MTL: Multi-Task Learning STL: Sequential Transfer Learning

Keywords: Apprentissage par transfert, Adaptation aux domaines, réseaux de neurones, Langues et domaines peu dotés, Étiquetage de séquences ii Transfer Learning, Domain Adaptation, Neural Networks, Low-resource languages and domains, Sequence labelling iii AI: Artificial Intelligence Dependency Parsing HRLs: High-Resource Languages LRLs: Low-Resource Languages Morpho-Syntactic Tagging MSDs: Morpho-Syntactic Descriptions NLP: Natural Language Processing NMT: Neural Machine Part-Of-Speech tagging Recurrent Neural Networks Convolutional Neural Networks FCL: Fully Connected Layer MLP: Milti-Layer Perceptron MuTSPAd: Multi-Task Supervised Pre-training

Vilnat, Alexandre Allauzen and Zied Bouraoui

Context

Human language is fascinating; it expresses thoughts for various aims, e.g. information, questions, orders, etc. According to Ethnologue, 1 the online encyclopedia of language, there are 7,139 distinct languages spoken in the world. The list includes formal languages, such as English, Chinese, Arabic, etc. but also their varieties, such as Arabic dialects (e.g. Algerian and Egyptian) or Chinese dialects (e.g. Mandarin and Gan).

Natural Language Processing (NLP) is a field of Artificial Intelligence (AI) that allows humancomputer communication. Precisely, NLP aims to produce tools to understand (Natural Language Understanding) and generate (Natural Language Generation) human language. Various NLP applications have been developed to facilitate humans life. For instance, machine translation (e.g. Google Translate [385], DeepL, etc), Dialogue Systems (e.g. Siri, Alexa, etc.), text summarization [START_REF] See | Get To The Point: Summarization with Pointer-Generator Networks[END_REF][START_REF] Mnasri | Résumé automatique multi-document dynamique[END_REF]206], fraud detection [START_REF] Goel | Qualitative Information in Annual Reports & the Detection of Corporate Fraud: A Natural Language Processing Perspective[END_REF]94] and information extraction from electronic health records [286,106].

Historically, the interest in building NLP tools to imitate humans brain has passed through several milestones and dates back to the 50s. First, Alan Turing's Thinking Machine [361], an "imitation game that investigates whether machines can think". It consists in a real-time artificial conversational agent (chatbot) that attempts to imitate human writing sufficiently well that the human judge (interlocutor) is unable to distinguish reliably between the chatbot and the human, based solely on the conversational content. Later, Noam Chomsky's seminal work, Syntactic Structures [61], have revolutionised linguistics by constructing a formalised general theory to produce a deep-level linguistic structure of sentences in a format that is usable by computers.

Up to the 80s, most NLP systems were rule-based (a symbolic approach), i.e. founded on sets of rules that are hand-written by experts. For instance, the Brill part-of-speech tagger [43]; ELIZA, the rule-based artificial psychotherapist [376] and SHRDLU, the English natural language understanding program [382]. Such methods work extremely well but rely heavily on hand-crafted features and domain-specific resources (morphological, orthographic and lexical features as well as external resources such as gazetteers or dictionaries). However, designing such domain-specific knowledge that captures all the possible scenarios is time-consuming and a After years of neglect, there is a raising awareness (by researchers, companies, international organisations and governments) about the opportunities of developing NLP technologies for LRLs. This emergent interest is mainly for social-good reasons, e.g. emergency response to natural disasters like Haiti earthquake [START_REF] Munro | Crowdsourced translation for emergency response in Haiti: the global collaboration of local knowledge[END_REF]279], identifying outbreaks of diseases like COVID-19 [205], population mental health monitoring [46], etc. This interest has also been through new workshops dedicated for LRLs, like SLTU-CCURL; Joint Workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under-Resourced Languages) [28]. Moreover, international programs like the UNESCO international conference Language Technologies for All (LT4All), 7 aiming to encourage linguistic diversity and multilingualism worldwide.

It should be noted that the increasing attention dedicated to LRLs is in parallel with the AI community interest on the ethical side of AI applications and its possible consequences on society. For instance, the Montreal Declaration of Responsible AI8 promotes ethical and social principles for the development of AI, e.g. equity (reducing inequalities and discrimination based on social, sexual, ethnic, cultural, or religious differences) and inclusion (AI must be inclusive and reflect the diversity of the individuals and groups of the society). Also, Cedric Villani's report, 9 which defines the AI strategy for the French government, highlights the importance of inclusion and ethics principles. Furthermore, the international cooperation PMIA (Partenariat Mondial sur l'Intelligence Artificielle) has been recently launched with a particular interest for responsible AI.

User Generated Content in Social Media: a Low-Resource Domain

Low-resource NLP does not concern only languages, but also domains. There is a wide gap between NLP technologies capabilities for the news domain, i.e. formal language, compared to the long tail of specific domains. Indeed, NLP researchers have focused much of their effort on learning NLP models for the news domain, due to the availability of training data [24].

However, it has been highlighted in many research works that models trained on news fail to work efficiently on out-of-domain data, due to their lack of robustness against domain shifts.

For instance, the accuracy of the Stanford part-of-speech tagger [358] trained on the Wall Street Journal part of Penn Treebank [START_REF] Marcus | Building a large annotated corpus of English: The Penn Treebank[END_REF] falls from 97% on formal English news to 85% accuracy on English Tweets [START_REF] Gimpel | Part-of-speech tagging for Twitter: annotation, features, and experiments[END_REF]. Likewise, Scheible et al. [317] observed a severe accuracy drop of the TreeTagger [START_REF] Schmid | The enriched treetagger system[END_REF] part-of-speech tagger from 97% on German news to 69.6% on early modern German. Similarly, Derczynski et al. [START_REF] Derczynski | Microblog-genre noise and impact on semantic annotation accuracy[END_REF] found that named entity recognition model falls from 89% F1 on the news domain to 41% on the Tweets domain.

Particularly, throughout the few past years, Social Media (SM) platforms have revolutionised inter-individuals, inter-groups, and inter-communities communication [168] and thus have succeeded to attract billions of users in record time, since they were offered an active role on the internet, where they can easily interconnect and generate content in various forms of content: words, pictures, audio, and videos [242]. This rapid growth gave rise to an enormous and plentiful flow of User-Generated-Content (UGC). This content has been proven to be a valuable and reliable source of information for various NLP applications [121], e.g. fact-checking [START_REF] Bondielli | A survey on fake news and rumour detection techniques[END_REF], stance detection [237], trends highlight [140], language identification [START_REF] Sadat | Automatic identification of arabic language varieties and dialects in social media[END_REF], hate speech detection [213,[START_REF] Mossie | Social Media Dark Side Content Detection using Transfer Learning Emphasis on Hate and Conflict[END_REF][START_REF] Gomez | Exploring Hate Speech Detection in Multimodal Publications[END_REF][START_REF] Kiela | The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes[END_REF], public security [START_REF] Amato | Detecting anomalies in Twitter stream for public security issues[END_REF], preventing human trafficking [52,356,45],

or health monitoring such as mental health [72,46]. Besides, it has been shown recently that UGC in social media is an impulse for the emergence of linguistic structures [START_REF] Raviv | The role of social network structure in the emergence of linguistic structure[END_REF].

More importantly, many new scopes dedicated to NLP of LRLs have been created thanks to UGC. Indeed, SM platforms are snowballing among developing countries populations, where they can express and exchange in their native languages (LRLs in most cases) [111]. These forthcoming opportunities have promoted the organisation of multiple regular NLP workshops dedicated to SM content analysis, such as LASM (Workshop on Language Analysis in Social Media) [107], SocialNLP (Workshop on Natural Language Processing for Social Media) [START_REF]Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media[END_REF] and W-NUT (Workshop on Noisy User-generated Text) [START_REF]Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text[END_REF].

As aforementioned, traditional NLP models trained on news are not efficient enough for SM texts (out-of-domain) compared to their performance on news (in-domain) [START_REF] Pinto | Comparing the performance of different NLP toolkits in formal and social media text[END_REF]. This is due to the informal and conversational nature of SM texts [START_REF] Farzindar | Les défis de l'analyse des réseaux sociaux pour le traitement automatique des langues[END_REF] with more similarities in common with spoken language than classical formally written one [101], e.g. the lack of conventional orthography, the noise, linguistic, spelling and grammatical errors, the idiosyncratic style, the use of improper sentence structure and mixed languages, lack of context, inconsistent (or absent) punctuation and capitalisation (which may complicate finding sentence boundaries [307]), 1.3. MOTIVATION acronyms: "laugh out loud"→"lol", "as soon as possible"→"asap", "as far as I know"→"afaik", "rolled on the floor laughing"→"rofl", etc., letters repetition ("heyyyyyy", "NOOO"), slangs (e.g. "gobsmacked", "knackered"), contractions (e.g. "I am not"→"ain't", "I am going to"→"imma", "want to"→"wanna", etc.), use of emoticons or emojis, colloquial expressions. In addition, code-switching (i.e. many languages and dialects are used in the same sentence [18,116]) poses an additional hurdle [START_REF] Sadat | Automatic identification of arabic language varieties and dialects in social media[END_REF]13,[START_REF] Seddah | Building a user-generated content north-african arabizi treebank: Tackling hell[END_REF].

Motivation

Notwithstanding that neural NLP models have succeeded to achieve remarkable results in several well-resourced tasks, languages, and domains such as the news domain, they are limited by their gluttony in terms of annotated data. In addition, given the vast diversity of languages, dialects, domains and tasks in the world, having manually-annotated datasets for each setting is laboured.

Furthermore, these models are often effective only within the domain wherein they were trained, causing difficulties when attempting to generalise to new domains such as the social media domain.

It has been shown in many works in the literature [START_REF] Ringbom | The role of the first language in foreign language learning[END_REF][START_REF] Yu | New perspectives on transfer in second language learning[END_REF][START_REF] Han | Cross-Linguistic Transfer and Second Language Learnability. Universal Grammar and the Initial State of Second Language Learning[END_REF] that, in second language acquisition [118] by humans when learning a second language (L2), the first language (L1) knowledge plays an important role to boost the learning process, by assimilating and subsuming new L2 knowledge into already existing cognitive structures for L1 [352]. Similarly, in artificial neural networks, languages, tasks, varieties, and domains may share some common knowledge about language (e.g. linguistic representations, structural and semantic similarities, etc.). Therefore, relevant knowledge previously learned in a source NLP problem can be exploited to help to solve a new target NLP problem. Hence, the main research question of the present thesis is "How can we best improve the performance of NLP neural models for low-resource domains with small annotated datasets, by exploiting large annotated source datasets from related high-resource source domains?".

To respond to our research question, Transfer Learning (TL) [START_REF] Torrey | Transfer learning. Handbook of research on machine learning applications and trends: algorithms, methods, and techniques[END_REF] is a promising method that has been shown to be efficient for NLP and outperforms the standard supervised learning paradigm, because it takes benefit from the pre-learned knowledge. In addition, it permits to make use of as much supervision as available. The work of this thesis is based on the intuition that SM domain is an informal variety of the news domain. 10 As illustrated in Figure 1.2, in the same Tweet (UGC in Twitter), one can find a part which is formal and the other which is informal. For this, we develop and study the efficiency of different TL techniques to overcome the sparse annotated-data problem in the SM domain by leveraging the huge annotated data from the news domain. Specifically, in this work, we consider the supervised domain adaptation setting, having a large amount of labelled data from a source domain and -additionally -few labelled examples from the target domain.

Main Contributions

As major contributions of this thesis, we particularly refer to the followings: 11• The first contribution is placed within the framework of sequential transfer learning from the source news domain to the target social media domain, which aims to induce an inductive bias to improve the performance of NLP tasks in a low-resource regime. The goal is to better exploit the learned knowledge in a source model, previously trained on the high-resourced news-domain. For this purpose, we propose two simple yet effective methods (§5.3). In the first, the pre-learned knowledge is transferred to the target model in the form of contextual representations. In the second method, the pre-learned knowledge is transferred in the form of pre-trained weights used to initialise the target model's parameters.

• The second contribution is in the continuum of the precedent contribution and aims to shed light on the hidden negative transfer when transferring pretrained weights from the news domain to the social media domain. Indeed, it is known that when the source and target domains are dissimilar, standard transfer learning may fail and hurt the performance by conducting to a negative transfer [START_REF] Michael T Rosenstein | To transfer or not to transfer[END_REF]. We show through quantitative and qualitative analysis that even if sequential transfer learning, proposed in the first contribution, enhances the performance on social media domain, a hidden negative transfer from the news domain to the social media domain may mitigate the final gain brought by transfer learning (§6.2.2).

• The third contribution is with the same objective as the previous one, aiming to spot the limits of the standard sequential transfer learning method. More precisely, through a set of interpretive methods, we investigate how the internal representations (individual neurons) of models pretrained on news domain are updated during fine-tuning on the social media domain (§6.2.3). We find that although capable of adapting to new domains, some 1.5. THESIS OUTLINE pretrained neurons are biased by what they have learnt in the source dataset, thus struggle with learning unusual target-specific patterns, which may explain the observed hidden negative transfer.

• The fourth contribution: Stemming from our analysis, we propose an extension of the standard adaptation scheme (fine-tuning) of sequential transfer learning. To do so, we propose to augment the pretrained model with randomly initialised layers. Specifically, we propose a method that takes benefit from both worlds, supervised learning from scratch and transfer learning, without their drawbacks. Our approach is composed of three modules:

(1) Augmenting the source-model (set of pre-trained neurons) with a random branch composed of randomly initialised neurons, and jointly learn them; (2) Normalising the outputs of both branches to balance their different behaviours. (3) Applying attention learnable weights on both branches predictors to let the network learn which of random or pre-trained one is better for every class (§6.3).

• The fifth contribution is an extension of our precedent contributions where we performed mono-source mono-target transfer learning, i.e. both pre-training and fine-tuning are performed on a single task. Here, we propose a multi-source multi-target transfer learning approach to overcome the rare annotated data problem in social media. Our approach consists in learning a multi-task transferable model which leverages diverse linguistic properties from multiple supervised NLP tasks from the news source domain, further fine-tuned on multiple tasks from the social media target domain (§7.2).

Thesis Outline

This manuscript is organised as follow. Chapter 2 and chapter 3 discuss the state-of-the-art with regard to our two research directions: Transfer learning and neural NLP models interpretability, respectively. For each, we propose a categorisation of the current works of the literature.

Chapter 4 provides an overview of the NLP tasks and datasets involved in this thesis as well as evaluation metrics. Then, the following chapters describe the different contributions that we have made during the course of this thesis. Chapter 5 describes our start-up contributions to overcome the problem of the lack of annotated data in low-resource domains and languages. Precisely, two sequential transfer learning approaches are discussed: "transfer of supervisedly-pretrained contextual representations" and "transfer of pretrained models". Chapter 6 describes three of our contributions. First, it sheds light on the hidden negative transfer arising when transferring from the news domain to the social media domain. Second, an interpretive analysis of individual pre-trained neurons behaviours is performed in different settings, finding that pretrained neurons are biased by what they have learnt in the source-dataset. Third, we propose a new adaptation scheme, PretRand, to overcome these issues. Chapter 7 presents a new approach, MuTSPad, a multi-source multi-target transfer learning approach to overcome the rare annotated data problem in the social media by learning a multi-task transferable model, which leverages various linguistic properties from multiple supervised NLP tasks. Chapter 8 finally summarises our findings and contributions and provides some perspective research directions.

2 | State-of-the-art: Transfer Learning

Introduction

In this thesis we focus on the Social Media (SM) domain. Ideally, we have at our disposal enough annotated SM texts to train NLP models dedicated for the SM domain. However, this last is actually still lacking in terms of annotated data. In the following, we present three common approaches that were adopted in the literature to deal with this issue:

• Normalisation is a prominent approach to deal with the informal nature of the User-Generated-Content (UGC) in SM [START_REF] Han | Lexical normalisation of short text messages: Makn sens a# twitter[END_REF][START_REF] Han | Automatically constructing a normalisation dictionary for microblogs[END_REF]145,363]. It consists in mapping SM (informal) texts into formal texts by reducing the noise (orthographic and syntactical anomalies).

For instance, ideally, "imma" is normalised into "I'm going to", "Lol" into "lough out loud", "u'r" into "you are", "gimme" into "give me", "OMG" into "oh my god", repetitions like "happpyy", "noooo" and "hahahaha" into "happy", "no" and "haha". There are many approaches in the literature to perform normalisation. We can cite rule-based approaches [START_REF] Md | IITP: Hybrid approach for text normalization in Twitter[END_REF]212,41,100,[START_REF] Baldwin | An in-depth analysis of the effect of text normalization in social media[END_REF] and noisy-channel methods [START_REF] Cook | An unsupervised model for text message normalization[END_REF]. Also, machine translation based approaches view the task of normalisation as a translation problem from the SM language to the formal language; e.g. using phrase-based statistical MT [START_REF] Aw | A phrase-based statistical model for SMS text normalization[END_REF] or using a character-level machine translation model trained on a parallel corpus [START_REF] Pennell | A character-level machine translation approach for normalization of sms abbreviations[END_REF]. However, multiple works showed that the efficacy of normalisation for SM texts is limited [START_REF] Derczynski | Microblog-genre noise and impact on semantic annotation accuracy[END_REF][START_REF] Dat Quoc Nguyen | BERTweet: A pre-trained language model for English Tweets[END_REF].

Indeed, in addition to be a difficult and an intensive task, normalisation is not flexible over time since SM language is constantly changing [102]. Also, normalisation may conceal the meaning of the original text [START_REF] Matthijs Van Der Goot | Normalization and Parsing Algorithms for Uncertain Input[END_REF], e.g. non-standard character repetitions and capitalisation may have a semantic meaning, "happpyyyy" could mean "very happy", which may hide important signals for tasks like sentiment analysis.

• Automatic Annotation consists of tagging unlabelled SM data using off-the-shelf models (trained on news domain). The automatically annotated examples are subsequently used to train a new model for the SM domain. Generally, a voting strategy is used to select the "best" automatically annotated examples, i.e. a sentence is added to the training set if all models assign the same predictions to it. Horsmann & Zesch [START_REF] Horsmann | Effectiveness of domain adaptation approaches for social media POS tagging[END_REF] experimented this voting approach on the predictions of ClearNLP [START_REF] Jinho | Fast and robust part-of-speech tagging using dynamic model selection[END_REF] and OpenNLP Part-Of-Speech (POS) taggers. Similarly, Derczynski et al. [START_REF] Derczynski | Twitter part-of-speech tagging for all: Overcoming sparse and noisy data[END_REF] performed a vote constrained bootstrapping [128] on unlabelled Tweets to increase the amounts of training examples for Tweets POS tagging.

Besides, crowd-sourcing [113] has also been used to obtain large manually annotated SM datasets, at low cost but with lower quality since examples are not annotated by experts but by online users. However, Horbach et al. [151] showed that extending the training set with automatically annotated datasets leads to small improvement of POS tagging performance on German SM texts. In contrast, a much bigger improvement of performance can be obtained by using small amounts of manually annotated from the SM domain.

• Mixed Training is used when small annotated data-sets from the SM domain are available. Transfer Learning (TL) is an approach that allows handling the problem of the lack of annotated data, whereby relevant knowledge previously learned in a source problem is leveraged to help in solving a new target problem [START_REF] Sinno Jialin Pan | A survey on transfer learning[END_REF]. TL relies on a model learned on a source-task with sufficient data, further adapted to the target-task of interest.

FORMALISATION

TL is similar to the natural process of learning, which is a sequential long-life developmental process [50]. In simple words, when humans tackle new problems, they make use of what they have learned before from past related problems. Consider the example of two people who want to learn Spanish. One person is native in the French language, and the other person is native Indian. Considering the high similarities between French and English languages, the person already speaking French will be able to learn Spanish more rapidly.

Here, we overview works and approaches related to transfer learning for NLP with a focus on neural transfer learning. Note that transfer learning is a broad topic; our survey is necessarily incomplete. We try nevertheless to cover major lines related to the contributions of this thesis.

The remainder of the following sub-sections is organised as follows. We start by presenting the formalisation of the transfer learning problem (§2.2). Then, we propose a taxonomy of transfer learning approaches and techniques (§2.3) based on three criteria: What to transfer? (§2.4); How to Transfer? (§2.5); and Why transfer? (§2.6). Finally, we wrap up by summarising the proposed categorisation of TL approaches and discussing the position of our work (§2.7).

Formalisation

Let us consider a domain D = {X , P (X)} consisting of two components: 1 the feature space X and the marginal probability distribution P (X), where X = {x 1 , x 2 , ..., x n } ∈ X . For instance, for a sentiment analysis task, X is the space of all document representations and X is the random variable associated with the sample of documents used for training.

Let us consider a task T = {Y, P (Y), f }, where Y is the label space, P (Y) is the prior distribution, and f is the predictive function that transforms inputs to outputs: f : X → Y. If we resume the sentiment analysis task, Y is the set of all labels, e.g. it can be Y = {positive, negative}.

In a supervised training paradigm, f is learned from n training examples: {(x i , y i) ∈ X × Y : i ∈ (1 , ..., n)}. Therefore, the predictive function f corresponds to the joint conditional probability P (Y |X).

In a transfer learning scenario, we have a source domain D S = {X S , P S (X S)}, a source task T S = {Y S , P s (Y S), f S }, a target domain D T = {X t , P T (X T)}, and a target task T T = {Y T , P T (X T), f T }, where X S = {x S 1 , x S 2 , ..., x S n S } ∈ X S , X T = {x T 1 , x T 2 , ..., x T n t } ∈ X T and n s >> n t . The aim behind using transfer learning is to improve the learning of the predictive target function f T by leveraging the knowledge gained from D S and T S . Generally, in a transfer learning scheme, labelled training examples from the source domain D S = {(x S i , y S i) ∈ X S × Y S : i ∈ (1 , ..., n S)} are abundant. Concerning target domain, either a small number of labelled target examples D T,l = {(x T,l i , y T,l i) ∈ X T × Y T : i ∈ (1 , ..., n T ,l)}, where n S >> n T , or a large number of unlabelled target examples D T,u = {(x T,u i) ∈ X T : i ∈ (1 , ..., n T ,u)} are assumed to be available.

From the above definitions, five scenarios of dissimilarities between source and target domains arise:

1. X S = X T : The feature spaces between the source and target domains are different. For sentiment analysis, it means that the documents samples of source and target documents do not share the same vocabulary, e.g. different languages, dialects or language varieties like user-generated texts in social media.

2. P (X S) = P (X T): The marginal distributions in the feature spaces are different between the source and the target domains. For sentiment analysis, it means that source and target documents discuss different topics (cars, movies, politics, etc.) and thus the frequency of the used words may differ. 3. Y S = Y T : A mismatch between the class spaces of target and source domains. For sentiment analysis, for instance, we can be confronted to a source label space Y S = {positive, negative}, and a more fine-grained target label space Y T = {positive, neutral, negative}.

P (Y S) = P (Y T):

The prior distributions of the source and target tasks are different, which is generally due to a class imbalance between the source and target domains. For instance, in the source domain, the class positive can be a majority in the source domain but a minority in the target domain.

P (Y S |X S) = P (Y T |X T):

The conditional probability distributions are different. For sentiment analysis, an example is when a particular word or expression yields a different sentiment classification; positive sentiment in the source domain and negative sentiment in the target domain. For instance, "the word small can have a positive meaning if describing a cell phone but a bad meaning if describing a hotel room" [START_REF] Weiss | A survey of transfer learning[END_REF] and "the word soft may evoke positive connotations in many contexts, but calling a hockey player soft would have a negative connotation" [START_REF] William L Hamilton | Inducing domain-specific sentiment lexicons from unlabeled corpora[END_REF].

Taxonomy

The taxonomy of transfer learning was studied in multiple research works [351,[START_REF] Zhuang | A comprehensive survey on transfer learning[END_REF][START_REF] Sinno Jialin Pan | A survey on transfer learning[END_REF][START_REF] Weiss | A survey of transfer learning[END_REF] and for different areas, e.g. computer vision [334], NLP [START_REF] Ruder | Neural Transfer Learning for Natural Language Processing[END_REF], speech recognition [START_REF] Meyer | Multi-Task and Transfer Learning in Low-Resource Speech Recognition[END_REF], and multi-modal applications [110].

The survey of Pan et al. [START_REF] Sinno Jialin Pan | A survey on transfer learning[END_REF] is the most widespread since it was the first paper providing a general formal definition of transfer learning with an extensive taxonomy that includes several domains. Pan et al. categorise transfer learning approaches under three sub-settings; according to the availability of labelled data in the target domain: 1) Inductive transfer learning: when labelled 2. 4. WHAT TO TRANSFER? data are available in the target domain and T S = T T . 2) Transductive transfer learning: when labelled data are only available in the source domain and T S = T T . 3) Unsupervised Transfer Learning: when labelled data are not available in both source and target domain. Weiss et al. [START_REF] Weiss | A survey of transfer learning[END_REF] devise transfer learning settings into two categories. 1) Heterogeneous transfer learning is the case where X S = X T , i.e. the feature spaces between the source and target domains are different. Alternately, 2) homogeneous transfer learning is the case where X S = X T . Ruder [START_REF] Ruder | Neural Transfer Learning for Natural Language Processing[END_REF] provides an overview of the literature of transfer learning in general with a focus on NLP Based on the former categorisations, we propose a three-dimensional categorisation of transfer learning in NLP; each answers a specific question:

1. What to transfer? asks which type of knowledge is transferred from the source domain to the target domain.

2. How to transfer? discusses the algorithms and methods used to transfer each type of knowledge. Note that each type of transferred knowledge has its own methods and algorithms.

3. Why transfer? discusses the different research objectives behind transfer learning from source to target domains.

What to Transfer?

Here we classify transfer learning approaches according to the type of the transferred knowledge.

We distinguish three categories:

Transfer of Linguistic Annotations

Cross-lingual projection of linguistic annotations [START_REF] Yarowsky | Inducing multilingual text analysis tools via robust projection across aligned corpora[END_REF] allows an automatic generation of linguistic annotations for low-resource languages. Precisely, the direct naive projection method consists in projecting annotations from a high-resource language to a low-resource language through bilingual alignments from parallel corpora. Then, the automatically annotated target data are used to train the target model. 2Parallel corpora are made of pairs of translated documents. In simple words, a parallel corpus between two or more languages is composed of an original text in a particular language and its translation to the remaining languages [START_REF] Somers | Anglo Indian Workshop "Language Engineering for South Asian Languages[END_REF]. For instance, European Parliament transactions (EuroParl) [START_REF] Koehn | Europarl: A parallel corpus for statistical machine translation[END_REF] contain parallel corpora between 11 European languages.

Bilingual alignments are constructed from parallel corpora and consist of links that correspond to a translation relation between portions of text from a pair of documents. The most common levels of alignment are word-level alignments [368,[START_REF] Semmar | Using a Hybrid Word Alignment Approach for Automatic Construction and Updating of Arabic to French Lexicons[END_REF]309,308,310,311], multi-word-level alignments [START_REF] Semmar | A hybrid word alignment approach to improve translation lexicons with compound words and idiomatic expressions[END_REF]37,[START_REF] Marchand | A Hybrid Multi-Word Terms Alignment Approach Using Word Co-occurrence with a Bilingual Lexicon[END_REF]39,[START_REF] Bouamor | Automatic Construction of a MultiWord Expressions Bilingual Lexicon: A Statistical Machine Translation Evaluation Perspective[END_REF]40,[START_REF] Semmar | Building Multiword Expressions Bilingual Lexicons for Domain Adaptation of an Example-Based Machine Translation System[END_REF]323,[START_REF] Semmar | Extracting and aligning multiword expressions from parallel corpora. Representation and parsing of multiword expressions[END_REF] English and the target language is French. Source: [START_REF] Zennaki | Construction automatique d'outils et de ressources linguistiques à partir de corpus parallèles[END_REF].

An example of part-of-speech annotations projection from English to French is illustrated in Figure 2.2. First, a word-level alignment is performed between the two documents. Then, the source text is automatically annotated using the available tools for the source language. Finally, the annotations of English words are transferred to French words that are linked with them. For instance, the PRON (pronoun) tags from English words "I" and "you" are transferred onto the French translations "Je" and "vous".

Annotations projection has been successfully applied on multiple NLP tasks, like part-ofspeech tagging [3], syntactic chunking [START_REF] Yarowsky | Inducing multilingual text analysis tools via robust projection across aligned corpora[END_REF], dependency parsing [START_REF] Hwa | Bootstrapping parsers via syntactic projection across parallel texts[END_REF]179], named entity recognition [START_REF] Mayhew | Cheap translation for cross-lingual named entity recognition[END_REF] and semantic role labelling [START_REF] Akbik | Generating high quality proposition banks for multilingual semantic role labeling[END_REF].

This method helps to get annotations cost-effectively. However, despite its popularity, the naive approach still suffers from many limitations. As illustrated in the example, this method of annotations projection does not always provide a fully annotated sentence in the target language. In addition, it may lead to false annotations due to incorrect words alignments, e.g. "la" is wrongly aligned with "President", which leads to wrongly project the annotation of "President" to "la". The drawbacks of this method have been discussed in many works in 2.4. WHAT TO TRANSFER? the literature [START_REF] Padó | Cross-lingual annotation projection models for role-semantic information[END_REF][START_REF] Van Der Plas | Global Methods for Crosslingual Semantic Role and Predicate Labelling[END_REF][START_REF] Akbik | Generating high quality proposition banks for multilingual semantic role labeling[END_REF][START_REF] Zennaki | Utilisation des réseaux de neurones récurrents pour la projection interlingue d'étiquettes morpho-syntaxiques à partir d'un corpus parallèle[END_REF]405,[START_REF] Zennaki | Projection Interlingue d'Étiquettes pour l'Annotation Sémantique Non Supervisée[END_REF]407,[START_REF] Zennaki | A neural approach for inducing multilingual resources and natural language processing tools for low-resource languages[END_REF], especially when the source and target languages are syntactically and morphologically different, and for multi-words expressions [328,[START_REF] Semmar | Building Multiword Expressions Bilingual Lexicons for Domain Adaptation of an Example-Based Machine Translation System[END_REF]323,[START_REF] Ramisch | Computational treatment of multiword expressions[END_REF][START_REF] Semmar | Extracting and aligning multiword expressions from parallel corpora. Representation and parsing of multiword expressions[END_REF]. Indeed, the underlying assumption in annotations projection is a 1-to-1 correspondence of word sequences between language pairs [19], which is unrealistic even for languages from the same family. Since then, many improvements have been proposed to overcome these limitations. We can cite the work of Täckström et al. [346] who improved POS tags projections by adding external information sources such as dictionaries. In the same vein, Wisniewski et al. [383] exploited crowd-sourced constraints, and Wang & Manning [START_REF] Wang | Cross-lingual projected expectation regularization for weakly supervised learning[END_REF] proposed to integrate softer constraints using expectation regularisation techniques. On another aspect, Zennaki et al. [START_REF] Zennaki | A neural approach for inducing multilingual resources and natural language processing tools for low-resource languages[END_REF] proposed to extract a common (multilingual) and agnostic words representation from parallel or multi-parallel corpus between a resource-rich language and one or many target (potentially under-resourced) language(s).

When parallel text is available, "annotations projection is a reasonable first choice" [273].

Still, the main limitation of this method is its dependence to parallel corpora which are not available for all low-resource languages. In addition, it is limited to the cross-lingual setting of transfer learning [START_REF] Yang | Transfer learning for sequence tagging with hierarchical recurrent networks[END_REF] and thus not applicable to transfer between domains. It is not either applicable to transfer between tasks with different tag-sets, since this method assumes that Y S = Y T or at least a 1-1 mapping between Y S and Y T is possible.

A related method to transfer annotations from a resource-rich language to a low-resource language is data translation which consists in translating labelled source data into the target language. This method has been proven to be successful in many applications. However, it suffers from translation noise, in addition to labelling mismatch and instance mismatch issues [START_REF] Duh | Is machine translation ripe for crosslingual sentiment classification[END_REF]. Following the notations of Jiang [START_REF] Jiang | A literature survey on domain adaptation of statistical classifiers[END_REF], let D T = {(x T i , y T i)} N T i=1 be a set of training instances randomly sampled from the true underlying target joint distribution P T (X, Y) from the target domain D T . Typically, in machine learning, we aim to minimise the following objective function of some loss function L(x, y, f) in order to obtain the best predictive function from the hypothesis space f T ∈ H with regard to P T (X, Y):

Transfer of Instances

f T = argmin f ∈ H (x,y) ∈ (X ,Y) P T (x, y) L(x, y, f) . (2.1)
However, in reality P T (X, Y) is unknown, we thus aim to minimise the expected error in order to obtain the best predictive function from the hypothesis space fT ∈ H with regard to the empirical target distribution PT (X, Y):

fT = argmin f ∈ H (x,y) ∈ (X ,Y) PT (x, y) L(x, y, f) = argmin f ∈ H i=N T i=1 L(x T i , y T i , f) . (2.2)
When transferring instances, the objective is to find the optimal target model with only annotated examples from the source domain

D S = {(x S i , y S i)} N S i=1
, randomly sampled from the source distribution P S (X, Y). The above equation can be rewrote as such:

f T = argmin f ∈ H (x,y) ∈ (X ,Y) P T (x, y) P S (x, y) P S (x, y) L(x, y, f) ≈ argmin f ∈ H (x,y) ∈ (X ,Y) P T (x, y) P S (x, y) PS (x, y) L(x, y, f) = argmin f ∈ H i=N S i=1 P T (x S i , y S i) P S (x S i , y S i) L(x S i , y S i , f) . (2.3)
Consequently, a solution is to calculate the weight P T (x S i ,y S i) P S (x S i ,y S i) for each source example (x S i , y S i). However, in practice, exact computation of P T (x,y) P S (x,y) is infeasible, mainly because labelled examples from the target domain are not available.

Expanding the last equation using the product rule brings us to the following:

f T ≈ argmin f ∈ H i=N S i=1 P T (x S i) P S (x S i) P T (y S i |x S i) P S (y S i |x S i) L(x S i , y S i , f) . (2.4)
From the above equation, we end up with two possible differences between the source and target domains:

1. Instance mismatch (P T (X) = P S (X) and P T (Y |X) = P S (Y |X)): The conditional distribution is the same in both domains, but the marginal distributions in the feature spaces are different. Here, unlabelled target domain instances can be used to bias the estimate of P S (X) toward a better approximation of P T (X).

2. Labelling mismatch (P T (Y |X) = P S (Y |X)): the difference between the two domains is due to the conditional distribution. State-Of-The-Art (SOTA) approaches in this category, generally, assume the availability of a limited amount of labelled data from the target domain.

WHAT TO TRANSFER?

There are multiple works on instances-weighting. We can cite the work of Jiang & Zhai [START_REF] Jiang | Instance weighting for domain adaptation in NLP[END_REF] Jensen Shannon divergence for sentiment analysis task [295] and parsing [START_REF] Plank | Effective measures of domain similarity for parsing[END_REF]. Søgaard [START_REF] Søgaard | Data point selection for cross-language adaptation of dependency parsers[END_REF] proposed to select sentences from the source domain that have the lowest word-level perplexity in a language model trained on unlabelled target data. van der Wees et al. the available training data from the target language. Then, the classifier is iteratively trained by appending new selected translated examples from the source language. However, the computation cost of this method is high since the model needs to be trained repeatedly [START_REF] Li | Literature survey: domain adaptation algorithms for natural language processing[END_REF].

Both approaches for transferring instances require the same tag-set for both the source domain and the target domain, or at least a mapping between the two tag-sets is possible. For instance, Søgaard [START_REF] Søgaard | Data point selection for cross-language adaptation of dependency parsers[END_REF] performed a mapping of part-of-speech tags into a common tag-set before performing domain adaptation using instances-weighting. In addition, transferring instances is only efficient when transferring between similar domains; when a broad set of target words are out of source-vocabulary, transferring instances is not very useful and importance weighting cannot help [272].

Transfer of Learned Representations

Transferring representations consists in the reuse and modification of the underlying representations learned from a source domain to boost the performance on a target domain. Weiss et al. [START_REF] Weiss | A survey of transfer learning[END_REF] categorised these approaches into two categories. First, asymmetric approaches aim to transform the source model representations to be as similar as possible to the marginal distribution of the target domain. Second, symmetric approaches aim to reduce the dissimilarities between the marginal distributions between the source domain and the target domain by finding a common representation.

Notably, research on transfer learning of neural representations has received an increasing attention over the last three years. Indeed, when annotated datasets are available, neural networks achieve excellent results in an end-to-end manner, with a unified architecture and without taskspecific feature engineering. Moreover, the hierarchical nature of neural networks makes that the learned knowledge (in the form of learned weights) in their latent representations transit from general information at the lower-layers to task-specific at the higher layers [START_REF] Mou | How Transferable are Neural Networks in NLP Applications[END_REF][START_REF] Yosinski | How transferable are features in deep neural networks? Advances in neural information processing systems[END_REF]. Hence, the lower-layers tend to encode knowledge that is, generally, transferable across tasks and domains.

