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Résumé en Francais

Les méthodes d’apprentissage automatique qui reposent sur les Réseaux de Neurones (RNs) ont démontré
des performances de prédiction qui s’approchent de plus en plus de la performance humaine dans
plusieurs applications du Traitement Automatique des Langues (TAL) qui bénéficient de la capacité des
différentes architectures des RNs a généraliser en exploitant les régularités apprises a partir d’exemples
d’apprentissage. Toutefois, ces modeles sont limités par leur dépendance aux données annotées. En effet,
pour étre performants, ces modeles ont besoin de corpus annotés de taille importante. Par conséquent,
uniquement les langues bien dotées peuvent bénéficier directement de 1’avancée apportée par les RN,
comme par exemple les formes formelles des langues.

Dans le cadre de cette these, nous proposons des méthodes d’apprentissage par transfert neuronal pour
la construction des outils de TAL pour les langues et domaines peu dotés en exploitant leurs similarités
avec des langues et des domaines bien dotés. Précisément, nous expérimentons nos approches pour le
transfert a partir du domaine source des textes formels vers le domaine cible des textes informels (langue
utilisée dans les réseaux sociaux). Tout au long de cette theése nous présentons différentes contributions.
Tout d’abord, nous proposons deux approches pour le transfert des connaissances encodées dans les
représentations neuronales d’un modele source, pré-entrainé sur les données annotées du domaine source,
vers un modele cible, adapté par la suite sur quelques exemples annotés du domaine cible. La premiere
méthode transfére des représentations contextuelles pré-entrainées sur le domaine source. Tandis que
la deuxieme méthode utilise des poids pré-entrainés pour initialiser les parametres du modele cible.
Ensuite, nous effectuons une série d’analyses pour repérer les limites des méthodes proposées. Nous
constatons que, méme si 1’approche d’apprentissage par transfert proposée améliore les résultats sur le
domaine cible, un transfert négatif « dissimulé » peut atténuer le gain final apporté par I’apprentissage par
transfert. De plus, une analyse interprétative du modele pré-entrainé montre que les neurones pré-entrainés
peuvent étre biaisés par ce qu’ils ont appris du domaine source, et donc peuvent avoir des difficultés a
apprendre des « patterns » spécifiques au domaine cible. Suite a cette analyse, nous proposons un nouveau
schéma d’adaptation qui augmente le modele cible avec des neurones normalisés, pondérés et initialisés
aléatoirement permettant une meilleure adaptation au domaine cible tout en conservant les connaissances
apprises du domaine source. Enfin, nous proposons une approche d’apprentissage par transfert qui permet
de tirer profit des similarités entre différentes taches, en plus des connaissances pré-apprises du domaine

source.

Mots clés: Apprentissage par transfert, Adaptation aux domaines, réseaux de neurones, Langues et

domaines peu dotés, Etiquetage de séquences

il



Abstract

Recent approaches based on end-to-end deep neural networks have revolutionised Natural Language
Processing (NLP), achieving remarkable results in several tasks and languages. Nevertheless, these
approaches are limited with their gluttony in terms of annotated data, since they rely on a supervised
training paradigm, i.e. training from scratch on large amounts of annotated data. Therefore, there is a
wide gap between NLP technologies capabilities for high-resource languages compared to the long tail of
low-resourced languages. Moreover, NLP researchers have focused much of their effort on training NLP
models on the news domain, due to the availability of training data. However, many research works have
highlighted that models trained on news fail to work efficiently on out-of-domain data, due to their lack of
robustness against domain shifts.

This thesis presents a study of transfer learning approaches through which we propose different
methods to take benefit from the pre-learned knowledge from high-resourced domains to enhance the
performance of neural NLP models in low-resourced settings. Precisely, we apply our approaches to
transfer from the news domain to the social media domain. Indeed, despite the importance of its valuable
content for a variety of applications (e.g. public security, health monitoring, or trends highlight), this
domain is still lacking in terms of annotated data. We present different contributions. First, we propose two
methods to transfer the knowledge encoded in the neural representations of a source model — pretrained on
large labelled datasets from the source domain — to the target model, further adapted by a fine-tuning on
few annotated examples from the target domain. The first transfers supervisedly-pretrained contextualised
representations, while the second method transfers pretrained weights used to initialise the target model’s
parameters. Second, we perform a series of analysis to spot the limits of the above-mentioned proposed
methods. We find that even though transfer learning enhances the performance on social media domain, a
hidden negative transfer might mitigate the final gain brought by transfer learning. Besides, an interpretive
analysis of the pretrained model shows that pretrained neurons may be biased by what they have learnt
from the source domain, thus struggle with learning uncommon target-specific patterns. Third, stemming
from our analysis, we propose a new adaptation scheme which augments the target model with normalised,
weighted and randomly initialised neurons that beget a better adaptation while maintaining the valuable
source knowledge. Finally, we propose a model that, in addition to the pre-learned knowledge from the

high-resource source-domain, takes advantage of various supervised NLP tasks.

Keywords: Transfer Learning, Domain Adaptation, Neural Networks, Low-resource languages and

domains, Sequence labelling
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Glossary

Al Artificial Intelligence

CK: Chunking

DP: Dependency Parsing

HRLs: High-Resource Languages
LRLs: Low-Resource Languages

LM: Language Model

MST: Morpho-Syntactic Tagging
MSDs: Morpho-Syntactic Descriptions
NLP: Natural Language Processing
NMT: Neural Machine Translation
NER: Named Entity Recognition
OOV: Out-Of-Vocabulary

PTB: Penn TreeBank

POS: Part-Of-Speech tagging

SOTA: State-Of-The-Art

SM: Social Media

UGC: User-Generated-Content

WSJ: Wall Street Journal

WEs: Word-level Embeddings

CEs: Character-level Embeddings
NNs: Neural Networks

DNNs: Deep Neural Networks

RNNs: Recurrent Neural Networks
LSTM: Long Short-Term Memory
biLSTM: bidirectional Long Short-Term Memory
CNNs: Convolutional Neural Networks
FCL: Fully Connected Layer

MLP: Milti-Layer Perceptron

SGD: Stochastic Gradient Descent
SCE: Softmax Cross-Entropy
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TL: Transfer Learning

MTL: Multi-Task Learning

STL: Sequential Transfer Learning

DA: Domain Adaptation

bilLM: bidirectional Language Model

ELMo: Embeddings from Language Models

BERT: Bidirectional Encoder Representations from Transformers
SFT: Standard Fine-Tuning

CEs: Character-level Embeddings

WEs: Word-level Embeddings

UD: Universal Dependencies

WRE: Word Representation Extractor

FE: Feature Extractor

MuTSPAd: Multi-Task Supervised Pre-training and Adaptation
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1 Introduction

1.1 Context

Human language is fascinating; it expresses thoughts for various aims, e.g. information, questions,
orders, etc. According to Ethnologue,' the online encyclopedia of language, there are 7,139
distinct languages spoken in the world. The list includes formal languages, such as English,
Chinese, Arabic, etc. but also their varieties, such as Arabic dialects (e.g. Algerian and Egyptian)
or Chinese dialects (e.g. Mandarin and Gan).

Natural Language Processing (NLP) is a field of Artificial Intelligence (AI) that allows human-
computer communication. Precisely, NLP aims to produce tools to understand (Natural Language
Understanding) and generate (Natural Language Generation) human language. Various NLP
applications have been developed to facilitate humans life. For instance, machine translation
(e.g. Google Translate [385], DeepL, etc), Dialogue Systems (e.g. Siri, Alexa, etc.), text
summarization [322, 236, 206], fraud detection [126, 94] and information extraction from
electronic health records [286, 106].

Historically, the interest in building NLP tools to imitate humans brain has passed through
several milestones and dates back to the 50s. First, Alan Turing’s Thinking Machine [361], an
“Iimitation game that investigates whether machines can think™. It consists in a real-time artificial
conversational agent (chatbot) that attempts to imitate human writing sufficiently well that the
human judge (interlocutor) is unable to distinguish reliably between the chatbot and the human,
based solely on the conversational content. Later, Noam Chomsky’s seminal work, Syntactic
Structures [61], have revolutionised linguistics by constructing a formalised general theory to
produce a deep-level linguistic structure of sentences in a format that is usable by computers.

Up to the 80s, most NLP systems were rule-based (a symbolic approach), i.e. founded
on sets of rules that are hand-written by experts. For instance, the Brill part-of-speech tagger
[43]; ELIZA, the rule-based artificial psychotherapist [376] and SHRDLU, the English natural
language understanding program [382]. Such methods work extremely well but rely heavily on
hand-crafted features and domain-specific resources (morphological, orthographic and lexical
features as well as external resources such as gazetteers or dictionaries). However, designing

such domain-specific knowledge that captures all the possible scenarios is time-consuming and a

! https://www.ethnologue.com (04-2021)
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2 1.2. PROBLEMS

tedious labour, making NLP models limited to the domain they had been designed for and thus
difficult to adapt to new tasks and domains.

Further, in the late 80s, the introduction of machine learning algorithms was the snowball
which triggered an avalanche of statistical methods for NLP [250]. For instance, n-gram language
modelling for speech recognition [22], part-of-speech tagging using hidden Markov models [74]
and word sense disambiguation using Bayesian classifiers [393]. These methods have allowed
bypassing the flexibility problem of rule-based systems by learning rules automatically from
data. However, even if they do not require rules to follow, they still need some human effort for
feature-engineering. Thus they constrain the flexibility of NLP models for new domains and
languages.

Thereafter, throughout the past ten years, and in conjunction with the steady increase of the
computational and storage power, recent approaches based on end-to-end Deep Neural Networks
(DNN5s) have revolutionised NLP. Their success is mainly attributed to their ability to extract
a multi-layered hierarchy of features, directly from data and without any need of hand-crafted
features. Specifically, DNNs models found their niche in NLP in 2001 with the first neural
language model, based on a feed-forward neural network [31]. Several studies [165] have
shown that NNs architectures, from fully-connected networks to more complex architectures
like Recurrent Neural Networks (RNNs) [319] and its variants (Long Short-Term Memory
networks - LSTMs [150] and Gated Recurrent Units - GRUs [62]), and Convolutional Neural
Networks (CNNs) [71, 173], represent a practical approach to extract morphological information
(root, prefix, suffix, etc.) from words and encode it into neural representations, especially for
morphologically rich languages [59, 210].

Nevertheless, DNNs models are in most cases based on a supervised learning paradigm,
i.e. trained from scratch on large amounts of labelled examples to learn a function that maps
these examples (inputs) to labels (outputs). Consequently, the great success of neural networks
models for NLP ensued also from the community efforts on creating annotated datasets. For
instance, CoNLL 2003 [355] for English named entity recognition, SNLI for Natural Language
Inference [42] and EuroParl [174] for Machine Translation, etc. Therefore, models with high
performance often require huge volumes of manually annotated data to produce high results and
prevent over-fitting [135]. However, manual annotation is time-consuming. As a consequence,
throughout the past years, research in NLP has focused on well-resourced languages, specifically

standard forms of languages, like English, French, German, etc.

1.2 Problems

1.2.1 NLP for Low-Resource Languages

Low-Resource Languages (LRLs) are languages lacking sufficient linguistic resources for build-

ing statistical NLP models compared to High-Resource Languages (HRLs). Many definitions
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were attributed to LRLs. According to Low Resource Languages for Emergent Incidents
(LORELEI),” LRLs are “languages for which no automated human language technology ca-
pability exists”.> According to Cieri et al. [63], LRLs may be classified into two categories:
Endangered Languages are moribund because of “the risk of losing their native speakers through
death and shift to other languages”, like indigenous languages. In comparison, critical languages
are standard languages spoken in their homelands but suffer from a lack of language resources.
However, these definitions are loose. According to Duong [98], there is a disparity within the
same language depending on the NLP task. Specifically, he considers that a language may be
low-resourced for a given task if there are no available language resources to automatically
perform the said task with good performance; “A language is considered low-resourced for a
given task if there is no algorithm using currently available data to do the task with adequate
performance automatically”. For instance, Spanish has been considered as high-resourced for
part-of-speech tagging task but low-resourced for sentiment analysis [404].%

Most world’s languages and varieties are low-resourced in terms of annotated datasets that
are essential for building statistical NLP models. According to ELRA (European Language
Resources Association), less than 2% have some Language Technologies (LT) with various
levels of quality.” Furthermore, most of popular NLP technologies support only a small number
of languages, e.g. actually Google Translate supports 109 out of 6,909 languages with an
outstanding gap between LRLs and HRLs in terms of the quality of translations [399]. Notably,
an interesting recent report [380] studied the issue of LRLs long-tail in NLP applications. First,
the report outlines that, mainly, long-tail languages are from low-income countries, e.g. only
3% of languages supported by Dialogflow® are spoken by those living on countries with less
than $1.90 income per day, as a function of the availability of training data. This substantial
gap between LRLs and HRLs in terms of language technologies deepens and exacerbates the

discrimination and inequality between populations.

