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Data-Enabled, Reduced-Order Simulation of Dynamical Systems with Application to Vehicle Crash Simulation

Spécialité :

Naturally, a FE model is a representation of the reality that it approximates and there is a dilemma between computation time and solution quality when building one. When using such models for industrial design and, more specically, in car parametric optimization for crash situations, numerous simulations are performed over and over with minor parametric changes in search of the optimal design. Some applications may turn out to be expensive in computational time and with the growing need for ner results, FE models tend to complexify in order to represent crack and contact.

Nowadays, there is a need for simulation software to explore parametric spaces faster. To this end, Model Order Reduction (MOR) methods have been developed to accelerate response time, called Reduced Order Models (ROM). Several approaches exist in the literature to build such models.

The goal of this thesis is to explore the opportunities for MOR in the design of new vehicles. While non-intrusive methods using the solver as a black box are in most cases developed internally by the car manufacturer, this thesis places the focus on intrusive ones necessitating a modication in the solver source code. Developments are directly performed in the industrial-level software with complete access to the source code provided by Altair Engineering France.

The following sections present the opportunities for MOR in car design (1.2), the outline of the thesis (1.3), and nally, the list of scientic contributions (1.4).

Opportunities for model order reduction in the design of new vehicles

Designing a new vehicle is a complex industrial process involving a multi-objective optimization in which numerous constraints concerning weight, production cost, security, fuel consumption, thermic, noise, vibration, deformation, and durability have to be satised. A lightweight vehicle will consume less fuel, requiring a less powerful engine and enabling furthersavings in weight and fuel consumption. Comfort is a major customer concern that entails optimization of road handling as well as noise and vibration. Last but not least, crash standards have to be fullled when an accident may not be avoided.

.1: V-cycle

The V-cycle, represented in Figure 1.1, is used to summarize the dierent steps in the development of new vehicles, separated into two main phases: the design and the integration. The design phase goes from the global to the detailed vision of the project, while the second phase goes the opposite direction. In the rst phase, vehicle drawings and requirements specication are used to go into the detailed specications of each module and parts are designed separately. Each part is then incorporated into the vehicle for validation in the integration phase.

Finite Element Analysis (FEA) is extensively used at multiple stages of development to minimize the number of real tests, allowing to numerically study the impact of multiple design variables on the vehicle behavior and physical properties without having to build prototypes, enabling time and cost reduction. It is notably used in individual modules and parts design as well as to validate the complete vehicle integrating all subsystems. Simulation turns out to be a blocking point in the design process as it is needed to step forward in the V-cycle.

Vehicle crash simulation is the more expensive FEA application in new vehicles development. It is a complex multi-objective optimization problem considering different crash, including frontal full width rigid barrier impact, side moving deformable Figure 1.3: Crash simulation example of a frontal oset deformable barrier impact barrier impact, side oblique pole impact, whiplash pedestrian subsystem tests, extensively described in [START_REF]FILM & PHOTO PROTOCOL[END_REF]. Quantities of Interest (QoI) are accelerations, intrusions, and strains. Typical model parameters are material properties, shell thicknesses and test conditions (vehicle speed and attitude, dummy position). Models size, nonlinear material laws evaluation as well as contact and fracture representations, render each simulation computationally intensive. Concomitantly with the rise in computational power, models used for crash simulation are increasingly complex as illustrated by Figure 1.2 on dierent vehicle models at PSA Group since 1990. The number of elements is proportional to the required number of nonlinear material law evaluations at each time cycle. Thus, it is often used to assess the computational complexity of a model in such applications. Last decade, it had augmented of one order of magnitude in constant search for accuracy and, more recently, for fracture representation. An example of such simulation is provided in Figure 1.3.

T = 130 * 10 -3 seconds of the model are simulated, the latter being composed of 2.5 million shell elements of average size 5 millimeters. Computations took 12 hours on 48 CPUs with a time-step of approximatively 0.5 * 10 -6 second and are to be performed multiple times with little parametric variations in search of the optimal conguration.

Simulating each subsystem of the vehicle separately also is a challenging FEA application. The main diculty concerns the boundary conditions denition as they must take into account the potential interaction with surrounding vehicle parts.

Moreover, computational costs prevent the use of stochastic methods such as Monte Carlo.

Model order reduction is increasingly used to overcome issues relative to expensive FE simulations to approximate the solution with reduced complexity. MOR methods may be categorized as intrusive or non-intrusive. Non-intrusive reduction methods build a reduced model using the FE solver as a black box. These methods are quite mature and are extensively used in industrial vehicle crashworthiness optimization to explore the design of experiment (Kriging, Non-intrusive POD, Radial Basis Functions ...). On the other hand, intrusive reduction methods require modications in the FE solver and are thus less used in the industry where the solver source code is generally not available. Compared with non-intrusive methods, intrusive ones make use of the solver to take physic into account. They have the potential to speed-up crash simulations, sensibility and robustness analysis, and enhance boundary conditions in the study of subsystems by capitalizing on the numerous available data. However, expanding intrusive reduction methods to nonlinear transient structural dynamics problems arising in vehicle crashworthiness optimization stills remains a challenge.

In this project, the car manufacturer PSA Group and the software developer Altair Engineering France collaborate to investigate the applicability of intrusive method in the commercial Altair Radioss [3] solver in nonlinear explicit transient structural dynamics FEA.

Outline

This thesis is motivated by the need to develop intrusive model order reduction to accelerate computations in nite element industrial applications to nonlinear transient structural dynamics and, in particular, vehicle crashworthiness optimization. Such applications involve repetitive simulations of complex models with slight changes in the parameters in search of the optimal design and induce prohibitive computation times. By investing in the plethora of collected data, Projection-based Reduced Order Modeling (PROM) methods have the potential to speed-up computations needed to nd the optimal design. A dierentiator of the present work lies in the use of an industrial explicit FE solver in which the hyper-reduced proper orthogonal decomposition has been implemented for research purposes. It is allowed by the collaboration between the car manufacturer PSA Group, the Roberval laboratory, and the software developer Altair Engineering providing full access to the legacy explicit FE solver [3] source code in which developments presented in this thesis are performed.

Several bottlenecks to the robust application of PROM methods to vehicle crashworthiness optimization are identied:

• the computational cost associated with training the ROM over previously collected data quickly become computationally prohibitive on large models;

• the ROM approximation error is usually assessed a priori, which is shown to be insucient in applications to nonlinear explicit structural dynamics;

• several options used in full-scale vehicle crash FE models are not compatible with the approach;

• the contact formulation used in industrial FE models is no reduced by the method and still represent a large portion of the computational eort.

The three following contributions of this thesis address some of the above diculties.

The truncated Singular Value Decomposition is, in the POD, used to compute a low rank representation of the training data set, yielding the Reduced Basis (RB) used in PROM methods to reduce the model complexity. However, the SVD computations turn out infeasible on data sets involving high numbers of snapshots gathered on models with large numbers of degrees of freedom. An incremental alternative has been developed to overcome this limitation when computing low-rank representation over an extensive data set. By enriching a truncated representation of the data as soon as an observation is available, the method avoids expensive data manipulation and storage in binaries while only working with relatively small matrices, permitting considerable computational savings in the training phase. Key features of the method concern 'on-the-y' truncation and snapshots selection. The present work

proposes a new error estimator to keep track of the approximation quality. It drives truncation and snapshots selection 'on-the-y' in place of former tolerances, simplifying the use of the algorithm along with guaranteeing nearly optimal performances in terms of approximation precision and computation time. These developments are benchmarked against the state-of-the-art incremental SVD as well as a regular SVD for data approximation, computation time, and RB performances in the online reduction phase. Moreover, such an incremental approach has the potential to enable reduced model enrichment in the online reduction phase.

The second contribution concerns a new sparse criterion proposed for the construction of the subsets of left singular vectors of the snapshots matrix constituting the RB. RB quality is in the literature assessed oine using and averaged approximation error over the training data set. Here, training data approximation error is proved to be insucient when reported to RB's performances in the online reduction phase. For a minimal additional complexity, this contribution solves identied issues arising in the online reduction phase when using RB functions selected with the usual sequential truncation criterion in POD applications to transient structural dynamics problems. When using the sequential criterion, signicant observations in the training data set are overshadowed by less meaningful, but more frequent ones. In transient problems, this behavior may result in RB that fails in the online reduction phase if, for example, the solution is poorly approximated at the timestep triggering the deformation. Rather than imposing a threshold on an averaged training data reconstruction error, as it is the case for the usual sequential singular value truncation criterion, the proposed sparse criterion imposes a threshold on each snapshot reconstruction error. On a FE crash-box benchmark, the sparse criterion is shown to circumvent this issue and to form RB exhibiting, at a given size, a better online performance.

The third contribution concerns the HR training phase with the ECSW method.

The optimization problem arising in the oine training phase of a hyper-reduced integration scheme is NP-hard and is, in the literature, sub-optimally solved in a greedy manner with the SNNLS algorithm. This procedure still turns out to be prohibitively expensive in computation time when training hyper-reduced integration schemes on large FE models, necessitating developments of alternative heuristics. In this context, there is a need for a reference solution for comparing dierent heuristics. The contribution proposes an alternative formulation of the ECSW optimization problem introducing Boolean selection variable taking account for nite element aliation to the hyper-reduced integration scheme. The resulting optimization problem is solved using Mixed-Integer Programming (MIP), providing a reference for the validation of alternative suboptimal methods. Additionally, the impact of reducing the number of constraints and adding consistency conditions regarding polynomial integration, volume conservation, and weights minimal values is studied on an the reference example of a pierced plate in the traction model.

The manuscript is organized in the following manner. 1.4 Associated journal publications and conference papers Scientic contributions of this thesis have been presented in academic proceedings, workshops, industrial events and published in international journals.

Dierent proceedings have been made in national and international academic events:

• Proceeding [START_REF] Breitkopf | Incremental POD and custom integration schemes for hyper-reduced automotive crash analysis[END_REF] on contribution presented in chapter 5 as been made at the 13 th World Congress on Computational Mechanics (WCCM XIII).

• Presentation [START_REF] Phalippou | on the y' snapshot selection for hyper-reduced proper orthogonal decomposition with application to nonlinear dynamic[END_REF] on the modied incremental singular value decomposition of chapter 3 has been given at the 6 th European Conference on Computational Mechanics (ECCM6) in Glasgow.

• The proposed sparse criterion of chapter 4 was rst presented at the 14 th French national congress on computational mechanics (CSMA 2019) in [START_REF] Phalippou | Critère temporel pour la sélection des modes POD et application à la dynamique des structures[END_REF].

• Proceeding [START_REF] Phalippou | Sparse POD modes selection for reduced-order nonlinear explicit dynamics[END_REF] on the sparse criterion at the ECCOMAS 4 th Young Ivestigator Conference 2019 at Krakow [START_REF] Phalippou | Sparse POD modes selection for reduced-order nonlinear explicit dynamics[END_REF].

• The global presentation [START_REF] Phalippou | Incremental POD and custom integration schemes for hyper-reduced nonlinear dynamics[END_REF] on contributions and outlooks for this work has been given at the 5 th MORTech international Workshop in 2019.

We presented the work of this thesis in two industrial events:

• The NAFEMS 18 France Conference [START_REF] Phalippou | Hyper réduction pour l'optimisation en dynamique rapide des structures[END_REF].

• The French Society of Automotive Engineers (SIA) 2019 numerical simulation congress [START_REF] Phalippou | Hyperreduced proper orthogonal decompostion for automotive crashworthiness design[END_REF].

Moreover, publications has been made in international scientic journal:

• Contribution on a sparse criterion, presented in chapter 4, has been published in the International Journal for Numerical Methods in Engineering in [START_REF] Phalippou | Sparse POD modal subsets for reduced-order nonlinear explicit dynamics[END_REF].

• Springer special issue Chapter 2

State of the art

Last few decades, much attention has been being paid to the development of Model Order Reduction (MOR) methods to tackle the growing need for faster simulation in a wide variety of scientic elds. These methods rely on strong hypotheses to achieve drastic reductions in the number of unknowns of a model, thus focusing the computational eort on the Quantities of Interest (QoI). Depending on the targeted application, it is crucial to carefully choose the MOR method to apply, as: rst, some methods require many developments and second, the funding hypothesis of the method may not be appropriate.

Two ways to categorize MOR methods are on 'a priori'/'a posteriori' and intrusive/non-intrusive. 'A posteriori' methods rely on previously collected data on the QoI to build a Reduced Order Model (ROM) whereas 'a priori' methods build one without any prior data on the QoI and rather rely on knowledge of the governing equations and numerical methods used in the model. Intrusive methods involve modications in the source code of the simulation software in opposition to nonintrusive methods that use the simulation software as a black-box. An important variety of non-intrusive MOR methods is meta-modeling that use simulation results

to t a surrogate model of the Design of Experiment (DoE)(Response Surface (RS), Radial Basis Functions (RBF) [START_REF] Fang | Global response approcimation with radial basis functions[END_REF], Kriging [START_REF] Cressie | Spatial prediction and ordinary kriging[END_REF], Neural Network (NN) [START_REF] Papadrakakis | Structural optimization using evolution strategies and neural networks[END_REF], ReCUR [START_REF] Le Guennec | A parametric and non-intrusive reduced order model of car crash simulation[END_REF], Non-intrusive Proper Orthogonal Decomposition (NiPOD)( [START_REF] Iuliano | Aerodynamic shape optimization via non-intrusive POD-based surrogate modelling[END_REF][START_REF] Casenave | A nonintrusive reduced basis method applied to aeroacoustic simulations[END_REF][START_REF] Xiao | Nonintrusive reduced order modelling of the navierstokes equations[END_REF]), thus, meta-modeling methods are 'a posteriori' non-intrusive methods. Among the intrusive MOR methods, the PGD [START_REF] Chinesta | The proper generalized decomposition for advanced numerical simulations: a primer[END_REF][START_REF] Ladevèze | The LATIN multiscale computational method and the proper generalized decomposition[END_REF] approximates the QoI as a separate variable function and solves smaller independent models for each of those functions, enabling, once this work is done, the real-time evaluation of an approximated solution for any parameter conguration. Another class of intrusive methods is the Projected Reduced Order Model (PROM) that approximates the unknown as a linear combination of Reduced Basis (RB) vectors that replace a large number of shape functions originally used. A prevalent PROM method is the Proper Orthogonal Decomposition (POD) that originates from statistical data analysis [START_REF] Dd | Statistics in function space[END_REF] and found application in the analysis of turbulent ows [START_REF] Berkooz | The proper orthogonal decomposition in the analysis of turbulent ows[END_REF]. This method build a RB from data to project the model on, yielding a ROM with fewer degrees of freedom. This method is often coupled with a method that approximates the projection of internal variables such as the Discrete Empirical Interpolation Method (DEIM) [START_REF] Chaturantabut | Nonlinear Model reduction via Discrete Empirical Interpolation[END_REF] and the Hyper-Reduction (HR) [START_REF] Ryckelynck | Multidimensional a priori hyper-reduction of mechanical models involving internal variables[END_REF][START_REF] Farhat | Dimensional reduction of nonlinear nite element dynamic models with nite rotations and energy-based mesh sampling and weighting for computational eciency[END_REF].

Compared to intrusive methods, meta-modeling methods are widely used in the industry as they may easily be implemented by manufacturers without having access Towards data-enabled vehicle crash simulations to the source code of the simulation software. It is possible to couple meta-modeling and intrusive MOR methods to build a surrogate model upon a ROM simulation results. It is also possible to couple meta-modeling methods, an example of such coupling is the NiPOD: this method uses POD to reduce the dimensionality of collected simulation results and, in a second step, build a surrogate model for the reduced variables. A drawback of meta-modeling is that the physic of the problem is, in most cases, not taken into account in the surrogate model.

Brief review of Model Order Reduction methods

A large variety of reduction methods exist in the literature, all of which make strong hypothesis on the physical system to reduce its complexity.

Proper Generalized Decomposition

The Proper Generalized Decomposition (PGD) is an a priori model reduction method developed by F. Chinesta [START_REF] Chinesta | The proper generalized decomposition for advanced numerical simulations: a primer[END_REF] and P. Ladevéze (LATIN-PGD) for nonlinear solid mechanics [START_REF] Ladevèze | The LATIN multiscale computational method and the proper generalized decomposition[END_REF]. PGD approximates the solution as a nite sum of separate variables functions. Once the oine procedure complete, PGD allows real-time solving of the problem in the online phase by evaluating the basis functions for dierent parameter values. The method has found applications in a variety of scientic elds such as parametrized heat problem [START_REF] Zlotnik | Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications[END_REF], parametric PDE [START_REF] Modesto | Proper generalized decomposition for parameterized helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation[END_REF], or computational rheology [START_REF] Chinesta | An overview of the proper generalized decomposition with applications in computational rheology[END_REF]. This method is very young, and its eciency strongly depends on the separability of the variables.

This section briey reviews the PGD and discusses further developments needed to apply the method to crash simulation.

Solution approximation

PGD central hypothesis is that the unknown solution u({µ}) of a physical problem, which depends on parameters {µ} = (µ 1 , . . . , µ np ) T , may be approximated with the separate variables function

u({µ}) ≈ ũ(k) ({µ}) = k i=1 np j=1 φ i,j (µ j ), (2.1) 
of size k. Without loss of generality, all variables are considered as parameters.

The PGD proceeds in two main steps: Basis functions (φ i j ) i,j are computed in the oine phase, and the solution (2.1) is approximated for any parameters value in the online phase. The oine phase is generally carried out by the Alternative Directions Scheme (ADS) algorithm reviewed in section 2.1.1. In the online phase, the method allows for a very fast approximation ũ(k) of the solution u in the online phase that may be carried out in real-time on an economic platform (phone, tablet, ... ).

Alternative directions scheme

The trickiest part of the PGD method is the basis functions computation in the oine phase. This task may be carried out by the ADS algorithm, briey presented below, the interested reader is referred [START_REF] Chinesta | The proper generalized decomposition for advanced numerical simulations: a primer[END_REF] where extensive information may be found.

The ADS proceeds by injecting approximation (2.1) into the equation weak form for increasing size k = 1, . . . . First basis functions are initialized as constant functions, unknown functions in subsequent iterations are approached with polynomial functions. At the k th enrichment step (φ i,j ) i,j are known for i ∈ 1, k -1 and j ∈ 1, . . . , n p and each function (φ k,j ) j=1,...,np is iteratively approached with (φ (p) n,j ) p in an inner loop on p. At this step all functions in the current weak form, except φ

(2) k,1 , are known and are integrated. φ

(2) k,1 is then computed by resolving the result- ing equation, using the FEM for example. The k th enrichment step continues with the other basis functions (φ

(2) k,j ) j=2,...,np . (φ (p-1)
k,j ) j are replaced one by one by (φ (p) k,j ) j , obtained by solving one-dimensional problems. Iterations on p in the k th enrichment step stops when Cauchy convergence is reached and (φ (p) k,j ) p does not change anymore, ∀j ∈ 1, k . The same stopping criterion is used on the main loop, when further increasing approximation size k does not increase precision.

Application to car crash nite element simulation

The underlying dependence of PGD on the separability of the input space limits its application in vehicle crash to the separability of the parametric space. In the targeted nonlinear structural dynamics applications, the solution u({x}, t, {µ}) depends on the position {x} = (x, y, z) ⊂ Ω, the time t ∈ [0, T ] and parameters {µ} = (µ 1 , .., µ np ) T ∈ P. When the structure undergoes large deformations, space and time may not be separable, yielding the revised approximation

u({x}, t, {µ}) ≈ ũ(N) ({x}, t, {µ}) = N i=1 φ i ({x}, t) k j=1 ψ i,j (µ j ). (2.2)
This bottleneck may possibly be overcome by methods such as KPCA projecting the parameters space on a larger, possibly innite-dimensional space in order to nd hidden parameters, which will hopefully be separable (D. Gonzalez [START_REF] Gonzalez | kPCA-Based parametric solutions within the PGD framework[END_REF]).

In the ADS procedure, model parameters need to be explicitly expressed in the weak form, to be separately integrated with respect to all parameters. However, shape parameters or nonlinear material laws in specic regions of the structure may be hard to express analytically in the weak form of the equations.

Most importantly, the PGD induces the development of new software, which is beyond the scope of this thesis.

As a consequence, the PGD will not be considered in this work.

Equivalent Static Load Method

The Equivalent Static Load Method (ESLM) approximates the gradient of the function J to be optimized by approximating the primary system with a linear static one on which adjoint-state is performed. This method is described with more precision in [START_REF] Park | Technical overview of the equivalent static loads method for non-linear static response structural optimization[END_REF][START_REF] Genest | Optimisation de forme par gradient en dynamique rapide[END_REF].

ESLM aims to speed-up the parametric shape optimization by giving access to the gradient. Rather than accelerating simulations, ESLM reduces the number of simulations needed in the optimization process.

The semi-discretized equations used in the crash simulation are

[M({µ})]{ü N L (t, {µ})} + {f int ({u(t, {µ})}, t, {µ})} = {f ext (t, {µ})}, (2.3)
where the dependency with respect to the parameters {µ} = (µ 1 , . . . , µ np ) T has been explicitly written. Usual parameters in the targeted application are material properties, shell thicknesses, nodes positions and CAD parameters. The tangent stiness matrix [K L ({u(t, {µ})}, t, {µ})] = ∂{f int } ∂{u} ({u(t, {µ})}, t, {µ}) is dened at the current set of parameters {µ}.

