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Introduction

In a Constraint Satisfaction Problem (CSP), N discrete valued variables are
subject to M constraints. Each of the constraints enforces some requirements
on a subset of the variables. A solution of the CSP is an assignment of the
variables that satisfies simultaneously all the constraints. Famous examples
of CSPs are the k-satisfiability (k-SAT) problem and the graph q-coloring one
(q-COL). In the first one the variables are Boolean and each constraint is the
disjunction (OR) of k literals (a variable or its negation). In the second one the
variables are placed on the vertices of a graph, they can take q possible values,
to be interpreted as colors, and each edge of the graph enforce the constraint
that the two vertices at its ends take different colors. In this Ph.D. we will
be also interested in the bicoloring of k-hypergraph problem, that is similarly
defined on a hypergraph, with hyperedges linking subsets of k (instead of two
for a graph) vertices; the variables on the vertices can take two colors, and the
constraint associated to each hyperedge is that both colors are present among
its k adjacent vertices.

CSPs can be studied from several different perspectives; computational com-
plexity theory [1, 2, 3] classifies them according to their worst-case difficulty, as-
sessed by the existence or not of an efficient algorithm (running in a time polyno-
mial in N,M) able to solve (i.e. to determine the existence or not of a solution)
all their possible instances. Another perspective [4, 5, 6, 7, 8, 9, 10, 11, 12], that
has been adopted in this Ph.D., consists of the characterization of the "typical"
difficulty of CSPs, where typical is defined with respect to a random ensem-
ble of instances. The most commonly studied random ensemble is obtained by
drawing theM constraints uniformly at random. This corresponds to construct
a G(N,M) Erdős-Rényi random graph (or k-hypergraph). In this Ph.D., we
will also consider a slightly different ensemble, the k-uniform l + 1-regular one,
where the probability is uniform on the set of k-hypergraphs for which each
vertex belongs to l + 1 hyperedges.

Random CSPs bear a formal similarity with models studied in statistical
mechanics of disordered systems, and in particular with mean-field spin-glasses,
the interactions induced by the constraints being of a frustrating nature while
lacking a finite-dimensional structure thanks to the randomness in their con-
struction. For instance, in the q-coloring problem on graphs, the variables can
be considered as Potts spins, and the problem corresponds to find the ground
state of an antiferromagnetic Potts model. If in the ground state all the links are
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bicolored, then all the constraints are satisfied simultaneously, and the problem
admits a solution.

A particularly interesting regime is the thermodynamic limit where N,M →
∞ at a fixed ratio α = M/N , the density of constraints per variable. Random
CSPs exhibit threshold phenomena in this limit, the probability of some proper-
ties jumping abruptly from 1 to 0 as a function of the control parameter α. The
most prominent of these phase transitions occurs at the satisfiability threshold
αsat, that depends on the parameter k, q of the problem. For α < αsat typical
instances are satisfiable, i.e. admit configurations of variables that satisfy all
constraints simultaneously, while for α > αsat a random instance is typically un-
satisfiable. Thanks to the analogy between random CSPs and spin glasses, the
application of the methods first developed in the context of statistical mechan-
ics of disordered sytems, namely the replica and cavity method [4, 5, 6, 7, 8],
has provided predictions of αsat for many models, but also unveiled many other
phase transitions for the structure of the set of solutions in the satisfiable phase.
In addition, it has led to the proposal of new algorithms that exploit this detailed
picture of the solution space. Many of these predictions have been confirmed
rigorously later on [9, 10, 11, 12].

In this Ph.D. we give a particular attention to one of the phase transi-
tions that occurs in the satisfiable phase, namely the clustering (or dynamic)
transition that occurs at a critical density denoted αd. This transition can be
defined in various ways; the name clustering emphasizes the drastic change of
the shape of the set of solutions, viewed as a subset of the whole configuration
space. Below αd the set of solutions of typical instances is rather well-connected,
any solution can be reached from any other one by a rearrangement of a non-
extensive number of variables. Above αd the solution set splits in a large number
of distinct groups of solutions, called clusters, that correspond to a pure state
decomposition of the uniform measure over the set of solutions. The clusters
are internally well-connected but well-separated one from the other. This tran-
sition marks also the birth of a specific type of long-range correlations between
variables, known as point-to-set correlations, which implies the solvability of
an information-theoretic problem called tree reconstruction [13]. These corre-
lations forbid in turn the rapid equilibration of the stochastic processes that
respect the detailed balance condition [14], hence the name dynamic given to
αd. The static properties of the model are instead not affected by the clustering
transition and are only sensitive to a further condensation transition αc that
affects the number of dominant clusters [8]. In the cavity method [15] treat-
ment of the random CSPs αd can also be defined as the appearance of a non
trivial solution of the one step of Replica Symmetry Breaking (1RSB) equation
with Parisi breaking parameter X = 1, see in particular [16] for the connection
between this formalism and the reconstruction problem. In the large k limit the
dynamic transition happens at a much smaller constraint density than the satis-
fiablity one. For instance, the asymptotic expansion of these two thresholds for
the bicoloring of k-hypergraphs is αd(k) ∼ 2k−1 ln k/k and αsat(k) ∼ 2k−1 ln 2.

Despite the rather detailed picture of the set of solutions of random CSPs,
an important open problem remains to understand the behavior of algorithms
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that attempt to find a solution in the satisfiable regime, where typical instances
admit such configurations. In particular one would like to determine the algo-
rithmic threshold αalg(k) above which no algorithm is able to find a solution in
polynomial time with high probability (assuming P 6=NP). For small values of k
it is possible to design algorithms (see [6, 17, 18, 19, 20]) that are found through
numerical simulations to be efficient at densities very close to the satisfiability
threshold. The situation is quite different in the large k limit, where these algo-
rithms cannot be studied numerically. One has to resort to analytical studies in
this case, which can only be performed on simpler heuristics. The best result in
this direction is the one of [21], which provides an algorithm that provably works
in polynomial time up to densities of constraints coinciding at leading order with
αd(k). This leaves a wide range of α where typical instances have a non-empty
set of solutions, but no known algorithm is able to find them efficiently (and
where some families of algorithms have been proven to fail [22, 23, 24]).

One could hope to get some insight on the typical behavior of the algorithms
and on the value of αalg from the several phase transitions undergone by the set
of solutions in the satisfiable phase. However the connection between these two
aspects is delicate, because the algorithms considered are out-of-equilibrium,
either because they explicitly break the detailed balance condition, or because
their relaxation time scale is larger than the time scales accessible for practical
experiments. Even if one cannot understand precisely αalg(k) in terms of a
structural phase transition one can reasonably state that the dynamic transition
is a lower bound to the algorithmic one, αd(k) ≤ αalg(k). Indeed for α ≤ αd
simulated annealing [25] should be able to equilibrate in polynomial time down
to arbitrarily small temperatures, and hence sample uniformly the solution set.
For α slightly larger than αd one expects simulated annealing to fall out-of-
equilibrium on polynomial timescales but in many cases it should still be able
to find (non-uniformly) solutions, hence the bound αd(k) ≤ αalg(k) is not tight
in general.

The study of the structural phase transitions in the satisfiable regime, and
in particular the definition of αd in terms of long-range correlations, relies on
the characterization of a specific probability law on the space of configurations,
namely the uniform measure over solutions. In this Ph.D. we study probability
measures over the set of solutions of random CSPs, for which not all solutions
are equally probable. The same idea has been used in several articles, see in
particular [26, 27, 28, 29, 30], with slightly different perspectives and results.
For instance in [27, 28] solutions are weighted according to their local entropy, a
quantity that counts the number of other solutions in their neighborhood. In [26]
the solutions are weighted according to their number of frozen variables taking
the same value in the whole cluster. In [29] hard sphere particles are considered
as a CSP, with a bias due to an additional pairwise interaction between particles.
In this Ph.D. we will study the modifications of the clustering threshold αd
induced by the non-uniformity between solutions. Focusing on the bicoloring
on k-hypergraph problem, we will see that with an appropriate choice of the bias
it is possible to delay the clustering threshold to higher densities of constraints,
both for finite values of k and in the large k limit. For finite k values we will
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check that this strategy has a positive impact on the performances of simulated
annealing algorithms, in agreement with the discussion above.

This manuscript is based on the three papers [31, 32, 33] that have been
produced during my Ph.D.. It is organized as follows. A survey describing
the phase transitions in random CPSs and the search algorithms is presented
in chapters 1-5, with a summary of some of the results obtained in the liter-
ature. In chapter 1 we start by defining the Constraint Satisfaction Problems
and give some elements of the complexity theory. We also introduce the ran-
dom ensembles of CSPs and explain their connection with statistical physics
problems. Chapter 2 presents the several phase transitions undergone by the
set of solutions in random CSPs in the thermodynamic limit. In chapter 3
we introduce the simulated annealing algorithm and other local search algo-
rithms that perform a biased walk in the configuration space toward the set
of solutions [17, 18, 19, 34]. In chapter 4 we introduce the message passing
algorithms [6, 20, 35, 36, 37] inspired by statistical mechanics considerations.
Chapter 5 describes the performances of the algorithms on random instances
of CSPs. In particular it separates the regime of small values of k where some
algorithms are efficient up to densities very close to the satisfiability threshold,
and the large k limit, where there is a wide range of α in the satisfiable phase
for which no provably efficient algorithm is known at present to find solutions.

In chapter 6 we introduce biased measures on the set of solutions. We give
an explicit definition of the biased measures studied in this Ph.D., and describe
the biased measures studied in the literature ([26, 27, 28, 29, 30]). Chapter 7
presents the cavity method that allows us to estimate the value of the thresholds
for the several phase transitions. We describe the explicit derivation of these
thresholds for the biased measures studied in the Ph.D..

In chapter 8 we present the results obtained for finite values of k for the
bicoloring of k-hypergraphs. The sections 8.2-8.4 present the results obtained
in the paper [31], that has been written in collaboration with Federico Ricci-
Tersenghi. In [31] we have studied a simple implementation of the bias in the
measure on the set of solutions of a hypergraph bicoloring instance, where the
interactions induced by the bias can be factorized over the bicoloring constraints.
We showed, for k between 4 and 6, that with well-chosen parameters such a
bias allows us to increase αd, and to improve the performances of simulated
annealing. The section 8.5 presents part of the results obtained in [33], in
which we introduce a more generic way of weighting the different solutions, that
extends the one presented in [31] and incorporates interactions at larger range
between variables. We show that for finite k this more generic biased measure
allows a further increase of the dynamic threshold αd.

The last two chapters study the large k regime. For the uniform measure
over the set of solutions, some rigorous bounds are known on the asymptotic
behavior of αd [38, 39, 40]. In chapter 9 we present the results obtained in
the paper [32], in which we provide an asymptotic expansion of the clustering
threshold: we found that for the bicoloring on k-hypergraphs the clustering
threshold occurs on the scale α ∼ 2k−1(ln k+ln ln k+γ)/k with γ constant. We
obtain a similar scaling α ∼ (q/2)(ln q+ln ln q+γ) for the q-coloring problem in
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the large q limit, with exactly the same constant γd. We estimate this constant
for the uniform measure γd,u ≈ 0.871, which falls into the range allowed by the
previous bounds [38, 39, 40].

chapter 10 presents the results obtained in the paper [33]. In this paper we
adapt the large k expansion of [32] to the biased measures studied in this Ph.D.
and manage to assess the asymptotic effect of the bias on αd. We show that the
clustering threshold for our implementation of the bias arises at the same scale
as in the uniform case, but with a constant γd that depends on the rescaled
parameters describing the bias. We find that the factorized bias of [31] cannot
improve on the constant γd in the asymptotic expansion with respect to γd,u,
while the bias with larger interaction range allows us to increase its value up to
γd ≈ 0.977. Although this provides only a modest improvement, bearing on the
third order of the asymptotic expansion of αd, it opens the possibility to study
further generalizations of the bias and to bring some light on the nature of the
algorithmic gap between αalg and αsat.
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Chapter 1

Definitions

1.1 Constraint Satisfaction Problems
1.1.1 Definitions
In a constraint satisfaction problem (CSP), a set of N variables are submitted
to a set of M constraints (also called clauses). The variables xi, i ∈ {1, . . . , N}
take their values in a finite set χ. When χ is of size 2, the variables can either
be viewed as Boolean variables: χ = {0, 1} or, to adopt the physics notation,
as spins σi ∈ {−1, 1}, using the change of variable σi = 2xi − 1. When the
size of χ is an arbitrary integer q, the variables can be viewed as Potts spins,
or colors: χ = {1, . . . , q}. We call x = {x1, . . . , xN} ∈ χN a configuration
of the N variables. For a subset S ⊂ {1, . . . , N} of variables, we call xS its
configuration. The clauses ca, a ∈ {1, . . . ,M} involves a subset ∂a ⊂ {1, . . . , N}
of variables, and impose a constraint on the value of their configuration x∂a.
They are functions ca : χ|∂a| → {0, 1} that evaluate to 1 when the constraint
is satisfied, and to 0 otherwise. We call ∂i the subset of clauses in which the
variable i appears. There is a natural cost function E : χN → R+ to define on
a CSP, that counts the number of constraints that are unsatisfied (violated) by
a configuration x:

E(x) =
M∑
a=1

(1− ca(x∂a)) (1.1)

In the optimization version of the problem, one tries to find an optimal configu-
ration that minimizes this cost function. In the decision version of the problem,
one tries to answer the question: ’Given a threshold value E0, is there a con-
figuration x∗ with a cost E(x∗) ≤ E0 ?’ One often takes the threshold to be 0,
so that the question is ’Is there a configuration that satisfies all the constraints
simultaneously ?’. Such a configuration is called a solution. Note that if the
evaluation of the cost function is easy to perform, the decision version of the
problem cannot be harder than the optimization version. Indeed once we have
an optimal configuration, we only need to evaluate its cost and compare it to
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E0 in order to answer the decision problem.
We will adopt the following definitions. The constraint satisfaction problem

is the general question to answer, defined by a set of parameters left unspecified.
To be more precise, these parameters are for instance the set χ, the numbers
N,M of variables and clauses, the function space in which the clauses ca can take
their values, the specific form of the cost function. An instance of the problem
is obtained by setting a particular value to all the problem parameters. One
says that an algorithm solves a constraint satisfaction problem if it produces an
answer to any instance of the problem. A certificate is an assignment x that
allows to check the answer of the problem.

There is another version of the CSPs, called the counting problem, that aims
at counting all the solutions of a given instance. Generally this version is more
difficult than the decision and optimization versions.

1.1.2 The satisfiability problem
As a first example, consider the satisfiability (SAT) problem. It is defined on
a set of N Boolean variables. The clauses {c1, . . . , cM} are logical constraints
on the set of literals. For a variable xi, its literal li is either equal to xi or
to its negation xi = 1 − xi. Each clause is a disjunction (logical OR) on the
literals formed from the variables in ∂a = {i(1), . . . , i(|∂a|)}: ca = (li(1) ∨ li(2) ∨
· · · ∨ li(|∂a|)). The clause ca evaluates to 1 if and only if at least one literal
evaluates to 1. Among the 2|∂a| possible configurations that the variables in ∂a
can take, there is only one that violates the clause, namely the one for which
li(1) = li(2) = · · · = li(|∂a|) = 0. The satisfiability formula F is the conjunction
(logical AND) over the set of clauses:

F = c1 ∧ c2 ∧ · · · ∧ cM (1.2)

F evaluates to 1 if and only if all the clauses {c1, . . . cM} evaluate to 1. We can
call F a SAT formula, or a CNF formula (where CNF stands for conjunctive
normal form). In the decision version of the SAT problem, a satisfying assig-
mement, or solution, is then a configuration x such that F = 1. An instance of
the SAT problem is thus defined by specifying the formula F , i.e. the value of
N,M , then for each clause a the choice of the subset ∂a, and for each variable
i in ∂a the choice of the literal li that appears in ca. The k-SAT problem is the
restriction of the SAT problem to the set of instances that have clauses of fixed
length k. The optimization version of the SAT problem is called the MAX-SAT
problem (or MAX-k-SAT when the clauses have length k).

Using the spins (σi = 2xi − 1) the clauses can be re-written as follow:

ca(σ∂a) = 1−
∏
i∈∂a

I[σi = −Jai ] (1.3)

where Jai takes its values in {−1,+1}, with Jai = 1 if the literal is xi, and
Jai = −1 if the literal is xi, and I[A] is the indicator function of the event A.
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Figure 1.1: graphical representation of the SAT formula F = (x1 ∨ x2 ∨ x3 ∨
x4) ∧ (x4 ∨ x5) ∧ (x4 ∨ x6 ∨ x7) ∧ (x3 ∨ x7 ∨ x8 ∨ x9)

1.1.3 A graphical representation
There is a natural graphical representation of the instances of a CSP. For any
instance, we associate a bipartite graph G = (V,C,E). Figure 1.1 is an example
of this representation for a SAT formula. The filled circles represent the set V
of N vertices of the first type (called variable nodes), that is associated with
the set of variables. The empty squares represent the set C of M vertices of
the second type (called function nodes), that represent the set of clauses. E is
the set of edges between variable nodes and function nodes. A link is drawn
between the variable node i and the function node a if the variable i appears in
the clause a: i ∈ ∂a. Note that for the SAT problem, an instance is not yet fully
specified by this representation, since the information about the choice of the
literal is missing. This can be specified by using two types of edges, for instance
plain edges when li = xi, and dashed edges when li = xi.

The bipartite graph G can be viewed equivalently as a hypergraph, where the
variables are still represented as vertices, but the clauses are now hyper-edges,
i.e. edges linking a subset of vertices |∂a| possibly greater than 2.

1.1.4 More examples of CSP
1. The k-XORSAT problem:

Compared to the k-SAT problem, the disjunction ∨ (OR) is replaced by
the eXclusive OR (XOR) (denoted by ⊕):

ca = (li(1) ⊕ · · · ⊕ li(k)) (1.4)

This is equivalent to asking that the sum
∑k
j=1 li(j) of the literals is equal

to 1 modulo 2. This problem has a simpler structure than the k-SAT
problem. In particular, one can solve this problem in polynomial time
using algorithms based on Gaussian elimination.
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2. The q coloring (q-col) problem:
In this problem the variables can take q possible values. Each clause
involves a pair of variables, and is satisfied when the two variables do not
take the same color: ca(xi, xj) = I[xi 6= xj ].

3. The bicoloring problem on k-hypergraphs
This problem is very similar to the q-coloring problem. Here q = 2: the
variables are Booleans (or spins), and each constraint involve a k-tuple
(with k ≥ 2) of variables. The constraints forbids the configurations where
all the variables take the same value. It is also called the Not All Equal
(NAE) k-SAT problem, but note that compared to the k-SAT problem,
the constraints forbids 2 configurations (namely the configuration where
xi = 1 for all i ∈ ∂a, and the opposite configuration where xi = 0 for all
i ∈ ∂a).

1.1.5 Other combinatorial optimization problems
The CSPs belongs to the family of combinatorial optimization problems. These
problems consist of finding a configuration (in a finite set of possible configura-
tions) that minimizes a cost function. We give few examples:

1. the assignment problem: given N agents and N tasks, and an affinity
matrix Mij representing the affinity of agent i for the task j, one looks
for an assignment of each agent to a task in order to maximize the total
affinity. The space of configurations is the space of permutations π ∈
S(N). One defines the total cost function

E(π) =
∑
i

Ciπ(i) (1.5)

2. the Hamiltonian cycle. This is a decision problem. Given a graph G =
(V,E), a Hamiltonian cycle is a path that visit each vertex of the graph
exactly once, and gets back to this starting point. The question is then
‘Does there exist a Hamiltonian cycle ?’ The configurations are in the set
of paths on G.

3. the traveling salesman problem: this is the optimization version of the
Hamiltonian problem on a weighted graph. The cost function is defined
as the sum of weights of the edges visited by the path. The question is
then to find a Hamiltonian cycle that minimize the cost

1.2 Worst-case complexity
1.2.1 Time complexity
From an algorithmic point of view, one would be interested in finding an algo-
rithm that solves a CSP (i.e. solves all its possible instances) in a reasonable
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amount of time. Intuitively, an algorithm will require more time to provide an
answer for large size instances. There are several ways to define the size of an
instance. A natural definition is to take N the number of variables, but one
could also have chosen N +M , or |E| the total number of edges in the graphical
representation of a CSP. Most of the time one works with instances for which
M = αN , with α a constant independent of N , therefore all these possible def-
initions are polynomially related. In computational complexity theory [1] it is
therefore equivalent to work with any of them, and we will fix the size of the
problem to be N .

One defines the time complexity function T (N) of an algorithm as the largest
amount of time needed for this algorithm to solve an instance of given size
N . Note that this definition depends on the computer used to implement the
algorithm. One will not enter into the details, and just state that one uses a
‘realistic’ computer model. Realistic means that such a model can run at most
one (or a finite small number) of operations per unit time, where operations are
for instance comparison, sum and multiplication. Some examples of realistic
model are the one-tape (or multi-tape) Turing machines, and the random-access
machines (RAMs). The algorithms can be split into classes according to the
behavior of their time complexity function.

1. A polynomial time algorithm has a time complexity function T (N) =
O(p(N)) for some polynomial function p.

2. An exponential time algorithm has a time complexity function that can
be lower bounded by 2bn for some constant 0 < b.

This distinction is useful because exponential time algorithm have a time com-
plexity that explodes when the size increases, therefore they become inefficient
for large size instances. One says that a problem is intractable when it is so
hard that no polynomial algorithm can solve it. Note that the time-complexity
function is a worst-case measure, in the sense that is corresponds to the time
needed for the algorithm to solve the hardest instance of a given size. It could
happen that the majority of other instances require much less time, and the
algorithm would be ‘efficient’ in a large proportion of the instances it encouters.
As an example, the k-SAT problem is solved by an exponential time algorithm
called DPLL, that one will describe further. As we shall see in the following,
experimental observations and rigorous results show however that for instances
such that M = αN , with α small enough, this algorithm finds solutions very
quickly for the vast majority of instances, even when N gets large.

1.2.2 Complexity classes
The theory of computational complexity classifies the difficulty of the decision
problems according to the existence of an algorithm that solve a problem in
polynomial time. This classification uses the notion of polynomial reduction.
One says that a problem π1 can be reduced to another problem π2 when there
is a function that maps an instance of π1 into an instance of π2. To be more

17



precise, let Dπ be the set of instances of problem π. Let Yπ ⊆ Dπ be the
subset of instances for which the answer to the decision problem is ‘yes’. Then
a reduction is a function f : Dπ1 → Dπ2 such that for all I1 ∈ Dπ1 , one has
I1 ∈ Yπ1 if and only if f(I1) ∈ Yπ2 . A polynomial time reduction is a reduction
f that is computable by a polynomial time algorithm in the size of the problem
π1. One requires additionally that the size of f(I1) is polynomial in the size of
I1. The relation "π1 can be reduced polynomially to π2" is denoted π1 ∝ π2.
This relation is transitive:

Lemma 1 (Transitivity) if π1 ∝ π2 and π2 ∝ π3, then π1 ∝ π3.

One defines the two following classes of problems:

1. The polynomial class P is the set of problems that can be solved by a
polynomial time algorithm.

2. The non-deterministic polynomial class NP is the set of problems that have
a polynomial time verifiability. This means when one provides a certificate
that allows to check a ‘yes’ answer to the problem, the verification itself
can be done in polynomial time.

The term non-deterministic comes from an alternative definition of the NP
class, as the set of problems that can be solved by a polynomial time non-
deterministic algorithm. A non-deterministic algorithm is composed of two
stages. In the first stage, a certificate is proposed, and in the second stage,
the certificate is verified. A non-deterministic algorithm is said to operate in
polynomial time if the second stage is done in polynomial time, disregarding
the first stage that might have required more time. Roughly speaking, a non-
deterministic polynomial algorithm can pursue alternate paths or branches in
parallel, and says ‘yes’ if any of these branches says ‘yes’.

Note that if one has a polynomial reduction from π1 to π2, then π1 cannot
be harder than π2. Suppose indeed that one has a polynomial algorithm that
solves π2. One can construct a polynomial algorithm to solve π1 as follows.
Given an instance I1 ∈ Dπ1 , this algorithm just applies the transformation f to
get an instance I2 = f(I1) of π2, and applies the polynomial algorithm to solve
the instance I2. Therefore:

Lemma 2 If π1 ∝ π2, then π2 ∈P implies π1 ∈P (and equivalently π1 /∈P
implies π2 /∈P)

Note that a problem π in P is automatically in NP. If there is a polynomial
time algorithm that solves π, this algorithm can be converted into a checking
algorithm that ignores the certificate that is provided, and simply returns its
answer. Therefore P⊆NP.

A natural question is then to ask if P=NP, or if there exist problems in NP
that are not in P. This is an open question, but it is widely conjectured that
P6=NP. This conjecture is supported by the existence of another class of NP
problems gathering the hardest problems in NP. It is called the NP-complete
class (NP-c). A problem π is in NP-c if it satisfies the two conditions:
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NP
P

NP-c

Figure 1.2: sketch of the classification of the decision problems

1. π ∈NP

2. Any problem π′ in NP can be polynomially reduced to it: π′ ∝ π

If one problem in NP-c could be solved in polynomial time, then all the problems
in NP could be solved in polynomial time thanks to the polynomial reduction,
and one would have P=NP. On the other hand, if one problem in NP is in-
tractable, then all the problems in NP-c are intractables. Some problems in
NP-c, such as the satisfiability problem, have been studied for decades without
any proof that they belong to P, that is why one believes that P6=NP. Figure
1.2 illustrates the conjecture on the structure of the sets NP, P and NP-c.

From the definition of the NP-c class, proving that a problem π ∈NP belongs
to NP-c requires to prove that any problem π′ ∈NP can be polynomially reduced
to π. This seems difficult to achieve, but once one has proved that there is at
least one problem in NP-c, the proof can be simplified thanks to this Lemma:

Lemma 3 Let π1 ∈NP-c. If π2 ∈NP, and π1 ∝ π2, then π2 ∈NP-c.

Indeed since π1 ∈NP-c then for any problem π′ ∈NP one has π′ ∝ π1, then by
transitivity π′ ∝ π2. The first problem that has been proved to be NP-complete
is the satisfiability problem, by Stephen Cook in 1971 [41]

Theorem 1 (Cook,1971) The satisfiability problem is NP-complete.

We will not give the proof, but solely remark that the SAT problem has a very
universal structure, that allows to re-write any decision problem into the SAT
problem. Once we know that the SAT problem is in NP-c, one can apply the
lemma 3 to prove that another problem π is NP-c. The method should follow
these steps:
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1. Show that π ∈NP.

2. Select a known problem π′ ∈NP-c

3. Construct a reduction f from π′ to π

4. Prove that f is a polynomial reduction.

Using this method, hundreds of problems have been shown to belong to NP-c.
The table 1.1 gathers the problems that one has introduced above:

Table 1.1: Some decision problems belonging to NP or NP-c
P NP-c
2-SAT SAT
2-col 3-SAT
XORSAT 3-col
assignment NAE-k-SAT with k ≥ 3

Hamiltonian circuit

1.3 An algorithm for the SAT problem
1.3.1 The Unit Clause Propagation procedure
We have seen that the 2-SAT problem is in P. We present here a polynomial
algorithm that solves it. The algorithm is a sequential assignment procedure,
which means that at each time step a variable is assigned to a given value.
The algorithm ends either when all the variables are assigned, the assignment
obtained being SAT, or when it has proven that the formula is UNSAT.

Each time a variable is assigned, one can simplify the initial CNF formula
according to the following reduction procedure. Suppose that one has assigned
the variable i to xi = 1 (the case xi = 0 is symmetric). Each clause containing
the literal xi is satisfied by this assignment, therefore can be removed from
the formula. In each clause containing the opposite literal xi, one removes the
literal xi since it cannot satisfy the clause. The length of these clauses is then
reduced by 1. One denotes F |{xi = 1} the simplified formula obtained with this
procedure. This reduction procedure might produce a 0-clause, namely if in the
formula there a unit clause (a 1-clause) of the form c = (xi), that is violated by
the choice xi = 1. One calls this a contradiction, it means that the simplified
formula F |{xi = 1} is UNSAT, therefore to construct a SAT assignment for F ,
the choice xi = 0 is necessary.

If at some step the formula obtained contains a unit clause, one is forced
to satisfy it, and the simplified formula thus obtained might contain new unit
clauses that one will have to satisfy in turn. This sequence of forced steps is
called Unit Clause Propagation (UCP), and is done with the recursive UCP
procedure (see algorithm 1). This procedure takes as input a CNF formula F
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(possibly containing unit clauses), a partial assignment of variables A, and a
set of variables V . In the first call we set F to be the initial CNF formula, and
A = ∅, V = {1, . . . , N}

Algorithm 1 UCP (F ,A,V )
if there is a 0-clause in F then

return UNSAT
end if
while there exist unit clauses do

Pick a unit clause in F , say c = (li) and satisfy it
Add the assignment of the variable xi in A
if there is a 0-clause in F then

return UNSAT
end if

end while
return A

The UCP procedure (1) returns all the assignments that were forced due
to the presence of unit clauses. There is three possible outputs for the UCP
procedure:

1. the output is an assignment of all the variables in V , then F is SAT and
the assignment produced is a solution to F .

2. the output is a partial assignment. This partial assignment can be ex-
tended to a complete SAT assignment if and only if the input formula F
is SAT. The simplified formula obtained does not contain unit clauses.

3. the output is UNSAT, therefore the input formula F is UNSAT.

The algorithm to solve 2-SAT uses the UCP procedure. It works as follows:
given a 2-SAT formula F over a set of variables V , choose a variable i ∈ V , and
fix xi = 1. Then call the UCP procedure UCP(F |{xi = 1},{xi = 1},V \ i). If
the output has assigned all the variables, declare F satisfiable, and return the
SAT assignment found. If it is only a partial assignment, keep it in memory, and
let F ′, V ′ be the simplified formula and the set of not-yet assigned variables.
Choose a new i′ variable in V ′, and restart the UCP procedure UCP(F ′|{xi′ =
1},{xi′ = 1},V ′ \ i′).

If the output is UNSAT, it means that the initial choice has to be changed.
Thus set xi = 0 and restart the UCP procedure with UCP(F |{xi = 0},{xi =
0},V \ i). If once again the procedure outputs UNSAT, then declare that the
initial formula F is UNSAT. If not one can keep the partial assignment found
and repeat the procedure. The step in which one chooses arbitrarily the value
of a variable in a 2-clause is called a free step. By opposition, the assignment
of a variable in a unit clause is called a forced step. The step in which we came
back to the arbitrary choice done at the free step xi = 1 to change it to xi = 0
is called a backtracking step.
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One can measure the complexity of this algorithm by the number of variable-
fixing operations. For a 2-SAT formula, S. Cook showed that this algorithm has
a polynomial complexity [41]. Note however that the algorithm presented above
does not provide a method for solving the optimization problem MAX-2-SAT.
In fact this problem has been shown to be in NP-c by M.R Garey, D.S Johnson
and L Stockmeyer in [42] in 1976.

1.3.2 The DPLL algorithm for the SAT problem
The above algorithm can in fact be slightly modified to work on a CNF formula
containing clauses of arbitrary length. In 2-SAT formulas, since any free choice
produces unit clauses, one only needs to do backtracking steps on the last vari-
able assigned on a free choice. All the other variables fixed at previous free steps
are fixed, since they belong to a partial assignment compatible with at least one
solution (if it exists). When there are clauses of length greater than 2 instead,
one might have to do several free steps before having the possibility to apply the
UCP procedure. If these choices lead to a contradiction, the backtracking then
have to explore all the possible choices for these free variables before concluding
that the formula is UNSAT. The number of backtracking steps might explode,
leading to an exponential time complexity. This algorithm is called the Davis
Putnam Logemann Loveland (DPLL) algorithm, from the authors names, and
has been introduced in 1962 [43]. It is described by the algorithm 2 (see [3]
p.726).

Algorithm 2 DPLL (INPUT: a SAT formula F , OUTPUT: is F satisfiable ?)
If F is empty then return SAT
If F contains and empty clause then return UNSAT
Select an unset variable xi
If F |{xi = 1} = 1 then return SAT
If F |{xi = 0} = 1 then return SAT
Return UNSAT

The iterations of DPLL can be represented by a decision tree, as shown in
figure 1.3 (the example is inspired from [44]).

It starts at the root of the tree, with the initial formula F containing all
the variables to be assigned. A first variable is chosen and assigned to a value
(x1 = 1 in the example). The left-node of the first generation represent the
simplified formula obtained with this choice. Since no unit clauses are produced,
one needs to make another arbitrary choice: x2 = 1 in the example. If there
is a unit clause, the algorithm fixes the value of one variable present in a unit
clause. When the algorithm finds a contradiction, it backtracks to the last
variable assigned during a free step, and restarts the search from this node.

From this representation, one can measure the running time of DPLL on
the formula F , by counting the number of nodes of the tree. It is intuitively
clear why DPLL have an exponential complexity on SAT formulas with clauses
of length greater than 2. If most of the variables have been fixed during a free
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(1 ∨ 2 ∨ 3) ∧ (2 ∨ 3 ∨ 4) ∧ (1 ∨ 2 ∨ 4) ∧ (1 ∨ 3 ∨ 4) ∧ (1 ∨ 2 ∨ 4) ∧ (2 ∨ 3 ∨ 4) ∧ (1 ∨ 3 ∨ 4) ∧ (1 ∨ 2 ∨ 3)

x1 = 1 x1 = 0

(2∨3∨4)∧(2∨4)∧(3∨4)∧(2∨4)∧(2∨3∨4)∧(3∨4) (2∨3)∧(2∨3∨4)∧(2∨3∨4)∧(2∨3)

x2 = 1 x2 = 0 x2 = 1 x2 = 0

(3∨4)∧(4)∧(3∨4)∧(4) (3∨4)∧(3∨4)∧(3∨4)∧(3∨4) (3)∧(3) (3∨4)∧(3∨4)

x3 = 1 x3 = 0 x3 = 1

UNSAT (4) ∧ (4) (4) ∧ (4) UNSAT (4)

x4 = 0

UNSAT UNSAT SAT

Figure 1.3: decision tree representing the DPLL algorithm solving the formula
F = (x1 ∨ x2 ∨ x3)∧ (x2 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨
x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

step, and all the free choices need to be backtracked, the number of steps is
roughly the number of nodes of a binary tree of depth N , which is O(2N ). On a
2-SAT formula instead, each free choice is followed by a cascade of forced steps
(possibly O(N) of them). Even if all the variables have been fixed during a
free step, and all the free steps have been backtracked, the complexity is still
polynomially bounded by N2.

In the algorithm 2, one has not specified how to choose the variable during
a free step. One can use heuristics that aim at increasing the performances of
DPLL. For instance, one can decide to pick a variable that will generate many
unit clauses, or a variable that will satisfy the largest number of clauses. Since
there is no good criterion to decide which heuristic to use, one would have to
experiment them on the formula one has to solve.

1.4 Performances of the algorithms and random
CSP ensembles

1.4.1 Complete and incomplete algorithms
An algorithm that solves a CSP, i.e. that provides an answer to all the possible
instances of the CSP, is called a complete algorithm. DPLL is an example
of complete algorithm for the SAT problem. By opposition, an incomplete
algorithm is not guaranteed to provide an answer to any possible instances. In
a decision problem, proving that a instance has a solution is often easier than
proving that there is no solution. In the SAT problem for instance, a certificate
for a ‘yes’ answer (to the question ’Is there a solution ?’) is provided by a solution
to the problem, that is an assignment of the N variable, therefore having size
N . A certificate for the answer ‘no’ instead might have an exponential length, if
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for instance one tries to exhibit all the possible assignments, showing that they
all are UNSAT. The display of this certificate by itself have an exponential time
complexity. An incomplete algorithm only tries to find a solution, and answers
’I don’t know’ whenever it is unable to provide one, or to prove that the problem
has no solution.

We will present in the following chapters several incomplete algorithms for
CSPs. Although they do not solve all the possible instances of the problem,
it is observed experimentally that they are more efficient than the complete
algorithms, on typical instances. To characterize their performances, one needs
to precise what we mean by typical instances. This can be done by introducing
random ensembles of instances. One then study the performances of algorithms
on instances drawn from this ensemble.

1.4.2 Random CSP ensembles
We have seen that an instance of CSP can be represented with a hypergraph.
Therefore one can use random graph ensembles to define the random CSP en-
sembles. The Erdős Rényi (ER) ensemble GN (k,M) is an example of random
hypergraph ensemble. An instance of GN (k,M) is drawn by choosing indepen-
dently for each clause a k-tuple of variables uniformly at random among the(
N
k

)
possible ones. Note that while the hyperedges a ∈ C have a fixed degree k,

the degree of the vertices i ∈ V is not fixed.
We will also use another random hypergraph ensemble, called the k-uniform

(l + 1)-regular random hypergraph ensemble (the choice (l + 1) is made here
for convenience when using the cavity method, see chapter 7). In this ensemble
both the hyperedges and the vertices have a fixed degree k and l + 1. All the
hypergraphs with this property are equiprobable in this ensemble.

To define a random ensemble for the SAT problem, we need to specify how
to draw the signs Jai . The random k-SAT ensemble is one of the most studied
random ensembles for the k-SAT problem. An instance is obtained by drawing
a hypergraph from GN (k,M), then independently for each variable in each k-
tuple, one chooses a sign Jai with probability 1/2.

It is useful to introduce the density of constraints α = M/N , and to work
with the ensemble GN (k, αN). For the k-uniform (l + 1)-regular random hy-
pergraph ensemble, since N and M must satisfy the relation N(l + 1) = Mk,
the density of constraints is related to the degrees as l+ 1 = αk. Intuitively, in-
creasing the density of constraints, the number of solutions should shrink, since
it is harder to satisfy an overconstrained instance. At high density, we will see
that most of the instances are in fact UNSAT.

We define the thermodynamic (large size) limit as N,M → ∞ with a fixed
ratio α = M/N . In this limit, several properties of the random k-SAT en-
semble concentrate around their mean value. This is called the self-averaging
phenomenon. In particular, in this limit many random CSPs (including the ran-
dom k-SAT ensemble) exhibit threshold phenomena. The probability of some
property jumps abruptly from 1 to 0 when varying the control parameter α. We
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say that a property of the instances is typical when its probability goes to 1 in
the thermodynamic limit.

The most prominent threshold is the satisfiability threshold αsat(k). Be-
low αsat(k), typical instances are SAT, while above αsat(k), typical instances
are UNSAT. In the satisfiability phase α < αsat(k), many other phase tran-
sitions concerning the properties of the set of solutions of a random instance
are predicted by the so-called cavity method, that we shall describe in the next
chapters.

Among them, the clustering transition describes a drastic change in the
structure of the set of solutions in the space of configuration. Below the cluster-
ing threshold, the set of solutions is rather well-connected, any solution can be
reached from any other one by nearby intermediate solutions, while above the
clustering threshold the solution set splits in a large number of distinct groups of
solutions, called clusters, which are internally well-connected but well separated
one from the other.

1.4.3 Performances of DPLL on the random k-SAT en-
semble

Our aim is to study and compare the performances of algorithms on a random
ensemble of instances. We start by giving the experimental study of the DPLL
algorithm on the random k-SAT ensemble.

For a fixed value k, one can plot the fraction of UNSAT instances found by
DPLL as a function of α for several sizes N . The result for k = 3 is shown
in figure 1.4 taken from the study of S. Kirkpatrick an B. Selman in 1994 [45]
One can see that it is a increasing function of α, that goes from 0 to 1. As
N increases, the drop becomes sharper around a threshold value. This is a
numerical evidence of the satisfiability threshold.

One is interested in the running time of DPLL on random instances of k-
SAT. On figure 1.5 taken from the study of D. Mitchell, B. Selman, H. Levesque
in 1992 [46], the median running time is plotted against α. One can see that
the running time has a peak around the satisfiability threshold. The height of
this peak increases rapidly with N . At smaller and larger values of α instead,
the running time is much smaller, and grows with N at a smaller rate. These
observations indicate that the instances drawn from the random k-SAT ensemble
are harder when α is close to αsat(k). In the region of smaller α, the instances
are underconstrained and therefore easy to solve. In the region of larger α,
the instances are so overconstrained that DPLL finds quickly a contradiction
showing that the instance is UNSAT.

In [47], P. Beame, R.Karp, T. Pitassi, and M. Saks show that the size of a
certificate for an unsatisfiable instance of random 3-SAT is with high probability
(w.h.p.) bounded from above by 2cN/α, with c some contant, where "with high
probability" means with probability going to one in the large size limit N,M →
∞ at a fixed ratio α = M/N . This results confirms the decreasing complexity
observed in the unsatisfiable phase when α increases above the satisfiability
threshold αsat. In [48], A. Frieze and S. Suen show that in the satisfiable phase a

25



Figure 1.4: from [45] Fig 3.a, fraction of UNSAT formulas drawn from the
random 3-SAT ensemble versus α for several sizes N .

Figure 1.5: from [46], median running time of DPLL on random instances of
3-SAT ensemble as a function of α, for several sizes N
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modified version of DPLL without backtracking (with the unit clause branching
rule) can find solutions efficiently for small enough densities: up to α ≤ 3.003
for k = 3, which is strictly smaller than the satisfiability threshold prediction
αsat(k = 3) = 4.267 ([7]). This confirms the experimental observation that
DPLL works in polynomial time for small enough densities. In [49], S. Cocco
and R. Monasson provide a theoretical estimation of the algorithmic threshold
for DPLL on random 3-SAT, introducing the random (2 + p)-SAT to study the
evolution of the formula under the sequential assignments, with p the fraction
of 3-clauses in the formula. They predict that above the density α ' 3.003, the
running time of DPLL with the unit clause branching rule becomes typically
exponential.

1.4.4 The algorithmic barrier
The numerical study of the performances of DPLL on the random k-SAT en-
semble indicates that in the region of α close to the satisfiability threshold the
typical instances are hard to solve. In the next chapter we will introduce sev-
eral incomplete algorithm that are designed to search for solutions, and we will
compare their performances on the random ensembles. In particular, one is in-
terested in determining the interval of α where it is possible to find an algorithm
that is successful on typical instances. As we have seen this interval has to be
in the satisfiable region α < αsat(k), but one could ask whether there exists a
range in which typical instances have solutions, but no algorithm is able to find
one. More precisely, one is interested in the putative algorithmic barrier αalg(k),
above which no algorithm is able to find a solution in polynomial time, assuming
P6=NP, and for typical instances. Is it possible to show that αalg(k) coincides
with αsat(k), by exhibiting an algorithm efficient in the entire satisfiable region?
Or are there limitations that force the strict inequality αalg(k) < αsat(k)? The
structure of the set of solutions of typical instances undergoes a series of phase
transitions in the satisfiable phase, that are predicted by the cavity method. It
is therefore interesting to know if some of these phase transitions affect the per-
formances of algorithms. For instance, algorithms such as Monte Carlo Markov
Chains for the resolution of CSPs are affected by the clustering transition.

1.4.5 Some properties of the random hypergraph ensem-
bles

In the ER ensemble GN (k,M) the degree of a uniformly chosen vertex i is a
binomial random variable B(M,k/N). In the thermodynamic limit therefore
the degree of i obeys a Poisson law of mean αk.

A crucial property shared by the ER ensemble GN (k, αN) and the k-uniform
(l+1)-regular random hypergraph ensemble is their locally tree-like structure in
the thermodynamic limit. Given a uniformly chosen vertex, the neighborhood
within a finite distance is, with probability going to 1 as N →∞ (one says with
high probability) acyclic. Consider a random instance of hyperhraph F , and a
uniformly chosen vertex i of F , and let Bi,r(F ) be the subgraph containing the
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vertices at distance smaller or equal than r from i. Then it is shown in [50] that
Bi,r(F ) converges in distribution to the random tree ensemble Tr(k, α).

An instance of Tr(k, α) is constructed from the Galton Watson branching
process: starting from the root, one draws its degree d from the distribution
pd. For the GN (k, αk) ensemble one take the Poisson law pd = e−αk(αk)d/d!,
while for the regular ensemble one has pd = I[d = l + 1]. We attach to the root
d function nodes, and each of them are then connected to k− 1 variable nodes,
that constitute the first generation of the tree. Then for each variable node of
the first generation, one draws an independent integer d with probability rd =

pd(d+1)∑
d′≥0

pd′ (d′+1)
. The distribution rd is called the residual degree distribution. It

is the probability, given that the variable node i is connected to a given function
node a, that i is connected to d other function nodes. For the GN (k, αN)
ensemble rd is also distributed according to a Poisson law of mean αk, while for
the k-uniform (l+1)-regular random hypergraph ensemble one has rd = I[d = l].
One reiterates the same process for each generation of the tree, until the r-th
generation.

Since in the large size limit a random graph converges locally to a tree, one is
then interested in the typical length of loops in these ensembles. It can be showed
that for a random hypergraph F and a randomly chosen vertex i, the length
li of the shortest loop going through i in F is O(logN), with high probability
(w.h.p.). This scaling can be understood by the following heuristic argument.
In GN (k, αN), the average number of variable nodes in Bi,r(F ) is (αk(k− 1))r.
If one considers that loops appear when this number becomes comparable to
the total number of nodes N (actually when it becomes comparable to

√
N by

the Birthday Paradox), then one obtains r ∝ lnN/ ln(αk(k − 1)).

1.5 Statistical physics and constraint satisfac-
tion problems

1.5.1 Boltzmann probability measure
There is a natural mapping between optimization problems and statistical physics
problems. In optimization problems, the goal is to minimize a cost function E
defined on the set of possible configurations. For a CSP, there is a natural cost
function E : χN → R+ that counts the number of clauses violated by a given
assignment x ∈ χN of the N variables: E(x) =

∑M
a=1(1 − ca(x∂a)) (equation

(1.1)). For each instance F of a CSP, one introduces a Boltzmann probability
distribution on the set of configurations:

µβ(x) = 1
Z(β)e

−βE(x) (1.6)

the parameter β plays the role of an inverse temperature. In this setting the
cost function E is also called the Hamiltonian, or energy function. The nor-
malization Z(β) is called the partition function. In the β → ∞ limit, the
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probability distribution µβ concentrates on the configurations that minimize
the energy. These configurations are called ground states in statistical physics,
and corresponds to the optimal configurations of the optimization problem. In
the decision version of the problem (with a threshold E0 = 0), a solution is a
zero-energy configuration. If the instance F admits solutions, then in the large
β limit the probability distribution (1.6) converges to the uniform measure on
the set of solutions, and the partition function counts the number of solutions.
Using the expression (1.1) of the energy-cost function E, one can re-write the
probability distribution µβ :

µβ(x) = 1
Z(β)e

−β
∑M

a=1
(1−ca(x

∂a
)) (1.7)

1.5.2 Statistical physics models
From the above expression, one sees the mapping from a CSP to a statistical
physics problem. In this problem, the variables xi ∈ χ interact through the local
couplings ψa(x∂a) = 1−ca(x∂a). The graphical representation of the instance F
can be viewed as the underlying graph representing the local interaction between
variables.

Spin glass model are a generalization of the Ising model, in which the energy
function reads

E(σ) = −
M∑
a=1

Ja
∏
i∈∂a

σi (1.8)

the variables σi are spins σi ∈ {+1,−1}, and the coupling Ja is either in R or in
{−1,+1}. The p-spin model is is the restriction of the general spin glass model
to p-body interaction. The 2-spin model is also called the Edward-Anderson
model.

In the zero temperature limit, the spin glass model can be seen as a CSP: the
Boltzmann measure µβ is concentrated on the configurations which minimize the
energy (1.8). A solution of the spin-glass problem should satisfy the following
constraints. If Ja > 0 (resp. Ja < 0), then the product

∏
i∈∂a σi should be

equal to 1 (resp. −1). For a two body interaction, it means that the variables
should be aligned (resp. anti-aligned), therefore it is called a ferromagnetic
(resp. antiferromagnetic) interaction.

Note that an instance of XORSAT can be transformed into an instance
of the spin glass CSP with couplings Ja living in {−1,+1}. Recall that a
XORSAT clause ca = (li(1) ⊕ · · · ⊕ li(|∂a|)) equals 1 when the sum of literals is
equal to 1 modulo 2. Let na be the number modulo 2 of variables that appear
negated (the variables such that li = xi) in the clause a. Then the constraint
li(1)⊕· · ·⊕ li(|∂a|) = 1 can be rewriten xi(1)⊕· · ·⊕xi(|∂a|) = ba, with ba = 1−na.
Setting Ja = 1− 2ba the above constraint is equivalent to ask for the constraint
Jaσi(1) . . . σi(|∂a|) = 1 to be satisfied.

Conversely, each instance of the spin glass problem (with couplings Ja ∈
{−1,+1}) can be transformed into a XORSAT instance. We conclude that the
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decision version of the CSP associated with spin glasses at zero temperature is
in P.

1.5.3 Graphical models
The measure (1.6) belongs to a family of measures described by graphical mod-
els, that we define here. Let G = (V,C,E) be a bipartite graph, called a factor
graph. V is called the set of variable nodes, C is the set of factor nodes, and E
is the set of edges between variables and factors. For each variable node i ∈ V
we denote by ∂i = {a ∈ C : (ia) ∈ E} the set of factor nodes connected to
i, and for each factor node a ∈ C we denote by ∂a = {i ∈ V : (ia) ∈ E} the
set of variable nodes connected to a. One defines also a space of configurations
χN , with N = |V |, and χ a finite alphabet. Finally let {ωa}a∈C be a set of
non-negative weights ωa : χ|∂a| → R+. A measure µ over χN described by the
graphical model G,χ, {ωa} is defined as follows:

µ(x) = 1
Z

∏
a∈C

ωa(x∂a); Z =
∑
x

∏
a∈C

ωa(x∂a) (1.9)

The measure is well defined only if there exists at least one configuration for
which all the weights ωa are strictly positive.

Note that in the case of the measure (1.6) defined for a given instance F of
CSP, the factor graph coincides with the graph representing F , and the weights
{ωa} are written: ωa(x∂a) = e−β(1−ca(x

∂a
)). The uniform measure on the set of

solutions of F (assuming it is non-empty) is obtained by taking the limit β →∞
in µβ . It can be written

µu(x) = 1
Zu

∏
a∈C

(1− ca(x∂a)) = 1
Zu

∏
a∈C

I[x∂a satisfies the clause a] (1.10)

where the subscript ’u’ stands for ’uniform’.
We will have to define other measures associated with the instance F , for

which the factor graph will be sometimes slightly different to the initial one rep-
resenting F . Therefore it is more convenient to work with this general definition.
We will generally denote by Θ the set of parameters needed to describe a given
family of graphical models: i.e. the rules to construct the factor graph from the
initial graph representing an instance F , and the function space in which the
set of functions {ωa}a∈C belongs. For a given instance F , one defines Θ(F ) to
be the specification of these parameters to the instance F , and let µΘ(F ) be the
measure associated with these parameters.

A measure µ described by a graphical model have the following decorrelation
property called global Markov property. Let A, B, and S be three disjoint subset
of V . One says that S separates A and B when there is no paths joining a node
in A to a node in B without passing through S. Then (from [44] proposition
9.2):

Pµ[xA, xB |xS ] = Pµ[xA|xS ]Pµ[xB |xS ] (1.11)
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one says that the variables xA, xB are conditionally independent. In the chap-
ter 4 we will describe the message-passing algorithms, that are built using the
Markov property, and that allow to compute the properties of the measure µ
when the factor graph is a tree.
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Chapter 2

Phase transitions in random
CSPs

We give now a more detailed picture of the phase transitions occuring in random
CSPs when the density of constraints α is varied. We will take the particular
example of the random k-SAT ensemble, but many other random CSP ensembles
share the same qualitative picture.

2.1 The satisfiability transition
We say that an event occurs with high probability (w.h.p.) when its probability
goes to 1 in the thermodynamic limit. We recall that the satisfiability threshold
αsat(k) separates a phase α < αsat(k) where random instances are SAT w.h.p.
to a phase where random instances are UNSAT w.h.p. The cavity method [4,
5, 6, 7, 8] provides an estimate of the satisfiability threshold. However, the
existence of the satisfiability transition is not yet proven for all values of k. It
is summarized in the following conjecture:

Conjecture 1 Let F be a random CNF formula with N variables andM = αN
clauses, drawn from the random k-SAT ensemble. Let PN (k, α) be the probability
that the formula F is SAT. For any k ≥ 2 there exists a constant αsat(k) such
that for all ε > 0,

lim
N→∞

PN (k, αsat(k)− ε) = 1, and lim
N→∞

PN (k, αsat(k) + ε) = 0 (2.1)

This conjecture has been proven for k = 2, with αsat(2) = 1 by V. Chvatal, B.
Reed (1992) [51], W. Fernandez de la Vega (1992) [52], and A. Goerdt (1996)
[53]. In [12], J. Ding, A. Sly and N. Sun prove the satistfiability conjecture
for large but finite k, and show that the value of αsat(k) is given by the one-
step symmetry breaking cavity method prediction. Proving the existence of the
satisfiability threshold for all values of k ≥ 3 is an open problem, however the
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following theorem by E. Friedgut (1999) [54] provides a partial result in this
sense:

Theorem 2 (Friedgut) For every k ≥ 2, there exists a sequence αk(N) such
that for all ε > 0,

lim
N→∞

PN (k, αk(N)− ε) = 1, and lim
N→∞

PN (k, αk(N) + ε) = 0 (2.2)

The above result states that the transition from SAT to UNSAT takes place in
a window smaller than any fixed ε for N large enough. However it remains to
prove the convergence of the sequence αk(N) to some value αsat(k) as N →
∞, to prevent from possible oscillations. Upper and lower bounds have been
established rigorously on the sequence αk(N). In the following we present some
of the methods used to derive these bounds.

2.1.1 Upper bounds
Upper bounds can be obtained with the first moment method. We describe the
general strategy (presented in [44]). Define a function on the set of instances
U(F ) such that

U(F ) =
{

0 if F is UNSAT
≥ 1 otherwise

(2.3)

Then one applies the Markov inequality to U(F ) to obtain:

P[F is SAT] ≤ E[U(F )] (2.4)

note that the equality is reached for U(F ) = I[F is SAT], but we do not know
how to compute this quantity. One looks instead for a simpler function for which
E[U(F )] can be computed, and has a vanishing limit when N → ∞ for large
enough α. As a first choice one can use U(F ) = Z(F ), the number of solutions
of F (see for instance [55]). By linearity of the expectation and by uniformity
in the generation of the clauses the expectation E[Z(F )] is equal to the total
number of assignments 2N times the probability that a given assignment σ0 is
SAT for F . This probability is the product over the clauses of the probability
that each clauses is satisfied by σ0, therefore:

E[Z(F )] = 2N (1− 2−k)M = exp[N(ln 2 + α ln(1− 2−k))] (2.5)

In the large N limit one gets:

E[Z(F )]→
{

0 if α > αUB(k)
+∞ α < αUB(k)

, αUB(k) = − ln 2
ln(1− 2−k) (2.6)

and we have obtained the upper bound αUB(k) on the conjectured satisfiabil-
ity threshold αsat(k). Intuitively, one can expect that this bound is not tight,
because Z(F ) can take exponentially large values in N , and moreover its fluc-
tuations can be exponentially large as well. In order to improve on this bound a
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possible strategy is to choose a function U(F ) that counts the number of assign-
ments in a small subclass of solutions. If the subclass is small enough one can
hope to reduce the fluctuations of U(F ) and obtain a tighter upper bound. In
[56] (1998), L. Kirousis, E. Kranakis, D. Krizanc, and Y. Stamatiou (1998) use
the subclass of locally maximal SAT assignments, where a locally maximal SAT
assignment is a SAT assignment such that for each variable i such that xi = 0,
flipping the variable to xi = 1 leads to an UNSAT assignment. They define
U(F ) to be the number of locally maximal SAT assignment and apply the first
moment method to this function. They obtain the upper bound α′UB(k), that
is solution of the equation

α ln(1− 2k) + ln
(
2− exp

(
−kα/(2k − 1)

))
= 0 (2.7)

2.1.2 Lower bounds
To derive a lower bound on αk(N) one can use the second-moment method. The
method was introduced by D. Achlioptas and C. Moore in 2006 [57]. Again the
strategy is to use a function U(F ) that vanishes when the formula is UNSAT,
and that is strictly positive otherwise. Applying the Cauchy-Schwarz inequality
to U(F ) we get:

P[F is SAT] ≥ E[U(F )]2
E[U(F )2] (2.8)

One needs to find a function U(F ) for which the above ratio E[U(F )]2
E[U(F )2] is not too

difficult to compute and has a non vanishing limit when N →∞ limit for small
enough α. One can show that applying this method to Z(F ) does not provide a
useful bound, because the ratio E[Z(F )]2

E[Z(F )2] vanishes for any non-zero value of α. It
is however possible to apply this technique to another function U . In particular,
one can choose U to be the size of a subset of the set of solutions. By choosing
carefully this subset, one can hope to reduce the flutuations of U(F ) around its
mean, so that the ratio E[U(F )]2

E[U(F )2] is not vanishing in the large N limit.
Using this approach, D. Achlioptas and C. Moore show in [57] (Theorem 1.)

that for k ≥ 3:
lim
N→∞

PN (k, α) = 1 if α ≤ 2k−1 ln 2− 2 (2.9)

Note that in the large k limit, this result combined with the upper bound αUB(k)
provides the scaling αsat(k) = O(2k).

Another approach consists of analysing the behavior of some explicit al-
gorithm that search for SAT assignments. If one can show that a particular
algorithm finds a SAT assignment with positive probability when α is smaller
than some value, then applying the Friedgut theorem 2 one can deduce that this
happens w.h.p., therefore this value is a lower bound on the satisfiable threshold.
More details on this analysis are given in the section 5.2.2.
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2.2 Quenched and annealed averages
Consider a measure µΘ(F ), defined with a graphical model Θ, whose support is
the set of solutions of a given instance F :

µΘ(F )(σ)
{

= 0 if σ is not a solution
> 0 if σ is a solution

(2.10)

One might sometimes relax the condition µΘ(F )(σ) = 0 when σ is not solution,
and introduce a temperature β. The free entropy density is defined as follows:

Φ(Θ(F )) = 1
N

lnZ(Θ(F )) (2.11)

When the instance F is randomly drawn (for instance from the random k-SAT
ensemble), the measure µΘ(F ) becomes itself random. The goal of the cavity
method is to determine the typical properties of the measure µΘ(F ) and of the
free entropy density Φ(Θ(F )). To do so one defines the quenched free entropy
density:

Φq(Θ) = lim
N→∞

1
N

E[lnZ(Θ(F ))] (2.12)

where the average E is taken on the random ensemble of instances. In many sta-
tistical physics systems, the free entropy density Φ(Θ(F )) concentrates thanks
to the self-averaging phenomenon, therefore the quenched free-entropy density
indeed contains information on the properties of the typical measures µΘ(F )
drawn from the random ensemble. Usually, the quenched free energy cannot be
evaluated exactly for random CSPs. Its value can however be estimated with
the cavity method, that we will describe in the next chapters. There is a natural
upper bound on the quenched free entropy density, provided by the annealed
free entropy density:

Φa(Θ) = lim
N→∞

1
N

lnE[Z(Θ(F ))] (2.13)

From Jensen’s inequality applied on the random variable Z(Θ(F )) one obtains

Φq(Θ) ≤ Φa(Θ) (2.14)

2.3 Overview of the phase transitions in random
CSPs

The cavity method predicts several phase transitions affecting the structure of
the set of solutions of typical instances, in the satisfiable phase. We give in this
section a qualitative description of the phase transition, and will explain the
cavity computation by itself in the next chapters.
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2.3.1 The clustering transition
The clustering transition occurs in the satisfiable phase α < αsat(k). It is also
known as the reconstruction or the dynamical transition. This transition can
be described from various perspectives.

