≥ 1) : the set of P-measurable R d -valued processes ψ = (ψ t ) t∈[0,T] such that P -a.s., T 0 |ψ t | 2 dt < ∞. -H 2,d : the subset of H 2,d loc (d ≥ 1) of processes ψ = (ψ t ) t∈[0,T] such that E( T 0 |ψ t | 2 dt) < ∞.
-For s ≤ T, T s is the set of stopping times ν such that P-a.s., s ≤ ν ≤ T.

Now for any (t, x) ∈ [0, T] × R k , let us consider the process (X 

|σ(t, x) -σ(t, x )| + |b(t, x) -b(t, x )| ≤ C|x -x |. (3.6)
Moreover we assume that they are jointly continuous in (t, x). The continuity of b and σ imply their linear growth w.r.t. x, i.e. there exists a constant C such that for any (t,

x) ∈ [0, T] × R k , |b(t, x)| + |σ(t, x)| ≤ C(1 + |x|). (3.7)
Therefore under assumption (H0), the SDE (3.5) has a unique solution X t,x which satisfies the following estimates: ∀γ ≥ 1,

E[sup s≤T |X t,x s | γ ] ≤ C(1 + |x| γ ). (3.8) Next a function Φ : (t, x) ∈ [0, T] × R k → Φ(t, x)
∈ R is called of polynomial growth if there exist two non-negative real constants C and γ such that

∀(t, x) ∈ [0, T] × R k , |Φ(t, x)| ≤ C(1 + |x| γ ).
Hereafter this class of functions is denoted by Π g .

Description of the zero-sum stochastic switching game

Let Γ := {1, 2, ..., p} and for i ∈ Γ, let us set Γ -i := Γ -{i}. For y := (y i ) i∈Γ ∈ R p and ŷ ∈ R, we denote by [ y -i , ŷ] or [(y k ) k∈Γ -i , ŷ], the element of R p obtained in replacing the i-th component of y with ŷ.

We now introduce the following deterministic functions: for any i ∈ Γ,

-f i : (t, x, y, z) ∈ [0, T] × R k+p+d → f i (t, x, y, z) ∈ R -g i,i+1 : (t, x) ∈ [0, T] × R k → g i,i+1 (t, x) ∈ R -g i,i+1 : (t, x) ∈ [0, T] × R k → g i,i+1 (t, x) ∈ R -h i : x ∈ R k → h i (x) ∈ R
Next let us consider a system with p working modes indexed by the set Γ. On the other hand, there are two agents or controllers C 1 and C 2 , whose interests are antagonistic and who act on this system, along with time, by switching its working mode from the current one, say i 0 , to the next one i 0 + 1 if i 0 ≤ p -1 and 1 if i 0 = p, whatever which agent decides to switch first. Therefore a switching control for C 1 (resp. C 2 ) is u := (σ n ) n≥0 (resp. v := (τ n ) n≥0 ) an increasing sequence of stopping times which correspond to the successive times where C 1 (resp. C 2 ) decides to switch the system. The control u (resp. v) is called admissible if

P[σ n < T, ∀n ≥ 0] = 0 (resp. P[τ n < T, ∀n ≥ 0] = 0). (3.9)
The set of admissible controls of C 1 (resp. C 2 ) is denoted A (resp. B).

Now let u := (σ n ) n≥0 (resp. v := (τ n ) n≥0
) be an admissible control of C 1 (resp. C 2 ). Let (r n ) n≥0 and (s n ) n≥0 be the sequences defined by: r 0 = s 0 = 0, r 1 = s 1 = 1 and for n ≥ 2,

r n = r n-1 + 1 {σ r n-1 ≤τ s n-1 } and s n = s n-1 + 1 {τ s n-1 <σ r n-1 } .
For n ≥ 0, let us set ρ n = σ r n ∧ τ s n . It is a stopping time and it stands for the time when the n-th switching of the system, by one of the players, occurs. On the other hand, the piecewise CHAPTER 3. PAPER 2: ZERO-SUM SWITCHING GAME, SYSTEMS OF REFLECTED BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED OBSTACLES process (θ(u, v) s ) s≤T which indicates in which mode the system is at time s is given by: ∀s ≤ T,

θ(u, v) s = θ 0 1 [ρ 0 ,ρ 1 ] (s) + ∑ n≥1 θ n 1 (ρ n ,ρ n+1 ] (s) where: i) (ρ n , ρ n+1 ] = ∅ on {ρ n = ρ n+1 } ; ii) θ 0 = i if at t = 0, the system is in mode i ; iii) For n ≥ 1, θ n = θ n-1 + 1 if θ n-1 ≤ p -1 and θ n = 1 if θ n-1 = p. The sequence Θ(u, v) := (ρ n , θ n ) n≥0
, called the coupling of (u, v), indicates the successive times and modes of switching of the system operated by the players.

When the players implement the pair of admissible controls (u, v), this incurs switching costs which amount to A u T and B v T , for C 1 and C 2 respectively, and given by:

∀s < T, A u s = ∑ n≥1 g θ n-1 θ n (ρ n , X 0,x ρ n )1 {ρ n =σ rn ≤s} and A u T = lim s→T A u s ; ∀s < T, B v s = ∑ n≥1 g θ n-1 θ n (ρ n , X 0,x ρ n )1 {ρ n =τ sn ≤s} and B v T = lim s→T B v s . The admissible control u (resp. v) of C 1 (resp. C 2 ) is called square integrable if E[(A u T ) 2 ] < ∞ (resp. E[(B v T ) 2 ] < ∞).
The set of square integrable admissible controls of C 1 (resp. C 2 ) is denoted by A (resp. B).

The admissible control u (resp. v) of C 1 (resp. C 2 ) is called integrable if E[A u T ] < ∞ (resp. E[B v T ] < ∞).
The set of integrable admissible controls of C 1 (resp. C 2 ) is denoted by A (1) (resp. B (1) ).

The coupling θ(u, v), of a pair (u, v) of admissible controls, is called square integrable

(resp. integrable) if C θ(u,v) ∞ := lim n→∞ C u,v N ∈ L 2 (dP) (resp. ∈ L 1 (dP))
where for any N ≥ 1,

C θ(u,v) N := ∑ n=1,N g θ n-1 θ n (ρ n , X 0,x ρ n )1 {ρ n =σ rn <T} -∑ n=1,N g θ n-1 θ n (ρ n , X 0,x ρ n )1 {ρ n =τ sn <T} . Note that C θ(u,v) ∞
, defined as the pointwise limit of C θ(u,v) N

, exists since the controls u and v are admissible. On the other hand, the quantity

C θ(u,v) N
is nothing but the switching costs associated with the N first switching actions of both players.

Next when C 1 (resp. C 2 ) implements u ∈ A (resp. v ∈ B), there is a payoff which a is reward for C 1 and a cost for C 2 which is given by (we suppose that θ 0 = i): .10) It means that between C 1 and C 2 there is a game of zero-sum type. The main objective of this section is to deal with the issue of existence of a value for this zero-sum switching game, i.e., whether or not it holds

J i (θ(u, v)) = E h θ(u,v) T (X 0,x T ) + T 0 f θ(u,v) r (r, X 0,x r )dr -C θ(u,v) ∞ . ( 3 
inf v∈B sup u∈A J i (θ(u, v)) = sup u∈A inf v∈B J i (θ(u, v)) (3.11)
or inf v∈B (1) sup u∈A (1) J i (θ(u, v)) = sup u∈A (1) inf v∈B (1) J i (θ(u, v)).

(3.12) Remark 3.2.1. In our framework when the players decide to switch at the same time, we give priority to the maximizer C 1 . This appears through the definition of r n for n ≥ 2. On the other hand, for the well-posedness of J i (θ(u, v)), it is enough that the coupling θ(u, v) is integrable.

To proceed we are going to define the notion of admissible square integrable and integrable strategies.

Definition 3.2.2 (Non-anticipative switching strategies). Let s ∈ [0, T] and ν a stopping time such that P-a.s. ν ≥ s. Two controls u 1 = (σ 1 n ) n≥0 and u 2 = (σ 2 n ) n≥0 in A are said to be equivalent, denoting this by u 1 ≡ u 2 , on [s, ν] if we have P-a.s.,

1 [σ 1 0 ,σ 1 1 ] (r) + ∑ n≥1 1 (σ 1 n ,σ 1 n+1 ] (r) = 1 [σ 2 0 ,σ 2 1 ] (r) + ∑ n≥1 1 (σ 2 n ,σ 2 n+1 ] (r), s ≤ r ≤ ν.
A non-anticipative strategy for C 1 is a mapping α : B → A such that for any s ∈ [0, T], ν ∈ T s , and

v 1 , v 2 ∈ B such that v 1 ≡ v 2 on [s, ν], we have α(v 1 ) ≡ α(v 2 ) on [s, ν].
The non-anticipative strategy α for C 1 is called squareintegrable (resp. integrable) if for any v ∈ B we have α(v) ∈ A (resp. for any v ∈ B (1) we have α(v) ∈ A (1) ).

In a similar manner we define non-anticipative strategies, square integrable and integrable strategies for C 2 denote by β.

We denote by A and B (resp. A (1) and B (1) ) the set of non-anticipative square integrable (resp. integrable) strategies for C 1 and C 2 respectively.
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Existence of a value of the zero-sum switching game. Link with systems of reflected BSDEs

We are now going to deal with the issue of existence of a value for the zero-sum switching game described previously. For that let us introduce the following assumptions on the functions f i , h i , g i,i+1

and g i,i+1 . Some assumptions will be only applied in the next sections.

Assumptions (H):

(H1) For any i ∈ Γ, f i does not depend on ( y, z), is continuous in (t, x) and belongs to class Π g ;

(H2) For any i ∈ Γ, the function h i , which stands for the terminal payoff, is continuous w.r.t. x, belongs to class Π g and satisfies the following consistency condition: ∀i ∈ Γ, ∀x ∈ R k ,

h i+1 (x) -g i,i+1 (T, x) ≤ h i (x) ≤ h i+1 (x) + g i,i+1 (T, x). (3.13) (H3) a) For all i ∈ Γ and (t, x) ∈ [0, T] × R k , the functions g i,i+1
and g i,i+1 are continuous, non-negative, belong to Π g and verify:

g i,i+1 (t, x) + g i,i+1 (t, x) > 0.
b) They satisfy the non-free loop property, i.e., for any j ∈ Γ and (t, 

x) ∈ [0, T] × R k , ϕ j,

(H4)

For any i = 1, ..., m, the processes ( ḡi,i+1 (s, X 0,x s )) s≤T and (g i,i+1 (s, X 0,x s )) s≤T are non decreasing.

(H5) For any i ∈ Γ, a) f i is Lipschitz continuous in ( y, z) uniformly in (t, x), i.e. for any y 1 ,

y 2 ∈ R p , z 1 , z 2 ∈ R d , (t, x) ∈ [0, T] × R k , | f i (t, x, y 1 , z 1 ) -f i (t, x, y 2 , z 2 )| ≤ C(| y 1 -y 2 | + |z 1 -z 2 |); 90 
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b) ∀j ∈ Γ -i , the mapping ȳ → f i (t, x, [(y k ) k∈Γ -j , ȳ], z) is non-decreasing when the other components t, x, (y k ) k∈Γ -j and z are fixed.

c) f i is continuous in (t, x) uniformly in ( y, z) and f i (t, x, 0, 0) belongs to Π g .

In order to deal with the zero-sum switching game we rely on solutions of systems of reflected BSDEs with oblique reflection or inter-connected bilateral obstacles of type below. The following result whose proof is given in Section 5 will allow us to show that the zero-sum switching game has a value.

Theorem 3.3.1. Assume that assumptions (H1), (H2) and (H3) are fulfilled. Then there exist processes (Y i , Z i , K i,± ) i∈Γ such that: For any i ∈ Γ and (t,

x) ∈ [0, T] × R k , ∀s ≤ T,                          Y i ∈ S 2 ; K i,± ∈ A loc and Z i ∈ H 2,d loc ; Y i s = h i (X t,x T ) + T s f i (r, X t,x r )dr - T s Z r dB r + K i,+ T -K i,+ s -(K i,- T -K i,- s ); L i ( Y) s ≤ Y i s ≤ U i ( Y) s ; T 0 (Y i s -L i ( Y) s )dK i,+ s = 0 and T 0 (Y i s -U i ( Y) s )dK i,- s = 0; (3.17)
where for any s ≤ T, L i ( Y) s := Y i+1 s g i,i+1 (s, X t,x s ) and U i ( Y) s := Y i+1 s + ḡi,i+1 (s, X t,x s ).

Note that obviously the solution (Y i , Z i , K i,± ) i∈Γ of (3.17) depends also on (t, x) which we omit as there is no possible confusion.

To proceed let (Y i , Z i , K i,± ) i∈Γ be the solution of (3.17) when t = 0. We then have (see e.g. [START_REF] Hamadene | Zero-sum stochastic differential games and backward equations[END_REF], for more details): Proposition 3.3.2. For all i ∈ Γ and s ≤ T, (a)

Y i 0 = ess inf τ∈T 0 ess sup σ∈T 0 J i 0 (σ, τ) = ess sup σ∈T 0 ess inf τ∈T 0 J i 0 (σ, τ), (3.18)
where,

J i s (σ, τ) = E σ∧τ s f i (r, X 0,x r )dr + 1 {τ<σ} U i τ (Y) + 1 {σ≤τ, σ<T} L i σ (Y) + h i (X 0,x T )1 {σ=τ=T} F s . (3.19) (b) We have Y i s = J i s (σ i s , τ i s )
where σ i s ∈ T s and τ i s ∈ T s are stopping times defined by,

   σ i s = inf{s ≤ t ≤ T : Y i t = L i t ( Y)} ∧ T, τ i s = inf{s ≤ t ≤ T : Y i t = U i t ( Y)} ∧ T, (3.20) 
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and we use the convention that inf ∅ = +∞. Moreover, σ i s , τ i s is a saddle-point for the zero-sum Dynkin game, and g i,i+1 .

J i s (σ, τ i s ) ≤ J i s (σ i s , τ i s ) ≤ J i s (σ i s , τ) ∀σ, τ ∈ T s . ( 3 

Value of the zero-sum switching game on square integrable admissible controls

We are now going to focus on the link between Y i , i ∈ Γ, with the value function of the zerosum switching game over square integrable controls, namely the relation (3.11). For that we are going to make another supplementary assumption on the solution (Y i , Z i , K i,± ) i∈Γ of system (3.17) which is related to integrability of Z i , i ∈ Γ. Later on we will show that we have also the relation (3.11) without this latter assumption, but at the price of some additional regularity properties of the switching costs g i,i+1

and ḡi,i+1 (see (H4)).

To proceed, consider the following sequence (ρ n , θ n ) n≥0 defined as following: ρ 0 = 0, θ 0 = i and for n ≥ 1,

ρ n = σ θ n-1 ρ n-1 ∧ τ θ n-1 ρ n-1 and θ n = 1 + θ n-1 if θ n-1 ≤ p -1, 1 if θ n-1 = p;
where σ θ n-1 ρ n-1 and τ θ n-1 ρ n-1 are defined using (3.20). Next let u (1) := (u (1) s ) s≤T (resp. u (2) := (u (2) s ) s≤T ) be the piecewise process defined by: u

s = 0 for s < ρ 1 and for n ≥ 1, s ∈ [ρ n , ρ n+1 ), u (1) 
=    1 + u (1) ρ n -if Y θ n-1 ρ n = Y θ n ρ n -g θ n-1 ,θ n (ρ n , X 0,x ρ n ), u (1) s 
ρ n -if Y θ n-1 ρ n > Y θ n ρ n -g θ n-1 ,θ n (ρ n , X 0,x ρ n ) (1) 
where u

ρ n -is the left limit of u (1) at ρ n (resp. u

s = 0 for s < ρ 1 and for n ≥ 1, s ∈ [ρ n , ρ n+1 ), u (2) 
s = 1 + u (2) ρ n -if Y θ n-1 ρ n = Y θ n ρ n + g θ n-1 ,θ n (ρ n , X 0,x ρ n ), u (2) 
ρ n -if Y θ n-1 ρ n < Y θ n ρ n + g θ n-1 ,θ n (ρ n , X 0,x ρ n ) (2) 
where u

(2)

ρ n -is the left limit of u (2) at ρ n ). Next let u * and v * be the following sequences of stopping times: σ * 0 = τ * 0 = 0 and for n ≥ 1,

σ * n = inf{s ≥ σ * n-1 , u (1) 
s > u (1) 
s-} ∧ T and τ * n = inf{s ≥ τ * n-1 , u (2) 
s > u (2) 
s-} ∧ T.

We then have: 

(u * , v * ) is square integrable ; iii) Y i 0 = J i (θ(u * , v * )). Proof. i) Let us show that u * is admissible. Assume that P[σ * n < T, ∀n ≥ 0] > 0.
As the σ * n 's are defined through the ρ n s, then there exists a loop {j, j + 1, ..., p -1, p, 1, ..., j -1, j} such that

P[ω, ∃ a subsequence (n ) ≥0 such that Y j ρ n = Y j+1 ρ n + ϕ j,j+1 (ρ n , X 0,x ρ n ), . . . , Y j-1 ρ n +p-1 = Y j ρ n +p-1 + ϕ j-1,j (ρ n +p-1 , X 0,x ρ n +p-1 ), ∀ ≥ 0] > 0
where ϕ i,i+1 is the same as in (3.14) and equal to either -g i,i+1

or g i,i+1 depending on whether C 1 or C 2 makes the decision to switch from the current state j 0 to the next one. Next let us set γ = lim →∞ ρ n . Take the limit w.r.t in the previous equalities to deduce that:

P[ϕ j,j+1 (γ, X 0,x γ ) + ... + ϕ p-1,p (γ, X 0,x γ ) + ϕ p,1 (γ, X 0,x γ ) + ... + ϕ j-1,j (γ, X 0,x γ ) = 0] > 0
which is contradictory with the non free loop property (3.14). By the same reasoning we obtain the admissibility of v * .

ii) Let us recall the definition of the square integrability for θ(u * , v * ). As u * and v * are proved admissible in i), then the coupling θ(u * , v * ) exists. Next we will prove that lim

N→∞ C u * ,v * N ∈ L 2 (dP).
For this recall that i is fixed, ρ 0 = 0 and θ 0 = i. Next let us consider the equation satisfied by Y i on [0, ρ 1 ]. We then have:

Y i 0 = h i (X 0,x T )1 (ρ 1 =T) + Y i ρ 1 1 (ρ 1 <T) + ρ 1 0 f i r, X 0,x r dr - ρ 1 0 Z i r dB r + ρ 1 0 dK i,+ r - ρ 1 0 dK i,- r = h i (X 0,x T )1 (ρ 1 =T) + Y i+1 σ i 0 -g i,i+1 (σ i 0 , X 0,x σ i 0 ) 1 (σ i 0 ≤τ i 0 ) 1 (σ i 0 <T) + Y i+1 τ i 0 + ḡi,i+1 (τ i 0 , X 0,x τ i 0 ) 1 (τ i 0 <σ i 0 ) + ρ 1 0 f i r, X 0,x r dr - ρ 1 0 Z i r dB r = h θ 0 (X 0,x T )1 (ρ 1 =T) + Y θ 1 ρ 1 1 (ρ 1 <T) -g θ 0 θ 1 , (ρ 1 , X 0,x ρ 1 )1 (ρ 1 =σ θ 0 0 ) -ḡθ 0 θ 1 (ρ 1 , X 0,x ρ 1 )1 (ρ 1 =τ θ 0 0 ) 1 (ρ 1 <T) + ρ 1 0 f θ 0 r, X 0,x r dr - ρ 1 0 Z θ 0 r dB r (3.22) 
Next we deal with Y θ 1 ρ 1 by considering the doubly RBSDEs (3.17) in the interval [ρ 1 , ρ 2 ], i.e.
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= h θ 1 (X 0,x T )1 (ρ 2 =T) + Y θ 2 ρ 2 1 (ρ 2 <T) -g θ 1 θ 2 (ρ 2 , X 0,x ρ 2 )1 (ρ 2 =σ θ 1 ρ 1 ) -ḡθ 1 θ 2 (ρ 2 , X 0,x ρ 2 )1 (ρ 2 =τ θ 1 ρ 1 ) 1 (ρ 2 <T) + ρ 2 ρ 1 f θ 1 r, X 0,x r dr - ρ 2 ρ 1 Z θ 1 r dB r (3.23) 
By replacing Y θ 1 ρ 1 in (3.22) with (3.23), then (3.22) yields

