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The present thesis is devoted to the Extraordinary Optical Transmission (EOT) observed in various diffractive systems. A constant industrial need in integration and miniaturization of optical components stimulates the development of planar grating-based devices with thicknesses comparable to operating wavelengths. The EOT effect is perspective for numerous plasmonic applications in structure-induced colors, optical filtering, lasing, all-optical biosensors due to the improved signal-tonoise ratio and a simplified device design. Aimed at practically available materials and industrially-compatible surface nanotexturing methods, a systematic study of EOT through continuous aluminum films was performed.

A novel modification of laser interference lithography allowing rapid fabrication of variable depth gratings was proposed, theoretically established and experimentally validated. In contrast to chirped gratings, which control the plasmonic resonant wavelength by continuously changing period, the variable depth defines the efficiency of plasmonic coupling at a fixed wavelength, thus offering additional possibilities for light manipulations. Using this fabrication approach the existence of optimal grating depth for EOT was demonstrated experimentally and depth-resolved structureinduced colors were observed in transmission.

For the first time the effect of EOT was experimentally measured in polycrystalline samples, fabricated via nanosphere photolithography. The presence of disorder in subwavelength nanopores arrangement strongly affects the efficiency of EOT, which was studied both experimentally and numerically. A phenomenological model of EOT in polycrystaline structures and a dimensionless coefficient of disorder are proposed ix in order to explain measured transmission curves. In addition, the concurrence between grating depth and disorder was studied numerically.

The systematic study of EOT in various diffraction systems presented in this thesis might pave the way towards more effective plasmonic devices and industrial applications.
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Historical overview

Plasmonics is an intensively studied field of modern physics which combines nanotechnology, electronics and photonics [1]. One important center of attention in plasmonic research are Surface Plasmon Resonances (SPRs) -collective coherent oscillations of electrons at metal-dielectric interfaces. Despite the fact that the theoretical description was established in the early 1900s, plasmonic effects have been known for hundreds and thousands of years and were exploited by ancient glassmakers in their sophisticated masterpieces. A well-known example of "ancient nanotechnology" is the Lycurgus Cup (4th century) [2] which possesses different coloration in reflected and transmitted light, see Figs.1.1a-b. This dichroic effect is caused by incident light coupling with free electrons in small metallic nanoparticles embedded in glass [3]; their presence was revealed by analytical transmission electron microscopy [4]. Different metallic powders added to glass give various colors; it was widely used in medieval stained glass windows, see Fig. 1.1c. These color effects arise from the excitation of localized surface plasmons, which are coupled states of light/free electrons at the surface of metallic nanoparticles embedded in a dielectric medium. A first step to explain plasmonic coloration effects was made in 1908 by Gustav Mie [5]. He mathematically showed that optical spectra of metallic particle colloids depend on particle size, the properties of metal precursor and dielectric matrix. Another object of plasmonics are propagating surface waves at the metal/dielectric interface. In 1902 Wood experimentally observed uneven distribution of light in metallic grating spectra [6] (Wood's anomalies). Later, [START_REF] Zenneck | Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie[END_REF] [7] and [START_REF] Sommerfeld | Über die Ausbreitung der Wellen in der drahtlosen Telegraphie[END_REF] [8] obtained a specific solution of Maxwell's equations at radio frequencies propagating at the boundary between air and earth. Further research revealed that this solution in the form of surface waves is valid for propagating surface plasmons at dielectric/metal interfaces in visible range, too; it has led to the explanation of Wood's anomalies in the model of incident light/surface plasmons interactions, proposed by Fano in 1941 [9]. Ritchie considered surface plasmons in a thin metallic film and demonstrated that their energy depends on a film thickness [10]. In 1968 Kretschmann and Raether managed to excite the surface waves with visible light via a prism coupling [11], and the theory of surface plasmon polaritons was finally established. Plasmonic modes are described by classical electrodynamics. However, due to their exceptional ability to concentrate the light in small subwavelength volumes in the vicinity of metallic surface plasmonic applications go far beyond the classical theory [12]. A growing interest in plasmonics in 1980s and 1990s is connected with surface-enhanced Raman scattering (SERS) discovered by Fleischmann in 1974 [13]; the giant enhancement of Raman scattering cross section of single molecules by factors 2 CHAPTER 1. INTRODUCTION up to 10 14 was demonstrated [14,15]. The prevailing mechanism of SERS is believed to be the strong concentration of electric field at metallic surface due to plasmonic excitations. Positions and efficiencies of so-called hot spots of highly concentrated electric field can be controlled via a proper design of metallic substrates. Thus, plasmon-related applications stimulate the development of surface nanostructuring methods. Surface-enhanced Raman scattering with metallic nanoparticles and/or nanostructured metallic substrates were successfully used in label-free chemical detection for medical diagnostics [16] and in microbiological hazards detection for food safety [17].

Other applications such as surface-enhanced second harmonic generation [18,19], four-wave mixing [20] and absorption [21] utilize the effect of plasmon local field enhancement, too. Plasmonic ability to confine the light in subwavelength volumes is promising for plasmonic subwavelength lithography [22], data storage and biophotonics [23]. SPR-based sensors have been applied for liquid refractive index detection [24] and gas sensing [25]. Other plasmonic devices are used for nonlinear optical conversion [26], light absorption in solar cells [27], heating [28] etc. An innovative plasmon-based microscope with the resolution beyond the diffraction limit was invented by Rothenhäusler and Knoll [29]. All these intriguing applications made plasmonics one of the most populated field of optical research nowadays [30], see Fig. 

Extraordinary optical transmission

We have considered above the general historical path of plasmonic research. Such distinctive properties of surface plasmons as energy concentration and subwavelength confinement defined the great attention to these modes and careful analysis of metaldielectric interfaces. However, an interesting physics exists also in the direction perpendicular to surface, i.e. through the metal film. In 1998 Ebbesen et al. [31] was first who revealed unusual optical transmission peaks in rectangular arrays of perforations in a thin 200 nm silver layer. These peaks were orders of magnitude greater than predicted by a standard aperture theories, at the wavelengths which were larger than grating period (where no diffraction occurs) and ten times larger than the nanoholes diameter. At resonant wavelengths more light is transmitted through the single hole than incident on it, because the energy tunnels through the film via plasmonic modes. Since this pioneering work the effect of Extraordinary Optical Transmission (EOT) is intensively studied in a huge variety of diffraction systems while adopting it to applications. The subsequent sections constitute the overview of EOT in different setups.

EOT through subwavelength apertures

A great interest to EOT since the original Ebbesen paper in 1998 [31] is caused by both fundamental and applied reasons. On the one hand, the enhanced transmission is not predicted by the classical aperture theory, therefore an accurate theoretical model of this effect should be elaborated [32]. On the other hand, EOT is perspective for sensing [33], directional beaming [34], filters and polarizers [35]. These considerations motivate research groups to gain further insight into EOT.

In 2001, Krishnan et al. studied the transmission through a perforated metallic film sandwiched between a quartz substrate and a dielectric cover and demonstrated experimentally and numerically that the highest transmission occurs when both claddings have the same dielectric permittivity [36]. Further investigations concerned dispersion measurements under different incident polarizations [37], cylindrical surface plasmons [START_REF] Michael | Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons[END_REF] and the influence of nanoholes shape and localized resonances on EOT [START_REF] Martin-Moreno | Theory of extraordinary optical transmission through subwavelength hole arrays[END_REF][START_REF] Van Der Molen | Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory[END_REF][START_REF] Kj Klein | Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes[END_REF].

If surface plasmon polaritons have a primary role for EOT, this effect should also exist for a metal film with a single perforation, surrounded by opaque periodical corrugations in order to excite SPPs near the hole. The effect of EOT was indeed demonstrated in such structures in 1999 for 2D square lattice of dimples with a single perforation [START_REF] Daniel E Grupp | Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture[END_REF] and in 2001 for a system of concentric grooves around the perforation (bull's eye structure) [START_REF] Thio | Enhanced light transmission through a single subwavelength aperture[END_REF]. It is important to notice that in the latter work the influence of corrugations depth on EOT was taken into account, not only their periodicity. Finally, in 2004 Degiron [START_REF] Degiron | Optical transmission properties of a single subwavelength aperture in a real metal[END_REF] experimentally registered the enhanced transmission through a single subwavelength nanohole milled in optically thick and flat suspended silver film. In contrast to the classical Bethe's theory [START_REF] Albrecht | Theory of diffraction by small holes[END_REF] of a hole in perfectly conducting screen of zero thickness, which predicts very small transmission for subwavelength hole diameters, Degiron showed that for real metals a localized surface plasmon mode excites on the aperture ridge allowing the resonant tunneling of light through this aperture.

Another direction of research is devoted to the effect of the nanoholes arrangement (linear chain of apertures [START_REF] Bravo-Abad | Resonant transmission of light through finite chains of subwavelength holes in a metallic film[END_REF], non-periodic structures [START_REF] Liu | Biosensing based upon molecular confinement in metallic nanocavity arrays[END_REF]) and their number (nanoholes arrays of different sizes [START_REF] Henri | Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[END_REF]).

EOT through continuous metal films

The progress in EOT research historically moved from structures with multiple nanoholes assembled in periodical lattices to single perforations surrounded by opaque corrugations. A natural continuation of those studies were attempts to completely remove these perforations from the design as they are experimentally difficult to produce, while conserving the plasmon-enhanced transmission. The general mechanism of EOT in this case is as follows: incident light couples to SPPs at metal-dielectric interface due to the metal periodical corrugations on the one side of metal film. If the metal is thin enough, the light tunnels through it via plasmonic mode and couples to the SPP on another side of the film, where it is re-emitted by metal surface corrugations.

Intuitively the decrease of metal thickness should always increase the transmission because of improved overlapping of SPPs at both film sides. However, Giannattasio showed in 2004 that there are two competing effects: the leakage radiation into the substrate and absorption, which lead to the existence of optimal metal thickness [START_REF] Giannattasio | Transmission of light through thin silver films via surface plasmon-polaritons[END_REF].
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Hooper and Sambles investigated EOT in continuous metal films with dissimilar corrugations on the both sides [START_REF] Hooper | Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces[END_REF], and the same year Wedge proposed to use undulated metal films to enhance the quantum efficiency of LEDs [START_REF] Wedge | Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons[END_REF].

Singh and Hillier in 2008 for the first time employed the effect of EOT in continuous metal films for a biosensor application [START_REF] Bipin | Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings[END_REF]. Gratings obtained from DVD-Rs were coated with a thin film of gold with thicknesses between 20 nm and 50 nm, and different monolayers of hexanethiol, decanethiol and octadecanethiol were self-assembled on the top. The resonant wavelength of EOT was confirmed to be sensitive to the dielectric permittivity changes when the chain length of hydrocarbons varied. The next step toward industrial application of EOT for sensing was made by Yeh et al. [START_REF] Yeh | Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating[END_REF]. In 2011 they proposed a novel diffraction-based method to register EOT through metallized gratings using a simple CCD camera, and monitored the adsorption, thin film formation and dielectric permittivity changes using a simple optical microscope setup.

Experimental measurements of plasmon-mediated transmission often give the values smaller than predicted theoretically. Tonchev and Parriaux showed [START_REF] Tonchev | Recovery of lost photons in plasmonmediated transmission through continuous metal film[END_REF] that it is caused by nanoclusters of overheated polymer at the grating surface, which introduce index and geometrical perturbations, and managed to experimentally recover the "lost photons".

Above we considered devices with a limited number of resonant wavelengths [START_REF] Bai | Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes[END_REF][START_REF] Tonchev | Recovery of lost photons in plasmonmediated transmission through continuous metal film[END_REF][START_REF] Bipin | Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings[END_REF]. However, for the needs of biosensing, lasing and broadband filters multiple resonances are often required. In this context chirped gratings with spatial period variations are interesting substrates for EOT devices. In 2010 Yeh et al. investigated the visible-band transmission through chirped grating [START_REF] Yeh | Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating[END_REF]. Due to the multiple resonances provided by the same sample, it expands the possibilities of plasmon-based sensing, for example, allowing the simultaneous monitoring of dielectric layer thickness and its refractive index. Another way to achieve multiple resonances are multi-pitched gratings, prepared via laser interference lithography [START_REF] Joseph | Multipitched diffraction gratings for surface plasmon resonance-enhanced infrared reflection absorption spectroscopy[END_REF], and plasmonic quasicrystals [START_REF] Steven M Lubin | Quasiperiodic moiré plasmonic crystals[END_REF].

Top-down and bottom-up fabrication approaches for EOT devices

There exists a variety of fabrication methods for EOT devices. Since the pioneering work in 1998 [31], the Focused Ion Beam milling is intensively used to make subwavelength perforations of different size, shape [START_REF] Degiron | Optical transmission properties of a single subwavelength aperture in a real metal[END_REF] and arrangements [START_REF] Henri | Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[END_REF]. The Electron-Beam Lithography has demonstrated approximately the same possibilities [START_REF] Li | Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films[END_REF][START_REF] Yue | Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications[END_REF]. Although these methods allow a high control over the geometry, they are still quite expensive for mass applications [START_REF] Zhang | Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties[END_REF]. The principal difficulty of EOT geometry was the necessity to precisely perforate the metal screen, whereas the transmission is sensitive to the hole quality and size [START_REF] Degiron | Optical transmission properties of a single subwavelength aperture in a real metal[END_REF].

The situation is different for EOT through continuous metal films. As there are no perforations, the metal can be simply deposited on the top of periodically undulated dielectric gratings via, for example, thermal or magnetron sputtering [START_REF] Kelly | Theory of thermal sputtering[END_REF][START_REF] Spencer | Dynamic control of reactive magnetron sputtering: a theoretical analysis[END_REF]. Here the processes of surface nanostructuring and metallization are separated, thus offering a wider choice of compatible fabrication techniques. One of the most popular techniques is Laser Interference Lithography (LIL, see Chapter 4), where the photosensitive material (resist) is exposed non-homogeneously in the interference field of coherent laser beams in order to perform spatial corrugations of resist surface after its development [START_REF] Hendricus | Laser Interference Lithography[END_REF]. This method is flexible, stitching-free, produces nanopatterning over wafer-size areas and therefore is extensively used in plasmonics [START_REF] Vala | Multiple beam interference lithography: A tool for rapid fabrication of plasmonic arrays of arbitrary shaped nanomotifs[END_REF][START_REF] Jourlin | Spatially and polarization resolved plasmon mediated transmission through continuous metal films[END_REF][START_REF] Joseph | Multipitched diffraction gratings for surface plasmon resonance-enhanced infrared reflection absorption spectroscopy[END_REF]. A modification of LIL which uses a single nanosecond pulse was introduced in 2018 [START_REF] Cao | Plasmon-enhanced optical transmission at multiple wavelengths through an asymmetric corrugated thin silver film[END_REF], which sufficiently reduces the perturbations of interference field caused by mechanical and air instabilities. Among other possibilities there are gratings from commercially available DVDs [START_REF] Bipin | Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings[END_REF], phase and amplitude masks for UV exposures [START_REF] Steven M Lubin | High-rotational symmetry lattices fabricated by moiré nanolithography[END_REF] and master molds for Soft Imprint Lithography [START_REF] Luis M Campos | Highly versatile and robust materials for soft imprint lithography based on thiol-ene click chemistry[END_REF].

Fabrication techniques considered above correspond to the so-called top-down paradigm, where the material is initially bulk and it should be particularly deformed (Soft Imprint Lithography, [START_REF] Luis M Campos | Highly versatile and robust materials for soft imprint lithography based on thiol-ene click chemistry[END_REF]), dissolved (laser interference lithography, [START_REF] Hendricus | Laser Interference Lithography[END_REF]) or perforated (Electron-Beam Lithography, [START_REF] Li | Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films[END_REF]) in order to release the desired structure.

In contrast, bottom-up paradigm considers the final geometry as the system of its structural elements; the process of fabrication in this case is a manipulation with small building blocks and their connection into a desired framework. An approach CHAPTER 1. INTRODUCTION which combines bottom-up and top-down fabrication steps and compatible with EOT research is the colloidal lithography [START_REF] Wang | Advanced colloidal lithography: From patterning to applications[END_REF].

The progress in colloidal research allowed to synthesize high-quality, stable nano/micro spheres made of silica, polymethyl methacrylate (PMMA) and polystyrene with a narrow diameter distribution [START_REF] Peter | Suspension polymerisation to form polymer beads[END_REF][START_REF] Zou | Model filled polymers. V. Synthesis of crosslinked monodisperse polymethacrylate beads[END_REF][START_REF] Zhang | Preparation of monodisperse silica particles with controllable size and shape[END_REF]. The idea of colloidal lithography, first proposed by Fisher and Zingsheim in 1981 [START_REF] Fischer | Submicroscopic pattern replication with visible light[END_REF], is to form a monolayer of close-packed microspheres on the desired substrate via bottom-up self-assembly technique and utilize this film in subsequent top-down technological steps to transfer the colloidal hexagonal arrangement into the surface. These technological steps vary from one particular workflow to another and can include, for example, colloidal layer as a contact mask for metal deposition inside the interstices between spheres [START_REF] Ulmeanu | Fabrication of 2-D nanostructures via metal deposition through a colloidal mask: comparison between thermal evaporation and RF magnetron sputtering[END_REF],

protective layer for reactive ion etching [START_REF] Wa Nositschka | Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks[END_REF] or various chemical processes [START_REF] Toma | Gold nanoring arrays for near infrared plasmonic biosensing[END_REF][START_REF] Yeom | Decoupling diameter and pitch in Silicon nanowire arrays made by metal-Assisted Chemical Etching[END_REF].

Concerning the EOT devices colloidal lithography is perspective primarily for its large structuring areas and industrial integration possibilities. Although the resulting hexagonal monolayers are polycrystalline, the plasmonic response was demonstrated in transmission studies [START_REF] Canpean | Extending nanosphere lithography for the fabrication of periodic arrays of subwavelength metallic nanoholes[END_REF][START_REF] Landström | Extraordinary optical transmission through metal-coated colloidal monolayers[END_REF]. Recently, a plasmonic sensor based on colloidal monolayers was proposed [START_REF] Farcau | Metal-coated microsphere monolayers as surface plasmon resonance sensors operating in both transmission and reflection modes[END_REF]. In addition, colloidal lithography can replace expensive electron-or ion-beam lithographies in particular case of hexagonal arrays of nanoholes [START_REF] Krupinski | Fabrication of flexible highly ordered porous alumina templates by combined nanosphere lithography and anodization[END_REF].

Among all colloidal-based surface nanostructuring methods a particular technique of Nanosphere Photolithography (NPL) [START_REF] Zhang | Recent advancement on micro-/nano-spherical lens photolithography based on monolayer colloidal crystals[END_REF] deserves a special attention. In contrast to techniques mentioned above, this one utilizes a colloidal monolayer in a more elaborated manner as an array of microlenses. Rigorous calculations [START_REF] Heifetz | Photonic nanojets[END_REF] show that dielectric nano/microspheres can transmit the light into so-called nanojetsnon-resonant, non-evanescent beams with propagation distances longer than the wavelength. If an array of dielectric colloidal particles, deposited on a photoresist, is illuminated by UV light, the resist is exposed non-homogeneously due to the array of nanojets. It leads to the fact that after colloidal particles removal and resist development nanoholes [START_REF] Wu | Generation of submicrometer structures by photolithography using arrays of spherical microlenses[END_REF] or nanopillars [START_REF] Shavdina | Large area fabrication of periodic TiO2 nanopillars using microsphere photolithography on a photopatternable Sol-gel film[END_REF] appear on the surface, in dependence on the resist type. The NPL approach is very flexible allowing various modifications such as tilted and multiple exposures [START_REF] Bonakdar | Deep-UV microsphere projection lithography[END_REF][START_REF] Berthod | Periodic TiO2 nanostructures with improved aspect and line/space ratio realized by colloidal photolithography technique[END_REF], 3D photolithography [START_REF] Xu A Zhang | Three-dimensional nanolithography using light scattering from colloidal particles[END_REF][START_REF] Chang | From two-dimensional colloidal self-assembly to threedimensional nanolithography[END_REF], use of proximity effects [START_REF] Geng | Large-area and ordered sexfoil pore arrays by sphericallens photolithography[END_REF], and therefore is perspective for the synthesis of complex plasmonic structures. for example the increasing of transmission with grating depth. Another interesting approach for grating apodization, based on surface buckling of elastomeric films, was introduced in [START_REF] Yeh | Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating[END_REF]. The buckling results in 1D gratings where both pitch and depth vary simultaneously over the sample surface, thus pure depth-dependent effects cannot be studied. We believe that the little number of works originates from the lack of reliable yet inexpensive methods of grating depth apodization, that is why Chapter 5 of the present thesis is devoted to this issue.

Objective and outline of the thesis

Previous sections were devoted to the historical overview and recent progress in the broad research field of plasmonics. In the following, the contents of the thesis is outlined, which is devoted to both experimental and theoretical investigations of EOT in various diffractive structures including 1D, 2D holographic gratings and polycrystalline lattices of nanoholes, and covers the following aspects:

1. A novel LIL-based approach for 1D and 2D gratings with adiabatically varying depth was proposed, theoretically studied and experimentally validated.
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2. Metallized gratings fabricated via mentioned approach allow to study depthdependent non-resonant and resonant effects, including EOT. In particular, the existence of optimal corrugation depth for maximum EOT and non-resonant structural coloration were revealed experimentally.

3.

For the first time the Nanosphere Photolithography (NPL) method was adopted for EOT research. The plasmonic response of polycrystalline structures is compared with those of conventional holographic 2D hexagonal gratings.

4. The influence of disorder on EOT in 2D gratings is investigated both experimentally and theoretically, and an effective dimensionless coefficient of disorder is proposed to estimate the quality of polycrystalline substrates for EOT.

The thesis is organized as follows:

Chapter 2 is devoted to the theory of Surface Plasmon Polaritons in conventional planar metal-dielectric structures. The systematic investigation of plasmonsupporting geometries is based on eigenmodes calculation via scattering matrix method. In particular, an important relation between Fabry-Pérot oscillations and plasmons is discussed.

In Chapter 3 principal concepts of diffraction grating theory are introduced as well as numerical methods of simulation, accompanied with mathematical explanations.

Chapter 4 contains the information about layer deposition methods and methods of surface nanostructuring utilized in the thesis. The process of resist development is studied in detail using numerical simulations for laser interference lithography and nanosphere photolithography.

In Chapter 5 we collected all fabrication techniques for grating depth modulation considered experimentally during the time of PhD and discussed their limits of applicability. We propose a novel moiré-based method for grating apodization, which creates 1D and 2D structures with adiabatically varying depth, and introduce its theoretical and experimental verification. Depending on their propagation behavior SPRs can be divided into two categories: localized and delocalized ones. Usually, metallic structures with sharp corners and strong curvature are preferred to reach high local energy concentrations, and metallic nanoparticles are a perfect choice in this regard. The particle shape (spheres, cubes etc) strongly influences the optical response of the corresponding metal colloid [START_REF] Wiley | Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis[END_REF] (see Fig. For specific applications as for example SERS, biosensing, optical interconnections and strcutured color, delocalized SPRs are needed; these surface waves appear and propagate along the "dielectric-metal" interface for distances much longer than CHAPTER 2. THEORY OF SURFACE PLASMON POLARITONS their wavelength. It will be shown in subsequent sections that these SPPs have a wavevector greater than the photon wavevector of the same frequency in the vacuum, therefore the momentum of incident light should be enhanced in order to excite them.

Plasmonic excitation occurs when the enhanced momentum of incident field is equal to plasmonic mode wavevector, this is the principal coupling mechanism utilized in various prism based methods, known as Otto or Kretschmann configurations, as well as in grating coupling, see Fig. A high refractive index glass prism is used in both Otto and Kretschmann configurations, see Figs. 2.2a-b. This prism provides a large wavevector projection CHAPTER 2. THEORY OF SURFACE PLASMON POLARITONS on the plane parallel to all interfaces and allows to achieve the total internal reflection between high-index prism and low-index analyte/dielectric layer, regardless of the location of the metal film. Following the Kretschmann setup a thin metallic film ( 100 nm) should be deposited on the face of a high-index dielectric prism, whereas another metal film side is in a contact with an analyte/dielectric layer. In contrast,

the Otto configuration has a dielectric/air gap between the prism and the metallic layer. This gap should be precisely tuned ( 1 µm) and controlled over the sample surface, which can be experimentally challenging, which is why the Otto setup was not widely utilized for SPR sensing.

In the present thesis we consider another method of plasmonic modes excitation using 1D and 2D diffraction gratings, see Fig. 2.2c. Here, instead of using massive prisms, the large wavevector values are achieved by the diffraction orders of a grating.

Periodical elements (sketched in Fig. 2.2c as orange rectangles) can be made of any material, metal or dielectric. Their periodicity is a factor which defines the enhancement of incident field momentum (and, consequently, the resonant incidence angle) in contrast to the prism refractive index in Otto/Kretschmann configurations.

Due to the high variety of one-and two-dimensional periodical systems such grating configurations possess a lot more degrees of freedom and optimization possibilities than other setups. Worth noting is in this context the typically small total device thickness. Consequently, grating-based plasmonic devices are compatible with flat optics [START_REF] Aieta | Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[END_REF] and flexible opto-electronics [START_REF] Shen | Conformal surface plasmons propagating on ultrathin and flexible films[END_REF].

Figure 2.2d presents a typical plasmonic dip in the reflection spectrum, which was calculated using the model Kretschmann setup sketched on the right with a thin silver film of 50 nm thickness. At the resonant angle ≈ 43 • the plasmonic surface mode is effectively excited, which means that there is an effective transfer of energy from the incident light beam to the SPP. As a consequence only a small portion of the energy is reflected and forms the mentioned dip.

In 

Scattering matrix theory

Let us consider an arbitrarily scattering optical system. Without going into details, such a system can be represented as an object with a number of input and output ports (see Fig. 2.3). We denote the amplitude of the electromagnetic wave (plane wave in the simplest case) in port i as f + i for the input and f - i for the output. In the linear optics regime considered in this thesis a linear relationship between input and output exists in the form:

S f + = f -, ( 2.1) 
where

|f + ≡ f + 1 , f + 2 , ... T and |f -≡ f - 1 , f - 2 , ... T .
The linear operator S in Eq.

2.1 is called the scattering matrix of the system. If the scattering matrix S is known analytically or numerically, the optical response for any input |f + can be easily obtained. However, the matrix S calculation CHAPTER 2. THEORY OF SURFACE PLASMON POLARITONS is often a complicated process which depends on the scatterer geometry. In the present thesis only 1D and 2D, flat multilayer diffraction systems are considered, therefore we use a transmission matrix approach as it matches this case perfectly.

Let us consider the layered structure as in Fig. 2.4a. With respect to the channel notation in Fig. 2.4c, we can write in analogy with Eq. 2.1:

S   a 1 b 4   =   b 1 a 4   (2.2)
Because of the lamellar structure it is convenient to rearrange the channels order:

T   a 1 b 1   =   a 4 b 4   (2.3)
to separate ports on the left and on the right. The matrix T in Eq. 2.3 is called transfer matrix of the layered structure. The sequential applying of transfer matrices corresponding to individual layers and interfaces between them (see Fig. 2.4b) yields the total transfer matrix by multiplying all of the individual matrices. Once the total transfer matrix is calculated, the corresponding scattering matrix S is [START_REF] Richard | Analysis of multilayered periodic structures using generalized scattering matrix theory[END_REF]:

S (T ) =   -T -1 22 T 21 T -1 22 T 11 -T 12 T -1 22 T 21 T 12 T -1 22   , ( 2.4) 
where T ij are the elements of matrix T .

The scattering matrix approach is used in this thesis to obtain the electromagnetic eigenmodes of the structure, like plasmonic or waveguide modes. Let this matrix S η be a function of a parameter η: as an example, the scattering operator of the lamellar system depends on the incidence angle. From Eq. 2.1 we get:

S -1 η f -= f + (2.5)
Eigenmodes exist at specific values ηi of the parameter η, i = 1,2..,m (physically it may correspond for example to specific incidence angles α i ). Due to the selfsustainability of the eigenmode i, i = 1,2,..m, its output is nonzero |f - i = 0 with zero input |f + i = 0, which leads to:

lim η→η i det S -1 η = 0 (2.6)
The condition of energy conservation is still valid because nonzero output amplitudes |f - i generate decaying waves with Poynting vector propagating along the structure surface. The determinant of direct matrix S η tends to infinity as η → ηi , thus its matrix elements s should possess resonant behavior in the vicinity of ηi . We represent s as a meromorphic function of parameter η:

s (η) = s analytic (η) + m i=1 A i η -ηi (2.7)
with m complex poles in the principal part of the Laurent series corresponding to the structure eigenmodes. In fact, any element s of the scattering matrix possesses a similar resonant behavior [START_REF] Alexey | 3D periodic dielectric composite homogenization based on the generalized source method[END_REF]. By considering analytically or numerically this resonant behavior of the scattering matrix it is possible to reveal positions ηi and amplitudes A i of the electromagnetic eigenmodes.

Eigenmodes calculation via scattering matrix

Equation 2.7 of the previous section shows the connection between the resonant behavior of the scattering matrix and the eigenmodes of the structure. In the present CHAPTER 2. THEORY OF SURFACE PLASMON POLARITONS section we show how to calculate numerically these eigenmodes in the general case, following the algorithm presented in [START_REF] Alexey | 3D periodic dielectric composite homogenization based on the generalized source method[END_REF].

Let us notice that the function s (η) • P (η) where P (η) ≡ m i=1 (ηηi ) = m i=0 P i η i , P m = 1, is analytical on C. We choose the interval [a, b] ⊃ Re (η i ) m i=1 and a number n ∈ N big enough to have a negligibly small n-th order Taylor series coefficient (machine precision order of magnitude): where this Taylor coefficient equals to the n-th order Newton divided difference

[s • P ] (n) (η) n! ≈ 0 (2.
(s • P ) [η 0 , η 1 , .., η n ],
which is therefore negligibly small too:

(s • P ) [η 0 , η 1 , .., η n ] ≡ n j=0 s (η j ) • P (η j ) n r=0, r =j (η j -η r ) = 0 (2.9) 
for any n + 1 pairwise distinct points η 0 , η 1 , .., η n from the interval [a, b].

By introducing the polynomial P into Eq. 2.9 and taking into account P m = 1 we get a linear combination of polynomial coefficients P i :

m-1 i=0 P i • n j=0 s (η j ) η i j n r=0, r =j (η j -η r ) = - n j=0 s (η j ) η m j n r=0, r =j (η j -η r ) (2.10)
Finally, using m different sets of points η 0 , η 1 , .., η n in the interval [a, b] we constitute and solve the system of linear equations with respect to coefficients P i .

The roots of polynomial P (η) = m i=0 P i η i are the desired eigenmode parameters ηi , which can be calculated as eigenvalues of Frobenius companion matrix of P :

C (P ) =             0 0 • • • 0 -P 0 1 0 • • • 0 -P 1 0 1 • • • 0 -P 2 . . . . . . . . . . . . . . . 0 0 • • • 1 -P m-1             (2.11)
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For eigenmode i with the calculated parameter ηi the inverse scattering matrix S -1 ηi is singular. Thus, solving Eq. 2.5 with zero right part, the output |f - i is obtained. Subsequently, the eigenmode field distribution inside the structure can be calculated (if needed), using the boundary conditions at the inner boundaries.

Electromagnetic modes in multilayer planeparallel structures

The scattering and transfer matrices described above are general approaches used to consider various optical geometries. This section is devoted to the application of this theory to multilayer, plane-parallel, plasmon-supporting structures as it is helpful for both the theoretical investigation of propagating modes and the explanation of experimental results in Chapter 6. All model geometries considered here are treated systematically by the same algorithm explained in details below.

Simulation algorithm

Figure 2.5 illustrates the parameters used for the simulation of multilayered planar structures. We consider the solution of Maxwell's equations in the frequency domain at frequency ω and employ a transfer matrix method outlined for example in [START_REF] Knittl | Optics of Thin Films: An Optical Multilayer Theory[END_REF][START_REF] Yeh | Optical waves in layered media[END_REF]. Due to the implementation of boundary conditions at every point of the interfaces, the wavevector component k x is conserved at every interface and therefore is an important parameter in simulation. The value of k x depends, for example, on the incidence angle of the light beam. Maxwell's equations formulated for plane waves in a homogeneous, isotropic, non-magnetic medium with dielectric permittivity ε yields the y-component of the wavevector:

k y = (ω/c) 2 ε -k 2 x (2.12)
for collinear mount k z ≡ 0. The square root of a complex (in general case of complex ε and k x ) argument is taken with a non-negative imaginary part. Every layer i in a structure supports two plane waves with the same k x and opposite ±k (i) y , their amplitudes are denoted as A (i,1) and A (i,2) in Fig. 2.5. Consequently, all transfer and scattering operators are 2 × 2 matrices. Depending on the polarization TE or CHAPTER 2. THEORY OF SURFACE PLASMON POLARITONS TM of the incident beam these matrices and plane waves amplitudes are convenient to consider for the components E z and H z of electromagnetic field, respectively.

There are two types of transfer operators: the transfer of amplitudes (which are denoted by the vector A (i,1) , A (i,2) T in every layer i) through the interface from media ζ to media ξ and their transfer in the homogeneous media ζ at a specified distance h. We denote these matrices as T A (i,1) and A (i,2) respectively for the layer i.

The explicit form of transfer matrices is:

22 CHAPTER 2. THEORY OF SURFACE PLASMON POLARITONS T (ζ,ξ) interface =                    k (ζ) y +k (ξ) y 2k (ξ) y k (ξ) y -k (ζ) y 2k (ξ) y k (ξ) y -k (ζ) y 2k (ξ) y k (ζ) y +k (ξ) y 2k (ξ) y     , TE polarization     k (ζ) y /ε ζ +k (ξ) y /ε ξ 2k (ξ) y /ε ξ k (ξ) y /ε ξ -k (ζ) y /ε ζ 2k (ξ) y /ε ξ k (ξ) y /ε ξ -k (ζ) y /ε ζ 2k (ξ) y /ε ξ k (ζ) y /ε ζ +k (ξ) y /ε ξ 2k (ξ) y /ε ξ     , TM polarization T (ζ) bulk =   exp ik (ζ) y h 0 0 exp -ik (ζ) y h   (2.13)
Based on the considerations above we use the following algorithm for planeparallel structures simulations:

1. The structure is defined by dielectric permittivities ε i and thicknesses h i of every layer i.

2. The wavevector component k x is fixed; other wavevector components k (i) y are calculated using the Eq. 2.12 for every layer i.

3. Bulk and interface transfer matrices are calculated for every layer and interlayer interfaces using Eqs. 2.13. 4. To get a total transfer matrix T all matrices received at the previous step are multiplied in the order from substrate to cover, see Fig. 2.5.

5.

A total scattering matrix S is calculated by matrix T as shown in Eq. 2.4.

In the following we will apply this algorithm to several important plasmonsupporting structures.

Metal-dielectric interface

For the simplest case of a metal-dielectric interface (see Fig. 2.6a) it is easy to obtain an explicit form of S matrices following the algorithm discussed in the previous section: In contrast to this, matrix S T M has a complex pole at: 

k d y (k x )/ε d + k m y (k x )/ε m = 0 (2.
n SPP ≡ k x ω/c = ε m ε d ε m + ε d (2.16)
Numerical calculations of n SPP are presented in Fig. 2.6b for the air/aluminum interface in the Vis-NIR frequency range. The plasmonic propagation constant is larger than unity, which means that this mode cannot be excited directly from any cladding. Therefore, the grating, Otto and Kretschmann configurations are used to excite SPP experimentally as seen in section 2.1 and Fig. 

Thin metal film

For some important plasmonic applications (see Chapter 6) a thin sub-100 nm metal film is used. Because of the small thickness h the layer does not absorb all the energy, and the metal transmits some light. Let us consider the symmetric geometry "Dielectric-Metal-Dielectric" (see, for example, the structure in Figs. 2.8) with a thin metal film and find their plasmonic resonances.

