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Stéphanie Bidon
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Abstract

Network-Based Geolocation is one of the challenges of the 21st century. In the last
decades, Internet of Things (IoT) has raised a great deal of attention in very diverse
fields such as agriculture or health care. Since most of connected objects will need to be
located, the need of designing a low-power consumption system allowing geopositioning
without using GPS and GSM has grown.

Amongst geolocation techniques, RSSI-based geolocation stands out for several reasons:
the RSSI is sufficiently explanatory and does not constitute a memory burden.

Predicting the location of an emitter from the RSSI can be split in two categories of
methods, which are referred to as likelihood-based ones and fingerprinting ones. The
first ones, considered in this manuscript, first learn a likelihood model for the conditional
probability of the RSSI vector given the position; then, the second stage consists to
finding the position which best agrees with the observed RSSI vector, by means of a
grid search for instance. In contrast, the second ones directly map the vector of RSSI into
a location (radio-map), typically by means of a supervised learning algorithm. In this
work, we first propose improvements of methods used for the RSSI-based geolocation
problem. The first proposed technique relies on a semi-parametric Nadaraya-Watson
estimator of the likelihood, followed by a maximum a posteriori estimator of the object’s
position. The second technique consists to learning a distance, constructed by means of a
Gradient boosting regressor: a k-nearest neighbor algorithm is then used to estimate the
position. The proposed methods are compared on two data sets originated from Sigfox
network, and an indoor dataset from a three-story building. Experiments demonstrate
the interest of the proposed methods, both in terms of location estimation performance,
and ability to build radio maps. Results also show that the quality of the prediction is
highly related to the chosen distance on the RSSI space. The metric learning problem
is therefore a fundamental issue to improve RSSI-based geolocation technique.

Second, we introduce an original objective for learning a similarity between pairs of data
points. In this manuscript, we propose to build the similarity by directly minimizing
the regression error of an estimator. We thus obtain a task-driven learning objective.
To minimize it, the similarity is chosen as a sum of regression trees and is sequentially
learned by means of a modified version of XGBoost detailed in this document. This
method benefits from the well-known qualities of XGBoost such as its efficiency and
its scaling capabilities. Furthermore, our similarity, although non-parametric, does not
require a storage of the size of the dataset. Finally, experiments show that our model
outperforms other kernel regression models on several benchmark datasets.

Conditional Independence has been broadly used in the RSSI-based geolocation literat-
ure in order to decrease complexity of statistical models such as the ones presented in
this manuscript. Testing CI is therefore critical for the performance of such estimators.
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We introduce the weighted partial copula function for testing conditional independence.
The proposed test procedure results from the following ingredients: (i) the test statistic
is an explicit Cramér-von Mises transformation of the weighted partial copula, (ii) the
regions of rejection are computed using a boot-strap procedure which mimics conditional
independence by generating samples. Under CI, the weak convergence of the weighted
partial copula process is established and endorses the soundness of our approach. Ex-
periment finally demonstrate the competitive power of our approach compared to recent
state-of-the-art methods.





Notation

, Equal by definition

[d] Set of integers from 1 to d included

YX Set of functions from X to Y

Rd1×d2 Set of real matrices of size d1 by d2

Idn Identity matrix in Rn×n

Ai: ith row of matrix A

A:j jth column of matrix A

TrA Trace of A ∈ Rd×d TrA =
∑d

i=1Aii

A> Transpose of matrix A

A† Moore-Penrose pseudo-inverse of matrix A

‖·‖ Euclidean norm on vectors and matrices

Sn++ Positive definite matrices of size n× n

Sn+ Semipositive definite matrices of size n× n

‖·‖S Mahalanobis matrix norm induced by S ∈ Sn++ ‖A‖S =
√

Tr(A>SA)

‖·‖2 Spectral norm on matrices
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a ∨ b Maximum of real numbers a and b

a ∧ b Minimum of real numbers a and b

(a)+ Positive part of a ∈ R a ∨ 0

0 Vector or matrix of zeros

1 Vector or matrix of ones

1 Indicator of an event





1
Motivation and Contributions

“Je suis abasourdi par le nombre de personnes
qui veulent ‘connaître’ l’univers alors qu’il
est déjà suffisamment difficile de se repérer
dans le quartier chinois de New York.”

Woody Allen

With the advances in wireless communications and low-power electronics, accurate posi-
tion location may now be accomplished by a number of techniques which involve commer-
cial wireless services. Emerging position location systems, when used in conjunction with
mobile communications services, will lead to enhanced public safety and revolutionary
products and services. The fundamental technical challenges and business motivations
behind wireless position location systems are described, and promising techniques for
solving the practical position location problem are treated.

1.1 Context of this Thesis

This thesis is the result of a CIFRE agreement (Convention Industrielle de Formation
et de Recherche - Industrial Training and Research Agreement) between Télécom Paris
Saclay and Sigfox, a French telecommunications operator created in 2009 by Christophe
Fourtet and Ludovic Le Moan. Sigfox is specialised in Machine to Machine (M2M) via
low-speed networks. It contributes to the Internet of Things (IoT) by enabling inter-
connection via a gateway. Its UNB ("Ultra narrow band") radio technology enables it
to build a low-speed, energy-efficient cellular network. This type of network is deployed
in the so-called Industrial Scientific and Medical (ISM) radio frequency bands, available
worldwide without any license.

In the last few years, Internet of Things (IoT) has raised a great deal of attention in very
diverse fields such as agriculture or health care. Experts agree that 30 billions objects
will be part of the IoT by 2023 and 40% of these objects will need to be geolocated,
e.g. for freight transport (Hatton). One of the most significant challenges for the field
is the need for localization. Indeed, numerous applications of sensor networks need to
track mobile objects, such as people, animals, cars, etc. To make these applications
viable, device cost will need to be low (from a few dollars to a few cents depending on
the application) and devices will need to last for years or even decades without battery
replacement. Additionally, the network will need to organize without significant human
moderation. Moreover, in order to enable connectivity for billions of devices, most of IoT
dedicated networks are using long-range and low power communications. Therefore, the
challenges for IoT networks are to achieve high scalability to handle massive number
of devices, to achieve low cost and to have wide coverage while keeping low energy
consumption. Devices which have these demands are difficult to be integrated into
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traditional cellular networks. That is why, LPWAN (Low Power Wide Area Network)
dedicated technology, such as UNB (Ultra Narrow Band), developed and patented by
Sigfox has emerged.

The knowledge of the geolocation of each device is a very valuable resource. Indeed,
it allows Sigfox to provide this information to network users that leads to numerous
applications such as in logistics or transport of merchandises, to monitor and track
in smart buildings or even for proximity marketing and advertising in shopping malls.
However, traditional localization techniques such as global positioning system (GPS)
are thus not well-suited for the particular needs of the IoT industry. Providing a GPS
on each device is cost and energy prohibitive for many applications, and furthermore not
suited for indoor applications. All these requirements complicate greatly the localization
of these objects.

Alternatively, range-based methods use measurements such as the two introduced here,
the Time-of-Arrival (TOA) or Time-Difference-of-Arrival (TDoA) (Ho and Chan, 1993;
Cong and Zhuang, 2002), and the Received Signal Strength Indicator (RSSI) to estimate
the distance between an emitting device and a receiving antenna. Other ranging meth-
ods are commonly used in the literature, such the Angle of Arrival (AOA) (Niculescu
and Nath, 2003), or the Frequency Difference of Arrival (FDoA) (Amar and Weiss,
2008) but their study is beyond the scope of this thesis.

This chapter allows us to put the stakes of this thesis into perspective. Its purpose is to
provide a better understanding of the singularity of the geolocation problem in a sensor
network such as the Sigfox network.

Outline In this chapter, we address the problem of channel-based location estimation
techniques. First, we discuss the general problem of geolocation in Appendix B.2.
To predict the location of an emitter, state-of-the-art channel-based approaches consist
either in the estimation of the time delay from the transmitter to the receiver, from which
it is possible to infer the distance between the emitter and the receiver, or to directly
predict this latter distance from the observed power decay between the received power
and the emission power. A introduction to the wireless channel, in particular the key
parameters for model it, and a presentation of the discussed predictors are proposed in
Section 1.3. Finally, the performance of both these approaches in the particular context
of IoT communication are discussed in Section 1.4.

1.2 The estimation of the geographic location

1.2.1 Geolocation Principle

The terms geolocation and positioning are used to designate the real-world geographic
estimation of the location of an object. This problem has entered our society with a
massive diffusion. It is used in many applications such as navigation, communication,
self-driving vehicles, connected objects and communicating cities, or more recently with
issues such as controlling the amount of contamination in a population. It affects a
wide variety of scientific fields such as Géolocalisation et Navigation par un Système
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de Satellites (GNSS), on which our economy increasingly depends. Experts agree that
30% of the gross domestic product would depend partly on GNSS by 2030, compared
to 10% today.

The geolocation of an object refers to the (latitude, longitude)-coordinates, that is the
position of the object on the Earth’s surface. Sometimes, the word positioning is rather
employed when it comes to identify the location of an object in a particular space such
as a cell-phones in a shopping mall, or a robot in a building. In this thesis, we shall
speak about geolocation when it comes to a localization on a global scale, while the
term positioning is generally used in indoor and/or confined areas.

The radio frequency methods are used for most systems of geolocation. This family of
methods, also called radiolocation methods make use of characteristics of received radio
waves to predict the location of an emitting object. The examples are numerous. The
widely used Global Positioning System (GPS) (see Figure 1.1) is based on the estimation
of the Time-of-Arrival (TOA) of a signal at a satellite. When the time of transmission,
the speed of propagation and the position of the satellite are known, the TOA leads
to a very good estimator of the distance between the emitting object and the satellite.
Combining several TOA leads to the estimated position of the transmitter. The use
of multiple receivers to locate a transmitter is known as multilateration (illustrated in
Figure 1.2). In cellular telephony, the radiolocation is directly performed via the Base
Stations (BS) of the cellular network by means of one or a combination of the following
features:

• The TOA (or TDoA). In contrast with the GPS, these quantities are estimated
w.r.t the BS of the cellular network.

• The Angle of Arrival (AOA) corresponds to the direction from which the signal is
received. A practical way to determine the AOA is to consider that this direction
is the one of the maximum signal strength during a complete rotation of the BS.
Combining several AOA results in the desired position estimation.

• The RSSI of great interest in this thesis. It corresponds to the power of received
signal strength minus the emitting signal strength. It yields to a ranging system
by means of the Log-distance path loss model described in Section 1.3.2 or by
fingerprint-based methods (when the different locations of emission are known to
exhibit very different power “signatures”). These methods are studied in detail in
Chapter 4.

1.2.2 Network-Based Geolocation

This thesis focuses on network-based geolocation. These methods only use the net-
work infrastructure. Among all the described geolocation methods, the latter are the
cheapest and require the least of energy. Methods of this kind have met a tremendous
success with the apparition of the Internet of Things (IoT) in the late 1990’s. Essen-
tially, the concept of IoT is to provide to any objects the ability to transfer data over a
network without requiring human-to-human or human-to-computer interaction (Rouse,
2020). Nowadays, the set of applications for IoT devices is dramatic: smart homes
(Samuel, 2016), medical and healthcare applications (Catarinucci et al., 2015), agri-
culture (Mekala and Viswanathan, 2017) or even transportation systems (Zhou et al.,
2012).
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Figure 1.1 – Principles of geolocation using GPS. This image comes from the Geolocation
Wikipedia page.

Figure 1.2 – Trilateration principle. Each circle represents all the possible locations of
a mobile phone at a given distance (radius) of a cell tower. The aim of a trilateration
algorithm is to calculate the (x, y) coordinates of the intersection point of the three
circles.

https://en.wikipedia.org/wiki/Geolocation
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We next move to two concrete geolocation examples encountered in practice.

Logistic Tracking cargo and assets via the network can also result to great benefits
in transportation systems. One can send specific alerts when remarkable events occur
such as the arrival in a warehouse.

Ecology It has then been argued that the IoT will revolutionize the ecology area.
First, in terms of energy management: the connectivity of significant numbers of energy-
consuming devices (e.g. lamps, motors, pumps, etc.) can allow them to communicate
with utilities not only to balance power generation but also optimize the energy con-
sumption as a whole. Second, environmental monitoring applications of the IoT use
sensors to help environmental protection by monitoring as instance air or water quality.
Other applications like earthquake or tsunami prediction systems can also be used to
provide more effective aid.

A natural idea is to apply the radiolocation methods described above to the Sigfox IoT
dedicated network. As stated before, the performance of such methods strongly relies
on the network infrastructure. Without going into details here, we propose to give some
elements that compromise their use and therefore motivate the subsequent works. First
of all, Sigfox BS have a lack of directivity and thus cannot discriminate the incident
wave directions. Therefore, the AOA-based methods are irrelevant here. In addition,
Sigfox bases its communications on Ultra-Narrow-Band (UNB) Technology which allows
to achieve both long range and extended battery life. Thus, each signal has a frequency
band of 100 Hz width within the unlicensed frequency band (ranging from 868.0 to
868.6 MHz). This band is popular because it presents a good balance of range, building
penetration and the ability to use small antennas. Nevertheless, it is well known that
the performance of time-based methods using TOA or TDoA estimation strongly relies
on the signal bandwidth. The Cramér-Rao Lower Bound (CRLB) on TOA estimators
is thus often exhibited to quantify this effect. It states that the minimal variance of any
unbiased estimator of the TOA is inversely proportional to B3 × SNR, where B stands
for the bandwidth and Signal to Noise Ration (SNR) is the well-known Signal-to-Noise
ratio. This bound is then unfavourable to the use of such approaches and yields for
instance to a standard deviation of range estimators at least equal to 20 km with Sigfox
US infrastructure. Nevertheless, it also constitutes a first benchmark value to which our
proposed geolocation methods are compared. It is shown (Boucher and Hassab, 1981)
that another disfavourable element is that they are particularly memory demanding
since their performance is directly related to the choice of the sampling interval.

1.2.3 RSSI-based Geolocation

The RSSI is a relevant feature for the geolocation task pursued. It is sufficiently explan-
atory without constituting a memory burden. The related literature is extremely vast
and is often classified into two categories of methods: range-based and range-free. They
essentially differ in the information used for the localization task. The first category
of methods use measurements to predict the range between emitters and receivers (the
coordinates of the BS are known in this case). Combining several estimated ranges
allows the emitter position estimation by means of some mathematical methods such
as trilateration (Thomas and Ros, 2005). There are thus always two phases: a ranging
phase and a localization one. In contrast, the second family of methods do not base
their predictions upon the range estimation. A simple example of such a method would
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estimates the position as the barycenter of the receiving BS. As far as the RSSI is the
only measurements at our disposal, the range-based methods quickly show their limits
(Chandrasekaran et al., 2009). Indeed, they essentially found upon the log-distance
path loss model of which the lack of realism is brought out by the investigation of
Section 1.3.2.

In this thesis, we propose another classification of RSSI-based geolocation methods:
likelihood-based and fingerprint-based methods. The first ones, that encapsulate the
range-based methods already discussed, consist of learning (on a dataset) a model for
the RSSI at a BS (denoted by X in the sequel) given the position (denoted by Y in
the sequel). This learning phase is also referred to as the “calibration phase” in the
literature. Once this model has been inferred, one can predict the emitter position as
the one that best agrees the measured RSSI. The second ones are the fingerprint-based
methods. The latter directly map the RSSI to the position by means of a function that
has been previously learned on a dataset.

The recent advances in machine learning and its successes in a wide range of areas have
driven the IoT community to apply these methods to RSSI-based geolocation. Let us
now present the contributions we have developed to address this issue.

1.3 State-of-the-Art Gelocation Techniques

A formal introduction to the wireless channel and to the physical parameters involved in
its modeling is necessary to understand the location estimation techniques developed in
this chapter. Following Tse and Viswanath (2005), we start with the physical modeling
of the wireless channel in terms of electro-magnetic waves and then define some import-
ant physical parameters. This will allow a better understanding of the foundations of
the two geolocation methods discussed in this chapter.

1.3.1 Physical Modeling for Wireless Channel

First, let consider a fixed emitter. If the receiving antenna is sufficiently far away from
this emitter (which we refer as the far field) the electric field and magnetic field at any
given location are perpendicular both to each other and to the direction of propagation.
In response to a transmitted sinusoid cos 2πft, the electric far field at time t can be
written as follows:

E(f, t, (r, ϑ, ψ)) =
αs(ϑ, ψ, f) cos 2πf

(
t− r

c

)
r

, (1.1)

where, as shown in Figure 1.3, (r, ϑ, ψ) represents the polar coordinates of the point M
at which the electric field is measured; r is then the distance from the emitter to M ,
(ϑ, ψ) are respectively the vertical and horizontal angles from the emitter to M . The
constant c is the speed of light, and αs(ϑ, ψ, f) is the radiation pattern of the sending
antenna at frequency f in the direction (ϑ, ψ).

We observe that, as the distance r increases, the electric field decreases as r−1 and thus
the power per square meter in the free space wave decreases as r−2 as illustrated in
Figure 1.4. This attenuation is referred in the literature as the large-scale fading.

Nevertheless, we will see that this r−2 reduction of power with distance is not valid as
soon as there are obstructions or reflections in the propagation space.
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Figure 1.3 – Spherical coordinates (r, φ, ϕ): radial distance r, azimuthal angle φ, and
polar angle ϕ.

Thereupon, two methods to estimate the unknown distance from the emitter emerge:

• First, a straightforward method that consists in mapping the received power to the
desired distance. In free space, the signal power decays proportionally to r−2. In
real-world channels, multi-paths (due to reflectors) and shadowing are two major
sources of environment-dependence in the measured power. These phenomena
are generally modeled as random. As a consequence, the power decay is rather
chosen proportionally to r−α, where α is the so-called path-loss exponent. Once
this path-loss exponent has been estimated (through the calibration phase), it is
possible to provide a range estimate from the measured power signal strength.
The procedure is described in the sequel.

• On the other hand, an intuitive method is to estimate the delay between the
emission and the reception of the signal. To provide this Time Of Arrival (TOA)
estimate, we suppose that the signal emanating from the source is known, and that
the received signal is a superposition of an attenuated and delayed replica of the
known signal plus noise. The remaining task is thus to estimate the arrival times
of the replica and its attenuation amplitude. This is the well-known Time-of-
Arrival estimation problem. There is a vast literature dealing with this problem.
The most well-known estimators are the matched filter approach described in
Ehrenberg et al. (1978), or the maximum likelihood (ML) estimator introduced
in the work of Knapp and Carter (1976). This latter estimator is obtained as the
peak of the cross-correlation function of both the emitted and the received signal.
The Cramér-Rao Lower Bound (CRLB) (see Chapter 2) is taken as the standard
of reference, because it should give a realistic indication of the attainable mean
square error of the estimators. This problem is close to the problem of Time-Delay
of Arrival (TDoA) or simply Time-Delay estimation. This latter aims to predict
the time delay between the receptions of the signal at two different antennas. It
allows to circumvent the imperfect knowledge of the emission time due to the lack
of both precision and synchronisation of the emitting devices inner clocks. As
far as location is concerned, the first method requires solving circles intersection
equation while the second an hyperbolas intersection equation. We thus chose to
present this problem here-below rather than the ToA problem.

In the sequel, we will discuss this two ranging-methods, as well as their theoretic reach-
able precision through their CRLB. For this purpose, we first introduce the singular
context of IoT dedicated networks, particularly the Ultra Narrow Bound technology
and its impact on the lower bound of the range estimate.
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1.3.2 Location Estimation Techniques

The Time-Delay problem

The parameters of primary interest are the relative delays between receiving antennas
which determine range (as well as the bearing) to the source. We assume hereafter
that the transmission medium is homogeneous so that the signal wave-front is perfectly
coherent over the receivers: the signal components received by various sensors are then
delayed replicas of each other. The noise is considered to be additive, white, Gaussian,
and incoherent from sensor to sensor.

Following the seminal work of Carter (1987), we can derive a location estimation tech-
nique based on the time delay estimation. Let first consider the case of two receiving
antennas at which the received signal can be modeled as follows:

x1(t) = s(t) + n1(t), (1.2)
x2(t) = As(t−D) + n2(t), (1.3)

where it is assumed that s(t), n1(t), and n2(t) are real and jointly stationary random
processes, s(t) is furthermore independent from n1(t) and n2(t).

The maximum likelihood estimator of the time delay maximizes the following cross-
correlation function (CCF).

Rx1,x2(τ) ,
∫
x1(t)x2(t− τ)dt, (1.4)

We obtain the following Cross-Correlation (CC) estimator:

D̂CC , arg max
τ

Rx1,x2(τ), (1.5)

Carter and Knapp (1976) proposes a improved version of the CC estimator by in-
troducing the so-called generalized cross-correlation (GCC) function. This function is
obtained by applying pre-filters to amplify spectral components of the signal that have
little noise and attenuate components with large noise. As such, the GCC requires
knowledge (or estimates) of the signal and noise power spectra. There is a number of
algorithms in the GCC family depending on the choice of the filters. Commonly used
weighting functions include the constant weighting (in this case, the GCC becomes a
frequency domain implementation of the cross-correlation method), the smoothed co-
herence transform (SCOT) (Carter et al., 1973), the Hassab-Boucher transform (Hassab
and Boucher, 1981) or the maximum-likelihood (ML) (Knapp and Carter, 1976). It is
well known that the ML estimator obtained in the ideal propagation situation is op-
timal from a statistical point of view since the estimation variance can achieve the
CRLB which has the rather simple form :

σ2
CRLB =

3

8π2

1 + 2SNR
SNR2 · 1

B3T
, (1.6)

where B is the signal bandwidth, T is the observation time, and SNR is the Signal-
to-Noise Ratio defined as the ratio of the power of a signal (meaningful input) to the
power of background noise (meaningless or unwanted input). In practice, evaluating
this expression on the values observed in the Sigfox network in the U.S and Europe (see
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also Sallouha et al. (2017)) leads to

σCRLB, Sigfox US ' 8.46 · 10−5s, (1.7)

σCRLB, Sigfox Eu ' 5.07 · 10−4s (1.8)

Multiplying by speed of light gives the following ranging error variances:

σSigfox US ' 25km, (1.9)
σSigfox Eu ' 150km. (1.10)

However, the simulation results of Hassab and Boucher (1979); Scarbrough et al. (1981)
show that ML estimator actual performance can be much worse for a given SNR and
observation time. More specifically, when the bound is plotted as a function of signal-
to-noise ratio one observes a distinct threshold. The work of Chow and Schultheiss
(1981) states that below this threshold, the true bound can exceed the CRLB by large

factors of the order of
(
fs/B

)2
.

In other words, although the CRLB is a promising bound for the variance of our time
delay estimator, it is not reachable in practice because it is obtained by too idealistic
assumptions: the observation sample space has to be large enough; the environment
should be free of reverberation; and the spectra of noise signals have to be known
a priori. In practice, other problems may also arise. All the techniques described
above measure the analog processing of the time delay parameter, while discrete signal
processing methods are more commonly used. In the sequel, we briefly discuss the case
when we only have at our disposal sampled signals. The problem remains the same:
finding an estimator D̂ of the true delay D using a finite set of samples of x1(t) and
x2(t) using as in the continuous case, the peak of the CCF. A normal practice is to
replace the CCF defined in Equation (1.5) by its time-averaged estimate:

R̂x1,x2(τ) =
1

N

N∑
k=1

x1(kh)x2(kh− τ)dt, (1.11)

where h is the sampling interval, and (N −1)h is the estimation window width. The so-
called Direct Correlator (DC) estimator of the time delay is defined as the maximizer
of the latter quantity w.r.t. τ . It is thus necessary to interpolate the CCF in the
neighborhood of the peak. A commonly used approach (Boucher and Hassab, 1981) is
to fit a parabola in the neighborhood of this maximum using 3 samples of R̂x1,x2(·).
Thus, near its peak the CCF can be approximated by the following convex parabola:

R̂x1,x2(τ) ' aτ2 + bτ + c,

where (a, b, c) are the fitted parameters. The apex of the parabola is then used as a
proxy of the time delay:

D̂CC = − b

2a
. (1.12)

It is shown that this methods yields a biased estimator of the time delay D (Jacovitti
and Scarano, 1993). In general, this bias can be decomposed into a systematic bias, due
to parabolic estimation; and another one resulting from the noise and a finite width of
signals observation.
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Figure 1.4 – Measured wideband path gain as a function of path length. Linear fit (−)
with r−2 reduction.

The results of these works are enlightening in many ways. First because they state
that in the range of SNR that are observed in the Sigfox network, the second bias is
negligible with respect to the first one. The parabola misfit is therefor the keystone of
these discrete methods. Moreover, the found expression for the bias is the product of two
terms. A first term which depends linearly to the the sampling interval h. Let us recall
that, for Sigfox, it is chosen as h = (1/2B) = 0.005 s. A second term is a function which
depends only on the reference signal. Simulations of theoretical bias provided in these
two works are shown in the Jacovitti and Scarano (1993) where E[D̂CC ] is computed
for various D. As expected, the bias is the higher when the true TD lies between two
samples points. The simulation results, obtained using the quantities observed in the
Sigfox network invalidate these approaches because results to low time resolution.

The Received-Signal Strength and Log-distance Path Loss (PL) model

In telecommunications, Received Signal Strength Indicator (RSSI) is a measurement
of the power present in a received radio signal. Wireless sensors communicate with
neighboring sensors, and RSSIs can be measured by each receiver without any further
bandwidth or energy requirements. Because RSSIs are relatively inexpensive and simple
to implement in hardware, they are an important and popular topic of localization re-
search. Typically, the ensemble mean received power in a real-world, obstructed channel
decays proportional to r−α, where α is the “path-loss exponent”, typically between 2
and 4 as acknowledged in Rappaport et al. (1996). Log distance Path Loss (PL) model
is an extension to the Friis free space model introduced in Section 1.3.1. It is used to
predict the propagation loss for a wide range of environments and to therefore overcome
the limitation of the Friis free space model. The model encompasses random shadowing
effects due to signal blockage by trees, buildings etc. This model is a parametric model
of the RSSI given the distance d. The vector of parameters θ = (P0, α, d0) is such that
d0 is some reference distance and the parameter P0 represents the power in dBm at
distance d0.
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Using loose notation, given the distance d between the emitter and the receiving an-
tenna, the RSSI X at this receiver is distributed as follows (Mao et al., 2007):

X[dBm] ∼ N

(
P0 − 10α log

d

d0
, σ2

dB

)
. (1.13)

Estimating the range from the RSSI The estimated distance between the receiver
and the emitter, can be thus estimated from the realization of the variable X. We recall
that the log-likelihood of X given d is,

log p(X|θ, d) = c−

(
X − P0 + 10α log d

d0

)2

2σ2
dB

, (1.14)

where c is independent of θ. The distance which maximizes the likelihood is

d̂ML(X) = d010
P0−X
10α . (1.15)

We can prove that the bias of the ML estimator is as follows:

E
[
d010

P0−X
10α

]
= exp

(
10α√

2σdB log 10

)2

︸ ︷︷ ︸
C

d.

