
HAL Id: tel-03207261
https://theses.hal.science/tel-03207261

Submitted on 24 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization, evaluation and utilization of clock
jitter as source of randomness in data security

Elie Noumon Allini

To cite this version:
Elie Noumon Allini. Characterization, evaluation and utilization of clock jitter as source of randomness
in data security. Cryptography and Security [cs.CR]. Université de Lyon, 2020. English. �NNT :
2020LYSES019�. �tel-03207261�

https://theses.hal.science/tel-03207261
https://hal.archives-ouvertes.fr

N◦ d’ordre NNT : 2020LYSES019

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opéré au sein du

Laboratoire Hubert Curien

Ecole Doctorale N◦ 488

Sciences Ingénierie Santé

Spécialité: Informatique

Soutenue publiquement le 14 Septembre 2020 par :

Elie Noumon Allini

Caractérisation, évaluation et utilisation du jitter d’horloge comme source

d’aléa dans la sécurité des données

Devant le jury composé de :

Bossuet, Lilian Professeur Université Jean Monnet Président

Dutertre, Jean-Max Professeur École des Mines de Saint-Étienne Rapporteur
Elbaz-Vincent, Philippe Professeur Université Grenoble-Alpes Rapporteur
Fontaine, Caroline Directrice de Recherche CNRS / ENS Paris-Saclay Examinatrice
Lubicz, David Ingénieur de Recherche DGA-MI / Université Rennes 1 Examinateur

Fischer, Viktor Professeur Université Jean Monnet Directeur de thèse
Bernard, Florent Maître de Conférences Université Jean Monnet Co-encadrant de thèse

PHD THESIS from UNIVERSITÉ DE LYON
carried out at

Laboratoire Hubert Curien

Doctoral school N◦ 488

Sciences Engineering Health

Speciality: Computer Science

publicly defended on September 14th, 2020 by:

Elie Noumon Allini

Characterization, evaluation and utilization of clock jitter as source of

randomness in data security

In front of the jury consisting of:

Bossuet, Lilian Professor Université Jean Monnet President

Dutertre, Jean-Max Professor École des Mines de Saint-Étienne Reviewer
Elbaz-Vincent, Philippe Professor Université Grenoble-Alpes Reviewer
Fontaine, Caroline Senior Researcher CNRS / ENS Paris-Saclay Examiner
Lubicz, David Research Engineer DGA-MI / Université Rennes 1 Examiner

Fischer, Viktor Professor Université Jean Monnet Supervisor
Bernard, Florent Associate Professor Université Jean Monnet Co-supervisor

This work has received funding from the Direction

Générale de l’Armement under grant agreement

No 16810066.

1

Acknowledgements

This PhD was an enriching experience, on a personal, scientific and human dimension. I consider

myself extremely privileged to have been able to carry out this experience in company of extraor-

dinary people. I give thanks to God, the Father of my Lord Jesus Christ for this tremendous grace

he has granted me.

To Viktor Fischer and Florent Bernard, I owe a big thanks for the confidence they have placed in

me. I am very grateful to have benefited from their guidance during these years of doctoral stud-

ies. With them, I discovered new scientific disciplines, allowing me to increase my perspective.

Their availability, their expertise have brought me a lot during these years. Their rigor pushed

me beyond my limits, allowing me to improve enormously.

My gratitude also goes to DGA for the funding of my PhD thesis. My special thanks to David

Lubicz who associated me with this certification work that is so important to DGA. Thank you

David for your comments and questions that have greatly contributed to the quality of my work.

Many thanks to Jean-Max Dutertre and Philippe Elbaz-Vincent for reporting my work. The ex-

cellence of their remarks and comments reflects the time and care given to my work despite the

difficulties related to the health crisis of Covid-19. I would also like to thank Lilian Bossuet for the

wonderful welcome within the SESAM team. Thanks to this, I have been able to work serenely

during these three years and devote myself exclusively to my PhD.

I would also like to thank Caroline Fontaine who introduced me to the world of research, thanks

to my master’s internship that she directed, she helped me open a path that led me to this PhD.

Her advice and support went beyond my internship and was beneficial to me during my doctoral

experience.

The major difficulty (and also the beauty) of this thesis is that it required expertise in so many

fields that I lost count. I don’t consider myself an expert in these fields, I had the grace of bene-

ACKNOWLEDGEMENTS

2

fiting from the expertise of the greats in these fields. Among these experts, I can name François

Vernotte and Enrico Rubiola who helped me enormously to understand frequency stability. Chap-

ter 2 of this thesis attests of their availability and the enriching discussions I had with them. You

have my full acknowledgement.

My heartfelt thanks to Jean-Jacques Rousseau, who helped me enormously to get up to speed

in electronics and automation. Our recurring discussions have given me a better understanding

of this world that was entirely new to me. Thanks to this, I was able to understand better how

filters and PLL work. It is therefore obvious that you played an important part in the success of

my thesis. Many thanks to you JJR.

I would like to thank all the members of the SESAM team in which I carried out my thesis work.

The good attitude and availability of each of its members contributed to a healthy working envi-

ronment. Special thanks to Nathalie Bochard for her help with the electronic aspects, as well as

for her dynamism. I was honored to share the same office with Brice Colombier, Ugo Murredu

and Oto Petura. I hope I didn’t traumatize them with my endless equations on the board. I will

miss the atmosphere in this office and our discussions.

I also thank Alain Aubert, Pierre-Louis Cayrel and Vincent Grosso for their simplicity. A special

mention to El Mehdi Benhani, our TrustZone expert, who started his PhD and completed it al-

most at the same time as me. I wish you a very good career, and by the way, a happy marriage.

I do not forget of course to Damien Robissout and Gabriel Zaïd (affectionately Titi) the experts of

the team in Deep Learning and side channel and wish them a good completion of their PhD.

My gratitude also goes to my family, who have been an unfailing source of support. Your encour-

agement, advice and constant presence have been crucial to the success of this thesis and I am

deeply grateful for that.

I also thank Julia Leute, Olivier Marchal, and many others. They were so numerous to have

contributed to the success of this PhD. Many thanks to all of you and may God bless you endlessly.

i

Contents

Acknowledgements 1

Introduction 1

Objectives . 3

Objectifs de la thèse . 6

1 Random numbers in cryptography: state-of-the-art 9

1.1 Random number generators . 10

1.1.1 Pseudorandom number generators . 10

1.1.2 True random number generators . 14

1.1.2.1 Source of randomness . 15

1.1.2.2 Randomness harvester . 16

1.1.2.3 Post-processor . 16

1.2 Sources of randomness in logic devices . 17

1.2.1 Commonly used sources of randomness . 18

1.2.2 Clock jitter as a source of randomness . 18

1.2.2.1 Absolute jitter . 19

1.2.2.2 Relative jitter . 20

1.2.2.3 Period jitter . 21

1.2.2.4 N-Period jitter . 22

1.2.3 Jitter sources . 24

1.3 Entropy . 26

1.3.1 Rényi entropy . 26

1.3.1.1 Understanding entropy . 26

1.3.1.2 General properties of Rényi entropy . 27

1.3.2 Shannon entropy . 29

1.3.2.1 Conditional entropy - Mutual information 29

1.3.2.2 Joint entropy . 31

ii

1.4 Evaluation of TRNGs . 31

1.4.1 Classical evaluation approach of TRNGs . 35

1.4.2 Enhanced evaluation approach of TRNGs . 37

1.5 Conclusion . 41

2 Characterization of clock jitter as a source of randomness 45

2.1 Random signal . 46

2.1.1 Time and ensemble averages . 46

2.1.2 Classification of random processes . 48

2.1.2.1 Continuous processes . 48

2.1.2.2 Deterministic processes . 48

2.1.2.3 Stationarity . 49

2.1.2.4 Ergodicity . 50

2.2 Mathematical model of the clock jitter . 50

2.2.1 Characterizing noise in time domain . 51

2.2.1.1 Oscillator output signal . 51

2.2.1.2 Phase and frequency random fluctuations 54

2.2.1.3 Average fractional frequency . 55

2.2.1.4 Limitations of the model . 56

2.2.1.5 Autorrelation function . 57

2.2.2 Characterizing noise in frequency domain . 58

2.2.2.1 Power spectral density . 59

2.2.2.2 Wiener-Khinchin theorem . 61

2.2.2.3 Relationships between power spectral densities 62

2.2.3 Noise models . 63

2.2.3.1 White noise . 63

2.2.3.2 Power law noise . 65

2.2.3.3 Noise simulation . 66

2.3 Jitter analysis tools . 67

2.3.1 Limitation of the classical variance . 67

2.3.2 Allan variance . 70

2.3.2.1 Description of the Allan variance . 70

2.3.2.2 Overlapped Allan variance . 71

2.3.2.3 Application to noise identification . 72

2.3.3 Modified and time versions of the Allan variance 73

2.3.3.1 Modified Allan variance . 73

iii

2.3.3.2 Time Allan variance . 75

2.3.4 Noise identification using autocorrelation function 77

2.4 Jitter measurement method . 79

2.4.1 Counter based method for jitter measurement 79

2.4.2 Jitter measurement in hardware . 81

2.5 Estimation of the thermal noise contribution . 83

2.6 Conclusion . 88

3 Phase-locked loops as sources of randomness 91

3.1 Phase-locked loops . 92

3.1.1 Basic PLL overview . 92

3.1.2 Basic equations of the PLL . 93

3.1.2.1 Basic PLL transfer functions . 93

3.2 Transfer functions of an analog PLL . 95

3.2.1 Open loop transfer function . 95

3.2.2 Closed loop transfer function . 96

3.2.3 PLL in presence of disturbing signals . 96

3.3 Physical parameters of the PLL model . 99

3.3.1 Comparison with existing models . 99

3.3.2 Choice of physical parameters . 100

3.4 Noise properties . 102

3.4.1 Origin of the output noise . 102

3.4.2 Noise filtering and jitter overshoot . 104

3.4.2.1 Jitter peaking . 105

3.4.2.2 PLL response to input noise . 105

3.4.2.3 PLL response to VCO noise . 107

3.4.2.4 Lowering the jitter peaking . 108

3.4.3 Types of noise at the output of the PLL . 110

3.4.4 Bounded nature of the PLL noise . 110

3.5 Conclusion . 112

4 Design of a certifiable PLL-based TRNG 115

4.1 Principle of a PLL-based TRNG . 116

4.2 Illustration of the DGA-MI approach on PLL-based TRNG 120

4.2.1 Entities of a generator . 121

4.2.1.1 Physical noise source . 121

4.2.1.2 Randomness harvester . 122

iv

4.2.1.3 Post-processing block . 122

4.2.1.4 Embedded tests . 122

4.2.2 Evaluation of the physical noise source . 123

4.2.3 Evaluation of the randomness harvester . 126

4.3 Optimal configurations for a PLL-based TRNG . 127

4.3.1 Statement of the problem . 128

4.3.1.1 General structure of the PLL and its configuration 128

4.3.1.2 Problem to solve . 130

4.3.2 Search of PLL-TRNG configurations . 131

4.3.2.1 Search of all feasible configurations . 132

4.3.2.2 Search of suitable configurations . 133

4.3.3 Experimental results . 134

4.3.3.1 Implementation considerations . 134

4.3.3.2 Results and discussions . 136

4.3.3.3 Comparison with the previous method 137

4.4 Conclusion . 138

Contributions 143

Conclusion 147

Perspectives . 150

Perspectives à la thèse . 154

List of Figures i

List of Tables iii

References v

A LTI and random processes 1

A.1 Introduction to linear time-invariant systems . 1

A.2 Response of LTI to random input . 2

A.2.1 Analysis in the time domain . 2

A.2.1.1 Expected value of y . 3

A.2.1.2 Mean-square value of y . 3

A.2.1.3 Autocorrelation function of y . 4

A.2.2 Analysis in the frequency domain . 4

B Dead time between successive measurements 7

v

C Extensions of the properties of the classical variance to the Allan variance 9

C.1 Allan variance generalizes the classical variance . 9

C.2 Multiplication by a scalar . 10

C.3 Sum of independent random processes . 10

vi

1

Introduction

Throughout history, information has proved itself to be an increasingly valuable asset. From it

depended government decisions, military actions, business prospects and so much more [1]. This

reflects the essential importance of information and, at the same time, shows how important it is

to protect it. A common way of protecting information is cryptography [2, 3]. Indeed, by encrypt-

ing the information, it becomes inaccessible to any unauthorized party. The encryption process

involves mathematical algorithms for which prime numbers are very important [3, Chapter 4].

However, there is a second class of numbers almost as important as prime numbers, namely ran-

dom numbers [4, 5, 6].

Modern cryptography is based on a set of fundamental principles, one of which is the Kerckhoff

Principles, which stipulate, among other things, that the security of any cryptographic construc-

tion must not be compromised even if everything related to that construction is made public,

except the key [7]. This implies that the security of any cryptographic construction must be based

solely on secret keys, and thus imposes high requirements on them. It is therefore understood

that a cryptographic key can under no circumstances be exported outside the cryptosystem in

clear. It is also essential that it is stored in a secure area to prevent unauthorized access to this

key. However, protecting access to this key would be useless if an adversary can easily guess it.

These keys have to be, in addition, unpredictable. This unpredictability is only accessible through

random numbers, which are unpredictable in nature. We therefore need a process to generate ran-

dom numbers, such a process is known as a random number generator (RNGs) [8, Section 5.1.1].

The random number generators can be divided into two main families, depending on the methods

on which they are based. The first family is that of pseudo-random number generators . They are

based on public algorithmic, and therefore deterministic, methods using an initial input called the

seed [8, Definition 5.3]. They have high throughput and produce sequences numbers with good

statistical properties [9, Chapter 1]. They are generally used as key generators in stream ciphers

[10]. Due to the existence of an underlying algorithm, PRNGs are easy to implement in logical

devices. However, because the algorithm is known, if the seed is not properly chosen the output

INTRODUCTION

2

of the generator is predictable.

The second family of generators is the one using non-deterministic phenomena to generate true

random numbers [11]. This justifies why they are called true random number generators (TRNGs).

The idea for these types of generators is that if the underlying random phenomenon cannot be con-

trolled, the output of the generator is unpredictable and/or uncontrollable. These phenomena can

be physical (electronic noise, radioactive noise, etc) or non-physical (system time, disk operations,

etc). The throughput of TRNGs is generally lower than that of PRNGs [12, Section 2.1.2], as it

is limited by the phenomenon exploited and by the principle of entropy extraction. Due to their

operating principle, the statistical characteristics of the TRNG outputs are closely related to the

quality of the source of entropy, but also to the entropy extraction method [13].

Despite their lower throughput, TRNGs are often preferred for secure applications [14]. Indeed,

they offer the possibility to have a higher entropy per bit compared to PRNGs [11, Section 2.5.1].

This advantage of TRNGs thus makes it possible to achieve a better level of security. However,

before using a generator in practice, it is imperative that its principle and implementation within

a cryptographic module are validated during an evaluation process [11, Section 3.3]. As the pur-

pose of this process is to certify TRNGs as secure for cryptographic applications, it is reasonable

to consider unsecured any generator that has not obtained a security certificate.

However, it should be noted that until late 1990s, TRNGs did not have any standard evaluation

criteria [15, Section A.1]. In order to remedy this situation, government agencies have published

criteria to be used as a reference in assessing the safety of TRNGs. To date, two standards are

widely used. The first, published by the NIST [16, 17, 18], consists of a series of statistical tests

applied to the output of the generator. The purpose of these tests is to determine whether or not

the output of the generator appears random. However, it is possible to construct sequences that

appear random using deterministic methods. The use of statistical methods is therefore insuffi-

cient to properly assess the safety of TRNGs. It is important to also take into account the design

of the generator when evaluating it [19].

Such an evaluation of the security of a TRNG is a complex problem. Indeed, it requires to un-

derstand the mechanism of accumulation of the entropy of the underlying physical phenomenon

and to characterize its extraction. The objective being to guarantee an entropy rate per bit close

to 1 [11, Section 3.3]. Since entropy is a property related to random variables and not their real-

izations [13], it is necessary to propose a stochastic model of the TRNG (characterization of the

digital noise source). This approach is the one published by the BSI (Bundesamt für Sicherheit in

INTRODUCTION

3

der Informationstechnik), which is the standard used by default in Europe.

In order to guarantee the security of highly sensitive applications, such as military applications,

the DGA-MI (Direction Générale de l’Armement-Maîtrise de l’Information) aims to propose an

extension of the BSI approach. The purpose of this extension is to characterize the source of ana-

log noise, as well as the various phenomena that occur there. This characterization is intended

to lead to a stochastic model of physical noise in order to better understand its evolution. The

DGA-MI also requires that measurement principles, compatible with entropy extraction meth-

ods, are developed, characterized and implemented. These measurement principles are intended

to ensure that only the desired phenomena are used to generate random numbers.

David Lubicz, from DGA-MI, illustrated this approach on the elementary TRNG based on ring

oscillators. In order to study its applicability, the DGA-MI desired its approach to be illustrated

with TRNGs based on other principles. For this reason, the DGA-MI funded this thesis to study

the applicability of their approach to TRNGs based on PLLs. During this thesis, we therefore

studied PLL-based generators, in connection with the DGA-MI certification approach.

Objectives

• study of the DGA-MI certification approach aimed at certifying TRNGs for ultra-secure ap-

plications;

• suggestion of an embedded jitter measurement method ensuring that the measured quantity

comes from the source of randomness;

• accurate estimate of the jitter proportion due to thermal noise;

• study of PLL as a source of randomness in order to:

– determine the PLL settling time,

– identify the influence of the different parameters of the PLL on the quality of the ran-

domness,

– determine the level of dependency between jitter realizations,

– choose the parameters of the PLL that reduce or eliminate the influence of deterministic

jitter,

– assess the assumptions made to improve the stochastic model of the PLL-based gener-

ator.

INTRODUCTION

4

Tout au long de l’histoire, l’information s’est révélée être un atout de plus en plus précieux. De

celle-ci dépendaient les décisions gouvernementales, les actions militaires, les perspectives com-

merciales et bien plus encore [1]. Cela reflète l’importance essentielle de l’information et, en

même temps, montre à quel point il est important de la protéger. Un moyen fréquemment utilisé

pour protéger l’information est la cryptographie [2, 3]. En effet, en chiffrant l’information, celle-ci

devient inaccessible à toute partie non autorisée. Le processus de chiffrement fait appel à des al-

gorithmes mathématiques pour lesquels les nombres premiers sont très importants [3, Chapitre

4]. Cependant, il existe une deuxième classe de nombres presque aussi importante que les nom-

bres premiers, à savoir les nombres aléatoires [4, 5, 6].

La cryptographie moderne repose sur un ensemble de principes fondamentaux, au nombre desquels

figurent les principes de Kerckhoff, qui stipulent, entre autres, que la sécurité de toute construc-

tion cryptographique ne doit pas être compromise même si tout ce qui a trait à cette construction

est rendu public, à l’exception de la clé [7]. Cela implique que la sécurité de toute construction

cryptographique doit être basée uniquement sur des clés secrètes, ce qui impose des exigences

strictes à leur égard. Il est donc compréhensible qu’une clé cryptographique ne puisse en aucun

cas être exportée en clair en dehors du système cryptographique qui l’utilise. Il est également es-

sentiel qu’elle soit stockée dans une zone sécurisée afin d’empêcher tout accès non autorisé à cette

clé. Cependant, il serait inutile de protéger l’accès à cette clé si un adversaire peut facilement

la deviner. Ces clés doivent, en outre, être imprédictibles. Cette imprédictibilité n’est accessible

qu’à travers des nombres aléatoires, qui sont par nature impossibles à deviner. Nous avons donc

besoin d’un processus permettant de générer des nombres aléatoires, un tel processus est connu

sous le nom de générateur de nombres aléatoires (abrégé en RNG, de l’anglais Random Number

Generator) [8, Section 5.1.1].

Les générateurs de nombres aléatoires peuvent être répartis en deux familles, selon les méthodes

sur lesquelles ils sont basés. La première famille est celle des générateurs de nombres pseudo-

aléatoires (abrégé en PRNG, de l’anglais Pseudo-Random Number Generator). Ils sont basés sur

des méthodes algorithmiques, et par conséquent déterministes, publiques utilisant une entrée

initiale appelée "graine" [8, Définition 5.3]. Ils ont un débit élevé et produisent des suites de nom-

bres ayant de bonnes propriétés statistiques [9, Chapitre 1]. Ils sont généralement utilisés comme

générateurs de clés dans les algorithmes de chiffrement par flot [10]. En raison de l’existence d’un

algorithme sous-jacent, les PRNGs sont faciles à implanter dans les circuits logiques. Cependant,

comme l’algorithme est connu, si la graine n’est pas correctement choisie, la sortie du générateur

devient alors prédictible.

INTRODUCTION

5

La seconde famille de générateurs est celle qui utilise des phénomènes non déterministes pour

générer de véritables nombres aléatoires [11]. C’est pourquoi on les appelle des générateurs de

nombres aléatoires véritables (abrégé en TRNG, de l’anglais True Random Number Generator).

L’idée de ces types de générateurs est que si le phénomène aléatoire sous-jacent ne peut être

contrôlé, la sortie du générateur est imprévisible et/ou incontrôlable. Ces phénomènes peuvent

être physiques (bruit électronique, bruit de radioactivité, etc.) ou non physiques (horloge du sys-

tème, opérations sur le disque, etc.). Le débit des TRNGs est généralement inférieur à celui

des PRNGs [12, Section 2.1.2], car il est limité par le phénomène exploité et par le principe

d’extraction de l’entropie. En raison de leur principe de fonctionnement, les caractéristiques

statistiques des sorties de TRNGs sont étroitement liées à la qualité de la source d’entropie, mais

aussi à la méthode d’extraction de l’entropie [13].

Malgré leur débit plus faible, les TRNGs sont souvent préférés pour les applications sécurisées [14].

En effet, ils offrent la possibilité d’avoir une entropie par bit plus élevée que celle des PRNGs [11,

Section 2.5.1]. Cet avantage des TRNGs permet donc d’atteindre un meilleur niveau de sécurité.

Toutefois, avant d’utiliser un générateur en pratique, il est impératif que son principe et son im-

plantation au sein d’un module cryptographique soient validés lors d’un processus d’évaluation [11,

Section 3.3]. Le but de ce processus étant de certifier la fiabilité des TRNGs pour les applications

cryptographiques, il est raisonnable de considérer comme non fiable tout générateur qui n’a pas

obtenu de certificat de sécurité.

Toutefois, il convient de noter que jusqu’à la fin des années 1990, les TRNGs ne disposaient pas

de critères d’évaluation standard [15, Section A.1]. Afin de remédier à cette situation, les agences

gouvernementales ont publié des critères à utiliser comme référence pour l’évaluation de la sécu-

rité des TRNGs. À ce jour, deux normes sont largement utilisées. La première, publiée par le

NIST [16, 17, 18], consiste en une série de tests statistiques appliqués à la sortie du générateur.

Le but de ces tests est de déterminer si la sortie du générateur paraît aléatoire ou non. Cepen-

dant, il est possible de construire des suites de nombres qui paraissent aléatoires en utilisant des

méthodes déterministes. L’utilisation de méthodes statistiques est donc insuffisante pour évaluer

correctement la sécurité des TRNGs. Il est important de prendre également en compte la concep-

tion du générateur lors de son évaluation [19].

Une telle évaluation de la sécurité d’un TRNG est un problème complexe. En effet, elle nécessite

de comprendre le mécanisme d’accumulation de l’entropie du phénomène physique sous-jacent

et de caractériser son extraction. L’objectif est de garantir un taux d’entropie par bit proche de

1 [11, Section 3.3]. L’entropie étant une propriété liée à des variables aléatoires et non à leurs

INTRODUCTION

6

réalisations [13], il est nécessaire de proposer un modèle stochastique du TRNG (caractérisation

de la source de bruit numérique). Cette approche est celle publiée par le BSI (Bundesamt für

Sicherheit in der Informationstechnik), qui est la norme utilisée par défaut en Europe.

Afin de garantir la sécurité des applications très sensibles, telles que les applications militaires,

la DGA-MI (Direction Générale de l’Armement-Maîtrise de l’Information) a pour objectif de pro-

poser une extension de l’approche BSI. Cette extension a pour but de caractériser la source de

bruit analogique, ainsi que les différents phénomènes qui s’y produisent. Cette caractérisation

doit conduire à un modèle stochastique du bruit physique afin de mieux comprendre son évolu-

tion. La DGA-MI exige également que des principes de mesure, compatibles avec les méthodes

d’extraction de l’entropie, soient développés, caractérisés et implantés. Ces principes de mesure

visent à garantir que seuls les phénomènes souhaités sont utilisés pour générer des nombres aléa-

toires.

David Lubicz, de la DGA-MI, a illustré cette approche sur le TRNG élémentaire basé sur des

oscillateurs en anneau. Afin d’étudier la faisabilité de cette approche, la DGA-MI a souhaité

qu’elle soit illustrée par des TRNGs basés sur d’autres principes. Pour cette raison, la DGA-MI a

financé cette thèse pour étudier les possibilités d’application de son approche aux TRNGs basés

sur les PLLs. Dans le cadre de cette thèse, nous avons donc étudié les générateurs à base de PLL,

en lien avec la démarche de certification de la DGA-MI.

Objectifs de la thèse

• étude de la démarche d’évaluation de la DGA-MI visant à certifier les TRNG pour des appli-

cations ultra-sécurisées ;

• suggestion d’une méthode embarquée de mesure du jitter assurant que la quantité mesurée

provient de la source d’aléa voulue ;

• une estimation précise de la proportion du jitter due au bruit thermique ;

• étude de la PLL comme source d’aléa afin de :

– le temps de réponse de la PLL,

– identifier l’influence des différents paramètres de la PLL sur la qualité de l’aléa,

– déterminer le niveau de dépendance entre les réalisations du jitter,

– choisir les paramètres de la PLL qui réduisent ou éliminent l’influence du jitter déter-

ministe,

INTRODUCTION

7

– évaluer les hypothèses faites pour améliorer le modèle stochastique du générateur à

base de PLL.

INTRODUCTION

8

9

Chapter 1

Random numbers in cryptography:

state-of-the-art

Contents

1.1 Random number generators . 10

1.1.1 Pseudorandom number generators . 10

1.1.2 True random number generators . 14

1.2 Sources of randomness in logic devices . 17

1.2.1 Commonly used sources of randomness . 18

1.2.2 Clock jitter as a source of randomness . 18

1.2.3 Jitter sources . 24

1.3 Entropy . 26

1.3.1 Rényi entropy . 26

1.3.2 Shannon entropy . 29

1.4 Evaluation of TRNGs . 31

1.4.1 Classical evaluation approach of TRNGs . 35

1.4.2 Enhanced evaluation approach of TRNGs . 37

1.5 Conclusion . 41

In this chapter, we introduce the notion of random number generator in general and present a

state-of-the-art of the generation of random numbers. Because random numbers are very im-

portant in cryptography, they are subject to very strict requirements. These requirements are

discussed therein and justify the fact that one cannot just pick any random number generator

and use it for cryptographic applications. An emphasis will be put on generators of true random

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

10

numbers, especially those that are hardware based, which are the type of interest for this PhD

thesis.

1.1 Random number generators

For various purposes, computers need to access random numbers. They are used in weather pre-

diction [20], gaming [21], cryptography [22, Section 4.6] and so much more [23]. Depending on the

intended application, different levels of requirements have to be met, leading to different methods

for generating random numbers. For example, weather forecasting does not need actual random

numbers, they just need to look random, whereas random numbers used in cryptography are sub-

ject to very strict requirements [24, 17].

Knowing that computers are deterministic, it appears obvious that they cannot produce sequences

of random numbers. Indeed, any sequence of numbers generated by a computer should by all

mean contain a pattern which is a mathematical formula describing the process of generation

[25, Section 4]. Actually, generating a sequence of random numbers is not an easy task, and there

is no unique way of doing so. Any of the various methods used to generate sequences of random

numbers is called a random number generator (RNG) [8, Definition 5.1].

In order to obtain a sequence of random numbers, a widespread method consists in using an

algorithm which produces sequences of numbers for which the statistical properties approach

that of sequences of actual random numbers. By construction, sequences of numbers generated

that way are not random. They only mimic sequences of random numbers and are often called

pseudorandom numbers [26].

1.1.1 Pseudorandom number generators

A pseudorandom number generator (PRNG) is an algorithm that generates sequences of pseudo-

random numbers [27]. The input of a PRNG, called the seed, determines the initial value of the

sequence of numbers. In most cases, it is a recursive algorithm for which the output sequence (xn)

is defined as [28, Section 2.2.1]:

 x0 = seed,

∀n ∈N, xn+1 = f (xn),
(1.1)

where f is a given function. Different nomenclatures exist in the literature to designate PRNGs.

Indeed, because the process is deterministic, some authors name them deterministic random

number generators (DRNGs) [29]. Moreover, it is frequent that the generated sequence (xn)

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

11

consists of binary numbers, which motivates the nomenclature of pseudorandom bit generators

(PRBGs) [30] or deterministic random bit generators (DRBGs) [31].

As the name indicates, the output of a PRNG is not truly random. Indeed, Equation (1.1) shows

that the complete sequence is determined by the initial seed and the function f which is publicly

known. This implies that the generated sequences represent a fraction of all possible sequences.

As a consequence, any sequence generated using Equation (1.1) will definitely repeat numbers if

the algorithm keeps running long enough [32, Section 3.2.1]. Indeed, when generating a sequence

of numbers of a given length, say n bits, it is impossible to produce 2n +1 numbers without hav-

ing one of them repeating itself. Because the process is deterministic, as soon as a number is

repeated, the sequence has to cycle because of Equation (1.1). The period of such sequence is the

smallest positive integer ρ such that xρ+n = xn, for any integer n Ê n0, where n0 is some positive

integer [27, Section 1.4].

Although PRNGs do not produce true random sequences of numbers, the statistical properties of

their output make them suitable for many applications [26]. Moreover, these methods have very

high throughput, making them more efficient than other methods for generating random num-

bers [33, Section 8.1]. Various algorithms have been proposed to generate random numbers, the

first one, as described in Algorithm 1, is due to von Neumann who wanted to simulate processes

involved in nuclear fusion [34].

Algorithm 1 Middle-square method
Require: The initial value seed of the sequence and the length len of the generated sequence.
Ensure: Output a sequence of random looking numbers of length len.

1: n ←NUMBEROFDIGITS(seed)
2: seq ←MAKEEMPTYLIST()
3: ADDTOLIST(seq, seed)
4: for i = 1 to len−1 do
5: next_value ← seed2

6: next_value ←PADWITHLEADINGZEROS(next_value,2×n)
7: seed ←EXTRACTMIDDLEDIGITS(next_value,n)
8: ADDTOLIST(seq, seed)
9: end for

10: return seq

Even though some values of the seed yield sequences of hundreds of distinct numbers [35], this

method displayed many drawbacks which made it not suited for generation of true random num-

bers. Indeed, most of the generated sequences were either too short (about 142 distinct numbers)

or were degenerating to zero [36, 37, 38, 39].

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

12

Using multiplicative congruential methods, Lehmer proposed another method for generating se-

quences of pseudorandom numbers [40]. It was then generalized and became the linear congru-

ential generator (LCG) [41]. The sequence (xn) of generated numbers is defined as:

 x0 = seed,

∀n ∈N, xn+1 = axn +b mod m,
(1.2)

where a is called the multiplier, b the increment and m the modulus. Values of a,b and m are

integers and constant for a given implementation. This method has the advantage of producing

sequences of numbers which look random for appropriate values of parameters. A discussion on

how to choose these parameters is given by Knuth [32, Section 3.2.1].

It is however important to recall that in his initial version, Lehmer took b = 0. Following this

idea, Tausworthe proposed another generator which produces a sequence of numbers (xn) defined

as follows [42]:

∀n ∈N, n > k =⇒ xn =
k∑

i=1
aixn−i mod m, (1.3)

where (ai)1ÉiÉk is a given vector of integers, the seed in this case being the vector (xi)0ÉiÉk−1. In

his proposal, Tausworthe used m = 2, but was later generalized by Knuth to any prime modulus

for better results [32, Section 3.2.2]. This type of generator is best known as a multiple recurrence

generator (MRG) [43], the special case m = 2 being designated as the linear feedback shift register

(LFSR) or the Tausworthe PRNG [44, Chaper 2]. From the Tausworthe generator, Lewis and

Payne derived the generalized feedback shift register (GFSR) generator, based on:

∀k ∈N, ak = ak−p+q ⊕ak−p, (1.4)

where each (ak)k∈N is the vector of generated bits, given (ak)0ÉkÉp−1 and the primitive trinomial

xp + xq +1 in GF(2) [45]. Output of the GFSR is usually presented as a sequence of words (wk)k∈N

rather than a sequence of bits (ak)k∈N. Each word wk is obtained as:

∀k ∈N, wk = (ai)knÉiÉkn−1. (1.5)

In terms of wk ’s, the output sequence of the GFSR is given as:

∀k ∈N, wk = wk−p+q ⊕wk−p, (1.6)

where ⊕ is considered element-wise. Matsumoto and Kurita modified Equation (1.4) into:

∀k ∈N, wk = wk−p+q ⊕wk−p A, (1.7)

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

13

where A is a n×n matrix of bits. The generator based on Equation (1.7) is known as the twisted

GFSR (TGFSR) [46]. Various other algorithmic methods for generating pseudorandom numbers

were proposed [9, Chapter 2]. The most widely used is a variant of the TGFSR, the Mersenne

Twister developed by Matsumoto and Nishimura [47]. Its name derives from the fact that its

period is a Mersenne prime1, generally 219937−1. The Mersenne Twister is currently (at the time

of writing) being used as the default RNG in several programming languages such as C++ [49],

Python [50] and R [51].

Despite its popularity and the statistical qualities of its output, the Mersenne Twister is not se-

cure [47, 52]. Its use for cryptographic applications is therefore prohibited, the same goes for

all above-mentioned PRNGs. For cryptographic applications, statistical qualities of the sequence

of generated numbers is necessary but not sufficient to guarantee security. Additional proper-

ties, more demanding, are required for any generator that should produce sequences of random

numbers for cryptography [24, Section 5.3]. Basic properties are:

• forward secrecy which ensures that, given n−1 successive bits of the output sequence, no

adversary should be able to predict the nth bit with probability greater than 1
2 ;

• enhanced backward secrecy which is the guarantee that previously generated numbers can-

not be compromised by neither the current or future output values, nor by the knowledge of

the state of the generator at a given time.

Any PRNG that meet these requirements is called a cryptographically secure PRNG (CSPRNG)

[25]. For practical reasons, requirements set for a CSPRNG are relative to an efficient algorithm,

more precisely a polynomial-time one [53].

The most famous example of CSPRNGs is the Blum Blum Shub (BBS) algorithm based on the

recurrence [54]:

∀k ∈N, xk+1 = x2
k mod n, (1.8)

where n is a Blum integer2. Even though historically important, its use for nowadays security

purposes is deprecated [9, Section 6.2]. Other CSPRNGs, like Fortuna, are preferred to BBS for

providing better security level [56, Chapter 10]. This algorithm consists of three parts:

1A prime number p is a Mersenne prime if there exists n ∈N such that p = 2n −1 [48].
2A positive integer n is said to be a Blum integer if there exist two distinct primes p and q such that [55]:

p ≡ 3 mod 4, q ≡ 3 mod 4 and n = pq.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

14

• an entropy collector which retrieves real random data from various sources, and uses this

data to reseed the generator;

• a seed management system which keeps a file containing a secure seed at the disposal of the

machine in case of a system reboot or a new switch on;

• the generator itself which is a block cipher in counter mode.

PRNGs attract attention because their are computationally efficient and do not require any spe-

cial device. Moreover, the generation process is deterministic. Therefore, given the same seed,

the algorithm will always produce the same sequence of numbers again. This property of PRNGs

is appreciated in areas where the reproducibility of simulations is desired. However it is not

the case in cryptography where we want the generated sequences to be unpredictable and non

reproducible. Also, PRNGs need to be seeded by a genuine random seed, raising the problem

of obtaining that seed. More to the point, PRNGS produce sequences of numbers which contain

some pattern. This can lead to security breaches that can weaken the overall cryptographic con-

struction. Methods that produce true random numbers are therefore required.

1.1.2 True random number generators

In the special case of cryptography, the use of true random numbers is required. The procedure

through which these actual random numbers are generated is called a true random number gen-

erator (TRNG). Unlike PRNGs, generators of this type are not algorithmic. They are actually

apparatus which exploit a well defined physical process to extract randomness for the generation

of numbers. The exploited physical phenomenon must be random, meaning, it should not be pos-

sible to describe nor predict its evolution in a deterministic way, no matter the level of knowledge

one has on that phenomenon.

TRNG’s main advantage is to provide an output which is random indeed, since the exploited phys-

ical process is random. Hence, they offer the insurance that no one should be able to predict the

generated numbers, even with a perfect knowledge of the architecture and the functionalities of

the generator. Their design also requires that no one should be able to synchronize two identical

generators to produce the sequence of numbers [57]. This requirement is actually one huge differ-

ence between TRNGs and PRNGs. Indeed, it implies that no TRNG must accept an initial state,

which is not the case for PRNGs which cannot operate without specifying an initial state (namely,

the seed).

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

15

The general principle of a TRNG, as depicted in Figure 1.1, consists of a source of randomness

which generates a random analog signal. This analog signal then feeds a digitizer which produces

samples of the analog signal, called digitized analog signal [24], or digitized data [17]. In general,

the raw digital signal consists of binary digits which are then (eventually) sent to a post-processor

which enhances the statistical and cryptographic qualities of the generated bit stream. For this

reason, we will consider in the remainder of this thesis, that a TRNG actually produces a sequence

of random bits.

source of
randomness

digitizer
post-processor

(optional)
raw analog

signal

raw digital

signal

output

Figure 1.1: General structure of a TRNG.

1.1.2.1 Source of randomness

The source of randomness is actually the most critical part of any TRNG, since the general be-

havior of the generator depends on it. It must therefore be a non manipulable random process.

Depending on the process used, one can distinguish physical TRNGs (P-TRNGs) and non physical

TRNGs (NP-TRNGs). The idea with NP-TRNGs is that if a huge amount of data from different

sources are collected and mapped onto a shorter sequence (a hash function, for instance), the

output value will appear random to an observer who neither knows the source data nor is able

to control them. The Linux RNG /dev/random which uses processes like disk operations and in-

terrupts is an example of such generators [58]. Since we are interested in the origin of random

behavior, and therefore in the characterization of the source of randomness, we will focus on P-

TRNGs.

With P-TRNGs, randomness comes from a physical microscopic random process such as radioac-

tive decay [59], metastability [60], biological data [61] or electronic noises like noise from Zener

diodes [13] or Johnson noise [62, 63, 64]. The use of these sources of randomness yields various

designs of P-TRNG. In this thesis, we will exclusively deal with generators implemented in logic

devices like Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Ar-

rays (FPGAs). For these generators, the source of randomness consists of electronic noises which

often manifest themselves as frequency instabilities of electronic oscillators such as Ring Oscil-

lators (ROs) [65], Transient Effect Ring Oscillators (TEROs) [66], Self-Timed Ring Oscillators

(STRs) [67] or Voltage-Controlled Oscillators (VCOs) [68]. They are often referred to as oscillator-

based TRNGs [69], and their general structure is depicted in Figure 1.2.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

16

oscillator1

oscillator2

D

clk

Q

D flip-flop

entropy
collector

post-processor
(optional)

cl j

clk

output

source of randomness

randomness harvester

digital noise source

Figure 1.2: Oscillator-based TRNG.

1.1.2.2 Randomness harvester

Because the source of randomness is a physical process, it produces a random analog signal. This

signal cannot be used directly to produce random bits in logic devices. One therefore needs to

convert it in a digital signal, procedure which is called digitization [24]. In logic devices, the

digitization is closely related to the randomness extraction procedure. The most widespread ran-

domness extraction method consists in sampling the random phenomenon at discrete times. This

is done using a D flip-flop which produces a 1-bit sample of the random signal at each clock cycle

[68, Section 3].

In order to assess the randomness, it is necessary to have a way of quantifying it. A common

measure of randomness is the "entropy" which will be dealt with in more details in Section1.3. To

ensure enough entropy at the output, it is common to allow the random process to evolve over a

long period of time. This results in an entropy accumulation which yields optimal security [70]. In

hardware, this is usually done with an entropy collector such as a decimator which produces one

random bit out of a given number of samples [71]. In the remainder of this thesis, we will consider

the association of the D flip-flop and the entropy collector as the digitizer. This choice is justified

by the fact that it is part of the TRNG design and that the entropy collector is not optional like the

post-processor. Even though this process uses an analog signal to produce a digital one, the term

harvesting mechanism seems more appropriate than digitization since it describes the process

through which randomness is extracted from the real world phenomenon.

1.1.2.3 Post-processor

The main philosophy of a TRNG is to produce sequences that cannot be recognized from those

generated by an ideal RNG, i.e. they must be unbiased and uniformly distributed. However, due

to imperfections that can occur both in the physical process and the harvester, the generated se-

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

17

quence may be biased. Hence it may contain a specific bit value which appears more often than

the other one [72]. This is actually a serious security issue since an adversary who knows that

bias can take advantage of it and guess the next values of a sequence with probability higher

than 0.5 [24, Section 5.1]. To avoid such situations, the raw digital signal must go through a

post-processing step before the output [10].

The goal of this post-processing step is to eliminate (or at least, reduce as much as possible) im-

perfections in the raw digital signal. To achieve this goal, the post-processor usually compresses

the input bit stream. The output has therefore a smaller length with better statistical qualities

[73]. It is important to understand that the post-processor does not add any entropy to the bit

stream, it just makes it look more random. This only increases the robustness of the generator

while reducing its output bit rate. There exist various techniques for designing a post-processor,

ranging from ad hoc methods to more elaborate ones such as cryptographic hash functions or re-

silient functions [74, 75, 73].

Although there is no proper definition of which part of a TRNG should be considered as post-

processor, one commonly considers the post-processor as a complex process designed to reduce

imperfections present in the raw digital signal. Post-processing algorithms usually take a lot of

resources and are therefore not suitable for direct implementation in hardware. Note that the

use of a post-processor is not mandatory, indeed when the raw digital signal already exhibits good

statistical qualities, the use of a post-processor is not relevant.

From all that precedes, one understands that the main part of interest in a TRNG is its source of

randomness. Any randomness that will be used to generate random bits comes from there. It is

thus of vital importance to focus on this part and understand various phenomena occurring in it.

1.2 Sources of randomness in logic devices

In Section 1.1.2, we explained that the source of randomness is the most crucial part of any TRNG.

Cautions must then be taken in selecting that source. In general, the design of a good TRNG is

very challenging. The identification and correct exploitation of the source of randomness is by far

the most challenging task in the design of a TRNG. Those implemented in logic devices are no

exception to that, even though their implementation is simpler than other types of TRNGs [76,

69]. Since the security of these constructions relies on the secrecy of the key, it is important that

keys are generated within the system to avoid any transport across an uncontrolled area. This

explains why we focus on TRNGs that can be implemented in logic devices. Indeed, such TRNGs

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

18

constitute a source of random numbers directly available to the cryptographic constructions for

various use [10]. In this section we discuss various sources of randomness present in logic devices.

1.2.1 Commonly used sources of randomness

Diverse electronic phenomena occur in logic devices. Some of them exhibit random behavior which

might be used to generate random numbers. Among the most encountered electronic random

phenomena, the ones listed below are commonly used.

• Metastability which is the ability of a digital electronic system to persist in an unstable

equilibrium for an indefinite time [77]. This phenomenon is rare and therefore very diffi-

cult to sample. It is consequently difficult to be sure that the output bit really depends on

metastability.

• Oscillatory metastability which is the ability of a bi-stable electronic device (for example, an

RS flip-flop) to oscillate between its two unstable equilibrium states, for an indefinite period

[78]. It can be considered as a special case of metastability. They therefore have the same

limitations. In addition, this is a phenomenon typical of a small class of bistable circuits,

which raises the problem of its use on electronic circuits in general.

• Start-up value of flip-flops (or a memory element) to a random state either after power-up or

periodically [79]. This is due to the fact that the behavior of the device is not always defined

before the occurrence of a valid clock signal. However, there are different ways to prevent

it. One of them being to initialize the flip-flop, which can be done by an adversary, and thus

compromise the generation of random numbers.

• Clock jitter which is a short-term variation of an event from its ideal position [69]. This

phenomenon is usually unwanted because it negatively affects most communication and

high-speed systems [80]. It is however inevitable and uncontrollable, making it a prime

candidate to be used as source of randomness [81, Section 1.1.1]. This is the reason why

the clock jitter is a widespread source of randomness used for TRNGs implemented in logic

devices [82, 71, 64, 83, 65, 84, 69, 85]. We will therefore focus on the clock jitter in the

remainder of this thesis.