Following the algorithm presented in section 2.4.1 we calculate the total transfer and scattering operators T and S respectively in TM polarization, for which plasmonic effects can occur. These matrices, however, are quite massive for general observation, here we show only three matrix elements necessary for further analysis:

                                     S 12 = 4k (2) y /ε 2 •k (3) y /ε 3 exp ik (2) y h k (2) y /ε 2 -k (1) y /ε 1 k (3) y /ε 3 -k (2) y /ε 2 +exp -ik (2) 
y h k (1) y /ε 1 +k (2) y /ε 2 k (2) y /ε 2 +k (3) y /ε T 12 = exp ik (2)
y h k (2) y /ε 2 -k (1) y /ε 1 k (2)
y /ε 2 +k

(3)

y /ε 3 +exp -ik (2) 
y h k (1) y /ε 1 +k (2) y /ε 2 k (3) y /ε 3 -k (2) y /ε 4k (2) y /ε 2 •k (3) y /ε 3 T 22 = exp ik (2)
y h k (2) y /ε 2 -k (1) 
y /ε 1 k

(3)

y /ε 3 -k (2) y /ε 2 +exp -ik (2) 
y h k (1) y /ε 1 +k (2) y /ε 2 k (2) y /ε 2 +k (3) y /ε 4k (2) y /ε 2 •k (3) y /ε 3 (2.17)
The sub-and superscripts 1,2,3 numerate the dielectric cover, metallic layer and dielectric substrate from top to bottom, respectively. The scattering matrix element S 12 with the simplest analytical formulation was chosen to study the resonance behavior of the structure. Complex poles exist when the S 12 denominator equals zero. After some mathematical manipulations taking into account the structure symmetry ε 1 ≡ ε 3 and k (1) y ≡ k (3) y we get the eigenmode dispersion equation:

1 -R 1 + R = ± exp -ik (2) y h , ( 2.18) 
where R ≡ The phase map ϕ (S 12 ) in Fig. 2.7b confirms the resonance positions as points of phase singularities. SR-SPP corresponds to the resonance with the highest k x imaginary part, it means that its propagation distance is shorter in comparison with LR-SPP, which has lower losses.

The difference in propagation constants decreases with the increase of the metal thickness (see Figs. 2.7c-d) and in the limit of infinite thickness becomes zero. Due to the complex-valued k (2) y the module of the exponent in Eq. 2.18 grows indefinitely, CHAPTER 2. THEORY OF SURFACE PLASMON POLARITONS so the equality can be conserved only at 1 + R → 0. After some transformations it yields the propagation constant of the plasmon at the single metal-dielectric surface described in Eq. 2.16.

It is worth to develop also the field distribution of short-and long-range plasmons.

For the parameters k x satisfying Eq. 2.18 the corresponding field amplitudes are and F LR-SPP -F SR-SPP

A (cover,1) = 0, A (cover,2) = 1, A (

2

. These fields correspond to SPPs propagating at the both independent interfaces of metallic layer, see Fig. 

Waveguide on the metallic substrate

In practice dielectric claddings of metallic films cannot be considered as semiinfinite. For example, the deposition via spin-coating of S1805 photoresist allows layer thicknesses up to 600 nm (see the coating curve in Fig. 4.3a). In the present thesis the metallic layer is usually covered with a dielectric for mechanical protection and as an additional mean for controlling the plasmonic excitations by varying the cover dielectric permittivity. In such layered structures with alternating metallic and dielectric layers of finite thicknesses another type of eigenmodes in addition to plasmonic ones appear, which are called waveguide modes. This subsection is devoted to a brief introduction to waveguide modes using the simplest three-layer "metal-dielectric-air" structure as an example (see Figs. 2.10 for geometry).
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Let us define the three-layer structure with air as a cover (semi-infinite layer 1), dielectric photoresist S1805 slab of finite thickness h and permittivity ε 2 = 1.61 2 (layer 2) and aluminum substrate ε 3 = (1.4 + 7.7i) 2 (semi-infinite layer 3); the chosen permittivity values correspond to the wavelength 632.8 nm.

Following the algorithm presented in section 2.4.1 we calculate the total scattering operator S. In analogy with the previous subsection we will develop only one single element of the S-matrix here, because they possess the same resonant behavior. We have chosen the element S 12 with the simplest formula:

                   S TE 12 = 4k (2) y k (3) y exp ik (2)
y h k (2) y -k (1) y k (3) y -k (2) y +exp -ik (2) 
y h k (1) y +k (2) y k (2)
y +k

(3) y

S TM 12 = 4k (2) y /ε 2 •k (3) y /ε 3 exp ik (2) y h k (2) y /ε 2 -k (1) y /ε 1 k (3) y /ε 3 -k (2) y /ε 2 +exp -ik (2) 
y h k (1) y /ε 1 +k (2) y /ε 2 k (2)
y /ε 2 +k

(3)

y /ε 3 (2.19)
The complex poles analysis of the presented formulas reveals the existence of multiple modes in both TE and TM polarizations, see Fig. 2.9. Along with the waveguide TM i modes also plasmonic mode in TM polarization exists, as indicated by the red line in Fig. 

Fabry-Pérot resonator

In the previous subsections we considered plasmonic and waveguide modes located outside the light cone which therefore cannot be excited directly from the cover. However, pronounced light modulations can appear in both reflection and transmission due to the illumination from the cover. We will use the three-layer structure from the previous subsection (see Fig. 2.11a) as a model to illustrate this.

Let us consider the normal incidence of the plane wave on this structure, see Fig. The difference between Fabry-Pérot resonances and those considered previously should be clarified. Waveguide and plasmonic modes propagate and guide the energy inside the structure or along its surface, and decay exponentially outside (for example in the cover). Due to this fact the propagation constant of such modes is greater than those of free space modes and they cannot be excited directly by them. In contrast, the Fabry-Pérot resonator has a different principle: due to the multiple reflections of light inside, the resonator has a discrete number of specified thicknesses at a fixed wavelength (or vice versa, specified frequencies at a fixed resonator thickness) with constructive/destructive interference of reflected waves and, consequently, enhanced/suppressed reflection. In contrast to plasmonic and waveguide modes, Fabry-Pérot modes can be observed under direct incidence of waves propagating in the cover. It is interesting to consider Fabry-Pérot oscillations at incidence angles other than normal. We increase the horizontal projection of the normalized wavevector

k x /k cover ∈ R,
where k cover ≡ ωn cover /c, see Figs. In order to better understand this effect, Fig. 2.12a shows a magnified region of the reflection map in Fig. 2.11c for TE 1 and FP 1 lines. White and green triangles show the positions of the corresponding complex poles and zeros of the scattering matrix element S 11 responsible for the reflection. As expected, complex poles correspond to TE 1 waveguide modes, while complex zeros follow the Fabry-Pérot reflection dip with some lateral shift. This shift appears due to the high imaginary part of these complex zeros Im(k x )/k cover ∼ 10 -2 and higher as shown in Fig. 2.12b. The close interconnections between Fabry-Pérot-mediated reflection dips and resonances appear in the same plane-parallel structure. In fact, similar complex poles/zeros transformations also appear in more sophisticated optical geometries leading for example to the total light absorption by metallic gratings [START_REF] Popov | Total absorption of light by gratings in grazing incidence: a connection in the complex plane with other types of anomaly[END_REF].

Conclusion

In this chapter the appearance of electromagnetic modes via the scattering matrix approach and eigenmodes calculations were explained. Using this formalism a systematic study of different multilayer plane-parallel structures was performed. In particular, the behavior of plasmonic modes on a single metal-dielectric interface and in thin metal films was studied in details. Obtained results will be useful in following chapters to understand better plasmonic effects in grating-based geometries. 

Chapter 3

Theory of Diffraction Gratings

CHAPTER 3. THEORY OF DIFFRACTION GRATINGS

A diffraction grating can be formed by a periodically undulated medium (Figs.

3.1a-b) or alternating elements made of different materials (Figs. 3.1c-d).

There exists a huge variety of possible grating geometries including unidimensional (1D) [21] or bidimensional (2D) [START_REF] Gjessing | 2D back-side diffraction grating for improved light trapping in thin silicon solar cells[END_REF] periodical structures, mono-and multilayered composites [START_REF] Kalachyova | Surface plasmon polaritons on silver gratings for optimal SERS response[END_REF][START_REF] Cui | Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[END_REF][START_REF] Meng | Combined front and back diffraction gratings for broad band light trapping in thin film solar cell[END_REF], as well as designs with more complex elementary cells [START_REF] Cui | Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[END_REF].

A fascinating feature of gratings is their ability to diffract transmitted and reflected light into different diffraction orders and effectively transfer the energy between them; due to this gratings are nowadays intensively used in light couplers [START_REF] Vivien | Light injection in SOI microwaveguides using highefficiency grating couplers[END_REF], X-ray analysis of crystals [START_REF] Terauchi | A new grating X-ray spectrometer for 2-4 keV enabling a separate observation of In-Lβ and Sn-Lα emissions of indium tin oxide[END_REF], filters [START_REF] Niederer | Tunable, oblique incidence resonant grating filter for telecommunications[END_REF], diffractive lenses [START_REF] Huang | Planar diffractive lenses: fundamentals, functionalities, and applications[END_REF] and other applications. Gratings as diffraction devices have a number of advantages in comparison with prisms [START_REF] Antonakakis | Gratings: Theory and Numeric Applications[END_REF]:

1. A grating is a substantially planar, flat structure. Its thickness can be comparable with the light wavelength and can therefore be much thinner than bulk glass prisms.

2. As consequence of 1) gratings have important miniaturization and integration capabilities.

3. An appropriate choice of materials and periods allows gratings to operate in frequency ranges unattainable for other devices. 4. By optimizing the grating geometry (thickness, depth, profile and period) the device output for a specific application can be fine-tuned very efficiently. In this context glass prisms suggest quite limited optimization possibilities (for example, the choice of refractive index). This chapter is devoted to both theoretical and experimental aspects of the utilization of diffraction gratings in optical devices. The principles of several rigorous numerical methods, used in this thesis for simulations of the optical response of gratings, are explained. Particular attention is paid to the excitation of plasmons by grating diffraction orders and to plasmonic-mediated resonant transmission, which constitutes the main interest of the thesis.

Diffraction orders and Ewald's sphere

Before studying different numerical methods for grating simulations, a number of useful analytic properties can be obtained from basic mathematical considerations of the boundary-value problems.

We use the basic case where the grating of period Λ is an undulation of the interface between two different semi-infinite claddings (see Fig. To simplify the mathematical treatment, the upper cladding (cover) is assumed to be air. The lower cladding (substrate) is non-magnetic with a dielectric permittivity ε sub and can be a metal or dielectric. The structure is illuminated by a monochromatic plane wave of frequency ω at incident angle θ:

E inc = P exp ik inc sin (θ) x -ik inc cos (θ) z , ( 3.1) 
where P is a complex amplitude and k inc = (ω/c) √ ε air is the incoming light's wavevector in air. We use the harmonic representation of Maxwell's equations in both regions Z i , i = 1, 2:

       ∇ × E = i ω c H ∇ × H = -i ω c ε i E, ( 3.2) 
where ε 1 = 1, ε 2 = ε sub . Applying the divergence operator to Eqs. 3.2 leads to another pair of Maxwell's equations ∇ • E = 0 and ∇ • H = 0 for regions Z i . We CHAPTER 3. THEORY OF DIFFRACTION GRATINGS define the diffracted fields as:

E d =   E -E inc in Z 1 E in Z 2 , ( 3.3) 
and the same for the magnetic fields. This separation of incident and diffracted fields is necessary because only the diffracted fields satisfy the Sommerfeld radiation condition: waves should carry the energy away from the grating, in directions of

z → +∞ in Z 1 and z → -∞ in Z 2 .
Only incident fields (which are already known) carry the energy from infinity towards the grating. The total electromagnetic field as well as the incident field satisfy Eqs. 3.2. Consequently, the diffracted fields also satisfy Maxwell's equations due to their linearity.

Using the curl operator on the left sides of Eqs. 3.2 applied to diffracted fields we immediately get a pair of symmetric vector Helmholtz equations:

       ∆E d + ω c 2 ε i E d = 0 ∆H d + ω c 2 ε i H d = 0 (3.4)
For boundary conditions it is convenient to choose the continuity of tangential components of electric and magnetic fields [START_REF] Petit | Electromagnetic Theory of Gratings[END_REF]:

       E d | 1 + E inc | 1 × n = E d | 2 × n H d | 1 + H inc | 1 × n = H d | 2 × n, (3.5) 
where Q| i is the value of field Q (for example, E, H) in the vicinity of the grating surface in region Z i .

Eqs. 3.4 and 3.5 should be treated together to solve the diffraction problem.

However, it is clear that since the wavevector of the incident wave has a zero y-component, the structure invariance along the y-axis will lead to a general electromagnetic solution that is invariant along the y-axis, too. Consequently, in analogy with plane-parallel structures considered in Chapter 2, two independent solutions for TE (E Oy, H y ≡ 0) and TM (H Oy, E y ≡ 0) polarization exist. A unified formulation of the boundary-value problem exists for both TE and TM regimes. Let us define the generalized scalar field F :

               F ≡     E y for TE case
H y for TM case

F inc = exp [ik inc sin (θ) x -ik inc cos (θ) z] , (3.6) 
where the incident field amplitude is assumed to be unity for TE (E inc y = 1) and TM (H inc y = 1) polarizations. The diffracted field F d is defined similarly to Eq. 3.3. Using these notations, the unified equations are [START_REF] Antonakakis | Gratings: Theory and Numeric Applications[END_REF]:

               ∆F d + ω c 2 ε i F d = 0 F d | 1 -F d | 2 = -F inc (x, z) at grating surface 1 τ 0 d dn F d | 1 -1 τ 1 d dn F d | 2 = -i τ 0 nk inc F inc (x, z) at grating surface, (3.7) 
where constant τ i = 1 for the TE case and τ i = ε i for the TM case, and the diffracted field should obey the Sommerfeld condition.

Solving of Eqs. 3.7 is not an objective of this subsection; we consider only general properties of solution. Importantly, the solution of Eqs. 3.7 is pseudo-periodic [START_REF] Antonakakis | Gratings: Theory and Numeric Applications[END_REF]:

F d (x + Λ, z) = F d (x, z) exp ik inc sin (θ) Λ (3.8) It follows that field F d (x, z) exp [-ik inc sin (θ)
x] is periodic and can be expanded in a Fourier series. After the subsequent retrieving of F d one gets:

F d (x, z) = +∞ n=-∞ F d n (z) exp [iα n x], (3.9) 
where

α n = k inc sin (θ) + 2π Λ n. (3.10)
Let us notice that in general complex amplitudes F d n (z) depend on z. However, in the semi-infinite regions z > z max and z < z min (see Fig. 3.2) the amplitudes become constant because ε i does not depend on any coordinates there. Substituting Eq. 3.9 into the Helmholtz equation in 3.7 yields:

+∞ n=-∞ d 2 dz 2 F d n + ω c 2 ε i -α 2 n F d n exp i 2π Λ nx = 0 (3.11)
In the mentioned semi-infinite regions of z any constant in the left part of this equation does not depend on z, and this series can be interpreted as Fourier series. Consequently, every Fourier coefficient with number n vanishes and implies an individual Helmholtz equation on amplitude F d n with a simple solution

F d n = A (i,1) n exp [-iγ i,n z] + A (i,2) n exp [iγ i,n z]. Coefficients A (i,1)
n and A (i,2) n correspond to downgoing (i, 1) and upgoing (i, 2) plane waves in the notations of Fig. 2.5 for semi-infinite regions z > z max (i = 1) and z < z min (i = 2); the square root in the

constant γ i,n ≡ (ω/c) 2 ε i -α 2
n is taken with positive imaginary part or positive real part in case when Im(γ i,n ) = 0. Finally, by collectively considering the definition of the diffracted fields 3.3, the unified field representation 3.6, 3.7 and the Sommerfeld condition, the total field of the grating including the incident field is expressed by the formula:

F (x, z) =        exp [iα 0 x -iγ 1,0 z] + +∞ n=-∞ A (1,2) n exp [iα n x + iγ 1,n z], z > z max +∞ n=-∞ A (2,1) n exp [iα n x -iγ 2,n z], z < z min , (3.12)
where the incident field is rewritten as

F inc = exp [iα 0 x -iγ 1,0 z], in comparison with
Eq. 3.6. We conclude that grating diffracts light in an infinite number of diffracted orders with wavevector x-components α n . However, only a limited set of these orders is propagative with Im(γ i,n ) = 0. When the diffraction order n exceeds some limit n max all orders with |n| > n max decay exponentially with the distance from the grating. Any propagative order has a real-value wavevector k i,n ≡ (α n , 0,γ i,n ) T and thus propagates at some diffraction angle θ i,n . From Eq. 3.10 we deduce:

k i,n sin (θ i,n ) = k inc sin (θ) + 2π Λ n, (3.13)
which is the well known grating formula connecting diffraction angles θ i,n with incident angle θ and the field frequency (wavelength) by the incident wavevector k inc . The components α n of all diffraction orders constitute the 1D lattice in the reciprocal space with vertice coordinates α n . The basis consists of the single vector b = (α n , 0, 0) T . A simple graphical representation of Eq. 3.13 is the so called Ewald's sphere [START_REF] Pp Ewald | Introduction to the dynamical theory of X-ray diffraction[END_REF], see Fig. Mathematical considerations analogous to the 1D case can be done for 2D gratings, which have an elementary cell based on two translation vectors a 1 and a 2 ,

a 1 ∦ a 2 .
It can be shown that in this case the mesh of vertices in reciprocal space is two-dimensional with two basis vectors b 1 and b 2 such that:

       b 1 = 2π n 1 a 1 ,n 1 b 2 = 2π n 2 a 2 ,n 2 , ( 3.14) 
where unit vectors n 1 and n 2 are perpendicular to a 2 and a 1 , respectively. A two-dimensional analog of Eq. 3.10 is:

α n,m = k inc sin (θ)   cos (ϕ) sin (ϕ)   + b 1 n + b 2 m, (3.15)
where ϕ is an additional angle for defining the incidence wave direction in the (x, y)

plane. The wavevector z-components in cover (i = 1) and substrate (i = 2) are defined as γ i,n,m ≡ (ω/c) 2 ε i -α 2 n,m . Furthermore, the wavevectors of diffracted orders are given by k i,n,m ≡ (α n,mx , α n,my , γ i,n,m ) T . The Ewald's sphere for 2D gratings is illustrated in Fig. The energy in decaying orders with Im(γ i,n,m ) = 0 propagates along the grating surface. Therefore, these orders are not visible in the far field reflection or transmission diffraction patterns. However, they play a crucial role in energy coupling into plasmonic and waveguide modes, which is one of the main motivations for the utilization of gratings in plasmonic research.

Numerical methods for gratings simulation

Introduction

In order to calculate complex amplitudes F d b (z), which allows to obtain the exact field distribution of the diffraction grating, a rigorous method is needed that takes into account the grating material and the undulation profile. Since the 1980's, a number of exact numerical approaches were developed [START_REF] Petit | Electromagnetic Theory of Gratings[END_REF]. In contrast to approximate methods (coupled-wave theory, first-order approximations, effective index medium theory, etc.), they have only a limited number of initial physically reasonable assumptions, for example infinite size of the grating and linear response.

The mathematical model beneath rigorous methods can imply additional limitations on the structure geometry and/or the excitation, but they are less strict than in the case of approximate methods. Simulation results of rigorous methods in the scope of their applicability correlate well with experiments.

In this section, three rigorous methods are considered, because they were used for grating simulations in the present thesis: Rigorous Coupled Wave Analysis (RCWA) [START_REF] Mg Moharam | Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[END_REF], C-method [START_REF] Li | Rigorous and efficient grating-analysis method made easy for optical engineers[END_REF] and Generalized Source Method (GSM) [START_REF] Av Tishchenko | A generalized source method for wave propagation[END_REF]. Every approach has its own advantages and drawbacks as it will become clear in the following, therefore we used a specific method for a specific diffraction problem: lamellar and smooth 1D gratings were treated by RCWA and C-method, respectively, whereas 2D structures were calculated by GSM.

Rigorous Coupled Wave Analysis

Let us consider Eqs. 3.2 separately for TE and TM polarizations in the region

z min < z < z max (see Fig. 3.2).

For TE case: E

= (0 E y 0) T , H = (H x 0 H z ) T ,                H x = i c ω ∂Ey ∂z H z = -i c ω ∂Ey ∂x ∂Hx ∂z -∂Hz ∂x = -i ω c εE y (3.16)
Substituting the first two equations into the third one, Eq. 3.16 yields a scalar equation for E y :

∂ 2 E y ∂z 2 = - ∂ 2 E y ∂x 2 - ω c 2 εE y (3.17)
Let us denote the n-th Fourier coefficient of any periodic function F by [F ] n ; for the quasiperiodic function F it will be the same as in Eq. 3.9: [F ] n ≡ F n . Due to the quasiperiodicity of the electromagnetic fields (Eqs. 3.8 and 3.9) and the periodicity of the dielectric permittivity in the region

z min < z < z max : ε(x + Λ, z) = ε(x, z),
the term εE y is quasiperiodic. Consequently, using Laurent's rule we can write:

[εE y ] n = +∞ m=-∞ [ε] n-m [E y ] m .
We transform Eq. 3.17 into the reciprocal space and express the amplitude of the n-th diffracted order [E y ] n (z):

∂ 2 ∂z 2 [E y ] n (z) = α 2 m δ nm - ω c 2 εn,m (z) [E y ] m (z) ≡ A T E n,m [E y ] m (z) (3.18)
Here the Toepliz matrix εn,m (z) is composed of elements [ε] n-m (z) and depends on z; δ nm is the Kronecker delta. We used the Einstein convention for summation of infinite sets of diffraction orders.

For TM case: E = (E x 0 E z ) T , H = (0 H y 0) T ,                E x = -i c ω 1 ε ∂Hy ∂z E z = i c ω 1 ε ∂Hy ∂x ∂Ex ∂z -∂Ez ∂x = i ω c εH y (3.19)
Substituting the first two equations into the third one, Eq. 3.19 yields a scalar equation for H y :

∂ 2 H y ∂z 2 = ε - ∂ ∂x 1 ε ∂ ∂x H y - ω c 2 H y (3.20)
Here we made the assumption that locally the dielectric permittivity does not depend on z, which is the case for example in binary gratings. Analogously to the transformation of Eq. 3.18, and using the same notation, we express the amplitude of n-th diffracted order [H y ] n (z):

∂ 2 ∂z 2 [H y ] n (z) = εn,p α p α m ε -1 p,m - ω c 2 δ pm [H y ] m (z) ≡ A T M n,m [H y ] m (z) (3.21)
Matrix A T M n,m was obtained for the case of a binary grating, where the dielectric permittivity does locally not depend on z, which means that A T M n,m is independent of z inside the grating region. For more complex grating profiles a staircase approximation can be made (see Fig. 3.5), and Eq. 3.21 is applied to every slice. The same grating binarization can be done in the TE case with matrices A T E n,m (caluclated by Eq. 3.18) that are different in every slice. Inside every slice the system of differential equations 3.18 or 3.21 is solved independently. For numerical calculations a truncation of matrices is performed leaving first N diffraction orders. If the number of slices is q, RCWA method should solve q eigenvalue problems of size N × N separately for TE and TM polarizations.

The amplitudes of diffraction orders [F ] n should then be calculated using boundary conditions 3.5 applied to every interface between the slices, including interfaces z = z min and z = z max . A proper choice of structure slicing is very important for RCWA method, as it affects both the simulated grating profile (compare Figs. 3.5a and 3.5b) and the solution accuracy; to ensure the slicing is good several restarts of the program with different number q should be done.

C-method

As we have seen in the previous subsection, in order to calculate z-dependent complex amplitudes F d n (z) (Eq. 3.9), the RCWA method transforms Maxwell's equations into reciprocal space and composes a homogeneous linear system of

differential equations ∂ 2 ∂z 2 [F ] n = A T E or T M n,m
[F ] m (see Eqs. 3.18 and 3.21). The matrices A T E n,m and A T E n,m are independent on z due to the staircase approximation of the grating profile, which allows to solve the mentioned equations easily. However, profile approximation is a source of computational errors. These errors can be suppressed by increasing the number of slices, which is numerically expensive.

The C-method [START_REF] Li | Rigorous and efficient grating-analysis method made easy for optical engineers[END_REF] suggests a completely different approach for the calculation of F d n (z) by reformulating Maxwell's equations in curvilinear coordinates which follow the grating profile. In such coordinates the grating surface is flat, so the boundary conditions are simplified. We start with the wave equation from Eqs. 3.7:

∂ 2 ∂x 2 + ∂ 2 ∂z 2 + ε (x, z) ω c 2 F (x, z) = 0 (3.22)
and consider the change of variables

       v = x u = z -a (x) ,        x = v z = u + a (x) ,        ∂/∂ x = ∂/∂ v -ȧ∂/∂ u ∂/∂ z = ∂/∂ u , (3.23)
where the function a(x) defines the grating profile. After substitution of Eq. 3.23 into Eq. 3.22 and some manipulations we get [START_REF] Li | Rigorous and efficient grating-analysis method made easy for optical engineers[END_REF]:

  ε medium ω c 2 + ∂ 2 ∂v 2 0 0 1     F F   = 1 i   i ∂ ∂v ȧ + ȧ ∂ ∂v 1 + ȧ2 1 0   ∂ ∂u   F F   , ( 3.24) 
where ȧ ≡ da/dx and F ≡ (1/i) ∂F u , ε medium = ε air at u > 0 and ε medium = ε sub at u < 0. Field F (and consequently F ) is quasiperiodic with respect to coordinate v, therefore it can be expanded into a Floquet-Fourier series:

F (u, v) = +∞ n=-∞ [F ] n (u) exp [iα n v], (3.25) 
with α n from Eq. 3.10. Noting also the periodicity of ȧ with respect to coordinate v, we transform Eq. 3.24 into reciprocal space in analogy to how Eqs. 3.18 and 3.21

were obtained :

   diag ε medium ω c 2 -α 2 n 0 0 1      [F ] n [F ] n   = 1 i   -αâ + âα 1 + ââ 1 0   ∂ ∂u   [F ] n [F ] n   , ( 3.26) 
where column ([F ] n [F ] n ) T consists of all diffraction orders of fields F and F and can be described as

{[F ] n } +∞ n=-∞ {[F ] n } +∞ n=-∞ T , matrix α ≡ diag [α n ] and â i,j ≡ [ ȧ] i-j .
The block matrices are independent of u in the left and right sides of Eq. 3.26, which can therefore be reduced to a homogeneous system of equations with constant coefficients. Solutions of this system have a form

[V ] n [V ] n exp [iρu], where [V ] n
and [V ] n are constants independent of u. Substitution of this form into Eq. 3.26 leads to an eigenvalue problem with respect to ρ. To solve this problem numerically we truncate the infinite matrices and keep only N diffraction orders. Consequently, we get 2N eigenvalues ρ q with corresponding eigenvectors [V ] n,q . A general solution of Eq. 3.26 can thus be written as a linear combination:

[F ] n = q C q [V ] n,q exp [iρu] (3.27)
with arbitrary complex coefficients C q . Substitution of Eq. 3.27 into Eq. 3.25 finally yields the solution of wave equation 3.22 in curvilinear coordinates (u, v):

F (u, v) = n exp [iα n v] q C q [V ] n,q exp [iρ q u] (3.28)
This equation describes the field in both regions Z 1 and Z 2 . In order to find exact values of amplitudes C q a boundary-value problem must be considered incorporating the incident field and the Sommerfeld scattering condition. C-method calculates a single eigenvalue problem of size 2N × 2N per medium, simultaneously for both TE and TM polarizations.

Generalized Source Method

We have considered above two popular numerical methods for diffraction grating simulation: RCWA and C-method. Based on completely different ideas (profile approximation or coordinate system conversion) these methods are best adapted for different grating geometries: binary and lamellar gratings for RCWA and gratings with profiles defined by periodical smooth functions for C-method. Because of the necessity to solve the eigenvalue problem (Eqs. 3.18, 3.21 or 3.26) the calculation complexity (the number of elementary operations for the algorithm execution) of these methods grows with N 3 where N is the total number of diffraction orders.

This leads to the fact that computational efforts grow rapidly with an increase of desired precision [START_REF] Van | Diffraction grating theory with RCWA or the C method[END_REF].

In this subsection we mention another simulation approach called Generalized Source Method (GSM). Its main advantage over the methods considered before is the possibility to reduce the diffraction problem to a system of linear algebraic equations with a special structure of matrices, which allows performing matrixvector multiplications using the fast Fourier transform (FFT) [START_REF] Blahut | Fast algorithms for signal processing[END_REF]. As a result, the calculation complexity is reduced to N log(N ). 

E = N b (J) , (3.29) 
where N b is some linear operator. In the complex medium ε (r) only the initial source J inc emitting the incident field exists. As this field can exist in the absence of the structure, we can suggest the definition E inc ≡ N b (J inc ). It can be shown [START_REF] Av Tishchenko | A generalized source method for wave propagation[END_REF] that the same operator N b used for the basic medium can be applied for the simulation of a complex medium, by just adding a specific term J gen ≡ -i ω c ∆εE total , where ∆ε = ε (r) -ε b , to the initial source:

E total = N b J inc + J gen = N b J inc + N b (J gen ) = E inc + N b (J gen ) (3.30)
The total field in the complex diffraction system can be modeled in the basic medium as the sum of the incident field and the field generated by the generalized sources, which is sketched in Fig. 3.7b. Let us notice that the generalized source in its turn is defined by the total field, that is why Eq. 3.30 constitutes a self-consistent linear algebraic system for spatial harmonics of the desired total field.

The basic medium ε b is limited up to now to the simplest case of a homogeneous isotropic media, because only this case was solved for any source distribution [START_REF] Herach | Theory of electromagnetic wave propagation[END_REF].

However, the linear operator N b can have different forms depending on the structure symmetry, simulation domain and coordinate system utilized, thus opening a wide range of GSM applications [START_REF] Aleksei | Fast numerical method for modelling one-dimensional diffraction gratings[END_REF][START_REF] Alexey | New fast and memorysparing method for rigorous electromagnetic analysis of 2D periodic dielectric structures[END_REF][START_REF] Alexey | Generalized source method in curvilinear coordinates for 2D grating diffraction simulation[END_REF][START_REF] Ushkov | Concurrency of anisotropy and spatial dispersion in low refractive index dielectric composites[END_REF].

Conclusion

This chapter covered the main properties of diffraction gratings, necessary for further research of grating-based devices. In particular, the well known grating formula connecting diffraction angles with incident angle and the field frequency was obtained analytically, the Ewald's sphere approach was introduced. In addition, several rigorous methods for grating simulations utilized in the thesis were described with necessary mathematical explanations and discussions of their algorithmic complexity.

Chapter 4

Fabrication Methods

Introduction

Nanofabrication is a growing and intensively studied area of a modern nano- These steps of functional layer nanostructuring are further integrated in a general scheme of a diffraction system fabrication. In the present thesis we do not employ the pattern transfer because the nanostructured working layer already plays the role of the functional layer. Additional functional layers (for example, metallic thin films) are deposited directly on the structured surface and follow its topography. Consequently, there are two fabrication procedures: layer deposition and surface nanostructuring which are described in the following sections.

Layer deposition methods

The possibility of a stable and homogeneous deposition of a material layer with a predefined thickness plays a crucial role in nanotechnology. During the sample fabrication we used two completely different deposition approaches: spin coating and Physical Vapor Deposition (PVD) by magnetron sputtering, which are developed for dielectric and metallic materials deposition, respectively.

Spin coating

Spin coating is a well-established technique for thin film deposition on different plane substrates. The principle is sketched in Fig. 4.2: the liquid solution of a material and a solvent is applied to a cleaned substrate, for example a transparent BK7 microscope slide or a reflective silicon wafer. During the fast rotations of the substrate the majority of the coating solution is being thrown away from the substrate, and the remaining part is forming a thin homogeneous layer due to the centripetal force and the surface tension. An airflow appearing above the surface effectively dries the solvent and also decreases the layer thickness [START_REF] Sarangan | Nanofabrication: Principles to Laboratory Practice[END_REF], though the complete solvent evaporation can be achieved only in an additional soft baking step after the spin coating. In order to get a high-quality thin film, great attention should be paid to substrate preparation. The surface roughness and the contamination with mechanical particles provoke discontinuities visible by the naked eye, so a spin coating should always be preceded by a thorough substrate cleaning.

We employ two possibilities to control the spin-coated film thickness: the solution concentration and the rotation speed. With increasing material concentration the solution becomes more dense and, consequently, the resulting film is thicker at a fixed rotation speed. In contrast, the same material coated at higher rotations per minute (RPM) is more affected by the centripetal force and therefore becomes thinner. 

Magnetron sputtering

Physical Vapor Deposition (PVD) is a group of deposition methods in vacuum where a thin film of the material is formed by its direct condensation from a vapor 55 CHAPTER 4. FABRICATION METHODS state. The vapor state in its turn is created using the bulk material target; depending on how the material vaporisation is achieved, there are two general PVD processes: evaporation and sputtering. In the present thesis the PVD modification called magnetron sputtering is used to deposit thin (∼20 nm) aluminum films.

In Fig. 4.4 a scheme of the process is presented. In a typical deposition process a chamber with a substrate (green disk) and a material target (blue disk) should be first evacuated to high vacuum, followed by the introduction of a sputtering gas (for example Argon, its atoms are denoted as white spheres). To initiate the plasma generation a high voltage is applied between the cathode (located generally behind the target) and the anode (the position can be different: behind the substrate, connected to the chamber as an electrical ground or around the target as in our case). Electrons accelerated in the electric field ionise the sputtering gas atoms during collisions, and positive Ar + ions are accelerating toward the cathode and collide with target atoms (denoted as blue spheres). After a complex process of multiple collisions and momentum transfer in the target an atom located near the surface finally receives a kinetic energy high enough to be sputtered out of a target.

The material vaporized in this way condensates on the substrate and forms a thin film. The confined high density plasma increases the deposition rate and protects the thin film from accelerated electrons.

Magnetron sputtering has a number of advantages over other PVD processes.

Firstly, it does not require the melting of the target, so a high variety of materials regardless of their melting temperature can be deposited. Secondly, it can be highspeed (tens of nanometers per second [START_REF] Samuel D Ekpe | Deposition rate model of magnetron sputtered particles[END_REF]), and can produce stable and large (for example 3.2 × 6 m [START_REF] Kukla | Magnetron sputtering on large scale substrates: an overview on the state of the art[END_REF]) thin films of thicknesses up to 5 µm. Deposition at room temperature [START_REF] Yang | Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method[END_REF] is also possible and does not damage the substrate, which is a critical point in the current study.

Methods of surface nanostructuring

Now we consider the second fabrication procedure denoted in Figs. "top-down" and "bottom-up" methods.

In a top-down philosophy the material is originally bulk and macroscopicallysized, the desired nanostructure should be "released" from the whole media like a statue carved out of stone by means of various external tools. Concerning the 1D and 2D surface nanostructuring the top-down category includes laser interference lithography, direct laser writing, electron/ion beam writing, nanoimprint lithography, etc.

In contrast, a bottom-up approach considers the components of a material (atoms, molecules, colloidal particles) already as integral parts of a future nanostructure; these components should be just oriented and joined properly in analogy with a building constructed from its bricks. Some examples for bottom-up methods are atomic layer deposition [START_REF] Steven | Atomic layer deposition: an overview[END_REF], 3d printing [START_REF] Helena | Recent advances in 3D printing of biomaterials[END_REF] and colloidal self-assembly [START_REF] Zhang | Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays[END_REF].
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In the present thesis two techniques for surface nanostructuring are used: Laser Interference Lithography (LIL) and colloidal self-assembly belonging to top-down and bottom-up categories, correspondingly.

Laser Interference Lithography

LIL [START_REF] Fabián | Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns[END_REF] is a well-established, high-throughput and simple technique for waferscale surface micro/nanostructuration. The main idea of the method is controlling the exposure of photosensitive samples in an interference field of coherent laser beams.

Due to its flexibility, various LIL modifications have been developed for multiscale fabrication [START_REF] Behera | Single-step optical realization of bioinspired dual-periodic motheye and gradient-index-array photonic structures[END_REF], hierarchical moiré architectures [START_REF] Wu | Moire metamaterials and metasurfaces[END_REF], multiple-beam exposure [START_REF] Xu | Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography[END_REF],

beam-shaping optics [START_REF] Weber | Use of beam-shaping optics for wafer-scaled nanopatterning in laser interference lithography[END_REF], directional mass transfer driven by polarized light [START_REF] Hsu | Moire Polarization Interference Photolithography Based on AZO Molecular Glass Pillar Array for Hierarchical Surface Patterning[END_REF],

Diffractive Optically Variable Image Devices (DOVIDs) [START_REF] Staub | Gratings of constantly varying depth for visual security devices[END_REF] etc. In the present thesis a standard LIL bench is used to get one-and two-dimensional gratings free of stitching defects for a variety of studies. In the following subsections the principles of LIL will be discussed along with examples of fabricated structures.