In typical channels studied e.g. in Rappaport et al. (1996), C ' 1.2, and the range is
then over estimated by a factor 20%. It is therefore preferable to use the bias-corrected
estimator as follows:

d̂CML(X) = d0 exp−

(
10α√

2σdB log 10

)2

10
P0−X
10α . (1.16)

Remark 1.1. Note that the variance of the bias-corrected estimator is proportional to
the actual range. This result is however not surprising, and above all, informs on the
need to have a very dense network in order to have a quality estimation of the emitter.

1.4 Introduction to Sigfox Radio System

Two of the most commonly used techniques for geolocation have been discussed above.
This section provides a better understanding of the singularity of the geolocation prob-
lem in a sensor network such as the Sigfox network. The performance of the two
described geolocation approaches in Sigfox network are studied.

1.4.1 Internet of Things, a new usage for the radio-communications

There is no consensus on the definition of the Internet of Things (IoT), although its
initial use has been attributed to Kevin Ashton. In fact, many groups including aca-
demicians, researchers, developers and corporate people have their own. Yet, all the
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definitions have in common the idea that the first version of the Internet was about
data created by people, while the next version is about data created by things. We
can therefore cite Madakam et al. (2015) and give the following definition: “An open
and comprehensive network of objects that have the capacity to auto-organize, share
information, data and resources”. The connection between objects is not to be under-
stood in terms of servers, computers or smartphones. In the context of IoT, sensors
embedded in physical objects (from roadways to pacemakers) are linked through wire-
less networks. This implies that the implementation of IoT communication must be
cost-effective and energy frugal since the object may not have been natively designed
with an energy source. As a consequence, IoT comes with several constraints for the
radio-communication system:

• The communication function of a connected device must have a marginal cost
(when it is compared to the cost of the device itself). For ease of reference, the
target price of a device for mass production should be less that 0.2 $.

• The volume of transmitted data by the connected devices must be low. Indeed,
devices transmit information originated from sensors, alarms or GPS. trackers
which communicate through small “packets”. In Sigfox’s network, the size of the
messages must not exceed 12 bytes (see Section 1.4.2 for details).

• The volume of connected objects might be huge. Due to the low-cost and simpli-
city of use, it is possible to connect a large number of objects. This may result
to a very high density of connections by square kilometer. Typically, in Sigfox
network, the density of connected objects reaches 50, 000 per square kilometers
(that is much higher than in cellular networks).

We thus note that in order to make use of IoT, many requirements come into play. The
radio technology that can support all these requirements is encapsulated into the name
of Low-Power Wide-Area Network (LPWAN1), where we refer to Raza et al. (2017) for
a in-depth study.

1.4.2 Ultra-narrowband benefits for LPWAN

While IoT is an expression to describe the usages, LPWAN rather encapsulates the
underlying radio technology. The aim of this technology is to meet two contradictory
needs: the low-energy consumption and the wide-area network. Therefore, LPWANs
have the following characteristics:

• To reduce the infrastructure cost, the base stations of the network must be lim-
ited in number. The network counts a very large number of connected devices
compared to the number of BS. Thus, one BS can receive numerous messages
originated from multiple objects (sometimes at the same time).

• To reduce the energy cost of communication, the connected objects must transmit
at very low power. They can therefore be endowed with small batteries (or even
no battery at all thanks to energy harvesting). High sensitivity of the BS is thus
a need to achieve a wide-area coverage with one-hop communication.

1Machina Research, 2013

https://machinaresearch.com/news/webinar-revolution-evolution-or-distraction-machina-researchs-view-on-emerging-low-power-wide-area-wireless-technologies-in-m2m/
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We now discuss briefly about Ultra-Narrow Band (UNB) and how this technology can
meet the requirements described above.

UNB Technnology

Ultra Narrow-Band systems are those in which the channel has a very narrow band-
width. This band is significantly smaller than the total available frequency resource,
typically of few hundred Hertz. Essentially, Sigfox’s technology is such that the receiver
listens for a large spectrum range with a high dynamic range and the software is con-
tinuously looking for the signal of interest and tracks its center frequency, as a human
radio operator would do (Chaudhari et al., 2020). In the Sigfox’s network, the trans-
mitted signal of UNB occupies a band of 100 Hz (in Europe, and 600 Hz in USA), inside
a typical possible band of 192 kHz to 2 MHz. In Europe, the frequency band ranges
from 868.0 MHz to 868.6 MHz and thus brings up to 6000 sub-channel of 100 Hz width
each. Objects now can randomly select carrier frequency, without excessive collision
rate. We assume that all objects have the same behavior and transmit a message of
duration T seconds at a frequency fs. For the time-slotted case, any active node ran-
domly selects a time-slot, since the temporal resource is separated by slots. Thus in the
time domain, the transmissions either do not collide at all (when they choose different
time-slots), or collide for the whole duration (when they choose the same time-slot).
All transmissions are performed within a dedicated band, which has band-width B Hz.
Each transmission occupies a bandwidth b Hz which represents a small portion of the
total channel bandwidth B Hz. From the base-station point of view, the total dedicated
band contains, from time to time, transmitted ultra narrow signals at random carrier
frequencies. For each detected transmission, the BS extracts the signal at the estimated
frequency of interest, and decodes the packet. Such a detection and estimation can be
done as described in a Sigfox patent (Artigue, 2017).

1.4.3 Campaign of validation of the PL model in Sigfox Network

We now conclude this section with a numerical investigation. We give numerous prac-
tical examples that invalidate the use of the log-distance path loss model in rural envir-
onment context of our concern. First, the log-normal distribution of the RSSI measure-
ments is verified by examining the residuals X−(P0+10α log d

d0
) using quantile-quantile

plots shown in Figure 1.5. This figure shows that the observed data have a heavier tail
than the one of the normal distribution: the quantiles move away from the diagonal
outside a certain range. In that respect, the next numerical experiment investigate
the lack of realism of the studied model. More specifically, the non-isotropy of the
propagation model is highlighted. Indeed, these experiments show the high depend-
ency of the RSSI upon the direction of the arrival signal. This is shown in Figure 1.6.
This model of propagation, assuming that there is a free propagation space, and thus
omitting the presence of obstacles in certain directions, is vain. A first extension of the
model, is to encapsulate this dependence of the loss by making the path loss exponent
α(ϑ, φ) direction-dependent. This approach is however interesting because it amounts
to learning a path-loss exponent for every direction (ϑ, φ). Instead, a very general semi-
parametric model is introduced in Section 3.3.1. This model provides an estimation
of the expected RSSI at a BS given the emission position (x, y). This enables to free
ourselves from the knowledge of the positions of the BSs, which would have been needed
if the dependence upon the direction between the emitter and the BS was modeled.
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Figure 1.5 – Q-Q plot (w.r.t. normal distribution) of the residuals X− (P0 +10α log d
d0

)
shown for 3 BS in Paris.

Figure 1.6 – For each plots, we show the empirical mean of the RSSI at any point (r, ϑ),
measured by the BSs placed at the center (0, 0). We notice that some directions (e.g.
around 190◦ for the left figure) show high values of RSSI and no loss of power in this
directions. These behaviours correspond to major traffic routes.

This study has put into light how the context of IoT network jeopardizes the precision
of the two presented methods of geolocation. It also identify more clearly the interests
of using recent methods of machine learning to the problem of network-based geoloca-
tion. We therefore dedicate the future chapters to an intensive investigation of these
approaches.

1.5 Geolocation as a Prediction Learning Task

The network is composed of d fixed BS, say (BS1, . . . ,BSd), whose respective coordin-
ates (y1, . . . , yd) in the complex plane are fixed but not necessarily known (unless it is
specified).

We consider a connected device whose position Y is a random variable in some given
subset Y, typically an open subset of R2. The device sends packets/messages which
are collected by the neighboring BS. For a given message, each BS k (k = 1, . . . , d)
computes a RSSI Xk as the temporal mean of the received signal strength. The RSSI
Xk is typically real-valued in a certain subset X ⊂ R. However, some messages may
not be detected by some BS, in which case we just set Xk = NaN, where NaN stands for
an unobserved value. Thus, for every k = 1, . . . , d, Xk is a random variable in the set
X̃ , X

⋃
{NaN}.
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Figure 1.7 – Scatter plots of a sub-sample of the Sigfox training dataset. A red dot
corresponds to an emitting position of a device in the Sigfox dataset.

The aim of location estimate is then to predict the unknown position Y from the ob-
servation of the RSSI-vector

X , (X1, . . . , Xd) .

It is the general prediction learning task: we wish to infer the relationship between the
random variable X and a target random variable Y , taking values in sets X̃ d and Y
respectively. For a loss function ` : Y × Y → R+ that defines a discrepancy on Y (in
typical settings, `(y, ŷ) = ‖y − ŷ‖2), the generic writing of this task is then to find a
function h? : X̃ d → Y that verifies:

h? = arg min
h∈H

E
[
`(h(X), Y )

]
, (1.17)

where E is the expectation w.r.t. the distribution of the vector (X, Y ), andH is a subset
of YX̃ d , reflecting a knowledge about the dependency between X and Y (Hastie et al.,
2009). However, the latter requires the knowledge of the distribution of (X, Y ), that
we cannot access in practice. A more practical setting consists in replacing this true
risk by an empirical average computed on a dataset Zn , {(xi, yi) : i = 1, . . . , n} of n
independent and identically distributed (i.i.d) samples drawn from the same distribution
as (X, Y ). This dataset is built by gathering observed RSSI’s of devices equipped with
GPS. As represented in Table 1.1, every row of the dataset corresponds to a message.
The features are the RSSI’s at the receiving BS’s and the label is the GPS coordinates
of the transmitting device at the instant when the packet is sent.
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BS 1 BS 2 ... BS d Lat Long

−102 NaN ... −83 49.15434 2.24928

NaN −98 ... NaN 48.865584 2.44567

Table 1.1 – Sample from the Sigfox dataset.

The problem defined in Equation (1.17) then becomes the well-known Empirical Risk
Minimization (ERM):

h? = arg min
h∈H

n∑
i=1

`(h(xi), yi). (1.18)

Equipped with this mathematical background, we now move to our application focus:
the problem of network-based geolocation.

1.6 Contributions

The organization of this manuscript is as follows. Each chapter can be read independ-
ently.

I Chapter 2 introduces the theoretical elements needed to the reading of this thesis.
First, elements of statistical inference are introduced. Then, the notion of risk,
and a lower bound on the so-called quadratic risk on an estimator is discussed.
These notions will prove themselves useful to highlight that the parametric family
of estimators are not well suited when applied to RSSI-based geolocation, and that
we need to go beyond simple parametric estimation. This last point is therefore
studied in this chapter as well.

I Chapter 3 investigates machine learning approaches addressing the problem of
geolocation. First, we review some classical learning methods to build a radio
map. These methods are split in two categories, which we refer to as likelihood-
based methods and fingerprinting methods. Then, we provide a novel geolocation
approach in each of these two categories. The first proposed technique relies on a
semi-parametric Nadaraya-Watson (NW) estimator of the likelihood, followed by
a maximum a posteriori (MAP) estimator of the object’s position. The second
technique consists in learning a proper metric on the dataset, constructed by
means of a Gradient boosting regressor: a k-nearest neighbor algorithm is then
used to estimate the position. The proposed methods are compared on two data
sets originated from Sigfox network, and an indoor dataset performed in a three-
story building. Experiments show the interest of the proposed methods, both in
terms of location estimation performance, and ability to build radio maps.

I Chapter 4 is dedicated to the similarity learning. Indeed, the choice of the simil-
arity (or distance) is known to be critical for the performance of neighbors-based
predictor such as k-NN regressor. That is why there is an increasing interest for
optimizing distance and similarity functions. However, in most prior works, no
link is made between the learned metrics and the estimator performance. In this
chapter, we propose to build the metric by directly minimizing the regression er-
ror of our estimator, and thus obtain an ad-hoc learning objective. To minimize
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this objective, we propose a modified version of the eXtreme Gradient Boost-
ing algorithm (XGBoost). The soundness of our approach is finally endorsed by
conclusive numerical experiments on numerous datasets.

I Chapter 5 introduces the weighted partial copula function for testing conditional
independence (CI). The CI has been broadly used in the RSSI-based geoloca-
tion literature in order to decrease the statistical models complexity. Testing this
assumption can leads to a better understanding of the likelihood based models
proposed herein. The proposed test procedure results from the following ingredi-
ents: (i) the test statistic is an explicit Cramer-von Mises transformation of the
weighted partial copula, (ii) the regions of rejection are computed using a boot-
strap procedure which mimics conditional independence by generating samples
from the product measure of the estimated conditional marginals. Under condi-
tional independence, the weak convergence of the weighted partial copula process
is established when the marginals are estimated using a smoothed local linear
estimator.

1.7 Publications

The works presented in this manuscripts have resulted in several accepted publications
and preprints, that are listed here in chronological order:

• Elgui, K., Bianchi, P., Portier, F. & Isson, O. (2019, September). Learning Meth-
ods for RSSI-based Geolocation: A Comparative Study. In 2019 27th European
Signal Processing Conference (EUSIPCO) (pp. 1-5). IEEE.

• Elgui, K., Bianchi, P., Isson, O., Portier, F. & Marty, R. (2020, April). Metric
Learning for Fingerprint RSSI-Localization. In 2020 IEEE/ION Position, Loca-
tion and Navigation Symposium (PLANS) (pp. 1036-1042). IEEE.

• Elgui, K., Bianchi, P., Portier, F. & Isson, O. Learning Methods for RSSI-based
geolocation: A comparative study, Pervasive and Mobile Computing (2020).

• Bianchi, P., Elgui, K., & Portier, F. (2020). Conditional independence testing via
weighted partial copulas. arXiv preprint arXiv:2006.12839.

• Elgui, K., Bianchi, P., Portier, F. & Isson, O. Similarity Learning with XGBoost.
(To be submitted)





2
Preliminary Background

“L’intelligence artificielle se
définit-elle comme le contraire de la
bêtise naturelle?”

In this chapter, we introduce the theoretical elements needed to the reading of this thesis.
First, we properly define elements of statistical inference that are afterwards used for
RSSI-based methods of geolocation. Then, the notion of risk, and a lower bound on the
so-called quadratic risk on an estimator is discussed. These notions will prove themselves
useful to highlight the irrelevance of the parametric family of estimators (when applied
to RSSI-based geolocation), and the need to go beyond simple parametric estimation.
This last point is therefore studied in this chapter as well.

2.1 Elements of Statistical Inference

2.1.1 Introduction

The problem of estimating statistical models depending on a finite number of parameters
goes back to Fisher (Fisher, 1925) and has met with tremendous success ever since
(James et al., 2013).

Parametric approaches have the advantage of being very easy to compute, hence their
predominance in the related literature. Furthermore, powerful tools are available for
the statistical analysis of such estimators, such as a lower bound of their variance. This
kind of knowledge, necessary to assess the quality of an estimator, is unfortunately
difficult to obtain when going beyond parametric model, and often requires complex
simulation methods. However, parametric models are limited in their expressive power,
as they only provide an approximation, often imprecise, of the underlying statistical
structure. Statistical models that explain the data in a more consistent way are often
more complex; unknown elements in these models are usually, instead of scalar para-
meters, functions having certain smoothness properties. In this thesis, we shall indeed
see that parametric estimation does not provide sufficiently satisfactory results when
applied to RSSI-based location estimation. Hence, semi-parametric or non-parametric
methods will often be preferred. This section is structured as follows.

Outline First, we set in Section 2.1.2 the framework of parametric estimation. This
framework allows to introduce the Cramér-Rao Lower Bound of an estimator. This
naturally leads to the introduction in Section 2.2 of the non-parametric estimation
framework through the two main problems. Practical aspects of the regression problem
are then investigated, and Tree-Based methods are thus introduced in Section 2.2 as a
conclusion of this chapter.
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2.1.2 Parametric Estimation

Statistical Model

We first consider a family P of probabilities over the space of observations (X ,B(X )).
We refer to the two first chapters of Shorack and Shorack (2000) for a thorough definition
of these mathematical objects. The family P is called the statistical model.

Then, we can define a parametrization of the model by attaching each P ∈ P with a
parameter θ ∈ Θ, where Θ is any open subset of Rd. One will then write Pθ to designate
the law thus labeled.

Definition 2.1 (Statistical model). We call a statistical model a family P of probabilities
P over the space of observations (X ,B(X )). If there exists a set Θ set such that

P =
{
Pθ, θ ∈ Θ

}
,

then, Θ is called the parameter space, and P a parametric model.

A model
{
Pθ, θ ∈ Θ

}
is said to be dominated if any Pθ ∈ P is absolutely continuous

with respect to a common reference measure µ. In the sequel, we place ourselves in the
case where the model is dominated. As a consequence, for all θ ∈ Θ, Pθ always admits
a probability density function pθ w.r.t the reference measure µ.

This fact allows to directly work on a family of densities rather than on a family of
distributions. This leads to the introduction of the notion of likelihood, that we define
as follows:

Definition 2.2 (Likelihood). The likelihood of the observation x is the mapping θ 7→
pθ(x). This likelihood is also denoted p(x; θ).

The likelihood is a central element of a family of inference methods (e.g. maximum
likelihood, or likelihood methods), for which the intuition is clear. Considering an ob-
servation x, the likelihood “assesses” how likely it is that this observation has been
generated under Pθ. The definition of the Maximum Likelihood estimator follows nat-
urally:

Definition 2.3 (Maximum Likelihood). We consider a dominated statistical model P ={
Pθ, θ ∈ Θ

}
, p(·; θ) the probability density of Pθ w.r.t. the reference measure µ. Suppose

that we observe x drawn from Pθ. A Maximum-Likelihood (ML) estimator of θ, is any
estimator θ̂(x) that verifies:

p(x; θ̂) ≥ sup
t∈Θ

p(x; t). (2.1)

Applications of these estimators are considered in Chapter 3, in order to estimate the
time-delay given the observation of both the emitted and received signals, or to estimate
the range given the observation of the RSSI.

Risk and Cramér-Rao Lower Bound

We first recall the notion of risk for a parameter estimate. Then, lower bounds on the
quadratic risk of unbiased estimators are established. In this thesis we focus on the
estimation of parameters of interest that write as g(θ) for some function g : Θ → R.
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An example is the Time Delay estimation in Section 1.3.2. Let now ĝ be an estimator
of the parameter of g(θ). The risk evaluated at ĝ is defined as follows:

R(θ, ĝ) , Eθ
[
`
(
g(θ), ĝ(X)

)]
, (2.2)

where ` : R×R→ R+ is some loss function. In typical settings, ` is the quadratic loss,
and the corresponding risk is then called the quadratic risk, or Mean Squared Error
(MSE). The MSE can be decomposed as follows:

MSE(θ, ĝ) , Eθ
[
(g(θ)− ĝ(X))2

]
= Eθ

{[
(ĝ(X)− Eθĝ(X)) + (Eθĝ(X)− g(θ))

]2
}

= E2
θ

[
ĝ(X)− g(θ)

]
+ Eθ

[
(Eθĝ(X)− g(θ))2

]
, b2(θ, ĝ) + Varθ

[
ĝ(X)

]
. (2.3)

This formula is known as bias-variance decomposition. Its simplicity is only provided
by the use of the quadratic loss. The family of estimators that satisfy b(θ, ĝ) = 0 for all
θ ∈ Θ is called the class of unbiased estimators.

In the sequel, we discuss the quadratic risk of such unbiased estimators via the notion
of Fisher Information. We begin with the case where d = 1, that is θ ∈ Θ ⊂ R, to
simplify the presentation. We consider an unbiased estimator of g(θ), i.e., a statistic
ĝ : X n → R such that E[ĝ(X)] = g(θ) for all θ ∈ Θ. The Cramér-Rao bound gives
a lower bound on the variance of ĝ, hence on its quadratic risk (since ĝ is unbiased).
This theorem is defined under certain technical conditions on the statistical model at
stake. These regularity conditions of the model are provided e.g. in Shao (2006). When
these conditions are met, the model is said to be regular. We then define the Fisher
information quantity (Dembo et al., 1991):

I(θ) ,


(
∂ log p

∂θ
(X; θ)

)2
 . (2.4)

Theorem 2.4. Let P =
{
Pθ, θ ∈ Θ

}
be a regular model, g(θ) the parameter of interest

and let ĝ(X) be a statistic such that Eθ[ĝ(X)] = g(θ) and Varθ[ĝ(X)] <∞ for all θ ∈ Θ.
Suppose furthermore that 0 < I(θ) <∞. Then,

Varθ[ĝ(X)] ≥ g′(θ)2

I(θ)
. (2.5)

The proof is beyond the scope of this section, but we refer the interested reader to Kay
(1993).

Corollary 2.5. Suppose that the conditions of Theorem 2.4 are satisfied and that ĝ is
an unbiased and regular estimator of the parameter. Then,

Varθ[ĝ(X)] ≥ I−1(θ), ∀θ ∈ Θ. (2.6)

This bound is called Cramér-Rao Lower Bound (CRLB) or Darmois-Fréchet bound.
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This bound is applied to the case when θ is a scalar. The following proposition is an
extension to the multi-dimensional case.

Proposition 2.6. Let ĝ be a statistic such that for every θ ∈ Θ, Varθ[ĝ(X)] < ∞,
with 0 < I(θ) < +∞. We furthermore denote by g(θ) = Eθ[ĝ]. Then, θ 7→ g(θ) is
differentiable and:

Varθ[ĝ(X)] ≥ ∇θg(θ)>I(θ)−1∇θg(θ). (2.7)

2.2 Non-Parametric Estimation

The problem of nonparametric estimation consists in estimating, from some observa-
tions, an unknown function belonging to a class of functions. We focus on two non-
parametric estimation problems in this thesis: the estimation of a density and that of
nonparametric regression Chapters 3 and 5.

An introduction to nonparametric methods is therefore proposed herein.

2.2.1 Kernel Density Estimation

Let X1, . . . , Xn be n i.i.d. real-valued random variables whose common distribution is
absolutely continuous w.r.t. the Lebesgue measure on Rd. The problem of this section
is to estimate the density of the common (unknown) distribution p. The estimate of
p is thus a measurable application w.r.t. the observations (X1, . . . , Xn), p̂n : x 7→
p̂n(x;X1, . . . , Xn) = p̂n(x). It happens that some prior can be known about this density
function, and we can look for p in a parametric family. This case has been discussed in
Section 2.1.2. But most of the time, this prior is not available and one may assume that
p belongs to an hypothesis set of function H. This set can be the set of all Lipschitz
continuous probability densities for instance (Tsybakov, 2009). In this thesis, we focus
particularly on kernel density estimation methods. The kernel density estimate of p,
also called the Parzen window estimate (Parzen, 1962), is a non-parametric estimate
given by:

p̂n(x) =
1

n

n∑
i=1

Kh(x−Xi), (2.8)

where Kh : Rd → R+ is defined as Kh(x) = h−1K(h−1x) with h > 0, and K : Rd → R+

a kernel function, satisfying the condition∫
Rd
K(u)du = 1. (2.9)

Popular kernels include for example:

• the rectangle kernel: K(u) = 1
21[−1,1](|u|).

• the Gaussian kernel: K(u) = 1√
2π

exp
(
−u2/2

)
.

• the Epanechnikov kernel: K(u) = 3
4(1− u2)1[−1,1](|u|).

Multidimensional estimator can be easily obtained from the latter one-dimensional ker-
nels. Consider for instance the case d = 2: we suppose that we have a sample of n
i.i.d. pairs of r.v. (U1, V1), . . . , (Un, Vn), with a common density p(u, v) in R2. Then,
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the kernel estimator of p(u, v) is given as follows:

p̂n(u, v) =
1

n

n∑
i=1

Kh1(u− Ui)Kh2(v − Vi),

where h1 and h2 are the bandwidths associated to the “selection” of the neighbourhood
of u and v respectively.

2.2.2 Nadaraya-Watson Estimator

We now study the case of non-parametric regression. We introduce the methods of
construction of well-known Nadaraya-Watson estimators (Nadaraya, 1964), and to give
guarantees on the risk of such estimators.

We consider a pair (X, Y ) of real-valued random variables, where Y is integrable:
E|Y | <∞. We call regression function of Y given X the function m : Rd → R :

m(x) = E[Y |X = x]. (2.10)

We have at our disposal a sample (Xi, Yi)i=1...n of n, independent and identically dis-
tributed (i.i.d) pairs of random variable, with the same distribution as (X, Y ). The aim
is to build from this sample an estimator of the regression function m.

Given a kernelK and a positive bandwidth h > 0, for x ∈ Rd, putKh(x) = h−1K(h−1x).
It follows easily that Kh still verifies Equation (2.9). The Nadaraya-Watson estimator
of the regression function m reads as follows:

mNW
n (x) =

∑n
i=1 YiKh(Xi − x)∑n
i=1Kh(Xi − x)

, if
n∑
i=1

Kh(Xi − x) 6= 0 , (2.11)

and mNW
n (x) = 0 otherwise.

To conclude this section, we briefly discuss the intuition beyond the expression of this
estimator. We assume that the distribution of the random variable (X, Y ) admits a
density p(x, y) w.r.t. the Lebesgue measure, and that p(x) =

∫
R p(x, y)dy > 0 a.s. We

can write

E[Y |X = x] =

∫
R
ypY |X(y|x) dy =

∫
R

yp(x, y)∫
p(x, y)dy

dy. (2.12)

The following proposition shows that the Nadaraya-Watson estimator of the regression
function is simply obtained by replacing in Equation (2.12) the unknown probability
density functions p(x) and p(x, y) by their estimated versions p̂n(x) and p̂n(x, y) intro-
duced in Section 2.2.1.

Proposition 2.7. Let p̂n(x) and p̂n(x, y) be the kernel estimates of p(x) and p(x, y)
respectively as defined in Equation (2.8), then:

mNW
n (x) =

∫
R

yp̂n(x, y)

p̂n(x)
dy.

The proof can be found in Tsybakov (2009).
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Remark 2.8. The Nadaraya-Watson estimator mNW
n satisfies the following property:

mNW
n (x) = arg min

a∈R

n∑
i=1

(Yi − a)2Kh(Xi − x). (2.13)

Thus mNW
n is obtained by a local constant least squares approximation of the outputs Yi.

We are interested in the point-wise bias of such estimate E[mNW(x)]−m(x).

Remark 2.9. We draw to your attention that we chose to conserve the writing in its
standard form, that is for the estimation of E[Y |X = ·]. However, in Section 3.3.1,
Nadaraya-Watson estimators are in fact, employed to estimate X given the position
Y . Indeed, the key question is whether it is possible to choose an appropriate kernel
on X × X . One can either build an ad-hoc kernel on the space of the RSSI (see our
proposed solution in Chapter 4), or leverage the fact that the choice of kernel is much
easier on Y ×Y. The latter approach implies the use of Maximum a Posteriori (MAP)
estimator of Y , described in the next section.

2.2.3 Maximum A Posteriori estimators

We focus in this section on the Maximum A Posteriori (MAP) estimator of the target
Y given X. In this thesis, this approach is at the center of the contribution proposed
in Section 3.2.1.