Four main methods are used in the literature to transfer neural representations. First, Autoencoders [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF] are neural networks that are unsupervisedly trained on raw data to learn to reconstruct the input. In domain adaptation, autoencoders are used to learn latent representations that are invariant to domain shift. We can cite the pioneering work of Glorot et al. As discussed in the introduction, we aim in this thesis to transfer the learned knowledge in neural NLP models from the high-resourced news domain to the low-resourced social media domain. Hence, we discuss these methods in more details in the following section (§2.5). In the approach proposed in [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF], illustrated in Figure 2.3, a domain classifier (domain discriminator) is jointly trained with the task classifier. Specifically, the model is composed of three components, the feature extractor (green) that encodes the inputs into hidden features, which are fed into two branches: (1) the task classifier (blue) generates the task's predictions and (2) the domain discriminator (red), which is trained to distinguish between the instances of source and target domains. When performing adversarial training using this model, we expect that the hidden features generated by the feature extractor are as domain-invariant as possible and thus will succeed to confuse the domain discriminator. For this, the domain classifier's gradients are reversed through the gradient reversal layer. More formally, 3 let us suppose that our model is a hierarchical neural network with a set of parameters θ, trained to perform a classification task with L classes. The model is composed of three components:

1. The feature extractor G f learns a D-dimensional hidden representation f i ∈ R D for each m-dimensional input x i ∈ R m .
G f is parameterised by the set of parameters θ f :

f i = G f (x i ; θ f) . (2.5)
2. The task classifier G y is fed with the output of G f and predicts the label ŷi for each input x i . G y is parameterised by the set of parameters θ y :

ŷi = G y (G f (x i ; θ f); θ y) . (2
di = G d (G f (x i ; θ f); θ d) .
(2.7) Given a source labelled example (x i , y i), the task classifier cross entropy loss is defined such as:

L i y (θ f , θ y) = L y (G y (G f (x i ; θ f); θ y), y i) = y i × log(ŷi) . (2.8)
Thus during training the task classifier on n s annotated source examples, the task classifier loss is defined as follows:

L y (θ f , θ y) = - 1 n s ns i=1 L i y (θ f , θ y) . (2.9)
Given an example (x i , d i) from source or target domain where d i is the ground truth domain label for the instance x i , the domain discriminator loss is defined such as:

L i d (θ f , θ d) = L d (G d (G f (x i ; θ f); θ d), y i) = d i log(di) + (1 -d i) log(1 -di) .
(2.10) Thus, during training the domain discriminator on n s source examples and n t unlabelled target examples, the domain discriminator loss is defined as follows:

L d (θ f , θ d) = -(1 n s ns i=1 L i d (θ f , θ d) + 1 n t ns+nt i=ns+1 L i d (θ f , θ d)) . (2.11)
Training the adversarial neural network consists in optimising the error E(θ f , θ y , θ d), by finding a saddle point (θf , θy , θd):

(θf , θy) = argmin θ f ,θy E(θ f , θ y , θd) , (2.12
)

θd = argmax θ d E(θf , θy , θ d) , (2.13)
with λ ∈ R is the domain discriminator loss weight. Hence, the domain discriminator is optimised through maximising the loss over θ f and minimising the loss over θ d . This "minmax" optimisation allows the feature extractor to learn features that help to improve the performance 2.5. HOW TO TRANSFER NEURAL REPRESENTATIONS? of the classification task, but are indistinguishable whether they are from the source or the target domain.

The saddle point is obtained by updating the model's gradients as follows:

θ f ← θ f -µ (∂ L y ∂ θ f -λ ∂ L d ∂ θ f) , (2.14)
θ d ← θ d -µ λ ∂ L d ∂ θ d , (2.15)
θ y ← θ y -µ ∂ L y ∂ θ y , (2.16)
with µ being the learning rate.

The gradient reversal layer (GRL) in Figure 2.3 allows performing this optimisation problem in a simple way. The GRL is added between the feature extractor G f and the domain discriminator G d . It does not impact the forward propagation. But during backward propagation, it negates the gradients.

Another approach to perform adversarial training consists in minimising the divergence between the source distribution P S and the target distribution P T . For instance, Arjovsky et al.

[15] used the Jensen-Shannon divergence and Shah et al. [START_REF] Shah | Adversarial Domain Adaptation for Duplicate Question Detection[END_REF] used the Wasserstein distance to compute the divergence loss.

Multi-Task Learning

Multi-Task Learning (MTL) [50] consists in a joint learning of related tasks and thus leverages training signals generated by each one. MTL is based on the intuition that, if tasks are related, features trained for one task can be useful for the other tasks. For instance, detecting proper nouns in the POS tagging task would hopefully help to better identify named entities in Named Entity Recognition (NER) task. As discussed in [50] and [302], when tasks are related, the efficiency of MTL is significant for many evidences. First, MTL allows augmenting training data, implicitly, which begets a better regularisation and thus avoids over-fitting. Second, MTL allows an "eavesdropping" process, which means that when two tasks "A" and "B" are jointly trained, in some cases, a set of features that are important for task "A" can be easier to learn by task "B". Third, MTL introduces an inductive bias that begets a better generalisation for new tasks and domains.

Performing MTL requires conceptual and architectural choices with regards to the parameters sharing scheme, the tasks scheduling procedure and the loss calculation. The three depend on the nature of the problem and the relatedness between tasks.

• Parameters sharing schemes: One can separate MTL approaches according to the parameters sharing scheme. MTL is typically done with either hard or soft parameters sharing of the hidden layers, as illustrated in Figure 2 Hard parameters sharing is the most used in the literature. It consists in sharing some hidden layers between all tasks while keeping several task-specific layers. Task-specific parameters are updated according to the error signal that is propagated only from the corresponding task, while the shared parameters are updated according to the error propagated from all tasks. The shared parameters will encode robust, task-independent, and thus transferable representations.

Contrariwise, in a soft sharing scheme there are no shared parameters; each task has its own parameters and layers. The distance between the parameters of the two models is then regularised in order to foster these parameters to be as similar as possible. For instance, Duong et al. [99] proposed a soft MTL architecture using l 2 regularisation to improve parsing performance for a low-resourced target language using the knowledge learned in a source high-resource language's parser.

• Tasks scheduling: One can separate MTL according to the nature of the available training examples. We define two types, homogeneous MTL where a common dataset annotated with all tasks of interest is available, which is rarely possible. In contrast, in a heterogeneous MTL, the model has to be trained on a mixture of labelled datasets; one dataset per task. A major issue when performing heterogeneous MTL is that training all datasets in the same way is not efficient. Thus, defining a tasks scheduling strategy, i.e. the processing (training) order of examples from different tasks (datasets), is essential when dealing with heterogeneous MTL.

In a heterogeneous MTL, each task has its own training dataset. Therefore, choosing a strategy for ordering and sampling training examples coming from different datasets becomes requisite. A naive approach is to proceed with tasks uniformly or in proportion to each task's dataset size. For instance, Dong et al. [START_REF] Dong | Multi-task learning for multiple language translation[END_REF] trained a multi-task machine translation model between several language-pairs uniformly, i.e. with equal training ratios, by alternating the tasks in a fixed order. Thus each task (language-pair) is optimised for a fixed number of iterations before passing to the next task. Søgaard & Goldberg 2.5. HOW TO TRANSFER NEURAL REPRESENTATIONS? [START_REF] Søgaard | Deep multi-task learning with low level tasks supervised at lower layers[END_REF] trained a hierarchical multi-task model using a uniform training over tasks, where the selection of the next task to train is done in random. Similarly, Subramanian et al.

[345] trained a multi-task model to learn universal sentence representations using uniform training ratios for each task. Likewise, Zaremoodi et al. [START_REF] Zaremoodi | Adaptive knowledge sharing 192 BIBLIOGRAPHY in multi-task learning: Improving low-resource neural machine translation[END_REF] performed a uniform multitask training, where at each iteration of the training process, the task to train is selected randomly.

However, the naive uniform approach is not always efficient, typically when some datasets are over-sampled compared to the other datasets. In this case, the model will likely focus on the richest tasks. Luong et al. [160] proposed an adaptive scheduling method that varies during training according to the validation performance of each task. Precisely, when the performance of the model is low on one task compared to the baseline (mono-task training performance), the samplingweight assigned to this task is increased.

It is noteworthy that all the above-mentioned scheduling methods are explicit, i.e. they consist in only controlling the sampling of each task during training. In contrast, there are some works on implicit methods, which act on learning rates, model gradients or loss calculation [160].

• Loss Calculation: In MTL, we aim to optimise the model with respect to multiple objectives. Thus, we generally minimise a weighted sum of the loss over all tasks:

L = 1 T T i=1 α i L i , (2.17)
where T is the number of the jointly trained tasks, L i is the loss of the task i, and α i is the weight attributed to the task i. A naive setting consists in using equal weights for all tasks α 1 = α 2 = ... = α T . However, when tasks training sets have different sizes or some tasks are easier to learn than the other tasks, weights may differ from one task to another or adapted during training.

In the literature, MTL is used in two situations. The first is interested in building a joint model which produces predictions for multiple tasks. Thus, the model is optimised to improve the performance of all tasks. As shown by Caruana [50], many real-world problems are, in reality, multi-task problems by nature. For instance, in autonomous driving, the model needs to be able to perform multiple tasks simultaneously, e.g. recognition of pedestrians, traffic lights, cars, etc. In the second scenario, a main task of interest is trained with a set of auxiliary tasks.

The advantage of using MTL over independent task learning has been shown in some NLP tasks and applications [START_REF] Dozat | Deep biaffine attention for neural dependency parsing[END_REF]. For instance, POS tagging task has been shown to be beneficial for other tasks in [START_REF] Collobert | A unified architecture for natural language processing: Deep neural networks with multitask learning[END_REF][START_REF] Søgaard | Data point selection for cross-language adaptation of dependency parsers[END_REF]412,[START_REF] Meftah | A neural network model for part-of-speech tagging of social media texts[END_REF][START_REF] Kiperwasser | Scheduled multi-task learning: From syntax to translation[END_REF][START_REF] Lu | SC-LSTM: Learning Task-Specific Representations in Multi-Task Learning for Sequence Labeling[END_REF][START_REF] Søgaard | Deep multi-task learning with low level tasks supervised at lower layers[END_REF]. The same for NER in [START_REF] Sanh | A hierarchical multi-task approach for learning embeddings from semantic tasks[END_REF], CK [START_REF] Collobert | A unified architecture for natural language processing: Deep neural networks with multitask learning[END_REF][START_REF] Hashimoto | A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks[END_REF] and DP [START_REF] Kiperwasser | Scheduled multi-task learning: From syntax to translation[END_REF]416].

Sequential Transfer Learning

In contrast to MTL, which is a parallel training process where tasks often benefit each other mutually, in Sequential Transfer Learning (STL) training is performed serially and thus only target tasks benefit from source ones. The term STL was firstly used by Caruana [50], but the idea was explored much earlier [277,[START_REF] Thrun | Learning one more thing[END_REF]. In STL, training is performed in two stages sequentially: pretraining on the source tasks, followed by adaptation on downstream target tasks.

In the following, we discuss the methods used to perform each stage.

Pretraining

In the pretraining stage, a crucial key to the success of transfer is the ruling about the pretrained task and domain. For universal representations, the pretrained task is expected to encode useful features for a vast number of target tasks and domains. In contrast, for domain adaptation, the pretrained task is expected to be most suitable for the target task in mind. 4 We classify pretraining methods into four main categories: unsupervised, supervised, multi-task and adversarial pretraining:

• Unsupervised pretraining uses raw unlabelled data for pretraining. Particularly, it has been successfully used in a wide range of seminal works to learn universal representations.

Language modelling task has been particularly used thanks to its ability to capture generalpurpose features of language. 5 For instance, TagLM [START_REF] Peters | Semi-supervised sequence tagging with bidirectional language models[END_REF] is a pretrained model based on 2.5. HOW TO TRANSFER NEURAL REPRESENTATIONS? a bidirectional language model (biLM), also used to generate ELMo (Embeddings from Language Models) representations [START_REF] Matthew E Peters | Deep contextualized word representations[END_REF]. In addition, with the recent emergence of the "Transformers" architectures [START_REF] Vaswani | Attention is all you need[END_REF], many works propose pretrained models based on these architectures [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF][START_REF] Yang | XLNet: Generalized Autoregressive Pretraining for Language Understanding[END_REF][START_REF] Raffel | Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer[END_REF]. Unsupervised Pretraining has also been used to improve sequence to sequence learning. We can cite the work of Ramachandran et al.

[287] who proposed to improve the performance of an encoder-decoder NMT model by initialising both encoder and decoder parameters with pretrained weights from two language models.

• Supervised pretraining has been particularly used for cross-lingual transfer (e.g. machine translation [START_REF] Zoph | Multi-Source Neural Translation[END_REF]); cross-task transfer from POS tagging to words segmentation task [START_REF] Yang | Neural Word Segmentation with Rich Pretraining[END_REF];

and cross-domain transfer for biomedical question answering by Wiese et al.

[378] and NER to biomedical texts by Giorgi & Bader [START_REF] Gary | Transfer learning for biomedical named entity recognition with neural networks[END_REF]. Cross-domain transfer has also been used to transfer from news to SM for POS tagging [START_REF] Meftah | Using Transfer Learning in Part-Of-Speech Tagging of English Tweets[END_REF]222,[START_REF] März | Domain adaptation for part-of-speech tagging of noisy user-generated text[END_REF] and sentiment analysis [START_REF] Zhao | Deep transfer learning for social media crossdomain sentiment classification[END_REF]. Supervised pretraining has been also used effectively for universal representations learning, e.g. neural machine translation [START_REF] Mccann | Learned in translation: Contextualized word vectors[END_REF], language inference [69] and discourse relations [START_REF] Nie | Dissent: Sentence representation learning from explicit discourse relations[END_REF].

• Multi-task pretraining has been successfully applied to learn general universal sentence representations by a simultaneous pretraining on a set of supervised and unsupervised tasks [START_REF] Subramanian | Learning general purpose distributed sentence representations via large scale multi-task learning[END_REF][START_REF] Cer | Universal Sentence Encoder for English[END_REF]. Subramanian et al. [START_REF] Subramanian | Learning general purpose distributed sentence representations via large scale multi-task learning[END_REF], for instance, proposed to learn universal sentences representations by a joint pretraining on skip-thoughts, machine translation, constituency parsing and natural language inference. In [START_REF] Meftah | Multi-Task Supervised Pretraining for Neural Domain Adaptation[END_REF], we proposed multi-task pretraining for supervised domain adaptation from news domain to the social media domain.

• Adversarial pretraining is particularly used for domain adaptation when some annotated examples from the target domain are available. Adversarial training -as previously described -is used as a pretraining step followed by an adaptation step on the target dataset. Adversarial pretraining demonstrated its effectiveness in several NLP tasks, e.g.

cross-lingual sentiment analysis [START_REF] Chen | Adversarial deep averaging networks for cross-lingual sentiment classification[END_REF]. Also, it has been used to learn cross-lingual words embeddings [START_REF] Lample | Word translation without parallel data[END_REF].

Adaptation

During the adaptation stage one or more layers from the pretrained model are transferred to the downstream task, and one or more randomly initialised layers are added on top of pretrained ones. Three main adaptation schemes are used in sequential transfer learning: Feature Extraction, Fine-Tuning and the recent Residual Adapters.

In a Feature Extraction scheme, the pretrained layers' weights are frozen (not updated) during adaptation, while in Fine-Tuning scheme weights are fine-tuned. Accordingly, the former is computationally inexpensive while the last allows better adaptation to target domains peculiarities.

In general, fine-tuning pretrained models begets better results, except in cases wherein the target domain's annotations are sparse or noisy [START_REF] Dhingra | A comparative study of word embeddings for reading comprehension[END_REF][START_REF] Mou | How Transferable are Neural Networks in NLP Applications[END_REF]

Why Transfer?

There are some terminology inconsistencies throughout the literature of transfer learning. Mainly, transfer learning and domain adaptation are sometimes used to refer to the same process [START_REF] Zhou | Hybrid heterogeneous transfer learning through deep learning[END_REF][START_REF] Li | Literature survey: domain adaptation algorithms for natural language processing[END_REF][START_REF] Sinno Jialin Pan | A survey on transfer learning[END_REF][START_REF] Wouter | An introduction to domain adaptation and transfer learning[END_REF]. Many other papers use the two expressions to mean different things. For instance, Wilson & Cook [381] and Ruder [START_REF] Ruder | Neural Transfer Learning for Natural Language Processing[END_REF] consider that domain adaptation is a particular case of transfer learning, where source and target tasks are the same (T S = T T), while the source and target domains differ (D S = D T).

In this thesis, we consider that the purpose behind using transfer learning approaches for NLP can be divided into two main research areas, universal representations and domain adaptation. Universal representations aim to learn representations, e.g. words embeddings, sentence embeddings and pretrained models, that are transferable and beneficial to a wide range of downstream NLP tasks and domains. Domain adaptation seeks to learn representations that are beneficial for a particular target domain rather than being useful in general. In comparison, domain adaptation aims to harness the knowledge represented in features learned on a source domain (high-resourced in most cases) to improve the performance on a specific target domain (low-resourced in most cases). The source and the target domains may differ on the task, the language or the domain. In the following, we present some notable works from each category: universal representations (§2.6.1) and domain adaptation (§2.6.2).

Universal Representations

Transfer learning in the form of universal representations is not a recent phenomenon in NLP;

their usage as extra word features for supervised tasks was common long before the outburst of neural models. According to Turian et al.

[360], three categories of algorithms have been used to induce unsupervised word representations that are expected to encode general language knowledge and beneficial to a wide range of NLP tasks. Let us consider a text sentence S with a set of N tokens, S = (t 1 , t 2 , ..., t N). Traditional word embeddings approaches assign a dense vector w i for each token t i , on a function of t i solely;

without taking into account its context. When training a neural model on a raw corpus, an embedding matrix W ∈ R V × d is learned for the corpus vocabulary, where d is the embedding size and V is the vocabulary size. In the following, we provide a brief description of the pioneering frameworks that learn traditional words representations: Word2Vec, FastText and GloVe.

Word2Vec [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF] is based on a shallow fully connected neural network, composed of an input layer, one hidden layer and an output layer. Two architectures were proposed: the first is Continuous Bag Of Words (CBOW) and the second is Continuous Skip-Gram. CBOW predicts the actual word from its surrounding context words. In the Skip-Gram model, on the other hand, the reverse operation is performed; the surrounding context words are predicted from the current word.

The objective of the CBOW model is to predict the probability of the target word given its context (a window of C surrounding words). As illustrated in the left scheme of Figure 2.5, the model takes the one-hot encoding of the C context words as inputs, and it outputs the probability of each word in the vocabulary being the actual word. Generally, the learned weights matrix W 2 ∈ R d × V between the hidden layer and the output layer is the embedding matrix, where d is the hidden layer size (d=embedding dimension), and V is the vocabulary size. Each line j of W 2 T corresponds to the global embedding of the word type j in the vocabulary. In the Skip-Gram model, the reverse operation is performed. The aim is to predict the C surrounding words given the target word. As illustrated in the right scheme of Figure 2.5, the model takes the one-hot encoding of the target word as input, and it outputs the probability of each word in the vocabulary being a surrounding word. Generally, the learned weights matrix W 3 ∈ R V × d between the input layer and the hidden layer is the embedding matrix, where d is the hidden layer size (=embedding dimension), and V is the vocabulary size. Each line j of W 3 corresponds to the global embedding of the word type j in the vocabulary.

FastText [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF] is an extension of Word2Vec algorithm, which represents each word as a bag of n-grams characters, in addition to the word itself. Hence, FastText generates embedding for the words that do not appear in the training raw corpus, which allows for a better management of rare words.

GloVe (Global Vectors for Word Representation) is an algorithm developed by Stanford university [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] to learn distributed dense representations of words by referring to their contexts in large corpora of texts. While Word2Vec is a predictive model, GloVe is based on co-occurrences matrix from large corpora. First, a co-occurrence matrix C is created, where an element c ij from 2.6. WHY TRANSFER?

the matrix represents the number of times the word type i appeared in the context of the word type j. However, the vectors generated in this co-occurrences matrix are sparse and with high dimensions (vocabulary size). GloVe algorithm allows a factorisation of this co-occurrences matrix. Precisely, two randomly initialised vectors, x i , xi ∈ R d , are assigned for each word w i in the corpora, where d is the embedding dimension. The first as its column instance and the second for its row instance. Then, the difference between the dot product of the embedding of the target word x i with the embedding of its context word xj and the logarithm of their number of co-occurrences c ij is minimised:

L GloV e = V i,j=1 f (c ij) (x T i xj + b i + bj -log(c ij)) 2 , (2.18)
where x i and b i represent, respectively, the embedding and the bias for the word i. xi and bi represent, respectively, the embedding and the bias for the context word j. f (.) is a weighting function that assigns low weights to rare words and higher wights for more frequent words to avoid learning only on very frequent words.

Contextual Embeddings

Recently, universal representations re-emerged with contextualised representations, handling a major drawback of traditional words embedding. Indeed, these last learn a single contextindependent representation for each word thus ignoring words polysemy. Therefore, contextualised words representations aim to learn context-dependent word embeddings, i.e. considering the entire sequence as input to produce each word's embedding. Multiple training objectives were used to generate contextualised representations. For instance, CoVe [START_REF] Mccann | Learned in translation: Contextualized word vectors[END_REF] use a neural machine translation encoder. TagLM [START_REF] Peters | Semi-supervised sequence tagging with bidirectional language models[END_REF] use an unsupervised bidirectional language model (biLM), also used to generate ELMo (Embeddings from Language Models) representations [START_REF] Matthew E Peters | Deep contextualized word representations[END_REF]. In contrast to CoVe and TagLM, ELMo representations are a function of all of the internal layers of the biLM.

Formally, methods that learn contextual embeddings associate each token t i from a sequence of tokens S = (t 1 , t 2 , ..., t N) with an embedding vector that is a function of the whole sentence.

Hence, if a word type appears in different contexts, the attributed contextual vector will be different. In the following, we provide a short description of the ELMo model.

ELMo (Embeddings from

R k = {x k , - → h k,j , ← - h k,j |j = 1, ..., L} = {h k,j |j = 0, ..., L} , (2.22)
where

h k,0 = x k and h k,j = [- → h k,j , ← - h k,j].
Generally, to use the set of the L ELMo representations in the downstream tasks, a weighted sum of these representations is injected as an input representation to the target task model.

Universal Pretrained Language Models

So far, universal representations were exploited only at the input-level of the target model, i.e.

the input embedding layer is initialised with pretrained representations, but the remaining layers are randomly initialised, thus need to be trained from scratch. Hence, the pretrained knowledge is not fully harnessed. Conscious of the usefulness of transferring the pretrained knowledge to different levels of the target models, the NLP research community has recently devoted a 2.6. WHY TRANSFER? particular interest on learning deep pretrained language models that could be transferred to initialise the parameters of target models for multiple tasks.

First, Howard & Ruder [START_REF] Howard | Universal Language Model Fine-tuning for Text Classification[END_REF] proposed Universal Language Model Fine-tuning (ULMFiT), an LSTM-based bidirectional language model (similar to [START_REF] Matthew E Peters | Deep contextualized word representations[END_REF]). ULMFiT is an approach consisting of three steps. First, pretraining the LM on general unlabelled large corpora. Second, fine-tuning the LM on the downstream target dataset. Finally, 3) fine-tuning on the target task by adding a randomly initialised classifier layer on top of the pretrained layers. Furthermore, Transformer architectures [START_REF] Vaswani | Attention is all you need[END_REF] have been used in many works to learn universal pretrained models. Two unsupervised pretraining tasks are generally used to learn universal models. 1)

Language models (LMs), predicting the next word given the previous context, like GPT [START_REF] Radford | Improving language understanding by generative pre-training[END_REF].

2) Masked language models, predicting the identities of a set of words that have been masked out of the sentence, like BERT (Bidirectional Encoder Representations from Transformers) [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF], XLNET [START_REF] Yang | XLNet: Generalized Autoregressive Pretraining for Language Understanding[END_REF], RoBERTa (Robustly optimised BERT pretraining Approach) [START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF] and DistilBERT [START_REF] Sanh | DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter[END_REF], a distilled version of BERT. Otherwise, other innovative pretraining tasks have been proposed in the literature, such as ELECTRA [START_REF] Clark | Electra: Pre-training text encoders as discriminators rather than generators[END_REF], which performs pretraining on replaced token detection task. Furthermore, specialised pretrained models were proposed recently, like BioBERT [184], a pre-trained biomedical language model for biomedical text mining.

Domain Adaptation

While universal representations seek to be propitious for any downstream task, domain adaptation is designed for particular target tasks. Precisely, it consists in adapting NLP models designed for one source setting (language, language variety, domain, task, etc.) to work in a target setting. Bader [START_REF] Gary | Transfer learning for biomedical named entity recognition with neural networks[END_REF] for supervised domain adaptation between different biomedical datasets for NER task. It was also applied for supervised adaptation from news to social media by März et al. [START_REF] März | Domain adaptation for part-of-speech tagging of noisy user-generated text[END_REF] for POS tagging, by Zhao et al. [START_REF] Zhao | Deep transfer learning for social media crossdomain sentiment classification[END_REF] for Sentiment Analysis and by Lin & Lu [START_REF] Yuchen | Neural Adaptation Layers for Cross-domain Named Entity Recognition[END_REF] for NER task. Adversarial training was used in many research works for cross-domain adaptation. We can cite: [START_REF] Shah | Adversarial Domain Adaptation for Duplicate Question Detection[END_REF] for unsupervised domain adaptation between different forums (Stack Exchange, Sprint FAQ and Quora) for duplicate question detection task; [START_REF] Gui | Part-of-speech tagging for twitter with adversarial neural networks[END_REF] for supervised domain adaptation from news domain to social media domain for POS task; [START_REF] Naik | Towards Open Domain Event Trigger Identification using Adversarial Domain Adaptation[END_REF] for unsupervised domain adaptation between English literature texts and English news for event trigger identification task. Multi-task learning on multiple tasks from the source domain has also been used by Peng & Dredze [260] for unsupervised domain adaptation.

Discussion

Summary

In this chapter, we have discussed transfer learning approaches and methods used in NLP. To recapitulate, first, we discern the aim behind using transfer learning ("Why transfer?") into two lines of research: universal representations and domain adaptation. The former aims to produce universal words embeddings, sentence embeddings and pretrained models, which are transferable and beneficial to a wide range of downstream tasks and domains. In comparison, the latter seeks to learn representations that are beneficial for a particular target domain rather than being useful in general. Second, we categorise transfer learning approaches according to the type of the 2.7. DISCUSSION transferred knowledge ("What to transfer?") into three categories: (1) transfer of annotations,

(2) transfer of instances, and (3) transfer of models. The first and the second categories areby design -only convenient for domain adaptation, whereas the third is applicable whether for universal representations and domain adaptation. Third, for each category, we have provided some existing methods to perform the transfer ("How to transfer?").

Positioning of our work

Our work falls under supervised domain adaptation research area. Specifically, cross-domain adaptation from the news domain to social media domain. 7 For this purpose, we propose throughout this thesis a set of approaches based on sequential transfer learning and multi-task learning. Note that, universal representations research area is orthogonal to our work, and thus could be incorporated with our approaches to boost the performance further. In chapters 5

and 6, we investigate the impact of ELMo contextualised words representations when used, simultaneously, with our cross-domain adaptation scheme. In this thesis we exploit interpretive techniques to better understand the functioning of our proposed transfer learning methods. Thus, we present in this chapter the most related works in the field of NLP neural models interpretability.

There is little consensus about the definition or desideratum for explanations or interpretations and about what are the differences between "interpretability" and "explainability" with non-overlapping definitions. In most cases, "interpretability" and "explainability" are used interchangeably. However, distinctions between the two terms are discussed in many research works. Montavon et al. [START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF] define an interpretation as "the mapping of an abstract concept (e.g. a predicted class) into a domain that the human can make sense of". For instance, extracting the linguistic knowledge encoded in words embeddings is considered as an understandable interpretation. In comparison, they define an explanation as "the collection of features from the interpretable domain that have contributed to produce the decision for a given example". In simple words, explanations are interpretable justifications for the model's predictions. Lipton [START_REF] Zachary C Lipton | The mythos of model interpretability[END_REF] considers that interpretability methods fall into two distinct categories: transparency (i.e.

INTRODUCTION

how a component of a model, such as neurons and layers, corresponds to a human-understandable meaning?) and post-hoc explanations. 1 Rudin [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF] considers that post-hoc explanations are merely plausible but are not necessarily faithful and thus believes that attempting to explain black-box models in a post-hoc manner can be misleading. 2 The author invites the research community to instead focus on building self-explainable models. Like Montavon et al. [START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF],

we believe that an interpretation stands for a human-understandable description of the internal representations and behaviours of the model. In contrast, an explanation is an interpretable justification for the model decision or behaviour. However, for simplicity, in this paper, we use the terms interpretability and explainability interchangeably to mean the ensemble of methods and approaches that aim to understand NLP neural models.

Different categorisations of explainability methods were proposed in the literature. We can cite two common ones. The first distinguishes self-explainable models vs post-hoc explanations.

Self-explainable models are intrinsically interpretable, that means explanations are backed into the model itself. A challenge is to achieve a trade-off between the explainability and the predictive performance of the model. In contrast, post-hoc explanations are extracted from already learned models, and thus will not impact the predictive performance. Also, post-hoc methods are not dependent on neural model architecture. The second categorisation distinguishes local vs global explanations. A local explanation gives a justification for a specific prediction, whilst a global explanation gives an overview of how the model works.

Our goal in this survey is to propose an intuitive categorisation of recent methods on NLP neural models interpretability according to the objective behind the method. We distinguish three families of methods, illustrated in often form a bridge between descriptive models couched at different levels. Finally, interpretive methods aim to understand why nervous system operate as they do".

To the best of our knowledge, there are two research papers in the literature that survey the explainability and interpretability of neural models in NLP. Belinkov & Glass [START_REF] Belinkov | Analysis methods in neural language processing: A survey[END_REF] provide an extensive review of some analysis and visualisation methods for NLP models and discuss the challenges that should be addressed in the field. More recently, Danilevsky et al. [START_REF] Danilevsky | A Survey of the State of Explainable AI for Natural Language Processing[END_REF] present state-of-the-art works according to two of the aforementioned classifications: ad-hoc explanations vs post-hoc explanations and local explanations vs global explanations. In addition, they present some of the techniques that are actually used to generate and visualise explanations in the NLP field. However, the study of Danilevsky et al. [START_REF] Danilevsky | A Survey of the State of Explainable AI for Natural Language Processing[END_REF] includes only explainability methods that aim to justify the model's predictions, which correspond to explicative methods in our proposed categorisation.

In the following sections, we present some techniques from each category from our proposed categorisation. This survey is not exhaustive, we only focus on some promising techniques and point to some representative papers for each technique. Considering that in this thesis we exploit descriptive methods to analyse our proposed transfer learning approaches, the section related to descriptive methods is the most expanded.

Descriptive Methods: What?

Descriptive methods aim to investigate the knowledge encoded in the internal representations of neural models. We present 5 widely used approaches: representation-level visualisation (§3.2.1), individual units stimulus (§3.2.2), probing classifiers (§3.2.3), similarity analysis (§3.2.4), and features erasure (§3.2.5). It is noteworthy that although descriptive methods allow an analysis of the information captured by the model, they do not give insights into whether this information is actually used by the model to produce the final decision.

Representation-level Visualisation

Representation-level visualisation methods aim to project high-dimensional vectors, such as word or sentence embeddings or model's internal representations, into two-dimensional or threedimensional spaces to facilitate their visualisation in a scatterplot, while preserving as much as possible of the significant structure of the high-dimensional data. ActiVis, an interactive visualisation and exploration tool of large-scale deep learning models including neuron-level activations. The main limitation of this method is that it measures the degree of alignment between individual neurons activations and a linguistic knowledge. However, as we know, neurons work in synergy, so individual units stimulus will not identify a group of neurons that might be jointly specialised on one linguistic phenomenon [343].

Probing Classifiers

Probing classifiers 4 [START_REF] Linzen | Syntactic structure from deep learning[END_REF] surveys the majority of works in this filed.

While this approach exhibits useful insights, it suffers yet from two main flaws. Firstly, probing tasks examine properties captured by the model at a coarse-grained level, i.e. layers representations and, thereby, will not identify features captured by individual neurons. Secondly, probing tasks will not identify linguistic concepts that do not appear in the annotated probing datasets [START_REF] Zhou | Interpreting deep visual representations via network dissection[END_REF]. In addition, recently Ravichander et al.

[292] investigated whether probing classifiers accuracy is correlated with task performance and found that in some cases, the linguistic properties encoded by models are not required at all to solve the task. To handle this issue, Elazar et al. [START_REF] Elazar | When Bert Forgets How To POS: Amnesic Probing of Linguistic Properties and MLM Predictions[END_REF] proposed a method called amnesic probing, which performs probing when some linguistic knowledge is removed from the encoded representation, and then investigate the influence of the removal of this specific knowledge on the ability of the model to solve the task.

Neural Representations Correlation Analysis

Cross-network and cross-layers correlation is an effective approach to gain insights on how the internal neural representations may vary across networks, network-depth and training time.

Suitable approaches are based on Correlation Canonical Analysis (CCA) [153,362], such as Singular Vector Canonical Correlation Analysis (SVCCA) [284] and Projected Weighted Canonical Correlation Analysis (PWCCA) [START_REF] Morcos | Insights on representational similarity in neural networks with canonical correlation[END_REF]. These methods permit to study the similarity between high-dimensional neural representations learnt across different models and layers.

2 . Let L 1 ∈ R n × d 1 and L 2 ∈ R n × d 2
be the activations matrices of the layers l 1 and l 2 , respectively, over the set X. SVCCA is calculated in two steps. First, singular value decomposition is calculated between L 1 and L 2 in order to remove dimensions that are likely unimportant, to get subspaces:

L 1 ∈ R n × d 1 and L 2 ∈ R n × d 2 . Second, CCA is used to linearly transform L 1 to L 1 = W 1 L 1 and L 2 to L 2 = W 2 L 2
, to be as aligned as possible by maximising the correlations ρ = {ρ 1 , ..., ρ min(d 1 ,d 2) } between the new sub-spaces.

In SVCCA, the correlation between L 1 and L 2 is simply the mean of ρ, whereas in PWCCA, it is a weighted mean of ρ. Morcos et al. [START_REF] Morcos | Insights on representational similarity in neural networks with canonical correlation[END_REF] have shown that the weighted mean leads to a more robust similarity. Intuitively, the correlation is between [0, 1] and a high correlation means a high similarity between the information encoded by the two layers. This method has been successfully applied to analyse NLP neural models. For instance, it was used by Bau et al. [START_REF] Bau | Identifying and controlling important neurons in neural machine translation[END_REF] to calculate cross-networks correlation for ranking important neurons in NMT and LM. Saphra & Lopez [START_REF] Saphra | Understanding Learning Dynamics Of Language Models with SVCCA[END_REF] applied it to probe the evolution of syntactic, semantic, and topic representations cross-time and cross-layers. Raghu et al. CCA based methods aim to calculate the similarity between neural representations at the coarse-grained level. In contrast, correlation analysis at the fine-grained level, i.e. between individual neurons, has also been explored in the literature. Initially, Li et al. [START_REF] Li | Convergent Learning: Do different neural networks learn the same representations? Feature Extraction: Modern Questions and Challenges[END_REF] used Pearson's correlation to examine to what extent each individual unit is correlated to another unit, either within the same network or between different networks. The same correlation metric was used by Bau et al. [START_REF] Bau | Identifying and controlling important neurons in neural machine translation[END_REF] to identify important neurons in NMT and LM tasks. Recently, Wu et al. [START_REF] Wu | Similarity Analysis of Contextual Word Representation Models[END_REF] performed a similarity analysis to compare the representations learned by different pretrained models. To do this, they measure the inter-and intra-similarity of their internal representations and attention layers, at the representation-level and the neuron-level. They found that different architectures often encode similar representation-level information, but differ at individual-level one.

Features Erasure (Ablations)

Feature erasure methods 5 consist in observing the effect of masking or erasing a part of the model, e.g. word embedding, individual neurons, etc. We can cite the work of Arras et al. [START_REF] Arras | What is relevant in a text document?": An interpretable machine learning approach[END_REF] who studied how relevant are individual tokens to the overall performance and thus choose words as a unit of feature removal, by masking their associated word2vec vector. Li et al. [START_REF] Li | Understanding neural networks through representation erasure[END_REF] and Dalvi 5 Also called ablations or pruning methods.

Explicative Methods: Why?

The goal of explicative methods is to justify a certain action or behaviour of the model, particularly the output of the model (prediction), which is often considered as the "desideratum" of interpretability work [START_REF] Zachary C Lipton | The mythos of model interpretability[END_REF]. We present 6 commonly used approaches: selective rationalisation (§3.

Selective Rationalisation

Interpretable justifications (reasons) behind the outputs (predictions) are often called rationales in the literature [186]. A rationale is a piece of text from the input, which must be concise and sufficient for the prediction [139]. Some examples of rationales from different tasks are illustrated in Figure 3.4 (from the ERASER dataset [START_REF] Deyoung | ERASER: A Benchmark to Evaluate Rationalized NLP Models[END_REF]). For instance, for sentiment analysis of movie reviews, the text pieces "The acting is great!" and "but the action more than makes up for it" are selected as rationales for the model's prediction (positive).

Selective rationalisation consists in training intrinsically interpretable models (ad-hoc) that learn to select the rationales jointly with each prediction. One research direction is to use In contrast to the above research direction which makes use of human-annotated rationales, Lei et al. [187] proposed a framework to justify the predictions of a sentiment analysis classifier by extracting rationales from the input text without manual annotations, i.e. unsupervisedly.

Precisely, the neural model proposed by Lei et al. [187] is composed of two components: the generator selects candidate rationales from the input document and the encoder learns to predict the target task from the selected rationales. The two components are jointly trained via the REINFORCE style optimisation [379]; an optimisation objective that fosters short and concise rationales while ensuring that the rationales alone are sufficient for accurate prediction. In the same vein, Jain et al. [START_REF] Jain | Learning to Faithfully Rationalize by Construction[END_REF] proposed a three-step method to perform rationales-based training.

First, a black-box model is trained on the original training data. Second, rationales are extracted using a post-hoc interpretability method -LIME (see §3.3.4). Third, a new model is trained only on rationales.