Basics of LIL: interference field

As it was mentioned above, LIL uses the interference of laser beams in order to generate a stitching defect free, long range periodical intensity distribution. The simplest and most common approach is a two-beam LIL setup, see Fig. In practice a plane wavefront needed for a 1D sinusoidal intensity distribution is difficult to provide for larger surfaces; a spherical wavefront from point laser sources as in Figs.4.5 and Fig. 4.6a is used instead. It gives a good approximation to a plane wave at reasonable distances between the sources and the screen: for a subwavelength grating with a period Λ = 300 nm which is exposed at a distance ∼30 cm from the point sources on an exposure area of 5×5 cm, the maximum period deviation is ∆Λ ≈ 1 nm Λ. With increasing exposure areas an undesirable effect of the fringes distortion arises: the spherical wavefront leads to formation of a family of hyperbolae as sketched in Fig. 4.6a. The requirements imposed on the quality of grating periodicity vary in different applications: they are strict for compressor gratings [START_REF] Zhang | An array-grating compressor for high-power chirped-pulse amplification lasers[END_REF] and typically less critical in optical security and sensor devices [START_REF] Yeh | Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating[END_REF].

Let us notice that the hyperbolic form of the fringes which is generally considered as a LIL setup drawback can be adopted for the needs of grating apodization; we will return to this point in Chapter 5, section 5.2.3.

The curvature of the fringes can be removed by collimating optics which transforms a spherical wavefront into a plane one. The quality of the optical elements can substantially reduce the applicability of this method as defects introduce random phase noise which affects the fringe distribution, see Fig. Along with the widespread 2-beam scheme, more complicated LIL setups were proposed utilizing three [START_REF] Zhao | Antireflection silicon structures with hydrophobic property fabricated by three-beam laser interference[END_REF], four [START_REF] Hu | Bio-inspired hierarchical patterning of silicon by laser interference lithography[END_REF], five [START_REF] Lin | Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element[END_REF] and six [START_REF] Xu | Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography[END_REF] laser beams interfering simultaneously. Such advanced LIL benches generally do not lead to completely new 2D geometries, the aim is rather to improve the intensity distribution contrast or introduce fine topography details.

The interference fields obtained in LIL setups have a prominent property of being translation-invariant in the direction of propagation, which is a distinctive feature of so-called nondiffracting wave fields [START_REF] Boguslawski | Increasing the structural variety of discrete nondiffracting wave fields[END_REF]. Due to their important applications in optical trapping [START_REF] Alpmann | Mathieu beams as versatile light moulds for 3D micro particle assemblies[END_REF], nanostructuring and atom traps [START_REF] Damski | Quantum gases in trimerized kagomé lattices[END_REF] they became a well-researched topic. With respect to the LIL approach it was shown [START_REF] Boguslawski | Increasing the structural variety of discrete nondiffracting wave fields[END_REF] that a six-beam interference field leads to a particularly large variety of transverse intensity distributions.

In the commonly used and most studied case of 2-beam interference two LIL setups sketched in Fig. 4.5 are used. The same approach with several beam splitters and/or corner reflectors was successfully utilized for a higher number of laser beams [START_REF] Zhao | Antireflection silicon structures with hydrophobic property fabricated by three-beam laser interference[END_REF][START_REF] Hu | Bio-inspired hierarchical patterning of silicon by laser interference lithography[END_REF][START_REF] Lin | Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element[END_REF][START_REF] Xu | Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography[END_REF], but an alternative setup based on a spatial light modulator 60 The beam splitter couples the laser irradiation at λ = 442 nm into two polarizationmaintaining optical fibers, their outputs are fixed to stepper motors in order to control the incidence angle θ precisely. An important aspect is fringe stabilization:

the overall bench is mounted on an optical table and an active stabilization system with feedback prevents the fringe blurring by inevitable vibrations. The period of the intensity distribution on the screen is controlled by the incidence angle θ, which in our particular setup can be adjusted by varying the distance between the sample support and fiber outputs.

Basics of LIL: photosensitive material

The success of the semiconductor industry and microprocessors manufacturing has led to a rapid development of photosensitive materials called photoresists.

Previously we have discussed typical LIL setups and possible interference field configurations. The photoresist layer is then exposed non-homogeneously in these fields during the LIL exposure step. Due to a specific chemical composition the resist will have a varying solubility over the surface in dependence of the received energy dose, allowing the transfer of the interference pattern into a surface topography.

Considering the solubility in a developer solvent there are positive and negative types of photoresists. In a positive one the solubility increases under exposure, whereas a negative resist becomes less soluble. Although both types are used in industry and science, positive resists are more prevalent as they typically achieve a higher resolution. However, negative resists have wider process latitude, better adhesion to specific substrates and are less expensive than their positive counterparts.

Negative resists like SU-8 shrink during the post-exposure baking [START_REF] Robert | The Control of Shrinkage and Thermal Instability in SU-8 Photoresists for Holographic Lithography[END_REF], which affects the uniformity and can lead to sample cracking. However, recently this effect of photoresist compaction was utilized for a large-area nanostructuring with sub-30 nm features [START_REF] Le-The | Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns[END_REF].

The ability to change the solubility with energy absorption defined the widespread distribution of photoresists in nanotechnology for surface relief gratings (SRGs) fabrication. However, another photosensitive LIL-compatible material exists, possessing a more complex behavior: polymers containing azobenzene chromophores (AZO polymers for short). In addition to light intensity, these materials are sensitive to the local electric field distribution which provokes a polarized light-driven mass transfer from illuminated regions to dark ones. AZO polymers and molecular glasses were succefully used for complex surface nanostructuring unattainable by conventional methods; in addition, inscribed superficial textures can be rewritten and used repeatedly [START_REF] Hsu | Moire Polarization Interference Photolithography Based on AZO Molecular Glass Pillar Array for Hierarchical Surface Patterning[END_REF][START_REF] Stefano | From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials[END_REF].

In the present thesis positive photoresists of the MICROPOSIT S1800 series are used: S1805 and S1822. These resists contain three important chemical components:

Novolak polymer (defines the mechanical and adhesion properties), Diazonaphthoquinone (DNQ, photosensitive compound) and acid Ethyl lactate (the solvent to control the viscosity and photoresist thickness in a deposition process). The resist S1822 contains less solvent, it is more dense and, consequently, forms thicker layers during spin coating: 4000 nm in comparison with 600 nm at 3000 RPM for S1805 (see Fig. 4.3a). Although we used the resist S1822 for thick depositions, even thicker coatings can be realized with S1805 using controlled evaporating of the solvent during several days at fixed humidity and temperature, see Fig. The used photoresist has a good adhesion to the surface of BK7 glass slides and silicon wafers, conserves the sensibility for a long period of time (∼3 months) and has a low extinction coefficient k at optical frequencies above 300 nm, see Fig. 4.9.

Due to all these properties the photoresist can be utilized as an optical material, which is why we do not need an additional step of pattern transfer in Fig. 4.1c-d.

For the subsequent LIL exposure, the deposited photoresist should be soft-baked to evaporate the solvent, harden the material and improve the adhesion. We used a standard pre-baking at 60 • C for 1 min for all samples. Sometimes after development a hard baking is necessary for improved chemical stability of the photoresist mask.

Although we don't transfer the developed pattern into an underneath layer, the hard baking step can be interesting as an additional tool for post-development topography corrections, see Chapter 5. A common feature of photoresists is the presence of a threshold (activation dose).

At exposure doses less than this value (in our case ≈0.24 µJ/cm 2 ) the photoresist is still insoluble in a developer, and just at energies above the limit the development rate starts increasing almost linearly. At sufficiently strong exposures (∼3 µJ/cm 2 in our case) saturation appears and the rate does not increase anymore.

Sensitivity curves play a crucial role for photoresist theory and applications; here we will focus on its practical application to grating profile simulations. The resist development rate depends strongly on ambient temperature, humidity, laser exposure wavelength, developer type and its temperature, so it can be difficult to keep all the settings constant and reproduce in an experiment the theoretically predicted structure. However, common profile forms and the typical range of experimental parameters always stay the same; in section 4.4.2 we study it for the case of 1D holographic gratings.

Colloidal Self-Assembly

In contrast to LIL, the colloidal self-assembly belongs to bottom-up nanofabrication approaches, where the structure is synthesized from its elementary parts.

The main idea of colloidal deposition consists in capturing particles by an interface "air/liquid" to simplify their manipulation. They are forming a mono-or multilayer at this interface by colloidal self-assembly, which is subsequently accurately transferred to the substrate surface. In this section the principles of colloidal self-assembly are presented and the differences with LIL nanostructuring are discussed.

Forces at the air-liquid interface

The process of colloidal self-assembly occurs under the influence of the interparticle forces and forces between the particles and the medium. Here we consider three kinds of forces: surface tension, electrostatic interactions and capillary forces [START_REF] Dellea | La lithographie colloïdale: outil générique de structuration et fonctionnalisation des surfaces et interfaces[END_REF].

Surface tension. Colloidal particles most often are made of SiO 2 with density of 2.196 g•cm -3 , which is more than twice as large as the density of water 0.998 g•cm -3 .

However, the capture of microspheres by the air-water interface for subsequent manipulations is still possible due to the surface tension phenomenon.

Let us consider the microsphere of radius R particularly submerged in water to a depth of R -z, where -R z R (see Fig. 4.11a). In this geometry three interfaces exist: "particle/liquid", "particle/air" and "air/liquid" with surface tensions γ pl , γ pa and γ al respectively. Corresponding surface free energies are

E pl = γ pl • 2πR (R -z), E pa = γ pa • 2πR (R + z) and E al = -γ al • π (R 2 -z 2 )
respectively [START_REF] Ip | The equivalency of surface tension, surface energy and surface free energy[END_REF]. It follows that the total surface free energy particles appear in accordance with the dipole-dipole interaction energy [START_REF] Pieranski | Two-dimensional interfacial colloidal crystals[END_REF]:

E tot = γ al • πz 2 + (γ pa -γ pl ) • 2πRz + πR 2 (
E d-d (r) ∝ (Qλ D ) 2 r 3 , (4.1)
where Q is the total particle charge, λ D is the Debye length and r is the inter-particle distance. These long-distance electrostatic forces can greatly influence the stability and quality of 2D colloidal arrays and can be utilized, for instance, for non-compact colloidal crystal formation.

Capillary forces. At the interface "liquid/colloidal particle" the particular curvature of the liquid surface appears depending on the colloidal weight and diameter. The liquid surface tension tries to minimize the surface energy, and specific capillary forces appear. These long-distance forces attract nanoparticles to each other if they have the same wettability and contact angles θ 1 and θ 2 (see Fig.

4.11c)

; otherwise they push particles away from each other. For the model case of two nanospheres (see Fig. 4.11c) of equal diameters 2R and materials with a free surface energy γ pl the lateral capillary flotation force is [START_REF] Peter | Capillary forces between colloidal particles[END_REF]:

F ∝ R 6 γ pl K 1 (qr) , (4.2)
where q is the capillary length, r is the inter-particle distance and K 1 is the modified Bessel function of the second kind. As a long-distance force it can play a crucial role in colloidal self-assembly. However, it appears due to the Archimedes force and the particle weight and therefore becomes negligible for small diameters. Additionally, at R < 10 µm this force becomes smaller than the thermal energy kT [START_REF] Peter | Capillary forces between colloidal particles[END_REF] and should not be taken into consideration.
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Colloidal self-assembly techniques

In this subsection we present two techniques utilized in the thesis for colloidal self-assembly, they are based on the same principle but are slightly different.

The Langmuir-Blodgett technique is probably the most known method of colloidal self-assembly. In a first step (see Fig. The substrate material is also important: Reculusa et al. [START_REF] Reculusa | Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique[END_REF] demonstrated that the interaction between liquid and substrate is stronger than between particles and substrate, and that the hydrophilicity of the substrate plays a crucial role in selfassembly. Another important factor is the dispersion of the size of the microspheres, which always exists in colloidal systems. Variations of particle diameter cause a breaking of long-range hexagonal order and lead to formation of grains and defects.
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In the following we use the words grains, domains and crystallites as synonyms. The size of domains defines the quality of the overall process. 

Nanosphere Photolithography (NPL)

Colloidal self-assembly on the substrate is the first step of nanostructuring [START_REF] Zhang | Colloidal lithography-the art of nanochemical patterning[END_REF]. The next step should be a technique for the transformation of the ordered arrangement of the nano/microparticles into a surface topography. A number of such techniques exists, for example Reactive-Ion Etching (RIE) [START_REF] Corbella | Surface structuring of diamond-like carbon films by colloidal lithography with silica sub-micron particles[END_REF], metallic deposition into the particle interstices [START_REF] Ryan | Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis[END_REF] and the variation of the structure aspect-ratio by partial immersion of the colloids [START_REF] Li | Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios[END_REF]. In the present thesis an advanced method of nanostructuring is used called Nanosphere Photolithography (NPL) which combines fabrication speed with versatility and industry compatibility.

The principle of NPL is presented in Fig. 4.17 By replacing the positive photoresist with a negative one an array of nanopillars instead of nanoholes can be created [START_REF] Shavdina | Large area fabrication of periodic TiO2 nanopillars using microsphere photolithography on a photopatternable Sol-gel film[END_REF]. The final geometry of the nanoelements produced by the nanojets depends on the specific combination of exposure and development time. Moreover, the form of elements can be changed by continuous UV lamp movement during the exposure [START_REF] Qu | Infrared metasurfaces created with offnormal incidence microsphere photolithography[END_REF][START_REF] Berthod | Periodic TiO2 nanostructures with improved aspect and line/space ratio realized by colloidal photolithography technique[END_REF], yielding an arbitrarily shaped elementary cell.

The exact energy distribution in the nanojets depends on the exposure wavelength, geometry of colloidal monolayer and optical properties of the involved materials. For example, in [START_REF] Shavdina | Micro-nano-structuration de surface par renforcement local du flux électromagnétique[END_REF] a systematic study of nanojets was performed with regard to the substrate refractive index, distance between microspheres and incident CHAPTER 4. FABRICATION METHODS wavelength/colloidal diameter ratio; in addition, the existence of optimal values of these parameters for the needs of NPL was discussed.

In this thesis, in order to study plasmon-mediated transmission in visible range and near-IR, silica particles with two diameters are used for NPL: 300 nm and 1 µm. This observation additionally proves the necessity of taking into account not only the irradiation wavelength and particle size, but also their environment and dispersion. The environment of colloidal particles can improve the behavior of nanojets as well. For example, the deposition of a resist on a metallic reflective surface leads to the fact that the irradiation, propagated through the resist layer, is reflected at the bottom and re-propagates in the resist again, enhancing the local field and increasing the total length of the nanojet, thus improving the aspect-ratio of the fabricated nanostructures [START_REF] Berthod | Periodic TiO2 nanostructures with improved aspect and line/space ratio realized by colloidal photolithography technique[END_REF]. Silica microspheres (green circles) are deposited on a photoresist S1805 layer with a thickness of 600 nm; the substrate is modelled as a transparent BK7 semi-infinite layer. Calculations were made using a rigorous RCWA method with 35 slices of colloidal particles (see section 3.3.2).

Simulation of the resist development process

The resist development is a critical step of surface nanostructuring as it finally transfers the absorbed energy dose into a surface relief structure. The possibility to predict and optimize numerically the structure saves time during its experimental fabrication. In this section we consider two distinct modeling types adapted for laser interference lithography and nanosphere photolithography. As the developer is liquid and the process is isotropic, in a small time dt the surface will move further inside the resist by a distance Vdt, where V is the development rate at the specific surface point. The exact grating profile at time dt, which depends on its current configuration and the noticed developing speed map, is then found as the envelope of all demi-spheres along the surface (denoted in green in Fig. 4. 19) with radii Vdt.

Isotropic development process

However, in the resist layer exists as well a vertical distribution of absorbed dose, but in most cases it can be neglected for resist thicknesses limited to 500-1000 nm.

Simulations for Laser Interference Lithography

As it was discussed in section 4.3.1.1 "Basics of LIL: interference field" the two-beam LIL setup generates a periodic 1D interference pattern. In the present section the process of 1D grating formation will be considered in details, as well as achievable grating profiles.

A MATLAB code was written using the principle of isotropic photoresist development in a liquid developer considered in previous section. Ideally, the curve S t should be an envelope of a continuum number of spheres with radii Vdt (denoted in green in Fig. 4.20), where V is the development rate of the photoresist at the current point of the surface. For practical numerical simulations, however, a discretization of this process in both time and space is needed. We are using a scheme based on [START_REF] De | Developed profile of holographically exposed photoresist gratings[END_REF] which includes the following steps:

1. The time step ∆t, development time t dev and the maximal and minimal lengths l max and l min of segments between the nodes of the discretized interface line are fixed.

2. For the initial step i=1 (t=0):

• The curve S 1 is a horizontal straight line which is discretized in accordance with l max and l min ;

• The unit normal vector n 1 j for every curve S 1 segment with a number j is defined with a vertical orientation;

• The development rate vector V 1 j for every curve S 1 node with a number j is defined with an averaged orientation of two adjacent normals n 1 j and n 1 j+1 and an absolute value calculated from the photoresist sensitivity curve.

For every step i>1:

• The development time t=i∆t;

• The position of node № j for a curve S i is calculated by the formula

r i j = r i-1 j + V i-1 j ∆t;
• The number of nodes is corrected in accordance with l max and l min ;

• The unit normal vector n i j for every curve S i segment with a number j is calculated;

• The development rate vector V i j for every curve S i node with a number j is defined with an averaged orientation of the two adjacent normals n i j and n i j+1 and an absolute value calculated from the photoresist sensitivity curve. It is visible that the convex hull of points reproduces the triangular form of the CHAPTER 4. FABRICATION METHODS "sinusoidal" area in Fig. 4.22a as well as grating depth grows from left to right following the black contour lines. An exact match of the experimental grating parameters with the calculated ones is not expected because of resist sensitivity deviations with time, however, we have shown that general regularities are conserved.

Simulations for Nanosphere Photolithography

As it was shown in section 4.3.2.3, the NPL nanostructuring method utilizes nanojets generated by arrays of microspheres in order to expose a photosensible layer.

A detailed numerical consideration of the development process is in this case more complicated than for the LIL approach (see section 4.4.2), because it is inherently 2D. The principle of the isotropic development process described in section 4.4.1 does not change, but the boundary between "Developer" and "Developed photoresist" denoted as a line in Fig. 4.19 turns now into a 2D surface because of the hexagonal microsphere arrangement. A rigorous simulation of the development allows to predict the shape and depth of fabricated nanoholes [START_REF] Xu A Zhang | Three-dimensional nanolithography using light scattering from colloidal particles[END_REF]. The elaboration of such complicated simulation tools is not the aim of this thesis; for our practical needs the nanohole depth is the most important parameter which should be optimized before experimental fabrication. This section is devoted to simplified simulations of the development process in order to calculate the nanohole depths achievable in NPL experiments, using the example of 300 nm-diameter nanospheres. Larger diameter/wavelength ratios are preferable for nanojet generation [START_REF] Yu E Geints | Control over parameters of photonic nanojets of dielectric microspheres[END_REF], therefore we used a UV lamp with the shortest available wavelength of 254 nm. Rigorous RCWA calculations were performed for the diffraction of UV light on a hexagonal array of 300 nm-diameter silica spheres deposited on a surface of positive photoresist S1805, see Fig. For grating depth calculations we should simulate the difference in the developed thickness between the least and the most exposed regions. From Fig. 4.23a it is clear that these regions are lines 1 and 2; moreover, symmetrical considerations allow to say that the resist dissolves vertically there. These two observations constitute the basis of our simplified simulations. Indeed, let the functions f 1 (h) and f 2 (h) be the development rates along lines 1 and 2 for different resist depths h, and t dev be the total development time. Then the algorithm of grating depth calculation is as follows:

1. Split the total development time t dev into N small steps ∆t i , such that 

Conclusion

This chapter described the methods of layer deposition and surface nanostructuring to the extent necessary for performing experimental work. As the thesis is devoted to EOT in periodical and polycrystalline devices, a big attention was drawn to Laser Interference Lithography (LIL) and Nanosphere Photolithography (NPL) methods, which are capable of producing such kind of structures. In addition, the resist development process for both methods was considered in detail, numerical algorithms were presented and development process simulations were carried out using measured photoresist sensitivity curves. The simulations allow to estimate grating profiles and depths expected in experiments and optimize the geometry in advance.

Chapter 5

Variable Depth Gratings

Introduction

As it was discussed in Chapter 3, diffraction gratings possess unique possibilities of light coupling; due to them gratings are widely present in devices for plasmonics [START_REF] Kasture | Strong coupling of in-plane propagating plasmon modes and its control[END_REF], structured color [START_REF] Kristensen | Plasmonic colour generation[END_REF], antireflection [START_REF] Jang | Multifunctional moth-eye TiO2/PDMS pads with high transmittance and UV filtering[END_REF], photocatalysis [START_REF] Liu | Micro-patterned TiO2 films for photocatalysis[END_REF] and biosensing [START_REF] Abutoama | Self-referenced biosensor based on thin dielectric grating combined with thin metal film[END_REF][START_REF] Reiner | Biosensor platform for parallel surface plasmon-enhanced epifluorescence and surface plasmon resonance detection[END_REF]. To further extend their functionality, the grating design moves towards complex 1D and 2D geometries. For example, multidimensional architectures were proposed for broadband light absorption [START_REF] Cui | Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[END_REF][START_REF] Li | Butterfly-inspired Hierarchical Light-trapping Structure towards High Performance Polarization-sensitive Perovskite Photodetector[END_REF], for investigating a visible band "rainbow trapping" effect [START_REF] Gan | Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings[END_REF][START_REF] Gan | Graded Metallic Gratings for Ultrawideband Surface Wave Trapping at THz Frequencies[END_REF] and for various photonic-crystal-based devices [START_REF] Zhou | Photonic crystal enhanced light-trapping in thin film solar cells[END_REF][START_REF] Noda | Light-emitting diodes: Photonic crystal efficiency boost[END_REF][START_REF] Block | High sensitivity plastic-substrate photonic crystal biosensor[END_REF].

Another possibility of grating development is the control of the grating's spatial harmonics number and their phases; in other words, the superposition of several diffraction patterns in one single topography. The resulting hierarchical structure yields elaborate optical functionalities as a combination of the responses of its components. This direction of grating design does not require supplementary materials and/or chemical procedures and usually utilizes well-known fabrication approaches: 3D direct laser writing [START_REF] Röhrig | 3D direct laser writing of nano-and microstructured hierarchical gecko-mimicking surfaces[END_REF], electron-beam lithography [START_REF] Feng | Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures[END_REF], polymer film wrinkling [START_REF] Lee | Anisotropic, hierarchical surface patterns via surface wrinkling of nanopatterned polymer films[END_REF], self-assembly [START_REF] Zheng | Micro-Nanosized Nontraditional Evaporated Structures Based on Closely Packed Monolayer Binary Colloidal Crystals and Their Fine Structure Enhanced Properties[END_REF] and laser interference lithography (LIL) [START_REF] Hasan | Fabrication of hierarchical photonic nanostructures inspired by Morpho butterflies utilizing laser interference lithography[END_REF].

For a given diffractive optical device, the grating period and depth are decisive parameters for the mode coupling: the period controls the wavelength position of the resonance, while the grating depth defines its efficiency [START_REF] Antonakakis | Gratings: Theory and Numeric Applications[END_REF]. To get a broadband resonant behavior so-called chirped gratings are used [START_REF] Bdour | Wavelengthselective plasmonic sensor based on chirped-pitch crossed surface relief gratings[END_REF], with continuous and large variations of grating period over the surface. In contrast, variable depth gratings received up to now much less attention. A significant barrier for exploring this domain is in my opinion a lack of simple experimental techniques for realizing adiabatic depth variations at a macroscopic scale.

In this chapter we present three techniques for fabricating dielectric variable depth gratings that were developed and experimentally verified during this PhD thesis: firstly a method that uses effects of resist reflow, secondly a technique based on non-homogeneous resist irradiation with a moving edge/slit, and finally a resist exposure variation by illumination with moiré patterns. Samples synthesized by the last approach were further used for structured color observation and plasmonic research, see Chapter 6.

Fabrication techniques for variable depth gratings

Resist reflow

High temperatures (100-200 • C in case of S1805 photoresist) cause a resist reflow, which smoothens sharp edges of nanostructures; it was successfully used for aspect-ratio-controlled antireflection subwavelength gratings [START_REF] Young | Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer[END_REF] and fabrication of microlenses with an ultrahigh focal number [START_REF] Wang | A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number[END_REF]. We used hard baking for testing its influence on the grating depth. As reference a 100 nm-depth sinusoidal holographic grating with a period 300 nm was prepared in photoresist S1805 using a standard LIL process, followed by a number of successive heating steps on a hot plate. After each heating process the grating profile was measured by AFM, results are presented in Figs.5.1 and 5.2. We conclude that the hard baking can be used for variable depth gratings fabrication or as an additional post-development tool. One drawback of this approach is that non-homogeneous heating might cause refractive index deviations over the grating.

Moving edge/slit

The apodization method discussed above is a post-development grating treatment.

It is possible, however, to adapt the preceding LIL steps and record grating depth variations already during the exposure. We employed a non-transparent screen located close to the resist surface. The laser irradiation illuminates only the regions of the resist not shadowed by the screen, therefore by moving this screen we control the total exposure dose received by different sample areas. The demonstrated approach is close to one presented in [START_REF] Keith | Gaussian beams from variable groove depth grating couplers in planar waveguides[END_REF] for a controllable ion-beam etching, where the moving slit selectively exposes the photoresist grating with a plasma to transfer periodic profiles into a waveguide. Let us notice that in our case plasma etching can be executed too, just without the slit because the resist grating is already apodized.

Moiré patterns in the resist

As it was mentioned in the introduction to this chapter, adding spatial harmonics into the topography leads to more complex structures with improved functionalities. For example, variable depth gratings can be synthesized without using any supplementary technological steps, in contrast to the techniques above.

1D case

The principal idea can be easily explained for the 1D case [START_REF] Staub | Gratings of constantly varying depth for visual security devices[END_REF]. Let us consider two sinusoids with slightly different periods Λ 1 and Λ 2 = Λ 1 + ∆Λ:

       f 1 (x) = sin [2π/Λ 1 x] f 2 (x) = sin [2π/Λ 2 x + δϕ] ,
(

where δϕ is a phase mismatch. The sum of these functions yields:

f 1 (x) + f 2 (x) = 2 sin [2πx/Λ c + δϕ/2] |cos [2πx/2Λ env -δϕ/2]| , (5.2)
where periods of carrier signal and envelope are

Λ c = 2Λ 1 Λ 2 / (Λ 1 + Λ 2 ) ≈ Λ 1 and
Λ env = Λ 1 Λ 2 / (Λ 2 -Λ 1 ) ≈ Λ 2 1 /
∆Λ respectively; approximations are valid for small enough |∆Λ| Λ 1 , Λ 2 . Figure 5.5 indicates these characteristic lengths and shows the difference between the total sum of functions and the envelope. 

       f 1 (x) = E 0 (1 + sin [2π/Λ 1 x]) f 2 (x) = E 0 (1 + sin [2π/Λ 2 x + δϕ]) , (5.3) 
In this physical consideration the amplitude variations of large period Λ env can be explained by an interference beats effect: due to the changing relative phase between the two sinusoids along the coordinate x (see Fig. 5.5), regions (denoted as dotted black rectangles) with phase differences 0 and π appear. The superposition leads to constructive and destructive interference in these regions, and the total signal amplitude increases or decreases, respectively.

In Chapter 4 a general classification of 1D holographic gratings with a constant depth was made (see Fig. 4.22) using LIL pre-exposure and exposure times. These parameters are used in resist development modeling, too. In order to simulate variable depth gratings via the same numerical approach, the local effective exposure E eff exp and pre-exposure E eff preexp energies are introduced, which vary along the grating surface. The exact dependencies of these effective parameters on the spatial coordinate are controlled by the size of the envelope. Any region x of the sample can be represented as the sum of "rapid" and "slow" coordinates dx and X respectively, where |X| Λ 1

and |dx| ∼ Λ 1 . After inserting these variables into Eqs. 5.3 and some mathematical manipulations we get:

               E total (x) = E pre exp (X) + E exp (X) {1 + sin [2π/Λ 1 dx + δψ]} E eff preexp (X) ≡ 2E 0 {1 -|cos [2πX/2Λ env -δϕ/2]|} E eff exp (X) ≡ 2E 0 |cos [2πX/2Λ env -δϕ/2]| , ( 5.4) 
where δψ ≡ 2πX/Λ 1 + δϕ/2. Figure 5.6 illustrates how the parameters E eff preexp and E eff exp vary along the surface. Regions with zero grating depth correspond to zero E exp , as if there was no LIL exposures at all. However, E eff preexp is maximal here in order to keep the grating mean value constant and horizontal everywhere. Inversely, regions of maximal grating depth have minimal values of E eff preexp and maximal E eff exp , because here the constructive interference between two LIL exposures occurs. It is important to estimate the requirements on a LIL equipment necessary for interference beats generation. As a reference we consider a subwavelength grating of period Λ 1 = 300 nm with a macroscopic beats envelope Λ env = 1 cm. For this geometry the relative difference between the periods for the two LIL exposures is ∆Λ/Λ 1 ∼ 10 -5 . This means that the common approach of LIL extension, which consists in varying the incidence angle [START_REF] Park | Laser interference lithography and shadow lithography for fabricating nanowires and nanoribbons[END_REF], requires a very precise angular adjustment of the order of ∆θ ∼ 10 -4 deg, which is hard or even impossible to realize by standard components utilized in LIL. To overcome this problem an alternative approach with a small wedge angle prism exists [START_REF] Fröhlich | Two methods of apodisation of fibre-Bragggratings[END_REF], however it significantly limits the flexibility and the range of possible grating periods.

In this thesis we propose another moiré-based method of diffraction grating apodization, which is free of the limitations mentioned above. The method utilizes the curvature of wavefronts generated by point laser sources and is inherently 2D.

The subsequent sections are devoted to its theoretical explanation and experimental verification.

Moiré patterns in 2D: qualitative explanation

The sketch in Fig. 4.6a and the photograph in Fig. 4.7 of Chapter 4 explain the experimental LIL setup used in this thesis: a 2-beam LIL bench with optical fibers to couple the laser beams. The fiber tips serve as point laser sources which 95 CHAPTER 5. VARIABLE DEPTH GRATINGS illuminate the sample with an interference field. Because of the spherical wavefronts generated by the point sources a hyperbolic set of fringes appear on the sample surface as shown in Fig. 4.6a. The fringe curvature is quite small: for the LIL period Λ = 1 µm and a sample size of 5 cm×5 cm the maximum period perturbation is 0.5 nm only, and the maximum angle deviation of the fringe orientation is 0.8 , which can be considered negligible in most practical experiments. However, these period deviations are useful for large macroscopic interference beats effects, which appear if we write two sets of curved fringes (by two LIL exposures) in the resist. To cause the beats effect different regions of these sets of fringes should be superposed in order to induce period deviations on any point of the surface. For estimation purposes we take the above mentioned period perturbation ∆Λ ≈ 0.5 nm and the equation for characteristic envelope length Λ env ≈ Λ 2 1 /∆Λ, obtained in the previous subsection for the 1D case; this formula yields that the envelope size is approximately 2 mm Λ in the sample region with the specified period deviation ∆Λ between superposed fringes. Consequently, this approach of utilizing the natural curvature of fringes, which is commonly considered as a drawback of LIL setups, is beneficial for the generation of large macroscopic grating depth modulations.

Figure 5.7 shows 2D moiré patterns generated by this method 1 . For the qualitative explanation two sets of highly curved and low frequency (in comparison with experimental LIL fringes sets) fringes are superposed with a small shift s between them; the period varies differently over the surface, so the moiré effect obviously depends on the shift s or rotation ∆ρ: it generates elliptical lines for vector s normal to the fringes, hyperbolic lines for s parallel to them and straight lines perpendicular to the fringes for small rotations ∆ρ (see Figs. 5.7a-c respectively).

1 The term "moiré pattern" in the present thesis is used in the sense different from the conventional one that utilizes the multiplication of superposed motifs [START_REF] Amidror | The theory of the Moiré phenomenon: Volume I: Periodic layers[END_REF]; due to the physical principles of LIL the resulting structure is the sum of individual exposure motifs. Nevertheless, the term "moiré pattern" in the context of LIL is still valid for two reasons. Firstly, this term has several meanings and appears in various areas of activity from interferometry [START_REF] Post | Moiré interferometry[END_REF] to textile industry [START_REF] Takatera | Moiré Analysis of Fabric Strain by means of Function Group Approximation[END_REF]. Secondly, in subsequent sections we show that the resulting grating depth envelopes repeat elliptical, hyperbolic and straight motifs presented in Figs. 5.7a-c. These motifs are conventional moiré patterns formed by the multiplication of superposed binary images [START_REF] Amidror | The theory of the Moiré phenomenon: Volume I: Periodic layers[END_REF]. 

Moiré patterns in 2D: quantitative explanation

The qualitative explanation laid out above does not take into account the parameters of realistic LIL setups and sample dimensions. Here we present the mathematical formalism for numerical simulations of moiré patterns in a real experiment.

The effect of moiré patterns appearing at small sample rotations between LIL exposures is well known [START_REF] Hendricus | Laser Interference Lithography[END_REF][START_REF] Amidror | Analysis of the Superposition of Periodic Layers and Their Moiré Effects through the Algebraic Structure of Their Fourier Spectrum[END_REF]. Two LIL exposures with periods Λ create a 2D grating with a rhombic elementary cell, where the short and long diagonals of these rhombs are correspondingly d 1 = Λ/ cos (∆ρ/2) and d 2 = Λ/ sin (∆ρ/2). When the rotation ∆ρ decreases the value d 1 tends to Λ, while the other diagonal grows and becomes macroscopically-sized. Consequently, in the limit of small ∆ρ, the 2D grating can be considered as an apodized 1D grating with several straight moiré lines crossing the sample perpendicularly to the fringes. Geometrical considerations show that the distance between these lines is Λ env = d 2 /2 = Λ/2 sin (∆ρ/2). The presence of period deviations in LIL exposures leads to minor linear pattern perturbations only, because the characteristic moiré length Λ env linearly depends on the LIL period.

In contrast to sample rotations, where LIL deviations induce just minor perturbations, the moiré pattern in the case of a sample shift (see Figs. We define the local coordinate system Oxyz with its origin in the sample center and coordinate plane xOz coinciding with the resist surface. Let vector s parallel to this plane define the sample shift between subsequent LIL exposures. In Fig. 5.8a the origin O is located symmetrically between left and right LIL branches. For ease of mathematical consideration and in order to get moiré patterns symmetrical with respect to the origin O it is convenient, however, to translate the sample on vectors -s/2 and +s/2 from the symmetrical initial position before the first and second LIL exposure, respectively. The difference in optical path between left and right LIL branches, normalized to laser wavelength λ, is:

∆ i,sx,sz (x, z) = 1 λ (x + D/2 ∓ s x /2) 2 + (z ∓ s z /2) 2 + H 2 - 1 λ (x -D/2 ∓ s x /2) 2 + (z ∓ s z /2) 2 + H 2 , ( 5.5) 
for the first (i=1, upper signs in ∓ symbols) and second (i=2, lower signs in ∓ symbols) LIL exposure, respectively. The exposure dose E total received by the 98 CHAPTER 5. VARIABLE DEPTH GRATINGS photoresist after two LIL exposures is:

E total (r) = E 0 (1 + sin [2π∆ 1 (r)]) + E 0 (1 + sin [2π∆ 2 (r)]) = 2E 0 sin [π (∆ 1 + ∆ 2 )] cos [π (∆ 1 -∆ 2 )] + 2E 0 (5.6)
Here, in analogy with Eq. 5.2, the product of sine and cosine means the product of the carrier signal and envelope, too. Rapid spatial oscillations of the sine function are close to the LIL period, because the sample shift |s| D, H is small. On the other hand, this shift is enough to introduce the difference between ∆ 1 and ∆ 2 and, consequently, generate the envelope expressed by the cosine term; this term defines the moiré patterns form. Lines in the Oxz plane along which the envelope function reaches its maximum values can be used to define the moiré shape. Considering Eq.

5.6 and using a number k ∈ Z, each of these lines satisfies the condition: with coefficients

cos [π (∆ 1 -∆ 2 )] = 1 ⇔ ∆ ≡ ∆ 1,sx,sz -∆ 2,sx,sz = 2k (5.
C 00 = - 2D λ √ D 2 + 4H 2 C 11 = 8D λ (D 2 + 4H 2 ) 3/2 C 20 = 48DH 2 λ (D 2 + 4H 2 ) 5/2 C 02 = 4D λ (D 2 + 4H 2 ) 3/2
(5.9) depending only on LIL setup parameters D, H and λ. The left part of Eq. 5.8 contains a quadratic form with respect to x and z:

x z   C 20 s x 1 2 C 11 s z 1 2 C 11 s z C 02 s x     x z   = 2k -C 00 s x (5.10)
This equation defines elliptic and hyperbolic moiré patterns for sample shifts s Ox and s Oz, respectively, in accordance with qualitative demonstrations in Figs.