First, we denote by py, a prior on Y . In the case of a dominated model, one can
determine the distribution a posteriori by explicitly writing its density. Suppose that{
Py, y ∈ R

}
is a dominated model with P (dx|y) = p(x|y)µ(dx) and let ν be a dom-

inant measure of the distribution p(·|x), and continue to note pY the density, p(dy) =
p(y)ν(dy). The joint density of the random vector (X, Y ) with respect to the product
measure µd ⊗ ν is then given by :

p(x, y) = pY (y)p(x|y). (2.14)

Thus the density a posteriori is given (under the domination assumptions) as follows:

p(y|x) =
pY (y)p(x|y)∫

R p(x|u)pY (du)
. (2.15)

This formalism has the advantage of making the density of the distribution of X|Y the
one to be estimated. This approach has numerous benefits. It allows us to introduce
propagation models as in Section 1.3.2. These propagation models are based on phys-
ical considerations and then provide relevant parametrization for the distributions of
interest. Furthermore, assumptions (as the one in Section 3.2.1) are usually made and
drastically decrease the algorithmic complexity of the parametric model inference.

We refer to the MAP estimator of Y the mapping Ŷ map defined as follows:

Ŷ map(x) = arg max
z∈R

pY (z)p(x|z). (2.16)

One can also propose an estimator of the expectation of Y under the a posteriori
distribution, noted Ŷ mmse:

Ŷ mmse(x) =

∫
R
z

pY (z)p(x|z)∫
R p(x|u)pY (du)

ν(dz). (2.17)
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2.3 Tree-Based Methods

Tree boosting is a highly effective and widely used machine learning method (Friedman,
2002; Maimon and Rokach, 2014). Among the machine learning methods used in prac-
tice, gradient tree boosting is one technique that shines in many applications. Recent
well-optimized implementations of tree boosting (such as GBM or XGBoost) allow its
incorporation into real-world production pipelines. This type of predictor is thus a rel-
evant choice for practical application this thesis focuses on. We present hereafter the
basics to define the eXtreme Gradient Boosting (XGBoost Chen and Guestrin (2016))
that will be essential for a good reading of this thesis, in particular the Chapters 3
and 4. The general framework is the regression problem in which an input random
vector X ∈ X ⊂ Rd is observed, and the goal is to predict a random response Y ∈ R by
estimating the regression function m(x) = E

[
Y |X = x

]
. As usual, the objective is to

use the data set Zn to built an estimate m̂n : X → R of the function m.

2.3.1 Regression Trees

The basics of a regression tree

Decision tree can be both applied to classification and regression problem. A regression
tree can be viewed as a tuple (q,ω) where q : Rd → {1, . . . , L} is the structure of the
tree that maps an input to a leaf index, ω ∈ RL is the vector containing the leaves
weights and L is the number of leaves. For a observed input x, we use the decision rule
given by q to map this input into a leaf and define the output as the weight of the leaf
as illustrated in Figure 2.1.

We now briefly discuss the process of learning a regression tree. As mentioned above,
a tree divide the feature space into non-overlapping regions (via its structure q). Each
region is associated to a specific leaf. Let us denote these regions R1, . . . , RL. To every
input that falls into a region, let say Rj , the model prediction will be the mean of the
target values for the training inputs in Rj . Although these regions could have any shape
in theory, it is preferred to give them a rectangular shape to ease the learning of the
tree.

Recursive Binary Splitting

This greedy approach consists in successively splitting the predictor space from the top
of the tree (the root) to the leaves. At each step, the algorithm chooses the direction
of split j, and the cutpoint s such that dividing the predictor space into the regions
{x | xj < s} and {x | xj ≥ s} leads to the greatest possible reduction of the regression
error. That is, we consider all predictors directions 1, . . . , d, and all possible values of the
cutpoint s for each of these directions, and then choose the direction and cutpoint such
that the resulting tree has the lowest regression error. Next, we repeat this process,
looking for the best direction and cutpoint in order to minimize the regression error
within each of the resulting regions. The process continues until it reaches a stopping
criterion; common stopping criteria are that the resulting regions contains a minimum
number of observations, or that the tree contains a maximum number of leaves.
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input x

x1 < 3 x1 ≥ 3

x3 ≤ 1.4

a1 a2

x4 ≤ 7.1

a4a3

Figure 2.1 – Generic representation of a decision tree. The decision (output) of the tree
given the input x is one of the weights (ai)i=1,...,6. For instance, the split at the top
of the tree results in two large branches. The left-hand branch corresponds to x1 < 3,
and the right-hand branch corresponds to x1 ≥ 3. The tree has four terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations that fall
there. As an illustration, the prediction of this tree given the input x = (7, 1, 3.1, 5,−1)
is a4: x1 = 7 ≥ 3, and x4 = 5 ≤ 7.1.

Pros and Cons of Trees

Regression trees play a central role in this thesis and are at the center of the main
contribution (see Chapter 4). It is therefore appropriate to recall here that they have
a number of advantages over the more classical approaches developed in Chapter 3.
They also suffer from a lack of robustness: a small change in the data can substantially
modify the final estimator. To overcome this lack of robustness, we discuss in the next
section the concept of boosting.

4 Trees can easily handle qualitative predictors without the need to create dummy
variables (see the practical case herein).

4 Trees are highly interpretable and can be furthermore graphically displayed.

O Trees can be highly non-robust, a small change in the data can cause a large
change in the final estimated tree.

However, the aggregation of many decision trees allows to obtain a final estimator,
called ensemble model, with a reduced sensitivity to a change of data (Breiman, 1996),
and with better predictive performance at the price of losing interpretation. This ag-
gregation procedure is discussed in the next section.
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2.3.2 Boosting

There exists three methods for constructing ensembles of decision trees: bagging, boost-
ing, and randomization. In this sequel, we mainly focus on the boosting method (Freund
et al., 1999, 1996). This method is known to give better results as shown in Dietterich
(2000) where the experiment section show that over a set of 33 tasks, the Adaboost al-
gorithm gives the best results in most cases. However, this latter algorithm has already
been proved to be sensitive to noise. Therefore, two of the most recent boosting al-
gorithms (which perform better than Adaboost) are preferred hereinafter: eXtreme
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016), and Generalized Boosted
Models (GBM) (Ridgeway, 2007).

First, we define an ensemble tree model as a predictor consisting of a collection of T
randomized regression trees. Let consider the tth tree, and denote by ft(x) the predicted
value of this tree at the query point x. The trees are combined in an additive manner
and thus form the forest estimate:

m̂T
n (x) , mn(x; f1, . . . , fT ) =

T∑
t=1

ft(x).

The idea of the boosting procedure is to learn the trees sequentially. Each new tree is
learned with respect to the residual of the previous model rather that to the outcome
Y as shown in Algorithm 2.2. This means that at each step a basis function that
leads to the largest reduction of empirical risk is added into the estimator. In case of
tree boosting, since a tree corresponds to split of the space of inputs into regions (see
Section 2.3.1), the model is then improved in areas where it does not perform well. Note
that in boosting, unlike in bagging, the construction of each tree strongly depends on
the trees that have already been previously built. In general, boosting procedure can
be tuned by means of parameters:

• The number of trees, noted T ∈ N∗ herein and corresponds to the parameter
n_estimators in sklearn.ensemble.GradientBoostingRegressor class. Unlike
bagging and random forests, boosting can overfit if T is chosen too big. We
therefore use a validation set to select T .

• The shrinkage parameter ν > 0, a positive scalar. This parameter controls the
rate at which boosting learns. At each stage, the contribution of each tree is
shrunk by ν. This parameter is called learning_rate.

• The complexity of the tree, which can be controlled using different parameters
such as the maximum depth of the trees, the number of leaves in a tree, or the
minimum number of samples required to be at a leaf node denoted respectively
by max_depth, max_leaf_nodes and min_samples_leaf.

In the literature James et al. (2013), it is often recommended to use small trees, with
just a few terminal nodes. For this plot, we consider the well-known prediction problem
in which we want to predict the housing values based on 13 features such as per capita
crime rate by town (crim), the average number of rooms per dwelling (rm) or the nitro-
gen oxides concentration (nox). This dataset can be found in the sklearn.datasets1.

1sklearn Boston Dataset

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html#sklearn.datasets.load_boston
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In particular, simple stumps with a depth of one perform well if enough of them are in-
cluded. This model can even outperform the depth-two model or a random forest. This
highlights one difference between boosting and random forests: in boosting, because the
growth of a particular tree takes into account the other trees that have already been
grown, smaller trees are typically sufficient.

GBM

We begin this section on tree-based methods with a brief description of the recent
Boosting implementation known as GBM. This implementation can be found in the
gbm package (LightGBM). The gbm package takes the approach described in Fried-
man (2002). Some of the terminology somehow differs for generality. In addition, the
gbm package implements boosting for models commonly used in statistics but not com-
monly associated with boosting. The gbm implementation of the boosting procedure is
described in Algorithm 2.1

Algorithm 2.1 Boosting as implemented in gbm()
Result: m̂n =

∑
t ft

1 mn = 0, t = 1, and ri = yi ∀i ∈ {1, . . . , n}, a loss function L.
2 while Stopping criterion is False do
3 Compute the negative gradient as the response.

4 ri = ∂
∂m(xi)

L
(
yi,m(xi)

)∣∣∣∣
m(xi)=m̂n(xi)

5 Randomly select p× k cases from the dataset.
6 Fit a regression tree ft w.r.t. those randomly selected observations.
7 m̂n ← m̂n + ft
8 t← t+ 1

XGBoost Algorithm

We now discuss in details the XGBoost algorithm, and conclude this section with a
presentation of Gradient tree boosting also known as Gradient Boosted Regression
Tree (GBRT) and specifically a scalable end-to-end tree boosting system called eX-
treme Gradient Boosting (XGBoost). Boosting for regression trees is described in Al-
gorithm 2.2.

Algorithm 2.2 Pseudo-code of Boosting for Regression Trees
Result: m̂n =

∑
t ft

1 m̂n = 0, t = 1, and ri = yi ∀i ∈ {1, . . . , n}.
2 while Stopping criterion is False do
3 fit a tree ft to the training data

{
(xi, ri)

}
i=1,...,n

.

4 m̂n ← m̂n + ft
5 ∀i ≤ n : ri ← ri − ft(xi)
6 t← t+ 1

The main contribution of GBRT is to use a second-order approximation of the objective
in order to ease its minimization. Let ` be a regression loss function, typically the
L2−norm, and Ω a regularizer to be defined later, and consider the following regularized

https://github.com/microsoft/LightGBM
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objective:

L(m̂n) ,
n∑
i=1

`
(
m̂n(xi), yi

)
+
∑
s

Ω(fs). (2.18)

Let m̂(t−1)
n be the obtained predictor at the (t− 1)th iteration:

m̂(t−1)
n (x) =

t−1∑
s=1

fs(x). (2.19)

We need to add ft to minimize the following objective.

L(t)(f) ,
n∑
i=1

`
(
m̂(t−1)
n (xi) + f(xi), yi

)
+ Ω(f). (2.20)

To ease the minimization of the objective, second-order approximation originated from
Friedman et al. (2000) can be used:

L(t)(f) '
∑
i≤n

[
`
(
m̂(t−1)
n (xi), yi

)
+ gif(xi) +

1

2
hif

2(xi)

]
+ Ω(f), (2.21)

where gi = ∂
m̂

(t−1)
n (xi)

`(·, yi), and hi = ∂2

m̂
(t−1)
n (xi)

`(·, yi) are the first and second order

gradient of the loss function ` w.r.t. the first coordinate. Since the term `(m̂
(t−1)
n (xi), yi)

is a constant of f , we can remove it to obtain a simplified version of the objective as
follows:

L̃(t)(f) =
∑
i≤n

[
gif(xi) +

1

2
hif

2(xi)

]
+ Ω(f), (2.22)

It is possible to give a closed-form expression of the leaves weights ω for a fixed structure
q of the predictor f . To this aim, we need to reindex the sum in Equation (2.22).
Let l be an index of a leaf, (q,ω) the tuple representing the tree regressor f and
Il , {i ≤ n : q(xi) = l} the set of indices that falls into the leaf l. Now, on the
set of indices Il, the tree regressor f is constant and equal to ωl. Consequently, noting
L the size of ω we have

L̃(t)(f) =
∑
l≤L

∑
i∈Il

[
giωl +

1

2
hiω

2
l

]
+ λ‖ω‖22 + γ|L|, (2.23)

where we expanded the regularizer Ω(f) = λ‖ω‖22 + γL.

For a fixed structure q (L is constant), the optimal values of the leaves weights ω?l (q)
are thus given for all l ≤ L by :

ω?l (q) =

∑
Il gi∑

Il hi + λ
. (2.24)

We can compute the value of the objective at the point
(
q,ω?(q)

)
and use it as a

scoring function to measure the quality of a tree structure q. To lighten notation, we
will simply write ω?l instead of ω?l (q). It comes directly that this optimal value is given
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by

L̃(t)(q) = −1

2

∑
l≤L

(∑
Il gi

)2∑
Il hi + λ

+ γL. (2.25)

Now that we have a score to evaluate the quality of a tree structure (like the impurity
score for evaluating decision trees (Shalev-Shwartz and Ben-David, 2014)) we can apply
the greedy procedure introduced in Section 2.3.1 by starting from the root and iteratively
adds branches to the tree.

Outline of the thesis

We would like to recall the place that the elements seen in this chapter will have in
the sequel. Section 1.3.2 focuses on the problem of channel-based location estimation
techniques, by means of two well-known techniques: the time delay estimation, and the
RSSI-based range estimation. Both of these approaches involve a parameter estimation
as well as the notion of CRLB. Chapter 3 provides a review of methods of geolocation.
It also proposes a original classification of these methods which are referred to as fin-
gerprinting methods and likelihood-based methods. While the first family of methods
is quite self-contained, the last one relies on the estimation of the likelihood by means
of Nadaraya-Watson estimates described above. In Chapter 5, we propose to assess
the conditional independence between variables. The proposed test deeply relies on the
conditional distributions estimation; we besides provide a practical example based on
the Nadaraya-Watson estimates. Finally, in Chapter 4 we propose to adapt the boosting
methods seen in Section 2.3 to metric learning. The learned metric has the particularity
to be optimal w.r.t. the regression task pursued.



3
RSSI-based Methods for

Location Estimation
“Adam, où es-tu?”

Genèse 3:9

In this chapter, we investigate machine learning approaches addressing the problem of
geolocation. First, we review some classical learning methods to build a radio map.
These methods are split in two categories, which we refer to as likelihood-based methods
and fingerprinting methods. Then, we provide a novel geolocation approach in each of
these two categories. The first proposed technique relies on a semi-parametric Nadaraya-
Watson (NW) estimator of the likelihood, followed by a maximum a posteriori (MAP)
estimator of the object’s position. The second technique consists in learning a proper
metric on the dataset, constructed by means of a Gradient boosting regressor: a k-nearest
neighbor algorithm is then used to estimate the position. The proposed methods are com-
pared on two data sets originated from Sigfox network, and an indoor dataset performed
in a three-story building. Experiments show the interest of the proposed methods, both
in terms of location estimation performance, and ability to build radio maps.
This chapter covers the following publications:

• Elgui, K., Bianchi, P., Portier, F. & Isson, O. (2019, September). Learning Meth-
ods for RSSI-based Geolocation: A Comparative Study. In 2019 27th European
Signal Processing Conference (EUSIPCO) (pp. 1-5). IEEE.

• Elgui, K., Bianchi, P., Isson, O., Portier, F. & Marty, R. (2020, April). Metric
Learning for Fingerprint RSSI-Localization. In 2020 IEEE/ION Position, Loca-
tion and Navigation Symposium (PLANS) (pp. 1036-1042). IEEE.

• Elgui, K., Bianchi, P., Portier, F. & Isson, O. Learning Methods for RSSI-based
geolocation: A comparative study, Pervasive and Mobile Computing (2020).

3.1 Introduction

In the considered IoT dedicated networks, with low power and bandwidth devices,
localization is challenging. Standard methods such as famous range-based methods by
means of TOA estimation as instance are not well suited for this application. Therefore,
machine learning methods for localization have met a great deal of attention these
past ten years. Besides they have shown their value for indoor scenarios as in Farjow
et al. (2011); Wang et al. (2018). Nevertheless, the accuracy of such methods might
be jeopardized in LPWAN (Farid et al., 2013). In this chapter we focus on a baseline
probabilistic RSSI-only localization algorithm. The main challenge comes from the
large fluctuations of the observed RSSI values, for a given source location (see Fig. 3.1).
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Figure 3.1 – Histograms from Sigfox network. Each plot shows histogram of the RSSI
at a BS for three emitters of which the positions are fixed (the empirical standards
deviations are resp. 13dBm, 7dBm and 13dBm). Given a fixed position of an emitter,
the received RSSI’s show large fluctuations.

In such data, the observed signals can be very noisy, especially in urban environment
(RSSI based methods are often assisted with accelerometers, gyroscopes or Bluetooth
beacons to improve their accuracy Yiu et al. (2017)). It may also happen that, due to
range limitation or network sensitivity, some messages are not detected by some BSs.
In the network of interest for instance, the lowest observed value of the RSSI is −166
dBm. Below this value, the signal is not collected by the BSs, either because of a lack
of sensitivity, or because of an SNR that is too low. In certain cases however, it can also
be characteristic of a signal emitted from too far away. Despite the fact that experience
has shown the benefits of taking into account the information of non-reception, this
information is still, rarely used in the literature.

Related literature. Machine learning techniques have been extensively considered for
RSSI based localization, for instance to track customers Oosterlinck et al. (2017), or in
application to autonomous vehicles Campbell et al. (2018). The first fingerprint-based
method was proposed in Bahl et al. (2000). In this prior work, k-Nearest Neighbor
(k-NN) is used to tackle the task of predicting the location given RSSI with RADAR,
a system for locating and tracking users inside a building. Let us also mention Jedari
et al. (2015) which compares the performance of k-NN with random forest to predict the
indoor location of using RSSI-based fingerprinting method. This work emphasizes the
importance of the distance function used by k-NN. Besides, different distance functions
such as Euclidean, Manhattan and Minkowski are compared in terms of accuracy of
the resulting predictor. In Xie et al. (2016), the authors exploit the Spearman rank
correlation of RSSI measurements to improve k-NN. However, the authors of these
prior works do not study the choice of the optimal metric. In contract, we propose to
learn a (non parametric) metric function, by means of a Gradient Boosting algorithm.
This metric is learned such that, when evaluated on a pair of RSSI vectors, it gives a
good approximation of the Vincenty distance between the two emitters.

In recent years, neural networks have also been widely used for RSSI-based localization,
in particular for indoor use cases Iqbal et al. (2018); Ahmadi and Bouallegue (2015);
Zhang et al. (2016). For instance, Zhang et al. (2016) proposes to deal with the high
variability of the RSSI by using a four-layer deep neural network structure to extract
relevant features.
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Another approach is to model the signal strength as a function of the position. In the
literature, these methods are generally referred to as range-based methods because they
use a signal propagation model that maps an observed RSSI value to a distance (range)
estimate. The localization procedure then tries to find the location which best agrees
with the measured signal strengths. These methods then require the introduction of a
likelihood model, which can be parametric or semi-parametric. We therefore refer to
these approaches as likelihood-based methods. A commonly used parametric model is
the so-called log distance path-loss model Wang et al. (2012); Xu et al. (2014). This
model is a radio propagation model that provides a mapping between the received signal
strength and the distance between the emitter and the receiver. The main advantage
of parametric models is that they only require the calibration of few parameters, which
helps the training phase of the model and do not require a large training set. However,
they often fail to represent arbitrary distributions Yiu et al. (2017), which could de-
teriorate the geolocation accuracy (we refer to Zhou et al. (2018); Botteron (2003) for
in-depth studies of the geolocation accuracy of log-loss model). To remedy this, semi-
parametric models have been introduced. The latter benefit from the advantages of
parametric models while still being able to represent arbitrary distributions. To build a
likelihood in a semi-parametric fashion, many methods have been employed such as ker-
nel methods Mirowski et al. (2012); Mahfouz et al. (2013, 2015) and Gaussian Processes
(GPs) Schwaighofer et al. (2004); Hähnel and Fox (2006) or more recently in Bisio et al.
(2017) with Smart2. First, as far as we know, in the related literature, few of works
(Piórkowski and Grossglauser, 2006) have payed attention on the variable representing
the reception/non reception of the signal at BSs discussed above. In most works, an
arbitrary low RSSI value is attributed whenever a signal is not received as in Dashti
et al. (2015); Janssen et al. (2020). Moreover, almost all of those found in the literature
give a statistical relationship between the RSSI and the distance between emitter and
receiver through a propagation model involving physical considerations. This implies
that they therefore disregard the non-isotropy of the environment.

The methods proposed in this chapter, in contrast, take into consideration both the
non-isotropy and the information of non-reception. The detailed contributions of this
chapter are the following.

Contributions.

• We build a relevant metric for RSSI based geolocation. In order to achieve this, we
propose to learn a non parametric metric function by means of a Gradient Boosting
algorithm. The proposed method benefits both from the simplicity and robustness
of k-NN and the regression performance of XGBoost, and more specifically from
its ability to deal with complex and high dimensional data such as RSSI vectors.
The idea is to learn the metric used by the k-NN explicitly to enhance a predictor
estimation Bellet et al. (2013). Herein, the metric is built to compare two RSSI’s
vectors, such that the k-NN regressor provides the most appropriate neighbors for
the geolocation. The main idea is to learn this metric d such that for a couple of
RSSI’s vectors (x,x′), d(x,x′) is a relevant predictor of the Euclidean distance
between the two emitters’ locations ‖y − y′‖2. We propose to learn d as a sum
of T regression trees. Those trees are obtained through XGBoost algorithm (see
Section 2.3). The benefits w.r.t. a classic k-NN regressor are twofold. First, the
estimate benefits from the information of reception/non reception of the signal at
a BS. Second, it improves the model by optimizing the metric explicitly for the
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task of geolocation. This leads to higher accuracy of the model as demonstrated
in Section 3.4.

• We propose a method that takes advantage of the Boolean variable representing
the reception/non reception of the signal at BSs. Our proposed model relies on a
specific likelihood model of the RSSI’s given the object’s position. The expression
of the likelihood is based on a model assumption of Naive Bayes type: given the
emitter’s position, the coordinates of the RSSI vector are assumed independent. It
allows to build an estimator whose implementation is practical. The distribution
of a RSSI at a given BS given the location of the emitter, is set as a Gaussian dis-
tribution. The mean and the standard deviation of this distribution are obtained
by a non-parametric Nadaraya-Watson estimator Section 2.2.2. The final location
is obtained using a Maximum-A-Posteriori (MAP) estimator. As will be shown
in Section 3.4.1, one of the assets of the method is that it performs well, even
on small training data sets. Finally, as a generative model, it allows to compute
useful statistical information about our estimate such as density level sets and
confidence regions unlike standard machine learning methods such as the k-NN
estimator described below.

• We discuss the computational complexity as well as the memory cost of the meth-
ods founds in the related literature.

• We provide detailed experiments using real data originated from the Sigfox net-
work, and an Indoor Positioning Dataset from Zsolt Tóth (2016).

Outline The rest of the chapter is organized as follows. Section 3.2 investigates several
popular geolocation techniques of the literature. Then, in Section 3.3, we introduce the
two proposed predictors. Finally, Section 3.4 is devoted to the numerical experiments
and discussions.

3.2 Machine Learning Methods for Geolocation

In this section, we discuss different off-the-shelf predictors which can be used to solve
the geolocation task introduced above.

3.2.1 Likelihood-based Methods

We refer to as Likelihood-based methods the methods which learn from the dataset a
likelihood model p(x|y) for the conditional probability of the RSSI vector X given the
position Y . These methods are presented in the Section 2.1.2.

One first learns from the observed data Zn a mapping p(x|y) which represents the
conditional pdf of X|Y . One way is to introduce a parametric likelihood model as
presented in Section 2.1.2, such as the path-loss model discussed at the end of this
paragraph (and previously introduced in Section 1.3.2). The parameters of the model
are then learned from the dataset. Non-parametric methods can be used as well (see
Section 3.3). One of the main advantages is that some prior hypotheses on the form of
the likelihood p(x|y) can be, based on physical considerations, easily introduced. In the
sequel, we will assume as in Kaemarungsi and Krishnamurthy (2004); Mazuelas et al.
(2009); Li (2006); Bshara et al. (2010) that the conditional pdf admits the following
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expression:

p(x|y) =

d∏
k=1

pk(xk|y) , (3.1)

where x = (x1, . . . , xd) and where p1, . . . , pd are the conditional marginals to be learned
from the training set. This implies that the components X1, . . . , Xd of the random
vector X are independent conditionally to Y .

Assume now that a new message arises from the unknown position Y with an observed
RSSI vector x. we can then make the choice to use the MAP estimator presented in
Section 2.2.

ŶMAP (X) , arg max
y∈Y

p(y|X)

= arg max
y∈Y

d∑
k=1

log pk(Xk|y) + log pY (y). (3.2)

The remaining task is to provide a model for pk’s, which can be learned from the training
set. This step is commonly referred to as the calibration step and is described in the
preliminary Chapter 2.

Let us now provide a practical example with the broadly used log-loss (or path-loss)
parametric model (Yiu et al., 2017; Bshara et al., 2010; Barsocchi et al., 2009) described
in Section 1.3.2. The conditional distribution pk(xk|y) of Xk|Y is supposed to have
the form pθk(xk|y) where θk = (P0,k, νk, σ

2
k) is a triplet of parameters, pθk( . |y) is a

Gaussian distribution of variance σ2
k and mean P0,k − 10νk log10 dv(y, yk)/d0. Here, d0

is some reference distance and dv stands for the Vincenty distance Vincenty (1975), the
parameters P0,k, νk respectively represent the power in dBm at distance d0 and νk is
the so-called path-loss exponent.

The parameter vector θ = (θ1, . . . , θd) is then estimated from the dataset Zn using a
standard maximum likelihood approach as described in Chapter 2. Once the parameter
θ has been estimated, the second phase consists in replacing in Equation (3.2) the
unknown distributions p′ks by their estimates and thus obtain our estimator.

3.2.2 Fingerprinting Methods

Fingerprinting methods directly map the vector X into a location Ŷ (radio-map), typ-
ically by means of a supervised learning algorithm. There have been extensively studied
Yiu et al. (2017); Brunato and Battiti (2005); Torres-Sospedra et al. (2015); Honkavirta
et al. (2009). We briefly present some popular learning algorithms to build this mapping.

k-Nearest Neighbours

This method is used in Yiu et al. (2017); Patwari (2005) in the context of outdoor
geolocation. As discussed in Section 1.5, some messages may not be detected by some
BS, in which case we just set the corresponding RSSI value to NaN. In this section, we
endow the space of RSSI’s vectors with the Euclidean distance. For this aim, we need
to replace all the NaN values. We suggest, as in Yiu et al. (2017), to replace all the
NaN values either by the lowest RSSI amongst all observed RSSI (in this paper −200
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dBm will be used), or by an arbitrary value (the value −110 dBm is used in Yiu et al.
(2017)).

