
HAL Id: tel-03206023
https://theses.hal.science/tel-03206023v1

Submitted on 22 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-supervised dictionary learning and
Semi-supervised deep neural network

Khanh-Hung Tran

To cite this version:
Khanh-Hung Tran. Semi-supervised dictionary learning and Semi-supervised deep neural network.
Machine Learning [cs.LG]. Université Paris-Saclay, 2021. English. �NNT : 2021UPASP014�. �tel-
03206023�

https://theses.hal.science/tel-03206023v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
P
0
1
4

Semi-supervised dictionary learning and

Semi-supervised deep neural network

Apprentissage semi-supervisé de dictionnaire et de

réseaux de neurones profonds

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 127, Astronomie et Astrophysique d’Île-de-France (AAIF)

Spécialité de doctorat: Astronomie et astrophysique

Unité de recherche: Université Paris-Saclay, CNRS, CEA, Astrophysique,

Instrumentation et Modélisation de Paris-Saclay, 91191, Gif-sur-Yvette, France

Référent: Faculté des sciences d’Orsay

Thèse présentée et soutenue à Paris-Saclay, le 16/02/2021, par

Khanh Hung TRAN

Composition du jury:

Alexandre GRAMFORT Président

Directeur de recherche, INRIA Paris-Saclay

David PICARD Rapporteur & Examinateur

Directeur de recherche (HDR), École des ponts ParisTech

Julien MAIRAL Rapporteur & Examinateur

Chargé de recherche (HDR), INRIA Grenoble

Antitza DANTCHEVA Examinatrice

Chargée de recherche, INRIA Sophia Antipolis

Direction de la thèse:

Jean-Luc STARCK Directeur de thèse

Directeur de recherche, CEA Saclay

Fred Maurice NGOLE-MBOULA Co-encadrant

Chercheur, CEA Saclay

Remerciements

Je voudrais remercier les nombreuses personnes qui ont contribué au succès de ma thèse et qui

m’a accompagné jusqu’au bout de cette mission, chronologiquement :

Je tiens à remercier l’équipe pédagogique de l’INSA de Lyon et de master IMA à Paris 6 pour

les cours de grande qualité qui m’ont passioné pour lancer une thèse.

Mes remerciements vont ensuite à mon encadrant Fred-Maurice Ngole Mboula et mon directeur

de thèse Jean-Luc Starck pour leur orientation et leur confiance à moi.

J’ai beaucoup apprécié l’ambiance de recherche au sein de Service Intelligence des Données et du

groupe CosmoStat, où j’ai réalisé ma thèse. Je remercie tous ses membres de ces deux laboratoires.

J’ai passé de très bons moments avec mes camarades : Vincent, Baptiste, Edwin, Arnaud,

Roman, Sandra, Etienne, Oudom, Régis, Shivani, Andrey, Meritxell, Ismaïl, Marisnel, Camille,

Alyssa, Noëlie. Je leur remercie pour les escalades, les foots, les repas ...

Je tiens à remercier également le responsable à mon école doctorat, M. Alain Abergel pour sa

gentillesse et pour ses conseils, ainsi que Florent Sureau et François Orieux pour leur disponibilité

de participation dans mon comité de suivi.

Je remercie bien évidemment tous les membres du jury pour l’intérêt qu’ils ont porté à mes

travaux et ainsi que mes deux rapporteurs pour leur lecture attentive de ce manuscrit.

Pour finir, plus personnel, je tiens à témoigner ma reconnaissance à ma famille, notamment

mes parents qui m’ont soutenu tout au long de nombreuses années d’étude.

i

Abstract

Since the 2010’s, machine learning (ML) has been the object of intense scientific activity.

Numerous ML models have given rise to new results in various fields such as Computer Vision,

Natural Language Processing, Robotics ... However, most of these models use supervised learning,

which requires a massive amount of annotated examples. Thus, the objective of this thesis is to

study and propose new methods for weakly supervised learning.

First, we present the mathematical and algorithmic tools on which our work is based. This

includes dictionary and deep neural networks learning, manifold learning, and pseudo-labelling.

In a second step, we propose a new method of semi-supervised dictionary learning to deal with

the problem of classification when a small number of training samples (labeled and unlabeled) is

available. This method is based on the one hand on the preservation of the spatial organization

of the original data in the sparse codes space, using cost functions derived from manifold learning.

On the other hand, a classifier is learned in the sparse codes space in a semi-supervised way and

jointly with the dictionary and the sparse codes. This method provides an improvement in the

classification accuracy rate compared to state-of-the-art methods in semi-supervised dictionary

learning.

The limitations of this first approach led us to propose a semi-supervised learning method for

neural networks. This second approach is inspired by adversarial learning: we generate virtual

points for which the structural deviation between the original space and the latent space is the

strongest; then the model parameters are updated to minimize this distortion. This approach brings

not only an improvement in classification accuracy rates compared to state-of-the-art methods, but

also a big difference in robustness to adversarial examples.

Finally, we analyze similarities and differences, as well as advantages and disadvantages between

dictionary learning and neural networks. We conclude with some perspectives on these two types

of models.

ii

Résumé étendu

Depuis les années 2010, l’apprentissage automatique (ML1) fait l’objet d’une activité scien-

tifique intense. De nombreux modèles de ML ont donné lieu à des résultats inédits dans des divers

domaines tels que la Vision par ordinateur, le Traitement automatique des langues, la Robo-

tique. . . Toutefois, la plupart de ces modèles emploient l’apprentissage supervisé, qui requiert une

quantité massive d’exemples annotés. Ainsi, l’objectif de cette thèse est d’étudier et de proposer

de nouvelles méthodes d’apprentissage faiblement supervisé.

En plus que la perte supervisée Ls, nous introduisons la perte non-supervisée Lu afin de régu-

lariser mieux le modèle f :

Ls(f,X l,Y) + Lu(f,X) (1)

où f,X l,Y are respectivement le modèle, les échantillons labélisés et les labels. X signifie les

conventionnels échantillons qui sont tous les échantillons labélisés et non-labélisé. Dans le premier

temps, nous construisons une approche d’apprentissage semi-supervisé sur le modèle d’apprentissage

de dictionnaire et dans le deuxième temps, nous construisons une autre approche d’apprentissage

semi-supervisé sur un réseau de neurones profonds. Avant d’aborder ces deux approches, nous

commençons en présentant l’apprentissage de variétés, qui est le point-clé pour construire la perte

non-supervisée.

Apprentissage de variétés

L’apprentissage de variétés fait partie de l’apprentissage de représentation (non-supervisé).

Pour une donnée de grande dimension, c’est-à-dire la représentation originale des échantillons a de

nombreuses caractéristiques, il peut être difficile d’interpréter et de visualiser l’organisation globale

des données. Nous supposons que, pour une tâche donnée, les données d’intérêt se trouvent sur une

variété de faible nombre de dimensions. Par conséquent, les coordonnées des données par rapport

1Machine Learning

iii

iv

à cette variété peuvent être appliquées pour la visualisation et la réduction de dimensionnalité.

Nous remarquons qu’il existe plusieurs méthodes pour apprendre une variété les données d’intérêt.

Dans cette thèse, pour la simplicité, nous convenons que l’apprentissage de variétés est la préser-

vation de structure géométrique (PSG). Dans la plupart des cas, la démarche de PSG comporte

deux étapes: nous extrayons tout d’abord une propriété géométrique, parmi des échantillons dans

la représentation originale. Puis nous cherchons une représentation latente qui préserve cette pro-

priété géométrique pour tous les échantillons.

Étant donné un ensemble de données X = {x1, ...,xN}, xi ∈ Rn et sa représentation latente

A = {a1, ...,aN},ai ∈ Rp, où ai est la représentation latente de xi, nous notons:

min
A
Le(ai,Aci), (2)

la perte de PSG d’une représentation latente ai versus autres représentations latentes. Aci est le

complément de {ai} dans A. La perte totale de PSG est alors définie comme :

min
A
Lt = min

A

N∑
i=1

Le(ai,Aci) (3)

Nous présentons ci-dessous quelques pertes PSG populaires :

- Multi-Dimensional scaling (MDS) [Kruskal & Wish 1978] :

Le(ai,Aci) =
∑

aj∈Aci

(da(ai,aj)− dx(xi,xj))
2, (4)

où da() et dx() sont des métriques de dissimilarité. Par défaut, elles sont toutes deux des dis-

tances euclidiennes. Cette méthode vise à préserver les distances par paire depuis la représentation

originale dans la représentation latente.

- Laplacian eigenmaps (LE) [Belkin & Niyogi 2003] :

Le(ai,Aci) =
∑

aj∈Aci

dx(xi,xj)da(ai,aj), (5)

où dx() est une métrique de similarité (par exemple dx(xi,xj) = exp
(−‖xi−xj‖22

2σ2
i

)
) et da() est

une métrique de dissimilarité (par exemple da(ai,aj) = ‖ai − aj‖22). La variété est apprise en

préservant des distances locales entre deux échantillons. Afin de réduire l’impact des longues

distances, dans certains travaux, dx(xi,xj) est directement mis à zéro si xj ne fait pas partie des

k plus proches voisins de xi ou vice versa si xi ne fait pas partie des k plus proches voisins de

xj . Nous pouvons également définir dx(xi,xj) = 0 si ‖xi − xj‖22 > κ. Soit W la matrice définie

v

par Wij = dx(xi,xj), en conséquence W est une matrice symétrique si dx() est symétrique. Nous

représentons la perte totale de la méthode Laplacien eigenmaps à l’aide des matrices :

Lt =

N∑
i=1

Le(ai,Aci) =

N∑
i=1

N∑
j=1

neqi

Wij ‖ai − aj‖22 = 2 tr(ALA>), (6)

où L = D −W, Dii =
∑N
j=1 Wij (D est une matrice diagonale). L est une matrice laplacienne

car elle est symétrique, la somme de chaque ligne est égale à 0 et ses éléments sont négatifs à

l’exception des éléments diagonaux.

- Locally Linear Embedding (LLE) [Roweis & Saul 2000] :

Le(ai,Aci) =

∥∥∥∥∥∥ai −
∑

aj∈Aci

λijaj

∥∥∥∥∥∥
2

2

, (7)

où λij sont déterminés en résolvant le problème suivant:

min
λij

∥∥∥∥∥∥xi −
∑
j

λijxj

∥∥∥∥∥∥
2

2

,

soumis à:

∑
j

λij = 1, si xj ∈ knn(xi),

λij = 0 sinon.

(8)

où knn(xi) désigne l’ensemble qui contient les indices des k échantillons les plus proches voisins (par

distance euclidienne) de l’échantillon xi. En supposant que les données observées X sont échan-

tillonnées à partir d’une variété lisse et à condition que l’échantillonnage soit suffisamment dense,

nous pouvons supposer que l’échantillon se trouve localement sur des patchs linéaires. Ainsi, LLE

calcule d’abord les coordonnées barycentriques de chaque échantillon par rapport à ses plus proches

voisins. Ces coordonnées barycentriques caractérisent la géométrie locale de la variété sous-jacente.

Ensuite, LLE calcule une représentation latente qui est compatible avec ces coordonnées barycen-

triques locales. En introduisant V ∈ RN×N une représentation matricielle pour λ : V[j, i] = λij

alors la perte totale Lt =
∑N
i=1 Le(ai,Aci) est peut être réécrite : Lt = ‖A−AV‖2F = tr(ALA>),

où L = IN − V − V> + V>V. Ainsi, la perte Lt est peut être interprétée comme la perte de

Laplacien eigenmaps dont la métrique dx qui est implicite.

Dans le cas non-paramétré, apprentissage de variétés par PSG est réalisé en optimisant la perte

totale directement sur la représentation latente A. Par contre, dans le cas paramétré, nous nous

servons d’une fonction g() qui part de la représentation originale dans la représentation latente :

vi

a = g(x) et la PSG est réalisée en optimisant des paramètres entraînables de la fonction g(). Par

exemple, g() est un réseau de neurones.

Apprentissage semi-supervisé de dictionnaire

Nous présentons d’abord l’apprentissage de dictionnaire et ensuite notre méthode proposée sur

ce modèle.

Apprentissage de dictionnaire. L’apprentissage de dictionnaire englobe des méthodes et al-

gorithmes qui, pour un type de signal donné, visent à dériver un ensemble de caractéristiques

cardinales permettant de décrire de manière concise les signaux de ce type. Plus précisément,

étant donné un ensemble de vecteurs (xj)1≤j≤N dans Rn qui représentent des signaux (électrocar-

diographie, séquences de gènes...), l’apprentissage de dictionnaire calcule un ensemble de vecteurs

(di)1≤i≤p dans Rn et un ensemble de coefficients (aj)1≤j≤N dans Rp de sorte que:

xj ≈
p∑
i=1

aj [i]di (9)

où il y seulement quelque coefficients aj [i] qui ne sont pas nul. Nous appelons aj la représentation

parcimonieuse ou le code parcimonieux du signal xj . La matrice D = [d1, . . . ,dp],D ∈ Rn×p est le

dictionnaire qui contient les caractéristiques cardinales que nous appelons les atomes. En général,

le problème d’apprentissage de dictionnaire est écrit sous la forme :

min
A,D∈C

R(A,D) = min
A,D∈C

‖X−DA‖22 + λ ‖A‖q ,

où 0 ≤ q ≤ 1 indique la norme appliquée sur le code A = [a1, . . . ,aN] pour que le dernier devienne

parcimonieux. Pour rappel, X ∈ Rn×N et A ∈ Rp×N . C désigne l’ensemble de dictionnaire dont

tous les atomes vérifient ‖di‖2 ≤ 1, pour éviter le transfert d’énergie entre D et A. Les applications

les plus connues de l’apprentissage de dictionnaire sont l’acquisition comprimée et la restauration

du signal. En plus, l’apprentissage de dictionnaire est aussi utilisé pour la classification. La figure 1

montre un exemple que la représentation parcimonieuse est plus discriminante que la représentation

originale.

Méthode proposée. Nous considérons que la donnée X contient deux parties Xl et Xu, qui

désignent respectivement la donnée labélisée et non-labélisé, X = [Xl,Xu]. Par correspondance,

A = [Al,Au] qui contient le code parcimonieux labélisé et non-labélisé.

vii

Figure 1: Gauche : La représentation originale de 2 dimensions avec 12 échantillons en
3 classes. Nous voyons que c’est difficile pour avoir un classifieur linéaire pour séparer
ces 3 classes. Droite : La représentation parcimonieuse de 3 dimensions. Nous voyons
que avec cette représentation, c’est plus simple pour séparer ces 3 classes par un
classifieur linéaire.

Nous formulons littéralement la fonction de coût pour l’apprentissage semi-supervisé de dictio-

nnaire :

min
Θ

[
R(A,D) +D(θ,Al,Au,D,Y,P) + F(A,D)

]
,

où θ = {θ,Al,Au,D ∈ C,P}.
(10)

• R signifie la perte de reconstruction avec la contrainte parcimonieuse.

• D signifie la perte de classification, qui a pour but de rendre le code A ou le dictionnaire D

plus discriminant. θ signifie des paramètres d’un classifieur et Y,P signifient respectivement

les labels et les pseudo-labels.

• F signifie la perte de régularisation, qui peut être appliquée sur le code parcimonieux A ou

le dictionnaire D.

Basé sur l’équation (10), nous proposons une méthode d’apprentissage semi-supervisé de dic-

tionnaire afin de traiter le problème de la classification lorsqu’un faible nombre d’échantillons

labélisés. Premièrement, cette méthode repose sur la préservation de structure géométrique de

la représentation originale dans l’espace des codes parcimonieux, c’est à dire la perte de régu-

larisation F(A) = βLt = β tr(ALA>) avec la technique Locally Linear Embedding (LLE) dans

la section précédente. Deuxièmement, en notant C le nombre de classes, un classifieur linéaire

(wc,bc) où c = 1, .., C est appris dans l’espace des codes parcimonieux de façon semi-supervisée

par la technique pseudo-label.

viii

min
W,b,A,P,D∈C

‖X−DA‖2F + λ ‖A‖1 + γ
(Nl∑
i=1

C∑
c=1

∥∥w>c ali + bc − yci
∥∥2

2

+

Nu∑
j=1

C∑
k=1

(Pkj)
r
C∑
c=1

∥∥w>c auj + bc − ycj(k)
∥∥2

2

)
+ µ(‖W‖2F + ‖b‖22) + β tr(ALA>),

(11)

où yci signifie le label d’échantillon labélisé xli pour une classe c; ycj(k) signifie le label d’échantillon

non-labélisé xli pour une classe c en supposant que cette échantillon appartient à la classe k.

Troisièmement, nous réalisons le codage parcimonieux pour un nouvelle échantillon xN+i en

prenant en compte la PSG :

min
aN+i

‖xN+i −DaN+i‖22 + λ ‖aN+i‖1 + βωA

∥∥∥∥∥∥aN+i −
∑

j∈knn′(N+i)

λ̂ijV aj

∥∥∥∥∥∥
2

2

(12)

L’ensemble knn ′(N + i) contient les indices des k échantillons les plus proches parmi les N échan-

tillons d’entraînement pour le nouvelle échantillon xN+i. Nous obtenons les coefficients λij en

résolvant le problème (8).

Dans la partie d’expérience numérique, nous montrons que dans le cas de faible nombre

d’échantillons labélisés, notre méthode proposée apporte une amélioration sur la précision par

rapport aux méthodes de l’état de l’art en apprentissage semi-supervisé de dictionnaire, avec les

données standards comme MNIST, USPS, YaleB et AR. Cependant, dans nos expérimentations, le

modèle d’apprentissage de dictionnaire n’est pas pertinent pour traiter directement les données où

le nombre de dimensions (caractéristiques) est supérieur à 1000, parce que nous arrivons à un prob-

lème de computation que nous ne disposons pas d’ordinateur efficace pour réaliser l’optimisation.

Une solution est de faire un prétraitement pour réduire le nombre de dimensions (par exemple

PCA) mais ce prétraitement peut entraîner une perte importante d’informations discriminantes.

Apprentissage semi-supervisé de réseaux de neurones profonds

Les limitations de cette première approche nous ont conduit à proposer une méthode d’apprentissage

semi-supervisé de réseaux de neurones profonds. Le modèle de réseau de neurones, en particulier

le réseau neuronal convolutif a montré la capacité de traiter efficacement les données (images) dont

le nombre de dimensions est beaucoup plus grand, par exemple 224× 224× 3 ≈ 150K dimensions.

ix

Nous notons fθ est un réseau de neurones avec des paramètres θ. Comme le modèle d’apprentissage

de dictionnaire, nous intégrons la préservation de structure géométrique dans la fonction de coût :

min
θ
Ls + λLpsg + βLu (13)

où Ls est la perte supervisée, nous prenons souvent l’entropie croisée; Lpsg est la perte PSG

(non-supervisé), de la représentation originale vers une représentation latente dans un réseau de

neurones; Lu signifie des autres éventuelles pertes non-supervisées, par exemple pseudo-label, ap-

prentissage auto-supervisé...

Avant de détailler notre approche proposée, nous présentons d’abord l’apprentissage antagoniste

de variétés.

Apprentissage antagoniste de variétés. Tout d’abord, la tâche PSG est paramétrée par un

réseau de neurones, ç’est à dire une représentation latente ai d’un échantillon xi est exprimée

par ai = f
(l)
θ (xi), où (l) est l’indice d’une couche intermédiaire du réseau de neurones f(). Par

conséquent, nous avons le problème de PSG avec model de réseau de neurones :

min
θ
Lpsg = Lt

(
f

(l)
θ (xl1), .., f

(l)
θ (xlN)

)
(14)

Figure 2: Préservation de structure géométrique et un cas d’échec. A gauche : la
représentation originale de la donnée de forme S en 3 dimensions. A droite : une
représentation latente de cette donnée en 2 dimensions. La similarité entre les échan-
tillons est indiquée par des couleurs différentes.

La figure 2 montre un exemple de PSG réalisée par un réseau de neurone f (l)
θ , en résolvant le

problème (14). Les points en différentes couleurs sauf le noir sont les échantillons d’entraînement

et nous voyons bien que la structure géométrique de ces échantillons est bien préservé dans la

représentation latente. Néanmoins, si l’architecture du modèle f (l)
θ est compliquée, par exem-

x

ple, avec un grand nombre de paramètres, nous arrivons éventuellement à un cas d’échec pour

PSG. Dans la représentation originale, l’échantillon noir est proche des échantillons rouges mais sa

représentation latente est éloignée celle des échantillons rouges. Potentiellement, c’est parce que

les échantillons d’entraînement ne sont pas assez denses et cette échantillon noir n’est pas utilisé

pour entraîner le modèle.

Figure 3: A gauche : les échantillons de forme S avec une enveloppe convexe définie
par trois points d’ancrage. A droite : l’extraction et l’agrandissement de cet enveloppe
convexe avec un point virtuel x̃ et des points d’ancrage z. Dans ce cas, les points
d’ancrage sont des échantillons proches les uns des autres.

Dans l’objective de régulariser le modèle f (l)
θ pour éviter le cas d’échec pour PSG, nous intro-

duisons le concept des points virtuels et des points d’attaque. La figure 3 montre un exemple pour

un point virtuel x̃, qui est coordonné à l’aide des points d’ancrage z avec les coefficients γ :

x̃ = γ1z1 + γ2z2 + ...+ γpzp,

subject to: γ1, γ2, .., γp ≥ 0,

γ1 + γ2 + ...+ γp = 1.

(15)

Les contraintes sur γ garantissent que le point virtuel est toujours à l’intérieur de l’enveloppe

convexe définie par des points d’ancrage. Concernant le point d’attaque, c’est un point virtuel qui

maximise localement une perte de PSG avec le modèle f (l)
θ :

max
γ
Le(ã,A) = max

γ
Le
(
f

(l)
θ (x̃), {f (l)

θ (x1), .., f
(l)
θ (xN)}

)
. (16)

En intégrant des points d’attaque comme des échantillons synthétiques supplémentaires pour

la tâche de PSG comme dans le problème (17), nous souhaitons avoir une meilleur régularisation

pour le modèle f (l)
θ . Afin d’optimiser le problème (17), nous effectuons alternativement entre deux

phases, phase d’attaque avec γ comme variable et mise à jour des paramètres du modèle avec θ

xi

comme variable.

min
θ

max
γ
Lt
(
f

(l)
θ (x1), .., f

(l)
θ (xN), f

(l)
θ (x̃1), .., f

(l)
θ (x̃M)

)
(17)

Méthode proposée. En remplaçant la perte PSG dans le problème (13) par l’apprentissage

antagoniste de variétés, nous obtenons:

min
θ

max
γ

(Ls + λLpgs + βLu)

= min
θ

max
γ

1

Nl

Nl∑
i=1

Lc(fθ(xli), yi) + λLt
(
f

(l)
θ (x1), .., f

(l)
θ (xN), f

(l)
θ (x̃1), .., f

(l)
θ (x̃M)

)
+ βLu

(18)

où Nl signifie le nombre d’échantillons labélisés et N signifie le nombre d’échantillons (labélisé et

non-labélisé). Lc signifie la perte de l’entropie croisée.

Nous appliquons notre proposé méthode sur quelques bases de donnée standard comme CI-

FAR10, SVHN, ImageNet. Nous montrons que cette approche apporte non seulement une amélio-

ration des taux de précision de classification par rapport aux méthodes de l’état de l’art, mais aussi

une grande amélioration de robustesse exemples antagonistes.

Contents

I Introduction 1

A Context . 1

B Learning paradigms . 3

C Motivations . 6

D Manuscript outlines . 7

II Methodological pillars 9

A Dictionary learning . 9

A.1 Sparse coding . 10

A.2 Dictionary update . 13

A.3 Conclusion on dictionary learning . 14

B Supervised dictionary learning . 15

B.1 SDL with internal classifier . 16

B.2 SDL with atoms discriminative . 18

B.3 Conclusion about SDL . 19

C Deep Learning . 20

C.1 Neural networks . 20

C.2 Convolutional neural networks . 20

C.3 Standard CNNs . 23

C.4 Optimizers . 30

D Manifold learning . 31

IIISemi-supervised dictionary learning 37

A Introduction . 37

A.1 Generalities . 38

A.2 Related works . 39

xii

CONTENTS xiii

B Proposed method . 41

B.1 Construction of objective function . 42

B.2 Optimization . 44

B.3 Numerical experiments . 47

B.4 Conclusion about proposed method . 55

C Conclusion . 55

IV Semi-supervised deep learning 57

A Related works . 57

A.1 Notations . 57

A.2 Auxiliary task as regularization . 59

A.3 Pseudo labeling . 70

A.4 Generative models . 72

A.5 Virtual Adversarial Training . 76

A.6 Holistic methods . 77

A.7 Partial conclusion for semi-supervised neural networks 79

B Manifold attack . 79

B.1 Individual attack point versus data points 79

B.2 Attack points as data augmentation . 82

B.3 Pairwise manifold learning . 83

B.4 Settings of anchor points and initialization of virtual points 84

C Applications of manifold attack . 85

C.1 Manifold learning on a small dataset . 85

C.2 Robustness to adversarial examples . 87

C.3 Semi-supervised manifold attack . 91

C.4 Conclusion about manifold attack . 92

V General Conclusion 95

Appendix A 101

1 Optimization for Laplacian Learning . 101

2 Probability update . 102

3 Sparse coding . 103

4 Dictionary update . 105

5 Classifier update . 106

xiv CONTENTS

6 Sparse coding with epoch and batch . 107

7 Parallel training for dictionary learning model . 108

8 Pseudo labeling . 109

8.1 Label Propagation . 110

8.2 Sharpening . 112

Appendix B 115

1 Projection for sum and positive constraint . 115

2 Adversarial examples . 116

3 Hyper-parameters . 121

3.1 Robustness to adversarial examples . 121

3.2 Semi-supervised manifold attack . 121

4 Parallel programming . 121

4.1 Data Parallel . 122

4.2 Model Parallel . 122

4.3 Discussion about parallel training . 123

5 System of index for anchor points . 124

Bibliography 127

Acronyms

AE Auto-Encoder.

AI Artificial Intelligence.

BN Batch Normalization.

CIFAR Canadian Institute For Advanced Research.

CNN Convolutional Neural Network.

CV Computer Vision.

DeL Deep Learning.

DiL Dictionary Learning.

EMA Exponentially Moving Average.

ERM Empirical Risk Minimization.

FISTA Fast Iterative Shrinkage-Thresholding Algorithm.

GAN Generative Adversarial Network.

GNN Graph Neural Network.

GPU Graphics Processing Unit.

ICT Interpolation Consistency Training.

IHT Iterative Hard Thresholding.

JDL Joint Dictionary Learning.

xv

xvi Acronyms

KL Kullback–Leibler.

LC-KSVD Label Consistent K-SVD.

LC-RLSDLA Label-Consistent - Recursive Least Squares Dictionary Learning Algorithm.

LE Laplacian Eigenmaps.

LL Laplacian Learning.

LLE Locally Linear Embedding.

LP Label Propagation.

LSTM Long short-term memory.

MDS Multi-Dimensional Scaling.

ML Machine Learning.

MNIST Modified National Institute of Standards and Technology.

MP Matching Pursuit.

NLP Natural Language Processing.

NNM Neural Network Model.

ODL Online Dictionary Learning.

OMP Orthogonal Matching Pursuit.

OSSDL Online Semi-Supervised Dictionary Learning.

PSG Préservation de Structure Géométrique.

PSSDL Probabilistic Semi-Supervised Dictionary Learning.

RNN Recurrent Neural Network.

S2D2 Semi-Supervised Discriminative Dictionary.

SC Sparse Code.

SDGDL Supervised Dual Graph Dictionary Learning.

Acronyms xvii

SDL Supervised Dictionary Learning.

SE Squeeze and Excitation.

SL Supervised Learning.

SNE Stochastic Neighbor Embedding.

SR Sparse Representation.

SSD-LP Semi-Supervised Dictionary - Label Propagation.

SSDL Semi-Supervised Dictionary Learning.

SSDL-GA Semi-Supervised Dictionary Learning with Graph regularization and Active points.

SSL Semi-Supervised Learning.

SSNN Semi-Supervised Neural Network.

SSP-DL Structural Sparse Preserving - Dictionary Learning.

SSR-D Semi-Supervised Robust Dictionary.

SVHN Street View House Numbers.

SVM Support Vector Machine.

UL Unsupervised Learning.

USPS United States Postal Service.

USSDL Unified Semi-Supervised Dictionary Learning.

VAE Variational Autoencoder.

VAT Virtual Adversarial Training.

Chapter I

Introduction

“Data is the new oil.”

– Clive Humby

This thesis aims at improving the performance of semi-supervised learning by Dictionary Learn-

ing (DiL) model with Sparse Representation (SR) at the first time and by Deep Learning (DeL)

model at the second time. We focus on the geometric preservation between the original represen-

tation of data and its hidden representation. In this chapter, we present firstly the context and

learning paradigms, then our motivations. Finally, we present the outline of this thesis.

A Context

We live in an era where fossil fuels are running out and data are increasing. Soon, the mining

tools will not be oil-shores or big excavators, but rather high-performance computing machines

with complex algorithms. Tremendous volume of data are now available in regards to virtually

everything. It includes biomedical signals, genomic data, industrial systems signals, weather and

environment related data, astronomical surveys data, satellite earth images and a plethora of

human activities generated data, e.g. images or videos captured then uploaded on social media,

exchanged emails and messages, rating notes for films. . .

“Without big data, you are blind and deaf and in the middle of a freeway.”

– Geoffrey Moore

Officially named in 1956 at Dartmouth Conference, Artificial Intelligence (AI) is a field of com-

puter sciences aimed at emulating different aspects of human and animal intelligence for automated

tasks. Its subfield coined Machine Learning (ML) consists in using data to build and improve the

2 Chapter I. Introduction

ability of a software agent to perform AI related tasks. It has become one of the most interesting

research subject for the last two decades. Applications of AI in general and ML in particular are

found in various domains such as:

- Computer Vision (CV): Image Recognition (objects, persons, places), Image Segmentation,

Object Tracking, Video Surveillance. . .

- Natural Language Processing (NLP): Question Answering, Machine Translation, Voice Ver-

ification (Authentication), Text Generation, Information Retrieval (search engines), Email

Filtering, Document Analysis, Speech Recognition (virtual assistant) . . .

- Robotic: Imitation Learning, Self-driving cars. . .

- Finance: Portfolio Management, Stock market Prediction, Fraud Detection. . .

- Entertainment: Recommendation System (films, musics), Game bots. . .

Figure I.1: Number of ML articles per year on Arxiv, a popular public repository of
research papers. They have more than doubled every two years, which
is more than Moore’s prediction for chips in 1975. Credits: [Dean et al.
2018].

The global ML market is worth about $7.3B in 2020 and will reach to $30.6B in 2024, reach-

B. Learning paradigms 3

ing an annual growth rate of 43% 1 (without taking into account impacts of coronavirus). The

“GAFA” (Google, Amazon, Facebook, and Apple) have invested heavily in ML research and in the

development of ML platform services, e.g. renting high performance GPUs, cloud storage. On

the hardware side, NVIDIA develops specific GPUs for ML tasks, Google develops TPUs (Tensor

Processing Unit). . . The number of ML start-ups is ever growing and the number of ML articles

has been increasing very quickly over the last decade and reached to about 100 papers per day in

2018, as shown in figure I.1.

Jointly to the depicted corporate and scientific investment, the ML wave is strongly sustained

by the growing access to free ML training resources of quality. Anyone can find lectures of leading

experts on platforms such as fast.ai, Coursera, Udemy, Udacity. Moreover, ML communities or

media such as Kaggle, Medium, Towards Data Science contribute a great deal to ML important

ideas popularizing, as well as practionning. We review some of the main learning paradigms in the

next section.

B Learning paradigms

In this section, we present some popular learning paradigms in ML, namely supervised learn-

ing, unsupervised learning and semi-supervised learning. Figure I.2 shows an illustration for a

general ML task with three main factors: data, model or mapping function (with parameters) and

optimization process. The target is optional (required only for supervised learning).

“...what we want is a machine that can learn from experience.”

– Alan Turing

Supervised learning. (SL) This type of learning requires labelled data, which means that each

sample in the training set has a corresponding label, which is often provided by human. The

training stage consists in computing, through an optimization algorithm, a model that maps a

sample taken as input to its corresponding label. The computed model is then used to predict

the labels of samples which are not in the training set. There are two main types of SL problems:

classification and regression. In classification, the model predicts a categorical variable, while in

regression, the model predicts a continuous variable. For illustration purposes and with no loss

of generality, we only present SL for classification problems hereafter. In this case, a sample’s

label is typically represented in a one-hot encoded form. For instance, if there are three classes,

“dog”, “cat”, and “bird”, then one-hot encoded label associated to the class “dog” is [1, 0, 0]. For a

1Market Research Future https://www.marketresearchfuture.com/reports/machine-learning-market-2494

https://www.fast.ai/
https://www.coursera.org/
https://www.udemy.com/
https://www.udacity.com/
https://www.marketresearchfuture.com/reports/machine-learning-market-2494

4 Chapter I. Introduction

Figure I.2: Illustration of a ML task. After fitting a model to data (with or without
annotation) via an optimization process, the model outputs a prediction
or decision for an input sample which is not in data.

given input sample, the model actually returns a probability vector, for instance [0.8, 0.15, 0.05].

Then the sample is assigned to the class that is given the strongest probability, in our example the

“dog” class. Let d denote a dissimilarity metric, f() a model that can map a sample to a classes

probability vector, (xi, yi) a sample/label couple and Nl the number of training samples. The loss

function L to be optimized for a classification task is defined as:

L =
1

Nl

Nl∑
i=1

d(f(xi), yi) (I.1)

Different SL approaches for classification have been developed and become standard over years,

from linear models such as Linear Discriminant Analysis, Support Vector Machine (SVM) [Vapnik

et al. 1992] to non-linear models such as Decision Trees, k-Nearest Neighbors, Naive Bayes or

Logistic Regression. . . One can add to these standard approaches, ensemble learning techniques

which consist in combining several weak predictive models into a stronger aggregated predictive

model. Two important families among these techniques are Boosting [Schapire 1999, Chen &

Guestrin 2016] and Bagging [Bühlmann 2004].

Reinforcement learning can be considered to be part of SL, as the model is optimized to output

a user provided target at each state during the training phase. For example, in playing chess,

machine is learnt to perform action that optimizes the reward at each state and relations between

B. Learning paradigms 5

Figure I.3: Image recognition task.

actions and rewards are considered as user provided targets.

On the contrary, under the unsupervised learning paradigm, one aims at eliciting meaningful

structures solely based on data samples. It is the point treated in the next section.

Unsupervised learning. (UL) In contrast to supervised learning, this learning paradigm does

not require labels. It rather aims at uncovering assumed regularities in the data. UL can be

achieved through clustering or representation learning.

Clustering consists in partitioning samples into different groups (clusters) in such a way that

samples in the same group are more similar to each other than to those in other groups. Clustering

can be considered as a classification where the classes has to be discovered. The most popular

clustering technique is certainly the k-means algorithm [MacQueen 1967]. On the connexionnist

side, we can cite the self-organizing maps (SOM). However, these techniques operate directly in the

samples ambient space, which might contain useless features in regard to a particular application.

This problem can be addressed by representation learning techniques.

Representation learning (also called feature extraction) encompasses methods that tries to cap-

ture relevant information in the samples, given a specific task or prior knowledge of the data.

This information is ceased through computed features that constitute the new or latent represen-

tation of the original samples. In general, the number of features in latent representation is much

smaller than the one of original representation. Among representation learning techniques, we can

cite Dictionary Learning, Manifold Learning Techniques but also Auto-Encoder neural networks,

Self-Supervised Learning [Zisserman 2018].

Beyond the clustering and representation learning techniques, we can mention active learning

6 Chapter I. Introduction

from robotics which is about unsupervised mechanisms set up to push an autonomous agent toward

discovery maximizing situations [Oudeyer et al. 2007].

It is worth noting that labels can also be used for clustering and representation learning when

they are partly available. Hence Semi-Supervised Learning paradigm.

Semi-supervised learning. (SSL) In this learning paradigm, one makes use of both labelled

and unlabelled data during training. The core idea is that structural information that can be

extracted from the samples in an unsupervised manner can complement labels information in

the learning task. For instance, one of the earliest semi-supervised classification methods, label

spreading [Zhu & Ghahramani 2002], relies on ones ability to find structured communities in the

dataset, considered as a network. Thus, each community is affected to a class, based only on a few

labeled examples.

Models trained in a SSL fashion can often achieve the performance of their SL counterparts

with smaller amount of labelled data, thanks to relevant structural information extracted from

a large amount of data available. SSL can be put into perspective with the Weakly Supervised

Learning methodology in which model training relies on inexpensive “weak” or inaccurate labels,

with different mechanisms to account for labels uncertainty [Ratner et al. 2019].

C Motivations

In this thesis, we focus on SSL, which appears to be a growth research area for different reasons.

Annotation cost. In SL, annotation is primordial. The amount of annotated samples need to be

large enough to give an acceptable accuracy. However, annotating samples is a costly work, which

at times even requires expertise (medical diagnostic). Annotation task can vary from simple tasks

such as labeling object in an image to more complicated tasks such as locating object by a box,

segmenting object. . . SSL offers the perspective to alleviate this burden.