Attention Explanations

The attention mechanism [21] is widely adopted in neural NLP models since it allows to boost the predictive performance. Interestingly, the attention mechanism is interpretable by design since it assigns an attention weight to each token from the input. Thus, one can consider highly weighted tokens as explanations [START_REF] Li | Understanding neural networks through representation erasure[END_REF]. Figure 3.5 shows attention weights in an encoder-decoder NMT model when translating from a French sentence to an English sentence. For instance, we can see that the model puts a high value of attention on the source words "signé" and "été" to produce the target word "signed". Later, Wiegreffe & Pinter [377] challenged the assumptions of the former work finding that, in certain conditions, attention can be considered as a plausible explanation. Indeed, they highlight that claiming that attention is an explanation or not depends on one's definition of explanation.

For instance, under the definitions of Lipton [START_REF] Zachary C Lipton | The mythos of model interpretability[END_REF], attention scores should be considered as a way to improve the transparency of the model. In comparison, under the definition of Rudin [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF] who defines explainability as providing a plausible but not necessarily faithful justifications for the model's decision, attentions scores should be considered as explanations.

Gradients-based Methods

Gradient-based explanations [338,[START_REF] Shrikumar | Learning Important Features Through Propagating Activation Differences[END_REF] are obtained by measuring how perturbing inputs locally affects the model's loss, which allows spotting input's pieces that, if changed, would most influence the output. Thus, highlighting inputs pieces that contribute the most to the final decision. Concretely, let us consider a sentence example S from the training set, composed of n tokens S = [t 1 , . . . , t n]. The embedding layer embeds each token t i to its embedding vector x i ∈ R d , where d is the embedding size. Let L ŷ be the loss with respect to the prediction ŷ that the model made for the sentence S. In gradient-based approaches, the saliency score attributed to each token t i is based on ∇ x i L ŷ; the derivative of the loss with respect to the embedding x i that measures how a small change in x i will influence the prediction ŷ. Source [START_REF] Li | Visualizing and Understanding Neural Models in NLP[END_REF] Saliency scores are generally represented in saliency maps (also called sensitivity maps). For instance, Li et al. [START_REF] Li | Visualizing and Understanding Neural Models in NLP[END_REF] used gradients-based methods to visualise the importance of each token in a sentence for the prediction of the sentiment classifier. An example of sensitivity maps is illustrated in Figure 3.6. Each row corresponds to the saliency score for the corresponding word embedding for each word in the sentence "I hate the movie though the plot is interesting." and each column represents each embedding dimension (neuron).

Surrogate Models

Counterfactual explanations

Counterfactual explanations are inspired by causal inference works, which investigate the impact of a treatment (medical treatment, advertisement campaign, etc.) on a population. Causal-based explainability approaches aim to assess the importance of a feature for a given prediction by measuring the effect of a causal intervention which modify the feature of interest from the input representation. We can cite the work of Goyal et al.

Influence Functions

In contrast to the above-mentioned explicative methods that construct the importance scores over each token from the input sentence on the final prediction of this sentence, "influence functions" [START_REF] Wei | Understanding Black-box Predictions via Influence Functions[END_REF] is a post-hoc explainability method which approximates the change on the 3.4. MECHANISTIC METHODS: HOW? model's parameters when the instance is up-weighted in the empirical risk by an infinitesimal amount. Thus, it allows measuring the influence of each training instance on the model's prediction for a test example. In NLP, we can cite the work of Han et al. [START_REF] Han | Explaining Black Box Predictions and Unveiling Data Artifacts through Influence Functions[END_REF] who investigated whether influence functions can be reliably used to interpret decisions of deep transformer-based models such as BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] and compared their results to leave-one-out training as well as the consistency with gradient-based saliency scores. In addition, they found that influence functions help to reveal artifacts in training data. However, as showed by Basu et al. [26], first-order influence functions are principally accurate only in the case of machine learning algorithms with a convex loss functions like SVM. Hence, in the case of DNNs with non-convex loss functions, influence functions are brittle and their efficiency depends on the the network architecture and regularisation parameters.

Mechanistic Methods: How?

Descriptive methods aim to shed light on the model's black-box internal representations and explicative methods aim to extract input pieces that explain (justify) the model's prediction.

However, both categories are not necessarily interested in elucidating the inner workings of the model. In comparison, we discern mechanistic methods which seek to go further by providing a functional understanding of the model, i.e. how a neural model goes about accomplishing a particular function. For instance, mechanistic methods can help to check if the explanations provided by the explicative methods genuinely reflect the real mechanism that generated the predictions. Also, how the linguistic knowledge encoded by the model is processed and propagated between the model's layers. Given its intricacy, works in this category are scarce. Notwithstanding, we have identified two lines of works that provide someway a functional understanding of the model. One line of research focuses on the theoretical understanding of how recurrent networks process information [374,[START_REF] Peng | Rational Recurrences[END_REF]57,207] and how information is accumulated towards a prediction [141]. Another line of research proposes self-explainable models offering the ability to retrace a complete reasoning path of the model's decision [1,421].

Discussion

In this chapter, we have presented the main research directions of neural NLP models interpretability and explainability. We proposed a new taxonomy that segregates the SOTA works on three categories. First, descriptive methods aim to investigate the knowledge learned by neural models in their internal representations. Second, explicative methods aim to justify the predictions of the model. Finally, mechanistic methods seek to provide a functional understanding of the model.

In addition to the necessity of justifying predictions and decisions for critical applications, a better understanding can allow to spot the weaknesses of NLP models and improve them. For instance, influence functions were used by Han et al. [START_REF] Han | Explaining Black Box Predictions and Unveiling Data Artifacts through Influence Functions[END_REF] to reveal artifacts (i.e. Human-made statistical correlations in the text, making the task easier [START_REF] Wang | Glue: A multi-task benchmark and analysis platform for natural language understanding[END_REF]) in training data that might be exploited by models. Further, using counterfactual examples can help to identify models that are vulnerable to adversarial attacks and thus posing security risks [START_REF] Wei | Understanding Black-box Predictions via Influence Functions[END_REF]. Otherwise, interpreting black box models can help to identify and neutralise these models from social biases [34], like gender bias [25,415,[START_REF] Gaut | Towards Understanding Gender Bias in Relation Extraction[END_REF]112,92].

Within the framework of transfer learning, a large body of analysis and interpretability works attempts to investigate the linguistic knowledge encoded in pretrained universal representations.

Particularly, probing classifiers are broadly used [199,64,[START_REF] Cao | Behind the Scene: Revealing the Secrets of Pre-trained Vision-and-Language Models[END_REF]. Moreover, some recent works attempt to investigate the impact of fine-tuning on these representations. We can cite the work of Talmor et al. [START_REF] Talmor | oLMpics-On what Language Model Pre-training Captures[END_REF] who investigated whether the performance on a downstream task is attributed to the knowledge encoded in pretrained representations or to the knowledge encoded during finetuning. Pruksachatkun et al. [START_REF] Pruksachatkun | Intermediate-Task Transfer Learning with Pretrained Models for Natural Language Understanding: When and Why Does It Work[END_REF] studied the accuracy of probing classifiers after fine-tuning on different target tasks. Merchant et al. [START_REF] Merchant | What Happens To BERT Embeddings During Fine-tuning?[END_REF] investigated how fine-tuning leads to changes in the representations of the BERT pre-trained model, showing that fine-tuning is a "conservative process". Mosbach et al. [240] investigated the effect of fine-tuning in three Transformer models (BERT, RoBERTa and ALBERT) through sentence-level probing classifiers. They found that fine-tuning can lead to substantial changes in probing accuracy. However, these changes vary greatly depending on the encoder model as well as fine-tuning and probing tasks combination.

In a different line of research, Dalvi et al. [START_REF] Dalvi | Analyzing redundancy in pretrained transformer models[END_REF] proposed to detect general and task-specific redundancy at both the layer-level and neuron-level. The analysis is conducted on BERT and XLNet pretrained models. The results on eight sequence labelling and sequence classification tasks show that a large portion of the neurons in these models are redundant. Then, they proposed a set of pruning methods to reduce the pretrained model's parameters while preserving most of the model's performance on downstream tasks.

In this thesis, we employ descriptive methods for two objectives. First, in chapter 6, we propose to use individual units stimulus and neural representations correlation analysis to highlight the bias effect in the standard fine-tuning scheme of transfer learning in NLP. Second, in chapter 7, we make use of individual neurons ablation to highlight the impact of individual neurons from low-level tasks on high-level tasks in a hierarchical multi-task model. To the best of our knowledge, we are the first to harness those interpretive methods to analyse individual units behaviour in Transfer Learning for domain adaptation.

Introduction

In this chapter, we provide some background knowledge about the NLP tasks that will be tackled in this thesis. Given the sequential nature of the spoken and written text, labelling sequences of words is needed in many NLP applications. We focus in this thesis on sequence labelling tasks. Formally, given an input sentence of n successive tokens S = [w 1 , . . . , w n], the goal of a sequence labelling model is to predict the label c i ∈ C of every w i , with C being the tag-set.

We start by describing each task and the datasets experimented in this work. Namely, Part-Of-Speech tagging (POS) (§4.2), Morpho-Syntactic Tagging (MST) (§4.3), Chunking (CK) (§4.4), Named Entity Recognition (NER) (§4.5) and Dependency Parsing (DP) (§4.6). Then, we present the metrics we will use to evaluate and compare our models (§4.7). Table 4.1 summarises the statistics of the datasets used in this thesis. Given that user-generated-content in social media may contain personal data and thus privacy-sensitive information, we use simple rules to anonymise usernames and URLs in datasets that are not already anonymised by the publisher.

POS tagging

Part-Of-Speech (POS) tagging assigns an adequate and unique grammatical category (POS tag)

to each word in a text. It indicates how the word is used in a sentence, e.g. noun, verb, adjective, adverb, pronoun, preposition, conjunction, etc. The main difficulty of the POS tagging task is related to the ambiguity, as many words can have multiple parts of speech [START_REF] Besançon | LIMA: A Multilingual Framework for Linguistic Analysis and Linguistic Resources Development and Evaluation[END_REF]. Note that tag-sets may differ from one data-set to another. The most common tag-sets are:

1. The Treebank's tag-sets, where POS tags vary between languages due to cross-lingual differences. For example the English Penn TreeBank (PTB) [START_REF] Marcus | Building a large annotated corpus of English: The Penn Treebank[END_REF] • ARK [START_REF] Owoputi | Improved part-of-speech tagging for online conversational text with word clusters. Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: human language technologies[END_REF]: published in two parts, Oct27 and Daily547, using a novel and coarse grained tag-set comprising 25 tags 4 . For example, its "V" tag corresponds to any verb, conflating PTB's "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", and "MD" tags or ARK's tag "L"

corresponding

Morpho-Syntactic Tagging

When POS tags are enriched with Morpho-Syntactic Descriptions (MSDs), such as gender, case, tense, etc. 5 , the task is called Morphosyntactic Tagging (MST). For instance, in the example of the morphologically-tagged Slovene sentence in Table 4.2: To ni nobena novost ("This is not a novelty" in English), the word "novost" is annotated as Ncfcn, that stands for POS=Noun, Type=common, Gender=feminine, Number=singular and Case=nominative.

Datasets

We performed experiments on three South-Slavic languages: Slovene, Serbian and Croatian. We used Vardial18 datasets provided in the Morphosyntactic Tagging of Tweets (MTT) shared-task [START_REF] Zampieri | Language identification and morphosyntactic tagging: The second VarDial evaluation campaign[END_REF] containing two types of datasets for each language: Twitter (informal texts) and news (formal texts).

Chunking

Chunking (CK), also called shallow parsing, is "an intermediate step from POS tagging towards dependency parsing" 6 , which aims to extract high-order syntactic spans (chunks) from texts.

Datasets

For the source dataset, we used the CONLL2000 shared task's English data-set [354] that uses sections 15-18 from the WSJ corpus for training and section 20 for testing. Regarding the target dataset, we used TChunk Tweets data-set [START_REF] Ritter | Named entity recognition in tweets: an experimental study[END_REF] (the same corpus as TPoS). Both datasets use the BIO format annotation scheme. For instance, in the provided example in Table 4.2: "!!!!!" is outside the syntactic span, "do" is the beginning of a verbal-phrase span, while "do n't wanna talk" are inside the verbal-phrase span. The Chunking tag-set used in both datasets is provided in Table B.4.

Named Entity Recognition

Compared to the above tasks that act mostly in the syntactic level, NER extracts semantic information from textual documents and could be considered as a semantic task. It consists on classifying named entities that are present in a text into pre-defined categories like names of persons, organisations or locations [START_REF] Besançon | LIMA: A Multilingual Framework for Linguistic Analysis and Linguistic Resources Development and Evaluation[END_REF].

Datasets

Regarding the source domain, we make use of the

Dependency Parsing

Given an input sentence S = [w 1 , . . . , w n] of n successive tokens, the goal of DP is two folds [START_REF] Besançon | LIMA: A Multilingual Framework for Linguistic Analysis and Linguistic Resources Development and Evaluation[END_REF]:

4.6. DEPENDENCY PARSING 1. Identifying, for each w i , its head w j ∈ S. The couple of tokens w i and w j are called the dependant and the head 7 , respectively.

2. Predicting the dependency syntactic relation's class r i j ∈ R dp relating each dependant-head pair, where R dp is the dependency-relations set.

Simply, the goal of DP is to predict for each token w i its unique in-going labelled arc (w i , w j , r i j). Thus, constructing a syntactic tree structure of the sentence, where words are treated as nodes in a graph, connected by labelled directed arcs. • nsubjpass(submitted, Bills) (passive nominal subject): "Bills" is the passive nominal subject of the verb "submitted" in the passive clause.

• auxpass(submitted, were) (passive auxiliary): "were" is the non-main verb of the passive clause.

• agent(submitted, Brownback): "Brownback" is the complement of the passive verb "submitted", introduced by the preposition "by". This relation only appears in the collapsed dependencies (SSD); it does not appear in basic dependencies (BSD). Where two relations replace it: prep(submitted, by) for prepositional modifier and pobj(by, Brownback) for object of a preposition.

• nn(Brownback, Senator) (noun compound modifier): In the nominal phrase (NP), "Senator Brownback", "Senator" is a noun modifier of the head noun "Brownback".

• appos(Brownback, Republican) (appositional modifier): "Republican of Kanas" is an NP that serves to define the preceding NP, "Senator Brownback". Thus, "Republican" is an appositional modifier of "Brownback".

• prep_of(Republican, Kansas) (prepositional modifier): "Kansas" is a prepositional modifier of "Republican", introduced by the preposition "of". This relation only appears in the collapsed dependencies; it does not appear in basic dependencies. It is replaced by two relations: prep(Republican, of) and pobj(of, Kansas).

• prep_on(Bills, ports) and prep_on(Bills, immigration): Both "immigration" and "ports" are prepositional modifier of "Bills", introduced by the preposition "on".

• conj_and(ports, immigration) (conjunction): "ports" and "immigration" are connected by the coordinating conjunction "and".

Universal Dependencies (UD) appeared initially in [82] intending to extend the SD to other languages to be generally applicable cross-linguistically. Further, the UD have been developed for 60+ languages with a cross-linguistically consistent annotation [START_REF] Nivre | Universal dependencies v1: A multilingual treebank collection[END_REF]. Specifically, English TreeBank contains 51 relations, including the 37 multi-lingual relations, which are provided in Table B.5.

Datasets

For the source domain, we use UD_English-EWT, the English corpus of gold standard Universal Dependencies, built over the English Web Treebank 9 . The corpus comprises 254,830 words (16,622 sentences). For the target domain, we use the recently published TweeBank dataset [START_REF] Liu | Parsing Tweets into Universal Dependencies[END_REF], annotated following the UD 2.0 guidelines. Considering the characteristics that distinguish Tweets from formal texts, the following special rules were adopted for the annotation of TweeBank dataset with syntactic dependencies:

• Multiple roots are allowed. Indeed, a single Tweet might be composed of more than one sentence. As illustrated in the provided example in Figure 4.2, the Tweet contains two sentences separated with ":".

• In Tweets, many tokens do not carry a syntactic function in the sentence, i.e. non-syntactic tokens (sentiment emoticons, urls, hashtags, etc.). As illustrated in Figure 4.2, heart, RT and @coldplay are non-syntactic tokens and thus are respectively POS annotated as "SYM", "X" and "X". Regarding dependency relations, they are connected to their heads with the "discourse" syntactic relation. "The discourse relation is used for interjections and other discourse particles and elements (which are not clearly linked to the structure of the sentence)"10 . However, these tokens may be used in Tweets with a syntactic function.

For instance, in the syntactic tree of the Tweet in Figure 4.3, the hashtag #awesome is a content word, used as an adjective. Likewise, RT abbreviates the verb retweet.

Evaluation Metrics

Throughout this thesis, we evaluate our models using metrics that are commonly used by the community. Specifically, for sequence labelling tasks the accuracy (acc.) is commonly used, Background 55 calculated by dividing the number of correct predictions by the number of all predictions, based on the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), which is defined as follows:

Acc = T P + T N T P + T N + F P + F N . (4.1)
For NER and CK, the F1 score is typically used, which is the harmonic mean of precision (P)

and recall (R):

R = T P T P + T N , (4.2)
P = T P T P + F P , (4.3)
F 1 = 2 × P × R P + R . (4.4)
The F1 metric provides a good estimate of the overall quality of a model. Indeed, as aforementioned, CK and NER datasets are annotated using the BIO scheme. Thus, F1 is used to calculate entity-level performances, i.e. exact match of the whole entity is needed, e.g. "Micchoke but the warriors blew a 3-1 lead" in the example provided in Table 4.2, both words of the entity group "the warriors" should be predicted correctly.

For DP task, two evaluation measures are commonly used, unlabelled attachment score (UAS) [START_REF] Eisner | Three new probabilistic models for dependency parsing: An exploration[END_REF] and labelled attachment score (LAS) [252]. UAS does not consider the relation (arc label), while LAS requires a correct label for each arc. Specifically, "LAS is the percentage of words that are assigned both the correct syntactic head and the correct dependency label. We use CoNLL 2017 Shared Task evaluation script, where only universal dependency labels are taken into account, which means that language-specific subtypes such as acl:relcl (relative clause), a subtype of the universal relation acl (adnominal clause), will be truncated to acl both in the gold standard and in the parser output in the evaluation." 11A common approach to compare the performance between different approaches across different datasets and tasks is to take the average of each approach across all tasks and datasets.

Precisely given a set of L datasets, the average score Avg i of a particular approach i is calculated using:

Avg i = 1 L L j=1 s i j , (4.5)
with s i j being the score of the approach i on dataset j. However, as it has been discussed in many research papers [START_REF] Subramanian | Learning general purpose distributed sentence representations via large scale multi-task learning[END_REF][START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF]348], when tasks are not evaluated using the same metrics or results across datasets are not of the same order of magnitude, the simple average does not allow a 56 4.7. EVALUATION METRICS "coherent aggregation". For this, we use the average Normalized Relative Gain (aNRG) proposed by Tamaazousti et al. [350], where a score aNRG i for each approach i is calculated compared to a reference approach (baseline) as follows:

aNRG i = 1 L L j=1 (s i j -s ref j) (s max j -s ref j) , (4.6)
with s i j being the score of the approach i on dataset j , s ref j being the score of the reference approach on dataset j and s max j is the score of the best score achieved across all approaches on dataset j.

to Social Media

Introduction

As discussed in the introduction, approaches based on neural-networks are effective when dealing with learning from large amounts of annotated data. However, these are only available for a limited number of languages and domains due to the cost of the manual annotation. Particularly, despite how valuable content from Social Media (SM) can be for a variety of applications (e.g. public security, health monitoring, or trends highlight), this domain is still poor in terms of annotated data.

This chapter presents the start-up contribution of the present thesis to overcome the problem of the lack of annotated data in low-resource domains and languages. Based on the intuition that the social media domain can be considered as an informal variety of the news domain (as illustrated in Figure 1.2), our main objective is to exploit the underlying similarities shared between the two domains. For this purpose, we study the effectiveness of sequential transfer learning to overcome the sparse data problem in the social media domain by leveraging the huge available annotated data in the news domain. Precisely, we aim to take advantage of the knowledge learned by a source model; formerly trained on sufficient annotated examples from the source domain; to help improve the learning of the target model. 1 We put our approaches to the test on three sequence labelling tasks: Part-Of-Speech tagging (POS), Chunking (CK) and Named Entity Recognition (NER) and we propose two sequential transfer learning schemes:

1. The first approach, that we call "transfer of supervisedly-pretrained contextual representations", consists in injecting the contextualised representations generated by the source model as fixed input features at the first layer of the target model. Thus, all the remaining target model's layers are trained from scratch.

2. The second approach, that we call "transfer of pretrained models", aims to make better use of the pre-learned knowledge, by using the pretrained weights from the source model The remainder of this chapter is as follows:

• In section 5.2, we present the standard supervised training scheme (training from scratch on available in-domain data), using a common neural model for sequence labelling tasks. We compare the results thereof on the news domain vs the social media domain. Furthermore, we experiment with stacking different standard word representations.

• In section 5.3, we describe our approaches: "transfer of supervisedly-pretrained representations" and "transfer of pretrained models".

• In section 5.4, we present the results of our approaches. We first present the experimental results of each proposed method, and then we compare their results. Next, we investigate the impact of off-the-shelf ELMo contextualised embeddings when incorporated with our transfer learning approaches2 .

• In section 5.5, we perform a series of in-depth empirical experiments to analyse our second approach: "transfer of pretrained models".

• In section 5.6, we wrap up by discussing the findings of this chapter.

Standard Supervised Training for Sequence Tagging

In this section, we assess the performance of the standard supervised training scheme for sequence labelling tasks as a point of comparison. We start by describing the commonly used neural architecture for sequence labelling (§5.2.1). Then, we compare the results of this training scheme on the news domain vs the social media domain (§5.2.2).

Neural Sequence Labelling Model

Given an input sentence S of n successive tokens S = [w 1 , . . . , w n], the goal of a sequence labelling model is to predict the label c t ∈ C of every w t , with C being the tag-set.

We use a common end-to-end neural sequence labelling model [START_REF] Ma | End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF[END_REF]275,[START_REF] Yang | Design Challenges and Misconceptions in Neural Sequence Labeling[END_REF], which is composed of three components (illustrated in Figure 5.1). First, the Word Representation Extractor (WRE), denoted Υ, computes a vector representation x t for each token w t . Second, this representation is fed into a Feature Extractor (FE): based on a biLSTM network [START_REF] Graves | Hybrid speech recognition with deep bidirectional LSTM[END_REF],

denoted Φ. It produces a hidden representation, h t , that is fed into a Classifier (Cl): a fullyconnected layer (FCL), denoted Ψ. Formally, given w t , the logits are obtained using the following equation:

ŷt = (Ψ • Φ • Υ)(w t) . (5.1)
For simplicity, we define ŷt only as a function of w t . In reality, the prediction ŷt for the word w t is also a function of the remaining words in the sentence and the model's parameters, in addition to w t . In the following, we describe each component:

5.2.

Standard word-level embeddings

The word-level embedding component, Υ word , maps each word into a d word dimensional space.

Put simply, Υ word generates a vector representation x word t ∈ R d word for each word w t through a dense layer, following the equation:

x word t = W word .g(w t) + b word , (5.2)
Here, g(.) is a function that maps the word w t into its v dimensional one-hot vector, with v the vocabulary size; W word ∈ M d word ,v (R) is the word-level embedding weights matrix with

STANDARD SUPERVISED TRAINING FOR SEQUENCE TAGGING

M a,r (R) the vector space of a × r matrices over R; and b word ∈ R d word is the bias vector.

The weights matrix may be randomly initialised and thus trained from scratch on the targetdataset training set. Otherwise, the weights matrix may be initialised with pretrained vectors (e.g.

Word2vec, GloVe, etc.) to capture distributional semantic similarities between words3 .

Character-level embeddings

Traditional word-level embeddings, pretrained on large unlabelled datasets, are limited in their ability to handle all Out-Of-Vocabulary (OOV) words. Indeed, these datasets could not provide a total coverage of any language's vocabulary, which is a common problem for NLP tasks.

Hopefully, Character-level Embeddings (CEs), which have become a crucial component in current NLP models, solve the OOV words issue thanks to their ability to encode morphological and orthographic features of every word even if it is OOV [270]. Particularly, CEs have been shown to be highly advantageous for morphological-level tasks such as morpho-syntactic tagging

[204] and morphologically rich languages like Arabic [134, 10] and Slavic languages [START_REF] Silfverberg | Sub-label dependencies for neural morphological tagging-the joint submission of University of Colorado and University of Helsinki for VarDial[END_REF].

Two main architectures are used in the literature to model words' character-features [START_REF] Zhai | Comparing CNN and LSTM characterlevel embeddings in BiLSTM-CRF models for chemical and disease named entity recognition[END_REF],

Convolutional Neural Networks (CNNs) [START_REF] Ma | End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF[END_REF]398,16] and encoders based on variants of Recurrent Neural Networks (RNNs) [START_REF] Schuster | Bidirectional recurrent neural networks[END_REF]275]. As illustrated in Figure 5.2, we model character-level features using a bidirectional Long Short-Term Memory (biLSTM) encoder, trained from scratch, to induce a fully context-sensitive character-level embedding. Concretely, a word w t is divided into a succession of L t characters [c (t,1) , . . . , c (t,Lt)], each c (t,j) ∈ R v char defined as the one-hot vector of the corresponding character. Here, L t is the length of the word w t and v char is the characters' vocabulary size. First, an embedding, x(t,j) ∈ R dchar , is computed for each character c (t,j) through an embedding dense layer, following the equation:

x(t,j) = W char .c (t,j) + b char , (5.3)
where

W char ∈ M dchar ,v char (R)
h t = [- → h t ; ← - h t].
To obtain -→ h t , the following transformations are applied in the forward LSTMs:

i t = σ(W i .[--→ h t-1 , x t]) (5.4a) f t = σ(W f .[--→ h t-1 , x t]) (5.4b) o t = σ(W o .[--→ h t-1 , x t]) (5.4c) ct = tanh(W c .[--→ h t-1 , x t]) (5.4d) c t = f t c t-1 + i t ct (5.4e) - → h t = o t tanh(c t) (5.4f)
Where σ is an element-wise sigmoid logistic function defined as σ(a) = [is the candidate for the cell state at time-step t, and W c is the weight matrix for the cell state.

Classifier

The feature extractor's outputs [h 1 , . . . , h n] are fed through a final dense layer with a softmax activation to generate a probability distribution over the output classes at each time-step t.

ŷt = sof tmax(W Cl h t + b Cl) , (5.5)
where

sof tmax(a) = [exp (a i) |a| j=1 exp (a j)] i=|a| i=1 for a vector a; W Cl ∈ M |C|,H (R) and b Cl ∈ R |C| ;
H is the biLSTM's output dimensionality; and |C| is the tag-set size (number of the task's labels).

In the standard supervised training scheme, the three modules are jointly trained by minimising the Softmax Cross-Entropy (SCE) loss using the Stochastic Gradient Descent (SGD) algorithm. Given a training set of M annotated sentences, where each sentence i is composed of m i tokens. A training word (w i,t , y i,t) from the training sentence i, where y i,t is the gold standard label for the word w i,t , the cross-entropy loss for this example is calculated as follows:

L (i,t) = -y i,t × log(ŷ i,t) .
(5.6) Thus, during training the sequence labelling task on M annotated sentences, the task loss is defined as follows:

L = M i=1 m i t=1 L (i,t) .
(5.7)

Experimental Results

The objective behind this experiment is two fold. First, we aim to assess the performance of the standard supervised training scheme on the high-resource news domain compared to the low-resource social media domain. Second, we study the impact of combining different kinds of embeddings, as it has been shown to be efficient to increase the diversity of the word representations [117,48,[START_REF] Goikoetxea | Single or multiple? combining word representations independently learned from text and wordnet[END_REF]. We consider the following combinations of words representations:

1. CE: randomly initialised biLSTM character-level embedding.

2. WE: randomly initialised word-level embedding.

WE

Datasets

Throughout this chapter, we conduct experiments on three sequence labelling tasks (POS, CK and NER). For the source-datasets, we use the news domain with the following datasets: the WSJ part of Penn-Tree-Bank (PTB) [START_REF] Marcus | Building a large annotated corpus of English: The Penn Treebank[END_REF] for POS; CONLL-03 for NER [START_REF] Kim | Introduction to the CoNLL-2003 shared task: language-independent named entity recognition[END_REF]; and CONLL2000 [354] for CK. In the same vein, for the target-datasets, we use the social media with the following datasets: TPoS, ArK and TweeBank [START_REF] Liu | Parsing Tweets into Universal Dependencies[END_REF] for POS; WNUT-17 [85] for NER; and TChunk [START_REF] Ritter | Named entity recognition in tweets: an experimental study[END_REF] for CK. Statistics of all the datasets are summarised in

Implementation details

In the standard word-level embeddings, tokens are converted to lower-case while the characterlevel component still retains access to the capitalisation information. We set the randomly Word-level embeddings were pre-loaded from publicly available GloVe vectors pre-trained on 42 billion words collected through web crawling and containing 1.9M different words [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] and from the publicly available FastText [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF] vectors pre-trained on common crawl 4 . These embeddings are also updated during training. For the FE component, we use a single layer biLSTM (token-level feature extractor) and set the number of units (H) to 200. In all of our experiments, both pretraining and fine-tuning were performed using the same training settings, i.e. SGD with momentum and early stopping, mini-batches of 16 sentences, and a fixed learning rate of 1.5 × 10 -2 . Throughout this thesis, all our models are implemented with the PyTorch library [START_REF] Paszke | Automatic differentiation in PyTorch[END_REF].

Results

Results are reported in Tables 5.2. The top table provides the results (accuracy %) on POS datasets and the bottom one provides the results on CK datasets (accuracy %) and NER datasets (F1 %). As discussed in section 4.7, we use the average (Avg.) as well as the aNRG metric (see equation 4.6) to compare the scores of the different methods. For the aNRG, the methods are compared to the reference CE+WE.

In light of the results displayed in Table 5.2, we make the following observations. First, All of our models perform significantly better on the news domain compared to the social media domain. This is mainly due to the lack of in-domain training data for the social media domain. In the following sections, we propose two methods of transfer learning to reduce this gap.

Despite the best results having been yielded by CE+WE GloVe +WE FastText , we use the sequence labelling architecture with the CE+WE GloVe setting for word representation going forward, as a trade-off between performance and computation time since using both pretrained embeddings doubles the number of parameters to train.

Proposed Methods

As mentioned above, the neural sequence labelling model with standard word representations achieves high performance on high-resource languages and domains, such as the news domain.

However, when it is trained on few annotated examples like the social media domain, the model performs poorly. Therefore, here we propose to improve sequence labelling performance on the social media domain by leveraging the knowledge learned from the news domain. We start by formulating transfer learning problem in section 5.3.1. Then, in section 5.3.2, we present our proposed approaches.

General Transfer Learning Problem Formulation

Here is a reminder for the transfer learning problem formulation given in chapter 2 (§2. In a transfer learning scenario, we have a source domain D S = {X S , P S (X S)}, a source task T S = {Y S , P s (Y S), f S }, a target domain D T = {X t , P T (X T)}, and a target task

T T = {Y T , P T (X T), f T }, where X S = {x S 1 , x S 2 , ..., x S n S } ∈ X S , X T = {x T 1 , x T 2
, ..., x T n t } ∈ X T and n s >> n t . The aim behind using transfer learning is to improve the learning of the predictive function of the target domain f T by leveraging the knowledge gained from D S and T S .

Generally, in a transfer learning scheme, labelled training examples from the source domain

D S = {(x S i , y S i) ∈ X S × Y S : i ∈ (1 , .
.., n S)} are abundant. As for the target domain, either a small number of labelled target examples D T,l = {(x T,l i , y T,l i) ∈ X T × Y T : i ∈ (1 , ..., n T ,l)}, where n S >> n T , or a large number of unlabelled target examples D T,u = {(x T,u i) ∈ X T : i ∈ (1 , ..., n T ,u)} are assumed to be available. From the above definitions, five scenarios of dissimilarities between source and target domains arise:

1. X S = X T : The feature spaces between the source and target domains are different.

Our Approaches

When transferring from the news-domain to the social media domain, we first observe a difference in the marginal distributions P (X S) = P (X T). Second, a difference in the feature space X s = X t since, in social media, we can find new words and expressions that are not used in news. In addition, the label spaces are different Y s = Y t , since as seen in the chapter 4, there are many tasks where news datasets and social media datasets do not share the same tag-set.

Let us consider a target model M t , which consists of the sequence labelling model (Figure 5.1) with the set of parameters θ t . M t is composed of three components: Υ t generates a word representation x t i for each token w i , Φ t transforms the word representation into a hidden representation h t i , and Ψ t generates the class-probabilities ŷt i . In the standard supervised training scheme, in order to learn the target predictive function F t , θ t would be randomly initialised, and the model would be trained from scratch on target-data from the target task T t , i.e. labelled data

{(x i , y i) ∈ X t × Y t : i ∈ (1 , ..., n t)}.
However, when labelled examples are rare, the trained model is brittle and more vulnerable to over-fitting. Thus, we propose to leverage the pre-learned knowledge by a source model M s , which consists of a sequence labelling model (Figure 5.1). Likewise, M s is composed of three pretrained components: Υ s generates a word representation x s i for each token w i , Φ s that transforms the word representation into a hidden representation h s i and Ψ s that generates the class-probabilities ŷs i . M s is trained from scratch on a source task T s with labelled data {(x i , y i) ∈ X s × Y s : i ∈ (1 , ..., n s)} from the source domain D s .

Our aim is to leverage the knowledge acquired by the source model M s 's parameters θ s , learned using the source predictive function F s , to help improve the learning of the target predictive function F t . We attempt this by proposing two methods: Transferring Supervisedly-Pretrained Contextual Representations and Transferring Pretrained Models. We describe each one in the following sub-sections.

PROPOSED METHODS

Transferring Pretrained Representations

Our first approach leverages the pre-learned knowledge in the source model M s by feeding the representations produced by the source model as input features for the target model, concatenated with the standard words embeddings. As illustrated in Figure 5.3, for each token w i from the target dataset, we extract the fixed hidden representation h s i , generated by the pretrained feature extractor Φ s , and inject it into the target model. This last is then trained from scratch on the target training data. 6Precisely, for each word w i from the target dataset, predictions are calculated as follows:

ŷt i = (Ψ t • Φ t)([x t i , h s i]) .
(5.8) We train a source model M l s for each task T l s , and thus, for each word w i , we obtain L pretrained hidden representations [h s 1 i , . . . , h s L i]; the concatenation thereof is injected into the target model.

Our pretrained representations differ from traditional pretrained embeddings such as Word2Vec and FastText. Here, the pretraining is performed on a deep model and on a supervised task from a general domain, and the produced representations are context-dependent.

Transferring Pretrained Models

The second approach of transferring the pre-learned knowledge consists of transferring a part of the learned weights θ s of the source model M s to initialise the target model, which is further fine-tuned on the target task with a small number of training examples from the target domain.

As illustrated in Figure 5.4, given a source neural network M s with a set of parameters θ s split into two sets: θ s = (θ 1 s , θ 2 s) and a target network M t with a set of parameters θ t split into two sets: θ t = (θ 1 t , θ 2 t), our method includes three simple yet effective steps:

1. We train the source model on annotated data from the source domain on a source dataset D s .

2. We transfer the first set of parameters from the source network M s to the target network M t : θ 1 t = θ 1 s , whereas the second set θ 2 t of parameters is randomly initialised.

3. Then, the target model is further fine-tuned on the small target data-set D t .

Experimental Results

In the following experiments, we investigate the efficiency of our proposed methods of transferring knowledge from the news domain to the social media domain on three sequence tagging tasks: POS, CK and NER.

1. In section 5.4.1, we assess the impact of our first approach of sequential transfer learning: transfer of supervisedly-pretrained representations.

2. In section 5.4.2, we study the efficiency of our second approach of sequential transfer learning: transfer of pretrained models.

EXPERIMENTAL RESULTS

3. In section 5.4.3, we compare the results of the two aforementioned methods.

4. In section 5.4.4, we investigate the performance of the recent ELMo contextualised representations when combined with our proposed approaches.

Transferring Supervisedly-Pretrained Representations

In this section, we investigate the impact of transferring supervisedly-pretrained representations from the news-domain to the social media domain. Specifically, we make use of the following pretrained representations:

• h s-pos : Representations generated by the source model, pretrained on the POS tagging source dataset (WSJ).

• h s-ck : Representations generated by the source model, pretrained on the CK source dataset (CONLL2000).

• h s-ner : Representations generated by the source model, pretrained on the NER source dataset (CONLL-03).

The results are reported in Table 5.3. In the top half of the table, we combine the pretrained representations with randomly initialised character-level embeddings (CE). In the bottom half, we experiment with combining the transferred representations with both character-level embeddings and word-level embeddings, the latter of which are initialised with GloVe (CE+WE GloVe). We compare the results between the different settings using the aNRG metric (see equation 4.6). In the top half of the table, the aNRG metric is calculated in comparison to the reference CE and in the bottom half, the aNRG metric is calculated in comparison to the reference CE+WE GloVe .

From the results in Table 5 Furthermore, we can observe that the greatest improvement is achieved by the POS pretrained representations h s-pos , followed by h s-ck and finally h s-ner . This is unsurprising, as many works have shown that POS and CK are considered as "universal helpers" [START_REF] Changpinyo | Multi-Task Learning for Sequence Tagging: An Empirical Study[END_REF]. Moreover, combining POS, CK and NER representations boosts the performance compared to using them individually.

This indicates that each task encodes some unique inductive bias that is beneficial for other tasks.

In the top half of the table, the scores marked with are those which are higher than CE+WE GloVe . Almost all the results on POS and CK datasets are higher when using our supervisedly-pretrained representations compared to CE+WE GloVe . Further, the best results on TPoS and TChunk datasets are obtained without using WE GloVe . On the other hand, for NER task, GloVe pretrained embedding is important to boost the performance, which may be explained by the semantic nature of the task.