Looking at the set of solutions of typical instances, the clustering threshold
separates a regime where the set of typical solutions is rather well connected,
any solution can be reached from any other by via nearby intermediate solutions.
Moreover, this rearrangement is only on a non-extensive number of variables.
Above αd(k) the typical solutions breaks into an exponential number of clusters,
or pure states, which are internally well connected, but separated one from each
other by free-energy barriers.

Note that this definition concerns typical solutions with respect to the mea-
sure µΘ(F ) chosen to describe the set of solutions. In fact, the set of solutions
could be connected, but by narrow, winding paths that a Markov chain would
take exponential time to find, and changing the measure could raise or lower the
total probability of the paths from one region of state space to the other, chang-
ing the mixing time from exponential to polynomial. Therefore the value of the
clustering threshold depends on this choice, and we denote explicitly αd(k,Θ)
the clustering threshold. Usually, the uniform measure is chosen to describe the
set of solutions, but it is possible to introduce non-uniform measures, and study
how the clustering threshold is affected by this change.

As already mentioned, the satisfiability threshold αsat(k) separates the SAT
phase where typical instances are satisfiables w.h.p., and the UNSAT phase
where typical instances are unsatisfiables w.h.p.. This definition has to do with
the whole set of solutions of the instance, not only typical solutions, therefore
the value αsat(k) does not depend on the specific choice of the measure µΘ.

The clustering transition can also be interpreted as the birth of the point-to-
set correlation function under the probability measure µ chosen to describe the
set of solutions. It was introduced in [14] by A. Montanari and G. Semerjian in
2006 (see also [58]). Given a variable node i and a set of variable nodes B, the
point-to-set correlation function is defined for spin variables as follows (we used
the definition in [59] equation (19)):

C(i, B) =
∑
σB

Pµ(σB)
(∑

σi

Pµ(σi|σB)σi

)2

−

(∑
σi

Pµ(σi)σi

)2

(2.15)

Let d(i, B) be the distance from i to B on the graph of interactions. This
correlation measure how much information on the value of one spin variable i
(the point) is provided by the observation of all spins in B (the set) at distance
d(i, B) from it. In the unclustered regime the point-to-set correlation C(i, B)
vanishes when d(i, B) grows, while it does not decay to 0 in the clustered regime.
In [14] A. Montanari and G. Semerjian show that this correlation implies the
divergence of the relaxation time of local stochastic processes that respect the
detailed balance condition (such as the Monte Carlo Markov chains), which
justifies the terminology dynamic transition. One can understand this slow
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down in the dynamics from the appearance of energetic barriers separating the
clusters.

This transition also implies the solvability of the tree reconstruction problem
introduced in [13] in 2003 by E. Mossel and Y. Peres. For the first discussion
of the connection between 1RSB equations and the reconstruction problem, see
the paper from M. Mézard and A. Montanari [16]. We will present this problem
and explain how to compute the clustering threshold in its formalism in the
chapter 7 (section 7.3).

In the cavity method treatment of random CSPs the clustering threshold is
defined as the appearance of a non-trivial solution of the one step of Replica
Symmetry Breaking (1RSB) equation with Parisi parameter X = 1.

2.3.2 Cluster decomposition
In the unclustered phase, the typical solutions belongs to a single cluster. The
thermodynamic properties of the measure µ are well described by the Replica
Symmetric (RS) cavity method, that in particular provides an estimate ΦRS of
the quenched free entropy density Φq = limN→∞(1/N)E[lnZ].

The RSB phenomenon described in the framework of spin glasses occurs in
random CSPs precisely at the clustering transition. The assumption of the RS
cavity method are not valid anymore, and one uses instead the one replica-
symmetry-breaking (1RSB) cavity method. In this setting, one assumes that
the solution set Ω splits into an exponential number of disjoint clusters (also
called pure states) {Ωc}, and that the restriction µc of the measure µ to one
of these clusters is efficiently described by the RS cavity method. For instance,
the point-to-set correlation C(i, B) associated with µc is vanishing in the large
d(i, B) limit, while µ has a non vanishing point-to-set correlation function. Let
us write µ(σ) = ω(σ)/Z, with ω(σ) the weight of the configuration σ, and
Z =

∑
σ ω(σ) the partition function. The partition function Z is decomposed

into the contribution of each clusters:

Z =
∑
σ

ω(σ) =
∑
c

Z(c); Z(c) =
∑
σ∈Ωc

ω(σ) (2.16)

where Ωc is the set of solutions belonging to the cluster c. One can decompose
the measure µ as follows:

µ(σ) =
∑
c

p(c)µc(σ) (2.17)

with µc the restriction of the measure µ to configurations in the cluster c:

µc(σ) = I[σ ∈ Ωc]ω(σ)
Z(c) (2.18)

and p(c) = Z(c)/Z is the distribution over the clusters.
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Figure 2.1: Sketch of the transitions undergone by the set of solutions. The set
of solutions is in black, the rest of the configuration space is in white.

2.3.3 Complexity and the condensation transition
Let φc = (1/N) lnZ(c) be the free entropy density associated with the config-
urations of the cluster c. At the leading order in N , the number of clusters
with a given free entropy density φ is assumed to be exponential in N : eNΣ(φ),
where Σ(φ) is called the complexity. Σ(φ) is assumed to be self-averaging, and
plays the role of an entropy density for the set of clusters. One can re-write the
partition function Z as an integral over φ:

Z =
∫

dφeN [φ+Σ(φ)] (2.19)

The total free entropy density Φ = (1/N) lnZ can be evaluated via the Laplace
method:

Φ = sup
φ:Σ(φ)≥0

[Σ(φ) + φ] (2.20)

the condition Σ(φ) ≥ 0 ensures that the clusters exist in the thermodynamic
(large N) limit. The total free entropy thus results in a competition between
clusters of large free entropy φ, and the most numerous clusters (with large
Σ(φ)). Let φ∗ be the value achieving the supremum. Under the law µ, we say
that a solution is typical if it belongs to a cluster of free entropy density φ∗.
If Σ(φ∗) > 0, there is an exponential number of clusters contributing to the
total free entropy density. If Σ(φ∗) = 0 instead, there is only a sub-exponential
number of dominant clusters.

Increasing the value of α, there is a transition from a phase where Σ(φ∗) > 0
toward a phase where Σ(φ∗) = 0. It is called the condensation transition, and
denoted αc(k,Θ), where we have emphasized the dependence of this transition
on the choice of the measure describing the set of solutions µΘ.

Note that by construction one has αd(k,Θ) ≤ αc(k,Θ) ≤ αsat(k). Figure
2.1 shows a sketch of the dynamical, condensation and satisfiability transitions
on the set of solutions.
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2.3.4 Computing the complexity function
In order to compute the condensation threshold αc one needs to compute the
complexity function Σ. To do so (see [60]), one introduces the following poten-
tial, called replicated entropy:

Φ1(X ) = 1
N

lnZ1(X ); Z1(X ) =
∑
c

(Z(c))X (2.21)

where X is a real parameter called the Parisi parameter (the subscript ‘1’ is
just here to remind that this function is used in the 1RSB framework). It plays
the role of an inverse temperature for the modified distribution over the set of
clusters:

pX (c) = (Z(c))X
Z1(X ) = eXNφc

Z1(X ) (2.22)

it allows to weight differently the clusters according to their free entropy. As
we did before for the true partition function Z, one can re-write the modified
partition function Z1(X ) as an integral over φ:

Z1(X ) =
∫

dφeN [Xφ+Σ(φ)] (2.23)

Evaluating the integral via the Laplace method yields

Φ1(X ) = sup
φ

[Σ(φ) + Xφ] = Σ(φ∗1(X )) + Xφ∗1(X ) (2.24)

where we defined
φ∗1(X ) = argmax

φ
[Xφ+ Σ(φ)] (2.25)

Thus the Parisi potential Φ1(X ) and the complexity Σ(φ) are Legendre trans-
forms of each other. One can invert this relation to get

Σ(φ∗1(X )) = Φ1(X )−X dΦ1(X )
dX (2.26)

The potential Φ1(X ) and its derivative can be estimated with the 1RSB cavity
method, leading to an estimation of the complexity function. In most of the
cases, the complexity function is a concave function of φ, as represented in figure
2.2

In the uncondensed regime αd ≤ α ≤ αc, the expression (2.20) achieves its
supremum for a value φ∗ which satisfies the constraint Σ(φ) ≥ 0, therefore φ∗ =
φ∗1(X ) and Φ = Φ1(X = 1). It can be checked that the prediction Φ1(X = 1)
coincides with the RS prediction ΦRS of the free entropy denstity. Therefore
in the clustered-uncondensed regime the thermodynamic prediction of the RS
assumption is valid. The phase transition αd does not affect thermodynamic
quantities. As we have seen, this transition can be detected by the slow down
of the dynamics, therefore this phase is also called the dynamic 1RSB (d1RSB)
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Figure 2.2: Left: uncondensed regime the supremum of (2.20) is achieved for
φ∗ such that Σ(φ∗) > 0 and (dΣ(φ)/dφ) = −1 (the red tangent has slope −1).
Right: condensed regime, the supremum of (2.20) is achieved for φ∗ such that
Σ(φ∗) = 0 and (dΣ(φ)/dφ) = −Xs (green tangent), the value of φ such that
(dΣ(φ)/dφ) = −1 has a negative complexity.

phase. The order parameter that detects this phase transition is the point-to-set
correlation function.

In the condensed regime αc ≤ α ≤ αsat, the value of φ such that (dΣ(φ)/dφ) =
−1 has a negative complexity, and the supremum of (2.20) is achieved for a
smaller value Xs < 1: Φ = Φ1(Xs). The free entropy density is not described
anymore by the RS prediction ΦRS , and the system undergoes a first-order
phase transition. The condensed phase is therefore also called the static 1RSB
(s1RSB) phase. Note that values of the Parisi parameter such that X > 1
never contribute to the computation of the thermodynamic quantities (it can
be however useful to look at these values if one is interested in atypical cluster
sizes).

One can resume these observations with the following expression

Φ = inf
X∈[0,1]

Φ1(X )
X

(2.27)

which is valid in all phases. In the unclustered phase α < αd(k,Θ) there is only
one cluster, one has Σ(φ) = 0 for all φ, therefore from the definition of Z1(X )
one gets Φ1(X ) = Xφ = XΦ, and the equation (2.27) is correct. In the clustered
phase, call X ∗ the minimizer of the expression (2.27). In the uncondensed phase
one has X ∗ = 1. Indeed from the expression (2.24) of Φ1(X ) one sees that

d(Φ1(X )/X )
dX = −Σ(φ(X ))

X 2 (2.28)

hence in the uncondensed phase since Σ(φ(X )) = Σ(φ∗(X )) > 0 the function
Φ1(X )/X is decreasing and reach its minimum at X = 1. Therefore the ex-
pression (2.27) indeed gives Φ = Φ1(1). In the condensed regime, one has
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Σ(φ(X = 1)) < 0, therefore the equation (2.27) selects the value Xs such that
Σ(φ(Xs)) = 0. Since Φ1(Xs) = Xsφ(Xs) one gets back to the correct result:
Φ = Φ1(Xs).

2.3.5 Computing αc and αsat from the complexity
In practice, to compute the condensation threshold one needs to compute the
value of the complexity function at X = 1: Σ(X = 1) = Σ(φ∗1(X = 1) from the
expression (2.26), and let αc be the value at which Σ(X = 1) vanishes.

The complexity function allows to predict the value of the satisfiability
threshold. Note that at X = 0, the partition function Z1(X = 0) counts the
number of clusters, independently of their size. Note also that for X = 0 one
has Φ1(X = 0) = supφ[Σ(φ)] = Σ(φ∗1(X = 0)). Therefore when Σ(φ∗1(X = 0))
becomes negative it means that for typical large instances all the clusters have
disappeared, hence that there is no solution.

2.3.6 Rigidity and freezing transitions
From the notion of clusters, one defines the notion of frozen variable inside a
cluster. They are variables that take the same value in all the solutions of the
corresponding cluster. One defines the rigidity transition αr(k,Θ). Above the
rigidity transition typical solutions (with respect to µΘ) contain an extensive
number of frozen variables. One defines the freezing transition αf (k), above
which all solutions contain an extensive number of frozen variable. The freezing
transition concern all solutions, not only typical one, and thus is harder to
compute than the rigidity transition. The freezing threshold has been introduced
in [26], its value has been computed using a large deviation derivation, for the
bicoloring of hypergraphs. By definition the following inequality must hold:
αd(k,Θ) ≤ αr(k,Θ) ≤ αf (k) ≤ αsat(k).

One says that a solution is frozen when it contains an extensive number of
frozen variables. Experimentally, it is found that several incomplete algorithms
(such as simulated annealing or focused algorithms that we will present in the
next chapter) only found unfrozen solutions. Even in the rigidity phase αr <
α < αf where typical solutions are frozen, it seems that it is easier for these
algorithms to find untypical unfrozen solutions. The freezing transition thus
appears as a good candidate for an upper bound on the algorithmic barrier
αalg(k). Indeed, one can hope that as long there is some untypical unfrozen
solutions, an efficient algorithm should be able to find them. In [26], a biased
measure on the set of solutions is introduced in order to turn to typical the
unfrozen solutions that were untypical in the uniform measure µu. In the new
biased measure, the rigidity threshold is increased up to densities close to the
satisfiability threshold.
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k αd αc αsat [7] αr
3 3.86 3.86 4.267
4 9.38 9.547 9.931 9.88
5 19.16 20.80 21.117
6 36.53 43.08 43.37 39.87 [62]

Table 2.1: clustering, condensation, satisfiability and rigidity thresholds for the
random k-SAT ensemble.

q ld lc lsat
4 9 10 10
5 14 14 15
6 18 19 20

Table 2.2: clustering, condensation and satisfiability thresholds for the q-COL
(2, l + 1)-regular ensemble.

2.3.7 Some values of the thresholds
We now give some values of the thresholds introduced above. In the table 2.1 the
threshold values for the random k-SAT ensemble for the uniform measure over
the set of solutions (see [59] Table 1.). Note the qualitative change between k = 3
and k ≥ 4. At k = 3 the clustering threshold equals the condensation threshold.
In that specific case, the phase transition separates the unclustered phase from
a full-RSB phase, and the complexity computed under the 1RSB approximation
(see section 2.3.4) is not valid. For k ≥ 4 instead there a clustered-uncondensed
phase. The thresholds for the q coloring problem defined on the random (l+ 1)-
regular graph ensemble (with k = 2) are shown in the table 2.2 (see [61]).
The convention for lsat is that the random graphs are w.h.p. uncolorable if
l ≥ lsat(q). Similarly, the clustered (resp. condensed) phase is located in the
region l ≥ ld (resp. l ≥ lc). In the table 2.3 we give some of the thresholds for
the bicoloring problem on the random (k, l+ 1)-regular ensemble. These results
are taken from [26]. Note that even if the model is only defined for integer
values of l, the threshold values of the rigidity lr and the condensation lc are
given as real numbers, since these two thresholds can be expressed as analytic
functions of l. One has to round this real threshold to its two nearest integers,
to find the largest (resp. smallest) l such that the property (the presence of
frozen variables, or the condensation of the set of solutions) is true (resp. false)
in the thermodynamic limit. Note that we have made the arbitrarily choice to
show the thresholds of the k-SAT problem on the Erdős Rényi ensemble, and
the thresholds of the q-coloring problem on the regular ensemble, but in practice
there is no technical limitation to compute the thresholds of these two problems
on any of these two ensembles.
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k ld lr lc lsat
3 5 6.673 5 5.742
4 17 20.64 19 18.89
5 47 51.45 51 51.50
6 108 117.16 128 128.50
7 255.10 305.34
8 541.99 703.99

Table 2.3: clustering, rigidity, condensation and satisfiability thresholds for the
bicoloring problem on the (k, l + 1)-regular ensemble.
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Chapter 3

Local Search Algorithms

We will present now a family of incomplete algorithms that search for solutions
of an instance of CSP. Starting from an initial configuration x0, they perform
a walk in the configuration space, with a bias toward the set of solutions. The
term local means that at each step, only one variable (or sometimes a small
number with respect to N) is flipped.

3.1 Simulated Annealing
We have seen that one can re-write a CSP into the form of a statistical physics
problem. We can now apply the tools developed for physical problems to CSPs.
In particular, the Monte Carlo method allows to sample from a Boltzmann
distribution µβ as defined in (1.6) with finite inverse temperature β. In the zero-
temperature limit (β →∞) the Monte Carlo method cannot be applied directly,
because the convergence hypotheses are not fulfilled (specifically irreducibility).
To sample from the Boltzmann distribution with β →∞, and thus extract the
solution of the instance F , one can use the Simulated Annealing algorithm. This
method performs several steps of Monte Carlo, decreasing the temperature at
each step. The application of Simulated Annealing for optimization problem
has been introduced in [25] by S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi in
1983.

3.1.1 Monte Carlo method
This method is an simple way to sample from a Boltzmann distribution at
finite temperature, when the number N of variables gets large. One constructs
a Monte Carlo Markov Chain which is guaranteed to converge to the target
distribution µβ . The transition rules ω(x → x′) of the Markov Chain must
satisfy the following conditions in order to ensure the convergence:

44



1. irreducibility: for any pair of configuration x, x′ there exists a path (x0, . . . , xn)
of length n with x0 = x, xn = x′, and with non-zero transition probabili-
ties: ω(xi → xi+1) > 0 for all i = 0, . . . , n− 1

2. aperiodicity: for any pair of configurations x and x′ there exists a positive
integer n(x, x′) such that for any n ≥ n(x, x′) there exists a path of length
n connecting x to x′ with non-zero probability. (This is automatically
verified for an irreducible chain if one enforces the additional condition
ω(x→ x) > 0)

3. stationarity: the distribution µβ(x) is stationary with respect to the tran-
sition probabilities ω(x→ x′):∑

x

µβ(x)ω(x→ x′) = µβ(x′) (3.1)

The last condition is also called the global balance condition. A stronger condi-
tion is often enforced, called the detailed balance condition. For any pair x, x′
such that either ω(x→ x′) > 0 or ω(x′ → x) > 0 one requires:

µβ(x)ω(x→ x′) = µβ(x′)ω(x′ → x) (3.2)

Note that the detailed balance condition implies the global balance condition. In
many cases the detailed balance is used as an easy way to prove global balance.

Under the above conditions on the transition probabilities, the MCMC con-
verges to the target distribution µ (see [44] theorem 4.12):

Theorem 3 Assume that the rates ω(x→ x′) satisfy the three conditions men-
tionned above. Let X0, . . . , Xt, . . . be random variables distributed according to
the Markov Chain with rates ω(x → x′), and initial condition X0 = x0. Let
f : χN → R be a real valued function, then:

1. The probability distribution of Xt converges to the stationary distribution:

lim
t→∞

P[Xt = x] = µβ(x) (3.3)

2. Time averages converge to averages over the stationary distribution

lim
t→∞

1
t

t∑
s=1

f(Xs) =
∑
x

µβ(x)f(x) almost surely (3.4)

The Monte Carlo method consists of defining the transition rules of a Monte
Carlo Markov Chain that converges toward the desired distribution, and then
simulating it on a computer until convergence. The Metropolis and the Glauber
dynamics are two examples of MCMC adapted to a Boltzmann measure µβ(σ) =
e−βE(σ)/Z(β) defined over a set of spin variables.
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3.1.2 Metropolis algorithm
Let σ(i) be the configurations that coincides with σ except for the variable i:
σ

(i)
i = −σi. Let ∆i = E(σ(i))−E(σ). At each step, a site i is chosen uniformly

at random, and its spin variable is flipped with probability

ωi(σ) = exp[−βmax(∆i, 0)] (3.5)

The transition probabilities can be expressed in terms of the ωi:

ω(σ → τ) = 1
N

N∑
i=1

ωi(σ)I[τ = σ(i)] +
[

1− 1
N

N∑
i=1

ωi(σ)
]
I[τ = σ] (3.6)

One can check that ω(σ → τ) satisfy all the conditions that ensure the conver-
gence of the Markov Chain towards the measure µβ . The Algorithm 3 shows an
implementation of the Metropolis algorithm.

Algorithm 3 Metropolis Algorithm
Generate σ0 uniformly at random from {+1,−1}N
for t = 1 to t = T do

Draw i uniformly at random in {1, . . . , N}
Compute ωi(σt−1) from (3.5)
Draw a random number p uniformly in [0, 1]
if p < ωi(σt−1) then

Set σt = σ
(i)
t−1

else
Set σt = σt−1

end if
end for
return σT

3.1.3 Heat bath algorithm
Another possibility is to use the Glauber dynamics. Compared to the Metropolis
algorithm, the only change is in the expression of ωi:

ωi(σ) = µβ(σ(i))
µβ(σ) + µβ(σ(i)) = 1

2

[
1− tanh

(
β∆i

2

)]
(3.7)

3.1.4 Relaxation time scale of the Monte Carlo dynamics
The performance of the Monte Carlo method is affected by the phase transi-
tions occuring in statistical physics models. In the low temperature (or high
density) phase, the dynamics become very slow, and the time needed for the
Markov process to converge increases. In order to quantify this slow down, it
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is useful to introduce a time scale for the equilibrium dynamics. Starting from
a configuration σ(0) drawn from the stationary distribution µβ , one defines for
each variable i the time correlation function:

Di(t) = 〈σi(0)σi(t)〉 − 〈σi〉2 (3.8)

the average 〈·〉 is taken with respect to the realization of the Monte Carlo dy-
namics and to the choice of σ(0). For finite size systems, this time correlation
function is expected to be positive and decreasing, with Di(0) = 1 and a van-
ishing limit when t → ∞. In the large t limit, the Monte-Carlo Markov chain
has indeed converged to the stationary distribution µβ , and σi(0) and σi(t) are
decorrelated.

From the time correlation function Di(t), one can extract the relaxation
time scale, that is the smallest integer τ such that Di(t) decreases below a given
threshold ε > 0:

τi(ε) = min{τ > 0 such that Di(t) ≤ ε ∀t ≥ τ} (3.9)

In [63], A. Montanari and G. Semerjian show that this time scale can be related
to the point-to-set correlation function:

Ci(r) = C(i, B(i, r)) = |〈σi〈σi〉Bi(r)〉 − 〈σi〉2| (3.10)

where B(i, r) is the subset of variable nodes j at distance from i smaller than the
integer r: dij ≤ r. Using the notation σ∼i,r = σV \B(i,r), the average 〈·〉Bi(r) is
taken with respect to the conditional distribution Pµβ [·|σ∼i,r]. The correlation
length is the smallest integer l such that Ci(r) decreases below ε:

li(ε) = min{l ≥ 0 : Ci(r) ≤ ε, ∀r ≥ l} (3.11)

It is shown in [63] that for the Glauber dynamics at finite β on a graphical
model (with local interactions) as defined in the paragraph 1.5.3, the following
inequality holds:

li(2
√

2ε) ≤ Cτi(ε) (3.12)

with C = 2ke a constant.
In the unclustered regime α < αd, the point-to-set correlation function Ci(r)

for typical large instances decreases to 0 when r gets large. The length scale
li(ε) is thus finite in this phase. In the clustered regime α > αd, the point-to-set
correlation function has instead a non vanishing limit. The length scale li(ε) is
set by convention to be equal to the maximum distance from i to a vertex in G,
that scales as O(lnN) for typical instances of the ER or the regular ensemble.
Therefore the relaxation time diverges with N for typical instances. It is also
shown in [63] that for the p-spin glass model, in the low temperature phase,
that the relaxation time has an exponential scaling in N . One can also expect
a similar scaling for the random k-SAT.

Intuitively, the divergence of the relaxation time can be understood from
the presence of free-energy barriers. In the clustered phase, the measure µβ

47



decomposes into an exponential number of clusters. These clusters are well
separated by free-energy barriers: the total weight of all configurations that
are not in a cluster is exponentially small in N . Looking at the equilibrium
dynamics, one starts from a configuration σ(0) inside a cluster c. Because of the
presence of the exponentially large barriers separating the clusters, the dynamic
will stay inside the cluster for a long time (assumed to be exponential), before
exploring other clusters at larger time scales.

3.1.5 Cooling scheme
The global balance (stationarity) condition for the Boltzmann distribution at
finite β writes: ∑

x

e−β(E(x)−E(x′))ω(x→ x′) = 1 (3.13)

Since each of the terms are smaller or equal than 1, one has ω(x → x′) ≤
e−β(E(x′)−E(x)). Therefore in the β →∞ limit, for any x, x′ such that E(x′) >
E(x) one has ω(x → x′) → 0. This means that the paths are forced to be
non-increasing in energy, i.e. the Markov Chain is not irreducible. Intuitively,
this means that the algorithm can get trapped in a local minima and cannot
escape from it since it cannot climb up in energy.

Since the Markov Chain is irreducible for any finite temperature, another
idea would then be to work with a fixed finite temperature β which is small
enough. One uses a MCMC to sample from it, and since the set of solutions
is included in the support of the measure µβ , a strategy would be to wait
until one generates a solution. However this strategy might also fail, because
the probability under µβ of having a zero-energy configuration is exponentially
small in N . Indeed one has Pµβ [E(σ) = 0] = exp[N(limβ′→∞ φN (β′)− φN (β)],
with φN (β) = (1/N) lnZ(β) the free entropy density associated with µβ , which
is a decreasing function of β.

To overcome these difficulties, the Simulated Annealing algorithm uses a
cooling scheme. It performs n steps of Monte Carlo Markov Chain (MCMC),
with temperatures β1 < β2 < · · · < βn. The final configuration of the step i is
used as the initial configuration of step i + 1. At the beginning, small values
of β (high temperature) allows the dynamics to escape from local minima and
equilibrate on the space of configurations. At the end, the large value of β
(small temperature) allows to find the minima (hoping it is a global one) inside
the basin where the dynamics has falled.

3.2 Focused algorithms
In the Metropolis algorithm 3, the new variable to be flipped is chosen uni-
formly at random among the set of N variables. One can try to enhance the
performances by choosing it according to some heuristics. In focused search
algorithms, one chooses the new variable at random among the variables that
appears in violated clauses.
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3.2.1 RandomWalkSAT algorithm
We present first the RandomWalkSAT algorithm 4 that performs a simple ran-
dom walk. This algorithm has been proposed by C.H. Papadimitriou in [64]).
It takes as input the CNF formula F and a maximum number T of steps and
return either a SAT formula or ’not found’. The algorithm starts with a ran-
dom initial configuration, for instance independently for each variable one can
take xi uniformly in χ = {−1,+1}. In [64], C.H. Papadimitriou showed that
RandomWalkSAT solves w.h.p. any satisfiable instance of the random 2-SAT
ensemble, in a number of steps T = O(N2). In [65], U. Schöning showed the
following result, true for any instance F of the 3-SAT problem. Let R be the
number of restarts of the RandomWalkSAT algorithm, each time with an initial
condition drawn uniformly at random. Let T = 3N be the number of flips of
each restarts. If none of the R successive runs of the RandomWalkSAT on the
instance F has provided a solution, then the probability that F is satisfiable is
lower than e−(3/4)NR. Therefore after many restarts R � (4/3)N , if there are
solutions, the probability that RandomWalkSAT has not found one of them is
very small.

Algorithm 4 RandomWalkSAT(F ,T )
Initialize σ to a random assignment
for T times do

if σ is SAT then
return σ and stop

else
choose an unsatisfied clause a uniformly at random
choose an index i uniformly at random in ∂a
Set σ = σ(i)

end if
end for
return ’not found’

3.2.2 WalkSAT algorithm
The algorithm RandomWalkSAT 4 makes essentially random steps although it
focuses on unsatisfied clauses. It is possible instead to choose the new variable
according to some specific properties. For instance one can use the energy-cost
function E(x) =

∑M
a=1(1− ca(x∂a)) defined in equation (1.1), and decide to flip

the variable that lead to the largest decrease in energy. An algorithm based on
this rule is called a greedy algorithm. However the risk with this greedy choice
is to be trapped in local minima (similarly as the case of Metropolis algorithm
with zero-temperature). A good strategy is to design a mixed algorithm that
performs both random and greedy steps. The idea is that the greedy steps drive
the assignments toward the configurations with low energy, while the random
steps allow to escape from local minima. The algorithm WalkSAT has been
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proposed in 1996 by B. Selman, H. Kautz, B. Cohen [66], and is presented in
the algorithm 5. As for RandomWalkSAT, it takes as input a CNF formula F ,
a maximum number T of iterations, and additionally a probability p ∈ [0, 1] of
performing a random step (with probability p) or a greedy step (with probability
1− p). One can then optimize on p in order to increase the performances.

Algorithm 5 WalkSAT (F , T , p)
Initialize σ to a random assignment
for T times do

if σ is SAT then
return σ and stop

else
Let r be uniform at random in [0, 1]
if r < 1− p then

For each i let ∆i = E(σ(i) − E(σ)
Flip a variable σi for which ∆i is minimal

else
Choose a violated clause a uniformly at random
Flip uniformly at random a variable σi, i ∈ ∂a

end if
end if

end for

3.2.3 Focused Metropolis algorithm
Let us mention that the Metropolis algorithm 3 can be turned into a focused
algorithm 6. The Focused Metropolis Algorithm (FMS) has been introduced in
2005 by S. Seitz, M. Alava and P. Orponen in [67].

Algorithm 6 Focused Metropolis Search
S = random assignment of values to the variables
while S is not a solution do

C = a clause not satisfied by S selected uniformly at random
V = a variable in C selected uniformly at random
∆E = change in number of unsat clauses if V is flipped in S
if ∆E ≤ 0 then

flip V in S
else

Draw p ∈ [0, 1] uniformly at random
if p < η∆E then

flip V in S
end if

end if
end while
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The heuristic for the choice of the new variable to be assigned, and the
rule to decide if a flip is performed leads to several other variations around
WalkSAT. It is hard to predict in advance which algorithm will be the most
efficient. In the next chapters we will describe some of the numerical experiments
that compare their performances on the random k-SAT ensemble. The focused
algorithms are said to be out-of-equilibrim, because they do not satisfy the
global balance condition with respect to the Boltzmann measure µβ , therefore
are not guaranteed to converge to it. However, since our goal is to find only one
solution to the instance F , it is not necessary to sample correctly the distribution
defined on the set of solutions.
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Chapter 4

Message Passing
Algorithms

4.1 Belief propagation
Consider a measure µ defined with a graphical model, as presented in chapter
1 (equation (1.9)). When the associated factor graph is a tree, Belief Propa-
gation (BP) is a method that allows to compute the partition function Z, and
the marginal with respect to µ of a variable xi, or any subset of variables. It
also provides an efficient way to sample a configuration x from µ. Moreover,
all these tasks can be achived in polynomial time in the size N . In the Erdős
Rényi hypergraph ensemble GN (k,M) and in the (k, l)-regular hypergraph en-
semble, typical large instances are locally tree-like. In practice, the BP method
is also used as an approximation on instances randomly drawn from one of these
ensembles.

4.1.1 BP messages
For each edge (i, a) ∈ E of the factor graph, define two messages ηi→a, η̂a→i.
These messages are marginal distributions on a modified factor graph in which
some nodes have been removed. More precisely, ηi→a is the marginal of the
variable xi when the function node a has been removed, and η̂a→i is the marginal
of the variable xi when all the function nodes in ∂i \ a have been removed.
Using the Markov Property, it can be shown that on a tree, the set of messages
{ηi→a, η̂a→i}(i,a)∈E satisfies the following set of local equations:

ηi→a(xi) = 1
zi,a

∏
b∈∂i\a

η̂a→i(xi) (4.1)

η̂a→i(xi) = 1
ẑi,a

∑
x
∂a\i

ωa(x∂a)
∏

j∈∂a\i

ηj→a(xj) (4.2)
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a

i

η̂a→i
ηi→a

Figure 4.1: Messages ηi→a, η̂a→i on a small factor graph with N = 7 vertices
and M = 3 hyperedges with k = 3.

where the zi,a, ẑi,a are constants that ensure the normalization of the messages.
These equations are called the Belief Propagation equations. Note that the
message ηi→a going from i → a depends only on the messages {η̂b→i}b∈∂i\a
coming to the variable node i, as illustrated in figure 4.1. Similarly, the message
η̂a→i going from a → i depends only on the messages {ηj→a}j∈∂a\i coming to
the variable node i. We will sometimes use the shorthand notation:

ηi→a = f({η̂b→i}b∈∂i\a); η̂a→i = g({ηj→a}j∈∂a\i) (4.3)

to denote the BP equations. The BP equations have been introduced by J. Pearl
in 1988 ([68]), in the context of probabilistic inference, and by R.G. Gallager in
1962 ([69]) for decoding low density parity check codes. See also [70, 71] for a
presentation of the BP algorithm.

4.1.2 BP iterations
On a finite tree, the BP equations (4.3) admit a unique solution. One can
solve them using a recursive procedure. Let {η(t)

i→a, η̂
(t)
a→i}(i,a)∈E be the set of

messages guessed at step t. One then considers the BP equations as the fixed-
point equations of the following recursive equations:

η
(t+1)
i→a = f({η̂(t)

b→i}b∈∂i\a); η̂
(t)
a→i = g({η(t)

j→a}j∈∂a\i) (4.4)

For the initial condition, a simple choice is to take uniform messages: η(0)
i→a(xi) =

1/|χ|. One can also define a probability measure P on the space of distribution
over χ, and extract the initial messages i.i.d from P . The algorithm 7 (see [44])
describe the iterative procedure to find a solution to the BP equations (4.3).
It takes as input a factor graph G, the set of function nodes {ωa}a∈C defined
on G, a number tmax maximum of iterations, and a precision threshold ε. It
outputs either a set of messages, or state that is has not converged.
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Algorithm 7 Belief Propagation(G,{ωa}a∈C ,tmax,ε)
For each edge (a, i), initialize the message ηi→a
for t = 1 to tmax do

Compute the messages {η̂(t)
a→i}(i,a)∈E , then {η(t+1)

i→a }(i,a)∈E from (4.4)
Let ∆ be the maximum message change
if ∆ < ε then return the set of messages {η(t+1)

i→a , η̂
(t)
a→i}

end if
end for
return "not converged"

On a tree of diameter tmax the algorithm 7 is guaranteed to find the set
of messages solution of (4.3), independently of the choice of the initialization
and of the updating scheme (4.4). In this algorithm, we have not specified the
ordering of the edges (i, a) for the update of the messages. When BP is used
as a heuristic on factor graphs with loops (without guarantee of convergence),
one usually reshuffles the ordering, taking a random permutation of the edges
before each update.

4.1.3 Marginals
Once we have the solution of the BP equations, the marginal µi(xi) of a variable
xi can be constructed from the messages {η̂a→i}a∈∂i. Using the tree structure
of the factor graph and the Markov property one can write:

µi(xi) ∝
∏
a∈∂i

 ∑
σσ
∂b\i

ωb(σ∂b)
∏

j∈∂b\i

ηj→b(σj)

 (4.5)

using the BP equation (4.2) one gets:

µi(xi) = 1
zi

∏
a∈∂i

η̂a→i(xi) (4.6)

where zi is a normalization constant. One can write similarly the marginal of a
subset of variables. Let CR be a subset of function nodes, and VR be the subset
of variable nodes connected to any of the function nodes in CR, and let R be the
induced subgraph. Suppose that R is connected. Finally let ∂R be the subset
of function nodes that are not in CR but are connected to a variable node in
VR. Then the marginal µR of the variables xR in VR is

µR(xR) = 1
zR

∏
a∈CR

ωa(x∂a)
∏
a∈∂R

η̂a→i(a)(xi(a)) (4.7)
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where for each a ∈ ∂R, i(a) is the unique variable node i ∈ ∂a ∪ VR. For the
particular case CR = {a}, using the BP equation (4.1) this expression reads:

µa(x∂a) = 1
za
ωa(x∂a)

∏
i∈∂a

ηi→a(xi) (4.8)

Conditional laws

Let x∼i be the configuration of the variables in V \i. The conditional distribution
with respect to µ of x∼i given that xi = z takes the form:

Pµ[x∼i|xi = z] ∝
∏
a∈C

ωa(x∂a)I[xi = z] (4.9)

Therefore the factor graph associated with this conditional measure is the initial
factor graph, on which one has added an extra function node I[xi = z] of degree
1, attached to the variable node i. One can run the BP algorithm 7 on this
modified factor graph to obtain the marginal law Pµ[xj |xi = z], for a given
variable node j 6= i.

Consider the particular case where one wants to compute the marginal
Pµ[{x∂a\i}a∈∂i|xi]. On a tree factor graph, when the variable node i is re-
moved, the graph splits into |∂i| disconnected subtrees {Ta→i}a∈∂i, where Ta→i
is the subtree whose root is a. Since the value of xi is fixed, the subsets of
variables {xTa→i}a∈∂i become independent of each other:

Pµ[{x∂a\i}a∈∂i|xi = z] ∝
∏
a∈∂i

Pµ[x∂a\i|xi = z] (4.10)

and Pµ[x∂a\i|xi = z] can be expressed in terms of the BP equation written for
Pµ[xTa→i ]:

Pµ[x∂a\i|xi = z] ∝ ωa(x∂a)
∏

j∈∂a\i

ηj→a(xj) (4.11)

4.1.4 Bethe free entropy and Entropy
When the factor graph is a tree, one can express the free entropy density Φ =
(1/N) lnZ from the set of messages that is solution of the BP equation (4.3):

ΦBethe = 1
N

∑
a∈C

lnZa({ηi→a}i∈∂a) + 1
N

∑
i∈V

lnZi({η̂a→i}a∈∂i) (4.12)

− 1
N

∑
(i,a)∈E

lnZi,a(ηi→a, η̂a→i) (4.13)

55



where

Za({ηi→a}i∈∂a) =
∑
σ∂a

ωa(σ∂a)
∏
i∈∂a

ηi→a(σi) (4.14)

Zi({η̂a→i}a∈∂i) =
∑
σi

∏
a∈∂i

η̂a→i(σi) (4.15)

Z(i,a)(ηi→a, η̂a→i) =
∑
σi

ηi→a(σi)η̂a→i(σi) (4.16)

this expression is called the Bethe free entropy density. It has been introduced
by H. A. Bethe in 1935 in [72] for the ferromagnetic Ising model. Note that
one can alternatively consider the Bethe free entropy density as a functional on
the set of messages ΦBethe[{ηi→a, η̂a→i}(i,a)∈E ]. It can be shown (see [73]) that
the stationary points of the Bethe free entropy are in one-to-one correspondence
with the solutions of the BP equation.

From the expression of the free entropy, one can derive the expression of the
entropy in terms of the set of messages. Define the Shannon entropy associated
to the measure µ:

S[µ] = −
∑
x

µ(x) lnµ(x) (4.17)

The following general relation holds between S[µ] and the free entropy density
Φ:

S[µ] = NΦ + U (4.18)

where U is the internal energy:

U = −
∑
x

µ(x)
∑
a∈A

lnωa(x∂a) (4.19)

one can re-write this expression in terms of the marginals µa(x∂a) = Pµ[x∂a]

U = −
∑
a∈C

∑
a∈A

µa(x∂a) lnωa(x∂a) (4.20)

and use the expression (4.8) of the marginal µa in terms of BP messages to
finally obtain an expression of S[µ] in terms of the messages:

S[µ] = NΦBethe −
∑
a∈C

∑
x∂a

ωa(x∂a) ln(ωa(x∂a))
∏
i∈∂a ηi→a(xi)∑

x
∂a
ωa(x∂a)

∏
i∈∂a ηi→a(xi)

(4.21)

4.1.5 Hard-fields
One says that a BP message ηi→a is a hard field when it forces the variable xi to
take a particular value z ∈ χ: ηi→a(xi) = ηhard

z (xi), with ηhard
z (xi) = I[xi = z].

A similar definition holds for the message η̂a→i: η̂a→i(xi) = η̂hard
z (xi) = I[xi =

z]. When the measure µ is supported on the set of solutions of a CSP instance
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F (assuming that F is satisfiable), and for tree factor graphs, the presence of
hard fields in the set of BP messages solving the BP equations (4.3) indicates
that some variables should take one particular value in order to construct a
SAT assignment (i.e. in all the solutions to F , these variables take the same
value). Indeed from the expression of the marginal µi (equation (4.6)), we see
that whenever there is a hard fields η̂a→i: η̂a→i = ηhard

z , then we get µi(xi) =
I[xi = z].

4.1.6 Warning Propagation
One defines the Warning Propagation (WP) messages to be the projection of
the BP messages on their hard part:

νi→a(xi) = I[ηi→a(xi) > 0]; ν̂a→i(xi) = I[η̂a→i(xi) > 0] (4.22)

these messages have the following interpretation. When νi→a(z) = 1, then
according to the set of constraints in ∂i\a, the variable xi is allowed to take the
value z. When νi→a(z) = 0 instead, the set of constraints in ∂i \ a, forbid the
variable xi to take the value z. Similarly, when ν̂a→i(z) = 1, then the constraint
a allows the variable xi to take the value z, and forbid it when ν̂a→i(z) = 0. The
Warning Propagation equations are the projection of the BP equations (4.3) on
the WP messages. We will use the shorthand notation:

νi→a = fWP({ν̂b→i}b∈∂i\a); ν̂a→i = gWP({νj→a}j∈∂a\i) (4.23)

The first BP equation (4.1) has the same form for all CSP. Projected on the
WP messages this gives:

νi→a(σi) =
{

0 if ∃a ∈ ∂i \ a : ν̂a→i(σi) = 0
1 otherwise

(4.24)

The second BP equation depends on the choice of the function nodes {ωa}a∈C .
Take for instance the k-SAT clauses ωa(x∂a) = ca(x∂a) = 1−

∏
i∈∂a I[σi = −Jai ].

Then the second WP equation states:

ν̂a→i(−Jai ) =
{

0 if ∀j ∈ ∂a \ i : ν̂a→j(Jaj ) = 0
1 otherwise

(4.25)

ν̂a→i(Jai ) = 1 (4.26)

Another example is the bicoloring on k-hypergraphs (NAE-SAT) for which
ωa(σ∂a) = I[σi(1), . . . , σi(|∂a|) n.a.e], where ’n.a.e’ stands for ’not-all-equal’. In
that case the second WP equation states:

ν̂a→i(σi) =
{

0 if ∀i ∈ ∂a \ i : ν̂a→i(−σi) = 0
1 otherwise

(4.27)
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In order to solve the WP equations, one can run an algorithm similar to the
algorithm 7, replacing the BP iterations (4.4) by the WP iterations obtained by
introducing an uptdate scheme on the WP equations (4.23):

ν
(t+1)
i→a = fWP({ν̂(t)

b→i}b∈∂i\a); ν̂
(t)
a→i = gWP({ν(t)

j→a}j∈∂a\i) (4.28)

When the WP messages are initialized with the permissive value νi→a(xi) = 1
on all the edges, these iterations are guaranteed to converge. On a tree, the set
of WP messages obtained is the unique solution to the WP equations. From
the WP solution, one can construct the equivalent of the marginal µi, but for
WP messages:

νi(xi) =
∏
a∈∂i

ν̂a→i(xi) (4.29)

One calls νi a local field. When νi(z) = 1, this means that the value xi = z is
allowed by the set of messages {η̂a→i}a∈∂i, while it is forbidden when νi(z) = 0.
For a measure whose support is the set of solution of a given CSP instance F ,
the set of local fields provides useful information about the satisfiability of this
instance. One says that a contradiction occurs for the variable xi when νi(x) = 0
for all x ∈ χ. If such a contradiction occurs, it means that for any value that the
variable xi can take, there will be clauses that will be violated. Therefore the
instance F has no solutions. If no contradictions occur, then the set of variables
for which there is a unique value xi ∈ χ such that νi(xi) = 1 corresponds to the
set of variables that are forced to take this specific value in all the solutions of
the instance F (if there is solutions). For the SAT problem, it is shown in [74]
that the WP equations correspond to the UCP rule. In UCP, a contradiction
corresponds to the appearance of a zero-length clause, indicating that two unit-
clauses are contradicting each other. A contradiction in UCP occurs if and only
if there is a contradiction in the WP messages. If no contradiction has occured,
then the partial assignment found by the UCP algorithm corresponds to the set
of variables with νi(xi) = 1 for some xi ∈ χ.

Note that if no contradiction has occured, it does not mean that the instance
F admits a solution (otherwise UCP/WP would solve the decision problem on
k ≥ 3-SAT and since it works in polynomial time one would have incidentally
P=NP). Moreover, when F admits solutions, it can happen that a variable
that is forced to take a given value in all solutions is not unveiled by the WP
iterations. This may cause the failure of the message-passing algorithms that
we will present below.

In the case where the factor graph is a tree, however, it can be shown that
if no contradiction has occured, then the problem admits solutions (see [35]
Theorem 1 for the SAT problem). In that case, the information contained in
the local fields can be used to construct a solution.

4.1.7 Survey Propagation
When a factor graph contains loops, the BP equation may admit more than one
solution. In the RSB framework described in chapter 2, above the clustering
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threshold, for large typical instances, the measure µ is assumed to split into an
exponential number of states {µc}, each of these states being the restriction of
the measure µ to one cluster c:

µ(x) =
∑
c

p(c)µc(x) (4.30)

where p(c) is the distribution over the set of clusters. In the 1RSB cavity
method, one assumes that each state µc is associated with one solution of the
BP equation, to be denoted {ηci→a, η̂ca→i}(i,a)∈E . The 1RSB cavity method then
introduces a set of probability distributions {Pi→a, P̂a→i}(i,a)∈E . The probabil-
ity distribution Pi→a is the probability to observe the BP message ηci→a when
the cluster c is chosen randomly according to the distribution p(c). A similar
definition holds for P̂a→i. These probability distributions satisfy a set of equa-
tions, called the 1RSB cavity equations, that we denote using the shorthand:

Pi→a(ηi→a) = F ({P̂b→i}b∈∂i\a), P̂a→i(η̂a→i) = G({Pj→a}j∈∂a\i). (4.31)

We will postpone the derivation of these equations to chapter 7 dedicated to
the cavity method (see section 7.6). Note that the {Pi→a, P̂a→i}(i,a)∈E are
probability distributions over the space of messages. For instance, a message
η(σ) over a spin variable can be parametrized by its mean value h: η(σ) =
(1 + hσ)/2. Therefore the space of this message is already [0, 1]. It is more
tractable to work with the projection of the distributions {Pi→a, P̂a→i}(i,a)∈E
on their contribution to hard fields. One uses the following decomposition:

Pi→a(ηi→a) =
∑
x∈χ

hi→a,xδ[ηi→a − ηhard
x ] +Qi→a(ηi→a) (4.32)

P̂a→i(η̂a→i) =
∑
x∈χ

ĥa→i,xδ[η̂a→i − η̂hard
x ] + Q̂a→i(η̂a→i) (4.33)

When the Parisi parameter X is equal to the special value 0 or 1, one can obtain
closed equations on the weight of hard fields {hi→a,x, ĥa→i,x}(i,a)∈E,x∈χ. For the
special case X = 0 the equations obtained are called (SP) Survey Propagation
equations:

hi→a,x = F SP({ĥb→i,x′}b∈∂i\a,x′∈χ), ĥa→i,x = GSP({hj→a,x′}j∈∂a\i,x′∈χ)
(4.34)

We recall that setting the Parisi parameter X = 0 corresponds to putting equal
probability on all clusters, regardless of their size, while X = 1 weights them
proportional to their size, i.e., corresponding to uniformly random solutions.
The SP message hi→a,x can be interpreted as the probability (over the choice
of cluster) that the set of clauses in ∂i \a send a hard field ηi→a = ηhard

x forcing
xi to take the value x. Similarly, the SP message ĥa→i can be interpreted as
the probability that the clause a send a hard field η̂a→i = η̂hard

x .
Note that on tree problems, since there is only one solution to the BP equa-

tions, the probability distributions {Pi→a, P̂a→i}(i,a)∈E are Dirac delta’s on the
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unique solution to the BP equations. The SP messages are either equal to 0 or
to 1, and thus reduce to the WP messages, with the following correspondence:

• If there is a x ∈ χ such that hi→a,x = 1 then it translates to νi→a(x) =
1 and νi→a(x′) = 0 ∀x′ 6= x

• if for all values x ∈ χ one has hi→a,x = 0, then νi→a(x) = 1 for all x.

From the SP messages, one can construct a local field νSP
i (z), that can be

interpreted as the probability that the variable i receives a warning that forces
it to take the value xi = z. Let Pi(µi) be the probability distribution of the
marginal µi in the 1RSB framework. One can express Pi as a function of the
{P̂a→i}a∈∂i:

Pi(µi) =
∫ ∏

a∈∂i

dP̂a→i(η̂a→i)δ[µi − fmarg({η̂a→i})] (4.35)

where µi = fmarg({η̂a→i}) is a shorthand for the equation (4.6). We then project
on the decomposition

Pi(µi) =
∑
x∈χ

νSP
i (x)δ[µi − I[• − x]] +Qi(µi) (4.36)

to get an expression for νSP
i :

1− νSP
i (z) =

∏
a∈∂i

(1− ĥa→i,z) (4.37)

4.2 Algorithms
4.2.1 Sampling procedure
The resolution of the BP equations on a tree allows to compute the marginals
and conditional probability laws of µ. From this knowledge, one can sample from
µ using a sequential assignment procedure. This procedure assign a value to
each variable recursively. Suppose that at time t, one has assigned the values of a
subsetD of variables according to their marginal law Pµ[xD], leading to a partial
assignment xD = zD. One defines the conditional probability Pµ[xV \D|zD] on
the subset of variables that are still not assigned. Then one chooses a new
variable i ∈ V \ D, computes its marginal from the conditional measure, and
draws its value from this marginal. If at each step of the algorithm the marginal
thus computed is exact, then this procedure leads to an exact sampling from
µ. However, computing marginals of a measure µ over a set in N dimensions
is computationnaly intractable. One can use instead a heuristic to estimate the
marginals. The BP-guided decimation is a sampling procedure that uses the
BP estimation of the marginals.
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4.2.2 BP-guided decimation
The BP-guided decimation is described in the algorithm 8. It takes as input the
graphical model that describe the measure µ (the factor graph G, and the set
of functions {ωa}a∈C). It outputs either a configuration z (that is a solution to
the associated instance F ), or returns "not-found".

Algorithm 8 BP-guided sampling(G, {ωa}a∈C)
initialize D = ∅
for t = 1 . . . , N do

Run BP for Pµ[x|zD]
if BP does not converge then

return "not found" and exit
else if there is a contradiction then

return "not found" and exit
else

choose i ∈ V \D
compute the BP marginal Pµ(xi|zD)
draw xi from Pµ(xi|zD)
Set xi = zi and D → D ∪ {i}
Add a factor I[xi = zi] to the graphical model

end if
end for
return zD

When the CSP instance F does not admit a solution, the measure whose
support is the set of solution is ill-defined, but one can still define the BP
messages, and run the BP-decimation algorithm 8. The algorithm will either
find a contradiction, concluding that the instance is not satisfiable, or the BP
iterations will not converge. As already mentioned, it can happen that a variable
xi which is forced to take one particular value (either in the initial instance F ,
or in the simplified formula obtained after t steps) is not detected by the BP
iterations. In that case the marginal µi can have non-zero weights on other
values, leading to a wrong assignment of the variable xi. The resulting simplified
instance therefore does not admit solutions, and the algorithm fails. It is not
specified in the algorithm 8 how the new variable to be assigned is chosen. One
possibility is to take the variable which is the most biased toward one value, i.e.
the variable i which has the largest argmaxz{µi(z)}.

From this algorithm, it is possible to construct a similar version in which the
BP messages are replaced by the WP messages. At each step, the WP iterations
are run in order to determine the local fields of the not-yet assigned variables.
Each variable that is forced to take one value is assigned to this value. The
formula is simplified, and if there is no contradiction, the WP iterations are run
for the next step. If there is no local field forcing a variable, then one picks at
random a variable and fix it to an arbitrary value. This algorithm is equivalent
to the UCP algorithm presented in chapter 1, with an extra free step (or to
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the DPLL without backtracking). Note that since in the WP messages one has
discarded some information about the tendency of a variable to take a particular
value, the BP-guided decimation should be in principle more efficient than the
WP-guided decimation, because the BP-guided decimation algorithm might be
closer to choosing a uniformly random solution, by giving variables values with
the right marginal probability.

4.2.3 SP-guided decimation
The WP and BP-guided decimation algorithms are guaranteed to work on sat-
isfiable instance whose underlying graph is a tree. When the factor graph has
loops, they can be used as heuristics, but without a guarantee of convergence.
The SP-guided decimation is a similar procedure, that uses the SP messages
{hi→a,x, ĥa→i,x}(i,a)∈E,x∈χ defined in (4.32). It is also a heuristic, there is no
guarantee of convergence, but it aims at taking into account the presence of
loops in the factor graph. The SP-guided decimation is described in the algo-
rithm 9. It has been introduced in 2002 by M. Mézard and R. Zecchina, in
[75]. An algorithmic description is given in [35]. It takes as input the graphical
model (G, {ωa}a∈C) and a threshold ε > 0. The new variable to be assigned is
the one with a largest bias πi toward a given value, with πi = maxx∈χ{νSP

i (x)}.
The value is assigned according to πi: xi = argmaxx{νSP

i }. If at some point all
the variables have a bias close to 0, it means that there is no variables that is
forced to take a particular value. In this case the problem is simpler, and the
algorithm calls WalkSAT to solve the instance.

Algorithm 9 SP-guided decimation(F ,{ωa}a∈C ,ε)
Set D = ∅
for t = 1, . . . , N do

Run SP
if SP does not converge then

return "not found"
else

For each i ∈ V \D, compute the bias πi = maxx∈χ{νSP
i (x)}

Let j ∈ V \D be the variable with the largest πi
if πi ≤ ε then

Call WalkSAT
else

Fix xj according to πj
Simplify the formula according to this choice

end if
end if

end for
return the assignment found

We will see in the next chapter that this algorithm outperforms the BP-
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guided decimation and the local search algorithms defined in the previous chap-
ter, on random k-SAT instances, especially in the clustered phase. There is
several possibilities to improve this algorithm. One can introduce backtracking:
if the algorithm fail at some point, one releases the value of some variables that
were fixed. The performances of SP-guided decimation with backtracking have
been studied in [20]. Moreover, the 1RSB cavity method provides a way to
study the cluster decomposition. In particular, the complexity Σ(X ) at X = 0
is an estimation of the logarithm of the number of clusters, for typical large
instances. One can use this quantity to choose the next variable to be assigned.
If a choice lead to a huge decrease in Σ(X = 0), this would mean that a lot of
clusters have been killed by this choice because they are not compatible with it.
One can for instance choose the variable that maximizes the number of clusters
still present at the next step.
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Chapter 5

Performance of the
algorithms on random
Constraint Satisfaction
Problems

In this chapter we compare the performances of the algorithms that search for
solutions on the random CSP ensembles. We will present some of the numerical
experiments and theoretical results that have been obtained in the literature. As
we have seen, these algorithms can be divided in two broad families. In the first
one, the algorithms perform a biased random walk in the space of configurations
towards the solutions. In the second one, the algorithms assign sequentially the
value of the variables: at a given step, only a subset of variables has been
assigned, the others are free. The algorithm then chooses a new variable and
its value according to some heuristic. These heuristics can be based on simple
properties of the not-yet assigned variables, for instance the number of clauses
that will be satisfied by this choice. Or they can use the information provided
by message passing algorithms. In the first chapter, we have seen that the
performances of DPLL on the random k-SAT ensemble depends on the density of
constraints α. Close to the satisfiability transition αsat(k), the typical instances
are hard to solve, and the running time of DPLL grows exponentially in N . We
would like to study the performances of the other algorithms, and determine the
range of α for wich their running time grows polynomially in N . In particular, it
would be interesting to characterize the putative algorithmic barrier αalg(k) ≤
αsat(k) above which no algorithm is able to find a solution in polynomial time,
for a typical random instance (assuming P6=NP). If it is possible to design an
algorithm able to run polynomially in the whole satisfiable phase, then αalg(k) =
αsat(k), but it is also possible that some intrinsic properties of the set of solutions
implies a strict inequality. Up to now, the precise location of αalg(k) is still
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unknown, especially for large values of k. For small values of the connectivity k,
numerical experiments can be performed in reasonable time. They suggest that
some local search algorithms and message-passing inspired algorithms can work
up to densities very close to the satisfiability threshold, thus setting lower bounds
on αalg(k) almost coinciding with the upper bound αsat(k). When k increases,
the numerical experiments become heavier, but simple enough algorithms can
be studied analytically for all k. In this regime there is a wide range of α for
which instances admit solutions w.h.p., yet no known algorithm is able to find
one in polynomial time. The cavity method applied to random k-SAT provides
a very detailed description of the structure of the set of solutions. It is an
interesting open problem to determine whether some of the phase transitions
undergone by the set of solutions affect the perfomances of the algorithms, and
therefore could be related to the algorithmic barrier αalg(k).

5.1 Small connectivity k

5.1.1 Two numerical experiments on local search algo-
rithms at small k

In [76], B. Selman, H. Levesque and D. Mitchell compare the performances of the
complete algorithm DPLL (with the unit clause branching rule) with a variation
of the WalkSAT algorithm, called GSAT, in which there is only greedy steps
(setting p = 0 in the WalkSAT algorithm). They run these two algorithms on
random formulas drawn from the random 3-SAT ensemble in the hard regime
α ' 4.3, with increasing number of variables N . They show that the GSAT
algorithm is faster and therefore able to run on larger instances than the DPLL
algorithm with the unit clause branching rule. This study provides evidence that
the local search algorithm GSAT performs better than the complete algorithm
DPLL on random 3-SAT in the hard regime. In [17], B. Selman, H.A. Kautz and
B. Cohen compare the performances of four local search algorithms: simulated
annealing, GSAT, WalkSAT with a non-zero probability p of random steps, and
an algorithm called random noise. This algorithm is a variation of the WalkSAT
algorithm, in which the random step is not focused: the variable to be flipped
is chosen uniformly at random among the N variables. While GSAT performs
only greedy steps, the three other algorithms can escape from local minima by
making uphill moves. They show that GSAT performs less well than algorithms
with escape strategies, and that WalkSAT outperforms the other algorithms.

