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Abstract

Deep Neural Networks led to major breakthroughs in artificial intelligence. This
unreasonable effectiveness is explained in part by a scaling-up in terms of comput-
ing power, available datasets and model size – the latter was achieved by building
deeper and deeper networks. In this thesis, recognizing that such models are hard
to comprehend and to train, we study the set of neural networks under the prism
of their functional equivalence classes in order to group networks by orbits and to
only manipulate one carefully selected representant. Based on these theoretical con-
siderations, we propose a variant of the stochastic gradient descent (SGD) algorithm
which amounts to inserting, between the SGD iterations, additional steps allowing
us to select the representant of the current equivalence class that minimizes a certain
energy. The redundancy of the network’s parameters highlighted in the first part nat-
urally leads to the question of the efficiency of such networks, hence to the question of
their compression. We develop a novel method, iPQ, relying on vector quantization
that drastically reduces the size of a network while preserving its accuracy. When
combining iPQ with a new pre-conditioning technique called Quant-Noise that injects
quantization noise in the network before its compression, we obtain state-of-the-art
tradeoffs in terms of size/accuracy. Finally, willing to confront such algorithms to
product constraints, we propose an application allowing anyone to make an ultra-low
bandwidth video call that is deployed on-device and runs in real time.
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Résumé

Les réseaux de neurones profonds sont à l’origine de percées majeures en intelligence
artificielle. Ce succès s’explique en partie par un passage à l’échelle en termes de
puissance de calcul, d’ensembles de données d’entrainement et de taille des modèles
considérés – le dernier point ayant été rendu possible en construisant des réseaux
de plus en plus profonds. Dans cette thèse, partant du constat que de tels modèles
sont difficiles à appréhender et à entrainer, nous étudions l’ensemble des réseaux de
neurones à travers leurs classes d’équivalence fonctionnelles, ce qui permet de les
grouper par orbites et de ne manipuler qu’un représentant bien choisi. Ces con-
sidérations théoriques nous ont permis de proposer une variante de l’algorithme de
descente de gradient stochastique qui consiste à insérer, au cours des itérations, des
étapes permettant de choisir le représentant de la classe d’équivalence courante min-
imisant une certaine énergie. La redondance des paramètres de réseaux profonds de
neurones mise en lumière dans ce premier volet amène naturellement à la question
de l’efficience de tels réseaux, et donc de leur compression. Nous développons une
nouvelle méthode de compression, appelée iPQ et reposant sur de la quantification
vectorielle, prouvant qu’il est possible de réduire considérablement la taille d’un réseau
tout en préservant sa capacité de prédiction. En combinant iPQ avec une procédure
de pré-conditionnement appelée Quant-Noise qui consiste à injecter du bruit de quan-
tification dans le réseau avant sa compression, nous obtenons des résultats état de
l’art en termes de compromis taille/capacité de prédiction. Voulant confronter nos
recherches à des contraintes de type produit, nous proposons enfin une application
de ces algorithmes permettant un appel vidéo à très faible bande passante, déployée
sur un téléphone portable et fonctionnant en temps réel.
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Notation

We first define a neural network using the formalism of graph theory to disentangle
the architecture from the values of the weights. Unless mention of the contrary, we
consider networks with ReLU non-linearities defined as 𝜎(𝑥) = max(𝑥, 0) for 𝑥 ∈ R.

Architecture

A neural network architecture can be represented as a particular directed acyclic graph
𝐺 = (𝑉,𝐸). We denote a neuron by 𝜈 ∈ 𝑉 and a connection by 𝑒 = 𝜈 → 𝜇 ∈ 𝐸.
Each neuron 𝜈 belongs to a layer ℓ(𝜈) ∈ J0, 𝐿K.

∙ If ℓ(𝜈) = 0 then 𝜈 belongs to the input layer.

∙ If 0 < ℓ(𝜈) < 𝐿 then 𝜈 belongs to one of the 𝐿− 1 hidden layers.

∙ If ℓ(𝜈) = 𝐿 then 𝜈 belongs to the output layer.

𝐺 is such that two connected neurons necessarily belong to consecutive layers. We
denote 𝐻 ⊂ 𝑉 the set of all hidden neurons. Note that two neurons 𝜇 and 𝜈 in
consecutive layers may be connected or not. We denote the neurons of layer ℓ by
𝑁ℓ , {𝜈 | ℓ(𝜈) = ℓ}.

A full path 𝑝 is a sequence of connected neurons 𝑝 = (𝜈0, . . . , 𝜈𝐿) where 𝜈ℓ ∈ 𝑁ℓ,
0 ≤ ℓ ≤ 𝐿 and 𝜈ℓ−1 → 𝜈ℓ ∈ 𝐸 for 1 ≤ ℓ ≤ 𝐿. We say that a connection 𝑒 belongs
to 𝑝 = (𝜈0, . . . , 𝜈𝐿) if there exists ℓ such that 𝑒 = 𝜈ℓ−1 → 𝜈ℓ. We may write 𝑝 ∩ 𝐻
to denote the hidden neurons (𝜈1, . . . , 𝜈𝐿−1) belonging to the path 𝑝. We denote by
𝒫(𝐺) the set of all full paths connecting some input neuron to some output neuron.
We also define a partial path 𝑞 = (𝜈ℓ, . . . , 𝜈𝐿) as a sequence of connected neurons
between any hidden layer ℓ with 0 ≤ ℓ ≤ 𝐿 and the output layer. We finally denote
by path segment a sequence of connected neurons (𝜈ℓ, . . . , 𝜈ℓ′) where 0 ≤ ℓ ≤ 𝐿 and
0 ≤ ℓ′ ≤ 𝐿. We denote 𝒬(𝐺) the set of such partial paths and we have 𝒫(𝐺) ⊂ 𝒬(𝐺).
We may omit the dependency of the underlying graph 𝐺 when it is obvious and simply
write 𝒫 and 𝒬. We may simply denote full paths by paths when the context is clear.

For any neuron 𝜈, we define

prev(𝜈) , {𝜇 ∈ 𝑉 | 𝜇→ 𝜈 ∈ 𝐸}

next(𝜈) , {𝜇 ∈ 𝑉 | 𝜈 → 𝜇 ∈ 𝐸}

(1)

(2)
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and for a set of neurons 𝑉 , prev(𝑉 ) = ∪𝜈∈𝑉 prev(𝜈). We denote by Parents(𝜈) the
set of all parent neurons of 𝜈

Parents(𝜈) ,
⋃︁
ℓ

prevℓ({𝜈}) (3)

where prevℓ denotes the composition of the operator prev with itself. We similarly
define Children(𝜈) the set of all children neurons of 𝜈. We also introduce the notation
∙ → 𝜈 to denote any edge 𝑒 ∈ 𝐸 that has the form 𝜇→ 𝜈 for some 𝜇 ∈ prev(𝜈) and
similarly for the notation 𝜈 → ∙.

Weights and Biases

Throughout the manuscript, we will manipulate quantities involving the weights and
biases of the network, and find it cleaner to index them all using the connections of
the network or its neurons. The graph 𝐺 = (𝑉,𝐸) is valued with the weights of the
network. The weights can be represented:

∙ At the connection level by 𝑤𝑒 ∈ R with 𝑒 ∈ 𝐸;

∙ At the layer level by 𝑊 (ℓ) ∈ R𝑁ℓ−1×𝑁ℓ where 𝑊 (ℓ) = (𝑤𝜈→𝜇)𝜈,𝜇∈𝑁ℓ−1×𝑁ℓ
and

ℓ ∈ J1, 𝐿K;

∙ At the network level by 𝑤 ∈ R𝐸.

In order to define weights at the layer level, we write by convention 𝑤𝜈→𝜇 = 0 if
𝜈 → 𝜇 /∈ 𝐸. Besides, given a fixed architecture 𝐺, we allow the case where some
weights 𝑤𝑒, 𝑒 ∈ 𝐸 are zero. Similarly to the weights, the biases can be represented:

∙ At the neuron level by 𝑏𝜈 ∈ R for any hidden neuron 𝜈 ∈ 𝐻 ∪𝑁𝐿;

∙ At the layer level by 𝑏(ℓ) ∈ R𝑁ℓ where 𝑏(ℓ) = (𝑏𝜈)𝜈∈𝑁ℓ
and ℓ ∈ J1, 𝐿K;

∙ At the network level by 𝑏 ∈ R𝐻∪𝑁𝐿 .

We denote the global network parameterization by 𝜃 = (𝑤, 𝑏) and refer to elements
of 𝜃 as parameters of the network. Networks with at least one hidden layer are such
that 𝐿 ≥ 2. The case 𝐿 = 1 corresponds to a linear layer without any non-linearity.
Note that a network has 𝐿 affine layers and 𝐿 − 1 hidden layers. Finally, we define
useful support and sign sets as follows:

supp(𝑤) , {𝑒 ∈ 𝐸 | 𝑤𝑒 ̸= 0} ⊂ 𝐸

supp(𝑏) , {𝜈 ∈ 𝐻 ∩𝑁𝐿 | 𝑏𝜈 ̸= 0} ⊂ 𝐻 ∩𝑁𝐿

supp(𝜃) , supp(𝑤) ∪ supp(𝑏) ⊂ 𝐸 ∪ (𝐻 ∩𝑁𝐿)
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We further define the extended sign operator as follows. For 𝑥 ∈ R, sign(𝑥) = 1 if
𝑥 > 0, sign(𝑥) = 0 if 𝑥 = 0 and sign(𝑥) = −1 if 𝑥 < 0. When applied to a vector or
a matrix, sign is taken pointwise. We finally define

Sign𝑤 , {𝑤′ ∈ R𝐸 | sign(𝑤′) = sign(𝑤)}

Supp𝑤 , {𝑤′ ∈ R𝐸 | supp(𝑤′) ⊆ supp(𝑤)}

Similarly, we define Sign𝑏 and Supp𝑏 and denote Sign𝜃 , Sign𝑤× Sign𝑏 and we denote
Supp𝜃 , Supp𝑤× Supp𝑏

Function

We will also need to manipulate the output function or intermediary functions imple-
mented by the network. Let 𝐺 be a fixed architecture 𝐺 valued with 𝜃. Recall that
we denote by 𝜎 the ReLU non-linearity. We define:

∙ Layer-wise functions. A neural network can be recursively implemented using
intermediary row vector functions 𝑦(ℓ)(𝜃) : R𝑁0 → R𝑁ℓ for ℓ ∈ J0, 𝐿K. We define
𝑦(0)(𝜃, 𝑥) = 𝑥 and, for ℓ ∈ J1, 𝐿− 1K,

𝑦(ℓ)(𝜃, 𝑥) = 𝜎
(︁
𝑦(ℓ−1)(𝑥)𝑊 (ℓ) + 𝑏(ℓ)

)︁
. (4)

∙ Output functions. The function implemented by the whole network is

𝑦(𝐿)(𝜃, 𝑥) = 𝑦(𝐿−1)(𝜃, 𝑥)𝑊 (𝐿) + 𝑏(𝐿) (5)

i.e. the last layer is an affine function of the previous one. We use the notation
𝑅𝐺|𝜃 = 𝑦(𝐿)(𝜃) and we call 𝑅𝐺|𝜃 the realization of the network architecture
𝐺 given the parameters 𝜃. We write 𝑅𝐺|𝜃(𝑥) to denote the evaluation of the
defined function at any input 𝑥 ∈ R𝑁0 . When the dependency on the graph 𝐺

is obvious, we may simply write 𝑅𝜃 and 𝑅𝜃(𝑥). With a slight abuse of notation
and for the sake of clarity, we may also write 𝑅(𝜃, 𝑥).

∙ Neuron functions. Given a neuron 𝜈 belonging to layer ℓ, we denote the function
implemented by 𝜈 before the non-linearity as 𝑦𝜈(𝜃) : R𝑁0 → R such that

𝑦𝜈(𝜃) = 𝑦(ℓ)
𝜈 (𝜃). (6)

Given a fixed architecture 𝐺 valued with respective weights 𝜃 or 𝜃′, we say that 𝜃
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and 𝜃′ are functionally equivalent if the realizations 𝑅𝜃 and 𝑅𝜃′ are the same, i.e., if
for all 𝑥 ∈ 𝑅𝑁0 , 𝑅𝜃(𝑥) = 𝑅𝜃′(𝑥).

Useful Quantities

We denote the value of a full path by 𝑣𝑝(𝜃) = 𝑤𝜈0→𝜈1 . . . 𝑤𝜈𝐿−1→𝜈𝐿
and we define the

activation status of a full path 𝑝 given the parameters 𝜃 and the input 𝑥 as

𝑎𝑝(𝜃, 𝑥) ,
∏︁

𝜈∈𝑝∩𝐻
1(𝑦𝜈(𝜃, 𝑥) > 0). (7)

We naturally extend the notion of partial path value and the notion of partial path
activation status. As the value of a full or partial path only depends on the weights 𝑤
and not on the biases, we may write indifferently 𝑣𝑝(𝜃) or 𝑣𝑝(𝑤) for any full or partial
path. For any path segments 𝑞 = (𝜈ℓ, . . . , 𝜈ℓ′), 𝑞′ = (𝜇ℓ′ , . . . , 𝜇ℓ′′) such that 𝜈ℓ′ = 𝜇ℓ′ ,
we denote the concatenation of 𝑞 and 𝑞′ as 𝑞 + 𝑞′ = (𝜈ℓ, . . . , 𝜈ℓ′ , 𝜇ℓ′+1, . . . , 𝜇ℓ′′).

Algebraic Tools

We will rely on algebraic and geometric interpretation to understand the action of
rescaling operations on a parameterization 𝜃. To this end, we represent the mapping
between edges and paths by the linear operator P : R𝐸 → R𝒫 such that for every
connection 𝑒 ∈ 𝐸 and every path 𝑝 ∈ 𝒫 ,

(P𝛿𝑒)𝑝 ,

⎧⎨⎩1 if 𝑒 ∈ 𝑝

0 otherwise
(8)

where 𝛿𝑒 ∈ R𝐸 is the dirac vector for edge 𝑒. We denote by 𝒟(𝑁) the set of diagonal
matrices 𝐷 ∈ R𝑁×𝑁 such that, for all 𝑖, 𝑑𝑖 = 𝐷𝑖,𝑖 is strictly positive.

Admissible parameterizations

We say that the network parameterization 𝜃 = (𝑤, 𝑏) is admissible if, for every hidden
neuron 𝜈 ∈ 𝐻, there exists a full path 𝑝 ∈ 𝒫 going through 𝜈 such that 𝑣𝑝(𝜃) > 0.
Equivalently, every hidden neuron 𝜈 ∈ 𝐻 is connected to some input and some output
neuron through a path with non-zero weights. As the notion of admissibility only
depends on the weights 𝑤 and not on the biases 𝑏, we may indifferently mention an
admissible parameterization or admissible weights.
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Chapter 1

Introduction

Computer Science has shaped our modern society in a tremendous way, in part since
the seminal work of Alan Turing, who invented an abstract computer called the
Turing Machine in 1936. Since then, this concept has materialized in the form of
processors and chips with an extremely wide range of applications. In a fast-paced
search for performance, the building blocks of modern computers called transistors
have become smaller and smaller according to Moore’s law, which states that the
number of transistors on a chip doubles after a short, constant period of time1. Thanks
to this miniaturization, the ubiquity of interconnected portable computers, prophesied
by Silicon Valley entrepreneurs (Gates and Ottavino, 1995) or even by french writer
Marguerite Duras2 in 1985 is now a reality.

Such powerful and portable devices, including smartphones or virtual/augmented
reality headsets, constitute a fertile ground for a particular class of algorithms called
Deep Neural Networks (DNNs). These models are programmed to learn to perform
specific tasks – hence the name Deep Learning – and belong to the more general field
of Artificial Intelligence, also pioneered by Turing3. While DNNs are increasingly
powerful for detecting persons in images or understanding and translating speech or
text for instance, they still lack efficiency in terms of size and speed.

Hence, after the miniaturization of the computers themselves, the miniaturization
or compression of DNNs is now a key challenge to deploy them on-device and in real

1Every 18 or 24 months according to a majority of the estimates. However, it is uncertain that
this empirical law will hold in the future: with a characteristic scale of 5 nanometers of 2020 down to
3 and 2 nanometers in the next years, the transistors are now so small that they begin to experience
quantum tunneling effects perturbing their functioning.

2https://www.ina.fr/video/I04275518, television interview in French by Michel Drucker.
3The Turing Award, usually considered as the highest distinction in Computer Science, was

awarded to Yoshua Bengio, Geoffrey Hinton, and Yann LeCun in 2018 for their “conceptual and
engineering breakthroughs that have made deep neural networks a critical component of computing”.
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time. It would offload the servers that currently run such models, reduce the latency
and promote more privacy since personal data would be analyzed directly on-device.
This is particularly relevant after the European Union’s new data privacy and security
law entered into force in 2016, the General Data Protection Regulation (GDPR)4.

In this Chapter, we first detail the general topics of efficiency and redundancy in
deep learning and the underlying reasons motivating our work in Section 1.1. We then
briefly summarize the interesting challenges that the Deep Learning community is
facing on these areas in Section 1.2 and finally detail our contributions, both academic
and product-oriented and the general organization of the manuscript in Section 1.3.

1.1 Motivation

We summarize here the main reasons that conducted us to study the redundancy and
efficiency of Neural Networks both theoretically and in practice.

The Deep Learning Revolution. Following pioneering work by Rumelhart et al.
(1986), LeCun et al. (1989) or (LeCun et al., 1998b), the inception of AlexNet by
Krizhevsky et al. (2012) marked a turning point in the development of Deep Learn-
ing. Back in 2012, a heavy neural network, trained with stochastic gradient descent
(SGD) and properly regularized, surpassed all existing methods by a large margin
on the ImageNet competition (Deng et al., 2009). Since then, the concept of “Ima-
geNet moment” was transposed to various domains where Deep Learning percolated
with an unreasonable effectiveness, from Natural Language Processing (Ruder, 2019)
a few years ago to protein folding as we write these lines (Jumper et al., 2020).
Strong empirical evidence of deep learning approaches was also shown for extremely
various tasks such as symbolic mathematics (Lample and Charton, 2019), fast MRI
reconstruction (Zbontar et al., 2018) or quantum physics (Schütt et al., 2017).

Bigger, Hence Better Models. Fueled by this tremendous success on numerous
tasks, a fast-paced search for performance is occurring in the research community.
Since one straightforward way to improve expressivity – hence performance – is to
act on depth by stacking more layers (Telgarsky, 2016; Raghu et al., 2017), researchers
are considering the biggest possible networks they can train (Simonyan and Zisserman,
2014; He et al., 2015b), now up to 175 billion parameters (Rajbhandari et al., 2020;

4https://gdpr-info.eu/. It is a substantial update of the European Data Protection Directive
passed in 1995 by the EU.
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Rasley et al., 2020; Brown et al., 2020). Training such networks requires huge amounts
of data (labelled or not), energy and performant distributed computing infrastructure
relying on GPGPUs or TPUs5.

Redundancy and Efficiency in Deep Learning Models. Then, as the research
community produces bigger networks, the question of their redundancy and efficiency
naturally arises in order to manipulate such networks more easily. Roughly speaking,
redundancy6 refers to a certain structure in the parameters of a neural network where
some weights or groups of weights carry similar information (LeCun et al., 1990; Denil
et al., 2013). On the other hand, efficiency7 refers to Pareto efficiency (Fudenberg
and Tirole, 1991) of a model given set of metrics8, traditionally in terms of model size,
model accuracy and inference time (Wang et al., 2018a). Thus, studying redundancy
in deep learning models may help improve their efficiency, at least on the model size
axis. Note that various setups – especially in terms of hardware – and constraints on
these metrics may lead to distinct Pareto optima.

Making the Best Models Available to Everyone. Studying redundancy in
deep learning to produce more efficient models is thus crucial for deploying the best
models both on servers and on mobile devices. On the server side, the objective is to
produce more parsimonious models in terms of parameters (Radosavovic et al., 2020;
Tan and Le, 2019) or training data (Touvron et al., 2020), which may lead to a faster
training time9 , energy savings, or help consider even bigger models to train. On the
mobile side, deploying models on embedded devices such as smartphones, autonomous
vehicles or virtual/augmented reality headsets10 opens up to numerous applications.
Having such models on-device instead of performing the inference on a remote server
reduces the latency and the network congestion, works offline and is compatible with
privacy-preserving machine learning where the data stays on the user’s device (Knott
et al., 2020), at the cost of exposing the embedded model to various attacks. It
also enables federated learning (Konečný et al., 2017) where a centralized model is
trained while training data remains distributed over a large number of client devices
with unreliable network connections.

5Respectively General Purpose Graphics Processing Units and Tensor Processing Units.
6More details in Sections 2.1 and 2.2.
7More details in Section 2.3.
8Such metrics are not independent: larger models are generally more accurate but slower.
9For instance, AlphaGo (Silver et al., 2017) took 40 days to train on a vast infrastructure.

10Such as Oculus Quest 2 for VR (Virtual Reality) or HoloLens 2 for AR (Augmented Reality).
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1.2 Challenges

Redundancy is intimately related to the concept of over-parameterization, which is a
key characteristic of modern neural networks (Srivastava et al., 2014) – see Subsection
2.1.1 for definitions and discussions. Over-parameterized networks have a high ability
to fit training data, yet they are challenging to train, they are difficult to comprehend
from a theoretical point of view and they pose significant hurdles to real-time appli-
cations on embedded devices. We briefly summarize these challenges in this Section
and refer the reader to Chapter 2 for a more extensive discussion.