Transferring Pretrained Models

In the following, we report our experimental results on supervised sequential transfer learning of pretrained models from the news domain to the social media domain (method described in section 5.3.2.2). First, we report the main results when transfer is performed between the same NLP tasks (§5.4.2.1). Second, we perform further experiments to analyse layer-per-layer 5.4. EXPERIMENTAL RESULTS transferability (§5.4.2.2). Third, we investigate the transferability between different NLP tasks (§5.4.2.3).

Overall Performance

Here, we discuss the results of the main experiment of our approach, transferring pretrained models, where the pretraining and fine-tuning tasks are the same. For TPoS, ArK and TweeBank datasets, the pretrained weights are learned on the WSJ dataset; for TChunk, the pretrained weights are learned on CONLL2000 dataset; and for WNUT dataset, the pretrained weights are learned on CONLL-03 dataset.

As shown in chapter 4, source and target datasets may have different tag-sets, even within the same NLP task. Hence, transferring the parameters of the classifier (Ψ) may not be feasible in all cases. Therefore, in this experiment, WRE's layers (Υ) and FE's layers (Φ) are pre-trained on the source-dataset and Ψ is randomly initialised. Then, the three modules are further jointly trained on the target-dataset by minimising a SCE (Softmax Cross-Entropy) loss using the SGD algorithm.

Results are reported in Table 5.4. We report the results of our reference training from scratch on target data (using CE+WE GloVe scheme), followed by the results of the transfer learning approach, which greatly outperforms the reference. Specifically, transfer learning exhibits an improvement of ∼+3% acc. for TPoS, ∼+1.2% acc. for ArK, ∼+1.6% acc. for TweeBank, ∼+3.4% acc. for TChunk and ∼+4.5% F1 for WNUT. Table 5.4 -Main results of our proposed approach, transferring pretrained models, on social media datasets (Acc (%) for POS and CK and F1 (%) for NER). The best score for each dataset is highlighted in bold.

Layer-per-Layer Transferability

In this experiment, we investigate the transferability of each layer of our model. We start by transferring from the bottom-most layers (Υ) up to the top-most layers (Φ). In addition, we conduct experiments on two settings: 1) : pretrained layers are frozen; and 2) : pretrained layers are fine-tuned. As illustrated in Figure 5.5, we define 4 transfer schemes: 7 The last column gives the aNRG score of each method compared to the reference (scheme O).

Results are shown in Table 5.5. First, as expected, the best performance across all tasks and datasets is yielded by the transfer scheme D. This is unsurprising since transfer is performed between the same tasks and thus transferring both low-most and top-most layers is beneficial.

Second, we can observe that the transferability of each layer depends on whether the pretrained parameters are frozen or tuned:

• When pretrained layers are frozen () (schemes A and C), only the bottom-most layers are transferable, with little improvement (+3.7 aNRG) compared to the reference training from scratch (scheme O). Whereas, when also transferring the top-most layers (scheme C), the performance degrades dramatically (-32.7 aNRG) compared to the reference. This can be explained by the fact that the top-most layers are grossly domain specific, and thus need to be updated during fine-tuning to learn new patterns that are specific to the social media domain.

• When pretrained layers are tuned () (schemes B and D): both pretrained bottom-most and top-most layers are beneficial across all tasks and datasets. Specifically, transferring embeddings layers that are updated during fine-tuning (Scheme B) yields a slight improvement (+10.5 aNRG) compared to the reference. Moreover, transferring the feature extractor layers as well further enhances performance (+18.6 aNRG).

Inter-Tasks Transferability

Through the precedent experiments, we have analysed transfer learning from the news domain to the social media domain in a scenario where the pretraining (source) task is the same as the fine-tuning (target) one. Here, we carry out further experiments to analyse the transferability In the first row of Table 5.6 (scheme O), we report the results of the reference training from scratch. The second group of rows reports the results when the weights are pretrained on the POS dataset from the news domain (WSJ). The third group of rows reports the results when the weights are pretrained on the CK dataset from the news domain (CONLL2000). Finally, the fourth group of rows reports the results when the weights are pretrained on the NER dataset from the news domain (CONLL-03).

In light of the results displayed in Table 5.6, we make the following observations.

• fine-tuning vs freezing pretrained weights: Across all transfer schemes, fine-tuning pretrained parameters yields better results compared to freezing them. An expected observation, since pretrained parameters need to be updated to match social media domain specificities better. Specifically, when transferring only the low-most layers, the damage brought by freezing (scheme A) is slight compared to fine-tuning (scheme B); ∼-1%, ∼-1% and ∼-10% on average. In the other hand, when transferring top-most layers as well, we observe that freezing pretrained parameters (scheme C) dramatically hurts the

EXPERIMENTAL RESULTS

performance compared to fine-tuning (scheme D); ∼-7.5%, ∼-9.4% and ∼-22.3% on average. A plausible explanation is that, generally, the lowest layers of NNs tend to represent domain-independent features and thus encode information that could be useful for all tasks and domains, whereas top-most ones are more domain-specific, and thus, should be updated. These observations are not surprising and confirm the observations of many works in the literature [START_REF] Mou | How Transferable are Neural Networks in NLP Applications[END_REF][START_REF] Yosinski | How transferable are features in deep neural networks? Advances in neural information processing systems[END_REF].

• Pretraining task: We can observe that the best average score is obtained when using parameters pretrained on POS tagging task. Specifically, the first best score is obtained using the scheme D and the second by scheme B. Which confirms the fact that the information encoded by POS task is universal and important for higher-level NLP tasks and applications [START_REF] Changpinyo | Multi-Task Learning for Sequence Tagging: An Empirical Study[END_REF]. Notably, for POS→POS (Which includes POS→TPoS, POS→ArK and POS→TweeBank) and POS→TChunk, we can observe that both low-most and topmost layers play an important role. Transferring low-most layers (scheme B) yields an average improvement of ∼+1.13% for POS→POS and ∼+1.27% for POS→TChunk.

In addition, transferring top-most layers as well (scheme D) yields an improvement of ∼+1.8% for POS→POS and ∼+2.6% for POS→TChunk. However, only low-most layers are transferable from POS to NER. As illustrated in the results, for POS→WNUT transfer scenario, scheme B yields an improvement in F1 of ∼+1.75%, while scheme D degrades the F1 score by ∼-1.8% compared to training from scratch. A plausible explanation is that the transferability decreases as the dissimilarity between source and target tasks increases, and since NER task is less similar to POS, only low-level features learned in embedding layers are beneficial for NER.

Comparing the Proposed Transfer Methods

In this section, we compare the performance of our two proposed methods, i.e. transferring representations vs transferring models. Specifically, for each pretraining task; POS, CK and NER; we investigate whether it is better to transfer the pre-learned knowledge as pretrained representations (fixed features) or as pretrained models (pretrained weights). When transferring representations, we report the results from the bottom half of Table 5.3; where representations are injected individually. Namely, CE+WE GloVe +h s-pos , CE+WE GloVe +h s-ck and CE+WE GloVe +h s-ner .

When transferring models, we pick the best transfer scheme for each dataset from Table 5.6, e.g.

when transferring from POS to WNUT dataset, the best F1 score is obtained using the transfer architecture B. While, when transferring parameters from NER to WNUT dataset, the best F1 score is obtained using the transfer scheme D.

Results are reported in Table 5.7. Clearly, transferring models begets better results across all pretraining tasks and target datasets. Particularly, the best performance per target-dataset is obtained when using transferred parameters from the same NLP task. For instance, for WNUT, the NER social media dataset, the best F1 score is obtained by transferring models from NER transferring models where all the parameters are initialised with pretrained weights).

The Impact of ELMo Contextual Representations

As discussed in the state-of-the-art, the recent ELMo contextual embeddings [START_REF] Matthew E Peters | Deep contextualized word representations[END_REF] have allowed to boost the performance of NLP models across multiple tasks and domains significantly. 8This section studies the impact of off-the-shelf ELMo contextual embeddings for social media sequence tagging tasks. Specifically, we investigate the impact thereof when incorporated within our transfer learning approaches. We use the official pretrained models. 9 1) ELMo small : the small pre-trained model (13.6M parameters) on 1 billion word benchmark. 2) ELMo large : the big pre-trained model (93.6M parameters) on 5.5 billion word benchmark.

We start, in Table 5.8, by analysing the effect of combining ELMo representations with traditional embeddings:

• The first group of rows reports the results when using ELMo small and ELMo large solely for words' representations.

• The second group of rows reports the results when ELMo small and ELMo large are combined with the biLSTM character-level embeddings (CE). • The third group of rows reports the results when ELMo small and ELMo large are combined with the randomly initialised word-level embeddings (WE).

• The fourth group of rows reports the results when ELMo small and ELMo large are combined with the GloVe pretrained word-level embeddings (WE GloVe).

• The fifth group of rows reports the results when ELMo small and ELMo large are combined with the concatenation of the biLSTM character-level embeddings and the GloVe pretrained word-level embeddings (CE+WE GloVe).

Setting embeddings to supervisedly pretrained representations leads to further improvements: +1.5, +1.9 and +2.7 on average when combined with POS, CK and NER representations, respectively.

These results confirm that the patterns encoded in the supervisedly-pretrained representations are complementary to those encoded in ELMo embeddings.

In-Depth Analysis

In this section, we perform an in-depth analysis to highlight some insights from supervised sequential transfer learning from the news-domain to social media domain. For our test-bed, we focus on transfer learning of pretrained models (§5.3.2.2), where WRE's layers (Υ) and FE's layers (Φ) are pre-trained on the source-dataset, and the classifier (Ψ) is randomly initialised.

Then, the three modules are further jointly trained on the target-dataset. Precisely, the transfer is performed between the same tasks experiments (section 5.4.2.1 results), i.e. for TPoS, ArK and TweeBank datasets, the pretrained weights are learned on WSJ dataset; for TChunk, the pretrained weights are learned on CONLL2000 dataset; and for WNUT-17 dataset, the pretrained weights are learned on CONLL-03 dataset. Specifically, through this analysis, we attempt to answer the following questions:

• How does transfer learning behave in extremely low-resource regimes? (§5.5.1)

• What is the effect of the model's size on transfer learning performance? (§5.5.2)

• What is the impact of transfer learning on the model's convergence? (§5.5.3)

• What is the impact of pretraining stage on transfer learning performance? (§5.5.4)

• What does transfer learning improve? i.e. which classes benefit the most from transfer learning? (§5.5.5)

IN-DEPTH ANALYSIS

In the following, we mean by transfer learning the approach of transfer learning of pretrained models from the same NLP task, while random initialisation means training the model from scratch on social media dataset solely.

Extremely Low-Resource Settings

Here, we conduct additional experiments to study the impact of transfer learning when only few annotated examples from the target domain are available. In Figure 5.6, we evaluate the gain in accuracy brought by transfer learning compared to the baseline random initialisation, according to the number of available target training examples. From the results, we can observe that transfer learning has desirably a more significant gain with small target-task datasets. For instance, for TPoS, ArK, TweeBank and TChunk datasets, the gain in accuracy is, respectively, about 10%, 6%, 6% and 12% when only 10 annotated examples are available. However, when 100 annotated sentences are available, the gain decreases to 2%, 1.5%, 1% and 2.5%, respectively. This clearly means that, unsurprisingly, the less target training-data we have, the more interesting transfer learning will be.

The impact of model size

Here, we conduct additional experiments to investigate whether the model's size impacts the effect brought by transfer learning. We evaluate the performance of transfer learning and random initialisation with different model's sizes. More precisely, we train models with both random initialisation and transfer learning training schemes by varying H ∈ {100, 200, 300}, where H is the Feature Extractor biLSTM size. From the results shown in Figure 5.7, we find that the impact of model's size is negligible either for random initialisation or transfer learning training schemes. This observation is unlike many earlier works, such as [START_REF] Raghu | Transfusion: Understanding transfer learning with applications to medical imaging[END_REF], showing that transfer learning primarily helps more large models compared to small models. Further experiments with different settings are needed to consolidate our findings.

The Impact of Transfer Learning on Convergence

Here, we investigate the effect of transfer learning on the convergence speed. For this, we plot in

The impact of the pretraining state

So far, in our experiments, we used the pretrained parameters from the best model trained on the source dataset. In simple words, we picked the model at the epoch with the highest performance on the source validation-set. In this analysis, we study when pretrained parameters are ready to be transferred. Specifically, we pick the pretrained weights at different pretraining epochs; that we call the pretraining states. Then, we assess the performance when transferring each.

In Figure 5.9, we plot in Grey lines the curves of accuracy on source datasets (news) throughout pretraining epochs. We can observe that, unsurprisingly, the performance on source datasets increases rapidly on the first epochs of pretraining before reaching a plateau with a slight augmentation. Then, we plot in Green lines the performance on target datasets (social media) when using pretrained weights from different pretraining epochs. Globally, the best performance on target-datasets is yielded when using pretrained weights from early pretraining epochs. Specifically, for POS tagging, the best performance on TweeBank and ArK target-datasets is obtained when using the weights from the 7 th and 6 th pretraining epochs, respectively. In comparison, the best performance on the WSJ source-dataset is not obtained until the 19 th epoch.

Interestingly, the results, on both datasets TweeBank and ArK, degrade gradually at the last pretraining epochs. However, for TPoS target-dataset, we find that the performance follows the performance on WSJ source data-set. This phenomenon could be explained by the fact that Consequently, in the last states of pretraining, the pretrained parameters become well-tuned to the source dataset and specific to the source tag-set.

What Does Transfer Learning Improve?

Here, we quest which classes have benefited the most from transfer learning. In the left column of Figure 5.10, we report the percentage of improved predictions by each class i (

N improved i N class i
) for each dataset. N class i is the number of tokens from the dev-set that belong to the class. N improved i gives the number of tokens that -in reality -belong to this class, that have been wrongly predicted by random initialisation, but correctly predicted by transfer learning. In addition, we report the improvement in terms of the number of improved predictions (N improved i) in the right column, because in some cases a big improvement in percentage is -actually -due to the rarity of the corresponding class.

First, we can observe that the majority of classes benefit from transfer learning at different rates. Second, we find that some social media-specific classes present a drop in accuracy brought by transfer learning compared to random initialisation, i.e. the number of falsified predictions is higher than the number of improved predictions. For instance: -7% for X (existential there, predeterminers) and -2.5% for E (emoticon) for ArK dataset; -2% for SYM (Symbols) for TweeBank; and -10% for i-intj (Inside-interjection) for TChunk. Third, by comparing left and right histograms, we can observe that, as supposed, for some classes, the high percentage of improved predictions is due to the low-number of class-tokens. For instance, for the ARK dataset, the class "S" (nominal + possessive) has a high class-accuracy improvement (+25%), but in reality, this corresponds to only 2 improved predictions.

Furthermore, we provide in Table 5.10 some concrete examples of improved predictions by transfer learning compared to random initialisation. For each dataset we provide the sentence with gold annotations in the first line, followed by the predicted annotations by random initialisation in the second line and by transfer learning in the third line. For instance, for TPoS dataset, we can observe that transfer learning helps disambiguate the word "as", which can be used in different scenarios. First, as a conjunction, connecting two clauses, e.g. As they were paying, it starts raining. Second, as a preposition, followed by a noun, e.g. He plays football as a professional.

And, third, as an adverb, followed by an adjective, e.g. Jack is younger than Joseph, but he is just as tall. In the provided example; "... he could go as high as the ...", the first "as" is used as an adverb (RB) and the second as a conjunction (IN).

Note that in this thesis we assess the performances of our models with the percentage of the correctly tagged tokens. It would be interesting to investigate the performances at the sentence-level, i.e. the percentage of correctly tagged sentences.

Conclusion

In this chapter, we have proposed two transfer learning methods to handle the problem of the lack of annotated data in low-resource domains. The first approach, transfer of supervisedly pretrained representations, consists in injecting the contextual representations generated by the source model as fixed inputs to the first layer of the target model, and thus, all of the target model's layers are trained from scratch. The second approach, transfer of pretrained models, aims to make better use of the pre-learned knowledge, by using the pretrained weights from the source model to initialise the target model's parameters, instead of training them from scratch.

Our extensive experiments on transfer from the high-resource news domain to the lowresource social media domain showed that both approaches boost the performance of 3 sequence labelling tasks on 5 social media datasets. Particularly, we found that transferring models outperforms transferring representations, since the former method allows the model to make better use of the pre-learned knowledge. It is noteworthy that transferring models is more efficient in terms of computation speed. In addition, we have showed that the recent ELMo contextual embeddings are complementary to our work and could be used to further improve performance.

Learning of Pretrained and Random Units

Introduction

In the previous chapter, we have performed sequential transfer learning from the news-domain to the social media domain. Precisely, we used the Standard Fine-Tuning (SFT) adaptation scheme of transfer learning, by a supervised pretraining on the news-domain followed by an adaptation on the social media domain. Our results showed that using SFT boosts the performance positively on three NLP tasks from the social media domain, especially in extremely low-resource settings.

In this chapter, we attempt to improve the SFT adaptation scheme through three steps. First, through quantitative and qualitative analysis, we shed light on the hidden negative transfer occurring when transferring from news to social media despite the high relatedness between both domains. Second, we inspect the pretrained internal neural representations, at the representationlevel and a more fine-grained neuron-level, showing that pretrained neurons are biased by what they have learnt from the source dataset. Thus, they struggle with learning certain patterns that are specific to the target domain. Third, to address this issue, we propose a new method to improve the SFT adaptation scheme by augmenting the pretrained model with normalised, weighted and randomly initialised neurons that foster a better adaptation while maintaining the valuable source knowledge.

This chapter is devised into two sub-chapters:

• The first sub-chapter (§6.2) proposes a series of analysis to spot the drawbacks of the SFT adaptation scheme of transfer learning. We start in section 6.2.2 by taking a step towards identifying and analysing the hidden negative transfer when transferring from the news domain to the social media domain. Negative transfer [START_REF] Michael T Rosenstein | To transfer or not to transfer[END_REF][START_REF] Wang | Characterizing and avoiding negative transfer[END_REF] occurs when the knowledge learnt in the source domain hampers the learning of new knowledge from the target domain. Particularly, when the source and target domains are dissimilar, transfer learning may fail and hurt the performance, leading to a worse performance compared to 6.1. INTRODUCTION the standard supervised training from scratch. In this chapter, we decorticate the results of the SFT scheme obtained in the precedent chapter. Precisely, we perceive the gain brought by SFT, compared to random initialisation, as a combination of a positive transfer and a hidden negative transfer. We define positive transfer as the percentage of predictions that were wrongly predicted by random initialisation 1 , but using transfer learning changed to the correct ones. The negative transfer represents the percentage of predictions that were tagged correctly by random initialisation, but using transfer learning gives incorrect predictions. Hence, the final gain brought by transfer learning would be the difference between positive and negative transfer. We show through a series of empirical analysis that, the hidden negative transfer mitigates the final gain brought by transfer learning.

Next, in section 6.2.3, we perform an interpretive analysis of individual pre-trained neurons behaviours in different settings. We find that pretrained neurons are biased by what they have learnt in the source-dataset. For instance, we observe a unit 2 firing on proper nouns (e.g."George" and "Washington") before fine-tuning, and on words with capitalised first-letter whether the word is a proper noun or not (e.g. "Man" and "Father") during fine-tuning. Indeed, in news domain, only proper nouns start with an upper-case letter;

thus the pre-trained units fail to discard this pattern which is not always respected in User-Generated-Content (UGC) in social media. 3 As a consequence of this phenomenon, specific patterns to the target-dataset (e.g. "wanna" or "gonna" in the UGC in social media) are difficult to learn by pre-trained units. This phenomenon is non-desirable, since such specific units are essential, especially for target-specific classes [START_REF] Zhou | Revisiting the Importance of Individual Units in CNNs via Ablation[END_REF]181].

• The second sub-chapter (§6.3) proposes a new method to overcome the above-mentioned drawbacks of the SFT scheme of transfer learning. Precisely, we propose a hybrid method that takes benefit from both worlds, random initialisation and transfer learning, without their drawbacks. It consists in augmenting the source-network (set of pre-trained units)

with randomly initialised units (that are by design non-biased) and jointly learn them. We call our method PretRand (Pretrained and Random units). PretRand consists of three main ideas: 1) Augmenting the source-network (set of pre-trained units) with a random branch composed of randomly initialised units, and jointly learn them. We recall that random initialisation means training from scratch on target data. We use "unit" and "neuron" interchangeably. The same observation was pointed out in computer-vision [START_REF] Zhou | Interpreting deep visual representations via network dissection[END_REF] when fine-tuning on scenes a model pre-trained on objects, it is the neuron firing on the "white-dog" object that becomes highly sensitive to the "white-waterfall" scene.). Then, Υ's outputs [x 1 , . . . , x n] are fed into the Φ that outputs a context sensitive representation for each token, consisting of a single biLSTM layer which iteratively passes through the sentence in both directions. Finally, Ψ consists of a softmax fully-connected layer that produces the classes-probabilities for each w i as follows:

ŷi = (Ψ • Φ • Υ)(w i).
In this sub-chapter, we analyse the precedent chapter's results of the fine-tuning adaptation scheme of transfer learning, referred to as Standard Fine-tuning (SFT) henceforth. Recall that SFT (§5.3.2.2) consists on three steps:

1. Pretraining the source-model on the source-task;

2. Initialising target model's word representation component (Υ) and feature extractor component (Φ) weights with source model's ones, while the classifier (Ψ) is randomly initialised;

3. And finally, in the adaptation stage, the three modules are jointly trained on the targetdataset by minimising the SCE loss using the SGD algorithm.

Our results, in the precedent chapter (Table 5.4), show that applying this method improves the results compared to training from scratch (random initialisation), across all tasks and social media data-sets. Here, we carry out a series of analysis to spot some of the limits of this method, namely, the hidden negative transfer (§6.2.2) and the bias in pretrained neurons (§6.2.3).

Training details

In the standard word-level embeddings, tokens are lower-cased while the character-level component still retains access to the capitalisation information. We set the randomly initialised character embedding dimension (dchar) at 50, the dimension of hidden states of the character-level biLSTM (d char) at 100 and used 300-dimensional word-level embeddings (d word). Word-level embedding were pre-loaded from publicly available GloVe pre-trained vectors on 42 billions words from a web crawling and containing 1.9M words [START_REF] Pennington | Glove: Global vectors for word representation[END_REF]. Note that, these embeddings are also updated during training. For the FE component, we use a single layer biLSTM (token-level feature extractor) and set the number of units (H) to 200. In all experiments, both pretraining and fine-tuning were performed using the same training settings, SGD with momentum with early stopping and mini-batches of 16 sentences, with a fixed learning rate of 1.5 × 10 -2 .

Analysis of the Hidden Negative Transfer

It has been shown in many works in the literature [START_REF] Michael T Rosenstein | To transfer or not to transfer[END_REF][START_REF] Liang Ge | On handling negative transfer and imbalanced distributions in multiple source transfer learning[END_REF][START_REF] Ruder | Neural Transfer Learning for Natural Language Processing[END_REF][START_REF] Gui | Negative transfer detection in transductive transfer learning[END_REF]49,56,[START_REF] Wang | Characterizing and avoiding negative transfer[END_REF][START_REF] James | Learning To Avoid Negative Transfer in Few Shot Transfer Learning[END_REF] that, when the source and target domains are less related (e.g. languages from different families), sequential transfer learning may lead to a negative effect on the performance, instead of improving it. This phenomenon is referred to as negative transfer. Precisely, negative transfer is considered when transfer learning is harmful to the target task/dataset, i.e. the performance when using chapter 5: Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 91 transfer learning algorithm is lower than that with a solely supervised training on in-target data [START_REF] Torrey | Transfer learning. Handbook of research on machine learning applications and trends: algorithms, methods, and techniques[END_REF]. In NLP, negative transfer phenomenon has only seldom been studied. We can cite the recent work of Kocmi [START_REF] Kocmi | Exploring Benefits of Transfer Learning in Neural Machine Translation[END_REF] who evaluated the negative transfer in transfer learning in Neural Machine Translation (NMT) when the transfer is performed between different language-pairs. They found that: 1) The distributions mismatch between source and target language-pairs does not beget a negative transfer.

2) The transfer may have a negative impact when the source language-pair is less-resourced compared to the target one, in terms of annotated examples.

Our experiments have shown that transfer learning techniques from news domain to social media domain boosts tagging performance. Hence, following the above definition, transfer learning from news to social media does not beget a negative transfer. Contrariwise, in this work, we instead consider the hidden negative transfer, i.e. the percentage of predictions that were correctly tagged by random initialisation, but using transfer learning gives wrong predictions.

Precisely, we perform empirical analysis to investigate the hidden negative transfer in SFT.

We propose the following experiments: 1) we show that the final gain brought by SFT can be separated into two categories: positive transfer and negative transfer. We define positive transfer as the percentage of tokens that were wrongly predicted by random initialisation, but the SFT changed to the correct ones, while negative transfer represents the percentage of words that were tagged correctly by random initialisation, but using SFT gives wrong predictions (§6.2.2.1).

2) We study the impact of the pretraining state on negative and positive transfer (§6.2.2.2).

Finally, 3) we provide some qualitative examples of negative transfer (§6.2.2.3).

Quantifying Positive Transfer & Negative Transfer

Let us consider the gain G i brought by the SFT scheme of transfer learning compared to random initialisation for the dataset i. G i is defined as the difference between positive transfer PT i and negative transfer N T i :

G i = PT i -N T i , (6.1)
where positive transfer PT i represents the percentage of tokens that were wrongly predicted by random initialisation, but the SFT changed to the correct ones. Negative transfer N T i represents the percentage of words that were tagged correctly by random initialisation, but using SFT gives wrong predictions. PT i and N T i are defined as follows:

PT i = N corrected i N i , (6.2)
N T i = N f alsif ied i N i , (6.3)
where N i is the total number of tokens in the validation-set, N corrected i is the number of tokens from the validation-set that were wrongly tagged by the model trained from scratch but are We observe that even though the SFT approach is effective since the resulting positive transfer is higher than the negative transfer in all cases, this last mitigates the final gain brought by SFT. For instance, for TChunk dataset, SFT corrected ∼4.7% of predictions but falsified ∼1.7%, which reduces the final gain to ∼3%. Here we calculate positive and negative transfer at the token-level. Thus, the gain shown in Figure 6.1 for WNUT dataset does not correspond to the one in Table 5.4, since the F1 metric is calculated only on named-entities.

The impact of pretraining state on Negative Transfer

The experiment of this section is in the same vein as the experiment of section 5.5.4, where we investigated the question "when are pretrained parameters ready to transfer?". Likewise, here we pick the pretrained weights at different pretraining epochs; that we call the pretraining states.

Then, we assess the performance when transferring each. Nevertheless, here we are instead interested by the impact of the pretraining state on negative and positive transfer. Specifically, in Figure 6.2, we plot for each target dataset, the curves of positive transfer (green curves) and negative transfer (red curves) brought by initialising the target model with pretrained weights from different pretraining states compared to the random initialisation. Clearly, both negative and positive transfer increase with pretraining epochs, since more source domain knowledge is acquired in the course of pretraining. More importantly, for TweeBank and ArK datasets, the negative transfer increases rapidly in the last pretraining epochs. However, for TPoS dataset, the negative transfer stays almost stable throughout pretraining epochs. This observation is tied chapter 5: Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 93 to our findings in section.5.5.4 experiment, and thus it could be similarly explained by the fact that, at the last states of pretraining, the pretrained parameters become well-tuned to the source dataset. Thus, when the source and target datasets are not similar enough, we observe an increase of negative transfer at the end of pretraining and thus a drop in the transfer performance.

Qualitative Examples of Negative Transfer

We report in Table 6.2 concrete examples 4 of words whose predictions were falsified when using SFT scheme compared to standard supervised training scheme. Among mistakes we have observed:

• Tokens with an upper-cased first letter: In news (formal English), only proper nouns start with an upper-case letter inside sentences. Consequently, in the SFT scheme, the pre-trained units fail to slough this pattern which is not always respected in social media.

id b-vp b-np i-np b-advp b-np b-np i-intj O b-np b-np b-intj i-np Wnut Hey Father & × IMO × UN Glasgow Supreme O O O O O b-location b-person b-person b-person i-group b-group b-group b-group b-corporation
Hence, we found that most of the tokens with an upper-cased first letter are mistakenly predicted as proper nouns (PROPN) in POS, e.g. Award, Charity, Night, etc. and as entities in NER, e.g. Father, Hey, etc., which is consistent with the findings of Seah et al.

[320];

negative transfer is mainly due to conditional distribution differences between source and target domains (P S (Y |X)) = P T (Y |X)).

• Contractions are frequently used in social media to shorten a set of words. For instance, in TPoS dataset, we found that "'s" is in most cases predicted as a "possessive ending (pos)" instead of "Verb, 3rd person singular present (vbz)". Indeed, in formal English, "'s" is used in most cases to express the possessive form, e.g. "company's decision", but rarely in contractions that are frequently used in social media, e.g. "How's it going with you?".

Similarly, "wont" is a frequent contraction for "will not", e.g. "i wont get bday money lool", predicted as "verb" instead of "modal (MD)"5 by the SFT scheme. The same for "id", which stands for "I would".

• Abbreviations are frequently used in social media to shorten the way a word is standardly written. We found that SFT stumbles on abbreviations predictions, e.g. 2pac (Tupac), 2 • Misspellings: Likewise, we found that the SFT scheme often gives wrong predictions for misspelt words, e.g. awsome, bout, amazin.

Interpreting the Bias in Pretrained Models

Much effort has been devoted to understand and interpret the information encoded in pre-trained models, especially pretrained contextual embeddings (ELMo, BERT, etc.). However, how this information is evolving during fine-tuning in the target task is relatively poorly understood. Here, we aim to gain some insights into how the inner pretrained representations are updated during fine-tuning on social media datasets when using the SFT scheme of transfer learning. For this, we propose to analyse the feature extractor's (Φ) activations. Specifically, we attempt to visualise biased neurons, i.e. pre-trained neurons that do not change that much from their initial state.

Formally, let us consider a validation-set of N words, the feature extractor Φ generates a matrix h ∈ M N,H (R) of activations over all validation-set's words, where M f ,g (R) is the space of f × g matrices over R, and H is the size of the hidden representation (number of neurons).

Each element h i,j from the matrix represents the activation of the neuron j on the word w i .

Given two models, the first before fine-tuning and the second after fine-tuning, we obtain two matrices h bef ore ∈ M N,H (R) and h af ter ∈ M N,H (R), which give, respectively, the activations of Φ over all validation-set's words before and after fine-tuning. Here we aim to visualise and quantify the change of the representations generated by the model from the initial state, h bef ore (before fine-tuning), to the final state, h af ter (after fine-tuning). For this purpose, we perform two experiments: 1) quantifying the change of pretrained individual neurons (§6.2.3.1), and 2)

visualising the evolution of pretrained neurons stimulus during fine-tuning (§6.2.3.2).

Quantifying the change of individual pretrained neurons

Approach

Here, we propose to quantify the change of the knowledge encoded in pretrained neurons after fine-tuning. For this purpose, we propose to calculate the similarity (correlation) between neurons activations before and after fine-tuning, when using the SFT adaptation scheme. Precisely, we calculate the correlation coefficient between each neuron's activation on the target-domain validation-set before starting fine-tuning and at the end of fine-tuning.

Following the above formulation, and as illustrated in Figure 6.3, from h bef ore and h af ter matrices, we extract two vectors h bef ore .j ∈ R N and h af ter .j ∈ R N , representing respectively the activations of a unit j over all validation-set's words before and after fine-tuning, where N is the number of words in the validation-set. Next, we generate an asymmetric correlation matrix C ∈ M H,H (R), where each element c jt in the matrix represents the Pearson's correlation between the unit j activation vector after fine-tuning (h af ter .j

) and the unit t activation vector before fine-tuning (h bef ore .t

), computed as follows: Here µ bef ore j and σ bef ore j represent, respectively, the mean and the standard deviation of unit j activations over the validation set. Clearly, we are interested by the matrix diagonal, where c jj represents the charge of each unit j from Φ, i.e. the correlation between each unit's activations after fine-tuning to its activations before fine-tuning.

Results

To visualise the bias phenomenon occurring in the SFT scheme, we quantify the charge of individual neurons. Precisely, we plot the asymmetric correlation matrix (C) between the Φ layer's units before and after fine-tuning for each social media dataset (ArK for POS, TChunk for CK and WNUT-17 for NER). From the resulting correlation matrices illustrated in Figure 6.4, we can observe the diagonal representing the charge of each unit, with most of the units having a high charge (light colour), alluding the fact that, every unit after fine-tuning is highly correlated with itself before fine-tuning. Hypothesising that high correlation in the diagonal entails high bias, the results of this experiment confirm our initial motivation that pre-trained units are highly biased to what they have learnt in the source-dataset, making them limited to learn some patterns specific to the target-dataset. Our remarks were confirmed recently in the recent work of Merchant et al. [START_REF] Merchant | What Happens To BERT Embeddings During Fine-tuning?[END_REF], who also found that fine-tuning is a "conservative process".

ArK dataset

Tchunk dataset Wnut dataset We follow two main steps (illustrated in Figure 6.5):

1. We represent each unit j from Φ with a random matrix A (j) ∈ M N,D (R) of the said unit's activations on all the validation-set at different training epochs, where D is the number of epochs and N is the number of words in the validation-set. Thus, each element a (j) y,z in the matrix represents the activation of the unit j on the word w y at the epoch z.

2. We carry out a sorting of each column of the matrix (i.e. same epoch) and pick the higher k words (for top-k words firing the unit positively) and the lowest k words (for top-k words firing the unit negatively), leading to two matrices, A

Results

Here, we give concrete visualisations of the evolution of pretrained neurons stimulus during finetuning when transferring from the news domain to the social media domain. Specifically, we plot the matrices of top-10 words activating each neuron j, positively (A (j) best+) or negatively (A (j) best-). The results are plotted in Figure 6.6 for ArK (POS) dataset, Figure 6.7 for TweeBank dataset (POS) and Figure 6.8 for WNUT dataset (NER). Rows represent the top-10 words from the target dataset activating each unit, and columns represent fine-tuning epochs; before fine-tuning in column 0 (at this stage the model is only trained on the source-dataset), and during fine-tuning (columns 5 to 20). Additionally, to get an idea about each unit's stimulus on source dataset, we also show, in the first column (Final-WSJ for POS and Final-CONLL-03 for NER), top-10 words from the source dataset activating the same unit before fine-tuning. In the following, we describe the information encoded by each provided neuron. 6chapter 5: Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 99

• Ark -POS: (Figure 6.6) -Unit-196 is sensitive to contractions containing an apostrophe regardless of the contraction's class. However, unlike news, in social media and particularly ArK dataset, apostrophes are used in different cases. For instance i'm, i'll and it's belong to the class "L" that stands for "nominal + verbal or verbal + nominal", while the contractions can't and don't belong to the class "Verb".

-Unit-64 is sensitive to plural proper nouns on news-domain before fine-tuning, e.g. Koreans and Europeans, and also on ArK during fine-tuning, e.g. Titans and Patriots.

However, in ArK dataset, "Z" is a special class for "proper noun + possessive ending", e.g. Jay's mum, and in some cases the apostrophe is omitted, e.g. Fergusons house for Ferguson's house, which thus may bring ambiguity with plural proper nouns in formal English. Consequently, unit-64, initially sensitive to plural proper nouns, is also firing on words from the class "Z", e.g. Timbers (Timber's). -Unit-37 is sensitive before and during fine-tuning on plural nouns, such as gazers and feminists. However, it is also firing on the word slangs because of the s ending, which is in fact a proper noun. This might explain the wrong prediction for the word slangs (noun instead of proper noun) given by the SFT scheme (Table 6.2).

-Unit-169 is highly sensitive to proper nouns (e.g. George and Washington) before fine-tuning, and to words with capitalised first-letter whether the word is a proper noun or not (e.g. Man and Father) during fine-tuning on the TweeBank dataset.

Which may explain the frequent wrong predictions of tokens with upper-cased first letter as proper nouns by the SFT scheme.

Unit-37: Tweebank dataset Unit-169: Tweebank dataset -Unit-101 is firing before and after fine-tuning on words that are part of an "Organisation" entity, e.g County (Ross County), Park (Queens Park Rangers), etc.

Accordingly, it is sensitive to the word Supreme. As illustrated in Table 6.2, this word was mistakenly predicted as a part of an "Organisation" by SFT. Indeed, Supreme Court is frequently used in CONLL-03 (the source dataset) as an Organisation.

However in rare cases such as Supreme Court judge, which is a "Person", Supreme should be tagged as a part of a "Person" entity.

-Unit-184 is firing before and after fine-tuning on words that are part of an "Organisation" entity, e.g Bank, inc and "&". Indeed, this last is frequently used in formal English in organisation names such as: Jones & co. However, in social media, it is mostly used as a contraction for the connector "and". Consequently, as illustrated in Table 6.2. "&" is mistakenly predicted as a part of an "Organisation" by the SFT scheme.

Unit-101: WNUT dataset Unit-184: WNUT dataset

Conclusion

In this sub-chapter, we have analysed the results of the standard fine-tuning adaptation scheme of transfer learning. Firstly, we were interested in the hidden negative transfer that arises when transferring from the news domain to the social media domain. Indeed, negative transfer has only seldom been tackled in sequential transfer learning works in NLP. In addition, earlier research papers evoke negative transfer only when the source domain has a negative impact on the target model. We showed that despite the positive gain brought by transfer learning from the high-resource news domain to the low-resource social media domain, we found that the hidden negative transfer mitigates the final gain brought by transfer learning. Second, we carried out an interpretive analysis of the evolution, during fine-tuning, of pretrained representations. We found that while fine-tuning necessarily makes some changes during fine-tuning on social media datasets, pretrained neurons are biased by what they have learnt in the source domain. In simple words, pretrained neurons tend to conserve much information from the source domain. Some of this information is undoubtedly beneficial for the social media domain (positive transfer), but some of it is indeed harmful (negative transfer). We hypothesise that this phenomenon of biased neurons restrains the pretrained model from learning some new features specific to the target domain (social media). To overcome this drawback of the standard fine-tuning adaptation scheme, we propose in the next sub-chapter a new scheme of adaptation.