Y i 0 = 2 ∑ n=1 h θ n-1 (X 0,x T )1 (ρ n =T) 1 (ρ n-1 <T) + Y θ 2 ρ 2 1 (ρ 2 <T) + ρ 2 0 f θ(u * ,v * ) r r, X 0,x r dr - 0 ρ 1 Z θ(u * ,v * ) r r dB r - 2 ∑ n=1 g θ n-1 θ n (ρ n , X 0,x ρ n )1 (ρ n =σ θ n-1 ρ n-1 ,ρ n <T) -ḡθ n-1 θ n (ρ n , X 0,x ρ n )1 (ρ n =τ θ n-1 ρ n-1 ,ρ n <T) (3.24) 
Following (3.24) we replace iteratively Y θ n ρ n for n = 1, 2, ..., N we deduce that

Y i 0 = N ∑ n=1 h θ n-1 (X 0,x T )1 (ρ n =T) 1 (ρ n-1 <T) + Y θ N ρ N 1 (ρ N <T) -C θ(u * ,v * ) N + ρ N 0 f θ(u * ,v * ) r (r, X 0,x r )dr - ρ N 0 Z θ(u * ,v * ) r r dB r (3.25) 
From (3.25) we obtain: ∀N ≥ 1,

|C θ(u * ,v * ) N | ≤ N ∑ n=1 |h θ n-1 (X 0,x T )|1 (ρ n =T) 1 (ρ n-1 <T) + |Y θ N ρ N 1 (ρ N <T) | + |Y i 0 | + | ρ N 0 f θ(u * ,v * ) r (r, X 0,x r )dr| + | ρ N 0 Z θ(u * ,v * ) r r dB r | ≤ max i∈Γ h i (X 0,x T ) + 2 max i∈Γ sup s∈[0,T] |Y i s | + T 0 | f θ(u * ,v * ) r (r, X 0,x r )|dr + sup s∈[0,T] | s 0 Z θ(u * ,v * ) r r dB r |
Finally by taking the supremum over N we obtain:

sup N≥1 C θ(u * ,v * ) N ≤ max ß∈Γ h i (X 0,x T ) + 2 max ß∈Γ sup s∈[0,T] |Y i s | + T 0 | f θ(u * ,v * ) r (r, X 0,x r )|dr + sup s∈[0,T] | s 0 Z θ(u * ,v * ) r r dB r M θ(u * ,v * )s s |. (3.26) 
As (Z i ) i∈Γ are dt ⊗ dP-square integrable, then

E[sup s≤T |M θ(u * ,v * ) s s | 2 ] ≤ CE[ ∑ i=1,m T 0 |Z i s | 2 ds] < ∞.
It implies that the right-hand side of (3.26) Finally for iii), by directly taking the expectation on both sides of (3.25) we obtain

Y i 0 = E N ∑ n=1 h θ n-1 (X 0,x T )1 (ρ n =T) 1 (ρ n-1 <T) + Y θ N ρ N 1 (ρ N <T) -C θ(u * ,v * ) N + ρ N 0 f θ(u * ,v * ) r (r, X 0,x r )dr (3.27) 
Now it is enough to take the limit w.r.t. N in (3.27) and to use the Lebesgue dominated convergence theorem since lim N→∞ ρ N = T and considering (3.26), to deduce that

Y i 0 = E h θ(u * ,v * ) T (X 0,x T ) + T 0 f θ(u * ,v * ) r (r, X 0,x r )dr -C θ(u * ,v * ) ∞ = J i (θ(u * , v * )) as lim N→∞ C θ(u * ,v * ) N = C θ(u * ,v * ) ∞ .
Let i be the starting mode of the system which is fixed. Let σ = (σ n ) n≥0 be an admissible control of C 1 (which then belongs to A) and v * (σ) =: ( τn ) n≥0 be the optimal response strategy of C 2 which we are going to define below. Indeed let (ρ n , θ n ) n≥0 be the sequence defined as follows: ρ 0 = 0, θ 0 = i and for n ≥ 1 ρ 0 = 0, θ 0 = i, and for n ≥ 1,

ρ n = σ řn ∧ τn , θ n = 1 + θ n-1 if θ n-1 ≤ p -1 1 if θ n-1 = p (3.28) 
where

τn := τ θ n-1 ρ n-1 := inf s ≥ ρ n-1 , Y θ n-1 s = Y θ n s + ḡθ n-1 θ n (s) ∧ T (according to (3.20))
and řn is defined by ř0 = 0, ř1 = 1, for n ≥ 2,

řn = řn-1 + 1 {σ řn-1 ≤ τn-1 } .
Next let v be the piecewise process defined by: vs = 0 for s < ρ 1 and for n ≥

1, s ∈ [ρ n , ρ n+1 ), vs =      1 + vρ n -if ρ n = τn < σ řn vρ n -if ρ n = σ řn ≤ τn 95 CHAPTER 3.
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where vρ n -= lim s ρ n vs . Now the stopping times τn , n ≥ 0, are defined as follows: τ0 = 0 and for n ≥ 1, τn = inf{s ≥ τn-1 , vs > vs-} ∧ T

where vs-= lim r s vr .

Next we are going to define the notion of optimal responce u * (v) = ( σn ) n≥0 of C 1 to an admissible control v = (τ n ) n≥0 of the second player C 2 . Indeed let (ρ n , θ n ) n≥0 be the sequence defined as follows: ρ 0 = 0, θ 0 = i and for n ≥ 1 ρ 0 = 0, θ 0 = i, and for n ≥ 1,

ρ n = σn ∧ τ šn , θ n = 1 + θ n-1 if θ n-1 ≤ p -1 1 if θ n-1 = p (3.30) 
where

σn := σ θ n-1 ρ n-1 := inf s ≥ ρ n-1 , Y θ n-1 s = Y θ n s -g θ n-1 θ n (s) ∧ T (according to (3.20))
and šn is defined by š0 = 0, š1 = 1, for n ≥ 2,

šn = šn-1 + 1 { σn-1 >τ šn-1 } .
Next let ǔ be the piecewise process defined by: ǔs = 0 for s < ρ 1 and for n ≥ 1, s ∈ [ρ n , ρ n+1 ),

ǔs =      1 + ǔρ n -if ρ n = σn ≤ τ šn ǔρ n -if ρ n = τ šn < σn
where ǔρ n -= lim s ρ n ǔs . Now the stopping times σn , n ≥ 0, are defined as follows:

σ0 = 0 and for n ≥ 1, σn = inf{s ≥ σn-1 , ǔs > šs-} ∧ T (3.31) 
where ǔs-= lim r s ǔr . We then have: Proposition 3.3.5. Assume (H1), (H2), (H3) and (Z i ) i∈Γ ∈ H 2,d . Then for any u ∈ A and v ∈ B, we have:

i) u * (v) ∈ A, v * (u) ∈ B; ii) J i (θ(u, v * (u))) ≤ Y i 0 ≤ J i (θ(u * (v), v)) . (3.32) 
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Proof. i) In order to show u * (v) ∈ A, when v = (τ n ) n≥0 ∈ B, we need to prove that u * (v) = ( σn ) n≥0 is admissible and E (A

u * (v) T ) 2 < ∞.
Indeed if u * (v) = ( σn ) n≥0 is not admissible then there would exist a loop {j, j + 1, ..., p -1, p, 1, ..., j -1, j} which is visited infinitley many times, i.e.,

P[ω, ∃ a subsequence (n ) ≥0 such that Y j σn = Y j+1 σn -g j,j+1 ( σn , X 0,x σn ), . . . , Y j-1 σn +p-1 = Y j σn +p-1 -g j-1,j ( σn +p-1 , X 0,x σn +p-1 ), ∀ ≥ 0] > 0.
Next let us set η = lim →∞ σn . Take the limit in the previous equalities yield:

P[g j,j+1 (η, X 0,x η ) + ... + g p-1,p (η, X 0,x η ) + g p,1 (η, X 0,x η ) + ... + g j-1,j (η, X 0,x η ) = 0] > 0.
But this is contradictory with the non free loop property (3.16).

Next let us show that E (A

u * (v) T ) 2 < ∞.
Proceeding similarly as in the proof of Proposition 3.3.4, in the interval [0, ρ 1 ] we have

Y i 0 = h i (X 0,x T )1 (ρ 1 =T) + Y ρ 1 1 (ρ 1 <T) + ρ 1 0 f i (r, X 0,x r )dr - ρ 1 0 Z i r dB r + ρ 1 0 dK i,+ r - ρ 1 0 dK i,- r (3.33) 
Note that the minimizer C 2 's control v = (τ n ) n≥0 is not necessarily optimal, then ρ 1 0 dK i,- r ≥ 0 and we know that for any s ∈ [0, T], Y i s ≤ Y i+1 s + ḡi,i+1 (s, X 0,x s ). On the other hand, since ρ 1 = σ1 ∧ τ š1 then ρ 1 0 dK i,+ r = 0. It follows that:

Y i 0 ≤ h i (X 0,x T )1 (ρ 1 =T) + Y i ρ 1 1 (ρ 1 <T) + ρ 1 0 f i (r, X 0,x r )dr - ρ 1 0 Z i r dB r ≤ h i (X 0,x T )1 (ρ 1 =T) + 1 (ρ 1 <T) (Y i σ1 1 {ρ 1 = σ1 } + Y i τ š1 1 {ρ 1 =τ š1 } ) + ρ 1 0 f i (r, X 0,x r )dr - ρ 1 0 Z i r dB r ≤ h θ 0 (X 0,x T )1 (ρ 1 =T) + Y θ 1 ρ 1 1 (ρ 1 <T) -g θ 0 θ 1 (ρ 1 , X 0,x ρ 1 )1 (ρ 1 = σ1 <T) -ḡθ 0 θ 1 (ρ 1 , X 0,x ρ 1 )1 (ρ 1 =τ š1 <T) + ρ 1 0 f θ 0 (r, X 0,x r )dr - ρ 1 0 Z θ 0 r dB r (3.34) 
Proceeding then iteratively for n = 1, 2, ..., N to obtain

Y i 0 ≤ N ∑ n=1 h θ n-1 (X 0,x T )1 (ρ n-1 <T,ρ n =T) + Y θ N ρ N 1 (ρ N <T) + ρ N 0 f θ(u * (v),v) r (r, X 0,x r )dr - ρ N 0 Z θ(u * (v),v) r r dB r - N ∑ n=1 g θ n-1 θ n (ρ n , X 0,x ρ n )1 (ρ n = σn <T) -ḡθ n-1 θ n (ρ n , X 0,x ρ n )1 (ρ n =τ šn <T) . (3.35) 
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Then we have

A u * (v) ρ N ≤ N ∑ n=1 h θ n-1 (X 0,x T )1 (ρ n-1 <T,ρ n =T) + Y θ N ρ N 1 (ρ N <T) + ρ N 0 f θ(u * (v),v) r (r, X 0,x r )dr - ρ N 0 Z θ(u * (v),v) r r dB r -Y i 0 + B v ρ N . (3.36) 
Next as v ∈ B and since (Z i ) i∈Γ ∈ H 2,d , taking the squares of each hand-side of the previous inequality to deduce that:

E[(A u * (v) ρ N ) 2 ] ≤ C
for some real constant C. Finally to conclude it is enough to use Fatou's Lemma since ρ N → T as N → ∞.

In the same way we show that v * (u) belongs to B when u belongs to A.

iii) Let v ∈ B. Going back to (3.47), take expectation to obtain:

Y i 0 = E[Y i 0 ] ≤ E[ N ∑ n=1 h θ n-1 (X 0,x T )1 (ρ n-1 <T,ρ n =T) + Y θ n ρ n 1 (ρ n <T) + ρ N 0 f θ(u * (v),v) r (r, X 0,x r )dr -C θ(u * (v),v) N ] As v ∈ B and u * (v) ∈ A, then for any N ≥ 1, |C θ(u * (v),v) N | ≤ A u * (v) T + B v T ∈ L 2 ( 
dP). Take now the limit w.r.t N in the right-hand side of the previous inequality and using dominated convergence theorem to deduce that:

Y i 0 ≤ E[h θ T (u * (v),v) (X 0,x T ) + T 0 f θ(u * (v),v) r (r, X 0,x r )dr -C θ(u * (v),v) ∞ ] = J i (θ(u * (v), v)), ∀v ∈ B.
The other inequality is shown in a similar fashion.

As a by-product we obtain the following result: Theorem 3.3.6. Assume (H1), (H2), (H3) and (Z i ) i∈Γ ∈ H 2,d . Then for any i = 1, ..., m,

Y i 0 = sup u∈A inf v∈B J i (θ(u, v)) = inf v∈B sup u∈A J i (θ(u, v)).
Proof. By (3.32), we know that for any u ∈ A and v ∈ B,

J i (θ(u, v * (u))) ≤ Y i 0 ≤ J i (θ(u * (v), v)) . Therefore sup u∈A J i (θ(u, v * (u))) ≤ Y i 0 ≤ inf v∈B J i (θ(u * (v), v)) . 98 
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As when

u ∈ A (resp. v ∈ B), v * (u) ∈ B (resp. u * (v) ∈ A) then inf v∈B sup u∈A J i (θ(u, v))) ≤ sup u∈A J i (θ(u, v * (u))) ≤ Y i 0 ≤ inf v∈B J i (θ(u * (v), v)) ≤ sup u∈A inf v∈B J i (θ(u, v)))
which implies the desired result since the right-hand side is smaller that the left-hand one.

Remark 3.3.7. Note that we have also the following equalities: For any i ∈ Γ,

Y i 0 = sup u∈A J i (θ(u, v * (u))) = inf v∈B J i (θ(u * (v), v)) = inf v∈B sup u∈A J i (θ(u, v(u))) = sup u∈A inf v∈B J i (θ(u(v), v)) .
Actually let us show the fourth equality. Let ũ(.) ∈ A. Then

inf v∈B J i (θ( ũ(v), v)) ≤ inf v∈B sup u∈A J i (θ(u, v)) = Y i 0 = inf v∈B J i (θ(u * (v), v))
which implies the fourth equality since u * (.) ∈ A. The third one is proved similarly.

As mentioned before, the bottleneck for proving the existence of a value for the zero-sum switching game over square integrable controls is the square integrability of (Z i ) i∈Γ . The point now is whether or not it is possible to characterize Y i as the value of the zero-sum switching game without assuming the square integrability of (Z i ) i∈Γ . At least at the cost of adding some supplementary conditions on the data of the game. The answer is affirmative if we require assumption (H4) on the switching costs. Finally note that this assumption (H4) is satisfied if ḡi,i+1 and g i,i+1

, i = 1, . . . , p, do not depend on x and are non decreasing w.r.t t (e.g. they are constant).

We then have: Theorem 3.3.8. Assume (H1), (H2) and (H3). Then for any i ∈ Γ,

Y i 0 = sup u∈A inf v∈B J i (θ(u, v)) = inf v∈B sup u∈A J i (θ(u, v)).
Proof. First recall the processes (Y i , Z i , K i,± ) i∈Γ that satisfy: For any i ∈ Γ and s ≤ T, 

             Y i ∈ S 2 ; K i,± ∈ A loc and Z i ∈ H 2,d loc ; Y i s = h i (X 0,x T ) + T s f i (r, X 0,x r )dr - T s Z r dB r + K i,+ T -K i,+ s -(K i,- T -K i,- s ); L i ( Y) s ≤ Y i s ≤ U i ( Y) s ; T 0 (Y i s -L i ( Y) s )dK i,+ s = 0 and T 0 (Y i s -U i ( Y) s )dK i,- s = 0 (3.
≤ T, L i ( Y) s := Y i+1 s -g i,i+1 (s, X 0,x s ) and U i ( Y) s := Y i+1 s + ḡi,i+1 (s, X 0,x s ).
Next for any k ≥ 0, let us define the following stopping time:

γ k := inf{s ≥ 0, s 0 { ∑ i=1,m |Z i r | 2 }dr ≥ k} ∧ T. (3.38) 
First note that the sequence (γ k ) k≥1 is increasing, of stationnary type and converges to T. Next we have

γ k 0 |Z i r | 2 dr ≤ k, which means that the processes (Z i s 1 {s≤γ k } ) s≤T belong to H 2,d .
Let us now define ( Ȳi , Zi , Ki,± ) i∈Γ as follows: For all i ∈ Γ and s ≤ T,

Ȳi s := Y i s∧γ k , Zi s = Z i s 1 {s≤γ k } , Ki,+ s := K i,+
s∧γ k and Ki,-

s := K i,- s∧γ k . ( 3.39) 
Thus the family Ȳi , Zi , Ki,+ , Ki,-i∈Γ is the solution of the following system: ∀i ∈ Γ,

               i) Ȳi ∈ S 2 , Zi ∈ H 2,d , Ki,± ∈ A loc ; ii) Ȳi s = Y i γ k + T s 1 (r≤γ k ) f i (r, X 0,x r )dr - T s Zi r dB r + Ki,+ T -Ki,+ s -( Ki,- T -Ki,- s ), ∀s ≤ T; iii) Ȳi+1 s -g i,i+1 (s, X 0,x s ) ≤ Ȳi s ≤ Ȳi+1 s + ḡi,i+1 (s, X 0,x s ), ∀s ≤ T; iv) T 0 Ȳi s -L i ( Ȳ) s d Ki,+ s = 0 and T 0 Ȳi s -U i ( Ȳ) s d Ki,- s = 0 (3.40)
where U i ( Ȳ) and L i ( Ȳ) are defined as in (3.37). Let us amphazise that here we need the as- sumption [H4] to show the inequalities in point iii) which actually hold true. Indeed for s ≤ γ k , the inequalities hold true by the definition of the processes Ȳi , Zi , Ki,+ , Ki,-i∈Γ and (3.37). If s > γ k , by (H4) we have,

Ȳi+1 s -g i,i+1 (s, X 0,x s ) = Y i+1 γ k -g i,i+1 (s, X 0,x s ) ≤ Y i+1 γ k -g i,i+1 (γ k , X 0,x γ k ) ≤ Y i γ k = Ȳi s ≤ Y i+1 γ k + ḡi,i+1 (s, X 0,x s ) = Ȳi+1 s + ḡi,i+1 (s, X 0,x s ).
On the other hand, by definition of K±,i and Ȳi , i ∈ Γ, we have

T 0 Ȳi s -L i ( Ȳ) s d Ki,+ s = γ k 0 (Y i s -L i ( Y) s )dK i,+ s = 0.
Similarly we have also

T 0 ( Ȳi s -U i ( Ȳ) s )d Ki,- s = 0.
Therefore the processes ( Ȳi , Zi , Ki,± ) i∈Γ verify (3.40). Now using the result of Theorem 3.3.6, we obtain: For any i ∈ Γ,

Y i 0 = Ȳi 0 = sup u∈A inf v∈B J k i (θ(u, v)) = inf v∈B sup u∈A J k i (θ(u, v)). 100 
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with

J k i (θ(u, v)) = E Y θ(u,v) T γ k + T 0 1 (r≤γ k ) f θ(u,v) r (r, X 0,x r )dr -C θ(u,v) ∞
where θ(u, v) is the coupling of the pair (u, v) of controls and

C θ(u,v) ∞ := lim n→∞ C u,v N . Next let Yi 0 = sup u∈A inf v∈B J i (θ(u, v)) and Ỹi 0 = inf v∈B sup u∈A J i (θ(u, v)).
Therefore

| Yi 0 -Y i 0 | =| sup u∈A inf v∈B J i (θ(u, v)) -sup u∈A inf v∈B J k i (θ(u, v))| ≤ sup (u,v)∈A×B E[|Y θ(u,v) T γ k -h θ(u,v) T (X 0,x T )| + T 0 |1 (r≤γ k ) f θ(u,v) r (r, X 0,x r )dr -f θ(u,v) r (r, X 0,x r )|dr] ≤ E[ ∑ i=1,m |Y i γ k -h i (X 0,x T )| + T γ k ∑ i=1,m | f i (r, X 0,x r )|dr].
But the right-hand side converges to 0 as k → ∞.

Therefore Yi 0 = Y i 0 = sup u∈A inf v∈B J i (θ(u, v)).
In the same way we obtain also that

Ỹi 0 = Y i 0 = inf v∈B sup u∈A J i (θ(u, v)).
It follows that

Y i 0 = sup u∈A inf v∈B J i (θ(u, v)) = inf v∈B sup u∈A J i (θ(u, v)).
Thus the zero-sum switching game has a value on square integrable controls which is equal to Y i 0 .

Value of the zerosum switching game on integrable admissible controls

In this part, we are not going to assume the square integrability of (Z i ) i∈Γ neither (H4) and show that the relation (3.12) holds true and this common value is equal to Y i 0 , where (Y i , Z i , K i,± ) i∈Γ is the solution of system (3.17). Actually we have the following result: CHAPTER 3. PAPER 2: ZERO-SUM SWITCHING GAME, SYSTEMS OF REFLECTED BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED OBSTACLES Theorem 3.3.9. Assume (H1), (H2) and (H3). Then for any i ∈ Γ,

Y i 0 = inf v∈B (1) 
sup u∈A

J i (θ(u, v)) = sup u∈A (1) inf v∈B

J i (θ(u, v)).

