
HAL Id: tel-03206505
https://theses.hal.science/tel-03206505

Submitted on 23 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

test and side-channel analysis of asynchronous circuits
Ricardo Aquino Guazzelli

To cite this version:
Ricardo Aquino Guazzelli. test and side-channel analysis of asynchronous circuits. Micro and
nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2020. English. �NNT :
2020GRALT070�. �tel-03206505�

https://theses.hal.science/tel-03206505
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Nano Electronique et Nano Technologies (NENT)

Arrêtée ministériel : 25 mai 2016

Présentée par

Ricardo AQUINO GUAZZELLI

Thèse dirigée par Laurent FESQUET

préparée au sein du Laboratoire Techniques de l’Informatique et de la
Microélectronique pour l’Architecture des systèmes intégrés (TIMA)
dans l’École Doctorale Electronique, Electrotecnique, Automatique &
Traitement du Signal (EEATS)

Test and Side-channel Analysis of
Asynchronous Circuits

Thèse soutenue publiquement le 3 décembre 2020,
devant le jury composé de :

Laurent FESQUET
Maître de Conférences, Université Grenoble Alpes, Directeur de thèse

Bruno ROUZEYRE
Professeur des Universités, Université de Montpellier, Examinateur

Haralampos STRATIGOPOULOS
Directeur de Recherche, Sorbonne Université, Rapporteur

Alberto BOSIO
Professeur des Universités, École Centrale Lyon, Rapporteur

Giorgio DI NATALE
Directeur de Recherche, Université Grenoble Alpes, Président

"Se eu soubesse antes o que sei agora, erraria tudo exatamente igual."
Humberto Gessinger

Acknowledgements

Acknowledgements

I would like to thank to Giorgio Di Natale, Alberto Bosio, Haralampos Stratigopoulos
and Bruno Rouzeyre for accepting the invitation to compose my thesis jury. I appreciate
the remarks from Alberto and Haralampos, who participated as rapporteurs (referees) in
my thesis and all comments and questions invoked during my defense.

Here, I take a brief moment to acknowledge the commitment that my advisor Laurent
Fesquet put on in order to see this thesis finished. I am quite aware that I allocated
a reasonable amount of your time in some moments during this journey and this fact
highlights the effort you have gave to help me. Without no doubt, your technical expertise
gave me a proper direction, allowing me to pursuit a research with meaning, and your
support put on track everything I was doing in the last three years. I really cannot express
enough thanks for all the technical and administrative help you gave to me during the last
years, and I hope can retributive that someday.

Moreover, two other people were extremely important in my professional training and
thus must be acknowledged here: Ney Calazans, who introduced to the the research on
asynchronous design when I was in engineering school and since then I am trapped; and
Matheus Moreira, who was always available to answer my questions and discuss the most
wide range of subject. I own you for the microelectronic background I currently have and
it was because of that I am here where I am now. Thank you immensely.

Obviously, I have to thank my colleges at TIMA, who had to put up with me: Matheus,
my bro, for all scientific discussions, ski days, beers, laughs and LAN parties; Thiago, for
helping me during the first moments here in France and being such an iconic friend;
Leonel, who also was here to help in the beginning, giving me a random nickname; Re-
nato, who I did not in fact interact a lot in the first year of the thesis, but destiny brought us
together as friends after catastrophic sequence of events; Yoan, who had to work with me
to finish a testchip during the first COVID lockdown and spent countless hours with me
discussing about asynchronous design, politics, goat cheese; Gregoire, who was vital for
the testchip and had the patience to explain to me how LCS works; Pudu (a.k.a. Rodrigo
Iga), for your friendship, mindful discussions and all invitations to go to the mountains
and go skiing; Mohammed, one of the most interesting PhD students of the CDSI team
(and possible of TIMA), for giving to us another perspective of life and providing such
unique (and funny) moments during pause-café and happy hours; Medhi, for the advice to
calm me down before the defense; Jérémy and its supply of comté; and Assia, Jean, Nils
and Liège for all the moments in the lab and good discussions during the pauses-café.

I also say thank to my Grenoble friends: Raupp and Vivian, for hosting me at my first
day in Grenoble; Katyanne, for being such an incredible friend to me while tolerating my
complaints about life; Natália, for the good talks and invitations to eat proper food from
Minas, specially pão de queijo; Laura, for all the moments together, being able to talk and
laugh even with the curveballs that life keep throwing at us; and Luis (a.k.a. Cocotas), for

i

Acknowledgements

all your stories and sense of humor.
I cannot pass this through without saying thank to my friends who accompanied me

even thousands of kilometers away: Guilherme (a.k.a Gnomo), for your time, friendship
and ability to piss me off; Marcelo (a.k.a Gordo), who started engineering school with me
at 2009 and I still can’t get rid of him; and the international couples: Ana and Gibiluka,
Douglas and Carol, and Bruno and Karine.

Another important person I have to mention here is my lovely Caroline, who helped
me go through the final lap of my thesis and has been an incredible partner since the
beginning. I thank you for your care and and for being my “guinea pig” when I cook.

The best for the last, I would like to express my gratitude to my family: Mom and dad,
for all your love and care with me all these years; All my character and moral concepts
are inherited from you and I appreciate everything you taught along the years; Gui, for
annoying me all the time but also being an unique brother. Your presence in my life
surely shaped me in who I am now; and finally, my incredible grandma Teresinha Xavier
Aquino, who I had the honor to live with when I moved to Porto Alegre. You are the
reason of me chasing a better education and reach objectives I would never think about
before. I could say it is not a coincidence that I am living in France now, isn’t it?

ii

Contents

Acknowledgements . i

Contents . iv

Introduction 1

I Asynchronous Circuits 8

1 Asynchronous Design 9
1.1 Asynchronous Channels and Handshake Protocols 10
1.2 Handshake Implementation Concepts 12

1.2.1 The C-element . 12
1.2.2 Non-linear Structures . 14

1.3 Bundled-Data Channels . 15
1.3.1 Bundled-Data Implementations 17

1.4 Quasi-Delay Insensitive Channels . 18
1.4.1 The QDI Limitation . 20
1.4.2 QDI Implementations . 21

1.5 Conclusions . 24

II At-speed Test for Asynchronous Bundled-data Circuits 26

2 State-of-the-Art on Digital and Asynchronous Testing 27
2.1 Stuck-at Faults . 28
2.2 Path-Delay Faults . 29
2.3 At-speed Testing . 30
2.4 Digital Design-for-Testability and Scan-based Design 32
2.5 Asynchronous Testing . 35
2.6 Conclusions . 38

3 Proposed At-speed DfT Architecture for Bundled-data Design 40
3.1 Problem Statement . 41

iv

Contents

3.2 Overview Architecture and Testing Signals 42
3.3 Test Cycle . 44
3.4 Initialization . 44
3.5 Checking Circuit Correctness . 46
3.6 Retrieving Path-Delay Information with Local Clock Sets 46
3.7 Testing Non-linear Structures . 48
3.8 Compatibility with Traditional Stuck-at Testing 49
3.9 Study-case Circuits . 50

3.9.1 A simple circuit: 2-bit adder . 50
3.9.2 A more complex circuit: 128-bit AES cryptocore 58

3.10 Conclusions . 62

III Side-channel Analysis of Asynchronous Circuits 64

4 State-of-the-Art on Hardware Trojan Detection 65
4.1 Hardware Trojan Model and Taxonomy 66

4.1.1 Insertion . 67
4.1.2 Abstraction Level . 68
4.1.3 Activation Mechanism . 68
4.1.4 Effect . 69
4.1.5 Location . 69

4.2 Hardware Trojan Detection . 71
4.2.1 Power Consumption Monitoring 74
4.2.2 Delay Monitoring . 74
4.2.3 EM, Thermal and Substrate Monitoring 75
4.2.4 Multi-parameter Monitoring . 76

4.3 Conclusions . 76

5 Hardware Trojan Detection Technique for Asynchronous Circuits 79
5.1 Exploiting the Current Signatures of Asynchronous Circuits 83
5.2 Technique Steps . 84

5.2.1 Stimulus Procedure . 84
5.2.2 Golden Device Under Trojan Test (DUTT) Samples 85
5.2.3 Golden DUTT Current Signature Extraction and Partition 85
5.2.4 OC-SVM Training . 86
5.2.5 Selected DUTT Samples . 86
5.2.6 Selected DUTT Current Signature Extraction and Partition 87
5.2.7 One-Class Support Vector Machine (OC-SVM) Classification . . 87

5.3 Simulation Experiments . 87
5.3.1 Experimental Setup . 88

v

Contents

5.3.2 OC-SVM Results and Discussion 89
5.4 Conclusions . 92

6 Conclusions 94
6.1 Contributions on Testability of Asynchronous Circuits 95
6.2 Contributions on Side-channel Analysis for

Asynchronous Circuits . 97
6.3 Perspectives: uniting strengths . 98

Bibliography 100

List of Figures 114

List of Tables 118

List of Publications and Presentations 120

7 List of Publications and Presentations 120
7.1 Publications . 120
7.2 Presentations . 120

Glossary 122

8 Acronym List 122

A Asynchronous Components 128
A.1 C-Element Alternative Topologies . 129

B TIMA Asynchronous Testchip 131
B.1 Overview architecture . 132
B.2 Testchip PINOUT (AES part only) . 134
B.3 Architecture Configuration Shift-Register 136

vi

Introduction

Introduction

FOr several decades, the semiconductor market has managed to reduce the mini-
mum feature size of transistors and wires, which leads to increasing density and cost-
effectiveness to Integrated Circuits (IC), among several other benefits. These technology
nodes are still pushing the physical limits of IC design, enabling the fabrication of devices
with billions of transistors. Apart from the benefit of reducing the minimum geometry,
higher performance and lower power can be obtained due to the lower resistance and
capacitance of smaller transistors and wires [1]. However, these advances bring huge
challenges to circuit and Computer Aided Design (CAD) tool designers. As the transistor
minimum feature size approaches fundamental atomic limits, electronic devices gradually
behave less and less as ideal switches, and wires behave less and less as ideal electrical
connections with negligible delay and impedance. In addition, increased manufacturing
parameter variations bring uncertainties to the processes of estimating and/or predicting
the timing and power characteristics of circuits.

(a) (b) (c)

Figure 1: Top view of (a) 2nd generation Epyc, (b) GA100 and (c) Stratix chips.

As this thesis is written, semiconductor foundries already provide Complementary
Metal Oxide Semiconductor (CMOS) technologies with nodes reaching below 10 nm.
Among them, it is possible to cite TSMC’s 7-nm [2] and Samsung’s 8-nm [3] technolo-
gies, which are in mass-production phase. In fact, the commercial use of these technolo-
gies is a reality as the market starts to introduce new start-of-the-art products in wide
range of applications. In 2019, AMD introduced the 2nd generation of the Epyc proces-
sor, containing around 40 billion transistors. With the AMD’s Zen micro-architecture,
the processor employs nine different dies, where eight dies are x86-based cores and the
remaining one is a dedicated for I/O communication – see Figure 1 (a). Taking a look
on Graphic Processor Units (GPU), Nvidia recently introduced the Ampere architecture.

1

Introduction

Labeled as A100, the new GPUs target not only graphical applications but also High-
Performance Computing (HPC) and Artificial Intelligence (AI) applications. Nvidia re-
ports that the A100 has been designed with TSMC’s 7-nm technology, and its larger
design has around eight thousand Compute Unified Device Architecture (CUDA) cores
and 6 stacks of High-Bandwith Memory 2 (HBM2) memory, reaching astonishing 40 GB
memory space. Figure 1 (b) shows the HBM2 stacks next to the main GPU core, three
on each side. All this logic complexity is implemented with around 54 billion transistors.
As a final example, in Figure 1 (c), Intel has presented the Stratix 10 GX 10M in 2019,
a double-die Field-Programmable Gate Array (FPGA) employing 43 billion transistors
targeting Application-Specific Integrated Circuit (ASIC) prototyping and emulation. Its
design has around 10.2 million programmable logic blocks and it is the largest FPGA
design yet reported. This small set of start-of-the-art ICs in the market shows clearly how
far the density and complexity of current IC designs have reached.

In parallel, as our society continues its path through the information era, new politi-
cal, economic and ecological trends impact the technology decisions in the semiconduc-
tor markets. The AI trend has pushed forward the research and development of machine
learning solutions on software and hardware level. In fact, public institutions such as the
french government are considering the AI “savoir-faire” as a national research strategy.
Consequently, semiconductor suppliers are now interested to develop dedicated Intellec-
tual Propertys (IP) and ICs, providing optimized solutions for autonomous vehicles, auto-
mated medical diagnosis, voice input for human-computer interaction, intelligent agents,
automated data synthesis, enhanced decision-making and many other applications. An-
other interesting trend that remains on discussion is the Internet of Things (IoT). Different
from high-performance applications, IoT applications such as distributed sensor networks
and wearable devices define Ultra-Low-Power (ULP) consumption and energy efficiency
as main design constraints. On top of that, other traditional applications that considered
performance as the main design target now have been reviewed to focus on energy effi-
ciency. For instance, data centers consume an estimated 200 TWh each year [4] and com-
panies already reported efforts to make their data centers more power efficient with cus-
tomized high-performance servers, trying to reduce the power overhead with the higher
demand of information processing and storage. These efficiency-driven applications are
pushing designers to rethink their design concepts and search for alternatives.

Nowadays, the predominant digital circuit design style adopted by the industry is syn-
chronous. This style takes as fundamental assumption that all components share a com-
mon and discrete notion of time, which is guaranteed by the use of a global clock signal
distributed throughout the circuit. Figure 2 illustrates a generic synchronous pipeline ar-
chitecture, controlled by a global clock signal. The clock signal controls every sequential
element Reg in the design, typically Flip-Flops (FF) and/or latches. The value stored
in these elements can only change when the clock switches its logic level in a given di-
rection, or when it remains in a given active state. This is what enables the design of

2

Introduction

Reg Reg RegCL CL

clock

datain data

Figure 2: Generic synchronous pipeline architecture. Data flows through pipeline stages
according to the clock signal pulses.

sequential blocks to deal with time as a discrete variable, allowing data to flow from one
register to the next as the clock signal activates. This characteristic enables designers to
ignore wire and logic gate delays, as long as the worst case delay between two registers
is never longer than the period of the clock signal controlling them [5]. However, despite
the fact that synchronous design has abundant CAD support and is familiar to most de-
signers, it also brings challenges with regard to clock signal distribution, skew and power
consumption. On top got that. the current level of precision required on manufacturing op-
erating conditions finally results in substantial variations on the electrical characteristics
of fabricated devices, which in turn can lead to significant delay and power consumption
variations. To cope with these problems, synchronous designs require margins in the pe-
riod of the clock signal, which leads to increasing costs in performance, power, area and
design time. These margins can indeed become the Achille’s heel of synchronous design.
For example, 13 years ago Brej [6] stated that industrial circuits could require up to 130%
of overhead in the clock period due to the summation of all needed margins, and the situ-
ation has only become worse since then. For the sake of illustration, Figure 3 illustrates
the delay components contributing to the overall delay in modern digital designs.

Flip-flop align.

Clock margin

PVT marginLogic Delay

Clock period

Figure 3: Illustration of the delay components for clock period definition in modern tech-
nologies. Designers must not only consider the traditional worst-case logic delay, but
also margins regarding FF alignment, the clock tree and Process, Voltage and Tempera-
ture (PVT).

Asynchronous circuits are an alternative to overcome issues faced by contemporary

3

Introduction

synchronous designers. Unlike the synchronous paradigm main assumption, the design of
these circuits do not rely on a discrete notion of time. In this way, the global clock signal
is exchanged for local handshaking channels that are added between adjacent memory
elements, which establish the synchronization, communication and sequencing of oper-
ations [7]. This fundamental assumption of local synchronization avoids clock-related
problems and overheads, at the cost of extra hardware for local synchronization. The lit-
erature has presented in the last decades the adoption of asynchronous design on a wide
variety of applications, going from high-speed to low-power implementations. Table 1
summarizes the semiconductor companies that considered or are still exploring asyn-
chronous circuits as their main market weapon. Founded in 2000, Fulcrum entered in
the market providing asynchronous-based Ethernet switch chips, focused on high-speed
Ethernet networks. Their design brought such attention that Intel purchased Fulcrum in
2011, trying to grow their presence in the network market. Philips Semiconductors was
another company that invested on asynchronous design as well. Their research started in
1986 with the development of asynchronous Electronic Design Automation (EDA) tools
(Tangram) [8] and, in 2004, Handshake Solutions was founded in order to offer services
inside and outside Philips. Hanshake Solutions had reported low-power and low Electro-
magnetic (EM) emission benefits from their technology, targeting smartcard, automative
and wireless applications. Still taking in consideration low-power implementations, ETA
compute reported an asynchronous dual core ARM Cortex-M3, targeting near-threshold
operation with Dynamic Voltage Scaling (DVS) scenarios. At the same as the beginning
of Handshake Solutions, Achronix introduced the first asynchronous FPGAs [9] in the
market, with the argument that they could provide designs operating on higher frequen-
cies and lower power consumption than other FPGA vendors. Achronix still remains but
its asynchronous design was being lost through the years as engineering teams were still
not prepared to face the “asynchronous” challenge. In France, the asynchronous portfolio
expanded with Tiempo [10], which provides robust and secured IPs for mostly security
applications. With the recent AI trend, both Intel and IBM implemented neuromorphic
chips with asynchronous features. For Intel’s case, the Loihi chip [11] considers a fully
asynchronous design for spiking neural networks. Regarding IBM’s chip [12], the chip
implements a fully event driven digital mixed synchronous-asynchronous neuromorphic
architecture. Around 2015, a startup called REM [13] also took the asynchronous ap-
proach to design neural network architectures, focusing on visual intelligence applica-
tions. Finally, ChronosTech has recently proposed the use of asynchronous circuits to
enhance System-on-Chip (SoC) integration [14]. Their solutions mainly target high-speed
and robust Network-on-Chip (NoC) interconnections.

Asynchronous circuits are a promising solution for coping with aggressive Process
Variationss (PV) faced in the most advanced silicon technology nodes, as they are able to
gracefully accommodate wide ranges in gate and wire delays. A similar phenomenon also
takes place in more classical technologies when the performance is not an issue and the

4

Introduction

Table 1: Semiconductor enterprises that adopted asynchronous design in their products.

Application Year Enterprise

2016 IBM [12]
Neuromorphic Design

2017 Intel [11]

SoC Interconnections 2015 ChronosTech [14]

2004 Handshake Solutions [8]

2014 REM [13]Low power

2015 ETA Compute [15]

Security 2007 Tiempo [10]

FPGA 2004 Achronix [9]

High-speed Ethernet 2000 Fulcrum [16]

requirements are mainly driven by power consumption considerations. Indeed, in order
to drastically reduce power consumption, power management strategies tend to minimize
or aggressively shrink the power supply voltage. In such conditions, the PVs are exacer-
bate because the operating voltage is near-threshold or, worst, sub-threshold. Operating
at very low-voltage makes sense, especially with IoT, where the devices may have strong
low-power requirements. Most of the ULP circuits operate at very low supply voltages
and sometimes in electrical harsh environments, implying less predictable propagation
delays and noisy working environments [17]. Delay variations can compromise the cir-
cuit functionality, especially if the timing assumptions are strong, which is the case for the
synchronous circuits. Indeed, their timing assumption is based on the worst circuit criti-
cal path, pushing the designers to over-design and take excessive timing margins. Hence,
asynchronous circuits can help designers to avoid such excessive margins by providing an
easier timing closure and improving robustness against unexpectedly large delays [18].
The most efficient circuit class to tackle this problem is certainly the Quasi-Delay Insen-
sitive (QDI) circuit class because it only requires a very weak assumption on some circuit
forks (known as isochronic forks) [7]. Nevertheless, this class suffers from a large circuit
area and requires specific skills and dedicated tools, making its adoption more difficult
by the industry. In order to overcome these issues, designing Bundled-Data (BD) circuits
seems more acceptable because they have a similar area compared to the synchronous
circuits, while offering a better robustness to process and voltage variations. As they are
really good candidate for playing an important role in low power and ULP circuits, it
is important to propose effective solutions for testing the imposed timing constraints of
such circuits after fabrication or even in their working environment. Moreover, testing

5

Introduction

circuits is a mandatory requirements in digital circuits and at-speed becomes especially
crucial when the supply voltage is low or changed during operations. As bundle-data cir-
cuits are technically close to their synchronous counterparts, they are more comprehensive
for the designers and can benefit from the commercial EDA tools usually employed with
synchronous design [19]. Based on the existing synchronous Design-for-Testability (DfT)
approaches, it is possible to develop a similar framework for asynchronous circuits, which
could also take advantage of the commercial tools. Thus, testing asynchronous bundle-
data circuits requires a limited effort to make them compliant with EDA tools. It is of
course needed to adapt the DfT strategy to their specificity.

In this context, this thesis targets dedicated techniques for testing and analyzing asyn-
chronous circuits. For the sake of organization, the following chapters are divided in
three main parts. Part I provides the foundation of this thesis: asynchronous design. In
a single chapter, the basic concepts of asynchronous circuits are covered, including de-
sign considerations about BD and QDI implementations. Part II, called “At-speed Testing
for Bundled-data Circuits”, focuses on the problematic of delay testing on asynchronous
BD circuits. It provides basic concepts of digital testing, DfT and an overview of the
solutions that the literature have previously presented regarding the matter – see chap-
ter 2. Moreover, in chapter 3, it presents the first contribution of this thesis: the proposed
DfT architecture for BD design. The proposed architecture targets to enable path-delay
testing on micropipeline-based circuits, whereas taking consideration the compatibility of
synthesis and Automatic Testing Pattern Generation (ATPG) tools. Part III explores side-
channel analysis on asynchronous circuits for Hardware Trojan (HT) detection. Initially,
chapter 4 presents the state of the art regarding the HT threat and the available detection
techniques. Next, chapter 4 contains the proposed HT detection technique, which is the
second contribution of this thesis. The proposed technique leverages the intrinsic current
characteristics of asynchronous circuits, allowing to detect the presence of HTs through
current anomalies.

6

Part I

Asynchronous Circuits

8

1
Asynchronous Design

Contents
1.1 Asynchronous Channels and Handshake Protocols 10

1.2 Handshake Implementation Concepts 12

1.2.1 The C-element . 12

1.2.2 Non-linear Structures . 14

1.3 Bundled-Data Channels . 15

1.3.1 Bundled-Data Implementations 17

1.4 Quasi-Delay Insensitive Channels 18

1.4.1 The QDI Limitation . 20

1.4.2 QDI Implementations . 21

1.5 Conclusions . 24

9

Chapter 1. Asynchronous Design

This chapter covers the concepts for asynchronous design, which are essentials for
this thesis. Regarding basic concepts, it presents the concept of asynchronous channels
and the types of handshake protocols. This chapter also covers the use of the iconic C-
element gate – essential for most of the state-of-the-art asynchronous implementations
– and its used in handshake structures. Moreover, it is presented the two major asyn-
chronous design styles: BD and QDI, pinpointing their main characteristics and practical
implementations available in the literature.

Due to its simplicity, the synchronous paradigm is heavily applied in the industry for
designing digital circuits. This simplification is achieved thanks to the use of a clock
signal, which provides temporal reference and synchronization among memory elements
present in the circuit. Taking exactly the opposite direction, the asynchronous paradigm
assume the absence of a global or regional clock signal in the circuit. Consequently, the
clock signal is replaced by asynchronous channels that employ handshake protocols be-
tween sequential components to ensure synchronization and communication [7]. This
means the synchronization occurs locally between memory elements (or registers) and
with dedicated circuitry that explicitly signalizes sending and receiving data. This behav-
ior matches to registers only clocked when needed – if we take a “synchronous” perspec-
tive.

1.1 Asynchronous Channels and Handshake Protocols

Asynchronous design usually employs a hierarchical network of blocks, which are in-
terconnected via asynchronous channels [1]. Mainly, an asynchronous channel comprises
on three aspects: (i) it contains a bundled of wires, (ii) employs a protocol to synchronize
computation and data between blocks and (iii) is uni-directional and typically point-to-
point 1. Figure 1.1 illustrates a basic asynchronous structure between two blocks that are
interconnected with an asynchronous channel with two control signals: the request req
signal and the acknowledgement ack signal. Here, the active block sends a ‘request’ to
synchronize with the passive block, which acknowledges when it is ready to communi-
cate.

These interactions between active and passive blocks depends on the selected hand-
shake protocol. Usually, asynchronous channels can employ two main handshake proto-
cols: four-phase or two-phase. Figure 1.2 shows the behavior of the control signals for
these protocols during two communication cycles.

Considering the four-phase protocol, the active block initiates the communication by
rising req. Many authors in the literature refers to this request flag as ‘token’, as it carries

1If there is a bi-directional data communication between circuit blocks, it is necessary to employ two
channels in opposite directions.

10

1.1. Asynchronous Channels and Handshake Protocols

active passive

req

ack

Figure 1.1: Example of a control-only asynchronous channel with two basic control sig-
nals (req and ack).

the information that valid data is present. Next, the passive block detects the request and
set the ack signal. When the active block detects the acknowledgement, the req is lowered
– informing that the active block has finished the communication. The passive block then
acknowledges by lowering the ack signal as well, finishing the communication cycle. At
this point, the active block can propagate a new token.

For the two-phase protocol, a lower number of transitions are required to perform a
complete communication cycle as indicated in Figure 1.2 (b). In this protocol, the active
blocks send a token by switching the logic value of the req signal. When the passive block
detects the request from the active block, it sends an acknowledgement by switching the
logic value of the ack signal. In contrast to the four-phase protocol, the two-phase protocol
has no distinction between rising and falling transitions of the control signals. It considers
the transitions them-self of req and ack as the beginning and, respectively the end of the
communication.

Numerous asynchronous design styles have been proposed in the last decades [7, 13,
20–32], covering different protocols and trade-offs such as performance, power, robust-
ness, etc. Among them, it is possible to classify them into two major families: asyn-
chronous hazard-free logic and asynchronous circuits tolerating hazards. The first family
is mainly represented by QDI circuits and the second by BD circuits. Sections 1.3 and 1.4
cover the main aspects of BD and QDI design, respectively.

req

ack

1

2

3

4

req

ack

1

2

1

2

(a) (b)

#1 #2 #1 #2

Figure 1.2: Control operation of (a) four-phase and (b) two-phase handshake protocols.

11

Chapter 1. Asynchronous Design

1.2 Handshake Implementation Concepts

This section presents the basic concepts of asynchronous design, giving a brief de-
scription of the C-element, its importance and use for handshake structures. Moreover,
this section also provides information about non-linear structures and their respective im-
plementation.

1.2.1 The C-element

One of the most iconic and important logic element presents in any asynchronous circuit
is the Muller gate or C-element. Table 1.1 indicates the truth table of a 2-input C-element.
When the inputs (A and B) have the same value, the C-element asserts its output Zn to the
same value. Otherwise, the C-element retains the previous value Zn−1 in the output. Due
to this characteristic, any output change to high (low) in the C-element implies that all the
inputs are high (low) as well. This plays an important role for event synchronization as it
can avoid hazards and races in asynchronous controllers [7].

Table 1.1: Truth table of a two-input C-element gate.

A B Zn

0 0 0

0 1 Zn−1

1 0 Zn−1

1 1 1

Figure 1.3 illustrates the (a) gate symbol and (b) a transistor-level implementation of a
2-input C-element. This C-element implementation is often called semi-static or Martin’s
weak feedback. The reset pull-up and set pull-down networks are responsible to assert the
output Zn to ‘0’ and ‘1’ respectively. The latch maintains the output value when reset and
set networks are not directly driving the output. Different arrangements of C-elements
have been proposed in the literature, including extra functionality such as reset / set logic
and asymmetrical versions. Appendix A provides the schematics and descriptions of
alternative C-element designs available in the literature.

Studying the concept behind the C-element, it is essential to understand the Muller
gate pipeline as well. The intrinsic simplicity of the Muller gate pipeline allows to bet-
ter understand handshaking functionality and its mechanism is the backbone of almost
all asynchronous circuits [7]. Let’s take the example of the 3-stage Muller pipeline in
Figure 1.4 interconnecting an active and passive block. All of the C-elements have been
initialized to ‘0’ – all “local clock signal” clki reset – we suppose the active block propa-
gates a token by rising the leftmost request signal req0. Figure 1.5 illustrates the behavior

12

1.2. Handshake Implementation Concepts

Zn
A

B

latch

reset

set

(a) (b)

C Zn
B

A

Figure 1.3: The Muller C-element: (a) gate view of a two-input gate and (b) equivalent
implementation in transistor level.

active passiveC C C

req0 req1 req2

req3

clk0 clk1 clk2

ack3

ack2ack1ack0

Figure 1.4: Active and passive block interconnected by a 3-stage Muller pipeline.

of all the signals clki during token propagation. The C-element C0 only asserts its out-
put to high if the successor C-element output C1 is ‘0’ and a token arrives at its input.
When C0’s output (clk0) rises, it also acknowledges back to the active block through ack0

and propagates the token to C1, which repeats the same procedure. The token propagates
through all the C-element stages until it reaches the passive block. Considering the prop-
agation of the first token in Figure 1.5, it is possible to see a wave created during the
token propagation. Thus, the role of a C-element stage in the pipeline is to propagate
signal waves in a carefully controlled way maintaining the integrity of each wave. How-
ever, if the passive block does not respond, the token stalls in the last stage, awaiting for
acknowledgement. This happens in Figure 1.5 when the second token arrives in the last
C-element stage and the passive block takes an extra time to rise ack3. Consequently, the
third token in the pipeline also stalls in the first C-element stage as the second stage is
unable to process it. After the passive block acknowledges the second token, the pipeline
resumes its operation and propagates the third token until the passive block. This high-
lights how the Muller gate pipeline can easily adapt its operation according to the delays
of the external environments. In fact, the Muller pipeline is classified as a DI circuit [7].
On top of that, the pipeline implementations for the two-phase and four-phase protocols
are identical. The only difference in the interpretation of the signals clki.

