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Résumé

Lors de la conception de nouveaux véhicules, les constructeurs automobiles font face
à de nombreuses contraintes telles que la sécurité, le confort, le poids et la consom-
mation de carburant. La simulation numérique, et plus précisément la méthode des
éléments �nis, y est très largement utilisée car elle permet de tester l'in�uence des
di�érents paramètres sur le comportement du système. Ainsi, de nombreux tests
réels sur prototypes sont évités. La conception de nouveaux véhicules est néanmoins
ralentie par l'utilisation de modèles de plus en plus complexes, en particulier dans
les applications au crash. De nombreuses méthodes de réduction de modèles sont
développées dans le but d'accélérer les simulations en tirant parti de l'énorme quan-
tité de données disponibles et de la répétitivité des calculs réalisés avec de petites
variations dans les paramètres de conception.

Cette thèse vise à appliquer de telles méthodes aux simulations de crash au-
tomobiles comprenant des nonlinéarités matérielles et géométriques ainsi que de
nombreux contacts. E�ectuée en étroite collaboration entre le groupe PSA, le
développeur de logiciel Altair Engineering et le laboratoire de mécanique UTC-
CNRS Roberval, ce projet met l'accent sur les méthodes de réduction intrusives né-
cessitant des modi�cations dans le code source du solveur éléments �nis. Une base
réduite de fonctions de forme globales est formée pendant une phase d'apprentissage
hors ligne sur un ensemble de données et utilisée en ligne pour réduire la taille du
modèle et permettre l'hyper-réduction des forces internes et l'accélération du temps
de calcul.

Les contributions de cette thèse concernent trois aspects de la phase
d'apprentissage. Les modi�cations apportées à la décomposition en valeurs sin-
gulières incrémentale la rendent plus facile à utiliser tout en accélérant le temps
d'apprentissage des bases réduites. Le critère sparse est proposé pour la sélection
des fonctions de base réduite, o�rant de meilleures performances dans la phase
de réduction ainsi qu'une meilleure corrélation entre l'erreur d'apprentissage hors
ligne et l'erreur d'approximation en ligne. Une formulation innovante du prob-
lème d'optimisation d'hyper-réduction tirant parti de la programmation en vari-
ables mixtes est suggérée comme référence pour le développement d'heuristiques.
Additionnellement, de nouvelles contraintes sur l'intégration polynomiale et la con-
servation du volume sont utilisées.

Tous les développements informatiques sont réalisés dans le solveur éléments
�nis explicite industriel Altair Radioss avec un accès complet au code source. À la
connaissance de l'auteur, cette caractéristique constitue un di�érentiateur majeur de
la présente contribution. Les di�cultés relatives à cet aspect sont discutées. En�n,
des recommandations et perspectives pour l'application robuste de la méthode à
l'étude de véhicules automobiles en tenue de crash sont données.



Abstract

Vehicle manufacturers face numerous constraints regarding security, comfort, weight,
and fuel consumption when designing new automotive vehicles. Numerical simula-
tion, and more precisely, the �nite element method, is extensively used in the process
to achieve cost reduction while allowing to test the impact of multiple design pa-
rameters on the system behavior. Nevertheless, industrial �nite element models of
automotive crash are growing prohibitively expensive in computation time, slowing
down the design process. Numerous model order reduction methods have been de-
veloped in order to speed-up simulations by making use of the humongous amount
of collected data and the repetitiveness of computations with slight changes to the
design variables.

This thesis aims to apply model order reduction methods to �nite element simu-
lations of automotive crash, involving material and geometric nonlinearity as well as
contact. This project, conducted in close collaboration between the car manufacturer
PSA group, the software developer Altair engineering, and the computational me-
chanics group at the UTC-CNRS joint laboratory Roberval, targets intrusive meth-
ods necessitating modi�cations in the �nite element solver source code. Amongst
di�erent promising methods reviewed in the state-of-the-art, our work focuses on
projection-based reduced order modeling and hyper-reduction. A reduced-basis of
global shape functions is built upon relevant data in the o�ine training phase and
used online to reduce the model size, enabling the hyper-reduction of internal forces
and computational speed-up.

The contributions of this thesis concern three aspects of the training phase. De-
velopments of the incremental singular value decomposition allow for a more �ex-
ible and faster reduced-basis training. The proposed sparse criterion enables the
formation of basis functions subsets with enhanced performances and better corre-
lation between the o�ine training phase approximation error and the actual error
in the online reduction phase. An innovative formulation of the hyper-reduction
optimization problem involving mixed-integer programming, added constraints on
polynomial integration, and volume conservation is suggested for the benchmarking
of future heuristic methods.

All implementations are performed in the industrial explicit �nite element solver
Altair Radioss with complete access to the source code. To the author's best knowl-
edge, the implementation of such a method in industrial explicit �nite element solver
represents a signi�cant di�erentiator of the present contribution. Implementation-
speci�c di�culties relevant to this aspect of the thesis are discussed. Finally, recom-
mendations, as well as perspectives and further developments required for the robust
application of the method to industrial numerical simulations of vehicle crash, are
given.
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Chapter 1

Introduction

1.1 Industrial context

The Finite Element Method (FEM) and simulation, in general, are nowadays widely
used in the industry when designing new complex products. It allows testing various
properties of a product numerically, avoiding expensive tests on prototypes. Such
technology enables cost and time reduction in the development phase of industrial
projects.

Naturally, a FE model is a representation of the reality that it approximates and
there is a dilemma between computation time and solution quality when building
one. When using such models for industrial design and, more speci�cally, in car
parametric optimization for crash situations, numerous simulations are performed
over and over with minor parametric changes in search of the optimal design. Some
applications may turn out to be expensive in computational time and with the
growing need for �ner results, FE models tend to complexify in order to represent
crack and contact.

Nowadays, there is a need for simulation software to explore parametric spaces
faster. To this end, Model Order Reduction (MOR) methods have been developed to
accelerate response time, called Reduced Order Models (ROM). Several approaches
exist in the literature to build such models.

The goal of this thesis is to explore the opportunities for MOR in the design of
new vehicles. While non-intrusive methods using the solver as a black box are in
most cases developed internally by the car manufacturer, this thesis places the focus
on intrusive ones necessitating a modi�cation in the solver source code. Develop-
ments are directly performed in the industrial-level software with complete access
to the source code provided by Altair Engineering France.

The following sections present the opportunities for MOR in car design (1.2),
the outline of the thesis (1.3), and �nally, the list of scienti�c contributions (1.4).
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1.2 Opportunities for model order reduction in the

design of new vehicles

Designing a new vehicle is a complex industrial process involving a multi-objective
optimization in which numerous constraints concerning weight, production cost, se-
curity, fuel consumption, thermic, noise, vibration, deformation, and durability have
to be satis�ed. A lightweight vehicle will consume less fuel, requiring a less pow-
erful engine and enabling furthersavings in weight and fuel consumption. Comfort
is a major customer concern that entails optimization of road handling as well as
noise and vibration. Last but not least, crash standards have to be ful�lled when
an accident may not be avoided.

Figure 1.1: V-cycle

The V-cycle, represented in Figure 1.1, is used to summarize the di�erent steps
in the development of new vehicles, separated into two main phases: the design and
the integration. The design phase goes from the global to the detailed vision of
the project, while the second phase goes the opposite direction. In the �rst phase,
vehicle drawings and requirements speci�cation are used to go into the detailed
speci�cations of each module and parts are designed separately. Each part is then
incorporated into the vehicle for validation in the integration phase.

Finite Element Analysis (FEA) is extensively used at multiple stages of develop-
ment to minimize the number of real tests, allowing to numerically study the impact
of multiple design variables on the vehicle behavior and physical properties without
having to build prototypes, enabling time and cost reduction. It is notably used
in individual modules and parts design as well as to validate the complete vehicle
integrating all subsystems. Simulation turns out to be a blocking point in the design
process as it is needed to step forward in the V-cycle.

Vehicle crash simulation is the more expensive FEA application in new vehicles
development. It is a complex multi-objective optimization problem considering dif-
ferent crash, including frontal full width rigid barrier impact, side moving deformable

11
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Figure 1.2: Evolution in the �nite element model size used in industrial crash sim-
ulation at PSA Group.

Figure 1.3: Crash simulation example of a frontal o�set deformable barrier impact

barrier impact, side oblique pole impact, whiplash pedestrian subsystem tests, ex-
tensively described in [25]. Quantities of Interest (QoI) are accelerations, intrusions,
and strains. Typical model parameters are material properties, shell thicknesses
and test conditions (vehicle speed and attitude, dummy position). Models size,
nonlinear material laws evaluation as well as contact and fracture representations,
render each simulation computationally intensive. Concomitantly with the rise in
computational power, models used for crash simulation are increasingly complex as
illustrated by Figure 1.2 on di�erent vehicle models at PSA Group since 1990. The
number of elements is proportional to the required number of nonlinear material
law evaluations at each time cycle. Thus, it is often used to assess the computa-
tional complexity of a model in such applications. Last decade, it had augmented
of one order of magnitude in constant search for accuracy and, more recently, for
fracture representation. An example of such simulation is provided in Figure 1.3.
T = 130 ∗ 10−3 seconds of the model are simulated, the latter being composed of
2.5 million shell elements of average size 5 millimeters. Computations took 12 hours
on 48 CPUs with a time-step of approximatively 0.5 ∗ 10−6 second and are to be
performed multiple times with little parametric variations in search of the optimal
con�guration.

Simulating each subsystem of the vehicle separately also is a challenging FEA ap-
plication. The main di�culty concerns the boundary conditions de�nition as they

12
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must take into account the potential interaction with surrounding vehicle parts.
Moreover, computational costs prevent the use of stochastic methods such as Monte
Carlo.

Model order reduction is increasingly used to overcome issues relative to expen-
sive FE simulations to approximate the solution with reduced complexity. MOR
methods may be categorized as intrusive or non-intrusive. Non-intrusive reduction
methods build a reduced model using the FE solver as a black box. These methods
are quite mature and are extensively used in industrial vehicle crashworthiness opti-
mization to explore the design of experiment (Kriging, Non-intrusive POD, Radial
Basis Functions ...). On the other hand, intrusive reduction methods require mod-
i�cations in the FE solver and are thus less used in the industry where the solver
source code is generally not available. Compared with non-intrusive methods, intru-
sive ones make use of the solver to take physic into account. They have the poten-
tial to speed-up crash simulations, sensibility and robustness analysis, and enhance
boundary conditions in the study of subsystems by capitalizing on the numerous
available data. However, expanding intrusive reduction methods to nonlinear tran-
sient structural dynamics problems arising in vehicle crashworthiness optimization
stills remains a challenge.

In this project, the car manufacturer PSA Group and the software developer
Altair Engineering France collaborate to investigate the applicability of intrusive
method in the commercial Altair Radioss [3] solver in nonlinear explicit transient
structural dynamics FEA.

1.3 Outline

This thesis is motivated by the need to develop intrusive model order reduction to ac-
celerate computations in �nite element industrial applications to nonlinear transient
structural dynamics and, in particular, vehicle crashworthiness optimization. Such
applications involve repetitive simulations of complex models with slight changes in
the parameters in search of the optimal design and induce prohibitive computation
times. By investing in the plethora of collected data, Projection-based Reduced
Order Modeling (PROM) methods have the potential to speed-up computations
needed to �nd the optimal design. A di�erentiator of the present work lies in the
use of an industrial explicit FE solver in which the hyper-reduced proper orthogonal
decomposition has been implemented for research purposes. It is allowed by the
collaboration between the car manufacturer PSA Group, the Roberval laboratory,
and the software developer Altair Engineering providing full access to the legacy
explicit FE solver [3] source code in which developments presented in this thesis are
performed.

Several bottlenecks to the robust application of PROM methods to vehicle crash-
worthiness optimization are identi�ed:

• the computational cost associated with training the ROM over previously col-
lected data quickly become computationally prohibitive on large models;

• the ROM approximation error is usually assessed a priori, which is shown to
be insu�cient in applications to nonlinear explicit structural dynamics;

13



Towards data-enabled vehicle crash simulations

• several options used in full-scale vehicle crash FE models are not compatible
with the approach;

• the contact formulation used in industrial FE models is no reduced by the
method and still represent a large portion of the computational e�ort.

The three following contributions of this thesis address some of the above di�culties.

The truncated Singular Value Decomposition is, in the POD, used to compute
a low rank representation of the training data set, yielding the Reduced Basis (RB)
used in PROM methods to reduce the model complexity. However, the SVD compu-
tations turn out infeasible on data sets involving high numbers of snapshots gathered
on models with large numbers of degrees of freedom. An incremental alternative has
been developed to overcome this limitation when computing low-rank representation
over an extensive data set. By enriching a truncated representation of the data as
soon as an observation is available, the method avoids expensive data manipulation
and storage in binaries while only working with relatively small matrices, permit-
ting considerable computational savings in the training phase. Key features of the
method concern 'on-the-�y' truncation and snapshots selection. The present work
proposes a new error estimator to keep track of the approximation quality. It drives
truncation and snapshots selection 'on-the-�y' in place of former tolerances, simpli-
fying the use of the algorithm along with guaranteeing nearly optimal performances
in terms of approximation precision and computation time. These developments are
benchmarked against the state-of-the-art incremental SVD as well as a regular SVD
for data approximation, computation time, and RB performances in the online re-
duction phase. Moreover, such an incremental approach has the potential to enable
reduced model enrichment in the online reduction phase.

The second contribution concerns a new sparse criterion proposed for the con-
struction of the subsets of left singular vectors of the snapshots matrix constituting
the RB. RB quality is in the literature assessed o�ine using and averaged approxi-
mation error over the training data set. Here, training data approximation error is
proved to be insu�cient when reported to RB's performances in the online reduc-
tion phase. For a minimal additional complexity, this contribution solves identi�ed
issues arising in the online reduction phase when using RB functions selected with
the usual sequential truncation criterion in POD applications to transient structural
dynamics problems. When using the sequential criterion, signi�cant observations
in the training data set are overshadowed by less meaningful, but more frequent
ones. In transient problems, this behavior may result in RB that fails in the online
reduction phase if, for example, the solution is poorly approximated at the time-
step triggering the deformation. Rather than imposing a threshold on an averaged
training data reconstruction error, as it is the case for the usual sequential singular
value truncation criterion, the proposed sparse criterion imposes a threshold on each
snapshot reconstruction error. On a FE crash-box benchmark, the sparse criterion
is shown to circumvent this issue and to form RB exhibiting, at a given size, a better
online performance.

The third contribution concerns the HR training phase with the ECSW method.
The optimization problem arising in the o�ine training phase of a hyper-reduced

14



Chapter 1: Introduction

integration scheme is NP-hard and is, in the literature, sub-optimally solved in
a greedy manner with the SNNLS algorithm. This procedure still turns out to
be prohibitively expensive in computation time when training hyper-reduced in-
tegration schemes on large FE models, necessitating developments of alternative
heuristics. In this context, there is a need for a reference solution for comparing
di�erent heuristics. The contribution proposes an alternative formulation of the
ECSW optimization problem introducing Boolean selection variable taking account
for �nite element a�liation to the hyper-reduced integration scheme. The resulting
optimization problem is solved using Mixed-Integer Programming (MIP), providing
a reference for the validation of alternative suboptimal methods. Additionally, the
impact of reducing the number of constraints and adding consistency conditions re-
garding polynomial integration, volume conservation, and weights minimal values is
studied on an the reference example of a pierced plate in the traction model.

The manuscript is organized in the following manner. FE formulation used in
industrial crashworthiness optimization is presented in Chapter 2, together with
a brief state of the art of MOR techniques of interest in this context. Scienti�c
contributions are developed in following the chapters: work on the incremental SVD
for RB computation introduced in Chapter 3. Chapter 4 covers the proposed sparse
criterion for the formation of the RB functions from left singular vectors and a
new mixed formulation of the hyper-reduction optimization problem is presented in
Chapter 5. Implementation and potential perspectives for robust integration of the
method in industrial processes are discussed in Chapter 6. Notations and acronyms
used throughout the manuscript are summarized in Appendix A and Appendix B,
respectively.

1.4 Associated journal publications and conference

papers

Scienti�c contributions of this thesis have been presented in academic proceedings,
workshops, industrial events and published in international journals.

Di�erent proceedings have been made in national and international academic
events:

• Proceeding [13] on contribution presented in chapter 5 as been made at the
13th World Congress on Computational Mechanics (WCCM XIII).

• Presentation [59] on the modi�ed incremental singular value decomposition of
chapter 3 has been given at the 6th European Conference on Computational
Mechanics (ECCM6) in Glasgow.

• The proposed sparse criterion of chapter 4 was �rst presented at the 14th

French national congress on computational mechanics (CSMA 2019) in [61].

• Proceeding [65] on the sparse criterion at the ECCOMAS 4th Young Ivestigator
Conference 2019 at Krakow [65].

• The global presentation [63] on contributions and outlooks for this work has
been given at the 5th MORTech international Workshop in 2019.
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We presented the work of this thesis in two industrial events:

• The NAFEMS 18 France Conference [60].

• The French Society of Automotive Engineers (SIA) 2019 numerical simulation
congress [62].

Moreover, publications has been made in international scienti�c journal:

• Contribution on a sparse criterion, presented in chapter 4, has been published
in the International Journal for Numerical Methods in Engineering in [64].

• Springer special issue
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Chapter 2

State of the art

Last few decades, much attention has been being paid to the development of Model
Order Reduction (MOR) methods to tackle the growing need for faster simulation
in a wide variety of scienti�c �elds. These methods rely on strong hypotheses to
achieve drastic reductions in the number of unknowns of a model, thus focusing the
computational e�ort on the Quantities of Interest (QoI). Depending on the targeted
application, it is crucial to carefully choose the MOR method to apply, as: �rst,
some methods require many developments and second, the funding hypothesis of
the method may not be appropriate.

Two ways to categorize MOR methods are on 'a priori'/'a posteriori' and
intrusive/non-intrusive. 'A posteriori' methods rely on previously collected data on
the QoI to build a Reduced Order Model (ROM) whereas 'a priori' methods build
one without any prior data on the QoI and rather rely on knowledge of the govern-
ing equations and numerical methods used in the model. Intrusive methods involve
modi�cations in the source code of the simulation software in opposition to non-
intrusive methods that use the simulation software as a black-box. An important
variety of non-intrusive MOR methods is meta-modeling that use simulation results
to �t a surrogate model of the Design of Experiment (DoE)(Response Surface (RS),
Radial Basis Functions (RBF) [26], Kriging [23], Neural Network (NN) [57], ReCUR
[50], Non-intrusive Proper Orthogonal Decomposition (NiPOD)([41, 15, 80]), thus,
meta-modeling methods are 'a posteriori' non-intrusive methods. Among the intru-
sive MOR methods, the PGD [22, 49] approximates the QoI as a separate variable
function and solves smaller independent models for each of those functions, en-
abling, once this work is done, the real-time evaluation of an approximated solution
for any parameter con�guration. Another class of intrusive methods is the Pro-
jected Reduced Order Model (PROM) that approximates the unknown as a linear
combination of Reduced Basis (RB) vectors that replace a large number of shape
functions originally used. A prevalent PROM method is the Proper Orthogonal
Decomposition (POD) that originates from statistical data analysis [48] and found
application in the analysis of turbulent �ows [9]. This method build a RB from
data to project the model on, yielding a ROM with fewer degrees of freedom. This
method is often coupled with a method that approximates the projection of internal
variables such as the Discrete Empirical Interpolation Method (DEIM) [17] and the
Hyper-Reduction (HR) [73, 28].

Compared to intrusive methods, meta-modeling methods are widely used in the
industry as they may easily be implemented by manufacturers without having access
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to the source code of the simulation software. It is possible to couple meta-modeling
and intrusive MOR methods to build a surrogate model upon a ROM simulation
results. It is also possible to couple meta-modeling methods, an example of such
coupling is the NiPOD: this method uses POD to reduce the dimensionality of
collected simulation results and, in a second step, build a surrogate model for the
reduced variables. A drawback of meta-modeling is that the physic of the problem
is, in most cases, not taken into account in the surrogate model.

2.1 Brief review of Model Order Reduction meth-

ods

A large variety of reduction methods exist in the literature, all of which make strong
hypothesis on the physical system to reduce its complexity.

2.1.1 Proper Generalized Decomposition

The Proper Generalized Decomposition (PGD) is an a priori model reduction
method developed by F. Chinesta [22] and P. Ladevéze (LATIN-PGD) for nonlinear
solid mechanics [49]. PGD approximates the solution as a �nite sum of separate vari-
ables functions. Once the o�ine procedure complete, PGD allows real-time solving
of the problem in the online phase by evaluating the basis functions for di�erent
parameter values. The method has found applications in a variety of scienti�c �elds
such as parametrized heat problem [84], parametric PDE [55], or computational
rheology [21]. This method is very young, and its e�ciency strongly depends on the
separability of the variables.

This section brie�y reviews the PGD and discusses further developments needed
to apply the method to crash simulation.

Solution approximation

PGD central hypothesis is that the unknown solution u({µ}) of a physical problem,
which depends on parameters {µ} = (µ1, . . . , µnp)T , may be approximated with the
separate variables function

u({µ}) ≈ ũ(k)({µ}) =
k∑
i=1

np∏
j=1

φi,j(µj), (2.1)

of size k. Without loss of generality, all variables are considered as parameters.
The PGD proceeds in two main steps: Basis functions (φij)i,j are computed in the
o�ine phase, and the solution (2.1) is approximated for any parameters value in the
online phase. The o�ine phase is generally carried out by the Alternative Directions
Scheme (ADS) algorithm reviewed in section 2.1.1. In the online phase, the method
allows for a very fast approximation ũ(k) of the solution u in the online phase that
may be carried out in real-time on an economic platform (phone, tablet, ... ).

Alternative directions scheme

The trickiest part of the PGD method is the basis functions computation in the
o�ine phase. This task may be carried out by the ADS algorithm, brie�y presented
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below, the interested reader is referred [22] where extensive information may be
found.

The ADS proceeds by injecting approximation (2.1) into the equation weak form
for increasing size k = 1, . . . . First basis functions are initialized as constant func-
tions, unknown functions in subsequent iterations are approached with polynomial
functions. At the kth enrichment step (φi,j)i,j are known for i ∈ J1, k − 1K and
j ∈ J1, . . . , npK and each function (φk,j)j=1,...,np is iteratively approached with (φ

(p)
n,j)p

in an inner loop on p. At this step all functions in the current weak form, except
φ

(2)
k,1, are known and are integrated. φ(2)

k,1 is then computed by resolving the result-
ing equation, using the FEM for example. The kth enrichment step continues with
the other basis functions (φ

(2)
k,j)j=2,...,np . (φ

(p−1)
k,j )j are replaced one by one by (φ

(p)
k,j)j,

obtained by solving one-dimensional problems. Iterations on p in the kth enrich-
ment step stops when Cauchy convergence is reached and (φ

(p)
k,j)p does not change

anymore, ∀j ∈ J1, kK. The same stopping criterion is used on the main loop, when
further increasing approximation size k does not increase precision.

Application to car crash �nite element simulation

The underlying dependence of PGD on the separability of the input space limits
its application in vehicle crash to the separability of the parametric space. In the
targeted nonlinear structural dynamics applications, the solution u({x}, t, {µ}) de-
pends on the position {x} = (x, y, z) ⊂ Ω, the time t ∈ [0, T ] and parameters
{µ} = (µ1, .., µnp)T ∈ P. When the structure undergoes large deformations, space
and time may not be separable, yielding the revised approximation

u({x}, t, {µ}) ≈ ũ(N)({x}, t, {µ}) =
N∑
i=1

φi({x}, t)
k∏
j=1

ψi,j(µj). (2.2)

This bottleneck may possibly be overcome by methods such as KPCA projecting
the parameters space on a larger, possibly in�nite-dimensional space in order to �nd
hidden parameters, which will hopefully be separable (D. Gonzalez [33]).

In the ADS procedure, model parameters need to be explicitly expressed in the
weak form, to be separately integrated with respect to all parameters. However,
shape parameters or nonlinear material laws in speci�c regions of the structure may
be hard to express analytically in the weak form of the equations.

Most importantly, the PGD induces the development of new software, which is
beyond the scope of this thesis.

As a consequence, the PGD will not be considered in this work.