Proof. Let u = (σ n ) n≥0 and v = (τ n ) n≥0 be two admissible controls which belong to A (1) and B (1) respectively. Next recall the optimal responses u * (v) = ( σn ) n≥0 and v * (u) = ( τn ) n≥0 defined in (3.31) and (3.29) respectively. First note that, as shown in Proposition 3.3.5, the controls u * (v) and v * (u) are admissible. Let us now show u * (v) belongs to A (1) . A similar procedure will show that v * (u) belongs to B (1) .

Indeed for k ≥ 1, recall the stopping time γ k defined in (3.38) and the sequences (ρ n ) n≥0 and (θ n ) n≥0 defined in (3.3.5). Next for k ≥ 1, let us define: ∀ n ≥ 0,

ρ k n = ρ n 1 {ρ n <γ k } + T1 {ρ n ≥γ k } and θ k n = θ n 1 {ρ n <γ k } + θ n k 1 {ρ n ≥γ k }
where

n k = inf{n ≥ 0, ρ n ≥ γ k } -1. Note that ρ k n is a stopping time and {ρ k n < T} = {ρ n < γ k }. The sequences (ρ k n ) n≥0 and (θ k n ) n≥0
constitute the fact that we freeze the actions of the controllers when γ k is reached. Next going back to the system of equations (3.17) satisfied by the family Y i , Z i , K i,+ , K i,- i∈Γ and as in (3.45) we have:

Y i 0 = h i (X 0,x T )1 (ρ k 1 =T) + Y i ρ k 1 1 (ρ k 1 <T) + ρ k 1 0 f i (r, X 0,x r )dr - ρ k 1 0 Z i r dB r + ρ k 1 0 dK i,+ r =0 - ρ k 1 0 dK i,- r ≤ h i (X 0,x T )1 (ρ k 1 =T) + Y ρ k 1 1 (ρ k 1 <T) + ρ k 1 0 f i (r, X 0,x r )dr - ρ k 1 0 Z i r dB r (3.42) But {ρ k 1 < T} = {ρ 1 < γ k }. Therefore Y i ρ k 1 1 (ρ k 1 <T) = Y i ρ 1 1 (ρ 1 <γ k ) = (Y i σ1 1 {ρ 1 = σ1 } + Y i τ š1 1 {ρ 1 =τ š1 } )1 (ρ 1 <γ k )
and then

Y i 0 ≤ h i (X 0,x T )1 (ρ k 1 =T) + (Y i σ1 1 {ρ 1 = σ1 } + Y i τ š1 1 {ρ 1 =τ š1 } )1 (ρ 1 <γ k ) + ρ k 1 0 f i (r, X 0,x r )dr - ρ k 1 0 Z i r dB r (3.43) But for any s ∈ [0, T], Y i s ≤ Y i+1 s + ḡi,i+1 (s, X 0,x s ) and Y i σ1 1 {ρ 1 = σ1 } 1 (ρ 1 <γ k ) = (Y i+1 σ1 -g i,i+1 ( σ1 , X 0,x σ1 ))1 {ρ 1 = σ1 } 1 (ρ 1 <γ k ) .
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Plug now this in (3.43) to obtain:

Y i 0 ≤ h i (X 0,x T )1 (ρ k 1 =T) + (Y i+1 σ1 -g i,i+1 ( σ1 , X 0,x σ1 ))1 {ρ 1 = σ1 } 1 (ρ 1 <γ k ) + (Y i+1 τ š1 + ḡi,i+1 (τ š1 , X 0,x τ š1 ))1 {ρ 1 =τ š1 } 1 (ρ 1 <γ k ) + ρ k 1 0 f θ 0 (r, X 0,x r )dr - ρ k 1 0 Z θ 0 r dB r . (3.44) As (Y i+1 σ1 1 {ρ 1 = σ1 } + Y i+1 τ š1 1 {ρ 1 =τ š1 } )1 (ρ 1 <γ k ) = Y θ k 1 ρ k 1 1 (ρ k 1 <γ k )
and

(-g i,i+1 ( σ1 , X 0,x σ1 )1 {ρ 1 = σ1 } + ḡi,i+1 (τ š1 , X 0,x τ š1 )1 {ρ 1 =τ š1 } )1 (ρ 1 <γ k ) = (-g θ 0 ,θ k 1 ( σ1 , X 0,x σ1 )1 {ρ k 1 = σ1 } + ḡθ 0 ,θ k 1 (τ š1 , X 0,x τ š1 )1 {ρ k 1 =τ š1 } )1 (ρ k 1 <γ k )
then from (3.45), we obtain:

Y i 0 ≤ h θ 0 (X 0,x T )1 (ρ k 1 =T) + Y θ k 1 ρ k 1 1 (ρ k 1 <γ k ) + (-g θ 0 ,θ k 1 ( σ1 , X 0,x σ1 )1 {ρ k 1 = σ1 } + ḡθ 0 ,θ k 1 (τ š1 , X 0,x τ š1 )1 {ρ k 1 =τ š1 } )1 (ρ k 1 <γ k ) + ρ k 1 0 f θ 0 (r, X 0,x r )dr - ρ k 1 0 Z θ 0 r dB r . (3.45) 
But we can do the same with Y

θ k 1 ρ k 1 1 (ρ k 1 <γ k ) to obtain: Y θ k 1 ρ k 1 1 (ρ k 1 <γ k ) ≤ h θ k 2 (X 0,x T )1 (ρ k 1 <γ k ,ρ k 2 =T) + Y θ k 2 ρ k 2 1 (ρ k 2 <γ k ) + (-g θ k 1 ,θ k 2 ( σ2 , X 0,x σ2 )1 {ρ k 2 = σ2 } + ḡθ k 1 ,θ k 2 (τ š2 , X 0,x τ š2 )1 {ρ k 2 =τ š2 } )1 (ρ k 2 <γ k ) + ρ k 2 ρ k 1 f θ k 2 (r, X 0,x r )dr - ρ k 2 ρ k 1 Z θ k 2 r dB r . (3.46) 
Plug now (3.46) in (3.45) and repeat this procedure N times to obtain:

Y i 0 ≤ N ∑ n=1 h θ k n-1 (X 0,x T )1 (ρ k n-1 <T,ρ k n =T) + Y θ k N ρ k N 1 (ρ k N <γ k ) + ρ k N 0 f θ(u * (v),v) r (r, X 0,x r )dr - ρ k N 0 Z θ(u * (v),v) r r dB r - N ∑ n=1 g θ k n-1 θ k n (ρ k n , X 0,x ρ k n )1 (ρ k n = σn <γ k ) -ḡθ k n-1 θ k n (ρ k n , X 0,x ρ k n )1 (ρ k n =τ šn <γ k ) A u * (v) ρ k N -Bv ρ k N (3.47)
where 0 ≤ Bv 

E[A u * (v) ρ k N ] ≤ -Y i 0 + E[ N ∑ n=1 h θ k n-1 (X 0,x T )1 (ρ k n-1 <T,ρ k n =T) + Y θ k N ρ k N 1 (ρ k N <γ k ) + ρ k N 0 f θ(u * (v),v) r (r, X 0,x r )dr + B v ρ k N ]. (3.48) 
As v ∈ B (1) , then

E[B v ρ k N ] ≤ E[B v
T ] and the right hand side of (3.47) is bounded. Then there exists a constant C such that

E[A u * (v) ρ k N ] ≤ C + E[B v T ].
Finally by using twice Fatou's Lemma (w.r.t k then N) we deduce that (1) . Going back to (3.47), take expectation to obtain:

E[A u * (v) T ] < ∞ which is the claim. iii) Let v ∈ B
Y i 0 ≤ E{ N ∑ n=1 h θ k n-1 (X 0,x T )1 (ρ k n-1 <T,ρ k n =T) + Y θ k N ρ k N 1 (ρ k N <γ k ) + ρ k N 0 f θ(u * (v),v) r (r, X 0,x r )dr - N ∑ n=1 g θ k n-1 θ k n (ρ k n , X 0,x ρ k n )1 (ρ k n = σn <γ k ) -ḡθ k n-1 θ k n (ρ k n , X 0,x ρ k n )1 (ρ k n =τ šn <γ k ) }. (3.49)
By taking the limit w.r.t k then N we obtain that (1) .

Y i 0 ≤ J i (u * (v), v), ∀v ∈ B
In the same way as previously, for any u ∈ A (1) , v * (u) belongs to B (1) and

Y i 0 ≥ J i (u, v * (u)).
It follows that for any u ∈ A (1) and v ∈ B (1) ,

J i (u, v * (u)) ≤ Y i 0 ≤ J i (u * (v), v). Therefore sup u∈A (1) J i (u, v * (u)) ≤ Y i 0 ≤ inf v∈B (1) 
J i (u * (v), v).

As u * (v) (resp. v * (u)) belongs to A (1) (resp. B (1) ) when v ∈ B (1) (resp. u ∈ A (1) ), then inf v∈B (1) sup u∈A (1) J i (u, v)

V + ≤ sup u∈A (1) J i (u, v * (u)) ≤ Y i 0 ≤ inf v∈B (1) 
J i (u * (v), v) ≤ sup u∈A (1) inf v∈B (1) J i (u, v) 

Y i 0 = inf v∈B (1)
sup u∈A (1) J i (θ(u, v(u))) = sup u∈A (1) inf v∈B (1) J i (θ(u(v), v)) .

b) Let (Y i,t,x , Z i,t,x , K i,±,t,x ) i∈Γ be the measurable processes such that: For any i ∈ Γ, i) Y i,t,x ∈ S 2 , K i,±,t,x are continuous non decreasing and P-a.s. 

T t |Z i,t,x s | 2 ds < ∞ ; ii) ∀s ∈ [t, T],                Y i s = h i (X t,x T ) + T s f i (r, X t,x r )dr - T s Z i,t,x r dB r + K i,+,t,x T -K i,+,t,x s -(K i,-,t,x T -K i,-,t,x s ); L i s ((Y l ) l∈Γ ) ≤ Y i s ≤ U i s ((Y l ) l∈Γ ); T t (Y i s -L i s ((Y l ) l∈Γ ))dK i,+ s = 0 and T 0 (Y i s -U i s ((Y l ) l∈Γ ))dK i,- s = 0. ( 3 
:= E{h θ(u,v) T (X t,x T ) + T t f θ(u,v) r (r, X t,x r )dr -C θ(u,v) ∞ |F s } and A (1) 
t (resp. B

t ) is the set of admissible integrable controls which start from i at t.

System of PDEs of min-max type with interconnected obstacles

We are going now to deal with the problem of existence and uniqueness of a solution in viscosity sense for the following system of PDEs of min-max type with interconnected obstacles:

     min{v i (t, x) -L i ( v)(t, x); max v i (t, x) -U i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x, (v l (t, x)) l∈Γ , σ(t, x) D x v i (t, x) } = 0; v i (T, x) = h i (x) (3.51)
where for any i ∈ Γ, L i ( v)(t, x) := v i+1 (t, x)g i,i+1 (t, x) and U i ( v)(t, x) := v i+1 (t, x) + g i,i+1 (t, x). Note that f i is more general w.r.t. the HJB system of (3.3) since it depends also on y and z i .

The result is given in Theorem 3.4.3 but its proof, based on Perron's method, is postponed to

v i * (t, x) -U i ( v * )(t, x)}} ≥ 0 (3.52)
where v * = (v i * ) i∈Γ (resp.

min{v i * (t, x) -L i ( v * )(t, x), max{-p -b(t, x).q - 1 2 Tr[(σσ )(t, x)M] -f i (t, x, v * (t, x), σ (t, x)q); v i * (t, x) -U i ( v * )(t, x)}} ≤ 0 (3.53)
where v * = (v i * ) i∈Γ ).

B) A locally bounded function v = (v i ) i∈Γ is called a viscosity solution of (3.51) if (v i * ) i∈Γ and (v i * ) i∈Γ are viscosity supersolution and viscosity subsolution of (3.51) respectively. Next (t, x) be fixed and let us consider the following sequence of BSDEs: ∀m, n ∈ N, ∀i ∈ Γ,

     Y i,m,n ∈ S 2 , Z i,m,n ∈ H 2,d ; Y i,m,n s = h i (X t,x T ) + T s f i,m,n (r, X t,x r , (Y l,m,n r ) l∈Γ , Z i,m,n r )dr - T s Z i,m,n r dB r , s ≤ T; Y i,m,n T = h i (X t,x T ) (3.54)
where

f i,m,n (s, X t,x s , y, z) = f i (s, X t,x s , y, z) + n y i -[y i+1 -g i,i+1 (s, X t,x s )] - -m y i -[y i+1 + g i,i+1 (s, X t,x s )] + .
As (3.54) is a classical BSDE without obstacle, thanks to the results by Pardoux-Peng [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF], the solution exists and is unique. In addition there exist deterministic functions (v i,m,n ) i∈Γ (see Theorem 4.1. in [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]) such that:

∀s ∈ [t, T], Y i,m,n s = v i,m,n (s, X t,x s ). (3.55)
On the other hand, we have the following properties which we collect in the following proposition.

Proposition 3.4.2 (see [START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF], [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF]). Assume that (H2), (H3) and (H5) are fulfilled. Then we have:

a) P -a.s., ∀s ≤ T, Y i,m+1,n s ≤ Y i,m,n s ≤ Y i,m,n+1
s , ∀i ∈ Γ, n, m ≥ 0, which also implies the same property for (v i,m,n ) i∈Γ , i.e. for any (t,

x) ∈ [0, T] × R k , i ∈ Γ, v i,m+1,n (t, x) ≤ v i,m,n (t, x) ≤ v i,m,n+1 (t, x).
(3.56)

b) The sequence ((Y i,m,n ) i∈Γ ) n≥0 ) (resp. ((Y i,m,n ) i∈Γ ) m≥0 ) converges in (S 2 ) p to ( Ȳi,m ) i∈Γ (resp. (Y i,n ) i∈Γ ) which verifies the following system of reflected RBSDEs:

           Y i,m ∈ S 2 , Z i,m ∈ H 2 , K i,m,+ ∈ A 2 ; Y i,m s = h i (X t,x T ) + T s f i,m (r, X t,x r , (Y l,m r ) l∈Γ , Z i,m r )dr - T s Z i,m r dB r + K i,m,+ T -K i,m,+ s , s ≤ T; Y i,m s ≥ L i (( Ȳl,m s ) ł∈Γ ), s ≤ T; T 0 (Y i,m s -L i (( Ȳl,m s ) ł∈Γ ))dK i,m,+ s = 0 (3.57) where f i,m (s, X t,x s , y, z i ) = f i (s, X t,x s , y, z i ) -m(y i -[y i+1 + g i,i+1 (s, X t,x s )]) + . (resp.            Y i,n ∈ S 2 , Z i,n ∈ H 2 , K i,n,-∈ A 2 ; Y i,n s = h i (X t,x T ) + T s f i,n (r, X t,x r , (Y l,n r ) l∈Γ , Z i,n r )dr - T s Z i,n r dB r + K i,n,- T -K i,n,- s , s ≤ T; Y i,n s ≤ U i ((Y l,m s ) l∈Γ ), s ≤ T; T 0 (Y i,m s -U i ((Y l,m s ) l∈Γ ))dK i,n,- s = 0 (3.58) where f i,n (s, X t,x s , y, z i ) = f i (s, X t,x s , y, z i ) + n(y i -[y i+1 -g i,i+1
(s, X t,x s )]) + .
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c) There exist deterministic continuous functions (v i,m ) i∈Γ (resp. (v i,n ) i∈Γ ) such that for any (t,

x) ∈ [0, T] × R k , s ∈ [t, T], Y i,m s = v i,m (s, X t,x s ) (3.59) (resp. Y i,n s = v i,n (s, X t,x s )) (3.60)
In addition the sequence ((v i,m ) m≥0 ) i∈Γ (resp.((v i,n ) n≥0 ) i∈Γ ) are decreasing w.r.t. m (resp. increasing w.r.t. n).

d) (v i,m ) i∈Γ (resp. (v i,n )) belong to class Π g and is the unique viscosity solution of following system of variational inequalities with a reflected obstacle:

     min{v i,m (t, x) -L i (( vl,m ) l∈Γ )(t, x); -∂ x v i,m (t, x) -L X (v i,m )(t, x) -f i,m (t, x, (v l,m (t, x)) l∈Γ , σ(t, x) D x v i,m (t, x))} = 0 v i,m (T, x) = h i (x). (3.61) (resp.      max{v i,n (t, x) -U i ((v l,m ) l∈Γ )(t, x); -∂ x v i,n (t, x) -L X (v i,n )(t, x) -f i,n (t, x, (v l,n (t, x)) l∈Γ , σ(t, x) D x v i,n (t, x))} = 0 v i,n (T, x) = h i (x)). (3.62)
Proof. This proof can be found in [START_REF] Hamadène | Viscosity solutions of systems of pdes with interconnected obstacles and switching problem[END_REF] and [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF] so we omit it.

Next for any i ∈ Γ and (t, x) ∈ [0, T] × R k , we denote by

v i (t, x) := lim m→∞ vi,m (t, x) and v i (t, x) := lim n→∞ v i,n .
Then from (3.56) we deduce that for any (t,

x) ∈ [0, T] × R k v i (t, x) ≤ v i (t, x).

Note that since for any

i ∈ Γ, v i,0 ≤ v i ≤ vi ≤ vi,0
then v i and vi belong to Π g . Additionnaly we have:

Theorem 3.4.3. Assume (H2),(H3) and (H5). Then the p-tuple of functions (v i ) i∈Γ are continuous, of polynomial growth and unique viscosity solution, in the class Π g , of the following systems: ∀i ∈ Γ and (t,

x) ∈ [0, T] × R k ,      min{v i (t, x) -L i ( v)(t, x); max v i (t, x) -U i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x, (v l (t, x)) l∈Γ , σ(t, x) D x v i (t, x) } = 0; v i (T, x) = h i (x). (3.63)
Proof. It is rather long and then postponed to Appendix.

As a consequence we have the following result for the increasing scheme: Corollary 3.4.4. The p-tuple of functions (v i ) i∈Γ is also continuous and the unique viscosity solution, in the class Π g , of the following system of max-min type: ∀i ∈ Γ and (t,

x) ∈ [0, T] × R k ,      max{v i (t, x) -U i ( v)(t, x); min v i (t, x) -L i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x, (v l (t, x)) l∈Γ , σ(t, x) D x v i (t, x) } = 0; v i (T, x) = h i (x). (3.64)
To obtain the proof of this result it is enough to consider (-v i ) i∈Γ which becomes a decreasing scheme associated with ((f i (t, x,y, -z)) i∈Γ , (-h i ) i∈Γ , ( ḡi ) i∈Γ , (g i ) i∈Γ ), to use the previous theorem and finally a result by G. Barles ([1], pp.18).

Systems of Reflected BSDEs with bilateral interconnected barriers

First recall the system of RBSDEs ( Ȳi,m,t,x , Zi,m,t,x , Ki,m,+,t,x ) in Proposition 3.4.2-b)-c) and the representation (3.59). As the sequence (( vi,m ) ≥0 ) i∈Γ converges pointwise decreasingly to the continuous functions (v i ) i∈Γ . Then, by Dini's theorem, this convergence is uniform on compact sets of [0, T] × R k . Next, the uniform polynomial growths of (v i ) i∈Γ and (( vi,m ) ≥0 ) i∈Γ combined with estimate (3.8) of X t,x imply that for any i ∈ Γ,

E( sup s∈[t,T] | Ȳi,m,t,x s -Y i,t,x s | 2 ) → m→∞ 0 (3.65)
where we set: For any s ≤ T and i ∈ Γ, 

Y i,t,x s = v i (s ∨ t, X
∈ [0, T] × R k , s ∈ [t, T], i ∈ Γ, Y i s ≤ U i ((Y l s ) l∈Γ ) := Y i+1 s + g i,i+1
(s, X t,x s ).

(3.67)

Proof. According to (3.66), it is enough to show the following inequality: for any i ∈ Γ, (t,

x) ∈ [0, T] × R k , v i (t, x) ≤ v i+1 (t, x) + ḡi,i+1 (t, x). (3.68) 
Indeed, we assume by contradiction that there exists some (t 0 , x 0 ) ∈ [0, T) × R k and a strictly positive > 0 such that

v i (t 0 , x 0 ) -v i+1 (t 0 , x 0 ) -ḡi,i+1 (t 0 , x 0 ) ≥ > 0. (3.69)
By the uniform convergence of ( vi,m ) i∈Γ to the functions (v i ) i∈Γ on compact subsets, we can find some ρ > 0 and a ball defined by

B((t 0 , x 0 ), ρ) := {(t, x) ∈ [0, T] × R k , s.t. |t -t 0 | ≤ ρ and |x -x 0 | ≤ ρ}
and some m 0 large enough such that for any m ≥ m 0 , vi,m (t, x) -vi+1,m (t, x)ḡi,i+1 (t, x) ≥ 8 > 0, ∀(t, x) ∈ B((t 0 , x 0 ), ρ).