13

Chapter 1. Asynchronous Design

req0
#1 token

clk0

clk1

clk2

ack3

#2 token #3 token

Figure 1.5: Handshake waveform during the propagation of three tokens by the active
block. The waveform simulates an acknowledgement delay by the passive block between
the first and second token.

1.2.2 Non-linear Structures

Realistic circuits usually employ more complex structures than linear structures, as the
Muller gate pipeline depicted in Figure 1.4, and this also applies to asynchronous cir-
cuits as well. This implies that circuits need special flow schemes (or buffers as called
by [1]) with multiple input and output channels. Asynchronous circuits may employ un-
conditional and conditional flow scheme [1, 7]. A flow scheme is called unconditional if
it awaits for tokens on all the input channels before generating tokens on all the output
channels. A conditional flow scheme generates token on its output channels according to
an additional selection channel. The selection channel indicates which input (or output)
channel must be selected for the token propagation. The minimum set of non-linear flow
schemes necessary to implement most of the circuits is illustrated in Figure 1.6 with four
main types: fork, join, split, merge. Their descriptions are below:

• Forks are unconditional flow schemes with one input channel and multiple output
channels, which propagate any token at its input to all output channels;

• Joins are unconditional flow schemes with multiple input channels and a single
output channel. In this case, the join only propagates a token to its output channel
if it receives tokens in all input channels;

• Splits are conditional flow schemes with one input channel, one selection chan-
nel and multiple output channels. It synchronizes the input and selection channel,
propagating a token to a specific output channel according to the token value in the
selection channel. In fact, a split behaves as a DEMUX 2;

2Sparsø [7] presents in its book the split and merge flow schemes as DEMUX and MUX, respectively.
However, this thesis considers only the definitions presented by Peter Beerel’s book [1].

14

1.3. Bundled-Data Channels

• Merges are conditional flow schemes with multiple input channel, one selection
channel and a single output channel. The merge synchronizes and propagates a
token from a specific input channel to the output channel according to the token
value in the selection channel. As the merge implements the opposite of a split, it
is possible to associate the merge behavior as a MUX.

(d)(c)

(b)(a)

0

1

0

1

(alternative symbols) (alternative symbols)

selection channel

Figure 1.6: Symbols for (a) fork, (b) join, (c) split and (d) merge flow schemes.

1.3 Bundled-Data Channels

BD channels take an implementation approach close to standard synchronous design,
employing single-rail data encoding but replacing the global clock signal by local hand-
shake schemes. Figure 1.7 illustrates a generic asynchronous BD push channel, in which
data flows through the data path according to the handshaking protocol between active/-
passive blocks. BD channels can adopt four-phase or two-phrase handshake protocols, as
depicted in Figure 1.8.

Considering four-phase handshaking, three different types of protocols can be adopted:
broad, early and late. The broad four-phase handshaking requires that valid data must be
stable in the channel during all four handshake signaling. This implies the circuit guaran-
tees that the receiver can capture data at any time during the communication cycle. The
early protocol only requires valid data between the two first handshake transitions. Tak-
ing the example in Figure 1.8 (a), the capture windows for the receiver is between both
rising edges of req and ack. For the late protocol, however, valid data must be stable

15

Chapter 1. Asynchronous Design

in the channel between the last two handshake transitions. Thus, the capture window is
between the falling edges of req and ack in Figure 1.8 (a). Independently of the type of
the four-phase handshaking, both req and ack signals must be reset to end the communi-
cation cycle. Two-phase handshaking considers both rising and falling transitions of req
to indicate the presence of new valid data, and both transitions of ack signify the data
capture by the receiver. In that way, the receiver capture windows remains between req
and ack transitions, as depicted in Figure 1.8 (b). Here, there is no necessity to reset the
handshake signals as the transition in ack already ends the communication cycle.

CL

dl

req

ack

active

data

passive

Figure 1.7: Generic scheme of a asynchronous bundled-data push channel.

Due to the handshake schemes, timing constraints between handshake and data signals
must be respected in order to guarantee circuit correctness. According to [33], the basic
constraints in bundled-data design are: (i) The passive block must not see a request until
its input data is stable; (ii) The passive block must not acknowledge the active block until
it has no further need for its input data and (iii) The active block must hold its output
data steady between sending the req and receiving the ack. The presence of these timing
constraints in any DB design requires the addition of a delay line dl on the signal req in
order to match the worst-case delay of the combinational block CL.

D0 D1

req

ack

data

1

2

3

4

(a)

D0 D1

req

ack

data

1

2

1

2

(b)

Figure 1.8: Asynchronous bundled-data channel employing (a) four-phase and (b) two-
phase handshake protocols.

16

1.3. Bundled-Data Channels

1.3.1 Bundled-Data Implementations

The definition of BD design gives some guidelines regarding handshake signals and ar-
chitecture organization. However, these guidelines give space for designers to develop
different BD implementations using different handshake protocols and features, allow-
ing to focus on performance, power consumption, area optimization and even robustness.
Table 1.2 gives an overview of all discussed BD implementations in this section, high-
lighting their main characteristics.

Table 1.2: List of available BD implementations in the literature.

Implementation Handshake Protocols Registry Design Strength

Micropipeline [21] Four- and two-phase Flip-flop or latch Performance

GasP [22] Two-phase Latch Performance

Mousetrap [20] Two-phase Latch Performance

Click [23] Two-phase Flip-flop Timing closure and testing

Blade [24] Two-phase Latch Resiliency and efficiency

Sharp [13] Two-phase Latch Resiliency and efficiency

Early Ack [25] Early four-phase Flip-flop Efficiency

Late Capture [26] Late four-phase Flip-flop Area-aware

Maximus [26] Late four-phase Flip-flop
Performance and

area-aware

One of the most iconic BD implementation in the literature is the Micropipeline [21].
Based on the Muller pipeline (further discussed in section 1.2.1), Sutherland presented
the Micropipeline as a simple two-phase BD implementation. This implementation was
marked as a milestone in the asynchronous community and several BD implementations
later proposed use the basic concepts from the Micropipeline. Among these implementa-
tions, it is possible to cite Mousetrap [20] and GasP [22] implementation, both focused
on high-performance design. In 2010, Philips presented the Click implementation, which
employs flip-flops for both data and control paths. That was an interesting approach as
previous implementations was latch-based and flip-flops facilitates the use of EDA tools
for timing closure and testing. The literature also presents resilient BD implementations
such as Blade [24] and Sharp [13], where the latter is a newer version of the first. Those
implementations are able to detect and deal with timing violations during operations,
enabling the circuit to operate faster than the worst-case path delays. Moreover, other
implementations focus on optimizing the operation of 4-phase BD implementation. For

17

Chapter 1. Asynchronous Design

instance, Mannakkara et Yoneda presents in [25] a early 4-phase BD implementation
called Early Ack 3. Other authors present late 4-phase BD implementations such as the
Late Capture and Maximus [26]. With these implementations, the authors takes advan-
tages of the late capture windows of late four-phrase protocols to reduce the use of delay
lines in the control path and, consequently, reduce the area overhead.

1.4 Quasi-Delay Insensitive Channels

An alternative to avoid the timing constraints imposed by asynchronous BD channels
is to include the control within the data, which is the main strategy characterizing De-
lay Insensitive (DI) and QDI designs. DI design is not useful in practice to create large
systems [34], but QDI design is! Moreover, it keeps most of the advantages of DI imple-
mentation [35] by adding a constraint on selected wire forks of the circuit, the so-called
isochronic forks (see Section 1.4.1 for more details). Since isochronic forks can be limited
in scope and designed to mostly exist inside the basic components (e.g. logic gates), QDI
is a viable family of design techniques. In fact, QDI design is reported by Martin and Nys-
tröm and other authors as one of the most practical asynchronous design template, due to
its relaxed timing constraints [35] [36]. Its delay insensitivity provides higher robustness
against PVT variations, Single-Event Effect (SEE) and permits very low Electromagnetic
Interference (EMI) implementations. On the downside, QDI implementations requires
extra hardware, which can lead to significant area overhead.

CL

ack

active

data

passive

DI-encoded channel

Figure 1.9: Generic scheme of a asynchronous QDI push channel.

Figure 1.9 illustrates a generic QDI push channel. Similarly to BD channels, data
flows through the data path according to the handshaking protocol between active/passive
blocks. However, QDI channels remove the dedicated request signal as they encode the

3The authors refers ‘Early Ack” as the handshake protocol used and there is no explicit classification of
the implementation itself. Thus, this thesis refers the BD implementation as Early Ack, which employs a
early 4-phase protocol. This allows better compatibility with the protocols definitions in section 1.1.

18

1.4. Quasi-Delay Insensitive Channels

data validity on the data path itself. In order to implement this DI communication, the
channel employs DI-encoded data paths, allowing the passive block to detect data validity
(or absence).

Any QDI channel requires the choice of a handshaking protocol and of a DI code to
represent data and control flow information. One of the most used DI codes is called dual-
rail [35]. Refer to Table 1.3 that presents the basic encoding for a 1-bit dual-rail channel.
Each bit of data is encoded on two wires called here d.t and d.f. Usually, the scheme
relies on the classic Return-to-Zero (RTZ), four-phase handshake protocol [7]. A receiver
can obtain the equivalent of a request control signal directly from the codewords made
available by the sender. In RTZ schemes, data tokens presence is identified by d.t. and d.f.
being at different logic levels. To represent a high logic level, it is necessary to set d.t high
(1) and d.f low (0). The representation of a low logic level is opposite: d.t is set low (0)
and d.f high (1). Between two consecutive valid data, a spacer must always be inserted.
In the case of the RTZ protocol, a spacer is defined as all wires at logic low (0). This
work uses the terms spacer, NULL and NULL token as synonyms. Note that the situation
where both signals are set to logic high (1) is defined as an invalid and unacceptable value.
Beyond RTZ, the designer can adopt another handshaking protocol called Return-to-One
(RTO) [37]. Similar to RTZ, the RTO protocol also identify data tokens by d.t. and d.f.
being at different logic levels. However, in this case, to represent a high logic level, it is
necessary to set d.t low (0) and d.f high (1). For low logic level representation, d.t is set
high (1) and d.f low (0). Note that the logic level representation is practically the opposite
of the RTZ representation – see table 1.3 – including the spacer and invalid encoding. In
RTO schemes, both signals in logic low is invalid while the spacer is defined as all wires
set to high (1).

Table 1.3: Codification for a 1-bit dual-rail channel using RTZ/RTO protocol.

Signals Value

d.t d.f RTZ RTO

0 0 spacer invalid

0 1 0 1

1 0 1 0

1 1 invalid spacer

Figure 1.10 illustrates two communication cycles of a QDI push channel. As an initial
state, all data signals are reset in the beginning of the communication cycle, indicating a
spacer. Then, the data channel presents a valid data codification Di (1). As a consequence,
the ack signal is asserted, signaling that the data was received (2). Next, the data channel
shows a spacer, indicating the absence of valid data (3). At last, the ack signal is reset,

19

Chapter 1. Asynchronous Design

ending the communication cycle (4). This behavior applies to both protocols, only using
a distinct data encoding.

D0 D1

ack

1

2

3

4

spacerspacerspacer 1

2

3

4

data
(d.t & d.f)

Figure 1.10: Signal behavior during data transmission in a QDI push channel.

1.4.1 The QDI Limitation

In a QDI circuit, gates and wires can display arbitrary delays. However, differently from
DI circuits, there is a set of designated wire forks that must respect an isochronic timing
constraint. Such isochronic forks have the additional constraint that the delay to differ-
ent ends of a fork must be the same [34]. According to Sparsø [7], the behavior of an
isochronic fork can be explained as follows. Figure 1.11 shows a circuit with three logic
blocks (B0, B1 and B2) that are interconnected by three wire segments, each with a given
delay (d0, d1 and d2). In this case, there is a fork F , through which any value produced
by the output of the logic block B0 passes before reaching the respective inputs of blocks
B1 and B2. F begins after the wire delay d0 and has two ends, each one with a wire delay:
d1 and d2. Following the definition presented by [34], if the wire delays d1 and d2 are
identical (d1 = d2), the circuit in Figure 1.11 respects the isochronic fork constraint and
is thus called an isochronic fork. Despite of its elegance, this definition has been later
refined to ease the practical implementation of QDI circuits and the verification of the
fork isochronicity property.

B0

B1

B2

d0

d1

d2

F

f1

f2

o1

o2

Figure 1.11: Representation of an isochronic fork with logic blocks and delay wires.
Adapted from [7].

In 1995-1996, Manohar and Martin presented a new definition of isochronic fork and
of the isochronicity assumption [38]. Considering the same structure presented in Fig-
ure 1.11, according to Manohar and Martin saying that fork F is isochronic means that
some transitions on F need not to be acknowledged by a transition in both o1 and o2,

20

1.4. Quasi-Delay Insensitive Channels

the outputs of gates B1 and B2, respectively. For example, when a transition on the in-
put of B1 (after delay d1) has been acknowledged by a transition on o1, then a transition
on the input of B2 (after delay d2) has also completed, even though o2 may not have
acknowledged it. This is called the isochronicity assumption. As an example, consider
that a rising transition occurs in F (F ↑). Thus, this transition will cause f 1 ↑ and f 2 ↑
respectively after delays d1 and d2. Next, assume that only B1 generates a transition in
its output (o1 ↑), while output o2 keeps the same logic level. Note that, in this case, it is
not possible to visualize through o2 whether the transition f 2 ↑ was processed by B2. If
the fork is isochronic though, after seeing an effect in o2 due to F ↑, it is safe to assume
that B2 already processed transition F ↑, too. This clearly means that the delay values d1
and d2 are identical or that their difference is negligible.

Independently from the proposal of Manohar and Martin, van Berkel and others ad-
vanced an extended definition of isochronic forks [39]. For instance, the fork in Fig-
ure 1.11 respects the extended isochronic fork definition if the delay difference between
F→ o1 and F→ o2 is less than the delays of the gates driven by the output nodes o1 and
o2. That means that all output nodes must be stable when the following gates are trig-
gered. An important aspect to consider is that this definition does not take into account the
wire delays of the fork only, but also the gate delays. This is different from the original
definition of the isochronic fork, where gate delays are at all disregarded. Moreover, the
extended isochronic fork definition also comprises forks that employ more than one logic
block in its branches. According to [39], a fork with only one logic block in each end is a
fork of depth 1. For instance, the fork in Figure 1.11 has depth 1. Finally, it is important
to notice that such an assumption is practically a weak timing assumption, even if it looks
quite strong! Moreover, at design time, it is always possible to label the isochronic forks
in order to implement and check that the fork branches are well-balanced.

1.4.2 QDI Implementations

Similar to BD channels, the specification of QDI channels also provides several degree
of freedom to the designers by proposing different QDI implementations. In that way, in
the recent decades, several QDI implementation alternatives have been proposed, trying
to take advantage of its intrinsic delay insensibility. Among them, it is possible to locate
QDI implementations focused on several performance attributes, such as power and area
for instance. Table 1.4 gives an overview of all further discussed QDI implementations,
highlighting their main characteristics.

One of the most known and simplest QDI implementations in the literature is the
Weak-Conditioned Half-Buffer (WCHB) [28], which was introduced in 1995 by Caltech.
Its design presents improved cycle time but also demands high transistor stacking while
implementing complex logic. As an alternative, the authors in [28] also present the Pre-
Charged Half-Buffer (PCHB) implementation. This implementation employs pre-charge

21

Chapter 1. Asynchronous Design

domino logic in order to reduce transistor stacking – in their case, PMOS stacking. An-
other important point is that both WCHB and PCHB are half-buffer implementations.
This means that both implementations cannot hold data tokens at its input and output
channels simultaneously. Thus, the Pre-Charged Full-Buffer (PCFB) implementation is
also presented [28], which employs the same concepts of PCHB but with modified hand-
shake structure to enable the presence of data tokens on all the channels.

Table 1.4: List of available QDI implementations in the literature.

Implementation Handshake Protocols Main Feature Design Strength

WCHB [28] Four-phase RTZ
Simple and fast cycle-time

implementation
Simplicity

DIMS [7] Four-phase RTZ Arbitrary DI logic functions Simplicity

PCHB [1] Four-phase RTZ
Pre-charged domino logic

(half buffer)
Performance

PCFB [1] Four-phase RTZ
Pre-charged domino logic

(half buffer)
Performance

NCL [27] Four-phase RTZ m-of-n threshold logic Logic optimization

NCL+ [29] Four-phase RTO m-of-n threshold logic Power reduction

SDDS-NCL [30] Four-phase RTZ/RTO RTZ/RTO protocol mixing Energy efficiency

SCL [31] Four-phase RTZ
Sleep logic for fast

spacer generation
Low power

ASVHB [32] Four-phase RTZ
Fine-grained validity

mechanism
Low power

The literature also presents the Delay-Insensitive Minterm Synthesis (DIMS) imple-
menting arbitrary DI logic functions. According to Sparsφ [7], DIMS receives this name
as its circuits are DI and because the C-elements in the circuits generate all the minterms
of the input variables. In this case, DIMS basically utilizes m-of-n (C-elements) and 1-of-
n threshold gates (OR gates) with hysteresis, Due to its simplicity, DIMS is also a well-
known approach for QDI implementations, albeit its design usually leads to a significant
area overhead. Other QDI implementations have been proposed, trying to overcome this
area overhead issue. The first one to mention is the NULL Convention Logic (NCL) [27]
implementation. Developed by Thesus Logic, NCL considers a more sophisticated ap-
proach to implement any DI arbitrary logic by employing m-to-n threshold logic gates.

22

1.4. Quasi-Delay Insensitive Channels

Thus, it is possible to reduce the implementation complexity [7]. As time advances, other
NCL variations have been presented in the literature. The most trivial is a RTO-based im-
plementation called NULL Convention Logic Plus (NCL+) [29]. NCL+ employs the same
concepts from NCL but with logic modifications in the threshold gates to accommodate
the RTO protocol. Moreover, Moreira et al. further explore the possibilities of these im-
plementations by mixing them, generating the Spatially Distributed Dual-Spacer NULL
Convention Logic (SDDS-NCL) [30] implementation. SDDS-NCL relies on a spatial al-
ternation of threshold gates from each of the two base implementations. Experimental
analyses with a library of NCL and NCL+ components demonstrate that SDDS-NCL al-
lows better energy efficiency and lower static power than using a single implementation
style for a fixed delay. Another interesting NCL-based QDI implementation is the Sleep
Convention Logic (SCL) [31] implementation. The SCL proposes the logic optimization
by integrating a sleep logic in the threshold gates. In this case, the sleep logic reduces the
logic that drives the gate output to ‘0’, slightly improving the RTZ protocol. However,
SCL utilizes an early-completion mechanism [40], which allows the circuit to acknowl-
edge and store a data token in parallel. Despite of the possible performance advantages
of this parallel computation, it also brings extra timing constraints [41].

Finally, one of the most recent QDI implementations in the literature is the Autonomous
Signal-Validity Half-Buffer (ASVHB) implementation, which claims a focus on ultra-low
power operation [32]. This implementation displays three main characteristics: (i) its
structure employs integrated autonomous validity signals, which are used to simplify the
circuit implementation; (ii) it utilizes a fine-grained gate-level approach, which increases
throughput by propagating data through a single-cell data-path pipeline; and (iii) it im-
plements static logic only, which increases node output stability and circuit robustness.
Authors pinpoint that the ASVHB implementation can achieve higher energy-efficient
design when compared to WCHB and PCHB.

23

Chapter 1. Asynchronous Design

1.5 Conclusions

In this chapter, it is presented the basic concepts of asynchronous design, detailing
the concepts of asynchronous channels and handshake protocols. On top of that, it is
also presented multiple BD and QDI implementations available in the literature, giving a
brief overview of their advantages and limitations. The diversity that asynchronous design
brings to the table represents the liberty that researchers and designers had took advantage
in the last decades to implement asynchronous circuits with different focuses, such as per-
formance, power, robustness and security. However, taking a testing standpoint, this also
implies that asynchronous testing is far from a standard concept, as it must adapt accord-
ing to the target implementation – if it employs an BD or QDI design, which handshake
protocol considered, how data is encoded, if it uses FFs or latches, what kind of controller
is used and so on. Consequently, standard synchronous testing procedures and available
ATPG tools are not compatible with asynchronous circuits, demanding modifications. On
top of that, adapting testing procedures and ATPG tools do not necessarily enables testing
of all kinds of asynchronous implementations. This compromises the industrial interest on
asynchronous circuit because it requires a significant effort to implement a testing proce-
dure for a single asynchronous implementation. Thus, the first part of this thesis explores
the concepts of digital testing, giving emphasis on asynchronous testing, and presents the
proposed the at-speed DfT architecture for BD design.

24

Part II

At-speed Test for Asynchronous
Bundled-data Circuits

26

2
State-of-the-Art on Digital and

Asynchronous Testing

Contents
2.1 Stuck-at Faults . 28

2.2 Path-Delay Faults . 29

2.3 At-speed Testing . 30

2.4 Digital Design-for-Testability and Scan-based Design 32

2.5 Asynchronous Testing . 35

2.6 Conclusions . 38

27

Chapter 2. State-of-the-Art on Digital and Asynchronous Testing

2.1 Stuck-at Faults

The Stuck-at fault model is a simple approach to represent several physical defects in
a logic level. In fact, according to [42], the single-stuck fault model is also referred as the
standard fault model due to its wide adoption and strong study background. As a digital
circuit can be modeled as a netlist with gates interconnected by wires, the stuck-at fault
model is assumed to only affect the interconnection between gates. This fault is modeled
by assigning a fixed (0 or 1) value to a signal line in the circuit, independently of the
logical output of the driving gate. If the fault fixes the interconnection at ‘0’, it is called
stuck-at-0 (s-a-0). If it fixes at ‘1’, stuck-at-1 (s-a-1). While considering single-stuck
faults, three main assumptions are considered:

1. Only one interconnection is faulty;

2. The faulty interconnection is fixed at ‘0’ (s-a-0) or ‘1’ (s-a-1);

3. The fault can be at an input or output of a logic gate.

For instance, Figure 2.1 illustrates a combinational-only circuit with a s-a-1 fault in
the OR gate’s output. The example assumes all gates work properly except the inter-
connection with the s-a-1. If the OR gate receives as input “01”, “10”, “11”, the fault
produces no effect in the circuit because the correct output is also ‘1’. However, if the
OR gate receives ‘00‘, the OR gate must drive its output to ‘0’ – the faulty circuit will
have ‘1’. As the output of the OR gate is not directly observable, it is necessary to force a
specific pattern at the inputs of the AND gate in order to propagate the fault to the primary
output Z. In this case, applying an input test pattern “1100” – the AND gate’s inputs to
“11” and the OR gate’s inputs to “00” – allows to force the output Z to ‘0’. If the s-a-1
fault is present, it will be possible to detect it due to the output discrepancy at Z.

1
1

0
0

1

0 s-a-1 (1)

0

(1) faulty

Figure 2.1: Stuck-at fault example. Extracted from [43]

In reality, stuck-at faults can occur in other interconnections as well. In a circuit with
n interconnections, 2n single-stuck faults can be present. Considering the circuit example
in Figure 2.1, which has seven signal lines, 14 stuck-at faults can occur. Depending
on the circuit, this value can be reduced by applying fault collapsing [43]. Moreover,

28

2.2. Path-Delay Faults

multiple stuck-at faults can occur in the circuit at same time. Despite of being more
realistic, the multiple-stuck fault model is not widely adopted as it the number of faults
increases exponentially according to the number of interconnections, compromising the
fault analysis for even circuits with moderate size. Notice that single-stuck faults are able
to achieve a high percentage of multiple-stuck faults [43].

2.2 Path-Delay Faults

The path-delay fault is an important fault model used in delay testing [43]. These
faults cause the cumulative propagation delay of a combinational path to increase beyond
some specified time duration. The combinational path begins at a primary input or a
clocked register, contains a connected chain of logic gates, and ends at a primary output
or a clocked register. In synchronous circuits, path-delay faults are directly related to
combinational delays that disrespect required timing margins regarding the clock period
or the vector period. Propagation delay is defined for the propagation of a signal transition
through the path. Thus, for each combinational path there are two path-delay faults, which
correspond to the rising and falling transitions.

Path-delay test applies a transition at the input of the path and measures the output
value after a specified interval (clock period). As this kind of test applies a pair of test
vectors, it is often called two-pattern testing. For the test to be an effective measure of
the path delay, the “expected or correct” output value must be uniquely controlled by the
specified input transition. While testing a target path, any internal signal included in the
path is classified on-path signals, and signals not present but connected to gates in the
target path are called off-path signals. A path-delay test consists of a vector pair (V 1,V 2)
with the following two main assumptions:

1. The transition (V 1,V 2) initiates the appropriate transition at the beginning of the
target path;

2. All off-path input signals for the target path assume non-controlling constant values
(‘0’ when the signal feeds into an OR or an NOR gate, and ‘1’ for AND or NAND
gates) following the application of V 2. This conditions known as static sensitization
of a path.

By assuming these two assumptions, the path-delay test is classified as non-robust.
A non-robust path-delay test guarantees detection of a path-delay fault when no other
path-delay fault is present. In order to achieve a robust path-delay test, which guarantees
detection of a path-delay fault independently of the delay distributions in the circuit, it
must produce a transition at an output with the following properties:

1. It must be a real event. A real event in the output implies the output has a single
transition from the initial value to the final value;

29

Chapter 2. State-of-the-Art on Digital and Asynchronous Testing

2. It must be a controlling event. A controlling event permits no other events to appear
prior to its own appearance. Thus, the output will remain at the initial value until
the controlling event occurs at the input.

1
2

2

faulty (2x)

Z
n1

n0

A

B

C

0

1

A

clock period

B

C
n0
n1

Z(no fault)

Z(faulty)

Figure 2.2: Delay fault example. Adapted from [43].

Consider the example in Figure 2.2 (a), where illustrates a combinational-only circuit
with three input A, B and C, and a single output Z. We assume the inverter gate has a prop-
agation delay of 1 time unit, both AND/OR gates have 2 units and the circuit must respect
a clock period of 6 units. For the sake of simplicity, both falling and rising propagation
delays are equal for a given gate. The longest path in the circuit is from C to Z, which
has a expected total delay of 5 units. Now, consider we would like to test the delay path
↓C→ n0→ n1→ Z. Initially, the circuit receives an input vector “011” (A = 0, B = 1 and
C = 1). This initial condition allows to trigger the target delay path through the input C
while maintaining other inputs constant. Then, to trigger that target transition, the circuit
receives “010”, introducing a vector-pair (1,0) at input C. This transition will trigger the
rest of the path until reaching the output Z, where it will generate a rising transition – see
Figure 2.2. If no delay fault is present in the target path, the output Z will contain the cor-
rect logic value before the next clock edge. However, supposing the presence of a faulty
NOR gate that has its propagation delay doubled, Z will contain an incorrect logic value
when the next clock edge arrives, Indicating that the target path disrespects the timing
constraint.

Regarding the number of path-delay faults in a given circuit with n physical paths, the
circuit can contain 2n path-delay faults. Generally speaking, any combination of paths can
be faulty. However, similar to the “single stuck-at” fault model, it is usually considered
delay faults of single paths, despite the fact that multiple paths can be faulty in practice.

2.3 At-speed Testing

At-speed testing consists of evaluating the circuit operation at the expected clock
speed. In this case, the initialization and verification can be performed in lower fre-

30

2.3. At-speed Testing

quencies, albeit the test run must operate at the rated-clock frequency. This kind of test is
essential unless the timing design is too pessimistic and process tolerances are extremely
tight. However, both of these attributes are not possible for today’s Very Large Scale
Integration (VLSI) chips that drive extremely high speed systems and are manufactured
through leading edge processes. Application of at-speed testing with stuck-at fault test
vectors, though used frequently, is not the best strategy. This is because those vectors
may not have a high delay fault coverage. Thus, path-delay tests for critical paths should
be included in the at-speed testing. Considering the possibility of a very large number of
paths, critical path testing is a good approach. According to [43], these tests are very good
at uncovering “correlated defects”. Variations in the manufacturing process could gener-
ate these defects, affecting all components on the chip in a similar way. For instance, the
resistivity of all interconnects may increase, or all transistors may operate slower. Thus,
the longest delay paths should be the first to fail.

31

Chapter 2. State-of-the-Art on Digital and Asynchronous Testing

2.4 Digital Design-for-Testability and Scan-based Design

DfT or Design for Testing is a well-known approach in the industry to add controlabil-
ity and observability for a design in order to optimize the testing process. This approach
requires the insertion of extra logic into the design to adapt the circuit for testing. The
insertion of this DfT logic occurs during the hardware design flow, in which are already
automated through commercial synthesis and DfT tools. Moreover, employing DfT also
requires the use of ATPG tools to generate testing vectors according to the structure cre-
ated by the DfT tools. Take as example the DfT/ATPG tools from the three main EDA
providers in the market: Modus DFT (Cadence), TestMAX (Synopsys) and Tessent (Men-
tor Graphics). At the end, applying DfT can increase the design fault coverage, reduce
test generation time and achieve lower life-cycle costs [42, 43]. Obviously, this comes
with a cost as DfT brings area overhead and higher logic complexity to the design. This
trade-off is usually acceptable in the industry as it can provide a “debug-friendly” design
that enables better fault detection after fabrication and, mainly, before sending the final
product to the customer. In fact, it is common to hear from test engineers the phrase
“pay less now and you shall pay more later without DfT” when this matter is brought to
discussion.