Recently, Joshi et al. [164] defined a taxonomy for languages based on data availability. As
illustrated in Figure 1.1, languages that are widely spoken are suffering from a lack of available
unlabelled and labelled data. For instance, Africa, with a population of 1.2 billion, has a high
linguistic diversity between 1.5k and 2k languages [399], most of which have not attracted
enough the attention of NLP technologies providers. This is due to two main reasons: the low
commercial benefits from low-income countries and the difficulty of the informal nature of the

language used by low-income populations, with code-switching and languages varieties.

2 A DARPA program that aims to advance the state of computational linguistics and human Language Technology

(LT) for low-resource languages.
3 https://www.darpa.mil/program/low-resource—-languages-for-emergent—incidents
4 Tt should be noted that there are different types of linguistic resources. Monolingual data, like crawled monolingual

data from the web and Wikipedia; Comparable and bilingual corpora; Bilingual dictionaries; Annotated data,

lexicons (expert description of the morphology and phonology of languages).
5 http://www.elra.info/en/elra-events/lt4all/
® https://dialogflow.com/
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Figure 1.1 — Language resources distribution (The size of a circle represents the number of

languages and speakers in each category) - Source: [164].

After years of neglect, there is a raising awareness (by researchers, companies, international
organisations and governments) about the opportunities of developing NLP technologies for
LRLs. This emergent interest is mainly for social-good reasons, e.g. emergency response
to natural disasters like Haiti earthquake [244, 279], identifying outbreaks of diseases like
COVID-19 [205], population mental health monitoring [46], etc. This interest has also been
through new workshops dedicated for LRLs, like SLTU-CCURL; Joint Workshop of SLTU
(Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration
and Computing for Under-Resourced Languages) [28]. Moreover, international programs like
the UNESCO international conference Language Technologies for All (LT4All),” aiming to

encourage linguistic diversity and multilingualism worldwide.

It should be noted that the increasing attention dedicated to LRLs is in parallel with the
Al community interest on the ethical side of Al applications and its possible consequences on
society. For instance, the Montreal Declaration of Responsible Al ® promotes ethical and social
principles for the development of Al, e.g. equity (reducing inequalities and discrimination based
on social, sexual, ethnic, cultural, or religious differences ) and inclusion (Al must be inclusive
and reflect the diversity of the individuals and groups of the society). Also, Cedric Villani’s
report,” which defines the Al strategy for the French government, highlights the importance of
inclusion and ethics principles. Furthermore, the international cooperation PMIA (Partenariat
Mondial sur I’Intelligence Artificielle) has been recently launched with a particular interest for

responsible Al

7 https://en.unesco.orqg/LT4A11
8 https://www.montrealdeclaration-responsibleai.com/
? https://www.vie-publique.fr/sites/default/files/rapport/pdf/184000159.pdf
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1.2.2 User Generated Content in Social Media: a Low-Resource Domain

Low-resource NLP does not concern only languages, but also domains. There is a wide gap
between NLP technologies capabilities for the news domain, i.e. formal language, compared
to the long tail of specific domains. Indeed, NLP researchers have focused much of their effort
on learning NLP models for the news domain, due to the availability of training data [24].
However, it has been highlighted in many research works that models trained on news fail to
work efficiently on out-of-domain data, due to their lack of robustness against domain shifts.
For instance, the accuracy of the Stanford part-of-speech tagger [358] trained on the Wall Street
Journal part of Penn Treebank [215] falls from 97% on formal English news to 85% accuracy on
English Tweets [122]. Likewise, Scheible et al. [317] observed a severe accuracy drop of the
TreeTagger [318] part-of-speech tagger from 97% on German news to 69.6% on early modern
German. Similarly, Derczynski et al. [84] found that named entity recognition model falls from
89% F1 on the news domain to 41% on the Tweets domain.

Particularly, throughout the few past years, Social Media (SM) platforms have revolutionised
inter-individuals, inter-groups, and inter-communities communication [168] and thus have
succeeded to attract billions of users in record time, since they were offered an active role
on the internet, where they can easily interconnect and generate content in various forms of
content: words, pictures, audio, and videos [242]. This rapid growth gave rise to an enormous
and plentiful flow of User-Generated-Content (UGC). This content has been proven to be a
valuable and reliable source of information for various NLP applications [121], e.g. fact-checking
[36], stance detection [237], trends highlight [140], language identification [312], hate speech
detection [213, 241, 129, 170], public security [12], preventing human trafficking [52, 356, 45],
or health monitoring such as mental health [72, 46]. Besides, it has been shown recently that
UGC in social media is an impulse for the emergence of linguistic structures [293].

More importantly, many new scopes dedicated to NLP of LRLs have been created thanks to
UGC. Indeed, SM platforms are snowballing among developing countries populations, where
they can express and exchange in their native languages (LRLs in most cases) [111]. These
forthcoming opportunities have promoted the organisation of multiple regular NLP workshops
dedicated to SM content analysis, such as LASM (Workshop on Language Analysis in Social
Media) [107], SocialNLP (Workshop on Natural Language Processing for Social Media) [177]
and W-NUT (Workshop on Noisy User-generated Text) [388].

As aforementioned, traditional NLP models trained on news are not efficient enough for SM
texts (out-of-domain) compared to their performance on news (in-domain) [271]. This is due
to the informal and conversational nature of SM texts [108] with more similarities in common
with spoken language than classical formally written one [101], e.g. the lack of conventional
orthography, the noise, linguistic, spelling and grammatical errors, the idiosyncratic style,
the use of improper sentence structure and mixed languages, lack of context, inconsistent (or

absent) punctuation and capitalisation (which may complicate finding sentence boundaries [307]),



6 1.3. MOTIVATION

99 ¢

acronyms: “laugh out loud”—*“lol”, “as soon as possible”—*“asap”, “as far as I know”—“‘afaik”,
“rolled on the floor laughing”—“rofl”, etc., letters repetition (“heyyyyyy”, “NOOQ”), slangs (e.g.
“gobsmacked”, “knackered”), contractions (e.g. “I am not”—“ain’t”, “l am going to”—“imma”,
“want to”—‘“wanna”, etc.), use of emoticons or emojis, colloquial expressions. In addition,
code-switching (i.e. many languages and dialects are used in the same sentence [18, 116]) poses

an additional hurdle [312, 13, 321].

1.3 Motivation

Notwithstanding that neural NLP models have succeeded to achieve remarkable results in several
well-resourced tasks, languages, and domains such as the news domain, they are limited by their
gluttony in terms of annotated data. In addition, given the vast diversity of languages, dialects,
domains and tasks in the world, having manually-annotated datasets for each setting is laboured.
Furthermore, these models are often effective only within the domain wherein they were trained,
causing difficulties when attempting to generalise to new domains such as the social media
domain.

It has been shown in many works in the literature [297, 397, 146] that, in second language
acquisition [118] by humans when learning a second language (L2), the first language (L1)
knowledge plays an important role to boost the learning process, by assimilating and subsuming
new L2 knowledge into already existing cognitive structures for L1 [352]. Similarly, in artificial
neural networks, languages, tasks, varieties, and domains may share some common knowledge
about language (e.g. linguistic representations, structural and semantic similarities, etc.). There-
fore, relevant knowledge previously learned in a source NLP problem can be exploited to help to
solve a new target NLP problem. Hence, the main research question of the present thesis is “How
can we best improve the performance of NLP neural models for low-resource domains with small
annotated datasets, by exploiting large annotated source datasets from related high-resource
source domains?”.

To respond to our research question, Transfer Learning (TL) [357] is a promising method
that has been shown to be efficient for NLP and outperforms the standard supervised learning
paradigm, because it takes benefit from the pre-learned knowledge. In addition, it permits to
make use of as much supervision as available. The work of this thesis is based on the intuition
that SM domain is an informal variety of the news domain.'® As illustrated in Figure 1.2, in
the same Tweet (UGC in Twitter), one can find a part which is formal and the other which is
informal. For this, we develop and study the efficiency of different TL techniques to overcome
the sparse annotated-data problem in the SM domain by leveraging the huge annotated data
from the news domain. Specifically, in this work, we consider the supervised domain adaptation

setting, having a large amount of labelled data from a source domain and — additionally — few

19Here we use the term “domain” to denote a language variety.
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labelled examples from the target domain.

@username its #awesome u gonna @ It. Check out our cool project

on http://project link + RT it.

) (Ui Q s T

Figure 1.2 — Example of a Tweet. Grey segments show expressions similar to formal texts and

red ones show social media domain’s specific expressions (informal).

1.4 Main Contributions

As major contributions of this thesis, we particularly refer to the followings:'!

* The first contribution is placed within the framework of sequential transfer learning
from the source news domain to the target social media domain, which aims to induce an
inductive bias to improve the performance of NLP tasks in a low-resource regime. The
goal is to better exploit the learned knowledge in a source model, previously trained on
the high-resourced news-domain. For this purpose, we propose two simple yet effective
methods (§5.3). In the first, the pre-learned knowledge is transferred to the target model in
the form of contextual representations. In the second method, the pre-learned knowledge
is transferred in the form of pre-trained weights used to initialise the target model’s

parameters.

* The second contribution is in the continuum of the precedent contribution and aims to
shed light on the hidden negative transfer when transferring pretrained weights from the
news domain to the social media domain. Indeed, it is known that when the source and
target domains are dissimilar, standard transfer learning may fail and hurt the performance
by conducting to a negative transfer [300]. We show through quantitative and qualitative
analysis that even if sequential transfer learning, proposed in the first contribution, enhances
the performance on social media domain, a hidden negative transfer from the news domain

to the social media domain may mitigate the final gain brought by transfer learning (§6.2.2).

* The third contribution is with the same objective as the previous one, aiming to spot
the limits of the standard sequential transfer learning method. More precisely, through a
set of interpretive methods, we investigate how the internal representations (individual
neurons) of models pretrained on news domain are updated during fine-tuning on the social

media domain (§6.2.3). We find that although capable of adapting to new domains, some

'y this thesis, we focus on the SM domain, but our methods are flexible to transfer to other domains.
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pretrained neurons are biased by what they have learnt in the source dataset, thus struggle
with learning unusual target-specific patterns, which may explain the observed hidden

negative transfer.

* The fourth contribution: Stemming from our analysis, we propose an extension of the
standard adaptation scheme (fine-tuning) of sequential transfer learning. To do so, we
propose to augment the pretrained model with randomly initialised layers. Specifically, we
propose a method that takes benefit from both worlds, supervised learning from scratch and
transfer learning, without their drawbacks. Our approach is composed of three modules:
(1) Augmenting the source-model (set of pre-trained neurons) with a random branch
composed of randomly initialised neurons, and jointly learn them; (2) Normalising the
outputs of both branches to balance their different behaviours. (3) Applying attention
learnable weights on both branches predictors to let the network learn which of random or

pre-trained one is better for every class (§6.3).

* The fifth contribution is an extension of our precedent contributions where we performed
mono-source mono-target transfer learning, i.e. both pre-training and fine-tuning are
performed on a single task. Here, we propose a multi-source multi-target transfer learning
approach to overcome the rare annotated data problem in social media. Our approach
consists in learning a multi-task transferable model which leverages diverse linguistic
properties from multiple supervised NLP tasks from the news source domain, further
fine-tuned on multiple tasks from the social media target domain (§7.2).