(3.70)

Next let us introduce the following stopping time τ t 0 ,x 0 ; = inf{s ≥ t 0 , X t,x s ∈ B((t 0 , x 0 ), ρ)} ∧ (t 0 + ρ)

Notice that for any s ∈ [t 0 , τ t 0 ,x 0 ],

Ȳi,m,t 0 ,x 0

s = vi,m (s, X t 0 ,x 0 s ) > vi+1,m (s, X t 0 ,x 0 s ) + ḡi,i+1 (s, X t 0 ,x 0 s ) > vi+1,m (s, X t 0 ,x 0 s ) -g i,i+1 (s, X t 0 ,x 0 s ) = Ȳi+1,m,t 0 ,x 0 s -g i,i+1 (s, X t 0 ,x 0 s )
As a result for s ∈ [t 0 , τ t 0 ,x 0 ], d Ki,m,+,t 0 ,x 0 s = 0 and then from (3.57) we deduce that: ∀ s ∈ [t 0 , τ t 0 ,x 0 ], Y i,m,t 0 ,x 0 s = Ȳi,m,t 0 ,x 0 τ t 0 ,x 0

+ τ t 0 ,x 0 s { f i,m (r, X t 0 ,x 0 r , (Y l,m,t 0 ,x 0 r ) l∈Γ , Z i,m,t 0 ,x 0 r ) (3.71) -m(Y i,m,t 0 ,x 0 r -[Y i+1,m,t 0 ,x 0 r + g i,i+1
(r, X t 0 ,x 0 r )]) + }dr -

τ t 0 ,x 0 s Z i,m,t 0 ,x 0 r dB r .
Next as in [START_REF] Karoui | Reflected solutions of backward sde's, and related obstacle problems for pde's[END_REF], since g i,i+1 , vi,m and vi+1,m are of polynomial growth (uniformly for these latter) 110
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and by using (3.8) we deduce that:

m 2 E[{ τ t 0 ,x 0 t 0 ( Ȳi,m,t 0 ,x 0 s -Ȳi+1,m,t 0 ,x 0 s -ḡi,i+1 (s, X t 0 ,x 0 s )) + ds} 2 ] ≤ CE[ sup s∈[t 0 ,τ t 0 ,x 0 ],i∈Γ | Ȳi,m,t 0 ,x 0 s | 2 ] + CE[{ τ t 0 ,x 0 t 0 f i (s, X t 0 ,x 0 s , 0, 0)ds} 2 ]. (3.72) 
for some cosntant C which is independant of m. Therefore using (3.70) we have

m 2 2 64 P[t 0 < τ t 0 ,x 0 ] ≤ CE[ sup s∈[t 0 ,τ t 0 ,x 0 ],i∈Γ | Ȳi,m,t 0 ,x 0 s | 2 ] + CE[{ τ t 0 ,x 0 t 0 f i (s, X t,x s , 0, 0)ds} 2 ]. (3.73)
which implies, in sending m to +∞, P[t 0 < τ t 0 ,x 0 ] = 0, i.e. P[t 0 = τ t 0 ,x 0 ] = 1. But this is contradictory since ρ > 0 and then (t 0 , x 0 ) satisfying (3.69) does not exists. The proof of the claim is complete.

We now give the main result of this section.

Theorem 3.5.2. Assume that the assumptions (H2),(H3) and (H5) are fulfilled and for any i ∈ Γ, f i does not depend on z i . Then for any (t, x) ∈ [0, T] × R k , there exist adapted processes K i,±,t,x and Z i,t,x valued respectively in R + and R d such that, in combination with Y i,t,x , verify: For any i ∈ Γ, i) K i,±,t,x are continuous, non decreasing and K i,±,t,x t = 0 ; P-a.s. K i,±,t,x T < ∞ and

T t |Z i,t,x s | 2 ds < ∞ ; ii) ∀s ∈ [t, T],                          Y i,t,x s = h i (X t,x T ) + T s f i (r, X t,x r , (Y l,t,x r ) l∈Γ )dr - T s Z i,t,x r dB r +K i,+,t,x T -K i,+,t,x s -(K i,-,t,x T -K i,-,t,x s ); L i s ((Y l,t,x ) l∈Γ ) ≤ Y i,t,x s ≤ U i s ((Y l,t,x ) l∈Γ ); T t (Y i,t,x s -L i s ((Y l,t,x ) l∈Γ ))dK i,+,t,x s = 0 and T 0 (Y i,t,x s -U i s ((Y l,t,x ) l∈Γ ))dK i,-,i,t,x s = 0 (3.74)
where for s ∈ t ≤ T, L i s ((Y l,t,x ) l∈Γ ) := Y i+1,t,x s g i,i+1 (s, X t,x s ) and U i s ((Y l,t,x ) l∈Γ ) := Y i+1,t,x s + ḡi,i+1 (s, X t,x s ). Moreover if there exists another quadruple ( Ȳi,t,x , Zi,t,x , Ki,±,t,x ) which satisfies (i)-(ii), then for any s ∈ [t, T] and i ∈ Γ, Ȳi,t,x s = Y i,t,x s , Ki,±,t,x 

s = K i,±,t
U i s ((Y l ) l∈Γ ) ≥ Y i s ≥ L i s ((Y l ) l∈Γ ).
On the other hand by Assumption (H3)-a), U i s ((Y l,t,x ) l∈Γ ) -L i s ((Y l,t,x ) l∈Γ ) = ḡi,i+1 (s, X t,x s ) + g i,i+1 (s, X t,x s ) > 0 which means that the obstacles U i ((Y l,t,x ) l∈Γ ) and L i ((Y l,t,x ) l∈Γ ), for any i ∈ Γ, are completely separated. Therefore by Theorem 3.7 in [START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF], there exist progressively measurable processes Y i,t,x , K i,±,t,x and Z i,t,x valued respectively in R, R + and R d such that: i) Y i,t,x ∈ S 2 ([t, T]), K i,±,t,x are continuous non decreasing and K i,±,t,x t = 0 ; P-a.s.

T t |Z i,t,x s | 2 ds < ∞ ;
ii) The processes (Y i,t,x , K i,±,t,x , Z i,t,x ) verify: ∀s ∈ [t, T], 

                         Y i,t,x s = h i (X t,x T ) + T s f i (r, X t,x r , (Y l,t,x r ) l∈Γ )dr - T s Z i,t,x r dB r +K i,+,t,x T -K i,+,t,x s -(K i,-,t,x T -K i,-,t,x s ); L i s ((Y l,t,x ) l∈Γ ) ≤ Y i,t,x s ≤ U i s ((Y l,t,x ) l∈Γ ); T t (Y i,t,x s -L i s ((Y l,t,x ) l∈Γ ))dK i,+,t,x s = 0 and T 0 (Y i,t,x s -U i s ((Y l,t,x ) l∈Γ ))dK i,-,t,x s = 0. ( 3 
+ L i σ ((Y l,t,x ) l∈Γ )1 (σ<τ) + U i τ ((Y l,t,x ) l∈Γ )1 (τ≤σ,τ<T) |F s ].
(3.78) Thus for any s ∈ [t, T], Y i,t,x = Y i,t,x and by (3.77), (Y i,tx , K i,±,t,x , Z i,t,x ) verify (3.74). Finally as i is arbitrary then (Y i,t,x , K i,±,t,x , Z i,t,x ) i∈Γ is a solution for the system of reflected BSDEs with double obstacles (3.74). The proof of existence is then stated. It remains to show uniqueness.

Uniqueness: In this part we apply the fixed point argument over the value of the stochastic game representation (Theorem 3.3.9), and the proof is similar to [START_REF] Hamadène | Systems of reflected bsdes with interconnected bilateral obstacles: Existence, uniqueness and applications[END_REF]. In the following proof, the defined processes (Y φ,i , Z φ,i , K φ,i,± ) i∈Γ and (Y ψ,i , Z ψ,i , K ψ,i,± ) i∈Γ depend on (t, x), but for simplicity of notations we omit it as there is no confusion.

Firstly let us define the following operator:

Φ : H 2,p → H 2,p φ := (φ i ) i∈Γ → Φ( φ) := (Y φ,i ) i∈Γ
where (Y φ,i , Z φ,i , K φ,i,± ) i∈Γ is the unique solution of

               Y φ,i ∈ S 2 ([t, T]), P -a.s. T t |Z φ,i s | 2 ds < ∞ and K φ,i,+ T + K φ,i,- T < ∞ (K φ,i,+ t + K φ,i,- t = 0); Y φ,i s = h i (X t,x T ) + T s f i (r, X t,x r , φ(r))dr - T s Z φ,i r dB r + K φ,i,+ T -K φ,i,+ s -(K φ,i,- T -K φ,i,- s ), t ≤ s ≤ T; L i s ((Y φ,l ) l∈Γ ) ≤ Y φ,i s ≤ U i s ((Y φ,l ) l∈Γ ), s ∈ [t, T]; T t Y φ,i s -L i s ((Y φ,l ) l∈Γ ) dK φ,i,+ s = 0 and T t Y φ,i s -U i s ((Y φ,l ) l∈Γ ) dK φ,i,- s = 0.
(3.79)

In the similar way we define another element of H 2,p by ψ := (ψ i ) i∈Γ and let (Y

ψ,i s , Z ψ,i s , K ψ,i,± s
) s∈[t,T] be a solution of (3.79) where its driver is replaced with f i (t, x, ψ(t)), ∀i ∈ Γ.

Next we set the following norm, denoted by . 2,β on H 2,p :

y 2,β := (E[ T t e βs |y s | 2 ds]) 1/2 .
The following calculus is dedicated to prove that Φ is a contraction on (H 2,p , . where

J φ i (Θ(u, v)) s = E h θ(u,v) T (X t,x T ) + T s f θ(u,v) r (r, X t,x r , φ(r)) -C θ(u,v) ∞ F s .
In the same way Y ψ,i has also the stochastic game representation by replacing φ to ψ.

Now we study the difference of |Y φ,i -Y ψ,i |. Indeed, ∀i ∈ Γ, t ∈ [0, T], t ≤ s ≤ T, |Y φ,i s -Y ψ,i s | ≤ ess sup u∈A (1) s ess sup v∈B (1) s |J φ i (Θ(u, v)) s -J ψ i (Θ(u, v)) s | (3.81)
Thanks to the martingale representation theorem, there exists an (F s ) s≤T -adapted process ∆ φ,ψ,θ(u,v) ∈ H 2,d such that

J φ i (Θ(u, v)) s -J ψ i (Θ(u, v)) s = E T s f θ(u,v) r (r, X t,x r , φ(r)) -f θ(u,v) r (r, X t,x r , ψ(r))dr F s = E T 0 f θ(u,v) r (r, X t,x r , φ(r)) -f θ(u,v) r (r, X t,x r , ψ(r))dr F s - s 0 f θ(u,v) r (r, X t,x r , φ(r)) -f θ(u,v) r (r, X t,x r , ψ(r))dr = E T 0 f θ(u,v) r (r, X t,x r , φ(r)) -f θ(u,v) r (r, X t,x r , ψ(r))dr + s 0 ∆ φ,ψ,θ(u,v) r dB r - s 0 f θ(u,v) r (r, X t,x r , φ(r)) -f θ(u,v) r (r, X t,x r , ψ(r))dr
Therefore we obtain the following differential form for the difference of the two value functions: 

d(J φ i (Θ(u, v)) s -J ψ i (Θ(u, v)) s ) = f θ(u,v) s (s, X t,x s , φ(s)) -f θ(u,v) s (s, X t,
(Θ(u, v)) s -J ψ i (Θ(u, v)) s 2 yielding d e βs J φ i (Θ(u, v)) s -J ψ i (Θ(u, v)) s 2 = βe βs J φ i (Θ(u, v)) s -J ψ i (Θ(u, v)) s 2 + 2e βs J φ i (Θ(u, v)) s -J ψ i (Θ(u, v)) s -f θ(u,v) s (s, X t,x s , φ(s)) -f θ(u,v) s (s, X t,
(Θ(u, v)) r -J ψ i (Θ(u, v)) r 2 dr + 2 T s e βr J φ i (Θ(u, v)) r -J ψ i (Θ(u, v)) r f θ(u,v) r (r, X t,x r , φ(r)) -f θ(u,v) r (r, X t,x r , ψ(r)) dr -2 T s J φ i (Θ(u, v)) r -J ψ i (Θ(u, v)) r ∆ φ,
e βs J φ i (Θ(u, v)) s -J ψ i (Θ(u, v)) s 2 + T s e βr ∆ φ,ψ,θ(u,v) r 2 dr ≤ 1 β T s e βs f θ(u,v) r (r, X t,x r , φ(r)) -f θ(u,v) r (r, X t,x r , ψ(r)) 2 dr -2 T s J φ i (Θ(u, v)) r -J ψ i (Θ(u, v)) r ∆ φ,ψ,θ(u,v) r dB r
By the Lipschitz condition on the driver f θ (u,v) , and using the fact that 

e βs J φ i (Θ(u, v)) s -J ψ i (Θ(u, v)) s 2 ≤ C 2 β T s | φ(r) -ψ(r)| 2 dr -2 T s J φ i (Θ(u, v)) r -J ψ i (Θ(u, v)) r ∆ φ,ψ,θ(u,v) r dB r (3.84)
where C = ∑ i∈Γ C i with C i the Lipschitz constant w.r.t. f i , ∀i ∈ Γ. On the other hand since

(2 u s J φ i (Θ(u, v)) r -J ψ i (Θ(u, v)) r ∆ φ,ψ,θ(u,v) r dB r ) u∈[s,T]
is a martingale, then taking the conditional expectation w.r.t. F s on both sides of (3.84) we have

e βs J φ i (Θ(u, v)) s -J ψ i (Θ(u, v)) s 2 ≤ C 2 β E T s | φ(r) -ψ(r)| 2 dr|F s (3.85)
Let us recall (3.81), then by taking the expectation on both sides of (3.85) we obtain:

∀ s ∈ [t, T], E e βs Y φ,i s -Y ψ,i s 2 ≤ C 2 β E T t | φ(r) -ψ(r)| 2 dr (3.86)
The last step is integrating (3.86) over s ∈ [t, T] and then summing over all i ∈ Γ to obtain:

E T t ∑ i∈Γ e βs Y φ,i s -Y ψ,i s 2 ds ≤ C 2 TP β E T t | φ(r) -ψ(r)| 2 dr (3.87)
Obviously it is enough to take β > C 2 TP (for example we can let β := 4C Φ is a contraction on H 2,p to itself. As a consequence, there exists a fixed point which is nothing but the unique solution of (3.74).

Next we suppose that there exists another solution ( Ŷi , Ẑi , Ki,± ) i∈Γ of (3.74), i.e. 

                         Ŷi s = h i (X t,x T ) + T s f i (r, X t,x r , ( Ŷl r ) l∈Γ )dr - T s Ẑi,t,x r dB r + Ki,+,t,x T -Ki,+,t,x s -( Ki,-,t,x T -Ki,-,t,x s ), s ∈ [t, T]; L i s (( Ŷl ) l∈Γ ) ≤ Y i s ≤ U i s (( Ŷl ) l∈Γ ), s ∈ [t, T]; T t ( Ŷi s -L i s (( Ŷl ) l∈Γ ))d Ki,+ s = 0 and T t ( Ŷi s -U i s (( Ŷl ) l∈Γ ))d Ki,- s = 0 ( 3 
∀s ∈ [t, T], i ∈ Γ, K i,+ s -K i,- s = Ki,+ s -Ki,- s .
It remains us now to prove the equivalence of the barriers processes.

For any s ∈ [t, T], i ∈ Γ we have

s t Y i r -L i r ((Y l ) l∈Γ ) (dK i,+ r -dK i,- r ) = s t Y i r -L i r ((Y l ) l∈Γ ) (d Ki,+ r -d Ki,- r ) (3.89)
On the other hand by the minimality conditions we have

∀s ∈ [t, T], i ∈ Γ, s t Y i r -L i r ((Y l ) l∈Γ ) (dK i,+ r -dK i,+ r ) = - s t Y i r -L i r ((Y l ) l∈Γ ) dK i,- r = - s t U i r ((Y l ) l∈Γ ) -L i r ((Y l ) l∈Γ ) dK i,- r (3.90) 
This last equality is due to the fact that ∀r ∈ [t, s], dK i,- r = 0 only if Y i touches the upper obstacle.

In the same way we have also the following condition for Ki,-: ∀i ∈ 

Γ, s ∈ [t, T], s t Y i r -L i r ((Y l ) l∈Γ ) (d Ki,+ r -d Ki,+ r ) = - s t Y i r -L i r ((Y l ) l∈Γ ) d Ki,- r = - s t U i r ((Y l ) l∈Γ ) -L i r ((Y l ) l∈Γ ) d Ki,-
i,+ s -K i,- s = Ki,+ s -Ki,- s , s ∈ [t, T], implies K i,+ = Ki,+ .
The proof of uniqueness is now finished.

We now go back to systems (3.63) and (3.64) and the question is whether or not they have the same solution. We have the following result: Proposition 3.5.3. Assume that the assumptions (H2),(H3) and (H5) are fulfilled and for any i ∈ Γ, f i does not depend on z i . Then for any i ∈ Γ, vi = v i .

Proof. : Actually (-v i ) i∈Γ is the unique solution of the following system of PDEs with obstacles:

     min{v i (t, x) -Ľi ( v)(t, x); max v i (t, x) -Ǔi ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) + f i (t, x, (-v l (t, x)) l∈Γ , -σ(t, x) D x v i (t, x) } = 0; v i (T, x) = -h i (x) (3.92) where Ľi ( v)(t, x) = v i (t, x) -ḡi,i+1 (t, x) and Ǔi ( v)(t, x) = v i (t, x) -g i,i+1
(t, x). Therefore -v i , has accordingly, the representation (3.76), i. e. for any (t, x) and i ∈ Γ, setting Y i,t,x s

= v i (s ∨ t, X t,x s∨t ) for s ∈ [t, T], we have: -Y i,t,x s = ess sup σ≥s ess inf τ≥s E[-h i (X t,x T )1 (σ=τ=T) + σ∧τ s -f i (r, X t,x r , (-Y l,t,x r ) l∈Γ )dr + Ľi σ ((-Y l,t,x ) l∈Γ )1 (σ<τ) + Ǔi τ ((-Y l,t,x ) l∈Γ )1 (τ≤σ,τ<T) |F s ] = ess inf τ≥s ess sup σ≥s E[-h i (X t,x T )1 (σ=τ=T) + σ∧τ s -f i (r, X t,x r , (-Y l,t,x r ) l∈Γ )dr + Ľi σ ((-Y l,t,x ) l∈Γ )1 (σ<τ) + Ǔi τ ((-Y l,t,x ) l∈Γ )1 (τ≤σ,τ<T) |F s ] (3.93)
since the barriers are completely separated (see e.g. [START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF]). Therefore

Y i,t,x s = ess sup σ≥s ess inf τ≥s E[h i (X t,x T )1 (σ=τ=T) + σ∧τ s f i (r, X t,x r , (Y l,t,x r ) l∈Γ )dr + L i σ ((Y l,t,x ) l∈Γ )1 (σ<τ) + U i τ ((Y l,t,x ) l∈Γ )1 (τ≤σ,τ<T) |F s ] (3.94)
Which means that ((Y i,t,x s ) s∈[t,T] ) i∈Γ verifes (3.74). As the solution of this latter is unique then for any i ∈ Γ, Y i,t,x = Y i,t,x which means that for i ∈ Γ, vi = v i .

Appendix: Proof of Theorem 3.4.3

In this section, we prove that the system of (3.51) has a unique continuous solution in viscosity sense in the class Π g . Indeed, we firstly provide a comparison result of subsolution and super-
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Proof. Let us show the result by contradiction, i.e. there exists 0 > 0 and some (t 0 ,

x 0 ) ∈ [0, T) × R k such that max i∈Γ (u i (t 0 , x 0 ) -w i (t 0 , x 0 )) ≥ 0 (3.101)
Next without loss of generality we assume that there exists R > 0 such that for t ∈ [0, T],

|x| ≥ R we have for any i ∈ Γ, (u iw i )(t, x) < 0.

(3.102)

Actually if (3.102) does not hold, it is enough to consider the following functions w i,θ,µ defined by

w i,θ,µ = w i (t, x) + θe -λt (1 + |x| 2γ+2 ), (t, x) ∈ [0, T] × R k
which still a supersolution of (3.51) for any θ > 0 and λ ≥ λ 0 (λ 0 is fixed). Then to show that u iw i,θ,µ ≤ 0 for any i ∈ Γ and finally to take the limit as θ → 0 to obtain (3.100). But for any i ∈ Γ, u iw i,θ,µ is negative uniformly in t when |x| is large enough since u i belongs to Π g with polynomial exponent γ.