The equivalent linear static problem (2.4)

[K L ({u(t, {µ})}, t, {µ})]{u L ({µ})} = {f eq (t, {µ})} (2.4)
is written at time t. The displacement {u} is conserved at time t in the equivalent linear static problem, explicitly

{f eq (t, {µ}) := [K L ({u(t, {µ})}, t, {µ})]{u(t, {µ})} ⇒ (2.4) {u(t, {µ})} = {u L ({µ})}. (2.5)
[K L ({u(t, {µ})}, t, {µ})] is computed at rst time step and may be regularly updated at subsequent simulation times, which is strongly encouraged for large strain applications.

ESLM Algorithm

The ESLM algorithm 1 generates a parameter sequence ({µ} k ) k converging towards the nal design. 

[M({µ (k) })]{ü N L (t, {µ (k) })} + {f int ({u(t, {µ (k) })}, t, {µ (k) }) = {f ext (t, {µ (k) })}; 5 Evaluate J({µ (k) }, {u({µ (k) }, t)}); 6 Compute {f eq (t, {µ (k) })} = [K L ({µ (k) })]{u({µ (k) }, t)} at dierent

Gradient computation

The gradient is approximated with

dJ N L d{µ} = ∂J N L ∂{µ} + ∂J N L ∂{u} ∂{u} ∂{µ} ≈ ∂J N L ∂{µ} + ∂J L ∂{u L } ∂{u L } ∂{µ} , (2.6) 
where J N L := J({u({µ}, t)}, {µ}) and J L := J({u L ({µ})}, t). The last term in (2.6) is obtained by performing the adjoint-state method on the linear static model.

Rewriting (2.4) into the following state equation

G eq ({u L ({µ})}, {µ}) = [K L ({µ})]{{u L ({µ})} -{f eq (t, {µ})} = 0 leads to dJ N L d{µ} ≈ ∂J N L ∂{µ} + λ T L ∂G eq ∂{µ}
where λ L is the adjoint state obtained by solving the following adjoint-state equation (2.7).

[

∂G eq ∂{µ} ] T λ L = -[ ∂J L ∂{µ} ] T (2.7)
Explanation :

Using the Lagrangian function

L({u L }({µ}), {µ}) = J L ({u L ({µ})}, {µ}) + λ T G eq ({u L ({µ})}, {µ}) with dL d{µ} = ( ∂J L ∂{µ} + λ T L ∂G eq ∂{µ} ) + ( ∂J L ∂{u L } + λ T L ∂G eq ∂{u L } ) ∂{u L } ∂{µ} = 0 (2.8)
and choosing λ L satisfying (2.7) leads to

∂J L ∂{u L } ∂{u L } ∂{µ} = -λ T L ∂Geq ∂{u L } ∂{u L } ∂{µ} . As dGeq d{µ} = ∂Geq ∂{u L } ∂{u L } ∂{µ} + ∂Geq ∂{µ} = 0 one may write ∂J L ∂{u L } ∂{u L } ∂{µ} = λ T L ∂Geq ∂{µ} .

Remarks and method improvement

This method has been successfully applied to car crash shape optimization for nodal intrusion and energy criterion objectives in [START_REF] Park | Technical overview of the equivalent static loads method for non-linear static response structural optimization[END_REF][START_REF] Genest | Optimisation de forme par gradient en dynamique rapide[END_REF], providing sensibility mapping on an example such as hollow beam shape optimization for energetic absorption in a situation of impact with a rigid wall, which is illustrated on Figure 2.1.

In order to get a better gradient approximation and ensure the constraint equality between the analysis and design domains, one may want to use the secant stiness Moreover, the energy absorption is to be considered in vehicle crashworthiness optimization. To this end, nodal positions derivatives with respect to the CAD control points positions need to be computed, and the secant stiness matrix needs to be The main advantage of this method is its facility to deal with optimization based on a large number of parameters and quickly provide a sensitivity mapping that does not need a parametrized CAD (see Figure 2.1 taken from [START_REF] Dedden | Model order reduction using the discrete empirical interpolation method[END_REF]). However, it is essential to notice that the gradient computed using the equivalent static problem is an approximation of the real one. Hence it may not t to a Quasi-Newton gradient optimization method or other methods based on Hessian approximation, leading to a very coarse approximation. Further developments are required to extend the method to multi-objective optimization and criterion using velocity and upper derivatives such as Head Injury Criterion (HIC). The mathematical equivalence between the dynamic and the equivalent static problems has not been demonstrated yet. A criterion showing the loss of proportionality in the loading has to be found in order to determine when the gradient approximation may not be used anymore for the descent direction computation in the optimization phase.

matrix [K S ] in place of [K L ].

Projection-based Reduced Order Modeling

In the Finite Element (FE) method, the discrete solution {u} ∈ R N is expressed as a linear combination of shape functions bounded to a single node of the mesh and locally dened in each element of the model. 

({φ i }) 1≤i≤k ⊂ R N , {u(t)} ≈ {ũ(t)} = k i=1 α i (t){φ i }, ∀t ∈ [0, T ], (2.9) 
making the hypothesis that the Full Order Model (FOM) solution {u} may be correctly approximated with a small number k of RB functions with respect to the original model size N , and thus reducing the number of unknowns.

Numerous methods address the computation of the RB, mostly based on dimensionality reduction, or low-rank approximation, methods, acting a posteriori on gathered training data. The Dynamic Mode Decomposition (DMD) [START_REF] Rowley | Spectral analysis of nonlinear ows[END_REF][START_REF] Peter | Dynamic mode decomposition of numerical and experimental data[END_REF][START_REF] Kevin K Chen | Variants of dynamic mode decomposition: boundary condition, koopman, and fourier analyses[END_REF][START_REF] Matthew O Williams | A data driven approximation of the koopman operator: Extending dynamic mode decomposition[END_REF][START_REF] Alla | Nonlinear model order reduction via dynamic mode decomposition[END_REF] uses transient data to approximate the modes and frequencies associated with the Koopman operator. The Koopman operator [START_REF] Bernard O Koopman | Hamiltonian systems and transformation in hilbert space[END_REF] describes the dynamical evolution of observables in a physical system. A RB is formed using approximated modes.

The Proper Orthogonal decomposition (POD), also known as Principal Component Analysis (PCA), computes the vector space of a given dimension that best approximates a set of observations. A basis of this space is used to form an orthogonal RB.

Several variations of this method, such as the Balanced POD (BPOD), the Smooth Orthogonal Decomposition (SOD), have been proposed.

Dimensionality reduction methods

A non-exhaustive list of dimensionality reduction methods used in a posteriori MOR methods is presented in this section.

The singular value decomposition

A popular method used in building a low-rank approximation of the snapshot matrix [Φ] and [Ψ] are both orthonormal matrices. Unlike the regular SVD, in which N left singular vectors are computed in [Φ], the thin SVD only computes m left singular vectors. Approximating a data set of size n s , the regular SVD entails unnecessary computations if n s > N . Thus, the thin SVD is preferred for data approximation.

In the manuscript, what is referred to as SVD is the thin SVD.

The RB [Φ 

(k) ] = [{φ 1 }, {φ 2 }, . . . , {φ k }] ∈ R N ×k
[S] -[Φ (k) ][Φ (k) ] T [S] F [S] F = min [M ]∈O(N,k) { [S] -[M ][M ] T [S] F [S] F }, (2.11) 
with 

[ • ] F = i,j [ • ] 2 ij the Frobenius norm and O(N, k) := {[M ] ∈ R N ×k | [M ] T [M ] = [Id]}
s 2 j = [S] -[Φ (k) ][Φ (k) ] T [S] F [S] F , (2.12) 
making the truncation criterion easy to use in practice.

Variations of the singular value decomposition

The SVD, presented in section 2.1.3, is based on the eigenvalue decomposition of

the covariance matrix [Θ] = [S] T [S]
. Variations of the SVD consist in modifying the scalar product used in the computation of these covariance matrices. In its unaltered version, the coecient (i, j) of the covariance matrix is computed using the scalar product associated with the L 2 -norm:

[Θ] i,j = ([S] T [S]) i,j = {u i }, {u j } L 2 (R N ) := N k=1 {u i } k {u j } k , (2.13) 
With • , • L 2 (R N ) the scalar product in L 2 (R N
), the space of square-integrable functions. A rst variation consists in replacing the scalar product in L 2 (R N ) with the scalar product in H 1 (R N )

x, y

H 1 (R N ) := x, y L 2 (R N ) + ∇x, ∇y L 2 (R N ) , ∀(x, y) ∈ R N × R N .
(2.14)

Another possible variation of the SVD is the Kernel Principal Component Analysis (KPCA) presented hereafter.

Kernel principal component analysis

KPCA replaces the scalar product used in the SVD with a reproducing kernel inducing a mapping function that implicitly projects the data set in a vectorial space of higher, possibly innite, dimension D in which the covariance matrix is decomposed.

Reproducing kernel:

κ : R N × R N → R is a reproducing kernel if: κ({x}, • ) ∈ L 2 (R N ), ∀{x} ∈ R N f ( • ), κ({x}, • ) L 2 (R N ) = f ({x}), ∀f ∈ L 2 (R N ), ∀{x} ∈ R N
Mercer's theorem : Let κ(., .) a reproducing kernel. If κ is continuous, symmetric and positive denite, then it induces a mapping θ : R N → R D such that θ({x}), θ({y}) L 2 (R D ) = κ({x}, {y}) for all ({x}, {y}) ∈ R N × R N The Mercer's theorem is the cornerstone of the KPCA as it allows to computes the covariance matrix of the data set image by the mapping θ in R D , which may be innite-dimensional, without knowing the mapping explicitly. Explicitly: [Θ] i,j = κ({u i }, {u j }), ∀(i, j) ∈ 1, n s . The idea behind KPCA is that the data set may not be separable in R N but in the higher-dimensional space R D . The usual kernel basis functions are the following.

• κ({x}, {y}) = exp(-||{x}-{y}|| 2 2ω ), ∀({x}, {y}) ∈ R n 2 , ω ∈ R + , radial kernel • κ({x}, {y}) = exp(-r||{x} -{y}|| 2 ), ∀({x}, {y}) ∈ R n 2 , r ∈ R + , extended radial kernel • κ({x}, {y}) = (1 + {x}, {y} ) c , ∀({x}, {y}) ∈ R n 2 , c ∈ N * , polynomial kernel • κ({x}, {y}) = tanh( {x}, {y} + b), ∀({x}, {y}) ∈ R n 2 , b ∈ R, sigmoid ker- nel
The mapping associated with a kernel basis function is closely related to its Taylor expansion. Several variations of this method may be found in the literature. The interested reader may refer to [START_REF] Jael | Moving window KPCA with reduced complexity for nonlinear dynamic process monitoring[END_REF] for more details on the KPCA and applications to parameter space reduction.

Hyper-reduction

PROM applications to nonlinear problems generally yield a computational overhead in evaluating nonlinear internal variables. As a matter of fact, those variables may not be linearly projected on the reduced space of the PROM method. The full-scale solution's approximation needs to be reconstructed ahead of each nonlinear internal variables computation, which is then projected back on the reduced model, inducing more computations with respect to the unreduced model. Dierent HR methods have been being developed over the last two decades [START_REF] Hernandez | Dimensional hyper-reduction of nonlinear nite element models via empirical cubature[END_REF][START_REF] Ryckelynck | Multidimensional a priori hyper-reduction of mechanical models involving internal variables[END_REF][START_REF] Farhat | Dimensional reduction of nonlinear nite element dynamic models with nite rotations and energy-based mesh sampling and weighting for computational eciency[END_REF] to circumvent this bottleneck, together with alternatives such as the Discrete Empirical Interpolation (DEIM) [START_REF] Chaturantabut | Nonlinear Model reduction via Discrete Empirical Interpolation[END_REF][START_REF] Dedden | Model order reduction using the discrete empirical interpolation method[END_REF][START_REF] Tiso | A modied discrete empirical interpolation method for reducing non-linear structural nite element models[END_REF] and the magic points [START_REF] Maday | A general, multipurpose interpolation procedure: the magic points[END_REF].

These methods share the same philosophy of computing the minimal required information of the full-scale internal variables while ensuring a good approximation of it once projected on the reduced space of the PROM method.

Summary

MOR

Non -instrusive

Ni-POD [START_REF] Xiao | Nonintrusive reduced order modelling of the navierstokes equations[END_REF] ReCUR [START_REF] Le Guennec | A parametric and non-intrusive reduced order model of car crash simulation[END_REF] Kriging [START_REF] Cressie | Spatial prediction and ordinary kriging[END_REF] RBF [START_REF] Fang | Global response approcimation with radial basis functions[END_REF] Intrusive PGD [START_REF] Chinesta | The proper generalized decomposition for advanced numerical simulations: a primer[END_REF] ESLM [START_REF] Genest | Optimisation de forme par gradient en dynamique rapide[END_REF] PROM DEIM [START_REF] Dedden | Model order reduction using the discrete empirical interpolation method[END_REF] 

Finite element formulation of the problem

In nonlinear structural dynamics, the semi-discretized FE formulation takes the following form

[M]{ü(t)} + {f int ({u(t)}, t)} = {f ext (t)}, (2.15) 
where {u(t)} ∈ R N is the displacement unknown at time t ∈ [0, T ] and consists of a vector of nodal displacements at each node and in each direction. N denotes the number of degrees of freedom (DoF).

[M] ∈ R N ×N is symmetric positive denite the mass matrix.

In the MOR eld, equations (2.15) are often referred to as the Full Order Model (FOM). The considered FOM may depend on n p parameters (µ i ) 1≤i≤np . In vehicle crashworthiness optimization, those parameters concern material properties and shell thicknesses. However, for simplicity, the dependency to those parameters will often be omitted.

A posteriori model order reduction methods

The POD and ECSW are a posteriori methods which rely on observations, called snapshots, taken from previous full-scale simulations to train a ROM used online to reduce the computation time of subsequent simulations. The global workow for a posteriori methods is sketched in Figure 2.2.

In the literature, these methods are also referred to as Oine/Online methods. They proceed in two main phases: the ROM is computed in the oine training phase and used online to accelerate computations.

In the oine phase, snapshots are gathered and post-processed to obtain a ROM consisting of a reduced representation of the collected data. While these snapshots may originate from any FE model or experiment, it is essential that they are all expressed on the same mesh ahead of the ROM training step.

The ROM is then used online to reduce the complexity of one or multiple FE models. Approximation quality depends both on the collected data relevancy regarding the target online application and methods used in the ROM training step.

Computational speed-up of the reduced model is the ratio between the FOM and the ROM computation times. Nevertheless, the oine observation and training steps induce a computational overhead that needs to be compensated online. origin depends on the process in which the POD method is used. Nevertheless, it is mandatory for snapshots to be dened on the mesh of the model to reduce.

The RB is obtained in the oine training phase computing a low-rank representation of previously collected snapshots.

[S] is approximated up to a certain precision rb with the minimal number of basis vectors with the SVD. Variations of the SVD and alternative matrix approximation methods may be used in place of the SVD, those methods are discussed in section 2.1.4. RB functions and associated coecients are arranged in the RB [Φ (k) ] = [{φ 1 }, . . . , {φ k }] ∈ R N ×k and the vector of unknowns {α} = (α 1 , . . . , α k ) T , respectively, yielding the condensed form of (2.9) ) ]{α(t)}.

{u(t)} ≈ {ũ(t)} = [Φ (k
(2.16)

Injecting approximation (2.16) in the FOM (2.15) and a using a Galerkin projection on the reduced space spanned by the columns of [Φ (k) ] yields the so called Reduced Order Model solved in the online reduction phase

[Φ (k) ] T [M][Φ (k) ]{α(t)} + [Φ (k) ] T {f int ([Φ (k) ]{α(t)}, t)} = [Φ (k) ] T {f ext (t)}.
(2.17) Introducing notations (2.17) in the more convenient way

• [ M] = [Φ (k) ] T [M][Φ (k) ] ∈ R k×k • { fint ({α(t)}, t)} = [Φ (k) ] T {f int ([Φ (k) ]{α(t)}, t)} ∈ R k • { fext (t)} = [Φ (k) ] T {f ext (t)} ∈ R k allows to rewrite
[ M]{α(t)} + { fint ({α(t)}, t)} = { fext (t)}. (2.18)
Important remarks on model (2.17) concern the stable time step and overcost in nonlinear applications using a lumped mass approach.

Stable time step

Projecting equations (2.15) using an orthonormal RB yields larger time step in model (2.18) when computed with the CFL condition. This is due to the spectral radius of [ K] being smaller or equal to that of [K]. The interested reader may refer to [START_REF] Bach | Stability conditions for the explicit integration of projection based nonlinear reduced-order and hyper reduced structural mechanics nite element models[END_REF] for details and mathematical proof.

POD Computational overhead in nonlinear explicit applications

In the online reduction phase, when the nonlinear structural dynamics FE solver uses explicit time integration, POD generally yields a computational overhead for two reasons.

In nonlinear structural dynamics industrial FE solvers, the lumped mass approach yields a diagonal mass matrix [M] and no matrix inversion is needed in (2.15).

Projecting the model on the reduced space yields a fully populated reduced mass matrix [ M] in (2.18) which needs to be inverted. A solution is to use the metric associated with the symmetric positive denite mass matrix [M] in the SVD, as explained in section 2.2.3. Also, the need to evaluate high dimensional approximations, turns out to be quite expensive in the case of nonlinear internal variables. Even though (2.18) unknown is {α}, it is necessary to evaluate {ũ} = [Φ (k) ]{α} to compute the internal forces at each time step. Depending on the complexity of the model it may as well be necessary to compute the high dimensional state variables approximations for contact interfaces, kinematic conditions, or outputs.

Symmetric positive-denite matrix metric

A simplication in the POD framework consists in using the metric implied by the mass matrix [M] of the FOM in the construction of the RB, resulting in the following identity:

[ M] = [Φ (k) ] T [M][Φ (k) ] = [Id k ]
with [Id k ] the identity matrix. The same goes for any columns selection of [Φ]. This is achieved by the following steps:

• premultiply all observation with [M]

1 2 [ S] = [M] 1 2 [S],
• compute the singular value decomposition of [ S]

[ S] = [ Ψ]diag({s})[ Ψ] T , • multiply the resulting subspace with [M] -1 2 [Φ] = [M] -1 2 [ Φ], {s} = {s}, [Ψ] = [ Ψ].
This way the following identity is fullled

[Φ] T [M][Φ] = [ Φ] T [M] -1 2 [M][M] -1 2 [ Φ] = [Id].
Finally, the semi-discretized ROM equation (2.18) rewrites

{α(t)} = [Φ] T ({ fext (t)} -{ fint ({α(t)}, t)}). (2.19) 
When using such a trick, there are two possibilities in writing the resulting reduced order approximation {ũ} ∈ R N of a state variable {u} ∈ R N . One possibility is to use the orthogonal projection and write 

{u} ≈ {ũ} = [Φ]([Φ] T [Φ]) -1 [Φ]
{u} ≈ {ũ} = [Φ][Φ] T [M]{u}

Energy Conserving Sampling and Weighting

Hyper-reduction is very eective in nonlinear structural dynamics, where internal forces evaluation with the FEM represents more than half of the total computation time. Focus is placed on the Energy Conserving Sampling and Weighting (ECSW)

HR method [START_REF] Farhat | Dimensional reduction of nonlinear nite element dynamic models with nite rotations and energy-based mesh sampling and weighting for computational eciency[END_REF], chosen for its stability properties.

The Galerkin method used in FE analysis in the divide and conquer spirit suc- 

cessively
[G] =      G f (t 1 ) G f (t 2 ) . . . G f (t ns )      ∈ R k * ns×ne , (2.23) 
where

[G f (t i )] = [Φ T ][{f 1 int (t i )}, {f 2 int (t i )}, . . . , {f ne int (t i )}] ∈ R k×ne , ∀i ∈ 1, n s . (2.24)
Using this notations, the non-reduced assembly process (2.20) 

writes {b} = [G]{1 ne } ∈ R k * ns , (2.25) 
with {ζ * } = {1 ne } corresponding to the selection of all elements with integration weights equal to 1 and {b} ∈ R k * ns is the 'exact' projection of all internal forces snapshots on [Φ], used as reference to train the weights. Finally, given a targeted precision τ , the optimization problem of the hyper-reduced integration scheme is stated as

       {ζ * } = argmin {ζ}∈A ECSW ( {ζ} 0 ) A ECSW = {{ζ} ∈ R ne ≥0 | [G]{ζ} -{b} 2 {b} 2 ≤ τ } (2.26)
The threshold τ on the approximation precision constraint is imposed in the admissible space A ECSW alongside weights positivity, • 0 denoting the zero-norm associating the number of its non-zero coecients to a vector, equivalent to the number of selected nite elements, to be minimized. However, the zero norm is not dierentiable, making (2. The following bottlenecks to the robust application of PROM and HR to industrial vehicle crashworthiness optimization are identied :

• The algorithmic complexity associated with the training phase skyrockets with increasing training data size. In order to achieve global speed-up, the oine computational eort needs to be controlled.

• The ROM approximation quality is assessed in the oine training phase using error indicators on the training data reconstruction. In practice, these error indicators are insucient to assess the online approximation quality of a ROM.

• Compatibility issues arise between the HRPOD options, optimization, and parallelization specic to industrial solvers. Some of these options, such as weld spots, require full-scale computations of internal forces. Optimization and parallelization of the code make it challenging to access unassembled internal forces mandatory for HR training.

• None of the reduction methods reviewed in this chapter permit to reduce the contact formulation used in crash models, signicantly limiting the computational speed-up on some complex models involving many contacts.

Int the present work, the ROM oine training phase is evaluated using an online validation phase ahead of subsequent use of the resulting ROM in the online exploitation phase, as illustrated in Figure 2.3. This approach is used in the following three contributions of this thesis, addressing the identied bottlenecks of the HRPOD oine training phase in applications to large-scale nonlinear structural dynamics models.