Scientific perspectives. One can consider that the SL field is scientifically and technically ma-

ture, in the sense that when sufficient one has at disposal computationally efficient algorithms and

affordable architectures to reach critical level of performances, provided that a sufficient amount

of labelled data are available. On the contrary, SSL still offers a great deal of challenges along with

promising research tracks that we will try to convey through our contributions.

D. Manuscript outlines 7

Availability of unlabelled data. Additionally, important volumes of unlabelled data are virtu-

ally always available. This calls for research investments into UL and SSL, which in turn drives

data owning corporations interest.

Feasibility. On a more fundamental level, we see SSL at play everytime a new born progressively

learns to categorize and interpret the different stimuli from his environment. Biological learning

systems generally display an impressive capacity to generalize knowledge from only few examples.

This indicates that efficient SSL is at least algorithmically feasible.

D Manuscript outlines

In this thesis, we develop one SSL approach based Dictionary Learning (DiL) and another in

the Deep Learning framework (DeL).

Here is the outline and resume for each chapter:

- Chapter II: Methodological pillars

In this chapter, we present the building blocks on which our approaches rely, namely Dictio-

nary Learning model and Convolutional Neural Network model and Manifold Learning.

- Chapter III: Semi-supervised dictionary learning

We present our first contribution on semi-supervised dictionary learning (SSDL).

- Chapter IV: Semi-supervised deep learning

We present our second contribution on semi-supervised neural network (SSNN).

Finally, we present our conclusions and perspectives in Chapter V.

Chapter II

Methodological pillars

Chapter abstract

In this chapter, we give a general overview of Dictionary Learning (DiL) and their

extension to classification tasks. Then, we introduce Convolutional Neural Network

(CNN) models. Finally, we remind manifold learning.

A Dictionary learning

Dictionary Learning (DiL) encompasses methods and algorithms which, for a given type of sig-

nal, aim at deriving a set of cardinal features which enables one to concisely describe signals of this

type. Precisely, given a set of vectors (xj)1≤j≤N in Rn that represent signals (Electrocardiography,

genes sequences...), DiL techniques compute a set vectors (di)1≤i≤p in Rn and a set of coefficients

(aj)1≤j≤N in Rp so that:

xj ≈
p∑
i=1

aj [i]di (II.1)

with a constraint of sparsity on the vectors aj . This approximation is illustrated by figure II.1.

As for the terminology:

- the matrix D = [d1, . . . ,dp] is the dictionary.

- its columns vectors (di) are the atoms.

- the vectors aj are the sparse codes as they represent each of the samples.

Hence, the learnt dictionary is specifically adapted for describing signals that are structurally

similar to the training samples. The benefit of such dictionaries in sparsity-driven signal recovery

10 Chapter II. Methodological pillars

xn d1 d2 d3 d4 d5
. . . dp

D

p

a

p

≈ ×

zero
nonzero

Figure II.1: Illustration of sparse representation. Here we approximate signal x by
only 3 atoms.

has been shown in several applications (see for example [Elad & Aharon 2006]).

A dictionary and the associated sparse codes is generally learnt by alternating between two

optimization steps: sparse coding and dictionary update. In this section, we present some

optimization methods for each step.

x1 x2 x3 . . . xN

X
data

n

N
samples

d1 d2 d3 d4 d5
. . . dp

D

dictionary

p

atoms

A

p

N
sparse codes

≈ ×

zero
non-zero

Figure II.2: Illustration of sparse dictionary learning task. We try to approximate
signals X by DA, where D is a base or dictionary and A is sparse code of X, which
means each column A[:, i] is sparse code of sample xi.

A.1 Sparse coding. Given a dictionary D ∈ Rn×p, which contains p atoms, di ∈ Rn (i = 1, ..., p),

we compute a signal x ∈ Rn sparse code by solving a ∈ Rp by solving the following optimization

problem:

min
a
‖x−Da‖2F s.t. ‖a‖0 ≤ k, (II.2)

where k ∈ N∗ sets the maximum number of non-zero elements in a. The signal x is approximated

by a linear combination of at most k atoms, i.e. its reconstruction x̂ = d1a[1] + · · · + dpa[p] has

only k non-zero coefficients a[i]. We impose k � n, which means that we look for an approximation

of x by only a small number of atoms in the dictionary D.

A. Dictionary learning 11

Usually, one seeks for a redundant or over-complete dictionary, which means the number of

atoms is far higher than the number of original features, i.e. p � n. This makes possible to find

a small number of atoms in D that are sufficient to approximate the sample x.

Solving the problem II.2 exactly would have a prohibitive computational cost because it is a NP-

hard problem. Thus, one has to settle for an approximate resolution. Two main types of algorithm

can be distinguished. On the one hand, we have greedy algorithms such as Matching Pursuit

(MP) [Mallat & Zhang 1993], Orthogonal Matching Pursuit (OMP) [Pati et al. 1993], Regularized

Orthogonal Matching Pursuit (ROMP) [Needell & Vershynin 2007]. In short, MP finds iteratively

the most correlated atom with the residue among unused atoms until having exactly k atoms.

OMP is a variant of MP which updates the sparse codes associated with the previously selected

atoms at each iteration. ROMP reconstructs the sparse representation of signal based on Restricted

Isometry Property. One the other hand, we have iterative shrinkage algorithms among which the

well known Iterative Hard Thresholding (IHT) algorithm [Blumensath & Davies 2008]. IHT is a

gradient-based method in which hard thresholding operator plays the role of a projector.

One can make use of other sparsity promoting penalties than the l0 pseudo-norm, such as the

so-called lq, norms defined as

‖x‖q = (

n∑
i=1

(x[i])q)
1
q (II.3)

where q ∈ (0, 1). Let focus on the important case of the l1 norm, that is found in the Lasso

problem formulation [Tibshirani 1996]. The sparse coding problem can be written into three

equivalent forms:

min
a
‖x−Da‖2F s.t. ‖a‖1 ≤ µ, (II.4)

where µ ∈ R.

min
a

1

2
‖x−Da‖22 + λ ‖a‖1 , (II.5)

where λ > 0.

min
a
‖a‖1 s.t. ‖x−Da‖2F ≤ ε. (II.6)

With l1 norm, the sparse coding problem is convex and can be solved in polynomial time.

Several algorithms can be used including Coordinate descent (see an overview [Wright 2015]),

Fixed-point continuation [Hale et al. 2007] and Proximal gradient [Combettes & Pesquet 2009]

which are fundamentally subgradient descent methods. In a different approach, feature-sign search

algorithm [Lee et al. 2007] proposes to search for the optimal sign of each element in sparse code

in order to remove the l1 norm’s absolute values, then solves for a quadratic problem with linear

constraints. Gradient projection for sparse reconstruction [Figueiredo et al. 2007] proposes to

12 Chapter II. Methodological pillars

replace sparse code a with two positive terms u,v, with a = u−v. One justifies that the problem

II.5 can be rewritten as:

min
u,v∈Rp
u,v≥0

1

2
‖x−D(u− v)‖22 + λ(

p∑
i=1

u[i] +

p∑
i=1

v[i]) (II.7)

This quadratic problem with the linear constraints (u,v ≥ 0) is then solved by a gradient-based

method with backtracking line search for tuning gradient descent step. [Kim et al. 2007] proposes

another constrained quadratic form of the problem II.5:

min
a,u∈Rp

−u[i]≤a[i]≤u[i]

‖x−Da‖22 + λ

p∑
i=1

u[i] (II.8)

In fact, the problem II.8 is equivalent to the problem II.5 and is solved using an Interior-Point

Method (also referred to as barrier methods).

[Efron et al. 2004] propose Least Angle Regression (LARS), which can be considered a variant

of OMP with l1 norm in the formulations II.4 and II.6 of the lasso problem. The signal a is

initialized by 0 (in Rp) and progressively increased in the direction created by a set of active

atoms, to reduce the residue r = x − Da. The new active atom is added in the set if it has as

much correlation with the residue as each existing active atom has.

The most well-known applications of sparse representation are compressed sensing and signal

recovery. For instance, if a signal is corrupted, we first transform it to the frequency domain

by the Fourier transform. Then we reconstruct its frequency representation by sparse coding with

hypothesis that signals are sparse in the frequency domain. The dictionary D in this case is Fourier

basis functions. The recovered signal is obtained from the reconstructed frequency representation

by the inverse Fourier transform. The construction of the dictionary follows two strategies. The

first one called analytical dictionaries are designed for certain classes of signal. Wavelets (Haar

1909, [Meyer 1993, Starck et al. 2007, Mallat 2008]), Discrete Cosine Transform (DCT) [Ahmed

et al. 1974], ridgelets [Candès 1998], curvelets [Candès & Donoho 2000, Starck et al. 2002]

are examples of analytical dictionaries. Signal decomposition and reconstruction through these

dictionaries benefit fast implicit transforms which is a considerable advantage from a practical

standpoint. On the other hand, the learned dictionaries are optimized according to a specific

dataset. Therefore, they describe better suited for these data compared to the first more generic

ones. However, they are in general unstructured so that signals analysis using these dictionaries

involves explicit matrices products that can be computationally costly for large dictionaries. In

next subsection, we present optimization methods to learn a dictionary from a given dataset.

A. Dictionary learning 13

A.2 Dictionary update. [Olshausen & Field 1996] were the first to propose a way to learn the

dictionary from data and to insist on the redundancy of dictionary. Given a matrix X ∈ Rn×N

that contains N signals xi ∈ Rn, i.e. X = [x1,x2, ..,xN] and the matrix A ∈ Rp×N contains

sparse code ai ∈ Rp of signal xi, i.e. A = [a1,a2, ..,aN], the dictionary computation problem is

given by:

min
D∈C
‖X−DA‖22 , (II.9)

where C = {D, ‖di‖2 ≤ α,∀i = 1, 2, ..., p} is a subset of Rn×p that contains all dictionaries whose

atoms l2 norms are less or equal to a given α (generally set to 1).

The problem II.9 is convex. We note ΠC the projection of a point onto the convex set C. For

solving this problem, one can use the projected gradient method, with the projector ΠC .

Method of optimal directions (MOD) [Engan et al. 1999] proposes to solve II.9 using the first

order optimality condition without constraint D ∈ C. Then the optimum is projected using ΠC .

MOD is simple but does not give the optimal solution to the problem II.9. [Lee et al. 2007] propose

to use Lagrange duality, solving the following problem:

maximize
γ1,..,γp

inf
D

(
‖X−DA‖2F +

p∑
i=1

γi(‖di‖22 − α)

)
subject to γi ≥ 0,∀i = 1, . . . , p.

(II.10)

with fixed γ, the infimum is obtained using first order optimality condition w.r.t. D, then Newton’s

method is applied to solve for maximizing. Finally, K-SVD [Aharon et al. 2006] is a revolutionary

method in DiL for its simplicity and efficacy. It differs from other mentioned methods in the way

it couples the dictionary D and the sparse codes A update. The algorithm K-SVD updates for

each k = 1, .., p the couple (dk,A[k,Ωk]) by assuming that other atoms are fixed:

(dk,A[k,Ωk]) = argmin
‖d‖2=α,a∈R|Ωk|

‖X[:,Ωk]−
∑
j 6=k

djA[j,Ωk]︸ ︷︷ ︸
Ek

−da>‖2F , (II.11)

where Ωk = {i|A[k, i] 6= 0}, A[k, :] being the the kth line of sparse codes matrix. Then, the matrix

Ek = X[:,Ωk]− ∑
j 6=k

djA[j,Ωk] is decomposed using the singular value decomposition (SVD):

Ek =

r∑
i=1

σiuiv
>
i , (II.12)

where r ≤ min(n, |Ωk|) and σ1 ≥ σ2 ≥ .. ≥ σr ≥ 0. Ek is approximated with the term σ1u1v
>
1 to

14 Chapter II. Methodological pillars

approximate Ek. Hence, the kth dictionary atom and the corresponding sparse codes are identified

as dk = αu1 and A[k,Ωk] = 1
ασ1v1.

Besides, online dictionary learning (ODL) methods appeared for data stream processing. These

methods allow dictionary updates solely based on one or few signals at the time. In most papers,

two supplement matrix: Bt = Bt−1 + xta
>
t and Ct = Ct−1 + ata

>
t are required to stock only

necessary information at the time t for updating dictionary, therefore previous signals and their

sparse codes do not need to be saved. [Mairal et al. 2009a] propose to update each atom while

fixing other ones until the convergence. [Skretting & Engan 2010] propose Recursive Least Squares

Dictionary Learning Algorithm (RLS-DLA) that updates directly all atoms at once time, with a

forgetting factor for former signals (exponentially). Apparently, RLS-DLA is fast since it does not

solve for the optimal solution with the constraint D ∈ C. A survey for optimizing DiL problem

can be found in [Mairal et al. 2014] or [Zhang et al. 2015].

A.3 Conclusion on dictionary learning . Most DiL involve a sparse coding step and a dictio-

nary update. Figure II.2 shows an illustration of DiL, which corresponds to the following objective

function:

min
D∈C,A

‖X−DA‖22 + λ ‖A‖q , (II.13)

where 0 ≤ q ≤ 1.

Beyond this formalism, DiL methods rely also on the Bayesian inference. For instance, [Zhou

et al. 2009] proposes a non-parametric approach in which the number of atoms or sparse penalty

parameter are optimization variables as well as the dictionary and the atoms. The optimization is

performed using the Beta process [Hjort 1990]. However, as nature of non-parametric models, this

dictionary learning model can become more and more complicated with an increasing amount of

training data.

As aforementioned, traditional DiL methods produce unstructured dictionaries in that there

are no relationships between atoms. However, structured DiL methods have been proposed. For

instance, [Jenatton et al. 2010] proposed a tree-structured dictionary learning, where l0 or l1 norms

are replaced with Hierarchical Sparsity-Inducing Norm in the optimization process.

For completeness sake, let mention an interesting variant of DiL as presented so far, which is

analysis dictionary learning [Rubinstein et al. 2013, Tang et al. 2019]:

min
Ω∈C′,U

‖U−ΩX‖22 + λ ‖U‖q (II.14)

where C′ is a set that constraints Ω. The atoms in an analysis dictionary Ω can be interpreted as

B. Supervised dictionary learning 15

filters, which try to activate relevant features.

Globally speaking, DiL leads to state-of-the-art results in many applications such as denoising

[Elad & Aharon 2006], colorization [Mairal et al. 2008], super resolution [Yang et al. 2010a],

data clustering [Elhamifar & Vidal 2012], and in specific fields such as medical imaging [Gangeh

et al. 2010], astronomy [Ngolè Mboula et al. 2014], etc. DiL also plays the role of representation

learning, which is a step in the pipeline of bag-of-words (BoW) models in Computer Vision [Fei-Fei

& Perona 2005]. Recall that BoWmodels consist of four steps: descriptor extraction, representation

learning, spatial pooling and classification. In the first versions of BoW, representation learning

is performed by Vector Quantization (K-Means [MacQueen 1967], DBSCAN [Ester et al. 1996] or

other clustering algorithms). After that, Vector Quantization is replaced by DiL, which has shown

an improvement for BoW models [Jianchao Yang et al. 2009, Coates & Ng 2011].

We now turn to supervised dictionary learning (SDL) applications.

B Supervised dictionary learning

As previously, DiL yields a new data representation, the sparse codes, which are optimized so

that one can get an accurate sparse description of the samples. Driven by the ML trend, several

approaches have been developed by applying dictionary learning in classification tasks. In this

section, we present how this can be done in supervised manners.

Let Xl denote the labelled data from C classes. Xl has Nl samples xli (i = 1, .., Nl). Each

sample xi is associated with label yi = [y1
i , y

2
i , ..., y

C
i]>, where:

yji =

1 if sample i belongs to jth class

−1 otherwise.

Y = [y1,y2, ...,yNl] is the label matrix for all labelled samples, Y ∈ RC×Nl . Al denote

the sparse codes of labelled data Xl. W ∈ RC×p is a linear classifier consisting of C binary

classifiers (with the strategy “one vs all”) in the sparse code space, W = [w1,w2, ...,wC]> and

b = [b1, b2, ..., bC]> denotes the associated bias. SDL can be generically formalized as follows:

min
Θ

[
R(Al,D) +D(W,b,Al,D)

]
,

where Θ = {W,b,Al,D ∈ C}.
(II.15)

R denotes the reconstruction error with the sparsity constraint. The penalty D aims at making

the dictionary D or the sparse codes A discriminative, possibly including an internal classifier

(W,b) learning loss. Linear classifier W is described as internal in the sense that it is jointly

16 Chapter II. Methodological pillars

learned with the dictionary and the sparse codes during the optimization process.

In the next subsections, we present SDL methods by making sparse codes discriminative then

SDL methods by making atoms discriminative.

B.1 SDL with internal classifier. This type of SDL trains a classifier in the sparse code space

during the training process. Hence, in prediction stage, an unlabelled sample has to be firstly

sparse coded with the learnt dictionary in order that the learnt internal classifier to be applied.

Here is the general objective function on which almost SDL with internal classifier approaches rely:

Objective function Prediction

min
W,Al,D∈C

∥∥Xl −DAl
∥∥2

F
+ λ

∥∥Al
∥∥
q︸ ︷︷ ︸

R

+ γ
∥∥Y −WAl

∥∥2

F︸ ︷︷ ︸
D

argmax
c

w>c au

(II.16)

The simplest SDL method is probably DK-SVD proposed by [Zhang & Li 2010], which solves

the following problem:

min
Al,W,D
‖di‖2=1

∥∥Xl −DAl
∥∥2

F
+ γ

∥∥Y −WAl
∥∥2

F

subject to ‖ai‖0 ≤ T0,∀i = 1, . . . , Nl.

(II.17)

We can rewrite the objective function II.17 by piling
∥∥Xl −DAl

∥∥2

F
on
∥∥Y −WAl

∥∥2

F
:

min
Al,W,D
‖di‖2=1

∥∥∥∥∥∥∥
 Xl

√
γ Y

−
 D

√
γ W

Al

∥∥∥∥∥∥∥
2

F

subject to ‖ai‖0 ≤ T0,∀i = 1, . . . , Nl.

(II.18)

Then the problem II.18 can be solved using the K-SVD algorithm. Inspired by DK-SVD, [Jiang

et al. 2013] propose label consistent K-SVD (LCK-SVD) by adding an other quadratic loss into

the objective function, in order to encourage samples belonging to the same classes to be described

by the same subset of atoms, i.e. to have common sparse codes supports. To do so, an atoms

labels matrix Q ∈ Rp×Nl is defined as Q[i, j] = 1 if jth training sample and ith atom are in the

same class, 0 otherwise, yielding the following optimization problem:

min
Al,W,U,D
‖di‖2=1

∥∥Xl −DAl
∥∥2

F
+ γ

∥∥Y −WAl
∥∥2

F
+ η

∥∥Q−UAl
∥∥2

F

subject to ‖ai‖0 ≤ T0,∀i = 1, . . . , Nl.

(II.19)

where U ∈ Rp×p is a linear transformation matrix to optimize. Thus, this method also makes the

B. Supervised dictionary learning 17

dictionary atoms discriminative. As DK-SVD, the objective function II.19 of LCK-SVD can be

rewritten as:

min
Al,W,U,D
‖di‖2=1

∥∥∥∥∥∥∥∥∥∥

Xl

√
η Q

√
γ Y

−

D

√
η U

√
γ W

Al

∥∥∥∥∥∥∥∥∥∥

2

F

subject to ‖αi‖0 ≤ T0,∀i = 1, . . . , p,

(II.20)

and solved using K-SVD algorithm. [Mairal et al. 2009b] proposed two SDL methods, respectively

named SDL-G and SDL-D:

min
D∈C,Al,θj

Nl∑
i=1

(
B(yji f(ali, θj)) + λ0

∥∥xli −Dali
∥∥2

2
+ λ1

∥∥ali∥∥1︸ ︷︷ ︸
S(ali,x

l
i,D,θj ,y

j
i)

)
+ λ2 ‖θj‖22 , (SDL-G)

where B(x) = log(1 + e−x) is the logistic function and f(ali, θj) = w>j ali + bj where θj = [w>j , bj]

is a binary classifier for class j. Given dictionary D and classifier θj , the supervised sparse coding

loss S?(xli,D, θj , yji) for sample xli relatively to class j is defined as:

S?(xli,D, θj , yji) = min
a
S(a,xli,D, θj , y

j
i), (II.21)

where we also take into account of classifier j compared to regular sparse coding. Hence, to classify

a test sample x, its sparse code is computed for each classifier θc, and then the sample is assigned

to the optimal class as follows:

argmin
c
S?(x,D, θc, 1). (II.22)

SDL-D is an extension of SDL-G on dictionary update, which aims at making the model more

discriminative, solving the following problem:

min
D∈C,θj

Nl∑
i=1

(
µB
(
S?(xli,D, θj ,−yji)− S?(xli,D, θj , yji)

)
+ (1− µ)S?(xli,D, θj , yji)

)
+ λ2 ‖θj‖22 ,

(SDL-D)

where µ balances the additional discriminative penalty with respect to the SDL-G form. Note SDL-

D boils down to SDL-G when µ = 0. Compared to SDL-G, first, SDL-D is rather a dictionary

update problem than dictionary learning problem as SDL-G because only the dictionary D is

variable to be optimized. Second, SDL-D optimizes the dictionary D in order to make a better

discrimination between false prediction (−yji) and true prediction (yji).

18 Chapter II. Methodological pillars

SDL-G and SDL-D have shown impressive performances on multiple benchmark (digits recogni-

tion, texture. . .). This can be explained the use of a non-linear classifier, with the logistic function

B(x), which is rather similar to activation functions in DeL field.

B.2 SDL with atoms discriminative. This category relies on the relationship between atoms

and class labels: a class-specific sub-dictionary is learnt for each class. Hence, an unlabelled sample

is classified by reconstruction error given by each class-specific sub-dictionary. Here is the general

objective function on which almost SDL with atoms discriminative approaches rely:

Objective function Prediction

min
Al
c,c,D∈C

C∑
c=1

(∥∥Xl
c −DcA

l
c,c

∥∥2

F
+ λ

∥∥Al
c,c

∥∥
q

)
︸ ︷︷ ︸

R and D

argmin
c

‖xu −Dca
u‖2 (II.23)

where Dc is a class-specific sub-dictionary reserved for class c, Xl
c contains all samples of class c

and Al
c,c is sparse code of Xl

c on class-specific sub-dictionary Dc.

[Wright et al. 2009] proposed Sparse Representation-based Classification (SRC), which uses

all training samples as the dictionary D. There is no optimization process in this approach to

learn the dictionary. A test sample is first sparse coded on D and classified by reconstruction

error given by each class-specific sub-dictionary Dc, which contains all training samples of class c.

However, dictionary size in SRC could be large if the number of training samples is large. In order

to obtain a smaller dictionary and make atoms more discriminative, [Yang et al. 2010b] proposed

to learn class-specific sub-dictionaries Dc for each class c. [Ramirez et al. 2010] extended the form

II.23 by penalizing cross-correlations between sub-dictionaries, yielding Dictionary Learning with

Structured Incoherence (DLSI):

min
Al
c,c,D∈C

C∑
c=1

(∥∥Xl
c −DcA

l
c,c

∥∥2

F
+ λ

∥∥Al
c,c

∥∥
1

)
+ η

C∑
c=1

C∑
j=c+1

∥∥D>c Dj

∥∥2

F
(II.24)

Indeed, training samples can have shared features such as background or in the multiclass

setting, they can belong to more than one class, which can induce undesirable correlations between

class-specific sub-dictionaries. Therefore, [Kong & Wang 2012] extended furthermore DLSI by

introducing in addition a synthesized sub-dictionary that captures trans-classes features. This

B. Supervised dictionary learning 19

approach called DL-COPAR (COmmonality and PARticularity) solves the following problem:

min
Al,D
‖di‖2=1

C∑
c=1

(∥∥Xl
c −DAl

c

∥∥2

F
+ λ

∥∥Al
c

∥∥
1

+

C∑
j=1
j 6=c

∥∥Al
c,j

∥∥2

F

+
∥∥Xl

c −DcA
l
c,c −DC+1A

l
c,C+1

∥∥2

F

)
+ η

C∑
c=1

C∑
j=c+1

∥∥D>c Dj

∥∥2

F

(II.25)

In this approach, D = [D1, ..,DC ,DC+1], where DC+1 contains the common features of all classes

and Al
c = [Al>

c,1, ..,A
l>
c,C+1]>. Unlike DLSI which performs sparse coding on each class-specific sub-

dictionary, DL-COPAR performs sparse coding on the whole dictionary. For all training samples

of class c, the coefficients firstly coded in a class-specific sub-dictionary j (j 6= c) are forced to

zero by minimizing
∥∥Al

c,j

∥∥2

F
. Secondly, these samples are represented by using its class-specific

sub-dictionary on one hand and the synthesized sub-dictionary on the other hand.

[Yang et al. 2014] proposed an approach called Fisher Discrimination based Dictionary Learning

(FDDL), which tries to minimize the intra-class energy and maximize inter-class energy:

min
Al,D
‖di‖2=1

C∑
c=1

(∥∥Xl
c −DAl

c

∥∥2

F
+
∥∥Xl

c −DcA
l
c,c

∥∥2

F
+

C∑
j=1
j 6=c

∥∥DjA
l
c,j

∥∥2

F
+ λ1

∥∥Al
c

∥∥
1

+ λ2

(∥∥Al
c −M(Al

c)
∥∥2

F
−N c

l

∥∥m(Al
c)−m(Al)

∥∥2

2

))
+ η

∥∥Al
∥∥2

F
,

(II.26)

where N c
l denotes the number of samples in class c, m(Z) is the column mean for matrix Z

and M(Z) is the matrix with the same size as Z by repeating column m(Z).
∥∥Al

c −M(Al
c)
∥∥2

F

represents within-class energy and N c
l

∥∥m(Al
c)−m(Al)

∥∥2

2
represents between-class energy. The

penalty η
∥∥Al

∥∥2

F
guarantees that sparse coding is convex since we introduce a negative term for

between-class energy: −N c
l

∥∥m(Al
c)−m(Al)

∥∥2

2
.

B.3 Conclusion about SDL. Labels can be incorporated into classical DiL in other to learn

discriminative dictionaries or sparse codes in different manners. This can be done by using an

internal classifier to make sparse codes discriminative or by defining class-specific sub-dictionaries

to make atoms discriminative. Note that, we can apply both of these two techniques, e.g. LCK-

SVD by problem II.19. Interestingly, having a look at sparse codes and corresponding active

atoms might provide simple interpretation to classification decision based upon this modelling.

The interested reader can find a review of SDL in [Gangeh et al. 2015].

20 Chapter II. Methodological pillars

C Deep Learning

Conventionally, only in this thesis, we understand Deep Learning as deep Neural Network

Model (NNM) or Convolutional Neural Network (CNN) model because Deep Learning can have

other deep architectures which differ from Neural Network Model.

C.1 Neural networks. Let 1 ≤ l ≤ L denote index of layer in a deep neural network and let

n(l) denote the number of features of hidden representation z(l), which means z(l) ∈ Rn
(l)

. In layer

(l), z(l) is computed as follows:

z(l) = σ(z(l−1)W (l) + b(l)) (II.27)

where σ: Rn
(l) → Rn

(l)

is an element-wise activation function, for adapting the non-linearity

of data. W (l) ∈ Rn
(l)×n(l−1)

and b(l) ∈ Rn
(l)

are model parameters which represent for a Fully

Connected layer. Figure II.3 shows an illustration for a neural network model.

Hidden
layer z(1)

Input
layer x

Hidden
layer z(2)

Output
layer ŷ

Figure II.3: A simple neural network model with three layers.

C.2 Convolutional neural networks. Since a vanilla neural network model by equation II.27

is composed only of Fully Connected layers, it has several following shortcomings. Firstly, units in

a signal vector or pixels in an image are independent, which means do not take into account the

specific topological structure (here the locality) among these units or pixels. Secondly, for a deep

vanilla NNM, using Fully Connected layers increases quickly the number of model parameters,

which can lead to an over-fitting problem. Finally, Fully Connected layer (as filter) is not robust to

some transformations, such as translation. In order to overcome the above limitations, [Fukushima

1980] proposed Convolutional Neural Network (CNN) and over the years, it was improved and

refined in by [Lecun et al. 1998]. For a simple and general view, we present CNN in case of images

C. Deep Learning 21

(especially square images).

Layer (l) Layer (l + 1)

Figure II.4: Illustration for a convolutional operator in CNNs. Input layer (l) has
dimension 4x16x16, output layer (l + 1) has dimension 8x16x16 and 8 convolutional
filters, each of them has dimension 4x3x3. Source: developed from [Lanusse et al.
2017].

Let consider a square hidden representation: z(l) ∈ RK(l)×H(l)×H(l) , where K(l) means the

number of channels, H(l) means both height and width in the layer (l). A convolutional layer

with parameters (W (l), b(l)) is thus a transition between layer (l) and (l + 1). W (l) consists of

K(l+1) square convolutional filters, each filter has size of K(l) × I(l) × I(l) where I(l) × I(l) is also

called kernel size. In short, W (l) ∈ RK(l+1)×K(l)×I(l)×I(l) . The bias is represented by b(l) ∈ RK(l+1) .

After performing K(l+1) convolutions, the output z(l+1) has K(l+1) channels or shortly z(l+1) ∈

RK(l+1)×H(l+1)×H(l+1) . Here is the details of the operations performed in a convolutional layer:

z(l+1)[k, :, :] = σ
(K(l)∑
h=1

W (l)[k, h, :, :] ∗ z(l)[h, :, :] + b(l)[k]
)
, (II.28)

where k = 1, ..,K(l+1). Figure II.4 shows an illustration for a convolutional operator in CNNs.

In first CNN models, the architecture consists of convolutional layers and Max-Pooling layers

(alternatively) at the beginning, then a Flatten layer followed by a Fully Connected layers at the

end (figure II.5).

Input image
1x32x32

Conv 6x1x5x5
→ 6x32x32

MaxPool 2x2
→ 6x1x16x16

Conv 8x6x5x5
→ 8x16x16

MaxPool 2x2
→ 8x8x8

Flatten
→ 512

FC 512x10
→ 10

Figure II.5: An example inspired from LeNet architecture. Source: developed from
[Stutz 2016].

22 Chapter II. Methodological pillars

In practice, the size of conventional images is often hundreds times hundreds pixels (even more

in some specific fields) and the number of categories (classes) can reach to the thousands, instead

of 32 × 32 with 10 categories in figure II.5. Therefore, we need to increase the capabilities of

CNN models, usually by going deeper or by widening the number of channels. Hence we obtain

architectures with higher complexity. One can think of broadening kernel sizes. However, this

may lead very quickly to an immense number of model parameters and may not be efficient for

conventional images. For NNMs and also CNNs that have a high complexity, two classical problems

need to be considered:

- Vanishing gradient. This problem relates to deep architecture models that use gradient-

based methods as optimizer. In this case, backward gradients in upstream layers are very

small, which implies that parameters in these layers are almost fixed during the training

stage. For example, activation functions such as tanh or sigmoid have their derivatives in

the range (−1, 1) so that when backward gradients are computed using the chain rule, they

get fainter as one moves towards upstream layers.

- Over-fitting. This problem relates to neural network models that have a large number of

model parameters compared to number of training samples. Although training set and test

set are sampled from the same data distribution, a model may display a low training loss

and a high testing loss.

Solutions for the vanishing gradient problem though various CNN architectures will be de-

tailed in section II.C.3 (Standard CNNs). The over-fitting problem is tackled through various

regularization strategies:

- Through the data, e.g. data input augmentation (rotation, translation, flip, color transfor-

mations,. . .). A review of data augmentation field can be found in [Shorten & Khoshgoftaar

2019]. The regularization might also be applied to the outputs using techniques such as

Label Smoothing [Szegedy et al. 2015] that proposed to modify slightly the target, e.g. from

[1,0,0] to [0.8,0.1,0.1]. Instead of manually modifying the target label, an other technique to

perform Label Smoothing is to slightly maximize entropy of predicted output [Pereyra et al.

2017]. Note that, Label Smoothing is applied only for labelled samples.

- Through the model parameters, e.g. weights decay [Krogh & Hertz 1992] or other strategies

which are presented in section IV.A.2.

- Through the optimization scheme, e.g. Early Stopping [Morgan & Bourlard 1990, Prechelt

1997].

C. Deep Learning 23

C.3 Standard CNNs. In this subsection, we present some popular CNN architectures, which

are considered as the backbone of many applications. Figure II.6 gives a simple illustrations for

these CNN architectures.

AlexNet. This is an architecture proposed by [Krizhevsky et al. 2012] that revives CNN

after the work of [Lecun et al. 1998] (LeNet). It has several improved points compared to LeNet.

First, AlexNet is deeper and has much more number of parameters than LeNet (60M vs 60K).

The training has been made possible using GPUs. Second, AlexNet uses the non-saturating ReLU

activation function [Nair & Hinton 2010]: max(0, x), which showed more efficient than tanh or

sigmoid function. This is because the derivative of ReLU is 1 if x > 0 instead of a value in

(−1, 1) as derivatives of tanh or sigmoid. Thus ReLU is better to deal with the vanishing gradient

problem and provides even a faster learning. In addition, ReLUs is sparse if x ≤ 0 and sparse

representations seem to be more efficient for regularization than dense representations.

VGG. This approach [Simonyan & Zisserman 2014] aims at making improvements over AlexNet.

First, it is deeper and larger than AlexNet (about 2 times in term of number of parametric layers

and in term of number of parameters). Second, large kernel sizes (11× 11 or 5× 5) in somes first

convolutional layers of AlexNet is replaced by multiple 3× 3 ones, which helps to learn better the

texture of data.

Inception. Also known as GoogleNet [Szegedy et al. 2014a], this architecture appeared almost

at the same time as VGG. Again, it aims at making improvements over AlexNet by several following

significant modifications. Firstly, 1 × 1 convolutional filters is applied to reduce the number of

channels before applying larger convolutional filters. For a short comparison, let take an example

that we want to pass from a hidden representation z(l) of 32 channels to the next one z(l+1) of

64 channels with 3 × 3 convolutional filters, then we need W (l) of size 64 × 32 × 3 × 3 = 18432

parameters. On the contrary, if we apply 1× 1 convolutional filters, we firstly pass from z(l) of 32

channels to an intermediate representation of 16 channels by W (l+1)
0 of size 16× 32× 1× 1 = 512

parameters. Then we pass from the intermediate representation of 16 channels to z(l+1) of 64

channels by W (l+1)
1 of size 64 × 16 × 3 × 3 = 9216 parameters. Consequently, we need only 9728

parameters in this case instead of 18432 in the previous case and this reduces considerably the

number of parameters.

Secondly, inception modules contain various kernel sizes (1 × 1, 3 × 3 and 5 × 5) in parallel,

which reinforces for the learning of texture. Inception has many other variants that are described

in [Szegedy et al. 2015] and [Szegedy et al. 2016].

ResNet. To efficiently handle the vanishing gradient problem, ResNet [He et al. 2015] was

created by adding additive skip operators into CNN architecture, e.g. a forward pass through a

24 Chapter II. Methodological pillars

2x 5x 2x

3x 4x 6x 3x

6x 12x 64x 48x

5x

LeNet

AlexNet

VGG-16

Inception v1

ResNet-50

DenseNet-264

Xception

MobileNet

: Convolution : Max Pooling : Fully Connected : Softmax

: Convolution 1x1 : Concatenation : Addition: Average Pooling

: Separable Convolution

Figure II.6: Illustration for several standard CNN architectures. For convolution
layers, they can have different parameter such as kernel size, stride or zero padding.
Gray rectangles mean to repeat exactly the included module. Source: inspired by
[Alemi 2016].

C. Deep Learning 25

series of Residual modules that can be illustrated by:

z
(0)
0

Nm∏
j=0

(1 +

N lj∏
i=1

W
(j)
i), (II.29)

where z(0)
0 is the first layer of the first Residual module. W (j)

i can be seen as parameters of layer

i in Residual module j. Nm
j and Nm are respectively the number of layers in module j and the

number of Residual modules. For the first layer in a Residual module, besides backward gradient

comes from a series of multiplications through intermediate layers, we have also backward gradient

transferred directly to this first layer thanks to an additive skip operator. Hence, we can avoid the

vanishing gradient. In NLP field, Long short-term memory (LSTM) [Hochreiter & Schmidhuber

1997] also uses additive operators to solve for the vanishing gradient problem. ResNet has 5

versions: 18, 34, 50, 101 and 152 layers. In the deeper versions (the last three), Residual modules

have a bottleneck architecture, which means a main convolutional layer of kernel size 3 × 3 is

sandwiched between two auxiliary convolutional layers of kernel size 1× 1, which helps to control

the number of channels. We call them bottleneck architecture because in these Residual modules,

the number of channels in the input and the number of channels in the output are larger than the

one in the main convolutional layer of kernel size 3× 3.

DenseNet. As ResNet, DenseNet [Huang et al. 2016] aim also at handling the vanishing

gradient problem. The fundamental difference between these two architectures is that DenseNet

uses Dense modules with concatenation operators, instead of additive skip operators as in ResNet.