Theoretical Considerations on Redundancy. Parameter redundancy of deep
learning models is a well-known fact (Denil et al., 2013) and has clear drawbacks –
first and foremost, the model size. However, reducing this redundancy is challenging
and indirectly provides hints on the benefits of redundant, over-parameterized models.
At training time, researchers study the interplay between over-parameterization and
SGD (Li and Liang, 2018; Sankararaman et al., 2019) to help mitigate overfitting.
Taking advantage of this redundancy may lead to more efficient or performant training
procedures. For instance, grouping networks that behave similarly and implicitly
performing SGD in a reduced or quotiented space may help, see Chapters 3 and 4.

Redundancy in Practice for Efficient DNNs. While training happens once,
the trained model is subsequently used numerous times for inference. For instance,
at Facebook, deep learning models analyze trillions of bits of content per day. Then,
the challenge is to compress the network – or more generally, to make it more efficient
– without losing too much predictive performance or accuracy, sometimes referred to
as the size/accuracy tradeoff, see Chapters 5 and 6. Another challenge is to select the
best compression algorithm – or combination thereof – among a large set of methods
that are not entirely orthogonal, given a target size/accuracy tradeoff. For instance,
is it better to compress a large, high-performing network instead of a mobile-efficient
architecture that is smaller but has a slightly degraded predictive performance?

On-device and Real Time Deployment. While less redundant networks are
generally faster at inference, redundancy is only a part of the story. Indeed, compres-
sion algorithms with an excellent compression ratio could necessitate to decompress
the network before inference instead of performing the prediction in the compressed
domain. Hence, a good compression algorithm also depends on the task and hardware
constraints – generally, inference has to be performed in real-time without draining
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the battery and overloading the RAM11, see Chapter 7. This involves low-level con-
siderations on the type of hardware used for inference, see Subsection 2.3.6 for details.

1.3 Contributions

We detail the general organization of the manuscript and then enumerate our aca-
demic contributions as well as the applications and technology transfers derived di-
rectly from our published papers.

1.3.1 Outline

We present here our contributions in ascending order of applicability, measured as
the closeness to production. We first start by presenting theoretical contributions on
functional equivalence classes, then explore the compression of deep learning models
down to the on-device deployment of such efficient models.

Equivalence Classes of Neural Networks. In Chapter 3, we study functional
equivalence classes of ReLU neural networks. We first show that such classes contain
orbits generated by the action of rescalings and permutations of hidden neurons for
networks with arbitrary depth. We then characterize functional equivalence classes
for one-hidden-layer networks under some non-degeneracy conditions and investigate
the case with many hidden layers by designing algebraic tools to study the problem
locally. Leveraging these theoretical considerations, we develop an alternative to the
Stochastic Gradient Descent (SGD) algorithm in Chapter 4. Our variant, called Equi-
Normalization or ENorm, alternates between standard SGD steps and balancing steps
amounting to change the representant of the current functional equivalence class by
selecting the one that minimizes a given energy function. Balancing steps preserve the
output – hence the accuracy – of the network by definition but modify the gradients
of the next SGD step, hence the learning trajectory. In other words, ENorm takes
advantage of the redundancy in the parameter space by operating the optimization
in the quotient space induced by the functional equivalence relation.

Neural Network Compression. Studying the redundancy of the network’s pa-
rameters in the first part of the thesis naturally leads to the question of the efficiency

11Random Access Memory or RAM is generally used to rapidly store and retrieve working data.
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of such networks, hence to the question of their compression. In Chapter 5, we de-
velop a novel method, called Iterative Product Quantization or iPQ, that relies on
vector quantization in order to drastically reduce the size of a network while almost
preserving its accuracy. The proposed approach iteratively quantizes the layers and
then finetunes them. The quantization step is performed by splitting the layer’s
weight matrix into a set of vectors that are clustered into a common codebook. In
order to boost the obtained size/accuracy tradeoffs, we develop a pre-conditioning
method that injects carefully selected quantization noise when training the network
before its compression. The method, called Quant-Noise, is described in Chapter 6
and has proven to be effective for both iPQ and for traditional scalar quantization
such as int8 or int4. Quant-Noise is effective for a variety of tasks and quantization
methods and thus reconciles pre-training for both scalar and vector quantization.

Ultra-Low Bandwidth Generative Video Chat. While the compressed size
of the network is a significant indicator of the quality of the quantization, other
metrics such as inference time and battery usage are also relevant, especially for on-
device, real time applications. Hence, we investigated potential applications for iPQ
and Quant-Noise. Among them, we design a method, called FaceGen, to perform
ultra-low bandwidth video chats in Chapter 7. FaceGen streams compressed facial
landmarks from the sender’s phone to the receiver, and uses a generative adversarial
network to reconstruct the sender’s face based on the stream of landmarks plus one
identity embedding sent once at the beginning of the call. The stream of landmarks
is compressed to less than 10 kbits/s, and the networks are quantized to a total size
of less than 2 MB and run at 20+ frames per second on an iPhone 8.

1.3.2 Publications

The work presented in this manuscript was also published in the following papers,
that were written during the thesis.

∙ Pierre Stock, Benjamin Graham, Rémi Gribonval and Hervé Jégou. Equi-
normalization of Neural Networks. Published at ICLR 2019 (Stock et al.,
2019a). Source code: https://github.com/facebookresearch/enorm.

∙ Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham and Hervé
Jégou. And the Bit Goes Down: Revisiting the Quantization of Neural Net-
works. Published at ICLR 2020 (Stock et al., 2019b). Source code: https:
//github.com/facebookresearch/kill-the-bits.
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∙ Pierre Stock*, Angela Fan*, Benjamin Graham, Edouard Grave, Rémi Gribon-
val, Hervé Jégou and Armand Joulin. Training with Quantization Noise for Ex-
treme Model Compression. Published at ICLR 2021 (Stock et al., 2020). Source
code: https://github.com/pytorch/fairseq/tree/master/examples/quant_
noise

∙ Maxime Oquab*, Pierre Stock*, Oran Gafni, Daniel Haziza, Tao Xu, Peizhao
Zhang, Onur Celebi, Yana Hasson, Patrick Labatut, Bobo Bose-Kolanu, Thibault
Peyronel, Camille Couprie. Low Bandwidth Video-Chat Compression using
Deep Generative Models. Under review, 2021 (Oquab et al., 2020).

The following paper was written during an internship at Facebook AI Research
and will not be discussed in this manuscript.

∙ Pierre Stock, Moustapha Cisse. ConvNets and ImageNet Beyond Accuracy:
Explanations, Bias Detection, Adversarial Examples and Model Criticism. Pub-
lished at ECCV 2018 (Stock and Cisse, 2018).

1.3.3 Technology Transfers

The research presented in this manuscript led to various technology transfers, which
are briefly summarized here. Seeking for internal applications and collaborations and
delivering product impact was the main focus of the last year of my PhD.

∙ The iPQ technique described in Chapter 5 is currently used to design fast CPU
kernels for quantized models for both server side and mobile side, relying on the
fbgemm12 library for quantized matrix multiplication.

∙ The pre-conditioning technique Quant-Noise (Chapter 6) was used to deploy a
quantized int8 model for internal dogfooding. The model aims at detecting
harmful content in conversations on-device on real time.

∙ The low-bandwidth generative video chat method described in Chapter 7 is cur-
rently under productionization and led to a US patent application P201451US00.

12https://engineering.fb.com/2018/11/07/ml-applications/fbgemm/
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Chapter 2

Related Work

In this Chapter, we review the lines of work addressing the question of parameter
redundancy and efficiency in Deep Learning. In Section 2.1, we first discuss the ben-
efits of depth for neural networks in terms of expressivity and capacity to fit training
data. We enumerate the main practical training challenges along with the methods
and tools to mitigate them, in particular in terms of normalization layers. This line of
work is related to our contribution in Chapter 4, where we re-normalize the network’s
weights after each training step while preserving the function implemented by the
network. Then, we review the theoretical studies aiming at characterizing functional
equivalence classes of neural networks in Section 2.2. Such equivalence classes allow
to aggregate networks that behave identically to only manipulate one representant
per class, thus effectively operating in the quotient space. This work is related to
our contribution detailed in Chapter 3 and shows that under some assumptions, the
equivalence classes only encompass permutations and rescalings of neurons (see 2.2.1).
Finally, we study network compression in Section 2.3. We review the methods aiming
at reducing the redundancy in the set of the network’s parameters while maintaining
a competitive accuracy and inference speed, in particular scalar and vector quantiza-
tion. This section is related to our contributions on Iterative Product Quantization
and Quantization Noise that are detailed in Chapters 5 and 6. More specifically,
the subsection about on-device deployment is related to our Ultra-low Bandwidth
Generative Video Chat contribution detailed in Chapter 7.
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2.1 Over-Parameterization: a Double-Edged Sword

The inception of AlexNet (Krizhevsky et al., 2012) demonstrated that a deep neural
network surpassed existing computer vision techniques by a good margin1 on the Im-
ageNet classification task (Deng et al., 2009). This success is conditioned on proper
training techniques, the availability of large datasets, as well as huge computing ca-
pabilities. Since then, a part of the research community has focused on scaling the
architectures, the datasets and the training techniques in the search of better per-
formance (Brown et al., 2020). This fast-paced practical search for deeper networks,
followed by a more theoretical analysis of the benefits of depth, is reviewed in Subsec-
tion 2.1.1. Then, we briefly enumerate the training challenges posed by such networks
in Subsection 2.1.2 along with the tools to mitigate them in Subsection 2.1.3, including
various normalization layers. Subsections 2.1.1 and 2.1.2 do not aim to be exhaustive
but act rather as motivating illustrations for the remainder of this chapter.

2.1.1 With Greater Depth Comes Greater Expressivity

We briefly review and discuss the notion of over-parameterization, followed by a more
theoretical analysis of the benefits of depth in terms of expressivity. Here, we do not
aim at a comprehensive review but rather focus on a few illustrative examples.

Over-parameterization

Over-parameterized networks are primarily characterized by their large number of
parameters2 with respect to the number of training samples in the Deep Learning
literature (Sagun et al., 2018; Allen-Zhu et al., 2019; Li and Liang, 2018). For in-
stance, AlexNet has 60 million parameters, which is an order of magnitude larger
than 1.2 million train images of ImageNet (Deng et al., 2009). Note that a more
rigorous definition would take into account various factors such as the sample size3,
the architecture 𝐺 or even the data itself (Sagun et al., 2018).

Next, we briefly focus on a few illustrative examples acknowledging the parameter
redundancy in neural networks in practice. First, the fact that some parameters can

1The ILSVRC-2012 test top-5 error rate was 15.3% for AlexNet compared to 26.2% for the second
best entry of the competition.

2The number of parameters of a neural network with architecture 𝐺 is the number of connections
in 𝐺 (except for the biases). Sometimes authors consider the number of neurons rather than the
number of connections (Gribonval et al., 2019).

3Fitting 𝑁 training samples in a low dimension input space would require less parameters than
fitting 𝑁 training images of standard size 3× 224× 224 for instance.
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be deleted or pruned without harming the accuracy is well-known (LeCun et al., 1990),
as discussed in Subsection 2.3.1. More recently, Denil et al. (2013) demonstrate that
there is a significant redundancy in the network parameters of several deep learning
models by accurately predicting 95% of the parameters based only on the remaining
5%, with a minor drop in accuracy. The motivation behind this technique is the
fact that the first layer features of a convolutional neural network trained in natural
images (e.g. ImageNet (Deng et al., 2009)) tend to be locally smooth with local edge
features, similar to local Gabor filters4. Given this structure, representing the value
of each pixel separately is redundant as the value of one pixel is highly correlated with
its neighbors. Denil et al. (2013) propose to take advantage of this type of structure
to factor the weight matrix. Similar approaches that learn a basis of low-rank filters
are explored by Jaderberg et al. (2014).

Depth and Expressivity

The relation between the network’s depth and its expressivity is widely studied (Pas-
canu et al., 2013; Montúfar et al., 2014; Eldan and Shamir, 2015; Telgarsky, 2016;
Raghu et al., 2017; Gribonval et al., 2019). For instance, Montúfar et al. (2014) study
the number of linear regions defined by a given architecture. As defined more for-
mally in Subsection 2.2.2 in the case of ReLU networks, linear regions are the areas
of the input space on which the gradient of the function implemented by the network
∇𝑥𝑅𝜃 is constant. The number of linear regions is connected to the complexity of the
function implemented by the network: more linear regions means that the network
is able to fit more complex training data. The authors derive a lower bound on the
maximal number of linear regions and show in particular that, for architectures with
fixed widths, the maximal number of linear regions – hence the expressivity of the
network – grows exponentially in the number of layers.

While the expressivity of a network somehow grows exponentially with its depth,
another approach to obtain a network with the same number of parameters is to
increase its width when keeping the number of layers fixed. This strategy generally
results in less expressive networks, as shown by Eldan and Shamir (2015). The authors
exhibit a simple radial function 𝜙 in R𝑑 that is implementable by a two-hidden-layer
network but cannot be tightly approximated by any one-hidden-layer network, unless
its width grows exponentially in the input dimension 𝑑. The authors conclude that
“depth can be exponentially more valuable than width” for feedforward networks.

4See Figure 10 of Krizhevsky et al. (2012).
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Figure 2-1: The double-descent phenomenon in Deep Learning as illustrated by Nakki-
ran et al. (2019). Here the complexity of the considered model (a ResNet-18) is mea-
sured as its width parameter, where higher width denotes a network with a larger
number of parameters.

2.1.2 Deeper Networks Present Harder Training Challenges

In this Subsection, we briefly review the main training challenges of neural networks
that arise as the networks go deeper in the search for more and more expressivity,
as mentioned in Subsection 2.1.1. We refer the reader to the cited work below for a
more exhaustive overview.

Overfitting

Overfitting is traditionally approached in Machine Learning through the Bias-Variance
trade-off, as explained for instance by Hastie et al. (2009). According to this prin-
ciple, as the model complexity – measured with its number of parameters or with
more elaborate tools such as the VC dimension (Vapnik, 1998) or the Rademacher
complexity (Bartlett and Mendelson, 2003) – increases, the training error decreases
while the test error follows a U-shaped curve. Models with low complexity underfit
and suffer from high bias whereas models with high complexity exhibit a high vari-
ance, suggesting that an intermediate model complexity reaches the optimal trade-off.
However, recent work by Belkin et al. (2018), followed by Nakkiran et al. (2019); Mei
and Montanari (2019); d’Ascoli et al. (2020) uncovered a double-descent behavior for
deep learning models. After a critical regime, the test error goes down again as illus-
trated in Figure 2-1. This finding is consistent across architectures, optimizers and
tasks (Nakkiran et al., 2019), suggesting, as found in practice, that deeper models
and more data lead to better performance (Krizhevsky et al., 2012).

As stated before, given a fixed training dataset, overfitting is traditionally mea-
sured using the number of parameters of the considered model. In the search for
more elaborate model complexity measures, Zhang et al. (2016) propose a protocol
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Figure 2-2: Fitting random labels and random pixels on CIFAR10 as illustrated by
Zhang et al. (2016).

for understanding the effective capacity of machine learning models. The authors
train several architectures on a copy of the training data where either (1) the orig-
inal labels were replaced by random labels; or (2) the pixels were shuffled; or (3)
the pixels were drawn randomly from gaussian noise. They observe that the train-
ing error goes down to zero provided that the number of epochs is large enough, as
depicted in Figure 2-2, and conclude that “deep neural networks easily fit random
labels”. Or course, if the amount of randomization is larger, the time taken to overfit
is longer. Such work paves the way for more formal complexity measures to explain
the generalization ability of neural networks.

Vanishing and Exploding Gradients

In the 90’s, feedforward neural networks – convolutional or fully connected – were
a few layers deep (LeCun et al., 1989) and were trained through back-propagation.
However, Bengio et al. (1994) reported difficulties to train recurrent networks in order
to learn long-term dependencies – for instance in a sequence of words. The principle
of recurrent networks is to apply the same weight matrix iteratively on the input
sequence while updating a hidden state. Recurrent networks are usually trained with
back-propagation through time (BPTT, Williams and Zipser (1995); Rumelhart et al.
(1986); Werbos (1988)), where the network is unfolded for a fixed sequence length and
trained using standard back-propagation. When working on an improved version of
recurrent networks named LSTMs (Long Short-Term Memory networks, Hochreiter
and Schmidhuber (1997)), Hochreiter and Bengio (2001) identify two undesirable
behaviors of the gradients flowing backward in time: such gradients either blow up
or vanish, resulting in training instabilities.
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As feedforward networks went deeper, similar vanishing or exploding gradient
problems arise Mishkin and Matas (2016) He et al. (2015c). Such training instabili-
ties were related in part to the magnitude of the weights. The research community
proposed tools to mitigate this undesirable training behavior as explained in Subsec-
tion 2.1.3. Failure modes preventing the training from properly starting were also
theoretically studied by Hanin (2018).

2.1.3 The Deep Learning Training Toolbox

The training challenges of deep neural networks mentioned in Subsection 2.1.2 are
overcome by various methods designed along the years. We briefly enumerate the
main strategies that constitute the toolbox of every researcher and practitioner, in
particular in terms of normalization layers. This line of work is related to our contri-
bution detailed in Chapter 4.

Initialization Schemes

Properly initializing the weights of a neural network before training it alleviates the
vanishing or exploding gradient problem in the first training iterations and allows
stochastic gradient descent algorithms to find a suitable minimum, starting from this
initialization. By studying the distribution of activations and gradients, Glorot and
Bengio (2010) designed an initialization scheme to preserve the variance of activations
and gradients across layers for networks with symmetrical activation functions like the
sigmoid or the hyperbolic tangent. Following this idea, (Mishkin and Matas, 2016)
and He et al. (2015c) designed initialization schemes for networks with Rectified
Linear Units (ReLUs). This leads to a popular weight initialization technique

𝑊 ℓ ∼ 𝒩
(︂

0,
√︁

2/𝑁ℓ−1

)︂

where 𝑁ℓ−1 is the number of input features5. Finally, failure modes that prevent the
training from starting have been theoretically studied by Hanin and Rolnick (2018).

Data Augmentation

Data augmentation is widely used to easily generate additional data to improve ma-
chine learning systems in various areas (Krizhevsky et al., 2012; Huang et al., 2016;
Wu et al., 2019c) and to reduce overfitting. Traditionally, for object classification, at

5For convolutions, 𝑁ℓ−1 = 𝐾2𝐶 where 𝐾 is the kernel size and 𝐶 the number of input channels.
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training time, a random resized crop6 is applied to the image which is then flipped
horizontally with a probability 0.5. Since then, many more augmentation techniques
were designed. For instance, Zhang et al. (2017a) train a network on convex combina-
tions of pairs of examples and their labels, while (Cubuk et al., 2018) automatically
search for improved data augmentation policies with a method called AutoAugment.
We refer the reader to Cubuk et al. (2019) for a survey of data augmentation tech-
niques. On a side note, the random resized crops used at training time involve a
rescaling of the input image, in contrast to the center crops used at test time. Thus,
the network is generally presented with larger objects at training time than at test
time. This train-test resolution discrepancy is addressed by (Touvron et al., 2019)
with a method called FixResNets.

Architectures

As networks are getting deeper, two major architectural changes are introduced to
prevent the gradients to vanish. Rectified Linear Units (ReLUs) defined as 𝜎(𝑥) =
max(0, 𝑥) are applied pointwise on the activations. Krizhevsky et al. (2012) were
among the first to successfully employ such non-saturating activation functions to
Convolutional Neural Networks, as opposed to traditional saturating functions like the
sigmoid. Moreover, to allow the information to flow better up and down the network,
He et al. (2015a) introduced skip-connections between blocks. More formally, if 𝑓 is a
building block7, adding a skip connection amounts to output 𝑓(𝑥) +𝑥 after the block
instead of 𝑓(𝑥) for any input activation 𝑥. Skip connections are now ubiquitous in
deep learning architectures such as the Transformers in NLP (Vaswani et al., 2017).

Optimization

Neural networks are originally trained with Stochastic Gradient Descent (SGD)8,
generally with momentum LeCun et al. (1989). Denoting 𝜃𝑡 the parameters at time
step 𝑡 and ℒ the loss function, one possible set of equations for SGD writes9:⎧⎨⎩𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑣𝑡+1

𝑣𝑡+1 = 𝜇𝑣𝑡 +∇𝜃ℒ

6The input image is cropped with a random size and a random aspect ratio, and finally resized
to the input size.

7For instance, two convolutions interleaved with one ReLU.
8Iterating over mini-batches of data, not single elements of the train set.
9There is also a Nesterov version (Nesterov, 1983) as well as the possibility to apply the learning

rate directly to the gradient term ∇𝜃ℒ instead of the velocity term 𝑣𝑡+1.
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where 𝜂 is the learning rate and 𝜇 the momentum coefficient, generally set to 0.9.
This remains the main training recipe for Image Classification problems (Goyal et al.,
2017; Wu and He, 2018). The learning rate is generally following a schedule, meaning
that 𝜂 = 𝜂𝑡 depends on the current epoch or iteration. A classical schedule starts
with a warm-up phase followed by a decay phase10 (He et al., 2015a). Interestingly,
the cosine schedule is gaining traction both in Vision and in NLP (Radosavovic et al.,
2020). However, choosing a proper learning rate along with its schedule is expensive.
Therefore, Duchi et al. (2011) designed a first-order gradient method named Adagrad
that accounts for the anisotropic relation between the network’s parameters and the
loss function. More precisely, given a default learning rate 𝜂0 usually set to 0.01 and
a small constant for numerical stability 𝜀,⎧⎪⎪⎨⎪⎪⎩

𝑤𝑒,𝑡+1 = 𝑤𝑒,𝑡 −
𝜂0√

𝑔𝑒,𝑡+1 + 𝜀
∇𝑤𝑒ℒ

𝑔2
𝑒,𝑡+1 = 𝑔2

𝑒,𝑡 + (∇𝑤𝑒ℒ)2 .