'On-the-y' snapshots selection (Chapter 3)

Over the last few decades, Reduced Order Modeling (ROM) has slowly but surely inched towards widespread acceptance in computational mechanics, as well as other simulation-based elds. These methods rely on the construction of an appropriate Reduced Basis (RB), typically based on a low-rank representation of a set of observations made using full-eld simulations. The RB is usually obtained through truncated Singular Value Decomposition (SVD). However, SVD encounters limitations when dealing with a large number of high-dimensional observations, requiring the development of alternatives such as the incremental SVD. The key advantages of this approach are a reduced computational complexity and memory requirement compared to a regular single-pass spectral decomposition. These are achieved by using observations to enrich the low-rank representation as and when available, to avoid having to store them. In addition, the RB may be truncated 'on-the-y' to reduce the size of the matrices involved as much as possible and, by doing so, avoid the quadratic scale-up in computational eort with the number of observations. This chapter presents a new error estimator for the incremental SVD, which is shown to be an upper bound for the approximation error, and proposes an algorithm to perform the incremental SVD truncation and observation selection on-the-y, instead of tuning a prohibitively large number of frequently hard to set parameters.

The approach, implemented in [3], is applied to the Finite Element (FE) model simulation of impact on a Taylor beam. 

MIP Hyper-reduction (Chapter 5)

The hyper-reduction problem for reduced-order internal forces evaluation in transient, nonlinear, explicit dynamics is reformulated, employing Mixed-Integer Programming (MIP), taking into account consistency constraints. Constraint reduction is introduced. Resulting quadratures, as well as reduced runs, are compared against the standard Energy Conserving Sampling and Weighting (ECSW) scheme, on a reference example. Rather than searching for optimal performance, the goal is to provide a benchmark solution, within a custom, Projected Reduced-Order Method (PROM) adaptation of an industrial-level legacy nite element code [3], for evaluation of heuristic hyper-reduction formulations along with a non-greedy approach.

Key Words : Finite Element Method, Model Order Reduction, crashworthiness optimization, Hyper Reduction, Internal Forces, SNNLS, LASSO, MIP.

2.4

Organization of the manuscript a PROM that traces its origins to statistical data analysis [START_REF] Dd | Statistics in function space[END_REF] and has found extensive application in turbulent ow modeling [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. i. coherent structures[END_REF][START_REF] Berkooz | The proper orthogonal decomposition in the analysis of turbulent ows[END_REF][START_REF] Holmes | Turbulence, coherent structures, dynamical systems and symmetry[END_REF][START_REF] Xiao | Model reduction by CPOD and kriging[END_REF] as well as in various other elds [START_REF] Raghavan | Asynchronous evolutionary shape optimization based on high-quality surrogates: application to an air-conditioning duct[END_REF][START_REF] Madra | Diffuse manifold learning of the geometry of woven reinforcements in composites[END_REF][START_REF] Meng | On the study of mystical materials identied by indentation on power law and voce hardening solids[END_REF][START_REF] Meng | Nonlinear shape-manifold learning approach: concepts, tools and applications[END_REF][START_REF] Balaji Raghavan | Towards a space reduction approach for ecient structural shape optimization[END_REF][START_REF] Balaji Raghavan | A bi-level meta-modeling approach for structural optimization using modied POD bases and diuse approximation[END_REF][START_REF] Balaji Raghavan | Implicit constraint handling for shape optimisation with POD-morphing[END_REF]. POD projects the model onto a low-rank data representation, yielding a ROM with fewer degrees of freedom. When applied to nonlinear FE models, POD is usually coupled with a method that approximates the projection of internal variables, e.g., Discrete Empirical Interpolation (DEIM) [START_REF] Chaturantabut | Nonlinear Model reduction via Discrete Empirical Interpolation[END_REF][START_REF] Dedden | Model order reduction using the discrete empirical interpolation method[END_REF][START_REF] Tiso | A modied discrete empirical interpolation method for reducing non-linear structural nite element models[END_REF] or Hyper-Reduction (HR) [START_REF] Hernandez | Dimensional hyper-reduction of nonlinear nite element models via empirical cubature[END_REF][START_REF] Ryckelynck | Multidimensional a priori hyper-reduction of mechanical models involving internal variables[END_REF][START_REF] Farhat | Dimensional reduction of nonlinear nite element dynamic models with nite rotations and energy-based mesh sampling and weighting for computational eciency[END_REF].

POD builds the RB during the oine training phase through Singular Value Decomposition (SVD) of previously collected solution vector observations, called snapshots. Since the ultimate goal is a reduction in overall computation time, one needs to limit the computational complexity and memory requirements of the ofine phase, since SVD, applied to a large-scale FE model, could potentially end up either expensive or infeasible. To tackle this issue, the incremental SVD ( [START_REF] Brand | Incremental singular value decomposition of uncertain data with missing values[END_REF]) has recently emerged within the POD framework. In this method initially developed for streaming data analysis, SVD subsequently updates, using a mathematical identity formally presented in section 3.1, avoiding expensive data manipulation since snapshots are used as and when available.

The highlights of the algorithm presented in [START_REF] Oxberry | Limitedmemory adaptive snapshot selection for proper orthogonal decomposition[END_REF] are: adaptive, on-the-y snapshot selection, and on-the-y truncation. Adaptive snapshot selection identies the simulation times at which observations must be made for the rst-order dierential equation solution. On-the-y snapshot selection pre-evaluates the (potential) contribution of a snapshot before actually updating the RB, while on-the-y truncation limits the size of the RB during subsequent enrichments. Both features enable a reduction in computational eort by avoiding the treatment of redundant observations, thus allowing the algorithm to work on smaller matrices, as discussed in detail in section 3.1.2.

However, the addition of these two features introduces new diculties: rstly, two problem-dependent tolerances need to be set, and secondly, entailed loss of infor- for the POD. An upper error bound for the incremental SVD method (calculated using a new weighted inner product) has been developed in [START_REF] Fareed | Error analysis of an incremental POD algorithm for PDE simulation data[END_REF], where the authors proved that the incremental SVD yields the exact SVD of the original data set. This error bound is incrementally computed by keeping track of singular values missed due to 'on-the-y' calculation of the RB.

Present work, rst presented by the author at the 6 th European Conference on Computational Mechanics (ECCM6) in Glasgow, UK [START_REF] Phalippou | on the y' snapshot selection for hyper-reduced proper orthogonal decomposition with application to nonlinear dynamic[END_REF], builds a new upper bound estimator of the singular values truncation error using the same incremented variables. The originality consists in using the proposed incremented error estimator to monitor both 'on-the-y' truncation and snapshot selection, as opposed to the problem-dependent tolerances in the traditional approach. The result is a relatively straightforward incremental SVD with nearly optimal 'on-the-y' truncation and snapshot selection. The chapter is organized in the following manner. Section 3.1 presents a comprehensive review of the state-of-the-art incremental SVD. Section 3.2 presents the error estimator developed in this work. The algorithm is discussed in Section 3.3, before moving on to validation of the approach in Section 3.4, where a Taylor beam impact FE model is used to test the proposed method against the traditional incremental SVD, as well as the single-pass SVD. To evaluate the ecacy of our approach, we compare computational time, RB performances during the online reduction phase as well as the eective precision of the data approximation.

Incremental SVD

The singular value decomposition is a generalization of the eigenvalue decomposition for non-square matrices. Given a matrix [S] ∈ R N ×ns the singular value decomposition is given by

[S] = [Φ][diag({s})][Ψ] T (3.1)
In the regular SVD [Φ] and [Ψ] are both square matrices and [diag({s})] is a matrix with zeros and dimension N × m. In the thin SVD, on the other hand, [diag({s})] is square with size m = min(N, n s ). The reason being that the dimension of the space spanned by the RB may neither exceed the number of degrees of freedom in the Full Order Model (FOM) nor the number of snapshots. Hence a regular SVD may result in unnecessary computations. Thus [Φ] ∈ R N ×m and [Ψ] ∈ R ns×m are orthonormal matrices and {s} = (s 1 , s 2 , . . . , s m ) T ∈ R m is the vector of singular values in descending order. Note that in our work the SVD refers to the thin SVD.

[Φ] is the matrix containing the main features of [S] in decreasing order of importance. In the POD framework, if [S] is a matrix of observations represented by column vectors, The complete snapshot matrix is

[S] = [{u 1 }, ..., {u ns }] ∈ R N ×ns , (3.2) the RB [Φ k ] of size k is obtained by taking the rst k columns of [Φ]
. This RB, by construction, spans the vector space of dimension k that best approximates the data, in the sense that it minimizes the projection error given the desired precision

rb ∈ [0, 1], k = argmin l∈N { l sv ≤ rb } (3.3) l sv = || [S] -[Φ l ][Φ l ] T [S] || F || [S] || F = m i=l+1 s 2 i m j=1 s 2 j (3.4) with || [ • ] || F = i,j [ • ] 2 ij being the Frobenius norm of a matrix.
When POD is applied to FE models, the snapshot matrix may become prohibitively large. To avoid storing [S], the incremental SVD approach updates the RB 'on-the-y', as and when a new observation is available, which also avoids the need to store snapshots. In addition, truncation could be performed in-between the updates, thus keeping the size of the RB reasonably small while also making room for a reduction in the number of oating point operations needed.

In subsection 3.1.1 we present the mathematical identity that allows the incremental computation of the SVD, while 'on-the-y' snapshot selection and truncation are presented in subsection 3.1.2.

Incremental enrichment

The incremental SVD is a particular case of the low-rank modication (M. Brand [START_REF] Brand | Fast low-rank modications of the thin singular value decomposition[END_REF]) which, given the SVD of a matrix [S], computes the SVD of the updated matrix As mentioned in the previous section, the incremental SVD [START_REF] Brand | Fast low-rank modications of the thin singular value decomposition[END_REF] computes the decomposition (3.1) of [S] without storing the entire matrix, by updating the RB as and when a new observation is available.

[S ] = [[S], {0 N }] + {a}{b} T , (3.5 
The snapshot matrix at the i th iteration is given by

[S (i) ] = [{u 1 }, ..., {u i }] ∈ R N ×i .
The same matrix at the following iteration with one more observation added to it may be written:

[S (i+1) ] = [S (i) , {u i+1 }] ∈ R N ×(i+1) . (3.6) 
The decomposition of [S (i) ] is given by:

[S (i) ] = [Φ (i) ][diag({s (i) })][Ψ (i) ] T with • [Φ (i) ] ∈ R N ×k an orthonormal matrix (i.e. [Φ (i) ] T [Φ (i) ] = [Id] k×k ) • [Ψ (i) ] ∈ R i×k an orthonormal matrix (i.e. [Ψ (i) ] T [Ψ (i) ] = [Id] k×k ) • {s (i) } = (s (i) 1 , . . . , s (i) k ) T ∈ R i with s (i) j = 0, ∀j ∈ 1, k
At the (i + 1) th iteration the SVD of [S (i) ] is known as well as N and k. Given

a new observation {u i+1 } ∈ R N , the incremental SVD updates the decomposition of [S (i) ] according to [S (i+1) ] = [Φ (i+1) ][diag({s (i+1) })][Ψ (i+1) ] T .
Here the following identity [START_REF] Brand | Incremental singular value decomposition of uncertain data with missing values[END_REF] is used:

[S (i) ], {u i+1 } = [Φ (i) ][diag({s (i) })][Ψ (i) ] T , {u i+1 } = [Φ (i) ], {ξ} [diag({s (i) })] [Φ (i) T ]{u i+1 } {0 k } T α := [Q] [Ψ (i) ] {0 i } {0 k } T 1 T , (3.7) 
where

• α = {u i+1 } -[Φ (i) ][Φ (i) ] T {u i+1 } 2 • {ξ} = {u i+1 }-[Φ (i) ][Φ (i) ] T {u i+1 } {u i+1 }-[Φ (i) ][Φ (i) ] T {u i+1 } . Note, that [Φ (i) ], {ξ} and [Ψ (i) ] {0 i } {0 k } T 1
are orthonormal matrices. The main advantage of the incremental SVD lies in the economical diagonalization of the matrix

[Q]. [Q] = [Φ ][diag({s })][Ψ ] T (3.8) yielding [S (i+1) ] = [Φ (i+1) ][diag({s (i+1) })][Ψ (i+1) ] T where • [Φ (i+1) ] = [Φ (i) ], {ξ} [Φ ] • {s (i+1) } = {s } • [Ψ (i+1) ] = [Ψ (i) ] {0 i } {0 k } T 1 [Ψ ] [Φ (i+1) ] ∈ R N ×k and [Ψ (i+1) ] ∈ R (i+1
)×k are orthonormal matrices by construction, being products of orthonormal matrices each. Thus, the newly formed decomposition of [S (i+1) ] is in fact its SVD.

Savings in computational resources (compared to the traditional SVD) occur

during the bi-diagonalization of [Q],
where simplications are possible due to its particular form. Note that [Q] ∈ R k×k is a small half-arrowhead matrix, meaning it is nearly diagonal except for its last column, which renders the SVD of [Q], which is achieved by bi-diagonalization and the Golub-Kahan algorithm [START_REF] Golub | Matrix Computations Third Edition[END_REF], computationnally inexpensive.

'On-the-y' snapshot selection and truncation

The primary motivation for using the incremental SVD is to avoid the manipulation of a large amount of possibly redundant data while building a low-rank approximation. The two parameters svd and k max of this method rst detailed in [START_REF] Oxberry | Limitedmemory adaptive snapshot selection for proper orthogonal decomposition[END_REF] allow for these savings:

• At the beginning of the i + 1 th iteration, the new observation {u i+1 } may be rejected, if already well represented by the RB [Φ (i) ], so as to avoid unnecessary computations on redundant data. In the state-of-the-art algorithm [START_REF] Brand | Fast low-rank modications of the thin singular value decomposition[END_REF], this is controlled by the parameter svd and the new observation is skipped if

{u i+1 }- [Φ (i) ][Φ (i) ] T {u i+1 } 2 2 ≤ svd .
• At the end of an iteration, [S (i+1) ] decomposition (3.7) may be truncated to keep it as small as possible, accelerating subsequent iterations. Routinely [START_REF] Oxberry | Limitedmemory adaptive snapshot selection for proper orthogonal decomposition[END_REF],

the basis is truncated 'on-the-y' when its size exceeds a pre-determined value given by the parameter k max .

Tuning svd and k max enables signicant computational savings, compared with a single-pass SVD. When the single-pass SVD is used in the POD framework to build a RB, the right singular space [Ψ] is generally not used. Such an SVD of a matrix

[S] ∈ R N ×ns will need O(N m 2 ) oating point operations and O(2mN + m) memory.

In the incremental SVD, if the RB's size does not exceed k, the method would only require O(mN k) operations and O(N k + k) memory. In applications, the size k of the RB is very small in comparison with the FOM's size N and the number of observations n s . The fundamental hypothesis of MOR is that the dimension of the underlying manifold, where the discretized solution of a computational mechanics problem lives and evolves, is small compared to the number of degrees of freedom. Therefore, incremental SVD is very promising for MOR. Finally, 'on-the-y'

snapshot selection would prevent computation on redundant data and thus limit the number of snapshots n s processed, reducing the complexity as shown.

However, these two features also induce loss of information about the singular values rendering the exact nal approximation error (3.4) inaccessible. An estimator for this error is developed and tested hereafter.

State-of-the-art incremental SVD algorithm

The state-of-the-art incremental SVD algorithm 3 as originally presented in [START_REF] Oxberry | Limitedmemory adaptive snapshot selection for proper orthogonal decomposition[END_REF] is presented in this section.

Instructions in red concern computation of the left singular subspace used in 'a posteriori' centering.

Truncation (steps 16 to 21 of algorithm 3) has been changed with respect to the original algorithm [START_REF] Oxberry | Limitedmemory adaptive snapshot selection for proper orthogonal decomposition[END_REF] prescribing additional rotations of the right and left subspaces. However, there is a mismatch between the matrices dimensions in the rotation formula and this step has been removed in our interpretation of the stateof-the-art algorithm.

State-of-the-art incremental SVD test

First tests of the state-of-the-art incremental SVD are presented in this section.

The following analytical snapshot matrix is used to provide an easy to reproduce example of it.

[

S] ∈ R N ×ns | [S] ij = i + j + j 2 + sin(mod(j, 10)) | i -j | +1 , i ∈ 1, N , j ∈ 1, n s , (3.9) 
where mod(a, b) denotes the remainder of the euclidean division of a by b. Expression (3.9) of the analytical snapshot matrix allow for a fast decrease of it's singular values while ensuring linearly independent columns, which is in agreement with the hypothesis that the dimension of the FE model is larger than the underlying manifold in which evolves the unknown quantity of interest.

In the following test, snapshot matrix dimensions are set to N = 8000 and n s = 200. Dierent RBs are computed using the snapshot matrix and the state-ofthe-art incremental SVD for varying parameters svd and k max . Input:

[Φ], {s}, [Ψ], {u i } Output: [Φ], {s}, [Ψ] 1 if (size([Φ], 2) == 0) then 2 if ( {u i } 2 > svd ) then 3 {s} = {u i } 2 4 [Φ] = {u i } {u i } 2 5 [Ψ] = 1 6 end 7 else 8 p = {u i } -[Φ][Φ] T {u i } 2 9 if (p > svd ) then [Q] = [diag({s})] [Φ] T {u i } 0 p [[Φ ], {s }, [Ψ ]] = SVD([Q])
% RB is expanded

[Φ] = [[Φ], {u i }-[Φ][Φ] T {u i } {u i }-[Φ][Φ] T {u i } 2 ][Φ ] {s} = {s } [Ψ] = [Ψ] 0 0 1 [Ψ ] % RB is truncated if (size([Φ], 2) > k max ) then [Φ] = [Φ] :,1:kmax {s} = {s} 1:kmax [Ψ] = [Ψ] :,1:kmax end if ([Φ] T :,1 [Φ] :,end > orth )
then % RB has lost numerical orthogonality and is re-orthonormalized svd and k max parameters both have a strong inuence on the computation time and resulting RB training data approximation error. svd enables computational savings by only selecting badly represented observations for enrichment while k max control the size of the RB and enables computational savings by limiting matrices sizes in subsequent enrichment. Those two parameters also limit the resulting RB approximation quality. On this particular example, if ones want to build a RB that approximates the snapshot matrix at a precision of 10 -2 , computation with the state-of-the-art incremental SVD and parameters svd = 10 -2 and k max = 10 will be one order of magnitude faster than using the single-pass SVD. Moreover, using the state-of-the-art incremental SVD prevents expensive data manipulations induced by the storage of a potentialy large snapshot matrix. Hence this method has the potential to greatly reduce CPU time needed in the computation of a RB.

[Φ] = MGS([Φ]) end end end
Nevertheless, computation times may skyrocket or, on the contrary, resulting RB may be a very poor approximation of the training data if the methods' parameters are not carefully chosen.

Two major issues arise in the practical use of the state-of-the-art incremental SVD.

• First, the snapshot matrix is not kept in memory and the produced RB training data approximation error (3.4) is unknown.

• Second, given a targeted training data approximation error, the optimal values for parameters k max and svd are unknown as they depend on the data nature (dimensionality and magnitude) and the method computation time may skyrocket if those two parameters are poorly set.

These two are overcame by the proposed error estimator presented in this chapter and used in place of k max and svd .

Note on a posteriori centering

Before presenting the modications brought to the incremental SVD, a quick note is given regarding the possibility to center the training data a posteriori of the algorithm. In some POD applications, the matrix [S] is centered ahead of applying the SVD to it. This is mainly motivated by the fact that the SVD, as explained in section 2.1.4, operates on the matrix [Θ] = [S] T [S] which may be interpreted as the training data covariance matrix in the event that [S] is centered.

In [START_REF] Oxberry | Limitedmemory adaptive snapshot selection for proper orthogonal decomposition[END_REF], the author claims that the snapshot matrix may be centered a posteriori of the RB computation with the incremental SVD using equation 3.5 with {a} = {ū} = 1 ns [S]{1 ns } the snapshots average and {b} = {1 ns }, yielding

[S ] = [S] - 1 n s [S]{1 ns }{1 ns } T (3.10) = [S] -{ū}{1 ns } T . (3.11)
From our experience, a posteriori centering is not compatible with 'on-the-y' snapshots selection and truncation. When using those options the incremental SVD computes a low-rank representation which does not allow an exact reconstruction of

[S], preventing an exact update.

The snapshots' average may be computed during the subsequent passes through the incremental SVD, nevertheless, left singular vectors are truncated 'on-the-y' based on the decomposition of the un-centered training data. Hence, truncated singular vectors are not the same if the snapshot matrix is centered a posteriori or from the start.

Another issue with a posteriori centering lies in the need to compute the right singular vectors. Those vector are computed by the red instructions in algorithm 3

and their complexity scales with the number of snapshots rather than the RB size as [Ψ] is of dimensions n s times k max .

In our work, we made the choice not to center the snapshot matrix for the following reasons. Centering the snapshot matrix is not mandatory for SVD and does not change it's range. If the training data is centered, {ū} is to be used as a lift and PROM approximation (2.9) presented in section 2.1.3 rewrites

{u(t)} ≈ {ũ(t)} = k i=1 α i (t){φ i } + {ū}, ∀t ∈ [0, T ].
(3.12)

We see in equation (3.12) that using a lift does not increase the approximation precision over adding an extra RB function.

Error estimator

In the original incremental SVD, 'on-the-y' snapshot rejection and basis truncation prevent the computation of all singular values, meaning that it is impossible to compute (3.4). The modied version of the incremental SVD, proposed in this chapter, tracks the lost information (due to the missed singular values) using two variables, in and out .