5.1.2 Overview of the algorithmic performances for small
values of k

In order to compare the performances of the algorithms, it is convenient to
introduce the algorithmic threshold for each algorithm αALGa (k) (using the no-
tations of [20]) above which the probability of finding a solution in polynomial
time vanishes. More precisely, the performance of an algorithm depends on the
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density of constraints α, on the size N of the problem, and on the cutoff T
on the time we let it run. Let pALGsucc (α, T,N) be the probability (with respect
to the random instance generation and the stochasticity of the algorithm) that
the algorithm ALG has found a solution after T steps on a random instance of
size N with density α. Following the definition given in [31], section V.A, the
algorithmic threshold αALGa (k) is the smallest α such that:

lim
N→∞

pALGsucc (α, T = N c, N) = 0 (5.1)

for all c > 0. In practice the large N limit is inaccessible, and one has to
extrapolate from the results obtained at finite N to estimate the algorithmic
threshold. Note however that as long as N is finite, any running time T can be
considered polynomial if the parameter c is arbitrary. Moreover as N increases
the only interesting regime is the linear regime. One then defines the algorithmic
threshold as the smallest value of α such that limN→∞ pALGsucc (α, T = κN,N),
with κ a constant that can be sent to infinity after the large N limit.

For the RandomWalkSAT algorithm on the random 3-SAT ensemble, the
algorithmic threshold is located at ' 2.7. This value has been determined both
numerically and analytically in [34] by R. Monasson and G. Semerjian and in
[77] by W. Barthel, A. K. Hartmann and M. Weigt.

In [67] S. Seitz, M. Alava and P. Orponen show that WalkSAT with an
optimized parameter p has a linear regime up to α ≈ 4.20 on random 3-SAT.
They also found that the FMS algorithm (see algorithm 6 presented in chapter
3) works in linear time up to α ≈ 4.20. We recall that the clustering threshold
for the uniform measure is αd(3) = 3.86. Therefore it does not seems that the
clustering threshold is relevant to understand the limitations of the local search
algorithms for k = 3. Moreover, the result obtained for FMS and WalkSAT is
very close to the satisfiability threshold αsat(3) = 4.267. (Note that a similar
observation can be made for the 3-coloring on graph: in [78], D. Achlioptas and
C. Moore show that a simple algorithm works up to 4.03, while the clustering
threshold is at 4.00.) Above k = 3, the set of solution undergoes a qualitative
change: the condensation threshold separates from the clustering threshold,
αd < αc. It is not clear however if this affects the behavior of the local search
algorithms: in [19], the authors show that αFMS

a (4) = 9.6 for FMS, which is
above the clustering and the condensation threshold αd(4) = 9.38, αc(4) =
9.547. In [79], S. S. Seitz and P. Orponen study experimentally the focused
record-to-record travel (FRRT) algorithm. It is a local search algorithm that
flips at each step a variable involved in an unsatisfied clause. The flip is accepted
if the increase in the number of unsatisfied clauses is smaller than a threshold
integer d. They show that this algorithm works in lineal time up to α ' 4.23
on the random 3-SAT ensemble.

These results have to be compared with the performances of message-passing
algorithms. For the BP-guided decimation (BPD) one gets αBPDa (3) ' 3.8,
and αBPDa (4) = 9.05 ([37]), while SP-guided decimation (SPD) provides better
results : αSPDa (3) ' 4.252 ([20],[80]), and αSPDa (4) ' 9.73 ([20]). Although very
close to the satisfiability threshold, the algorithmic threshold for SPD is still
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smaller. As expected, SPD performs better than BPD. This can be explained
from the fact that the SP messages take into account the clustering phenomenon.
Indeed above the condensation threshold, even if the BP iterations converge to a
fixed point, the BP marginals thus obtained are likely to provide a bad estimate
of the exact marginals, thus leading to wrong assignments in the decimation.
The running time of BP and SP-guided decimation is determined by the number
of iterations tmax needed for the Message-Passing iterations to converge. Each
Message-Passing iteration requires O(N) operations, therefore the convergence
is achieved in O(tmaxN) operations. For the whole decimation algorithm, one
obtains a complexity O(N2tmax). One can estimate the order of magnitude of
tmax as the typical diameter of the graphs: tmax = O(lnN). In practice it is
observed ([20],[37],[35]) that the number of iterations tmax is growing slowly in
N . In [20] R. Marino, G. Parisi and F. Ricci-Tersenghi study a version of the
SP guided decimation algorithm including backtracking (BSP) on the random
k-SAT ensemble with k = 3 and k = 4. They obtain the best algorithmic
threshold for k = 3 and k = 4 :αBSPa (3) = 4.26, and αBSPa (4) = 9.9 which is
very close to the satisfiability threshold.

All these results can be compared with the performances of the algorithms
using simpler heuristics. For some of them, the rate of convergence can be proven
rigorously. The Generalized Unit Clause (GUC) algorithm has been proven to
work up to αGUCa (3) = 3.003 on random 3-SAT, and to αGUCa (4) = 5.54 on
random 4-SAT (see [48]). GUC is a sequential algorithm: at each step, the al-
gorithm classifies the clauses of the simplified formula according to their length.
Let 1 ≤ q ≤ k be the size of the smallest clauses. The algorithm chooses uni-
formly at random a clause of length q, then chooses uniformly at random a
literal in this clause and assign the value of the underlying variable so that the
clause is satisfied. The behavior of this algorithm can be analyzed for any k,
and in particular on can study its performances in the large k limit (see part
5.2.2). In [81] and [82], the authors independently proved that this bound can be
rigorously improved for random 3-SAT, using an algorithm that sets variables
with high degree and a large imbalance between positive and negative appear-
ances. They prove that this algorithm succeeds up to densities of constraints
α ≤ 3.52. From these comparisons one can conclude that using the more refined
heuristics presented above helps to increase the algorithmic performances. It is
also interesting to compare these results with the performances of DPLL, i.e.
when one allows backtracking. As already mentioned in the section 1.4.3, the
algorithmic threshold for DPLL is estimated at 3.003 for the random 3-SAT
ensemble (see [49]), thus it seems that allowing backtracking does not improve
on the algorithmic threshold in this case.

5.1.3 Frozen variables and whitening dynamics
It is interesting to study the properties of the solutions found by the local
search algorithms. In particular, one would like to know whether these solutions
contain frozen variables. Recall that frozen variables are variables that take the
same value in all the solutions of a cluster. One can use the correspondence
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between clusters and solutions of the BP equations, and say that a variable
is frozen in the cluster c if in the corresponding BP fixed point the variable
receives a hard message forcing it to a particular value. This information is
contained in the solutions of the WP equations, which are the projection of
the BP equations on hard messages. Therefore to determine the set of frozen
variables in a solution σ, one can run the WP iterations, starting from the initial
condition

ν
(t=0)
i→a (τi) = σi (5.2)

It can be shown that this dynamics is monotonic in time, and never produces
contradictions, so that the WP iterations converge toward a unique fixed point
in a finite number of iterations. A variable i is then declared frozen if it receives a
hard message ν̂a→i from at least one clause a that forces it to take one particular
value.

For the k-SAT problem and for the NAE-k-SAT problem, the WP iterations
with σ as initial condition is equivalent to the whitening dynamics. Starting
from the initial condition σ(t=0) = σ (with σ a solution of the instance), the
variables are iteratively whitened (set to σi = 0), if they are not constrained.
A variable i such that σ(t)

i 6= 0 is declared white at time t + 1 if the partial
configuration obtained by flipping it and keeping the other non-white variables
j (such that σ(t)

j 6= 0) unchanged can be extended to a solution by an assignment
of the white variables. In other words, one has to check if the variable belongs
only to clauses which either involve a white variable, or are satisfied by another
variable. The procedures stops when either all variables are white, or a fixed
point is reached. The variables that are non-white at the end of the run are
then declared frozen.

In [19], the authors checked that the solutions found by the FMS algorithm
were completely white, i.e. there were no frozen variables in the solutions they
found. It is also the case for the solutions of the BSP algorithm [20], and more
generally for both local search algorithm and message-passing guided decima-
tion algorithms. This results provide the conjecture that the algorithmic barrier
αalg(k) is upper bounded by the freezing threshold αf (k), above which all solu-
tion contain a finite fraction of frozen variables. The rigidity threshold is defined
as the value of α above which the typical solutions (with respect to the measure
µ defined to describe the set of solutions) contains a finite fraction of frozen
variables. In the region αr ≤ α < αf the algorithms find untypical unfrozen
solutions ([20, 83, 84, 85]).

5.1.4 Analytical study of the BP-guided decimation
In [36] and [37], a theoretical framework is developed to study the running time
of the BP-guided decimation algorithm. Using the cavity method, the authors
analyse the behavior of an idealized algorithm where marginal are computed
exactly. To do so, they introduce an ensemble of CSP parametrized by α, θ, that
allows to study the statistics of the simplified formulas obtained after t = θN
decimation steps. An instance of this ensemble is generated as follows:
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1. draw a satisfiable instance with parameter α < αsat(k)

2. draw a uniform solution τ of this instance

3. construct a set D by including in D each variable independently with
probability θ

4. consider the residual formula on the variables in V \D, obtained from the
initial formula by imposing σi = τi for i ∈ D.

The initial ensemble is recovered with θ = 0. Note that the formula thus
obtained cannot be seen as a formula drawn from the initial random ensemble,
since there are non-trivial correlations between variables in the measure µD
induced by the choice of τ . In order to study the statistical properties of the
formulas obtained from the ensemble defined above, they compute the quenched
averaged residual entropy:

ω(θ) = lim
N→∞

EFEτED[lnZ(τD)] (5.3)

with
Z(τD) =

∑
σ

∏
a=1

I[σ∂a satisfies the clause a]I[σD = τD] (5.4)

being the number of solutions compatible with the partial assignment τD. They
also introduce the average fraction of variables which have been explicitly as-
signed or which can be logically deduced from these assignments

φ(θ) = θ + lim
N→∞

EFEτED[nb. of directly implied variables] (5.5)

Note that (dφ/dθ) − 1 is the average number of newly implied variables ap-
pearing during one step. If this number diverges (signaled by a discontinuity
in φ(θ)), it might be the sign of potential errors that the decimation procedure
will make if the marginals are not computed exactly. Both ω(θ) and φ(θ) are
computed with the RS cavity method. They provide an estimation of the free
entropy and fraction of variables at step t = θN , in an idealized algorithm in
which the marginals are computed exactly. For k = 4, they obtain the following
results. The quenched residual free entropy is a decreasing function of θ. Below
a threshold value α∗ = 9.05 the function is smoothly decreasing, while above
this value the function ω(θ) undergoes a discontinuity in its derivative at θc(α),
corresponding to a condensation transition. Above θc(α) the total free entropy
ω(θ) is dominated by a sub-exponential number of clusters, therefore it might
be harder to find solutions. For φ(θ), below the threshold value α′∗ = 8.05, φ(θ)
is a smoothly increasing function of θ. Above α′∗, φ(θ) is discontinuous at some
value of θ. This discontinuity is the sign of an avalanche of directly implied
variables during the decimation procedure. These estimations are compared
with numerical experiments. They compute the empirical probability of success
for BPD, and see that it vanishes when α is close to α∗ = 9.05 (k = 4). The
performances of the algorithm seems therefore to be related to the phase tran-
sition undergone by the residual free entropy ω(θ). While φ(θ) does not seem
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Figure 5.1: From [37]

to influence the algorithmic threshold, it has an influence on the running time.
Let θhalt be the fraction of variables assigned before the discovery of a contra-
diction, during unsuccessful runs. In figure 5.1 (see [37] figure 11.) the halting
time θhalt is plotted for two values of α above the threshold α′∗ ' 8.1. The
maximum of the distribution of θhalt is close (a bit smaller) to the discontinuity
point of φ(θ). It is quite surprising that the jump of φ(θ) does not affect the
probability of finding a sat assignment, because one would have thought that
an O(N) avalanche of forced variables produces a contradiction in the messages
w.h.p. Instead the BP-guided decimation algorithm is able to fix a finite O(N)
fraction of variables without contradiction. The success probability falls when
entering the condensation phase α > α∗.

In [36] A. Montanari, F. Ricci-Tersenghi and G. Semerjian provide the
asymptotic expansion of the value α′∗(k) at which φ starts to be discontinu-
ous:

αspin(k) = e
2k
k

(1 +O(k−1)) (5.6)

This provides an estimated lower bound on the algorithmic threshold for the
BP-guided decimation algorithm. In [86], A. Coja-Oghlan proves that BP-
guided decimation algorithm fails to solve random k-SAT formulas already for
α = O(2k/k).
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5.2 Large connectivity k

5.2.1 Asymptotic expansion of the thresholds
In the large k limit the satisfiability threshold for the random k-SAT ensemble
scales as:

αsat(k) ∼ 2k ln 2. (5.7)

This result has been obtained rigorously in [87] by D. Achlioptas, A. Naor and
Y. Peres. Using the first and second moment method, they obtain that the
satisfiability threshold is located in the interval (2k ln 2 − k, 2k ln 2). In [7], S.
Mertens, M. Mézard and R. Zecchina provide an asymptotic expansion in powers
of 2−k of the satisfiability threshold in the large k limit, using the cavity metod.
In [12] this prediction for the asymptotic expansion is proven to be exact for
large but finite k. In [88], D. Achlioptas and C. Moore prove the scaling of the
satisfiability threshold for the bicoloring on k-hypergraphs:

αsat(k) ∼ 2k−1 ln 2 . (5.8)

For the q-coloring problem on graphs one has (see [89]):

csat(q) ∼ 2q ln q (5.9)

where c = 2α is the average degree. The asymptotic expansions of the rigidity
and clustering thresholds have also been established for several CSPs, for the
uniform measure. It is shown in [10] that the clustering threshold in the large
k, q limit is upper-bounded by:

αd(k) ≤ 2k(ln k)/k (5.10)

for the k-SAT problem, by:

αd(k) ≤ 2k−1(ln k)/k (5.11)

for the bicoloring on k-hypergraphs, and by:

cd(q) ≤ q ln q (5.12)

for the q-coloring on graphs. Moreover, the authors show that the rigidity
threshold arise at the same scale. It is possible to derive the following sub-
dominant terms for the rigidity threshold, using the naive reconstruction pro-
cedure (see [62] and [38]). This gives for the bicoloring on k-hypergraphs:

αr(k) = 2k−1

k
(ln k + ln ln k + γr + o(1)); γr = 1 (5.13)

and for the q-coloring on graphs (see also [11]):

cr(q) = q(ln q + ln ln q + γr + o(1)); γr = 1 (5.14)
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In general, the analytic determination of the rigidity threshold is simpler than
for the clustering threshold, because it corresponds to the bifurcation of a scalar
(instead of functional) fixed-point equation, as we will see in chapter devoted to
the cavity method. For these two problems, it is conjectured that the clustering
threshold arise at the same scale:

αd(k) = 2k−1

k
(ln k+ln ln k+γd+o(1)); cd(q) = q(ln q+ln ln q+γd+o(1)) (5.15)

In [39], the leading term is proven rigorously for these two problems. For the
coloring problem, the inequality 1 − ln 2 ≤ γd ≤ γr = 1 has been established
rigorously in [38], and the strict inequality γd < 1 was later obtained in [40]. In
[32] we characterize the value of γd for the two models in terms of a functional
equation, that is solved numerically, yielding to the estimate γd ' 0.871 for both
models. We also provide an analytic lower bound γd ≥ 1+ln(2(

√
2−1)) ' 0.812.

The freezing transition has been predicted in [26] to arise at αf (k) ∼ αsat(k)/2
for the NAE-k-SAT problem.

The condensation threshold is also expected to arise close to the satisfiability
threshold. In [59] A. Montanari, F. Ricci-Tersenghi and G. Semerjian obtain
the following asymptotic expansion for the random k-SAT problem, using the
uniform measure:

αc(k) = 2k ln 2− 3 ln 2
2 +O(2−k) (5.16)

5.2.2 Algorithmic performances in the large k limit
Numerical experiments cannot access directly the large k limit, but simple
enough algorithms can be studied analytically for all k; sequential assignment
algorithms that use simple heuristics to guide their choices can be described in
terms of differential equations. In [90], M-T. Chao and J. Franco study the unit
clause algorithm defined in Algorithm 10 and proved that a satisfiable assign-
ment can be found with positive probability when N →∞ whenever α < α∗(k),
where

α∗(k) = 1
2

(
k − 1
k − 2

)k−2 2k
k
. (5.17)

Algorithm 10 Unit clause(F )
if there is any unit clause (forced step) then

Pick a unit clause uniformly at random and satisfy it.
else (free step)

Pick a not-yet assigned variable uniformly at random and assign it to 0/1
uniformly at random
end if

Although we will not explain the proof, it is interesting to mention that it
relies on the uniform randomness of the simplified formula over the set V (t) of
the not-yet assigned variables obtained at step t:
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Lemma 4 (uniform randomness [91]) For every 0 ≤ t ≤ N , and 1 ≤ s ≤
k, the set Ss(t) of s-clauses form a random s-SAT formula drawn from the
random s-SAT ensemble with |V (t)| variables and Cs(t) clauses. Moreover these
s-SAT formulas are independent of each other.

Note that this lemma does not hold for the BP-guided decimation: the decima-
tion procedure has introduced non-trivial correlations between the variables in
V (t). The proof then uses the fact that the formula composed of the 2-clauses
at each step t is distributed from the random 2-SAT ensemble. Looking at its
density, whenever it crosses the value αsat(2) = 1, then the algorithm will fail
w.h.p., while it can be proven that if the density of 2-clauses is bounded away
from 1, then the algorithm succeeds with positive probability. The evolution of
the 2-clause density conditioned on the previous steps can be studied by means
of differential equations on the mean value of the conditional s-clause densities.

This method has also been applied in [51] to improve this result. They study
the Shortest Clause algorithm. This algorithm is a variation of the Unit Clause
algorithm 10. Instead of looking at unit-clause only, this algorithm also look at
clauses of length 2 (2-clauses). At each step, if there are unit-clauses, then the
algorithm performs a forced step. If there is no unit-clauses but there are 2-
clauses, then the algorithm picks one of them at random and satisfy at random
a literal in it. Otherwise it performs a free step. [51] proves that this algorithm
finds a solution w.h.p. for α smaller than

1
8

(
k − 1
k − 3

)k−3 2k
k

(5.18)

In [48] this bound is improved by studying the Shortest Clause algorithm with
limited backtracking. They show that the algorithm find a solution w.h.p. when
α < α∗(k), where α∗(k) ' 1.817(2k/k). In the large k limit, all these algorithms
are performant for densities smaller than c2k/k, with a constant c depending on
the algorithm. In [36], a similar scaling is obtained: the BP-guided decimation
algorithm is conjectured to fail above the threshold e2k/k corresponding to
the appearance of cascades of logically implied variables during the decimation
process, and in [86], A. Coja-Oghlan proves that BP-guided decimation fails to
solve random k-SAT formulas already for α = O(2k/k).

This scaling is improved in [21], where an algorithm is shown to work up
to densities of constraints coinciding at leading order with αd(k) ∼ 2k ln k/k.
Up to now, there is no algorithm that has been proven to find solution in
polynomial time above this scaling. This leaves a multiplicative gap of order
k (neglecting the sub-dominant logarithmic correction) from the satisfiability
transition, hence a wide range of parameters α for which typical instances are
known to have solutions, yet no provably efficient algorithm is known at present
to find them.

Some negative results have also been obtained. In [23], it is shown that the
WalkSAT algorithm is ineffective w.h.p. for densities of constraints larger than
c2k(ln k)2/k, with c > 0 a constant, while it has been shown in [92] that this
algorithm finds satisfying assignment in linear time w.h.p. if α < c′2k/k, with
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c′ > 0 another constant. In [22], it is shown that for the NAE-k-SAT problem,
a certain class of local algorithms fail to find solutions for α > 2k−1(ln k)2/k,
for large k.
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Chapter 6

Biased Measures for
random Constraint
Satisfaction Problems

In this chapter we introduce biased probability measures over the set of solu-
tions of random instances of CSPs, i.e. probability measures for which not all
solutions are equiprobable. This perspective has been used in previous works
[26, 30, 27, 28, 29] (in [27, 28] the local entropy, or density of solutions in con-
figuration space, is used to weight differently the solutions, in [26, 30] this role
is played by the number of frozen variables, while in [29] hard sphere particles
are considered as a CSP, with a bias due to an additional pairwise interaction
between particles). Indeed the structural phase transitions (clustering, conden-
sation, rigidity) introduced in chapter 2 depend on the choice of the measure
describing the set of solutions. In [26] it has been demonstrated that the thresh-
old for properties that are typical in the uniform ensemble (in particular the
existence of frozen variables) can be significantly moved by an appropriate bias.
This opens some hope to diminish the algorithmic gap, by giving more weight to
solutions that are “easier” to find, for instance because they contain less frozen
variables, and to turn atypical properties of the uniform measure into typical
ones of the biased measure.

We will present the form of the bias used during this Ph.D., that was studied
in [31] and in [33]). We will also present the biases introduced in the papers
mentioned above. In this Ph.D., we have focused on the increase of the dynamic
threshold αd that results from a well-chosen bias between solutions. The algo-
rithmic motivation for the study of this threshold comes from the Simulated
Annealing [25] procedure, as explained in chapter 3. Below αd a Markov Chain
reversible with respect to a finite-temperature probability distribution should
be able to equilibrate in polynomial time, hence to find solutions once the tem-
perature is lowered slowly enough (if there is no reentrance in temperature). Al-
though it is true that many algorithm do not respect detailed balance (focused
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algorithm), therefore are not affected by this transition, and that Simulated An-
nealing algorithm can find solutions even out-of-equilibrium, we observed that
the bias introduced in [31] had positive impact on the performances of Simulated
Annealing. We have focused on the bicoloring on k-hypergraph, that exhibits
the same threshold phenomena as k-SAT, but for which the computations are
a bit simpler.

6.1 Definitions
6.1.1 Biased measure over the set of solutions
Let F be an instance of CSP, with S(F ) the set of its solutions. Assuming that
it is non-empty, one can define the uniform measure over the set of solutions:

µu(σ) = 1
Zu
×

{
1 if σ ∈ S(F )
0 if σ 6∈ S(F )

(6.1)

where the subscript u stands for "uniform". The variables σi (i ∈ {1, . . . , N})
leave in a discrete space χ (χ = {−1,+1} for spin variables). In the most generic
form, a biased measure over the set of solutions can be writen:

µb(σ) = b(σ)∑
σ′ b(σ′)

(6.2)

where b : χN → R is a non-negative function:

b(σ)
{
> 0 if σ ∈ S(F )
= 0 if σ 6∈ S(F )

(6.3)

There are infinitely many possible choices for the function b, we will present
the choices that we made during the Ph.D., and the choices made in the papers
[26, 30, 27, 28, 29]. Note that we need to impose some locality requirements
on µ, so that the Monte Carlo simulations are tractable. Indeed at each step
one needs to compute the change in energy when a variable is flipped. For
measures defined with graphical models (such as (1.7)), computing the change
in energy requires only a small number of operations. In the next chapters,
we will apply the cavity method to study the typical properties of the measure
describing the solution set S(F ), when F is drawn from a random CSP ensemble.
This method requires that the measure can be described as a graphical model,
and that the underlying graph representing the measure is locally tree-like in
the thermodynamic limit. As we have seen, the uniform distribution µu can
be described by a graphical model whose underlying graph is the initial graph
representing the instance F . We recall here its formulation as a graphical model
(equation (1.10))

µu(σ) = 1
Zu

∏
a∈C

(1− ca(σ∂a)) = 1
Zu

∏
a∈C

I[σ∂a satisfies the clause a] (6.4)
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In the rest of this section we will introduce biased measures that introduce local
interactions (with respect to the notion of distance induced by the hypergraph
representing F ) between variables. For simplicity we will consider only instances
defined on k-hypergraphs.

6.1.2 Intra-clause bias
We introduce a biased function b that factorizes on the clauses:

b(σ) =
∏
a∈C

ω(σ∂a) (6.5)

The function ω : χk → R vanishes when the subset of variables does not satisfy
the constraint a, and is strictly positive when it does. In that way the set of
solutions S(G) is not modified. Note that the underlying graph representing
this graphical model coincides with the initial graph representing the instance
F .

Application to the bicoloring on k-hypergraphs

We study this form of bias on the bicoloring of k-hypergraphs in [31]. We recall
that in that case, the variables are spins σ ∈ {+1,−1}, and each constraint a
forbids the variables σ∂a to take the same value:

1− ca(σ∂a) = I[σ∂a n.a.e] (6.6)

where n.a.e stands for ’not all equal’. The biased measure reads:

µ(σ) = 1
Z(G)

∏
a∈C

ω(σ∂a) (6.7)

We assume that ω is invariant under all permutations of its k elements. As the
latter are binary variables, ω depends only on the number p of −1 among its
arguments, and we will denote ωp ≥ 0 the value it then assumes. This translates
into the formula:

ω(σ1, . . . , σk) = ωp if
k∑
i=1

σi = k − 2p . (6.8)

The uniform measure over the solutions of the bicoloring problem is recovered
for the choice ω0 = ωk = 0, ω1 = · · · = ωk−1 = 1. If one chooses instead ωp
to depend on p for p ∈ {1, . . . , k − 1}, while keeping ω0 = ωk = 0, one obtains
a probability measure µ that is still supported solely on the proper bicolorings
of G, but is not uniform anymore. We will sometimes relax the constraint
ω0 = ωk = 0, to model the effect of a positive temperature that allows some
constraints to be violated, as it will be used in Simulated Annealing. We will
in any case always assume that ωp = ωk−p: this ensures that the global spin-
flip symmetry µ(−σ) = µ(σ) (which is indeed a property of the set of proper
bicolorings) is preserved.
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We have worked in particular with the specific choice:

ω0 = ωk = 0, ω1 = ωk−1 = 1− ε, ω2 = · · · = ωk−2 = 1 (6.9)

i.e. we weight solutions according the their number of "almost monochromatic"
clauses (clauses with only one variable that takes a different value from the
others). These "almost monochromatic" clauses are responsible for the existence
of frozen variables. We recall that the frozen variables are variables that takes
the same values in all the solutions of a cluster. This is therefore one of the
mechanism of the RSB phenomenon, although not the only one. Indeed for
instance when k ≥ 4, the rigidity transition αr is strictly greater than the
clustering transition αd < αr, hence there in the range αd ≤ α < αr the set of
solution is clustered yet typical solutions do not contain a positive fraction of
frozen variables.

6.1.3 Bias with interactions at distance 1
We consider the following measure that introduces the shortest non-trivial in-
teractions that allows the coupling of variables from different hyper-edges:

µ(σ) = 1
Z

∏
a∈C

ω(σ∂a)
∏
i∈V

ϕi(σi, {σ∂a\i}a∈∂i) (6.10)

in that case, the function ω is just the indicator function of the event "σ1, . . . , σk
satisfy the constraint". The biasing function ϕi > 0 couples the i-th variable
with its |∂i|(k − 1) neighbors at distance 1.

Application to the bicoloring on k-hypergraphs

We study this form of bias on the bicoloring problem of k-hypergraph in [33].
For simplicity we restrict ourselves to regular hypergraphs, where every vertex
has the same degree |∂i| = l + 1. We used the same function ϕ on all the
vertices. There is still a vast freedom in the choice of ϕ. We restrict this choice
by imposing its invariance under a global spin-flip of its arguments (that enforces
the global spin-flip symmetry σ → −σ of the set of solution). We also impose
its invariance under the permutations of the l + 1 hyperedges around i and of
the k − 1 neighboring variables inside each of these hyperedges. This amounts
to take

ϕ(σi, {σ∂a\i}a∈∂i) = ϕ̂({ma→i}a∈∂i) with ma→i =
∑

j∈∂a\i

1 + σiσj
2 (6.11)

and ϕ̂ invariant under the permutations of its l + 1 arguments. ma→i counts
the number of variables in ∂a \ i that are of the same color as σi. In [33] we
discard part of the information contained in ma→i and only distinguish between
the cases ma→i = 0 and ma→i > 0. This is indeed a relevant information about
the solution σ: in the former case σi is the only variable of its color in the a-th
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hyperedge, hence σi cannot be flipped without violating the a-th monochromatic
constraint. One says that a forces i in such a situation. On the contrary when
ma→i > 0 the variable σi is not forced to its value by the a-th hyperedge.
With this simplification, and because of the invariance by permutation of the
arguments of ϕ, the weight of the variable i becomes a function of the number
of constraints forcing it. As σ is a solution, the event ma→i = 0 is equivalent
to "the variables in σ∂a\i are all equal (a.e)", and the biased measure becomes
thus:

µ(σ) = 1
Z

∏
a∈C

ω(σ∂a)
∏
i∈V

ψ

(∑
a∈∂i

I[σ∂a\i a.e]
)

(6.12)

where ψ(p) is the weight attributed to a variable contained in p ∈ {0, . . . , l+ 1}
forcing hyperedges. With this choice, there are l+ 1 free parameters to describe
the function ψ (its argument can take l + 2 values, but a global multiplicative
constant gets absorbed in the normalization Z).

As mentioned, the presence of forcing clauses is one mechanism of the RSB
phenomenon, but cannot explain it on its own. In [33] we showed that bias
defined in (equation 6.12) was already giving positive results on the clustering
threshold, both for small connectivity k and in the large k limit. In the future
it would be interesting to study more general form of biases, keeping all the
information in ma→i.

In [33] we give a particular attention to the specific form:

ψ(0) = 1, ψ(p) = b(1− ε)p for 1 ≤ p ≤ l + 1 (6.13)

which contains the two parameters b > 0 and ε < 1. This form actually encom-
passes the two following cases:

• when ε = 0, in such a way that:

ψ(p) =
{

1 if p = 0
b if p > 0

(6.14)

one recovers a measure studied in [26], that we will present in the next
section. Indeed the weight of a solution σ is then b raised to a power equal
to the number of variables that are forced by at least one constraint, i.e.
those that are not “whitened” after T = 1 step of a coarsening algorithm
used in [9, 93, 35, 94, 95, 84, 83], whose large deviations on atypical solu-
tions were studied in [26] for arbitrary values of T (with an unfortunate
conflict of notation the parameter called b here is denoted eε in [26]).

• when b = 1 one has
ψ(p) = (1− ε)p (6.15)

the weight of a solution σ is thus (1 − ε) raised to the number of forcing
constraints, hence we recover the bias introduced in the previous para-
graph (6.1.2), and studied in [31]. Indeed in a solution every constraint
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Figure 6.1: Left panel: an example of a hypergraph G with N = 7 vertices
represented by black circles, andM = 3 hyperedges linking k = 3 vertices, drawn
as white squares. Center panel: the introduction of an interaction, represented
as a black square, between all the vertices at distance 1 from the central vertex
i, generates short loops even if G is a tree. Right panel: the factor graph
representation of the probability measure (6.16), the white circles stand for the
variable nodes v(i,a), the black circles (resp. white squares) are the interaction
factors ψ̃ (resp. ω̃).

a forces at most one of its variable i ∈ ∂a, when σi is the unique repre-
sentant of its color in σ∂a, hence there is no double counting of forcing
constraints in the product over variables in (6.12).

Obviously the uniform measure (1.10) is recovered when b = 1 and ε = 0.

Factor graph and auxiliary variables

The factor graph representing the measure (6.12) is not the underlying graph
G representing the instance F . Instead the function ψ has introduced short
loops, as is it represented in figure 6.1 (middle panel). This prevents from
a direct application of the cavity method, and requires a preliminary step in
order to get rid of these short loops. To achieve this we introduce some auxiliary,
redundant variables in the following way: for each edge (i, a) ∈ E between a
vertex i and one of its incident hyperedge a ∈ ∂i we introduce two variables,
wa→i ∈ {0, 1} and σai ∈ {−1,+1} which are deterministic functions of the
original configuration σ, according to wa→i = I[σ∂a\ia.e] and σai = σi. We
call v(i,a) = (σai , wa→i) the value of these two auxiliary variables, and v =
{v(i,a)}(i,a)∈E their global configuration. Consider now the following probability
law for v:

µ(v) = 1
Z

∏
i∈V

ϕ̃({v(i,a)}a∈∂i)
∏
a∈C

ω̃({v(i,a)}i∈∂a) (6.16)
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where

ϕ̃(σ1, w1, . . . , σl+1, wl+1) = ψ

(
l+1∑
i=1

wi

)
I[σ1 = · · · = σl+1] (6.17)

ω̃(σ1, w1, . . . , σk, wk) = ω(σ1, . . . , σk)
k∏
i=1

I[wi = I[{wi = I[{σj}j 6=ia.e]}]] (6.18)

One realizes easily that for a configuration v in the support of (6.16) σai is in-
dependent of a, and the marginal law of σ is nothing but (6.16). The partition
function Z is the same in the two expressions (6.12) and (6.16), and in the
support of µ(v) the variables wa→i are the deterministic functions of σ defined
above. This equivalent rewriting with redundant variables has an important
advantage: as shown in the right panel of Fig. 6.1 the graphical model cor-
responding to (6.16), with variables v on the edges (i, a) of G and interaction
nodes both on the original hyperedges (ω̃) and on the original vertices (ϕ̃),
respects the topology of G, and is thus (locally) a tree if G is.

6.1.4 Bias with interactions at larger distance
We have presented in the two previous paragraphs (6.1.2 and 6.1.3) the form of
the bias studied in this Ph.D.. Although we did not investigate it, it is natural
to extend these definitions, introducing interactions between variables at larger
distance. We show in this paragraph that for some specific form of the bias, it
is possible to apply a similar transformation as the one described above that
introduce auxiliary variables, to recover a locally tree-like factor graph. This
approach has been studied in [26], with a bias counting the number of frozen
variables in a solution.

Let B(i, r) be the set of variables at distance ≤ r from i. One would like to
study the following probability measure:

µ(σ) = 1
Z

∏
a∈C

ω(σ∂a)
∏
i∈V

ϕi(σi, σB(i,r)) (6.19)

This measure cannot in general be represented by a simple graphical model, but
it is possible to apply a similar transformation as the one used in the paragraph
6.1.3, to recover a locally tree-like underlying graph, if we assume that the func-
tion ϕi is constructed in the following way. One each edge (i, a), one introduces
a set of auxiliary variables {g(s)

i→a, ĝ
(s)
a→i}s∈{1,...,r} that are determined uniquely

from the solution σ:

g
(1)
i→a = σi (6.20)

ĝ
(s)
a→i = Ĝs({g(s)

j→a}i∈∂a\i) where s ∈ {1, . . . , r} (6.21)

g
(s+1)
j→a = Gs+1({ĝ(s)

b→j}b∈∂a\j) where s ∈ {1, . . . , r − 1} (6.22)
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where the {Gs, Ĝs} are updating functions. One can then choose ϕi to be a
function of the auxiliary variables {ĝ(s)

a→i}
s∈{1,...,r}
a∈∂i surrounding it:

ϕi(σi, σB(i,r)) = φi({ĝ(s)
a→i}

s∈{1,...,r}
a∈∂i ) (6.23)

Introducing the auxiliary variable σai = σi as before, and defining for each edge
(i, a) the auxiliary variable v(i,a) = (σai , {g

(s)
i→a, ĝ

(s)
a→i}s∈{1,...,r}), one can consider

the probability law for v:

µ(v) = 1
Z

∏
i∈V

ϕ̃i({v(i,a)}a∈∂i)
∏
a∈C

ω̃({v(i,a)}i∈∂a) (6.24)

where

ϕ̃i({v(i,a)}a∈∂i) =
∑
σ∈χ

φi({ĝ(s)
a→i}

s∈{1,...,r}
a∈∂i )

∏
a∈∂i

I[σai = g
(1)
i→a = σ]

×
r−1∏
s=1

I[g(s+1)
i→a = Gs({ĝ(s)

b→i}b∈∂i\a)] (6.25)

ω̃({v(i,a)}i∈∂a) = ω({σai }i∈∂a)
k∏
i=1

r∏
s=2

I[ĝ(s)
a→i = Ĝs({g(s)

j→a}j∈∂a\i)] (6.26)

As before, one can check that for a configuration v in the support of this measure,
σai is independent of a, and the marginal of σ is the initial biased measure. The
partition function is the same in the two expressions.

This transformation can be applied for any definition of the auxiliary vari-
ables {g(s)

i→a, ĝ
(s)
a→i}

s∈{1,...,r}
a∈∂i and update rules Gs, Ĝs. In the cavity method that

we will present in the next chapter, we study the typical properties of the mea-
sure µ chosen to describe the set of solution, when the graph G is drawn from
a given random graph ensemble. One needs to introduce several layers of prob-
ability measures over the set of variables, therefore the computations are in
general not tractable if the variables do not live in a small space. In practice
it is needed that the auxiliary variables {g(s)

i→a, ĝ
(s)
a→i}

s∈{1,...,r}
a∈∂i live in a discrete

space.
In [26], A. Braunstein, L. Dall’Asta, G. Semerjian and L. Zdeborova have

used the WP messages ν(s)
i→a, ν̂

(s)
a→i defined in chapter 4, obtained after s iteration

of the WP equations, with initial condition ν(1)
i→a = δ•,σi . In this paper, the bias

is giving different weights to the configurations according to the fraction of
variables that are still frozen after s iterations of the WP/whitening procedure.
We will give more details about this bias in the next section.

A natural choice would have been to take for {g(s)
i→a, ĝ

(s)
a→i}

s∈{1,...,r}
a∈∂i the BP

messages {η(s)
i→a, η̂

(s)
a→i}

s∈{1,...,r}
a∈∂i obtained after s iterations, similarly as it was

done for the WP messages in [26]. Of course the space of the BP messages is too
big to be handled by the cavity method, even for messages over spin variable
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that can be described from their mean value m = 〈σ〉η ∈ [−1, 1]. One could
have chosen the bias to depend on the marginal obtained after s iterations:

ϕ(σi, σBi,r ) = φi({η(s)
i }s∈{1,...,r}) (6.27)

with

η
(s)
i (σi) =

∏
a∈∂i η̂

(s)
a→i(σi)∑

σ

∏
a∈∂i η̂

(s)
a→i(σ)

(6.28)

In particular, one can think of a bias that would favor configurations for which
the point-to-set correlation

C
(s)
i =

∣∣∣∣∣
∑
σ ση

(s)
i (σ)∑

σ η
(s)
i (σ)

∣∣∣∣∣ (6.29)

is small. Note however that this is the point-to-set correlation function corre-
sponding to the uniform measure, hence trying to minimize it is not guaranteed
to increase the clustering threshold associated with the biased measure. With
the WP messages this problem does not happen, since they are the same for
both the uniform and the biased measure.

6.2 Biased measures studied in the literature
6.2.1 Bias counting the frozen variables
We now describe more precisely the bias introduced in [26], defined on the
bicoloring of k-hypergraphs. The biased measure weights the solutions according
to their fraction of frozen variables during the whitening procedure. One can
find the frozen variables running the WP iterations defined in chapter 4 (in
paragraph 4.1.6). For spin variables, it is suitable to use the notations, defined
from the set of BP messages {ηi→a, η̂a→i}:

hi→a =


+1 if ηi→a(σi) = δσi,+1

−1 if ηi→a(σi) = δσi,−1

0 otherwise
(6.30)

and similarly:

ua→i =


+1 if η̂a→i(σi) = δσi,+1

−1 if η̂a→i(σi) = δσi,−1

0 otherwise
(6.31)

83



For the bicoloring problem the WP equations reads:

ut+1
a→i =


+1 if ∀j ∈ ∂a \ i : htj→a = −1
−1 if ∀j ∈ ∂a \ i : htj→a = +1
0 otherwise

(6.32)

ht+1
i→a =


+1 if ∃b ∈ ∂i \ a : ut+1

b→i = +1
−1 if ∃b ∈ ∂i \ a : ut+1

b→i = −1
0 otherwise

(6.33)

To find the frozen variables in a solution σ, one runs the WP iterations, starting
from the initial condition:

h0
i→a = σi (6.34)

One can show that the dynamical evolution of the WP messages is monotonic,
and therefore guaranteed to converge to a fixed point, independently of the
update scheme. One can translate the WP iterations into an evolution of con-
figurations: σt,WP ∈ {−1,+1, 0}N :

σ0,WP
i = σi, and σt,WP

i =


+1 if ∃b ∈ ∂i \ a : ut+1

b→a = +1
−1 if ∃b ∈ ∂i \ a : ut+1

j→a = −1
0 otherwise

(6.35)

One says that the variable σi is whitened after time t if σt,WP
i = 0. Let ti(σ)

the whitening time of the variable σi:

ti(σ) = inf{t : σt,WP
i = 0} (6.36)

if ti(σ) =∞ then σi is declared frozen. Define the empirical cumulative distri-
bution of the whitening times:

Pt(σ,G) = 1
N

N∑
i=1

I[ti(σ) ≥ t+ 1] (6.37)

Pt(σ,G) is the fraction of still frozen variables at time t in σ. The authors have
studied in particular the following biased measure:

µ(σ) = 1
Z(ε, T,G)

∑
σ

M∏
a=1

ωa(σ∂a)
N∏
i=1

exp [NεPT (σ,G)] (6.38)

with a fixed time T ∈ {1, . . . ,∞}. When ε > 0, this bias favors configurations
with a large fraction PT (σ,G) of frozen variables at time T , while when ε <
0, this favors configurations with a small fraction of frozen variables after T
iterations of the whitening procedure. This measure can also be writen in terms
of the whitening times of each variables:

µ(σ) = 1
Z(ε, T,G)

∑
σ

M∏
a=1

ωa(σ∂a)
N∏
i=1

b(ti(σ)) (6.39)
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with b(t) = eεI[t≥T+1]. This bias introduce interactions between variables at
distance T . Note that they also studied a biased measure that weight solutions
according to their fraction of frozen variables for all times:

µ(σ) 1
Z({εt}, G)

∑
σ

M∏
a=1

ωa(σ∂a) exp
[ ∞∑
t=1

NεPt(σ,G)
]
, (6.40)

thus introducing interactions at all distances in the graph. As already men-
tioned, the case T = 1 in the probability measure (6.38) corresponds to the bias
introduced in section 6.1.3, with the correspondence b = eε. The effect of the
biased measure (6.38) (with T = 1) on the clustering transition is studied in
[26]. For k = 6, they observed that is could not improve on the value of αd. In
[33], we showed that with another choice for the function ψ(p) defined in (6.12)
we could improve on its value, for k = 4, 5.

Under the RS assumption, the authors have computed the entropy s(T, θ, k, l)
counting the number of solutions that have a fraction θ of frozen variables at
time T :

s(T, θ, k, l) = lim
N→∞

EG[s(T, θ,G)], with (6.41)

s(T, θ,G) = 1
N

lim
N→∞

ln

 ∑
σ∈S(G)

I[PT (σ,G) = θ]

 (6.42)

They have also computed the dominant path Pt(T, θ, k, l) which is the fraction
of frozen variables at time t conditioned on PT = θ.

Pt(T, θ, k, l) = lim
N→∞

EG

[∑
σ∈S(G) Pt(σ,G)I[PT (σ,G) = θ]∑

σ∈S(G) I[PT (σ,G) = θ]

]
(6.43)

If it tends to 0 as t → ∞, then typical solutions under the constraint PT = θ
are unfrozen. They observed the existence of a threshold value θtip called the
tipping point: for T, k, l fixed, below (resp. above) θtip the constraint PT = θ se-
lects unfrozen (resp. frozen) solutions. For fixed k, T , they define the threshold
lT (k) above which the entropy of the tipping point s(T, θtip(T, k, l), k, l) becomes
negative. Within the RS framework, this corresponds to disappearance of so-
lutions such that PT = θtip(k, l). In fact above lT (k), all the solutions have a
fraction θ > θtip of frozen variables at time T , thus contain a positive fraction
of frozen variables in the large t limit. The threshold lT (k) can be interpreted
as follows: below lT (k), it is possible to find a value of ε for which the typical
solutions under the measure (6.38) are unfrozen, while for l > lT (k) it is not
possible, and the typical solutions of (6.38) are frozen for any value of ε. They
showed that lT=1(k) > lr(k), where lr(k) is the rigidity transition under the
uniform measure. They also showed that lT is growing with T . lf is interpreted
as the limit T → ∞ of lT . They obtain the following large k scalings for this
set of thresholds:

lT (k) = 2k−1k ln 2
ln◦T (k)

(
1 +O

(
ln◦(T+1)(k)

ln◦T (k)

))
(6.44)
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where ln◦T (k) is the T -times iterated logarithmic function: ln◦(T+1)(k) = ln(ln◦T (k)).
They estimated the scaling freezing transition to occur at lf (k) ∼ 2k−1k ln 2/2 ∼
lsat(k)/2. We recall that the scaling for lr(k) is

lr(k) = 2k−1(ln k + ln ln k + 1 +O(ln ln k/ ln k)) (6.45)

In conclusion, with the biased measure (6.38) at finite T , it is possible to obtain
typical unfrozen solutions (tuning the value of the parameter ε), for densities of
constraint significantly larger than the rigidity threshold corresponding to the
uniform measure

In [30], H. Zhao and H. Zhou study a similar biased measure on the random
k-SAT problem. They introduce a bias that weight the solutions according to the
number of variables that are needed to satisfy the clauses. The others variables
are white, in the sense that when they are flipped, the new configuration is still
a solution. In this formalism, the variables σi can take 3 values (the white state
being σi = 0). A configuration σ lives in {−1,+1, 0}N The partition function
associated with the measure is

Z =
∑
σ

M∏
a=1

ω(σ∂a)
N∏
i=1

e−βδ
0
σi (6.46)

where ω(σ∂a) ensure the constraint a to be satisfied:

ω(σ∂a) = 1−
∏
i∈∂a

(
1− δJ

a
i
σi

)
. (6.47)

The parameter β > 0 favors configurations σ ∈ {−1,+1, 0}N with a maximal
number of variables that are equal to 0, therefore that do not contribute to the
satisfaction of the clauses. They apply the BP-guided decimation procedure on
this biased measure, and compute the probability of success for random 3-SAT.
They observe a small positive probability of success for α ' 4.15, while for
the BPD algorithm on uniform measure they observe null probability of success
above ' 4.15, thus indicating that the biased measure allows for better perfor-
mances. Note that increasing the value of β, one might enter in a condensed
phase where the BP marginals do not provide a good estimation on the exact
marginals. It would also be interesting to estimate numerically the algorithmic
threshold for this algorithm, as defined in chapter 5.

6.2.2 Local entropy
In [27, 28] the authors study a measure that favors solutions that are in regions
with a high density of solutions. These regions are believed to be more accessible
by the search algorithms, because they correspond to wide minima in the energy
landscape. They weight each solution σ according to its local entropy, i.e. a
measure of the number of solutions σ′ whithin a given distance from the reference
solution σ. The local entropy is defined as follows:

F (σ, γ) = 1
N

logN(σ, γ) (6.48)
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where
N(σ, γ) =

∑
σ′

∏
a∈C

ω(σ′∂a)e−γd(σ,σ′) (6.49)

N(σ, γ) is a weighted sum on the solutions σ′ ∈ S(G), with a weight that depends
on the Hamming distance from the reference configuration σ. γ is a coupling
strength, in the limit γ → ∞ this sum is dominated by the reference solution.
When γ is small the terms selected in the sum belongs to wider regions around
σ. They show that this quantity can be used as a cost function to optimize on.
More precisely, they introduce the following measure:

µ(σ) = 1
Z(y, γ)e

yF (σ,γ) (6.50)

Note that they do not impose the condition σ ∈ S(F ), and allow positive weights
for configurations σ that are not solutions. In fact they expect that configura-
tions that are surrounded by a dense region of solutions are themselves solutions.
In practice they observe that this is the case experimentally: approximate sam-
pling procedures on this measure allow to find solutions. The local entropy plays
the role of the energy, and the parameter y plays the role of the inverse tem-
perature. When y is large this favors configurations σ with large local entropy,
i.e. surrounded by a a dense region of solutions. In [28] they also consider an
additional parameter β, looking at the following distribution:

µ(σ) = 1
Z(β, y, γ)e

yφ(σ,β,γ); φ(σ, β, γ) = ln

∑
σ′

e−βE(σ′)−γd(σ,σ′)

 (6.51)

φ(σ, β, γ) is called the local free entropy, taking its β →∞ limit, one recovers the
local entropy F (σ, γ). With low value of γ, the entropy landscape is smoother
than the energy landscape, its local minima corresponding to dense regions of
local minima in the energy landscape. This corresponds to coarse-grain the
energy landscape, with γ controlling the granularity. The goal with this ap-
proach is to avoid being trapped in the local minima of the energy landscape.
Increasing the value of γ, one focus on the configurations σ′ that are closer to
the reference solution σ, therefore this allows to focus on configurations σ which
are inside a narrow local minimum. If β is large enough this is likely to be a
global minimum. When γ → ∞ the only configuration selected in φ(σ, β, γ) is
σ′ = σ, and one recovers the initial Gibbs measure, with inverse temperature
βy, and the entropy landscape tends to the initial energy landscape.

They perform approximate sampling procedures, such as Simulated Anneal-
ing, and Message-Passing decimation procedures to sample from this distribu-
tion, with cooling schemes that progressively increase the value of the parame-
ters β, γ and y. Note that the local free entropy and the local entropy are not
easy to compute, compared to the energy function.

To obtain this quantity, a first approach developed in [27] is to study the
system defined in N, in which each variable i is coupled to an external field eγσ′i
(using the expression of the Hamming distance: d(σ, σ′) =

∑N
i=1(1− σiσ′i)/2)).
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The parameter β is not considered in [27] (β = ∞). F (σ, γ) can be estimated
with the Bethe Peirls approximation, running the BP equations for this modified
system, and computing the Bethe free energy from the messages obtained. Note
that this approach might fail in the condensed phase, because the BP iterations
might not converge, or the Bethe estimation might not be correct. They apply
a Simulated Annealing algorithm defined as follows: σ is initialized at random.
At each step F (σ, γ) is computed. Then a random local flip is accepted or
rejected using Metropolis rule at fixed temperature 1/y. More precisely, let ∆F
be the difference in local entropy. If there is an increase in ∆F , then the flip
is always accepted. If there is a decreese in ∆F , then the flip is accepted w.p
ey∆F , and rejected otherwise. Applying this algorithm on the perceptron and on
the k-SAT problem, they observe that this algorithm performs better than the
usual Simulated Annealing algorithm that uses the energy function (as defined
in chapter 3).

In [28] they use another approach to compute the local free entropy. Instead
of using BP, consider that y is a non-negative integer, and rewrite the partition
function

Z(β, y, γ) =
∑
σ

eyF (σ,β,γ)

=
∑

σ,σ1,...,σy

e−β
∑y

a=1
E(σa)−γ

∑y

a=1
d(σ,σa)

=
∑

σ1,...,σy

e−β(
∑y

a=1
E(σa)+A({σa,β,γ})) (6.52)

where in the last equation the reference configuration has been traced out

A({σa, β, γ}) = − 1
β

ln
∑
σ

e−γ
∑y

a=1
d(σ,σa) (6.53)

They apply Simulated Annealing algorithm to sample from this measure, with
increasing γ, decreasing β. At each step, a replica a ∈ {1, . . . , y} is randomly
chosen, and the randomly chosen variable inside this replica is flipped accord-
ing to the Metropolis rule computed from the change in the energy function
defined from the probability law with partition function (6.52). The algorithm
stops either when one solution is found in one of the replicas, or when the max-
imal number of steps is reached. They observe a better performance using this
method on the perceptron, compared to the non interacting case (γ = 0), which
correponds to running the energetic Simutaled Annealing procedure in parallel
on the y independent copies.

6.2.3 Biased interactions in the hard sphere packing prob-
lem

In [96] and [29] the authors use a biased measure to sample solutions for the
problem of packing hard spheres. In this problem, a set of N spheres of fixed
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radius live in a d-dimensional volume V . The variables correspond to the posi-
tion of each sphere. The constraint is that for each pair of spheres, the distance
between their centers is larger than their diameter, so that they do not overlap,
hence the name hard sphere. A solution is a assignment of the positions of the
spheres so that there is no overlapping. The parameter controlling the hardness
of this problem is the packing fraction ϕ = Nvd/V , vd being the volume of
a unit-diameter sphere. The thermodynamic limit is N,V → ∞ with ϕ con-
stant. As ϕ increases, one encounters a dynamical transition ϕd similar to the
one found in random k-SAT. Below ϕd, the solutions can be sampled uniformly
in polynomial time in N , using Monte Carlo methods, or molecular dynamics,
while above this requires an exponential time. This result is valid in the large
d limit (taken after the thermodynamic limit).

The uniform measure over the set of solutions can be viewed as a Gibbs-
Boltzmann distribution describing a set of particles that interact with each other
through hard interactions. The authors introduce a bias in the interactions:
keeping the hard constraint (i.e. forbidding the spheres to overlap), they add
a soft interaction at larger distances. They look at the change of ϕd under
this bias, trying to maximize its value. The biased pair-wise interaction v(r)
between two particles at distance r takes the following form:

v(r) =
{
∞, r < 1
v+(r), r > 1

(6.54)

where we have considered spheres of unit diameter, so that two spheres are over-
lapping when their distance r is smaller than 1. v+(r) is an arbitrary function
that decrease to 0 as r → ∞. The uniform case is recovered for v+(r) = 0.
More precisely, in [96], they have shown that with this specific form:

v+(r) =
{
−U0, r ≤ r0

0, r > r0
(6.55)

for some r0 > 1 and U0 > 0, it is possible to increase the dynamical transition
ϕd, thus to increase the range for which it is possible to sample solutions in
polynomial time in N . This interaction introduces short range attractive in-
teraction, just after the hard wall. Intuitively, this means that a measure that
favor solutions that are packed more closely can be sampled in polynomial time
for higher packing fractions than the uniform measure.

In [29] a more detailed soft interaction with more than one step is studied:

v+(r) =



−U0, r ≤ r0

−U1, r0 < r ≤ r0 + r1

. . .

−Un−1,
∑n−2
i=0 ri < r ≤

∑n−1
i=0 ri

0, r >
∑n−1
i=0 ri

(6.56)

Optimizing on the several parameters, they could improve on the dynamical
packing fraction ϕd. They observe that the profile that maximises the value of
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ϕd should have a short-range attractive part, then a weak repulsive tail at larger
r.
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Chapter 7

Cavity Method

In this chapter we present the cavity method treatment of random CSPs. We
apply this method to the bicoloring on k-hypergraphs, and study the typical
properties of the two biased measures (defined in (6.7) and in (6.12)) that de-
scribe the set of solutions. The replica and the cavity method have been first
developed in the context of statistical mechanics of disordered systems. Ran-
dom CSPs bear a formal similarity with mean-field spin glasses, the interactions
induced by the constraints being of a frustrating nature while lacking a finite-
dimensional structure thanks to the randomness in their construction. This
analogy has allowed to apply these techniques to random CSPs [4, 5, 6, 7, 8].
This line of study has provided predictions of αsat(k) for many models [97, 44],
but also unveiled many other phase transitions for the structure of the set of
solutions in the satisfiable phase [98] (see chapter 2 for the description of some
of them). Moreover, it has lead to the proposal of new algorithms that exploit
this detailed picture of the solution space (see chapter 5 for the presentation
of some of them). Many of these (heuristic) predictions have been confirmed
rigorously later on [9, 10, 11, 12].

We will pay a particular attention to the clustering phase transition αd ≤
αsat, which is also known as the dynamical or reconstruction transition. This
transition can be defined in several ways. Below αd the set of solutions of typi-
cal instances is rather well-connected, any solution can be reached from another
through a path consituted of nearby solutions. Above αd the solution set splits
into an exponential number of isolated subsets of solutions, called clusters, which
are internally well-connected but separated from each other by regions without
solutions. This is called the clustering phenomenon (see section 2.3.1). This
transition is also defined as the appearance of long range correlations between
variables, known as the point-to-set correlation [14]. It was shown in [14] that
these correlations forbid the rapid equilibration of the stochastic processes that
respect the detailed balance condition, such as Simulated Annealing algorithm
(see section 3.1.4). This property motivates the name dynamic transition. In
the cavity method [15] treatment of the random CSPs, we define αd as the ap-
pearance of a non trivial solution of the one step of Replica Symmetry Breaking
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(1RSB) equation with Parisi breaking parameter X = 1. The appearance of a
non-zero point-to-set correlation also implies the solvability of an information
theoretic problem called hypertree reconstruction [13], see [16] for the connec-
tion between 1RSB equations at X = 1 and the reconstruction problem, that
will be discussed in Section 7.3. In this setting, αd corresponds to the hypertree
reconstruction threshold, above which the problem becomes solvable.

The study of the structural phase transitions in the satisfiable regime, and
in particular the definition of αd in terms of long-range correlations, relies on
the characterization of a specific probability law on the space of configurations,
namely the uniform measure over solutions. In this chapter we will compute the
clustering threshold for the two biased measures defined in the previous chapter
(in (6.7) and in (6.12)). In chapter 8 we will show that for finite values of k
optimizing on the parameters describing the biases allows us to increase αd, and
therefore to improve the performances of simulated annealing (we checked it for
the biased measure (6.7)). In chapter 10 we will study the effect of the bias on
the clustering threshold in the large k limit.

This chapter is organized as follows. In Section 7.1 we recall the definitions
of the two biased measures, and write the BP equations (see section 4.1.2). In
Section 7.2 we present the simplest version of the cavity method, called replica
symmetric (RS) that provides predictions for the typical properties of the mea-
sures. In Section 7.3 we derive the formalism that allows us to compute the
clustering threshold, exploiting its definition in framework of the reconstruction
problem. In Section 7.4 we explain how to compute the rigidity threshold αr,
that provides an upper bound on the clustering threshold αd ≤ αr. In section
7.5 we derive recursive distributional equations that will be used in the large k
expansion of αd (see chapters 9 and 10). In Section 7.6 we present the 1RSB
formalism, that is the first non-trivial level of the cavity method, which allows
to deal with the RSB phenomenon, and provides estimates for several structural
phase transitions (such as the clustering, condensation and satisfiability tran-
sitions). Finally in Section 7.7 we compute an analytical upper-bound on αd,
the Kesten-Stigum threshold. This chapter summarizes part of the derivations
performed in [31], [32] and [33].