For every D-dimensional RSSI vectorX, we let (x(1), y(1)), . . . , (x(n), Y(n)) be a reorder-
ing of the dataset Zn such that ‖X −x(1)‖ ≤ · · · ≤ ‖X −x(n)‖. The unknown position
Y is finally estimated as follows:

Ŷ =
1

k

k∑
i=1

y(i), (3.3)

where the integer k is an hyperparameter (see Hall et al. (2008) for a discussion on the
choice of k).

Ensemble Trees Methods

Two important classes of ensemble methods are bagging methods such as random
forests Breiman (2001), and boosting methods such as Gradient Tree boosting Friedman
(2002). A Random Forest model has been applied as a classifier for a indoor-context
geolocation Jedari et al. (2015) in which it gets better accuracy than a k-NN based
method. In Li et al. (2018) used both TDOA and RSSI as input to indoor location
estimation. The authors proposed a combination of a k-NN (to remove outliers) and a
Random Forest Regressor.

Multi-Layers Perceptron

In Ahmad et al. (2006); Dai et al. (2016), the authors propose to use a Multi Layer
Perceptron (MLP) approach to reduce the uncertainty in an indoor location estimation
system. In the present section, we suggest to use a two hidden layers perceptron (see
Fig. 3.2). The first hidden layer is composed by nh = 250 nodes. Each of these
node computes a single output from multiple real-valued inputs by forming a linear
combination according to its input weights, and puts this output through the logistic
sigmoid activation function. The second hidden layer is similar to the first, but has no
activation function. For every node l ≤ 250:

h
(1)
l (X) = σ

∑
d

αl,dXd + βl

 = σ
(〈
αl,X

〉
+ βl

)
, (3.4)

where σ is the logistic sigmoid function σ(x) = ex/(1 + ex). For every node l′ ≤ 250:

h
(2)
l′

(
h(1)(X)

)
=
∑
p

γl′, ph
(1)
p (X) + δl′ = σ

(〈
γl′ ,h

(1)(X)
〉

+ δl′

)
, (3.5)

where h(1)(X) ,

(
h

(1)
1 (X), . . . , h

(1)
250(X)

)>
. The final estimator of the position Y is

as follows:
Ŷ =

∑
l′

ζl′h
(2)
l′

(
h(1)(X)

)
+ y0. (3.6)

The parameters (α,β,γ, δ, ζ, y0) are learned by minimizing the quadratic loss on the
examples of Zn.
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Figure 3.2 – Figure of a two hidden layers perceptron

Method Training
complexity

Memory
cost

Prediction
complexity Non-Reception

Likelihood O(1) O(dn) O(d|Y|) Yes
k-NN O(1) O(dn) O(dnk) No

Ensemble Trees O(dTn log n) O(2qT ) O(qT ) Yes
Perceptron O(nnh) O(nh) O(nh) No

Table 3.1 – Criteria of the four presented methods. We denoted by d the dimension
of the RSSI vector X, nh the number of neurons in the perceptron model. At last, T
stands for the number of trees of the ensemble trees regressor, and q the depth of a
single tree.

3.2.3 Discussion

In this part, we discuss technical aspects of the methods described above. This discus-
sion is structured around four criteria:

• The training complexity of the model training.

• The memory cost of the predictor.

• The prediction complexity of the model.

• The ability to take into account the non-reception.

In Table 3.1, we illustrate the different criteria for the learning methods introduced in
Section 3.2. We denote n the size of the training set, d the dimension of the RSSI vector
X. In this table, we also denote nh the number of neurons in the perceptron model.
Finally, T stands for the number of trees of the ensemble trees regressor, and q the
depth of a single tree.

The likelihood based method is one of the cheapest method in term of both training
complexity and memory cost. Indeed, this method only requires to stack into memory
the conditional marginals p1, . . . , pd. Thus, the memory space of these methods de-
pends on the number of parameters. Non-parametric methods can be used as well (see
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Section 3.3) to estimate this conditional marginals, in which case we have a space com-
plexity of O(dn). However, the prediction is expensive because it requires to compute
the arg max of the likelihood over the set Y.

Finally, while ensemble trees methods and perceptron offer lower both memory cost
and prediction complexity, they require a long training phase. The time complexity of
a method training is yet crucial. If this complexity is too high, one may not be able
to retrain the model whenever the network changes. In that sense, the k-NN and the
likelihood based methods should be preferred.

3.3 Proposed Geolocation Methods

In this section, we present two new geolocation approaches. The first relies on a semi-
parametric Nadaraya-Watson (NW) estimator of the likelihood, followed by a maximum
a posteriori (MAP)estimator of the object’s position. The second technique consists in
learning a proper metric, constructed by means of a Gradient boosting regressor: a
k-nearest neighbor algorithm is then used to estimate the position.

3.3.1 Semi-Parametric Likelihood-Based Method

In the sequel, we propose a semi parametric likelihood-based method. Due to the NaN-
values, we modify the classical Gaussian Process model used Hähnel and Fox (2006)
in order to leverage the information of non reception. As in Yiu et al. (2017); Hähnel
and Fox (2006) we generate a likelihood model for signal strength measurements using
a semi-parametric framework. We propose the following likelihood model for the condi-
tional density p(x|y) of X given Y . Using the likelihood form presented in Section 3.2,
it is sufficient to provide a model for the marginal conditional distributions pk(xk|y) of
Xk given Y , for every k = 1, . . . , d.

Here, we recall that, unlike in Hähnel and Fox (2006); Yiu et al. (2017), Xk is a random
variable over the set R ∪ {NaN}. Densities are thus considered w.r.t. the reference
measure λ+ δNaN where λ is the Lebesgue measure and δNaN is the Dirac measure at the
NaN-value. We define πk : Y → [0, 1] as

πk(z) , P(Xk = NaN|Y = y) = E
[
1{NaN}(Xk)|Y = y

]
and we constrain the model by assuming that, given Y and given that Xk 6= NaN, Xk

follows a Gaussian distribution whose mean and variance are respectively denoted by
mk(y) and σ2

k(y):

mk(y) , E(Xk|Y = y,Xk 6= NaN) ,

σ2
k(z) , Var(Xk|Y = y,Xk 6= NaN) .

We denote by Φ(x;m,σ2) = (
√

2πσ)−1 exp

(
− (x−m)2

2σ2

)
the normal density of mean m

and variance σ2. We summarize our model as follows:

1. X1, . . . , Xd are independent given Y .

2. For every k,

P(Xk ∈ dx|Y ) = πk(Y )δNaN(dx) +
(

1− πk(Y )
)

Φ
(
x;mk(Y ), σ2

k(Y )
)

dx. (3.7)
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Based on this model, the likelihood p(x|y) is fully determined by the mappings πk, mk

and σ2
k for all k = 1, . . . , d. The remaining task is to estimate these quantities using our

dataset Zn. To this end, we propose to use a non-parametric approach, and to replace
these mappings with their Nadaraya-Watson estimates introduced in Chapter 2.

The Nadaraya-Watson Estimator for Non-Parametric regression. Let K :
Y → R+ be a kernel, i.e., non-negative, symmetric function integrating to one, and let
h > 0 be a scalar (the so-called bandwidth). Define Kh(y) = h−1K(h−1y) for all y ∈ Y.

The Nadaraya-Watson estimates are respectively given for every k ≤ d by:

π̂k(y) ,

∑n
i=1 1NaN(xi,k)Kh

(
yi − y

)∑n
i=1Kh

(
yi − y

) , (3.8)

m̂k(y) , Dk(y)−1
n∑
i=1

1R(xi,k)xi,kKh

(
yi − y

)
, (3.9)

σ̂2
k(y) , Dk(y)−1

n∑
i=1

1R(xi,k)(xi,k −mk(y))2Kh

(
yi − y

)
, (3.10)

where Dk(y) ,
∑n

i=1 1R(xi,k)Kh

(
yi − y

)
.

Under standard technical conditions, π̂k, m̂k and σ̂2
k converge uniformly towards πk, mk

and σ2
k as n→∞ and nh→∞ (Tsybakov, 2013). Finally, the MAP location estimator

can be written as:

Ŷ = arg max
y∈Y

∑
k∈IX

(1− π̂k(y)) log Φ(Xk; m̂k(y), σ̂2
k(y))

+
∑
k∈IcX

(1− π̂k(y)) + log p̂Y (y) , (3.11)

where IX , {k = 1, . . . , d : Xk 6= NaN} stands for the set of the receiving BS’s, and
where p̂Y (y) stands for an estimation of the prior on Y , which we suggest to estimate
from the dataset Zn through the kernel density estimator:

p̂Y (y) = n−1
n∑
i=1

Kh

(
yi − y

)
.

The training step of this algorithm is very efficient. Thus, the model can be re-fitted
very quickly. This can be useful if a BS is removed or shifted for example. This method
enables us, in a very simple manner, to take into account the Boolean variable repres-
enting the reception/non reception of the signal at BS’s. In addition, as a generative
model, it allows to compute useful statistical guaranties on the location estimation such
as confidence level sets (see Section 3.4).

With this choice of estimates, we have for every k ≤ d:

π̂k(y) = arg min
a∈R

n∑
i=1

(
1NaN(xi,k)− a

)2
Kh

(
yi − y

)
, (3.12)

m̂k(y) = arg min
a∈R

n∑
i=1

(
xi,k − a

)2
1R(xi,k)Kh

(
yi − y

)
. (3.13)
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Proof The result follows immediately from taking the value that cancels out the
gradient.

Thus, these estimates are obtained by a local constant least squares approximation of
the target. The locality is determined by a kernel Kh that downweights all the Y i that
are not close to y whereas a plays the role of a local constant to be fitted. Because
of the use of the conditional probability distribution of the components of X given Y
instead of the one of Y given X, the choice of an appropriate kernel is easy.

We finally discuss broadly the Cross-validation procedure for bandwidth selection.
The choice of kernel bandwidth h is a key element for a kernel regression. There-
fore, we suggest a K-Fold Cross-Validation selection of bandwidth h. Hereinafter, we
provide a criterion which consists in assessing the regression performance of the recep-
tion given the position Y . We randomly divide the set of observations into K groups
of equal size. These groups are denoted by {Ik}Kk=1. We denote by MSE(k)(h) =

1
|Ik|
∑

i∈Ik ‖1NaN(xi)−π̂h(yi)‖2 the mean squared error computed on the observations on
Ik, where π̂h(yi) stands for the kernel regressor of 1NaN(X)|Y trained on {1, . . . , n}\Ik.
Finally, we chose h? as h? = arg minh

1
K

∑
kMSE(k)(h).

3.3.2 A new metric for k-NN

To enhanced the k-NN method, we can learn a appropriate metric Xie et al. (2016);
Torres-Sospedra et al. (2015)) on X d. The impact of the distance on the prediction of k-
NN regressor is widely discussed in Honkavirta et al. (2009), where several p−norms are
compared. Nevertheless, there is no mention about learning such a distance. Let recall
that NaN values are here replaced by a fixed real value as discussed in Section 3.2.2. Our
contribution is to build a mapping d : X d×X d → [0,+∞) such that close RSSI (w.r.t.
to the metric d) correspond to close object positions (w.r.t. to the Vincenty distance dv
on Y). In that sense, a “good” metric is a mapping d for which the empirical risk

Rn(d) ,
n∑
i=1

n∑
j=1

(
d(xi,xj)− dv(yi, yj)

)2

is small. The main trick, is to search for a mapping dminimizing Rn(d) within a relevant
hypothesis class. We suggest to search for d under the form

d(x,x′) ,
T∑
t=1

ft(Φ(x,x′)) ,

where f1, . . . , fT is a collection of T regression trees, and where Φ : X d×X d → Rd×Rd
is given by:

Φ(x,x′) ,

(
|x− x′|

1
2(x+ x′)

)
. (3.14)

The first part of Φ(x,x′) encodes the relative position of the RSSI vectors and the
second part their absolute position, as opposed to the implicit mapping of the Euclidean
distance which only encodes relative information. In practice, the minimization of
ERn(d) w.r.t. f1, . . . , fT is intractable. An alternative is to use a Random Forest or an
XGboost regressor, which separately optimizes the T regression trees. In practice, the
learning stage is thus as follows:

• Compute the pairwise features Φ(xi,xj) for all couples (i, j) in the dataset.
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Figure 3.3 – Plots of RMSE (km) on Sigfox dataset vs. the number of neighbors k for
the classic k-NN in (—), and the enhanced k-NN in (—). The RMSE is chosen as a
criterion for the choice of k, as mentioned in Sec. 3.4.1

• Use a regression tree ensemble method to predict the labels dv(Yi, Yj) based on
the features Φ(Xi,Xj) .

Note that the obtained mapping d, though symmetric, is not mathematically speaking
a metric. This point is however irrelevant regarding the application of interest. Given
the obtained metric and given an observed RSSI vector X, the k-NN estimate of Y is
computed as in Equation (3.3).

3.4 Numerical experiments

3.4.1 Performance Analysis of Location Estimation Methods

Datasets

To compare the performance of the different methods, we have used two datasets.

UCI Dataset An indoor dataset from Zsolt Tóth (2016), composed of 1540 meas-
urements performed in a three-story building. The measurements are made at the 32
base stations set in the building, and their positions are known. The measurements
were recorded by the same kind of Android devices in order to reduce the effect of the
variety of the hardware. The recording was preformed at weekend to reduce the noise
of the environment.



54 CHAPTER 3. RSSI-BASED MACHINE LEARNING METHODS

Figure 3.4 – Comparisons of the presented methods in terms of their cdf of errors on
the two datasets. left: Sigfox, right: UCI

Figure 3.5 – In red (resp. in blue), some of the locations of the 200 (resp. 25) nearest
neighbors according to the euclidean distance (resp. learned metric). In green stars,
the true position of the emitter. The standard deviation of the blue dots around the
true position is much lower the the standard deviation of the red dots. Red dots being
scattered across a wide area, only a few of them are displayed in the figures.

Sigfox Dataset The second one, is a private dataset originated from the Sigfox net-
work. It is composed of n = 1.5 · 106 observations. These measurements are collected
at the 164 base stations (see Figure 3.8).

These datasets are randomly split in a training set (90%) and a test set (10%). The
training set was used to perform cross-validation (each fold containing 10% of the train-
ing set) in order to find the optimal parameters of our algorithms.

Results and discussions

To compute the errors we employ the Vincenty distance between estimated and actual
location. Figure 3.4 shows the cumulative distribution function (cdf) of the prediction
error for all the presented methods. Our proposed metric learning based k-NN turns
out to outperform the other methods of the paper. It is particularly interesting to
notice how the learned metric can improve a k-NN. Between these two methods, the
optimal choice for the number of neighbours k is different. This parameter is chosen
according a cross-validation (see Figure 3.3). Figure 3.3 shows the empirical risk of
the Euclidean k-NN, and the proposed enhanced k-NN with respect to k. The main
conclusion of this figure is the optimal value of k: 200 (resp. 25) neighbors minimize
the empirical risk of the Euclidean k-NN (resp. the proposed k-NN). However, as k
increases, the Euclidean k-NN inability to incorporate position information causes its
performance to degrade. Our method, by comparison, shows fewer signs of degradation
as k increases. In Figure 3.5 we display the locations of the k nearest neighbours for
these two methods. As expected, the standard deviation of the k nearest neighbours
around the true position is much lower for our proposed metric learning based k-NN
than for the k-NN.
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Figure 3.6 – The c.d.f. of errors on UCI dataset by the different presented methods
assuming 90% (left) and 50% (right) of the database was available.

By contrast, the Log Loss model is neither relevant for the noisy urban dataset nor
for the UCI indoor one. The main assumption made by this model is that the signal
is propagating through free space. This assumption cannot be valid in both of these
datasets. Hence, the poor performance of the log-loss model.

Finally, notice that the presented likelihood-based method’s location errors are relatively
stable when the number of training points decreases (see Figure 3.6). This point is
emphasized in Yiu et al. (2017) where the impact of the density of the RSSI radio map
is discussed.

Heat Map estimation

A major benefit of the Semi-Parametric Likelihood-Based method is that density level
sets can be computed easily. Thanks to the statistical framework, this method is able to
evaluate the probability density of Y |X at all y ∈ Y which can lead us to build density
level sets in which Y is most likely to lie given the observation of X. This is shown in
Figure 3.7 where further information is provided on the uncertainty of the estimation.

3.4.2 PoI Prediction Case Study and Metric Learning Motivation

Geolocation is usually described as a regression problem when the goal is to estimate
the location (latitude, longitude). The advantage of this approach lies in its generality
as it allows to deal with all situations. Still, in various business use cases and indus-
trial applications, device’s movements are constrained/limited and they can only move
within a set of places. In IoT, logistic is a major application that fits well with this
description: devices can only move within a set of a priori unknown specific locations
such as warehouses, logistic hubs, etc.

By clustering the devices’ locations in the original data set, the location diversity, using
a positioning solution such as GPS or WIFI, reduces to a finite set of values. In this
context, a Point of Interest (PoI) represents a cluster of true measured locations. A PoI
must contain the spatial location of the cluster (usually defined as its center) but it can
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Figure 3.7 – Heat map of the position Y |X = x for two different observations x. The
axis are given in latitude and longitude scale. The red dots represent the true positions.
The black dots represent the positions corresponding for the same observations of x in
the test set.

also be enriched with other features including the spatial extension of the cluster and
the density of points within the cluster for example.

Note that a PoI’s location can be known, partially known or unknown depending on
the application and customer. In our pre-treatment, PoIs are supposed to be unknown
and must be discovered. Their detection is a well studied problem that can be tackled
by means of unsupervised machine learning techniques such as clustering methods.
Density-based spatial clustering of applications with noise (DBSCAN (Birant and Kut,
2007)) has proven to be efficient for this task as PoIs are defined as areas with high
device or message density.

Attention should be paid to the fact that the set of PoIs may vary over time. It is thus
necessary to maintain an up-to-date list of such PoIs by performing clustering steadily
and continuously.

This is illustrated in Figure 3.8 where some raw Sigfox devices locations are displayed
in a map (a) and are then reduced to a few PoIs (b) after a clustering step.

Once the PoIs have been identified, the next step consists in predicting the unknown PoI
belonging of a device, using a measured RSSI-vector. To achieve this goal, a data set
made of fully supervised examples will be used: this data set is a collection of observed
RSSI-vectors for various devices, each vector being mapped to one of the previously
discovered PoIs. In this section only, a “good” metric (see Figure 3.10) is a mapping σ
that minimizes the leave-one-out error:

Rn(σ) ,
n∑
i=1

∑
i′ 6=i

`

(
σ(Φ(xi,xi′)),1yi=yi′

)
(3.15)

where ` is a certain loss function, typically the 0− 1 loss function `(y, y′) = 1y 6=y′ and
Φ(x, x′) , (|x−x′|, 1

2(x+x′))>. One may search for a mapping σ that minimizes within
any relevant hypothesis class such as logit model, decision tree, ensemble methods,
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Figure 3.8 – a) Scatter plot of a sub-sample of the Sigfox training data set. A red bubble
corresponds to an emitting position of a device in the Sigfox data set. b) PoIs obtained
from the training data set displayed in a).

support vector machines (SVM). Note that the obtained mapping σ, though symmetric,
is not mathematically speaking a metric (no triangle inequality). This point is however
irrelevant regarding the application of interest. Given the learned σ̂n and an observed
vector X, the plug-in predictor of the target Y is as following:

Ŷ = arg max
j=1,...,J

∑
i∈Ij

σ̂n

(
Φ(xi,X)

)
, (3.16)

where we recall that Ij = {i ≤ n : yi = j}.

Similarity performance analysis

In this section, different classifier models are compared for the choice of the similarity
function: a logit model, an Euclidean distance based model, a random forest and a
Gradient Boosting. The Euclidean distance based model computes a similarity value
1/(1 + ||xi − xj ||2) for all couples of RSSIs vector (xi,xj) in the data set. To analyse
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their performance, a dataset composed of n = 50000 messages received on the Sigfox
network was considered. Instead of forming the n(n − 1) possible couples as in Equa-
tion (3.15), we propose, for the sake of a lower computational cost, to build n + m
random couples of RSSIs vectors (xi,xj) with their corresponding labels 1yi=yj . In our
experiment, we considered n+m = 1000000 couples of messages.

The obtained dataset was split into a train dataset of size n and a test dataset of size
m. The training set is used to learn the similarity function σ̂n. On the other hand,
the test set is employed to assess the methods’ performance using their ROC curves as
shown in Figure 3.9.

Figure 3.9 – ROC curves measured for different classification model based metric.

For our dataset, the gradient boosting model shows the best performance in predicting
whether or not two RSSI vectors x and x′ belong to the same PoI. In contrast, the
Euclidean distance between two vectors of RSSI x and x′ fails to correctly represent
the underlying distribution of the data. Indeed, close x and x′ (w.r.t. the Euclidean
distance) does not correspond to the equality of labels. To illustrate this point, we
computed the similarities’ distributions for couples (xi,xj) given whether or not yi = yj
in Figure 3.10. It shows that similarity provided by classical k-NN when x and x′ share
the same class (target = 1) are very likely to be null in comparison to the ones given by
the gradient boosting model. Note that this figure also highlights that all classifiers are
much more confident when predicting target 0 than target 1. This result was expected
as it is fairly easy for any method to predict that many couples x and x′ do not belong to
the same POI since their respective RSSI signatures are very different (such as couples
of RSSIs with no common received BSs).

An other interesting metric to compare the methods is the lift (Figure 3.11). The lift
is a measure of the performance of a classifier as having an enhanced response (with
respect to the population as a whole), measured against a random choice targeting
model. A targeting model is good if the response within the target is much better than
the average for the population as a whole. The lift is simply the ratio of these values:
target response divided by average response.
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Figure 3.10 – Distribution of the similarity values predicted by the different classification
models. In blue (resp. in green), all the couples (xi,xj) such that yi 6= yj (resp. yi = yj)
are displayed.
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Figure 3.11 – Lift curves for the methods in scrutiny.

Figure 3.11 shows for instance that the 10% highest similarities provided by the Gradient
Boosting classifier correspond to couples that are 9.2 times more likely to share the same
PoI than an average couple. This experiment shows that the Gradient Boosting based
similarity outperforms the other methods in competition.

In the sequel, the similarity function is thus learned as a sum of T classification trees
through Gradient Boosting algorithm.
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Method Euclidean
k-NN

Gradient boosting
k-NN

Random
Forest

Accuracy 0.877 0.907 0.899

Table 3.2 – Accuracy of POI classifiers computed as the Exact Match Ratio (see Equa-
tion (3.17)).

PoI prediction performance analysis

In this section, we focus on the original task that consists in predicting the device’s
PoI. To do so, we consider three different approaches: a classical k-NN (with Euclidean
distance), a metric learning based k-NN (with Gradient Boosting based similarity) and a
random forest classifier that provides state of the art performance on large feature space
classification problems. To compare the performance of the methods in competition to
predict the POI affiliation of messages, we have at our disposal the Sigfox dataset which
is split in two, a training set Zn, and a testing set Zm. Note that to avoid overfitting,
it is important that Zn, and Zm are built using different devices: some devices are used
to learn and some other devices are used to predict.

For this problem, the training set was used to either learn a similarity function σ̂n
(as presented above) or directly learn the classification model (random forest in our
case). On the other hand, the test subset Zm was employed to evaluate the algorithms’
performance.

First, the Exact Match Ratio of the predicted PoI (see Equation (3.16)), that can be
written as follows

1

m

m∑
i=1

1[yi = Ŷ (xi)] (3.17)

is considered.

The results for the different methods are summed up in Table 3.2. This result shows
that the gradient boosting metric learning method got the highest classification score.

In addition, the Vincenty distance between the predicted POI and the "true" position
(given by a GPS or Wifi apparatus) was also computed. In Figure 3.12, the cumu-
lative distribution function of the spatial error is compared for the different predictive
methods.

This result also demonstrates that our proposed local non linear metric learning method
outperforms the other considered methods on our data set.

Plotting the cumulative distribution also allows for a deeper interpretation of the ob-
served performance. Indeed, the curves’ shapes can be divided in three parts as follows:

• A steep rise up to 150 − 200 meters that correspond to messages that can be
correctly mapped to PoIs, which can also be interpreted as a measure the express-
iveness of the algorithms. Among them, messages that originate from isolated
PoIs having specific RSSIs’ signatures are common to the different classifiers.

• A plateau up to 700 meters followed by a small jump for all the methods. This
jump mostly corresponds to errors when PoIs are extremely dense (distance between
PoIs lower than 1 km). The presence of this jump show the limitation of the tested
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Figure 3.12 – PoI prediction performance: cumulative distribution function of the error
measured as the distance between the predicted PoI location and the "true" device
location given by GPS or Wifi.

algorithms.

• A slow convergence before reaching a cumulative probability of 1 after several
kilometers.

This analysis shows that a gradient boosting metric learning coupled with a k-NN
model enables to outperform a classical Euclidean metric k-NN as well as state of the
art classification predictors.

Conclusion

In this chapter, we investigated machine learning approaches addressing the problem of
geolocation. We presented most popular methods found in the literature. We proposed
two new techniques: one based on a likelihood model of the RSSI vector X given Y
and an other based on a enhanced k-NN regressor. To compare these methods, 1.5M
observations were collected from the Sigfox network, as well as 1540 measurements
from the UCI dataset. Results have shown that our metric learning method has the
highest accuracy on both of the datasets, with a 90th-percentile of errors of 5 km
on Sigfox dataset, and of 7 m on UCI dataset. As for the semi-parametric method, in
addition to being very easy to fit, it goes beyond the simple estimation by providing heat
maps and level sets, making it a suitable method for industrial applications. Moreover,
experiences have shown that the two proposed methods are the most accurate when
we provide a reduced training set. They are robust when only a small training set is
available. Furthermore, results show that the k-NN with the learned metric reaches the
highest accuracy in the particular context of localization within PoIs, which therefore
demonstrates the interest of the proposed method. Metric learning methods therefore
deserves a great deal of attention. An interesting topic would be to build the metric
by directly minimizing the regression error of the estimator. This would differ from the
present chapter in which we provide a supervised objective for the learned metric.





4
Extreme Gradient Boosting for

Similarity Learning
“Si, marchant dans une forêt aléatoire, tu rencontres
deux fois le même arbre, c’est que tu es perdu.”

Most of the fingerprint methods presented in Chapter 3 assume that positions corres-
ponding to similar fingerprints are close to each others. By comparing the fingerprints
through a distance (or similarity) function, the estimate is thus defined as the position of
the nearest fingerprint found in the database. The quality of the prediction is then highly
related to the chosen distance on the RSSI space. The metric learning problem is there-
fore a fundamental issue to improve RSSI-based geolocation techniques. This chapter
addresses this problem. However, the results are general and go beyond the framework
of the geolocation. The metric learning problem has been shown to improve regression
methods that rely on distances or similarities. There is a surge of interest for optimiz-
ing distance and similarity functions. However, in most prior works, no link is made
between the learned similarity and the estimator performance. In this chapter, we pro-
pose to build the similarity by directly minimizing the regression error of an estimator,
and thus obtain an ad-hoc learning objective. To minimize this objective, we propose a
modified version of the eXtreme Gradient Boosting algorithm (XGBoost) presented in
Section 2.3. Experiments show that our model outperforms other kernel regression mod-
els on several benchmark datasets including one that proposes to locate emitting devices
given the RSSI.