1.2.2 Clock jitter as a source of randomness

In logic devices, actions of digital circuits are coordinated by a special signal called the clock sig-

nal [86]. In an ideal model, this signal is a square wave oscillating between two states (high and

low) with a duty cycle of 50% and a stable period. However, various electronic noises affect logic

devices, causing the clock period (period of the clock signal) to fluctuate around its ideal value.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

19

This fluctuation of the period, called clock jitter, causes edges of real-world clock signals to occur

slightly earlier or later than expected as shown in Figure 1.3 [87, Chapter 8].

clk

cl j

Tclk

a0

a1

a2

a3 a4
a5

a6

time
absolute
jitter

Figure 1.3: Illustration of clock jitter (clk: reference clock signal, cl j: jittered clock signal, ak: values of
the jitter).

Based on the jitter measurement method used, various definitions of the clock jitter can be met

in the literature. Most of these definitions are not standardized and therefore used with different

meanings, depending on the application and the author’s background. This variety of terms used

to express the concept of jitter leads to a lot of misunderstanding and confusion in the study of

clock jitter. Da Dalt and Sheikholeslami showed that each of these different definitions actually

falls into one of the four fundamental definitions of jitter [81, Chapter 2].

Generally speaking, jitter is the deviation of the instant at which a given event occurs, relative

to a reference time frame. In the context of this thesis, as it is generally the case in the field of

hardware based TRNG, the event we consider is the occurrence of (rising and falling) edges of the

sampled clock signal. Note that the choice of the reference time frame is arbitrary, and is usually

made in two ways: either the edges of the clock under investigation are compared to the edges of

another clock, or they are compared to some previous edges of the same clock. The first approach

leads to the definition of absolute and relative jitter, while the second leads to the definition of

period jitter. The period jitter can be extended into a fourth jitter definition, namely the N-period

jitter. These four jitter definitions are actually related to each other and will be discussed next

[14].

1.2.2.1 Absolute jitter

Let us consider an ideal clock signal clk, with a clock period T. If we assume that the first rising

edge occurs at time t = 0, then the subsequent rising edges occur at exactly t = kT, where k ∈N.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

20

In the case of a non-ideal clock cl j, with nominal period3 T, the rising edges occur at times tk

which deviate from their ideal values kT. The absolute jitter of cl j (at the k-th period) is thus

defined as the time displacement of the k-th rising edge of cl j with respect to the corresponding

edge of the ideal clock clk (see Figure 1.4). Mathematically speaking, it is expressed as:

ak := tk −k ·T. (1.9)

clk

cl j

0 T 2T 3T 4T 5T 6T

t0

a0

t1

a1

t2

a2

t3

a3

t4

a4

t5

a5

t6

a6

time

Figure 1.4: Absolute jitter as a time deviation.

In Figure 1.3, the absolute jitter is a discrete-time random signal. Mathematics of random signals

will be used in Chapter 2 to study and characterize the jitter.Because the signal cl j and its ideal

version clk both have the same period, (ak) is a zero-mean process. In some cases, when clk and

cl j are phase shifted, the positions of clk and cl j can display an offset tos such that (ak) has mean

value tos. In that case, the absolute jitter is defined as:

ak := tk −k ·T − tos, (1.10)

in a way that (ak) is still a zero-mean process. For this reason, we will consider the absolute jitter

to be a zero-mean random process.

Note that various definition exist for the absolute jitter. Indeed, it corresponds to the time error

(TE) defined by the telecommunication standardization sector of the International Telecommuni-

cation Union [88, Section 4.5.13].

1.2.2.2 Relative jitter

There-above, the edges of a clock signal were compared to those of its ideal version. However, no

ideal clock signal exists in the real world. Thus, instead of proceeding as shown above, one can

think of comparing edges of a clock signal s1 to those of another (non-ideal) one s0 having the

same nominal period T. The situation is actually the same as depicted in Figures 1.3 and 1.4.
3This means that each period of cl j is different, but its mean period is T.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

21

The only difference is that cl j is replaced by s1 and clk by s0, both s0 and s1 being non-ideal clock

signals.

This setting leads to the definition of the relative jitter as a discrete-time random process rk,

where the element rk is the time displacement of the k-th rising edge ts1
k of s1 with respect to the

corresponding edge ts0
k of s0. Mathematically, it is thus expressed as:

rk := ts1
k − ts0

k . (1.11)

Since both s0 and s1 have respective absolute jitter processes
(
as0

k

)
and

(
as1

k

)
, it is possible to

express the relative jitter in term of absolute jitters of s0 and s1. By the use of Equation (1.9), we

can rewrite Equation (1.11) as:

rk = as1
k −as0

k . (1.12)

Note that for the same considerations as for the absolute jitter, the relative jitter is a zero-mean

random process.

1.2.2.3 Period jitter

The two jitter definitions provided above are based on comparing the edges of the clock signal to

the edges of another clock signal. However, it is also possible to compare the position of an edge

to the position of the previous edge of the same clock signal. Assume that, for a clock signal, a

specific rising edge occurs at time tk and the next one at time tk+1, then tk+1 − tk represents one

realization of the clock period. Comparing this realization of the clock period to its nominal value

leads to the definition of the period jitter.

The period jitter is defined as a discrete-time random process (pk), for which each pk is the time

deviation of the k-th clock period from its nominal value. Figure 1.5 illustrates this concept and

shows that the k-th clock period is actually the time difference of the (k+1)-th and k-th rising

edges. The k-th sample of the period jitter can then be mathematically expressed as:

pk := (tk+1 − tk)−T, (1.13)

where T is the nominal period of the clock signal. If we call Tk := tk+1 − tk, the current clock

period, Equation (1.13) becomes:

pk = Tk −T. (1.14)

Note that period jitter can also be expressed in term of absolute jitter. Indeed, using Equa-

tion (1.9), Equation (1.13) becomes:

pk = ak+1 −ak. (1.15)

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

22

T T T

T0 T1 T2
p0 p1 p2

time

Figure 1.5: Illustration of the period jitter.

The period jitter is sometimes (wrongly) named cycle-to-cycle jitter [89, 90]. Indeed, from the

JEDEC standard JESD65B [91, Page 10], cycle-to-cycle jitter is the variation in cycle time of

a signal between adjacent cycles, over a random sample of adjacent cycle pair. It is thus the

difference between two consecutive clock periods and it indicates how much one period of the

clock differs from the previous one. If we denote by (cck) the random process of cycle-to-cycle

jitter, one has:

cck := Tk+1 −Tk, (1.16)

which can be expressed in terms of period jitter as:

cck := pk+1 − pk. (1.17)

This latter equation shows that these two notions are not the same, even though they are related.

1.2.2.4 N-Period jitter

Because the designer of a circuit aims at reducing the clock jitter, it appears that clock jitter is

very small compared to the clock period (approximately 1‰ of the clock period). In order to guar-

antee enough entropy, it is common practice to compare the time deviation of a clock edge not to

the immediate preceding one, but to the N-th previous one, as illustrated in Figure 1.6.

This procedure leads to the definition of N-period jitter as the discrete-time random process

(pk(N)), where each element pk(N) is the deviation around the nominal value of the position

of one clock edge with respect to the N-th previous edge. Mathematically, pk(N) is expressed as

the deviation of the time difference between the k-th and the (k+N)-th edges from the nominal

value NT, that is:

pk(N) := (tk+N − tk)−NT. (1.18)

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

23

5T

Tk Tk+1 Tk+2 Tk+3 Tk+4

pk(5)

time
tk tk+1

Figure 1.6: Illustration of the N-period jitter.

From this definition, one can observe that Equation (1.13) is a special case of Equation (1.18) for

N = 1. It thus appears that N-period jitter is a generalization of the period jitter discussed above.

Moreover, considering that tk+N − tk is the duration of the N periods of the clock following the

k-edge, the N-period jitter can be written as:

pk(N) =
(

k+N−1∑
i=k

Ti

)
−NT, (1.19)

where Ti indicates the i-th clock period. From Equation (1.19), one can derive:

pk(N) =
k+N−1∑

i=k
(Ti −T) =

k+N−1∑
i=k

pi, (1.20)

where each pi represents the period jitter of the i-th clock period. It then follows that the N-

period jitter is the sum of the period jitter over N consecutive periods. Because it originates from

the accumulation of the jitter over consecutive periods, various authors refer the N-period jitter

as the accumulated jitter [92, 84, 93, 69, 66, 60, 94]. As in the case of period jitter, it is possible to

express the N-period jitter in terms of the absolute jitter:

pk(N) = ak+N −ak. (1.21)

Equation (1.21) shows that the N-period jitter is what the International Telecommunication

Union refers to as the time interval error [88, Section 4.5.14].

The various above-mentioned types of jitter are all mutually related. This shows that from a

physical point of view, these various definitions refer to the same phenomenon affecting the clock

signal. Their specificities come from the method used to measure this phenomenon.

In real-world, signals are all jittered, so it is the relative jitter we often have access to. However,

when two signals are independent from each other, it is possible to transfer the jitter of one

of these signals to the other. This results in an ideal signal, and a jittered one containing the

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

24

contribution of the jitters of both signals, allowing the absolute jitter to be evaluated [95]. Since

this approach simplifies computations, we will focus on the absolute jitter, which will be simply

denoted jitter in the remainder of this thesis.

1.2.3 Jitter sources

In section 1.2.2, we briefly explained what the clock jitter is and its different representations.

In order to have a better understanding of this phenomenon, it is common to break it down and

identify its different parts. Since each component of the jitter has its own characteristic and phys-

ical meaning, the separation of the jitter can be used to investigate its cause. The separation of

the jitter is usually made based the nature of the jitter component as depicted in Figure 1.7 [81,

Section 2.2.6].

Total
Jitter

Random
Jitter

Deterministic
Jitter

Duty Cycle
Distortion

Data
Dependent

Jitter

Bounded
Uncorrelated

Jitter

Power supply
noise

Cross-talk /
external noise

Applied
sinusoidal

Figure 1.7: Overview of the jitter components.

In Figure 1.7, we see that jitter has two main components: a random component and a determin-

istic component. There are several methods to determine if the jitter is of random or deterministic

origin [96, Section 8]. The simplest one is the observation of the histogram. A histogram in the

shape of a Gaussian is often indicative of a random jitter.

Random jitter includes all components for which the probability density is not bounded [96, Sec-

tion 7.2.2]. This means that the range of the random jitter is not limited. In electronic circuits,

it is produced by electronic noises such as thermal noise, flicker noise and shot noise [96, Section

9.2.2.1]. It is generally described as a random phenomenon with a zero mean Gaussian distribu-

tion, and therefore characterized by its variance or standard deviation.

The deterministic jitter consists of the components of the jitter for which the probability density

is bounded [96, Section 7.2.3]. The most common causes of deterministic jitter are instabilities

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

25

from the power supply, cross-talk from other signals or channels, distortion of the duty cycle,

limitation of the channel bandwidth. Depending on the origin mechanism, it is possible to divide

the deterministic jitter into several sub-categories, the most common being listed below.

• Duty cycle distortion: due to asymmetries in the duty cycle when both rising and falling

edges of a clock signal are used in a given application.

• Data dependent jitter: specific to the data pattern transmitted in the same path as the signal

under test.

• Bounded-uncorrelated jitter: present in the serial digital data, but bears no correlation with

the transmitted data. It has three main sources: (1) power supply noise that affects the

launched signal, (2) cross-talk that occurs during transmission and (3) sinusoidal applied to

the receiver input for jitter tolerance measurements.

To ensure that generated numbers are random, it is necessary that the only jitter components

used are random. In other words, it is imperative to mitigate the influences of deterministic com-

ponents of the jitter. However, some random components present security risks, and therefore

need to be eliminated as well. In order to respond more effectively to security issues related to

the generation of random numbers, it is possible to consider another subdivision of jitter, taking

into account not only its nature, but also its source (local or global) as shown in Figure 1.8.

Clock jitter
sources

Local
sources

Random sources
(e.g thermal noise, flicker noise)

Deterministic sources (e.g cross-talk)

Global
sources

Random sources
(e.g random noise from EMI, power supply)

Deterministic sources
(e.g deterministic noise from EMI, power

supply)

Figure 1.8: Overview of the jitter sources.

Global sources (random and deterministic) are external sources, and therefore potentially ma-

nipulable. An adversary can therefore a priori exploit these sources in order to deteriorate the

quality of the randomness, and thus reduce the security of cryptographic systems. Thus, in addi-

tion to reducing the effects of deterministic sources, it is important to reduce the effects of global

sources on the generation of random numbers. For this purpose, it is possible to use two identical

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

26

oscillators in Figure 1.2. Indeed, because they are subjected to the same phenomena, they will

display the same effects due to these global sources. Thus, as a differential principle, these effects

will cancel each other during sampling [97].

Random local sources are internal and thus non-manipulable. They are therefore the only rec-

ommended ones for generating random numbers for cryptography. Consequently, it is mandatory

that the jitter measurement methods evaluate only random local components. This problem is

not simple and will be discussed in more detail in Chapter 2.

1.3 Entropy

The term entropy was first introduced in 1865 by Clausius in thermodynamics [98]. It derives

from the combination of an ancient English word and a Greek word, which together mean inside

transformation. The entropy characterizes the level of disorganization, diversity, uncertainty

or randomness of a given system [99]. It is therefore a suitable tool to evaluate the quality of

a sequence of random numbers. In the field of information theory, the notion of entropy was

brought by Shannon [100], then generalized by Rényi [101]. We will give a brief overview of

various entropies used in information theory and which will be required for the rest of this thesis.

1.3.1 Rényi entropy

1.3.1.1 Understanding entropy

Let X be a valued random variable with image X , in order to know how random X is, one needs

to compute its entropy or level of randomness. The higher this entropy is, the more random X is.

If we call PX , the probability distribution4 of X , and α ∈ R+à {1}, Rényi defined the entropy of X

of order α as:

Hα(X) := 1
1−α log

(∑
x∈X

p(x)α
)

. (1.23)

It appears from Equation (1.23) that Hα(X) depends on the probability distribution of X . Since

this probability is related to the random variable X , the entropy is commonly considered as a

function of X . Note that the definition of entropy is given here using base 2 logarithm. However,

it is possible to define it using any base logarithm [103]. In this thesis, we will however restrict

to the base 2 logarithm. For this reason, the entropy will be expressed in bits.

4The probability distribution, PX , of the random variable X is defined for any x ∈X as [102, Section 2.1]:

PX (x) = P(X = x) = P ({ω ∈Ω : X (ω)= x}) . (1.22)

For the sake of simplicity, we will write p(x) to mean P(X = x).

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

27

The entropy Hα(X) provides a measure of the quantity of unpredictable information contained

in the random variable X . This can be understood as the amount of information we obtain by

observing the outcome of the experiment involving X [104]. It turns out that the more difficult

it is to correctly guess the outcome of X , the more information we get by observing is actual out-

come. For example, if X is deterministic, then X contains only one value, that is X = {x} and

thus p(x) = 1. One does not need to observe the outcome of X before to know that it will be x.

He therefore gains no information by observing the outcome of X . One may note that in this case

Hα(X)= 0, which is actually a result characterizing any deterministic phenomenon.

From what precedes, one understands that the underlying phenomenon responsible of the TRNG

operation must have as high entropy as possible to ensure a high difficulty in guessing the output

of the considered TRNG.

1.3.1.2 General properties of Rényi entropy

Equation (1.23) shows that Rényi entropy is actually a parametric family of entropy measures

for α ∈ R+à {1}. The goal of Rényi when defining his entropy was to have the most general class

of information measures that preserve the additivity of statistically independent systems and

are compatible with probability axioms [101]. The limit classes, when α approaches 1 and when

α approaches infinity, lead to two entropy measures interesting for the field of random number

generation.

Continuous extension of Rényi entropy at α = 1 From Equation (1.23), Rényi entropy is not

defined for α= 1. However, for a given X , the function α 7−→ Hα(X) has a limit as α approaches 1.

The proof reveals that:

lim
α→1

Hα(X) = −
∑

x∈X

p(x) log p(x). (1.24)

This limit is the Shannon entropy which will be detailed in Section 1.3.2. From the continuous

extension theorem, one can then consider Rényi entropy defined for α ∈R+.

Min entropy For a given random variable X , if X is such that max
x∈X

p(x) exists, then one can

prove:

lim
α→∞Hα(X) = − log

(
max
x∈X

p(x)
)
. (1.25)

This limit is called min entropy and denoted H∞(X). Knowing that log is a continuous and non-

decreasing function, one can write:

log
(
max
x∈X

p(x)
)
= max

x∈X
log p(x), (1.26)

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

28

which yields:

H∞(X) = − log
(
max
x∈X

p(x)
)
= −max

x∈X
log p(x) = min

x∈X
[− log p(x)] . (1.27)

Monotony of α 7−→ Hα For a given random variable X , it can be proved that α 7−→ Hα(X) is a

non-increasing function. Thus, for any α1,α2 ∈R+:

α1 < α2 =⇒ Hα1(X) > Hα2(X). (1.28)

As an example, if we consider X being the outcome of a coin flip, Figure 1.9 shows that the curve

of Shannon entropy (α = 1) is always above that of the min entropy (α→∞). Actually, min en-

tropy is always lower than any other entropy measure, which justifies its name. It is therefore

the smallest entropy measure in the family of Rényi entropies. In this sense, it is the most con-

servative measure that can be used to evaluate the amount of randomness of a phenomenon.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Shannon entropy

min entropy

Figure 1.9: Comparison of the Shannon entropy and the min entropy, in the case of a coin flip.

Max entropy For α= 0, we have pαx = 1 for each x ∈X . This yields:

H0(X) = log |X |, (1.29)

where |X | is the cardinality of X .

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

29

Since α 7−→ Hα(X) is non-increasing, we can say that H0(X) gives an upper bound to the entropy of

X . This motivates the fact that H0(X) is called max-entropy, which is also called Hartley entropy

[105, 104]. It follows that for any α ∈R+:

0 É Hα(X) É log |X |. (1.30)

Note that for any α ∈ R+, one has Hα(X) = H0(X) if, and only if, all the outcomes of X have the

same probability. This means that the maximum entropy of a phenomenon is reached when its

various outcomes are uniformly distributed.

Of these entropy measures, Shannon’s entropy is the most commonly used. For example, the most

common TRNG assessment procedure in Europe uses it [24]. We will therefore detail its study in

the following section.

1.3.2 Shannon entropy

Information theory is concerned with measure of transmitted information content. The basic idea

being the more one knows about a system, the less information that system contains. As said

earlier, this amount of information is exactly the amount of uncertainty one has of the outcome of

a system without observing that outcome. Even though, measures of uncertainty prior to Shan-

non’s existed, introduction of Shannon entropy is widely considered as the birth of information

theory.

Let X be a X -valued random variable, Shannon entropy of X is defined as [100]:

H(X) := −
∑

x∈X

p(x) log p(x). (1.31)

As discussed in Section 1.3.1, one can consider Shannon entropy as a special case of Rényi entropy,

as α approaches 1. Shannon was the first to refer to the measure of uncertainty as entropy, due

to the analogy of the Boltzmann entropy in thermodynamics [104].

1.3.2.1 Conditional entropy - Mutual information

In a TRNG model, each output bit is considered as a realization of a random variable. Since

TRNGs usually output streams of random bits, it is more realistic to consider several random

variables than just one. In this setting, one may be interested in evaluating how difficult it would

be to guess the next output bit, knowing the current one. This yields the notion of conditional

entropy of two random variables, which can be generalized to any number of random variables.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

30

Let X and Y be two random variables defined over the same probability space, with respective

images X and Y . If we consider the outcome of Y prior to the outcome of X , we can assume that

this outcome is some value y ∈Y . We can then estimate the level of uncertainty on the outcome

of X , based on this knowledge as [106, Section 3.6]:

H(X |Y = y) := −
∑

x∈X

p(x|y) log p(x|y), (1.32)

where p(x|y) is the conditional probability5 of X being x given Y = y. Because y can take any

value in Y , one can deduce the average of theses various entropies:

H(X |Y) :=
∑

y∈Y

p(y)H(X |Y = y). (1.34)

This average quantity is called conditional entropy of X given Y , and can be rewritten as:

H(X |Y) := −
∑

x∈X

∑
y∈Y

p(x, y) log p(x|y), (1.35)

where p(x, y) is the joint probability6 of X = x and Y = y.

Equation (1.35) therefore provides the amount of remaining information about X , after observing

the outcome of Y . This implies somehow a loss of information regarding X . This loss is the mutual

information between X and Y , denoted I(X ,Y), and satisfies:

I(X ,Y) = H(X)−H(X |Y). (1.37)

The mutual information is actually the amount of information common to both X and Y , and

quantifies the total decrease in uncertainty in X by observing Y . It can equally be expressed as:

I(X ,Y) :=
∑

x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (1.38)

It characterizes the level of dependence between random variables X and Y . Indeed, it can be

shown that this mutual information is null if, and only if, X and Y are independent random

variables. This implies that H(X |Y)= H(X) when X and Y are independent random variables.

5The conditional probability distribution, PX |Y , of the random variable X given Y with respective images X and Y , is defined
for any x ∈X and y ∈Y as [99, Section 1.4]:

PX |Y (x|y) = P(X = x|Y = y) = P(X = x,Y = y)
P(Y = y)

. (1.33)

For the sake of simplicity, it is written p(x|y).
6The joint probability distribution, PX ,Y , of random variables X and Y with respective images X and Y , is defined for any

x ∈X and y ∈Y as [102, Section 4.1]:

PX ,Y (x, y) = P(X = x,Y = y) = P ({ω ∈Ω : X (ω)= x,Y (ω)= y}) . (1.36)

For the sake of simplicity, it is written p(x, y).

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

31

1.3.2.2 Joint entropy

Instead of considering the uncertainty related to only one output bit of the generator, it is in-

teresting to evaluate the uncertainty related to two output bits. This yields the notion of joint

entropy of two random variables X and Y , defined as [99, Section 1.4]:

H(X ,Y) = −
∑

x∈X

∑
y∈Y

p(x, y) log p(x, y). (1.39)

In particular, when X and Y represent the random variables associated with two consecutive out-

puts of the TRNG, the joined entropy makes it possible to evaluate the leak of information when

observing these outputs. Notions of entropy, joined entropy and mutual information are related

to one another as depicted in Figure 1.10.

H(Y)

H(X)

H(X ,Y)

H(X |Y) I(X ,Y) H(Y |X)

Figure 1.10: Relationship between various measures of information content.

From this discussion, it appears that entropy and its variates are good measures to estimate

the level of randomness of a source, but also to study the dependences between its outputs. It

is therefore not surprising that entropy and mutual information are used in modern evaluation

standards of TRNGs.

1.4 Evaluation of TRNGs

We have seen in Section 1.1 that there are various ways to produce sequences of random numbers.

Because of their crucial importance in cryptography, it is mandatory to evaluate their quality. In-

deed, L’Ecuyer gave examples of RNGs which produce "bad" sequences of random numbers [43].

The use of such inappropriate generators may weaken the security of the whole cryptographic

construction, especially when these numbers are used to generate cryptographic keys. Despite

their importance, it is surprising to notice that in early 2000s, neither the Information Technol-

ogy Security Evaluation Criteria (ITSEC) nor the Common Criteria (CC) specifies any evaluation

criteria for random numbers generators [15].

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

32

In various cases, the evaluation of a TRNG only consisted in statistical tests applied to the gen-

erator’s output [107, 108, 109]. We will not detail the theory of statistical tests, but rather give a

brief overview of this notion. We invite interested readers to refer to specialized documentation

[110]. Broadly speaking, a statistical test checks if a given hypothesis is realistic based on data

observation. A statistical hypothesis testing can be split into five steps [111].

• The first step consists in formulating the practical problem in terms of hypotheses H0 and

Ha. The H0 hypothesis, often called null hypothesis, represents the status quo. It is a

statement one cannot prove in practice (for example, a given RNG produces actual random

numbers). Ha is often called the alternative (or action) hypothesis and should be relatively

easy to prove using data. These hypothesis are chosen such that they are mutually exclusive.

• Once the hypothesis have been formulated, one has to compute the test statistic (T) which

depends only on the data. Test statistics are required to:

– behave differently when H0 is true from when Ha is true,

– have a probability distribution computable under the assumption that H0 is true.

• On the basis of the test statistic, a critical region must be defined. This critical region is the

set of values of T for which the Ha hypothesis is more likely to be true than H0. This region

can be of three types:

– right-sided (see Figure 1.11), in which case, one rejects H0 if T is greater than or equal

to some (right) critical value;

α

Figure 1.11: Example of a right-sided critical region.

– left-sided (see Figure 1.12), which is equivalent to the prior case, except that here one

rejects H0 if T is less than or equal to some (left) critical value;

– both-sided (see Figure 1.13), which can be considered as the logical disjunction of the

previous cases, here one rejects H0 if T is either greater than or equal to the right

critical value, or less than or equal to the left critical value.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

33

α

Figure 1.12: Example of a left-sided critical region.

α
2

α
2

Figure 1.13: Example of a both-sided critical region.

• When performing a hypothesis testing, it is always possible to end with the wrong conclu-

sion. It is thus a good practice to specify the level of risk we accept to run of coming to an

incorrect conclusion. For that, statisticians define the significance level or size of the test,

denoted α. It is a real number between 0 and 1 which defines the size of the critical region

and corresponds to the probability of rejecting H0, while it is actually true. This is referred

to as an error of the first type or a Type I error. The value of α must be set depending on the

severity of the consequences of making such an error. Therefore, the fact that a hypothesis

testing results in an error of type I is the complete responsibility of the one performing the

test, since he is the one choosing value for α.

• The last step of an hypothesis testing consists in concluding if H0 should be rejected or not.

A value of T lying in the critical region will lead to reject H0 in favor of Ha with significance

α. If T lies outside the critical region, one does not reject H0.

When concluding a statistical test, it is important to note that H0 is never accepted. Either it is

rejected, or we lack enough evidence to reject it. Indeed, it is possible that H0 is not true, but

because of the data (too few, outliers, ...) one fails to reject it. This is called an error of the second

type or Type II error. This type of error mainly depends on the quality of the data (sample size,

population variance, ...) over which the tester does not always have control. Its probability of

occurrence is usually denoted β.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

34

Thus in testing any statistical hypothesis, there are four possible situations which determine

whether the decision is correct or not. They are summarized in Table 1.1.

Situation
H0 is true H0 is false

Decision
about H0

fail to reject correct decision Type II error
reject Type I error correct decision

Table 1.1: Overview of error types in statistical tests.

Although the rejection of a "good" TRNG may be problematic, it actually results in no security

flaw. This is not the case of a Type II error which would lead evaluators to validate an insecure

generator. It is therefore important to consider the probability of rejecting H0 while it is actually

false. This probability, computed as:

γ := 1−β, (1.40)

is called the power of the test and tells how likely a statistical test is to detect a "bad" generator.

Of course, for security reasons, one wants this power to be as high as possible in order to minimize

the risk of validating bad generators.

However, an increase of a test power will results in an increase of the probability of rejecting

"good" generators [112, Section 8.9]. It is therefore important to find a compromise between ac-

ceptance and rejection rate in order to reject as many "bad" RNGs as possible without rejecting

good ones. This is actually not an easy task and mainly depends on the consequences that a wrong

decision will have on the target application.

For this reason, statisticians prefer another method which produces more accurate results. In-

deed, the method presented above verifies whether the test statistic T is in a critical region or

not. It does not specify the distance of this value from the critical threshold α0. This threshold

corresponds to the minimum probability of rejecting H0 while it is true. In other words, it is the

minimum risk to be accepted if we want to reject the null hypothesis H0. This value is known as

the p-value and is obtained by numerical methods using available data. For decision making, this

p-value is compared to7 α:

• if it is smaller than α, the null hypothesis H0 is rejected,

• otherwise, one fails to reject H0.

The use of the p-value facilitate the task of finding a good compromise when it comes to rejecting

a generator. Indeed, it quantifies how bad a generator is, since it also gives the distance to the
7NIST test suites use α= 10−2 [113, Section 1.1.5].

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

35

pre-defined bound. Note that a p-value close to this bound may indicate insufficient data quality

or quantity.

1.4.1 Classical evaluation approach of TRNGs

As stated earlier, the first attempts to assess the quality of a generator mainly focused on the

output bitstream. This approach, depicted in Figure 1.14, considered the generator as a black box

producing bitstream. To assess the quality of the generator, the only possible way was therefore

to evaluate its outputs. Statistical hypothesis testing were performed on generated sequences of

bits to check their randomness. In practice, these tests are checking two characteristic properties

of random sequences [114]:

• values in the sequence are uniformly distributed,

• each value in the sequence is obtained independently from the previous ones.

Digital noise
source

Post-processing
output

Standalone
tests

validation

Figure 1.14: TRNG classical evaluation approach.

The goal of a statistical test is to detect a pattern specified in Ha (bias, correlation, etc). The

interest resides in the identification of suspicious sequences of bits at the output of the generator.

Indeed, "bad" generators tend to produce defective sequences of bits that might be detected by

statistical tests. The use of these tests can thus help discard "bad" random number generators.

Since a statistical test tries to detect a pattern in the generated sequence, and that several pat-

terns have to be checked in order to conclude on a statistical property, the various randomness

tests consist of batteries of statistical tests. Some of these tests (like DIEHARD) are more ori-

ented towards problems related to DRNGs [115], while others are more focused on TRNGs [116].

It is also possible to find general-purpose tests [117, 113].

The success of randomness tests resides in their ability to detect properties which contradict the

random nature of a sequence of bits. Knowing that there is an infinite number of statistical prop-

erties a truly random sequence must meet, the use of a finite number of tests does not guarantee

that the output of a RNG is random. More to the point, it cannot conclude on the quality of the the

generator under test. Even though statistical tests can detect some pattern with a given probabil-

ity, it is possible to construct deterministic sequences that pass all these tests successfully [118].

This shows that statistical tests are necessary, but not sufficient to assess the quality of an RNG.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

36

On the other hand, most RNGs encountered in real-life applications are hybrid. They can be split

into two basic blocks: a digital noise source and a post-processor as depicted in Figure 1.15. The

digital noise source is actually the block in which takes place the random physical phenomenon.

This is the phenomenon responsible of the randomness in the generated sequences of bits. It

is the non-deterministic part of the generator. The second block performs an algorithmic post-

processing on the sequence of bits generated by the digital noise source. It is usually a DRNG or

a cryptographic function (hash function, fixed-keyed AES, etc). Its use makes the output of the

generator look random even if the post-processor does not use any data compression algorithm,

i.e. it does not change entropy rate as graphically depicted in Figure 1.16.

Random Number Generator

digital noise
source

post-processor
(optional)

raw binary

signal

output

Figure 1.15: Main blocks of a TRNG.

In this figure, one can see that the flawed data plotted before the post-processing look random

after being post-processed. This action can lead statistical tests into wrong results: concluding

the generator is of good quality while it is actually a bad one. based on this observation, one can

say that statistical tests should be applied to the output of the digital noise source instead of the

output of the generator.

Figure 1.16: Action of a post-processing.

Moreover, caution should be taken while choosing the statistical tests suite, since ad-hoc ones

can easily contain errors [119, 120]. Furthermore, assessing a generator must not entirely rely

upon statistical tests since they cannot evaluate the entropy, which is actually the quantity that

characterizes the level of randomness of the source. Even though some test suites incorporate an

entropy estimate, this estimate is done using the generated bit stream, i.e on the realizations of

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

37

random variables [18]. However, as it was seen in Section 1.3, the entropy is a property related

to random variables, not to their realizations [24]. Since randomness comes from the physical

phenomenon occurring inside the digital noise source, it is crucial to also evaluate the physical

phenomenon which produces the random sequence at the output of the generator. This is the core

idea of the approach presented in the next section.

1.4.2 Enhanced evaluation approach of TRNGs

As shown in Figure 1.14, the generator of interest was considered as a black box which outputs

sequences of bits. Based on this consideration, RNGs were exclusively evaluated using statistical

tests. This practice was mainly due to the lack of common evaluation criteria for RNGs. In order

to remedy this situation, the BSI (Bundesamt für Sicherheit in der Informationstechnik) issued

in 1999, then in 2001 series of recommendations on how to assess RNGs. The first series, com-

monly known as AIS-20 addresses the evaluation of DRNGs [29], while the second series deals

with evaluation of TRNGs [15, 24]. Through these series of recommendations, BSI adopted an

enhanced approach for evaluating RNGs. Indeed, it introduces a classification of RNGs based on

their nature (DRNG or TRNG), the intended security level and assessment feasibility. It also rec-

ommends a new type of TRNG design scheme which allows assessing internal parts of the TRNG.

Even though the standard comprises recommendations on both DRNGs and TRNGs, we will only

discuss those related to TRNGs in what follows.

From the AIS-31 perspective [24], internal parts of the TRNG (such as source of randomness,

internal signals, etc) should be assessable. This requires the identification of each component

of the generator: noise source, harvesting mechanism, post-processor. Based on the intended

application and security level, AIS-31 distinguishes three different classes of TRNGs.

• The class PTG.1 defines requirements of TRNGs for cryptographic applications in which

unpredictability of generated bits is not required. It therefore allows generated bits to be

guessed with a probability higher than 0.5. Generators from this class are only required

to produce statistically random bits. To ensure that, they are required to have an embed-

ded total failure test and some non-embedded online tests as depicted in Figure 1.17. The

goal of the total failure test is to detect any sudden drop of entropy in the source. AIS-31

recommends this test to be launched both when the generator starts operating and during

operation. Online tests are set to detect statistical defects of the output during operation of

the TRNG. These latter tests can be either triggered periodically or applied continuously to

the TRNG’s output. In the event any of these tests triggers an alarm, the generator must

stop operating.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

38

Entropy
source

Entropy
harvester

Post-processor
raw random

signal
raw random

numbers
internal random

numbers

Total failure
tests

(embedded)

Online
tests

alarm

alarm

Digital noise source

Figure 1.17: Assessment procedure of class PTG.1 TRNG.

• The class PTG.2 concerns TRNGs for which their applications require a high level of un-

predictability. AIS-31 considers that such generators can be used for instance to generate

random padding bits, seeds for DRNGs, or any other cryptographic application which re-

quires secrecy of the generated numbers. Outputs are not required to be indistinguishable

from independent and uniformly distributed random numbers. The most important aspect

is that the entropy per bit should be high (0.997 in the case of Shannon entropy) so it could

resist guessing attacks. For this reason, PTG.2 class adds to PTG.1 requirements a stochas-

tic model of the source of randomness. However, online tests should rather be applied to the

raw random signal instead of the internal random numbers. Because generators of this class

can display some bias at the output, BSI recommends the use of a more restrictive class for

generating cryptographic keys.

Entropy
source

Entropy
harvester

Post-processor
raw random

signal
raw random

numbers
internal random

numbers

Total failure
tests

(embedded)

Online
tests

alarm

alarm

Digital noise source

Figure 1.18: Assessment procedure of class PTG.2 TRNG.

• The class PTG.3 is the highest defined by AIS-31 and is intended for very sensitive security

applications. It basically consists of PTG.2 compliant generators with cryptographic post-

processing. Thus, their security does not only rely on the quality of the source of random-

ness, but also on the computational security ensured by the cryptographic post-processing

algorithm. As a consequence, the generator output must not exhibit any bias nor short term

dependencies.

From the above description of various TRNG classes, it follows that a stochastic model of the gen-

erator is compulsory to ensure high level of security. This is because the assessment of a TRNG

cannot be done without actually identifying and analyzing the characteristics of the system or

process which impacts the entropy. Ideally, this should be done through a physical model based

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

39

Entropy
source

Entropy
harvester

DRNG
raw random

signal
raw random

numbers
internal random

numbers

Total failure
tests

(embedded)

Online
tests

alarm

alarm

Digital noise source

Figure 1.19: Assessment procedure of class PTG.3 TRNG.

on electronic circuits. However, the knowledge required for such model is daunting whereas a

stochastic model is less complicated. Hence, the stochastic model is a convenient trade-off that

provides a class of probability distributions among which is the true (but unknown) distribution of

the TRNG’s output [24]. The main goal of the stochastic model is to make the connection between

the unpredictability of the source of randomness and the output bit stream of the TRNG. For this

purpose, the stochastic model takes various parameters p1, p2, . . . , pn as inputs. Example of these

parameters are jitter variance, jitter drift and clock signal duty cycle. Based on these parameters,

it should provide the entropy, or in the worst case a lower bound for the entropy of the source as

depicted in Figure 1.20. This expected entropy is to be compared with the one required in the

standard to guarantee security of the generator.

stochastic model
of TRNG

p1, p2, . . . , pn expected

entropy

Figure 1.20: Use of a stochastic model (p1, p2, . . . , pn: model parameters).

As it is the case for any modeling procedure, assumptions must be made. Existing models of TRNG

assume that the jitter is only due to thermal noise. Section 1.2.3 shows that this assumption is

not true, since jitter has several components. Two strategies can then be used: either provide new

models that take into account effects of other jitter components, or develop a jitter measurement

method which provides the proportion of the jitter variance due to thermal noise. This latter is

known as the conservative approach which bases entropy computation only on the jitter caused by

the thermal noise, because it is considered to be non manipulable. If neither of the above strate-

gies is adopted, one could overestimate the entropy of the source of randomness, yielding a serious

security flaw for cryptographic schemes using that generator. Indeed, standards set a minimum

entropy threshold Hmin which ensures a given security level. Stochastic models can then be used

to estimate a minimum jitter variance σ2
min corresponding to this entropy threshold. Under the

assumption that jitter contains only the thermal noise, one can consider that jitter variance has

a linear progression over time which reaches σ2
min at a instant t2 as shown in Figure 1.21. Since

real-world jitter contains other phenomena in addition to the thermal noise, the evolution of jit-

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

40

ter variance over time is not linear and reaches σ2
min at a time instant t1, yielding a variance

σ2
1 É σ2

min due to thermal noise. The variance σ2
1 therefore results in an entropy H1 very small

compared to Hmin. Hence, various sources contributing to the randomness used by the generator

must be clearly identified to avoid severe security flaws [121].

t

variance of
jitter

σ2
min

σ2
th

t2

σ2

t1

σ2
1

(a) Evolution of the jitter variance as a function of accu-
mulation time.

σ

H

Hmin

σminσ1

H1

(b) Evolution of entropy as a function of the jitter stan-
dard deviation.

Figure 1.21: Risk of entropy overestimation.

Although AIS-31 offers a good framework for evaluating TRNGs, it does not take into account

the technology on which the generator is implemented (ASIC or FPGA), effects of the power

supply, temperature, electromagnetic perturbations and so forth. However, the performance of

a TRNG can be altered whenever the operating conditions of a generator change [122]. This

study latter demonstrates that the quality of generated random bits highly depends on environ-

mental conditions of the TRNG. It was recommended in the first place that a distinction should

be made between the analog noise (which is actually the phenomenon responsible for the ran-

dom behavior of the generator) and the digital noise (which is a discrete version of the analog

noise). Furthermore, a deep study of the source of randomness should be performed, resulting

in a stochastic model which will help monitoring the generator in order to detect any potential

problem. An improvement of this proposal was developed by DGA-MI (Direction Générale de

l’Armement-Maîtrise de l’Information) which requires among others that various physical noises

inside the source of randomness should be identified and characterized in addition to the model

of the source of randomness, as depicted in Figure 1.22.

This approach was justified and illustrated by David Lubicz using the elementary generator based

on ring oscillators [95]. The physical noise source of this generator consists of two ROs (RO1 and

RO2). RO2 is considered ideal and produces the clock signal, while the signal produced by RO1 is

the jittered one. This jitter is impacted by the thermal noise which is modeled as a Wiener process

of drift µ and volatility σ. These µ and σ are the physical parameters of the noise source. The

entropy accumulation is done by using a frequency divider K , which is the only parameter of the

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

41

Noise 1

Noise 2

Noise r

Physical noise
(p1, p2, · · · , pn)

Physical device
(q1, q2, · · · , qm)

M(t, p1, p2, · · · , pn)

Randomness
harvester

output

N(t, pi , qi)

Tests

on
lin

e
to

ta
lf

ai
lu

re
st

ar
t-

upMeasurement
method

Source of randomness

Figure 1.22: TRNG evaluation approach of DGA-MI (DGA-MI: Direction Générale de l’Armement-Maîtrise
de l’Information).

generator. Hence, the physical model of this generator can be summarized as:

M (t, p1, p2) = G
(
t,µ∆t,

p
∆tσ

)
, (1.41)

yielding p1 =µ, p2 =σ and q = K .

In order not to force TRNG designers to use only one principle, DGA-MI requested that this ap-

proach is illustrated by another principle. This request constitutes the core of Chapter 4, where

PLL-based TRNGs will be used for this purpose.

The goal of this work is to provide a method to estimate the exact proportion of thermal noise in

the jitter, and also study how parameters of a given TRNG affect the randomness quality of the

jitter. This would be a progress towards a more accurate estimate of the entropy, yielding a better

security evaluation of TRNGs. Moreover, the knowledge of the effects that various parameters

could have on the quality of entropy would help optimizing these parameters to ensure maximum

entropy at the generator’s output.

1.5 Conclusion

Random number generators (RNGs) represent a crucial cryptographic primitive since they impact

the security of any construction they are part of. Due to their importance in computer security,

the choice of a TRNG should not be made at random. Caution must be taken while designing an

RNG since various methods aiming at generating random numbers in the state-of-the-art ended

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

42

up with huge security flaws affecting the whole cryptosystem. Based on the method through

which they operate, one can distinguish deterministic random number generators (DRNGs) and

true random number generators (TRNGs). The latter, including the subclass of generators using

physical methods is the one we will focus on, especially hardware ones that can be implemented

in logic devices.

In the choice of a suitable generator for cryptographic use, it is necessary to have evaluation meth-

ods available. However, there was no standard evaluation criteria of RNGs until recently. Most

evaluation consisted in performing statistical tests on the output of RNGs regardless of their con-

stitutions. As a result, several successful attacks were performed on various TRNGs, revealing

the need to investigate in depth how each TRNG is built. It was thus highlighted that statistical

tests are not sufficient to assess a TRNG, they should always be interpreted with respect to the

functionalities of the generator. Hence, the mechanism through which random numbers are ob-

tained is required to be fully understood and mastered.

It happens that TRNGs exploit random physical phenomena to produce series of random num-

bers. It is admitted that generated numbers inherit randomness from physical phenomena. Thus,

when assessing a TRNG, attention must be given to the source of the physical random phenom-

ena. In the case of TRNGs we studied, the source of randomness consists in various electronic

noises among which the thermal noise is the only accepted noise for generating random numbers.

This is because it is non-manipulable and its modeling is well characterized by a Wiener process.

It was shown that most of these noises are not suitable for generating genuine random numbers.

A genuine randomness extraction mechanism is therefore compulsory to ensure that only safe

noises are exploited for generating random numbers.

Because entropy is a measure of the level of randomness contained in the source, it is important to

provide a link between the entropy of the source and measurable physical parameters in order to

guarantee the quality of generated random numbers. This requires the availability of a stochastic

model describing the source of randomness, and making the bridge between measured variance

of the jitter and required entropy for security. This model goes through a better understanding of

that source of randomness, the identification and characterization of various random phenomena

that will be detailed in Chapter 2.

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

43

Résumé

Les nombres aléatoires sont d’une importance capitale pour la cryptographique moderne. Ils sont

obtenus par les générateurs de nombres aléatoires, qui peuvent être repartis en deux grandes

familles suivant leurs principes de fonctionnement.

• La première famille est celle des générateurs dits déterministes. Ils utilisent des méth-

odes algorithmiques pour produire des suites de nombres dont les propriétés statistiques

ressemblent à celles des nombres véritablement aléatoires. Pour cette raison, tout généra-

teur de cette famille est appelé générateur de nombres pseudo-aléatoire (PRNG) ou généra-

teur déterministe de nombres aléatoires (DRNG).

• La seconde famille est celle des générateurs des nombres véritablement aléatoires (TRNGs).

Comme leur nom l’indique, ils génèrent des suites de nombres véritablement aléatoires à

partir de phénomènes imprévisibles. Ces phénomènes peuvent être d’origine physique (bruit

électronique, radioactivité, etc) ou non physique (mouvements de la souris d’un ordinateur,

délai de lecture/écriture sur un disque dur, etc).

Chacune des deux familles ci-dessus présente des avantages qui lui sont propres. Les DRNGs

ont des débits très élevés et produisent des suites de nombres ayant de très bonnes propriétés

statistiques. Les TRNGs quant à eux ont des sorties réellement aléatoires. Afin de bénéficier des

avantages des deux familles, il est courant d’associer un DRNG à un TRNG. On parle alors de

générateur hybride de nombres aléatoires. Selon la manière de les combiner, on distingue :

• les générateurs hybrides de nombres véritablement aléatoires (HTRNG), qui génèrent des

suites de nombres aléatoire en utilisant un TRNG ; ces nombres passent ensuite par un

DRNG pour une étape de post-traitement visant à améliorer leurs propriétés statistiques ;

• les générateurs hybrides de nombres pesudo-aléatoires (HDRNG), dans lesquels se trouvent

un TRNG qui réinitialise de manière périodique un DRNG.