To proceed, let (3.101)-(3.102) be fulfilled. Then max

(t,x)∈[0,T]×R k max i∈Γ {u i (t, x) -w i (t, x)} = max (t,x)∈[0,T]×B(0,R) max i∈Γ {u i (t, x) -w i (t, x)} := max i∈Γ (u i -w i )(t * , x * ) ≤ 0 > 0
where B(0, R) is the ball centered in the origin with radius R. Note that t * < T since u i (T, x) ≤ h i (x) ≤ w i (T, x).

Next the proof will be divided into two steps:

Step 1: To begin with, we introduce the following auxiliary condition: There exists λ > (p -

1) max i∈Γ C f i such that for any i ∈ Γ, (t, x, y, z) ∈ [0, T] × R k × R p+d , and (v 1 , v 2 ) ∈ R 2 such that v 1 ≥ v 2 we have f i (t, x, [ y -i , v 1 ], z) -f i (t, x, [ y -i , v 2 ], z) ≤ -λ(v 1 -v 2 ) (3.103)
and where C f i is the Lipschitz constant of f i w.r.t. y.

So let i 0 be an element of Γ(t * , x * ) such that 

u i 0 (t * , x * ) > u i 0 +1 (t * , x * ) -g i 0 ,i 0 +1 (t * , x * ) ( 3 
-(p n u -p n w ) -(b(t n , x n ) q n u -b(t n , y n ) q n w ) - 1 2 Tr[{σσ (t n , x n )M n u -σσ (t n , y n )M n w }] -{ f i 0 (t n , x n , (u l (t n , x n )) l∈Γ , σ(t n , x n ) q n u ) -f i 0 (t n , y n , (w l (t n , y n )) l∈Γ , σ(t n , y n ) q n w )} ≤ 0.
Combining with (3.111), there exists some appropriate ρ n with lim sup n ρ n ≤ 0 such that the last inequality yields the following one:

-{ f i 0 (t n , x n , (u l (t n , x n )) l∈Γ , σ(t n , x n ) q n u ) -f i 0 (t n , x n , (w l (t n , y n )) l∈Γ , σ(t n , x n ) q n u )} ≤ ρ n
Next by linearising f i 0 we obtain

λ(u i 0 (t n , x n ) -w i 0 (t n , y n )) -∑ k∈Γ -i 0 Θ k n (u k (t n , x n ) -w k (t n , y n )) ≤ ρ n (3.114)
where Θ k n is the increment rate of f i 0 w.r.t. y k , which is uniformly bounded w.r.t. n and is non negative by the monotonicity assumption of f i . Therefore (3.114) becomes

λ(u i 0 (t n , x n ) -w i 0 (t n , y n )) ≤ ∑ k∈Γ -i 0 Θ k n (u k (t n , x n ) -w k (t n , y n )) + ρ n ≤ C f i 0 ∑ k∈Γ -i 0 (u k (t n , x n ) -w k (t n , y n )) + + ρ n .
Then by taking n → ∞ the inequality yields

λ(u i 0 (t * , x * ) -w i 0 (t * , x * )) ≤ lim sup n C f i 0 [ ∑ k∈Γ -i 0 (u k (t n , x n ) -w k (t n , y n )) + ] ≤ C f i 0 [ ∑ k∈Γ -i 0 (lim sup n (u k (t n , x n ) -w k (t n , y n ))) + ] ≤ C f i 0 [ ∑ k∈Γ -i 0 (u k (t * , x * ) -w k (t * , x * )] Next as i 0 ∈ Γ(t * , x * ), we deduce that λ(u i 0 (t * , x * ) -w i 0 (t * , x * )) ≤ C f i 0 (p -1)(u i 0 (t * , x * ) -w i 0 (t * , x * )
which is contradictory with the definiton of λ given in (3.103). As a consequence for any i ∈ Γ, u i ≤ w i .

Step 2: the general case
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For any arbitrary λ ∈ R, let us define ûi (t, x) := e λt u i (t, x) and ŵi (t, x) := e λt w i (t, x).

Note that ( ûi ) i∈Γ and ( ŵi ) i∈Γ is respectively the subsolution and the supersolution of the following system of PDEs: for any i ∈ Γ and (t,

x) ∈ [0, T] × R k , min{v i (t, x) -v i+1 (t, x) + e λt g i,i+1 (t, x); max[v i (t, x) -v i+1 (t, x) -e λt g i,i+1 (t, x); -∂ t v i (t, x) -L X v i (t, x) + λv i (t, x) -e λt f i (t, x, (e -λt v l (t, x)) l∈Γ , e -λt σ (t, x)D x v i (t, x)]} = 0
and v i (T, x) = e λT h i (x). For λ large enough, the condition (3.103) holds, then we go back to the result in Step 1 and we obtain, for any i ∈ Γ, ûi ≤ ŵi , which also yields u i ≤ w i . The proof of comparison is now complete.

Existence and uniqueness of viscosity solution of (3.51)

Let us recall ( vi ) i∈Γ and ( vi,m ) i∈Γ the functions defined in Proposition 3.4.2. We firstly prove that ( vi ) i∈Γ is a subsolution of (3.51), then we show that for a fixed m 0 , ( vi,m 0 ) i∈Γ is a supersolution of (3.51), finally by Perron's method we show that ( vi ) i∈Γ is the unique solution of (3.51).

Proposition 3.6.3. The family ( vi ) i∈Γ is a viscosity subsolution of (3.51).

Proof. We first recall that ∀i ∈ Γ, vi := lim m→∞ vi,m , is usc function since the sequence ( vi,m ) m≥0 is decreasing and ( vi,m ) i∈Γ is continuous. Then thanks to the definition we have v * = vi , hence when t = T we have vi (T, x) = lim m→∞ vi,m (T, x) = h i (x).

Next let us recall Definition 3.4.1, for any (t,

x) ∈ [0, T) × R k , i ∈ Γ, (p, q, M) ∈ J+ vi (t, x), we shall prove either vi (t, x) -L i ( v)(t, x) ≤ 0 (3.115) or max[ vi (t, x) -U i ( v)(t, x); -p -b (t, x)q - 1 2 Tr(σσ )(t, x)M) -f i (t, x, ( vl (t, x)) l∈Γ , σ (t, x).q)] ≤ 0. (3.116)
To proceed, we first assume that there exists 0 > 0 such that vi (t, x) ≥ vi+1 (t, x)g i,i+1 (t, x) + 0 then we need to prove (3.116).

As for any i ∈ Γ, ( vi,m ) m≥0 decreasingly converges to vi , then there exists m 0 such that for any 124 3.6. APPENDIX: PROOF OF THEOREM 3.4.3

m ≥ m 0 we have vi,m (t, x) ≥ vi+1,m (t, x) -g i,i+1 (t, x) + 0 2
By the continuity of ( vi,m ) i∈Γ and g i,i+1

, we can find a neighbourhood O m of (t, x) such that vi,m (t

, x ) ≥ vi+1,m (t , x ) -g i,i+1 (t , x ) + 0 4 , ∀(t , x ) ∈ O m . (3.117)
Next by Lemma 6.1 in [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] there exists a subsequence (t k , x k ) k≥0 such that

(t k , x k ) → k→∞ (t, x) and lim k→∞ vi,k (t k , x k ) = vi (t, x).
In addition we can also find a sequence which we still denote by

(p k , q k , M k ) ∈ J+ vi,k (t k , x k ) such that lim k→∞ (p k , q k , M k ) = (p, q, M)
As the sequence (t k , x k ) can be chosen in the neighbourhood O k , by applying the fact that ( vi,k ) i∈Γ is the unique viscosity solution of the following system: For any i ∈ Γ,

min{ vi,m (t, x) -L i (( vl,m ) l∈Γ )(t, x); -∂ t vi,m (t, x) -b (t, x)D x vi,m (t, x) -f i,m (t, x, ( vl,m (t, x)) l∈Γ , σ (t, x)D x vi,m (t, x))} = 0 vi,m (T, x) = h i (x). (3.118) we obtain -p k -b (t k , x k ).q k - 1 2 Tr(σσ (t k , x k )M k ) -f i,k (t, x, ( vl,k (t k , x k )) l∈Γ , σ (t k , x k )q k ) ≤ 0 (3.119) where f i,k (t, x, (v l (t, x)) l∈Γ , z) := f i (t, x, (v l (t, x)) l∈Γ , z) -k(v i (t, x) -U i ( v)(t, x)) + .
Moreover as the sequence (t k , x k , p k , q k , M k ) k is bounded and ( vi,m ) i∈Γ is uniformly of polynomial growth, then we deduce from (3.119) that

k := ( vi,k (t k , x k ) -vi+1,k (t k , x k ) -ḡi,i+1 (t k , x k )) + → k→∞ 0
However for any fixed (t, x) and k 0 , ( vi,k (t, x)) k≥k 0 is decreasing, then for k

≥ k 0 , vi,k (t k , x k ) ≤ vi+1,k (t k , x k ) + ḡi,i+1 (t k , x k ) + k ≤ vi+1,k 0 (t k , x k ) + ḡi,i+1 (t k , x k ) + k 125 CHAPTER 3.
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As vi,k 0 is continuous, by taking k → ∞ we obtain that lim k→∞ vi,k (t k , x k ) = vi (t, x) ≤ vi+1,k 0 (t, x) + ḡi,i+1 (t, x).

We then take k 0 → ∞ yielding vi (t, x) ≤ vi+1 (t, x) + ḡi,i+1 (t, x).

(3.120)

In the second place we consider a subsequence (k l ) of (k) such that for any a ∈ Γ, ( va,k l (t k l , x k l )) l converges, then by taking l → ∞ in (3.119) we obtain

lim l→∞ {-p k l -b(t k l , x k l )q k l - 1 2 Tr(σσ (t k l , x k l )M k l ) -f i (t k l , x k l , ( va,k l (t k l , x k l )) a∈Γ , σ (t k l , x k l ).q k l )} ≤ 0.
Then we deduce that

-p -b (t, x)q - 1 2 Tr(σσ (t, x)M) ≤ lim l→∞ f i (t k l , x k l , ( va,k l (t k l , x k l )) a∈Γ , σ (t k l , x k l )q k l ) = f i (t, x, lim l→∞ ( va,k l (t k l , x k l )) a∈Γ , σ (t, x)q)
≤ f i (t, x, ( va (t, x)) a∈Γ , σ (t, x)q).

(3.121)

The last inequality holds true by the monotonicity assumption (H5) of f i and the fact that for any a ∈ Γ, va verifies va (t, x) = v * ,a (t, x) = lim sup Proof. We first recall that the triple ( Ȳi,m 0 , Zi,m 0 , Ki,m 0 ,+ ) i∈Γ is the unique solution of the system of RBSDEs associated with ( f i,m 0 , h i , g i,i+1 ) i∈Γ where f i,m 0 (s, X t,x s , y, z) := f i (s, X t,x s , y, z)m 0 (y iy i+1ḡi,i+1 (s, X t,x s )) + .

(t ,x )→(t,x),m→∞ va,m (t , x ), (t, x) ∈ [0, T] × R k Thus for any a ∈ Γ -i we have va (t, x) ≥ lim l∈∞ va,k l (t k l , x k l ) and vi (t, x) = lim l→∞ vi,k l (t k l , x k l ). Thus (3.121) becomes -p -b (t, x)q - 1 2 Tr(σσ (t, x)M) ≤ f i (t, x, ( va (t, x)) a∈Γ , σ (t, x).q). ( 3 
In addition there exist unique deterministic continuous functions with polynomial growth ( vi,m 0 ) i∈Γ such that for any

i ∈ Γ, s ∈ [t, T], Ȳi,m 0 s = vi,m 0 (s, X t,x s ) ((t, x) ∈ [0, T] × R k is fixed). Now let us define the following processes: ∀i ∈ Γ, s ∈ [t, T], Ũi,m 0 s := Y i,m s ∨ (Y i+1,m 0 s + g i,i+1 (s, X t,x s )) Ki,m 0 ,- s := m 0 s 0 (Y i,m 0 s -Y i+1,m 0 s -ḡi,i+1 (s, X t,x s )) + ds.
Then ( Ȳi,m 0 , Zi,m 0 , Ki,m 0 ,+ , Ki,m 0 ,-) i∈Γ solves the following doubly reflected BSDEs: for any

i ∈ Γ, s ∈ [t, T],                      Ȳi,m 0 s = h i (X t,x T ) + T s f i (r, X t,x r , ( Ȳl,m 0 r ) l∈Γ , Zi,m 0 r )dr - T s Zi,m 0 r dB r + Ki,m 0 ,+ T -Ki,m 0 ,+ s -( Ki,m 0 ,- T -Ki,m 0 ,- s ); L i,m 0 s ≤ Ȳi,m 0 s ≤ Ũi,m 0 s T t ( Ȳi,m 0 s -L i,m 0 s )d Ki,m 0 ,+ s = 0 and T t ( Ȳi,m 0 s -Ũi,m 0 s )d Ki,m 0 ,- s = 0.
Accordingly by the results of [START_REF] Cvitanic | Backward stochastic differential equations with reflection and dynkin games[END_REF] and [START_REF] Hamadene | Zero-sum stochastic differential games and backward equations[END_REF], Ȳi,m 0 is also associated with a zero-sum Dynkin game as follow: For any s ∈ [t, T],

Ȳi,m 0 s = ess sup

σ≥s ess inf τ≥s E[ f σ∧τ s f i (r, X t,x r , ( Ȳl,m 0 r ) l∈Γ , Zi,m 0 r )dr + L i,m 0 σ 1 (σ<τ) + Ũi,m 0 τ 1 (τ≤σ<T) + h i (X t,x T )1 (τ=σ=T) |F s ]
Next following Theorem 3.7 and Theorem 6.2 in [START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF], vi,m 0 is the unique solution in viscosity Proof. It is obvious that for any i ∈ Γ, the function m 0 v i belongs to class Π g since ( vi ) i∈Γ and ( vi,m 0 ) i∈Γ are functions of Π g .

To proceed, we divide the main proof into three steps. On the other hand, to simplify the notation, we replace ( m 0 v i ) i∈Γ with (v i ) i∈Γ as there is no possible confusion.

Step 1: (v i ) i∈Γ is a viscosity subsolution of (3.51).

For any i ∈ Γ, v i ∈ U m 0 and then it satisfies:

vi ≤ v i ≤ vi,m 0 .

The inequalities still valid for the upper semicontinuous envelops, i.e., vi ≤ v i, * ≤ vi,m 0 since vi is usc and vi,m 0 is continuous. Therefore we have vi

(T, x) = v i, * (T, x) = vi,m 0 (T, x) = h i (x).
It means that (v i, * ) i∈Γ verify the subsolution property of system (3.63) at time T.

Next let ( ṽk ) k∈Γ be an arbitrary element of U m 0 and let i ∈ Γ be fixed. Since ( ṽk ) k∈Γ is a subsolution of (3.51), then for any (t, x) ∈ [0, T) × R k and (p, q, M) ∈ J+ ṽi, * (t, x) we have min{ ṽi, * (t, x) -

L i (( ṽl, * ) l∈Γ )(t, x); max[ ṽi, * (t, x) -U i (( ṽl, * ) l∈Γ )(t, x); -p -b (t, x)q - 1 2 Tr(σσ (t, x)M) -f i (t, x, ( ṽl, * (t, x)) l∈Γ , σ (t, x)q)]} ≤ 0. ( 3 

.125)

But for any k ∈ Γ, ṽk ≤ v k , then ṽk, * ≤ v k, * . On the other hand, we notice that the operators (w l ) l∈Γ → ṽi, * -L i ((w l ) l∈Γ ) and (w l ) l∈Γ → ṽi, * -U i ((w l ) l∈Γ ) are decreasing, then by the monotonicity of f i ((H5)) and (3.125) we have

min{( ṽi, * -L i ((v l, * ) ł∈Γ ))(t, x); max[( ṽi, * -U i ((v l, * ) ł∈Γ ))(t, x); -p -b (t, x)q - 1 2 Tr(σσ (t, x)M) -f i (t, x, [(v l, * (t, x)) l∈Γ -i , ṽi, * ], σ (t, x)q)]} ≤ 0. (3.126)
It means that ṽi is a subsolution of the following PDE: 

       min{(w -L i ((v l, * ) ł∈Γ ))(t, x); max[(w -U i ((v l, * ) ł∈Γ ))(t, x); -p -b (t, x)q - 1 2 Tr(σσ (t, x)M) -f i (t, x, [(v l, * (t, x)) l∈Γ -i , w], σ (t, x)q)]} = 0 w(T, x) = h i (x) (3 
(t, x, w, p, q, M) ∈ [0, T] × R k+1+1+k × S k → min{w -L i ((v l, * ) l∈Γ )(t, x); max[w -U i ((v l, * ) l∈Γ )(t, x); -p -b (t, x)q -f i (t, x, [(v l, * (t, x)) l∈Γ -i , w], σ (t, x).q)]}.
As v i is the supremum of ṽi , thanks to Lemma 4.2 in [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], v i is a viscosity subsolution of (3.127).

But i is arbitrary, then (v i ) i∈Γ is a viscosity subsolution of system (3.51).

Step 2: (v i ) i∈Γ is a viscosity supersolution of (3.51). 

:= sup τ∈T 0 , s 0 ≤τ≤t 0 E[|X τ |] < ∞.

The class of doubly reflected BSDEs

In this paper we aim at finding P-measurable processes (Y, Z, K + , K -) solution of the doubly reflected BSDE of mean-field type associated with the generator f (t, ω, y, y ), the terminal condition ξ, the lower barrier h(y, y ), and the upper barrier g(y, y ), in the cases p > 1 and p = 1 respectively. The two cases should be considered separately since one cannot deduce one case from another one. So to begin with let us make precise the definitions: Definition 4.2.1. We say that the quaternary of P-measurable processes (Y t , Z t , K + t , K - t ) t≤T is a solution of the mean-field reflected BSDE associated with ( f , ξ, h, g) if :

Case: p > 1                    Y ∈ S p c , Z ∈ H d loc and K + , K -∈ A; Y t = ξ + T t f (s, Y s , E[Y s ])ds + K + T -K + t -K - T + K - t - T t Z s dB s , 0 ≤ t ≤ T; h(Y t , E[Y t ]) ≤ Y t ≤ g(Y t , E[Y t ]), ∀t ∈ [0, T]; T 0 (Y s -h(Y s , E[Y s ]))dK + s = T 0 (Y s -g(Y s , E[Y s ]))dK - s = 0. (4.2) DIFFERENTIAL EQUATIONS Case: p = 1,                    Y ∈ D, Z ∈ H d loc and K + , K -∈ A; Y t = ξ + T t f (s, Y s , E[Y s ])ds + K + T -K + t -K - T + K - t - T t Z s dB s , 0 ≤ t ≤ T; h(Y t , E[Y t ]) ≤ Y t ≤ g(Y t , E[Y t ]), ∀t ∈ [0, T]; T 0 (Y s -h(Y s , E[Y s ]))dK + s = T 0 (Y s -g(Y s , E[Y s ]))dK - s = 0. (4.3)

Assumptions on ( f , ξ, h, g)

We now make precise the requirements on the items ( f , ξ, h, g) which define the two reflecting barriers backward stochastic differential equation of mean-field type.

Assumption (A1):

(i) The coefficients f , h, g and ξ satisfy:

(a) the process ( f (t, 0, 0)) t≤T is Pmeasurable and such that T 0 | f (t, 0, 0)|dt ∈ L p (dP);

(b) f is Lipschitz w.r.t (y, y ) uniformly in(t, ω), i.e., there exists a positive constant C f such that Pa.s. for all t ∈ [0, T], y 1 , y 1 , y 2 and y 2 elements of R,

| f (t, ω, y 1 , y 1 ) -f (t, ω, y 2 , y 2 )| ≤ C f (|y 1 -y 1 | + |y 2 -y 2 |). (4.4) 
(ii) h and g are mappings from R 2 into R which satisfy:

(a) h and g are Lipschitz w.r.t. (y, y ) i.e., there exist pairs of positive constants (γ 1 , γ 2 ), (β 1 , β 2 ) such that for any x, x , y and y ∈ R,

|h(x, x ) -h(y, y )| ≤ γ 1 |x -y| + γ 2 |x -y |, |g(x, x ) -g(y, y )| ≤ β 1 |x -y| + β 2 |x -y |. (4.5) (b) h(x, x ) < g(x, x ), for any x, x ∈ R; (iii) ξ is an F T -measurable, R-valued r.v., E[ξ p ] < ∞ and satisfies h(ξ, E[ξ]) ≤ ξ ≤ g(ξ, E[ξ]).