Tmode

R1
1

0

clk

R0
1

0

scan register (SFF)

R2
1

0

R3
1

0

scan register (SFF) scan register (SFF) scan register (SFF)

Combinational logic

SCin

SCout

Primary
outputs

Primary
inputs

Figure 2.3: Generic architecture of a scan-based design with a single scan chain. In
this example, the design has dedicated SCin and SCout signals, albeit these signals are
usually multiplexed with primary inputs/outputs. Note that, in practice, a design can have
multiple scan chains in order to reduce scan-in/out time.

Among the DfT methods available in the literature, it is possible to highlight two main
structured for digital logic: (i)Built-in Self-Test (BIST) and (ii) scan chains. Applying a
BIST architecture enables the circuit to self test during its lifetime. Thus, the circuit
is capable to generate testing patterns and compare results with expected values. The
biggest advantage of introducing BIST is test cost reduction, as it requires fewer test
pins, eliminates the need of high-performance Automated Testing Equipment (ATE) and
enables test runs at the rated-clock frequency. On the other hand, BIST requires extra
circuitry on chip and increases the overall logic complexity.

Scan chains focus on increase the controllability and observability of clocked registers

32

2.4. Digital Design-for-Testability and Scan-based Design

– usually FFs – while adding few primary testing signals to the design. It adds a test mode
that connects all (or selected) FFs in a single shift register chain, allowing to bypass the
combinational logic. This facilitates loading and unloading test vectors into the design
without taking into account the data path. Beyond the fact that scan chains increases the
overall testability of the design with low area overhead and few testing signals, the scan
chain flow is already heavily automated by DfT and ATPG tools as mentioned before.
Figure 2.3 illustrates a generic scannable architecture with a single scan chain connecting
all FFs. In order to connect all scan-chain components, it is necessary to replace the FFs
by scannable counterparts, as suggested in Figure 2.3. The scannable FF implementation
is often called Scan Flip-Flop (SFF) and it comprises of a multiplexed-input master-slave
Type-D Flip-Flop (D-FF). The multiplexed input adds a testing input T I only used in test
mode, connecting the scan chain. Moreover, the scan-based design can present four new
testing signals:

• Scan-in (SCin): primary input of the scan chain. This input is used to load test
patterns into the scan chain before running a test run;

• Scan-out (SCout): primary output of the scan chain. This output is used to unload
test results after running a test run;

• Test mode (Tmode): test mode signal. When activated, it indicates that the circuit is
in test mode. It is usually used to enable the scan chain, connecting all flip-flops as
a shift register. Otherwise, the circuit operates in normal mode.

• [Optional] Scan enable (SCen): dedicated scan enable signal. In case Tmode is also
used for another testing purpose and the scan chain is not necessarily enabled/dis-
abled according to Tmode, it is possible to add SCen to only control the scan chain.

Designs can adopt a full-scan or partial-scan approach according to the design con-
straints. The most trivial is the full-scan approach, where all flip-flops are translated to
SFF. This approach brings the higher controllability and observability in the design at a
significant area cost. This higher controllability and observalibity of a full-scan design
suits well if testing time is crucial, as it can reduces the number of testing vectors for a
given fault coverage. On the other hand, partial-scan allows to select specific flip-flops in
the design and translate them to their scannable counterpart, reducing the area impact of
the DfT. It is still possible to achieve a high fault coverage while considering a partial-
scan approach, albeit it requires more testing vectors than an equivalent full-scan design
for a given fault coverage.

Scan-based designs can be employed for stuck-at and path-delay testing. Figure 2.4
shows the signal behavior during a single stuck-at test cycle. Each test cycle has three
main steps: (i) scan in, (ii) test run and (iii) scan out. During scan in, the design is set to
test mode and the scan chain is loaded through SCin with a test vector IVi – generated by

33

Chapter 2. State-of-the-Art on Digital and Asynchronous Testing

clk

Tmode

scan in scan outtest run

SCin IVi IVi+1

PIiPI

PO

SCout OVi

POi

Figure 2.4: Signal behavior for a stuck-at test cycle with a scan-based design.

an ATPG tool. As IVi is loaded by a tester or any external equipment, the clock frequency
is usually lower than the operational frequency, which avoids any timing issues during the
test cycle. After loading the last FF in the scan chain, the design is again set to normal
mode, propagating the FF outputs to the combinational logic. Note that all primary inputs
are set to PIi, allowing the test any input logic not controlled by FFs. During test run,
the clock is pulsed once in order to propagate the combinational logic output to the FFs.
At this point, the primary outputs POi can be compared with the expected values (e.g.
fault-free value or golden reference). Finally, the circuit is set again to test mode and the
scan chain is unloaded through SCout . In that way, each bit of the output test vector OVi

is matched with the scan-chain golden reference. If there is any value mismatch in the
scan chain or primary outputs, a stuck-at fault was detected in the design. Otherwise, the
design is fault free for the considered input test vector. For test optimization purposes,
the scan-out step is usually executed with the scan-in step of the next test cycle, allowing
to load the next input test vector in parallel. This is illustrated in Figure 2.4 as the SCin

receives a new test vector IVi+1 while the output test vector OVi is propagated through
SCout .

For path-delay testing, the test cycle has similarities with stuck-at testing. Considering
now Figure 2.5, the test cycle has the same three steps: (i) scan in, (ii) test run and (iii)
scan out. Identically to stuck-at testing, the scan in step comprises of loading an input test
vector IVi into the design through SCin in test mode. With the scan chain loaded, the test
mode is disabled, all primary inputs are set to PIi and the clock signal is pulsed twice with
the target frequency, performing a two-pattern testing. At this point, the primary output
values POi can be checked with the expected values. Next, the design enters in test mode
once again and each bit output test vector OVi is unloaded and matched with their expected
values. If there is any value mismatch in the scan chain or primary outputs, a path-
delay fault was detected and the tested data path cannot operate at the target frequency.

34

2.5. Asynchronous Testing

Otherwise, the path delay is fault free for the considered input test vector. Similarly to
stuck-at testing, the scan-out step can also be executed while performing the scan-in step
of the next test cycle, allowing to load the next input test vector IVi+1 in parallel.

clk

Tmode

scan in scan outtest run

IViSCin IVi+1

PIiPI

PO

SCout OVi

POi

target freq.

Figure 2.5: Signal behavior for a path-delay test cycle with a scan-based design.

2.5 Asynchronous Testing

The testability of asynchronous circuits is already a topic in discussion in the litera-
ture. Several well-known authors in the asynchronous field have presented the issues and
solutions while testing BD and QDI circuits. This sections focuses on the test of asyn-
chronous circuits, giving a historical view of how asynchronous testing has been shaped
in the last decades.

In 1992, Pagey et al. [44] explores the basics of testing for the micropipeline template.
In their work, they indicate that the control part of the circuit is concurrently testable dur-
ing normal operation and ATPG for the data path can be reduced to that for the combina-
tional circuits. In this case, the authors suggest to set all latches in pass mode and treat
the circuit as a single logic block, allowing the test pattern generation. The micropipeline
template is also explored by Khoche and Brunvand in 1994 [45]. The authors propose
stuck-at and delay testing in the data path by adding scan functionality to latches and
C-elements. One year later, the same authors present a partial scan approach for self-
timed circuits [46]. Here, C-elements are not included in the scan path and modified
in order to test them as combinational logic. For the scan path, the latches employ two
non-overlapping clocks input to provide race free operation during testing – basically, a
Level-Sensitive Scan-Design (LSSD) structure.

In the same year, Petlin et Furber presents a fully-asynchronous scan test technique [47]
for a micropipeline-based microprocessor called AMULET. According to the authors,

35

Chapter 2. State-of-the-Art on Digital and Asynchronous Testing

the techniques allows both stuck-at and delay faults. Moreover, different testing control
schemes are presented – called Scan Test Control Logic (STCL) – for two and four-phase
protocols. Schöber et Kiel also explores a scan path design for micropipeline circuits [48].
They also propose a fully asynchronous scan approach, which in no clock is used during
normal and test mode. In order to do that, latches are replaced by an Asynchronous Scan
Latch (ASL) implementation and an extra two-phase handshaking control permits the
scan manipulation (scan-in and scan-out). As the test structure is also asynchronous, this
implies in a relatively high area overhead due to the extra handshaking controls. Again,
Petlin et Furber covers the subject of micropipeline testing in 1997 [49]. In their work, the
authors present a BIST micropipeline design. The circuit employs an asynchronous Built-
in Logic Block Observer (BILBO) for stuck-at fault detection. The authors also indicates
that their BIST approach can check the timing constraint of the micropipeline template.

In 1996, Roncken et Bruls discuss that the autonomous handshake behavior of asyn-
chronous circuits compromises the test quality [50]. Thus, the authors introduce the hand-
shake component HOLD, which is inserted between handshake controls to add more con-
trollability and better applicability of scan and Quiescent Supply Current (IDDQ) testing.
Roncken et al. [51] also addresses the use of LSSD-based testing design for asynchronous
circuits. In their work, the authors propose an algorithm to implement near-optimal scan
structures, avoiding the area overhead caused by LSSD. In the end of the 20th century,
Roncken takes another step in the subject and presents a defect-oriented testing for asyn-
chronous circuit [52]. This time, Roncken targets IDDQ testing for stuck-at and bridging
fault detection. This is done through a HOLD DfT approach, which is responsible to
stall the circuit at a desired state and, thus, allowing IDDQ testing in a quiescent state
not normally available in an asynchronous design. This kind of testing approach is fur-
ther addressed in [53], where it introduces the notion of naturalized communication and
how to reused the handshake behavior to test two-phase bundled-data circuits, such as
micropipeline, GasP, MOUSETRAP and Click templates. The authors present a proper
stopper circuit, called MrGO, responsible to controlling actions, freezing or releasing spe-
cific handshake parts of the circuit. Details about the MrGO circuitry are presented, but
the scan approach used for testing delay and stuck-at faults is not described, the same is
true about fault coverage and the area overheads.

Kishinevsky et al. presents a path-delay fault testing algorithm for asynchronous cir-
cuits [54]. The algorithm is responsible to generate test sequences for a set of paths in
the circuit that must respect a specific timing constraint. Despite the fact that their work
covers delay testing, the authors consider only QDI circuits in their experiments.

In 1999, Kang et al. proposes a scan design for micropipeline circuits, focusing on
delay testing [55]. The latches are replaced by their proposed scan latch that, according to
the authors, allows full control during two-pattern delay testing. However, the proposed
scan latch adds three latches (four in total), implying a relative high area overhead.

At the 21th century begin, Berkel et al. explores the insertion of synchronous and

36

2.5. Asynchronous Testing

LSSD modes to C-elements [56], targeting a more general testing approach of any asyn-
chronous implementation. Here, they consider the scan-path technique and level-sensitive
operation of LSSD operation to add full controllability and observability in sequential
gates. Consequently, asynchronous circuits could take advantage of traditional DfT and
ATPG tools. This statement is further explored in [57, 58], where it applies the DfT pro-
posed in [56] and presents fault coverage and area results of five testable bundled-data
circuits designed with Tangram, a Philips’ design flow for asynchronous circuits. The
authors were able to test both data and control paths with 100% and 99% fault cover-
age, respectively, with area overhead ranging from 90% (full-scan) to 30% (partial-scan).
In other to reduce the impact of LSSD, Beest et Peeters also explores a multiplexer-
based testing technique to test C-elements [59]. The authors indicates that the proposed
multiplexer-based approach achieves the same structural fault coverage of previous LSSD
approaches, as well as profits the ATPG from conventional testing tools.

Others authors mainly focus on testing the handshaking controls in asynchronous
circuits. For instance, King et Saluja [60] adds testability for the control part of mi-
cropipeline circuits. By inserting scan latches in the handshake controllers and restrain-
ing combinational loops, the proposed technique synchronously treats the existing asyn-
chronous elements – like a finite state machine. This approach brings extra controllability
and observability, allowing stuck-at fault detection in the control part at the cost of a
significant area overhead.

Delay testing for the MOUSETRAP [20] template is covered in [61]. The proposed
DfT technique consists of controlling the acknowledgement signals between handshake
controllers, permitting the user to pause or resume the pipeline at will. To allow this extra
handshake control, the proposed technique requires the insertion of multiplexers in the
acknowledgement signals and a shift register to configure each multiplexer. Another in-
teresting approach to test the control part of asynchronous circuit is presented in [62]. In
this work, a checker logic block is connected in the handshake signals in order to detect
any violation in the handshake protocol. For each handshake pair – request and acknowl-
edgement pair signal – the proposed checker logic requires four flip-flops, four David Cell
(DC) circuits [63] and four delay elements, implying that checking all handshake signal
brings a significant area overhead.

In 2006, delay testing for asynchronous circuits is covered in [64], which in presents
a non-intrusive delay testing technique for three different templates: MOUSETRAP [20],
GasP [22] and High-Capacity (HC) pipelines. However, the authors focus on the MOUSE-
TRAP template most of the paper, also presenting how to generate test patterns for non-
linear MOUSETRAP implementations – containing forks and joins, for instance.

Regarding the test of QDI templates, testing approaches are recently explored in [31,
65–67]. In [65], fully asynchronous scannable WCHB architecture is proposed. Both
dual-rail inputs and acknowledgement signals are multiplexed and connected to a asyn-
chronous scan chain, focusing in stuck-at fault detection. The testability of a well-known

37

Chapter 2. State-of-the-Art on Digital and Asynchronous Testing

QDI template called NCL is covered in [66, 68]. The work in [66] implements an in-
terleaved scan architecture for NCL circuits, which is also incorporated into an on-line
BIST architecture. Similarly to the previous works, it also covers stuck-at faults. In order
to avoid area overhead from extra logic, the same authors takes another approach in [68].
Here, they consider a clock-less and DfT-less approach, investigating the effectiveness of
IDDQ testing. The literature also presents a testable approach [31] for the SCL, a derived
QDI template from NCL. However, the work in [31] only cover stuck-at faults. Huang et
al. [67], for instance, replaces dual-rail registers with a pair of Dual-Rail Asynchronous
Circuit Scan (DAC-scan) latches, which allows synchronous functionality during test.
Despite the work covers WCHB implementations, the authors indicate that their work is
easily adapted to WCHB implementations. The authors present both stuck-at and delay
fault detection with two-pattern and three-pattern testing, respectively. Unfortunately, the
insertion of DAC-scan latches implies in a significant area overhead, which is not desired
in QDI implementations.

Finally, Kuentzer et al. explore the testing characteristics of the resilient bundled-data
template called Blade [69, 70]. First, the authors analyze and classify the faults in the
Error Detection Logic (EDL) of the Blade template [69], proposing slight modification in
the EDL design to increase controllability/observability. As the resilient architecture of
the Blade template is capable to detect timing violations during operation, it also implies
that the architecture also enables online delay testing of critical paths [70].

2.6 Conclusions

This chapter covers the principles of stuck-at and path-delay faults, two widely fault
models used in the industry, and its applicability in scan-based DfT design. Moreover, it
presents an state-of-the-art overview on asynchronous testing, discussing the developed
techniques on stuck-at, delay and IDDQ testing. It is possible to pinpoint that the litera-
ture already explores the asynchronous testing matter for almost three decades and several
elegant techniques and workarounds have been proposed. Among them, authors take the
approach to develop testing techniques and tools from scratch, whereas others adapt cur-
rent ones to overcome the industry resistance against asynchronous design. Unfortunately,
the industry resistance still remains. This implies the simplicity of synchronous design
and its well-established design methodology continues to be a more convenient option
than pursuing alternative design paradigms. However, it must take in account that the
available literature on asynchronous testing provides a complex set of techniques, which
are not straightforward not even for designers familiar with asynchronous implementa-
tions. This thesis takes this last point as a motivation in order to explore testing solutions
compatible with current techniques and tools, including simple and straightforward steps
to implement it.

38

3
Proposed At-speed DfT Architecture for

Bundled-data Design

Contents
3.1 Problem Statement . 41

3.2 Overview Architecture and Testing Signals 42

3.3 Test Cycle . 44

3.4 Initialization . 44

3.5 Checking Circuit Correctness . 46

3.6 Retrieving Path-Delay Information with Local Clock Sets 46

3.7 Testing Non-linear Structures . 48

3.8 Compatibility with Traditional Stuck-at Testing 49

3.9 Study-case Circuits . 50

3.9.1 A simple circuit: 2-bit adder 50

3.9.2 A more complex circuit: 128-bit AES cryptocore 58

3.10 Conclusions . 62

40

3.1. Problem Statement

This work proposes a DfT architecture for at-speed testing, while taking into consid-
eration the compatibility with traditional stuck-at testing tools. Taking a similiar approach
as [53], we desire to freeze and release specific control parts of the circuit and test their
respective data path. This is done by adding controllability in the controllers, allowing
to control directly the points-of-divergence of the forward timing constraint between con-
trol and data paths. Despite the proposed testing architecture imposes modifications in
the controllers design to add controllability, it requires only the use of logic gates already
available in off-the-shelf standard cell libraries. The proposed architecture is also compat-
ible with the Local Clock Set (LCS) flow [19] [71]. The LCS flow enables the implemen-
tation of bundled-data circuits with standard EDA tools, allowing the use of scan-chain
insertion and Static Timing Analysis (STA) features. Moreover, the STA enables better
interface with ATPG tools for path-delay testing.

CLi Ri+1

dli

reqi

ackictrli

reqi+1

acki+1

reqi-1

acki-1

tdsdata(i)

tdsctrl(i)

datai-1 datai+1
Ri

datai

clki+1clki

poci+1

podi

ctrli+1

Figure 3.1: Generic scheme of an asynchronous BD push channel, highlighting the timing
relationship between handshake and data signals.

3.1 Problem Statement

Due to the handshake schemes, timing constraints between handshake and data signals
must be respected in order to guarantee the circuit correctness. According to [33], the
basic constraints in BD design are: (i) the receiver must not consider a request until its
input data is stable; (ii) the receiver must not acknowledge the sender until it has no further
need for its input data and (iii) the sender must hold its output data steady between sending
the req and receiving the ack. Taking Figure 3.1 again, consider that valid data is present at
datai−1 and we desire to propagate it to datai+1. In order to do that, the launch controller
ctrli receives a token through reqi−1 (e.g. reqi−1 rises), indicating valid data is present
at the input of its respective registers – in this case, Ri. Next, Ri stores and propagates
data through the combinational block CLi. At the same time, ctrli also propagates the

41

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

request signal reqi, indicating to the capture controller ctrli+1 in the receiving part that
new data are available. If reqi is propagated to ctrli+1, which will pulse clki+1, before
the new data had been completely computed by CLi, the receiver register Ri+1 will store
invalid data, compromising the circuit operation. This implies that, from the point-of-
divergence podi in the launch controller, the control path tdsctrl(i) must be tuned in order to
match the propagation delay of the launch register and the combinational block tdsdata(i)

at the point-of-convergence poci+1 in the capture controller. Therefore a delay line dli is
inserted into the request signal between the controllers, delaying the arrival of the request
signal at the receiving end. This timing constraint between control and data paths is called
forward (setup) constraint and can be represented by Equation 3.1. The main objective to
the proposed architecture is to allow verifying whether the timing constraint imposed in
Equation 3.1 has been respected after fabrication.

tdsdata(i) < tdsctrl(i) (3.1)

3.2 Overview Architecture and Testing Signals

Figure 3.2 illustrates the proposed testing architecture with a push channel structure.
The proposed architecture includes signals present in traditional scan-based architecture
as well as dedicated signals for the proposed at-speed technique. The required testing
signals for the proposed architecture are listed below:

• Test mode (Tmode): when enabled, it bypasses the control logic and allows to control
registers with an external clock signal Tclk. This signal is usually added for stuck-at
testing with scan chains;

• Scan enable (SC_enable): when enabled, it bypasses the combinational logic pre-
sented in the circuit data paths, allowing to load and unload the scannable registers
in the circuit. This signal is also presented for stuck-at testing with scan chains;

• Handshake Breaker (HSB): this signal allows to disable or enable the left hand-
shake signals of a given controller. When enabled, this signal disables the left
handshake signals and permits external control of the left request signal of the con-
troller through ext_req. When disabled, the left handshake signals are connected to
the previous stage(s) and the controller operates normally;

• External request signal (ext_req): this signal is specially added for the at-speed
testing methodology in this work. During at-speed testing, this signal is responsible
to internally propagate tokens in control paths.

Despite of the additional testing signals, note that the two first signals (Tmode and
SCenable) are usually already presented into the design whether a scan-chain structure is

42

3.2. Overview Architecture and Testing Signals

employed. Thus, the proposed structure only leverages the scan-chain structure for better
controllability and observability of the data path. However, the proposed structure adds
testing signals to the control part of the circuit: external request (ext_req) and HSB sig-
nals. As the name suggest, HSB signals are responsible to ‘break’ the left handshake
communication of a given controller. Consequently, each controller in the circuit requires
a reserved HSB signal. When enabled, the HSB sets the controller in launch mode during
at-speed testing. In this mode, the left handshake signals of the controller are disconnected
from the previous controller(s) and bypassed directly to ext_req. This isolates the con-
troller from its previous neighbour controller(s) and avoids any interference from another
inserted token, which may create timing issues during at-speed testing. However, this
also creates a testing limitation as no handshaking communication is possible and, con-
sequently, makes it impossible to verify the timing constraint of the previous control/data
path. This requires different HSB configurations in order to cover all existing timing con-
straints in the design. When the HSB signal is disabled, the controller remains in capture
mode and it normally communicates with previous controller(s). To reduce the use of test
inputs for each HSB signal, a shift register is employed to sequentially load each HSB.

='1' ='0'

left handshake signals disabled
(launch mode)

left handshake signals enabled
(capture mode)

launch registers capture registers

1

0

1

0

1

0

CLi-1

1

0

1

0

CLi

Ctrli

dli

Tclk TclkTmode

HSBi HSBi+1

ext_req

acki-1 acki

reqi-1 reqi

acki+2

reqi+2

1

0

Ri Ri+11

0

1

0

SCenable

ext_req

clkidatai-1

datai+2

datai

tdsdata(i)

tdsctrl(i)

poci+1

podi

Ctrli+1

clki+1

token
insertion

Figure 3.2: Proposed testing structure. Lower MUX logic controlled by Tmode and SCen

are already presented for stuck-at testing. The proposed testing structure adds two more
MUX gates that allow to disable the left handshake signals of the controller.

43

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

3.3 Test Cycle

The test cycle is composed by three main steps: (1) scan in, (2) test run and (3) scan
out. Figure 3.3 illustrates the behavior of the main test signals. During the first step (1),
both Tmode and SCenable signals are enabled. This puts the circuit in test mode and allows
loading the scan chain and configuring each HSB signal. Once the scan chain and the
HSB shift register are loaded, Tmode and SCenable signals are disabled, the circuit goes
back in normal mode. When extreq is enabled, it launches all controllers in launch mode
(HSB enabled) and propagates tokens to the remaining controllers set in capture mode
(HSB disabled) – this is the test run step (2). Finally, the circuit is put in test mode again
to scan out (3) the circuit and verify if the capturing registers contain the expected test
vectors.

Tclk

Tmode

SCen

ext_req

scan in scan out

clk0
(launch clock)

clk1
(capture clock)

test run

Figure 3.3: Behavior of the testing signals during a test cycle.

3.4 Initialization

For the proposed testing procedure, it is required to initialize both data and control
paths. Regarding the data path, test vectors must be loaded into the design for two-pattern
testing. Considering a launch register, which will directly be activated by an inserted
token, precedent and successor data paths are loaded with test vectors in such a way that,
when the circuit is launched, the launch register will stimulate a target path while the
token is also propagated through the control path. A straightforward technique to load the
data path is a scan chain. To allow that, the controller clock clki is usually multiplexed
with an external test clock Tclk and the registers are replaced by their equivalent scannable
implementations. During test mode, the registers are externally controlled by Tclk and all
data paths are bypassed. During normal mode, registers are controlled internally by the
their respective controllers and data paths are not longer bypassed.

For the control path, all handshake signals must be set according the initial state of

44

3.4. Initialization

the employed handshake protocol. In that way, all the controllers must have known hand-
shake signal values and be ready to process the inserted tokens during the test. This can be
done by setting the primary control inputs and all the memories inside the control blocks –
FFs, latches or C-element – according to the circuit initial state. On top of that, depending
of the employed handshake protocol, multiple initial states must be considered to ensure
that the circuit is fully tested. For the sake of illustration, Figure 3.4 illustrates block rep-
resentation (a) of a WCHB controller with its handshake signals and its Signal Transition
Graph (STG) representation (b). The STG indicates the transition sequences of the left
and right handshake signals of the WCHB controller. Note that we consider only a stan-
dard four-phrase handshake protocol. In this case, registers are only activated in the first
phase of handshake protocol (Rreq+ rising). As our technique focuses on externally gen-
erating the rising transition of the left request signal Lreq+, all the remaining handshake
signals and internal memories must have the logic values preceding Rreq+. Taking into
consideration the STG in Figure 3.4 (b), the left token is generated externally through
ext_req. However, the right token requires that not only the controller itself would be
properly reset, but also all its successor controllers – guaranteeing the desired logic value
of Rack.

(a)

Lreq Rreq+ +

Lack Rack+ +

Lreq Rreq- -

Lack Rack- -

generate
externally

pre-set
internally

register
enabled

request to
next ctrl

Lreq Rreq

Lack Rack

ctrl

clk

(b)

Figure 3.4: Block representation (a) of a WCHB controller with its handshake signals and
STG representation (b) of the WCHB controller demonstrating the handshake behavior.

45

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

3.5 Checking Circuit Correctness

After launching the circuit, the circuit must be checked to verify circuit correctness.
This can only be done after the circuit had computed all tokens and when no token is being
propagated through the circuit. Then, the values in the capture registers can be extracted
through the scan path and matched with the expected values. If the the capture registers
contains the expected values, it indicates that the timing constraints between the control
and data paths are respected. Otherwise, the timing constraint between the launch/capture
registers have been violated.

3.6 Retrieving Path-Delay Information with Local Clock
Sets

As mentioned before, the LCS flow [19] enables the use of standard EDA tools to
run synthesis and STA on bundled-data circuits. The basic idea of the LCS flow con-
sists in using root clocks at each controller in order to “break” the combinational loops
in the control logic. Based on a given root clock, LCS derives launch and capture gener-
ated clocks, which allow to verify hold and setup timing constraints, respectively, beyond
neighbour root clocks. For the sake of illustration, we take a linear micropipeline-based
structure as shown in Figure 3.5. Here, a root clock clki is defined in controller ctrli. Not
only clki controls all registers in the stage as it is propagated to the next and previous
stages through the req and ack signal, respectively. The analysis between ctrli and the
next controller ctrli+1 verifies the setup constraint, whereas the analysis between ctrli and
the previous controller ctrli+1 verifies the hold constraint. In the next controller ctrli+1,
another root clock is also defined, blocking the STA analysis from clki to the registers in
the next stage. Thus, the LCS flow creates a generated clock g-setup-clki on clki+1. The
trick here is that g− setup−clki considers clki as the clock source, allowing to propagate
the STA analysis through clki+1 and until its respective registers. Because g-setup-clki

captures data propagated from clki, the LCS flow defines this generated clock as a cap-
ture clock of clki. The same idea applies for the previous stage. As clki−1 also blocks the
STA analysis, another generated clock is created on clki−1, now called g-hold-clki due to
the hold analysis. In this case, the LCS flow defines g-hold-clki as a launch clock of clki.

Because of this timing support created by the LCS flow, it is possible to check timing
violations with standard EDA commands (e.g. report_timing). Note that, during STA
checking, the tool is able to identify the required transitions to stimulate a given path,
such as a critical path or any desired path. This very same information is also the required
information that ATPG tools need to know how registers must be initialized for path-delay
testing.

It is important to indicate that, in our case, the path-delay extraction is software de-

46

3.6. Retrieving Path-Delay Information with Local Clock Sets

Ctrli+1

Ctrli dl

Ri Ri+1

clki

Ctrli-1 dl

Ri-1

Ctrli+1

g-hold-clki g-setup-clki

clki-1 clki+1

Root clock source

Root clock propagation

Generated clock

Figure 3.5: Local clock set definition with a linear 3-stage structure. By defining root
clocks at each controller, the LCS flow is capable to create generated clocks in the neigh-
bour controllers to allow setup and hold timing analysis.

pendent, specially because it must employ the same tools compatible with the LCS flow.
In that way, giving a more practical view of our approach, the path-delay information can
be extracted through Synopsys’ Primetime tool – currently supported by the LCS flow.
On top of that, Primetime interfaces Synopsys’ ATPG tool TretaMAX, which reads the
given path-delay information and generates test vectors for two-pattern testing. However,
the behavior of the local clock signals are not identical to the synchronous two-pattern
testing as the root clock and the generated capture clock pulse only once. Consequently,
the only valid expected register values generated by TetraMAX is in the capture registers
and all values in the launch registers must be ignored (don’t care).

47

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

3.7 Testing Non-linear Structures

Asynchronous circuits employ a complex control scheme far different from the con-
ventional linear scheme as illustrated in Figure 3.1. Thus, they can employ unconditional
and conditional flow schemes such as forks (a), joins (b), splits (c) and merges (d), as
indicated in Figure 3.6. According to the employed flow scheme, the proposed testing
technique must be adapted in order to properly insert tokens in the circuit without stalling
the circuit or violating the handshaking protocol.

With a fork scheme, the generated token propagates to all successor branches. This
implies that the controller in the sending end must be configured in launch mode and all
branch controllers in capture mode. As the fork employs a unconditional control flow, a
single token in the receiving controller propagates to all branches, allowing to verify the
operation correctness of all branches in parallel. The same idea applies to join schemes.
However, in this case, the branches controllers are the sending end. Then, all branch
controllers must be configured in launch mode. If the controller in the receiving end does
not receive tokens from all branches, no further token is generated and the circuit halts,
registering no new data in the receiving end.

(d)

S
P
L
I
T

M
E
R
G
E

(c)

(b)(a)

SPLIT/MERGE must select
the target branch

Tokens generated separetely
for each branch

Tokens generated in parallel

Figure 3.6: Token generation according the control path structure: (a) fork, (b) join, (c)
split and (d) merge. The arrows indicate where the token is generated (through ext_req)
and where it is propagated.