Pour les objectifs de cette thèse, nous nous focaliserons sur les TRNGs implémentés dans des cir-

cuits logiques utilisant des phénomènes physiques comme source d’aléa. La plus utilisée de ces

sources est le jitter d’horloge que nous adoptons également comme source d’aléa pour l’étude faite

au cours de cette thèse. Compte tenu de leur importance en cryptographie, des procédures de

standardisation, telle que l’AIS-20/31, ont été développées afin d’évaluer la sécurité des généra-

teurs de nombres aléatoires. Pour des applications très sensibles, de niveau militaire par exemple,

la DGA recommande en plus de la conformité à l’AIS-20/31, une analyse plus poussée de la source

d’aléa afin d’en obtenir une modélisation plus fine. Tout au long de cette thèse, nous nous at-

tarderons donc sur la compréhension et la caractérisation de la source d’aléa, ainsi que des divers

CHAPTER 1. RANDOM NUMBERS IN CRYPTOGRAPHY: STATE-OF-THE-ART

44

phénomènes qui s’y produisent. Une illustration de cette démarche sera faite avec les TRNGs

basés sur les PLLs.

45

Chapter 2

Characterization of clock jitter as a source of

randomness

Contents

2.1 Random signal . 46

2.1.1 Time and ensemble averages . 46

2.1.2 Classification of random processes . 48

2.2 Mathematical model of the clock jitter . 50

2.2.1 Characterizing noise in time domain . 51

2.2.2 Characterizing noise in frequency domain . 58

2.2.3 Noise models . 63

2.3 Jitter analysis tools . 67

2.3.1 Limitation of the classical variance . 67

2.3.2 Allan variance . 70

2.3.3 Modified and time versions of the Allan variance . 73

2.3.4 Noise identification using autocorrelation function 77

2.4 Jitter measurement method . 79

2.4.1 Counter based method for jitter measurement . 79

2.4.2 Jitter measurement in hardware . 81

2.5 Estimation of the thermal noise contribution . 83

2.6 Conclusion . 88

Random number generators are security critical cryptographic primitives that need to be assessed

as rigorously as possible. This implies having a well defined source of randomness and a thorough

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

46

characterization of that source. In this chapter, we present a model of the clock jitter and an

estimate of the exact contribution of the thermal noise that affects it. A randomness harvesting

method compatible with the measurement of the thermal noise contribution is also developed.

2.1 Random signal

Electronic noises present in digital devices can be considered as parasitic random signals1. A time

varying signal for which its instantaneous value cannot be determined or predicted [123, Page 3].

Mathematically, they are modeled as random processes and characterized using two approaches,

namely probabilistic and statistical [123, Page 209]. The probabilistic approach, although more

accurate, cannot be directly applied to real-world random signals. The usual way is to derive a

statistical description of the signal, that uses parameters provided by the probabilistic approach

and estimated by observations of the random signal.

In this section, we provide a brief description of various concepts related to the study of random

signals. This description will then be applied to specify assumptions we will use to characterize

the random phenomena occurring in the source of randomness of TRNGs.

2.1.1 Time and ensemble averages

When observing a random physical phenomenon, one has access to a random function of time x(t).

In fact, this random function is only one among an infinity of other random functions which could

be accessed by observing the random phenomenon as depicted in Figure 2.1. The collection of all

possible time functions that might have been observed is called a random process, and denoted

{x(t)}t∈R+ [124, Definition 3.1]. When the probability of occurrence of each random function x(t) is

defined, the random process is called an ensemble, and any member of that ensemble is called a

sample function [123, Page 53], [125, Page 39].

Because the process is random, if ti is an arbitrary time with i ∈ N, then the value x(ti) is a

random variable denoted xi [124, Page 26]. Note that for two different instants ti and t j, the

random variables xi and x j are not necessarily equal. In other words, when dealing with random

processes, there is a random variable for each instant of time. Moreover, the random character of

interest is the one that exists from one sample function to another in the ensemble. Therefore, the

probability description of random variables deduced from a random process is also the probability

description of the process.

1Other parasitic signals also exist as mentioned in Section 1.2.3. They are deterministic and often denoted interferences. These
signals are not taken into consideration since the differential principle mitigates their effects.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

47

time

ensemble

xN (t)

x2(t)

x1(t)

ensemble average

time average

Figure 2.1: Sample functions of an ensemble.

Due to the random nature of the process, it cannot be characterized based on a single event of

that process at a certain time. It can only be discussed in terms of averaged quantities, either of

a single system (sample function) over a time interval, or of many identical systems at a certain

time instance. The former is called time average and the latter ensemble average [126, Section

1.1]. As an example, if x(t) is a sample function of the process, one can define the kth-order time

average as: [
x(t)

]k := lim
T→∞

1
2T

∫ T

−T

[
x(t)

]kdt. (2.1)

Thus, time averages of a random process are defined for a given sample function along the time

axis. The ensemble average, on the other hand, is defined for a given time instant along the

ensemble axis as shown in Figure 2.1. The first-order ensemble average, at a given time ti, is:

〈
x(ti)

〉
:= lim

N→∞
1
N

N∑
k=1

xk(ti) =
∫ +∞

−∞
ξ fxi (ξ)dξ, (2.2)

where fxi is the probability density function of the random variable xi := x(ti), and each xk(t) rep-

resents a sample function of the process.

Ensemble averages are convenient since they are related to probability density functions of the

random process at each time. This enables a theoretical analysis of the physical system and

provides an insight into the different processes taking place in the system. However, computation

of these quantities assumes a freeze of the time and the possibility to access all possible values of

the process at a specific time. Of course, this is not feasible in experiments. One rather has access

to a sample function which yields time averages. However, from the above definitions of time and

ensemble averages, one understands that these two concepts are not the same. Actually, they

coincide only for a special class of random processes which will be detailed in the next section.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

48

2.1.2 Classification of random processes

Various kinds of random processes arise in engineering problems. These random processes are

usually grouped into classes of pairs. According to the kind of problem one is dealing with, the

random processes can either be [123, Section 5.1] :

• continuous or discrete,

• deterministic or nondeterministic,

• stationary or nonstationary,

• ergodic or nonergodic.

2.1.2.1 Continuous processes

A random process is said to be either continuous or discrete according to the set of possible values

the random variables may have [123, Section 5.2]. A continuous random process is one for which

the probability distribution function is continuous. This implies that random variables x1, x2, · · ·
may have any value within a range of possible values. Thermal noise in electronic devices is an

example of such processes. A random process which is not continuous is said to be discrete.

2.1.2.2 Deterministic processes

While discussing random processes, it might seem strange to think some may be deterministic.

However, some random processes are such that for a given sample function, it is possible to predict

future values from the knowledge of past ones. An example of such processes is the one for which

each sample function is defined as :

x(t) = acos(ωt+θ), (2.3)

where a and ω are constants and θ is the initial phase corresponding the to realization of a

random variable. The choice of the value of θ therefore defines the sample function, since it

will not change again. Although one cannot predict which value θ will have, once it is chosen, the

behavior of the process becomes deterministic. The interest of this category of random processes is

mostly theoretical, since almost all practical random processes are nondeterministic [127, Section

6.3]. Specifically, electronic noises we are dealing with, in the framework of random number

generation, are nondeterministic. This means that, for each sample function, future values of the

process cannot be predicted from the observed past values [123, Section 5.3]. We shall therefore

consider only nondeterministic random processes in the rest of this thesis.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

49

2.1.2.3 Stationarity

Let t1, · · · , tk, for any value of k ∈Nà {0}, be different times. Since {x(t)} is a random process, each

xi := x(ti) is a random variable. It is therefore possible to define the joint probability distribution

of the random vectors (xi)1ÉiÉk and (xm+i)0ÉiÉk for any m ∈Nà {0}. The process {x(t)} is said to be

stationary if the random vectors (xi)1ÉiÉk and (xm+i)0ÉiÉk have the same distribution [124, Defi-

nition 13.1]. Otherwise, it is said to be nonstationary [123, Section 5.4].

If k = 1, we can see that if x(t) is stationary, then all the random variables xi ’s for i ∈ N have

the same probability distribution. This shows that the stationarity of a process implies that the

statistics of that process do not change over time. In other words, the behavior of the process does

not change with time. This leads to the fact that all ensemble averages are independent from the

time origin, and therefore statistics of the process can be defined at any time.

In the real-world, no random process is actually stationary. Indeed, any physical phenomenon

starts at a specific time and does not last forever. However, in many physical situations, it may

happen that the process does not change a lot during the time it is being studied. In these cases,

the stationarity assumption leads to a convenient mathematical model, which closely approxi-

mates reality. In general, determining whether the stationarity assumption is reasonable or not,

for a given situation, may not be easy. It is however possible to apply statistical tests on the data

to provide confidence on the stationarity assumption [128, 129, 130].

Wide sense stationarity In the definition of a stationary process, one requires the property to

be valid for any vector of length k. In a rigorous way, the random process is said to be stationary

of order k [126, Section 1.2]. From a practical point of view, this definition is too restrictive

and not useful. In many practical cases, stationarity of order 2 is more adequate for signal and

system analysis [123, Page 196]. For random process that meet this latter, often named wide-

sense stationary processes, (x1, x2) and (x1+ε, x2+ε) have the same joint probability distribution,

for any ε ∈R+à {0}. This is equivalent to [126, Section 1.2]:

• 〈x(t)〉 and
〈
x(t)2〉

are independent of the time t,

• 〈x(t1)x(t2)〉 only depends on the time difference τ= t2 − t1.

In others words, moments of order 1 and 2 are constant, and the autocorrelation function depends

only on the time difference τ= t2 − t1. Moments of higher orders are subject to no requirements.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

50

2.1.2.4 Ergodicity

Characterization of electronic noises requires to compute the noise statistics. In practice, one has

access to a single sample function of the noise process which yields time averages. However, in-

formation about the noise process is in the ensemble averages which are not (in general) equal to

time averages according to Section 2.1.1. This is where comes in the notion of ergodicity which

guarantees that time and ensemble averages coincide [126, Section 1.1]. Thus, whenever one is

dealing with an ergodic process, any sample function obtained through experimental measure-

ments represents the entire process.

An important consequence of what was discussed above is that any ergodic process is necessarily

stationary as shown in Figure 2.2 [126, Section 1.2]. Indeed, ergodicity states that time averages

equal corresponding ensemble averages. The first order time average of a sample function, also

called mean, is a number usually denoted µ. On the other hand, the first order ensemble average

is obtained by taking the average across all sample functions at a time instant. Thus, if the pro-

cess was not stationary, one would end up having two different first order ensemble averages µ1

and µ2 at instants t1 and t2. Because the process is ergodic, we should have µ1 = µ= µ2, contra-

dicting µ1 6=µ2.

From the above, it follows that the statistics (mean, variance, etc.) of a non-stationary process

are not defined. Thus, it is necessary for the process to be stationary so that its variance is

meaningful. Moreover, the measurement instruments used in practice evaluate time averages

and not ensemble averages. In order for these time averages to coincide with the ensemble aver-

ages used in theory, the process must be ergodic. We will therefore assume that electronic noises

we are dealing with are ergodic, therefore stationary, as is done in most state-of-the-art studies

[131, 132, 133].

2.2 Mathematical model of the clock jitter

The source of randomness we use to generate random numbers is the clock jitter in logic devices.

This clock jitter is caused by electronic noises. We saw in Section 1.4.2 that jitter has several

components while existing models of TRNGs assume that only the jitter coming from the thermal

noise contributes to entropy. It is therefore of prime importance to evaluate the exact contribution

of the thermal noise to the jitter. To solve this problem, we develop in this section a method aimed

at estimating the part of jitter due to thermal noise.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

51

random processes

wide-sense
stationary

stationary

ergodic

Figure 2.2: Subsets of random processes.

2.2.1 Characterizing noise in time domain

The study of ergodic signals can be made using two complementary approaches: time domain and

Fourier frequency domain. Based on the approach used, they are often characterized by either

the average power (or variance) or the frequency spectrum. Because of its random nature, the

power of a random signal may be different from one time to another. A possible way to get around

this difficulty is to measure the average power over a specified time interval [123, Section 2.4].

Thanks to the stationarity of the process, this value should remain the same for any time interval

of the same length.

Random fluctuations of the signal of an oscillator being modeled as random processes, the above

discussion applies. We will therefore use these considerations to provide a time domain charac-

terization of random fluctuations of an oscillator that will be used as source of randomness in the

design of a TRNG.

2.2.1.1 Oscillator output signal

As said in Section 1.1.2, generators of interest in this work are those which are used in oscillator-

based TRNGs. The source of randomness for these generators is the clock jitter of the oscillator

generating the jittered clock. A real-world oscillator usually outputs a signal, called clock signal,

that can be modeled as [134]:

v(t) = (
v0 +η(t)

)
sin(2πν0t+Φ(t)) . (2.4)

In Equation (2.4), v0 and ν0 are respectively the nominal amplitude and frequency of the clock

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

52

signal.
{
η(t)

}
t∈R is a random process denoting amplitude fluctuations around v0, often known as

amplitude noise [81]. In the field of random number generation, we are using only digital devices

because we assume discrete levels, therefore we can neglect η(t). For this reason, we will assume

that there are no amplitude fluctuations in the output signal of oscillators, and therefore focus on

the phase jitter.

Equation (2.4) exhibits another term, Φ(t), which represents phase fluctuations, also called excess

phase [81]. Knowing that the instantaneous frequency is the time derivative of the phase divided

by 2π, any frequency variation implies a related phase variation. Φ(t) therefore takes into account

any phase fluctuation, but also any frequency fluctuation. Hence, several terms can appear in

Φ(t), among others phase drifts, periodic phenomena, random phenomena, etc [135]. A specific

example, shown in Figure 2.3, reads as [134]:

Φ(t) = D1t2 +∆Φsin(2π fmt)+ϕ(t), (2.5)

where phase drift is modeled as a second-order polynomial (linear frequency drift), periodic phase

fluctuations are expressed as a sine function, ϕ(t) denotes random phase fluctuations.

ideal oscillator signal

noisy oscillator signal

Figure 2.3: Examples of oscillators’ output signals (noisy oscillator signal was generated using Equa-
tion (2.5)).

Phase fluctuations are due to specific physical mechanisms that make the phase of any real-world

signal change continuously over time. Phase drifts are very slow changes, often referred to as

long-term instabilities. Periodic fluctuations essentially come from the surrounding environment

of the oscillator. They are caused by periodic electronic phenomena such as power-supply, environ-

mental temperature, vibrations, pressure, etc. Random fluctuations are due to noise sources such

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

53

as thermal, shot and flicker noises encountered in electronic components [134]. Related fluctua-

tions are often referred to as short-term instabilities since they are more significant when shorter

time intervals are considered. Due to their random nature, statistical treatment is needed for

their characterization.

When generating random numbers, random fluctuations of the phase are the only phenomena

to consider. These fluctuations behave as a random process, represented by the random func-

tion ϕ(t). Moreover, long-term instabilities are filtered out by the differential principle. In the

remainder of this thesis, we will therefore deal with the simplified model of a clock signal [131]:

v(t) = v0 sin
(
2πν0t+ϕ(t)

)
. (2.6)

We recall that in Section 1.1.2, two oscillators are used to produce random sequences of bits. One

is the reference oscillator, producing a reference clock signal, while the other is considered as the

instable oscillator that produces a jittered clock signal. Actually, signals of both oscillators are jit-

tered and can be modeled by Equation (2.6). However, to simplify the model, we transfer the jitter

of the reference signal to the other signal. Hence, we can consider that random phase fluctuations

of the jittered clock signal results from real-world phase fluctuations of both signals, while the

reference clock signal is considered ideal. Note that this simplification can be made only under

certain conditions which will be discussed in Section 2.4.1.

Moreover, practical applications deal with square waves instead of sine waves. This does not

contradict the model of Equation (2.6). Indeed, such signals have two states: a lower state and

an upper state. One can think of the change of state as zero crossing of the sine wave presented

in Equation (2.6). The rising edge will therefore correspond to the zero crossing from negative to

positive values, while a falling edge will correspond to the zero crossing from positive to negative

values [81, Section 2.1]. This operation can be described as:

v(t) = 1
2

v0

(
1+sgn

[
sin

(
2πν0t+ϕ(t)

)])
, (2.7)

in particular to have discrete levels between 0 and v0.

The model of a clock signal can have a more general form. Indeed, consider a generic periodic

waveform g(2πν0t) with exactly one positive zero crossing per period T0 = 1
ν0

. The generalization

of a clock signal can be described as [81]:

v(t) = v0 g
(
2πν0t+ϕ(t)

)
. (2.8)

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

54

However, we will stick with the model defined by Equation (2.6) and bear in mind that all consid-

erations about phase and excess phase for a sine wave can be transported to a square wave or any

waveform defined by Equation (2.8).

2.2.1.2 Phase and frequency random fluctuations

Phase fluctuations in Equation (2.6) are expressed in radians. However, one can also express

them in seconds, with Equation (2.6) being rewritten as:

v(t) = v0 sin
(
2πν0

[
t+ ϕ(t)

2πν0

])
. (2.9)

This introduces the instantaneous time error of the clock generated by the oscillator as [131]:

x(t) := ϕ(t)
2πν0

. (2.10)

This quantity represents the time difference between a real-world and an ideal clock signal (with-

out fluctuations). It is the excess time needed to reach rising edges of real-world clock signals.

The clock jitter of an oscillator can therefore be modeled by Equation (2.10).

Since phase and frequency of any signal are related, one can express the instantaneous frequency

of the clock signal in Equation (2.4) as [131]:

ν(t) := 1
2π

d
dt

(
2πν0t+ϕ(t)

)
, (2.11)

which can be rewritten:

ν(t) := ν0 +
1

2π
dϕ(t)

dt
= ν0 +∆ν(t), (2.12)

where

∆ν(t) := 1
2π

dϕ(t)
dt

. (2.13)

represents frequency fluctuations of the oscillator.

Equation (2.13) shows that phase and frequency fluctuations are actually two representations of

the same phenomenon. Hence, one can gain knowledge about phase fluctuations from the study

of frequency fluctuations, and vice-versa. Therefore, one can study and characterize frequency

fluctuations, since they are easier to assess.

Even though studying frequency fluctuations seems easier than studying phase fluctuations, the

instantaneous frequency ν(t) is not observable. This comes from the fact that any frequency-

measurement technique involves a finite time interval over which the measurement is performed

[134]. The basic principle consists in counting, from a time tk, the number of periods of the

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

55

oscillator during a time interval τ defined by the reference oscillator. Hence, one deduces the

average value of ν(t) during a time interval of length τ:

〈ν(t)〉tk,τ := 1
τ

∫ tk+τ

tk

ν(θ)dθ = nk

τ
, (2.14)

where nk is the number of periods of the oscillator during the time interval2 τ> 1
ν0

.

Thanks to Equation (2.12), the average value of ν(t) can be rewritten as:

〈ν(t)〉tk,τ := 1
τ

∫ tk+τ

tk

[ν0 +∆ν(θ)]dθ := ν0 +
1
τ

∫ tk+τ

tk

∆ν(θ)dθ. (2.15)

One can therefore deduce the average frequency fluctuations during the time interval τ:

〈∆ν(t)〉tk,τ :=
∫ tk+τ

tk

∆ν(θ)dθ = 〈ν(t)〉tk,τ−ν0. (2.16)

In terms of number of clock cycles, it can be written as:

〈∆ν(t)〉tk,τ = nk

τ
−ν0. (2.17)

Equation (2.17) thus provides an experimental measure of the frequency fluctuations of an oscil-

lator. However, it is more common to express these fluctuations as [131]:

y(t) := ∆ν(t)
ν0

= dx(t)
dt

. (2.18)

Equation (2.18) defines fractional frequency fluctuations which are basically the normalized ver-

sion of frequency fluctuations. This quantity being dimensionless has the advantage to remain

unchanged under frequency multiplications and divisions. Moreover, it allows easier comparisons

among oscillators having different nominal frequencies.

2.2.1.3 Average fractional frequency

Similarly to instantaneous frequency ν(t), the fractional frequency fluctuations are not observable

[134]. Following the same procedure as with ν(t), one can have access to its average value over a

time interval τ starting at time tk:

yk := 〈y(t)〉tk,τ = 1
τ

∫ tk+τ

tk

y(θ)dθ. (2.19)

The quantity defined in Equation (2.19) is known as the average fractional frequency during the

k-th measurement interval [131]. Based on Equations (2.13) and (2.18), the average fractional

frequency can be expressed as:

yk = ϕ(tk +τ)−ϕ(tk)
2πν0τ

= x(tk +τ)− x(tk)
τ

, (2.20)

2Since nk is the number of periods of the oscillator signal during the time interval τ, it is reasonable to consider τ to be greater
than the average period 1

ν0
of the signal. Indeed, if it was not the case, it would be impossible to count the number of periods, which

would be of no interest.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

56

where the numerator represents phase error accumulated from instant tk to instant3 tk+τ. Thus,

the knowledge of the phase error at both ends of the time interval is sufficient to compute the

corresponding average fractional frequency. Table 2.1 provides a summary of the relationships

between phase and frequency fluctuations.

Phase Frequency

ϕ(t)
[rad]

ν(t)−ν0
[Hz]

x(t)
[s]

y(t)
[no dimension]

× 1
2πν0

1
2π

d
dt

d
dt

× 1
ν0

Table 2.1: Relationship between phase and frequency fluctuations (should be read from left to right, and
from top to bottom)

The quantity yk can be easily related to experimental results given by counting techniques. In-

deed, thanks to Equation (2.14), one can write:

〈ν(t)〉tk,τ = ν0
(
1+ yk

) = nk

τ
, (2.21)

which yields:

yk = nk

τν0
−1. (2.22)

To conclude, the study of frequency (or phase) fluctuations of an oscillator can be conducted using

a dataset of M consecutive average fractional frequency measurements yk. More precisely, one

individual measurement of duration τ provides one sample yk. Repeated measurements of a

large number M of yk are necessary for statistical treatment that yields meaningful measure of

instability over τ.

2.2.1.4 Limitations of the model

As it is always the case, models described in the above sections do not include all phenomena

that occur in a real-world oscillator. This is made to avoid dealing with too complex models that

would have been not usable in practice. Similarly, assumptions are used to focus, among others,

to specificities of interest. Other assumptions may also be used, even though they are not met in

the real-world.

3Here, we are in the general case as described in Appendix B. However, in the remainder of this thesis we will assume there is
no dead time in samples acquisition.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

57

A typical example of such assumptions is the fact that phase fluctuations ϕ(t) are stationary. This

assumption is very useful for characterizing random processes, but considerations such as the

lifetime of the oscillator show that real-world signals are not necessarily stationary [135]. One

therefore needs to specify under which circumstances such assumptions are valid. In regards to

the oscillator’s lifetime, it is shown that as long as the observation time is negligible with respect

to the oscillator’s lifetime, one can assume stationarity of ϕ(t). Caution should however be taken

while making this assumption, to avoid conflict with other properties or physical considerations

of the model [134]. In the context of random number generation, τ is usually of the order of mil-

liseconds, while low frequency phenomena such as temperature, power supply noise take longer

to change. They are thus very little integrated during τ. In addition, the differential principle

makes it possible to reduce their effects. It is therefore realistic to consider phase fluctuations as

stationary random processes.

On the other hand, a random process, even though stationary, may not be differentiable. Based

on Equation (2.11), this fact implies that the instantaneous frequency is not defined whenever

phase fluctuations are not differentiable. Such situations occur when phase fluctuations include

step functions, or when they are modeled as ideal white noise. However, Vernotte imputes this

limitations to the model, not the real-world signal [135]. Indeed, the limited bandwidth of any

system yields infinitely differentiable processes. Therefore, one can always assume that the in-

stantaneous frequency exists for any oscillator.

2.2.1.5 Autorrelation function

Because of its theoretical nature, a probabilistic model cannot be applied to practical cases deal-

ing with random processes. However, a partial statistical description, in terms of average values,

may provide an acceptable substitute for the probabilistic description of the phenomenon. The

concept of autocorrelation appears to be a cornerstone in this approach [123, Page 209].

The autocorrelation function estimates how similar x(t1) and x(t2) are. It therefore denotes how

the shape of process x evolves from t1 to t2. Thanks to the stationarity of the phase fluctuations,

its autocorrelation function is defined as [123, Chapter 6]:

Rx(τ) := 〈x(t1) · x(t1 +τ)〉 , (2.23)

where τ := t2− t1 is the time difference between t1 and t2. Because statistics of the process do not

change over time, one usually expresses the autocorrelation function as:

Rx(τ) = 〈x(t) · x(t+τ)〉 . (2.24)

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

58

This means that the time origin for computing the autocorrelation function of x(t) does not matter.

Hence, one can instead use t′ = t−τ as the time origin, yielding :

Rx(τ) = 〈
x(t′) · x(t′+τ)

〉 = 〈x(t−τ) · x(t)〉 = Rx(−τ). (2.25)

This shows that the autocorrelation function of a stationary process is an even function.

As mentioned in Section 2.1.1, when dealing with random processes, any ensemble statistic has

its time version. This holds for the autocorrelation too for which the time version is defined as

[123, Equation 6.3]:

Rx(τ) := x(t) · x(t+τ) = lim
T→+∞

1
2T

∫ T

−T
x(t)x(t+τ)dt. (2.26)

In general, ensemble and time autocorrelation functions are not equal. However, in the special

case of ergodic processes we are dealing with, we have [123, Equation 6.4] :

Rx(τ) = Rx(τ) = lim
T→+∞

1
2T

∫ T

−T
x(t)x(t+τ)dt, (2.27)

allowing to evaluate autocorrelation of phase fluctuations from a sample function x(t).

Note that phase fluctuations of the oscillator’s output signal is a zero mean process, therefore

Rx(0) = lim
T→+∞

1
2T

∫ T

−T
|x(t)|2 dt (2.28)

is the variance (also called energy) of the process.

2.2.2 Characterizing noise in frequency domain

Quantities defined in Section 2.2.1 are all time dependent. This time dependence of the quan-

tities justifies why random processes are usually characterized in time domain. However, it is

also possible to characterize them in the Fourier frequency domain. This kind of characterization

is complementary to the time domain characterization of random processes. Under the assump-

tion that phase fluctuations are stationary, either representation can be deduced from the other

through a Fourier transform. On the other hand, Fourier transform of the above-defined quan-

tities cannot be taken as they are. The first reason is because Fourier transform of a random

process does not exist, unless it is considered in the distribution sense [135]. The second reason is

that the Fourier transform of a random process is also a random process, and therefore does not

bring more insight on the process.

More to the point, random phase (or frequency) fluctuations have theoretically infinite energy,

due to the stationarity assumption. Therefore other tools must be introduced, that would enable

another way to analyze these random processes.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

59

2.2.2.1 Power spectral density

In the study of deterministic signals, it appears more convenient to deal with them in the fre-

quency domain [136]. Indeed, Laplace and Fourier transforms make computations easier. For

instance, convolution in the time domain becomes a multiplication in the frequency domain [137,

Section 9.5]. For this reason, one may be tempted to compute Fourier transform of the phase (or

frequency) fluctuations in order to use tools developed for the analysis of deterministic signals in

the frequency domain.

However, random signals we are dealing with are stationary by assumption. This implies that

statistics of the phase fluctuations do not change over time. Thus, for any sample function x(t),

the integral ∫ +∞

−∞
|x(t)|dt

is infinite, questioning the existence of a Fourier transform [123, Section 7.1]. To work around

this, some adjustments are required, yielding the concept of power spectral density.

The problem of existence of the Fourier transform comes from the fact that one computes it over

an infinite duration. However, in practical situations, measurements are done during a finite time

interval 2T. This allows to define a truncated version xT (t) of the sample function x(t) as:

xT (t) =
 x(t) if |t| É T

0 if |t| > T
, (2.29)

which is square integrable as T is finite, provided that the process has a finite mean-square value

[123, Section 7.2]. The function xT (t) therefore admits a Fourier Transform XT given by:

XT (ω) :=
∫ +∞

−∞
xT (t)e−iωtdt =

∫ T

−T
x(t)e−iωtdt, (2.30)

where ω = 2π f is the radian frequency and f the (Fourier) frequency. From Parseval’s theorem,

we have [138, Theorem 7.4.2]:∫ +∞

−∞
|xT (t)|2 dt = 1

2π

∫ +∞

−∞
|XT (ω)|2 dω (2.31)

which implies:
1

2T

∫ +∞

−∞
|xT (t)|2 dt = 1

2π

∫ +∞

−∞

|XT (ω)|2
2T

dω. (2.32)

It should be remembered that {x(t)} is a random process, therefore {xT (t)} and {XT (t)} are also

random processes. It is therefore possible to take the ensemble average of both sides to get:〈
1

2T

∫ +∞

−∞
|xT (t)|2 dt

〉
=

〈
1

2π

∫ +∞

−∞

|XT (ω)|2
2T

dω
〉

. (2.33)

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

60

The ensemble average is actually the probabilistic expectation and can be defined as an integral.

The above equation therefore displays an equality between two double integrals. The ensemble

average and the integral can therefore be interchanged thanks to Fubini-Toneli’s theorem [137,

Theorem 1.4.1]. It then follows:

1
2T

∫ +∞

−∞

〈|xT (t)|2〉
dt = 1

2π

∫ +∞

−∞

〈 |XT (ω)|2
2T

〉
dω = 1

2π

∫ +∞

−∞

〈|XT (ω)|2〉
2T

dω. (2.34)

Since {x(t)} is stationary, the quantity
〈|xT (t)|2〉

does not change over time. Therefore, its time

average is still equal to itself and one has:

〈|xT (t)|2〉 = 1
2T

∫ +∞

−∞

〈|xT (t)|2〉
dt = 1

2π

∫ +∞

−∞

〈|XT (ω)|2〉
2T

dω. (2.35)

Moreover, thanks to the stationarity of {x(t)}, we have:

lim
T→+∞

〈|xT (t)|2〉 = 〈|xT (t)|2〉
. (2.36)

It then follows that lim
T→+∞

∫ +∞

−∞

〈|XT (ω)|2〉
2T

dω exists and is finite, and thus:

lim
T→+∞

∫ +∞

−∞

〈 |XT (ω)|2
2T

〉
dω =

∫ +∞

−∞
lim

T→+∞

〈|XT (ω)|2〉
2T

dω, (2.37)

which allows to write: 〈|xT (t)|2〉 = 1
2π

∫ +∞

−∞
lim

T→+∞

〈|XT (ω)|2〉
2T

dω. (2.38)

The integrand of the right-hand side is called the two-sided power spectral density of x, thus:

STS
x (ω) := lim

T→+∞

〈|XT (ω)|2〉
2T

. (2.39)

It is defined for both positive and negative values of ω. Note however that ω 7−→ |XT (ω)|2 is an

even function and so: ∫ +∞

−∞
|XT (ω)|2 dω = 2

∫ +∞

0
|XT (ω)|2 dω. (2.40)

This yields to the unilateral (also called one-sided) power spectral density function defined as:

Sx(ω) := lim
T→+∞

〈|XT (ω)|2〉
T

, (2.41)

where only positive frequencies are considered. In practice, we do not have negative frequencies,

we will therefore use the one-sided power spectral density for jitter assessment, knowing that it

is related to the two-sided power spectral density as follows:

Sx(ω) =
 2STS

x (ω) for ωÊ 0

0 otherwise
. (2.42)

Note that the above discussion reveals the fact that two-sided power spectral density is a real,

positive and even function of ω.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

61

Power spectral density as a function of f It is possible to express XT as a function of f rather

than ω. In this case, xT and XT are related as:

XT (f) :=
∫ +∞

−∞
xT (t)e−i2π f tdt, (2.43)

and

xT (t) :=
∫ +∞

−∞
XT (f)ei2π f td f . (2.44)

Power spectral density can therefore be expressed as:

Sx(f) := lim
T→+∞

〈|XT (f)|2〉
T

. (2.45)

Power spectral density in the Laplace domain Power spectral density has been expressed as

a function of radian frequency ω. However, for system analysis, the process needs to be charac-

terized in the Laplace domain, since transfer functions are usually expressed as functions of the

Laplace variable s :=σ+ iω. This can be achieved by replacing ω by −is in the expression of Sx(ω),

with the assumption σ= 0. The power spectral density will then be denoted4 Sx(s).

2.2.2.2 Wiener-Khinchin theorem

In most practical cases, the formulas provided in Section 2.2.2.1 are not convenient for evaluating

the power spectral density of the random process {x(t)}. This section aims at providing a more

usable formula for determining the power spectral density.

Thanks to Equation (2.30), one can write5:

|XT (ω)|2 = XT (ω)X∗
T (ω) =

∫ T

−T

∫ T

−T
xT (t1)xT (t2)e−iω(t2−t1)dt1dt2. (2.46)

Let τ= t2 − t1, with fixed t1, then dτ= dt2, and one has:

|XT (ω)|2 =
∫ T

−T

∫ T

−T
xT (t1)xT (t1 +τ)e−iωτdt1dτ. (2.47)

It then follows: 〈|XT (ω)|2〉 =
〈∫ T

−T

∫ T

−T
xT (t1)xT (t1 +τ)e−iωτdt1dτ

〉
=

∫ T

−T

∫ T

−T
〈xT (t1)xT (t1 +τ)〉 e−iωτdt1dτ

=
∫ T

−T

∫ T

−T
〈xT (t)xT (t+τ)〉 e−iωτdtdτ, (2.48)

4Since Laplace domain contains Fourier domain, the spectral density in Laplace domain results in the analytic continuation of
the spectral density defined in the Fourier domain. These two functions are therefore not equal, even though they may be deduced
from one another. They will however be denoted by the same letter, the argument will help make the difference between them.

5 X∗
T (ω) denotes the complex conjugate of X∗

T (ω), and satisfies:

X∗
T (ω) = XT (−ω).

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

62

because statistics of the process do not depend on the time, due to its stationarity. The power

spectral density is therefore computed as :

Sx(ω) = lim
T→+∞

1
2T

∫ T

−T

∫ T

−T
〈xT (t)xT (t+τ)〉 e−iωτdtdτ

=
∫ +∞

−∞

(
lim

T→+∞
1

2T

∫ T

−T
RxT (τ)dt

)
e−iωτdτ

=
∫ +∞

−∞
RxT (τ)e−iωτdτ, (2.49)

because RxT (τ) does not depend on t. Hence, the power spectral density is expressed as:

Sx(ω) =
∫ +∞

−∞
Rx(τ)e−iωτdτ. (2.50)

Equation (2.50) expresses that the power spectral density Sx(ω) and the autocorrelation function

Rx(τ) form a Fourier transform pair. This result is known as the Wiener-Khinchin theorem and is

only valid for stationary random processes [126, Section 1.5.2].

In the analysis of random signals, this result provides a link between the time domain (correlation

function) and the frequency domain (power spectral density) representations. This allows us to

assess electronic noises in the frequency domain and deduce their time domain characteristics as:

Rx(τ) = 1
2π

∫ +∞

−∞
Sx(ω)eiωτdω. (2.51)

2.2.2.3 Relationships between power spectral densities

Recall that random processes we are dealing with are:

• phase fluctuations ϕ(t) which represent effects of electronic noises on the output phase of

the oscillator,

• time error x(t) which basically is a normalized version of phase fluctuations,

• fractional frequency y(t) which represents fluctuations of the output frequency due to noises.

Because each of these processes represent the same phenomenon, their respective power spectral

density functions are related. We establish here relationships between these various quantities.

Thanks to ergodicity of these various processes and Wiener-Khinchin theorem, we can write:

Sϕ(f) =
∫ +∞

−∞

(
lim

T→+∞
1

2T

∫ T

−T
ϕ(t)ϕ(t+τ)dt

)
e−i2π f τdτ. (2.52)

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

63

Equation (2.10) helps to related Sϕ(f) and Sx(f). Indeed:

Sx(f) =
∫ +∞

−∞

(
lim

T→+∞
1

2T

∫ T

−T
x(t)x(t+τ)dt

)
e−i2π f τdτ (2.53)

= 1
(2πν0)2

∫ +∞

−∞

(
lim

T→+∞
1

2T

∫ T

−T
ϕ(t)ϕ(t+τ)dt

)
e−i2π f τdτ (2.54)

= 1
(2πν0)2 Sϕ(f). (2.55)

Note that the autocorrelation of x, just like for any random process, can be written as:

Rx(τ) = (
x? x∗

)
(τ), (2.56)

where ? is the convolution operator, and x∗ is the complex conjugate of x. Since Fourier transform

converts convolution into multiplication, it follows that:

Sx(f) = F [x] ·F [x]∗ (f). (2.57)

This latter is of great help to express the power spectral density of y. Indeed, Equation (2.18)

expresses y(t) as the time derivative of x(t). Thus, thanks to the Wiener-Khinchin theorem:

Sy(f) = F [y] ·F [y]∗ (f) = 4π2 f 2F [x] ·F [x]∗ (f) = 4π2 f 2Sx(f), (2.58)

yielding:

Sy(f) = f 2

ν2
0

Sϕ(f) = 4π2 f 2Sx(f). (2.59)

2.2.3 Noise models

The main interest of power spectral densities comes from the fact that they are theoretically

deterministic. That is, any type of noise will always display the same kind of behavior in the

frequency domain. Any type noise can therefore be uniquely characterized by its power spectral

density. This has great impact on the study of jitter components. Most common types of noise

encountered in nature, and especially in electronics, can be modeled either as white noise or

power law noises that will be detailed next.

2.2.3.1 White noise

The concept of white noise is of crucial importance in the generation of true random numbers. It

is the random process used by existing TRNG models to estimate the entropy of the source of ran-

domness. A perfect comprehension of this process is therefore of highest importance to evaluate

physical noise sources.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

64

White noise is defined as a wide-sense stationary, zero-mean and uncorrelated random process

[139, Section 3.2]. Hence, the random process {w(t)} = {wt} is said to be a white noise process if

there is a nonnegative real number S0 such that the following equations hold:

∀t, 〈wt〉 = 0, (2.60)

∀t,
〈
w2

t
〉 = S0, (2.61)

∀t,τ, 〈wtwτ〉 = S0δ(τ). (2.62)

It is usually characterized as the time derivative of a Wiener process [140, Section 17.2].

The uncorrelatedness of white noise realizations means that there is no coupling between differ-

ent instants regardless how close they are. This property implies that white noise is completely

unpredictable, which explains why it is such a preferable choice for generating random numbers.

It is however a purely theoretical concept which is physically unrealizable. Indeed, since white

noise is stationary, Wiener-Khinchin theorem can be applied to compute its power spectral den-

sity function. From Equation (2.62) and the fact that Fourier transform of a Dirac Delta function

is the constant function 1 [138, Example 7.3.9], it follows that:

Sw(f) = S0. (2.63)

Equation (2.63), characteristic of white noise processes, means that it has the same power over

all frequencies. A straightforward corollary is that white noise has infinite power, which is not

possible since no real-world system or phenomenon has infinite power. As a complementary in-

formation, the fact that white noise has equal power over all frequencies explains the origin of its

name. Indeed, it comes from the analogy with white light which contains an equal mixture of all

visible frequencies of light [141, Section 2.9].

However, various random phenomena can be considered as approximation of white noise provided

they display a constant spectrum within the bandwidth of the device of interest. Indeed, there

is no electronic system which has an infinite bandwidth, it is therefore impossible in practice to

access the whole spectrum of a phenomenon. So, once the spectrum of that phenomenon is con-

stant over the observable range of frequencies, one can always assume it is the case outside the

bandwidth. Furthermore, computations will be made within the bandwidth of the system, avoid-

ing infinite power [123, Section 7.7].

Note that uncorrelatedness of the noise realizations does not imply their independence. Hence,

realizations of the white noise process are not necessarily independent, unless their are jointly

normally distributed [102, Theorem 4.5.1]. Such processes are called independent white noise

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

65

processes [139, Section 3.2]. In practical cases, one often deals with processes for which realiza-

tions are normally distributed. Such processes, like the white noise we are dealing with in our

study, are called Gaussian processes. This has the important consequence to imply independence

of realizations of Gaussian white noise [142, Section 3.2]. A common example of Gaussian white

noise in electronic devices is the thermal noise, which originates from random motion of electrons

within the substrate [142, Example 3.7].

2.2.3.2 Power law noise

Electronic noises are not always uncorrelated. Correlated ones are often referred to as colored

noises, in opposition to the white noise. Despite thorough investigations of these various types of

noises, they are still not fully understood [143, 144, 145, 146, 147, 148] [126, Chapter 9] and their

various origins remain unclear. These various noises can be grouped in several classes of noise

types6 based on the shape of their power spectral density. It is admitted that most electronic

noises can be grouped in five different noise types which can be characterized by a power law

model [149]. Hence, the power spectral density Sy(f) of frequency fluctuations of a real-world

oscillator can be written as the sum of the power spectral densities of the five independent noise

types as:

Sy(f) =
α=2∑
α=−2

hα f α, (2.64)

where α is an integer characterizing the noise type. It is possible to find phenomena that yield

exponents below α = −2 and above α = 2. For example, some deterministic phenomena, such as

drifts, can introduce different dependencies of Sy(f) (α=−3 or α=−4). However, the differential

principle reduces the impact of the latter types of noise. One can therefore ignore phenomena

yielding exponents outside the range �−2,2�. Moreover, these various noise types are assumed

to be Gaussian due to their random nature [135]. Note that the choice for α being an integer

depends on this model.

The interest of the power law model, in addition to its simplicity, lies in the fact that each noise

type corresponds to a specific physical origin summarized in Table 2.2. However, as mentioned

earlier, links between these noises and their cause are not well understood. Some explanations are

available for some of these noises, but they only cover a specific aspect of the noise type explained.

The case of odd exponents is the most tricky one, since they cannot simply be explained using

analog integration or derivation components of oscillators.

This power law noise model was the basis of several algorithms to simulate the different noises

as will we see in the next.

6e.g. white noise is a class of noise which contains among others thermal and shot noises [133, Section 2.1].

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

66

α Noise type Origin
−2 Random Walk Frequency environment
−1 Flicker Frequency resonator
0 White Frequency white noise internal to oscillator loop
1 Flicker Phase noisy electronics
2 White Phase white noise external to oscillator loop

Table 2.2: Origins of the power law noises (summarized from [134]).

2.2.3.3 Noise simulation

It is of great value to have means of generating simulated power law noise having the desired

noise type. Applications of such means are numerous, for example they can serve as a simulation

tool, or even as a way to validate noise identification techniques. Several algorithms have been

developed for this purpose, some simulating white noise [150], some simulating flicker noise [151],

while others are of general purpose and try to simulate all the various noise profiles [152, 149].

We adopted the algorithm developed by Kasdin and Walter [149], since it provides a common basis

for the generation of the various types of noises, and that it is among noise simulation methods

recommended by the NIST time and frequency division [132].

The basic idea of this algorithm is to consider a noise type as the response of a linear time-

invariant (LTI) system to white noise (Appendix A). Indeed, simulation of white noise is straight-

forward. Thanks to its definition, one can simply generate a sequence of independent and iden-

tically distributed random values. This can actually be done using any common programming

language. For example, to generate 1000 samples of a Gaussian white noise data with standard

deviation 0.1, a Python syntax goes as follows:

import numpy as np

x = np . random . normal (scale =0.1 , s i ze =1000)

Listing 2.1: Generation of white noise using Python

Thus, to generate the samples of a noise type having a power spectral density of hα f α, the Kasdin

and Walter algorithm is supplied with the value of α, corresponding to the type of noise desired

at the output, and a white noise of variance Qd, for which the samples are distant from τ0. The

whole algorithm consists in finding the appropriate impulse response function to have the desired

noise type as output. This is done on the basis of the relation [149, Equation (39)]:

Qd = hα
2(2π)ατα−1

0
. (2.65)

A Python implementation of this algorithm has been made available by Wallin7. The use of this
7https://github.com/aewallin/allantools.

https://github.com/aewallin/allantools

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

67

algorithm therefore allows to simulate each of the five common noise types as shown in Figure 2.4.

2.3 Jitter analysis tools

In order to assess the jitter, we need analysis tools that are compatible with jitter measurement

methods. Since this assessment is mainly done through statistical tools such as variance or

autocorrelation, measurement methods basically consist in sampling the random signal with a

sampling frequency 1/τ. Samples of the random signal are then used to compute variance and

autocorrelation to deduce the properties of the jitter. The square-root of the variance, known as

the standard deviation, is usually preferred for characterizing the jitter.

However, it appears that the phase fluctuations of an oscillator can also be described using its

frequency domain representation, namely its power spectral density. In the convenient case of

stationary processes, the Wiener-Khinchin theorem draws a bridge between these two represen-

tations. Specifically, for a lag 0 in Equation (2.50), we can write [153, Section 3]:

I2(τ) =
∫ +∞

0
Sy(f) |Hτ(f)|2 d f . (2.66)

where I(τ) is the true variance and Hτ is the transfer function of the variance operator.

2.3.1 Limitation of the classical variance

The true variance is actually a theoretical measure. One usually estimate this variance through

various means using the available dataset. The transfer function of the variance operator is the

Fourier transform of the impulse response function, which indicates how samples are considered

to estimate the variance. The most common estimate used is the (unbiased) sample variance

defined as:

σ2
y := 1

ny −1

ny∑
i=1

(
yi −

1
ny

ny∑
j=1

y j

)2

, (2.67)

where ny := nk −1 is the number of average fractional frequency time series, and nk is the num-

ber of periods of the oscillator that occurred during the observation time τ. Equation (2.67) shows

that frequency data are used in a row to estimate the variance. This fact is illustrated by the plot

of the impulse response in Figure 2.5.