2.1.2 Equivalent Static Load Method

The Equivalent Static Load Method (ESLM) approximates the gradient of the func-
tion J to be optimized by approximating the primary system with a linear static one
on which adjoint-state is performed. This method is described with more precision
in [58, 31].

ESLM aims to speed-up the parametric shape optimization by giving access to
the gradient. Rather than accelerating simulations, ESLM reduces the number of
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simulations needed in the optimization process.

The semi-discretized equations used in the crash simulation are

[M({µ})]{üNL(t, {µ})}+ {fint({u(t, {µ})}, t, {µ})} = {fext(t, {µ})}, (2.3)

where the dependency with respect to the parameters {µ} = (µ1, . . . , µnp)T has been
explicitly written. Usual parameters in the targeted application are material prop-
erties, shell thicknesses, nodes positions and CAD parameters. The tangent sti�ness
matrix [KL({u(t, {µ})}, t, {µ})] = ∂{fint}

∂{u} ({u(t, {µ})}, t, {µ}) is de�ned at the current
set of parameters {µ}.

The equivalent linear static problem (2.4)

[KL({u(t, {µ})}, t, {µ})]{uL({µ})} = {feq(t, {µ})} (2.4)

is written at time t. The displacement {u} is conserved at time t in the equivalent
linear static problem, explicitly

{feq(t, {µ}) := [KL({u(t, {µ})}, t, {µ})]{u(t, {µ})} ⇒
(2.4)

{u(t, {µ})} = {uL({µ})}.

(2.5)
[KL({u(t, {µ})}, t, {µ})] is computed at �rst time step and may be regularly up-
dated at subsequent simulation times, which is strongly encouraged for large strain
applications.

ESLM Algorithm

The ESLM algorithm 1 generates a parameter sequence ({µ}k)k converging towards
the �nal design.

Algorithm 1: ESL Algorithm

1 Function [P] = ESLM
2 P 1 optimization starting point;
3 for k=1:Itermax do
4 Solve [M({µ(k)})]{üNL(t, {µ(k)})}+ {fint({u(t, {µ(k)})}, t, {µ(k)}) =

{fext(t, {µ(k)})};
5 Evaluate J({µ(k)}, {u({µ(k)}, t)});
6 Compute {feq(t, {µ(k)})} = [KL({µ(k)})]{u({µ(k)}, t)} at di�erent

simulation times;
7 Compute the new equivalent static linear model;
8 Compute the Gradient on the design domain (see Gradient computation

Section);
9 Descend to {µ(k+1)}; % Gradient descent, Quasi-Newton Method, etc. ...

10 Test optimization shuto� parameter;
11 end
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Gradient computation

The gradient is approximated with

dJNL
d{µ}

=
∂JNL
∂{µ}

+
∂JNL
∂{u}

∂{u}
∂{µ}

≈ ∂JNL
∂{µ}

+
∂JL
∂{uL}

∂{uL}
∂{µ}

, (2.6)

where JNL := J({u({µ}, t)}, {µ}) and JL := J({uL({µ})}, t). The last term in (2.6)
is obtained by performing the adjoint-state method on the linear static model.
Rewriting (2.4) into the following state equation

Geq({uL({µ})}, {µ}) = [KL({µ})]{{uL({µ})} − {feq(t, {µ})} = 0

leads to
dJNL
d{µ}

≈ ∂JNL
∂{µ}

+ λTL
∂Geq

∂{µ}
where λL is the adjoint state obtained by solving the following adjoint-state equation
(2.7).

[
∂Geq

∂{µ}
]TλL = −[

∂JL
∂{µ}

]T (2.7)

Explanation :

Using the Lagrangian function

L({uL}({µ}), {µ}) = JL({uL({µ})}, {µ}) + λTGeq({uL({µ})}, {µ})

with
dL
d{µ}

= (
∂JL
∂{µ}

+ λTL
∂Geq

∂{µ}
) + (

∂JL
∂{uL}

+ λTL
∂Geq

∂{uL}
)
∂{uL}
∂{µ}

= 0 (2.8)

and choosing λL satisfying (2.7) leads to ∂JL
∂{uL}

∂{uL}
∂{µ} = −λTL

∂Geq

∂{uL}
∂{uL}
∂{µ} . As dGeq

d{µ} =
∂Geq

∂{uL}
∂{uL}
∂{µ} + ∂Geq

∂{µ} = 0 one may write ∂JL
∂{uL}

∂{uL}
∂{µ} = λTL

∂Geq

∂{µ} .

Remarks and method improvement

This method has been successfully applied to car crash shape optimization for nodal
intrusion and energy criterion objectives in [58, 31], providing sensibility mapping
on an example such as hollow beam shape optimization for energetic absorption in
a situation of impact with a rigid wall, which is illustrated on Figure 2.1.

In order to get a better gradient approximation and ensure the constraint equality
between the analysis and design domains, one may want to use the secant sti�ness
matrix [KS] in place of [KL]. The secant sti�ness matrix is obtained by computing the
Young secant modulus for each element in the model, elemental sti�ness matrices,
and assembling it. Equation (2.4) rewrites

[Ks
S({µ})]{{uL}({µ})} = {feq(t, {µ})}.

Moreover, the energy absorption is to be considered in vehicle crashworthiness opti-
mization. To this end, nodal positions derivatives with respect to the CAD control
points positions need to be computed, and the secant sti�ness matrix needs to be
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Figure 2.1: Sensitivity mapping of the of the energetic criteria wit respect to each
note (seen in [31])

used to ensure constraint equality between the two domains.

The main advantage of this method is its facility to deal with optimization based
on a large number of parameters and quickly provide a sensitivity mapping that does
not need a parametrized CAD (see Figure 2.1 taken from [24]). However, it is essen-
tial to notice that the gradient computed using the equivalent static problem is an
approximation of the real one. Hence it may not �t to a Quasi-Newton gradient op-
timization method or other methods based on Hessian approximation, leading to a
very coarse approximation. Further developments are required to extend the method
to multi-objective optimization and criterion using velocity and upper derivatives
such as Head Injury Criterion (HIC). The mathematical equivalence between the
dynamic and the equivalent static problems has not been demonstrated yet. A cri-
terion showing the loss of proportionality in the loading has to be found in order
to determine when the gradient approximation may not be used anymore for the
descent direction computation in the optimization phase.

2.1.3 Projection-based Reduced Order Modeling

In the Finite Element (FE) method, the discrete solution {u} ∈ R
N is expressed

as a linear combination of shape functions bounded to a single node of the mesh
and locally de�ned in each element of the model. Projection-based Reduced Order
Modeling (PROM) methods link between the local and the global formulations.
PROM methods approximate the solution {u} with a linear combination {ũ} of
global, domain spanning, Reduced Basis (RB) functions ({φi})1≤i≤k ⊂ RN ,

{u(t)} ≈ {ũ(t)} =
k∑
i=1

αi(t){φi}, ∀t ∈ [0, T ], (2.9)
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making the hypothesis that the Full Order Model (FOM) solution {u} may be cor-
rectly approximated with a small number k of RB functions with respect to the
original model size N , and thus reducing the number of unknowns.

Numerous methods address the computation of the RB, mostly based on di-
mensionality reduction, or low-rank approximation, methods, acting a posteriori on
gathered training data. The Dynamic Mode Decomposition (DMD) [72, 74, 20, 79, 2]
uses transient data to approximate the modes and frequencies associated with the
Koopman operator. The Koopman operator [47] describes the dynamical evolution
of observables in a physical system. A RB is formed using approximated modes.
The Proper Orthogonal decomposition (POD), also known as Principal Component
Analysis (PCA), computes the vector space of a given dimension that best approxi-
mates a set of observations. A basis of this space is used to form an orthogonal RB.
Several variations of this method, such as the Balanced POD (BPOD), the Smooth
Orthogonal Decomposition (SOD), have been proposed.

2.1.4 Dimensionality reduction methods

A non-exhaustive list of dimensionality reduction methods used in a posteriori MOR
methods is presented in this section.

The singular value decomposition

A popular method used in building a low-rank approximation of the snapshot matrix
is the Singular Value Decomposition (SVD), also known as the Principal Component
Analysis (PCA). The thin SVD is a generalization of the eigenvalue decomposition
for non-square matrices. Given a snapshot matrix [S] = [{u1}, {u2}, . . . , {uns}] ∈
R
N×ns , where N stands for the data dimension and ns the number of snapshots in

the training data set, its singular value decomposition writes:

[S] = [Φ][diag({s})][Ψ]T , (2.10)

with [Φ] = [{φ1}, {φ2}, . . . , {φm}] ∈ R
N×m the matrix of left singular vectors,

[Ψ] = [{ψ1}, {ψ2}, . . . , {ψns}] ∈ Rns×m the matrix of right singular vectors, {s} =
(s1, s2, . . . , sm)T ∈ Rm the vector of associated singular values and m = min(N, ns).
[Φ] and [Ψ] are both orthonormal matrices. Unlike the regular SVD, in which N left
singular vectors are computed in [Φ], the thin SVD only computes m left singular
vectors. Approximating a data set of size ns, the regular SVD entails unnecessary
computations if ns > N . Thus, the thin SVD is preferred for data approximation.
In the manuscript, what is referred to as SVD is the thin SVD.

The RB [Φ(k)] = [{φ1}, {φ2}, . . . , {φk}] ∈ R
N×k of size k is obtained by only

keeping the �rst k columns of [Φ]. The left singular vectors in decomposition (2.10)
being sorted out in descending order of associated singular values, [Φ(k)] spans by
construction the vector space of dimension k that best approximates the training
data set [S] in the sense that it minimizes the error of projection in the Frobenius
norm. More precisely,

‖[S]− [Φ(k)][Φ(k)]T [S]‖F
‖[S]‖F

= min
[M ]∈O(N,k)

{‖[S]− [M ][M ]T [S]‖F
‖[S]‖F

}, (2.11)
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with ‖[•]‖F =
√∑

i,j

[•]2ij the Frobenius norm and O(N, k) := {[M ] ∈ R
N×k |

[M ]T [M ] = [Id]} the space of orthogonal matrices of dimensions N by k. Ap-
proximation error (2.11) corresponds to the singular value error of truncation√√√√√√√

ns∑
i=k+1

s2
i

ns∑
j=1

s2
j

=
‖[S]− [Φ(k)][Φ(k)]T [S]‖F

‖[S]‖F
, (2.12)

making the truncation criterion easy to use in practice.

Variations of the singular value decomposition

The SVD, presented in section 2.1.3, is based on the eigenvalue decomposition of
the covariance matrix [Θ] = [S]T [S]. Variations of the SVD consist in modifying the
scalar product used in the computation of these covariance matrices. In its unaltered
version, the coe�cient (i, j) of the covariance matrix is computed using the scalar
product associated with the L2-norm:

[Θ]i,j = ([S]T [S])i,j = 〈{ui}, {uj}〉L2(RN ) :=
N∑
k=1

{ui}k{uj}k, (2.13)

With 〈•, •〉L2(RN ) the scalar product in L2(RN), the space of square-integrable func-
tions. A �rst variation consists in replacing the scalar product in L2(RN) with the
scalar product in H1(RN)

〈x, y〉H1(RN ) := 〈x, y〉L2(RN ) + 〈∇x,∇y〉L2(RN ), ∀(x, y) ∈ RN × RN . (2.14)

Another possible variation of the SVD is the Kernel Principal Component Analysis
(KPCA) presented hereafter.

Kernel principal component analysis

KPCA replaces the scalar product used in the SVD with a reproducing kernel in-
ducing a mapping function that implicitly projects the data set in a vectorial space
of higher, possibly in�nite, dimension D in which the covariance matrix is decom-
posed.

Reproducing kernel:
κ : RN × RN → R is a reproducing kernel if:{

κ({x}, •) ∈ L2(RN), ∀{x} ∈ RN

〈f(•), κ({x}, •)〉L2(RN ) = f({x}), ∀f ∈ L2(RN), ∀{x} ∈ RN

Mercer's theorem :
Let κ(., .) a reproducing kernel. If κ is continuous, symmetric and positive de�-
nite, then it induces a mapping θ : RN → R

D such that 〈θ({x}), θ({y})〉L2(RD) =
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κ({x}, {y}) for all ({x}, {y}) ∈ RN × RN

The Mercer's theorem is the cornerstone of the KPCA as it allows to computes
the covariance matrix of the data set image by the mapping θ in RD, which may be
in�nite-dimensional, without knowing the mapping explicitly. Explicitly: [Θ]i,j =
κ({ui}, {uj}), ∀(i, j) ∈ J1, nsK. The idea behind KPCA is that the data set may
not be separable in RN but in the higher-dimensional space RD. The usual kernel
basis functions are the following.

• κ({x}, {y}) = exp(− ||{x}−{y}||
2

2ω
), ∀({x}, {y}) ∈ Rn2

, ω ∈ R+, radial kernel

• κ({x}, {y}) = exp(−r||{x} − {y}||2), ∀({x}, {y}) ∈ Rn2
, r ∈ R+, extended

radial kernel

• κ({x}, {y}) = (1 + 〈{x}, {y}〉)c, ∀({x}, {y}) ∈ R
n2
, c ∈ N

∗, polynomial
kernel

• κ({x}, {y}) = tanh(〈{x}, {y}〉+ b), ∀({x}, {y}) ∈ Rn2
, b ∈ R, sigmoid ker-

nel

The mapping associated with a kernel basis function is closely related to its Taylor
expansion. Several variations of this method may be found in the literature. The
interested reader may refer to [43] for more details on the KPCA and applications
to parameter space reduction.

2.1.5 Hyper-reduction

PROM applications to nonlinear problems generally yield a computational overhead
in evaluating nonlinear internal variables. As a matter of fact, those variables may
not be linearly projected on the reduced space of the PROM method. The full-scale
solution's approximation needs to be reconstructed ahead of each nonlinear internal
variables computation, which is then projected back on the reduced model, inducing
more computations with respect to the unreduced model.

Di�erent HR methods have been being developed over the last two decades
[35, 73, 28] to circumvent this bottleneck, together with alternatives such as the
Discrete Empirical Interpolation (DEIM) [17, 24, 77] and the magic points [51].
These methods share the same philosophy of computing the minimal required infor-
mation of the full-scale internal variables while ensuring a good approximation of it
once projected on the reduced space of the PROM method.
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2.2 Details on the chosen model order reduction

methods

A detailed review of the reduction methods used in this thesis is proposed in this
section in the scope of applications to nonlinear explicit structural dynamics. Focus
is placed on PROM methods, in which a RB is used to project the FE model on,
coupled with HR, which reduces the computational e�ort associated with nonlinear
internal forces in order to achieve global speed-up in nonlinear applications. More
speci�cally, the RB and associated hyper-reduced integration scheme are computed
with the POD and the ECSW methods, respectively.

The FE formulation used in vehicle crash simulation is presented in section 2.2.1,
the POD in section 2.2.3 and the ECSW in section 2.2.4.

2.2.1 Finite element formulation of the problem

In nonlinear structural dynamics, the semi-discretized FE formulation takes the
following form

[M]{ü(t)}+ {fint({u(t)}, t)} = {fext(t)}, (2.15)

where {u(t)} ∈ RN is the displacement unknown at time t ∈ [0, T ] and consists of
a vector of nodal displacements at each node and in each direction. N denotes the
number of degrees of freedom (DoF). [M] ∈ RN×N is symmetric positive de�nite the
mass matrix.

In the MOR �eld, equations (2.15) are often referred to as the Full Order Model
(FOM). The considered FOM may depend on np parameters (µi)1≤i≤np . In vehi-
cle crashworthiness optimization, those parameters concern material properties and
shell thicknesses. However, for simplicity, the dependency to those parameters will
often be omitted.

2.2.2 A posteriori model order reduction methods

The POD and ECSW are a posteriori methods which rely on observations, called
snapshots, taken from previous full-scale simulations to train a ROM used online to
reduce the computation time of subsequent simulations. The global work�ow for a
posteriori methods is sketched in Figure 2.2.

In the literature, these methods are also referred to as O�ine/Online methods.
They proceed in two main phases: the ROM is computed in the o�ine training
phase and used online to accelerate computations.

In the o�ine phase, snapshots are gathered and post-processed to obtain a ROM
consisting of a reduced representation of the collected data. While these snapshots
may originate from any FE model or experiment, it is essential that they are all
expressed on the same mesh ahead of the ROM training step.

The ROM is then used online to reduce the complexity of one or multiple FE
models. Approximation quality depends both on the collected data relevancy re-
garding the target online application and methods used in the ROM training step.
Computational speed-up of the reduced model is the ratio between the FOM and the
ROM computation times. Nevertheless, the o�ine observation and training steps
induce a computational overhead that needs to be compensated online.
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Figure 2.2: Global work�ow for a posteriori MOR methods

2.2.3 Proper Orthogonal Decomposition

PROM performances depend on the RB capability to approximate the unknown
FOM solution at all simulation times with a minimal number of functions. While the
elemental shape functions used in the FOM allow the representation of any solution
on the mesh, RB functions will constrain the solution to a lower-dimensional space,
which may not contain the FOM solution. Thus, de�ning appropriate RB func-
tions is concomitantly crucial and intricate. The Proper Orthogonal Decomposition
(POD) uses relevant a priori collected data to construct the RB subsequently used
to build the projected reduced order model (2.18). POD decomposes in two phases:
collecting the data, referred to as snapshots, and computing the RB performed in
the o�ine training phase, followed by the online reduction phase consisting in solv-
ing the resulting PROM (2.18).

In the o�ine phase, ns snapshots ({ui})1≤i≤ns are gathered and organized in
the snapshot matrix [S] = [{u1}, . . . , {uns}] ∈ R

N×ns . Various ways of obtaining
those snapshots may be considered. They may originate from real experiments. In
parametric optimization they may originate from simulations performed for a DoE.
Snapshots may as well originate from previous simulation time in an online adaptive
approach, or from previous vehicle models if a part of the vehicle is carried over the
new model. The last two possibilities are discussed in chapter 6. While snapshots'
origin depends on the process in which the POD method is used. Nevertheless, it is
mandatory for snapshots to be de�ned on the mesh of the model to reduce.

The RB is obtained in the o�ine training phase computing a low-rank repre-
sentation of previously collected snapshots. [S] is approximated up to a certain
precision εrb with the minimal number of basis vectors with the SVD. Variations of
the SVD and alternative matrix approximation methods may be used in place of
the SVD, those methods are discussed in section 2.1.4. RB functions and associated
coe�cients are arranged in the RB [Φ(k)] = [{φ1}, . . . , {φk}] ∈ RN×k and the vector
of unknowns {α} = (α1, . . . , αk)

T , respectively, yielding the condensed form of (2.9)

{u(t)} ≈ {ũ(t)} = [Φ(k)]{α(t)}. (2.16)

Injecting approximation (2.16) in the FOM (2.15) and a using a Galerkin pro-
jection on the reduced space spanned by the columns of [Φ(k)] yields the so called
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Reduced Order Model solved in the online reduction phase

[Φ(k)]T [M][Φ(k)]{α̈(t)}+ [Φ(k)]T{fint([Φ(k)]{α(t)}, t)} = [Φ(k)]T{fext(t)}. (2.17)

Introducing notations

• [M̃] = [Φ(k)]T [M][Φ(k)] ∈ Rk×k

• {f̃int({α(t)}, t)} = [Φ(k)]T{fint([Φ(k)]{α(t)}, t)} ∈ Rk

• {f̃ext(t)} = [Φ(k)]T{fext(t)} ∈ Rk

allows to rewrite (2.17) in the more convenient way

[M̃]{α̈(t)}+ {f̃int({α(t)}, t)} = {f̃ext(t)}. (2.18)

Important remarks on model (2.17) concern the stable time step and overcost in
nonlinear applications using a lumped mass approach.

Stable time step

Projecting equations (2.15) using an orthonormal RB yields larger time step in
model (2.18) when computed with the CFL condition. This is due to the spectral
radius of [K̃] being smaller or equal to that of [K]. The interested reader may refer
to [7] for details and mathematical proof.

POD Computational overhead in nonlinear explicit applications

In the online reduction phase, when the nonlinear structural dynamics FE solver
uses explicit time integration, POD generally yields a computational overhead for
two reasons.

In nonlinear structural dynamics industrial FE solvers, the lumped mass ap-
proach yields a diagonal mass matrix [M] and no matrix inversion is needed in (2.15).
Projecting the model on the reduced space yields a fully populated reduced mass
matrix [M̃] in (2.18) which needs to be inverted. A solution is to use the metric asso-
ciated with the symmetric positive de�nite mass matrix [M] in the SVD, as explained
in section 2.2.3.

Also, the need to evaluate high dimensional approximations, turns out to be
quite expensive in the case of nonlinear internal variables. Even though (2.18)
unknown is {α}, it is necessary to evaluate {ũ} = [Φ(k)]{α} to compute the internal
forces at each time step. Depending on the complexity of the model it may as well
be necessary to compute the high dimensional state variables approximations for
contact interfaces, kinematic conditions, or outputs.

Symmetric positive-de�nite matrix metric

A simpli�cation in the POD framework consists in using the metric implied by the
mass matrix [M] of the FOM in the construction of the RB, resulting in the following
identity:

[M̃] = [Φ(k)]T [M][Φ(k)] = [Idk]

with [Idk] the identity matrix. The same goes for any columns selection of [Φ]. This
is achieved by the following steps:
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• premultiply all observation with [M]
1
2

[S̄] = [M]
1
2 [S],

• compute the singular value decomposition of [S̄]

[S̄] = [Ψ̄]diag({s̄})[Ψ̄]T ,

• multiply the resulting subspace with [M]−
1
2

[Φ] = [M]−
1
2 [Φ̄],

{s} = {s̄},

[Ψ] = [Ψ̄].

This way the following identity is ful�lled

[Φ]T [M][Φ] = [Φ̄]T [M]−
1
2 [M][M]−

1
2 [Φ̄] = [Id].

Finally, the semi-discretized ROM equation (2.18) rewrites

{α̈(t)} = [Φ]T ({f̃ext(t)} − {f̃int({α(t)}, t)}). (2.19)

When using such a trick, there are two possibilities in writing the resulting
reduced order approximation {ũ} ∈ RN of a state variable {u} ∈ RN . One possibility
is to use the orthogonal projection and write

{u} ≈ {ũ} = [Φ]([Φ]T [Φ])−1[Φ]T{u}

which is the general case. It holds for orthonormal RB [Φ]T [Φ] = [Id] or any real
matrix [Φ] ∈ R

N×k since [Φ]T [Φ] is a real symmetric matrix and is thus always
reversible. This choice of approximation is consistent with the Euclidean norm error
choice. However the need to reverse [Φ]T [Φ] makes the following oblique projection
preferable.

{u} ≈ {ũ} = [Φ][Φ]T [M]{u}

2.2.4 Energy Conserving Sampling and Weighting

Hyper-reduction is very e�ective in nonlinear structural dynamics, where internal
forces evaluation with the FEM represents more than half of the total computation
time. Focus is placed on the Energy Conserving Sampling and Weighting (ECSW)
HR method [28], chosen for its stability properties.

The Galerkin method used in FE analysis in the divide and conquer spirit suc-
cessively computes internal forces {f eint} ∈ RN in each of ne elements of the model
and assembles respective contributions

{fint} =
ne∑
e=1

{f eint} (2.20)
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In the ROM (2.19), internal forces are projected on [Φ] ∈ RN×k

[Φ]T{fint} = [Φ]T
ne∑
e=1

{f eint}. (2.21)

Hyper-reduction computes internal forces only for a subset H ⊂ J1, neK of elements
indexes and applies weights ζ∗e to the elemental contributions ahead of summation
and projection on the reduced space

[Φ]T{fint} ≈ [Φ]T
ne∑
e=1

ζ∗e{f eint} = [Φ]T
∑
e∈H

ζ∗e{f eint}, (2.22)

where {ζ}∗ = (ζ∗1 , ζ
∗
2 , . . . , ζ

∗
ne

)T ∈ Rne
≥0 contains weights associated with all elements

in the model. ζ∗e = 0 if and only if element e is not selected (e /∈ H). The ECSW
method imposes also ζ∗e > 0 for selected elements to maintain the integrator posi-
tivity.