In other words, each weight 𝑤𝑒 is updated with an adaptive learning rate that de-
pends on the sum of the past gradients with respect to this weight. Other adaptive
algorithms were derived, or instance by Kingma and Ba (2014) which proposed a vari-
ant called Adam, frequently used in NLP. Intuitively, whereas SGD with momentum
can be seen as a ball running down a surface, Adam behaves like a heavy ball with
friction. For information about second-order methods or convergency considerations,
we refer the reader to the manuscript by Bottou et al. (2016).

Weight Decay

Weight decay is a regularization method that is widely used in Deep Learning (Krogh
and Hertz, 1992). It adds a penalty term to the traditional loss, for instance the
cross-entropy loss 𝒞 in image classification. The training loss writes

ℒ = 𝒞 + 𝜆‖𝜃‖2
2

where 𝜃 is the network’s parameters (weights and biases) and 𝜆 an hyper-parameter
to cross-validate11. Weight decay is well suited for SGD as it amounts to add a term
2𝜆𝜃 to the gradients computed by back-propagation.

10For instance, given a default value 𝜂0, use the learning rate 𝜂0/10 during the first 5 epochs
(warm-up). Then, set the learning rate back to 𝜂0 and decay it a factor 10 every 30 epochs (decay).

11Generally, 𝜆 = 10−4 or 10−5.

34



Figure 2-3: The effect of various normalization layers as illlustrated by Wu and He
(2018). 𝑁 denotes the batch size, 𝐶 the channel dimension and 𝐻 and 𝑊 the spatial
axes. The colored pixels are normalized with the same mean and standard deviation.

Dropout

Dropout (Hinton et al., 2012b) is a technique that randomly drops neurons12, weights
or more important structures (Ghiasi et al., 2018) during training time with a fixed
small probability 𝑝13. This prevents the network from overfitting given the large
variety of internal states it has to operate on. Dropout serves other purposes, for
example, it helps pruning entire layers at test time (Fan et al., 2019) and is also
related to our Quant-Noise contribution in Chapter 6.

Normalization Layers

Normalization procedures take an important part in the development of neural net-
works. While the inputs are almost always preprocessed14 (LeCun et al., 1989),
researchers began to normalize inner features as the networks were deeper. After
successful attempts on whitening or local response normalization (Krizhevsky et al.,
2012), Batch Normalization (BN) (Ioffe and Szegedy, 2015) is now a standard nor-
malization layer. Let us detail BN in the context of computer vision. Denote the
activations after some layer ℓ in the network by 𝑥 ∈ R𝑁×𝐶×𝐻×𝑊 , where 𝑁 is the
batch size, 𝐶 the number of channels, 𝐻 and 𝑊 the respective height and width
of the activations, sometimes called spatial dimensions. For instance, an input im-
age generally has shape 1 × 3 × 224 × 224 for three color channels (RGB) and a
size of 224 × 224. For simplicity, we often flatten the last two dimensions so that
𝑥 ∈ R𝑁×𝐶×𝐻𝑊 as depicted in Figure 2-3.

12When dropping a neuron 𝜈 ∈ 𝐻 during a training iteration, we set 𝑤∙→𝜈 = 0 and 𝑤𝜈→∙ = 0
and we do not update 𝑤∙→𝜈 = 0 and 𝑤𝜈→∙ during the backward pass. In other words, we detach
all the incoming and outcoming connections of 𝜈 from the forward and backward passes.

13Generally 𝑝 ∈ [0.1, 0.3].
14For images, per-channel normalization of the pixel values within [−1, 1] is a standard technique.
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First, BN normalizes 𝑥 per-channel into ̂︀𝑥. More formally, denoting 𝑐 ∈ J1, 𝐶K a
given channel, we have

̂︀𝑥[:, 𝑐, :, :] = 𝑥[:, 𝑐, :, :]− 𝜇𝑐√︁
𝜎2
𝑐 + 𝜀

where 𝜀 is a small constant for numerical stability and where 𝜇𝑐 and 𝜎𝑐 are the sample
mean and (biased) standard deviation defined as

𝜇𝑐 = 1
𝑁𝐻𝑊

∑︁
𝑛,ℎ,𝑤

𝑥[𝑛, 𝑐, ℎ, 𝑤]

𝜎2
𝑐 = 1

𝑁𝐻𝑊

∑︁
𝑛,ℎ,𝑤

(𝑥[𝑛, 𝑐, ℎ, 𝑤]− 𝜇𝑐)2

Second, the BN layer learns an affine transform of ̂︀𝑥 on the channel dimension:

𝑦 = 𝛾̂︀𝑥+ 𝛽

where 𝛾 and 𝛽 are learnt parameters of size 𝐶. More formally, for any batch, channel
and spatial indexes 𝑛, 𝑐, ℎ, 𝑤, we have

𝑦𝑛,𝑐,ℎ,𝑤 = 𝛾𝑐̂︀𝑥𝑛,𝑐,ℎ,𝑤 + 𝛽𝑐. (2.1)

Since the normalization statistics 𝜇𝑐 and 𝜎𝑐 depend on the batch, at test time BN
is switched to evaluation mode and uses fixed statistics 𝜇𝑐 and 𝜎𝑐 that are estimated
with an exponential moving average of 𝜇𝑐 and 𝜎𝑐 during training time. Thus, at test
time, BN is an affine layer.

While extremely effective in standard setups, Batch Normalization suffers from
known shortcomings. In particular, BN only works well with sufficiently large batch
sizes (Ioffe and Szegedy, 2015; Wu and He, 2018). For batch sizes below 16 or 32, the
batch statistics 𝜇𝑐 and 𝜎𝑐 have a high variance and the test error increases significantly.
Since then, variants of this technique such as Layer, Instance or Group Normalization
(Ba et al., 2016; Ulyanov et al., 2017; Wu and He, 2018) were successfully introduced
to circumvent the batch dependency, see Figure 2-3 for an illustration. For instance,
Transformers (Vaswani et al., 2017) rely on Layer Normalization whereas Generative
Adversarial Networks (GANs) use other variants such as the SPADE block (Park
et al., 2019). This line of work is related to our Equi-normalization contribution
in Chapter 4 where we re-normalize the weights – not the activations – in order to
minimize the global 𝐿2 norm of the network to ease the training.
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Hyperparameter Tuning

One of the main difficulties of neural network training lies in finding the proper set of
hyperparameter values15 in the high-dimensional space of all the possible aforemen-
tioned techniques. For instance, Lample et al. (2017) found it extremely beneficial
to add a dropout rate of 0.3 in some part of their architecture and Carion et al.
(2020) underline the crucial importance of having two different learning rates for
the two main components of their architecture. While the traditional cartesian grid
search remains the main investigation tool, it requires a lot of computing power. For
instance, with some PhD colleagues, we estimated that the energy consumed on av-
erage to produce one deep learning article has the same order of magnitude as the
energy required to heat an average household during one year. Some more efficient
techniques were developed, such as the gradient-free optimization platform Nevergrad
(Rapin and Teytaud, 2018).

2.2 Equivalence Classes of Neural Networks

As demonstrated in Section 2.1, appropriate training techniques allow to train deeper
and deeper networks in a fast-paced search for performance. Such networks are
constructed by stacking elementary layers or more complex building blocks, which
amounts to iterative function composition. For instance, the deepest ResNets (He
et al., 2015a) have more than 100 layers. Although single-hidden-layer networks are
well understood in terms of capacity to approximate functions presenting certain reg-
ularity properties16 (Cybenko, 1989; Hornik, 1991), deeper networks remain difficult
to comprehend despite numerous fructuous attempts (Eldan and Shamir, 2015; Co-
hen and Shashua, 2016). For instance, Mhaskar and Poggio (2016) prove matching
direct and converse approximation theorems of complexity measurement for Gaussian
Networks but not for ReLU networks17. In this section, we review theoretical studies

15This traditionally includes the learning rate and learning rate schedule, the optimizer, the mo-
mentum, the weight decay, the batch size or the dropout rate to name a few.

16A known result, proved independently by Cybenko (1989); Hornik (1991) states that networks
with a single hidden layer with the sigmoid non-linearity can approximate with arbitrary precision
any compactly supported continuous function. This result is known as the “Universal Approximation
Property” and was extended to ReLU non-linearities for instance (Leshno et al., 1993).

17A Gaussian network has 𝑥 ↦→ exp(−𝑥2) as activation function. The claim states as follows. (1)
For a function 𝑓 with a given smoothness, there exists a gaussian network 𝑔 that approximates 𝑓 ,
the quality of the approximation being controlled by a complexity measure of 𝑔. (2) Reciprocally,
if any function 𝑓 is approximated by a gaussian network 𝑔 of given complexity, then the speed at
which the approximation error decreases with respect to the complexity of 𝑔 provides information
about the smoothness of 𝑓 .
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studying deep networks under the light of their functional equivalence classes (Suss-
mann, 1992; Fefferman, 1994). For ReLU networks, functional equivalence classes are
usually described in the parameter domain using so-called permutation and rescaling
operations, that we review in Subsection 2.2.1. To better account for the duality
between the function implemented by the network (which is abstract to manipulate)
and its parameters (which allow for more concrete formulations), we study the Linear
Regions (Pascanu et al., 2013) defined in the input space in Subsection 2.2.2. This
helps to specify irreducibility or non-degeneracy conditions under which the func-
tional equivalence classes are easily described by the sole rescaling and permutation
operations. We review the main known results along with their limitations in Sub-
section 2.2.3. This work is related to our contribution detailed in Chapter 3. We end
this section by discussing some adjacent work in Subsection 2.2.4 and by showcasing
some practical applications in Subsection 2.2.5.

2.2.1 Permutations and Rescalings

After introducing some notations, we state the main definitions of rescaling-equivalent
parameters in the literature and reconcile them under the condition that the consid-
ered parameterizations are admissible – recall that for an admissible parameteriza-
tion, every hidden neuron is connected to at least one input and one output neuron
through a path of non-zero weights (see Notations). We formally show that for ReLU
non-linearities, rescalings preserve the function implemented by the network. We
then introduce permutation equivalent parameters, that preserve the function im-
plemented by the network for any activation function – and in particular for ReLU
networks. In this Section, we fix the network architecture 𝐺. Recall that the function
implemented by the parameterization 𝜃 is denoted by 𝑅𝜃.

Rescaling Equivalent Parameters

We state three definitions for rescaling-equivalent parameters that we found in the
literature for ReLU networks, namely at the layer, neuron or path level and provide
an illustration in Figure 2-4. We next show that these definitions are equivalent
under the condition that the considered parameterizations are admissible. Such a
restriction to admissible parameterization is natural as explained in Subsection 2.2.2
for the case of “dead neurons”. The fact that rescaling equivalent parameters preserve
the function implemented by the network heavily relies on the homogeneity of the
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Figure 2-4: Illustration of the rescaling operations on one neuron, 𝜈. Left: original
network. Right: after applying the rescaling with 𝜆 > 0. For ReLU non-linearities,
the function implemented by the network remains the same.

ReLU function 𝜎 (see Proposition A.1.1): for any 𝑥 ∈ R and 𝜆 > 0,

𝜎(𝜆𝑥) = 𝜆𝜎(𝑥). (2.2)

The layer-wise equivalence is present for instance in the work of Nagel et al. (2019),
Meller et al. (2019), Yuan and Xiao (2019) or Rolnick and Kording (2019).

Definition 2.2.1. We denote by 𝒟(𝑁) the set of diagonal matrices 𝐷 ∈ R𝑁×𝑁 such
that, for all 𝑖, the diagonal element 𝑑𝑖 = 𝐷𝑖,𝑖 is strictly positive.

Recall that 𝜃 = (𝑤, 𝑏) can be also viewed as 𝜃 = (𝑊 (1), . . . ,𝑊 (𝐿), 𝑏(1), 𝑏𝐿).

Definition 2.2.2 (Layer rescaling equivalence). Two parameterizations 𝜃 and 𝜃′ are
rescaling equivalent if, for all ℓ ∈ J1, 𝐿− 1K, there exists 𝐷(ℓ) ∈ 𝒟(|𝑁ℓ|) such that, for
all ℓ ∈ J1, 𝐿K,

𝑊
′(ℓ) =

(︁
𝐷(ℓ−1)

)︁−1
𝑊 (ℓ)𝐷(ℓ) and 𝑏

′(ℓ) = 𝑏(ℓ)𝐷(ℓ) (2.3)

with the conventions 𝐷(0) = 𝐼𝑁0 and 𝐷(𝐿) = 𝐼𝑁𝐿
.

The neuron-wise equivalence is for instance used by Neyshabur et al. (2015). Let
𝜈 ∈ 𝐻 be a neuron in some hidden layer and let 𝜆𝜈 > 0. A neuron-wise scaling is
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defined as 𝑠𝜈,𝜆𝜈 : 𝜃 = (𝑤, 𝑏) ↦→ 𝜃′ = (𝑤′, 𝑏′) where for every connection 𝑒 ∈ 𝐸,

𝑤′
𝑒 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜆𝜈𝑤𝑒 if 𝑒 = ∙ → 𝜈

1
𝜆𝜈
𝑤𝑒 if 𝑒 = 𝜈 → ∙

𝑤𝑒 otherwise.

(2.4)

and where, for every 𝜈 ∈ 𝐻, 𝑏′
𝜈 = 𝜆𝜈𝑏𝜈 . Let 𝒮 be the set of neuron-wise scalings.

We observe that two neuron-wise rescalings commute and that every neuron-wise
rescaling is invertible, the inverse of 𝑠𝜈,𝜆𝜈 being 𝑠𝜈,1/𝜆𝜈 . Let ⟨𝒮⟩ be the commutative
group generated by 𝒮. Every 𝑠 ∈ ⟨𝒮⟩ can be uniquely represented as the composition

𝑠 = ○
𝜈∈𝐻

𝑠𝜈,𝜆𝜈 (2.5)

where the 𝜆𝜈 are strictly positive. Note that in this representation, every hidden
neuron 𝜈 is associated to exactly one neuron-wise rescaling 𝜆𝜈 .

Definition 2.2.3 (Neuron rescaling equivalence). Two parameterizations 𝜃 and 𝜃′

are rescaling equivalent if there exists 𝑠 ∈ ⟨𝒮⟩ such that 𝜃′ = 𝑠(𝜃).

Definition involving paths in the networks are for instance employed by Meng
et al. (2018) or Yi et al. (2019). We define the extended sign operator as, for 𝑥 ∈ R

sign(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 𝑥 > 0

0 if 𝑥 = 0

−1 otherwise.

(2.6)

When applied to a vector or a matrix, sign is taken entry-wise.

Definition 2.2.4 (Path rescaling equivalence). Two parameterizations 𝜃 and 𝜃′ are
rescaling equivalent if:

(i) sign(𝜃) = sign(𝜃′)

(ii) For every full path 𝑝 ∈ 𝒫, 𝑣𝑝(𝜃) = 𝑣𝑝(𝜃′)

(iii) For every partial path 𝑞 ∈ 𝒬, 𝑏𝑞0𝑣𝑞(𝜃) = 𝑏′
𝑞0𝑣𝑞(𝜃

′).

Recall that a path 𝑝 = (𝜈0, . . . , 𝜈𝐿) ∈ 𝒫 is a sequence of connected neurons from the
input to the output layer, whereas a partial path 𝑞 ∈ 𝒬 connects any hidden neuron to
the output layer. The value of a path 𝑝 is 𝑣𝑝(𝜃) = 𝑤𝜈0→𝜈1 . . . 𝑤𝜈𝐿−1→𝜈𝐿

and similarly
for any partial path 𝑞 ∈ 𝒬 (see Notations).
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Figure 2-5: Illustration of the permutation operations on two neurons, 𝜈1 and 𝜈2.
Right: original network. Left: after applying the permutation. The function imple-
mented by the network remains the same for any activation function, and in particular
for ReLU non-linearities.

Our first contribution is to reconcile these definitions on the layer, neuron and path
level for admissible parameterizations as proven in Proposition 3.1.1. From now on, we
denote by∼𝑆 the rescaling equivalence relation between admissible parameterizations.

Permutation Equivalent Parameters

We provide a definition of permutation equivalent parameterizations (see Figure 2-5).

Definition 2.2.5. We denote by Π(𝑁) the set of permutations 𝜋 : J1, 𝑁K ↦→ J1, 𝑁K.
With a slight abuse of notation, 𝜋 ∈ Π(𝑁) also denotes the permutation matrix 𝜋 ∈
R𝑁×𝑁 such that 𝜋𝑖,𝑗 = 1 if 𝑗 = 𝜋(𝑖) and 0 otherwise.

Definition 2.2.6. Two parameterizations 𝜃 = (𝑤, 𝑏) and 𝜃′ = (𝑤′, 𝑏′) are permutation
equivalent if, for all ℓ ∈ J1, 𝐿−1K, there exists 𝜋 ∈ Π(|𝑁ℓ|) such that, for all ℓ ∈ J1, 𝐿K,

𝑊
′(ℓ) =

(︁
𝜋(ℓ−1)

)︁−1
𝑊 (ℓ)𝜋(ℓ) and 𝑏

′(ℓ) = 𝑏(ℓ)𝜋(ℓ) (2.7)

with the conventions 𝜋(0) = 𝐼𝑁0 and 𝜋(𝐿) = 𝐼𝑁𝐿
. We write 𝜃 ∼𝑃 𝜃′ to denote the

permutation equivalence between two parameterizations 𝜃 and 𝜃′.

As illustrated intuitively in Figure 2-5, permutations preserve the function imple-
mented by the network for any non-linearity function, and in particular for ReLU
non-linearities. We prove this result more formally in Proposition A.1.2.
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Rescaling-permutation Equivalent Parameters

We define permutation-rescaling equivalent and rescaling-equivalent parameters.

Definition 2.2.7. We call two parameterizations 𝜃 and 𝜃′ permutation-rescaling
equivalent and we write 𝜃 ∼𝑃𝑆 𝜃′ if there exists a parameterization 𝜃′′ such that
𝜃 ∼𝑃 𝜃′′ and 𝜃′′ ∼𝑆 𝜃′. We similarly define rescaling-permutation equivalent param-
eterizations and we denote 𝜃 ∼𝑆𝑃 𝜃′ if there exists a parameterization 𝜃′′ such that
𝜃 ∼𝑆 𝜃′′ and 𝜃′′ ∼𝑃 𝜃′.

Next, we show that the rescaling and permutation operations commute in Propo-
sition A.1.3, thus both definitions coincide. From now on, we will denote ∼𝑃𝑆 the
permutation-rescaling equivalence. Such transformations preserve the realization of
any ReLU network (Proposition 3.1.2).

Sign Flips

We will compare to existing work considering non-ReLU activation functions18 in Sub-
section 2.2.3. Such activation functions include for instance the hyperbolic tangent,
which is not homogeneous. Hence, we define sign flips by adapting Definition 2.2.3.
Let 𝒮± be the set of neuron-wise scalings restricted for every hidden neuron 𝜈 ∈ 𝑁 to
𝜆𝜈 ∈ {−1, 1}. Let ⟨𝒮±⟩ be the commutative group generated by 𝒮±. Every 𝑠 ∈ ⟨𝒮±⟩
can be uniquely represented as the composition

𝑠 = ○
𝜈∈𝐻

𝑠𝜈,𝜆𝜈 (2.8)

where 𝜆𝜈 = ±1. This operation amounts to flip signs of the weights and associated
biases on the parameters.

Definition 2.2.8. Two parameterizations 𝜃 and 𝜃′ are sign-flip equivalent if there
exists 𝑠 ∈ ⟨𝒮±⟩ such that 𝜃′ = 𝑠(𝜃).

Since this Definition will be used only to compare to existing work in Subsec-
tion 2.2.3, we do not explore its variants as we did with the rescalings19. Since tanh is
an odd function, sign flips preserve the function implemented by tanh networks but
not by ReLU networks.

18Such related work is in general anterior to Krizhevsky et al. (2012) that were the first to introduce
the ReLU non-linearity and prove its effectiveness.

19For instance, Definition 2.2.4 is not readily adaptable to sign flips.
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Figure 2-6: Left: A two-hidden layer network valued with a parameterization 𝜃.
Weights are indicated on the connections between neurons: for instance, 𝑤𝜇1→𝜈1 = 0.
Biases are specified next to the neurons: for instance 𝑏𝜅 = 0. Input and output
neurons are depicted as squares whereas hidden neurons are displayed as circles.
Note that the input space is two-dimensional: 𝑥 = (𝑥𝜇1 , 𝑥𝜇2) and the output is scalar:
|𝑁𝐿| = 1. Right: 3D visualization of the network’s realization 𝑥 ↦→ 𝑅𝜃(𝑥) which is
piecewise affine.

2.2.2 Activation and Linear Regions

In this Subsection, we focus on ReLU networks. Such networks implement piecewise
affine realizations 𝑥 ↦→ 𝑅𝜃(𝑥) (Pascanu et al., 2013), as depicted for one particular
example in Figure 2-6. Thus, studying the regions where the gradient is constant
– the Linear Regions – yields valuable information about the network’s architecture
and weights, as uncovered by (Pascanu et al., 2013; Montúfar et al., 2014; Raghu
et al., 2017). The main difficulty lies both in the dimensionality of the input space
and in the number of layers 𝐿.