Hence, the impulse response of the classical variance is a rectangular function. Computing its

Fourier transform yields Hτ given by:

Hτ(f) = sin(πτ f)
πτ f

. (2.68)

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

68

0.0 0.4 0.8 1.2 1.6

number of periods ×104

−3

−2

−1

0

1

2

3

4

n
o
is

e
sa

m
p

le
s

(s
)

×10−12

(a) white phase (α= 2).

0.0 0.4 0.8 1.2 1.6

number of periods ×104

−6

−4

−2

0

2

4

6

n
o
is

e
sa

m
p

le
s

(s
)

×10−12

(b) flicker phase (α= 1).

0.0 0.4 0.8 1.2 1.6

number of periods ×104

0.0

0.5

1.0

1.5

2.0

2.5

3.0

n
o
is

e
sa

m
p

le
s

(s
)

×10−10

(c) white frequency or random walk phase (α= 0).

0.0 0.4 0.8 1.2 1.6

number of periods ×104

−2.0

−1.5

−1.0

−0.5

0.0

n
o
is

e
sa

m
p

le
s

(s
)

×10−8

(d) flicker frequency or flicker walk phase (α=−1).

0.0 0.4 0.8 1.2 1.6

number of periods ×104

0

2

4

6

8

n
o
is

e
sa

m
p

le
s

(s
)

×10−7

(e) random walk frequency (α=−2).

Figure 2.4: Different types of noise generated using Kasdin and Walter algorithm (sampling period: τ0 =
8 ·10−9 s, sample size: 214, variance of input noise: Qd = 10−24 s).

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

69

t

hτ

τ

1/τ

Figure 2.5: Impulse response of the classical variance.

Under the assumption that noises affecting the phase of an oscillator are all described by a power

law model, the power spectral density of the phase fluctuations satisfies:

Sy(f) =
2∑

α=−2
hα f α, (2.69)

where each α represents the noise profile and each hα represents the corresponding noise level.

The variance of the fluctuations can therefore be expressed as:

I2(τ) =
2∑

α=−2

hα
(πτ)2

∫ +∞

0
f α−2 sin2(πτ f)d f . (2.70)

Convergence at +∞ In any real physical system, there is always a cutoff frequency fc above

which the energy of the signal is reduced to 0 [154]. This guarantees that the integral upper

bound is finite, and thus implies its convergence as f approaches +∞.

Convergence at 0 As f approaches 0, one can write sin(πτ f)∼πτ f , thus:∫ +∞

0
sin2(πτ f) f α−2d f ∼ π2τ2

∫ +∞

0
f αd f (2.71)

converges only for α>−1 from the Riemann criterion for improper integrals. Thereby, the previ-

ous integral does not converge at 0, for α=−1 and α=−2. So when low-frequency noises such as

flicker frequency (α = −1) and random walk noise frequency (α = −2) are present in the random

signal, the classical variance no longer gives stable results [155]. This instability of the results

is even greater the longer the observation time τ is. However, as we saw in Section 1.1.2, it

is essential to have a large enough observation time to accumulate entropy that guarantee the

unpredictability of generated numbers. Thus, the use of classical variance poses a dilemma:

• not to accumulate entropy in order to have the most stable results possible, with a high risk

of generating numbers that are not sufficiently random for cryptographic purposes;

• accumulate entropy in order to gain more security, with the certainty of having results that

are not interpretable because they are not stable.

Since these types of noises are present in most electronic devices [156], it is therefore necessary

to have another variance for which convergence is ensured for α=−1 and α=−2.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

70

2.3.2 Allan variance

The limitation of the classical variance was first noticed by Barnes [157]. Due to the importance

of having a convergent variance estimator, Allan developed and proposed a new type of variance

named after him [154]. It has become the most common time domain measure of frequency stabil-

ity. Being introduced to replace the classical variance, it is a measure of the fractional frequency

fluctuations. Unlike the classical variance, it converges for most types of noise.

2.3.2.1 Description of the Allan variance

The Allan variance, as originally defined can be computed using:

σ2
y(τ) = 1

2

〈(
yi+1 − yi

)2
〉

, (2.72)

where τ is the averaging time. In practice, this quantity is computed as [132, Equation (6)]:

σ2
y(τ) = 1

2(ny −1)

ny−1∑
i=1

(
yi+1 − yi

)2 . (2.73)

Note that Allan variance can also be expressed using phase data. Indeed, thanks to Equa-

tion (2.20), one can write:

σ2
y(τ) = 1

2τ2

〈
(xi+2 −2xi+1 + xi)2〉

. (2.74)

An estimate of the Allan variance using phase fluctuations is therefore computed as [132, Equa-

tion (7)]:

σ2
y(τ) = 1

2(nk −2)τ2

nk−2∑
i=1

(xi+2 −2xi+1 + xi)2 . (2.75)

Results are usually expressed as square roots
(√

σ2
y(τ)=σy(τ)

)
called Allan deviations.

Convergence of the Allan variance The variance of Allan was introduced in order to have a con-

vergent measure, even in the presence of low frequency noises. Equation 2.72 indicates that Allan

variance is computed using differences of consecutive samples. This situation yields an impulse

response illustrated in Figure 2.6.

The transfer function corresponding to this impulse response is defined as [132, Section 5.27]:

Hτ(f) =
p

2sin2πτ f
πτ f

. (2.76)

The signal’s variance is therefore :

I2(τ) =
2∑

α=−2

2hα
(πτ)2

∫ +∞

0
sin4(πτ f) f α−2d f . (2.77)

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

71

t

hτ

−τ
τ

1/2τ

Figure 2.6: Impulse response of the Allan variance.

For the same reasons given in Section 2.3.1, the integral
∫ +∞

0
sin4(πτ f) f α−2d f converges at ∞

for any value of α. Let us focus on the convergence as f approaches 0. From sin(πτ f) ∼ πτ f , we

have: ∫ +∞

0
sin4(πτ f) f α−2d f ∼ π4τ4

∫ +∞

0
f 2+αd f (2.78)

Riemann criterion for improper integrals therefore ensures that the above integral converges for

α > −3. This guarantees that the Allan variance is a stable measure of frequency stability even

in presence of low frequency noises. However, it has a poor confidence interval which affects its

accuracy [131].

2.3.2.2 Overlapped Allan variance

The confidence interval of the Allan variance can be improved by increasing the number of sam-

ples used for the variance computation. However, it is, in practice, not possible to infinitely in-

crease the sample size. Nevertheless, it is possible to circumvent this issue through the use of

overlapping samples. In this case, computations are performed by utilizing all possible combina-

tions of the data set, as depicted in Figure 2.7. The use of overlapping samples has the advantage

to increase the sample size, thus improve the confidence of the resulting estimate. However, it

also increases computational complexity. Due to its better confidence interval, the overlapped

Allan variance is usually preferred to its original simple version [132, Section 5.2].

Let τ0 be the sampling period of the series (xi). We consider the averaging time τ as an integer

multiple of τ0, thus there exists m ∈N such that τ= mτ0. The integer m is called averaging factor,

and in practice, the value of m can be arbitrarily chosen among whole numbers less than nk−1
2 .

The basic idea is to divide the set of xi ’s into clusters of finite time duration, in a way that time

stride between each consecutive clusters is always equal to τ0 [158]. This forms all overlapping

sample clusters with the averaging time τ, and containing m samples each as shown in Figure 2.7.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

72

t

ou
tp

ut
τ= 3τ0

τ0

Figure 2.7: Overlapping samples for m = 3 (m: number of strides).

This makes a maximum use of the available dataset by forming all possible overlapping samples

at each averaging time τ. The overlapped Allan variance can be estimated from a set of ny

frequency measurements for averaging time τ= mτ0, by the expression [132, Equation 10]:

σ2
y(τ) := 1

2m2(ny −2m+1)

ny−2m+1∑
i=1

(
i+m−1∑

k=i

(
yk+m − yk

))2

. (2.79)

Since phase and frequency data are related, it is possible to express the overlapped Allan variance

in terms of phase data [132, Equation 11]:

σ2
y(τ) = 1

2τ2(nk −2m)

N−2n−1∑
k=0

(
(xk+2n −2xk+n + xk)2

)
. (2.80)

In most cases, when referring to Allan variance, it is the overlapped version which is computed.

This preference comes from the fact that it improves the confidence interval. But it also does not

introduce bias in computations, even though samples are not independent [159].

2.3.2.3 Application to noise identification

Assessing the clock jitter of an oscillator comprises several aspects, such as the identification var-

ious noise types that affect the jitter. This step is of crucial importance, since it allows to either

validate or reject assumptions used in the entropy estimation models. Therefore consequences of

a wrong identification can be as severe the reduction of security in cryptographic constructions.

In addition to converging in the presence of low-frequency noise, the Allan variance also happens

to identify the dominant noise type profile in the signal.

Indeed, Equation (2.72) explicitly shows that Allan variance is a function of the observation time

τ. Since these various noise types behave differently from one another based on the value of

observation time8 τ, and that Allan variance depends on τ, it can be expected that Allan variance
8High frequency noises will be dominant over low frequency ones as τ goes to 0, while low frequency noises will be dominant for

large values of τ.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

73

also behaves differently depending on the nature of the dominant noise. In order to exhibit this

behavior of the Allan variance, one needs to expand Equation (2.77) and obtain [160]:

σ2
y(τ) = h2

3 fc

4π2 τ
−2 +h1

1.038+3ln(2π fcτ)
4π2 τ−2 +h0

1
2
τ−1 +2h−1 ln2+h−2

2π2

3
τ. (2.81)

Equation (2.81) helps to consider Allan variance as a sum of terms Aµτ
µ. Each value of µ, i.e

term of this function is a characteristic of a specific noise type, yielding the possibility to identify

the noise profile which affects the phase of the oscillator. Figure 2.8 depicts the response of Allan

deviation response to various noise types.

Dashed lines correspond to the theoretical responses while dotted lines represent responses to

simulated noises. One can therefore identify the noise types affecting phase fluctuations data

based on the Allan deviation response. We can see that the Allan deviation has a τ−1/2 depen-

dence for white frequency noise (see Figure 2.8c), a τ0 dependence for flicker frequency noise (see

Figure 2.8d), and a τ1/2 dependence for random walk frequency noise (see Figure 2.8e). However,

Allan deviation is not able to discriminate white phase noise from flicker phase noise as illus-

trated in Figures 2.8a and 2.8b. This is what actually motivated the development of the modified

Allan variance that will be discussed next.

2.3.3 Modified and time versions of the Allan variance

The Allan variance has two major advantages: the convergence of the measurement in the pres-

ence of low-frequency noises, and the structural description of the signal over time. The second

advantage helps to identify of the dominant noise type present in the signal as a function of the

accumulation time τ. However, this method based on Allan variance has difficulties to discrimi-

nate between flicker phase noise and white phase noise. Since jitter is an instability of the signal

phase, the white phase noise is the one of interest. Therefore, we need a metric that can reveal

the presence of the white phase noise, which is precisely why the modified Allan variance was

introduced [114].

2.3.3.1 Modified Allan variance

Therein, we still assume that the averaging time τ is an integer multiple of the sampling period

τ0. It then follows that there exists an averaging factor m ∈N such that τ= mτ0. From a set of ny

frequency measurements, the modified Allan variance can be estimated as [132, Equation 13]:

Modσ2
y(τ) := 1

2m4(ny −3m+2)

ny−3m+2∑
i=1

[
i+m−1∑

j=i

(
j+m−1∑

k= j

(
yk+m − yk

))]2

. (2.82)

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

74

10−8 10−7 10−6 10−5

τ (s)

10−2

10−1

100

101

102

103

104

A
D

E
V

Allan Deviation response

∝ √h2τ
−1

simulated WPM

(a) white phase (α= 2).

10−8 10−7 10−6 10−5

τ (s)

10−2

10−1

100

101

102

103

104

A
D

E
V

Allan Deviation response

∝ √h1τ
−1

simulated FPM

(b) flicker phase (α= 1).

10−8 10−7 10−6 10−5

τ (s)

10−2

10−1

100

101

102

103

104

A
D

E
V

Allan Deviation response

∝ √h0τ
−1/2

simulated WFM

(c) white frequency or random walk phase (α= 0).

10−8 10−7 10−6 10−5

τ (s)

10−2

10−1

100

101

102

103

104

A
D

E
V

Allan Deviation response

∝
√
h−1τ

0

simulated FFM

(d) flicker frequency or flicker walk phase (α=−1).

10−8 10−7 10−6 10−5

τ (s)

10−2

10−1

100

101

102

103

104

A
D

E
V

Allan Deviation response

∝
√
h−2τ

+1/2

simulated RWF

(e) random walk frequency (α=−2).

Figure 2.8: Allan deviation response to various noise types (dashed lines are theoretical responses and dots
are simulated ones, ADEV: Allan deviation).

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

75

In terms of phase data, the modified Allan variance can be estimated as [132, Equation 14]:

Modσ2
y(τ) := 1

2m2τ2(nk −3m+1)

nk−3m+1∑
i=1

[
i+m−1∑

j=i

(
x j+2m −2x j+m + x j

)]2

. (2.83)

The modified Allan variance response to phase fluctuations due to the various noise types can be

expressed [160]:

Modσ2
y(τ) = h2

3
8π2 τ

−3 +h1
24ln2−9ln3

8π2 τ−2 +h0
1
4
τ−1 +h−1

27ln3−32ln2
8

+h−2
11π2

20
τ, (2.84)

yielding Figure 2.9.

We see that, as in the case of the Allan deviation, the modified Allan deviation response has a τ−1/2

dependence for white frequency noise (see Figure 2.9c), a τ0 dependence for flicker frequency noise

(see Figure 2.9d), and a τ1/2 dependence for random walk frequency noise (see Figure 2.9e). In

contrast to the Allan deviation, the modified Allan deviation has a τ−3/2 dependence for white

phase noise (see Figure 2.9a), and a τ−1 dependence for flicker phase noise (see Figure 2.9b).

This makes it possible to unambiguously distinguish between white phase noise and flicker phase

noise.

This method is actually the most commonly used in the timekeeping field [132]. However, it

requires to output data and process them externally. Moreover, being a graphical method, it

cannot be implemented in hardware. For online tests of TRNGs, it is necessary to have some

means to automatically identify the power law noise type. One of these means could be the

autocorrelation function.

2.3.3.2 Time Allan variance

The Allan variance serves as a measure of frequency stability. However, jitter is the time insta-

bility of the signal. It is therefore needed to have a measure of the time stability of the oscillator’s

signal. This is where comes into play the time Allan variance defined [132, Equation 15]:

σ2
x(τ) = τ2

3
Modσ2

y(τ). (2.85)

The time Allan variance (simply called time variance and denoted TVAR) corresponds to the time

stability of phase x over the observation interval τ. It is therefore the preferred measure to

estimate the jitter. Equation (2.85) shows that the time variance is actually a normalized version

of the modified Allan variance. This normalization makes TVAR equal to the classical variance

when the fluctuations in x are random and uncorrelated [132, Section 5.2.6]. Note that the square

root of the time variance is often called time deviation.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

76

10−8 10−7 10−6 10−5

τ (s)

10−4

10−2

100

102

104

M
D

E
V

Modified Allan Deviation response

∝ √h2τ
−3/2

simulated WPM

(a) white phase (α= 2).

10−8 10−7 10−6 10−5

τ (s)

10−4

10−2

100

102

104

M
D

E
V

Modified Allan Deviation response

∝ √h1τ
−1

simulated FPM

(b) flicker phase (α= 1).

10−8 10−7 10−6 10−5

τ (s)

10−4

10−2

100

102

104

M
D

E
V

Modified Allan Deviation response

∝ √h0τ
−1/2

simulated WFM

(c) white frequency or random walk phase (α= 0).

10−8 10−7 10−6 10−5

τ (s)

10−4

10−2

100

102

104

M
D

E
V

Modified Allan Deviation response

∝
√
h−1τ

0

simulated FFM

(d) flicker frequency or flicker walk phase (α=−1).

10−8 10−7 10−6 10−5

τ (s)

10−4

10−2

100

102

104

M
D

E
V

Modified Allan Deviation response

∝
√
h−2τ

+1/2

simulated RWF

(e) random walk frequency (α=−2).

Figure 2.9: Modified Allan deviation response to various noise types (dashed lines are theoretical responses
and dots are simulated ones, MDEV: modified Allan deviation).

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

77

2.3.4 Noise identification using autocorrelation function

The autocorrelation function was already introduced in Section 2.2.1.5. It is a fundamental tool

to describe a time series. In this way, it evaluates the degree by which its value at one time is

similar to its value at a certain later time. For example, one knows that white noise is such that

its value at a specific time is uncorrelated with its value at any other delayed time. This intuition

reveals the fact that autocorrelation can be used to identify various noise types.

Indeed, when dealing with frequency data, its appears that autocorrelation can actually be used

to identify power law noises. The method is based on the properties of discrete-time fractionally

integrated noises having spectral densities of the form 1
(2sinπ f)2δ . When δ satisfies δ < 1/2, the

noise process is stationary and has a lag 1 autocorrelation equal to r1 = δ
1−δ . Note that r1 stands

for the value of the lag 1 autocorrelation of the noise process. Thus, its type can be estimated

from δ = r1
1+r1

. Under these circumstances, white phase noise has r1 = −1/2, flicker phase noise

has r1 =−1/3, and white frequency noise has r1 = 0. A more general study of this subject, which

includes more noise types like flicker frequency or random walk frequency has been made by Riley

[132, Section 5.5.5].

This method has been simulated to confirm results. As one knows, the autocorrelation is a the-

oretical tool that can only be estimated from real data. For this reason, one needs to perform

several trials and then compute the average value of r1. Moreover, for better confidence, it is

recommended to perform as many trials as possible. We have therefore repeated the following

process 104 times:

• generate phase samples of a given noise profile,

• convert phase samples into frequency data,

• compute r1 on frequency data.

For each trial, we generated 214 phase samples for the considered noise type, yielding 214 −1 fre-

quency data.

Table 2.3 presents results of our simulations over one thousand trials for each noise type. Figures

are rounded to 3 decimal places, and as one can notice, the mean value of r1 equals its theoretical

value. This gives confidence on the fact that lag 1 autocorrelation can be used to identify noise

types we are interested in, namely white phase and flicker whenever they are the dominant noise

types. Since Riley ensures acceptable results for at least 34 data points [132, Section 5.5.6], we

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

78

can have confidence in the results presented in Table 2.3.

Noise type α Expected r1 Minimum r1 Maximum r1 Average r1 Std r1
White Phase 2 −1/2 −0.591 −0.413 −0.499 0.022
Flicker Phase 1 −1/3 −0.426 −0.215 −0.333 0.026

White Frequency 0 0 −0.134 0.106 −0.001 0.032

Table 2.3: Lag 1 autocorrelation of some noise types (Std r1: standard deviation computed on values of r1).

Since these different types of noise coexist in the real world, it is more realistic to consider a

situation in which different types of noise would impact the phase data. As an example, we can

assume that the phase data are impacted by thermal noise and flicker noise. Using the Kasdin

and Walter simulator, it is possible to adjust the proportion of each type of noise by acting on the

respective variances of white phase noise and flicker phase noise. This allowed us to calculate

the lag 1 autoccorelation of the total noise impacting phase data for each proportion of the flicker

noise (ranging from 0 to 100%) as depicted in Figure 2.10.

0.0 0.2 0.4 0.6 0.8 1.0

Proportion of flicker noise

−0.500

−0.475

−0.450

−0.425

−0.400

−0.375

−0.350

−0.325

L
a
g

1
a
u

to
co

rr
e
la

ti
o
n

y = −1
3

r1 of the noise

Figure 2.10: Evolution of the lag 1 autoccorelation as a function of the proportion of flicker noise (propor-
tions given in the range [0,1], r1: lag 1 autoccorelation).

Knowing the value of the lag 1 autocorrelation, Figure 2.10 allows us to make reasonable assump-

tions concerning the components of the noise that cause phase fluctuations. Thus, thanks to Allan

variance and lag 1 autocorrelation function, we are able to identify the dominant noise type. From

this knowledge, one should be able to estimate the thermal noise level and thus its proportion in

the jitter.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

79

2.4 Jitter measurement method

2.4.1 Counter based method for jitter measurement

In order to assess phase jitter of oscillator signals, Allan variance and its variants focus on fre-

quency fluctuations. This strategy can be applied in the field of random number generation.

Indeed, it is possible to design measurement methods that provide frequency data. In hardware,

TRNGs are usually made of two oscillators respectively outputting signals s1 and s2 (see Sec-

tion 1.1.2). As already explained, both signals are jittered, however, to simplify the computation,

it is common practice to include the jitter of the reference signal in that of the other signal and

consider one of the clock signals as jitter-free [95].

In most cases, s2 is considered as the reference signal and is used to sample s1 at rising edges.

This method has the disadvantage of being sensitive to the duty cycle of the sampled signal. The

impact of this dependence is the introduction of some bias if the duty cycle of s1 is not 50%, which

is the case in general. It is however possible to remove this dependency by using frequency data

instead of time data. This can be done by counting the number of periods of s1 within a time

interval τ defined as being a constant number of periods of s2 as depicted in Figure 2.11. From

the number N of the periods of s1, we can deduce its frequency as N
τ

. Because s1 and s2 are

not ideal, the number N is likely to change from one measurement to another. As expressed in

Equation (2.14), this change of value is related to the frequency fluctuations which can be linked

to the jitter. Furthermore, this jitter measurement method happens to be the only one that can

be embedded to date [161].

s2

τ =
k∑

r=1

T2r

s1

T1NT11 T12

ϕ0

Figure 2.11: Timings in counting the periods of signal s1.

In order to provide a link between the values of the counter and the jitter, we use the fact that s1

is jitter-free and that its jitter is included in that of the signal s2. Consequently, the period T2 of

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

80

signal s2 can be considered as a random variable of standard deviation (see [95, Appendix C]):

σeq '
√
σ2

2 +
T2

T1
σ2

1, (2.86)

and the period T1 of signal s1 as a constant. The measurement time τ=
k∑

r=1
T2r is thus a random

variable. This time defines only the duration of the time period, not the initial phase ϕ0 of the sig-

nal s1 when the counting starts (see Figure 2.11). However, to measure the jitter more accurately,

the initial phase ϕ0 must be taken into account. This initial phase is independent of τ, since its

value does not depend on τ.

Because T1 is constant, the counter value N is a random variable defined as:

N := max

{
k ∈N, ϕ0 +

k∑
r=1

T1r É τ
}

= max
{
k ∈N, ϕ0 +kT1 É τ

}
. (2.87)

The value N thus satisfies the inequality:

ϕ0 +N ×T1 É τ < ϕ0 + (N +1)×T1, (2.88)

which is equivalent to:

N É τ−ϕ0

T1
< N +1. (2.89)

It then follows that N can be written as:

N =
⌊
τ−ϕ0

T1

⌋
. (2.90)

It thus exists 0É ε< 1 such that:

N = τ−ϕ0

T1
−ε (2.91)

According to Sheppard’s correction [162], ε is a random variable that is uniformly distributed over

[0,1). Since ε is independent of τ−ϕ0
T1

and that properties of the classical variance can the extended

to the Allan variance (see Appendix C), the following equations hold:

avar(N) = avar
(
τ−ϕ0

T1

)
+avar(ε) = avar(τ)+avar(ϕ0)

T2
1

+ 1
12

, (2.92)

where avar stands for the Allan variance operator.

It is important to note that the Allan variance of counter values always overestimates the Allan

variance of the jitter per unit of time (e.g the signal period). The correction must be applied by

subtracting avar(ε)= 1
12 and avar(ϕ0)

T2
1

.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

81

As avar(ϕ0)
T2

1
∈ [

0, 1
12

]
(the maximum is obtained if ϕ0 is uniformly distributed over [0,T1)), according

to Equation (2.92):

avar(τ) = T2
1 avar(N)−

T2
1

12
−avar(ϕ0) Ê T2

1 avar(N)−
T2

1

12
−

T2
1

12
. (2.93)

As we do not want to overestimate the jitter, a conservative approach is to take the minimum

value for avar(τ) that is:

avar(τ) = T2
1 ·avar(N)−

T2
1

6
. (2.94)

Using Equation (2.94), the variance of the accumulated jitter can be computed from the variance

of counter values. Hence, it is possible to use counter values to assess the oscillator phase jitter.

2.4.2 Jitter measurement in hardware

Since AIS-31 recommends that the source of randomness is monitored continuously using ded-

icated embedded test(s), it is important that the variance measurement method can be imple-

mented in hardware. The adopted method should require minimum area and power resources. In

our experiments, we compared the area requirements of the Allan variance (based on differences

of counter values) with that of two existing methods respectively proposed by Haddad et al. [163],

and Fischer and Lubicz [76]. For consistency in comparison results, they were implemented in

the same device, an Intel Cyclone V FPGA.

As one can see in Figure 2.12, the circuitry corresponding to hardware implementation of the

Allan variance requires:

• one multiplier to square data;

• one subtracter to compute the difference of the consecutive samples;

• one adder, with associated register, used as accumulator.

The circuitry corresponding to hardware the implementation of the variance computation used by

Haddad et al., as depicted in Figure 2.13, requires:

• two multipliers (one of 12 bits and the other of 24 bits) to square data,

• one subtracter,

• two adders and associated registers (one of 24 bits and the other of 12 bits) as accumulators,

• four additional data registers to store intermediate data.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

82

Var(cnt)

cnt
12.0

Reg

rst

 M counter
enacnt_rdy

c

c

Reg

ena

c

Reg

 c
ena

4.0

Reg

 c
ena

8.0 Reg

 c
ena

16.0

ena
8.0

3.13y
i

y
i+1

var_rdy

Figure 2.12: Allan variance measurement circuitry based on Equation (2.73) (Numbers before and after the
radix point indicate the number of bits of the integer and fractional part of the given value, respectively).

Reg

 ena

V(cnt)

cnt
12.0 24.0

Reg

rst

Reg

rst
Reg

 ena

12.12

24.24

24.12

24.24

 M counterenacnt_rdy
c

c

c

c

c

c

c

ena

ena

Figure 2.13: Implementation of the counter variance measurement circuitry for the method proposed by
Haddad et al. in [163] (Numbers before and after the radix point indicate the number of bits of the integer
and fractional part of the given value, respectively).

The circuitry corresponding to the hardware implementation of the variance computation of the

third method is similar to that presented by Fischer and Lubicz [76, Figure 6].

After implementing these three variance measurement methods, we compared them by evalu-

ating their respective design parameters: area, speed and power consumption. Area and speed

values were obtained from Quartus II, version 16.1, while the power consumption was mea-

sured using a dedicated hardware evaluation platform [164].

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

83

Method Area fmaxfmaxfmax Power
ALM/Regs DSPs [MHz] [mW]

Proposed method, Equation (2.73) 49/117 1 238.5 4−5
Haddad et al. [163] 119/160 2 178.3 6−7

Fischer and Lubicz [76] 169/200 4 187.7 7−8

Table 2.4: Summary of implementation results of the variance measurement method based on counter dif-
ferences (Allan variance) compared to other state-of-the-art methods implemented in the dedicated evalu-
ation board featuring Intel Cyclone V FPGA device 5CEBA4F17C8N.

From this evaluation, presented in Table 2.4, one can deduce that the Allan variance measure-

ment circuitry is smaller, faster and consumes slightly less power than the circuitry required by

the other two methods. This can be explained by the fact that the Allan variance computes the

variance of the successive differences, which form a time series with zero mean. Thus, the Allan

variance eliminates the need to compute the mean as opposed to other methods. It therefore re-

quires less resources (only one subtracter, one adder and one DSP block used) than others.

Experimental results presented here confirm the advantages of Allan variance over classical vari-

ance for characterization of counter value distribution. To increase precision the overlapped Allan

variance should be used. However, to characterize the jitter distribution (and not the counter val-

ues), the above study should be made with the time Allan variance, yielding a more complicated

circuit than that of Figure 2.12. This will be made in the future.

2.5 Estimation of the thermal noise contribution

Knowing that existing TRNG models use the thermal noise as the only accepted source of entropy,

it is of crucial importance to know the proportion of thermal noise contained in the phase jitter.

This step aims at preventing any overestimation of the entropy, thus preventing any security flaw

in TRNG used in cryptographic constructions. Thermal noise being white phase noise [133, Chap-

ter 2], its level in the signal is given by its power spectral density coefficient h2. Finding the value

of h2 will therefore yield the knowledge of the thermal noise proportion in the jitter.

Since the phase jitter is the one considered for the generation of random numbers, the use of the

Allan time variance is more relevant than the Allan variance. From Equations (2.85) and (2.84),

one can write:

σ2
x(τ) = h2

1
8π2 τ

−1 +h1
8ln2−3ln3

8π2 +h0
1
12
τ+h−1

27ln3−32ln2
24

τ2 +h−2
11π2

60
τ3. (2.95)

Thus, knowing the observation time τ, it follows that the part of the variance due to the thermal

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

84

noise is:

σ2
th(τ) = h2

1
8π2 τ

−1. (2.96)

The problem with Equation (2.96) is that h2 is unknown in most practical cases. The value of h2

represents the level of white noise in the source, which differs from one source to another. How-

ever, under certain assumptions, it is possible to find this value, and thus deduce the variance

due to thermal noise.

Due to modern photolithography methods, it is possible to produce even smaller transistors. While

this technological advance has some advantages, it has a negative effect on the generation of ran-

dom numbers. Indeed, this miniaturization of transistors leads to a reduction of the level of

the thermal noise. This makes it possible for flicker noise to be is easily integrated by slightly

increasing the observation time as shown in Figure 2.14. As technological advance follow this

trend, flicker (phase) noise will increasingly impact phase data. It therefore seems reasonable to

assume for this approach that data are mainly impacted by the thermal noise and phase flicker

noise.

10−8 10−7 10−6 10−5

τ (s)

10−15

10−14

10−13

10−12

10−11

10−10

T
D

E
V

Noise identification in a ring oscillator

RO data

∝ √h2τ
−1/2

∝ √h1τ
0

∝ √h0τ
1/2

∝
√
h−1τ

1

∝
√
h−2τ

+3/2

Figure 2.14: Noise identification in a ring oscillator (Obtained by applying time deviation to successive
periods of the output signal of an oscillator).

In this case, Equation (2.95) becomes:

σ2
x(τ) = h2

1
8π2 τ

−1 +h1
8ln2−3ln3

8π2 , (2.97)

where h1 and h2 are respective (unknown) levels of flicker and thermal noises. These values can

be found using simultaneous equations. Indeed, for two different observation times τ1 and τ2, one

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

85

can write: 

σ2
x(τ1) = h2

1
8π2 τ

−1
1 +h1

8ln2−3ln3
8π2

σ2
x(τ2) = h2

1
8π2 τ

−1
2 +h1

8ln2−3ln3
8π2

. (2.98)

Solving these equations yields:

h2 = 8π2τ1τ2
(
σ2

x(τ1)−σ2
x(τ2)

)
τ2 −τ1

(2.99)

which is the level of thermal noise in the source.

In order to evaluate this method, we implemented it using Kasdin and Walter’s noise generator

[149]. To do this, we generated 214 data samples affected by white phase noise and phase flicker

noise. By its operation, the Kasdin and Walter generator takes as argument the variance Qd of

the white input noise of the LTI system, as well as the sampling period τ0. In the simulations

for which some results are presented in Table 2.5, we took Qd = 10−12 for both the thermal noise

and the flicker noise. The sampling period was set to τ0 = 8 ·10−9 s. We have chosen these values

for the noise generator input parameters because they lead to standard deviation values that we

often find in experiments.

values of h2 values of σs(τ0)
found error found error

6.5357 ·10−31 0.0347 1.0172 ·10−12 0.0172
6.3614 ·10−31 0.0071 1.0035 ·10−12 0.0035
6.1955 ·10−31 0.0191 9.9037 ·10−13 0.0096
6.4449 ·10−31 0.0203 1.0101 ·10−12 0.0101
6.3425 ·10−31 0.0041 1.0020 ·10−12 0.0020

(a) data affected only with the thermal noise.

values of h2 values of σs(τ0)
found error found error

5.5127 ·10−31 0.1272 9.3421 ·10−13 0.0657
5.7789 ·10−31 0.0851 9.5649 ·10−13 0.0435
7.5961 ·10−31 0.2025 1.0966 ·10−12 0.0966
7.0014 ·10−31 0.1084 1.0528 ·10−12 0.0528
7.9125 ·10−31 0.2526 1.1192 ·10−12 0.1192

(b) data affected with thermal and flicker noises.

Table 2.5: Thermal noise contribution to the standard deviation of simulated noises (h2: level of the ther-
mal noise, τ0: sampling period, mean-value of the jittered clock period).

The interest of Table 2.5a is to have an idea of the precision of the method. Indeed, if the data

are only affected by the thermal noise, we could just use the classical variance. And as we can

see, the standard deviation due to thermal noise seems very close to the expected value. In fact,

during our various simulations, we obtained relative errors that revolve around 0.2%.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

86

The error made when the flicker is added is greater, as shown in Table 2.5b. Indeed, when Qd is

the same for thermal and flicker noises, we obtain a relative error of about 12%. This major error

is due to a very high level of the flicker noise. Because of this level, the thermal noise is practi-

cally drowned out by the flicker noise as shown in Figure 2.15, making it difficult to determine

the contribution of thermal noise with high accuracy. This explanation is confirmed by Table 2.6

which shows the decrease in absolute error as the proportion of flicker noise decreases in favor of

thermal noise. These results show importance of ensuring a relatively low flicker noise level in

order to improve the accuracy of the jitter estimation due to thermal noise.

10−8 10−7 10−6 10−5

τ (s)

10−15

10−14

10−13

10−12

10−11

10−10

T
D

E
V

∝ √h2τ
−1/2

simulated WPM

∝ √h1τ
0

simulated FPM

Figure 2.15: Illustration of the thermal noise drowned out by the flicker noise.

Qd
1 /Qd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative

error 0.014 0.026 0.039 0.051 0.063 0.076 0.088 0.100 0.112 0.124

Table 2.6: Relative error as a function of the flicker noise proportion.

Since both thermal and flicker noises coexist in the data, Figure 2.15 shows the existence of a

critical observation (or accumulation) time τc during which the jitter variances due to thermal

and flicker noises are the same. From Equation (2.97), one can deduce this critical time, which is

then expressed as follows:

τc := h2

h1 (8ln2−3ln3)
. (2.100)

Thus, for an accumulation time τ lower than τc, thermal noise dominates over flicker noise. It

can then be assumed that data is mostly affected by thermal noise. In this case, the variance of

the jitter can be assimilated to that of the thermal noise. However, for an accumulation time τ

greater than τc, the influence of the flicker noise can no longer be ignored. An accurate estimate

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

87

of the proportion of the thermal noise in the jitter is required.

Suppose that the accumulation time τ is greater than τc, then the influence of the flicker noise

cannot be neglected. It is therefore necessary to estimate the contribution of the thermal noise

to the jitter. For this purpose, Equation (2.99) recommends calculating the Allan time variance

for two different accumulation times τ1 and τ2. If the choice of τ1 and τ2 can be made arbitrarily,

it is preferable to choose them in such a way as to reduce as much as possible the error made in

estimating the thermal noise level. Intuitively, the best way to proceed would be to choose τ1 and

τ2 both lower than τc, making sure they are as far apart as possible.

However, the different tests performed, for different values of τ1 and τ2 lead to errors of the same

order of magnitude. This implies that the choice of positions9 of τ1 and τ2 does not have a sig-

nificant influence on the accuracy of the method. Thus, the error made would be inherent to the

method of simulating the different types of noise. In order to verify this conjecture, we have car-

ried out a curve fitting from the simulated data as shown in Figure 2.16. This latter yields errors

of the same order of magnitude as the method presented in this section.

10−8 10−7 10−6 10−5

τ (s)

10−24

2× 10−25

3× 10−25

4× 10−25

6× 10−25

2× 10−24

T
im

e
V

a
ri

a
n

ce

Time Variance response

WPM+FPM

curve fit

proposed method

theory

∝ √h2τ
−1/2

∝ √h1τ
0

Figure 2.16: Comparison of the proposed method with a curve fitting (WPM: white phase modulation noise,
FPM: flicker phase modulation noise, input white noise yielding WPM and FPM have the same variance,
curve fit made using non-linear least squares).

These findings tend to confirm that an error inherent in the noise generation method influences

the accuracy of the estimate of the contribution of thermal noise. This is not really surprising

since the noise generator of Kasdin and Walter produces data for which the behavior approxi-

mates that of the noise being simulated, under the assumption of stationarity. However, it turns

out that flicker noise is not stationary. It is therefore understandable that approximation errors
9The different positions of τ1 and τ2 are τ1 < τ2 < τc , τ1 < τc < τ2 and τc < τ1 < τ2.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

88

inherent to the method are inevitable. Error propagation can therefore explain the differences

between simulated and expected noise levels.

The method presented here makes it possible to estimate the contribution of thermal noise to the

variance of the jitter. This will allow for a better estimation of the entropy, and therefore prevent

an overestimation of the entropy. However, there is still the problem of the error that remains

to be solved. Although it is true that the noise generation method explains some of these errors,

it is necessary to investigate further in order to reduce estimation errors as much as possible. A

conservative approach, taking into account the maximum error of 12%, can be used.

2.6 Conclusion

In this chapter, we presented mathematical tools for jitter assessment. A good understanding of

these tools is crucial since they are related to the nature of phase fluctuations of the oscillator

used as source of randomness. These tools provide a mathematical framework used to model the

output signal of an oscillator. From that model, we were able to characterize random fluctuations

in the time domain, but also in the frequency domain. Attention has been drawn to the issues

related to the widely used classical variance. Presence of low frequency noises in the oscillator sig-

nal yields a divergence of this variance, resulting in an overestimation of entropy. Allan variance,

already used in the timekeeping field, was introduced as a solution to this problem. Its properties

as well as its variants have proved to be of a great interest, especially when it comes to identify the

dominant noise type in real-world signals, or estimating the thermal noise proportion in the jitter.

We published part of the results presented in this chapter was published in the IACR TCHES

201810. In the same article, higher-order Markov chains was suggested by Skórski to model

dependencies between subsequent bits of the generator. Hardware implementation and analysis

were done by Oto Petura. Other results like the estimation of thermal noise proportion is still

under investigation and have not been published yet. These results are used in Chapter 3 to

assess the quality of the jitter used in PLL-based TRNGs.

10E. Noumon Allini, M. Skórski, O. Petura, F. Bernard, M. Laban and V. Fischer, "Evaluation and Monitoring of Free Running
Oscillators Serving as Source of Randomness", IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018(3),
214-242. https://doi.org/10.13154/tches.v2018.i3.214-242

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

89

Résumé

Dans ce chapitre, nous avons présenté le cadre mathématique permettant d’étudier et de car-

actériser les fluctuations de phase des signaux des oscillateurs. Ces fluctuations de phases, qui

sont à l’origine du jitter d’horloge, se modélisent en processus stochastiques. Dans le cadre de

la génération des nombres aléatoires, ces processus ont souvent été caractérisés dans le domaine

temporel par le biais de la variance. En nous basant sur des résultats de la théorie du traitement

du signal, nous proposons de caractériser ces fluctuations dans le domaine fréquentiel. Cette car-

actérisation, complémentaire à celle faite dans le domaine temporelle, apporte de nouvelles infor-

mations concernant les phénomènes physiques en jeu, notamment les types de bruits en présence.

La variance étant la mesure communément utilisée pour évaluer le jitter, il est impératif qu’elle

soit stable et précise. Cependant, il a été prouvé que la variance classique ne converge pas lorsque

le jitter comporte des bruits basse fréquence, tel que le flicker. Vu que ce bruit est présent dans les

fluctuations de phase d’un oscillateur, l’utilisation de la variance classique pour évaluer le jitter

est fortement déconseillée. Ce problème a déjà été détecté et étudié par les spécialistes des hor-

loges et oscillateurs ultra stables. Suite à leurs études, la variance d’Allan a été proposée comme

substitut à la variance classique pour l’étude des fluctuations de fréquences. Nous avons étudié

cette variance afin de voir comment l’adapter à la problématique de la génération des nombres

aléatoires.

Cette étude de la variance d’Allan nous a permis de constater la stabilité, même en présence de

bruits basse fréquence. Ceci en fait un candidat de choix pour mesurer le jitter lors de la généra-

tion des nombres aléatoires. De plus, sa dépendance au temps d’observation du phénomène per-

met de déduire une structure temporelle du phénomène. En effet, il a été illustré que la variance

d’Allan, notamment sa variante modifiée permet de distinguer les différents types de bruits ad-

mettant une modélisation en loi de puissance. Ces différents atouts de la variance d’Allan ainsi

que de ses variantes nous exhorte à l’adopter non seulement pour avoir une mesure du jitter, mais

également pour en analyser la structure au cours du temps.

Puisque la plupart des modèles estimant l’entropie d’une source d’aléa supposent uniquement la

présence du bruit thermique, il est impératif d’estimer avec précision la part du bruit thermique

dans la taille du jitter. Pour cela, nous avons proposé une estimation basée sur la variance tem-

porelle d’Allan. Puisque les simulations réalisées montrent une erreur maximale de 12%, nous

recommandons d’adopter une approche conservative afin de tenir compte de l’erreur maximale.

Ceci permettra de ne pas surestimer la variance, et donc l’entropie, due au bruit thermique.

CHAPTER 2. CHARACTERIZATION OF CLOCK JITTER AS A SOURCE OF RANDOMNESS

90

91

Chapter 3

Phase-locked loops as sources of randomness

Contents

3.1 Phase-locked loops . 92

3.1.1 Basic PLL overview . 92

3.1.2 Basic equations of the PLL . 93

3.2 Transfer functions of an analog PLL . 95

3.2.1 Open loop transfer function . 95

3.2.2 Closed loop transfer function . 96

3.2.3 PLL in presence of disturbing signals . 96

3.3 Physical parameters of the PLL model . 99

3.3.1 Comparison with existing models . 99

3.3.2 Choice of physical parameters . 100

3.4 Noise properties . 102

3.4.1 Origin of the output noise . 102

3.4.2 Noise filtering and jitter overshoot . 104

3.4.3 Types of noise at the output of the PLL . 110

3.4.4 Bounded nature of the PLL noise . 110

3.5 Conclusion . 112

Phase-locked loops are electronic circuits used in logic devices mainly to generate clock signals.

They have many applications such as frequency synthesis in wireless applications [165], clock and

data recovery in communication systems [166], clock generation and distribution in microproces-

sors [167]. They are interesting for the generation of random numbers, particularly because of

their robustness and ability to maintain a well-defined relationship between frequencies of their

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

92

input and output signals. In this chapter, we will examine some of the underlying properties of

PLLs, with a particular focus on noise properties.

3.1 Phase-locked loops

Phase-locked loops (PLLs) belong to a larger set of regulation systems [168]. Research and design

studies related to PLLs go back to the early 50s [169]. Since then, this field has gained major

practical applications and PLLs are found in communication equipments such as mobile phones

and computers. This section describes the fundamentals of PLLs.

3.1.1 Basic PLL overview

A phase-locked loop (PLL) is a circuit (as depicted in Figure 3.1) that uses an input signal to

synchronize a signal from an embedded oscillator on it. The objective is to maintain a frequency

relationship between input and output signals as:

fout = M
N ×C

× f in, (3.1)

where f in is the input frequency, and fout the output frequency. The embedded oscillator is usu-

ally a voltage-controlled oscillator (VCO), which is synchronized with the input signal (sometimes

called the reference signal).

PFD÷N CP LF VCO ÷Pvco ÷C

÷M

in out

Figure 3.1: Phase-locked loop block diagram (PFD: phase-frequency detector, CP: charge pump, LF: loop
filter, VCO: voltage-controlled oscillator).

In order to synchronize the VCO, the PLL has a feedback loop with a phase-frequency detector

(PFD) in it. Its goal is to evaluate the phase difference between the reference signal and the

feedback signal in order to produce a voltage proportional to their phase difference. This voltage,

known as the error voltage, is converted into a current by the charge pump (CP). A low-pass

filter (LF) then eliminates high-frequency fluctuations in order to have a clean control voltage

at the input of the VCO. Thanks to this process, the frequency of the VCO will be adjusted to

maintain the frequency relationship between the input and output signals of the PLL. During

this operation, the PLL is said to be locked. When the VCO fails to synchronize, the PLL is

unlocked.

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

93

3.1.2 Basic equations of the PLL

Equations that govern the behavior of a PLL can be established either in the time or frequency

domain. The description in the frequency domain requires linear approximations which only

apply when the PLL is locked. Indeed, in the locked state, the phase error is small1 [170, Page

143], and the behavior of the PLL can be studied through transfer functions [171, Section 2.4].

Whenever the PLL is unlocked, this description does not apply. A time domain description is

therefore required. In this case, the analysis of the PLL becomes far more challenging [172].