EXISTENCE AND UNIQUENESS OF A SOLUTION OF THE DOUBLY REFLECTED BSDE OF MEAN-FIELD TYPE

Existence and Uniqueness of a Solution of the Doubly Reflected

BSDE of Mean-Field type

Let Y = (Y t ) t≤T be an R-valued, P-measurable process and Φ the mapping that associates to Y the following process (Φ(Y) t ) t≤T : ∀t ≤ T,

Φ(Y) t : = ess sup τ≥t ess inf σ≥t E{ σ∧τ t f (s, Y s , E[Y s ])ds + g(Y σ , E[Y t ] t=σ )1 {σ<τ} + h(Y τ , E[Y t ] t=τ )1 {τ≤σ,τ<T} + ξ1 {τ=σ=T} |F t }.
For the well-posedness of Φ(Y) one can see e.g. [START_REF] Lepeltier | Le jeu de dynkin en théorie générale sans l'hypothèse de mokobodski[END_REF], Theorem 7.

The following result is related to some properties of Φ(Y).

Lemma 4.3.1. Assume that assumptions (A1) are satisfied for p = 1 and Y ∈ D. Then the process Φ(Y) belongs to D. Moreover there exist processes (Z t ) t≤T and (A ± t ) t≤T such that:

                        
Z ∈ H m loc ; A ± ∈ A; [START_REF] Hassairi | Existence and uniqueness for D-solutions of reflected bsdes with two barriers without mokobodzki's condition[END_REF] and [START_REF] Topolewski | Reflected bsdes with general filtration and two completely separated barriers[END_REF] are the same (one can see e.g. [START_REF] Lepeltier | Penalization method for reflected backward stochastic differential equations with one rcll barrier[END_REF], pp.60).

Finally the process Y has the following representation as the value of a zero-sum Dynkin game: ∀t ≤ Therefore Y = Φ(Y) and the claim is proved.

The case p > 1

We will first show that Φ is well defined from S p to S p . )) s≤T belongs to S p since Y belongs to S p (see e.g. [START_REF] Asri | L p-solutions for doubly reflected backward stochastic differential equations[END_REF] for more details).

Next let us define the martingale M := (M t ) 0≤t≤T as follows: where

M t : = E T 0 | f (
Λ(C f , p, γ 1 , γ 2 , β 1 , β 2 )(δ) = (2δC f + γ 1 + γ 2 + β 1 + β 2 ) p-1 p p p -1 p (δC f + γ 1 + β 1 ) +(δC f + γ 2 + β 2 ) 1 p .
Note that (4.10) is just Λ(C f , p, γ 1 , γ 2 , β 1 , β 2 )(0) < 1. As lim δ→0 Λ(C f , p, γ 1 , γ 2 , β 1 , β 2 )(δ) = Λ(C f , p, γ 1 , γ 2 , β 1 , β 2 )(0) < 1. Then there exists δ small enough which depends only on C f , p, γ 1 , γ 2 , β 1 , β 2 and not on ξ nor T such that Λ(C f , p, γ 1 , γ 2 , β 1 , β 2 )(δ) < We now show that the mean-field reflected BSDE (4.2) has a unique solution. Let us now focus on uniqueness. Assume there is another solution (Y, Z, K ± ) of (4. The equality between the stochastic integrales imply that Z = Z. Finally as h < g and since Y = Y, then K + = K + and K -= K -(see e.g. [START_REF] Asri | L p-solutions for doubly reflected backward stochastic differential equations[END_REF]) for more details. Thus the solution is unique. The proof is complete. Remark 4.3.5. i) We have the same result if we replace the function h (resp. g) with h(t, ω, y, y ) (resp. g(t, ω, y, y )) with (h(t, ω, 0, 0)) t≤T (resp. (g(t, ω, 0, 0)) t≤T ) is a process of S p .

ii) There is no specific difficulty to consider the following more general framework of equations (4.2) and where d p (., .) is the p-Wasserstein distance on the subset P p (R) of probability measures with finite p-th moment, formulated in terms of a coupling between two random variables X and Y defined on the same probability space: d p (µ, ν) := inf (E [|X -Y| p ]) 1/p , law(X) = µ, law(Y) = ν .

(4.3).              Y t = ξ + T t f (

The case p=1

We proceed as we did in the case when p > 1. We have the following result. Then for any θ a stopping time valued in [Tδ, T], we have: As a by-product we have the following result which stems from the link between the value of a zero-sum Dynkin game and doubly reflected BSDE given in (4.6).

E[|Φ(Y) θ -Φ(Y ) θ |] ≤ (2δC f + β 1 + β 2 + γ 1 + γ 2 ) Σ(δ)
Corollary 4.3.7. Let Assumption (A1) hold for some p = 1. If γ 1 , γ 2 , β 1 and β 2 satisfy (4.24) then there exists δ > 0, depending only on C f , γ 1 , γ 2 , β 1 , β 2 , and P-measurable processes Z 0 , K 0,± such that: The process Y 1 exists since condition (4.24) is satisfied and δ does not depend neither on T nor on the terminal condition. Once more the link between reflected backward equations and zerosum Dynkin games (see Lemma 4.3.1) implies the existence of P-measurable processes Z 1 , K 1,± such that: Title : Backward Stochastic Differential Equations and applications: optimal switching, stochastic games, partial differential equations and mean-field Keywords : BSDEs, zero-sum stochastic games, DRBSDEs with doubly interconnected barriers, PDEs, penalization method, fixed point method, stochastic optimal switching. Abstract : This thesis is related to Doubly Reflected Backward Stochastic Differential Equations (DRBSDEs) with two obstacles and their applications in zero-sum stochastic switching games, systems of partial differential equations, mean-field problems. There are two parts in this thesis. The first part deals with optimal stochastic switching and is composed of two works. In the first work we prove the existence of the solution of a system of DRBSDEs with bilateral interconnected obstacles in a probabilistic framework. This problem is related to a zero-sum switching game. Then we tackle the problem of the uniqueness of the solution. Finally, we apply the obtained results and prove that, without the usual monotonicity condition, the associated PDE system has a unique solution in viscosity sense. In the second work, we also consider a system of DRBSDEs with bilateral interconnected obstacles in the markovian framework. The difference between this work and the first one lies in the fact that switching does not work in the same way. In this second framework, when switching is operated, the system is put in the following state regardless of which player decides to switch. This difference is fundamental and largely complicates the problem of the existence of the solution of the system. Nevertheless, in the Markovian framework we show this existence and give a uniqueness result by the Perron's method. Later on, two particular switching games are analyzed. In the second part we study a onedimensional Reflected BSDE with two obstacles of mean-field type. By the fixed point method, we show the existence and uniqueness of the solution in connection with the integrality of the data.

                      
                         P -a.s., T-δ T-2δ |Z 1 s | 2 ds < ∞; K 1,± ∈ A and K 1,± T-2δ = 0; Y 1 t = Y T-δ + T-δ t f (s, Y 1 s , E[Y 1 s ])ds + K 1,+ T-δ -K 1,+ t -K 1,- T-δ + K

Theorem 1 . 5 . 8 .

 158 This work is devoted to studying the solvability of MF-DRBSDE for the case p > 1 (1.49) and for the case p = 1 (1.50). By means of the associated zero-sum stochastic switching games and the Snell envelope argument, we prove the existence of the local fixed point Y over t ∈ [Tδ, T] where δ is a parameter independent to the terminal condition ξ. Next by concatenating of all small intervals [Tiδ, T -(i -1)δ], ∀i = 1, ..., T δ , we then obtain the global fixed point Y on [0, T]. However some supplementary conditions on Lipschitz constants γ 1 , γ 2 , β 1 , β 2 are required. Assume that Assumption 1.5.6 holds for some p > 1. If γ 1 and γ 2 satisfy

  ik and g jl are constant. The question of uniqueness is not addressed and remained open. On the other hand, in [19], Djehiche et al. have considered system (2.1) in the markovian framework of randomness. By using tools which combine results on partial differential equations (PDEs for short) with results on BSDEs, the authors have shown existence and uniqueness of the solution of system (2.1). The switching costs g ik and g jl are not constant.Therefore the main objective of this work is to complete the existing literature on the problem of existence and uniqueness of a solution for the system of RBSDEs with bilateral interconnected obstacles (2.1) and to provide an application in the field of PDEs. Actually the novelties of this paper are the following: i) We show that system (2.1) has a solution in the case when the processes g ik and g jl are of Itô type and under the monotonicity assumption of the functions f ij (see [H5] below) ;

Theorem 2 . 4 . 1 .

 241 ([33], Theorem 3.1) For any t ∈ [0, T] and (i, j) ∈ Γ,

64 2. 4 .Corollary 2 . 4 . 2 .

 644242 EXISTENCE AND UNIQUENESS WITHOUT MONOTONICITY tion of system (2.41) which stems from the above characterization of the component Y ij as the value function of the zero-sum switching game. Let

Theorem 2 . 5 . 3 .

 253 Assume that Assumptions [H1b]-[H4b] are fulfilled. Then there exist deterministic continuous functions

. 21 ) 3 . 3 . 3 .

 21333 RemarkFor any s < T and i ∈ Γ, P[σ i s = τ i s < T] = 0 due to assumption [H3]-a) on g i,i+1

92 3 . 3 .Proposition 3 . 3 . 4 .

 33334 EXISTENCE OF A VALUE OF THE ZERO-SUM SWITCHING GAME. LINK WITH SYSTEMS OF REFLECTED BSDES Assume that (H1), (H2), (H3) and (Z i ) i∈Γ ∈ H 2,d . Then the following properties of u * = (σ * n ) n≥0 and v * = (τ * n ) n≥0 hold true: i) u * and v * are admissible ; ii) the coupling θ

,

  since C 1 has priority when the two players decide to switch at the same 103 CHAPTER 3. PAPER 2: ZERO-SUM SWITCHING GAME, SYSTEMS OF REFLECTED BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED OBSTACLES time. Then take expectation in both hand-sides to obtain:

V - 104 3 . 4 .

 34 SYSTEM OF PDES OF MIN-MAX TYPE WITH INTERCONNECTED OBSTACLES and the claim is proved since V + ≥ V -. Remark 3.3.10. a) As in Remark 3.3.7 we have also the following equalities: For any i ∈ Γ,

r ( 3 = 0 .

 30 .91) Combining (3.89)-(3.91) and (H3)-a)(the two obstacles are totally separated), we finally obtain ∀i ∈ Γ, s ∈ [t, T], K i,- s = Ki,- Finally the equality K

Proposition 3 . 6 . 4 .

 364 .122) Hence under (3.120) and (3.122),(3.116) is satisfied, then ( vi ) i∈Γ is a viscosity subsolution of (3.51). Let us fix m 0 ∈ N. Then the family ( vi,m 0 ) i∈Γ is a viscosity supersolution of (3.51).

Lemma 4 . 3 . 2 . 0 f

 4320 Let f , h, g and ξ satisfy Assumption (A1) for some p > 1.If Y ∈ S p then Φ(Y) ∈ S p .Proof. Let Y ∈ S p . For σ and τ two stopping times, let us define:L(τ, σ) = τ∧σ 0 f (r, Y r , E[Y r ])dr + g(Y σ , E[Y t ] t=σ )1 {σ<τ} + h(Y τ , E[Y t ] t=τ )1 {τ≤σ,τ<T} + ξ1 {τ=σ=T} .Then for any t ≤ T,Φ(Y) t + t (s,Y s , E[Y s ])ds = ess sup τ≥t ess inf σ≥t E[L(τ, σ)|F t ] = ess inf σ≥t ess sup τ≥t E[L(τ, σ)|F t ].

(4. 8 )

 8 As pointed out previously when Y belongs to S p with p > 1, then it belongs to D. Therefore, under assumptions (A1), the process Φ(Y) is continuous. On the other hand, the second equality in (4.8) is valid since by (A1)-(ii), (a)-(b), h < g and the processes (h(Y s , E[Y s ])) s≤T and (g(Y s , E[Y s ]

1 .

 1 It implies that Φ is a contraction on S p c ([Tδ, T]). Then there exists a process which belongs toS p c ([Tδ, T]) such that Y t = Φ(Y) t , ∀t ∈ [Tδ, T].

(4. 22 )t((

 22 Concatenating now the solutions (Y, Z, K± ) and (Y 1 , Z1 , K1,± ) we obtain a solution of (4.2) on 1444.3. EXISTENCE AND UNIQUENESS OF A SOLUTION OF THE DOUBLY REFLECTED BSDE OF MEAN-FIELD TYPE[T -2δ, T]. Actually for t ∈ [T -2δ, T], let us set: Ỹt = Y t 1 [T-δ,T] (t) + Y 1 t 1 [T-2δ,T-δ) (t), Zt = Zt 1 [T-δ,T] (t) + Z1 t 1 [T-2δ,T-δ) (t), -δ,T] (s)d K0,± s + 1 [T-2δ,T-δ] (s)d K1,± s }. Then Ỹ ∈ S p ([T -2δ, T], Z ∈ H d loc ([T -2δ, T]) and K± ∈ A([T -2δ, T]) and they verify: Forany t ∈ [T -2δ, T], , Ỹs , E[ Ỹs ])ds + K+ T -K+ t -K- T + K- t -T Zs dB s ; h( Ỹt , E[ Ỹt ]) ≤ Ỹt ≤ g( Ỹt , E[ Ỹt ]); Ỹsh( Ỹs , E[ Ỹs ]))d K+ s = 0, Ỹsg( Ỹs , E[ Ỹs ]))d K- s = 0.(4.23) But we can do the same on [T -3δ, T -2δ], [T -4δ, T -3δ], etc. and at the end, by concatenation of those solutions, we obtain a solution (Y, Z, K ± ) which satisfy (4.2).

  2). It means that Y is a fixed point of Φ on S p ([Tδ, T]), therefore for any t ∈ [Tδ, T], Y t = Y t . Next writing equation (4.2) for Y and Y on [T -2δ, Tδ], using the link with zerossum Dynkin games (see Lemma 4.3.1) and finally the uniqueness of the fixed point of Φ on S p ([T -2δ, Tδ]) to obtain that for any t ∈ [T -2δ, Tδ], Y t = Y t . By continuig this proce- dure on [T -3δ, T -2δ], [T -4δ, T -3δ], etc. we obtain that Y = Y.

  sup τ∈[T-δ,T] E[|Y τ -Y τ |]. Next since β 1 + β 2 + γ 1 + γ 2 < 1,then for δ small enough we have Σ(δ) < 1 (δ does not depend neither on ξ nor on T) and Φ is a contraction on the space D([Tδ, T]). Therefore it has a fixed point Y, which then verifies:Y ∈ D([Tδ, T]) and ∀t ∈ [Tδ, T], Y t = ess sup τ≥t ess inf σ≥t {E{ σ∧τ t f (s, Y s , E[Y s ])ds + g(Y σ , E[Y t ] t=σ )1 {σ<τ} + h(Y τ , E[Y t ] t=τ )1 {τ≤σ,τ<T} + ξ1 {τ=σ=T} |F t }}.

Titre:

  Équations différentielles stochastiques rétrogrades et applications : switching optimal, jeux stochastiques, EDP et mean-field Mots clés : EDSRs, jeux stochastiques de somme nulle, EDSR réfléchie à deux obstacles interconnectés, EDPs, Méthode de pénalisation, méthode de point-fixe, switching optimal stochastique. Résumé : Cette thèse est relative aux Equations Différentielles Stochastique Rétrogrades (EDSRs) réfléchies avec deux obstacles et leurs applications aux jeux de switching de somme nulle, aux systèmes d'équations aux dérivées partielles, aux problèmes de mean-field. Il y a deux parties dans cette thèse. La première partie porte sur le switching optimal stochastique et est composée de deux travaux. Dans le premier travail, nous montrons l'existence de la solution d'un système d'EDSR réfléchies à obstacles bilatéraux interconnectés dans le cadre probabiliste général. Ce problème est lié à un jeu de switching de somme nulle. Ensuite nous abordons la question de l'unicité de la solution. Et enfin nous appliquons les résultats obtenus pour montrer que le système d'EDP associé à une unique solution au sens viscosité, sans la condition de monotonie habituelle. Dans le second travail, nous considérons aussi un système d'EDSRs réfléchies à obstacles bilatéraux interconnectés dans le cadre markovien. La différence avec le premier travail réside dans le fait que le switching ne s'opère pas de la même manière. Cette fois-ci quand le switching est opéré, le système est mis dans l'état suivant importe peu lequel des joueurs décide de switcher. Cette différence est fondamentale et complique singulièrement le problème de l'existence de la solution du système. Néanmoins, dans le cadre markovien nous montrons cette existence et donnons un résultat d'unicité en utilisant principalement la méthode de Perron. Ensuite, le lien avec un jeu de switching spécifique est établi dans deux cadres. Dans la seconde partie nous étudions les EDSR réfléchies unidimensionnelles à deux obstacles de type mean-field. Par la méthode du point fixe, nous montrons l'existence et l'unicité de la solution dans deux cadres, en fonction de l'intégrabilité des données.

  1.1. AN OVERVIEW OF GENERAL RESULTS OF BSDES• For k ≥ 1, H 2,k = {P-measurable, R k -valued processes φ = (φ t ) t∈[0,T] s.t. E(

	T 0 |φ t | 2 k dt) <
	∞}.

  such that for any t, x, ū ∈ Ū, v ∈ V,

	CHAPTER 1. INTRODUCTION
	Theorem 1.1.10 (Hamadène-Lepeltier
	(H) H(t, x, p, u Note that, conversely, (H) implies the Isaacs condition and then we have
	H(t, x, p, u * (t, x, p), v * (t, x, p)) = max v∈ V min ū∈ Ū H(t, x, p, ū, v).

* (t, x, p), v * (t, x, p)) ≤ H(t, x, p, ū, v * (t, x, p)), H(t, x, p, u * (t, x, p), v * (t, x, p)) ≥ H(t, x, p, u * (t, x, p), v).

  (s)dB s , where u n , v n are F t -adapted processes such that sup n≥0,t∈[0,T] |u n t | ≤ C

	1. U n t ≥ U n+1 t	and lim n→∞ U n t = U t , P -a.s;
	2. U n t = U n 0 +	t 0 u n (s)ds +	t 0 v n

* and E{ T 0 |v n (s)| 2 ds] 1/2 } < ∞, where C * is a constant.

  For any k ∈ Γ 1 (resp. ∈ Γ 2 ) such that |{i 1 , i 2 , k}| = 3 (resp. |{j 1 , j 2 , }| = 3), it holds:

	P -a.s., ∀t ≤ T, g	i 1 i 2	(t) < g	i 1 k (t) + g	ki 2	(t) resp. g j 1 j 2 (t) < g j 1 (t) + g j 2 (t) ;
							(1.14)
	4. For any (i, j), (k, ) ∈ Γ, g	ik	(resp. g j ) is an Itô process, i.e.,
							t
		g	ik (t) = g	ik (0) +	0	b ik (s)ds +
						

i) is non-negative and continuous; 21 CHAPTER 1. INTRODUCTION (ii) t 0 σ ik (s)dB s , t ≤ T, with σ ik ∈ H 2,d and b ik , P-measurable and E[sup s≤T |b ik

Assumption 1.4.1.