Since the basis is truncated 'on-the-y', the singular value associated with the truncated mode is lost, therefore, out is incremented by the square of the skipped singular value:

out = out + s 2 i+1 .
(3.13)

If a snapshot {u i+1 } has been rejected 'on-the-y', we can no longer calculate changes in the singular values, in is incremented by the norm of projection of {u i+1 } on [Φ (i) ]:

in = in + [Φ (i) ][Φ (i) ] T {u i+1 } 2 2 , (3.14) 
and out is then incremented by the error of projection of the skipped snapshot:

out = out + {u i+1 } -[Φ (i) ][Φ (i) ] T {u i+1 } 2 2 .
(3.15)

These two variables are used to compensate for the unavailable singular values, yielding the following expression for the error estimator :

est = out {s} 2 2 + in + out . (3.16)
An essential condition on the error estimator is that it must be larger than the actual error. In the event that the new observation is used for enriching the RB, the error estimator does not induce any error since the square of the exact singular value associated with truncated mode is incremented in out . On the other hand, if the new observation is not selected, then the error estimator satises the following condition:

P (i) = [S (i) ] -[Φ (i) ][Φ (i) ] T [S (i) ] 2 F [S (i) ] 2 F ≤ (i) out {s (i) } 2 2 + (i) in + (i) out = (i) est .
This ensures that the estimator is an upper bound on the actual error. A straightforward recursive proof of the above property is given below: initialization: For the rst iteration of the algorithm, i = 1, the error is null, in = out = 0 and no information has been lost (yet) due to either rejection or truncation.

induction: If we assume that P (i) is true and the new observation {u i+1 } has been rejected, then the RB is left unchanged ([Φ

(i+1) ] = [Φ (i) ] and {s} (i+1) = {s} (i) ), (i+1) out = (i) out + {u i+1 } -[Φ (i) ][Φ (i) ] T {u i+1 } 2 2 and (i+1) in = (i) in + [Φ][Φ (i) ] T {u i } 2 2 .
In which case, using identity (3.6):

[S (i+1) ] -[Φ (i+1) ][Φ (i+1) ] T [S (i+1) ] 2 F [S (i+1) ] 2 F = ([Id] -[Φ (i+1) ][Φ (i+1) ] T )[S (i) , {u i+1 }] 2 F [S (i) , {u i+1 }] 2 F ,
using the additivity of the Frobenius norm, previous expression is rewritten

= ([Id] -[Φ (i+1) ][Φ (i+1) ] T )[S (i) ] 2 F + ([Id] -[Φ (i+1) ][Φ (i+1) ] T ){u i+1 }] 2 2 [S (i) ] 2 F + {u i+1 } 2 2 , = ([Id] -[Φ (i) ][Φ (i) ] T )[S (i) ] 2 F + ([Id] -[Φ (i) ][Φ (i) ] T ){u i+1 }] 2 2 [S (i) ] 2 F + {u i+1 } 2 2 , nally, P (i) is used ≤ (i) out + ([Id] -[Φ (i) ][Φ (i) ] T ){u i+1 } 2 2 {s (i) } 2 2 + (i) in + (i) out + {u i+1 } 2 2 = (i+1) out {s (i+1) } 2 2 + (i+1) in + (i+1) out = (i+1)
est , which proves P (i+1) .

Proposed algorithm

Algorithm 4 incorporates the proposed incremented error estimator and corresponding 'on-the-y' truncation and snapshot selection. rb is the threshold on the singular value truncation error and is the only input argument that the user needs to set in this version of the algorithm. All other arguments are initialized in the method from steps 2 to 6 and incremented during subsequent enrichments.

The main feature in the proposed version of the algorithm is the use of the proposed error estimator for the 'on-the-y' snapshot selection at steps 8 and 9 as well as 'on-the-y' truncation at steps 17 to 23. The philosophy behind the algorithm is speeding up computations by rejecting the maximal number of snapshots and truncating the RB as soon as possible, in each enrichment, while still controlling the overall singular value error of truncation and avoiding the necessity to set the problem-dependent parameters svd and k max .

One potential issue is the loss of orthonormality of the RB due to subsequent enrichments (line 13). While this does not change the range of the RB, it does, however, prevent a good projection of the new observation as 

{u i } 2 2 = [Φ][Φ] T {u i } 2 2 + {u i } -[Φ][Φ] T {u i } 2 2 is not necessarily true if [Φ]
Input: [Φ], {s}, {u i }, in , out , rb Output: [Φ], {s}, in , out 1 if (size([Φ], 2) == 0) then 2 if ( {u i } 2 > 0) then 3 {s} = {u i } 2 4 [Φ] = {u i } {u i } 2 5 in = out = 0 6 end 7 else 8 error = out+ {u i }-[Φ][Φ] T {u i } 2 2 in + out+ {s} 2 2 + {u i } 2 2 -2 rb 9 if (error > 0) then α = {u i } -[Φ][Φ] T {u i } 2 [Q] = [diag({s})] [Φ] T {u i } 0 α [[Φ ], {s }, [Ψ ]] = SVD([Q])
% RB is expanded 

[Φ] = [[Φ], {u i }-[Φ][Φ] T {u i } {u i }-[Φ][Φ] T {u i } 2 ][Φ ] {s} =
error = error + s(end) in + out+ {s} 2 2 end if ([Φ] T :,1 [Φ] :,end > orth )
then % RB has lost numerical orthogonality and is re-orthonormalized

[Φ] = MGS([Φ]) end else out = out + {u i } -[Φ][Φ] T {u i } 2 2 equation (3.15) in = in + [Φ][Φ] T {u i } 2 2 equation (3.14)
end end product of the rst and last columns of the current RB is larger than a threshold ( orth ), which is typically set to 10 -14 . This is performed using the highly parallelizable Modied Gram-Schmidt (MGS) algorithm, but may also be implemented by QR factorization.

Another important remark involves centering the data. In some POD applications such as [START_REF] Xiao | Proper orthogonal decomposition with high number of linear constraints for aerodynamical shape optimization[END_REF], the snapshot matrix is centered before the spectral approximation is computed, motivated, in part, by the statistical point of view interpreting [S] T [S]

as the covariance matrix of the data. In our applications, data points are not centered as simply applying a "lift" to the POD approximation (2.9) will not improve the precision over adding a column to [Φ] That said, [START_REF] Oxberry | Limitedmemory adaptive snapshot selection for proper orthogonal decomposition[END_REF][START_REF] Brand | Incremental singular value decomposition of uncertain data with missing values[END_REF] use 'a posteriori' centering for the incremental SVD. To this end, the right subspace [Ψ] of the decomposition must be computed and stored, the size of which scales up with the number of observations and cannot be truncated 'on-the-y'. In our experience, 'a posteriori' centering is not compatible with 'on-the-y' truncation. Truncated/selected basis vectors as well as rejected observations during the enrichment steps would not be the same, had they been performed using snapshots that were centered from the beginning. Moreover, 'on-the-y' truncation would deteriorate the snapshot matrix reconstruction and render the 'a posteriori' centering inaccurate. The centered POD is thus more straightforward with the regular than the incremental SVD.

Numerical tests

In this section, we validate the proposed incremental SVD approach using a Taylor beam impact model. We rst give a short review of the POD method in section 3.4 

Taylor beam impact

The tests have been performed on a snapshot matrix [S] obtained from a Taylor beam impact simulation, using the model shown in Figure 3.4.

The beam is made of an elasto-plastic steel of density ρ = 8.93 * 10 -9 T.mm -3 , Young's modulus E = 117000 M P a and Poisson's ratio ν = 0.33. The hardening rule is described by the Johnson-Cook law, neglecting temperature and strain rate eects

σ eq = σ Y + b * ε n p , (3.18) 
with σ eq the equivalent stress and ε p the equivalent plastic strain. Other parameters are plastic yield stress σ Y = 400 M P a, plasticity hardening coecient b = 100 M pa The incremental displacements snapshots have been taken at regular intervals over the total simulation time. We begin with a brief review of the POD methods in the next subsection, followed by evaluating the RB's performance during the online reduction phase later in this section.

POD review

Full-order model

In nonlinear structural dynamics, the semi-discretized nite element formulation takes on the following form:

[M]{ü(t)} + {f int }({u(t)}, t) = {f ext (t)}, (3.19) 
where {u(t)} ∈ R N is the vector of nodal displacements ( for all nodes and along three directions) unknown at time t. NOTE: In general, {u(t)} may also contain shell rotations, however, that is not the primary focus of this chapter. N denotes the number of degrees of freedom (dofs), the size of the FOM.

[M] ∈ R N ×N is a symmetric, real, positive denite mass matrix.

The 

Reduced basis

The FOM solutions of training congurations ({c i }) 1≤i≤ns are collected in the

snapshot matrix [S] ∈ R N ×ns [S] = [{u({c 1 })}, {u({c 2 })}, . . . , {u({c ns })}].
In the second step, we compute a basis for the vector space of minimal dimension k that is capable of approximating the data in [S] to a user-dened precision rb .

This new vector space of dimension k is spanned by the columns of

[Φ] ∈ R N ×k [Φ] = [{φ 1 }, {φ 2 }, . . . , {φ k }] ∈ R N ×k .
The POD approximation is then written as:

{u(t)} ≈ {ũ(t)} = k i=1 α i (t){φ i } = [Φ]{α(t)} (3.20) {α(t)} = (α 1 (t), α 2 (t), . . . , α k (t)) T ∈ R k is the vector of ROM unknowns.
[Φ] is obtained by computing a low-rank representation of the snapshot matrix [S]. The RB size k is given by the desired precision rb of the low-rank representation of [S].

Reduced model

The ROM is constructed by injecting the approximation (3.20) into (3. [START_REF] Chen | A stabilized conforming nodal integration for galerkin mesh-free methods[END_REF]) and projecting the resulting equations on [Φ] T .

[ M]{α(t

)} + [Φ] T {f int ([Φ]{α(t)}, t)} = [Φ] T {f ext (t)} (3.21)
We introduce the following notation:

[ M] = [Φ] T [M][Φ] ∈ R k×k .
The size of the reduced model (3.21) is k, which is much smaller than the size N of the original full order model (3.19). However, the use of POD for the reduction of explicit structural dynamics models induces computational overhead during the online phase due to the Galerkin projection used to build the PROM. Solution information at each node is mandatory in order to compute internal variables in each element. The reduced unknown {α} does not provide information explicitly at each node and the fullscale approximation needs to be computed. In order to map reduced unknowns {α} to the full-scale approximation {ũ}, dened in equation (3.20), supplementary matrix vector multiplications are performed at each time step, which negatively aects the online speed-up. Thus, we require additional reduction methods to obtain a computational speed-up during the online reduction phase in explicit nonlinear POD applications. These methods attempt to approximate the projected nonlinear internal variables operator [Φ] T {f int ([Φ] • , t)}. The most popular methods to achieve this approximation are hyper-reduction ( [START_REF] Farhat | Dimensional reduction of nonlinear nite element dynamic models with nite rotations and energy-based mesh sampling and weighting for computational eciency[END_REF][START_REF] Ryckelynck | Multidimensional a priori hyper-reduction of mechanical models involving internal variables[END_REF][START_REF] Hernandez | Dimensional hyper-reduction of nonlinear nite element models via empirical cubature[END_REF]) and the DEIM ( [START_REF] Chaturantabut | Nonlinear Model reduction via Discrete Empirical Interpolation[END_REF][START_REF] Dedden | Model order reduction using the discrete empirical interpolation method[END_REF][START_REF] Tiso | A modied discrete empirical interpolation method for reducing non-linear structural nite element models[END_REF]).

Another important feature of the ROM (3.21) is that the stability condition for optimal time step is also projected. In the event that the nodal time step is used, the projection of the CFL condition on [Φ] leads to a larger time step, some theoretical developments on this subject may be found in [START_REF] Bach | Stability conditions for the explicit integration of projection based nonlinear reduced-order and hyper reduced structural mechanics nite element models[END_REF]. 

Proposed incremental SVD tests

In this section, we present some preliminary tests to validate the proposed algorithm, wherein we compare the error estimator (3.16) with the 'actual' error of approximation (3.4) (which requires storage of the snapshot matrix). Computation times using dierent values of user-dened error rb are also compared with those for the single-pass SVD from the Fortran Intel MKL package. We also present a comparison of the performance of these RBs in the online reduction phase of the Taylor beam impact.

For these tests, we employ the matrix [S] ∈ R 8514×236 of incremental displacements snapshots obtained using the Taylor beam model runs. The snapshot selection and 'on-the-y' truncation are now driven by keeping the error estimator (3.16) below the single target error rb , in place of svd and k max , for the state-of-the-art incremental SVD. We test the method for rb ∈ [10 -8 , 1]. Figure 3.5 clearly shows that the error estimator is always lower than the target rb and higher than the actual approximation error. The smaller is the desired rb , the more precise is the error estimator (3.16) and the 'actual' RB approximation error (3.4).

The computation times reported in Figure 3.6 show that our algorithm is faster than the single-pass SVD up to a precision of rb = 10 -4 . However, the incremen- tal SVD is not designed for a single-pass SVD since the computation times tends to skyrocket with very low rb . It is also important to note that given a targeted precision, the incremental SVD may build a larger RB than that obtained using the single-pass SVD, since the error is only estimated and, in reality, may well be lower than the target error.

Comparison with state-of-the-art incremental SVD

Comparing the state-of-the-art incremental SVD with the proposed incremental SVD is not a straightforward task as the methods do not involve the same parameters. In particular, as explained in section 3.1.2, the state-of-the-art incremental SVD has various tolerances that have to be set to appropriate values.

We use the same snapshot matrix [S] ∈ R 8514×236 within this section. The algorithm is tested against the state-of-the-art incremental SVD [START_REF] Oxberry | Limitedmemory adaptive snapshot selection for proper orthogonal decomposition[END_REF] in the following manner: First, the RB (of size k = 3) is computed using the proposed algorithm with a user specied error rb = 10 -2 . In the second phase, state-of-the-art incremental SVD runs are performed for k max = 3 and hundred dierent values of svd logarithmically spaced between 10 -7 and 10 2 . The re-orthonormalization parameter is set to orth = 10 -14 in both algorithms. The resulting computation times are given in Figure 3.8 and approximation errors in Figure 3.7.

In this example, both the proposed and state-of-the-art incremental SVD outperform the single-pass SVD from the Fortran Intel MKL package. This is because the data of 236 vectors may be approximated with a precision of rb = 10 -2 with only k = 3 basis vectors. This very low-dimensional approximation works in favor of the two incremental methods.

Using properly-chosen parameters within the state-of-the-art SVD (k max = 3 and svd = 2), the incremental methods' performances are both comparable. However, it is not clear how to set these two parameters in practice, since they depend on the data dimensionality and magnitude as well as the target precision. k max has been set to the minimal value allowing an error of approximation smaller than 10 -2 . The results in Figure 3.7 show that if svd is too large, then the desired error cannot be attained. On the other hand, if its value is too small, we see from Figure 3.8 that computation time would be signicantly higher than that of the proposed version.

Moreover, the state-of-the-art SVD approximation errors given in Figure 3.7 have been computed a posteriori, by storing all the data in memory, which is not desirable in practice.

In this example, the proposed incremental SVD shows better performance in terms of precision and computation time without having to set any parameter than the targeted singular value approximation error (3.16).

Online comparison

We now compare the performance of the RBs during the online reduction phase. For this, we consider 5 RBs of size k = 6, the rst being obtained with the truncated single-pass SVD, the next three using the state-of-the-art incremental SVD with parameters svd ∈ {10 -14 , 10 -6 , 10 -4 } and k max = 6 and the last RB corresponding to our proposed incremental SVD with rb = 2 * 10 -3 . Online performances are evaluated in terms of work of internal forces reconstruction. Internal work at a given time is dened by

W int (t) = Ω ε : σdV (3.22)
with ε the strain tensor and σ the stress tensor. Denoting W int and Wint the work of internal forces in the FOM and in the online reduction phase, respectively. The error int on the work of internal forces considered here is

int = T 0 | W int (t) -Wint (t) | dt T 0 W int (t)dt . (3.23)
Figure 3.9 plots the variation of the work of internal forces during the reduction phase for all 5 RBs as well as for the FOM.

Even though the single-pass SVD is optimal as far as the singular value truncation error during the oine training phase is concerned, it is clearly not optimal for work of internal forces reconstruction during the online POD reduction phase. When snapshots are uniformly sampled from the simulation, SVD tends to preferentially emphasize those corresponding to later simulation times since they are generally larger in magnitude and redundant. On the other hand, snapshots taken at earlier simulation times tend to be smaller in magnitude and unique, therefore, they are given less importance in the SVD. As a consequence, POD approximation error is often larger during the early stages of the simulation, as seen on this example. This behavior is seen to a lesser degree in the incremental SVD as 'on-the-y' selection avoids the stacking of redundant, larger magnitude observations by only selecting snapshots that introduce new information. In Figure 3.9, RBs obtained with the state-of-the-art incremental SVD yield a better approximation of the work of internal forces at the beginning of the reduced simulation. The RBs obtained with svd ≤ 10 -6 are identical. Increasing svd from 10 -6 to 10 -4 results in an even better approximation. However, for svd > 10 -4 , it is not possible to build RBs of size k = 6 as the number of snapshots selected 'on-the-y' is insucient. So svd = 10 -4 is the optimal value for this particular example. But this value is problem-dependent, and increasing the number of degrees of freedom N , the maximal size of the RB k max , the number of snapshots n s or switching unit system will change the optimal value for svd . Although the state-of-the-art incremental SVD with optimal value of svd yields the best RB in this example, the actual value itself is unknown in practice.

The proposed incremental SVD involves a nearly optimal 'on-the-y' selection criterion that only depends on the target approximation error, which is easier to use and not problem-dependent. The RB obtained with the proposed method approximates the work of internal forces almost as well as the state-of-the-art incremental SVD with svd = 10 -4 .

We mentioned that, the singular value approximation error being only approximated in the proposed method, the RB's size may be larger than necessary. However, this is not an issue as results within this section show that the singular value approximation error does not guarantee the error that will be incurred within the online reduction phase. As a matter of fact RB computed with the proposed method performs better in the online reduction phase that the one computed using the single-pass SVD even though it produces a larger training data singular value approximation error. Finally, the test during the online POD phase shows a satisfactory performance. RB computed with the proposed method performs well in comparison with RBs of same sized obtained with state-of-the-art SVD and single-pass SVD using the same training data set.

Proposed incremental SVD scalability

In this subsection, we test the computation time for algorithm 4 against the singlepass SVD DGESVD from the Intel MKL FORTRAN library using snapshots matrices obtained from two dierent Taylor beam models. In Figure 3 The complexity of the single-pass SVD (DGESVD) scales up according to m = min(N, n s ) and thus its computation time plateaus when there are more snapshots than degrees of freedom (n s > N ). However, the computation time of the DGESVD grows quadratically with the number n s of snapshots until n s = N . On the other hand, the incremental SVD's complexity scales up according to the dimensionality of the approximating vectorial space, hence, the computational time stabilizes very fast. In fact, for a given target precision rb , the incremental SVD computation time grows quadratically with the number of snapshots until n s = k, where k is given by equation (3.3). This means that for an insucient number of snapshots n s and a high target precision svd , the proposed incremental SVD a poorer performance than the DGESVD, until we reach the minimum number of snapshots given by equation (3.3) after which the proposed approach shows superior performance. In gure 3.13, the incremental SVD is seen to perform better than the single-pass SVD for precision up to 10 -4 , independently of the number of snapshots n s . For higher precision 10 -5 , the curves are seen to intersect at n s = 3800, with the incremental SVD outperforming the single-pass SVD afterwards. Note, that in the latter case, the incremental SVD's CPU time remain relatively steady after n s ≈ 2000, as opposed to the single-pass version. This behavior may be explained by the limited number of relevant basis vectors governing the physical system, conrming the fundamental hypothesis of reduced order modeling, as well as providing excellent scalability to our method.

Conclusion

In this chapter, we propose an approach reducing memory usage and oating point operations, compared to the regular Singular Value Decomposition (SVD), by proceeding in incremental fashion. By treating snapshots one after the other, it permits 'on-the-y' selection for enriching and truncating the RB. By doing so, the method avoids computations on possibly redundant data, as well as unnecessary computations on data that will only be truncated later. The memory usage is minimal as only a truncated representation of the data and a single new observation need to be stored at any given time. As a result, this method is particularly ecient in approximating extensive data sets that have low underlying dimensionality, as is usually the case in computational structural dynamics.

The method is only driven by the desired singular value truncation error, avoiding parameters that depend on the nature and dimension of the data. Moreover, the use of this error estimator allows for improved snapshot selection and the 'on-the-y' RB truncation, ultimately enhancing performance.

The only remaining parameter in our algorithm is the re-orthonormalization parameter, which has been set here to orth = 10 -14 . The aim of the reorthonormalization step between subsequent enrichments is to avoid incurring a signicant error while computing [Φ][Φ] T {u i }. This means that the optimal value for orth depends on the actual dimensions of the RB. Further work on optimizing this parameter should conceivably enable additional computational savings.

In the present work, results are given for a sequential algorithm. It goes without saying that a parallel implementation of the incremental SVD is possible following the lines proposed by [START_REF] Iwen | A distributed and incremental SVD algorithm for agglomerative data analysis on large networks[END_REF].