Therefore, in the remainder of this thesis, we will always assume that the PLL is in a locked

state, allowing us to use transfer functions. Indeed, the TRNG is not allowed to output random

bitstream before the PLL is locked.

3.1.2.1 Basic PLL transfer functions

The transfer function of an electrical circuit relates voltages or currents of the input and output

signals [171, Section 2.2]. However, when dealing with the PLL, we are more interested by the

phases of both the input and output signals, not the voltages or currents [172, Page 6]. Therefore,

the transfer functions we consider in the study of PLLs relate the phase of a signal applied at a

specific location in the PLL to the phase response at the output of the PLL.

Let us thus consider a PLL as in Figure 3.2 having an input signal for which the phase is θin(t).

The PLL response yields an output signal with a phase denoted θout(t), expressed in radian just

like θin(t). The operation of the phase-frequency detector (combined with the charge pump2)

results in a phase error θe(t) which corresponds to the phase difference between the input and

feedback signals. We thus have:

θe(t) = θ′in(t)−θ f b(t) = θin(t)
N

− Cθout(t)
M

. (3.2)

PFD + CP

Kϕ

÷N
LF

HLF

VCO

KV CO

÷Pvco ÷C

÷M

θin θ′in ie vc θ′out θout

θ f b

Figure 3.2: Phase-locked loop block diagram including internal PLL parameters (PFD: phase-frequency
detector, CP: charge pump, LF: loop filter, VCO: voltage-controlled oscillator, Kϕ: gain of the PFD combined
with the CP, HLF : transfer function of the loop filter, KV CO: gain of the VCO).

1The notion of smallness is relative, but one can consider the phase small if it does not exceed π
2 [168, Section 1.4].

2This is a common practice in PLL modeling [172, Chapter 10]. It is justified by the fact that there is no phase change between
the PFD and the CP. This practice helps to simplify the equations in the PLL models.

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

94

Since the PLL is locked, the PFD can be considered as a linear component [170, Page 4], and thus

the PFD output is a current which can be written as:

ie(t) = Kϕθe(t) = Kϕ

(
θ′in(t)−θ f b(t)

) = Kϕ

(
θin(t)

N
− Cθout(t)

M

)
, (3.3)

where Kϕ is the gain of the PFD, expressed in3 Amperes per radian [172, Section 12.1].

The current ie described in Equation (3.3) is the error current. It is processed by the filter, whose

purpose is to establish the performance of the loop [173, Page 592]. This filter is also used to

attenuate noise and high-frequency components of the input signal [171, Section 2.3.2].

Although a study in the time domain is possible, it is often more convenient to carry out this study

in the Laplace domain. Thanks to the linearity of the Laplace transform, Equations (3.2) and (3.3)

remain unchanged. The only changes are that the time functions are replaced by their respective

Laplace transforms, and that the time variable t is also replaced by the Laplace variable s. In or-

der to remain as general as possible, the transfer function of the loop filter is not specified, rather

it is denoted as HLF (s). Depending on the kind of filter used, HLF (s) can easily be replaced by the

appropriate expression in final equations.

The loop filter delivers a voltage vc(t) which controls the frequency of the VCO. In the Laplace

domain, the action of the filter is described by:

Vc(s) = HLF (s)Ve(s) = KϕHLF (s)θe(s), (3.4)

where Vc(s) and Ve(s) are respectively the Laplace transform of vc(t) and ve(t).

Notation In the remainder of this chapter, the phases will be designated by the lowercase Greek

letter θ and a subscript indicating its origin such as:

• θin(t) for the input phase,

• θout(t) for the output phase,

• θvco(t) for the phase of the VCO.

The presence of the time variable t indicates that the phases are expressed in the time domain.

Their respective Laplace transforms will be designated by the same letters, replacing the time

variable t with the Laplace variable s. Hence, the Laplace transform of:

3Here, the unit is in Amperes because we are dealing with current, due to the presence of the charge pump. Without a charge
pump, the phase detector output would be a voltage, Volts would then be used instead of amperes. So the unit depends on the situation
and should therefore be chosen as applicable [172, Section 2.1.1].

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

95

• θin(t) will be denoted as θin(s),

• θout(t) will be denoted as θout(s),

• θvco(t) will be denoted as θvco(s).

The argument of the phase therefore indicates whether it is considered in the time or Laplace

domain.

The deviation of the VCO from its free-running frequency is ∆ω= Kvcovc in rad ·s−1, where Kvco

is the VCO gain factor expressed in rad ·s−1 ·V−1 [172, Page 8] [171, Page 30]. Taking into account

that the radian frequency is the derivative of the phase, and that the VCO produces an output

phase [171, Equation 2.33a], the VCO operation may be described as:

dθvco(t)
dt

= Kvcovc(t), (3.5)

which, in the Laplace domain becomes:

θvco(s) = KvcoVc(s)
s

. (3.6)

Since 1/s is the Laplace transform of an integration, it can be said that the output phase of the

VCO is proportional to the integral of the control voltage. This highlights the integrative nature

of the VCO.

The transfer functions of the previous individual elements can be combined to obtain more elabo-

rate transfer functions for finer analyses of the PLL’s behaviour. This approach and the resulting

equations generally applies to any PLL.

3.2 Transfer functions of an analog PLL

3.2.1 Open loop transfer function

In open loop, the PLL behaves as if the connection between the VCO and PFD would not exist.

This situation, illustrated in Figure 3.3, avoids taking into account the feedback signal.

PFD + CP

Kϕ

÷N
LF

HLF

VCO

KV CO

÷Pvco ÷C

θin θe ie vc θ′out θout

Figure 3.3: PLL in an open loop mode (PFD: phase frequency detector, LF: loop filter, VCO: voltage-
controlled oscillator).

From Equations (3.4) and (3.6), one can write:

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

96

sθvco(s) = KϕKV COHLF (s)θe(s). (3.7)

Due to the actions of the post-divider of the VCO and the divider by C, the output phase θout is:

θout = θvco

CPvco
, (3.8)

which results in:

sCPvcoθout(s) = sθvco(s) = KϕKV COHLF (s)θe(s). (3.9)

Since the PLL is in open loop, we can write θe = θin/N and therefore conclude that the open loop

transfer function of the PLL is given by:

G(s) = θout(s)
θin(s)

= KϕKV COHLF (s)
sNCPvco

. (3.10)

In our consideration, the open loop PLL comprises PLL blocks between the input and the output

signal. Hence, the feedback signal is not taken into account. Moreover, most existing PLL models

do not consider actions of the frequency dividers N,Pvco,C. The absence of these dividers corre-

sponds to taking N = C = Pvco = 1, making Equation (3.10) a generalization of existing models.

3.2.2 Closed loop transfer function

From Section 3.2.1, it is possible to write θout(s) = NG(s)θe(s). When the feedback loop is closed,

the θe = θin assumption is no longer valid. The expression of θe is obtained in this case by Equa-

tion (3.2). By replacing θe by its expression, it follows:(
1+ NC

M
G(s)

)
θout(s) = G(s)θin(s), (3.11)

thus:

HT (s) = θout(s)
θin(s)

= G(s)

1+ NC
M G(s)

= M
NC

× KϕKV COHLF (s)
sMPvco +KϕKV COHLF (s)

, (3.12)

which is the closed loop transfer function of the PLL, also known as the jitter transfer function of

the PLL [81, Section 7.2.2].

It should be noted that the transfer function of the PLL is dimensionless. Thus, it is possible to

consider its input as a frequency signal instead of a phase signal, without any modification.

3.2.3 PLL in presence of disturbing signals

In Sections 3.2.1 and 3.2.2, we have established transfer functions for PLL assuming that it is

ideal. In other words, blocks of the PLL do not generate electronic noises. Of course, in practice,

this is not true. Hence, in order to take into account the effects of disturbing signals (e.g noises)

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

97

which could come from various blocks that make up the PLL, we express the output phase of the

PLL as a function of the input phase and additional disturbances as shown in Figure 3.4.

÷N
+

+
θin

θN

-
+

θ′in
PFD + CP

Kϕ
θe +

+

iPFD

LF

HLF
ie +

+

vLF

VCO

KV CO
vc +

+

θvco

÷Pvco
+

+

θPvco

÷C
+

+

θC

θoutθ′out

÷M+
+

θM

Figure 3.4: PLL loop with disturbance addition (PFD: phase frequency detector, LF: loop filter, VCO:
voltage-controlled oscillator).

In Figure 3.4, the considered disturbances are:

• the phase disturbance θN produced by the divider N,

• the current disturbance IPFD produced by the PFD,

• the voltage disturbance VLF produced by the filter,

• the phase disturbance θvco produced by the VCO,

• the phase disturbance θPvco produced by the divider Pvco,

• the phase disturbance θC produced by the divider C,

• the phase disturbance θM produced by the divider M.

These disturbances can be of various kinds: pulses, noises, etc, even if in practice, we assume that

they are noises (zero mean random signals) produced by the different blocks of the PLL. In order

to establish the expression of the output phase θout in this condition, we can start by writing:

θout(s) = θ′out(s)
C

+θC(s), (3.13)

where:

θ′out(s) = KV COVc(s)
sPvco

+ θvco(s)
Pvco

+θPvco (s). (3.14)

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

98

As we have:

Vc(s) = HLF (s)Ve(s)+VLF (s)

= HLF (s)
[
Kϕθe(s)+VPFD(s)

]+VLF (s)

= KϕHLF (s)θe(s)+HLF (s)VPFD(s)+VLF (s)

= KϕHLF (s)
[(
θin(s)

N
+θN (s)

)
−

(
θ′out(s)

M
+θM(s)

)]
+HLF (s)VPFD(s)+VLF (s)

= KϕHLF (s)
N

θin(s)+KϕHLF (s)θN (s)− KϕHLF (s)
M

θ′out(s)−KϕHLF (s)θM(s)

+HLF (s)VPFD(s)+VLF (s),

it follows that:(
1+ KV COKϕHLF (s)

sMPvco

)
θ′out(s) = KV COKϕHLF (s)

sNPvco
θin(s)+ KV COKϕHLF (s)

sPvco
θN (s)

+KV COHLF (s)
sPvco

VPFD(s)+ KV CO

sPvco
VLF (s)

−KV COKϕHLF (s)
sPvco

θM(s)+ 1
Pvco

θvco(s)+θPvco (s).

Which gives:

θ′out(s) = M
N

× KϕKV COHLF (s)
sMPvco +KϕKV COHLF (s)

θin(s)+M× KϕKV COHLF (s)
sMPvco +KϕKV COHLF (s)

θN (s)

+M× KV COHLF (s)
sMPvco +KϕKV COHLF (s)

VPFD(s)+M× KV CO

sMPvco +KϕKV COHLF (s)
VLF (s)

−M× KϕKV COHLF (s)
sMPvco +KϕKV COHLF (s)

θM(s)+M× s
sMPvco +KϕKV COHLF (s)

θvco(s)

+M× sPvco

sMPvco +KϕKV COHLF (s)
θPvco (s).

In order to deduce the transfer functions related to the various solicitations of the PLL, it is

assumed that all solicitations are null except the one of interest. This makes it possible to write:

HT (s) = M
NC

× KϕKV COHLF (s)
sMPvco +KϕKV COHLF (s)

, (3.15)

HN (s) = M
C

× KϕKV COHLF (s)
sMPvco +KϕKV COHLF (s)

= N ×HT (s), (3.16)

HPFD(s) = M
C

× KV COHLF (s)
sMPvco +KϕKV COHLF (s)

(3.17)

HF (s) = M
C

× KV CO

sMPvco +KϕKV COHLF (s)
(3.18)

HM(s) = −M
C

× KϕKV COHLF (s)
sMPvco +KϕKV COHLF (s)

= −N ×HT (s), (3.19)

HV CO(s) = M
C

× s
sMPvco +KϕKV COHLF (s)

(3.20)

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

99

HPvco (s) = M
C

× sPvco

sMPvco +KϕKV COHLF (s)
= Pvco ×HV CO(s), (3.21)

HC(s) = 1. (3.22)

Note that HV CO is also known as the PLL jitter generation function, and denoted HG [81, Section

7.2.1]. This is because it relates the jitter of the VCO to the output of the PLL, and because the

jitter in the output essentially comes from the VCO as we will see in Section 3.4.1.

The model of the PLL in terms of the transfer function introduced in this section will be used to

study the PLL and have a better understanding of its operation. It will also be used to identify

the origin of phase fluctuations at the output of PLL. This model can be described as:

• the open loop transfer function of the PLL is given by Equation (3.10),

• the output phase of the PLL (in closed loop) is defined by:

θout(s) = HT (s) ·θin(s)+HPFD(s) ·VPFD(s)+HF (s) ·VLF (s)+Hvco(s) ·θvco(s)

+N ·HT (s) · (θN (s)−θM(s))+Pvco ·Hvco(s) ·θPvco (s)+HC(s)θC(s),

where HT , HPFD , HF , Hvco and HC are respectively defined by Equations (3.15), (3.17),

(3.18), (3.20) and (3.22).

3.3 Physical parameters of the PLL model

The PLL model in transfer functions presented in Section 3.2 is intended to be used to simulate

the behavior of the PLL. In particular, it allows to study the PLL’s response to a noise generated

in one of its blocks. In order to be able to use this model, it is necessary to evaluate it and to

ensure that it produces realistic results.

3.3.1 Comparison with existing models

The validation of a model requires a comparison between the results predicted by the model and

real-world experiments. In the case of a PLL, this requires access to the component. However,

the PLLs we use are embedded in an FPGA. Therefore, we do not have access to the internal

signals of the PLL. For this reason, we compare the model presented in Section 3.2 with existing

models. The main difference between the above model and those existing in the state-of-the-art

is the consideration of frequency division blocks. Indeed, most models consider a PLL without a

frequency divider [174, 175, 172, 176, 81], others consider a PLL with only one frequency divider

present in the feedback loop [177, 171, 170, 178]. However, PLLs embedded in the FPGAs are as

presented in Figure 3.1.

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

100

The model of the PLL in terms of transfer function is justified by the fact that it is a feedback

system. It can therefore be represented as a block diagram [179, Section 8.3]. By replacing M, N,C

and Pvco with 1 in the model in Section 3.2, the PLL open loop transfer function is expressed as:

G(s) = KϕKV COHLF (s)
s

, (3.23)

which is consistent with existing models [172, Equation 2.5] [168, Equation 1.36]. Likewise, the

closed loop transfer function is expressed as:

HT (s) = KϕKV COHLF (s)
s+KϕKV COHLF (s)

, (3.24)

as stated in the state-of-the-art [172, Equation 2.6] [168, Equation 1.35] [174, Section 3.5].

This proves that the model in Section 3.2 makes it possible to find the open-loop and closed-loop

transfer functions of the PLL present in the state-of-the-art. This model also makes it possible to

observe the response of PLL to signals (especially random signals) that occur in various blocks of

the PLL. In particular, we can simulate the behavior of the PLL as a result of the noise that occurs

in the VCO. The corresponding transfer function, when M,C and Pvco are set to 1, is written:

HG(s) = s
s+KϕKV COHLF (s)

(3.25)

and is identical to the one found by Da Dalt and Sheikholeslami [81, Section 7.2.1].

We can therefore see that the model presented in Section 3.2 allows us to find the PLL transfer

functions available in the state-of-the-art. Moreover, it allows to study the influence of noise

generated in various blocks of the PLL, which is not available in the state-of-the-art. We can

therefore say that this model generalizes those present in the state-of-the-art. Since the intended

end use of the model is to be used for simulations, it is important to choose appropriate physical

parameters.

3.3.2 Choice of physical parameters

To continue our study, we need to specify the type of filter used. However, we do not have detailed

description of the PLLs used in FPGAs for two reasons. First because this information is (at

least partially) confidential, and second because the PLL structure (architecture) may be differ-

ent for each FPGA family. Nevertheless, based on the state-of-the-art, we can say that the most

commonly-used filters are first and second order low-pass filters. They can be either passive or

active. In the case of passive filters, we distinguish between lag filters (which have no zero) [168,

Section 2.2.1] [176, Section 13.5.1], and lead-lag filters (transfer functions with one zero) [171,

Section 2.3.2] [168, Section 2.2.2] [180, Section 3.3.1] [176, Section 13.5.2]. Active filters used in

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

101

102 103 104

Frequency (rad/sec)

−14

−12

−10

−8

−6

−4

−2

0

M
a
g
n

it
u

d
e

(d
B

)

lag

lead-lag

Figure 3.5: Comparison of a lag filter to a lead-lag filter (Bode magnitude plot of the two first order passive
low-pass filters).

PLLs are often lead-lag filters [171, Section 2.3.2] or PI filters which incorporate an integrator

[171, Section 2.3.2] [176, Section 13.5.3]. The use of a second or higher orders low-pass filter is

less common and dedicated to specific applications [168, Section 3.1.3].

For simplicity, we opted for a first-order passive low-pass filter. Specifically, we will use a first

order passive lag filter. This choice is justified by Figure 3.5, where we can see that lead-lag

filters do not filter high frequencies as well as lag filters do. It may be noted that the study done

in this thesis can be done with other types of filters. For the rest of this thesis, the transfer

function of the loop filter will therefore be written:

HLF (s) = 1
τs+1

, (3.26)

where τ := RLF ×CLF is the time constant of the low-pass filter which consists of a resistor (RLF)

and a capacitor (CLF). The PLL jitter transfer function can then be expressed as:

HT (s) = M
NC

× KϕKV CO

s2MPvcoτ+ sMPvco +KϕKV CO
. (3.27)

Likewise, the PLL jitter generation function can be expressed as:

HG(s) = M
C

× s2τ+ s
s2MPvcoτ+ sMPvco +KϕKV CO

. (3.28)

In order to simulate the PLL, it is necessary to specify the values of the physical parameters,

namely the PFD gain Kϕ, the VCO gain KV CO, as well as the filter time constant τ= RLF ×CLF .

As noted above, these values are unknown to us, and mostly kept secret by designers. In order to

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

102

choose values for these parameters, we have taken the values available in the state-of-the-art as

a starting point [174, Chapter 2]. Based on this available values of the parameters, we compared

the responses of the simulations with the responses of the PLL implemented in an Intel Cyclone V

FPGA device 5CEBA4F17C8N mounted on the Evariste chip [181]. Thanks to this, we corrected

values of the parameters until there was a match between responses of the simulations and the

real-world experiments. Physical parameters we obtained through this procedure are:

• Kϕ = 29.39A ·rad−1,

• KV CO = 2Mrad ·s−1 ·V−1,

• τ= 1µs.

3.4 Noise properties

In our application framework, the PLL is intended to be used as a source of randomness for

the generation of true random numbers. Since the quality of the source of randomness strongly

impacts the quality of the generated numbers, it is important to consider the properties of the

noise at the output of the PLL. This will allow the output noise to be evaluated according to the

physical parameters of the PLL.

3.4.1 Origin of the output noise

Most PLL designers admit that the noise at the output of the PLL comes mainly from the VCO

[172, Section 15.4.1]. However, we did not find any argument to support this fact in the state-of-

the-art. In this section, we propose elements of confidence to reinforce the fact that the output

noise comes from the noise present in the VCO. For this analysis, we will focus on the analog

blocks of the PLL and ignore digital ones. The reason is twofold:

• first because Section 3.2.3 shows that the transfer functions of the PLL’s digital blocks can

be derived from the transfer functions of analog blocks by scalar multiplication. Since scalar

multiplication does not modify the spectral properties, but only the magnitude, we can de-

duce that these blocks will behave in a similar manner to the analog blocks from which the

transfer functions are deduced.

• the second reason is that digital blocks are frequency dividers implemented by counters.

It is admitted that these counters produce negligible amount of noise compared to analog

components of the PLL [182, Section E.1.3].

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

103

Based on this reasoning, we assume in this section that only analog blocks produce significant

amount of noise.

By using the corresponding transfer functions, described in Section 3.2.3, we can study the re-

sponse of the PLL to noise generated in the various blocks of the PLL. We therefore simulated the

generation of white phase noise coming from the input signal, the PFD, the loop filter, and the

VCO. To find out which of these noises is dominant at the output of the PLL, we compared the

PLL responses to these various noises to experimental data coming from a real-world PLL.

For this, we collected 250,000 periods of the PLL with a sampling period of about 8ns (which

corresponds to the maximum capacity of the oscilloscope used4). For consistency reasons, we used

these same values to simulate white noise using Kasdin and Walter algorithm. The time Allan

variance response to the real-world PLL output noise and simulated ones yields Figure 3.6, where

simulated data are in red and green, and experimental ones in cyan.

We see that the experimental data behaves in the same way as the simulated data in the only case

where the noise comes from the VCO. This shows that the noise contained in the experimental

data cannot come from neither the PLL input nor from an internal block other than the VCO. On

the other hand, by comparing the time Allan variance responses to theoretical models (dashed

lines), we find that noises from the input signal and the PLL blocks except the VCO translates

into noise with a phase power spectral density Sx(f) proportional to 1/ f 4 (slope proportional to√
h−2τ

3/2 in Figure 3.6). This type of noise is of very low frequency. Thus, the impact of other PLL

noises, except that of VCO, on the PLL output are much smaller and can be neglected. This rein-

forces the assumption that the noise at the output of the PLL coming from the VCO dominates.

For this reason, we will consider that the noise at the output of the PLL comes from the VCO.

Since the output noise of the PLL comes mainly from the VCO, it is possible to ignore (in a first

approach) the noise coming from the other blocks of the PLL. The model described in Section 3.2.3

can therefore be simplified to take into account only the impact of the input noise and the VCO

noise. The output noise of the PLL can then be described by the relationship:

θout(s) = HT (s)θin(s)+Hvco(s)θvco(s), (3.29)

or in terms of power spectral densities:

Sout(s) = HT (s)HT (−s)Sin(s)+Hvco(s)HPvco (−s)Svco(s). (3.30)

4LeCroy WavePro 7 Zi-A Series [183].

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

104

10−8 10−7 10−6 10−5 10−4

τ (s)

10−17

10−16

10−15

10−14

10−13

10−12

10−11

T
D

E
V

τn

Time Deviation response

experimental data

input noise

PLL output

∝ √h2τ
−1/2

∝
√
h−2τ

+3/2

(a) when noise comes from the input signal.

10−8 10−7 10−6 10−5 10−4

τ (s)

10−17

10−16

10−15

10−14

10−13

10−12

10−11

T
D

E
V

τn

Time Deviation response

experimental data

PFD noise

PLL output

∝ √h2τ
−1/2

∝
√
h−2τ

+3/2

(b) when noise comes from PFD.

10−8 10−7 10−6 10−5 10−4

τ (s)

10−17

10−16

10−15

10−14

10−13

10−12

10−11

T
D

E
V

τn

Time Deviation response

experimental data

LF noise

PLL output

∝ √h2τ
−1/2

∝ √h1τ
0

∝ √h0τ
1/2

(c) when noise comes from the loop filter.

10−8 10−7 10−6 10−5 10−4

τ (s)

10−17

10−16

10−15

10−14

10−13

10−12

10−11

T
D

E
V

τn

Time Deviation response

experimental data

VCO noise

PLL output

∝ √h2τ
−1/2

(d) when noise comes from the VCO.

Figure 3.6: Noise type at the output of a PLL (M = 35, N = 5, C = 3, white phase noise generated using
Kasdin and Walter algorithm).

Remembering that s is the Laplace variable, if one takes s = j2π f , it follows that:

Sout(f) = |HT (f)|2 Sin(f)+|Hvco(f)|2 Svco(f), (3.31)

where HT (f) and Hvco(f) are respectively the PLL jitter transfer and jitter generation functions.

3.4.2 Noise filtering and jitter overshoot

An interesting fact is that the PLL tends to act like a low-pass filter with respect to the input

signal and high-pass filter with respect to the VCO signal, as shown in Figure 3.7. Thus, the

PLL will let low-frequency fluctuations present in the input signal pass through, while it will

attenuate high-frequency input fluctuations. In a similar manner, the PLL will attenuate low-

frequency fluctuations present in the VCO signal, while allowing high-frequency fluctuations to

pass through.

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

105

106 107 108

Frequency (rad/sec)

−5

0

5

10

15

20

M
a
g
n

it
u

d
e

(d
B

)

ωn

jitter transfer

jitter generation

Figure 3.7: Bode magnitude plot of the jitter transfer and jitter generation functions of a PLL (M = 1,
N = 1, C = 1 and Pvco = 1, leading ζ= 0.0652 and ωn = 7666811.5928rad ·s−1).

3.4.2.1 Jitter peaking

It should be noted that the notion of low or high-frequency is related to a reference frequency. In

this study, the reference frequency is the natural frequency ωn of the PLL visible in Figure 3.7.

It is the frequency at which the response of the PLL has a peak, and can be found by writing the

normalized form of the PLL jitter transfer function:

HT (s) = M
NC

× ω2
n

s2 +2ζωns+ω2
n

, (3.32)

where ζ is the PLL damping factor [174, Section 3.5]. By identifying with Equation (3.27), we can

deduce that:

ωn :=
√

KϕKV CO

MPvcoτ
, (3.33)

and

ζ := 1
2ωnτ

. (3.34)

ωn is the frequency at which the gain (the module) of both transfer functions is at its maximum.

This appears as a peak, as shown in Figure 3.7, called jitter peaking [81, Section 7.2.2].

3.4.2.2 PLL response to input noise

Since the PLL behaves as a low-pass filter with respect to its input signal, it follows that the PLL

is able to filter out high-frequency noises impacting its input signal. This results in an attenua-

tion of these noises for accumulation times lower than τn := 1
ωn

, as we can see in Figure 3.6a. They

will therefore have little influence on the PLL output signal, unless their amplitude in the input

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

106

signal is large enough to drown out the useful information. In this case, the PLL will lose its lock

[184], and the generation of random numbers will then have to be stopped. Hence, high-frequency

noises from the PLL input signal have very little influence on the generation of random numbers.

Their influences can therefore be neglected.

Note that for accumulation times lower than τn, the noises that dominate are those with high

amplitudes for frequencies higher than ωn. Thus, low-frequency noises, such as flicker noise,

which have low amplitudes for frequencies above ωn accumulate very little for times below τn.

Their amplitudes at the output of the PLL are therefore very small compared to the amplitude of

the input noise as we can see in Figure 3.8. Conversely, for accumulation times greater than τn,

these noises have enough time to accumulate and their amplitudes are no longer negligible. As we

might expect, the simulations show that the PLL then locks onto them. It is therefore important

to identify the low-frequency noises that impact the input signal, and to characterize them when

we plan to accumulate randomness for times greater than τn.

10−8 10−7 10−6 10−5 10−4

τ (s)

10−17

10−16

10−15

10−14

10−13

10−12

10−11

T
D

E
V

τn

Time Deviation response

∝ √h1τ
0

input noise

PLL output

Figure 3.8: PLL response to flicker phase noise in the input signal.

We have therefore seen that high-frequency phase fluctuations play very little role in the gener-

ation of random numbers. However, it is necessary to provide a test to detect a loss of PLL lock

due to the action of these noises in order to stop the generation of random numbers. The noises

at the output of the PLL are the low-frequency noises that need to be characterized. It is however

possible to ignore them if the accumulation times is less than τn. Another solution would be to

use an input signal that is very little influenced by low-frequency noises. This can be done by

using output signals of a crystal oscillator [185]. This last option allows us to assume that there

is no jitter transfer. According to Equation (3.31), this means that phase fluctuations in the out-

put signal come only from the VCO, making it possible to consider the VCO as the only source of

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

107

randomness for TRNGs.

3.4.2.3 PLL response to VCO noise

As we saw at the beginning of Section 3.4.2, the PLL behaves like a high-pass filter with respect

to the signal coming from the VCO. It can then be deduced that at low frequencies, the PLL

strongly attenuates the different signals present in the VCO. Knowing that the low frequencies

correspond to frequencies lower than ωn, it follows that for accumulation times higher than τn,

the signals are strongly attenuated as we can see in Figures 3.6d and 3.9. Since flicker noise is

a low frequency noise, its amplitude can be considered negligible for times below τn. For times

above τn (corresponding to the region where flicker noise is likely to dominate), Figure 3.9 shows

a high attenuation of the signal, leading to a low level of flicker noise at the output of the PLL.

10−8 10−7 10−6 10−5 10−4

τ (s)

10−17

10−16

10−15

10−14

10−13

10−12

10−11

T
D

E
V

τn

Time Deviation response

∝ √h1τ
0

VCO noise

PLL output

Figure 3.9: PLL response to flicker phase noise in the VCO.

In the low frequencies, for τ> τn, the thermal noise will suffer the same fate as the flicker noise,

namely a magnitude attenuation. This is due to the fact that the PLL attenuates any signal

present in the low frequencies. In addition, as shown in Figure 3.6d, the PLL denatures thermal

noise in the region τ> τn. Indeed, for such large accumulation times, the feedback loop and band-

width of the PLL induces deterministic actions that prevent a free accumulation of thermal noise.

A characterization of these actions is therefore required for a proper evaluation of the quality of

the generated numbers. Otherwise, the accumulation time should be limited to the region τ< τn,

in order to avoid that the nature of the noise at the output of the PLL is altered.

We have thus seen that the ideal to generate random numbers would be to limit entropy accumu-

lation to times τ < τn. These times correspond to the region where the noises generated in the

VCO are not altered by the PLL at the output. This is also the region in which high-frequency

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

108

10−8 10−7 10−6 10−5 10−4

τ (s)

10−17

10−16

10−15

10−14

10−13

10−12

10−11

T
D

E
V

τc

τn

Time Deviation response

∝ √h2τ
−1/2

∝ √h1τ
0

VCO noise

PLL output

(a) PLL response for τc < τn (h1 = 1.03 ·10−23 rad2 ·s2,
h2 = 5.16 ·10−30 rad2 ·s3, τc = 2.23 ·10−7 s).

10−8 10−7 10−6 10−5 10−4

τ (s)

10−17

10−16

10−15

10−14

10−13

10−12

10−11

T
D

E
V

τc

τn

Time Deviation response

∝ √h2τ
−1/2

∝ √h1τ
0

VCO noise

PLL output

(b) PLL response for τc > τn (h1 = 1.03 ·10−24 rad2 ·s2,
h2 = 5.16 ·10−30 rad2 ·s3, τc = 2.23 ·10−6 s).

Figure 3.10: PLL response to VCO noise consisting of thermal and flicker noises (τn = 7.14 ·10−7s is the
inverse of the PLL natural frequency).

noises are most likely to dominate over low-frequency ones. Limiting to this region therefore en-

sures that only thermal noise is present at the output of the PLL, provided that the critical time

τc is greater than τn. Indeed, as can be seen in Figure 3.10b, the flicker generated by the VCO

cannot dominate the output if τc is greater than τn. This is not the case if τc is smaller than τn

as can be seen in Figure 3.10a. Resulting in a significant presence of the flicker which might lead

to overestimating the entropy of the source. As expressed in Equation (2.100), the critical time

τc depends on the noise levels h1 and h2 which are specific to the oscillator that constitutes the

VCO. It is therefore important that PLL designers bear this in mind in order to ensure, as far as

possible, the relationship τc > τn.

3.4.2.4 Lowering the jitter peaking

Section 3.4.2.1 highlighted a peak of the jitter in the neighborhood of the natural frequency ωn of

the PLL. This peak, slightly higher than the loop gain, implies that the jitter of any signal present

in this frequency range will be amplified, whether it comes from the input signal or from the VCO.

This will definitely affect the quality of the PLL output and thus yields some overestimation of

the entropy. To avoid this effect, it is preferable to lower the peaking as much as possible.

Although it is not easy to express the amplitude of this peaking, the literature on PLLs reveals

that this amplitude depends on the value of the damping factor ζ[81, Section 7.2.2] [172, Sec-

tion 2.2.4]. These theoretical results were confirmed by simulations using the model presented in

Section 3.2. Indeed, as can be seen in Figure 3.11, the smaller the damping factor, the greater

the amplitude of the peak. A logical deduction to reduce the amplitude of this peak as much as

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

109

possible would therefore be to increase the value of the depreciation factor as much as possible.

105 106 107

Frequency (rad/sec)

18

20

22

24

26

28

30

M
a
g
n

it
u

d
e

(d
B

)

ωn

jitter transfer

(a) Bode magnitude plot for M = 10, leading to ζ =
0.2062.

105 106

Frequency (rad/sec)

30

32

34

36

38

40

42

44

M
a
g
n

it
u

d
e

(d
B

)

ωn

jitter transfer

(b) Bode magnitude plot for M = 100, leading to ζ =
0.6521.

Figure 3.11: Effect of the damping factor on the jitter peaking.

The simulations carried out have shown that this peak is almost non-existent for ζ = 1. Thus, a

damping factor greater than 1 would already be acceptable. As illustrated in Equations (3.33) and

(3.34), this damping factor depends on several physical parameters to which only PLL designers

have access. On the design level of a TRNG, as a user of the PLL, the only accessible parameter

is the multiplication factor M. We can therefore assume the physical parameters set once and for

all, and look for the values of M for which we have a large damping factor.

An analysis of Equations (3.33) and (3.34) leads to the conclusion that large values of M would be

the most appropriate to avoid this jitter peaking. Using the values of the physical parameters in

Section 3.3, we obtain a near-zero peak for M Ê 138.

It should however be noted that a high value of M increases the response time of the PLL, and

therefore increases the risk of integrating a larger amount of flicker noise. Indeed, Equation 3.33

shows that an increase in the value of M leads to a decrease in ωn, and thus to an increase in

τn. If this increase of τn is not controlled, there is a significant risk of finding ourselves in the

situation τn > τc as shown in Figure 3.10a. We would then have an output signal impacted by

flicker noise as explained in Section 3.4.2.3.

Even if the jitter at the output of the PLL is bounded, as we will see in Section 3.4.4, it is imper-

ative to take into account this integration of the flicker noise in data at the output of the PLL.

Since it is a type of noise that we are trying to avoid, care should be taken to find a trade-off be-

tween the value of M and the relative position of τn and τc. However, this can be facilitated when

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

110

designing PLLs. Indeed, by choosing appropriate physical parameters, it is possible to reduce this

jitter peak, even with small values of M.

3.4.3 Types of noise at the output of the PLL

According to Section 3.4.1, the VCO is the main contributor to the noise at the output of the

PLL. Section 3.4.2 shows that when the noise comes from the VCO, only the fluctuations present

for frequencies higher than ωn are passed through. Hence, if we assume the condition τn < τc

verified, and we limit the entropy accumulation to times τ < τn, we can reasonably assume that

the output of the PLL is mainly composed of thermal noise. This conjecture is confirmed by the

results presented in Figure 3.6d, where simulated data shows that for any accumulation time

below τn, the noise at the output of the PLL can be considered as white noise (slope proportional

to
√

h2τ
−1/2 in Figure 3.6). Similar observations are also visible in the experimental data.

Beyond τn, we observe that the fluctuations at the output of the PLL follow a new slope, differ-

ent from that of white noise. This allows us to think of a modification of the nature of the white

noise under the action of the PLL for frequencies lower than ωn. Thus, in addition to attenuating

the signals present in the low frequencies, this fact suggests that the PLL changes their spectra,

and thus their natures. This observation does not contradict the theory, since Equation (A.26)

shows that the spectrum of the output signal from a LTI is not necessarily the same as that of

the corresponding input signal. This observation reinforces the conviction to confine oneself to

accumulation times lower than τn. If security requirements demand a longer accumulation time,

then ωn should be lowered so that the accumulation time is always smaller than τn.

However, it should be noted5 that with a small ωn, there is a significant risk of letting low-

frequency noise such as flicker noise pass through. Since we want to avoid integrating these

types of noise, a trade-off is needed, in order to have ωn small enough to accumulate enough

thermal noise at the output of the PLL, but high enough not to integrate flicker noise.

3.4.4 Bounded nature of the PLL noise

For generating random numbers, we are interested in the jitter, which is a fluctuation of the pe-

riod of a given signal from its nominal value. We know that this fluctuation in the period is due

to the influence of various electronic noises present in the device. Since, in reality, signals are ob-

served over time, we actually have access to an accumulation of these noises. This accumulation

results in a random walk if only the thermal noise is present. By its nature, random walk is not

5By comparing it with the Bode diagram in Figure 3.7.

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

111

stationary and can therefore take unbounded values.

However, if we consider a random walk in the VCO, because of the feedback from the PLL, we

can assume that the output noise will be bounded. Indeed, if it was not the case, the phase error

would increase indefinitely. This would be in contradiction with the principle of operation of the

PLL. This is demonstrated by Figure 3.12.

To obtain Figure 3.12a, we have retrieved a set of successive periods from the output signal of a

PLL. By making a cumulative sum to simulate the accumulation of the noise, we can see that the

noise at the output of the PLL looks like a bounded random walk. To confirm this observation,

we simulated a bounded random walk, as described in Listing 3.1. This bounded random walk

appears in green in Figure 3.12a. We can notice that the simulated noise behaves in a similar

way to the noise at the output of the PLL. This gives confidence that the noise at the output of the

PLL is bounded, otherwise it would behave similarly to the random walk represented in brown.

import numpy as np

def bounded_random_walk (sigma , bound , nbr) :

" " "

Function generating bounded random walk noise

Parameters

−−−−−−−−−−
sigma : f l o a t

Standard deviation (spread or " width ") o f the normal d is t r ibut ion .

Must be non−negative .

bound : f l o a t

Threshold of the bounded random walk .

Must be non−negative .

nbr : int

Number of steps of the bounded random walk .

Must be non−negative .

Returns

−−−−−−−
noise : ndarray

An array of the steps of the bounded random walk .

" " "

noise = [0]

for i in range (nbr) :

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

112

step = np . random . normal (scale=sigma)

while abs (noise [−1] + step) > bound :

step = np . random . normal (scale=sigma)

noise . append (noise [−1] + step)

return np . array (noise)

Listing 3.1: Generation of a bounded random walk using Python

0.0 0.2 0.4 0.6 0.8 1.0

number of periods ×105

−6

−4

−2

0

2

4

6

σ
(s

)

×10−10

experimental data
bounded random walk
random walk
noise envelope

(a) Simulated bounded random walk versus PLL experi-
mental data.

0.0 0.2 0.4 0.6 0.8 1.0

number of periods ×105

−6

−4

−2

0

2

4

6

σ
(s

)

×10−10

VCO noise
experimental data
output noise
noise envelope

(b) PLL model versus PLL experimental data.

Figure 3.12: Bounded accumulation of the jitter at the output of the PLL (obtained by making cumulative
periods).

These observations are also confirmed by the model of the PLL presented in Section 3.2.3. Indeed,

by simulating a random walk in the VCO, we can observe in Figure 3.12b that the output of the

PLL is bounded. It could thus be assumed that a random walk taking place within the VCO would

manifest itself as a bounded random walk at the output of the PLL.

3.5 Conclusion

In this chapter, we described the PLL in terms of transfer functions. This description allowed us

to study the behavior of the PLL as a source of randomness. By injecting phase fluctuations into

the different blocks of the PLL, the analysis of the output with the use of the time Allan variance

allowed us to confirm that the noise at the output of the PLL comes essentially from the VCO.

These simulation results are in agreement with the experiments conducted on the PLLs embed-

ded in FPGAs. These simulations show that if the entropy accumulation time is limited by the

inverse of the natural frequency of the PLL, it is reasonable to assume that the fluctuations at

the output of the PLL are white noise.

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

113

Hence, the quality of the phase fluctuations depends on the natural frequency of the PLL. The

lower this frequency, the longer the time during which we have a good quality of the jitter. A

smaller natural frequency allows the jitter to accumulate longer during the generation of random

numbers. We also observed that the jitter at the output of the PLL is bounded, thus limiting the

maximum level of entropy available at the output of the PLL. A thorough study of this character

is therefore recommended in order to deduce the values of these bounds. Finding them will make

it possible to evaluate the maximum entropy that the PLL can provide. This will allow designers

of PLL-based TRNGs to focus on parameters that ensure an optimal entropy rate as we will see

in Chapter 4.

CHAPTER 3. PHASE-LOCKED LOOPS AS SOURCES OF RANDOMNESS

114

Résumé

Les boucles à verrouillage de phase (abrégé en PLL, de l’anglais Phase-Locked Loop) sont des com-

posants électroniques utilisés dans les circuit logiques principalement pour générer des signaux

d’horloge. Afin de générer des nombres aléatoires propres à être utilisés en cryptographie, il est

exigé entre autre que la source d’aléa soit robuste face aux tentatives de manipulations. Or il se

trouve que les PLLs sont isolées, d’un point de vue physique et électrique, des autres composants

des circuit logiques. Cette isolation de la PLL la rend moins sensible aux interférences que pour-

raient causer les autres composants. Ceci en fait un composant dont le fonctionnement est difficile

à perturber. De plus, son système de contrôle lui permet de se déverrouiller en présence de fluc-

tuations trop importantes pouvant survenir au niveau de son signal d’entrée. À cela s’ajoute

la capacité de la PLL d’assurer une relation rationnelle préalablement définie entre les signaux

d’entrée et de sortie.

Dans ce chapitre, nous nous proposons d’étudier de la PLL et d’évaluer ses propriétes relatives

au bruit. Pour cela, nous établissons un modèle en fonctions de transfert des PLLs présents dans

les FPGAs que nous utilisons. A partir de ce modèle, nous confirmons que le bruit en sortie de la

PLL provient de son oscillateur commandé en tension (VCO). Nous déterminons également le type

dominant du bruit en sortie de la PLL en fonction du temps d’accumulation du jitter. Ceci a permis

de fixer un temps maximal d’accumulation garantissant la domination du bruit blanc en sortie

de la PLL. Ces résultats ont été obtenus grâce à l’utilisation de la variance temporelle d’Allan

présentée dans le chapitre 2. Nous mettons également en évidence le caractère borné du jitter

en sortie de la PLL, dû en partie à la contre-réaction de la PLL. Ce fait pourrait servir à estimer

l’entropie maximale à laquelle on peut s’attendre en sortie de la PLL. Toutes ces propriétés de

la PLL en font un bon candidat pour être une source d’aléa lors de la génération des nombres

aléatoires. A cet effet, nous verrons dans le chapitre 4 qu’un TRNG basé sur les PLLs répond aux

exigences de la DGA-MI.

115

Chapter 4

Design of a certifiable PLL-based TRNG

Contents

4.1 Principle of a PLL-based TRNG . 116

4.2 Illustration of the DGA-MI approach on PLL-based TRNG . 120

4.2.1 Entities of a generator . 121

4.2.2 Evaluation of the physical noise source . 123

4.2.3 Evaluation of the randomness harvester . 126

4.3 Optimal configurations for a PLL-based TRNG . 127

4.3.1 Statement of the problem . 128

4.3.2 Search of PLL-TRNG configurations . 131

4.3.3 Experimental results . 134

4.4 Conclusion . 138

True random number generators that use phase-locked loops (PLLs) as source of randomness have

proved to be of great interest [82]. Construction of such TRNGs can be formalized using stochastic

models [92], making it certifiable by certification bodies. Because of the availability of PLLs in

most FPGAs, the implementation of PLL-based TRNGs can be considered as low cost compared

to TRNGs based on other sources of randomness. Moreover, PLLs are physically isolated from the

rest of the FPGA, making them less sensitive to the logic implemented in the FPGA and cross-

talks. All these illustrates the suitability of the implementation of PLL-based TRNGs. However,

stochastic models use assumptions, some of which could not be verified, particularly because

the PLLs are considered as black boxes. In this chapter, we will present the general concept of

a TRNG based on PLLs. We will present the certification approach recommended by DGA-MI

and illustrate it with the principle based on PLLs. For this purpose, we will use the results of

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

116

Chapter 3. This illustration will lead us to a method aimed at optimizing parameters of the PLL

in the context of random number generation.

4.1 Principle of a PLL-based TRNG

In FPGAs, free-running oscillators are implemented in FPGA fabric, while PLLs are hardwired

in a physically isolated region, in which the impact of processes running in the FPGA fabric is

significantly reduced. This is considered to be the main advantage of implementing PLL-TRNG

in FPGAs. Its simple and comprehensive design based on the use of one [82, 186, 85] or two PLLs

[71], the availability of the stochastic model [92] and dedicated tests [187] are other important

advantages. Moreover, the use of PLL ensures good stability and repeatability of results in differ-

ent devices in time, and in large ranges of temperatures and power supply voltages.

The generation of random numbers using the jitter of the PLL was first suggested by Fischer and

Drutarovsky [82]. In this type of generators, the source of randomness used is the phase difference

between the reference clock (ideally not jittered) and the (jittered) clock signal produced by the

PLL. As we have seen in Section 3.4.4, the operation of the PLL ensures that this tracking jitter

is bounded and depends on the parameters of the PLL. The functionality of such generators is

based on coherent sampling through which it produces sequences of random bits [64]. In this type

of generators, the PLL is expected to ensure the followings:

• having a random jitter exclusively coming from internal electronic components of the PLL,

especially the VCO;

• having a rational relationship between input and output frequencies, that is guaranteed by

the locking property of the PLL in such way that:

fcl j = KM

KD
fclk, (4.1)

where KM and KD are respectively multiplication and divisor factors of the PLL1.