5.7a-b.
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Moiré patterns in 2D: graphical solution

For an arbitrary sample shift s = (s x , s z ) Eq. 5.10 determines the moiré patterns as elongated ellipses and hyperbolas. However, it is hardly seen directly from the equation, which is why we propose a graphical solution. The quadratic form can be written as:

  C 20 s x 1 2 C 11 s z 1 2 C 11 s z C 02 s x   = qs   t cos ψ sin ψ sin ψ cos ψ   ≡ qsB (5.11)
Here q = 4D/ (D 2 + 4H 2 ) 3/2 λ, t = 12H 2 /(D 2 + 4H 2 ), s = |s| and ψ is the angle between the vector s and axis Ox. Following the principal axis theorem the matrix B has a diagonal form in an orthonormal eigenbasis (V 1 , V 2 ). In this basis Eq. 5.10 yields:

u v   β 1 0 0 β 2     u v   = 2k -C 00 s x qs ≡ Q, ( 5.12) 
where x z 

T = (V 1 , V 2 ) u v T ;
ζ 1 ζ 2 ζ 3 A ζ 1 ζ 2 ζ 3 T = 1, (5.13) 
where a = c = C 20 /C 02 , b = 1. The plane which crosses this hyperboloid and visualizes the moiré pattern shape as a cross-section is defined with the following parametrization:

      ζ 1 ζ 2 ζ 3       = un + vm + p, (5.14) 
where the unit vector n Oζ 1 , m ≡ 0 cos γ sin γ One can verify that an appropriate choice of the plane orientation allows to cover all possible moiré patterns achievable in experiments [START_REF] Aa Ushkov | Subwavelength diffraction gratings with macroscopic moiré patterns generated via laser interference lithography[END_REF]. In addition, the graphical solution demonstrates that moiré patterns generated by any sample shift between two consecutive LIL exposures using point sources have an elliptic or hyperbolic form of different aspect ratios; figure 5.10 shows such moiré patterns (grating depth envelopes) calculated by Eq. 5.6 for the experimental LIL setup: D = 69.28 cm, λ = 442 nm and the distance H = 152.9 cm adjusted for the grating period Λ = 1 µm. 

Experimental observation of moiré patterns

We have introduced minor modifications of the experimental LIL setup to be able to perform small sample rotations and displacements. Manual translation or rotary stages with a smallest scale division of 20 µm and 1 , respectively, are connected to the sample holder, see Fig. After the two LIL exposures the samples were developed in MF-319 developer at 8 • C for 4 and 5 seconds in case of 300 nm and 1 µm gratings, respectively, and finally dried in a nitrogen stream.

Two LIL exposures

The photographs of experimentally fabricated samples of 1 micron period dielectric gratings with moiré patterns are presented in Fig. 5.12. Although the microscopic grating fringes are horizontal in every grating, the moiré patterns are sufficiently different due to the different sample displacements or rotations. These patterns are visible as black lines crossing every sample, they correspond to the transparent grating regions with near-zero depth, which do not diffract the light.

In accordance with the theory introduced previously, shifts normal to the fringes 
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Samples g)-i) were fabricated with the same displacement s=2 cm, however, observed zero-depth lines are sufficiently different: the distance between them and the sample symmetry center in g) is larger than in h) and i); additionally, major and minor hyperbola axis in g) and h) switch their roles in i). This behavior is caused by a small inaccuracy in vector s orientation. Indeed, Figs. In order to demonstrate the method's flexibility we have also fabricated subwavelength 300 nm period gratings, see Fig. 

Four LIL exposures

An evident extension of the proposed moiré generation method is the use of more than two LIL exposures to combine any type of sample displacement described above and create complex two-dimensional nanostructures. However, without loss of generality, we consider in this subsection only rotations as they produce straight moiré lines, which are often very interesting from a practical point of view. Introducing additional exposures leads to 2D diffraction gratings with a complex topography, where the grating periods and spatial moiré frequencies can be adjusted independently. 

Macroscopic moiré patterns

Microscopic moiré patterns

The same 4-exposure LIL technique as in the previous subsection is used, but with much larger rotation angles ∆ρ > 1 • . AFM images in Figs. The arbitrariness of the value of ∆ρ means repetitions of Λ s (∆ρ) and Λ LIL will not lead to a common period and, consequently, a quasicrystal pattern will be formed. This quasicrystallinity becomes visible at the small Λ s limit in Fig. 5.15c: we can notice here that the number of clearly distinguishable Λ LIL -periodic maxima varies in different superlattice cells, and additionally their positioning shows perturbations. In the diffraction patterns this quasicrystallinity causes a complex form of superlattice non-zero orders. However, in case of small enough ∆ρ (∼ 1' and less) the size of the superlattice cells Λ s Λ LIL can exceed the diameter of the light beam, and we return to macroscopic moiré patterns which modulate the grating depth adiabatically. Laser wavelength λ=633 nm is larger than the LIL setup period Λ=600 nm. The non-zero diffraction angles increase due to the decreasing superlattice period from a) to c), and consequently the distance between the sample and the screen decreases from a 1 to a 3 in order to obtain an equally sized diffraction pattern.

Conclusion

This chapter presented several approaches for the synthesis of apodized dielectric gratings. In our opinion, the existence of experimental method for variable depth gratings fabrication for the needs of EOT might be highly desirable in analogy with chirped geometry. We proposed, theoretically established and experimentally validated a simple modification of a standard LIL setup which allows creating the controlled depth variations at micro and macro scale via the moiré pattern generation.

A graphical solution was constructed in order to visualize all possible forms of depth envelopes. Apodized structures fabricated via this approach are utilized for depthresolved EOT measurements and structure-induced color observations in the following chapter.

Chapter 6

Transmission in Plasmonic Nanostructures

Introduction

The most prominent advantages of diffraction gratings over other methods of surface plasmon-polariton excitation are the flexibility in the design optimization and a small physical size of the device. In 1998, a phenomenon of Extraordinary Optical Transmission (EOT) much stronger than predicted by the classical theory [START_REF] Albrecht | Theory of diffraction by small holes[END_REF] through an optically thick perforated metal film was reported by Ebbesen et al. [31].

Since this pioneering work, the plasmon-enhanced transmission trough subwavelength holes and periodical metal slits is intensively studied both experimentally and theoretically [START_REF] Mv Gorkunov | Tarnishing of silver subwavelength slit gratings and its effect on extraordinary optical transmission[END_REF][START_REF] Medina | Extraordinary transmission through arrays of slits: a circuit theory model[END_REF][START_REF] Edward | Extraordinary infrared transmission through a periodic bowtie aperture array[END_REF]. It was revealed that the energy transfer in EOT includes several mechanisms such as grating-coupled SPPs and localized modes in the grooves [START_REF] Fiala | Mechanisms responsible for extraordinary optical transmission through one-dimensional periodic arrays of infinite sub-wavelength slits: the origin of previous EOT position prediction misinterpretations[END_REF]. The first mechanism allows the energy transfer from one surface to another even in the absence of holes in the metallic layer, thus enabling the employing of various continuous film designs and fabrication approaches for plasmon-enhanced transmission [START_REF] Jourlin | Spatially and polarization resolved plasmon mediated transmission through continuous metal films[END_REF][START_REF] Giannattasio | Transmission of light through thin silver films via surface plasmon-polaritons[END_REF][START_REF] Cao | Plasmon-enhanced optical transmission at multiple wavelengths through an asymmetric corrugated thin silver film[END_REF][START_REF] Yeh | Use of dispersion imaging for gratingcoupled surface plasmon resonance sensing of multilayer Langmuir-Blodgett films[END_REF].

The plasmon-enhanced transmission is strongly sensitive to small variations of the optical properties of the dielectric cover and therefore very well adapted to sensing applications [START_REF] Gordon | A new generation of sensors based on extraordinary optical transmission[END_REF]203]. It has a number of advantages over conventional SPR techniques operating in reflection: unlike the latter, the transmitted signal has no optical noise from the direct specular reflection, which allows for an improved signal-to-noise ratio [204]. In addition, a transmission-based sensor has a simple design with all elements being aligned in a straight line without complicated angle adjustments [START_REF] Blanchard-Dionne | Intensity based surface plasmon resonance sensor using a nanohole rectangular array[END_REF]. Plasmon-enhanced transmission can be also useful for enhanced photoluminescence [START_REF] Andrew | Energy transfer across a metal film mediated by surface plasmon polaritons[END_REF], near-field photolithography [START_REF] Kim | Comparative study of nanolithography based on extraordinary and diffracted optical transmissions[END_REF], anti-Stokes Raman scattering spectroscopy and multiwavelength optical filters.

Established methods for the fabrication of plasmonic structures supporting enhanced transmission are electron beam lithography [START_REF] Dhama | Extraordinary effects in quasi-periodic gold nanocavities: Enhanced transmission and polarization control of cavity modes[END_REF], focused ion beam milling [START_REF] Blanchard-Dionne | Intensity based surface plasmon resonance sensor using a nanohole rectangular array[END_REF] and laser interference lithography [START_REF] Jourlin | Spatially and polarization resolved plasmon mediated transmission through continuous metal films[END_REF]. Other approaches that should be mentioned are nanosecond laser interference lithography [START_REF] Cao | Plasmon-enhanced optical transmission at multiple wavelengths through an asymmetric corrugated thin silver film[END_REF] and the utilizing of commercial CD-DVDs as prepatterned substrates [START_REF] Yeh | Use of dispersion imaging for gratingcoupled surface plasmon resonance sensing of multilayer Langmuir-Blodgett films[END_REF]35].

The present chapter is devoted to the research of plasmon-mediated optical transmission in 1D and 2D structures of different configurations. To study the plasmonic response the first step was the fabrication of dielectric photoresist gratings followed by the deposition of a thin aluminum film via a PVD process. Experimental and numerical results are presented for 1D, 2D holographic gratings of constant and variable depth, obtained via laser interference lithography, and 2D polycrystalline arrays of nanopores synthesized via nanosphere photolithography.

Transmission through 1D gratings of constant depth

As it was discussed in Chapter 2, in thin metal films SPPs excited on opposite metal-dielectric interfaces interact with each other, which leads to the formation of Long-Range SPPs (LR-SPPs) and Short-Range SPPs (SR-SPPs). Let us consider a thin metallic film embedded in a homogeneous isotropic dielectric. In order to excite plasmons by non-zero grating diffraction orders we introduce a simple 1D periodic metal corrugation with period Λ, see Fig. 6.1a. Although the grating depth d = 0 leads to quasiperiodical boundary conditions and the appearance of diffraction orders (see Chapter 3), we assume that d/Λ 1, which means that the plasmonic modes are not significantly deformed in comparison to those in a planar geometry. where λ is the wavelength in vacuum, θ is the incident angle (see Fig. Numerical calculations in the planar geometry presented in Fig. 2.7c show that Re (n SPP ) n dielectric for any experimentally reasonable metal thickness, which means that the vector k SPP is only slightly larger than the radius of the Ewald's sphere, see Fig. 6.1b. This means that in order to estimate the spectral position of plasmonic modes λ SPP , we can use the approximation Re (n SPP ) ≈ n dielectric (6.2)

Using Eq. 6.1 and taking into account that k SPP = 2π λ Re (n SPP ), we get a resonant plasmonic wavelength λ SPP for normal incidence θ = 0: Because of high absorption of SR-SPP modes the plasmon-mediated resonant transmission observed in Fig. 6.2b is caused mostly by the long-range mode. This can be illustrated by the 0 th -order transmission spectrum in Fig. 6.2e for the specific 12 nm aluminum layer: although the contribution of SR-SPP is visible as a peak shoulder at λ ∼ 550 nm, the maximum transmission at λ ∼ 500 nm is achieved by LR-SPP mode.

λ SPP = Λ • Re (n SPP ) (6.
In the present thesis we consider symmetric "Insulator-Metal-Insulator" (IMI) plasmonic structures in order to improve the resonant transmission. If the dielectric claddings are not similar, the geometry becomes non-symmetric with limited possibilities for energy transfer through the metal layer [START_REF] Chen | Strongly coupled surface plasmons on thin shallow metallic gratings[END_REF]; however, it excites plasmonic modes at different resonant wavelengths at opposite metallic surfaces, therefore a multiwavelength optical response can be obtained [START_REF] Cao | Plasmon-enhanced optical transmission at multiple wavelengths through an asymmetric corrugated thin silver film[END_REF][START_REF] Hm Yuan | Simultaneous excitation of surface plasmon polaritons on both interfaces in an asymmetric dielectric-metal corrugated structure[END_REF]. In order to get the highest plasmon-mediated transmission the optimal grating depth and metal thickness should be found for the fixed dielectric claddings, metal and grating period. The subwavelength period Λ = 300 nm and S1805 photoresist with n dielectric ≈ 1.6 (see Fig. 4.9) yields visible-range plasmons λ SPP ≈ Λn dielectric ≈ 500 nm, excited by diffraction orders ±1 at normal incidence; for the estimation Eq.

6.1 and approximation 6.2 were used. Results of experimental characterizations are presented in Fig. 6.5. AFM data in Fig. 6.5b demonstrates a good correspondence between the ideal sinusoid and the real profile. The measured angle/wavelength-resolved 2D map in Fig. 6.5a reveals two branches of plasmon-enhanced transmission which cross at normal incidence. As it was discussed above, it is possible to estimate the spectral position of plasmons by using the approximation 6.2. The substitution of this approximation into Eq.

6.1 with m = ±1 yields two branches denoted by white dashed lines in Fig. 6.5a, which are in a good correspondence with lines of maximum transmission. Strictly speaking, approximation 6.2 and, consequently, the mentioned dashed lines define an exact position of Rayleigh's grating anomalies appearing due to the redistribution of energy between propagative diffraction orders when their number changes [START_REF] Antonakakis | Gratings: Theory and Numeric Applications[END_REF]. A good correspondence between experimental and calculated 0 th -order transmission presented in Fig. 6.5c is obtained for the following parameters: Λ = 304 nm, d = 50 nm, h 1 = 230 nm, h 2 = 15 nm, h 3 = 100 nm, which are not too far from the planned ones. The lower peak value of the experimentally measured plasmonmediated transmission with regard to the simulated one can be explained by light scattering on randomly distributed defects of the grating.

Transmission through 2D gratings of constant depth

The mechanism of plasmonic excitation by 2D diffraction gratings is the same as for 1D case, the only difference is the existence of two basis vectors {b 1 , b 2 } (see, for example, Eq. 3.14 in Chapter 3). In order to generate a 2D inhomogeneous resist irradiation, two consecutive LIL exposures with a sample rotation between them are carried out. The lattice symmetry depends on the rotation angle ∆ρ: it is rectangular for ∆ρ = 90 • and hexagonal for ∆ρ = 60 • .

In this section we present the study of plasmon-mediated transmission through metallized 2D gratings with rectangular and hexagonal lattices, with a special attention given to spectral variations caused by a changing grating depth. The 2D topography defined as a superposition of two spatial sinusoids with different orientations has a minimal number of geometrical parameters (grating period and depth only), so we avoid consideration of additional characteristics like fill factor.

It is convenient if the variation of only one parameter (depth in our case) is required; therefore the experimental samples with smooth sinusoidal topographies were synthesized.

Rectangular lattice

A typical fabricated 2D grating with a rectangular symmetry (∆ρ = 90 • ) is shown in Fig. 6.6a. In analogy with the 1D geometry discussed above, multilayered IMI structures (BK7/S1805/Aluminum/S1805/air) with a metal thickness h 2 =20 nm and a period Λ = 300 nm were prepared and characterized; the fabrication parameters are summarized in Table 6 the same resonant wavelength λ ≈ 500 nm as in the 1D case, while their maximum value depends on grating depth. Figure 6.6b reveals the existence of an optimized grating depth between 62 nm and 100 nm with the highest resonant transmission.

However, not enough samples were made to determine this depth very accurately. Figure 6.6: a) AFM-measured topography of 2D grating with a rectangular symmetry, the data corresponds to sample №3 from Table 6.1; b) Plasmon-mediated resonant transmission at the wavelength λ ≈ 500 nm at normal incidence through 2D IMI structure as a function of grating depth; c) transmission spectra of gratings with different depths at normal incidence. Metal thickness h 2 =20 nm and a period Λ = 300 nm.

Hexagonal lattice

Holographic 2D gratings with a hexagonal symmetry appear if two LIL exposures are performed with a sample rotation of ∆ρ = 60 • between them. A typical grating topography is presented in Fig. 6.7a. In analogy with the rectangular 2D gratings considered above, we aimed at smooth topographies consisting of two superposed sinusoids, because their depth can be easily varied in a LIL process without changing other geometrical parameters. For the period of the LIL setup Λ LIL = 1 µm was chosen; the technological parameters of the grating fabrication are shown in Table Multilayered IMI structures based on hexagonal gratings were prepared by the deposition of a thin 20 nm aluminum film on the dielectric grating surface and spin-coating of the second resist layer on top. Transmission spectra at normal incidence were recorded for a set of samples with different heights (see Fig. 6.7c).
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The data clearly demonstrates the existence of an optimized grating depth showing a maximal plasmon-mediated transmission peak (see Fig. 6.7b) in analogy with the 2D rectangular gratings of period Λ LIL = 300 nm considered above.

In analogy with section 6.2, in Figs. 6.8a-d we show the wavelength/incident angle-resolved transmission maps for a hexagonal grating №2 from Table 6.2 for a grating depth of 106 nm. In contrast to the 1D case of Fig. 6.5a with two resonant branches only, here multiple lines corresponding to the incident fieldplasmon coupling via different grating diffraction orders can be distinguished. Figures 

λ 1,1 = Λ n SP P + √ 3 2 sin α inc -1 8n SP P sin 2 α inc λ 1,2 = Λ n SP P -1 2n SP P sin 2 α inc λ 1,3 = Λ n SP P - √ 3 2 sin α inc -1 8n SP P sin 2 α inc λ 2,1 = Λ (n SP P + sin α inc ) λ 2,2 = Λ n SP P + 1 2 sin α inc -3 8n SP P sin 2 α inc λ 2,3 = Λ n SP P -1 2 sin α inc -3 8n SP P sin 2 α inc λ 2,4 = Λ (n SP P -sin α inc ) (6.4)
As it was mentioned in section 6.2, the small depth d/Λ 1 does not significantly affect the plasmonic modes in comparison to planar geometry. On the one hand, this means that the relative stability of the plasmonic propagation constant within the mentioned limit makes it possible to use the plasmonic sphere and predict positions of plasmonic dispersion lines in Figs. 6.8a-d. On the other hand, the plasmonic near field also stays the same as in planar geometry, with the electric field oriented in the direction of the grating plane formed by the propagation vector k SPP ≡ k inc + k j and the unit vector normal to the grating surface, see for example Figs. 2.8b-d. Only the electric field component that lies on the grating plane is effective for SPPs [START_REF] Romanato | The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting[END_REF].

Consequently, the diagrams in Figs. 6.9 explain the appearance and disappearance of certain plasmonic lines in maps S 1 -P 1 and S 2 -P 2 , namely λ 1,2 in P 1 and 

λ 2,1 , λ 2,4 in S 2 .

Transmission through 1D variable depth gratings 6.4.1 Introduction

The study of extraordinary transmission dependence on grating depth using multiple samples as it was presented above for 1D and 2D cases has a number of drawbacks. Firstly, this approach requires the fabrication of a set of structures covering some range of depths. Ideally, all samples should be created in one fabrication cycle to exclude the influence of atmospheric fluctuations and equipment imprecision (for example, laser detuning in LIL [START_REF] Feth | Large-area magnetic metamaterials via compact interference lithography[END_REF]). However, the exact number of required samples and their depths are not always known a priori, and an additional set of structures might be fabricated under different external conditions. This can lead 125 CHAPTER 6. TRANSMISSION IN PLASMONIC NANOSTRUCTURES to undesirable variations of structure parameters (for example, cladding thicknesses) from sample to sample and distort the measured results. Furthermore, effects of metal film degradation (for example, due to the interaction with atmospheric sulphur in silver films [START_REF] Richard | Polarization conversion from blazed diffraction gratings[END_REF]) exist which sufficiently affect the optical properties of the metal with time. Consequently, even samples with identical geometry, but prepared on different days will possess a different optical response. Generally, the synthesis of a set of samples with variations of one parameter while keeping others constant is a challenging task.

An industrial need exists for such sample arrays in the area of high-sensitive optical sensors [START_REF] Dostálek | Rich information format surface plasmon resonance biosensor based on array of diffraction gratings[END_REF]. If the sensor working principle is based on a grating period adjustment, chirped gratings can be utilized to provide continuous period variations [START_REF] Yeh | Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating[END_REF]. In contrast, there are few implementations of depth-resolved diffraction structures in optical devices [START_REF] Keith | Gaussian beams from variable groove depth grating couplers in planar waveguides[END_REF][START_REF] Fröhlich | Two methods of apodisation of fibre-Bragggratings[END_REF][START_REF] Staub | Gratings of constantly varying depth for visual security devices[END_REF]. One important reason for this is the lack of experimentally flexible techniques for variable depth grating fabrication. Chapter 5 is devoted to the explanation of such an experimental technique, while the present section demonstrates the application of variable depth gratings in plasmonic and structure-induced color research.

Existence of optimal grating depth

The examples of 1D and 2D structures considered in the previous sections suggest the existence of an optimal grating depth for the maximum plasmon-mediated resonant transmission. Here we perform a systematic study of resonant effects in TE and TM polarizations for a 1D IMI structure based on a variable depth grating;

in particular, the optimal depth will be revealed experimentally.

One-dimensional variable depth gratings of period 300 nm were fabricated using the moiré-based approach described in Chapter 5. Resist coated samples were pre-exposed homogeneously for 20 s at 250 µW, allowing to use the resist in its linear regime. In the LIL process, two equal exposures for 15 s at 500 µW each were conducted, with a sample shift of ∆x = 240 µm between them. After a 4 s development and subsequent drying in a nitrogen stream, a dielectric variable depth grating of an average thickness of 250 nm is obtained. Due to the slow, macroscopic depth variations which are adiabatic with respect to grating period, an accurate probing of different depths was achievable even with unfocused beams, allowing the use of a 1 mm diameter beam for these measurements.

The sample was fixed normally to the incident light and transmission spectra for both polarizations TE and TM were recorded along the surface coordinate X from The most important feature in the TM polarization is the presence of plasmonic branches (denoted as LR-SPP and SR-SPP in Fig. 6.11a) corresponding to longand short-range plasmonic modes, respectively. The resonant transmission in this area appears due to the energy transfer from one metallic layer surface to the other by surface plasmon-polariton excitation. As is known [START_REF] Cao | Plasmon-enhanced optical transmission at multiple wavelengths through an asymmetric corrugated thin silver film[END_REF], the efficiency of this process depends strongly on the grating depth, which means that there should be an optimal depth with maximum plasmon-mediated resonant transmission. In our measurements this optimized grating depth exists (52 nm) and is marked by point A in Fig. 6.11a. The changes in the transmission spectrum for different depths are highlighted in Fig. 6.12a. Two plasmon resonance peaks are clearly visible for all depths, but the overall transmission efficiency changes dramatically. The measured maximum resonant transmission as a function of depth is plotted in Fig. 6.12b, demonstrating the experimentally optimized depth (vertical dashed line), with the maximum transmission of 45%. In contrast to Figs. 6.6b and 6.7b, the curve in Fig. 6.12b is much more detailed because it is not limited by the number of fabricated samples.

Apart from the plasmonic effects, other spectral features can be investigated in the TM transmission plots. There are three vertical lines, denoted as L 1 -L 3 in Fig. 6.11a, which appear due to the waveguide mode excitation in the dielectricmetal-dielectric structure. Propagation constants of these modes are less sensitive to the grating depth in comparison to plasmonic modes, since their field distribution is localised primarily in the bulk of the dielectric resist layer, and are more affected by the thicknesses of the dielectric claddings. As all geometrical parameters of the fabricated sample are constant at any coordinate, except the depth, these modes manifest as the vertical bright transmission lines. The transmission efficiency of these modes reaches only half of the resonant plasmonic transmission (see Fig. 6.12a

for grating depths of 69-77 nm, in the form of two minor peaks at λ ≈ 450 nm and λ ≈ 475 nm) that become less important when the depth approaches the optimal value of 52 nm. The resonant wavelengths of plasmonic and waveguide modes (denoted in Fig. 6.13a

as LR-SPP, SR-SPP and L 1 -L 3 , respectively) can be predicted in the near-zero depth region (see Fig. 6.13b) by the 2 × 2 transfer matrix method [START_REF] Yeh | Optical waves in layered media[END_REF][START_REF] Knittl | Optics of Thin Films: An Optical Multilayer Theory[END_REF] for a planar lamellar waveguide with a thin metallic film inside the dielectric layer. Figure 6.13b shows that in the zero depth limit only broad Fabry-Pérot oscillations exist.

However, with increasing grating depth the waveguide and plasmonic modes, being excited by the ±1 diffraction orders, appear. and confirms that the plasmon-mediated resonant transmission area can be broad (50 nm for a depth of 70 nm in the wavelength range of 500-550 nm at normal incidence). Secondly, it also demonstrates that waveguide modes in TM polarization appear as bright lines of enhanced transmission on a dark background (compare with analogous Fig. 6.14c for TE polarization). In this dark background, Fabry-Pérot transmission modulations can also be seen (as in Fig. 6.14b for planar geometry), but they are much weaker than the plasmon-mediated transmission. Considering now the measurement results for TE polarization (Fig. 6.11b), one can see that the transmission tends to grow with an increasing grating depth. The maximal experimentally measured TE transmission is located at the symmetry horizontal line (point B of the symmetry line in Fig. 6.11b). However, the influence of waveguide modes on energy transfer is different. As it can clearly be seen from the angle-resolved transmission map in Fig. 6.14c, waveguide modes in TE polarization appear as dark lines on a bright background. Consequently, TE waveguide modes do not contribute to the enhanced transmission, and in the experimental and calculated maps in Fig. 6.11b,d they exist as dark vertical lines on the bright background, as opposed to the TM case. -d). This difference between theory and experiment arises from imperfections of the PVD: during this process the metallization growth rate varies from one sample region to another because of their different distance to the target center. The estimated inaccuracy of the metal deposition thickness of ≈ 10% gives a noticeable variation of transmission as the average metal thickness of 17 nm is very small.

Structure-induced color

The previous section was devoted to the resonant effects in variable depth gratings.

However, the non-resonant regime of these structures is also of interest as it can be employed for structural color generation.

We have metallized the sample from Chapter 5, Fig. 5.13b and covered it with a second resist layer on top in order to create an IMI structure analogous to those characterized in the previous section. when moving from the point B to point A. The transmission spectra in Fig. 6.15g) for these depths were calculated using a rigorous Chandezon method [START_REF] Chandezon | A new theoretical method for diffraction gratings and its numerical application[END_REF][START_REF] Granet | Analysis of diffraction by surface-relief crossed gratings with use of the Chandezon method: application to multilayer crossed gratings[END_REF]; the curve for depth 70 nm has the maximum transmission at short-wave part of the visible spectrum, whereas the transmission for depth 250 nm is spectrally broad and possesses the red shift. Colloidal self-assembly was proven to be perspective for anti-reflection coatings of solar cells [START_REF] Yeong | Design and fabrication of antireflective GaN subwavelength grating structures using periodic silica sphere monolayer array patterning[END_REF], superhydrophobic surfaces for self-cleaning devices [START_REF] Kothary | Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach[END_REF] and nanotexturation of macroscopically-large curved surfaces [START_REF] Berthod | Colloidal photolithography applied to functional microstructure on cylinder based on photopatternable TiO2 sol-gel[END_REF]. In contrast to these non-resonant applications, eigenmodes excitation needs a well-defined periodicity of the nanostructures. Despite the polycrystalline packing of self-assembled colloidal monolayers, their capabilities in plasmonic coupling were demonstrated in a number of works [START_REF] Canpean | Extending nanosphere lithography for the fabrication of periodic arrays of subwavelength metallic nanoholes[END_REF][START_REF] Landström | Extraordinary optical transmission through metal-coated colloidal monolayers[END_REF]. Recently, a plasmonic sensor fabricated via colloidal self-assembly was proposed [START_REF] Farcau | Metal-coated microsphere monolayers as surface plasmon resonance sensors operating in both transmission and reflection modes[END_REF].

This section is devoted to the study of EOT through hexagonal nanohole arrays, fabricated via NPL. In contrast to conventional colloidal lithography techniques, the nanosphere photolithography possesses higher flexibility in elementary cell design as the positions of nanojets can be easily controlled by the angle of incidence (see Fig.

4.18c

), and the grating depth depends on the combination of exposure/development times (see Table 4.1). Following the main topics of the thesis a special attention is paid to the grating depth influence on EOT, and the role of polycrystallinity.

EOT in colloidal gratings with low and high disorder

In section 4.3.2 the main factors influencing the quality of self-assembled colloidal monolayers were discussed: dispersion in colloidal particles size, surface tension, the speed of substrate lifting and its hydrophilicity. In Fig. 6.16b multiple domains of hexagonally-arranged nanoholes are clearly seen, which is in a sharp contrast with Fig. 6.16a, where the size of the domains exceeds the observation area. In order to find the actual size of the domains for the latter sample we made a series of photographs of its surface via optical microscope.

A MATLAB code was written to register the position of every nanohole in the obtained images and detect domains with different orientations. Figures 6.17a After the deposition of a thin 20 nm aluminum film and a final resist layer on these dielectric gratings in analogy with the structures from section 6.4, we obtain a symmetrical IMI structure with a dielectric cladding thickness of 600 nm.

As the depth of the nanoholes for both samples in Figs. 6.16a-b is the same ≈ 230 nm, we can directly compare their transmission spectra to reveal the influence of disorder on EOT. The diameter of the incident beam for sample characterization is D beam = 1 mm, which is the same as for the variable depth gratings in section 6.4. Consequently, with L domain =100 µm, even in the case of low disorder samples, a big number of ≈ (D beam /L domain ) 2 ∼ 10 2 domains of different orientations are illuminated.

Using Eqs. 3.14, 3.15 for gratings of hexagonal symmetry and the approximation from Eq. 6.2, the resonant EOT wavelength under normal incidence can be estimated The first diffraction order in a hexagonal array with distances D colloid between elements has an in-plane reciprocal vector k:

k = 2π D colloid sin (π/3) (6.5)
The experimental spectra in Fig. 6.18 show that, despite the general similarity in transmission levels and their similar variations in the visible-near IR range, the plasmonic transmission peak at λ EOT exists only in the low-disorder sample.

Figure 6.18: Measured transmission spectra under normal incidence of unpolarized light for samples with low (black curve) and high (green curve) disorder from Figs.

6.16a-b, respectively. Plasmon-mediated transmission peak at wavelength ≈ 1500 nm exists in low-disorder sample and is absent in high-disorder sample.

In order to prove that the EOT disappeared because of the higher disorder of the nanohole distribution, we performed rigorous calculations of two different geometries using GSM (see subsection 3. For the normal incidence at nanopatterned surfaces with structural elements arranged in periodical hexagonal lattices their transmission is insensitive to incident light polarization due to the high 6-fold rotational symmetry [START_REF] Zhao | Polarization independent subtractive color printing based on ultrathin hexagonal nanodisk-nanohole hybrid structure arrays[END_REF]. Our simulations of hexagonal arrays of nanopores approve that transmission variations are well below 1% for any incident linear polarization. Consequently, if we consider an IMI structure with a polycrystalline array of nanoholes with domains large enough (the size of domains will be clarified later), it will have almost the same transmission spectrum as an ideal hexagonal lattice, though the number of illuminated crystallites can be big, as seen for the sample from the previous subsection. We study the EOT caused by plasmonic excitations by first grating diffraction orders. In the reciprocal space these diffraction orders, coming from numerous differently oriented domains, create a circle with the radius

k c ≡ |b 1 | = |b 2 |
, where basis vectors b 1 and b 2 are from Eq.

3.14, see Fig.

Thus, in our model the plasmon-mediated transmission from the ideal hexagonal nanoholes array is the same as from a polycrystalline structure with large domains, see Fig. 6.19a; this assumption is based on experimental and numerical results and the argumentation above. If the domains become smaller, the disorder increases, the mentioned circle in Fourier space spreads and its intensity diminishes in analogy with diffraction patterns of amorphous solids or liquids [START_REF] John M Ziman | Models of disorder: the theoretical physics of homogeneously disordered systems[END_REF][START_REF] Fernando | Photonic properties of strongly correlated colloidal liquids[END_REF], see Fig. 6.20b.

Although we discuss a two-dimensional hexagonal distribution of nanoholes, they are organized in multiple randomly oriented domains, so the structure has no preferred in-plane direction. Consequently, it is convenient to consider a profile of the Fourier In that way, we reduced the problem to a one-dimensional one which was studied in [START_REF] Nau | Correlation effects in disordered metallic photonic crystal slabs[END_REF][START_REF] Zentgraf | Metallodielectric photonic crystal superlattices: Influence of periodic defects on transmission properties[END_REF][START_REF] John M Ziman | Models of disorder: the theoretical physics of homogeneously disordered systems[END_REF]. We consider an IMI structure with an undulated metallic thin film, sandwiched between dielectric claddings. Regardless of the particular distribution of nanopores, the overall structure has a number of waveguide and plasmonic eigenmodes similar to those presented in its lamellar counterpart with the same thicknesses of layers, see Fig. 6.13b for the analogy in 1D. In order to excite these modes, periodical arrays of nanopores are needed, where amplitudes A mode (k) of modes excited via the reciprocal vector k are proportional to the modulus of the corresponding Fourier component |A Fourier (k)| [START_REF] Zentgraf | Metallodielectric photonic crystal superlattices: Influence of periodic defects on transmission properties[END_REF]. Due to the linear optical regime considered in the model [START_REF] Yoon | Critical coupling in dissipative surface-plasmon resonators with multiple ports[END_REF], the portion of transmitted energy, decoupled from the structure via the same vector k, is proportional to A 2 mode (k) and hence to |A Fourier (k)| 2 :

T k ∼ |A Fourier (k)| 2 (6.6) 
On the other hand, taking into account our assumption about ideal and polycrystalline geometries discussed above, the similarity (within the perturbation) of mode dispersion in planar and undulated geometry, and following an approach presented in [START_REF] Nau | Correlation effects in disordered metallic photonic crystal slabs[END_REF], we assume that the shape of transmission spectrum line T k (λ) is equal to those for an ideal array of hexagonally arranged nanopores in a metallic film, where the distance D colloid between nanopores is defined by Eq. 6.5, and all other geometrical parameters of the system are unchanged:

T k (λ) ∼ T ideal k (λ) (6.7) 
The total transmission T (λ) consists of partial contributions T k (λ). By combining Eqs. 6.6 and 6.7 we get:

T (λ) = C k |A Fourier (k)| 2 • T ideal k (λ), (6.8) 
where C is a normalization constant.

The transmission spectrum in form of Eq. 6.8 takes into account the disorder caused by the polycrystallinity and is a central result of the phenomenological approach presented in this subsection. A MATLAB code was written to model polycrystalline arrays of nanopores arranged in domains of different size; figures 6.21a-c represent some of these arrays.

Statistical study of polycrystalline structures

For every modeled polycrystalline sample a set of points randomly distributed over the simulation area is chosen, the Voronoi diagram of this set of points defines the boundaries of domains. Nanopores in every domain are organised in a hexagonal lattice, where the distance between neighbouring elements is equal to the diameter D colloid of colloids used for self-assembly. Orientations of these lattices in every domain are randomly chosen.

For every modeled array its Fourier spectrum was calculated and parameters k c and FWHM (see Fig. 

Depth-resolved EOT in colloidal gratings

For experimental study of depth-resolved EOT and verification of the approach presented above a sample was fabricated using NPL. On a clean surface of BK7 microscope slide a layer of S1805 photoresist with a thickness 250 nm was deposited.

Then using the Boostream® process (see section 4.3. In order to employ the numerical approach presented in the previous sections a parameter of disorder p d of the sample should be estimated. Using the nanopores distribution over the surface obtained from the SEM photograph in Fig. 6.23a, the statistical study was performed. Histograms in Fig. 6.23b demonstrate that the most probable distance between elements is ≈ 325 nm, whereas domains are oriented randlomly in all directions. It suggests that the size of the SEM photograph is enough to get a reliable statistical information. The light spot of diameter 1 mm used for transmission measurements illuminates all possible domain orientations.

Using the radial-averaged Fourier spectrum from Fig. 6.23d, we get k c /k ideal = 0.958 and FWHM/k ideal = 0.146, where k ideal is calculated using Eq. 6.5. Although the diameter of colloidal particles is 300 nm, in Eq. 6.5 we substitute D colloid = 325 nm as it is the most probable distance between nanopores. The obtained FWHM corresponds to parameter of disorder p d ≈ 0.039, see section 6.5.4, and it yields an average number of elements in a domain of N ≈ 26. Consequently, the domains of nanopores should be quite small, they are visualized on the map in Fig. 6.23c, where colors denote different orientations. One can notice that the obtained value of k c /k ideal = 0.958 is slightly out of range in Fig. 6.21d, thus we conclude that inter-domain boundaries affect k c stronger than predicted by our modeling. We used the obtained parameters p d , k c and FWHM to simulate transmission spectra for nanopore arrays with different depths but the same disorder; the simulated geometry has a glass BK7 substrate, 200 nm first layer of resist, 20 nm aluminum film, 600 nm second resist layer and air as a cover. For every depth a wide range of periods (defined by FWHM and k c ) was simulated in order to get T ideal k (λ) and utilize Eq. 6.8. We then compared the results with experimental measurements, see Figs.