The hyper-reduced integration scheme, given by the subset of selected elements
H and associated weights {ζ∗}, is obtained through optimization. Given a RB
[Φ] and unassembled internal forces ({f eint(ti)})(e,i)∈J1,neK×J1,nsK, the hyper-reduced
quadrature scheme integrates the projected unassembled internal forces training
data set up, to a user-de�ned precision, while selecting the fewest possible elements
in H. First, ns unassembled internal forces snapshots are collected at training
times ({ti}, i ∈ J1, nsK. Without loss of generality, snapshots may as well be
taken at di�erent model parameters values. Once collected, unassembled internal
forces ({f eint(ti)})(e,i)∈J1,neK×J1,nsK ⊂ R

N are projected on the reduced space, yielding
([Φ]T{f eint(ti)})(e,i)∈J1,neK×J1,nsK ⊂ Rk, and are organized in the matrix

[G] =


Gf (t1)
Gf (t2)

...
Gf (tns)

 ∈ Rk∗ns×ne , (2.23)

where

[Gf (ti)] = [ΦT ][{f 1
int(ti)}, {f 2

int(ti)}, . . . , {fne
int(ti)}] ∈ Rk×ne , ∀i ∈ J1, nsK. (2.24)

Using this notations, the non-reduced assembly process (2.20) writes

{b} = [G]{1ne} ∈ Rk∗ns , (2.25)

with {ζ∗} = {1ne} corresponding to the selection of all elements with integration
weights equal to 1 and {b} ∈ R

k∗ns is the 'exact' projection of all internal forces
snapshots on [Φ], used as reference to train the weights. Finally, given a targeted
precision τ , the optimization problem of the hyper-reduced integration scheme is
stated as 

{ζ∗} = argmin
{ζ}∈AECSW

(‖{ζ}‖0)

AECSW = {{ζ} ∈ Rne
≥0 |
‖[G]{ζ} − {b}‖2

‖{b}‖2

≤ τ}

(2.26)
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The threshold τ on the approximation precision constraint is imposed in the ad-
missible space AECSW alongside weights positivity, ‖ • ‖0 denoting the zero-norm
associating the number of its non-zero coe�cients to a vector, equivalent to the
number of selected �nite elements, to be minimized. However, the zero norm is
not di�erentiable, making (2.26) NP-hard. In practice (2.26) is suboptimally solved
with greedy algorithms such as SNNLS ([28])(Algorithm 2). Alternatives such as
the LASSO algorithm have been compared to SNNLS in [16].

Algorithm 2: SNNLS([G],{b}, {ζ} , τ)
1 n = 0 % number of selected elements
2 {h} = {0}N % vector of selected elements indices
3 l1 =TRUE
4 while (l1) do
5 {µ} = [G]T ({b} − [G]{X})
6 i = max_value_index({µ})
7 n = n+ 1
8 {h}(n) = i
9 l2 =TRUE

10 while (l2) do
11 {ζtmp} = argmin

{ζ}∈Rn

(‖[G(:, {h(1 : n)})]{ζ} − {b}‖2) % solved with least

square
12 if ({ζtmp} > 0) then
13 {ζ({h(1 : n)})} = {ζtmp}
14 l2 =FALSE
15 else

16 α = min
{i|{ζ}({h}(i))>{ζtmp}(i)}

( {ζ}({h}(i))
{ζ}({h}(i))−{ζtmp}(i)) % least feasible step

to keep the solution positive
17 {ζ({h(1 : n)})} = {ζ({h(1 : n)})}+ α({ζtmp} − {ζ({h(1 : n)})})
18 Recompute {h} and n (eventual zeroed values)
19 end

20 end

21 if ((n ≥ size([G], 2)) OR (‖[G]{ζ}−{b}‖2
‖{b}‖2 ≤ τ)) then

22 l1 = FALSE
23 end

24 end

2.3 Problematics and contributions

This thesis focuses on PROM for industrial applications to nonlinear transient struc-
tural dynamics. RBs are computed with the POD, and the projection method is
coupled with the ECSW HR method to reduce nonlinear internal forces computa-
tion cost and achieve speed-up in the online reduction phase. Implementations are
performed in the legacy FE solver [3] with full access to the source code. To our
best knowledge, few or no works achieve global speed-up in an industrial FE solver.

32



Chapter 2: State of the art

Figure 2.3: Online validation of the ROM o�ine training phase.

The ROM is computed a posteriori of data gathering in the o�ine training phase.
Both online ROM's approximation quality and computational speed-up depend on
the post-processing phase as well as training data relevancy regarding the targeted
FE model to reduce. While the latter is in our work ensured by using training
data originating from the FE model, issues still arise in the o�ine training phase
regarding computation time, optimality, and a priori online approximation error
indicators.

The following bottlenecks to the robust application of PROM and HR to indus-
trial vehicle crashworthiness optimization are identi�ed :

• The algorithmic complexity associated with the training phase skyrockets with
increasing training data size. In order to achieve global speed-up, the o�ine
computational e�ort needs to be controlled.

• The ROM approximation quality is assessed in the o�ine training phase using
error indicators on the training data reconstruction. In practice, these error
indicators are insu�cient to assess the online approximation quality of a ROM.

• Compatibility issues arise between the HRPOD options, optimization, and
parallelization speci�c to industrial solvers. Some of these options, such as
weld spots, require full-scale computations of internal forces. Optimization and
parallelization of the code make it challenging to access unassembled internal
forces mandatory for HR training.

• None of the reduction methods reviewed in this chapter permit to reduce the
contact formulation used in crash models, signi�cantly limiting the computa-
tional speed-up on some complex models involving many contacts.

Int the present work, the ROM o�ine training phase is evaluated using an on-
line validation phase ahead of subsequent use of the resulting ROM in the online
exploitation phase, as illustrated in Figure 2.3. This approach is used in the fol-
lowing three contributions of this thesis, addressing the identi�ed bottlenecks of the
HRPOD o�ine training phase in applications to large-scale nonlinear structural
dynamics models.
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2.3.1 'On-the-�y' snapshots selection (Chapter 3)

Over the last few decades, Reduced Order Modeling (ROM) has slowly but surely
inched towards widespread acceptance in computational mechanics, as well as other
simulation-based �elds. These methods rely on the construction of an appropriate
Reduced Basis (RB), typically based on a low-rank representation of a set of �ob-
servations� made using full-�eld simulations. The RB is usually obtained through
truncated Singular Value Decomposition (SVD). However, SVD encounters limita-
tions when dealing with a large number of high-dimensional observations, requiring
the development of alternatives such as the incremental SVD. The key advantages
of this approach are a reduced computational complexity and memory requirement
compared to a regular �single-pass� spectral decomposition. These are achieved by
using observations to enrich the low-rank representation as and when available, to
avoid having to store them. In addition, the RB may be truncated 'on-the-�y' to re-
duce the size of the matrices involved as much as possible and, by doing so, avoid the
quadratic scale-up in computational e�ort with the number of observations. This
chapter presents a new error estimator for the incremental SVD, which is shown
to be an upper bound for the approximation error, and proposes an algorithm to
perform the incremental SVD truncation and observation selection �on-the-�y�, in-
stead of tuning a prohibitively large number of frequently �hard to set� parameters.
The approach, implemented in [3], is applied to the Finite Element (FE) model
simulation of impact on a Taylor beam.

Key Words : Singular Value Decomposition, Principal Component Analysis,
low-rank representation, snapshot selection, Model Order Reduction, Proper Or-
thogonal Decomposition, vehicle crash simulation

2.3.2 Sparse POD modal subsets (Chapter 4)

Projected Reduced Order Methods (PROM) such as the Proper Orthogonal Decom-
position (POD), rely on the quality of the underlying Reduced Basis (RB) used to
approximate the solution. The RB is generally constructed by a low-rank approxi-
mation of a set of observations, taken from full-scale simulations, through truncated
Singular Value Decomposition (SVD) of the snapshot matrix. This chapter revis-
its the selection criterion of the RB functions in the study of dynamical systems.
In opposition to truncating the set of left singular vectors, taken consecutively in
decreasing order of associated singular values, the proposed method takes tempo-
rality into account, resulting in a compact, sparse subset of RB functions. Selection
strategies, implemented in the reduced-order version of a legacy nonlinear explicit
dynamics Finite Element (FE) code [3], are compared in both o�ine and online
phases in terms of work of internal forces reconstruction error.

Key Words : Model Order Reduction, Proper Orthogonal Decomposition,
modal selection, truncated Singular Value Decomposition, low-rank approximation,
vehicle crash simulation.
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2.3.3 MIP Hyper-reduction (Chapter 5)

The hyper-reduction problem for reduced-order internal forces evaluation in tran-
sient, nonlinear, explicit dynamics is reformulated, employing Mixed-Integer Pro-
gramming (MIP), taking into account consistency constraints. Constraint reduction
is introduced. Resulting quadratures, as well as reduced runs, are compared against
the standard Energy Conserving Sampling and Weighting (ECSW) scheme, on a
reference example. Rather than searching for optimal performance, the goal is to
provide a benchmark solution, within a custom, Projected Reduced-Order Method
(PROM) adaptation of an industrial-level legacy �nite element code [3], for evalu-
ation of heuristic hyper-reduction formulations along with a non-greedy approach.

Key Words : Finite Element Method, Model Order Reduction, crashworthiness
optimization, Hyper Reduction, Internal Forces, SNNLS, LASSO, MIP.

2.4 Organization of the manuscript

Chapters 3, 4 and 5 concern the three contributions of our work which gave rise to
scienti�c communications and include extra details with respect to the corresponding
articles. Each chapter may be read independently from the rest of the manuscript.
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'On-the-�y' snapshots selection
Submitted to ...

Introduction

The vast majority of Model Order Reduction (MOR) methods rely on the construc-
tion of an appropriate Reduced Basis (RB). Projection-based Reduced Order Models
(PROM) approximate the unknown �eld variable as a linear combination of a set
of global and domain-spanning RB functions, that replace a large number of local,
element-based shape functions. The Proper Orthogonal Decomposition (POD) is
a PROM that traces its origins to statistical data analysis [48] and has found ex-
tensive application in turbulent �ow modeling [75, 9, 36, 81] as well as in various
other �elds [67, 52, 53, 54, 68, 69, 70]. POD projects the model onto a low-rank
data representation, yielding a ROM with fewer degrees of freedom. When applied
to nonlinear FE models, POD is usually coupled with a method that approximates
the projection of internal variables, e.g., Discrete Empirical Interpolation (DEIM)
[17, 24, 77] or Hyper-Reduction (HR) [35, 73, 28].

POD builds the RB during the o�ine training phase through Singular Value
Decomposition (SVD) of previously collected solution vector observations, called
snapshots. Since the ultimate goal is a reduction in overall computation time, one
needs to limit the computational complexity and memory requirements of the of-
�ine phase, since SVD, applied to a large-scale FE model, could potentially end up
either expensive or infeasible. To tackle this issue, the �incremental SVD� ([11]) has
recently emerged within the POD framework. In this method initially developed
for streaming data analysis, SVD subsequently updates, using a mathematical iden-
tity formally presented in section 3.1, avoiding expensive data manipulation since
snapshots are used as and when available.

The highlights of the algorithm presented in [56] are: adaptive, on-the-�y snap-
shot selection, and on-the-�y truncation. Adaptive snapshot selection identi�es the
simulation times at which observations must be made for the �rst-order di�erential
equation solution. On-the-�y snapshot selection pre-evaluates the (potential) contri-
bution of a snapshot before actually updating the RB, while on-the-�y truncation
limits the size of the RB during subsequent enrichments. Both features enable a
reduction in computational e�ort by avoiding the treatment of redundant observa-
tions, thus allowing the algorithm to work on smaller matrices, as discussed in detail
in section 3.1.2.

However, the addition of these two features introduces new di�culties: �rstly,
two problem-dependent tolerances need to be set, and secondly, entailed loss of infor-
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Figure 3.1: A posteriori MOR methods' features impacted by the incremental SVD

mation may inhibit the computation of the singular value truncation error necessary
for the POD. An upper error bound for the incremental SVD method (calculated
using a new weighted inner product) has been developed in [27], where the authors
proved that the incremental SVD yields the exact SVD of the original data set. This
error bound is incrementally computed by keeping track of singular values missed
due to 'on-the-�y' calculation of the RB.

Present work, �rst presented by the author at the 6th European Conference on
Computational Mechanics (ECCM6) in Glasgow, UK [59], builds a new upper bound
estimator of the singular values truncation error using the same incremented vari-
ables. The originality consists in using the proposed incremented error estimator
to monitor both 'on-the-�y' truncation and snapshot selection, as opposed to the
problem-dependent tolerances in the traditional approach. The result is a relatively
straightforward incremental SVD with nearly optimal 'on-the-�y' truncation and
snapshot selection.

Referring to Figure 2.2 presented in chapter 2, sketching the work�ow of a pos-
teriori MOR methods, the features of interest of this chapter are highlighted in blue
in Figure 3.1. The snapshots are to be decomposed and gathered at the same time,
impacting both the observation phase and snapshots decomposition. Resulting RBs
are validated online on the model used in the o�ine observation phase and com-
pared to RBs computed with the traditional single-pass SVD.

The chapter is organized in the following manner. Section 3.1 presents a compre-
hensive review of the state-of-the-art incremental SVD. Section 3.2 presents the error
estimator developed in this work. The algorithm is discussed in Section 3.3, before
moving on to validation of the approach in Section 3.4, where a Taylor beam impact
FE model is used to test the proposed method against the traditional incremental
SVD, as well as the single-pass SVD. To evaluate the e�cacy of our approach, we
compare computational time, RB performances during the online reduction phase
as well as the e�ective precision of the data approximation.
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3.1 Incremental SVD

The singular value decomposition is a generalization of the eigenvalue decomposition
for non-square matrices. Given a matrix [S] ∈ RN×ns the singular value decomposi-
tion is given by

[S] = [Φ][diag({s})][Ψ]T (3.1)

In the regular SVD [Φ] and [Ψ] are both square matrices and [diag({s})] is a
matrix with zeros and dimension N × m. In the thin SVD, on the other hand,
[diag({s})] is square with size m = min(N, ns). The reason being that the dimen-
sion of the space spanned by the RB may neither exceed the number of degrees
of freedom in the Full Order Model (FOM) nor the number of snapshots. Hence
a regular SVD may result in unnecessary computations. Thus [Φ] ∈ R

N×m and
[Ψ] ∈ Rns×m are orthonormal matrices and {s} = (s1, s2, . . . , sm)T ∈ Rm is the vec-
tor of singular values in descending order. Note that in our work the SVD refers to
the �thin� SVD.

[Φ] is the matrix containing the main features of [S] in decreasing order of im-
portance. In the POD framework, if [S] is a matrix of observations represented by
column vectors, The complete snapshot matrix is

[S] = [{u1}, ..., {uns}] ∈ RN×ns , (3.2)

the RB [Φk] of size k is obtained by taking the �rst k columns of [Φ]. This RB,
by construction, spans the vector space of dimension k that best approximates the
data, in the sense that it minimizes the projection error given the desired precision
εrb ∈ [0, 1],

k = argmin
l∈N

{εlsv ≤ εrb} (3.3)

εlsv =
|| [S]− [Φl][Φl]T [S] ||F

|| [S] ||F
=

√√√√√√√
m∑

i=l+1

s2
i

m∑
j=1

s2
j

(3.4)

with || [•] ||F=
√∑

i,j

[•]2ij being the Frobenius norm of a matrix.

When POD is applied to FE models, the snapshot matrix may become pro-
hibitively large. To avoid storing [S], the incremental SVD approach updates the
RB 'on-the-�y', as and when a new observation is available, which also avoids the
need to store snapshots. In addition, truncation could be performed in-between the
updates, thus keeping the size of the RB reasonably small while also making room
for a reduction in the number of �oating point operations needed.

In subsection 3.1.1 we present the mathematical identity that allows the incre-
mental computation of the SVD, while 'on-the-�y' snapshot selection and truncation
are presented in subsection 3.1.2.
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3.1.1 Incremental enrichment

The incremental SVD is a particular case of the low-rank modi�cation (M. Brand
[10]) which, given the SVD of a matrix [S], computes the SVD of the updated matrix

[S ′] = [[S], {0N}] + {a}{b}T , (3.5)

where {a} ∈ RN and {b} ∈ Rns+1. RB enrichment appends a new snapshot {ui+1}
to [S] and updates it's SVD into that of [S ′] = [[S], {ui+1}] using {a} = {ui+1} and
{b} = {ei+1} in equation 3.5.

As mentioned in the previous section, the incremental SVD [10] computes the
decomposition (3.1) of [S] without storing the entire matrix, by updating the RB as
and when a new observation is available.

The snapshot matrix at the ith iteration is given by

[S(i)] = [{u1}, ..., {ui}] ∈ RN×i.

The same matrix at the following iteration with one more observation added to it
may be written:

[S(i+1)] = [S(i), {ui+1}] ∈ RN×(i+1). (3.6)

The decomposition of [S(i)] is given by:

[S(i)] = [Φ(i)][diag({s(i)})][Ψ(i)]T

with

• [Φ(i)] ∈ RN×k an orthonormal matrix (i.e. [Φ(i)]T [Φ(i)] = [Id]k×k)

• [Ψ(i)] ∈ Ri×k an orthonormal matrix (i.e. [Ψ(i)]T [Ψ(i)] = [Id]k×k)

• {s(i)} = (s
(i)
1 , . . . , s

(i)
k )T ∈ Ri with s(i)

j 6= 0, ∀j ∈ J1, kK

At the (i + 1)th iteration the SVD of [S(i)] is known as well as N and k. Given
a new observation {ui+1} ∈ R

N , the incremental SVD updates the decomposition
of [S(i)] according to [S(i+1)] = [Φ(i+1)][diag({s(i+1)})][Ψ(i+1)]T . Here the following
identity [11] is used:

[
[S(i)], {ui+1}

]
=
[
[Φ(i)][diag({s(i)})][Ψ(i)]T , {ui+1}

]
=
[
[Φ(i)], {ξ}

] [[diag({s(i)})] [Φ(i)T ]{ui+1}
{0k}T α

]
︸ ︷︷ ︸

:= [Q]

[
[Ψ(i)] {0i}
{0k}T 1

]T
, (3.7)

where

• α = ‖{ui+1} − [Φ(i)][Φ(i)]T{ui+1}‖2

• {ξ} = {ui+1}−[Φ(i)][Φ(i)]T {ui+1}
‖{ui+1}−[Φ(i)][Φ(i)]T {ui+1}‖

.
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Note, that
[
[Φ(i)], {ξ}

]
and

[
[Ψ(i)] {0i}
{0k}T 1

]
are orthonormal matrices. The main

advantage of the incremental SVD lies in the economical diagonalization of the
matrix [Q].

[Q] = [Φ′][diag({s′})][Ψ′]T (3.8)

yielding

[S(i+1)] = [Φ(i+1)][diag({s(i+1)})][Ψ(i+1)]T

where

• [Φ(i+1)] =
[
[Φ(i)], {ξ}

]
[Φ′]

• {s(i+1)} = {s′}

• [Ψ(i+1)] =

[
[Ψ(i)] {0i}
{0k}T 1

]
[Ψ′]

[Φ(i+1)] ∈ RN×k and [Ψ(i+1)] ∈ R(i+1)×k are orthonormal matrices by construction,
being products of orthonormal matrices each. Thus, the newly formed decomposi-
tion of [S(i+1)] is in fact its SVD.

Savings in computational resources (compared to the traditional SVD) occur
during the bi-diagonalization of [Q], where simpli�cations are possible due to its
particular form. Note that [Q] ∈ Rk×k is a small �half-arrowhead matrix�, meaning
it is nearly diagonal except for its last column, which renders the SVD of [Q], which
is achieved by bi-diagonalization and the Golub-Kahan algorithm [32], computation-
nally inexpensive.

3.1.2 'On-the-�y' snapshot selection and truncation

The primary motivation for using the incremental SVD is to avoid the manipulation
of a large amount of possibly redundant data while building a low-rank approxima-
tion. The two parameters εsvd and kmax of this method �rst detailed in [56] allow
for these savings:

• At the beginning of the i + 1th iteration, the new observation {ui+1} may be
rejected, if already well represented by the RB [Φ(i)], so as to avoid unnecessary
computations on redundant data. In the state-of-the-art algorithm [10], this is
controlled by the parameter εsvd and the new observation is skipped if ‖{ui+1}−
[Φ(i)][Φ(i)]T{ui+1}‖2

2 ≤ εsvd.

• At the end of an iteration, [S(i+1)] decomposition (3.7) may be truncated to
keep it as small as possible, accelerating subsequent iterations. Routinely [56],
the basis is truncated 'on-the-�y' when its size exceeds a pre-determined value
given by the parameter kmax.

Tuning εsvd and kmax enables signi�cant computational savings, compared with a
single-pass SVD. When the single-pass SVD is used in the POD framework to build
a RB, the right singular space [Ψ] is generally not used. Such an SVD of a matrix
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[S] ∈ RN×ns will need O(Nm2) �oating point operations and O(2mN +m) memory.
In the incremental SVD, if the RB's size does not exceed k, the method would only
require O(mNk) operations and O(Nk + k) memory. In applications, the size k
of the RB is very small in comparison with the FOM's size N and the number of
observations ns. The fundamental hypothesis of MOR is that the dimension of the
underlying manifold, where the discretized solution of a computational mechanics
problem �lives� and evolves, is small compared to the number of degrees of free-
dom. Therefore, incremental SVD is very promising for MOR. Finally, 'on-the-�y'
snapshot selection would prevent computation on redundant data and thus limit the
number of snapshots ns processed, reducing the complexity as shown.

However, these two features also induce loss of information about the singular
values rendering the exact �nal approximation error (3.4) inaccessible. An estimator
for this error is developed and tested hereafter.

3.1.3 State-of-the-art incremental SVD algorithm

The state-of-the-art incremental SVD algorithm 3 as originally presented in [56] is
presented in this section.

Instructions in red concern computation of the left singular subspace used in 'a
posteriori' centering.

Truncation (steps 16 to 21 of algorithm 3) has been changed with respect to
the original algorithm [56] prescribing additional rotations of the right and left
subspaces. However, there is a mismatch between the matrices dimensions in the
rotation formula and this step has been removed in our interpretation of the state-
of-the-art algorithm.

3.1.4 State-of-the-art incremental SVD test

First tests of the state-of-the-art incremental SVD are presented in this section.
The following analytical snapshot matrix is used to provide an easy to reproduce
example of it.

[S] ∈ RN×ns | [S]ij = i+ j + j2 +
sin(mod(j, 10))

| i− j | +1
, i ∈ J1, NK, j ∈ J1, nsK,

(3.9)
where mod(a, b) denotes the remainder of the euclidean division of a by b. Ex-

pression (3.9) of the analytical snapshot matrix allow for a fast decrease of it's
singular values while ensuring linearly independent columns, which is in agreement
with the hypothesis that the dimension of the FE model is larger than the underlying
manifold in which evolves the unknown quantity of interest.

In the following test, snapshot matrix dimensions are set to N = 8000 and
ns = 200. Di�erent RBs are computed using the snapshot matrix and the state-of-
the-art incremental SVD for varying parameters εsvd and kmax. The training data
approximation error εkmax

sv , de�ned in equation (3.4), is computed 'a posteriori' by
keeping the snapshot matrix in memory and compared to that of RBs originating
from the single-pass SVD in Figure 3.2. Each curve correspond to a di�erent value
of εsvd reported in the legend. For each value of εsvd, 200 runs of the incremental
SVD are performed for kmax = k ∈ J1, 200K. The black curve is the reference error
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Algorithm 3: State-of-the-art incremental SVD

Input: [Φ], {s}, [Ψ], {ui}
Output: [Φ], {s}, [Ψ]

1 if (size([Φ], 2) == 0) then
2 if (‖{ui}‖2 > εsvd) then
3 {s} = ‖{ui}‖2

4 [Φ] = {ui}
‖{ui}‖2

5 [Ψ] = 1

6 end

7 else
8 p = ‖{ui} − [Φ][Φ]T{ui}‖2

9 if (p > εsvd) then

10 [Q] =

[
[diag({s})] [Φ]T{ui}

0 p

]
11 [[Φ′], {s′}, [Ψ′]] = SVD([Q])
12 % RB is expanded

13 [Φ] = [[Φ], {ui}−[Φ][Φ]T {ui}
‖{ui}−[Φ][Φ]T {ui}‖2 ][Φ′]

14 {s} = {s′}

15 [Ψ] =

[
[Ψ] 0
0 1

]
[Ψ′]

16 % RB is truncated
17 if (size([Φ], 2) > kmax) then
18 [Φ] = [Φ]:,1:kmax

19 {s} = {s}1:kmax

20 [Ψ] = [Ψ]:,1:kmax

21 end
22 if ([Φ]T:,1[Φ]:,end > εorth) then
23 % RB has lost numerical orthogonality and is

re-orthonormalized
24 [Φ] = MGS([Φ])

25 end

26 end

27 end
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Figure 3.2: State-of-the-art incremental SVD error of approximation
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Figure 3.3: Incremental SVD computation time
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obtained with RBs computed with the single-pass SVD. Associated computation
times are reported on Figure 3.3. The state-of-the-art SVD is implemented in FOR-
TRAN and computations are performed on a single Intel(R) Core(TM) i7-6820 CPU
@ 2.70Ghz. The single-pass SVD used for comparison is the DGESVD provided by
the Intel Math Kernel Library (Intel MKL) (version 12.1.3.300) and is used to com-
pute only the �rst min(m,n) left singular vectors and associated singular values
wich correspond to the �ags JOBU = 'S' and JOBVT = 'N' (c.f. DGESVD Docu-
mentation [1]).