4.1 Introduction

The need for an appropriate way to measure distance or similarity between data points
is ubiquitous in machine learning. The problem of learning such similarity functions
is difficult and has attracted a lot of interest for the past twenty years, in particular
with the seminal work of Xing et al. (2003). This led to the emergence of the metric
or similarity learning field, that aims to automatically learn a function from the data
to assess the similarity or the distance between pairs. As stated in Kulis et al. (2012),
this practice has besides proven useful when used in conjunction with nearest-neighbors
methods or with any other regression method that relies on a distance such as the ones
presented in Section 2.2.2. This effect is all the more noteworthy as the dimension
of the data increases, as shown for instance in the work of Chopra et al. (2005) that
demonstrates the benefits of metric learning for the task of face recognition. In addition,
the quality of the geolocation is highly related to the chosen distance on the RSSI space.
The metric learning problem is therefore a fundamental issue to improve RSSI-based
geolocation techniques.
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Nevertheless, in most previous works, the objective used to learn a similarity is generally
not linked to the accuracy of the final predictor. In this chapter, we address this prob-
lem by proposing a general method to learn the similarity by directly minimizing the
regression error of the final predictor. Consequently, the regression error is optimized
with respect to the similarity function. This approach then requires the minimization
of a particular learning objective. In previous works, such as Weinberger and Tesauro
(2007); Keller et al. (2006), the choice of similarities is restricted to Mahalanobis dis-
tance metrics, which can be represented by symmetric positive semi-definite matrices.
This parametrization allows a simple minimization stage by means of gradient based
optimizers such as delta-bar-delta (Jacobs, 1988).

In contrast, we propose here to learn a non-parametric similarity. More specifically, the
similarity is chosen as a sum of regression trees and is sequentially learned by means of
a modified version of XGBoost. This approach is shown to be well adapted to minimize
the objective function of interest and furthermore benefits from the well-known qualities
of XGBoost. The advantages of our methods are many:

• XGBoost is very efficient and scales well. It has been shown to be one of the most
powerful and scalable supervised method for handling high-dimensional data.

• In contrast to local metric methods discussed subsequently, the storage require-
ment of our method is independent of the size of the input data.

• Our learned metric is non-parametric. This means that it can handle specific
problem such as the XOR example discussed below.

As far as we know, learning a similarity that is used to improve regression by means of
tree boosting methods is new.

Related literature. Methods that learn a similarity have been widely studied in
recent years e.g. in Kar and Jain (2011); Schultz and Joachims (2004); Nguyen and
Guo (2008); Bellet et al. (2013) and are subsequently discussed. Essentially, similarity
learning aims at finding the parameters of a similarity function given pair-based con-
straints: typically “example x should be similar to example x′”. As stated in Kulis et al.
(2012), existing metric learning methods can be divided into two categories: linear and
nonlinear. A surge of recent research has focused on learning a Mahanalobis distance
defined by d2

M(x,x′) , (x − x′)>M(x − x′), with the Positive Semi-Definite (PSD)
matrix M as parameter. This (pseudo)-distance corresponds to computing the Euc-
lidean distance after a linear transformation of the data. These methods differ by the
choice of the objective or by the regularizer used to learn M. We can cite as instance
Davis et al. (2007) in which a Burg divergence is used as regularization for M; in Xing
et al. (2003), the learning objective is to minimize the distance between points sharing
the same class subject to the constraint that dissimilar points are separated (i.e the
distance between those points is maximized). However, learning a linear metric such
as a Mahanalobis distance can be too restrictive due to the following problems: first,
because distance properties such as the triangle inequality must be violated (see Xiong
et al. (2012)). Second, because they demonstrate their limitation in simple case such as
the XOR example as in (Kulis et al., 2012). Kernel methods are used to extend linear
methods to the nonlinear case, and this is achieved by writing algorithms in terms of
inner products and replacing these inner products with kernel functions. The resulting
distance is then a “kernelized” distance between pairs of examples. Numerous works
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employ such a kernelization of linear methods, in particular in computer vision. For
example, the pyramid match kernel (Grauman and Darrell, 2007), or face identification
(Guillaumin et al., 2009). Although some algorithms have been shown to be kerneliz-
able, a new formulation of the problem must generally be derived, and sometimes leads
to insurmountable implementation problems Kulis et al. (2012).

The work of Xiong et al. (2012) applies Random Forests to learn a non-parametric met-
ric called Random Forest Distance (RFD) in order to improve a classifier. This work
emphasizes the benefits of using a nonlinear similarity in the classification task pursued.
Kedem et al. (2012) proposes the GB-LMNN algorithm that applies gradient-boosting to
learn non-linear mappings directly in function space. Neural network-based approaches
offer the flexibility of learning arbitrarily complex nonlinear mappings (Chopra et al.,
2005). However, they often demand high computational expense, not only in parameter
fitting but also in model selection and hyper-parameter tuning. Recently, metric learn-
ing has also shown its benefits in feature selection (Navot et al., 2006) or to improve
classification performance (Goldberger et al., 2005). In this chapter, we focus on the
problem of learning a task-specific similarity that improves regression.

Learning a metric that is later used in regression has been introduced in Goldberger
et al. (2005) (Neighborhood Component Analysis (NCA)). In this work, authors propose
to learn a global Mahanalobis distance measure to be used in a k-NN classifier by
optimizing the expected classification leave-one-out error. The main innovation of this
work is to replace the actual leave-one-out classification error, a discontinuous function
of the matrix parameter M by a differentiable cost function based on stochastic (“soft”)
neighbour assignments in the transformed space. This approach has been extended for
regression in Weinberger and Tesauro (2007). In this work, in addition to performing
regression, the authors show that their algorithm can also be viewed as an algorithm
for dimensionality reduction. Note also Noh et al. (2017) that analyzed the effect of
the metric on the asymptotic bias of the kernel estimator, and proposed a Mahanalobis
distance to alleviate the bias of the estimator. The main differences between the above-
mentioned articles is that our approach makes use of a non-linear similarity instead of
learning a Mahalanobis matrix that is used in kernel regression. The work of Xiong
et al. (2012) proposes to learn a non-parametric metric called Random Forest Distance
(RFD) in order to improve a classifier. The idea of using tree-based methods to build
a similarity function is a central element of our contribution.

Outline. The chapter is organized as follows: in Section 4.2 we present our learning
formulation for kernel regression. Then, we derive our proposed XGBoost-inspired
algorithm to learn the similarity. We show that despite a complex learning objective the
tree gradient boosting offers a suitable framework to minimize it. Finally, in Section 4.4
we compare our estimator to state-of-the-art regression models on both synthetic and
real datasets.

4.2 Tree Boosting for Metric Learning

In this section, we propose to extend the XGBoost algorithm, detailed at length in
Section 2.3 for a regression purpose, to the problem of metric learning. First of all,
we provide the similarity learning objective corresponding to the unsupervised setting
introduced in the introduction. Given the objective, we propose to chose the similarity
function as a sum of regression trees. Each tree is then learned sequentially. This new
objective induces drastic changes in the boosting algorithm that are presented in this
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section.

4.2.1 Problem Setting

Let (X, Y ) ∈ Rd × Rp be a random vector. We consider ZN = {xj , yj}Nj=1, N =
m + n i.i.d. realizations of (X, Y ). By splitting the dataset ZN in two, we obtain
Zn = {xj , yj}nj=1 to learn the similarity and Zm = {x̄j , ȳj}Nj=n+1 to learn the regressor.
Let σ : X × X → R be a mapping that we suppose symmetric and non-negative. We
consider the following estimator of m(x) = E

[
Y |X = x

]
:

m̂σ(x) ,
m∑
j=1

σ(x̄j ,x)ȳj , (4.1)

The objective we minimize with respect to σ is the following regularized regression error
of the predictor m̂σ on Zn:

L(σ) =

n∑
i=1

`
(
yi, m̂σ(xi)

)
+ Ω(σ), (4.2)

where ` is a regression loss function and Ω a regularizer on σ to be defined later on.
This approach is original since it is driven by the minimization of a regressor error.

4.2.2 Learning the similarity with XGBoost

We propose to learn σ as a sum of T regression trees fs, s = 1, . . . , T . As the similarity
takes a couple (x,x′) as input, it is therefore necessary to make adjustments in the
various functions involved in the definition of σ:

• Let Φ be a feature transform of a couple (x,x′) (see Section 3.4 for a practical
example).

• Let fs be a regression tree, which can be viewed as a tuple (q,ω) where q :
Rd × Rd → {1, . . . , L} is the structure of the tree that maps an input to a leaf
index, ω ∈ RL is the vector containing the leaves weights and L is the number of
leaves. For a given tuple (x,x′), we first map it into a feature space via Φ that is
the input of fs. Then, we use the decision rule given by q to map this input into
a leaf and define the output of the tree as the weight.

• The output σ(x,x′) is finally the sum of the T weights. This procedure is illus-
trated in Figure 4.1.

We propose, following the idea of XGBoost, to build σ̂ sequentially and we denote by
σ̂(t) the similarity at the tth iteration. We have for any pair (x,x′) ∈ Rd × Rd:

σ̂(t)(x,x′) =
t∑

s=1

fs

(
Φ(x,x′)

)
.

Consequently, the predictor of m(x) at the tth iteration becomes:

m̂σ̂(t)(x) ,
m∑
j=1

σ̂(t)(x̄j ,x)ȳj . (4.3)
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Figure 4.1 – Illustration of the similarity prediction σ(T )(x, x′).

To lighten notation, we will simply write m̂(t) instead of m̂σ̂(t) so that:

m̂(t)(x) = m̂(t−1)(x) +

m∑
j=1

ft

(
Φ(x̄j ,x)

)
ȳj . (4.4)

The function ft added at the iteration t is defined as the minimizer of the following
objective:

L(t)(f) =

n∑
i=1

`
(
yi, m̂

(t−1)(xi) + f(xi)
>ȳ
)

+ Ω
(
f
)
, (4.5)

where f(x) =

(
f
(

Φ(x̄1,x)
)
, . . . , f

(
Φ(x̄m,x)

))>
, ȳ =

(
ȳ1, . . . , ȳm

)>, ` is now a

differentiable regression loss function defined on Rp×Rp; and for a tree f with L leaves
and weights ω, Ω(f) = 1

2λ‖ω‖
2
2 + γL.

Using a second-order approximation of `(yi, ·) at the point m̂(t−1)(xi) it follows that:

L(t)(f) '
n∑
i=1

`
(
yi, m̂

(t−1)(xi)
)

+ g>i f(xi)
>ȳ+

1

2
ȳ>f(xi)H

(
`(yi, ·)

)
f(xi)

>ȳ+ Ω
(
f
)
,

where gi , ∇m̂(t−1)`(yi, ·) ∈ Rp and H
(
`(yi, ·)

)
∈ Rp×p are respectively the Jacobian

and the Hessian of the function `
(
yi, ·
)
at m̂(t−1)(xi). The term `

(
yi, m̂

(t−1)(xi)
)

being a constant of f , we can remove it and define a simplified version of the objective
as follows:

L̃(t)(f) =
n∑
i=1

g>i f(xi)
>ȳ +

1

2
ȳ>f(xi)H

(
`(yi, ·)

)
f(xi)

>ȳ + Ω
(
f
)
, (4.6)
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Proposition 4.1. Denoting as in Section 2.3 (q,ω) the tuple such that ft(x̄,x) =
ωq(Φ(x̄,x)). We suppose furthermore that the current number of leaves in the structure q
is L. First denoting by

Il ,
{
i ≤ n, j ≤ m : q

(
Φ(x̄j ,xi)

)
= l

}
, (4.7)

the pairs of indices for which the couple (x̄j ,xi) falls into the leaf l and

Jl,l′ ,
{
i ≤ n, j ≤ m, k ≤ m : q

(
Φ(x̄j ,xi)

)
= l and q

(
Φ(x̄k,xi)

)
= l′

}
(4.8)

the triplets (i, j, k) for which the pairs (x̄j ,xi) and (x̄k,xi) fall respectively into the
leaves l and l′. Defining accordingly

G =

∑
I1

g>i ȳj , . . . ,
∑
IL

g>i ȳj


>

∈ RLand (4.9)

H =


∑
J1,1 ȳ

>
j Hiȳk · · ·

∑
J1,L ȳ

>
j Hiȳk

...
. . .

...∑
JL,1 ȳ

>
j Hiȳk · · ·

∑
JL,L ȳ

>
j Hiȳk

 ∈ RL×L. (4.10)

Then, we have the following:

L̃(t)(q,ω) = ω>G +
1

2
ω>
(
H + λIL

)
ω + γL. (4.11)

Proof Let us re-index the sum in Equation (4.6), such that the objective can easily be
minimized with respect to the weights of the leaves ω of the tree f .

L̃(t)(f) =
L∑
l=1

∑
Il

g>i f(xi)
>ȳj +

1

2

L∑
l′=1

∑
Jl,l′

ȳ>j f(xi)Hif(xi)
>ȳk + Ω

(
f
)

(4.12)

=

L∑
l=1

(∑
Il

g>i ωlȳj +
1

2

L∑
l′=1

∑
Jl,l′

ωlωl′ ȳ
>
j Hiȳk

)
+

1

2
λ‖ω‖22 + γL. (4.13)

Finally, with the definitions of Equation (4.9), and Equation (4.10), L̃(t) can then be
rewritten in matrix form:

L̃(t)(q,ω) = ω>G +
1

2
ω>
(
H + λIL

)
ω + γL, (4.14)

.

The next lemma states that the so defined matrix H is positive semi-definite (PSD).

Lemma 4.2. The matrix Hλ ,
(
H + λIL

)
is positive definite for any λ > 0. As a

consequence, for a fixed structure q, the optimal values of the leaves weights ω? are thus
given by:

ω? = −
(
H + λIL

)−1
G. (4.15)
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Proof

First, let us recall the existing relations between the sets that are considered. We assume
that we are at the leaf and that the tree that is build contains L−1 leaves. This current
leaf is denoted “parent” in the sequel. By definition, Iparent is the set of pairs (i, j) ∈
{1, . . . , n}×{1, . . . ,m} such that the couple (xi, xj) falls into the “parent” leaf. We also
have Jparent, other that is the set of triplets (i, j, k) ∈ {1, . . . , n}×{1, . . . ,m}×{1, . . . ,m}
such that (i, j) ∈ Iparent and (i, k) ∈ Iother. We suppose from now on that “parent” is
split into “left child” and “right child”. We therefore have the following relations:

Iparent = Ileft child t Iright child, (4.16)
Jparent,other = Jleft child,other t Jright child,other if other 6= parent (4.17)
Jparent,parent = Jleft child,left child t Jright child,right child t

Jleft child,right child t Jright child,left child o.w, (4.18)

where the symbol t stands for the disjoint union.

Let us denote by Y(l) ∈ Rn×m×m the vector defined as follows:

Y(l)[i, j, k] =


ȳj if (i, j) ∈ Il
ȳk if (i, k) ∈ Il
√
ȳj ȳk if (i, j) ∈ Il and (i, k) ∈ Il

0 o.w.

(4.19)

It follows that for any pairs of leaves indices (l, l′) we have:

Hl,l′ =
∑
i≤n

∑
j≤m

∑
k≤m

Y(l)[i, j, k]Y(l′)[i, k, j] = 〈Y(l),Y(l′)〉. (4.20)

The matrix in scrutiny is then a Gram matrix. It is therefore PSD. For any λ > 0, the
matrix Hλ is positive-definite. Let us note that the fact that the matrix Y is defined in
terms of

√
ȳj ȳk requires that the ȳj ≥ 0 for any j ≤ m, and ȳk ≥ 0 for any k ≤ m.

It follows from Proposition 4.1 and Lemma 4.2 that the optimal value of the objective
L̃(t) for a given structure q has a simple expression that is provided in the following
proposition.

Proposition 4.3. For a fixed structure q (L is constant), the optimal value of the
objective function is given as follows:

L̃(t)(q,ω?) = −1

2
G>

(
H + λIL

)−1
G + γL. (4.21)

Proof The optimal value of the objective is obtained by evaluative the value of L̃(t)(q, ·)
at point ω? as defined in Equation (4.15). We plug (4.15) into (4.14) to obtain :
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L̃(t)(q,ω?) = ω?>G +
1

2
ω?>

(
H + λIL

)
ω? + γL (4.22)

= −G>
(
H + λIL

)−1
G+ (4.23)

1

2
(
(
H + λIL

)−1
G)>

(
H + λIL

) (
H + λIL

)−1︸ ︷︷ ︸
IL

G + γL (4.24)

= −1

2
G>

(
H + λIL

)−1
G + γL. (4.25)

This optimal value of the objective is used to measure the quality of the structure q. The
procedure is the same employed in Section 2.3: we start from the root, and iteratively
add branches to the tree by splitting the nodes until the maximal number of leaves is
reached.

Remark Attention should be paid to the fact that, in contrast with the XGBoost
algorithm presented in Section 2.3 the leaves weights (ωl)l=1,...,L can not be computed
separately. The value of a single ωl will influence the value of the other weights because
of the correlation terms ωlωl′ ȳ>j Hiȳk. As a consequence, the computation can not be
parallelized over nodes. The algorithm of the modified XGBoost is given in Section 4.3.

L1 regularization on ω Consider the case when we add a L1 regularization, that is
Ω(f) = λ‖ω‖22 + µ‖ω‖1 + γ|L|. This kind of regularization promotes sparsity so that
most of the similarities between pairs of observations end up with a null weight. In this
case, Equation (4.14) becomes:

L̃(t)(q,ω) = ω>G +
1

2
ω>
(
H + λIL

)
ω + µ‖ω‖1 + γL. (4.26)

Denoting by X̃ ∈ RL×L the unique PSD matrix verifying X̃>X̃ =
(
H + λIL

)
and

ỹ ∈ RL a solution vector to X̃>ỹ = G, a minimizer of Equation (4.26) is also a1

solution to:
ω? ∈ arg min

RL
1

2
‖ỹ − X̃ω‖22 + µ‖ω‖1︸ ︷︷ ︸

P(ω)

. (4.27)

The optimization can be directly performed using solvers such as Celer (Massias et al.,
2018).

4.3 Implementation of the Metric Learning Algorithm

We now discuss in details the XGBoost metric algorithm and give the practical elements
needed for its implementation. We provide as well the pseudo code and a discussion on
the algorithm complexity. For simplicity of the presentation, we now assume that the
loss function `(y, y′) = ‖y − y′‖22.

1recall that the solution might not be unique
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Let us now suppose that we have built so far t− 1 trees f1, . . . , ft−1 from the datasets
Zn and Z̄m, so that at this point gi = 1

2(yi − m(t−1)(xi)) and Hi = 2 Idp for all
i ≤ n; and that want to build the next one. Starting from the root, we have Iroot =
{1, . . . , n} × {1, . . . ,m}, and Jroot,root = {1, . . . , n} × {1, . . . ,m} × {1, . . . ,m}. The
algorithm now goes through a greedy procedure to select jointly the best direction and
value of a split.

For a given couple (direction, value of split), we obtain two children denoted sub-
sequently by “left child” and “right child” and compute accordingly the sets Ileft, Iright,
Jleft,left, Jleft,right, Jright,right, and the corresponding matrices G′ and H′. Then, the
score of the couple (direction, value of split) can be computed as in Equation (4.21).
The couple with the higher reduction of the objective function is selected and the root
leaf is split accordingly. The outcome of this procedure is then a stump with 2 new
leaves. The latter procedure is repeated until a stopping criterion is reached as described
in Algorithm 4.2.

Algorithm 4.1 Find best split of leaf l for tth tree.
Require: Il, {Jl,l′}l′∈leaves, scoreq
score← scoreq
s← []
for k ∈ {1, . . . , 2d}(Coordinates of Φ(x, x′)) do
for s ∈ Splits of Φ[k] do
Compute Ileft, Iright
Compute G′,H′

score← score ∨G′>
(
H′ + λIL+1

)−1
G′

end for
end for
return s with max score, score.

Practical cost of greedy procedure The main computation cost lies in finding the
best split. In order to do so, a split finding algorithm enumerates over all the possible
splits on all the dimensions of the feature space. When a split is proposed, two new
leaves are added to a former leaf (a left and a right child), the sets Ichild and Jl,child
for l ∈ {1, . . . , L} and child ∈ {left, right} are built and the corresponding split score is
computed. The cost of computing the score of a split is small, since the matrix is only
of size of the current number of leaves, which is in practice lower that 8. Supposing
that the tree is well-balanced, that is the number of observations is equi-distributed over
the leaves. Each leaf contains consequently approximately n×m

L pairs of observations.

The complexity of choosing the best split is then O
(

2d×#splits× n×m× L3
)
. The

exact greedy algorithm is very powerful since it enumerates over all possible splitting
points. However, it is impossible to efficiently do so when the data does not fit entirely
into memory. To support effective gradient tree boosting, an approximate algorithm is
needed. To summarize, the algorithm first proposes candidate splitting points according
to percentiles of feature distribution. The algorithm then maps the continuous features
into buckets split by these candidate points, aggregates the statistics and finds the best
solution among proposals based on the aggregated statistics.
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Algorithm 4.2 Pseudo-code: ft-builder

Require: Xn, X̄m, `, T,maxNleaves , (gi, Hi)i=1...n

q ← IRoot
ft ← 0
sq ← −1
IRoot ← Zn × Z̄m
JRoot,Root ← Zn × Z̄m × Z̄m
Current Leaves(ft) := CL← {Root}
while |CL| ≤ maxNleaves do
for l ∈ CL do
Il ← Compute according Equation (4.7)
Jl,l′ ← Compute according Equation (4.8)
split, g ← Find Best Split(Il,Jl,l′ , sq)

end for
NodeToSplit, split ← Node with higher g
if sq < g then

sq ← g
split NodeToSplit
CL← CL+ Children(NodeToSplit)

end if
end while
return ft.

4.4 Numerical Experiments and Analysis

In this section we use synthetic and real data to compare our method (XGBoost Metric
Learning, referred to as XGBML) against other methods referenced in the literature:
a k-NN regressor (k-NN) using an Euclidean metric, a Nadaraya-Watson (NW) based
on conventional kernels as in Hastie et al. (2001), and a Nadaraya-Watson with a learned
local metric (NW+LLM, see Noh et al. (2017)).

4.4.1 Comparison with State-of-the-Art Metric Learning Methods

Results on synthetic data. In this section, we consider four synthetic datasets. First
a classic swiss roll dataset SR in which we want to predict the radius. Then the two
moons dataset TM in which we want to classify the point into two groups. The three
blobs dataset TB used to classify point among each blob, and finally a half disk dataset
HD for which the data are uniformly distributed over the unit half disk and we want
to predict the angle. These four datasets are shown in Figure 4.2. For each dataset,
the training sample size is n = 500, and the design sample size is m = 50. For the
three experiments, our models achieves one of the lowest test errors. All results are
provided in Table 4.1. Furthermore, the XGBoost Metric Learning provides interesting
insights on the data. Figure 4.3 shows the similarities between a test point (indicated
by a star) and the points of the design dataset. The width of the edges is increasing
with the similarity between two points. We observe for instance that in Figure 4.3 that
the highest similarities lie on the circle with radius of target-value. Furthermore, in
Figure 4.4 we compute the Mean Squared Error (MSE) for different values of the ratio
m/n. Our model achieves the lowest MSE for all ratios.
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Figure 4.2 – Scatter plots of the three synthetic datasets. The colormap stands for the
target value y.
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Figure 4.3 – Graph representation (edges) of the similarities between the point of interest
(star) and the points of the design dataset (dots).



74 CHAPTER 4. XGBOOST FOR METRIC LEARNING

SR TM TB HD

k-NN 2.339(±.05) 0.285(±.01) 0.243(±.01) 0.036(±.002)

NW 1.768(±.09) 0.358(±.02) 0.190(±.09) 0.043(±.002)

NW+LLM 1.720(±.12) 0.299(±.03) 0.179(±.03) 0.033(±.004)

XGBML 1.613(±.13) 0.281(±.03) 0.180(±.05) 0.033(±.004)

Table 4.1 – MSE of the compared methods for synthetic datasets.
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Figure 4.4 – MSE of the compared methods on the SR dataset, computed for different
values of the ratio m/n and where n = 500.

Boston RSSI

k-NN 6.797 0.167
NW 7.516 0.219
NW+LLM 7.199 0.174
XGBML 6.381 0.153

Table 4.2 – RMSE of compared methods (± standard error).

Results on real data. In this section we consider two real world datasets. First, the
classic housing dataset (Boston, available on scikit-learn2) in which we want to predict
the house prices given 13 scalar features. Second, the Wireless Indoor Localization
dataset (RSSI) which can be found on UCI website3. For both datasets, we proceed as
follows. The dataset is split in 3: a design dataset Z̄m of size 50%, a training dataset
Zn of size 40%, and a test dataset of size 10% used to compute the MSE. The results
are shown in Table 4.2. Despite the higher dimensionality of these data, known for
deteriorating kernel regressors performances, our method again exhibits the lowest test
error for both datasets.

2scikit-learn Boston Dataset
3UCI Wireless Dataset

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://archive.ics.uci.edu/ml/datasets/Wireless+Indoor+Localization
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Figure 4.5 – MSE computed on test dataset with respect to the number of weak re-
gressors. In black (resp. red) the model uses relative (resp. absolute and relative)
information.

4.4.2 Benefits of Local Features on the Predictor Accuracy

We now highlight the benefits of the chosen pairwise position function Φ and in par-
ticular the improvements that the absolute position encoding have on the regression
accuracy of our predictor. We build a predictor in which the features only encode for
the relative information and compare it to our predictor. The models are compared The
results are shown in Figure 4.5. Figure 4.5 shows that the addition of absolute position
information drastically reduces the regression error of the estimator. Unsurprisingly, it
also increases the impact of an additional tree on the error.

4.5 Conclusion and Perspectives

In this chapter, we proposed an original way to jointly learn a similarity function and the
regressor based on this latter. Our approach consists in learning an similarity by directly
minimizing the regression error. We further detailed at length an algorithm based on
XGBoost to tackle this task. The proposed approach has been shown to be well adapted
to minimize the objective function of interest and furthermore benefits from the well-
known qualities of XGBoost. Experiments demonstrated both the competitiveness and
the generality of our approach, as well as the relevance of our learned metric. This work
leaves exciting avenues for future works such as the study of our estimator consistency
as instance. Analyzing the Rademacher complexity of the induced class of functions
by invoking only Talagrand’s lemma Ledoux and Talagrand (2011) results in a bound
depending linearly on m. A more in-depth study is thus needed to refine this bound
and would be the purpose of future work.