Therefore, output of a Dense module contains feature maps of the first layer and also of all in-

termediate layers. It is very important to note that DenseNet always takes advantage of additive

operators to avoid the vanishing gradient problem. Thus, additive operators come from the 1× 1

convolutional layer right after a Dense module. These 1 × 1 convolutional layers help to sum up

(with weights) all concatenated feature maps.

Consequently, backward gradients are transferred to all layers in a module, not just for the

first layer as in ResNet. Hence, DenseNet alleviates even further the vanishing-gradient problem.

Besides, for the same number of layers, DenseNet has less parameters than ResNet: given a

convolutional filter W (l) ∈ RK(l+1)×K(l)×I(l)×I(l) , both ResNet and DenseNet apply I(l) = 3, but

there is a considerable difference on K(l+1) ×K(l) between these two approaches. DenseNet has 4

versions: 121, 169, 201 and 264 layers.

Xception. The novelty of this architecture [Chollet 2016] is to introduce Separable Convo-

lutional layers, which consists of channel-wise convolutions (also called depth-wise convolutions)

followed by a point-wise convolutions (1 × 1 convolutional filters) and eventually an activation

26 Chapter II. Methodological pillars

function. In the channel-wise convolution, each channel is treated independently:

z(l+1)[k, :, :] = W (l)[k, :, :] ∗ z(l)[k, :, :] + b(l)[k], (II.30)

where now W (l) ∈ RK(l)×I(l)×I(l) , hence the input and output of this operator have the same

number of channels. In order to modify the number of channels from K(l) to K(l+1), a point-wise

convolution is applied. Thus, Separable Convolutional layers has much less parameters than their

corresponding convolutional layers. This is the main advantage compared to other CNNs.

Xception paved the way designing “light” models, which are compatible for learning on portative

devices, such as cellphones. Thus, Xception propelled Federated Learning field, which aims at

training a model across multiple decentralized devices.

MobileNet. MobileNets [Howard et al. 2017] consist of a series of Separable Convolutional

layers and aim at alleviating the model as much as possible. MobileNets do not even need additive

operators to deal with the vanishing gradient problem because they are not really deep (28 layers

including 13 point-wise convolution layers). MobileNets use stride in Separable Convolution layers

to reduce size of feature maps (height and width) instead of Max-Pooling layers. From a basic

architecture of MobileNet, two factors are introduced to reduce more the number of parameters:

width multiplier α and resolution R. Firstly, width multiplier means that for a given Separable

Convolutional layer, the number of input channels K(l) becomes αK(l) and the number of output

channels K(l+1) becomes αK(l+1). Secondly, all height and width of feature maps are multiplied

by ρ = R/224 since 224 is the resolution of MobileNet basic architecture, R being the input

resolution. Hence, name for a MoblileNet has the following form “α MobileNet-R”. Note that,

resolution changing does not impact the number of model parameters in CNN architectures, but

it impacts the computational cost and the required memory to stock hidden representations.

Table II.1 shows several standard CNN architecture with top5-error on the standard dataset

ImageNet [Deng et al. 2009], which is a project designed for visual object recognition. For now,

about ten million images have been hand-annotated and eventually bounding boxes (for object

location) are also provided.

Add-on modules

In addition to the CNN architectures, there are also several add-on modules which help to

enhance the performance of a CNN architecture. We present some popular add-on modules in this

subsection.

Dropout. [Srivastava et al. 2014] introduced Dropout which can be considered as an auxiliary

C. Deep Learning 27

Network Year top5-
error

Number of
parametric layers

Number of
parameters

LeNet 1998 5 60K
AlexNet 2012 16.4% 8 62.3M
VGG-16 2014 8.1% 16 138.3M
Inception v1 2014 10.1% 22 5M
Inception v3 2015 5.6% 48 23M
ResNet-50 2015 6.7% 50 25.8M
ResNet-101 2015 6.0% 101 40M
ResNet-152 2015 5.7% 152 60.3M
DenseNet-264 2016 6.1% 264 73M
Xception 2016 5.5% 71 22.8M
1.0 MobileNet-224 2017 10.5% 28 4.2M

Table II.1: top5-error on ImageNet and number of parameters by several stan-
dard CNN architectures. Source: https://paperswithcode.com/sota/image-
classification-on-imagenet.

layer and it consists in dropping out (setting to 0) random units in a hidden representation z(l).

Dropout acts as a regularization because it increases the number of samples. Thus, this process

can be considered as data augmentation in hidden representations. Besides, if Dropout is applied

for a Fully Connected layer, we can consider that Dropout deactivates randomly an amount of

parameters in this layer instead of units in hidden representations, because the role of an unit z[i]

and the role of a parameter W [j] are the same, to make z[i]W [j] = 0. However, this idea can not

be applied for convolutional layers, where the role of an unit z[i] and the role a parameter W [j]

are not the same for convolutional operators, which is illustrated in [Reinhold 2019].

In practice, Dropout is widely applied for Fully Connected layers but it is often less effective

for convolutional layers ([Ghiasi et al. 2018]). Therefore, these authors proposed another version

of Dropout, called DropBlock, which drops out randomly blocks instead of units in feature maps

to deal with convolutional layers.

Normalization. We present Batch Normalization (BN) proposed by [Ioffe & Szegedy 2015].

Given a batch B that has m samples xi, these samples are normalized as:

µB ←
1

m

m∑
i=1

xi (batch mean)

σ2
B ←

1

m

m∑
i=1

(xi − µB)2 (batch variance)

x̂i ←
xi − µB√
σ2
B + ε

(normalize)

yi = γx̂i + β (scale and shift),

where γ, β are trainable parameters of BN layer and µB, σB are non-trainable parameters. Here

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

28 Chapter II. Methodological pillars

are several advantages of BN:

- BN mitigates “covariate shift” effect which refers to changes in the distribution of the inputs

of each layer.

- BN smooths the objective function [Santurkar et al. 2019].

- BN is beneficial in regard of the vanishing gradient problem. Indeed, when used immedi-

ately before non-linearity layers such as sigmoid or tanh, BN modifies the input distribution

bringing the values closer to 0. This results in greater derivatives values, which mitigates

vanishing gradient problem.

In the case that a BN layer succeeds a Fully Connected layer (n dimensions), BN is applied

unit-wise and there are 4n parameters. Otherwise, if a BN layer succeeds a convolutional layer

(H×W ×K dimensions), BN is applied feature map-wise. This reduces the number of parameters

to 4K instead of 4HWK.

In evaluation mode, given a BN layer, (µevB , σ
ev
B) is required to perform the forward pass through

this layer for a single test sample. Therefore, it needs to be estimated during the training to be

used afterward. For example, EMA with momentum α might by used to update (µevB , σ
ev
B) as:

(µevB , σ
ev
B)← (1− α)(µevB , σ

ev
B) + α(µtrB , σ

tr
B), (II.31)

where (µtrB , σ
tr
B) are obtained after each forward batch during the training.

H
, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure II.7: Different normalization methods. N, C and (H, W) means respectively
for batch axis, channel axis and spatial axes. Blue blocks indicate units
(pixels) to be normalized by the same mean and variance. Source: [Wu
& He 2018].

Although BN has shown impressive performances for very deep architectures, it has several

drawbacks such as using a small batch size in training, multi-GPUs training or compatibility for

RNNs (Recurrent Neural Network). Other normalization methods are developed to overcome these

drawbacks. For examples, Weight Normalization [Salimans & Kingma 2016] proposed to normalizes

model parameters instead of feature maps. Layer Normalization [Ba et al. 2016] proposes to

C. Deep Learning 29

normalize feature maps across all features instead of samples. Instance Normalization [Ulyanov

et al. 2016] proposed to normalize across features in a channel. Group Normalization [Wu & He

2018] is a mix of layer normalization and instance normalization, proposed to normalize across

features in a group of channels. Figure II.7 shows position of units to be normalized using the

same mean and variance in different normalization methods. An overview and more normalization

methods can be found in [Kurita 2018].

Squeeze and Excitation. This add-on module [Hu et al. 2017] aims at biasing the contri-

bution of channels in feature maps (figure II.8). As suggested by its name, this module has two

stages: squeeze and excitation (SE). Squeeze consists of a Global Pooling layer and excitation is a

little bottleneck architecture which consists of two Fully Connected layers with activation. Given

feature maps of a layer, SE computes a scalar weight for each channel, then multiplies each channel

by its weight. The mechanism used in SE is thus a gate mechanism. The later is applied in general

for units of a representation and not necessarily channels as in SE. We can take for example the

units in each hidden state vector in LSTM [Hochreiter & Schmidhuber 1997].

Inception

Global pooling

FC

SE-Inception Module

FC

X

Inception

෩X
Inception Module

X

෩X

Sigmoid

Scale

ReLU

𝐻 ×W× C

1 × 1 × C

1 × 1 × C

1 × 1 × C

1 × 1 ×
C
𝑟

1 × 1 ×
C
𝑟

𝐻 ×W× C

SE-ResNet Module

+

Global pooling

FC

ReLU

+

ResNet Module

X

෩X

X

෩X

Sigmoid

1 × 1 × C

1 × 1 ×
C
𝑟

1 × 1 × C

1 × 1 × C

Scale

𝐻 ×W× C

𝐻 ×W× C

𝐻 ×W× C

Residual Residual

FC

1 × 1 ×
C
𝑟

Figure II.8: Squeeze and Excitation implemented in Inception module (left) and
Residual module (right). Only in these figures, H,W,C means for height, width
and number of channels. Source: [Hu et al. 2017].

It is worth noting that there is also attention mechanism (appeared a long time ago but firstly

introduced in deep learning by [Bahdanau et al. 2014]). Gate and attention mechanisms both use

trainable parameters to weight different units, but there is just a slight difference between them.

Attention mechanism is global and aggregating while gate mechanism is applied to each elementary

unit.

30 Chapter II. Methodological pillars

Holistic networks

As each single architecture has different advantages and shortcomings, we quickly go through

several architectures that consists of at least two single architectures. These hybrid architectures

are expected to give better performances or acceptable performances with the minimum possible

number of parameters. For example, Inception-ResNet [Szegedy et al. 2016]; MobileNet v2 [Sandler

et al. 2018] that uses modules inspired from Residual modules (ResNet) but replacing normal

convolution layer with Separation Convolution (figure II.9 stride = 1); MnasNet [Tan et al. 2018]

goes a little further by using in addition add-on modules such as SE and BN to form its own

elementary modules (MBConv); EfficientNet [Tan & Le 2019] is a scalable network, which means

from a reference architecture composed of MBConv layers, the number of layers, number of channels

and number of feature in a feature maps are modified to get a new architecture.

Conv 1x1, Relu6

Dwise 3x3, Relu6

input

conv 1x1, Linear

Add

Conv 1x1, Relu6

Dwise 3x3,
stride=2, Relu6

input

conv 1x1, Linear

Stride=1 block Stride=2 block

Figure II.9: Left: Modules used in MobileNet v2 with stride = 1 and stride = 2.
Relu6 means max(0,6). Source: [Sandler et al. 2018]. Center: MBConv3 (5x5) used
in MnasNet. Right: MBConv6 (3x3) used in MnasNet. Source: [Tan et al. 2018].

Conclusion about CNN architectures

There are several from now on standard existing architectures available for the practitioner. If

the CNN architecture is complex, several issues have to be dealt with including the vanishing gra-

dient problem, the over-fitting problem, the training time and computational cost. A recent trend

consists in replacing classical convolutional layers (equation II.28) with channel-wise convolutions

(or depth-wise convolutions, see equation II.30) and point-wise convolutions, which reduces dra-

matically the model’s complexity, so that these models can be trained on computationally limited

devices. We precisely turn to CNN’s optimization methods in the next section.

C.4 Optimizers. In order to optimize objective function for NNMs and also CNNs, gradient-

based algorithms are almost the only choice. Table II.2 shows popular gradient-based optimizers.

D. Manifold learning 31

Momentum takes into account the prior update step ∆t−1 to accelerate and dampens oscillations

(caused by narrow local optimas). Nesterov accelerated gradient (NAG) uses anticipatory gradient

instead of current gradient to regularize update steps. However, Momentum and NAG apply the

same learning rate (step size) η for all parameters. On the contrary, Adagrad weights the learning

rate η by using the sum of the squares of the gradients up to time t. RMSprop goes a little further

by using EMA instead of normal sum, in order to avoid quickly decreasing learning rate. Adadelta

replaces fixed learning rate η with an EMA of the squares of the update steps up to time t. Finally,

Adam and its variants AdaMax, Nadam, AMSGrad preserve the learning η but replacing gradients

gt,i with an EMA of gradients. Depending on each method, there are other slight improvements.

An overview of gradient-based optimizers can be found in [Ruder 2017].

Algorithms Description Update

Momentum
[Qian 1999] ∆t = γ∆t−1 + η∇θJ(θ) θ ← θ −∆t

Nesterov accelerated
gradient [Nesterov 1983] ∆t = γ∆t−1 + η∇θJ(θ − γ∆t−1) θ ← θ −∆t

Adagrad
[Duchi et al. 2011]

gt,i = ∇θJ(θt,i)

Gt,i =
∑t
k=1 g

2
k,i

θt+1,i = θt,i − η√
Gt,i+ε

gt,i

RMSprop
[Hinton et al.] Gt,i = 0.9Gt−1,i + 0.1g2

t,i θt+1,i = θt,i − η√
Gt,i+ε

gt,i

Adadelta
[Zeiler 2012]

Gt,i = γGt−1,i + (1− γ)g2
t,i

∆t,i = θt+1,i − θt,i
Dt,i = γDt−1,i + (1− γ)∆2

t,i

θt+1,i = θt,i −
√
Dt−1,i+ε√
Gt,i+ε

gt,i

Adam
[Kingma & Ba 2014]

mt,i = γ1mt−1,i + (1− γ1)gt,i

Gt,i = γ2Gt−1,i + (1− γ2)g2
t,i

m̂t,i =
mt,i
1−γt1

and Ĝt,i =
Gt,i
1−γt2

θt+1,i = θt,i − η√
Ĝt,i+ε

m̂t,i

AdaMax
[Kingma & Ba 2014] ut,i = max(γ2ut−1,i, |gt,i|) θt+1,i = θt,i − η

ut,i
m̂t,i

Nadam
[Dozat 2016] m̂t,i =

γ1mt,i

1−γt+1
1

+
(1−γ1)gt,i

1−γt1
θt+1,i = θt,i − η√

Ĝt,i+ε
m̂t,i

AMSGrad
[Reddi et al. 2019] Ĝt,i = max(Ĝt−1,i, Gt,i) θt+1,i = θt,i − η√

Ĝt,i+ε
m̂t,i

Table II.2: Various gradient-based optimizers for neural networks. AdaMax, Nadam,
AMSGrad are variant of or developed from Adam.

D Manifold learning

Manifold learning is a part of the unsupervised representation learning, which consists of both

linear (PCA [Pearson 1901], ICA [Jutten & Herault 1991]) and nonlinear methods. For a high-

32 Chapter II. Methodological pillars

dimensional data, i.e. the original representation of sample has many features. It can be difficult

to interpret and visualize the global organization of the data. We assume that, for a given task,

the data of interest lies on a low dimensional manifold. Thus, computing data coordinates with

respect to this manifold can ease their visualization. Figure II.10 show an illustration of manifold

learning.

Figure II.10: Two-dimensional embedding of face images by a dimensionality reduc-
tion method. The face images are divided into two parts, the faces with open mouth
and the faces with closed mouth. Moreover, the pose and expression of human faces
change continuously and smoothly, from the top to the bottom, from the left to the
right. The bottom images correspond to points along the right path (linked by solid
line), illustrating one particular mode of variability in the pose. Source: [He et al.
2005].

In most cases, a manifold learning process has two stages: extracting properties of original

data then computing a new representation - an embedding which preserves these properties into

a low dimensional space. Given a data set X = {x1, ...,xN}, xi ∈ Rn and its embeddings set

A = {a1, ...,aN},ai ∈ Rp, where ai is the embedded representation of xi, we note:

Le(ai,Aci), (II.32)

the embedding loss, where Aci is the complement of {ai} in A. The objective function of manifold

D. Manifold learning 33

learning problem is then defined as:

min
A
Lt = min

A

N∑
i=1

Le(ai,Aci) (II.33)

We present some popular embedding losses hereafter:

- Multi-Dimensional scaling (MDS) [Kruskal & Wish 1978]:

Le(ai,Aci) =
∑

aj∈Aci

(da(ai,aj)− dx(xi,xj))
2, (II.34)

where da() and dx() are measures of dissimilarity. By default, they are both Euclidean distances.

This method aims at preserving pairwise distances from the original representation in the embed-

ding space.

- Laplacian eigenmaps (LE) [Belkin & Niyogi 2003]:

Le(ai,Aci) =
∑

aj∈Aci

dx(xi,xj)da(ai,aj), (II.35)

where dx() is a measure of similarity measure (for instance dx(xi,xj) = exp
(−‖xi−xj‖22

2σ2
i

)
) and da()

is a measure of dissimilarity (for instance da(ai,aj) = ‖ai − aj‖22). This method learns manifold

structure by emphasizing the preservation of local distances. In order to further reduce effect

of large distances, in some papers, dx(xi,xj) is set directly to zero if xj is not in the k nearest

neighbors of xi or vice versa if xi is not in the k nearest neighbors of xj . Alternatively, one can

set dx(xi,xj) = 0 if ‖xi − xj‖22 > κ. Let W be the matrix defined as Wij = dx(xi,xj) hence W

is a symmetric matrix if dx() is symmetric. We can represent the objective function of Laplacian

eigenmaps method using the matrices:

Lt =

N∑
i=1

Le(ai,Aci) =

N∑
i=1

N∑
j=1
j 6=i

Wij ‖ai − aj‖22 = 2 tr(ALA>), (II.36)

where L = D −W, Dii =
∑N
j=1 Wij (D being a diagonal matrix). L a graph Laplacian matrix

because it is symmetric, the sum of each row equals to 0 and its elements are negatives except for

the diagonal elements.

- Locally Linear Embedding (LLE) [Roweis & Saul 2000]:

Le(ai,Aci) =

∥∥∥∥∥∥ai −
∑

aj∈Aci

λijaj

∥∥∥∥∥∥
2

2

, (II.37)

34 Chapter II. Methodological pillars

where λij are determined by solving the following problem:

min
λij

∥∥∥∥∥∥xi −
∑
j

λijxj

∥∥∥∥∥∥
2

2

,

subject to:

∑
j

λij = 1, if xj ∈ knn(xi),

λij = 0 if not.

(II.38)

where knn(xi) denote a set containing indices of the k nearest neighbors samples (in Euclidean

distance) of the sample xi. Assuming that the observed data X is sampled from a smooth manifold

and provided that the sampling is dense enough, one can assume that the sample lies locally on

linear patches. Thus, LLE first computes the barycentric coordinate for each sample w.r.t. its

nearest neighbors. These barycentric coordinates characterize the local geometry of the underlying

manifold. Then, LLE computes a low dimensional representation (embedded) which is compatible

with these local barycentric coordinates. Introducing V ∈ RN×N a matrix representation form for

λ as: V[j, i] = λij then Lt =
∑N
i=1 Le(ai,Aci) can be rewritten as Lt = ‖A−AV‖2F = tr(ALA>),

where L = IN −V −V> + V>V. Thus, the loss Lt can be interpreted as Laplacian eigenmaps

loss, based on an implicit metric dx for measuring distance between two samples.

- Laplacian Learning (LL) [Dong et al. 2016]:

Lt = tr(ALA>), (II.39)

where L is learnt by solving the following problem:

min
L∈RN×N

tr (XLX>) + θ ‖L‖2F

subject to tr(L) = N,

Lij = Lji < 0(i 6= j),∑
j

Lij = 0.

(II.40)

The constraint tr(L) = N is set in order to control the energy of L. Instead of creating L

using a predefined generic metric as in LE manifold learning method, in LL, the laplacian matrix

is learnt directly from the data. To optimize problem II.40, we can use interior point method [Boyd

& Vandenberghe 2004] or ADMM [Boyd et al. 2011]). We propose also a method to solve problem

II.40 in appendix A.1.

D. Manifold learning 35

- Contrastive loss :

Le(ai,Aci) =
∑

aj∈Aci

(
dx(xi,xj)da(ai,aj) + (1− dx(xi,xj)) max(0, τ − da(ai,aj))

)
,

where dx(xi,xj) is a discrete similarity metric which is equal to 1 if xj is in the neighborhood of

xj and 0 otherwise. da() is a measure of dissimilarity.

- Stochastic Neighbor Embedding (SNE) [Hinton & Roweis 2003]:

Le(ai,Aci) =
∑

aj∈Aci

Pij log
Pij
Qij

,

where Pij =
dx(xi,xj)∑
k 6=i dx(xi,xk) and Qij =

da(ai,aj)∑
k 6=i da(ai,ak) , dx and da are both similarity metric. The

objective of this method is to preserve the similarity between two distributions of pairwise distances,

one in original representation and the other in embedded representation, by Kullback–Leibler (KL)

divergence.

Traditionally, manifold learning finds its applications in dimensionality reduction or data vi-

sualization, which refers to the techniques used to help the analyst see the underlying structure

of data and explore it. For instance, [van der Maaten & Hinton 2008] proposes a variant of SNE,

which has been used in a wide range of fields. Classical nonlinear manifold learning methods do not

require a mapping model, which is a function g() with trainable parameters that maps a sample x

to its embedded representation a as a = g(x). a is directly used as the optimization variable.

Finally, it is worth noting that for several manifold learning methods such as LE and LLE, some

supplement constraints are required to avoid a trivial solution (for instance with all embedded

points are collapsed into only one point). Usually, mean and co-variance constrains are applied:

m(A) = [µ(A[1, :]), .., µ(A[p, :])]> = 0

Cov(A,A) =
(
A−M(A)

)(
A−M(A)

)>
= Ip

(II.41)

Chapter III

Semi-supervised dictionary learning

Chapter abstract

In this chapter, we introduce Semi-Supervised Dictionary Learning (SSDL). Then,

we present our proposed SSDL method. We show that our approach provides an im-

provement over state-of-the-art semi-supervised dictionary learning methods on some

handwritten digit datasets and face datasets.

A Introduction

Although SDL has gained much interest and has shown significant performance improvements

in classification, it requires a large number of labelled samples per class to be accurate, as for

supervised learning methods in general. In order to deal with databases which have just a few

labelled samples per class, semi-supervised learning, which also exploits unlabelled samples in

training phase is used. Indeed, unlabelled samples can help to regularize the learning model,

yielding an improvement of classification accuracy. In this section, we address semi-supervised

dictionary learning (SSDL) by introducing some methods to convert SDL to SSDL and the related

works. But before going further, let state three assumptions proposed by [Chapelle et al. 2006] on

which most SSL methods rely.

• The smoothness assumption. If two points x1, x2 are close, then so should be the correspond-

ing model outputs y1, y2.

• The clustering assumption. If points are in the same cluster, they are likely to be of the

same class. The cluster assumption can be equivalently formulated as follows: the decision

boundary should lie in a low-density region (low density separation).

38 Chapter III. Semi-supervised dictionary learning

• The manifold assumption. While being in a high dimensional ambient space, the data roughly

lies on a low-dimensional manifold. As a consequence, some properties of the data organiza-

tion can be preserved in a low-dimensional embedding space.

A.1 Generalities. We remind some notations used in this section:

- ai,j is sparse code on the class-specific sub-dictionary Dj for sample xi, therefore ai =

[a>i,1, ..,a
>
i,C]>.

- Al
i,j is sparse code corresponds to the sub-dictionary Dj for all samples of ith class Xl

i, hence

Al
i = [Al>

i,1, ...,A
l>
i,c, ...,A

l>
i,C]> and Al = [Al

1, ...,A
l
i, ...,A

l
C].

- Q is defined as in LCK-SVD method (problem II.19).

- V is learnt from data samples, in order to apply to sparse codes (which can be considered as

a manifold learning method).

- m(Z) is the column mean for matrix Z and M(Z) is the matrix with the same size as Z by

repeating column m(Z).

- lq, lq1 indicate norms with 0 < q, q1 < 1.

- ycj(k) = 1 if k = c, otherwise ycj(k) = −1.

- L denotes a Laplacian matrix, potentially used to regularize sparse code (LA,LLW ,LLB)

and eventually feature in dictionary (LD).

- r ≥ 1, activation hyper-parameter in (Pij)
r, used for sharpening the estimated probabilities

(see appendix A.8.2).

Besides, Xu denotes unlabelled data, which have Nu samples xuj (j = 1, .., Nu), hence data

is now composed of labelled data and unlabelled data: X = [Xl,Xu]. In the same manner, Au

denotes sparse code of Xu that contains Nu sparse codes aui (j = 1, .., Nu) and A = [Al,Au].

We find three ways of extending a SDL method to the semi-supervised setting in the literature.

The first one is used to convert a SDL into SSDL, i.e. to incorporate unlabelled samples in the

learning, the second and third ones are used to reinforce semi-supervised learning. We present it

hereafter from the objective function II.15 point of view.

(i) The first straightforward step consists in modifying R by incorporating the reconstruction

error and the sparse codes penalty for the unlabelled data: ‖Xu −DAu‖2F + λ ‖Au‖q. It can be

considered as a regularization for the dictionary D because we use more samples to train it. This

A. Introduction 39

setting is found in most SSDL approaches (see for example [Pham & Venkatesh 2008, Zhang et al.

2013, Wang et al. 2013]).

(ii) The second one goes further by adding a term F(Al,Au) into the objective function II.15, in

order to enforce the preservation of the original data structure in the sparse code space [Zheng et al.

2011]. By considering that sparse coding amounts to embed data in the union of low dimensional

subspaces, this constraint can be related to the manifold assumption. A similar constraint can be

used to preserve features relationship within the learnt atoms [Yankelevsky & Elad 2017], then F

can contain in addition D as variable such as F(Al,Au,D).

(iii) A third one would consist in modifying the functional D in II.15 to train the internal

classifier in a semi-supervised way, therefore including unlabelled sparse codes in the learning

procedure. To do so, several works introduce a new matrix variable P ∈ RC×Nu , whose entry

Pkj is positive and indicates the estimated probability that an unlabelled sample j belongs to the

class k (hence
C∑
k=1

Pkj = 1). Matrix P is learned during training phase as D and A. It can be

estimated by Label Propagation based methods (see appendix A.8.1), which rely on the smoothness

assumption. In some methods, P is then sharpened (see appendix A.8.2), which is grounded on

the clustering assumption.

Integrating the three aspects addressed above, we can formulate the following generic optimiza-

tion problem for SSDL:

min
Θ

[
R(Al,Au,D) +D(W,b,Al,Au,D,P) + F(Al,Au,D)

]
,

where Θ = {W,b,Al,Au,D ∈ C,P}.
(III.1)

A.2 Related works. In table III.1, we list SSDL methods that follow the form III.1. We note

that all methods use unlabelled data for dictionary fitting which makes sense, Dictionary Learning

being by construction unsupervised. Thus JDL, OSSDL and LC-RLSDLA are SSDL extensions of

DK-SVD (II.17) and LCK-SVD (II.19) for the last two.

Following (ii) that concerns F , SSP-DL approach proposes to learn a matrix V ∈ RN×N as:

min
Vii=0

‖V‖qq,q + λ ‖X−XV‖2F (III.2)

Thus, it is a sparse coding problem with lq,q norm (0 < q < 1) for sample xi, where the corre-

sponding dictionary is composed of other samples. Then the matrix V captures linear relationship

between the samples in the original space that are enforced in the sparse code space by minimizing

‖A−AV‖2F . SDGDL and PSSDL use Laplacian-based matrix LA, derived from LE and LLE

40 Chapter III. Semi-supervised dictionary learning

Method R D F

JDL
min

D ∈ C,A,W

∥∥Xl −DAl
∥∥2
F

+ρ ‖Xu −DAu‖2F

γ
∥∥Y −WAl

∥∥2
F

+µ ‖W‖2F

s.t ‖ai‖0 ≤ ε

OSSDL

LC-RLSDLA

min

D ∈ C,A,W,U

∥∥Xl −DAl
∥∥2
F

+ρ ‖Xu −DAu‖2F

γ
∥∥Y −WAl

∥∥2
F

+ψ
∥∥Q−UAl

∥∥2
F

s.t ‖ai‖0 ≤ ε

S2D2
min

D ∈ C,A

‖X−DA‖2F

+λ ‖A‖1

Nl∑
i=1

C∑
c=1

∥∥xli −Dca
l
i,c

∥∥2
2

+
Nu∑
j=1

C∑
c=1

(∥∥(xuj −Dca
u
j,c)Pcj

∥∥2
2

+
∥∥Dca

u
j,c(1−Pcj)

∥∥2
2

)
+

C∑
c=1

(∥∥Al
c −M[Al

c]
∥∥2
F

−
∥∥m[Al

c]−m[Al]
∥∥2
2

)

SSR-D *
min

D ∈ C,A

∥∥(X−DA)>
∥∥q1
2,q1

+λ
C∑
c=1

∥∥Al
c

∥∥q
2,q

+λ ‖Au‖q2,q

SSP-DL *
min

D ∈ C,A

‖X−DA‖2F

+λ1

C∑
c=1

∥∥Al
c

∥∥q
2,q

+λ2 ‖Au‖qq,q

β ‖A−AV‖2F

SDGDL �
min

‖di‖2 = 1,Al,W

∥∥Xl −DAl
∥∥2
F

γ
∥∥Y −WAl

∥∥2
F

β1 tr (A
lLAA

l>)

+β2 tr (D
>LDD)

s.t
∥∥ali∥∥0 ≤ ε

USSDL

min

D ∈ C,A

W,b,P

‖X−DA‖2F

+λ ‖A‖1

γ
(Nl∑
i=1

C∑
c=1

∥∥w>c ali + bc − yci
∥∥2
2

+
Nu∑
j=1

C∑
k=1

(Pkj)
r
C∑
c=1

∥∥w>c auj + bc − ycj (k)
∥∥2
2

)
+µ ‖W‖2F

PSSDL

min

D,A,W

σi,z,σd,σw

N∑
i=1

(‖xi−Dai‖22
2σ2
i

+ log σn+2
i

)
+
‖A‖1
z

+(N + 1) log z

+
‖D‖2F
2σ2
d

+ p log σn+2
d

Nl∑
i

(
−w>c,yci=1a

l
i

+ log
(C∑
c=1

exp(w>c a
l
i

))
+
‖W‖2F
2σ2
w

+ C log σp+2
w

+(1− β)
(
tr (ALLWA>)

− tr (ALLBA>)
)

β tr (ALAA
>)

B. Proposed method 41

SSD-LP
min

D ∈ C,A

C∑
c=1

(∥∥Xl
c −DcA

l
c,c

∥∥2
F

+λ
∥∥Al

c,c

∥∥
1

)
−γ

C∑
c=1

∥∥Al
c,c −M[Al

c,c]
∥∥2
F

+
Nu∑
j

C∑
c=1

(
Pcj

∥∥xuj −Dca
u
j,c

∥∥2
2
+ λ

∥∥auj,c∥∥1)

Table III.1: SSDL objective functions. OSSDL, LC-RLSDLA: online dictionary learn-
ing methods, they have the same objective function but using different methods for
optimization. JDL: Joint Dictionary Learning [Pham & Venkatesh 2008], OSSDL:
Online Semi-Supervised Dictionary Learning [Zhang et al. 2013], LC-RLSDLA: La-
bel Consistent - Recursive Least Squares Dictionary Learning Algorithm [Matiz &
Barner 2016], S2D2: Semi-Supervised Discriminative Dictionary [Shrivastava et al.
2012], SSR-D: Semi-Supervised Robust Dictionary [Wang et al. 2013], SSP-DL: Struc-
tural Sparse Preserving - Dictionary Learning [Wang et al. 2016], SDGDL: Super-
vised Dual Graph Dictionary Learning [Yankelevsky & Elad 2017], USSDL: Unified
Semi-Supervised Dictionary Learning [Wang et al. 2015], PSSDL: Probabilistic Semi-
Supervised Dictionary Learning [Babagholami-Mohamadabadi et al. 2013], SSD-LP:
Semi-Supervised Dictionary - Label Propagation [Chen & Yang 2017].

methods respectively, to constraint sparse code A. PSSDL uses also Local Fisher Discriminant

Analysis [Sugiyama 2007], which is a semi-supervised manifold learning technique. Thus, it in-

troduces the following penalty (1 − β)
(

tr (ALLWA>) − tr (ALLBA>)
)
. We refer readers to the

original paper for the explicit form of LLW and LLB .

Finally, let turn to some SSDL methods that learn a semi-supervised internal classifier ((iii)).

S2D2 uses pseudo-label Pcj to weight the reconstruction loss between class-specific sub-dictionaries

Dc:
∥∥(xuj −Dca

u
j,c)Pcj

∥∥2

2
, and uses (1−Pcj) to force unrelated class components of sparse codes

to zero:
∥∥Dca

u
j,c(1−Pcj)

∥∥2

2
. The Probability matrix P is estimated based on reconstruction error

given by the updated sparse codes dictionary. In SSD-LP, the probability matrix P is estimated

using a rule inspired from the Label Propagation ([Zhu & Ghahramani 2002, Zhou et al. 2004] in

appendix A.8.1). Finally, USSDL uses P to weight the classification loss between sub-classifiers

(wc, bc): (Pkj)
r
C∑
c=1

∥∥w>c auj + bc − ycj(k)
∥∥2

2
, where r > 1 is an activation hyper-parameter used for

sharpening the estimated probabilities (see appendix A.8.2). Finally, in USSDL, P is estimated

based on classification error given by updated sparse code and updated classifier.

B Proposed method

In our work, we decided to design the objective function based on the form II.16, assuming

that samples in the different classes have similar textures and need to be reconstructed from the

common dictionary. In addition, we want to train simultaneously the internal classifier and the

dictionary to make sparse code more discriminative. In the following, we refer to our method as

42 Chapter III. Semi-supervised dictionary learning

Semi-Supervised Dictionary Learning with Graph regularization and Active points method (SSDL-

GA for short). It can be viewed is an extended version of USSDL by combining with manifold

preservation for both sparse code and dictionary. Our proposed method also takes into account the

manifold preservation for sparse coding out-of-sample data points. In this section, we construct

the objective function of SSDL-GA step by step, then we present the optimization process and we

conclude with some numerical experiments.

B.1 Construction of objective function. In our method, we use the reconstruction error R

as:

R(A,D) = ‖X−DA‖2F + λ ‖A‖1 (III.3)

It uses both labelled and unlabelled samples. The manifold learning for preservation F is applied

for both sparse code and dictionary:

F(Al,Au,D) = β tr(ALAA>) + ϕ tr(D>LDD), (III.4)

where LA,LD are both Laplacian-based matrix. These matrices can be considered as hyper-

parameters, which can be set using LE, LLE or LL manifold learning method. Laplacian-based

matrices are used for manifold learning in DiL thanks to their simplicity (quadratic form) and in

addition, they guarantee the convexity for sparse coding. For the functional D, we construct this

term in the same way as in USSDL. Indeed, USSDL uses an internal semi-supervised classifier,

which is developed from the Adaptive Semi-Supervised Learning [Wang et al. 2014] and then

combined with the Active points method. Following Adaptive Semi-Supervised Learning approach,

D is split into two functionals Dl and Du defined as:

Dl(W,b,Al) = γ

Nl∑
i=1

C∑
c=1

∥∥w>c ali + bc − yci
∥∥2

2
= γ

∥∥WAl + b1Nl −Y
∥∥2

F
, (III.5)

and

Du(W,b,Au,P) = γ

Nu∑
j=1

C∑
k=1

(Pkj)
r
C∑
c=1

∥∥w>c auj + bc − ycj(k)
∥∥2

2

= γ

C∑
k=1

∥∥∥(1>NuP[k, :])r/2 ◦ (WAu + b1Nu −Yk)
∥∥∥2

F
,

(III.6)

where:

- the matrices 1Nl and 1Nu are matrix One of size 1×Nl and 1×Nu, respectively.

B. Proposed method 43

- (◦) is the Hadamard product.

- ycj(k) = 1 if k = c, otherwise ycj(k) = −1. yj(k) = [y1
j (k), y2

j (k), ..., yCj (k)]> and Yk =

[y1(k),y2(k), ...,yNu(k)].

- r ≥ 1 is an activation hyper-parameter in function xr, with 0 ≤ x ≤ 1.

As a reminder, P is a C ×Nu matrix, whose entry Pkj is positive and indicates the estimated

probability that an unlabelled sample j belongs to class k. In Du, P’s entries are used as weight

parameters associated with classification error for unlabelled samples. The decision boundary is

the sparse code space hyperplan defined by the equation w>c a + bc = 0. Similarly to SVM, the

decision boundary is ajusted only based on nearby samples, hence the concept of active points.