For conditional control flow, such as splits and merges, additional care is needed. In

48

3.8. Compatibility with Traditional Stuck-at Testing

split schemes, the split selector is responsible to redirect the flow to a target branch. In
order to test all branches, it is required to generate tokens propagating to a target branch,
which is selected by the split selector controller. Then, for a target branch, the sending
and split selector controller must be set in launch mode and the target branch controller
in capture mode. This process is repeated until all branches were selected and tested.

Again, the merge scheme considers a similar logic as the split scheme. For a target
branch, the target branch and merge selector controller must be set in launch mode and
the receiving controller in capture mode.

3.8 Compatibility with Traditional Stuck-at Testing

Another point that the proposed architecture takes into consideration is to keep the
compatibility with traditional testing, including the use of DfT and ATPG tools available
in the industry. In this case, we consider scan insertion and traditional stuck-at testing.
As the control part utilizes C-elements and combinational loops, the strategy focuses on
isolate the control part. Taking as example Figure 3.7, this is done through enabling the
Tmode signal, which bypasses all the control logic and redirects all the register control to
Tclk. Consequently, the circuit operates synchronously and the scan test protocol remains
the same. Tmode must remain enabled during the entire test cycle and SCenable only enabled
during scan-in and scan-out steps.

1

0

1

0

1

0

CLi-1

1

0

1

0

CLi

Ctrli+1Ctrli

dli

Tclk TclkTmode

HSBi HSBi+1

ext_req

acki-1 acki

reqi-1 reqi

acki+2

reqi+2

1

0

Ri Ri+11

0

1

0

SCenable

ext_req

clki clki+1datai-1

datai+2

datai

Tclk controls externally all
registersTmode isolates data path

from controllers

='1'

Figure 3.7: Stuck-at testing with proposed approach. Data paths are isolated with Tmode

signal, avoiding any interaction with controllers. Thus, circuit operates as a conventional
synchronous circuit.

49

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

3.9 Study-case Circuits

This work applies the proposed DfT architecture in two study-case BD circuit: a sim-
ple 2-bit adder and 128-bit Advanced Encryption Standard (AES) cryptocore. The target
technology in both cases is a 65-nm bulk CMOS technology provided by STMicroelec-
tronics. By considering a simple study case, it is possible to present minor details while
implementing the proposed DfT architecture. Thus, the reader will find required speci-
fication and Tool Command Language (TCL) commands for the LCS flow as well as for
ATPG scripting. Next, a more complex study case allows to better understand how the
proposed DfT architecture impacts a practical circuit. In this case, the reader will find
overall details such as fault coverage, area overhead and particular aspects while testing
non-linear structures. Remarks are also presented about the use of the available scripts,
standard cell libraries and EDA tools.

3.9.1 A simple circuit: 2-bit adder

Figure 3.8 (a) illustrates the architecture of the 2-bit BD adder. The adder employs a four-
phase micropipeline design and it has registered inputs and outputs, controlled by two
controllers ctrlin and ctrlout , respectively. Moreover, Figure 3.8 (b) shows the internal
implementation of the testable controllers used in this case. As the target technology
does not provide standard cell libraries with C-element gates, the C-element logic was
designed with conventional logic gates – see Figure 3.8 (c), which illustrates the gate-
level implementation of a majority-based C-element.

The controllers were instantiated manually before synthesis and they implement the
testable functionality required for the proposed DfT architecture. Despite Figure 3.8 indi-
cates the presence of SFFs in the design, the initial Verilog description only implements
conventional FFs, leaving the scan insertion to the DfT tool during synthesis. For syn-
thesis, it is considered Synopsys’ Reference Methodology (RM) flow scripts. To be able
to synthesize a BD circuit and perform STA analysis, the RM flow integrates the LCS
flow [19]. Listing 3.1 indicates the LCS specification for the 2-bit BD adder. First, it
specifies the input channel adder_in and the output channel adder_out (line 8 and 9). Be-
cause those channels interact with the external environment, the LCS requires the explicit
specification of the handshake signals and the data signals related to them. For instance,
for the input channel adder_in, the input handshake signals req_i and ack_i are explicitly
associated to the data signals op_a and op_b. Next, it specifies the root clocks clk_in and
clk_out (line 11 and 12). For each root clock, LCS associates it to its respective controller,
initial state (reset or set) and a budget clock period that the synthesis tool uses as timing
reference.

50

3.9. Study-case Circuits

(a)

Tclk

HSBin

ext_req

+

2

2

Ctrlin

dli

Ctrlout

2 2

opA

opB

sum

clkin clkout

HSBout

Tmode

Sen

Sen

Sen

SCenable

req_i

ack_i

req_o

ack_o

rstn

(b)

C

Tmode

Rack

HSB

Rreq
Lack

clk

rstn

1

0

1

0

Tclk

Lreq

ext_req

A B

rstn

Z

(c)
(a)

Tclk

HSBin

ext_req

+

2

2

Ctrlin

dli

Ctrlout

2 2

opA

opB

sum

clkin clkout

HSBout

Tmode

Sen

Sen

Sen

SCenable

req_i

ack_i

req_o

ack_o

rstn

(b)

C

Tmode

Rack

HSB

Rreq
Lack

clk

rstn

1

0

1

0

Tclk

Lreq

ext_req

RA

RB

Rsum

A
O

2
2

2
 g

a
te

a b c d e f

Figure 3.8: Architecture overview of the implementation of the (a) 2-bit BD adder, (b) the
testable controller and (c) majority-based C-element gate.

Listing 3.1: Root clock specification for the LCS flow.
1 ## Format (i n p u t / o u t p u t c h a n n e l) :
2 ## <channel_name > {< r e q _ s i g > < a c k _ s i g > < d a t a _ s i g > \
3 ## < b u d g e t _ c l k _ p e r > < b u d g e t _ d a t a >}
4 ## Format (r o o t c l o c k) :
5 ## <clk_name > {< i n s t _ c t r l _ n a m e > < r e s e t (R) | s e t (S) > < b u d g e t _ c l k _ p e r >}
6 array s e t r e g _ c t r l "
7
8 adder_in {req_i ack_i {op_a op_b} 2.5 {0 0}}
9 adder_out {req_o ack_o sum 2.5 {0.5 0.9}}

10
11 adder_stage1 {reg_ctrl_in R 1.0}
12 adder_stage2 {reg_ctrl_out R 1.0}
13 "

The LCS specification was also modified to support the majority-based C-element de-
sign. The C-element considered in this study-case circuit has not been implemented as a
single gate and internal combinational loops are visible by the STA tool. Normally, the
STA tool detects these loops and breaks them – disabling the timing arc that creates the
loop – in order to perform the STA analysis. To avoid any misjudgement by the STA
tool during synthesis, the LCS flow allows the insertion of dummy clocks at the input
pins where the loops are created. The STA tool will not perform its analysis beyond the
dummy clocks and no timing arc will be disabled. On top of that, the use of these dummy
clocks allow to specify timing constraints on the feedback structure, as the majority-based

51

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

design contains an isochronic fork that must be respected. Listing 3.2 shows the defini-
tion of extra dummy clocks for each C-element present in the circuit. The TCL script
directly searches all majority gates 1 present in the circuit and creates dummy clocks
DMC_loop_muller at the pins connected to the combinational loop. Taking into con-
sideration the majority-based C-element implementation in Figure 3.8 (c), pins D and E
connect the feedback with the output Z.

Listing 3.2: Required dummy clocks to avoid combinational loop issues inside the
majority-based C-element design.

1 s e t i 0
2 s e t l i s t _ m a j [g e t _ o b j e c t _ n a m e [g e t _ c e l l s −hier MAJ]]
3
4 foreach g a t e _ m a j $ l i s t _ m a j {
5
6 puts $ga t e_ma j
7 c r e a t e _ c l o c k −name DMC_loop_muller$ { i }_D \
8 −per iod ${DEFAULT_PERIOD} [g e t _ p i n ${ g a t e _ m a j } /D]
9 c r e a t e _ c l o c k −name DMC_loop_muller$ { i }_E \

10 −per iod ${DEFAULT_PERIOD} [g e t _ p i n ${ g a t e _ m a j } / E]
11
12 i n c r i
13
14 }

The RM script was modified in order to load the LCS constraint specifications as
well as to enable scan insertion and avoid any issues with the control part of the circuit.
Listing 3.3 shows the DfT-related commands added to the RM script. The commands
between lines 3 and 6 defines a basic timing test setup, including the definition of test
frequency of 10 MHz. The test setup values are standard and mostly used for tutorials
and examples like the study-case circuit. The command at line 8 only reinforces that the
selected scan style will utilize multiplexed FFs and line 9 specifies that the DfT tool will
implement a single scan chain. Next, it is necessary to specify the required DfT signals
for scan insertion. The set_dft_signal commands specify all standard scan signals. These
signals are the very same signals used for traditional scan-based synchronous implemen-
tation and, consequently, allow us to employ the synthesis tool despite of the BD design.
Basically, these commands enables the scan insertion into the design. The commands be-
tween line 28 and 37 address the control part of the circuit. In this case, all input signals
connected to the control part are set to values values, blocking the DfT tool to interact
with the control part. Note that it includes DfT signals req_ext_i and HSB signals. Those
signals remain constant during synthesis in order to guarantee the compatibility with the

1Note that this study-case circuit only employs majority gates inside the C-elements. In case majority
gates are used somewhere else in the design, this script section must adapted to target the majority gates
inside C-elements only.

52

3.9. Study-case Circuits

synthesis and LCS flows. On top of that, this avoids issues with theDfT tool due to the
combinational loops inside the control part, which may generate errors during synthesis.
Having all DfT signal specification, it is possible to create the STIL Protocol File (SPF)
with the create_test_protocol command (line 40). The final four commands (line 41-44)
verify, preview and insert the DfT structure into the circuit. More specifically, dft_drc
verifies the design rules of the DfT specification and structure, preview_dft allows to get
a preview of the scan architecture before it is actually implemented in the design and
insert_dft finally implements the scan chain.

Listing 3.3: Additional DfT commands in the RM flow for Synonpsys Design Compiler.
1 ## t i m i n g s e t u p
2 s e t t e s t _ d e f a u l t _ d e l a y 0
3 s e t t e s t _ d e f a u l t _ b i d i r _ d e l a y 0
4 s e t t e s t _ d e f a u l t _ s t r o b e 40
5 s e t t e s t _ d e f a u l t _ p e r i o d 100
6
7 s e t t e s t _ d e f a u l t _ s c a n _ s t y l e m u l t i p l e x e d _ f l i p _ f l o p
8 s e t _ s c a n _ c o n f i g u r a t i o n −cha in_coun t 1
9

10 s e t _ d f t _ s i g n a l −view e x i s t i n g d f t type ScanClock \
11 −port t c l k − t iming [l i s t 45 55]
12
13 s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type R e s e t \
14 −port r e s e t − a c t i v e _ s t a t e 0 \
15
16 s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type TestMode \
17 −port tm
18
19 s e t _ d f t _ s i g n a l −view spec −type ScanDa ta In \
20 −port op_a [0]
21
22 s e t _ d f t _ s i g n a l −view spec −type ScanDataOut \
23 −port sum [0]
24
25 s e t _ d f t _ s i g n a l −view spec −type ScanEnab le \
26 −port sc_en − a c t i v e _ s t a t e 1
27
28 s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type C o n s t a n t \
29 −port r e q _ e x t _ i − a c t i v e _ s t a t e 0
30 s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type C o n s t a n t \
31 −port hsb [0] − a c t i v e _ s t a t e 0
32 s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type C o n s t a n t \
33 −port hsb [1] − a c t i v e _ s t a t e 0
34 s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type C o n s t a n t \
35 −port r e q _ i − a c t i v e _ s t a t e 0
36 s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type C o n s t a n t \
37 −port ack_o − a c t i v e _ s t a t e 0

53

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

38
39 c r e a t e _ t e s t _ p r o t o c o l
40 d f t _ d r c
41 p r e v i e w _ d f t
42 i n s e r t _ d f t
43 d f t _ d r c

Having a synthesized design with the additional DfT commands in Listing 3.3, it is
possible to move forward with the PrimeTime tool, which allows us to perform STA anal-
ysis with all timing constraints generated by the LCS flow. Listing 3.4 shows the required
commands to load the design on PrimeTime after synthesis and enable STA analysis with
LCS. It also demonstrates how to export path-delay information to TetraMAX, which will
be later employed for the ATPG.

Listing 3.4: PrimeTime setup to load the design and enable STA analysis with the timing
constraints generated by the LCS flow. It also gives an example of extracting path-delay
information from adder_stage1 root clock. The script only extracts the critical path in
this case.

1 ## l o a d d e s i g n
2 r e a d _ v e r i l o g a s y n c _ 2 b _ a d d e r . m a p p e d . v −hd l_compi l e r
3 s e t _ d e s i g n _ t o p a s y n c _ 2 b _ a d d e r
4 l i n k
5 source a s y n c _ 2 b _ a d d e r . m a p p e d . s d c
6
7 ## r e q u i r e d commands on Pr ime t ime t o a l l o w STA a n a l y s i s
8 ## wi th t h e r o o t c l o c k s
9 s e t _ m u l t i c y c l e _ p a t h 0 −hold −from [g e t _ c l o c k s *] −to [g e t _ c l o c k s *]

10 s e t _ m u l t i c y c l e _ p a t h 0 −setup −from [g e t _ c l o c k s *] −to [g e t _ c l o c k s *]
11 s e t _ p r o p a g a t e d _ c l o c k [a l l _ c l o c k s]
12
13 ## j u s t c h e c k i n g i f t h e r e p o r t _ t i m i n g can i d e n t i f y t h e p a t h
14 ## between t h e r o o t c l o c k (a d d e r _ s t a g e 1) and t h e
15 ## c a p t u r e c l o c k (a d d e r _ s t a g e 2 _ a d d e r _ s t a g e 1 _ c)
16 r e p o r t _ t i m i n g −from a d d e r _ s t a g e 1 −to a d d e r _ s t a g e 2 _ a d d e r _ s t a g e 1 _ c \
17 −pa th_ type f u l l _ c l o c k _ e x p a n d e d
18
19 source $TETREMAX_PATH/ auxx / syn / tmax / p t 2 m a x . t c l
20
21 w r i t e _ d e l a y _ p a t h s − launch a d d e r _ s t a g e 1 \
22 −cap tu re a d d e r _ s t a g e 2 _ a d d e r _ s t a g e 1 _ c \
23 −max_paths 1 −nworst 1 −de lay_ type max \
24 $REPORT_PATH / a d d e r _ s t a g e 1 . r p t

The four initial commands (line 3 to 6) are responsible to load the synthesized design
and the Synopsys Design Constraints (SDC) file containing the timing constraints gen-
erated by the LCS flow, including all root clocks and generated capture/launch clocks.

54

3.9. Study-case Circuits

Next, the two following set_multicycle_path commands (line 10 and 11) specify that the
STA analysis between root clocks has no multi-cycle relationship among them. Thus,
the STA tool will verify the timing between root clocks in the same cycle. This applies
for both setup and hold. After that, the command set_propagated_clock can be applied.
Usually, this command propagates delays through the clock network of a synchronous
circuit. However, as there is no clock network but the control logic of the BD circuit, the
set_propagated_clock command propagates delays through the control part of the circuit,
considering the latency of the delay line inserted in the request signals. Because this must
be done to all root clocks, the command in line 12 uses as argument all_clocks. The re-
port_timing in line 17 displays the timing checks between the root clocks adder_stage1
and adder_stage2. In this case, PrimeTime verifies if data are correctly propagated from
the inputs of the registers RA and RB (launched by adder_stage1) until the input of the
register Rsum, which is captured by adder_stage2. Notice that the report_timing com-
mand uses adder_stage1 as starting point, with the argument -from, and its generated
capture clock adder_stage2_adder_stage1 as endpoint (argument -to). For debugging,
the -path_type full_clock_expanded is an useful argument in this command as it displays
not only the delays of the data path but also the delays of the control path, allowing to see
exactly all considered delays by PrimeTime during STA analysis.

If the report_timing command indicates that the timing constraints have been re-
spected, it is possible to move forward to ATPG. Fortunately, PrimeTime provides in-
terface with TetraMAX, including the possibility to export path-delay information of the
data path using the write_delay_paths command. Initially, write_delay_paths is not a na-
tive command on PrimeTime and, thus, must be loaded with a dedicated script called
pt2max.tcl, which provides extra commands to better interface PrimeTime and Tetra-
MAX. This script can be found in the directory where TetraMAX has been installed. Line
20 presents a source command loading the pt2max.tcl script. The $TETRAMAX_PATH
represents the root directory of TetraMAX and must be set previously. After sourcing it,
the write_delay_paths command is finally available. Line 22 shows how to export the
path-delay information of the critical path between adder_stage1 and adder_stage2 with
write_delay_paths. Similarly to the report_timing command, it is necessary to indicate the
launch and capture clocks of the given path. As it extracts the same path checked with re-
port_timing in line 17, the clock definition remains the same: launch clock adder_stage1
and capture clock adder_stage2_adder_stage1. For the sake of simplicity, this example
extracts only the critical path (-max_paths 1 -nworst 1) for setup analysis (-delay_type
max). The result of this command can be seen in Listing 3.5, in which the gates compos-
ing the critical path and the required transitions – for stimulating it – are indicated.

55

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

Listing 3.5: Output of the write_delay_paths command containing path-delay information
of the data path between root clocks.

1 $ p a t h {
2 / / f r o m : r e g _ a _ r e g _ 0
3 / / t o : reg_sum_reg_1
4 $name "adder_stage1-adder_stage2_adder_stage1_c_1" ;
5 $ c y c l e 0 . 0 ;
6 $ s l a c k 0 . 6 2 ;
7 $ t r a n s i t i o n {
8 "U16/A" ^ ; / / (BFX4)
9 "U13/A" ^ ; / / (NAND2X5)

10 "U15/A" v ; / / (XOR2X9)
11 "reg_sum_reg_1_/D" v ; / / (SDFPRQX4)
12 }
13 }

Having the synthesized design and the path-delay information extraction from Prime-
Time, we have the required information to perform ATPG for path-delay testing on Tetra-
MAX. Listing 3.6 shows the basic commands to load the design and the path-delay in-
formation. Initially, the design netlist is loaded (line 1) with the read_netlist command 2.
From line 4 to 6, TetraMAX builds the in-memory simulation model from the design
modules that have been read into TetraMAX, loads the SPF file – generated by Design
Compiler during DfT specification – and defines the path-delay model as the target fault
model. Next, by using the add_delay_path (line 9), it is possible to load the path-delay in-
formation recently obtained from PrimeTime and create a list of faults for test generation
with the add_faults command (line 10). At this point, the report_delay_paths can be used
to verify whether TetraMAX processed correctly the path-delay information. The output
of this command displays the same information as Listing 3.5, but in a specific TetraMAX
format. On top of that, TetraMAX provides graphical support to better visualize the given
path and how it will be stimulated. This graphical support is useful for debugging, spe-
cially in the case where it is not straightforward to check the ATPG results. For example,
line 13 presents the usage of the report_delay_paths once again, but now explicitly tar-
geting the critical path – labeled as adder_stage1-adder_stage2_adder_stage1_c_1. Note
that the command uses the -display argument to enable the graphical interface. Figure 3.9
shows the output of the report_delay_paths commands, highlighting the given critical
path and all transitions along the path.

2Extra read_netlist commands loading cell libraries or any sub-modules were omitted for the sake of
simplicity.

56

3.9. Study-case Circuits

Listing 3.6: Loading scan-chain specification (SPF file) and path-delay information into
TetraMAX. The loaded path-delay information in this example contains the critical path
of the first stage (root clock adder_stage1).

1 r e a d _ n e t l i s t $NETLIST_PATH / a s y n c _ 2 b _ a d d e r . m a p p e d . v
2
3 ## l o a d i n g scan−cha in i n f o p r o v i d e d from Design Compi le r
4 r u n _ b u i l d _ m o d e l a s y n c _ 2 b _ a d d e r
5 r u n _ d r c a s y n c _ 2 b _ a d d e r . s p f
6 s e t _ f a u l t s −model p a t h _ d e l a y
7
8 ## l o a d i n g pa th−de lay i n f o p r o v i d e d from Pr ime t ime
9 a d d _ d e l a y _ p a t h $REPORT_PATH / a d d e r _ s t a g e 1 . r p t

10 a d d _ f a u l t s −al l
11
12 r e p o r t _ d e l a y _ p a t h s −al l
13 r e p o r t _ d e l a y _ p a t h s a d d e r _ s t a g e 1− a d d e r _ s t a g e 2 _ a d d e r _ s t a g e 1 _ c _ 1 \
14 −d i s p l a y −p inda ta
15
16 ## s e t t i n g up and f i r i n g t h e ATPG
17 s e t _ a t p g − f u l l _ s e q _ a t p g
18 r u n _ a t p g −auto
19
20 w r i t e _ p a t t e r n s a s y n c _ 2 b _ a d d e r _ s t a g e 1 . s t i l − s e r i a l −format STIL − r e p l a c e

Finally, the path-delay testing setup is done and the ATPG engine can finally generate
the test patterns, through the run_atpg command (line 18). In line 20, the write_patterns
command dumps all testing procedure into a Standard Test Interface Language (STIL)
file. The STIL file provides the stimulus information for the test cycle, including signal
timing, test patterns and the stimuli for scan-in, scan-out and test run. However, it is
important to notice that the ATPG tool considers that the Design Under Test (DUT) has
a synchronous design. Because of that, the stimuli in the generated STIL file employs a
standard two-pattern testing and it is not compatible with the proposed DfT architecture.
Therefore, the STIL demands modifications before use. In order to adapt the test cycle to
the proposed DfT architecture, three main modifications must be done in the STIL file:

• Replace the two clock pulses during the test run by a single pulse in the ext_req
signal;

• Enable HSB configuration, allowing to set controller to launch or capture mode;

• The Tmode signal must be disabled during the test run;

• During scan-out, ignore any value but from the capture registers;

57

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

SDFPRQX4- D
- CP
- RN
- TI
- TE

Q
0->1

BFX40->1
A Z

0->1 NAND2X5A
- B

Z 1->0
XOR2X91->0

A
- B

Z 1->0
SDFPRQX41->0

D
- CP
- RN
- TI
- TE

Q
CN

Figure 3.9: Path-delay information displayed on TetraMAX, indicating all transitions
along a given path.

3.9.2 A more complex circuit: 128-bit AES cryptocore

This section details the implementation of the proposed testing architecture in a more
complex circuit: a 128-bit AES cryptocore. The AES was designed and synthesized
in-house, using a 65-nm CMOS technology from STMicroelectronics. Moreover, this
study-case circuit was tape-out and sent for fabrication - more details about the prototyped
testchip can be seen in Appendix B. Similar to the other study-case circuit, this section
also includes stuck-at and at-speed testing.

C

Tmode

Rack

HSB

Rreq
Lack

clk

rstn

1

0

1

0 Tclk

Lreq

ext_req

(b)

ADD SUBSH MIX

ADD' SUB' ADD''

Tclk

HSBin

AES Control

8-bit HSB shift register

AES Data path

ackout

reqout

ackin

Tmode ext_req

reqin

SCen

(a)

plaintextin

keyblockin

chipertextout

selm
erge

clk
stage1

clk
stage2

clk
stage3

selsplit

clk
stage4

clk
stage5

clk
stage6

HSB
0

HSB
1

HSB
2

HSB
7

counter

clk
cnt1

clk
cnt2

22

Figure 3.10: Block diagram of the considered micropipeline-based AES core (a) and the
testable micropipeline controller (b). Red arrows indicate the additional testing signals.

Figure 3.10 (a) depicts the register stages of the AES core, where each stage is con-
trolled by a separated root clock. The original core comprises two main blocks: control
and data path blocks. The control block employs a four-phase handshaking protocol and
nteracts with the external handshaking interfaces on one side and control the registers in
the data path on the other side. The AES data path block implements a FF-based design
and its execution is controlled through 8 root clock signals (clklabel) and two one-hot con-
trol signals for the merge and split structures (selmerge and selsplit), all generated by the
control block.

The first main modification in the design is the employment of a testable version of
the micropipeline controllers, illustrated in Figure 3.10 (b). The testable version adds the
HSB logic (left MUX and AND gate) and a second multiplexer to implement the testing
clock bypass. Moreover, a 8-bit shift register has been added into the design to enable the
configuration of the HSB logic of each micropipeline controller. Each bit of the HSB shift

58

3.9. Study-case Circuits

Table 3.1: Area results of the original and the proposed testable AES core.

Implementation Original Proposed

Combinational (um2) 45280.80 54752.64

Buffers/Inverters (um2) 8758.80 10154.64

Non-combinational (um2) 11146.56 13138.80

Macro/black box (um2) 86.16 86.16

Total (um2) 56513.52 67977.60

Area Overhead (%) - 20.28

register allows to access directly one of the eight root clocks. Note that the Tclk controls
both AES control block and the HSB shift register. Thus, during scan manipulation, the
HSB shift register can be loaded at the same time.

The synthesis step considers the Synopsys’ Design Compiler tool with the LCS flow
support. All controllers have been manually replaced by their proposed testable counter-
part. The LCS flow has been modified to enable the DfT insertion through Synopsys’ DFT
Compiler. Taking a full-scan approach in this study case, the DFT Compiler replaces all
registers for scannable FFs and only considers Tclk, SCen and Tmode signals to control the
scan path. The remaining testing signals (HSBin and ext_req) are ignored. As the Tmode

bypasses the control block when enabled, the DfT tool ignores the AES control block
and HSB shift register during scan insertion. Table 3.1 compares the area results of the
original and the proposed testable AES core. With the addition of the testable controller,
the 8-bit shift register and the scan path, the testable AES presents an area overhead of
around 20%. This overhead comes mostly from the scan path, as the shift register and the
AES control block only contribute to 0.3% of the area overhead. As the AES control path
represents 1.5% of the area consumption, it was expected that the extra circuitry in the
control part should not inflict a significant impact.

As the control block is bypassed and the AES data path employs FF registers, it is
possible to use a conventional ATPG tool, such as Synopsys’ TetraMAX, to generate test
patterns for traditional stuck-at testing. Table 3.2 gives a summary of the ATPG for the
testable AES core. The ATPG achieves 99.30% of fault coverage considering the full-
scan architecture considered in this study case. As the ATPG tool is not able to manage
the asynchronous logic of the controllers, the tool is configure to not test the control path,
which includes the handshake signals and the signals dedicated to at-speed testing (HSBin

59

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

1st
test cycle

2nd
test cycle

merge sel
ctrl

split sel
ctrl

split sel
ctrl

Figure 3.11: HSB configuration for each test cycles during at-speed testing. Arrows
represent where each token is inserted and the target path.

and ext_req).

Table 3.2: ATPG result summary for stuck-at testing.

Detected 218323

Undetectable 17

ATPG Untestable 1550

Not Detected 0

Total Faults 219890

Test Coverage 99.30%

Scan Patterns 217

During at-speed testing, the proposed architecture verifies whether the delay lines
between controllers match the critical paths between controllers – as previously detailed
in Equation 3.1 – and also validates the controller operations.

The testing patterns were generated with an ad-hoc approach, stimulating the critical
path of each pipeline stage. Here, the LCS flow provides essential information to assist
the pattern generation. As the LCS flow creates root clocks and generated launch/capture
clocks to enable STA analysis between control and data paths, this same information is
used to stimulate the desired critical path. In our case, all critical path information is

60

3.9. Study-case Circuits

obtained with Synopsys’ PrimeTime, which is able to read all constraint files created by
the LCS flow and indicate the required transitions to stimulate the critical path. For ex-
ample, Listing 3.7 shows the PrimeTime’s output regarding the critical path in the loop
between MIX (clkstage3) and ADD (clkstage1) stages. Note that the critical path informa-
tion provided by PrimeTime contains only the stimuli at the data path – not the control
part. Thus, the HSB configuration necessary to properly activate the correct launch/cap-
ture clocks was done manually according each case.

Listing 3.7: Example of critical path between two root clocks of the AES circuit. This
example considers the critical path in the loop between the third stage (MIX) and the first
stage (ADD).