As depicted in Figure 4.1, a general PLL-based TRNG is made of a PLL, a D-flip flop (DFF) and a

1-bit counter. To generate random numbers, the output clock signal cl j of the PLL is sampled via

the D input of DFF, using a reference clock signal clk. The output of the flip-flop is then directed

to the ena input of the 1-bit counter. Its role, as its name indicates, is to count samples for which

the logic value is 1 for a specified time period2 TQ := KD ×Tclk, where Tclk is the period of the

1Note that the design of a PLL-based TRNG does not consider the fractional mode of PLL operation, in which multiplication and
division factors can take real values, since signals generated in this mode can feature a deterministic jitter caused by the operation
of the Delta sigma modulator [188, 189].

2TQ is the period of the regular pattern, which would appear at the sampler’s output without the presence of noises.

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

117

signal clk. The PLL property expressed in Equation (4.1) yields:

TQ = KD ×Tclk = KM ×Tcl j. (4.2)

The final value of the counter is the random output bit of the generator. The counter value is

then reset to 0 for a new count cycle of KD reference clock periods. One should pay attention to

the fact that a counting period equal to integer multiples of KD reference clock periods causes the

appearance of a repetitive pattern that should be avoided.

PLL D

clk

Q 1-bit counter

clk cl j

ena
output

Figure 4.1: PLL-based TRNG.

An illustration of this situation is shown in Figure 4.2. There, one can see an example of input/out-

put timing diagrams of the PLL-based generator in which the multiplication factor is KM = 5 and

the division factor is KD = 7. The consequence of such values for KM and KD is that the input clock

clk displays 7 rising edges while the output clock signal has 5 for a time period TQ = KD ×Tclk.

Analysis of these diagrams yields the followings:

• two of the rising edges of clk occur when cl j is in the high state (samples 3 and 6),

• two other rising edges of clk occur when cl j is in a low state (samples 1 and 4),

• the three other rising edges occur when cl j is in an instable region, where there is a nonzero

probability of it being either at a high or low state (samples 0,2 and 5).

The positions of the seven samples is repeated for each new period TQ causing the appearance of

a repetitive pattern with few unstable bits at the output of the D flip-flop. This pattern can be

removed by XOR-ing KD samples in the decimator, which is equivalent to taking the least sig-

nificant bit of the counter value [82]. Through this operation, one can guarantee a pattern-free

random output when using a PLL-based TRNG.

Thanks to this principle and the operation of the PLL, one can easily perform a coherent sam-

pling of the signal cl j, enabling to observe the tracking jitter through waveform reconstruction

as illustrated in Figure 4.3. In the case where KM and KD relatively prime, this reconstruction

is done by reordering the KD samples obtained during the time period TQ , based on the following

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

118

cl j

clk

Tclk

0

Tclk

1

Tclk

2

Tclk

3

Tclk

4

Tclk

5

Tclk

6

Tclk

0

Tclk

1

TQ = KM ×Tcl j = KD ×Tclk

Figure 4.2: Example of input/output signals diagram in a PLL (KM = 5 and KD = 7).

equation [92]:

j = (i×KM) mod KD , (4.3)

where i is time index of the sample, and j is its index in the reconstructed waveform.

sampling
signal

sampled
signal

reconstructed
waveform

Figure 4.3: Waveform reconstruction by coherent sampling (KM = 5 and KD = 7).

When KD is odd, in addition of being relatively prime with KM , it is possible to define the gener-

ator bit rate as [82]:

R := T−1
Q = fclk

KD
, (4.4)

and its sensitivity to jitter as:

S := fcl j ×KD = fclk ×KM . (4.5)

The sensitivity to jitter expresses how likely a sample will be affected by the jitter. It characterizes

the jitter and parameters of the generator. It therefore has a direct impact on the entropy rate

per bit at the generator output [66]. Since the PLL-based generator works with the principle of

consistent sampling, the samples are evenly spaced. So we can define the distance between two

consecutive samples as:

∆ := Tcl j

KD
= 1

fcl j ×KD
. (4.6)

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

119

From equations (4.5) and (4.6), one can deduce that this distance is inversely proportional to the

sensitivity to the jitter.

In order to obtain random numbers at the output of a PLL-TRNG, it is necessary that at least

one sample is affected by the jitter. This requires that the distance between any edge of clk and

its corresponding edge on cl j is less than ∆. This condition is met if the following condition holds

[71]:

σ jit > max(∆Tmin) , (4.7)

where σ jit is the standard deviation of the jitter at the output of the PLL, and max(∆Tmin) is the

largest distance between the two closest edges of both clk and cl j. This can be computed as [71]:

max(∆Tmin) = Tclk

4KM
gcd(2KM ,KD) = Tcl j

4KD
gcd(2KM ,KD) , (4.8)

where gcd is the greatest common divisor of two integers.

When designing a TRNG based on PLLs, it is therefore necessary to take into consideration the

requirement expressed by Equation 4.7. Indeed, it sets the condition under which one can expect

that each generated bit is random. However, some technologies make this condition hard to meet

[71], thus compromising the security of cryptographic constructions. For this reason, the principle

was adapted to the use of two PLLs rather than just one.

In order to design a generator using two PLLs, it is possible to connect these PLLs in series (as

shown in Figure 4.4) or in parallel (as shown in Figure 4.5). The use of this design allows Equa-

tion (4.7) to be verified on most hardware technologies. In addition, it significantly increases the

throughput and sensitivity to the jitter of the generator. It offers more flexibility to designers for

the choice of the multiplication and division factors of the PLLs.

PLL0 PLL1 D

clk

Q 1-bit counter

clk cl j

ena
output

Figure 4.4: PLL-TRNG with two PLLs in series.

As in the case of TRNG based on one PLL, multiplication and division coefficients can be defined

for TRNGs based on two PLLs. For consistency, they are respectively denoted as KM and KD .

These coefficients depend on individual coefficients KMi and KD i of each PLL, but also on the

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

120

PLL1

PLL0

D

clk

Q 1-bit counter

clk s1

s0

ena
output

Figure 4.5: PLL-TRNG with two PLLs in parallel.

arrangement of the PLLs. Thus, for a series arrangement as in Figure 4.4, we have:

KM = KM0 ·KM1 , (4.9)

and

KD = KD0 ·KD1 , (4.10)

whereas for a parallel arrangement as in Figure 4.5, we have:

KM = KM1 ·KD0 , (4.11)

and

KD = KM0 ·KD1 . (4.12)

Although both cases (PLLs in series or in parallel) yield an increase of the KM and KD coefficients,

they greatly differ in terms of the variance of the resulting jitter [71]. For a serial connection, the

jitter introduced by PLL0 is filtered by PLL1, which is clearly not the case in the connection of

the two PLLs in parallel. Therefore, the parallel configuration produces a larger relative jitter

between the output signal of the two PLLs. For this reason, the parallel configuration of a PLL-

based generator is preferred to its serial version. Therefore, we will only consider the design of

PLL-based TRNGs that use two parallel PLLs.

4.2 Illustration of the DGA-MI approach on PLL-based TRNG

Within the framework of the randomness task group3, DGA-MI proposed an approach for the

evaluation of TRNGs. This approach is essentially based on the AIS-31, but aims to take the

analysis of the generator components much further than AIS-31 does. The goal of this approach

is not to replace AIS-31, but rather to complement it for the evaluation of systems with high se-

curity requirements, such as military and governmental systems.

In order to ensure the feasibility of this approach, David Lubicz illustrated the principle of the

elementary generator based on ring oscillators. However, not all state-of-the-art generators use
3Group working on the security of true random number generators. It includes the DGA-MI and the Hubert Curien Laboratory

among its members.

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

121

ring oscillators. To avoid imposing a particular type of generator, and thus limiting the choice

of designers, it is therefore necessary to show that this approach can also be applied to another

generator principle. In this section, we will illustrate the approach by the generator based on

PLLs.

4.2.1 Entities of a generator

From the point of view of the DGA-MI, a TRNG is a physical device characterized by the internal

state E of its noise source (which is a function of time with values in phase space V) and which

produces binary sequences whose term values are determined by the knowledge of the internal

state E. This definition of the TRNG implies that any change in its internal state affects the

overall behavior of the generator.

In the case of the PLL-based generator, the phase space can be considered as V = [0,T1) [92]. The

internal state is then the function of the time variable t, defined by:

E(t) = t+ϕ0 mod T1, (4.13)

where ϕ0 is the initial phase between the signals s0 and s1 in Figure 4.5.

In this approach, an TRNG can be decomposed into four parts called generator entities. Each of

these entities will have to be evaluated on the basis of requirements provided by this method.

It is important to remember that this evaluation can only be done by a competent institution,

approved by a certification body, ANSSI for example. Note that it is possible to end up in a

situation where each entity of the TRNG is respectively evaluated by a different institution. In

order to avoid language discrepancies, the DGA-MI has proposed a vocabulary to be used by the

different institutions involved in the evaluation of the generator. We briefly present these four

entities while remaining faithful to the vocabulary used by DGA-MI.

4.2.1.1 Physical noise source

Any device producing a noisy signal based on a random physical phenomenon is called a noise

sub-source. The physical noise source of a TRNG is the set of all noise sub-sources present in that

generator. Since the purpose of a TRNG is to produce unpredictable sequence of bits, it follows

that the operating principle of a random number generator must be based on the signal produced

by the analog noise source. Therefore, an incorrect identification of noise sub-sources would pre-

vent the signal produced by the noise source from being properly characterized. This can weaken

the security of the generator, hence the importance of identifying the different secondary noise

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

122

sources, as well as the signals produced by each of its secondary sources, as required by the DGA-

MI.

In the case of a generator based on PLLs as shown in Figure 4.5, each PLL is a noise sub-source.

Although it is possible to consider the reference signal as coming from a crystal oscillator, the

oscillator producing the reference signal is also a noise sub-source. The physical noise source

therefore consists of the two PLLs and the oscillator producing the reference signal. Remember

that the use of a single reference signal for the two PLLs is imposed by the differential principle

in order to minimize the influence of global phenomena on generated bits.

4.2.1.2 Randomness harvester

The randomness harvester, as we saw in Section 1.1.2.2, is the generator entity responsible for

transforming the analog signal of the physical noise source into a binary signal with the maxi-

mum entropy rate per bit. Its principle of operation is deterministic and should not contain any

shadow area. Therefore, the DGA-MI approach requires that the components of the randomness

harvester are identified.

In the case of the TRNG based on PLLs, the randomness harvester consists of the D flip-flop and

the 1-bit counter.

4.2.1.3 Post-processing block

The post-processing consists in the implementation of an algorithm that does not reduce the en-

tropy rate per bit. It is located after the randomness harvester and aims at improving the statis-

tical quality of the bits produced by the generator. Its presence is not mandatory, because if the

statistical properties of the bitstream are satisfactory, the post-processing block can be ignored.

However, if it is present, it is mandatory to identify it.

The PLL-based TRNG does not use any post-processing block.

4.2.1.4 Embedded tests

Embedded tests are algorithms implemented in the hardware, whose purpose is to ensure the

proper functioning of the generator. These tests can be divided into two categories:

• start-up tests, which are carried out when the generator is started;

• online tests, which continuously monitor the behavior of the generator during its operation.

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

123

These tests are compulsory, and it is required that they are identified by the designers of the

TRNGs.

It is possible to design several embedded tests (at startup, as well as online) for the PLL-based

generator. We will detail them in Sections 4.2.2 and 4.2.3.

4.2.2 Evaluation of the physical noise source

In order to assess the physical noise source, it is necessary to identify the physical phenomena

that cause the random behavior of the generated sequences of bits. A wrong identification, or

unverified hypothesis on the composition of these phenomena could have bad consequences on

the security of the generator, and thus on the security of cryptographic constructions using this

generator. Given this observation, the DGA-MI requires that the various physical phenomena

responsible for the random nature of the output of TRNGs are identified.

In the case of the generator based on PLLs, we need to use a very stable reference signal, such

as that from a crystal oscillator. This will avoid low-frequency fluctuations of the input signal to

be reflected in the PLL output signal as detailed in Section 3.4.2.3. With this condition, we can

ensure that phase fluctuations in the output signal of the PLL come from the VCO. The accumu-

lation time τ should not exceed τn in order to avoid having at the output of the PLL a denatured

signal that does not necessarily respect the hypotheses and is difficult to characterize (see Sec-

tion 3.4.2). When designing the PLL, its parameters should be chosen such that the condition

τn < τc is met. Proceeding that way, Section 3.4.2.3 shows that flicker noise present in the VCO

will not appear at the output of the PLL. Under the above-mentioned conditions, it is reasonable

to consider that the thermal noise from the VCOs of the two PLLs are the physical phenomena

responsible for the randomness of the generator’s output.

The identification of the phenomena occurring in the noise source is not sufficient to characterize

and assess this source. A stochastic model describing the evolution of the internal state E is also

needed. As stated in the DGA-MI approach, this model is a function of the time variable t, with

values in phase space V . Because it is supposed to take into account the various information

available to an observer, it is expressed in the form of a conditional probability similar to:

P
(
E(t)|p1, · · · , pn,E(t0)

)
, (4.14)

where t > t0, and p1, p2, · · · , pn are the parameters of the physical noise source and E(t0) repre-

sents the initial configuration of the internal state. The parameters pi correspond to the descrip-

tion of the physical environment of the generator (temperature, power supply, etc), but also to the

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

124

physical properties of the chip on which the generator is integrated.

The physical parameters of the PLL-based generator are the initial phase ϕ0, the standard devi-

ation σ of the white noise coming from the VCO and the duty cycle α of the PLL output signal.

According to the DGA approach, it is not excluded that these parameters and E(t0) are known to

the adversary. However, it is important that he cannot manipulate them beyond certain limits

that ensure proper operation of the generator. It may therefore be possible to design an online

test detecting abnormal manipulations of these parameters.

Note that in the case of the generator based on PLLs, an abnormal manipulation of these parame-

ters would yield too high phase fluctuations for the PLL to synchronize with the input signal. This

would automatically lead to a loss of the PLL lock as discussed in Section 3.1.1. An online test

checking whether the PLLs are locked would therefore prevent the opponent from compromising

the security of the generator, since a loss of lock would generate an alarm.

The model of the physical noise source, denoted M(t, p1, p2, · · · , pn), requires a detailed study and

understanding of the phenomena occurring in the physical noise source. Therefore, the physical

noise source model is the only way to ensure that the generator behaves as expected and provides

the required entropy rate. This explains why DGA-MI requires the availability of a stochastic

physical noise source model.

This requirement of the DGA-MI approach is also met by the PLL-based generator. Indeed,

Bernard et al. have proposed a model of the physical noise source of the PLL-based generator

[92]. Moreover, the PLL modeling in terms of transfer function carried out in Chapter 3 provides

a way to simulate the evolution of the PLL output noise over time. Based on the model of Bernard

et al. and results from Chapter 3, we can say that noise at the output of the PLL is a bounded

random walk of parameters p1 =ϕ0, p2 =σ, p3 =α and p4 = b, where b is the bound on the noise

amplitude at the output of the the PLL. The physical model of a PLL-based TRNG can then be

summarized as:

M(t, p1, p2, p3, p4) = N
(
∆t,min

(
b,
p
∆tσ

))
. (4.15)

In order to use the model M(t, p1, p2, ..., pn), it is necessary to provide the values of the physical

parameters. The DGA-MI therefore requires the possibility that these parameters can be evalu-

ated experimentally, while specifying the errors committed for each estimate.

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

125

To evaluate these parameters, we privilege embedded methods. Indeed, the physical parameters

of the PLL-TRNG are:

• the initial phase ϕ0, which is quite difficult to evaluate;

• the standard deviation σ of thermal noise from the VCO, which can be related to the number

of unstable samples;

• the duty cycle α, which can be approximated by the ratio of the number of samples that are

in the logical state 1 over KD ,

• the bound b which remains to be mathematically expressed appears to be constant for the

PLLs used.

Thus, apart from the initial phase, it is possible to evaluate the physical parameters using em-

bedded methods. In order to overcome the difficulty raised by the evaluation of ϕ0, it is possible

to adopt a conservative approach. This approach consists in taking the value of ϕ0 which leads

to the smallest entropy. An estimation based on this value will then ensure that the required

entropy rate is met regardless of the value of ϕ0. And since the model gives us ϕ0 = ∆

2
as the

value associated to the smallest entropy, we can ignore the real value of ϕ0 without compromising

the security of the generator.

In view of the importance of the physical parameters of the noise source, and the impact of their

values on the estimation of the entropy rate, the DGA-MI requires that their stability must be

evaluated in relation to the:

• physical operating conditions of the generator: temperature, power supply, electromagnetic

radiation, etc;

• technological environment of the generator: type of the chip, generator isolated or in the

presence of other modules, etc;

• aging effects.

The technical documentation of the PLL guarantees good parameter stability over a wide temper-

ature range (between −55 and 125◦C) [190]. By default, the PLLs are isolated from the other logic

elements of the board in order to reduce their impact on the operation of the PLL. It is therefore

reasonable to assume that the PLL would always be isolated on the chip. These elements suggest

that the various physical parameters of the source would be stable under the PLL’s operating

conditions. However, we did not investigate this aspect further. More in-depth studies are thus to

be planned for the future in order to confirm these conjectures.

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

126

4.2.3 Evaluation of the randomness harvester

Since the randomness harvester converts the phases of the noise source, we can say that it is

a deterministic function of the internal state of the generator. Therefore, it should be possible

to describe its principle of operation and establish a model of the generator (including the noise

source and the randomness harvester). Such a model, according to the DGA-MI approach, is a

stochastic model N(t, p1, p2, · · · , pn, q1, q2, · · · , qm) with values in the set of binary sequences of

arbitrary lengths. The parameters t, p1, p2, · · · , pn are those of the model M(t, p1, p2, ..., pn) of the

physical noise source, while q1, q2, · · · , qm are the generator parameters. It is permitted for some

of the parameters qi to be adjustable when designing the generator, however, they should not be

manipulable by an adversary.

In the case of a generator based on the PLLs, the parameters of the generator are the multiplica-

tion and division factors KM and KD .

Since a generator that meets the various requirements mentioned above can be described by a

stochastic model, DGA-MI demands that TRNG designers must provide the stochastic model of

the generator.

In the case of a generator based on PLLs, the stochastic model describing the probable output of

the logic level X i, of the bit at the output of the entropy collector at time i×T0, is [92]:

P(X i = 1) = P(ϕi <αT1)−P(ϕi < 0)+1−P(ϕi < T1). (4.16)

To reduce the statistical defects at the generator output (bias, correlation, etc), DGA-MI requires

that the parameters qi of the TRNG model must be adjustable in order to have the best possible

configurations.

As mentioned above, these parameters in the case of a PLL-TRNG are KM and KD . They depend

on the multiplication and division coefficients M, N,C and Pvco of the two PLLs. These coeffi-

cients, as we saw in Chapter 3, are adjustable. As a consequence, the parameters KM and KD are

also adjustable. According to Section 3.4.2.4, an optimal value of KM should be greater than 138 in

order to increase the damping factor and thus lower the jitter peaking. Since KM is proportional

to M0 and M1 according to Equation (4.11), it follows that at least M0 or M1 should be large. This

carries a non-negligible risk of integrating flicker noise. A compromise should therefore be sought

in order to have a high damping factor and a low risk of flicker noise integration. Furthermore,

the differential principle requires that the two PLLs have similar configurations, i.e. M0 ' M1,

N0 ' N1 and C0 ' C1. All these constraints show that the search for optimal parameters is not

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

127

an easy task. Fortunately, TRNGs based on PLLs have methods for finding these parameters,

making it easier for designers. We will discuss this in more detail in Section 4.3.

To make sure that values of these parameters are in the region of sufficient entropy, tests can be

developed to check their values. These types of tests are referred to as parametric tests in the

DGA-MI evaluation approach, which requires that these tests must be run at generator start-up

and during operation.

This requirement stipulates that the parametric tests must monitor the entropy source to en-

sure sufficient entropy at the generator output. In the case of the generator based on PLLs, the

stochastic model developed by Bernard et al. allows the entropy to be expressed as an increasing

and continuous function of the variance σ2 of the jitter. Thus, for a minimum entropy threshold

Hmin (of 0.997 as required by the AIS-31 for example), it is possible to determine the value σ2
min

of the variance corresponding to the required entropy threshold. It is then possible to design an

embedded test that regularly computes the variance σ2 and compares it with σ2
min. A value of σ2

less than σ2
min would then indicate insufficient entropy and generate an alarm.

In addition to parametric tests, it is possible to consider tests verifying the integrity of the ran-

domness harvester. Tests in this category are called deterministic tests in the DGA-MI approach.

This name is justified by the fact that the randomness harvester associates in a deterministic way

the internal state of the entropy source with the output bit of the generator. The DGA-MI requires

that such tests are available to ensure the proper functioning of the randomness harvester.

In the case of the PLL-based generator, it is possible to validate the behavior of the randomness

harvester by feeding it with known binary sequences and checking whether the output corre-

sponds to what is expected. Of course, this test cannot be done while the generator is running.

Instead, it can be set up to start at startup using a multiplexer. In this scenario, the known se-

quence will be sent, and in case the test validates the operation of the randomness harvester, the

multiplexer will switch to the signals coming from the PLLs.

4.3 Optimal configurations for a PLL-based TRNG

From discussions made in Chapter 3 and Section 4.1, one can see that a TRNG based on PLLs is

an interesting construction for guaranteeing production of genuinely random numbers. However,

bringing it to good performance is a hard task, mainly because of its large number of parameters

to tune. Indeed, finding a suitable set of parameters that satisfy the throughput and entropy

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

128

requirements for a given application can easily become very complicated. To achieve this goal, we

suggest in this section, a bounded exhaustive search procedure that determines the parameters

that ensure optimal performance of a PLL-based TRNG. Compared to a prior method, based on

genetic algorithms [191], the proposed method has several advantages that will be discussed

below.

4.3.1 Statement of the problem

In the design process of a PLL-based TRNG, three groups of constraints should be identified and

respected. The first group is related to physical constraints of the PLL, namely minimum and

maximum frequencies for the inputs and outputs of its functional blocks, and allowed intervals of

division factors [188, 189]. The second group of constraints concerns settings of the TRNG [82].

The third group is related to the system requirements, namely the minimum throughput and the

entropy [66].

We know from Section 4.1, that the operation of a PLL-TRNG is based on the coherent sampling

principle. Application of this principle is guaranteed by the operation of the PLL which links the

input frequency to its output frequency as specified in Equation (4.1), with KM and KD coprime.

The value of the frequency multiplication and division factors KM and KD highly depends on the

PLL configurations. Hence, their values are different for a TRNG based on one PLL and a TRNG

based on two PLLs.

The objective of the designer is to set the parameters of the PLL(s) in order to obtain (depending

on application requirements) sufficient entropy and bit rate at the generator output. When setting

the parameters of the PLL, the designer must also fulfill hardware requirements of the hardwired

PLL circuitry.

4.3.1.1 General structure of the PLL and its configuration

We recall that the general structure of a PLL can be summarized as a block diagram depicted in

Figure 4.6. Blue blocks cannot be parameterized, as discussed in Chapter 3. They are adjusted

once and for all during the design of the PLL according to the desired noise properties. However,

the M, N,C and Pvco are the multiplication and division coefficients, in white blocks, that are pa-

rameterized by the TRNG designer. This therefore enables to configure the PLL by setting these

coefficients while strictly respecting relationships between individual blocks. These relationships

specify permitted ranges of their input/output frequencies and permitted ranges of coefficients,

which are specified in the technical documentation of the PLL block [188].

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

129

PFD÷N CP LF VCO ÷Pvco ÷C

÷M

fclk f i

Figure 4.6: PLL block diagram (PFD: phase-frequency detector, CP: charge pump, LF: loop filter, VCO:
voltage-controlled oscillator, fclk: input frequency, f i: output frequency of PLLi, i = 0,1).

A set of values of these multiplication and division coefficients constitute what we call a PLL con-

figuration. Thus, finding an optimal PLL configuration is equivalent to finding values of M, N,C

and Pvco that guarantee optimal operation of a PLL-based TRNG. Because each PLL has its own

multiplication and division coefficients (if two PLLs are used), we will designate in the following

by Mi, Ni and Ci those related to PLLi. Thus, the multiplication and division factors of PLLi will

be written:

KMi = Mi and KD i = Ni ·Ci. (4.17)

When considering the architecture of a PLL-based TRNG using two PLLs as in Figure 4.5, the

multiplication and division factors are:

KM = KM1 ·KD0 = M1 ·N0 ·C0, (4.18)

and

KD = KM0 ·KD1 = M0 ·N1 ·C1. (4.19)

Because s0 is the sampling signal in the architecture of Figure 4.5, the throughput
(
expressed in

Mbit ·s−1)
can be computed as4:

R = f0

KD
= fclk

N0 ×C0 ×N1 ×C1
, (4.20)

since:

f i = Mi

Ni ·Ci
fclk, (4.21)

for i ∈ {0,1}. Likewise, the sensitivity to jitter
(
expressed in µs−1)

, can be computed as5:

S = KD × f1 = M0 ×M1 × fclk, (4.22)

where frequencies are expressed in MHz.

4It can be noted from the Equation (4.20) that the throughput depends only on the division factors of the two PLLs. Thus, in
order to have high throughput, it is necessary that these factors are as low as possible. On the other hand, taking small division
factors would greatly reduce the frequency range of the input signal. In the case where the designer does not have much freedom in
the choice of the input frequency, certain constraints would have to be loosened in order to ensure the proper functioning of the PLL.

5Equation (4.22) shows that the larger M0 and M1 are, the higher the sensitivity to jitter is. This results in a higher entropy
rate per bit at the output of the generator. On the other hand, Section 3.4.2.4 shows that the jitter peaking in the neighborhood of
the natural frequency of the PLL decreases as M increases. It is therefore tempting to increase the values of M0 and M1. However,
Section 3.4.2.4 shows that for large values of M1 and M2, the risk of integrating flicker noise is greater. It is therefore necessary to
find a trade-off on the values of M1 and M2 in order to have the best entropy rate per bit while keeping the risk of integrating flicker
noise low.

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

130

In addition, for each PLL, the frequencies of the internal signals are related to each other. Thus,

for PLL i, one can express the output frequency fPFD of the phase-frequency detector as:

fPFD i =
fclk

Ni
. (4.23)

The output frequency of the VCO is related to that of the PFD by:

fV COi = Mi ×PV COi × fPFD i , (4.24)

and the output frequency is:

f i =
Mi

Ci
× fPFD i . (4.25)

Knowing the relationships between PLL configurations and generator constraints, we can now

state the problem to be solved.

4.3.1.2 Problem to solve

When designing TRNGs, one of the main challenges faced by designers is the selection of feasible

configurations in the hardware for which security and performance constraints are met. In other

words, it means finding:

• all the feasible configurations6 of the two PLLs;

• among feasible configurations, those that satisfy security (e.g. entropy rate evaluated from

the model as specified in AIS-31 recommendations [24]) and/or performance of the target

application.

The first step in this process is to find values of Mi, Ni,Ci satisfying Equations (4.18) to (4.25),

that are constrained by the following inequalities:



Mmin É Mi É Mmax

Nmin É Ni É Nmax

Cmin É Ci É Cmax

fPFDmin É fPFD i É fPFDmax

fV COmin É fV COi É fV COmax

foutmin É fouti É foutmax ,

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

where Mmin, Nmin, Cmin, Mmax, Nmax and Cmax are positive integers, and fPFDmin , fPFDmax ,

fV COmin , fV COmax , foutmin and foutmax are positive real numbers, which represent hardware limita-

tions of the PLL given by manufacturers.

6Configurations that meet frequency ranges of individual PLL blocks. They therefore fulfill hardware constraints of the technical
documentation of the PLL.

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

131

In our experiments, we considered PLL-based TRNGs implemented in three different FPGA fam-

ilies: Intel Cyclone V [188], Xilinx Spartan-6 [189] and Microsemi SmartFusion®2 FPGAs [192].

Table 4.1 gives the hardware restrictions for the selected FPGA families.

Parameter Cyclone V Spartan-6 SmartFusion®2

Min Max Min Max Min Max

fclk (MHz) 5 500 19 540 1 200

PV COi 1 2 1 1 1 32

Ni 1 512 1 52 1 16384

Mi 1 512 1 64 1 4194304

Ci 1 512 1 128 1 255

fPFD i (MHz) 5 325 19 500 1 200

fV COi (MHz) 600 1300 400 1080 500 1000

fouti (MHz) 0 460 3.125 400 20 400

Table 4.1: PLL specifications of selected FPGA families.

Once the configurations that are feasible in hardware are found, the designer needs to filter out

those that do not attain the required entropy rate and/or sufficient throughput depending on the

application objectives and constraints, according to Equations (4.20) and (4.22). The stochastic

model of the PLL-based TRNGs [92] can be used to provide thresholds for these parameters,

which are necessary to obtain the suitable configurations out of all the feasible ones.

4.3.2 Search of PLL-TRNG configurations

The problem of finding PLL-TRNG parameters is not a new one. Indeed, the original article

proposing this TRNG architecture adopted an "expert input" choice of parameters for the PLL

[82]. However, as its name indicates, this methods requires some level of expertize, with no

guarantee to find optimal configurations. This requirement prevents anyone who does not have

experience in designing PLL-TRNGs to find suitable parameters. Moreover, due to the size of the

parameters space, this approach might give good results but will probably miss better configu-

rations available. Petura et al. therefore questioned this "expert input" approach and derive the

parameters of the PLL-TRNG using a genetic algorithm [66, 191]. This new method was indeed

able to find better configurations than previously known, having better throughput and entropy.

However, since the genetic algorithm finds only locally optimal solutions, which depends on start-

ing values of parameters of the genetic algorithm selected randomly, it was never sure that the

solution found is the best one.

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

132

We have investigated this subject further to find an analytical method. The proposed method

consists in deriving, for each parameter, the exact bounds based on physical constraints specified

in Section 4.3.1.

4.3.2.1 Search of all feasible configurations

To find all feasible configurations, the first naive approach could be to perform an exhaustive

search on the PLL design space and save configurations that satisfy hardware constraints. Due

to the huge number of possible configurations, it is not reasonable to process this way. The im-

provement we suggest consists in a depth-first search strategy, which is basically a sequential

search of all values of Mi, Ni and Ci that lead to feasible configurations of the two PLLs.

This method assumes that fclk is given by the designer whose responsibility is to ensure that this

value is between fclkmin and fclkmax defined in Table 4.1. Then, for each value of PV COi , we proceed

as follows.

1. From Equation (4.23), one can see that if fclk is given, then Ni is the only variable for which

the value has to be found. That value can actually be computed as:

Ni = fclk

fPFD i

, (4.32)

which provides new bounds for N:

Nmini É Ni É Nmaxi , (4.33)

where:

Nmini = max
(
Nmin,

⌈
fclk

fPFDmax

⌉)
(4.34)

and:

Nmaxi = min
(
Nmax,

⌊
fclk

fPFDmin

⌋)
. (4.35)

Note that Nmaxi −Nmini É Nmax−Nmin, showing that the range for searching Ni is reduced.

2. Equations (4.23) and (4.24) allow to express fV COi as a function of fclk, Ni and Mi. Hence,

for given values of fclk and Ni, it is possible to find all the values of Mi using:

Mi = Ni · fV COi

fclk ·PV COi

, (4.36)

where fV COi is the only variable value, yielding new bounds for Mi:

Mmini É Mi É Mmaxi , (4.37)

where:

Mmini = max
(
Mmin,

⌈ Ni · fV COmin

fclk ·PV COi

⌉)
(4.38)

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

133

and:

Mmaxi = min
(
Mmax,

⌊ Ni · fV COmax

fclk ·PV COi

⌋)
. (4.39)

3. In a way similar to the second step, one can assume fclk, Ni and Mi known. Therefore,

Equation (4.25) helps to find the values of Ci:

Ci =
fclk ·Mi

Ni · f i
. (4.40)

Knowing that all values are given except for fouti which ranges from foutmin to foutmax , it

follows that:

Cmini É Ci É Cmaxi , (4.41)

where:

Cmini = max
(
Cmin,

⌈
fclk ·Mi

Ni · foutmax

⌉)
(4.42)

and:

Cmaxi = min
(
Cmax,

⌊
fclk ·Mi

Ni · foutmin

⌋)
. (4.43)

Thanks to Inequalities (4.33), (4.37) and (4.41) we are guaranteed to obtain only feasible con-

figurations and all of them in a reasonable amount of time (several hours instead of years). In

the context of a PLL-based TRNG, several practical considerations have to be taken into account,

yielding in an improvement of the running time.

4.3.2.2 Search of suitable configurations

A feasible configuration for a PLL-based TRNG is one found according to the process described

in Section 4.3.2.1. However, some configurations found through this process may not be suitable

for a TRNG design, since several considerations related to the TRNG design were not considered.

Indeed, for a PLL-TRNG, it is required that KD is odd and relatively prime with KM [82].

Even though the coprimality of KM and KD has to be checked by the Euclidean algorithm, it

is possible to skip the parity test of KD . The fact that KD must be odd, associated with Equa-

tion (4.19), implies that M0, N1 and C1 should all be odd. Values of M0, N1 and C1 can then be

looked for by a step of 2, starting with the smallest odd number in each range. This considera-

tion reduces by a factor of 2 (for each of these parameters) the number of values that have to be

checked, and thus speeds up the algorithm.

Furthermore, for security reasons, the sensitivity to the jitter must be sufficiently high. In addi-

tion, performance reasons require the throughput to be as high as possible. Thanks to Equations

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

134

(4.20) and (4.22), it follows that KM and KD must be bounded. In order to give more flexibility to

the designer, we introduce two quantities sM and sD as their respective upper bounds7:

0 É KM É sM and 0 É KD É sD . (4.44)

Using Equations (4.18) and (4.19), it follows:

0 É C0 É sM

M1 ·N0
and 0 É C1 É sD

M0 ·N1
. (4.45)

We can thus define smaller upper bounds C′
max0

,C′
max1

to C0 and C1, respectively, by:

C′
max0

=
⌊

min
(
Cmax,

fclk ·M0

N0 · foutmin

,
sM

M1 ·N0

)⌋
(4.46)

and

C′
max1

=
⌊

min
(
Cmax,

fclk ·M1

N1 · foutmin

,
sD

M0 ·N1

)⌋
. (4.47)

These new considerations significantly reduce the number of possible configurations of both PLLs.

We thus have a smaller subset among all the feasible configurations for the PLL-based TRNGs im-

plemented in the selected FPGA family. The whole search process is summarized in Algorithm 2.

Note that the order in which the for loops are nested is carefully chosen so that the depth-first

search is performed optimally by computing the bounds in the correct order since they form a

chain of dependency.

4.3.3 Experimental results

4.3.3.1 Implementation considerations

To evaluate the speed and efficiency of the search process, according to hardware limitations spec-

ified by manufacturers, we implemented our algorithm in C language. The algorithm takes only

two inputs: the reference frequency fclk and the FPGA family, for which we want to generate

configurations.

We ran the algorithm on an HP Compaq 6005 Pro MT PC AMD AthlonTM II X2 B24 Processor.

When fed with a reference frequency of 125MHz (we selected the same reference frequency for all

families in order to get comparable results), Algorithm 2 found all the suitable configurations in

less than 10 seconds for each of the above mentioned FPGA families.

It is important to note that the notion of best configuration is application dependent. Indeed,

system requirements are generally specified in terms of minimum jitter sensitivity and minimum

throughput. These values are given based on the intended security requirements. Therefore, the
7In our experiments, we took sM = 1000 and sD = 400.

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

135

Algorithm 2 PLL configuration search algorithm for the PLL-TRNG
1: compute Nmin0 from Equation (4.34)
2: compute Nmax0 from Equation (4.35)
3: Nmin1 ← round_up_to_odd(Nmin0)
4: Nmax1 ← Nmax0

5: configs ←MAKEEMPTYLIST()
6: for all PV CO0 in Pvco_vals do
7: for all PV CO1 in Pvco_vals do
8: for N1 = Nmin1 to Nmax1 by 2 do
9: compute Mmin1 from Equation (4.38)

10: compute Mmax1 from Equation (4.39)
11: for N0 = Nmin0 to Nmax0 do
12: compute Mmin0 from Equation (4.38)
13: Mmin0 ← round_up_to_odd

(
Mmin0

)
14: compute Mmax0 from Equation (4.39)
15: for M0 = Mmin0 to Mmax0 by 2 do
16: compute Cmin0 from Equation (4.42)
17: for M1 = Mmin1 to Mmax1 do
18: compute Cmin1 from Equation (4.42)
19: Cmin1 ← round_up_to_odd

(
Cmin1

)
20: compute C′

max0
from Equation (4.46)

21: compute C′
max1

from Equation (4.47)
22: for C1 = Cmin1 to C′

max1
by 2 do

23: compute KD from Equation (4.19)
24: for C0 = Cmin0 to C′

max0
do

25: compute KM from Equation (4.18)
26: if gcd(KM ,KD)= 1 then
27: compute f0 and f1 from Equation (4.25)
28: compute R from Equation (4.20)
29: compute S from Equation (4.22)
30: save into configs, values of fclk, PV CO0 , PV CO1 , M0, N0, C0, M1, N1, C1, f0, f1, KM ,

KD , R, S
31: end if
32: end for
33: end for
34: end for
35: end for
36: end for
37: end for
38: end for
39: end for

best configuration of one application may not be the best for another one. This is the main rea-

son why we adopted this approach of providing all suitable configurations meeting the desired

requirements.

Moreover, PLLs are primarily used for system clock generation and there is only a limited num-

ber of PLLs available in FPGAs. For this reason, designers are sometimes forced to share a PLL

between the TRNG and the application. This adds additional bounds for the output signal fre-

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

136

quency, which must be taken into account in the algorithm. The timing analysis of the proposed

PLL-TRNG design showed a maximum supported clock frequency of around 250MHz on all three

tested FPGA families, which represents the limiting frequency of the logic resources in the design.

To comply with these limits, we decreased the PLL maximum output frequency from manufactur-

ers’ limit to 250MHz in order to exclude the PLL configurations too fast for the circuitry.

The minimum value of the sensitivity to jitter can be determined from the required entropy rate

using the stochastic model [92]. For the Shannon entropy rate of 0.997 required by AIS-31 [15],

the minimum sensitivity to jitter obtained from the model must be higher than 0.09ps−1. So we

limited our search to configurations satisfying this security condition.

4.3.3.2 Results and discussions

The search returned 188 suitable configurations out of 389853(0.048%) feasible ones for Intel

Cyclone V, 8 out of 89025(0.0089%) for Xilinx Spartan-6, and 9976 out of 2339412(0.426%) for

SmartFusion®2. These figures show that the number of configurations satisfying security con-

ditions is smaller than 1% of the total number of feasible configurations for every FPGA family

tested. This reinforces the belief that manual search is nearly impossible, thereby pointing out

the importance of the proposed method.

Experimental results are given in Table 4.2 where, for each FPGA family, three configurations

are given. The first one, referred to as "Highest S" is the one with the best sensitivity to jitter for

a throughput R of at least 0.5Mbit ·s−1. The second one referred to as "Highest R" is the one with

the best throughput for a sensitivity to jitter S of at least 0.09ps−1. The third one, referred to as

"Highest R ·S" is the one providing the best compromise between the throughput and the sensi-

tivity to the jitter. For every configuration in this table, we can see that the security requirement

Smin > 0.09ps−1 is always met, ensuring security of the TRNG.

To validate the quality of the chosen configurations provided by this method, we ran the AIS-31

statistical test suite on the output bit sequences of the TRNG. Since the sensitivity limit was cho-

sen according to the stochastic model, it is not surprising that outputs of all the configurations

passed the statistical tests successfully.

It is important to note that for certain security and throughput constraints, the method developed

could not find configurations. Since the method was developed to find the best configurations in

all practical cases, the fact that it cannot find any means that the constraints formulated are

not realistic. Indeed, it is impossible to have huge throughput for any security threshold. The

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

137

Config. fclk PV CO0 PV CO1 M0 N0 C0 M1 N1 C1 f0 f1 KM KD R S R ·S
(MHz) (MHz) (MHz) (Mbit/s)

(
ps−1)

Intel Cyclone V
Highest S 125 1 1 7 1 4 113 19 3 218.75 247.807 452 399 0.548 0.0988 0.0542

Highest R 125 2 1 43 11 2 17 3 3 244.318 236.111 374 387 0.631 0.0913 0.0577

Highest R ·S 125 1 1 19 2 5 41 7 3 237.5 244.047 410 399 0.595 0.0973 0.0579

Xilinx Spartan-6
Highest S, R, and R ·S 125 1 1 43 5 5 17 3 3 215 236.11 425 387 0.555 0.0913 0.0507

Microsemi SmartFusion®2

Highest S 125 1 1 7 1 4 113 19 3 218.75 247.807 452 399 0.548 0.098 0.054

Highest R 125 1 4 29 5 3 25 13 1 241.66 240.384 375 377 0.641 0.090 0.058

Highest R ·S 125 1 4 23 3 4 33 17 1 239.58 242.647 396 391 0.612 0.094 0.058

Table 4.2: Two-PLL-TRNG configurations for sensitivity S > 0.09 ps−1.

simulations carried out have shown that the maximum throughput is inversely proportional to

the minimum level of security. Thus, the higher the required security level is, the lower the

maximum throughput will be.

4.3.3.3 Comparison with the previous method

In order to compare this new method with the one based on the genetic algorithm, we imple-

mented a version of it which uses only one PLL. For each of the three FPGA families, we ran this

algorithm with the reference frequency recorded in [191, Table II]. Table 4.3 presents the results

we obtained.

fclk Pvco M N C f1 KM KD R S

(MHz) (MHz) (Mbit/s)
(
ps−1)

Intel Cyclone V
Best configuration from [191] 350 1 131 37 3 413 131 111 3.15 0.045

Configuration found by the proposed method 350 1 136 37 3 428.82 136 111 3.15 0.047
Xilinx Spartan-6

Best configuration from [191] 430 1 47 21 5 192 47 105 4.095 0.020

Configuration found by the proposed method 430 1 47 21 3 320.79 47 63 6.82 0.020

Microsemi SmartFusion®2

Best configuration from [191] 200 2 216 127 1 340 216 127 1.574 0.043

Configuration found by the proposed method 200 2 253 127 1 398.425 253 127 1.574 0.05

Table 4.3: Comparison of one-PLL-TRNG configurations found by the proposed algorithm with those found
using the genetic algorithm.

As one could expect, the proposed algorithm found all the configurations provided by the method

based on the genetic algorithm. Moreover, as can be seen in Table 4.3, it also found better con-

figurations ensuring higher throughput and jitter sensitivity. It thus gives the designer a very

efficient tool to find the best configuration, which fulfills hardware constraints and satisfies high

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

138

security requirements in the given true random number generation context.

The method described here is shown to be an efficient tool generating all suitable PLL-TRNG

configurations out of all feasible PLL configurations in a TRNG design based on one or two PLLs.

This solves the problem of finding configurations of a PLL-TRNG, in which the published genetic

algorithm could not be applied because of a high number of variables. Hence, the use of this

new method extends the set of configurations found by the genetic algorithm, providing higher

throughput and jitter sensitivity. Furthermore, this method is fast enough to generate all suitable

configurations within seconds for both one-PLL and two-PLL designs. This approach guarantees

the global optimality of the results found since all feasible configurations are obtained and all suit-

able configurations are selected from them according to the specific constraints of the application.

It can also be used alongside with a stochastic model to update the entropy requirements.

4.4 Conclusion

In this chapter, we have presented the general functioning of a TRNG based on PLLs. The fact

that the PLL is first used to synthesize a clock signal containing a very low level of jitter may

at first sight be a limitation. However, the PLL offers the opportunity to adjust the components

of the output jitter by a careful choice of its parameters. This PLL functionality thus makes it

possible to guarantee a jitter made up of the desired sources of noise, something that is not possi-

ble to do with other sources of randomness such as ROs. Furthermore, its physical and electrical

isolation from the rest of the FPGA logic makes it possible to guarantee a low sensitivity to envi-

ronmental phenomena occurring on the chip. Moreover, its presence in most FPGA families helps

to reduce the cost of producing TRNGs based on PLLs.

We also briefly presented an approach to evaluate the security of TRNGs. This approach proposed

by DGA-MI is meant to be a complement to AIS-31 for the evaluation of generators intended for

applications with very high security requirements. In previous work, Lubicz has established the

implementability of this approach by illustrating it with the principle based on ROs. Following

the recommendation of DGA-MI, we have illustrated this approach with the PLL-based principle.

This proves not only that this approach is not restrictive from a design point of view, but also that

the PLL-based principle meets the requirements for very high levels of security.

This last evaluation approach raised the problem of finding parameters to ensure optimal gener-

ator operation. In the case of generators based on PLLs, this means looking for PLL parameters

that guarantee an entropy that meets the security criteria and a sufficient throughput for a better

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

139

generator performance. Work prior to the study in this chapter shows that this is a difficult prob-

lem, particularly because of the large number of possible parameters, making it almost impossible

to search manually. To this difficulty are added numerous constraints related to the operation of

the PLL, preventing previous methods from adapting to TRNGs based on two PLLs because they

are more complex. To solve this issue, we adopted an exhaustive depth-first search strategy as-

sociated to new constraints obtained from those provided by PLL manufacturers. This solution

provides PLL configurations for TRNGs based on either one or two PLLs, but also ensures opti-

mality of the configurations. This method, as well as the results obtained, have been published at

DATE 20188.