5
Conditional independence testing via

weighted partial copulas
Taille et vocabulaire ne sont pas
indépendants ; mais ils le sont
conditionnellement à l’âge.

As stated in Chapter 3, conditional independence is closely related to the statistical
model that we proposed for the couple of variable (X, Y ). Indeed, a direct consequence
of the chosen model is that the coordinates of the variable X are independent given Y .
In this chapter, we introduce the weighted partial copula function for testing conditional
independence. The proposed test procedure results from the following ingredients: (i)
the test statistic is an explicit Cramér-von Mises transformation of the weighted partial
copula, (ii) the regions of rejection are computed using a bootstrap procedure which
mimics conditional independence by generating samples from the product measure of
the estimated conditional marginals. Under conditional independence, the weak con-
vergence of the weighted partial copula process is established when the marginals are
estimated using a smoothed local linear estimator. Finally, an experimental section
demonstrates that the proposed test has competitive power compared to recent state-
of-the-art methods such as kernel-based test.
This chapter covers the following publications:

• Elgui K., Bianchi P. & Portier F. Conditional independence testing via weighted
partial copulas.arXiv e-prints, art. arXiv:2006.12839, June 2020.

5.1 Introduction

Let (Y1, Y2, X) be a triplet of real random variables. We say that Y1 and Y2 are condi-
tionally independent given X if ∀(y1, y2, x) ∈ R3:

Pr(Y1 ≤ y1, Y2 ≤ y2 | X = x) = Pr(Y1 ≤ y1 | X = x) Pr(Y2 ≤ y2 | X = x). (5.1)

This is denoted by Y1 ⊥⊥ Y2 | X and roughly speaking, it means that for a given
value of X, the knowledge of Y1 does not provide any further information on Y2 (and
vice versa). Determining conditional independence has become in the recent years a
fundamental question in statistics and machine learning. For instance, it plays a key role
in defining graphical models (Koller and Friedman, 2009; Bach and Jordan, 2003); see
also Markowetz and Spang (2007) for a study dedicated to cellular networks. Moreover
the concept of conditional independence lies at the core of sufficient dimension reduction
methods (Li, 2018) and is useful to conduct variable selection in regression (Lee et al.,
2016). Finally, conditional independence is relevant in many application fields such as
economy (Huber and Melly, 2015) or psychometry (Bell et al., 1988). In this chapter,
we propose a new statistical tests to assess conditional independence.
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The approach taken is related to the well-studied problem of (unconditional) inde-
pendence testing, in which the most intuitive way to proceed is to compute a distance
between the estimated joint distribution and the product of the estimated marginals
(Hoeffding, 1948). Inspired by Kendall (1948), rank-based statistics have been extens-
ively used in independence testing (Ruymgaart, 1974; Ruschendorf, 1976; Ruymgaart
and van Zuijlen, 1978). Because rank-based statistics do not depend on the marginals,
they have appeared as a key tool for modelling the joint distribution of random variables
without being affected by their margins. This has led to the introduction of the copula
function (Deheuvels, 1981), defined as the cumulative distribution function associated
to the ranks. We refer to Fermanian et al. (2004); Segers (2012) for recent studies on
the estimation of the copula function. The copula function, which in principle measures
the dependency between random variables, has been used with success in independence
testing (Genest and Rémillard, 2004; Genest et al., 2006). Because the asymptotic dis-
tribution of the copula function is difficult to estimate, the related bootstrap estimate
properties are of prime interest for inference (Fermanian et al., 2004; Rémillard and
Scaillet, 2009; Bücher and Dette, 2010).

The conditional copula of Y1 and Y2 given X is defined in the same way as the copula of
Y1 and Y2 but uses the conditional distribution of Y1 and Y2 given X instead of the joint
distribution of Y1 and Y2. Compared to the copula, the conditional copula captures the
conditional dependency between random variables and is thus useful to build conditional
dependency measures (Gijbels et al., 2011). Therefore, as in the case of independence
testing, the conditional copula appears to be a relevant tool for building statistical test
of conditional independence. This has been pointed out as a an “interesting open issue”
in (Veraverbeke et al., 2011, Section 4).

In this work, a new statistical test procedure called the “weighted partial copula test”
is investigated to assess conditional independence. The proposed approach follows from
the use of an integrated criterion, the weighted partial copula, a function that equals
0 if and only if conditional independence holds. Given estimators of the conditional
marginals of Y1 and Y2 given X, the empirical weighted partial copula is introduced to
estimate the weighted partial copula and the test statistic results from a Cramér-von
Mises transformation.

From a theoretical standpoint, the use of an “integrated” criterion enables to establish, in
a general non-parametric framework, a convergence rate of order n−1/2 for the empirical
weighted partial copula. More precisely, by using a smoothed local linear estimator for
the conditional marginals, we obtain the weak convergence of the empirical weighted
partial copula rescaled by n1/2. The rate of convergence n−1/2, which is the same as the
one derived in the (unconditional) independence test, is notable because conditional
copula estimates are known (Veraverbeke et al., 2011) to converge at a slower rate,
(nhd)−1/2 where h is a smoothing parameter going to 0. Note finally that integrated
criterion for testing has been frequently used in the conditional moment restrictions
literature (see Lavergne and Patilea (2013) and the reference therein).

Inspired by the independence testing literature (Beran et al., 2007; Kojadinovic and
Holmes, 2009), the computation of the quantiles is made using a bootstrap procedure
which generates bootstrap samples from the product of the marginal estimators to mimic
the null hypothesis. Thanks to this bootstrap procedure, one is allowed to perform the
weighted partial copula test using any marginal estimates as soon as one can generate
from them.
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Related literature. Testing for conditional independence has been considered only
recently in the literature. Some of the existing approaches are based on comparing
the (estimated) conditional distributions involved in the definition of conditional in-
dependence. The distributions can be compared using their conditional characteristic
functions as in Su and White (2007), their conditional densities as proposed in Su and
White (2008), or their conditional copulas as studied in Bouezmarni et al. (2012). Unfor-
tunately, the estimation of these conditional quantities are subjected to the well-known
curse of dimensionality, i.e., the convergence rates are badly affected by the dimension
of the conditioning variable. As a consequence, the power of the previous tests rapidly
deteriorates if the conditioning variable has a large dimension. Note also that Bergsma
(2010) uses partial copulas to derive the test statistic. Unfortunately, partial copulas
fail to capture the whole conditional distribution and lead to detect a null hypothesis
much larger than conditional independence.

Other approaches rely on the characterization of conditional independence using cross-
covariance operators defined on reproducing kernel Hilbert spaces (Fukumizu et al.,
2004). Extending the Hilbert-Schmidt independence criterion proposed in Gretton et al.
(2008), Zhang et al. (2012) defines a kernel-based conditional independence test (KCI-
test) by estimating the cross-covariance operator. A surge of recent research (Doran
et al., 2014; Runge, 2017; Sen et al., 2017) has focused on testing conditional independ-
ence using permutation-based tests. The seminal work of Candès et al. (2018) had led to
many conditional independence tests depending on the availability of an approximation
to the distribution of Y1|X, such as the conditional permutation test (CPT) proposed
in ?. In Sen et al. (2017), the authors propose to train a classifier (e.g., XGBoost) to
distinguish between two samples, one is the original sample, another one is a bootstrap
sample generated in a way that reflects conditional independence. According to the ac-
curacy of the trained classifier the test rejects, or not, conditional independence. This
is further referred to as the classifier based conditional independence test (CCI-test).

Outline. In Section 5.2, we introduce the weighted partial copula test and provide
implementation details including the mentioned bootstrap procedure. In Section 5.3,
we state the main theorems (weak convergence results). In Section 5.4, the theory is
illustrated by numerical experiments. Our approach is compared to the ones described in
Zhang et al. (2012) when facing simulated datasets. Proofs are given in a supplementary
material file.

5.2 The Weighted Partial Copula Test

5.2.1 Set-up and Definitions

Let fX,Y be the density function (with respect to the Lebesgue measure) of the random
triplet (X,Y ) = (X,Y1, Y2) ∈ Rd × R2. Let fX and SX = {x ∈ R : fX(x) > 0} denote
the density and the support of X, respectively. The conditional cumulative distribution
function ofY givenX = x is given by y 7→ H(y | x) for x ∈ SX . The generalized inverse
of a univariate distribution function F is defined as F−(u) = inf{y ∈ R : F (y) ≥ u},
for all u ∈ [0, 1], with the convention that inf ∅ = +∞. Since H( · |x) is a continuous
bivariate cumulative distribution function, its copula is given by the function

C(u | x) = H
(
F−1 (u1|x), F−2 (u2|x) | x

)
,
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for u = (u1, u2) ∈ [0, 1]2 and x ∈ SX , where F1( · |x) and F2( · |x) are the margins of
H( · |x). We are interested in testing the null hypothesis that Y1 and Y2 are conditionally
independent given X, that is,

H0 : Y1 ⊥⊥ Y2|X.

By definition (Dawid, 1979), H0 is equivalent to H(y|x) = F1(y1|x)F2(y2|x), for every
y ∈ R2 and almost every x ∈ SX . Using the conditional copula introduced before, it
follows that

H0 ⇔ C(u | x) = u1u2, for every u ∈ [0, 1]2, and almost every x ∈ SX .

Let w : Rd → R be a measurable function. The weighted partial copula is given by, for
every u ∈ [0, 1]2 and almost every t ∈ R,

W (u, t) = E
[
(C(u | X)− u1u2)w(t−X)

]
.

The proposed test follows from the observation, that H0 is satisfied if and only if the
function W is identically equal to 0 under a mild condition on w. This is presented in
the following lemma whose proof is given in the supplementary material.

Lemma 5.1. Suppose that w : Rd → R is integrable with respect to the Lebesgue measure
and with a Fourier transform being non-zero almost everywhere, then H0 is equivalent
to W (u, t) = 0, for every u ∈ [0, 1]2 and almost every t ∈ R.

5.2.2 The Test Statistic

In the following, we define a general estimator of W relying on some empirical copula
construction that works for any estimate of the marginals F1 and F2 (see Section 5.2.5
for a typical example). That is, we first compute sample based observations of Fj(Yj |X),
j = 1, 2, by estimating each marginal Fj . Those are usually called pseudo-observations.
Second we define an estimate of W based on the ranks of the pseudo-observation. For
the sake of generality, the estimator used for the conditional marginals is left unspecified
in the subsequent development.

Let (Xi, Yi1, Yi2), for i ∈ {1, . . . , n}, be independent and identically distributed random
vectors, with common distribution equal to that of (X,Y1, Y2). We estimate the condi-
tional margins in some way, producing random functions F̂n,j( · |x), j = 1, 2, and then
we proceed with the pseudo-observations Ûij = F̂n,j(Yij |Xi). Let Ĝnj , for j ∈ {1, 2},
be the empirical distribution function of the pseudo-observations (Û1j , . . . , Ûnj), i.e.
Ĝn,j(u) = 1

n

∑n
i=1 1{Ûij ≤u}, for u ∈ [0, 1]. From a conditioning argument, the weighted

partial copula is given by

W (u, t) = E[(1{F1(Y1|X)≤u1}1{F2(Y2|X)≤u2} − u1u2)w(t−X)]. (5.2)

The previous expression suggests the introduction of the following so-called empirical
partial copula process, given by

Ŵn(u, t) =
1

n

n∑
i=1

(
1{Ûi1≤Ĝ−n,1(u1)}1{Ûi2≤Ĝ−n,2(u2)} − u1u2

)
w(t−Xi). (5.3)
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The use of the transform G−n,1 and G−n,2 implies that Ŵn depends on Ûi1 and Ûi2 only
through their ranks. Indeed, because Ĝ−n,j is a càd-làg function with jumps 1/n at
each Ûij , it holds that Ûij ≤ Ĝ−n,j(uj) is equivalent to (R̂ij − 1)/n < uj , where R̂ij =

nĜn,j(Uij) is the rank of Uij among the sample (Û1j , . . . , Ûnj). Hence, we have

Ŵn(u, t) =
1

n

n∑
i=1

(
1{(R̂i1−1)<nu1}1{(R̂i2−1)<nu2} − u1u2

)
w(t−Xi). (5.4)

The test statistic is given by

T̂n =

∫
[0,1]2×Rd

Ŵn(u, t)2 dudt. (5.5)

Remark 5.2. The test statistics T̂n is of Cramér-von Mises type, as opposed to the
Kolmogorov-Smirnov type (which would be defined taking the sup instead of integrating).
In Genest and Rémillard (2004) these two types of statistics are introduced in the context
of (unconditional) independence testing. In our context, the Cramér-von Mises type is
preferred over the Kolmogorov-Smirnov for practical reasons. Indeed, as shall be seen
in the next section, a closed form exists for T̂n.

Remark 5.3. The proposed estimate is of the same type as the copula estimator studied
in Fermanian et al. (2004) and Portier and Segers (2018) but another definition might
have been used. For instance, following the approach in Genest and Rémillard (2004),
the statistic would be defined differently with {R̂ik ≤ (n+1)uk} in place of {(R̂ik−1) <
nuk}, k = 1, 2. Using one version or the other does not influence our results.

5.2.3 Computation of the Statistic

The following lemma provides a closed-form formula for the test statistics T̂n.

Lemma 5.4. If w : Rd → R is an integrable function, then

T̂n = n−2
∑

1≤i,j≤n
M
(
Ĝi, Ĝj

)
w?(Xi −Xj)

where Ĝi = (R̂i1 − 1, R̂i2 − 1)/n, w? = w ? ws with ws(x) = w(−x), and

M(u,v) =
(
1− u1 ∨ v1

) (
1− u2 ∨ v2

)
−1

4

(
1− u2

1

)(
1− u2

2

)
+

1

4

(
1− v2

1

)(
1− v2

2

)
+

1

9
.

Remark 5.5. The function w is left unspecified for the sake of generality. Examples
include w(t) = exp(−t2), w(t) = 1|t|≤1 and other popular kernel functions such as the
Epanechnikov kernel. In the simulations, we consider the Gaussian kernel as in this
case, w? remains Gaussian. In line with the result stated in Proposition 5.1, empirical
evidences suggest that it does not have a leading role in the performance of the test.
Another approach would have been to consider the (non-integrable) function w(t) =
1{X≤t} as in Stute (1997). The same conclusion as in Lemma 5.1 remains valid in
virtue of Proposition 16.10 in Billingsley (1995).

Remark 5.6. Computing T̂n requires n2 operations. A sampling strategy might be to
rather compute

1

|I × J |
∑

(i,j)∈(I×J)

M(R̂i, R̂j)w
?(Xi −Xj),

with |I| = |J | denote random samples uniformly drawn in {1, . . . , n}.



82 CHAPTER 5. CONDITIONAL INDEPENDANCE

5.2.4 Bootstrap Approximation

To compute the rejection regions of the test, we propose a bootstrap approach to gener-
ate new samples in a way that reflects the null hypothesis even when H0 is not realized
in the original sample. This has been notified as a guideline for bootstrap hypothesis
testing in (Hall and Wilson, 1991) and it enables, in practice, to control for the level of
the test and to obtain a sufficiently large power.

The proposed bootstrap follows from the estimated conditional marginals of Y1|X and
Y2|X, respectively F̂n,1 and F̂n,2, and from the estimated distribution of X, denoted
by F̂n. First we choose X∗ uniformly over the (Xi)i=1,...,n, that is, X∗ ∼ F̂n. Then we
generate

Y1
∗ ∼ F̂n,1(·|X∗), and Y ∗2 ∼ F̂n,2(·|X∗),

and execute the previous steps n times until obtaining an independent and identic-
ally distributed bootstrap sample of size n. We denote by (X∗i , Y

∗
i1, Y

∗
i2)i=1,...,n the

obtained sample. We finally compute the test statistic based on this sample. We
repeat this B times and obtain B realizations of the statistic under H0, denoted by
(T ∗n,1, . . . , T

∗
n,B). Now define the cumulative distribution function of the bootstrap stat-

istics t 7→ (1/B)
∑B

b=1 1{T ∗n,1≤t}, and denote by ξn(α) its quantile of level α ∈ (0, 1).

The weighted partial copula test statistic with level α rejects H0 as soon as T̂n > ξn(α).

5.2.5 A Generic Example using Nadaraya-Watson Estimator

In this section, the aim is to illustrate the proposed test procedure when using the
classical Nadaraya-Watson estimator for the margins Fj , j ∈ {1, 2} when d = 1.

Nadaraya-Watson estimator. Let K : R→ [0,∞) be the standard Gaussian dens-
ity function on R. For x ∈ R and h > 0, put Kh(x) = h−1K(h−1x). For j ∈ {1, 2}, the
Nadaraya-Watson estimator of Fj(·|x) is given by

F̂n,j(y|x) =

∑n
i=1 1{Yij≤y}Kbj (x−Xi)∑n

i=1Kbj (x−Xi)
, (y ∈ R). (5.6)

The choice of the bandwidths b1 and b2 is discussed below.

Post-nonlinear noise model. We consider Y1 = cos(X+ε1), Y2 = cos(X+aY1+ε2),
where a ≥ 0 and X, ε1, ε2 are independent standard Gaussian random variables with
respective variances σ2

X , σ
2
1, σ

2
2. When a = 0, H0 is true, i.e., Y1 ⊥⊥ Y2 | X. On the other

hand, H0 is false when a > 0. The magnitude of a measures the distance to the null
hypothesis. In the sequel we set σ2

1 = σ2
2 = 0.2 and σ2

X = 1. Two illustrative samples
are shown in Figure 5.1, one is drawn from the previous model with a = 0 and one
other with a = 0.5.

Cross-validation selection of the bandwidth. The bandwidths b1 and b2 have
a critical effect on the shape of the resulting estimates, and thus on the performance
of our test. Indeed, these estimates of the margins F̂j(yj |x) for j ∈ {1, 2} are used
in the computation of the test statistic T̂n as well as in the bootstrap procedure to
simulate under the null (see Section 5.2.4). The idea is to assess the performance
of each regression model Y1|X and Y2|X and to choose each bandwidth b1 and b2
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Figure 5.1 – On the left (resp. right) 2500 realizations of (X,Y1, Y2) from the post-
nonlinear noise model when a = 0 (resp. a = 0,5). The shade of blue denotes for the
value of X.
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Figure 5.2 – The left (resp. right) figure corresponds to a = 0, i.e., H0 is valid (resp.
a = 0.5, i.e., H0 is false). Based on a dataset of size n = 1000, T̂n is computed (red
line). Bootstrap statistics (T ∗n,b)b=1,...,B (B = 300), are used to obtain the distribution
of T̂ ∗n (blue). The red area is the rejection region at 5%. Independently, T̂n is computed
300 times to obtain the distribution of in gray.

accordingly. We randomly divide the set of observations into K groups of nearly equal
size. These groups are denoted by {Ik}k=1,...,K . Define MSEj,k(b) = (1/|Ik|)

∑
i∈Ik(Yij−

ĝ
(−k)
j,b (Xi))

2, where ĝ(−k)
j,b stands for the Nadaraya-Watson estimate of the regression

Yj |X computed on {1, . . . , n}\Ik with bandwidth b. We choose bn,j as the minimizer of
(1/K)

∑K
k=1 MSEj,k(b) over b.

The success of the approach in distinguishing H0 from its contrary is illustrated on
Figure 5.2 considering the generic post-nonlinear noise model Section 5.4.3.

Remark 5.7. Though this example has been carried out using the Nadaraya-Watson
estimate of the marginal distributions, other approaches to estimate the marginals can
be used to conduct the weighted partial copula test. The only restriction on the employed
marginal estimates comes from the bootstrap procedure in which the ability to generate
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according to the margins is required. For instance a k-nearest neighbours approach shall
be considered in Section 5.4.

5.3 Weak Convergence

5.3.1 Smooth Estimator of the Margins

The theoretical results are provided in a general non-parametric setting, using a smoothed
version of the local linear estimator (Fan and Gijbels, 1996) of the conditional marginals
when d = 1 (see Remark 5.10 below). This estimate has been introduced in Portier and
Segers (2018) and is a natural extension of the Nadaraya-Watson estimator (defined in
the previous section). Such a non-parametric approach results in mild assumptions on
the distribution of (X,Y1, Y2). Let K : R → [0,∞) and L : R → [0,∞) be two kernel
functions, i.e., non-negative, symmetric functions integrating to unity. Let (bn,j)n≥1

and (hn,j)n≥1, for j = 1, 2, be four bandwidth sequences that tend to 0 as n→∞. For
(y, Y ) ∈ R2 and h > 0, put

ϕh(y, Y ) =

∫ y

−∞
Lh(t− Y ) dt. (5.7)

with Lh(y) = h−1 L(h−1y). For j ∈ {1, 2}, we introduce the smoothed local linear
estimator of Fj(yj |x) defined by

F̂n,j(yj |x) = ân,j , (5.8)

where ân,j is the first component of the random pair

(ân,j , b̂n,j) = arg min
(a,b)∈R2

n∑
i=1

{
ϕhn,j (yj , Yij)− a− b(Xi − x)

}2
K

(
x−Xi

bn,j

)
, (5.9)

where ϕh in (5.7) serves to smooth the indicator function y 7→ 1{Y≤y}. Kernels K and L
do not have the same role: L is concerned with “smoothing” over Y1 and Y2 whereas K
“localises” the variable X at x ∈ SX . For this reason, we purposefully use two different
bandwidth sequences (bn,j)n≥1 and (hn,j)n≥1. We shall see that the conditions on the
bandwidth hn,j for the y-directions are weaker than the ones for the bandwidth bn,j for
the x-direction. The assumptions related to the two kernels and bandwidth sequences
are stated in ((Gc)) and ((Gd)) below. Note that if the previous optimization would
be carried out only over a we would recover the Nadaraya-Watson estimator with a
smoothed indicator function.

5.3.2 Weak Convergence of the Weigh Partial Copula

We rely on the following Hölder regularity class. Let δ ∈ (0, 1), k ∈ N, and M > 0 be
scalars and let S ⊂ R be non-empty, open and convex. Let Ck+δ,M (S) be the space of
functions S → R that are k times differentiable and whose derivatives (including the
zero-th derivative, that is, the function itself) are uniformly bounded by M and such
that every mixed partial derivative of order l ≤ k, say f (l), satisfies the Hölder condition

sup
z 6=z̃

∣∣∣f (l)(z)− f (l)(z̃)
∣∣∣∣∣z − z̃∣∣δ ≤M, (5.10)
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where | · | in the denominator denotes the Euclidean norm. In particular, C1,M (R) is
the space of Lipschitz functions R → R bounded by M and with Lipschitz constant
bounded by M .

We need the following four assumptions:

(Ga) The law P admits a density fX,Y on SX×R2 such that SX is a nonempty, bounded,
open interval. For some M > 0 and δ > 0, the functions F1( · | · ) and F2( · | · )
belong to C3+δ,M (R×SX) and the function fX belongs to C2,M (SX). There exists
b > 0 such that fX(x) ≥ b for every x ∈ SX . For any j ∈ {1, 2} and any
γ ∈ (0, 1/2), there exists bγ > 0 such that, for every yj ∈ [F−j (γ|x), F−j (1− γ|x)]
and every x ∈ SX , we have fj(yj |x) ≥ bγ .

(Gb) The function w : R→ R is of bounded variation.

(Gc) The kernels K and L are bounded, non-negative, symmetric functions on R, sup-
ported on (−1, 1), and such that

∫
L(u) du =

∫
K(u) du = 1. The function L is

continuously differentiable on R and its derivative is a bounded real function of
bounded variation. The function K is twice continuously differentiable on R and
its second-order derivative is a bounded real function of bounded variation.

(Gd) There exists α > 0 such that for any j = 1, 2, the bandwidth sequences bn,j > 0
and hn,j > 0 satisfy, as n→∞,

nb8n,j → 0, nh8
n,j → 0, b

−1−α/2
n,j h2

n,j → 0,

nb3+α
n,j∣∣∣log bn,j

∣∣∣ →∞,
nb1+α

n,j hn,j∣∣∣log bn,jhn,j

∣∣∣ →∞.
Let P denote the probability measure on the underlying probability space associated
to the whole sequence (Xi,Yi)i=1,2,.... Let `∞(T ) denote the space of bounded real
functions on the set T , the space being equipped with the supremum distance. Define
Ui1 = F1(Yi1|Xi), U2i = F2(Yi2|Xi), for any i = 1, . . . , n, and

W̃n(u, t) = Ẑn(u, t)− (fX ? w)(t)(u1Ẑn,2(u2) + u2Ẑn,1(u1)), (5.11)

for any u ∈ [0, 1]2, t ∈ R, with

Ẑn(u, t) = n−1
n∑
i=1

{
w(t−Xi)(1{Ui1≤u1, Ui2≤u2} − u1u2)

}
, (5.12)

and Ẑn,j(uj) = n−1
∑n

i=1

{
1{Uij≤uj} − uj

}
. We now state our main result. Its proof is

provided in the supplementary material.

Theorem 5.8. Assume that ((Ga)), ((Gb)), ((Gc)) and ((Gd)) hold. If H0 holds, then
for any γ ∈ (0, 1/2), we have when n→∞

sup
u∈[γ,1−γ]2, t∈R

∣∣∣Ŵn(u, t)− W̃n(u, t)
∣∣∣ = oP(n−1/2).

In addition, the process
{
n1/2Ŵn(u, w)

}
u∈[γ,1−γ]2,t∈R

converges weakly in `∞([γ, 1 −

γ]2 × R) to a certain Gaussian process.
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Remark 5.9. Theorem 5.8 is a nontrivial extension of Theorem 2 in Portier and Segers
(2018). By taking wt = 1 we would recover their result.

Remark 5.10. The approach employed follows from an approximation of the processWn

by an oracle version of Wn where the estimated marginals are replaced by the true ones.
In doing this, a crucial step consists in an embedding of some functions class involving
estimated conditional quantiles into a Donsker class (van der Vaart and Wellner, 1996).
First, because the estimated quantiles are difficult to control near the boundary of [0, 1],
we need to restrict the proof to the interval [γ, 1− γ]2. We believe that the extension to
the whole interval is an interesting avenue for further research. Second, the regularity
properties of the local linear estimate defined in (5.8) are essential to obtain that the
resulting quantile functions are sufficiently smooth to be contained in a Donsker class.
Third, as noticed in Portier and Segers (2018), the extension to higher dimensions,
though feasible, is not straightforward and represents an interesting topic for future
work. In the case d = 1, covered by Theorem 5.8, the rate of convergence, n−1/2, is not
affected by the size of the different bandwidths. We conjecture that this remains true in
multiple dimensions with the same rate of order n−1/2.

As a corollary of the previous weak convergence result, we obtain (invoking the continu-
ous mapping theorem) the weak convergence, under H0, of a sightly modified version
of T̂n.

Corollary 5.11. Assume that ((Ga)), ((Gb)), ((Gc)) and ((Gd)) hold. If H0 holds,
then for any γ ∈ (0, 1/2) and any finite measure µ on R, we have that

n

∫
[γ,1−γ]2×R

Ŵn(u, t)2dudµ(t)

converges weakly to a tight non-negative random variable as n→∞.