7.1 Definition of the model
7.1.1 Graphical model
We consider in this chapter the two graphical models representing the biased
measures introduced in chapter 6. We will denote by Θ0 the graphical model
for the intra-clause measure (see equation (6.7)), that we recall here:

µΘ0(σ) = 1
ZΘ0(G)

M∏
a=1

ω(σ∂a) (7.1)

Θ0 gathers both the underlying factor graph GΘ0 (which in this case coincides
with the initial factor graph G = (V,C,E) representing the instance F ), and the
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choice of the function ω (defined by the parameters {ωp}p=0,...,k as in equation
(6.8)). Note that the uniform measure is recovered in this setting by choosing
ω0 = ωk = 0 and ω1 = · · · = ωk−1 = 1.

As explained in the section 6.1.3, the factor graph of the biased measure with
interactions at distance 1 (see equation (6.12)) contains small loops compared to
the initial factor graph representing F . The measure (6.12) has been modified,
introducing auxiliary variables v(i,a) on the edges (i, a) ∈ E, where v = (σ,w) ∈
{−1,+1} × {0, 1}. We will denote by Θ1 the graphical model for the measure
over the set of variables v = {v(i,a)}(i,a)∈E (see equation (6.16)). Θ1 gathers the
modified factor graph GΘ1 and the choice of the function ψ (introduced right
after the equation (6.12)) that counts the number of forcing clauses surrounding
each vertex i ∈ V . In this setting, the uniform measure is recovered by choosing
ψ(p) = 1 for all p. The new factor graph GΘ1 lies on the initial factor graph G,
the new variables vi,a sit on the initial edges (i, a) ∈ E, and there are two types
of function nodes, living on the vertices V and the k-hyperedges C respectively.
We recall the expression of the measure µΘ1 introduced in (6.16):

µΘ1(v) = 1
ZΘ1(G)

∏
i∈V

ϕ̃({v(i,a)}a∈∂i)
∏
a∈C

ω̃({v(i,a)}i∈∂a) (7.2)

We recall the expression of the function nodes:

ϕ̃(σ1, w1, . . . , σl+1, wl+1) = ψ

(
l+1∑
i=1

wi

)
I[σ1 = · · · = σl+1] (7.3)

ω̃(σ1, w1, . . . , σk, wk) = ω(σ1, . . . , σk)
k∏
i=1

I[wi = I[{wi = I[{σj}j 6=ia.e]}]] (7.4)

Assume that the underlying factor graph G = (V,C,E) is distributed accord-
ing to a random ensemble, such as the k-uniform l + 1-regular random graph
ensemble, or the Erdős Rényi random graph ensemble GN (k,M), that have been
defined in chapter 1, part 1.4.2. As explained in chapter 1 (part 1.4.5), these
structures are locally tree-like. The aim of the cavity method is to determine the
typical properties of the graphical models µΘ (with Θ ∈ {Θ0,Θ1}) defined on
this graph, and of the free energy density lnZΘ(G)/N in the thermodynamic
limit. The first step of the cavity method amounts to study such models on
finite trees. In that case we have seen in chapter 4 that one can exploit the
recursive nature of trees to derive an exact description of µΘ in terms of its
marginals (see part 4.1.3), using the Belief Propagation messages (defined part
4.1.1). The free energy can be expressed in terms of these messages (see part
4.1.4).

7.1.2 BP equations and Bethe free-energy
We recall in this section the Belief Propagation equations introduced in chapter
4 (see equations (4.1) and 4.2)). We write the BP equations for the two graphical
models Θ0 and Θ1 representing the biased measures.
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Intra-clause bias

We introduce the messages ηi→a and η̂a→i on each edge (i, a) of the factor
graph GΘ0 = G, that are the marginal probability laws of σi in amputated
graphs where some interactions are discarded; ηi→a is the marginal of σi in the
factor graph where one removes the hyperedge a, and η̂a→i is the marginal of σi
in the factor graph where one removes all the hyperedges in ∂i\a. Removing an
interaction in a tree breaks it into independent subtrees, which allows to write
recursive equations between these messages:

ηi→a(σi) = 1
zia

∏
b∈∂i\a

η̂b→i(σi) (7.5)

η̂a→i(σi) = 1
ẑai

∑
σ
∂a\i

ω(σ∂a)
∏

j∈∂a\i

ηj→a(σj) , (7.6)

where the constants zia and ẑai are normalizing factors. These equations are
valid for any (discrete) domain of the spins σi; as we are studying the case where
σi = ±1, we can parametrize the probability laws ηi→a and η̂a→i by their mean
values, defining ηi→a(σi) = (1 + hi→aσi)/2 and η̂a→i(σi) = (1 + ua→iσi)/2,
with hi→a, ua→i ∈ [−1, 1]. The recursive equations can be rewritten with this
parametrization as

hi→a = fΘ0({ub→i}b∈∂i\a) , ua→i = f̂Θ0({hj→a}j∈∂a\i) , (7.7)

where the functions fΘ0 and f̂Θ0 read explicitly

fΘ0(u1, . . . , ud) =

d∏
i=1

(1 + ui)−
d∏
i=1

(1− ui)

z0,Θ0(u1, . . . , ud)
(7.8)

z0,Θ0(u1, . . . , ud) =
d∏
i=1

(1 + ui) +
d∏
i=1

(1− ui) (7.9)

f̂Θ0(h1, . . . , hk−1) =

∑
σ1,...,σk

ω(σ1, . . . , σk)σk
k−1∏
i=1

(1 + hiσi)

ẑ0,Θ0(h1, . . . , hk−1) (7.10)

ẑ0,Θ0(h1, . . . , hk−1) =
∑

σ1,...,σk

ω(σ1, . . . , σk)
k−1∏
i=1

(1 + hiσi) (7.11)

The function fΘ0 has been written here for a vertex of degree d+ 1.
On a tree the equations (7.7) admit a single solution, that can be found

by iterating them from the leaves towards the interior of the graph. Once this
solution is determined one can easily compute the marginal probability of σi
under µΘ0 using the formula in (7.5) with all messages incoming onto i (see
section 4.1.3), as well as the partition function ZΘ0(G). The Bethe free entropy
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density introduced in section 4.1.4 provides an exact expression for the free
entropy density: (1/N) lnZΘ0(G)) = ΦBetheΘ0

where

ΦBetheΘ0
= 1
N

N∑
i=1

lnZv
0,Θ0

({ua→i}a∈∂i) + 1
N

M∑
a=1

lnZc
0,Θ0

({hi→a}i∈∂a)

− 1
N

∑
(i,a)

lnZe
0,Θ0

(hi→a, ua→i) , (7.12)

where the last sum runs over the edges of the factor graph, and the local partition
functions are defined as:

Zv
0,Θ0

(u1, . . . , ud) =
∑
σ

d∏
i=1

(
1 + σui

2

)
, (7.13)

Zc
0,Θ0

(h1, . . . , hk) =
∑

σ1,...,σk

ω(σ1, . . . , σk)
k∏
i=1

(
1 + σihi

2

)
, (7.14)

Ze
0,Θ0

(h, u) =
∑
σ

(
1 + σh

2

)(
1 + σu

2

)
. (7.15)

Finally, the Shannon entropy of the measure µΘ0 can be expressed from the
BP messages, see equation (4.21):

S[µΘ0 ] = NΦBetheΘ0
−
∑
a∈C

∑
σ∂a

ω(σ∂a) ln(ω(σ∂a))
∏
i∈∂a ηi→a(σi)∑

σ∂a
ω(σ∂a)

∏
i∈∂a ηi→a(σi)

(7.16)

Bias with interactions at distance 1

We now specify the BP equations and the expression of the thermodynamic
quantities for the measure µΘ1 (equation (7.2)). The BP messages are ηi→a and
η̂a→i, the marginal laws of the variable v(i,a) that is placed on the edge (i, a)
of G, in graphs where one has removed the interactions a and i, respectively.
These definitions are illustrated in the right panel of figure 7.1. Note that in
a literal application of the BP algorithm one would have introduced messages
from every variable node to every interaction node, for instance ηi→(i,a) and
η(i,a)→a; as the variable nodes are of degree two these two messages are actually
equal, we denoted their common value ηi→a to lighten the notations. The BP
equations between these messages are of the form

ηi→a = fΘ1({η̂b→i}b∈∂i\a), η̂a→i = f̂Θ1({ηj→a}j∈∂a\i) (7.17)

where the functions fΘ1 and f̂Θ1 derive from the interaction nodes ϕ̃ and ω̃
stated in equations (7.3,7.4). The relation η = fΘ1(η̂1, . . . , η̂l) is thus found to
mean

η(σ,w) = 1
z0,Θ1(η̂1, . . . , η̂l)

∑
w1,...,wl

ψ

(
w +

l∑
i=1

wi

)
l∏
i=1

η̂i(σ,wi) (7.18)
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aa

ii

η̂a→i ηi→a

Figure 7.1: Left panel: an example of a hypergraph G with N = 7 vertices
represented by black circles, andM = 3 hyperedges linking k = 3 vertices, drawn
as white squares. Center panel: the introduction of an interaction, represented
as a black square, between all the vertices at distance 1 from the central vertex
i, generates short loops even if G is a tree. Right panel: the factor graph
representation of the probability measure (7.2), the white circles stand for the
variable nodes v(i,a), the black circles (resp. white squares) are the interaction
factors ψ̃ (resp. ω̃). The messages ηi→a and η̂a→i obey the Belief Propagation
equations (7.17).

where z0,Θ1(η̂1, . . . , η̂l) is a normalization constant. Similarly η̂ = f̂Θ1(η1, . . . , ηk−1)
stands for:

η̂(σ,w) = 1
ẑ0,Θ1(η1, . . . , ηk−1)

∑
σ1,...,σk−1
w1,...,wk−1

ω(σ, σ1, . . . , σk−1)I[w = I[σ1, . . . , σk−1a.e]]

k−1∏
i=1

ηi(σi, wi)I[wi = I[σ, σ1, . . . , σi−1, σi+1, . . . , σk−1a.e]] (7.19)

with ẑ0,Θ1(η1, . . . , ηk−1) a normalization constant. More explicitly one has:

η̂(σ, 1) = 1
ẑ0,Θ1(η1, . . . , ηk−1)

k−1∏
i=1

ηi(−σ, 0) (7.20)

η̂(σ, 0) = 1
ẑ0,Θ1(η1, . . . , ηk−1)

[ k−1∑
i=1

ηi(−σ, 1)
∏
j 6=i

ηj(σ, 0)

+
∑

I⊂{1,...,k−1}
2≤|I|≤k−2

∏
i∈I

ηi(−σ, 0)
∏
i 6∈I

ηi(σ, 0)
]

(7.21)

as there is at most one variable which is the unique representant of its color in
a set of k ≥ 3 binary variables that is not monochromatic.
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The Bethe free energy takes the following form:

ΦBetheΘ1
= 1
N

N∑
i=1

lnZv
0,Θ1

({η̂a→i}a∈∂i) + 1
N

M∑
a=1

lnZc
0,Θ1

({ηi→a}i∈∂a)

− 1
N

∑
(i,a)

lnZe
0,Θ1

(ηi→a, η̂a→i) , (7.22)

where:

Zv
0,Θ1

(η̂1, . . . , η̂d) =
∑
σ

∑
w1,...,wd

ψ

(
d∑
i=1

wi

)
d∏
i=1

η̂i(σ,wi) , (7.23)

Zc
0,Θ1

(η1, . . . , ηk) =
∑

σ1,...,σk
w1,...,wk

ω(σ1, . . . , σk)
k∏
i=1

ηi(σi, wi)I [wi = I[{σj}j 6=ia.e]] ,

(7.24)

Ze
0,Θ1

(η, η̂) =
∑
σ,w

η(σ,w)η̂(σ,w) . (7.25)

For the Shannon entropy of the measure µΘ1 we get the expression:

S[µΘ1 ] = NΦBetheΘ1

−
∑
i∈V

∑
σ,{w(i,a)}a∈∂i ψ

(∑
a∈∂i w(ia)

)
ln
(
ψ
(∑

a∈∂i w(ia)
))∏

i∈∂a ηi→a(σ,w(i,a))∑
σ,{w(i,a)}a∈∂i ψ

(∑
a∈∂i w(ia)

)∏
i∈∂a ηi→a(σ,w(i,a))

(7.26)

7.2 Replica symmetric cavity method
The aim of the cavity method is to characterize the properties of the measure
µΘ for typical random graphs in the thermodynamic limit. In particular one
would like to estimate the value of the quenched free-entropy density and of the
averaged Shannon entropy density

Φ(k, α,Θ) = lim
N→∞

1
N

E[lnZΘ(G)], s(k, α,Θ) = lim
N→∞

1
N

E[S[µΘ]] (7.27)

thanks to the self-averaging phenomenon, the free entropy density (lnZΘ(G))/N
and the entropy density are expected to concentrate on these values. There are
different versions of the cavity method, that rely on self-consistent hypotheses
of various complexity on the effect of long loops. In the simplest version, called
replica symmetric (RS), one assumes a fast decay of the correlations between
distant variables in the measure µΘ, in such a way that the BP equations con-
verge to a unique fixed point on a typical large instance, and that the measure
is well decribed by the locally tree-like approximation. Increasing α above the
clustering threshold αd(k,Θ) causes the appearance of long-range correlations
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between distant variables under the measure µΘ. In such a case the RS hy-
pothesis breaks down, we will present in the section 7.6 the one-step replica
symmetry breaking formalism, that is able to deal with this RSB phenomenon
[15].

7.2.1 RS cavity equations
Consider an uniformly chosen directed edge i→ a, in a random hypergraph, and
call PRS the probability law of the message ηi→a solution of the BP equation.
Similarly let P̂RS be the probability law of the message η̂a→i. The RS cavity
method assumes the decorrelation of the incoming messages on a uniformly
chosen vertex i (resp hyperedge a). The incoming messages are i.i.d with the
law P̂RS (resp. PRS). The distributions obey the following self-consistent
equations:

PRS(η) =
∞∑
d=0

rd

∫ d∏
i=1

dP̂RS(η̂i)δ[η − fΘ(η̂1, . . . , η̂d)] (7.28)

P̂RS(η̂) =
∫ k−1∏

i=1
dPRS(ηi)δ[η̂ − f̂Θ(η1, . . . , ηk−1)] (7.29)

Where rd = I[d = l] for the random k-uniform, l + 1-regular graph, and rd =
e−αk(αk)d/d! for the ER ensemble. These equations can be equivalently written
as equalities in distribution between random variables (we use the symbol d=).
For instance (7.28) means

η
d= fΘ(η̂1, . . . , η̂d) (7.30)

with η drawn from PRS , d is a random variable drawn from rd, and the η̂i’s are
i.i.d. copies of a random variable of law P̂RS .

In general, there might be non-uniqueness of the solution of the RS equa-
tions (7.28,7.29), and the determination of the relevant solution (that describes
properly the typical properties of the measure) is not obvious. The solution of
these equations can be solved using population dynamics, that one will explain
in the next chapter, section 8.1. We will see however that for the measure µΘ0

the relevant solution can be found by symmetry considerations. For the measure
µΘ1 , it is also possible to guess the solution, when one focuses on the k-regular
l + 1-uniform ensemble.

7.2.2 Intra-clause bias
As we assume that ωp = ωk−p, i.e. that the model is invariant under the
global spin-flip symmetry, the RS equations admit as a solution the uniform
distributions PRS(h) = δ(h), P̂RS(u) = δ(u). For frustrated models with an
antiferromagnetic character this is the relevant solution (the local order that

98



might emerge from a non-trivial solution is incompatible with the long loops of
all sizes).

The RS cavity prediction for the free-entropy (7.27) is then obtained by
averaging the Bethe expression (7.12) with respect to the message distributions
PRS and P̂RS , which yields:

ΦRS(k, α, {ωp}) =
∞∑
d=0

pd

∫ ( d∏
i=1

duiP̂RS(ui)
)

lnZv
0 (u1, . . . , ud)

+ α

∫ ( k∏
i=1

dhiPRS(hi)
)

lnZc
0(h1, . . . , hk)

− αk
∫

dhduPRS(h)P̂RS(u) lnZe
0(h, u) . (7.31)

One obtains explicity the value of the free-entropy by inserting the trivial
solution of the RS equations into (7.31):

ΦRS(k, α, {ωp}) = ln 2 + α ln
(

1
2k

∑
σ1,...,σk

ω(σ1, . . . , σk)
)

= ln 2 + α ln
(

1
2k

k∑
p=0

(
k

p

)
ωp

)
. (7.32)

Note that this expression actually coincides with the annealed (first moment)
computation limN→∞(lnE[Z(G)])/N .

In the special case ω0 = ωk = 0, ω1 = · · · = ωk−1 = 1, for which µΘ0(σ)
corresponds to the uniform measure over proper bicolorings, the partition func-
tion ZΘ0(G) counts the number of solutions, hence the free-entropy lnZΘ0(G)
is equal to the entropy of the uniform measure. The prediction of the RS cavity
method for the entropy density is thus (using a subscript ’u’ for uniform):

sRSu (k, α) = ΦRSu (α) = ln 2 + α ln
(

1− 1
2k−1

)
. (7.33)

For a generic choice of parameters {ωp} the free-entropy lnZΘ0 differs from
the (Shannon) entropy of the measure µΘ0(σ). Averaging over the expression
(7.16), and using the expression of the joint marginal of the variables around
a constraint (see equation (4.8)) one thus obtains the RS prediction for the
entropy density

sRS(k, α, {ωp}) = ln 2 + α ln
(

1
2k

k∑
p=0

(
k

p

)
ωp

)
− α

k∑
p=0

(
k
p

)
ωp lnωp

k∑
p=0

(
k
p

)
ωp

. (7.34)
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This quantity is a decreasing function of α and becomes negative for α > αs=0,
with

αs=0(k, {ωp}) = ln 2
k∑
p=0

(kp)ωp lnωp

k∑
p=0

(kp)ωp
− ln

(
1
2k

k∑
p=0

(
k
p

)
ωp

) . (7.35)

The negativity of the entropy for α > αs=0 is a clear sign of the failure of the
RS assumptions, the Shannon entropy of a discrete probability measure being
non-negative. This is however not the only mechanism for the appearance of
Replica Symmetry Breaking (RSB), as we shall see this phenomenon can occur
in a phase with s > 0.

7.2.3 Bias with interaction at distance 1
In this case, it is a priori not obvious to guess the solution of the RS equation
(7.28,7.29) from symmetry arguments. Indeed, the dependence in w of the BP
messages is non-trivial, and may vary from one vertex to another. In the general
case, one needs to solve numerically the equations (7.28,7.29). This can be done
using population dynamics, a method that we will explain in the section 8.1.
However one might find more than one solution, and it remains difficult to
determine which solution is relevant to estimate the typical properties of the
measure µΘ1 . The situation gets simplified in the case of the k-uniform l + 1-
regular hypergraph. In this case, the local neighborhood of every vertex is the
same, it is thus natural to look for a translationally invariant solution of the
BP equations. Moreover the probability measure we are studying is invariant
under the spin-flip symmetry σ → −σ, we can thus further restrict ourselves to
a solution of the BP equation that respects this invariance. This amounts to
take ηi→a(σ,w) = η∗(w), η̂a→i(σ,w) = η̂∗(w) for all edges (i, a). Plugging this
form into (7.17) yields the equations satisfied by η∗ and η̂∗:

η∗(w) = 1
z

l∑
p=0

(
l

p

)
ψ(p+ w)η̂∗(0)l−pη̂∗(1)p , (7.36)

η̂∗(1) = 1
ẑ
η∗(0)k−1 , (7.37)

η̂∗(0) = 1
ẑ

[
(k − 1)η∗(1)η∗(0)k−2 + (2k−1 − k − 1)η∗(0)k−1] . (7.38)

Introducing the ratio of probabilities

y = η∗(0)
η∗(1) , ŷ = η̂∗(0)

η̂∗(1) , (7.39)
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one can get rid of the normalization factors z and ẑ and rewrite (7.36,7.37,7.38)
more simply

y =

l∑
p=0

(
l
p

)
ψ(p)ŷ−p

l∑
p=0

(
l
p

)
ψ(p+ 1)ŷ−p

, ŷ = 2k−1 − k − 1 + k − 1
y

. (7.40)

It turns out that for any choice of the parameters k, l, and ψ there exists a
unique solution (y, ŷ) to the equations (7.40), which might not be obvious at
first sight; a proof of this existence and uniqueness is provided in Appendix A.

One obtains the RS prediction for the free entropy density and the entropy
density by averaging the expressions (7.22) and (7.26); on the translationally
invariant solution this yields:

ΦRS(k, l, ψ) =
(

1− (l + 1)(k − 1)
k

)
ln 2− (l + 1) ln

(
1 + 1

yŷ

)
+ ln

(
l+1∑
p=0

(
l + 1
p

)
ψ(p)ŷ−p

)
+ l + 1

k
ln
(

2k−1 − k − 1 + k

y

)
,

(7.41)

sRS(k, l, ψ) =ΦRS(l, ψ)−

l+1∑
p=0

(
l+1
p

)
ψ(p)ŷ−p lnψ(p)

l+1∑
p=0

(
l+1
p

)
ψ(p)ŷ−p

. (7.42)

One can see again for some choices of the parameters, in particular when l
gets large enough, this expression of the entropy becomes negative. We denote
ls=0(k, ψ) the first integer value such that the entropy becomes negative.

7.3 The dynamic transition
We shall now present the formalism that allows to compute the location of the
dynamic transition which, as explained in the introduction, manifests itself in
different ways. Here we shall exploit its definition in terms of the existence of
long-range point-to-set correlations in the probability measure µΘ [16, 14], that
are related to the solvability of a tree reconstruction problem [13]. In the section
7.6 we will explain the connection with the 1RSB formalism.

The point-to-set correlation function, or overlap, has been introduced in
chapter 2 (see equation (2.15)). The function C(i, B) measures the correlation
between the variable at the point i and those in the set B. Let us define the
point-to-set correlation function averaged over the graph ensemble, at distance
n, as follows:

Cn = lim
N→∞

E[C(0, Bn)] = lim
N→∞

E[〈σ0〈σ0〉σBn 〉 − 〈σ0〉2] , (7.43)
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where 0 is an arbitrary reference vertex and Bn is the set of vertices at distance
n from 0; 〈·〉 denotes the expectation with respect to µΘ, while 〈·〉σ

Bn
is the

conditional average with the law µΘ(·|σBn). Note that the second term in Cn
actually vanishes thanks to the invariance of µΘ under the spin-flip transforma-
tion. For the biased measure µΘ1 with interactions at distance 1, because the
interactions in the biased measure couple spins belonging to neighboring hyper-
edges it is not enough to take for Bn the set of variables at distance exactly
n from the root; it is however equivalent to include in Bn all the variables are
distance at least n, or at distances n and n + 1. The dynamic transition sep-
arates an underconstrained (Replica Symmetric, RS) regime in which Cn → 0
as n → ∞, and an overconstrained (Replica Symmetry Breaking, RSB) one in
which Cn remains strictly positive at large distances. To compute Cn we first
remark that the local neighborhood of the vertex 0, up to any finite distance,
converges when N →∞ to a regular tree structure. Moreover the marginal law
of µ on any finite neighborhood of G converges, within the hypothesis of the RS
solution described in Sec. 7.2, to a measure that admits an explicit description
in terms of a broadcast process that we describe below for the two measures
µΘ0 and µΘ1 .

7.3.1 The broadcast process
Generating a configuration with the law of µ in a finite neighborhood of a root
vertex 0 amounts indeed to do a sequential sampling, starting from the root
variable σ0, which is drawn uniformly at random in {−1,+1}. The value of the
variables in the first generation {σ∂a\0}∂0 are then drawn from the conditional
law µ({σ∂a\0}∂0|σ0). In chapter 4 (section 4.1.3) we have seen how to compute
the conditional law from the BP messages that are solutions of the BP equations
(see equation (4.11)). Then the value of the variables of the next generations
are chosen according to the conditional law knowing the value of the previous
variables. We first specify this broadcast process for the measure µΘ0 represent-
ing the intra-clause biased measure, then describe it for the measure µΘ1 with
interactions at distance 1, in the k-uniform l + 1-regular graph ensemble.

Broadcast process for the measure with intra-clause bias µΘ0

In this case we have seen that the solution of the RS equation (7.28,7.29) is
PRS(h) = δ(h), P̂RS(u) = δ(u). On a finite set of variables the measure µΘ0

is then described (within the RS assumption) by the set of messages {hi→a =
0, ua→i = 0} for (i, a) in the subgraph containing the subset of variables. One
can then use this solution to sample a configuration from µΘ0 , using the following
broadcast process. Choose σ0 to ±1 with probability 1/2. Then, independently
for each edge a adjacent to the root, draw the configuration of the k − 1 other
variables with the conditional probability p̃(σ∂a\0|σ0), where

p̃(σ1, . . . , σk−1|σ) = ω(σ1, . . . , σk−1, σ)∑
σ′1,...,σ

′
k−1

ω(σ′1, . . . , σ′k−1, σ) . (7.44)
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Figure 7.2: An example of a hypertree, vertices being represented by circles,
while hyperedges are drawn as squares linked to k vertices, with k = 3 on
figure.

Once the values of all the spins at distance 1 from the root have been set
in this way the same process can be iterated, each of these vertices of the first
generation being in turn considered as the root of the subtree lying below it. On
figure 7.2 is represented a hypertree with a root on the top and two generations
of vertices below it, on which the broadcast process is performed.

Broadcast process for the bias at distance 1

In this case we have seen that the solution of the RS equation (7.28,7.29) is
PRS(η) = δ[η − η∗], P̂(η̂) = δ[η̂ − η̂∗], where η∗(v), η̂∗(v) are solution of the
equation (7.36-7.38). The broadcast process takes the following form:

• choose σ0 = ±1 with equal probability 1/2.

• draw the l+ 1 variables v1 = (σ1, w1), . . . , vl+1 = (σl+1, wl+1) adjacent to
the root with the probability

p0(v1, . . . , vl+1|σ0) =
ψ

(
l+1∑
i=1
wi

)
l+1∏
i=1
η̂∗(wi)

∑
w′1,...w

′
l+1

ψ

(
l+1∑
i=1
w′i

)
l+1∏
i=1
η̂∗(w′i)

l+1∏
i=1

I[σi = σ0] .

(7.45)

• consider each of the v1, . . . , vl+1 variables of the first generation as the
root of the subtree lying below it, and draw the value of the descendents
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v1, . . . vk−1 of a variable equal to v from the conditional law

p̂(v1, . . . , vk−1|v) =
ω(σ, σ1 . . . σk−1)I[w = I[{σi} a.e.]]

k−1∏
i=1

η∗(wi)I[wi = I[σ, {σj}j 6=i a.e.]]

∑
{σ′
i
,w′
i
}
ω(σ, σ′1 . . . σ′k−1)I[w = I[{σ′i} a.e.]]

k−1∏
i=1

η∗(w′i)I[w′i = I[σ, {σ′j}j 6=i a.e.]]
.

(7.46)

• consider again the variables of the second generation as roots, and extract
the value of their descendents from the conditional law

p(v1, . . . , vl|v) =
ψ

(
w +

l∑
i=1
wi

)
l∏
i=1
η̂∗(wi)

∑
w′1,...w

′
l

ψ

(
w +

l∑
i=1
w′i

)
l∏
i=1
η̂∗(w′i)

l∏
i=1

I[σi = σ] . (7.47)

• iterate the last two steps until all the variables in the target neighborhood
have been assigned.

On figure 7.3 is represented the hypertree with the root 0 at the top on which
lives the root variable σ0, and three generation of variables below it. This
broadcast procedure, that must be performed on the v variables and not only
on the σ’s to preserve the Markov structure of the tree, can be interpreted as
the transmission of an information (the value σ0 at the root) through noisy
channels (the conditional laws p0, p̂ and p defined in (7.45,7.46,7.47)), that we
will describe below.

7.3.2 The reconstruction problem and its recursive distri-
butional equations

This description of the sampling from µΘ as a broadcast process naturally calls
for an interpretation as the transmission of an information, the value of the spin
at the root, through noisy channels, towards a set of receivers, the vertices at a
certain distance n from the root, to be denoted Bn. For the measure µΘ0 the
noisy channels are represented by the hyperedges and correspond to the condi-
tional probability expressed in (7.44). For the measure µΘ1 the noisy channels
are the conditional laws p0, p̂ and p defined in (7.45,7.46,7.47) In this informa-
tion theoretic perspective the tree reconstruction problem asks the following
question: given only the values σBn of the spins at distance n from the root in
a configuration σ generated as above, how much information is available on the
value of the root σ0, in the sense that the observation of σBn allows to infer the
value of the root σ0 with a success probability larger than the one expected from
a random guess ? Does a non-vanishing amount of information on σ0 survives
in the n → ∞ limit ? In this Bayesian setting the information-theoretical op-
timal strategy of an observer having to reconstruct σ0 from σBn is to compute
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σ0

p0

p̂

p

Figure 7.3: The tree structure considered for the computation of Cn, represented
here for k = l + 1 = 3. The generation of a configuration from the law ρ is
performed in a broadcast fashion, the root σ0 being ±1 with probability 1/2,
this information is then propagated down the tree with transmission channels
p0, p̂ and p.

the posterior probability µΘ(σ0|σBn), which for Ising variables is completely de-
scribed by the magnetization 〈σ0〉σBn . The correlation function Cn is a possible
way of quantifying this amount of information, the tree reconstruction problem
being solvable if and only if Cn remains strictly positive in the large n limit.
Thanks to the tree structure of the interaction graph this strategy is actually
computationally feasible and can be performed in a recursive way, that we now
specify for the two measures µΘ0 , µΘ1 .

Reconstruction for the bias with intra-clause interactions

Once supplemented by the boundary conditions

hi→a = σi for i ∈ Bn , (7.48)

the BP equations (7.7) admit a unique solution for any finite tree, and the
posterior probabilities µΘ0(σi|σBn) can be determined, for i /∈ Bn, from these
messages according to

µΘ0(σi|σBn) =
∏
a∈∂i 1 + ua→iσi∑

σ

∏
a∈∂i 1 + ua→iσ

, (7.49)

note that in order to lighten the notations we have kept implicit the dependency
of the messages on the observed variables σBn . The average value of the spin at
the root, in the posterior probability measure conditional on the observations
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of the spins at distance n, reads

〈σ0〉Bn = h0 =
∑
σ0

σ0µΘ0(σ0|σBn) = fΘ0({ua→0}a∈∂0) . (7.50)

(with fΘ0 defined in the equation (7.8)). It is this value which has to be com-
pared with the actual value of σ0 in the broadcast process that led to σBn
in order to assess the amount of information transmitted between 0 and Bn.
Once averaged over µΘ0(σ) this yields the point-to-set correlation function
C(0, Bn) = 〈σ0〈σ0〉Bn〉.

The computation descrived above was performed for a given tree. We now
want to take the average E over the graph ensemble. We recall that the finite
set Bn converges in distribution to a tree drawn as an instance of a Galton-
Watson process with n generations, in which every vertex has a random offspring
(number of descendent hyperedges) distributed as a Poisson law of parameter αk
(we consider here the ER ensemble GN (k, αN)). Let us call as above h ∈ [−1, 1]
the posterior magnetization of the root given the observations of the spins on
the vertices of the n-th generation (the root corresponding to the generation
n = 0). h is a random variable because of the randomness in the generation of
the Galton-Watson tree on the one hand, and in the broadcast process yielding
σBn on the other hand. We shall denote Pσ,n(h) its distribution when the
broadcast is conditioned to the root being equal to σ. As both the broadcast
process (from the root downwards) and the resolution of the BP equations (from
the leaves upwards) decompose recursively along the branches of the tree, it is
possible to obtain from the above analysis an inductive formula relating these
distributions for trees of depth n and n+ 1, namely

Pσ,n+1(h) =
∞∑
l=0

e−αk
(αk)l
l!

∫ l∏
i=1

dP̂σ,n(ui) δ(h− fΘ0(u1, . . . , ul)) , (7.51)

P̂σ,n(u) =
∑

σ1,...,σk−1

p̃(σ1, . . . , σk−1|σ)
∫ k−1∏

i=1
dPσi,n(hi) δ(u− f̂Θ0(h1, . . . , hk−1)) ,

(7.52)

with the initial condition Pσ,0(h) = δ(h−σ) that expresses the observation of the
variables at the boundary of the tree. These are examples of Recursive Distribu-
tional Equations (RDEs), as they define by recursion a sequence of probability
distributions. They can be equivalently written as equalities in distribution be-
tween random variables, for instance (7.51) means h d= fΘ0(u1, . . . , ul) with h
drawn from Pσ,n+1, l is a Poisson distributed random variable with mean αk,
and the ui’s are i.i.d. copies of a random variable of law P̂σ,n.

One can slightly simplify these equations by noticing that the invariance of
the bicoloring problem under a global spin-flip of all its variables implies that
P−σ,n(h) = Pσ,n(−h) and P̂−σ,n(u) = P̂σ,n(−u); this can be checked by induc-
tion from (7.51,7.52), using p̃(σ1, . . . , σk−1|σ) = p̃(−σ1, . . . ,−σk−1| − σ) and
the fact that fΘ0 and f̂Θ0 change sign when all their arguments are multiplied

106



by −1. It is thus redundant to track the evolution with n of the distributions
with both σ = +1 and σ = −1, we shall instead define Pn(h) = P+1,n(h) and
P̂n(u) = P̂+1,n(u) and close the equations on these two sequences of distribu-
tions:

Pn+1(h) =
∞∑
l=0

e−αk
(αk)l
l!

∫ l∏
i=1

dP̂n(ui) δ(h− fΘ0(u1, . . . , ul)) , (7.53)

P̂n(u) =
∑

σ1,...,σk−1

p̃(σ1, . . . , σk−1|+ 1)
∫ k−1∏

i=1
dPn(hi) δ(u− f̂Θ0(h1σ1, . . . , hk−1σk−1)) .

(7.54)

The answer to the reconstructibility question raised above can be read off
from the behavior of Pn(h) in the large n limit: if it tends to the trivial distri-
bution δ(h) (which is always a stationary solution of (7.53,7.54)), then all the
information on the value of the root has been washed out and the reconstruction
problem is not solvable. On the contrary if the limit of Pn(h) is non-trivial then
the observation of σBn contains some information on the root and the problem is
said to be solvable. The occurence of these two situations depend on the param-
eters k, α and {wp} of the model; increasing α gives rise to a larger number of
spin variables to be observed, which makes the inference problem easier. Hence
it is natural to expect the existence of a threshold αd(k, {wp}) such that the
problem is unsolvable (resp. solvable) for α < αd (resp. α > αd). We will see
in the section 7.6.2 that this threshold coincides with the clustering threshold
for the random bicoloring on k-hypergraphs. Indeed, the cavity formalism leads
to the same distributional equations as equations (7.51,7.52). More precisely,
in the cavity framework they corresponds to the 1RSB equations with Parisi
parameter X = 1 [16].

It is actually possible to describe this transition by the point-to-set cor-
relation function, which constitute a scalar order parameter (instead of the
functional one Pn). It can be expressed as follows

Cn(α, k, {wp}) =
∑
σ

1
2

∫
dPσ,n(h)σh . (7.55)

Using the symmetry properties described above this expression can be simplified:

Cn(α, k, {wp}) =
∫

dPn(h)h . (7.56)

The solvability threshold is determined by the large n limit of the point-to-set
correlation:

C(α, k, {wp}) = lim
n→∞

Cn(α, k, {wp}) . (7.57)

This is indeed an order parameter for the transition in the sense that C(α, k, {wp}) >
0 if and only if α > αd(k, {wp}). This equivalence is a consequence of some sym-
metry properties of the distributions Pn that we will describe now.
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Let us call Tn(h) the distribution of the posterior magnetization h of the
root, in a broadcast process which is not conditioned on the value of the root in
σ, i.e. Tn(h) = (P+,n(h)+P−,n(h))/2. A consequence of Bayes theorem applied
to the joint law between the spins at the root and on the boundary vertices
is the following converse relation between conditional and unconditional laws,
Pσ,n(h) = (1 + σh)Tn(h) (see [16, 39, 99] for more details on this property and
its consequences). In addition the invariance of the problem under a global
spin-flip implies that Tn(−h) = Tn(h), which yields a symmetry constraint on
the distributions Pn,

Pn(−h) = 1− h
1 + h

Pn(h) ,
∫

dPn(h) b(h) =
∫

dPn(h) b(−h) 1− h
1 + h

, (7.58)

the second equality being valid for any function b(h) such that the integrals
exist. This symmetry (sometimes called Nishimori symmetry [100], and also
fulfilled by P̂n(u)) implies several identities between the moments of h that can
be derived by appropriate choices of the test function b [39, 99]; here we shall
only state the simplest one, namely

Cn(α, k, {wp}) =
∫

dPn(h)h =
∫

dPn(h)h2 , (7.59)

that can be obtained from (7.58) with b(h) = h(1−h). This is enough to justify
our statement of the characterization of the reconstruction transition via the
behavior of Cn: if the latter vanishes in the n→∞ limit this implies that both
the average and the variance of Pn go to zero, hence Pn tends to the trivial
distribution δ(h).

Reconstruction for the bias with interactions at distance 1

We now give the explicit derivation of the posterior probability µΘ1(σ0|σBn),
adapting the computations explained in the previous section. In this case we
look at the k-uniform l + 1-regular graph ensemble. The conditional measure
µΘ1(·|σBn) is exactly described in terms of the solution of the BP equations
(7.17), supplemented with the boundary condition η̂i→a(v) = δv,v(i,a) on the
edges at distance larger than n of the root, v(i,a) being the value taken by the
variable during the broadcast. These BP messages, directed towards the root,
are thus random variables because of the randomness in the boundary condition
σBn . One can nevertheless write recursion equations on their distributions, their
law depending only on their distance from the boundary, as it was done in the
previous section. We shall denote Pv,n(η) the law of the message η on an edge
at distance n from the boundary, conditional on the value of the variable on
this edge being v in the broadcast, and similarly P̂v,n(η̂) for the law of the η̂
messages. Putting together all the above observations leads to the following
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recursion equations:

Pv,n+1(η) =
∑

v1,...,vl

p(v1, . . . , vl|v)
∫ l∏

i=1
dP̂vi,n+1(η̂i) δ(η − fΘ1(η̂1, . . . , η̂l)) ,

(7.60)

P̂v,n+1(η̂) =
∑

v1,...,vk−1

p̂(v1, . . . , vk−1|v)
∫ k−1∏

i=1
dPvi,n(ηi) δ(η̂ − f̂Θ1(η1, . . . , ηk−1)) ,

(7.61)

where fΘ1 , f̂Θ1 , p̂ and p have been defined in (7.17,7.46,7.47), respectively, and
with the initial condition for n = 0:

P̂v,0(η̂) = δ(η̂(·)− δv,·) . (7.62)

The point-to-set correlation function is then computed as

Cn = 1
2
∑
σ0

∑
v1,...,vl+1

p0(v1, . . . , vl+1|σ0)
∫ l+1∏

i=1
dP̂vi,n(η̂i)σ0m(η̂1, . . . , η̂l+1) ,

(7.63)
where p0 is the law defined in (7.45), and with the expression

m(η̂1, . . . , η̂l+1) = m+(η̂1, . . . , η̂l+1)−m−(η̂1, . . . , η̂l+1)
m+(η̂1, . . . , η̂l+1) +m−(η̂1, . . . , η̂l+1) , (7.64)

mσ(η̂1, . . . , η̂l+1) =
∑

w1,...,wl+1

ψ

(
l+1∑
i=1

wi

)
l+1∏
i=1
η̂i(σ,wi) , (7.65)

for the conditional average magnetization of the root.
The recursion equations (7.60,7.61), (which are equivalent to the 1RSB equa-

tions with Parisi breaking parameter equal to X = 1), always admit the trivial
solution Pv(η) = δ(η− η∗), P̂v(η̂) = δ(η̂− η̂∗) as a stationary fixed point. In the
non-reconstructible (RS) phase this is the limit reached by Pv,n and P̂v,n in the
large n limit, and then Cn → 0. On the contrary in the reconstructible (RSB)
phase the limit of Pv,n and P̂v,n is a non-trivial fixed point, and Cn remains
strictly positive. For a given choice of the parameters k and ψ we define the
dynamic transition ld as the threshold separating these two behaviors. As l is
here an integer parameter we will say more precisely that l < ld is the RS phase,
l ≥ ld the RSB phase, i.e. ld(k, ψ) is the smallest integer value of l such that
RSB occurs.

Simplifications and symmetries

The recursion equations (7.60,7.61) bear, for each value of n, on eight distri-
butions Pv,n, P̂v,n, as the variable v = (σ,w) takes four different values. This
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number can however be divided by two thanks to the invariance of the problem
under the spin-flip symmetry σ → −σ. To state its consequences let us define the
flip transformation η → ηf between messages, according to ηf (σ,w) = η(−σ,w)
(and similarly η̂f (σ,w) = η̂(−σ,w)). The channels p and p̂ being invariant
under a global spin-flip, one can check that

P(−,w),n(η) = P(+,w),n(ηf ) , P̂(−,w),n(η̂) = P̂(+,w),n(η̂f ) , (7.66)

which allows to close (7.60,7.61) on the four distributions {P(+,w),n, P̂(+,w),n}w=0,1,
that we shall denote for simplicity {Pw,n, P̂w,n}w=0,1. Using this property, as
well as the invariance of fΘ1 , f̂Θ1 under a permutation of their arguments and a
more explicit version of the expressions (7.46,7.47) of p̂ and p, one can simplify
(7.60,7.61) into:

Pw,n+1(η) =
l∑

p=0

(
l
p

)
ψ(p+ w)ŷ−p

l∑
p′=0

(
l
p′

)
ψ(p′ + w)ŷ−p′

∫ p∏
i=1

dP̂1,n+1(η̂i)

×
l∏

i=p+1
dP̂0,n+1(η̂i) δ(η − fΘ1(η̂1, . . . , η̂l)) , (7.67)

P̂1,n+1(η̂) =
∫ k−1∏

i=1
dP0,n(ηi) δ(η̂ − f̂Θ1(ηf1 , . . . , η

f
k−1)) , (7.68)

P̂0,n+1(η̂) = k − 1
yŷ

∫
dP1,n(η1)

k−1∏
i=2

dP0,n(ηi) δ(η̂ − f̂Θ1(ηf1 , η2, . . . , ηk−1))

(7.69)

+ 1
ŷ

k−2∑
t=2

(
k − 1
t

)∫ k−1∏
i=1

dP0,n(ηi) δ(η̂ − f̂Θ1(ηf1 . . . η
f
t , ηp+1, . . . , ηk−1)) .

The expression (7.63) of the correlation function Cn can similarly be rewritten
as:

Cn =
l+1∑
p=0

(
l+1
p

)
ψ(p)ŷ−p

l+1∑
p′=0

(
l+1
p′

)
ψ(p′)ŷ−p′

∫ p∏
i=1

dP̂1,n(η̂i)
l+1∏
i=p+1

dP̂0,n(η̂i)m(η̂1, . . . , η̂l+1) .

(7.70)
As already mentioned in the previous section, a further symmetry constrains

the distributions Pv,n; let Tn(η) the distribution of η in a broadcast process wich
is not conditioned on the value of the root, i.e.:

Pn(η) =
∑

v=(σ,w)

η∗(w)Pv,n(η) , (7.71)

where η∗ is normalized in such a way that η∗(0) + η∗(1) = 1/2. Applying Bayes
theorem to express the joint law of the variable at the root and those at the
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boundary one obtains [16]

Pv,n(η) = η(v)
η∗(w)Pn(η) . (7.72)

This yields a relation between Pw,n = P(+,w),n for the two values of w, namely

P1,n(η) = y
η(+, 1)
η(+, 0)P0,n(η) , (7.73)

where we recall that y = η∗(0)/η∗(1) was defined in Eq. (7.39). Moreover the
spin-flip symmetry implies the invariance of Pn, i.e. Pn(η) = Pn(ηf ). This
property, combined with (7.72), allows to relate Pw,n in η and ηf through a
change of density, namely

P0,n(ηf ) = η(−, 0)
η(+, 0)P0,n(η) , P1,n(ηf ) = η(−, 1)

η(+, 1)P1,n(η) . (7.74)

These symmetry relations, as well as the similar ones that hold for P̂w,n modulo
the replacement of y by ŷ in (7.73), will be particularly useful in the treatment
of the large k limit presented in chapter 10. They imply a variety of identities
between average observables, and in particular they can be used to rewrite the
correlation function as

Cn =
l+1∑
p=0

(
l+1
p

)
ψ(p)ŷ−p

l+1∑
p′=0

(
l+1
p′

)
ψ(p′)ŷ−p′

∫ p∏
i=1

dP̂1,n(η̂i)
l+1∏
i=p+1

dP̂0,n(η̂i)m(η̂1, . . . , η̂l+1)2 ,

(7.75)
which obviously shows that Cn ≥ 0. This alternative form of Cn can be derived
by first checking that

l+1∑
p=0

(
l + 1
p

)
ψ(p)ŷ−p

∫ p∏
i=1

dP̂1,n(η̂i)
l+1∏
i=p+1

dP̂0,n(η̂i)A(η̂1, . . . , η̂l+1) (7.76)

=
l+1∑
p=0

(
l + 1
p

)
ψ(p)ŷ−p

∫ p∏
i=1

dP̂1,n(η̂i)
l+1∏
i=p+1

dP̂0,n(η̂i)
m−(η̂1, . . . , η̂l+1)
m+(η̂1, . . . , η̂l+1)A(η̂f1 , . . . , η̂

f
l+1)

(7.77)

for an arbitrary function A which is invariant under the permutation of its
arguments, and such that the integrals are well-defined, and then applying this
identity with the test function A = m(1−m).

7.4 Hard fields and the naive reconstruction
The tree reconstruction problem considered above asks whether the observation
of σBn gives some information on the value of the root σ0, as quantified by the
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correlation function Cn. Answering this question requires to solve the functional
recursion relations (7.53,7.54 for µΘ0 , and (7.67-7.68) for µΘ1). The strategy is
based on the optimal inference algorithm, namely the computation of the poste-
rior probability µΘ(σi|σBn) via the BP equations ((7.7) for µΘ0 ,(7.17) for µΘ1).
We shall now consider a more drastic question, namely whether σBn allows to
infer σ0 with perfect certainty, i.e. is σi uniquely determined in the measure
µΘ(·|σBn), or in other words is σi constant in all the proper bicolorings of the
graphs that take the values σBn on the boundary vertices? This corresponds to
a projection of the BP algorithm towards its Warning Propagation [35] version
introduced in the section 4.1.6 that only keeps sure beliefs and discards the
other ones. It is clear that if the answer to this new question is yes then the
inferred value of σi is the correct one that was used in the broadcast, hence if
reconstruction is possible in this strong sense of certain inference it is also possi-
ble in the definition introduced in the section 7.3.2. We call Hn the probability
of this event. It turns out that Hn is much simpler to compute than Cn, with
scalar recursions instead of functional ones, and that Hn is a lower bound for
Cn; this last fact is quite intuitive, if σBn implies the value of σ0 it certainly
conveys information about it.

The computation of Hn requires to project the BP equations on the WP
equations, and to compute from the distribution over the BP messages (denoted
Pn(h) for µΘ0 , and Pw,n(η) for µΘ1) the probability of having a hard message.
We will precise the definition of hard message in the case µΘ1 . To explain the
computation of Hn let us first remark that σ0 is implied by σBn if and only if all
the proper bicolorings of the tree that coincides with σBn on the boundary take
the same value at the root. By definition we only consider biased measures that
do not strictly forbid any solution (ωp > 0 for p ∈ {1, . . . , k − 1} for µΘ0 , and
ψ(p) > 0 for all p for µΘ1), hence the certain determination of σ0 can only arise
from the bicoloring constraints acting on the spin variables. This observation
can be turned into an algorithm, called the naive reconstruction procedure:
consider all the hyperedges at the boundary, and declare them “forcing to the
value σ” if their k− 1 variables at distance n from the root are all equal to −σ,
and “not forcing” otherwise. Now the variables at distance n−1 are assigned the
value σ if at least one of their incident boundary hyperedge is forcing to this value
(by construction of the broadcast process there cannot be conflicting forcings
to + and − on the same variable), and a “white” value 0 if all the hyperedges
are not forcing. This process can be iterated from the boundary towards the
root, hyperedges being forcing if and only if k − 1 among their variables have
been assigned the same value +1 or −1. Hn is thus the probability that this
successive forcing mechanism percolates from the boundary to the root, with at
least one of its incident hyperedge forcing it.
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7.4.1 Intra-clause bias
To incorporate naturally this computation in the one presented in the section
7.3.2 we decompose the field distributions as follows:

Pn(h) = Hn δ(h−1)+(1−Hn)Qn(h) , P̂n(u) = Ĥn δ(u−1)+(1−Ĥn) Q̂n(u) ,
(7.78)

where Qn and Q̂n are probability measures with no atom in 1. Hn is the weight
of the “hard field” h = 1, that constrain completely the variable at the root
and makes it a frozen variable under the boundary condition σBn . One also
says that h = 1 is forcing the value of the root to σ = 1. Hn is precisely the
probability of success of the naive reconstruction procedure. In the following we
shall callQn and Q̂n the distributions of soft fields; note that they do not contain
atoms in −1 (because a variable σi cannot be forced by σBn to another value
that it had in the broadcast), and that they enjoy the same Bayes symmetry
(7.58) as the complete distributions Pn and P̂n. Inserting this decomposition
in (7.53,7.54), and considering the possible combinations of arguments of the
functions fΘ0 , f̂Θ0 in (7.7) that yields h, u = 1 one easily obtains the following
evolution equations for Hn and Ĥn:

Hn+1 = 1− e−αkĤn , Ĥn = p̃(−, . . . ,−|+)Hk−1
n . (7.79)

The first one expresses the fact that a spin is perfectly recovered as soon as one
of its neighboring interactions forces it to its correct value, while the second one
shows that this latter event happens when in the broadcast the k − 1 variables
adjacent to it have been given the same value, and that they all have been
perfectly recovered.

Assembling these two equations we obtain a simple recursive equation on
Hn,

Hn+1 = 1− e−Γ(α,k,{wp})Hk−1
n , Γ(α, k, {wp}) = αkp̃(−, . . . ,−|+) , (7.80)

with the initial condition H0 = 1. By a numerical inspection of the shape of
this recursion function one easily realizes that for k ≥ 3 the fixed point reached
by Hn for n→∞ undergoes a discontinuous bifurcation from zero to a strictly
positive value when Γ crosses a critical value Γr = Γr(k). The latter can be
determined by noting that at such a bifurcation the derivative of the recursion
function must be equal to 1, hence that Γr and Hr, the fixed point at the
bifurcation, are solutions of

Hr = 1− e−ΓrH
k−1
r , 1 = (k − 1)Hk−2

r Γre
−ΓrH

k−1
r . (7.81)

One can close these two equations on a single one that determines Hr: 1 =
(k−1) ln(1−Hr)(1−1/Hr), from which one obtain Γr(k) = − ln(1−Hr)/(Hk−1

r ),
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and in terms of the original parameter α this “rigidity” transition occurs at

αr(k, {wp}) = Γr

kp̃(−, . . . ,−|+)

= 1
k

Γr(k)
∑k−1
p=1

(
k−1
p

)
ωp

ω1
= 1
k

Γr(k)
∑k−1
p=1

(
k
p

)
ωp

2ω1
. (7.82)

We shall denote αr,u the value of this threshold for the uniform case ω1 = · · · =
ωk−1 = 1, i.e. when all proper bicolorings are weighted equally, in such a way
that

αr,u(k) = 1
k

Γr(k)(2k−1 − 1) . (7.83)

From the intuitive interpretation of this computation as the analysis of a
suboptimal reconstruction algorithm it is clear that αr should be an upper
bound on αd, and indeed if H = limnHn is strictly positive then Pn cannot
converge to δ(h). The inequality αd ≤ αr is in general strict, i.e. there can be
non-trivial solution of the equations (7.53,7.54) that do not contain any hard-
field; this has been seen numerically in many problems, and proven rigorously
for the graph q-coloring problem in the large q limit in [38, 40]. Moreover
this probability H of perfect reconstruction is a lower bound on the correlation
function C, as for any value of n the fraction of hard fields Hn is a lower bound
on Cn:

Cn(α, k) =
∫

dPn(h)h = Hn + (1−Hn)
∫

dQn(h)h (7.84)

and
∫

dQn(h)h =
∫

dQn(h)h2 ≥ 0 , (7.85)

because of the consequence stated in (7.59) of the Bayes symmetry, that is also
enjoyed by Qn. An illustration of the bound H(α, k) ≤ C(α, k) can be found for
k = 5 in the bottom panel of Fig. 9.2. We can see on this figure that for finite
k this bound, as well as its consequence αd(k) ≤ αr(k), are not tight. There is
an intermediate regime αd < α < αr where reconstruction is possible but naive
reconstruction is not, all the relevant information on the value of the root is
asymptotically contained in the soft fields distribution. Another view on this
phenomenon is given in Fig. 7.4 where one sees the fraction Hn of hard fields
fall to zero as n grows while Cn remains at a positive plateau value. Also when
α > αr one can see on the bottom panel of Fig. 9.2 that C > H for k = 5,
i.e. the soft fields do bring some additional information on the value of the root
even in the presence of hard fields.

Let us also underline that among all the parameters {ωp} that define the bias
among proper bicolorings ω1 = ωk−1 plays a special role in the expression (7.82)
of the rigidity threshold. Indeed hard fields are propagated along constraints
that are “almost violated”, in the sense that they contain a single variable of a
given color. Penalizing such “almost monochromatic” hyperedges tends thus to
avoid the percolation of frozen variables.
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Figure 7.4: The evolution of Cn and Hn for k = 5, α = 10.4, in the intermediate
regime between αd and αr: the fraction Hn of hard fields falls to zero (the
vertical range has been reduced for the sake of readability) while the correlation
function Cn tends to a positive constant.

7.4.2 Bias with interactions at distance 1
To embed the analysis of this naive reconstruction algorithm into the formalism
defined above for the measure µΘ1 we first introduce some terminology to classify
the messages η, η̂; we will say that

• η is forcing to σ = ±1 iff η(−σ, 0) = η(−σ, 1) = 0, η(σ, 0) > 0 and
η(σ, 1) > 0.

• η is non-forcing iff η(σ,w) > 0 for all σ and w.

• η̂ is forcing to σ = ±1 iff η̂(σ, 1) = 1, η̂(σ, 0) = η̂(−σ, 0) = η̂(−σ, 1) = 0;
we write then η̂ = η̂σ.

• η̂ is non-forcing iff η̂(+, 0) + η̂(+, 1) > 0 and η̂(−, 0) + η̂(−, 1) > 0.

We will also use the term hard (resp. soft) field for the forcing (resp. non-
forcing) BP messages. Inserting these definitions in the BP equations (7.17)
one can check the combination rules argued for above: η = f(η̂1, . . . , η̂l) is
forcing to σ iff at least one η̂i is forcing to σ and none forcing to −σ, η is non-
forcing otherwise. Similarly η̂ = g(η1, . . . , ηk−1) is forcing to σ iff all the ηi are
forcing to −σ, and non-forcing otherwise.

We decompose now the distributions Pw,n, P̂w,n between the contributions
of the hard and of the soft fields, defining

Pw,n(η) = hw,nRw,n(η) + (1− hw,n)Qw,n(η) , (7.86)
P̂w,n(η̂) = ĥw,n δ(η̂ − η̂+) + (1− ĥw,n) Q̂w,n(η̂) , (7.87)
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where h, ĥ ∈ [0, 1] are the total weights of hard fields in the corresponding
distributions, the R are normalized distributions on η’s forcing to +, and Q
and Q̂ are probability laws supported on non-forcing messages. By construction
there are no messages forcing to − in Pw,n = P(+,w),n.

Inserting these decompositions in the recursion equations (7.67-7.69) we see
that the evolution of the hard fields weights decouple; in particular from (7.68)
we obtain ĥ1,n+1 = (h0,n)k−1 and from (7.69) ĥ0,n+1 = 0, we shall thus write
more simply ĥn instead of ĥ1,n. The equation (7.67) yields

hw,n+1 = 1−

l∑
p=0

(
l
p

)
ψ(p+ w)ŷ−p(1− ĥn+1)p

l∑
p=0

(
l
p

)
ψ(p+ w)ŷ−p

, (7.88)

the recursion can thus be closed on h0,n and ĥn, and solved starting from the
initial condition h0,0 = 1. Finally Hn can be read off from the expression (7.70)
of Cn by isolating the contribution with at least one forcing field η̂ around the
root, which gives

Hn = 1−

l+1∑
p=0

(
l+1
p

)
ψ(p)ŷ−p(1− ĥn)p

l+1∑
p=0

(
l+1
p

)
ψ(p)ŷ−p

. (7.89)

Depending on the choice of the parameters (l, k, ψ) the sequence h0,n (or
equivalently Hn) either decays to 0 or to a strictly positive fixed point. The
so-called rigidity threshold lr(k, ψ) introduced in the previous section separates
these two behaviors: Hn → 0 when l < lr whereas it remains strictly positive in
the large n limit for l ≥ lr. In this latter case there is a positive probability for
the observation of a far away boundary to completely determine the root (the
naive reconstruction problem is solvable), hence there is certainly information
about the value of the root (the usual reconstruction problem is also solvable).

The correlation function Cn can also be decomposed from (7.70) as the sum
of Hn and a soft contribution:

Cn = Hn+
l+1∑
p=0

(
l+1
p

)
ψ(p)ŷ−p(1− ĥn)p

l+1∑
p′=0

(
l+1
p′

)
ψ(p′)ŷ−p′

∫ p∏
i=1

dQ̂1,n(η̂i)
l+1∏
i=p+1

dQ̂0,n(η̂i)m(η̂1, . . . , η̂l+1) .

(7.90)
Exploiting the symmetry relations (7.73,7.74) one can rewrite the second term
in this equation with the integrand squared, exactly as we did in the expression
(7.75) of Cn, which proves the bound Cn ≥ Hn and confirms the intuition that
the reconstruction problem is solvable if the naive reconstruction is.
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7.5 The distribution of soft-fields
7.5.1 Uniform measure
We will now derive the recursion equations on the distribution of the soft fields
Qn and Q̂n introduced in (7.78), that complete the equations (7.79) for the
evolution of the weightsHn and Ĥn of hard fields. Both are obtained by plugging
the decomposition (7.78) into the recursion equations (7.53,7.54) on Pn and P̂n.
We will focus on the uniform distriution (obtained by setting ω0 = ωk = 0,
and ω1 = · · · = ωk−1 = 1 in equation (6.8)). The recursion equations that we
will obtain in this section will be used in the large k analysis of the clustering
threshold for the uniform measure, presented in [32] (see chapter 9).