Equipped with error estimator presented in this work, the proposed incremental in [START_REF] Horák | Hyper-reduction of generalized continua[END_REF]. The question of whether or not the time Dierence Quotients of the snapshots should be used in the generation of the POD basis functions is addressed in [START_REF] Iliescu | Are the snapshot dierence quotients needed in the proper orthogonal decomposition[END_REF] in application to the heat equations. In the framework of the structural dynamics, the Adaptive POD (APOD) ( [START_REF] Steen Kastian | Proper orthogonal decomposition (POD) combined with hierarchical tensor approximation (HTA) in the context of uncertain parameters[END_REF]) uses the current deformation to select a subset of relevant observations to adapt the ROM. For complex models, the tied contact interface ( [START_REF] Zhou | Proper orthogonal decomposition for substructures in nonlinear nite element analysis: coupling by means of tied contact[END_REF]) enables the coupling between reduced and unreduced substructures. Another challenge in the POD application to structural dynamics is the representation of fracture ( [START_REF] Kerfriden | A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics[END_REF]). However, it is not clear how to adapt these methods to a particular mechanical problem, and the gains in nonlinear structural transient dynamics models are not clear. Finally, methods have been proposed to further accelerate the computation of the RB, including the incremental SVD ( [START_REF] Levey | Sequential karhunen-loeve basis extraction and its application to images[END_REF][START_REF] Oxberry | Limitedmemory adaptive snapshot selection for proper orthogonal decomposition[END_REF][START_REF] Brand | Incremental singular value decomposition of uncertain data with missing values[END_REF][START_REF] Fareed | Error analysis of an incremental POD algorithm for PDE simulation data[END_REF]) and randomized algorithms ( [START_REF] Halko | Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions[END_REF][START_REF] Bach | Randomized low-rank approximation methods for projection-based model order reduction of large nonlinear dynamical problems[END_REF]).

Once the training data decomposed with one of the above methods, the resulting 

Data approximation and sequential criterion

The FE method discretizes the displacement u(x, t) over the space Ω in N DoF. In reduced-order transient structural dynamics [3], the unknown displacement u(x, t), dened at each point x of the spatial domain Ω at each time t ∈ [0, T ], is decomposed over time along modal deformations functions

(φ h (x)) h u(x, t) = h∈N * β h (t)φ h (x), ∀(x, t) ∈ Ω × [0, T ]. (4.1)
In the discrete setting, separated representation (4.1) may be approximated based on n s incremental displacement snapshots of the discretized FE solution ({u(t j )} = (u 1 (t j ), . . . , u N (t j )) 

s h {ψ j } h {φ h } i = h∈ 1,m β h (t j ){φ h } i , ∀(i, j) ∈ 1, N × 1, n s (4.2)
where {φ h } i refers to the i th coecient of the h th space function {φ h }. Here and in the remainder of the chapter h, i and j are respectively used to index the space functions of the decomposition, the DoF and the discrete time instants.

The RB is built by selecting a subset of ({φ h }) h∈B , of size k = (B), approximating the training data

{u(t j )} i ≈ {û(t j )} i = h∈B⊂ 1,m s h {ψ j } h {φ h } i , ∀(i, j) ∈ 1, N × 1, n s . (4.
3)

The sequential criterion approximation error of u(x, t)

is sv = Ω [0,T ] (u -û) 2 dtdΩ Ω [0,T ] u 2 dtdΩ 1 2
. 

B = {B ⊂ 1, m | sv (B) ≤ rb } (4.6)
With singular values sorted out in decreasing order, the minimum of sv (B) for a given size of the RB k is achieved by sequentially selecting the rst k modes (B = {1, 2, . . . , k}). Thus, the optimization problem (4.6) is solved by computing (4.5) for increasing values of k, until the target precision rb is reached. In this article, (4.6) is referred to as the sequential criterion. It is convenient as the associated optimization problem (4.6) is easy to solve given the form (4.5) of the approximation error. However, this criterion controls the training data [S] averaged approximation precision by a RB [Φ (B) ] in the oine phase only. The cons of the time averaging in the sequential criterion are illustrated in the following section on a structural dynamics example of a pierced plate in traction where the truncated basis is employed in the online phase. Even though POD variations tend to improve the quality of the basis vectors (including H 1 norm POD [START_REF] Iollo | Stability properties of POD galerkin approximations for the compressible navierstokes equations[END_REF], Adaptive POD [START_REF] Steen Kastian | Proper orthogonal decomposition (POD) combined with hierarchical tensor approximation (HTA) in the context of uncertain parameters[END_REF], Dierence Quotients [START_REF] Iliescu | Are the snapshot dierence quotients needed in the proper orthogonal decomposition[END_REF]), to our best knowledge little, if any, work has been done enhancing the criterion selecting the optimal subset B regarding the online performances.

4.2

On sub-optimality of the sequential criterion in POD applications to structural dynamics [M] ∈ R N ×N is the symmetric positive-denite mass matrix, {f int } ∈ R N is the vector of internal forces and {f ext } ∈ R N is the vector of external forces. The pierced plate is made of an elasto-plastic steel of density ρ = 7.82 * 10 -9 T.mm -3 , Young's modulus E = 210000 M P a and Poisson's ratio ν = 0.3. The hardening rule is described by the Johnson-Cook law, neglecting temperature and strain rate eects

σ eq = σ Y + b * ε n p , (4.8) 
with σ eq the equivalent stress and ε p the equivalent plastic strain. Other parameters are plastic yield stress σ Y = 210 M P a, plasticity hardening coecient b = 50 M pa and plasticity hardening exponent n = 0.25. 8-node fully integrated solid elements are used to discretize the model into N = 444 DoF and three planar symmetries are taken into account so that only one-eight of the plate is computed. Velocity

V imp = 1000 mm.s -1 is imposed at the borders of the plate, as shown in Figure 4.2, during the T = 3 * 10 -2 seconds of the simulation. The central dierence method is used for time integration along with the lumped mass approach, yielding a diagonal mass matrix.

Snapshots taken from this model are decomposed with SVD and a subset of k left singular vectors is selected to project the FOM (4.7) on, yielding Main dierence is that for {ũ}, the error induced by the use of a RB propagates as the reduced simulation progresses in time. On the contrary, considering that each snapshot ({u(t j )}) j in [S] is projected separately on the RB, { û(t j )} may be a very poor approximation of {u(t j )} at a given training time j and perfectly represent it after at subsequent training times. In reference POD, the RB modes are selected for their ability to minimize the sequential criterion approximation error (4.5) of the training data approximation {û}, however, this does not imply the same error for the ROM approximation {ũ} in the online reduction phase.

[ M]{α(t)} + { fint ({ũ(t)}, t)} = { fext (t)}
This dierence between {û} and {ũ} is illustrated by performing reduced runs (4.9) for dierent RBs and comparing online performances with the oine training data approximation. In our application, the work of internal forces W int and the displacement eld {u} are used to evaluate online performances of a RB. Internal work at a given time is dened by

W int = Ω ε : σdV (4.11)
with ε the strain tensor and σ the stress tensor. Denoting W int the work of internal forces in the FOM and Wint the work of internal forces obtained in the online reduction phase, the online error int considered in this chapter is

int = T 0 | W int (t) -Wint (t) | dt T 0 W int (t)dt . (4.12)
W int is a convenient quantity of interest to estimate online performances of a RB, as it is easy to post-process and allows the detection of potential issues in the reduction phase quickly. In all our applications, W int has shown good correlation with [START_REF] Levey | Sequential karhunen-loeve basis extraction and its application to images[END_REF], we notice that it is actually null for all reduced runs except for the last one which is in a good agreement with the reference FOM. These results extend to the displacement eld: the ROM approximation {ũ} is in perfect agreement with the FOM when all ten RB functions are selected and null for RBs of size 1 to 9 as seen in Figure 4.5 for a RB of size 8.

This example shows that imposing a low threshold on the training data sequential criterion approximation error does not imply the same for the online reduction phase.

A signicant concern in the POD application to nonlinear structural dynamics is to nd the possibly sparse RB of minimal size that allows for a given approximation quality in the online reduction phase and, in doing so, avoid expensive oine training of a ROM that will fail in the online reduction phase. On this example, despite the contribution of {φ 10 } to the oine sequential criterion approximation error (4.5) being nearly null, it's absence in the RB seems to prevent the ROM from computing any deformation. This behavior is better understood in the following section 4.3 where a sparse criterion for the selection of the left singular vectors appearing in the training data decomposition is proposed.

Sparse subset selection criterion

This section is organized as follows: the previous results are interpreted, a sparse selection criterion is proposed and then used to form RBs that, based on the same training data, improves the online approximation compared with the previous results. To understand the oine/online discrepancy phenomenon observed in section 4.2, we rst take a look at the transient contribution β h (t j ) of each left singular vector to the reconstruction of {u(t j )}. The training data (4.2), and their approximation with a subset B of modes (4.3), rewrite

u i (t j ) = m h=1 σ h {φ h } i {ψ j } h = m h=1 β h (t j ){φ h } i , ∀(i, j) ∈ 1, N × 1, n s , (4.13)
and,

{u(t j )} ≈ {û(t j )} = h∈B β h (t j ){φ h }, ∀j ∈ 1, n s , (4.14) 
respectively.

Once the spatial discretization performed, β h (t j ) at each training time t j , 1 ≤ j ≤ n s , give relative transient contributions of {φ h }, 1 ≤ h ≤ m 

γ j h = β 2 h (t j ) m l=1 β 2 l (t j ) , ∀(h, j) ∈ 1, m × 1, n s , (4.15) 
reported in Figure 4.6 for the pierced plate test case presented in the section 4.2.

As expected, rst left singular vectors contribute in average more as they are associated with the highest singular values. However, this is not true when looking at their contribution to the solution reconstruction at each training time separately.

In A novel sparse criterion is proposed hereafter to overcome this limitation associated with the sequential criterion, guaranteeing that the projection error {û} in L 2 (Ω) norm meets the target approximation precision RB at each training time.

We introduce the sparse criterion approximation error

sp = sup t∈[0,T ] ( Ω (u(x, t) -û(x, t)) 2 dx Ω u 2 (x, t)dx ) 1 2 (4.16)
Replacing the, in practice unknown, continuous displacement eld u in (4.16) with 

{u(t j )} -[Φ (B) ][Φ (B) ] T {u(t j )} 2 {u(t j )} 2 = max j∈ 1,ns     1 - h∈B β h (t j ) m h=1 β h (t j )     , (4.17)
where the last form is obtained using (4.14) together with the orthonormality of the left singular vectors.

To approximate the training data up to a given target rb while selecting the fewest possible basis vectors, the modied optimization problem (4.6) writes Given a user-prescribed targeted precision rb , nd

B * ⊂ 1, m such that    B * = argmin B∈S ( (B)) S = {B ⊂ 1, m | sp (B) ≤ rb }. (4.18)
The admissible space S is rewritten using

2 sp = max j∈ 1,ns (1 - h∈B β 2 h (t j ) m l=1 β 2 l (t j ) ) = 1 -min j∈ 1,ns ( h∈B β 2 h (t j ) m l=1 β 2 l (t j ) ) ⇒ 1 -2 sp = min j∈ 1,ns ( h∈B) 
(γ j h ) 2 ), However, it may be conveniently stated for use with combinatorial optimization tools using the form

S = {B ⊂ 1, m | h∈B (γ j h ) 2 ≥ 1 -2 rb , ∀j ∈ 1, n s }. ( 4 
   {ξ * } = argmin( { ξ} 1 ) { ξ}∈S S = {{ ξ} ∈ {0, 1} m | ([Γ]{ ξ}) j ≥ 1 -2 rb , ∀j ∈ 1, n s }, (4.20) 
where { ξ} is a boolean vector in {0, 1} m such that the h th entry of the vector is 1 if, and only if, {φ h } is selected.

[Γ] ∈ R ns×m coecients are given by

[Γ] j,h = (γ j h ) 2 , ∀(h, j) ∈ 1, m × 1, n s , • 1 
stands for the L 1 norm that associates to a vector the sum of its coecients, corresponding in the considered application to the number of selected left singular vectors. In the present work, (4.20) is solved with the simplex algorithm implementation [38].

The proposed sparse criterion is tested on the pierced plate in traction model introduced in section 4.2. These results show that, when compared with the sequential criterion, the sparse criterion selects a subset of non-consecutive basis vectors allowing for better online performance. In Figure 4.8, the average relative error of the online approximation of the work of internal forces is, for any given size of the RB, better with the sparse criterion. Oine and online curves do not coincide, as the oine approximation error is, for both criteria, not directly related to the work of internal forces. However, for the sparse criterion, oine approximation error and online work of internal forces error are in better agreement as they strictly decrease together when enriching the RB, which was not the case with the sequential criterion. Furthermore, the oine and online indicators are closer to each other for the sparse than for the sequential criterion. As seen in table 4.2, the sparse criterion selects {φ 10 } earlier than the sequential one, resulting in a higher sequential criterion approximation error in the oine phase but a better work of internal forces approximation online. In Figure 4.9, reduced simulations start producing work of internal forces with only 3 RB functions and runs are in good agreement with that of the FOM with only 5 RB functions as opposed to the sequential criterion unable to trigger the imposed velocity and construction of both the work of internal forces (Figure 4.12) and displacement eld (Figure 4.13). For sequential RBs, work of internal forces within reduced runs start diering from the reference FOM at initial contact time with the rigid wall. As stated for the pierced plate example, this behavior may be explained by the tendency of the sequential criterion to emphasize the importance of snapshots taken at the end of the simulation. The online approximation error compensates later in the simulation when considering the work of internal forces but not in the displacement eld, represented in Figure 4.13 at the nal stage of the simulation, appearing since the rst, poorly approximated by the RB, contact with the rigid wall. The proposed sparse criterion contributes to resolving this issue, by prescribing the same precision for all snapshots, regardless of their magnitude. As a consequence, for a given size, sparse RBs induce one order of magnitude lower work of internal forces approximation error within the reduced run, as seen in Tables 4.3 and 4.4, moreover, oine and online errors are in better accordance with each other. Sparse RBs are still associated with relatively large singular values. 214 left singular vectors have been computed on this example; however, only the rst 18 modes are used in the considered RBs. An interesting feature of the sparse criterion is observed with decreasing values of the user-prescribed rb in Table 4.4 when already selected modes are removed from subsequent subsets B when incrementing k. When enriching the RB from size k = 13 to size k = 14, the sparse criterion adds {φ 18 } and {φ 12 } to the subset of RB funstions and removes {φ 15 }. Results in Table 4.3 and Table 4.4 highlight this behavior that remains to be understood. Sparse RBs of size k = 12 and k = 13 oer better online work of internal forces approximation than the sequential one of size k = 16, even though the latter contains all sparse basis functions. This result has been veried multiple times e.g., when removing {φ 11 } and {φ 13 } from the RB of size k = 16 formed with the sequential criterion enhances online approximation of the work of internal forces but not the displacement eld approximation. Both selection criteria are implemented in a custom version of the state-of-the-art crash simulation code Altair Radioss [3].

Conclusion

This chapter proposes a sparse criterion to constitute subsets of RB modes, originating from the training data decomposition, for ecient online simulations. The sparse criterion ensures a target approximation quality for each snapshot as opposed to the sequential one which averages the approximation quality over all snapshots.

Thus, it is insensible to redundant snapshots with high orders of magnitude and avoids bad approximation of possibly important isolated snapshots with low orders of magnitude.

Both criteria are tested for the selection of basis vectors originating from the usual L 2 SVD of incremental displacement snapshots taken from a pierced plate in traction model and a hollow beam impact model. Given an appropriate training data set and an associated SVD, the sparse criterion results in subsets of RB functions that allow for a more accurate approximation in the online POD reduced simulations in nonlinear transient structural dynamics.

For the pierced plate in traction and the hollow beam impact models, sparse RBs perform better in terms of online approximation of both the work of internal forces and nal conguration displacement eld than sequential RBs of same sizes.

Nevertheless, several topics remain open: The choice of metrics to compare ROM performances in the reduced phase in terms of approximation quality depends on the quantity of interest. The time-averaged relative error of the work of internal forces used here as an indicator of ROMs approximation quality in the online reduction phase is not a perfect comparator: this error is not strictly decreasing with increasing user-prescribed precision for both selection methods, and the work of internal forces may be underestimated in the online reduction phase, as is the case for the pierced plate, as well as overestimated, as is the case for the crash box. creates a reduced integration domain without any knowledge from the FOM. In the present chapter, we consider the Energy-Conserving Sampling and Weighting (ECSW)( [START_REF] Farhat | Dimensional reduction of nonlinear nite element dynamic models with nite rotations and energy-based mesh sampling and weighting for computational eciency[END_REF]) formulation of an optimization problem, based on data collected from the FOM, to build a hyper-reduced integration scheme whose particularity is to impose integration weights positivity ensuring energy conservation of the reduced integrator. ECSW is an 'a posteriori' method as it relies on data from full-scale simulations to train a hyper-reduced integration scheme, as opposed to 'a priori' methods which use the knowledge of the physical problem rather than training data ( [START_REF] Ryckelynck | Multidimensional a priori hyper-reduction of mechanical models involving internal variables[END_REF]).

The optimization problem that arises in the ECSW is NP-hard and is in practice suboptimally solved by mean of the Sparse Non-Negative Least Square (SNNLS) greedy algorithm. Similar numerical integration schemes, in which it is necessary to preserve the consistency and compatibility during the shape functions integration, arise in Galerkin meshless methods such as Diuse Elements ( [START_REF] Breitkopf | Integration constraint in diuse element method[END_REF]), and Element

Free Galerkin ( [START_REF] Puso | Meshfree and nite element nodal integration methods[END_REF][START_REF] Fougeron | Recovery of dierentiation/integration compatibility of meshless operators via local adaptation of the point cloud in the context of nodal integration[END_REF][START_REF] Chen | An arbitrary order variationally consistent integration for galerkin meshfree methods[END_REF]).

Present work is motivated by the observation that, proceeding greedily by subsequent enrichments, the SNNLS algorithm becomes computationally expensive in building large hyper-reduced integration schemes , and that a reference method is needed to compare performances of heuristic approaches. Reformulating the ECSW optimization problem, an alternative linear optimization problem is stated, solved using Mixed Integer Programming (MIP), and illustrated on a benchmark FE model. The chapter is organized as follows. Section 5.1 briey reviews PROM and ECSW methods in a nonlinear explicit structural dynamics framework. Section 5.2 develops the theory behind the proposed linear MIP formulation, which is then tested in Section 5.3 on a pierced plate under uniform tension FE model. Results are then discussed, and recommendations are made regarding future developments.

5.1

Projected hyper-reduced order model

Projected Reduced Order Model

We focus on semi-discretized equations used in nonlinear explicit FE solvers

[M]{ü(t)} + {f int ({u(t)}, t)} = {f ext (t)}, (5.1) 
where {u(t)} ∈ R N is the vector of nodal Degrees of Freedom (DoF), {f int } ∈ R N is the vector of nonlinear internal forces and {f ext } ∈ R N is the vector of external forces.

N denotes the number of DoF and is referred to as the FOM size.

[M] ∈ R N ×N is the symmetric positive-denite mass matrix. In explicit nonlinear structural dynamics, industrial FE solvers frequently use a lumped mass approach yielding diagonal [M].

Hence there is no need to inverse the mass matrix, and the computational eort concentrates on the internal and contact forces evaluation.

The explicit central dierence method is used for integration in time domain.

Given a RB [Φ] ∈ R N ×k of size k, the ROM approximates the FOM solution {u} with {ũ},

{u(t)} ≈ {ũ(t)} = k i=1 α i (t){φ i } = [Φ]{α(t)}. (5.2) 
Above approximation is injected into the FOM (5.1) which is then projected on the RB, yielding the PROM

[ M]{α(t)} + [Φ] T {f int ([Φ]{α(t)}, t)} = [Φ] T {f ext (t)}. (5.3) {α} ∈ R k is the ROM unknown and [ M] = [Φ] T [M][Φ] ∈ R k×k is the reduced mass matrix. [Φ] is usually [M]-orthonormalized so that [ M] is the identity matrix [Id k ] ∈ R k×k . The ROM is of size k, much smaller than N , {α(t)} = [Φ] T {f ext (t)} -{f int ([Φ]{α(t)}, t)} . (5.4) 
Projecting the FOM (5.1) employing an orthogonal matrix [Φ] potentially increases the critical time step ensuring numerical stability. A rigorous mathematical proof of this property is provided in [START_REF] Bach | Stability conditions for the explicit integration of projection based nonlinear reduced-order and hyper reduced structural mechanics nite element models[END_REF]. However, in applications to explicit structural dynamics, PROM methods generally yield a computational overhead. First, there is no real gain in reducing the model size to k when the lumped mass approach is used in the FOM (5.1) as a diagonal mass matrix inverse is computed with negligible computational eort. Second, internal forces have to be computed for all elements, involving the time-consuming integration of the constitutive law, and two additional steps are required: expansion of reduced DoF {u} = [Φ]{α} and contraction of internal forces { fint } = [Φ] T {f int }. The same goes for kinematic conditions, as well as any requested output.

However, as internal forces vector of size N is to be projected on the reduced space of size k spanned by the columns of the RB [Φ] and k << N , it may not be necessary to compute the whole internal forces vector to have a good approximation of its projection on the reduced space, and this is where hyper-reduction takes place.

The following section briey reminds the ECSW scheme motivating this work.

Energy-Conserving Sampling and Weighting (ECSW)

The Galerkin method used in FE analysis in the divide and conquer spirit successively computes internal forces {f e int } ∈ R N in each of n e elements of the model and assembles respective contributions

{f int } = ne e=1 {f e int } (5.5) 
In the ROM (5.4), internal forces are projected on

[Φ] ∈ R N ×k [Φ] T {f int } = [Φ] T ne e=1
{f e int }.