6.24. Although the measured depths presented in Table 6.3 are 23 nm, 64 nm, 80 nm and 103 nm, our simulations were made for slightly different values 25 nm, 50 nm, 75 nm and 100 nm with equal distance 25 nm between them. Simulations are timeconsuming and require a lot of computational resources, therefore re-calculations were not possible after the performed experiments. There is a good accordance between predicted and measured EOT peaks at the wavelength λ ≈ 500 nm for nanopores deep enough in Figs. 6.24c-e, whereas for smaller depths in Figs. by the disorder of nanopore arrays. However, it is possible to partially recover the plasmon-mediated transmission by adjusting the grating depth (as it is seen in Figs.

6.24c-e) and, consequently, the interplay between grating depth and disorder exists. Figure 6.25a shows calculated transmission spectra under normal incidence for a nanopore depth of 100 nm. It is clearly seen that the optical response smoothens and loses its resonant behavior at λ ≈ 500 nm when the disorder increases. Simulations of EOT for a set of depths of 25 nm, 50 nm, 75 nm, 100 nm, 125 nm and 150 nm reveal an interesting property of the disorder: it can turn a decreasing transmission into an increasing one for deep gratings, compare curves in Fig. 6.25b for depths 75 nm, 100 nm and 125 nm. This leads to the fact that for high disorder (the lowest curve in Fig. 6.25b) the EOT effect is proportional to the grating depth, regardless CHAPTER 6. TRANSMISSION IN PLASMONIC NANOSTRUCTURES of its behavior for high-quality gratings (the highest curve in Fig. 6.25b). The increasing nanopore depth enhances EOT at fixed p d , while increasing p d suppresses EOT at fixed depth. The interplay between these two parameters is clearly seen in Fig. 6.25c.

Conclusion

In this chapter a wide range of EOT-supporting geometries was considered both experimentally and numerically. As the efficiency of mode excitations depends on grating profile [12], a systematic study of plasmonic effects on grating depth for smooth sinusoidal-like structures was performed. Using the well-known case of 1D holographic grating we discussed the phase-matching condition 6.1 and the mechanism of plasmonic-mediated energy transfer through thin metallic films necessary for further research. Two-dimensional holographic gratings with rectangular and hexagonal symmetries of the elementary cell were fabricated and characterized. Special attention was payed to the existence of an optimized grating depth for the maximum EOT, which usually stays behind the scope of experimental plasmonic studies.

Utilizing the modification of the LIL setup proposed in Chapter 5, we experimentally demonstrated and measured this optimal depth in 1D variable depth gratings and discussed the deformations of the transmission curves in the vicinity of this point.

Additionally, the apodized geometry allowed observing different structure-induced colors generated by gratings with the same period, but changing depth, which can be intriguing for optical protection elements and decorative purposes.

Finally, non-ideal polycrystalline arrays of nanopores, fabricated via NPL, were considered. This kind of structures is perspective for industrial nanotexturing of large and non-planar surfaces [START_REF] Berthod | Colloidal photolithography applied to functional microstructure on cylinder based on photopatternable TiO2 sol-gel[END_REF] and highly sensitive all-optical detection [START_REF] Farcau | Metal-coated microsphere monolayers as surface plasmon resonance sensors operating in both transmission and reflection modes[END_REF].

Polycrystalline nanopore distributions were modeled and a dimensionless parameter of disorder was introduced. Using this parameter we proposed a numerical approach which simulates the influence of disorder on EOT, and validated this method by comparison with experimental measurements of colloidal structures. A number of important properties of polycrystalline gratings with disorder were revealed and discussed.

Chapter 7 Conclusion

Diffractive structures realized via various fabrication approaches play a crucial role in modern optical research. Diffraction orders provided by a structural periodicity together with a proper design of the elementary cell suggest wide possibilities for light manipulations. One of the research areas benefiting from surface nanotexturing is plasmonics, which works at the interdisciplinary level between fundamental questions of electrodynamics, nanofabrication methods, and industry. In the present thesis a systematic study of plasmonic effects in various diffraction devices was performed concerning both experimental and theoretical aspects. The main topic connecting all presented research is Extraordinary Optical Transmission (EOT) through thin metallic films via plasmonic modes excitations.

In Chapter 1 a historical overview of plasmonic studies was given with a special attention to the EOT effect, discovered about 20 years ago. We formulated the objectives of the thesis, using the information about EOT in different sample designs and recent progress in this field. Important EOT applications include sensing, optical security/authentication elements and structure-induced color.

In the following Chapter 2 the principal elements of the scattering matrix theory and the calculation of eigenmodes were introduced. Based on this approach, we considered the electromagnetic modes in a number of plane-parallel structures with a detailed analysis of plasmons. The systematic study then moved from single metal-dielectric interfaces to more complex geometries like a waveguide on a metallic substrate supporting multiple resonances. The understanding of electromagnetic mode behavior in these structures is helpful for the introduction of diffraction gratings in Chapter 3, where we discussed the advantages of gratings for optical coupling over other methods, obtained the main analytic properties and explained principles of rigorous simulation methods for gratings.

While Chapters 2 and 3 constituted the theoretical basis for the thesis, the following Chapter 4 concerned the utilized fabrication methods. As the thesis is devoted to EOT in ideal and polycrystalline structures, we paid special attention to Laser Interference Lithography (LIL) and Nanosphere Photolithography (NPL) as techniques capable to realize these geometries. In addition, we considered in detail the process of isotropic resist development for both of these techniques, presented algorithms and performed simulations of the development steps in LIL and NPL.

The following two chapters 5 and 6 presented the results obtained during the PhD work. In the Introduction we highlighted the importance of the grating depth for plasmonic excitations control. In analogy with chirped gratings of varying period, which can tune the spectral position of plasmons, variable depth gratings continuously change the coupling coefficient at a fixed resonant wavelength and thus are perspective for the control of the EOT magnitude in a single sample. Additionally, the variable depth design might be promising for structural color generation and developing of all-dielectric abnormal reflection gratings. Consequently, the ability to easily produce variable depth gratings using a cheap and time-effective fabrication approach is highly desirable. In the Chapter 5 we proposed and experimentally verified a number of such techniques based on different principles. We proposed a model explaining the moiré pattern generation of different forms in resist. The effect was studied experimentally and numerically, and demonstration samples with depth variations at microscopic and macroscopic scales were prepared.

In Chapter 6 the results concerning the observation of EOT were presented. We studied the plasmon-mediated transmission in a systematic manner for a wide range of diffractive structures. Using the well-known 1D case for introducing principal theoretical and experimental aspects, we also considered 2D gratings with different symmetry and a 1D grating with adiabatically varying depth fabricated via the proposed method. In all these cases a big attention was paid to the existence of an optimal grating depth for the highest EOT, which was around 40% in the 0 th transmission order. In addition, we observed the structural color induced by different depths in a single sample. The extraordinary transmission was for the first time also observed in polycrystalline arrays of nanopores fabricated via NPL.

Here, besides the grating depth influence, the additional effect of disorder affects the plasmonic transmission. We proposed a phenomenological model adapted for the 2D case which takes into account the presence of multiple domains and introduced a dimensionless parameter of disorder which characterises real samples. Based on the developed numerical approach, we found a non-trivial interplay between the disorder and grating depth in the context of EOT. Numerical simulations were confirmed by experimental transmission measurements.

The presented results covering a wide range of possible EOT-supporting geometries pave the way towards promising experimental and theoretical research.

The effect of EOT is perspective for highly sensitive all-optical detection devices, spectral filtering and plasmon lasing, because it can improve the signal-to-noise ratio and simplifies experimental setups. In contrast to reflection-based schemes, the transmission regime does not require precise adjustments of optical elements as they are aligned along one straight line.

Nowadays complex designs with a geometry varying across the surface is intensively studied for information-rich all-optical bio-and chemical sensors [START_REF] Yeh | Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating[END_REF][START_REF] Bdour | Wavelengthselective plasmonic sensor based on chirped-pitch crossed surface relief gratings[END_REF][START_REF] Tittl | Imaging-based molecular barcoding with pixelated dielectric metasurfaces[END_REF].

The LIL setup modification proposed in the thesis introduces additional degrees of freedom for grating apodization. The fabricated variable-depth metallized gratings demonstrate prominent dependence of EOT on depth, which can be utilized to improve the signal-to-noise ratio and control the EOT magnitude in transmission-based plasmonic sensors. Additionally, these samples showed a significant color change induced by the structure and can be considered as a platform for optical protection elements [START_REF] Staub | Gratings of constantly varying depth for visual security devices[END_REF].

As an outlook, there is a possibility to adapt the mentioned LIL modification for creating bi-harmonic gratings with a varying phase between Fourier components across the surface. It is known [START_REF] Iqbal | Optimization of 1D plasmonic grating of nanostructured devices for the investigation of plasmonic bandgap[END_REF][START_REF] Karademir | Plasmonic band gap engineering of plasmonexciton coupling[END_REF] that diffraction gratings can produce plasmonic band gaps (PBGs) which are used in light-matter interaction studies, light-emitting diodes and optical circuits; in this context the variable-phase geometry could provide an effective control of PBGs via the phase.

It was discussed in Chapter 4 that the nanosphere photolithography suggests wide possibilities for industrial low-cost nanotexturing of large planar and non-planar substrates, where the ideal ordering of elements is not a crucial factor. The performed experiments confirmed the feasibility of NPL-based EOT devices. The effect of disorder on optical behavior was studied for a number of 1D and 2D structures [START_REF] Nau | Correlation effects in disordered metallic photonic crystal slabs[END_REF][START_REF]The effect of rotational disorder on the microwave transmission of checkerboard metal square arrays[END_REF][START_REF] Bertin | Correlated disordered plasmonic nanostructures arrays for augmented reality[END_REF][START_REF] Fang | Thin films with disordered nanohole patterns for solar radiation absorbers[END_REF]. Depending on the fabrication workflow various types of disorder can be brought into the geometry, which require their own statistical models. In our investigations special attention was paid to the polycrystallinity of NPL-fabricated samples. We believe that the dimensionless parameter of disorder proposed in the thesis, which depends on the average number of elements in a single domain, is well adapted and perspective for future EOT research.

Another promising research direction of NPL-based plasmonic structures might be the moiré patterns generation via multiple UV exposures. A recently introduced concept of moiré nanosphere lithography [START_REF] Chen | Moiré nanosphere lithography[END_REF] is compatible with the NPL approach.

Moreover, NPL offers wide opportunities for moiré geometry optimizations, because close-packed colloidal monolayers with a small angular shift between them can be deposited sequentially in a simple manner, while multiple UV exposures record the total quasicrystalline topography in the resist. Metallic nanostructures obtained by this approach have potential applications in all-optical or SERS-based sensors and surface-enhanced spectroscopy. Another promising application are surfaces with strong diffusive properties in the visible range due to disordered nanotexturing.

Concerning the fabrication, a perspective and innovative future work within the scope of NPL is the use of soluble thin films which capture the close-packed monolayers of colloidal particles. These flexible layers can be applied to planar and non-planar surfaces, relax the requirements on substrate hydrophilicity and perform the surface nano/micro structuring, acting as a transfer mask and avoiding the microsphere self-assembly step on a liquid-air interface. First promising results (not presented in the thesis) concerning the NPL with soluble thin colloidal films were obtained during the period of this PhD in collaboration with CEA-Liten, Grenoble.

The idea of light focusing via arrays of microspheres utilized in NPL can also be further developed for laser surface micro/nanopatterning [START_REF] Sedao | Large area laser surface micro/nanopatterning by contact microsphere lens arrays[END_REF][START_REF] Wu | Substrate effect of laser surface sub-micro patterning by means of self-assembly SiO2 microsphere array[END_REF] which removes fabrication steps related to photosensitive materials. The article focuses on depth-dependent visible band transmission effects in a symmetrical "insulatormetal-insulator" diffraction system based on a variable depth grating. These effects were studied both experimentally and theoretically in TM and TE polarizations. In particular, the existence of an optimized grating depth for plasmon-mediated resonant transmission was confirmed experimentally, and differences in TE and TM transmission behavior are discussed. We utilize a simple and flexible fabrication approach for rapid synthesis of apodized structures with adiabatically varying depth based on a beat pattern of two interferential lithography exposures. The present study can be useful in the fields of transmission-based optical security elements and biosensors.

Systematic study of resonant transmission effects in visible band using variable depth gratings

Metal-dielectric diffraction gratings and metasurfaces supporting surface plasmon resonance (SPP) modes possess numerous attractive features for various optical applications including sensorics 1,2 , photovoltaics 3,4 , and security 5-7 . The functionality of these elements is commonly based on a strong coupling between propagating, waveguide, localized and surface modes 8-10 . The enhanced transmission effect 11-13 or excitation of ultra-narrow resonances due to the bound states in the continuum 14 are remarkable examples of resonant mode interactions which were profoundly studied for various types of periodic and non-periodic structures. Due to their resonant nature, the mentioned effects are strictly bound to some particular structure geometries and material parameters. An extension of the functionality of resonant gratings and metasurfaces often requires the development of multi-wavelength devices. A need in coupling the resonant behavior with broadband features leads to multidimensional structures like absorbers of anisotropic metamaterials with wavelength-scale structuring 15 or wide band radiation trapping by graded depth lamellar gratings 16,17 . Due to multidimensionality the fabrication process of this kind of structures is inevitably split into several steps and may incorporate different technological processes, which makes the sample preparation quite a resource and time-consuming procedure.

Concerning the modulation of periodic structures which are adiabatic relative to the wavelength and periods, different approaches were proposed to achieve various functionalities. The first class of adiabatic modulations include the variation of shape and duty factor, which were adapted, for example, to develop high-efficient planar waveguide couplers 18-20 , to attain the "rainbow" trapping effect 16,17 , or to create effectively graded index planar functional optical layers 21 . The demonstrated structures were fabricated using ion and e-beam lithography in conjunction with mask printing. Variable dose e-beam writing is a technology that allows creating highly resolved microstructures with variable height at the cost of beeing very expensive and needing very long writing times 22 . There are alternative methods based on interference lithography, which utilize the superposition principle to yield optically variable gratings for security applications 23-26 . The technology is cheap and allows fabricating complex grating shapes on the basis of different interference patterns providing an additional phase-locking is applied 27 .

In this work we focus on the study of multidimensional metallic gratings which support the resonant transmission effect. Resonances in grating-based optical elements substantially depend on the depth 28 , and in this work we have developed a simple and flexible fabrication technology which allows one to rapidly create apodized structures with adiabatically varying depth. The proposed approach is based on the beats effect and extends the applicability of the known interference approaches 24,25 . The spatial period of the depth variations along the structure can be easily tuned, reaching macroscopic dimensions (several cm) which allows to use unfocused light beams for structure characterization. Our method relaxes requirements imposed on laser interference lithography (LIL) setups for fabrication of apodized gratings 24 , and provides much greater fabrication flexibility in comparison with small angle prism-based approaches 29 .

The paper is organized as follows. Section 2 describes the fabrication of varying-depth gratings including a detailed explanation of the proposed technique and the fabrication steps. Section 3 demonstrates results of experimental transmission measurements which are explained by quantitative rationalizations and rigorous numerical simulations. Finally, Section 4 concludes the text.

Fabrication of Variable Depth Gratings

Variable depth gratings. The basic idea underlying the fabrication of variable depth grating is to employ the effect of beats in the resist layer in a two step exposure LIL process. Generally, the two-beam LIL is an established method well-adopted for synthesis of 1D and 2D perfectly periodic structures of constant depth. Its workflow offers a relatively cheap and fast method of nanostructuring 30 . Here we propose an improvement to the method allowing one to fabricate periodic structures of variable depth with minor changes in the standard lithography scheme.

In the conventional LIL technique a thin photoresist layer deposited on a substrate is being exposed by two coherent plane waves of wavelength λ, creating an interference pattern with a periodic variation of the light intensity inside the photoresist layer: I(x) = I 0 sin(2πx/Λ) + I 0 , with Λ = λ/2sinθ being the grating period that depends on the incidence angle θ of each beam. The next step in the LIL process consists in dissolving the resist in a developer. As the resist development rate depends monotonically on the absorbed energy dose 31 , the topology of the developed surface corresponds to the total intensity distribution of the previous exposition step. Figure 1 demonstrates a usual setup with two point sources, where the plane wave approximation is applicable in a relatively small zone far from the sources. One single exposure in LIL results in a 1D periodic surface undulation. In order to get more complex geometries several exposures can be applied. In case of two sequential LIL exposures of equal intensities I 0 with periods Λ 1 and Λ 2 , proposed e.g. in 24 , the total interference pattern is defined by the sum:
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δϕ is a phase mismatch, which can be controlled only with a phase-locking scheme 27 , though its value is unimportant for our purpose as will be clarified later. If the periods are close to each other, Λ 1 ≈ Λ 2 , and ΔΛ = |Λ 1 -Λ 2 | ≪ Λ 1,2 , Eq. ( 1) can be simplified to:
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According to Eq. ( 2) the total power distribution is modulated by the large scale period envelope Λ env ≈ 2Λ 1 2 / ΔΛ, while the small scale period is the same along the pattern and approximately equal to Λ 1 . Aiming at studying resonant effects in the visible band by depth resolved measurements on apodized structures, one should impose restrictions on both Λ 1 and the degree of period proximity ΔΛ/Λ 1 . Estimating Λ ≡ Λ 1 ≈ 300 nm and Λ env ~ 1 cm gives ΔΛ/Λ ~ 10 -5 . This means that the common approach of the LIL extension 32 , which consists in varying the incidence angle would require very precise angular adjustements of the order of Δθ ~ 10 -4 deg. Such small values are hard or even impossible to accurately realize by standard components utilized in LIL. An alternative to tiny angle variations is the use of small wedge angle prisms 29 , however this method significantly restricts the range of achievable periods and reduces the general fabrication flexibility.

To overcome the described difficulty we propose a solution based on the inhomogeneity of interference patterns produced by two point light sources, see Fig. 1. The inhomogeneity consists in a slow growth of the distance between the curved fringes (Fig. 1) with the change of the surface coordinate x, which can be used to replace a precision-demanding incidence angle adjustment Δθ with a precision-tolerant sample shifting along the coordinate x between two consequent LIL exposures.

Denote the distance between point sources as D, and the distance from the source to the resist plane as H. The period of the quasi-periodic pattern from these sources shown in Fig. 1 2 depends quadratically and slowly on x as follows (for details see Supplementary Materials): is the desired grating period. Thus, a sample shift by Δx between two identical exposures would result in a superposition of two periodic patterns with the ratio ΔΛ/Λ 0 = CΔx 2 , where C = 24H 2 / (D 2 + 4H 2 ) 2 in the central region of the sample. Taking the values D = 69.3 cm, H = 32.3 cm and the wavelength λ = 442 nm of the He-Cd laser used in our experimental setup permits to attain Λ 0 = 300 nm, and the substitution into the above formulae yields C ~ 3•10 -4 cm -2 . This small value of the constant C allows reaching extremely small ratios down to ΔΛ/Λ 0 ~ 10 -9 using standard manual linear translation stages with the smallest scale division of 20 μm. The only modification required in the LIL setup is an addition of such translation stage to the sample support.

λ Λ ≈ Λ + + x H D D H x ( ) 12 ( 4 ) ( 3) 
Superposition of interference patterns shown in Fig. 1 yields the desired beats. Figure 2 shows simulations of these beats, also called moiré patterns, for different sample shifts of 240 μm, 600 μm, and 900 μm at realistic centimeter scale substrate dimensions. With the increase of the sample shift Δx the ratio ΔΛ/Λ 0 grows at any point of the surface, and the envelope function oscillates faster. The elliptical shape of the moiré pattern is due to the fact that the period Λ grows in any direction from the center as seen in Fig. 1, but at a different speed. The variations of Λ are enough to generate macroscopic moiré pattern, but at the same time they are negligibly small in comparison with the average grating period (at the corner of the sample the period changes by ~ 0.1% or 0.3 nm only). To cover all possible grating depths from zero to the maximum value only one moiré ellipse is sufficient, so the sample shift Δx = 240 μm was chosen for the fabrication.

Materials and fabrication.

The sample designed for measurements in transmission is sketched in Fig. 3: it is the symmetric "insulator-metal-insulator" (IMI) structure on a glass support. The continuous metallic variable depth grating is sandwiched between two dielectric claddings. The geometry in Fig. 3 is divided by white dashed lines into three sections illustrating the main stages of sample fabrication.

In the first step, microscope glass slides BK7 3.7 × 2.5 cm × cm, used as a transparent substrate, were cleaned following a three-step wet bench procedure: 15 min in an acetone ultrasonic tank, 15 min in an ethanol ultrasonic tank and 10 min in a tank with pure deionized water. Clean glass substrates were then dried under a nitrogen stream. For the subsequent lithography, these substrates were spin-coated with the positive photoresist Shipley S1805 and soft-baked in an oven at 60 °C for 1 min to harden the resist, evaporate the solvent and improve the adhesion. The resist was diluted in ethyl lactate in order to control the layer thickness. A continuous He-Cd laser with the wavelength λ = 442 nm and effective power P = 500 μW was utilized for the LIL. Photosensitive samples were pre-exposed homogeneously for 20 s at 250 μW, allowing to use the resist in its linear regime. In the LIL process, two equal exposures for 15 s at 500 μW each were conducted, with a sample shift of Δx = 240 μm between them. After a 4 s development and subsequent drying in a nitrogen stream, a dielectric variable depth grating of an average thickness of 250 nm is obtained, as sketched in Fig. 3, step 1.

In the second step the clean surface of the dielectric grating was metallized with aluminum (metallic thickness h = 17 nm) in a physical vapor deposition process (PVD) by sputtering of an aluminum target. After that AFM measurements were made along a central line of the moiré pattern along the X direction of the sample (see Fig. 2a). An example of an AFM-measured surface topology for a particular sample zone is presented in Fig. 4a for a top view and Fig. 4b for a cross-section. The experimentally measured grating depth as a function of the substrate coordinate on the mentioned line is shown in Fig. 4c. This dependence can be well fitted by a sinusoidal function, though the exact dependence is more complicated.

In the third and final fabrication step, the second resist layer of an average thickness of 690 nm was deposited on top of the metallic layer by spin coating, in order to obtain a symmetrical IMI structure.

Resonant Transmission by Apodized Gratings

An advantage of the described variable-depth grating fabrication approach is that instead of synthesizing series of samples of different depth, all possible depths in a specified range are present at once. This allows to study pure depth-dependent effects on a single sample, since all other geometrical and structural parameters remain fixed.

To study depth dependent resonant effects in the transmission spectrum, the UV-Vis-NIR spectrophotometer Agilent Cary 5000 was used. Measurements in transmission offer advantages over the conventional reflection technique since the detected signal is less noisy than the reflected one and appears as a bright spot on the dark background. Moreover, for measurements under normal incidence the experimental setup is significantly simpler as all the elements are aligned with the light source 33 . The sample was fabricated in a region of the central moiré's ellipse, and had an area of about 2.3 cm length, such that all grating depths from zero to the maximum value of approximately 105 nm were covered at least once. Due to the large longitudinal range of the height variation, an accurate probing of different heights was achievable even with unfocused beams, allowing the use of a 1 mm diameter beam for these measurements. The sample was fixed normally to the incident light and transmission spectra for both polarizations TE and TM were recorded along the line of AFM measurements for Fig. 4c. All the data was put together to visualize the resonant behavior in form of 2D depth/wavelength resolved maps.

The maps for the two polarizations in Fig. 5a,b demonstrate continuous variations of the visible range spectrum with the grating depth. Both figures have their symmetry line (marked by a dashed white line) at an x position of about 1.1 cm which is due to the symmetrical behavior of the grating depth envelope, see Fig. 4c. This symmetry underlines the fabrication quality, although for the study of the resonant transmission only one region with each depth is sufficient and will be considered in the following.

The most important feature in the TM polarization is the presence of plasmonic branches (denoted as LR-SPP and SR-SPP in Fig. 5a) corresponding to long-and short-range plasmonic modes respectively. The resonant transmission in this area appears due to the energy transfer from one metallic layer surface to the other by surface plasmon-polariton excitation. As is known 34 , the efficiency of this process depends strongly on the grating depth, which means that there should be an optimal depth with maximum plasmon-mediated resonant transmission. In our measurements this optimized grating depth exists (52 nm) and is marked by point A in Fig. 5a. The changes in transmission spectrum for different depths are demonstrated in Fig. 6a. Two plasmon resonance peaks are clearly visible for all depths, but the overall transmission efficiency changes dramatically. The measured maximum resonant transmission as a function of depth is plotted in Fig. 6b, demonstrating the experimentally optimized depth (vertical dashed line), with the maximum transmission of 45%.

Apart from the plasmonic effects, other spectral features can be investigated in the TM transmission plots. There are three vertical lines, denoted as L 1 -L 3 in Fig. 5a, which appear due to the waveguide mode excitation in the dielectric-metal-dielectric structure. Propagation constants of these modes are less sensitive to the grating depth in comparison to plasmonic modes, since their field distribution is localised primarily in the bulk of the dielectric resist layer, and are more affected by the thicknesses of the dielectric claddings. As all geometrical parameters of the fabricated sample are constant at any coordinate, except the depth, these modes manifest as the 8a,c. vertical bright transmission lines. The transmission efficiency of these modes reaches only half of the resonant plasmonic transmission (see Fig. 6a for grating depths of 69-77 nm, in the form of two minor peaks at λ ≈ 450 nm and λ ≈ 475 nm) that become less important when the depth approaches the optimal value of 52 nm. The numerically calculated transmission (Fig. 5c), using the Generalized Source Method (GSM) 35 , reproduces all features of the experimental data including the positions of the vertical waveguide lines, a broad plasmon-mediated transmission area in the region of 500-600 nm wavelength, and the highest TM-transmission point A. Near this point the branches LR-SPP and SR-SPP are hardly distinguishable in both experimental and calculated data. Nevertheless, in a GSM-calculated absorption map presented in Fig. 7a these plasmonic lines are still clearly visible. The resonant wavelengths of plasmonic and waveguide modes (denoted in Fig. 7a as LR-SPP, SR-SPP and L 1 -L 3 respectively) can be predicted in the near-zero depth region (see Fig. 7b) by the 2 × 2 transfer matrix method 36,37 for a planar lamellar waveguide with a thin metallic film inside the dielectric layer. Figure 7b shows that in the zero depth limit only broad Fabry-Pérot resonances are excited. However, with increasing grating depth the waveguide and plasmonic modes, being excited by the ±1 diffraction orders, appear.

Figure 8a represents an angle-resolved transmission map for an intermediate grating depth of 70 nm (horizontal white dashed line in Fig. 5c). This figure indicates firstly the wavelength splitting of waveguide and plasmonic modes and confirms that the plasmon-mediated resonant transmission area can be broad (50 nm for a depth of 70 nm in the wavelength range of 500-550 nm at normal incidence). Secondly, it also demonstrates that waveguide modes in TM polarization appear as bright lines of enhanced transmission on a dark background (compare with analogous Fig. 8c for TE polarization). In this dark background, Fabry-Pérot resonances can also be seen (as in Fig. 8b for planar geometry), but they are much weaker than the plasmon-mediated transmission.

Considering now the measurement results for TE polarization (Fig. 5b), one can see that the transmission also tends to grow with an increasing grating depth, analogously to the waveguide mode resonances in the TM case. The maximal experimentally measured TE transmission is located at the symmetry horizontal line (point B of the symmetry line in Fig. 5b). However, the influence of waveguide modes on energy transfer is different. As it can clearly be seen from the angle-resolved transmission map in Fig. 8c, waveguide modes in TE polarization appear as dark lines on a bright background. Consequently, TE waveguide modes do not contribute to the enhanced transmission, and in the experimental and calculated maps in Fig. 5b,d they exist as dark vertical lines on the bright background, as opposed to the TM case.

Figure 8d shows a simulated TE transmission map of the planar dielectric-metal-dielectric structure. This figure clarifies that enhanced TE transmission observed experimentally appears due to the Fabry-Pérot resonances and does not depend on waveguide modes and the grating period. The grating depth, however, still has a large influence on the transmission level, as it changes the effective optical characteristics of the whole layer. In analogy with the TM case, Fig. 6c demonstrates the variation of the transmission spectrum with a depth change: a bright background dominated by Fabry-Pérot resonances grows with minor transmission notches at the wavelengths of the waveguide resonances. Figure 6d shows the measured maximum TE transmission as a function of depth, it reveals that the maximum TE Fabry-Pérot-mediated transmission can reach the same absolute value of about 45% for the depth of 105 nm as the optimized TM plasmon-mediated transmission for the depth of 52 nm.

One can notice that despite a good reproduction of the experimental TE and TM spectral features in the numerical simulations, there are certain discrepancies in the absolute values: the maximum measured TM transmission (Fig. 5a,point A) is almost equal to the maximum measured TE transmission (Fig. 5b, point B), while numerical simulations predict a transmission in TM twice as big as in TE (Fig. 5c,d). This difference between theory and experiment arises from imperfections of the PVD: during this process the metallization growth rate varies from one sample region to another because of their different distance to the target center. The estimated inaccuracy of the metal deposition thickness of ≈10% gives a noticeable variation of transmission as the average metal thickness of 17 nm is very small.

Conclusion

To conclude, this paper presents a novel LIL approach for the fabrication of varying-depth gratings. It is based on the well-known effect of beats of two waves of very close frequencies, and allows flexible and easy tuning of the modulation in a wide range in the form from microscopic to macroscopic moiré patterns. The only modification of a standard LIL setup is the addition of a linear stage to the sample support.

By means of the proposed method we have fabricated an apodized symmetric dielectric-metal-dielectric structure with adiabatically varying depth designed for resonances in the visible wavelength range. We experimentally confirmed the existence of an optimized grating depth, which appeared to be 52 nm for plasmon-mediated resonant TM transmission in our particular geometry. Additional resonant waveguide-mediated transmission of lower intensity also exists and tends to increase the efficiency with growing grating depth. In contrast, waveguide modes in TE polarization diminish the transmission. We have shown that in TE polarization wide regions of Fabry-Pérot-enhanced transmission exist, which are crossed by waveguide mode excitation resonances at certain wavelengths. Furthermore, an increase of the grating depth improves the transmission due to a Fabry-Pérot resonance excitation. All experimental features are in a good correspondence with rigorous numerical simulations.

The studied device can be used as a key element of plasmonic-based sensors 33 with a possibility to optimize the operating grating depth for a given cover permittivity and get the highest possible transmission signal. The fabricated metallized and non-metallized variable depth gratings can also be used in optical security systems as for example Diffractive Optically Variable Image Devices (DOVIDs), since they demonstrate prominent angularand polarization-dependent chromatic effects difficult to reproduce but visible by the naked eye 24 . Furthermore, adiabatically varying depth gratings can be commonly used in optical research for "experimental optimization" of depth-dependent effects.

Introduction

Nanopatterned surfaces play a crucial role in modern nanotechnology. The permanent industrial need for miniaturization and integration demands compact, highly-effective optical devices with a complex organization. For example, multidimensional architectures were proposed for broadband light absorption [1,2], for investigating a visible band "rainbow trapping" effect [3,4] and for various photonic-crystal-based devices [5][6][7].

Planar 1D or 2D diffraction gratings are widely used in structure design for plasmonics [8], structured color [9], antireflection [10], photocatalysis [11] and biosensing [12,13] due to their outstanding possibilities for light coupling. The grating functionality can be further extended by additional diffraction patterns superposed in one single topography. The resulting hierarchical structure yields combined optical properties of its components. This way of grating development does not require supplementary materials and/or chemical procedures and usually utilizes wellknown fabrication approaches: 3D direct laser writing [14], electron-beam lithography [15], polymer film wrinkling [16], self-assembly [17] and laser interference lithography (LIL) [18].

LIL nanostructuring [19], a maskless, wafer-scale, stitching defect free technique, attracts a special attention. Its natural capability to generate and combine various interference fields is intensively studied for multiscale fabrication [20][21][22][23] and multi-beam interference ablation [24]. Nowadays there is a growing interest in hierarchical moiré architectures [25], whose structural organization and optical properties can be easily and precisely tuned in a LIL setup. Moreover, the inherent quasiperiodicity of moiré lattices gives an additional control over k-space dispersion and optical coupling [26]. Reducing the difference between overlapping topographies increases the size of the moiré patterns up to the macroscale. In contrast to the aforementioned nano/microscale patterns, this limiting case received up to now much less attention. A significant barrier for exploring this domain is in our opinion a lack of simple experimental techniques for realizing very small differences between superposed motifs. In this article we propose an effective yet simple and inexpensive method for rapid formation of macroscopic moiré patterns over wafer-scale, 1D and 2D diffraction gratings using only minor modifications to a standard LIL setup. We utilize an effect of interference beats that appear in a photoresist after two LIL exposures with a small manual-stage-controlled sample shift between them. The method exploits the wavefront curvature of point laser sources, which is ordinarily considered as a drawback of a LIL experimental bench. Together with sample rotations this approach allows for a high variety of possible moiré patterns. We demonstrate this with gratings of 1 µm, 600 nm and 300 nm period. The resulting microstructures with adiabatically varying depth can be utilized in diffractive optically variable image devices (DOVIDs) for anticounterfeiting measures [27], structurally induced colors [28], plasmonic studies [29] and in general as elements of more sophisticated optical devices.

The paper is organized as follows. Section 2 is devoted to the theoretical development of the method leading to a graphical representation of possible moiré patterns. Section 3 demonstrates the fabricated diffraction gratings with basic macroscopic moiré patterns, shows the structural color given by insulator-metal-insulator variable depth gratings, and makes a connection between micro-and macroscopic moiré-based structures using an example of 2D hierarchical gratings. Finally, Section 4 concludes the text.

Moiré patterns in two-beam interference lithography

We start with the 1D case in order to explain the principles of moiré pattern formation in the LIL process.

One-dimensional LIL moiré patterns

A standard LIL technique consists of three steps (see Fig. 1): deposition of photoresist on the substrate (positive resist in our case), single or multiple two-beam laser exposure and dissolution of the exposed resist during the development process. In the second step, the absorbed light changes the resist chemical structure and makes the exposed areas more soluble for the developer. Contrast curves describing the development rate / exposure dose dependence are often used to numerically predict the final grating profile [30][31][32]. One single LIL exposure by two-beam interference creates a sinusoidal intensity distribution with a period Λ on the resist surface: I Λ (x) = I 0 sin (2πx/Λ) + I 0 , where Λ = λ/2 sin α and λ is the laser wavelength. Moiré patterns in 1D appear if another exposure I Λ (x) with Λ ≈ Λ is applied [27]:

I (x) = I Λ (x) + I Λ (x) ≈ 2I 0 sin 2π Λ x + δϕ 2 cos 2π Λ env x + δϕ 2 + 2I 0 , (1) 
where the phase mismatch δϕ between intensity distributions I Λ (x) and I Λ (x) can be controlled using a phase-locking scheme [33], and Λ env = 2ΛΛ /|Λ -Λ | is a characteristic length of the envelope function. For small enough values of |Λ -Λ | Λ we get macroscopic straight moiré lines modulating the microscopic 1D grating [29].

Two-dimensional LIL moiré patterns

We propose an approach of generating 2D macroscopic moiré patterns over the microscopic 1D diffraction gratings in a LIL process by an exploitation of the incident wavefront curvature, which is ordinarily considered as a drawback of a LIL experimental bench.

Figure 2(a) sketches the dual beam interferometer bench. One single LIL exposure creates in a photoresist a family of hyperbolic fringes. Such single-exposed sample after the development step can be considered as an ideal 1D grating in most practical cases, because the fringes have a very small curvature: for a square 10 cm×10 cm grating of period 1 µm these hyperbolic fringes cause a maximum period perturbation of 2 nm and the angle of maximum fringe deviation from a vertical orientation is only 3.5 , which can be considered negligible in practical experiments. However, this curvature is enough to produce macroscopic moiré patterns visible by naked eye, if the sample is exposed twice with a small spatial displacement between exposures. A small horizontal shift, vertical shift or rotation of the sample leads to elliptical, hyperbolic or straight moiré motifs, see Figs. 2(b)-2(d) respectively for a qualitative explanation. All sample shifts were realized using manual translation and rotary stages with a precision of 20 µm and 1' respectively. The case of straight moiré lines created by small rotation angle as in Fig. 2(d) is well-known [34,35]. This rotation ∆θ between two LIL exposures with periods Λ LIL creates 2D gratings with a rhombic elementary cell of Λ LIL /sin (∆θ) period. With decreasing of ∆θ one rhomb diagonal is growing and becomes macroscopically-sized, whereas the other one remains very close to Λ LIL . In the following process steps those straight macroscopic moiré lines become visible, with grating grooves ≈ Λ LIL being perpendicular to them.