As fΘ0(u1, . . . , ul) = 1 as soon as one of the arguments is equal to 1, i.e. as
soon as one of the neighboring interactions forces the root variable, it is easy to
see from (7.53) that the soft part of Pn arises from the combination of only soft
u’s, namely

Qn+1(h) =
∞∑
l=0

e−αk(1−Ĥn) (αk(1− Ĥn))l
l!

∫ l∏
i=1

dQ̂n(ui) δ(h− fΘ0(u1, . . . , ul)) .

(7.91)
The treatment of (7.54) requires a little bit more work in order to put the
resulting equation into the convenient form used in [32]. Denoting p the number
of soft fields picked in the r.h.s. of (7.54), we first rewrite this equation as

P̂n(u) =
k−1∑
p=0

(
k − 1
p

)
Hk−1−p
n (1−Hn)p

∑
σ1...σk−1

p(σ1 . . . σk−1|+)∫
dQn(h1) . . . dQn(hp) δ(u− g(σ1h1 . . . σphp, σp+1 . . . , σk−1)) . (7.92)

As explained above the term δ(u − 1) arises solely from the term p = 0,
(σ1 . . . σk−1) = (−, . . . ,−). Moreover one realizes by inspection of the expres-
sion of f̂Θ0 in (7.10) that u = 0 as soon as among the hard fields (σp+1 . . . , σk−1)
at least one is positive and at least one is negative; this expresses the fact that
in such a situation the bicoloring condition is satisfied whatever the value of the
spin at the root. The initial condition for this evolution of the soft fields dis-
tribution turns out to be Q1(h) = δ(h), as can be easily realized by an explicit
computation of P̂0(u) and P1(h) starting from P0(h) = δ(h− 1).

Combining the expression (7.44) of the broadcasting probability p̃(σ1 . . . σk−1|+)
with the examination of the possibles outcomes of (7.10), one obtains after a
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short computation the following expression for the soft part of P̂n,

(1− Ĥn)Q̂n(u) = 2k−1

2k−1 − 1

[
1 + (1−Hn)k−1 − 2

(
1− Hn

2

)k−1
]
δ(u)

+
k−2∑
p=1

(
k − 1
p

)
(1−Hn)pHk−1−p

n

∫ p∏
i=1

dQn(hi)
1

2k−1 − 1
∑

σ1,...,σp

δ(u− gp(σ1h1, . . . , σphp))

+
k−2∑
p=1

(
k − 1
p

)
(1−Hn)pHk−1−p

n

∫ p∏
i=1

dQn(hi)
1

2k−1 − 1
∑′

σ1,...,σp

δ(u+ gp(σ1h1, . . . , σphp))

+ (1−Hn)k−1

2k−1 − 1
∑′

σ1,...,σk−1

∫ k−1∏
i=1

dQn(hi)δ(u− g(σ1h1, . . . , σk−1hk−1)) , (7.93)

where the primed sums
∑′ exclude the configuration with all the spin arguments

equal to +1, and where gp is defined as

gp(h1, . . . , hp) = −g(h1, . . . , hp,+1, . . . ,+1) =

p∏
i=1

1+hi
2

2−
p∏
i=1

1+hi
2

. (7.94)

7.5.2 Bias with interaction at distance 1
We also give here the recursion equation for the soft fields distributions, obtained
by inserting the decompositions (7.86,7.87) into (7.67-7.69):

Qw,n+1(η) =
l∑

p=0

(
l
p

)
ψ(p+ w)ŷ−p(1− ĥn+1)p

l∑
p′=0

(
l
p′

)
ψ(p′ + w)ŷ−p′(1− ĥn+1)p′

∫ p∏
i=1

dQ̂1,n+1(η̂i)

×
l∏

i=p+1
dQ̂0,n+1(η̂i) δ(η − fΘ1(η̂1, . . . , η̂l)) , (7.95)

Q̂1,n+1(η̂) =
k−1∑
u=1

(
k−1
u

)
(h0,n)k−1−u(1− h0,n)u

1− (h0,n)k−1

∫ u∏
i=1

dQ0,n(ηi)

×
k−1∏
i=u+1

dR0,n(ηi) δ(η̂ − f̂Θ1(ηf1 , . . . , η
f
k−1)) (7.96)

Q̂0,n+1(η̂) = P̂0,n+1(η̂) . (7.97)

These recursive equations will be used in chapter 10, that deals with the asymp-
totic expansion of the clustering threshold for biased measures, and that gathers
the results obtained in the paper [33]. The last equation comes from the ab-
sence of hard fields in P̂0, one can thus take the expression (7.69) and insert in
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its right hand side the decomposition (7.86) for P1 and P0 to have an equation
involving only the soft fields distributions; this is relatively cumbersome nota-
tionally in general, we shall only write the corresponding equation in a special
case in chapter 10.

7.6 1RSB formalism
We now introduce the 1RSB formalism, and explain the connection between the
reconstruction problem on trees and the 1RSB cavity equations at X = 1. The
hypothesis underlying the RS cavity method must break down when the density
of interactions per variable α becomes too large; a first hint of this phenomenon,
called Replica Symmetry Breaking (RSB), is the negativity of the RS entropy
at large enough α, which is impossible for a system with discrete degrees of
freedom. In chapter 2, we have introduced the RSB phenomenon, and related
it to the clustering of the solution set (see sections 2.3.1 and 2.3.2). As a mat-
ter of fact RSB can occur before αs=0; increasing α above a certain threshold
causes the appearance of the long-range point-to-set correlation between dis-
tant variables under the measure µ, which contradicts the RS hypothesis. The
point-to-set correlation function has been defined in equation (2.15), and has
been estimated in the section 7.3.2 in the framework of the tree reconstruction
problem. When this long-range correlation appears it becomes necessary to use
more refined versions of the cavity method, that are able to deal with this RSB
phenomenon [15]. At its first non-trivial level, called 1RSB for one step of RSB,
the cavity method postulates the existence of a partition of the configuration
space {−1, 1}N into “pure states”, or clusters, such that the restriction of the
measure µ to a pure state has good decorrelation properties. This restricted
measure can then be treated as the full measure in the RS cavity method, i.e.
with BP equations to describe its marginal probabilities, and the Bethe free-
entropy to compute its partition function.

To be more quantitative let us index with c the partition of the configuration
space into clusters, and denote Z(c) the contribution to the partition function
of the c-th cluster, as it was done in the section 2.3.2 (see equation (2.16)). We
also denote {η̂ca→i, ηci→a} the solution of the BP equations that describe it. The
1RSB cavity method aims at computing the potential (2.20) that we recall here:

Φ1(X ) = lim
N→∞

1
N

ln
(∑

c

(Z(c))X
)
, (7.98)

where the Parisi parameter X allows to weight differently the various pure states,
according to their relative weights. This quantity contains precious informations
about the pure-state decomposition; suppose indeed that, at the leading expo-
nential order, there are eNΣ(φ) pure states c with Z(c) = eNφ (again neglecting
sub-exponential corrections). The complexity Σ(φ) plays thus the role of an
entropy density, with pure states replacing usual configurations, and captures
the RSB phenomenon quantitatively. The potential Φ1(X ) and the complex-
ity Σ(φ) are Legendre transforms of each other [60]; evaluating (7.98) via the
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Laplace method yields indeed

Φ1(X ) = sup
φ

[Σ(φ) + Xφ] , (7.99)

which can be inverted in terms of the conjugated parameter as

Σ(X ) = Φ1(X )−X d
dX Φ1(X ) . (7.100)

7.6.1 1RSB cavity equations
In order to compute Φ1 one introduces, for a given sample and a given edge (i, a)
of the factor graph, two distributions Pi→a and P̂a→i, that encode the laws of
hci→a and uca→i when the pure state c is chosen randomly with a probability
proportional to Z(c)X . These distributions are found to obey self-consistent
equations of the form

Pi→a = FΘ({P̂b→i}b∈∂i\a) , P̂a→i = F̂Θ({Pj→a}j∈∂a\i) , (7.101)

where P = FΘ(P̂1, . . . , P̂d) is a shorthand for

P (η) = 1
z1,Θ(P̂1, . . . , P̂d)

∫ ( d∏
i=1

dP̂i(η̂i)
)
δ(η−fΘ(η̂1, . . . , η̂d)) z0,Θ(η̂1, . . . , η̂d)X ,

(7.102)
and P̂ = F̂Θ(P1, . . . , Pk−1) means

P̂ (η̂) = 1
ẑ1,Θ(P1, . . . , Pk−1)

∫ (k−1∏
i=1

dPi(ηi)
)
δ(η̂−f̂Θ(η1, . . . , ηk−1)) ẑ0,Θ(η1, . . . , ηk−1)X ;

(7.103)
the functions fΘ, z0,Θ, and f̂Θ, ẑ,Θ were defined in Eqs. (7.8 -7.11) for the
measure µΘ0 , and (7.17) for the measure µΘ1 . The factors z1,Θ and ẑ1,Θ ensure
the normalization of the distributions P (η) and P̂ (η̂).

In order to deal with random hypergraphs one introduces the probability
distributions over the 1RSB messages P1RSB(P ) and P̂1RSB(P̂ ) that obeys the
consistency relations similar to (7.28,7.29),

P1RSB(P ) =
∞∑
d=0

pd

∫ ( d∏
i=1

dP̂1RSB(P̂i)
)
δ[P − FΘ(P̂1, . . . , P̂d)] , (7.104)

P̂1RSB(P̂ ) =
∫ (k−1∏

i=1
dP1RSB(Pi)

)
δ[P̂ − F̂Θ(P1, . . . , Pk−1)] .

The 1RSB potential for typical random hypergraphs can then be computed from
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the solution of these equations as

Φ1,Θ(X ) =
∞∑
d=0

pd

∫ ( d∏
i=1

dP̂iP̂1RSB(P̂i)
)

lnZv
1,Θ(P̂1, . . . , P̂d) (7.105)

+ α

∫ ( k∏
i=1

dPiP1RSB(Pi)
)

lnZc
1,Θ(P1, . . . , Pk)

− αk
∫

dPdP̂P1RSB(P )P̂1RSB(P̂ ) lnZe
1,Θ(P, P̂ ) , (7.106)

with:

Zv
1,Θ(P̂1, . . . , P̂d) =

∫ ( d∏
i=1

dP̂i(η̂i)
)

(Zv
0,Θ(η̂1, . . . , η̂d))X , (7.107)

Zc
1,Θ(P1, . . . , Pk) =

∫ ( k∏
i=1

dPi(ηi)
)

(Zc
0,Θ(η1, . . . , ηk))X , (7.108)

Ze
1,Θ(P, P̂ ) =

∫
dP (η)dP̂ (η̂)(Ze

0,Θ(η, η̂))X . (7.109)

The expressions of Zv
0,Θ,Zc

0,Θ,Ze
0,Θ have been specified in (7.13-7.15) for µΘ0 ,

and in (7.23-7.25) for µΘ1 . Finally the 1RSB prediction for the free-entropy is
given in the equation (2.27) that we recall here:

Φ1RSB
Θ = inf

X∈[0,1]

Φ1,Θ(X )
X

. (7.110)

Note that the 1RSB equations always admit the RS solution as a special
case, when the distributions P in the support of P1RSB are Dirac measures. In
most models this trivial solution of the 1RSB equations is the only one at small
values of α; then Φ1(X ) = XΦRS , and the thermodynamic prediction of the RS
and 1RSB versions of the cavity method coincides. Increasing the number of
constraints of the system non-trivial solution of the 1RSB equations can appear;
the dynamic (clustering) threshold αd(k,Θ) is defined as the smallest value of
α for which the 1RSB equations with X = 1 admit a solution distinct from the
RS one. A further distinction has then to be made: if the associated complexity
Σ(X = 1) is positive the extremum in (7.110) is reached for X = 1 and Φ1RSB =
ΦRS . In such a “dynamic 1RSB” situation the typical configurations of the
Gibbs measure are supported on an exponentially large number of pure states,
in such a way that the total free-entropy (or any correlation functions between a
finite number of variables) is unable to detect the difference with a RS situation.
On the contrary when Σ(X = 1) < 0 the extremum in (7.110) selects a non-
trivial value Xs < 1 of the Parisi parameter, the Gibbs measure condenses
on a sub-exponential number of clusters, and correlations between finite sets
of variables unveil the RSB phenomenon. One calls condensation threhold αc
the smallest value of α for which a solution of the 1RSB equations with Σ(X =
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1) < 0 exists, which corresponds to a point of non-analyticity of the free-entropy
density. We will give in section 7.6.3 an explicit expression of the complexity
Σ(X = 1) for the biased measure with intra-clause bias µΘ0 .

7.6.2 Simplifications for X = 1
The complete 1RSB equations have a rather intricate structure, as they are
self-consistent equations for probability distributions over probability distribu-
tions, which make in particular their numerical resolution rather cumbersome.
Fortunately for special values of the parameter X (i.e. X = 0 and X = 1) they
can be largely simplified. We shall sketch here this simplification procedure for
X = 1, which as explained above is the important one for the determination of
the dynamic and condensation phase transitions; for further details the reader
is referred to [59] where the simplifications are explained in more details and
in a general setting. We will see that the 1RSB equations at X = 1 coincide
with the recursive distributional equations obtained for the tree-reconstruction
problem, hence showing that the threshold for solvability and the clustering
threshold are equal. We recall that in our settings the solution of the RS equa-
tions (7.28,7.29) is a trivial delta function PRS(η) = δ[η−η∗], P̂RS(η̂) = δ[η̂−η̂∗].
For the measure with a bias that factorises on the clauses (see equation (7.1)),
one has seen in section 7.2.2 that η∗(σ) = 1/2, η̂∗(σ) = 1/2. For the biased
measure with interaction at distance 1, for the k-regular l + 1-uniform graph
ensemble, η∗(σ), η̂∗(σ) is solution of the equations (7.36-7.38). This will allow
for additional simplifications compared to the general setting described in [59].

The crucial technical property of the equations that opens the door to sim-
plifications at X = 1 is the fact that, for this value, the normalization constant
z1,Θ in (7.102) does not depend on the whole distributions P̂1, . . . , P̂d, but
only on their average values

∫
dP̂i(η̂i)η̂i (a similar statement holds for ẑ1,Θ in

(7.103)). More precisely, let

η(P ) =
∫

dP (η)η, η̂(P̂ ) =
∫

dP̂ (η̂)η̂. (7.111)

Then one has:
z1,Θ(P̂1, . . . , P̂d) = z0,Θ(η̂(P̂1), . . . , η̂(P̂d)) (7.112)

and
ẑ1,Θ(P1, . . . , Pk−1) = ẑ0,Θ(η(P1), . . . , η(Pk−1)). (7.113)

Furthermore, one can check that the random variable η (resp. η̂) induced by
the definition (7.111) with P (resp P̂ ) drawn from P1RSB (resp. P̂1RSB) obey
the RS self-consistency equations (7.28,7.29):

η
d= f(η̂1, . . . , η̂d); η

d= f̂(η1, . . . , ηk−1) (7.114)

where d is drawn from the probability law rd, and η̂1, . . . , η̂d are obtained by
independenlty drawing P̂i from P̂1RSB , then constructing η̂i = η̂(P̂i). Similarly
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to obtain η1, . . . , ηk−1, one draws P1, . . . , Pk−1 i.i.d from P1RSB , then one sets
ηi = η(Pi).

Conditional on this average values F is thus a multilinear function of its
arguments, the equations (7.104) can then be averaged and closed on the mean
distributions Q and Q̂ defined as:

T (η) =
∫

dP1RSB(P )P (η) (7.115)

T̂ (η̂) =
∫

dP̂1RSB(P̂ )P̂ (η̂) , (7.116)

These two quantities are solutions of

T (η) =
∞∑
d=0

pd

∫ ( d∏
i=1

dT̂ (η̂i)
)
δ(η − f(η̂1, . . . , η̂d))

z0,Θ(η̂1, . . . , η̂d)
z0,Θ(η̂∗, . . . , η̂∗)

, (7.117)

T̂ (η̂) =
∫ (k−1∏

i=1
dT (ηi)

)
δ(η̂ − g(η1, . . . , ηk−1)) ẑ0,Θ(η1, . . . , ηk−1)

ẑ0,Θ(η∗, . . . , η∗)
. (7.118)

These equations are definitely simpler than the full 1RSB equations, as they
bear on probability distributions instead of distributions of distributions; they
have however one inconvenient feature, in particular for their numerical reso-
lution, namely the reweighting terms z0,Θ and ẑ0,Θ which prevents their direct
interpretation as recursive distributional equations. To get around this difficulty
we shall define the distributions

Px(η) = η(x)
η∗(x)T (η), P̂x(η̂) = η̂(x)

η̂∗(x) T̂ (η̂) (7.119)

where x is a generic variable (x = σ for µΘ0 , and x = v for µΘ1). From the
equality in distribution η(P ) d= η where P is drawn from P1RSB and η from
PRS , and since PRS(η) = δ[η − η∗], we have actually the identity:∫

dT (η)η =
∫

dP1RSB(P )η(P ) =
∫

dP̂RS(η)η = η∗ (7.120)

Similarly one has ∫
dT̂ (η̂)η̂ = η̂∗ (7.121)

Thus one can check that the distributions Px, P̂x are well-normalized, and that

T (η) =
∑
x

η∗(x)Px(η), T̂ (η̂) =
∑
x

η̂∗(x)P̂x(η̂) (7.122)

Inserting the definition of Px, P̂x in (7.117,7.118) one obtain distributional equa-
tions for Px, P̂x. The particular form of these equation depends on the choice
of the biased measure chosen. When one specifies to the biased measure µΘ0 ,
one recovers the equations (7.53,7.54). When one specifies to the biased mea-
sure µΘ1 , one recovers the equations (7.67-7.69). Therefore the 1RSB equations
at X = 1 coincide with the recursive distributional equations found for the
tree-reconstruction problem.
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7.6.3 Complexity Σ(X = 1) and condensation threshold
In this section we give the expression of the complexity Σ(X = 1) for the
measure µΘ0 . First, one can check that Φ1(X = 1) = ΦRS as given in (7.32).
To compute the complexity at X = 1 from (7.100) we need to take the derivative
with respect to X of Φ1 from (7.98). Because of its variational character ((7.98)
is stationary with respect to variations of P1RSB and P̂1RSB as long as the
1RSB cavity equations (7.104) are fulfilled) only the explicit dependency on
X has to be differentiated. Doing the simplification at X = 1 yields then an
expression in terms of P+ and P̂+:

d
dX Φ1(X )

∣∣∣∣
X=1

=
∞∑
d=0

pd

∫ ( d∏
i=1

duiP̂+(ui)
)

lnZv
0 (u1, . . . , ud) (7.123)

+ α
∑

σ1,...,σk

p(σ1, . . . , σk)
∫ ( k∏

i=1
dhiP+(hi)

)
lnZc

0(σ1h1, . . . , σkhk)

(7.124)

− αk
∫

dhduP+(h)P̂+(u) lnZe
0(h, u) ,

with
p(σ1, . . . , σk) = ω(σ1, . . . , σk)∑

σ′1,...,σ
′
k

ω(σ′1, . . . , σ′k) . (7.125)

We recall that the condensation threshold αc is the value above which the com-
plexity at X = 1 becomes negative.

7.7 Kesten-Stigum bound
We shall discuss here a bound on αd, known as the Kesten-Stigum [101, 13] tran-
sition in the context of the tree reconstruction problem, or as the de Almeida-
Thouless [102] transition for mean-field spin-glasses, that is tight for continuous
bifurcations and that in any case provide an easy to compute analytical upper
bound on αd (besides the bound αd < αs=0 and αd ≤ αr we already discussed).
The computation we will present have been explained in details in [103] (in App.
B) and in [104].

Let us recall that the 1RSB equations (7.104) always admit as a solution the
RS solution. This solution is P1RSB(P ) = δ[P − Ptriv], with Ptriv(h) = δ(h)
for the uniform measure and for the measure µΘ0 with intra-clause bias (and
similarly for P̂1RSB(P̂ )). For the biased measure µΘ1 , one has Ptriv(η) = δ(η−
η∗) with η∗, η̂∗ are solutions of the equations (7.36-7.38). One way to test the
existence of a non-trivial solution of the 1RSB equations is to investigate the
local stability of the RS solution, that we describe for both cases.
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7.7.1 Intra-clause bias
Suppose indeed that the distributions in the support of P1RSB are close to
Ptriv, i.e. that they are supported on small values of h. One can then ex-
pand (7.102,7.102) and study the evolution of their average moments under the
iterations of (7.104). More precisely one looks at the mean and variance:

M =
∫

dP (h)h, V =
∫

dP (h)h2 (7.126)

with P (h) a distribution in the support of P1RSB that is close to δ(h). The
global spin-flip symmetry imposes that the mean M remains zero. The first
non-trivial moment is thus the variance. Expanding linearly the BP equations,
one obtain at the first non-trivial order a relation between variances of the form

V = θ2
d∑
i=1

k−1∑
j=1

Vij (7.127)

that is obtained by innjecting the 1RSB equations (7.102,7.103) in the expression
of the variance V . θ is the derivative of f̂Θ0(u1, . . . , uk−1) with respect to one
of its arguments, evaluated on the trivial fixed-point. This relation is linear in
the variances, one can take its average with respect to P1RSB , and obtain that
the averaged variance will grow if and only if( ∞∑

d=0
rdd

)
(k − 1)θ2 > 1. (7.128)

with
∑∞
d=0 rdd = αk for the ER ensemble. We thus obtain the Kesten-Stigum

threshold αKS above which the trival solution of the 1RSB equations is unstable
(and there must then exist a non-trivial solution) as

αKS = 1
k(k − 1)θ2 with (7.129)

θ =

∑
σ1,...,σk

ω(σ1, . . . , σk)σ1σ2∑
σ1,...,σk

ω(σ1, . . . , σk) =

k−2∑
p=0

(
k−2
p

)
(ωp − 2ωp+1 + ωp+2)

k∑
p=0

(
k
p

)
ωp

. (7.130)

7.7.2 Bias with interactions at distance 1
In this case, one defines the mean and variance as follows

M(v) =
∫

dP (η) (η(v)− η∗(w)) (7.131)

V (v, v′) =
∫

dP (η) (η(v)− η∗(w)) (η(v′)− η∗(w′)) (7.132)
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with P a distribution in the support of P1RSB that is close to the RS distribution
δ[η − η∗]. As before, under symmetry considerations the mean M(v) is zero.
One can show that the variance obeys a similar linear relation

V (v1, v2) =
∑
v′1,v

′
2

Jv1,v′1
Jv2,v′2

l∑
i=1

k−1∑
j=1

Vij , (7.133)

where J is a 4 × 4 matrix that can be written as the product J = MM̂ , with
M and M̂ the Jacobian matrices obtained from the relations (7.18) and (7.19)
evaluated at the RS solution:

Mv,v′ = ∂η(v)
η̂1(v′)

∣∣∣∣
∗
, M̂v,v′ = ∂η̂(v)

η1(v′)

∣∣∣∣
∗
. (7.134)

The equation (7.133) can be averaged with respect to P1RSB to obtain the
stability criterion

l(k − 1)θ2 < 1 (7.135)
where θ is the largest eigenvalue of Jv,v′ . We define lKS through the relation

lKS(k − 1)θ2 = 1. (7.136)

The matrices M and M̂ take the explicit form:

Mv,v′ = 1
η̂∗(0)D

I[σ = σ′]A(w + w′)−

(
A(w) + A(w+1)

ŷ

)
(A(w′) +A(w′ + 1))
D


where A(w) and D have the following expressions:

A(w) =
l−1∑
p=0

(
l − 1
p

)
ψ(w + p)ŷ−p

D = 2
(
A(0) +A(1) + A(1) +A(2)

ŷ

)
(7.137)

and

M̂(σ,0),(σ′,0) = 1
D̂η∗(0)

(
ÂI[σ = σ′] + B̂I[σ = −σ′]− Ĉ

ŷD̂

)

M̂(σ,0),(σ′,1) = 1
D̂η∗(0)

(
I[σ = −σ′]− 1

ŷD̂

)

M̂(σ,1),(σ′,0) = 1
D̂η∗(0)

(
I[σ = −σ′]− Ĉ

D̂

)

M̂(σ,1),(σ′,1) = − 1
D̂2η∗(0)

(7.138)
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where Â, B̂, Ĉ, D̂ have the following expressions:

Â = 2k−2 − k + 1 + (k − 2)y−1

B̂ = 2k−2 − 2
Ĉ = 2k−1 − k + (k − 2)y−1

D̂ = 2(2k−1 − k + (k − 1)y−1) (7.139)
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Chapter 8

Finite k results

In this chapter we report the numerical study of the clustering transition for
the bicoloring on k-hypergraphs, for small values of k (k = 4, 5, 6). In Section
8.1 we describe how to solve numerically the recursive distributional equations
obtained in chapter 7 (see (7.53,7.54) for µΘ0 , and (7.67-7.68) for µΘ1) using
population dynamics. Solving these equations allows us to determine the clus-
tering transition. In the section 8.2 we give a review and extension of the
numerical procedures to determine accurately the clustering threshold. In sec-
tion 8.3 we present the phase diagrams predicted by the cavity method for the
biased measure µΘ0 that introduces a bias that factorises on the clauses. We
show that this biased measure allows us to increase the dynamic threshold with
respect to the uniform one. In section 8.4 we present numerical simulations on
finite size samples via Simulated Annealing. We show that with well-chosen
parameters the biased measure µΘ0 allows us to improve the performances of
Simulated Annealing. These three sections present the results obtained in [31].
In section 8.5 we present some numerical results obtained for the biased mea-
sure µΘ1 that introduces interactions between variables at distance 1, we show
that this biased measure allows us to increase further the dynamical threshold
compared to the simpler biased measure µΘ0 . This last section presents some
of the results obtained in [33].

8.1 Numerical resolution for finite k
We give an explicit description of the numerical resolution of the distributional
equations found in the previous chapter (see (7.53,7.54) for µΘ0 , and (7.67-7.69)
for µΘ1). For a given choice of the parameters (k, α) and of the bias function
(ω or ψ), the model is either in a non-reconstructible, Replica Symmetric (RS)
phase if the point-to-set correlation function Cn decays to 0 as n → ∞, or
in a reconstructible, Replica Symmetry Breaking (RSB) phase if Cn remains
strictly positive in this large distance limit. We defined αd as the threshold value
above which one enters the RSB phase. For the k-uniform l + 1-regular graph
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ensemble ld is the smallest integer value of l which leads to RSB. We recall that
in this ensemble the density of constraints α and the degree l satisfy the relation
α = (l + 1)/k. There are several upper bounds on αd that can be computed
analytically: if the entropy ((7.34) for µΘ0 , (7.42) for µΘ1) computed in the
RS ansatz is negative this is certainly an evidence for the RSB phenomenon.
The existence of hard fields, i.e. the possibility of naive reconstruction (see
section 7.4), implies the reconstructibility, hence the rigidity bound αd ≤ αr.
Finally the Kesten-Stigum bound αd ≤ αKS follows from the instability of the
trivial fixed point of the reconstruction recursive equations (see section 7.7).
Nevertheless there are no lower bounds on αd that are simple to compute, hence
an explicit determination of this threshold requires a numerical resolution of
the equations (7.53,7.54) and (7.67-7.69). This type of Recursive Distributional
Equation (RDE) admits a natural numerical procedure to solve them, called
population dynamics algorithm [105, 15], in which a probability distribution is
approximated by the empirical distribution of a large sample of representative
elements.

We explain it for the set of equations (7.53,7.54), the procedure is the same
for the equations (7.67-7.69).

Suppose that at some step n one has an approximation of Pn(h) written as

Pn(h) ≈ 1
N

N∑
i=1

δ(h− h(n)
i ) , (8.1)

where N � 1 is the size of the population, that controls the numerical accuracy
of the procedure (in the limit N → ∞ empirical distributions converge to the
exact ones). One can then insert this form in the r.h.s. of (7.54) to obtain an
approximation of P̂n(u) as

P̂n(u) ≈ 1
N

N∑
i=1

δ(u− u(n)
i ) , (8.2)

where each of the representants u(n)
i has been constructed independently by

drawing σ1, . . . , σk−1 according to the law p̃(σ1, . . . , σk−1|+) (defined in (7.44)),
then k − 1 indices i1, . . . , ik−1 uniformly at random in {1, . . . ,N}, and setting:

u
(n)
i = f̂Θ0

(
σ1h

(n)
i1
, . . . , σk−1h

(n)
ik−1

)
.

Similarly, Pn+1(h) can be approximated by an empirical distribution of the form
(8.1), where according to (7.53) each of the representants h(n+1)

i is obtained by
drawing an integer l from the Poisson law rl = e−αk (αk)l

l! , then l indices i1, . . . , il
uniformly at random in {1, . . . ,N}, and taking

h
(n+1)
i = fΘ0

(
u

(n)
i1
, . . . , u

(n)
il

)
.

The initial condition P0(h) = δ(h − 1) (corresponding to a perfect observation
of the variables at distance n = 0 from the root) can obviously be represented
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by a sample with all representants h(0)
i equal to 1, and at every iteration step

observables can be estimated as empirical averages,∫
dPn(h)F (h) ≈ 1

N

N∑
i=1

F (h(n)
i ) (8.3)

for an arbitrary function F .
Iterating these two steps many times one converges to a fixed point solution

of (7.53,7.54), which can either be the trivial one P (h) = δ(h), P̂ (u) = δ(u),
or a non-trivial solution. Figure 8.1 presents some numerical results obtained
in [31] with this procedure, for the measure µΘ0 . The top panel displays the
decay of the correlation function Cn(α, k, {wp}) as a function of the distance
n for different values of α, for k = 6, and with the choice of parameters ω0 =
ωk = 0.005, ω1 = ωk−1 = 0.92, w2 = · · · = ωk−2 = 1. When α is small this
function decays to 0 as n → ∞, signalling the impossibility of reconstruction;
when α increases the decay gets slower and proceeds in two steps, with a longer
and longer plateau at a strictly positive value developping as α gets closer to
the transition; finally for α > αd the plateau lasts forever, the large n limit
C(α, k, {wp}) is strictly positive. This quantity, that jumps discontinuously
from 0 to a strictly positive value when α crosses αd, is plotted as a function
of α in the bottom panel of Fig. 8.1. To increase the numerical accuracy we
estimated the limit by averaging the value of Cn when n is large enough to have
reached its plateau behavior.

8.2 On the numerical determination of the dy-
namic transition

As explained in the previous section, the dynamic threshold αd is the smallest
value of α such that the 1RSB equations at X = 1 admit a non-trivial solution
(besides the RS trivial one in which all fields are equal to zero). We have
seen how to solve numerically these equations, we now explain how to improve
the accuracy when measuring αd. Depending on the models the appearance
of a non-trivial solution can occur either in a continuous or a discontinuous
way. In the former case one has αd = αKS , the bifurcation occurs via the
local instability of the trivial fixed point studied in Sec. 7.7, and αd is thus
known analytically. In the latter case αd < αKS , the birth of the non-trivial
solution occurs non-perturbatively and cannot be detected from the properties
of the trivial fixed point. The accurate numerical determination of αd when
the transition is discontinuous is a rather difficult task. It corresponds to study
a bifurcation for a fixed-point equation of the form P = F (P, α), where P is
a probability distribution and F a functional on this space, depending on the
parameter α. We shall discuss in the parts 8.2.2 and 8.2.3 the different numerical
strategies that can be followed to determine αd, in particular one that, to the
best of our knowledge, is new in this context. To explain these different methods
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Figure 8.1: Exemple of a discontinuous dynamic transition for k = 6, ω0 = ωk =
0.005, ω1 = ωk−1 = 0.92, and ω2 = · · · = ωk−2 = 1. Top: Cn(α, k, {ωp}) versus
the number of iterations n for different values of α. Bottom: C(α, k, {ωp})
averaged over n after equilibration. The size of the population used is 106.

it is instructive to study first a much simpler case, in which the unknown P is
replaced by a real number, that we shall instead denote x for clarity.

8.2.1 Scalar bifurcations
Let us consider a function f(x, α), smooth in its two real arguments, and the
associated discrete dynamical system xn+1 = f(xn, α), parametrized by α. We
recall some basic facts in this setting: the stationary configurations of the dy-
namical system are the solutions x∗(α) of the fixed point equation x = f(x, α).
Their (linear) stability is determined by the coefficient λ(α) = (∂xf)(x∗(α), α)
(here and below we denote (∂xf), (∂αf) and so on the partial derivatives of the
function f); a fixed point x∗(α) is indeed stable under iterations if |λ(α)| < 1,
and unstable if |λ(α)| > 1. We also recall the implicit function theorem: if
(x0, α0) is a solution of f(x0, α0) = x0, and if (∂xf)(x0, α0) 6= 1, then there is
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a unique smooth function x∗(α) with f(x∗(α), α) = x∗(α) in a neighborhood of
α0, with x∗(α0) = x0. Hence the bifurcations of the fixed point equation, i.e. the
modifications in the number of solutions, or the singularities of these solutions,
are associated to points where (∂xf)(x(α0), α0) = 1, in order for the implicit
function theorem to be unapplicable. At these points the stability parameter
λ(α) reaches its critical value 1.

To be more concrete we shall make the additional hypotheses that the order
parameter x is restricted to non-negative values (x ≥ 0), and that f(0, α) = 0
for all α. Let us assume that this trivial fixed point, that exists for all α, is the
unique solution for small enough values of α, and becomes non-unique when α
exceeds a threshold αd. The two simplest ways to implement these hypotheses
are sketched in Fig. 8.2, corresponding to a continuous bifurcation on the top
panel, a discontinuous one on the bottom. Let us state a series of simple facts
on these two types of phase transitions, that will be enlightening when we turn
to the functional case.
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α < αd

α = αd

x
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Figure 8.2: Top panel: example of a continuous bifurcation with f(x, α) = 1−
e−αx, for which αd = 1. Bottom panel: example of a discontinuous bifurcation
with f(x, α) = 1− e−αx2 , for which αd = 2.45541.
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Consider first the continuous case illustrated on the top panel of Fig. 8.2. The
bifurcation occurs at the critical parameter value αd defined by (∂xf)(0, αd) = 1,
the trivial fixed point being stable (resp. unstable) for α < αd (resp. α > αd).
For α > αd there exists a non-trivial branch of stable fixed points x∗(α) > 0; in
the neighborhood of the bifurcation the latter behaves as

x∗(α) = K(α− αd) + o((α− αd)) when α→ α+
d , (8.4)

with K = −2(∂xαf)/(∂xxf), the derivatives being computed in (0, αd). The
stability parameter of the non-trivial solution, λ(α) = (∂xf)(x∗(α), α), reaches
its marginal value 1 at the bifurcation as

λ(α) = 1−K ′(α− αd) + o(α− αd) when α→ α+
d , (8.5)

with K ′ = (∂xαf).
Let us now turn to the discontinuous case (cf. the bottom panel of Fig. 8.2),

and emphasize the main properties of the critical behavior of the bifurcation.
The trivial fixed point is stable for all values of the parameter α; the bifurcation
occurs at αd with the abrupt appearance of a solution xd > 0. These two
quantities can be determined by solving the system of equations{

xd = f(xd, αd) ,
1 = (∂xf)(xd, αd) .

(8.6)

For α > αd there are two branches of non-trivial solutions x−(α) < xd < x+(α)
that emerge from xd (see the bottom panel of Fig. 8.3); in the neighborhood of
αd they behave as

x±(α) = xd ±K
√
α− αd + o(

√
α− αd) when α→ α+

d , (8.7)

where the coefficient K can be computed from the expansion of f around the
bifurcation point (explicitly, K =

√
−2(∂αf)/(∂xxf), the derivatives being com-

puted in (xd, αd)). For α > αd x+(α) (resp. x−(α)) is linearly stable (resp. un-
stable); the stability parameter λ(α) = (∂xf)(x+(α), α) of the stable non-trivial
branch reaches its critical value 1 at the bifurcation, with a critical exponent
1/2:

λ(α) = 1−K ′
√
α− αd + o(

√
α− αd) when α→ α+

d , (8.8)

withK ′ =
√
−2(∂αf)(∂xxf). We present in the top panel of Fig. 8.3 the iterates

xn+1 = f(xn, α), for a few values of α < αd, starting from an initial condition
xn=0 > xd. Their long time limit is of course 0, the only fixed point in this
phase, but when α → α−d the decay is slower and slower, with a large number
of iterations spent around a plateau value at xd. More quantitatively one can
define n∗(α) as the minimal n such that xn ≤ xd − ε, and obtain that

n∗(α) ∼ K ′′(αd − α)−1/2 when α→ α−d , (8.9)

with K ′′ = 2π/K ′, independently of x(0) and ε (as long as 0 < ε < xd). Actually
a whole scaling function describing the evolution of xn around the plateau can
be derived, see [63] for more details.
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Figure 8.3: Properties of the iterates and fixed points for the discontinuous
bifurcation undergone by the function f(x, α) = 1− e−αx2 . Top panel: xn as a
function of n for a few values of α close but strictly less than αd. Bottom panel:
the non-trivial solutions x±(α) for α ≥ αd.

8.2.2 Discontinuous functional bifurcations
Let us now come back to our original goal, namely the determination of the
dynamic threshold αd above which appears a non-trivial solution of the 1RSB
equations at X = 1. As in the scalar case this transition can occur either in
a continuous or in a discontinuous way; the former case was analytically dealt
with in Sec. 7.7, we shall hence concentrate now on the discontinuous transitions.
The numerical methods that we describe in this section are applicable to the
uniform measure and the biased measures µΘ0 and µΘ1 . In practice we only
implemented them on the biased measure µΘ0 during this Ph.D., but it could
be interesting to adapt the method to the biased measure µΘ1 in order to obtain
a numerical prediction of the clustering threshold with better accuracy.

The 1RSB equations (7.53,7.54) can be written abstractly as a functional

134



fixed point equation P = F (P, α); at variance with the scalar toy model dis-
cussed above they can only be solved approximately, for instance by the pop-
ulation dynamics numerical algorithm explained in Sec. 8.1. Some examples
of typical numerical results that can be obtained in this way are presented in
Fig. 8.1. On the top panel we plot the value of the point-to-set correlation Cn
as a function of the number n of iterations, for a few values of α. One sees
on this plot, reminiscent of the top panel of Fig. 8.3, the discontinuous birth
of a non-trivial fixed point at αd, with a longer and longer plateau in the low
α phase as a precursor of the transition. On the bottom panel of Fig. 8.1 we
present the asymptotic value of C reached for large n, for different values of α
around the dynamic transition (corresponding to the bottom panel of Fig. 8.3),
that jumps discontinuously from 0 when α crosses αd.

It is not completely obvious how to extract a precise estimate of αd from
this kind of data. The simplest approach amounts to determine the curves Cn
for several closely spaced values of α, and assess that αd ∈ [α<, α>], where α<
is the largest value for which Cn drops to 0 at large n, α> the smallest value
for which a stable plateau is encountered. This determination suffers however
from inaccuracies due to the finite number of α values one can investigate, the
finite number of iterations one can perform (leading to an underestimation of
α>) and to the finite size of the population that approximate the distribution
P (α< can thus be overestimated, finite size fluctuations having a destabilizing
effect).

One can try to circumvent these difficulties by getting some inspiration from
the much simpler scalar bifurcation studied above. We recall that the criticality
at αd showed up in three different ways: (i) x+(α) exhibits a square root singu-
larity when α→ α+

d , see Eq. (8.7); (ii) the length of the plateau diverges when
α → α−d with a critical exponent −1/2, cf. Eq. (8.9); (iii) the stability param-
eter λ(α) reaches 1 with a square root singularity when α → α+

d , as written in
Eq. (8.8).

Assuming the same critical behavior to occur in the discontinuous functional
bifurcation case (even if much more complicated behaviors could occur in infinite
dimensional spaces) one can try to exploit these scaling laws in order to obtain
more precise estimates of αd. Point (i) translates into a square root singularity
of the large n limit of C in the limit α→ α+

d ; this does not seem very useful to
us, as it would involve a fit of C(α) in which both αd and C(αd) are unknowns.
On the contrary points (ii) and (iii) yield simpler fits for the determination of
αd. The aspect (ii) is very easy to exploit: from the curves of the top panel of
Fig. 8.1 one can deduce immediately a value n∗(α) for the number of iterations
necessary to fall below the plateau (as in the scalar case one can define n∗(α)
with any threshold strictly between 0 and the plateau value). According to
(8.9) n∗(α)−2 should vanish linearly at αd; this is indeed what we obtain with a
rather good accuracy, see the top panel of Fig. 8.4. However one cannot reach
in this way a very large number of iterations, the numerical rounding errors
and finite population size fluctuations having the tendency to accumulate over
time; this cutoff on n thus limits the accuracy of this determination of αd. We
have thus turned to the functional generalization of point (iii) above, namely
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the computation of a stability parameter λ(α) for the stable non-trivial branch
α > αd, and the determination of αd as the parameter for which λ reaches 1.
This extrapolation is done using the scaling anticipated in the scalar case in
(8.8), and is illustrated in the bottom panel of Fig. 8.4. The functional nature
of the unknown in the fixed point equation makes the definition of λ more
complicated than in the scalar case, where it was simply ∂xf ; we give detailed
explainations on the numerical computation of λ(α) in the functional case in
the next section. Before that let us emphasize that the square root behavior
of λ around αd, guessed from the scalar bifurcation, is in very good agreement
with the numerical results obtained in the functional case when the dynamic
transition is discontinuous (see the bottom panel of Fig. 8.4).
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Figure 8.4: Study of the discontinuous dynamic transition encountered as a
function of α for the choice of parameters k = 6, ω0 = ωk = 0.005, ω1 = ωk−1 =
0.92, ω2 = · · · = ωk−2 = 1. Top panel: determination of αd from the study of
the decorrelation time n∗(α) for α < αd. The plot displays n∗(α)−2 versus α,
where one has defined n∗(α) as the first iteration time for which the overlap (or
point-to-set correlation) drops below the value C = 0.4. The line is a fit of the
data of the form n∗(α)−2 = A (αd − α), with fitting parameters A and αd. The
linear behavior confirms the divergence of n∗ with a scaling exponent −1/2, as
in the scalar case (8.9), the fit gives the estimation αd = 19.47. Bottom panel:
determination of αd from the study of the stability parameter λ(α) for α > αd.
The plot displays (1 − λ(α))2 versus α, the linear fits reproduces the scaling
behavior (8.8) of the scalar case, and the fit yields αd = 19.467.

As a consistency check we also present in Fig. 8.5 a similar study in the case
of a continuous transition. We see that the stability parameter λ computed on
the non-trivial solution, i.e. for α > αd, reaches 1 with a linear behavior (as
in the scalar case, see Eq. (8.5)), and that its extrapolation is in good agree-
ment with the analytically computed value of αKS from Eq. (7.130). Moreover
the numerical computation of the stability parameter of the trivial fixed-point

137



coincides for α < αd with the analytical one, λKS = αk(k − 1)θ2.
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Figure 8.5: The stability parameter λ(α) in the case of a continuous transition
(here for k = 4, ω0 = ωk = 0, ω1 = · · · = ωk−1 = 1). From the fit one
obtains the result α = 4.088, wich is in good agreement with the analytical one
αKS = 4.083.

8.2.3 The stability parameter λ in the functional case
As an intermediate step in the generalization from the scalar to the functional
case let us consider a fixed point equation of the form ~x = f(~x, α), where the
unknown ~x is a finite-dimensional real vector. The stability of a branch of
solutions ~x(α) can be determined by considering the Jacobian matrix J of the
first derivatives of f computed at the fixed point, that can be defined through
the linearization

f(~x(α) + ~ε, α) = ~x(α) + J ~ε+ o(‖~ε‖) , (8.10)

where ~ε is a small perturbation around the fixed point. The stability parameter
λ(α) can then be defined as the spectral radius of J , i.e. the largest absolute
value of the elements of its spectrum. This spectral radius can be expressed in
terms of successive applications of J on a perturbation ~ε as

λ(α) = lim
m→∞

(
‖Jm~ε‖
‖~ε‖

) 1
m

, (8.11)

where we assume that ~ε has a non-vanishing projection on the eigenspace asso-
ciated to the relevant eigenvalue, and where ‖ • ‖ can be any norm. For future
use let us define ~εm = Jm~ε and rewrite this expression as

λ(α) = lim
m→∞

(
‖~εm‖
‖~εm−1‖

‖~εm−1‖
‖~εm−2‖

. . .
‖~ε1‖
‖~ε‖

) 1
m

(8.12)
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We would like now to extend the computation of a stability parameter to the
1RSB equations (7.53,7.54) that can be rewritten as P = F (P, α) by grouping
the two lines together. P being a probability distribution the Jacobian of F
is now an infinite-dimensional operator, which makes the study of its spectrum
rather difficult. Even worse, we do not have at our disposal an exact description
of the fixed point P around which we would like to expand F : we only have
a sequence of approximations of Pn by the population representation written
in Eq. (8.1). The individual elements of these representations still evolve at
each iteration step, even when the observables computed as averages of Pn have
reached convergence (within the numerical accuracy fixed by the population size
N ). To circumvent these difficulties we have followed a strategy inspired by the
expression (8.12): we consider Pn and a slight perturbation of it, Pn + δPn,
and assess the rate of growth of the perturbation along the iterations by the
functional F . In order to implement this idea in practice one needs to choose
a specific form for the perturbation; given that Pn is represented as a sum of
Dirac deltas we perturb it by giving an infinitesimal width to each of the peaks,
that we replace by Gaussian distributions with a small variance. We thus define

Pn(h) ≈ 1
N

N∑
i=1

δ(h− h(n)
i ) , (Pn + δPn)(h) ≈ 1

N

N∑
i=1
G(h;h(n)

i , ε
(n)
i ) ,

(8.13)

P̂n(u) ≈ 1
N

N∑
i=1

δ(u− u(n)
i ) , (P̂n + δP̂n)(u) ≈ 1

N

N∑
i=1
G(u;u(n)

i , ε̂
(n)
i ) ,

(8.14)

where G(·; a, b) denotes the density of a Gaussian random variable of average a
and variance b. Consider now the insertion of the form (8.14) in the right hand
side of (7.53); the choice of the d peaks indexed by i1, . . . , id produces a random
variable h equal in distribution to fΘ0(ui1 +

√
ε̂i1z1, . . . , uid +

√
ε̂idzd), where

z1, . . . , zd are independent standard Gaussians (of zero mean and unit variance).
As the ε̂ are infinitesimally small one can linearize fΘ0 to compute the mean
and variance of this random variable.

In summary, the determination of λ(α) is done by tracking the evolution of
P , P̂ and their perturbed versions with populations of couples of real numbers,
(hi, εi) and (ui, ε̂i), that evolve in time according to the following generalization
of the update rules given in Sec. 8.1. To obtain (h(n+1)

i , ε
(n+1)
i ) one repeats,

independently for i = 1, . . . ,N , these steps:

• draw an integer d from the law pd

• draw d indices i1, . . . , id uniformly at random in {1, . . . ,N}

• set h(n+1)
i = fΘ0(u(n)

i1
, . . . , u

(n)
id

) and ε
(n+1)
i =

∑d
j=1(∂jfΘ0)2ε̂

(n)
ij

, where
∂jfΘ0 denotes the derivative of fΘ0 with respect to its j-th argument,
computed in (u(n)

i1
, . . . , u

(n)
id

)
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Similarly the population (u(n)
i , ε̂

(n)
i ) is generated according to, again indepen-

dently for i = 1, . . . ,N :

• draw σ1, . . . , σk−1 from the probability law p̃(σ1, . . . , σk−1|+)

• draw k − 1 indices i1, . . . , ik−1 uniformly at random in {1, . . . ,N}

• set u(n)
i = f̂Θ0(σ1h

(n)
i1
, . . . , σk−1h

(n)
ik−1

) and ε̂(n)
i =

∑k−1
j=1 (∂j f̂Θ0)2ε

(n)
ij

The rate of growth of the perturbation during the iteration n → n + 1 is
estimated as the ratio of the L1 norms of the perturbation parameters,

λn =
∑N
i=1 ε

(n+1)
i∑N

i=1 ε
(n)
i

, (8.15)

and the stability parameter is finally computed as

λ(α) = (λn0λn0+1 . . . λn0+m−1) 1
m . (8.16)

Indeed the first n0 iterations are done with the usual population dynamics
algorithm, evolving only the hi’s and ui’s, in order to reach an approximate
convergence in distribution of the populations to their fixed points, and the
perturbation is then initialized with ε(n0)

i = 1. A large number m of additional
iterations during which the growth rates are recorded are then performed, and
averaged geometrically as in (8.12); in the large m limit the value of λ(α) should
be independent of the norm used to define λn. In practice we divide the ε(n+1)

i by
λn after each iteration in order to keep the norm constant and avoid numerical
underflows.

This method is similar to the one presented in [106, 107] to determine the
location of a continuous RSB transition from a non-trivial RS solution.

8.3 Results of the cavity method
8.3.1 The existence of a RS phase for α > αd,u

We shall study the evolution of the dynamic phase transition when the measure
µΘ0(σ) over the proper bicolorings of a typical Erdős-Rényi random hypergraph
is not uniform anymore. In the setting considered in equation (6.7,6.8) this
corresponds to take the parameters {ωp} of the interaction function different
from the uniform choice ω0 = ωk = 0, ω1 = · · · = ωk−1 = 1.

We will concentrate first on the “zero-temperature” case, i.e. on the measures
that give a non-zero weight to proper bicolorings only, which implies ω0 = ωk =
0. The choice of the other parameters is constrained by the global spin-flip
symmetry that we want to preserve, hence ωp = ωk−p; as it is obvious from (6.7),
multiplying all the ωp by a common constant does not change the properties of
the model. One realizes that for k = 3 there is no free parameter left, we will
thus concentrate on the cases k ≥ 4 from now on. For arbitrary large values of
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k there will be of the order of k/2 free parameters in the ωp; we will however
make the following choice for the zero-temperature measure:

ω0 = ωk = 0 , ω1 = ωk−1 = 1− ε , ω2 = · · · = ωk−2 = 1 , (8.17)

where ε is the sole parameter that quantifies the deviation from the uniform
measure (that is recovered for ε = 0). This slight loss in generality is made
for the sake of simplicity, and motivated by considerations on the large k limit
presented in chapter 10 (section 10.1). The parameter ε controls the relative
weight given to the “almost monochromatic” constraints that contain a single
vertex of one of the possible colors (positive values of ε disfavoring them); as
discussed in Sec. 7.4 these are precisely those responsible for the existence of
frozen variables, one of the mechanism of RSB.

We present in Fig. 8.6 phase diagrams in the (α, ε) plane for k = 4, k = 5
and k = 6. The three lines in these plots correspond to the thresholds defined in
(7.35) from the vanishing of the RS entropy, in (7.130) from the instability of the
RS solution (Kesten-Stigum threshold), and in (7.82) from the appearance of
hard fields in the solution of the 1RSB equations at X = 1 (rigidity threshold);
specializing these three expression with the choice of parameters (8.17) yields

αs=0(k, ε) = ln 2
k(1−ε) ln(1−ε)

2k−1−1−kε − ln
(
1− 1+kε

2k−1

) , (8.18)

αKS(k, ε) = 1
k(k − 1)

(
2k−1 − 1− kε
1 + (k − 4)ε

)2

, (8.19)

αr(k, ε) = 1
k

Γr(k)2k−1 − 1− kε
1− ε . (8.20)

In addition the black squares in Fig. 8.6 signal a discontinuous appearance of
a non-trivial solution of the 1RSB equations at X = 1 upon increasing α, that
we located by a numerical resolution of these equations following the methods
explained in Sec. 8.2. One can see on these plots that for all values of ε there is a
critical density of constraints, αd(ε), such that a non-trivial solution of the 1RSB
equations at X = 1 exist if and only if α > αd(ε). To make this separation more
visible the area on the left of αd(ε), i.e. the RS phase of the model, has been
painted in gray in Fig. 8.6. Let us call (αopt, εopt) the coordinates of the point on
the line αd(ε) which maximizes the density α of constraints, αopt = maxε αd(ε),
that corresponds to an optimal choice of the bias parameter. The numerical
values of these optimal parameters can be found in Table 8.1 for k = 4, 5
and 6. By definition αopt ≥ αd,u = αd(ε = 0), the dynamic transition of the
usual model, with the uniform measure over the proper bicolorings; the non-
trivial result here is that the inequality is strict, i.e. that a well chosen value of
the biasing parameter ε is able to turn the clustered uniform measure into an
unclustered biased one (for α ∈ [αd,u, αopt]).
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Figure 8.6: Phase diagram for k = 4, k = 5 and k = 6 (from top to bottom),
in the plane (ε, α), at zero temperature ω0 = 0. The RS phase, painted in gray,
is on the left of αd(ε), the latter corresponds either to a continuous transition
with αd(ε) = αKS(ε) (solid line, see (8.19)) or to a discontinous transition
(black squares). The dashed horizontal line corresponds to ε = 0, the uniform
measure, which intersects αd at αd,u. The arrow points to the optimal point
that maximizes αd. The dotted line is the rigidity threshold αr from (8.20), the
dot-dashed line marks the vanishing of the RS entropy (see Eq. (8.18)).
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k αd,u αopt εopt
4 4.083 4.578 -0.10
5 9.465 9.636 0.06
6 18.088 18.879 0.12

Table 8.1: Dynamic threshold for the uniform measure (αd,u = αd(ε = 0)),
and largest α reachable in the RS phase, this optimal point having coordinates
(αopt, εopt).

A further scrutiny of the phase diagrams reveals different scenarios depend-
ing on the value of k. For k = 4 the nature of the bifurcation on the line αd(ε)
changes precisely at εopt: for ε > εopt the transition is continuous and thus αd
coincides with the Kesten-Stigum line αKS , while it is discontinuous for ε < εopt
and there is a cusp at the optimal point (we shall come back on this point later
on). It turns out that for k = 4, εopt < 0: this is rather counterintuitive at first
sight, as it means that favoring the almost violated configurations of variables
actually makes the measure less frustrated. This peculiarity can be explained by
noticing that for k = 4 the dynamic transition of the uniform measure (ε = 0)
is continuous and that αKS decreases with ε. As the dynamic transition of the
uniform measure is discontinuous for k ≥ 5 [103] this peculiarity is restricted to
k = 4, and one has εopt(k ≥ 5) > 0. Turning now to the phase diagram for k = 5
in Fig. 8.6 one observes similarly a cusp in αd(ε) at εopt, that separates a con-
tinuous and discontinuous branch of the dynamic transition line, but with now
εopt > 0. Finally for k = 6 the optimal point is on the discontinuous branch of
αd(ε); increasing further ε one encounters a cusp for at some value of ε > εopt and
then a continuous branch αd(ε) = αKS(ε). The large k behavior of the model
will be further discussed in chapter 10; we can nevertheless anticipate that for
large enough k the Kesten-Stigum threshold becomes irrelevant, as it happens in
the negative RS entropy region (compare the leading orders of Eqs. (8.18,8.19)).
In this case the whole line αd(ε) corresponds to a discontinuous bifurcation. As
a last remark on the phase diagrams of Fig. 8.6 let us emphasize that for all
ε one has necessarily αd(ε) ≤ min(αKS(ε), αr(ε), αs=0(ε)), these three thresh-
olds implying a mechanism of failure for the hypotheses underlying a purely RS
phase. This should easily convince the reader of the necessity of discontinuous
branch of αd(ε) in some parts of the phase diagrams. For instance when k = 4
and ε ≤ −0.3 the rigidity and negative entropy bounds imply αd(ε) < αKS(ε),
in other words the dynamic transition must be discontinuous.

We have motivated earlier our study of the boundaries of the RS phase
by algorithmic considerations, Monte Carlo Markov Chains being expected to
equilibrate rapidly inside such a phase. However in a practical simulation one
cannot assume that the initial configuration belongs to the support of a zero-
temperature measure (otherwise the problem of finding a solution of the CSP
would be already solved), it is thus necessary to make an annealing in temper-
ature for a random initial condition to be allowed. For this reason we have also
studied the evolution of the phase diagrams at positive temperature, modifying
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the parameters (8.17) with ω0 = ωk > 0, see the results in Fig. 8.7. These plots
show the absence of “reentrance” in temperature, in the sense that the lines
αd(ε) move towards higher density of constraints when ω0 is increased. Hence
in principle a simulated annealing procedure with parameters (α, ε) in the zero
temperature RS domain, progressively decreasing ω0, should be able to remain
equilibrated on polynomial time scales, hence finding solutions for α < αopt if
the appropriate bias is used. A numerical test of this conjecture is presented in
Sec. 8.4.
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Figure 8.7: Phase diagrams for k = 4, k = 5 and k = 6 (from top to bottom)
in the plane (α, ε), giving the RS phase delimitated by the KS bound and a
dynamic line where the transition toward a non-trivial solution is discontinuous,
for different temperatures. Top (k = 4): the dynamic line is given from left to
right for ω = 0 (filled square and solid line), ω = 0.1 (empty triangle and dashed
line), ω = 0.2 (filled triangle and dotted line). Middle (k = 5): from left to right
ω = 0, ω = 0.002, ω = 0.005, ω = 0.01. Bottom (k = 6): from left to right
ω = 0, ω = 0.005, ω = 0.01.
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8.3.2 More detailed zero temperature phase diagrams
The extent of the RS domain in the (α, ε) phase diagram presented in Fig. 8.6
was the most interesting information to extract from the cavity formalism in
the perspective of this Ph.D.. For the sake of completeness we shall nevertheless
discuss with slightly more details some properties of the RSB phase, and present
another version of the phase diagrams for k = 4 and k = 5 in Fig. 8.8.
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Figure 8.8: Phase diagram for k = 4 (top), and k = 5 (bottom), in the plane
(α, ε), at zero temperature (ω0 = 0): the solid line is the Kesten-Stigum (KS)
transition where a non-trivial solution of the 1RSB equations emerge continu-
ously from the trivial one upon increasing α, the filled (resp. empty) squares
corresponds to the spinodal (sp) of the HO (resp. LO) branch that appears
discontinuously when α is increased (resp. decreased). The filled circles are
defined by the vanishing of the complexity of the HO branch.