εsvd and kmax parameters both have a strong in�uence on the computation time
and resulting RB training data approximation error. εsvd enables computational
savings by only selecting badly represented observations for enrichment while kmax
control the size of the RB and enables computational savings by limiting matrices
sizes in subsequent enrichment. Those two parameters also limit the resulting RB
approximation quality. On this particular example, if ones want to build a RB
that approximates the snapshot matrix at a precision of 10−2, computation with
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the state-of-the-art incremental SVD and parameters εsvd = 10−2 and kmax = 10
will be one order of magnitude faster than using the single-pass SVD. Moreover,
using the state-of-the-art incremental SVD prevents expensive data manipulations
induced by the storage of a potentialy large snapshot matrix. Hence this method
has the potential to greatly reduce CPU time needed in the computation of a RB.
Nevertheless, computation times may skyrocket or, on the contrary, resulting RB
may be a very poor approximation of the training data if the methods' parameters
are not carefully chosen.

Two major issues arise in the practical use of the state-of-the-art incremental
SVD.

• First, the snapshot matrix is not kept in memory and the produced RB training
data approximation error (3.4) is unknown.

• Second, given a targeted training data approximation error, the optimal values
for parameters kmax and εsvd are unknown as they depend on the data nature
(dimensionality and magnitude) and the method computation time may sky-
rocket if those two parameters are poorly set.

These two are overcame by the proposed error estimator presented in this chapter
and used in place of kmax and εsvd.

3.1.5 Note on a posteriori centering

Before presenting the modi�cations brought to the incremental SVD, a quick note
is given regarding the possibility to center the training data a posteriori of the
algorithm. In some POD applications, the matrix [S] is centered ahead of applying
the SVD to it. This is mainly motivated by the fact that the SVD, as explained in
section 2.1.4, operates on the matrix [Θ] = [S]T [S] which may be interpreted as the
training data covariance matrix in the event that [S] is centered.

In [56], the author claims that the snapshot matrix may be centered a posteriori
of the RB computation with the incremental SVD using equation 3.5 with {a} =
{ū} = 1

ns
[S]{1ns} the snapshots average and {b} = {1ns}, yielding

[S ′] = [S]− 1

ns
[S]{1ns}{1ns}T (3.10)

= [S]− {ū}{1ns}T . (3.11)

From our experience, a posteriori centering is not compatible with 'on-the-�y'
snapshots selection and truncation. When using those options the incremental SVD
computes a low-rank representation which does not allow an exact reconstruction of
[S], preventing an exact update.

The snapshots' average may be computed during the subsequent passes through
the incremental SVD, nevertheless, left singular vectors are truncated 'on-the-�y'
based on the decomposition of the un-centered training data. Hence, truncated
singular vectors are not the same if the snapshot matrix is centered a posteriori or
from the start.

Another issue with a posteriori centering lies in the need to compute the right
singular vectors. Those vector are computed by the red instructions in algorithm 3
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and their complexity scales with the number of snapshots rather than the RB size
as [Ψ] is of dimensions ns times kmax.

In our work, we made the choice not to center the snapshot matrix for the
following reasons. Centering the snapshot matrix is not mandatory for SVD and
does not change it's range. If the training data is centered, {ū} is to be used as a
lift and PROM approximation (2.9) presented in section 2.1.3 rewrites

{u(t)} ≈ {ũ(t)} =
k∑
i=1

αi(t){φi}+ {ū}, ∀t ∈ [0, T ]. (3.12)

We see in equation (3.12) that using a lift does not increase the approximation
precision over adding an extra RB function.

3.2 Error estimator

In the original incremental SVD, 'on-the-�y' snapshot rejection and basis truncation
prevent the computation of all singular values, meaning that it is impossible to
compute (3.4). The modi�ed version of the incremental SVD, proposed in this
chapter, tracks the lost information (due to the missed singular values) using two
variables, εin and εout.

Since the basis is truncated 'on-the-�y', the singular value associated with the
truncated mode is lost, therefore, εout is incremented by the square of the skipped
singular value:

εout = εout + s2
i+1. (3.13)

If a snapshot {ui+1} has been rejected 'on-the-�y', we can no longer calculate
changes in the singular values, εin is incremented by the norm of projection of {ui+1}
on [Φ(i)]:

εin = εin + ‖[Φ(i)][Φ(i)]T{ui+1}‖2
2, (3.14)

and εout is then incremented by the error of projection of the skipped snapshot:

εout = εout + ‖{ui+1} − [Φ(i)][Φ(i)]T{ui+1}‖2
2. (3.15)

These two variables are used to compensate for the unavailable singular values,
yielding the following expression for the error estimator :

εest =

√
εout

‖{s}‖2
2 + εin + εout

. (3.16)

An essential condition on the error estimator is that it must be larger than the
actual error. In the event that the new observation is used for enriching the RB,
the error estimator does not induce any error since the square of the exact singular
value associated with truncated mode is incremented in εout. On the other hand, if
the new observation is not selected, then the error estimator satis�es the following
condition:

P(i) =

{
‖[S(i)]− [Φ(i)][Φ(i)]T [S(i)]‖2

F

‖[S(i)]‖2
F

≤ ε
(i)
out

‖{s(i)}‖2
2 + ε

(i)
in + ε

(i)
out

= ε
(i)
est

}
.
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This ensures that the estimator is an upper bound on the actual error. A straight-
forward recursive proof of the above property is given below:

initialization: For the �rst iteration of the algorithm, i = 1, the error is null,
εin = εout = 0 and no information has been lost (yet) due to either rejection or
truncation.

induction: If we assume that P(i) is true and the new observation {ui+1} has
been rejected, then the RB is left unchanged ([Φ(i+1)] = [Φ(i)] and {s}(i+1) = {s}(i)),
ε

(i+1)
out = ε

(i)
out + ‖{ui+1} − [Φ(i)][Φ(i)]T{ui+1}‖2

2 and ε
(i+1)
in = ε

(i)
in + ‖[Φ][Φ(i)]T{ui}‖2

2. In
which case, using identity (3.6):

‖[S(i+1)]− [Φ(i+1)][Φ(i+1)]T [S(i+1)]‖2
F

‖[S(i+1)]‖2
F

=
‖([Id]− [Φ(i+1)][Φ(i+1)]T )[S(i), {ui+1}]‖2

F

‖[S(i), {ui+1}]‖2
F

,

using the additivity of the Frobenius norm, previous expression is rewritten

=
‖([Id]− [Φ(i+1)][Φ(i+1)]T )[S(i)]‖2

F + ‖([Id]− [Φ(i+1)][Φ(i+1)]T ){ui+1}]‖2
2

‖[S(i)]‖2
F + ‖{ui+1}‖2

2

,

=
‖([Id]− [Φ(i)][Φ(i)]T )[S(i)]‖2

F + ‖([Id]− [Φ(i)][Φ(i)]T ){ui+1}]‖2
2

‖[S(i)]‖2
F + ‖{ui+1}‖2

2

,

�nally, P(i) is used

≤ ε
(i)
out + ‖([Id]− [Φ(i)][Φ(i)]T ){ui+1}‖2

2

‖{s(i)}‖2
2 + ε

(i)
in + ε

(i)
out + ‖{ui+1}‖2

2

=
ε

(i+1)
out

‖{s(i+1)}‖2
2 + ε

(i+1)
in + ε

(i+1)
out

= ε
(i+1)
est ,

which proves P(i+1).

3.3 Proposed algorithm

Algorithm 4 incorporates the proposed incremented error estimator and correspond-
ing 'on-the-�y' truncation and snapshot selection. εrb is the threshold on the singular
value truncation error and is the only input argument that the user needs to set in
this version of the algorithm. All other arguments are initialized in the method from
steps 2 to 6 and incremented during subsequent enrichments.

The main feature in the proposed version of the algorithm is the use of the
proposed error estimator for the 'on-the-�y' snapshot selection at steps 8 and 9 as
well as 'on-the-�y' truncation at steps 17 to 23. The philosophy behind the algorithm
is speeding up computations by rejecting the maximal number of snapshots and
truncating the RB as soon as possible, in each enrichment, while still controlling
the overall singular value error of truncation and avoiding the necessity to set the
problem-dependent parameters εsvd and kmax.

One potential issue is the loss of orthonormality of the RB due to subse-
quent enrichments (line 13). While this does not change the range of the RB,
it does, however, prevent a good projection of the new observation as ‖{ui}‖2

2 =
‖[Φ][Φ]T{ui}‖2

2 + ‖{ui}− [Φ][Φ]T{ui}‖2
2 is not necessarily true if [Φ] is not orthonor-

mal. This is why re-orthonormalization is performed (lines 23 to 26) if the scalar
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Algorithm 4: Proposed incremental SVD

Input: [Φ], {s}, {ui}, εin, εout, εrb
Output: [Φ], {s}, εin, εout

1 if (size([Φ], 2) == 0) then
2 if (‖{ui}‖2 > 0) then
3 {s} = ‖{ui}‖2

4 [Φ] = {ui}
‖{ui}‖2

5 εin = εout = 0

6 end

7 else

8 error =
εout+‖{ui}−[Φ][Φ]T {ui}‖22
εin+εout+‖{s}‖22+‖{ui}‖22

− ε2rb
9 if (error > 0) then
10 α = ‖{ui} − [Φ][Φ]T{ui}‖2

11 [Q] =

[
[diag({s})] [Φ]T{ui}

0 α

]
12 [[Φ′], {s′}, [Ψ′]] = SVD([Q])
13 % RB is expanded

14 [Φ] = [[Φ], {ui}−[Φ][Φ]T {ui}
‖{ui}−[Φ][Φ]T {ui}‖2 ][Φ′]

15 {s} = {s′}
16 % RB is truncated with new error estimator

17 error = εout+s(end)

εin+εout+‖{s}‖22
− ε2rb

18 while (error < 0) do
19 εout = εout + s(end) equation (3.13)
20 {s} = {s}(1 : (end− 1))
21 [Φ] = [Φ]:,1:(end−1)

22 error = error + s(end)

εin+εout+‖{s}‖22
23 end
24 if ([Φ]T:,1[Φ]:,end > εorth) then
25 % RB has lost numerical orthogonality and is

re-orthonormalized
26 [Φ] = MGS([Φ])

27 end

28 else
29 εout = εout + ‖{ui} − [Φ][Φ]T{ui}‖2

2 equation (3.15)
30 εin = εin + ‖[Φ][Φ]T{ui}‖2

2 equation (3.14)

31 end

32 end
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product of the �rst and last columns of the current RB is larger than a threshold
(εorth), which is typically set to 10−14. This is performed using the highly paralleliz-
able Modi�ed Gram-Schmidt (MGS) algorithm, but may also be implemented by
QR factorization.

Another important remark involves �centering� the data. In some POD applica-
tions such as [82], the snapshot matrix is centered before the spectral approximation
is computed, motivated, in part, by the statistical point of view interpreting [S]T [S]
as the covariance matrix of the data. In our applications, data points are not cen-
tered as simply applying a "lift" to the POD approximation (2.9) will not improve
the precision over adding a column to [Φ] That said, [56, 11] use 'a posteriori' center-
ing for the incremental SVD. To this end, the right subspace [Ψ] of the decomposition
must be computed and stored, the size of which scales up with the number of ob-
servations and cannot be truncated 'on-the-�y'. In our experience, 'a posteriori'
centering is not compatible with 'on-the-�y' truncation. Truncated/selected basis
vectors as well as rejected observations during the enrichment steps would not be
the same, had they been performed using snapshots that were centered from the
beginning. Moreover, 'on-the-�y' truncation would deteriorate the snapshot matrix
reconstruction and render the 'a posteriori' centering inaccurate. The centered POD
is thus more straightforward with the regular than the incremental SVD.

3.4 Numerical tests

In this section, we validate the proposed incremental SVD approach using a Taylor
beam impact model. We �rst give a short review of the POD method in section 3.4.2,
followed by testing the approach for computation time and estimated training data
approximation error in section 3.4.3. The proposed incremental SVD is bench-
marked against the state-of-the-art incremental SVD �rst in section 3.4.4 in terms
of computation time and o�ine training data approximation error and then in sec-
tion 3.4.5 in terms of work of internal forces approximation in the online reduction
phase. Finally, section 3.4.6 describes the scalability of the proposed incremental
SVD with respect to the dimensions of the snapshots matrix and targeted error of
approximation.

NOTE: The Taylor beam impact test was performed with the proposed incre-
mental SVD implementation using the state-of-the-art crash simulation code Altair
Radioss [3].

3.4.1 Taylor beam impact

The tests have been performed on a snapshot matrix [S] obtained from a Taylor
beam impact simulation, using the model shown in Figure 3.4.

The beam is made of an elasto-plastic steel of density ρ = 8.93 ∗ 10−9 T.mm−3,
Young's modulus E = 117000 MPa and Poisson's ratio ν = 0.33. The hardening
rule is described by the Johnson-Cook law, neglecting temperature and strain rate
e�ects

σeq = σY + b ∗ εnp , (3.18)

with σeq the equivalent stress and εp the equivalent plastic strain. Other parameters
are plastic yield stress σY = 400 MPa, plasticity hardening coe�cient b = 100 Mpa
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Figure 3.4: Taylor beam test case

and plasticity hardening exponent n = 1. 8-node solid elements with one integration
point are used to discretize the model into N = 8514 dofs. The central di�erence
method is used for time integration along with the lumped mass approach, yielding
a diagonal mass matrix.

The incremental displacements snapshots have been taken at regular intervals
over the total simulation time. We begin with a brief review of the POD methods in
the next subsection, followed by evaluating the RB's performance during the online
reduction phase later in this section.

3.4.2 POD review

Full-order model

In nonlinear structural dynamics, the semi-discretized �nite element formulation
takes on the following form:

[M]{ü(t)}+ {fint}({u(t)}, t) = {fext(t)}, (3.19)

where {u(t)} ∈ RN is the vector of nodal displacements ( for all nodes and along
three directions) unknown at time t. NOTE: In general, {u(t)} may also contain
shell rotations, however, that is not the primary focus of this chapter. N denotes
the number of degrees of freedom (dofs), the size of the FOM. [M] ∈ R

N×N is a
symmetric, real, positive de�nite mass matrix.

The FOM may depend on np parameters (pi)1≤i≤np which are generally shell
thicknesses and material properties in vehicle crash simulations. The �rst step
consists of extracting observations, or snapshots, at various simulation times and
for di�erent parameter value sets. For convenience, the observations time t and
observation parameter values (p1, p2, . . . , pnp)T are placed together in a vector {c} =
(t, p1, p2, . . . , pnp)T , that we refer to as the training con�guration.

Reduced basis
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The FOM solutions of training con�gurations ({ci})1≤i≤ns are collected in the
snapshot matrix [S] ∈ RN×ns

[S] = [{u({c1})}, {u({c2})}, . . . , {u({cns})}].

In the second step, we compute a basis for the vector space of minimal dimension
k that is capable of approximating the data in [S] to a user-de�ned precision εrb.
This new vector space of dimension k is spanned by the columns of [Φ] ∈ RN×k

[Φ] = [{φ1}, {φ2}, . . . , {φk}] ∈ RN×k.

The POD approximation is then written as:

{u(t)} ≈ {ũ(t)} =
k∑
i=1

αi(t){φi} = [Φ]{α(t)} (3.20)

{α(t)} = (α1(t), α2(t), . . . , αk(t))
T ∈ Rk is the vector of ROM unknowns.

[Φ] is obtained by computing a low-rank representation of the snapshot matrix
[S]. The RB size k is given by the desired precision εrb of the low-rank representation
of [S].

Reduced model

The ROM is constructed by injecting the approximation (3.20) into (3.19) and
projecting the resulting equations on [Φ]T .

[M̃]{α̈(t)}+ [Φ]T{fint([Φ]{α(t)}, t)} = [Φ]T{fext(t)} (3.21)

We introduce the following notation: [M̃] = [Φ]T [M][Φ] ∈ Rk×k. The size of the
reduced model (3.21) is k, which is much smaller than the size N of the original full
order model (3.19). However, the use of POD for the reduction of explicit structural
dynamics models induces computational overhead during the online phase due to
the Galerkin projection used to build the PROM. Solution information at each node
is mandatory in order to compute internal variables in each element. The reduced
unknown {α} does not provide information explicitly at each node and the full-
scale approximation needs to be computed. In order to map reduced unknowns
{α} to the full-scale approximation {ũ}, de�ned in equation (3.20), supplementary
matrix vector multiplications are performed at each time step, which negatively
a�ects the online speed-up. Thus, we require additional reduction methods to obtain
a computational speed-up during the online reduction phase in explicit nonlinear
POD applications. These methods attempt to approximate the projected nonlinear
internal variables operator [Φ]T{fint([Φ]•, t)}. The most popular methods to achieve
this approximation are hyper-reduction ([28, 73, 35]) and the DEIM ([17, 24, 77]).

Another important feature of the ROM (3.21) is that the stability condition for
optimal time step is also projected. In the event that the nodal time step is used, the
projection of the CFL condition on [Φ] leads to a larger time step, some theoretical
developments on this subject may be found in [7].
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Figure 3.5: Incremental SVD error estimator in function of the target error for the
Taylor beam impact. In this Figure, the error estimator is compared to the exact
error and the target error.
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3.4.3 Proposed incremental SVD tests

In this section, we present some preliminary tests to validate the proposed algorithm,
wherein we compare the error estimator (3.16) with the 'actual' error of approxi-
mation (3.4) (which requires storage of the snapshot matrix). Computation times
using di�erent values of user-de�ned error εrb are also compared with those for the
single-pass SVD from the Fortran Intel MKL package. We also present a comparison
of the performance of these RBs in the online reduction phase of the Taylor beam
impact.

For these tests, we employ the matrix [S] ∈ R
8514×236 of incremental displace-

ments snapshots obtained using the Taylor beam model runs. The snapshot selection
and 'on-the-�y' truncation are now driven by keeping the error estimator (3.16) be-
low the single target error εrb, in place of εsvd and kmax, for the state-of-the-art
incremental SVD. We test the method for εrb ∈ [10−8, 1].

Figure 3.5 shows the RB's approximation error and associated error estimator
values as a function of εrb (estimated errors in gray, real errors in black). Com-
putation times of those RBs are compared with that of the single-pass SVD on
Figure 3.6. The single-pass SVD used here is the DGESVD from the Intel MKL
library provided with Intel FORTRAN compilers (version 12.1.3.300) and is used to
compute only the �rst m = min(ns, N) = 236 left singular vectors and associated
singular values which correspond to the �ags JOBU = 'S' and JOBVT = 'N' (c.f.
DGESVD Documentation [1]).

Figure 3.5 clearly shows that the error estimator is always lower than the target
εrb and higher than the actual approximation error. The smaller is the desired εrb,
the more precise is the error estimator (3.16) and the 'actual' RB approximation
error (3.4).

The computation times reported in Figure 3.6 show that our algorithm is faster
than the single-pass SVD up to a precision of εrb = 10−4. However, the incremen-
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Figure 3.6: Incremental SVD computation time in function of the target for Taylor
beam impact.
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tal SVD is not designed for a single-pass SVD since the computation times tends
to skyrocket with very low εrb. It is also important to note that given a targeted
precision, the incremental SVD may build a larger RB than that obtained using the
single-pass SVD, since the error is only estimated and, in reality, may well be lower
than the target error.

3.4.4 Comparison with state-of-the-art incremental SVD

Comparing the state-of-the-art incremental SVD with the proposed incremental
SVD is not a straightforward task as the methods do not involve the same param-
eters. In particular, as explained in section 3.1.2, the state-of-the-art incremental
SVD has various tolerances that have to be set to appropriate values.

We use the same snapshot matrix [S] ∈ R
8514×236 within this section. The al-

gorithm is tested against the state-of-the-art incremental SVD [56] in the following
manner: First, the RB (of size k = 3) is computed using the proposed algorithm
with a user speci�ed error εrb = 10−2. In the second phase, state-of-the-art incre-
mental SVD runs are performed for kmax = 3 and hundred di�erent values of εsvd
logarithmically spaced between 10−7 and 102. The re-orthonormalization parameter
is set to εorth = 10−14 in both algorithms. The resulting computation times are given
in Figure 3.8 and approximation errors in Figure 3.7.

In this example, both the proposed and state-of-the-art incremental SVD out-
perform the single-pass SVD from the Fortran Intel MKL package. This is because
the data of 236 vectors may be approximated with a precision of εrb = 10−2 with
only k = 3 basis vectors. This �very low-dimensional� approximation works in favor
of the two incremental methods.

Using properly-chosen parameters within the state-of-the-art SVD (kmax = 3 and
εsvd = 2), the incremental methods' performances are both comparable. However,
it is not clear how to set these two parameters in practice, since they depend on the
data dimensionality and magnitude as well as the target precision. kmax has been

52



Chapter 3: 'On-the-�y' snapshots selection

Figure 3.7: Proposed and state-of-the-art incremental SVDs approximation errors
for reduced basis of size k = 3 on snapshots from the Taylor beam impact simulations
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Figure 3.8: Proposed and state-of-the-art incremental SVDs computation times for
reduced basis of size k = 3 on snapshots from the Taylor beam impact simulations
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set to the minimal value allowing an error of approximation smaller than 10−2. The
results in Figure 3.7 show that if εsvd is too large, then the desired error cannot be
attained. On the other hand, if its value is too small, we see from Figure 3.8 that
computation time would be signi�cantly higher than that of the proposed version.
Moreover, the state-of-the-art SVD approximation errors given in Figure 3.7 have
been computed a posteriori, by storing all the data in memory, which is not desir-
able in practice.

In this example, the proposed incremental SVD shows better performance in
terms of precision and computation time without having to set any parameter than
the targeted singular value approximation error (3.16).

3.4.5 Online comparison

We now compare the performance of the RBs during the online reduction phase. For
this, we consider 5 RBs of size k = 6, the �rst being obtained with the truncated
single-pass SVD, the next three using the state-of-the-art incremental SVD with
parameters εsvd ∈ {10−14, 10−6, 10−4} and kmax = 6 and the last RB corresponding
to our proposed incremental SVD with εrb = 2 ∗ 10−3.

Online performances are evaluated in terms of work of internal forces reconstruc-
tion. Internal work at a given time is de�ned by

Wint(t) =

∫
Ω

ε : σdV (3.22)

with ε the strain tensor and σ the stress tensor. Denoting Wint and W̃int the work
of internal forces in the FOM and in the online reduction phase, respectively. The
error εint on the work of internal forces considered here is

εint =

∫ T
0
| Wint(t)− W̃int(t) | dt∫ T

0
Wint(t)dt

. (3.23)

Figure 3.9 plots the variation of the work of internal forces during the reduction
phase for all 5 RBs as well as for the FOM.