Active points are the sparse codes that verify the following constraint:

w>c ai + bc < 1, if ai belongs to this class c

w>c ai + bc > −1, if not.
(III.7)

Then, for labelled samples, matrix Ql ∈ RC×Nl indicates active points for a given class as

follows:

Ql[c, i] = 1, if yci (w>c ali + bc) < 1

Ql[c, i] = 0, otherwise
. In a similar fashion, we define the matrix Qu

k ∈

RC×Nu for unlabeled samples:

Qu
k [c, j] = 1 if ycj(k)(w>c auj + bc) < 1

Qu
k [c, j] = 0, otherwise

, ∀k ∈ [1, .., C]. Finally,

D can be rewritten as follows, with l2 regularization on classifier:

D(W,b,Al,Au,P) = γ
(∥∥Ql ◦ (WAl + b1Nl −Y)

∥∥2

F

+

C∑
k=1

∥∥∥Qu
k ◦ (1>NuP[k, :])r/2 ◦ (WAu + b1Nu −Yk)

∥∥∥2

F

)
+ µ(‖W‖2F + ‖b‖22),

Aggregating the reconstruction R, the manifold learning for structure preservation F and the

classification D, we end up with the following objective function:

min
W,b,A,P,D∈C

‖X−DA‖2F + β tr(ALAA>) + ϕ tr(D>LDD) + γ
(∥∥Ql ◦ (WAl + b1Nl −Y)

∥∥2

F

+

C∑
k=1

∥∥∥Qu
k ◦ (1>NuP[k, :])r/2 ◦ (WAu + b1Nu −Yk)

∥∥∥2

F

)
+ µ(‖W‖2F + ‖b‖22) + λ ‖A‖1 ,

(III.8)

44 Chapter III. Semi-supervised dictionary learning

where:

- Ql = (Y ◦ (WAl + b1Nl) < 1) and Qu
k = (Yk ◦ (WAu + b1Nu) < 1), ∀k ∈ [1, .., C]

- P ∈ RC×Nu ,Pkj ∈ [0, 1] and
C∑
k=1

Pkj = 1,∀j

We propose a minimization scheme in the following subsection.

B.2 Optimization.

B.2.1 Alternate update

In the optimization process, the five following steps are repeated until convergence is reached:

- Active elements update:

Ql = (Y ◦ (WAl + b1Nl) < 1)

Qu
k = (Yk ◦ (WAu + b1Nu) < 1),∀k ∈ [1, .., C]

(III.9)

The complexity for this step is O(pCNl + pC2Nu).

- Probability update:

min
P≥0

Nu∑
j=1

C∑
k=1

(Pkj)
r
C∑
c=1

Qu
k [c, j]

∥∥ycj(k)(w>c auj + bc)− 1
∥∥2

2
,

subject to
C∑
k=1

Pkj = 1,∀j.
(III.10)

This problem can be solved efficiently using Lagrange multiplier as in appendix A.2. The

complexity for this step is O(pC2Nu).

- Sparse coding :

min
A
‖X−DA‖2F + λ ‖A‖1 + β tr(ALAA>) + ϕ tr(D>LDD)

+γ
(∥∥Ql ◦ (WAl + b1Nl −Y)

∥∥2

F
+

C∑
k=1

∥∥∥Qu
k ◦ (1>NuP[k, :])r/2 ◦ (WAu + b1Nu −Yk)

∥∥∥2

F

)
(III.11)

The problem can be solved efficiently using FISTA (Fast Iterative Shrinkage-Thresholding Al-

gorithm) with backtracking [Beck & Teboulle 2009]. We give more details in appendix A.3. The

complexity for this step is O((p2N + pN2 + npN + pNlC + pC2Nu)ss), where ss is number of

iterations.

B. Proposed method 45

- Dictionary update :

min
D∈C
‖X−DA‖2F + ϕ tr(D>LDD) (III.12)

As in Sparse Coding, we use FISTA with backtracking to solve this problem. We give more

details in appendix A.4. The complexity for this step is O(p2N + (p2n+ pNn)sd), where sp is the

number of iterations.

- Classifier update:

min
W,b

γ
(∥∥Ql ◦ (WAl + b1Nl −Y)

∥∥2

F
+

C∑
k=1

∥∥∥Qu
k ◦ (1>NuP[k, :])r/2 ◦ (WAu + b1Nu −Yk)

∥∥∥2

F

)
+ µ(‖W‖2F + ‖b‖22)

(III.13)

We provide a solution for this problem in appendix A.5. The complexity of this step is

O(p2NuC
2 + p2NlC).

Algorithm 1 SSDL-GA.
Require: X,Y, β, ϕ, γ, λ, µ, p, r.
Initialize: LA,LD, D,A,W,b,Yk

Normalization: ωA = N
tr (LA) , ωD = n

tr (LD)ωD, LA ← ωALA,LD ← ωDLD
while not converged do
Update Ql,Qu

k .
Update the probability matrix P
Update sparse code A (Sparse coding)
Update dictionary D
Update classifier W,b

end while
Output: D,A,W,b,P

The global optimization is summarized in algorithm 1. We normalize energy of Laplacian

matrix (tr(LA) = N and tr(LD) = n) for avoiding scalar transfer between β and tr(LA), also

between φ and tr(LD) in tuning hyper-parameter stage for β, φ. In addition, since LA,LD can be

constructed or learnt by different manifold learning Laplacian-based methods, this normalization

guarantees the equity in a comparison of effect between these methods.

In general, p ∼ O(n), the complexity for the global algorithm is O
(
(n2N +nN2 +nC2N)ssst+

(n3 +n2N)sdst+n2NC2st
)
, where st is the number of iteration for global algorithm. The memory

complexity is proportional to N2 because of the manifold structure preservation, which can be

prohibitive for large data sets. Thus, we developed a sparse coding with epoch and batch strategy

which is explained in appendix A.6. Once we have the optimal internal classifier through the

matrix W and the bias b, the unlabelled sample aui is classified into the class ĵ according to the

46 Chapter III. Semi-supervised dictionary learning

following equation:

ĵ = argmax
j

w>j aui + bj ,

where w>j is jth row of W

(III.14)

B.2.2 Initialization

The dictionary D is initialized as follows: if there are more atoms than labelled samples (p >

Nl), all the labelled samples are used as initial atoms and the remaining initial atoms are selected

randomly from the unlabelled samples. Otherwise, we select randomly a labelled sample for each

class until we obtain p samples. Then, each atom di is projected on the l2 sphere of radius α

(D ∈ C). The sparse codes A are initialized by solving the following LASSO problem with the

initial dictionary D:

min
A
‖X−DA‖2F + λ ‖A‖1 (III.15)

Finally, the linear classifier W and b is initialized using only the labelled sparse codes by solving

the following problem:

min
W,b

γ
∥∥Y −WAl − b1Nl

∥∥2

F
+ µ(‖W‖2F + ‖b‖22)

= min
W′

γ
∥∥Y −W′Al∗∥∥2

F
+ µ ‖W′‖2F ,

(III.16)

where W′ = [W,b] ∈ RC×(p+1) (we add b as a column after the last one of W) and Al∗ =Al

1Nl

. The solution Ŵ′ is given in closed-form by:

Ŵ′ = Y(Al∗)>
(

Al∗(Al∗)> +
µ

γ
I

)−1

(III.17)

We set µ
γ = 2 in the initialization and in the optimization process.

B.2.3 Out-of-sample data points

We suppose that the dictionary D and the sparse codes A ∈ Rp×N have been calculated for

N training samples. If we have q new unlabelled data points Xnew = [xN+1,xN+2, ...,xN+q],

we perform a simple sparse coding step for each new unlabelled data point xN+i, by taking into

account manifold structure preservation as follows, depending on manifold learning method:

B. Proposed method 47

- Laplacian eigenmaps:

min
aN+i

‖xN+i −DaN+i‖22 + λ ‖aN+i‖1 + βωA

N∑
j=1

1

2
dx(xN+i,xj) ‖aN+i − aj‖22 , (III.18)

where dx is the metric used for calculating pairwise distances among N training samples. We

multiply new pairwise distances by ωA (in algorithm 1) for the equity with existing pairwise

distances.

- Locally Linear Embedding :

min
aN+i

‖xN+i −DaN+i‖22 + λ ‖aN+i‖1 + βωA

∥∥∥∥∥∥aN+i −
∑

j∈knn′(N+i)

λ̂ijV aj

∥∥∥∥∥∥
2

2

(III.19)

The set knn′(N+i) contains the indices of the k nearest samples among the N training samples for

xN+i. We get the coefficients λij by solving a problem of the form (II.38), as previously mentioned.

- Laplacian Learning :

L′A = argmin
L∈R(N+1)×(N+1)

tr
(

[X,xN+i]L[X,xN+i]
>
)

+ θ ‖L‖2F

subject to tr(L) = N + 1,

Lij = Lji < 0(i 6= j),∑
j

Lij = 0.

(III.20)

min
aN+i

‖xN+i −DaN+i‖22 + λ ‖aN+i‖1 + β
(

2 tr (aN+iL
′
A[N + 1, 1 : N]A>)

+ tr (aN+iL
′
A[N + 1, N + 1]a>N+i)

) (III.21)

We first recompute L′A to take into account a new sample.

B.3 Numerical experiments. We organize this subsection as follows: firstly, we show the

advantage of the manifold structure preservation constraint on the USPS database (United States

Postal Service). Then we assess the impact of the number of unlabelled samples involved in the

training on both USPS and MNIST datasets [LeCun et al. 2010]. Using the same datasets, we

compare the performance of our approach with other SSDL methods, as well as some popular

classifiers. Finally, we evaluate our approach in the setting where very few labels are available

using the two faces databases, Extended YaleB [Georghiades et al. 2001] and AR [Martinez &

Benavente 1998]. Note that, the pre-processing of data is very important and will be detailed in

48 Chapter III. Semi-supervised dictionary learning

each experiment.

B.3.1 Sparse code regularization

We evaluate the regularization effect of different Laplacian-based matrices LA for the accuracy

of classification and their robustness to noise, on the USPS handwritten digits dataset. This

dataset consists of 9298 images, where 7291 images are used for training and 2007 images are used

for testing. Each image has size 16×16, which is represented by 256-dimensional vectors. In this

experiment, the training set contains Nl labelled samples which are extracted from 7291 images

and the testing set contains all 2007 images. In order to assess manifold structure preservation,

we use the following objective function to obtain the dictionary and labelled samples sparse code:

min
Al,D∈C

∥∥Xl −DAl
∥∥2

F
+ β tr (AlLAAl>) + λ

∥∥Al
∥∥

1
(III.22)

Method and

hyper-parameters
Construction for Laplacian matrix LA

LE-knn

k, σ

Wij = dx(xli,x
l
j) =

exp

(−‖xli−xlj‖22
2σ2

)
, if xlj ∈ knn(xli) or xli ∈ knn(xlj)

0, otherwise

LA = D−W, where Dii =
∑
j Wij and Dij = 0(i 6= j)

LE-Threshold

κ, σ

Wij = dx(xli,x
l
j) =

exp

(−‖xli−xlj‖22
2σ2

)
, if

∥∥xli − xlj
∥∥

2
< κ

0, otherwise

LA = D−W, where Dii =
∑
j Wij and Dij = 0(i 6= j)

LL

θ

LA = minL tr (XlLXl>) + θ ‖L‖2

s.t tr(L) = Nl,Lij = Lji < 0(i 6= j), ΣjLij = 0

LLE

k

minλij‖xli −
∑
j

λijx
l
j‖22 subject to:

∑
j

λij = 1, if xlj ∈ knn(xli),

λij = 0 if not.

LA = IN −V −V> + V>V, where Vji = λij

Table III.2: Laplacian matrix LA constructed by different methods and their corre-
sponding hyper-parameters.

We use four configurations of LA: LE-knn, LE-Threshold, LL, LLE as described in table III.2.

B. Proposed method 49

The metric used to find k nearest neighbor of a sample in LE-knn and LLE is Euclidean metric.

Since no internal classifier is learnt while optimizing the objective function eq. (III.22), the com-

puted sparse codes are used to train an external linear SVM classifier. This classifier is tuned with

different box constraint values {0.1, 1, 10} (a hyper-parameter of SVM). We used a “one against

all” strategy and a five-fold cross validation. Then each testing sample is sparse coded with the

manifold learning regularization as described in section III.B.2.3. Finally, the trained SVM predicts

labels for testing sparse code.

The experiment is performed as follows. Firstly, we set β = 0 to find the pair (λ, p), with

λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1} and p ∈ {32, 64, 128, 256}, that gives the best accuracy rate. Secondly,

we fix the best pair (λ, p) = (0.5, 128) to tune the remaining hyper-parameters (which depends on

the method): β, θ, σ, κ, k (table III.3). For tuning κ, we introduce its replacement ζ. We sort all

pairwise distances
∥∥xli − xlj

∥∥
2
then take ζ percentage of them (from the smallest value) as active

pairwise distances. σ is chosen in a range based upon the mean distance
∥∥xli − xlj

∥∥
2
in the dataset,

which approximately equal to 10. In all settings, the experiment is repeated three times with

random initializations of the dictionary and the best score is retained.

Hyper-
parameter Values Method

β {0.01, 0.1, 1, 10, 100} All
k {2, 3, 4, 5, 6, 7, 8, 9} LE-knn, LLE
σ {0.1, 1, 10, 15, 30, 1000} LE-knn, LE-Threshold
ζ (for κ) {0.03, 0.05, 0.1, 0.15, 0.3, 0.5, 0.7} LE-Threshold
θ {10−3, 5× 10−3, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100} LL

Table III.3: Hyper-parameter values for sparse code regularization tuning.

Table III.4 shows the best error rates (with the best hyper-parameters) for each Laplacian-based

matrix. Firstly, we see that using sparse code regularization (β 6= 0) systematically decrease the

error rate. Secondly, the matrix LA constructed using the LLE approach gives the best error rate.

Besides, computing LA using LLE or LL requires only one hyper-parameter, k or θ respectively.

Therefore the tuning is less time consuming. Nevertheless, interpreting geometrically the matrix

LA derived from the LL approach is not straightforward. Hence, a new matrix manifold constraint

L′A is learnt when sparse coding testing samples, which increases the computational cost when the

LL approach is used.

Finally, we evaluate the robustness of the Laplacian matrix constructed by different methods

to noise in samples. We fix the number of labelled training samples at 500 and add different noise

amplitudes into both training and testing samples. The hyper-parameters are tuned as in previous

experiment to get the best error rate for each method. Table III.5 shows these best error rates for

50 Chapter III. Semi-supervised dictionary learning

Methods / Nl 100 500 1000 2000
SC (β = 0) 19.6 10.9 8.0 7.5
SC LE-knn 16.6 9.1 6.8 6.0
SC LE-Threshold 18.1 9.4 7.9 7.1
SC LL 17.33 9.4
SC LLE 16.6 8.3 6.4 5.8

Table III.4: The error rate of classification on different types of Laplacian-based
matrix used for sparse code regularization, with different number of labelled samples
in training (same number of samples per class). SC means sparse coding.

each type of Laplacian matrix used. Globally, we observe that SC LLE gives the best error rate

among compared methods.

Methods / σ 0 0.2 0.4 0.6 0.8 1
SC (β = 0) 10.9 10.9 11.8 12.7 15.7 17.6
SC LE-knn 9.1 9.3 9.9 10.7 12.3 13.9
SC LE-Threshold 9.4 9.5 10.5 11.9 13.7 15.2
SC LL 9.4 9.5 9.8 10.5 12.0 14.6
SC LLE 8.3 9.0 9.8 10.9 12.0 13.9

Table III.5: The error rate of classification on different types of Laplacian matrix
used for sparse codes regularization, with different additive noise levels. Here we fix
the number of labelled samples in training Nl = 500 and use Gaussian noise following
the distribution N (0, σN) where σN = σµ(X2).

Given the previous results, we retain the LLE approach for computing the matrix LA hence-

forward. Regarding to LD used for features structural dependencies preservation in the dictionary

atoms, we use LL instead, as proposed in [Yankelevsky & Elad 2017]. The number of atoms being

fixed and we do not need to relearn new matrix as for the test samples sparse coding.

B.3.2 Low number of labelled samples

In this part, we evaluate our approach SSDL-GA on the USPS and MNIST datasets. MNIST

contains images (28 × 28) of 10 handwritten digits, 60000 images for the training set and 10000

images for the testing set.

In the first test, for each dataset, we select for each class: 20 images as labelled samples, 100

images as testing samples and an increasing number of images 20, 40, 60, 80, 100, 150 as unlabelled

samples. Each image (under form of vector) is normalized to have unit l2 norm. Since we constrain

‖di‖2 ≤ α and we want to tune α for several values, an other way to do this is to fix α = 1 and

multiply normalized images by a scalar, e.g. two following problems are equivalent:

min
D,A
‖5×X−DA‖2F + λ ‖A‖1 , s.t ‖di‖2 ≤ 1 (III.23)

B. Proposed method 51

min
D,A
||X−DA||2F +

λ

25
‖A‖1 , s.t ‖di‖2 ≤

1

5
(III.24)

Hence, we multiply normalized images by 5 which is equivalent to constrain ‖di‖2 ≤ 0.2 and scale

down other hyper-parameters by 25.

Five random samplings were conducted and the average scores for this test are shown in figure

III.1. To tune hyper-parameters, we perform a grid search. We take µ = 2γ since µ is less

sensitive compared to other hyper-parameters. As in the previous subsection, we first optimize

the pair (λ, p) while fixing (γ = 0, β = 0, ϕ = 0). Then we fix the best pair (λ, p) found and

tune the remaining hyper-parameters. For the USPS dataset, we used the hyper parameters:

p = 200, λ = 0.3, α = 1, β = 0.5, ϕ = 0, γ = 0.5, µ = 1, k = 8, r = 1.7 and for the MNIST datasets,

we used p = 200, λ = 0.5, α = 1, β = 1, ϕ = 0, γ = 1, µ = 2, k = 8, r = 2. From this test, we can

make two observations. Firstly, the accuracy rate can be significantly improved by increasing the

number of unlabelled samples in training and it converges to a stable value. This suggests that, for

a given dictionary size, there is a threshold number of unlabelled additional samples above which

the sparse codes discriminative power stops improving significantly. Secondly, with a sufficient

number of unlabelled samples in training, the accuracy rates for these unlabelled samples and for

testing samples are similar. Hence, integrating unlabelled samples in the training is beneficial for

generalization.

0 50 100 150

85

90

95

number of unlabelled samples per class

ac
cu
ra
cy

%

USPS unlabelled
USPS testing

MNIST unlabelled
MNIST testing

Figure III.1: The accuracy rate for unlabelled samples and for testing samples in two
databases USPS and MNIST with different number of unlabelled samples per class:
20, 40, 60, 80, 100, 150.

In the second test, we compare SSDL-GA with other SSDL approaches. For SSDL-GA, we

keep the same pre-processing and hyper-parameters as in the first test. We set up the training set

(labelled samples, unlabelled samples) and testing set as follows:

52 Chapter III. Semi-supervised dictionary learning

• For the MNIST database, we randomly select 200 images from each class, in which 20 images

are used for labelled samples, 80 images are used for unlabelled samples and 100 images

remain as testing samples.

• For the USPS database, we randomly select 110 images from each class, in which 20 images

are used for labelled samples, 40 images are used for unlabelled samples and 50 images remain

as testing samples.

Five random samplings were conducted to calculate the mean and standard deviation on testing

set. The table III.6 shows the accuracy rate of various SSDL approaches: OSSDL [Zhang et al.

2013], S2D2 [Shrivastava et al. 2012], SSR-D [Wang et al. 2013], SSP-DL [Wang et al. 2016],

USSDL [Wang et al. 2015], PSSDL [Babagholami-Mohamadabadi et al. 2013], SSD-LP [Chen &

Yang 2017], also Convolutional Neural Network (CNN, supervised) and Label Propagation (LP,

semi-supervised) [Zhou et al. 2004]. For CNN, only labelled samples are used for training and the

shown results are the best average accuracy rate after testing three different simple CNN models.

Here are configurations used for MNIST and USPS respectively:

• Conv [32× 3× 3]→ ReLU → BNorm → Conv [32× 3× 3]→ ReLU → Pool [2× 2]→ BNorm

→ Conv [64 × 3 × 3] → ReLU → BNorm → Conv [64 × 3 × 3] → ReLU → Pool [2 × 2] →

BNorm → FC [512] → ReLU → BNorm → Dropout [0.25] → FC [10] → softmax.

• Conv [16× 3× 3] → ReLU → BNorm → Conv [32× 3× 3] → tanh → Pool [2× 2] BNorm →

FC [128] → tanh → BNorm → Dropout [0.25] → FC [10] → softmax.

For both dataset, the contribution of the manifold structure preservation with LLE can be

assessed by comparing SSDL-GA and USSDL (SSDL-GA is equivalent to USSDL when β = 0).

Secondly, the SSDL-GA outperforms other SSDL methods, as well as the CNN and LP. We notice

that on MNIST, SSDL-GA is the only one in the SSDL family that can outperform the CNN.

This can be trivially explained by the fact that the CNN does not make use of unlabelled samples.

Therefore, we evaluate this test with a semi-supervised neural network models: the Ladder net

[Rasmus et al. 2015]. We provide more details of this model in section IV.A.2 (denoising). Here is

configuration used in Ladder net: FC [1000]→ ReLU → FC [500]→ ReLU → FC [250]→ softmax

and σnoise = 0.3. We see that our model gets slightly better accuracy rate compared to the Ladder

net.

Complexity comparison. As the complexity for several SSDL algorithms (in table III.1)

are not communicated and we do not have access to the implementation for these algorithms,

we only compare the complexity for each step in the optimization process. First of all, objective

B. Proposed method 53

Method / Data USPS MNIST Sparse coding nature
LP 90.3± 1.3 85.12± 0.6

OSSDL* 80.8± 2.8 73.2± 1.8 individual, l0
S2D2* 86.6± 1.6 77.6± 0.8 group, l1
SSR-D* 87.2± 0.5 83.8± 1.2 individual, l2,p
SSP-DL* 87.8± 1.1 85.8± 1.2 group, l2,p and lp,p
USSDL 91.56± 1.15 84.8± 1.7 individual, l1
PSSDL� 86.9± 1.0 87.4± 1.2 group, l1
SSD-LP* 90.3± 1.3 87.8± 1.6 group, l1
SSDL-GA 93.6± 1.0 90± 0.8 group, l1

CNN 89.28± 1.4 88.4± 1.1
Ladder 92.68± 1.0 89.84± 0.8

Table III.6: Accuracy rate and nature of sparse coding for various SSDL methods,
with handwritten digits databases USPS and MNIST. CNN means Convolutional
Neural Network. The Ladder net [Rasmus et al. 2015] is neural network model
trained in a semi-supervised way. (�) In PSSDL, for each class, we use 25 images as
labelled samples instead of 20 and the rest of the training data as unlabelled samples;
its corresponding accuracy rate is extracted from the original paper. (*) Accuracy rate
are extracted from [Chen & Yang 2017]. In sparse coding nature column, individual
means that sparse codes computation is independent for each sample and group means
that sparse codes computation is dependent between samples.

function of SSDL algorithms are iteratively optimized by following steps: sparse coding, dictionary

update, classifier update and probability update. The first two steps (solved by iterative method)

are the most essential and influence mostly to the complexity. The remaining steps can be solved

trivially by first order optimality. Secondly, dictionary update is just slightly different among the

compared algorithms (which depends on the shared dictionary approach or the specific class sub-

dictionaries approach). However, in general, the quadratic cost ‖X−DA‖22 is minimized for D

with the constraint D ∈ C. Therefore, the complexity of this step can be regarded as equivalent

among the compared algorithms. By two observations, sparse coding step is the essential factor

for the complexity comparison.

The complexity of sparse coding then depends essentially on two factors: the type of sparse

coding and the norm used in sparse coding. On the one hand, if the sparse codes computation

is independent for each sample, then the sparse coding step is parallelizable. This does not hold

true for sparse coding in the approaches that use manifold structure preservation F or Fisher

Discriminant Analysis. Besides, there are several norms used in sparse coding l0; l1; l2,q; lq,q; (0 <

q < 1). With the pseudo-norm l0, low complexity greedy algorithm can be used (i.e. MP-derived

algorithm). These two factors are showed for each SSDL method in table III.6, and we can see

clearly the trade-off between complexity and accuracy.

54 Chapter III. Semi-supervised dictionary learning

B.3.3 Face databases

In this subsection, we evaluate our approach with Extended YaleB cropped and AR cropped

dataset for which the size of each image is respectively 192× 168 and 165× 120 pixels.

The YaleB dataset contains 2432 frontal-face images of 38 individuals (64 images for each

individual), captured under various illumination conditions and expressions. We first resize images

to 54×48 before applying a Principal Component Analysis (PCA) to obtain 300 dimensional feature

vectors (same process as [Wang et al. 2015, Chen & Yang 2017]). Then each vector coordinate is

normalized to have zero mean and unit variance. Finally, each vector is normalized to have l2 unit

norm and then multiplied by 2. We randomly select N = 20 images for each person to create a

training set and use the remaining images for the testing set. In the training set, for each person,

we use Nl = {2, 5, 10} images as labelled samples and the remaining images as unlabelled samples.

Five independent evaluations were conducted to compute the mean and standard deviation.

The results are shown in table III.7 with various SSDL approaches. In the case Nl = 2 (very

few labelled samples), our approach improves significantly the accuracy rate compared to other

SSDL methods but it is less accurate in the cases Nl = {5, 10} compared to SSD-LP. The hyper-

parameters values in three cases are Nl = {2, 5, 10}: p = 380, λ = 0.005, β = 2, γ = 0.5, ϕ = 0, µ =

1, k = 4, r = 1.5.

Method / Nl 2 5 10
S2D2* 53.4± 2.1 76.1± 1.3 83.2± 1.9
JDL* 55.2± 1.8 77.4± 2.8 85.3± 1.6

USSDL* 60.5± 2.1 86.5± 2.1 93.6± 0.8
SSD-LP* 67.0± 2.9 89.8± 0.9 95.2± 0.2
SSDL-GA 73.62± 3.1 86.6± 1.6 90.7± 0.4

Table III.7: Accuracy rate for YaleB database with various SSDL approaches and
different number of labelled samples in training. (*) Accuracy rate are extracted
from [Chen & Yang 2017].

The AR Face database consists of more than 4000 images but we evaluate our approach with

its subset that consists of 2600 images (26 images per person for 50 male subjects and 50 female

subjects). These 26 images are taken from different facial expressions, illumination conditions, and

occlusions (sun-glasses and scarves). First, this dataset is projected into a 540-dimensional feature

vector by a randomly generated matrix. Then we perform the same pre-processing as described in

YaleB. For each person, 20 images are randomly selected for training set and 6 resting images are

for testing set. In two SDL methods: LC-KSVD and SDGDL, all 20 training images are labelled

samples. On the other hand, in SSDL-GA, 15 images are randomly selected from 20 training

samples and used as labelled samples and the 5 resting images are used as unlabelled training

C. Conclusion 55

samples.

Table III.8 shows accuracy rates for above mentioned methods. Although SSDL-GA uses fewer

labelled samples in the training set, it gives a better accuracy rate. This can be explained by

the manifold learning method used (LLE instead of LE in SDGDL) and by using internal semi-

supervised classifier. Although LLE and LE are both Laplacian-based methods but LLE is not

sensible to the similarity metric dx() used to measure distance between two samples in the original

representation. The hyper-parameters used are p = 300, λ = 0.0015, β = 0.3, γ = 0.08, ϕ = 0, µ =

0.016, k = 8, r = 1.5.

Method Accuracy rate
LC-KSVD1* 84.17
LC-KSVD2* 85
SDGDL* 84.93
SDGDL-L* 85.33
SSDL-GA 92.09± 1.16

Table III.8: Accuracy rate for the AR database with SDL methods. (*) Accuracy
rate are extracted from [Yankelevsky & Elad 2017]

.

B.4 Conclusion about proposed method. We have presented a SSDL method by integrating

manifold structure preservation and an internal semi-supervised classifier (by pseudo-label) to the

classical DiL problem. This helps to exploit more information from unlabelled samples to reinforce

the model. In addition, new unlabelled samples are also sparse coded by taking into account

manifold structure preservation. Experimental results on several benchmark databases have shown

the advantage of our approach, especially in the case of and low number of unlabelled samples in

training, it performs about 2% better than the state-of-art for digit recognition compared to other

SSDL approaches and gets slightly better accuracy compared to Ladder net, a semi-supervised

neural network. We also propose a batch and epoch version in the appendix to deal with the case

of the large number of training samples.

C Conclusion

We have presented a SSDL method by integrating manifold structure preservation to the clas-

sical DiL problem. This helps to exploit more information from unlabelled samples to reinforce

the model. In addition, new unlabelled samples are also sparse coded by taking into account man-

ifold structure preservation. Finally, we train an internal classifier in a semi-supervised way, using

pseudo-labelling technique.

56 Chapter III. Semi-supervised dictionary learning

Experimental results on several benchmark databases have shown the advantage of our ap-

proach, especially in the case of and low number of unlabelled samples in training, it performs

about 2% better than the state-of-art for digit recognition compared to other SSDL approaches

and gets slightly better accuracy compared to semi-supervised neural network. We also propose

a batch and epoch version in the appendix to accelerate the optimization process. However, in

general, dictionary learning methods for classification objectives, due to limits of computation,

require a dimensionality reduction to fewer than about 103 dimensions. Applying dimensionality

reduction can make an important loss of discriminatory information. Hence, in the next chapter,

we develop a semi-supervised deep learning method to deal with dataset that has large size of

sample, which is a shortcoming of dictionary learning model.

Chapter IV

Semi-supervised deep learning

Chapter abstract

In this chapter, we present a survey of semi-supervised learning methods which have

been developed for neural network model (NNM) and CNN in particular. Then we

introduce a new semi-supervised NNM learning method, grounded in manifold learning

methodology. We show that our approach provides non only an improvement for the

accuracy rate but also for the robustness to adversarial examples, compared to state-

of-the-art semi-supervised NNM learning.

A Related works

We provide first notations used in this section and a taxonomy of semi-supervised neural net-

works (SSNN). Then we present SSNN models for each category.

A.1 Notations.

- Ls and Lu are respectively supervised cost and unsupervised cost.

- f() the complete model, which outputs the predicted class probability.

- f (:l)() upstream part of f() that outputs the intermediate (latent) representation z(l) of layer

(l) and takes sample x as input.

- f (l:)() downstream part of f() that outputs the predicted class probability and takes inter-

mediate (latent) representation z(l) of layer (l) as input.

- f (l)() layer (l) in model f(); it takes z(l−1) as input and outputs z(l).

58 Chapter IV. Semi-supervised deep learning

- x, xl and xu are respectively a sample, a labelled sample and an unlabelled sample.

- n is the number of dimensions of x, hence x ∈ Rn.

- X l and X u are sets that contain all labelled and unlabelled samples respectively. X = X l∩X u

is the complete set.

- Nl is the number of labelled samples and Nu is the number of unlabelled samples, hence

N = Nu +Nl is the total number of samples.

- Conventionally, samples are sorted as X = {xl1, xl2, .., xlNl , xu1 , xu2 , .., xuNu}.

- C is the number of classes.

- yi is the class of the sample xli and yi ∈ {1, 2, .., C} or is the corresponding one hot vector

when yi is used in a cost function, e.g. d(f(xi), yi).

- ds and dr are dissimilarity metric, respectively for measuring supervision loss and reconstruc-

tion loss.

- ds is usually Cross Entropy dCE and dr is usually Mean Square Error dMSE or Binary Cross

Entropy dBCE. In addition, to measure the dissimilarity between two distributions, dKL is

usually used.

dCE(a, b) = −
n∑
k

log(a[k])b[k] where a, b are two distributions. (IV.1)

dBCE(a, b) = −
n∑
k

(
a[k] log(b[k]) + (1− a[k]) log(1− b[k])

)
where 0 < a[k], b[k] < 1. (IV.2)

dMSE(a, b) =
1

n

n∑
k

(a[k]− b[k])2 (IV.3)

dKL(a, b) =

n∑
k

a[k] log
a[k]

b[k]
where a, b are two distributions. (IV.4)

In general, the cost function for semi supervised neural network learning is defined as follows:

L = Ls + λLu (IV.5)

where λ weights the unlabelled samples related component of the cost. In some works, λ is a

function that increases progressively from 0 (at epoch t = 1) to a fixed value at a given epoch.

A. Related works 59

By default, Ls is given by:

Ls =
1

Nl

Nl∑
i=1

ds
(
f(xli), yi

)
(IV.6)

For each method, we provide the explicit form of Lu.

Taxonomy. We group SSNN methods according to the following categories:

- Auxiliary task as regularization

+ Reconstruction

+ Denoising

+ Entropy minimization

+ Consistency constraint

+ Contrastive representation

+ Self-supervised learning

+ Manifold learning

- Pseudo labeling

- Generative models

+ Variational Autoencoders

+ Generative Adversarial Networks

- Virtual Adversarial Training

- Holistic methods

It is worth noting that there are also semi-supervised neural network approaches based on

graph, called GNN (Graph Neural Network, see [Zhou et al. 2019] for a review). However, these

approaches require graph information between samples. Since the latter does not exist in several

standard datasets (image classification) that we work on, we do not present GNNs in this thesis.

A.2 Auxiliary task as regularization. In the first category, an auxiliary loss is added to the

label prediction loss. This auxiliary loss which does not use label information aims at enforcing

model outputs properties derived from the assumptions stated at the beginning of section III.A.

In the following, we analyze each auxiliary task from this point of view before diving into more

details.

60 Chapter IV. Semi-supervised deep learning

A.2.1 Reconstruction

Here the auxiliary task is the reconstruction task. The mechanism of reconstruction task relies

on the manifold assumption. One assumes that data lies on a low-dimensional manifold. The

model can in principle produce simpler data representations through its hidden layers without

loss of information. We call these representations latent representations hereafter. In order to

ensure that latent representations are relevant with respect to unlabeled samples, they are used to

reconstruct the unlabeled samples in the original space using loss Lu as:

Lu =
1

N

∑
x∈X

dr(x̂, x) (IV.7)

where x̂ = g ◦ f (:l)(x), with g() is a NNM that maps a latent representation f (:l)(x) back to the

original representation x. g ◦ f (:l)() is basically an AE. dr is a dissimilarity measure (for recon-

struction), that can chosen as the MSE. However, reconstructing x from its latent representation

f (:l)(x) can be difficult because f() is primarily optimized for classification and tends to filter out

non-discriminative features, which are necessary for reconstruction task. Therefore [Robert et al.

2018] proposed the HybridNet, in which, the following AE architecture h is used instead:

Lu =
1

N

∑
x∈X

dr(x̂+ x̂c, x) (IV.8)

where x̂c = h(x) complements x̂ in the sense that it is the reconstruction from non-discriminative

features.

Figure IV.1: HybridNet model for semi-supervised learning by reconstruction. Source:
[Robert et al. 2018]. Wc corresponds to g ◦ f (:l)() and Wu corresponds to h in our
notations.

The resulting cost Lu is illustrated in figure IV.1. If encoder f (:l)() uses convolutional layers,

decoder g() should contain some operations (layers) which aim at inverting convolutional layers, in

order to be compatible with the encoder. These operations can be inspired from CNN models for

A. Related works 61

Image Segmentation such as: Fully Convolutional Networks [Long et al. 2014], U-Net [Ronneberger

et al. 2015], V-Net [Milletari et al. 2016] for 3D Image.

A.2.2 Denoising

This auxiliary loss complexifies the previous one introducing noise at different levels. The

smoothness assumption is used by enforcing reference entries and their slightly perturbed versions

to have close latent representations throughout the network.

Enforcing noise robustness into neural network training was introduced in [Valpola 2014] with

the Ladder network architecture. Then [Rasmus et al. 2015] proposed to use a denoising loss as

an auxiliary constraint to integrate unlabeled data in the neural network learning. Figure IV.2

shows an example of Ladder network with 2 layers (L = 2). It is an AE architecture, for which the

decoder, i.e the reconstruction branch, has the same (but reversed) architecture as the encoder,

with the so-called skip connections that link layers in encoder to the corresponding ones in decoder.

Hence the name Ladder network. For simplicity sake, we consider a Ladder network which consists

of only Fully Connected layers, but it can be extended to CNN.

yỹ

g(1)(·, ·)

g(0)(·, ·)

f (1)(·)f (1)(·)

f (2)(·)f (2)(·)

N (0,�2)

N (0,�2)

N (0,�2)

C
(2)
d

C
(1)
d

C
(0)
d

z̃(1)

z̃(2) ẑ(2)

ẑ(1) z(1)

z(2)

x̃ x̂ x

xx

g(2)(·, ·)

Figure IV.2: Semi-Supervised Learning with Ladder Network, using denoising as
auxiliary task. Source: [Rasmus et al. 2015].

As illustrated in figure IV.2, the encoder performs two forward passes, a corrupted one and

clean one. In the corrupted forward pass, Gaussian noise N (0, σ2) is injected at input layer and

each layer (l), yielding a noisy hidden representation z̃(l). The clean forward pass outputs noise-free

hidden representation z(l) at the layer (l).