8E. Noumon Allini, O. Petura, V. Fischer, F. Bernard, "Optimization of the PLL configuration in a PLL-based TRNG design",
DATE 2018: 1265-1270

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

140

Résumé

Dans ce chapitre, nous avons présenté le fonctionnement général d’un TRNG basé sur les PLLs.

Le fait que la PLL soit prinicpalement utilisée pour synthétiser un signal d’horloge contenant

un très faible niveau de jitter peut, à première vue, constituer une limitation. Cependant, la

PLL offre la possibilité d’ajuster les composantes du jitter de sortie par un choix judicieux de ses

paramètres. Cette fonctionnalité de la PLL permet donc de garantir jitter composée des sources

de bruit souhaitées, ce qui n’est pas possible avec d’autres sources d’aléa tel que les ROs. De plus,

son isolation physique et électrique du reste de la logique du FPGA permet de garantir une faible

sensibilité aux phénomènes environnementaux se produisant sur la carte. De plus, sa présence

dans la plupart des familles de FPGA permet de réduire le coût de production des TRNG basés

sur les PLL.

Nous avons également présenté brièvement une approche pour évaluer la sécurité des TRNGs.

Cette approche proposée par la DGA-MI se veut être un complément à l’AIS-31 pour l’évaluation

des générateurs destinés à des applications ayant des exigences de sécurité très élevées. Dans

des travaux antérieurs à cette thèse, Lubicz a établi la faisabilité de cette approche en l’illustrant

par le principe basé sur les ROs. Suite aux recommandations de la DGA-MI, nous avons illustré

cette approche avec le principe basé sur les PLLs. Cette illustration a prouvé non seulement que

cette approche n’est pas restrictive d’un point de vue conception, mais aussi que le principe basé

sur les PLLs répond aux exigences de très hauts niveaux de sécurité.

Cette dernière approche d’évaluation a soulevé le problème de recherche des paramètres assurant

un fonctionnement optimal du générateur. Dans le cas des générateurs basés sur les PLLs, cela

revient à trouver les paramètres des PLL qui garantissent une entropie répondant aux critères de

sécurité et un débit suffisant. Les travaux préalables à l’étude présentée dans ce chapitre mon-

trent qu’il s’agit d’un problème difficile, notamment en raison du grand nombre de paramètres

possibles, ce qui rend la recherche exhaustive presque impossible. À cette difficulté s’ajoutent de

nombreuses contraintes liées au fonctionnement de la PLL, empêchant les méthodes précédentes

de s’adapter aux TRNG basés sur deux PLL car elles sont plus complexes.

Afin de résoudre ce problème, nous avons adopté une recherche exhaustive basée sur la stratégie

de recherche en profondeur, associée à de nouvelles contraintes obtenues à partir de celles fournies

par les fabricants des PLLs. Les résultats expérimentaux et théoriques montrent que cette nou-

velle méthode permet d’avoir des configurations de PLL pour les TRNGs basées sur une PLL,

comme ceux basés sur deux PLLs. Elle assure également l’optimalité des configurations trou-

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

141

vées. Ces résultats constituent une avancée, en comparaison aux méthodes antérieures qui ne

s’appliquaient que sur les constructions basées sur une seule PLL. En outre, les méthodes an-

térieures n’assuraient pas l’optimalité des configurations trouvées. Cette méthode, ainsi que les

résultats obtenus ont été publiés à la DATE 20189.

9E. Noumon Allini, O. Petura, V. Fischer, F. Bernard, "Optimization of the PLL configuration in a PLL-based TRNG design",
DATE 2018: 1265-1270

CHAPTER 4. DESIGN OF A CERTIFIABLE PLL-BASED TRNG

142

143

Contributions

The work carried out in the course of this PhD has led to the following contributions.

• We have shown that generating random numbers using counter values is more efficient than

the sampling-based method. It improves the throughput of TRNGs, while serving as a basis

for online tests.

• We have drawn attention to the risks associated with the use of classical variance to char-

acterize jitter. This risk comes from the low-frequency components of jitter that lead to a

divergence in the behavior of the classical variance and lead to results that cannot be inter-

preted.

• We have proposed the use of Allan variance (and its variants) as an alternative solution to

characterize phase and frequency fluctuations. These variances, widely used in the time-

keeping domain, have the advantage of converging even in the presence of low-frequency

noise. Moreover, since these variances depend on the sampling period, they describe the

temporal structure of the signals, and thus identify the dominant noise type.

• We have pursued and advanced Patrick Haddad’s work on the estimation of the proportion

of thermal noise in the jitter variance. The accuracy of this estimation shows a strong de-

pendence on the share of flicker noise, suggesting that an accurate estimation of the share

due to thermal noise will be almost impossible as the proportion of flicker noise increases

due to the decrease in the size of the transistors.

• We studied the design of TRNGs based on PLLs, as well as the search for optimal param-

eters. This study led to the development of an efficient search tool for these parameters,

based on the stochastic model of the generator. The interest of this tool is to reduce the

design time of PLL-TRNGs while providing configurations that respect security and perfor-

mance constraints.

• We have studied a new approach to the evaluation of TRNGs proposed by DGA-MI and

have illustrated it by using PLL-based TRNGs. As this approach was initially illustrated

CONTRIBUTIONS

144

using an RO based generator, we have shown that it can also be applied to other types of

generators. We have also shown that the PLL-based generator can be used for systems with

high security requirements.

• We have studied the design of PLLs and carried out simulations based on models adapted to

the FPGAs we are working on. This has highlighted the fact that the PLL output noise comes

mainly from the VCO. We also studied the behavior of the PLL as a source of randomness

for the generation of random numbers, specifying the conditions on the parameters allowing

the hypotheses of the models to be valid.

Some of these contributions have been published in the following scientific journals and confer-

ences:

Scientific journal publication

[193] E. Noumon Allini, M. Skórski, O. Petura, F. Bernard, M. Laban, and V. Fischer, “Evaluation

and Monitoring of Free Running Oscillators Serving as Source of Randomness,” IACR Transac-

tions on Cryptographic Hardware and Embedded Systems, Volume 2018, Issue 3, pp. 214–242,

Aug. 2018

International conference publication

[194] E. Noumon Allini, O. Petura, V. Fischer, and F. Bernard, “Optimization of the PLL config-

uration in a PLL-based TRNG design,” in 2018 Design, Automation Test in Europe Conference

Exhibition (DATE), pp. 1265–1270, IEEE, Mar. 2018

[161] O. Petura, M. Laban, E. Noumon Allini, and V. Fischer, “Two Methods of the Clock Jitter

Measurement Aimed at Embedded TRNG Testing,” in TRUDEVICE – 8th Conference on Trust-

worthy Manufacturing and Utilization of Secure Devices (TRUDEVICE 2018), Dresden, Germany,

p. 5, March 2018

[195] E. Noumon Allini, F. Bernard, and V. Fischer, “An Illustration of a New Certification Ap-

proach for TRNGs,” in Workshop on Cryptographic Architectures Embedded in Logic Devices,

Cryptarchi 2017, June 2017

CONTRIBUTIONS

145

Les travaux réalisés dans le cadre de ce doctorat ont conduit aux contributions suivantes.

• Nous avons montré que la génération de nombres aléatoires à l’aide de valeurs de comp-

teur est plus efficace que la méthode basée sur l’échantillonnage. Elle améliore le débit des

TRNGs, tout en servant de base aux tests en ligne.

• Nous avons attiré l’attention sur les risques liés à l’utilisation de la variance classique pour

caractériser le jitter. Ce risque provient des composantes basse fréquence du jitter qui con-

duisent à une divergence dans le comportement de la variance classique et conduisent à des

résultats qui ne peuvent pas être interprétés.

• Nous avons proposé l’utilisation de la variance d’Allan (et ses variantes) comme solution

alternative pour caractériser les fluctuations de phase et de fréquence. Ces variances, large-

ment utilisées dans le domaine de l’étude de la stabilité des fréquences des oscillateurs ultra

stable, ont l’avantage de converger même en présence de bruit à basse fréquence. De plus,

comme ces variances dépendent de la période d’échantillonnage, elles décrivent la structure

temporelle des signaux, et identifient ainsi le type de bruit dominant.

• Nous avons poursuivi et fait avancer les travaux de Patrick Haddad sur l’estimation de la

proportion du bruit thermique dans la variance du jitter. La précision de cette estimation

montre une forte dépendance de la part du bruit flicker, ce qui suggère qu’une estimation

précise de la part due au bruit thermique sera presque impossible car la proportion du bruit

flicker augmente en raison de la diminution de la taille des transistors.

• Nous avons étudié la conception de TRNGs basés sur les PLLs, ainsi que la recherche de

paramètres optimaux. Cette étude a conduit au développement d’un outil de recherche effi-

cace de ces paramètres, basé sur le modèle stochastique du générateur. L’intérêt de cet outil

est de réduire le temps de conception des PLL-TRNGs tout en fournissant des configurations

qui respectent les contraintes de sécurité et de performance.

• Nous avons étudié une nouvelle approche de l’évaluation des TRNGs proposée par la DGA-

MI et l’avons illustrée en utilisant des TRNGs basés sur les PLLs. Comme cette approche

a été initialement illustrée en utilisant un générateur basé sur les ROs, nous avons montré

qu’elle peut également être appliquée à d’autres types de générateurs. Nous avons égale-

ment montré que le générateur basé sur les PLLs peut être utilisé pour des systèmes ayant

des exigences de sécurité élevées.

• Nous avons étudié la conception des PLLs et réalisé des simulations basées sur des mod-

èles adaptés aux FPGAs sur lesquels nous travaillons. Cela a permis de mettre en évidence

CONTRIBUTIONS

146

le fait que le bruit en sortie des PLLs provient principalement du VCO. Nous avons égale-

ment étudié le comportement de la PLL en tant que source d’aléa pour la génération de

nombres aléatoires, en précisant les conditions sur les paramètres permettant de valider les

hypothèses des modèles.

Certaines de ces contributions ont été publiées dans les revues et conférences scientifiques suiv-

antes :

Publication dans les revues scientifiques

[193] E. Noumon Allini, M. Skórski, O. Petura, F. Bernard, M. Laban, and V. Fischer, “Evaluation

and Monitoring of Free Running Oscillators Serving as Source of Randomness,” IACR Transac-

tions on Cryptographic Hardware and Embedded Systems, Volume 2018, Issue 3, pp. 214–242,

Aug. 2018

Publication dans les conférences internationales

[194] E. Noumon Allini, O. Petura, V. Fischer, and F. Bernard, “Optimization of the PLL config-

uration in a PLL-based TRNG design,” in 2018 Design, Automation Test in Europe Conference

Exhibition (DATE), pp. 1265–1270, IEEE, Mar. 2018

[161] O. Petura, M. Laban, E. Noumon Allini, and V. Fischer, “Two Methods of the Clock Jitter

Measurement Aimed at Embedded TRNG Testing,” in TRUDEVICE – 8th Conference on Trust-

worthy Manufacturing and Utilization of Secure Devices (TRUDEVICE 2018), Dresden, Germany,

p. 5, March 2018

[195] E. Noumon Allini, F. Bernard, and V. Fischer, “An Illustration of a New Certification Ap-

proach for TRNGs,” in Workshop on Cryptographic Architectures Embedded in Logic Devices,

Cryptarchi 2017, June 2017

147

Conclusion

In this thesis, we studied the design of a random number generator for applications with high se-

curity requirements. According to the received guidelines, we focused on TRNGs implementable

in logic circuits. This type of generator uses various physical phenomena such as clock jitter.

Since clock jitter is widely used to implement TRNGs in logic circuits, we opted for TRNGs using

clock jitter as a source of randomness. In this thesis, we focused our efforts on the compliance of

TRNGs with a new evaluation approach proposed by the DGA-MI. This approach aims at comple-

menting the requirements of the PTG.3 class of AIS-31, in particular with respect to the physical

noise source.

In order to ensure that the entropy at the output of the noise source comes from the desired

phenomena, such as thermal noise, significant emphasis has been placed on the measurement

methods of jitter. As such a process requires a thorough knowledge of jitter and its components,

jitter modeling is required. For this purpose, we have used tools developed by the timekeeping

research community. A study of these tools allowed us to verify that the use of classical variance

to characterize the jitter can compromise the security of the generator due to the autocorrelated

components of the jitter.

We have proposed the use of the Allan variance to characterize jitter, as is done in the timekeeping

domain. A thorough study of this variance and its variants made us see its numerous advantages

such as its stability, its implementability in hardware, and its low resource consumption com-

pared to existing methods. Moreover, its operation allows a direct implementation of the counter

values, which are the basis of the only existing embedded tests of TRNGs.

Furthermore, the Allan variance has a time version that allows direct characterization of the jit-

ter in the time domain. This characterization makes it possible to study the temporal structure

of the jitter, and to deduce the dominant noise type as a function of the accumulation time. In

particular, the Allan time variance distinguishes white noise from flicker noise. This property was

verified in simulation using the noise generator of Kasdin and Walter. This noise generator is an

CONCLUSION

148

algorithmic method widely used in the timekeeping research domain. It can be used to simulate

the different types of noise often encountered in practice. The understanding of the Allan time

variance, which was reinforced by the various simulations, was then used to investigate hypothe-

ses concerning the constitution of the jitter at the output of the oscillators such as ROs and PLLs.

In this work, special attention has been paid to PLL as a source of randomness for TRNGs. In

order to be consistent with the DGA-MI approach, it is imperative to understand the operation of

the PLL as well as the effect of its various parameters on the quality of the output noise. For this

purpose, we have adapted and extended the PLL model available in the state-of-the-art to the

PLLs implemented in the FPGAs we used. This led us to a model of the PLL in terms of transfer

functions. This model was then simulated in order to verify the different assumptions made about

the PLL as a noise source.

One of these assumptions concerns the source of the output noise of the PLL. Although designers

of TRNGs consider that the noise comes from the VCO, we have seen no state-of-the-art argu-

ments to support this fact. To check this assumption, we injected noise into the different blocks

of the PLL, and by observing the output, we were able to establish that the noise at the output of

the PLL does indeed come from the VCO. The assumption that the flicker noise at the output of

the PLL is negligible remains true as long as the coefficient of division M is small. However, it

is necessary that this coefficient is large to accumulate enough entropy. Conversely, a large value

of M would contribute to amplify the noise of the input signal. These observations show that the

constraints on M, in order to have a good quality of randomness, are often in conflict with each

other.

A similar situation is repeated with the other parameters of the PLL. Since the PLL behaves

like a high-pass filter with respect to the VCO, the PLL tends to distort the nature of the signals

present in the frequency region below its natural frequency ωn. Signals present at frequencies

above ωn are transmitted at the output of the PLL with no change in nature. Thus, to avoid flicker

noise being present at the output of the PLL, it is necessary that ωn is large. However, a large

value of ωn would not allow entropy to accumulate long enough before the signals are distorted.

These results indicate the need to make trade-offs in the choice of values for the parameters.

Having understood how the PLL works as a source of randomness, we have described the principle

of the generator based on PLLs. This description allowed us to recall fundamental relationships

that govern the operation of the PLL-based TRNG, and to explain the reasons for considering a

TRNG with two PLLs instead of one PLL. We also described the DGA-MI evaluation approach by

CONCLUSION

149

illustrating it with the PLL-based generator. We then found that the PLL-based generator meets

all the requirements of this approach. This proves not only that the DGA-MI approach is not

restricted only to RO-based TRNGs, but also that the PLL-based principle can safely be used for

systems with high security requirements.

The DGA-MI approach raises the problem of adjusting the TRNG parameters to ensure excellent

generator operation. In the case of the generator based on PLLs, this means finding configu-

rations that ensure good sensitivity to the jitter, while having the highest possible throughput.

Previous work has been carried out to this effect, proposing a method based on a genetic algo-

rithm. However, due to the large number of generator parameters using two PLLs, this method

could not be applied to the TRNGs of interest. We then proposed a method based on a depth-first

search strategy. Experimental results showed that the latter method not only applies to genera-

tors based on two PPLs, but also produces better results than the previous method in less time.

During this thesis, we continued the estimation of the share of jitter due to thermal noise. This

was done using the Allan time variance. We were able to come up with a method that produces

good results in simulations. However, this method is sensitive to the proportion of jitter due to

flicker noise. The higher the proportion, the less accurate it is. This can be explained by the

fact that for large portions of flicker noise, thermal noise tends to be drowned out and therefore

difficult to measure. In order to avoid such a situation, it is important that the oscillators are

designed in such a way that the flicker noise proportion is as low as possible.

However, with the reduction of transistor size, it would be difficult to keep this proportion low.

An alternative solution would be to characterize the flicker noise as well as its entropy contribu-

tion. Since it is an autocorrelated noise, it would be reasonable to opt for a characterization using

Markov chains. This possibility is strengthened by the fact that a relatively recent result makes

it possible to evaluate the min entropy of phenomena characterized by Markov chains.

The study of the PLL also highlighted the fact that the noise at the output of the PLL is bounded.

A determination of these bounds would make it possible to bound the entropy present at the

output of the PLLs. This would then allow the generator model based on the PLLs to be strength-

ened. It should be noted, however, that the fact that the noise is bounded is probably due to the

feedback action of the PLL. This PLL feedback prevents the noise from accumulating freely and

resets the random walk at the output of the PLL. A consequence of this mechanism is that the

random walks between two corrections of the PLL do not have the same statistics. In other words,

the noise at the output of the PLL can be considered stationary as long as the PLL correction does

CONCLUSION

150

not intervene, not after the correction. A thorough study of this matter should be made in order

to determine the minimum time taken by the PLL to correct the feedback signal.

Perspectives

Although we have made progress in understanding the sources of physical noise, some aspects

remain to be further investigated.

• As the PLL is a feedback system, it locks its output signal to its input signal. However,

this locking is not instantaneous. After a sudden change operated on the input signal, there

is always a delay before the output signal is locked again. During this delay, called PLL

settling time, the PLL no longer behaves as a linear system. It is therefore important to

determine this settling time, in order not to generate numbers before this time has elapsed.

• Each time the PLL feedback operates, the PLL output random walk is reset. This implies

that the noise at the output of the PLL is stationary as long as the PLL does not adjust the

output signal. It is therefore important to determine the time that a PLL will take to adjust

the signal in order to define the limits of the stationarity of the output noise of the PLL.

• We have confirmed that the noise accumulated at the output of the PLL is bounded. Even

if the experimental results show that this bound is constant for PLLs implanted in Cyclone

V FPGAs, we have not yet established its mathematical expression in order to know the

factors that influence it. A possible extension of the work carried out in the course of this

thesis could also concern the determination of this mathematical expression.

• Results obtained during this thesis were obtained using the stationarity assumption. How-

ever, it turns out that depending on the accumulation time, this assumption may not be

reasonable, so it is necessary to adopt new characterizations of electronic noise that do not

use the stationarity assumption. The use of Markov chains or wavelets seems to be good

alternatives.

• Due to the reduction in transistor size, it will be increasingly difficult to filter flicker noise

and still have enough entropy at the output of the random number generators. It is therefore

imperative to propose a characterization of the flicker noise in order to evaluate its entropy

contribution.

The preceding points will have to be investigated in depth in order to improve our understanding

of how TRNGs work, which will enable us to better evaluate them.

CONCLUSION

151

Au cours de cette thèse, nous avons étudié la conception d’un générateur de nombres aléatoires

pour des applications ayant des exigences de sécurité élevées. Selon les directives reçues, nous

nous sommes concentrés sur les TRNGs implantables dans les circuits logiques. Ce type de

générateur utilise divers phénomènes physiques tels que le jitter d’horloge. Comme le jitter

d’horloge est largement utilisé pour implémenter des TRNGs dans les circuits logiques, nous

avons opté pour des TRNGs utilisant le jitter d’horloge comme source d’aléa. Nous avons concen-

tré nos efforts sur la conformité des TRNGs avec une nouvelle approche d’évaluation proposée par

la DGA-MI. Cette approche vise à compléter les exigences de la classe PTG.3 de l’AIS-31, notam-

ment en ce qui concerne la source de bruit physique.

Pour garantir que l’entropie à la sortie de la source de bruit provient des phénomènes souhaités,

tels que le bruit thermique, un accent important a été mis sur les méthodes de mesure du jitter.

Comme un tel processus nécessite une connaissance approfondie du jitter et de ses composantes,

une modélisation du jitter est nécessaire. À cette fin, nous avons utilisé des outils développés par

la communauté de recherche sur la stabilité des fréquences d’oscillateurs ultra stables. L’étude

de ces outils nous a permis de vérifier que l’utilisation de la variance classique pour caractériser

le jitter peut compromettre la sécurité du générateur à cause de ses composants autocorrélés, tels

que le bruit flicker.

Nous avons proposé d’utiliser la variance d’Allan pour caractériser le jitter, comme cela se fait

dans le domaine de l’étude de la stabilité des fréquences d’oscillateurs ultra stables. Une étude

approfondie de cette variance et de ses variantes nous a permis de constater ses nombreux avan-

tages tels que sa stabilité, son implantabilité dans le matériel, et sa faible consommation en

ressources comparativement aux méthodes existantes. De plus, son fonctionnement permet une

implémentation directe des valeurs de comptage, qui sont à la base des seuls tests embarqués

existants pour les TRNGs.

En outre, la variance d’Allan a une version temporelle qui permet de caractériser directement le

jitter dans le domaine temporel. Cette caractérisation permet d’étudier la structure temporelle

du jitter, et d’en déduire le type de bruit dominant en fonction du temps d’accumulation. En

particulier, la variance temporelle d’Allan permet de distinguer le bruit blanc du bruit flicker.

Cette propriété a été vérifiée en simulation à l’aide du générateur de bruit de Kasdin et Wal-

ter. Ce générateur de bruit est une méthode algorithmique recommandée dans le domaine de

la recherche sur la stabilité des fréquences d’oscillateurs ultra stables. Il peut être utilisé pour

simuler les différents types de bruit souvent rencontrés dans la pratique. La compréhension de

la variance temporelle d’Allan, qui a été renforcée par les différentes simulations, a ensuite été

CONCLUSION

152

utilisée pour étudier les hypothèses concernant la constitution du jitter à la sortie des oscillateurs

tels que les ROs et les PLLs.

Dans le cadre de ce travail, une attention particulière a été accordée aux PLLs en tant que source

d’aléa pour les TRNGs. Afin d’être cohérent avec l’approche de la DGA-MI, il est impératif de

comprendre le fonctionnement de la PLL ainsi que l’effet de ses différents paramètres sur la qual-

ité du bruit de sortie. À cette fin, nous avons adapté et étendu le modèle de PLL disponible dans

l’état de l’art aux PLLs implantées dans les FPGAs que nous avons utilisés. Cela nous a conduit

à un modèle de la PLL en termes de fonctions de transfert. Ce modèle a ensuite été simulé afin

de vérifier les différentes hypothèses faites sur la PLL en tant que source de bruit.

L’une de ces hypothèses concerne la source de bruit en sortie de la PLL. Bien que les concepteurs

des TRNGs considèrent que ce bruit provient du VCO, nous n’avons vu aucun élément de l’état

de l’art pour étayer ce fait. Pour vérifier cette hypothèse, nous avons injecté du bruit dans les dif-

férents blocs de la PLL, et en observant la sortie, nous avons pu établir que le bruit à la sortie de

la PLL provient bien du VCO. L’hypothèse selon laquelle le bruit flicker à la sortie de la PLL est

négligeable reste vraie tant que le coefficient de division M est faible. Cependant, il est nécessaire

que ce coefficient soit important pour accumuler une entropie suffisante. Inversement, une valeur

importante de M contribuerait à amplifier le bruit du signal d’entrée. Ces observations montrent

que les contraintes sur M, afin d’avoir une bonne qualité d’aléa, sont souvent en conflit les unes

avec les autres.

Une situation similaire se répète avec les autres paramètres de la PLL. Comme la PLL se com-

porte comme un filtre passe-haut par rapport au VCO, la PLL a tendance à déformer la nature

des signaux présents dans la région de fréquence en dessous de sa fréquence naturelle ωn. Les

signaux présents à des fréquences supérieures à ωn sont transmis à la sortie de la PLL sans

changement de nature. Ainsi, pour éviter que le bruit flicker soit présent à la sortie de la PLL,

il est nécessaire que ωn soit important. Cependant, une valeur élevée de ωn ne permettrait pas

à l’entropie de s’accumuler suffisamment avant que les signaux soient déformés. Ces résultats

indiquent qu’il est nécessaire de faire des compromis dans le choix des valeurs des paramètres.

Après avoir compris le fonctionnement de la PLL comme source d’aléa, nous avons décrit le

principe du générateur basé sur les PLLs. Cette description nous a permis de rappeler les re-

lations fondamentales qui régissent le fonctionnement du TRNG basé sur les PLLs, et d’expliquer

les raisons pour lesquelles on envisage un TRNG avec deux PLLs au lieu d’une seule. Nous avons

également décrit la démarche d’évaluation de la DGA-MI en l’illustrant avec le générateur à base

CONCLUSION

153

de PLL. Nous avons ensuite constaté que le générateur à base de PLL répond à toutes les ex-

igences de cette approche. Cela prouve non seulement que l’approche de la DGA-MI n’est pas

limitée aux TRNG basés sur les ROs, mais aussi que le principe basé sur les PLLs peut être util-

isé en toute sécurité pour des systèmes ayant des exigences de sécurité élevées.

L’approche de la DGA-MI pose le problème de l’ajustement des paramètres du TRNG pour assurer

un fonctionnement optimal du générateur. Dans le cas du générateur basé sur les PLLs, il s’agit

de trouver des configurations qui assurent une bonne sensibilité au jitter, tout en ayant le plus

haut débit possible. Des travaux antérieurs ont été menés à cet effet, proposant une méthode

basée sur un algorithme génétique. Cependant, en raison du grand nombre de paramètres du

générateur utilisant deux PLLs, cette méthode n’a pas pu être appliquée aux TRNGs qui nous

intéressent. Nous avons alors proposé une méthode basée sur une stratégie de recherche en pro-

fondeur. Les résultats expérimentaux ont montré que cette dernière méthode ne s’applique pas

seulement aux générateurs basés sur deux PLL, mais qu’elle produit également de meilleurs ré-

sultats que la méthode précédente en moins de temps.

Nous avons également poursuivi l’estimation de la part du jitter due au bruit thermique. Cela a

été fait en utilisant la variance temporelle d’Allan. Nous avons réussi à mettre au point une méth-

ode qui donne de bons résultats dans les simulations. Cependant, cette méthode est sensible à la

proportion de jitter due au bruit flicker. Plus cette proportion est élevée, moins elle est précise.

Cela peut s’expliquer par le fait que pour de grandes portions de bruit flicker, le bruit thermique a

tendance à être noyé et donc difficile à mesurer. Afin d’éviter une telle situation, il est important

que les oscillateurs soient conçus de manière à ce que la proportion de bruit de scintillement soit

la plus faible possible.

Cependant, avec la réduction de la taille des transistors, il serait difficile de maintenir cette pro-

portion à un niveau bas. Une solution alternative consisterait à caractériser le bruit de scin-

tillement ainsi que sa contribution à l’entropie. Comme il s’agit d’un bruit autocorrélé, il serait

raisonnable d’opter pour une caractérisation utilisant des chaînes de Markov. Cette possibilité

est renforcée par le fait qu’un résultat relativement récent permet d’évaluer la min-entropie des

phénomènes caractérisés par des chaînes de Markov.

L’étude de la PLL a également mis en évidence le fait que le bruit à la sortie de la PLL est borné.

La détermination de ces bornes permettrait de borner l’entropie disponible à la sortie des PLLs.

Cela permettrait ensuite de renforcer le modèle stochastique du générateur basé sur les PLLs.

Il convient toutefois de noter que le fait que le bruit soit borné est probablement dû à l’action

CONCLUSION

154

de rétroaction de la PLL. Cette rétroaction de la PLL empêche le bruit de s’accumuler librement

et réinitialise la marche aléatoire à la sortie de la PLL. Une conséquence de ce mécanisme est

que les marches aléatoires entre deux corrections de la PLL n’ont pas les mêmes statistiques. En

d’autres termes, le bruit à la sortie de la PLL peut être considéré comme stationnaire tant que la

correction de la PLL n’intervient pas, et non après la correction. Une étude approfondie de cette

question doit être effectuée afin de déterminer le temps minimum pris par la PLL pour corriger

le signal de retour.

Perspectives à la thèse

Bien que nous ayons fait des progrès dans la compréhension des sources de bruit physique, cer-

tains aspects restent à approfondir.

• Comme la PLL est un système asservi, elle verrouille son signal de sortie sur son signal

d’entrée. Toutefois, ce verrouillage n’est pas instantané. Après un changement soudain

opéré sur le signal d’entrée, il y a toujours un délai avant que le signal de sortie ne soit

à nouveau verrouillé. Pendant ce délai, appelé temps de réponse de la PLL, la PLL ne se

comporte plus comme un système linéaire. Il est donc important de déterminer ce temps de

stabilisation, afin de ne pas générer de nombres avant que ce temps ne soit écoulé.

• Chaque fois que la rétroaction de la PLL intervient, la marche aléatoire de la sortie de la

PLL est réinitialisée. Cela implique que le bruit à la sortie de la PLL est stationnaire tant

que la PLL n’ajuste pas le signal de sortie. Il est donc important de déterminer le temps que

prendra une PLL pour ajuster le signal afin de définir les limites de la stationnarité du bruit

de sortie de la PLL.

• Les résultats obtenus au cours de cette thèse ont été obtenus en utilisant l’hypothèse de sta-

tionnarité. Cependant, il s’avère qu’en fonction du temps d’accumulation, cette hypothèse

peut ne pas être raisonnable, il est donc nécessaire d’adopter de nouvelles caractérisations

des bruits électroniques qui n’utilisent pas cette hypothèse. L’utilisation de chaînes de

Markov ou d’ondelettes semble être une bonne alternative.

• Nous avons confirmé que l’accumulation du bruit en sortie de la PLL est bornée. Même si

les résultats expérimentaux montrent que cette borne est constante pour les PLL implan-

tées dans les FPGAs Cyclone V, nous n’avons pas encore établi son expression mathématique

afin de connaître les facteurs qui l’influencent. Une extension éventuelle des travaux réal-

isés dans le cadre de cette thèse pourrait également concerner la détermination de cette

expression mathématique.

CONCLUSION

155

• En raison de la réduction de la taille des transistors, il sera de plus en plus difficile de

filtrer le bruit flicker et d’avoir encore suffisamment d’entropie à la sortie des générateurs

de nombres aléatoires. Il est donc impératif de proposer une caractérisation du bruit flicker

afin d’évaluer sa contribution à l’entropie.

Les points précédents devront être étudiés en profondeur afin d’améliorer notre compréhension

du fonctionnement des TRNG, ce qui nous permettra de mieux les évaluer.

CONCLUSION

156

i

List of Figures

1.1 General structure of a TRNG . 15

1.2 Oscillator-based TRNG . 16

1.3 Illustration of clock jitter . 19

1.4 Absolute jitter as a time deviation . 20

1.5 Illustration of the period jitter . 22

1.6 Illustration of the N-period jitter . 23

1.7 Overview of the jitter components . 24

1.8 Overview of the jitter sources . 25

1.9 Comparison of the Shannon entropy and the min entropy, in the case of a coin flip . . . 28

1.10 Relationship between various measures of information content 31

1.11 Example of a right-sided critical region . 32

1.12 Example of a left-sided critical region . 33

1.13 Example of a both-sided critical region . 33

1.14 TRNG classical evaluation approach . 35

1.15 Main blocks of a TRNG . 36

1.16 Action of a post-processing . 36

1.17 Assessment procedure of class PTG.1 TRNG . 38

1.18 Assessment procedure of class PTG.2 TRNG . 38

1.19 Assessment procedure of class PTG.3 TRNG . 39

1.20 Use of a stochastic model . 39

1.21 Risk of entropy overestimation . 40

1.22 TRNG evaluation approach of DGA-MI . 41

2.1 Sample functions of an ensemble . 47

2.2 Subsets of random processes . 51

2.3 Examples of oscillators’ output signals . 52

2.4 Different types of noise generated using Kasdin and Walter algorithm 68

2.5 Impulse response of the classical variance . 69

ii

2.6 Impulse response of the Allan variance . 71

2.7 Overlapping samples for m = 3 . 72

2.8 Allan deviation response to various noise types . 74

2.9 Modified Allan deviation response to various noise types 76

2.10 Timings in counting the periods of signal s1 . 78

2.11 Timings in counting the periods of signal s1 . 79

2.12 Allan variance measurement circuitry based on Equation (2.73) 82

2.13 Implementation of the counter variance measurement circuitry for the method pro-

posed by Haddad et al. in [163] . 82

2.14 Noise identification in a ring oscillator . 84

2.15 Illustration of the thermal noise drowned out by the flicker noise 86

2.16 Comparison of the proposed method with a curve fitting 87

3.1 Phase-locked loop block diagram . 92

3.2 Phase-locked loop block diagram including internal PLL parameters 93

3.3 PLL in an open loop mode . 95

3.4 PLL loop with disturbance addition . 97

3.5 Comparison of a lag filter to a lead-lag filter . 101

3.6 Noise type at the output of a PLL . 104

3.7 Bode magnitude plot of the jitter transfer and jitter generation functions of a PLL . . . 105

3.8 PLL response to flicker phase noise in the input signal . 106

3.9 PLL response to flicker phase noise in the VCO . 107

3.10 PLL response to VCO noise consisting of thermal and flicker noises 108

3.11 Effect of the damping factor on the jitter peaking . 109

3.12 Bounded accumulation of the jitter at the output of the PLL 112

4.1 PLL-based TRNG . 117

4.2 Example of input/output signals diagram in a PLL . 118

4.3 Waveform reconstruction by coherent sampling . 118

4.4 PLL-TRNG with two PLLs in series . 119

4.5 PLL-TRNG with two PLLs in parallel . 120

4.6 PLL block diagram . 129

A.1 Representation of a linear time-invariant system . 2

B.1 Illustration of dead time between successive measurements 7

iii

List of Tables

1.1 Overview of error types in statistical tests . 34

2.1 Relationship between phase and frequency fluctuations 56

2.2 Origins of the power law noises . 66

2.3 Lag 1 autocorrelation of some noise types . 78

2.4 Summary of implementation results of the variance measurement method based on

counter differences compared to other state-of-the-art methods 83

2.5 Thermal noise contribution to the standard deviation of simulated noises 85

2.6 Relative error as a function of the flicker noise proportion 86

4.1 PLL specifications of selected FPGA families . 131

4.2 Two-PLL-TRNG configurations for sensitivity S > 0.09 ps−1 137

4.3 Comparison of one-PLL-TRNG configurations found by the proposed algorithm with

those found using the genetic algorithm . 137

iv

5

References

[1] S. Singh, The Code Book: The Secret History of Codes and Code-Breaking. Fourth Estate,

2002.

[2] H. R. Nemati, H. R. Nemati, and L. Yang, Applied Cryptography for Cyber Security and

Defense. Hershey, PA, USA: IGI Global, 1st ed., 2010.

[3] M.-H. Education, ed., Modern Cryptography: Applied Mathematics for Encryption and In-

formation Security, 2016.

[4] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and

Public-key Cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126, February

1978.

[5] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Loga-

rithms,” IEEE Transactions on Information Theory, vol. 31, pp. 469–472, July 1985.

[6] V. S. Miller, “Use of Elliptic Curves in Cryptography,” in Advances in Cryptology -

CRYPTO’85 Proceedings, vol. 218 of Lecture Notes in Computer Science, pp. 417–426,

Springer Berlin Heidelberg, 1986.

[7] A. Kerckhoffs, “La cryptographie militaire,” Journal des Sciences Militaires, vol. IX, pp. 5–

38, January 1883. http://www.petitcolas.net/kerckhoffs/crypto_militaire_1.pdf.

[8] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied Cryptography.

Boca Raton, FL, USA: CRC Press, Inc., 1st ed., 1996.

[9] R. T. Kneusel, Random Numbers and Computers. Cham: Springer International Publish-

ing, 2018.

[10] V. Fischer, “A Closer Look at Security in Random Number Generators Design,” in Construc-

tive Side-Channel Analysis and Secure Design (D. Hutchison, T. Kanade, J. Kittler, J. M.

Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,

M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, W. Schindler, and S. A. Huss,

eds.), vol. 7275, pp. 167–182, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

http://www.petitcolas.net/kerckhoffs/crypto_militaire_1.pdf

vi

[11] W. Schindler, “Random Number Generators for Cryptographic Applications,” in Crypto-

graphic Engineering (K. Ç.K, ed.), (Boston, MA), pp. 5–23, Springer, 2009.

[12] Y. Cao, Securing Hardware Random Number Generators against Physical Attacks. PhD

thesis, KU Leuven, 2016.

[13] W. Killmann and W. Schindler, “A Design for a Physical RNG with Robust Entropy Estima-

tors,” in Cryptographic Hardware and Embedded Systems - CHES 2008: 10th International

Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings (E. Oswald and P. Ro-

hatgi, eds.), (Berlin, Heidelberg), pp. 146–163, Springer Berlin Heidelberg, 2008.

[14] V. Fischer, P. Haddad, and A. Cherkaoui, “Ring oscillators and self-timed rings in true ran-

dom number generators,” in Oscillator Circuits: Frontiers in Design, Analysis and Applica-

tions (Y. Nishio, ed.), vol. 32 of Materials, Circuits and Devices, pp. 267–292, Institution of

Engineering and Technology, 2016.

[15] W. Killmann and W. Schindler, “A proposal for: Functionality classes and evaluation

methodology for true (physical) random number generators,” standard, Bundesamt für

Sicherheit in der Informationstechnik, Bonn, Germany, September 2001.

[16] S. Keller and T. A. Hall, “The NIST SP 800-90a Deterministic Random Bit Generator Vali-

dation System (DRBGVS),” tech. rep., NIST, 2015.

[17] M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and M. Boyle, “Recommenda-

tion for the entropy sources used for random bit generation,” Tech. Rep. NIST SP 800-90b,

National Institute of Standards and Technology, Gaithersburg, MD, Jan. 2018.

[18] E. Barker and J. Kelsey, “Recommendation for Random Bit Generator (RBG) Construc-

tions,” tech. rep., NIST, 2012.

[19] W. Schindler and W. Killmann, “Evaluation Criteria for True (Physical) Random Number

Generators Used in Cryptographic Applications,” in Cryptographic Hardware and Embed-

ded Systems - CHES 2002: 4th International Workshop Redwood Shores, CA, USA, August

13-15, 2002 Revised Papers (B. S. Kaliski, ç. K. Koç, and C. Paar, eds.), (Berlin, Heidelberg),

pp. 431–449, Springer Berlin Heidelberg, 2003.

[20] D. S. Wilks and R. L. Wilby, “The weather generation game: a review of stochastic weather

models,” Progress in Physical Geography: Earth and Environment, vol. 23, no. 3, pp. 329–

357, 1999.

[21] E. Adams and A. Rollings, Fundamentals of game design. Voices that matter, Berkeley, CA:

New Riders, 2nd ed ed., 2010.

vii

[22] J. Buchmann, Introduction to cryptography. Undergraduate texts in mathematics, New

York: Springer, 2nd ed., 2004.

[23] S. Tezuka, Uniform Random Numbers: Theory and Practice, vol. 315 of The Springer Inter-

national Series in Engineering and Computer Science 315. Springer US, 1995.

[24] W. Killmann and W. Schindler, “A proposal for: Functionality classes for random number

generators,” tech. rep., Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn,

2011.

[25] D. Bose, “Uniform Pseudo-Random Number Generation,” January 2018.

[26] P. L’Ecuyer, “Random number generation,” in Handbook of computational statistics: con-

cepts and methods (J. E. Gentle, W. Härdle, and Y. Mori, eds.), Heidelberg ; New York:

Springer, 2nd rev. and updated ed ed., 2012.

[27] P. L’Ecuyer, “Uniform random number generation,” Annals of Operations Research, pp. 77–

120, 1994.

[28] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and practitioners.

Heidelberg ; New York: Springer, 2010. OCLC: ocn527339793.

[29] W. Schindler, “Functionality Classes and Evaluation Methodology for Deterministic Ran-

dom Number Generators,” standard, Bundesamt für Sicherheit in der Informationstechnik,

Bonn, Germany, December 1999.

[30] R. Mita, G. Palumbo, S. Pennisi, and M. Poli, “A novel pseudo random bit generator for

cryptography applications,” in 9th International Conference on Electronics, Circuits and

Systems, vol. 2, (Dubrovnik, Croatia), pp. 489–492, IEEE, 2002.

[31] E. Barker, “Recommendation for Key Management Part 1: General,” Tech. Rep. NIST SP

800-57pt1r4, National Institute of Standards and Technology, Jan. 2016.

[32] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algo-

rithms. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

[33] D. R. Stinson, Cryptography: Theory and Practice, Third Edition. Discrete Mathematics

and Its Applications, Taylor & Francis, 2005.

[34] J. von Neumann, “Various techniques used in connection with random digits,” in Monte

Carlo Method (A. Householder, G. Forsythe, and H. Germond, eds.), pp. 36–38, Washington,

D.C.: U.S. Government Printing Office: National Bureau of Standards Applied Mathematics

Series, 12, 1951.

viii

[35] E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for Ran-

dom Walk Problems. International tracts in computer science and technology and their

application, London: Pergamon Press, New York 1959.

[36] G. E. Forsythe, “Generation and Testing of Random Digits at the National Bureau of Stan-

dards,” in Monte Carlo Method, vol. 12 of Applied Mathematics Series, Los Angeles: Na-

tional Bureau of Standards, 1951.

[37] P. C. Hammer, “The mid-square method of generating digits,” in Monte Carlo Method, vol. 12

of Applied Mathematics Series, (Los Angeles), National Bureau of Standards, 1951.

[38] J. W. Mauchly, “Pseudo-random numbers,” 1949.

[39] O. Taussky and J. Todd, “Generation and testing of pseudo-random numbers,” in Sympo-

sium on Monte Carlo Methods, pp. 15–28, Herbert A. Meyer (Wiley, New York), 1956.

[40] D. H. Lehmer, “Mathematical methods in large-scale computing units,” in Proceedings of

the Second Symposium on Large Scale Digital Computing Machinery, (Cambridge, United

Kingdom), pp. 141–146, Harvard University Press, 1951.

[41] A. Rotenberg, “A new pseudo-random number generator,” J. ACM, vol. 7, pp. 75–77, Jan.

1960.

[42] R. C. Tausworthe, “Random Numbers Generated by Linear Recurrence Modulo Two,” Math-

ematics of Computation - Math. Comput., vol. 19, p. 9, 05 1965.

[43] P. L’Ecuyer, “Random numbers for simulation,” Communications of the ACM, vol. 33, pp. 85–

97, Oct. 1990.

[44] A. Klein, Stream ciphers. New York: Springer, 1st ed ed., 2013.

[45] T. G. Lewis and W. H. Payne, “Generalized Feedback Shift Register Pseudorandom Number

Algorithm,” Journal of the ACM, vol. 20, pp. 456–468, July 1973.

[46] M. Matsumoto and Y. Kurita, “Twisted GFSR generators,” ACM Transactions on Modeling

and Computer Simulation, vol. 2, pp. 179–194, July 1992.

[47] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed

uniform pseudo-random number generator,” ACM Transactions on Modeling and Computer

Simulation, vol. 8, pp. 3–30, Jan. 1998.

[48] C. K. Caldwell, “Mersenne primes: History, theorems and lists.”

https://primes.utm.edu/mersenne, December 2017. accessed 20/12/2018.

ix

[49] W. E. Brown, “Random Number Generation in C++11,” March 2013.

[50] G. van Rossum, The Python Library Reference. Network Theory Limited (1 mars 2011),

September 2018.

[51] C. Dutang and P. Kiener, “CRAN Task View: Probability Distributions.” Retrieved 2018-09-

18, June 2018.

[52] G. Markowsky, “The Sad History of Random Bits,” Journal of Cyber Security and Mobility,

vol. 3, no. 1, pp. 1–24, 2014.

[53] M. Blum and S. Micali, “How to Generate Cryptographically Strong Sequences of Pseudo-

random Bits,” SIAM J. Comput., vol. 13, pp. 850–864, Nov. 1984.

[54] L. Blum, M. Blum, and M. Shub, “A Simple Unpredictable Pseudo-Random Number Gener-

ator,” SIAM Journal on Computing, vol. 15, pp. 364–383, May 1986.

[55] J. Hurd, “Blum integers.” Trinity College, Cambridge, January 1997. retrieved 20/12/2018,

http://www.gilith.com/talks/cambridge1997.pdf.

[56] N. Ferguson and B. Schneier, Practical Cryptography. New York: Wiley, 2003. OCLC:

ocm51568066.

[57] M. Stipčević, “Fast nondeterministic random bit generator based on weakly correlated phys-

ical events,” Review of Scientific Instruments, vol. 75, pp. 4442–4449, Nov. 2004.