Even though the single-pass SVD is optimal as far as the singular value trunca-
tion error during the o�ine training phase is concerned, it is clearly not optimal for
work of internal forces reconstruction during the online POD reduction phase. When
snapshots are uniformly sampled from the simulation, SVD tends to preferentially
emphasize those corresponding to later simulation times since they are generally
larger in magnitude and redundant. On the other hand, snapshots taken at earlier
simulation times tend to be smaller in magnitude and unique, therefore, they are
given less importance in the SVD. As a consequence, POD approximation error is
often larger during the early stages of the simulation, as seen on this example. This
behavior is seen to a lesser degree in the incremental SVD as 'on-the-�y' selection
avoids the stacking of redundant, larger magnitude observations by only selecting
snapshots that introduce new information. In Figure 3.9, RBs obtained with the
state-of-the-art incremental SVD yield a better approximation of the work of in-
ternal forces at the beginning of the reduced simulation. The RBs obtained with
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Figure 3.9: Comparison of the work of internal forces reconstruction in the online
reduction phase on the Taylor beam test case. RBs of size k = 6 computed with the
proposed incremental SVD, the state-of-the-art SVD and the single-pass SVD are
used.
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εsvd ≤ 10−6 are identical. Increasing εsvd from 10−6 to 10−4 results in an even better
approximation. However, for εsvd > 10−4, it is not possible to build RBs of size k = 6
as the number of snapshots selected 'on-the-�y' is insu�cient. So εsvd = 10−4 is the
optimal value for this particular example. But this value is problem-dependent, and
increasing the number of degrees of freedom N , the maximal size of the RB kmax,
the number of snapshots ns or switching unit system will change the optimal value
for εsvd. Although the state-of-the-art incremental SVD with optimal value of εsvd
yields the best RB in this example, the actual value itself is unknown in practice.
The proposed incremental SVD involves a nearly optimal 'on-the-�y' selection crite-
rion that only depends on the target approximation error, which is easier to use and
not problem-dependent. The RB obtained with the proposed method approximates
the work of internal forces almost as well as the state-of-the-art incremental SVD
with εsvd = 10−4.

We mentioned that, the singular value approximation error being only approxi-
mated in the proposed method, the RB's size may be larger than necessary. However,
this is not an issue as results within this section show that the singular value approx-
imation error does not guarantee the error that will be incurred within the online re-
duction phase. As a matter of fact RB computed with the proposed method performs
better in the online reduction phase that the one computed using the single-pass
SVD even though it produces a larger training data singular value approximation
error. Finally, the test during the online POD phase shows a satisfactory perfor-
mance. RB computed with the proposed method performs well in comparison with
RBs of same sized obtained with state-of-the-art SVD and single-pass SVD using
the same training data set.

3.4.6 Proposed incremental SVD scalability

In this subsection, we test the computation time for algorithm 4 against the single-
pass SVD DGESVD from the Intel MKL FORTRAN library using snapshots matri-
ces obtained from two di�erent Taylor beam models. In Figure 3.11, the computation
times are plotted for [S] ∈ R4752×ns and for ns ∈ J100, 1000K. A larger model of the
Taylor beam impact has been used for Figure 3.13 in which [S] ∈ R

18810×ns and
ns ∈ J500, 8000K. The snapshots in this �gure have been uniformly sampled from
the simulation time interval for all values of ns. No binary �le manipulation times
are taken into consideration here.

The complexity of the single-pass SVD (DGESVD) scales up according to m =
min(N, ns) and thus its computation time plateaus when there are more snapshots
than degrees of freedom (ns > N). However, the computation time of the DGESVD
grows quadratically with the number ns of snapshots until ns = N . On the other
hand, the incremental SVD's complexity scales up according to the dimensionality
of the approximating vectorial space, hence, the computational time stabilizes very
fast. In fact, for a given target precision εrb, the incremental SVD computation time
grows quadratically with the number of snapshots until ns = k, where k is given by
equation (3.3). This means that for an insu�cient number of snapshots ns and a high
target precision εsvd, the proposed incremental SVD a poorer performance than the
DGESVD, until we reach the minimum number of snapshots given by equation (3.3)
after which the proposed approach shows superior performance. In �gure 3.13, the
incremental SVD is seen to perform better than the single-pass SVD for precision up
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Figure 3.10: Taylor beam impact, Scalability of incremental vs. single-pass SVD,
N = 1518
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Figure 3.11: Taylor beam impact, Scalability of incremental vs. single-pass SVD,
N = 4752
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Figure 3.12: Taylor beam impact, Scalability of incremental vs. single-pass SVD,
N = 8514
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Figure 3.13: Taylor beam impact, Scalability of incremental vs. single-pass SVD,
N = 18810
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to 10−4, independently of the number of snapshots ns. For higher precision 10−5, the
curves are seen to intersect at ns = 3800, with the incremental SVD outperforming
the single-pass SVD afterwards. Note, that in the latter case, the incremental SVD's
CPU time remain relatively steady after ns ≈ 2000, as opposed to the single-pass
version. This behavior may be explained by the limited number of relevant basis
vectors governing the physical system, con�rming the fundamental hypothesis of
reduced order modeling, as well as providing excellent scalability to our method.

3.5 Conclusion

In this chapter, we propose an approach reducing memory usage and �oating point
operations, compared to the regular Singular Value Decomposition (SVD), by pro-
ceeding in incremental fashion. By treating snapshots one after the other, it permits
'on-the-�y' selection for enriching and truncating the RB. By doing so, the method
avoids computations on possibly redundant data, as well as unnecessary computa-
tions on data that will only be truncated later. The memory usage is minimal as
only a truncated representation of the data and a single new observation need to
be stored at any given time. As a result, this method is particularly e�cient in
approximating extensive data sets that have low underlying dimensionality, as is
usually the case in computational structural dynamics.

The method is only driven by the desired singular value truncation error, avoiding
parameters that depend on the nature and dimension of the data. Moreover, the use
of this error estimator allows for improved snapshot selection and the 'on-the-�y'
RB truncation, ultimately enhancing performance.

The only remaining parameter in our algorithm is the re-orthonormalization
parameter, which has been set here to εorth = 10−14. The aim of the re-
orthonormalization step between subsequent enrichments is to avoid incurring a
signi�cant error while computing [Φ][Φ]T{ui}. This means that the optimal value
for εorth depends on the actual dimensions of the RB. Further work on optimizing
this parameter should conceivably enable additional computational savings.

In the present work, results are given for a sequential algorithm. It goes without
saying that a parallel implementation of the incremental SVD is possible following
the lines proposed by [42].

Equipped with error estimator presented in this work, the proposed incremental
SVD turns out to be more e�cient and less problem-dependent than the traditional
version. Using this error estimator in place of the usual tolerances makes the pro-
posed method easy to use, and nearly optimal for training RBs for MOR. Within the
POD framework, the proposed algorithm has been shown to outperform the original
state-of-the-art incremental SVD as well as the single-pass SVD both in the o�ine
training phase as well as the online reduction phase, for the presented Taylor beam
impact test case.
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Sparse RB modal subsets
Published in the International Journal for Numerical Methods in Engineering

Introduction

Various methods have been proposed to build the optimal RB in di�erent targeted
applications, including changes in the norm used in the POD or post-treatment of
the training data set. In [40], the H1 norm is used in the POD low-rank approx-
imation of the compressible Navier-Stokes equations. Di�erent variable separation
has been used in POD reduced model of generalized linear micromorphic continua
in [37]. The question of whether or not the time Di�erence Quotients of the snap-
shots should be used in the generation of the POD basis functions is addressed in
[39] in application to the heat equations. In the framework of the structural dy-
namics, the Adaptive POD (APOD) ([44]) uses the current deformation to select
a subset of relevant observations to adapt the ROM. For complex models, the tied
contact interface ([83]) enables the coupling between reduced and unreduced sub-
structures. Another challenge in the POD application to structural dynamics is the
representation of fracture ([46]). However, it is not clear how to adapt these methods
to a particular mechanical problem, and the gains in nonlinear structural transient
dynamics models are not clear. Finally, methods have been proposed to further ac-
celerate the computation of the RB, including the incremental SVD ([4, 56, 11, 27])
and randomized algorithms ([34, 6]).

Once the training data decomposed with one of the above methods, the resulting
singular vectors are truncated to form a RB subsequently used for online reduction.
The Frobenius training set reconstruction error plays the role of the selection cri-
terion of the subset of RB vectors. However, in nonlinear structural dynamics, it
does not account for the transient nature of the model and may fail in the online
phase, resulting in the blockage of the reduced simulation. In this chapter, we pro-
pose a sparse criterion for the selection of singular vectors in the RB accounting
for the transient nature of the problem. The proposed criterion is compatible with
any variant of the POD independently of the norm used in the covariance matrix
computation or the nature of the snapshots.

Referring to Figure 2.2 presented in chapter 2 sketching the work�ow of a pos-
teriori MOR methods, the features of interest in this chapter are highlighted in
blue in Figure 4.1. Snapshots are gathered and decomposed as usual, the method
of selection is reviewed and resulting RBs are tested online against ones originating
from the truncated SVD and imputed threshold on the o�ine training data-set ap-
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Figure 4.1: A posteriori MOR methods' features impacted by the sparse criterion

proximation.

The chapter is organized as follows. Section 4.1 shortly reviews the POD and
the associated RB construction process. In Section 4.2, a pierced plate in traction
model is used to generate the training data set, subsequently decomposed with
L2(Ω) POD and the sequential criterion is shown to form RBs that are not optimal
in the online reduction phase. The proposed sparse selection criterion, which takes
advantage of the transient information contained in the right singular vectors, is
introduced and illustrated in Section 4.3 on the pierced plate example and later
tested on a nonlinear hollow beam crash in Section 4.4 with a L2(Ω) POD. In the
latter example, the sparse selection criterion selects a subset of singular vectors that,
at the same size, allows for a better reconstruction of the work of internal forces and
approximation of the displacement �eld in the online reduction phase.

4.1 Data approximation and sequential criterion

The FE method discretizes the displacement u(x, t) over the space Ω in N DoF. In
reduced-order transient structural dynamics [3], the unknown displacement u(x, t),
de�ned at each point x of the spatial domain Ω at each time t ∈ [0, T ], is decomposed
over time along modal deformations functions (φh(x))h

u(x, t) =
∑
h∈N∗

βh(t)φh(x), ∀(x, t) ∈ Ω× [0, T ]. (4.1)

In the discrete setting, separated representation (4.1) may be approximated
based on ns incremental displacement snapshots of the discretized FE solution
({u(tj)} = (u1(tj), . . . , uN(tj))

T )j∈J1,nsK ⊂ R
N taken at di�erent training times

(tj)1≤j≤ns of the full-scale simulation and stored in the snapshot matrix [S] =
[{u(t1)}, . . . , {u(tns)}] ∈ R

N×ns . A �nite number m = min(N, ns) of orthonor-
mal left singular vectors ({φh})h∈J1,mK ⊂ R

N , orthonormal right singular vectors
({ψh})h∈J1,mK ⊂ R

ns and associated singular values (sh)1≤h≤m are then identi�ed
by invoking the Singular Value Decomposition (SVD) of [S] so that the discretized
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decomposition (4.1) writes

{u(tj)}i =
∑

h∈J1,mK

sh{ψj}h{φh}i =
∑

h∈J1,mK

βh(tj){φh}i, ∀(i, j) ∈ J1, NK× J1, nsK

(4.2)
where {φh}i refers to the ith coe�cient of the hth space function {φh}. Here and
in the remainder of the chapter h, i and j are respectively used to index the space
functions of the decomposition, the DoF and the discrete time instants.

The RB is built by selecting a subset of ({φh})h∈B, of size k = ](B), approxi-
mating the training data

{u(tj)}i ≈ {û(tj)}i =
∑

h∈B⊂J1,mK

sh{ψj}h{φh}i, ∀(i, j) ∈ J1, NK× J1, nsK. (4.3)

The sequential criterion approximation error of u(x, t) is

εsv =

(∫
Ω

∫
[0,T ]

(u− û)2dtdΩ∫
Ω

∫
[0,T ]

u2dtdΩ

) 1
2

. (4.4)

However, the displacements of the full system usually being unknown, εsv is ap-
proximated o�ine by the reconstruction error of the training data [S]. In the
FE framework, replacing the continuous displacement �elds u and û with the
time and space discretized training data [S] and writing the RB in matrix form
[Φ(B)] = [{φB(1)}, . . . , {φB(k)}] yields

εsv(B) =
‖[S]− [Φ(B)][Φ(B)]T [S]‖F

‖[S]‖F
=

√√√√√√1−

∑
h∈B

s2
h

m∑
h=1

s2
h

. (4.5)

Given a user-de�ned targeted error εrb, the sequential criterion seeks the smallest
subset B ⊂ J1,mK such that εsv(B) ≤ εrb, given by the solution of the optimization
problem

For a user-prescribed targeted precision εrb, �nd B∗ ⊂ J1,mK such thatB
∗ = argmin

B∈B
(](B))

B = {B ⊂ J1,mK | εsv(B) ≤ εrb}
(4.6)

With singular values sorted out in decreasing order, the minimum of εsv(B) for
a given size of the RB k is achieved by sequentially selecting the �rst k modes
(B = {1, 2, . . . , k}). Thus, the optimization problem (4.6) is solved by computing
(4.5) for increasing values of k, until the target precision εrb is reached. In this arti-
cle, (4.6) is referred to as the sequential criterion. It is convenient as the associated
optimization problem (4.6) is easy to solve given the form (4.5) of the approximation
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error. However, this criterion controls the training data [S] averaged approximation
precision by a RB [Φ(B)] in the o�ine phase only. The cons of the time averaging
in the sequential criterion are illustrated in the following section on a structural
dynamics example of a pierced plate in traction where the truncated basis is em-
ployed in the online phase. Even though POD variations tend to improve the quality
of the basis vectors (including H1 norm POD [40], Adaptive POD [44], Di�erence
Quotients [39]), to our best knowledge little, if any, work has been done enhancing
the criterion selecting the optimal subset B regarding the online performances.

4.2 On sub-optimality of the sequential criterion in

POD applications to structural dynamics

Consider the FE model of a pierced plate in traction (Figure 4.2). In explicit non-
linear structural dynamics, the semi-discretized full-scale model writes

[M]{ü(t)}+ {fint({u(t)}, t)} = {fext(t)}. (4.7)

[M] ∈ RN×N is the symmetric positive-de�nite mass matrix, {fint} ∈ RN is the vector
of internal forces and {fext} ∈ RN is the vector of external forces. The pierced plate is
made of an elasto-plastic steel of density ρ = 7.82∗10−9 T.mm−3, Young's modulus
E = 210000 MPa and Poisson's ratio ν = 0.3. The hardening rule is described by
the Johnson-Cook law, neglecting temperature and strain rate e�ects

σeq = σY + b ∗ εnp , (4.8)

with σeq the equivalent stress and εp the equivalent plastic strain. Other parameters
are plastic yield stress σY = 210 MPa, plasticity hardening coe�cient b = 50 Mpa
and plasticity hardening exponent n = 0.25. 8-node fully integrated solid elements
are used to discretize the model into N = 444 DoF and three planar symmetries
are taken into account so that only one-eight of the plate is computed. Velocity
Vimp = 1000 mm.s−1 is imposed at the borders of the plate, as shown in Figure 4.2,
during the T = 3 ∗ 10−2 seconds of the simulation. The central di�erence method is
used for time integration along with the lumped mass approach, yielding a diagonal
mass matrix.

Snapshots taken from this model are decomposed with SVD and a subset of k
left singular vectors is selected to project the FOM (4.7) on, yielding

[M̃]{α̈(t)}+ {f̃int({ũ(t)}, t)} = {f̃ext(t)} (4.9)

refered to as the Reduced Order Model (ROM) and producing the approximate
solution {ũ}

{ũ(t)} =
k∑
i=1

αi(t){φB(i)}. (4.10)

The ROM unknowns are the (αi(t))1≤i≤k, [M̃] = [Φ(B)]T [M][Φ(B)] ∈ R
k×k is the

projection of the mass matrix of the original FOM on the reduced space. Likewise,
{f̃int} = [Φ(B)]T{fint} and {f̃ext} = [Φ(B)]T{fext} are the internal and external forces
projections onto the reduced space. In practice, RB functions are orthonormalized
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Figure 4.2: Pierced plate in traction model.

with respect to the metric induced by the mass matrix [M] so that [M̃] = [Idk], where
[Idk] is the identity matrix of Rk×k.

The ROM approximation {ũ} (4.10), computed in the online reduction phase, is
not to be confused with the training data projection on the RB {û} (4.3). While
{û} is obtained by projecting [S] on the RB in the o�-line training phase, {ũ} is
obtained by expanding the online ROM solution {α} to the high dimensional space.
Main di�erence is that for {ũ}, the error induced by the use of a RB propagates as
the reduced simulation progresses in time. On the contrary, considering that each
snapshot ({u(tj)})j in [S] is projected separately on the RB, { ˆu(tj)} may be a very
poor approximation of {u(tj)} at a given training time j and perfectly represent it
after at subsequent training times. In reference POD, the RB modes are selected
for their ability to minimize the sequential criterion approximation error (4.5) of the
training data approximation {û}, however, this does not imply the same error for
the ROM approximation {ũ} in the online reduction phase.

This di�erence between {û} and {ũ} is illustrated by performing reduced runs
(4.9) for di�erent RBs and comparing online performances with the o�ine training
data approximation. In our application, the work of internal forces Wint and the
displacement �eld {u} are used to evaluate online performances of a RB. Internal
work at a given time is de�ned by

Wint =

∫
Ω

ε : σdV (4.11)

with ε the strain tensor and σ the stress tensor. Denoting Wint the work of inter-

nal forces in the FOM and W̃int the work of internal forces obtained in the online
reduction phase, the online error εint considered in this chapter is

εint =

∫ T
0
| Wint(t)− W̃int(t) | dt∫ T

0
Wint(t)dt

. (4.12)

Wint is a convenient quantity of interest to estimate online performances of a RB,
as it is easy to post-process and allows the detection of potential issues in the re-
duction phase quickly. In all our applications, Wint has shown good correlation with
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Figure 4.3: O�ine sequential criterion approximation error (black curve) and asso-
ciated online work of internal forces approximation error (gray curve), in function
of the size k of the RB k.

Modes selected with the sequential criterion for di�erent values of εrb, associated training data

sequential criterion approximation error and online work of internal forces reconstruction error

εsv ≤ εrb {φ1} {φ2} {φ3} {φ4} {φ5} {φ6} {φ7} {φ8} {φ9} {φ10} εsv εint

5 ∗ 10−2 X 1.99 ∗ 10−2 9.99 ∗ 10−1

1 ∗ 10−2 X X 4.61 ∗ 10−3 9.99 ∗ 10−1

2 ∗ 10−3 X X X 1.81 ∗ 10−3 9.99 ∗ 10−1

1 ∗ 10−3 X X X X 6.98 ∗ 10−4 9.99 ∗ 10−1

5 ∗ 10−4 X X X X X 3.77 ∗ 10−4 9.96 ∗ 10−1

2 ∗ 10−4 X X X X X X 1.76 ∗ 10−4 9.96 ∗ 10−1

6 ∗ 10−5 X X X X X X X 5.56 ∗ 10−5 9.96 ∗ 10−1

5 ∗ 10−6 X X X X X X X X 2.63 ∗ 10−6 9.96 ∗ 10−1

1 ∗ 10−11 X X X X X X X X X 8.38 ∗ 10−12 9.96 ∗ 10−1

1 ∗ 10−12 X X X X X X X X X X 0 5.85 ∗ 10−4

Table 4.1: Sequential subsets for di�erent values of threshold εrb and associated
o�ine and online errors εsv (4.5) and εint (4.12), respectively.

the online displacement �eld error. However, a low approximation error of the work
of internal forces does not necessarily imply the same for the displacement �eld.

In the following test, a snapshot matrix [S] ∈ R444×10 storing ns = 10 displace-
ment snapshots, uniformly sampled from the full-scale pierced plate in traction FE
model, is used to reduce the model. Ten basis vectors and associated singular values
are computed with SVD and used to build a POD reduced order model.

Figure 4.3 plots the o�ine training data sequential criterion approximation er-
ror (4.5) (continuous orange) as well as associated work of internal forces approxima-
tion error (4.12) (dotted orange) in the online reduction phase for ten RBs composed
of sequentially selected subsets of k = 1, . . . , 10 left singular vectors, obtained us-
ing the sequential criterion. These results are reported in the last two columns of
Table 4.1 together with the corresponding prescribed error εrb imposed on the se-
quential criterion approximation error and associated sequentially selected subsets
of the basis vectors. Work of internal forces in the online reduction phase for each
case is compared to that of the FOM in Figure 4.4. The �nal con�guration for
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Figure 4.4: Work of internal forces in the reduced run for di�erent sequential RBs
of size k is quasi-null in all reduced runs except for the non-truncated RB of size
k = 10 (red curve) that perfectly �ts the work of internal forces in the reference
FOM (black dotted curve).

Figure 4.5: Final displacement �elds comparison between the reference FOM (black
wireframe grid) and the reduced model (solid orange) for a RB of size 8 formed
using the sequential criterion, putting to evidence the lag between the FOM and the
ROM.
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the sequential RB of size 8 is shown with solid orange elements in Figure 4.5 and
compared to the reference �nal con�guration of the FOM represented with a black
wireframe grid.

εsv(B) falls below 1% with only two basis vectors out of ten ([Φ(B)] =
[{φ1}, {φ2}]). This con�rms the funding hypothesis of PROM that the dimension
of the underlying manifold, where the discretized solution of a computational me-
chanics problem evolves, is small compared to the number of DoF. Unlike the o�ine
training error, the work of internal forces approximation error in reduced runs does
not decrease when enriching the RB. Looking at the work of internal forces in Fig-
ure 4.4, we notice that it is actually null for all reduced runs except for the last one
which is in a good agreement with the reference FOM. These results extend to the
displacement �eld: the ROM approximation {ũ} is in perfect agreement with the
FOM when all ten RB functions are selected and null for RBs of size 1 to 9 as seen
in Figure 4.5 for a RB of size 8.

This example shows that imposing a low threshold on the training data sequential
criterion approximation error does not imply the same for the online reduction phase.
A signi�cant concern in the POD application to nonlinear structural dynamics is to
�nd the possibly sparse RB of minimal size that allows for a given approximation
quality in the online reduction phase and, in doing so, avoid expensive o�ine training
of a ROM that will fail in the online reduction phase. On this example, despite the
contribution of {φ10} to the o�ine sequential criterion approximation error (4.5)
being nearly null, it's absence in the RB seems to prevent the ROM from computing
any deformation. This behavior is better understood in the following section 4.3
where a sparse criterion for the selection of the left singular vectors appearing in the
training data decomposition is proposed.

4.3 Sparse subset selection criterion

This section is organized as follows: the previous results are interpreted, a sparse
selection criterion is proposed and then used to form RBs that, based on the same
training data, improves the online approximation compared with the previous re-
sults. To understand the o�ine/online discrepancy phenomenon observed in sec-
tion 4.2, we �rst take a look at the transient contribution βh(tj) of each left singular
vector to the reconstruction of {u(tj)}. The training data (4.2), and their approxi-
mation with a subset B of modes (4.3), rewrite

ui(tj) =
m∑
h=1

σh{φh}i{ψj}h =
m∑
h=1

βh(tj){φh}i, ∀(i, j) ∈ J1, NK× J1, nsK, (4.13)

and,

{u(tj)} ≈ {û(tj)} =
∑
h∈B

βh(tj){φh}, ∀j ∈ J1, nsK, (4.14)

respectively.
Once the spatial discretization performed, βh(tj) at each training time tj,

1 ≤ j ≤ ns, give relative transient contributions of {φh}, 1 ≤ h ≤ m
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Figure 4.6: Relative transient contributions (4.15) of the ten left singular vectors
for the pierced plate in traction test case.

γjh =

√√√√√ β2
h(tj)

m∑
l=1

β2
l (tj)

, ∀(h, j) ∈ J1,mK× J1, nsK, (4.15)

reported in Figure 4.6 for the pierced plate test case presented in the section 4.2.
As expected, �rst left singular vectors contribute in average more as they are asso-
ciated with the highest singular values. However, this is not true when looking at
their contribution to the solution reconstruction at each training time separately.
In Figure 4.6, {φ10} turns out to contribute signi�cantly more than any other basis
vector at the �rst training time and to have negligible contribution afterward. Once
averaged in time by the sequential criterion approximation error (4.4), contribution
of {φ10} vanishes. Apparently, {φ10} represented in Figure 4.7 as a displacement
�eld with respect to the initial con�guration, corresponds to the elongation of the
�rst elements impacted by the imposed velocity, essential to represent the initial
condition in the online reduction phase. This observation is consistent with the
observation that truncating {φ10} prevents the pierced plate from stretching in the
reduced simulation, as observed in section 4.2.