  For any i ∈ Γ, a) f i is Lipschitz in ( y, z) uniformly in (t, x) i.e. for any y 1 , y 2 ∈ R p , z 1 , z 2 ∈ R d and t ∈ [0, T],

	1.4. ZERO-SUM SWITCHING GAME, SYSTEMS OF REFLECTED BACKWARD SDES AND
	PARABOLIC PDES WITH BILATERAL INTERCONNECTED OBSTACLES
	(H3) a) For all i ∈ Γ and (t, x) ∈ [0, T] × R k , the functions g	i,i+1	and g i,i+1 are continuous, non-
	negative, belong to Π g and verify:		
				g	i,i+1 (t, x) + g i,i+1 (t, x) > 0.
	b) They satisfy the non-free loop property, i.e., for any j ∈ Γ and (t, x) ∈ [0, T] × R k ,
	ϕ j,j+1 (t, x) + ... + ϕ p-1,p (t, x) + ϕ p,1 (t, x) + ... + ϕ j-1,j (t, x) = 0,	(1.30)
	where ϕ , +1 (t, x) is either -g	, +1 (t, x) or g , +1 (t, x). Let us notice that (3.14) also implies:
	g j,j+1 (t, x) + ... + g p-1,p (t, x) + g p,1 (t, x) + ... + g j-1,j (t, x) > 0,	(1.31)
	and					
	g	j,j+1 (t, x) + ... + g	p-1,p (t, x) + g	p,1 (t, x) + ... + g	j-1,j (t, x) > 0.	(1.32)
	(H5)					
	(H1) For any i ∈ Γ, f i does not depend on ( y, z), is continuous in (t, x) and
	belongs to class Π g ;					
	(H2) For any i ∈ Γ, the function h i , which stands for the terminal payoff, is continuous w.r.t. x, belongs
	to class Π g and satisfies the following consistency condition: ∀i ∈ Γ, ∀x ∈ R k ,
	h i+1 (x) -g	i,i+1 (T, x) ≤ h i (x) ≤ h i+1 (x) + g i,i+1 (T, x).	(1.29)

  2.23)Next by taking θ = m, recall that [H1] implies the boundedness of ( f ij (t, y, z)) (i,j)∈Γ by | y| and [H4] represents ( ḡjl ) jl∈Γ 2 as Itô process, hence by taking the conditional expectation we deduce:

	∀t ≤ T,	
	W t a,jl,m,+	≤ E

T t e -m(s-t) |f aj (s, (Y kl,m s

  dP) and since, as pointed out previously, K ij,m,+ S 2 = lim n→∞

	Indeed let us show the weak convergence of (	τ 0 α	ij,m,n s	. 0 α ds) n≥0 . Let ζ be a random variable of ij,m,n s ds.
	L 2 R (Ω, F t
						0	ηs dB s .
	Next by Itô's formula we have
	E ζ	0	τ	α	ij,m,n s

T , dP). By the representation property there exists a P-measurable process ( ηt

) t≤T of H 2,d such that: ∀t ≤ T, E[ζ|F t ] = E[ζ] + ds = E E[ζ|F τ ] τ 0 α ij,m,n s ds = E τ 0 E[ζ|F s ]α ij,

m,n s ds BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONS since by Burkholder et al.'s inequality ([62], pp.160)

  3.6 and 2.4.1, we will prove the existence and uniqueness of the solution for the system of reflected BSDEs with bilateral interconnected obstacles (2.4) without assuming Assumption [H5] on monotonicity and we instead assume [H6].

Theorem 2.4.3. Assume that [H1]-[H4] and [H6] are fulfilled. Then system of reflected BSDEs (2.4) has a solution

  2,α ) is of Banach type. If the map Φ is a contraction on (H 2,Λ , . 2,α ), then it has a fixed point which is the unique solution of (2.43). So let us show that Φ is a contraction.

By Theorem 2.4.1, the following representation holds true:

∀(i, j) ∈ Γ and t ≤ T, Y φ,ij t = ess sup

  D x g jl , D 2 xx g jl ) belong to Π g . Thus by Itô's formula we have: g jl , D 2 xx g jl ) belong to Π g , taking into account of assumptions (2.60) on linear growth of b and σ and finally estimate (2.62), one gets that sup s≤T |D x g ik (s, X t,x s )| (resp. sup s≤T |D x g jl (s, X t,x s )|) belongs to L 2 (dP).

	  	g g	ik (s, X t,x s ) = g ik (s, X t,x s ) = g	ik (t, x) + ik (s, x), s ≤ t. s t L X (g	ik )(r, X t,x r )dr +	t	s	D x g	ik (r, X t,x r )σ(r, X t,x r )dB r , s ∈ [t, T];
	  resp.	 	g jl (s, X t,x s ) = g jl (t, x) +	t	s	L X (g jl )(r, X t,x r )dr	t	s	D x g jl (r, X t,x r )σ(r, X t,x r )dB   .
									
	Remark 2.5.1. Since D x g	ik	, D 2 xx g	
	To begin with we first give the following result which stems from Theorem 2.4.3 under
	assumptions [H1b]-[H4b].	
	Proposition 2.5.2. Assume that Assumptions [H1b]-[H4b] are fulfilled. Then for any (t, x) ∈ [0, T]

and D x g ik , D 2 xx g ik (resp. r , s ∈ [t, T]; g jl (s, X t,x s ) = g jl (s, x), s ≤ t. ik (resp. D x

  BILATERAL OBSTACLES: EXISTENCE, UNIQUENESS AND APPLICATIONSLet ρ(x) := (1 + |x| 2 ) -γ , x ∈ R k , and for any (i, j) ∈ Γ, s ∈ [t, T], set

	Ỹij s := Y s ρ(X t,x ij s ).	(2.77)
	Then by Itô's formula we have: ∀s ∈ [t, T],	

  .50) These processes exist by Theorem 3.3.1. Then as previously one can show that for any (t, x) and s ∈

	[t, T],					
	Y i,t,x s	= ess inf v∈B (1) t	ess sup u∈A (1) t	J t,x i (θ(u, v)) s = ess sup u∈A (1) t	ess inf i v∈B (1)	J t,x i (θ(u, v)) s
	where					
	J t,x i (θ(u, v)) s				

  ,x s and Zi,t,x = Z i,t,x s , ds ⊗ dP on [t, T] × Ω.Now the convergence of ( Ȳi,m,t,x ) m to Y i,,t,x in S 2 ([t, T]) (by (3.65)) and the inequalities (3.67) imply that, in taking the limits in both hand-sides of (3.75): ∀s ∈ [t, T], ) l∈Γ )1 (σ<τ) + U i τ ((Y l,t,x ) l∈Γ )1 (τ≤σ,τ<T) |F s ].Next the third inequality in (3.57) and (3.67) imply that: For any s ∈ [t, T] and i ∈ Γ,
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	For any i ∈ Γ and m ≥ 0, the processes Ȳi,m,t,x have the following representation (see e.g. A4 in
	[18] for more details): For any s ∈ [t, T],			
	Ȳi,m,t,x s	= ess sup σ≥s	ess inf τ≥s	E[h i (X t,x T )1 (σ=τ=T) +	s	σ∧τ	f i (r, X t,x r , ( Ȳl,m,t,x r	) l∈Γ )dr	(3.75)
				+ L i σ (( Ȳl,m,t,x ) l∈Γ )1 (σ<τ) + {U i τ (( Ȳl,m ) l∈Γ ) ∨ Ȳi,m,t,x τ	}1 (τ≤σ,τ<T) |F s ].
		Y i,t,x s	= ess sup σ≥s	ess inf τ≥s + L i E[h i (X t,x T )1 (σ=τ=T) + σ ((Y l,t,x (3.76) σ∧τ s f i (r, X t,x r , (Y l,t,x r ) l∈Γ )dr
	Proof. Existence					

  2,β ) where the appropriate value of β is determined in the following.Let us recall Theorem 3.3.9 and Remark 3.3.10, for any (t, x) ∈ [0, T] × R k and t ≤ s ≤ T,
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						OBSTACLES
	the following representation holds true:			
	Y s = ess inf φ,i v∈B (1) s	ess sup u∈A (1) s	J i (Θ(u, v)) s = ess sup φ u∈A (1) s	ess inf s v∈B (1)	J i (Θ(u, v)) s . φ	(3.80)

  Next for any s ∈ [t, T], we apply Itô's formula on e βs J

	x s , ψ(s)) ds + ∆	φ,ψ,θ(u,v) s	dB s

φ i

  2 

  TP) then the operator CHAPTER 3. PAPER 2: ZERO-SUM SWITCHING GAME, SYSTEMS OF REFLECTED BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED OBSTACLES

  .88) Thanks to the fixed point result (3.87) we have immediately Y i = Ŷi , ∀i ∈ Γ. By applying the equivalence of Y i and Ŷi , we also have Z i = Ẑi since from the representation of (3.74) and (3.88), their martingale parts should be equal, i.e. for any i ∈ Γ, s ∈ [t, T],

	T s Z i s dB s =	T s	Ẑi s dB s .
	Moreover by (3.74) and (3.88) we have		

  4.2. NOTATIONS AND FORMULATION OF THE PROBLEMS• S p := {(y t ) t∈[0,T] : continuous and P-measurable process s.t. E[sup t∈[0,T] |y t | p ] < ∞}; S p ([s 0 , t 0 ]) is the space S p reduced to the interval [s 0 , t 0 ]. If y ∈ S p ([s 0 , t 0 ]), we denote by y S p c ([s 0 ,t 0 ]) := {E[sup s 0 ≤u≤t 0 |y u | p ]} 1/p . • A := {(k t ) t∈[0,T] : continuous, P-measurable and non-decreasing process s.t. k 0 = 0}; A([s 0 , t 0 ]) is the space A reduced to the interval [s 0 , t 0 ] (with k s 0 = 0); • T t := {τ, Fstopping time s.t. Pa.s.τ ≥ t};• D := {(φ) t∈[0,T] : Fadapted, Rvalued continuous process s.t. φ 1 = sup τ∈T 0 E[|y τ |] < ∞}.Note that the normed space (D, . 1 ) is complete (e.g.[START_REF] Dellacherie | Probabilités et potentiel. chapitres v à viii[END_REF], pp.90). We denote by (D([s 0 , t 0 ]), . 1 ), the restriction of D to the time interval [s 0 , t 0 ]. It is a complete metric space when endowed with the norm .

1 on [s 0 , t 0 ], i.e., X 1,[s,t]

  First note that since Y ∈ D and g, h are Lipschitz then the processes (h(Y t , E[Y t ])) t≤T and (g(Y t , E[Y t ])) t≤T belong also to D. Next as h < g then, using a result by [38], Theorem 4.1 or [65], Theorem 3.1, there exist P-measurable processes (Y t ) t≤T , (Z t ) t≤T and (A ± t ) t≤T such that: Z s dB s , t ≤ T; h(Y t , E[Y t ]) ≤ Y t ≤ g(Y t , E[Y t ]), t ≤ T; T 0 (Y th(Y t , E[Y t ])dA +

	            	Y ∈ D; Z ∈ H m loc ; A ± ∈ A;
	           	

Φ(Y) t = ξ + T t f (s, Y s , E[Y s ])ds + A + T -A + t -A - T + A - t -T t Z s dB s , t ≤ T; h(Y t , E[Y t ]) ≤ Φ(Y) t ≤ g(Y t , E[Y t ]), t ≤ T; T 0 (Φ(Y) th(Y t , E[Y t ])dA + t = T 0 (Φ(Y) tg(Y t , E[Y t ])dA - t = 0. (4.6)

Proof.

Y t = ξ + T t f (s, Y s , E[Y s ])ds + A + T -A + t -A - T + A - t -T t t = T 0 (Y tg(Y t , E[Y t ])dA - t = 0.

Let us point out that in

[START_REF] Topolewski | Reflected bsdes with general filtration and two completely separated barriers[END_REF]

, Theorem 3.1, the result is obtained in the discontinuous framework, namely the obstacles are right continuous with left limits processes. However since in our situation the processes (h(Y t , E[Y t ])) t≤T and (g(Y t , E[Y t ])) t≤T are continuous then Y and A ± are DIFFERENTIAL EQUATIONS continuous, and the frameworks of

  Y s , E[Y s ])ds + g(Y σ , E[Y t ] t=σ )1 {σ<τ} + h(Y τ , E[Y t ] t=τ )1 {τ≤σ,τ<T} + ξ1 {τ=σ=T} |F t }.

T, Y t : = ess sup τ≥t ess inf σ≥t E{ σ∧τ t f (s,

  s, 0, 0)| + C f (|Y s | + E|Y s |) ds + |g(0, 0)| + β 1 sup s≤T |Y s | + β 2 supAs Y belongs to S p and by (A1)-(1)(a), the term inside the conditional expectation belongs to L p (dP). As the filtration F is Brownian then M is continuous and by Doob's inequality with p > 1 one deduces that M belongs also to S p . Next as f , g and h are Lipschitz, then by a linearization proccedure of those functions one deduces that:|E[L(τ, σ)|F t ]| ≤ M t4.3. EXISTENCE AND UNIQUENESS OF A SOLUTION OF THE DOUBLY REFLECTED BSDE OF MEAN-FIELD TYPEfor any t ≤ T and any stopping times σ, τ ∈ T t . Then we obtain∀t ≤ T, Φ(Y) t + Y s , E[Y s ])ds ≤ M t . C p is a positive constant that only depends on p and T. It holds that Φ(Y) ∈ S Let Assumption (A1) holds for some p > 1. If γ 1 , γ 2 , β 1 and β 2 satify (γ 1 + γ 2 + β 1 + β 2 ) + β 1 ) + (γ 2 + β 2 )then there exists δ > 0 depending only on p, C f , γ 1 , γ 2 , β 1 and β 2 such that Φ is a contraction on the time interval[Tδ, T]. ] t=τ )1 {τ≤σ,τ<T} + ξ1 {τ=σ=T} |F t }ess sup Y s , E[Y s ])ds + g(Y σ , E[Y t ] t=σ )1 {σ<τ} +h(Y τ , E[Y t ] t=τ )1 {τ≤σ<T} + ξ1 {τ=σ=T} |F t }| Y s , E[Y s ])f (s, Y s , E[Y s ])|ds + |g(Y σ , E[Y t ] t=σ ) -g(Y σ , E[Y t ] t=σ )|1 {σ<τ} + |h(Y τ , E[Y t ] t=τ )h(Y τ , E[Y t ] t=τ )|1 {τ≤σ,τ<T} |F t Y s , E[Y s ])f (s, Y s , E[Y s ])|ds + (β 1 + γ 1 ) sup > 0 and let t ∈ [Tδ, T]. By the Lipschitz condition of f , (4.11) implies that |Φ(Y) t -Φ(Y ) t | ≤ E δC f { sup T-δ≤s≤T |Y s -Y s | + sup T-δ≤s≤T E[|Y s -Y s |]} + (β 1 + γ 1 ) sup T-δ≤s≤T |Y s -Y s | +(β 2 + γ 2 ) sup T-δ≤s≤T E[|Y s -Y s |] F t = (δC f + γ 1 + β 1 )E sup T-δ≤s≤T |Y s -Y s | F t + (δC f + γ 2 + β 2 ) sup T-δ≤s≤T E{|Y s -Y s |}.As p > 1, thanks to the convexity inequality (ax 1 + bx 2 ) p ≤ (a + b) p-1 (ax holding for any non-negative real constants a, b, x 1 and x 2 , (4.12) yields|Φ(Y) t -Φ(Y ) t | p ≤ (2δC f + γ 1 + γ 2 + β 1 + β 2 ) p-1 (δC f + γ 1 + β 1 ) |Y s -Y s | F t ] f + γ 2 + β 2 ) E[ sup T-δ≤s≤T |Y s -Y s |]Next, by taking expectation of the supremum over t ∈ [Tδ, T] on the both hand-sides of (4.13), we have -Φ(Y ) s | p ≤ (2δC f + γ 1 + γ 2 + β 1 + β 2 ) p-1 (δC f + γ 1 + β 1 ) E[ sup EXISTENCEAND UNIQUENESS OF A SOLUTION OF THE DOUBLY REFLECTED BSDE OF MEAN-FIELD TYPE Plug now (4.15) and (4.16) in (4.14) to obtain: Φ(Y) -Φ(Y ) S p ([T-δ,T]) ≤ Λ(C f , p, γ 1 , γ 2 , β 1 , β 2 )(δ) Y -Y S p ([T-δ,T])

		CHAPTER 4. PAPER 3: MEAN-FIELD DOUBLY REFLECTED BACKWARD STOCHASTIC 4.3.
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	t f (s, Therefore, 0 E{sup t≤T 0 | f (s, Y s , E[Y s ])|ds |Φ(Y) t | p } ≤ C p E T Fix now δ (4.12)
							p c since
		Y ∈ S	p c and f is Lipschitz.			p 1 + bx
		Next we have the following result.		
							p
		E[ sup Proposition 4.3.3. p-1 p T-δ≤s≤T	p p -1	1 p	< 1	. (4.13)	(4.10)
	E	sup T-δ≤s≤T	|Φ(Y) T-δ≤t≤T	E[ sup
						p
						.
							(4.14)
	By applying Doob's inequality we have:			E|Y s |
	s≤T |Y s -Y s | p E|Y s | + |ξ| F t . ) p E sup p -1 |Y s | + γ 2 sup s≤T p ] ≤ ( p T-δ≤s≤T | f (s, (4.11) +|h(0, 0)| + γ 1 sup s≤T (4.9) E σ∧τ t T-δ≤t≤T ≤ ess sup τ≥t, σ≥t T E[ sup E[ sup T-δ≤s≤T |Y s -Y s ||F t ] (4.15) and by Jensen's one we have also | f (s, ≤ E t T-δ≤s≤T E[ sup |Y s -Y s |] (4.16)
					142	141

p + E[sup t≤T |M t | p ] where p (γ 1 Proof. Let Y, Y ∈ S p c . Then, for any t ≤ T, we have,

|Φ(Y) t -Φ(Y ) t | = | ess sup τ≥t ess inf σ≥t {E σ∧τ t f (s, Y s , E[Y s ])ds + g(Y σ , E[Y t ] t=σ )1 {σ<τ} +h(Y τ , E[Y t τ≤t ess inf σ≤t {E σ∧τ t f (s, t≤s≤T |Y s -Y s ||F t + (β 2 + γ 2 ) sup t≤s≤T E[|Y s -Y s |]. p 2 ) p + (δC s T-δ≤s≤T |Y s -Y s ||F t ] p ] +(δC f + γ 2 + β 2 ) E[ sup T-δ≤s≤T |Y s -Y s |] p ≤ E[ sup T-δ≤s≤T |Y s -Y s | p ].

Theorem 4.3.4.

  Assume that Assumption (A1) holds for some p > 1. If γ 1 and γ 2 satisfy(γ 1 + γ 2 + β 1 + β 2 ) + β 1 ) + (γ 2 + β 2 )then the mean-field doubly reflected BSDE (4.2) has a unique solution (Y, Z, K + , K -). . Let δ be as in Proposition 4.3.3. Then there exists a process Y ∈ S p ([Tδ, T]), which is the fixed point of Φ in this latter space and verifies: Forany t ∈ [Tδ, T], Y t = ess sup Y s , E[Y s ])ds + g(Y σ , E[Y t ] t=σ )1 {σ<τ} +h(Y τ , E[Y t ] t=τ )1 {τ≤σ,τ<T} + ξ1 {τ=σ=T} |F t . T-δ≤t≤T and (g(Y t , E[Y t ])) T-δ≤t≤T belong to S p ([Tδ, T]) since Y isso, and finally since h < g, then there exist processes Ȳ ∈ S p ([Tδ, T]), Z ∈ H d loc ([Tδ, T]) and K± ∈ A([Tδ, T]) (see e.g. 143 CHAPTER 4. PAPER 3: MEAN-FIELD DOUBLY REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS [22] for more details) such that for any t ∈ [Tδ, T], it holds: Zs dB s ; h(Y t , E[Y t ]) ≤ Ȳt ≤ g(Y t , E[Y t ]); ( Ȳsh(Y s , E[Y s ]))d K+ s = 0, Therefore the process Ȳ has the following representation: ∀t ∈ [Tδ, T], Y s , E[Y s ])ds + g(Y σ , E[Y t ] t=σ )1 {σ<τ} +h(Y τ , E[Y t ] t=τ )1 {τ≤σ,τ<T} + ξ1 {τ=σ=T} |F t } . (4.19) It follows that for any t ∈ [Tδ, T], Y t = Ȳt . Thus (Y, Z, K± ) verifies (4.2) and (4.18) on [T -But δ of Proposition 4.3.3 does not depend on the terminal condition ξ nor on T, therefore there exists another process Y 1 which is a fixed point of Φ in S p ([T -2δ, Tδ]) with terminal condition Y T-δ , i.e., for any t ∈ [T -2δ, Tδ], ] t=τ )1 {τ≤σ,τ<T-δ} + Y T-δ 1 {τ=σ=T-δ} |F t } . Then as previously, there exist processes ( Z1 , K1,± ) ( K1,± ∈ A([T -2δ, Tδ])) suh that (Y 1 , Z1 , K1,± ) verify: For any t ∈ [T -2δ, Tδ],

	      	p-1 p σ∧τ t f (s, Y 1 s , E[Y 1 p p -1 T T-δ s ])ds + g(Y 1 ( Ȳs -g(Y s , E[Y s ]))d K-s = 0. 1 p σ , E[Y 1 t ] t=σ )1 {σ<τ} t (4.21) < 1 ess inf σ≥t E f (s, Y T Proofτ≥t             Ȳt = ξ + T t T-δ (4.18) Ȳt = ess sup              Y t = ξ + (4.20) Y 1 t = ess sup τ∈[t,T-δ] ess inf σ∈∈[t,T-δ] E σ∧τ t +h(Y 1 τ , E[Y 1 f (s,  Y 1 t = Y T-δ + T-δ t f (s, Y 1 s , E[Y 1 s ])ds + K1,+ T-δ -K1,+ t -K1,-T-δ + K1,-t -T-δ Z1 s dB s ; t h(Y 1 t , E[Y 1 t ]) ≤ Y 1 t ≤ g(Y 1 t , E[Y 1 t ]);	(4.17)
	     	T-2δ T-δ	(Y 1	T-2δ T-δ	(Y 1

p (γ 1 Next since ξ ∈ L p (dP), E[( T 0 | f (s, ω, Y s , E[Y s ])|ds) p ] < ∞, the processes (h(Y t , E[Y t ])) s , E[Y s ])ds + K+ T -K+ t -K- T + K- t -T t τ≥t ess inf σ≥t E σ∧τ t f (s, δ, T], i.e., for t ∈ [Tδ, T] T t f (s, Y s , E[Y s ])ds + K+ T -K+ t -K- T + K- t -T t Zs dB s ; h(Y t , E[Y t ]) ≤ Y t ≤ g(Y t , E[Y t ]); T T-δ (Y sh(Y s , E[Y s ]))d K+ s = 0, T T-δ (Y sg(Y s , E[Y s ]))d K- s = 0. sh(Y 1 s , E[Y 1 s ]))d K1,+ s = 0, sg(Y 1 s , E[Y 1 s ]))d K1,- s = 0.

  s, Y s , P Y s )ds + K + T -K + t -K - , P Y s ) ≤ Y t ≤ g(Y t , P Y s ), ∀t ∈ [0, T]; DIFFERENTIAL EQUATIONS probabilities |Ψ(ν) -Ψ(ν )| ≤ Cd p (ν, ν )

	T	
	t	Z s dB s , 0 ≤ t ≤ T;
	h(Y t	

T + K - tand T 0 (Y sh(Y s , P Y s ))dK + s = 0, T 0 (Y sg(Y s , P Y s ))dK - s = 0

where the Lipschitz property of f , h and g w.r.t. P Y t should be read as: for Ψ ∈ { f , g, h} for any ν, ν

  Proposition 4.3.6. Let Assumptions (A1) hold for some p = 1. If γ 1 , γ 2 , β 1 and β 2 satifyγ 1 + γ 2 + β 1 + β 2 < 1 (4.24)then there exists δ > 0 depending only on C f , γ 1 , γ 2 , β 1 , β 2 such that Φ is a contraction on the spaceD([Tδ, T]). ] t=τ )1 {τ≤σ,τ<T} + ξ1 {τ=σ=T} |F t }ess sup Y s , E[Y s ])ds + g(Y σ , E[Y t ] t=σ )1 {σ<τ} +h(Y τ , E[Y t ] t=τ )1 {τ≤σ,τ<T} + ξ1 {τ=σ=T} |F θ }| Y s , E[Y s ])f (s, Y s , E[Y s ])|ds + |g(Y σ , E[Y t ] t=σ ) -g(Y σ , E[Y t ] t=σ )|1 {σ<τ} + |h(Y τ , E[Y t ] t=τ )h(Y τ , E[Y t ] t=τ )|1 {τ≤σ,τ<T} |F θ | f (s, Y s , E[Y s ])f (s, Y s , E[Y s ])|ds|F θ ] t=σ )g(Y σ , E[Y t ] t=σ )|} + sup ] t=τ )h(Y τ , E[Y t ] t=τ )|} ≤ 2δC f sup τ∈[T-δ,T] E[|Y τ -Y τ ] + sup σ≥θ E{|g(Y σ , E[Y t ] t=σ )g(Y σ , E[Y t ] t=σ )|} + sup , E[Y t ] t=τ )h(Y τ , E[Y t ] t=τ )|}.