The most important additional feature unveiled by these phase diagrams is
that for some values of the parameters k, α, ε, there exits (at least) two different
non-trivial solutions of the 1RSB equations at X = 1 (7.53,7.54). This type of
behavior was described in [103] for a family of random CSPs generalizing the
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hypergraph bicoloring, and its consequences for inference problems (or planted
CSPs) have been discussed in [104]. In order to reach numerically these different
solutions we used the population dynamics algorithm explained in Sec. 8.1 with
an initial condition generalizing Pn=0(h) = δ(h− 1) into

Pn=0(h) = (1− ε) δ(h) + ε δ(h− 1) . (8.21)

For each choice of the parameters we ran twice the population dynamics algo-
rithm, once with ε = 1 and once with a small value of ε > 0 (in practice we
used ε = 0.01); in the tree reconstruction interpretation the latter correspond
to a variant known as robust tree reconstruction [108], in which only a fraction
ε of the variables at large distance from the root are revealed to the observer.
We will call HO, for high overlap, the initialization with ε = 1, and LO (low
overlap) the small ε one. Depending on the parameters these two procedures
can produce different solutions of the 1RSB equations, or not. More precisely,
the different phases located in Fig. 8.8 are defined as follows:

• RS: both HO and LO initial conditions lead to the trivial solution.

• RS+HO: LO initial condition leads to the trivial solution, whereas HO
initial condition leads to a non trivial solution.

• LO+HO: LO initial condition leads to a non trivial solution, HO initial
condition leads to a non trivial solution with a higher overlap.

• HO/LO: both HO and LO initial conditions lead to the same non-trivial
solution.

We present in the left panels of Fig. 8.9 the evolution of the overlap as a function
of ε for different fixed α at k = 5, which should help to grasp the meaning and
succession of the different phases. We recall that αKS is the limit of stability
of the trivial fixed point, that undergoes a bifurcation at the Kesten-Stigum
transition. The two lines denoted sp (for spinodal) in Fig. 8.8 correspond to
the limit of existence of the two non-trivial branches of solution of the 1RSB
equations.

This more complete study of the number and domain of existence of solutions
of the 1RSB equations should clarify the cusp at εopt of the line αd(ε) found
for k = 4 and k = 5 in Fig. 8.6: a first look at these figures could suggest that
the two parts of the αd(ε) line join at a tri-critical point, in the sense that the
discontinous transition becomes less and less discontinuous before crossing over
to a continuous transition. However from Fig. 8.8 one sees that this is not the
case, the discontinuous branch of αd(ε) extends to the RSB phase as a spinodal
unrelated to the continuous transition, which can only make sense in the context
of coexistence of two non-trivial solutions. A tri-critical point does exist in these
phase diagrams, but it is located strictly inside the RSB phase, not at the cusp,
and corresponds to the merging of the two spinodals.

Finally we have also indicated on Fig. 8.8 the threshold for the cancellation
of the complexity of the HO solution (see in addition the right panels in Fig. 8.9);
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this corresponds to the condensation transition of the model in the α < αKS part
of the phase diagram (for α > αKS the LO solution has a negative complexity
hence the problem is condensed, see [103] for a discussion of this point).
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Figure 8.9: Overlaps C (left column) and complexities Σ (right column) versus
ε at k = 5, for α = 9.5 (top), α = 9.6 (middle), and α = 9.7 (bottom).

8.4 Results of Simulated Annealing
In this Section we present the results of extensive simulations, where we have
used the Simulated Annealing (SA) algorithm [25] to find solutions of the hy-
pergraph bicoloring problem. Our main aim is to show that SA finds solutions
more easily if the biased measure µΘ0 (see equations (6.7) and the specialization
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(8.17)) is used: although the uniform measure (ε = 0) has a larger entropy, the
biased one is more concentrated on solutions that can be reached in an easier
way by SA and thus the SA algorithmic threshold improves if ε 6= 0 is used.

In this setting, we consider Erdős-Rényi random hypergraphs with k = 4, 5, 6
and sizes ranging from N = 104 to N = 106. The parameters α and ε are taken
in the relevant region where we expect an algorithmic phase transition to take
place, that is around αd. Let us rewrite the biased measure that we are willing
to sample via the SA at a generic finite temperature T = 1/β as

µ(σ) = 1
Z(G)e

−βU(σ)(1− ε)F (σ) (8.22)

where U(σ) is the number of unsatisfied constraints (i.e. monochromatic hyper-
edges) and F (σ) is the number of freezing clauses (i.e. hyperedges with exactly
k−1 variables of the same color). This corresponds indeed to the measure (6.7)
with parameters

ω0 = ωk = e−β , ω1 = ωk−1 = 1− ε , ω2 = · · · = ωk−2 = 1 . (8.23)

The solutions of the CSP have U = 0, and non-uniform weights if ε 6= 0. Our
SA implementation uses the Metropolis algorithm with single-spin flip dynamics:
at each time step one considers a configuration σ′ that differs from the current
configuration σ by the reversal of an uniformly chosen spin. The move σ → σ′

is accepted with the probability

min
(
µ(σ′)
µ(σ) , 1

)
= min

(
e−β∆U (1− ε)∆F , 1

)
, (8.24)

where ∆U = U(σ′) − U(σ) and ∆F = F (σ′) − F (σ), in such a way that the
detailed balance (reversibility) condition with respect to the measure (8.22) is
ensured. We store the quantity

∑k
i=1 σi for each clause, which allows a fast

computation of the changes ∆U and ∆F when a spin is flipped.
We run SA with a very simple piecewise constant, uniformly spaced, tem-

perature scheduling: the first Monte Carlo Sweep (MCS, i.e. N elementary
steps described above) is performed with T fixed to Tmax (we used Tmax = 0.5
in all our simulations), then T is reduced by ∆T = Tmax/τ and a new MCS is
performed, T is again reduced by ∆T , and so on and so forth. We perform in
this way τ + 1 MCS, the last one being at zero temperature, the running time
of the algorithm thus scales as Nτ elementary steps.

The lowest value of U(σ) is always reached at the end of each run, when
the annealing has reached zero temperature. So we present results only for the
quantity U0 = U(T = 0), that is the smallest number of violated clauses that
the SA is able to reach in a running time of τ MCS. SA is successful as a solver
if and only if U0 = 0, but we will be interested in estimating the lowest energy
reachable by SA even in the regime where it is not successful. In particular we
are going to study the lowest intensive energy reached by SA, u0 = U0/N , in
the large size limit where it becomes independent on the problem size N .

149



8.4.1 Estimating the algorithmic threshold for Simulated
Annealing

We shall first discuss the problem of the estimation of the algorithmic threshold
for a stochastic algorithm like SA, concentrating for simplicity on the unbiased
(ε = 0) case, the extension to ε 6= 0 will be considered later on.

The behavior of the algorithm depends on the density of constraints α, the
annealing time τ , and the size of the problem N ; it can be described in terms
of the average energy density u0(α, τ,N) reached at the end of the run, or in
terms of the probability (with respect to the random instance generation and
the stochasticity of the algorithm) psucc(α, τ,N) that the algorithm discovers a
solution of the instance. It is clear that the energy (resp. success probability)
reached by SA is a decreasing (resp. increasing) function of the running time τ .
We are interested in the limit of large times but sub-exponential with respect to
the problem size N (on exponentially large timescales any Monte Carlo simula-
tion of a finite size system is ergodic and u0 = 0 as long as α < αsat, but this is
not the regime we are interested in). An idealized definition of the algorithmic
threshold αalgo would be the smallest density of constraints such that

lim
N→∞

u0(α, τ = N c, N) > 0 or lim
N→∞

psucc(α, τ = N c, N) = 0 , (8.25)

for any fixed exponent c, corresponding to polynomial time algorithms. Of
course time and space requirements impose strong constraints on the values of
τ and N that can be used in practice. The limit above must thus be performed
by an extrapolation from finite N results, and if c is free any running time
could be considered as “polynomial” as long as N is finite. To resolve this
ambiguity we shall restrict our study to linear times (this time scale is the only
one practically accessible on very large problems), i.e. consider τ fixed (but
arbitrary large) in the thermodynamic limit N →∞.

Even with this restriction the numerical extrapolation necessary to estimate
αalgo is far from being an easy task. The definition given above relies on the
behavior of the asymptotic intensive energy u0 as a function of α. We plot the
corresponding data in Figure 8.10 for k = 4, 5: these data have been obtained for
the unbiased measure (ε = 0) and different problem sizes (104 ≤ N ≤ 106); note
that data points with different N values are very close, i.e. the size dependence
is very weak, and the values for N = 105 and N = 106 always coincide within
errorebars. Unfortunately the asymptotic energy u0 is strongly dependent on
the running time τ and it is thus very difficult to extract from this figure the
algorithmic threshold, i.e. the value of α where u0 becomes positive in the large
τ limit.

A much more convenient way of analyzing the same data is presented in
Figure 8.11, where for each value of α we study the dependence of u0 on τ . The
α values shown are such that the relative difference between the smallest and
the largest α values is around 5%. Again the size dependence is weak and we can
mostly ignore it. Error bars have been computed only from sample to sample
fluctuations. The main observation now — note the log-log scale in the plots

150



 0

 0.001

 0.002

 0.003

 0.004

 4.4  4.5  4.6  4.7  4.8  4.9

k = 4   ε = 0

τ = 104

τ = 105

τ = 106

u 0
( α

,τ
,N

)

α

 0

 0.002

 0.004

 0.006

 9.4  9.5  9.6  9.7  9.8  9.9  10

k = 5   ε = 0

τ = 104

τ = 105

τ = 106u 0
( α

,τ
,N

)

α

Figure 8.10: Lowest intensive energy reached by SA for k = 4 (top) and k = 5
(bottom) as a function of α for different cooling times τ . For each cooling time
τ we show results for 3 problem sizes: N = 104 with filled circles, N = 105

with empty circles and N = 106 with triangles. The latter two values do always
coincide (except for k = 5 and α = 9.8, where theN = 106 datapoint is missing).
Estimating the algorithmic threshold from these plots is very difficult due to the
strong τ dependency.

— is that for the smallest α values shown in the plots the asymptotic energy
is decreasing very fast with τ , faster than a power law (data not shown have
u0 ' 0); on the contrary, for the largest α values, u0 decreases slower than a
power law. In the latter case we even observe an upwards curvature, suggesting
a non-zero value for u0 in the τ →∞ limit.

In practice, our best estimate for the SA algorithmic threshold is given by
the α value such that u0 decays as an inverse power law of τ , thus separating
the regimes where u0 decays faster and slower than a power law in τ . For ε = 0,
we find the following approximate values αalg(k = 4) ≈ 4.7, αalg(k = 5) ≈ 9.6
and αalg(k = 6) ≈ 18.5. We notice that all these algorithmic thresholds are
larger than the threshold αd,u listed in Table 8.1, where the “dynamic” phase
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Figure 8.11: Plotting the lowest intensive energy reached by SA with no bias
(ε = 0) as a function of τ provides a better way to estimate the algorithmic
threshold αalg: the decay is faster (resp. slower) than a power law if α < αalg
(resp. α > αalg).

transition, defined as the appearance of a solution of the 1RSB equations, takes
place. This observation is consistent with the idea that sampling solutions

152



uniformly is more difficult than just finding one or few solutions. Indeed, while
a MCMC is expected to sample uniformly the solutions efficiently only for α <
αd,u, SA can find a solution in linear time until αalg, which is greater than αd,u.
In other words, in the range [αd,u, αalg] the SA algorithm does not thermalize
at the lowest temperatures explored during the annealing, but it can be seen as
an efficient out of equilibrium process converging in linear time to a solution, as
discussed for instance in [98].

In particular for k = 4 the model has a continuous phase transition and the
SA algorithm seems to be very efficient in this case: the algorithmic threshold
αalg(k = 4) ≈ 4.7 is well beyond the dynamic threshold αd,u = 4.083 and not
far from the 1RSB estimate of the satisfiability threshold αsat(k = 4) ≈ 4.9
[103] (this is only expected to be an upper bound on the true satisfiability
threshold due to an instability towards higher levels of RSB). On the contrary
for k ≥ 5 the phase transition taking place at αd,u is of the random first order
type (discontinuous) and this seems to have a dramatic effect on the performance
of SA, which is able to find solutions only slightly beyond αd,u, stopping far from
the αsat threshold. For example, for k = 5 we have αd,u = 9.465, αalg ≈ 9.6
and αsat = 10.46 [103].

8.4.2 Performances of Simulated Annealing with optimal
RS parameters
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( τ
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Figure 8.12: The fast decays of u0 as a function of τ for α = αopt and ε =
εopt confirms that for these “optimal” parameters SA is effective in finding the
ground state in linear time.

As shown in Sec. 8.3.1 we can extend the RS phase in the region α > αd,u by
tuning appropriately the bias ε. In Figure 8.12 we show the asymptotic energy
as a function of the running time τ for the parameters α = αopt and ε = εopt
given in Table 8.1, that are optimal from the point of view of extending the
RS phase to the largest α possible. For each value of τ we report the results
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obtained with 3 sizes N = 104, 105, 106 although the different data points are
hardly visible due to their strong overlap (for τ = 106 fewer sizes are shown).
Errors are computed from sample to sample fluctuations.

For all the values of k = 4, 5, 6 the behavior of the asymptotic energy is
compatible with a power law decay or even faster than that (the straight line
is just a guide to the eye with a slope −0.61). So, as expected, SA seems to be
an efficient algorithm to find solutions in the RS phase, even when this phase
extends beyond αd,u via the optimization of the bias ε.

8.4.3 Performances of Simulated Annealing with the bi-
ased measure

In Section 8.3 we have shown how the phase diagram and the corresponding
thresholds change in presence of a non-zero bias (ε 6= 0). The suggestion we get
from this analytical study is that a non-zero bias should make easier for the SA
algorithm to find solutions at large α values. However the connection between
the phase diagram and the behavior of the SA is not obvious, as already shown
in Section 8.4.1 for the ε = 0 case.

The aim of the present section is to show the results of extensive numerical
simulations running SA with the biased measure in order to gather evidence that
a non-zero bias is in general beneficial for the performances of SA in finding a
solution to the random hypergraph bicoloring problem.

We have already shown that finite size effects are very small and slightly
visible only for N = 104. So in the following we present uniquely data obtained
with size N = 105. We have checked these are practically indistinguishable from
the results with N = 106 on the time scales reachable in the latter case.

In Figure 8.13 we show the data collected at the three largest α values for
k = 4 (upper row), k = 5 (middle row) and k = 6 (lower row). In each panel
we plot u0 as a function of ε for three different cooling rates τ = 104, 105, 106

(from top to bottom in each panel). The plots provides a clear evidence that
reweighting solutions with a bias ε > 0 enhances the probability that SA reaches
lower energies.

Already a simple qualitative analysis reveals the advantage of using ε > 0.
In every panel we see that u0 reaches a minimum for a strictly positive value of
ε. The value εSA that minimizes u0 is only weakly dependent on the SA cooling
time τ , so it is likely to assume that limτ→∞ εSA > 0 and the bias is effective
even in the limit of large times.

The data in Figure 8.13 suggest that the SA algorithmic threshold may grow
for moderately small values of ε with respect to its ε = 0 value. For example for
k = 6 the SA algorithmic threshold for ε = 0 was estimated around αalg ≈ 18.5,
but looking at the plots in the lower row it is evident that at least for α = 19
and ε ' 0.15 SA reaches the ground state u0 = 0 and for α = 19.5 and ε ' 0.15
the convergence to u0 = 0 is very fast in τ .

We have done a more quantitative analysis for the largest α values, shown
in the three panels on the right. We have interpolated the data of u0 with a
quadratic function of ε, the interpolating parabolas are shown in the right panels
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Figure 8.13: The lowest intensive energy reached by SA reaches its minimum
for a positive bias parameter ε.

in Figure 8.13. Fitting the minimum of the parabola u0(εSA) as a power law in
τ we find the results shown in Figure 8.14. For (k = 5, α = 9.9) the behavior is
faster than a power law and thus we expect the SA algorithmic threshold with
the biased measure to be slightly greater than α = 9.9. On the contrary for
both (k = 4, α = 4.8) and (k = 6, α = 20) the behavior looks slightly slower
than a power law and thus we are tempted to believe limτ→∞ u0(εSA) > 0 in
these cases and the SA algorithmic threshold is slightly below.

Unfortunately the quantitative analysis cannot be made more robust, due
to the strong τ dependence observed. Nevertheless we believe that the evidence
that ε > 0 makes ground states more accessible to Simulated Annealing is strong
enough, both for finite τ values and in the large τ limit.

Let us finally compare the optimal value εSA of the bias that improves most
the performances of SA with the optimal value εopt found in Section 8.3.1 that
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Figure 8.14: The lowest energy reached with the optimal bias εSA for the largest
α value simulated as a function of τ .

increases most the extent of the RS phase. We notice that εSA is always larger
than εopt. Considering that, for the small values of k studied in the simulations,
it is approximately true that for ε > εopt the phase transition increasing α is
continuous, while for ε < εopt the model undergoes a random first order tran-
sition, we believe the most natural explanation for the observation εSA > εopt
is the following. The ergodicity breaking taking place at a discontinuous (i.e.
random first order) transition is much more severe than the one taking place at
a continuous phase transition. In the case of a discontinuous phase transition,
the SA algorithm can find solutions only slightly above the dynamic threshold
αd, while in the continuous case SA remain efficient in finding solutions even
well above αKS . The analysis supporting this scenario has been presented in
Section 8.4.1. Thus it is natural to expect that SA presents its best perfor-
mances for ε > εopt where the phase transition is continuous and the ergodicity
breaking not too severe. The finding that εSA(k = 4) > 0 also resolves the rather
counterintuitive result εopt(k = 4) < 0. So even for k = 4 the SA algorithm
finds the ground state more easily if frozen variables are avoided.

8.5 Comparison with the biased measure with
interactions at distance 1

In this section we present the study of the clustering threshold for the biased
measure µΘ1 defined in equation (6.12), and compare it to the simpler measure
µΘ0 , in the k-uniform l + 1-regular random ensemble. We apply the numerical
procedure described in Section 8.1 to solve the recursive distributional equa-
tions (7.67-7.69). The distributions Pw,n are approximated by the empirical
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distribution over a sample of N representants as:

Pw,n(η) ≈ 1
N

N∑
i=1

δ(η − ηi) . (8.26)

With 2N fields ηi one can encode the distributions Pw,n at distance n for w =
0, 1. The 2N fields representing the two distributions P̂w,n+1 are generated
stochastically according to (7.68,7.69), and in turn the populations representing
Pw,n+1 can be obtained from (7.67). At each step of this iterative procedure one
computes the correlation function Cn from (7.70), interpreting the average over
P̂w,n as an uniform sampling of an element of the corresponding population.
An example of the results thus obtained is presented in Fig. 8.15, where one
sees, depending on the choices of parameters, RS cases with Cn vanishing at
large n, and RSB situations where Cn remains positive. The results presented
in the rest of this section have been obtained with populations of size N = 106;
we considered that Cn → 0 whenever the average value of Cn, for large enough
values of n such that stationarity was reached within our numerical accuracy,
dropped below a small threshold value (we used 0.005 in figures below).

b2 = 1.4

b2 = 1.3

b2 = 1.2

n

Cn

5004003002001000

1

0.8

0.6

0.4

0.2

0

Figure 8.15: An example of the shape of the correlation function Cn as a function
of n, here for k = 6, l = 114 and the bias function ψ(p) defined in Eq. (8.27),
with b1 = 1.6, ε = 0.095, and three values of b2.

The function ψ(p) contains a large number (l + 1) of free parameters, some
choices must hence be made on its specific form. We first considered the case
where ψ(p) = (1 − ε)p, with a single free parameter ε < 1. As explained in
Sec. 6.1.3 this corresponds the biased measure µΘ0 with the choice of parame-
ters (8.17), i.e. to a bias that factorizes over the hyperedges of the bicoloring
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problem. We have presented in the section 8.3 the study made in [31] for Erdős-
Rényi (ER) random hypergraphs in which the degree of a vertex has a Poisson
distribution of average αk. The phase diagrams obtained for the regular case
(see [33]) are presented in Fig. 8.16. They show the clustering threshold ld
(points), as well as the upper bounds corresponding to the rigidity, the Kesten-
Stigum bound, and the vanishing of the RS entropy, in the plane (l, ε), for k = 5
and k = 6. They are qualitatively similar to the results obtained in the section
8.3, figure 8.6 (see [31]) for the ER case, and quantitatively close with the cor-
respondence αk = l+ 1 between the average degree of the ER ensemble and the
one fixed here. The important point we want to emphasize here is the fact that
a suitable choice of ε allows us to increase ld with respect to its value for the
uniform measure (ε = 0). For instance for k = 5 and l = 47, the RSB phase at
ε = 0 is turned into a RS phase when ε = 0.04. Similarly for k = 6 the dynamic
transition ld = 108 of the uniform measure can be pushed to ld = 113 for a
well-chosen value of ε.

The natural question that arises at this point is whether the more generic
bias introduced in this manuscript, i.e. the additional degrees of freedom in the
choice of ψ(p), allows us to further increase the dynamic transition threshold ld.
To investigate this point without introducing too large a space of parameters,
that would be impossible to explore systematically, we considered the following
function ψ:

ψ(0) = 1 , ψ(1) = b1 , ψ(p) = b2(1− ε)p for p ≥ 2 , (8.27)

with the three free parameters (b1, b2, ε). We then solved numerically the RDEs
with parameters close to the optimal values found previously in the restricted
case with b1 = 1 − ε and b2 = 1. The results are shown in Fig. 8.17 in the pa-
rameter plane (b1, b2), for fixed values of k, l and ε, with squares (resp. crosses)
marking RS (resp. RSB) phases. The top panel shows the existence of a RS
phase at k = 5, l = 48, whereas all values of ε led to RSB at this value of l
for the factorized bias ψ(p) = (1 − ε)p. We did not find any choice of param-
eters (b1, b2, ε) with a RS phase for l = 49. Similarly the bottom panel shows,
for k = 6, the largest value of l, l = 114, for which we found a RS phase for
well-chosen parameters (see also the drop of Cn to 0 in Fig. 8.15 for ε = 0.095,
b1 = 1.6, b2 = 1.2 and 1.3).

We summarized the main results of this Section in the Table 8.2. The first
column gives the value of ld of the uniform measure, the second column gives
the result obtained with a bias of the form µΘ0 (6.7) with a choice of parameter
(8.17), when optimizing on the choice of ε to increase as much as possible ld.
The third column gives the result obtained with a biased measure of the form
µΘ1 (6.12), for well-chosen values of (b1, b2, ε). We can see that we were able
to further improve the value of ld for k = 5 and k = 6 by using a bias that
introduces interactions between variables of different hyperedges, with respect
to the factorized bias. An even further improvement might be achieved by a
more systematic exploration of the parameter space (b1, b2, ε), or by using even
more general bias functions ψ(p), at the price of a large computational cost
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Figure 8.16: Phase diagrams in the (l, ε) plane for the bias function ψ(p) =
(1 − ε)p, for k = 5 (top panel) and k = 6 (bottom panel). The points are the
clustering threshold ld(ε): for a given value of ε the RS phase corresponds to
l < ld, the RSB phase to l ≥ ld. The three continuous lines are upper bounds
of ld, the area on their right is necessarily in a RSB phase; the solid one is the
Kesten-Stigum bound explained in Sec. 7.7, the dashed line marks the rigidity
threshold lr defined in Sec. 7.4, and the dot-dashed line corresponds to the
vanishing of the RS entropy (7.42).
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Figure 8.17: The phase diagrams in the (b1, b2) parameter plane for the bias
function of Eq. (8.27). The top panel is for k = 5, l = 48 and ε = 0.06, the
bottom panel for k = 6, l = 114, ε = 0.095. The points marked with squares
corresponds to a RS phase (l < ld(k, b1, b2, ε)), the crosses to a RSB phase
(l ≥ ld(k, b1, b2, ε)). The line is the Kesten-Stigum bound, the area below it is
RSB.

due to the increased dimensionality of the parameter space. For comparison we
give in the last column the satisfiability threshold, i.e. the smallest value of l
such that the typical hypergraphs have no proper bicolorings, computed within
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the 1RSB ansatz (see [26] for details), that is obviously an upper bound for ld,
independently of the bias.

k uniform ε (b1, b2, ε) lsat
5 47 48 49 52
6 108 113 115 129

Table 8.2: The values of ld for the uniform measure, for the bias of equation
(6.7) that factorizes on the hyperedges, with the optimal value of ε, and for the
bias of equation (6.12) for well-chosen parameters (b1, b2, ε). The last column is
the satisfiability threshold.
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Chapter 9

The asymptotics of the
clustering transition for the
uniform measure

In the previous chapter we studied the possibility of tuning the value of the
clustering threshold αd(k) by considering a non-uniform (biased) measure on
the set of solutions of CSPs. For finite values of k we have seen that well-chosen
biases allow indeed to increase αd(k), thus improving the range of α in which
solutions of random CSPs can be found by efficient algorithms. It remains to see
wether this improvement survives the large k limit, which requires being able to
compute the asymptotics of αd(k) both in the unbiased and biased cases. The
former is the object of this chapter, and the latter will be dealt in chapter 10.

The two examples of CSPs that will appear in this chapter are the graph
coloring and the hypergraph bicoloring problems. Let us recall their definition
(given in Section 1.1.4). In the first one the variables are placed on the vertices
of a graph, they have q possible values, to be interpreted as colors, and each
edge of the graph enforce the constraint that the two vertices at its ends take
different colors. The hypergraph bicoloring problem (that was studied in the
previous chapter) is similarly defined on a hypergraph, with hyperedges linking
subsets of k (instead of two for a graph) vertices; the variables on the vertices
can take two colors, and the constraint associated to each hyperedge is that
both colors are present among its k adjacent vertices. The value of αd depends
of course on the CSP under consideration and of its parameters (k, q in the two
examples defined above). We have seen in chapter 7 that it can be estimated
numerically by solving a functional equation (see equations (7.537.54) for the
k-hypergraph bicoloring problem) that arises from the 1RSB formalism or its
tree reconstruction interpretation (see for instance [61] for numerical values in
the coloring case, and [85, 103] for the hypergraph bicoloring). There is in gen-
eral no explicit analytical expression for αd, but bounds on its value [13, 16] and
asymptotic expansions for large k, q [38, 39, 40] complement its numerical deter-
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mination (that becomes very difficult when k, q grow). In Section 7.4 we have
presented a relatively simple upper bound on αd can be obtained by analyzing
the so-called naive reconstruction procedure [62, 38], where one asks whether
the configuration of the variables at a large distance from a root variable im-
plies unambiguously the value of the latter (instead of merely bringing some
information on it). This property undergoes a phase transition at the “rigidity”
threshold αr, with obviously αd ≤ αr, which can be alternatively interpreted
as the appearance of “hard fields” in the solution of the 1RSB/reconstruction
equations, or frozen variables taking the same value in all the solutions of a
cluster. The analytic determination of αr is much simpler than the one of αd,
because it corresponds to the bifurcation of a scalar (instead of functional) fixed-
point equation (see equation (7.79) for the k-hypergraph bicoloring problem).
In particular, for the hypergraph bicoloring and coloring problems, its asymp-
totic expansion at large k, q shows that the relevant scale of constraint densities
(for the graph coloring problem we use the more natural average degree c = 2α)
is

α = α(k, γ) = 2k−1

k
(ln k + ln ln k + γ) , c = c(q, γ) = q(ln q + ln ln q + γ) ,

(9.1)
with γ a finite constant parameter, the rigidity transition αr occuring on this
scale when γ crosses the critical value γr = 1 (for both models). It turns
out that the asymptotic behavior of αd is also on the scale of Eq. (9.1), with
another constant γd ≤ γr. This statement follows from a series of rigorous
works on this problem: for the coloring problem [38] proved that 1− ln 2 ≤ γd ≤
γr = 1, and the strict inequality γd < 1 was later obtained in [40], implying
the asymptotic existence of a regime [γd, γr] where reconstruction is possible but
naive reconstruction is not. A large family of models, including the two discussed
here, was also adressed in [39] which proved αd(k) ≥ 2k−1

k ln k, cd(q) ≥ q ln q,
confirming the leading term in the scaling (9.1).

We report in this chapter a study of the asymptotic expansion of αd for the
graph coloring and hypergraph bicoloring problems that have been performed
in [32], for the uniform measure. We will show that the transition indeed hap-
pens on the scale of constraint densities defined in (9.1), with the same value
of γd for both models, which is to some extent surprising given their different
microscopic nature. We characterize γd in terms of the behavior of a functional
equation, whose numerical study yields the estimate γd ≈ 0.871, while an ana-
lytical treatment provides the lower bound γd ≥ 1+ln(2(

√
2−1)) ≈ 0.812. Even

with the less demanding level of rigor of theoretical physics, to which we stick
here, the computation is relatively involved because of the asymptotic proximity
of the thresholds αd and αr, at the origin of a quite singular behavior of the
probability distributions describing the intermediate regime of reconstruction
without naive reconstruction.

Chapter is organized as follows. In Sec. 9.1 we perform the large k limit
on the hypergraph bicoloring model and reduce the determination of γd to the
study of a reduced set of equations, in which k does not appear anymore. This
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reduced problem takes the form of recursive equations on a sequence of probabil-
ity distributions, determining a correlation function at distance n. The study of
the large n limit of this reduced problem, from which γd can be finally deduced,
is performed in Sec. 9.2; this limit requires some additional reparametrizations
in the interesting regime. For simplicity in the main part of the text we con-
centrate on the hypergraph bicoloring case, and devote the Appendix B to the
graph coloring problem: we show that the large q limit yields exactly the same
reduced problem than the large k limit of the hypergraph bicoloring, hence the
study of Sec. 9.2 and the determination of γd is common to both.

9.1 The large k limit for a finite distance n
9.1.1 Evolution of the hard fields
Before studying the clustering threshold αd that corresponds to the bifurcation
of the functional bifurcation equations (7.537.54) (with p̃(σ1, . . . , σk−1|+) =
(1 − I[σ1 = · · · = σk−1 = +1])/(2k−1 − 1)), it is much easier to consider the
rigidity transition αr(k), that corresponds to the bifurcation of the scalar re-
cursion equation (7.80). We have given in (7.81) the expressions that determine
analytically αr(k) for all k. The value of Γr(k) cannot be given explicitly when
k is finite, but it is easy to perform its asymptotic expansion at large k, which
yields

αr(k) = 2k−1

k
(ln k + ln ln k + γr + o(1)) , with γr = 1 . (9.2)

As explained above this is an upper bound on the sought for dynamic transition
αd(k), and the rigorous results of [39] suggest (or prove for the coloring prob-
lem [38, 40]) that the asymptotic expansion of αd(k) has the same form as the
one of αr(k), with a different constant term γd.

We shall thus study the large k limit taking α to diverge simultaneously
with k according to the function α(k, γ) defined in Eq. (9.1), with γ a finite
constant that becomes our control parameter for the density of constraints in
this limit. It is instructive to investigate the behavior of the hard field weights
Hn, solution of the recursion equation (7.80), for a finite distance n. With this
choice for the scaling of α with k one easily obtains by induction on n that the
leading behavior of Hn reads

Hn = 1− xn
k ln k + o

(
1

k ln k

)
, (9.3)

where xn is a γ-dependent sequence, defined recursively by

x0 = 0 , xn+1 = e−γ+xn . (9.4)

This recursion function is illustrated on Fig. 9.1. Its study is very simple, and
unveils the following behavior for xn: if γ ≥ 1 then xn converges at large n to
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Figure 9.1: Top: the recursion function e−γ+x (solid lines) for three values of γ
(from top to bottom γ = 0.9, γ = 1 = γr, γ = 1.2) compared to x (dashed line).
Bottom: the iterates xn defined by x0 = 0, xn+1 = e−γ+xn for three values of γ
(from top to bottom γ = 0.99, γ = 1 = γr, γ = 1.2).
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a finite fixed point (depicted on the bottom panel of Fig. 9.3) (upper curve),
while for γ < 1 the sequence xn diverges as n → ∞, very quickly (as iterated
exponentials). The transition between these two behaviors thus occurs at the
critical value of the parameter γ = γr = 1, which corresponds to the expansion
of αr(k) stated above. Note that this coincidence is not as trivial as it may
look at first sight: the expansion of Eq. (9.2) was obtained by first taking the
limit n→∞, then k →∞, while in (9.4) we have taken the limit k →∞, and
only later studied the behavior of xn for large n. The commutativity of these
two limits can in this case be traced back to the simple shape of the recursion
equation (7.80): either it has no non-trivial fixed point, or if it has one in the
large k limit it must be of order 1 − O(1)/(k ln k), and hence captured by the
scaling (9.3).

9.1.2 The reduced order parameter
Our determination of the asymptotic behavior of αd(k) will be based on three
hypotheses that we now spell out explicitly. First of all, we assume that this
transition occurs on the scale (9.1), hence that the sought for constant γd can
be defined as

γd = lim
k→∞

[
kαd(k)
2k−1 − ln k − ln ln k

]
; (9.5)

as mentioned above the rigorous results of [38, 39, 40] support this hypothesis.
We shall furthermore assume that on this scale of α the order parameter C(α, k)
is either equal to 0 (for α < αd(k)) or scales with k in the same way as its lower
bound provided by the hard field weight H(α, k) (see Eq. (9.3)), hence define a
reduced order parameter as

C̃(γ) = lim
k→∞

(1− C(α(k, γ), k))k ln k , (9.6)

that should be finite for γ > γd, and diverge to +∞ for γ < γd. Note that in
order to have C̃(γ) ≥ 0 we introduced a minus sign in this definition, hence
increasing values of C̃ corresponds to smaller correlations in the original order
parameter C. Finally we assume that C̃(γ) can be computed by reversing the
order of the large n and large k limits, in other words we define for n finite
C̃n(γ) as

C̃n(γ) = lim
k→∞

(1− Cn(α(k, γ), k))k ln k , (9.7)

and our third hypothesis will consist of computing C̃(γ) as the large n limit of
C̃n(γ).

To rephrase these last two hypotheses, we exclude the possibility that on the
scale (9.1) the fixed point order parameter C(α, k) has distinct scalings with k
depending on the value of γ, and similarly that the finite distance correlation
function Cn(α, k) decays with several plateaus at heights each scaling differently
with k. These hypotheses are reasonable when confronted with the finite k
numerical results (for instance those of Fig. 9.2), and are somehow corroborated
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by the scheme of proofs of [38, 39], that rely on the fact that once Cn is “small
enough”, then it must decay to 0; we shall see in the rest of the paper that they
are at least self-consistent. Note also that they hint at the intrisic difficulty of
the computation: in the intermediate regime [αd(k), αr(k)] there are no hard
fields in the fixed point distribution P (h), nevertheless the soft fields become
asymptotically hard in the k →∞ limit as the correlation function C tends to
1 according to (9.6).

9.1.3 Evolution of the soft fields distribution
In order to complete the computation of the reduced order parameter we need
now to study the large k limit of the distributions Qn(h) of the soft fields, that
obeys the recursion equations (7.91,7.93). Consider first the latter equation;
the integer p that appears there is a random number drawn from the binomial
distribution Bin(k − 1, 1 − Hn). In the large k limit, because of the scaling
(9.3) of Hn, this distribution can be approximated by a Poisson distribution
Po(xn/ ln k), which hence concentrates on the smallest possible value that ap-
pears in the sum, namely p = 1. We thus obtain at the leading non-trivial
order

Q̂n(u) =
[
1− 3xn

2k−1 ln k

]
δ(u) + 3xn

2k−1 ln k R̂n(u) , (9.8)

where R̂n(u) is a normalized distribution arising from the three contributions
of the terms with p = 1 in (7.93),

R̂n(u) = 1
3

∫
dQn(h) [δ(u− g1(h)) + δ(u− g1(−h)) + δ(u+ g1(−h))] , (9.9)

where g1(h) is obtained from (7.94) as

g1(h) =
1+h

2
2− 1+h

2
. (9.10)

Note that this function fulfills the identity 1−g1(h)
1+g1(h) = 1−h

2 ; as a consequence one
can check that the Bayes symmetry is respected by R̂n, i.e. that R̂n(−u) =
1−u
1+u R̂n(u), if Qn verifies this symmetry.

Let us give an intuitive explanation of the equations (9.8,9.9): in the large
k limit the weight of the hard fields Hn is very close to 1, hence almost all of
the k − 1 fields hi acting on the variables of a hyperedge are forcing them. If
they all force them to take the same color −1 then to satisfy the constraint the
root must take the opposite color, which leads to an hard field u = 1 (the k− 1
fields cannot be all forcing in the direction +1, this would force the root to be
−1, in contradiction with the broadcast being conditional on the root equal to
+1). If they are all hard but with the two colors represented, then the clause
is satisfied for every choice of the root, and this produces a trivial soft field
u = 0. The least unprobable situation that can produce a non-trivial soft field
(u 6= 0, 1) is thus when among the k− 1 entering fields hi exactly one, say h1, is
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Figure 9.2: Top: the correlation function Cn(α, k) as a function of n for k = 5
and from left to right α = 9.2, α = 9.4, α = 9.6. Bottom: the large n limit
C(α, k) = limn Cn(α, k) as a function of α for k = 5, along with the contribution
of the hard fieldsH(α, k) = limnHn(α, k) discussed in Sec. 7.4. The first curve is
non zero for α ≥ αd(k = 5) ≈ 9.465, the second one for α ≥ αr(k = 5) ≈ 10.526.
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soft, and all the k− 2 other are hard. If the two colors appear among the k− 2
hard fields, again the root is unbiased, this produces a trivial soft field u = 0.
Assume thus that the k − 2 hard fields are of the same color. If this color is
+1, then necessarily σ1 = −1 and this yields u = −g1(−h1). If this color is −1,
then both σ1 = +1 (producing u = g1(−h1)) and σ1 = −1 (corresponding to
u = g1(h1)) are possible; this concludes the interpretation of (9.8,9.9).

We can now inject the simplified form (9.8) of Q̂n(u) in the other recursion
equation (7.91); as f(u1, . . . , ul, 0, . . . , 0) = f(u1, . . . , ul) the first term of Q̂n(u)
does not contribute, and the number of R̂n(ui) picked up in the r.h.s. of (7.91)
is a Poisson random variable of parameter αk(1 − Ĥn) 3xn

2k−1 ln k . This quantity
converges to 3xn in the large k limit for the regime we are considering, hence
(7.91) becomes:

Qn+1(h) =
∞∑
l=0

e−3xn (3xn)l
l!

∫ l∏
i=1

dR̂n(ui) δ(h− f(u1, . . . , ul)) . (9.11)

We can finally express the reduced order parameter C̃n(γ) in the large k limit:
combining its definition from (9.7), the expression of Cn in terms of the soft fields
distribution and of the hard fields weight given in Eq. (7.85), and the scaling of
the latter quantity written in (9.3), we obtain C̃n(γ) = xn

∫
dQn(h)(1− h).

9.2 The limit of large distance n
Let us summarize what we have achieved up to now; starting from the recursion
equations (7.53,7.54) for the distributions Pn(h) we have taken the large k limit
with the density of constraints scaling as α(k, γ) of Eq. (9.1), and argued for the
existence of a reduced correlation function at finite distance, C̃n(γ) defined in
(9.7). We have then shown that the latter could be computed by solving some
recursion equations on both xn, a scalar quantity related to the weight of the
hard fields in Eq. (9.3), and on Qn(h), the distribution of the soft fields (that
is a distribution supported on [−1, 1], with no atoms in ±1). For the sake of
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readability we regroup now all the equations that will be necessary to proceed:

x0 = 0 , xn+1 = e−γ+xn , (9.12)

Qn+1(h) =
∞∑
l=0

e−3xn (3xn)l
l!

∫ l∏
i=1

dR̂n(ui) δ(h− f(u1, . . . , ul)) , (9.13)

f(u1, . . . , ul) =

l∏
i=1

1+ui
2 −

l∏
i=1

1−ui
2

l∏
i=1

1+ui
2 +

l∏
i=1

1−ui
2

, Q1(h) = δ(h) , (9.14)

R̂n(u) = 1
3

∫
dQn(h) [δ(u− g1(h)) + δ(u− g1(−h)) + δ(u+ g1(−h))] , (9.15)

g1(h) =
1+h

2
2− 1+h

2
, (9.16)

C̃n(γ) = xn

∫
dQn(h)(1− h) . (9.17)

Let us emphasize that the parameter k has disappeared from these equations,
that only depend on γ; moreover we show in the Appendix B that exactly the
same equations describe the large q limit of the coloring problem. What remains
to do now is to study the large n limit of these equations, as the threshold γd
will be determined according to the behavior of C̃n(γ) in this limit, namely
C̃n(γ)→ +∞ will signal that γ < γd, while C̃n(γ) will remain finite for n→∞
if γ > γd.

9.2.1 The regime γ ≥ γr = 1
Let us start by considering the case γ ≥ γr = 1; then the sequence xn remains
bounded for all n (its limit x(γ) being depicted as a function of γ on the bottom
panel of Fig. 9.3), which translates the presence of hard fields in the fixed
point solution of the corresponding finite k regime α ≥ αr. As a consequence
the numerical resolution of (9.13) presents no difficulty and can be performed
with the usual population dynamics algorithms explained in Sec. 8.1, Qn(h)
being represented as an empirical distribution over a sample of hi’s. Figure 9.3
presents some numerical results obtained in this way; one can see on the top
panel that C̃n(γ) converges to a finite limit as n grows, this limit value being
drawn as a function of γ on the bottom panel. In this regime Qn converges
(weakly) to a stationary distribution Q, solution of the fixed point equation
obtained by replacing in (9.13) xn by its limit.

The finite k inequalities Hn ≤ Cn ≤ 1 becomes in these rescaled units
0 ≤ C̃n(γ) ≤ xn(γ); indeed,∫

dQn(h)(1− h) = 1−
∫

dQn(h)h = 1−
∫

dQn(h)h2 ∈ [0, 1] , (9.18)
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because of the consequence stated in (7.59) of the Bayes symmetry enjoyed by
Qn. In the large n limit we thus have C̃(γ) ≤ x(γ), as illustrated in the bottom
panel of Fig. 9.3 which is the analog of the bottom panel of Fig. 9.2 for finite k.

Note that C̃(γ) seems to behave smoothly as γ → γ+
r , as expected if the

transition occurs at γd < γr. As x has a square root singularity this means that
there is also a square root singularity in

∫
dQ(h)(1 − h) as a function of γ, in

order for their product C̃(γ) to be regular.

9.2.2 The difficulties for γ < 1
The study of the large n limit is much more difficult when γ < 1: the sequence
xn solution of (9.12) is then divergent (asymptotically very strongly, as iterated
exponentials). As the direct implementation of the population dynamics pro-
cedure to solve (9.13) involves the manipulation of a number of fields ui’s that
is distributed as a Poisson random variable of parameter xn, this becomes very
quickly impossible to handle. A first hint of what happens for γ < 1 can never-
theless be unveiled by this numerical procedure: when γ is only slightly smaller
than 1, xn grows rather slowly at first, the range of n that can be treated in
this way is then sufficiently large to gain some useful informations. A typical
result obtained in this way is plotted on Fig. 9.4 for γ = 0.96: even though xn
is diverging it is tempting to conjecture from this plot that C̃n admits a limit
when n → ∞. Looking at the expression (9.17) of C̃n one realizes that this
is possible provided

∫
dQn(h)(1 − h) tends to 0 as n grows, with an order of

magnitude inversely proportional to the one of xn. This weak convergence of
Qn(h) to δ(h− 1) is compatible with the form of the recursion equation (9.13),
the combination of a very large number of ui’s can indeed produce a field h very
close to 1.

Lowering further the value of γ the speed of the divergence of xn increases
so much that an extrapolation of C̃n to large n values becomes impossible with
this numerical method, which as a consequence does not allow for an accurate
estimation of γd. We thus need to devise a formalism that incorporates the
compensation mechanism between the divergence of xn and the concentration
of Qn around δ(h − 1) at the origin of the finite value of C̃. A natural idea
would be to make the change of variable h = 1 − (h′/xn), with h′ a random
variable that should remain finite and thus obey a simplified recursion equation.
Unfortunately the Bayes symmetry enjoyed by Qn, and its consequences on the
moments of h, imply that h′ has higher moments that diverge with n. This
strategy seems thus rather unpractical. In fact it is more probable that the
value of C̃n is determined by contributions of all values of h in (−1, 1), even
very improbable ones where Qn is of order 1/xn, while the typical values around
h = 1 do not contribute to C̃n because of the factor 1 − h in the integral in
(9.17). In more technical terms we conjecture that xnQn, which is a sequence
of positive measures, even if not probability ones because their total mass is the
diverging sequence xn, does converge to a positive measure η, in the sense of
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Figure 9.3: Top: the reduced correlation function C̃n(γ) as a function of n for
a few values of γ ≥ γr = 1. Bottom: the large n limit C̃(γ) = limn C̃n(γ) as a
function of γ, along with the contribution of the hard fields x(γ) = limn xn(γ).
The first curve exists for γ ≥ γd ≈ 0.871, the second one for γ ≥ γr = 1. The
data for γ < 1 have been obtained through the reweighted algorithm expained
in Sec. 9.2.3.

172



C̃n

xn

n
20151050

3

2.5

2

1.5

1

0.5

0

Figure 9.4: The evolution of C̃n and xn for γ = 0.96 < γr. The sequence xn
diverges asymptotically in a very rapid way (as iterated exponentials, the verti-
cal range has been cut for the sake of readability) while the reduced correlation
function C̃n tends to a positive constant. This is the analog of the finite k
regime αd < α < αr depicted in Fig. 7.4.

the vague convergence on (−1, 1), i.e.

lim
n→∞

xn

∫ b

a

dQn(h) =
∫ b

a

dη(h) (9.19)

for all −1 < a < b < 1 which are continuity points of η. A direct numerical
test of this conjecture, and the determination of η, seems rather difficult as η
is not a probability measure and may have an infinite total mass. We have
thus devised an alternative numerical procedure that allowed us to explore the
regime γ < 1, as we shall now explain.

9.2.3 Reweighted probability distributions
The idea underlying this procedure is to study the evolution not of the probabil-
ity measure Qn, but of a reweighted (or tilted) version of it, that give less impor-
tance to the typical (for Qn) values of h around h = 1, which do not contribute
to C̃n. Let us thus consider a positive function rn(h), and define the reweighted
distribution ρn(h) = xnr(h)Qn(h). In more precise mathematical terms ρn is
absolutely continuous with respect to Qn, with relative density xnr. For the
reasons explained above our goal is to use a function r(h) that vanishes in h = 1;
a convenient choice is to take r of the form r(h) = ((1− h)/(1 + h))t, with t an
exponent that is arbitrary for the moment. Indeed with this choice the reweight-
ing will factorize in (9.13), in the sense that r(f(u1, . . . , ul)) = r(u1)×· · ·×r(ul).
We will actually further specify the function by taking the exponent t = 1/2,
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thus setting

ρn(h) = xnQn(h)
(

1− h
1 + h

) 1
2

. (9.20)

The reasons for this choice of the exponent are two fold: the Bayes symmetry
(7.58) enjoyed by Qn implies then that ρn is symmetric in the usual sense, i.e.
ρn(−h) = ρn(h). Furthermore (7.58) also implies the following identity (used
in the proof of lemma 4.4 in [39]),∫

dQn(h)
(

1− h
1 + h

) 1
2

=
∫

dQn(h)
√

1− h2 , (9.21)

which can be obtained from (7.58) with the choice b(h) = h((1−h)/(1 +h))1/2.
The right hand side of (9.21) is obviously between 0 and 1, thus for all finite
n the measure ρn has a finite total mass, smaller than xn. We shall therefore
define a probability measure νn by dividing ρn by its mass mn:

mn =
∫

dρn(h) = xn

∫
dQn(h)

(
1− h
1 + h

) 1
2

, νn(h) = 1
mn

ρn(h) . (9.22)

Note that the three descriptions in terms of the (finite but not normalized to
1) positive measure ρn, or the pair (mn, νn), or the original one in terms of
(xn, Qn), are strictly equivalent for all finite n; in particular one can compute
the reduced correlation function as

C̃n(γ) =
∫

dρn(h)
√

1− h2 = mn

∫
dνn(h)

√
1− h2 . (9.23)

Besides its equivalence with the original quantities at finite n the advantage
of the reweighted description in terms of ρn is a much nicer behavior when n
grows, as we shall see.

Let us now derive the recursion equations that governs the evolution of ρn
(or equivalently of the pair (mn, νn)). It will be more convenient to express
some quantities in terms of h̃ = arcth(h) and ũ = arcth(u), that corresponds
to the effective magnetic fields associated to the magnetizations h and u. In
particular the operation h = f(u1, . . . , ul) translates in this domain to a simple
addition, h̃ = ũ1 + · · ·+ ũl, and the reweighting r(h) becomes e−h̃. For the sake
of conciseness we shall take the liberty of using simultaneously both types of
quantities in the following equations, keeping implicit the relation h̃ = arcth(h)
between them; we will also denote with the same symbol Qn the measure for
the random variables h and h̃ related in this way.

Let us first rewrite the equations (9.13,9.15) in terms of h̃:

Qn+1(h̃) =
∞∑
l=0

e−3xn (3xn)l
l!

∫ l∏
i=1

dR̂n(ũi) δ(h̃− ũ1 − · · · − ũl)) , (9.24)

R̂n(ũ) = 1
3

∫
dQn(h̃)

[
δ(ũ− a(h̃)) + δ(ũ− a(−h̃)) + δ(ũ+ a(−h̃))

]
, (9.25)
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where we introduced the function

a(h̃) = arcth(g1(tanh(h̃))) = 1
2 ln

(
1 + e2̃h

)
. (9.26)

Under Qn+1 the random variable h̃ has a compound Poisson distribution, it is
thus more convenient to describe it in terms of its characteristic function (i.e.
Fourier transform). We define the latter for the various measures as

Q̂n(z) =
∫

dQn(h)eizh̃ , ρ̂n(z) =
∫

dρn(h)eizh̃ ,

ν̂n(z) =
∫

dνn(h)eizh̃ = 1
mn

ρ̂n(z) . (9.27)

With these conventions the two equations (9.24,9.25) become:

Q̂n+1(z) = exp
[
−3xn + xn

∫
dQn(h)

(
eiza(̃h) + eiza(−h̃) + e−iza(−h̃)

)]
.

(9.28)
The effect of the reweighting is easily seen to translate in terms of the charac-
teristic functions as a shift of the argument,

ρn+1(h) = xn+1e
−h̃Qn+1(h) ⇔ ρ̂n+1(z) = xn+1Q̂n+1(z + i) . (9.29)

Recalling that xn+1 = exp[−γ + xn] we thus obtain

ρ̂n+1(z) = exp
[
−γ + xn

∫
dQn(h)

(
e−a(̃h)eiza(̃h) + e−a(−h̃)eiza(−h̃)

+ea(−h̃)e−iza(−h̃) − 2
)]

(9.30)

Replacing in this equation xnQn by eh̃ρn yields

ρ̂n+1(z) = exp
[
−γ +

∫
dρn(h)

(
eh̃−a(̃h)eiza(̃h) + eh̃−a(−h̃)eiza(−h̃)

+eh̃+a(−h̃)e−iza(−h̃) − 2eh̃
)]

(9.31)

= exp
[
−γ +

∫
dρn(h)

(√
1 + h

2 eiza(̃h)

+
√

1 + h

1− h

(√
1 + h

2 eiza(−h̃) +
√

2
1 + h

e−iza(−h̃) − 2
))]

(9.32)

where in the second line we expressed the weight factors in terms of h instead
of h̃, using the expression of a(h̃) given in (9.26). As ρn(h) = ρn(−h) one can
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symmetrize the integrand to obtain

ρ̂n+1(z) = exp
[
−γ +

∫
dρn(h)

(
1√

2(1 + h)

(
eiza(̃h) + e−iza(̃h)

)
+ 1√

2(1− h)

(
eiza(−h̃) + e−iza(−h̃)

)
− 2√

1− h2

)]

= exp
[
−γ +

∫
dρn(h)

(√
2

1− h

(
eiza(−h̃) + e−iza(−h̃)

)
− 2√

1− h2

)]
.

(9.33)

These two expressions for ρ̂n+1(z) are obviously invariant under z → −z, which
enforces the conservation of the symmetry ρn+1(h) = ρn+1(−h) along the it-
erations. The integrand of the first one is explicitly symmetric in h, while the
more compact second one has been obtained by exploiting the symmetry of ρn.

We have thus obtained a recursion equation for the reweighted measure ρn,
that is equivalent to the original system on (xn, Qn). It will be useful to spell
out its translation in terms of the mass mn of ρn and its normalized version νn.
By setting z = 0 in (9.33) we obtain

mn+1 = exp
[
−γ +

∫
dρn(h)β(h)

]
, (9.34)

with β(h) =
√

2
1 + h

+
√

2
1− h −

2√
1− h2

. (9.35)

Note that β(h) ≤ 1 for h ∈ [−1, 1], hence the integral in (9.34) is smaller than
mn, which allows to check inductively that mn ≤ xn, in agreement with the
direct derivation of this bound from (9.21). Dividing the expression (9.33) of
ρ̂n+1(z) by its total mass mn+1 we obtain the characteristic function ν̂n+1(z) of
νn+1, the normalized probability distribution. Replacing ρn by mnνn we thus
have a recursion equation on the pair (mn, νn), namely

mn+1 = exp
[
−γ +mn

∫
dνn(h)β(h)

]
, (9.36)

ν̂n+1(z) = exp
[
mn

∫
dνn(h)

√
2

1− h

(
eiza(−h̃) + e−iza(−h̃) − 2

)]
, (9.37)

completed by the initial condition m1 = e−γ , ν1(h) = δ(h), that derives directly
from x1 = e−γ , Q1(h) = δ(h).

9.2.4 Numerical resolution
There is one last difficulty to face in the derivation of a numerical procedure
able to solve the equations (9.36,9.37), that we shall now explain. As νn is a
normalized probability measure we can represent it as a large sample of fields,
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according to the population dynamics strategy explained in Sec. 8.1. Suppose
this has been done up to the n-th iteration, and that an estimate of the real
number mn is also known. Then mn+1 can be easily computed from (9.36), the
integration over νn being estimated as an empirical average over the representa-
tive population. There remains to give an interpretation of the law νn+1 whose
characteristic function is given in (9.37), and to devise a sampling procedure
from it in order to produce the population of i.i.d. samples that will represent
νn+1. In order to do so let us introduce a positive (not normalized) measure πn
and its total mass λn according to

πn(y) = mn

∫
dνn(h)

√
2

1− h (δ(y − a(−h̃)) + δ(y + a(−h̃))) (9.38)

λn = 2mn

∫
dνn(h)

√
2

1− h , (9.39)

in such a way that (9.37) can be rewritten

ν̂n+1(z) = exp
[∫

dπn(y)(eizy − 1)
]
. (9.40)

In more technical terms πn is the Lévy measure associated to the infinitely
divisible distribution νn+1 [109], with λn the total mass of πn, which is finite for
a Poisson compound distribution. This form makes clear that under νn+1 the
random variable h̃ can be described as the distributional equality h̃ d=

∑l
i=1 yi,

where in the right hand side l is a Poisson random variable of mean λn, and
the yi’s are i.i.d. copies drawn with the probability measure πn(y)/λn. If νn
is known as a sample of fields it is possible to sample efficiently y from πn/λn,
by extracting a field h(n)

i with a probability proportional to (1− h(n)
i )−1/2 and

then setting y = ±a(−h̃(n)
i ), the two signs being chosen with probability 1/2. It

could thus seem at first sight that the distributional interpretation given above
leads to a valid numerical procedure to solve (9.36,9.37). A closer look reveals
that this strategy cannot work as it is for γ < 1. Let us indeed rewrite the
expression of λn by exploiting the symmetry of νn:

λn = mn

∫
dνn(h)

(√
2

1− h +
√

2
1 + h

)

= mn

∫
dνn(h)

√
2(
√

1 + h+
√

1− h)√
1− h2

. (9.41)

On the other hand the sequence xn can be expressed from the definition (9.20)
of ρn as

xn =
∫

dρn(h)
√

1 + h

1− h = mn

∫
dνn(h)1

2

(√
1 + h

1− h +
√

1− h
1 + h

)

= mn

∫
dνn(h) 1√

1− h2
, (9.42)
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where we used the normalization of Qn and the symmetry of νn. Noting that
the function

√
2(
√

1 + h +
√

1− h) is bounded between 2 and 2
√

2 when h ∈
[−1, 1] we can conclude by comparing these two expressions of λn and xn that
2xn ≤ λn ≤ 2

√
2xn. Hence for γ < 1 the lower bound implies that λn diverges

with n, which brings us back to the situation we are trying to avoid of a Poisson
compound distribution with a diverging number of summands.

Fortunately the reweighting performed above will allow us to circumvent this
difficulty. One sees indeed on the expression (9.39) that the divergent contri-
bution to λn arises from the neighborhood of h = 1, i.e. of h̃ = +∞. However
the corresponding summands ±a(−h̃) are very small (recall the expression of a
from Eq. (9.26)), it is thus conceivable that such a sum of a very large number
of very small contributions can be handled in a simplified way. To formalize
this intuition we rewrite (9.37) as

ν̂n+1(z) = ν̂
(≤)
n+1(z) ν̂(>)

n+1(z) , (9.43)

ν̂
(≤)
n+1(z) = exp

[∫
dρn(h)

√
2

1− h

(
eiza(−h̃) + e−iza(−h̃) − 2

)
I(h ≤ 1− εn)

]
,

(9.44)

ν̂
(>)
n+1(z) = exp

[∫
dρn(h)

√
2

1− h

(
eiza(−h̃) + e−iza(−h̃) − 2

)
I(h > 1− εn)

]
,

(9.45)

where εn is for the moment an arbitrary threshold; such a decomposition is
loosely inspired by an analogy with the Lévy-Itô decomposition of Lévy pro-
cesses [109].