In the appendix we provide a strict quantitative analysis of moiré patterns for the in-plane sample translation case. Let us define this in-plane displacement vector between two exposures as s = (s x , 0,s z ) T . The two particular cases s ≡ s x and s ≡ s z are presented in Figs. 2(b) and 2(c), respectively. It can be shown that the form and size of every moiré line are described by an equation

∆ ≡ ∆ 1,sx,sz -∆ 2,sx,sz = 2k, (2) 
where scalar fields ∆ 1,sx,sz (x, z) and ∆ 2,sx,sz (x, z) defined over the resist surface plane are proportional to the optical path difference between point sources during the first and the second LIL exposures, respectively, and k ∈ Z specifies a certain moiré line in the family of lines.

The main theoretical result obtained in the Appendix is that for any given parameters of the LIL setup (distances D, H and the laser wavelength λ) we can construct a hyperboloid of one sheet in Euclidean space (ς 1 , ς 2 , ς 3 ), such that for any in-plane displacement vector s a certain plane can be found that cuts the hyperboloid, revealing the moiré lines generated by this displacement s. In other words, we propose a graphical solution of Eq. ( 2). Illustrations in Figs. 3(a 

Experimental

In this part we provide and discuss the experimental results obtained by the modified LIL setup. The section is organized as follows. In the first subsection the materials and fabrication details are indicated, the second subsection is devoted to the primary moiré patterns considered theoretically in the previous section, written in gratings with periods of 1 µm and 300 nm using the 2-exposure LIL. The third subsection expands our method to the 4-exposure LIL.

Materials and fabrication

BK7 microscope glass slides 3.7 cm×2.5 cm were used as transparent substrates. They were cleaned in a wet bench three-step procedure: 15 min, 15 min and 10 min in acetone ultrasonic tank, ethanol ultrasonic tank and pure deionized water tank respectively, and then were dried under a nitrogen stream. A thin 600 nm layer of a positive photoresist Shipley S1805 was deposited on top by spin-coating and soft-baked at 60 °C for 1 min to evaporate the solvent, harden the resist and improve its adhesion to the substrate.

We used 442 nm He-Cd laser with an effective power P = 500 µW in the LIL setup, see Fig. 5.

After the beam splitter two laser beams of equal intensity are injected into Polarization-Maintaining Single Mode optical Fibers (PM-SMFs) adapted for a wavelength 442 nm. The light comes out from fiber ends mounted on stepper motors to control the incidence angle. These fiber ends are considered as point laser sources in Fig. 2(a). The distance between point laser sources D = 69.3 cm is fixed, the grating period Λ LIL is defined by equal incidence angles of two beams and an adjustable distance H to the sample holder (see also Section 2.1).

The sample displacement s was controlled by a standard manual linear translation stage with the smallest scale division of 20 µm; the sample rotation ∆θ was performed using the rotary stage with a precision 1 . The sample has been shifting between two consecutive LIL exposures in order to generate moiré patterns on the grating after development. Each LIL exposure lasted typically 23 s for subwavelength gratings with a period 300 nm and 150 s for gratings of 1 µm. The exposure time depends on the distance H to the light sources (see Fig. 2(a)) and, consequently, on the grating period.

After exposure the samples were developed in MF-319 developer at 8 °C for 4 and 5 seconds in case of 300 nm and 1 µm gratings respectively and finally dried in a nitrogen stream.

For the structural color observations, presented in Section 3.2.2, a variable depth grating was metallized in a physical vapor deposition (PVD) process by sputtering of an aluminum target. It allows to deposit thin ∼20 nm metallic films for observations in transmission. Finally, a second 600 nm thick photoresist layer was spin-coated on top in order to protect the metallic surface and to provide the required insulator-metal-insulator configuration; this upper resist layer has a planar "dielectric-air" interface.

Moiré patterns generated by two-exposure LIL technique

Experimental observation of moiré patterns of different shapes

As we have seen previously, elliptical, hyperbolic and straight envelopes of 1D gratings can be created by sample displacement or rotation between two LIL exposures. Experimental results are shown in Fig. 6. We used manual translation and rotary stages to obtain a well controllable sample movement. As it was predicted numerically, the displacement direction (depicted by the red arrow on the top of each column) defines the form of the moiré lines, while the absolute value controls the distance between them. For example, sample shifts of 3.6 mm, 5.2 mm and 11 mm (which are much smaller than the LIL setup dimensions D and H of ∼0.5 m) in the direction perpendicular to the grating grooves correspond to samples Figs. 6(a)-6(c) with increasing number of moiré motifs (black lines). These black lines are zero-depth grating regions without light diffraction and thus show the background color (see AFM measures in Fig. 6(j)). Analogously, a sample rotation of 0.1' to 0.5' between 2 exposures also increases the number of moiré lines (Figs. 6(d)-6(f)).

All hyperbolic patterns in Figs. 6(g)-6(i) were prepared using the same 2 cm displacement, but the shapes of the moiré lines are quite different: the distance between the symmetry center (denoted as white dots in Figs. 6(g)-6(i)) and nearest hyperbolic branches (white dashed lines in Figs. 6(g)-6(i)) is substantially larger in Fig. 6(g) than in Fig. 6(h) and Fig. 6(i). Moreover, the major and mirror hyperbola axis in Fig. 6(g) and Fig. 6(h) switch their roles in Fig. 6(i). These two observations can be explained by small inaccuracies in the displacement direction which is very hard to control experimentally. This is shown by the envelopes in Figs. 4(d)-4(f) that have almost the same shift direction with a deviation of only ±0.08 , which nevertheless is enough to affect the moiré motif.

Calculations analogous to those presented in Figs. 4(d)-4(f) can be performed for any displacement direction. In all cases a small angle deviation of ±0.08 is enough to affect the moiré motif in the central zone. It arises because fringes near the screen center are the most straight (see Fig. 2(a)) and cause the minimum grating period perturbations. Consequently, after the double LIL exposure the envelope of superposed grating reaches here the largest values, and the moiré pattern becomes "zoomed" in the center with respect to the rest of surface. It makes the central moiré part very sensitive to any small deviations in displacement direction. To avoid this experimentally uncontrollable behavior we work with the non-central part of the LIL interference pattern; an exception was made for patterns in Figs. 6(g)-6(i) to demonstrate clearly their hyperbolic forms.

The considered depth modulation method can be easily adopted for a wide range of grating periods. This flexibility is demonstrated in Figs. 7(a)-7(e), where subwavelength variable depth gratings with 300 nm period were fabricated. The diffracted light has a different color in comparison with Fig. 6 because of the significantly different period, however, the moiré patterns with large macroscopic dimensions are still visible. It was noted in Section 2.2 that our rotary stage precision is limited to 1 . This is larger than the values for ∆θ given in Figs. 6(d)-6(f) and Figs. 7(d)-7(e). This is due to the possibility to perform sub-scale rotations with the manual stage, just without a guaranteed control over the angle. The angles ∆θ were calculated a posteriori after gratings fabrication using the formula Λ s = Λ LIL /2 sin (∆θ/2) (see Section 3.3.2) and measuring the distance between straight moiré lines Λ s .

Structural color in variable depth gratings

Adiabatic modulations of the grating depth due to the moiré effect allow observing the optical response from different depth regions by a collimated light beam without using a microscope. It simplifies spectral measurement setups and can be used for example in studies of plasmonic effects in a symmetric insulator-metal-insulator (IMI) structure based on variable depth gratings [29]. In this section the same IMI geometry is used to study structurally induced colors in different depth regions, see Fig. 8. As a basic diffractive structure the variable depth grating from Fig. 7(b) with an average thickness of 200 nm and a period of 300 nm was used. It was transformed into an IMI-structure as described in Section 3.1. As we have shown in [29], this type of structures supports visible band plasmonic and waveguide modes with coupling efficiencies that are strongly dependent on the incident light polarization and grating depth. Consequently, a noticeable structural color variations should exist, which is confirmed by photographs of the fabricated IMI sample in white light transmission in Fig. 8. All the photographs demonstrate the influence of different grating depths on coloration. It can be seen that an unpolarized transmission in Fig. 8(a) and Fig. 8(b) affects predominantly the color intensity (green at normal incidence and red/pink at 20 • ), whereas in the polarized transmission Figs. 8(c)-(f) color changes are also prominent, shown for example by the green/red gradient in Fig. 8(c). The structures with such noticeable color effects can be used in optical protection elements and for decoration purposes. Systematic explanation of the colors is beyond the scope of this article, but it can be stated that the resist/aluminum/resist model structure sketched in Fig. 8(g), with a geometry close to experimental one, indeed demonstrates a wavelength shift from green to blue for its maximum transmission as well as the region of experimental sample in Figs. 8(c)-8(d) in dashed circles with an intermediate grating depth 150 nm. The transmission spectra in Fig. 8(g) for this depth were calculated using a rigorous Chandezon method [36,37].

Moiré patterns generated by four-exposure LIL technique

An evident extension of the proposed moiré generation method is the use of more than two LIL exposures to combine any type of sample displacement described above and create complex two-dimensional nanostructures. However, without loss of generality, we consider in this subsection only rotations as they produce straight moiré lines, which are often very interesting from a practical point of view.

Macroscopic moiré patterns

The sample rotation by a small angle between LIL exposures creates macroscopic grating depth modulations visible by naked eye (see Figs. 6(d)-6(f) and Figs. 7(d)-7(e)). Introducing additional exposures leads to 2D diffraction gratings with a complex topography, where the grating periods and spatial moiré frequencies (microscopic and macroscopic topography variations, respectively) can be adjusted independently. For example, Fig. 9(b) is a 2D rectangular dielectric 1 µm grating fabricated by 4 equal LIL exposures with sample orientations depicted in Fig. 9(a), where the small rotations between the two upper and two bottom orientations are ∆θ ≈ 1 . The same LIL technique was used in Fig. 9(c), but the first two exposures were adjusted here for a period of 600 nm and the last two for 1 µm. For both of those 2D structures moiré patterns are visible by naked eye as dark straight lines organising a 2D macroscopic mesh. This mesh causes adiabatic changes in the amplitude of the vertical and horizontal microscopic undulations with periods 1 µm and 600 nm, thus forming microscopic regions of pure 1D vertical, horizontal and all possible intermediate 2D gratings, as shown in the SEM images in Figs. 9(d)-9(f). 

Microscopic moiré patterns and quasicrystals

Previous sections were devoted to large moiré patterns of macroscopic size. Such patterns cause adiabatic change of grating profile, mainly grating depth, and can be utilized in diffractive optically variable image devices (DOVIDs) for anticounterfeiting measures, plasmonic studies or getting structurally induced colors (see Section 3.2.2). As it was discussed in Section 3.2.1, the spatial distance between the moiré lines is increasing with a decreasing of the sample shift between LIL exposures, which was used to obtain depth variation patterns visible by naked eye. In contrast, the period of depth modulations generated by large sample shifts can be comparable to the microscopic grating period giving rise to new interesting applications and diffraction systems like 2D quasicrystals.

Using both the exact calculations and the theoretical model proposed in the appendix it can be shown that such high frequency grating envelopes cannot be generated by translation-only displacements. We did not find practically feasible combinations of translations and rotations for curvilinear microscopic moiré patterns so far, and thus in this section only rotations are considered.

The same 4-exposure LIL technique as in Section 3. The arbitrariness of ∆θ value means repetitions of Λ s (∆θ) and Λ LIL will not lead to a common period and, consequently, a quasicrystal pattern will be formed. This quasicrystallinity becomes visible at the small Λ s limit in Fig. 10(c): we can notice here that the number of clearly distinguishable Λ LIL -periodic maxima varies in different superlattice cells, and additionally their positioning shows perturbations. In the diffraction patterns this quasicrystallinity causes a complex form of superlattice non-zero orders. However, in case of small enough ∆θ (∼ 1' and less) the size of the superlattice cells Λ s Λ LIL can exceed the diameter of the light beam, and we return to macroscopic moiré patterns which modulate the grating depth adiabatically.

In this section we have shown that some hierarchical 2D structures intensively studied in recent years can be considered as a limiting case of moiré-based geometries.

Conclusion

To conclude, this paper demonstrates a novel LIL-based approach for generation of macroscopic visible by naked eye moiré patterns in 1D and 2D diffraction structures. The method yields gratings with adiabatically varying depth, where the envelope size can be easily tuned in a wide range. The wavefront curvature of point laser sources makes it possible to relax the requirements imposed on LIL setups for apodized structures and creates inherently 2D depth distributions even for linear gratings. We demonstrated structural color effects in transmission of apodized metallic 1D grating and discussed the connection between macroscopic and microscopic moiré patterns and quasicrystals. The proposed experimental approach consists only of a simple and cheap modification of a standard, 2 source LIL setup and requires neither changing the number of light sources nor their positions, while offering many new degrees of freedom in grating design. It can thus be efficiently used in fabrication of optical security elements, structurally induced colors, systematic study of depth-dependent effects and as an intermediate step in synthesis of sophisticated optical devices.

Appendix

In this Appendix we will consider the derivation of Eq. ( 2) and its solution in analytic and graphical forms. A single LIL two-beam exposure creates a 1D periodical distribution of fringes. More precisely, these fringes are a family of hyperbolae with a weak curvature, see Fig. 2(a). The local coordinate system Oxyz has an origin point O in the sample center and the coordinate plane xOz coincides with a resist surface. Let us define an in-plane sample displacement vector between two exposures as s = (s x , 0,s z ) T . The two particular cases s ≡ s x and s ≡ s z are presented in Figs. 2(b) and 2(c), respectively. For the ease of theoretical consideration it is convenient to have the moiré pattern symmetry center at the center O of a rectangular sample. To get this we should shift the sample along a vector -s/2 and +s/2 from its initial symmetrical position showed in Fig. 2(a) before the first and the second LIL exposure, respectively.

The optical path difference between left and right beams in any point (x, z) on the resist surface normalized to laser wavelength λ is:

∆ i,sx,sz (x, z) = 1 λ (x + D/2 ∓ s x /2) 2 + (z ∓ s z /2) 2 + H 2 - 1 λ (x -D/2 ∓ s x /2) 2 + (z ∓ s z /2) 2 + H 2 , (3) 
for the first (i=1) and second (i=2) LIL exposure, respectively; D is a distance between two coherent point light sources and H is a distance to sample, see Fig. 2(a). The total intensity distribution over the resist surface after two exposures is:

I (r) = I 0 sin [2π∆ 1 (r)] + I 0 sin [2π∆ 2 (r)] + 2I 0 = 2I 0 sin [π (∆ 1 + ∆ 2 )] cos [π (∆ 1 -∆ 2 )] + 2I 0 ( 4 
)
The cosine on the right of Eq. ( 4) describes a low spatial frequency envelope, whereas the sine gives a high-frequency surface modulation almost identical to the single LIL exposure. Regions of maximum envelope values are determined as cos [π (∆ 1 -∆ 2 )] = 1, which gives an equation of moiré lines:

∆ ≡ ∆ 1,sx,sz -∆ 2,sx,sz = 2k, (5) 
with a number k ∈ Z indicating a specific moiré line in the family.

In order to understand better the structure of the left side of this equation we approximate it using a Taylor decomposition in the limit |x|, |z|, |s 

where q = 4D/ D 2 + 4H 2 3/2 λ, t = 12H 2 /(D 2 + 4H 2 ), s = |s| and θ is an angle between the sample displacement vector s and axis Ox (see Fig. 4). The principal axis theorem states that the left part of Eq. ( 8) has a diagonal form in an orthonormal eigenbasis (V 1 , V 2 ):

u v β 1 0 0 β 2 u v = 2k -C 00 s x qs ≡ Q, ( 10 
)
where

x z T = (V 1 , V 2 ) u v
T , and eigenvectors correspond to matrix B. The sign of eigenvalues β 1 and β 2 defines the type of moiré patterns. Our aim is to find graphically all experimentally achievable moiré shapes. We found a possible geometrical interpretation of the moiré lines as cross-sections of a one-sheet hyperboloid with different planes. In the following we explain this approach. Let us define in some coordinates {ζ 1 , ζ 2 , ζ 3 } the one-sheet hyperboloid: depends additionally on the sample displacement is a plane, which should intersect the hyperboloid and forms a moiré line of specific shape via the cross-section. This plane we define by the following parametrization:

ς 1 ς 2 ς 3 = un + vm + p, (12) 
where the vector n ≡ Mathematically the cross-section of the hyperboloid with the plane can be found as a solution of a system of equations Eqs. ( 11)- (12). After substitution of Eq. ( 12) into Eq. ( 11) we get the expression with a constraint on the radius-vector p 2 cos γ/b 2 = p 3 sin γ/c 2 to eliminate the linear terms and put the symmetry center in origin. The solution of this equation should be geometrically similar with a moiré line defined by Eq. ( 10) at properly chosen plane inclination angles γ and radius-vectors p.

One can verify that the so-defined cross-section of the plane with the hyperboloid yields all practically achievable moiré lines described by Eq. (10). However, the γ, p parametrization with the only constraint p 2 cos γ/b 2 = p 3 sin γ/c 2 is excessive, because moiré patterns of identical form (and different size) can be achieved using for example different length |p|. We are interested in graphical visualization of shapes only, for which the specific choice of parameters γ and p for every moiré motif is presented in Fig. 11.

Introduction

Surface plasmon resonance (SPR) is a well-known and extensively studied phenomenon in nanooptics research [1][2]. Due to its unique properties of strong field enhancement, high bulk and surface sensitiveness and subwavelength energy confinement SPR is utilized nowadays in diverse applications like biochemical sensing, optical interconnects, Raman spectroscopy and plasmonic nanolithography [3][4][5].

Resonant TM transmission is an enhanced plasmon-mediated light transmission through optically thick metallic films with and without holes. This effect has a number of advantages over the conventional SPR, for example improved signal-to-noise ratio and simple collinear experimental setup, what is in demand for high-sensitive sensor applications [6]. A common way to excite plasmonic modes and provide energy transfer is the surface nanostructuration, for example sinusoidal corrugation (with predefined period) of metallic layer in 1D case (Fig. 1a). Geometrical parameters of corrugation (i.e. grating depth) significantly influence the quality of plasmonic coupling at specified wavelength and can be optimized numerically. In practice, however, fabricated structure can demonstrate the transmission sufficiently different from the expected one because of certain reasons [7], thus an experimental optimization procedure is needed. In this work we propose such a technique for the search of optimal grating depth. We fabricated dieletric/metal/dielectric layered structure based on variable depth grating (0-100 nm) and measured the wavelength-depth resolved transmission map. The existence of optimal grating depth for ≈45% resonant transmission is experimentally demonstrated and numerical verification using rigorous Generalized Source Method in Curvilinear Coordinates (GSMCC) [8] is presented. 

Sample fabricaton

Laser Interference Lithography (LIL) is a well-established large area maskless surface patterning technique for realizing periodic structuration at the micro-and nano-scale [9]. The typical fabrication process for a 1D diffractive grating requires a one-shot exposition of the photoresist layer in the interference field of two coherent beams. This approach, however, leads to equal grating depth at any surface point, as the interference pattern is strictly periodical (with period Λ1). In order to fabricate a variable depth grating we introduce a second exposition with the same laser intensity and illumination time, but slightly perturbed fringe period Λ2. The sum of functions with close periods leads to the well-known Moiré effect: The glass surface (BK7) was cleaned using three-step wet bench procedure (acetone, ethanol and water baths), after that a thin (~300 nm) layer of the photoresist S1805 was deposited by spin-coater. This photosensitive layer was then exposed twice with a slightly different periods and developed under optimized duration to get the surface nanostructuration with desired depth variation (step 1 at Fig. 2a).

Optically thick Al film (17 nm) was then deposited by an evaporation process on the structured surface and covered again by the same resist in order to obtain a symmetrical dielectric/metal/dielectric geometry (steps 2-3 at Fig. 2a accordingly). The thicknesses of lower and upper dielectric claddings are ≈250 nm and ≈700 nm, respectively. The SEM image of metallized grating surface (Fig. 2b) demonstrates the absence of metal islandization, what is important for effective excitation of nonlocalized plasmons.

Sample characterization

We used an AFM to measure the metallized grating profile (Fig. 2a, second step) and obtained the dependence of grating depth on surface position (envelope function in Eq. (1.1)), see Fig. 2c. The sample continuously covers all possible depths in range from 0 to 105 nm and allows to measure transmission spectra for this range simply by shifting the sample and illuminating different parts of the surface.

The 2D map of resonant transmission at normal incidence across our sample (Fig. 2a, third step) as a function of wavelength and grating depth is presented in Fig. 3: It consists of series of particular spectra corresponding to transmission through different grating areas and demonstrates a number of features. First of all, it has an axial symmetry (horizontal black dashed line in Fig. 3) which originates from axial symmetry of sinusoidal grating envelope with respect to coordinate ≈1.1 cm (see Fig. 2c). Vertical lines of relatively high transparency (denoted as L1-L3 in Fig. 3) correspond to transmission variations analogous to those in Fabry-Pérot interferometer (with the interference area in our sample mainly in the upper dielectric cladding) and their resonant wavelengths can shift with changing of dielectric claddings thickness. Consequently, the presence of these lines in measured transmission spectrum and their strict vertical orientation together with pronounced axial symmetry of Fig. 3 demonstrates the fabrication quality. The most important feature of Fig. 3 is the existence of an optimal grating depth (≈50 nm) with the highest experimentally achievable transmission (≈45% in our geometry), denoted as white point A. The total area of plasmonmediated resonant transmission is quite large in the sense of depth, excluding point A it contains also two branches (shoulders) of long-and short-range plasmonic modes (white dashed lines 1 and 2 in Fig. 3 respectively) in the finite-thickness metallic layer.

To clarify the resonant transmission spectrum deformations with varying grating depth we plotted the one-dimensional experimental spectra for several depths (see Fig. 4a). Two shoulders of plasmonic resonances are clearly visible. Fig. 4b shows the experimental dependence of resonant transmission on grating depth, which is to be compared with theoretical model curve in Fig. 1b. At last, Fig. 4c demonstrates a good correspondence between the theory (GSMCC) [8] and the experiment on an example of transmission through optimized grating depth 52 nm. with simulation based on rigorous GSMCC numerical method (red line).

Conclusion

In conclusion, variable depth gratings offer new possibilities in fields of plasmonics and optical security elements [10]. In this work we demonstrated that such a grating is a promising instrument for experimental optimizing needs, using an example of optimized resonant transmission across an optically thick metallic layer. We believe that such approach can improve the behavior and widen the applicability of existing optical devices based on nanogratings like (bio)chemical sensors.
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INTRODUCTION

Planar diffractive components with surface structuring at micro-and nano-scale play an important role in nanophotonics due to advanced capabilities for light manipulation. Applications of nanostructures include antireflection, 1 structural color, 2 photocatalysis, 3 SERS, 4 charge transport, 5 etc. In order to improve their functionality sophisticated experimental approaches 6 and multi-step procedures 7 are suggested. In terms of flexibility and costs the Laser Interference Lithography (LIL) offers a big freedom of modifications, it is a stable wafer-scale surface patterning method. 8 As a one-shot procedure it allows the creation of macroscopic coherent 1D-periodic structures, elaborated setups significantly expand its possibilities in moth-eye inspired topographies 9 and hierarchical structures. 10 In particular applications a variable depth design can lead to attractive solutions. It is usually realized by variable dose ion-or electron-beam writing, which, however, have certain drawbacks like big time consumption, limited sample size (∼mm) and a non perfect structure coherence at macroscopic scale. In order to adopt the LIL principle a number of approaches were proposed. 11, 12 In this work we present a novel LIL-compatible fabrication method which utilizes the same interference moiré effect as in 11, 12 but in a much simpler and more flexible way. We have synthesized and characterized apodized structures and performed theoretical calculations of grating profiles, which correspond perfectly to the AFM measurements. Our method can be used for optical security elements, plasmonic research and highly effective light couplers.

METHOD PRINCIPLES

In a LIL process with double exposure the intensity distribution on the resist surface is given by the sum of two sinusoidal patterns: I (x) = I 0 sin 2π Λ1 x + sin 2π Λ2 x + 2 , where I 0 is the averaged intensity of a single exposure, modulation periods Λ 1-2 depend on the LIL angle θ and laser wavelength λ, 8 and x is the surface coordinate perpendicular to the modulation. Let us assume that Λ 2 = Λ 1 + ∆Λ, |∆Λ| Λ 1 . In this case the intensity distribution over the resist surface can be represented as

I (x) ≈ 2I 0 sin 2π Λ 1 x cos 2π Λ env x + 1 , (1) 
with the envelope function period Λ env ≈ 2Λ 2 1 /∆Λ Λ 1 .

The intensity formula clearly shows that the fine undulation with the period Λ 1 is modulated by a large moiré pattern with characteristic size Λ env . The conventional way to adjust the periods Λ 1-2 is the control of LIL angle θ, 11, 12 i.e. ∆Λ ≡ ∆Λ (θ). However, this approach is not precise at very small ∆Λ in order to get large Λ env . In this work we present a novel fabrication method with a minor modification of a standard LIL setup (see Fig. 1a-b) for gratings with adiabatically varying depth. We propose utilizing the curved (spherical) wavefront of coherent point light sources that creates a set of slightly curved interference fringes in a photoresist layer after single LIL exposure. These fringes representing a family of hyperbolae are shown as colored lines in Fig. 1c, where the grating period being equal to the distance between lines slightly depends on coordinates (x,y). Consequently, small sample shifts of |s| < 1 mm between two LIL exposures can create a very small perturbation ∆Λ ≡ ∆Λ (|s|) Λ 1 at any point of the resist surface, leading to a large macroscopic moiré pattern (see Fig. 1c).

These period perturbations are very small compared to the average period, but are sufficient to create a grating with a continuous variation of depths from zero to the maximum value. Let us notice that the proposed method is inherently 2D, i.e. the final structure is apodized in two dimensions, whereas grating grooves are still parallel to y direction everywhere. 

MATERIALS AND FABRICATION

We used BK7 microscope glass slides as transparent substrates. They were cleaned in a wet bench in ultrasonic tanks of acetone and ethanol to remove chemical and mechanical pollutants. After drying in a nitrogen stream, a thin film (∼300 nm) of positive photoresist Shipley S1805 was spin-coated on the glass substrates and pre-baked in an oven at 60 • C for 1 min to evaporate the solvent and improve the adhesion. In our experimental dual-beam interferometer setup the radiation of a He-Cd laser at λ = 442 nm was splitted into two equal intensity beams and coupled to monomode-polarization-maintaining optical fibers. Beams come out from the fiber ends and expose samples; these fiber ends are considered as point laser sources (see Fig. 1a). The LIL experimental setup was upgraded by a manual linear translation stage on the sample holder to control the sample shift |s| precisely.

In order to create subwavelength diffraction gratings in the visible range we fix the period at Λ = 300 nm. The samples were pre-exposed uniformly for 20 s with the beam power density I 0 /2 = 250 µW/cm 2 in order to set the resist in a linear regime and get a smooth sinusoidal grating profile. Between two equal LIL exposures for t exp =15 s each with power density I 0 = 500 µW/cm 2 the samples were shifted by different distances s Ox to create structures with various sizes of the moiré pattern (it corresponds to samples presented in Figs. 3a-c).

For another grating period of Λ = 1 µm the durations of both LIL exposures were t exp =150 s, and the displacement |s| = 2 cm, s⊥Ox for hyperbolic moiré pattern formation (see Fig. 2c and Fig. 3d). Finally, samples were developed in Microposit MF-319 developer for 4 s at the temperature 8 • C in order to dissolve the exposed resist parts resulting in the desired surface structuration. Fig. 3 shows the prepared diffraction gratings with different shifts s. Black lines crossing the structures are moiré arcs (see Fig. 1c) of zero grating depth. In order to demonstrate the fabrication method flexibility we have chosen the period Λ=300 nm for elliptic moiré lines and Λ=1 µm for hyperbolic ones. For every depth value we can consider at least 100 grating periods of almost equal depth, their profile can be simulated locally as for a standard uniform 1D grating with some effective exposure time 0 T eff 2t exp .

CHARACTERIZATION

The value of T eff varies with a macroscopic coordinate x over the sample surface and depends on a local phase of the envelope function. In Fig. 4a the envelope is fitted by a sinusoid, although the exact dependence is more complex. The energy dose received by a unit area of the photoresist is (compare with Eq. 1): 

E(x) =
in what follows that an effective pre-exposure time τ eff = 4 [1 -cos (2π/Λ env x)] t exp + t pre exp and an effective exposure time T eff = 2 |cos (2π/Λ env x)| t exp . Figure 4b reveals the profile forms of sample regions with depths of 105 nm (point A in Fig. 4, envelope phase 0 • ) and 48 nm (point B in Fig. 4, envelope phase 69 • ), with a good correspondence between experimental AFM data and numerical simulations of the resist development. Numerical simulations presented in Fig. 4b were performed as follows. Firstly, full-wave calculations of laser λ = 442 nm energy distribution in a resist layer were made for specific values of τ eff and T eff taking into account optical properties of glass and resist, see the background in Fig. 5b. Secondly, the experimentally measured resist sensitivity curve (Fig. 5a) was used to convert the energy distribution to a development rate map. Finally, we implemented an iterative process which takes into account the isotropic nature of the dissolution process 13 and simulated the grating profile evolution during the development, see Fig. 3/2 (7) depend on geometrical parameters of particular LIL setup. Finally, we rewrite the Eq. ( 6) in a matrix form 

It can be clearly seen that for two sample displacements along Ox axis (s y ≡ 0) and Oy axis (s x ≡ 0) the Eq. 8 defines elliptical and hyperbolic grating depth modulations, respectively. We used this equation for the numerical calculations of different moiré patterns in Figs. 2a-c.

  Cette thèse est consacrée à la Transmission Optique Extraordinaire (EOT) observée dans différents systèmes diffractifs. Un besoin industriel constant en matière d'intégration et de miniaturisation des composants optiques a motivé le développement de tels dispositifs à base de réseaux planaires d'épaisseurs comparables aux longueurs d'onde de fonctionnement. L'effet EOT est une perspective pour de nombreuses applications plasmoniques dans les effets colorés induits par la structure, le filtrage optique, le laser, les biocapteurs tout optiques en raison de l'amélioration du rapport signal / bruit et pour la conception simplifiée de l'appareil. Visant des matériaux pratiquement disponibles et des méthodes de nanotexturation de surface compatibles avec l'industrie, une étude systématique de l'EOT à travers des films d'aluminium continus a été réalisée. D'abord, une modification de la lithographie par interférence laser permettant la fabrication rapide de réseaux à profondeur variable a été proposée, théoriquement établie et validée expérimentalement. Contrairement aux réseaux chirpés qui contrôlent la longueur d'onde de résonance plasmonique en changeant de période en continu, la profondeur variable définit l'efficacité du couplage plasmonique à une longueur d'onde fixe, offrant ainsi des possibilités supplémentaires pour les manipulations de la lumière. En utilisant cette approche de fabrication, l'existence d'une profondeur de réseau optimale pour l'EOT a été démontrée expérimentalement et la structure résolue en profondeur a induit des changements de couleurs observés en transmission. Ensuite, pour la première fois, l'effet de l'EOT a été démontré expérimentalement dans des échantillons polycristallins, fabriqués par nano-photolithographie colloïdale. vii La présence de désordre sub-longueur d'onde dans la disposition des nanopores affecte fortement l'efficacité de l'EOT, qui a été étudiée à la fois expérimentalement et numériquement. Un modèle phénoménologique d'EOT dans les structures polycristallines et un coefficient de désordre sans dimension sont proposés afin d'expliquer les courbes de transmission mesurées. De plus, la dépendance entre la profondeur du réseau et le désordre a été étudiée numériquement. L'étude systématique de l'EOT dans divers systèmes de diffraction présentés dans cette thèse pourrait ouvrir la voie à des dispositifs plasmoniques plus efficaces et à des applications industrielles.
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 11 Figure 1.1: Examples of "ancient nanotechnologies" in pre-modern era: a) and b) The Lycurgus Cup in reflected and transmitted light, correspondingly. c) Multicolor medieval stained glass window. (Courtesy: NanoBioNet)
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 123 Figure 1.2: Number of research articles corresponding to the key word "plasmonic" published from 2000 to 2020 according to Google Scholar search engine results.
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 1 INTRODUCTIONExtraordinary plasmon-mediated resonant transmission caused intensive studies in both experimental and theoretical directions; its possible applications in plasmonic sensing, energy transfer, lasing and optical filtering motivates optical society for the last decades to work at interdisciplinary level between nanofabrication methods, fundamental questions of electrodynamics and industry. Throughout the thesis a special attention is paid to the influence of depth on transmission effects. Despite the EOT has been known for two decades already[31], the number of articles is not very abundant. For example, Thio et al. measured the depth-resolved transmission spectra through a single subwavelength aperture[START_REF] Thio | Enhanced light transmission through a single subwavelength aperture[END_REF], surrounded by periodical grooves of different depths. Concerning the EOT in continuous metal films the work of Cao et al.[START_REF] Cao | Plasmon-enhanced optical transmission at multiple wavelengths through an asymmetric corrugated thin silver film[END_REF] should be mentioned. Their novel single-pulse nanosecond modification of LIL creates single-period structures with Gaussian modulation of depth due to the non-uniform energy distribution in a laser pulse. However, because of practical constraints the depth at the laser spot periphery does not change continuously. It led to the fact that only general features of EOT were noticed,

Chapter 6

 6 is devoted to systematic study of EOT in a variety of geometries, including 1D, 2D periodical holographic gratings, 1D variable depth gratings and polycrystalline arrays of nanoholes; an effective dimensionless coefficient of disorder CHAPTER 1. INTRODUCTION is proposed to estimate the quality of polycrystalline substrates for EOT. The dependence of structural color on grating depth was experimentally demonstrated. Finally, in Chapter 7 we draw the conclusions from the work and discuss perspectives for future research. The work was accomplished in the Laboratory Hubert Curien (UMR CNRS 5516) in collaboration with CEA-Liten, and was funded by the SIS 488 doctoral school of Saint-Etienne, university of Lyon, France. The numerical simulations via rigorous Generalized Source Method (GSM) were performed by Dr. Alexey Shcherbakov. CHAPTER 2. THEORY OF SURFACE PLASMON POLARITONS Surface plasmon resonances (SPRs) are collective coherent oscillations of electrons at metal-dielectric interfaces. Over the past decades plasmonic modes have attracted much attention in both theoretical and experimental studies. These resonances have been adapted for a wide range of photonic applications described in Chapter 1 due to the inherent subwavelength confinement to the surface and high energy concentration.
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 21 Figure 2.1: Calculated UV-vis extinction (black), absorption (red), and scattering (blue) spectra of silver nanostructures in water by Mie theory: (A) an isotropic sphere; (B) anisotropic cubes; (C) tetrahedra; (D) octahedra; (E) hollow and (F) thinner shell walls. Reproduced from ref. [92].
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 22 Figure 2.2: Experimental configurations for SPP modes excitation and detection: a) Otto configuration; b) Kretschmann configuration; c) Grating configuration. The periodical elements can be made of any material, metal or dielectric; d) Typical plasmonic dip in reflection calculated using the model Kretschmann setup sketched on the right with a thin 50 nm-thin silver film. The shape of SPP modes denoted in red in a)-d) signifies the exponentially decaying plasmonic field in metal and dielectric claddings, with maximum value at the interface (see, for example, Fig. 2.6a).
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 23 Figure 2.3: Schematic of a general scatterer with some input f + 1 , f + 2 , ... and output f - 1 , f - 2 , ... channels.
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 2 Figure 2.4: a) Schematic of a 2-layer medium and b)-c) corresponding transmission matrices.
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 8 at any η ∈ [a, b]. The mean value theorem states that there exists the point η ∈ [a, b]
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 25 Figure 2.5: Sketch of multilayered plane-parallel structure. Arrows with red sinusoids represent two plane waves propagating in every layer up and down, their amplitudes areA (i,1) and A (i,2) respectively for the layer i.
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Figure 2 .