A novel sparse criterion is proposed hereafter to overcome this limitation asso-
ciated with the sequential criterion, guaranteeing that the projection error {û} in
L2(Ω) norm meets the target approximation precision εRB at each training time.
We introduce the sparse criterion approximation error

εsp = sup
t∈[0,T ]

(
(

∫
Ω

(u(x, t)− û(x, t))2dx∫
Ω
u2(x, t)dx

)
1
2

)
(4.16)

Replacing the, in practice unknown, continuous displacement �eld u in (4.16) with
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Figure 4.7: Tenth left singular vector for the pierced plate in traction FE model
represented as a displacement �eld with respect to the model initial con�guration.

the training data ({u(tj)})j∈J1,nsK yields

εsp(B) = max
j∈J1,nsK

(
‖{u(tj)} − [Φ(B)][Φ(B)]T{u(tj)}‖2

‖{u(tj)}‖2

)
= max

j∈J1,nsK


√√√√√√1−

∑
h∈B

βh(tj)

m∑
h=1

βh(tj)

 ,

(4.17)
where the last form is obtained using (4.14) together with the orthonormality of the
left singular vectors.

To approximate the training data up to a given target εrb while selecting the
fewest possible basis vectors, the modi�ed optimization problem (4.6) writes

Given a user-prescribed targeted precision εrb, �nd B∗ ⊂ J1,mK such thatB
∗ = argmin

B∈S
(](B))

S = {B ⊂ J1,mK | εsp(B) ≤ εrb}.
(4.18)

The admissible space S is rewritten using

ε2sp = max
j∈J1,nsK

(1−

∑
h∈B

β2
h(tj)

m∑
l=1

β2
l (tj)

) = 1− min
j∈J1,nsK

(

∑
h∈B

β2
h(tj)

m∑
l=1

β2
l (tj)

)⇒ 1− ε2sp = min
j∈J1,nsK

(
∑
h∈B)

(γjh)
2),
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Figure 4.8: O�ine (black) and online work of internal forces (gray) approximation
errors in function of the size of the RB k for both sequential (continous curve) and
sparse criteria (dotted curve).

which �nally leads to the following form of the optimization problem

Given a user-prescribed targeted precision εrb, �nd B∗ ⊂ J1,mK such that
B∗ = argmin

B∈S
(](B))

S = {B ⊂ J1,mK |
∑
h∈B

(γjh)
2 ≥ 1− ε2rb, ∀j ∈ J1, nsK}.

(4.19)

Unlike (4.6), optimization problem (4.19) does not have an explicit solution.
However, it may be conveniently stated for use with combinatorial optimization
tools using the form

{ξ∗} = argmin(‖{ξ̃}‖1)
{ξ̃}∈S

S = {{ξ̃} ∈ {0, 1}m | ([Γ]{ξ̃})j ≥ 1− ε2rb, ∀j ∈ J1, nsK},
(4.20)

where {ξ̃} is a boolean vector in {0, 1}m such that the hth entry of the vec-
tor is 1 if, and only if, {φh} is selected. [Γ] ∈ R

ns×m coe�cients are given by
[Γ]j,h = (γjh)

2, ∀(h, j) ∈ J1,mK×J1, nsK, ‖•‖1 stands for the L1 norm that associates
to a vector the sum of its coe�cients, corresponding in the considered application
to the number of selected left singular vectors. In the present work, (4.20) is solved
with the simplex algorithm implementation [38].

The proposed sparse criterion is tested on the pierced plate in traction model
introduced in section 4.2.

Figure 4.8 plots the work of internal forces (4.12) (gray) approximation error
in the online reduction phase for sparse RBs (dotted curve) together with the two
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Modes selected with the sparse criterion for di�erent values of εrb, associated training data

sparse criterion approximation error and online work of internal forces reconstruction error

εsp ≤ εrb {φ1} {φ2} {φ3} {φ4} {φ5} {φ6} {φ7} {φ8} {φ9} {φ10} εsp εint

3 ∗ 10−1 X X X 3 ∗ 10−1 5.56 ∗ 10−1

2 ∗ 10−1 X X X X X 2 ∗ 10−1 3 ∗ 10−1

1.5 ∗ 10−1 X X X X X X 1.5 ∗ 10−1 2.1 ∗ 10−1

1 ∗ 10−1 X X X X X X X X 1 ∗ 10−1 8.07 ∗ 10−4

5 ∗ 10−3 X X X X X X X X X 5 ∗ 10−3 7.29 ∗ 10−4

1 ∗ 10−10 X X X X X X X X X X 1 ∗ 10−16 5.85 ∗ 10−4

Table 4.2: Sparse subsets of modes selected for di�erent values of the threshold
εrb, associated o�ine sparse criterion εsp (4.17) and online work of internal forces
εint (4.12) errors.
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Figure 4.9: Work of internal forces in the online reduction phase for the sparse RBs.
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Figure 4.10: Final con�guration displacement �elds comparison between the refer-
ence FOM (black wireframe grid) and the reduced model (solid blue) for a sparse
RB of size 8, putting to evidence an improved agreement between the FOM and the
ROM.

curves already present in Figure 4.3. Corresponding subsets of basis vectors selected
using the proposed criterion are presented in Table 4.2 as well as the corresponding
target error εrb, sparse criterion approximation error εsp in the o�ine training phase
for the formed RB and the work of internal forces approximation error εint in the
online reduction phase. The work of internal forces in the online phase is compared
to that of the FOM in Figure 4.9. The �nal displacement �elds of the FOM (black
wireframe grid) and the ROM associated with the sparse RB of size 8 (solid gray)
are represented in Figure 4.10.

These results show that, when compared with the sequential criterion, the sparse
criterion selects a subset of non-consecutive basis vectors allowing for better online
performance. In Figure 4.8, the average relative error of the online approximation
of the work of internal forces is, for any given size of the RB, better with the sparse
criterion. O�ine and online curves do not coincide, as the o�ine approximation error
is, for both criteria, not directly related to the work of internal forces. However, for
the sparse criterion, o�ine approximation error and online work of internal forces
error are in better agreement as they strictly decrease together when enriching the
RB, which was not the case with the sequential criterion. Furthermore, the o�ine
and online indicators are closer to each other for the sparse than for the sequential
criterion. As seen in table 4.2, the sparse criterion selects {φ10} earlier than the
sequential one, resulting in a higher sequential criterion approximation error in the
o�ine phase but a better work of internal forces approximation online. In Figure 4.9,
reduced simulations start producing work of internal forces with only 3 RB functions
and runs are in good agreement with that of the FOM with only 5 RB functions
as opposed to the sequential criterion unable to trigger the imposed velocity and
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Figure 4.11: Scheme of the crash box model.

to produce work of internal forces until the RB reaches the full set of ten basis
functions (Figure 4.4). In Figure 4.9, the work of internal forces approximation
error in the online phase is delayed, in opposition to the sequential criterion tending
to emphasize the importance of snapshots taken at late simulation times as they
generally are redundant and of higher magnitudes compared with early stages of the
simulation. Displacement �eld in the �nal con�guration of the reduced simulation
(solid gray in Figure 4.10), for a RB of size 8, is in agreement with that of the FOM
(black wireframe grid) which was not the case for the sequential RB of the same size
(Figure 4.5).

4.4 Test on a crash box model

Both criteria are now tested for the reduction of the more complicated and repre-
sentative case of a hollow beam impact (crash box) model, presented in Figure 4.11,
consisting of a hollow beam of dimensions 300 × 42 × 56 and thickness of 1.5 mil-
limeters. The material is elasto-plastic steel with density ρ = 7.89 ∗ 10−9 T.mm−3,
Young's modulus E = 210000 MPa, Poisson's ratio ν = 0.3, plastic yield stress
σY = 792MPa, plasticity hardening coe�cient b = 510 and plasticity hardening
exponent n = 0.26. The hardening rule is described with the same Johnson-Cook
law (4.8) as in the pierced plate model. The beam is impacted by a wall of 0.45
Tons, modeled as a rigid body on which initial velocity of 10000 mm.s−1 is imposed.
Fully integrated 8-node solid elements are employed and N = 15432 DoF.
The central di�erence method is used for time integration along with the lumped
mass approach.

RBs from size 12 to 15 are built from 214 incremental displacement snapshots,
taken uniformly in time, with both selection methods. Work of internal forces ob-
tained with di�erent reduced runs is plotted in Figure 4.12 as well as the FOM
reference. Selected subsets of modes for each RB, associated sequential criterion ap-
proximation errors of reconstruction of the training data and work of internal forces
errors in the online reduction phase are reported in Table 4.3 for the sparse criterion
and in Table 4.4 for the sequential criterion, respectively. A comparison of the �nal
displacement �eld between both selection methods against the FOM reference is
provided in Figure 4.13.

The proposed sparse criterion outperforms the sequential one in the online re-
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Subsets of modes obtained with the sequential criterion for di�erent sizes of the RB, associated training

data sequential criterion approximation error and online work of internal forces reconstruction error

size of the RB k {{φ1}, . . . , {φ12}} {φ13} {φ14} {φ15} {φ16} εsv εint

12 X 1.25 ∗ 10−5 3.15 ∗ 10−1

13 X X 1.08 ∗ 10−5 3.24 ∗ 10−1

14 X X X 9.2 ∗ 10−6 3.31 ∗ 10−1

15 X X X X 8.1 ∗ 10−6 1.82 ∗ 10−1

16 X X X X X 7.2 ∗ 10−6 1.81 ∗ 10−1

Table 4.3: Sequential subsets of modes of increasing size, associated o�ine error on
training data εsv, and online error of the work of internal forces εint for the crash
box model.

Subsets of modes obtained with the sparse criterion for di�erent size of the RB, associated training

data sparse criterion approximation error and online work of internal forces reconstruction error

size of the RB k [{φ1}, . . . , {φ10}] {φ11} {φ12} {φ13} {φ15} {φ16} {φ18} εsp εint

12 X X X 4.47 ∗ 10−4 3.63 ∗ 10−2

13 X X X X 4 ∗ 10−4 3.66 ∗ 10−2

14 X X X X X 3.16 ∗ 10−4 2.36 ∗ 10−2

15 X X X X X X 3 ∗ 10−4 3 ∗ 10−2

16 X X X X X X X 2.25 ∗ 10−4 3.22 ∗ 10−2

Table 4.4: Sparse Subsets of modes for di�erent sizes of the RB, associated o�ine
sparse criterion approximation error on training data εsp, and online error of the
work of internal forces εint for the crash box model.
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Figure 4.12: Comparison of the work of internal forces in the crash box model for
sequential and sparse RBs.
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Figure 4.13: Final con�guration displacement �elds comparison between the FOM
(black wireframe grid) and the reduced model (solid elements) for RB of size 12 for
both sequential and sparse criteria. The lag between the two models apparent for
the sequential criterion is visually cancelled for the proposed sparse criterion.
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construction of both the work of internal forces (Figure 4.12) and displacement �eld
(Figure 4.13). For sequential RBs, work of internal forces within reduced runs start
di�ering from the reference FOM at initial contact time with the rigid wall. As
stated for the pierced plate example, this behavior may be explained by the ten-
dency of the sequential criterion to emphasize the importance of snapshots taken
at the end of the simulation. The online approximation error compensates later in
the simulation when considering the work of internal forces but not in the displace-
ment �eld, represented in Figure 4.13 at the �nal stage of the simulation, appearing
since the �rst, poorly approximated by the RB, contact with the rigid wall. The
proposed sparse criterion contributes to resolving this issue, by prescribing the same
precision for all snapshots, regardless of their magnitude. As a consequence, for a
given size, sparse RBs induce one order of magnitude lower work of internal forces
approximation error within the reduced run, as seen in Tables 4.3 and 4.4, more-
over, o�ine and online errors are in better accordance with each other. Sparse RBs
are still associated with relatively large singular values. 214 left singular vectors
have been computed on this example; however, only the �rst 18 modes are used
in the considered RBs. An interesting feature of the sparse criterion is observed
with decreasing values of the user-prescribed εrb in Table 4.4 when already selected
modes are removed from subsequent subsets B when incrementing k. When enrich-
ing the RB from size k = 13 to size k = 14, the sparse criterion adds {φ18} and
{φ12} to the subset of RB funstions and removes {φ15}. Results in Table 4.3 and
Table 4.4 highlight this behavior that remains to be understood. Sparse RBs of size
k = 12 and k = 13 o�er better online work of internal forces approximation than
the sequential one of size k = 16, even though the latter contains all sparse basis
functions. This result has been veri�ed multiple times e.g., when removing {φ11}
and {φ13} from the RB of size k = 16 formed with the sequential criterion enhances
online approximation of the work of internal forces but not the displacement �eld
approximation. Both selection criteria are implemented in a custom version of the
state-of-the-art crash simulation code Altair Radioss [3].

4.5 Conclusion

This chapter proposes a sparse criterion to constitute subsets of RB modes, origi-
nating from the training data decomposition, for e�cient online simulations. The
sparse criterion ensures a target approximation quality for each snapshot as opposed
to the sequential one which averages the approximation quality over all snapshots.
Thus, it is insensible to redundant snapshots with high orders of magnitude and
avoids bad approximation of possibly important isolated snapshots with low orders
of magnitude.

Both criteria are tested for the selection of basis vectors originating from the
usual L2 SVD of incremental displacement snapshots taken from a pierced plate in
traction model and a hollow beam impact model. Given an appropriate training data
set and an associated SVD, the sparse criterion results in subsets of RB functions
that allow for a more accurate approximation in the online POD reduced simulations
in nonlinear transient structural dynamics.

For the pierced plate in traction and the hollow beam impact models, sparse
RBs perform better in terms of online approximation of both the work of internal
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forces and �nal con�guration displacement �eld than sequential RBs of same sizes.
Nevertheless, several topics remain open: The choice of metrics to compare ROM

performances in the reduced phase in terms of approximation quality depends on the
quantity of interest. The time-averaged relative error of the work of internal forces
used here as an indicator of ROMs approximation quality in the online reduction
phase is not a perfect comparator: this error is not strictly decreasing with increas-
ing user-prescribed precision for both selection methods, and the work of internal
forces may be underestimated in the online reduction phase, as is the case for the
pierced plate, as well as overestimated, as is the case for the crash box. In the second
example, enriching a RB does not necessarily enhance the ROMs approximation of
the work of internal forces, so performances in the online reduction phase are also
compared in terms of �nal con�guration displacement �eld approximation. Another
perspective concerns parametric variations between the o�ine training phase and the
online reduction phase which are not taken into account in this chapter. Finally, the
sparse criterion induces a computational overhead as it requires right SVD vectors
and solving of a combinatorial optimization problem. The combinatorial optimiza-
tion problem, which may be e�ciently solved due to the low dimensionality of the
data. A greedy algorithm could avoid both the computation of the right singular
vectors and avoid solving a combinatorial optimization problem for bigger models.
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Introduction

When applied to explicit nonlinear dynamics ([45, 46]), POD does not reduce the
complexity of evaluating internal variables and entails a computational overhead in
the 'online' reduction phase due to the necessity of computing internal forces over
all elements. Hyper-Reduction (HR) methods are combined to PROM to tackle the
internal forces computational complexity and achieve 'online' speed-up by selecting
a representative subset of elements for internal forces approximation.

Miscellaneous HR methods exist in the literature: The Discrete Empirical Inter-
polation Method (DEIM)([17, 24, 77]) reduces the complexity of evaluating nonlin-
ear internal variables combining projection and interpolation. DEIM originates from
the Empirical Interpolation Method ([8]) and aims to approximate the projection of
the internal forces by using only a few of their components. Other HR approaches
directly approximate the projected internal forces by building a reduced spatial in-
tegration scheme. The multidimensional 'a priori' hyper-reduction (APHR)([73])
creates a reduced integration domain without any knowledge from the FOM. In
the present chapter, we consider the Energy-Conserving Sampling and Weighting
(ECSW)([28]) formulation of an optimization problem, based on data collected from
the FOM, to build a hyper-reduced integration scheme whose particularity is to
impose integration weights positivity ensuring energy conservation of the reduced
integrator. ECSW is an 'a posteriori' method as it relies on data from full-scale simu-
lations to train a hyper-reduced integration scheme, as opposed to 'a priori' methods
which use the knowledge of the physical problem rather than training data ([73]).
The optimization problem that arises in the ECSW is NP-hard and is in practice
suboptimally solved by mean of the Sparse Non-Negative Least Square (SNNLS)
greedy algorithm. Similar numerical integration schemes, in which it is necessary to
preserve the consistency and compatibility during the shape functions integration,
arise in Galerkin meshless methods such as Di�use Elements ([14]), and Element
Free Galerkin ([66, 30, 18]).

Present work is motivated by the observation that, proceeding greedily by sub-
sequent enrichments, the SNNLS algorithm becomes computationally expensive in
building large hyper-reduced integration schemes , and that a reference method is
needed to compare performances of heuristic approaches. Reformulating the ECSW
optimization problem, an alternative linear optimization problem is stated, solved
using Mixed Integer Programming (MIP), and illustrated on a benchmark FE model.
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Figure 5.1: A posteriori MOR methods' features impacted by the MIP formulation

Di�erent formulations incorporating consistency conditions and constraint reduction
are tested. Resulting integration schemes are compared in terms of number and posi-
tion of integration points, and error in the work of internal forces within the 'online'
reduction phase.

Referring to Figure 2.2 presented in chapter 2 sketching the work�ow of a poste-
riori MOR methods, the features of interest in this chapter are highlighted in blue
in Figure 5.1. The optimization problem used in o�ine HR training is reviewed,
and additional snapshots on integration points position and elemental volumes are
taken to impose new constraints on polynomial integration and volume conserva-
tion. Resulting HR quadratures are used online in the validation phase, comparing
the reconstructed work of internal forces to that obtained with the SNNLS greedy
procedure.

The chapter is organized as follows. Section 5.1 brie�y reviews PROM and
ECSW methods in a nonlinear explicit structural dynamics framework. Section 5.2
develops the theory behind the proposed linear MIP formulation, which is then
tested in Section 5.3 on a pierced plate under uniform tension FE model. Results
are then discussed, and recommendations are made regarding future developments.

5.1 Projected hyper-reduced order model

5.1.1 Projected Reduced Order Model

We focus on semi-discretized equations used in nonlinear explicit FE solvers

[M]{ü(t)}+ {fint({u(t)}, t)} = {fext(t)}, (5.1)

where {u(t)} ∈ RN is the vector of nodal Degrees of Freedom (DoF), {fint} ∈ RN is
the vector of nonlinear internal forces and {fext} ∈ RN is the vector of external forces.
N denotes the number of DoF and is referred to as the FOM size. [M] ∈ RN×N is the
symmetric positive-de�nite mass matrix. In explicit nonlinear structural dynamics,
industrial FE solvers frequently use a lumped mass approach yielding diagonal [M].
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Hence there is no need to inverse the mass matrix, and the computational e�ort
concentrates on the internal and contact forces evaluation.
The explicit central di�erence method is used for integration in time domain.

Given a RB [Φ] ∈ RN×k of size k, the ROM approximates the FOM solution {u}
with {ũ},

{u(t)} ≈ {ũ(t)} =
k∑
i=1

αi(t){φi} = [Φ]{α(t)}. (5.2)

Above approximation is injected into the FOM (5.1) which is then projected on the
RB, yielding the PROM

[M̃]{α̈(t)}+ [Φ]T{fint([Φ]{α(t)}, t)} = [Φ]T{fext(t)}. (5.3)

{α} ∈ Rk is the ROM unknown and [M̃] = [Φ]T [M][Φ] ∈ Rk×k is the reduced mass
matrix. [Φ] is usually [M]-orthonormalized so that [M̃] is the identity matrix [Idk] ∈
R
k×k. The ROM is of size k, much smaller than N ,

{α̈(t)} = [Φ]T
(
{fext(t)} − {fint([Φ]{α(t)}, t)}

)
. (5.4)

Projecting the FOM (5.1) employing an orthogonal matrix [Φ] potentially in-
creases the critical time step ensuring numerical stability. A rigorous mathematical
proof of this property is provided in [7]. However, in applications to explicit struc-
tural dynamics, PROM methods generally yield a computational overhead. First,
there is no real gain in reducing the model size to k when the lumped mass ap-
proach is used in the FOM (5.1) as a diagonal mass matrix inverse is computed with
negligible computational e�ort. Second, internal forces have to be computed for all
elements, involving the time-consuming integration of the constitutive law, and two
additional steps are required: expansion of reduced DoF {u} = [Φ]{α} and contrac-
tion of internal forces {f̃int} = [Φ]T{fint}. The same goes for kinematic conditions,
as well as any requested output.

However, as internal forces vector of size N is to be projected on the reduced
space of size k spanned by the columns of the RB [Φ] and k << N , it may not be
necessary to compute the whole internal forces vector to have a good approximation
of its projection on the reduced space, and this is where hyper-reduction takes place.
The following section brie�y reminds the ECSW scheme motivating this work.

5.1.2 Energy-Conserving Sampling and Weighting (ECSW)

The Galerkin method used in FE analysis in the divide and conquer spirit succes-
sively computes internal forces {f eint} ∈ RN in each of ne elements of the model and
assembles respective contributions

{fint} =
ne∑
e=1

{f eint} (5.5)

In the ROM (5.4), internal forces are projected on [Φ] ∈ RN×k

[Φ]T{fint} = [Φ]T
ne∑
e=1

{f eint}. (5.6)
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Hyper-reduction computes internal forces only for a subset H ⊂ J1, neK of elements
indexes and applies weights ζ∗e to the elemental contributions ahead of summation
and projection on the reduced space

[Φ]T{fint} ≈ [Φ]T
ne∑
e=1

ζ∗e{f eint} = [Φ]T
∑
e∈H

ζ∗e{f eint}, (5.7)

where {ζ}∗ = (ζ∗1 , ζ
∗
2 , . . . , ζ

∗
ne

)T ∈ Rne
≥0 contains weights associated with all elements

in the model. ζ∗e = 0 if and only if element e is not selected (e /∈ H). The ECSW
method imposes also ζ∗e > 0 for selected elements to maintain the integrator posi-
tivity.

The hyper-reduced integration scheme, given by the subset of selected elements
H and associated weights {ζ∗}, is obtained through optimization. Given a RB
[Φ] and unassembled internal forces ({f eint(ti)})(e,i)∈J1,neK×J1,nsK, the hyper-reduced
quadrature scheme integrates the projected unassembled internal forces training
data set up, to a user-de�ned precision, while selecting the fewest possible elements
in H. First, ns unassembled internal forces snapshots are collected at training
times ({ti}, i ∈ J1, nsK. Without loss of generality, snapshots may as well be
taken at di�erent model parameters values. Once collected, unassembled internal
forces ({f eint(ti)})(e,i)∈J1,neK×J1,nsK ⊂ R

N are projected on the reduced space, yielding
([Φ]T{f eint(ti)})(e,i)∈J1,neK×J1,nsK ⊂ Rk, and are organized in the matrix

[G] =


Gf (t1)
Gf (t2)

...
Gf (tns)

 ∈ Rk∗ns×ne , (5.8)

where

[Gf (ti)] = [ΦT ][{f 1
int(ti)}, {f 2

int(ti)}, . . . , {fne
int(ti)}] ∈ Rk×ne , ∀i ∈ J1, nsK. (5.9)

Using this notations, the non-reduced assembly process (5.5) writes

{b} = [G]{1ne} ∈ Rk∗ns , (5.10)

with {ζ∗} = {1ne} corresponding to the selection of all elements with integration
weights equal to 1 and {b} ∈ R

k∗ns is the 'exact' projection of all internal forces
snapshots on [Φ], used as reference to train the weights. Finally, given a targeted
precision τ , the optimization problem of the hyper-reduced integration scheme is
stated as 

{ζ∗} = argmin
{ζ}∈AECSW

(‖{ζ}‖0)

AECSW = {{ζ} ∈ Rne
≥0 |
‖[G]{ζ} − {b}‖2

‖{b}‖2

≤ τ}

(5.11)

The threshold τ on the approximation precision constraint is imposed in the ad-
missible space AECSW alongside weights positivity, ‖ • ‖0 denotes the zero-norm
associating the number of its non-zero coe�cients to a vector, equivalent to the
number of selected �nite elements, to be minimized. However, the zero norm is
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not di�erentiable, making (5.11) NP-hard. In practice (5.11) is suboptimally solved
with greedy algorithms such as SNNLS ([28])(Algorithm 2). Alternatives such as
the LASSO algorithm have been compared to SNNLS in [16]. In the present work,
(5.11) is reformulated and solved using MIP optimization, proposing a non-greedy
reference for testing quadrature schemes.