Activation vs. Linear Regions

We first define activation and linear regions of ReLU networks and leverage the work
of (Hanin and Rolnick, 2019) that precisely explain the distinction between both.
As explained in the Notations, for any hidden layer ℓ ∈ J1, 𝐿 − 1K, the intermediary
function implemented by the layer after the non-linearity 𝜎 writes

𝑦(ℓ)(𝜃, 𝑥) = 𝜎
(︁
𝑦(ℓ−1)(𝑥)𝑊 (ℓ) + 𝑏(ℓ)

)︁
. (2.9)

Recall that the function implemented by a single neuron 𝜈 ∈ 𝐻 is denoted as
𝑦𝜈(𝜃, 𝑥) = 𝑦(ℓ)(𝜃, 𝑥)𝜈 . Activation regions are defined by the activation pattern of
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Figure 2-7: Activation and linear regions for the two-hidden-layer network defined in
Figure 2-6. Recall that the input 𝑥 = (𝑥𝜇1 , 𝑥𝜇2) is two-dimensional, i.e. |𝑁0| = 2 and
the output is scalar, i.e. |𝑁3| = 1. Left: activation regions labeled with the activation
pattern 𝜌(𝑥) for neurons (𝜈1, 𝜈2, 𝜂) given the input 𝑥. For instance, 𝜌(𝑥) = 011 means
that the neuron 𝜈1 is off whereas both neurons 𝜈2 and 𝜂 are on for input 𝑥. The
two blue lines represent the separating hyperplanes for neurons 𝜈1 and 𝜈2 whereas the
orange line denotes the additional gradient discontinuities introduced by neuron 𝜂.
Right: linear regions implemented by 𝑅𝜃. There are 7 activation regions and 4 linear
regions. The figures are generated with our own PyTorch script available at https:
//github.com/pierrestock/linear-regions/blob/main/partition.ipynb.

all the hidden neurons for any input 𝑥. Indeed, denoting the ReLU function by 𝜎, a
neuron 𝜈 ∈ 𝐻 is either on20 when 𝑦𝜈(𝜃, 𝑥) > 0 or off when 𝑦𝜈(𝜃, 𝑥) = 0. For instance,
as depicted in the example in Figure 2-7, a neuron 𝜈 belonging to the first hidden
layer of the network defines a separating hyperplane Γ𝜈 in the input space, defined as
the set of input points for which the output function of the neuron becomes strictly
positive, or equivalently, where the gradient is discontinuous.

Definition 2.2.9 (Bent Separating Hyperplanes). For every 𝜈 ∈ 𝐻, we denote

Γ𝜈 =
{︁
𝑥 ∈ R𝑁0 | 𝑥 ↦→ ∇𝜃𝑦𝜈(𝜃, 𝑥) is discontinuous at 𝑥

}︁
.

For admissible parameterizations and for any neuron 𝜈 ∈ 𝑁1, Γ𝜈 is a hyperplane
since 𝑦𝜈(𝜃) = max (⟨𝑥,𝑤∙→𝜈⟩+ 𝑏𝜈 , 0)21 and since 𝑤∙→𝜈 ̸= 0 (admissibility). This
corresponds to the two blue lines on the left panel of Figure 2-7. For deeper hidden

20By analogy with the brain, we might say that a neuron fires.
21We denote by 𝑤∙→𝜈 the vector (𝑤𝜂→𝜈)𝜂∈𝑁0 .
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neurons 𝜂 ∈ 𝑁ℓ, ℓ > 1, Γ𝜂 is in general the union of (1) some gradient discontinuities
due to the lower layers and (2) some gradient discontinuities that are induced by 𝜂.
For instance, on Figure 2-7, the neuron on the second hidden layer (1) keeps a part
of the gradient discontinuities induced by the two neurons of the first hidden layer,
namely the lines between the orange and yellow regions, as well as the line between
the purple and the yellow regions appearing in the right panel and (2) introduces new
gradient discontinuities, namely the orange line depicted on the left panel. The sets
Γ𝜈 are often referred to as “bent separating hyperplane” (Hanin and Rolnick, 2019).
The main motivation for this name is that the new gradient discontinuities introduced
by one neuron belonging to layer ℓ bend on the bent separating hyperplanes of lower
layers ℓ′ < ℓ as demonstrated by Hanin and Rolnick (2019): for instance, on the left
panel of Figure 2-7, the orange line bends on the two blue lines. However, without any
further assumptions, the dimension of Γ𝜈 might be lower than |𝑁0| − 122. Thus, the
term “hyperplane” is not necessarily used rigorously in the literature but facilitates
greater understanding and we choose to adopt it.

Definition 2.2.10 (Activation Regions). Let Γ = ∪𝜈∈𝐻Γ𝜈. The activation regions
are the connected components of R𝑁0∖Γ.

Activation regions provide intimate information about each of the network’s hid-
den neurons. One alternative definition proposed by Montúfar et al. (2014) is to
assign to each input 𝑥 a vector 𝜌(𝑥) ∈ 2|𝐻| where, for any hidden neuron 𝜈 ∈ 𝐻,
𝜌(𝑥)𝜈 = 1 if 𝑦𝜈(𝜃, 𝑥) > 0 and 0 otherwise. Then, 𝜌 is piecewise constant and repre-
sents the activation pattern of all the hidden neurons for a given input, as depicted in
Figure 2-7: for instance, the pattern 𝜌(𝑥) = (0, 1, 1) or “011” means that the neuron
𝜈1 is off whereas both neurons 𝜈2 and 𝜂 are on for input 𝑥 (see Figure 2-6 for the
architecture and name of the neurons).

Definition 2.2.11 (Activation Regions bis). The activation regions are the areas of
the input space where 𝑥 ↦→ 𝜌(𝑥) is constant.

Both definitions coincide (Hanin and Rolnick, 2019, Lemma 2). On the other
hand, linear regions are areas of the input space for which the global function imple-
mented by the network 𝑥 ↦→ 𝑅𝜃(𝑥), or realization, has distinct locally affine behavior.
In the remainder of this manuscript and with a slight abuse of notation, we will
interchangeably refer to affine or linear functions.

22Hanin and Rolnick (2019) show that Γ𝜈 is a piecewise linear surface of codimension 1 for all but
a measure-zero set of networks with respect to the Lebesgue measure.
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Figure 2-8: Activation and linear regions for a three hidden layer neural network
with |𝑁1| = 5 neurons on the first hidden layer and |𝑁2| = 4 neurons on the second
hidden layer and |𝑁3| = 3 neurons on the third hidden layer. The input 𝑥 is two-
dimensional, i.e. |𝑁0| = 2 and the output is scalar, i.e. |𝑁4| = 1. Left: activation
regions. Right: linear regions. All the weights and biases were initialized randomly.
The figures are generated with our own PyTorch script available at https://github.
com/pierrestock/linear-regions/blob/main/partition.ipynb.

Definition 2.2.12 (Linear regions). For every 𝜈 ∈ 𝐻, we denote

𝐵 =
{︁
𝑥 ∈ R𝑁0 | 𝑥 ↦→ ∇𝑥𝑅𝜃 is discontinuous at 𝑥

}︁
.

Then, the linear regions are the connected components of R𝑁0∖𝐵.

Activation regions are convex and there are always at least as many activation
regions than linear regions (Hanin and Rolnick, 2019, Lemma 3). For instance, the
two-hidden-layer network defined in Figure 2-7 has 4 linear regions (see right panel),
but 7 activation regions (see left panel). In general, for deeper networks, the number
of activation and linear regions grows both exponentially as illustrated in Figure 2-8.

Parameters-Realization Duality

Rolnick and Kording (2019) prove, under certain assumptions detailed in Subsec-
tion 2.2.3, that it is possible to recover the network’s parameters and architecture
from the linear regions23. However, it is sometimes not the case. Let us focus on

23More precisely, from (1) linear regions and (2) each affine function implemented by the network
on each linear region. Note that knowing (1) + (2) is equivalent to knowing the realization 𝑅𝜃.
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Figure 2-9: Left: example of a dead neuron, 𝜈2. Right: example of twin neurons,
𝜈1 and 𝜈2. Squares denote input or output neurons whereas circles denote hidden
neurons. Weights are specified on the connections between two neurons and we set
all biases to zero (not represented in the figures).

two toy examples, as illustrated in Figure 2-9, to better grasp the duality between
the parameters and the realization. We focus on one-hidden-layer networks with
𝑁0 = {𝜇1, 𝜇2}, 𝑁1 = {𝜈1, 𝜈2} and 𝑁2 = {𝜂} and no biases.

∙ Dead neuron. We set (𝑤𝜇1→𝜈1 , 𝑤𝜇2→𝜈1) = (1,−1), (𝑤𝜇1→𝜈2 , 𝑤𝜇2→𝜈2) = (1, 1)
and (𝑤𝜈1→𝜂, 𝑤𝜈2→𝜂) = (1, 0). Then, 𝑅𝜃(𝑥) = max(0, 𝑥𝜇1 − 𝑥𝜇2) and 𝑅𝜃 only
has two affine regions separated by a line 𝑥𝜇1 = 𝑥𝜇2 . Hence, the second neuron
is dead (see Definition 3.2.1) and does not participate in the realization (since
𝑤𝜈2→𝜂 = 0) and the network cannot be recovered from the realization24. There
are 4 activation regions but the dead neuron prevents them from showing up in
the linear regions.

∙ Twin neurons. We set (𝑤𝜇1→𝜈1 , 𝑤𝜇2→𝜈1) = (1,−1), (𝑤𝜇1→𝜈2 , 𝑤𝜇2→𝜈2) = (−1, 1)
and (𝑤𝜈1→𝜂, 𝑤𝜈2→𝜂) = (1,−1). Then, 𝑅𝜃(𝑥) = 𝑥𝜇1 − 𝑥𝜇2 is a hyperplane that
has one linear region. Since the two neurons 𝜈1 and 𝜈2 have the same separating
hyperplane, they are called twin neurons (see Definition 3.2.2) and the network
cannot be recovered from the realization25. There are two activation regions
separated by the hyperplane 𝑥𝜇1 = 𝑥𝜇2 .

Note that for the dead neuron example, the parameterization is not admissible since
24For instance, the weight 𝑤𝜇2→𝜈2 can take an arbitrary value, more details in Section 3.2.
25For instance, we can add any 𝜀 to 𝑤𝜈1→𝜂 and subtract it from 𝑤𝜈2→𝜂, see Section 3.2.
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neuron 𝜈2 is not connected to any output neuron through a path of non-zero weights.
Reciprocally, as shown in Chapter 3, if a parameterization 𝜃 is not admissible, then
at least one hidden neuron is dead, where a dead neuron is formally defined in 3.2.1).
Thus, it is natural to focus our attention to admissible parameterizations in our work.
However, the admissibility condition does not exclude all possible degenerated cases
as illustrated with the twin neurons example. In the two (degenerate) above cases,
the activation regions cannot be recovered from the network realization.Hence, the
functional equivalence classes of such examples are more vast than the sole rescal-
ings and permutations (see Chapter 3 for details). We state precise non-degeneracy
conditions in Subsection 2.2.3.

2.2.3 Functional Equivalence Classes

In this Subsection, we review related work aiming at characterizing functional equiv-
alence classes under some precise conditions, sometimes called non-degeneracy or
irreducibility conditions. We enumerate the known results along with their scope, the
formulation of their assumptions and their limitations. Note that some results may
not encompass the ReLU networks since they were proved before the recent introduc-
tion of the ReLU. In this case, other activation functions might necessitate sign flips
instead of rescalings as defined in Subsection 2.2.1. The main difficulty is to properly
identify the non-degeneracy conditions under which it is possible to easily describe
the equivalence classes as rescalings (or sign flips) and permutations.

Definition 2.2.13. Let 𝐺 be a network architecture valued with the parameterizations
𝜃 and 𝜃′. Then, 𝜃 and 𝜃′ are said to be functionally equivalent if, for all 𝑥 ∈ R𝑁0,
𝑅𝜃(𝑥) = 𝑅𝜃′(𝑥). We denote by ∼𝐹 the resulting equivalence relation.

In this definition, we assume that 𝜃 and 𝜃′ share a common network architecture
𝐺. A more general definition would allow for two different architectures 𝐺 and 𝐺′

on the only conditions that 𝐺 and 𝐺′ share the same set of input neurons 𝑁0 and
output neurons26. As explained below, for the one-hidden-layer case, under proper
irreducibility conditions, two functionally equivalent networks automatically share
the same architecture: equivalently, two functionally equivalent one-hidden-layer net-
works valued with irreducible parameterizations 𝜃 and 𝜃′ have the same number of
hidden neurons 𝑁1. The question is more complex for deeper networks.

26In particular, without any constraint on the number of layers of 𝐺 and 𝐺′ or their sizes.
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One Hidden Layer

We detail three successive approaches for the one-hidden-layer case that were designed
in the early 90’s, for activation functions satisfying various conditions27. These three
results do not encompass the ReLU case as shown in Table 2.1. Since the considered
activation functions are not homogeneous28, rescalings are replaced by sign flips. All
authors consider networks with one output node. Recall that a parameterization is
admissible if for every hidden neuron 𝜈 ∈ 𝐻 there exists a path 𝑝 ∈ 𝒫 going through
𝜈 such that 𝑣𝑝(𝜃) > 0 as explained in the Notations. We denote by 𝑤∙→𝜈 the vector
(𝑤𝜇→𝜈)𝜇∈𝑁0 . Thus, for a given architecture 𝐺 valued with 𝜃 = (𝑤, 𝑏), denoting the
output neuron 𝜂, the function implemented by the network writes:

𝑅𝜃(𝑥) =
∑︁
𝜈∈𝑁1

𝑤𝜈→𝜂𝜎 (⟨𝑤∙→𝜈 , 𝑥⟩+ 𝑏𝜈) + 𝑏𝜂.

All theorems below consider two parameterizations 𝜃 and 𝜃′ on two architectures 𝐺
and 𝐺′ having the same input and output neurons but a priori not the same number
of hidden neurons. As summarized in Table 2.1, the results specify (1) a family of
activation functions under study; (2) irreducibility conditions on 𝜃 and 𝜃′; such that
functional equivalence implies that the number of hidden neurons is the same and
that 𝜃′ and 𝜃 are permutation sign-flip equivalent.

Sussmann (1992) considers only the tanh activation function, and specifies the
irreducibility condition in terms of dead and twin neurons (See Subsection 2.2.2).
Informally, a dead neuron does not participate to the output function of the network
(for instance when all its incoming or outgoing weights are set to zero), whereas
twin neurons can be collapsed to a single node without altering the input-output
map. We study these notions more formally in Chapter 3. Albertini et al. (1993)
consider any odd activation function 𝜎 that satisfies the independence property: for
every positive integer 𝑝, for every 𝑐1, . . . , 𝑐𝑝 ∈ R* and every 𝛾1, . . . , 𝛾𝑝 ∈ R such that
(𝑐𝑖, 𝛾𝑖) ̸= ±(𝑐𝑗, 𝛾𝑗) for all 𝑖 ̸= 𝑗 the functions

𝑥 ↦→ 1, 𝑥 ↦→ 𝜎(𝑐1𝑥+ 𝛾1), . . . , 𝑥 ↦→ 𝜎(𝑐𝑝𝑥+ 𝛾𝑝) (2.10)

are linearly independent. Following earlier work by Kůrková and Kainen (1993),
Kainen et al. (1994) consider two types of activation functions: (1) the gaussian
function defined as 𝜎(𝑥) = exp(−𝑥2) and (2) even or odd, asymptotically constant,

27At that time, analogies to the human nervous system did not suggest that the ReLU non-linearity
was a good candidate. It was considered later by Krizhevsky et al. (2012).

28𝑓 is homogeneous (of degree 1) if for every 𝑥 ∈ R and every 𝜆 > 0, 𝑓(𝜆𝑥) = 𝜆𝑓(𝑥).
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Author Activation function Irreducibility conditions

Sussmann (1992) tanh (S.1) 𝜃 admissible
(S.2) For all 𝜈1, 𝜈2 ∈ 𝑁1, 𝜈1 ̸=
𝜈2, |𝑦𝜈1(𝜃)| ≠ |𝑦𝜈2(𝜃)|

Albertini et al. (1993) Odd functions 𝜎 that
satisfies the independence
property (2.10)

(A.1) 𝜃 admissible
(A.2) For all 𝜈1, 𝜈2 ∈ 𝑁1,
𝜈1 ̸= 𝜈2, (𝑤∙→𝜈1 , 𝑏𝜈1) ̸=
±(𝑤∙→𝜈2 , 𝑏𝜈2)

Kainen et al. (1994) Even or odd, asymp-
totically constant, non-
polynomial rational func-
tions. Extension to gaus-
sian functions

(K.1) 𝜃 admissible
(K.2) For all 𝜈1, 𝜈2 ∈ 𝑁1, 𝜈1 ̸=
𝜈2, 𝑤∙→𝜈1 ̸= 𝑤∙→𝜈2

Table 2.1: Specific functional equivalence results for one single hidden layer. All state-
ments read as follows: for the family of activation functions, under the irreducibility
conditions, the input-output map of a network uniquely determines its architecture
and its parameters up to permutations and sign flips (see Subsection 2.2.1).

non-polynomial rational functions.
The irreducibility conditions summarized in Table 2.1 may differ in appearance

from the original notations and statements on the papers. However, we have simply
reformulated the assumptions to make them more consistent and readable and refer
to the original papers for further details.

For the sake of clarity, own stand-alone proof for single-hidden-layer ReLU net-
works found independently, is available in Chapter 3, Proposition 3.2.1. The irre-
ducibility condition reads: there are no dead hidden neurons and no twin hidden
neurons as defined in Definitions 3.2.1 and 3.2.2. Note that this proof includes the
case of multiple output neurons, i.e. |𝑁2| > 1, unlike the results detailed in Table 2.1.

Many Hidden Layers

Unfortunately, the proof techniques used in the single-hidden-layer case rely on ge-
ometrical arguments and are not readily adaptable for deeper networks. We detail
below the known results and summarize them in Table 2.2.
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Author Activation function Irreducibility conditions

Fefferman (1994) tanh (permutations
and sign flips)

(F.1) Non-nullity
(F.2) Non-equality

Rolnick and Kording (2019) ReLU (permuta-
tions and rescalings)

(R.1) Linear Regions
(R.2) For any edge 𝑒 = 𝜇→
𝜈 (𝜇, 𝜈 ∈ 𝐻), Γ𝜇 ∩ Γ𝜈 ̸= ∅
(R.3) 𝜃 does not belong to
certain a measure-zero set

Phuong and Lampert (2019)† ReLU (permuta-
tions and rescalings)

(P.1) General Network
(P.2) Transparent Network
(P.3) Eligible Architecture

Table 2.2: Specific functional equivalence results for multiple hidden layers. All state-
ments read as follows: for the family of activation functions, under the irreducibility
conditions, the input-output map of a network uniquely determines its architecture
(including depth) and its parameters up to symmetries. The symmetries depend on
the activation function and are specified in the same column in parenthesis. Symme-
tries always include permutations and include either rescalings or sign flips (see 2.2.1).
†The result of Phuong and Lampert (2019) writes as follows: given a bounded non-
empty domain 𝑍 ⊂ R𝑁0 , for eligible architectures (with non-increasing layer widths),
there exists a parameterization 𝜃 such that the knowledge of the realization 𝑅𝜃 on
𝑍 determines the network’s parameters uniquely up to permutations and scalings
among general and transparent networks.

The first known exact result for networks with many hidden layers is due to Feffer-
man (1994) in the case of the tanh non-linearity. Indeed, before the introduction of
the ReLU non-linearity (Krizhevsky et al., 2012), analogies to the human nervous sys-
tem suggested to use a sigmoid-like activation function 𝜎(𝑥) asymptotic to constants
as 𝑥→ ±∞. The non-degeneracy conditions are specified as follows:

(F.1) Non-nullity. 𝑏𝜈 ̸= 0 for all 𝜈 ∈ 𝐻 and 𝑤𝑒 ̸= 0 for all 𝑒 ∈ 𝐸.

(F.2) Non-equality.

(i) For all 𝜈 ̸= 𝜈 ′ ∈ 𝐻, |𝑏𝜈 | ≠ |𝑏𝜈′|.
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(ii) For all ℓ ∈ J1, 𝐿K, for all 𝜈 ̸= 𝜈 ′ ∈ 𝑁ℓ, for all 𝜇 ∈ 𝑁ℓ−1, the ratio
𝑤𝜇→𝜈/𝑤𝜇→𝜈′ is not equal to any fraction of the form 𝑝/𝑞, with 𝑝, 𝑞 integers
and 1 ≤ 𝑞 ≤ 100|𝑁ℓ|2.

The statement reads as follows: under the two conditions above, perfect knowledge of
the input-output map of a network uniquely specifies both the architecture (including
depth) and the parameters, up to permutations and sign flips – we consider sign flips
since the non-linearity is the hyperbolic tangent, see Definition 2.2.8. The idea of
the proof is to reduce to the scalar case where |𝑁0| = |𝑁𝐿| = 1 and to continue the
realization 𝑓(𝑥) = 𝑅𝜃(𝑥) analytically to a function 𝑓 of a single, complex variable.
Then, the qualitative geometry of the poles of 𝑓 determines the network architecture
and the asymptotics of 𝑓 near its singularities determines the weights. The proof is
not readily adaptable to ReLU networks since it heavily relies on the disposition of
the poles of the meromorphic function 𝑧 ↦→ tanh(𝑧/2)29.