We believe that more extensive experiments would be interesting to better understand the phenomenon of the hidden negative transfer and to confirm our observations. First, one can investigate the impact of the model's hyper-parameters (size, activation functions, learning rate, etc.) as well as regulation methods (dropout, batch normalisation, weights decay, etc.).

Second, we suppose that the hidden negative transfer would be more prominent when the target dataset is too small since the pre-learned source knowledge will be more preserved. Hence, it would be interesting to assess the impact of target-training size. Third, a promising experiment would be to study the impact of the similarity between the source and the target distributions.

For instance, one can use instance selection methods (§2.

The Proposed Method: PretRand

From our analysis, we have found that the SFT scheme suffers from a main limitation. Indeed, despite the fine-tuning on the target domain, pre-trained neurons still biased by what they have learnt from the source domain, and thus some of these neurons struggle with learning uncommon target-specific patterns. We propose a new adaptation scheme that we call PretRand, joint learning of Pretrained and Random units. We start by presenting our proposed approach in section 6.3.1. Then, we report the results thereof in section 6.3.2. Finally, we carry out an empirical analysis of PretRand approach in section 6.3.3.

Method Description

We propose to take benefit from both worlds, the pre-learned knowledge in the pretrained neurons and the target-specific features easily learnt by random neurons. Roughly, we propose to augment the target-network with normalised, weighted and randomly initialised units that beget a better adaptation while maintaining the valuable source knowledge. Specifically, our proposed approach, PretRand, consists of three main ideas (illustrated in Figure 6.9):

1. Augmenting the pre-trained branch with a random one to facilitate the learning of new target-specific patterns (§6.3.1.1);

2. Normalising both branches to balance their behaviours during fine-tuning (§6.3.1.2);

3. Applying learnable weights on both branches to let the network learn which of random or pre-trained one is better for every class. (§6.3.1.3).

Adding the Random Branch

We expect that augmenting the pretrained model with new randomly initialised neurons allows a better adaptation during fine-tuning. Thus, in the adaptation stage, we augment the pre-trained model with a random branch consisting of additional random units (as illustrated in scheme "a" of Figure 6.9). Several works have shown that deep (top) layers are more task-specific than shallow (low) ones [START_REF] Matthew E Peters | Deep contextualized word representations[END_REF][START_REF] Mou | How Transferable are Neural Networks in NLP Applications[END_REF]. Thus, deep layers learn generic features easily transferable between tasks.

In addition, word embeddings (shallow layers) contain the majority of parameters. Based on these factors, we choose to expand only the top layers as a trade-off between performance and number of parameters (model complexity). In terms of the expanded layers, we add an extra biLSTM layer of k units in the FE: Φ r (r for random); and a new FC layer of C units: Ψ r .

With this choice, we increase the complexity of the model only 1.02× compared to the base one (SFT). Concretely, for every w i , two predictions vectors are computed; ŷp i from the pre-trained branch and ŷr i from the random one. Specifically, the pre-trained branch predicts classprobabilities following:

ŷp i = (Ψ p • Φ p)(x i) , (6.5)
with x i = Υ(w i). Likewise, the additional random branch predicts class-probabilities following:

ŷr i = (Ψ r • Φ r)(x i). (6.6)
To get the final predictions, we simply apply an element-wise sum between the outputs of the pre-trained branch and the random branch:

ŷi = ŷp i ⊕ ŷr i . (6.7)
As in the classical scheme, the SCE (Softmax Cross-Entropy) loss is minimised but here, both branches are trained jointly.

Independent Normalisation

Our first implementation of adding the random branch was less effective than expected. The main explanation is that the pre-trained units were dominating the random units, which means that the weights as well as the gradients and outputs of pre-trained units absorb those of the random units. As illustrated in the left plot of Figure 6.10, the absorption phenomenon stays true even at the end of the training process; we observe that random units weights are closer to zero.

This absorption propriety handicaps the random units in firing on the words of the target dataset (The same problem was stated in some computer-vision works [START_REF] Liu | Parsenet: Looking wider to see better[END_REF][START_REF] Wang | Growing a brain: Fine-tuning by increasing model capacity[END_REF][START_REF] Tamaazousti | Mucale-net: Multi categoricallevel networks to generate more discriminating features[END_REF]).

To alleviate this absorption phenomenon and push the random units to be more competitive, we normalise the outputs of both branches (ŷ p i and ŷr i) using the 2 -norm, as illustrated in the scheme "b" of Figure 6.9. The normalisation of a vector "x" is computed using the following formula:

N 2 (x) = x ||x|| 2 . (6.8)
Thanks to this normalisation, the absorption phenomenon was solved, and the random branch starts to be more effective (see the right distribution of Figure 6.10).

Furthermore, we have observed that despite the normalisation, the performance of the pretrained classifiers is still much better than the randomly initialised ones. Thus, to make them more competitive, we propose to start with optimising only the randomly initialised units while freezing the pre-trained ones, then, launch the joint training. We call this technique random++.

Attention Learnable Weighting Vectors

Heretofore, pre-trained and random branches participate equally for every class' predictions, i.e. we do not weight the dimensions of ŷp i and ŷr i before merging them with an element-wise summation. Nevertheless, random classifiers may be more efficient in specific classes compared to pre-trained ones and vice-versa. In other terms, we do not know which of the two branches (random or pre-trained) is better for making a suitable decision for each class. For instance, if the random branch is more efficient for predicting a particular class c j , it would be better to give more attention to its outputs concerning the class c j compared to the pretrained branch.

Therefore, instead of simply performing an element-wise sum between the random and pre-trained predictions, we first weight ŷp i with a learnable weighting vector u ∈ R C and ŷr i with a learnable weighting vector v ∈ R C , where C is the tagset size (number of classes).

Such as, the element u j from the vector u represents the random branch's attention weight for the class c j , and the element v j from the vector v represents the pretrained branch's attention weight for the class c j . Then, we compute a Hadamard product with their associated normalised predictions (see the scheme "c" of Figure 6.9). Both vectors u and v are initialised with 1-values and are fine-tuned by back-propagation. Formally, the final predictions are computed as follows:

ŷi = u N p (ŷ p i) ⊕ v N p (ŷ r i).
(6.9)

Experimental Results

First, we present the experimental setup in section 6.3.2.1. Second, in section 6.3.2.2, we compare PretRand's to the baseline methods. Third, in section 6.3.2.3, we measure the importance of each component of PretRand for the overall performance. Fourth, in section 6.3.2.4, we investigate the impact of incorporating ELMo contextual representations, in the baseline methods vs PretRand.

Finally, in section 6.3.2.5, we compare PretRand to best SOTA (State-Of-The-Art) approaches.

Datasets

In this sub-chapter, we assess PretRand's performance on POS, CK, NER and MST tasks on the Social Media domain. For POS task, we use the WSJ part of Penn-Tree-Bank (PTB) [START_REF] Marcus | Building a large annotated corpus of English: The Penn Treebank[END_REF] news dataset for the source news domain and TPoS, ArK and TweeBank [START_REF] Liu | Parsing Tweets into Universal Dependencies[END_REF] for the target social media domain. For CK task, we use the CONLL2000 [354] dataset for the news source domain and TChunk [START_REF] Ritter | Named entity recognition in tweets: an experimental study[END_REF] for the target domain. For NER task, we use the CONLL2003 [START_REF] Kim | Introduction to the CoNLL-2003 shared task: language-independent named entity recognition[END_REF] for the source news domain and WNUT-17 [85] dataset for the social media target domain. For MST, we use the MTT shared-task [START_REF] Zampieri | Language identification and morphosyntactic tagging: The second VarDial evaluation campaign[END_REF] benchmark containing two types of datasets: social media and news, for three south-Slavic languages: Slovene (sl), Croatian (hr) and Serbian (sr). Statistics of all the datasets are summarised in Table 6. 3. More details about the tasks and datasets are provided in chapter 4.

Training details

We use the following Hyper-Parameters (HP): WRE's HP: In the standard word-level embeddings, tokens are lower-cased while the character-level component still retains access to the capitalisation information. We set the randomly initialised character embedding dimension at 50, the dimension of hidden states of the character-level biLSTM at 100 and used 300-dimensional word-level embeddings. The latter were pre-loaded from publicly available GloVe pre-trained vectors on 42 billions words from a web crawling and containing 1.9M words [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] for English experiments, and pre-loaded from publicly available FastText [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF] pre-trained vectors on common crawl 7 for South-Slavic languages. Note that, these embeddings are also updated during 6.3. THE PROPOSED METHOD: PRETRAND training. For contextual words embeddings, we used ELMo embeddings. For English, we used the small official pre-trained model on 1 billion word benchmark (13.6M parameters) 8 . Regarding South-Slavic languages, pre-trained models are not available but for Croatian9 [START_REF] Che | Towards Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Concatenation[END_REF]. Note that, in all experiments contextual embeddings are frozen during training. FE's HP: we used a single layer biLSTM (token-level feature extractor) and set the number of units to 200. PretRand's random branch HP: we experimented our approach with k = 200 added random-units. Global HP: In all experiments, training (pretraining and fine-tuning) was performed using the SGD with momentum with early stopping, mini-batches of 16 sentences and learning rate of 1.5 × 10 -2 .

Comparison with Baseline Methods

In this section, we assess the performance of PretRand through a comparison to six baselinemethods, illustrated in Figure 6.11. First, since PretRand is an amelioration of the standard fine-tuning (SFT) adaptation scheme, we mainly compare it to the SFT baseline. Besides, we assess whether the gain brought by PretRand is due to the increase in the number of parameters;

thus we also compare with the standard supervised training scheme with a wider model. Finally, the final predictions of PretRand are the combination of the predictions of the two branches, randomly initialised and pretrained, which can make one think about ensemble methods [91].

Thus we also compare with ensemble methods. The following items describe the different baseline-methods used for comparison:

• (a) From-scratch 200 : The base model described in section 5.1, trained from scratch using the standard supervised training scheme on social media dataset (without transfer learning).

Here the number 200 refers to the dimensionality of the biLSTM network in the FE (Φ).

• (b) From-scratch 400 : The same as "From-scratch 200 " baseline but with 400 instead of 200 biLSTM units in the FE. Indeed, by experimenting with this baseline, we aim to highlight that the impact of PretRand is not due to the increase in the number of parameters.

• (c) Standard Fine-tuning (SFT): Pre-training the base model on the source-dataset, followed by an adaptation on the target-dataset with the standard fine-tuning scheme (chapter 5 -scheme D in section 5.4.2.2).

• (d) Standard Feature Extraction (SFE): The same as SFT, but the pretrained parameters are frozen during fine-tuning on the social media datasets (chapter 5 -scheme C in section 5.4.2.2).

• (e) Ensemble (2 rand): Averaging the predictions of two base models that are randomly initialised and learnt independently on the same target dataset, but with a different random initialisation. We summarise the comparison of PretRand to the above baselines in Tables 6. 4. In the first (in %) on social media test-sets. In the second column (#params), we highlight the number of parameters of each method compared to the reference From-scratch 200 baseline. In the last column, we report the aNRG score of each method compared to the reference From-scratch 200 .

Best score per dataset is in bold, and the second best score is underlined.

our method and the ensemble methods. Indeed, in addition to normalisation and weighting vectors, PretRand is conceptually different since the random and pretrained branches share the WRE component. Also, the results of From-scratch 400 compared to From-scratch 200 baseline confirm that the gain brought by PretRand is not due to the supplement parameters. In the following (§6.3.2.3), we show that the gain brought by PretRand is mainly due to the shared word representation in combination with the normalisation and the learnable weighting vectors during training. Moreover, a key asset of PretRand is that it uses only 0.02% more parameters compared to the fine-tuning baseline.

Diagnostic Analysis of the Importance of PretRand's Components

While in the precedent experiment we reported the best performance of PretRand, here we carry out an ablation study to diagnose the importance of each component in our proposed approach. Specifically, we successively ablate the main components of PretRand, namely, the learnable weighting vectors (learnVect), the longer training of the random branch (random++) and the normalisation (2 -norm). From the results in Table 6.5, we can first observe that ablating each of them successively degrades the results across all datasets, which highlights the importance of each component. Second, the results are only marginally better than than the SFT when ablating the three components from PretRand (the last line in Table 6.5). Third, ablating the normalisation layer significantly hurts the performance across all data-sets, confirming the importance of this step, making the two branches more competitive. 6.6, " " means that the corresponding representation is used and " " means that it is ablated. For instance, in setting A only character-level representation is used.

Three important observations can be highlighted. First, in training from scratch scheme, as expected, contextualised ELMo embeddings have a considerable effect on all datasets and tasks. For instance, setting D (using ELMo solely) outperforms setting C (standard concatenation between character-level and word-level embeddings), considerably on Chunking and NER and slightly on POS tagging (except ArK). Furthermore, combining ELMo embeddings to the standard concatenation between character-level and word-level embeddings (setting G) gives the best results across all tasks and social media datasets. Second, when applying our transfer learning approaches, whether SFT or PretRand, the gain brought by ELMo embeddings (setting G) compared to standard concatenation between character-level and word-level embeddings PretRand: +1.54%) and major on NER (SFT: +5.3% , PretRand: +4.2%). Finally, it should be pointed out that using ELMo slows down the training and inferences processes; it becomes 10 times slower.

(

Comparison to SOTA

We compare our results to the following SOTA methods:

• CRF [START_REF] Ritter | Named entity recognition in tweets: an experimental study[END_REF] is a Conditional Random Fields (CRF) [START_REF] John D Lafferty | Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[END_REF] based model with Brown clusters.

It was jointly trained on a mixture of hand-annotated social-media texts and labelled data from the news domain, in addition to annotated IRC chat data [START_REF] Craig | Lexical and discourse analysis of online chat dialog[END_REF].

• GATE [START_REF] Derczynski | Twitter part-of-speech tagging for all: Overcoming sparse and noisy data[END_REF] is a model based on Hidden Markov Models with a set of normalisation rules, external dictionaries, lexical features and out-of-domain annotated data. The authors experimented it on TPoS, with WSJ and 32K tokens from the NPS IRC corpus. They also proposed a second variety (GATE-bootstrap) using 1.5M additional training tokens annotated by vote-constrained bootstrapping.

• ARK tagger [START_REF] Owoputi | Improved part-of-speech tagging for online conversational text with word clusters. Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: human language technologies[END_REF] is a model based on first-order Maximum Entropy Markov Model with greedy decoding. Brown Clusters, regular expressions and careful hand-engineered lexical chapter 5: Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 113 features were also used.

• TPANN [START_REF] Gui | Part-of-speech tagging for twitter with adversarial neural networks[END_REF] is a biLSTM-CRF model that uses adversarial pre-training (the method described in §2.5.1) to leverage huge amounts of unlabelled social media texts, in addition to labelled datasets from the news domain. Next, the pretrained model is further finetuned on social media annotated examples. Also, regular expressions were used to tag Twitter-specific classes (hashtags, usernames, urls and @-mentions).

• Flairs [START_REF] Akbik | Pooled contextualized embeddings for named entity recognition[END_REF] is a biLSTM-CRF sequence labelling architecture fed with the Pooled Contextual Embeddings [7] (pre-trained on character-level language models).

• UH&CU [START_REF] Silfverberg | Sub-label dependencies for neural morphological tagging-the joint submission of University of Colorado and University of Helsinki for VarDial[END_REF] is a biLSTM-based sequence labelling model for MST, jointly trained on formal and informal texts. It is similar to our base model, but used 2-stacked biLSTM layers. In addition, the particularity of UH&CU is that the final predictions are generated as character sequences using an LSTM decoder, i.e. a character for each morpho-syntactic feature instead of an atomic label.

• Multi-dataset-multi-task (MDMT) [START_REF] Mishra | Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets[END_REF] • Data Annealing (DA) [START_REF] Gu | Data Annealing for Informal Language Understanding Tasks. Proceedings of the[END_REF] is a fine-tuning approach similar to our SFT baseline, but the passage from pretraining to fine-tuning is performed gradually, i. • BertTweet [START_REF] Dat Quoc Nguyen | BERTweet: A pre-trained language model for English Tweets[END_REF] is a large-scale model pretrained on an 80GB corpus of 850M English

Tweets. The model is trained using BERT base [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] architecture and following the pretraining procedure of RoBERTa [START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF]. In order to perform POS tagging and NER, a randomly initialised linear prediction layer is appended on top of the last Transformer layer of BERTweet, and then the model is fine-tuned on target tasks examples. In addition, lexical dictionaries were used to normalise social media texts.

In Table 6 explained by the fact that the Serbian source dataset (news) is small compared to Slovene and Croatian, reducing the gain brought by pretraining and thus that brought by PretRand. Likewise, Akbik et al. [START_REF] Akbik | Pooled contextualized embeddings for named entity recognition[END_REF] outperforms our approach on NER task, in addition to using a CRF on top of the biLSTM layer, they used Contextual string embeddings that have been shown to perform better on NER than ELMo [START_REF] Akbik | Pooled contextualized embeddings for named entity recognition[END_REF]. Also, MDMT outperforms PretRand slightly on TPoS dataset.

We can observe that BERT-based approaches (DA-BERT and BertTweet) achieve strong results, especially on NER, where BertTweet begets the best SOTA score. Finally, we believe that adding a CRF classification layer on top of our models will boost our results (like TPANN, MDMT, DA-LSTM and DA-BERT), as it is able to model strong dependencies between adjacent words.

Note that, MDMT, DA-LSTM, DA-BERT and BertTweet are recent works, published after our work.

Analysis

In this section, we perform an empirical analysis of PretRand. First, we investigate the scenarios in which PretRand is most advantageous (§6. Here, we attempt to examine in which scenarios PretRand is most beneficial. We firstly explore in Figure 6.12, which class from TweeBank dataset benefits more from PretRand compared to SFT. After that, we evaluate in Figure 6.13 the gain on accuracy brought by PretRand compared to SFT, according to different target-datasets' sizes. We observe that PretRand has desirably a bigger gain with bigger target-task datasets, which clearly means that the more target training-data, the more interesting our method will be. This observation may be because the random branch needs sufficient amounts of target training samples to become more competitive with the pretrained one. Here, we resume the negative transfer experiment performed in section 6.2.2.1. Precisely, we compare the results of PretRand to those of SFT. We show in Figure 6.14 the results on English social media datasets, first tagged with the classic training scheme (From-scratch-200) and then using SFT in the left plot (or using PretRand in the right plot). Blue bars show the percentage of positive transfer, i.e. predictions that were wrong, but the SFT (or PretRand) changed to the correct ones, and red bars give the percentage of negative transfer, i.e. predictions that were 6.3. THE PROPOSED METHOD: PRETRAND tagged correctly by From-scratch-200, but using SFT (or PretRand) gives the wrong predictions.

We observe the high impact of PretRand on diminishing negative transfer vis-a-vis to SFT.

Precisely, PretRand increases positive transfer by ∼0.45% and decreases the negative transfer by ∼0.94% on average.

Visualising Individual Neurons from the Random Branch of PretRand

In this section, we highlight the ability of the randomly initialised neurons, from the random branch in PretRand, to learn patterns that are specific to the target-dataset and not learnt by the pre-trained ones, because of their bias problem. For that purpose, we visualise some unique units -i.e. random units having a max correlation lower than 0.4 with the pre-trained onesemerging in the random branch. We plot top-10 words activating some units from Φ r , i.e. the biLSTM layer from the random branch, during the fine-tuning stage of PretRand (we follow the methodology described in section 6.2.3.2). In the following, we provide some examples of new target-specific patterns learnt by individual neurons from the random branch: 10 10 Note that, here we have visualised individual neurons from the random branch in PretRand, it would be interesting to visualise individual units from the pretrained branch to gain insights about the evolution of the encoded knowledge in pretrained neurons when using PretRand adaptation scheme compared to the SFT adaptation scheme. -Unit-69 is sensitive to the ARK's special tag "L" that stands for "nominal + verbal" (e.g. i'm, it's, that's).

-Unit-84 is specific to frequent misspellings in Tweets. For instance, omitting the last "g" in words ending with "ing", e.g. doin, goin, tryin.

ARK dataset -Unit-69: Specific to ARK's special tag (L)

ArK dataset -Unit-84: Specific to frequent misspellings in Tweets • TweeBank dataset -POS: (Figure 6.16)

We show top-10 words activating two units, unit-160 and unit-04. Both are sensitive to words like gonna (going to) or wanna (want to), frequently used contractions in Tweets.

Indeed, in TweeBank, these words are tokenized into two tokens: gon and na, with the later annotated as a "particle" and the former as a "verb". We observe that unit-160 is highly discriminative to the "verb" part and unit-04 to the "particle" part. • WNUT dataset -NER: (Figure 6.17)

-Unit-71: We found in Table 6.2 that the symbol "&" (frequently used in Tweets as an abbreviation for "and") was often mistakenly predicted in the SFT scheme as part of an Organisation entity. Further, we showed in Figure 6.8 that "&" is among the words that are firing a unit sensitive to Organisation entities since "&" is frequently used in formal English in organisation names. Contrariwise, the unit-71 from the random branch is correctly firing on the symbol "&" with the connector "and".

-Unit-102 is sensitive to Product entities, a rare class which is specific to WNUT-17

dataset, e.g. "Galaxy", "Apple", "Nintendo", etc. It is noteworthy that, we did not find any unit from the SFT scheme that is specific to Product entities.

-Unit-146: In the SFT scheme, the word "Supreme" is among top-10 words activating a unit specialised on Organisation entities (Figure 6.8), which can be at the origin of its wrong prediction (Table 6.2). On the other side, in the random branch of PretRand,

Conclusion

Stemming from our analysis, we have introduced a novel approach, that we called PretRand, to overcome the observed problems using 3 main ideas: adding random units and jointly learn them with pre-trained ones; normalising the activations of both to balance their different behaviours;

applying learnable weights on both predictors to let the network learn which of random or pre-trained one is better for every class. The underlying idea is to take advantage of both, target-specific features from the former and general knowledge from the latter. We carried out experiments on domain adaptation for 4 tasks: part-of-speech tagging, morpho-syntactic tagging, chunking and named entity recognition. Our approach exhibits performances that are significantly above standard fine-tuning scheme and is highly competitive when compared to the state-of-the-art.

We believe that many prosperous directions should be addressed in future research. First, PretRand's good results on sequence labelling tasks suggest to consider other kinds of NLP tasks, e.g. sequence-to-sequence and text classification tasks. Further, as negative transfer, and thus bias, is highly arising when transferring between less-related source-target domains [START_REF] Wang | Characterizing and avoiding negative transfer[END_REF], we suppose that PretRand's impact would be more interesting for cross-lingual transfer. Second, in this work, we experimented PretRand adaptation scheme on models pre-trained in a supervised manner, an important step forward is to examine its scalability with other pretraining methods, e.g adversarial or unsupervised pretraining. Third, the increasing omnipresence of Transformers architectures in a wide range of NLP tasks, due to their improved performances, motivates us to experiment with Transformer-based architecture instead of LSTM-based one. Last, a propitious continuity of our work to tackle the bias problem, would be to identify automatically biased neurons in the pre-trained model and proceed to a pruning of the most biased ones before fine-tuning.

Introduction

In the two previous chapters, we have studied the impact of sequential transfer learning to improve NLP models performance for the low-resourced social media domain. We have performed transfer in two steps, mono-task pretraining on a single task from a rich source domain (news) followed by a mono-task fine-tuning of the task of interest on the available few target-domain (social media) examples. Our results have proven that this approach is efficient for many tasks, outperforming the supervised learning from scratch because it takes benefit from cross-domain similarities. Otherwise, Multi-Task Learning (MTL) (§2.5.2) is a widely used method that gave rise to many benefits in several tasks and applications, especially in low-resourced scenarios.

MTL consists in a joint training of related tasks to exploit their underlying similarities.

In this chapter, we propose a new approach that takes benefit from both transfer learning approaches: sequential transfer learning and multi-task learning, by learning a hierarchical multi-task model trained across multiple tasks from the source domain, then fine-tuned on multiple tasks from the target domain. We experiment our proposed approach on four NLP tasks: Part-Of-Speech tagging (POS), chunking (CK), Named Entity Recognition (NER) and Dependency Parsing (DP), applied to the social media domain. We show that our proposed method leads to significant improvements compared to both approaches. Third, as in our case, we have two datasets, the first for news domain and the second for social media domain, both are heterogeneous, i.e. having one task-annotation per sentence. 1 Though, many early works had highlighted the intricacy of multi-task training from heterogeneous datasets [START_REF] Subramanian | Learning general purpose distributed sentence representations via large scale multi-task learning[END_REF] since a scheduling procedure is needed. Therefore, we propose to build multi-task datasets for the news and social media domains, by automatically augmenting the data to unify the aforementioned task-independent datasets.

The remainder of this chapter is as follows. First, we describe our approaches in section 7.2.

Second, we present the experimental settings in section 7.3. Third, we provide our results and analysis in section 7.4. Finally, we conclude our findings in section 7.5.

Proposed Approach

We propose a new approach that combines two transfer learning approaches:

1. Mono-task pretraining (standard fine-tuning): pretraining the neural model on a rich source-task before updating its weights using the standard fine-tuning scheme on the task of interest (target task);

2. Multi-task learning: training the task of interest jointly with other auxiliary tasks with labelled data that might force the network to learn useful features.

Both approaches are known to work very well since a while and have yielded impressive results in recent years. Here, to make sure that we learn useful features that are relevant for the tasks of our interest, we propose an approach that combines pretraining and multi-task learning, and thus takes benefits from the rich source-domain, and especially all its available annotated data and tasks. We call our method: Multi-Task Supervised Pre-training and Adaptation (MuTSPad).

MuTSPad roughly consists in pretraining on a large annotated multi-task source datasets and then fine-tuning it on the multi-task target datasets.

We present in this section our proposed approach. We start by describing briefly the basic neural models to perform POS, NER, CK and DP tasks (§7.2.1). Then, we present the hierarchical multi-task architecture that allows training the four tasks jointly (§7.2.2). Next, we present our approach to train MuTSPad (§7.2.3). Finally, we discuss how we perform MTL with heterogeneous datasets (§7.2.4). 1 To the best of our knowledge, there are no available common datasets containing annotations for all the abovementioned tasks, neither for the news domain or the social media domain.) for each token w i . WRE's outputs [x 1 , . . . , x n] are fed into the FE, a single biLSTMs layer, that outputs a context sensitive representation for each w i . Finally, Cl consists of a softmax fully-connected layer that produces the classes-probabilities for each w i as follows: ŷi = (Ψ • Φ • Υ)(w i).

Dependency Parsing Architecture

Given an input sentence S = [w 1 , . . . , w n] of n successive tokens, the goal of DP is two folds:

1. Identifying, for each w i , its head w j ∈ S. The couple of tokens w i and w j are called the dependant and the head, respectively.

2. Predicting the dependency syntactic relation's class r i j ∈ R dp relating each dependant-head pair, where R dp is the dependency-relations set.

In simple words, the goal is to predict the out-going labelled arc (w i , w j , r i j) for each token w i . Thus, constructing a syntactic tree structure of the sentence, where words are treated as nodes in a graph, connected by labelled directed arcs.

We use the neural arc-factored graph-based dependency parser [START_REF] Qi | Universal Dependency Parsing from Scratch[END_REF] which is based on the "Deep biAffine parser" [95]. As in sequence labelling models, the DP architecture is composed of three components (illustrated in Figure 7.1): a word representation component (WRE), denoted Υ dp , followed by a feature extractor, denoted Φ dp , and a classifier, denoted Ψ dp . Except that Φ dp 124 7.2. PROPOSED APPROACH is a 3-stacked biLSTM network,2 and Ψ dp consists of four classifiers, producing four distinct vectors for representing the word: (i) as a dependant seeking its head; (ii), as a head seeking all its dependants; (iii), as a dependant deciding on its relation; and (iv), as a head deciding on the labels of its dependants. These representations are then passed to the biAffine softmax classifiers.

v arc-head i = M LP arc-head (h i) , (7.1)
v arc-dep i = M LP arc-dep (h i) , (7.2)
v label-head i = M LP label-head (h i) , (7.3)
v label-dep i = M LP label-dep (h i) , (7.4)
where

v arc-head i , v arc-dep i ∈ R n and v label-head i , v label-dep i ∈ R |R dp | .
The first vector is a head seeking all its dependants; the second is a dependant seeking its head; the third is a head deciding on the labels of its dependants, and the fourth is a dependant deciding on its relation. Then, a score s arc i,j of arc between each words-pair (w i , w j) is calculated using a biaffine transformation:

s arc i,j = (v arc-head i) T W v arc-dep j + (v arc-head i) T b arc , (7.5)
where

W ∈ R n × n and b ∈ R n .
Similarly, a score s l i,j for each l ∈ R dp being the label of the arc relating the head w i to its dependant w j is calculated as follows:

s l i,j = (v label-head i) T U l v label-head j + (v label-head i ⊕ v label-dep j) T b l + b l , (7.6)
where the parameters

U l ∈ R |R dp | × |R dp | , b l ∈ R 2 × |R dp |
and the scalar b l are distinct for each label l ∈ R dp .

Multi-Task Learning

We describe, in section 7.2.2.1, the proposed hierarchical multi-task model for the joint learning of POS, CK, NER and DP. Then, in section 7.2.2.2, we discuss the training process.

Hierarchical Multi-Task Architecture

As we aim to learn a multi-task model where POS, CK, NER and DP tasks are learned jointly, we choose a hard-sharing architecture scheme which contains a common branch as well as four exits, one per task. Also, as the tasks are hierarchically related to each other, we adopted a hierarchical architecture. The hierarchical structure in multi-task learning has been successfully used in the literature. First, Søgaard and Goldberg [START_REF] Søgaard | Deep multi-task learning with low level tasks supervised at lower layers[END_REF] showed that, considering the linguistic hierarchies of NLP tasks, the standard multi-task architecture where all tasks are at the same outermost level is "sub-optimal". Further, Hashimoto et al. [START_REF] Hashimoto | A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks[END_REF] proposed a joint model for a set of syntactic and semantic tasks: POS, CK, DP, semantic relatedness and textual entailment, and Sanh et al. [START_REF] Sanh | A hierarchical multi-task approach for learning embeddings from semantic tasks[END_REF] proposed a joint hierarchical model for semantic tasks: co-reference resolution, relation extraction, entity mention Detection and NER.

We organise the four tasks from low-level to high-level ones, with each task being fed with a shared word embedding as well as the outputs of all the lower tasks. To construct that hierarchy of tasks, we followed some linguistic hints from the literature. Indeed, many works have shown that POS improves CK [START_REF] Yang | Transfer learning for sequence tagging with hierarchical recurrent networks[END_REF][START_REF] Ruder12 | Latent multitask architecture learning[END_REF]; NER benefits from POS [START_REF] Ruder | Neural Transfer Learning for Natural Language Processing[END_REF] and CK [START_REF] Collobert | A unified architecture for natural language processing: Deep neural networks with multitask learning[END_REF]; and DP profits from POS and CK [START_REF] Hashimoto | A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks[END_REF]. In simple terms, POS and CK are considered as "universal helpers" [START_REF] Changpinyo | Multi-Task Learning for Sequence Tagging: An Empirical Study[END_REF].

Thus, based on these linguistic hierarchy observations, we feed POS features to CK; then POS and CK features to both NER and DP.

An illustration of our multi-task hierarchical model is given in Figure 7.2. We can separate the multi-task model into 5 parts, a shared part and one branch per task:

• Shared parameters (Gray): The word representation extractor Υ is shared across all tasks. It generates a word representation x i for each word w i : x i = Υ(w i), which is fed to all tasks branches.

• POS branch (Black): The feature extractor component of the POS tagging branch (Φ pos) is fed with the output of the shared Υ and after processing, it outputs BiLSTMs features h pos i . This is then fed into the POS classifier Ψ pos to calculate a probability distribution for the POS tag-set as follows: (7.7)

• CK branch (Green): POS features (h pos i) as well as x i , the output of the shared Υ, are fed to the CK branch that outputs a probability distribution for the CK tag-set as follows:

ŷck i = (Ψ ck • Φ ck)(x i , T pos (h pos i)) , (7.8)
where, Φ ck is the CK feature extractor that outputs BiLSTMs features h ner i and Ψ ck is the CK classifier. Note that, rather than directly using Φ pos 's output, we first reduce its dimensionality by applying a learnable dense layer transformation denoted T pos , in order to extract only the important information for chunking.

• NER branch (Blue): In the same vein, following our hierarchy, x i plus the output features of POS (h pos i) as well as the output features of CK (h ck i) are fed to the NER branch that outputs one class probability per named entity. Formally, this is computed using:

ŷner i = (Ψ ner • Φ ner)(x i , T pos (h pos i), T ck (h ck i)) , (7.9)
where, Φ ner is the NER feature extractor that outputs BiLSTMs features h ner i and Ψ ner is the NER classifier. Note that, likewise the CK branch, rather than directly using Φ pos and Φ ck outputs, we first reduce their dimensionality by applying a learnable dense layer transformations denoted T pos and T ck , respectively.

Chapter 6: Multi-task Pretraining and Adaptation 127

• DP branch (Orange): similarly to the NER branch, the shared embedding, plus the output features of POS as well as the output features of CK are fed to FE dp , followed by C dp which outputs:

ŷdp i = (Ψ dp • Φ dp)(x i , T pos (h pos i), T ck (h ck i)) , (7.10)
where, Φ dp is the DP feature extractor that outputs BiLSTMs features h dp i and Ψ dp is the DP classifier. Note that, likewise the other branches, rather than directly using Φ pos and Φ ck outputs, we first reduce their dimensionality by applying a learnable dense layer transformations denoted T pos and T ck , respectively.

Multi-Task Loss Calculation

In terms of loss functions, as in classical multi-task learning, we minimise the weighted sum of each task loss:

L MT = M j=1 α task j × L task j N , (7.11)
where α task j represents the weight attributed to the task j , and M is the number of tasks, and L task j is the loss of the task j.

As we used a hierarchical model for reasons mentioned in Section 7.2.2.1, we propose to focus, at the early-stage training, on low-level tasks and progressively increase the focus on higher-level ones 3 . Specifically, we tune the loss calculation minimisation by adapting the loss weights during the training, starting with heavier weights for low-level tasks compared to high-level ones. These weights are linearly increased for the first epochs, then kept constant afterwards.

MuTSPad: Multi-Task Supervised Pretraining and Adaptation

Multi-task pretraining has been especially explored for learning universal representations. We can cite the work of Cer et al. [START_REF] Cer | Universal Sentence Encoder for English[END_REF] who proposed joint learning of sentence embedding on a set of unsupervised (SkipThought) and supervised (natural language inference) tasks. Ahmed et al. [5] showed that joint learning of a biLSTM-based model on multiple tasks provides universal sentence representations that generalise better using two classification tasks: natural language inference and duplicate question detection. Similarly, Subramanian et al. [START_REF] Subramanian | Learning general purpose distributed sentence representations via large scale multi-task learning[END_REF] proposed to build a general-purpose sentence encoder by a joint learning of machine translation, parse tree generation and unsupervised skip-thought tasks. Likewise, multi-task fine-tuning has been recently explored as part of universal models fine-tuning. Liu et al. [START_REF] Liu | Multi-task deep neural networks for natural language understanding[END_REF] proposed to fine-tune 7.2. PROPOSED APPROACH the pre-trained universal model, BERT, in a multi-task fashion on multiple tasks: single-sentence classification, pairwise text classification, text similarity, and relevance ranking.

Furthermore, in terms of using multi-task features for domain adaptation, Søgaard and Goldberg [START_REF] Søgaard | Deep multi-task learning with low level tasks supervised at lower layers[END_REF] showed the benefit of multi-task learning for domain adaptation from news-domain to

Weblogs-domain for CK task, when disposing of CK's supervision only for the source-domain, and lower-level POS supervision for the target-domain. Finally, in terms of unifying multi-task learning and fine-tuning, Kiperwasser and Ballesteros [START_REF] Kiperwasser | Scheduled multi-task learning: From syntax to translation[END_REF] proposed to improve machine translation with the help of POS and DP tasks by scheduling tasks during training; starting with multi-tasking of the principal task with auxiliary lower-level tasks (POS and DP), and as the training graduates, the model trains only to the main task. However, to the best of our knowledge, performing pretraining and fine-tuning on multi-task models for supervised domain adaptation has not been explored in the literature.

In this work, we study multi-task pretraining and fine-tuning for supervised domain adaptations. We propose Multi-Task Supervised Pre-training and Adaptation (MuTSPad) which consists in pretraining on a large annotated multi-task source dataset and then fine-tuning it on the multi-task target dataset. As supervised and unsupervised pretraining, MuTSPad alleviates the lack of annotated data in a target domain by taking benefit from rich source-domains. However, compared to them, it does the pretraining on multiple tasks, and not only one. This brings even more real supervision to the network and thus gives more chance to end up with more features.

Also important, as source-domains are usually richer than target-domains, we might always find source-datasets that are labelled exactly with all the tasks we want to solve in the target-domain.

This enforces the network to learn only features that might be relevant for our tasks of interest, and thus avoid filling up the network with irrelevant features.

Let us assume a set of M tasks T = [T 1 , . . . , T M], a set of datasets from the source domain

D s = [D s 1 , . . . , D s M]
, and a set of datasets from the target domain D t = [D t 1 , . . . , D t M], where each task T i is associated with a source dataset D s i and a target dataset D t i . 4 MuTSPad consists of three steps:

1. A source hierarchical multitask model M s is first trained on the set of heterogeneous source-datasets D s .

2. The learned parameters θ s of the source model M s are separated into two sets θ s = (θ 1 s , θ 2 s). The first set of parameters are then used to initialise the first set of parameters of the target multi-task model (M t), θ 1 t = θ 1 s , while the second set of target model parameters θ 2 t is randomly initialised. • BertTweet [START_REF] Dat Quoc Nguyen | BERTweet: A pre-trained language model for English Tweets[END_REF] (POS and NER): A large-scale pretrained language model BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] (Bidirectional Encoder Representations from Transformers) for English Tweets using an 80GB corpus of 850M English Tweets. The model is trained using BERT base architecture and following the pretraining procedure of RoBERTa [START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF]. A randomly initialised linear prediction layer is appended on top of the last Transformer layer of BERTweet, and then the model is fine-tuned on target tasks examples. Also, lexical dictionaries were used to normalise social media texts.