5.4 Numerical Experiments

In this section, we apply the proposed copula test on synthetic data to evaluate its
performance based on the nominal level and the power of the test. We compare it with
the KCI-test Zhang et al. (2012) presented in the related literature section. Since the
level α is hard to set for the CCI-test of Sen et al. (2017), this approach will only be
considered when the proportions of correct decision will be computed (see Figure 5.6a).

In all the experiments, the function w is a Gaussian kernel given by w(t) = exp(−t2)
and the estimate of the marginals is the k-nearest neighbors version of (5.6) using the
cross-validation approach of Section 5.2.5 to tune k.

We use four datasets, the linear model and the post-nonlinear noise model are con-
sidered. We also test our method on a probabilistic graphical model for testing causality
detection. Finally, we apply our test in a practical setting, using the movie watching
based brain development dataset Richardson et al. (2018). In all of our simulations we
set α = 5% as the desired type-I error rate. All results are averaged over 300 trials, and
we used B = 200 bootstrap realizations. The average CPU time taken by the tests in
competition for n = 1500, d = 1 copulas: 18.3 s , KCI-test: 17.7 s, CCI-test: 19.7 s.
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Figure 5.3 – On the left (resp. right) 10000 realizations of (X,Y1, Y2) drawn from the
model in 5.4.1 when a = 0 (resp. a = 0.5). Here, X ∈ R2, and we set β1 = β2 =
(1/
√

2, 1
√

2)T ∈ R2. The shade of blue denote for the value of XTβ.

5.4.1 Linear Model

Consider the joint distribution given by Y1 = XTβ1 + ε1, Y2 = XTβ2 + ε2, where
X ∼ N (0, Id), β1and β2 are two constant vectors of [0, 1]d, and ε1, ε2 are two standard
Gaussian variables with Cov(ε1, ε2) = a. When a = 0, H0 is true. It is false when
a > 0. We examine the effect of the constant a > 0, and the size of the dataset n on
the type-II error rate. We also examine the type-I errors when the dimension of the
variable X increases, in a setting where the null hypothesis H0 holds. Two illustrative
samples are shown in Figure 5.3, one is drawn from the previous model with a = 0 and
one other with a = 0.5. We set β1 = β2 = (1/

√
2, 1
√

2)T ∈ R2. Figure 5.4 shows the
attractive performance of our test compared to the KCI-test. Notably, we can see that
in high dimensions, our test is more accurate with respect to the level set α than the
KCI-test.

5.4.2 Causality Discovery

Hereinafter we consider a particular type of DAG called “Latent cause” model.

To draw samples from the alternative hypothesis, we break the conditional independence
by adding an edge between the nodes Y1 and Y2. The resulting graphs are shown in
Figure 5.5 in dashed lines. For the “Latent cause” model of interest we haveX ∼ N (0, 1),
Y1|X ∼ N (X, 1), and Y2|X,Y1 ∼ N (X + aY1, 1). It is easy to verify that H0 is true
when a = 0, and false otherwise. It can be seen in Figure 5.6 that for large sample size
n, our test outperforms the ones in competition. Furthermore, our test is slightly more
powerful than the KCI-test across a range of values of a but overall shows fairly similar
performance.
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Figure 5.4 – Simulation results for the linear model. Figures 5.4a, 5.4b show the prob-
ability of acceptance (i.e. the type II error rate), plotted against the constant a and n.
Figure 5.4c shows the probability of rejection (type I error) against d. The plots show
the average probabilities with standard error bars.
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Figure 5.5 – Latent cause model. The CI holds when the dashed edge does not exist
and fails otherwise.
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Figure 5.6 – Simulation results for the causal inference datasets.

5.4.3 Post-Nonlinear Noise

We apply the proposed test on the post-nonlinear noise model described in Section
5.2.5. We first examine the effect of the constant a > 0 on the probability of type-I
and type-II error of our test. The results are shown in Figure 5.7. As expected, larger
values of a yields lower type-II error probabilities. For every value a, we observe that the
type-I error probability is closed to α. The performances of the tests are also compared
when the sample size n changes. The role of n is critical and the results are shown in
Figure 5.8. We note that the type-I error probability is again closed to α and that the
type-II quickly vanishes when n increases. In this experiment, the proposed procedure
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Figure 5.7 – Simulation results for the post-nonlinear noise model. Figures 5.7a, 5.7b
and 5.7c, show respectively the ROC AUC score, the probability of acceptance (i.e.
the type II error rate), and the type I error rate plotted against the constant a with
standard error bars.
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Figure 5.8 – The probability of type-I (5.8b) and type-II (5.8b).

outperforms the KCI-test.

5.4.4 Classification of Age Groups using Functional Connectivity

In this paragraph, we apply our test in a practical setting, using the movie watching
based brain development dataset Richardson et al. (2018) obtained from the OpenNeuro
database1. The dataset consists in 50 patients (10 adults and 40 children). The fMRI
data consists in measuring the brain activity in 39 Region of Interest (ROI). For every
patient, 168 measurements are provided for each ROI. We denote for j ∈ {1, . . . , 39}
by Xj the variable that represents the jth region signal value. Given two ROI j and
j′, we seek to test the null hypothesis that Xj and Xj′ are conditionally independent
given X\{j,j′}. The decisions given by our test allow us to obtain a map of connections
between all the ROI, called connectome, given in Figure 5.9. In this figure, a line is
drawn between two ROI whenever our test rejects the null for these two ROI. Here, due
to the high dimension of the conditional variable, the margins are no longer estimated
using a Gaussian kernel as in Section 5.2.5, but using a k-nearest neighbours approach.

1Accession number ds000228.
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L R
L R

Mean Connectome over all adults

Figure 5.9 – Mean connectome provided by our test over all adults.

Figure 5.10 – The blue circles represent the GPS coordinates of the BS that are used
in this numerical experiment.

For a given x, the mapping F̂n,j(y|x) is estimated for every y ∈ R as the proportion
of samples i amongst the k-nearest nearest neighbours of x which satisfy Yij ≤ y. The
integer k is select by cross-validation.

As a sanity check, our connectome is used as an input feature of a classifier (Linear
Support Vector Classifier (SVC)) in order to distinguish children from adults. We
estimate the classification accuracy of our classifier using k-fold. The obtained accuracy
is 97.4%. This result outperforms the standard correlation method (91.3%) and is close
to the so-called tangent method (98.9%) which is known to be fitted for this task Dadi
et al. (2019).

5.4.5 Copulas CI Test to Corroborate the Model of Equation (3.1)

The last numerical experiment is dedicated to corroborate the statistical model of Equa-
tion (3.1). Under this statistical model, the components X1, . . . , Xd of the random vec-
tor X are independent conditionally to the position Y . In this section, we want to test
that, for any couple of BS (i, j) ∈ {1, . . . , d}2, i 6= j,Xi ⊥⊥ Xj |Y. The datasets consists
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Figure 5.11 – four couples of BS for which the conditional independence given the
position Y does not hold.

in n = 2000000 couples (xi, yi) collected for d = 45 BS displayed in Figure 5.10. For
each pairs of BS, we perform our test. The outcome allow us to obtain couples of BS
for which the conditional independence given the position Y does not hold. These 13
pairs are shown in Figure 5.11 and correspond to the pairs of nodes connected by an
edge. The connected edges seem sound as they correspond to geographically closed BS,
or BS that are placed on the same road. Sometimes, they also correspond to BS with
the same coordinates.

5.5 Conclusion

In this chapter, we have developed test of conditional independence between Y1 and
Y2 given X based on weighted partial copulas. First, under conditional independence,
the weak convergence of the weighted partial copula process has been established un-
der certain regularity conditions the marginals. We have shown that, empirically, our
proposed test shows better performance, in terms of power, than recent state-of-the-art
conditional independence tests such as the one based on a kernel embedding (Zhang
et al., 2012). Furthermore, this test has been performed to corroborate one of the most
commonly used assumption in RSSI-based geolocation literature, or more specifically,
one consequence of this assumption. Numerical experiments have shown that, not only
is this assumption not true for certain pairs of BS, but also that couples for whom
the hypothesis was rejected share particular geographic dispositions with each others
(geographic proximity or the fact that there are placed on a same road). An interesting
topic would be to assess the improvement of prediction performance when these pair-
wise conditional independence are no longer assumed. Finally, the generality of the
proposed approach makes it useful in many practical situations, and its soundness has
been endorsed by conclusive numerical experiments.





Conclusion

In this thesis, we have proposed contributions to the RSSI-based geolocation problem
in LPWAN.

First, we identified the limits of time-based approaches when applied to geolocation
in the singular context of LPWAN; indeed, a preliminary investigation showed that
the narrow band signals that are a requisite for IoT networks greatly jeopardize the
performance of such geolocation methods. Then, we demonstrated that the well-known
and widely used path-loss model is also not suited to address the task of geolocation
because it fails to correctly represent the relation between the range to the emitter and
the RSSI.

Then, we addressed this problem by means of recent techniques of machine learning,
and presented most popular methods found in the literature. We furthermore proposed
two new techniques. The first one relies on a semi-parametric Nadaraya-Watson (NW)
estimator of the likelihood, followed by a MAP estimator of the object’s position. The
second one consists in learning a proper metric on the dataset, constructed by means of
a Gradient boosting regressor. Contrary to prior works, the proposed methods take into
consideration both the non-isotropy and the information of non-reception. This work
emphasized how choosing a relevant distance on the RSSI space can greatly improve
the quality of fingerprint methods estimation.

The quality of the prediction is indeed, highly related to the chosen distance on the RSSI
space. The metric learning problem is therefore a fundamental issue to improve RSSI-
based geolocation techniques. However, there are, as far as we know, few studies on the
fingerprint problem from the perspective of metric learning. We therefore proposed an
original way to jointly learn a similarity function and the regressor based on the latter.
Our approach consists in learning a similarity by directly minimizing the regression error
of the final predictor. We further detailed at length an algorithm based on XGBoost
to tackle this task. The proposed approach has been shown to be perfectly adapted to
minimize the objective function of interest. We then applied this method to popular
regression problems such as the swiss roll dataset, and demonstrate that its range of
applications go far beyond the field of geolocation.

Finally, independence conditional testing problem was tackled introducing the weighted
partial copula function for testing conditional independence. The proposed test proced-
ure is as follows: first, the test statistic is an explicit Cramér-von Mises transformation
of the weighted partial copula. Second, the regions of rejection are computed using
a boot-strap procedure which mimics conditional independence by generating samples
from the product measure of the estimated conditional marginals. Furthermore, the
weak convergence of the weighted partial copula process is established under the CI.
Numerical experiments have shown that, not only is this assumption not true for certain
pairs of BS, but also that couples for whom the hypothesis was rejected share particular
geographic dispositions with each others (geographic proximity or the fact that there
are placed on a same road). An interesting topic would be to assess the improvement of
prediction performance when pair-wise conditional independence is no longer assumed.
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A
Proofs of Chapter 6

A.1 Proofs of the basic lemmas of Section 5.2

A.1.1 Proof of Lemma 5.1

The “only if” part is obvious. Suppose that the function W = 0 and let u ∈ [0, 1]2.
Define g(x) = C(u | x)− u1u2)fX(x). We have (g ? w) = 0, a.e. on Rd, where ? stands
for the standard convolution product with respect to the Lebesgue measure. Applying
the Fourier transform gives that F(g)F(w) = 0 which, by assumption, yields F(g) = 0.
By the Fourier inversion theorem we obtain that g = 0 a.e. on Rd. That is for any
u ∈ [0, 1]2 and any x ∈ SX , C(u | x) = u1u2.

A.1.2 Proof of Lemma 5.4

Write

T̂n = n−2
∑

1≤i,j≤n

∫
[0,1]2

ξi(u)ξj(u) du

∫
Rd
ω(t−Xi)ω(t−Xj) dt,

where ξk(u) = 1{Ĝk1<u1}1{Ĝk2<u2} − u1u2. It remains to compute the function M .
Using the notation Ĝi, we have∫

[0,1]2
ξi(u)ξj(u) du =

∫
[0,1]2

1{Ĝi1<u1}1{Ĝi2<u2}1{Ĝj1<u1}1{Ĝj2<u2}du

−
∫

[0,1]2
1{Ĝi1<u1}1{Ĝi2<u2}u1u2du

−
∫

[0,1]2
1{Ĝj1<u1}1{Ĝj2<u2}u1u2du+

∫
[0,1]2

(u1u2)2du.

First, let compute the first term of the right hand side. Let notice that the value of the
integrand is 1 if u1 > Ĝi1 ∨ Ĝj1 and u2 > Ĝu2 ∨ Ĝj2 and 0 otherwise. Thus we obtain
for this term:∫

[0,1]2
1u1>Ĝi1∨Ĝj11u2>Ĝi2∨Ĝj2du =

(
1− Ĝi1 ∨ Ĝj1

)(
1− Ĝi2 ∨ Ĝj2

)
. (A.1)

Now let derive the second integral term of the right hand side, the third term will follow
directly.

∫
[0,1]2

1{Ĝi1<u1}1{Ĝi2<u2}u1u2du =

∫
[0,1]

1{Ĝi1<u1}u1du1

∫
[0,1]

1{Ĝi2<u2}u2du2

=
1

4

(
1− Ĝ2

i1

)(
1− Ĝ2

i2

)
. (A.2)

By combining (A.1) and (A.2) we obtain the desired result.
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A.2 Proof of Theorem 5.8

We use notation from empirical process theory. Let Pn = n−1
∑n

i=1 δ(Xi,Yi) denote the
empirical measure. For a function f and a probability measure Q, write Qf =

∫
f dQ.

The empirical process is

Gn = n1/2(Pn − P ).

For any pair of cumulative distribution functions F1 and F2 on R, put F (y) = (F1(y1), F2(y2))
for y = (y1, y2) ∈ R2 and F−(u) = (F−1 (u1), F−2 (u2)) for u = (u1, u2) ∈ [0, 1]2.

A.2.1 Sketch of the proof

We introduce an oracle copula estimator, defined as the empirical copula based on
the unobservable random pairs (F1(Yi1|Xi), F1(Yi2|Xi)), i ∈ {1, . . . , n}. Let Ĝ(or)

n,j be
the empirical distribution function of the uniform random variables Fj(Yij |Xi), i ∈
{1, . . . , n}, i.e.,

Ĝ
(or)
n,j (uj) = Pn{1{Fj ≤uj}}, uj ∈ [0, 1].

Let Ĝ(or)−
n,j be its generalized inverse. The oracle estimator of W is then

Ŵ (or)
n (u, t) = Pn

{
wt(1{F ≤ Ĝ(or)−

n (u)} − u1u2)

}
,

with wt(x) = w(t− x). A crucial result is that the processes Ŵn and Ŵ (or)
n are asymp-

totically equivalent as stated in the following lemma.

Lemma A.1. Assume that (G(Ga)), (G(Gb)), (G(Gc)) and (G(Gd)) hold. If H0 holds,
then for any γ ∈ (0, 1/2), we have when n→∞,

sup
u∈[γ,1−γ]2, t∈R

∣∣∣∣n1/2
{
Ŵn(u, t)− Ŵ (or)

n (u, t)
}∣∣∣∣ = oP(1). (A.3)

Using the notation from empirical process theory, introduced below, we have

Ẑn(u, t) = Pn

{
wt

(
1{F≤u} − u1u2

)}
, u ∈ [0, 1]2, t ∈ R,

Ẑn,j(uj) = Ĝ
(or)
n,j (uj)− uj , uj ∈ [0, 1],

W̃n(u, t) = Ẑn(u, t)− P{wt}
(
u1Ẑn,2(u2) + u2Ẑn,1(u1)

)
, u ∈ [0, 1]2, t ∈ R.

A second crucial result is the following one, where it is shown that Ŵ (or)
n is asymptot-

ically equivalent to W̃n.

Lemma A.2. Assume that (G(Ga)), (G(Gb)), (G(Gc)) and (G(Gd)) hold. If H0 holds,
we have when n→∞,

sup
u∈[0,1]2, t∈R

∣∣∣Ŵ (or)
n (u, t)− W̃n(u, t)

∣∣∣ = oP(n−1/2)
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Based on Lemma A.1 and A.2, we deduce that

sup
u∈[γ,1−γ]2, t∈R

∣∣∣Ŵn(u, t)− W̃n(u, t)
∣∣∣ = oP(n−1/2).

Invoking Slutsky’s Lemma, the process {Ŵn(u, t)}u∈[γ,1−γ]2, t∈R and {W̃n(u, t)}u∈[γ,1−γ]2, t∈R
have the same weak limit in `∞([γ, 1− γ]2×R). Now note that {x 7→ wt(x) : t ∈ R} is
a Euclidean or VC class with constant envelop Cw = supx∈R |w(x)| (Nolan and Pollard,
1987, Lemma 22, (ii)), i.e., the covering numbers are polynomials. Moreover, the class of
indicator functions is also Euclidean (van der Vaart and Wellner, 1996, Example 2.5.4).
This implies that both classes have finite entropy integrals and therefore are Donsker
(van der Vaart and Wellner, 1996, Chapter 2.1, equation (2.1.7)). Using the preservation
of the Donsker property through products and sums (van der Vaart and Wellner, 1996,
Example 2.10.7 and 2.10.8), the class {(y, x) 7→ wt(x)1{F (y|x)≤u} : t ∈ R, u ∈ [0, 1]2}
is Donsker. As a result, the process {W̃n(u, t)}u∈[γ,1−γ]2, t∈R converges weakly to a tight
Gaussian process in `∞([γ, 1− γ]2 × R).

A.2.2 Proof of Lemma A.1

Our proof is adapted from the proof of Theorem 1 in Portier and Segers (2018). For
the sake of clarity, we start by recalling some of the results established in Portier and
Segers (2018) that will be used further in our proof. Apart from this, the proof is
self-consistent.

Fact 1. On a sequence of events whose probabilities tend to one, it holds that for every
uj ∈ [γ, 1− γ] and every (yj , x) ∈ R× SX ,

F̂n,j(yj |x) ≤ uj ⇔ yj ≤ F̂−n,j(uj |x).

This is shown page 170 in Portier and Segers (2018).

For uj ∈ [γ, 1− γ], x ∈ SX , and j ∈ {1, 2}, define

∆̂n,j(uj |x) = Fj

(
F̂−n,j

(
Ĝ−n,j(uj)|x

)
|x
)
− Ĝ(or)−

n,j (uj). (A.4)

Fact 2. We have for any j = 1, 2,

sup
uj∈[γ,1−γ]

∣∣∣∣∣n1/2

∫
∆̂n,j(uj |x) fX(x) dx

∣∣∣∣∣ = oP(1). (A.5)

This is shown page 171 in Portier and Segers (2018).

Fact 3. As established in (Portier and Segers, 2018, page 172), for each j = 1, 2,{
x 7→ F̂−n,j

(
Ĝ−n,j(uj)|x

)
: uj ∈ [γ, 1− γ]

}
⊂ C1+δ1,M1(SX),{

x 7→ F−j

(
Ĝ

(or)−
n,j (uj)|x

)
: uj ∈ [γ, 1− γ]

}
⊂ C1+δ,M2(SX),

with probability going to 1.
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We are based on Theorem 2.1 stated in (van der Vaart and Wellner, 2007) and reported
below; for a proof see for instance van der Vaart and Wellner (1996, Lemma 3.3.5). Let
ξ1, ξ2, . . . be independent and identically distributed random elements of a measurable
space (X ,A) and with common distribution equal to P . Let P denote the probability
measure on the probability space on which the sequence ξ1, ξ2, . . . is defined. Let Gξ,n

be the empirical process associated to the sample ξ1, . . . , ξn. Let E and V be sets and
let {mv,η : v ∈ V, η ∈ E} be a collection of real-valued, measurable functions on X .

Theorem A.3 (Theorem 2.1 in (van der Vaart and Wellner, 2007)). Let η̂n be random
elements in E. Suppose there exist η0 ∈ E and E0 ⊂ E such that the following three
conditions hold:

1. supv∈V P
(
mv,η̂n −mv,η0

)2
= oP(1) as n→∞;

2. P(η̂n ∈ E0)→ 1 as n→∞;

3. {mv,η −mv,η0 : v ∈ V, η ∈ E0} is P -Donsker.

Then it holds that

sup
v∈V

∣∣∣∣Gξ,n

(
mv,η̂n −mv,η0

)∣∣∣∣ = oP(1), n→∞.

The empirical process notation allows us to write

Ŵn(u, t) = Pn

{
wt(1{F̂n≤ Ĝ−n (u)} − u1u2)

}
, Ŵ (or)

n (u, t) = Pn

{
wt(1{F ≤ Ĝ(or)−

n (u)} − u1u2)

}
.

where wt(x) = w(t− x). To establish (A.3), we rely on the decomposition

n1/2
{
Ŵn(u, t)− Ŵ (or)

n (u, t)
}

= Gn

{
wt(1{F̂n≤ Ĝ−n (u)} − 1{F ≤ Ĝ(or)−

n (u)})

}
+ n1/2P

{
wt(1{F̂n≤ Ĝ−n (u)} − 1{F ≤ Ĝ(or)−

n (u)})

}
= Ân,1(u, t) + Ân,2(u, t).

Let γ ∈ (0, 1/2). The proof consists in showing that the empirical process term Ân,1(u, t)
goes to zero, uniformly over (u, t) ∈ [γ, 1− γ]2 × R, in probability (first step) and that
the bias term Ân,2(u, t) goes to zero, uniformly over (u, t) ∈ [γ, 1−γ]2×R, in probability
(second step). Assumption H0, will be crucial for treating the bias term in the second
step.

First step: We show that

sup
u∈[γ,1−γ]2 ,t∈R

∣∣∣Ân,1(u, t)
∣∣∣ = oP(1), n→∞.

By Result 1, it holds that (with a slight abuse of notation)

Ân,1(u, t) = Gn

{
wt(1{Y ≤ F̂−n (Ĝ−n (u)|X)} − 1{Y ≤F−(Ĝ

(or)−
n (u)|X)})

}
.
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Therefore we apply Theorem A.3 with ξi = (Xi,Yi), X = SX ×R2, V = [γ, 1− γ]2 ×R
and E the space of measurable functions valued in R4 and defined on SX × [γ, 1− γ]2.
Moreover, the quantities η0 and η̂n are given by, for every u ∈ [γ, 1− γ]2 and x ∈ SX ,

η0(u, x) =
(
F−(u|x),F−(u|x)

)
,

η̂n(u, x) =

(
F̂−n

(
Ĝ−n (u)|x

)
,F−

(
Ĝ(or)−
n (u)|x

))
.

Identifying v ∈ V with (u, t) ∈ [γ, 1 − γ]2 × R and η ∈ E with (η1,η2), where ηj ,
j ∈ {1, 2}, are valued in R2, the map mv,η : R2 × SX → R is given by

mv,η(y, x) = wt(x)(1{y≤η1(u,x)} − 1{y≤η2(u,x)}),

Finally, the space E0 is the collection of those elements η = (η1,η2) in E such that

{x 7→ η1(u, x) : u ∈ [γ, 1− γ]2} ⊂
(
C1+δ1,M1(SX)

)2
,

{x 7→ η2(u, x) : u ∈ [γ, 1− γ]2} ⊂
(
C1+δ,M2(SX)

)2
,

where M2 depends only on bγ and M . In the following we check each condition of
Theorem A.3.

Verification of Condition (1) in Theorem A.3. Because the indicator function and wt
are bounded, we have∫

|wt(x)|
∣∣∣∣1{y≤ F̂−n (Ĝ−n (u)|x)} − 1{y≤F−(Ĝ

(or)−
n (u)|x)}

∣∣∣∣2 fX,Y (x,y) d(x,y)

≤ Cw
2∑
j=1

sup
uj∈[γ,1−γ]

∫ ∣∣∣∣1{yj ≤ F̂−n,j(Ĝ−n,j(uj)|x)} − 1{yj ≤F−j (Ĝ
(or)−
n,j (uj)|x)}

∣∣∣∣2 fX,Yj (x, yj) d(x, yj),

so that we can focus on each margin separately. Recall that if the random variable U
is uniformly distributed on (0, 1), then E(1{U≤u1} − 1{U≤u2})

2 =
∣∣u1 − u2

∣∣. Writing

ân,x(uj) = F̂−n,j

(
Ĝ−n,j(uj)|x

)
, we have∫ ∣∣∣∣1{yj ≤ ân,x(uj)} − 1{yj ≤F−j (Ĝ

(or)−
n,j (uj)|x)}

∣∣∣∣2 fX,Yj (x, yj) d(x, yj)

=

∫ ∣∣∣∣1{Fj(yj |x)≤Fj(ân,x(uj)|x)} − 1{Fj(yj |x)≤ Ĝ(or)−
n,j (uj)}

∣∣∣∣2 fX,Yj (x, yj) d(x, yj)

=

∫
SX

∣∣∣∣Fj(ân,x(uj)|x)− Ĝ(or)−
n,j (uj)

∣∣∣∣ fX(x) dx

=

∫
SX

∣∣∣∆̂n,j(uj |x)
∣∣∣ fX(x) dx,

where ∆̂n,j has been defined in (A.4). Result 2 permits to conclude.

Verification of Condition (2) in Theorem A.3. This is given by Result 3.

Verification of Condition (3) in Theorem A.3. It is enough to show that the class of
functions{

(y, x) 7→ wt(x)(1{y≤ g1(x)} − 1{y≤ g2(x)}) : t ∈ R, (g1, g2) ∈
(
C1+δ1,M1(SX)

)2
×
(
C1+δ,M2(SX)

)2
}
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is P -Donsker. Since the sum and the product of two bounded Donsker classes is Donsker
(van der Vaart and Wellner, 1996, Example 2.10.8), it suffices to show that both classes{

1{y≤ g(x)} : g ∈ C1+δ,M (SX)
}

and {wt : t ∈ R}

are Donsker. For any δ > 0 and M > 0, the first one is Donsker since the class of
subgraphs of C1+δ,M (SX), under (G(Ga)), has a sufficiently small entropy (van der Vaart
and Wellner, 1996, Corollary 2.7.3). The second one has been shown to be Donsker in
Section A.2.1.

Second step: We show that

sup
u∈[γ,1−γ]2, t∈R

∣∣∣Ân,2(u, t)
∣∣∣ = oP(1), n→∞.

Under H0, we have, for every u ∈ [0, 1]2, t ∈ R,

P

{
wt(1{F̂n≤ Ĝ−n (u)})

}
=

∫
wt(x)1{y≤ F̂−n (Ĝ−n (u)|x)} fX,Y (x,y) d(x,y)

=

∫
wt(x)F1

(
F̂−n,1

(
Ĝ−n,1(u1)|x

)
| x
)
F2

(
F̂−n,2

(
Ĝ−n,2(u2)|x

)
| x
)
fX(x) dx.