Rolnick and Kording (2019) propose to reverse-engineer deep ReLU networks by
reading both the architecture of the network (including depth) and its parameters
from the sole knowledge of the linear regions and each affine function implemented
in these regions by the network (see Subsection 2.2.2 for definitions). The authors
propose a constructive algorithm that samples network realizations for carefully cho-
sen input points to deduce the architecture of the network and its parameters, up to
rescalings and permutations. The authors make two crucial assumptions:

(R.1) Linear Regions Assumption. “Each [activation] region represents a maximal
connected component of input space on which the piecewise linear function
𝑥 ↦→ 𝑅𝜃(𝑥) is given by a single linear function” (see Definition 2.2.10).

(R.2) For any edge 𝑒 = 𝜇→ 𝜈, Γ𝜇 ∩ Γ𝜈 ̸= ∅, i.e. two connected hidden neurons have
bent separating hyperplanes that intersect, see Definition 2.2.9.

(R.3) The parameters 𝜃 do not belong to a certain measure-zero set.

Let us discuss assumption R.1 further. Recall that activation regions (Definition 2.2.10)
are the areas of the input space that correspond to constant activation patterns of
all the hidden neurons, whereas linear regions (Definition 2.2.12) correspond to the
maximally connected areas of the input space for which the realization 𝑅𝜃 is an affine
function. Assumption R.1 states that activation regions and linear regions coincide,

29The poles of 𝑧 ↦→ tanh(𝑧/2) are the points (2𝑚 + 1)𝑖𝜋 with 𝑚 ∈ Z.
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which is not always the case (see Subsection 2.2.2). For instance, the network con-
sidered in Figure 2-7 has 7 activations regions but only 4 linear regions30, and does
not satisfy R.1.

The authors prove that their algorithm terminates31 except for a measure-zero 32

set of networks as stated in assumption R.3. In other words, under their assumptions,
two functionally equivalent networks are permutation-rescaling equivalent. While
their algorithm is constructive, the two assumptions are made on the linear regions
and not on the network’s parameters themselves, which might hide the underlying
causes of such situations. Moreover, some precisions could have been made about
the measure-zero set of network: which probability measure is used, and what are
canonical examples of networks in this set.

Similarly, Phuong and Lampert (2019) propose to use linear regions to identify
the network’s parameters. They make the following assumptions that we cite below.

(P.1) General Network.

(i) For any 𝜈 ∈ 𝐻, the local extrema of 𝑥 ↦→ 𝑦𝜈(𝜃, 𝑥) do not have value zero.

(ii) For all 𝑘, ℓ such that 0 < 𝑘 ≤ ℓ < 𝐿 and all diagonal matrices (𝐼(𝑘), . . . , 𝐼(ℓ))
with entries in {0, 1} and with 𝐼(ℓ′) ∈ R|𝑁ℓ′ |,

rank
(︁
𝑊 (𝑘)𝐼(𝑘) · · ·𝑊 (ℓ)𝐼(ℓ)

)︁
= min

(︁
|𝑁𝑘−1|, rank

(︁
𝐼(𝑘)

)︁
, . . . , rank

(︁
𝐼(ℓ)

)︁)︁
.

(iii) For all 𝜇 ̸= 𝜈 ∈ 𝐻, any linear regions 𝐴1 ̸= 𝐴2 of 𝑅𝜃, the linear functions
implemented by neuron 𝜈 on 𝐴1 and neuron 𝜇 on 𝐴2 are not multiple of
each other.

(P.2) Transparent Network. For any input 𝑥, there exists at least one hidden neuron
𝜈 such that 𝑦𝜈(𝜃, 𝑥) > 0.

(P.3) Eligible architecture. The network architecture 𝐺 satisfies |𝑁𝐿| = 1 and |𝑁0| ≥
|𝑁1| ≥ · · · ≥ |𝑁𝐿−1| ≥ 2.

Assumption P.3 is quite restrictive in terms of considered networks. The authors
prove a much weaker result than the previous ones that states as follows: given a

30Activation regions labelled 010, 110, 100 and 000 belong to the same linear region.
31The complexity of the algorithm is not extensively studied by the authors for deep networks.
32Although the underlying measure is not explicitly stated, we may assume that the authors

consider a measure-zero set with respect to the Lebesgue measure. This measure-zero set is not
explicitly described by the authors.
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bounded non-empty domain 𝑍 ⊂ R𝑁0 , for eligible architectures (with non-increasing
layer widths), there exists a parameterization 𝜃 such that the knowledge of the real-
ization 𝑅𝜃 on 𝑍 determines the network’s parameters uniquely up to permutations
and scalings among general and transparent networks. Thus, given any parameter-
ization 𝜃, the result does not state that its parameters are uniquely determined up
to permutations and scalings, even if 𝜃 is general with an eligible architecture. The
assumptions however allow the authors to prove that almost all ReLU networks are
general: “In other words, a sufficient condition for a [random] ReLU network to be
general with probability one is that its weights are sampled from a distribution with
a density”. The authors consider only the scalar output case and do not formulate
theorems for non-eligible architectures.

2.2.4 Relaxed Equivalence Classes

For many applications, for instance image classification, the quantity of interest it not
the function implemented by the network 𝑅𝜃 or the loss, but rather the classification
decision. In the ImageNet setup (Krizhevsky et al., 2012), there are 1000 classes, thus
𝑁𝐿 = 1000 and the predicted class 𝑐 for an input 𝑥 is

𝑐 = argmax
𝜈∈𝑁𝐿

(𝑅𝜃(𝑥)𝜈).

Thus, various parameterizations 𝜃 and 𝜃′ of the same network might not be func-
tionally equivalent, in the sense that 𝑅𝜃 = 𝑅′

𝜃, but may output exactly the same
classification decisions for a given set of inputs, usually if their realizations are close
enough. From this point of view, the strict concept of functional equivalence classes
defined in Subsection 2.2.3 might be relaxed to preserve – approximately or exactly –
a higher-level quantity of interest, such as the loss or the classification error, for the
whole input space R𝑁0 or for a given distribution or set of test inputs.

In this section, we focus on the concept of inverse stability (Petersen et al., 2018;
Berner et al., 2019). Consider a fixed ReLU architecture valued with two parameter-
izations 𝜃 and 𝜃′ and the following question.

“If the realizations 𝑅𝜃 and 𝑅𝜃′ are close, are the parameterizations 𝜃 and 𝜃′ close?”

This question is ill-posed and fundamentally connected to understanding the redun-
dancies in the parameterizations of neural networks, precisely because of the rescaling
and permutation operations defined in Subsection 2.2.1 that preserve the function im-
plemented by the network. For instance, assume that 𝑅𝜃 and 𝑅𝜃′ , as well as 𝜃 and 𝜃′,

54



are close. We might rescale 𝜃′ into 𝜃′′ such that 𝑅𝜃′ = 𝑅𝜃′′ and such that 𝜃′ and 𝜃′′ are
arbitrarily far from each other. More precisely, following Definition 2.2.3, consider
one single hidden neuron 𝜈 and define, for any 𝜆𝜈 > 0, 𝑠 = 𝑠𝜈,𝜆𝜈 and 𝜃′′ = 𝑠(𝜃′).
Further assume that the biases are all set to zero. Then,

‖𝜃′′ − 𝜃′‖2
2 =

∑︁
𝜇∈prev(𝜈)

(𝜆𝜈𝑤𝜇→𝜈 − 𝑤𝜇→𝜈)2 +
∑︁

𝜂∈next(𝜈)
(𝑤𝜈→𝜂/𝜆𝜈 − 𝑤𝜈→𝜂)2

= (𝜆𝜈 − 1)2 ∑︁
𝜇∈prev(𝜈)

𝑤2
𝜇→𝜈 + (1/𝜆𝜈 − 1)2 ∑︁

𝜂∈next(𝜈)
𝑤2
𝜈→𝜂.

Hence, as 𝜆𝜈 → +∞, ‖𝜃′′ − 𝜃′‖2
2 → +∞ and we still have 𝑅𝜃′ = 𝑅𝜃′′ with 𝜃′ and 𝜃′′

far from each other. Since 𝑅𝜃 and 𝑅𝜃′ are close, 𝑅𝜃 and 𝑅𝜃′′ are also close. Finally,
since 𝜃 and 𝜃′ are close, 𝜃 and 𝜃′′ are far from each other. Thus, Berner et al. (2019)
propose to reformulate the question as follows.

“If the realizations 𝑅𝜃 and 𝑅𝜃′ are close, can we find a parameterization 𝜃′′ that is
permutation-rescaling equivalent to 𝜃′ such that 𝜃 and 𝜃′′ close?”

This question is addressed by Berner et al. (2019) in the one-hidden-layer case
with no biases and scalar output. They exclude degenerate cases as follows.

(B.1) For all 𝜈1, 𝜈2 ∈ 𝑁1 such that ‖𝑤∙→𝜈1‖∞ > 0 and ‖𝑤∙→𝜈2‖∞ > 0,

𝑤∙→𝜈1

‖𝑤∙→𝜈1‖∞
̸= 𝑤∙→𝜈2

‖𝑤∙→𝜈2‖∞
.

(B.2) For all 𝜈 ∈ 𝑁1, ‖𝑤𝜈→∙‖∞ = ‖𝑤∙→𝜈‖∞.

(B.3) There exists 𝜇1, 𝜇2 ∈ 𝑁0 such that for all 𝜈 ∈ 𝑁1, 𝑤𝜇1→𝜈 > 0 and 𝑤𝜇2→𝜈 > 0.

Assumption B.1 is similar to assumptions S.2, A.2 and K.2. Assumption B.2 refers to
the notion of balanced network (see Subsection 2.2.5 and Chapter 4). Assumption B.3
seems more restrictive. The statement is the following (Berner et al., 2019, Theorem
3.3) . Let 𝐺 be a fixed, one-hidden layer architecture. Let 𝜃 and 𝜃′ be non-degenerate
parameterizations on 𝐺, without biases. Then, there exists a non-degenerate param-
eterization 𝜃′′ such that 𝑅𝜃′ = 𝑅𝜃′′ and

‖𝜃′′ − 𝜃‖∞ ≤ 4|𝑅𝜃′′ −𝑅𝜃|
1
2
𝑊 1,∞ .

Note that the distance between realizations is controlled with a Sobolev semi-norm.
Thus, |𝑅𝜃′′ − 𝑅𝜃|

1
2
𝑊 1,∞ = 0 does not necessarily imply that 𝑅𝜃′′ = 𝑅𝜃. We refer the

reader to Petersen et al. (2018) for a counter-example of this notion of stability.
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Finally, we list below two interesting papers that closely relate to our investigations
in Section 3.4.4 where we focus on local identifiability.

∙ Malgouyres and Landsberg (2018) consider so called Deep Structured Neural
Network of arbitrary depth, without biases. Such linear networks are simply
described by a product of weight matrices 𝑀𝑖(ℎ𝑖), where each matrix depends
linearly on parameters ℎ𝑖 ∈ R𝑆 for a given 𝑆 ∈ N. As explained in the pa-
per, such architectures present strong connections with feedforward non-linear
networks using the ReLU (for a fixed input 𝑥). Next, the authors define the
rescaling equivalence by considering only inter-layer rescalings (Equation 3.2
in the paper), whereas we consider more generic per-neuron rescalings in this
manuscript, see for instance Definition 2.2.3. The authors seek to establish
sufficient and necessary conditions on deep structured linear neural networks
guaranteeing local stability. More formally, let 𝑑 be a metric taking into ac-
count the inter-layer rescaling, 𝑥 ∈ R𝑁0 and 𝑦 ∈ R𝑁𝐿 an input/output pair and
𝜃 and 𝜃′ two parameterizations such that the considered network is indeed a
deep structured network. Denote 𝛿 = ‖𝑦−𝑅𝜃(𝑥)‖ and 𝜂 = ‖𝑦−𝑅𝜃′(𝑥)‖. Then
local stability writes as 𝑑(𝜃, 𝜃′) ≤ 𝐶(𝛿+ 𝜂) where 𝐶 ≥ 0 (Informal Theorem 1.1
in the paper). Here, we are interested in the case 𝛿 = 𝜂 = 0, i.e. local identifia-
bility. In Section 6, the authors provide sufficient and necessary conditions for
local identifiability by studying complex algebraic varieties leveraging the Segre
embedding of the ℎ𝑖. We refer to the paper for further details.

∙ Malgouyres (2020) also consider deep structured linear networks, without bi-
ases, under some sparsity constraints on the parameters ℎ𝑖 ∈ R𝑆. The au-
thors formalize the stability guarantees slightly differently than Malgouyres and
Landsberg (2018), as stated in the Informal Theorem 1 in the paper. Let 𝑑 be
a metric taking into account the inter-layer rescaling of the weights. Define
the empirical risk on a training set (𝑥𝑖, 𝑦𝑖)𝑖=1..𝑛 for a parameterization 𝜃 as
𝐸(𝜃) = ∑︀

𝑖 ‖𝑦𝑖 − 𝑅𝜃(𝑥𝑖)‖. Then, the stability property writes: there exists
𝐶 ≥ 0 such that, for 𝜂 sufficiently small and for any 𝜃, 𝜃′ such that 𝐸(𝜃) ≤ 𝜂

and 𝐸(𝜃′) ≤ 𝜂, we have 𝑑(𝜃, 𝜃′) ≤ 𝐶𝜂. In this work, the authors provide sharp
conditions on the network architecture as well as the training set such that the
parameters obtained after optimization in the training set are uniquely defined,
up to layer-wise rescalings, again instead of neuron-wise rescalings.
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Figure 2-10: We compare a properly balanced network (blue) and an unbalanced
network (red). Each dot represents the 𝐿2 norm of one column in the layer’s weight
matrix. The dots are randomly spread around their layer index on the 𝑥-axis for
readability. Both networks (balanced and unbalanced) implement the same input-
output function.

2.2.5 Applications

As seen in the previous Subsection 2.2.3 for any activation function but more ex-
tensively for ReLU networks, functional equivalence classes are described by the sole
permutation and rescaling operations, except for degenerate cases. In practice, re-
searchers implicitly assume that the degenerate cases appear rarely, or even for a
measure-zero set of networks ((Rolnick and Kording, 2019)). Moreover, since permu-
tations are discrete operations33, the authors mainly focus on the rescaling operations
to describe functional equivalence classes. Since various representants of the same
equivalence classes may react differently to optimization (Neyshabur et al., 2015) or
scalar quantization (Nagel et al., 2019), the main difficulty lies in identifying a possi-
ble canonical representant, if any, for each equivalence class given the task at hand.
In the following, we say that a network is balanced if all the weights have roughly
the same magnitude, and unbalanced if this not the case, for instance when rescaling
with large coefficients as explained in Subsection 2.2.4. An illustration of balanced
and unbalanced networks implementing the same realization is given in Figure 2-10.

33Thus not readily amenable to back-propagation.
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Quotient SGD

As observed by (Neyshabur et al., 2015), the balancedness of the network plays an
important role in the optimization process. More precisely, given an architecture 𝐺,
we compare a parameterization 𝜃 initialized with standard methods (as described in
Subsection 2.1.3) and one rescaled, unbalanced parameterization 𝜃′ that yields the
same realization as 𝜃, as illustrated in Figure 2-10. It has been observed that, when
initialized in an unbalanced fashion, neural networks are slower to train and can even
converge to a poor local minimum34.

Hence, Meng et al. (2018) propose to study the optimization problem over the
space of realizations of neural networks rather than the space of parameters. The
practical idea is to re-balance the network with a rescaling-equivalent network after
each SGD step: this operation does not change the realization implemented by the
network but will arguably change the future gradients and the learning trajectory35.
More formally, this two-step optimization process amounts to quotient the parameter
space with the rescaling equivalence relation ∼𝑆, implicitly assimilated to the func-
tional equivalence relation ∼𝐹 , where both notations are defined in Subsection 2.2.1.
This line of work is related to our contribution in Chapter 4 where we derive a bal-
ancing algorithm that provably converges to a canonical representant for linear and
convolutional networks and leverage it to improve the training. As stated in Chap-
ter 4, the proposed algorithm – hence the obtained canonical representant – is justified
by its practical efficiency. However, we make no theoretical claim supporting the fact
that the proposed algorithm leads to the right canonical representant. Indeed, there
may be alternative definitions leading to distinct canonical representants and we still
miss a criterion to define “how good” a representant is.

Weight Equalization

Inspired by our contribution in Chapter 4, Nagel et al. (2019) and Meller et al.
(2019) concurrently use our Equi-Normalization algorithm to balance networks and
therefore make them more amenable to 8-bit scalar quantization (see Subsection 2.3.5
for details about quantization). Nagel et al. (2019) conjecture that the performance
of trained models after quantization can be improved by adjusting the weights of
each channel such that their ranges are more similar. As the authors empirically
demonstrate, the quantization error induced on a single layer by traditional methods

34Figure 1(a) of Neyshabur et al. (2015).
35See Chapter 3 for a formal derivation.
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such as Quantization-Aware Training (QAT, Krishnamoorthi (2018)) may induce a
drift in the distribution of the activations of successive layers with potential damaging
effects on the network’s accuracy. Such methods are discussed in Subsection 2.3.5.

2.3 Compression of Deep Learning Models

Deep Learning models are able to perform multiple tasks such as image recognition,
language understanding or speech enhancement thanks to a very active research com-
munity. Productionizing such over-parameterized – hence heavy – models, either on
the server side or on the mobile side, poses challenges in terms of latency, memory
and energy. In this Section, we detail the main compression techniques to produce
models with fast inference speed, small memory footprint and energy efficiency. One
of the most straightforward methods to compress a neural network is to prune or
delete some of its parts (Subsection 2.3.1). More structured sparsity leads to the
design of Structured Efficient Layers detailed in Subsection 2.3.2. This work in turns
conducts the research community to construct or search for new efficient architec-
tures (Subsection 2.3.3). Networks with these architectures are either learnt from
scratch or using a more advanced teacher network with distillation techniques (Sub-
section 2.3.4). Moreover, reducing the precision at which to store single weights or
subvectors leads to the fields of scalar and vector quantization (Subsection 2.3.5).
Finally, we discuss hardware and metrics considerations in Subsection 2.3.6.

2.3.1 Pruning and Sparsity

Pruning amounts to remove some part of a network – such as a connection or a
neuron – according to some importance criterion (LeCun et al., 1990; Hassibi and
Stork, 1993). Generally, researchers start from a pretrained network and iteratively
prune and finetune the network until the desired size/accuracy tradeoff is reached.

Importance criteria

The importance criteria are designed to quantify the effect of deleting a given part of
the network on its accuracy. Then, the parts with the lowest importance are removed
(or equivalently, freezed to zero36). For the sake of clarity, let us write the most

36We consider the weight 𝑤𝑒 with 𝑒 ∈ 𝐸. Then, to prune 𝑤𝑒, we simply remove 𝑒 from the graph
𝐺. Equivalently, we set 𝑤𝑒 = 0 and we do not update 𝑤𝑒 during the backward pass. It amounts to
detach the edge 𝑒 from the computational graph during the forward and backward passes.
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common importance criteria when pruning connections (i.e., individual weights) in a
network – sometimes called unstructured pruning. These methods generalize to larger
structures such as neurons, filters or layers as explained in the references below.

Let us denote the weights of the network by 𝑤 = (𝑤𝑒)𝑒∈𝐸, where 𝐸 is the set of
edges or connections of the network’s architecture. We aim at defining an impor-
tance criterion 𝐶 : 𝐸 ↦→ R that will be used to rank the weights. One of the most
straightforward implementation of 𝐶 is to consider the magnitude of the weights:

𝐶(𝑒) = |𝑤𝑒|. (2.11)

There is a large line of work considering weight magnitude pruning (Han et al., 2015;
Li et al., 2016; Gale et al., 2019) with extensions to the 𝐿𝑝 norm when considering
larger structures such as filters37. The intuition behind this criterion is that large
weights (in absolute value) have a large influence on the loss function ℒ whereas
small weights have a negligible influence38.

In line with the Optimal Brain Damage approach of LeCun et al. (1990), it is
possible to construct a local model of the loss function ℒ to predict the effect of
perturbing the parameters by 𝛿𝑤. Denoting ∇ℒ(𝑤) the gradient of ℒ with respect to
𝑤 and 𝐻(𝑤) the Hessian, the Taylor approximation writes

𝛿ℒ =
∑︁
𝑒

∇ℒ(𝑤)𝑒𝛿𝑤𝑒 + 1
2
∑︁
𝑒

𝐻(𝑤)𝑒𝑒𝛿𝑤2
𝑒 + 1

2
∑︁
𝑒 ̸=𝑒′

𝐻(𝑤)𝑒𝑒′𝛿𝑤𝑒𝛿𝑤𝑒′ +𝑂(‖𝛿𝑤‖3).

(2.12)

Pruning a single weight 𝑤𝑒 is equivalent to applying a perturbation 𝛿𝑤 to 𝑤 such that
𝛿𝑤𝑒′ = −𝑤𝑒′ if 𝑒′ = 𝑒 and 0 otherwise. Let us examine how to derive first and second
order importance criteria.