[58] Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of the Linux random number genera-

tor,” in 2006 IEEE Symposium on Security and Privacy (S&P’06), (Berkeley/Oakland, CA),

pp. 15 pp.–385, IEEE, 2006.

[59] M. Herrero-Collantes and J. C. Garcia-Escartin, “Quantum Random Number Generators,”

Reviews of Modern Physics, vol. 89, p. 48, Feb. 2017. arXiv: 1604.03304.

[60] I. Vasyltsov, E. Hambardzumyan, Y.-S. Kim, and B. Karpinskyy, “Fast digital trng based

on metastable ring oscillator,” in Cryptographic Hardware and Embedded Systems - CHES

2008, 10th International Workshop, Washington, D.C., USA, August 10-13, 2008. Proceed-

ings, vol. 5154 of Lecture Notes in Computer Science, pp. 164–180, Springer, 2008.

[61] J. Szczepanski, E. Wajnryb, J. Amigó, M. V. Sanchez-Vives, and M. Slater, “Biometric ran-

dom number generators,” Computers & Security, vol. 23, pp. 77–84, Feb. 2004.

[62] H. F. Murry, “A general approach for generating natural random variables,” IEEE Transac-

tions on Computers, vol. C-19, pp. 1210–1213, Dec 1970.

x

[63] C. Petrie and J. Connelly, “A noise-based IC random number generator for applications

in cryptography,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, vol. 47, pp. 615–621, May 2000.

[64] P. Kohlbrenner and K. Gaj, “An Embedded True Random Number Generator for FPGAs,”

in Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field Pro-

grammable Gate Arrays, FPGA ’04, (New York, NY, USA), pp. 71–78, ACM, February 22-24

2004.

[65] M. Bucci and R. Luzzi, “Fully Digital Random Bit Generators for Cryptographic Applica-

tions,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, pp. 861–875,

Apr. 2008.

[66] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A survey of AIS-20/31

compliant TRNG cores suitable for FPGA devices,” in 2016 26th International Conference

on Field Programmable Logic and Applications (FPL), (Lausanne, Switzerland), pp. 1–10,

IEEE, Aug. 2016.

[67] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, “A Self-Timed Ring Based True Ran-

dom Number Generator,” in 2013 IEEE 19th International Symposium on Asynchronous

Circuits and Systems, (Santa Monica, CA, USA), pp. 99–106, IEEE, May 2013.

[68] V. Fischer and M. Drutarovský, “True Random Number Generator Embedded in Recon-

figurable Hardware,” in Cryptographic Hardware and Embedded Systems - CHES 2002:

4th International Workshop Redwood Shores, CA, USA, August 13-15, 2002 Revised Papers

(B. S. Kaliski, ç. K. Koç, and C. Paar, eds.), (Berlin, Heidelberg), pp. 415–430, Springer

Berlin Heidelberg, 2003.

[69] D. Lubicz and N. Bochard, “Towards an Oscillator Based TRNG with a Certified Entropy

Rate,” IEEE Transactions on Computers, vol. 64, pp. 1191–1200, Apr. 2015.

[70] F. Dupuis, O. Fawzi, and R. Renner, “Entropy accumulation,” arXiv:1607.01796 [quant-ph],

p. 40, Jul 2016. arXiv: 1607.01796.

[71] V. Fischer, M. Drutarovský, M. Šimka, and N. Bochard, “High performance true random

number generator in Altera stratix FPLDs,” in Field Programmable Logic and Application:

14th International Conference, FPL 2004, Leuven, Belgium, August 30-September 1, 2004.

Proceedings (J. Becker, M. Platzner, and S. Vernalde, eds.), (Berlin, Heidelberg), pp. 555–

564, Springer Berlin Heidelberg, 2004.

xi

[72] B. Chor and O. Goldreich, “Unbiased bits from sources of weak randomness and probabilis-

tic communication complexity,” in 26th Annual Symposium on Foundations of Computer

Science (sfcs 1985), pp. 429–442, Oct 1985.

[73] M. Stipčević and c. K. Koç, “True Random Number Generators,” in Open Problems in Math-

ematics and Computational Science (c. K. Koç, ed.), pp. 275–315, Cham: Springer Interna-

tional Publishing, 2014.

[74] P. Lacharme, “Post-Processing Functions for a Biased Physical Random Number Genera-

tor,” in Fast Software Encryption (K. Nyberg, ed.), vol. 5086, pp. 334–342, Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2008.

[75] P. Lacharme, “Analysis and Construction of Correctors,” IEEE Transactions on Information

Theory, vol. 55, pp. 4742–4748, Oct. 2009.

[76] V. Fischer and D. Lubicz, “Embedded Evaluation of Randomness in Oscillator Based Ele-

mentary TRNG,” in Advanced Information Systems Engineering (D. Hutchison, T. Kanade,

J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Ran-

gan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, C. Salinesi,

M. C. Norrie, and O. Pastor, eds.), vol. 7908, pp. 527–543, Berlin, Heidelberg: Springer

Berlin Heidelberg, 2014.

[77] T. Chaney and C. Molnar, “Anomalous Behavior of Synchronizer and Arbiter Circuits,” IEEE

Transactions on Computers, vol. C-22, pp. 421–422, Apr. 1973.

[78] L. M. Reyneri, D. Del Corso, and B. Sacco, “Oscillatory metastability in homogeneous and

inhomogeneous flip-flops,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 254–264, Feb.

1990.

[79] R. Land, “Power-up behavior of clocked devices,” Application report SCHA005A, Texas In-

struments, February 2015.

[80] M. H. Tooley, Electronic circuits: fundamentals and applications. London: Routledge, fourth

edition ed., 2015.

[81] N. Da Dalt and A. Sheikholeslami, Understanding Jitter and Phase Noise: A Circuits and

Systems Perspective. Cambridge University Press, 1 ed., feb 2018.

[82] V. Fischer and M. Drutarovsky, “True Random Number Generator Embedded in Recon-

figurable Hardware,” in Cryptographic Hardware and Embedded Systems - CHES 2002,

vol. 2523 of LNCS, pp. 415–430, Redwood Shores, CA, USA, Springer Verlag, 2002.

xii

[83] B. Sunar, W. Martin, and D. Stinson, “A Provably Secure True Random Number Genera-

tor with Built-In Tolerance to Active Attacks,” IEEE Transactions on Computers, vol. 56,

pp. 109–119, Jan. 2007.

[84] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, “Comparison of Self-Timed Ring and

Inverter Ring Oscillators as entropy sources in FPGAs,” in 2012 Design, Automation & Test

in Europe Conference & Exhibition (DATE), (Dresden), pp. 1325–1330, IEEE, Mar. 2012.

[85] S. C. Bagal, V. V. Deotare, D. V. Padole, and S. C. Bagal, “Generation of True Random

Number using analog Phase Locked Loop,” in International Journal of Advanced Research

in Electronics and Communication Engineering (IJARECE), pp. 1913–1916, 2015.

[86] E. Friedman, “Clock distribution networks in synchronous digital integrated circuits,” Pro-

ceedings of the IEEE, vol. 89, pp. 665–692, May 2001.

[87] W. Maichen, Digital timing measurements: from scopes and probes to timing and jitter.

No. 33 in Frontiers in electronic testing, Dordrecht: Springer, 2006. OCLC: ocm70840961.

[88] ITU, “ITU-T Recommendation G.810: Definitions and Terminology for Synchronization Net-

works,” tech. rep., International Telecommunication Union, 1996.

[89] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscillators: a unifying theory

and numerical methods for characterization,” IEEE Transactions on Circuits and Systems

I: Fundamental Theory and Applications, vol. 47, pp. 655–674, May 2000.

[90] T. C. Weigandt, B. Kim, and P. R. Gray, “Analysis of timing jitter in CMOS ring oscillators,”

in Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS ’94,

vol. 4, (London, UK), pp. 27–30, IEEE, 1994.

[91] JEDEC, “Definition of skew specifications for standard logic devices,” tech. rep., JEDEC

Standard, 2003.

[92] F. Bernard, V. Fischer, and B. Valtchanov, “Mathematical Model of Physical RNGs Based on

Coherent Sampling,” Tatra Mountains Mathematical Publications, vol. 45, no. 1, pp. 1–14,

2010.

[93] M. Grujic, V. Rozic, B. Yang, and I. Verbauwhede, “A Closer Look at the Delay-Chain based

TRNG,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), (Flo-

rence), pp. 1–5, IEEE, May 2018.

[94] B. Yang, V. Rožic, M. Grujic, N. Mentens, and I. Verbauwhede, “ES-TRNG: A High-

throughput, Low-area True Random Number Generator based on Edge Sampling,” IACR

xiii

Transactions on Cryptographic Hardware and Embedded Systems, Volume 2018, Issue 3,

pp. 267–292, Aug. 2018.

[95] M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux, “On the security of oscillator-based

random number generators,” Journal of Cryptology, vol. 24, no. 2, pp. 398–425, 2011.

[96] B. Ham, “Fibre Channel - Methodologies for Jitter and Signal Quality Specification (work-

ing draft),” tech. rep., International Committee for Information Technology Standardization

(INCITS), December 2003.

[97] B. Valtchanov, A. Aubert, F. Bernard, and V. Fischer, “Modeling and observing the jitter

in ring oscillators implemented in FPGAs,” in 2008 11th IEEE Workshop on Design and

Diagnostics of Electronic Circuits and Systems, (Bratislava, Slovakia), pp. 1–6, IEEE, Apr.

2008.

[98] D. S. L. D. S. L. Cardwell, From Watt to Clausius : the rise of thermodynamics in the early in-

dustrial age. London : Heinemann Educational, 1971. Includes bibliographical references.

[99] J. C. Príncipe, Information theoretic learning: Renyi’s entropy and kernel perspectives. In-

formation science and statistics, New York: Springer, 2010.

[100] C. E. Shannon, “A Mathematical Theory of Communication,” SIGMOBILE Mob. Comput.

Commun. Rev., vol. 5, pp. 3–55, 1948.

[101] A. Rényi, “On measures of entropy and information,” in Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the

Theory of Statistics, (Berkeley, California), pp. 547–561, 1961.

[102] R. V. Hogg, E. A. Tanis, and D. L. Zimmerman, Probability and statistical inference. Boston:

Pearson, ninth edition ed., 2015.

[103] G. E. Crooks, “On Measures of Entropy and Information,” January 2015.

[104] Karmeshu and N. R. Pal, “Uncertainty, Entropy and Maximum Entropy Principle - An

Overview,” in Entropy Measures, Maximum Entropy Principle and Emerging Applications

(Karmeshu and J. Kacprzyk, eds.), vol. 119 of Studies in Fuzziness and Soft Computing,

(Berlin, Heidelberg), Springer Berlin Heidelberg, 2003.

[105] R. V. L. Hartley, “Transmission of information,” The Bell System Technical Journal, vol. 7,

pp. 535–563, July 1928.

[106] R. M. Gray, Entropy and information theory. New York: Springer, 2nd ed ed., 2011. OCLC:

ocn669910367.

xiv

[107] H. Fisser, “Some Tests Applied to Pseudo-Random Numbers Generated by v. Hoerner’s

Rule,” Numerische Mathematik, vol. 3, pp. 247–249, dec 1961.

[108] T. E. Tkacik, “A Hardware Random Number Generator,” in Cryptographic Hardware and

Embedded Systems - CHES 2002 (G. Goos, J. Hartmanis, J. van Leeuwen, B. S. Kaliski,

c. K. Koç, and C. Paar, eds.), vol. 2523, pp. 450–453, Berlin, Heidelberg: Springer Berlin

Heidelberg, 2003.

[109] K. Wold and C. H. Tan, “Analysis and Enhancement of Random Number Generator in FPGA

Based on Oscillator Rings,” in 2008 International Conference on Reconfigurable Computing

and FPGAs, (Cancun, Mexico), pp. 385–390, IEEE, Dec 2008.

[110] G. K. Kanji, 100 statistical tests. London ; Thousand Oaks, Calif: Sage Publications, 3rd

ed ed., 2006.

[111] H. R. Neave, “The teaching of hypothesis-testing,” Bulletin in Applied Statistics, vol. 3,

pp. 55–63, 1976.

[112] G. J. Privitera, Statistics for the Behavioral Sciences. SAGE Publications, 2017.

[113] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel,

D. Banks, A. Heckert, J. Dray, and S. Vo, “A Statistical Test Suite for Random and Pseudo-

random Number Generators for Cryptographic Applications,” tech. rep., National Institute

of Standards and Technology, 2010. Special Publication (NIST SP) - 800-22 Rev 1a.

[114] D. Allan and J. Barnes, “A Modified "Allan Variance" with Increased Oscillator Character-

ization Ability,” in Thirty Fifth Annual Frequency Control Symposium, pp. 470–475, IEEE,

1981.

[115] G. Marsaglia, “The marsaglia random number cdrom, with the diehard battery of tests of

randomness,” tech. rep., Florida State University under a grant from The National Science

Foundation, 1985. accessed on 16 November 2018.

[116] J. Walker, “ENT: A Pseudorandom Number Sequence Test Program.”

http://www.fourmilab.ch/random/, January 2008.

[117] U. M. Maurer, “A universal statistical test for random bit generators,” J. Cryptol., vol. 5,

pp. 89–105, Mar. 1992.

[118] Y. Wang and T. Nicol, “On statistical distance based testing of pseudo random sequences

and experiments with PHP and Debian OpenSSL,” Computers & Security, vol. 53, pp. 44–

64, Sept. 2015.

xv

[119] X. Li, A. B. Cohen, T. E. Murphy, and R. Roy, “Scalable parallel physical random number

generator based on a superluminescent LED,” Optics Letters, vol. 36, p. 1020, Mar. 2011.

[120] F. Rodríguez-Henríquez, A. D. Pérez, N. A. Saqib, and c. K. Koç, “Cryptographic Algorithms

on Reconfigurable Hardware,” Springer US, p. 384, 2007.

[121] M. Dichtl, “How to Predict the Output of a Hardware Random Number Generator,” in Cryp-

tographic Hardware and Embedded Systems - CHES 2003 (G. Goos, J. Hartmanis, J. van

Leeuwen, C. D. Walter, c. K. Koç, and C. Paar, eds.), vol. 2779, pp. 181–188, Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2003.

[122] C. Hochberger, C. Li, M. Raitza, and M. Vogt, “Influence of operating conditions on ring

oscillator-based entropy sources in FPGAs,” in 22nd International Conference on Field Pro-

grammable Logic and Applications (FPL), (Oslo, Norway), pp. 555–558, IEEE, Aug. 2012.

[123] G. R. Cooper and C. D. McGillem, Probabilistic Methods of Signal and System Analysis.

Oxford University Press, 3rd ed., 1998.

[124] G. Žitković, “Introduction to stochastic processes - lecture notes.”

https://www.ma.utexas.edu/users/gordanz/notes/introduction_to_stochastic_processes.pdf,

December 2010. accessed 17/01/2018.

[125] W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and

Noise. New York: IEEE Press [u.a.], 1987. OCLC: 256317594.

[126] Y. Yamamoto, Fundamentals of Noise Processes. Cambridge University Press, 2017.

[127] P. R. Babu, Probability Theory and Random Processes. McGraw Hill Education, 2015.

[128] A. Bhargava, “On the Theory of Testing for Unit Roots in Observed Time Series,” The Re-

view of Economic Studies, vol. 53, no. 3, pp. 369–384, 1986.

[129] G. Nason, “A test for second-order stationarity and approximate confidence intervals for

localized autocovariances for locally stationary time series,” Journal of the Royal Statistical

Society: Series B (Statistical Methodology), vol. 75, pp. 879–904, 11 2013.

[130] D. Kwiatkowski, P. C. Phillips, P. Schmidt, and Y. Shin, “Testing the null hypothesis of

stationarity against the alternative of a unit root: How sure are we that economic time

series have a unit root?,” Journal of econometrics, vol. 54, no. 1-3, pp. 159–178, 1992.

[131] J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A.

Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization

of frequency stability,” IEEE Transactions on Instrumentation and Measurement, vol. IM-

20, pp. 105–120, May 1971.

xvi

[132] W. J. Riley, Handbook of Frequency Stability Analysis, vol. 1065 of NIST special publication.

U.S. Department of Commerce, National Institute of Standards and Technology, July 2008.

[133] E. Rubiola, Phase noise and frequency stability in oscillators. The Cambridge RF and mi-

crowave engineering series, Cambridge, UK ; New York: Cambridge University Press, 2009.

OCLC: 227031868.

[134] J. Rutman, “Characterization of phase and frequency instabilities in precision frequency

sources: Fifteen years of progress,” Proceedings of the IEEE, vol. 66, no. 9, pp. 1048–1075,

1978.

[135] F. Vernotte, “Stabilité temporelle et fréquentielle des oscillateurs : modèles,” Techniques

de l’ingénieur Métrologie temps-fréquence, vol. base documentaire : TIB415DUO., no. ref.

article : r680, p. 13, 2006.

[136] P. Prandoni and M. Vetterli, Signal processing for communications. Communication and

information sciences, Lausanne: EPFL Press, 2008. OCLC: 635543346.

[137] J.-M. Bony, Cours d’Analyse: Téorie des Distributions et Analyse de Fourier. Éditions de

l’École Polytechnique, 2001.

[138] A. Lesfari, Distributions, Analyse de Fourier et transformation de Laplace. Ellipses, 2012.

[139] J. D. Hamilton, Time Series Analysis. Princeton University Press, hardcover ed., 1994.

[140] L. Koralov and Y. G. Sinai, Theory of Probability and Random Processes. Universitext,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[141] M. L. Stein, Interpolation of spatial data: some theory for kriging. Place of publication not

identified: Springer, 1999. OCLC: 830022093.

[142] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication. Springer US, 2004.

[143] J. A. Barnes and S. J. Jarvis, “Efficient numerical and analog modeling of flicker noise

processes,” Tech. Rep. 604, National Bureau of Standards, Gaithersburg, MD, 1971.

[144] E. Masry, “Flicker noise and the estimation of the Allan variance,” IEEE Transactions on

Information Theory, vol. 37, pp. 1173–1177, July 1991.

[145] H. Tian and A. El Gamal, “Analysis of 1/f noise in CMOS APS,” in Sensors and Camera

Systems for Scientific, Industrial, and Digital Photography Applications (N. Sampat, T. Yeh,

M. M. Blouke, N. Sampat, G. M. W. Jr., and T. Yeh, eds.), vol. 3965, (San Jose, CA), pp. 168–

176, International Society for Optics and Photonics, SPIE, May 2000.

xvii

[146] E. Milotti, “1/f noise: a pedagogical review,” arXiv preprint physics/0204033, p. 26, 2002.

[147] J. J. Benedetto, S. E. Scott, and R. Kerby, “A Wiener–Wintner theorem for 1/f power spectra,”

Journal of Mathematical Analysis and Applications, vol. 279, pp. 740–755, March 2003.

[148] J. P. Gleeson, “Exactly solvable model of continuous stationary 1/f noise,” Physical Review

E, vol. 72, p. 7, July 2005.

[149] N. J. Kasdin and T. Walter, “Discrete simulation of power law noise (for oscillator stability

evaluation),” in Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 274–283,

IEEE, May 1992.

[150] H. Thielemann, “Sampling-rate-aware noise generation,” arXiv:1103.4118 [cs], p. 8, Mar.

2011. arXiv: 1103.4118.

[151] C. A. Greenhall, “FFT-Based Methods for Simulating Flicker FM,” in Proceedings of the

34th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting,

p. 12, 2002.

[152] N. Ashby, “Discrete simulation of power law noise,” arXiv:1103.5062 [physics], p. 25, Mar.

2011. arXiv: 1103.5062.

[153] P. Uhrich, “Stabilité des Oscillateurs ultra-stables.” Journées X-ENSUPS de physique,

2007.

[154] D. Allan, “Statistics of Atomic Frequency Standards,” Proceedings of the IEEE, vol. 54, no. 2,

pp. 221–230, 1966.

[155] D. Allan, “Time and Frequency (Time-Domain) Characterization, Estimation, and Predic-

tion of Precision Clocks and Oscillators,” IEEE Transactions on Ultrasonics, Ferroelectrics

and Frequency Control, vol. 34, pp. 647–654, Nov. 1987.

[156] A. van der Ziel, “Flicker Noise in Electronic Devices,” in Advances in Electronics and Elec-

tron Physics, vol. 49, pp. 225–297, Elsevier, 1979.

[157] J. Barnes, “Atomic Timekeeping and the Statistics of Precision Signal Generators,” Proceed-

ings of the IEEE, vol. 54, no. 2, pp. 207–220, 1966.

[158] J. Snyder, “An Ultra-High Resolution Frequency Meter,” in Thirty Fifth Annual Frequency

Control Symposium, pp. 464–469, IEEE, May 1981.

[159] D. Howe, D. Allan, and J. Barnes, “Properties of Signal Sources and Measurement Meth-

ods,” in Thirty Fifth Annual Frequency Control Symposium, pp. 669–716, IEEE, 1981.

xviii

[160] F. Vernotte, “Stabilité temporelle et fréquentielle des oscillateurs : outils d’analyse,” Tech-

niques de l’ingénieur Métrologie temps-fréquence, vol. base documentaire : TIB415DUO.,

no. ref. article : r681, p. 13, 2006. fre.

[161] O. Petura, M. Laban, E. Noumon Allini, and V. Fischer, “Two Methods of the Clock Jitter

Measurement Aimed at Embedded TRNG Testing,” in TRUDEVICE – 8th Conference on

Trustworthy Manufacturing and Utilization of Secure Devices (TRUDEVICE 2018), Dres-

den, Germany, p. 5, March 2018.

[162] W. F. Sheppard, “On the Calculation of the most Probable Values of Frequency-Constants,

for Data arranged according to Equidistant Division of a Scale,” Proceedings of the London

Mathematical Society, vol. s1-29, no. 1, pp. 353–380, 1897.

[163] P. Haddad, Y. Teglia, F. Bernard, and V. Fischer, “On the assumption of mutual indepen-

dence of jitter realizations in P-TRNG stochastic models,” in 2014 Design, Automation Test

in Europe Conference Exhibition (DATE), pp. 1–6, March 2014.

[164] M. Laban, M. Drutarovsky, V. Fischer, and M. Varchola, “Platform for testing and evaluation

of PUF and TRNG implementations in FPGAs,” in TRUDEVICE – 6th Conference on Trust-

worthy Manufacturing and Utilization of Secure Devices (TRUDEVICE 2016), Barcelona,

Spain, Nov 2016.

[165] B. Razavi, K. F. Lee, and R. H. Yan, “Design of high-speed, low-power frequency dividers

and phase-locked loops in deep submicron CMOS,” IEEE Journal of Solid-State Circuits,

vol. 30, pp. 101–109, Feb 1995.

[166] L. DeVito, J. Newton, R. Croughwell, J. Bulzacchelli, and F. Benkley, “A 52mhz And 155mhz

Clock-recovery PLL,” in 1991 IEEE International Solid-State Circuits Conference. Digest of

Technical Papers, (San Francisco, CA, USA), pp. 142–306, IEEE, Feb 1991.

[167] J. Alvarez, H. Sanchez, G. Gerosa, and R. Countryman, “A Wide-Bandwidth Low-Voltage

PLL for PowerPCTMMicroprocessors,” IEEE Journal of Solid-State Circuits, vol. 30,

pp. 383–391, April 1995.

[168] V. F. Kroupa, Phase lock loops and frequency synthesis. Chichester: Wiley, 2003. OCLC:

248801658.

[169] W. J. Gruen, “Theory of AFC Synchronization,” Proceedings of the IRE, vol. 41, pp. 1043–

1048, Aug 1953.

[170] A. Fahim, Clock Generators for SOC Processors - Circuits and Architectures. Springer-

Verlag US, 2005.

xix

[171] R. E. Best, Phase-locked loops: design, simulation and applications. McGraw-Hill profes-

sional engineering, New York, NY: McGraw-Hill, 5. ed ed., 2003. OCLC: 249285118.

[172] F. M. Gardner, Phaselock Techniques. John Wiley & Sons, 2005.

[173] J. W. Bergmans, Digital baseband transmission and recording. Springer Science & Business

Media, 1996.

[174] D. H. Wolaver, Phase-Locked Loop Circuit Design. Englewood Cliffs, New Jersey: Prentice

Hall, 1st ed., February 1991.

[175] D. R. Stephens, Phase-Locked Loops for Wireless Communications: Digital, Analog and

Optical Implementations. Kluwer Academic Publishers, 2nd ed., November 2001.

[176] M. Correvon, “Boucles à verrouillage de phase.” https://www.chireux.fr/mp/cours/electronique/Chap13.pdf,

September 2008. accessed 04/10/2019.

[177] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw Hill Higher Education,

1st ed., September 2000.

[178] D. Talbot, Frequency acquisition techniques for phase locked loops. Hoboken, New Jersey:

John Wiley & Sons, Inc, 2012.

[179] K. J. Åström and R. M. Murray, Feedback systems: an introduction for scientists and engi-

neers. Princeton: Princeton University Press, 2008. OCLC: ocn183179623.

[180] W. F. Egan, Phase-Lock Basics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2 ed., oct 2007.

[181] N. Bochard, C. Marchand, O. Pet’ura, L. Bossuet, and V. Fischer, “Evariste III: A new multi-

FPGA system for fair benchmarking of hardware dependent cryptographic primitives.”

Workshop on Cryptographic Hardware and Embedded Systems, CHES 2015, September

2015. poster.

[182] A. Hajimiri and T. Lee, The Design of Low Noise Oscillators. Kluwer academic publishers,

2003.

[183] Teledyne LeCroy, WavePro 7 Zi-A Series, February 2017.

[184] Intel, “Possible Causes for PLL Loss of Lock,” 2020.

[185] Silicon Labs, Crystal Oscillator (XO) (10 MHz to 1.4 GHz), 2018.

[186] C. Liu and J. A. McNeill, “A digital-pll-based true random number generator,” in Research

in Microelectronics and Electronics, 2005 PhD, vol. 1, pp. 113–116, July 2005.

xx

[187] V. Fischer, F. Bernard, and N. Bochard, “Modern random number generator design – Case

study on a secured PLL-based TRNG,” it - Information Technology, vol. 61, pp. 3–13, feb

2019.

[188] Altera corporation, Cyclone V Device Datasheet (CV51002), 2015.

[189] Xilinx, Spartan-6 FPGA Clocking Resources, 2015.

[190] Intel, 101 Innovation Drive, San Jose, CA 95134, Cyclone V Device Datasheet, December

2016.

[191] O. Petura, U. Mureddu, N. Bochard, and V. Fischer, “Optimization of the PLL Based TRNG

Design Using the Genetic Algorithm,” in IEEE International Symposium on Circuits and

Systems, ISCAS, pp. 2202–2205, 2017.

[192] Microsemi, SmartFusion2 and IGLOO2 Clocking Resources, 2015.

[193] E. Noumon Allini, M. Skórski, O. Petura, F. Bernard, M. Laban, and V. Fischer, “Evalua-

tion and Monitoring of Free Running Oscillators Serving as Source of Randomness,” IACR

Transactions on Cryptographic Hardware and Embedded Systems, Volume 2018, Issue 3,

pp. 214–242, Aug. 2018.

[194] E. Noumon Allini, O. Petura, V. Fischer, and F. Bernard, “Optimization of the PLL configu-

ration in a PLL-based TRNG design,” in 2018 Design, Automation Test in Europe Conference

Exhibition (DATE), pp. 1265–1270, IEEE, Mar. 2018.

[195] E. Noumon Allini, F. Bernard, and V. Fischer, “An Illustration of a New Certification Ap-

proach for TRNGs,” in Workshop on Cryptographic Architectures Embedded in Logic De-

vices, Cryptarchi 2017, June 2017.

[196] J. A. Barnes and D. W. Allan, “Variances based on data with dead time between the mea-

surements,” Tech. Rep. NBS TN 1318, National Bureau of Standards, Gaithersburg, MD,

1990.

[197] D. W. Allan, “Should the Classical Variance Be Used As a Basic Measure in Standards

Metrology?,” IEEE Transactions on Instrumentation and Measurement, vol. IM-36, pp. 646–

654, June 1987.

1

Appendix A

LTI and random processes

In this thesis, various systems dealing with random signals have been considered and modeled as

linear time-invariant (LTI) systems. This consideration comes from the field of automation which

is used to deal with deterministic signals rather than random ones as it is the case in this thesis.

We therefore study here, in the general case, the response of a LTI system to a random input.

This appendix aims at helping the reader to understand the use we made of such methods.

A.1 Introduction to linear time-invariant systems

A linear time-invariant (LTI) system is a theoretical system which has two basic properties: lin-

earity and time-invariance. The linearity implies the principle of superposition, which yields both

laws of additivity and homogeneity. Hence, a system H would be linear if for any scalar α and

any signals x(t) and y(t), the following holds:

H [αx(t)+ y(t)] = αH [x(t)]+H [y(t)] . (A.1)

The time-invariance of the system H means that any delay in the input would be reflected in the

output. Thus, for any r ∈R+ and any signals x(t) and y(t), one has:

y(t) = H [x(t)] =⇒ y(t− r) = H [x(t− r)] . (A.2)

LTI systems are used in various fields, like in automation, where there serve as models for the

description of physical systems. They are usually represented as in Figure A.1, where x(t) is the

input signal to the system and y(t) is its output signal.

When the input signal x(t) is an impulse function1, the output is given the name of the impulse

response function of the system, and denoted h(t). The notion of impulse response is an impor-
1The impulse function is mathematically represented by a Dirac δ function, usually taken at the time origin t = 0.

APPENDIX A. LTI AND RANDOM PROCESSES

2

LTI
System

x(t) y(t)

Figure A.1: Representation of a linear time-invariant system.

tant one when dealing with LTI systems. Indeed, any LTI system is characterized by its impulse

response, it therefore makes it easier to analyze such systems.

The impulse response actually characterizes LTI systems in the time domain. However, it is often

practical to study systems in the frequency domain. In this case, the system is characterized by

the Laplace transform2 of its impulse response. This Laplace transform is called the transfer

function of the LTI and is often denoted H(s). Hence, one has:

H(s) :=
∫ +∞

−∞
h(t)e−stdt. (A.3)

Note that the use of impulse response and transfer function is only relevant in the case of LTI

systems.

In this thesis, we assume that LTI systems we are dealing with are stable systems with are stable

in the BIBO (bounded-input/bounded-output) sense. It means that every bounded input applied

to the system results in a bounded output. The physical realizability and stability constraints on

the LTI system considered here are given by:

∀t < 0, h(t) = 0 (A.4)

and ∫ +∞

−∞
|h(t)|dt < +∞. (A.5)

A.2 Response of LTI to random input

From Section A.1, we know that a LTI system produces an output signal following a signal applied

to its input. This output signal is called the LTI response to the input signal. In this section, we

are interested in the response of a LTI when the input is a random signal, especially when it is a

stationary process.

A.2.1 Analysis in the time domain

Let {x(t)} be the input to the system and {y(t)} be its output. Then, x(t) and y(t) are related by:

y(t) =
∫ +∞

−∞
x(t−λ)h(λ)dλ. (A.6)

2Some authors consider the Fourier transform. Since the Laplace transform generalizes the Fourier transform, these two ap-
proaches are valid.

APPENDIX A. LTI AND RANDOM PROCESSES

3

Note that y(t) can also be defined as:

y(t) =
∫ +∞

−∞
x(λ)h(t−λ)dλ, (A.7)

because the convolution is commutative.

A.2.1.1 Expected value of y

The expected value of the system’s output, at a given time t, can be computed as:

〈y(t)〉 =
〈∫ +∞

−∞
x(t−λ)h(λ)dλ

〉
=

∫ +∞

−∞
〈x(t−λ)〉h(λ)dλ. (A.8)

Since {x(t)} is a stationary process, one can write:

〈x(t−λ)〉 = 〈x(t)〉 = 〈x〉, (A.9)

which is independent of t. This allows to write:

〈y(t)〉 =
∫ +∞

−∞
〈x〉h(λ)dλ = 〈x〉

∫ +∞

−∞
h(λ)dλ, (A.10)

which shows that the expected value of y(t) does not depend on the time t.

From Equation (A.3), it follows:

H(0) =
∫ +∞

−∞
h(λ)dλ, (A.11)

thus:

〈y〉 = 〈x〉 ·H(0). (A.12)

A.2.1.2 Mean-square value of y

The mean-square value of y can be computed as:〈
y2(t)

〉 =
〈∫ +∞

−∞
x(t−λ)h(λ)dλ

∫ +∞

−∞
x(t−µ)h(µ)dµ

〉
(A.13)

=
∫ +∞

−∞

∫ +∞

−∞

〈
x(t−λ)x(t−µ)

〉
h(λ)h(µ)dµdλ. (A.14)

By the change of variable t′ = t−λ, one can write:〈
x(t−λ)x(t−µ)

〉 = 〈
x(t′)x(t′+λ−µ)

〉
= Rx(λ−µ),

where Rx(t) is the autocorrelation function of the stationary process {x(t)}. It then follows that the

integrand is independent of time and thus:〈
y2〉 =

∫ +∞

−∞

∫ +∞

−∞
Rx(λ−µ)h(λ)h(µ)dµdλ. (A.15)

APPENDIX A. LTI AND RANDOM PROCESSES

4

A.2.1.3 Autocorrelation function of y

The autocorrelation function of the output y can be computed as:

Ry(τ) = 〈y(t)y(t+τ)〉 (A.16)

=
〈∫ +∞

−∞
x(t−λ)h(λ)dλ

∫ +∞

−∞
x(t+τ−µ)h(µ)dµ

〉
(A.17)

=
∫ +∞

−∞

∫ +∞

−∞

〈
x(t−λ)x(t+τ−µ)

〉
h(λ)h(µ)dµdλ. (A.18)

By the change of variable t′ = t−λ, one can write:

〈
x(t−λ)x(t+τ−µ)

〉 = 〈
x(t′)x(t′+λ+τ−µ)

〉
(A.19)

= Rx(λ+τ−µ). (A.20)

It follows that the autocorrelation function of y is given by:

Ry(τ) =
∫ +∞

−∞

∫ +∞

−∞
Rx(λ+τ−µ)h(λ)h(µ)dµdλ. (A.21)

A.2.2 Analysis in the frequency domain

The most common method for representing linear systems in the frequency domain is the transfer

function which can be expressed either in the Fourier domain as H(ω), or in the Laplace domain

H(s). The function H(ω) (respectivelyH(s)) is the Fourier (respectively the Laplace) transform of

the system impulse response h(t). In frequency domain, the input {x(t)} and output {y(t)} of LTI

system are related by:

Y (ω) = H(ω)X (ω), (A.22)

where X (ω) (respectively Y (ω)) is the Fourier transform of x(t) (respectively y(t)).

Since ω= 2π f , Equation (A.22) can be expressed in term of f as:

Y (f) = H(f)X (f). (A.23)

In Laplace domain, the relation between input and output is as follows:

Y (s) = H(s)X (s). (A.24)

Since {x(t)} is a stationary random process, the same goes for {y(t)} and thus one can compute its

APPENDIX A. LTI AND RANDOM PROCESSES

5

power spectral density as:

Sy(ω) =
∫ +∞

−∞
Ry(τ)e−iωτdτ

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Rx(λ+τ−µ)h(λ)h(µ)e−iωτdµdλdτ

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Rx(τ)h(λ)h(µ)e−iω(τ+µ−λ)dµdλdτ

=
∫ +∞

−∞
h(λ)eiωλdλ

∫ +∞

−∞
h(µ)e−iωµdµ

∫ +∞

−∞
Rx(τ)e−iωτdτ

= H(−ω)H(ω)Sx(ω)

= |H(ω)|2 Sx(ω), (A.25)

where ω 7−→ |H(ω)|2 is called power transfer function.

Equation (A.25) can be also expressed as:

Sy(f) = |H(f)|2 Sx(f). (A.26)

In terms of Laplace variable, Equation (A.25) becomes:

Sy(s) = H(s)H(−s)Sx(s). (A.27)

APPENDIX A. LTI AND RANDOM PROCESSES

6

7

Appendix B

Dead time between successive measurements

In this thesis, we adopted a formalism which assumes that data was acquired in a continuous

way. This assumption was made first because we used equipments which were able to measure

output signals of oscillators in a continuously. Moreover, the measuring device was not stopped

during data acquisition. However, practitioners do not always proceed that way since some inten-

tionally wait between measurements, creating the phenomenon of dead time between consecutive

measurements, as illustrated in Figure B.1.

T
τ

observation

time

T
τ

observation

time

dead

time

dead

time

Figure B.1: Illustration of dead time between successive measurements.

Dead time is the (time) gap between consecutive measurements of a signal. It has various origins,

most common ones are physical characteristics of the device and measurement method adopted

by the experimenter. Physics of the device may cause an inability to capture the next event as

soon as the current one ends, yielding a delay between successive measurements. Even if the de-

vice creates no dead time, the measurement method adopted by the experimenter can make him

deliberately wait between measurements. In either case, this phenomenon has significant effects

APPENDIX B. DEAD TIME BETWEEN SUCCESSIVE MEASUREMENTS

8

on the results, especially for non-white noises. Indeed, it introduces bias, reduces confidence in

the results, prevents proper conversion of frequency to phase, etc [132, Section 5.15]. Moreover,

no information is available concerning the behavior of the oscillator during the dead time. These

are the reasons that explains why we adopted a method that ensures measurements with no dead

time.

It is true, however, that in some cases, measurements with dead time are inevitable. In theses

cases, it is important to take into account effects of the dead time and apply some corrections

[196]. This procedure is nevertheless problematic for data having multiple noise types.

9

Appendix C

Extensions of the properties of the classical

variance to the Allan variance

Because of the limitations of the classical variance, we propose to use the Allan variance to study

the sources of randomness in the context of random number generation. This can lead to legiti-

mate questions, especially regarding properties. We will see in this appendix that some properties

of the classical varaince can extend to the Allan variance. However, we will limit the discussion

to those that are commonly used.

C.1 Allan variance generalizes the classical variance

If x is a stationary and uncorrelated random process, we know that its statistical variance exists

[197]. If we call µ the expected value of x, then:

avar(x) = 1
2
E
[
(xi+1 − xi)2]

= 1
2
E
([

(xi+1 −µ)− (xi −µ)
]2

)
= 1

2
E
[
(xi+1 −µ)2 − (xi+1 −µ)(xi −µ)+ (xi −µ)2]

= 1
2
E
[
(xi+1 −µ)2]− 1

2
E
[
(xi+1 −µ)(xi −µ)

]+ 1
2
E
[
(xi −µ)2]

= 1
2

var(xi+1)− 1
2
E
[
(xi+1 −µ)(xi −µ)

]+ 1
2

var(xi). (C.1)

Since x is stationary, one has:

var(xi+1) = var(xi) = var(x) (C.2)

APPENDIX C. EXTENSIONS OF THE PROPERTIES OF THE CLASSICAL VARIANCE TO THE ALLAN VARIANCE

10

and:

E (xi+1) = E (xi) = µ. (C.3)

Moreover, the uncorrelatedness of x implies:

E (xi+1xi) = E (xi+1)E (xi) . (C.4)

It then follows:

E
[
(xi+1 −µ)(xi −µ)

] = E
(
xi+1xi −µxi+1 −µxi +µ2)

= E (xi+1xi)−µE (xi+1)−µE (xi)+µ2

= 0. (C.5)

Hence:

avar(x) = var(x). (C.6)

This proves that in the case of a stationary and uncorrelated random process, the classical vari-

ance and the Allan variance lead to the same results. This implies that the Allan variance is a

generalization of the classical variance.

C.2 Multiplication by a scalar

Given a real number λ and a stationary random process x, then λx is also a stationary random

process. Its Allan variance is then:

avar(λx) = 1
2
E
[
(λxi+1 −λxi)2] = λ2 1

2
E
[
(xi+1 − xi)2] = λ2 avar(x). (C.7)

C.3 Sum of independent random processes

If x and y are two independent stationary random processes, one has:

avar(x+ y) = 1
2
E
[
(xi+1 + yi+1 − xi − yi)2]

= 1
2
E
[
(xi+1 − xi + yi+1 − yi)2]

= 1
2
E
[
(xi+1 − xi)2 + (xi+1 − xi) (yi+1 − yi)+ (yi+1 − yi)2]

= 1
2
E
[
(xi+1 − xi)2]+ 1

2
E [(xi+1 − xi) (yi+1 − yi)]+

1
2
E
[
(yi+1 − yi)2]

= avar(x)+ 1
2
E [(xi+1 − xi) (yi+1 − yi)]+avar(y). (C.8)

APPENDIX C. EXTENSIONS OF THE PROPERTIES OF THE CLASSICAL VARIANCE TO THE ALLAN VARIANCE

11

Because the processes x and y are independent, it follows:

E
(
xi yj

) = E (xi)E
(
yj

)
, (C.9)

for any i, j ∈N. Since they are stationary:

E
(
x j

) = E (xi) = E (x) and E
(
yj

) = E (yi) = E (y) ,

for any i, j ∈N. Hence:

E [(xi+1 − xi) (yi+1 − yi)] = E [xi+1 yi+1 − xi+1 yi − xi yi+1 + xi yi]

= E [xi+1 yi+1]−E [xi+1 yi]−E [xi yi+1]+E [xi yi]

= E [xi+1]E [yi+1]−E [xi+1]E [yi]−E [xi]E [yi+1]

+E [xi]E [yi]

= E [x]E [y]−E [x]E [y]−E [x]E [y]+E [x]E [y]

= 0. (C.10)

We can then conclude:

avar(x+ y) = avar(x)+avar(y). (C.11)

	Acknowledgements
	Introduction
	Objectives
	Objectifs de la thèse

	Random numbers in cryptography: state-of-the-art
	Random number generators
	Pseudorandom number generators
	True random number generators
	Source of randomness
	Randomness harvester
	Post-processor

	Sources of randomness in logic devices
	Commonly used sources of randomness
	Clock jitter as a source of randomness
	Absolute jitter
	Relative jitter
	Period jitter
	 N -Period jitter

	Jitter sources

	Entropy
	Rényi entropy
	Understanding entropy
	General properties of Rényi entropy

	Shannon entropy
	Conditional entropy - Mutual information
	Joint entropy

	Evaluation of TRNGs
	Classical evaluation approach of TRNGs
	Enhanced evaluation approach of TRNGs

	Conclusion

	Characterization of clock jitter as a source of randomness
	Random signal
	Time and ensemble averages
	Classification of random processes
	Continuous processes
	Deterministic processes
	Stationarity
	Ergodicity

	Mathematical model of the clock jitter
	Characterizing noise in time domain
	Oscillator output signal
	Phase and frequency random fluctuations
	Average fractional frequency
	Limitations of the model
	Autorrelation function

	Characterizing noise in frequency domain
	Power spectral density
	Wiener-Khinchin theorem
	Relationships between power spectral densities

	Noise models
	White noise
	Power law noise
	Noise simulation

	Jitter analysis tools
	Limitation of the classical variance
	Allan variance
	Description of the Allan variance
	Overlapped Allan variance
	Application to noise identification

	Modified and time versions of the Allan variance
	Modified Allan variance
	Time Allan variance

	Noise identification using autocorrelation function

	Jitter measurement method
	Counter based method for jitter measurement
	Jitter measurement in hardware

	Estimation of the thermal noise contribution
	Conclusion

	Phase-locked loops as sources of randomness
	Phase-locked loops
	Basic PLL overview
	Basic equations of the PLL
	Basic PLL transfer functions

	Transfer functions of an analog PLL
	Open loop transfer function
	Closed loop transfer function
	PLL in presence of disturbing signals

	Physical parameters of the PLL model
	Comparison with existing models
	Choice of physical parameters

	Noise properties
	Origin of the output noise
	Noise filtering and jitter overshoot
	Jitter peaking
	PLL response to input noise
	PLL response to VCO noise
	Lowering the jitter peaking

	Types of noise at the output of the PLL
	Bounded nature of the PLL noise

	Conclusion

	Design of a certifiable PLL-based TRNG
	Principle of a PLL-based TRNG
	Illustration of the DGA-MI approach on PLL-based TRNG
	Entities of a generator
	Physical noise source
	Randomness harvester
	Post-processing block
	Embedded tests

	Evaluation of the physical noise source
	Evaluation of the randomness harvester

	Optimal configurations for a PLL-based TRNG
	Statement of the problem
	General structure of the PLL and its configuration
	Problem to solve

	Search of PLL-TRNG configurations
	Search of all feasible configurations
	Search of suitable configurations

	Experimental results
	Implementation considerations
	Results and discussions
	Comparison with the previous method

	Conclusion

	Contributions
	Conclusion
	Perspectives
	Perspectives à la thèse

	List of Figures
	List of Tables
	References
	LTI and random processes
	Introduction to linear time-invariant systems
	Response of LTI to random input
	Analysis in the time domain
	Expected value of y
	Mean-square value of y
	Autocorrelation function of y

	Analysis in the frequency domain

	Dead time between successive measurements
	Extensions of the properties of the classical variance to the Allan variance
	Allan variance generalizes the classical variance
	Multiplication by a scalar
	Sum of independent random processes