1 $ p a t h {
2 / / from : d a t a p a t h / round / mix / \
3 / / c o l m i x _ r e g / o u t r k e y _ r e g _ 0 _ _ 3 _ _ 3 _
4 / / t o : d a t a p a t h / round / add / \
5 / / addkey_reg / s u b s t _ d _ r e g _ 3 _ _ 5 _
6 $name " a e s _ s t a g e 3−a e s _ s t a g e 1 _ s e t u p _ m e r g e _ c " ;
7 $ c y c l e 0 . 0 ;
8 $ s l a c k 0 .679212 ;
9 $ t r a n s i t i o n {

10 " d a t a p a t h / U355 / D0" ^ ; / / (HS65_LH_MUX21X27)
11 " d a t a p a t h / round / add / addkey_comb_in / \
12 keysched1_comb_in / sub0_comb / U286 /A" ^ ; / / (BFX27)
13 " d a t a p a t h / round / add / addkey_comb_in / \
14 keysched1_comb_in / sub0_comb / U34 /A" ^ ; / / (NAND2X43)
15 " d a t a p a t h / round / add / addkey_comb_in / \
16 keysched1_comb_in / sub0_comb / U275 / B" v ; / / (NOR2X25)
17 " d a t a p a t h / round / add / addkey_comb_in / \
18 keysched1_comb_in / sub0_comb / U127 /A" ^ ; / / (IVX22)
19 " d a t a p a t h / round / add / addkey_comb_in / \
20 keysched1_comb_in / sub0_comb / U14 /A" v ; / / (NOR2X3)
21 " d a t a p a t h / round / add / addkey_comb_in / \
22 keysched1_comb_in / sub0_comb / U47 / B" ^ ; / / (NOR2X13)
23 " d a t a p a t h / round / add / addkey_comb_in / \
24 keysched1_comb_in / sub0_comb / U119 / C" v ; / / (OAI211X3)
25 " d a t a p a t h / round / add / addkey_comb_in / \
26 keysched1_comb_in / sub0_comb / U18 /A" ^ ; / / (CBI4I1X3)
27 " d a t a p a t h / round / add / addkey_comb_in / \
28 keysched1_comb_in / sub0_comb / U62 /D" v ; / / (CB4I1X18)
29 " d a t a p a t h / round / add / addkey_comb_in / \
30 keysched1_comb_in / sub0_comb / U147 /D" v ; / / (OAI211X5)
31 " d a t a p a t h / round / add / addkey_reg / \
32 s u b s t _ d _ r e g _ 3 _ _ 5 _ /D" ^ ; / / (SDFPRQX4)
33 }
34 }

61

Chapter 3. Proposed At-speed DfT Architecture for Bundled-data Design

The testing patterns were loaded in the scan chain and the HSB shift register was
configured to set which controller would operate in launch or capture mode. Figure 3.11
presents the two testing cycles performed in the study-case circuit, indicating where the
test inserts tokens. The end of each arrow represents the last controller where the tokens
was propagated and their respective registers contains the resulting pattern to be checked.
Moreover, as already discussed in subsection 3.7, the test of split and merge schemes
requires that the selector controllers propagate the token to the target branch. The two
cycles are required due to the fact that the HSB configuration disables the left handshake
communication of the launch controllers. Thus, it is not possible to verify the timing
constraints between the launch controllers and any precedent controller.

3.10 Conclusions

This chapter presents an at-speed DfT architecture for bundled-data circuits, applied to
micropipeline designs. By modifying the micropipeline controller, it is possible to verify
whether the forward timing constraints between the control and data paths have been
respected. In addition to that, the architecture still enables traditional stuck-at testing,
allowing the use of DfT and ATPG tools already available on the market. The proposed
DfT architecture is then implemented in two study-case circuits: a simple two-bit BD
adder and a 128-bit AES cryptocore. Considering the two-bit adder, it is presented the
synthesis setup to enable the DfT during synthesis and the required LCS configuration.
This chapter further details the use of the LCS flow in the ATPG step, showing how the
tool can use LCS as reference to collect path-delay information of the circuit. With a
128-bit AES core as study-case circuit, the modifications in the micropipeline controllers
and the addition of the HSB shift register only contributes to a total area increase of 0.3%.

The architecture also leverages from the LCS flow to see exactly the stimuli required
to activate the critical paths. This allowed us to properly load the scan chain and launch
two-pattern testing to verify the timing constraints. However, it is important to highlight
that the entire test setup is not yet fully automated and it will be addressed in the fu-
ture. Another current limitation of the proposed architecture is that, after inserting tokens
through the ext_req signal, it is not possible to evaluate whether the circuit had finished
the test run. In nominal operation, the end of the test could be estimated according an ex-
pected worst-case delay, albeit this estimation is not trivial in a voltage scaling scenario,
for example. Consequently, the architecture could employ any structure responsible to
acknowledge the end of the test run. As a last point, the proposed DfT architecture can
be extended to allow at-speed testing for any bundled-data template, covering templates
such as Click, MOUSETRAP or GasP.

62

Part III

Side-channel Analysis of Asynchronous
Circuits

64

4
State-of-the-Art on Hardware Trojan

Detection

Contents
4.1 Hardware Trojan Model and Taxonomy 66

4.1.1 Insertion . 67

4.1.2 Abstraction Level . 68

4.1.3 Activation Mechanism . 68

4.1.4 Effect . 69

4.1.5 Location . 69

4.2 Hardware Trojan Detection . 71

4.2.1 Power Consumption Monitoring 74

4.2.2 Delay Monitoring . 74

4.2.3 EM, Thermal and Substrate Monitoring 75

4.2.4 Multi-parameter Monitoring 76

4.3 Conclusions . 76

65

Chapter 4. State-of-the-Art on Hardware Trojan Detection

4.1 Hardware Trojan Model and Taxonomy

As shown in Fig. 4.1, a HT is decomposed into two parts [72]: (1) a payload that
is responsible to cause the harmful effects on the functionality/specification of the target
IC design; and (2) a trigger that is a mechanism to activate the payload – kept inactive
until an attacker provokes an activation event. If the HT is an always-on circuit, the
activation event happens when the the IC is powered. However, attackers can employ
internal or external activation schemes in order to make the payload inactive. Thus, the
HT remains stealthy during verification and validation steps, and their harmful effects
might be inconspicuous regarding IC manufacturing Process Variations (PVs) as they are
such as small parasitic elements in the target IC design. If the HT is always on, it is
normally built less perceptible than the payload to reduce impacts on the target IC design
and thus prevent its detection. Thereby the HT model is basically a dormant circuit that,
once triggered, modifies the system original behavior.

Trigger Payload

Circuit original
Signal

Trojan
output

Trigger
inputs

Hardware Trojan

Hardware
Trojan

Figure 4.1: Representation of a HT in a standard cell-based IC design. The shadowed
part illustrates the area used by the HT. The considered HT model comprises two main
logic blocks: a trigger and a payload. The trigger is responsible to activate the pay-
load according to a specific input. Usually, the payload logic remains inactive to avoid
detection.

In order to evaluate the risks of HTs, several studies have been reported taxonomies [72–
76] abstracting different categories related to the architecture, effects, and insertion of
Trojans in ICs. Figure 4.2 summarizes the existing HT taxonomies, highlighting five cat-
egories: insertion phase, abstraction level, activation mechanism, effect and location. A
discussion about these different categories is presented throughout this section.

66

4.1. Hardware Trojan Model and Taxonomy

Specification

Design

Fabrication

Post-silicon

Assembly &
Package

Insertion Phase

System

Development

RTL

Layout
(physical)

Gate

Transistor

Abstraction Level

Function
change

Reability
Reduction

Information
Leak

Denial of Service
(DoS)

Effect

Processor

Memory

I/O

Power Supply

Clock

Location

External
activation

Internal
activation

Always-on

Activation

Hardware Trojan Taxonomy

Figure 4.2: Hardware Trojan taxonomy, classified in five main categories: insertion
phase, abstraction level, activation mechanism, effect and location.

4.1.1 Insertion

Initially, a HT can be classified according to when it is inserted through the design process.
Therefore, the insertion phase of a HT can occur during specification, design, fabrication,
assembly & packaging and post-silicon test. Considering the insertion during the specifi-
cation step, an adversary could intentionally define weak requirements for the system. As
a possible result, design reliability may become compromised making the device vulner-
able to leak sensitive information. Even if the whole design step could be done entirely
in-house and the probability of the insertion of a malicious circuitry is minimal, the simple
usage of untrusted tools, libraries, third-party IPs and standard cells may affect the circuit
in a harmful way. For instance, untrusted tools may add extra circuitry in the system to
introduce backdoors in a genuine design. If any step of the design phase is outsourced,
a HT could be directly added to the hardware description files of the genuine circuit.
During fabrication, an untrusted foundry, mask shop or their personal are able to retrieve
the genuine circuit components and thus predict its behavior and probable applications.
Therefore, the design becomes susceptible to modifications. Modifying physical circuits
characteristics (sizes and channel doping concentration level) [77] can also increase the
circuit vulnerability to fault-based attacks. In the assembly and packaging phase, the IC is
encapsulated and the packaged chip is assembled on a Printed Circuit Board (PCB) with
other hardware components. An adversary may add malicious hardware components sur-
rounding the genuine design to provoke malfunctions or increase leakages. Finally, at the
post-silicon testing phase, an adversary is no longer able to modify the genuine IC, how-
ever the test set-up, programs or reports may be changed in order to mask the presence of
a HT. Moreover, as it is the last step of the IC production flow, it is the last opportunity to
detect HT before releasing it to their customers.

67

Chapter 4. State-of-the-Art on Hardware Trojan Detection

4.1.2 Abstraction Level

The abstraction level refers to possible tampers with the design if an adversary has an
access to sensitive files at six different abstraction levels: system, development, Register-
Transfer Level (RTL), gate, transistor and layout. At system level, a HT can simply be
alterations in function specifications, protocols, interfaces and constraints of the genuine
design. An adversary involved at the system level may add some obscure specifications
to give him the control of secret data that is usually not available to the user. As an exam-
ple, an adversary at the specification phase could change specifications of a True Random
Number Generator (TRNG) to make it working in a predictable way due to some con-
ditions that only the owner of the HT is aware of. This is able to considerably reduce
the reliability of systems based on these architectures and potentially provide confidential
data to attackers. During Development, untrusted tools and scripts may present hidden
functions, leading designers to generate circuits infected by HT. On top of that, the ver-
ification process can be compromised with untrusted simulation tools and testbenches,
which could mask the HT effects. Any unreliable third-party vendor is able to insert HTs
at this level. At RTL level, a HT can also be a simple modification in genuine RTL codes
or constraint files. An attacker can modify circuit functions in order to provoke significant
consequences such as failures or out-of-spec behaviors. Attackers (designers) or untrusted
code suppliers are possible sources for the HT insertion during the design phase. Next,
a gate-level HT comprises the addition or removal of one or more gates in the original
netlist. The attacker can also modify Standard Delay Format (SDF) files, for instance,
changing timing checks, constraints, and delays to hide any effects caused by the netlist
modification. Adversaries during the gate design phase are third-party vendors or design-
ers accessing the circuit to implement HT at this level. On transistor-level, it is possible to
significantly increase leakages, opening backdoors for attackers to get knowledge about
security-oriented circuit internal states. Moreover, transistors may be added to increase
critical path delays, leading the circuit to malfunction. Adversaries at the transistor design
phase are possibly designers or untrusted tools, libraries and models. Finally, at physi-
cal level, original parameters of circuit components are vulnerable even after the layout
generation. An attacker can alter original masks, changing transistor geometry or channel
doping concentrations. On addition to that, wires can be resized, generating malfunctions
or any negative side effects. Adversaries at design and fabrication levels, or third-party
mask shops have access to modify the original layout and insert such HT.

4.1.3 Activation Mechanism

The activation mechanism of a HT can be classified as always-on, internal and external ac-
tivated. If a HT is always activated, its effects on the circuit may upset some device prop-
erty, making it exposed to verification and validation routines. However, if a HT remains
dormant until the deployment phase, its disturbances in the circuit behavior become less

68

4.1. Hardware Trojan Model and Taxonomy

noticeable, creating obstacles for its detection. For this purpose, HT are likely to feature
activation mechanisms used to wake-up them under certain conditions accomplished only
after the verification and validation phases. Thus, HTs are considered dormant during test
routines and hostile after being activated. With an always-on HT, the circuit behavior is
always affected by the HT. Consequently, the HT is only composed by its payload and
as no trigger. With an internal activation mechanism, the HT is activated when specific
internal conditions occur in the circuit. For example, an internal counter may trigger the
HT if the counter reaches a certain value. Besides that, internal signal patterns or rare
conditions may trigger this type of HT. Considering an external activation mechanism,
the HT are activated by an attacker aware of the HT presence in the circuit. In this case,
a HT could be triggered when a certain value is set in the logic, such as internal register
or even inputs. Thus, attackers knowing the activation mechanism are able to externally
wake-up it. Sophisticated trigger mechanisms rely on very rare sequences, conditions or
even side-channel attacks, making its detection almost impossible by users, which are not
aware of these activation mechanisms.

4.1.4 Effect

A HT may lead the device to different effects depending on the adversary possibilities and
intentions. In this category, a HT can be classified in four main effects: function change,
reliability reduction, information leak and Denial of Service (DoS). Initially, change func-
tion is one of the most straightforward effects that a HT can implement. As it suggests,
this effect adds or removes original circuit functions. For instance, HTs could lead to im-
proper calculations under specific conditions, compromising the main system operations.
Considering now the reduce reliability effect, the HT can downgrade the system perfor-
mance such as speed reduction, making circuit faulty or downgrading security. This can
be used by an attacker to perform side-channel attacks. In other system applications, HT
can increase the power consumption, causing a faster battery discharge to interrupt the
circuit operation. Another critical effect that HTs could implement is information leak.
Mostly in secured applications (e.g cryptography), HTs focus on leaking secured data
through primary outputs or side-channel signals. An adversary could add a comparator
HT that enables the key leakage whenever a certain input or sequence of outputs is set.
Finally, the HT can make the circuit no longer able to work properly, generating a DoS.

4.1.5 Location

Trojans are also classified according to the location they are inserted in the design. In
this case, the literature reports five main locations: processor, memory, I/O, power supply
and clock. A HT inserted in the processor logic may add and remove instructions of
processors, leading it to operate suspicious functions and cause malfunctions. In the
memory, an attacker with the control of memory elements may be able to get access to

69

Chapter 4. State-of-the-Art on Hardware Trojan Detection

secured data and clear sensitive data stored in the device. If the I/Os are compromised,
pins controlled by the HT may lead the circuit to misbehave, display wrong signals or
monitor communications. Next, HTs in the power supply grid may control the device
voltages and currents, increasing leakages or causing failures. If the HT affects the circuit
clock structure, it may alter circuit frequency or increase clock noise causing glitches or
introducing jittery. This threat can cause secure blocks to leak information and create
vulnerabilities to side-channel attacks.

70

4.2. Hardware Trojan Detection

4.2 Hardware Trojan Detection

For ensuring the IC trustworthiness, different techniques can be implemented to detect
or prevent HT according to the level of trust required for each phase of the design. Several
studies have reported comprehensible surveys about most detection methods presented in
literature, classifying them in accordance with their approaches. The techniques basically
evaluate the deviations caused by HTs on the system behavior or look for possible profiles.
To this aim, the designers must be aware of at least a single specific parameter from the
genuine device or define a target HT model to be detected. If the deviation produced in
the evaluated parameter of a DUTT is greater than an acceptable margin, the DUTT is
classified as Trojan infected. In Figure 4.3, a scheme based on prior surveys and works
presents the two main categories of testing techniques for HT detection: destructive and
non-destructive. Note that this section focuses on non-destructive techniques, as it is the
approach selected for the proposed technique in Chapter 5.

Transient Current

Quiescent Current

Delay

EM

Side-channel
Analysis

Functional Testing

Post-silicon
Testing

Run-time
Monitoring

Non-destructive
HT Detection

Figure 4.3: Classification of non-destructive HT detection techniques.

The destructive techniques require reverse engineering of the genuine design in or-
der to physically inspect it. A brute-force strategy for HT detection after fabrication is
reverse-engineering the manufactured DUTT in order to recover its layout and look for
discrepancies in relation to the original trusted one. This approach is possible thanks to
high precision optical and Scanning Electron Microscope (SEM) after Chemical Mechan-
ical Polishing (CMP). Despite presenting reliable results, these techniques feature some
drawbacks such as being expensive, time-consuming, destructive, and difficult to be in-
tegrated into the regular testing phases. Moreover, to validate the manufactured lot of a
particular IC, it would be necessary to sample at a least a few DUTTs to test it. Hence,

71

Chapter 4. State-of-the-Art on Hardware Trojan Detection

even though a DUTT is stated as Trojan-free, it cannot be deployed after the physical
inspection.

As indicated in Figure 4.3, the non-destructive techniques are divided into: (1) post-
silicon testing techniques that rely on detecting Trojans before the deployment of the
device; and (2) run-time monitoring techniques that consist in on-line mechanisms able
to detect and indicate – during the normal IC operations – malicious activities or mal-
functions caused by Trojans. Functional or logic testing techniques are originated from
regular verification and validation phases. Its operation consists in evaluating the behavior
of primary outputs and internal nodes of circuit given a set of input vectors. If the DUTT
presents suspicious deviations or properties, the design is assumed to be HT infected.
Functional tests can therefore be performed to detect Trojans at any step of the IC de-
sign. There are different approaches addressing functional testing. A common approach
is defining and identifying possible suspicious nets in the netlist. The authors in [78]
proposed a method for finding weakly correlated signals or isolated sections in the netlist
to find possible HT triggers. In [79], the authors compare HT in the literature in order to
define architectural patterns frequently used in HT designs. Then, they implement a score-
based classification method to detect Trojans in untrusted netlists. Both methods [78, 79]
are able to detect gate-level HT in non-certified netlists based on their assumptions about
the HT model. The studies [80–82] propose detecting suspicious activities caused by
Trojans in third party IPs. In addition, if a complete trusted specification is available, a
high-level golden model can be generated to perform a formal verification method such as
Sequential Equivalence Checking (SEC) to identify a possible HT. However, without hav-
ing any trusted specification of the design, the latter is consider as a black box, rendering
the HT detection quite challenging. Techniques like in [83, 84] are able to detect Trojans
implemented at different levels by applying data vectors at the DUTT primary inputs with
the intention of stimulating and activating the HT in order to check possible modifications
at the DUTT primary outputs caused by the Trojans. In [85–87], the authors presented
test generation strategies to optimize the number of test vectors needed to activate a Tro-
jan. Furthermore, other approaches such as the one presented in [88] are implemented to
maximize the probability of triggering Trojans by inputing test patterns based on multiple
multiple stimuli of rare logic conditions. This method allows the reduction of the number
of required test vectors compared to a weighted random pattern. With the HT activation,
the effectiveness of functional tests for its detection is fairly enhanced.

The HT detection techniques based on side-channel analysis focus on the fact that Tro-
jans, even inactivated, cause leakages in terms of power, delays and EM emissions [89]. If
a golden model is available, the HT detection is performed by comparing the side-channel
traces from certified Trojan-free devices (i.e golden ICs) and DUTTs. In side-channel
analysis, security designers have to deal with two main challenges: (1) the PV and envi-
ronment variations, which possibly masks Trojan effects in the side-channel signals, and
(2) the need for a golden model. The effects of PV basically results in an alteration of

72

4.2. Hardware Trojan Detection

circuit parameters such as threshold voltages, channel lengths and oxide thickness. For
instance, threshold voltages can approximately fluctuate 20% among its typical value in
modern technologies [90]. Thus, ultra-small HT – sized on the order of 100 to 10000
times smaller than the original circuit dimensions – would naturally be masked by PV.
This implies that the design and test efforts must be considered in order to reduce or
compensate the PV effects. Each method proposes different strategies with this purpose.
The need for a golden model is overcome by collecting signatures from golden refer-
ences obtained from devices certified by physical inspection or certificated fabrication
process. Furthermore, the literature also explores alternatives, such as the possibility of
generating fingerprints only based on trusted simulation models and measurements from
process control monitors, without requiring certified ICs [91]. An illustrative example of
the detection procedure is presented in Figure 4.4. A certain input vector is applied at the
primary inputs of a set of golden ICs and thus, the side-channel signals are collected to
produce a golden signature in a space of parameters. The same test procedure is applied
to a set of DUTT devices, producing data to be compared with this golden signature. In
Figure 4.4, the golden data are used to generate the “HT-free zone”. This zone can be
generated through Minimum Volume Enclosing Ellipsoid (MVEE) or any classification
algorithm able to sort the devices in a HT-free class. Different side-channel signals such
as power consumption, delay, EM, temperature, oscillation frequency or even substrate
impedance are used to generate signatures from golden devices and DUTTs. Besides
that, combination of intrinsically related parameters were also proposed as a solution to
compensate PV effects.

Parameter #1

P
ar

am
et

e
r

#2

Genuine IC
HT-infected IC
HT-free Zone

Figure 4.4: Illustrative example of HT detection through side-channel analysis. The ex-
ample considers two generic parameters extracted from a golden reference to be able to
differ HT-free and HT-infected devices.

73

Chapter 4. State-of-the-Art on Hardware Trojan Detection

4.2.1 Power Consumption Monitoring

Regarding power consumption, it is possible to extract dynamic and static information
from the power supply. The dynamic and static consumption can be obtained by moni-
toring the Transient Supply Current (IDDT) and IDDQ, respectively. As HT circuitries
share the same power supply with the target system, traces obtained from the power sup-
ply pins can track possible alterations caused by a Trojan, thanks to the evaluation of
the generated current trace. For this purpose, the switching activity in the circuit is used
to gain information about the amount and the type of gates consuming dynamic power.
The first Trojan detection method using side-channel analysis [92] used indeed the power
trace generated by the transient current to gather a set of fingerprints of Trojan-free and
Trojan-infected DUTTs. In this study, a Karhunen-Loève (KL) expansion is used to elim-
inate the measurement noise and therefore performs the detection. Alternatively, further
studies have also addressed detecting Trojans even in the presence of PV. The approaches
rely on measuring multiple power ports or pads individually in order to isolate the Trojan
effects to a specific chip location and thus increase its relative impact. In [93, 94], the
strategy was to integrate the total current from a specific pad, while in [95, 96], similar
methodologies used the IDDT provided by each power port. Another approach present
in the literature is to insert built-in sensors into the design able to detect anomalies in
the IDDT signature [94]. Moreover, the built-in sensors can be scattered through all the
circuit surface, partitioning the design in smaller sections and increasing the sensitivity
to the sensors in order to detect small HTs. Silicon demonstrations of Trojan designs
and detection in a wireless cryptographic ICs are shown in [97]. In this work, the au-
thors present an always-on Trojan able to leak keys of a 128-bits AES core and detect it
by measuring the transmission power obtained on different inputs. Considering now the
static power consumption, IDDQ added by a HT is another traceable parameter to iden-
tify it, even in scenarios where there is no switching activity in the Trojan. In [98,99], the
authors demonstrated the effectiveness of analyzing the IDDQs simultaneously measured
from multiple locations of the chip. A test structure is used in order to emulate the Tro-
jans in different positions in the circuit and perform its detection by measuring multiple
power ports. Despite requiring distinct input vectors, test procedures for obtaining IDDQ
are very similar to the ones used in IDDT. Most of the proposed methods using IDDQ
consider it as an auxiliary signal in multiple parameter analysis.

4.2.2 Delay Monitoring

Another consequent effect of a HT infection is the increased delay encountered on specific
nodes of the original circuit. A Trojan inserted between two blocks modifies the authentic
data path and thus increases the delay in such paths. Another possible implementation
is to directly connect the Trojan on an original circuit node – without necessarily cutting
lines – increasing the fan-out and capacitive loads of the previous gates and therefore, the

74

4.2. Hardware Trojan Detection

path delay. Measuring path delays in sequential circuits after fabrication, albeit is not a
simple task. If no extra on-chip circuitry is used for this purpose, it is only possible to mea-
sure path delays, which originate from primary inputs and terminate at primary outputs.
Besides that, as in synchronous circuits the clock controls the data flow stage-to-stage, it
is not possible to measure the delay of each stage. For this reason, extra on-chip circuits
such as full-scans must be used to enable the measurement of these delays during the
post-silicon testing phase. Indeed, Trojan detection techniques based on path delay rely
on using mechanisms able to output variables indicating the path delay. In [100], a delay
characterization is done by a secondary clock signal controlling shadow registers. Other
detection methods propose improving this technique effectiveness by using the compara-
tor outputs as chip authentication [101]. In [102], the authors accentuates the HT impact
by generating a vector that sensitizes the shortest path passing via the HT location. In ad-
dition, other techniques used embedded test structures for on-chip measurements of path
delays [103–105], while in [106] a framework based on self-authentication is proposed.
In [107], an effective manner to gather the fingerprint of all path delays is proposed while
a more recent approach uses latch-based structures to compare relative delays of different
paths in the circuit to identify discrepancies [108].

4.2.3 EM, Thermal and Substrate Monitoring

Beyond delay and power monitoring, the engineers and researchers also consider the ex-
traction of side-channel data such as EM emissions, temperature and substrate impedance
in order to detect anomalies caused by HTs. First, switching activity in Trojans nets is a
source of unsuspected EM emissions. Non-invasive techniques are therefore used to track
DUTT emissions and compare them with a golden reference. Prior studies [109, 110]
use similar approaches to detect Trojans inserted in different locations in FPGAs. The
analysis consists in scanning the whole circuit with an EM probe able to collect data
from different spots of the circuit. The golden and DUTT data are compared in order to
generate a map depicting the obtained differences between them. In [111], the authors
consider EM-based HT detection with the use of machine learning algorithms. Despite
of applying a conventional supervised machine learning algorithm, it is also presented an
unsupervised version, requiring no golden reference during classification. The literature
also presents another methodology able to detect Trojans using EM emissions without the
need of golden ICs nor a netlist [112]. In this case, RTL simulations are used to generate
patterns, which will be compared with the ones obtained from the FPGA to perform the
detection of activated Trojans. Regarding temperature, authors focus on capturing ther-
mal signatures of the IC surface and evaluate whether there is any non-expected thermal
activity in the circuit. This side-channel analysis may require the insertion of thermal sen-
sors [113] into the design or it can take a completely non-intrusive approach, in which the
thermal signatures are captured externally [114] and, consequently, avoiding area over-

75

Chapter 4. State-of-the-Art on Hardware Trojan Detection

head. Finally, authors in [115] reports HT detection technique based on the substrate
impedance of the circuit. Their work utilizes Bulk Built-in Current Sensor (BBICS) scat-
tered through the design in order to detect the presence of abnormal current peak flowing
from the bulk (body). Interesting, these sensors are originally focused on online testing
applications for detecting radiations or laser-induced transient currents. The proposed
technique compares the BBICS behavior of golden and DUTT devices, while applying
current pulses at the body of the circuit.

4.2.4 Multi-parameter Monitoring

Another efficient approach consists in combining signatures extracted from different side-
channels and thus, increasing the amount of obtained data to enhance the Trojan detec-
tion effectiveness. The intrinsic relation between different side-channel signals is a clever
strategy to compensate PV effects. Take as an example the relationship between delay and
power consumption. If PV acts increasing the power consumption of a specific logic gate,
its consequent effect is reducing its path delay. Thus, the value of the power consump-
tion of a given gate allows predicting its path delay in this PV environment. The authors
in [116] take advantage of this to propose a detection technique based on transient cur-
rents and delays – obtained indirectly by the maximal operation frequency. In [117], the
relation between transient and quiescent currents is used while the authors in [118] use de-
lays and electromagnetic measurements to detect HT. An unified framework is proposed
in [119] providing detection results for all side-channel signals and thereafter combin-
ing them. Another interesting approach is presented in [120], which introduces the clock
sweeping technique. In this case, the authors generate delay and power signatures with
different clock frequencies. Then, the technique considers one of the signatures accord-
ing to the path size and applies statistical analysis in order to classify the DUTTs. Logic
and side-channel signals are evaluated by run-time monitoring structures embedded in the
original design. In this approach, if a Trojan is activated after the deployment phase, the
monitoring system is able to generate a flag indicating a Trojan alert. In [121, 122], the
techniques treat of the interference in circuit functionalities caused by active HT as faults
and thus detecting it.

4.3 Conclusions

In this chapter, the different possible vulnerabilities to HTs have been presented through
the ICs design flow. Thereafter, a full HT taxonomy depicting different scenarios in which
malicious circuits can be inserted are presented showing that regular steps of IC produc-
tion are susceptible to HT insertion. Moreover, diverse Trojans, implemented at different
abstraction levels, reported in recent bibliography illustrates possible attacks and concerns

76

4.3. Conclusions

that security designers must consider during the design of their ICs. In the second sec-
tion, the main HT detection techniques have been classified according to their strategies.
It is shown that many works in the literature have already address different vulnerable
production steps and propose detection solutions. The Trojan concern is, however, far
from being overcome. Adversaries aware of the main detection methods may develop
more sophisticated Trojans able to be undetectable by the already proposed techniques.
Fortunately, as a lot of methods have been proposed, designing an undetectable Trojan
becomes challenging. Thus, developing innovative techniques is the key to make attacks
difficult and increase the ICs trustworthiness against Trojans.

77

5
Hardware Trojan Detection Technique for

Asynchronous Circuits

Contents
5.1 Exploiting the Current Signatures of Asynchronous Circuits 83

5.2 Technique Steps . 84

5.2.1 Stimulus Procedure . 84

5.2.2 Golden DUTT Samples . 85

5.2.3 Golden DUTT Current Signature Extraction and Partition . . . 85

5.2.4 OC-SVM Training . 86

5.2.5 Selected DUTT Samples . 86

5.2.6 Selected DUTT Current Signature Extraction and Partition . . . 87

5.2.7 OC-SVM Classification . 87

5.3 Simulation Experiments . 87

5.3.1 Experimental Setup . 88

5.3.2 OC-SVM Results and Discussion 89

5.4 Conclusions . 92

79

Chapter 5. Hardware Trojan Detection Technique for Asynchronous Circuits

In the recent decades, with the increasing globalization process, microelectronic com-
panies have relied on outsourcing different design steps in order to minimize costs and
time-to-market. As a consequence, IC production chains employ multiple companies
often based in different continents. Despite the outsourcing benefits, serious security con-
cerns today affect all phases of the IC-design flow. The usage of third-party IP, tools, and
manufacturing hampers the design full certification, making it vulnerable to malicious
insertions often called HT [72]. HT usually are inserted in systems to change their ex-
pected functionality, leak data or even make them able to run malicious functions. With
these potential vulnerabilities, security-aware and military applications have pushed the
researches towards the implementation of trustworthy ICs and robust techniques able to
detect the presence of HT.

Depending on the HT functionality and the attacker’s creativity, detecting HTs is chal-
lenging as they might be triggered only by a specific input sequence not used during
the standard functional testing steps. In order to cope with the HT logic masking, di-
verse effective test-time methods based on side-channel analysis have been devised to
detect HT without destructing the DUTT [92–95, 97, 98, 102, 111, 113, 115, 123–127].
They rely on the extraction of side-channel data – such as EM emission [111], power
consumption [93–95, 97, 98, 123], temperature [113], oscillation frequency [124], de-
lay [102, 125–127], or substrate impedance [115] – of selected DUTT samples and infer
the presence of a HT or not. If the data obtained from a selected DUTT sample signif-
icantly deviates from a reference or golden model, the technique flags a HT. Despite of
the multiple available HT detection techniques in the literature, only a few works present
strategies to detect HTs in asynchronous circuits [125–127].