 2 Figure 2.6: a) Metal-dielectric interface supporting SPP. Red line represents the Re (H z ) component of SPP resonant field; b) Calculated SPP dispersion in Vis-NIR for the air/Al interface. Metal dielectric permittivity was taken from Grating Solver 4.20 software [99].
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 1 Equation 2.18 reveals the existence of two TM eigenmodes, which are called Short-and Long-Range Surface Plasmon-Polaritons (SR-SPPs and LR-SPPs, respectively). Fig. 2.7a shows two poles of the function S 12 (k x ) with the complex argument k x . The structure consists of the thin h = 70 nm aluminum film ε 2 = (1.4 + 7.7i) 2 sandwiched between two semi-infinite dielectric claddings made of photoresist S1805 with dielectric permittivity ε 1 = 1.61 2 ; the chosen optical constants correspond to the wavelength 632.8 nm.
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 27 Figure 2.7: Plasmon resonances in the symmetric "Dielectric-Metal-Dielectric structure". a) Complex poles of the scattering matrix; b) phase singularities corresponding to these poles. Black dashed circles denote the positions of complex poles which physically correspond to Short-and Long-Range Surface Plasmon-Polaritons (SR-SPP and LR-SPP); c) Real parts of SR-SPP and LR-SPP propagation constants as functions of the metal layer thickness; the horizontal dashed line shows the propagation constant of the plasmon at the single metal-dielectric interface; d) complex propagation constants trajectories parametrized by metal thickness; the corresponding thickness values (in nm) are denoted near the trajectories.
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 28 Figure 2.8: Dielectric-metal-dielectric lamellar structure supporting SR-SPP and LR-SPP. Red lines represent the real parts of SPP resonant fields for a)-b) Short-Range SPP and c)-d) Long-Range SPP; e) Field distributions of two single-interface SPPs in the limit of very thick (infinite) metallic slab.
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 29 Figure 2.9: Real parts of propagation constants n mode of air-dielectric-metal lamellar structure eigenmodes in a) TE and b) TM polarization as functions of dielectric slab thickness. The values of n mode correspond either to plasmons or to waveguide modes, it is specified for every curve. Horizontal black dashed line in a) and b) correspond to the SPP propagation constant at a single dielectric-metal interface.
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 210 Figure 2.10: Air-dielectric-metal lamellar structure supporting SPPs and waveguide modes in TM and TE polarizations. Red lines represent the real parts of eigenmodes fields in a)-c) TE and d)-g) TM polarizations. Dielectric slab thickness was chosen 700 nm for a)-c) and 900 nm for d)-g).
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 2 11b. The amplitude of the incident wave is denoted as A(cover,2) in correspondence with the notations of section 2.4.1. With increasing waveguide thickness noticeable variations of the reflection are observed due to the constructive and destructive interference of waves in air reflected from upper and lower structure interfaces. The dielectric slab with two claddings (air and metal) thus can be considered as a Fabry-Pérot resonator; the mentioned reflection variations are Fabry-Pérot resonances.

Figure 2 .

 2 Figure 2.11: a) Three-layer structure as a Fabry-Pérot resonator; b) Fabry-Pérot oscillations in reflection under normal incidence, the low amplitude of oscillations is caused by completely different materials of claddings; c) and d) normalized wavevector/waveguide thickness-resolved reflection map in TE and TM polarizations, respectively. Upper and lower parts of 2D maps with the horizontal boundary Re (k x ) /k cover = 1 are depicted in different colormaps because of significantly different scales.

  2.11c-d for TE and TM polarizations, respectively: up to the unity value it corresponds to the incidence angle sin α = k x /k cover of the propagating wave. At these k x values, Fabry-Pérot oscillation CHAPTER 2. THEORY OF SURFACE PLASMON POLARITONS lines are observed. Values k x /k cover larger than unity correspond to the incident wave exponentially decaying away from the surface. In the upper regions of the reflection maps, waveguide and plasmonic modes exist; we use the same notation for them as in Figs. 2.9a-b. The form of resonant lines in Figs. 2.9a-b and 2.11c-d is the same, because the imaginary parts of the corresponding resonant values of k x /k cover are very small: ∼ 10 -3 for SPPs and ∼ 10 -5 for waveguide modes. We can clearly see that the Fabry-Pérot reflection minima shown in Fig. 2.11b and denoted as FP 0 -FP 4 in Figs. 2.11c-d turn into waveguide lines of maximum reflection at the boundary k x = k cover .

Figure 2 .

 2 Figure 2.12a demonstrates non-trivial behavior of poles and zeros near the horizontal unity line. Figure 2.12b reveals that the zeros trajectory (green line) turns into the poles trajectory (blue line) after the crossing of horizontal line Im(k x ) = 0. Below we present the considerations which could explain this behavior. As it can be seen from Eqs. 2.4 and 2.13, the scattering operator depends indirectly on k x via vertical wavevector components k y . Following the algorithm in section 2.4.1 every layer in a structure supports two plane waves with the same k x and opposite ±k y . In accordance with the chosen notation sign exp(+ikr) we consider the wave with Im(k y ) < 0 or Im(k y ) > 0 as propagating down or up, respectively. If Im(k y ) = 0, waves propagating down or up should obviously have Re(k y ) < 0 or Re(k y ) > 0. These orientation rules allow to define without ambiguity reflected (k cover y

Figure 2 .

 2 Figure 2.12: a) Normalized wavevector/waveguide thickness-resolved reflection map in TE polarization. Upper and lower parts of 2D maps with the horizontal boundary Re (k x ) /k cover = 1 are depicted in different colormaps because of sufficiently different scales; b) Complex poles and zeros trajectories of the element S 11 of the scattering matrix, with the waveguide thickness as a parameter. Numbers near the circles at these trajectories denote corresponding parameter value.
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 213 Figure 2.13: Scheme representing the dependence of complex-valued k y on a complexvalued k x = θ ω c n cover exp (iϕ) parametrized by θ and ϕ in the vicinity of θ = 1 and ϕ ≈ 0. Wavevector component k y takes an opposite value when crossing the horizontal axis ϕ = 0 between regions II and III.

3. 1 Introduction

 1 Due to its wave nature, light possesses fundamental phenomena such as interference and diffraction. The first one is discussed in detail in Chapter 4 in the context of the interference of plane waves for inhomogeneous resist exposure, used for the laser interference lithography nanofabrication method. The second phenomena, diffraction, refers to the ability of light to turn around obstacles and bend while passing through small apertures ; due to diffraction light waves appear in regions of geometrical shadow. Probably the most widely used and well-known optical device exploiting diffraction is the diffraction grating, see Fig.3.1.
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 31 Figure 3.1: Examples of possible diffraction grating geometries: a)-b) sinusoidal oneand two-dimensional and c)-d) lamellar one-and two-dimensional. Vectors in d) consist of four grating periods Λ 1 and Λ 2 in two directions of periodicity.
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  .2) denoted by Z 1 and Z 2 .
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 32 Figure 3.2: Notations for a basic 1D diffraction grating.
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 33 This sphere of radius √ ε i ω/c is drawn in the reciprocal space (for cover and/or substrate) in order to geometrically separate propagative and decaying orders, and visualize the propagation of the diffraction orders.
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 33 Figure 3.3: Ewald's sphere for 1D diffraction grating. Vectors k denoted by blue (green) vectors show propagative diffraction orders in cover (substrate) correspondingly; x-components α n of these orders are located inside the Ewald's sphere in the cover or substrate.
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 34 Figure 3.4: Ewald's sphere in cover for a 2D diffraction grating, top view. Vectors k i,n,m ≡ (α n,mx , α n,my , γ i,n,m ) T denoted by blue arrays represent propagative diffractive orders in the cover, they are located inside the Ewald's sphere. Open green circles outside the sphere denote decaying orders.
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 35 Figure 3.5: Grating profile staircase approximation for RCWA simulations.
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 3 6 explains the geometrical sense of the chosen variables.
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 36 Figure 3.6: Grating geometry in (x, z) rectangular Cartesian coordinates (a) and in translational coordinate system (u, v) (b). Black dashed lines in (a) visualize the surfaces of constant u coordinate.

Figure 3 .

 3 Figure 3.7 illustrates the main idea of GSM. Let us consider the diffraction problem for a structure with complex ε (r) distribution (Fig. 3.7a). As a first step we replace this complex geometry by a simpler one, usually by a space filled with a homogeneous isotropic dielectric ε b (Fig. 3.7b), for which an exact solution for any electric current distribution J is known:

Figure 3 . 7 :

 37 Figure 3.7: Sketch explaining the principle of GSM: a) initial diffraction problem with complex distribution ε (r); b) Electromagnetic response similar to a) is achieved in a basic medium ε b by introducing additional generalized sources J gen ∝ ε (r) -ε b . The sum of the incident field and the field emitted by these sources is a solution for the initial problem in a).

  technology. Conventional top-down synthesis workflow of 2D structures consists of material deposition (Fig.4.1a-b), nanostructuring of a working layer (Fig.4.1b-c) and pattern transfer from the working layer into the functional material (Fig.4.1c-d).

Figure 4 . 1 :

 41 Figure 4.1: A top-down cycle of sample nanostructuring.

Figure 4 . 2 :

 42 Figure 4.2: The principle of spin coating technique for thin film deposition.

  These considerations are proofed by experimental profilometer measurements of the thickness of a spin-coated MICROPOSIT S1805 photoresist, see Figs.4.3a-b. Other parameters of the process concerning chemical and physical properties of the coated material, environmental conditions and equipment setup were kept as constant as possible and were not used to tune the layer thickness.

Figure 4 . 3 :

 43 Figure 4.3: The measured thickness of S1805 films deposited on BK7 slides as a function of a) photoresist concentration in a solution with ethyl lactate, at 3000 rotations per minute; b) substrate rotation speed for 50% photoresist concentration. Thicknesses of deposited films were measured by a profilometer, the polynomial interpolation of experimental data was used.

Figure 4 . 4 :

 44 Figure 4.4: Schematic diagram of magnetron sputtering.

  4.1b-cnanostructuring. A constant industrial need of integration and miniaturization of operating elements on a chip has led to an unprecedented development of manufacturing technologies in the last two decades. Depending on specific requirements such as substrate dimensions, fabrication speed or geometry complexity a number of nanostructuring techniques has been proposed, in the literature they are divided into two major categories depending on the initial state of a structured matter:

  4.5. 

Figure 4 .

 4 Figure 4.5: 2-beam LIL setups: a) Dual Beam Interferometer and (b) Lloyd's Mirror Interferometer. The generated sinusoidal interference intensity distribution is illustrated on the screen surface.

  4.6b.

Figure 4 .

 4 Figure 4.6: a) The interference of two spherical waves generally leads to a hyperbolic fringes on a screen. b) Lenses remove the curvature of fringes, but small defects in the collimating optics can introduce random phase noise.

CHAPTER 4 .

 4 FABRICATION METHODS (SLM) looks more promising for multiple beam interference control. An SLM is a 2D array of micron-sized elements whose reflection/transmission can be controlled independently by a computer program. With a proper design of the array's optical function the SLM diffracts the laser beam into predefined directions with a calculated phase shift between diffraction orders and thus simplifies the lithography setup [146]. In the present thesis a common 2-beam LIL setup based on a Dual Beam Interferometer (Fig.4.5a) is used, see Fig.4.7. The setup requires a small number of optical and mechanical elements for simplicity and quality: every additional element introduces potential phase front deformations and/or mechanical vibrations, and at the same time makes the adaptation to specific use cases difficult.

Figure 4 . 7 :

 47 Figure 4.7: The photograph of experimental 2-beam LIL bench used in thesis.

  4.8. 

Figure 4 . 8 :

 48 Figure 4.8: Experimental spin curve of the non-diluted photoresist S1805 after 3 days of continuous solvent evaporation at a temperature 22 • C and humidity 50%.

Figure 4 . 9 :

 49 Figure 4.9: Refractive index n and extinction coefficient k of the photoresist S1805 measured by ellipsometry. The resist layer deposited on a silicon substrate has a thickness of 600 nm, the sample was soft-baked before the measurements at 60 • C for 1 min, these parameters are standard for soft-baking in the thesis.

Figure 4 . 10 :

 410 Figure 4.10: Experimentally measured S1805 resist development rate.

  2γ pl -γ al + 2γ pa ) has its minimum at the particle position z/R = γ pl -γpa γ al (see Fig. 4.12). Specific values of γ pl , γ pa and γ al depend on the experimental process, suspension fabrication method and surface functionalization, and its appropriate choice allows the effective capture of microspheres at the liquid-air interface.

Figure 4 . 11 :

 411 Figure 4.11: Three kinds of forces acting between colloidal particles and a medium: a) surface tension; b) electrostatic interactions; c) capillary forces.

Figure 4 . 12 :

 412 Figure 4.12: Dependence of total surface free energy on the microsphere immersion into the liquid, controlled by the parameter z/R.

  4.13a) a suspension of silica microspheres in methanol is spread on the subphase surface, the subphase used in our experiments is deionized water. After the methanol evaporates completely a hydrophobic barrier is used in order to compress the particles and foster their self-assembly in a close-packed monolayer (see Fig.4.13b). This process of colloidal film compression takes place at the water-air interface and is controlled by measuring the isotherm presented in Fig.4.14. The slope of this curve at barrier positions 20-25 mm is quite steep, which indicates the formation of a condensed phase with low compressibility[START_REF] Ruan | Facile fabrication of large area polystyrene colloidal crystal monolayer via surfactant-free Langmuir-Blodgett technique[END_REF]. In general, a higher surface tension leads to a lower percentage of voids in the close-packed configuration[START_REF] Huang | Effects of the surface pressure on the formation of Langmuir-Blodgett monolayer of nanoparticles[END_REF] and, consequently, the barrier position in Fig.4.14 should move to the right. However, high surface tensions cause particle overlap and alternations of the ordered monolayer[START_REF] Huang | Effects of the surface pressure on the formation of Langmuir-Blodgett monolayer of nanoparticles[END_REF], so the optimal barrier position found experimentally is in the vicinity of 25 mm in Fig.4.14 for our particular setup. Finally, the colloidal film formed at the water-air interface is transferred on a bulk substrate (Fig.4.13c). The substrate (immersed below the water level beforehand) is continuously and slowly lifted at a constant speed of several centimeters per minute using a stepper motor. The speed of moving should carefully be tuned to achieve the best possible quality of the transfer; the barrier mentioned above moves at the same time towards the substrate in order to keep the colloidal film compression constant. After the water evaporation in interparticle interstices we get the colloidal close-packed monolayer on a bulk substrate (see, for example, Fig.4.15).

  Figure 4.15 demonstrates a close-packed hexagonal monolayer of colloidal particles with near-spherical shape; deviations from the ideal sphericity introduce linear defects which are clearly seen.

Figure 4 . 13 :

 413 Figure 4.13: Formation of colloidal particles monolayer in Langmuir-Blodgett technique.

Figure 4 . 14 :

 414 Figure 4.14: Isotherm measured in a Langmuir-Blodgett technique before the colloidal film transfer. Barrier positions around 25 mm correspond to the close-packed colloidal arrangement.

Figure 4 .

 4 Figure 4.15: MEB photograph of colloidal microspheres with a diameter of 1 µm organised in a close-packed monolayer on a glass substrate.

Figure 4 . 16 :

 416 Figure 4.16: The sketch of the Boostream® process.

  . The close-packed colloidal monolayer is a phase mask for a photoresist layer (Fig.4.17a). During the UVexposure every colloidal particle generates a so-called nanojet below itself inside the resist layer (Fig.4.17b). These high-intensity, narrow, subdiffraction-waist beams[START_REF] Heifetz | Photonic nanojets[END_REF] provide an effective inhomogeneous resist irradiation. In analogy with LIL (subsection 4.3.1.3) the irradiated resist dissolves during the development and an array of hexagonally arranged nanoholes appears (Fig.4.17c-d). Consequently, NPL combines bottom-up self-assembly and top-down exposure and development steps[START_REF] Qu | Infrared metasurfaces created with offnormal incidence microsphere photolithography[END_REF].

Figure 4 .

 4 Figure 4.17: a)-c) The schematic representation of NPL process; a) colloidal selfassembly on the surface of photoresist; b) UV-exposure of the sample. Every particle acts as a microlens and generates photonic nanojets in the resist layer; c) The positive photoresist dissolves during the development and arrays of nanoholes appear; d) AFM-measured topography of 1 micron period nanohole array reveals the depth of nanoholes ≈ 600 nm, which can be tuned by the exposure and development times; e) The photograph of fabricated sample, every colored line corresponds to specific exposure time.

  Figs.4.18a-d present the energy distributions in nanojets formed by 1 µm-diameter microspheres. The quality of the nanojets (their length and energy contrast) decreases at inclined exposures, see Fig.4.18c. However, these nanojets can still be used for creating advanced hexagonally-ordered patterns. It was shown[START_REF] Shavdina | Micro-nano-structuration de surface par renforcement local du flux électromagnétique[END_REF] that in the range of diameters 250 nm-1500 nm, larger microspheres generate longer and more concentrated nanojets for a given exposure wavelength. Consequently, from geometrical considerations, we could also expect that for a fixed particle diameter the nanojets are longer at shorter incident wavelengths. However, this is not the case for Figs. 4.18a-b because of a stronger optical absorption of the resist below 300 nm, see Fig.4.9.

Figure 4 .

 4 Figure 4.18: a)-d) Calculated field energy distributions in nanojets formed by microspheres with diameter 1 µm, assembled in close-packed monolayers, under different irradiation wavelengths and incident angles denoted above every image.Silica microspheres (green circles) are deposited on a photoresist S1805 layer with a thickness of 600 nm; the substrate is modelled as a transparent BK7 semi-infinite layer. Calculations were made using a rigorous RCWA method with 35 slices of colloidal particles (see section 3.3.2).

  Despite various methods that can be utilized for inhomogeneous resist exposure, let us consider for simplicity and without loss of generality a single LIL exposure of the photoresist. Such an exposure writes a 1D-periodical distribution of absorbed energy dose into the resist layer. Taking into account the sensitivity curve (Fig.4.10), we can transform this energy map into a development rate map. Fig.4.19 shows the cross-section of a single grating period during the process of development. The current resist surface which is being dissolved is denoted by a black solid line (the boundary between "Developer" and "Developed photoresist").

Figure 4 . 19 :

 419 Figure 4.19: Sketch explaining the isotropic developing process of exposed photoresist.

Fig. 4 .

 4 20a shows the interface "Developer-Photoresist" as the solid line S t-dt and the dashed line S t for moments of time t-dt and t passed from the beginning of development.

Figure 4 . 20 :

 420 Figure 4.20: Discretization of the development process: a) scheme of the real process; b) numerical method.

4 .

 4 If t dev > t increase i by one and repeat the step 3. The time step ∆t and values l max and l min utilized in the algorithm have to be chosen empirically to keep the balance between calculation time and accuracy, in the present thesis ∆t = 0.05 s, l max = 10 nm and l min = 1 nm were used. In order to demonstrate the algorithm performance a model 1D grating development was simulated, see Fig. 4.21. Firstly, a single LIL 2-beam exposure leads to an inhomogeneous exposure dose received by the resist (Fig.4.21b, green tones in background). Secondly, an experimentally measured resist development rate (Fig.4.21a) allows to recalculate the exposure dose into a grating development speed map. Finally, the algorithm presented above iteratively calculates the interface "resist-developer" line deformations with time (Fig. 4.21b, solid black lines).The incidence angle θ of the laser beams defines the grating period Λ = λ/2 sin θ, while pre-exposure, exposure and development times control the grating profile. The calculated map in Fig.4.22a represents three general types of grating profiles (open, "sinusoidal" and "rectangular") as different regions of a 2D parameter space "preexposure time/exposure time" for a grating period of Λ = 300 nm and a development time of 4 s.

Figure 4 .

 4 Figure 4.21: a) Experimentally measured resist development rate. Vertical dashed lines correspond to minimal and maximal values of the exposure dose over the resist surface, green circles denote the experimental data, the green solid line represent its interpolation; b) Iterative numerical simulation of the resist development process. Black lines correspond to the grating profile after 1-4 seconds of development. The development rate in each point of the photoresist is determined by the local exposure dose depicted in tones of green on the background.

Figure 4 .

 4 Figure 4.22: a) Simulation of the resist development process. 2D map in coordinates "Pre-exposure time/Exposure time" shows the calculated grating depth (tones of green) and three general types of grating profiles: open, "sinusoidal" and "rectangular", sketched in orange on the right. b) Experimental data in the same coordinates as in a); the number in black and green near every point is the AFM-measured and calculated grating depth in nm, respectively. Gratings were fabricated with 50% S1805 resist of thickness 250 nm on a glass substrate.

Figure 4 .

 4 Figure 4.22b shows the same "Pre-exposure/Exposure" space, where each point denotes an experimentally fabricated grating with corresponding depth. Resist S1805, 50%-dilluted was spin-coated with 250 nm layer thickness on a glass substrate for every sample, development time is 4 s, and all the prepared gratings are "sinusoidal".

  4.23a.As the wavelength is only 15% shorter than the sphere diameter, the particles possess moderate focusing properties: the maximum energy flux inside the nanojets exceeds the flux of incident plane wave only by a factor of four S source (compare with enhancement factors in Fig.4.18). A larger nanojet waist leads to nanoholes with a bigger diameter after development.The resist S1805 development rate under 254 nm UV irradiation was measured experimentally using the approach described in section 4.3.1.3, see Fig. 4.23c, where CHAPTER 4. FABRICATION METHODS the data points correspond to the exposure times 10 s, 20 s, 40 s, 60 s and 80 s, leading to the total exposure dose by multiplication with the incident energy flux S source . We use a phenomenological fitting of the data with a quadratic function. This sensitivity curve makes a connection between the exposure dose received from the UV source and the development rate of the exposed resist. In the presence of colloidal particles the energy redistributes due to the diffraction in accordance with Figs. 4.23a-b. If the exposure time of colloidal spheres is t exp , then the total exposure dose map is a multiplication of the map in Fig. 4.23a by t exp . Using the sensitivity curve in Fig. 4.23c, we further transfer this map into a 2D map of resist development rate.

N

  i=1 ∆t i = t dev ; 2. Initial grating depth h = 0; 3. At every time step ∆t i :• Calculate development rates f 1 (h) and f 2 (h) for the least and the most exposed resist regions, respectively;• Calculate the elementary developed resist thicknesses ∆h 1 = f 1 (h)∆t i and ∆h 2 = f 2 (h)∆t i ;• The elementary grating depth increment is ∆h = ∆h 2 -∆h 1 , so increase the grating depth h by ∆h.4. Repeat the step 3 until the total development time t dev is reached.

Figure 4 .

 4 Figure 4.23: a) Rigorous RCWA simulation of nanojet formation by a close-packed array of silica 300 nm-diameter spheres, deposited on the resist S1805 and irradiated by a UV source of wavelength 254 nm (modeled as a plane wave) at normal incidence; only data in the resist layer is presented. Color represents the calculated energy flux in terms of energy flux of source. Vertical lines 1 and 2 are two symmetrical directions along which development simulations are performed; b) Energy flux along lines 1 and 2; c) Measured development rate of the resist S1805 in dependence on exposure dose, for the wavelength 254 nm (green circles); data fitting with a quadratic function is denoted by the dashed black line.

Figure 4 .

 4 Figure 4.24: AFM-measured topographies for two gratings prepared via NPL with diameter of colloidal particles of 300 nm and the UV wavelength 254 nm. Exposure t exp and development t dev times are: a) t exp = 7 s, t dev = 4 s; b) t exp = 10 s, t dev = 4 s.

Figure 5 . 1 :

 51 Figure 5.1: AFM-measured depth of a single surface relief grating made of the S1805 photoresist. The sample was treated by several hard baking steps: from 1 to 9. The temperature and duration of baking for each step are denoted above the bars. The grating period is 300 nm.

Figure 5 . 2 :

 52 Figure 5.2: AFM-measured profiles of a single surface relief grating made of the S1805 photoresist. The baking step numbers denoted on the right correspond to the same steps in Fig. 5.1. The grating period is 300 nm.

Figures 5 .

 5 3a-b show two setups of the screen which works by shadowing the light by an open slit or an edge, respectively. The main difference between these setups are the grating depth envelope functions possible to record. In the case of an edge only monotonically decreasing functions are possible (Fig.5.3d), because resist areas opened earlier will always be more exposed than areas opened later. In contrast, the screen with a slit can control the exposure dose of different resist regions independently by changing the speed V (t), thus providing a wider variety of possible depth distributions (for example, Fig.5.3c); in this case, however, the total fabrication time can be longer because the exposure of different resist zones occurs not simultaneously as it is the case for the screen with an edge.

Figure 5 . 3 :

 53 Figure 5.3: Sketch of variable depth grating fabrication techniques using a) moving slit and b) moving screen edge over the photoresist surface depicted in red. c) and d) demonstrate possible grating depth functions at macroscale, which correspond to approaches a) and b), respectively. The exact form of depth envelopes is controlled by changing the screen velocity V (t) with time.

Figure 5 .

 5 Figure 5.4 shows AFM-measured depths along the grating surface. The nontransparent screen without a slit moved at a constant speed ≈ 0.6 mm/s during the LIL exposure. The total exposure time was 40 s, development time 16 s, resist soft-baking was performed at 110 • C for 1 min. The photoresist operates in a linear regime, see Fig. 4.10. A diffraction on the screen edge does not cause anyperturbations because the exposure is long enough and therefore the interference of two laser beams is dominating. This is a key difference from the approach presented in[START_REF] Tonchev | Photolithography of variable depth gratings on a polymer substrate for the mastering of 3D diffractive optical elements[END_REF], where a dose gradient was created by blocking half of the beams cross-sections in a Mach-Zehnder interferometer. At the described experimental conditions the edge moving at a constant speed produces a linear depth envelope, as is clearly seen in Fig.5.4. Insets in Fig.5.4 show the measured grating profile with a normalized height for clarity.

Figure 5 . 4 :

 54 Figure 5.4: AFM measurements of grating depth over the sample surface in a 1D grating, fabricated via LIL with a non-transparent screen moving over the surface at a constant speed ≈ 0.6 mm/s.

Figure 5 . 5 :

 55 Figure 5.5: The sum of two periodical functions with slightly different periods possesses two spatial characteristic lengths: period of envelope Λ env and carrier signal period Λ c .

Figure 5 . 6 :

 56 Figure 5.6: Scheme illustrating the distribution of effective parameters E preexp and E epx along the surface coordinate x in a photoresist layer exposed twice with a small deviation between LIL periods. The red curve denotes the total exposure dose received by the resist.

Figure 5 . 7 :

 57 Figure 5.7: Qualitative explanation of 2D moiré patterns generation by the superposition of two sets of hyperbolic fringes. The form of patterns depends on the fringes shift direction s and rotation angle ∆ρ: a) s normal to fringes, elliptical moiré lines; b) s parallel to fringes, hyperbolic moiré lines; c) small rotation ∆ρ, straight lines perpendicular to fringes.

  Fig. 5.8.

Figure 5 .

 5 Figure 5.8: a) Sketch of LIL setup with denoted geometrical parameters D and H necessary for moiré effect considerations. b)-d) basic moiré patterns previously shown in Figs. 5.7a-c with respect to the LIL setup.

7 )

 7 In the limit |x|, |z|, |s x |, |s z | √ D 2 + 4H 2 valid for real experiments we determine the Taylor series of the function ∆ in Eq. 5.7: ∆ ≈ C 00 s x + C 11 xzs z + C 20 x 2 s x + C 02 z 2 s x = 2k, (5.8)

  signs of the two eigenvalues β 1 and β 2 define the type of second-order curve of moiré patterns. We have found a possible graphical interpretation of this curve as an intersection of the stationary hyperboloid defined by LIL setup parameters D, H and λ with a plane which depends on the vector s. By changing the vector s we change the orientation of the plane and, consequently, the intersecting line transforms. The mentioned hyperboloid in coordinates {ζ 1 , ζ 2 , ζ 3 } is defined by a diagonal matrix A ≡ diag (a, b, -c):

T 3 T

 3 and γ is a plane inclination angle. The radius-vector p ≡ 0 p 2 p defines the origin of local plane coordinate system (u, v), see Fig.5.9.

Figure 5 . 9 :

 59 Figure 5.9: Graphical solution of Eqs. 5.10 and 5.12 as an intersection of a stationary hyperboloid defined by LIL setup parameters with a plane determined by sample shift s. a) hyperbolic intersection, for angles ( s,Ox) larger than some critical value; b) hyperbolic moiré line conjugated to a); c) elliptical intersection, for angles ( s,Ox) less than some critical value.

Figure 5 . 10 :

 510 Figure 5.10: Numerical simulations of macroscopic envelope functions (moiré patterns) generated by a two exposure LIL technique with a sample shift s between exposures; green arrows above every map show the orientation of vector s in the local coordinate system of the sample, see Fig. 5.8a. The inset in a) and d) shows the vertical orientation of microscopic fringes. Grating period Λ = 1 µm, s = 2 cm.

  5.11. 

Figure 5 .

 5 Figure 5.11: Experimental LIL dual beam interferometer bench with a 442 nm He-Cd laser (top view). PM-SMF is a Polarization-Maintaining Single Mode optical Fiber;Manual stage is either a translation or a rotary stage depending on the method of sample shifting. The distance between point laser sources D = 69.3 cm is fixed, the grating period Λ LIL is defined by equal incidence angles of two beams and an adjustable distance H to the sample holder; the fiber ends are mounted on rotary stepper motors.

103 CHAPTER 5 .

 1035 VARIABLE DEPTH GRATINGS cause elliptical curves (Figs. 5.12a-c), parallel shifts cause hyperbolic curves (Figs. 5.12g-i), and small rotations lead to straight parallel lines (Figs. 5.12d-f). Fig. 5.12j shows the AFM-measured grating depth along the surface of sample b), with three minimum values appearing when crossing the mentioned black lines.

Figure 5 .

 5 Figure 5.12: a)-i) photographs of fabricated variable depth gratings of period Λ = 1 µm with macroscopic moiré patterns. Black lines crossing every sample are transparent regions of near-zero grating depth. The method of sample shift between two LIL exposures is indicated above every column, with an absolute value of displacement or rotation given above every photograph. j) AFM measurements of grating depth variations along the central line L of sample b).

5 . 13 .

 513 It was mentioned that the manual rotary stage has a precision of 1 , however, Figs. 5.12d-f and Figs. 5.13e have angles ∆ρ < 1 . This is due to the possibility to perform sub-scale rotations with the manual stage, just without a guaranteed control over the angle. The angles ∆ρ were calculated a posteriori after the grating fabrication using the formula Λ env = Λ/2 sin (∆ρ/2) (see subsection 5.2.3.3) and measuring the distance between straight moiré lines Λ env .

Figure 5 . 13 :

 513 Figure 5.13: Photographs of fabricated 1D gratings with moiré patterns of elliptical (a)-(c) and straight (d)-(e) forms. The schemes on the top show the method of sample shift in corresponding columns; (f) AFM measurements of grating depth along the white dashed line M, denoted on sample (b); Black curves on all sample surfaces correspond to zero-depth regions without light diffraction. Grating period Λ=300 nm, pitches are oriented horizontally as depicted in schemes above the images.

Fig. 5 .

 5 Fig. 5.14b is a 2D rectangular dielectric 1 µm grating fabricated by 4 equal LIL exposures with sample orientations depicted in Fig. 5.14a, where the small rotations between the two upper and two bottom orientations are ∆ρ ≈ 1 . The same LIL technique was used in Fig. 5.14c, but the first two exposures were adjusted here for a period of 600 nm and the last two for 1 µm. For both of those 2D structures moiré patterns are visible by naked eye as dark straight lines organising a 2D macroscopic mesh. This mesh causes adiabatic changes in the amplitude of the vertical and horizontal microscopic undulations with periods 1 µm and 600 nm, thus forming microscopic regions of pure 1D vertical, horizontal and all possible intermediate 2D gratings, as shown in the SEM images in Figs. 5.14d-f.

Figure 5 .

 5 Figure 5.14: a) Principle of 4-exposure LIL with sample rotations used for the fabrication of 2D gratings with 2D moiré patterns presented in b) and c) with small rotation angles ∆ρ ≈ 1 . Grating pitches are oriented as depicted by insets in the top left corners of b) and c). Periods of vertical and horizontal grating grooves are: b) 1 µm and 1 µm, c) 600 nm and 1 µm respectively. Black lines on sample surfaces correspond to zero-depth regions without light diffraction. d)-f) SEM images of the sample c) at microscopic scale for different surface regions, demonstrating the variety of topographies in one single sample.

Fig. 5 .

 5 Fig. 5.15f, diffraction angles increase in correspondence with the decreasing size of the superlattice cells.

Figure 5 .

 5 Figure 5.15: a)-c) AFM images of 2D hierarchical gratings, fabricated by 4-exposure LIL technique with sample rotations. Angles ∆ρ are big enough to generate depth envelopes of microscopic size comparable to the LIL setup period of 600 nm. The superlattice periods are Λ s =6.8 µm, 2.9 µm and 1.7 µm for a), b) and c) correspondingly; d)-f) Photographs of 2D diffraction patterns given by corresponding samples.Laser wavelength λ=633 nm is larger than the LIL setup period Λ=600 nm. The non-zero diffraction angles increase due to the decreasing superlattice period from a) to c), and consequently the distance between the sample and the screen decreases from a 1 to a 3 in order to obtain an equally sized diffraction pattern.

Figure 6 .

 6 Figure 6.1: a) Structure consisting of thin metal film undulated with a period Λ and embedded in a homogeneous isotropic dielectric; b) Illustration of plasmon coupling by a 1D grating. Real components of plasmon wavevectors k SPP , which are related to SR-SPPs or LR-SPPs, are larger than the Ewald's sphere radius and therefore can be reached by non-zero grating diffraction orders, for example orders +1 and -2 in the presented case.

  6.1a), and positive and negative signs of the right part of the equation correspond to plasmons propagating correspondingly in x + and x -directions. The left part of the equation is the tangential component of diffraction order m, see Eq. 3.13.

3 )Figures 6 .

 36 Figures 6.2a-b show the numerical calculations of absorption and transmission of the structure shown in Fig. 6.1a, with the aluminum thin film and the resist S1805 as dielectric claddings; grating period Λ = 300 nm. The absorption map reveals the behavior of SR-SPP and LR-SPP propagation constants with changing metal film thickness, since they are proportional to resonant wavelengths according to Eq. 6.3. The behavior is the same as in the case of a planar geometry, see Fig. 2.7c.Moreover, the similarity exists also in the corresponding near field distributions: the LR-SPP field in the grating grooves and hills changes the sign inside the metal layer, in the direction perpendicular to grating (compare Figs. 6.2d and 2.8d), while the SR-SPP field does not (compare Figs. 6.2c and 2.8b).

Figure 6 . 2 :

 62 Figure 6.2: C-method simulations of 1D structure consisting of thin aluminum layer undulated with a period 300 nm and depth 40 nm, embedded in dielectric photoresist S1805, at normal incidence: a) wavelength/metal thickness-resolved absorption map; b) wavelength/metal thickness-resolved transmission map. Vertical dashed lines in a) and b) denote the metal thickness 12 nm. c) and d) near fields of SR-SPP and LR-SPP modes, calculated for 12 nm aluminum film at resonant wavelengths λ SR-SPP = 562.4 nm and λ LR-SPP = 483.2 nm, respectively. These wavelengths correspond to the two absorption peaks in a) along the vertical dashed line. e) 0-order transmission spectrum through 12 nm aluminum film.

Figure 6 .

 6 3a shows the maximum plasmonmediated transmission in this IMI structure as a function of grating depth and aluminum film thickness. Taking into account characteristics of real LIL setup and the PVD process (see Chapter 4), the grating depth of 40 nm and metal thickness of 20 nm is an optimal choice giving the highest transmission ≈ 60% at the resonant wavelength λ SPP = 500 nm (see Fig. 6.3b).

Figure 6 .

 6 Figure 6.3: a) Maximum plasmon-mediated transmission as a function of metal layer thickness and grating depth in 1D structure shown in Fig. 6.1a. Red circle denotes the grating depth of 40 nm and the aluminum thickness of 20 nm chosen for experimental fabrication. b) The 0-order transmission spectrum through the 1D grating with the optimized parameters. GSM was used for simulations.

Figure 6 . 4 :

 64 Figure 6.4: Experimental IMI-structure.

Figure 6 .

 6 Figure 6.5: a) Experimentally measured 0 th -order TM transmission through the IMI structure sketched in Fig. 6.4 at different wavelengths and angles. White dashed lines denote the spectral position of Rayleigh's anomalies for diffraction orders m = ±1 which pass closely to the plasmon-mediated enhanced transmission; b) AFMmeasured grating profile (green curve) with an ideal sinusoid with period 317 nm and depth 40 nm as a reference (black curve); c) Comparison of experimentally measured 0 th -order transmission at normal incidence (green curve) with the calculated spectrum (black curve) for the dimensions denoted in Fig. 6.4: Λ = 304 nm, d = 50 nm, h 1 = 230 nm, h 2 = 15 nm, h 3 = 100 nm.

Figure 6 .