∙ First order. If we neglect all the second-order terms in Equation (2.12), follow-
ing Molchanov et al. (2016); Yu et al. (2018b), we obtain 𝛿ℒ = ∑︀

𝑒∇ℒ(𝑤)𝑒𝛿𝑤𝑒.
Then, during training, we wish to prune a single weight 𝑤𝑒 that will result in the
minimum absolute loss variation |𝛿𝐿|. Using perturbations defined earlier, we
are left to find 𝑒 such that |∇ℒ(𝑤)𝑒𝑤𝑒| is minimum. This leads to the criterion

𝒞(𝑒) = |∇ℒ(𝑤)𝑒𝑤𝑒| . (2.13)

37The importance ranking of filters may differ when considering the 𝐿1 or the 𝐿2 norm for instance.
38This claim implicitly assumes that the network is balanced, i.e. that the weights have the same

order of magnitude. For the effect of rescalings on weight magnitude, see Chapter 4 and Figure 4-1.
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Pruning with this criterion is sometimes referred to as gradient magnitude prun-
ing. See Figure 2-11 for a comparison.

∙ Second order. Following LeCun et al. (1990), we assume that the train-
ing has converged at a local minimum, thus ∇ℒ(𝑤) = 0. We also assume
that the Hessian is diagonal, thus we neglect the cross-error terms of the form
𝐻(𝑤)𝑒𝑒′𝛿𝑤𝑒𝛿𝑤𝑒′ for 𝑒 ̸= 𝑒′. Based on these two assumptions and the fact that the
Hessian is positive semidefinite at a local minimum, we deduce that 𝐻(𝑤)𝑒𝑒 ≥ 0.
Then Equation (2.12) boils down to 𝛿ℒ = 1

2
∑︀
𝑒𝐻(𝑤)𝑒𝑒𝛿𝑤2

𝑒 , and we wish to prune
a single weight 𝑤𝑒 that will result in the minimum absolute loss increase 𝛿𝐿,
which leads to the criterion

𝒞(𝑒) = 𝐻(𝑤)𝑒𝑒𝑤2
𝑒 . (2.14)

However, computing second-order information involves additional code and re-
lies on some approximations on the Hessian39.

Such first- and second-order criteria are sometimes referred to as weight saliencies. In
contrast to the weight magnitude, these criteria are data-dependent, and the gradients
or the (approximated) Hessian are generally computed on a single batch of training
data. In practice, we prune a proportion 𝑝 of the weights at the same time, neglecting
the influence of the deletion of one parameter to the saliency of other parameters.
Note that biases are generally not pruned, since they represent a small proportion of
the networks’ parameters, although the same reasoning could apply. Finally, there
is an impressive amount of importance criteria in the literature, for instance based
in filter statistics, entropy or mutual information. Moreover, the scale at which to
apply these criteria – single layer or entire network – may vary. See He et al. (2017b);
Huang et al. (2018b); Mittal et al. (2018); Luo et al. (2017); He et al. (2018a); Evci
et al. (2019); Louizos et al. (2017b) for pruning variants. For extensive references, we
refer the reader to the surveys by Liu et al. (2018) or Blalock et al. (2020). Finally,
the recent work by Frankle and Carbin (2018) constitute an interesting direction to
extract performant subnetworks40 that train efficiently (Caron et al., 2020).

39The Hessian has dimension: number of network parameters × number of network parameters,
and is therefore a huge matrix, but it can be approximated to by a diagonal matrix, in which case
it is no bigger than the gradient (Ollivier, 2015).

40Related work around the so-called “Lottery Tickets” will not be discussed here.
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Figure 2-11: Accuracy for several levels of compression (left) and theoretical speedup
(right) for a ResNet-18 on ImageNet reported by Blalock et al. (2020). Weight and
Gradient refer respectively to weight magnitude pruning and gradient magnitude
pruning. If these criteria are applied per layer, the method is prefixed with Layer. If
the criteria are applied to the whole network, the method is prefixed with Global.

Pruning in practice

Pruning is a very common technique for network compression and is for instance
implemented directly in PyTorch41. Users can perform random or magnitude pruning
or even define their own criterion to prune connections, neurons or channels. On a
side note, a technique for pruning42 a given set of entire layers at test time called
Stochastic Depth was developed and by Huang et al. (2016) for Vision architectures
and extended and modified by Fan et al. (2019) in Natural Language Processing tasks
with Transformers (Vaswani et al., 2017).

Pruning standard networks like a ResNet-18 (He et al., 2015a) on ImageNet with
pruning baselines in Equations (2.11) and (2.13) generally leads to a 2 to 4× compres-
sion ratio at the cost of a few percentage point in test top-1 accuracy, as depicted in
Figure 2-11. We observe a set of empirical Pareto Curves: the more we compress the
network, the more the accuracy decreases. Note that considering the criteria (weight
magnitude or gradient magnitude) for the whole network43 yields better accuracy
than considering them per layer44.

41https://pytorch.org/tutorials/intermediate/pruning_tutorial.
42More precisely, a “pruned” layer ℓ is replaced by the identity layer so that the output of the

previous layer 𝑦(ℓ−1) is directly fed to layer ℓ + 1.
43Rank all the weights 𝑤𝑒, 𝑒 ∈ 𝐸 and prune them according to the ranking.
44Rank the weights 𝑤𝜇→𝜈 , ℓ(𝜈) = ℓ per-layer and prune them according to the per-layer ranking.
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2.3.2 Structured Efficient Layers

In this Subsection, we seek to replace a dense weight matrix by a matrix or a product
or matrices that have fewer parameters while being faster at inference time. The main
constraint is that the parameters must be learnt – we do not seek to approximate
a dense trained matrix but rather to directly learn the structured matrix, so the
factorization must be compatible with back-propagation45. We briefly review the main
ideas below and point the interested reader to the survey by Cheng et al. (2017). In
this subsection we restrict ourselves to the 2𝐷 case and seek to approximate a weight
matrix 𝑊 ∈ R𝑛×𝑛 for simplicity.

Low Rank

One of the most common ways to approximate 𝑊 while saving parameters is to create
a bottleneck in the network by writing 𝑊 = 𝑈𝑉 where 𝑈 ∈ R𝑛×𝑝 and 𝑉 ∈ R𝑝×𝑛 where
𝑝 is smaller than 𝑛. This is equivalent to replacing the fully connected 𝑛×𝑛 layer by
two stacked fully-connected layers of dimensions 𝑛 × 𝑝 and 𝑝 × 𝑛, respectively. The
compression ratio is 2𝑝/𝑛. This layer is generally a strong baseline, as the resulting
network will be forced to find a compressed representation of the information, which
is the idea at the core of the auto-encoders (Bengio, 2009). The Low Rank (or
bottleneck) paradigm was extremely fruitful. For instance, generalizations of the low-
rank decomposition such as Tensor Train Oseledets (2011) or T-Net (Kossaifi et al.,
2019); some Transformer architectures using a low-rank approximation or the self-
attention mechanism such as the Linformer (Wang et al., 2020), and approximations
of the softmax46 (Grave et al., 2016) are all inspired by the low-rank paradigm.

Structured Sparse

Using a random sparse matrix instead of a dense one, with a proportion 𝛼 of non-zero
coefficients amounts to prune a proportion 1 − 𝛼 of the weights before the training
(Molchanov et al., 2016). For such matrices, sparse calculations rely on optimized
kernels 47. However, more structured operations may be faster. For instance, a struc-
tured layer with a block-diagonal matrix, a permutation of the features and another

45More precisely, the structured layers could be initialized with an approximation of the dense
matrix instead of being randomly initialized, and then finetuned. In practice, finetuning is neces-
sary to get good performance, therefore authors generally skip this initialization step (when it is
computationally tractable).

46The softmax function 𝑓 : R𝑑 ↦→ R𝑑 is defined as 𝑓(𝑥)𝑗 = 𝑒𝑥𝑗∑︀
𝑖

𝑒𝑥𝑖
.

47Such as the cuSPARSE kernel on Nvidia’s GPUs: https://developer.nvidia.com/cusparse.
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Figure 2-12: ShuffleNet block (Zhang et al., 2017b). (a) no shuffle, (b) channel shuffle
and (c) an equivalent implementation of (b).

block-diagonal matrix. This parameterization relies on the batch-multiplication op-
eration. We define a block-diagonal matrix with 𝑘 blocks 𝑀𝑖 of size 𝑝× 𝑝 as

𝐵 =

⎛⎜⎜⎜⎝
𝑀1 · · · 0
... . . . ...
0 · · · 𝑀𝑘

⎞⎟⎟⎟⎠ .

Then, the structured layer writes 𝑊 = 𝐵1𝑃𝐵2 where 𝐵1 and 𝐵2 are learnt block-
diagonal matrices and 𝑃 is a permutation matrix (which is not learnt but fixed). The
idea is to combine local linear interactions in 𝐵1 and 𝐵2 interleaved by a permutation
to add some diversity. The compression ratio is 2𝑘𝑝2/𝑛2. Zhang et al. (2017b) use this
idea to design an efficient network based on group convolutions – the convolutional
equivalent of the block-diagonal matrix 𝐵 – and permutations called the ShuffleNet,
depicted in Figure 2-12.

Fourier and Hadamard

A few methods rely on the discrete Fourier or Hadamard transforms, such as Fast-
Food (Le et al., 2014), ACDC (Moczulski et al., 2015) and their variants (Arjovsky
et al., 2015; Choromanska et al., 2015). these methods rely on the Fast Fourier
or Hadamard Transform and its 𝑂(𝑛 log 𝑛) implementation using the Cooley-Tukey
algorithm (Cooley et al., 1967).

Let us give some insights explaining why such transforms are used, besides their
computational advantage. We rely on the theory of Fast Random Projections devel-
oped by Ailon and Chazelle (2006). The goal of this approach is to perform random
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projections that are computationally cheap in time and space, that approximately
preserve the metric information and that are not learnt. In a random projection, the
basic operation takes the form 𝑦 = 𝑊𝑥, where 𝑊 is a random matrix. As stated
by the famous Johnson-Leidenstrauss Lemma (Johnson and Lindenstrauss, 1984), the
obtained embeddings approximately preserve metric information48 when 𝑊 is a Gaus-
sian matrix (a matrix whose entries are drawn independently from 𝒩 (0, 1)). Ailon
and Chazelle (2006) introduced an alternative approach that mimics the properties of
random Gaussian matrices but that can be stored very efficiently. In particular, they
proposed the PHD transform: 𝑦 = 𝑃𝐻𝐷𝑥 where 𝑃 is a sparse random matrix with
Gaussian entries, 𝐻 is the Hadamard matrix and 𝐷 a diagonal matrix with entries
in {−1,+1} drawn independently with probability 1/2.

The transformations that we will detail now (ACDC and FastFood) can be seen as
an alternative to this fast random projection where some of the parameters are learnt.
The idea is to keep the approximate metric preservation properties while letting
the network adapt to this particular layer. Denoting diagonal matrices of learnt
parameters with the letter 𝐷, fixed permutations matrices with 𝑃 , the Hadamard
transform with 𝐻 and the Fourier transform with 𝐹 , the FastFood transform writes
𝐷1𝐻𝐷2𝑃𝐻𝐷3 whereas the ACDC transform corresponds to 𝐷1𝐹𝐷2𝐹

−1.

Circulant Matrices and their Variants

We now review some classical learnt structured matrices whose storage complex-
ity is linear (Sindhwani et al., 2015). The circulant matrix of size 𝑛 is defined
with (𝑢0, . . . , 𝑢𝑛−1) ∈ R𝑛 and this vector is successively shifted to generate the next
columns. Similar matrices are the Vandermonde and Cauchy matrices. The struc-
ture of these matrices can be exploited for faster linear algebraic operations such as
matrix-vector multiplication, inversion and factorization. In particular, the matrix-
vector multiplication with circulant matrix is computable in in 𝑂(𝑛 log 𝑛) time us-
ing the Fourier Transform. Vandermonde and Cauchy matrix-vector operations take
𝑂(𝑛 log2 𝑛) time (Sindhwani et al., 2015). Note that there exist infinite possibilities
of designing structured matrices and combining them to obtain structured layers (see
Choromanska et al. (2015)) for further examples.

48On finite sets, provided that the dimension of 𝑦 is at least logarithmic in the size of the set.
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Kronecker

Jose et al. (2018) consider parameterizing the matrix 𝑊 as a Kronecker product
of 𝑘 learnt matrices called Kronecker factors. This representation is flexible as we
can choose the number and the size of the Kronecker factors, which allows us to
design models with the appropriate trade-off between computational efficiency and
accuracy. The authors also introduced what they call a soft unitary constraint (Cisse
et al., 2017) which helps conditioning the matrix, especially in a recurrent network.
A strict unitary constraint (i.e. projecting the matrix at each iteration so that it is
orthogonal) would be computationally expensive and may deter the performances of
the network. Kronecker products (or sum of Kronecker products) as also useful in
the context of dictionary learning, Dantas et al. (2017, 2019).

2.3.3 Architecture Design for Fast Inference

Techniques designed in previous Subsections 2.3.1 and 2.3.2 led the research com-
munity to focus on more efficient architectures that are trained from scratch. Such
architectures are either designed by hand – following some ground principle – or using
more advanced frameworks (architecture search or graph neural networks).

Efficient Architectures

One of the first deep neural networks, AlexNet (Krizhevsky et al., 2012), contained 60
million parameters, including 10 million for the last three fully connected layers. The
research community first searched for deeper and more parameter-efficient networks
to ease the training on GPUs, using only convolutions with kernel sizes of 3 × 3
and 1 × 1 respectively49 (except for the first layer) and one single fully connected
layer acting as a classifier. Such popular networks include the VGG (Simonyan and
Zisserman, 2014), Inception (Szegedy et al., 2014), ResNets and ResNeXts (He et al.,
2015a; Xie et al., 2017) models that are intensively used for various benchmarks.

Guided by the possible mobile applications, researchers then focused on networks
that are able to run in real-time on a CPU at inference time. Such models, among
which MobileNets (Howard et al., 2017; Sandler et al., 2018a), ShuffleNets (Zhang
et al., 2017b) or SqueezeNets (Hu et al., 2018) typically rely on a combination of

49A traditional building block generally includes a 3×3 convolution (i.e., a convolution with kernel
size 3× 3) interleaved with two 1× 1 convolutions (He et al., 2015a).
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Operation Kernel Size Parameters Multiplications
Standard Convolution 3× 3 9𝐶in𝐶out 𝑂(9𝐻𝑊𝐶in𝐶out)
Point-wise Convolution 1× 1 𝐶in𝐶out 𝑂(𝐻𝑊𝐶in𝐶out)
Depth-wise Convolution 3× 3 9𝐶out 𝑂(9𝐻𝑊𝐶out)

Table 2.3: Respective number of parameters and multiplications for various types
of convolutions. The input activations have size 1 × 𝐶in × 𝐻 ×𝑊 . For depth-wise
convolutions, we assume that 𝐶in = 𝐶out. Thus, sequentially combining one point-
wise convolution with 𝐶in input channels and 𝐶out output channels, one depth-wise
convolution and one point-wise convolution with 𝐶out input channels and 𝐶in output
channels only necessitates a fraction 𝐶out/𝐶in(2/9 + 1/𝐶in) of the parameters and
operations required by a single standard 3 × 3 convolution with 𝐶in input channels
and 𝐶in output channels.

depth-wise50 and point-wise51 convolutional filters that require less parameters and
floating-point operations than a traditional 3× 3 convolution (see Table 2.3). These
efficient architectures inspired the development of more efficient Transformers in NLP
(Vaswani et al., 2017) such as MobileBERT (Sun et al., 2020) as well as architecture
adaptations by Wu et al. (2019b); Zhang et al. (2018a) and Sukhbaatar et al. (2019a).

Finally, the EfficientNet (Tan and Le, 2019) and RegNet (Radosavovic et al., 2020)
network families bridge the gap between GPU-efficient, yet heavy models and mobile-
capable networks by proposing a range of models for various operating points. Their
common denominator is to heavily rely almost exclusively on group convolutions and
pointwise convolutions with a small – yet carefully tuned – number of channels that
grows with depth. As depicted in Figure 2-13, the smallest networks have over 4
million parameters for a test top-1 error on ImageNet around 25%, to be compared
with a ResNet-5052 that has 24 million parameters for a test top-1 error around 24%.

Feature Reuse and Wiring Patterns

Guided by the use of residual connections (He et al., 2015a), Huang et al. (2017a)
designed a densely connected convolutional network (DenseNet) where each layer
takes as input the output features of all the preceding layers. Such architectures
are more parameter-efficient and yield good performance, in part since the skip-
connections strongly encourage feature reuse through the upper layers, and allow us
to easily train very deep networks (more than 100 stacked layers). For instance, a

50Group convolutions with the number of groups equal to the number of input features, generally
with a kernel size of 3× 3.

51Standard 1× 1 convolutions.
52The suffix 50 stands for the number of layers in the network.
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Figure 2-13: Tradeoffs in terms of FLOPs, number of parameters and total number
of activations during a forward pass for EfficientNets and RegNets as exposed by
Radosavovic et al. (2020). Error is test top-1 error on ImageNet object classification.

DenseNet-201 achieves 1.5% less top-1 error than a ResNet-50 for the same number
of parameters. In the search for more efficiency, (Huang et al., 2018a) propose to
replace the standard 3 × 3 convolutions used in the DenseNet by learnt 3 × 3 group
convolutions in a network called the CondenseNet. Indeed, group convolutions are
more parameter efficient and mobile-friendly than their traditional counterparts53.

Feature reuse also powers the feature extractor of the Faster-R-CNN object de-
tection model (Ren et al., 2015), which is a Feature Pyramid Network, allowing to
extract information from the input image at different scales. We refer the reader to
(Lin et al., 2017a) for further details.

Weight Sharing

Weight sharing is a simple technique assigning different parts of the network with the
same value, for instance when two layers are assigned with the same weight matrix.
During back-propagation, the gradients are summed54 so that the updated shared
value remains the same. This method is used among others by Dehghani et al. (2019)
or Lan et al. (2019) to produce parameter-efficient Transformers.

A natural extension of weight sharing is the Siamese Networks (Bromley et al.,
1993). The idea is to share the weights or two entire blocks or networks, each of
them being given a different type of input, in order to mutualize knowledge. Siamese
Networks are used successfully to compare image patches (Zagoruyko and Komodakis,
2015), for object tracking (Bertinetto et al., 2016) or for joint learning of speaker and
phonetic similarities (Zeghidour et al., 2016).

53The depth-wise convolution in Table 2.3 is a particular case of group convolution.
54Or averaged.
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Neural Architecture Search

Feedforward Neural Networks are defined as directed acyclic graphs. In light of this
generic definition, it appears that the traditional architectures represent a negligible
proportion of all possible feedforward networks. Instead of relying on some based
principles and designing the network essentially by hand, requiring some in-domain
knowledge, Zoph and Le (2016) propose to use reinforcement learning to generate the
model descriptions of neural networks that maximize the reward – here the validation
accuracy on a dataset of interest, followed by Liu et al. (2017a); Pham et al. (2018);
Liu et al. (2019a) and Luo et al. (2018). Such approaches conducted Zoph et al.
(2017) to produce the NASNet models, Howard et al. (2019) to produce MobileNet-
v3, Tan and Le (2019) to produce the aforementioned EfficientNet seed network or
Chen et al. (2020a) to produce the AdaBERT models.

Following this recent progress, Xie et al. (2019) propose to loosen the constraints
on the search space of wiring patterns by relying on various random graph models from
graph theory. Going further, Radosavovic et al. (2019) and Radosavovic et al. (2020)
propose to design design spaces combining the advantages of Neural Architecture
Search (NAS) and manual design, leading to the RegNet network families. Finally,
traditional NAS approaches require to train (at least partially) the generated network
to get the reward at each time step of the reinforcement learning algorithm, which
is extremely computationally intensive55. To alleviate this issue, Wu et al. (2019a)
propose to train a stochastic super-net that contains a set parallel blocks at each
layer, from which one given is sampled during every forward pass.

On a side note, Press et al. (2020) design a “Sandwich Transformer” by testing
some random reordering of the sublayers of a Transformer Network and demonstrate
gains on machine translation compared to the standard interleaved transformer.

2.3.4 Distillation: Learning Form a Teacher

Distillation techniques boost the accuracy of a small student network by training it
to mimic the output of a larger teacher network instead of training it from scratch
(Bucila et al., 2006; Ba and Caruana, 2013; Hinton et al., 2015).

55See in particular Table 3 of Wu et al. (2019a).
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KL Divergence

Assume the student is producing a vector of probabilities 𝑞 = (𝑞1, . . . , 𝑞𝑛) and the
teacher a vector of probabilities 𝑝 = (𝑝1, . . . , 𝑝𝑛)56. Here, the student network will
not be trained with a classical cross-entropy loss (defined in Equation (2.16)) but
with a distillation loss measuring the distance between the two output distributions:

ℒ𝐷(𝑞, 𝑝) = 𝐷𝐾𝐿(𝑝||𝑞) =
∑︁
𝑖

𝑝𝑖 log
(︃
𝑝𝑖
𝑞𝑖

)︃
. (2.15)

Intuitively, say the task is ImageNet classification for both the teacher and the stu-
dent, and the input image is a picture of an apple and a banana, labeled as ap-
ple. When training the student network from scratch without distillation, the cross-
entropy loss will indicate that only a banana is present in the picture since the su-
pervision comes from a one-hot encoding of the true class. However, when trained
with distillation, the student network supervised with the vector of probabilities of
the teacher network for this particular image that contains richer information. In par-
ticular, the class banana will be assigned with a small yet non-zero probability. Note
that the cross-entropy loss is a particular case of the KL Divergence when the teacher
probability vector corresponds to the one-hot encoding of the true class indexed by
𝑗: if 𝑝𝑖 = 0 for 𝑖 ̸= 𝑗 and 𝑝𝑗 = 1, then57

ℒ𝐶(𝑞, 𝑗) = 𝐷𝐾𝐿(𝑝||𝑞) = log
(︃

1
𝑞𝑗

)︃
= − log(𝑞𝑗). (2.16)

Sometimes, the student is trained with a combination ℒ of the traditional cross-
entropy loss ℒ𝐶 , and of the distillation loss ℒ𝐷. Denoting 𝜆 > 0 a regularization pa-
rameter, ℒ(𝑞, 𝑝, 𝑗) = ℒ𝐶(𝑞, 𝑗)+𝜆ℒ𝐷(𝑞, 𝑝). The teacher network is trained beforehand
and stays fixed – it only provides the probability vectors – during the distillation.