In the decoder, a denoiser g(l)(., .) is added at each layer (l), as follows: fdec()
(l−1) → g(l−1)(., .)→

62 Chapter IV. Semi-supervised deep learning

fdec()
(l) → g(l)(., .)→ . . . Let u(l) be the output of f (l)

dec(). Then g
(l)(., .) transforms its noisy input

z̃(l) into its denoised version ẑ(l) as follows:

ẑ(l)[j] = g(l)(z̃(l)[j], u(l)[j]) =
(
z̃(l)[j]− µ(l)[j]

)
v(l)[j] + µ(l)[j] (IV.9)

where j is a unit index in a hidden representation. µ(l)[j] and v(l)[j] are computed from u(l)[j] as

µ(l)[j] = d
(l)
1 [j]sigmoid(d

(l)
2 [j]u(l)[j] + d

(l)
3 [j]) + d

(l)
4 [j]u(l)[j] + d

(l)
5 [j]

v(l)[j] = d
(l)
6 [j]sigmoid(d

(l)
7 [j]u(l)[j] + d

(l)
8 [j]) + d

(l)
9 [j]u(l)[j] + d

(l)
10 [j]

(IV.10)

where the vectors d(l)
i have the same size as u(l) and z̃(l), and (i = 1, .., 10).

Then, the auxiliary cost Lu is the sum of the dissimilarities between denoised representations

ẑ(l) and noise-free representations z(l):

Lu =
1

N

L∑
l=1

N∑
i=1

λldMSE(z
(l)
i , ẑ

(l)
i) (IV.11)

where λl weights the contribution of layer (l). The denoisers parameters are trainable, as well as

the model parameters on the encoder and the decoder branch.

Despite its good performance for classification task, semi-supervised learning through the Lad-

der network architecture is computionally expensive for large datasets and/or very deep model,

compared to a conventional training. In terms of memory, noisy latent representation z̃, and de-

noised latent representation ẑ have to be stored additionally. In terms of algorithmic complexity,

instead of one backpropagation (gradient) from the last layer as usual, additional backpropagations

from all intermediate layers (see IV.11) have to be performed.

To mitigate these complexity issues, the authors proposed a simplified variant called Γ-Model,

where λl = 0 when l < L, which amounts to perform denoising at the top layer only.

A.2.3 Entropy minimization

The auxiliary loss penalizes the entropy of output probabilities. This constraint relies on the

clustering assumption. Entropy minimization (EntMin) [Grandvalet & Bengio 2004] encourages

the network to make a low-entropy prediction for each unlabelled sample, regardless of its predicted

class:

Lu = − 1

Nu

Nu∑
i=1

C∑
k=1

f(xu)[k] log(f(xu)[k]) (IV.12)

A. Related works 63

Figure IV.3 shows two output sets of probabilities, one with high entropy and the other with

low entropy. With low entropy of output probability, we expect to have a dominant predicted class

probability (sharpness, or low uncertainty).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class

P
ro
ba

bi
lit
y

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class
P
ro
ba

bi
lit
y

Figure IV.3: Left: High entropyH(x) = 1.5. Right: Low entropyH(x) = 1.1. Output
probability f(x) is “sharper” with lower entropy. In this case the number of classes
C = 5.

However, three issues need to be considered with EntMin. Firstly, in the case of multi-label

problem, the number of classes that a sample belongs to, must be small compared to the total

number of classes. Secondly, lower entropy does not guarantee a higher accuracy rate, because

false predictions with high certainty would result in a low entropy. Finally, it appears that using

only EntMin as auxiliary cost seems inefficient to produce competitive results compared to other

SSL methods ([Oliver et al. 2018]).

A.2.4 Consistency constraint

The auxiliary loss in this case enforces the consistency between the output associated to a

sample x and the one associated to its perturbed version x̃. The notions of consistency and

perturbation will be clarified thought the examples of the Π-Model, Temporal Ensembling, Mean

teachers and Dual Student presented hereafter.

Π-Model proposed by [Laine & Aila 2016] uses the following auxiliary loss:

Lu =
1

N

N∑
i=1

dMSE
(
zi, z̃i

)
(IV.13)

where zi and z̃i are the model outputs associated with the inputs xi and its perturbed version re-

spectively. Perturbation are performed using two methods: stochastic augmentation and stochastic

model.

64 Chapter IV. Semi-supervised deep learning

xi
yi

stochastic
augmentation

network
with dropout

zi

~zi

cross-
entropy

squared
difference

weighted
sum loss

xi

yi
stochastic

augmentation
zi

~zi

cross-
entropy

squared
difference

weighted
sum loss

zi

network
with dropout

w(t)

w(t)

Temporal ensembling

П-model

Figure IV.4: Π-Model and Temporal Ensembling model. Source: [Laine & Aila 2016].

Stochastic augmentation consists in applying a transformation with a random magnitude to xi

each time it is presented to the network. It might be a translation with a random step size or an

additive noise with a random standard deviation. The stochastic model affects the neural network

model parameters themselves, for instance using the dropout technique.

Temporal Ensembling is an improved version of Π-Model. In Π-Model, two stochastic forward

passes are performed for all samples in a batch and then the model is updated with a consistency

constraint between two stochastic outputs. Temporal Ensembling goes a step further by taking

into account also the irregularities along the model parameters optimization path. The training

epoch outputs zi is cumulated into an ensemble output Zi using an exponentially moving average

(EMA) update:

Zi ← αZi + (1− α)zi (IV.14)

where 0 ≤ α < 1. The auxiliary cost in Temporal Ensembling is the same as in Π-Model except

that z̃i is replaced by Zi which stabilizes the model updates. Moreover, Temporal Ensembling

requires only a single forward pass for a given sample instead of two forward passes in the Π-

Model. However, the ensemble output Zi needs to be stored across epochs.

Mean teachers: In this approach, one considers that there are a teacher model and a student

model. The role of teacher is to generate a target, i.e. z̃i in Π-Model or Zi in Temporal Ensembling,

for a given unlabelled sample xi. The role of the student model is to update its parameters for

mapping xi to the target generated by the teacher model. Following this teacher-student strategy,

[Tarvainen & Valpola 2017] proposed a method called Mean teachers that updates the teacher

model using an EMA:

θ′t ← αθ′t−1 + (1− α)θt (IV.15)

A. Related works 65

where θ′t denotes the parameters of the teacher model fθ′ and θt the parameters of student model

fθ, at time t. The form of the auxiliary cost for Mean Teachers remains the same as for the

Π-Model and Temporal Ensembling:

Lu =
1

N

N∑
i=1

dMSE
(
fθ(xi), z

′
i

)
, (IV.16)

where z′i = fθ′(xi) is the target generated by teacher.

3

θ θ’η

classification
cost

consistency
cost

3
prediction

label input

exponential
moving
average

student model teacher model

η’

3
prediction

Figure IV.5: Mean Teachers model. Source: [Tarvainen & Valpola 2017]

Figure IV.5 illustrates Mean Teachers model. η and η′ are perturbations in the student and

the teacher model respectively. Both student model and teacher model can be used for prediction

of test samples, but teacher model is more likely to be correct.

Dual Student In Mean Teachers, since the parameters of the teacher model are updated from the

student model’s, there is a strong dependency between the two models. If the student misclassifies

an unlabelled sample after several epochs, so does the teacher and this can not be changed because

they are closely related. To deal with this problem, [Ke et al. 2019] proposed an approach called

Dual Student which uses two independent models fθ1 and fθ2 . At a given training step and for a

given sample xi, one plays role of teacher and other plays role of student. To choose which model

plays the role of the teacher and the role of the student, the stability and confidence of each model

is estimated. Here are the two auxiliary costs associated to the two models, L1
u and L2

u:

L1
u =

1

N

N∑
i=1

(
dMSE

(
fθ1(xi), z̃

1
i

)
+ γΩ1

iH
(
E2
i − E1

i

)
dMSE

(
fθ1(xi), z

2
i

))
L2
u =

1

N

N∑
i=1

(
dMSE

(
fθ2(xi), z̃

2
i

)
+ γΩ2

iH
(
E1
i − E2

i

)
dMSE

(
fθ2(xi), z

1
i

)) (IV.17)

66 Chapter IV. Semi-supervised deep learning

where Ωji and Ej quantify the confidence of the model j for the sample i, and its stability respec-

tively, H is the Heaviside function, zji = fθj (xi) and z̃ji = fθj (x̃i) are respectively the output of

model j for sample xi and its perturbed version x̃i. The confidence Ωji takes value 1 if both two

following conditions are satisfied:

1. The predicted label for sample xi and for its perturbed version x̃i are the same, which means

argmax
c

fθj (xi)[c] = argmax
c

fθj (x̃i)[c].

2. ‖fθj (xi)‖∞ > ξ, where ξ is a threshold. This means the largest class probability in output

must be greater than a threshold.

Otherwise, Ωji takes value 0. In the case that both two models satisfy the confidence conditions

for a given sample, the stability criterion is used, which is computed as Eji = ‖fθj (xi)− fθj (x̃)‖22.

The drawback of this approach is that it is computationally heavier than the basic Teacher-

Student approach.

A.2.5 Contrastive representation

This task can be considered an extended version of consistency task, but is usually applied to

hidden representations instead of the output as in consistency representation. In addition to the

consistency constrain for two similar inputs, the hidden representations of two dissimilar inputs are

forced to be far away. Hence, this strategy relies on the smoothness assumption and the manifold

assumption. Here is an example of contrastive loss function, sometimes called triplet loss:

Ltriplet = max
(
d
(
h(xi), h(xp)

)
− d
(
h(xi), h(xn)

)
+ α, 0

)
(IV.18)

where xi is an input, xp is a positive input and xn is a negative input. h() is a mapping function

and d() is the pairwise dissimilarity metric, e.g. d
(
h(xi), h(xp)

)
= ‖h(xi)− h(xp)‖22. While a

consistency loss would only consist in d
(
h(xi), h(xp)

)
, contrastive representation goes further by

adding the term −d
(
h(xi), h(xn)

)
which enforces h(xi) and h(xn) to be far apart.

We illustrate this approach with slimCLR proposed by [Chen et al. 2020]. For a batch that

contains Nb samples xi where i = 1, .., Nb, two stochastic forward passes are performed with model

g ◦ f (:l) where g is a NNM that maps the latent representation f (:l) to the expected contrastive

representation. Hence, two outputs are obtained: z2i−1 = g ◦ f (:l)(xi) and z2i = g ◦ f (:l)(xi). The

objective is to force z2i−1 and z2i to have the same representation. Moreover, this representation

has to be far from those of other samples. The pairwise similarity between zi and zj is defined as

A. Related works 67

si,j =
z>i zj
‖zi‖‖zj‖ , where i = 1, .., 2Nb and j = 1, .., 2Nb, then the contrastive loss is defined as:

l(i, j) = − log
exp(si,j)

1
τ∑2Nb

k=1,k 6=j exp(si,k)
1
τ

(IV.19)

where x
1
τ can be considered as activation function with parameter τ (in appendix A.8.2). Then

the auxiliary cost Lu for a batch is described as following:

Lu =
1

2Nb

Nb∑
i=1

(
l(2i− 1, 2i) + l(2i, 2i− 1)

)
(IV.20)

A.2.6 Self-supervised learning

This field encompasses all methods that generate automatically some kind of supervisory signal.

The latter can be used to train a model to learn relevant features, hence the most obvious applica-

tion of self-supervised learning is the transfer learning. For example, a model is first trained using

a generate supervisory signal. Then the upper layers of the model are used for features extraction.

Since it does not require annotation by human, self-supervised learning can be considered as a type

of unsupervised learning. Therefore it can be combined with supervised learning to create a semi-

supervised learning method. Figure IV.6 gives an example of such an architecture. Each sample xi

is rotated by a random angle ȳi ∈ {0◦, 90◦, 180◦, 270◦}, yielding couples (x̄i, ȳi). These synthetic

labels are used to learn the upstream part of the model, while the actual labels available are used

to optimize the model globally. The reconstruction task based regularization can be considered a

special case of self-supervised learning.

“ 𝑦𝑖 = Corgi ”

“ ത𝑦𝑖= 270° ”

Neural Network

𝑓 :𝑙 ()

Supervised
Cross-Entropy Loss

𝑑𝑠 (𝑓 𝑥𝑖
𝑙 , ത𝑦𝑖)

Data Augmentation

𝑥𝑖
𝑙 Supervised Branch

Self-Supervised Branch

Rotation

ത𝑦𝑖 ∈
0°,90°,180°,270°

Self-supervised

Cross-Entropy Loss

𝑑𝑠 𝑔 ∘ 𝑓 :𝑙 𝑥𝑖
𝑙 , ത𝑦𝑖

𝑓 𝑙: ()

𝑔()ҧ𝑥𝑖
𝑙

Figure IV.6: Semi-supervised learning by combining supervised learning with self-
supervised learning. Here the classification task in self-supervised learning consists
in recognizing the angle of rotation. The couple (x̄i, ȳi) is automatically generated.
Source: developed from [Tran 2019].

The auxiliary cost in this case takes the following form:

68 Chapter IV. Semi-supervised deep learning

Lu =
1

N

N∑
i=1

ds
(
g ◦ f (:l)(x̄i), ȳi

)
(IV.21)

where g() is a NNM that maps a latent representation f (:l)() to self-generated corresponding target

ȳi. In the following, we present some popular mock tasks used in self-supervised learning:

• Relative Patch Location [Doersch et al. 2015]. This method proposes to crop a patch in the

center of image and an other patch in a given relative position with respect to the first one

(8 positions corresponding to 8 classes). The auxiliary task is to predict the position of the

second patch relative to the first. In this case, the model takes two patches as inputs and has

to output a target within the eight positions. In same spirit, Jigsaw puzzle was proposed by

[Noroozi & Favaro 2016]. In this task, nine patches are randomly permuted and fed into the

model and the objective is to predict which permutation has been performed.

• Rotation [Gidaris et al. 2018]. This mock task is illustrated by figure IV.6 and presented in

details at the beginning of this subsection.

• Exemplar [Dosovitskiy et al. 2014]. In this mock task, N patches are sampled from different

images by focusing on areas that have considerable gradients because they can contain objects

or parts of objects. They are called exemplary patches. Then, each patch is distorted

by applying a variety of random transformations, i.e. translation, rotation, scaling, color

jittering, etc. All the resulting distorted patches from the same exemplary patch are in the

same class, hence we have N classes. Finally, the objective is to predict the class of a distorted

patch.

• Colorization [Zhang et al. 2016]. As suggested by its name, this method takes as input a grey

level image and outputs its colored version. Each unlabelled image is converted from RBG

to L*a*b* color space. Only the luminance information (L*) is kept for each pixel, which

results into a grey level image. Finally, the objective is to predict a* and b* parameters.

• One can think of mock tasks consisting of reconstructing the original signal from an altered

version (values removal, noise, . . .).

A survey for self-supervised learning can be found in [Kolesnikov et al. 2019, Weng 2019]. Some

results with rotation and exemplar as mock tasks can be found in [Zhai et al. 2019].

A. Related works 69

A.2.7 Manifold learning based

Manifold learning losses have used in conjunction with several models to build semi-supervised

learning techniques. We have presented some examples for DiL including our own contribution in

III.A. An example for SVM model can be found in [Zhili Wu et al. 2006]. It has been introduced

for neural network models in [Weston & Ratle 2008]. The auxiliary task Lu in this case takes the

form:

Lu =
1

N

N∑
i=1

Le(z(l)
i ,A\{z(l)

i }) (IV.22)

where Le is the embedding loss defined in section II.D (Manifold learning), A = {z(l)
1 , ..., z

(l)
N } with

z
(l)
i = f (:l)(xi). As opposed to DiL model and SVM model, in neural network model, the manifold

learning loss can be plugged at different locations in the architecture and a careful choice has to be

made. Let consider the Interpolation Consistency Training (ICT) proposed in [Verma et al.

2019b]. Interestingly, its manifold learning loss differs from all traditional ones reviewed in section

II.D. ICT is based on a supervised learning method called Mix-up [Zhang et al. 2017]. Mix-up

learning objective is given by:

Lmu =
1

N2
l Nλ

Nλ∑
k=1

Nl∑
i=1

Nl∑
j=1

[
ds
(
f(λxli + (1− λ)xlj), λyi + (1− λ)yj

)]
where: λ ∼ Beta(α, α), α > 0.

Nλ is the number of samplings λ from Beta(α, α).

(IV.23)

(a)

ERM mixup

(b)

Figure IV.7: (a): density function for Beta(0.5, 0.5). (b): Effect of Mix-up on a toy
problem. Green: Class 0. Orange: Class 1. Blue shading indicates p(y = 1|x).
Source: [Zhang et al. 2017].

The objective of Mix-up is to regularize the model by favoring a linear separation of classes.

Figure IV.7 (b) shows the effect of Mix-up compared to empirical risk minimization (ERM), which

is described by equation IV.6. The decision boundary between two classes is smoother compared

70 Chapter IV. Semi-supervised deep learning

to ERM’s. In a semi-supervised setting, the ICT auxiliary is given by

Lu =
1

N

N∑
i=1

Le(zi,A\{zi}) =
1

N2

N∑
i=1

N∑
j=1,j 6=i

le(zi, zj) (IV.24)

where:

le(zi, zj) =
1

Nλ

Nλ∑
k=1

dMSE

(
fθ
(
λxi + (1− λ)xj

)
, λzi + (1− λ)zj

)
where: λ ∼ Beta(α, α), α > 0.

Nλ is the number of λ samplings from Beta(α, α).

(IV.25)

le here can be considered as a manifold learning loss, which favors a linear behavior of the model.

In addition, ICT uses Mean Teachers scheme to enforce the consistency. An illustration for ICT is

shown in figure IV.8.

(xli ∼ X l, yi)
fθ(xi)

Supervised loss
(ŷi, yi)

xuj ∼ Xu

fθ′(x
u
j)

Supervised Loss +
wt· Consistency Loss

Mixλ(xuj , xuk)
fθ(xm)

Consistency loss
(Mixλ(ŷj , ŷk), ŷm)

xuk ∼ Xu

fθ′(x
u
k)

xli ŷi

xuj

xuj

xuk

xm

xuk

ŷj

ŷk

ŷm

yi

L
ab

el
le

d
sa

m
pl

e
U

nl
ab

el
le

d
sa

m
pl

e

Figure IV.8: An illustration for Interpolation Consistency Training (ICT). Source:
[Verma et al. 2019b].

A.3 Pseudo labeling. [Iscen et al. 2019] proposed to use pseudo-labelling to train a neural

network in a semi-supervised manner. This approach relies on the smoothness assumption. Figure

IV.9 illustrates this method, which can divided into two phases. In the first phase, the model fθ

is trained for T epochs by optimizing supervised cost Ls as in equation IV.6. Let φθ denote the

part of the model going from the input layer to the layer just before the fully − connected layer

(FC). In a second phase, the following operations are performed iteratively:

- zi = φθ(xi),∀i = 1, .., N ;

A. Related works 71

- A where Aij = d(zi, zj), with d is a pairwise similarity metric;

- W = A+A> if d(zi, zj) 6= d(zj , zi).

- T̄ = D−1/2WD−1/2, with symmetric normalization on W (see effect of symmetric normal-

ization in appendix A.8.1);

- Perform Label Propagation by taking equation F ∗ = (I − αT̄)−1Y ;

- Train for one epoch with all samples, labelled samples and unlabelled samples with their

pseudo labels ȳi = argmax
k

F ∗u [i, k], where F ∗u is unlabelled part of F ∗.

Feature extractor φθ

F
C

+
softm

ax

Network fθ

Phase 1:
Train for T epochs
with Ls (labelled
samples only)

Train for 1 epoch
with Ls + λLu
(all samples)

zi = φθ(xi)

Aij = d(zi, zj)

W ← A + A>

T̄ ← D−1/2WD−1/2

F∗ = (I − αT̄)−1Y

Use φθ

Label propagation

Phase 2: Iterate T ′ times

: labels : missing labels : pseudo-labels (size proportional to certainty ωi)

Figure IV.9: An illustration for semi-supervised neural network with pseudo labels
obtained by Label Propagation. Source: [Iscen et al. 2019].

Since Label Propagation can misclassify an unlabelled sample, the pseudo label certainty are

used to control it. The certainty ωi for an unlabelled sample xui is measured by:

ωi = 1− H(F ∗u [i, :])

log(C)
(IV.26)

where H is the entropy function, C is the number of classes. In addition, a class balancing function

ζk for class k is defined as ζk = 1
Nkl +Nku

, where Nk
l is the number of labelled samples in class k and

Nk
u is the number of unlabelled samples whose pseudo labels are in class k. Here is the details of

the complete cost L in the second phase:

72 Chapter IV. Semi-supervised deep learning

L = Ls + λLu =
1

Nl

Nl∑
i=1

ζyids
(
f(xli), yi

)
+

1

Nu

Nu∑
i=1

ζȳiωids
(
f(xui), ȳi

)
. (IV.27)

Here λ = 1 would mean that the contribution of pseudo labels (after multiplying by ωi) is as

important as the one of real label. A combination with other approaches can be considered to

improve the performance of this method, such as Mean Teacher by updating model parameters.

A.4 Generative models. A generative model is a model that can describe how sample (obser-

vation) x is generated from a latent representation z. We use the probabilistic notation p(x|z).

By sampling an instance from the distribution of z and passing it though the generative model,

one can generate new data samples. Hence, the main points considered for creating a generative

model are its architecture and the distribution that z is enforced to follow. In this subsection, we

revisit two popular generative models, Variational AutoEncoder (VAE) [Kingma & Welling 2013]

and Generative Adversarial Network (GAN) [Goodfellow et al. 2014a] with their applications for

semi-supervised learning.

A.4.1 Variational Autoencoders

As indicated by its name, this generative model uses AE architecture. Given z the latent

representation of a sample x via the decoder, each component of z is forced to follow the Normal

distribution. Here is the cost optimized for VAE:

LVAE =
1

N

∑
x∈X

(
dr(x, x̂) + dKL

(
q(z|x),N (0, I)

))
(IV.28)

where x̂ is the reconstruction of x via AE, dr is a dissimilarity metric used for reconstruction loss

(dr = dBCE by default) and q(z|x) is a distribution of z given x which enforced to follow the

Normal distribution N (0, I).

𝑥 ො𝑥

𝜎𝑧

𝜇𝑧

𝑧 = 𝜇𝑧 + 𝜎𝑧𝜖

𝐾𝐿(N(𝜇𝑧, diag(𝜎𝑧))||N(0, 𝐼))

𝜖 ∼ N(0,𝐼)

𝑑𝑟 𝑥, ො𝑥

Figure IV.10: Variational Autoencoder.

A. Related works 73

Figure IV.10 illustrates the VAE model. For the first step, the encoder is slightly modify

to have two outputs µz and σz. Then q(z|x) follows a Normal distribution if z is sampled from

N
(
µz, diag(σz)

)
in many epochs. For each training batch, ε is sampled from N (0, I) in the forward

pass and then fixed in the backward pass to calculate backward gradient.

In the second step, the KL divergence between N
(
µz, diag(σz)

)
and N (0, I) is calculated. Here

is its explicit form:

dKL
(
N
(
µz, diag(σz)

)
,N (0, I)

)
=
∑
k

1

2

(
(µz[k])2 + (σz[k])2 − 1− log(σz[k])2

)
(IV.29)

After training VAE model, for generating new data samples, we sample z from N (0, I) then

pass it via the decoder.

For semi-supervised learning by using VAE model, [Kingma et al. 2014] proposed two versions

M1 and M2, which are detailed below.

Latent-feature discriminative model (M1). In this model, VAE is used as feature extractor

and it consists of two steps. Firstly, the VAE model is trained with both labelled and unlabelled

samples. Secondly, the samples are embedded into the latent representation space where a classifier

is learnt in a supervised or semi-supervised manner.

𝑧 = 𝜇𝑧 + 𝜎𝑧𝜖

𝑦

𝑥 ො𝑥

𝜎𝑧

𝜇𝑧

𝐾𝐿(N(𝜇𝑧, diag(𝜎𝑧))||N(0, 𝐼))

𝜖 ∼ N(0,𝐼)

𝑑𝑟 𝑥, ො𝑥

𝑦

ℎ𝑒 ℎ𝑑

ො𝑦

Figure IV.11: An example of architecture for semi-supervised VAE, M2 model.
Dashed line represents concatenation. Label information y here has intervened at
the end of encoder and at the beginning of decoder, but it can be used elsewhere.
Here ŷ = qφ(y|x) is the output of classifier for a given sample x.

Generative semi-supervised model (M2). As opposed to M1 model, label information

are used during the VAE training in this M2 model. In addition to the encoder and the decoder,

there is a classifier (figure IV.11). Let φ denote parameters of encoder and classifier. This two

models can eventually share some upstream layers. The classifier and the encoder are respectively

74 Chapter IV. Semi-supervised deep learning

represented by qφ(y|x) and qφ(z|x, y). For a labelled sample x ∈ X l and its label y, the learning

objective is given by:

LssVAE(x, y) = dr(x, x̂) + dKL
(
qφ(z|x, y),N (0, I)

)
+ dCE(Py, y) (IV.30)

where Py is prior probability for y, usually Py =
[

1
C , ..,

1
C

]
if the same number of samples is used

per classes for training. LssVAE is similar to equation IV.28’s penalty, except for the fact that it uses

labels information. For an unlabelled sample x ∈ X u and its probability pseudo label ŷ = qφ(y|x),

the following auxiliary function is used:

UssVAE(x) =
∑
y

qφ(y|x)LssVAE(x, y) +H(qφ(y|x)) =

C∑
k=1

ŷ[k]LssVAE(x, y = k) +H(ŷ) (IV.31)

Then the optimal configuration happens when classification loss is large and VAE loss is small

or conversely, classification loss is small and VAE loss is large.

The second termH(ŷ) can be viewed as Entropy Minimization as mentioned in section IV.A.2.3.

It is worth noting that dCE(Py, y) is constant for labelled samples in LssVAE but it gives prior

probability for unlabelled samples in UssVAE. Integrating these cost functions with the supervised

cost, the final objective function for semi-supervised VAE, M2 model is given by

1

Nl

Nl∑
i=1

dCE
(
qφ(y|xli), yi

)
+ λ

(
1

Nl

Nl∑
i=1

LssVAE(xli, yi) +
1

Nu

Nu∑
i=1

UssVAE(xu)

)
(IV.32)

Stacked generative semi-supervised model (M1+M2). These two models can be com-

bined, first using the generative model M1 to learn a new latent representation, then using this

new latent representation as input for model M2.

z xfake
G(z)

generator

p(z)

xreal
p(x)

x real?
D(x)

discriminator

Figure IV.12: An illustration for generative adversarial networks. Source: [Veličković
2017].

A. Related works 75

A.4.2 Generative Adversarial Networks

This machine learning framework designed by [Goodfellow et al. 2014a] and consists of a

discriminator D and a generator G. The generator G takes as input a latent representation z

sampled from the prior distribution p(z) and produces a synthetic sample x. On the other hand,

real sample x is sampled from the real data distribution p(x). With both fake and real samples x as

input, the discriminator D tries to distinguish between fake and real. Figure IV.12 illustrates the

architecture for generative adversarial networks (GAN) and p(z) can be the Uniform distribution

or the Normal distribution, depending on the specific task. The objective function for GAN model

is described as:

min
G

max
D

Ex∼p(x)[logD(x)] + Ez∼p(z)[1− logD(G(z))] (IV.33)

where the discriminator D outputs value between 1 and 0, which indicate respectively for real

samples and for fake samples. In practice, the discriminator and the generator are optimized

alternately:

LD = max
D

Ex∼p(x)[logD(x)] + Ez∼p(z)[1− logD(G(z))]

LG = min
G
−Ez∼p(z)[logD(G(z))]

(IV.34)

The generator and discriminator can be considered as two players that contest with each other

in a zero-sum game.

Let turn to some works that use GAN for semi-supervised learning.

Categorical generative adversarial networks (CatGAN). This method proposed by

[Springenberg 2016] is a variant of GAN, where the binary discriminator D (fake or real) is replaced

by a K-classes discriminator. The objective function for CatGAN is constructed by maximizing or

minimizing entropies. The five constraints on entropy used in CatGAN are described as follows:

(1) The output of the discriminator D, for a real sample, must have a low entropy.

(2) The output of the discriminator D, for a fake sample, must have a high entropy when

optimizing D.

(3) The average of the outputs of the discriminator D, for all real samples, must have a high

entropy.

(4) The output of the discriminator D, for a fake sample, must have a low entropy when opti-

mizing G.

76 Chapter IV. Semi-supervised deep learning

(5) The average of the outputs of the discriminator D, for all fake samples, must have a high

entropy when optimizing G which translates the hypothesis that fake samples are uniformly

sampled from their latent distribution.

The entropy of average of outputs in the constraint (3) and in the constraint (5) is represented

respectively as:

HX = H

(
1

N

N∑
i=1

D(xi)

)

HG = H

(
1

M

M∑
i=1

D(G(zi))

) (IV.35)

By taking constraints (1), (2) and (3) for the discriminator D and by taking constraints (4)

and (5) for the generator G, we get the objective function of CatGAN:

LD = max
D
−Ex∼X [H(D(x))] + Ez∼p(z)[H(D(G(z)))] +HX

LG = min
G

Ez∼p(z)[H(D(G(z)))]−HG

(IV.36)

It is worth noting that, until here, CatGAN is only unsupervised, and the number of components

at the output K can be considered as a hyper-parameter. To incorporate labels information, one

just have to set K = C, where C is the number of classes for labelled samples and then use the

previous loss as an auxiliary loss in addition to a classification objective, which forms a semi-

supervised learning method as follows:

LD +
1

λ

1

Nl

Nl∑
i=1

ds
(
D(xli), yi

)
(IV.37)

Deep convolutional generative adversarial networks (DCGAN) In this framework pro-

posed by [Radford et al. 2016], one uses CNN architecture for both discriminator and generator.

DCGAN is essentially used for classification task as a feature extraction.

A.5 Virtual Adversarial Training. In order to enforce outputs closeness for similar inputs,

[Miyato et al. 2017] proposed a method called Virtual Adversarial Training (VAT), which has the

following auxiliary loss:

Lu =
1

N

N∑
i=1

dKL
(
f(xi), f(x̃i)

)
(IV.38)

where x̃i is an adversarial example related to xi. x̃i can be generated using several methods

mentioned in appendix B.2. The auxiliary loss Lu can be classified in the group of consistency

constraints as mentioned in section IV.A.2.4. Using adversarial noise for generating x̃i helps to

A. Related works 77

Figure IV.13: An illustration for generator used in DCGAN.

push efficiently decision boundaries far apart from a sample xi.

In optimization process, one has on the one hand the attack stages, in which an adversarial

examples is generated with a fixed model f . On the other hand, the model is updated using the

adversarial examples by optimizing the total cost L = Ls + λLu. The authors also found that

adding Entropy Minimization loss to VAT loss (IV.38) can improve accuracy rate.

A.6 Holistic methods. A holistic method is an union of single methods and is expected to get

better performances. We present for this subsection MixMatch [Berthelot et al. 2019b], which

can be considered as a combination of ICT and Mix-up in section IV.A.2.7, through three main

points:

1. Data Augmentation. A stochastic data augmentation is used for both labelled and unla-

belled data. We note (xli, yi) where i = 1, .., Nb a batch of labelled samples and (xui) where

i = 1, .., Nb a batch of unlabelled samples. Each batch has Nb samples. Augment() denotes

the stochastic data augmentation operator. For each labelled sample, the data augmentation

is performed one time as x̃li = Augment(xli). For each unlabelled sample, data augmentation

is performed K times: x̃ui,k = Augment(xui) where k = 1, ..,K.

2. Label Guessing. For each unlabelled sample, pseudo labels are computed and attributed

to the associated K augmented data for each sample:

ȳi,k =
1

K

K∑
j=1

f(x̃ui,j) with k = 1, ..,K (IV.39)

Therefore, the batch of unlabelled samples now becomes (x̃i,k, yi,k) where there are K ×Nb
samples with their pseudo labels. The label guessing ȳi,k is then sharpened as described in

appendix A.8.2. Figure IV.14 shows an illustration for Data Augmentation followed by Label

78 Chapter IV. Semi-supervised deep learning

Guessing.

Sharpen

… K augmentations ...

Classify

ClassifyUnlabeled

Guessed Label

Average

Figure IV.14: Data Augmentation followed by Label Guessing in MixMatch. Source:
[Berthelot et al. 2019b].

3. Mix-up. Firstly, given two elements (xa, ya) and (xb, yb), the MixUp operator is defined as

follows:

MixUp
(
(xa, ya), (xb, yb)

)
= (λxa + (1− λ)xb, λya + (1− λ)yb)

where: λ = max(λ′, 1− λ′).

λ′ ∼ Beta(α, α), α > 0.

(IV.40)

Let consider a set X̂ that contains labelled samples and their corresponding labels, a set

Û that contains unlabelled samples (with K augmented samples) and their corresponding

pseudo labels by Label Guessing, W a set that contains all samples after shuffling as follows:

X̂ = {(x̃li, yi)|i = 1, .., Nb}

Û = {(x̃i, yi)|i = 1, .., Nb ×K}

W = Shuffle
(
Concat(X̂ , Û)

) (IV.41)

Then the new labelled set X ′ and unlabelled set U ′ are defined as follows:

X ′ = {MixUp(X̂i,Wi)|i = 1, .., |X̂ |}

U ′ = {MixUp(Ûi,W|X̂ |+i)||i = 1, .., |Û |}
(IV.42)

The complete MixMatch cost is given by:

L = Ls + λLu =
∑

x,y∈X ′
ds(f(x), y) + λ

∑
x,y∈U ′

dMSE(f(x), y) (IV.43)

Holistic methods give a high performance for classification task and are the state of art on

several dataset such as CIFAR-10 or SVHN. Aside from MixMatch, we have also other holistic

methods such as Fix-Match [Sohn et al. 2020], Real-Mix [Nair et al. 2019], Ensemble Auto-

Encoding Transformations (EnAET) and [Wang et al. 2019].

B. Manifold attack 79

A.7 Partial conclusion for semi-supervised neural networks. To construct a SSNN model,

one combines one or more auxiliary losses with a standard classification objective. Various losses

can be used including reconstruction, consistency constraint, classification objective for self-annotated

samples, manifold preservation constraint, classification objective on pseudo-labels. . . Generative

models can also be adapted for semi-supervised learning. Holistic methods are the obvious strategy

to think about, in order to get a better performance than using each single method. Nevertheless,

it is required combined methods to be compatible with one another. Otherwise, the performance

might drop instead of improving. A survey of semi-supervised neural network methods can be

found in [Ouali et al. 2020].

B Manifold attack

In this section, we introduce a new semi-supervised neural network learning method that uses

an auxiliary loss based on adversarial learning and manifold learning. Hence the name “manifold

attack”. We have seen previously that an optimized perturbation of small amplitude can change

significantly a neural network model output, leading to a misclassification (figure B.1 in appendix

B.2). This can be explained from a manifold structure point of view by the fact that the model

does not necessarily compute a locally isometric embedding of the original dataset. Hence, close

by point in the original data space can yield far apart representations in the model derived latent

space. Manifold attack introduced a new way of dealing with this problem while smoothing the

decision boundaries. In the following g() denotes a function that maps a sample x ∈ Rn to its

embedded representation a ∈ Rp.

B.1 Individual attack point versus data points. We define a virtual point is a synthetic

sample generated in such a way to be likely on the observed samples underlying manifold. For

example, a virtual point can be produced by a generative model or obtained as the result of a small

shift of an observed sample. An anchor point is a sample used for generating a virtual point. An

attack point is a virtual point that maximises locally a chosen measure of model distortion. For

example, attack point can be a sample perturbed with an adversarial noise.

We use the same notation as in section II.D (Manifold learning). Given a dataset X =

{x1, ...,xN} and the corresponding embedded set A = {a1, ...,aN}, Le(ai,Aci) denotes the em-

bedding loss, Aci being the complement of {ai} in A. We consider the manifold learning objective

function defined as Lt =
∑N
i=1 Le(ai,Aci). Let’s consider p anchor points z1, z2, ..., zp ∈ Rn, a

80 Chapter IV. Semi-supervised deep learning

virtual point x̃ ∈ Rn is defined as:

x̃ = γ1z1 + γ2z2 + ...+ γpzp,

subject to: γ1, γ2, .., γp ≥ 0,

γ1 + γ2 + ...+ γp = 1.

(IV.44)

The anchor points zi define a region or feasible zone, in which a virtual point x̃ must be located

and γ = [γ1, γ2, .., γp] is the coordinate of x̃. In general, anchor points are sampled from the dataset

X with different strategies, which are defined according to a user provided rule (see section IV.B.4

for several examples). Figure IV.15 shows an example for setting of anchor points and relations

between points. For a given embedding ai = g(xi), the embedding loss is defined as

Le(ai,Aci) = Le
(
g(xi), {g(x1), .., g(xN)}\{g(xi)}

)
. (IV.45)

Similarly, the embedding loss is defined for a virtual point ã = g(x̃) as

Le(ã,A) = Le
(
g(x̃), {g(x1), .., g(xN)}

)
. (IV.46)

The algorithm 2 describes the computation of an attack point. It consists in finding the local

coordinates γ that maximizes the embedding loss Le(ã,A) for the current model g() state. Hence,

γ is estimated though a projected gradient ascent.