1.5 Thesis Outline

This manuscript is organised as follow. Chapter 2 and chapter 3 discuss the state-of-the-art with
regard to our two research directions: Transfer learning and neural NLP models interpretability,
respectively. For each, we propose a categorisation of the current works of the literature.
Chapter 4 provides an overview of the NLP tasks and datasets involved in this thesis as well as
evaluation metrics. Then, the following chapters describe the different contributions that we have
made during the course of this thesis. Chapter 5 describes our start-up contributions to overcome
the problem of the lack of annotated data in low-resource domains and languages. Precisely,
two sequential transfer learning approaches are discussed: “transfer of supervisedly-pretrained
contextual representations” and “transfer of pretrained models”. Chapter 6 describes three of
our contributions. First, it sheds light on the hidden negative transfer arising when transferring
from the news domain to the social media domain. Second, an interpretive analysis of individual
pre-trained neurons behaviours is performed in different settings, finding that pretrained neurons
are biased by what they have learnt in the source-dataset. Third, we propose a new adaptation
scheme, PretRand, to overcome these issues. Chapter 7 presents a new approach, MuTSPad, a

multi-source multi-target transfer learning approach to overcome the rare annotated data problem
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in the social media by learning a multi-task transferable model, which leverages various linguistic
properties from multiple supervised NLP tasks. Chapter 8 finally summarises our findings and

contributions and provides some perspective research directions.



2

State-of-the-art: Transfer Learning

2.1 Introduction

In this thesis we focus on the Social Media (SM) domain. Ideally, we have at our disposal enough

annotated SM texts to train NLP models dedicated for the SM domain. However, this last is

actually still lacking in terms of annotated data. In the following, we present three common

approaches that were adopted in the literature to deal with this issue:

* Normalisation is a prominent approach to deal with the informal nature of the User-

Generated-Content (UGC) in SM [143, 144, 145, 363]. It consists in mapping SM (infor-
mal) texts into formal texts by reducing the noise (orthographic and syntactical anomalies).
For instance, ideally, “imma” is normalised into “I’m going to”, “Lol” into “lough out

2.9 29 ¢ 2 <¢

loud”, “uv’r” into “you are”, “gimme” into “give me”, “OMG” into “oh my god”, repeti-
tions like “happpyy”, “noooo” and “hahahaha” into “happy”, “no” and “haha”. There are
many approaches in the literature to perform normalisation. We can cite rule-based ap-
proaches [9, 212, 41, 100, 23] and noisy-channel methods [73]. Also, machine translation
based approaches view the task of normalisation as a translation problem from the SM
language to the formal language; e.g. using phrase-based statistical MT [20] or using a
character-level machine translation model trained on a parallel corpus [261]. However,
multiple works showed that the efficacy of normalisation for SM texts is limited [84, 247].
Indeed, in addition to be a difficult and an intensive task, normalisation is not flexible
over time since SM language is constantly changing [102]. Also, normalisation may
conceal the meaning of the original text [364], e.g. non-standard character repetitions
and capitalisation may have a semantic meaning, “happpyyyy” could mean “very happy”,

which may hide important signals for tasks like sentiment analysis.

Automatic Annotation consists of tagging unlabelled SM data using off-the-shelf models
(trained on news domain). The automatically annotated examples are subsequently used
to train a new model for the SM domain. Generally, a voting strategy is used to select
the “best” automatically annotated examples, i.e. a sentence is added to the training set if
all models assign the same predictions to it. Horsmann & Zesch [152] experimented this
voting approach on the predictions of ClearNLP [60] and OpenNLP Part-Of-Speech (POS)

10
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taggers. Similarly, Derczynski et al. [86] performed a vote constrained bootstrapping [128]
on unlabelled Tweets to increase the amounts of training examples for Tweets POS tagging.
Besides, crowd-sourcing [113] has also been used to obtain large manually annotated SM
datasets, at low cost but with lower quality since examples are not annotated by experts but
by online users. However, Horbach ef al. [151] showed that extending the training set with
automatically annotated datasets leads to small improvement of POS tagging performance
on German SM texts. In contrast, a much bigger improvement of performance can be

obtained by using small amounts of manually annotated from the SM domain.

* Mixed Training is used when small annotated data-sets from the SM domain are available.
It consists in training the model on a mix of large annotated data from out-of-domain well-
resourced domains with small amounts of annotated examples from the SM domain [151].
However, since out-of-domain examples are more frequent in the training phase, the effect
of out-of-domain data will dominate that of SM data. In order to overcome this issue,
weighting and oversampling methods are commonly used to balance the two domains and
thus make the SM examples more competitive to the out-of-domain ones. For instance,
Daumé III [80], Horsmann & Zesch [152] and Neunerdt ef al. [246] experimented mixed-
training with oversampling for SM POS tagging by adding annotated examples from the

SM domain multiple times and using different strategies.

In this thesis, we propose to develop and study the effectiveness of different Transfer Learning
techniques to overcome the sparse annotated-data problem in the social media domain by

leveraging annotated datasets from the high-resource source news-domain.

. o . . Learning Process of Transfer Learning
Learning Process of Traditional Machine Learning

Y @D O @
i1 1 1 1 |
— 1 7 ™

(a) Traditional Machine Learning (b) Transfer Learning

+

Figure 2.1 — Standard supervised training scheme vs Transfer Learning [257].

Transfer Learning (TL) is an approach that allows handling the problem of the lack of
annotated data, whereby relevant knowledge previously learned in a source problem is leveraged
to help in solving a new target problem [257]. TL relies on a model learned on a source-task

with sufficient data, further adapted to the target-task of interest.
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TL is similar to the natural process of learning, which is a sequential long-life developmental
process [50]. In simple words, when humans tackle new problems, they make use of what they
have learned before from past related problems. Consider the example of two people who want
to learn Spanish. One person is native in the French language, and the other person is native
Indian. Considering the high similarities between French and English languages, the person
already speaking French will be able to learn Spanish more rapidly.

Here, we overview works and approaches related to transfer learning for NLP with a focus
on neural transfer learning. Note that transfer learning is a broad topic; our survey is necessarily
incomplete. We try nevertheless to cover major lines related to the contributions of this thesis.
The remainder of the following sub-sections is organised as follows. We start by presenting the
formalisation of the transfer learning problem (§2.2). Then, we propose a taxonomy of transfer
learning approaches and techniques (§2.3) based on three criteria: What to transfer? (§2.4); How
to Transfer? (§2.5); and Why transfer? (§2.6). Finally, we wrap up by summarising the proposed

categorisation of TL approaches and discussing the position of our work (§2.7).

2.2 Formalisation

Let us consider a domain D = {X’, P(X)} consisting of two components:! the feature space X
and the marginal probability distribution P(X), where X = {xy, z, ..., z,,} € X. For instance,
for a sentiment analysis task, X" is the space of all document representations and X is the random
variable associated with the sample of documents used for training.

Let us consider a task 7 = {), P(Y'), f}, where ) is the label space, P(Y’) is the prior distri-
bution, and f is the predictive function that transforms inputs to outputs: f : X — ). If we re-
sume the sentiment analysis task, ) is the set of all labels, e.g. itcanbe ) = {positive, negative}.

In a supervised training paradigm, f is learned from n training examples: {(z;,y;) €
X x)Y: i € (1,..,n)}. Therefore, the predictive function f corresponds to the joint
conditional probability P(Y'|X).

In a transfer learning scenario, we have a source domain Dg = {Xjs, Ps(Xs)}, a source
task 7s = {Vs, Ps(Ys), fs}, a target domain Dy = {X&,, Pr(Xr)}, and a target task
Tr = {Yr, Pr(Xr), fr}, where X = {z7, 25, ...,2%} € X, Xp = {af, 2], ... .al} € Xr
and n® >> n'. The aim behind using transfer learning is to improve the learning of the predic-
tive target function fr by leveraging the knowledge gained from Dg and Tg. Generally, in a
transfer learning scheme, labelled training examples from the source domain Dg = {(z7,y”) €
Xs x Vs :i€(1,...,n%)} are abundant. Concerning target domain, either a small number of
labelled target examples Dy, = {(x] ', y1") € Xp x Vp i € (1,...,n™h}, where n® >> nT,
or a large number of unlabelled target examples Dy, = {(z] ™) € Xp:i € (1,...,nT")} are

assumed to be available.

! In this section, we follow the definitions and notations of Pan et al. [257], Weiss et al. [375] and Ruder [303].
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From the above definitions, five scenarios of dissimilarities between source and target

domains arise:

1. Xs # Xp: The feature spaces between the source and target domains are different. For
sentiment analysis, it means that the documents samples of source and target documents
do not share the same vocabulary, e.g. different languages, dialects or language varieties

like user-generated texts in social media.

2. P(Xs) # P(X7r): The marginal distributions in the feature spaces are different between
the source and the target domains. For sentiment analysis, it means that source and target
documents discuss different topics (cars, movies, politics, etc.) and thus the frequency of

the used words may differ.

3. Ys # Yr: A mismatch between the class spaces of target and source domains. For
sentiment analysis, for instance, we can be confronted to a source label space Vs =
{positive,negative}, and a more fine-grained target label space Yr =

{positive, neutral, negative}.

4. P(Ys) # P(Yr): The prior distributions of the source and target tasks are different, which
is generally due to a class imbalance between the source and target domains. For instance,
in the source domain, the class positive can be a majority in the source domain but a

minority in the target domain.

5. P(Ys|Xs) # P(Yr|Xr): The conditional probability distributions are different. For
sentiment analysis, an example is when a particular word or expression yields a different
sentiment classification; positive sentiment in the source domain and negative sentiment in
the target domain. For instance, “the word small can have a positive meaning if describing
a cell phone but a bad meaning if describing a hotel room” [375] and “the word soft may
evoke positive connotations in many contexts, but calling a hockey player soft would have

a negative connotation” [142].

2.3 Taxonomy

The taxonomy of transfer learning was studied in multiple research works [351, 423, 257, 375]
and for different areas, e.g. computer vision [334], NLP [303], speech recognition [232], and
multi-modal applications [110].

The survey of Pan et al. [257] is the most widespread since it was the first paper providing a
general formal definition of transfer learning with an extensive taxonomy that includes several
domains. Pan et al. categorise transfer learning approaches under three sub-settings; according to

the availability of labelled data in the target domain: 1) Inductive transfer learning: when labelled
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data are available in the target domain and 7g # 7. 2) Transductive transfer learning: when
labelled data are only available in the source domain and 7s = 77. 3) Unsupervised Transfer
Learning: when labelled data are not available in both source and target domain. Weiss et al.
[375] devise transfer learning settings into two categories. 1) Heterogeneous transfer learning is
the case where Xg # A7, i.e. the feature spaces between the source and target domains are
different. Alternately, 2) homogeneous transfer learning is the case where Xs = Xp. Ruder
[303] provides an overview of the literature of transfer learning in general with a focus on NLP
applications. The taxonomy proposed by Ruder is an adapted version of the one proposed by Pan
et al.. Recently, Ramponi & Plank [289] classified transfer learning into data-centric methods
and model-centric methods.

Based on the former categorisations, we propose a three-dimensional categorisation of

transfer learning in NLP; each answers a specific question:

1. What to transfer? asks which type of knowledge is transferred from the source domain

to the target domain.

2. How to transfer? discusses the algorithms and methods used to transfer each type of
knowledge. Note that each type of transferred knowledge has its own methods and

algorithms.

3. Why transfer? discusses the different research objectives behind transfer learning from

source to target domains.

2.4 What to Transfer?

Here we classify transfer learning approaches according to the type of the transferred knowledge.

We distinguish three categories:

1. Transfer of linguistic annotations (§2.4.1): Unlabelled data from the target domain are
automatically annotated with transferred annotations from the source data. Then, the new

annotated target examples are used to train a new target model.
2. Transfer of instances (§2.4.2): A training on selected annotated source examples.

3. Transfer of learned representations (§2.4.3): Transferring representations consists in the
reuse and/or modification of the underlying representations learnt from a source domain to

boost the performance on a target domain.