Distillation at Every Layer

Following the distillation paradigm, Romero et al. (2014) propose to train a student
network using not only the outputs but also the intermediate representations 𝑦(ℓ)(𝑥)
generated by the teacher network. Since the size of the intermediate representations
– or features – of the student and the teacher or even the number of layers may
not be equal, the authors introduce additional learnt parameters to map these rep-

56Such vectors are obtained by applying the softmax function to the output of the network.
57With the convention that 0 log(0) = 0.
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resentations and minimize the 𝐿2 norm between them. Experiments conclude that
guiding the training of the student network with intermediate “hints” provides faster
and better convergence, as demonstrated subsequently for BERT model training by
(Sanh et al., 2019) or (Jiao et al., 2019) and even for Generative Adversarial Networks
(GAN) by (Li et al., 2020).

Semi-Supervised Training

When training a student network with the plain distillation loss ℒ𝐷, there is no
need for labeled data, provided a trained teacher network is available. However,
the teacher network might be trained with labeled data for particular tasks such as
image classification. Yalniz et al. (2019) exploit this idea and propose to train a large-
capacity teacher network on a labeled dataset. The teacher is then used to label a
large collection of unlabelled images (up to 1 billion) that are use to pre-train the
student model, which is finally finetuned on the labelled dataset.

2.3.5 Scalar and Vector Quantization

Quantization generally refers to the idea of storing parameters or groups of parameters
at a lower precision than the standard floating-point fp32 format58 – recall that fp32
numbers are stored over 32 bits or 4 bytes59. The cornerstone of quantization is
the 𝑘-means algorithm (Steinhaus, 1956; MacQueen et al., 1967; Lloyd, 1982) used
to cluster the parameters or groups of parameters by assigning every member of one
cluster with the value of its centroid or codeword. This discretization helps reduce the
network size and improve the inference time with specialized kernels and/or hardware
as explained in Subsection 2.3.6, at the cost of a reduced accuracy. In what follows
we work with a weight matrix 𝑊 = (𝑤𝑘,𝑙) ∈ R𝐶in×𝐶out and focus on the main training
techniques for quantizing while maintaining a desired level of accuracy.

Floating-point Arithmetics

Before exposing the quantization methods per se, we briefly review the floating-point
half-precision format or fp1660, which is similar to the fp32 format except that the
numbers are stored over 16 bits. This format, that halves the size of the network, is

58Also called float 32 or single-precision as opposed to fp64 double-precision.
59The IEEE 754 fp32 format has 1 sign bit, 8 exponent bits and 23 mantissa bits to represent

numbers in absolute value between 1× 10−38 and 3× 1038 with 6 to 9 significant decimal digits.
60The IEEE 754 fp16 format has 1 sign bit, 5 exponent bits and 10 mantissa bits to represent

numbers in absolute value between 6× 10−8 and 65,504 with 3 to 4 significant decimal digits.
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becoming standard for storing and even for training Deep Learning models (Micike-
vicius et al., 2018). Indeed, training with half-precision allows us to consider bigger
networks or to train existing networks faster as detailed in Subsection 2.3.6. Since
the range allowed by fp16 is smaller than fp32, the authors propose to stabilize the
training (1) by dynamically scaling the loss so that the gradients of the activations fall
within the acceptable range; (2) by keeping a master fp32 copy61 of the network’s
parameters for the optimization step and (3) by leaving the BatchNorm layers in
fp32 format. Many frameworks such as APEX62 now propose seamless integration of
mixed precision training with no loss of accuracy compared to fp32.

Scalar Quantization

Fixed-point scalar quantization is a generic method that replaces the floating-point
weights by 𝑁 bit fixed-point numbers (Gupta et al., 2015). Fixed-point operations
generally take less energy and area on chips than their floating-point counterparts
(Han et al., 2016a; Lian et al., 2019). Setting 𝑁 = 8 defines the popular int8
quantization scheme while having 𝑁 = 1 encompasses the extreme case of binariza-
tion (Courbariaux et al., 2015). More precisely, the parameters are rounded to one
of 2𝑁 possible codewords. Let us detail the case of uniform scalar quantization below.
Here, the codewords correspond to bins evenly spaced by a scale factor 𝑠 and shifted
by a bias 𝑧. Each weight 𝑤𝑘𝑙 is mapped to its nearest codeword 𝑐 by successively
quantizing with 𝑧 ↦→ round(𝑤𝑘𝑙/𝑠+ 𝑧) and dequantizing with the inverse operation:

𝑐 = (round(𝑤𝑘𝑙/𝑠+ 𝑧)− 𝑧)× 𝑠, (2.17)

where we compute the scale and bias from the trained fp32 weight statistics:

𝑠 = max𝑊 −min𝑊
2𝑁 − 1 and 𝑧 = round(min𝑊/𝑠). (2.18)

This calibration step varies according to the quantization methods and will be dis-
cussed in the remainder of this Section. Note that the uniform rounding scheme in
Equation (6.2) allows for fixed-point arithmetic with implementations in PyTorch and
Tensorflow (see Subsection 2.3.6). The compression rate is 32/𝑁 and the activations
𝑦(ℓ)(𝑥) are also generally rounded to 𝑁 -bit fixed-point numbers. In what follows, we

61This occupies additional memory in the GPU. However, the number of training activations is
generally much higher than the number of weights in standard training regimes with large batches.
Hence, this additional cost is minor.

62https://github.com/NVIDIA/apex.

72

https://github.com/NVIDIA/apex


first focus on the widely used case of int8 with 𝑁 = 8 and then detail compression
schemes with lower precisions. Due to its wide range of applications, there is an
extremely large body of literature on int8 quantization. For the sake of conciseness,
we mention the salient trends and refer the reader to the two recent surveys (Guo,
2018; Cheng et al., 2017) for a comprehensive overview.

∘ Post-training Quantization. One straightforward baseline is that of post-training
quantization, where the scale 𝑠 and the zero-point 𝑧 are calibrated63 as follows.

– The weight quantization parameters are calibrated offline as the weights are
fixed, and per tensor as in Equation (2.18). There is also the possibility of
quantizing per channel where we calibrate one scale and zero-point per chan-
nel, which diminishes the quantization error while presenting a small memory
overhead64, although it requires specialized kernels, see Subsection 2.3.6.

– The activation quantization parameters are calibrated using an exponential
moving average (EMA) of the current quantization parameters when forward-
ing a few batches of data and maintaining the weights fixed. Since there may
be some outliers in the activation values, considering the minimum and max-
imum values of the activations for calibration as detailed in Equation (2.18)
may decrease the accuracy. Hence, there exist more sophisticated observers65

minimizing the quantization error measured as the 𝐿2 norm between the quan-
tized and non-quantized tensors.

∘ Quantization-Aware Training (QAT). This very strong baseline was designed
by Krishnamoorthi (2018). The idea is to emulate int8 quantization of the weights
and/or the activations when training the network to prepare the post-training quan-
tization. The main under-the-hood take-away is to use the Straight-Through Esti-
mator (STE) during the backward pass (Bengio et al., 2013; Courbariaux and Ben-
gio, 2016). With STE, the gradients are obtained by replacing the non-quantized
weights by their quantized counterparts during the backward pass (see 6.4.1).

∘ Learnable Scale and Zero-Point. Instead of calibrating the scale and zero-
point as explained in Equation (2.18), one possibility is to learn them through
back-propagation. The main difficulty is to make the quantization operation dif-

63https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html.
64For a square matrix of size |𝑁ℓ| × |𝑁ℓ|, it requires 2|𝑁𝐿| calibration parameters instead of 2.
65https://github.com/pytorch/pytorch/blob/master/torch/quantization/observer.py.
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ferentiable with respect to 𝑤 and 𝑧, either by modeling the quantization noise66

(Nagel et al., 2019) or by approximating the gradients (Bhalgat et al., 2020).

∘ Non-uniform Schemes. The common idea of non-uniform quantization schemes
(Choi et al., 2018; Li et al., 2019) is to take advantage of the bell-shaped and
long-tailed distribution of the weights and activations (Han et al., 2016b). Indeed,
uniform quantization is optimal when the weights or activations follow a uniform
distribution, which is not the case in practice. Here, by having adaptive bin sizes,
the authors observe less degradation in the test accuracy. However, the methods
are less prone to hardware acceleration, in contrast to uniform quantization.

∘ Mixed precision. There are extensive studies of scalar quantization to train
networks with lower precision weights and activations, for instance (Courbariaux
et al., 2015; Courbariaux and Bengio, 2016; Zhu et al., 2016; Zhou et al., 2016;
Rastegari et al., 2016; McDonnell, 2018). Note that precisions can be mixed (Wu
et al., 2018) depending on the layer’s sensitivity to quantization67 (Gluska and
Grobman, 2020), or by considering 4-bit weights and 8-bit activations for instance.

Vector Quantization

Vector Quantization (VQ) and Product Quantization (PQ) have been extensively
studied in the context of nearest-neighbor search (Jegou et al., 2011; Ge et al., 2014;
Norouzi and Fleet, 2013). The idea is to decompose the original high-dimensional
space into a product of subspaces that are quantized separately with a joint codebook.
To our knowledge, Gong et al. (2014) were the first to introduce these quantizers for
neural network quantization, followed by Carreira-Perpiñán and Idelbayev (2017).

Compressing 𝑊 with Product Quantization (PQ) amounts to evenly split each
column into 𝑚 subvectors of dimension 𝑑 and to learn a codebook on the resulting
set of 𝑚𝐶out subvectors68. Then, each column of 𝑊 is quantized by mapping each of
its subvectors to its nearest codeword in the codebook 𝒞 = {𝑐1, . . . , 𝑐𝑘} as illustrated
in Figure 2-14. When 𝑚 is set to 1, PQ is equivalent to vector quantization (VQ) and
when 𝑚 is equal to 𝐶in, it is the scalar 𝑘-means algorithm. The main benefit of PQ
is its expressivity: each column is mapped to a vector in the product 𝒞 = 𝒞 × · · ·×𝒞,
thus PQ generates an implicit codebook of size 𝑘𝑚.

66For instance, model the noise as a normal distribution 𝒩 (0, 𝜎) and compute the gradient wrt 𝜎.
67Measure for instance by observing the loss degradation with quantizing only this particular layer.
68For simplicity, we assume that 𝐶in is a multiple of 𝑚, i.e. that all the subvectors have the same

dimension 𝑑 = 𝐶in/𝑚.
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Figure 2-14: Performing Product Quantization on a weight matrix 𝑊 .

As we will see in Chapters 5 and 6, employing this discretization off-the-shelf does
not optimize the right objective function, and leads to a catastrophic drift of perfor-
mance for deep networks. However, using a proper objective function and a careful
finetuning of the codebook (Han et al., 2016b) yields state-of-the-art performance as
explained in the aforementioned Chapters.

2.3.6 Hardware and Metrics

While the metrics of network size (measured in MB) and predictive performance (mea-
sured with some test accuracy) enjoy a wide consensus for measuring the compression
efficiency, the inference time is subject to various metrics or proxys that depend on
the target hardware. Here, we provide a few pointers to such metrics along with
their (dis)advantages. We focus on inference (test time) for two reasons. First, deep
learning models are currently mostly deployed to embedded devices or production
servers for inference. Second, it is currently not possible to train a quantized neural
network below half-precision: for instance, QAT (see Subsection 2.3.5) only emulates
quantization69 to prepare the post-training, true quantization. Therefore, training
with low-precision ML70 is a future challenge (Kung et al., 2020; Jeon et al., 2020).

Kernels

We first focus give a very high-level overview of the concept of kernels. Roughly
speaking, a kernel is a hardware-dependent set of low-level instructions that perform
standard linear algebra operations such as matrix multiplication or convolution in an

69By successively quantizing and dequantizing weights and activations.
70Low-precision Machine Learning.
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optimized way. The first baseline for accelerating neural network inference is to fuse
kernels. For instance, at inference time, the sequence convolution-ReLU-BatchNorm71

is fusable into a single kernel and saves in/out memory writing of the intermediary
activations. This same logic is followed by TorchScript72, which is an intermediate,
compiled representation of a PyTorch model that runs in high-performance envi-
ronments such as C++. Finally, int8 libraries such as fbgemm73 provide speedups
compared to their float counterparts by performing the operations – for instance
convolutions – in int8. Accumulation is performed in int32 and the weights are
pre-packed so that their access in memory during the inner loop are adjacent.

Hardware

Fixed-point quantization methods such as int8 benefit from specialized hardware to
also improve the runtime during inference (Vanhoucke et al., 2011). Researchers then
attempted to incorporate these hardware constraints when designing their compres-
sion algorithms, in particular in terms of latency: for instance, using an emulator of
the target hardware (Wang et al., 2018a; Yang et al., 2016), or a proxy of the hard-
ware inference time such as FLOPs (see next), or with the framework of reinforcement
learning (Howard et al., 2019). Since specialized hardware is generally more perfor-
mant but allows for less flexibility in the choice of operations and is less widespread,
there is a tradeoff depending on the target inference time, the target devices and the
development time. Among the popular hardware present in embedded devices, we
name a few, including: the CPU74, the DSP75, the GPU76, or dedicated accelerators
for deep learning inference such as Apple’s Neural Engine. Some modern chips in-
clude all these components, such as the SnapDragon 85577. Each computation unit
comes with its own development toolkit and libraries78.

FLOPS and Other Metrics

Since measuring the hardware latency requires a consequent engineering effort as seen
in the previous paragraph, some work consider proxy metrics such as the FLOPs or

71https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html.
72https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html.
73https://github.com/pytorch/FBGEMM.
74Central Processing Unit, the most widespread but the less specialized computation unit.
75Digital Signal Processor, usually used to process real-world time series.
76Present in most modern smartphones, offloads the CPU for image processing and ML inference.
77Which also has a dedicated module for fast int8 inference.
78For instance, models running on Apple’s phone GPUs are converted into the CoreML format.
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Figure 2-15: Left: Pareto curve of more than 250 image classification models on
ImageNet with no added compression methods. Right: zoom on the bottom-left
corner. Higher top-1 accuracy, lower latency and lower number of parameters is
better. Timings were computed on a Quad-Core Intel Core i7, on a single thread.

FLoating-point Operations79 required for performing one forward pass. As others
have noted (Lebedev et al., 2014; Figurnov et al., 2016; Yang et al., 2016; Louizos
et al., 2017a; He et al., 2018b), these metrics are far from perfect. Indeed, parameter
count and FLOPs are a loose proxy for real-world latency, throughput, memory usage
(RAM), and power consumption (battery drain). In other words, not all FLOPs are
equal (Dudziak et al., 2020). Symmetrically, evaluating the latency of a deep learning
model based only on the number of operations it is able to perform per second is
considered harmful Sze et al. (2020). As an illustration, we give an overview of
the current empirical Pareto curve80 of computer vision models in terms of number
of parameters, accuracy and latency in Figure 2-15 with no particular optimization
(torchscript, int8) so only the relative value of the displayed numbers matters.

The Hardware Lottery

Finally, we close this Subsection with the concept of Hardware Lottery (Hooker, 2020).
In this essay, the author underlines the interdependency between existing hardware
and fruitful research directions. Based on examples from computer science history,
the author argues that hardware lotteries can delay research progress, especially given
the advent of specialized hardware that increases the frictions when testing ideas that
do not rely on this hardware.

79FLOPs denotes a number of floating point operations, whereas FLOPS denotes a number of
floating point operations per second. Converting FLOPs to FLOPS requires a framerate, i.e. how
many forward passes are required within one second.

80Obtained using the framework: https://github.com/rwightman/pytorch-image-models.
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Smaller Models, Bigger Biases?

Hooker et al. (2020b) explored the impact of compression on image recognition mod-
els’ ability to perform accurately across various human groups. In earlier work, Hooker
et al. (2020a) showed that compressed image recognition models, although they main-
tained their accuracy overall, had trouble identifying classes that were rare in their
training data. To learn whether that shortcoming translates into bias against un-
derrepresented human types, the researchers trained models to recognize a particular
class (people with blond hair), compressed them, and measured the differences in
their accuracy across different types of people. This enabled them to point out some
gaps in performance between compressed and uncompressed models with respect to
underrepresented groups.

2.4 Conclusion

In this Chapter, we studied the over-parameterization of Neural Networks from the
point of view of the deep learning practitioner, the engineer and the mathematician.
While this parameter redundancy is at the core of Deep Learning and helps opti-
mization, it presents training challenges that can be alleviated by introducing proper
regularization and normalization techniques. Another way to take advantage of this
redundancy is to group networks that behave identically and work in the quotient
space. This idea relies on the concept of functional equivalence classes, that are in
general surprisingly small and are generated only by permutations and rescalings of
hidden neurons. Studying the redundancy of the network’s parameters naturally leads
to the question of the efficiency of such networks, hence to the question of their com-
pression. We reviewed various compression methods, along with the success metrics,
especially in terms of latency on a given target hardware. Although not completely
orthogonal – for instance pruning can be viewed as architecture search and learned
group convolutions as sparsity patterns – these methods can be combined and the
question of selecting the right compression method (or combination thereof) for a
given task and given target metrics is still an open problem.
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Chapter 3

Group and Understand: Functional
Equivalence Classes

In this Chapter, we aim at characterizing functional equivalence classes of neural
networks. As illustrated with our contribution in Chapter 4, a better understanding
of the structure of such classes would allow us to conveniently operate in the space of
neural network parameterizations quotiented by the functional equivalence relation.
We restrict ourselves to feedforward ReLU neural networks. We first list various
definitions of the rescaling operation found in the literature and prove that they are
all equivalent under the condition that each hidden neuron is connected to at least one
input neuron and one output neuron. We then provide a stand-alone result for the one-
hidden-layer case where we prove that two functionally equivalent parameterizations
are permutation-rescaling equivalent under some irreducibility conditions. Next, we
investigate the case with many hidden layers by relying on the algebraic and geometric
properties of the rescaling operation and by considering a local version of the rescaling
equivalence. Finally, noticing that the case with deeper networks is not entirely solved,
we list potential future directions and motivate them with the one-hidden-layer case.

3.1 Introduction

In this work, we study the over-parameterization of neural networks from the perspec-
tive of their functional equivalence classes. More precisely, we denote 𝑅𝜃 the function
implemented by a network parameterized with 𝜃 and call it the realization of the
network. Then, two parameterizations 𝜃 and 𝜃′ are functionally equivalent if both re-
alizations 𝑅𝜃 and 𝑅𝜃′ are equal. As explained in Section 2.2.5, members of the same
functional equivalence class behave differently under the action of common methods
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used extensively in the Deep Learning field, for instance optimization or quantiza-
tion algorithms. We argue that a better understanding of such classes may lead for
instance to refined or novel optimization or quantization schemes, see Chapter 4.

We begin by recalling various definitions of rescaling equivalence for ReLU net-
works found in the literature as listed in Subsection 2.2.1, namely at the layer (Def-
inition 2.2.2), neuron (Definition 2.2.3) and path level (Definition 2.2.4). Note that
we introduce later in this Chapter our own definition of rescaling equivalence that we
call trajectory-wise (Definition 3.3.4). Our first contribution is to reconcile these four
definitions for admissible parameterizations, as proven in Appendix A.1.1. More for-
mally, we denote by ∼Layer (resp. ∼Neuron, ∼Path, ∼Trajectory) the equivalence relation
induced by the layer (resp. neuron, path, trajectory) definition, and state the result
in the following Proposition.

Proposition 3.1.1. Let 𝜃 be an admissible parameterization. Then, for every 𝜃′,
admissible or not, and every 𝑎, 𝑏 ∈ {Layer,Neuron,Path,Trajectory}, we have 𝜃 ∼𝑎
𝜃′ ⇐⇒ 𝜃 ∼𝑏 𝜃′.

The admissibility assumption on 𝜃 is not used to prove that the layer-wise and
neuron-wise definitions are equivalent, but is used to show all the other equivalences.
We end this Section by recalling and proving a well-known result (Neyshabur et al.,
2015), which states that functional equivalence classes contain orbits generated by
the rescaling and permutation operations (proven in Appendix A.1.2).

Proposition 3.1.2. Two parameterizations that are permutation-rescaling equivalent
are functionally equivalent.

In the remainder of this Chapter, we investigate the reciprocal of Proposition 3.1.2:
we aim at identifying irreducibility conditions under which two parameterizations that
are functionally equivalent are also permutation-rescaling equivalent.

3.2 Reciprocal for One Hidden Layer

We focus first on the one hidden layer case, for which we derive sufficient conditions
such that functional equivalence implies permutation-rescaling equivalence and inves-
tigate their necessity. The considered general architecture is depicted in Figure 3-1.
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Figure 3-1: One hidden layer network architecture. Hidden neurons are depicted as
circles whereas input and output neurons are displayed as squares.