5.2 Hyper-Reduced Integration

5.2.1 MIP formulation

MIP solves problems involving both integer and real variables based on a combina-
torial Branch And Bound algorithm for integer unknowns and simplex algorithm for
real variables. (5.11) is transformed into a problem that may be solved using MIP
in the following steps. An additional boolean unknown {ξ} ∈ {0, 1}ne is introduced
to take account of the elements a�liation to H

ξe =

{
1 , e ∈ H
0 , e ∈ J1, neK\H.

Mixed optimization variables are thus ({ζ}, {ξ}) ∈ Rne
≥0×{0, 1}ne . The link between

the non-negative real weights and the Boolean selectors is: if ξe = 0 for a given
element e, the element is not selected and ζe = 0 is imposed. A maximal value for
the weights is prescribed

−∞ ≤ ζe − ζmaxξe ≤ 0, ∀e ∈ J1, neK, (5.12)

bounding each selected element weight with ζmax and each unselected element weight
with 0 and linearizing the problem. Together with the weight non-negativity condi-
tion, (5.12) ensures

(5.12) ∩ ({ζ} ∈ Rne
≥0)⇒

{
ζe = 0 if ξe = 0

0 ≤ ζe ≤ ζmax if ξe = 1.

Similarly, a minimal value ζmin is imposed on each selected element weight by the
constraint

0 ≤ ζe − ζminξe ≤ ∞, ∀e ∈ J1, neK. (5.13)

(5.13) imposed with ζmin = 1 ensures that each selected element counts at least for
itself while avoiding over-�tting.

Additionally, de�ning ξmin and ξmax, the minimal and maximal number of ele-
ments in H, respectively (1 ≤ ξmin ≤ ξmax ≤ ne)

ξmin ≤
∑
e∈E

ξe ≤ ξmax, (5.14)

allows to target prescribed intervals for the number of selected elements. This fea-
ture, in contrary to usual greedy algorithms progressively enriching the selection,
allows to directly start searching for solutions from a given ξmin or assess unattain-
ability of the targeted precision for a given ξmax, reducing computation time by
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shrinking the admissible space.

Finally, for a given threshold τ , the MIP optimization problem writes
({ζ∗}, {ξ∗}) = argmin

({ζ},{ξ})∈AMIP

(
∑

e∈J1,neK

ξe)

AMIP = {({ζ}, {ξ}) ∈ Rne
≥0 × {0, 1}ne |

{b} − τ−{∞}
ξmin

 ≤ [C]

[
{ζ}
{ξ}

]
≤

{b}+ τ
{0ne}
ξmax

}.
(5.15)

Note, that the threshold τ on the hyper-reduced quadrature scheme precision is now
imposed in L∞ norm and not in L2 norm in contrary to the ECSW optimization
problem (5.11). The linear constraint matrix is

[C] =

 [G] {0ne}T
[Id] [diag(ζmax{1ne})]
{0ne}T {1ne}T

 , (5.16)

with [G] de�ned by equation (5.8).

5.2.2 Consistency constraints

When internal forces functions are strongly varying in space and time, such as in
car-crash analysis, exact domain integration may not be possible. Exactness in the
projected Galerkin hyper-reduced scheme is not guaranteed even if the RB functions
possess su�cient completeness to represent the solution. A similar problem arises
in the Element Free Galerkin context ([19, 14]), where the exactness in the Galerkin
approximation, conditioned by the numerical veri�cation of volume and divergence
equalities, is met provided additional zero and �rst-order integration constraints,
respectively. The present work also investigates the impact of adding consistency
conditions at training times (ti)i∈J1,nsK such as exact volumic and polynomial inte-
gration up to a given degree. Volume preservation writes

ne∑
e=1

ζeωe(ti) =
ne∑
e=1

ωe(ti), (5.17)

where ωe(ti) denotes the volume of element e at training time ti, i ∈ J1, nsK, without
loss of generality, sampled at the same training times as unassembled internal forces.
Constraint (5.17) is expressed in the MIP formalism by appending [Gv] to (5.16)

[Gv] =

 ω1(t1) . . . ωne(t1)
...

...
ω1(tns) . . . ωne(tns)

 ∈ Rns×ne . (5.18)
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In a similar fashion, �rst degree polynomials integration is imposed at training
times ti, i ∈ J1, nsK 

ne∑
e=1

ζeωe(ti)g
(e)
1 (ti) =

ne∑
e=1

ωe(ti)g
(e)
1 (ti)

ne∑
e=1

ζeωe(ti)g
(e)
2 (ti) =

ne∑
e=1

ωe(ti)g
(e)
2 (ti)

ne∑
e=1

ζeωe(ti)g
(e)
3 (ti) =

ne∑
e=1

ωe(ti)g
(e)
3 (ti).

(5.19)

(5.20)

(5.21)

A single integration point per element is considered at the center of element e,
{g(e)(ti)} = (g

(e)
1 (ti), g

(e)
2 (ti), g

(e)
3 (ti))

T at training time ti. Constraints on �rst degree
polynomials are prescribed by further appending the following matrix [Gp] to [G]

[Gp] =



ω1(t1)g
(1)
1 (t1) . . . ωne(t1)g

(ne)
1 (t1)

...
...

ω1(t1)g
(1)
1 (t1) . . . ωne(tns)g

(ne)
1 (tns)

ω1(t1)g
(1)
2 (t1) . . . ωne(t1)g

(ne)
2 (t1)

...
...

ω1(t1)g
(1)
2 (t1) . . . ωne(tns)g

(ne)
2 (tns)

ω1(t1)g
(1)
3 (t1) . . . ωne(t1)g

(ne)
3 (t1)

...
...

ω1(t1)g
(1)
3 (t1) . . . ωne(tns)g

(ne)
3 (tns)


, (5.22)

while {b} in the left and right members of (5.15) is computed using equation (5.10)
with modi�ed [G].

5.2.3 Constraints reduction

Over�tting is a signi�cant concern when training a hyper-reduced integration scheme
over a set of collected data. Redundant snapshots may eclipse others and result in
inadequate internal forces approximation in the online reduction phase. Moreover,
an excessively large data set may lead to an unnecessarily large number of linear
constraints, deteriorating performances of the MIP solver. A constraint reduction
in the optimization problem (5.15) is thus proposed to address those two issues.

In this section and the remainder of the chapter, [G] dimensions are denoted
m×ne. Data is decomposed using Singular Value Decomposition (SVD). Note, that
as the SVD decomposes the second dimension of the matrix and, in the present
case, the constraints are to be reduced, the decomposition is performed on [G]T of
a presumably lower number of lines

[G]T = [Υ][diag({λ})][Π]T , (5.23)

yielding [Υ] of dimensions ne × ne and [Π] of dimensions m × ne as well as
[λ] = diag(λ1, λ2, ..., λne) ∈ Rne×ne containing singular values λ1 ≥ λ2 ≥ · · · ≥ λm
arranged in descending order. Using (5.23), the constraint [G]{ξ} = [G]{1ne} writes

[Π][diag({λ})][Υ]T{ζ} = [Π][diag({λ})][Υ]T{1ne} ⇒ [Υ]T{ζ} = [Υ]T{1ne}. (5.24)
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Keeping only the �rst l < ne columns of [Υ] yields the �rst form of the reduced
constraints,

[Υ̃]T{s} = [Υ̃]T{1ne}, (5.25)

with
[Υ̃] = [Υ]:,1:l ∈ Rne×l, (5.26)

where l is chosen so that λ1 ≥ · · · ≥ λl > 0. As a consequence, [Υ̃] has l linearly
independent columns and the rank theorem yields

ker([Υ̃]T ) = ne − rank([Υ̃]T )

= ne − rank([Υ̃])

= ne − l > 0.

[Υ̃]T kernel is non-empty and may be identi�ed with QR factorization.

[Υ̃] = [[Q1], [Q2]]

[
[R]

{0(ne−l)×l}

]
(5.27)

with [Q1] ∈ R
ne×l and [Q2] ∈ R

ne×(ne−l) orthonormal matrices and [R] ∈ R
l×l an

upper triangular matrix. Constraints (5.25) rewrite

[Υ̃]T{ζ} = [Υ̃]T{1ne} ⇒ [Υ̃]T ({ζ} − {1ne}) = {0l}.
Substituting variable {ζ} = {1ne}+ {w}

⇒ [Υ̃]T{w} = {0l}
and injecting QR factorization (5.27) yields

⇒ ([R]T [Q1]T + [0(ne−l)×l]
T [Q2]T ){w} = {0l}

⇒ [Q1]T{w} = {0l}
⇒ ∃{χ} ∈ R(ne−l) such that {w} = [Q2]{χ}.

The �nal form of the unknown integration weights is

{ζ} = {1ne}+ [Q2]{χ}. (5.28)

For every {χ} ∈ R
ne−l, {ζ} de�ned by equation (5.28) veri�es implicitly (5.25).

Constraint on weights non-negativity writes

({ζ} ∈ Rne
≥0),⇒ −{1ne} ≤ [Q2]{χ} ≤ ∞ (5.29)

and constraint (5.12) implies

(5.12)⇒ −{∞} ≤ [Q2]{χ} − ζmax{ξ} ≤ −{1ne}. (5.30)

Finally, the reduced optimization problem is
({χ∗}, {ξ∗}) = argmin

({χ},{ξ})∈AMIP

(

ne∑
e=1

ξe)

ARMIP = {({χ}, {ξ}) ∈ R(ne−l)
≥0 × {0, 1}ne |

−{1ne}
−∞
ξmin

 ≤ [Cr]

[
{χ}
{ξ}

]
≤

 ∞
−{1ne}
ξmax

},
(5.31)
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Figure 5.2: Test case model scheme

with the reduced constraint matrix

[Cr] =

 [Q2] {0ne}T
[Q2] [−diag(smax)]

{0(ne−l)}T {1ne}T

 . (5.32)

In this problem there are 2ne + 1 linear constraints and 2ne − l MIP unknowns,
yielding more contraints than unknowns. Yet, depending on the value of ξmin, ξmax
and smax, it is always possible to �nd a solution. With (ξmin, ξmax) = (1, ne) and
smax ≥ 1, a trivial solution is {χ} = {0} and {ξ} = {1ne}. Non-trivial solutions
exist for every ξmax greater or equal to (ne − l), ξmin = 1. As a matter of fact, the
kernel of [Υ̃], being spanned by the columns of [Q2] of dimension l, it is possible to
satisfy the constraints by selecting less than ne − l elements.

5.3 Results and discussion

Approaches proposed in the present work are implemented in the legacy FE solver
Altair Radioss [3] modi�ed for research purposes. The mixed optimization problems
are solved with CPLEX [38]. In this section, di�erent hyper-reduced integration
schemes are computed with the state-of-the-art SNNLS algorithm and compared
with the proposed approaches in terms of numbers and positions of selected ele-
ments, o�ine training data, and online work of internal forces approximation errors.

The model used for comparison is presented in Figure 5.2 using the unit sys-
tem [T,mm, s,MPa]. The plate is of dimensions 1000 × 2000 × 100 mm3 and
is composed of steel of density ρ = 7.89E − 9 T.mm−2 modeled with Johnson-
Cook elasto-plastic material law. The plate is stretched with imposed velocity
V = ±10000.{ex} mm.s−1. Parameters of the material law are: Young modu-
lus E = 210000 MPa, Poisson ratio µ = 0.3, yield stress σY = 290 MPa, hardening
parameter b = 50 and hardening exponent n = 0.25. Three planar symmetries al-
low simulating only an eighth of the plate using N = 444 degrees of freedom and
ne = 55 elements. Final con�guration and Von Mises constraints are represented in
Figure 5.3. No parametric variations are considered in this work and the training
times correspond to di�erent discrete times (ti)i∈J1,nsK of the same simulation. In
this test case, an RB [Φ] of size eight is used, and ns = 1148 unassembled internal
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Figure 5.3: Von Mises constraints in the pierced plate in traction model

forces snapshots are taken uniformly during the simulation. For consistency condi-
tions, elements' centers and volumes are gathered at the same simulation times as
unassembled forces snapshots.

Results obtained in this example are presented in two groups. The impact of
adding consistency conditions is �rst studied in section 5.3.1 while constraints re-
duction is tested in section 5.3.2.

5.3.1 Consistency conditions

In this section, the following hyper-reduced formulations are tested both in the o�ine
training phase, in terms of training data approximation error at given quadratures
size, and in the online reduction phase, in terms of the work of internal forces
reconstruction. These tests include:

• SNNLS greedy Algorithm 2 solving the ECSW optimization problem (5.11);

• MIP optimization problem (5.15);

• MIP + V, MIP optimization problem (5.15) with the consistency condi-
tions (5.18) on volume integration;

• MIP + V + P1, MIP optimization problem (5.15) with the consistency con-
ditions (5.18) on volume integration and (5.22) on �rst order polynomial inte-
gration;

• MIP + G1, MIP optimization problem (5.15) with a minimal weight value
ζmin = 1.

The reduced run using the RB [Φ] of size eight without hyper-reduction is used
as reference to investigate the impact of the di�erent hyper-reduction methods.
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Figure 5.4: O�ine training data relative L2 error (5.33) for SNNLS and proposed
hyper-reduced integration schemes selecting from 6 to 17 elements.
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Figure 5.5: Online approximation error of the work of internal forces approximation
error (5.35) for SNNLS and proposed methods hyper-reduced integration schemes
sizes ranging from 6 to 17.

Figure 5.6: Element selection for the hyper-reduced integration schemes of size seven
computed with the di�erent methods.
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Figure 5.7: Element selection for the hyper-reduced integration schemes of size ten
computed with the di�erent methods.

Figure 5.8: Element selection for the hyper-reduced integration schemes of size
fourteen computed with the di�erent methods.
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(a) SNNLS
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(b) MIP
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(c) MIP + G1
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(d) MIP + V
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Figure 5.9: Hyper-reduction weights boxplots for consistency constraints formula-
tions in comparison with the SNNLS and MIP methods.
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Figure 5.4 shows the error on unassembled internal forces snapshots training
data

εhr =
‖[G]{ζ} − {b}‖2

‖{b}‖2

. (5.33)

Consistency constraints are not appended to [G] when computing this error for re-
spective hyper-reduced quadratures.

Figure 5.5 shows the approximation error of work of internal forces within the
online reduction phase. The work of internal forces Wint is de�ned as the integral
over the domain Ω of the tensor dot product between the stress ε and the strain σ
tensors

Wint(t) =

∫
Ω

ε : σdV. (5.34)

The approximation error of the work of internal forces εint is de�ned as

εint =

∫ T
0
| Wint(t)− W̃int(t) | dt∫ T

0
Wint(t)dt

, (5.35)

with Wint, and W̃int, the work of internal forces of the reference and the hyper-
reduced simulations, respectively.

Element subsets H selected by the di�erent methods are compared for hyper-
reduction schemes of size 7, 10, and 14 in Figures 5.6, 5.7, and 5.8. On those
examples, and as mentioned above, results are extended to the full pierced plate
through three planar symmetries. This choice allows for a better comparison of
element selection as, on a full model, hyper-reduction may indiscriminately select
among symmetric elements. Consequently, each selected element is represented eight
times in the symmetric parts of the model.

Hyper-reduced integration weights obtained with the di�erent formulations are
represented in boxplots in Figure 5.9.

Figure 5.4 assesses the performances of the greedy SNNLS algorithm in the
o�ine training phase. Among the hyper-reduced quadratures of size seven, the
SNNLS algorithm solution o�ers the less accurate approximation in the o�ine phase.
However, for larger hyper-reduced quadratures, proposed MIP formulations do not
always o�er better o�ine approximations than the SNNLS. This is in part due to
the incapacity to express the constraints on training data integration in L2 norm in
the proposed linear methods, thus, they don't share the same admissible space with
the SNNLS. Moreover, the MIP formulations do not minimize the o�ine training
data approximation error but only keeps it under a prescribed threshold. On the
other hand, quadratures obtained with the MIP approach may also be unattainable
with the SNNLS algorithm due to its greedy nature. Unassembled training data
approximation quality is overall quite similar between the di�erent approaches and
adding consistency constraints does not deteriorate the training data approximation
at a given quadrature size.

Online work of internal forces approximation presented in Figure 5.5 showing a
good overall performances of the SNNLS algorithm. Even though it o�ers the worst
online performances when less than seven elements are selected, it outperforms the

91



Towards data-enabled vehicle crash simulations

6 8 10 12 14 16
5000

10000

15000

20000

25000

Quadrature size

V
o
lu

m
e

 (
m

m
3
)

Volume integration comparison for SNNLS and MIP + V

FOM
SNNLS
MIP+V

Figure 5.10: Volume integration for quadrature originating from SNNLS and
MIP+V

proposed methods for larger quadratures size. Adding consistency constraints seems
to deteriorate online performances of larger integration schemes. A good correlation
between o�ine and online performances is observed.

SNNLS and MIP select elements in a similar pattern, as shown in Figures 5.6, 5.7,
and 5.8. Most selected elements are located in the necking zone near the hole and
few elements, with larger integration weights, summarize internal forces behavior on
the outer parts of the model. Element selection at size 7, presented in Figure 5.6,
is quite similar for the SNNLS and MIP methods but tends to diverge as more
elements are selected. As a matter of fact, the SNNLS greedy procedure allows the
deselection of one element in subsequent enrichment only if the associated weight is
set to zero when computing the least feasible step (lines 15, 16 and 17 of SNNLS
Algorithm 2). Thus, on the three �gures, elements selected by the SNNLS at a given
quadrature size are still selected in larger integration schemes, which is not the case
for the proposed methods.

Boxplots in Figure 5.9 show that the proposed method including consistency
conditions on polynomial integration su�er from weight over�tting as it consistently
yield most signi�cant integration weights. On this example, adding contraints on
volume integration prevents over�tting, as observed comparing the MIP quadrature
of size 16 with the MIP+V quadrature of the same size. On the other hand, weights
computed with the SNNLS procedure are uniform.

The volume integration is tested for quadratures originating from the SNNLS
and MIP + V on Figure 5.10. In this �gure, volume obtained by integrating with
di�erent quadratures is averaged over all ns = 1148 training times. Quadratures
computed with the SNNLS do not preserve the volume while the proposed MIP+V
formulation does independently of the number of elements. Results show that it is
possible to add constraints to the hyper-reduced quadrature without deteriorating
o�ine and online performances.
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Figure 5.11: O�ine training data relative L2 error (5.33) of SNNLS and proposed
hyper-reduced methods. Hyper-reduced integration schemes sizes range from 6 to
17.

5.3.2 Constraints reduction

In this section, results are presented for the two following formulations of the hyper-
reduction problem without consistency condition:

• Reduced MIP optimization problem (5.31);

• Reduced MIP + LS, optimization problem (5.31), the element selection {ξ}
is kept but weights are recomputed by a single pass of the SNNLS algorithm
(least squares problem on the full matrix [G] and least feasible step to ensure
weight positivity).

Figure 5.11 plots the o�ine unassembled internal forces data approximation er-
rors for hyper-reduced quadratures size ranging from 6 to 17 while associated online
work of reconstructed internal forces is presented in Figure 5.12. Selected elements
are illustrated in Figures 5.13, 5.14 and 5.15 for integration schemes of size seven,
ten and fourteen. Weights are represented in boxplots in Figure 5.16.

While o�ine performances, plotted in Figure 5.11, are very similar between the
di�erent methods, reducing constraints has improved online performances with re-
spect to the results obtained in the previous section where consistency conditions
are used. Online results regarding Reduced MIP and the Reduced MIP + LS show
that being accurate over the training data does not necessarily imply good online
performances. While the Reduced MIP + LS always approximates the training
data better than the Reduced MIP, since the weights have been optimized on the
non-reduced training data in the �rst method, it does not yield better online perfor-
mances. In Figure 5.11 the Reduced MIP is less accurate on the training data than
the Reduced MIP + LS as the element selection is kept in the latter, but weights
are re-optimized on the training data. Yet, Figure 5.12 shows that it does not im-
ply better performances online. The version without weights re-optimization shows
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Figure 5.12: Online work of internal forces approximation error (5.35) of SNNLS and
proposed hyper-reduced integration schemes. Hyper-reduced integration schemes
sizes range from 6 to 17.

Figure 5.13: Element selection for the hyper-reduced integration schemes of size
seven computed with the di�erent methods.
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Figure 5.14: Element selection for the hyper-reduced integration schemes of size ten
computed with the di�erent methods.

Figure 5.15: Element selection for the hyper-reduced integration schemes of size
fourteen computed with the di�erent methods.

95



Towards data-enabled vehicle crash simulations

6 7 8 10 11 13 14 15 16
0

5

10

15

20

25

Quadrature size

W
e

ig
h

ts

SNNLS w eights boxplots

(a) SNNLS
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(b) MIP
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(c) Reduced MIP
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(d) Reduced MIP + LS

Figure 5.16: Hyper-reduction weights boxplots for constraints reduction formula-
tions in comparison with the SNNLS and MIP methods.

slightly better online performances for hyper-reduced quadratures of size 7, 8, 11,
12, 13, 16, and 17 than other methods.

Elements are selected in a similarly by the di�erent approaches, as observed
in Figures 5.13, 5.14, and 5.15 where most selected elements concentrate in the
necking zone around the hole. However, di�erent quadratures tend to diverge as
more elements are selected. By contrast with the proposed method, the SNNLS
does not deselect elements when quadrature size increases. In Figure 5.15, Reduced
MIP and the Reduced MIP + LS did not select the same elements. The Reduced
MIP + LS solution corresponds, in fact, to the Reduced MIP for 15 elements in
which one element has been unselected by the single pass in the SNNLS algorithm.

Weights comparison in Figure 5.16 shows over�tting issues of both reduced ap-
proaches in some cases. Over�tting issue is most pronounced in quadratures of
small and large sizes, while quadratures of size eleven and thirteen exhibit uni-
form weight repartition regardless of the method. Neither constraints reduction nor
adding weights re-optimization seem to circumvent this issue. Overall, the SNNLS
algorithm still provides the most homogeneous weights repartition.

5.3.3 Discussion

The SNNLS algorithm shows out to be an excellent heuristic to solve the optimiza-
tion problem arising in the ECSW training phase. It provides good performances
on the pierced plate example both in o�ine and online phases compared with the
proposed approach.

Adding consistency conditions to the MIP formulation seems to deteriorate online
performances. On the contrary, constraints reduction improved online performances.

Proposed approaches su�er from over�tting compared with SNNLS. Further test-
ing should include the e�ect of the maximal weight value ζmax, introduced in sec-
tion 5.2, on both o�ine and online performances.
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Computation times associated with the training phase of the proposed MIP
approaches are, on the small pierced plate example, close to that of the SNNLS,
even for a large number of snapshots. However, MIP approaches quickly become
computationally una�ordable for increasing numbers of elements, preventing the
treatment of a more signi�cant test case. At the moment, small improvements of
the online performances observed in some cases do not counterbalance the growth
in training complexity.

5.4 Conclusion

Compared with the proposed MIP approach, SNNLS is shown to be a good heuristic
for solving the optimization problem arising in the ECSW in both the o�ine train-
ing data set reconstruction and online work of internal forces prediction. Tests on a
pierced plate in traction model show similar performances between the suboptimal
hyper-reduced quadratures obtained with the SNNLS algorithm and quadratures
obtained with the proposed MIP method, both in o�ine and online phases. Varia-
tions of the proposed method, incorporating consistency conditions, allow for volume
preservation and polynomial integration as well as constraints reduction. However,
the computational overhead of the proposed approach with respect to the SNNLS
is not compensated by the online performance gains.