Implementation details

The hyper-parameters (HP) we used are as follow: The task-agnostic WRE: The dimension of character embedding is equal to 50. The dimension of the hidden states of the character-level biLSTM is equal to 100. The dimension of word-level embeddings is equal to 300 (preloaded from GloVe pre-trained vectors [START_REF] Pennington | Glove: Global vectors for word representation[END_REF]

Results

Here, we provide our experimental results. We start by comparing MuTSPad best results to the baselines and SOTA methods (§7.4.1). Then, we investigate the impact of datasets unification in heterogeneous MTL (§7.4.2). Finally, we analyse how individual units from low-level tasks impact high-level tasks in our hierarchical multi-task model (§7.4.3).

Comparison to SOTA and Baselines

Our experimental results are reported in Second, incorporating pre-trained ELMo representations performs better compared to monotask learning. Particularly for NER task with ∼+8% by ELMo large . We also found that it improves the other tasks but not with the same order of improvement as for NER, which we mainly attribute to the fact that contextual representations that are pre-trained on language modelling capture more semantic features. Notably, we find that DP gains the least from ELMo compared to the other syntactic tasks.

Third, compared to baselines, MuTSPad outperforms both TL methods, multi-task learning and mono-task pretraining, on all data-sets, by ∼+21.4 and ∼+7.3 aNRG, respectively. Compared to unsupervised pretraining, we can observe that MuTSPad outperforms ELMo on POS, CK and DP, where ElMo large brought higher performances for NER. Note that ELMo is complementary to our approach; hence, we expect a higher performance when incorporating ElMo large to MuTSPad.

Finally, compared to SOTA, MuTSPad LAS score on DP is about ∼2.5% higher than the best SOTA score. Also for POS we achieve better accuracy score than the best SOTA. For CK and NER experiments, we achieve lower scores than SOTA. It is noteworthy that, first, contrary to our approach, all these methods are mono-task models (except MDMT), i.e., unable to solve other tasks. Second, NER and CK best SOTA used pretrained contextualised representations that boost the performance, namely, Flairs embeddings by Akbik et al. [START_REF] Akbik | Pooled contextualized embeddings for named entity recognition[END_REF], ELMo by Mishra [START_REF] Mishra | Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets[END_REF] and BERT by Gu & Yu [START_REF] Gu | Data Annealing for Informal Language Understanding Tasks. Proceedings of the[END_REF] and Nguyen et al. [START_REF] Dat Quoc Nguyen | BERTweet: A pre-trained language model for English Tweets[END_REF]. Clearly, pretraining on unified source datasets (w/source unif) slightly improved performances on all tasks. Nevertheless, fine-tuning on unified target datasets (w/source+target unif) is beneficial only for POS and DP tasks, while it strongly hurts NER's F1 score. We mainly attribute this to the low F1 score of the "Mono-task learning" baseline on the NER WNUT-17 dataset, leading to noisy NER automatic predictions.

Impact of Datasets Unification

Low-Level Tasks Importance Analysis

In this section, we investigate how low-level tasks impact high-level tasks in our hierarchical multi-task model (See Figure 7.2). Specifically, we focus on the impact of h pos , the representation encoded by the POS task, for CK, NER and DP tasks. For this purpose, we quantify the importance of h pos individual units for POS, CK, NER and DP performances. Assuming that ablating the most important units for a task should bring a higher drop in performance compared to the least important units, we perform an individual ablation10 of h pos units (neurons), as in [START_REF] Zhou | Revisiting the Importance of Individual Units in CNNs via Ablation[END_REF] and [76].

Given the already trained target multi-task model M t , we set the relating weights of each unit i from h pos to zero, (i.e. T pos layer's weights for CK, NER and DP; and Cl pos layer's weights for POS). Hence, the ablated unit will not contribute to the final prediction for any input word. Then, with one unit ablated at a time, we launch the inference on each task's dev-set, then compute the resulting score-drop for each class (label), leading to a matrix per task Applying this method, for POS, CK, NER and DP, leads to 4 max-class-score-drop vectors, one for each task, v pos , v ck , v ner and v dp . In the heatmap in Figure 7.4, we plot one vector per line: v pos , v ck , v ner then v dp . This figure illustrates the importance of POS units for each task, where darker blue means a higher drop (thus higher importance) and lighter blue means 136 7.5. CONCLUSION lower drop (thus lower importance). We observe high values of v pos for POS compared to the remaining tasks since h pos 's units are more important for POS tagging than all other tasks. Also, h pos 's units are directly used for prediction for POS while transformed through several layers for the other tasks. Furthermore, we can also observe that h pos 's units are more important for CK and DP compared to NER since this last is semantic while the POS, CK and DEP are syntactic. Moreover, we attempt to peek inside specific units from h pos , which the ablation thereof begets a high drop in CK, DP and NER classes-scores. Specifically, we report in Table 7.4 the top-10 words activating some of these units. Expectedly, we found that some of POS' units are firing, and thus specialised, on patterns that are beneficial for higher-level tasks. For instance, Unit-99, specialised on adjectives ending with the suffix "ly", is highly important for the CK class "B-ADJP" (beginning of adjectival phrase). Also, Unit-115 is firing on person names, a valuable pattern for "B-person" class of NER. Interestingly, we found some units that are beneficial for multiple tasks, e.g. Unit-112, which is specific for interjections, is also important for both "discourse" class for DP and "B-INTJ" (beginning of an interjection phrase) for CK.

A task ∈ M d , m (

Conclusion

In this chapter, we have proposed MuTSPad, a new approach based on transfer learning for supervised domain adaptation with three main contributions: 1) Consolidating two transfer learning approaches, sequential transfer learning and multi-task learning, by pretraining on a resource-rich domain and fine-tuning on a low-resourced domain in a multi-task fashion; 2)

Unifying independent datasets to overcome the intricacy of multi-task training from heterogeneous datasets; and 3) Conducting a set of individual units ablation, refining our understanding on how individual neurons from lower-level tasks impact high-level tasks. We showed through empirical results on domain adaptation from news to social media that the proposed method MuTSPad allows a simultaneous benefit from similarities between domains and tasks, yielding better transfer learning performances on four NLP tasks.

This study leaves several important open directions for future work. First, we believe that it would be beneficial to explore the combination of supervised and unsupervised multi-task Chapter 6: Multi-task Pretraining and Adaptation 137 pretraining. Second, concerning conceptual choices for the multi-task model architecture, it would be interesting to incorporate the attention mechanism [21] in our hierarchical multi-task architecture. Indeed, actually, low-level tasks outputs are transformed through a simple fully connected layers (T pos and T ck) to reduce their dimensionality before their injection to the higher tasks. Thus, to help high-level tasks focus only on the most relevant units from the lower tasks, one can incorporate attention weights in the transformation layers. Third, actually, we perform the adaptation step using the standard fine-tuning scheme, a promising direction would be to use our adaptation method PretRand (Chapter 6) at the adaptation stage of MuTSPad by augmenting the source multi-task model M s with randomly initialised layers before adaptation.

Finally, it would be interesting to explore the benefit of MuTSPad's learned representations for higher-level NLP applications such as machine translation and sentiment analysis.

Conclusions

Throughout this thesis, we have explored different neural transfer learning approaches and scenarios to improve the performance of neural NLP tools in low-resource settings. In particular, starting from the hypothesis that social media domain (informal texts) is an informal variety of the news domain (formal texts), we have demonstrated the advantage of neural transfer learning for supervised domain adaptation from the high-resource news domain to the low-resource social media domain. We have focused on the case where sufficient annotated datasets are available from the source domain while only small annotated datasets from the target domain are available.

We summarise our main contributions and findings as follow:

• Neural sequential transfer learning across domains: After an in-depth study of transfer learning techniques and approaches, we started by a sequential transfer learning method that allows taking advantage of the knowledge learnt by a source model, formerly trained on available annotated datasets from the source domain, to help improve the learning of the target model. Specifically, we have proposed two sequential transfer learning schemes. The first, transfer of supervisedly-pretrained contextual representations that consists in feeding the representations generated by the source model as features to the target model, and thus, all target model's layers are trained from scratch. The second, transfer of pretrained models, allows taking more advantages of the pre-learned knowledge, using the pretrained weights from the source model to initialise the target model's parameters, instead of training them from scratch. Our experiments on sequence labelling tasks showed that both proposed methods yield significant improvements compared to the standard supervised training scheme, but transferring pretrained models approach begets better results across target tasks and datasets. Besides, transferring models is more efficient in terms of computation and convergence speeds. To have more insights about the impact of sequential transfer learning of models, we performed an in-depth analysis that showed the following findings:

First, our method is more advantageous in extremely low-resource scenarios. Second, our method leads to a faster convergence compared to training from scratch. Third, the model's size does not have an observable effect on the transfer performance. Fourth, the pretraining performance on the source task is not a reliable predictor for the performance on the target task. Finally, off-the-shelf ELMo universal representations are complementary to our proposed approaches and thus can be used for further improvements.

• Negative transfer in sequential transfer learning: The encouraging results that we obtained with transferring pertained models using the standard fine-tuning (SFT) scheme pushed us to dig deeper and look for potential improvements. Specifically, we analysed the negative transfer when transferring from the news domain to the social media domain.

Roughly, negative transfer occurs when the knowledge learnt in the source domain hampers the learning of new knowledge from the target domain. Particularly, when the source and target domains are dissimilar, transfer learning may fail and hurt the performance, leading to a worse performance compared to the standard supervised training from scratch. In this thesis, we have proposed to analyse deeply the results of the SFT scheme; i.e. we perceive the gain brought by SFT, compared to random initialisation, as a combination of a hidden positive transfer and a hidden negative transfer. We define positive transfer as the percentage of predictions that were wrongly predicted by random initialisation, but using transfer learning changed to the correct ones. Negative transfer represents the percentage of predictions which were tagged correctly by random initialisation, but using transfer learning provides incorrect predictions. Hence, the final gain brought by transfer learning would be the difference between positive and negative transfers. We have shown through a series of empirical analysis that, the hidden negative transfer mitigates the final gain brought by transfer learning. We believe that analysing the hidden negative transfer is an essential step towards spotting the limits and the potential improvement tracks of the actual transfer learning tasks.

• Analysis and interpretation methods: Following our proposed taxonomy, these methods belong to the descriptive methods category. We found that pretrained neurons are biased by what they have learnt in the source-dataset, i.e. pretrained neurons tend to conserve much information from the source domain. Some of this information is undoubtedly beneficial for the social media domain (positive transfer), but some of it is indeed harmful (negative transfer). We suppose that, as a consequence of this phenomenon, specific patterns to the target-dataset are difficult to 8.2. PERSPECTIVES learn by pre-trained units. This phenomenon is non-desirable, since such specific units are important for performance, especially for target-specific classes.

• PretRand -a novel adaptation method for neural sequential transfer learning: We have proposed a hybrid method that takes benefit from both approaches, random initialisation (standard supervised training scheme from scratch) and transfer learning, without their drawbacks. It consists in augmenting the source-network with randomly initialised units and jointly learn them. PretRand consists of three main ideas. First, augmenting the source-network (set of pre-trained units) with a random branch composed of randomly initialised units, and jointly learn them. Second, normalising the outputs of both branches to balance their different behaviours and thus forcing the network to consider both. Indeed, we found that when naively augmenting the pretrained branch with the random branch, the former strongly fires discriminatively on many words, while the latter does not fire on any word at the initial stage of fine-tuning. Therefore, the random units do not significantly contribute to the computation of gradients and are thus slowly updated. Third, applying attention learnable weights on both branches predictors to let the network learn which of random or pre-trained one is better for every class. Our experiments on sequence labelling tasks showed that PretRand significantly enhances the performance compared to the standard fine-tuning adaptation scheme. It is noteworthy that PretRand does not slow down the model compared to SFT, since as shown in Table 6.4, PretRand uses only 0.02% more parameters compared to the standard fine-tuning baseline.

• MuTSPad -consolidating sequential transfer learning and multi-task learning: In the above contributions, we have studied the impact of mono-source mono-target sequential transfer learning to improve NLP models performance for low-resource domains (social media texts), where the transfer is performed in two steps: mono-task pretraining on a single task from a rich source domain followed by a mono-task fine-tuning of the task of interest on the available few target-domain examples. Nevertheless, as shown in many research works, but also our results in chapter 5, transferring knowledge, simultaneously, from multiple tasks can boost the performance. Therefore, we have proposed in chapter 7 a new approach that we called Multi-Task Supervised Pre-training and Adaptation (MuTSPad). It performs a multi-source multi-target sequential transfer learning and thus takes advantage of both approaches, sequential transfer learning and multi-task learning, by learning a hierarchical model trained across multiple tasks from the source domain, then fine-tuned on multiple tasks from the target domain.

Perspectives

Several paths of research arise from the work carried out during this thesis. We briefly discuss a few of them below. We start, in section 8.2.1, by research tracks that were partially or were Conclusions and perspectives 141 not addressed during this thesis, but we believe that their investigation will boost our proposed approaches. Then, in section 8.2.2, we present some broader promising research directions that are related to our research.

Short-term Perspectives

• Fine-tuning strategies in the standard fine-tuning scheme: In chapter 5 experiments, we have performed the fine-tuning stage in a naive manner. i.e. pretraining and fine-tuning stages are performed using the same settings. One can explore different strategies recently proposed in the literature to improve the fine-tuning process on the target task. A standard method is to attribute lower learning rates for the low-most pretrained layers. Indeed, as discussed in [START_REF] Yosinski | How transferable are features in deep neural networks? Advances in neural information processing systems[END_REF][START_REF] Mou | How Transferable are Neural Networks in NLP Applications[END_REF][START_REF] Matthew E Peters | Deep contextualized word representations[END_REF], model's layers learn different types of knowledge, i.e.

top layers are more task-specific than low ones. Thus, low layers learn generic features easily transferable between tasks, while top layers learn features that are specific to the learnt task and domain. For instance, Howard & Ruder [START_REF] Howard | Universal Language Model Fine-tuning for Text Classification[END_REF] proposed more sophisticated approaches. Namely, discriminative fine-tuning and Slanted triangular learning rates. The former comes down to the approach affecting different learning rates per layer. The latter consists in tuning the learning rate in two steps: first, it linearly increases the learning rate and then linearly decays. This method allows converging rapidly to a suitable region of parameters before slowly tuning the parameters to the best parameters.

• Explaining the hidden negative transfer: In chapter 6, we have performed a set of analysis to assess the hidden negative transfer occurring when transferring from the news domain to the social media domain using the standard fine-tuning scheme. We believe that it is worth going further in this analysis. A fruitful direction would be to explain this hidden negative transfer using explicative methods (§3.3). Notably, one can use influence functions (§3. • Pruning biased neurons in the standard fine-tuning scheme: In chapter 6, we have shown through our analysis that pretrained neurons are biased by what they have learnt in the source task. Certainly, some of these neurons keep valuable knowledge from the source domain that are beneficial to the target domain (positively biased neurons). However, a part of these neurons may contain knowledge that is harmful to the target domain (negatively biased neurons). To handle this problem, we have proposed in section 6.3 to augment the pretrained neurons with random neurons to learn new features that are specific to the target domain. Another promising method to avoid the harmful effect of negatively biased neurons would be to automatically identify negatively biased neurons in the pre-trained 142 8.2. PERSPECTIVES model using features erasure methods (§3.2.5). And then, proceed to a pruning of the most biased ones before fine-tuning. Note that pruning pretrained transformer-based models, like BERT, has been recently investigated in the literature [START_REF] Scott | Pruning a bert-based question answering model[END_REF][START_REF] Mitchell A Gordon | Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning[END_REF][START_REF] Sanh | Movement Pruning: Adaptive Sparsity by Fine-Tuning[END_REF]78] to achieve an accuracy-speed tradeoff. Furthermore, Knowledge Distillation is a promising method that aims to transfer the knowledge from a large teacher model to a smaller student model through a distillation process [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF]. For instance, a distilled version of BERT was proposed by Sanh et al. [START_REF] Sanh | DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter[END_REF] to reduce the size of the original BERT while keeping its valuable knowledge. An intriguing direction would be to distil the teacher model pretrained on the source domain on a smaller target model containing only the information encoded by positively biased neurons.

• More sophisticated multi-task learning for multi-source multi-target transfer learning: The positive results of our proposed approach, MuTSPad, leaves several important open directions for future work. Notably, we did not explore all the potential of multi-task learning. First, we should explore soft multi-task architectures. Second, we can investigate the combination of supervised and unsupervised multi-tasking. Third, we can incorporate an attention mechanism in our hierarchical multi-task architecture. Indeed, actually, low-level tasks outputs are transformed through a simple fully connected layers to reduce their dimensionality before their injection to the higher tasks. Thus, to help high-level tasks to focus only on the most important units from the lower tasks, one can incorporate attention weights in the transformation layers. Finally, a promising direction would be to use our adaptation method PretRand (chapter 6) at the adaptation stage of MuTSPad by augmenting the source multi-task model with randomly initialised layers before adaptation.

• Transformer-based architectures: The increasing omnipresence of Transformers architectures in a wide range of NLP tasks, due to their improved performances, motivates us to experiment our approaches on Transformer-based architecture instead of LSTMbased one. Furthermore, it would be interesting to combine pretrained Transformer-based models, like BERT or RoBERTa, with our approaches. For this, we propose to use our pretraining approaches as an Intermediate Pretraining Task, also called Supplementary

Training on Intermediate Labelled-data Tasks (STILT) [START_REF] Phang | Sentence encoders on stilts: Supplementary training on intermediate labeled-data tasks[END_REF][START_REF] Pruksachatkun | Intermediate-Task Transfer Learning with Pretrained Models for Natural Language Understanding: When and Why Does It Work[END_REF]. In simple words, the approach will be performed in 3 steps; the Transformer-based model is firstly pretrained on self-supervised tasks (e.g. language modelling). Then, the model is further trained on news source datasets using the approaches discussed in this thesis. Finally, the model is fine-tuned on social media small datasets.

• Application of our approaches on less similar source-target languages: In this thesis, we have experimented our approaches on transfer from the news domain to the social media domain. It would be interesting to investigate the flexibility of our approaches in more challenging settings. e.g. transfer between the formal Arabic language (Modern Conclusions and perspectives 143 Standard Arabic) and informal Arabic languages (22 dialects distributed over five regional categories) that we can find on social media.

Long-term Perspectives

Stemming from the research work carried out during this thesis, we believe in the importance of the following research directions.

• Opportunities and challenges of social media data analysis: Social media has offered access to vast amounts of textual data. Otherwise, social media is also a rich source of multi-modal data, which will allow unfolding many opportunities and applications.

Recently, there is a rising interest in the NLP community on multi-modal data. For instance, multi-modal pretraining has been studied by Lin et al. [START_REF] Lin | InterBERT: Vision-and-Language Interaction for Multi-modal Pretraining[END_REF] who proposed interBERT, a multi-modal model for images and text. Zhang et al. [START_REF] Zhang | Neural machine translation with universal visual representation[END_REF] used multi-modal representations for Neural Machine Translation (NMT). Kiela et al. [START_REF] Kiela | The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes[END_REF] performed hate speech detection in multi-modal data in social media. However, this data abundance in social media may impose many challenges. First, it threatens users' privacy. Indeed, User-Generated-Content (UGC) in social media may contain personal data and thus privacysensitive information. Hence, training neural models directly on these data makes them vulnerable to malicious actors. Therefore, thinking about privacy-preserving methods for NLP is becoming crucial. Second, UGC in social media may be socially biased. Thus, training neural networks directly on this type of data may generate unfair and harmful models. Actually, detecting bias in NLP models and de-biasing these models is a firing research topic [34].

• Transfer Learning for emerging topics: In this thesis, we have shown the efficiency of transfer learning from the news domain to social media. We believe that Transfer learning is a promising approach that can be perfectly applied to a variety of emerging topics where low-data settings are frequent and solutions are urgently requested, e.g. climate change

B | Tagsets

In this appendix, we provide the list of labels of each task and dataset used in this thesis.

B

ADP: adposition

Prepositions and postpositions (e.g. in, to, during, etc.).

AUX: auxiliary

A function word that accompanies the lexical verb of a verb phrase.

CCONJ: coordinating conjunction

Words that link words or larger constituents.

DET: determiner

Express the reference of a noun or a noun phrase.

INTJ: interjection

A word that is used most often as an exclamation or an emotion.

NOUN: noun

Words denoting a person, place, thing, animal or idea.

NUM: numeral

Express quantity, sequence, frequency, fraction, etc.

PART: particle

Function words that must be associated with another word or phrase.

PRON: pronoun

Words that substitute for nouns or noun phrases.

PROPN: proper noun

A noun that is the name of a specific individual, place, or object.

PUNCT: punctuation

Used to delimit linguistic units in printed text.

SCONJ: subordinating conjunction link constructions by making one of them a constituent of the other.

SYM: symbol e.g. +, ×, ÷, =, <, >, :)

VERB: verb

Words that typically signal events and actions.

X: other

Words that for some reason cannot be assigned a real POS category.

B-NP

The first word in a nominal phrase.

I-NP

A word inside a nominal phrase.

B-VP

The first word in a verbal phrase.

I-VP

A word inside a verbal phrase.

B-ADJP

The first word in an adjective phrase.

I-ADJP

A word inside an adjective phrase.

B-ADVP

The first word in an adversarial phrase.

I-ADVP

A word inside an adversarial phrase.

B-CONJP The first word in a conjunction phrase.

I-CONJP

A word inside a conjunction phrase.

B-INTJ

The first word in an interjection.

I-INTJ

A word inside an interjection.

B-LST

The first word in a list marker.

I-LST

A word inside a list marker.

B-PP

The first word in a prepositional phrase.

I-PP

A word inside a prepositional phrase.

B-PRT

The first word in Particles.

I-PRT

A word inside Particles.

B-SBAR

The first word in subordinate clause.

I-SBAR

A word inside a subordinate clause.

Résumé :

Les méthodes d'apprentissage automatique qui reposent sur les Réseaux de Neurones (RNs) ont démontré des performances de prédiction qui s'approchent de plus en plus de la performance humaine dans plusieurs applications du Traitement Automatique des Langues (TAL) qui bénéficient de la capacité des différentes architectures des RNs à généraliser en exploitant les régularités apprises à partir d'exemples d'apprentissage. Toutefois, ces modèles sont limités par leur dépendance aux données annotées. En effet, pour être performants, ces modèles ont besoin de corpus annotés de taille importante. Par conséquent, uniquement les langues bien dotées peuvent bénéficier directement de l'avancée apportée par les RNs, comme par exemple les formes formelles des langues. Dans le cadre de cette thèse, nous proposons des méthodes d'apprentissage par transfert neuronal pour la construction des outils de TAL pour les langues et domaines peu dotés en exploitant leurs similarités avec des langues et des domaines bien dotés. Précisément, nous expérimentons nos approches pour le transfert à partir du domaine source des textes formels vers le domaine cible des textes informels (langue utilisée dans les réseaux sociaux). Tout au long de cette thèse nous présentons différentes contributions. Tout d'abord, nous proposons deux approches pour le transfert des connaissances encodées dans les représentations neuronales d'un modèle source, préentraîné sur les données annotées du domaine source, vers un modèle cible, adapté par la suite sur quelques exemples annotés du domaine cible.

La première méthode transfère des représentations contextuelles pré-entraînées sur le domaine source. Tandis que la deuxième méthode utilise des poids pré-entraînés pour initialiser les paramètres du modèle cible. Ensuite, nous effectuons une série d'analyses pour repérer les limites des méthodes proposées. Nous constatons que, même si l'approche d'apprentissage par transfert proposée améliore les résultats sur le domaine cible, un transfert négatif « dissimulé » peut atténuer le gain final apporté par l'apprentissage par transfert. De plus, une analyse interprétative du modèle préentraîné montre que les neurones pré-entraînés peuvent être biaisés par ce qu'ils ont appris du domaine source, et donc peuvent avoir des difficultés à apprendre des « patterns » spécifiques au domaine cible. Suite à cette analyse, nous proposons un nouveau schéma d'adaptation qui augmente le modèle cible avec des neurones normalisés, pondérés et initialisés aléatoirement permettant une meilleure adaptation au domaine cible tout en conservant les connaissances apprises du domaine source. Enfin, nous proposons une approche d'apprentissage par transfert qui permet de tirer profit des similarités entre différentes tâches, en plus des connaissances pré-apprises du domaine source. Abstract: Recent approaches based on end-to-end deep neural networks have revolutionised Natural Language Processing (NLP), achieving remarkable results in several tasks and languages. Nevertheless, these approaches are limited with their gluttony in terms of annotated data, since they rely on a supervised training paradigm, i.e. training from scratch on large amounts of annotated data. Therefore, there is a wide gap between NLP technologies capabilities for high-resource languages compared to the long tail of lowresourced languages. Moreover, NLP researchers have focused much of their effort on training NLP models on the news domain, due to the availability of training data. However, many research works have highlighted that models trained on news fail to work efficiently on out-of-domain data, due to their lack of robustness against domain shifts. This thesis presents a study of transfer learning approaches through which we propose different methods to take benefit from the pre-learned knowledge from highresourced domains to enhance the performance of neural NLP models in low-resourced settings. Precisely, we apply our approaches to transfer from the news domain to the social media domain. Indeed, despite the importance of its valuable content for a variety of applications (e.g. public security, health monitoring, or trends highlight), this domain is still lacking in terms of annotated data. We present different contributions.

First, we propose two methods to transfer the knowledge encoded in the neural representations of a source model --pretrained on large labelled datasets from the source domain --to the target model, further adapted by a fine-tuning on few annotated examples from the target domain. The first transfers supervisedly-pretrained contextualised representations, while the second method transfers pretrained weights used to initialise the target model's parameters. Second, we perform a series of analysis to spot the limits of the above-mentioned proposed methods. We find that even though transfer learning enhances the performance on social media domain, a hidden negative transfer might mitigate the final gain brought by transfer learning. Besides, an interpretive analysis of the pretrained model shows that pretrained neurons may be biased by what they have learnt from the source domain, thus struggle with learning uncommon target-specific patterns. Third, stemming from our analysis, we propose a new adaptation scheme which augments the target model with normalised, weighted and randomly initialised neurons that beget a better adaptation while maintaining the valuable source knowledge. Finally, we propose a model that, in addition to the pre-learned knowledge from the high-resource source-domain, takes advantage of various supervised NLP tasks.

Figure 1 . 1 -

 11 Figure 1.1 -Language resources distribution (The size of a circle represents the number of languages and speakers in each category) -Source: [164].

Figure 1 . 2 -

 12 Figure 1.2 -Example of a Tweet. Grey segments show expressions similar to formal texts and red ones show social media domain's specific expressions (informal).

 It consists in training the model on a mix of large annotated data from out-of-domain wellresourced domains with small amounts of annotated examples from the SM domain [151]. However, since out-of-domain examples are more frequent in the training phase, the effect of out-of-domain data will dominate that of SM data. In order to overcome this issue, weighting and oversampling methods are commonly used to balance the two domains and thus make the SM examples more competitive to the out-of-domain ones. For instance, Daumé III [80], Horsmann & Zesch [152] and Neunerdt et al. [246] experimented mixedtraining with oversampling for SM POS tagging by adding annotated examples from the SM domain multiple times and using different strategies. In this thesis, we propose to develop and study the effectiveness of different Transfer Learning techniques to overcome the sparse annotated-data problem in the social media domain by leveraging annotated datasets from the high-resource source news-domain.

Figure 2 . 1 -

 21 Figure 2.1 -Standard supervised training scheme vs Transfer Learning [257].

 applications. The taxonomy proposed by Ruder is an adapted version of the one proposed by Pan et al.. Recently, Ramponi & Plank [289] classified transfer learning into data-centric methods and model-centric methods.

1 .

 1 Transfer of linguistic annotations (§2.4.1): Unlabelled data from the target domain are automatically annotated with transferred annotations from the source data. Then, the new annotated target examples are used to train a new target model. 2. Transfer of instances (§2.4.2): A training on selected annotated source examples. 3. Transfer of learned representations (§2.4.3): Transferring representations consists in the reuse and/or modification of the underlying representations learnt from a source domain to boost the performance on a target domain.

 and sentence-level alignments [58, 324, 326, 325, 256]. Many automatic word alignment tools are available, e.g. GIZA++ [253].

Figure 2 . 2 -

 22 Figure 2.2 -Example of the projection of part-of-speech annotations. The source language is

 Transferring instances consists in a training on a selection of annotated source examples. Two approaches are commonly used, Instance Weighting and Instance Selection. Instance weighting consists in weighting source annotated instances with instance-dependent weights, which are then used to weight the loss function [161]. The weight assigned to an individual instance from the source domain is supposed to reflect the degree of similarity of the said instance to the target distribution.

 [366] investigated a dynamic data selection for Neural Machine Translation (NMT) and proposed to vary the selected data between training epochs. Ruder & Plank [304] used a Bayesian optimisation method to select instances for parsing task. Recently, Aharoni & Goldberg [4] investigated instance selection for NMT using cosine similarity in embedding space, using the representations generated by a pretrained Transformer-based model (DistilBERT) [313]. Another approach to perform instance selection is transfer self-training. We can cite the work of cross-lingual opinion classification by Xu et al. [387], who proposed to start the training of the classifier on

 [125] who proposed denoising autoencoders for domain adaptation for sentiment analysis task. First, a denoising autoencoder is trained on raw data from different source and target domains to reconstruct the input text, in an unsupervised fashion. Then, a Support Vector Machine (SVM) sentiment classifier, built on top of the latent representations generated by the denoising autoencoder, is trained on annotated examples from the source domain. Second, Domain-Adversarial training, initiated by Ganin et al. [115], aims to generate domain-invariant latent representations, from which an algorithm cannot learn to distinguish the domain of origin of the input features. Third, Multi-Task Learning (MTL) [50] consists of a joint training of related tasks and thus leverages training signals generated by each one. Fourth, Sequential Transfer Learning, where training is performed in two stages, sequentially: pretraining on the source task, followed by adaptation on the downstream target tasks.

20 2. 5 .

 205 HOW TO TRANSFER NEURAL REPRESENTATIONS? 2.5 How to Transfer Neural Representations? 2.5.1 Domain-Adversarial Neural Networks Domain-Adversarial training has been initiated by Ganin et al. [115], following the theoretical motivation of domain adaptation [30], which aims to generate domain-invariant latent representations from which an algorithm cannot learn to distinguish the domain of origin of the input features. Adversarial training requires two kinds of training data: (i) annotated source examples and (ii) unlabelled examples from the target domain. In addition, in some cases, some labelled instances from the target domain can be used to boost the performance.

Figure 2 . 3 -

 23 Figure 2.3 -Adversarial training neural architecture. Source:[START_REF] Ganin | Domain-adversarial training of neural networks[END_REF]

. 6) 3 .

 63 The domain discriminator G d learns a classifier G d : R D → [0, 1], which predicts the domain of each input x i . G d is parameterised by the set of parameters θ d :

 .4.

Figure 2 . 4 -

 24 Figure 2.4 -Multi-task learning Parameters Sharing Schemes.

 [209] proposed to train tasks periodically while using different training ratios per task based on their respective training-sets size. Similarly, Sanh et al. [314] compared uniform sampling to proportional sampling of training examples from different tasks and found that proportional sampling is outperforming in terms of performance and speed of convergence. Nevertheless, the above approaches are maladaptive, i.e. are not adapted during training, which can be an issue when easy tasks are trained with more challenging tasks; in the course of training, the more straightforward tasks are likely to be over-trained. Adaptive scheduling was used by Kiperwasser & Ballesteros [171], who studied multiple adaptive schedules that increasingly favour the principal task over training iterations. The objective of the work of Kiperwasser & Ballesteros [171] is to improve NMT with the help of POS and Dependency Parsing (DP) tasks by scheduling tasks during training, starting with multi-tasking of the principal task with auxiliary lower-level tasks (POS and DP) and as the training graduates, the model trains only to the main task. Further, Jean et al.

Figure 2 . 5 -

 25 Figure 2.5 -Illustrative schemes of CBOW and Skip-gram neural architectures.

Figure 3 . 1 , each addresses a question: 1 . 2 ." 3 .

 31123 Descriptive methods answer the question "What are neural models learning in their internal representations?" Explicative methods answer the question "Why are neural models providing a particular decision?Mechanistic methods answer the question "How are neural models producing decisions?" This categorisation is inspired by a basic classification of computational neuroscience methods. According to Dayan & Abbott [81], "descriptive methods characterise what neurons and neural circuits do. Mechanistic methods determine how nervous systems operate. Such models

Figure 3 . 1 -

 31 Figure 3.1 -Classification of analysis and interpretability methods for neural NLP models.

 [START_REF] Radford | Learning to generate reviews and discovering sentiment[END_REF] visualised the activations of a neuron that seems to perform sentiment analysis in an RNNs-based LM. Figure3.2 shows character-by-character activations of the sentiment neuron. Clearly, words like "best" and "good" trigger big jumps in the neuron's activation.

Figure 3 . 2 -

 32 Figure 3.2 -Character-by-character activations of the sentiment neuron discovered in RNNsbased language model [281]. Bright red displays high negative activation values and the bright green displays high positive activation values.

40 3 . 2 .

 32 DESCRIPTIVE METHODS: WHAT? Formally, let us consider a set of n examples X = {x 1 , ..., x n }. We aim to compute the similarity between the representations encoded over the set of examples X by two layers (whether from the same model or different models): l 1 with a dimension that equals to d 1 and l 2 with a dimension that equals to d

 [START_REF] Raghu | Transfusion: Understanding transfer learning with applications to medical imaging[END_REF] compared the internal representations of models trained from scratch vs models initialised with pretrained weights in CNNs-based models.Kudugunta et al. [178] used SVCCA to analyse the multilingual representations obtained by multilingual neural machine translation models.

 et al.[76] performed an analysis of the effect of erasing individual neurons and then investigated the ensued drop in performance of different NLP tasks. Figure3.3 reports an experiment realised by Li et al.[START_REF] Li | Understanding neural networks through representation erasure[END_REF], showing the drop in POS tagging accuracy when ablating individual neurons from different layers of the model. We can observe that the useful information in higher layers is more distributed compared to lower layers.

Figure 3 . 3 -

 33 Figure 3.3 -Heatmap of individual neurons importance (drop in accuracy after the neuron ablation) of each layer for the POS task [190].

 3.1), attention explanations (§3.3.2), gradients-based Methods (§3.3.3), surrogate models (§3.3.4), counterfactual examples (§3.3.5) and influence functions (§3.3.6).

Figure 3 . 4 -

 34 Figure 3.4 -Examples of rationales annotations from the ERASER dataset [88].

Figure 3 . 5 -

 35 Figure 3.5 -Learned attention weights in a NMT model French -English [21]. Brighter colour implies a higher attention weight.

Figure 3 . 6 -

 36 Figure 3.6 -Saliency heatmaps for the sentence "I hate the movie though the plot is interesting."

A

 widely used post-hoc approach to explain a black box model's predictions consists in training a simple surrogate model to approximate the behaviour of the black-box model in order to facilitate the extraction of explanations. Global surrogate methods are used to imitate the behaviour of the black-box model in its entirety (global explanations), whereas local surrogate models are trained to mimic the behaviour of the black-box model locally for a specific prediction (local explanations). Local Interpretable Model-Agnostic Explanations (LIME) [296] is the most popular tool in this category. It consists in approximating the original black-box classifier (i.e. approximate the local decision boundaries for a specific instance) with a shallow interpretable classifier (surrogate model); usually a simple linear model whose weights explain the relevance of an input feature to a prediction. The surrogate model is trained on perturbations of the original instance and aims to explain the prediction provided by the black-box classifier for the instance of interest. For NLP, perturbations could be done by masking words or characters from the original text. In the same vein as LIME, Alvarez-Melis & Jaakkola [11] proposed a causal framework to approximate the local behaviour of black-box models for sequence-to-sequence NLP tasks.

 [132] who introduced the causal concept effect in a computer vision application and proposed to change the pixels of an image to those of another image classified differently by the classifier, in order to compute the effect of those pixels. Alvarez-Melis & Jaakkola [11] proposed a causal framework for sequence-to-sequence NLP tasks to discover word-level input-output associations by perturbing the input texts. Recently, Feder et al. [109] proposed CausalLM, a model for explaining NNs predictions formulated as a causal inference problem. In CausalLM, an adversarial pre-training of pretrained language models, such as BERT, is performed to learn a counterfactual representation for a given concept of interest, which is then used to estimate the real causal effect of the concept on the model's performance. Elazar et al. [104] proposed to enhance probing methods to investigate what information is being used for prediction. As discussed above, probing methods help to get insights about what information is encoded in the inner representations of the model. However, they do not allow knowing whether this information is actually used by the model to get decisions. Precisely, Elazar et al. [104] proposed a method called amnesic probing, which performs probing when some linguistic knowledge is removed from the encoded representation, and then investigate the influence of the removal of this specific knowledge on the ability of the model to solve the task. For this, they use the algorithm Iterative Nullspace Projection (INLP) [291] (as an alternative to adversarial training) which allows to neutralise the possibility of predicting a certain concept from a representation with a linear function.

Figure 4 . 1 -

 41 Figure 4.1 -Stanford Dependencies for the sentence "Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas". Left: Standard Stanford Dependencies (SSD). Right: Basic Stanford Dependencies (BSD) -Source [83].

Figure 4 .