(

Hyper-reduction computes internal forces only for a subset H ⊂ 1, n e of elements indexes and applies weights ζ * e to the elemental contributions ahead of summation and projection on the reduced space

[Φ] T {f int } ≈ [Φ] T ne e=1 ζ * e {f e int } = [Φ] T e∈H ζ * e {f e int }, (5.7) 
where

{ζ} * = (ζ * 1 , ζ * 2 , . . . , ζ * ne ) T ∈ R ne
≥0 contains weights associated with all elements in the model. ζ * e = 0 if and only if element e is not selected (e / ∈ H). The ECSW method imposes also ζ * e > 0 for selected elements to maintain the integrator positivity.

The hyper-reduced integration scheme, given by the subset of selected elements 

H
([Φ] T {f e int (t i )}) (e,i)∈ 1,ne × 1,ns ⊂ R k ,
and are organized in the matrix

[G] =      G f (t 1 ) G f (t 2 ) . . . G f (t ns )      ∈ R k * ns×ne , (5.8) 
where

[G f (t i )] = [Φ T ][{f 1 int (t i )}, {f 2 int (t i )}, . . . , {f ne int (t i )}] ∈ R k×ne , ∀i ∈ 1, n s . (5.9)
Using this notations, the non-reduced assembly process (5.5) 

writes {b} = [G]{1 ne } ∈ R k * ns , (5.10) 
with {ζ * } = {1 ne } corresponding to the selection of all elements with integration weights equal to 1 and {b} ∈ R k * ns is the 'exact' projection of all internal forces snapshots on [Φ], used as reference to train the weights. Finally, given a targeted precision τ , the optimization problem of the hyper-reduced integration scheme is stated as

       {ζ * } = argmin {ζ}∈A ECSW ( {ζ} 0 ) A ECSW = {{ζ} ∈ R ne ≥0 | [G]{ζ} -{b} 2 {b} 2 ≤ τ } (5.11)
The threshold τ on the approximation precision constraint is imposed in the admissible space A ECSW alongside weights positivity, • 0 denotes the zero-norm associating the number of its non-zero coecients to a vector, equivalent to the number of selected nite elements, to be minimized. However, the zero norm is not dierentiable, making (5.11) NP-hard. In practice (5.11) is suboptimally solved with greedy algorithms such as SNNLS ( [START_REF] Farhat | Dimensional reduction of nonlinear nite element dynamic models with nite rotations and energy-based mesh sampling and weighting for computational eciency[END_REF])(Algorithm 2). Alternatives such as the LASSO algorithm have been compared to SNNLS in [START_REF] Chapman | Accelerated mesh sampling for the hyper reduction for nonlinear computational models[END_REF]. In the present work, (5.11) is reformulated and solved using MIP optimization, proposing a non-greedy reference for testing quadrature schemes.

5.2

Hyper-Reduced Integration (5.13) imposed with ζ min = 1 ensures that each selected element counts at least for itself while avoiding over-tting.

Additionally, dening ξ min and ξ max , the minimal and maximal number of elements in H, respectively (1 ≤ ξ min ≤ ξ max ≤ n e ) ξ min ≤ e∈E ξ e ≤ ξ max , (5.14) allows to target prescribed intervals for the number of selected elements. This feature, in contrary to usual greedy algorithms progressively enriching the selection, allows to directly start searching for solutions from a given ξ min or assess unattainability of the targeted precision for a given ξ max , reducing computation time by shrinking the admissible space.

Finally, for a given threshold τ , the MIP optimization problem writes

             ({ζ * }, {ξ * }) = argmin ({ζ},{ξ})∈A M IP ( e∈ 1,ne ξ e ) A M IP = {({ζ}, {ξ}) ∈ R ne ≥0 × {0, 1} ne |   {b} -τ -{∞} ξ min   ≤ [C] {ζ} {ξ} ≤   {b} + τ {0 ne } ξ max   }.
(5.15)

Note, that the threshold τ on the hyper-reduced quadrature scheme precision is now imposed in L ∞ norm and not in L 2 norm in contrary to the ECSW optimization problem (5.11). The linear constraint matrix is

[C] =   [G] {0 ne } T [Id] [diag(ζ max {1 ne })] {0 ne } T {1 ne } T   , (5.16) 
with [G] dened by equation (5.8).

Consistency constraints

When internal forces functions are strongly varying in space and time, such as in car-crash analysis, exact domain integration may not be possible. Exactness in the projected Galerkin hyper-reduced scheme is not guaranteed even if the RB functions possess sucient completeness to represent the solution. A similar problem arises in the Element Free Galerkin context ( [START_REF] Chen | A stabilized conforming nodal integration for galerkin mesh-free methods[END_REF][START_REF] Breitkopf | Integration constraint in diuse element method[END_REF]), where the exactness in the Galerkin approximation, conditioned by the numerical verication of volume and divergence equalities, is met provided additional zero and rst-order integration constraints, respectively. The present work also investigates the impact of adding consistency 3 (t i ).

(

(5.20)

(5.21)

A single integration point per element is considered at the center of element e, {g (e) (t i )} = (g

(e) 1 (t i ), g (e) 
2 (t i ), g

3 (t i )) T at training time t i . Constraints on rst degree polynomials are prescribed by further appending the following matrix

[G p ] to [G] [G p ] =                   ω 1 (t 1 )g (1)
1 (t 1 ) . . . ω ne (t 1 )g 

(t ns )                   , (5.22)
while {b} in the left and right members of (5.15) is computed using equation (5.10) with modied [G].

Constraints reduction

Overtting is a signicant concern when training a hyper-reduced integration scheme over a set of collected data. Redundant snapshots may eclipse others and result in inadequate internal forces approximation in the online reduction phase. Moreover, an excessively large data set may lead to an unnecessarily large number of linear constraints, deteriorating performances of the MIP solver. A constraint reduction in the optimization problem (5.15) is thus proposed to address those two issues.

In this section and the remainder of the chapter, [G] dimensions are denoted m × n e . Data is decomposed using Singular Value Decomposition (SVD). Note, that as the SVD decomposes the second dimension of the matrix and, in the present case, the constraints are to be reduced, the decomposition is performed on [G] T of a presumably lower number of lines [ Υ] T kernel is non-empty and may be identied with QR factorization.

[ Υ] = [[Q 1 ], [Q 2 ]] [R] {0 (ne-l)×l } (5.27) with [Q 1 ] ∈ R ne×l and [Q 2 ] ∈ R ne×(ne-l) orthonormal matrices and [R] ∈ R l×l an upper triangular matrix. Constraints (5.25) rewrite [ Υ] T {ζ} = [ Υ] T {1 ne } ⇒ [ Υ] T ({ζ} -{1 ne }) = {0 l }. Substituting variable {ζ} = {1 ne } + {w} ⇒ [ Υ] T {w} = {0 l }
and injecting QR factorization (5.27

) yields ⇒ ([R] T [Q 1 ] T + [0 (ne-l)×l ] T [Q 2 ] T ){w} = {0 l } ⇒ [Q 1 ] T {w} = {0 l } ⇒ ∃{χ} ∈ R (ne-l) such that {w} = [Q 2 ]{χ}.
The nal form of the unknown integration weights is

{ζ} = {1 ne } + [Q 2 ]{χ}.
(5.28)

For every {χ} ∈ R ne-l , {ζ} dened by equation (5.28) veries implicitly (5.25).

Constraint on weights non-negativity writes

({ζ} ∈ R ne ≥0 ), ⇒ -{1 ne } ≤ [Q 2 ]{χ} ≤ ∞ (5.29)
and constraint (5.12) implies (5.12)

⇒ -{∞} ≤ [Q 2 ]{χ} -ζ max {ξ} ≤ -{1 ne }.
(5.30)

Finally, the reduced optimization problem is 

               ({χ * }, {ξ * }) = argmin ({χ},{ξ})∈A M IP ( ne e=1 ξ e ) A RM IP = {({χ}, {ξ}) ∈ R (ne-l) ≥0 × {0, 1} ne |   -{1 ne } -∞ ξ min   ≤ [C r ] {χ} {ξ} ≤   ∞ -{1 ne } ξ max   }, (5.31) 
[C r ] =   [Q 2 ] {0 ne } T [Q 2 ] [-diag(s max )] {0 (ne-l) } T {1 ne } T   .
(5.32)

In this problem there are 2n e + 1 linear constraints and 2n e -l MIP unknowns, yielding more contraints than unknowns. Yet, depending on the value of ξ min , ξ max and s max , it is always possible to nd a solution. With (ξ min , ξ max ) = (1, n e ) and s max ≥ 1, a trivial solution is {χ} = {0} and {ξ} = {1 ne }. Non-trivial solutions exist for every ξ max greater or equal to (n e -l), ξ min = 1. As a matter of fact, the kernel of [ Υ], being spanned by the columns of [Q 2 ] of dimension l, it is possible to satisfy the constraints by selecting less than n e -l elements. 

Results and discussion

Consistency conditions

In this section, the following hyper-reduced formulations are tested both in the oine training phase, in terms of training data approximation error at given quadratures size, and in the online reduction phase, in terms of the work of internal forces reconstruction. These tests include:

• SNNLS greedy Algorithm 2 solving the ECSW optimization problem (5.11);

• MIP optimization problem (5.15);

• MIP + V, MIP optimization problem (5.15) with the consistency conditions (5.18) on volume integration;

• MIP + V + P1, MIP optimization problem (5.15) with the consistency conditions (5.18) on volume integration and (5.22) on rst order polynomial integration;

• MIP + G1, MIP optimization problem (5.15) with a minimal weight value ζ min = 1.

The reduced run using the RB [Φ] of size eight without hyper-reduction is used as reference to investigate the impact of the dierent hyper-reduction methods. (5.33) for SNNLS and proposed hyper-reduced integration schemes selecting from 6 to 17 elements. (5.33)

Consistency constraints are not appended to [G] when computing this error for respective hyper-reduced quadratures. (5.34)

The approximation error of the work of internal forces int is dened as

int = T 0 | W int (t) -Wint (t) | dt T 0 W int (t)dt , (5.35) 
with W int , and Wint , the work of internal forces of the reference and the hyper- reduced simulations, respectively.

Element subsets H selected by the dierent methods are compared for hyperreduction schemes of size 7, 10, and 14 in Figures 5.6 However, for larger hyper-reduced quadratures, proposed MIP formulations do not always oer better oine approximations than the SNNLS. This is in part due to the incapacity to express the constraints on training data integration in L2 norm in the proposed linear methods, thus, they don't share the same admissible space with the SNNLS. Moreover, the MIP formulations do not minimize the oine training data approximation error but only keeps it under a prescribed threshold. On the other hand, quadratures obtained with the MIP approach may also be unattainable with the SNNLS algorithm due to its greedy nature. Unassembled training data approximation quality is overall quite similar between the dierent approaches and adding consistency constraints does not deteriorate the training data approximation at a given quadrature size.

Online work of internal forces approximation presented in Figure 5.5 showing a good overall performances of the SNNLS algorithm. Even though it oers the worst online performances when less than seven elements are selected, it outperforms the is quite similar for the SNNLS and MIP methods but tends to diverge as more elements are selected. As a matter of fact, the SNNLS greedy procedure allows the deselection of one element in subsequent enrichment only if the associated weight is set to zero when computing the least feasible step (lines 15, 16 and 17 of SNNLS Algorithm 2). Thus, on the three gures, elements selected by the SNNLS at a given quadrature size are still selected in larger integration schemes, which is not the case for the proposed methods.

Boxplots in Figure 5.9 show that the proposed method including consistency conditions on polynomial integration suer from weight overtting as it consistently yield most signicant integration weights. On this example, adding contraints on volume integration prevents overtting, as observed comparing the MIP quadrature of size 16 with the MIP+V quadrature of the same size. On the other hand, weights computed with the SNNLS procedure are uniform.

The volume integration is tested for quadratures originating from the SNNLS and MIP + V on Figure 5.10. In this gure, volume obtained by integrating with dierent quadratures is averaged over all n s = 1148 training times. Quadratures computed with the SNNLS do not preserve the volume while the proposed MIP+V formulation does independently of the number of elements. Results show that it is possible to add constraints to the hyper-reduced quadrature without deteriorating oine and online performances. (5.33) of SNNLS and proposed hyper-reduced methods. Hyper-reduced integration schemes sizes range from 6 to 17.

Constraints reduction

In this section, results are presented for the two following formulations of the hyperreduction problem without consistency condition: Weights comparison in Figure 5.16 shows overtting issues of both reduced approaches in some cases. Overtting issue is most pronounced in quadratures of small and large sizes, while quadratures of size eleven and thirteen exhibit uniform weight repartition regardless of the method. Neither constraints reduction nor adding weights re-optimization seem to circumvent this issue. Overall, the SNNLS algorithm still provides the most homogeneous weights repartition.

Discussion

The SNNLS algorithm shows out to be an excellent heuristic to solve the optimization problem arising in the ECSW training phase. It provides good performances on the pierced plate example both in oine and online phases compared with the proposed approach.

Adding consistency conditions to the MIP formulation seems to deteriorate online performances. On the contrary, constraints reduction improved online performances.

Proposed approaches suer from overtting compared with SNNLS. Further testing should include the eect of the maximal weight value ζ max , introduced in section 5.2, on both oine and online performances.

Computation times associated with the training phase of the proposed MIP approaches are, on the small pierced plate example, close to that of the SNNLS, even for a large number of snapshots. However, MIP approaches quickly become computationally unaordable for increasing numbers of elements, preventing the treatment of a more signicant test case. At the moment, small improvements of the online performances observed in some cases do not counterbalance the growth in training complexity.

Conclusion

Compared with the proposed MIP approach, SNNLS is shown to be a good heuristic for solving the optimization problem arising in the ECSW in both the oine training data set reconstruction and online work of internal forces prediction. Tests on a pierced plate in traction model show similar performances between the suboptimal hyper-reduced quadratures obtained with the SNNLS algorithm and quadratures obtained with the proposed MIP method, both in oine and online phases. Variations of the proposed method, incorporating consistency conditions, allow for volume preservation and polynomial integration as well as constraints reduction. However, the computational overhead of the proposed approach with respect to the SNNLS is not compensated by the online performance gains. The post-process consists of reading snapshots in binaries, computing the ROM, and writing it into binaries for online use. The ROM is given by a RB and associated hyper-reduced quadrature for the integration of internal forces. The RB is computed rst as it is needed to train the hyper-reduction scheme. Translational and rotational DoF are separated in each solution snapshots and two dierent RBs Multiple features of the solver require special care in the online reduction phase.

At rst they are handled by computing full-scale approximations or projecting additional full-scale variables on the reduced space. However, it must be done only if necessary as it induces a computational overhead. In some cases, additional methods exist, such as hyper-reduction for nonlinear internal forces, to avoid extra computations. In other cases, computing the needed full-scale variables will not work has they are poorly approximated by the ROM, and alternatives need to be found as discussed in Section 6.2.2.

Industrial Processes

Several bottlenecks are still hindereing a robust integration of the HRPOD in industrial crashworthiness optimization. Advanced features such as airbags, springs, weld spots, and adaptive mass scaling present in crash models require further developments. Moreover, optimizing the method to answer industrial standards regarding performance and parallelization incurs considerable developments in the source code.

A signicant concern arising in the industrial use of the HRPOD in crashworthiness optimization is the relevance of training data to the targeted application.

The parametric variation between the oine and online phases has not been studied in this thesis. A reduced model trained on snapshots collected at given parameters values will deliver good online approximation as long as the deformation is comparable to the one observed in the training data. As a consequence, the performance of HRPOD in such a study is problem-dependent. Thus, we choose to leave this matter to the industrial process. Nevertheless, two outlooks are worth investigating to overcome the training data relevancy bottleneck: substructuring and online adaptivity.

Substructuring aims to extend HRPOD to multi-domain, allowing to use MOR on standard parts of the structure intended to behave similarly at dierent parameters values while using the FOM on the remainder of the structure. This outlook and associated required developments are presented in section 6.2.2.

The online adaptivity concept is to develop auto-correcting ROM in the online reduction phase when the RB does not represent the model solution at a given time step anymore. Section 6.2.3 is devoted to the dierent leads in the development of such a feature.

ROM for full-scale crash models

Industrial FE crash models make use of a lot of dierent options such as contact interfaces, airbags, weld spots, and adaptive mass scaling as well as invoking a wide variety of dierent element formulations. Incorporating these options in the HRPOD framework requires considerable software developments. Moreover, applying the HRPOD approach to a large-scale model requires special care concerning the training data manipulation and source code parallelization. No speed-up is achieved on this example as hyper-reduction is not used for two reasons.

The hyper-reduction training phase is prohibitively expensive in computation time. For an inputted precision of one percent, the training of a hyper-reduced quadrature over 189 unassembled internal forces snapshots takes more than three days.

Moreover, when using the hyper-reduced quadrature in the online reduction phase, issues are encountered at weld spots where a precise computation of internal forces is needed.

The rst 5 * 10 -2 seconds of the simulation may be pretty well approximated by small RBs of size 27 and 100 for translational and rotational DoFs, respectively, as shown in Figure 6.3. In this example, the RB was computed with the proposed incremental SVD presented in chapter 3. Figure 6.3 shows the reduced model approximation with solid green elements and the reference FOM in the black wireframe grid.

However, we currently fail to compute RBs of reasonable sizes to approximate the rest of the simulation. Using RBs of size 200 for both translational and rotational DoF, the rst 5 * 10 -2 seconds of the phenomenon are perferctly approximated, as shown in Figure 6.4. However, the approximation at the nal simulation time T = 1.25 * 10 -1 seconds is quite bad, as seen in Figure 6.5. On both gures, the reduced model is represented with solid blue elements and the reference FOM with a black grid. Larger RBs result in prohibitive computation times, hardly compensated by hyper-reduction in the online reduction phase at the moment.

We are currently considering two non-exclusive strategies to overcome this limitation. Using dierent RBs for parts of the domain and eventually simulating the most complicated part of the domain with at full-scale is discussed in Section 6.2.2.

Moreover, dierent parts of the domain may switch between the FOM and ROM at dierent moments of the simulation, as discussed in Section 6.2.3.

Substructuring

Applying reduction to a given part of the domain while simulating the rest of the domain with the FOM may help in various applications.

When studying the solution behavior under parametric variations, some parts of the model are intended to give similar results at dierent parameters value. Thus, it appears possible to train a ROM for these parts on a relevant data set. In this context, substructuring also enables the use of data collected from previous projects. New vehicles often carry over parts from previous designs on which extensive data are accessible from simulations or experiments. These data may be used to build a model presented in Figure 6.2. The model splits into two parts. The front of the bumper is simulated at full-scale, while the ROM is used to simulate the back of the bumper. The idea is to reduce the model as much as possible and simulate at full-scale areas where the solution is very likely to change with the model parameters.

We have successfully applied this approach to models involving solid elements only. However, we have encountered new diculties with shells as instabilities quickly appeared in the full-scale domain for elements close to the reduced domain, preventing the simulation from terminating correctly. This issue is illustrated in Figure 6.6, with the full-scale domain presented in gray and the reduced one in blue. Zooms are performed on interfaces between the two domains where instabilities appear.

These results show, that the interface between the reduced and unreduced domains needs to be reformulated. For shell elements, the coupling between domains makes use of accelerations, which are poorly approximated by the ROM. As a matter of fact, the funding hypothesis of PROM, that the solution evolves in a manifold embedded in a vectorial space of much lower dimension than the FOM, is correct for displacements but not necessarily for accelerations. An adapted formulation of the interface requires further theoretical developments.

Online adaptivity

A promising lead to the robust application of model order reduction in DoE exploration lies in online adaptivity. As discussed earlier, the HRPOD performance depends on the RB's ability to approximate the solution. Being able to detect online when the approximation deteriorates in a given region of the domain at given simulation time and to update the ROM online at minimal computational cost would be a signicant step toward robust applications of the method to industrial DoE exploration. This concept originates from HRPOD applications to computer graphics ( [START_REF] Steven S An | Optimizing cubature for ecient integration of subspace deformations[END_REF][START_REF] Von Tycowicz | An ecient construction of reduced deformable objects[END_REF][START_REF] Teng | Subspace condensation: full space adaptivity for subspace deformations[END_REF][START_REF] Brandt | Hyper-reduced projective dynamics[END_REF]). In [START_REF] Teng | Subspace condensation: full space adaptivity for subspace deformations[END_REF], contacts not present in the training data set appear in the reduction phase and a region of full-scale simulation is decided online in a certain radius around the contact interface, as represented in Figure 6.7. Doing so, avoids significant error due to unexpected congurations, while accelerating the simulation in The overall objective being computational savings, the computational cost of the oine training phase is to be addressed. More importantly, the singular value decomposition used in the computation of a reduced basis may reveal to be infeasible when applied to large-scale training data. Incremental alternatives for the decomposition of large-scale data have been developed for video streaming and recently brought to the model order reduction eld. In this work, incremental reduced basis method is further adapted to projected reduced order modeling and an error estimator is proposed for 'on-the-y' truncation and snapshots selection. The resulting algorithm is nearly optimal in approximating the data, and more user-friendly than the reference version. When building low-rank approximations, the algorithm outperforms the traditional single-pass SVD in terms of computation time by several orders of magnitude. Online testing on a Taylor beam impact example showed enhanced performances of reduced basis computed with the proposed incremental SVD. In the future, such incremental approach may be used to compute and correct reduced order models in the online reduction phase. The ROM's validation in the online reduction phase. In nonlinear structural dynamics, the error criterion used in the POD oine training phase is shown to be insucient to assess the online approximation quality when the training data is relevant to the targeted application. As a matter of fact, the averaging nature of this criterion may result in bad representation of some snapshots, even when a very low threshold is imposed on the ROM's oine training data approximation error, resulting in considerable approximation error in the online reduction phase. A sparse Towards data-enabled vehicle crash simulations criterion is proposed in this thesis to circumvent this issue. By imposing a threshold on the representation of all snapshots and using combinatorial optimization to build the smallest subset of RB functions, this error criterion shows on dierent examples a better agreement between the approximation errors observed both in the oine training and in the online reduction phases.