2.4.1 Transfer of Linguistic Annotations

Cross-lingual projection of linguistic annotations [394] allows an automatic generation of

linguistic annotations for low-resource languages. Precisely, the direct naive projection method
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consists in projecting annotations from a high-resource language to a low-resource language
through bilingual alignments from parallel corpora. Then, the automatically annotated target
data are used to train the target model.?

Parallel corpora are made of pairs of translated documents. In simple words, a parallel corpus
between two or more languages is composed of an original text in a particular language and its
translation to the remaining languages [342]. For instance, European Parliament transactions
(EuroParl) [174] contain parallel corpora between 11 European languages.

Bilingual alignments are constructed from parallel corpora and consist of links that correspond
to a translation relation between portions of text from a pair of documents. The most common
levels of alignment are word-level alignments [368, 329, 309, 308, 310, 311], multi-word-level
alignments [330, 37, 214, 39, 38, 40, 327, 323, 331] and sentence-level alignments [58, 324,
326, 325, 256]. Many automatic word alignment tools are available, e.g. GIZA++ [253].

Therefore, Madam President, | would ask you ..

<N\ S

©) Jé vous prie dés lors, Madame la Présidente ...
PRON PRON 1?7?77 7?1?77 7N NOUN NOUN NOUN

Transfert des
Annoations

©

Figure 2.2 — Example of the projection of part-of-speech annotations. The source language is

English and the target language is French. Source: [404].

An example of part-of-speech annotations projection from English to French is illustrated in
Figure 2.2. First, a word-level alignment is performed between the two documents. Then, the
source text is automatically annotated using the available tools for the source language. Finally,
the annotations of English words are transferred to French words that are linked with them. For
instance, the PRON (pronoun) tags from English words “I”” and “you” are transferred onto the
French translations “Je” and “vous”.

Annotations projection has been successfully applied on multiple NLP tasks, like part-of-
speech tagging [3], syntactic chunking [394], dependency parsing [157, 179], named entity
recognition [217] and semantic role labelling [8].

This method helps to get annotations cost-effectively. However, despite its popularity, the
naive approach still suffers from many limitations. As illustrated in the example, this method
of annotations projection does not always provide a fully annotated sentence in the target
language. In addition, it may lead to false annotations due to incorrect words alignments, e.g.
“la” 1s wrongly aligned with “President”, which leads to wrongly project the annotation of

“President” to “la”. The drawbacks of this method have been discussed in many works in

2 Multilingual projection of linguistic annotations is often considered in the literature as a weakly supervised

learning technique.
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the literature [256, 365, 8, 406, 405, 408, 407, 409], especially when the source and target
languages are syntactically and morphologically different, and for multi-words expressions [328,
327, 323, 288, 331]. Indeed, the underlying assumption in annotations projection is a 1-to-
1 correspondence of word sequences between language pairs [19], which is unrealistic even
for languages from the same family. Since then, many improvements have been proposed to
overcome these limitations. We can cite the work of Tickstrom et al. [346] who improved
POS tags projections by adding external information sources such as dictionaries. In the same
vein, Wisniewski et al. [383] exploited crowd-sourced constraints, and Wang & Manning [371]
proposed to integrate softer constraints using expectation regularisation techniques. On another
aspect, Zennaki et al. [409] proposed to extract a common (multilingual) and agnostic words
representation from parallel or multi-parallel corpus between a resource-rich language and one

or many target (potentially under-resourced) language(s).

When parallel text is available, “annotations projection is a reasonable first choice” [273].
Still, the main limitation of this method is its dependence to parallel corpora which are not
available for all low-resource languages. In addition, it is limited to the cross-lingual setting
of transfer learning [392] and thus not applicable to transfer between domains. It is not either
applicable to transfer between tasks with different tag-sets, since this method assumes that

Ys = Yr or at least a 1-1 mapping between )s and Yy is possible.

A related method to transfer annotations from a resource-rich language to a low-resource
language is data translation which consists in translating labelled source data into the target
language. This method has been proven to be successful in many applications. However, it suffers

from translation noise, in addition to labelling mismatch and instance mismatch issues [97].

2.4.2 Transfer of Instances

Transferring instances consists in a training on a selection of annotated source examples. Two

approaches are commonly used, Instance Weighting and Instance Selection.

Instance weighting consists in weighting source annotated instances with instance-dependent
weights, which are then used to weight the loss function [161]. The weight assigned to an
individual instance from the source domain is supposed to reflect the degree of similarity of the

said instance to the target distribution.

Following the notations of Jiang [162], let Dy = {(27, y7)} )™ be a set of training instances

randomly sampled from the true underlying target joint distribution Pr(X,Y") from the target
domain D7. Typically, in machine learning, we aim to minimise the following objective function
of some loss function £(x, y, f) in order to obtain the best predictive function from the hypothesis
space f; € H withregard to Pr(X,Y):
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fr = argmin > Pr(z,y) L(z,y, f). 2.1)
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However, in reality Pr(X,Y’) is unknown, we thus aim to minimise the expected error in
order to obtain the best predictive function from the hypothesis space fT € H with regard to

the empirical target distribution Pr(X,Y):

ZNT

fr = argmin Z Pr(z,y) L(x,y,f) = argmin Z Lyl ). 22

TER () e @) rer i

When transferring instances, the objective is to find the optimal target model with only
annotated examples from the source domain Dg = {(z7, y°)} "5, randomly sampled from the

source distribution Pg(X,Y"). The above equation can be rewrote as such:

fi = amgmin Y T by ey )

FER ' ciry D@V
. P z, D
/A argmin Z % s(@,y) L(z,y, f)
TEH @y ey "5V
i=Ng
. Pr(x},v)) s s
= argmin — = L(x7,y7, f) . (2.3)
i ) B ) L)

S .S
Consequently, a solution is to calculate the weight % for each source example (27, 7).

Pr(zy) -

However, in practice, exact computation of Ps(ry) is infeasible, mainly because labelled examples

from the target domain are not available.

Expanding the last equation using the product rule brings us to the following:

* ‘33 ) s S
= a;gemén Zz:: ( 529) L(x7, 97, f) . (2.4)

From the above equation, we end up with two p0551ble differences between the source and

target domains:

1. Instance mismatch (Pr(X) # Ps(X) and Pr(Y|X) = Ps(Y|X)): The conditional
distribution is the same in both domains, but the marginal distributions in the feature spaces
are different. Here, unlabelled target domain instances can be used to bias the estimate of
Ps(X) toward a better approximation of Pr(X).

2. Labelling mismatch (Pr(Y|X) # Ps(Y|X)): the difference between the two domains is
due to the conditional distribution. State-Of-The-Art (SOTA) approaches in this category,
generally, assume the availability of a limited amount of labelled data from the target

domain.
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There are multiple works on instances-weighting. We can cite the work of Jiang & Zhai
[163] who proposed an implementation based on several adaptation heuristics, first by removing
misleading source training instances (i.e. where Pr(Y'|X) highly differs from Ps(Y'| X)), then
assigning higher weights to labelled target instances than labelled source instances, and finally
augmenting training instances with automatically labelled target instances. Another approach
consists in training a domain classifier to discriminate between source and target instances. Then,
source labelled examples are weighted with the probability (the classifier output) that a sentence

comes from the target domain [341, 274].

Instance Selection consists in ignoring source examples that are potentially harmful to the target
domain, i.e. which are likely to produce a negative transfer. It differs from instance weighting
method in two points. First, instance weighting is a soft data selection, while here selection
is hard, i.e. source examples are either attributed a weight equals to 1 or 0. Second, instance
selection is performed as a pre-processing step, while in instance weighting, weights are used at

the loss computation during training.

Domain similarity metrics are often used to perform instance selection, e.g. proxy A [33],
Jensen Shannon divergence for sentiment analysis task [295] and parsing [276]. Sggaard [339]
proposed to select sentences from the source domain that have the lowest word-level perplexity
in a language model trained on unlabelled target data. van der Wees et al. [366] investigated
a dynamic data selection for Neural Machine Translation (NMT) and proposed to vary the
selected data between training epochs. Ruder & Plank [304] used a Bayesian optimisation
method to select instances for parsing task. Recently, Aharoni & Goldberg [4] investigated
instance selection for NMT using cosine similarity in embedding space, using the representations
generated by a pretrained Transformer-based model (DistilBERT) [313]. Another approach
to perform instance selection is transfer self-training. We can cite the work of cross-lingual
opinion classification by Xu et al. [387], who proposed to start the training of the classifier on
the available training data from the target language. Then, the classifier is iteratively trained by
appending new selected translated examples from the source language. However, the computation
cost of this method is high since the model needs to be trained repeatedly [191].

Both approaches for transferring instances require the same tag-set for both the source
domain and the target domain, or at least a mapping between the two tag-sets is possible. For
instance, Sggaard [339] performed a mapping of part-of-speech tags into a common tag-set before
performing domain adaptation using instances-weighting. In addition, transferring instances is
only efficient when transferring between similar domains; when a broad set of target words are
out of source-vocabulary, transferring instances is not very useful and importance weighting
cannot help [272].
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2.4.3 Transfer of Learned Representations

Transferring representations consists in the reuse and modification of the underlying represen-
tations learned from a source domain to boost the performance on a target domain. Weiss
et al. [375] categorised these approaches into two categories. First, asymmetric approaches
aim to transform the source model representations to be as similar as possible to the marginal
distribution of the target domain. Second, symmetric approaches aim to reduce the dissimilarities
between the marginal distributions between the source domain and the target domain by finding

a common representation.

Notably, research on transfer learning of neural representations has received an increasing
attention over the last three years. Indeed, when annotated datasets are available, neural networks
achieve excellent results in an end-to-end manner, with a unified architecture and without task-
specific feature engineering. Moreover, the hierarchical nature of neural networks makes that the
learned knowledge (in the form of learned weights) in their latent representations transit from
general information at the lower-layers to task-specific at the higher layers [243, 396]. Hence, the

lower-layers tend to encode knowledge that is, generally, transferable across tasks and domains.

Four main methods are used in the literature to transfer neural representations. First, Au-
toencoders [369] are neural networks that are unsupervisedly trained on raw data to learn to
reconstruct the input. In domain adaptation, autoencoders are used to learn latent representations
that are invariant to domain shift. We can cite the pioneering work of Glorot et al. [125] who
proposed denoising autoencoders for domain adaptation for sentiment analysis task. First, a de-
noising autoencoder is trained on raw data from different source and target domains to reconstruct
the input text, in an unsupervised fashion. Then, a Support Vector Machine (SVM) sentiment
classifier, built on top of the latent representations generated by the denoising autoencoder, is
trained on annotated examples from the source domain. Second, Domain-Adversarial training,
initiated by Ganin et al. [115], aims to generate domain-invariant latent representations, from
which an algorithm cannot learn to distinguish the domain of origin of the input features. Third,
Multi-Task Learning (MTL) [50] consists of a joint training of related tasks and thus leverages
training signals generated by each one. Fourth, Sequential Transfer Learning, where training
is performed in two stages, sequentially: pretraining on the source task, followed by adaptation

on the downstream target tasks.

As discussed in the introduction, we aim in this thesis to transfer the learned knowledge in
neural NLP models from the high-resourced news domain to the low-resourced social media

domain. Hence, we discuss these methods in more details in the following section (§2.5).
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2.5 How to Transfer Neural Representations?

2.5.1 Domain-Adversarial Neural Networks

Domain-Adversarial training has been initiated by Ganin et al. [115], following the theoretical
motivation of domain adaptation [30], which aims to generate domain-invariant latent represen-
tations from which an algorithm cannot learn to distinguish the domain of origin of the input
features. Adversarial training requires two kinds of training data: (i) annotated source examples
and (i1) unlabelled examples from the target domain. In addition, in some cases, some labelled
instances from the target domain can be used to boost the performance.