 4 Figure 4.1 illustrates SSD and BSD dependency trees for the sentence "Bills on portsand immigration were submitted by Senator Brownback, Republican of Kansas". The verb "submitted" is the root, as it is the only word of the sentence that is not dependent on any

Figure 4 . 2 -

 42 Figure 4.2 -An illustrative example from the TweeBank dataset showing non-syntactic tokens -Source: [203].

Figure 4 . 3 -

 43 Figure 4.3 -An Illustrative example of informal but syntactic tokens -Source: [203].

58 5 . 2 .

 52 STANDARD SUPERVISED TRAINING FOR SEQUENCE TAGGING to initialise the target model's parameters, instead of training them from scratch.

Figure 5 . 1 -

 51 Figure 5.1 -Illustrative scheme of the base neural model for sequence labelling tasks.

Figure 5 . 2 -

 52 Figure 5.2 -Illustrative scheme of Υ char , the character-level biLSTM-based embedding component.

5. 2 .

 2 STANDARD SUPERVISED TRAINING FOR SEQUENCE TAGGING initialised character embedding dimension (dchar) at 50, the dimension of hidden states of the character-level biLSTM (d char) at 100 and used 300-dimensional word-level embeddings (d word).

 2). Let us consider 5 a domain D = {X , P (X)} consisting of two components: the feature space X and the marginal probability distribution P (X), where X = {x 1 , x 2 , ..., x n } ∈ X . Let us consider a task T = {Y, P (Y), f }, where Y is the label space, P (Y) is the prior distribution, and f is the predictive function that transforms inputs to outputs: f : X → Y. In a supervised training paradigm, f is learned from n training examples: {(x i , y i) ∈ X × Y : i ∈ (1 , ..., n)}. Therefore, the predictive function f corresponds to the joint conditional probability P (Y |X).

2 .

 2 P (X S) = P (X T): The marginal distributions in the feature spaces are different between the source and the target domains.3. Y S = Y T : A mismatch between the class spaces of target and source domains.

4 .

 4 P (Y S) = P (Y T): The prior distributions of the source and target tasks are different, which is generally due to a class imbalance between the source and target domains. 5. P (Y S |X S) = P (Y T |X T): the conditional probability distributions between the domains are different.

Figure 5 . 3 -

 53 Figure 5.3 -Illustrative scheme of transferring supervised pretrained representations from the news domain to the social media domain. Here, Υ s and Φ s are already pretrained on the source task. They are also fixed during the training of the target model.

Figure 5 . 4 -

 54 Figure 5.4 -An overview of the process of sequential transfer learning by fine-tuning pretrained parameters.

Figure 5 . 5 -

 55 Figure 5.5 -Overview of the experimental schemes of transferring pretrained parameters. Scheme A & B: Only WRE's layers are initialised with pretrained weights from the news domain whereas FE's layers and the classifier are randomly initialised. Scheme C & D: In addition to WRE's layers, FE's layers are initialised with pretrained weights from the news domain whereas the classifier is randomly initialised. The pretrained layers are frozen in schemes A and C and tuned in schemes B and D during fine-tuning on the social media domain.

Figure 5 . 6 -

 56 Figure 5.6 -Results, in terms of token-level accuracy, of transfer learning vs random initialisation according to different social media training-set sizes (on validation-sets of TPoS, ArK, TweeBank and TChunk). Transparent orange highlights the gain brought by transfer learning approach compared to the reference training from scratch.

Figure 5 . 7 -

 57 Figure 5.7 -The impact of the model's size on transfer learning performance. Results of transfer learning (pretrained) vs random initialisation (random) on social media datasets (TPoS, ArK, TweeBank and Tchunk) using different models' sizes (100,200,400).

Figure 5 .

 5 Figure 5.8 the performance on social media domain datasets: TweeBank, TPoS and TChunk, when using pretrained weights (transfer learning) vs random initialisation and according to different training epochs. Clearly, we find that transfer learning exhibits high performance from the first training epochs and results in a faster convergence compared to random initialisation.

Figure 5 . 8 -

 58 Figure 5.8 -Models with pretrained weights convergence faster compared to randomly initialised models. Accuracy (%) on validation-sets and test-sets of TweeBank, TPoS and TChunk when using pretrained weights (transfer learning) vs random initialisation, according to different fine-tuning epochs.

Figure 5 . 9 -

 59 Figure 5.9 -Accuracy curves (grey) on source-datasets from the news domain according to different pretraining epochs. Accuracy curves (green) on target-datasets from the social media domain when using the pretrained parameters from each pretraining epoch. Note that different scales of the y-axis are used for source and target curves.

5. 5 .Figure 5 . 10 -

 5510 Figure 5.10 -Which classes benefit the most from transfer learning? Left Column: Improvement or drop in class-accuracy brought by transfer learning compared to random initialisation. Right Column: Number of per-class improved or falsified predictions by transfer learning compared to random initialisation. Tag-sets are provided inTable B.2 for ArK, Table B.3 for TweeBank and

 USR) He(PRP) definitely(RB) will(MD) as(RB) long(RB) as(IN) he(PRP) checks(VBZ) out(RP) medically(NN) .(.) I(PRP) think(VBP) he(PRP) could(MD) go(VB) as(RB) high(JJ) as(IN) the(DT) 2nd(CD) or(CC) 3rd(CD) round(NN) Random @user(USR) He(PRP) definitely(RB) will(MD) as(IN) long(RB) as(IN) he(PRP) checks(NNS) out(IN) medically(VBN) .(.) I(PRP) think(VBP) he(PRP) could(MD) go(VB) as(IN) high(NN) as(IN) the(DT) 2nd(CD) or(CC) 3rd(JJ) round(NN) TL @user(USR) He(PRP) definitely(RB) will(MD) as(RB) long(RB) as(IN) he(PRP) checks(VBZ) out(RP) medically(NN) .(.) I(PRP) think(VBP) he(PRP) could(MD) go(VB) as(RB) high(JJ) as(IN) the(DT) 2nd(CD) or(CC) 3rd(JJ) round(NN) ArK gold @user(@) yay(!) !(,) Thanyou(G) so(R) much(R) !(,) Much(A) love(N) to(P) you(O) !(,) xxxx(E) Random @user(@) yay(!) !(,) Thanyou(L) so(R) much(A) !(,) Much(R) love(V) to(P) you(O) !(,) xxxx(#) TL @user(@) yay(!) !(,) Thanyou(!) so(R) much(A) !(,) Much(A) love(N) to(P) you(O) !(,) xxxx(G) TweeBank gold I(PRON) 'm(AUX) heading(VERB) out(ADV) for(ADP) a(DET) #PokeGoBike(PROPN) ride(NOUN) .(PUNCT) Easier(ADJ) to(PART) catch(VERB) 'em(PRON) all(DET) on(ADP) a(DET) Koben(PROPN) .(PUNCT) Random I(PRON) 'm(AUX) heading(VERB) out(ADP) for(ADP) a(DET) #PokeGoBike(NOUN) ride(NOUN) .(PUNCT) Easier(VERB) to(PART) catch(VERB) 'em(ADP) all(DET) on(ADP) a(DET) Koben(NOUN) .(PUNCT) TL I(PRON) 'm(AUX) heading(VERB) out(ADP) for(ADP) a(DET) #PokeGoBike(PROPN) ride(NOUN) .(PUNCT) Easier(VERB) to(PART) catch(VERB) 'em(PRON) all(DET) on(ADP) a(DET) Koben(PROPN) .(PUNCT) TChunk Gold it(b-np) was(b-vp) half(b-np) past(i-np) 8(i-np) when(b-advp) the(b-np) drugs(i-np) began(b-vp) to(i-vp) take(i-vp) hold(b-np) Random it(b-np) was(b-vp) half(b-np) past(b-np) 8(i-np) when(b-advp) the(b-np) drugs(i-np) began(b-vp) to(b-vp) take(i-vp) hold(i-vp) TL it(b-np) was(b-vp) half(b-np) past(i-np) 8(i-np) when(b-advp) the(b-np) drugs(i-np) began(b-vp) to(i-vp) take(i-vp) hold(b-np) WNUT gold Game(B-creative-work) of(I-creative-work) Thrones(I-creative-work) is(O) not(O) based(O) on(O) earth(B-location) js(O) Random Game(O) of(O) Thrones(B-creative-work) is(I-creative-work) not(O) based(O) on(O) earth(O) js(O) TL Game(B-creative-work) of(I-creative-work) Thrones(I-creative-work) is(O) not(O) based(O) on(O) earth(O) js(O)

 2) Normalising the outputs of both branches to balance their different behaviours and thus forcing the network to consider both. 3) Applying learnable attention weights on both branches predictors to let the network learn which of random or pre-trained one is better for every class. Our experiments on 4 NLP tasks: Part-of-Speech tagging (POS), Chunking (CK), Named Entity Recognition (NER) and Morphosyntactic Tagging (MST); show that PretRand

chapter 5 : 6 . 2

 562 scheme.

92 6 . 2 .

 62 ANALYSIS OF THE STANDARD FINE-TUNING SCHEME OF TRANSFER LEARNING correctly predicted by transfer learning scheme, and N f alsif ied i is the number of tokens from the validation-set that were correctly tagged by the the model trained from scratch but are wrongly predicted by the transfer learning scheme.

Figure 6 . 1 -

 61 Figure 6.1 -The percentage of negative transfer and positive transfer brought by SFT adaptation scheme compared to supervised training from scratch scheme.

Figure 6 .

 6 Figure 6.1 shows the results on English social media datasets, first tagged with the classic supervised training scheme and then using SFT. Blue bars show the percentage of positive transfer and red bars give the percentage of negative transfer. We observe that even though

Figure 6 . 2 -

 62 Figure 6.2 -Positive transfer curves (blue) and negative transfer curves (red) on social media data-sets, according to different pretraining epochs. Transparent Gray highlights the final gain brought by TL.

 to), ur (your), wth (what the hell) and nvr (never) in ArK dataset; and luv (love) and wyd (what you doing?) in TChunk dataset.chapter 5: Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 95

6. 2 .Figure 6 . 3 -

 263 Figure 6.3 -Illustrative scheme of the computation of the charge of unit j, i.e. the Pearson correlation between unit j activations vector after fine-tuning to its activations vector before fine-tuning.

chapter 5 :

 5 Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 97

Figure 6 . 4 -

 64 Figure 6.4 -Correlation results between Φ units' activations before fine-tuning (columns) and after fine-tuning (rows). Brighter colours indicate higher correlation.

Figure 6 . 5 -

 65 Figure 6.5 -Illustrative scheme of the calculus of top-k-words activating unit j, positively (A (j) best+) and negatively (A (j) best-) during fine-tuning epochs. h epoch z states for Φ's outputs at epoch number z.

Unit- 196 :

 196 ArK dataset Unit-64: ArK dataset

Figure 6 . 6 -

 66 Figure 6.6 -Individual units activations before and during fine-tuning from ArK POS dataset. For each unit we show Top-10 words activating the said unit. The first column: top-10 words from the source validation-set (WSJ) before fine-tuning, Column 0: top-10 words from the target validation-set (ArK) before fine-tuning. Columns 5 to 20: top-10 words from the target validation-set during fine-tuning epochs.

Figure 6 . 7 -

 67 Figure 6.7 -Individual units activations before and during fine-tuning on Tweebank POS dataset. For each unit we show Top-10 words activating the said unit. The first column: top-10 words from the source validation-set (WSJ) before fine-tuning, Column 0: top-10 words from the target validation-set (Tweebank) before fine-tuning. Columns 5 to 20: top-10 words from the target validation-set during fine-tuning epochs.

Figure 6 . 8 -

 68 Figure 6.8 -Individual units activations before and during fine-tuning on WNUT NER dataset. For each unit we show Top-10 words activating the said unit. The first column: top-10 words from the source validation-set (CONLL-03) before fine-tuning, Column 0: top-10 words from the target validation-set (WNUT-17) before fine-tuning. Columns 5 to 20: top-10 words from the target validation-set during fine-tuning epochs.

4 . 2)

 42 to select source examples for pretraining. Concerning the quantification of the change of pretrained individual neurons, it would be interesting to observe the percentage of biased neurons according to different thresholds of correlation. It would also be interesting to perform a representation-level similarity analysis to gain more insights, as it has been shown by Wu et al. [384] that representation-level similarity measures the distributional similarity while individual-level measures local similarity. chapter 5: Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 103

Figure 6 . 9 -

 69 Figure6.9 -Illustrative scheme of the three ideas composing our proposed adaptation method, PretRand. a) We augment the pre-trained branch (grey branch) with a randomly initialised one (green branch) and jointly adapt them with pre-trained ones (grey branch). An element-wise sum is further applied to merge the two branches. b) Before merging, we balance the different behaviours of pre-trained and random units, using an independent normalisation (N). c) Finally we let the network learn which of pre-trained or random neurons are more suited for every class, by performing an element-wise product of the FC layers with learnable weighting vectors (u and v initialised with 1-values).

chapter 5 :

 5 Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 105

Figure 6 .

 6 Figure 6.10 -The distributions of the learnt weight-values for the randomly initialised (green) and pre-trained (grey) fully-connected layers after their joint training. Left: without normalisation, right: with normalisation.

chapter 5 :

 5 Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 107 6.3.2.1 Experimental Setup

chapter 5 :Figure 6 .

 56 Figure 6.11 -Illustrative schemes of baseline-methods and PretRand.

chapter 5 :

 5 Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 111

 So far in our experiments, we have used only the standard pre-loaded words embeddings and character-level embeddings in the WRE component. Here, we perform a further experiment that examines the effect of incorporating the ELMo contextualised word representations in different tasks and training schemes (From-scratch, SFT and PretRand). Specifically, we carry out an ablation study of WRE's representations, namely, the standard pre-loaded words embeddings (word), character-level embeddings (char) and ELMo contextualised embeddings (ELMo). The ablation leads to 7 settings; in each, one or more representations are ablated. Results are provided in Table

Table 6 . 6 -

 66 Diagnosis analysis of the impact of ELMo contextual representations.. Fromscratch, SFT and PretRand results, on social media test-sets, when ablating one or more type of representations. : from scratch, •: pre-loaded, : trained, ×: frozen.

 consists in a multi-task training of 4 NLP tasks: POS, CK, super sense tagging and NER, on 20 Tweets datasets 7 POS, 10 NER, 1 CK, and 2 super sense-tagged datasets. The model is based on a biLSTM-CRF architecture and words representations are based on the pre-trained ELMo embeddings.

 e. the training starts with only formal text data (news) at first; then, the proportion of the informal text data (social media) is gradually increased during the training process. They experiment with two architectural varieties, a biLSTM-based architecture (DA-LSTM) and a Transformerbased architecture (DA-BERT). In the last variety, the model is initialised with BERT base pretrained model (110 million parameters). A CRF classifier is used as a classifier on the top of both varieties, biLSTM and BERT.

chapter 5 :

 5 Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 115

Figure 6 . 12 -

 612 Figure 6.12 -Sorted class-accuracy improvement (%) on TweeBank of PretRand compared to fine-tuning.

Figure 6 .

 6 Figure 6.13 -Performances (on dev-set of TweeBank) according different training-set sizes for the target-dataset. Transparent green highlights the difference between our PretRand and standard fine-tuning.

Figure 6 .

 6 Figure 6.14 -Positive and negative transfers brought by SFT (left) and PretRand (Right) compared to the standard supervised training scheme (From-scratch).

chapter 5 :

 5 Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 117 • ARK dataset -POS: (Figure 6.15)

Figure 6 . 15 -

 615 Figure 6.15 -Individual units activations (from the random branch) before and during fine-tuning PretRand on ArK social media dataset. For each unit we show in column 0: top-10 words from ArK dev-set before fine-tuning (random init). Columns 1 to 10: top-10 words from the target dev-set during fine-tuning epochs.

6. 3 .

 3 THE PROPOSED METHOD: PRETRAND TweeBank dataset -Unit-160: Specific to the verb part of words like gonna and wonna.TweeBank dataset -Unit-04: Specific to the particle part of words like gonna and wonna.

Figure 6 .

 6 Figure 6.16 -Individual units activations (from the random branch) before and during finetuning PretRand on TweeBank dataset. For each unit we show in column 0: top-10 words from TweeBank dev-set before fine-tuning. Columns 1 to 10: top-10 words from TweeBank dev-set during fine-tuning epochs.

chapter 5 :

 5 Neural Domain Adaptation by Joint Learning of Pretrained and Random Units 119 the word "Supreme" is among top-10 words activating unit-146, which is specialised in PERSON entities.WNUT dataset: Unit-71 is firing on "&" , "and" and "with" WNUT dataset:Unit-102 is sensitive to PRODUCTS (Specific class to WNUT dataset)WNUT dataset: Unit-146 is sensitive to PERSONS, including "Supreme".

Figure 6 . 17 -

 617 Figure 6.17 -Individual units activations (from the random branch) before and during fine-tuning PretRand on WNUT NER dataset. For each unit we show in column 0: top-10 words from WNUT dev-set before fine-tuning. Columns 1 to 10: top-10 words from WNUT dev-set during fine-tuning epochs.

First, to encounter

 the lack of annotated data in the social media domain, we propose to train the four tasks (POS, CK, NER and DP) on social media datasets from scratch using a hierarchical multi-task model to recognise as many linguistic properties as possible from a given sentence. Especially, the hierarchical nature of the model fosters high-level tasks to better leverage significant training signals generated by low-level ones. Our results show that this approach enhances the performance on social media domain across all tasks, outperforming the mono-task training from scratch paradigm.Second, we introduce a novel method, that we call Multi-Task Supervised Pre-training and Adaptation (MuTSPad), which unifies both approaches: sequential transfer learning and multi-task training. MuTSPad takes benefit from both, by learning a hierarchical multi-task model trained across multiple tasks from the source-domain (news), and further fine-tuned on multiple tasks from the target-domain (social media). Hence, in addition to various linguistic 122 7.2. PROPOSED APPROACH properties learned from various supervised NLP tasks, MuTSPad takes advantage of the prelearned knowledge from the high-resource source-domain. MuTSPad exhibits significantly better performance than both TL approaches.

Figure 7 . 1 -

 71 Figure 7.1 -Illustrative scheme of the neural arc-factored graph-based dependency parser.

Figure 7 . 2 -

 72 Figure 7.2 -Illustrative scheme of our Hierarchical multi-task architecture.

 pos • Φ pos)(x i) .

3 .

 3 All the parameters of M t are then adapted on the set of heterogeneous target-datasets D t .• Flairs[START_REF] Akbik | Pooled contextualized embeddings for named entity recognition[END_REF] (NER): It use a biLSTM-CRF sequence labelling architecture, fed with Pooled Contextual Embeddings[7], pre-trained using a character-level language model.• Multi-dataset-multi-task (MDMT)[START_REF] Mishra | Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets[END_REF] (POS, CK and NER): multi-task learning of 4 NLP tasks: POS, CK, super sense tagging and NER on 20 Tweets datasets: 7 POS, 10 NER, 1 CK, and two super sense-tagged datasets. The model is based on a biLSTM-CRF architecture, and words representations are based on the pre-trained ELMo embeddings. • Data Annealing (DA) [136] (CK): A fine-tuning approach similar to our Mono-Task pretraining baseline, but the passage from pretraining to fine-tuning is performed gradually, i.e. the training starts with only formal text data (news) at first; then, the proportion of the informal training instances (social media) is gradually increased during the training process. They experiment with two architectural varieties, biLSTM-based architecture (DA-LSTM) and Transformer-based architecture (DA-BERT). In the last variety, the model is initialised with BERT base (110 million parameters) pretrained model. A CRF classifier is used as a classifier on the top of both varieties, biLSTM and BERT.

 and updated during training). Sequence labelling branches: We use a single-layer biLSTM (token-level feature extractor), with an output features dimension equals to 200. DP branch HP: We follow Stanford parser' 9 HP configuration. Transformation layers: T pos and T ck are a fully connected layers that transform POS and CK outputs, respectively, to 100-dimensional features. Training details: In all experiments (pretraining and fine-tuning) SGD was used for training with early stopping, mini-batches were set to 16 sentences and the learning rate to 1.5 × 10 -2 . Evidently, all the HP have been crossvalidated. Multi-Task Loss calculation: During training, tasks weights α pos , α ck , α ner and α dp are respectively set up to: 1, 0.5, 0.25 and 0.25, respectively. Then, doubled at each epoch until α task = 1. Then, kept constant afterwards.

 R), where d is h pos 's dimension and m is the number of task' classes. This matrix can be summarised in a max-class-score-drop vector v task ∈ R d , where each element v task i from the vector represents the max-class-score-drop when ablating the unit i from h pos .

Figure 7 . 3 -

 73 Figure 7.3 -Maximum drop in performance on POS, CK, DP and NER tasks when ablating individual POS units. from the POS Feature Extractor output (h pos). Dark/light blue: high/low drop. One can see that it is the POS task that is most impacted by the POS units.

 First, we have proposed a new categorisation of interpretability methods in NLP. (1) Descriptive methods aim to investigate the knowledge learnt by neural models in their internal representations. (2) Explicative methods aim to justify the predictions of the model. (3) Mechanistic methods seek to provide a functional understanding of the model. Second, to go even further in our analysis of the SFT scheme, we have investigated how the internal representations of the pretrained models are updated during fine-tuning on the social media domain. We have addressed this question with two distinct interpretive approaches: correlation analysis and individual units stimulus.

3 . 6)

 36 to identify source training examples responsible for the negative transfer. Further, to identify text pieces of the evaluated sentence that justify a prediction with a negative transfer, one can use surrogate methods (§3.3.4) or gradients based methods (§3.3.3).

[299]

 299 and COVID-19 [14, 220]. • Incorporating expert knowledge into deep neural models: As we have shown in this thesis, specific languages used in social media platforms generally share a number of syntactic structures and vocabulary with formal languages. Another avenue for research consists in analysing close languages and modelling their divergences and similarities in the form of linguistic rules and resources and then incorporating this expert knowledge into deep neural models in order to improve the training step and to obtain more accurate predictions. The WALS (World Atlas of Language Structures) database 1 can be exploited to extract structural and lexical properties of close languages. The idea of incorporating

C

 schemes: From-scratch, SFT and PretRand. 6.7 Comparison of PretRand to best the published SOTA methods.

 Maison du doctorat de l'Université Paris-Saclay 2 ème étage aile ouest, Ecole normale supérieure Paris-Saclay 4 avenue des Sciences, 91190 Gif sur Yvette, France Title: Neural Transfer Learning for Domain Adaptation in Natural Language Processing Keywords: Transfer Learning, Domain Adaptation, Neural Networks, Low-resource languages and domains, Sequence labelling

 who proposed an implementation based on several adaptation heuristics, first by removing misleading source training instances (i.e. where P T (Y |X) highly differs from P S (Y |X)), then assigning higher weights to labelled target instances than labelled source instances, and finally

	augmenting training instances with automatically labelled target instances. Another approach
	consists in training a domain classifier to discriminate between source and target instances. Then,
	source labelled examples are weighted with the probability (the classifier output) that a sentence
	comes from the target domain [341, 274].

Instance Selection consists in ignoring source examples that are potentially harmful to the target domain, i.e. which are likely to produce a negative transfer. It differs from instance weighting method in two points. First, instance weighting is a soft data selection, while here selection is hard, i.e. source examples are either attributed a weight equals to 1 or 0. Second, instance selection is performed as a pre-processing step, while in instance weighting, weights are used at the loss computation during training. Domain similarity metrics are often used to perform instance selection, e.g. proxy A [33],

 . Moreover,Peters et al. [264] found that, for contextualised representations, both adaptation schemes are competitive, but the appropriate adaptation scheme to pick depends on the similarity between the source and target problems.

	Recently, Residual Adapters were proposed by Houlsby et al. [154] to adapt pretrained models
	based on Transformers architecture, which aim to keep Fine-Tuning scheme's advantages while
	reducing the number of parameters to update during the adaptation stage. This is achieved
	by adding adapters (intermediate layers with a small number of parameters) on top of each
	pretrained layer. Thus, pretrained layers are frozen, and only adapters are updated during training.
	Therefore, Residual Adapters performance is near to Fine-tuning while being computationally
	cheaper [267, 266, 268].

 S) = P (X T) or P (Y S |X S) = P (Y T |X T)): Sequential transfer learning with supervised pretraining was used by Lee et al. [185] and Giorgi &

	speech recognition. Transfer Learning was also used to transfer between Arabic dialects.
	We can cite the work of Zalmout & Habash [401], who explored multitask learning and
	adversarial training for supervised domain adaptation from the resource-rich Modern
	Standard Arabic to the Egyptian Arabic.
	• Cross-task adaptation (Y S = Y T) was explored in [243] to investigate different settings
	of sequential transfer learning from sentiment analysis task to question classification
	task. Yang et al. [390] proposed to transfer a model pretrained on POS tagging to word
	segmentation using sequential transfer learning. Niehues & Cho [249] exploited multi-task
	learning to transfer the encoded knowledge from POS and NER tasks to neural machine
	translation task, by first training the model on all tasks and then continued training only
	on the target task. Kiperwasser & Ballesteros [171] proposed to improve neural machine
	translation with the help of POS and DP tasks by starting with multi-tasking of the principal
	task with auxiliary lower-level tasks (POS and DP). As the training progresses, the model
	trains progressively more on the main task dataset compared to auxiliary tasks datasets.
	• Cross-domain adaptation (P (X
	Domain adaptation englobes two settings. First, unsupervised domain adaptation assumes that
	labelled examples in the source domain are sufficiently available. However, for the target domain,
	only unlabelled examples are available. Second, in supervised domain adaptation setting, a
	small number of labelled target examples are assumed to be available. In recent years, several
	works have investigated how to adapt NLP models between languages, tasks or domains using
	transfer learning techniques:
	• Cross-lingual adaptation (X S = X T) from high-resource languages to low-resourced
	ones was explored in the literature for multiple NLP tasks. Zoph et al. [425] performed
	sequential transfer learning for supervised domain adaptation by pretraining an NMT
	model on a high-resource source language pair and then transferring the learned weights to
	a target language pair for a further fine-tuning, and Dabre et al. [75] proposed to perform a
	multi-stage fine-tuning to improve NMT performance on low-resourced settings by using
	out-of-domain data from other languages. Chen et al. [55] performed adversarial training
	for cross-lingual sentiment analysis. They experimented their approach on unsupervised
	domain adaptation from English to Arabic and Chinese. Similarly, Yi et al. [395] explored
	sequential transfer learning using a language-adversarial pretraining for cross-lingual

Table 2

 2

	.1 summarises the categorisation presented in this sub-chapter, by showing the
	cases where different transfer approaches are used for each research area. First, the two main
	columns for "Why transfer?" categorisation: domain adaptation (divided into unsupervised
	DA and supervised DA) and universal representations. Second, the three main rows for "What
	to transfer?" categorisation: transfer of annotations, instances and models. Note that, by
	design, universal representations could only be produced using sequential transfer learning.
	Unsupervised domain adaptation could not be performed using sequential transfer learning since
	this last assumes a fine-tuning step on the target annotated dataset. Likewise, unsupervised
	domain adaptation could not be performed using multi-task learning.	
	What to Transfer?	Why Transfer?	Domain Adaptation Unsupervised DA Supervised DA	Universal Representations
	Transfer of annotations			
	Transfer of instances			
	Transfer of learned representations	Adversarial Training		
		Multi-task learning		
		Sequential Transfer Learning		

Table 2 . 1 -

 21 Different transfer learning approaches used for different research objectives.

 a tool that visualises the internal representations both at the sentence and token levels.Kahng et al. [167] proposed ActiVis, an interactive visualisation and exploration tool of large-scale deep learning models. Similarly,Strobelt et al. [344] proposed LSTMVis, a tool that visualises the dynamics of the hidden states of RNNs in the course of treating the sentence sequentially.3.2.2 Individual Units StimulusInspired by works on receptive fields of biological neurons[156], which investigate what stimulusfeatures do single neurons represent, several works have been devoted to interpret and visualise artificial neural networks individual hidden units stimulus-features. Initially, in computer vision

Thus, similar data points are likely to appear close together in the scatterplot. t-Distributed Stochastic Neighbor Embedding (t-SNE) [211] is the most popular tool to visualise embeddings. In the same vein, Escolano et al. 3.2. DESCRIPTIVE METHODS: WHAT? [105] proposed [66, 124, 418] and more recently in NLP, wherein units 3 activations are visualised in heatmaps. Karpathy et al. [169] visualised character-level LSTM cells learned in language modelling. They found, for instance, multiple interpretable units that track long-distance dependencies, such as line lengths and quotes. Bau et al. [27] visualised neurons specialised on tense, gender, number, etc. in NMT models. Radford et al.

Table 4 .

 4

	48

1 -Statistics of the used datasets. Grey rows: news-domain datasets. White rows: social media domain datasets.

Table 4 . 2

 42

-Illustrative examples of annotated sentences from each social media dataset.

 TPoS[START_REF] Ritter | Named entity recognition in tweets: an experimental study[END_REF]: 787 hand-annotated English Tweets, which uses the same tag-set as PTB's plus four Twitter unique tags: "URL" for web addresses, "HT" for hashtags, "USR" for username mentions and "RT" for Retweet signifier (40 tags in total). For our experiments on TPoS, we use the same data splits used by Derczynski et al.[START_REF] Derczynski | Twitter part-of-speech tagging for all: Overcoming sparse and noisy data[END_REF]; 70:15:15 into training, validation and test sets. The tag-set list of TPoS dataset is provided in Table B.1.

	50	4.3. MORPHO-SYNTACTIC TAGGING
	•	
	Datasets	
	In this thesis, we perform experiments on transfer learning from the news source domain to the
	social media target domain. Hence, we use a set of datasets from each domain. For the source
	dataset, we use the Wall Street Journal (WSJ) part of the Penn TreeBank, a large English dataset
	(formal texts) from the news domain, annotated with the PTB tag-set. Regarding the target
	datasets, we use three English social media datasets:	

comprises 36 tags 1 and the French TreeBank (FTB) comprises 34 tags 2 . 2. The Universal Dependencies (UD) 2.0 [251] POS tag-set 3 contains a tag-set of 17 POS tags that are common between all languages.

 to nominal + verbal (e.g. ur (you are)) and verbal + nominal (e.g. let's (let us)). Since data splits portions are not mentioned in original paper, we split the Oct27 dataset into training-set and validation-set (90:10) and use Daily547 as a test-set. The tag-set list of ArK dataset is provided in Table B.2.

• TweeBank

[START_REF] Liu | Parsing Tweets into Universal Dependencies[END_REF]

: is a collection of Tweets annotated with the UD 2.0 POS tag-set, which includes 17 tags. A primary difference of the annotation scheme of TweeBank compared the two previous datasets concerns the abbreviations, where the tag of the syntactic head of the expression is attributed to the abbreviation. The tag-set list of TweeBank dataset is provided in Table

B

.3.

Background 51

 51 For instance in the provided example in Table1.2, "they" is a noun phrase and "do n't wanna talk" is a verbal phrase. CK datasets generally use the BIO (Begin, Inside, Outside) annotation scheme that categorises tokens as either being outside the syntactic span (O), the beginning of the syntactic span (B_X) or inside the syntactic span (I_X). Here X refers to one of the 11 syntactic chunk types like NP: Nominal Phrase, VP: Verbal Phrase, PP: Prepositional Phrase,

ADJP: Adjectival Phrase, ADVP: Adverbial Phrase, etc.

 is the character-level embedding weight matrix and b char ∈ R dchar is the bias vector. Next, a forward LSTM model reads the character vectors (x (t,j)) from left to right and a backward LSTM model reads characters from right to left. The combination between the last hidden state of the forward LSTM and the last hidden state of the backward LSTM represents x char

t ∈ R d char : the character-level embedding for the word w t , where d char is the character embedding's dimension.

5.2.1.2 Feature Extractor

To learn a context sensitive representation for each token, the word representation extractor's outputs, [x 1 , . . . , x n], are fed into the feature extractor. It consists of a single biLSTM layer which iteratively passes through the sentence in both directions. Formally, a forward LSTM layer at a time-step t takes x t and the previous hidden state -→ h t-1 as input, and outputs the current forward hidden state -→ h t , whilst a backward LSTM layer at time-step t takes x t and the following hidden state ←h t+1 as input, and outputs the current backward hidden state ←h t . In order to take into account the context on both sides of that word, hidden representations -→ h t and ←h t from forward and backward biLSTM units, respectively, are concatenated at every time-step, resulting h t vector:

 STANDARD SUPERVISED TRAINING FOR SEQUENCE TAGGING input, forget and output gates at time-step t, respectively. W i , W f and W o represent the weight matrices of the input, forget and output gates, respectively. c t is the cell state at timestamp(t), ct

1 1+exp (-a i)] i=|a| i=1

for a vector a.

denotes element-wise multiplication of two vectors. i t , f t and o t represent 5.2.

 FastText : word-level embedding initialised with FastText[START_REF] Bojanowski | Enriching word vectors with subword information[END_REF] pretrained representations.5. WEFastText +WE GloVe : word-level embedding initialised with the concatenation of Fast-Text and GloVe pretrained representations. 6. WE+CE: concatenation of a word-level and a biLSTM character-level embeddings, both randomly initialised. 7. CE+WE GloVe : concatenation of GloVe pretrained embeddings with and randomly initialised character embedding. 8. CE+WE FastText : concatenation of word-level embedding initialised with FastText pretrained representations with the randomly initialised biLSTM character-level embedding.

	Chapter 4: Sequential Transfer Learning from News to Social Media	63
	4. WE	

GloVe : word-level embedding initialised with GloVe

[START_REF] Pennington | Glove: Global vectors for word representation[END_REF]

pretrained word embedding. 9. CE+WE FastText +WE GloVe : concatenation of FastText and GloVe pretrained word-level embeddings with the randomly initialised biLSTM character-level embedding.

Table 5

 5

	Task	#Classes Sources	Eval. Metrics	Splits (train -val -test)
	POS: POS Tagging	36 WSJ	Top-1 Acc.	912,344 -131,768 -129,654
	CK: Chunking	22 CONLL-2000 Top-1 Acc.	211,727 -n/a -47,377
	NER: Named Entity Recognition	4 CONLL-2003 Top-1 Exact-match F1. 203,621 -51,362 -46,435
		40 TPoS	Top-1 Acc.	10,500 -2,300 -2,900
	POS: POS Tagging	25 ArK	Top-1 Acc.	26,500 -/ -7,700
		17 TweeBank	Top-1 Acc.	24,753 -11,742 -19,112
	CK: Chunking	18 TChunk	Top-1 Acc..	10,652 -2,242 -2,291
	NER: Named Entity Recognition	6 WNUT-17	Top-1 Exact-match F1. 62,729 -15,734 -23,394

.

1

. More details about the tasks and datasets are provided in chapter 4.

Table 5 . 1 -

 51 Statistics of the used datasets. Top: datasets of the source domain. Bottom: datasets of the target domain.

Table 5 . 2 -

 52 Because OOV words are rare in news-domain datasets, randomly initialised word-level embeddings (WE) are sufficient to encode the majority of words. On the other hand, since OOV words are frequent in social media datasets, character-level information is essential to encode new tokens, we can observe that CE performs comparably with CE+WE, whereas WE degrades severely the performance compared to CE+WE (-32.1 aNRG for PoS tagging task and -21.1 aNRG for NER and CK tasks).Fourth, The use of both pretrained word-level embeddings, WE fastext and WE GloVe , is highly advantageous across all datasets of both domains, enhancing the performance compared to WE (from scratch). For news domain datasets, WE GloVe exhibits better results. For the social media domain, WE GloVe performs better on the POS task, while WE FastText is better on CK and NER datasets. Finally, given the syntactic nature of POS and CK tasks and the semantic nature of NER tasks, pretrained word-level embeddings are more beneficial for NER compared to POS and CK, while character-level embeddings are more beneficial for the POS task. Ablation study of traditional embeddings: character-level embeddings (denoted CE) and word-level embeddings (denoted WE) on POS, CK and NER tasks on the news domain (grey columns) and social media domain (white columns). The Avg. and aNRG columns aggregate the scores of the methods across datasets. PROPOSED METHODS compared to 87.35%, 91.15% and 92.61% on TPoS, ArK and TweeBank, respectively).

					POS (Acc.%)
	Setting		WSJ	TPoS	ArK	TweeBank	Avg. aNRG
			test	dev	test	test	dev	test
	CE+WE		97.20 84.32 82.81 86.23 86.82 87.58 87.5	0
	CE		96.43 84.28 82.16 87.66 87.71 88.68 87.8	-0.9
	WE		96.59 76.22 77.01 80.87 84.10 84.34 83.2	-32.1
	WE GloVe		97.41 86.66 85.21 88.34 90.33 90.70 89.8 +17.2
	WE FastText		97.33 85.45 84.34 88.19 90.53 91.14 89.5 +15.3
	WE FastText +WE GloVe		97.45 87.05 86.39 89.31 91.37 92.04 90.6 +23.3
	CE+WE GloVe		97.50 88.52 86.82 90.89 91.61 91.66 91.2 +27.3
	CE+WE FastText		97.49 88.61 87.26 90.42 91.63 92.04 91.2 +27.7
	CE+WE FastText +WE GloVe	97.53 89.22 87.35 91.15 92.34 92.61 91.7 +31.3
			CK (Acc.%)			NER (F1 %)
	Setting	CONLL2000	TChunk	CONLL-03	WNUT-17	Avg. aNRG
			test	dev	test	dev	test	test
	CE+WE		95.17	84.20 82.50 87.68 80.67	19.20	74.9	0
	CE		95.25	85.17 83.77 84.19 78.49	17.99	74.1	-4.3
	WE		94.48	78.35 77.94 84.78 76.78	14.84	71.2	-21.1
	WE GloVe		96.04	85.48 83.03 92.70 88.52	36.58	80.4	+22.
	WE FastText		95.88	86.58 85.00 92.17 86.97	38.80	80.9 +22.9
	WE FastText +WE GloVe		96.05	87.54 87.50 93.14 89.19	40.93	82.4 +30.5
	CE+WE GloVe		96.09	87.76 85.83 93.03 89.21	36.75	81.4 +28.3
	CE+WE FastText		96.01	88.03 86.32 92.61 88.50	40.84	82.1 +28.5
	CE+WE FastText +WE GloVe		96.18	88.73 86.97 93.41 89.04	40.94	82.5	+32
	These results show that traditional pretrained word-level embeddings representations boost
	the performance over all tasks and datasets. Even more importantly, we found that they are more
	helpful when dealing with the low-resource social media domain than with the resource-rich
	news domain (especially for WNUT dataset with a jump in the F1 score from 19.20% by CE+WE
	to 40.94% by CE+WE					

Second, we can observe that CE+WE FastText +WE GloVe setting outperforms all other settings in most tasks and datasets, which indicates that the inductive biases encoded by different types of pretrained embeddings are complementary.