Algorithm 2 Individual manifold attack

Require: Anchor points {z1, .., zp}, data points {x1, ..,xN}, embedding loss Le(), model g(),
ξ, n_iters.
initialize: γ ∈ Rp, γ = [γ1, .., γp] for constraints in eq. (IV.44)
x̃ = γ1z1 + γ2z2 + ...+ γpzp
for i = 1 to n_iters do
L = Le

(
g(x̃), {g(x1), .., g(xN)}

)
γ ← γ + ξ∇γL(x̃)
γ ← Πps(γ)
x̃ = γ1z1 + γ2z2 + ...+ γpzp

end for
Output: x̃

In order to guarantee the constrains in IV.44, we use the projector Πps defined by the problem

B. Manifold attack 81

x1

x2

x3

x4

x̃

z1

z2

z3
γ1

γ
2

γ3

Figure IV.15: Virtual point and anchor points illustration. The three anchor points
(i ∈ {1, 2, 3}) are computed as zi = µ([x1,x2,x3]) + s(xi − µ([x1,x2,x3]), where
µ([x1,x2,x3]) = x1+x2+x3

3 . The dotted lines represent the zone defined by anchor
points zi within which the virtual point x̃ necessarily lies. The parameter s determines
whether the anchor points lie strictly within [x1,x2,x3] convex hull (1 > s > 0) or
are strictly outside (s > 1). The dashed lines represent the coordinates γ of x̃. The
solid lines illustrates the relatedness of x̃ to the data points that the embedding will
try to preserve minimizing Le(g(x̃), {g(x1), g(x2), g(x3)}) in this case.

min
γ∈Rp

1

2
‖κ− γ‖22 ,

subject to: γ1, γ2, .., γp ≥ 0,

γ1 + γ2 + ...+ γp = c, (c > 0).

(IV.47)

This convex problem with constraints can be solved quickly by a simple sequential projection

that alternates between sum constraint and positive constraint (algorithm 3). The demonstration

can be inspired by Lagrange multiplier method. A simple demonstration can be found in appendix

B.1.

Algorithm 3 Projection for positive and sum constraint Πps

Require: κ ∈ Rp, c = 1 (by default).
δ = (c−∑p

i=1 κi)/p
γi ← γi + δ, ∀i = 1, .., p
while ∃i ∈ {1, .., p} : γi < 0 do
P = {i|γi > 0} and N = {i|γi < 0}
γi ← 0,∀i ∈ N
δ = (c−∑i∈P γi)/|P|
γi ← γi + δ, ∀i ∈ P

end while
Output: γ = [γ1, γ2, .., γp]

By default, each set of anchor points has one attack point. However, we can generate more

82 Chapter IV. Semi-supervised deep learning

than one attack point for the same set of anchor points by using different initializations of γ, so

as to find different local maxima. The double embedding constraint, on the observed samples on

the one hand and on the attack points on the other hand is expected to enforce the the model

g() smoothness over the underlying manifold, including in low samples density areas. The general

optimization scheme goes as follows: we optimize alternately between attack stages and model

update stages until convergence. In attack stage, we optimize the attack points through γ while

fixing the model g() and in the model update stage, we optimize the model g() while fixing attack

points.

B.2 Attack points as data augmentation. In algorithm 2, an attack points only interacts

with observed samples. In the general manifold attack (algorithm 4), attack points and observed

samples are undifferentiated in the model update stage. This way, hence generating attack points

can be considered a data augmentation technique. We denote B as a set that contains all embedded

points (both attack points and observed samples). Bs is a random subset of B, used batch for

batch optimization. In each step, only attack points from the current batch are used to distort the

manifold by maximizing the batch loss L.

Algorithm 4 Manifold attack

Require: Data points {x1, ..,xN}, embedding loss Le(), model g(), ξ, n_iters, an anchoring rule.

initialize: g()
Create M sets of anchor points {zk1 , .., zkp},∀k = 1, ..,M by the anchoring rule
for epoch = 1 to n_epoch do
Initialize γk ∈ Rp for constraints in eq. (IV.44)
x̃k = γk1 zk1 + γk2 zk2 + ...+ γkpzkp,∀k = 1, ..,M

Set B = {g(x̃1), .., g(x̃M)} ∩ {g(x1), .., g(xN)} and divide it into subsets Bs
for each Bs do
L =

∑
a∈Bs Le

(
a,Bs\{a}

)
Update {x̃i|g(x̃i) ∈ Bs} to maximize L by algorithm 5
Update g() to minimize L

end for
end for
Output: g()

Algorithm 5 represents the update step for multiple attack points. We assumed that the

embedding loss Le is smooth with respect to γ and used a gradient-based algorithm to estimate

the latter. Nevertheless, in manifold learning field, there are several methods whose embedding

loss is not even continuous. For example, in LLE (II.37), the embedding loss takes into account

the k nearest neighbors of a point, which might change throughout the estimation of an attack

point, producing a discontinuity. To circumvent this problem, we use several strategies to avoid

singularities:

B. Manifold attack 83

Algorithm 5 Virtual points update

Require: m sets of anchor points {zk1 , .., zkp}, γk, ∀k = 1, ..,m, loss L, ξ, n_iters.
x̃k = γk1 zk1 + γk2 zk2 + ...+ γkpzkp,∀k = 1, ..,m
for i = 1 to n_iters do
Calculate gradient ∇L (w.r.t [γ1, .., γm]) of function L(x̃1, .., x̃m)
[γ1, .., γm]← [γ1, .., γm] + ξ∇γL(x̃1, .., x̃m)
γk ← Πps(γ

k),∀k = 1, ..,m
x̃k = γk1 zk1 + γk2 zk2 + ...+ γkpzkp,∀k = 1, ..,m

end for
Output: x̃1, .., x̃m

- By reducing the gradient step ξ which limits the virtual point displacement.

- By taking a small number of attack points in each subset Bs or by using randomly a part of

attack points to perform the attack while fixing other attack points, in an attack stage.

- By updating γ only if embedding loss increases.

Besides, some metrics might be approximated by smooth functionals. For instance, in the

contrastive loss (II.D), we can replace the metric dx() which outputs only 0 or 1, with dx(xi,xj) =

exp
(−‖xi−xj‖22

2σ2
i

)
to make embedding loss continuous.

B.3 Pairwise manifold learning. For some manifold learning methods as MDS or LE, the

embedding loss Le can be decomposed into the sum of elementary pairwise loss le:

Le(a,B) =
∑
b∈B

le(a,b) (IV.48)

Then the batch loss L (in algorithm 4) can be modified into:

L =
∑
a∈Bs

Le
(
a,Bs\{a}

)
=
∑
a∈Bs

∑
b∈Bs,b6=a

le(a,b) (IV.49)

Following this change, L can be decomposed into three parts:

∑
a∈Bds

∑
b∈Bds ,b6=a

le(a,b) (data-data)

∑
a∈Bds

∑
b∈Bvs

le(a,b) (data-virtual)

∑
a∈Bvs

∑
b∈Bvs ,b6=a

le(a,b) (virtual-virtual),

where Bds and Bvs are respectively set that contains all embedded data points (or observed samples)

and all embedded virtual points of Bs.

84 Chapter IV. Semi-supervised deep learning

In some manifold learning losses which can be decomposed into the sum of elementary pairwise

loss, we can balance the effect of the virtual points with respect to the observed samples, not only

by tuning the ratio between the number of virtual points and the number of observed samples in

Bs, but also by weighting each of three parts above which corresponds to the settings observed-

observed, observed-virtual and virtual-virtual.

B.4 Settings of anchor points and initialization of virtual points. In this section, we

provide two settings (or rules) for computing anchor points with the corresponding initializations.

These settings need to be chosen carefully to guarantee that virtual points are on the sample

underlying manifold.

Neighbor anchors: The first anchor point z1 is taken randomly from X , then the next (p−1)

anchor points z2, .., zp are taken as (p−1) nearest neighbor points of z1 in X (Euclidean metric by

default). Here, we assume that the convex hull of a sample and its neighbors is likely comprised

in the samples manifold. The number of anchors p needs to be small compared to the number of

data points N . The initialization for virtual points can be set by taking γi ∼ U(0, 1),∀i = 1, .., p

then normalize to have
∑p
i=1 γi = 1.

Random anchors: The second setting is inspired by Mix-up method [Zhang et al. 2017]. p

anchors are taken randomly from X and we take γ ∼ Dirichlet(α1, .., αp). If αi � 1,∀i = 1, .., p,

the Dirichlet distribution returns γ where γi ≥ 0,
∑p
i=1 γi = 1. In particular, there is a coefficient

γk much greater than other ones with a strong probability, which implies that virtual points are

more probably in the neighborhood of a data sample. Since the manifold attack tries to find only

local maximum by gradient-based method, if ξ and n_iters are both small, we expect that attack

points in the attack stage do not move too far from their initiated position, remaining on the

manifold of data. Note that, in the case αi = 1,∀i = 1, .., p, the Dirichlet distribution become the

Uniform distribution.

To ensure that the coefficient γk is always much greater than other ones, we apply one more

constraint: γk ≥ τ , and by taking τ close to 1. The constraints in IV.44 become:

γ1, γ2, .., γp ≥ 0,

γ1 + γ2 + ...+ γp = 1,

γk ≥ τ, (τ < 1).

(IV.50)

Then the projection in algorithm 3 needs to be slightly modified to incorporate this new con-

C. Applications of manifold attack 85

straint. We define the projection γ = Π
′

ps(κ) as follow:

κ′ ← κ

κ′k ← κ′k − τ

γ ← Πps(κ
′, c = 1− τ)

γk ← γk + τ

(IV.51)

C Applications of manifold attack

We present several applications of manifold attack for NNMs that uses manifold structure

constraints. Firstly, we show advantages of manifold attack for a manifold learning task when

few training samples are available. Secondly, we show that manifold attack is compatible with

several neural network learning methods, which it improves the accuracy rate and the robustness

to adversarial examples.

C.1 Manifold learning on a small dataset. For this experiment, we use the S curve data

and Digit data. The S curve data contains N = 1000 3-dimensional samples, as shown in figure

IV.16. The Digit data contains N = 1797 images, of size 8 × 8 of a digit. We want to compute

2-dimensional embeddings for these data. Each data is separated into two sets: Ntr samples are

randomly taken for training set and the Nte remaining samples are used for testing. xtr denotes

a training sample and xte a testing sample. We perform four training modes as described in

table IV.1 with a neural network model g(). The evaluation loss, after optimizing model g(), is

defined as:

Lev =
1

Nte

Nte∑
i=1

Le(g(xtei), {g(xtej)|j 6= i}) (IV.52)

Figure IV.16: Left: S curve data 1000 samples. Center: S curve data 50 samples.
Right: Digit data.

The anchoring rule, embedding loss Le and the model g() are precised in the following.

86 Chapter IV. Semi-supervised deep learning

Mode Description of objective function

1. REF Manifold learning that takes into account both training and testing samples:

Ltr =
1

N

N∑
i=1

Le(g(xi), {g(xj)|j 6= i})

The result of this training mode is considered as “reference” in order to compare to
other training modes.

2. DD Manifold learning that takes only training data samples:

Ltr =
1

Ntr

Ntr∑
i=1

Le(g(xtri), {g(xtrj)|j 6= i}).

3. RV Using virtual points as supplement data, virtual points are only randomly initialized
and without attack stage (by setting n_iters = 0 in algorithm 5):

Ltr =
1

|B|
∑
ai∈B

Le(ai,B\{ai}),

where B = {g(x̃1), .., g(x̃M)} ∩ {g(xtr1), .., g(xtrNtr)}.

4. MA Using manifold attack, the same objective function as the previous case, except
n_iters 6= 0 (virtual points become attack points).

Table IV.1: Four training modes: REF (Reference), DD (Data-Data), RV (Random
Virtual) and MA (Manifold Attack), and their corresponding objective function.

Anchoring rule. Two settings are considered:

- Neighbor anchors (NA) : A set of anchor points is composed by a sample with its 4 nearest

neighbors. In this case, we have M = Ntr sets of anchor points and p = 5 anchor points in

each set. The coefficient γ is initialized by the Uniform distribution.

- Random anchors (RA) : We take randomly 2 points among Ntr training points to create

a set of anchor points. In this case, we have M =
(
Ntr

2

)
sets of anchor points and p = 2

anchor points in each set. The coefficient γ is initialized by the Dirichlet distribution with

αi = 0.5,∀i = 1, .., p.

The embedding loss. We use the loss from MDS and LE methods as described in section II.D,

with the default metrics. For similarity metric dx() in LE method, we take σ = 0.2 for S curve

data and σ = 0.5 for Digit data.

The model. A simple structure of CNN is used. Here are the detailed architectures for each

CNN as the dimension of the inputs are different for the two datasets:

- S curve data: Conv1d [1, 4, 2] → ReLu → Conv1d [4, 4, 2] → ReLu→ Flatten → Fc[4, 2].

C. Applications of manifold attack 87

- Digit data: Conv2d [1, 8, 3] → ReLu → Conv2d [8, 16, 3] → ReLu→ Flatten → Fc[64, 2].

For LE method, two additional constraints are imposed to avoid trivial embeddings:

E(Atr) = [E(Atr[1, :]), ..,E(Atr[d, :])]> = 0d

Σ(Atr,Atr) = Id

(IV.53)

where d = 2 is the number of output dimensions, Atr = [atr1 , ..,a
tr
Ntr

] = [g(xtr1), .., g(xtrNtr)].

To adapt these constraints, we add a normalization layer at the end of model g(): (g(x) −

E(Atr))Σ−1(Atr,Atr), where Σ−1 is performed by Cholesky decomposition.

To simulate the case of few training samples, we fix Ntr = 100 for MDS method and Ntr = 50

for LE method. The balance between virtual points and samples is controlled by the couple λ =

(number of virtual points in Bs , number of samples in Bs). We set λ = (2, 5) for MDS method

and λ = (5, 10) for LE method. The gradient step ξ is selected from {0.1, 1, 10} and the number

of iterations is fixed at n_iters = 2.

The initialization of model g() is impactful, especially since there are few training data. Five

different initialization of model for each method are performed. The mean and the standard

deviation of the evaluation loss Lev are represented in table IV.2. Firstly, we see that using

random virtual (RV) points as additional data points gives a better loss than using only data

points. Secondly, using manifold attack (MA) further improves the results which shows the benefit

of the proposed approach to regularize the model.

For the S curve data, initialization by Neighbors anchors (NA) gives a better result compared

to initialization by Random anchors (RA). However, for the Digit data, initialization by Random

anchors gives a better result. This is due to the fact that in the S curve data, Neighbor Anchors

covers better the manifold of data than Random Anchor. On the other hand, in Digit data,

Neighbor Anchors (by using Euclidean metric to determine nearest neighbors) can generate, with

greater probability, a virtual point that is not in the manifold of data. This leads to a greater

evaluation loss compared to Random Anchor.

The five embedded representations, respectively with five different initialization of g(), for

testing samples in S curve data are found in figure IV.17 for MDS method and in figure IV.18 for

LE method.

C.2 Robustness to adversarial examples. In this subsection, we integrate manifold attack to

Mix-up [Zhang et al. 2017], a supervised learning approach and study the robustness to adversarial

88 Chapter IV. Semi-supervised deep learning

S curve data Digit data
Mode / Method MDS LE MDS LE
REF 130.7± 24.74 0.399± 0.07 2015± 14 0.07± 0.002
DD 352.56± 119.19 1.21± 0.46 2409± 78 0.58± 0.07
RV (NA) 173.87± 9.38 0.59± 0.11 2395± 73 0.31± 0.03
MA (NA) 170.62± 5.89 0.55± 0.07 2362± 63 0.24± 0.03
RV (RA) 183.42± 18.13 0.65± 0.14 2342± 56 0.22± 0.03
MA (RA) 169.04± 5.30 0.63± 0.14 2331± 56 0.2± 0.02

Table IV.2: Evaluation loss Lev of two manifold learning methods MDS and LE, in
four modes: REF, DD, RV, MA (as described in table IV.1) and two initialization
strategies: Neighbor Anchors (NA) and Random Anchors (RA).

examples. We remind the objective function of Mix-up:

Lmu =
1

N2
l Nλ

Nλ∑
k=1

Nl∑
i=1

Nl∑
j=1

[
ds(γ1xi + γ2xj , γ1yi + γ2yj)

]
where: γ1 + γ2 = 1 and γ1 ∼ Beta(α, α), α > 0

Nλ is the number of samplings λ from Beta(α, α).

(IV.54)

where xi,xj are labelled samples and yi, yj are their corresponding labels. To apply manifold attack

to Mix-up, we consider a set of anchor points consist of xi,xj and an attack point is coordinated

by γ = [γ1, γ2]. Then we add an attack stage to find γ that gives the greater loss Lmu, before

performing model update stage for g(). We repeat alternatively these two stages until convergence.

The attack stage is performed by using algorithm 5 with loss L, here is a batch loss of Lmu. As in

Mix-up, we can take γ2 = 1 − γ1, so that we only need to deal with one variable γ1 to maximize

the batch loss L. The projection IV.47 for γ1 is now just the clamping function, to make sure that

γ1 is between 0 and 1.

We compare four supervised training methods: ERM (Empirical Risk Minimization) which

is thus traditional supervised learning as equation IV.6, Mix-up, Mix-up attack and Cut-Mix

[Sangdoo et al. 2019] on ImageNet dataset with the model ResNet-50 [He et al. 2015] (see section

II.C.3), which has about 25.8M trainable parameters. We use ImageNet dataset. We retrieve 948

classes consisting in 400 labelled training samples and 50 testing samples to evaluate the models.

We evaluate the error rate for testing set at the end of each epoch and report the best best error

rate (top-1 and top-5) in table IV.3. For adversarial examples, we create them by Fast Gradient

Sign Method (FGSM) [Goodfellow et al. 2014b] (see appendix B.2), on the trained model by

ERM, with ε = 0.05. In Mix-up Attack, n_iters is fixed at 1 and ξ is set up following two

configurations, (1) ξ is reduced linearly from 0.1 to 0.01 and (2) ξ is fixed at 0.01. Following the

original article, α is set at 0.2 for Mix-Up and Mix-up Attack and α = 1 for Cut-Mix. More details

C. Applications of manifold attack 89

Figure IV.17: Five evaluations with different initialization of model for the S curve
data, using manifold learning method MDS with four modes: REF, DD, RV (NA)
and MA (NA). We see clearly the effect of Manifold Attack by the second column.
Thus, the embedded representation of Manifold Attack is more spread compared to
Random Virtual.

for hyper-parameters can be found in appendix B.3.1.

Firstly, in Mix-up Attack (1) and (2), we see clearly the trade-off between error rate for testing

set and error rate for adversarial examples. If ξ takes a large value as in (1), the error rate for

testing sample can be even worse than Mix-up (without using attack stage) about 0.5%, but it

gains more than 10% for the robustness against adversarial examples. On the other hand, if ξ takes

a smaller value as in (2), error rates for both testing sample and adversarial examples are smaller

90 Chapter IV. Semi-supervised deep learning

Figure IV.18: Five evaluations with different initialization of model for the S curve
data, using manifold learning method LE with four modes: REF, DD, RV (NA) and
MA (NA). We see clearly the effect of Manifold Attack by the fourth column, where
the embedded representation shape of Manifold Attack is more similar to Reference
than one of Random Virtual.

than those of Mix-Up, but it gains only about 5% for the robustness against adversarial examples.

Secondly, Mix-up Attack (2) provides a worse error rate than Cut-Mix, about 0.4 % in the case of

testing sample, but it gains about 10% in the case of adversarial examples. Therefore, we conclude

that manifold attack not only improves accuracy rate on testing set but also significantly improve

robustness of the model with respect to adversarial examples.

It is worth noting that in attack stage, the model g() needs to be continuous. In the case of

C. Applications of manifold attack 91

Method / Data evaluation Testing set Adversarial examples
Top-1 Top-5 Top-1 Top-5

ERM 33.84 12.46 81.69 59.14
Mix-up [Zhang et al. 2017] 32.13 11.35 76.79 50.76
Mix-up Attack (1) (ξ = 0.1→ 0.01) 32.57 10.98 65.60 37.57
Mix-up Attack (2) (ξ = 0.01) 31.35 10.81 71.31 44.5
Cut-Mix [Sangdoo et al. 2019] 30.94 10.41 81.24 58.72

Table IV.3: : ImageNet error rate (top-1 and top-5 in %) on testing set and on
adversarial examples on different training modes: ERM, Mix-Up, Mix-Up Attack and
Cut-Mix.

using NNMs with Dropout layer, the active connections need to be fixed in an attack stage to

guarantee that g() is continuous.

C.3 Semi-supervised manifold attack. We can apply manifold attack to all SSNNmodels that

use manifold structure constraint (see section IV.A.2.7). In this experiment, we apply manifold

attack on MixMatch [Berthelot et al. 2019b], one of best semi-supervised learning methods in

the current state-of-the-art. The details of this approach can be found in section IV.A.6 (Holistic

methods). As in Mix-up, we introduce attack stages to alternately optimize with model update

stages. Note that, γ1 in MixMatch is slightly different from Mix-up as:

γ1 + γ2 = 1, γ1 ∼ Beta(α, α) and γ1 ≥ γ2 (IV.55)

Then the projection for γ1 is now the clamping function between 0.5 and 1. When two separated

variables γ1 and γ2 are defined, we can use the projector Π
′

ps (IV.51) defined in section IV.B.4.

We use the Pytorch implementation for MixMatch by Yui [Yui 2019] (with all hyper-parameters

by default), then we introduce attack stages, with the number of iterations n_iters = 1. In each

experiment, for both CIFAR-10 and SVHN dataset, we divide the training set into three parts:

labelled set, unlabelled set and validation set. The number of validation samples is fixed at 5000.

The number of labelled samples is 250, and the remaining samples are part of the unlabelled

set. We repeat the experiment four times, with different samplings of labelled samples, unlabelled

samples, validation samples and different initialization of model Wide ResNet-28 [Zagoruyko &

Komodakis 2016] which has about 1.47M trainable parameters. More details for hyper-parameters

can be found in appendix B.3.2.

The error rate on testing set, which corresponds to the best validation error rate, is reported

in table IV.4, for both MixMatch and MixMatch Attack. We see that MixMatch Attack improves

the performance of MixMatch, about 1.5% less on error rate. There is a considerable difference

92 Chapter IV. Semi-supervised deep learning

Data Method / Test 1 2 3 4 Mean
CIFAR-10 MixMatch 10.62 12.72 12.02 15.26 12.65± 1.68
CIFAR-10 MixMatch Attack 8.84 10.46 10.09 12.89 10.57± 1.47
SVHN MixMatch 6.0925 6.73 7.802 7.37 7.0± 0.65
SVHN MixMatch Attack 5.07 5.93 5.42 5.47 5.47± 0.3

Table IV.4: : CIFAR-10 and SVHN Error rate in four different configurations, each
configuration consists of data partitioning and initialization of model parameters. The
number of labelled samples is fixed at 250 and the used model is Wide ResNet-28.

between the error rate of MixMatch reproduced by our experiments and the one reported from

the official paper, which might come from the sampling, the initialization of model, the library

used (Pytorch vs TensorFlow) and the computation of the error rate (error rate associated to best

validation error vs the median error rate of the last 20 checkpoints).

Method / Data CIFAR-10 SVHN
Pi Model � [Laine & Aila 2016] 53.02± 2.05 17.56± 0.275
Pseudo Label � [hyun Lee 2013] 49.98± 1.17 21.16± 0.88
VAT � [Miyato et al. 2017] 36.03± 2.82 8.41± 1.01
SESEMI SSL [Tran 2019] 8.32± 0.13
Mean Teacher � [Tarvainen & Valpola 2017] 47.32± 4.71 6.45± 2.43
Dual Student [Ke et al. 2019] 4.24± 0.10
MixMatch � [Berthelot et al. 2019b] 11.08± 0.87 3.78± 0.26
MixMatch * [Berthelot et al. 2019b] 12.65± 1.68 7.0± 0.65
MixMatch Attack * 10.57± 1.47 5.47± 0.3
Real Mix [Nair et al. 2019] 9.79± 0.75 3.53± 0.38
EnAET [Wang et al. 2019] 7.6± 0.34 3.21± 0.21
ReMixMatch [Berthelot et al. 2019a] 6.27± 0.34 3.10± 0.50
Fix Match [Sohn et al. 2020] 5.07± 0.33 2.48± 0.38

Table IV.5: CIFAR-10 and SVHN error rate of different semi-supervised learning
methods. The number of labelled sample is fixed at 250. (�) means that the results are
reported from [Berthelot et al. 2019b]. (*) means that that the results are reported
from our experiments. The resting results are reported from their corresponding
official paper.

Table IV.5 shows error rates among semi-supervised methods based on DeL model, for both

CIFAR-10 and SVHN dataset with only 250 labelled samples. We refer also readers to the site

PapersWithCode that provides the lasted record for each dataset: CIFAR-101 and SVHN 2.

C.4 Conclusion about manifold attack. Manifold attack has several benefits. Firstly, it

is generally compatible with NNMs that uses manifold structure constraint and improves their

accuracy and robustness. Secondly, it is more general than adversarial noise (see for a comparison

in table IV.6). By applying manifold attack instead of adversarial noise, we get a new type of

1CIFAR-10 https://paperswithcode.com/sota/semi-supervised-image-classification-on-cifar-6
2SVHN https://paperswithcode.com/sota/semi-supervised-image-classification-on-svhn-1

https://paperswithcode.com/sota/semi-supervised-image-classification-on-cifar-6
https://paperswithcode.com/sota/semi-supervised-image-classification-on-svhn-1

C. Applications of manifold attack 93

Adversarial Noise Manifold Attack

Illustration,
Red point: a sample
Blue line: border of

feasible zone

Feasible zone Locality of each sample Convex hull

Variable Noise ε that has the same size
as samples

γ has the size which equals
to the number of anchor

points

Manifold learning task
Points in the locality of a
sample must have a similar
embedded representation

Available for almost manifold
learning tasks

Table IV.6: A simple comparison between adversarial noise and manifold attack in
general.

Virtual Adversarial Training method (VAT, see section IV.A.5).

However, the anchoring points and initialization of attack points has to be carefully set so that

attack points are close to the samples manifold. Besides, it yields an additional computational cost

that can be important if the number of iterations in an attack stage is high. We provide a detailed

analyse and some standard parallelizations methods to accelerate the training stage in appendix

B.4. We also provide in appendix B.5 a method to mitigate the additional memory cost.

Chapter V

General Conclusion

In this chapter, we present a summary about our contributions to semi-supervised dictionary

learning and semi-supervised neural network learning. Then, we highlight some links between these

two approaches. Finally, we present the perspectives for each approach.

Summary of contributions

Semi-supervised dictionary learning. In chapter III, we presented three ways of extending a

supervised dictionary learning method to a semi-supervised learning setting. The first straightfor-

ward approach consists in integrating unlabelled data into the reconstruction error and the sparse

codes penalty. Another approach relies on manifold structure preservation. Finally, one can learn a

semi-supervised internalw classifier. We propose our approach called SSDL-GA with two novelties.

Firstly, we used the locally linear embedding (LLE) structure to constraint the sparse codes by pre-

serving the manifold structure of the original representation into the sparse code space. Secondly,

the manifold structure is taken into account when sparse coding out-of-sample data. When there is

both a low number of labelled and unlabelled samples available during the training, our approach

outperforms state-of-the-art SSDL methods on MNIST and USPS datasets. An implementation

of this method can be found on Github1.

Semi-supervised neural network learning. In chapter IV, we present our approach called

manifold attack which is based on adversarial learning. Given a manifold structure preservation

loss, we generate attack points that maximize that loss, and then use these attack points as

additional samples to train the model. Our approach provides a significant improvement on the

1https://github.com/ktran1/SSDL

https://github.com/ktran1/SSDL

96 Chapter V. General Conclusion

accuracy rate and especially on the robustness to adversarial examples on ImageNet, CIFAR-10

and SVHN datasets. In addition, by using attack points as additional training samples in a semi-

supervised setting, our approach can deal with datasets that originally have a low number of

training samples. We provide an implementation of this approach on Github 2.

Similarities

In general, semi-supervised dictionary learning models and semi-supervised neural network

models share several points:

- Both of them use hidden representations and the classifier work on hidden representation

instead of original representation. Dictionary learning models have only one hidden repre-

sentation (sparse code) while neural network models can have more than one hidden repre-

sentations.

- In both cases, manifold learning losses can be used to regularize hidden representations.

In dictionary learning models, the manifold learning loss variables are the sparse codes, and

indirectly the dictionary, while in neural network models, the manifold learning loss variables

are the model’s parameters.

- In order to further improve performance, both of approaches can benefit popular semi-

supervised learning techniques such as pseudo labeling, sharpening . . .

Perspectives

Here are some perspectives for semi-supervised dictionary learning:

+ Computing a non-linear internal classifier, for instance using a cross-entropy classification

loss:

∥∥Y −WAl
∥∥2

F
→ −

Nl∑
i=1

y>i log
(
softmax(Wali)

)
= −

Nl∑
i=1

C∑
k=1

yi[k] log

(
exp (w>k ali)∑C
j=1 exp (w>j ali)

)
(V.1)

By allowing a more complex decision boundary for the internal classifier, the sparse code

might end up more discriminative.

+ The Mix-up trick can be applied to dictionary learning, in the same fashion as for neural

networks, for both labelled and unlabelled data.

2https://github.com/ktran1/Manifold-attack

https://github.com/ktran1/Manifold-attack

97

+ Updating dictionary D by EMA process: D ← αD + (1 − α)Dt, where Dt is the optimal

dictionary after iteration t.

We suggest following perspectives for the semi-supervised neural network learning:

+ In section IV.B.4 (Settings of anchor points and initialization of virtual points), for Neighbor

anchors setting, we can go a little further by introducing a parameter s that controls expansion

(s > 1) or contraction (0 > s > 1) of the convex hull as shown in figure IV.15. We can also

think of optimizing the settings of anchor points and initialization for attack points.

+ Optimization of the layers between those the PGS needs to be applied. Indeed, we could also

implement PGS between one latent representation and another one in NNMs as in [Verma

et al. 2019a].

+ A shortcoming of manifold attack in the presented setting, is that it is not obvious to guaran-

tee that attack points actually belong to the underlying samples manifold. One can consider

using this methodology for generative models. Since latent representation follows a known

distributions in this case, e.g. Normal distribution in VAE models or Uniform distribution

in GAN models, anchor points are no longer required. The absolute coordinates of an at-

tack point are the variables in maximizing manifold learning loss and only the generator is

involved in the attack phase. Concretely, Mode collapse is a popular problem while training

GAN models. GAN with samples that are well balanced among classes, generated samples

by the generator are biased on only a few classes (as showed in figure V.1). This is because

the latent representation is not well regularized. We expect to overcome the problem Mode

collapse by introducing manifold attack from the latent representation back to the original

representation as show in figure V.2 and by optimizing problem V.2, where Lt is a PGS task

as showed in section II.D.

Figure V.1: Mode collapse observed in a GAN with the MNIST dataset. Left: Samples
generated by the generator in GAN. Right: The latent representation of GAN that
follows uniform distribution. In this example, the class 1 dominates in the samples
generated. Credit: [Tran et al. 2018].

98 Chapter V. General Conclusion

z xfake
G(z)

generator

p(z)

xreal
p(x)

x real?
D(x)

discriminator

manifold attack

Figure V.2: An GAN that we apply PGS from the latent representation back to
original representation.

min
G

max
D

max
z1,..,zM∈[0,1]p

(
Ex∼p(x)[logD(x)]+Ez∼p(z)[1−logD(G(z))]+λLt

(
G(z1), .., G(zM)

))
(V.2)

Research activities

Publications.

- Khanh-Hung Tran, Fred-Maurice Ngole-Mboula and Jean-Luc Starck. (2018). Semi-supervised

dual graph regularized dictionary learning. In Conference iTWIST’18. 3

- Khanh-Hung Tran, Fred-Maurice Ngole-Mboula, Jean-Luc Starck and Vincent Prost. (2020).

Semisupervised Dictionary Learning with Graph Regularized and Active Points. In SIAM

Journal on Imaging Sciences. 4

- Khanh-Hung Tran, Fred-Maurice Ngole-Mboula and Jean-Luc Starck. (2020). Manifold

attack. Submitted in SIAM Journal on Mathematics of Data Science. 5

Conferences and schools.

- ADA9 summer School, 20-22 Mai 2018, Valencia: Signal processing for astrophysics data sets.

- Peyresq summer School, 01-07 July 2018, Castellane: Signals, images and data science.

- Itwist18 conference, 19-23 November 2018, Marseille: Sparse or low-rank data models (talk).

- DS3 summer school, 24-28 June 2019, Palaiseau: data science (Poster).

3https://arxiv.org/html/1812.00648
4https://epubs.siam.org/doi/abs/10.1137/19M1285469?mobileUi=0
5https://arxiv.org/abs/2009.05965

https://arxiv.org/html/1812.00648
https://epubs.siam.org/doi/abs/10.1137/19M1285469?mobileUi=0
https://arxiv.org/abs/2009.05965

99

- Seminar Wavelets and Beyond - A celebration for Alexandre Grossmann and Yves Meyer,

12-14 June 2019, Orsay (Poster).

Teaching activity.

- Polytech Paris Saclay, Maths S3, 1st semester in 2018-2019 and 2019 - 2020.

Appendix A

1 Optimization for Laplacian Learning

min
L∈RN×N

tr (XLX>) + θ ‖L‖2F

subject to tr(L) = N,

Lij = Lji < 0(i 6= j),∑
j

Lij = 0.

(A.1)

Beside the proposed solution in [Dong et al. 2016], we propose an other solution to solve

quickly the problem A.1. The first two constraints can be used to reduce the number of variables.

We express each diagonal element by all other ones in the same row (as
∑
j Lij = 0) and all

strictly upper elements of L by strictly lower one (as L = L>). We denote vec() an operator that

concatenate vertically all columns of a matrix and vlow an operator that concatenate vertically all

strictly column lower parts. Let’s vertorize matrix L by vector vec(L) ∈ RN
2

and let vlow(L) ∈

R
N(N−1)

2 be the vector that contains all strictly lower elements of L. We defineM∈ RN
2×N(N−1)

2

the matrix whose ith row stocks the linear relation between ith element of vec(L) and all elements

of vlow(L). Then we have:

Mvlow(L) = vec(L) (A.2)

Using the priorities of trace and (A.2), we have:

tr (XLX>) + θ ‖L‖2F

= tr (X>XL) + θvec(L)>vec(L)

=vec(XX>)>vec(L) + θ(Mvlow(L))>Mvlow(L)

=vec(XX>)>Mvlow(L) + θvlow(L)>M>Mvlow(L)

(A.3)

102 Appendix A

We rewrite the problem (A.1):

min
vlow(L)∈R

N(N−1)
2

vec(XX>)>Mvlow(L) + θvlow(L)>M>Mvlow(L)

subject to
∑
i

vlow(L)[i] = −N/2,

vlow(L)[i] ≤ 0

(A.4)

This is a convex quadratic problem with convex constraints, then it can be solved by using

Proximal Splitting Method [Combettes & Pesquet 2009]. The projection for the constraints is

exactly problem in appendix B.1. We provide an implementation for this approach on Github 1.

(*) An important note, in practice, sinceM ∈ RN
2×N(N−1)

2 , it is not enough memory to stock

this matrix for large value N , e.g., N ≈ 1000. Then we need to find a pertinent strategy to

calculate vec(XX>)>M for premier order andM>M for second order. A simple way is to reduce

problem A.1 first for diagonal and strictly lower elements of L (by the symmetry) and then express

diagonal elements in term of strictly lower elements.

2 Probability update

min
P≥0

Nu∑
j=1

C∑
k=1

(Pkj)
r
C∑
c=1

Qu
k [c, j]

∥∥ycj(k)(w>c auj + bc)− 1
∥∥2

2
,

subject to
C∑
k=1

Pkj = 1,∀j.
(A.5)

The solution is proposed by [Wang et al. 2014]. Obviously, this problem can be decoupled for

each independent sample. So it is equivalent to solving:

min
P[:,k]≥0

C∑
k=1

(P[k, j])rB[k, j],

subject to
C∑
k=1

P[k, j] = 1.

(A.6)

where B[k, j] =
C∑
c=1

Qu
k [c, j]

∥∥ycj(k)(w>c auj + bc)− 1
∥∥2

2
,B[k, j] ≥ 0. If r = 1, then the solution

is obvious:

1https://github.com/ktran1/Leant_Laplacian

https://github.com/ktran1/Leant_Laplacian

Appendix A 103

P[j, k] = 1 if k = argmin

i
B[i, j]

P[j, k] = 0 otherwise.