In the approach proposed in [115], illustrated in Figure 2.3, a domain classifier (domain
discriminator) is jointly trained with the task classifier. Specifically, the model is composed
of three components, the feature extractor (green) that encodes the inputs into hidden features,
which are fed into two branches: (1) the task classifier (blue) generates the task’s predictions
and (2) the domain discriminator (red), which is trained to distinguish between the instances of
source and target domains. When performing adversarial training using this model, we expect
that the hidden features generated by the feature extractor are as domain-invariant as possible and
thus will succeed to confuse the domain discriminator. For this, the domain classifier’s gradients

are reversed through the gradient reversal layer.
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forwardprop hackprop (and produced derivatives)

Figure 2.3 — Adversarial training neural architecture. Source: [115]

More formally,’ let us suppose that our model is a hierarchical neural network with a set of
parameters 6, trained to perform a classification task with L classes. The model is composed of

three components:

1. The feature extractor G learns a D-dimensional hidden representation f; € R for each

m-dimensional input x; € R™. G is parameterised by the set of parameters 0:

fi = Gf(Xi; Qf) . (25)

3 Following the notations and descriptions of Ganin et al. [115].
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2. The task classifier G, is fed with the output of Gy and predicts the label ¢; for each input

x;. G, is parameterised by the set of parameters 0,,:

Ui = Gy(Gy(xi;05);0y) - (2.6)

3. The domain discriminator G learns a classifier G4 : R” — [0, 1], which predicts the

domain of each input x;. G, is parameterised by the set of parameters 6;:

~

di = Gd(Gf<Xi; Qf); Gd) . (27)

Given a source labelled example (x;, y;), the task classifier cross entropy loss is defined such

as:

[,;(Hfﬁy) = L,(Gy(Gf(x:;0¢):0,),v:) = vi x log(y:) - (2.8)

Thus during training the task classifier on n, annotated source examples, the task classifier

loss is defined as follows:

L,0:,0,) = — — Z Li(07,6,) . (2.9)

Given an example (x;, d;) from source or target domain where d; is the ground truth domain

label for the instance x;, the domain discriminator loss is defined such as:

Lil<6f7 9d) = ﬁd(Gd(Gf(Xi; 9f)§ Qd)vyi) = d; lOg(sz‘) + (1 - di) 109(1 - sz) . (2.10)

Thus, during training the domain discriminator on n source examples and 7, unlabelled target

examples, the domain discriminator loss is defined as follows:

ns+ng

La05,00) = —(— Z Li(05,04) + Z Li(05,04)) 2.11)
S =1

i=ngs+1
Training the adversarial neural network consists in optimising the error E(6;,6,,60,), by

finding a saddle point (6,6, ,):

(67,6,) = argmin E(6;,6,,04) (2.12)
0,0y
0, = argmax E(éf,éy,ﬁd) , (2.13)
04

with A € R is the domain discriminator loss weight. Hence, the domain discriminator is
optimised through maximising the loss over 6 and minimising the loss over 64. This “minmax”

optimisation allows the feature extractor to learn features that help to improve the performance
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of the classification task, but are indistinguishable whether they are from the source or the target
domain.

The saddle point is obtained by updating the model’s gradients as follows:

oL, . 0Ly
- B Wtiad 2.14
O 0 = n(Ggt = A5, (2.14)
0; «— 0, — uAg—gj, (2.15)

oL
O Oy — n (2.16)

Yy

with p being the learning rate.

The gradient reversal layer (GRL) in Figure 2.3 allows performing this optimisation problem
in a simple way. The GRL is added between the feature extractor GGy and the domain discriminator
(4. It does not impact the forward propagation. But during backward propagation, it negates the
gradients.

Another approach to perform adversarial training consists in minimising the divergence
between the source distribution Pg and the target distribution Pp. For instance, Arjovsky et al.
[15] used the Jensen-Shannon divergence and Shah et al. [333] used the Wasserstein distance to

compute the divergence loss.

2.5.2 Multi-Task Learning

Multi-Task Learning (MTL) [50] consists in a joint learning of related tasks and thus leverages
training signals generated by each one. MTL is based on the intuition that, if tasks are related,
features trained for one task can be useful for the other tasks. For instance, detecting proper
nouns in the POS tagging task would hopefully help to better identify named entities in Named
Entity Recognition (NER) task. As discussed in [50] and [302], when tasks are related, the
efficiency of MTL is significant for many evidences. First, MTL allows augmenting training
data, implicitly, which begets a better regularisation and thus avoids over-fitting. Second, MTL
allows an “eavesdropping” process, which means that when two tasks “A” and “B” are jointly
trained, in some cases, a set of features that are important for task “A” can be easier to learn by
task “B”. Third, MTL introduces an inductive bias that begets a better generalisation for new
tasks and domains.

Performing MTL requires conceptual and architectural choices with regards to the parameters
sharing scheme, the tasks scheduling procedure and the loss calculation. The three depend on

the nature of the problem and the relatedness between tasks.

* Parameters sharing schemes: One can separate MTL approaches according to the param-
eters sharing scheme. MTL is typically done with either hard or soft parameters sharing of

the hidden layers, as illustrated in Figure 2.4.
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Figure 2.4 — Multi-task learning Parameters Sharing Schemes.

Hard parameters sharing is the most used in the literature. It consists in sharing some hidden
layers between all tasks while keeping several task-specific layers. Task-specific parameters
are updated according to the error signal that is propagated only from the corresponding
task, while the shared parameters are updated according to the error propagated from all
tasks. The shared parameters will encode robust, task-independent, and thus transferable

representations.

Contrariwise, in a soft sharing scheme there are no shared parameters; each task has its
own parameters and layers. The distance between the parameters of the two models is then
regularised in order to foster these parameters to be as similar as possible. For instance,
Duong et al. [99] proposed a soft MTL architecture using [, regularisation to improve
parsing performance for a low-resourced target language using the knowledge learned in a

source high-resource language’s parser.

* Tasks scheduling: One can separate MTL according to the nature of the available training
examples. We define two types, homogeneous MTL where a common dataset annotated
with all tasks of interest is available, which is rarely possible. In contrast, in a heteroge-
neous MTL, the model has to be trained on a mixture of labelled datasets; one dataset per
task. A major issue when performing heterogeneous MTL is that training all datasets in
the same way is not efficient. Thus, defining a tasks scheduling strategy, i.e. the processing
(training) order of examples from different tasks (datasets), is essential when dealing with

heterogeneous MTL.

In a heterogeneous MTL, each task has its own training dataset. Therefore, choosing
a strategy for ordering and sampling training examples coming from different datasets
becomes requisite. A naive approach is to proceed with tasks uniformly or in proportion
to each task’s dataset size. For instance, Dong et al. [93] trained a multi-task machine
translation model between several language-pairs uniformly, i.e. with equal training ratios,
by alternating the tasks in a fixed order. Thus each task (language-pair) is optimised

for a fixed number of iterations before passing to the next task. Sggaard & Goldberg
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[340] trained a hierarchical multi-task model using a uniform training over tasks, where
the selection of the next task to train is done in random. Similarly, Subramanian et al.
[345] trained a multi-task model to learn universal sentence representations using uniform
training ratios for each task. Likewise, Zaremoodi et al. [403] performed a uniform multi-
task training, where at each iteration of the training process, the task to train is selected

randomly.

However, the naive uniform approach is not always efficient, typically when some datasets
are over-sampled compared to the other datasets. In this case, the model will likely focus
on the richest tasks. Luong et al. [209] proposed to train tasks periodically while using
different training ratios per task based on their respective training-sets size. Similarly, Sanh
et al. [314] compared uniform sampling to proportional sampling of training examples
from different tasks and found that proportional sampling is outperforming in terms of

performance and speed of convergence.

Nevertheless, the above approaches are maladaptive, i.e. are not adapted during training,
which can be an issue when easy tasks are trained with more challenging tasks; in the
course of training, the more straightforward tasks are likely to be over-trained. Adaptive
scheduling was used by Kiperwasser & Ballesteros [171], who studied multiple adaptive
schedules that increasingly favour the principal task over training iterations. The objective
of the work of Kiperwasser & Ballesteros [171] is to improve NMT with the help of
POS and Dependency Parsing (DP) tasks by scheduling tasks during training, starting
with multi-tasking of the principal task with auxiliary lower-level tasks (POS and DP)
and as the training graduates, the model trains only to the main task. Further, Jean et al.
[160] proposed an adaptive scheduling method that varies during training according to
the validation performance of each task. Precisely, when the performance of the model is
low on one task compared to the baseline (mono-task training performance), the sampling-

weight assigned to this task is increased.

It is noteworthy that all the above-mentioned scheduling methods are explicit, i.e. they
consist in only controlling the sampling of each task during training. In contrast, there
are some works on implicit methods, which act on learning rates, model gradients or loss
calculation [160].

Loss Calculation: In MTL, we aim to optimise the model with respect to multiple

objectives. Thus, we generally minimise a weighted sum of the loss over all tasks:

1
L= Z o Li | (2.17)

where 7' is the number of the jointly trained tasks, £; is the loss of the task 7, and «; is the

weight attributed to the task <. A naive setting consists in using equal weights for all tasks
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a1 = as = ... = ap. However, when tasks training sets have different sizes or some
tasks are easier to learn than the other tasks, weights may differ from one task to another

or adapted during training.

In the literature, MTL is used in two situations. The first is interested in building a joint
model which produces predictions for multiple tasks. Thus, the model is optimised to improve
the performance of all tasks. As shown by Caruana [50], many real-world problems are, in
reality, multi-task problems by nature. For instance, in autonomous driving, the model needs to
be able to perform multiple tasks simultaneously, e.g. recognition of pedestrians, traffic lights,
cars, etc. In the second scenario, a main task of interest is trained with a set of auxiliary tasks.
The advantage of using MTL over independent task learning has been shown in some NLP tasks
and applications [195]. For instance, POS tagging task has been shown to be beneficial for other
tasks in [67, 339, 412, 221, 171, 208, 340]. The same for NER in [314], CK [67, 148] and DP
[171, 416].

2.5.3 Sequential Transfer Learning

In contrast to MTL, which is a parallel training process where tasks often benefit each other
mutually, in Sequential Transfer Learning (STL) training is performed serially and thus only
target tasks benefit from source ones. The term STL was firstly used by Caruana [50], but
the idea was explored much earlier [277, 353]. In STL, training is performed in two stages
sequentially: pretraining on the source tasks, followed by adaptation on downstream target tasks.

In the following, we discuss the methods used to perform each stage.

Pretraining

In the pretraining stage, a crucial key to the success of transfer is the ruling about the pretrained
task and domain. For universal representations, the pretrained task is expected to encode useful
features for a vast number of target tasks and domains. In contrast, for domain adaptation, the
pretrained task is expected to be most suitable for the target task in mind.* We classify pretrain-
ing methods into four main categories: unsupervised, supervised, multi-task and adversarial

pretraining:

* Unsupervised pretraining uses raw unlabelled data for pretraining. Particularly, it has
been successfully used in a wide range of seminal works to learn universal representations.
Language modelling task has been particularly used thanks to its ability to capture general-

purpose features of language.’ For instance, TagLM [263] is a pretrained model based on

4 The difference between universal representations and domain adaptation will be discussed in the following section

2.6.
> Note that language modelling is also considered as a self-supervised task since, in fact, labels are automatically

generated from raw data.
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a bidirectional language model (biLM), also used to generate ELMo (Embeddings from

Language Models) representations [265]. In addition, with the recent emergence of the

“Transformers” architectures [367], many works propose pretrained models based on these

architectures [87, 391, 283]. Unsupervised Pretraining has also been used to improve
sequence to sequence learning. We can cite the work of Ramachandran ez al. [287] who
proposed to improve the performance of an encoder-decoder NMT model by initialising

both encoder and decoder parameters with pretrained weights from two language models.

Supervised pretraining has been particularly used for cross-lingual transfer (e.g. machine
translation [424]); cross-task transfer from POS tagging to words segmentation task [390];
and cross-domain transfer for biomedical question answering by Wiese et al. [378] and
NER to biomedical texts by Giorgi & Bader [123]. Cross-domain transfer has also been
used to transfer from news to SM for POS tagging [227, 222, 216] and sentiment analysis
[414]. Supervised pretraining has been also used effectively for universal representations
learning, e.g. neural machine translation [218], language inference [69] and discourse
relations [248].