Third, character-level embeddings (CE) outperform randomly initialised word-level embeddings (WE) across all social media datasets, while both representations perform comparably on news-domain data-sets. FastText +WE GloVe). However, even though combining different word representations boosts the performance of sequence labelling in social media texts and helps handle the problem of OOV words, the performance gap between the best models for news and those for social media is still wide (e.g. 97.53% accuracy on WSJ dataset from news domain 5.3.

Table 5 . 3

 53 .3, we draw the following observations. It is apparent that our pretrained representations yield a greater improvement when combined with CE than with CE+WE GloVe . For instance, when adding CK representations (h s-ck), we observe a +23.4 point increase in terms of aNRG with CE+h s-ck compared to the +8.5 increase with CE+WE GloVe + h s-ck . An expected observation since the traditional pretrained wordembeddings already accommodate valuable pretrained knowledge helpful to handle the problem of the lack of annotated examples in the social media domain. Notwithstanding, even when combined with WE GloVe , our pretrained representations still yield a major performance increase, pointing to the fact that supervised pretraining helps encode new task-specific knowledge that is useful for many NLP tasks. NER representations are a notable exception, as we can

				POS (Acc.)			CK (Acc.)	NER (F1)	
	Features	TPoS	ArK	TweeBank	TChunk	WNUT	aNRG
		dev	test	test	dev	test	dev	test	test	
	CE	84.28	82.16	87.66	87.71	88.68	85.17	83.77	17.99	0
	CE+h s-pos	90.00	88.35	90.93	91.97	92.33	90.18	89.04	28.21	+30.4
	CE+h s-ck	87.96	86.08	90.07	90.75	91.08	89.92	88.77	28.75	+23.4
	CE+h s-ner	86.88	86.21	89.96	89.75	90.56	86.09	85.83	33.63	+16.1
	CE+h s-pos +h s-ck	90.13	88.44	91.23	92.25	92.84	90.62	89.65	32.37	+33.2
	CE+h s-pos +h s-ner	89.52	88.44	91.45	92.39	92.50	89.52	88.99	32.46	+31.3
	CE+h s-ck +h s-ner	88.96	88.00	90.62	91.33	91.70	90.36	88.99	27.24	+27.6
	CE+h s-pos +h s-ck +h s-ner	90.91	89.57	91.10	92.37	92.83	90.10	89.04	35.54	+34.2
	CE+WE GloVe	88.52	86.82	90.89	91.61	91.66	87.76	85.83	36.75	0
	CE+WE GloVe +h s-pos	90.39	88.83	91.93	92.64	93.18	89.96	88.73	38.37	+14.3
	CE+WE GloVe +h s-ck	88.96	87.35	91.53	92.16	92.59	89.88	88.16	37.59	+8.5
	CE+WE GloVe +h s-ner	88.65	87.35	90.88	91.68	92.23	87.06	85.75	38.30	+1.1
	CE+WE GloVe +h s-pos +h s-ck	90.69	89.27	91.94	92.75	93.14	90.10	88.86	38.28	+15.4
	CE+WE GloVe +h s-pos +h s-ner	90.21	88.87	91.93	92.52	93.11	89.83	87.94	39.33	+13.2
	CE+WE GloVe +h s-ck +h s-ner	90.21	88.18	91.38	92.01	92.61	90.54	88.33	36.51	+10.8
	CE+WE GloVe +h s-pos +h s-ck +h s-ner	90.86	89.31	92.16	92.67	93.31	90.58	89.34	39.19	+17.2

observe a severe drop in the performance gain, from +16.1 aNRG for CE+h s-ner to +1.1 for CE+WE GloVe + h s-ner . This observation may be explained by the fact that NER is a semantic task, thus the knowledge encoded by NER on the news-domain is similar to that encoded by GloVe pretrained embeddings. -Results of combining our supervisedly-pretrained representations with standard embeddings. Results on social media datasets: TPoS, ArK and TweeBank for the POS task, TChunk for the CK task and WNUT for the NER task. The best score for each dataset is in bold, the second best score is underlined. In the top half, we combine the transferred fixed representations with CE. In the bottom half, we experiment with combining the transferred representations with CE+WE GloVe . The scores marked with are those which are higher than CE+WE GloVe .

Table 5 .

 5 5 -Layer-per-layer transferability analysis results on social media datasets TPoS, ARK, TweeBank, TChunk and WNUT. Scheme O consists of training target models from scratch (random initialisation) on social media training-sets. Transfer schemes A,B, C and D are illustrated in Figure 5.5. Scores marked with are higher than the reference training from scratch (scheme O). Best scores by dataset are highlighted in bold, second best scores are underlined.

				POS (Acc.)			CK(Acc.)	NER (F1)	
	Scheme	TPoS	ArK	TweeBank	TChunk	WNUT	aNRG.
		dev	test	test	dev	test	dev	test	test	
	O	88.52	86.82	90.89	91.61	91.66	87.76	85.83	36.75	0.0
	A	88.87	87.48	90.85 92.05	92.48	87.85	86.10	39.27	+3.7
	B	90.17	88.66	91.55	92.31	92.65	89.22	87.19	40.97	+10.5
	C	86.10 86.91	85.39	87.48	87.92	82.35	81.75	27.83	-32.7
	D	90.95	89.79	92.09	93.04	93.29	90.71	89.21	41.25	+18.6

Table 5 . 6 -

 56 Results of inter-tasks transferability of pretrained models from news domain to

					POS (acc.)			CK (acc.)	NER (F1)	
	Pretraining	Scheme	TPoS	ArK	TweeBank	TChunk	WNUT	Avg.
			dev	test	test	dev	test	dev	test	test	
	n/a	O	88.52	86.82	90.89	91.61	91.66	87.76	85.83	36.75	82.5
	POS	A	88.87	87.48	90.85	92.05	92.48	88.29	87.41	35.31	82.8
		B	90.17	88.66	91.55	92.31	92.65	88.82	87.72	38.51	83.8
		C	86.10	86.91	85.39	87.48	87.92	79.67	79.39	20.17	76.6
		D	90.95	89.79	92.09	93.04	93.29	89.79	88.99	34.98	84.1
	CK	A	87.66	86.65	90.27	91.39	92.03	87.85	86.10	37.12	82.4
		B	89.82	87.70	91.44	92.07	92.54	89.22	87.19	37.35	83.4
		C	82.94	79.14	81.04	83.31	83.84	82.35	81.75	19.02	74.2
		D	90.08	87.70	91.33	92.57	92.66	90.71	89.21	34.76	83.6
	NER	A	87.27	86.26	89.98	91.33	91.87	86.93	84.61	39.27	82.2
		B	89.43	87.57	90.75	91.73	92.21	88.56	87.06	40.97	93.5
		C	69.77	66.27	67.03	70.00	70.13	60.92	57.89	27.83	61.2
		D	89.35	88.31	90.90	91.62	92.05	88.03	86.54	41.25	83.5

social media domain datasets TPoS, ARK, TweeBank, TChunk and WNUT. The first column (pretraining) shows the pretraining task on the news domain. Scheme O represents training target models from scratch (random initialisation) on small social media training-sets. Transfer schemes A,B, C and D are illustrated in Figure 5.5. Red cells show results on transfer from the same NLP task and grey cells represent transfer from different task. Scores marked with are higher than the baseline training from scratch scheme. The best scores by dataset are highlighted in bold, second best scores are underlined. between different tasks. Results are shown in Table 5.6. The results of transferring pretrained models from the same task are illustrated in red cells (Table's diagonal), while the results of transferring from a different task are illustrated in grey cells.

Table 5 . 7 -

 57 Comparison of our proposed approaches results: transferring representations vs transferring models. The first column presents the pretraining task. The second column represents the transfer method. Best scores per social media dataset are in bold.

				POS (acc.%)		CK (acc.%)	NER (F1%)
	Pretraining	Transfer Method	TPoS	ArK	TweeBank	TChunk	WNUT
			dev	test	test	dev	test	dev	test	test
		Random Init	88.52	86.82	90.89	91.61	91.66	87.76	85.83	36.75
	POS	Transferring representations	90.39 88.83	91.93	92.64 93.18	89.96 88.73	38.37
		Transferring models	90.95 89.79	92.09	93.04 93.29	89.79 88.99	38.51
	CK	Transferring representations	88.96 87.35	91.53	92.16 92.59	89.88 88.16	37.59
		Transferring models	90.08 87.70	91.33	92.57 92.66	90.71 89.21	37.35
	NER	Transferring representations	88.65 87.35	90.88	91.68 92.23	87.06 85.75	38.30
		Transferring models	89.43 87.57	90.90	91.62 92.05	88.03 86.54	41.25

pretraining on the news domain. Notwithstanding, combining different supervisedly-pretrained representations CE+WE GloVe +h s-pos +h s-ck +h s-ner (The last line of Table

5

.3) begets comparable results with transferring models. However, it is noteworthy that transferring representations is less efficient in terms of computation (the computation of the contextual supervisedly-pretrained representations) and convergence speed (when transferring representations the parameters of the target model start from the random state which makes the convergence slower compared to

Table 5 . 8

 58

			POS (Acc.%)		CK (Acc.%)	NER (F1 %)		
		TPoS	ArK	TweeBank	TChunk	WNUT	avg.	aNRG.
		dev	test	test	dev	test	dev	test	test		
	ELMo small	90.21 88.35	90.62	92.19 92.93	90.36 89.61	34.35	83.6	-
	ELMo large	91.99	90.10	92.27	93.41 94.01	91.68 90.57	39.44	85.4	-
	CE	84.28	82.16	87.66	87.71	88.68	85.17	83.77	17.99	77.2	0.0
	CE+ELMo small	90.91 89.01	91.48	92.69 93.34	91.55 89.25	33.99	84.00	+36.2
	CE+ELMo large	91.38 89.05	92.27	93.38 93.92	92.47	90.44	43.03	85.7	+41.8
	WE	76.22	77.01	80.87	84.10	84.34	78.35	77.94	14.84	71.7	0.0
	WE+ELMo small	90.26 88.48	90.89	92.35 92.98	90.14 88.73	38.03	84.00	+49.9
	WE+ELMo large	91.51 90.31	91.99	93.38 94.14	91.99 90.26	40.27	85.5	+56.2
	WE GloVe	86.66	85.21	88.34	90.33	90.70	85.48	83.03	36.58	80.8	0.0
	WE GloVe +ELMo small	90.73 89.31	91.57	93.09 93.55	90.98 88.64	40.16	85.1	+27.7
	WE GloVe +ELMo large	91.99	90.66	92.95	93.49	94.40	91.59 90.26	42.88	86.0	+35.4
	CE+WE GloVe	88.52	86.82	90.89	91.61	91.66	87.76	85.83	36.75	82.5	0.0
	CE+WE GloVe +ELMo small	91.29 90.01	92.09	93.07 93.73	90.85 89.47	41.57	85.3	+20.3
	CE+WE GloVe +ELMo large	92.20	90.18	92.88	93.52	94.29	91.51	90.66	44.95	86.3	+26.4
	Note that in each group of rows, the aNRG (see equation 4.6) metric is calculated compared
	to the reference without ELMo embeddings (Grey rows). From the results, we make the
	following observations. First, ELMo representations yield powerful results across all tasks
	and datasets. Second, in most cases concatenating more variants of embeddings leads to
	better results. Third, since ELMo (especially ELMo large) is already based on character-level
	information, adding character-level biLSTM embeddings have a marginal effect the performance.
	For instance, WE GloVe +ELMo large setting provides 94.40% of accuracy on TweeBank dataset,
	while CE+WE GloVe +ELMo large provides 94.29% of accuracy. Finally, the gain brought by
	ELMo decreases when combined with more representations. For instance, the gain in terms of

-The effect of combining ELMo representations with traditional embeddings into the standard supervised training scheme. The best score per dataset is highlighted in bold. In each set of lines, the aNRG metric is calculated compared to the reference without ELMo embeddings (Grey rows). aNRG of adding ELMo small decreases from +36.2 when combined with CE solely, to +20.3 when combined with CE+WE GloVe . Furthermore, in Table

5

.9, we analyse the effect of incorporating ELMo representations with our supervisedly-pretrained representations. We can observe that concatenating ELMo

Table 5 .

 5 9 -The effect of incorporating ELMo representations with our supervisedly pretrained representations. The best score per dataset is highlighted in bold.

Table 5

 5

.10 -Concrete examples of improved predictions by transfer Learning compared to random initialisation. Tag-sets are provided in Table B.2 for ArK, Table B.3 for TweeBank and Table B.4 for TChunk.

Table 6 .

 6

1 -Statistics of the used datasets. Top: datasets of the source domain. Bottom: datasets of the target domain.

Table 6 . 2

 62

-Examples of falsified predictions by standard fine-tuning scheme when transferring from news domain to social media domain. Line 1: Some words from the validation-set of each data-set. Line 2: Correct labels predicted by the classic supervised setting (Random-200). Line 3: Wrong labels predicted by SFT setting. Mistake type: for words with first capital letter, • for misspelling, for contractions, × for abbreviations. TPoS tagset: Table

B

.1, ArK tagset: Table B.2, TweeBank tagset: Table B.3, TChunk tagset: Table B.4.

Table 6 . 3

 63

-Statistics of the used datasets. Top: datasets of the source domain. Bottom: datasets of the target domain.

Table 6 . 4

 64 table, we report the results of POS, CK and NER English social media datasets. In the second table, we report the results of MST on Serbian, Slovene and Croatian social media datasets. We

	Method	#params	POS (acc.) TPoS ArK TweeBank TChunk CK (acc.) NER (F1) WNUT	aNRG
	From-scratch 200	1×	86.82 91.10	91.66	85.96	36.75	0
	From-scratch 400	1.03×	86.61 91.31	91.81	87.11	38.64	+2.7
	Feature Extraction 1×	86.08 85.25	87.93	81.49	27.83	-32.4
	Fine-Tuning	1×	89.57 92.09	93.23	88.86	41.25	+15.7
	Ensemble (2 rand) 2×	88.98 91.45	92.26	86.72	39.54	+7.5
	Ensemble (1p+1r)	2×	88.74 91.67	93.06	88.78	42.66	+13.4
	PretRand	1.02×	91.27 93.81	95.11	89.95	43.12	+28.8
	Method		#params	MST (acc.) Serbian Slovene Croatian	aNRG
	From-scratch 200	1×	86.18	84.42	85.67	0
	From-scratch 400	1.03×	86.05	84.37	85.77	-0.2
	Feature Extraction 1×	73.56	70.22	79.11	-76.1
	Fine-Tuning	1×	87.59	88.76	88.79	+19.9
	Ensemble (2 rand) 2×	87.01	84.67	86.05	+3.4
	Ensemble (1p+1r)	2×	87.96	88.54	88.87	+20.6
	PretRand		1.02×	88.21	90.01	90.23	+27.5

compare the different approaches using the aNRG metric (see equation 4.6) compared to the reference From-scratch 200 . First, we observe that PretRand outperforms the popular standard fine-tuning baseline significantly by +13.1 aNRG (28.8-15.7). More importantly, PretRand outperforms the challenging Ensemble method across all tasks and datasets and by +15.4 (28.8-13.4) on aNRG, while using much fewer parameters. This highlights the difference between 110 6.3. THE PROPOSED METHOD: PRETRAND -Comparison of PretRand to baselines methods. Comparison of our method to baselines in terms of token-level accuracy for POS, CK and MST and entity-level F1 for NER

Table 6 . 5 -

 65 Diagnostic analysis of the importance of each component in PretRand. Accuracy for POS, CK and MST and F1 for NER (in %) when progressively ablating PretRand components.

	Method	TPoS	POS ArK	TweeBank	CK TChnuk	NER WNUT	MST Serbian Slovene Croatian
	PretRand	91.27	93.81	95.11	89.95	43.12	88.21	90.01	90.23
	-learnVect	91.11	93.41	94.71	89.64	42.76	88.01	89.83	90.12
	-learnVect -random ++	90.84	93.56	94.26	89.05	42.70	87.85	89.39	89.51
	-learnVect -random ++ -l2 norm	90.54	92.19	93.28	88.66	41.84	87.66	88.64	88.49
	6.3.2.4 Incorporating Contextualised Word Representations			

 .7, we compare our best results (PretRand with the incorporation of ELMo) to SOTA across tasks and datasets. We can observe that PretRand outperforms best SOTA results on

				6.3. THE PROPOSED METHOD: PRETRAND
	Method	TPoS	POS (acc.) ArK TweeBank	CK (acc.) TChunk	NER (F1.) WNUT	Sr	MST (acc.) Sl	Hr
	CRF [298]	88.3	n/a	n/a	87.5	n/a	n/a	n/a	n/a
	GATE [86]	88.69	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	GATE-bootstrap [86]	90.54	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	ARK tagger [255]	90.40	93.2	94.6	n/a	n/a	n/a	n/a	n/a
	TPANN [138] ×	90.92	92.8	n/a	n/a	n/a	n/a	n/a	n/a
	Flairs [6]	n/a	n/a	n/a	n/a	49.59	n/a	n/a	n/a
	MDMT [235] ×	91.70	91.61	92.44	n/a	49.86	n/a	n/a	n/a
	DA-LSTM [136] ×	89.16	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	DA-BERT [136] • ×	91.55	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	BertTweet [247] •	90.1	94.1	95.2	n/a	54.1	n/a	n/a	n/a
	UH&UC [337]	n/a	n/a	n/a	n/a	n/a	90.00	88.4	88.7
	PretRand (our best)	91.45	94.18	95.22	91.49	47.33	88.21 90.01 90.33
	POS tagging datasets (except TPoS), Chunking (+4%) and Slovene (+1.5%) and Croatian (1.6%)
	MS tagging. However, it performs worse than UH&UC for Serbian MS tagging. This could be

Table 6 . 7 -

 67 Comparison of PretRand to the best published state-of-the-art methods in terms of token-level accuracy for POS, CK and MST and F1 for NER (in %) on social media datasets. : use of contextualised representations. •: use of BERT pretrained model. : use of normalisation dictionaries, regular expressions or external knowledge. ×: use of a CRF classifier on top of the neural model.

 As mentioned above, POS, CK, NER and DP are the four tasks considered in this work. We start by describing briefly the base neural model used to train each task individually; sequence Recalling that, given an input sentence S of n successive tokens S = [w 1 , . . . , w n] and a tag-set C, sequence labelling aims to predict the tag c i ∈ C of every w i . For the base neural architecture,

	Chapter 6: Multi-task Pretraining and Adaptation	123
	7.2.1 Basic Models
	labelling architecture (POS, CK, NER) (§7.2.1.1) and DP architecture (§7.2.1.2).
	7.2.1.1 Sequence Labelling Architecture
	we use the commonly used model (described in details in section 5.2.1), that includes three main
	components:
	1. Word Representation Extractor (WRE), denoted Υ.
	2. Features Extractor (FE), denoted Φ.
	3. Classifier (Cl), denoted Ψ.
	WRE computes a word-level embedding (x word i	=Υ word (w i)) and a character-level biLSTMs
	encoder-based embedding (x char i	=Υ char (w i)), and concatenates them to get a final representation
	x i =(x word i	,x char i

Table 7

 7 .2. In the first set of lines, we report the SOTA methods scores; followed by baselines methods. On the second column, we describe the pretraining type (none, supervised, unsupervised, adversarial and multi-task). The last column gives the aNRG metric (see equation 4.6) compared to the reference mono-task learning to aggregate the scores of the methods across tasks.

	Method	PreTraining	POS (acc) DP (LAS) NER (F1) CK (F1) aNRG
	BiAffine [96]	n/a	n/a	77.7	n/a	n/a	n/a
	Flairs [6]	n/a	n/a	n/a	49.59	n/a	n/a
	MDMT [235]	n/a	92.44	n/a	49.86	87.85	n/a
	DA-LSTM [136]	n/a	n/a	n/a	n/a	84.58	n/a
	DA-BERT [136]	n/a	n/a	n/a	n/a	87.03	n/a
	BertTweet [247]	n/a	95.2	n/a	54.1	n/a	n/a
	Best SOTA	n/a	95.2	77.7	54.1	87.85	n/a
	Mono-task Learning Multi-Task Learning	none	91.58 91.98	67.48 71.16	36.75 38.98	80.26 81.66	0.0 +6.7
	ELMo small		92.51	69.12	41.57	84.28	+11.
	ELMo large	Unsupervised	94.02	69.76	44.95	85.56	+19.
	Mono-Task pretraining * Mono-Task pretraining	Supervised	n/a 93.33	76.92 78.21	n/a 41.25	70.16 84.64	n/a +20.8
	Adversarial pretraining	Adversarial	93.47	77.49	41.68	84.75	+20.9
	MuTSPad (best)	MultiTask, Sup.	94.53	80.12	43.34	85.77	+28.1

Table 7 . 2 -

 72 Overall results of MuTSPad method compared to baselines and SOTA methods. On ∼0.5% since POS branch is in the lower level and thus benefits only from the learned knowledge in the shared parameters (WRE).

	the second column, we describe the pretraining type (none, supervised, unsupervised, adversarial
	and our multi-task supervised). The last column (aNRG) aggregates the scores of the methods
	across tasks.

Clearly, MuTSPad strongly outperforms the baselines and is very competitive with the best SOTA results. First, we can observe that multi-task learning baseline enhances the performances of all tasks compared to mono-task learning (+6.7 aNRG). Obviously, it is most advantageous for DP by ∼3.5% since POS labels highly influence DP, while it is least benefactor for POS by 7.4. RESULTS

Table 7 . 3 -

 73 Impact of Datasets Unification on MuTSPad.

	We report in Table 7.3 MuTSPad's results: 1) w/o unif.: Training on independent datasets,
	using the "one batch per task" scheduling rule, on both stages: pretraining and fine-tuning. 2) w/
	source unif. : In the pretraining stage, training is performed on the unified dataset. While in

fine-tuning, training is performed on independent datasets. 3) w/ source+target unif. : In both pretraining and fine-tuning stages, training is performed on the unified datasets.

Table 7 . 4 -

 74 Top-10 words activating positively (red) or negatively (blue) (Since LSTMs generate positive and negative activations) some units from h pos that are the most important for different classes from CK, DP and NER.

 .1 TPoS Tagset Words that typically modify nouns and specify their properties or attributes.

	148 Tagsets				B.2. ARK TAGSET 149
	B.2 ArK Tagset B.3 TweeBank POS Tagset	
	N common noun ADJ: adjective	
		O pronoun (personal/WH; not possessive)
		ˆproper noun	
		S	nominal + possessive	
		V verb incl. copula, auxiliaries	
		A adjective	
		!	interjection	
		D determiner	
		P	pre-or postposition, or subordinating conjunction
		& coordinating conjunction	
		T	verb particle	
		X existential there, predeterminers	
	CC	#	Coordinating conjunction hashtag (indicates topic/category for tweet) CD	Cardinal number
	DT		Determiner	EX	Existential there
	FW		Foreign word	IN	Preposition or subordinating conjunction
	JJ		Adjective	JJR	Adjective, comparative
	JJS		Adjective, superlative	LS	List item marker
	MD		Modal	NN	Noun, singular or mass
	NNS		Noun, plural	NNP	Proper noun, singular
	NNPS Proper noun, plural	PDT	Predeterminer
	POS		Possessive ending	PRP	Personal pronoun
	PRP$ Possessive pronoun	RB	Adverb
	RBR		Adverb, comparative	RBS	Adverb, superlative
	RP		Particle	SYM Symbol
	TO		to	UH	Interjection
	VB		Verb, base form	VBD	Verb, past tense
	VBG		Verb, gerund or present participle	VBN	Verb, past participle
	VBP		Verb, non-3rd person singular present VBZ	Verb, 3rd person singular present
	WDT Wh-determiner	WP	Wh-pronoun
	WP$		Possessive wh-pronoun	WRB Wh-adverb
	URL		Web addresses	USR	Username mentions
	RT		Retweet signifier	HT	hashtags
			Table B.1 -TPoS dataset tagset.

∼ discourse marker, indications of continuation of a message across multiple tweets U URL or email address E emoticon $ numeral , punctuation G other abbreviations, foreign words, possessive endings, symbols, garbage L nominal + verbal (e.g. i'm), verbal + nominal (let's, lemme) M proper noun + verbal Y X + verbal Table B.2 -ArK dataset tagset.

Table B .

 B 3 -TweeBank dataset POS tagset.1

		B.4. TCHUNK CHUNKING TAGSET
	B.4 TChunk Chunking Tagset
	O	Outside the syntactic span.

Table B . 4 -

 B4 TChunk chunking dataset tagset..

	Tagsets	151
	B.5 Universal Dependencies
	acl	clausal modifier of noun (adjectival clause)
	advcl	adverbial clause modifier
	advmod	adverbial modifier
	amod	adjectival modifier
	appos	appositional modifier
	aux	auxiliary
	case	case marking
	cc	coordinating conjunction
	ccomp	clausal complement
	clf	classifier
	compound	compound
	conj	conjunct
	cop	copula
	csubj	clausal subject
	dep	unspecified dependency
	det	determiner
	discourse	discourse element
	dislocated	dislocated elements
	expl	expletive
	fixed	fixed multiword expression
	flat	flat multiword expression
	goeswith	goes with
	iobj	indirect object
	list	list
	mark	marker
	nmod	nominal modifier
	nsubj	nominal subject
	nummod	numeric modifier
	obj	object
	obl	oblique nominal
	orphan	orphan
	parataxis	parataxis
	punct	punctuation
	reparandum overridden disfluency
	root	root
	vocative	vocative
	xcomp	open clausal complement

Table B.5 -Universal dependencies, used in the TweeBank dataset.

https://www.ethnologue.com (04-2021)

https://en.unesco.org/LT4All

https://www.montrealdeclaration-responsibleai.com/

https://www.vie-publique.fr/sites/default/files/rapport/pdf/184000159.pdf

Here we use the term "domain" to denote a language variety.

In this thesis, we focus on the SM domain, but our methods are flexible to transfer to other domains.

In this section, we follow the definitions and notations of Pan et al.[START_REF] Sinno Jialin Pan | A survey on transfer learning[END_REF], Weiss et al.[START_REF] Weiss | A survey of transfer learning[END_REF] and Ruder[START_REF] Ruder | Neural Transfer Learning for Natural Language Processing[END_REF].State-of-the-art: Transfer Learning

Multilingual projection of linguistic annotations is often considered in the literature as a weakly supervised learning technique.

Following the notations and descriptions of Ganin et al.[START_REF] Ganin | Domain-adversarial training of neural networks[END_REF].

The difference between universal representations and domain adaptation will be discussed in the following section 2.6.

Note that language modelling is also considered as a self-supervised task since, in fact, labels are automatically generated from raw data.

Here we discuss only word-level representations, since in this thesis we focus on sequence labelling tasks.However, there are many successful universal representations at the sentence-level.

Note that social media texts may be considered as a language variety of the formal language, since new words and expressions are not used in the formal language.

Post-hoc explanations will be defined later.

The plausibility measures whether the interpretation is convincing to humans. Faithful explanations are explanations that reflect the model's output[START_REF] Slavin | Right for the right reasons: Training differentiable models by constraining their explanations[END_REF].

We use neuron and unit interchangeably.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos. html

http://ftb.linguist.univ-paris-diderot.fr/treebank.php

https://universaldependencies.org/u/pos/

http://www.cs.cmu.edu/~ark/TweetNLP/annot_guidelines.pdf

http://nl.ijs.si/ME/V5/msd/html/msd-sl.html

https://www.clips.uantwerpen.be/conll2000/chunking/

Also called governor or regent.

https://nlp.stanford.edu/software/stanford-dependencies.shtml

https://catalog.ldc.upenn.edu/LDC2012T13

https://universaldependencies.org/u/dep/discourse.html

https://universaldependencies.org/conll18/evaluation.html

Note that, in this thesis, we focus on news as the source-domain and social-media as the target-domain. However, our methods are applicable to other source and target domains.

Note that at the time of conducting the research of this chapter, ELMo contextual representations work was not published.

Pretrained words embeddings are discussed in the state-of-the-art (§2.6.1).

https://github.com/facebookresearch/fastText/blob/master/docs/ crawl-vectors.md

In this section, we follow the definitions and notations of Pan et al.[START_REF] Sinno Jialin Pan | A survey on transfer learning[END_REF], Weiss et al.[START_REF] Weiss | A survey of transfer learning[END_REF] and Ruder[START_REF] Ruder | Neural Transfer Learning for Natural Language Processing[END_REF].

The pretrained representation is not updated during the training on the target-dataset.

ELMo contextual representations are described in details in the state-of-the-art. Note that at the time of conducting the research of this chapter, ELMo contextual representations work was not published.

https://allennlp.org/ELMo

A modal is an auxiliary verb expressing: ability (can), obligation (have), etc.

Here we only select some interesting neurons. However we also found many neurons that are not interpretable.

https://github.com/facebookresearch/fastText/blob/master/docs/ crawl-vectors.md

https://allennlp.org/elmo

https://github.com/HIT-SCIR/ELMoForManyLangs

Here we use the same hyper-parameters as the original paper.

Along the same line of thought of Kiperwasser & Ballesteros [171] who modified tasks sampling during training.

Here we use the same source and target tasks. However, the method can be extended to handle different source and target tasks.

From-scratch 200 in chapter

[START_REF] Akbik | Pooled contextualized embeddings for named entity recognition[END_REF] https://allennlp.org/elmo

Equivalent to standard fine-tuning scheme in the previous chapters.

We use the Tweets raw data provided by Gui et al.[START_REF] Gui | Part-of-speech tagging for twitter with adversarial neural networks[END_REF] https://github.com/guitaowufeng/TPANN/ tree/master/data.

github.com/stanfordnlp/stanfordnlp

Also called pruning or features erasure. (section 3.2.5)

https://wals.info/

Acknowledgements

Our in-depth analysis on our method of transferring pretrained models, showed that: 1) The method is more advantageous in extremely low-resource scenarios. 2) The method helps to improve the performance over all datasets classes. 3) The method leads to a faster convergence compared to training from scratch. 4) The model's size does not have an observable effect on the transfer performance. Finally, 5) the pretraining performance on the source task is not a predictor of performance on the target task.

Note that, even if the target-tasks and source-tasks might be the same, their label-sets might differ. Thus as in classical fine-tuning, the parameters of each task-classifier (Ψ pos , Ψ ck , Ψ ner and Ψ dp) are randomly initialised, while the shared Υ as well as the features extractors (Φ pos , Φ ck , Φ ner and Φ dp) are initialised with the pretrained weights.

Heterogeneous Multi-Task Learning

When working on multi-task learning, we mostly face the heterogeneous scenario, where only one task-labels might be assigned to a dataset. In that case, the classical multi-task learning approach is not directly applicable; thus, we need to choose a "scheduling process" [START_REF] Zaremoodi | Adaptive knowledge sharing 192 BIBLIOGRAPHY in multi-task learning: Improving low-resource neural machine translation[END_REF].

However, since training with different datasets for each task remains challenging [START_REF] Subramanian | Learning general purpose distributed sentence representations via large scale multi-task learning[END_REF], we propose to perform a "Datasets Unification" to simplify the learning scenario.

Tasks Scheduling Procedure

To deal with this heterogeneous aspect, we first use a simple frozen uniform scheduling, which we call "one task per batch", where at each iteration of the training process, the task to train is selected randomly (Similar to Zaremoodi et al. [START_REF] Zaremoodi | Adaptive knowledge sharing 192 BIBLIOGRAPHY in multi-task learning: Improving low-resource neural machine translation[END_REF]). Specifically, the base steps of "one task per mini-batch" scheduling process are as follow: 1) picking a mini-batch of samples from only one particular task and 2) updating only the parameters corresponding to the selected task, as well as the the task-agnostic parameters. Thus, at every step, only one task is trained. We successively pick all the tasks following a constant ordering strategy "from lower-level to higher-level tasks" [START_REF] Hashimoto | A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks[END_REF]: POS then CK then NER then DP. Thus, every four steps, the model sees all the tasks once and learns their corresponding parameters once.

Datasets Unification

To overcome the intricacy of the "tasks scheduling process", we propose to construct a unified dataset by combining several sources of independent textual annotations using a self-training method. Since we are interested in benefiting from pretraining and fine-tuning, we apply the unification process on both source and target datasets. These datasets contain samples of a broad range of heterogeneous annotations in a variety of contexts (initially sentences are labelled only with one task rather than all), making the multi-task training challenging. Thus, to circumvent this problem, we propose to unify the target (social media domain) set of datasets D t to form a unified target dataset that we call SocialAll, denoted D all t . We do the same with source datasets (news domain) to form a unified multi-task dataset that we name NewsAll, denoted D all s . Concretely, we enrich the gold annotations of each task with an automatic annotation by applying on its training-set our baseline Mono-Task Learning model of the other three tasks. In the end, we obtain two unified datasets, one for the target domain and one for the source domain. Thus, in both datasets each sentence is labelled with all tasks (one label is the initial manual annotation, 130 7.3. EXPERIMENTS and three are generated automatically). Consequently, using our unified datasets brings us to the classical multi-task scenario, where each sentence is annotated with all tasks, thus at each iteration, all tasks are learned, and thus all multi-task model's parameters are updated once.

Experiments

In this section, we describe the experimental environment: datasets (§7.3.1); baselines and State-Of-The-Art (SOTA) works with which we compare our results (§7.3.2); and implementation details (§7.3.3).

Datasets

Task As mentioned above, we conduct experiments on four tasks: two low-level tasks (POS and CK) and two higher-level ones: (NER and DP). For the source-datasets, we use the news domain with the following datasets: the WSJ part of Penn-Tree-Bank (PTB) [START_REF] Marcus | Building a large annotated corpus of English: The Penn Treebank[END_REF] for POS, annotated with the PTB tag-set; CONLL2003 for NER [START_REF] Kim | Introduction to the CoNLL-2003 shared task: language-independent named entity recognition[END_REF]; CONLL2000 [354] for CK; UD-English-EWT [START_REF] Nivre | Universal dependencies v1: A multilingual treebank collection[END_REF] for DP. In the same vein, for the target-datasets, we use the social media domain with the following datasets: the recent TweeBank [START_REF] Liu | Parsing Tweets into Universal Dependencies[END_REF] for POS, annotated with the PTB universal tag-set; WNUT-17 from emerging entity detection shared task [85] for NER; TChunk [START_REF] Ritter | Named entity recognition in tweets: an experimental study[END_REF] for CK; the data annotated with UD relations in the TweeBank dataset for DP. Statistics of all the datasets are summarised in Table 7. 1. More details about datasets are provided in chapter 4.

Comparison methods

Baselines

We compare our method to multiple baselines that we separate into four categories according to the pretraining method: • Mono-Task Learning: an independent training of our mono-tasks models (one model per task) on every target-task separately. 5 • Multi-Task Learning: Joint training of our multi-task model described in section 7.2.2.1 on all the tasks from the target-domain; trained from scratch on social media datasets (one model for all the tasks).

Unsupervised pretraining: We replace the WRE component in Mono-Task Learning by the unsupervisedly pre-trained model, ELMo 6 (Embeddings from Language Models) [START_REF] Matthew E Peters | Deep contextualized word representations[END_REF], consisting of a CNNs-based character-level representation followed by a 2-layer LSTM. Thus, ELMo with the randomly initialised FE and Cl are further trained on the target-domain tasks. Specifically, we run experiments with two ELMo models: 1) ELMo small : the small pre-trained model (13.6M parameters) on 1 billion word benchmark. 2) ELMo large : the big pre-trained model (93.6M parameters) on 5.5 billion word benchmark.

Supervised pretraining 7 on the source-domain of the network on each task independently then fine-tuning on the same task in the target domain. Here, we call this method: Mono-Task pretraining. A variant of it is marked with * and consists of just pretraining, i.e. without fine-tuning. Note that this variant is possible only when the target dataset has the same tagset as the source dataset.

Adversarial pretraining is particularly used for domain adaptation that aims to reduce the shift between the source and target domains at the pretraining stage. Precisely, in parallel to task's objective trained on supervised annotations from the source domain, an adversarial objective with respect to a domain discriminator is trained on unsupervised target data 8 to minimise the distance between source and target representations. Followed by a fine-tuning on the same task in the social media domain.

State-Of-The-Art (SOTA)

We compare our approach to the best SOTA performances for each task:

• BiAffine [95] (DP): We report the LAS score for DP reported by Liu et al. [START_REF] Liu | Parsing Tweets into Universal Dependencies[END_REF]. Note that, in addition to word-level and character-level embeddings, which we use in our model to represent words, they make use predicted POS labels and lemmas as input.

external knowledge to improve the performance of deep learning models for image analysis is not new [START_REF] Sinno Jialin Pan | A survey on transfer learning[END_REF][START_REF] Xie | A Survey on Domain Knowledge Powered Deep Learning for Medical Image Analysis[END_REF], but there are only a few works on how linguistic resource can be introduced in these models and how these resources can help them to improve their performance [START_REF] Tsvetkov | Linguistic Knowledge in Data-Driven Natural Language Processing[END_REF][START_REF] Lan | Embedding WordNet Knowledge for Textual Entailment[END_REF].

A | List of Publications