If r > 1, we employ Lagrange multiplier to solve problem A.6:

C∑
k=1

(P[k, j])rB[k, j]+β
(C∑
k=1

P[k, j]− 1
)

+

C∑
k=1

µkP[k, j]

subject to: µ1, µ2, .., µC ≤ 0

We solve the following system of equations:

r(P[k, j])r−1B[k, j] + β = 0∑C
k=1 P[k, j] = 1

µkP[k, j] = 0

µk ≤ 0

P[k, j] ≥ 0

⇔

P[k, j] =
(−β
rB[k,j]

) 1
r−1

∑C
k=1 P[k, j] = 1

β < 0

µk = 0

⇔ P[k, j] = (B[k,j])
−1
r−1∑C

k=1(B[k,j])
−1
r−1

3 Sparse coding

min
A
‖X−DA‖2F + λ ‖A‖1 + β tr(ALAA>) + ϕ tr(D>LDD)

+γ
(∥∥Ql ◦ (WAl + b1Nl −Y)

∥∥2

F
+

C∑
k=1

∥∥∥Qu
k ◦ (1>NuP[k, :])r/2 ◦ (WAu + b1Nu −Yk)

∥∥∥2

F

)
(A.7)

By applying FISTA, we separate this problem into two functions fsp1 and fsp2 :

fsp1 (A) = λ ‖A‖1

fsp2 (A) = ‖X−DA‖2F + β tr (ALAA>) + γ
∥∥Ql ◦ (WAl + b1Nl −Y)

∥∥2

F

+ γ

C∑
k=1

∥∥∥Qu
k ◦ (1>NuP[k, :])r/2 ◦ (WAu + b1Nu −Yk)

∥∥∥2

F

104 Appendix A

The gradient of fsp2 is given by:

∇fsp2 (A) = −2D> (X−DA) + 2β (ALA) + 2γ

[
W>

(
(Ql)2 ◦ (WAl − b1Nl −Y)

)
,

C∑
k=1

W>
(

(Qu
k)2 ◦ (1NuP[k, :])r ◦ (WAu − b1Nu −Yk)

)]
,

where (Ql)2 = Ql ◦Ql, (Qu
k)2 = Qu

k ◦Qu
k . Algorithm 6 is used to solve for problem A.7.

Algorithm 6 Sparse coding by FISTA with backtracking.

Require: X,A0,D,W,b,Y,Yk,LA, β, γ, λ,Q
l,Qu

k .
Initialize: Z0 ← A0, t0 ← 1, τ > 0, η > 1.
for n = 0, 1, ... do
while True do

H← An − τ−1∇fsp2 (An)
Zn+1 ← sign(H) ◦max(|H| − τ−1λ, 0)

if fsp2 (Zn+1) ≤ fsp2 (An) +
〈
Zn+1 −An,∇fsp2 (An)

〉
+ τ

2 ‖Zn+1 −An‖2 then
break

end if
τ ← ητ

end while
tn+1 ← 1+

√
4t2n+1

2

υ ← 1 + tn−1
tn+1

An+1 ← Zn + υ(Zn+1 − Zn)
end for

FISTA with backtracking does not require a Lipschitz coefficient for ∇fsp2 , but anyway, we try

to calculate it to know relatively which factors that step descent depends on. We consider that ‖.‖

is the Euclidean norm. By using these following inequalities that apply for two matrices E and F :

- ‖EF‖ ≤ ‖E‖ ‖F‖,

- ‖E + F‖ ≤ ‖E‖+ ‖F‖,

- ‖E ◦ F‖ ≤ ‖F‖ (if 0 ≤ E ≤ 1),

and note that 0 ≤ Ql,Qu
k , (1

>
Nu

P[k, :])r ≤ 1, we prove that:

‖∇fsp2 (A1)−∇fsp2 (A2)‖

≤ 2‖D>D(A1 −A2)‖+ 2β‖(A1 −A2)LA‖

+ 2γ‖W>‖
∥∥∥∥∥
[
W(Al

1 −Al
2),

C∑
k=1

W(Au
1 −Au

2)

]∥∥∥∥∥
≤ 2‖D>D‖‖A1 −A2‖+ 2β‖A1 −A2‖‖LA‖

+ 2γ‖W>‖‖W‖
C∑
k=1

∥∥[(Al
1 −Al

2), (Au
1 −Au

2)
]∥∥

Appendix A 105

≤ 2
(∥∥D>D

∥∥+ β ‖LA‖+ γC ‖W‖2
)

︸ ︷︷ ︸
K

‖A1 −A2‖

The step size τ in the algorithm 6 is relatively proportional toK−1 = 1
2

(∥∥D>D
∥∥+ β ‖LA‖+ γC ‖W‖2

)−1

.

As we expect to find the maximum possible τ to converge quickly to optimal solution, τ depends

on following factors:

-
∥∥D>D

∥∥, which is good if atoms in dictionary are orthogonal and ‖D‖ is small.

- β ‖LA‖, which is good if energy of Laplacian matrix LA is small.

- γC ‖W‖2, which is good if number of classes C is small or energy of classifier ‖W‖ is small.

In case of using Laplacian-based matrix by LLE, if the number of nearest samples k is too

large or training data point are not regularly sampled from the data distribution, it happens that

a sample j (in the center of data distribution) are always in the neighborhood of other samples

i, therefore V[i, j] = λij is not zero for all i, which means column j of V are not sparse and

‖LA‖ ≈
∥∥V>V

∥∥ becomes large. Then step size τ can be small.

4 Dictionary update

min
D∈C
‖X−DA‖2F + ϕ tr(D>LDD) (A.8)

Let note fdu(D) = ‖X−DA‖2F + ϕ tr(D>LDD). The gradient of fdu is given by:

∇fdu(D) = −2(X−DA)A> + 2ϕL>DD

As in sparse coding, we try to find a Lipschitz coefficient:

‖∇fdu(D1)−∇fdu(D2)‖

=2‖(D1 −D2)AA> + ϕL>D(D1 −D2)‖

≤2‖D1 −D2‖‖AA>‖+ 2ϕ‖L>D‖‖D1 −D2‖

≤ 2
(
‖AA>‖+ ϕ‖L>D‖

)︸ ︷︷ ︸
K

‖D1 −D2‖

Algorithm 7 is used to solve for problem A.8. The step size τ in this algorithm is relatively

proportional to K−1 = 1
2

(
‖AA>‖+ ϕ‖L>D‖

)−1. Therefore, the step size τ relates to
∥∥AA>

∥∥,

106 Appendix A

Algorithm 7 Dictionary update by FISTA with backtracking.
Require: X,A,D0, ϕ,LD.
Initialize: Z0 ← D0, t0 ← 1, τ > 0, η > 1.
for n = 0, 1, ... do
while True do

H← Dn − τ−1∇fdu(Dn)

Zn+1 ← argmin
D∈C

1
2 ‖H−D‖22

if fdu(Zn+1) ≤ fdu(Dn) +
〈
Zn+1 −Dn,∇fdu(Dn)

〉
+ τ

2 ‖Zn+1 −Dn‖2 then
break

end if
τ ← ητ

end while
tn+1 ← 1+

√
4t2n+1

2

υ ← 1 + tn−1
tn+1

Dn+1 ← Zn + υ(Zn+1 − Zn)
end for

which implies that A needs to be sparse, so λ need to be large enough. In our work, if λ is

too small, we use the Dictionary Update algorithm in [Lee et al. 2007] instead of FISTA with

backtracking.

5 Classifier update

min
W,b

γ
(∥∥Ql ◦ (WAl + b1Nl −Y)

∥∥2

F
+

C∑
k=1

∥∥∥Qu
k ◦ (1>NuP[k, :])r/2 ◦ (WAu + b1Nu −Yk)

∥∥∥2

F

)
+ µ(‖W‖2F + ‖b‖22)

(A.9)

We rewrite this problem with more details:

fcu(W) = γ

Nl∑
i=1

C∑
c=1

Ql[c, i]
∥∥w>c ali + bc − yci

∥∥2

2

+ γ

Nu∑
j=1

C∑
k=1

(Pkj)
r
C∑
c=1

Qu
k [c, j]

∥∥w>c auj + bc − ycj(k)
∥∥2

2
+ µ

C∑
c=1

(
‖wc‖22 + b2c

)

Then, as each binary classifier c is independent, we calculate gradient for each one:

∇fcu(ŵc) = 2γ
∑

Ql[c,i]=1

âli
(
âl>i ŵc − yci

)
+ 2γ

∑
Qu
k [c,j]=1

C∑
k=1

(Pkj)
râuj
(
âu>j ŵc − ycj(k)

)
+ 2µŵc,

Appendix A 107

where ŵc =

wc

bc

 , âli =

ali

1

 and âuj =

auj

1

. The optimal binary classifier ŵc is obtained by

solving the first order optimality:

ŵc =

(∑
Ql[c,i]=1

âliâ
l>
i +

∑
Qu
k [c,j]=1

C∑
k=1

(Pkj)
râuj â

u>
j +

µ

γ
I

)−1

(∑
Ql[c,i]=1

âliy
c
i +

∑
Qu
k [c,j]=1

C∑
k=1

(Pkj)
râuj y

c
j(k)

)

We employ function einsum (numpy) to parallelize calculations for all binary classifiers ŵc at

the same time.

6 Sparse coding with epoch and batch

In case of large number of training samples (labelled and unlabelled), we can employ the epoch

and batch strategy to minimize the Sparse Coding problem with single device. For example, we

repeat n epochs for m batches divided from A. Note that only manifold learning loss needs to be

slightly modified since it has the interaction between sparse codes via the matrix LA. We define

U as the set that contains all indices of the training samples, thus U = {1, 2, .., N}. In an epoch,

for each batch i, we select randomly ni training samples (ni ≈ N/m) whose indices are stored in

the set Mi. MC
i is the complement of Mi in U. We rewrite:

tr (ALAA>)

= tr

([
A[:,Mi],A[:,MC

i]
] LA[Mi,Mi] LA[Mi,M

C
i]

LA[Mi,M
C
i]> LA[MC

i ,M
C
i]

 [A[:,Mi],A[:,MC
i]
]>)

= tr

([
Ai,A

C
i]
] LA[ii] LA[iC]

L>A[iC] LA[CC]

 [Ai,A
C
i]
]>)

= tr (AiLA[ii]A
>
i) + 2 tr (AiLA[iC]A

C>
i) + tr (AC

i LA[CC]A
C>
i),

where:

- LA[ii] = LA[Mi,Mi] is a Rni×ni matrix formed by extracting from LA, rows Mi and columns

Mi.

108 Appendix A

- LA[CC] is a R(N−ni)×(N−ni) matrix formed by extracting from LA rows MC
i and columns

MC
i .

- LA[iC] is a R(ni)×(N−ni) matrix formed by extracting from LA rows Mi and columns MC
i .

Then we optimize for each Ai while fixing other batches (AC
i) as in the FISTA method for

Sparse Coding mentioned before but this time we need to adjust the gradient of 2 tr (AiLA[iC]A
C>
i)

in the new ∇fsp2 (in A.3). At the end of a batch, we update the sparse code before performing

next batch. We suggest also evaluating the objective function after each step, as Ql, Qu
k are fixed

in an iteration, the value of objective function must decrease. Since Ql, Qu
k are updated at the

beginning of the next iteration, the objective function can increase slightly, but in general, we must

see something decreases and converges.

7 Parallel training for dictionary learning model

In this section, we provide two strategies to parallelize training stage for DiL model with

multiple devices. We consider here the proposed SSDL method (section III.B with objective

function III.8). The model contains D,W,b,P,Ql,Qu
k . We try to adapt each optimization stage

from A.2 to A.5 and the probability update for parallel training.

We split the whole dataset X, sparse codes A and labels Y,Yk into Nsplit batches, which

means that a batch contains samples, theirs corresponding sparse codes and theirs corresponding

label.

Data parallel : if the memory of each device is enough to stock the model, we clone the model

for each device and associate a batch to a device. The active elements indexed by Ql,Qu
k and

the probability for unlabelled samples P can be updated independently for each batch. In one

iteration of dictionary update (algorithm 7) and in classifier update, we compute independently

each gradient for each batch, then aggregate all gradients before updating dictionary and classifier.

Paralleling sparse coding stage is difficult because of the dependencies between samples, which

is represented by the manifold learning loss 2β tr (ALAA>). We do not really have an efficient

solution for this stage. Our proposition is as follows. For one iteration in algorithm 6, we need to

compute first its gradient: ∇A = 2βALA. Then we split ∇A to Nsplit parts in the same manner as

with the whole dataset and distribute each part to the corresponding device. Now, we can compute

independently each gradient for each batch and update separately sparse codes.

Split model : Now, if the memory of each device is not enough to stock the model, we split the

Appendix A 109

model into Nm parts, which means D,W,b,P,Ql,Qu
k are horizontally split such as:

D =

D1

...

DNm

 W =

W1

...

WNm

 b =

b1

...

bNm

 Ql =

Ql

1

...

Ql
Nm

 Qu
k =

(Qu

k)1

...

(Qu
k)Nm

 (A.10)

Each device now associated to Di,Wi,bi,Pi,Q
l
i, (Q

u
k)i. We split also the whole dataset, sparse

codes and labels into Nsplit batches as in the case of Data parallel. The batches are now processed

one by one, from 1 to Nsplit instead of at the same time in Data parallel. The five optimization

stages are the same as in Data parallel but we reduce:

- The memory required for a device to stock a part of model is divided by Nm.

- Regarding to the memory required to load a batch, in the five stages, the memory required

to load a batch j is also reduced. For the reconstruction loss as described in A.11, only Xij

(instead of Xj) is loaded in device i. In the same manner, for classification loss, only a part

of Y and Yk is loaded in a device.

‖X−DA‖2F =

∥∥∥∥∥∥∥∥∥∥
[
X1 · · · XNsplit

]
−

D1

...

DNm

[
A1 · · · ANsplit

]∥∥∥∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥∥∥∥

X11 · · · X1Nsplit

...
. . .

...

XNmNsplit · · · XNmNsplit

−

D1A1 · · · D1ANsplit

...
. . .

...

DNmA1 · · · DNmANsplit

∥∥∥∥∥∥∥∥∥∥

2

F

=

Nm∑
i=1

Nsplit∑
j=1

‖Xij −DiAj‖2F

(A.11)

8 Pseudo labeling

In short, pseudo labeling consists of methods that create pseudo labels for each unlabelled

sample then use those unlabelled samples as labelled samples to train the model. As opposed to

“real” labels, pseudo labels are updated during the training stage. In this subsection, we first revisit

two methods of Label Propagation (LP), then we present a trick called sharpening which is widely

applied in Pseudo-labeling.

110 Appendix A

8.1 Label Propagation. Label Propagation is a semi-supervised learning method, that can be

used for creating pseudo labels.

x1

x2

x3

x4

x5

x6

T24
T64 = w64∑6

k=1
wk4

T54
T14

T34

T44

x1

x2

x3

x4

x5

x6

T̄65

T̄63

T̄64

T̄62

T̄61

T̄66

Figure A.1: Above: sample x4 as transmitter, weight w is normalized with respect
to each receiver sample. Below: sample x6 as receiver which takes label information
from all samples.

The first Label Propagation method was proposed by [Zhou et al. 2004]. YL ∈ RNl×C

and YU ∈ RNu×C denote label matrix for labelled samples and guessed label matrix for unlabelled

samples respectively. YL[i, j] = 1 if sample xi belongs to class j, otherwise YL[i, j] = 0. YU is

randomly initialized between 0 and 1, then row-normalized. The complete label matrix is defined

as Y =

YL
YU

. Since label information is propagated based on the locality, we must define a matrix

W that measures pairwise similarity between samples:

Wij = exp

(
−‖xi − xj‖

2
2

σ2

)
(A.12)

Then the probabilistic transition matrix T of size N ×N is defined as:

Tij = P (j → i) =
Wij∑N
k=1Wkj

(A.13)

T can be written as T = WD−1, where D is diagonal matrix and Dii =
∑N
k=1Wki. The

Appendix A 111

column-normalization helps a transmitter sample to normalize its influence versus all samples,

including itself, as illustrated in figure A.1 (above). Finally, the Label Propagation algorithm is

described as follows:

1. Propagate Y ← TY

2. Row-normalize Y

3. Reset YL to its initial value.

4. Repeat from step 1 until Y converges.

The step 1 and step 2 can be combined into:

Y ← T̄ Y (A.14)

with T̄ is row-normalization of T such as T̄ = D−1T , where D is diagonal matrix and Dii =∑N
j=1 Tij . The row-normalization helps a receiver to normalize label information sent from all

samples, including itself, as illustrated in figure A.1 (below).

The initialization of rows of YU is not important since it is proven in [Zhou et al. 2004] that

YU always converges to Y ∗U regardless of initialization for YU . Here is the explicit form for Y ∗U :

Y ∗U = (I − T̄uu)−1T̄ulYL (A.15)

where I is an identity matrix and T̄ =

 T̄ll T̄lu

T̄ul T̄uu

. Note that, we use an iterative algorithm

instead of calculating directly Y ∗U because the direct matrix inversion is computationally heavy for

large value of N .

The second Label Propagation was proposed by [Zhou et al. 2004] and is described as

follows:

1. Define Wij = exp(−‖xi − xj‖22 /2σ2) if i 6= j and Wii = 0.

2. Construct the matrix T̄ = D−1/2WD−1/2 where D is diagonal matrix and

Dii =
∑N
j=1Wij .

3. Iterate F ← αT̄F + (1− α)Y until convergence, where α ∈ (0, 1).

F converges to F ∗ given explicitly by

F ∗ = (I − αT̄)−1Y (A.16)

112 Appendix A

In this second version, there are three main points which are different from the first Label

Propagation. Firstly, for probabilistic transition matrix T̄ , instead of using column-normalization

followed by row-normalization from W , T̄ is created by proceeding to a symmetric normalization

of W , which is necessary for the convergence of step 3. This symmetric normalization can be

considered as a mix of column-normalization (by multiplying with D−1/2 on the right) for trans-

mitters and of row-normalization (by multiplying with D−1/2 on the left) for receivers. Secondly,

the labels of the labeled samples might change to fit better the propagation. Finally, F ∗ depends

on the initialization of YU as in equation A.16. In the original paper, authors initialize YU by a

zero matrix.

It is also interesting to observe that matrix F ∗ is the optimal solution for minimizing the

following cost function:

J(F) =
α

2

N∑
i=1

N∑
j=1

T̄ij

∥∥∥∥F [i, :]

Dii
− F [j, :]

Djj

∥∥∥∥2

2

+ (1− α) ‖F − Y ‖2F (A.17)

8.2 Sharpening. This is a trick that helps to sharpen the output distribution of probability

[p1, p2, .., pC]. This distribution is controlled by the activation hyper-parameter r > 1 as follows:

pk =
prk∑C
i=1 p

r
i

(A.18)

In some approaches for classification, if soft-max layer is used, sharpening by equation A.18 is

equivalent to

pk =
exp(z[k])

1
τ∑C

i=1 exp(z[i])
1
τ

(A.19)

where z is normally the hidden representation just before soft-max layer and τ is called temper-

ature and equivalent to 1/r. Figure A.2 shows the effect of sharpening, which increases strong

probabilities and decreases weak probabilities. Note that, sharpening is a double-edged sword,

since it can increase probabilities for wrong pseudo labels.

Appendix A 113

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class

P
ro
ba

bi
lit
y

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class

P
ro
ba

bi
lit
y

Figure A.2: Left: probability before sharpening. Right: probability after sharpen-
ing, the dominant probability (class 1) is significantly increased. In this case the
sharpening factor r = 2 which is equivalent to τ = 0.5.

Appendix B

1 Projection for sum and positive constraint

min
γ∈Rp

1

2
‖κ− γ‖22 ,

subject to : γ1, γ2, .., γp ≥ 0,

γ1 + γ2 + ...+ γp = c, (c > 0).

(B.1)

By using Lagrange multiplier, the above problem becomes:

min
γ,µ∈Rp,λ

1

2

p∑
i=1

‖κi − γi‖22 +λ(

p∑
i=1

γi − c) +

p∑
i=1

µiγi

subject to : µ1, µ2, .., µp ≤ 0

We solve the following system of equations:

γi − κi + λ+ µi = 0∑p
i=1 γi = c

µiγi = 0

µi ≤ 0

γi ≥ 0

⇔

λ = 1
p (
∑p
i=1 κi −

∑p
i=1 µi − c)

γi = κi − 1
p (
∑p
i=1 κi − c)− p−1

p µi + 1
p

∑
j 6=i µj∑p

i=1 γi = c

µiγi = 0

µi ≤ 0

γi ≥ 0

In the case that κi− 1
p (
∑p
i=1 κi− c) < 0. From the second equation, we infer that µi 6= 0 (because

if µi = 0 and µj ≤ 0 as in inequality 5, then γi < 0, in contradiction to inequality 6). From µi 6= 0,

we infer that γi = 0 with equation 4.

116 Appendix B

In the case that κi − 1
p (
∑p
i=1 κi − c) = 0. From the second equation, first if µi = 0 then γi ≤ 0

since µj ≤ 0 as in equation 5. With inequality 6, we infer γi = 0. Second, if µi 6= 0, then we infer

that γi = 0 with equation 4.

Let’s P = {i|κi − 1
p (
∑p
i=1 κi − c) > 0} and N = {i|κi − 1

p (
∑p
i=1 κi − c) ≤ 0}. We find exactly

the same problem as before, but with only active index in the set P.

γi − κi + λ+ µi = 0,∀i ∈ P∑
i∈P γi = c

µiγi = 0,∀i ∈ P

µi ≤ 0,∀i ∈ P

γi ≥ 0,∀i ∈ P

Then we repeat until the constraint satisfaction for γ. For a proof of convergence, as γ has

exactly p elements γi, then each time we project to get a new active set P, we reduce the number

of active elements γi. As the number of active elements is something positive and it decreases, so

it converges. Here is an implementation for multiple κ (κ ∈ RM×p) in pytorch.

de f prox_positive_and_sum_constraint (x , c) :

""" x i s 2−dimens iona l array (M \ times p) """

n = x . s i z e () [1]

k = (c − torch . sum(x , dim=1))/ f l o a t (n)

x_0 = x + k [: , None]

whi l e l en (torch . where (x_0 < 0) [0]) != 0 :

idx_negat ive = torch . where (x_0 < 0)

x_0 [idx_negat ive] = 0 .

one = x_0 > 0

n_0 = one . sum(dim=1)

k_0 =(c − torch . sum(x_0 , dim =1))/ n_0

x_0 = x_0 + k_0 [: , None] ∗ one

return x_0

2 Adversarial examples

An adversarial example for a given ML model is a slightly modified sample which induces

a significantly different model output. For example, in classification problem, despite of high

Appendix B 117

+ =

“panda” (57.7%) “gibbon”(99.3%)

Figure B.1: A demonstration for adversarial example. Left: initial sample. Middle:
adversarial noise. Right: adversarial example. We see that by adding an impercepti-
ble noise, we can change significantly output compared to the one of initial sample.
Source: [Goodfellow et al. 2014b].

accuracy given by neural network models, it has been shown that these models are very sensitive

to a small amplitude calibrated noise, as illustrated in figure B.1. Here is the general objective

function for generating an adversarial example x̃ from a given sample x and model f :

min
x̃
‖x̃− x‖ (B.2)

subject to: argmax
l

f(x̃)[l] 6= argmax
l

f(x)[l]

x̃ ∈ [0, 1]n if x is normalized between 0 and 1.

In the following, we present popular methods for generating adversarial examples.

L-BFGS Attack. This method was introduced in [Szegedy et al. 2014b]. We name it L-BFGS

Attack because it use L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) algorithm

to solve for the following problem, in order to generate an adversarial example:

min
x̃
c ‖x̃− x‖22 + dCE(f(x̃), l′) (B.3)

subject to: x̃ ∈ [0, 1]n

argmax
l

f(x̃)[l] = l′

where: l′ 6= argmax
l

f(x)[l] and c > 0

dCE means cross entropy metric.

It is worth noting that, first problem B.3 is not convex because of the nature of neural network

model f , hence we obtain a local optima. Secondly, the parameter c needs to be tuned in order to

obtain the x̃ that satisfies argmax
l

f(x̃)[l] = l′ and yields a minimum distance from x.

Fast gradient sign method (FGSM). [Goodfellow et al. 2014b] proposed to find noise or

118 Appendix B

perturbation ηi for adding into sample xi as follows:

ηi = εsign(∇xf(xi)[yi]), (B.4)

where ε control the amplitude of noise. This method is fast since it perform only one backward

gradient regarding to xi. In order to make the model f robust to adversarial examples, an obvious

way is to train model f with both labelled samples xi and their adversarial examples xi + ηi.

Iterative-Fast gradient sign method (I-FGSM) As its name, this is an iterative version

of FGSM proposed by [Kurakin et al. 2017] coupled with a clip function:

x̃t+1
i = Clipx,ε

{
x̃ti + αsign(∇xf(x̃ti)[yi])

}
(B.5)

where x̃0
i = xi and t goes from 0 to n_iters (number of iterations). The clip function is used to

guarantee that x̃ is always in a ball of radius of ε centered on x̃ and x̃ takes value between 0 and

1. Here is the explicit form of clip function:

Clipx,ε {x̃} (a, b, c) = min {1, x(a, b, c) + ε,max{0, x(a, b, c)− ε, x̃(a, b, c)}} , (B.6)

where (a, b, c) means for pixel position.

DeepFool [Moosavi-Dezfooli et al. 2015] creates an adversarial example of sample x0 by adding

into x0 a displacement (noise) r. We presented DeepFool in three different settings.

For a binary linear classifier f , where f(x) = w>x + b, the adversarial example of sample x0

is created by first projecting x0 to the hyperplane f(x) = 0 and then continuing a little further to

change strictly the side (class). In this case, the lowest additional noise or the shortest displacement

r is calculated as follows:

r̂(x0) = argmin
‖r‖2

[sign(f(x0))sign(f(x0 + r)) = −1] (B.7)

As a reminder, the distance from a point x0 to the hyperplane f(x) = 0 is calculated by |f(x0)|
‖w‖2

.

We denote Pf (x0) the projection of x0 on f(x) = 0, then r̂(x0) is calculated as

r̂(x0) = Pf (x0)− x0 = −|f(x0)|
‖w‖2

w

‖w‖2
sign(f(x0)) = −f(x0)

‖w‖22
w (B.8)

To make sure that adversarial sample is strictly on the other side of hyperplane, r̂(x0) is

multiplied by (1 + η) where η is small positive real number.

For a binary non-linear classifier f , an iterative process is performed as depicted in algorithm 8,

Appendix B 119

Algorithm 8 DeepFool for binary classifiers
1: input: Sample x0, classifier f .
2: output: Perturbation r̂.
3: Initialize x0

0 ← x0 and i← 0.
4: while sign(f(xi0)) = sign(f(x0)) do
5: ri ← − f(xi0)

‖∇f(xi0)‖22
∇f(xi0),

6: xi+1
0 ← xi0 + ri,

7: i← i+ 1.
8: end while
9: return r̂ =

∑
i ri.

Algorithm 9 DeepFool: multi-class case
1: input: Image x, classifier f .
2: output: Perturbation r̂.
3: Initialize x0

0 ← x0 and i← 0.
4: Set k̂(a) = argmax

k
f(a)[k]

5: while k̂(xi0) = k̂(x0) do
6: for k 6= k̂(x0) do
7: w′k ← ∇f(xi0)[k]−∇f(xi0)[k̂(x0)]

8: f ′k ← f(xi0)[k]− f(xi0)[k̂(x0)]
9: end for

10: l̂← argmin
k 6=k̂(x0)

|f ′k|
‖w′k‖2

11: ri ← |f ′l̂ |
‖w′

l̂
‖22
w′
l̂

12: xi+1
0 ← xi0 + ri

13: i← i+ 1
14: end while
15: return r̂ =

∑
i ri

by replacing w with gradient ∇f(xi0) (line number 5). This algorithm can be seen as Newton’s

iterative algorithm for finding the roots of a nonlinear function. Since Newton’s method depends on

the initial guess x0, theoretically, we may never have a change of sign(f(x0)) (at line 4). However,

in practice, algorithm 8 often converges to a root of f .

For multi-class non-linear classifier f , we explain it through an example with three classes in

figure B.2.

Adversarial attacks can be categorized as targeted and untargeted. For example, L-BFGS is

targeted attack because the class of adversarial example has to be predefined. On the contrary,

FGSM, Deepfool are untargeted attack because adversarial sample x̂ is only required to have a

different label compared to the one of x. Besides, the robustness of a model to adversarial examples

can be assessed using two approaches. On the one hand, in white box attack, the model itself is

used to generate adversarial examples. On the contrary, in black box attack, two models are

needed, one model of which is used for generating adversarial examples to evaluate robustness of

the other model. More methods for generating adversarial examples can be found in two reviews

[Yuan et al. 2017, Wiyatno et al. 2019] and some results about the robustness of model can be

found in [Carlini & Wagner 2017]. Besides adversarial examples, adversarial dropout [Park et al.

2017] intervenes for model parameters.

120 Appendix B

f(x)[1] = 0

x0

f(x)[2] = 0

f(x)[3] = 0

−
+

+ −

−+

F13 : f(x)[1]− f(x)[3] = 0

F12 : f(x)[1]− f(x)[2] = 0

+−

+
−

Figure B.2: An illustration for Deepfool, for C = 3 classes. f()[1], f()[2] and f()[3]
are three outputs (before soft-max layer) of classifier. Three decision boundaries
(one vs all) f(x)[1] = 0, f(x)[2] = 0 and f(x)[3] = 0 are represented by black solid
lines. The signs (+) and (−) mean positive side and negative side of a decision
boundary. F12 (blue line) and F13 (green line) represent respectively the decision
boundary (one vs one) f(x)[1]− f(x)[2] = 0 and the decision boundary (one vs one)
f(x)[1]− f(x)[3] = 0. x0 is assumed to belong to class 1 with f(x0)[1] > f(x0)[2] and
f(x0)[1] > f(x0)[3]. For generating adversarial example of x0, in principle, Deepfool
projects x0 to decision boundaries F12 and F13, then retains the projection of x0 that
gives the shorter distance. However, in practice, since f() is non-linear, finding these
projections are not trivial. A workaround, would be to use algorithm 8 (DeepFool
for binary classifiers) to find displacement r̂(x0) w.r.t each decision boundary (one vs
one) F12 and F13 and then use the shortest r̂(x0). Algorithm 9 (DeepFool: multi-class
case) follows this idea with little twist: at the end of each iteration, xi0 is updated by

the shortest distance |f
′
k|

‖w′k‖2
(line 10 to 12), in order to reduce the computational cost.

Appendix B 121

3 Hyper-parameters

3.1 Robustness to adversarial examples. Hyper-parameters : optimizer =Momentum (torch.optim.SGD),

number of epochs = 300, learning rate = 0.1, momentum = 0.9, learning rate is reduce by lr = 0.1lr

after each 75 epochs, batch size = 200, weight decay = 0.0001.

3.2 Semi-supervised manifold attack. Hyper-parameters : optimizer = Adam, number of

epochs = 1024, learning rate = 0.002, α = 0.75, batch size labelled = batch size unlabelled = 64,

T = 0.5 (in sharpening), λ = 75 (linearly ramp up from 0), EMA = 0.999 , error validation after

1024 batchs.

To reproduce an experiment, we define function seed_ as:

de f seed_ (p) :

""" f o r r ep roduc t ive """

torch . manual_seed (p)

np . random . seed (p)

random . seed (p)

i f torch . cuda . i s_ava i l ab l e () :

torch . cuda . manual_seed (p)

torch . backends . cudnn . d e t e rm i n i s t i c = True

torch . backends . cudnn . benchmark = False

re turn 0

The four experiment 1,2,3,4 in table IV.4 are launched with respectively seed_(0), seed_(1),

seed_(2), seed_(3).

In Mix-up Attack, n_iters is fixed at 1. In dataset CIFAR-10, ξ starts at 0.1 and decreases

linearly to 0.01 after 1024 epochs. In dataset SVHN, ξ starts at 0.1 and decreases linearly to 0.01

after 1024 epochs for seed_(0) and seed_(3); ξ starts at 0.1 and decreases linearly to 0.001 after

1024 epochs for seed_(2); ξ starts at 0.01 and decreases linearly to 0.001 after 1024 epochs for

seed_(1).

4 Parallel programming

By introducing attack stages, we analyse the additional cost via execution time. In a batch

training (without attack stage), execution time can be decomposed into: loading time (loading

122 Appendix B

data into a batch + pre-processing . . .) and working time (loss forward calculating + gradient

back propagation). When introducing attack stage, via our experiments, execution time becomes:

loading time + working time × (n_iters + 1). Since working time is usually much greater than

loading time and it is multiplied by (n_iters + 1), we need to consider to parallel programming

in case of using large value n_iters. We present in this section some basic strategies that can be

applied for almost deep NNMs to reduce the working time: Data Parallel and Model Parallel.

4.1 Data Parallel. We clone the whole model for each device (GPU), then we split the input

batch into Nm sub-batches, where Nm is the number of devices. Each sub-batch is treated by

a device and the model parameters are updated by aggregating all backward gradients. The

algorithm is simple and the memory balance among devices are the advantage of this method. But

it is not useful for large models (in term of parameters) because we lose in each device a lot of

memory to stock a cloned model. This implies maybe a limit for the size of a sub-batch, which is

loaded in each device. Moreover, if devices are not in the same node, it requires a communication

protocol between nodes. The multi-process mode is eventually required if we want to customize

actions (transfer, receive, wait ...) between devices.

1 1 2 2
1 1 2 2

1 1 2 2
1 1 2 2

device 1
device 2
device 3
device 4

−−−−−−−−−−−−−−−→
Time (t)

i sub-batch ID Idle Forward Backward

Figure B.3: Naive sequential. Source: [Harlap et al. 2018]

4.2 Model Parallel. In this method, we split both the model and the input batch. The model is

split into Nm pipelining model parts and the input batch is split into Nsplit sub-batches. Each part

of model is associated to a device. By splitting the model, this method can deal with a large model,

specially in the case that the required memory for the model is greater than the own memory of

each device. Figure B.3 shows a naive sequential for split model training with 4 devices. In forward

pass, at t = 1, the first sub-batch is loaded and processed in device 1 while other devices are idle.

Then at t = 2, output of device 1 is passed to device 2 where it is processed while all devices are

idle except device 2, and so on. In backward pass, it is exactly the same thing as in forward pass,

but we start from device 4. Next, the process continues with the second sub-batch and so on.

Until here, there is nothing parallel and each device is idle in the most of training time. [Harlap

Appendix B 123

1 2 3 4 1 5 2 6 3 7 4 8 5
1 2 3 4 1 2 5 3 6 4 7 5 8

1 2 3 1 4 2 3 5 4 6 5 7 6
1 1 2 2 3 3 4 4 5 5 6 6 7

device 1
device 2
device 3
device 4

−−−−−−−−−−−−−−−→
Time (t)

i sub-batch ID Idle Forward Backward

Figure B.4: PipeDream. The stability is established from time = 10, where there is
no more idle device. Source: [Harlap et al. 2018].

et al. 2018] propose a model parallel method called PipeDream to make use of all devices at the

same time (an illustration is showed in figure B.4). Now, sub-batches are loaded in a streaming

way. After the startup state until t = 9, we pass in the steady stage where all devices are employed.

A device performs alternatively between forward and backward pass. In spite of a good working

strategy, PipeDream and other methods of Model Parallel must overcome two main issues to attain

the optimal configuration: computation balance and memory balance. Since model is split into

many parts and these parts are not the similar (different types of layer, different number of layers,

different number of parameters. . .), then computational time and used memory is not the same

across devices. No computation balance leads to additional waiting times, maybe all devices need

to wait for only one device.

Furthermore, the optimal time for Model Parallel is known as being sensitive sensible to the

number of sub-batches Nsplit. Using a small Nsplit leads to many time steps, while using a large

Nsplit results intuitively to a long waiting time among devices, because absolute computation

balance is impossible. In a short conclusion, user must understand deeply about the used model’s

architecture to perform pertinent splittings on the model and on a batch.

4.3 Discussion about parallel training. In general, there are two popular types for parallel

programming in DeL field: Data Parallel and Model Parallel. For both two types, we need to

consider the following issue in parallel training, the dependencies between samples. This means

that in an approach, there are interactions between samples, e.g, the batch normalization layer

[Ioffe & Szegedy 2015]. The latter requires mean and variance of all samples in a batch. For

Data Parallel, they can be inferred from all sub-batch means and variances, but the process in

each device needs to be synchronized in this layer (wait for all arrivals and communicate among

them for the batch mean and variance), before continuing with the the next layer. Note that, in

a batch normalization layer, the mean and variance need to be stocked in each device to use for

backward propagation. On the contrary, for Model Parallel and particularly PipeDream, having

124 Appendix B

mean and variance of all samples in a batch is really impossible since a sub-batch may achieve its

mission before the arrival of other one, e.g. sub-batches 1 and 5 in figure B.4. If we do not pay

attention, the dependencies between samples is one of the causes that imply the difference between

the normal training and parallel training.

In conclusion, Data Parallel is much less complicated and faster than Model Parallel. In addi-

tion, it can deal with the dependencies between samples. However, Data Parallel is not optimal

in term of memory using, because the whole model needs to be cloned in each device. On the

other hand, Model Parallel can give a better use of memory, but it is much more complicated

and requires an in-depth knowledge about model architecture to attain the optimal configuration

(computation balance and memory balance). Inspired by parallel programming for DeL models,

we try to propose the same thing for DiL model in A.7.

5 System of index for anchor points

Let consider the following problem for calculating the gradient backward in attack stage, to

update the coefficient γ :

∇γLt
(
{g(γk1 zk1 + γk2 zk2 + ..+ γppz

k
p)|k = 1, ..,M}

)
(B.9)

Then the memory needed to reserve anchor points is equivalent to M × p samples. If anchor

points are sampled from data samples, we denote :

- Xb ∈ RNb×K×H×W , input batch (images), where Nb is number of inputs in a batch, K,H,W

are respectively number of channel, height and width.

- M ∈ RNb×M , index matrix (or mask matrix) for M sets of anchor points. M[i, k] =
1 if sample i of Xb is an anchor point in set k,

0 otherwise.