These two contributions to ν̂n+1(z) are characteristic functions of probability
distributions, hence under the law νn+1 the random variable h̃ is the sum of
independent draws from ν

(≤)
n+1 and ν

(>)
n+1. The first one can be described as

above, modulo the introduction of the cutoff εn; defining

π(≤)
n (y) = mn

∫
dνn(h)

√
2

1− h (δ(y − a(−h̃)) + δ(y + a(−h̃)))I(h ≤ 1− εn) ,

(9.46)

λ(≤)
n = 2mn

∫
dνn(h)

√
2

1− h I(h ≤ 1− εn) , (9.47)

one sees that under the law ν
(≤)
n+1 the random variable h̃ satisfies the distribu-

tional equality h̃ d=
∑l
i=1 yi, where in the right hand side l is a Poisson random

variable of mean λ(≤)
n and the yi are i.i.d. with the law π

(≤)
n /λ

(≤)
n . The law of

ν
(>)
n+1 will instead be described via its cumulants, to be denoted cn+1,p for the
p-th one. By taking derivatives with respect to z of ln ν̂(>)

n+1(z) one finds easily
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that

cn+1,p = mn

∫
dνn(h)

√
2

1− h (1 + (−1)p) a(−h̃)p I(h > 1− εn) . (9.48)

As expected from the symmetry of the law ν
(>)
n+1 all its cumulants of odd order

vanish and one can write for the even ones:

cn+1,2p = 2mn

∫
dνn(h)

√
2

1− h a(−h̃)2p I(h > 1− εn) . (9.49)

The strategy we have followed in our numerical resolution is to choose εn
large enough such that λ(≤)

n does not grow with n, in such a way that the
contribution from ν

(≤)
n+1 can be generated with a finite Poissonian number of

summands, but small enough so that ν(>)
n+1 can be safely approximated as a

Gaussian distribution, neglecting the cumulants cn+1,2p for p > 1 (there exist
some ways to draw better approximations of infinitely divisible distributions by
using more cumulants [110, 111], but we did not try to implement them). Let
us give an explicit description of the algorithm. At the n-th iteration we assume
to have an estimation of mn and of νn as a population, namely

νn(h) ≈ 1
N

N∑
i=1

δ(h̃− h̃(n)
i ) . (9.50)

We will assume that the population has been sorted, h̃(n)
1 ≤ h̃

(n)
2 ≤ · · · ≤ h̃

(n)
N ,

and translate the cutoff εn by defining Nn in such a way that h(n)
Nn ≤ 1− εn <

h
(n)
Nn+1. We can thus estimate all integrals with respect to νn according to

∫
νn(h)F (h̃) ≈ 1

N

N∑
i=1

F (h̃(n)
i ) (9.51)

for all functions F , and in particular this gives us mn+1 from (9.36). We then
compute

λ(≤)
n ≈ 2mn

1
N

Nn∑
i=1

√
2

1− h(n)
i

,

cn+1,2 ≈ 2mn
1
N

N∑
i=Nn+1

√
2

1− h(n)
i

a(−h̃(n)
i )2 . (9.52)

We then construct the new population elements h̃(n+1)
i by repeating N times,

independently for i = 1, . . . ,N :

• draw a random number l from a Poisson distribution of parameter λ(≤)
n ;
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• draw i1, . . . , il i.i.d. in {1, . . . ,Nn} with probability proportional to 1√
1−h(n)

i

(this can be done efficiently by precomputing a cumulative table);

• set h̃(n+1)
i = δ1 a(−h̃(n)

i1
) + · · ·+ δl a(−h̃(n)

il
) +√cn+1,2z where the δi’s are

±1 with probability 1/2, independently from each other and from anything
else, and z is a standard Gaussian random variable.

We can then compute the reduced correlation function C̃n+1 from (9.23), and
sort the elements of the new population to be ready for the next step.

In our implementation we chose the threshold εn, or equivalently Nn, in
an adaptive way: at each step we take the largest value of Nn that maintains
λ

(≤)
n computed from (9.52) smaller than a value λ fixed beforehand and kept

constant along the iterations. The numerical accuracy of our procedure is thus
limited by the finiteness of N (the representation (9.50) becomes exact only in
the limit N →∞) and of λ (because of the Gaussian approximation we perform
for ν(>)

n+1). The numerical results presented in figures have been obtained with
N = 107 and λ = 20; we checked that varying λ between 10 and 30, or reducing
N to 106, did not affect our conclusions in a quantitative way.

On the top panel of Fig. 9.5 we show that this new method allows us to
track the evolution of C̃n for values of γ deep in the regime γ < 1 that was
unaccessible to the simplest strategy presented in Sec. 9.2.1. In particular for
γ & 0.88 there is a clear plateau in C̃n, the value of which was reported as a
function of γ in the bottom panel of Fig. 9.3 along with the results previously
obtained for γ ≥ 1. Note that the new algorithm is also valid for γ > 1 (and in
this case the cutoff εn can be safely put to 0), we found as expected a perfect
agreement between the results of the two procedures in this case.

On the bottom panel of Fig. 9.5 we have plotted the evolution of (the inverse
of) mn as a function of n, that presents the same kind of plateau behavior as
C̃n. These numerical results suggest that C̃n diverges with n if and only if
mn diverges, and hence that γd can be defined as the smallest value of γ such
that mn remains bounded when n → ∞. We have not been able to prove
analytically this statement, that will be taken as an additional hypothesis in
the rest of the paper. This conjecture could be wrong if there existed a regime
of γ such that C̃n remains finite while mn diverges, because of the existence
of another reweighting scheme that deals with the compensation between the
divergence of xn and the convergence of Qn(h) to δ(h − 1) in a more efficient
way than the one we introduced in (9.20). We found numerically no trace of
such a phenomenon, which if it existed would only modify our estimate of γd by
a quantitatively very small amount, as for γ = 0.87 the finite n study strongly
suggests a common divergence of C̃n and mn (and for γ = 0.86 the divergences
are obvious on Fig. 9.5).
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Figure 9.5: The results of the reweighted distribution method in the neighbor-
hood of γd: on the top panel the reduced order parameter C̃n(γ) as a function
of n, on the bottom panel the inverse of the mass mn of the reweighted measure
ρn. On both panels the five curves correspond to γ = 0.85, γ = 0.86, γ = 0.87,
γ = 0.88, γ = 0.89, from top to bottom on the top panel and from bottom to
top on the bottom panel. These curves show that 0.87 < γd < 0.88, C̃n and mn

diverge for γ = 0.87, even if it is not completely visible on the displayed range
of n.
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Figure 9.6: The relationship between the parameter γ and the mass m of the
reweighted measure ρ in the n → ∞ limit. The numerical results suggest that
m reaches 1 with a square root behavior as γ tends to γd.

9.2.5 The fixed point equation and the determination of
γd

The numerical results presented above suggest that for γ ≥ γd both mn and C̃n
converge when n → ∞. It is then tempting to conjecture that the probability
distribution νn itself converges to some ν, in other words that we can remove
the indices n from (9.36,9.37) and get a system of self-consistent equations on
the fixed-point (m, ν) as:

m = exp
[
−γ +m

∫
dν(h)β(h)

]
, (9.53)

ν̂(z) = exp
[∫

dπ(y)(eizy − 1)
]
, (9.54)

π(y) = m

∫
dν(h)

√
2

1− h (δ(y − a(−h̃)) + δ(y + a(−h̃))) . (9.55)

Let us make a few remarks on these equations; first, one can check that if
m is finite and ν is a probability measure with no atoms in h = ±1 (i.e. in
h̃ = ±∞), then the measure π defined in (9.55) gives a finite mass to all sets
that are bounded away from 0, does not have an atom in 0, and is such that∫

dπ(y)|y|I(|y| ≤ 1) <∞. This ensures that the integral in the definition of ν̂(z)
converges, hence π is a valid Lévy measure for the infinitely divisible distribution
ν. Moreover the assumption of convergence of νn towards ν is self-consistent
in the following sense: if νn

w→ ν (i.e. in the sense of weak convergence of
probability measures) then πn(f)→ π(f) for all bounded continuous functions
f that vanish in a neighborhood of 0, and limε→0 lim supn→∞

∫
dπn(y)y2I(|y| ≤
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ε) = 0. These two properties allow to invoke theorem 8.7 of [109] to conclude
that νn

w→ ν, the infinitely divisible distribution with Lévy measure π. Of
course this circular argument does not prove the convergence νn

w→ ν, but at
least shows its consistency.

Note that in (9.53-9.55) we have finally achieved the main goal of the article,
namely getting rid of the parameters k and n that have been sent to infinity and
obtaining a system of equations that only depend on the parameter γ. Moreover
γ only appears in (9.53): one can thus view (9.54,9.55) as a self-consistent
equation on ν, parametrized by m, from which one deduces γ according to
(9.53). We have performed this numerical resolution at fixed m, relying again
on the Gaussian approximation to deal with the divergence of the total mass of
π, and checked that the results were in perfect agreement with the one obtained
fixing γ in the n → ∞ limit. In Fig. 9.6 we have plotted the correspondance
function between γ and m. The numerical resolution of the fixed point equation
(9.55) led us to the following observations: (i) a solution of the equation only
exists for m ≤ 1 (ii) the tail behavior of ν is very well described numerically by

ν({h̃ ≥ x}) ∼ S(x)e
−r(m)x

xρ
as x→ +∞ , (9.56)

where S is a slowly varying function, ρ is an exponent very close to 1 for all the
values ofm we have considered, and r(m) ≥ 0 controls the dominant exponential
decrease of the tail (iii) r(m) > 0 for m < 1, and r(m)→ 0 as m→ 1.

Some of these numerical observations can be rationalized through the follow-
ing analytical considerations. If one assumes the form (9.56), the exponential
behavior of ν when h̃ → +∞ (and also in −∞ thanks to the symmetry of ν)
allows to continue ν̂(z) from the real to the imaginary axis, i.e. to define the
Laplace transform of ν as

L(t) = ν̂(−it) =
∫

dν(h)et̃h =
∫

dν(h) cosh(th̃) . (9.57)

This function L is well-defined for t ∈ (−r(m), r(m)), formally infinite for |t| >
r(m), with L(0) = 1 and L non-decreasing on [0, r(m)). Its behavior as t→ r(m)
depends on the exponent ρ that controls the algebraic decay in (9.56). If ρ ≤ 0
then L diverges in this limit, with a dominant behavior of (r(m) − t)ρ (and
a prefactor that involves the slowly varying function S, see theorem XIII.5.1
in [112] for a rigorous statement of such a Tauberian argument), while if ρ > 0
the limit L(r(m)) is finite. We claim that for the probability measure ν solution
of (9.55) one should have ρ > 0. Let us indeed rewrite this equation in terms
of the Laplace transforms as L(t) = exp[R(t)], with R(t) =

∫
dπ(y)(ety − 1).

Consider now the tail behavior of the measure π related to ν by (9.55); a simple
computation, based in particular on the fact that a(h̃) = h̃+O(e−2̃h) as h̃→∞,
shows that the asymptotic expansion (9.56) is also valid for the tail of π, up to
the multiplicative coefficient m: π({y ≥ x}) ∼ mν({h̃ ≥ x}) as x → ∞. As
a consequence if ρ < 0 both L(t) and R(t) would diverge as (r(m) − t)ρ when
t → r(m), which is clearly incompatible with the equation L(t) = exp[R(t)].

183



We must thus have ρ > 0, in such a way that L is finite in r(m); nevertheless
some derivatives of L will be divergent in r(m), each derivative with respect to
t in (9.57) multiplying the integrand by h̃, hence reducing the exponent ρ by
1. Suppose for simplicity that 0 < ρ ≤ 1, in such a way that L′(t) is divergent
(higher values of ρ would lead to the same conclusion by considering higher
order derivatives). Because of the proportionality between the tails of ν and π
the function R′(t) is also divergent, with R′(t)/L′(t) → m as t → r(m). Since
L′(t) = R′(t) exp[R(t)] = R′(t)L(t), we are led to the conclusion that

1 = mL(r(m)) . (9.58)

This type of reasoning can actually be put on rigorous grounds, the statement
(9.58) being essentially the content of corollary 2.1 in [113]. As L(r(m)) ≥
L(0) = 1 we can conclude that a solution of (9.55) with a tail behavior of the
form (9.56) can only exist for m ≤ 1, and that r(m) must vanish when m→ 1,
which confirms part of the numerical observations reported above. As m is a
decreasing function of γ (see in particular Fig. 9.6) we are thus led by (9.53) to
the following definition for our conjectured value of γd:

γd =
∫

dν(h)β(h) , (9.59)

where ν is the solution of (9.55) with m = 1 (and hence has a power law decay
when h̃ → ∞). A numerical evaluation of this quantity led us to the estimate
γd ≈ 0.871. The property m → 1 as γ → γd was illustrated with the dotted
horizontal line in the bottom panel of Fig. 9.5, that corresponds to the expected
height of the plateau of the curves in the critical region.

The square root behavior ofm as a function of γ when γ is close to γd, that is
clearly visible on Fig. 9.6 and confirmed by a numerical fit of the data, is in line
with the bifurcation of the functional equation (9.55). It is more surprising to
observe that C̃(γ) seems to behave linearly in the limit γ → γd (see the bottom
panel of Fig. 9.3), as it could suggest that C̃ admits a continuation to smaller
values of γ, in violation of the hypothesis made at the end of Sec. 9.2.4. There
are alternative explanations to this observation: the square root contribution
could be very small and not observable with our numerical accuracy, or the
expected square root behavior of C(α, k) when α → αd at finite k could be
washed out in the limit k → ∞, i.e. the limits α → αd and k → ∞ do not
necessarily commute to correspond to the limit γ → γd.

9.2.6 An analytic lower bound on γd

As we have seen above our conjecture for γd is given in terms of the solution of
a functional equation that does not seem to admit a simple expression. One can
however derive explicitly a quantitatively close lower bound, by observing that
the function β(h) defined in (9.35) is such that β(h) ≥ 2(

√
2 − 1) for all h ∈

[−1, 1]. As a consequence the sequences of massesmn obey the inductive bounds
mn+1 ≥ exp[−γ+2(

√
2−1)mn]. The functionm→ exp[−γ+2(

√
2−1)m] being
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increasing the sequence m̂n defined by m̂1 = e−γ , m̂n+1 = exp[−γ + 2(
√

2 −
1)m̂n] can be shown by induction to lower bound the sequence mn, namely
mn ≥ m̂n for all n. It is then simple to show that for γ < 1 + ln(2(

√
2− 1)) ≈

0.812 the sequence m̂n diverges with n, and as a consequence so doesmn. Under
the assumption spelled out at the end of Sec. 9.2.4 on the equivalence of the
divergence of mn and of C̃n this yields the lower bound γd ≥ 1 + ln(2(

√
2− 1)).
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Chapter 10

The asymptotics of the
clustering transition for
biased measures

In this chapter, we investigate the large k asymptotics of the clustering tran-
sition undergone by the bicoloring of k-uniform random hypergraphs, when its
solutions are weighted non-uniformly, with a soft interaction between variables
belonging to distinct hyperedges. We find that αd(k) = 2k−1

k (ln k + ln ln k +
γd+ o(1)), where the constant γd is strictly larger than for the uniform measure
over solutions.

As already mentioned in chapter 5, an important problem in the field of ran-
dom CSPs concerns the behavior of algorithms in the satisfiable regime, where
the goal is to find a solution, as typical instances admit such configurations. In
particular, one would like to determine the algorithmic thresold αalg(k) above
which no algorithm is able to find a solution with high probability (assuming
P6=NP). We have seen (in section 5.1) that for small values of k it is possible
to design algorithms (see [6, 17, 18, 19, 20]) for which a numerical study shows
that they are efficient up to densities very close to the satisfiability threshold. In
the large k limit these algorithms cannot be studied numerically. It is however
possible to perform the analytical study of some algorithms based on simpled
heuristics. Up to know the best result is the one of [21], which provides an
algorithm that provably works in polynomial time up to densities of the order
of 2k−1 ln k/k, which coincides with the asymptotic scaling of αd. We recall that
the satisfiability threshold occurs at the scaling αsat(k) ∼ 2k−1 ln 2, therefore
this leaves a wide range of α where typical instances do admit solutions, but
no known algorithm is able to find them efficiently. Moreover some families of
algorithms have been proven to fail [22, 23, 24].

Although the connection between the algorithmic performances and the sev-
eral structural phase transitions that occur in the satisfiable phase is very del-
icate, the strategy adopted in this Ph.D was to study the clustering threshold
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αd. One can reasonably state that the clustering transition is a lower bound on
the algorithmic one, αd(k) ≤ αalg(k). Indeed for α < αd, simulated annealing
is able to equilibrate in polynomial time down to arbitrary small temperatures
[14], and hence to sample the solution set (with a biased or uniform measure).
For α slightly larger than αd one expects simulated annealing to fall out-of-
equilibrium in polynomial time scales, but in many cases it should be able to
find solutions, as we have seen in section 8.4 for the biased measure µΘ0 . Hence
the bound αd(k) ≤ αalg(k) is not tight in general.

In chapter 8 we have studied two implementations of the bias in the measure
on the set of solution of a hypergraph bicoloring instance for small values of k.
For the simplest biased measure µΘ0 , the interactions can be factorized over
the bicoloring constraints. The second biased measure µΘ1 induces interactions
between variables at distance 1. We studied the modifications of the clustering
threshold αd induced by the non-uniformicity between the solutions. We showed,
for k between 4 and 6, that with well-chosen parameters the bias allows to
increase αd, and that it can be further increased with the biased measure µΘ1

compared to the simpler implementation µΘ0 . We checked for µΘ0 that the bias
could improve the performances of simulated annealing.

The large k behavior of αd is more involved. We presented some rigorous
bounds on its asymptotic expansion in Section 5.2.1 (see [38, 39, 40]). In chapter
9 (that report the results of [32]) we found that the clustering threshold occurs
on the scale α ∼ 2k−1(ln k+ ln ln k+ γ)/k, with γ constant, and more precisely
for the uniform measure γd,u ≈ 0.871, which falls into the range allowed by the
previous bounds [38, 39, 40]. In this chapter we adapt the large k expansion
of chapter 9([32]) to the biased measures µΘ0 , µΘ1 and manage to assess the
asymptotic effect of the bias on αd. We find that the factorized bias of µΘ0 (see
equation (6.7)) studied in [31] cannot improve on the constant γd in the asymp-
totic expansion with respect to γd,u, while the biased measure µΘ1 with larger
interaction range allows to increase its value up to γd ≈ 0.977. This is arguably
a modest improvement, bearing on the third order of the asymptotic expansion
of αd, nevertheless it opens the possibility to study further generalizations of
the bias and to bring some light on the nature of the algorithmic gap between
αalg and αsat.

This chapter is organized as follows. In Section 10.1 we derive a first up-
per bound on the possible increase of the dynamic threshold for the factorized
measure µΘ0 , that was obtained in [31]. Although we will see later that this
bound is not tight, it already indicates that there is no possibility to improve
on the first term of the asymptotic expansion of αd. Moreover, it motivates
the choice (8.17) for the bias parameters ωp defining the bias. The analytical
expansion of the dynamic transition threshold in the large k limit for the biased
measure is presented in Sections 10.2-10.5. These sections present the results
obtained in [33]. We will focus on the (k, l + 1)-regular ensemble, where the
probability is uniform on the set of hypergraphs for which each vertex belongs
to l + 1 hyperedges. We have seen indeed in chapter 7 that the study of the
biased measure µΘ1 that introduces interaction between variables at distance
1 on the regular ensemble is simplified compared to the Erdős Rényi ensemble
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GN (k,M). In Section 10.2 we give the main ideas of the computations made
in the next sections, and simplify some of the equations that will be needed
in the following. In Section 10.3 we perform the large k limit of the recursive
distributional equations (7.67-7.69), and reduce the determination of γd to a set
recursive distributional equations that does not depends on k. The study of the
large n limit of these equations is performed in Section 10.4. In section 10.5
we give the numerical results obtained fom the resolution of these distributional
equations that allows to compute the asymptotic expansion of αd.

10.1 A first upper-bound for the intra-clause bias
The numerical resolution of the cavity equations presented in Sec. 8.3 shows that
for small values of k one has αopt(k) > αd,u(k), in other words that distorting
the measure over solutions can make it RS for larger densities of constraints
than the uniform one. We want now to investigate the large k limit, for which
the gap between the satisfiability threshold and the algorithmic one is most
clearly demonstrated. In this section we will derive an asymptotic bound on the
large k behavior of αopt(k), for the biased measure µΘ0 with the specific choice
(8.17).

As explained before for any ε one has αd(ε) ≤ min(αKS(ε), αr(ε), αs=0(ε)),
these three upper bounds having simple expressions given in Eqs. (8.18-8.20). At
large enough k it is easy to convince oneself that the Kesten-Stigum transition
occurs after αs=0, hence is completely irrelevant (the dominant term in the
asymptotic expansion of αKS is of the order 22(k−1) instead of 2k−1 for αs=0

and αr). We show in Fig. 10.1 the lines αr(ε), αs=0(ε) for a large value of k. We
define (α∗(k), ε∗(k)) as the coordinates of the intersection of the rigidity and the
zero-entropy line, in such a way that αopt(k) ≤ α∗(k): for larger densities either
the RS entropy is negative, or there exists a 1RSB solution with hard-fields (or
both), in any case no RS phase can exist for α ≥ α∗. We will now derive an
asymptotic expansion at large k of this upper bound α∗(k).

In the expression (8.20) of αr the coefficient Γr(k) is a series depending
solely on k, that was defined in Eq. (7.81); in order to obtain more easily its
asymptotic equation we define a series wk by Hr(k) = 1− e−wk , in such a way
that wk is solution of the implicit equation ew = 1 + (k − 1)w. Taking the
logarithm of this equation and iterating once yields

wk = ln k + ln ln k +O

(
ln ln k
ln k

)
. (10.1)

One can then compute

Γr(k) = wk

(
1 + 1

(k − 1)wk

)k−1
= ln k + ln ln k +O(1) . (10.2)

This gives immediately the expansion of the rigidity threshold for the uniform

188



αr(k, ǫ)

αs=0(k, ǫ)

(α∗(k), ǫ∗(k))

α/2(k−1)

ǫ

0.90.80.70.60.50.40.30.20.10

1

0.8

0.6

0.4

0.2

0

Figure 10.1: For k = 20, plot in the plane (α, ε) of the rigidity line and zero RS
entropy line, that intersect at the point (α∗(20), ε∗(20)).

measure (ε = 0),

αr,u(k) = 2k−1 1
k

(ln k + ln ln k +O(1)) . (10.3)

that is confirmed by the asymptotic expansion (5.13) (see [62] and [38] in which
the third term (O(1)) is also derived: γr = 1). We come back to the determi-
nation of (α∗(k), ε∗(k)); this intersection of the rigidity and zero-entropy line is
solution of the two following equations, immediately obtained from (8.18,8.20):

α = ln 2
k(1−ε) ln(1−ε)

2k−1−1−kε − ln
(
1− 1+kε

2k−1

) = 1
k

Γr(k)2k−1 − 1− kε
1− ε . (10.4)

Neglecting only exponentially small corrections we can simplify (10.4) into

α

2k−1 = ln 2
k(1− ε) ln(1− ε) + 1 + kε

= 1
k

Γr(k) 1
1− ε . (10.5)

Without making additional approximations we see that ε∗(k) is solution of

ε+ (1− ε) ln(1− ε) = ln 2
Γr(k) −

1
k
− ε ln 2

Γr(k) . (10.6)

Given the asymptotic behavior of Γr(k) stated in (10.2) it is easy to see that
ε∗(k) must vanish in the limit; one can thus expand the l.h.s. of (10.6) and
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obtain

ε∗(k) =
√

2 ln 2
Γr(k) +O

(
1

ln k

)
. (10.7)

Reinserting in (10.5) we obtain

α∗(k) = 2k−1 1
k

Γr(k)
(

1 +
√

2 ln 2
Γr(k) +O

(
1

ln k

))
. (10.8)

Using the expansion (10.2) of Γr(k) we have finally

α∗(k) = 2k−1 1
k

(
ln k +

√
2 ln 2

√
ln k +O(ln ln k)

)
. (10.9)

The comparison with the expansion of αr,u(k) given in (10.3) shows that the
leading order is not modified, the term ln ln k in the correction being replaced
by a (larger) term of order

√
ln k.

In chapter 9 (corresponding to the results presented in [32]) we have found
that αd,u has the same asymptotic expansion as αr,u (see equation (5.15)), with
a strictly smaller constant γd ≈ 0.871. We thus conclude that

αd,u(k) = 2k−1 1
k

[ln k + ln ln k + γd] ≤ αopt(k) ≤ α∗(k) (10.10)

α∗(k) = 2k−1 1
k

(
ln k +

√
2 ln 2

√
ln k +O(ln ln k)

)
, (10.11)

hence that the best improvement of αopt(k) with respect to αd,u(k) that can
be hoped for with the bias considered in this paper is a replacement of ln ln k
by
√

ln k in the second order term of their asymptotic expansions. We shall
actually see in the next sections that this upper bound is too optimistic, and
that with the bias µΘ0 and the choice (8.17) we could not increase the asymptotic
expansion of the clustering threshold.

We shall finally come back briefly on the choice of parameters we made in
(8.17), where we used a single parameter ε for the bias instead of trying to exploit
all the k/2 free values of ωp. Let us define α′opt(k) = supαd(k, {ωp}), where
the maximization is now over all possible values of the ωp, under the conditions
ω0 = ωk = 0 and ωp = ωk−p. We have certainly α′opt(k) ≥ αopt(k), and the
inequality is probably strict at least for small enough values of k; however we
shall now show that α′opt(k) ≤ α∗(k), hence that the larger freedom of choice
of generic parameters does not allow to beat the upper bound derived and
discussed in the special case (8.17). To see this more easily let us exploit the
invariance of the measure (6.7) under a multiplication of all ωp by a common
constant, and fix their normalizations in such a way that

k−1∑
p=1

(
k

p

)
ωp = 1 . (10.12)
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With this choice the expressions of the RS entropy (7.34) and rigidity threshold
(7.82) become

sRS(α, {ωp}) = ln 2 + α

(
k−1∑
p=1

(
k

p

)
ωp lnωp − k ln 2

)
,

αr(k, {ωp}) = 1
k

Γr(k) 1
2ω1

. (10.13)

Consider now a given choice of the parameter ω1, and a value of α ≤ αr;
for these to allow a RS phase the corresponding entropy should be positive.
Maximizing the entropy in (10.13) with respect to {ω2, . . . , ωk−2}, under the
normalization condition (10.12) and for a fixed value of ω1 is easily seen to yield
ω2 = · · · = ωk−2, i.e. precisely the choice of parameters (8.17). In other words
this bias is the one that allows to tune the fraction of frozen variables while
keeping the measure as uniform as possible, in order to minimize the entropy
cost it induces.

10.2 The asymptotics of the clustering thresh-
old

10.2.1 Setting
The rest of chapter will be devoted to an asymptotic expansion of the clustering
threshold when k →∞. We will focus on the k-uniform l+1-regular hypergraph
ensemble, and on the measure µΘ1 defined in (6.12). We have seen in the section
8.5 that for finite k this biased measure has a larger ld with respect to the
uniform one, and that the inclusion of interactions between variables at larger
distance brings a further improvement compared to a biasing function factorized
over the hyperedges (i.e. the measure µΘ0 defined in (6.7)). It is thus natural to
investigate this phenomenon in the large k limit, that allows for some analytical
simplifications, and where the algorithmic gap discussed in the introduction is
most clearly seen. One would like in particular to understand at which order of
the asymptotic expansion of ld the effect of the bias does appear.

We give here, for the convenience of the reader, the main ideas and explain
the organization of the forecoming computation, which is the generalization of
the one we presented in [32] (see chapter 9) for the uniform measure. We will
focus on the particular form of the function ψ(p) defined in (6.13), with the two
parameters b and ε that we recall here:

ψ(0) = 1, ψ(p) = b(1− ε)p for 1 ≤ p ≤ l + 1 . (10.14)

Note that the specific choice of parameters (8.17) in the measure µΘ0 corre-
sponds in the above equation to set b = 1 (i.e. to take ψ(p) = (1 − ε)p), as
explained in the section 6.1.3.

We start in the section 10.2.2 by summarizing the main equations derived
in chapter 7, for arbitrary k, in this special case. In order to take the k → ∞
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limit we must specify how the degree l and the parameters (b, ε) behave with k;
we will set

l = 2k−1(ln k + ln ln k + γ) , ε = ε̃

√
2

k ln k , (10.15)

where γ and ε̃ are constants independent of k that parametrize the degree and
the bias in this limit (the factor

√
2 being for later notational convenience),

while b will be independent of k. We will find that both ld and the rigidity
threshold lr have asymptotic expansions of the form (10.15), our goal being to
determine the corresponding rescaled thresholds γd and γr, as a function of the
parameters (b, ε̃).

To do so we shall first expand the correlation function Cn and its hard-fields
contribution Hn, for a finite distance n, and find that both go to their maximal
value 1, with the correction term scaling as

Cn = 1− C̃n
k ln k + o

(
1

k ln k

)
, Hn = 1− H̃n

k ln k + o

(
1

k ln k

)
, (10.16)

where C̃n and H̃n are independent of k. These sequences depend on the rescaled
parameters γ, b and ε̃, and we present in Sec. 10.3 recursion equations that allow
to compute them (in Sec. 10.3.1 for H̃n and in Sec. 10.3.2 for C̃n).

The tresholds ld and lr have been defined for finite k according to the pos-
itivity of the large n limit of the sequences Cn and Hn, respectively. Their
asymptotic expansion should thus be performed by taking the large k limit af-
ter the large n one; however, under the natural hypothesis (that can be checked
explicitly for Hn) that the large n limit of Cn and Hn is either strictly vanishing
or scales with k as in (10.16), one can determine γd and γr by reversing the order
of the limits and studying whether C̃n and H̃n remain bounded or not in the
large n limit. The large n limit of C̃n is thus discussed in Sec. 10.4. Additional
difficulties need to be overcome in the intermediate regime γd < γ < γr where
reconstruction is possible but naive reconstruction is not: even if strictly hard
fields are not present here the scaling (10.16) reveals that the soft fields are ac-
tually quasi-hard, the correlation function tending to one. We thus reformulate
in Sec. 10.4.2 the recursion of 10.3.2 and put it in a form for which the large
n limit can be performed in a numerically tractable way. Finally our explicit
results for γd are presented in 10.5.

10.2.2 A specialization of some formulas
Let us first specialize some of the formulas we wrote previously for a generic
ψ(p) to the case defined in equation (10.14) with the two parameters b and ε.
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The BP equation (7.18) for the function η = fΘ1(η̂1, . . . , η̂l) becomes

η(σ, 1) = 1
z
b(1− ε)

l∏
i=1

(η̂i(σ, 0) + (1− ε)η̂i(σ, 1)) , (10.17)

η(σ, 0) = 1
z

[
(1− b)

l∏
i=1

η̂i(σ, 0) + b

l∏
i=1

(η̂i(σ, 0) + (1− ε)η̂i(σ, 1))
]
,

for σ = ±1. The equation (7.40) for the factorized RS solution reads

y = 1
1− ε

(
1 + 1− b

b
(1 + (1− ε)ŷ−1)−l

)
,

ŷ = 2k−1 − k − 1 + k − 1
y

. (10.18)

The evolution equations (7.88,7.89) for the hard fields become

h0,n+1 = 1− 1− b+ b(1 + (1− ĥn+1)(1− ε)ŷ−1)l
1− b+ b(1 + (1− ε)ŷ−1)l , (10.19)

h1,n+1 = 1− (1 + (1− ĥn+1)(1− ε)ŷ−1)l
(1 + (1− ε)ŷ−1)l , (10.20)

Hn = 1− 1− b+ b(1 + (1− ĥn)(1− ε)ŷ−1)l+1

1− b+ b(1 + (1− ε)ŷ−1)l+1 , (10.21)

where we recall the initial condition h0,n=0 = 1 and the fact that ĥn+1 =
(h0,n)k−1. We can thus write a closed equation on h0,n:

h0,n+1 = 1− 1− b+ b(1 + (1− (h0,n)k−1)(1− ε)ŷ−1)l
1− b+ b(1 + (1− ε)ŷ−1)l . (10.22)

One can check numerically that this equation undergoes a discontinuous bifur-
cation when l increases above the rigidity threshold lr. Here all the formulas
depend analytically on l, we can thus consider it as a real parameter, even if the
original model is only defined for integer l. The fixed point h0 = limn→∞ h0,n
jumps abruptly from 0 to a strictly positive value when l is increased above
lr. We can determine the location of this threshold by noting that at such a
bifurcation the function that maps h0,n to h0,n+1 is tangent with the diagonal,
hence lr and the bifurcating fixed point h0,r are solutions of

h0,r = 1− 1− b+ b(1 + (1− (h0,r)k−1)(1− ε)ŷ−1)lr
1− b+ b(1 + (1− ε)ŷ−1)lr , (10.23)

1 = lr(k − 1)(h0,r)k−2(1− ε)ŷ−1b(1 + (1− (h0,r)k−1)(1− ε)ŷ−1)lr−1

1− b+ b(1 + (1− ε)ŷ−1)lr .

(10.24)
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For a generic bias ψ(p) the distribution Rw,n of the hard fields introduced in
(7.86) is a priori non-trivial, but for the particular choice of ψ defined in (10.14)
it simplifies into

Rw,n(η) = δ(η− η+) , where η+(σ, 0) = 1
2− εδσ,+ , η+(σ, 1) = 1− ε

2− εδσ,+ ,

(10.25)
for all w and n. We will also denote η− = (η+)f the message forcing to −. This
allows to simplify the equation (7.96) on the soft fields distribution, which reads
now:

Q̂1,n+1(η̂) =
k−1∑
u=1

(
k−1
u

)
(h0,n)k−1−u(1− h0,n)u

1− (h0,n)k−1

∫ u∏
i=1

dQ0,n(ηi)

× δ(η̂ − f̂Θ1(ηf1 , . . . , ηfu, η−, . . . , η−)) . (10.26)

It will be useful in the following to encode in a compact way the value of
f̂Θ1(η1, . . . , ηk−1) (defined in equation (7.19)) when all, or almost all, the argu-
ments of f̂Θ1 are forcing messages. We shall hence define, for a real number α,
the message η̂ = g0(α) as

η̂(σ,w) = δw,0
1 + σ tanh(α)

2 ; (10.27)

the value w is thus fixed to 0, while σ can be seen as an Ising spin submitted
to an effective magnetic field α. One then founds that the values of f̂Θ1 when
all its arguments are forcing are:

• f̂Θ1(η−, . . . , η−) = η̂+ and f̂Θ1(η+, . . . , η+) = η̂−, the usual combination
rule to obtain a forcing message η̂;

• f̂Θ1(η+, η−, . . . , η−) = g0(ε′) and f̂Θ1(η−, η+, . . . , η+) = g0(−ε′), with ε′ =
− 1

2 ln(1 − ε), when all the messages except one are forcing in the same
direction, the last one in the opposite direction;

• f̂Θ1(η+, . . . , η+, η−, . . . , η−) = g0(0) when there are at least two forcing
fields in each direction.

We will also introduce two functions g+ and g− that gives the value of f̂Θ1 when
all its arguments are forcing in the same direction, except one which is arbitrary,
namely g+(η) = f̂Θ1(η, η−, . . . , η−) and g−(η) = f̂Θ1(η, η+, . . . , η+). Explicitly,
η̂ = gσ(η) means

η̂(σ, 1) = 1
ẑ
η(−σ, 0) , η̂(−σ, 1) = 0 , η̂(σ, 0) = 1

ẑ
η(σ, 0) ,

η̂(−σ, 0) = 1
ẑ
η(σ, 1) , (10.28)

with ẑ normalizing this distribution. Note that the two functions g+ and g− are
linked by the spin-flip operation according to g+(ηf ) = (g−(η))f .
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10.3 The large k limit for a finite distance n
10.3.1 Evolution of the hard fields
We start our large k asymptotic expansion, using the scaling of the parameters
defined in (10.15), by considering the solution (10.18) of the translationally
invariant RS equation; its leading order behavior is easily found to be

y = 1 + ε̃

√
2

k ln k + o

(
1√
k ln k

)
, ŷ = 2k−1

(
1 +O

(
k

2k−1

))
. (10.29)

Turning to the sequences hw,n for the weights of the hard fields, solutions of
the recursion equations (10.19,10.20), one realizes easily that, for n finite in the
large k limit with the scaling of the parameters stated above,

h0,n = 1− x0,n

k ln k+o
(

1
k ln k

)
, h1,n = 1− x1,n

k ln k + o

(
1

k ln k

)
,

ĥn+1 = 1− x0,n

ln k + o

(
1

ln k

)
, (10.30)

where x0,n and x1,n are independent of k and solutions of the recursion relations:

x0,n+1 = B e−γ + e−γ+x0,n , (10.31)
x1,n+1 = e−γ+x0,n = x0,n+1 −B e−γ . (10.32)

Here and sometimes in the following it is more convenient to use the notation

B = 1− b
b

(10.33)

as a parameter equivalent to b. The recursion above is closed on x0,n, and
satisfies the initial condition x0,n=0 = 0, that follows immediately from h0,n=0 =
1. Note that for b = 1 (i.e. B = 0) one recovers the result of equation (9.4) for
xn = x0,n = x1,n, as it should in the uniform case. One also finds by expanding
(10.21) that Hn, the hard fields contribution to the correlation function, is
indeed given by the asymptotic expansion stated in (10.16), with H̃n = x0,n.

The behavior of the sequence x0,n solution of (10.31) is easily determined
by plotting the shape of the function x 7→ B e−γ + e−γ+x, see the top panel of
Fig. 10.2 for an example. For a given value of b (hence of B) there exists a critical
value γr(b) such that this function remains strictly above the diagonal when
γ < γr(b), while it intersects it for γ > γr(b). As a consequence in the former
case the sequence x0,n diverges (very rapidly, as iterated exponentials) with n,
whereas in the latter it converges to the smallest fixed point; these behaviors
are illustrated in the bottom panel of Fig. 10.2. The divergence of x0,n = H̃n

corresponds, in the large k limit, to the vanishing of Hn at finite k (recall
the definition (10.16)), i.e. to the impossibility of naive reconstruction. The
value of γr(b) can be obtained by noticing that at this bifurcation the function
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x 7→ B e−γ + e−γ+x is tangent with the diagonal at their unique intersection
point xr(b), hence that (xr(b), γr(b)) are solution of{

x = B e−γ + e−γ+x

1 = e−γ+x ⇒

{
x = γ

γ = 1 +B e−γ
. (10.34)

As b > 0, B > −1, this equation admits a unique solution with γ > 0 (the
sequence x0,n being positive this is also the case for the fixed point x, and hence
also of γ at the bifurcation), which can be expressed as

γr(b) = 1 +W

(
B

e

)
, (10.35)

where W (z) is the Lambert function, i.e. the principal solution of the equation
z = WeW . Note that this result coincides with the asymptotic expansion of lr
one obtains from (10.23), which shows the commutativity of the limits n→∞
and k →∞ for the determination of the rigidity transition.

The function γr(b) is plotted in figure 10.6 (bottom panel, upper curve): it is
a decreasing function of b, with γr(1) = 1 for the uniform measure. An example
for the values of the fixed point reached by x0,n for γ > γr(b) can be found in
the bottom panel of Fig. 10.3.

10.3.2 Evolution of the soft fields distribution
We shall now study the large k limit of the soft fields distributions Qw,n, Q̂w,n.
The crucial point we shall exploit to simplify them is the fact that the hard
fields weights hw,n are very close to 1 according to the scaling (10.30), hence
the dominant contributions to Q̂w,n will arise when the incoming messages are
almost all forcing. To put this remark on a quantitative ground we start with
the equation (10.26) on the distribution Q̂1,n+1. The integer u that appears
in this equation is a random number drawn from the binomial distribution
Bin(k−1, 1−h0,n), conditioned to be strictly positive. In the large k limit, using
the scaling behavior (10.30) of h0,n, one sees that the average (k − 1)(1− h0,n)
of the binomial distribution vanishes as O(1/ ln k), hence the main contribution
in (10.26) arises from the smallest value u = 1 appearing in the sum. We thus
obtain at the leading order:

Q̂1,n+1(η̂) =
∫

dQ0,n(η) δ(η̂ − g+(ηf )) , (10.36)

where the function g+ was defined in (10.28). Consider now the equation (7.69)
for Q̂0,n+1 = P̂0,n+1. When all the ηi’s are extracted from the hard part of P0,n

and P1,n the arguments of f̂Θ1 are all forcing, with the two possible directions
represented; in most of these terms there are at least two messages in each
direction, except for the term in the first line of (7.69), and the term with
t = k − 2 in the second line. According to the discussion in Sec. 10.2.2 this
will yield contributions of the form g0(0) and g0(±ε′), where the function g0
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Figure 10.2: Top panel: the functions x and B e−γ + e−γ+x as a function of x,
with b = 0.4 and from top to bottom γ = 1.25, 1.38, 1.50. The bifurcation occurs
when these two functions cross, which happens here at γr(0.4) ≈ 1.378. Bottom:
x0,n as a function of n, for b = 0.4 and from top to bottom γ = 1.25, 1.38, 1.50.
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was defined in (10.27). When exactly one of the ηi is a soft field, we obtain a
contribution g−(ηf1 ) from the first line if it is η1 which is soft, a contribution
g+(ηk−1) from the term t = k − 2 of the second line if ηk−1 is the unique soft
field, all other cases leading to subdominant contributions of the form g0(α)
with α of order ε′. Collecting these various contributions we thus obtain at the
leading order:

Q̂0,n+1(η̂) = x1,n

2k−1 ln k

∫
dQ1,n(η) δ(η̂ − g−(ηf ))

+ x0,n

2k−1 ln k

∫
dQ0,n(η) δ(η̂ − g+(η))

+ β+δ(η̂ − g0(ε′)) + β−δ(η̂ − g0(−ε′))

+
(

1− x0,n + x1,n

2k−1 ln k − β+ − β−
)
δ(η̂ − g0(0)) , (10.37)

with
β+ = k − 1

ŷ
(h0,n)k−1 , β− = k − 1

yŷ
h1,n(h0,n)k−2 . (10.38)

We turn now our attention to the equation (7.95) for Qw,n+1; in the limit
we are considering the non-vanishing contributions are found to arise only for
values of p that remain finite, the law of p becoming Pw,n(p), with

P1,n(p) = Po(p;x0,n) , P0,n(p) = 1
1− b+ b ex0,n

×

{
1 if p = 0
b

(x0,n)p
p! if p > 0

,

(10.39)
where we have introduced the notation Po(p;λ) = e−λ λ

p

p! for the Poisson law of
parameter λ; the Pw,n are indeed well-normalized probability distributions. In
the right hand side of (7.95) a (finite) number p of messages η̂i are thus drawn
from Q̂1,n+1, for which we can use the limit form (10.36), while the others
l− p ∼ 2k−1 ln k are drawn from Q̂0,n+1. Observing the form of Eq. (10.37) one
realizes that the number of times the first two terms of Q̂0,n+1 will be picked
become Poissonian random variables of parameter x1,n and x0,n, respectively.
All the other terms are of the form g0(α), which will be dealt with thanks to
the simple exact identity:

fΘ1(η̂1, . . . , η̂s, g0(αs+1), . . . , g0(αl)) = fΘ1(η̂1, . . . , η̂s, g0(αs+1 + · · ·+ αl)) .
(10.40)

The sum α of the arguments of g0 is thus α = ε′(a+−a−), where a+, a− are a pair
of integers drawn from the multinomial distribution of parameters (l;β+, β−).
One can thus compute the first two cumulants of α as

E[α] = ε′l(β+ − β−) , Var[α] = (ε′)2l(β+ + β− − (β+ − β−)2) . (10.41)

In the limit we are considering one finds that these two quantities converge to ε̃2,
while the cumulants of higher order vanish, which show that α tends to a Gaus-
sian distributed random variable with mean and variance both equal to ε̃2; we
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will denote the corresponding probability density as D
ε̃
α = dα√

2πε̃2
e
− 1

2̃ε2
(α−ε̃2)2

.
Collecting all these facts yields

Qw,n+1(η) =
∞∑

p,q,r=0
Pw,n(p)Po(q;x1,n)Po(r;x0,n)

∫
D
ε̃
α

p∏
i=1

dQ0,n(ηi)

×
p+q∏
i=p+1

dQ1,n(ηi)
p+q+r∏
i=p+q+1

dQ0,n(ηi) (10.42)

× δ(η − fΘ1(g0(α), g+(ηf1 ), . . . , g+(ηfp ), g+(ηp+1)f , . . . , g+(ηp+q)f , g+(ηp+q+1), . . . , g+(ηp+q+r))) ,

where we used the identity g−(ηf ) = g+(η)f to transform q of the arguments
of fΘ1 . In this equation the function fΘ1 is the one defined in Eq. (10.17), in
which one can take ε = 0 at this leading order; explicitly, η = fΘ1(η̂1, η̂2, . . . )
means

η(σ, 1) = 1
z
b
∏
i

(η̂i(σ, 0) + η̂i(σ, 1)) , (10.43)

η(σ, 0) = 1
z

[
(1− b)

∏
i

η̂i(σ, 0) + b
∏
i

(η̂i(σ, 0) + η̂i(σ, 1))
]
,

with σ = ±1.
The initial condition on Qw,n=1 can be deduced after a short computation

from the one on P̂v,0 given in (7.62):

Qw,1(η) =
∞∑

q,r=0
Po(q; e−γ)Po

(
r; e
−γ

b

)∫
D
ε̃
α δ

(
η − fΘ1

(
g0

(
α+ q − r

2 ln b
)))

,

(10.44)
for both values w = 0, 1. The explicit value of η for a given choice of α, q and
r reads

η(+, 0) = 1
z
bqeα , η(+, 1) = 1

z
bq+1eα , η(−, 0) = 1

z
bre−α , η(−, 1) = 1

z
br+1e−α ,

(10.45)
with z normalizing this distribution.

The recursion relation (10.42) bears on the two sequences of distributions
Q0,n and Q1,n; however the two sequences are not independent, and obey some
symmetry properties, that follow from the equations (7.73,7.74). In the large k
limit these relations translate into

Qw,n(ηf ) = η(−, w)
η(+, w)Qw,n(η) , or equivalently (10.46)∫

dQw,n(η)A(η) =
∫

dQw,n(η)A(ηf )η(−, w)
η(+, w) ,
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and

x0,nQ0,n(η) = η(+, 0)
η(+, 1)x1,nQ1,n(η) , (10.47)

x0,n

∫
dQ0,n(η)A(η) = x1,n

∫
dQ1,n(η)A(η)η(+, 0)

η(+, 1) ,

for any function A such that the integrals exist. One can check by induction on
n that the sequences Q0,n and Q1,n solution of (10.42) with the initial condition
(10.44) do indeed satisfy these identities.

We can finally establish the scaling stated in (10.16) for the correlation
function Cn, by simplifying the expression (7.90) in the large k limit. Observing
in particular that the probability law for p is the same in this equation and in
(7.95) with w = 0 (modulo the shift l → l + 1 which is irrelevant in the limit),
one finds after after a short computation the expression

C̃n = x0,n

∫
dQ0,n(η)(1− m̃(η)) , (10.48)

for the reduced correlation function C̃n, where we defined

m̃(η) = η(+, 0)− η(−, 0)
η(+, 0) + η(−, 0) . (10.49)

Note that C̃n satisfies the inequalities 0 ≤ C̃n ≤ x0,n = H̃n, which are immediate
consequences of the bounds Hn ≤ Cn ≤ 1 we obtained at finite k and of the
definitions in (10.16). As a consistency check one can also derive the bounds on
C̃n directly in the large k formalism; one of them is obvious from the observation
that m̃(η) ≤ 1 for all η, the other one follows from the identity∫

dQ0,n(η) m̃(η) =
∫

dQ0,n(η) m̃(η)2 ≥ 0 , (10.50)

which can be proven from the Bayes symmetry expressed in (10.46), using the
test function A(η) = m̃(η)(1− m̃(η)).

10.4 The limit of large distance n
Let us summarize what we have just achieved and underline the main equations
that will be used in the following. We have obtained recursive equations, in
which the parameter k has disappeared, that allow to compute the reduced cor-
relation function C̃n and its hard-fields contribution H̃n introduced in (10.16).
The latter can be obtained from the scalar recursion (10.31), it depends on γ
and b, and the asymptotic expansion of the rigidity threshold is of the form
(10.15) with a constant γr(b) easily determined from the large n behavior of
H̃n: for γ < γr(b) one has H̃n → ∞ as n → ∞, while H̃n remains bounded
for γ ≥ γr(b). The computation of the reduced correlation function C̃n requires
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instead the resolution of the functional recursion equation (10.42) on the dis-
tributions of the soft-fields Qw,n, supplemented by the initial condition (10.44),
from which C̃n is computed using the equation (10.48). The sequence C̃n de-
pends on the parameters γ, b and ε̃, and the constant γd(b, ε̃) in the asymptotic
expansion of the dynamic threshold ld is deduced from the large n asymptotics
of C̃n (if γ < γd(b, ε̃) then C̃n →∞, while it remains bounded for γ > γd(b, ε̃)).
We shall now discuss the computation of C̃n in the large n limit, as the final
step to complete the determination of γd(b, ε̃).

10.4.1 For γ > γr(b)
The most natural way to solve numerically the functional recursion equation
(10.42) on Qw,n is to use the population dynamics algorithm already explained
in Sec. 8.1, that consists of approximating Qw,n by the empirical distribution
over a sample of N representative elements {η1, . . . , ηN }. An iteration step
n→ n+ 1 amounts to update the populations by drawing the integers p, q, and
r from their respective laws, extracting the ηi’s from the current populations,
and creating an η of the new population according to the argument of the Dirac
delta in (10.42). When γ > γr(b) this procedure can be performed without
difficulty for arbitrarily large distances n, as the sequences x0,n, x1,n remain
bounded for all n.

Figure 10.3 presents numerical results obtained in this way for b = 0.4 and
ε̃ = 0. We have plotted on the top panel C̃n(γ, b, 0) as a function of n for
some values of γ above the rigidity threshold γr(b) ≈ 1.378. One can see that
C̃n(γ, b, 0) converges at large n to a finite limit C̃(γ, b, 0), that we have plotted as
a function of γ in the bottom panel, along with the limit H̃ of H̃n = x0,n. As we
mentioned before the reduced overlap satisfy the bounds 0 ≤ C̃n ≤ x0,n, hence
in the large n limit one has 0 ≤ C̃ ≤ H̃, that is indeed verified in the bottom
panel of figure 10.3. This implies that C̃n remains bounded for γ > γr(b), hence
the expected inequality γd(b, ε̃) ≤ γr(b). The observation of the bottom panel of
figure 10.3 suggests the less obvious fact that this inequality is strict; indeed H̃
has a square root singularity when γ → γ+

r , as a consequence of the bifurcation
it undergoes, while C̃ seems pefectly smooth in this limit, suggesting that it
remains finite down to a critical value γd < γr.

Unfortunately the most interesting regime γd < γ < γr cannot be studied
with the simple numerical procedure we just described: when γ < γr(b) the
sequences x0,n and x1,n diverge, hence the random numbers p, q, r of fields
ηi that must be manipulated to implement (10.42) become very quickly too
large for any practical purpose. We shall thus devise in the next subsection an
alternative formulation to circumvent this difficulty, that was used in particular
to obtain the points of the curve C̃ below the rigidity threshold in the bottom
panel of figure 10.3.

In order to give an intuition on how this reformulation should be performed
we first present in figure 10.4 the results of the simple procedure for γ slightly
below γr, and distances n not too large. One sees clearly in this plot that
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H̃n = x0,n diverges, while C̃n seems to remain bounded; the expression (10.48)
of C̃n reveals that such a situation is possible if Q0,n concentrates on fields η
with m̃(η) very close to 1. By inspection of the populations in our numerical
simulations we have checked that this is indeed the case, and more precisely
that both Q0,n and Q1,n tend to a Dirac peak on the hard-field η+. The finite
value of C̃n in the large n limit of the intermediate regime γd(b, ε̃) < γ <
γr(b) which is reconstructible without strictly hard-fields arises thus from a
delicate compensation in the multiplication of the diverging factor x0,n and of
the vanishing integral

∫
dQ0,n(η)(1 − m̃(η)). The relevant contribution of the

latter arises from atypical values of η for which Q0,n is of order 1/x0,n, the
typical values of η ≈ η+ having 1− m̃(η) ≈ 0.

10.4.2 A reweighting scheme
To handle the difficulty that arises in the intermediate regime γd < γ < γr we
will adapt the approach we developed in chapter 9 (see [32]) for the uniform
measure, introducing a reweighted probability distribution ρn(η) that gives less
importance to the typical quasi-hard fields that do not contribute to C̃n. We
define it as

ρn(η) = x1,nQ1,n(η)

√
η(−, 1)
η(+, 1) , (10.51)

the reweighting factor proportional to
√

η(−,1)
η(+,1) indeed vanishes when η is a

hard-field η+. This choice also ensures the invariance of ρn under a spin-flip
transformation, ρn(ηf ) = ρn(η), as can be easily seen from the first equality in
(10.46) with w = 1. Note that ρn is a positive measure, but not a normalized
probability measure anymore. One can nevertheless check that its total mass,
that we shall denote mn, is finite for all finite n. One has indeed, inverting the
relation (10.51) and exploiting the normalization of Q1,n,

x1,n =
∫

dρn(η)

√
η(+, 1)
η(−, 1) =

∫
dρn(η) 1

2

(√
η(+, 1)
η(−, 1) +

√
η(−, 1)
η(+, 1)

)

=
∫

dρn(η) η(+, 1) + η(−, 1)
2
√
η(+, 1)η(−, 1)

, (10.52)

where we used the invariance ρn(ηf ) = ρn(η) to symmetrize the integrand.
Thanks to the inequality between arithmetic and geometric means of positive
numbers the last integral is larger thanmn, which implies finallymn ≤ x1,n. We
can thus define a probability distribution νn by dividing ρn by its total mass,
νn(η) = ρn(η)/mn. The problem at hand is equivalently described in terms of
the {xw,n, Qw,n}, of ρn, or of the pair (νn,mn); for instance the reduced overlap
can be expressed as

C̃n = mn

∫
dνn(η)C(η) , C(η) = 1√

η(+, 1)η(−, 1)
2η(+, 0)η(−, 0)
η(+, 0) + η(−, 0) ,

(10.53)
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Figure 10.3: Top: the reduced correlation function C̃n as a function of the
distance n for b = 0.4, ε̃ = 0, and several values of γ larger than the rigidity
threshold γr(0.4) ≈ 1.378. Bottom: the large distance limit C̃ (points) and
its hard-field contribution H̃ (solid line) as a function of γ for b = 0.4 and
ε̃ = 0. The points of C̃ below the rigidity threshold have been obtained with
the reweighted algorithm presented in Sec. 10.4.2.
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Figure 10.4: The reduced correlation function C̃n and its hard-field contribution
H̃n as a function of the distance n for b = 0.4, ε̃ = 0 and γ = 1.35, slightly
below the rigidity threshold.

where we used (10.47) to transform the integral over Q0,n as one over Q1,n. As
we shall see the reweighted formulation is however much more convenient to
study the large n limit, as it avoids the direct manipulation of the diverging
quantities xw,n.

We will now derive recursion relations for (νn,mn); to do so it will be con-
venient to first introduce a different parametrization of the messages η. These
are normalized probability distributions on a space of four states (σ,w), they
can be thus encoded with three real numbers, that we shall choose as

u(1) =

√
η(+, 1)
η(−, 1) , u(2) =

√
η(+, 0)− η(+, 1)
η(−, 0)− η(−, 1) ,

u(3) =

√
(η(+, 0)− η(+, 1))(η(−, 0)− η(−, 1))

B2 η(+, 1)η(−, 1) . (10.54)

We will group them as a row vector with three columns, u = (u(1), u(2), u(3)), and
define for later use the associated canonical basis e(1) = (1, 0, 0), e(2) = (0, 1, 0),
e(3) = (0, 0, 1). Consider now the BP equation η = fΘ1(η̂1, η̂2, . . . ) defined in
(10.43); it becomes in terms of this parametrization

u(1) =
∏
i

√
η̂i(+, 0) + η̂i(+, 1)
η̂i(−, 0) + η̂i(−, 1) , u(2) =

∏
i

√
η̂i(+, 0)
η̂i(−, 0) , (10.55)

u(3) =
∏
i

√
η̂i(+, 0)η̂i(−, 0)

(η̂i(+, 0) + η̂i(+, 1))(η̂i(−, 0) + η̂i(−, 1)) .
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This shows that the arguments of the square roots in (10.54) are non-negative
numbers, as they should for the definition of u to be meaningful. Moreover this
expression reveals the motivation for this peculiar choice of parametrization:
the BP equation η = fΘ1(η̂1, η̂2, . . . ) becomes multiplicative with respect to its
arguments when η is expressed in terms of u. We will also use the notation
ũ = (ũ(1), ũ(2), ũ(3)) with u = (eũ(1)

, eũ
(2)
, eũ

(3)); as the components of u are
positive those of ũ are real numbers, and the BP equation becomes additive
in terms of ũ. It will also be useful to define the spin-flip operation on the
triplets u and ũ; as ηf (σ,w) = η(−σ,w) one deduces easily from (10.54) the
corresponding transformations:

uf =
(

1
u(1) ,

1
u(2) , u

(3)
)
, ũf = (−ũ(1),−ũ(2), ũ(3)) . (10.56)

In the following we will take the liberty to use the three equivalent parametriza-
tions η, u and ũ according to which one is the most convenient, keeping implicit
the relationships between them that we have just defined.