Asynchronous circuits have inherent reliable and security design features [128–132]
thanks to the use of delay insensitive encoding and local communication protocols instead
of a global clock. Because of their security features, researchers have also explored HT
detection techniques dedicated for asynchronous circuits. Lodhi et al. [125,126] evaluate
the delay propagation of mixed synchronous/asynchronous systems to detect malicious
circuitry. Recently, Guimarães et al. [127] analyze the transient current Iddt peaks and
propagation delays of asynchronous QDI circuits and classify the extracted data through
a MVEE. Unlike [127], the proposed HT detection technique in this thesis analyzes the
entire shape of the IDDT curve, which will be referred as current signature in the sequel
of this text. As an idle HT can be model as a parasitic component in the circuit, such as
a capacitance [120], the HT presence may create distortions in the switching activity and,
consequently, in the current signature as well. For instance, take the example of the circuit
in Figure 5.1 (a) with three generic logic gates and standby Trojan at the output of the logic
gate C. Figure 5.1 (b) represents the current signature of the supply voltage VDD during
switching. In this case, we assume that the inputs generate switching activity in all logic
gates. This is translated with two current peaks, where the first one represents gate A and
B switching in parallel and the second one, gate C. If a Trojan increases the capacitance

80

in the given node, despite of being disabled for the moment, the logic gate driving the
infected node should take longer to drive it – the HT adds parasitic capacitances in the
node but the driving strength is still the same. The extra capacitance should deform the
peak related to the switching activity of C, as illustrated in Figure 5.1. This is the kind of
distortion the proposed HT detection technique desires to highlight.

A

B
C

VDD IDD

t

Genuine Circuit

HT-infected Circuit

A+B peak
C peak

HT as parasitic capacitance
affecting the current signature

(a) (b)

HT

Figure 5.1: Example of current side-effect of an standby HT in a generic circuit. The
parasitic capacitance of the Trojan deviates the current signature of the supply voltage
Vdd .

Then, it deals with them by using a machine-learning algorithm called OC-SVM for
classifying DUTT samples into HT-infected or Trojan-free. Liu et al. [97] also use OC-
SVM for classifying DUTT samples, however their work differs from our technique into
three aspects: (1) they focus on synchronous circuits; (2) stimulate differently the DUTT,
and (3) classify DUTT samples by considering as input features the power consumption
components of each DUTT operation.

Otherwise, our technique deals with asynchronous circuits that intrinsically allow to
individually analyze current signatures from different DUTT parts, and thus better distin-
guishing HT-induced modifications on the current signature. Then, instead of using as
input features the current signature averages of DUTT operations [97], or current signa-
ture peaks and delays [127], we take into account each point of individual current sig-
natures, i.e. current points measured from different DUTT parts, as an input feature to
train OC-SVM and classify DUTT samples. Considering, for instance, an asynchronous
DUTT composed of three pipeline stages (S0, S1, and S2) connected in a linear fashion.
By propagating a single input vector – or a data token whether we consider the asyn-
chronous nomenclature in chapter 1 – through the asynchronous DUTT stages, we are
able to extract from the global current signature Iddt three individual current signatures
Iddt0, Iddt1, and Iddt2, each one within a different time frame, and each one from a dif-
ferent stage. In fact, thanks to the absence of a clock network and the local handshaking
communication between the asynchronous DUTT stages, a single input vector is not able
to produce switching activity in idle stages, hence each individual current signature (Iddt0,
Iddt1, or Iddt2) carries only the switching activity of the active stage in that specific time

81

Chapter 5. Hardware Trojan Detection Technique for Asynchronous Circuits

frame, making the detection of HT-induced modifications on the global current signature
signature Iddt easier. Moreover, we also take advantage of the delay insensitivity of QDI
asynchronous circuits through voltage scaling. For each considered supply voltage, cur-
rent signatures can be extracted for a given data path, highlighting distortions caused by
HTs.

82

5.1. Exploiting the Current Signatures of Asynchronous Circuits

5.1 Exploiting the Current Signatures of Asynchronous
Circuits

In a synchronous circuit, the global clock signal normally controls several pipeline
stages – S0, S1, and S2 in Figure 5.2 (a) – switching all of them. If a single vector (herein
token) stimulates the primary input data0 of the stage S0, the global current signature
Iddt is influenced – during the first clock period – by the components Iddt0, Iddt1, and
Iddt2 in Figure 5.2 (c), respectively from: the token activity in stage S0; and the switching
activity of clock tree buffers and input circuitry of registers R1 and R2 in idle stages S1 and
S2, which are both not computing any tokens. Clock-gating, power-gating, techniques for
isolating the supply voltage of each stage with multiple supply pins are able to mitigate the
current interference of components Iddt1 and Iddt2 at the expense of additional hardware
mechanisms. On the other hand, QDI asynchronous circuits intrinsically copes with these
issues by employing local handshake schemes.

Figure 5.2: Example of a 3-stage linear pipeline: (a) synchronous and (b) QDI asyn-
chronous circuits. The plots in (c) and (d) represent the current signature of each pipeline
stage in (a) and (b), respectively, during the propagation of a single input vector through
the stage S0. This example highlights the current influence that occurs in synchronous
circuits. Even if only one stage is computing its inputs, the remaining stages still affects
the total current signature of Iddt(t).

Taking the same example as in (c), Figure 5.2 (d) illustrates the current signatures of
each pipeline stage in (b). In this case, while S0 computes the input vector, S1 and S2

only contribute with static currents. The same applies if the token propagates to further
pipeline stages. When the token arrives at S1, the previous stage S0 has already computed
the token and remains idle as well as S2. Next, S2 finally computes the token and S0

and S1 are now idle, only contributing with static currents. As QDI circuits avoid the
usage of a global clock, the influence from the clock tree is also eliminated. Due to its

83

Chapter 5. Hardware Trojan Detection Technique for Asynchronous Circuits

local handshaking scheme, QDI circuits also avoid the influence of parallel switching
activity of idle stages. These features provide a pipeline-level current signature isolation,
making more significant any discrepancies caused by a HT. However, in case the logic
path employs fork structures, the propagated token generates parallel switching activity
in all branches, implying the current signature comprises the components of each branch.

5.2 Technique Steps

The proposed technique comprises seven main steps depicted in Fig. 5.3: (A) define
stimulus procedure; (B) certify golden DUTT samples; (C) extract and partition golden
DUTT current signatures; (D) OC-SVM training; (E) select a subset of DUTT samples
from a foundry susceptible to HT attacks; (F) extract and partition selected DUTT current
signatures and (G) classify randomly selected DUTT samples through OC-SVM classifi-
cation.

Training
Step

One-Class
SVM

Golden DUTT
Samples

GIC x

Selected DUTT
Samples

IC Sx

IC
+
-

VddIdd

Current Signature
Partition

Classification
Step

Trojan-free

Trojan-infected

Current Signatures of
Golden DUTT

Current Signatures

Current Signature
Measurement

Stimulus Procedure

A

B

D

E

G

C

Current Signature
Partition

Current Signature
Measurement

F

IC
+
-

VddIdd

CSgoldenx

CSselectedx

Current Signatures of
Selected DUTT

Current Signatures

Figure 5.3: Proposed HT detection flow highlighted in seven main steps. Both golden and
selected DUTT current signatures are obtained using the same the stimulus procedure,
extraction and partition method. While the OC-SVM training step considers golden DUTT
current signatures to generate the classifiers, the OC-SVM classification step utilizes the
selected DUTT current signatures to classify whether the selected DUTT samples are
Trojan-free or Trojan-infected.

5.2.1 Stimulus Procedure

The stimulus procedure is responsible to insert a single vector at primary inputs in order
to propagate a single data token. Considering the current signature characteristics in QDI
circuits detailed in section 5.1, the single data token stimulates a single pipeline data path
of the DUTT, generating a current signature without the dynamic current components of
other pipeline data paths. For a complete test, the stimulus procedure generates a set of
tokens, not simultaneously, to activate all DUTT nodes and to cover any possible HT-
infected node. It only provides a new data token to the DUTT primary inputs whether the

84

5.2. Technique Steps

previous token has already been propagated and all logic is idle (with no switching activ-
ity). Consequently, the testing time is a function of the delay to propagate a data token
through a pipeline data path, multiplied by the number of tokens required to stimulate all
pipeline data paths. As QDI circuits employ multi-rail encoding in their data paths, any
input vector will generate equivalent number of transitions for a given data path. This
indicates that the input vector quality for HT detection depends directly to its ability to
avoid parallel activity from other data paths.

5.2.2 Golden DUTT Samples

Initially, the proposed technique requires a reliable reference to differentiate Trojan-free
from Trojan-infected DUTT samples. This reference comprises a small set of Trojan-
free ICs called golden DUTT samples, which are certified after fabrication in order to
guarantee a set of G DUTT samples with no HTs (i.e golden). In this step, we assume
the golden DUTT samples can be obtained from a set of DUTT samples fabricated in an
untrusted foundry by destructive reverse-engineering [116]. The current signatures of the
golden DUTT samples are applied to train a machine learning algorithm, further detailed
in subsection 5.2.4, which will be able to distinguish discrepancies in current signatures
caused by PV and a HT. However, the minimum number of golden DUTT samples to train
the Support Vector Machine (SVM) is highly dependent of the PV statistical distribution
and the DUTT itself. The available number of golden DUTT samples G are divided in two
subsets: training and cross-validation subsets. As the name suggests, the training subset
is reserved for the training of the machine learning algorithm, while the cross-validation
subset is used to evaluate the classifier generated in subsection 5.2.4.

5.2.3 Golden DUTT Current Signature Extraction and Partition

This step consists in reading the Iddt of the G golden DUTT samples, as indicated in
Fig. 5.3. By stimulating each golden DUTT sample with the defined stimulus procedure,
the technique extracts C current signatures, each one corresponding to the propagation of
a single data token. Then, each current signature is partitioned according to the number of
pipeline stages PS in the respective path. For instance, consider the circuit in Fig. 5.2 (b),
which contains PS = 3 pipeline stages, the current signature is divided in three parts
(Iddt0, Iddt1, Iiddt2). The time windows for each pipeline stage is defined according to
its propagation delay. Moreover, in order to extract more data from each golden DUTT
sample, the stimulus procedure can be executed with different Vdd . As operations of QDI
circuits tolerate the change of Vdd , the stimuli rerun only requires the Vdd level change
itself, without any extra setup. Having extracted and partitioned all current signatures, the
proposed technique obtains the CSgolden golden DUTT current signatures. Equation 5.1
indicates the relation between CSgolden and the number of golden DUTT samples G, the
employed supply voltages SV , the path current signatures C and the number of pipeline

85

Chapter 5. Hardware Trojan Detection Technique for Asynchronous Circuits

stages of each path PS. The use of multiple Vdd could be easily compared as clock sweep-
ing HT detection [120] in synchronous circuit, however our “voltage sweep" only focuses
on highlighting distortions caused by HTs.

CSgolden = G×SV ×C×
C

∑
i=1

PS(i) (5.1)

5.2.4 OC-SVM Training

During the training phase, the OC-SVM algorithm learns how to differentiate Trojan-free
and Trojan-infected DUTT samples. In our case, the algorithm only considers the Trojan-
free class, i.e. the available golden DUTT samples. That means the algorithm itself is
capable to classify Trojan-free and not Trojan-free DUTT samples, in which the latter is
labeled as Trojan-infected.

The technique employs an approach similar to [111] and considers each current signa-
ture extracted point as a training feature. In that way, the OC-SVM generalizes the current
signature behavior and establishes the lower and upper margins of each extracted point.
For instance, if CSgolden = 50 and each current signature contains 30 extracted points, the
OC-SVM training matrix will have 50×30 dimensions. For each pipeline stage, an OC-
SVM receives the respective current signatures and calculates a classifier. Considering an-
other example, if PS = 3, three OC-SVMs are trained. Each classifier generalizes the idea
of a Trojan-free current signature of a given stage. If a current signature significantly devi-
ates from what was learned, the classifier indicates the DUTT sample as Trojan-infected.
Otherwise, the DUTT sample is Trojan-free. To measure accuracy, the technique evalu-
ates the cross-validation subset on the generated classifiers. The accuracy of a classifier
n, Acc(n) is defined in Equation 5.2, in which #CorrClass_cross_val_samples(n) is the
number of correctly classified golden DUTT samples and #Cross_val_samples is the total
number of golden DUTT samples in the cross-validation subset.

Acc(n) =
#CorrClass_cross_val_samples(n)

#Cross_val_samples
(5.2)

If the classification accuracy of at least one of the classifiers is not satisfactory, the
number of golden DUTT samples in the training subset is increased. To have an idea of the
accuracy independently of the golden DUTT samples used, it is necessary to estimate the
mean and standard deviation of the classification accuracy over multiple training rounds
with different golden DUTT samples but maintaining a fixed size of the training subset.

5.2.5 Selected DUTT Samples

The selected DUTT samples represent a subset of S ICs fabricated in a third-party foundry
where the designer cannot guarantee a secure production chain, thus susceptible to at-

86

5.3. Simulation Experiments

tacks. Due to this assumption of untrustworthiness, the OC-SVM deals with the current
signature data from the selected DUTT samples and classify them, pinpointing whether
there is a HT into the DUTT or not. Assuming that a HT affects all ICs fabricated on a
untrustworthy foundry, the minimum number of selected DUTT samples can be defined
through a statistical sampling methodology. They should be sufficient so that the chance
of the majority of the selected DUTT samples being correctly classified respects a chosen
confidence level with respect to the statistical results obtained in subsection 5.2.4 on all
the generated classifiers.

5.2.6 Selected DUTT Current Signature Extraction and Partition

This step takes the identical approach as section 5.2.3 – same stimulus procedure and
current signature manipulation. However, it considers the selected DUTT samples from
a vulnerable foundry. If the golden DUTT current signature extraction step consider SV
supply voltages, the same applies in this step. Consequently, Equation 5.3 represents
the number of obtained selected DUTT current signatures CSselected after extraction and
partition. CSselected considers the number of selected DUTT samples S, employed supply
voltages SV , path current signatures C and number of pipeline stages of each path PS.

CSselected = S×SV ×C×
C

∑
i=1

PS(i) (5.3)

5.2.7 OC-SVM Classification

At the last step, the classification step uses the calculated classifiers to predict the class of
the selected DUTT samples. A selected DUTT sample is said to be infected if any of the
classifiers generated classifies it as Trojan-infected. If the OC-SVMs classify the selected
DUTT samples as Trojan-free or infected, the same applies for the whole IC set. At this
point, the SVM classifiers are already generated and, then, the classification step can be
speed up with a hardware-based implementation – running in an embedded computer or
FPGA platform.

5.3 Simulation Experiments

The experiments described in this section analyze the effectiveness of the technique
proposed in by inserting single HTs inside a case-study DUTT. This section presents
technical information regarding the experiment setup, as well as discussions on the results
obtained through the usage of the OC-SVM algorithm.

87

Chapter 5. Hardware Trojan Detection Technique for Asynchronous Circuits

5.3.1 Experimental Setup

As a case-study DUTT, an 8-bit QDI asynchronous Arithmetic Logic Unit (ALU) [127]
has been designed in a 28-nm Fully Depleted Silicon-On-Insulator (FD-SOI) technol-
ogy from STMicroelectronics. Figure 5.4 illustrates the experimental setup with the ar-
chitecture of the case-study circuit. The ALU contains 13974 transistors, distributed in
three pipeline stages (PS = 3). We have considered as case-study seven different sizes
of comparator-based Trojans (190, 142, 102, 62, 52, 44 and 34 transistors) and a pass-
transistor-based Trojan [133] (30 transistors). All considered HTs have been disabled,
implying they have not been triggered during experiments to reproduce the worst sce-
nario to detect them. A single HT has been tested in each pipeline stage of the DUTT,
proving a total of 24 different HT test cases – considering the circuit has three stages. All
simulations have been performed at nominal temperature (25°C) and corners (TT). The
current signatures has been extracted from the DUTT operating with a supply voltage Vdd

at 1.0 V and at 0.8 V (SV = 2). The stimulus procedure detailed in section 5.2.1 has been
repeated for each supply voltage condition.

ALU architecture

Operands
ARITH

LOGIC

2nd 3rd1st

Operator

Result

Monitoring
Current

+

VDD

IDDT

Figure 5.4: Experimental setup overview with the architecture of the study-case circuit.
The setup observes the current of the supply voltage VDD in order to see the current be-
havior while a token is propagated through the case-study circuit.

The current signature data from golden DUTT samples have been represented by G =

400 Monte Carlo (MC) simulations of a Trojan-free ALU version considering a 3-sigma
yield. The experiments also use 50 MC simulations for each HT test case. In total, the
data from the Trojan-infected DUTT samples has been represented by current signature
resulting from 1200 MC simulations. During simulation, a single data token (C = 1)
has been propagated through the ALU, stimulating the exact node where the HT has
been connected, without triggering it. The data token stimulates half of the Trojan nodes

88

5.3. Simulation Experiments

connected in the original circuit – except for the pass-transistor-based Trojan – showing a
more realistic scenario for our detection technique.

5.3.2 OC-SVM Results and Discussion

Fig. 5.5 shows an example of a OC-SVM classifier using a Radial Basis Function (RBF)
kernel for the third stage of the ALU. The shadowed area represents the classifier gen-
erated by the OC-SVM based on the data from the Trojan-free DUTT samples. The
red asterisk points represent the data of selected DUTT samples infected by the smallest
comparator-based HT (34 transistors), while the solid blue points represents the data of
Trojan-free DUTT samples. Note that those selected Trojan-free DUTT samples consist
of a cross-validation subset of golden samples. For the sake of illustration, the classifier
dimensions have been reduced to two through Principal Component Analysis (PCA) [134]
– the original data distribution has 42 dimensions and could not be displayed properly.
PCA generates a dimension-reduced subspace to represent the data retaining the maxi-
mum possible precision represented on a targeted dimensionality. The OC-SVM clas-
sifier is able to classify correctly Trojan-free and Trojan-infected DUTT samples with
high accuracy. This is an improvement upon the conducted work in [127], as indicated
in Table 5.1. Considering the HT with 102 transistors, the former technique provides an
accuracy of 77.67%, whereas the proposed technique is able to achieve 100%. The pro-
posed technique maintains the accuracy of 100% even on smaller, i.e. harder to detect,
HTs, as the comparator-based HT containing 34 transistors. As the proposed technique
considers all current signature sample points and multiple supply voltages – different from
the current peak vs. global delay analysis on [127] – the OC-SVMs utilizes more current
information, enabling a more sensitive analysis.

Fig. 5.6 presents the classification accuracy according to the number of DUTT sam-
ples used for OC-SVM training. Similar to the results in Fig. 5.5, our experiments also
consider cross-validation subsets to represent selected Trojan-free DUTT samples. The
higher the number of training DUTT samples, the higher the capability of the OC-SVM
to correctly classify DUTT samples as Trojan-free – as indicated by the solid blue line in
Fig. 5.6. In an under-fitting situation, the OC-SVM is not able to distinguish the current
signature distortions caused by PV or a HT, flagging most of the golden DUTT samples
as Trojan-infected. By increasing the number of training samples, the OC-SVM further
learns how PV affects the current signature. If 100, 150 and 200 DUTT samples are used
in the training step, the selected Trojan-free DUTT samples will be correctly classified
in 90%, 95% and 96% of the cases, respectively. The Trojan-free classification accuracy
reaches 98% with 270 DUTT samples or higher. Independently of the number of DUTT
samples used for OC-SVM training, the classification accuracy remains at 100% for all
comparator-based HTs. This implies that the proposed technique achieves Trojan-free ac-
curacy classification without losing the capability to detect HTs as large as the considered

89

Chapter 5. Hardware Trojan Detection Technique for Asynchronous Circuits

P
ri

n
ci

p
a
l
C

o
m

p
o
n
e
n
t

1

Principal Component 2

Figure 5.5: Dimension-reduced representation of the OC-SVM classifier for the third
stage of the ALU. Shadowed area represents the generated classifier after Principal Com-
ponent Analysis (PCA).

comparator-based ones. On the other hand, if the selected DUTT samples are infected
with pass-transistor-based HTs – traced red lines – the classification accuracy is reduced
as such HTs are furtive and small (30 transistors), only slightly affecting the current sig-
nature of the DUTT. In this case, this trade-off highlights the importance of selecting an
optimal number of training samples that provides high precision for Trojan-free classifi-
cation as well as high precision to detect small HTs.

90

5.3. Simulation Experiments

Table 5.1: Comparison table of HT detection accuracy of the proposed technique and
the conducted work in [127] using the same case-study DUTT. The results of the pro-
posed technique employ 100 golden DUTT samples as training samples for the OC-SVM
algorithm. Trojan size column represents the number of transistors used.

Guimarães et al. [127] Proposed technique

HT detection accuracy – according HT location (%)
Trojan

Size

Trojan

nodes

Stimulated

nodes
1st 2nd 3rd AVG 1st 2nd 3rd AVG

190 8 4 100 100 100 100

142 8 4 100 94 90 94.67

102 8 4 100 87 46 77.67

62 7 3

52 6 3

44 5 2

34 4 2

100%

30 2 2

-

72.6 84.5 91.8 82.9

0 50 100 150 200 250 300

Training DUTT Samples

underfitting

100% accuracy for all comparator-based HTs

0

20

40

60

80

100

C
la

ss
ifi

ca
ti

o
n
 A

cc
u
ra

cy
 (

%
)

Classification accuracy according to
number of training DUTT samples

with no HT
with a comparator-based HT in any ALU stage
with a pass-transistor-based HT in ALU (1st stage)
with a pass-transistor-based HT in ALU (2nd stage)
with a pass-transistor-based HT in ALU (3rd stage)

Selected DUTT samples:

Figure 5.6: Classification accuracy according number of training samples. The OC-
SVM detects all comparator-based HTs with 100% accuracy, whereas the pass-transistor
detection decreases as the number of DUTT samples for OC-SVM training increases.

91

Chapter 5. Hardware Trojan Detection Technique for Asynchronous Circuits

5.4 Conclusions

This Chapter presents a side channel HT detection technique dedicated to QDI asyn-
chronous circuits, revealing the advantages of their current signatures for the detection of
HTs. By using OC-SVM to classify a set of selected DUTT samples, our technique al-
lows the detection of HTs with a few dozens of transistors. Similarly to our previous work
in [127], our proposed technique also provides high detection accuracy without requiring
any extra-circuitry. The evenly distributed current peaks, intrinsic of asynchronous cir-
cuits, make them more sensitive to side-channel deviations than synchronous circuits, thus
enhancing HT detection potential. Moreover, as the technique only requires the measure-
ment of Iddt , the same testbench setup applied on the regular post-silicon testing phase
can be reused for the purpose of detecting HTs. If the post-silicon testing phase considers
a similar stimulus procedure described in this work, the technique can measure Iddt with
the same input vectors usually applied for structural testing. The the same input vectors
usually applied on structural testing can also be adopted for our technique. This inte-
gration would consequently reduce test time overhead depending on how compatible the
structural testing is with our technique.

92

6
Conclusions

94

6.1. Contributions on Testability of Asynchronous Circuits

Along the journey of this thesis, it is easy to notice the remarkable the effort that
researchers have allocated to develop design methodologies and tools to support asyn-
chronous design. Yet, the adoption of this kind of circuits is still limited due to its design
complexity and difficult mind-set change in the industry. However, this does not imply
that the industry considers a mistaken approach. As said in this work, synchronous cir-
cuits employ a simple design and its design flow has been used for decades now. The
engineers are trained to understand the synchronous paradigm and use the available EDA
tools. Consequently, changing this basic concept of digital VLSI design requires a drastic
effort from the industrial and academic sectors, preparing new training, tools and compo-
nents. Economically speaking, designers are willing to face the challenges imposed by
synchronous design than changing an entire work flow, risking to lose a time-to-market
window. Obviously, the research on asynchronous design was and it is still valuable as
asynchronous solutions – like Globally Asynchronous, Locally Synchronous (GALS) de-
sign – are already a reality in the industry. Moreover, further research will provide inter-
esting solutions for the IC technologies. Indeed, these latter will face important evolution
in the upcoming years due to the challenges introduced by new technological nodes, 3D
integration and very complex designs. In that way, this thesis makes a step forward for
better asynchronous design support and acceptance. This chapter summarizes the contri-
butions of this thesis, putting them into context with related works as well as giving their
limitations. Final remarks and perspectives are addressed in order to close the discussions
of this thesis.

6.1 Contributions on Testability of Asynchronous Circuits
Part II of this thesis covers the at-speed testing problematic of asynchronous circuits,

focused mainly on BD circuits. The proposed DfT architecture provides at-speed testing
support for micropipeline-based circuits, allowing controllability to fire test runs without
requiring at-speed frequencies generated externally. This work makes the effort to en-
able compatibility of the DfT architecture with traditional synthesis and ATPG tools. It
is done by considering FF-based circuits and the use of scan chains. In that way, the DfT
architecture can take advantage for the automatic scan chain insertion available in syn-
thesis tools, as well as the ATPG for stuck-at testing. For stuck-at testing, the proposed
DfT architecture employs a testing clock – an approach already explored in the literature.
In test mode, it bypasses the control logic of the circuit, allowing direct data transfer in
the registers with an external testing clock. This indicates that a clock tree must be im-
plemented to guarantee correct operation, albeit the clock frequencies during testing are
usually slower and only requires relaxed timing constraints. This work accepts this clock
tree overhead in order to have a better ATPG compatibility. To deal with the control logic
of BD circuits, this work employs the LCS flow [19] in order to enable synthesis and STA
analysis. The compatibility with the LCS flow was an essential part for this work, as it al-
lows to integrate the automatic DfT insertion and the synthesis flow without major issues.

95

Chapter 6. Conclusions

Moreover, LCS provides useful information for ATPG due to its root clock constraints.
The clocks can be used as launch and capture clocks in ATPG tools, giving reference on
how registers must be initialized to stimulated a given path for path-delay testing. Thus,
testing vectors can be automatically generated. Finally, the proposed DfT architecture
was implemented with two study-case circuits. The first one, a simple 2-bit adder, is a
suitable circuit to easily evaluate the architecture. This study-case circuit was initially
implemented as a straightforward example to make a fast evaluation of the proposed DfT
architecture, but it can also be useful in the future in order to evaluate further modifica-
tions in the architecture. Considered as second study-case circuit, the AES cryptocore
allows to see the impacts of the proposed DfT architecture in a more realistic design. At
the end of this thesis, the AES was also sent to tape-out and the testchip will probably be
available in January 2021. The testchip enables further use of the architecture, allowing
the possibility to employ it in an industrial testing environment with a ATE.

It is important to notice that several points must be addressed in the future regarding
the proposed DfT architecture. Firstly, the use of the architecture is currently software
dependent with a specific tool flow. This work employs the Synonpsys’ synthesis (Design
Compiler/PrimeTime) and ATPG (TetraMAX) tools and script must be adapted in case
other tools are desired – synthesis and ATPG tools from Cadence or MentorGraphics, for
instance. Despite the fact that the proposed DfT architecture is compatible with EDA
tools, the testing flow is not fully automated. It is desirable to automate the definition
of all launch/capture clock pairs in the circuit. Currently, the clock pairs are specified
manually on PrimeTime in order to generate the path-delay input for TetraMAX. Another
limitation of the proposed DfT architecture is the absence of a mechanism signalizing the
end of the test. After firing a test run, it is not possible to check if the circuit has finished its
computation.this can be complicated if the circuit is operating with a wide range of supply
voltages, which is a standard capability of asynchronous circuits. Indeed, this normally
requires to own the characterization libraries for all the possible supply voltages. A better
alternative to overcome this is issue will be to integrate an handshake mechanism in the
test interface, allowing the circuit to acknowledge the end of computation.

96

6.2. Contributions on Side-channel Analysis for
Asynchronous Circuits

6.2 Contributions on Side-channel Analysis for
Asynchronous Circuits

Regarding the second part of this thesis, the proposed HT detection technique en-
hances the advantages of asynchronous QDI circuits from the security point of view,
adding another benefit than robustness to differential Power Analysis (DPA) attacks, tran-
sient faults and reduced EM emissions: the natural ability to detect HTs. The proposed
technique takes a non-intrusive approach, avoiding the need of extra circuitry such as sen-
sors or additional power ports. Due to the delay insensitivity of QDI design, it is possible
to retrieve current signatures of the circuit operating in different supply voltage levels re-
quiring no extra setup – the circuit is capable to accommodate the delay changes by itself.
Consequently, the proposed technique can evaluate the behavior of the current signatures
along a range of voltage supply levels, highlighting any anomalies caused by the presence
of a HT. On top of that, this approach not only detects HTs but also the infected region of
the IC. Indeed, thanks to the stimuli, the HT location can be retrieved. With the proposed
technique, secure-aware applications can target QDI circuits to strengthen their systems
not only during field operation but also during production phase. Finally, future works
will explore the automated generation of the stimulus procedure, as well as applying the
proposed technique in a realistic scenario with fabricated Trojan-free and Trojan-infected
samples of the study-case circuit used in this work.

First of all, it is essential for a better acceptance of the technique to replace the manual
generation of the testing vectors, which is time-consuming, by an automated procedure.
Another interesting aspect that could be reconsidered is the use of a golden reference.
The need of a golden reference implies higher costs and an increased complexity through
the design flow. Thus, exploring the concepts used in [91, 112], which employ golden
chip-free techniques, can provide interest insights for modifications of the proposed HT
technique. Moreover, the proposed technique was just evaluated by simulation. In order
to have a more realistic scenario, it is necessary to deploy it on silicon. This scenario will
consider issues regarding current measurements, jitter and PVT, impacting the technique
performance. Finally, the proposed technique can also be extended to any asynchronous
design, including BD circuits. However, it is necessary to be careful how the voltage
scaling will be applied. Indeed, BD circuits have not the same robustness as QDI circuits
and aggressive voltage scaling can compromise the circuit operation.