Consequently, using the bound F2 ≤ 1 and Ĝ(or)−
n,1 ≤ 1,

∣∣∣Ân,2(u, t)
∣∣∣ =

∣∣∣∣∣
∫
wt(x)(F1

(
F̂−n,1

(
Ĝ−n,1(u)|x

)
| x
)
F2

(
F̂−n,2

(
Ĝ−n,2(u)|x

)
| x
)
− Ĝ(or)−

n,1 (u)Ĝ
(or)−
n,2 (u)) fX(x) dx

∣∣∣∣∣
≤ Cw

∫ ∣∣∣∣F1

(
F̂−n,1

(
Ĝ−n,1(u)|x

)
| x
)
F2

(
F̂−n,2

(
Ĝ−n,2(u)|x

)
| x
)
− Ĝ(or)−

n,1 (u1)Ĝ
(or)−
n,2 (u2)

∣∣∣∣ fX(x) dx

= Cw

∫ ∣∣∣∣∆̂n,1(u1|x)F2

(
F̂−n,2

(
Ĝ−n,2(u1)|x

)
| x
)

+ Ĝ
(or)−
n,1 (u1)∆̂n,2(u2|x)

∣∣∣∣ fX(x) dx

= 2Cw max
j=1,2

sup
u∈[γ,1−γ]

∫ ∣∣∣∆̂n,j(u|x)
∣∣∣ fX(x) dx

It remains to use Result 2 to obtain the conclusion.

A.2.3 Proof of Lemma A.2

Recall the definition of Ŵ (or)
n (u, t) and Ẑn(u, t) that are given in Section A.2.1 and that

under H0, in virtue of Lemma 5.1, P{wt(1{F≤u} − u1u2)} = 0. Notice that

Ŵ (or)
n (u, t)− Ẑn(u, t)

= Pn{wt(1{F≤Ĝ(or)−
n (u)} − 1{F≤u})}

= n−1/2Gn{wt(1{F≤Ĝ(or)−
n (u)} − 1{F≤u})}+ P{wt(1{F≤Ĝ(or)−

n (u)} − 1{F≤u})}

= Rn,1(u, t) +

(
Ĝ

(or)−
n,1 (u1)Ĝ

(or)−
n,2 (u2)− u1u2

)
P
{
wt
}

= Rn,1(u, t) +

(
Rn,2(u) + u1(Ĝ

(or)−
n,2 (u2)− u2) + u2(Ĝ

(or)−
n,1 (u1)− u1)

)
P
{
wt
}
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with

Rn,1(u, t) = n−1/2(Ẑn(Ĝ(or)−
n (u), t)− Ẑn(u, t)),

Rn,2(u) = (Ĝ
(or)−
n,1 (u1)− u1)(Ĝ

(or)−
n,2 (u2)− u2).

Now just recall the definition of W̃n to obtain that

Ŵ (or)
n (u, t)− W̃n(u, t)

= Rn,1(u, t) + P{wt}Rn,2(u) + P{wt}
(
u1ρn,2(u2) + u2ρn,1(u1)

)
,

with

ρn,j(uj) = (Ĝ
(or)−
n,j (uj)− uj) + (Ĝ

(or)
n,j (uj)− uj).

From Vervaat’s Lemma (Segers, 2015, Lemma 4.3), we have that

sup
uj∈[0,1]

|ρn,j(uj)| = oP(n−1/2),

sup
u∈[0,1]2

|Rn,2(u)| = OP(n−1).

Because the class of functions {(y, x) 7→ wt(x)1{F (y|x)≤u} : t ∈ R, u ∈ [0, 1]2} is
Donsker (as demonstrated in Section A.2.1), the process Ẑn is asymptotically equicon-
tinuous. This implies that

sup
u∈[0,1]2

|Rn,1(u)| = oP(n−1/2).

Consequently, each quantity in the above decomposition of Ŵ (or)
n (u, t) − W̃n(u, t) is

oP(n−1/2), uniformly over u ∈ [0, 1]2 and t ∈ R, and so comes the conclusion.





B
Résumé en français

B.1 Contexte de la thèse

Cette thèse est le résultat d’une convention CIFRE (Convention Industrielle de Forma-
tion et de Recherche) entre Télécom Paris Saclay et Sigfox, un opérateur de télécommu-
nications français créé en 2009 par Christophe Fourtet et Ludovic Le Moan. Sigfox est
spécialisé dans le Machine to Machine (M2M) via des réseaux bas débit. Il contribue à
l’Internet des objets (IoT) en permettant l’interconnexion via une passerelle. Sa tech-
nologie radio UNB ("Ultra narrow band") lui permet de construire un réseau cellulaire
à bas débit et économe en énergie. Ce type de réseau est déployé dans les bandes de
fréquences radio dites industrielles, scientifiques et médicales (ISM), disponibles dans le
monde entier sans aucune licence.

Ces dernières années, l’Internet des objets (IoT) a suscité une grande attention dans des
domaines très divers tels que l’agriculture ou les soins de santé. Les experts s’accordent
à dire que 30 milliards d’objets feront partie de l’IdO d’ici 2023 et que 40% de ces
objets devront être géolocalisés, par exemple pour le transport de marchandises. L’un
des défis les plus importants pour ce domaine est le besoin de localisation. En effet,
de nombreuses applications des réseaux de capteurs doivent suivre des objets mobiles,
tels que des personnes, des animaux, des voitures, etc. Pour que ces applications soient
viables, le coût des dispositifs devra être faible (de quelques dollars à quelques centimes
selon l’application) et les dispositifs devront durer des années, voire des décennies, sans
remplacement de la batterie. En outre, le réseau devra s’organiser sans modération
humaine importante. En outre, afin de permettre la connectivité de milliards de dispos-
itifs, la plupart des réseaux dédiés à l’IdO utilisent des communications à longue portée
et à faible puissance. L’IoT a suscité beaucoup d’intérêt ces dernières années. Il désigne
les réseaux de dispositifs physiques dotés de capacités de communication. L’attente que
tout soit connecté est à l’origine de cette tendance. On prévoit que, d’ici 2020, il y aura
plus de 20 milliards d’objets communicants dans le monde (Hatton). Ces objets sont
capables à la fois de collecter et de transférer des informations. Comme la maintenance
fréquente des batteries doit être évitée en raison du nombre élevé de dispositifs prévus,
une faible consommation d’énergie est également une exigence forte pour l’IdO. Par
conséquent, les défis des réseaux IoT sont d’atteindre une grande évolutivité pour gérer
un nombre massif de dispositifs, d’atteindre un faible coût et d’avoir une large couver-
ture tout en gardant une faible consommation d’énergie. Les appareils qui répondent
à ces exigences sont difficiles à intégrer dans les réseaux cellulaires traditionnels. C’est
pourquoi une technologie dédiée LPWAN (Low Power Wide Area Network), telle que
l’UNB (Ultra Narrow Band), développée et brevetée par Sigfox, est apparue.

La connaissance de la géolocalisation de chaque appareil est une ressource très précieuse.
En effet, elle permet à Sigfox de fournir cette information aux utilisateurs du réseau,
ce qui débouche sur de nombreuses applications telles que la logistique ou le transport
de marchandises, la surveillance et le suivi dans les bâtiments intelligents ou encore
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le marketing et la publicité de proximité dans les centres commerciaux. Cependant,
les techniques de localisation traditionnelles telles que le système de positionnement
global (GPS) ne sont donc pas bien adaptées aux besoins particuliers de l’industrie IoT.
L’installation d’un GPS sur chaque appareil représente un coût et une consommation
d’énergie prohibitifs pour de nombreuses applications, et n’est en outre pas adaptée aux
applications intérieures. Toutes ces exigences compliquent grandement la localisation
de ces objets.

Les méthodes alternatives basées sur la distance utilisent des mesures telles que les deux
présentées ici, le temps d’arrivée (TOA) ou la différence de temps d’arrivée (TDoA) (Ho
and Chan, 1993; Cong and Zhuang, 2002), et l’indicateur de force du signal reçu (RSSI)
pour estimer la distance entre un dispositif émetteur et une antenne réceptrice. D’autres
méthodes de télémétrie sont couramment utilisées dans la littérature, comme l’angle
d’arrivée (AOA) (Niculescu and Nath, 2003), ou la différence de fréquence d’arrivée
(FDoA) (Amar and Weiss, 2008) mais leur étude dépasse le cadre de cette thèse.

Nous sommes, comme indiqué dans l’introduction, intéressés par des scénarios où l’objet
suivi est équipé d’un dispositif de communication, mais pas nécessairement d’un dis-
positif de positionnement tel que le GPS.

Ce chapitre nous permet de mettre en perspective les enjeux de cette thèse. Il a pour
but de permettre de mieux comprendre la singularité du problème de géolocalisation
dans un réseau de capteurs tel que le réseau Sigfox.

Généralement, les mesures de distance et d’angle utilisées pour la localisation sont af-
fectées par des erreurs variant dans le temps et des erreurs statiques, dépendantes de
l’environnement. Les erreurs temporelles (dues, par exemple, au bruit additif et aux
interférences) peuvent être réduites en faisant la moyenne de plusieurs mesures dans le
temps. Les erreurs liées à l’environnement sont le résultat de la disposition physique
des objets (par exemple, les bâtiments, les arbres et les meubles) dans l’environnement
particulier dans lequel le réseau de capteurs fonctionne. Comme l’environnement est
imprévisible, ces erreurs sont imprévisibles et doivent être modélisées comme aléatoires.
Toutefois, dans un environnement particulier, les objets sont essentiellement station-
naires et, par conséquent, pour un réseau de capteurs essentiellement stationnaires, les
erreurs liées à l’environnement seront largement constantes dans le temps. La majorité
des applications des réseaux de capteurs sans fil impliquent des capteurs essentiellement
stationnaires. Comme un certain délai est acceptable dans ces applications, chaque paire
de capteurs effectuera plusieurs mesures dans le temps et fera la moyenne des résultats
afin de réduire l’impact des erreurs variant dans le temps.

Tout d’abord, nous abordons le problème général de la géolocalisation dans Appendix B.2.
Pour prédire la localisation d’un émetteur, les approches de pointe basées sur le canal
consistent soit à estimer le délai entre l’émetteur et le récepteur, à partir duquel il est
possible de déduire la distance entre l’émetteur et le récepteur; soit à prédire directe-
ment cette dernière distance à partir de la décroissance de puissance observée entre
la puissance reçue et la puissance d’émission. Une introduction au canal sans fil, en
particulier les paramètres clés pour le modéliser, et une présentation des prédicteurs
discutés sont proposées dans la Section 1.3.
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B.2 L’estimation de la localisation géographique

B.2.1 Principe de géolocalisation

Les termes géolocalisation et positionnement sont utilisés pour désigner l’estimation
géographique dans le monde réel de l’emplacement d’un objet. Cette problématique est
entrée dans notre société avec une diffusion massive. Il est utilisé dans de nombreuses
applications telles que la navigation, la communication, les véhicules autopilotés, les
objets connectés et les villes communicantes, ou plus récemment avec des problématiques
telles que le contrôle de la contamination d’une population. Elle touche des domaines
scientifiques très variés comme la Géolocalisation et Navigation par un Système de
Satellites (GNSS), dont dépend de plus en plus notre économie. Les experts s’accordent
à dire que 30% du produit intérieur brut dépendra en partie des GNSS d’ici 2030, contre
10% aujourd’hui.

La géolocalisation d’un objet fait référence aux coordonnées (latitude, longitude), c’est-
à-dire à la position de l’objet sur la surface de la Terre. Parfois, le mot positionnement
est plutôt employé lorsqu’il s’agit d’identifier l’emplacement d’un objet dans un espace
particulier tel qu’un téléphone portable dans un centre commercial, ou un robot dans
un bâtiment. Dans cette thèse, nous parlerons de géolocalisation lorsqu’il s’agit d’une
localisation à l’échelle globale, alors que le terme positionnement est généralement utilisé
dans des espaces intérieurs et/ou confinés.

Les méthodes radiofréquences sont utilisées pour la plupart des systèmes de géolocal-
isation. Cette famille de méthodes, également appelée méthodes de radiolocalisation,
utilise les caractéristiques des ondes radio reçues pour prédire la localisation d’un objet
émetteur. Les exemples sont nombreux. Le très répandu Global Positioning System
(GPS) (voir Figure 1.1) est basé sur l’estimation du temps d’arrivée (TOA) d’un signal
à un satellite. Lorsque l’heure de transmission, la vitesse de propagation et la position
du satellite sont connues, le TOA conduit à un très bon estimateur de la distance entre
l’objet émetteur et le satellite. La combinaison de plusieurs TOA conduit à l’estimation
de la position de l’émetteur. L’utilisation de plusieurs récepteurs pour localiser un
émetteur est connue sous le nom de multilatération. (illustré dans Figure 1.2). En télé-
phonie cellulaire, la radiolocalisation est effectuée directement par les stations de base
(BS) du réseau cellulaire au moyen d’une ou plusieurs des caractéristiques suivantes :

• Le TOA (ou TDoA). Contrairement au GPS, ces quantités sont estimées par
rapport à la station de base du réseau cellulaire.

• L’angle d’arrivée (AOA) correspond à la direction depuis laquelle le signal est reçu.
Une façon pratique de déterminer l’AOA est de considérer que cette direction
est celle où l’intensité du signal est maximale pendant une rotation complète de
la station de base. En combinant plusieurs AOA, on obtient l’estimation de la
position souhaitée.

• Le RSSI présente un grand intérêt dans cette thèse. Il correspond à la puissance
du signal reçu moins la puissance du signal émis. Il donne un rendement à un sys-
tème de télémétrie au moyen du modèle d’affaiblissement de chemin Log-distance
décrit dans Section 1.3.2 ou par des méthodes basées sur les empreintes digitales
(lorsque les différents lieux d’émission sont connus pour présenter des puissances
très différentes signatures"). Ces méthodes sont étudiées en détail dans Chapter 4.
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B.2.2 Géolocalisation basée sur le réseau

Cette thèse se concentre sur la géolocalisation basée sur le réseau. Ces méthodes utilis-
ent uniquement l’infrastructure du réseau. Parmi toutes les méthodes de géolocalisa-
tion décrites, ces dernières sont les moins chères et nécessitent le moins d’énergie. Les
méthodes de ce type ont rencontré un énorme succès avec l’apparition de l’Internet des
objets (IoT) à la fin des années 1990. Essentiellement, le concept de l’IdO consiste à
fournir à tout objet la capacité de transférer des données sur un réseau sans nécessiter
d’interaction entre humains ou entre humains et ordinateurs. Aujourd’hui, l’ensemble
des applications des dispositifs IoT est spectaculaire : maisons intelligentes (Samuel,
2016), applications médicales et de santé (Catarinucci et al., 2015), agriculture (Mekala
and Viswanathan, 2017) ou même systèmes de transport (Zhou et al., 2012).

Nous passons ensuite à deux exemples concrets de géolocalisation rencontrés dans la
pratique.

Logistique Le suivi des cargaisons et des biens via le réseau peut également présenter de
grands avantages pour les systèmes de transport. On peut envoyer des alertes spécifiques
lorsque des événements remarquables se produisent, comme l’arrivée dans un entrepôt.

Ecologie Il a ensuite été affirmé que l’IdO allait révolutionner le domaine de l’écologie.
Tout d’abord, en termes de gestion de l’énergie : la connectivité d’un nombre import-
ant d’appareils consommateurs d’énergie (lampes, moteurs, pompes, etc.) peut leur
permettre de communiquer avec les services publics non seulement pour équilibrer la
production d’électricité mais aussi pour optimiser la consommation d’énergie dans son
ensemble. Deuxièmement, les applications de surveillance environnementale de l’IdO
utilisent des capteurs pour contribuer à la protection de l’environnement en surveillant,
par exemple, la qualité de l’air ou de l’eau. D’autres applications, comme les systèmes
de prévision des tremblements de terre ou des tsunamis, peuvent également être utilisées
pour fournir une aide plus efficace.

Une idée naturelle est d’appliquer les méthodes de radiolocalisation décrites ci-dessus
au réseau Sigfox. Comme indiqué précédemment, les performances de ces méthodes
dépendent fortement de l’infrastructure du réseau. Sans entrer dans les détails ici, nous
proposons de donner quelques éléments qui compromettent leur utilisation et motivent
donc les travaux ultérieurs. Tout d’abord, les stations de base Sigfox manquent de
directivité et ne peuvent donc pas discriminer les directions des ondes incidentes. Par
conséquent, les méthodes basées sur l’AOA ne sont pas pertinentes ici. De plus, Sigfox
base ses communications sur la technologie dite Ultra-Narrow-Band (UNB) qui permet
d’atteindre à la fois une longue portée et une autonomie prolongée. Ainsi, chaque signal
possède une bande de fréquence d’une largeur de 100 Hz dans la bande de fréquence sans
licence (allant de 868.0 à 868.6 MHz). Cette bande est populaire car elle présente un
bon équilibre entre la portée, la pénétration des bâtiments et la possibilité d’utiliser de
petites antennes. Néanmoins, il est bien connu que les performances des méthodes tem-
porelles utilisant l’estimation du TOA ou du TDoA dépendent fortement de la largeur
de bande du signal. La limite inférieure de Cramér-Rao (CRLB) sur les estimateurs
TOA est donc souvent employée pour quantifier cet effet. Elle stipule que la vari-
ance minimale de tout estimateur sans biais du TOA est inversement proportionnelle
à B3 × SNR, où B représente la largeur de bande et Signal to Noise Ratio (SNR) est
le rapport signal/bruit bien connu. Cette limite est donc défavorable à l’utilisation de
telles approches et conduit par exemple à un écart-type des estimateurs de portée au
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moins égal à 20 km avec l’infrastructure Sigfox US. Néanmoins, elle constitue égale-
ment une première valeur de référence à laquelle doivent être comparées les méthodes
de géolocalisation que nous proposons dans la suite. On montre (Boucher and Hassab,
1981) qu’un autre élément défavorable est qu’elles sont particulièrement gourmandes
en mémoire puisque leurs performances sont directement liées au choix de l’intervalle
d’échantillonnage.

B.2.3 Géolocalisation basée sur le RSSI

Le RSSI est une caractéristique pertinente pour la géolocalisation. Il est suffisamment
explicatif sans constituer une charge mémoire. La littérature est extrêmement vaste
et les méthodes sont souvent classée sous deux catégories: les méthodes “range-based”
et les méthodes “free range”. La première catégorie de méthodes utilise des mesures
pour prédire la distance entre émetteurs et récepteurs (les coordonnées de la station de
base sont connues dans ce cas). La combinaison de plusieurs portées estimées permet
d’estimer la position de l’émetteur au moyen de certaines méthodes telles que la tri-
latération : (Thomas and Ros, 2005). Il y a donc toujours deux phases : une phase de
télémétrie et une phase de localisation. En revanche, la deuxième famille de méthodes
ne base pas ses prédictions sur l’estimation de la distance. Un exemple simple d’une
telle méthode serait d’estimer la position comme le barycentre de la station de base
réceptrice. Dans la mesure où le RSSI est la seule mesure dont nous disposons, les
méthodes basées sur la distance montrent rapidement leurs limites (Chandrasekaran
et al., 2009). En effet, elles reposent essentiellement sur le modèle log-distance path loss
dont le manque de réalisme est mis en évidence dans Section 1.3.2.

B.3 Plan de la thèse et contributions

Dans cette thèse, nous proposons une autre classification des méthodes de géolocal-
isation basées sur le RSSI : les méthodes basées sur la vraisemblance et les méthodes
basées sur les fingerprints. Les premières, qui englobent les méthodes “range based”,
consistent à apprendre (sur un jeu de données) un modèle pour le RSSI d’une station
de base (notée X dans la suite) étant donné la position (notée Y dans la suite). Cette
phase d’apprentissage est également appelée phase de calibrage dans la littérature. Une
fois que ce modèle a été appris, on peut prédire la position de l’émetteur comme étant
celle qui correspond au mieux au RSSI mesuré. Les secondes sont les méthodes basées
sur les “fingerprints”. Ces derniers font directement correspondre le RSSI à la position
au moyen d’une fonction qui a été préalablement apprise sur un ensemble de données.

Les récentes avancées de l’apprentissage automatique et ses succès dans un large éventail
de domaines ont poussé la communauté IoT à appliquer ces méthodes à la géolocalisation
basée sur le RSSI. Présentons maintenant les contributions que nous avons développées
pour répondre à cette problématique.

• Nous proposons d’abord des améliorations des méthodes utilisées pour le problème
de géolocalisation basé sur le RSSI. La première technique proposée repose sur
un estimateur semi-paramétrique de Nadaraya-Watson de la vraisemblance, suivi
d’un estimateur du maximum a posteriori de la position de l’objet. La seconde
technique consiste à apprendre une distance, construite au moyen d’un régresseur
de type Gradient boosting : un algorithme de k-plus proches voisins est alors
utilisé pour estimer la position. Les méthodes proposées sont comparées sur deux
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jeux de données provenant du réseau Sigfox, et sur un jeu de données intérieur
provenant d’un bâtiment de trois étages. Les expériences démontrent l’intérêt des
méthodes proposées, tant en termes de performance d’estimation de la position,
que de capacité à établir des régions de confiance sur nos estimées. Les résultats
montrent également que la qualité de la prédiction est fortement liée à la distance
choisie sur l’espace RSSI. Le problème de l’apprentissage métrique est donc une
question fondamentale pour améliorer la technique de géolocalisation basée sur le
RSSI.

• Deuxièmement, nous introduisons un objectif original pour apprendre une simil-
arité entre des paires de points de données. Dans ce manuscrit, nous proposons
de construire la similarité en minimisant directement l’erreur de régression d’un
estimateur. Nous obtenons ainsi un objectif d’apprentissage orienté vers la tâche.
Pour le minimiser, la similarité est choisie comme une somme d’arbres de régres-
sion et est apprise séquentiellement au moyen d’une version modifiée de XGBoost
détaillée dans ce document. Cette méthode bénéficie des qualités bien connues
de XGBoost, telles que son efficacité et ses capacités de mise à l’échelle. De plus,
notre similarité, bien que non-paramétrique, ne nécessite pas un stockage de la
taille du jeu de données. Enfin, les expériences montrent que notre modèle sur-
passe les autres modèles de régression à noyau sur plusieurs jeux de données de
référence.

• L’indépendance conditionnelle a été largement utilisée dans la littérature sur la
géolocalisation basée sur le RSSI afin de réduire la complexité des modèles stat-
istiques tels que ceux présentés dans ce manuscrit. Tester l’IC est donc essentiel
pour la performance de tels estimateurs. Nous introduisons la fonction de cop-
ule partielle pondérée pour tester l’indépendance conditionnelle. La procédure de
test proposée résulte des ingrédients suivants : (i) la statistique de test est une
transformation explicite de Cramér-von Mises de la copule partielle pondérée, (ii)
les régions de rejet sont calculées à l’aide d’une procédure bootstrap qui imite
l’indépendance conditionnelle en générant des échantillons. Sous CI, la faible con-
vergence du processus de la copule partielle pondérée est établie et confirme la
solidité de notre approche. Les expériences démontrent enfin la compétitivité de
notre approche par rapport aux méthodes récentes de l’état de l’art.
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Titre : Apprentissage statistique pour la géolocalisation d’objets connectés

Mots clés : Apprentissage de Similarité, Géolocalisation par le réseau, Indépendance Conditionnelle,
Méthodes de Boosting

Résumé : La géolocalisation par le réseau a suscité
beaucoup d’attention ces dernières années. Dans un
contexte où les signaux sont à bandes étroites, par
exemple pour l’Internet des Objets, les techniques de
géolocalisation basées sur le RSSI se distinguent
Nous proposons tout d’abord quelques méthodes
pour le problème de la géolocalisation basée sur le
RSSI. En particulier, nous introduisons un estima-
teur semi-paramétrique de Nadaraya-Watson de la
vraisemblance, suivi d’un estimateur de maximum à
postériori de la position de l’objet. Les expériences
démontrent l’intérêt de la méthode proposée en
termes de performance d’estimation. Une approche
alternative est donnée par une régression de type
k-NN qui utilise une métrique appropriée entre les
vecteurs de RSSI. Nous nous intéressons donc au
problème de l’apprentissage de similarité et nous
introduisons un objectif spécifiquemet choisi pour
améliorer la géolocalisation. La fonction de similarité
est choisie comme une somme d’arbres de régression
et est apprise séquentiellement au moyen d’une ver-

sion modifiée de l’algorithme eXtreme Gradient Boos-
ting (XGBoost).
La dernière partie de la thèse est consacrée à l’intro-
duction d’un test d’hypothèse d’indépendance condi-
tionnelle (IC). En effet, pour de nombreux estima-
teurs, les composantes des vecteurs RSSI sont sup-
posées indépendantes sachant la position. La contri-
bution est cependant fournie dans un cadre statis-
tique général. Nous introduisons la fonction de co-
pule partielle pondérée pour tester l’indépendance
conditionnelle. La procédure de test proposée résulte
des éléments suivants : (i) la statistique de test est
une transformation de Cramér-von Mises de la co-
pule partielle pondérée, (ii) les régions de rejet sont
calculées à l’aide d’une procédure de ”boot-strap” qui
imite l’indépendance conditionnelle en générant des
échantillons. Sous l’hypothèse nulle, la faible conver-
gence du processus de la copule partielle pondérée
est établie et confirme le bien-fondé de notre ap-
proche.
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Abstract : The Network-Based Geolocation has rai-
sed a great deal of attention in the context of the Inter-
net of Things. In many situations, connected objects
with low-consumption should be geolocated without
the use of GPS or GSM. Geolocation techniques ba-
sed on the Received Signal Strength Indicator (RSSI)
stands out, because other location techniques may fail
in the context of urban environments and/or narrow
band signals.
First, we propose some methods for the RSSI-based
geolocation problem. The observation is a vector of
RSSI received at the various base stations. In particu-
lar, we introduce a semi-parametric Nadaraya-Watson
estimator of the likelihood, followed by a maximum
a posteriori estimator of the object’s position. Ex-
periments demonstrate the interest of the proposed
method, both in terms of location estimation perfor-
mance, and ability to build radio maps. An alternative
approach is given by a k-nearest neighbors regressor
which uses a suitable metric between RSSI vectors.
Results also show that the quality of the prediction is
highly related to the chosen metric. Therefore, we turn
our attention to the metric learning problem. We intro-

duce an original task-driven objective for learning a si-
milarity between pairs of data points. The similarity is
chosen as a sum of regression trees and is sequen-
tially learned by means of a modified version of the
so-called eXtreme Gradient Boosting algorithm (XG-
Boost).
The last part of the thesis is devoted to the introduc-
tion of a Conditional Independence (CI) hypothesis
test. The motivation is related to the fact that for many
estimators, the components of the RSSI vectors are
assumed independent given the position. The contri-
bution is however provided in a general statistical fra-
mework. We introduce the weighted partial copula
function for testing conditional independence. The
proposed test procedure results from the following in-
gredients : (i) the test statistic is an explicit Cramér-
von Mises transformation of the weighted partial co-
pula, (ii) the regions of rejection are computed using a
boot-strap procedure which mimics conditional inde-
pendence by generating samples. Under the null hy-
pothesis, the weak convergence of the weighted par-
tial copula process is established and endorses the
soundness of our approach.
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