 6 Figure 6.7: a) AFM-measured topography of 2D grating with a hexagonal symmetry, the data corresponds to sample №3 from Table6.2; b) Plasmon-mediated resonant transmission at normal incidence at the wavelength λ ≈ 1600 nm through 2D IMI structure as a function of grating depth; c) Transmission spectra of gratings with different depths at normal incidence. Metal thickness h 2 =20 nm and a period Λ LIL =1 µm.

6 . 122 CHAPTER 6 .

 61226 9a-b explain the definitions of incident electric field polarizations S i , P i , i = 1, 2 and the relative orientation of the incident wavevector's tangential component k inc to the diffraction orders. Using Eq. 3.14 it can be shown that the basis vectors b 1 and b 2 in reciprocal space (denoted as black arrows in Figs. 6.9a-b) have the same length |b 1 | = |b 2 | = 2π/Λ LIL and an angle ∆ρ = 60 • between them. Along with these basis vectors there exist other diffraction orders that participate in plasmon coupling, denoted in gray in Figs. 6.9a-b. Depending on the orientation of incident field wavevector k inc it is convenient to denote them as k j , k j , j = 1, 2, 3 for polarizations S 1 , P 1 and j = 1, 2, 3, 4 for polarizations S 2 , P 2 . The green, dashed circles in Figs. 6.9a-b visualize the plasmonic sphere with radius k SPP . In analogy with the Ewald's sphere in, for example, Fig. 3.4 defining the position of the grating'sRayleigh's anomalies, the plasmonic sphere defines the plasmonic dispersion curves.The white dashed lines in Figs. 6.8a-d show the plasmonic transmission curves calculated via the plasmonic sphere, which are in a good correspondence with the experimentally measured dispersion. The resonant line denoted by λ i,j corresponds to the coupling between the incident field and the plasmon in polarizations S i , P i via diffraction orders k j , k j , see Figs. 6.9. Geometrical considerations yield the following expressions for λ i,j : TRANSMISSION IN PLASMONIC NANOSTRUCTURES

Figure 6 .

 6 Figure 6.8: a)-d) Wavelength/incident angle-resolved 0 th -order transmission maps for the hexagonal grating №2 from Table 6.7. The incident field polarizations S 1 , P 1 , S 2 , P 2 and grating orientations are explained in Figs. 6.9a-b. The white dashed lines show the calculated plasmonic lines using Eqs. 6.4.

Figure 6 .

 6 Figure 6.9: a)-b) Diagrams of inverse lattice orientation with respect to incident field polarizations S 1 , P 1 , S 2 , P 2 and wavector k inc for a 2D grating of hexagonal symmetry. Green dashed circles are plasmonic spheres to define diffraction orders which couple to plasmons. The angle between inverse lattice basis vectors b 1 and b 2 is ∆ρ = 60 • .

Figure 6 .Fig. 5 .

 65 Fig. 5.12j in Chapter 5). The grating profile and topography for a particular depth of ≈ 70 nm are shown in Fig. 6.10b. In analogy with previous sections, a thin 20 nm aluminum film was deposited on the grating surface in a PVD process and a second 690 nm resist layer was spin-coated on a top in order to create an IMI plasmonic structure.

Figure 6 . 10 :

 610 Figure 6.10: AFM characterization of 1D variable depth grating: a) measured grating depth (circles) as a function of coordinate over sample surface and phenomenological sine fitting of experimental data (dashed line); b) grating profile and topography for the sample region with depth ∼70 nm.

Fig. 6 .

 6 Fig.6.10a. All the data was put together to visualize the resonant behavior in form of 2D depth/wavelength resolved maps.

Figure 6 . 11 :

 611 Figure 6.11: Normal transmission of the variable depth grating with a period 300 nm in visible range for a set of depths from 0 to 105 nm; a) TM polarization, experimental data, b) TE polarization, experimental data, c) TM polarization, numerical simulation, d) TE polarization, numerical simulation. The dotted horizontal lines in c), d) indicate a grating depth of 70 nm, which was used for the following angle-resolved transmission maps in Figs. 6.14a,c

Figure 6 . 130 CHAPTER 6 .

 61306 Figure 6.12: a) Measured TM transmission spectra at normal incidence for grating depths of 52, 69, 77, 92, 105 nm and a fixed period 300 nm. b) Measured maximum plasmon-mediated transmission for all depths that are covered by the synthesized variable-depth grating, with the grey dashed vertical line indicating the optimal depth of 52 nm; c) Measured TE transmission spectra for a set of depths: 15, 50, 77, 92, 105 nm; d) Measured maximum TE transmission for all depths that are covered by synthesized variable-depth grating.

Figure 6 .

 6 Figure 6.13: a) Numerically calculated absorption map in TM polarization under normal incidence; b) Numerically calculated absorption spectra for grating depths 0, 10 and 30 nm. Resonant wavelengths of plasmonic and waveguide modes denoted as vertical dashed lines are calculated in zero-depth limit for a planar lamellar structure.

Figure 6 .

 6 Figure 6.14a represents an angle-resolved TM transmission map for an intermediate grating depth of 70 nm (horizontal white dashed line in Fig. 6.11c). This figure indicates firstly the wavelength splitting of waveguide and plasmonic modes

Figure 6 . 14 :

 614 Figure 6.14: Numerically calculated angle-resolved TM transmission map in visible range a) for the grating depth of 70 nm (see horizontal dotted line in Fig. 6.11c) and b) for planar geometry (grating depth equals zero); Numerically calculated angle-resolved TE transmission map in visible range c) for the grating depth of 70 nm (see horizontal dotted line in Fig. 6.11d) and d) for planar geometry (grating depth equals zero).

Figure 6 .

 6 Figure 6.14d shows a simulated TE transmission map of the planar dielectricmetal-dielectric structure. This figure clarifies that enhanced TE transmission observed experimentally appears due to the Fabry-Pérot variations and does not depend on waveguide modes and the grating period. The grating depth, however, still has a large influence on the transmission level, as it changes the effective optical characteristics of the whole layer. In analogy with the TM case, Fig. 6.12c demonstrates the variation of the transmission spectrum with a depth change: a bright background dominated by Fabry-Pérot modes grows with minor transmission notches at the wavelengths of the waveguide resonances. Figure 6.12d shows the measured maximum TE transmission as a function of depth, it reveals that the maximum TE Fabry-Pérot-mediated transmission can reach the same absolute value of about 45% for the depth of 105 nm as the optimized TM plasmon-mediated transmission for the depth of 52 nm.One can notice that despite a good reproduction of the experimental TE and TM spectral features in the numerical simulations, there are certain discrepancies in the absolute values: the maximum measured TM transmission (Fig.6.11a, point A) is almost equal to the maximum measured TE transmission (Fig.6.11b, point B), while numerical simulations predict a transmission in TM twice as big as in TE (Figs.6.11c-d). This difference between theory and experiment arises from

Figures 6 .

 6 Figs.6.15c-f color changes are also prominent, shown for example by the green/red gradient in Fig.6.15c. Structures with such noticeable color effects can be used in optical security elements and for decoration purposes. A systematic explanation of the colors is beyond the scope of this work, but it can be stated that the resist/aluminum/resist model structure sketched in Fig.6.4, with geometrical parameters close to experimental ones, indeed has a wavelength red shift for its maximum transmission when the depth increases, as well as the sample in Fig.6.15c

Figure 6 .

 6 Figure 6.15: a)-f) Photographs of 1D variable depth grating-based IMI structure in transmission at 2 different incident angles and 3 polarization states. The diffraction grating from Fig. 5.13b was used as the basic dielectric microstructure. The red parallel lines and orange arrows on the top of each column denote the grating grooves orientation and incident light polarization, respectively. Grating period Λ=300 nm. The sample turns around the horizontal axis M denoted in b), which is the same line as in Fig. 5.13b. A polarizer is installed between the sample and a camera. g) Numerical calculations of visible band TE-transmission at normal and 20 • incidence for a resist/aluminum/resist model structure with geometrical parameters h 1 = 690 nm, h 2 = 20 nm, h 3 = 150 nm (see Fig. 6.4). Grating depths d = 70 nm and d = 250 nm correspond to black and green lines, respectively, and are related to points A and B in the photograph c).

Figures 6 .

 6 16a-b demonstrate the ordering of nanohole arrays, prepared via NPL with colloidal particles of 1.1 µm diameter, for an optimized and a non-optimized self-assembly process, respectively. The depth of the nanoholes is ≈ 230 nm.

Figure 6 . 16 :

 616 Figure 6.16: SEM photographs of nanohole arrays fabricated via NPL using colloidal monolayers with low (a) and high (b) disorder, respectively. Diameter of colloidal particles used for self-assembly is D colloid =1.1 µm. Depth of nanoholes is ≈ 230 nm for both samples.

  -c demonstrate domain distributions in different regions of the same sample; based on this data we can estimate the characteristic domain size as L domain ≈100 µm. The white uncolored areas in Figs. 6.17a-c correspond to such defects of a crystalline structure as hexagonal lattice phase jumps, considered in [222].

Figure 6 . 17 :

 617 Figure 6.17: Distribution of nanohole domains on the low-disorder sample surface; diameter of colloidal particles used for self-assembly is D colloid =1.1 µm. Colors visualize different orientations of hexagonally arranged nanoholes. The analysis is based on optical microscope photographs of the sample. Maps a)-c) correspond to different areas of the same sample; the distance l between neighboring nanopores in uncolored (white) zones is fixed by l/D colloid < 0.9 or l/D colloid > 1.1, to visualize the lattice phase jumps defects. The inset in a) shows a fragment of the microscope photograph; the white dashed line is a boundary between different domains.

CHAPTER 6 .

 6 TRANSMISSION IN PLASMONIC NANOSTRUCTURES as λ EOT ≈ D colloid sin (π/3) n dielectric . Taking into account the refractive index of the resist claddings of n dielectric ≈ 1.6 in near IR (see Fig. 4.9), we get λ EOT ≈ 1520 nm.

3 . 4 )

 34 . The modeled nanohole arrays are shown in Figs. 6.19a,c: red rectangles denote the boundaries of the simulation area which periodically repeats in all directions in its plane. For the case of the ideal hexagonal lattice in Fig. 6.19a, the simulation area is a minimal rectangular cell, whereas in Fig. 6.19c this area includes a lot of nanoholes to account for CHAPTER 6. TRANSMISSION IN PLASMONIC NANOSTRUCTURES of the formed monolayers by their diffraction patterns. Here we propose a model which connects the quality of nanopore arrays with EOT efficiency.

  spectrum along the circle radius to get the Fourier amplitude A as a function of reciprocal vector k > 0: A = A (k), see Figs. 6.20c-d.

Figure 6 .

 6 Figure 6.20: a) and b) Sketches representing the differences in Fourier spectra of polycrystalline gratings with large and small average number of nanoholes in domains, respectively. Reciprocal basis vectors b 1 and b 2 and 6 first diffraction orders denoted by blue points on the circle in a) correspond to ideal hexagonal grating of nanoholes. c) and d) the cuts along the circles radii with specified parameters.

Figure 6 .

 6 Figure 6.20 illustrates the general behavior of Fourier spectra of polycrystalline gratings. It is natural to expect that the Full Width at Half Maximum (FWHM)should increase when the average number N of elements in domains decreases, because such domains possess a lack of long-range order. In these domains the position k c of the first order Fourier spectrum peak will probably move towards smaller values, because the average distance between nanoholes increases due to the inter-domain boundaries. This subsection is devoted to the statistical study of polycrystalline structures in order to obtain a quantitative description of disorder and its influence on the Fourier spectrum.

Figure 6 .

 6 Figure 6.21: a)-c) Examples of modeled polycrystalline samples with different average number of nanopores N in domains: a) N = 83, b) N = 6, c) N = 2; d)-e) Parameters k c and FWHM of Fourier spectra, normalized to k ideal which corresponds to the ideal hexagonal arrangement and is calculated using Eq. 6.5, in dependence on parameter of disorder p d = 1/N : black dots correspond to individual modeled samples as in a)-c) and green curves are least squares interpolations, equations of these curves are in insets. Red arrows in e) show FWHMs for a)-c) distributions.

  6.20) were retrieved; their values are denoted by black dots in Figs. 6.21d-e. We consider the statistical dependence of k c and FWHM on the inversed number of elements in domains p d ≡ 1/N . The least squares interpolation yields: k c /k ideal = 1 -a • p d and FWHM/k ideal = b • (p d ) c , where a = 0.032 ± 0.002, b = 0.63 ± 0.008, c = 0.45 ± 0.006. The value of p d does not depend on specific choice of D colloid , and its increase signifies the increase of disorder (compare Figs. 6.21a-c), whereas the initial point p d = 0 corresponds to the ideal hexagonal arrangement; for these reasons we call p d the parameter of disorder.

  2.2) a self-assembled array of silica spheres of diameter 300 nm was transferred onto the dielectric surface. During the NPL fabrication step colloidal particles were exposed by a 254 nm UV-lamp and removed in an ultrasonic bath. After resist development an array of nanopores appears, see Figs.6.22a and 6.23a. A thin 20 nm aluminum film was deposited onto the corrugated surface in a PVD process, and a second 600 nm-thick resist layer was spin-coated on a top to create an IMI geometry in analogy with other diffractive structures considered in this thesis. By varying exposure time t exp the depth of the nanopores is efficiently controlled; in order to keep all other geometrical parameters as constant as possible, nanopore arrays of different depths were fabricated on a CHAPTER 6. TRANSMISSION IN PLASMONIC NANOSTRUCTURES single glass substrate by a sequential UV-irradiation of different sample regions through a mask, see Fig.6.22b. This mask opens only one particular area of the microsphere-covered substrate for the UV-exposure at a time. The development time t dev = 4 s is apparently equal for all zones of the sample. Exposure times and measured depths are presented in Table6.3. Exposure time t exp , s 4 5 6 7 Nanopore depth, nm 23 64 80 103 Table 6.3: Exposure times and corresponding nanopore depths measured by AFM for the NPL-fabricated sample. Development time of the sample t dev = 4 s.

Figure 6 .

 6 Figure 6.22: a) AFM-measured topography of nanopores fabricated via NPL process with 300 nm-diameter colloidal particles; b) Positions of nanopore arrays with different depths, visible as colored diffractive zones in reflection, on a single glass substrate.

  6.24a-bEOT is suppressed by disorder and only Fabry-Pérot oscillations are visible. There is a small shift between simulated and measured Fabry-Pérot oscillations, because the thicknesses of the dielectric claddings could vary from one characterized region of the sample to another.

Figure 6 .

 6 Figure 6.23: a) SEM photograph of nanopores with a depth of 103 nm prepared via NPL with silica 300 nm-diameter colloidal particles; b) distributions of distances between nanopores and their orientations over the SEM photograph; c) visualized domains over the SEM photograph, color denotes different orientations; d) Calculated Fourier spectrum of nanopores from the SEM photograph, denoted parameter k c is the same as in Figs. 6.20c-d.

Figure 6 .

 6 Figure 6.24: Measured (black curves) and simulated (green curves) transmission spectra under normal incidence for metallized arrays of nanopores. Parameter of disorder p d = 0.039 for all graphs, whereas depths are different and denoted above each graph in colors which correspond to the colors in the legend in a).

Figures 6 .

 6 Figures 6.24 together with Figs. 6.19 demonstrate that EOT can be suppressed

For

  numerical study of this interplay we simulated the same geometry as above for a set of nanopore depths and parameters of disorder p d . We consider functions k c (p d ) and FWHM(p d ) which were obtained in section 6.5.4, for D colloid = 300 nm. The results of simulations are presented in Figs.6.25. 

Figure 6 .

 6 Figure 6.25: a) Transmission curves under normal incidence of a grating with 100 nm nanopore depth, D colloid = 300 nm, for a set of parameter p d denoted in the legend; b) Dependence of EOT on grating depth for a set of parameter of disorder p d denoted in the legend; c) Grating depth/disorder map of EOT.
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Figure 1 .

 1 Figure 1. Scheme of LIL process with two coherent point light sources; λ = 442 nm (He-Cd laser), H = 32.3 cm, D = 69.3 cm, Δx ~ 100 micron is controlled by linear translation stage. White lines on the resist surface represent the curved interference fringes (family of hyperbolae) in the X-Y plane.

  in the central region near the symmetry plane x = 0 when |

Figure 2 .

 2 Figure 2. 2D macroscopic envelope function (moiré pattern) of 1D variable-depth gratings obtained using the two-exposure process sketched in Fig. 1 for different sample shifts Δx = 240, 600 and 900 μm. The nanoscopic grating period Λ = 300 nm at any point of the surface and the grating lines are oriented vertically. The dimensions of the X-Y simulation area correspond to the real sample size.

Figure 3 .

 3 Figure 3. Schematic view of the three fabrication steps of a metallic variable-depth grating (1-resist deposition and lithography process; 2-grating metallization; 3-final resist deposition).

Figure 4 .

 4 Figure 4. AFM data of the metallized grating (second fabrication step in Fig. 3) in the region of depths ≈7 nm: (a) top view and (b) cross-section perpendicular to grating grooves; (c) AFM-measured grating depth (red dots) as a function of surface coordinate and phenomenological sinus fitting of experimental data (gray dashed line).

Figure 5 .

 5 Figure 5. Normal transmission of the variable depth grating in VR for a depth range of 0-105 nm; (a) TM polarization, experimental data, (b) TE polarization, experimental data, (c) TM polarization, numerical simulation, (d) TE polarization, numerical simulation. The dotted horizontal lines in (c,d) indicate a grating depth of 70 nm, which was used for the angle-resolved transmission measurements in Fig. 8a,c.

Figure 6 .

 6 Figure 6. (a) Measured TM transmission spectra for grating depths of 52, 69, 77, 92, 105 nm; (b) Measured maximum plasmon-mediated transmission for all depths that are covered by the synthesized variable-depth grating, with the grey dashed vertical line indicating the optimal depth of 52 nm; (c) Measured TE transmission spectra for a set of depths: 15, 50, 77, 92, 105 nm; (d) Measured maximum TE transmission for all depths that are covered by synthesized variable-depth grating.

Figure 7 .

 7 Figure 7. (a) Numerically calculated absorption map in TM polarization under normal incidence; (b)Numerically calculated absorption spectra for grating depths 0, 10 and 30 nm. Resonant wavelengths of plasmonic and waveguide modes denoted as vertical dashed lines are calculated in zero-depth limit for a planar lamellar structure.

Figure 8 .

 8 Figure 8. Numerically calculated angle-resolved TM transmission map in VR (a) for the grating depth of 70 nm (see horizontal dotted line in Fig. 5c) and (b) for planar geometry (grating depth equals zero); Numerically calculated angle-resolved TE transmission map in VR (c) for the grating depth of 70 nm (see horizontal dotted line in Fig. 5d) and (d) for planar geometry (grating depth equals zero).

  #386699 https://doi.org/10.1364/OE.386699 Journal © 2020 Received 26 Dec 2019; revised 6 Feb 2020; accepted 16 Feb 2020; published 18 May 2020

Fig. 1 .

 1 Fig. 1. The principal steps of two-beam LIL: (a) photoresist deposition; (b) exposure of the resist in the interference field of two laser beams with incidence angle α, the exposed resist depicted in dark red; (c) development of the exposed resist.

Fig. 2 .

 2 Fig. 2. (a) Scheme of LIL process with two coherent point light sources with a fixed distance D=69.3 cm between them; He-Cd laser wavelength λ = 442 nm, the distance H can be changed in order to control the grating period. Single LIL exposure by two spherical sources generates the family of hyperbolic fringes, represented as white lines on the red resist surface. Combination of two consecutive LIL exposures with a small (much smaller than H and D) sample movement in the xz-plane leads to various moiré patterns depending on the kind of the movement: (b) horizontal shifting s x , elliptic moiré patterns; (c) vertical shifting s z , hyperbolic moiré patterns; (d) small (∆θ < 1 • ) rotation, straight moiré lines.

  )-3(c) clearly show that experimentally achievable moiré lines for any displacement s have elliptical or hyperbolical forms. Figure 4 shows several elliptical Figs. 4(a)-4(b) and hyperbolical Figs. 4(c)-4(d) macroscopic patterns, generated by a 2 cm sample displacement along different directions for 1 µm period gratings. In the next sections experimentally fabricated samples with typical moiré patterns are demonstrated.

Fig. 3 .

 3 Fig. 3. Graphical solution of Eq. (2) as an intersection of a hyperboloid with different planes which depend on the sample translation s and a number k ∈ Z: (a) hyperbolic intersection, for the angles ( s,Ox) larger than some critical value; (b) the same vector s as in (a), conjugated hyperbolic moiré line; (c) elliptical intersection, for the angles ( s,Ox) less than some critical value. Every intersection line corresponds to a certain moiré shape, number k controls the switching between conjugated hyperbolas as in (a) and (b). The overlapping families of LIL fringes below every hyperboloid explains qualitatively the moiré formation at corresponding s. Vectors p, n, m and angle γ in (a) correspond to a certain cutting plane parametrization, see Appendix for details.

Fig. 4 .

 4 Fig. 4. Numerically calculated macroscopic envelopes (moiré patterns) of a depth distribution generated by a sample displacement s along different directions θ ≡ ( s,Ox). Absolute value of displacement s = 2 cm, grating period Λ = 1 µm, grating grooves are oriented vertically in all examples as depicted in magnified insets in (a) and (d). Local sample coordinate system as in Fig. 2(a) is used.

Fig. 5 .

 5 Fig. 5. Experimental LIL dual beam interferometer bench with a 442 nm He-Cd laser (top view). PM-SMF is a Polarization-Maintaining Single Mode optical Fiber; Manual stage is either translation or rotary stage depending on the method of sample shifting. The distance between point laser sources D = 69.3 cm is fixed, the grating period Λ LIL is defined by equal incidence angles of two beams and an adjustable distance H to the sample holder; the fiber ends are mounted on rotary stepper motors.

Fig. 6 .

 6 Fig. 6. Photographs of fabricated 1D gratings with 2D moiré patterns of elliptical (a)-(c), straight (d)-(f) and hyperbolic (g)-(i) forms. Red schemes on the top show the method of sample shifting in corresponding columns; (j) AFM measures of grating depth along the red dashed line L, denoted on sample (b); black curves on all sample surfaces correspond to zero-depth regions without light diffraction. Grating period Λ=1 µm, pitches are oriented horizontally as depicted in the schemes above the images.

Fig. 7 .

 7 Fig. 7. Photographs of fabricated 1D gratings with moiré patterns of elliptical (a)-(c) and straight (d)-(e) forms. Red schemes on the top show the method of sample shift in corresponding columns; (f) AFM measurements of grating depth along the white dashed line M, denoted on sample (b); Black curves on all sample surfaces correspond to zero-depth regions without light diffraction. Grating period Λ=300 nm, pitches are oriented horizontally as depicted in schemes above the images.

Fig. 8 .

 8 Fig. 8. (a)-(f) Photographs of 1D variable depth grating-based IMI structure in transmission at 2 different incident angles and 3 polarization states. The diffraction grating from Fig. 7(b) was used as the basic dielectric microstructure. The red parallel lines and orange arrows on the top of each column denote the grating grooves orientation and incident light polarization, respectively. Grating period Λ=300 nm. The sample turns around the horizontal axis M denoted in (b), which is the same line as in Fig. 7(b). A polarizer is installed between the sample and a camera. (g) Numerical calculations of visible band TE-transmission at normal and 20 • incidence for a resist/aluminum/resist model structure sketched on the left with layer thicknesses h 1 =200 nm, h 2 =20 nm, h 3 =690 nm and aluminum grating depth 150 nm.

Fig. 9 .

 9 Fig. 9. (a) Principle of 4-exposure LIL with sample rotations used for the fabrication of 2D gratings with 2D moiré patterns presented in (b) and (c) with small rotation angles ∆θ ≈ 1 . Grating pitches are oriented as depicted by insets in the top left corners of (b) and (c). Periods of vertical and horizontal grating grooves are: (b) 1 µm and 1 µm, (c) 600 nm and 1 µm respectively. Black lines on sample surfaces correspond to zero-depth regions without light diffraction. (d)-(f) SEM images of the sample (c) at microscopic scale for different surface regions, demonstrating the variety of topographies in one single sample.

3 . 1 "

 31 Macroscopic moiré patterns" is used, but with much larger rotation angles ∆θ > 1 • . AFM images in Figs. 10(a)-10(c) demonstrate how the vertical and horizontal moiré lines approach each other with increasing values of ∆θ from 5 • to 20 • and correspondingly decreasing periods of the superlattice of Λ s = Λ LIL /2 sin (∆θ/2) from 6.8 µm to 1.7 µm, where Λ LIL = 600 nm is the period of LIL setup interference field. The resulting topography is a superposition of two 2D gratings: the basic grating Λ LIL and the superlattice Λ s . The period Λ LIL = 600 nm is less than a laser wavelength λ = 633 nm used for diffraction photographs in Figs. 10(d)-10(f), thus the basic structure supports zero order transmission only. However, the bright diffraction spots around the central one exist in these images due to the diffraction on the superlattice Λ s > λ. We tried to keep the size of the image unchanged in Figs. 10(d)-10(f) by varying the distances a 1 -a 3 to the screen. Consequently, as these distances decrease from Fig. 10(d) to Fig. 10(f), diffraction angles increase in correspondence with the decreasing size of superlattice cells.

Fig. 10 .

 10 Fig. 10. (a)-(c) AFM images of 2D hierarchical gratings, fabricated by 4-exposure LIL technique with sample rotations. Angles ∆θ are big enough to generate depth envelopes of microscopic size comparable to the LIL setup period of 600 nm. The superlattice periods are Λ s =6.8 µm, 2.9 µm and 1.7 µm for (a), (b) and (c) correspondingly; (d)-(f) Photographsof 2D diffraction patterns given by corresponding samples. Laser wavelength λ=633 nm is larger than the LIL setup period Λ=600 nm. The non-zero diffraction angles increase due to the decreasing superlattice period from (a) to (c), and consequently the distance between the sample and the screen decreases from a 1 to a 3 in order to obtain an equally sized diffraction pattern.
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 1111 x |, |s z | √ D 2 + 4H 2 : ∆ ≈ C 00 s x + C 11 xzs z + C 20 x 2 s x + C 02 z 2 s x = 2k, only on the particular LIL setup (see Fig. 2(a)). Equation (6) clearly shows that in a physically correct limit of a small sample |x|, |z|, |s x |, |s z | √ D 2 + 4H 2 moiré patterns are controlled by a quadratic formx z C 20 s x 11 s z C 02 s x x z = 2k -C 00 s x (8)which in particular explains elliptic and hyperbolic moiré forms for strictly horizontal (s z ≡ 0, Fig.2(b)) and strictly vertical (s x ≡ 0, Fig.2(c)) sample displacement, respectively. In a general case s x s z 0 Eq. (8) is also valid and results in moiré patterns in the form of elongated ellipses and hyperbolae. In order to better explain and visualize these intermediate patterns we propose a graphical solution of Eq. (8).Let us modify the matrix in Eq. (8): 11 s z C 02 s x = qs t cos θ sin θ sin θ cos θ ≡ qsB,

ς 1 ς 2 ς 3 A ς 1 ς 2 ς 3 T

 33 diagonal matrix A ≡ diag (a, b, -c) with elements a = c = C 20 /C 02 , b = 1. This geometrical object depends on the LIL setup parameters only (D and H). Another object that

Fig. 11 .

 11 Fig. 11. Flowchart representing the algorithm for graphical visualization of all experimentally possible moiré shapes as a cross-section of a one-sheet hyperboloid with a plane.

2 p 3 defines

 23 ς 2 -ς 3 plane and γ is the plane inclination angle. The radius-vector p ≡ 0 p the origin of the local plane coordinate system u, v.

Fig. 1 .

 1 Fig.1. a) The sinusoidally corrugated aluminum layer of thickness 30 nm in the air; b) dependence of resonant transmission amplitude on the grating depth for the geometry a).

Fig. 2 .

 2 Fig.2. a) Three steps of sample fabrication (from left to right): 1-creating of variable depth grating using beats envelope (Moiré effect) in S1805 photoresist; 2-metallization of grating surface with aluminum, metal thickness 17 nm; 3-the final deposition of photoresist on the top of metallized grating. b) SEM image of metallized grating with 301 nm period. c) Grating depth measured by AFM (orange dots) and sinus fitting (green dashed line) in accordance with envelope function of Eq.(1.1).

Fig. 3 .

 3 Fig.3. Measured transmission map in visible range for continuously changing set of depths (red coordinate axis on the right), corresponding to different positions on the same fabricated sample (black coordinate axis on the left). The existence of optimal depth for the maximum resonant transmission (point A) is demonstrated.

Fig. 4 .

 4 Fig.4. a) Experimental transmission spectra in the vicinity of plasmonic excitations for several grating depths denoted by numbers with the same colors as a corresponding spectrum. Lines L2 and L3 are also visible; b) Maximum (resonant) transmission as a function of depth (to be compared with an example in Fig.1b); c) Comparing of measured data (blue dots)with simulation based on rigorous GSMCC numerical method (red line).

Figure 1 .

 1 Figure 1. LIL setups: (a) Dual Beam Interferometer and (b) Lloyd's Mirror Interferometer; (c) schematic representation of large moiré pattern (white ellipses) generated by double exposure LIL with a small sample shift |s| between the exposures. The vector s in (a) and (c) shows the direction and distance of sample shift. The distance between point laser sources denoted in (a) is D = 69.3 cm in our experimental setup.

Figure 1

 1 Figure1illustrates the formation of macroscopic elliptic moiré patterns only. However, depending on vector s direction (angle α between s and the positive direction of axis Ox) a continuous set of patterns from ellipses to hyperbolae can be generated as shown in Figs.2a-c. For the derivation of corresponding mathematical formulae see Appendix.

Figure 2 .

 2 Figure 2. Numerically calculated macroscopic moiré patterns generated in diffraction gratings with a period of 1 µm in the two-exposure LIL process with a small sample shift s between exposures. |s| = 2 cm, angle α between s and Ox axis is a) 0 • (the case of Fig. 1c), b) 70 • , c) 90 • .

Figure 3 .

 3 Figure 3. Images of variable depth gratings of period Λ=300 nm in (a)-(c) and Λ=1 µm in (d) in white lighting with different moiré patterns. The sample shift |s| is (a) 180 µm, (b) 400 µm, (c) 600 µm, (d) 2 cm. Vector s is parallel to X-axis in (a)-(c) and to Y-axis in (d). Black straight lines in (a) and (d) show the direction of grating grooves.

Figure

  Figure 4a demonstrates AFM measurements of the grating depth along the central line parallel to the x direction. The characterized grating of period 300 nm and shift |s| = 240 µm (intermediate shift between Figs. 3a-b) continuously and adiabatically covers all depth values from zero to 105 nm at a macroscopic distance ∼3 cm. For every depth value we can consider at least 100 grating periods of almost equal depth, their profile can be simulated locally as for a standard uniform 1D grating with some effective exposure time 0 T eff 2t exp .

Figure 4 .

 4 Figure 4. (a) AFM-measured depths along the surface of variable depth grating (white dots) and sinusoidal fitting (blue dashed line). (b) AFM-measured grating profiles (black lines) and their numerical simulation (green squares) for depths 105 and 48 nm.

  5b, blue lines. The solid blue line in Fig. 5b corresponds to the grating profile after 4 s development in point B in Figs. 4a-b.

Figure 5 .

 5 Figure 5. (a) Experimentally measured resist development rate as a function of energy dose; (b) Iterative numerical simulation of resist development process for a region of depth 48 nm of a variable grating (blue solid and dashed lines for development times 0-4 s). The background color represents the exposure energy dose.
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  LR-SPP and F SR-SPP , another field representation is more physically reasonable in the limit of a very thick (infinite) metallic layer : F LR-SPP +F SR-SPP

	substrate,1) = T 12 , A (substrate,2) = T 22 (see Fig. 2.5 for
	amplitudes notation). Based on the expressions for T 12 and T 22 from Eqs. 2.17
	and the resonant condition of Eq. 2.18 it is easy to calculate analytically that
	T 22 ≡ 0, T 12 = ±1, where plus and minus signs correspond to LR-SPP and SR-SPP
	respectively. Consequently, the two plasmon modes have different symmetry with
	respect to the field distribution. The fields of SR-SPP and LR-SPP are presented
	in Figs. 2.8a-b and 2.8c-d respectively; based on the magnetic field component
	parallel to the metal slab, SR-SPP and LR-SPP are classified as antisymmetric and
	symmetric modes, respectively [100, 101]. If we denote the resonant electromagnetic
	fields as F

  2. THEORY OF SURFACE PLASMON POLARITONSWaveguide modes TE i and TM i where i = 0, 1, 2, ... possess particular cutoff thicknesses h i : for a dielectric waveguide thinner than h i the corresponding mode TE i or TM i does not exist because it turns into a leaky mode with Re(n mode )/n cover < 1.The exact values of h i are not calculated but can be estimated from Figs. 2.9a-b using the condition Re(n mode )/n cover = 1. Electromagnetic modes guide the energy in the bulk of dielectric slab, which is illustrated by Figs. 2.10a-f. These figures illustrate the meaning of the subscript index i for modes TE i and TM i : it is the number of waveguide mode half-wavelengths inside the dielectric slab in the direction perpendicular to the interfaces.

Table 4 .

 4 1: Depths of samples prepared via NPL at specified development and exposure times. Upper numbers in the cells correspond to experimental AFMmeasured depths; lower numbers in parentheses were calculated via the algorithm described in the present section. All measured and calculated depth values are given in nanometers. The diameter of colloidal particles for self-assembly is 300 nm and the UV wavelength 254 nm.From Figs. 4.24 it is seen that both the nanohole diameter and the depth increase with increasing t exp . The validity of the algorithm presented above is proved by comparison of experimentally measured and calculated grating depths collected in

	t dev , s \t exp , s	7	8	9	10
	2	-	40 (43)	53 (47)	57 (51)
	3	-	59 (61)	66 (66)	63 (70)
	4	68 (69)	85 (75)	90 (81)	96 (86)

Table 4 .

 4 1: the maximum mismatch between them is ≈ 10%.

Table 6 .

 6 2: Experimental LIL parameters for 2D hexagonal gratings with different depths. The column of exposure times has two terms for every grating because of the two LIL exposures.

	6.2.
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Modelling of grating disorder via inverse space approach

In the previous subsection we have shown experimentally and numerically that the EOT signal can be suppressed by a high disorder in polycrystalline gratings prepared via NPL. The presence of grains and defects strongly affects the optical response of the final device, therefore a number of in-situ approaches exist to control the self-assembly process [START_REF] Delléa | Control Methods in Microspheres Precision Assembly for Colloidal Lithography[END_REF][START_REF] Bohn | Colloidal crystal growth monitored by Bragg diffraction interference fringes[END_REF][START_REF] Avrutsky | Characterization of two-dimensional colloidal polycrystalline materials using optical diffraction[END_REF]. These approaches estimate the quality
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Resonant TM transmission through metallized variable depth grating

To cite this article: Andrei A. To conclude, we have presented a novel simple and flexible fabrication method for apodized nanostructures. It was demonstrated that it allows creating subwavelength gratings with macroscopic size and adiabatically varying depth, which are ready for further technological steps depending on the research area. The numerical simulation of resist development is in a very good correspondence with AFM measurements. The size of moiré patterns depends on the sample shift s and can be predicted theoretically. Our method is developed for optical security elements, plasmonic research and highly effective light couplers.

APPENDIX A. SHAPE OF MOIR É PATTERNS GENERATED VIA TWO-EXPOSURE LIL APPROACH

Let us define a coordinate system Oxy with the origin in the sample center and coordinate plane xOy parallel to the resist surface. Directions of axis Ox and Oy are denoted in Fig. 1a. The objective of this Appendix is to get formulae for numerical calculation of macroscopic moiré patterns generated via two-exposure LIL approach with a small sample shift s between the exposures. In order to align the symmetry center of moiré lines with a sample center it is convenient to move the sample at distances -0.5s and 0.5s from its central symmetrical position on a sample holder before first and second laser exposures, respectively; these displacements preserve the total sample shift s.

LIL interference field leads to inhomogeneous irradiation of the resist and is defined by the optical path difference between two laser beams (normalized to laser wavelength λ) in any point (x, y) on the resist surface:

for the first (i=1) and second (i=2) LIL exposure, respectively; D is a distance between two coherent point light sources and Z is a distance to sample (see Fig. 1a).

After two consequent LIL exposures the total intensity distribution over the resist surface is:

The cosine function on the right of Eq. ( 4) controls the adiabatic modulation of grating depth, which in its turn is defined by the sine function. The family of moiré lines of the sample are determined as cos [π (∆ 1 -∆ 2 )] = 1, and we get an equation of moiré lines: ∆ ≡ ∆ 1,sx,sy -∆ 2,sx,sy = 2k, (5) with a number k ∈ Z indicating a specific moiré line in the family.

The left side of this equation can be approximated by a