Let us now rewrite (10.42) by translating the image η of the function fΘ1 in
the ũ parametrization:

Qw,n+1(η) =
∞∑

p,q,r=0
Pw,n(p)Po(q;x1,n)Po(r;x0,n)

∫
D
ε̃
α

p∏
i=1

dQ0,n(ηi)

×
p+q∏
i=p+1

dQ1,n(ηi)
p+q+r∏
i=p+q+1

dQ0,n(ηi) (10.57)

× δ

ũ− V0(α)−
p∑
i=1

V+(ηfi )−
p+q∑
i=p+1

V−(ηi)−
p+q+r∑
i=p+q+1

V+(ηi)

 ,

where we defined

V0(α) = (α, α, 0) , (10.58)

V+(η) =
(

1
2 ln

(
η(+, 0) + η(−, 0)

η(+, 1)

)
,

1
2 ln

(
η(+, 0)
η(+, 1)

)
,

1
2 ln

(
η(+, 0)

η(+, 0) + η(−, 0)

))
, (10.59)

V−(η) = V+(η)f =
(
−1

2 ln
(
η(+, 0) + η(−, 0)

η(+, 1)

)
,

−1
2 ln

(
η(+, 0)
η(+, 1)

)
,

1
2 ln

(
η(+, 0)

η(+, 0) + η(−, 0)

))
. (10.60)

For completeness we also state the expression of V+ with its argument translated
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in the u parametrization, namely

V
(1)
+ (η) = 1

2 ln
(

1 +B
u(2)u(3)

u(1) + 1
(u(1))2 +B

u(3)

u(1)u(2)

)
, (10.61)

V
(2)
+ (η) = 1

2 ln
(

1 +B
u(2)u(3)

u(1)

)
, (10.62)

V
(3)
+ (η) = V

(2)
+ (η)− V (1)

+ (η) , (10.63)

Because of the additivity property of the parametrizations in terms of ũ it is
easier to describe Qw,n in terms of its characteristic function, that we define as

Ξw,n(z) =
∫

dQw,n(η) eiz·ũ , (10.64)

where z = (z(1), z(2), z(3)) and we denoted the standard scalar product z · ũ =
z(1)ũ(1) + z(2)ũ(2) + z(3)ũ(3). Indeed the equation (10.57) translates into

Ξw,n+1(z) = eε̃
2(i(z(1)+z(2))− 1

2 (z(1)+z(2))2)
∞∑

p,q,r=0
Pw,n(p)Po(q;x1,n)

× Po(r;x0,n)
(∫

dQ0,n(η)eiz·V+(ηf )
)p

×
(∫

dQ1,n(η)eiz·V−(η)
)q (∫

dQ0,n(η)eiz·V+(η)
)r

, (10.65)

where the first factor comes from the Gaussian integration on α. For w = 1
the three integers p, q, r have Poisson distributions, the sums can then be easily
performed to obtain

Ξ1,n+1(z) = exp
[
ε̃2(i(z(1) + z(2))− 1

2(z(1) + z(2))2)− x1,n − 2x0,n

+x1,n

∫
dQ1,n(η)eiz·V−(η)

+x0,n

∫
dQ0,n(η)

(
eiz·V+(η) + eiz·V+(ηf )

)]
. (10.66)

We can now come back to the reweighted measure ρn we introduced in
(10.51), and its normalized version νn, for which we define the characteristic
functions similarly

ρ̂n(z) =
∫

dρn(η) eiz·ũ , ν̂n(z) =
∫

dνn(η) eiz·ũ = 1
mn

ρ̂n(z) . (10.67)

The reweighting factor
√

η(−,1)
η(+,1) between ρn and Q1,n can be expressed as e−ũ(1) ,

the characteristic functions of these two measures are thus linked by a simple
shift of their arguments:

ρn(η) = x1,nQ1,n(η)e−ũ
(1)
⇐⇒ ρ̂n(z) = x1,nΞ1,n(z + ie(1)) . (10.68)
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Using this shift of argument in (10.66), and recalling from (10.32) that x1,n+1 =
e−γ+x0,n we obtain:

ρ̂n+1(z) = exp
[
−γ − ε̃2

2 −
ε̃2

2 (z(1) + z(2))2 − x0,n − x1,n

+x1,n

∫
dQ1,n(η)

√
η(+, 0) + η(−, 0)

η(+, 1) eiz·V−(η)

+x0,n

∫
dQ0,n(η)

(√
η(+, 1)

η(+, 0) + η(−, 0)e
iz·V+(η)

+

√
η(−, 1)

η(+, 0) + η(−, 0)e
iz·V+(ηf )

)]
. (10.69)

We will now trade the integrations over Q0,n and Q1,n for integrals over ρn,
thanks to the change of densities expressed in (10.47) and (10.51). We will also
write x0,n + x1,n = 2x1,n + Be−γ according to (10.32), and write 2x1,n as an
integral over ρn following (10.52). This yields

ρ̂n+1(z) = exp
[
−γ −B e−γ − ε̃2

2 −
ε̃2

2 (z(1) + z(2))2

+
∫

dρn(η)

√
η(+, 0) + η(−, 0)

η(−, 1) eiz·V−(η)

+
∫

dρn(η)
(

η(+, 0)√
η(−, 1)(η(+, 0) + η(−, 0))

eiz·V+(η)

+ η(+, 0)√
η(+, 1)(η(+, 0) + η(−, 0))

eiz·V+(ηf )

)

−
∫

dρn(η)η(+, 1) + η(−, 1)√
η(+, 1)η(−, 1)

]
. (10.70)

Using the invariance under spin-flip of ρn one can regroup the two terms in the
second line of this equation; simplifying the prefactors one obtains

ρ̂n+1(z) = exp
[
−γ −B e−γ − ε̃2

2 −
ε̃2

2 (z(1) + z(2))2

+
∫

dρn(η)
(√

η(+, 0) + η(−, 0)
η(−, 1)

(
eiz·V+(η) + eiz·V−(η)

)
−η(+, 1) + η(−, 1)√

η(+, 1)η(−, 1)

)]
. (10.71)

This is a recursion equation for the reweighted measure ρn (and its characteristic
function ρ̂n). It will be more convenient in the following to work with the pair
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(νn,mn); the mass mn of ρn can be expressed as ρ̂n(0), we thus obtain

mn+1 = exp
[
−γ −B e−γ − ε̃2

2 +mn

∫
dνn(η)M(η)

]
, (10.72)

ν̂n+1(z) = exp
[
− ε̃

2

2 (z(1) + z(2))2 +mn

∫
dνn(η)L(η)

(
eiz·V+(η) + eiz·V−(η) − 2

)]
,

(10.73)

where we introduced the functions

M(η) =
√
η(+, 0) + η(−, 0)(

√
η(+, 1) +

√
η(−, 1))− η(+, 1)− η(−, 1)√

η(+, 1)η(−, 1)
,

(10.74)

L(η) =

√
η(+, 0) + η(−, 0)

η(−, 1) . (10.75)

The initial condition for the recursion on (νn,mn) is obtained from the one on
Q1,1 given in (10.44):

m1 = exp
[
−γ + e−γ

(
2√
b
− 1
b
− 1
)
− ε̃2

2

]
, (10.76)

ν1(η) =
∞∑

q,r=0
Po
(
q; e
−γ
√
b

)
Po
(
r; e
−γ
√
b

)∫ dα√
2πε̃2

e
−α2

ε̃2 δ

(
ũ− V0

(
α+ q − r

2 ln b
))

.

(10.77)

For completeness we give here the expressions of the functions we introduced
in terms of the u-parametrization:

L(η) =
√

1 +B
u(1)u(3)

u(2) + (u(1))2 +Bu(1)u(2)u(3) , (10.78)

M(η) =

√
1 +B

u(2)u(3)

u(1) + 1
(u(1))2 +B

u(3)

u(1)u(2) −
1
u(1) (10.79)

+
√

1 +B
u(1)u(3)

u(2) + (u(1))2 +Bu(1)u(2)u(3) − u(1) , (10.80)

C(η) = 2

(
1 +B u(2)u(3)

u(1)

)(
1 +B u(1)u(3)

u(2)

)
u(1) +Bu(2)u(3) + 1

u(1) +B u(3)

u(2)

. (10.81)

10.4.3 A Gaussian approximation for the quasi-hard fields
We have obtained above the recursion equations (10.72,10.73) for the scalar
mn and the probability distribution νn, complemented by the initial conditions
(10.76,10.77). We will now discuss the possibility to solve numerically this
recursion with a population representation of νn, and its advantages with respect
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to the direct resolution in terms of Qw,n. To do so let us first rewrite the
recursion equation (10.73) on νn as

ν̂n+1(z) = exp
[
− ε̃

2

2 (z(1) + z(2))2
]

exp
[∫

dπn(ũ)(eiz·ũ − 1)
]
, (10.82)

where we have introduced a measure πn of total mass we shall denote λn, ac-
cording to

πn(ũ) = mn

∫
dνn(η)L(η) (δ(ũ− V+(η)) + δ(ũ− V−(η))) , (10.83)

λn =
∫

dπn(ũ) = 2mn

∫
dνn(η)L(η)

= mn

∫
dνn(η)

√
η(+, 0) + η(−, 0)
η(+, 1)η(−, 1) (

√
η(+, 1) +

√
η(−, 1)) , (10.84)

where the last expression of λn has been obtained by symmetrizing the inte-
grand.

According to the equation (10.82) a random variable ũ drawn from νn+1 can
be decomposed as the sum of two random variables, one Gaussian distributed
and the other with a compound Poisson distribution. More explicitly one has
the following equality in distribution, ũ d= α(e(1) + e(2)) +

∑p
i=1 ũi where α is a

Gaussian with zero mean and variance ε̃2, p is extracted from a Poisson law of
mean λn, and the ũi’s are i.i.d. copies extracted from πn/λn. If νn is known as
an empirical distribution over a sample then it is possible to draw ũ from the
probability law πn/λn by extracting a field η in the population representing νn
with a probability proportional to L(η), and then set ũ = Vδ(η) with δ = ±
with equal probability 1/2. It seems then possible to use this distributional
interpretation to solve numerically the recursion on (mn, νn). However this is
doable in practice only if λn remains bounded when n grows, otherwise one falls
back on the problem we wanted to avoid of having to manipulate a diverging
number of summands. As a matter of fact the reweighting has not offered a free
lunch from this point of view: it turns out that λn diverges if and only if x1,n
does, in other words if and only if γ < γr(b). This statement is a consequence
of the bounds c−(b)x1,n ≤ λn ≤ c+(b)x1,n, where c±(b) are positive constants,
the proof of which we defer to the Appendix C for the sake of readability.

Fortunately the reweighting procedure we followed will help us to handle
the divergence of λn more easily than the one of x1,n in the direct recursion.
Indeed the divergence of λn comes from the contributions of fields for which L(η)
becomes very large; the crucial point is that these η yield very small values of
V±(η), we can thus make a Gaussian approximation for this sum of a very large
number of very small random variables. To put this idea at work we rewrite
(10.82) by decomposing it as

ν̂n+1(z) = exp
[
− ε̃

2

2 (z(1) + z(2))2
]
ν̂

(≤)
n+1(z) ν̂(>)

n+1(z) , (10.85)
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with

ν̂
(≤)
n+1(z) = exp

[
mn

∫
dνn(η)L(η)

(
eiz·V+(η) + eiz·V−(η) − 2

)
I [L(η) ≤ ξn]

]
,

(10.86)

ν̂
(>)
n+1(z) = exp

[
mn

∫
dνn(η)L(η)

(
eiz·V+(η) + eiz·V−(η) − 2

)
I [L(η) > ξn]

]
,

(10.87)

where ξn is a threshold that is arbitrary for the moment, we shall specify it
later on. The decomposition (10.85) means that under the law νn+1 the random
variable ũ is the sum of the Gaussian random variable described previously and
of two random variables, one with the law ν

(≤)
n+1, the other with the law ν

(>)
n+1.

We describe the distribution ν
(≤)
n+1 using the distributional interpretation

explained above, defining

π(≤)
n (ũ) = mn

∫
dνn(η)L(η) (δ(ũ− V+(η)) + δ(ũ− V−(η))) I [L(η) ≤ ξn] ,

(10.88)

λ(≤)
n =

∫
dπ(≤)

n (ũ) = 2mn

∫
dνn(η)L(η)I [L(η) ≤ ξn] . (10.89)

Under the law ν
(≤)
n+1 the variable ũ obeys the distributional equality ũ =

∑p
i=1 ũi

where p is a Poisson variable of mean λ(≤)
n , and the ũi’s are i.i.d copies extracted

from π
(≤)
n /λ

(≤)
n .

The contribution ν(>)
n+1 is instead approximated by a multivariate Gaussian

Γ(V n,Σn) with V n and Σn the mean and the covariance matrix of ν(>)
n+1, com-

puted by taking derivatives of ln ν̂(>)
n+1 with respect to z:

V n = mn

∫
dνn(η)L(η)I [L(η) > ξn] (V+(η) + V−(η)) , (10.90)

Σ(a),(b)
n = mn

∫
dνn(η)L(η)I [L(η) > ξn] (V+(η)(a)V+(η)(b) + V−(η)(a)V−(η)(b)) ,

(10.91)

for a, b ∈ {1, 2, 3}. As V−(η) = (V+(η))f several components of V n and Σn
vanish, namely V (1)

n = V
(2)
n = Σ(1),(3)

n = Σ(2),(3)
n = 0.

Replacing ν(>)
n+1 by a Gaussian is an approximation, that amounts to neglect

the cumulants of order larger than 2, the accuracy of which is controlled by
the cutoff ξn. The larger is ξn the better the truncation is, because a smaller
part of the full law νn+1 is treated approximatively, but the price to pay is
a simultaneous increase of λ(≤)

n , the average number of fields that must be
summed in desribing ν

(≤)
n+1. A compromise needs thus to be found between

these two effects, we explain below how we fixed ξn in practice.
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10.4.4 Algorithmic implementation
We now give an explicit description of the algorithm we implemented to solve
the recursion equations (10.72,10.73) for mn and νn. Suppose that at the n-th
step of the iteration we have an estimation of mn and of νn, with νn represented
as a population of fields:

νn(η) ' 1
N

N∑
i=1

δ(η − ηi) . (10.92)

One can evaluate the average of an arbitrary function A with respect to νn as∫
dνn(η)A(η) ' 1

N

N∑
i=1

A(ηi) , (10.93)

and in particular compute in this way mn+1 from (10.72). We further assume
that the fields ηi have been sorted by increasing values of L(η), and translate
the cutoff ξn by defining the index Nn such that L(ηNn) ≤ ξn < L(ηNn+1). The
integrals where the indicator function I[L(η) ≤ ξn] (resp. I[L(η) > ξn]) can thus
be translated as sums over the population elements from 1 to Nn (resp. from
Nn + 1 to N ), which allows to compute easily λ(≤)

n from (10.89), and V n and
Σn from (10.90) and (10.91).

Each of the N elements of the new population representing νn+1 is then
generated independently of the others, by translating equation (10.85) as follows:

• draw an integer p from the Poisson law of mean λ(≤)
n .

• extract i1, . . . , ip independently in {1, . . . ,Nn} with probability propor-
tional to L(ηi) (this can be done efficiently by precomputing a cumulative
table).

• insert in the new population ũ = Vδ1(ηi1)+ · · ·+Vδp(ηip)+α(e(1) +e(2))+
V n + g where the δi’s are ± with equal probability, α is a centered Gaus-
sian random variable of variance ε̃2, and g is a centered three-dimensional
Gaussian vector with covariance matrix Σn.

We can then compute the reduced overlap C̃n+1 from (10.53), and sort the
elements of the new population according to their values of L(η).

In practice we chose the threshold ξn (or equivalentlyNn) in an adaptive way:
for each iteration step we took the largest Nn ≤ N that gave λ(≤)

n ≤ λ, where
λ is a parameter fixed beforehand. The accuracy of this numerical procedure is
thus controlled by N , the approximation in (10.92) being better and better as N
grows, and by λ, the Gaussian truncation being more precise when λ is larger.
Obviously the memory and time requirements of the procedure also increase
with N and λ; the numerical results presented below have been obtained with
population sizes between 106 and 107, and λ around 20, we checked that the
conclusions were not modified, within our numerical accuracy, by modifying
these values within a reasonable range.
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10.5 Results
In Fig. 10.5 we complete our study of the case b = 0.4, ε̃ = 0 that was started
in Figs. 10.3 and 10.4. The reweighting procedure allows now to investigate the
regime γ < γr ≈ 1.378; as displayed on the top panel of Fig. 10.5 the large
distance limit C̃ remains bounded for values of γ down to 0.98, these results
being reported as a function of γ in the bottom panel of Fig. 10.3. Further
simulations allowed us to pinpoint more precisely γd(b = 0.4, ε̃ = 0) ≈ 0.977,
as the largest value of γ for which C̃n diverges. As shown in the bottom panel
of Fig. 10.5 the condition of divergence of C̃n coincides, within our numerical
accuracy, with the divergence of mn. The value of the large n limit of mn is seen
to be close to 1 when γ reaches γd from above (see the plateau in the bottom
panel of Fig. 10.5), an observation that we also made for the other values of
b we investigated. We have given analytical arguments in [32] that indeed the
plateau value of mn is exactly equal to 1 at γd for the uniform measure, our
numerical results suggest that this remains true when (b, ε̃) 6= (1, 0), even if we
do not have analytical support for this assumption in the general case.

We have repeated this procedure of determination of γd(b, ε̃) for various
values of b and ε̃, and we present now the phase diagrams obtained in this way.
Consider first the top panel of Fig. 10.6, which deals with the case b = 1, i.e.
the bias factorized over the hyperedges considered in [31]. We see that for all
values of ε̃ 6= 0 one has γd(1, ε̃) < γd(1, 0) = γd,u, i.e. this bias has, in the large
k limit, a detrimental effect on the dynamic phase transition that is pushed to
lower values with respect to the one of the uniform measure. In the bottom
panel of Fig. 10.6 we have plotted instead the threshold γd as a function of
b for ε̃ = 0; one sees now that decreasing b below 1 (that corresponds to the
uniform measure and is marked as an horizontal dashed line on figure) has a
beneficial effect with an increase of γd. The largest value we could reach was for
b = 0.4, decreasing b further below reduces again γd. The lowest value of b we
could investigate was b = 0.3, for b < 0.3 we encountered numerical accuracy
problems, the distribution νn exhibiting strong fluctuations that prevented an
accurate representation as a population. Finally in Fig. 10.7 we have checked
that the parameter ε̃ has a detrimental effect also for values of b 6= 1, we found
indeed that γd(b, ε̃) < γd(b, 0) when ε̃ 6= 0, for all the values of b we considered.
This leads us to the conclusion that, within the biasing strategy we considered
in the large k limit, the optimal choice of parameters is ε̃ = 0 and b ≈ 0.4,
yielding a constant γd ≈ 0.977, strictly larger than the one of the uniform case,
γd,u ≈ 0.871.
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Figure 10.5: The reduced correlation function C̃n (top panel) and the inverse
of the mass mn of ρn (bottom panel) for b = 0.4, ε̃ = 0, and from left to right
in both panels, γ = 0.95, 0.96, 0.97, 0.98, 0.99, 1.
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Figure 10.6: Top panel: γd as a function of ε̃2 for b = 1, the line being a
guide to the eye. Bottom panel: γd as a function of b for ε̃ = 0, the solid line
corresponding to the rigidity upper bound γr(b).
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Figure 10.7: γd as a function of ε̃ for various b.
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Conclusion

In this Ph.D. we have studied the typical difficulty of Constraint Satisfaction
Problems, via the introduction of random ensemble of instances, focusing on the
bicoloring problem on k-hypergraphs. Following the studies [26, 27, 28, 29, 30],
we have introduced a biased probability measure over the set of solutions of a
random CSP. Our goal was to study the modifications of the clustering threshold
αd induced by the non-uniformity between solutions. We have focused on two
particular implementations of the bias. In the first one, the interactions induced
by the bias can be factorized over the bicoloring constraints. In the second biased
measure we incorporate interactions between variables belonging to different
clauses (in practice we have considered interactions between variables at distance
1 in the k-hypergraph).

Specifying further the choice of the bias, we have weighted the solutions
according to the presence of forcing clauses, where one says that a clause is
forcing a variable if the clause becomes violated when changing the value of
the variable. Forcing clauses are related to the presence of frozen variables,
which are one of the mechanism for the RSB phenomenon that arises at the
clustering transition. This choice can be also motivated by the observation
that algorithms usually reach solutions without frozen variables, hence favoring
solutions without forcing clauses would bias the measure toward solutions that
are easier to find for algorithms.

We have determined the clustering transition for the two different implemen-
tations of the bias mentioned above. For finite k values, αd can be computed
via the numerical resolution of the 1RSB equations. In the paper [31] written
in collaboration with Federico Ricci-Tersenghi, that is presented in chapter 8
(sections 8.2-8.4), we have shown that for well-chosen parameters defining the
biased measure factorizing on the clauses, it is possible to delay the clustering
threshold to higher density of constraints. We have checked that this strategy
has a positive impact on the performances of Simulated Annealing algorithms.
Introducing a bias in the measure reduces its entropy, which is maximal for the
uniform measure. Although this effect represents a limitation for the possible
choices of the bias, our results show that reducing the weight of some of the
solutions can help in the search of the remaining ones.

From a practical point of view, we have also developed a numerical method to
determine accurately the dynamic threshold, that corresponds to discontinuous
bifurcation in a functional equation, by studying a stability parameter close to
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the bifurcation (see section 8.2).
In the paper [33], that is presented in section 8.5 (for the finite k results) and

in chapter 10 (for the large k analysis), we have studied the biased measure with
a larger range of interaction. We have shown that for finite k values, increasing
the range of interaction allows us to delay further the clustering threshold.

In this Ph.D. we have also determined the dynamic transition in the large
k limit through a partly analytic asymptotic expansion. In the paper [32], that
is presented in chapter 9, we have obtained for the bicoloring problem on k-
hypergraph the following asymptotic expansion of the clustering threshold:

αd(k) = 2k−1

k
(ln k + ln ln k + γd + o(1)) ,

for the uniform measure, with γd,u ≈ 0.871. We have shown that the q-coloring
problem admits a similar asymptotic expansion with the same constant γd:
αd(q) = (q/2)(ln q + ln ln q + γd + o(1)).

In the paper [33] we adapt this computation to the two biased measures
studied in the Ph.D., for the bicoloring problem on k-hypergraphs. This large
k limit computation is presented in chapter 10. We show that the clustering
threshold for our implementation of the bias arises at the same scale as in the
uniform case, but with a constant γd that depends on the rescaled parameters
describing the bias. We find that the factorized bias of [32] cannot improve on
the constant γd with respect to the value γd,u ≈ 0.871 obtained in the uniform
case. We find instead that the bias with larger interaction range allows us to
increase its value up to γd ≈ 0.977.

The improvement in the asymptotic behavior of the dynamic transition is
modest, as it occurs in the third order of the asymptotic expansion. Note also
that the constant γd remains itself smaller than the rigidity threshold γr,u = 1 of
the uniform measure. However, the conceptual link between this transition and
the important algorithmic gap observed in this limit justifies for us the efforts
devoted to achieve this improvement, and calls for further investigations.

The natural direction to continue this work would be indeed to study a more
general form of the bias, and to try to determine which choice would lead to the
optimal scaling in the large k limit. In particular, is it possible to design a bias
that improves on the second or first order in the asymptotic expansion compared
to the asymptotic expansion of the uniform measure, or can we show that for
some family of biased measures the only improvement bears on the third term
of the asymptotic expansion ? The next step could be for instance to consider
a more general form for the function ψ(p) defined in equation (10.14), retaining
more information on the local configuration than just the number of forcing
clauses around one variable. One could also increase the range of interaction
to distance 2 or more. Both positive or negative results, i.e. the impossibility
to increase αd beyond the third order term of the asymptotic expansion, would
shed light on the intrisic difficulty of random CSPs.

Another interesting question to investigate in the future is the effect of the
decimation on the biased measure, which can be analyzed along the lines of [37].
Can we improve the performances of the Belief Propagation guided decimation
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(or the Survey Propagation guided decimation) algorithms, by using a biased
measure on which one estimates the marginals ?

Finally it would also be interesting to extend this study to other CSPs, in
particular to the k-satisfiability and the q-coloring problems. We have indeed
focused our study on the k-hypergraph bicoloring problem because the compu-
tations are simpler for this model than for k-SAT or q-COL. Indeed the degree
of freedom are binary, and the replica symmetric solution is trivial. At the
same time this model exhibits the same phase transitions than more compli-
cated random CSPs. We believe that the strategy developed in this Ph.D. can
be extended to these models, and we expect a similar increase on the clustering
threshold for an appropriate choice of the bias.

218



Bibliography

[1] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to
the theory of NP-completeness. Freeman, San Francisco, 1979.

[2] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[3] C. Moore and S. Mertens. The Nature of Computation. Oxford University
Press, 2011.

[4] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky.
2+p-sat: Relation of typical-case complexity to the nature of the phase
transition. Random Structures and Algorithms, 15:414, 1999.

[5] G. Biroli, R. Monasson, and M. Weigt. A variational description of the
ground state structure in random satisfiability problems. Eur. Phys. J.
B, 14:551, 2000.

[6] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution
of random satisfiability problems. Science, 297:812–815, 2002.

[7] Stephan Mertens, Marc Mézard, and Riccardo Zecchina. Threshold values
of random k-sat from the cavity method. Random Struct. Algorithms,
28(3):340–373, 2006.

[8] Florent Krzakala, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem
Semerjian, and Lenka Zdeborova. Gibbs states and the set of solutions
of random constraint satisfaction problems. Proceedings of the National
Academy of Sciences, 104(25):10318–10323, 2007.

[9] Dimitris Achlioptas and Federico Ricci-Tersenghi. On the solution-space
geometry of random constraint satisfaction problems. In Proc. of 38th
STOC, pages 130–139, New York, NY, USA, 2006. ACM.

[10] Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from
phase transitions. In Proceedings of FOCS 2008, page 793, 2008.

[11] M. Molloy. The freezing threshold for k-colourings of a random graph.
In Proceedings of the 44th symposium on Theory of Computing, page 921.
ACM, 2012.

219



[12] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture
for large k. In Proceedings of the Forty-seventh Annual ACM Symposium
on Theory of Computing, STOC ’15, pages 59–68, 2015.

[13] Elchanan Mossel and Yuval Peres. Information flow on trees. Ann. Appl.
Probab., 13(3):817–844, 08 2003.

[14] A. Montanari and G. Semerjian. Rigorous inequalities between length and
time scales in glassy systems. J. Stat. Phys., 125:23, 2006.

[15] M. Mézard and G. Parisi. The bethe lattice spin glass revisited. Eur.
Phys. J. B, 20:217, 2001.

[16] Marc Mézard and Andrea Montanari. Reconstruction on trees and spin
glass transition. J. Stat. Phys., 124:1317–1350, september 2006.

[17] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for
improving local search. In Proc. 12th AAAI, pages 337–343, Menlo Park,
CA, USA, 1994. AAAI Press.

[18] John Ardelius and Erik Aurell. Behavior of heuristics on large and hard
satisfiability problems. Phys. Rev. E, 74:037702, 2006.

[19] Mikko Alava, John Ardelius, Erik Aurell, Petteri Kaski, Supriya Krishna-
murthy, Pekka Orponen, and Sakari Seitz. Circumspect descent prevails
in solving random constraint satisfaction problems. Proceedings of the
National Academy of Sciences, 105(40):15253–15257, 2008.

[20] Raffaele Marino, Giorgio Parisi, and Federico Ricci-Tersenghi. The back-
tracking survey propagation algorithm for solving random k-sat problems.
Nature Communications, 7:12996, 2016.

[21] Amin Coja-Oghlan. A better algorithm for random k-sat. SIAM Journal
on Computing, 39(7):2823–2864, 2010.

[22] D. Gamarnik and M. Sudan. Performance of sequential local algorithms for
the random nae-k-sat problem. SIAM Journal on Computing, 46(2):590–
619, 2017.

[23] A. Coja-Oghlan, A. Haqshenas, and S. Hetterich. Walksat stalls well below
satisfiability. SIAM Journal on Discrete Mathematics, 31(2):1160–1173,
2017.

[24] Samuel Hetterich. Analysing survey propagation guided decimation on
random formulas. arXiv preprint arXiv:1602.08519, 2016.

[25] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220:671–680, 1983.

220



[26] Alfredo Braunstein, Luca Dall’Asta, Guilhem Semerjian, and Lenka Zde-
borova. The large deviations of the whitening process in random con-
straint satisfaction problems. Journal of Statistical Mechanics: Theory
and Experiment, 2016(5):053401, 2016.

[27] Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and
Riccardo Zecchina. Local entropy as a measure for sampling solutions in
constraint satisfaction problems. Journal of Statistical Mechanics: Theory
and Experiment, 2016(2):023301, 2016.

[28] Carlo Baldassi, Christian Borgs, Jennifer T. Chayes, Alessandro Ingrosso,
Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina. Unreasonable
effectiveness of learning neural networks: From accessible states and ro-
bust ensembles to basic algorithmic schemes. Proceedings of the National
Academy of Sciences, 113(48):E7655–E7662, 2016.

[29] Thibaud Maimbourg, Mauro Sellitto, Guilhem Semerjian, and Francesco
Zamponi. Generating dense packings of hard spheres by soft interaction
design. SciPost Phys., 4:39, 2018.

[30] Han Zhao and Hai-Jun Zhou. Maximally flexible solutions of a random
k-satisfiability formula. arXiv preprint arXiv:2006.07023, 2020.

[31] Louise Budzynski, Federico Ricci-Tersenghi, and Guilhem Semerjian. Bi-
ased landscapes for random constraint satisfaction problems. Journal of
Statistical Mechanics: Theory and Experiment, 2019(2):023302, 2019.

[32] Louise Budzynski and Guilhem Semerjian. The asymptotics of the cluster-
ing transition for random constraint satisfaction problems. arXiv preprint
arXiv:1911.09377v2, 2019.

[33] Louise Budzynski and Guilhem Semerjian. Biased measures for random
constraint satisfaction problems: larger interaction range and asymptotic
expansion. arXiv preprint arXiv:2007.10303, 2020.

[34] Guilhem Semerjian and Rémi Monasson. Relaxation and metastability in
a local search procedure for the random satisfiability problem. Phys. Rev.
E, 67(6):066103, Jun 2003.

[35] A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An
algorithm for satisfiability. Random Struct. Algorithms, 27(2):201–226,
2005.

[36] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian. Solving constraint
satisfaction problems through belief propagation-guided decimation. 2007.
arXiv:0709.1667, Proceedings of the 45th Allerton Conference.

[37] Federico Ricci-Tersenghi and Guilhem Semerjian. On the cavity method
for decimated random constraint satisfaction problems and the analysis
of belief propagation guided decimation algorithms. Journal of Statistical
Mechanics: Theory and Experiment, page P09001, 2009.

221



[38] Allan Sly. Reconstruction of random colourings. Communications in
Mathematical Physics, 288(3):943–961, 2009.

[39] Andrea Montanari, Ricardo Restrepo, and Prasad Tetali. Reconstruction
and clustering in random constraint satisfaction problems. SIAM Journal
on Discrete Mathematics, 25(2):771–808, 2011.

[40] Allan Sly and Yumeng Zhang. Reconstruction of colourings without freez-
ing. arXiv preprint arXiv:1610.02770, 2016.

[41] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proc. 3rd STOC, pages 151–158, New York, NY, USA, 1971. ACM.

[42] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-
complete graph problems. Theoretical Computer Sciences, 1:237–267,
1976.

[43] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[44] M. Mézard and A. Montanari. Physics, Information, Computation. Ox-
ford Press, Oxford, 2009.

[45] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of
random boolean expression. Science, 264:1297–1301, 1994.

[46] David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and easy
distributions for SAT problems. In Proc. 10th AAAI, pages 459–465,
Menlo Park, California, 1992. AAAI Press.

[47] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. On the
complexity of unsatisfiability proofs for random k-cnf formulas. Confer-
ence Proceedings of the Annual ACM Symposium on Theory of Computing,
04 1998.

[48] Alan Frieze and Stephen Suen. Analysis of two simple heuristics on a
random instance of k-sat. J. Algorithms, 20(2):312–355, 1996.

[49] Simona Cocco and Rémi Monasson. Trajectories in phase diagrams,
growth processes, and computational complexity: How search algorithms
solve the 3-satisfiability problem. Phys. Rev. Lett., 86(8):1654–1657, Feb
2001.

[50] D. Aldous and M. Steele. The objective method: Probabilistic combi-
natorial optimization and local weak convergence. In H. Kesten, editor,
Encyclopedia of Mathematical Sciences, volume 110, pages 1–72. Springer,
2003.

[51] Vasek Chvatal and Bruce Reed. Mick gets some (the odds are on his side)
(satisfiability). In Proceedings., 33rd Annual Synopsium on Foundations
of Computer Science, pages 620–627, Pittsburgh, PA, USA, 1992.

222



[52] W. Fernandez de la Vega. On random 2-sat. Unpublished manuscript,
1992.

[53] Andreas Goerdt. A threshold for unsatisfiability. Journal of Computer
and System Sciences, 53:469–486, 1996.

[54] E. Friedgut. Sharp thresholds of graph proprties, and the k-sat problem.
Journal of the AMS, 12:1017–1054, 1999.

[55] J. Franco and M. Paull. Probabilistic analysis of the davis-putnam pro-
cedure for solving satisfiability. Discrete Applied Mathematics, 5:77–87,
1983.

[56] Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Yannis C.
Stamatiou. Approximating the unsatisfiability threshold of random for-
mulas. Random Structures and Algorithms, 12(3):253–269, 1998.

[57] Dimitris Achlioptas and Cristopher Moore. Two moments suffice to cross
a sharp threshold. SIAM Journal on Computing, 36:740–762, 2006.

[58] J. P. Bouchaud and G. Biroli. On the Adam-Gibbs-Kirkpatrick-
Thirumalai-Wolynes scenario for the viscosity increase of classes. J. Chem.
Phys., 121:7347–7354, 2004.

[59] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian. Clusters of solutions
and replica symmetry breaking in random k-satisfiability. J. Stat. Mech.,
P04004, 2008.

[60] R. Monasson. Structural glass transition and the entropy of the metastable
states. Phys. Rev. Lett., 75:2847, 1995.

[61] L. Zdeborová and F. Krzakala. Phase transitions in the coloring of random
graphs. Phys. Rev. E, 76:031131, 2007.

[62] Guilhem Semerjian. On the freezing of variables in random constraint
satisfaction problems. J. Stat. Phys., 130:251, 2008.

[63] A. Montanari and G. Semerjian. On the dynamics of the glass transition
on bethe lattices. J. Stat. Phys., 124:103–189, 2006.

[64] Christos H. Papadimitriou. On selecting a satisfying truth assignment
(extended abstract). In Proceedings of the 32nd annual symposium on
Foundations of computer science, pages 163–169, Los Alamitos, CA, USA,
1991. IEEE Computer Society Press.

[65] Uwe Schöning. A probabilistic algorithm for k-sat based on limited local
search and restart. Algorithmica, 32:615–623, 2002.

[66] Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies
for satisfiability testing. In Michael Trick and David Stifler Johnson, edi-
tors, Proceedings of the Second DIMACS Challange on Cliques, Coloring,
and Satisfiability, Providence RI, 1996.

223



[67] Sakari Seitz, Mikko Alava, and Pekka Orponen. Focused local search for
random 3-satisfiability. J. Stat. Mech., page P06006, 2005.

[68] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[69] Robert G. Gallager. Low-density parity check codes. IEEE Trans. Inform.
Theory, 8:21–28, 1962.

[70] F. R. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the
sum-product algorithm. IEEE Trans. Inform. Theory, 47(2):498–519,
2001.

[71] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Understanding belief propa-
gation and its generalizations. In Exploring Artificial Intelligence in the
New Millennium, pages 239–236. Science & Technology Books, 2003.

[72] H. A. Bethe. Statistical physics of superlattices. Proc. Roy. Soc. London
A, 150:552–575, 1935.

[73] J. S. Yedidia, W. F. Freeman, and Y. Weiss. Constructing free energy
approximations and generalized belief propagation algorithms. techni-
cal report TR-2002-35, Mitsubishi Electrical Research Laboratories, 2002.
available at http://www.merl.com.

[74] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian. Solving constraint
satisfaction problems through belief propagation-guided decimation. To
appear in Proceedings of Allerton 2007. Preprint: arXiv:0709.1667v1
[cs.AI], 2007.

[75] M. Mézard and R. Zecchina. Random k-satisfiability problem: From an
analytic solution to an efficient algorithm. Phys. Rev. E, 66:056126, 2002.

[76] Bart Selman, Hector J. Levesque, and D. Mitchell. A new method for solv-
ing hard satisfiability problems. In Paul Rosenbloom and Peter Szolovits,
editors, Proceedings of the Tenth National Conference on Artificial Intel-
ligence, pages 440–446, Menlo Park, California, 1992. AAAI Press.

[77] Wolfgang Barthel, Alexander K. Hartmann, and Martin Weigt. Solving
satisfiability problems by fluctuations: The dynamics of stochastic local
search algorithms. Phys. Rev. E, 67:066104, Jun 2003.

[78] D. Achlioptas and C. Moore. Almost all graphs with average degree 4 are
3-colorable. J. Comput. Syst. Sci., 67:441, 2003.

[79] P. Orponen S. S. Seitz. An efficient local search method for random 3-
satisfiability. Electronic Notes in Discrete Mathematics, 16:71–79, 2003.

[80] G. Parisi. Some remarks on the survey decimation algorithm for k-
satisfiability. arXiv:cs/0301015, 2003.

224



[81] A. Kaporis, L. Kirousis, and E. Lalas. Selecting complementary pairs
of literals. In Proc. LICS‘03 Workshop on Typical Case Complexity and
Phase Transitions, 2003.

[82] M. Hajiaghayi and G. B. Sorkin. The Satisfiability Threshold of Random
3-SAT Is at Least 3.52. arXiv: math/0310193, 2003.

[83] Elitza N. Maneva, Elchanan Mossel, and Martin J. Wainwright. A new
look at survey propagation and its generalizations. J. ACM, 54(4), 2007.

[84] A. Braunstein and R. Zecchina. Survey propagation as local equilibrium
equations. J. Stat. Mech., P06007, 2004.

[85] L. Dall’Asta, A. Ramezanpour, and R. Zecchina. Entropy landscape and
non-gibbs solutions in constraint satisfaction problems. Phys. Rev. E,
77:031118, 2008.

[86] A. Coja-Oghlan. On belief propagation guided decimation for random
k-sat. In Proceedings of the 2011 Annual ACM-SIAM Symposium on Dis-
crete Algorithms, page 10. SIAM, 2011.

[87] D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transi-
tions in hard optimization problems. Nature, 435:759–764, 2005.

[88] Moore C. Achlioptas D. On the 2-colorability of random hypergraphs. In
International Workshop on Randomization and Approximation Techniques
in Computer Science, pages 78–90. Springer, Berlin, Heidelberg, 2002.

[89] Dimitris Achlioptas and Cristopher Moore. The Chromatic Number of
Random Regular Graphs. arXiv e-prints, pages cond–mat/0407278, July
2004.

[90] Ming-Te Chao and John Franco. Probabilistic analysis of a generalization
of the unit-clause literal selection heuristics for the k satisfiability problem.
Inf. Sci., 51(3):289–314, 1990.

[91] D. Achlioptas. Lower bounds for random 3-SAT via differential equations.
Theor. Comput. Sci., 265(1-2):159–185, 2001.

[92] A. Coja-Oghlan and A. Frieze. Analyzing walksat on random formulas.
SIAM Journal on Computing, 43(4):1456–1485, 2014.

[93] Jian Ding, Allan Sly, and Nike Sun. Satisfiability threshold for random
regular nae-sat. Communications in Mathematical Physics, 341(2):435–
489, Jan 2016.

[94] A. Braunstein, M. Mézard, M. Weigt, and R. Zecchina. Constraint
satisfaction by survey propagation. In Allon Percus, Gabriel Istrate,
and Cristopher Moore, editors, Computational Complexity and Statisti-
cal Physics, page 107. Oxford University Press, 2003.

225



[95] G. Parisi. On local equilibrium equations for clustering states.
arXiv:cs.CC/0212047, 2002.

[96] Mauro Sellitto and Francesco Zamponi. A thermodynamic description of
colloidal glasses. EPL (Europhysics Letters), 103(4):46005, aug 2013.

[97] M. Mézard, G. Parisi, and M. A. Virasoro. Spin-Glass Theory and Beyond,
volume 9 of Lecture Notes in Physics. World Scientific, Singapore, 1987.

[98] Lenka Zdeborová and Florent Krzakala. Generalization of the cavity
method for adiabatic evolution of gibbs states. Phys. Rev. B, 81:224205,
2010.

[99] T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge Uni-
versity Press, 2007.

[100] H. Nishimori. Statistical Physics of Spin Glasses and Information Pro-
cessing: An Introduction. Oxford University Press, Oxford, UK, 2001.

[101] H. Kesten and B. P. Stigum. Additional limit theorems for indecomposable
multidimensional galton-watson processes. The Annals of Mathematical
Statistics, 37:1463, 1966.

[102] J. R. L. de Almeida and D. J. Thouless. Stability of the Sherrington-
Kirkpatrick solution of a spin-glass model. J. Phys. A, 11:983–990, 1978.

[103] Marylou Gabrié, Varsha Dani, Guilhem Semerjian, and Lenka Zdeborová.
Phase transitions in the q-coloring of random hypergraphs. Journal of
Physics A: Mathematical and Theoretical, 50(50):505002, 2017.

[104] Federico Ricci-Tersenghi, Guilhem Semerjian, and Lenka Zdeborová. Ty-
pology of phase transitions in bayesian inference problems. arXiv preprint
arXiv:1806.11013, 2018.

[105] R Abou-Chacra, D J Thouless, and PWAnderson. A selfconsistent theory
of localization. Journal of Physics C: Solid State Physics, 6(10):1734,
1973.

[106] G Parisi, F Ricci-Tersenghi, and T Rizzo. Diluted mean-field spin-glass
models at criticality. Journal of Statistical Mechanics: Theory and Exper-
iment, 2014(4):P04013, 2014.

[107] G Parisi, F Ricci-Tersenghi, and T Rizzo. Erratum: Diluted mean-field
spin-glass models at criticality. Journal of Statistical Mechanics: Theory
and Experiment, 2015(3):E03001, 2015.

[108] Svante Janson and Elchanan Mossel. Robust reconstruction on trees is
determined by the second eigenvalue. Ann. Probab., 32:2630–2649, 2004.

[109] Ken-Iti Sato. Lévy Processes and Infinitely Divisible Distributions. Cam-
bridge University Press, 2013.

226



[110] Soren Asmussen and Jan Rosinski. Approximations of small jumps of lévy
processes with a view towards simulation. Journal of Applied Probability,
38(2):482–493, 2001.

[111] Zhiyi Chi. Nonnormal small jump approximation of infinitely divisible
distributions. Advances in Applied Probability, 46(4):963–984, 2014.

[112] William Feller. An introduction to probability theory and its applications,
Vol II, 2nd ed. Wiley New York, 1971.

[113] Toshiro Watanabe and Kouji Yamamuro. Ratio of the tail of an infinitely
divisible distribution on the line to that of its lévy measure. Electron. J.
Probab., 15:44–74, 2010.

227



Appendix A

Existence and uniqueness of
the RS solution

In this appendix we shall show that the translationally invariant RS equation
(7.40) admits a unique solution for all choices of the bias function ψ that is
strictly positive, ψ(p) > 0 ∀p ∈ {0, . . . l + 1}.

We first remark that in the uniform case, where ψ(p) is a positive constant
independent of p, the equation (7.40) obviously admits a unique solution (with
y = 1, ŷ = 2k−1 − 2). We will now show that the number of solutions cannot
change when ψ varies in its allowed domain. To achieve this we first rewrite
(7.40) in the equivalent form

G(x;ψ) =
l+1∑
p=0

ψ(p)Xp(x) = 0 , (A.1)

where for simplicity we denoted x = 1/ŷ and where the coefficients Xp(x) are:

Xp(x) = xp
[
(2k−1 − k − 1)

(
l

p

)
x+ (k − 1)

(
l

p− 1

)
−
(
l

p

)]
(A.2)

= xp

l + 1

(
l + 1
p

)[
(2k−1 − k − 1)(l + 1− p)x− (l + 1− kp)

]
; (A.3)

in the first line we used the convention
(
l
l+1
)

=
(
l
−1
)

= 0.
The function G(x;ψ) introduced in (A.1) depends smoothly on its two ar-

guments (polynomially in x, and linearly in ψ), the number of solutions x(ψ)
of the equation G = 0 can thus only change at a bifurcation point, i.e. a pair
(x;ψ) such that G(x;ψ) = ∂xG(x;ψ) = 0, otherwise the implicit function theo-
rem allows to smoothly continue any branch of solution. As we remarked above
the solution is unique when ψ is independent of p, the uniqueness for all ψ will
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then follow if we show the absence of solution to the bifurcation equation:

l+1∑
p=0

ψ(p)Xp(x) = 0 ,
l+1∑
p=0

ψ(p)Yp(x) = 0 , ψ(p) ≥ 0 ∀p , (A.4)

where

Yp(x) = ∂Xp

∂x
= xp−1

l + 1

(
l + 1
p

)[
(2k−1 − k − 1)(l + 1− p)(p+ 1)x− (l + 1− kp)p

]
.

(A.5)
This equation being invariant under the multiplication of ψ by a positive con-
stant we can further assume the normalization condition

l+1∑
p=0

ψ(p) = 1 . (A.6)

For a given value of x, the existence of a ψ satisfying (A.4,A.6) is equivalent
to the origin of R2 being in the convex hull of the l + 2 points of coordinates(
Xp(x)
Yp(x)

)
for p = 0, . . . , l + 1. We can then invoke the Caratheodory theorem

that states that any point of the convex hull of a set A ⊂ Rd can be written as the
convex combination of d+1 points ofA. Here d = 2, so the absence of solutions of
(A.4,A.6) follows from the impossibility to satisfy, for any p, q, r ∈ {0, . . . , l+1},
the system

αpXp(x) + αqXq(x) + αrXr(x) = 0 , (A.7)
αpYp(x) + αqYq(x) + αrYr(x) = 0 , (A.8)
αp ≥ 0, αq ≥ 0, αr ≥ 0, αp + αq + αr > 0 . (A.9)

This is equivalent to the three quantitiesXp(x)Yq(x)−Xq(x)Yp(x),Xq(x)Yr(x)−
Xr(x)Yq(x) and Xr(x)Yp(x) − Xp(x)Yr(x) being of the same sign; using the
expressions (A.3,A.5) of X and Y we have checked the impossibility of this
condition, for all x > 0 and all triplets p, q, r, which concludes the reasoning.
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Appendix B

The graph coloring case

This Appendix is devoted to the graph coloring problem. We shall present
computations that are the counterparts of the ones explained in Sec. 7.3 and 9.1
of the main text for the hypergraph bicoloring problem, namely the definition
of the reconstruction problem and its study in the limit where the number of
colors q and the degree c diverge simultaneously according to (9.1), and show
that the very same equations summarized at the beginning of Sec. 9.2 arise in
this limit. As the computations are quite similar we will be more succint than
in the main text and concentrate on the specificities of the coloring problem.

Let us consider a rooted tree with spins σi placed on its vertices. These
spins can take q values, interpreted as colors, σi ∈ {1, . . . , q}. A proper coloring
of the tree is a configuration of the spins such that no edge is monochromatic
(i.e. no pair of adjacent vertices are given the same color). A uniform proper
coloring can be drawn in a broadcast fashion, by choosing the color σ of the
root uniformly at random among the q possible ones, then each descendent of
the root is assigned a color uniformly at random among the q−1 colors distinct
from σ, and this is repeated recursively down to the n-th generation of the tree.
In the reconstruction problem an observer is then provided with the colors on
the vertices of the n-th generation of the tree only, and asked to guess the color
of the root. The optimal strategy is to compute η, the posterior probability
of the root given the observations, which is a distribution over {1, . . . , q}. A
moment of thought reveals that the probability distribution of η, with respect
to a broadcast process conditioned on the root value σ, and with respect to a
random choice of the tree as a Galton-Watson branching process with Poisson
offspring distribution of mean c, is a measure Pσ,n(η) that can be determined
recursively through the induction relation:

Pσ,n+1(η) =
∞∑
l=0

e−c
cl

l!
1

(q − 1)l
∑

σ1,...,σl 6=σ

∫ l∏
i=1

dPσi,n(ηi) δ(η − fc(η1, . . . , ηl)) ,

(B.1)
where the Belief Propagation recursion function fc is defined here in such a way
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that η = fc(η1, . . . , ηl) means

η(τ) =

l∏
i=1

(1− ηi(τ))

∑
τ ′

l∏
i=1

(1− ηi(τ ′))
. (B.2)

The initial condition of this recursive computation is given by Pσ,0 = δ(η− δσ),
where δσ is the measure concentrated on the color σ, i.e. δσ(τ) = I(σ = τ),
which corresponds to the colors being revealed on the leaves of the tree. These
equations correspond to (7.7,7.51,7.52) (with ω(σ1, . . . , σk) = 1 − I[σ1, σk a.e])
for the hypergraph bicoloring problem.

We separate now the contribution of “hard fields”, or frozen variables, namely
the configurations of boundary variables that determine unambiguously the root
in the naive reconstruction procedure. This forced value can only be the correct
one the root had in the broadcast process, hence we shall write :

Pσ,n(η) = Hn δ(η − δσ) + (1−Hn)Qσ,n(η) , (B.3)

where Qσ,n has no atom on δσ; this mimicks the decomposition (7.78) of the
main text. Plugging this decomposition in (B.1) yields the evolution equation
for the weight of the hard fields:

Hn+1 =
(

1− e−
cHn
q−1

)q−1
, with H0 = 1 . (B.4)

Indeed fc(η1, . . . , ηl) = δσ if and only if for each color σ′ 6= σ at least one of the
arguments ηi is equal to δσ′ , thus forbidding all colors except σ. The number of
hard fields of the color σ′ 6= σ is easily seen from (B.1) to be Poisson distributed
with average cHn

q−1 , independently from one color σ′ to another, from which (B.4)
follows.

The recursion (B.4) has a bifurcation at cr(q), in the sense that Hn → 0
as n → ∞ if and only if c < cr(q). Writing down the equations fixing cr and
Hr at the bifurcation, which are similar to (7.81), and then expanding them
for large q one finds the asymptotic expansion cr = q(ln q + ln ln q + 1 + o(1)).
We shall thus study the large q limit with c getting also large, on the scale
c = q(ln q + ln ln q + γ) with γ finite. In this limit one finds that for n finite

Hn = 1− xn
ln q + o

(
1

ln q

)
, (B.5)

where xn is of order 1 and obeys exactly the same recursion as in the bicoloring
case, namely x0 = 0 and xn+1 = e−γ+xn .

Let us now simplify the evolution equation for the distributions Qσ,n of the
soft fields. First of all we insert the decomposition (B.3) in the right hand side
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of (B.1) and obtain, without any approximation,

Pσ,n+1(η) =
∞∑
l=0

e−c(1−Hn) (c(1−Hn))l
l!

1
(q − 1)l∑

σ1,...,σl 6=σ

∑
{pσ′=0,1}σ′ 6=σ

∏
σ′ 6=σ

(
e−

cHn
q−1

)pσ′ (
1− e−

cHn
q−1

)1−pσ′

∫ l∏
i=1

dQσi,n(ηi) δ(η − f̃c(σ, {pσ′}σ′ 6=σ; η1, . . . , ηl)) , (B.6)

where l is the number of neighbors of the root that receive a soft field, σ1, . . . , σl
the colors these vertices have in the broadcast, and the indicator variables pσ′
are equal to 1 if and only if no neighbor of the root assigned the color σ′ in the
broadcast is perfectly recovered (i.e. receives a hard field). Hence the colors σ′ 6=
σ with pσ′ = 0 are precisely the ones forbidden for the root, as at least one of
its neighbors is forced to this value. The relation η = f̃c(σ, {pσ′}σ′ 6=σ; η1, . . . , ηl)
is obtained by specializing fc of (B.2) to this pattern for the presence of hard
fields in its arguments, and thus reads

η(τ) =
pτ

l∏
i=1

(1− ηi(τ))

∑
τ ′
pτ ′

l∏
i=1

(1− ηi(τ ′))
, (B.7)

with the convention pσ = 1.
Let us call p =

∑
σ′ 6=σ

pσ′ the number of colors that satisfy the condition

explained above; in the equation (B.6) it corresponds to a random variable with
a binomial distribution of parameters (q − 1, e−

cHn
q−1 ). According to (B.5) the

product of these parameters go to zero as 1/ ln q in the limit we are considering,
we shall thus truncate (B.6) on the smallest possible values of p. As p = 0 yields
a hard field in the left hand side of (B.6), the distribution of the soft fields is
dominated in this limit by the case p = 1. As a consequence the fields η in the
support of Qσ,n have non-zero values on two colors only, σ and another one σ′
uniformly distributed on the q− 1 possibilities. Let us parametrize this type of
distributions via a distribution Qn(h) on real random variables h ∈ [−1, 1],

Qσ,n(η) =
∫

dQn(h) 1
q − 1

∑
σ′ 6=σ

δ(η − s(σ, σ′;h)), (B.8)

with s(σ, σ′;h)(τ) =


1+h

2 if τ = σ
1−h

2 if τ = σ′

0 otherwise
.

Let us also denote f̂c(σ, σ′; η1, . . . , ηl) the function f̃c(σ, {pσ′′}σ′′ 6=σ; η1, . . . , ηl)
with pσ′′ = δσ′′,σ′ , in such a way that the only two non-zero components of

232



f̂c(σ, σ′; η1, . . . , ηl) correspond to the colors σ and σ′. Using this notation, and
the parametrization (B.8), one can deduce from (B.6) the evolution equation
for Qσ,n(η) at lowest order:

Qσ,n+1(η) = 1
q − 1

∑
σ′ 6=σ

∞∑
l=0

e−c(1−Hn) (c(1−Hn))l
l!

l∏
i=1

 1
(q − 1)2

∑
σi 6=σ
σ′i 6=σi

∫
dQn(hi)


(B.9)

δ(η − f̂c(σ, σ′; s(σ1, σ
′
1;h1), . . . , s(σl, σ′l;hl)))

To put this expression under the form (B.8), and hence close the recursion on
Qn(h), it remains to notice that

f̂c(σ, σ′; η1, . . . , ηl) = s(σ, σ′, h) with h = f(u1, . . . , ul) , ui = û(σ, σ′; ηi) ,
(B.10)

where f = fΘ0 is the function defined for Ising spins in (7.8), and

û(σ, σ′; η) = η(σ′)− η(σ)
2− η(σ)− η(σ′) . (B.11)

For a fixed choice of σ and σ′ 6= σ, one can see that û(σ, σ′; s(σi, σ′i;hi)) is a
random variable with respect to the uniform choices of σi 6= σ and σ′i 6= σi, that
takes the following values (recall the definition of the function g1 from (9.10)):

g1(hi) with probability q−2
(q−1)2 ,when σi = σ′ , σ′i 6= σ ,

g1(−hi) with probability q−2
(q−1)2 ,when σ′i = σ′ , σi 6= σ ,

−g1(−hi) with probability q−2
(q−1)2 ,when σ′i = σ , σi 6= σ′ ,

hi with probability 1
(q−1)2 ,when σ′i = σ , σi = σ′ ,

0 otherwise .

(B.12)

As c(1 −Hn) q−2
(q−1)2 → xn in the regime we are considering, the number of oc-

curences of the first three cases in (B.9) is Poissonian of mean xn; on the other
hand the number of times the fourth case happens vanishes when q diverges (as
1/q), while the fifth does not contribute to (B.9), because f(u1, . . . , ul, 0, . . . , 0) =
f(u1, . . . , ul). We thus see by comparison with (9.13,9.15) that the probability
distribution Qn(h) defined in (B.8) obeys exactly the same recursion equations
as the one derived in the main text for the hypergraph bicoloring model, the
initial condition Q1(h) = δ(h) being also valid here.
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Appendix C

An Inequality

We provide in this Appendix a proof of the bounds c−(b)x1,n ≤ λn ≤ c+(b)x1,n
that we used in Sec. 10.4.3. We start by stating some inequalities that are
fulfilled by the messages η in the support of νn, and that are consequences
of the BP equation (10.17). They are more compactly stated in terms of the
u-parametrization; from (10.55) one obtains indeed

u(2)u(3)

u(1) =
∏
i

η̂i(+, 0)
η̂i(+, 0) + η̂i(+, 1) ,

u(1)u(3)

u(2) =
∏
i

η̂i(−, 0)
η̂i(−, 0) + η̂i(−, 1) , (C.1)

which allows to conclude that u(2)u(3)

u(1) ≤ 1 and u(1)u(3)

u(2) ≤ 1, for all the η’s in the
support of νn.

Consider now the expressions (10.52) for x1,n, and (10.84) for λn; the ratio
of the integrands in these two equations reads

2
√
η(+, 0) + η(−, 0)

√
η(+, 1) +

√
η(−, 1)

η(+, 1) + η(−, 1)

=

√
η(+, 0) + η(−, 0)
η(+, 1) + η(−, 1)

(
2

√
η(+, 1)

η(+, 1) + η(−, 1) + 2

√
η(−, 1)

η(+, 1) + η(−, 1)

)

The parenthesis in the right hand side of this eqation is of the form 2(
√
x +√

1− x) for some x ∈ [0, 1], which is necessarily in the interval [2, 2
√

2]. The
prefactor in front of the parenthesis can be written, in terms of th u-parametrization,√

1
1 + (u(1))2

(
1 +Bu(1)u(2)u(3) + (u(1))2 +B

u(1)u(3)

u(2)

)
(C.2)

Consider first the case b ≤ 1, i.e. B ≥ 0; as the components of u are non-negative
the expression in (C.2) is certainly lower bounded by 1. Moreover the bounds
u(2)u(3)

u(1) ≤ 1 and u(1)u(3)

u(2) ≤ 1 imply that it is upper bounded by
√

1 +B = 1/
√
b.

The case b ≥ 1, B ≤ 0 can be treated similarly, with now the expression in (C.2)
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being in the interval [1/
√
b, 1]. Combining these observations we obtain finally

c−(b)x1,n ≤ λn ≤ c+(b)x1,n, with for b ≤ 1 c−(b) = 2, c+(b) = 2
√

2/b, and for
b ≥ 1 c−(b) = 2/

√
b, c+(b) = 2

√
2.
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MOTS CLÉS

Barrières algorithmiques, Problèmes de satisfaction de contraintes, Aléatoire.

RÉSUMÉ

La complexité typique des Problèmes de Satisfaction de Contraintes (CSP) peut être étudiée à l’aide d’ensembles aléatoires
de contraintes. On observe un phénomène de seuil quand la densité de contraintes augmente. En particulier à la transition
de clustering, l’ensemble des solutions typiques se fracture en groupes de solutions séparés les uns des autres. Dans cette
thèse nous introduisons un biais qui brise l’uniformité entre les solutions d’une instance de CSP, et nous étudions son effet
sur la valeur du seuil de clustering. Nous étudions en particulier le problème de bicoloriage de k-hypergraphes. Pour de
petites valeurs de k, nous montrons que ce biais peut augmenter la valeur du seuil de clustering, et que cela a un effet positif
sur les performances de l’algorithme de Simulated Annealing pour la recherche de solutions d’une instance du problème de
bicoloriage. Dans la limite où k tend vers l’infini, nous calculons le développement asymptotique du seuil de clustering pour
la mesure uniforme et pour une mesure biasée. Nous évaluons le gain obtenu avec cette implémentation du biais.

ABSTRACT

The typical complexity of Constraint Satisfaction Problems (CSP) can be studied using random ensembles of instances. One
observes threshold phenomena when the density of constraints increases, in particular a clustering phase transition at which
typical solutions shatter into disconnected components. In this Ph.D., we introduce a bias that breaks the uniformity among
solutions of a given instance of CSP, and look at the evolution of the clustering threshold under this bias, focusing on the
bicoloring of k-uniform random hypergraphs. For small values of k, we show that this bias can delay the clustering transition
to higher densities of constraints, and that it has a positive impact on the performances of Simulated Annealing algorithm to
find a solution for a given instance of the bicoloring problem. In the large k limit, we compute the asymptotic expansion of the
clustering threshold for the uniform and the biased measure, and characterize the gain obtained with our implementation of
the bias.
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