The optimization problem of the ECSW hyper-reduction training phase is solved in a greedy manner by the SNNLS algorithm. This suboptimal procedure turns out to be prohibitively computationally expensive in applications to large training data sets. An alternative formulation of hyper-reduction optimization problem is proposed and solved with Mixed-Integer Programming on an academic example. While the SNNLS algorithm shows to be a good heuristic, the developed MIP formulation may be used to further develop heuristic alternatives. The present work further investigates the impact of reducing or adding constraints, such as polynomial integration and volume conservation, on both oine and online performances.

Applications to full-scale FE models provided by the industrial partner PSA group revealed some important bottlenecks of the HRPOD regarding the oine training phase feasibility on large models. Training an hyper-reduced integration scheme turns out to be prohibitively expensive due to the greedy nature of the SNNLS algorithm. Some features used in industrial vehicle crash simulations, such as weld spots, requires full-scale computations and need to be correctly handled in the online reduction phase. Additionally, regions of the domain undergoing complex deformations are hardly approximated with RB of small size. These bottlenecks motivated outlooks for this project.

Further research topics, concerning online adaptivity and substructuring are identied. The structure may undergo unexpected deformations in the online reduction phase, being able to detect such event and adapt the ROM on the y would be a major advantage of intrusive reduction methods over non-intrusive ones. Moreover, having dierent ROM for dierent regions of the model and while simulating other regions at full-scale may help industrial applications of the method as some regions of the model may be too challenging to reduce or because training data is not available on the whole domain. (γ i (t j )) (i,j) -relative contribution of singular vector {φ i } to snapshot {u(t j )} H -subset of elements in the hyper-reduced integration scheme, H ⊂ 1, n e 

  Method (FEM) and simulation, in general, are nowadays widely used in the industry when designing new complex products. It allows testing various properties of a product numerically, avoiding expensive tests on prototypes. Such technology enables cost and time reduction in the development phase of industrial projects.
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 12 Figure 1.2: Evolution in the nite element model size used in industrial crash simulation at PSA Group.

  FE formulation used in industrial crashworthiness optimization is presented in Chapter 2, together with a brief state of the art of MOR techniques of interest in this context. Scientic contributions are developed in following the chapters: work on the incremental SVD for RB computation introduced in Chapter 3. Chapter 4 covers the proposed sparse criterion for the formation of the RB functions from left singular vectors and a new mixed formulation of the hyper-reduction optimization problem is presented in Chapter 5. Implementation and potential perspectives for robust integration of the method in industrial processes are discussed in Chapter 6. Notations and acronyms used throughout the manuscript are summarized in Appendix A and Appendix B, respectively.
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 21 Figure 2.1: Sensitivity mapping of the of the energetic criteria wit respect to each note (seen in [31])

  is the Singular Value Decomposition (SVD), also known as the Principal Component Analysis (PCA). The thin SVD is a generalization of the eigenvalue decomposition for non-square matrices. Given a snapshot matrix [S] = [{u 1 }, {u 2 }, . . . , {u ns }] ∈ R N ×ns , where N stands for the data dimension and n s the number of snapshots in the training data set, its singular value decomposition writes: [S] = [Φ][diag({s})][Ψ] T , (2.10) with [Φ] = [{φ 1 }, {φ 2 }, . . . , {φ m }] ∈ R N ×m the matrix of left singular vectors, [Ψ] = [{ψ 1 }, {ψ 2 }, . . . , {ψ ns }] ∈ R ns×m the matrix of right singular vectors, {s} = (s 1 , s 2 , . . . , s m ) T ∈ R m the vector of associated singular values and m = min(N, n s ).
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 22 Figure 2.2: Global workow for a posteriori MOR methods
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 23 Figure 2.3: Online validation of the ROM oine training phase.

  Key Words : Singular Value Decomposition, Principal Component Analysis, low-rank representation, snapshot selection, Model Order Reduction, Proper Orthogonal Decomposition, vehicle crash simulation 2.3.2 Sparse POD modal subsets (Chapter 4) Projected Reduced Order Methods (PROM) such as the Proper Orthogonal Decomposition (POD), rely on the quality of the underlying Reduced Basis (RB) used to approximate the solution. The RB is generally constructed by a low-rank approximation of a set of observations, taken from full-scale simulations, through truncated Singular Value Decomposition (SVD) of the snapshot matrix. This chapter revisits the selection criterion of the RB functions in the study of dynamical systems. In opposition to truncating the set of left singular vectors, taken consecutively in decreasing order of associated singular values, the proposed method takes temporality into account, resulting in a compact, sparse subset of RB functions. Selection strategies, implemented in the reduced-order version of a legacy nonlinear explicit dynamics Finite Element (FE) code [3], are compared in both oine and online phases in terms of work of internal forces reconstruction error. Key Words : Model Order Reduction, Proper Orthogonal Decomposition, modal selection, truncated Singular Value Decomposition, low-rank approximation, vehicle crash simulation.

  Chapters 3, 4 and 5 concern the three contributions of our work which gave rise to scientic communications and include extra details with respect to the corresponding articles. Each chapter may be read independently from the rest of the manuscript. Chapter 3 'On-the-y' snapshots selection Submitted to ... Introduction The vast majority of Model Order Reduction (MOR) methods rely on the construction of an appropriate Reduced Basis (RB). Projection-based Reduced Order Models (PROM) approximate the unknown eld variable as a linear combination of a set of global and domain-spanning RB functions, that replace a large number of local, element-based shape functions. The Proper Orthogonal Decomposition (POD) is
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 31 Figure 3.1: A posteriori MOR methods' features impacted by the incremental SVD

  Referring to Figure 2.2 presented in chapter 2, sketching the workow of a posteriori MOR methods, the features of interest of this chapter are highlighted in blue in Figure 3.1. The snapshots are to be decomposed and gathered at the same time, impacting both the observation phase and snapshots decomposition. Resulting RBs are validated online on the model used in the oine observation phase and compared to RBs computed with the traditional single-pass SVD.

  ) where {a} ∈ R N and {b} ∈ R ns+1 . RB enrichment appends a new snapshot {u i+1 } to [S] and updates it's SVD into that of [S ] = [[S], {u i+1 }] using {a} = {u i+1 } and {b} = {e i+1 } in equation 3.5.

  The training data approximation error kmax sv , dened in equation (3.4), is computed 'a posteriori' by keeping the snapshot matrix in memory and compared to that of RBs originating from the single-pass SVD in Figure 3.2. Each curve correspond to a dierent value of svd reported in the legend. For each value of svd , 200 runs of the incremental SVD are performed for k max = k ∈ 1, 200 . The black curve is the reference error Algorithm 3: State-of-the-art incremental SVD
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 32 Figure 3.2: State-of-the-art incremental SVD error of approximation
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 22 {s } % RB is truncated with new error estimator error = out+s(end) in + out+ {s} 2 while (error < 0) do out = out + s(end) equation (3.13) {s} = {s}(1 : (end -1)) [Φ] = [Φ] :,1:(end-1)

. 2 ,

 2 followed by testing the approach for computation time and estimated training data approximation error in section 3.4.3. The proposed incremental SVD is benchmarked against the state-of-the-art incremental SVD rst in section 3.4.4 in terms of computation time and oine training data approximation error and then in section 3.4.5 in terms of work of internal forces approximation in the online reduction phase. Finally, section 3.4.6 describes the scalability of the proposed incremental SVD with respect to the dimensions of the snapshots matrix and targeted error of approximation. NOTE: The Taylor beam impact test was performed with the proposed incremental SVD implementation using the state-of-the-art crash simulation code Altair Radioss [3].
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 34 Figure 3.4: Taylor beam test case
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 35 Figure 3.5: Incremental SVD error estimator in function of the target error for the Taylor beam impact. In this Figure, the error estimator is compared to the exact error and the target error.

Figure 3 . 5

 35 Figure 3.5 shows the RB's approximation error and associated error estimator values as a function of rb (estimated errors in gray, real errors in black). Com- putation times of those RBs are compared with that of the single-pass SVD on Figure 3.6. The single-pass SVD used here is the DGESVD from the Intel MKL library provided with Intel FORTRAN compilers (version 12.1.3.300) and is used to compute only the rst m = min(n s , N ) = 236 left singular vectors and associated singular values which correspond to the ags JOBU = 'S' and JOBVT = 'N' (c.f.DGESVD Documentation[START_REF]Reference Manual for Intel R Math Kernel Library (Intel R MKL)[END_REF]).

Figure 3 . 6 :

 36 Figure 3.6: Incremental SVD computation time in function of the target for Taylor beam impact.
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 3738 Figure 3.7: Proposed and state-of-the-art incremental SVDs approximation errors for reduced basis of size k = 3 on snapshots from the Taylor beam impact simulations

  Figure 3.9: Comparison of the work of internal forces reconstruction in the online reduction phase on the Taylor beam test case. RBs of size k = 6 computed with the proposed incremental SVD, the state-of-the-art SVD and the single-pass SVD are used.

  .11, the computation times are plotted for [S] ∈ R 4752×ns and for n s ∈ 100, 1000 . A larger model of the Taylor beam impact has been used for Figure 3.13 in which [S] ∈ R 18810×ns and n s ∈ 500, 8000 . The snapshots in this gure have been uniformly sampled from the simulation time interval for all values of n s . No binary le manipulation times are taken into consideration here.
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 310311312313 Figure 3.10: Taylor beam impact, Scalability of incremental vs. single-pass SVD, N = 1518

SVD turns out to 4 Sparse

 4 be more ecient and less problem-dependent than the traditional version. Using this error estimator in place of the usual tolerances makes the proposed method easy to use, and nearly optimal for training RBs for MOR. Within the POD framework, the proposed algorithm has been shown to outperform the original state-of-the-art incremental SVD as well as the single-pass SVD both in the oine training phase as well as the online reduction phase, for the presented Taylor beam impact test case. Chapter RB modal subsets Published in the International Journal for Numerical Methods in Engineering Introduction Various methods have been proposed to build the optimal RB in dierent targeted applications, including changes in the norm used in the POD or post-treatment of the training data set. In [40], the H 1 norm is used in the POD low-rank approximation of the compressible Navier-Stokes equations. Dierent variable separation has been used in POD reduced model of generalized linear micromorphic continua

  singular vectors are truncated to form a RB subsequently used for online reduction. The Frobenius training set reconstruction error plays the role of the selection criterion of the subset of RB vectors. However, in nonlinear structural dynamics, it does not account for the transient nature of the model and may fail in the online phase, resulting in the blockage of the reduced simulation. In this chapter, we propose a sparse criterion for the selection of singular vectors in the RB accounting for the transient nature of the problem. The proposed criterion is compatible with any variant of the POD independently of the norm used in the covariance matrix computation or the nature of the snapshots. Referring to Figure 2.2 presented in chapter 2 sketching the workow of a posteriori MOR methods, the features of interest in this chapter are highlighted in blue in Figure 4.1. Snapshots are gathered and decomposed as usual, the method of selection is reviewed and resulting RBs are tested online against ones originating from the truncated SVD and imputed threshold on the oine training data-set ap-

Figure 4 . 1 :

 41 Figure 4.1: A posteriori MOR methods' features impacted by the sparse criterion

(4. 4 ) 5 )

 45 However, the displacements of the full system usually being unknown, sv is ap- proximated oine by the reconstruction error of the training data [S]. In the FE framework, replacing the continuous displacement elds u and û with the time and space discretized training data [S] and writing the RB in matrix form [Φ (B) ] = [{φ B(1) }, . . . , {φ B(k) }] yields sv (B) = [S] -[Φ (B) ][Φ (B) ] T [S] F [Given a user-dened targeted error rb , the sequential criterion seeks the smallest subset B ⊂ 1, m such that sv (B) ≤ rb , given by the solution of the optimization problem For a user-prescribed targeted precision rb , nd B * ⊂ 1, m such that

(4. 9 )

 9 refered to as the Reduced Order Model (ROM) and producing the approximatesolution {ũ} {ũ(t)} = k i=1 α i (t){φ B(i) }.

( 4 . 10 )

 410 The ROM unknowns are the(α i (t)) 1≤i≤k , [ M] = [Φ (B) ] T [M][Φ (B) ] ∈ R k×kis the projection of the mass matrix of the original FOM on the reduced space. Likewise, { fint } = [Φ (B) ] T {f int } and { fext } = [Φ (B) ] T {f ext } are the internal and external forces projections onto the reduced space. In practice, RB functions are orthonormalized

Figure 4 . 2 :

 42 Figure 4.2: Pierced plate in traction model.

  and online errors on the pierced plate modelOffline sequential criterion approximation error Online error for the sequential criterion

Figure 4 . 3 :

 43 Figure 4.3: Oine sequential criterion approximation error (black curve) and associated online work of internal forces approximation error (gray curve), in function of the size k of the RB k.

( 4 . 5 )

 45 and int (4.12), respectively. the online displacement eld error. However, a low approximation error of the work of internal forces does not necessarily imply the same for the displacement eld.In the following test, a snapshot matrix [S] ∈ R 444×10 storing n s = 10 displacement snapshots, uniformly sampled from the full-scale pierced plate in traction FE model, is used to reduce the model. Ten basis vectors and associated singular values are computed with SVD and used to build a POD reduced order model.

Figure 4 .

 4 Figure 4.3 plots the oine training data sequential criterion approximation error (4.5) (continuous orange) as well as associated work of internal forces approximation error (4.12) (dotted orange) in the online reduction phase for ten RBs composed of sequentially selected subsets of k = 1, . . . , 10 left singular vectors, obtained using the sequential criterion. These results are reported in the last two columns of Table 4.1 together with the corresponding prescribed error rb imposed on the se- quential criterion approximation error and associated sequentially selected subsets of the basis vectors. Work of internal forces in the online reduction phase for each case is compared to that of the FOM in Figure 4.4. The nal conguration for

Figure 4 . 4 :

 44 Figure 4.4: Work of internal forces in the reduced run for dierent sequential RBs of size k is quasi-null in all reduced runs except for the non-truncated RB of size k = 10 (red curve) that perfectly ts the work of internal forces in the reference FOM (black dotted curve).

Figure 4 . 5 :

 45 Figure 4.5: Final displacement elds comparison between the reference FOM (black wireframe grid) and the reduced model (solid orange) for a RB of size 8 formed using the sequential criterion, putting to evidence the lag between the FOM and the ROM.

10 Figure 4 . 6 :

 1046 Figure 4.6: Relative transient contributions (4.15) of the ten left singular vectors for the pierced plate in traction test case.

Figure 4 . 6 ,

 46 {φ 10 } turns out to contribute signicantly more than any other basis vector at the rst training time and to have negligible contribution afterward. Once averaged in time by the sequential criterion approximation error (4.4), contribution of {φ 10 } vanishes. Apparently, {φ 10 } represented in Figure4.7 as a displacement eld with respect to the initial conguration, corresponds to the elongation of the rst elements impacted by the imposed velocity, essential to represent the initial condition in the online reduction phase. This observation is consistent with the observation that truncating {φ 10 } prevents the pierced plate from stretching in the reduced simulation, as observed in section 4.2.

Figure 4 . 7 :

 47 Figure 4.7: Tenth left singular vector for the pierced plate in traction FE model represented as a displacement eld with respect to the model initial conguration.

  errors on the pierced plate modelOffline sequential criterion approximation error Online error for the sequential criterion Offline sparse criterion approximation error Online error for the sparse criterion

Figure 4 . 8 :

 48 Figure 4.8: Oine (black) and online work of internal forces (gray) approximation errors in function of the size of the RB k for both sequential (continous curve) and sparse criteria (dotted curve).

Figure 4 .

 4 Figure 4.8 plots the work of internal forces (4.12) (gray) approximation error in the online reduction phase for sparse RBs (dotted curve) together with the two

Figure 4 . 9 :

 49 Figure 4.9: Work of internal forces in the online reduction phase for the sparse RBs.

Figure 4 . 10 :

 410 Figure 4.10: Final conguration displacement elds comparison between the reference FOM (black wireframe grid) and the reduced model (solid blue) for a sparse RB of size 8, putting to evidence an improved agreement between the FOM and the ROM.

Figure 4 . 11 :

 411 Figure 4.11: Scheme of the crash box model.

4 . 4

 44 Test on a crash box model Both criteria are now tested for the reduction of the more complicated and representative case of a hollow beam impact (crash box) model, presented in Figure 4.11, consisting of a hollow beam of dimensions 300 × 42 × 56 and thickness of 1.5 millimeters. The material is elasto-plastic steel with density ρ = 7.89 * 10 -9 T.mm -3 , Young's modulus E = 210000 M P a, Poisson's ratio ν = 0.3, plastic yield stress σ Y = 792M P a, plasticity hardening coecient b = 510 and plasticity hardening exponent n = 0.26. The hardening rule is described with the same Johnson-Cook law (4.8) as in the pierced plate model. The beam is impacted by a wall of 0.45 Tons, modeled as a rigid body on which initial velocity of 10000 mm.s -1 is imposed. Fully integrated 8-node solid elements are employed and N = 15432 DoF. The central dierence method is used for time integration along with the lumped mass approach. RBs from size 12 to 15 are built from 214 incremental displacement snapshots, taken uniformly in time, with both selection methods. Work of internal forces obtained with dierent reduced runs is plotted in Figure 4.12 as well as the FOM reference. Selected subsets of modes for each RB, associated sequential criterion approximation errors of reconstruction of the training data and work of internal forces errors in the online reduction phase are reported in

Table 4 . 4 :

 44 Sparse Subsets of modes for dierent sizes of the RB, associated oine sparse criterion approximation error on training data sp , and online error of the work of internal forces int for the crash box model.

FOM

  forces approximation in the crash box reduced runs for both criteria

Figure 4 . 12 :

 412 Figure 4.12: Comparison of the work of internal forces in the crash box model for sequential and sparse RBs.

Figure 4 . 13 :

 413 Figure 4.13: Final conguration displacement elds comparison between the FOM (black wireframe grid) and the reduced model (solid elements) for RB of size 12 for both sequential and sparse criteria. The lag between the two models apparent for the sequential criterion is visually cancelled for the proposed sparse criterion.

5 MIP

 5 In the second example, enriching a RB does not necessarily enhance the ROMs approximation of the work of internal forces, so performances in the online reduction phase are also compared in terms of nal conguration displacement eld approximation. Another perspective concerns parametric variations between the oine training phase and the online reduction phase which are not taken into account in this chapter. Finally, the sparse criterion induces a computational overhead as it requires right SVD vectors and solving of a combinatorial optimization problem. The combinatorial optimization problem, which may be eciently solved due to the low dimensionality of the data. A greedy algorithm could avoid both the computation of the right singular vectors and avoid solving a combinatorial optimization problem for bigger models. Chapter Hyper-reduction Submitted to Advanced Modeling and Simulation in Engineering Sciences Introduction When applied to explicit nonlinear dynamics ([45, 46]), POD does not reduce the complexity of evaluating internal variables and entails a computational overhead in the 'online' reduction phase due to the necessity of computing internal forces over all elements. Hyper-Reduction (HR) methods are combined to PROM to tackle the internal forces computational complexity and achieve 'online' speed-up by selecting a representative subset of elements for internal forces approximation.Miscellaneous HR methods exist in the literature: The Discrete Empirical Interpolation Method (DEIM)([START_REF] Chaturantabut | Nonlinear Model reduction via Discrete Empirical Interpolation[END_REF][START_REF] Dedden | Model order reduction using the discrete empirical interpolation method[END_REF][START_REF] Tiso | A modied discrete empirical interpolation method for reducing non-linear structural nite element models[END_REF]) reduces the complexity of evaluating nonlinear internal variables combining projection and interpolation. DEIM originates from the Empirical Interpolation Method ([START_REF] Barrault | An 'empirical interpolation' method: Application to ecient reduced-basis discretization of partial dierential equations[END_REF]) and aims to approximate the projection of the internal forces by using only a few of their components. Other HR approaches directly approximate the projected internal forces by building a reduced spatial integration scheme. The multidimensional 'a priori' hyper-reduction (APHR)([START_REF] Ryckelynck | Multidimensional a priori hyper-reduction of mechanical models involving internal variables[END_REF])

Figure 5 . 1 :

 51 Figure 5.1: A posteriori MOR methods' features impacted by the MIP formulation

  Mixed optimization variables are thus ({ζ}, {ξ}) ∈ R ne ≥0 × {0, 1} ne . The link between the non-negative real weights and the Boolean selectors is: if ξ e = 0 for a given element e, the element is not selected and ζ e = 0 is imposed. A maximal value for the weights is prescribed-∞ ≤ ζ e -ζ max ξ e ≤ 0, ∀e ∈ 1, n e ,(5.12) bounding each selected element weight with ζ max and each unselected element weight with 0 and linearizing the problem. Together with the weight non-negativity condition, (5.12) ensures (5.12)∩ ({ζ} ∈ R ne ≥0 ) ⇒ ζ e = 0 if ξ e = 0 0 ≤ ζ e ≤ ζ max if ξ e = 1.Similarly, a minimal value ζ min is imposed on each selected element weight by the constraint 0 ≤ ζ e -ζ min ξ e ≤ ∞, ∀e ∈ 1, n e .