- Γ ∈ RNb×M , coefficients associated to each input (in a column), and M is the number of sets

of anchor points. Γ is initialized as follows : Γ = 0Nb×M , Γ[M[:, k], k] = γk, k = 1, ..,M .

The system of index for anchor points is performed by einsum function and by a mask matrix

M. Then all virtual points are inferred by :

einsum(“NbKHW,NbM →MKHW”,Xb,Γ) (B.10)

Appendix B 125

Then we update Γ by the corresponding gradient by mask matrix M :

Γ← Γ +∇ΓLt(Γ) ◦M

Γ[M[:, k], k]← Πps(Γ[M[:, k], k]), k = 1, ..,M

(B.11)

In short, by using einsum function, the memory needed is reduced fromM×p samples equivalent

to Nb samples equivalent (two supplement matrices Γ,M ∈ RNb×M are negligible compared to Nb

samples equivalent). Not that, usually M is approximated to Nb then, we reduce p times the

memory needed.

Bibliography

[Aharon et al. 2006] Aharon, M., Elad, M., and Bruckstein, A. (2006). K-svd: An algorithm for

designing overcomplete dictionaries for sparse representation. Trans. Sig. Proc., 54(11):4311–

4322.

[Ahmed et al. 1974] Ahmed, N., Natarajan, T., and Rao, K. R. (1974). Discrete cosine transform.

IEEE Transactions on Computers, C-23(1):90–93.

[Alemi 2016] Alemi, A. (2016). Improving Inception and Image Classification in TensorFlow.

https://ai.googleblog.com/2016/08/improving-inception-and-image.html.

[Ba et al. 2016] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

[Babagholami-Mohamadabadi et al. 2013] Babagholami-Mohamadabadi, B., Zarghami, A.,

Zolfaghari, M., and Baghshah, M. S. (2013). Pssdl: Probabilistic semi-supervised dictionary

learning. In Machine Learning and Knowledge Discovery in Databases, pages 192–207, Berlin,

Heidelberg. Springer Berlin Heidelberg.

[Bahdanau et al. 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation

by jointly learning to align and translate.

[Beck & Teboulle 2009] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding

algorithm for linear inverse problems. SIAM J. Img. Sci., 2(1):183–202.

[Belkin & Niyogi 2003] Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality

reduction and data representation. Neural Computation, 15:1373–1396.

[Berthelot et al. 2019a] Berthelot, D., Carlini, N., Cubuk, E. D., Kurakin, A., Sohn, K., Zhang,

H., and Raffel, C. (2019a). Remixmatch: Semi-supervised learning with distribution alignment

and augmentation anchoring.

[Berthelot et al. 2019b] Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., and

Raffel, C. (2019b). Mixmatch: A holistic approach to semi-supervised learning.

https://ai.googleblog.com/2016/08/improving-inception-and-image.html

128 Bibliography

[Blumensath & Davies 2008] Blumensath, T. and Davies, M. E. (2008). Iterative thresholding for

sparse approximations. Journal of Fourier Analysis and Applications, 14(5):629–654.

[Boyd et al. 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed

optimization and statistical learning via the alternating direction method of multipliers. Found.

Trends Mach. Learn., 3(1):1–122.

[Boyd & Vandenberghe 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cam-

bridge University Press.

[Bühlmann 2004] Bühlmann, P. (2004). Bagging, boosting and ensemble methods. Papers 2004,31,

Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).

[Candès 1998] Candès, E. J. (1998). Ridgelets: Theory and applications. In PhD thesis.

[Candès & Donoho 2000] Candès, E. J. and Donoho, D. (2000). Curvelets - a surprisingly effective

nonadaptive representation for objects with edges. Curves and Surfaces.

[Carlini & Wagner 2017] Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness

of neural networks.

[Chapelle et al. 2006] Chapelle, O., Schölkopf, B., and Zien, A. (2006). Semi-Supervised Learning

(Adaptive Computation and Machine Learning). The MIT Press.

[Chen & Yang 2017] Chen, L. and Yang, M. (2017). Semi-supervised dictionary learning with label

propagation for image classification. Computational Visual Media, 3:83–94.

[Chen & Guestrin 2016] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting

system. CoRR, abs/1603.02754.

[Chen et al. 2020] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple frame-

work for contrastive learning of visual representations.

[Chollet 2016] Chollet, F. (2016). Xception: Deep learning with depthwise separable convolutions.

[Coates & Ng 2011] Coates, A. and Ng, A. (2011). The importance of encoding versus training

with sparse coding and vector quantization. In ICML.

[Combettes & Pesquet 2009] Combettes, P. L. and Pesquet, J.-C. (2009). Proximal Splitting Meth-

ods in Signal Processing. ArXiv e-prints.

[Dean et al. 2018] Dean, J., Patterson, D., and Young, C. (2018). A new golden age in computer

architecture: Empowering the machine-learning revolution. IEEE Micro, 38(2):21–29.

Bibliography 129

[Deng et al. 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Ima-

genet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision

and pattern recognition, pages 248–255. Ieee.

[Doersch et al. 2015] Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsupervised visual repre-

sentation learning by context prediction.

[Dong et al. 2016] Dong, X., Thanou, D., Frossard, P., and Vandergheynst, P. (2016). Learning

laplacian matrix in smooth graph signal representations. IEEE Transactions on Signal Process-

ing, 64(23):6160–6173.

[Dosovitskiy et al. 2014] Dosovitskiy, A., Fischer, P., Springenberg, J. T., Riedmiller, M., and

Brox, T. (2014). Discriminative unsupervised feature learning with exemplar convolutional

neural networks.

[Dozat 2016] Dozat, T. (2016). Incorporating nesterov momentum into adam.

[Duchi et al. 2011] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159.

[Efron et al. 2004] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle

regression. Annals of Statistics, 32:407–499.

[Elad & Aharon 2006] Elad, M. and Aharon, M. (2006). Image denoising via learned dictionaries

and sparse representation. In 2006 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’06), volume 1, pages 895–900. IEEE.

[Elhamifar & Vidal 2012] Elhamifar, E. and Vidal, R. (2012). Sparse subspace clustering: Algo-

rithm, theory, and applications. CoRR, abs/1203.1005.

[Engan et al. 1999] Engan, K., Aase, S. O., and Hakon Husoy, J. (1999). Method of optimal

directions for frame design. In Proceedings of the Acoustics, Speech, and Signal Processing,

1999. On 1999 IEEE International Conference - Volume 05, ICASSP ’99, pages 2443–2446,

Washington, DC, USA. IEEE Computer Society.

[Ester et al. 1996] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based

algorithm for discovering clusters in large spatial databases with noise. pages 226–231. AAAI

Press.

130 Bibliography

[Fei-Fei & Perona 2005] Fei-Fei, L. and Perona, P. (2005). A bayesian hierarchical model for learn-

ing natural scene categories. In 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05), volume 2, pages 524–531 vol. 2.

[Figueiredo et al. 2007] Figueiredo, M. A. T., Nowak, R. D., and Wright, S. J. (2007). Gradi-

ent projection for sparse reconstruction: Application to compressed sensing and other inverse

problems. IEEE Journal of Selected Topics in Signal Processing, 1(4):586–597.

[Fukushima 1980] Fukushima, K. (1980). Neocognitron: a self organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics,

36(4):193—202.

[Gangeh et al. 2015] Gangeh, M. J., Farahat, A. K., Ghodsi, A., and Kamel, M. S. (2015). Super-

vised dictionary learning and sparse representation-a review. arXiv preprint arXiv:1502.05928.

[Gangeh et al. 2010] Gangeh, M. J., Sørensen, L., Shaker, S. B., Kamel, M. S., de Bruijne, M.,

and Loog, M. (2010). A texton-based approach for the classification of lung parenchyma in

ct images. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010,

pages 595–602, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Georghiades et al. 2001] Georghiades, A., Belhumeur, P., and Kriegman, D. (2001). From few to

many: Illumination cone models for face recognition under variable lighting and pose. IEEE

Trans. Pattern Anal. Mach. Intelligence, 23(6):643–660.

[Ghiasi et al. 2018] Ghiasi, G., Lin, T., and Le, Q. V. (2018). Dropblock: A regularization method

for convolutional networks. CoRR, abs/1810.12890.

[Gidaris et al. 2018] Gidaris, S., Singh, P., and Komodakis, N. (2018). Unsupervised representation

learning by predicting image rotations.

[Goodfellow et al. 2014a] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,

D., Ozair, S., Courville, A., and Bengio, Y. (2014a). Generative adversarial nets. In Proceedings

of the 27th International Conference on Neural Information Processing Systems - Volume 2,

NIPS’14, page 2672–2680, Cambridge, MA, USA. MIT Press.

[Goodfellow et al. 2014b] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b). Explaining and

harnessing adversarial examples.

[Grandvalet & Bengio 2004] Grandvalet, Y. and Bengio, Y. (2004). Semi-supervised learning by

entropy minimization. volume 17.

Bibliography 131

[Hale et al. 2007] Hale, E. T., Yin, W., and Zhang, Y. (2007). A Fixed-Point Continuation Method

for l1 -Regularized Minimization with Applications to Compressed Sensing. Technical report,

Rice University.

[Harlap et al. 2018] Harlap, A., Narayanan, D., Phanishayee, A., Seshadri, V., Devanur, N. R.,

Ganger, G. R., and Gibbons, P. B. (2018). Pipedream: Fast and efficient pipeline parallel DNN

training. CoRR, abs/1806.03377.

[He et al. 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image

recognition. CoRR, abs/1512.03385.

[He et al. 2005] He, X., Yan, S., Hu, Y., Niyogi, P., and Zhang, H.-J. (2005). Face recognition

using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell., 27(3):328–340.

[Hinton & Roweis 2003] Hinton, G. and Roweis, S. (2003). Stochastic neighbor embedding. Ad-

vances in neural information processing systems, 15:833–840.

[Hinton et al.] Hinton, G., Srivastava, N., and Swersky, K. Lecture 6a Overview of mini-batch

gradient descent. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_

lec6.pdf.

[Hjort 1990] Hjort, N. L. (1990). Nonparametric bayes estimators based on beta processes in

models for life history data. Ann. Statist., 18(3):1259–1294.

[Hochreiter & Schmidhuber 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term

memory. Neural Comput., 9(8):1735–1780.

[Howard et al. 2017] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,

T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks

for mobile vision applications.

[Hu et al. 2017] Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2017). Squeeze-and-excitation

networks.

[Huang et al. 2016] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2016). Densely

connected convolutional networks.

[hyun Lee 2013] hyun Lee, D. (2013). Pseudo-label: The simple and efficient semi-supervised

learning method for deep neural networks.

[Ioffe & Szegedy 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep

network training by reducing internal covariate shift. CoRR, abs/1502.03167.

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

132 Bibliography

[Iscen et al. 2019] Iscen, A., Tolias, G., Avrithis, Y., and Chum, O. (2019). Label propagation for

deep semi-supervised learning.

[Jenatton et al. 2010] Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2010). Proximal

methods for sparse hierarchical dictionary learning. In Proceedings of the 27th International

Conference on International Conference on Machine Learning, ICML’10, page 487–494, Madi-

son, WI, USA. Omnipress.

[Jianchao Yang et al. 2009] Jianchao Yang, Kai Yu, Yihong Gong, and Huang, T. (2009). Linear

spatial pyramid matching using sparse coding for image classification. In 2009 IEEE Conference

on Computer Vision and Pattern Recognition, pages 1794–1801.

[Jiang et al. 2013] Jiang, Z., Lin, Z., and Davis, L. S. (2013). Label consistent k-svd: Learning a

discriminative dictionary for recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(11):2651–2664.

[Jutten & Herault 1991] Jutten, C. and Herault, J. (1991). Blind separation of sources, part i: An

adaptive algorithm based on neuromimetic architecture. Signal processing, 24(1):1–10.

[Ke et al. 2019] Ke, Z., Wang, D., Yan, Q., Ren, J., and Lau, R. W. H. (2019). Dual student:

Breaking the limits of the teacher in semi-supervised learning.

[Kim et al. 2007] Kim, S. J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D. (2007). An interior-

point method for large-scale ell1-regularized least squares. IEEE Journal of Selected Topics in

Signal Processing, 1(4):606–617.

[Kingma & Ba 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimiza-

tion.

[Kingma et al. 2014] Kingma, D. P., Rezende, D. J., Mohamed, S., and Welling, M. (2014). Semi-

supervised learning with deep generative models.

[Kingma & Welling 2013] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.

[Kolesnikov et al. 2019] Kolesnikov, A., Zhai, X., and Beyer, L. (2019). Revisiting self-supervised

visual representation learning.

[Kong & Wang 2012] Kong, S. and Wang, D. (2012). A dictionary learning approach for classifi-

cation: Separating the particularity and the commonality. In Computer Vision – ECCV 2012,

pages 186–199, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bibliography 133

[Krizhevsky et al. 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classi-

fication with deep convolutional neural networks. In Advances in Neural Information Processing

Systems 25, pages 1097–1105. Curran Associates, Inc.

[Krogh & Hertz 1992] Krogh, A. and Hertz, J. A. (1992). A simple weight decay can improve

generalization. In Advances in Neural Information Processing Systems 4, pages 950–957. Morgan-

Kaufmann.

[Kruskal & Wish 1978] Kruskal, J. and Wish, M. (1978). Multidimensional Scaling. Sage Publi-

cations.

[Kurakin et al. 2017] Kurakin, A., Goodfellow, I., and Bengio, S. (2017). Adversarial examples in

the physical world.

[Kurita 2018] Kurita, K. (2018). An Overview of Normalization Methods in Deep Learn-

ing. https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-

deep-learning/#:~:text=Instance.

[Laine & Aila 2016] Laine, S. and Aila, T. (2016). Temporal ensembling for semi-supervised learn-

ing. CoRR, abs/1610.02242.

[Lanusse et al. 2017] Lanusse, F., Ma, Q., Li, N., Collett, T. E., Li, C.-L., Ravanbakhsh, S.,

Mandelbaum, R., and Póczos, B. (2017). Cmu deeplens: deep learning for automatic image-

based galaxy–galaxy strong lens finding. Monthly Notices of the Royal Astronomical Society,

473(3):3895–3906.

[Lecun et al. 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[LeCun et al. 2010] LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit

database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2.

[Lee et al. 2007] Lee, H., Battle, A., Raina, R., and Ng, A. Y. (2007). Efficient sparse coding

algorithms. In Advances in Neural Information Processing Systems 19. MIT Press, Cambridge,

MA.

[Long et al. 2014] Long, J., Shelhamer, E., and Darrell, T. (2014). Fully convolutional networks

for semantic segmentation.

[MacQueen 1967] MacQueen, J. (1967). Some methods for classification and analysis of multivari-

ate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/#:~:text=Instance
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/#:~:text=Instance

134 Bibliography

and Probability, Volume 1: Statistics, pages 281–297, Berkeley, Calif. University of California

Press.

[Mairal et al. 2014] Mairal, J., Bach, F., and Ponce, J. (2014). Sparse modeling for image and

vision processing. Found. Trends. Comput. Graph. Vis., 8(2-3):85–283.

[Mairal et al. 2009a] Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009a). Online dictionary

learning for sparse coding. In Proceedings of the 26th Annual International Conference on

Machine Learning, ICML ’09, pages 689–696, New York, NY, USA. ACM.

[Mairal et al. 2008] Mairal, J., Elad, M., and Sapiro, G. (2008). Sparse representation for color

image restoration. IEEE Transactions on Image Processing, 17(1):53–69.

[Mairal et al. 2009b] Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., and Bach, F. R. (2009b).

Supervised dictionary learning. In Advances in Neural Information Processing Systems 21, pages

1033–1040. Curran Associates, Inc.

[Mallat 2008] Mallat, S. (2008). A Wavelet Tour of Signal Processing, Third Edition: The Sparse

Way. Academic Press, Inc., USA, 3rd edition.

[Mallat & Zhang 1993] Mallat, S. G. and Zhang, Z. (1993). Matching pursuits with time-frequency

dictionaries. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 41:3397–3415.

[Martinez & Benavente 1998] Martinez, A. M. and Benavente, R. (1998). The ar face database.

CVC Technical Report No. 24.

[Matiz & Barner 2016] Matiz, S. and Barner, K. E. (2016). Label consistent recursive least squares

dictionary learning for image classification. In 2016 IEEE International Conference on Image

Processing (ICIP), pages 1888–1892.

[Meyer 1993] Meyer, Y. (1993). Wavelets and Operators, volume 1 of Cambridge Studies in Ad-

vanced Mathematics. Cambridge University Press.

[Milletari et al. 2016] Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V-net: Fully convolu-

tional neural networks for volumetric medical image segmentation.

[Miyato et al. 2017] Miyato, T., ichi Maeda, S., Koyama, M., and Ishii, S. (2017). Virtual adver-

sarial training: A regularization method for supervised and semi-supervised learning.

[Moosavi-Dezfooli et al. 2015] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2015). Deep-

fool: a simple and accurate method to fool deep neural networks.

Bibliography 135

[Morgan & Bourlard 1990] Morgan, N. and Bourlard, H. (1990). Generalization and parameter

estimation in feedforward nets: Some experiments. InAdvances in Neural Information Processing

Systems 2, pages 630–637. Morgan-Kaufmann.

[Nair et al. 2019] Nair, V., Alonso, J. F., and Beltramelli, T. (2019). Realmix: Towards realistic

semi-supervised deep learning algorithms.

[Nair & Hinton 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th International Conference on International Con-

ference on Machine Learning, ICML’10, page 807–814, Madison, WI, USA. Omnipress.

[Needell & Vershynin 2007] Needell, D. and Vershynin, R. (2007). Uniform uncertainty principle

and signal recovery via regularized orthogonal matching pursuit.

[Nesterov 1983] Nesterov, Y. (1983). A method for unconstrained convex minimization problem

with the rate of convergence o(1/k2).

[Ngolè Mboula et al. 2014] Ngolè Mboula, F. M., Starck, J. L., Ronayette, S., Okumura, K., and

Amiaux, J. (2014). Super-resolution method using sparse regularization for point-spread function

recovery. CoRR, abs/1410.7679.

[Noroozi & Favaro 2016] Noroozi, M. and Favaro, P. (2016). Unsupervised learning of visual rep-

resentations by solving jigsaw puzzles.

[Oliver et al. 2018] Oliver, A., Odena, A., Raffel, C., Cubuk, E. D., and Goodfellow, I. J. (2018).

Realistic evaluation of deep semi-supervised learning algorithms.

[Olshausen & Field 1996] Olshausen, B. and Field, D. (1996). Emergence of simple-cell receptive

field properties by learning a sparse code for natural images. Nature, 381:607–9.

[Ouali et al. 2020] Ouali, Y., Hudelot, C., and Tami, M. (2020). An overview of deep semi-

supervised learning.

[Oudeyer et al. 2007] Oudeyer, P., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation

systems for autonomous mental development. IEEE Transactions on Evolutionary Computation,

11(2):265–286.

[Park et al. 2017] Park, S., Park, J.-K., Shin, S.-J., and Moon, I.-C. (2017). Adversarial dropout

for supervised and semi-supervised learning.

136 Bibliography

[Pati et al. 1993] Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. (1993). Orthogonal match-

ing pursuit: Recursive function approximation with applications to wavelet decomposition. In

in Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and

Computers, pages 1–3.

[Pearson 1901] Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points

in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

2(11):559–572.

[Pereyra et al. 2017] Pereyra, G., Tucker, G., Chorowski, J., Łukasz Kaiser, and Hinton, G. (2017).

Regularizing neural networks by penalizing confident output distributions.

[Pham & Venkatesh 2008] Pham, D. and Venkatesh, S. (2008). Joint learning and dictionary con-

struction for pattern recognition. In 2008 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8.

[Prechelt 1997] Prechelt, L. (1997). Automatic early stopping using cross validation: Quantifying

the criteria. Neural Networks, 11:761–767.

[Qian 1999] Qian, N. (1999). On the momentum term in gradient descent learning algorithms.

Neural Netw., 12(1):145–151.

[Radford et al. 2016] Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation

learning with deep convolutional generative adversarial networks.

[Ramirez et al. 2010] Ramirez, I., Sprechmann, P., and Sapiro, G. (2010). Classification and clus-

tering via dictionary learning with structured incoherence and shared features. In 2010 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition(CVPR), volume 00,

pages 3501–3508.

[Rasmus et al. 2015] Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. (2015).

Semi-supervised learning with ladder networks.

[Ratner et al. 2019] Ratner, A., Varma, P., Hancock, B., Ré, C., and other members of Hazy Lab

(2019). Weak Supervision: A New Programming Paradigm for Machine Learning. http://ai.

stanford.edu/blog/weak-supervision/.

[Reddi et al. 2019] Reddi, S. J., Kale, S., and Kumar, S. (2019). On the convergence of adam and

beyond.

http://ai.stanford.edu/blog/weak-supervision/
http://ai.stanford.edu/blog/weak-supervision/

Bibliography 137

[Reinhold 2019] Reinhold, J. (2019). Dropout on convolutional layers is weird. https://

towardsdatascience.com/dropout-on-convolutional-layers-is-weird-5c6ab14f19b2.

[Robert et al. 2018] Robert, T., Thome, N., and Cord, M. (2018). Hybridnet: Classification and

reconstruction cooperation for semi-supervised learning.

[Ronneberger et al. 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional

networks for biomedical image segmentation.

[Roweis & Saul 2000] Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by

locally linear embedding. SCIENCE, 290:2323–2326.

[Rubinstein et al. 2013] Rubinstein, R., Peleg, T., and Elad, M. (2013). Analysis k-svd: A

dictionary-learning algorithm for the analysis sparse model. IEEE Transactions on Signal Pro-

cessing, 61(3):661–677.

[Ruder 2017] Ruder, S. (2017). An overview of gradient descent optimization algorithms.

[Salimans & Kingma 2016] Salimans, T. and Kingma, D. P. (2016). Weight normalization: A

simple reparameterization to accelerate training of deep neural networks.

[Sandler et al. 2018] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018).

Mobilenetv2: Inverted residuals and linear bottlenecks.

[Sangdoo et al. 2019] Sangdoo, Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. (2019).

Cutmix: Regularization strategy to train strong classifiers with localizable features. CoRR,

abs/1905.04899.

[Santurkar et al. 2019] Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2019). How does batch

normalization help optimization?

[Schapire 1999] Schapire, R. E. (1999). A brief introduction to boosting. In Proceedings of the 16th

International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’99, page 1401–1406,

San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Shorten & Khoshgoftaar 2019] Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image

data augmentation for deep learning. Journal of Big Data, 6:1–48.

[Shrivastava et al. 2012] Shrivastava, A., Pillai, J. K., Patel, V. M., and Chellappa, R. (2012).

Learning discriminative dictionaries with partially labeled data. In 2012 19th IEEE International

Conference on Image Processing, pages 3113–3116.

https://towardsdatascience.com/dropout-on-convolutional-layers-is-weird-5c6ab14f19b2
https://towardsdatascience.com/dropout-on-convolutional-layers-is-weird-5c6ab14f19b2

138 Bibliography

[Simonyan & Zisserman 2014] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition.

[Skretting & Engan 2010] Skretting, K. and Engan, K. (2010). Recursive least squares dictionary

learning algorithm. IEEE Transactions on Signal Processing, 58(4):2121–2130.

[Sohn et al. 2020] Sohn, K., Berthelot, D., Li, C.-L., Zhang, Z., Carlini, N., Cubuk, E. D., Kurakin,

A., Zhang, H., and Raffel, C. (2020). Fixmatch: Simplifying semi-supervised learning with

consistency and confidence.

[Springenberg 2016] Springenberg, J. T. (2016). Unsupervised and semi-supervised learning with

categorical generative adversarial networks.

[Srivastava et al. 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdi-

nov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(56):1929–1958.

[Starck et al. 2007] Starck, J., Fadili, J., and Murtagh, F. (2007). The undecimated wavelet de-

composition and its reconstruction. IEEE Transactions on Image Processing, 16(2):297–309.

[Starck et al. 2002] Starck, J.-L., Candès, E. J., and Donoho, D. L. (2002). The curvelet transform

for image denoising. IEEE Transactions on Image Processing, 11(6):670–684.

[Stutz 2016] Stutz, D. (2016). Tikz CNN. https://github.com/davidstutz/latex-resources/

blob/master/tikz-cnn/cnn.tex.

[Sugiyama 2007] Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by

local fisher discriminant analysis. J. Mach. Learn. Res., 8:1027–1061.

[Szegedy et al. 2016] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. (2016). Inception-v4,

inception-resnet and the impact of residual connections on learning.

[Szegedy et al. 2014a] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D.,

Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014a). Going deeper with convolutions. CoRR,

abs/1409.4842.

[Szegedy et al. 2015] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015). Re-

thinking the inception architecture for computer vision.

[Szegedy et al. 2014b] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow,

I., and Fergus, R. (2014b). Intriguing properties of neural networks.

https://github.com/davidstutz/latex-resources/blob/master/tikz-cnn/cnn.tex
https://github.com/davidstutz/latex-resources/blob/master/tikz-cnn/cnn.tex

Bibliography 139

[Tan et al. 2018] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le,

Q. V. (2018). Mnasnet: Platform-aware neural architecture search for mobile.

[Tan & Le 2019] Tan, M. and Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convo-

lutional neural networks.

[Tang et al. 2019] Tang, W., Panahi, A., Krim, H., and Dai, L. (2019). Analysis dictionary learn-

ing based classification: Structure for robustness. IEEE Transactions on Image Processing,

28(12):6035–6046.

[Tarvainen & Valpola 2017] Tarvainen, A. and Valpola, H. (2017). Weight-averaged consistency

targets improve semi-supervised deep learning results. CoRR, abs/1703.01780.

[Tibshirani 1996] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

[Tran et al. 2018] Tran, N.-T., Bui, T.-A., and Cheung, N.-M. (2018). Dist-gan: An improved gan

using distance constraints.

[Tran 2019] Tran, P. V. (2019). Exploring self-supervised regularization for supervised and semi-

supervised learning.

[Ulyanov et al. 2016] Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. (2016). Instance normaliza-

tion: The missing ingredient for fast stylization. CoRR, abs/1607.08022.

[Valpola 2014] Valpola, H. (2014). From neural pca to deep unsupervised learning.

[van der Maaten & Hinton 2008] van der Maaten, L. and Hinton, G. (2008). Visualizing high-

dimensional data using t-sne. Journal of Machine Learning Research, 9(nov):2579–2605. Pagi-

nation: 27.

[Vapnik et al. 1992] Vapnik, V. N., Boser, B. E., and Guyon, I. M. (1992). A training algorithm

for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational

Learning Theory, COLT ’92, page 144–152, New York, NY, USA. Association for Computing

Machinery.

[Veličković 2017] Veličković, P. (2017). Unsupervised methods - Diving deep into autoencoders.

https://petar-v.com/talks/UCLSlides.pdf.

[Verma et al. 2019a] Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Courville, A.,

Lopez-Paz, D., and Bengio, Y. (2019a). Manifold mixup: Better representations by interpolating

hidden states.

https://petar-v.com/talks/UCLSlides.pdf

140 Bibliography

[Verma et al. 2019b] Verma, V., Lamb, A., Kannala, J., Bengio, Y., and Lopez-Paz, D. (2019b).

Interpolation consistency training for semi-supervised learning.

[Wang et al. 2014] Wang, D., Nie, F., and Huang, H. (2014). Large-scale adaptive semi-supervised

learning via unified inductive and transductive model. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 482–491,

New York, NY, USA. ACM.

[Wang et al. 2016] Wang, D., Zhang, X., Fan, M., and Ye, X. (2016). Semi-supervised dictionary

learning via structural sparse preserving. In Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence, AAAI’16, pages 2137–2144. AAAI Press.

[Wang et al. 2013] Wang, H., Nie, F., Cai, W., and Huang, H. (2013). Semi-supervised robust

dictionary learning via efficient l-norms minimization. In 2013 IEEE International Conference

on Computer Vision, pages 1145–1152.

[Wang et al. 2015] Wang, X., Guo, X., and Li, S. Z. (2015). Adaptively unified semi-supervised

dictionary learning with active points. In 2015 IEEE International Conference on Computer

Vision (ICCV), pages 1787–1795.

[Wang et al. 2019] Wang, X., Kihara, D., Luo, J., and Qi, G.-J. (2019). Enaet: Self-trained

ensemble autoencoding transformations for semi-supervised learning.

[Weng 2019] Weng, L. (2019). Self-Supervised Representation Learning. https://lilianweng.

github.io/lil-log/2019/11/10/self-supervised-learning.html.

[Weston & Ratle 2008] Weston, J. and Ratle, F. (2008). Deep learning via semi-supervised em-

bedding. In International Conference on Machine Learning.

[Wiyatno et al. 2019] Wiyatno, R. R., Xu, A., Dia, O., and de Berker, A. (2019). Adversarial

examples in modern machine learning: A review.

[Wright et al. 2009] Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust

face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(2):210–227.

[Wright 2015] Wright, S. J. (2015). Coordinate descent algorithms.

[Wu & He 2018] Wu, Y. and He, K. (2018). Group normalization. CoRR, abs/1803.08494.

[Yang et al. 2010a] Yang, J., Wright, J., Huang, T. S., and Ma, Y. (2010a). Image super-resolution

via sparse representation. Trans. Img. Proc., 19(11):2861–2873.

https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html

Bibliography 141

[Yang et al. 2014] Yang, M., Zhang, L., Feng, X., and Zhang, D. (2014). Sparse representation

based fisher discrimination dictionary learning for image classification. Int. J. Comput. Vision,

109(3):209–232.

[Yang et al. 2010b] Yang, M., Zhang, L., Yang, J., and Zhang, D. (2010b). Metaface learning for

sparse representation based face recognition. In 2010 IEEE International Conference on Image

Processing, pages 1601–1604.

[Yankelevsky & Elad 2017] Yankelevsky, Y. and Elad, M. (2017). Structure-aware classification

using supervised dictionary learning. In 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 4421–4425.

[Yuan et al. 2017] Yuan, X., He, P., Zhu, Q., and Li, X. (2017). Adversarial examples: Attacks

and defenses for deep learning.

[Yui 2019] Yui (2019). Pytorch Implementation for Mix Match. imikushana@gmail.com. https:

//github.com/YU1ut/MixMatch-pytorch.

[Zagoruyko & Komodakis 2016] Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks.

[Zeiler 2012] Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method.

[Zhai et al. 2019] Zhai, X., Oliver, A., Kolesnikov, A., and Beyer, L. (2019). S4l: Self-supervised

semi-supervised learning.

[Zhang et al. 2013] Zhang, G., Jiang, Z., and Davis, L. S. (2013). Online semi-supervised discrimi-

native dictionary learning for sparse representation. In Proceedings of the 11th Asian Conference

on Computer Vision - Volume Part I, ACCV’12, pages 259–273, Berlin, Heidelberg. Springer-

Verlag.

[Zhang et al. 2017] Zhang, H., Cissé, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). mixup:

Beyond empirical risk minimization. CoRR, abs/1710.09412.

[Zhang & Li 2010] Zhang, Q. and Li, B. (2010). Discriminative k-svd for dictionary learning in

face recognition. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 2691–2698.

[Zhang et al. 2016] Zhang, R., Isola, P., and Efros, A. A. (2016). Colorful image colorization.

[Zhang et al. 2015] Zhang, Z., Xu, Y., Yang, J., Li, X., and Zhang, D. (2015). A survey of sparse

representation: Algorithms and applications. IEEE Access, 3:490–530.

https://github.com/YU1ut/MixMatch-pytorch
https://github.com/YU1ut/MixMatch-pytorch

142 Bibliography

[Zheng et al. 2011] Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., and Cai, D.

(2011). Graph regularized sparse coding for image representation. IEEE Transactions on Image

Processing, 20(5):1327–1336.

[Zhili Wu et al. 2006] Zhili Wu, Chun-hung Li, Ji Zhu, and Jian Huang (2006). A semi-supervised

svm for manifold learning. In 18th International Conference on Pattern Recognition (ICPR’06),

volume 2, pages 490–493.

[Zhou et al. 2004] Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. (2004). Learn-

ing with local and global consistency. In Advances in Neural Information Processing Systems

16, pages 321–328. MIT Press.

[Zhou et al. 2019] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M.

(2019). Graph neural networks: A review of methods and applications.

[Zhou et al. 2009] Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L., and Paisley, J. W. (2009).

Non-parametric bayesian dictionary learning for sparse image representations. In Advances in

Neural Information Processing Systems 22, pages 2295–2303. Curran Associates, Inc.

[Zhu & Ghahramani 2002] Zhu, X. and Ghahramani, Z. (2002). Learning from labeled and unla-

beled data with label propagation. School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA, Technical Report. CMU-CALD-02–107.

[Zisserman 2018] Zisserman, A. (2018). Self-Supervised Learning. https://project.inria.fr/

paiss/files/2018/07/zisserman-self-supervised.pdf.

https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf
https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf

Titre: Apprentissage semi-supervisé de dictionnaire et de réseaux de neurones profonds

Mots clés: Apprentissage de dictionnaire, Apprentissage de variété, Apprentissage profond,
Apprentissage antagoniste

Résumé: Notre travail est divisé en deux par-
ties principales: l’apprentissage de dictionnaire
et l’apprentissage profond. Dans un premier
temps, nous proposons une nouvelle méthode
d’apprentissage de dictionnaire semi-supervisée
basée sur deux axes: d’une part, nous ren-
forçons la préservation de l’organisation orig-
inale des données dans l’espace de représen-
tation parcimonieuse associé au dictionnaire ;
d’autre part, nous entraînons un classifieur semi-
supervisé dans l’espace de représentation parci-
monieuse. Cette méthode apporte une amélio-
ration sur le taux de précision pour des jeux de
données de petites tailles. Afin de traiter des

données dont les échantillons sont de grandes
dimension, dans un deuxième temps, nous util-
isons le modèle d’apprentissage profond. Nous
renforçons la préservation de l’organisation orig-
inale des données dans un espace latent induit
par une couche interne du réseau de neurones.
Nous inspirons pour cela de l’apprentissage an-
tagoniste : nous déterminons des points virtuels
pour lesquels l’organisation originale des don-
nées est la moins préservée dans l’espace latent,
et exploitons ces derniers dans l’entraînement du
modèle. Cette approche apporte une améliora-
tion sur le taux de précision et aussi sur la ro-
bustesse contre des exemples antagonistes.

Title: Semi-supervised dictionary learning and Semi-supervised deep neural network

Keywords: Dictionary learning, Manifold learning, Deep learning, Adversarial learning

Abstract: Our work is divided into two main
parts: dictionary learning and deep learning.
First, we propose a new semi-supervised dictio-
nary learning method based on two axes: on the
one hand, we strengthen the preservation of the
original data organization in the sparse represen-
tation space associated with the dictionary; on
the other hand, we train a semi-supervised clas-
sifier in the sparse representation space. This
method brings an improvement on the accuracy
rate for small datasets. In order to process data

with high dimensionality, in a second step, we
use the deep learning model. We reinforce the
preservation of the original organization of the
data in a latent space induced by a hidden layer
of the neural network. For this, we draw inspi-
ration from adversarial learning: we determine
virtual points for which the original data organi-
zation is least preserved in the latent space, and
exploit these in the training of the model. This
approach improves the accuracy rate and also
the robustness against adversarial examples.

Maison du doctorat de l’Université Paris-Saclay

2ème étage aile ouest, Ecole normale supérieure Paris-Saclay

4 avenue des Sciences,

91190 Gif sur Yvette, France

	Introduction
	Context
	Learning paradigms
	Motivations
	Manuscript outlines

	Methodological pillars
	Dictionary learning
	Sparse coding
	Dictionary update
	Conclusion on dictionary learning

	Supervised dictionary learning
	SDL with internal classifier
	SDL with atoms discriminative
	Conclusion about SDL

	Deep Learning
	Neural networks
	Convolutional neural networks
	Standard CNNs
	Optimizers

	Manifold learning

	Semi-supervised dictionary learning
	Introduction
	Generalities
	Related works

	Proposed method
	Construction of objective function
	Optimization
	Numerical experiments
	Conclusion about proposed method

	Conclusion

	Semi-supervised deep learning
	Related works
	Notations
	Auxiliary task as regularization
	Pseudo labeling
	Generative models
	Virtual Adversarial Training
	Holistic methods
	Partial conclusion for semi-supervised neural networks

	Manifold attack
	Individual attack point versus data points
	Attack points as data augmentation
	Pairwise manifold learning
	Settings of anchor points and initialization of virtual points

	Applications of manifold attack
	Manifold learning on a small dataset
	Robustness to adversarial examples
	Semi-supervised manifold attack
	Conclusion about manifold attack

	General Conclusion
	Appendix
	Optimization for Laplacian Learning
	Probability update
	Sparse coding
	Dictionary update
	Classifier update
	Sparse coding with epoch and batch
	Parallel training for dictionary learning model
	Pseudo labeling
	Label Propagation
	Sharpening

	Appendix
	Projection for sum and positive constraint
	Adversarial examples
	Hyper-parameters
	Robustness to adversarial examples
	Semi-supervised manifold attack

	Parallel programming
	Data Parallel
	Model Parallel
	Discussion about parallel training

	System of index for anchor points

	Bibliography