Multi-task pretraining has been successfully applied to learn general universal sentence
representations by a simultaneous pretraining on a set of supervised and unsupervised
tasks [345, 51]. Subramanian et al. [345], for instance, proposed to learn universal
sentences representations by a joint pretraining on skip-thoughts, machine translation,
constituency parsing and natural language inference. In [223], we proposed multi-task
pretraining for supervised domain adaptation from news domain to the social media

domain.

Adversarial pretraining is particularly used for domain adaptation when some annotated
examples from the target domain are available. Adversarial training — as previously
described — is used as a pretraining step followed by an adaptation step on the target
dataset. Adversarial pretraining demonstrated its effectiveness in several NLP tasks, e.g.
cross-lingual sentiment analysis [55]. Also, it has been used to learn cross-lingual words
embeddings [182].

Adaptation

During the adaptation stage one or more layers from the pretrained model are transferred to the

downstream task, and one or more randomly initialised layers are added on top of pretrained

ones. Three main adaptation schemes are used in sequential transfer learning: Feature Extraction,

Fine-Tuning and the recent Residual Adapters.

In a Feature Extraction scheme, the pretrained layers’ weights are frozen (not updated) during

adaptation, while in Fine-Tuning scheme weights are fine-tuned. Accordingly, the former is

computationally inexpensive while the last allows better adaptation to target domains peculiarities.

In general, fine-tuning pretrained models begets better results, except in cases wherein the target
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domain’s annotations are sparse or noisy [90, 243]. Moreover, Peters et al. [264] found that, for
contextualised representations, both adaptation schemes are competitive, but the appropriate
adaptation scheme to pick depends on the similarity between the source and target problems.
Recently, Residual Adapters were proposed by Houlsby et al. [154] to adapt pretrained models
based on Transformers architecture, which aim to keep Fine-Tuning scheme’s advantages while
reducing the number of parameters to update during the adaptation stage. This is achieved
by adding adapters (intermediate layers with a small number of parameters) on top of each
pretrained layer. Thus, pretrained layers are frozen, and only adapters are updated during training.
Therefore, Residual Adapters performance is near to Fine-tuning while being computationally
cheaper [267, 266, 268].

2.6 Why Transfer?

There are some terminology inconsistencies throughout the literature of transfer learning. Mainly,
transfer learning and domain adaptation are sometimes used to refer to the same process [420,
191, 257, 176]. Many other papers use the two expressions to mean different things. For instance,
Wilson & Cook [381] and Ruder [303] consider that domain adaptation is a particular case of
transfer learning, where source and target tasks are the same (7 = 77), while the source and
target domains differ (Ds # Dr).

In this thesis, we consider that the purpose behind using transfer learning approaches for
NLP can be divided into two main research areas, universal representations and domain adapta-
tion. Universal representations aim to learn representations, e.g. words embeddings, sentence
embeddings and pretrained models, that are transferable and beneficial to a wide range of
downstream NLP tasks and domains. Domain adaptation seeks to learn representations that
are beneficial for a particular target domain rather than being useful in general. In comparison,
domain adaptation aims to harness the knowledge represented in features learned on a source
domain (high-resourced in most cases) to improve the performance on a specific target domain
(low-resourced in most cases). The source and the target domains may differ on the task, the
language or the domain. In the following, we present some notable works from each category:

universal representations (§2.6.1) and domain adaptation (§2.6.2).

2.6.1 Universal Representations

Transfer learning in the form of universal representations is not a recent phenomenon in NLP;
their usage as extra word features for supervised tasks was common long before the outburst
of neural models. According to Turian et al. [360], three categories of algorithms have been
used to induce unsupervised word representations that are expected to encode general language

knowledge and beneficial to a wide range of NLP tasks.

1. Clustering-based representations: are one-hot representations induced from a clustering
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over words. Hence, the dimension of the induced representations equals to the number
of clusters. Particularly, Brown Clustering [44], which builds unsupervised hierarchical
word clusters, was commonly used in NLP. For instance, it was successfully used for POS
tagging of English Tweets [255], English news NER [290] and cross-lingual NER [217].

2. Distributional representations: are mainly based on word-word co-occurrence matrices
factorisation. However, due to their size and scarcity, using these matrices directly as
words representations is impractical. Thus, dimensionality reduction methods are often
used to obtain dense representations. For instance, canonical correlation analysis was used
by Dhillon et al. [89] and latent semantic analysis by Levy ef al. [188] to generate words

representations.

3. Distributed representations: are low-dimensional and dense representations, typically
learned using language models. The probabilistic language model proposed by Bengio
et al. [31] and improved in [67] & [68] was the genesis of what we call words embedding
in NLP, while Word2Vec [233, 234] was its outbreak and a starting point for a surge of
works on learning distributional words embeddings, e.g. FastText [35] enriches Word2Vec
with subword information. One of the strengths of word embeddings is that they encode
the semantics of words taking into account their contexts of use while keeping a low

dimensionality.

Traditional Words Representations:®

Let us consider a text sentence S with a set of IV tokens, S = (¢4, to, ..., tx). Traditional word
embeddings approaches assign a dense vector w; for each token ¢;, on a function of ¢; solely;
without taking into account its context. When training a neural model on a raw corpus, an embed-
ding matrix W € RY * 4 is learned for the corpus vocabulary, where d is the embedding size
and V' is the vocabulary size. In the following, we provide a brief description of the pioneering

frameworks that learn traditional words representations: Word2Vec, FastText and GloVe.

Word2Vec [233] is based on a shallow fully connected neural network, composed of an input
layer, one hidden layer and an output layer. Two architectures were proposed: the first is
Continuous Bag Of Words (CBOW) and the second is Continuous Skip-Gram. CBOW predicts
the actual word from its surrounding context words. In the Skip-Gram model, on the other hand,
the reverse operation is performed; the surrounding context words are predicted from the current
word.

The objective of the CBOW model is to predict the probability of the target word given its
context (a window of C' surrounding words). As illustrated in the left scheme of Figure 2.5, the

model takes the one-hot encoding of the C' context words as inputs, and it outputs the probability

 Here we discuss only word-level representations, since in this thesis we focus on sequence labelling tasks.

However, there are many successful universal representations at the sentence-level.
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of each word in the vocabulary being the actual word. Generally, the learned weights matrix
W2 € R?*V between the hidden layer and the output layer is the embedding matrix, where d
is the hidden layer size (d=embedding dimension), and V' is the vocabulary size. Each line j of

w2’ corresponds to the global embedding of the word type j in the vocabulary.

Output Layer
Input Layer

O
. .
O o
o o
Xi,l O o yi-l
O O
8 S
o Whvay Wharv) -
E Hidden Layer Hidden Layer :
. Output Layer Input Layer :
o] T O
9 S 3 | S
O b bo) O
® 1 % o o a e .
Xix i W vxa) Wiarwy 5 3'} X |: Wiivea) W [0y,
‘o) ol o O
0 3 o o
Q o} o) S
o ® ° C
1 4
* ax o)
8 W vea) Wiarvy .
O o
0 Qf o
Xi,col g Yi,c
O
S o
Y { ]
(@) o
a) Continuous Bag Of Words b) Continuous Skip-Gram

Figure 2.5 — Illustrative schemes of CBOW and Skip-gram neural architectures.

In the Skip-Gram model, the reverse operation is performed. The aim is to predict the C'
surrounding words given the target word. As illustrated in the right scheme of Figure 2.5, the
model takes the one-hot encoding of the target word as input, and it outputs the probability of
each word in the vocabulary being a surrounding word. Generally, the learned weights matrix
W3 € RV * 9 between the input layer and the hidden layer is the embedding matrix, where d is
the hidden layer size (=embedding dimension), and V' is the vocabulary size. Each line j of W3

corresponds to the global embedding of the word type j in the vocabulary.

FastText [35] is an extension of Word2Vec algorithm, which represents each word as a bag of
n-grams characters, in addition to the word itself. Hence, FastText generates embedding for the
words that do not appear in the training raw corpus, which allows for a better management of

rare words.

GloVe (Global Vectors for Word Representation) is an algorithm developed by Stanford university
[262] to learn distributed dense representations of words by referring to their contexts in large
corpora of texts. While Word2Vec is a predictive model, GloVe is based on co-occurrences

matrix from large corpora. First, a co-occurrence matrix C is created, where an element c;; from
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the matrix represents the number of times the word type ¢ appeared in the context of the word
type j. However, the vectors generated in this co-occurrences matrix are sparse and with high
dimensions (vocabulary size). GloVe algorithm allows a factorisation of this co-occurrences
matrix. Precisely, two randomly initialised vectors, x; , X; € R, are assigned for each word w;
in the corpora, where d is the embedding dimension. The first as its column instance and the
second for its row instance. Then, the difference between the dot product of the embedding of
the target word x; with the embedding of its context word X; and the logarithm of their number

of co-occurrences c¢;; is minimised:

|4
Laove = Y fley) (xI' %5 +bi +b; —log(ciy))® | (2.18)

1,j=1

where x; and b; represent, respectively, the embedding and the bias for the word . X; and b,
represent, respectively, the embedding and the bias for the context word j. f(.) is a weighting
function that assigns low weights to rare words and higher wights for more frequent words to

avoid learning only on very frequent words.

Contextual Embeddings

Recently, universal representations re-emerged with contextualised representations, handling
a major drawback of traditional words embedding. Indeed, these last learn a single context-
independent representation for each word thus ignoring words polysemy. Therefore, contextu-
alised words representations aim to learn context-dependent word embeddings, i.e. considering
the entire sequence as input to produce each word’s embedding. Multiple training objectives
were used to generate contextualised representations. For instance, CoVe [218] use a neural
machine translation encoder. TaglLM [263] use an unsupervised bidirectional language model
(biLM), also used to generate ELMo (Embeddings from Language Models) representations
[265]. In contrast to CoVe and Tagl.M, ELMo representations are a function of all of the internal
layers of the biLM.

Formally, methods that learn contextual embeddings associate each token ¢; from a sequence
of tokens S = (t1, to, ..., ty) with an embedding vector that is a function of the whole sentence.
Hence, if a word type appears in different contexts, the attributed contextual vector will be

different. In the following, we provide a short description of the ELMo model.

ELMo (Embeddings from Language Models) [265] is a bidirectional language model based
on two LSTM-based language models. The first language model (LM) is a forward L-layer
LSTM that encodes the left context of words, and the second LM is a backward L-layer LSTM
that encodes the right context of words. The forward LM calculates the probability of a sequence
of tokens S = (ty,t,...,ty) such as:
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N
pltrsta, ontn) = [ pti [t s tec) - (2.19)
k=1

Similarly, the backward LM calculates the probability of the sequence of tokens S such as:

N
pltista,ty) = [ pti [tesr o tn) - (2.20)

=1

ol

Each LSTM layer j = 1, ..., L from the forward LM produces a context-dependent repre-
sentation ﬁk,j for each token k. Note that, the output of the top LSTM layer, E)k L, 1s used to
predict the next token ¢ through a fully connected Softmax layer. Likewise, each LSTM layer
j =1, ..., L from the backward LM produces a context dependent representation ﬁ k,; for each
token k. The top layer LSTM output %k 1, 1s used to predict the previous token ¢j_; through
a fully connected Softmax layer. The two models are combined by jointly maximising the log

likelihood on both directions:

N
S (log plth 111, ooty 1302, 0 Lorar, 0) + (109 Pt thsrs oot Oa, 0 ar, 64)) , (221)
k=1

where 6, are the parameters of the input layer; a CNN-based character-level embedding layer

that generates a context-independent representation x;, for each token ¢;. 6, are the parameters

of the softmax output layer. 6, and 6, are shared between the two models. 7 sty and ? LSTM
correspond, respectively, to the parameters of the LSTM layers of the forward LM and the

backward LM.

Therefore, the ELMo biLM model produces Ry; a set of 2L + 1 representations for each
token ?;. 2L representations are the L-LSTM layers outputs from the forward LM and the

backward LM, plus the embedding input representation x:

- )
Rk = {Xk, thj,iij |j = 17,L} = {th‘

j=0,..L}, (2.22)

_>
where hk70 = XL and hk,j = [h k> ﬁkvj]'
Generally, to use the set of the L ELMo representations in the downstream tasks, a weighted

sum of these representations is injected as an input representation to the target task model.