[

  G] T = [Υ][diag({λ})][Π] T ,(5.23) yielding[Υ] of dimensions n e × n e and [Π] of dimensions m × n e as well as[λ] = diag(λ 1 , λ 2 , ..., λ ne ) ∈ R ne×ne containing singular values λ 1 ≥ λ 2 ≥ • • • ≥ λ m arranged in descending order. Using (5.23), the constraint [G]{ξ} = [G]{1 ne } writes [Π][diag({λ})][Υ] T {ζ} = [Π][diag({λ})][Υ] T {1 ne } ⇒ [Υ] T {ζ} = [Υ] T {1 ne }.(5.24) Keeping only the rst l < n e columns of [Υ] yields the rst form of the reduced constraints, [ Υ] T {s} = [ Υ] T {1 ne }, (5.25) with [ Υ] = [Υ] :,1:l ∈ R ne×l , (5.26) where l is chosen so that λ 1 ≥ • • • ≥ λ l > 0. As a consequence, [ Υ] has l linearly independent columns and the rank theorem yields ker([ Υ] T ) = n e -rank([ Υ] T ) = n e -rank([ Υ]) = n e -l > 0.
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 52 Figure 5.2: Test case model scheme

  schemes are computed with the state-of-the-art SNNLS algorithm and compared with the proposed approaches in terms of numbers and positions of selected elements, oine training data, and online work of internal forces approximation errors.

Figure 5 . 4 :

 54 Figure 5.4: Oine training data relative L2 error(5.33) for SNNLS and proposed hyper-reduced integration schemes selecting from 6 to 17 elements.

Figure 5 . 5 :

 55 Figure 5.5: Online approximation error of the work of internal forces approximation error (5.35) for SNNLS and proposed methods hyper-reduced integration schemes sizes ranging from 6 to 17.

Figure 5 . 6 :

 56 Figure 5.6: Element selection for the hyper-reduced integration schemes of size seven computed with the dierent methods.

Figure 5 . 7 :

 57 Figure 5.7: Element selection for the hyper-reduced integration schemes of size ten computed with the dierent methods.

Figure 5 . 8 :

 58 Figure 5.8: Element selection for the hyper-reduced integration schemes of size fourteen computed with the dierent methods.

Figure 5 . 9 :

 59 Figure 5.9: Hyper-reduction weights boxplots for consistency constraints formulations in comparison with the SNNLS and MIP methods.

Figure 5 .

 5 Figure 5.4 shows the error on unassembled internal forces snapshots training data

Figure 5 .

 5 Figure 5.5 shows the approximation error of work of internal forces within the online reduction phase. The work of internal forces W int is dened as the integral over the domain Ω of the tensor dot product between the stress ε and the strain σ tensors

  , 5.7, and 5.8. On those examples, and as mentioned above, results are extended to the full pierced plate through three planar symmetries. This choice allows for a better comparison of element selection as, on a full model, hyper-reduction may indiscriminately select among symmetric elements. Consequently, each selected element is represented eight times in the symmetric parts of the model. Hyper-reduced integration weights obtained with the dierent formulations are represented in boxplots in Figure 5.9.

Figure 5 .

 5 Figure 5.4 assesses the performances of the greedy SNNLS algorithm in the oine training phase. Among the hyper-reduced quadratures of size seven, the SNNLS algorithm solution oers the less accurate approximation in the oine phase.

Figure 5 . 10 :

 510 Figure 5.10: Volume integration for quadrature originating from SNNLS and MIP+V

  , 5.7, and 5.8. Most selected elements are located in the necking zone near the hole and few elements, with larger integration weights, summarize internal forces behavior on the outer parts of the model. Element selection at size 7, presented in Figure 5.6,

Figure 5 . 11 :

 511 Figure 5.11: Oine training data relative L2 error (5.33) of SNNLS and proposed hyper-reduced methods. Hyper-reduced integration schemes sizes range from 6 to 17.

•

  Reduced MIP optimization problem (5.31); • Reduced MIP + LS, optimization problem (5.31), the element selection {ξ} is kept but weights are recomputed by a single pass of the SNNLS algorithm (least squares problem on the full matrix [G] and least feasible step to ensure weight positivity).

Figure 5 .

 5 Figure 5.11 plots the oine unassembled internal forces data approximation errors for hyper-reduced quadratures size ranging from 6 to 17 while associated online work of reconstructed internal forces is presented in Figure 5.12. Selected elements are illustrated in Figures 5.13, 5.14 and 5.15 for integration schemes of size seven,

  , 5.14 and 5.15 for integration schemes of size seven, ten and fourteen. Weights are represented in boxplots in Figure 5.16. While oine performances, plotted in Figure 5.11, are very similar between the dierent methods, reducing constraints has improved online performances with respect to the results obtained in the previous section where consistency conditions are used. Online results regarding Reduced MIP and the Reduced MIP + LS show that being accurate over the training data does not necessarily imply good online performances. While the Reduced MIP + LS always approximates the training data better than the Reduced MIP, since the weights have been optimized on the non-reduced training data in the rst method, it does not yield better online performances. In Figure 5.11 the Reduced MIP is less accurate on the training data than the Reduced MIP + LS as the element selection is kept in the latter, but weights are re-optimized on the training data. Yet, Figure 5.12 shows that it does not imply better performances online. The version without weights re-optimization shows

Figure 5 . 12 :

 512 Figure 5.12: Online work of internal forces approximation error (5.35) of SNNLS and proposed hyper-reduced integration schemes. Hyper-reduced integration schemes sizes range from 6 to 17.

Figure 5 . 13 :

 513 Figure 5.13: Element selection for the hyper-reduced integration schemes of size seven computed with the dierent methods.

Figure 5 . 14 :

 514 Figure 5.14: Element selection for the hyper-reduced integration schemes of size ten computed with the dierent methods.

Figure 5 . 15 :

 515 Figure 5.15: Element selection for the hyper-reduced integration schemes of size fourteen computed with the dierent methods.

  Figure 5.16: Hyper-reduction weights boxplots for constraints reduction formulations in comparison with the SNNLS and MIP methods.

  , 5.14, and 5.15 where most selected elements concentrate in the necking zone around the hole. However, dierent quadratures tend to diverge as more elements are selected. By contrast with the proposed method, the SNNLS does not deselect elements when quadrature size increases. In Figure5.15, Reduced MIP and the Reduced MIP + LS did not select the same elements. The Reduced MIP + LS solution corresponds, in fact, to the Reduced MIP for 15 elements in which one element has been unselected by the single pass in the SNNLS algorithm.

6 . 1

 61 ImplementationDevelopments required in the HRPOD implementation separate into two phases represented in Figure6.1: during the training phase, data are collected and used to compute a ROM used in the online reduction phase to speed-up computations.The oine training phase decomposes further into the snapshots gathering and the snapshots post-processing steps.First, solution and unassembled internal forces snapshots are gathered and stored in binaries. A buer is used to minimize the access to binary les. An unassembled internal forces snapshot is represented by a matrix of size N × n e in which each column is the contribution of the corresponding element to the global internal forces vectors (Section 2.1.5). As a consequence, before being projected on the RB, unassembled internal forces snapshots are highly sparse. The choice has been made to store those snapshots using the Compressed Sparse Row (CSR) sparse format to save memory. This choice is motivated by the facility to append further unassembled internal forces snapshots in lines. In the FE method, internal forces elemental contributions are computed in each element with respect to the local Degrees of Freedom (DoF) indexation and then added to the general internal forces vector indexing DoFs globally. Depending on the code structure, the inverse connectivity matrix is very likely to be used to reorganize unassembled internal forces snapshots.

Figure 6 . 1 :

 61 Figure 6.1: Flowchart of the HRPOD oine training and online reduction procedures.

  The oine training phase computational cost increases exponentially with the model size. As shown in chapter 3, the incremental SVD equipped with the newly developed sequential error estimator alleviates this issue for the RB training. The algorithm is yet to adapt to the sparse criterion proposed in chapter 4. Most eort in the training phase concerns the hyper-reduced integration schemes' computation, particularly intensive due to the greedy nature of the SNNLS algorithm and the complexity of the associated optimization problem. Prior work on an alternative non-greedy method is presented in chapter 5.
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 62 Figure 6.2: Bumper plus frame rail frontal impact on a rigid barrier FE model (Courtesy of the PSA Group)

Figure 6 .

 6 Figure 6.3: Bumper plus frame rail frontal impact on a rigid barrier ROM and FOM. The ROM is represented with solid green elements and the FOM with the black wireframe grid at 5 * 10 -2 seconds. RBs of size 27 and 100 are used for translational and rotational DoF, respectively.

Figure 6 . 4 :

 64 Figure 6.4: Bumper plus frame rail frontal impact on a rigid barrier ROM and FOM. The ROM is represented with solid green elements and the FOM with a black grid at 5 * 10 -2 seconds. RBs of size 200 and 200 are used for both translational and rotational DoF.

Figure 6 . 5 :

 65 Figure 6.5: Bumper plus frame rail frontal impact on a rigid barrier ROM and FOM. The ROM is represented with solid green elements and the FOM with a black wireframe grid at nal simulation time T = 1.25 * 1--1 seconds. RBs of size 200 and 200 are used for both translational and rotational DoF.

Figure 6 . 7 :

 67 Figure 6.7: Simulation time per frame for a st clenching and unclenching. The ngers clench in a dierent sequence from which they unclench, so novel collision congurations unseen during training are encountered. The FOM regions are drawn in red and the ROM regions in gray [76].

Chapter 7 ConclusionA

 7 signicant literature, reviewed in the present work, allows to consider applications of intrusive reduced order industrial explicit solver to automotive vehicle crashworthiness optimization. The project has been oriented toward projection-based reduced order modelling methods conjointly with hyper-reduction of nonlinear internal forces. Based on an implementation of the HRPOD in the legacy solver Altair Radioss, dierent bottlenecks to the robust application of the method in industrial processes have been identied and addressed in original contributions mainly focusing on the following two aspects of the hyper-reduced projected reduced order model training phase. The oine training phase computational cost is to be controlled to achieve global speed-up. Online validation is used to compare oine training methods and provide a better correlation between both training data approximation and eective approximation quality in the reduction phases.

  The developments are available in a dedicated research branch of Altair Radioss code.Appendix A NotationsIn the manuscript, curly brackets designate vectors and square brackets designate matrices. Following notations are sorted out in alphabetical order.( • ) -cardinality of a set {0 N } -column vector of size N with all coecients equal to zero {1 N } -column vector of size N with all coecients equal to one {α} -reduced unknown displacement, α ∈ R k B -subset of k indices of left singular vectors forming the RB b -plasticity hardening coecient {b} -assembled training data (β i (t j )) (i,j) -projection of singular vector {φ i } on snapshot {u(t j )}, (i,j) ∈ 1, m × 1, n s [C] -linear constraints matrix [C r ] -reduced linear constraints matrix (c i ) i -training congurations, i ∈ 1, n s E -Young's modulus ε -strain tensor ε p -equivalent plastic strain est -error estimator in the proposed incremental SVD algorithm hr -training data approximation error in -part of discarded snapshots represented by [Φ k ] int -work of internal forces approximation error orth -tolerance for reorthonormalization in the incremental SVD out -part of discarded snapshots non-represented by [Φ k ]rb -user-specied threshold on the basis function selection criterion sp -sparse criterion approximation error sv -sequential criterion approximation error k sv -singular value truncation error for a reduced basis of size k svd -tolerance for snapshot selection in the state-of-the-art incremental SVD {f ext } -space discretized external forces, {f ext } ∈ R N Towards data-enabled vehicle crash simulations{ fext } -reduced external forces, fext = [Φ (B) ] T f ext ∈ R k {f int } -space discretized internal forces, {f int } ∈ R N {f e int } -internal forces in element e { fint } -reduced internal forces, fint = [Φ (B) ] T f int ∈ R k [ • ] F -Frobenius norm of a matrix, [ • ] F = ( -matrix of unassembled training data [G f ] -matrix of unassembled internal forces at all training times [G v ] -matrix of elements volumes at all training times [G p ] -Constraint matrix on polynomial integration {g (e) } -center of element e, {g (e) } ∈ R 3

[

  K] -tangent stiness matrix, [K] ∈ R N ×N k -Reduced basis size k max -Maximum size for the reduced basis in the state-of-the-art incremental SVD[M] -symmetric positive-denite mass matrix, [M] ∈ R N ×N [ M] -reduced mass matrix, [ M] = [Φ (B) ] T [M][Φ (B) ] ∈ R k×km -number of singular vectors in the training data POD decomposition, m = min(N, n s ) N -number of degrees of freedom in the FE space discretization n -plasticity hardening exponent n e -number of elements in the model n p -number of parameters of the FE model n s -number of snapshots in the training data set ν -Poisson's ratioΩ -considered spatial domain, Ω ⊂ R 3 ω e -volume of element e (p i ) i -parameters of the FE model, i ∈ 1, n p [Φ] -left singular vectors of [S], [Φ] = [φ 1 , . . . , φ ns ] ∈ R N ×m [Φ (B) ] -reduced basis formed by the left singular vectors selected according to the subset of indices B,[Φ (B) ] = [{φ B(1) }, . . . , {φ B(k) }] ∈ R N ×k [Φ k ] -reduced basis of size k [Ψ] -right singular vectors of [S], [Ψ] = [ψ 1 , . . . , ψ m ] ∈ R ns×m R ≥0 -setof non-negative real numbers ρ -density [S] -training data set, [S] = [{u(t 1 )}, . . . , {u(t ns )}] ∈ R N ×ns {s} -singular values of [S] in decreasing order, {s} = (s 1 , . . . , s m ) T ∈ R m
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  of size k is obtained by only keeping the rst k columns of[Φ]. The left singular vectors in decomposition(2.10) 

being sorted out in descending order of associated singular values, [Φ

(k) 

] spans by construction the vector space of dimension k that best approximates the training data set

[S] 

in the sense that it minimizes the error of projection in the Frobenius norm. More precisely,

  the space of orthogonal matrices of dimensions N by k. Approximation error(2.11) corresponds to the singular value error of truncation

	ns
	s 2 i
	i=k+1
	ns
	j=1

  is not orthonormal. This is why re-orthonormalization is performed (lines 23 to 26) if the scalar Algorithm 4: Proposed incremental SVD

  FOM may depend on n p parameters (p i ) 1≤i≤np which are generally shell thicknesses and material properties in vehicle crash simulations. The rst step consists of extracting observations, or snapshots, at various simulation times and for dierent parameter value sets. For convenience, the observations time t and observation parameter values (p

1 , p 2 , . . . , p np ) T are placed together in a vector {c} = (t, p 1 , p 2 , . . . , p np ) T , that we refer to as the training conguration.

  Modes selected with the sequential criterion for dierent values of rb , associated training data sequential criterion approximation error and online work of internal forces reconstruction error sv ≤ rb {φ 1 } {φ 2 } {φ 3 } {φ 4 } {φ 5 } {φ 6 } {φ 7 } {φ 8 } {φ 9 } {φ 10 }

		sv	int
	5 * 10 -2	1.99 * 10 -2	9.99 * 10 -1
	1 * 10 -2	4.61 * 10 -3	9.99 * 10 -1
	2 * 10 -3	1.81 * 10 -3	9.99 * 10 -1
	1 * 10 -3	6.98 * 10 -4	9.99 * 10 -1
	5 * 10 -4	3.77 * 10 -4	9.96 * 10 -1
	2 * 10 -4	1.76 * 10 -4	9.96 * 10 -1
	6 * 10 -5	5.56 * 10 -5	9.96 * 10 -1
	5 * 10 -6	2.63 * 10 -6	9.96 * 10 -1
	1 * 10 -11	8.38 * 10 -12	9.96 * 10 -1
	1 * 10 -12	0	5.85 * 10 -4

Table 4 .

 4 

1: Sequential subsets for dierent values of threshold rb and associated oine and online errors sv

Table 4 .

 4 2: Sparse subsets of modes selected for dierent values of the threshold rb , associated oine sparse criterion sp (4.17) and online work of internal forces int (4.12) errors.

Table 4

 4 Subsets of modes obtained with the sequential criterion for dierent sizes of the RB, associated training data sequential criterion approximation error and online work of internal forces reconstruction error size of the RB k {{φ 1 }, . . . , {φ 12 }} {φ 13 } {φ 14 } {φ 15 } {φ 16 } Table 4.3: Sequential subsets of modes of increasing size, associated oine error on training data sv , and online error of the work of internal forces int for the crash box model. Subsets of modes obtained with the sparse criterion for dierent size of the RB, associated training data sparse criterion approximation error and online work of internal forces reconstruction error size of the RB k [{φ 1 }, . . . , {φ 10 }] {φ 11 } {φ 12 } {φ 13 } {φ 15 } {φ 16 } {φ 18 }

	sv	int

.3 for the sparse criterion and in Table

4

.4 for the sequential criterion, respectively. A comparison of the nal displacement eld between both selection methods against the FOM reference is provided in Figure

4

.13.

The proposed sparse criterion outperforms the sequential one in the online re-

  and associated weights {ζ * }, is obtained through optimization. Given a RB[Φ] and unassembled internal forces ({f e int (t i )}) (e,i)∈ 1,ne × 1,ns , the hyper-reduced quadrature scheme integrates the projected unassembled internal forces training data set up, to a user-dened precision, while selecting the fewest possible elements in H. First, n s unassembled internal forces snapshots are collected at training times ({t i }, i ∈ 1, n s . Without loss of generality, snapshots may as well be taken at dierent model parameters values. Once collected, unassembled internal

forces ({f e int (t i )}) (e,i)∈ 1,ne × 1,ns ⊂ R N are projected on the reduced space, yielding

  (5.11) is transformed into a problem that may be solved using MIP in the following steps. An additional boolean unknown {ξ} ∈ {0, 1} ne is introduced to take account of the elements aliation to H

	5.2.1 MIP formulation	
	MIP solves problems involving both integer and real variables based on a combina-
	torial Branch And Bound algorithm for integer unknowns and simplex algorithm for
	real variables. ξ e =	1 0 , e ∈ 1, n e \H. , e ∈ H

  conditions at training times (t i ) i∈ 1,ns such as exact volumic and polynomial inte-(t i ) denotes the volume of element e at training time t i , i ∈ 1, n s , without loss of generality, sampled at the same training times as unassembled internal forces. Constraint (5.17) is expressed in the MIP formalism by appending [G v ] to (5.16) (t 1 ) . . . ω ne (t 1 )

	In a similar fashion, rst degree polynomials integration is imposed at training
	times t i , i ∈ 1, n s					
			ne			ne
		          	e=1 ne	ζ e ω e (t i )g ζ e ω e (t i )g	(e) 1 (t i ) = (e) 2 (t i ) =	e=1 ne	ω e (t i )g 1 (t i ) (e) ω e (t i )g (e) 2 (t i )
		          	e=1 ne e=1	ζ e ω e (t i )g	(e) 3 (t i ) =	e=1 ne e=1	ω e (t i )g
	gration up to a given degree. Volume preservation writes
			ne		ne
				ζ e ω e (t i ) =	ω e (t i ),	(5.17)
			e=1		e=1
	where ω e [G v ] =	  	ω 1 . . .		. . .	(5.18)

ω 1 (t ns ) . . . ω ne (t ns )    ∈ R ns×ne .

  ) . . . ω ne (t ns )g ) . . . ω ne (t 1 )g ) . . . ω ne (t ns )g ) . . . ω ne (t 1 )g

			(ne) 1	(t 1 )
	. . .	. . .
	ω 1 (t 1 )g 1 (t 1 (ne) (1) 1	(t ns )
	ω 1 (t 1 )g 2 (t 1 (ne) (1) 2	(t 1 )
	. . .	. . .
	ω 1 (t 1 )g 2 (t 1 (ne) (1) 2	(t ns )
	ω 1 (t 1 )g 3 (t 1 (ne) (1) 3	(t 1 )
	. . .	. . .
	ω 1 (t 1 )g 3 (t 1 ) . . . ω ne (t ns )g (1)	(ne) 3

  Similarly, unnecessary projections are avoided when computing velocities. When kinematic conditions are prescribed, they are projected onto the reduced space ahead of velocites computations. Finally, reduced velocities are obtained by integrating reduced accelerations and used to approximate high dimensional velocities.

T , according to the ROM semi-discretized equations (2.19) introduced in section 2.2.3. High dimensional accelerations are approximated using reduced accelerations only if required for animation, penalization, or any other feature to avoid unnecessary computations.

We tried to apply the multi-domain approach to the bumper plus frame rail regions in which the ROM is still valid. Contact is used as a trigger, referred to as oracle, for online adaptivity, consisting in dening a region of the domain in which full-scale computation is required.

The oracle identies when and where the ROM is invalid while avoiding full-scale computations and unnecessary updates. Dierent oracles and online adaptations may be considered in applications to explicit nonlinear structural dynamics. Contact is not the only event which may results in ROM invalidity and other oracles, based on deformations or total energy loss for example, need to be developed.

In automotive design application, it is not clear how to restrain the ROM to a region of the domain. Using condensation, as is the case in [START_REF] Teng | Subspace condensation: full space adaptivity for subspace deformations[END_REF], is likely to be computationally unaordable, requiring the development of alternative methods. Moreover, online adaptivity may also consists in enriching the ROM. While enriching the RB is straightforward with the incremental SVD presented in Chapter 3, updating the hyper-reduced integration scheme incrementally remains an open question.

Chapter A: Notations σ -stress tensor

x -point in Ω {ξ} -boolean vector selecting the subset of RB functions {ζ} -weights of the hyper-reduced integration scheme ζ max -maximal weights value