97

Chapter 6. Conclusions

6.3 Perspectives: uniting strengths

In the two last sections, some perspectives of each part of this thesis were highlighted
and discussed individually for further improvements. However, the works carried out in
both testing and side-channel analysis for asynchronous circuits can also be correlated
and employed somehow together. From the first part of this thesis, the proposed DfT
architecture provides controllability during testing and allows to stimulate a given path
in the circuit. From the second part, the proposed HT detection technique needs specific
stimulus and requires that only a given path must be stimulated, isolating its current sig-
nature. As the HT detection technique in part III can easily be adapted for BD circuits, the
proposed DfT architecture is a possible candidate to be integrated with. The scan chain
structure would facilitate the initialization and verification of the circuit and the ATPG
compatibility of the DfT architecture allows to automatically generate the testing vectors
dedicated for HT detection.Such an approach could ease the HT detection by combining
this technique with voltage scaling and time analysis. Of course, some minor modifi-
cations would be necessary in the ATPG setup. Currently, the ATPG setup focuses on
verifying the worst-case paths between launch/capture clock pairs, whereas the proposed
HT detection technique would require to stimulate nodes that may not be related to the
critical path.

Taking a final perspective, the integration of both works could also consider the use
of an embedded Time-to-Digital Converters (TDC), adding intra-chip delay monitoring.
In fact, with the TDC architecture proposed in [135] for example, it is possible to achieve
time monitoring with picosecond precision and low area overhead due to its digital im-
plementation. From a testing point of view, the TDC would be useful to check the delay
lines used in handshake controllers for BD circuits. The behavior of delay lines could be
finely characterized and further evaluated through the circuit lifetime. In addition to that,
according to the measured delay, a configurable delay line could offer tuning capability
making possible post fabrication corrections. Finally, the delay-monitoring feature could
also highlight delay distortions due to faults (e.g. short, open or bridge) or even HT.

98

Bibliography

[1] P. A. Beerel, R. O. Ozdag, and M. Ferretti. A Designer’s Guide to Asynchronous
VLSI. Cambridge University Press, 2010.

[2] Illumi Huang EE Times. "Apple and Huawei use TSMC, but their 7nm SoCs
are different", 2020. [online article available in https://www.eetimes.com/
apple-huawei-use-tsmc-but-their-7nm-socs-are-different/#].

[3] Samsung Newsroom. "Samsung Completes Qualification of 8nm LPP Pro-
cess", 2017. [online article available in https://news.samsung.com/global/
samsung-completes-qualification-of-8nm-lpp-process].

[4] Nicola Jones. How to stop data centres from gobbling up the world’s electricity.
Nature, 561:163–166, 2018.

[5] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective. Prentice Hall, 2nd edition, 2003.

[6] Charlie Brej. High Performance Asynchronous Circuit Design Method and Appli-
cation. In UK Async Forum, page 5p., 2007.

[7] J. Sparsø. Introduction to Asynchronous Circuit Design. Independently published,
2020.

[8] J. Kessels and A. Peeters. The tangram framework: asynchronous circuits for
low power. In Proceedings of the ASP-DAC 2001. Asia and South Pacific Design
Automation Conference 2001, pages 255–260, 2001.

[9] J. Teifel and R. Manohar. An asynchronous dataflow fpga architecture. IEEE
Transactions on Computers, 53(11):1376–1392, 2004.

[10] M. Renaudin and A. Fonkoua. Tiempo asynchronous circuits system verilog mod-
eling language. In IEEE 18th International Symposium on Asynchronous Circuits
and Systems, pages 105–112, 2012.

100

https://www.eetimes.com/apple-huawei-use-tsmc-but-their-7nm-socs-are-different/#
https://www.eetimes.com/apple-huawei-use-tsmc-but-their-7nm-socs-are-different/#
https://news.samsung.com/global/samsung-completes-qualification-of-8nm-lpp-process
https://news.samsung.com/global/samsung-completes-qualification-of-8nm-lpp-process

Bibliography

[11] A. Lines, P. Joshi, R. Liu, S. McCoy, J. Tse, Y. Weng, and M. Davies. Loihi
asynchronous neuromorphic research chip. In 2018 24th IEEE International Sym-
posium on Asynchronous Circuits and Systems (ASYNC), pages 32–33, 2018.

[12] N. Imam, F. Akopyan, J. Arthur, P. Merolla, R. Manohar, and D. S. Modha. A
digital neurosynaptic core using event-driven qdi circuits. In 2012 IEEE 18th In-
ternational Symposium on Asynchronous Circuits and Systems, pages 25–32, 2012.

[13] M. Waugaman and W. Koven. Sharp - a resilient asynchronous template. In
2017 23rd IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 83–84, 2017.

[14] M. Moreira and Stefano Giaconi. Chronos Link: A QDI Interconnect for Modern
SoCs. 26th IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 67–68, 2020.

[15] Gopal Raghavan. Asynchronous processor that adjusts a respective operating volt-
age for causing a task to consume substantially all of a respective allocated time
interval for the task, 2019. U.S. Patent 9,423,866.

[16] P. A. Beerel, G. D. Dimou, and A. M. Lines. Proteus: An asic flow for ghz asyn-
chronous designs. IEEE Design & Test of Computers, 28(5):36–51, 2011.

[17] J. Kwong and A. P. Chandrakasan. Variation-driven device sizing for minimum en-
ergy sub-threshold circuits. In ISLPED’06 Proceedings of the International Sym-
posium on Low Power Electronics and Design, pages 8–13, Oct 2006.

[18] R. D. Jorgenson, L. Sorensen, D. Leet, M. S. Hagedorn, D. R. Lamb, T. H. Frid-
dell, and W. P. Snapp. Ultralow-power operation in subthreshold regimes applying
clockless logic. Proceedings of the IEEE, 98(2):299–314, Feb 2010.

[19] G. Gimenez, A. Cherkaoui, G. Cogniard, and L. Fesquet. Static timing analysis of
asynchronous bundled-data circuits. In 2018 24th IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC), pages 110–118, May 2018.

[20] M. Singh and S. M. Nowick. MOUSETRAP: High-speed transition-signaling asyn-
chronous pipelines. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 15(6):684–698, June 2007.

[21] I. E. Sutherland. Micropipelines. Commun. ACM, 32(6):720–738, June 1989.

[22] I. Sutherland and S. Fairbanks. Gasp: a minimal fifo control. In Proceedings
Seventh International Symposium on Asynchronous Circuits and Systems. ASYNC
2001, pages 46–53, 2001.

101

Bibliography

[23] A. Peeters, F. t. Beest, M. d. Wit, and W. Mallon. Click elements: An implementa-
tion style for data-driven compilation. In 2010 IEEE Symposium on Asynchronous
Circuits and Systems, pages 3–14, 2010.

[24] D. Hand, M. T. Moreira, H. Huang, D. Chen, F. Butzke, Z. Li, M. Gibiluka,
M. Breuer, N. L. V. Calazans, and P. A. Beerel. Blade – a timing violation re-
silient asynchronous template. In 2015 21st IEEE International Symposium on
Asynchronous Circuits and Systems, pages 21–28, 2015.

[25] C. Mannakkara and T. Yoneda. Asynchronous pipeline controller based on early
acknowledgement protocol. In 2008 8th International Conference on Application
of Concurrency to System Design, pages 118–127, 2008.

[26] J. Simatic, A. Cherkaoui, R. P. Bastos, and L. Fesquet. New asynchronous pro-
tocols for enhancing area and throughput in bundled-data pipelines. In 2016 29th
Symposium on Integrated Circuits and Systems Design (SBCCI), pages 1–6, 2016.

[27] K. M. Fant and S. A. Brandt. Null convention logic: a complete and consistent
logic for asynchronous digital circuit synthesis. In Proceedings of International
Conference on Application Specific Systems, Architectures and Processors: ASAP
’96, pages 261–273, 1996.

[28] Andrew Matthew Lines. Pipelined Asynchronous Circuits. Technical report, Cali-
fornia Institute of Technology - CalTech, 1995. TR no. CS-TR-95-21, available at
https://authors.library.caltech.edu/26834.

[29] M. T. Moreira, C. H. M. Oliveira, R. C. Porto, and N. L. V. Calazans. Ncl+: Return-
to-one null convention logic. In 2013 IEEE 56th International Midwest Symposium
on Circuits and Systems (MWSCAS), pages 836–839, 2013.

[30] M. T. Moreira, P. A. Beerel, M. L. L. Sartori, and N. L. V. Calazans. Ncl syn-
thesis with conventional eda tools: Technology mapping and optimization. IEEE
Transactions on Circuits and Systems I: Regular Papers, 65(6):1981–1993, 2018.

[31] F. A. Parsan, S. C. Smith, and W. K. Al-Assadi. Design for testability of Sleep
Convention Logic. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 24(2):743–753, Feb 2016.

[32] W. Ho, K. Chong, B. Gwee, and J. S. Chang. Low power sub-threshold asyn-
chronous quasi-delay-insensitive 32-bit arithmetic and logic unit based on au-
tonomous signal-validity half-buffer. IET Circuits, Devices Systems, 9(4):309–318,
2015.

102

https://authors.library.caltech.edu/26834

Bibliography

[33] R. M. Davies and J. V. Woods. Timing verification for asynchronous design. In
Proceedings of European Design Automation Conference (EURO-DAC), pages 78–
83, 1996.

[34] Alain J. Martin. The Limitations to Delay-insensitivity in Asynchronous Circuits.
In Sixth MIT Conference on Advanced Research in VLSI, AUSCRYPT ’90, pages
263–278, 1990.

[35] A. J. Martin and M. Nyström. Asynchronous Techniques for System-on-Chip De-
sign. Proceedings of the IEEE, 94(6):1089–1120, June 2006.

[36] C. Myers. Asynchronous Circuit Design. John Wiley & Sons, Inc., 2001.

[37] M. T. Moreira, C. H. M. Oliveira, R. C. Porto, and N. L. V. Calazans. NCL+:
Return-to-one Null Convention Logic. In 56th IEEE International Midwest Sym-
posium on Circuits and Systems (MWSCAS), pages 836–839, August 2013.

[38] Rajit Manohar and Alain J. Martin. Quasi-delay-insensitive Circuits are Turing-
Complete. Technical report, California Institute of Technology - CalTech, 1995.
TR no. CS-TR-95-11, available at http://vlsi.cornell.edu/∼rajit/ps/qdi.pdf.

[39] K. van Berkel, F. Huberts, and A. Peeters. Stretching Quasi Delay Insensitivity
by means of Extended Isochronic Forks. In IEEE Conference on Asynchronous
Design Methodologies (ASYNC), pages 99–106, May 1995.

[40] S. C. Smith. Speedup of self-timed digital systems using early completion. In
Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms
for VLSI Systems Design. ISVLSI 2002, pages 107–113, 2002.

[41] R. A. Guazzelli, W. L. Neto, M. T. Moreira, and N. L. V. Calazans. Sleep con-
vention logic isochronic fork: An analysis. In 2017 30th Symposium on Integrated
Circuits and Systems Design (SBCCI), pages 103–109, 2017.

[42] Arthur D. Friedman Miron Abramovici, Melvin A. Breuer. Digital Systems Testing
and Testable Design. IEEE Press, 1990.

[43] M. Bushnell and Vishwani Agrawal. Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits. Springer Publishing Company, Incorpo-
rated, 2013.

[44] S. Pagey, S. D. Sherlekar, and G. Venkatesh. Issues in fault modelling and testing
of micropipelines. In Proceedings First Asian Test Symposium (ATS ‘92), pages
107–111, Nov 1992.

103

Bibliography

[45] A. Khoche and E. Brunvand. Testing micropipelines. In Proceedings of 1994
IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 239–246, Nov 1994.

[46] A. Khoche and E. Brunvand. A partial scan methodology for testing self-timed
circuits. In Proceedings 13th IEEE VLSI Test Symposium, pages 283–289, April
1995.

[47] O. A. Petlin and S. B. Furber. Scan testing of asynchronous sequential circuits. In
Proceedings. Fifth Great Lakes Symposium on VLSI, pages 224–229, March 1995.

[48] V. Schober and T. Kiel. An asynchronous scan path concept for micropipelines
using the bundled data convention. In Proceedings International Test Conference
1996. Test and Design Validity, pages 225–231, Oct 1996.

[49] O. A. Petlin and S. B. Furber. Built-in self-testing of micropipelines. In Pro-
ceedings Third International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 22–29, April 1997.

[50] M. Roncken and E. Bruls. Test quality of asynchronous circuits: a defect-oriented
evaluation. In Proceedings International Test Conference 1996. Test and Design
Validity, pages 205–214, Oct 1996.

[51] M. Roncken, E. Aarts, and W. Verhaegh. Optimal scan for pipelined testing: an
asynchronous foundation. In Proceedings International Test Conference 1996. Test
and Design Validity, pages 215–224, Oct 1996.

[52] M. Roncken. Defect-oriented testability for asynchronous ICs. Proceedings of the
IEEE, 87(2):363–375, Feb 1999.

[53] M. Roncken, S. M. Gilla, H. Park, N. Jamadagni, C. Cowan, and I. Sutherland. Nat-
uralized communication and testing. In 2015 21st IEEE International Symposium
on Asynchronous Circuits and Systems, pages 77–84, May 2015.

[54] M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Saldanha, and A. Taubin. Partial-
scan delay fault testing of asynchronous circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 17(11):1184–1199, Nov 1998.

[55] Yong-Seok Kang, Kyung-Hoi Huh, and Sungho Kang. New scan design of asyn-
chronous sequential circuits. In AP-ASIC’99. First IEEE Asia Pacific Conference
on ASICs (Cat. No.99EX360), pages 355–358, Aug 1999.

[56] K. van Berkel, A. Peeters, and F. te Beest. Adding synchronous and LSSD modes
to asynchronous circuits. In Proceedings Eighth International Symposium on Asyn-
chronous Circuits and Systems, pages 161–170, April 2002.

104

Bibliography

[57] F. T. Beest, A. Peeters, M. Verra, K. van Berkel, and H. Kerkhoff. Automatic scan
insertion and test generation for asynchronous circuits. In Proceedings. Interna-
tional Test Conference, pages 804–813, Oct 2002.

[58] Frank Beest, Ad Peeters, Kees Berkel, and Hans Kerkhoff. Synchronous full-scan
for asynchronous handshake circuits. J. Electronic Testing, 19:397–406, 08 2003.

[59] F. Beest and A. Peeters. A multiplexer based test method for self-timed circuits. In
11th IEEE International Symposium on Asynchronous Circuits and Systems, pages
166–175, March 2005.

[60] M. L. King and K. K. Saluja. Testing micropipelined asynchronous circuits. In
2004 International Conference on Test, pages 329–338, Oct 2004.

[61] Feng Shi, Yiorgos Makris, S. M. Nowick, and M. Singh. Test generation for ultra-
high-speed asynchronous pipelines. In IEEE International Conference on Test,
2005., pages 10 pp.–1018, Nov 2005.

[62] D. Shang, A. Yakovlev, F. Burns, F. Xia, and A. Bystrov. Low-cost online testing of
asynchronous handshakes. In Eleventh IEEE European Test Symposium (ETS’06),
pages 225–232, May 2006.

[63] V. Varshavsky, Michael Kishinevsky, Vyacheslav Marakhovsky, V. Peschansky,
L. Rosenblum, A. Taubin, and B. Tzirlin. Self-timed control of concurrent pro-
cesses. 1990.

[64] G. Gill, A. Agiwal, M. Singh, Feng Shi, and Y. Makris. Low-overhead testing
of delay faults in high-speed asynchronous pipelines. In 12th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC’06), pages 11 pp.–56,
March 2006.

[65] Chi-Hsuan "Cheng and James Chien-Mo" Li. "an asynchronous design for testabil-
ity and implementation in thin-film transistor technology". "Journal of Electronic
Testing", "27"("2"):"193–201", "Apr" "2011".

[66] N. Nemati, M. C. Reed, K. Fant, and P. Beckett. Asynchronous interleaved scan
architecture for on-line built-in self-test of Null Convention Logic. In 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 746–749, May
2016.

[67] K. Huang, T. Shen, and C. Li. Test methodology for dual-rail asynchronous cir-
cuits. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1–6, June 2017.

105

Bibliography

[68] N. Nemati, P. Beckett, M. C. Reed, and K. Fant. Clock-less DfT-less test strategy
for Null Convention Logic. IEEE Transactions on Emerging Topics in Computing,
6(4):460–473, Oct 2018.

[69] F. A. Kuentzer and A. M. Amory. Fault classification of the error detection logic
in the Blade resilient template. In 2016 22nd IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), pages 37–42, May 2016.

[70] F. A. Kuentzer, L. R. Juracy, and A. M. Amory. On the reuse of timing resilient ar-
chitecture for testing path delay faults in critical paths. In 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 379–384, March 2018.

[71] G. Gimenez, J. Simatic, and L. Fesquet. From signal transition graphs to timing
closure: Application to bundled-data circuits. In 25th IEEE International Sympo-
sium on Asynchronous Circuits and Systems (ASYNC), pages 86–95, May 2019.

[72] M. Tehranipoor and F. Koushanfar. A Survey of Hardware Trojan Taxonomy and
Detection. volume 27, pages 10–25, Jan. 2010.

[73] R. S. Chakraborty, S. Narasimhan, and S. Bhunia. Hardware trojan: Threats and
emerging solutions. In IEEE International High Level Design Validation and Test
Workshop, pages 166–171, 2009.

[74] N. Jacob, D. Merli, J. Heyszl, and G. Sigl. Hardware trojans: current challenges
and approaches. IET Computers & Digital Techniques, 8(6):264–273, 2014.

[75] H. Li, Q. Liu, J. Zhang, and Y. Lyu. A survey of hardware trojan detection, diagno-
sis and prevention. In 14th International Conference on Computer-Aided Design
and Computer Graphics (CAD/Graphics), pages 173–180, 2015.

[76] H. Salmani, M. Tehranipoor, and R. Karri. On design vulnerability analysis and
trust benchmarks development. In IEEE 31st International Conference on Com-
puter Design (ICCD), pages 471–474, 2013.

[77] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian. Parametric trojans for fault-
injection attacks on cryptographic hardware. In Workshop on Fault Diagnosis and
Tolerance in Cryptography, pages 18–28, 2014.

[78] B. Cakır and S. Malik. Hardware trojan detection for gate-level ics using signal cor-
relation based clustering. In 2015 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 471–476, 2015.

[79] M. Oya, Y. Shi, M. Yanagisawa, and N. Togawa. A score-based classification
method for identifying hardware-trojans at gate-level netlists. In Design, Automa-
tion Test in Europe Conference Exhibition (DATE), pages 465–470, 2015.

106

Bibliography

[80] M. Banga and M. S. Hsiao. Trusted rtl: Trojan detection methodology in pre-
silicon designs. In 2010 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pages 56–59, 2010.

[81] X. Chen, Q. Liu, S. Yao, J. Wang, Q. Xu, Y. Wang, Y. Liu, and H. Yang. Hardware
trojan detection in third-party digital intellectual property cores by multilevel fea-
ture analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(7):1370–1383, 2018.

[82] T. Reece and W. H. Robinson. Detection of hardware trojans in third-party intel-
lectual property using untrusted modules. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(3):357–366, 2016.

[83] S. Jha and S. K. Jha. Randomization based probabilistic approach to detect trojan
circuits. In 2008 11th IEEE High Assurance Systems Engineering Symposium,
pages 117–124, 2008.

[84] R. S. Chakraborty, S. Paul, and S. Bhunia. On-demand transparency for improving
hardware trojan detectability. In 2008 IEEE International Workshop on Hardware-
Oriented Security and Trust, pages 48–50, 2008.

[85] M. Flottes G. Dinatale, S. Dupuis and B. Rouzeyre. Identification of hardware tro-
jans triggering signals. In Workshop on Trustworthy Manufacturing and Utilization
of Secure Devices, May 2013.

[86] N. Lesperance, S. Kulkarni, and Kwang-Ting Cheng. Hardware trojan detection
using exhaustive testing of k-bit subspaces. In The 20th Asia and South Pacific
Design Automation Conference, pages 755–760, 2015.

[87] H. Salmani, M. Tehranipoor, and J. Plusquellic. A novel technique for improving
hardware trojan detection and reducing trojan activation time. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 20(1):112–125, 2012.

[88] S. Paul C. Papachristou R. S. Chakraborty, F. Wolff and S. Bhunia. Mero: A
statistical approach for hardware trojan detection. In Cryptographic Hardware and
Embedded Systems (CHES), pages 396–410. Springer Berlin Heidelberg, 2009.

[89] Mohammad Tehranipoor and Cliff Wang. Introduction to Hardware Security and
Trust. Springer Publishing Company, Incorporated, 2011.

[90] C. Chiang and J. Kawa. Design for manufacturability and yield for nano-scale
cmos. In Series on Integrated Circuits and Systems, 2007.

[91] Y. Liu, K. Huang, and Y. Makris. Hardware trojan detection through golden chip-
free statistical side-channel fingerprinting. In 51st ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), pages 1–6, 2014.

107

Bibliography

[92] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan Detec-
tion using IC Fingerprinting. In Proc. IEEE Symposium on Security and Privacy
(SP’07), pages 296–310, May 2007.

[93] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic. Hardware trojan detec-
tion and isolation using current integration and localized current analysis. In 2008
IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems,
pages 87–95, Oct 2008.

[94] B. Shanyour and S. Tragoudas. Detection of low power trojans in standard cell
designs using built-in current sensors. In Proc. IEEE International Test Conference
(ITC), pages 1–10, Oct 2018.

[95] R. Rad, J. Plusquellic, and M. Tehranipoor. Sensitivity analysis to hardware Trojans
using power supply transient signals. In Proc. IEEE International Workshop on
Hardware-Oriented Security and Trust (HOST), pages 3–7, June 2008.

[96] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic. Power supply signal
calibration techniques for improving detection resolution to hardware trojans. In
IEEE/ACM International Conference on Computer-Aided Design, pages 632–639,
2008.

[97] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris. Silicon Demonstration of Hardware
Trojan Design and Detection in Wireless Cryptographic ICs. volume 25, pages
1506–1519, April 2017.

[98] J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic. Detecting Trojans Through
Leakage Current Analysis Using Multiple Supply Pad IDDQs. volume 5, pages
893–904, Dec 2010.

[99] I. Wilcox, F. Saqib, and J. Plusquellic. GDS-II Trojan detection using multiple
supply pad VDD and GND IDDQs in ASIC functional units. In IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 144–150,
2015.

[100] J. Li and J. Lach. Negative-skewed shadow registers for at-speed delay variation
characterization. In 25th International Conference on Computer Design, pages
354–359, 2007.

[101] J. Li and J. Lach. At-speed delay characterization for ic authentication and trojan
horse detection. In IEEE International Workshop on Hardware-Oriented Security
and Trust, pages 8–14, 2008.

[102] B. Cha and S. K. Gupta. Trojan Detection via Delay Measurements: a new ap-
proach to select paths and vectors to maximize effectiveness and minimize cost. In

108

Bibliography

Proc. Design, Automation Test in Europe Conference (DATE), pages 1265–1270,
March 2013.

[103] D. Ismari, J. Plusquellic, C. Lamech, S. Bhunia, and F. Saqib. On detecting delay
anomalies introduced by hardware trojans. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–7, 2016.

[104] C. Lamech, J. Aarestad, J. Plusquellic, R. Rad, and K. Agarwal. REBEL and TDC:
Two embedded test structures for on-chip measurements of within-die path delay
variations. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 170–177, 2011.

[105] C. Lamech and J. Plusquellic. Trojan detection based on delay variations measured
using a high-precision, low-overhead embedded test structure. In IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust, pages 75–82, 2012.

[106] A. Davoodi, M. Li, and M. Tehranipoor. A sensor-assisted self-authentication
framework for hardware trojan detection. IEEE Design & Test, 30(5):74–82, 2013.

[107] Yier J. and Y. Makris. Hardware trojan detection using path delay fingerprint.
In IEEE International Workshop on Hardware-Oriented Security and Trust, pages
51–57, 2008.

[108] G. Zarrinchian and M. S. Zamani. Latch-based structure: A high resolution and
self-reference technique for hardware trojan detection. IEEE Transactions on Com-
puters, 66(1):100–113, 2017.

[109] J. Balasch, B. Gierlichs, and I. Verbauwhede. Electromagnetic circuit fingerprints
for hardware trojan detection. In IEEE International Symposium on Electromag-
netic Compatibility (EMC), pages 246–251, 2015.

[110] O. Söll, T. Korak, M. Muehlberghuber, and M. Hutter. Em-based detection of hard-
ware trojans on fpgas. In IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pages 84–87, 2014.

[111] D. Jap, Wei He, and S. Bhasin. Supervised and Unsupervised Machine Learning
for Side-Channel Based Trojan Detection. In Proc. International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pages 17–24,
July 2016.

[112] J. He, Y. Zhao, X. Guo, and Y. Jin. Hardware trojan detection through chip-free
electromagnetic side-channel statistical analysis. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(10):2939–2948, 2017.

109

Bibliography

[113] C. Bao, D. Forte, and A. Srivastava. Temperature Tracking: Toward Robust Run-
Time Detection of Hardware Trojans. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 34(10):1577–1585, Oct 2015.

[114] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar. High-sensitivity hardware trojan
detection using multimodal characterization. In 2013 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1271–1276, 2013.

[115] L. A. Guimarães, R. P. Bastos, and L. Fesquet. Detection of Layout-Level Trojans
by Monitoring Substrate with Preexisting Built-in Sensors. In Proc. IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI), pages 290–295, July 2017.

[116] Narasimhan, Seetharam and Du, Dongdong and Chakraborty, Rajat and Paul, Som-
nath and Wolff, Francis and Papachristou, Chris and Roy, Kaushik and Bhunia,
Swarup. Hardware Trojan Detection by Multiple-Parameter Side-Channel Analy-
sis. volume 62, pages 2183–2195, Nov 2013.

[117] B. Hou, C. He, L. Wang, Y. En, and S. Xie. Hardware trojan detection via current
measurement: A method immune to process variation effects. In 2014 10th In-
ternational Conference on Reliability, Maintainability and Safety (ICRMS), pages
1039–1042, 2014.

[118] X. Ngo, I. Exurville, S. Bhasin, J. Danger, S. Guilley, Z. Najm, J. Rigaud, and
B. Robisson. Hardware trojan detection by delay and electromagnetic measure-
ments. In 2015 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 782–787, 2015.

[119] F. Koushanfar and A. Mirhoseini. A unified framework for multimodal submodular
integrated circuits trojan detection. IEEE Transactions on Information Forensics
and Security, 6(1):162–174, 2011.

[120] K. Xiao, X. Zhang, and M. Tehranipoor. A clock sweeping technique for detecting
hardware trojans impacting circuits delay. IEEE Design Test, 30(2):26–34, April
2013.

[121] X. Cui, K. Ma, L. Shi, and K. Wu. High-level synthesis for run-time hardware
trojan detection and recovery. In 51st ACM/EDAC/IEEE Design Automation Con-
ference (DAC), pages 1–6, 2014.

[122] E. Dubrova, M. Näslund, G. Carlsson, and B. Smeets. Keyed logic bist for trojan
detection in soc. In International Symposium on System-on-Chip (SoC), pages 1–4,
2014.

110

Bibliography

[123] Y. Zheng, S. Yang, and S. Bhunia. SeMIA: Self-Similarity-Based IC Integrity
Analysis. Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 35(1):37–48, Jan 2016.

[124] T. Hoque, M. Mustapa, F. Amsaad, and M. Niamat. Assessment of NAND based
ring oscillator for hardware Trojan detection. In Proc. IEEE 58th International
Midwest Symposium on Circuits and Systems (MWSCAS), pages 1–4, Aug 2015.

[125] F. K. Lodhi and S. R. Hasan and O. Hasan and F. Awwad. Hardware Trojan De-
tection in Soft Error Tolerant Macro Synchronous Micro Asynchronous (MSMA)
Pipeline. In Proc. 57th International Midwest Symposium on Circuits and Systems
(MWSCAS), pages 659–662, Aug 2014.

[126] F. K. Lodhi and S. R. Hasan and O. Hasan and F. Awwad. Formal Analysis of
Macro Synchronous Micro Asychronous Pipeline for Hardware Trojan Detection.
In Proc. Nordic Circuits and Systems Conference (NORCAS): NORCHIP Interna-
tional Symposium on System-on-Chip (SoC), pages 1–4, Oct 2015.

[127] L. A. Guimarães, T. F. de Paiva Leite, R. P. Bastos, and L. Fesquet. Non-intrusive
Testing Technique for Detection of Trojans in Asynchronous Circuits. In Proc.
Design, Automation Test in Europe Conference (DATE), pages 1516–1519, March
2018.

[128] G. F. Bouesse, M. Renaudin, S. Dumont, and F. Germain. DPA on Quasi-Delay
Insensitive Asynchronous Circuits: Formalization and Improvement. In Proc. De-
sign, Automation and Test in Europe (DATE), pages 424–429, March 2005.

[129] J. Lim, W. G. Ho, K. S. Chong, and B. H. Gwee. DPA-Resistant QDI Dual-rail AES
S-Box based on Power-balanced Weak-conditioned Half-buffer. In Proc. IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–4, May 2017.

[130] G. F. Bouesse, M. Renaudin, A. Witon, and F. Germain. A Clock-less Low-voltage
AES Crypto-processor. In Proc. European Solid-State Circuits Conference (ESS-
CIRC), pages 403–406, Sept 2005.