	4.3. EXISTENCE AND UNIQUENESS OF A SOLUTION OF THE DOUBLY REFLECTED
	BSDE OF MEAN-FIELD TYPE	
	Take now expectation in both hand-sides to obtain:
	E[|Φ(Y) θ -Φ(Y ) θ |] ≤2δC f sup	E[|Y τ -Y τ ] + sup
	τ∈[T-δ,T]	
	σ∧τ	
	≤ ess sup τ≥θ | f (s, ≤ E ess sup σ≥θ E θ T	
	T-δ	
	+ ess sup	
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Proof. Let δ be a positive constant and θ a stopping time which belongs to

[Tδ, T]. Therefore |Φ(Y) θ -Φ(Y ) θ | = | ess sup τ≥θ ess inf σ≥θ {E σ∧τ θ f (s, Y s , E[Y s ])ds + g(Y σ , E[Y t ] t=σ )1 {σ<τ} +h(Y τ , E[Y t τ≥θ ess inf σ≥θ {E σ∧τ t f (s, σ≥θ E{|g(Y σ , E[Y t ] t=σ )g(Y σ , E[Y t ] t=σ )||F θ } + ess sup τ≥θ E{|h(Y τ , E[Y t ] t=τ )h(Y τ , E[Y t ] t=τ )||F θ }. σ≥θ E{|g(Y σ , E[Y t τ≥θ E{|h(Y τ , E[Y t τ≥θ E{|h(Y τ

  , Tδ ≤ t ≤ T; h(Y t , E[Y t ]) ≤ Y t ≤ g(Y t , E[Y t ]), Tδ ≤ t ≤ T; Let f , h,g and ξ satisfying Assumption (A1) for p = 1. Suppose thatγ 1 + γ 2 + β 1 + β 2 < 1. (4.27) Then, there exist P-mesurable processes (Y, Z, K ± ) unique solution of the mean-field reflected BSDE (4.3), i.e., Let δ be as in Proposition 4.3.6 and Y the fixed point of Φ on D([Tδ, T]) which exists since (4.24) is satisfied. Next let Y 1 be the fixed point of Φ on D([T -2δ, Tδ]) with terminal condition Y T-δ , i.e., for any t ∈ [T -2δ, Tδ], ] t=τ )1 {τ≤σ,τ<T-δ} + Y T-δ 1 {τ=σ=T-δ} |F t } .

				DIFFERENTIAL EQUATIONS
	We now give the main result of this subsection.		
	Theorem 4.3.8. 			
	        				
	        				
	Y 1 t = ess sup τ∈[t,T-δ]	ess inf σ∈∈[t,T-δ] +h(Y 1 E τ , E[Y 1 σ∧τ t t (4.29) f (s, Y 1 s , E[Y 1 s ])ds + g(Y 1 σ , E[Y 1 t ] t=σ )1 {σ<τ}
		P -a.s.,	T T-δ |Z 0 s | 2 ds < ∞; K 0,± ∈ A and K 0,± T-δ = 0;	
	 	Y t = ξ +	T t f (s, Y s , E[Y s ])ds + K 0,+ T -K 0,+ t	-K 0,-T + K 0,-t	-s dB s t T t Z 0 = 0.
					(4.26)

T T-δ (Y th(Y t , E[Y t ]))dK 0,+ t = T T-δ (Y tg(Y t , E[Y t ]))dK 0,- Y ∈ D, Z ∈ H d loc and K + , K -∈ A; Y t = ξ + T t f (s, Y s , E[Y s ])ds + K + T -K + t -K - T + K - t -T t Z s dB s , 0 ≤ t ≤ T; h(Y t , E[Y t ]) ≤ Y t ≤ g(Y t , E[Y t ]), ∀t ∈ [0, T]; and T 0 (Y sh(Y s , E[Y s ]))dK + s = 0, T 0 (Y sg(Y s , E[Y s ]))dK - s = 0.

(4.28)

Proof.

BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED OBSTACLES

Appendix. Nonetheless in this section we will introduce some notions which we need also in Section 5 when we deal with system of RBSDEs (3.1) or more generally (3.5.2).

For any locally bounded deterministic function u : [0, T] × R k → R, we denote by u * (resp. u * ) the lower semi-continuous (lsc) (resp. upper semi-continuous (usc)) envelope of u as follows: Next for an lsc (resp. usc) function u we denote by Ju(t, x) (resp. J+ u(t, x)), the parabolic limiting subjet (resp. superjet) of u at (t, x) (see e.g. [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for the definition and more details). Let v := (v i ) i∈Γ be a p-tuple of R-valued, locally bounded functions defined on [0, T] × R k .

A) We say that v is a viscosity supersolution (resp. subsolution) of (3.51) if for any i ∈ Γ: (i) v i * (T, x) ≥ h i (x) (resp. v i * (T, x) ≤ h i (x)), for any x ∈ R k ; (ii) For any (t, x) ∈ [0, T) × R k and for any (p, q, M) ∈ J-v i * (t, x) (resp. J+ v i * (t, x)), we have:

Tr[(σσ )(t, x)M]f i (t, x, v * (t, x), σ (t, x)q); BACKWARD SDES AND PARABOLIC PDES WITH BILATERAL INTERCONNECTED OBSTACLES solution of (3.51) if they exist, then we show that ( vi ) i∈Γ is a solution by Perron's method. We recall once for all that the results in this section are constructed under (H2),(H3) and (H5).

A comparison result

Before investigating (3.51), we provide some a priori results and a comparison principle for sub. and supersolutions of system (3.51). To begin with let us show the following: Lemma 3.6.1. Let u := (u i ) i∈Γ (resp. û := ( ûi ) i∈Γ ) be an usc subsolution (resp. sci supersolution) of (3.51). For any (t, x) ∈ [0, T] × R k , let Γ(t, x) be the following set:

Then there exists i 0 ∈ Γ(t, x) such that

Proof. Let (t, x) ∈ [0, T] × R k be fixed. As Γ is a finite set then Γ is not empty. To proceed, we assume, by contradiction that for any i ∈ Γ(t, x), either

Assume first that (3.95) holds true i.e.

By taking into account of (3.95) we have

3.6. APPENDIX: PROOF OF THEOREM 3.4.3

However as i ∈ Γ(t, x), then the previous inequality is an equality and then

As a result we deduce that (i + 1) ∈ Γ(t, x) and also the equality (3.98) holds.

(t, x). On the other hand, assume that (3.96) holds true, i.e., ûi (t, x) ≥ ûi+1 (t, x) + g i,i+1 (t, x). Since u i is a subsolution of (3.51), we have

and then

However as i ∈ Γ(t, x), then the last inequality is an equality and (i + 1) ∈ Γ(t, x). Moreover Repeat now this reasonning as many times as necessary (actually p times) to find a loop such that ∑ i∈Γ ϕ i,i+1 (t, x) = 0 (ϕ i,i+1 is defined in (3.14)) and which is contradictory to assumption (H3).

Next we give the comparison result.

Proposition 3.6.2. Let u := (u i ) i∈Γ be an usc subsolution (resp. w := (w i ) i∈Γ be a lsc supersolution) of the system (3.51) and for any i ∈ Γ, both u i and w i belong to class Π g i.e. there exists two constants

Then it holds true that 

where

The function Φ i 0 n (t, x, y) is usc, then we can find a triple (t n , x n ,

Then we have

From which we deduce that

is a constant which may depend on R) since the sequences (t n ) n , (x n ) n and (y n ) n are bounded and u i 0 and w i 0 are of polynomial growth. As a result (x ny n ) n≥0 converges to 0. On the other hand, by boundedness of the sequences, we can find a subsequence, which we still denote by (t n , x n , y n ) n , converging to a point denoted ( t, x, x). By (3.108) it satisfies:

. Next as we have

then (φ n (t n , x n , y n )) n converges to 0 as n → ∞ and then (t n ) n , (x n ) n and (y n ) converge respectively to t * , x * and x * . Finally lim inf

which implies that the sequence (u i 0 (t n , x n )) n converges to u i 0 (t * , x * ) and then also the sequence (w i 0 (t n , y n )) n converges to w i 0 (t * , x * ).

Next, we recall the definition of i 0 ∈ Γ(t * , x * ). By (3.104)-(3.105), for n large enough we can find a subsequence (t n , x n ) n such that

Next we apply Crandall-Ishii-Lions's Lemma (see e.g. [START_REF] Wendell | Controlled Markov processes and viscosity solutions[END_REF], pp.216) and then there exist (p n u ,

where

Next by taking into account that (u i ) i∈Γ and (w i ) i∈Γ are respectively subsolution and supersolution of (3.51) and the inequalities (3.109)-(3.110), we obtain
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sense of the following PDE with obstacle:

where Ũ(( vl,m 0 ) l∈Γ )(t, x) := vi,m 0 (t, x) ∨ ( vi+1,m 0 + ḡi,i+1 )(t, x).

In other words, for any (t, x) ∈ [0, T) × R k and for any (p, q, M) ∈ J-( vi,m 0 )(t, x), it still holds that vi,m 0 (t, x)

Next apply the inequality aa ∨ b ≤ ab, then (3.124) yields max[ vi,m 0 (t, x) -( vi+1,m 0 + ḡi,i+1 )(t, x);

Tr(σσ (t, x)M)f i (t, x, ( vl,m 0 ) l∈Γ , σ (t, x)q)] ≥ 0 Hence, with (3.123), this implies that ( vi,m 0 ) i∈Γ is a viscosity supersolution of (3.51).

We are now ready to use Perron's method to provide a solution for (3.51). So let us consider the following functions denoted by ( m 0 v i ) i∈Γ and defined as: Let

We then have:

Theorem 3.6.5. Assume (H2),(H3) and (H5) hold true, the functions ( m 0 v i ) i∈Γ is the unique viscosity solution of (3.51). Moreover the solution does not depend on m 0 . Finally for any i ∈ Γ, m 0 v i = vi .

-

According to (3.130) we have Θ(t 0 , x 0 ) < 0. On the other hand, Θ is usc since the functions v i * , i ∈ Γ, are lsc, u δ,γ is continuous and f i is continuous and verifies the monotonicity property. Therefore for any > 0, there is some η > 0 such that for any (t, x) ∈ B η we have Θ(t, x) ≤ Θ(t 0 , x 0 ) + Next as Θ(t 0 , x 0 ) < 0, we can choose small enough to obtain Θ(t, x) ≤ 0 for any (t, x) ∈ B η . Thus for any (t, x) ∈ B η , u δ,γ is nothing but a viscosity subsolution of the following PDE(on B η ):

As for any i ∈ Γ, v i * ≤ v i, * , then u δ,γ is also a viscosity subsolution of (3.131) by replacing (v i * ) i∈Γ with (v i, * ) i∈Γ , i.e. min{w(t, x) -L i ((v l, * ) l∈Γ )(t, x); max[w(t, x) -U i ((v l, * ) l∈Γ )(t, x);

Tr(σσ (t, x)D 2 xx w(t, x))

On the other hand since (p, q, M) ∈ J -(v i * (t 0 , x 0 )), by the definition of the subjet ( [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]) we have: ∀i ∈ Γ,

Next let us set δ = r 2 8 γ and let us go back to the definition of u δ,γ yielding 

Then according to (3.131) and Lemma 1.2 in [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], ũi is also a subsolution of the following PDE:

Once more by the monotonicity of f i and the fact that ũi

] is also a subsolution of (3.51) which belongs to Π g . Then by comparison we obtain that [(v l ) l∈Γ -i , ũi ] belongs to U m 0 .

Next by the definition of v i * , we can find a sequence (t n , x n , v i (t n , x n )) n≥1 which converges to (t 0 , x 0 , v i * (t 0 , x 0 )), then we have lim n→∞

This result implies that we can find some points (t n , x n ) such that ũi (t n , x n ) > v i (t n , x n ), which is contradictory against the fact that [(v l ) l∈Γ -i , ũi ] belongs to U m 0 and (v i ) i∈Γ is the supremum element in the latter set. Hence (v i ) i∈Γ is a supersolution of (3.51).

Step 3: Continuity and uniqueness of (v i ) i∈Γ .

Following the definition of usc envelop (v i, * ) i∈Γ (resp. lsc envelop (v i * ) i∈Γ ) and Remark 4.2.2 in [START_REF] Pham | Continuous-time stochastic control and optimization with financial applications[END_REF], (v i, * ) i∈Γ (resp.(v i * ) i∈Γ ) is a usc subsolution (resp. lsc supersolution) of (3.51), then by Proposition 3.6.2 we obtain ∀i ∈ Γ,

, which implies the continuity of v i .

Next we assume that there exists another solution ( vi ) i∈Γ of (3.51) which belongs to class Π g . As (v i ) i∈Γ and ( vi ) i∈Γ are both subsolutions and supersolutions, by the comparison result we obtain both v i ≤ vi and v i ≥ vi with al i ∈ Γ, as a result the solution is unique. The uniqueness of solution leads us directly to the fact that the solution (v i ) i∈Γ does not depend on m 0 . Finally CHAPTER 4

PAPER 3: MEAN-FIELD DOUBLY REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

This chapter is a preprint joint work with Chen and Hamadène (ref. [START_REF] Chen | Mean-field doubly reflected backward stochastic differential equations[END_REF]).

Introduction

In this paper we are concerned with the problem of existence and uniqueness of a solution of the doubly reflected BSDE of the following type:

It is said associated with the quadruple ( f , ξ, h, g). Those BSDEs are of mean-field type because the generator f and the barriers h and g depend on the law of Y t through its expectation. For simplicity reasons we stick to this framework, however it can be generalized (see Remark 4.3.5).

Since the introduction by Lasry and Lions [START_REF] Lasry | Mean field games[END_REF] of the general mathematical modeling approach for high-dimensional systems of evolution equations corresponding to a large number of "agents" (the mean-field model), the interest to the mean-field models grows steadily in connection with several applications. Later standard mean-field BSDEs have been introduced in [6]. Since then, there have been several papers on mean-field BSDEs including ( [START_REF] Buckdahn | Mean-field backward stochastic differential equations and related partial differential equations[END_REF][START_REF] Buckdahn | Mean-field stochastic differential equations and associated pdes[END_REF][START_REF] Briand | Bsdes with mean reflection[END_REF][START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF][START_REF] Li | Reflected mean-field backward stochastic differential equations. approximation and associated nonlinear pdes[END_REF][START_REF] Carmona | Probabilistic analysis of mean-field games[END_REF][START_REF] Pham | Linear quadratic optimal control of conditional mckean-vlasov equation with random coefficients and applications[END_REF][START_REF] Miller | Linear-quadratic mckean-vlasov stochastic differential games[END_REF], etc) in relation with several fields and motivations in mathematics and economics, such stochastic control, games, mathematical finance, utility of an agent inside an economy, PDEs, actuaries, etc.

Mean-field one barrier reflected BSDEs have been considered first in the paper [START_REF] Li | Reflected mean-field backward stochastic differential equations. approximation and associated nonlinear pdes[END_REF]. This CHAPTER 4. PAPER 3: MEAN-FIELD DOUBLY REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS latter generalizes the work in [START_REF] Buckdahn | Mean-field backward stochastic differential equations and related partial differential equations[END_REF] to the reflected framework. Later Briand et al. [START_REF] Briand | Bsdes with mean reflection[END_REF] have considered another type of one barrier mean-field reflected BSDEs. Actually in [START_REF] Briand | Bsdes with mean reflection[END_REF], the reflection of the component Y of the solution holds in expectation. They show existence and uniqueness of the solution when the increasing process, which makes the constraint on Y satisfied, is deterministic. Otherwise the solution is not necessarily unique. The main motivation is the assessment of the risk of a position in a financial market.

In [START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF], Djehiche et al. consider the above problem (4.1) when there is only one reflecting barrier (e.g. take g ≡ +∞). The authors show existence and uniqueness of the solution in several contexts of integrability of the data ( f , ξ, h). The methods are the usual ones: Fixed point and penalization. Those methods do not allow for the same framework. For example, the fixed point method does not allow generators which depend on z while the penalization does at the price of some additional regularity properties which are not required by the use of the first method. The main motivation for considering such a problem comes from the assessment of the prospective reserve of a representative contract in life-insurance.

In this paper we consider the extension of the framework of [START_REF] Djehiche | Mean-field reflected backward stochastic differential equations[END_REF] to the case of two reflecting barriers. We show existence and uniqueness of a solution of (4.1), by the fixed point method.

We deal with the case when the data of the problem are only integrable or p-integrable with p > 1. Those cases are treated separalety because one cannot deduce one of them from the other one.

The paper is organized as follows: In Section 2, we fix the notations and the frameworks. In Section 3, we deal with the case when p > 1 and finally with the case p = 1.

Notations and formulation of the problems 4.2.1 Notations

Let T be a fixed positive constant. Let (Ω, F , P) denote a complete probability space with B = (B t ) t∈[0,T] a d-dimensional Brownian motion whose natural filtration is (F 0 t := σ{B s , s ≤ t}) 0≤t≤T . We denote by F = (F t ) 0≤t≤T the completed filtration of (F 0 t ) 0≤t≤T with the P-null sets of F , then it satisfies the usual conditions. On the other hand, let P be the σ-algebra on [0, T] × Ω of the F-progressively measurable sets.

For p ≥ 1 and 0 ≤ s 0 < t 0 ≤ T, we define the following spaces: [T -4δ, T -3δ], etc. we obtain that Y = Y. The equality between the stochastic integrals imply that Z = Z. Finally as h < g and since Y = Y, then K + = K + and K -= K -(see e.g. [START_REF] Asri | L p-solutions for doubly reflected backward stochastic differential equations[END_REF]) for more details. Thus the solution is unique. The proof is complete.

Finally let us notice that the same Remark 4.3.5 is valid for this case p = 1.