Alternative formulations of the ECSW optimization problem still merit research
as the greedy nature of the SNNLS algorithm renders computations prohibitively
long on large models. The introduction of Boolean selection variable enables new
constraints on the hyper-reduced integration scheme size. Such a feature may lever-
age the explosion in complexity from which su�ers the SNNLS greedy algorithm
when dealing with large models but induces more developments requiring further
research. Moreover, if a constraint on the number of selected elements is used,
objective functions may be changed to the training data set reconstruction error.
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Chapter 6

Implementation

In the scope of this work, the Hyper-Reduced Proper Orthogonal Decomposition
(HRPOD) is implementated in the state-of-the-art �nite element explicit solver Al-
tair Radioss [3]. Altair Engineering France provided full access to the solver source
code creating a separate branch of the version 2017.1 for the development of the
method for research purposes.

Section 6.1 provides general recommendations in implementing the method from
the programming point of view. Current bottlenecks to HRPOD applications to
industrial FE models, together with outlooks, are presented in Section 6.2.

6.1 Implementation

Developments required in the HRPOD implementation separate into two phases
represented in Figure 6.1: during the training phase, data are collected and used to
compute a ROM used in the online reduction phase to speed-up computations.

The o�ine training phase decomposes further into the snapshots gathering and
the snapshots post-processing steps.

First, solution and unassembled internal forces snapshots are gathered and stored
in binaries. A bu�er is used to minimize the access to binary �les. An unassem-
bled internal forces snapshot is represented by a matrix of size N × ne in which
each column is the contribution of the corresponding element to the global internal
forces vectors (Section 2.1.5). As a consequence, before being projected on the RB,
unassembled internal forces snapshots are highly sparse. The choice has been made
to store those snapshots using the Compressed Sparse Row (CSR) sparse format to
save memory. This choice is motivated by the facility to append further unassem-
bled internal forces snapshots in lines. In the FE method, internal forces elemental
contributions are computed in each element with respect to the local Degrees of
Freedom (DoF) indexation and then added to the general internal forces vector in-
dexing DoFs globally. Depending on the code structure, the inverse connectivity
matrix is very likely to be used to reorganize unassembled internal forces snapshots.

The post-process consists of reading snapshots in binaries, computing the ROM,
and writing it into binaries for online use. The ROM is given by a RB and asso-
ciated hyper-reduced quadrature for the integration of internal forces. The RB is
computed �rst as it is needed to train the hyper-reduction scheme. Translational
and rotational DoF are separated in each solution snapshots and two di�erent RBs
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Figure 6.1: Flowchart of the HRPOD o�ine training and online reduction proce-
dures.

are computed. They may be of di�erent sizes and are orthonormalized in the online
reduction phase with respect to the metric induced by the mass and inertia matri-
ces. Once RBs computed, unassembled internal forces are projected on the reduced
space and used to train hyper-reduction. This projection induces the multiplication
of fully populated and sparse matrices. The snapshot post-process phase ends by
writing the RBs and associated hyper-reduced quadrature into binaries.

The online reduction phase uses the ROM in a simulation to speed-up compu-
tations.

The reduced run is initialized by reading the ROM binaries, orthonormalizing
the RBs to the metrics induced by the mass, for translational DoF, and inertia,
for rotational DoF, matrices. The oblique projection, introduced at the end of
section 2.2.3, is then used to project all initial conditions onto the reduced space.
The oblique projection matrix [Φ]T [M] is computed once and stored in memory for
subsequent projections. Additional initializations regarding the data structure for
parallelism and code optimization are performed here.

Modi�cations in the time loop include hyper-reduced internal forces, stable time-
step, accelerations, and velocities computations. The internal forces routine is mod-
i�ed to only take into account elements selected in the hyper-reduced quadrature.
Associated weights are applied to the assembly. The nodal time-step is computed
after the internal forces by projecting the equivalent nodal sti�ness onto the reduced
space. Reduced accelerations are simply obtained by projecting internal forces on
[Φ]T , according to the ROM semi-discretized equations (2.19) introduced in sec-
tion 2.2.3. High dimensional accelerations are approximated using reduced accel-
erations only if required for animation, penalization, or any other feature to avoid
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unnecessary computations. Similarly, unnecessary projections are avoided when
computing velocities. When kinematic conditions are prescribed, they are projected
onto the reduced space ahead of velocites computations. Finally, reduced veloci-
ties are obtained by integrating reduced accelerations and used to approximate high
dimensional velocities.

Multiple features of the solver require special care in the online reduction phase.
At �rst they are handled by computing full-scale approximations or projecting ad-
ditional full-scale variables on the reduced space. However, it must be done only if
necessary as it induces a computational overhead. In some cases, additional methods
exist, such as hyper-reduction for nonlinear internal forces, to avoid extra compu-
tations. In other cases, computing the needed full-scale variables will not work has
they are poorly approximated by the ROM, and alternatives need to be found as
discussed in Section 6.2.2.

6.2 Industrial Processes

Several bottlenecks are still hindereing a robust integration of the HRPOD in in-
dustrial crashworthiness optimization.

The o�ine training phase computational cost increases exponentially with the
model size. As shown in chapter 3, the incremental SVD equipped with the newly
developed sequential error estimator alleviates this issue for the RB training. The
algorithm is yet to adapt to the sparse criterion proposed in chapter 4. Most e�ort
in the training phase concerns the hyper-reduced integration schemes' computation,
particularly intensive due to the greedy nature of the SNNLS algorithm and the
complexity of the associated optimization problem. Prior work on an alternative
non-greedy method is presented in chapter 5.

Advanced features such as airbags, springs, weld spots, and adaptive mass scal-
ing present in crash models require further developments. Moreover, optimizing the
method to answer industrial standards regarding performance and parallelization
incurs considerable developments in the source code.

A signi�cant concern arising in the industrial use of the HRPOD in crashworthi-
ness optimization is the relevance of training data to the targeted application.

The parametric variation between the o�ine and online phases has not been
studied in this thesis. A reduced model trained on snapshots collected at given
parameters values will deliver good online approximation as long as the deformation
is comparable to the one observed in the training data. As a consequence, the
performance of HRPOD in such a study is problem-dependent. Thus, we choose
to leave this matter to the industrial process. Nevertheless, two outlooks are worth
investigating to overcome the training data relevancy bottleneck: substructuring
and online adaptivity.

Substructuring aims to extend HRPOD to multi-domain, allowing to use MOR
on standard parts of the structure intended to behave similarly at di�erent param-
eters values while using the FOM on the remainder of the structure. This outlook
and associated required developments are presented in section 6.2.2.

The online adaptivity concept is to develop auto-correcting ROM in the online
reduction phase when the RB does not represent the model solution at a given time

100



Chapter 6: Implementation

step anymore. Section 6.2.3 is devoted to the di�erent leads in the development of
such a feature.

6.2.1 ROM for full-scale crash models

Industrial FE crash models make use of a lot of di�erent options such as contact
interfaces, airbags, weld spots, and adaptive mass scaling as well as invoking a wide
variety of di�erent element formulations. Incorporating these options in the HRPOD
framework requires considerable software developments. Moreover, applying the
HRPOD approach to a large-scale model requires special care concerning the training
data manipulation and source code parallelization.

Figure 6.2: Bumper plus frame rail frontal impact on a rigid barrier FE model
(Courtesy of the PSA Group)

In our work, we tried to apply the HRPOD to a full-scale assembly of bumper
and frame rail model provided by the PSA group presented in Figure 6.2. This
model is composed of 39865 nodes, ne = 37510 shell elements with three di�erent
formulations and 396 spring elements yielding N = 239190 DoF. A rigid body with
1.5 tons of added mass takes account of the rest of the vehicle. The assembly impacts
the rigid wall with initial velocity v0 = 35 km.h−1. T = 1.25 ∗ 10−1 seconds are
simulated, taking about 18450 seconds of computations for the full-scale simulation
on a single CPU.

No speed-up is achieved on this example as hyper-reduction is not used for two
reasons.

The hyper-reduction training phase is prohibitively expensive in computation
time. For an inputted precision of one percent, the training of a hyper-reduced
quadrature over 189 unassembled internal forces snapshots takes more than three
days.

Moreover, when using the hyper-reduced quadrature in the online reduction
phase, issues are encountered at weld spots where a precise computation of internal
forces is needed.

The �rst 5 ∗ 10−2 seconds of the simulation may be pretty well approximated
by small RBs of size 27 and 100 for translational and rotational DoFs, respectively,
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Figure 6.3: Bumper plus frame rail frontal impact on a rigid barrier ROM and
FOM. The ROM is represented with solid green elements and the FOM with the
black wireframe grid at 5 ∗ 10−2 seconds. RBs of size 27 and 100 are used for
translational and rotational DoF, respectively.

as shown in Figure 6.3. In this example, the RB was computed with the proposed
incremental SVD presented in chapter 3. Figure 6.3 shows the reduced model ap-
proximation with solid green elements and the reference FOM in the black wireframe
grid.

However, we currently fail to compute RBs of reasonable sizes to approximate
the rest of the simulation. Using RBs of size 200 for both translational and rota-
tional DoF, the �rst 5∗10−2 seconds of the phenomenon are perferctly approximated,
as shown in Figure 6.4. However, the approximation at the �nal simulation time
T = 1.25 ∗ 10−1 seconds is quite bad, as seen in Figure 6.5. On both �gures, the
reduced model is represented with solid blue elements and the reference FOM with a
black grid. Larger RBs result in prohibitive computation times, hardly compensated
by hyper-reduction in the online reduction phase at the moment.

We are currently considering two non-exclusive strategies to overcome this lim-
itation. Using di�erent RBs for parts of the domain and eventually simulating the
most complicated part of the domain with at full-scale is discussed in Section 6.2.2.
Moreover, di�erent parts of the domain may switch between the FOM and ROM at
di�erent moments of the simulation, as discussed in Section 6.2.3.

6.2.2 Substructuring

Applying reduction to a given part of the domain while simulating the rest of the
domain with the FOM may help in various applications.

When studying the solution behavior under parametric variations, some parts of
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Figure 6.4: Bumper plus frame rail frontal impact on a rigid barrier ROM and FOM.
The ROM is represented with solid green elements and the FOM with a black grid
at 5 ∗ 10−2 seconds. RBs of size 200 and 200 are used for both translational and
rotational DoF.

Figure 6.5: Bumper plus frame rail frontal impact on a rigid barrier ROM and
FOM. The ROM is represented with solid green elements and the FOM with a
black wireframe grid at �nal simulation time T = 1.25 ∗ 1−−1 seconds. RBs of size
200 and 200 are used for both translational and rotational DoF.

the model are intended to give similar results at di�erent parameters value. Thus,
it appears possible to train a ROM for these parts on a relevant data set. In this
context, substructuring also enables the use of data collected from previous projects.
New vehicles often carry over parts from previous designs on which extensive data
are accessible from simulations or experiments. These data may be used to build a
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ROM speci�c to the part and used in the FE model of a new vehicle. If training
data from experimentations and FE simulations gathered from previous projects are
to be used, it is necessary to transfer them to the new mesh.

Figure 6.6: Bumper multi-domains simulation. The blue part is simulated using
two RBs of size 100 for translational and rotational DoF, while the gray part is
simulated at full-scale. Zooms on interfaces show instabilities.

We tried to apply the multi-domain approach to the bumper plus frame rail
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model presented in Figure 6.2. The model splits into two parts. The front of the
bumper is simulated at full-scale, while the ROM is used to simulate the back of
the bumper. The idea is to reduce the model as much as possible and simulate at
full-scale areas where the solution is very likely to change with the model parameters.

We have successfully applied this approach to models involving solid elements
only. However, we have encountered new di�culties with shells as instabilities
quickly appeared in the full-scale domain for elements close to the reduced do-
main, preventing the simulation from terminating correctly. This issue is illustrated
in Figure 6.6, with the full-scale domain presented in gray and the reduced one in
blue. Zooms are performed on interfaces between the two domains where instabilities
appear.

These results show, that the interface between the reduced and unreduced do-
mains needs to be reformulated. For shell elements, the coupling between domains
makes use of accelerations, which are poorly approximated by the ROM. As a mat-
ter of fact, the funding hypothesis of PROM, that the solution evolves in a manifold
embedded in a vectorial space of much lower dimension than the FOM, is correct
for displacements but not necessarily for accelerations. An adapted formulation of
the interface requires further theoretical developments.

6.2.3 Online adaptivity

A promising lead to the robust application of model order reduction in DoE ex-
ploration lies in online adaptivity. As discussed earlier, the HRPOD performance
depends on the RB's ability to approximate the solution. Being able to detect online
when the approximation deteriorates in a given region of the domain at given sim-
ulation time and to update the ROM online at minimal computational cost would
be a signi�cant step toward robust applications of the method to industrial DoE
exploration.

Figure 6.7: Simulation time per frame for a �st clenching and unclenching. The
�ngers clench in a di�erent sequence from which they unclench, so novel collision
con�gurations unseen during training are encountered. The FOM regions are drawn
in red and the ROM regions in gray [76].

This concept originates from HRPOD applications to computer graphics ([5, 78,
76, 12]). In [76], contacts not present in the training data set appear in the reduc-
tion phase and a region of full-scale simulation is decided online in a certain radius
around the contact interface, as represented in Figure 6.7. Doing so, avoids signif-
icant error due to unexpected con�gurations, while accelerating the simulation in
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regions in which the ROM is still valid. Contact is used as a trigger, referred to as
oracle, for online adaptivity, consisting in de�ning a region of the domain in which
full-scale computation is required.

The oracle identi�es when and where the ROM is invalid while avoiding full-scale
computations and unnecessary updates. Di�erent oracles and online adaptations
may be considered in applications to explicit nonlinear structural dynamics. Contact
is not the only event which may results in ROM invalidity and other oracles, based
on deformations or total energy loss for example, need to be developed.

In automotive design application, it is not clear how to restrain the ROM to a
region of the domain. Using condensation, as is the case in [76], is likely to be com-
putationally una�ordable, requiring the development of alternative methods. More-
over, online adaptivity may also consists in enriching the ROM. While enriching the
RB is straightforward with the incremental SVD presented in Chapter 3, updating
the hyper-reduced integration scheme incrementally remains an open question.
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Conclusion

A signi�cant literature, reviewed in the present work, allows to consider applications
of intrusive reduced order industrial explicit solver to automotive vehicle crash-
worthiness optimization. The project has been oriented toward projection-based
reduced order modelling methods conjointly with hyper-reduction of nonlinear in-
ternal forces. Based on an implementation of the HRPOD in the legacy solver Altair
Radioss, di�erent bottlenecks to the robust application of the method in industrial
processes have been identi�ed and addressed in original contributions mainly focus-
ing on the following two aspects of the hyper-reduced projected reduced order model
training phase. The o�ine training phase computational cost is to be controlled
to achieve global speed-up. Online validation is used to compare o�ine training
methods and provide a better correlation between both training data approximation
and e�ective approximation quality in the reduction phases.

The overall objective being computational savings, the computational cost of the
o�ine training phase is to be addressed. More importantly, the singular value de-
composition used in the computation of a reduced basis may reveal to be infeasible
when applied to large-scale training data. Incremental alternatives for the decom-
position of large-scale data have been developed for video streaming and recently
brought to the model order reduction �eld. In this work, incremental reduced basis
method is further adapted to projected reduced order modeling and an error esti-
mator is proposed for 'on-the-�y' truncation and snapshots selection. The resulting
algorithm is nearly optimal in approximating the data, and more �user-friendly�
than the reference version. When building low-rank approximations, the algorithm
outperforms the traditional single-pass SVD in terms of computation time by sev-
eral orders of magnitude. Online testing on a Taylor beam impact example showed
enhanced performances of reduced basis computed with the proposed incremental
SVD. In the future, such incremental approach may be used to compute and correct
reduced order models in the online reduction phase.

The ROM's validation in the online reduction phase. In nonlinear structural
dynamics, the error criterion used in the POD o�ine training phase is shown to
be insu�cient to assess the online approximation quality when the training data is
relevant to the targeted application. As a matter of fact, the averaging nature of this
criterion may result in bad representation of some snapshots, even when a very low
threshold is imposed on the ROM's o�ine training data approximation error, re-
sulting in considerable approximation error in the online reduction phase. A sparse
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criterion is proposed in this thesis to circumvent this issue. By imposing a threshold
on the representation of all snapshots and using combinatorial optimization to build
the smallest subset of RB functions, this error criterion shows on di�erent examples
a better agreement between the approximation errors observed both in the o�ine
training and in the online reduction phases.

The optimization problem of the ECSW hyper-reduction training phase is solved
in a greedy manner by the SNNLS algorithm. This suboptimal procedure turns out
to be prohibitively computationally expensive in applications to large training data
sets. An alternative formulation of hyper-reduction optimization problem is pro-
posed and solved with Mixed-Integer Programming on an academic example. While
the SNNLS algorithm shows to be a good heuristic, the developed MIP formulation
may be used to further develop heuristic alternatives. The present work further
investigates the impact of reducing or adding constraints, such as polynomial inte-
gration and volume conservation, on both o�ine and online performances.

Applications to full-scale FE models provided by the industrial partner PSA
group revealed some important bottlenecks of the HRPOD regarding the o�ine
training phase feasibility on large models. Training an hyper-reduced integration
scheme turns out to be prohibitively expensive due to the greedy nature of the
SNNLS algorithm. Some features used in industrial vehicle crash simulations, such
as weld spots, requires full-scale computations and need to be correctly handled in
the online reduction phase. Additionally, regions of the domain undergoing complex
deformations are hardly approximated with RB of small size. These bottlenecks mo-
tivated outlooks for this project.

Further research topics, concerning online adaptivity and substructuring are
identi�ed. The structure may undergo unexpected deformations in the online reduc-
tion phase, being able to detect such event and adapt the ROM �on the �y� would
be a major advantage of intrusive reduction methods over non-intrusive ones. More-
over, having di�erent ROM for di�erent regions of the model and while simulating
other regions at full-scale may help industrial applications of the method as some
regions of the model may be too challenging to reduce or because training data is
not available on the whole domain.

The developments are available in a dedicated research branch of Altair Radioss
code.
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Appendix A

Notations

In the manuscript, curly brackets designate vectors and square brackets designate
matrices. Following notations are sorted out in alphabetical order.

](•) - cardinality of a set

{0N} - column vector of size N with all coe�cients equal to zero

{1N} - column vector of size N with all coe�cients equal to one

{α} - reduced unknown displacement, α ∈ Rk

B - subset of k indices of left singular vectors forming the RB

b - plasticity hardening coe�cient

{b} - assembled training data

(βi(tj))(i,j) - projection of singular vector {φi} on snapshot {u(tj)}, (i, j) ∈ J1,mK× J1, nsK
[C] - linear constraints matrix

[Cr] - reduced linear constraints matrix

(ci)i - training con�gurations, i ∈ J1, nsK
E - Young's modulus

ε - strain tensor

εp - equivalent plastic strain

εest - error estimator in the proposed incremental SVD algorithm

εhr - training data approximation error

εin - part of discarded snapshots represented by [Φk]

εint - work of internal forces approximation error

εorth - tolerance for reorthonormalization in the incremental SVD

εout - part of discarded snapshots non-represented by [Φk]

εrb - user-speci�ed threshold on the basis function selection criterion

εsp - sparse criterion approximation error

εsv - sequential criterion approximation error

εksv - singular value truncation error for a reduced basis of size k

εsvd - tolerance for snapshot selection in the state-of-the-art incremental SVD

{fext} - space discretized external forces, {fext} ∈ RN
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{f̃ext} - reduced external forces, f̃ext = [Φ(B)]Tfext ∈ Rk

{fint} - space discretized internal forces, {fint} ∈ RN

{f eint} - internal forces in element e

{f̃int} - reduced internal forces, f̃int = [Φ(B)]Tfint ∈ Rk

‖[•]‖F - Frobenius norm of a matrix, ‖[•]‖F = (
∑
i,j

[•]2i,j)
1
2

[G] - matrix of unassembled training data

[Gf ] - matrix of unassembled internal forces at all training times

[Gv] - matrix of elements volumes at all training times

[Gp] - Constraint matrix on polynomial integration

{g(e)} - center of element e, {g(e)} ∈ R3

(γi(tj))(i,j) - relative contribution of singular vector {φi} to snapshot {u(tj)}
H - subset of elements in the hyper-reduced integration scheme, H ⊂ J1, neK

[K] - tangent sti�ness matrix, [K] ∈ RN×N

k - Reduced basis size

kmax - Maximum size for the reduced basis in the state-of-the-art incremental SVD

[M] - symmetric positive-de�nite mass matrix, [M] ∈ RN×N

[M̃] - reduced mass matrix, [M̃] = [Φ(B)]T [M][Φ(B)] ∈ Rk×k

m - number of singular vectors in the training data POD decomposition,

m = min(N, ns)

N - number of degrees of freedom in the FE space discretization

n - plasticity hardening exponent

ne - number of elements in the model

np - number of parameters of the FE model

ns - number of snapshots in the training data set

ν - Poisson's ratio

Ω - considered spatial domain, Ω ⊂ R3

ωe - volume of element e

(pi)i - parameters of the FE model, i ∈ J1, npK
[Φ] - left singular vectors of [S], [Φ] = [φ1, . . . , φns ] ∈ RN×m

[Φ(B)] - reduced basis formed by the left singular vectors selected

according to the subset of indices B,

[Φ(B)] = [{φB(1)}, . . . , {φB(k)}] ∈ RN×k

[Φk] - reduced basis of size k

[Ψ] - right singular vectors of [S], [Ψ] = [ψ1, . . . , ψm] ∈ Rns×m

R≥0 - set of non-negative real numbers

ρ - density

[S] - training data set, [S] = [{u(t1)}, . . . , {u(tns)}] ∈ RN×ns

{s} - singular values of [S] in decreasing order, {s} = (s1, . . . , sm)T ∈ Rm
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σ - stress tensor

σeq - equivalent stress

σY - plastic yield stress

t - time, t ∈ [0, T ]

T - �nal simulation time

{ti} - training times, i ∈ J1, nsK
u(x, t) - the continuous unknown displacement �eld

{u} - space discretized unknown displacement �eld, {u} ∈ RN

{ũ} - displacement �eld approximation in the reduced model, ũ = [Φk]α ∈ RN

{û} - displacement projection on the reduced basis, û = [Φ(B)][Φ(B)]Tu ∈ RN

Vimp - imposed velocity

V0 - initial velocity

Wint - work of internal forces

x - point in Ω

{ξ} - boolean vector selecting the subset of RB functions

{ζ} - weights of the hyper-reduced integration scheme

ζmax - maximal weights value
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Acronyms

ADS Alternative Directions Scheme
APHR A Priori Hyper-Reduction
APOD Adaptive Proper Orthogonal Decomposition
BPOD Balanced Proper Orthogonal Decomposition
CAD Computer-Aided Design
CFL Courant-Friedrichs-Lewy
CPU Central Processing Unit
CSR Compressed Sparse Row
DEIM Discrete Empirical Interpolation Method
DoE Design of Experiment
DoF Degree of Freedom
ECM Empirical Cubature Method
ECSW Energy Conserving Sampling and Weighting
ESLM Equivalent Static Load Method
FE Finite Element
FEA Finite Element Analysis
FEM Finite Element Method
FOM Full Order Model
HIC Head Injury Criterion
HR Hyper-Reduction
HRPOD Hyper-Reduced Proper Orthogonal Decomposition
KPCA Kernel Principal Component analysis
LASSO least Absolute Shrinkage and Selection Operator
LATIN LArge Time INcrement model
LS Least Square
MGS Modi�ed Gram-Schmidt
MIP Mixed-Integer Programming
MKL Math Kernel Library
MOR Model Order Reduction
NiPOD Non-intrusive Proper Orthogonal Decomposition
NN Neural Network
NP Non-Polynomial
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PCA Principal Component Analysis
PDE Parametric Di�erential Equation
PGD Proper Generalized Decomposition
POD Proper Orthogonal Decomposition
PROM Projected Reduced Order Model
QoI Quantity of Interest
RB Reduced Basis
RBF Radial Basis Function
ReCUR Regressive CUR
ROM Reduced Order Model
RS Response Surface
SNNLS Sparse Non-Negative Least Square
SOD Smooth Orthogonal Decomposition
SVD Singular Value Decomposition
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