[131] Y. Monnet, M. Renaudin, and R. Leveugle. Hardening techniques against transient
faults for asynchronous circuits. In Proc. 11th IEEE International On-Line Testing
Symposium, pages 129–134, July 2005.

[132] Ivan E. Sutherland and Jo Ebergen. Computer Without Clocks. Scientific American,
2002.

[133] L. A. Guimarães, R. P. Bastos, T. F. de Paiva Leite, and L. Fesquet. Simple Tri-state
Logic Trojans Able to Upset Properties of Ring Oscillators. In Proc. International

111

Bibliography

Conference on Design and Technology of Integrated Systems in Nanoscale Era
(DTIS), pages 1–6, April 2016.

[134] Abdulhamit Subasi and M. Ismail Gursoy. EEG Signal Classification using PCA,
ICA, LDA and Support Vector Machines. volume 37, pages 8659–8666, 2010.

[135] A. El Hadbi. Time-to-Digital Conversion based on a Self-Timed Ring Oscilla-
tor. PhD thesis, École Doctorale Électronique, Électrotechnique, Automatique &
Traitement du Signal (EEATS), 2019.

[136] M. T. Moreira, M. E. Arendt, R. A. Guazzelli, and N. L. V. Calazans. A new
cmos topology for low-voltage null convention logic gates design. In 20th IEEE
International Symposium on Asynchronous Circuits and Systems, pages 93–100,
2014.

112

List of Figures

1 Top view of (a) 2nd generation Epyc, (b) GA100 and (c) Stratix dies. . . . 1
2 Generic synchronous pipeline architecture. Data flows through pipeline

stages according to the clock signal pulses. 3
3 Illustration of the delay components for clock period definition in modern

technologies. Designers must not only consider the traditional worst-case
logic delay, but also margins regarding FF alignment, the clock tree and
PVT. 3

1.1 Example of a control-only asynchronous channel with two basic control
signals (req and ack). 11

1.2 Control operation of (a) four-phase and (b) two-phase handshake protocols. 11
1.3 The Muller C-element: (a) gate view of a 2-input gate and (b) equivalent

implementation in transistor level. 13
1.4 Active and passive block interconnected by a 3-stage Muller pipeline. . . 13
1.5 Handshake waveform during the propagation of three tokens by the active

block. The waveform simulates an acknowledgement delay by the passive
block between the first and second token. 14

1.6 Symbols for (a) fork, (b) join, (c) split and (d) merge flow schemes. . . . 15
1.7 Generic scheme of a asynchronous bundled-data push channel. 16
1.8 Asynchronous bundled-data channel employing (a) four-phase and (b)

two-phase handshake protocols. 16
1.9 Generic scheme of a asynchronous QDI push channel. 18
1.10 Signal behavior during data transmission in a QDI push channel. 20
1.11 Representation of an isochronic fork with logic blocks and delay wires. . 20

2.1 Stuck-at fault example. Extracted from [43] 28
2.2 Delay fault example. Adapted from [43]. 30
2.3 Generic architecture of a scan-based design with a single scan chain. In

this example, the design has dedicated SCin and SCout signals, albeit these
signals are usually multiplexed with primary inputs/outputs. Note that, in
practice, a design can have multiple scan chains in order to reduce scan-
in/out time. 32

114

List of Figures

2.4 Signal behavior for a stuck-at test cycle with a scan-based design. 34

2.5 Signal behavior for a path-delay test cycle with a scan-based design. . . . 35

3.1 Generic scheme of an asynchronous BD push channel, highlighting the
timing relationship between handshake and data signals. 41

3.2 Proposed testing structure. Lower MUX logic controlled by Tmode and
SCen are already presented for stuck-at testing. The proposed testing
structure adds two more MUX gates that allow to disable the left hand-
shake signals of the controller. 43

3.3 Behavior of the testing signals during a test cycle. 44

3.4 Block representation (a) of a WCHB controller with its handshake signals
and STG representation (b) of the WCHB controller demonstrating the
handshake behavior. 45

3.5 Local clock set definition with a linear 3-stage structure. By defining
root clocks at each controller, the LCS flow is capable to create generated
clocks in the neighbour controllers to allow setup and hold timing analysis. 47

3.6 Token generation according the control path structure: (a) fork, (b) join,
(c) split and (d) merge. The arrows indicate where the token is generated
(through ext_req) and where it is propagated. 48

3.7 Stuck-at testing with proposed approach. Data paths are isolated with
Tmode signal, avoiding any interaction with controllers. Thus, circuit op-
erates as a conventional synchronous circuit. 49

3.8 Architecture overview of the implementation of the (a) 2-bit BD adder,
(b) the testable controller and (c) majority-based C-element gate. 51

3.9 Path-delay information displayed on TetraMAX, indicating all transitions
along a given path. 58

3.10 Block diagram of the considered micropipeline-based AES core (a) and
the testable micropipeline controller (b). Red arrows indicate the addi-
tional testing signals. 58

3.11 HSB configuration for each test cycles during at-speed testing. Arrows
represent where each token is inserted and the target path. 60

4.1 Representation of a HT in a standard cell-based IC design. The shad-
owed part illustrates the area used by the HT. The considered HT model
comprises two main logic blocks: a trigger and a payload. The trigger is
responsible to activate the payload according to a specific input. Usually,
the payload logic remains inactive to avoid detection. 66

4.2 Hardware Trojan taxonomy, classified in five main categories: insertion
phase, abstraction level, activation mechanism, effect and location. 67

4.3 Classification of non-destructive HT detection techniques. 71

115

List of Figures

4.4 Illustrative example of HT detection through side-channel analysis. The
example considers two generic parameters extracted from a golden refer-
ence to be able to differ HT-free and HT-infected devices. 73

5.1 Example of current side-effect of an standby HT in a generic circuit. The
parasitic capacitance of the Trojan deviates the current signature of the
supply voltage Vdd . 81

5.2 Example of a 3-stage linear pipeline: (a) synchronous and (b) QDI asyn-
chronous circuits. The plots in (c) and (d) represent the current signature
of each pipeline stage in (a) and (b), respectively, during the propagation
of a single input vector through the stage S0. This example highlights the
current influence that occurs in synchronous circuits. Even if only one
stage is computing its inputs, the remaining stages still affects the total
current signature of Iddt(t). 83

5.3 Proposed HT detection flow highlighted in seven main steps. Both golden
and selected DUTT current signatures are obtained using the same the
stimulus procedure, extraction and partition method. While the OC-SVM
training step considers golden DUTT current signatures to generate the
classifiers, the OC-SVM classification step utilizes the selected DUTT
current signatures to classify whether the selected DUTT samples are
Trojan-free or Trojan-infected. 84

5.4 Experimental setup overview with the architecture of the study-case cir-
cuit. The setup observes the current of the supply voltage VDD in order
to see the current behavior while a token is propagated through the case-
study circuit. 88

5.5 Dimension-reduced representation of the OC-SVM classifier for the third
stage of the ALU. Shadowed area represents the generated classifier after
Principal Component Analysis (PCA). 90

5.6 Classification accuracy according number of training samples. The OC-
SVM detects all comparator-based HTs with 100% accuracy, whereas the
pass-transistor detection decreases as the number of DUTT samples for
OC-SVM training increases. 91

A.1 2-input C-element alternative topologies: (a) Martin’s (weak feedback);
(b) Sutherland’s (static); (c) Van Berkel’s and (d) Moreira’s. 129

B.1 Layout of TIMA’s testchip. 132
B.2 Integration architecture of both asynchronous AES cryptocores. 133

116

List of Tables

1 Semiconductor enterprises that adopted asynchronous design in their prod-
ucts. 5

1.1 Truth table of a two-input C-element gate. 12
1.2 List of available BD implementations in the literature. 17
1.3 Codification for a 1-bit dual-rail channel using RTZ/RTO protocol. 19
1.4 List of available QDI implementations in the literature. 22

3.1 Area results of the original and the proposed testable AES core. 59
3.2 ATPG result summary for stuck-at testing. 60

5.1 Comparison table of HT detection accuracy of the proposed technique and
the conducted work in [127] using the same case-study DUTT. The results
of the proposed technique employ 100 golden DUTT samples as training
samples for the OC-SVM algorithm. Trojan size column represents the
number of transistors used. 91

B.1 Relation between Input Shift-Register (INSR) signals and AES inputs. . . 133
B.2 Input and output pin information of the testchip. This table only presents

the pins related to the AES blocks. 134
B.3 Architecture Configuration Shift-Register (ACSR) bit usage. 136

118

7
List of Publications and Presentations

7.1 Publications

1. GUAZZELLI, R. A.; and FESQUET, L.; “At-speed DfT architecture of Bundled-
data Circuits”. IEEE International Test Conference (ITC), 2020;

2. GUAZZELLI, R. A.; TRINDADE, M. G.; GUIMARÃES, L. A.; LEITE, T. F. P.;
FESQUET, L.; POSSAMAI BASTOS, R.; “Trojan Detection Test for Clockless Cir-
cuits”. Springer Journal of Electronic Testing: Theory and Applications, JETTA,
2020.

3. GUAZZELLI, R. A.; TRINDADE, M. G.; FESQUET, L.; POSSAMAI BASTOS,
R. “Learning-Based Reliability Assessment Method for Detection of Permanent
Faults in Clockless Circuits”. Elsevier Microelectronics Reliability Journal, 2019.

7.2 Presentations

1. Paper presentation “Learning-Based Reliability Assessment Method for Detection
of Permanent Faults in Clockless Circuits” at 30st European Symposium on Relia-
bility of Electron Devices, Failure Physics and Analysis (ESREF), Oct. 2019;

2. National presentation “Exploring a Non-conventional Testing Technique for Asyn-
chronous Circuits” at 21ème édition des Journées Nationales du Réseau Doctoral
en Micro-nanoélectronique (JNRDM), June 2019;

120

8
Acronym List

ACSR Architecture Configuration Shift-Register 136

AES Advanced Encryption Standard 50, 62, 132, 136

AHSL Asynchronous High-Level Synthesis 132

AI Artificial Intelligence 2, 4

ALU Arithmetic Logic Unit 88

ASIC Application-Specific Integrated Circuit 2

ASL Asynchronous Scan Latch 36

ASVHB Autonomous Signal-Validity Half-Buffer 23

ATE Automated Testing Equipment 32, 96

ATPG Automatic Testing Pattern Generation 6, 24, 32–35, 37, 41, 46, 47, 49, 50, 54–56,
62, 95, 96, 98

BBICS Bulk Built-in Current Sensor 76

BD Bundled-Data 5, 6, 10, 11, 15, 17, 18, 21, 24, 35, 41, 50, 52, 55, 62, 95, 97, 98, 115,
118

BILBO Built-in Logic Block Observer 36

122

Glossary

BIST Built-in Self-Test 32, 36, 38

CAD Computer Aided Design 1, 3

CMOS Complementary Metal Oxide Semiconductor 1, 50

CMP Chemical Mechanical Polishing 71

CUDA Compute Unified Device Architecture 2

DAC-scan Dual-Rail Asynchronous Circuit Scan 38

DC David Cell 37

D-FF Type-D Flip-Flop 33

DfT Design-for-Testability 6, 24, 32, 33, 36–38, 41, 49, 50, 52–54, 56, 57, 62, 95, 96,
98, 132

DI Delay Insensitive 18, 19, 22

DIMS Delay-Insensitive Minterm Synthesis 22

DoS Denial of Service 69

DPA differential Power Analysis 97

DUT Design Under Test 57

DUTT Device Under Trojan Test v, 71–76, 79–81, 84–90, 92, 116

DVS Dynamic Voltage Scaling 4

EDA Electronic Design Automation 4, 6, 17, 32, 41, 46, 50, 95, 96

EDL Error Detection Logic 38

EM Electromagnetic 4, 73, 75, 80

EMI Electromagnetic Interference 18

FD-SOI Fully Depleted Silicon-On-Insulator 88

FF Flip-Flop 2, 3, 24, 33, 34, 45, 50, 52, 95, 114

FPGA Field-Programmable Gate Array 2, 4, 75, 87

GALS Globally Asynchronous, Locally Synchronous 95

123

Glossary

GPU Graphic Processor Unit 1, 2

HBM2 High-Bandwith Memory 2 2

HC High-Capacity 37

HPC High-Performance Computing 2

HSB Handshake Breaker 42–44, 57, 62, 136

HT Hardware Trojan 6, 66–76, 80–82, 84–90, 92, 97, 98, 115, 116

IC Integrated Circuit 1, 2, 66, 67, 71–77, 80, 85, 87, 95, 97, 115

IDDQ Quiescent Supply Current 36, 38, 74

IDDT Transient Supply Current 74, 80

INSR Input Shift-Register 118, 132, 133

IoT Internet of Things 2, 5

IP Intellectual Property 2, 4, 72, 80

KL Karhunen-Loève 74

LCS Local Clock Set 41, 46, 47, 50, 51, 53, 54, 62, 95, 96

LSSD Level-Sensitive Scan-Design 35–37

MC Monte Carlo 88

MVEE Minimum Volume Enclosing Ellipsoid 73, 80

NCL NULL Convention Logic 22, 23, 38, 130

NCL+ NULL Convention Logic Plus 23

NoC Network-on-Chip 4

OC-SVM One-Class Support Vector Machine v, 79, 81, 84, 86, 87, 89, 92, 116

OUTSR Output Shift-Register 132

PCA Principal Component Analysis 89

PCB Printed Circuit Board 67

124

Glossary

PCFB Pre-Charged Full-Buffer 22

PCHB Pre-Charged Half-Buffer 21–23

PUF Physical Unclonable Function 132

PV Process Variations 4, 5, 72–74, 76, 85, 89

PVT Process, Voltage and Temperature 3, 18, 97, 114

QDI Quasi-Delay Insensitive 5, 6, 10, 11, 18–24, 35–38, 80, 82–85, 88, 92, 97, 114, 116,
118

RBF Radial Basis Function 89

RM Reference Methodology 50, 52, 53

RTL Register-Transfer Level 68, 75

RTO Return-to-One 19, 23, 118

RTZ Return-to-Zero 19, 23, 118

SCL Sleep Convention Logic 23, 38

SDC Synopsys Design Constraints 54

SDDS-NCL Spatially Distributed Dual-Spacer NULL Convention Logic 23

SDF Standard Delay Format 68

SEC Sequential Equivalence Checking 72

SEE Single-Event Effect 18

SEM Scanning Electron Microscope 71

SFF Scan Flip-Flop 33, 50

SoC System-on-Chip 4

SPF STIL Protocol File 53, 56

STA Static Timing Analysis 41, 46, 50, 51, 54, 55, 95

STCL Scan Test Control Logic 36

STG Signal Transition Graph 45, 115

STIL Standard Test Interface Language 57

125

Glossary

STR Self-Timed Ring 132

SVM Support Vector Machine 85, 87

TCL Tool Command Language 50, 52

TDC Time-to-Digital Converter 98

TRNG True Random Number Generator 68

ULP Ultra-Low-Power 2, 5

VLSI Very Large Scale Integration 31, 95

WCHB Weak-Conditioned Half-Buffer 21–23, 37, 38, 45, 115

126

A
Asynchronous Components

128

A.1. C-Element Alternative Topologies

A.1 C-Element Alternative Topologies

Figure A.1 illustrates the different 2-input C-element topologies available in the liter-
ature. Note that we are considering symmetrical implementations only. First, the Martin’s
weak feedback (a) C-element is the most classic implementation. Its implementation em-
ploys of a pull-down (set) and a pull-up (reset) network that allows the inputs A and B to
drive the output Zn directly. When all inputs are at ‘0’, set is activated. When all inputs
are at ‘1’, reset is activated. In case the inputs have different logic values, the latch is the
only active logic block and it maintains the logic value at the output.

A

B

reset

set

hold-0

hold-1

B

B

A

A

Zn

latch

A

B

Zn

Zn

Zn

A

B

B

A

B

A

output
buffer

hold-0

hold-1

reset

Zn

A

B
latch

set

BA

A

B

BA

Zn

A

B

latch

reset

set (a) (b)

(c)
(e)

A B

Zn

A
O

2
2
2
 g

a
te

a b c d e f

(d)

Figure A.1: The Muller C-element alternative topologies: (a) Martin’s (weak feedback);
(b) Sutherland’s (static); (c) Van Berkel’s, (d) majority-based and (e) Moreira’s.

Sutherland’s C-element topology (b) was proposed in 1989 and employed in his mi-
cropipeline design. The topology uses a similar structure as Martin’s topology, with iden-
tical reset, set and latch blocks. However, Sutherland’s C-element adds two logic blocks
called hold-0 and hold-1, connecting the sources of the feedback inverter to the supply
voltage and ground. These additional logic blocks are responsible to establish static con-
nectivity to the voltage references and guarantee better output integrity when reset and
set blocks are not driving the output. As the name suggests, hold-0 helps to “hold” a low
logic level at the output, while hold-1 “holds” a high logic level.

Figure A.1 (c) illustrates the schematic of Van Berkel’s topology. Different from
previous topologies, this C-element des not implement a traditional latch at its output.
Instead, the feedback logic is integrated to the set and reset logic through the Pf b and
N f b transistors. So it is possible to say that set integrates the hold-0 block into its logic
and reset integrates hold-1. In that way, the inputs are driving the output all the time,
independently of the output value.

129

Annexe A. Asynchronous Components

In case no dedicated C-element implementation is available, designer can consider an
implementation with standard logic gates, such as the one illustrated in Figure A.1 (d).
This C-element is a majority-based implementation and can be implemented with AND / OR
gates available in standard cell libraries and avoids the necessity of designing a C-element
gate from scratch. In order to implement the memory logic, C-element has a feedback
connection between the output and two internal inputs. However, it is important to high-
light that a timing constraint is present between the output and the feedback connections.
In this case, it is necessary to guarantee that the feedback connection are updated before
the arrival of new input transitions, otherwise the circuit can malfunction. Consequently,
it is advised to specify constraints in synthesis tools or implement the feedback connection
manually.

Finally, in 2014, Moreira et al. [136] presented a different approach to implement
NCL gates for low-voltage applications. including C-elements as the one represented in
Figure A.1 (e). The topology employs the basic set, reset, hold-0 and hold-1 blocks, an
output inverter and a latch controlled by two additional transistors PC and NC. Accord-
ing to the authors, this implementation employs a higher number of transistor but better
performance and ebergy trade-offs.

130

B
TIMA Asynchronous Testchip

131

Annexe B. TIMA Asynchronous Testchip

B.1 Overview architecture

Figure B.1 presents the layout of the testchip sent to the foundry. The testchip con-
tains two asynchronous 128-bit AES cryptocores and a Self-Timed Ring (STR) Physical
Unclonable Function (PUF). Regarding the two AES, one of them employs the DfT ar-
chitecture proposed in chapter 3 and the other was implemented through an Asynchronous
High-Level Synthesis (AHSL) flow. Note that the STR PUF not the AHSL AES are not
related to this thesis. In fact, the STR PUF are logically isolated from the AES crypto-
cores.

Two async 128-bit AES

STR PUF

STR PUF

Figure B.1: Layout of TIMA’s testchip.

Figure B.2 illustrates the block-level architecture integrating the two asynchronous
AES cryptocores. The integration logic consists of an input, an output and a configura-
tion shift registers, handshake loop blocks and three multiplexers. The INSR contains 256
bits and allows the external charge through serial_AES_i. Table B.1 indicates the connec-
tions between INSR and AES inputs (plaintext and keyblock). The Output Shift-Register
(OUTSR) contains 128 bits and it is responsible to store and propagate the AES result
to the external environment. It employs an extra control signal called output_mode that
allows to set OUTSR in normal or shift mode. In normal mode, OUTSR can store the
AES output. In shift mode, OUTSR is disconnected to the AES output and allows to shift
its value through serial_AES_o.

132

B.1. Overview architecture

1
2
8
-b

it
 o

u
tp

u
t

s
h

if
t

re
g

is
te

r

1
2
8
-b

it
 o

u
tp

u
t

s
h

if
t

re
g

is
te

r

chipertext_ahsl_o

chipertext_test_o
Testable AES

AHSL AES

2
5
6
-b

it
 i
n

tp
u

t
s
h

if
t

re
g

is
te

r

sel_AES

serial_AES_oserial_AES_i

ext_req_i
req_testable

req_ahsl

tmsc_en

config_i

tclk

ext_finish_ofinish_testable

finish_ahsl

req_i

plaintext

keyblock

loop_in

loop_in

loop_out

loop_out

req_o

req_i req_o

ack_o ack_i

ack_iack_o

ACSR tclk

loop_en loop_en

loop_en loop_en

ACSR

config_i

tclk

acsr_12 acsr_11 acsr_10 acsr_0

rst_aes

(127 downto 0)

(255 downto 128)

rst_reg

config_en

01

0

1

0

1

loop_en

ack_o

req_i

req_testable

loop_in

0

1

req_ahsl
/

01

loop_out

ack_i

req_o

loop_en

'0'

finish_testable

finish_ahsl
/

config_en en en en en en

Figure B.2: Integration architecture of both asynchronous AES cryptocores.

Table B.1: Relation between INSR signals and AES inputs.

INSR Signal AES Signal

127 downto 0 plaintext

255 downto 0 keyblock

133

Annexe B. TIMA Asynchronous Testchip

B.2 Testchip PINOUT (AES part only)

Table B.2: Input and output pin information of the testchip. This table only presents the
pins related to the AES blocks.

Signal Direction
Pull

Config.
Hyst. Drive Description

tclk in no yes 2

Testing clock. When tm = ’0’, this

clock signal is used to charge

(discharge) the input (output) shift

registers. Otherwise, the signal

controls the scan and HSB logic of

the testable AES.

rst_reg in no yes 2

High-active reset signal for INSR/

OUTSR/ACSR. This signal does

not reset the AES blocks.

rst_aes in no yes 2
High-active reset signal for

AES blocks.

serial_AES_i in no yes 2 Serial input of both AES blocks.

serial_AES_o out no yes 8 Serial output of both AES blocks.

config_i in no no 2 ACSR input.

config_en in no no 2 ACSR enable signal (active high).

134

B.2. Testchip PINOUT (AES part only)

ext_req_i in down yes 2

External input request. If the AHLS

AES is enabled, this signal is mainly

used as input request to initiate the

AES operation. For the testable AES,

this signal is used for the at-speed

testing and normal operation. This

signal can be used as a normal input

request signal if ONLY the less

significant bit of the HSB

configuration register is set – all

remaining bits reset.

ext_finish_o out no no 8

External output request. This signal

only indicates if the selected AES

block has finished its operation.

tm in down no 2
Test mode

(only used by the testable AES).

sc_en in no no 2
Scan chain enable

(only used by the testable AES).

135

Annexe B. TIMA Asynchronous Testchip

B.3 Architecture Configuration Shift-Register

This 13-bit shift register is responsible to enable the other shift registers, the loop logic
and configure the HSB signals. Table B.3 indicates the functionality of the Architecture
Configuration Shift-Register (ACSR) signals for each AES crytocore.

Table B.3: Architecture Configuration Shift-Register (ACSR) bit usage.

Signal AHLS AES Testable AES Description

ACSR[0] sel_AES

Selects the target AES. When sel_AES = 0, the

multiplexers drive input and outputs to the

testable AES.

When sel_AES = 1, multiplexers drive

to the AHLS AES.

ACSR[1] input_en
High-active enable for INSR. Allows to load

INSR through sel_AES_i.

ACSR[2] loop_en High-active enable for the loop logic.

ACSR[3] output_en High-active enable for OUTSR.

ACSR[4] output_mode
Selects OUTSR mode. On low, enters in

normal mode. It enters in shift mode on high.

ACSR[5] hsb[0]

ACSR[6] hsb[1]

ACSR[7] hsb[2]

ACSR[8] hsb[3]

ACSR[9] hsb[4]

ACSR[10] hsb[5]

ACSR[11] hsb[6]

ACSR[12]

Not used

hsb[7]

HSB configuration for the testable AES.

On high, the HSB signal connects the input

request signal of a given controller

to ext_req_i. Otherwise, the controller

operates normally.

136

"Test and Side-channel Analysis of
Asynchronous Circuits"

Résumé
Les circuits asynchrones sont étudiés depuis plusieurs décennies comme une alter-
native pour surmonter les difficultés liées à la conception synchrone, en particulier
avec les nœuds technologiques récents qui flirtent avec les limites physiques. Ainsi,
les variations de processus, de tension ou de température (PVT) peuvent avoir un
impact significatif sur le comportement des circuits. Cette situation a ouvert la voie
à l’usage de circuits asynchrones dans un large éventail d’applications. En raison
de leur mode de conception non conventionnel, il n’est pas toujours évident de les
concevoir. C’est pourquoi des méthodologies et des outils ont été mis en place pour
faciliter leur adoption. Cependant, le flot de conception synchrone est bien établi et il
est difficile de changer les habitudes, rendant difficile l’adoption et le développement
d’un flot de conception asynchrone automatisé et optimisé. Cela se traduit égale-
ment sur le développement de techniques de test et de diagnostic spécifiques à ce
type de circuits. Dans ce contexte, cette thèse porte sur les techniques dédiées
au test et à l’analyse des circuits asynchrones. La première partie présente une
architecture pour la testabilité (DfT) des circuits asynchrones Bundled-data (BD)
permettant d’exécuter des tests à pleine vitesse, tout en maintenant la compatibilité
avec les outils de synthèse et de test d’une part, et en limitant l’impact en surface
en surface du dispositif de test d’autre part. La seconde partie explore l’analyse des
circuits asynchrones par canaux cachés dans un but de détection des chevaux de
Troie matériels en tirant parti de leur signature en courant et de leur comportement
intrinsèque. Grâce à de nombreuses simulations, il a été démontré que les circuits
asynchrones sont à même de fournir des signatures locales de courant propres à
une sous-partie du circuit, facilitant ainsi l’identification et la présence de chevaux
de Troie.

Mots-clés : circuits asynchrones; Design-for-Testability (DFT); analyse par
canaux cachés; bundled-data; Quasi-Delay Insensitive (QDI); tests à la vitesse

Abstract
Asynchronous circuits have been explored in the last decades as an alternative to
overcome the issues brought by synchronous design, especially as recent tech-
nology nodes reach physical limits and process, voltage and temperature (PVT)
variations significantly impact circuit behavior. This pushes forward the use of asyn-
chronous circuits on wide range of applications. Due to their non-conventional de-
sign style, it is not so trivial to design them. Therefore, methodologies and tools have
been introduced to help its adoption. However, the well-established synchronous
design flow impedes alternatives and even creates resistance to further develop
an automated and optimized design flow. As a side effect, this also impacts the
development of testing and diagnosis techniques for this kind of circuits. In this
context, this thesis targets dedicated techniques for testing and analyzing asyn-
chronous circuits. A first part presents a Design-for-Testability (DfT) architecture
enabling at-speed testing on asynchronous Bundled-data (BD) circuits, while main-
taining low area overhead and compatibility with synthesis and testing tools. The
second part explores side-channel analysis on asynchronous circuits for Hardware
Trojan (HT) detection, taking advantage of their current signature and intrinsic be-
havior. Through simulation experiments, it is shown the ability of asynchronous
circuits in providing local current signatures for identifying the presence of HTs.

Keywords : asynchronous circuits; Design-for-Testability (DfT); side-
channel analysis; bundled-data; Quasi-Delay Insensitive (QDI); at-speed testing;
Hardware Trojan; current signature; delay testing

	Acknowledgements
	Contents
	Introduction
	I Asynchronous Circuits
	Asynchronous Design
	Asynchronous Channels and Handshake Protocols
	Handshake Implementation Concepts
	The C-element
	Non-linear Structures

	Bundled-Data Channels
	Bundled-Data Implementations

	Quasi-Delay Insensitive Channels
	The QDI Limitation
	QDI Implementations

	Conclusions

	II At-speed Test for Asynchronous Bundled-data Circuits
	State-of-the-Art on Digital and Asynchronous Testing
	Stuck-at Faults
	Path-Delay Faults
	At-speed Testing
	Digital Design-for-Testability and Scan-based Design
	Asynchronous Testing
	Conclusions

	Proposed At-speed DfT Architecture for Bundled-data Design
	Problem Statement
	Overview Architecture and Testing Signals
	Test Cycle
	Initialization
	Checking Circuit Correctness
	Retrieving Path-Delay Information with Local Clock Sets
	Testing Non-linear Structures
	Compatibility with Traditional Stuck-at Testing
	Study-case Circuits
	A simple circuit: 2-bit adder
	A more complex circuit: 128-bit AES cryptocore

	Conclusions

	III Side-channel Analysis of Asynchronous Circuits
	State-of-the-Art on Hardware Trojan Detection
	Hardware Trojan Model and Taxonomy
	Insertion
	Abstraction Level
	Activation Mechanism
	Effect
	Location

	Hardware Trojan Detection
	Power Consumption Monitoring
	Delay Monitoring
	EM, Thermal and Substrate Monitoring
	Multi-parameter Monitoring

	Conclusions

	Hardware Trojan Detection Technique for Asynchronous Circuits
	Exploiting the Current Signatures of Asynchronous Circuits
	Technique Steps
	Stimulus Procedure
	Golden DUTT Samples
	Golden DUTT Current Signature Extraction and Partition
	OC-SVM Training
	Selected DUTT Samples
	Selected DUTT Current Signature Extraction and Partition
	OC-SVM Classification

	Simulation Experiments
	Experimental Setup
	OC-SVM Results and Discussion

	Conclusions

	Conclusions
	Contributions on Testability of Asynchronous Circuits
	Contributions on Side-channel Analysis for Asynchronous Circuits
	Perspectives: uniting strengths

	Bibliography
	List of Figures
	List of Tables
	List of Publications and Presentations
	List of Publications and Presentations
	Publications
	Presentations

	Glossary
	Acronym List
	Asynchronous Components
	C-Element Alternative Topologies

	TIMA Asynchronous Testchip
	Overview architecture
	Testchip PINOUT (AES part only)
	Architecture Configuration Shift-Register