Universal Pretrained Language Models

So far, universal representations were exploited only at the input-level of the target model, i.e.
the input embedding layer is initialised with pretrained representations, but the remaining layers
are randomly initialised, thus need to be trained from scratch. Hence, the pretrained knowledge
is not fully harnessed. Conscious of the usefulness of transferring the pretrained knowledge

to different levels of the target models, the NLP research community has recently devoted a
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particular interest on learning deep pretrained language models that could be transferred to
initialise the parameters of target models for multiple tasks.

First, Howard & Ruder [155] proposed Universal Language Model Fine-tuning (ULMFiT),
an LSTM-based bidirectional language model (similar to [265]). ULMFiT is an approach
consisting of three steps. First, pretraining the LM on general unlabelled large corpora. Second,
fine-tuning the LM on the downstream target dataset. Finally, 3) fine-tuning on the target task
by adding a randomly initialised classifier layer on top of the pretrained layers. Furthermore,
Transformer architectures [367] have been used in many works to learn universal pretrained
models. Two unsupervised pretraining tasks are generally used to learn universal models. 1)
Language models (LMs), predicting the next word given the previous context, like GPT [282].
2) Masked language models, predicting the identities of a set of words that have been masked
out of the sentence, like BERT (Bidirectional Encoder Representations from Transformers)
[87], XLNET [391], RoBERTa (Robustly optimised BERT pretraining Approach) [202] and
DistilBERT [313], a distilled version of BERT. Otherwise, other innovative pretraining tasks have
been proposed in the literature, such as ELECTRA [65], which performs pretraining on replaced
token detection task. Furthermore, specialised pretrained models were proposed recently, like

BioBERT [184], a pre-trained biomedical language model for biomedical text mining.

2.6.2 Domain Adaptation

While universal representations seek to be propitious for any downstream task, domain adaptation
is designed for particular target tasks. Precisely, it consists in adapting NLP models designed for
one source setting (language, language variety, domain, task, etc.) to work in a target setting.
Domain adaptation englobes two settings. First, unsupervised domain adaptation assumes that
labelled examples in the source domain are sufficiently available. However, for the target domain,
only unlabelled examples are available. Second, in supervised domain adaptation setting, a
small number of labelled target examples are assumed to be available. In recent years, several
works have investigated how to adapt NLP models between languages, tasks or domains using

transfer learning techniques:

* Cross-lingual adaptation (Xg # A7) from high-resource languages to low-resourced
ones was explored in the literature for multiple NLP tasks. Zoph et al. [425] performed
sequential transfer learning for supervised domain adaptation by pretraining an NMT
model on a high-resource source language pair and then transferring the learned weights to
a target language pair for a further fine-tuning, and Dabre et al. [75] proposed to perform a
multi-stage fine-tuning to improve NMT performance on low-resourced settings by using
out-of-domain data from other languages. Chen et al. [55] performed adversarial training
for cross-lingual sentiment analysis. They experimented their approach on unsupervised
domain adaptation from English to Arabic and Chinese. Similarly, Yi et al. [395] explored

sequential transfer learning using a language-adversarial pretraining for cross-lingual
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speech recognition. Transfer Learning was also used to transfer between Arabic dialects.
We can cite the work of Zalmout & Habash [401], who explored multitask learning and
adversarial training for supervised domain adaptation from the resource-rich Modern

Standard Arabic to the Egyptian Arabic.

* Cross-task adaptation (Ys # Y7) was explored in [243] to investigate different settings
of sequential transfer learning from sentiment analysis task to question classification
task. Yang et al. [390] proposed to transfer a model pretrained on POS tagging to word
segmentation using sequential transfer learning. Niehues & Cho [249] exploited multi-task
learning to transfer the encoded knowledge from POS and NER tasks to neural machine
translation task, by first training the model on all tasks and then continued training only
on the target task. Kiperwasser & Ballesteros [171] proposed to improve neural machine
translation with the help of POS and DP tasks by starting with multi-tasking of the principal
task with auxiliary lower-level tasks (POS and DP). As the training progresses, the model

trains progressively more on the main task dataset compared to auxiliary tasks datasets.

* Cross-domain adaptation (P(Xs) # P(X7) or P(Ys|Xs) # P(Yr|Xr)): Sequential
transfer learning with supervised pretraining was used by Lee et al. [185] and Giorgi &
Bader [123] for supervised domain adaptation between different biomedical datasets for
NER task. It was also applied for supervised adaptation from news to social media by
Mirz et al. [216] for POS tagging, by Zhao et al. [414] for Sentiment Analysis and by
Lin & Lu [193] for NER task. Adversarial training was used in many research works for
cross-domain adaptation. We can cite: [333] for unsupervised domain adaptation between
different forums (Stack Exchange, Sprint FAQ and Quora) for duplicate question detection
task; [138] for supervised domain adaptation from news domain to social media domain
for POS task; [245] for unsupervised domain adaptation between English literature texts
and English news for event trigger identification task. Multi-task learning on multiple
tasks from the source domain has also been used by Peng & Dredze [260] for unsupervised

domain adaptation.

2.7 Discussion

Summary

In this chapter, we have discussed transfer learning approaches and methods used in NLP. To
recapitulate, first, we discern the aim behind using transfer learning (“Why transfer?”’) into two
lines of research: universal representations and domain adaptation. The former aims to produce
universal words embeddings, sentence embeddings and pretrained models, which are transferable
and beneficial to a wide range of downstream tasks and domains. In comparison, the latter seeks
to learn representations that are beneficial for a particular target domain rather than being useful

in general. Second, we categorise transfer learning approaches according to the type of the
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transferred knowledge (“What to transfer?”) into three categories: (1) transfer of annotations,
(2) transfer of instances, and (3) transfer of models. The first and the second categories are —
by design — only convenient for domain adaptation, whereas the third is applicable whether for
universal representations and domain adaptation. Third, for each category, we have provided
some existing methods to perform the transfer (“How to transfer?”).

Table 2.1 summarises the categorisation presented in this sub-chapter, by showing the
cases where different transfer approaches are used for each research area. First, the two main
columns for “Why transfer?” categorisation: domain adaptation (divided into unsupervised
DA and supervised DA) and universal representations. Second, the three main rows for “What
to transfer?” categorisation: transfer of annotations, instances and models. Note that, by
design, universal representations could only be produced using sequential transfer learning.
Unsupervised domain adaptation could not be performed using sequential transfer learning since
this last assumes a fine-tuning step on the target annotated dataset. Likewise, unsupervised

domain adaptation could not be performed using multi-task learning.

Why Transfer? Domain Adaptation . .
- - Universal Representations

What to Transfer? Unsupervised DA | Supervised DA
Transfer of annotations v v X
Transfer of instances v v X
Transfer of learned representations | Adversarial Training v v X

Multi-task learning X v X

Sequential Transfer Learning X v v

Table 2.1 — Different transfer learning approaches used for different research objectives.

Positioning of our work

Our work falls under supervised domain adaptation research area. Specifically, cross-domain
adaptation from the news domain to social media domain.” For this purpose, we propose
throughout this thesis a set of approaches based on sequential transfer learning and multi-task
learning. Note that, universal representations research area is orthogonal to our work, and thus
could be incorporated with our approaches to boost the performance further. In chapters 5
and 6, we investigate the impact of ELMo contextualised words representations when used,

simultaneously, with our cross-domain adaptation scheme.

7 Note that social media texts may be considered as a language variety of the formal language, since new words and

expressions are not used in the formal language.



3 State-of-the-art: Interpretability Meth-
ods for Neural NLP

3.1 Introduction

Approaches based on end-to-end Deep Neural Networks (DNNs) have been successfully applied
to a variety of Natural Language Processing (NLP) tasks and applications. However, DNNs
receive much criticism for their lack of interpretability. This is due to the opacity of their internal
representations, thence referred to as black-box models. Nevertheless, understanding AI models,
including NLP models, is particularly essential for critical and life-threatening applications such
as medicine, aviation, security, autonomous cars, etc. where the reliability, transparency, privacy,
accountability and confidentiality must be guaranteed before use. This is one of the reasons for
the low use of DNNs based models in areas where interpretability is requisite. In the last few
years, there is a rising awareness of the critical need for AI models interpretability. Consequently,
research in NLP neural models interpretability is flourishing. Besides, the “right to explanation”
article [130] in the General Data Protection Regulation (GDPR) of the European Union has
undoubtedly spurred widespread and sped-up research in the field.

In this thesis we exploit interpretive techniques to better understand the functioning of our
proposed transfer learning methods. Thus, we present in this chapter the most related works in

the field of NLP neural models interpretability.

There is little consensus about the definition or desideratum for explanations or interpreta-
tions and about what are the differences between “interpretability” and “explainability” with
non-overlapping definitions. In most cases, “interpretability” and “explainability” are used
interchangeably. However, distinctions between the two terms are discussed in many research
works. Montavon et al. [238] define an interpretation as “the mapping of an abstract concept
(e.g. apredicted class) into a domain that the human can make sense of”. For instance, extracting
the linguistic knowledge encoded in words embeddings is considered as an understandable
interpretation. In comparison, they define an explanation as “the collection of features from
the interpretable domain that have contributed to produce the decision for a given example”. In
simple words, explanations are interpretable justifications for the model’s predictions. Lipton

[198] considers that interpretability methods fall into two distinct categories: transparency (i.e.

35
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how a component of a model, such as neurons and layers, corresponds to a human-understandable
meaning?) and post-hoc explanations.! Rudin [306] considers that post-hoc explanations are
merely plausible but are not necessarily faithful and thus believes that attempting to explain
black-box models in a post-hoc manner can be misleading.> The author invites the research
community to instead focus on building self-explainable models. Like Montavon et al. [238],
we believe that an interpretation stands for a human-understandable description of the internal
representations and behaviours of the model. In contrast, an explanation is an interpretable
justification for the model decision or behaviour. However, for simplicity, in this paper, we use
the terms interpretability and explainability interchangeably to mean the ensemble of methods
and approaches that aim to understand NLP neural models.

Different categorisations of explainability methods were proposed in the literature. We can
cite two common ones. The first distinguishes self-explainable models vs post-hoc explanations.
Self-explainable models are intrinsically interpretable, that means explanations are backed into
the model itself. A challenge is to achieve a trade-off between the explainability and the predictive
performance of the model. In contrast, post-hoc explanations are extracted from already learned
models, and thus will not impact the predictive performance. Also, post-hoc methods are not
dependent on neural model architecture. The second categorisation distinguishes local vs global
explanations. A local explanation gives a justification for a specific prediction, whilst a global
explanation gives an overview of how the model works.

Our goal in this survey is to propose an intuitive categorisation of recent methods on NLP
neural models interpretability according to the objective behind the method. We distinguish three

families of methods, illustrated in Figure 3.1, each addresses a question:

1. Descriptive methods answer the question “What are neural models learning in their

internal representations?”

2. Explicative methods answer the question “Why are neural models providing a particular

decision?”
3. Mechanistic methods answer the question “How are neural models producing decisions?”

This categorisation is inspired by a basic classification of computational neuroscience meth-
ods. According to Dayan & Abbott [81], “descriptive methods characterise what neurons and
neural circuits do. Mechanistic methods determine how nervous systems operate. Such models
often form a bridge between descriptive models couched at different levels. Finally, interpretive
methods aim to understand why nervous system operate as they do”.

To the best of our knowledge, there are two research papers in the literature that survey

the explainability and interpretability of neural models in NLP. Belinkov & Glass [29] provide

! Post-hoc explanations will be defined later.
2 The plausibility measures whether the interpretation is convincing to humans. Faithful explanations are explana-

tions that reflect the model’s output [301].
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Analysis and Interpretability Methods for Neural NLP

What are neural models learning? Why_are neurz’l mod_e_ls How are neural models
producing specific decisions?| producing decisions?
A 4 A4
Descriptive Methods Explicative Methods Mechanistic Methods

Figure 3.1 — Classification of analysis and interpretability methods for neural NLP models.

an extensive review of some analysis and visualisation methods for NLP models and discuss
the challenges that should be addressed in the field. More recently, Danilevsky et al. [79]
present state-of-the-art works according to two of the aforementioned classifications: ad-hoc
explanations vs post-hoc explanations and local explanations vs global explanations. In addition,
they present some of the techniques that are actually used to generate and visualise explanations
in the NLP field. However, the study of Danilevsky et al. [79] includes only explainability
methods that aim to justify the model’s predictions, which correspond to explicative methods in
our proposed categorisation.

In the following sections, we present some techniques from each category from our proposed
categorisation. This survey is not exhaustive, we only focus on some promising techniques and
point to some representative papers for each technique. Considering that in this thesis we exploit
descriptive methods to analyse our proposed transfer learning approaches, the section related to

descriptive methods is the most expanded.

3.2 Descriptive Methods: What?

Descriptive methods aim to investigate the knowledge encoded in the internal representations of
neural models. We present 5 widely used approaches: representation-level visualisation (§3.2.1),
individual units stimulus (§3.2.2), probing classifiers (§3.2.3), similarity analysis (§3.2.4), and
features erasure (§3.2.5). It is noteworthy that although descriptive methods allow an analysis of
the information captured by the model, they do not give insights into whether this information is

actually used by the model to produce the final decision.

3.2.1 Representation-level Visualisation

Representation-level visualisation methods aim to project high-dimensional vectors, such as
word or sentence embeddings or model’s internal representations, into two-dimensional or three-
dimensional spaces to facilitate their visualisation in a scatterplot, while preserving as much as
possible of the significant structure of the high-dimensional data. Thus, similar data points are
likely to appear close together in the scatterplot. t-Distributed Stochastic Neighbor Embedding

(t-SNE) [211] is the most popular tool to visualise embeddings. In the same vein, Escolano et al.



38 3.2. DESCRIPTIVE METHODS: WHAT?

[105] proposed a tool that visualises the internal representations both at the sentence and token
levels. Kahng ef al. [167] proposed ActiVis, an interactive visualisation and exploration tool
of large-scale deep learning models. Similarly, Strobelt et al. [344] proposed LSTM Vis, a tool
that visualises the dynamics of the hidden states of RNNs in the course of treating the sentence

sequentially.

3.2.2 Individual Units Stimulus

Inspired by works on receptive fields of biological neurons [156], which investigate what stimulus-
features do single neurons represent, several works have been devoted to interpret and visualise
artificial neural networks individual hidden units stimulus-features. Initially, in computer vision
[66, 124, 418] and more recently in NLP, wherein units® activations are visualised in heatmaps.
Karpathy et al. [169] visualised character-level LSTM cells learned in language modelling. They
found, for instance, multiple interpretable units that track long-distance dependencies, such as
line lengths and quotes. Bau ef al. [27] visualised neurons specialised on tense, gender, number,
etc. in NMT models. Radford et al. [281] visualised the activations of a neuron that seems to
perform sentiment analysis in an RNNs-based LM. Figure 3.2 shows character-by-character
activations of the sentiment neuron. Clearly, words like “best” and “good” trigger big jumps in

the neuron’s activation.

This is one of Crichton's best

. Seriously, the screenplay AND the directing were
horrendous and clearly done by people who could not fathom what was good about the
I can't fault the actors because frankly, they never had a chance to make

. The movie is just dreadful

Figure 3.2 — Character-by-character activations of the sentiment neuron discovered in RNNs-
based language model [281]. Bright red displays high negative activation values and the bright

green displays high positive activation values.

Kadar et al. [166] proposed top-k-contexts approach to identify sentences, and thus linguistic
patterns, sparking the highest activation values of each unit in RNNs. Kahng et al. [167] proposed
ActiVis, an interactive visualisation and exploration tool of large-scale deep learning models
including neuron-level activations. The main limitation of this method is that it measures the
degree of alignment between individual neurons activations and a linguistic knowledge. However,
as we know, neurons work in synergy, so individual units stimulus will not identify a group of

neurons that might be jointly specialised on one linguistic phenomenon [343].

3 We use neuron and unit interchangeably.
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3.2.3 Probing Classifiers

Probing classifiers* is the most commonly used approach to investigate what are the linguistic
properties learned in the latent representations of neural models [335]. Concretely, given a neural
model M trained on a particular NLP task, whether it is unsupervised (e.g. LM) or supervised
(e.g. NMT), a shallow classifier is trained on top of the frozen M on a corpus annotated with
the linguistic properties of interest. The aim is to examine whether M’s hidden representations
encode the property of interest.

Shi et al. [335] found that NMT encoder’s layers learn different levels of syntactic information.
Adi et al. [2] investigated what information (between sentence length, words order and word-
content) is captured by different sentence embedding learning methods. Linzen ef al. [197]
investigated whether LSTM, when trained on different training objectives, can capture long-term
dependencies like number agreement in English subject-verb dependencies. Conneau et al.
[70] proposed ten probing tasks annotated with fine-grained linguistic properties and compared
different approaches for sentence embeddings. Zhu et al. [422] inspected which semantic
properties (e.g. negation, synonymy, etc.) are encoded by different sentence embeddings
approaches. For more examples about syntactic linguistics encoded by neural NLP models, the
recent report of Linzen & Baroni [196] surveys the majority of works in this filed.

While this approach exhibits useful insights, it suffers yet from two main flaws. Firstly,
probing tasks examine properties captured by the model at a coarse-grained level, i.e. layers
representations and, thereby, will not identify features captured by individual neurons. Secondly,
probing tasks will not identify linguistic concepts that do not appear in the annotated probing
datasets [417]. In addition, recently Ravichander et al. [292] investigated whether probing
classifiers accuracy is correlated with task performance and found that in some cases, the
linguistic properties encoded by models are not required at all to solve the task. To handle
this issue, Elazar et al. [104] proposed a method called amnesic probing, which performs
probing when some linguistic knowledge is removed from the encoded representation, and then
investigate the influence of the removal of this specific knowledge on the ability of the model to

solve the task.

3.2.4 Neural Representations Correlation Analysis

Cross-network and cross-layers correlation is an effective approach to gain insights on how
the internal neural representations may vary across networks, network-depth and training time.
Suitable approaches are based on Correlation Canonical Analysis (CCA) [153, 362], such
as Singular Vector Canonical Correlation Analysis (SVCCA) [284] and Projected Weighted
Canonical Correlation Analysis (PWCCA) [239]. These methods permit to study the similarity

between high-dimensional neural representations learnt across different models and layers.

4 Also known as auxiliary prediction and diagnostic classifiers
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Formally, let us consider a set of n examples X = {z,...,x,}. We aim to compute the
similarity between the representations encoded over the set of examples X by two layers (whether
from the same model or different models): /; with a dimension that equals to d; and /5 with a
dimension that equals to dy. Let L; € R™ * 9 and L, € R™ * % be the activations matrices
of the layers /; and [5, respectively, over the set X. SVCCA is calculated in two steps. First,
singular value decomposition is calculated between L; and L, in order to remove dimensions
that are likely unimportant, to get subspaces: L, € R * 4 and L, € R~ . Second, CCA
is used to linearly transform L} to L, = W; L/ and L, to I:/z = W, L, to be as aligned as

possible by maximising the correlations p = {p1, (., d, )} between the new sub-spaces.

cees Poim
In SVCCA, the correlation between L; and L is simply the mean of p, whereas in PWCCA, it
is a weighted mean of p. Morcos et al. [239] have shown that the weighted mean leads to a more
robust similarity. Intuitively, the correlation is between [0, 1] and a high correlation means a high
similarity between the information encoded by the two layers.

This method has been successfully applied to analyse NLP neural models. For instance,
it was used by Bau et al. [27] to calculate cross-networks correlation for ranking important
neurons in NMT and LM. Saphra & Lopez [316] applied it to probe the evolution of syntactic,
semantic, and topic representations cross-time and cross-layers. Raghu et al. [285] compared
the internal representations of models trained from scratch vs models initialised with pretrained
weights in CNNs-based models. Kudugunta et al. [178] used SVCCA to analyse the multilingual
representations obtained by multilingual neural machine translation models.

CCA based methods aim to calculate the similarity between neural representations at the
coarse-grained level. In contrast, correlation analysis at the fine-grained level, i.e. between
individual neurons, has also been explored in the literature. Initially, Li et al. [192] used Pearson’s
correlation to examine to what extent each individual unit is correlated to another unit, either
within the same network or between different networks. The same correlation metric was used
by Bau et al. [27] to identify important neurons in NMT and LM tasks. Recently, Wu et al. [384]
performed a similarity analysis to compare the representations learned by different pretrained
models. To do this, they measure the inter- and intra-similarity of their internal representations
and attention layers, at the representation-level and the neuron-level. They found that different
architectures often encode similar representation-level information, but differ at individual-level

one.

3.2.5 Features Erasure (Ablations)

Feature erasure methods’ consist in observing the effect of masking or erasing a part of the model,
e.g. word embedding, individual neurons, etc. We can cite the work of Arras et al. [17] who
studied how relevant are individual tokens to the overall performance and thus choose words as a

unit of feature removal, by masking their associated word2vec vector. Li ef al. [190] and Dalvi

3> Also called ablations or pruning methods.
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et al. [76] performed an analysis of the effect of erasing individual neurons and then investigated
the ensued drop in performance of different NLP tasks. Figure 3.3 reports an experiment realised
by Li et al. [190], showing the drop in POS tagging accuracy when ablating individual neurons
from different layers of the model. We can observe that the useful information in higher layers is

more distributed compared to lower layers.

POS: GloVe
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Figure 3.3 — Heatmap of individual neurons importance (drop in accuracy after the neuron
ablation) of each layer for the POS task [190].

3.3 Explicative Methods: Why?

The goal of explicative methods is to justify a certain action or behaviour of the model, partic-
ularly the output of the model (prediction), which is often considered as the “desideratum” of
interpretability work [198]. We present 6 commonly used approaches: selective rationalisation
(§3.3.1), attention explanations (§3.3.2), gradients-based Methods (§3.3.3), surrogate models
(§3.3.4), counterfactual examples (§3.3.5) and influence functions (§3.3.6).

3.3.1 Selective Rationalisation

Interpretable justifications (reasons) behind the outputs (predictions) are often called rationales
in the literature [186]. A rationale is a piece of text from the input, which must be concise
and sufficient for the prediction [139]. Some examples of rationales from different tasks are
illustrated in Figure 3.4 (from the ERASER dataset [88]). For instance, for sentiment analysis of
movie reviews, the text pieces “The acting is great!” and “but the action more than makes up for
it” are selected as rationales for the model’s prediction (positive).

Selective rationalisation consists in training intrinsically interpretable models (ad-hoc) that

learn to select the rationales jointly with each prediction. One research direction is to use
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Movie Reviews

In this movie, ... Plots to take over the world.
The soundtrack is run-of-the-mill,

(a) Positive (b) Negative
e-SNLI

H A man in an orange vest
P A man is

(a) Entailment (b) Contradiction (c) Neutral

Commonsense Explanations (CoS-E)
Where do you find the ?

(a) Compost pile (b) Flowers (c) Forest (d) Field (e) Ground

Evidence Inference

Article Patients for this trial were recruited ...

Prompt With respect to breathlessness, what is the reported
difference between patients receiving placebo and those
receiving furosemide?

(a) Sig. decreased (b) No sig. difference (c) Sig. increased

Figure 3.4 — Examples of rationales annotations from the ERASER dataset [88].

human-annotated rationales as supervised attention to improve the prediction; when annotating
examples with the target task annotations, the annotator is asked to highlight the piece of texts
(evidence) that support his annotations. For instance, Zaidan et al. [400] used human-annotated
rationales as additional supervision to learn a Support Vector Machine (SVM) sentiment analysis
classifier on movie reviews. The model is trained on rationales, thus it is encouraged to put more
attention on the most relevant features in the input text and to ignore the noise. Similarly, Zhang
et al. [411] proposed to train supervisedly a CNNs-based text classifier to generate rationales

jointly with the principal predictor.

In contrast to the above research direction which makes use of human-annotated rationales,
Lei et al. [187] proposed a framework to justify the predictions of a sentimen