3.2.1 Irreducible Parameterizations

We first define irreducible parameterizations by introducing the concepts of dead,
twin and co-dependant neurons for one hidden layer architectures.

Definition 3.2.1 (Dead Neuron). Let 𝐺 be a one hidden layer architecture valued
with 𝜃. Any hidden neuron 𝜈 ∈ 𝐻 is said to be dead if either 𝑤∙→𝜈 = 0 or 𝑤𝜈→∙ = 0.
Remark that 𝜃 is admissible if, and only if, there are no dead neurons.

Intuitively, a dead neuron does not participate in the realization 𝑅𝜃 of the network.
For 𝜃 admissible, we denote, for any 𝜈 ∈ 𝐻, Γ𝜈 the affine hyperplane

Γ𝜈 = {𝑥 ∈ R𝑁0 | ⟨𝑤∙→𝜈 , 𝑥⟩+ 𝑏𝜈 = 0}.

Note that Γ𝜈 is well-defined since 𝑤∙→𝜈 ̸= 0 (𝜃 is admissible).

Definition 3.2.2 (Twin Neurons). Let 𝐺 be a one hidden layer architecture valued
with 𝜃 admissible. Any hidden neurons 𝜈1 ̸= 𝜈2 ∈ 𝐻 are said to be twins if there
exists 𝑑 ̸= 0 such that 𝑤∙→𝜈1 = 𝑑𝑤∙→𝜈2 and 𝑏𝜈1 = 𝑑𝑏𝜈2. Equivalently, the separating
hyperplanes are equal: Γ𝜈1 = Γ𝜈2.

Intuitively, two twin neurons either (1) fire in the same half-space or (2) fire
in complementary half-spaces. Note that we can properly define twin neurons in
Definition 3.2.4 since there are no dead neurons, hence 𝜃 is admissible.
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Figure 3-2: Left: example of a dead neuron, 𝜈2. Intuitively, 𝜈2 does not participate
in the realization of the network 𝑅𝜃. Center: alternative parameterization 𝜃′ such
that 𝜃 and 𝜃′ are not permutation-rescaling equivalent, with 𝜀 > 0. Right: the same
realization is implemented by 𝜃 and 𝜃′. Squares denote input or output neurons
whereas circles denote hidden neurons. Weights are specified on the connections
between two neurons and all biases are set to zero (not represented here).

Definition 3.2.3 (Co-dependant Neurons). Let 𝐺 be a one hidden layer architecture
valued with 𝜃 admissible. For any 𝜂 ∈ 𝑁2, define ℐ𝜂 = {𝜈 ∈ 𝑁1 | 𝑤𝜈→𝜂 ̸= 0}. A set
of hidden neurons 𝒥 ⊂ ℐ𝜂 is said to contain co-dependant neurons if

∑︁
𝜈∈𝒥

𝑤𝜈→𝜂𝑤∙→𝜈 = 0. (3.1)

Definition 3.2.4 (Irreducible Parameterization). Let 𝐺 be a one hidden layer archi-
tecture valued with 𝜃. We say that 𝜃 is irreducible if there are no dead, no twin and
no co-dependent (hidden) neurons in the network.

3.2.2 Main Result

We now state our result, which is proven in Appendix A.1.3. In contrast to previous
work summarized in Table 2.1 (Kůrková and Kainen, 1993; Sussmann, 1992; Albertini
et al., 1993), we focus on the ReLU case and derive geometrical – hence easy to
understand and to remember – irreducibility conditions.

Proposition 3.2.1. Let 𝐺 be a one-hidden layer architecture valued with 𝜃 and 𝜃′.
Assume that 𝜃 and 𝜃′ are irreducible. Then, 𝑅𝜃 = 𝑅𝜃′ implies that 𝜃 ∼𝑃𝑆 𝜃′.
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Figure 3-3: Left: example of siamese neurons, 𝜈1 and 𝜈2. Intuitively, 𝜈1 and 𝜈2 fire in
the same half-space. Center: alternative parameterization 𝜃′ such that 𝜃 and 𝜃′ are
not permutation-rescaling equivalent. Right: the same realization is implemented by
𝜃 and 𝜃′, with 𝜀 > 0. Squares denote input or output neurons whereas circles denote
hidden neurons. Weights are specified on the connections between two neurons and
all biases are set to zero (not represented here).

Proposition 3.2.1 provides sufficient conditions (irreducibility) such that functional
equivalence implies permutation-rescaling equivalence. We now investigate the sub-
tleties of non-irreducible parameters.

3.2.3 Subtleties of Non-Irreducible Parameters

We denote by 3 the cases where it is possible to construct 𝜃′ from 𝜃 such that 𝑅𝜃 = 𝑅𝜃′

but 𝜃 and 𝜃′ are not permutation-rescaling equivalent, and by 7 the cases where it
is not possible. We construct 𝜃′ from 𝜃 by setting 𝜃′ = 𝜃 except for some edges or
neurons as specified in the cases below. For the sake of conciseness and clarity, we
focus on examples to illustrate our point.

3 Dead Neurons. Let us assume that 𝜃 has a dead hidden neuron 𝜈2 as illustrated
in Figure 3-2. Let 𝜀 > 0. Then, we set 𝑤′

𝜇2→𝜈2 = 𝑤𝜇2→𝜈2 + 𝜀. This modification does
not change the realization 𝑅𝜃′ = 𝑅𝜃, and is such that 𝜃′ ̸∼𝑃𝑆 𝜃.

Twin Neurons. We specify the different types of twin neurons as follows:

∙ 3 Siamese. The separating hyperplanes are oriented in the same direction. Let
us assume that 𝜃 has two siamese neurons 𝜈1 and 𝜈2 as illustrated in Figure 3-3.
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Figure 3-4: Left: example of invisible neurons, 𝜈1 and 𝜈2. Intuitively, 𝜈1 and 𝜈2 are
such that their common breakpoint is not visible on the realization 𝑅𝜃. Center: alter-
native parameterization 𝜃′ such that 𝜃 and 𝜃′ are not permutation-rescaling equivalent.
Right: the same realization is implemented by 𝜃 and 𝜃′, with 𝜀 > 0. Squares denote
input or output neurons whereas circles denote hidden neurons. Weights are specified
on the connections between two neurons and biases are explicitly specified.

Let 𝜀 > 0. Since the functions 𝑦𝜈1 and 𝑦𝜈2 are proportional, we set 𝑤′
𝜈1→𝜂 =

𝑤𝜈1→𝜂 + 𝜀 and 𝑤′
𝜈2→𝜂 = 𝑤𝜈2→𝜂 − 𝜀 such that 𝑤′

𝜈1→𝜂 + 𝑤′
𝜈1→𝜂 = 𝑤𝜈1→𝜂 + 𝑤𝜈1→𝜂.

Then, 𝑅𝜃′ = 𝑅𝜃 and 𝜃′ and 𝜃 are nor permutation-rescaling equivalent.

∙ Anti-Siamese. The separating hyperplanes are oriented in opposite directions.

− 3 Invisible. The breakpoint is not visible on the realization 𝑅𝜃. In other
words, there is no visible gradient change in the realization 𝑅𝜃, although
such changes are visible on some intermediate realizations 𝑦𝜈 for hidden
neurons 𝜈 ∈ 𝐻. Let us assume that 𝜃 has two invisible neurons 𝜈1 and
𝜈2 as illustrated in Figure 3-4. Let 𝜀 > 0. Since the breakpoint is not
visible, we can translate the functions 𝑦𝜈1 and 𝑦𝜈2 on the horizontal axis
(offsets 𝑏′

𝜈1 = 𝑏𝜈1 + 𝜀 and 𝑏′
𝜈2 = 𝑏𝜈2 + 𝜀) and translate 𝑅𝜃′ on the vertical

axis (offset 𝑏′
𝜂 = 𝑏𝜂 − 𝜀) to compensate. Then, 𝑅𝜃 = 𝑅𝜃′ but 𝜃 and 𝜃′ are

not permutation-rescaling equivalent.

− Visible The breakpoint is visible on the realization 𝑅𝜃.

∘ 3 Cousin. There exists a third hidden neuron with a separating hy-
perplane that is parallel to Γ𝜈1 = Γ𝜈2 . Let us assume that 𝜃 has three
cousin neurons 𝜈1, 𝜈2 and 𝜈3 as illustrated in Figure 3-5. Here, neurons
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Figure 3-5: Left: example of cousin neurons, 𝜈1, 𝜈2 and 𝜈3. Intuitively, 𝜈1, 𝜈2 and
𝜈3 are such that two of them can ether implement the leftmost or the rightmost
breakpoint (see right). Center: alternative parameterization 𝜃′ such that 𝜃 and 𝜃′ are
not permutation-rescaling equivalent. Right: the same realization is implemented by
𝜃 and 𝜃′, with 𝜀 > 0. Squares denote input or output neurons whereas circles denote
hidden neurons. Weights are specified on the connections between two neurons and
biases are explicitly specified.

𝜈1 and 𝜈2 implement the same breakpoint 𝑥𝜇 = 0 and 𝜈3 the break-
point 𝑥𝜇 = 1. We define 𝜃′ such that 𝜈1 and 𝜈2 implement the same
breakpoint 𝑥𝜇 = 1 and 𝑛𝑢3 the breakpoint 𝑥𝜇 = 0. The realization is
the same and the parameters are not permutation-rescaling equivalent.

∘ 7 Non-Cousin. All the other hidden neurons have a separating hy-
perplane that is not parallel to Γ𝜈1 = Γ𝜈2 . In that case, it is not
possible to construct 𝜃′ such that 𝑅𝜃 = 𝑅𝜃′ and such that 𝜃 and 𝜃′ are
not permutation-rescaling equivalent. We do not provide a proof for
the general case case and state this example for illustrative purposes.

The Notion of Locality. As illustrated in Figures 3-2, 3-3 and 3-4 for dead,
siamese and invisible neurons, it is possible to construct 𝜃′ arbitrarily close to 𝜃

such that 𝑅𝜃 = 𝑅′
𝜃 but 𝜃 and 𝜃′ are not permutation-rescaling equivalent. This is not

the case for cousin neurons. In the next sections, we will focus on local changes as
they allow to manipulate the realization in a more algebraic way.
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3.3 Algebraic and Geometric Tools

We now wish to state irreducibility conditions for deeper networks. However, the proof
of Proposition 3.2.1 relies on geometrical arguments that are not readily adaptable for
many hidden layers. Hence, we present in Section 3.3 some algebraic and geometrical
to tackle the (local) case of deeper networks in Section 3.4.

3.3.1 An Algebraic Expression of 𝑅𝜃 and its Consequences

We express the realization of the ReLU network 𝑅𝜃 in a more algebraic way than
the traditional definition relying on iterative composition of layer-wise functions of
the type 𝑧 ↦→ 𝜎(𝑧𝑊 + 𝑏) (see Equation (2.9)). This allows us to formally state
the well-known piecewise affine nature of 𝑥 ↦→ 𝑅𝜃(𝑥) and the lesser-known piecewise
polynomial nature of 𝜃 ↦→ 𝑅𝜃(𝑥). A similar formula1 is stated without taking the
biases into account in Meng et al. (2018) whereas Balduzzi et al. (2018) (Lemma A.2)
perform analogous computations for gradient computations, still without biases.

As defined in the Notations, we denote 𝒫 the set of full paths connecting any input
neuron to any output neuron and 𝒬 the set of partial paths from any hidden neuron
to any output neuron. For simplicity, we will denote a full path 𝑝 = (𝜈0, . . . , 𝜈𝐿) ∈ 𝒫
by 𝑝 = (𝑝0, . . . , 𝑝𝐿). We denote 𝒬ℓ = {(𝑝ℓ, . . . , 𝑝𝐿) | 𝑝 ∈ 𝒫} the set of partial paths
starting from hidden layer 0 < ℓ < 𝐿. With a sight abuse of notation, we denote by
𝑞0 the first neuron of the path 𝑞. Finally, recall that 𝑎𝑞(𝜃, 𝑥) is the activation status
of the full or partial path 𝑞 ∈ 𝒫 ∪𝒬1 ∪ · · · ∪ 𝒬𝐿 given 𝜃 and 𝑥:

𝑎𝑞(𝜃, 𝑥) ,
∏︁

𝜈∈𝑞∩𝐻
1(𝑦𝜈(𝜃, 𝑥) > 0), (3.2)

where we set ∏︀∅ = 1. We now state the formula in Proposition 3.3.1 and provide a
complete derivation in Appendix A.2.1.

Proposition 3.3.1. For any parameterization 𝜃 = (𝑤, 𝑏), any 𝑥 ∈ R𝑁0 and any
output neuron 𝜈 ∈ 𝑁𝐿,

𝑅𝜃(𝑥)𝜈 =
∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) +
𝐿∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ
𝑞ℓ=𝜈

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥). (3.3)

In Equation 3.3, the ReLU activation function is accounted for in the activation
1A proof does not seem to be present in the original paper.
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statuses 𝑎𝑝(𝜃, 𝑥) and 𝑎𝑞(𝜃, 𝑥), and the path-sum formulation allows us to better disen-
tangle the dependency on the input 𝑥 and the dependency on the parameters 𝜃 in the
terms 𝑥𝑝0𝑣𝑝(𝜃). A necessary (but not sufficient) condition for the slope of the piece-
wise affine function 𝑥 ↦→ 𝑅𝜃(𝑥) to change is that at least one of the 𝑎𝑝(𝜃, 𝑥), 𝑝 ∈ 𝒫∪𝒬
toggles. We prevent such cases by restricting ourselves to the domain 𝒳𝜃 defined be-
low. Similarly, we will only consider the piecewise polynomial function 𝜃 ↦→ 𝑅𝜃(𝑥) for
fixed inputs 𝑥 ∈ 𝒳𝜃. The proof can be found in Appendix A.2.1. Such a formula is
useful for computing the gradient of 𝜃 ↦→ 𝑅𝜃(𝑥) as explained in Proposition A.2.1.

Proposition 3.3.2. Let 𝒰(𝑥, 𝜃) be the set of all neighborhoods 𝑈 ⊂ R𝑁0 × R𝐸∪𝐻 of
(𝑥, 𝜃). We define, for any parameterization 𝜃,

𝒳𝜃 , {𝑥 ∈ R𝑁0 | ∃𝑈 ∈ 𝒰(𝑥, 𝜃),∀𝑝 ∈ 𝒫∪𝒬,∀(𝑥′, 𝜃′) ∈ 𝑈, 𝑎𝑝(𝜃, 𝑥) = 𝑎𝑝(𝜃′, 𝑥′)}. (3.4)

Then, 𝒳𝜃 is open. Moreover, let 𝜃 be a parameterization and 𝑥 ∈ 𝒳𝜃. Then, for each
full or partial path 𝑝 ∈ 𝒫 ∪ 𝒬, the function 𝑥′ ↦→ 𝑎𝑝(𝜃, 𝑥′) (resp. 𝜃′ ↦→ 𝑎𝑝(𝜃′, 𝑥)) is
locally constant in the neighborhood of 𝑥 (resp. in the neighborhood of 𝜃).

Such a set if useful for instance for specifying where the gradient of 𝜃 ↦→ 𝑅𝜃(𝑥) is
defined (see Proposition A.2.1). We next state a well-known result (Pascanu et al.,
2013; Montúfar et al., 2014) about the affine piece-wise nature of 𝑥 ↦→ 𝑅𝜃(𝑥) which
we prove in Appendix A.2.1. We refer the reader to Subsection 2.2.2 for illustrations.

Proposition 3.3.3. The function 𝑥 ↦→ 𝑅𝜃(𝑥) is piecewise affine continuous and
locally affine in the neighborhood of any 𝑥 ∈ 𝒳𝜃.

We state a lesser-known result about the piece-wise polynomial nature of the
function 𝜃 ↦→ 𝑅𝜃(𝑥) which we prove in Appendix A.2.1.

Proposition 3.3.4. For any 𝑥 ∈ 𝒳𝜃, the function 𝜃 ↦→ 𝑅𝜃(𝑥) is piecewise polynomial
continuous and locally polynomial in the neighborhood of any 𝜃.

3.3.2 Parameterizations of the Form 𝜃′ = 𝜃 ⊙ 𝑒𝛾

In this Subsection, we investigate multiplicative changes of the form 𝜃′ = 𝜃⊙𝑒𝛾 in the
parameter space, where ⊙ denotes pointwise multiplication, with the goal to study:

(1) The effect on the realization 𝑅𝜃′ (in this Subsection);

(2) The conditions on 𝛾 such that the perturbed parameterization 𝜃′ is rescaling
equivalent to 𝜃 (in the next Subsection 3.3.3).
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We restrict ourselves to a network with scalar output and no output bias for the sake
of simplicity. Before this, we first prove2 in Appendix A.2.2 that 𝛾 is uniquely defined
for parameterizations 𝜃′ having the same sign as 𝜃 – we consider the extended sign
as defined in the Notations which can take values in {−1, 0, 1} – provided that we
impose3 the constraint 𝛾 ∈ Supp𝜃. We argue that considering such multiplicative
changes instead of additive ones helps addressing both goals (1) and (2).

Proposition 3.3.5. Let 𝜃 be a parameterization. For all 𝜃′ in Sign𝜃, there exists a
unique 𝛾 ∈ Supp𝜃 such that 𝜃′ = 𝜃 ⊙ 𝑒𝛾.

Next, we wish to simply express the realization 𝑅𝜃′ when 𝜃′ = 𝜃 ⊙ 𝑒𝛾 is close
enough to 𝜃. We begin by defining matrices indicating the presence or absence of a
given edge 𝑒 in a full path 𝑝 or partial path 𝑞.

Definition 3.3.1. We define P ∈ R𝒫×𝐸 such that, for every edge 𝑒 ∈ 𝐸 and full path
𝑝 ∈ 𝒫, (P)𝑝,𝑒 , 1(𝑒 ∈ 𝑝). Similarly, we define Q ∈ R𝒬×𝐸 such that, for every edge
𝑒 ∈ 𝐸 and partial path 𝑞 ∈ 𝒬. (Q)𝑞,𝑒 , 1(𝑒 ∈ 𝑞).

In order to consider only the non-zero terms in the two sums – full paths and
partial paths – in Equation (3.3), we define P𝜃 and Q𝜃 as follows.

Definition 3.3.2. Given 𝜃 = (𝑤, 𝑏), we define

P𝜃 , Diag (1(𝑣𝑝(𝜃) ̸= 0))𝑝∈𝒫 P.

Q𝜃 , Diag (1(𝑏𝑞0𝑣𝑞(𝜃) ̸= 0))𝑞∈𝒬 Q.

(3.5)

(3.6)

Note that the term 𝑏𝑞0 only appears in Q𝜃.

We now wish to decouple the update applied to the weights – a simple multiplica-
tive modification of the form exp(𝛼) – to the update applied to the biases which has
the form exp(S𝛽) to make the bridge between the weights – the space 𝐸 of edges
– and the biases – the space 𝐻 of hidden neurons. The proof is located in Ap-
pendix A.2.2. Reasons for treating weights and biases differently will become clearer
in Subsection 3.3.3.

Proposition 3.3.6. We define the linear map S : ker P→ R𝐻 such that

(S𝛽)𝜈 , −
∑︁
𝑒∈𝑞

𝛽𝑒 (3.7)

2Using quantities defined in the remainder of this Subsection.
3Otherwise, we can multiply any zero weight or bias with any number without modifying it.
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where 𝑞 is the partial path going from 𝜈 to the output neuron 𝜂. Then,

1. S is well-defined (i.e., independent of the choice of 𝑞);

2. S is an isomorphism and its inverse S−1 : R𝐻 → ker P is such that for any
𝜆 ∈ R𝐻 we have S−1𝜆 = 𝛽 where for any edge 𝑒 = 𝜇→ 𝜈 ∈ 𝐸,

𝛽𝑒 ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝜆𝜇 if 𝜇 ∈ 𝑁𝐿−1 (and 𝜈 = 𝜂)

𝜆𝜈 − 𝜆𝜇 if 𝜇 ∈ 𝑁ℓ, 1 ≤ ℓ ≤ 𝐿− 2

𝜆𝜈 if 𝜇 ∈ 𝑁0.

(3.8)

Now, consider 𝜃 = (𝑤, 𝑏) ∈ R𝐸 × R𝐻 a parameterization. We now refine our
definition of 𝛾 given in Proposition 3.3.5 by expressing it either as 𝛾 ∈ Supp𝜃 or by
𝛾 = (𝛼,S𝛽) where S is defined in Proposition3.3.6, with (𝛼, 𝛽) ∈ 𝑉𝜃, where

𝑉𝜃 , Supp𝑤×S−1(Supp𝑏) ⊂ R𝐸 × ker P ⊂ R𝐸 × R𝐸. (3.9)

Finally, we establish an explicit and local formula to describe trajectories near 𝜃
in the direction 𝛾, which we prove in Appendix A.2.2. We use the set 𝒳𝜃 defined
in (3.4) and start from the path-sums formula (3.3).

Proposition 3.3.7. Consider 𝜃 a parametrization and 𝐵𝜃 , {𝛾 ∈ Supp𝜃 | ‖𝛾‖2 ≤ 1}.
Then, for each 𝑥 ∈ 𝒳𝜃, there exists 𝜀 > 0 such that, for every (𝛾, 𝑡) ∈ 𝐵𝜃×] − 𝜀, 𝜀[,
the following result holds:

𝑅𝜃(𝜃 ⊙ 𝑒𝛾𝑡, 𝑥) =
∑︁
𝑝∈𝒫

𝑥𝑝0𝑣𝑝(𝜃)𝑒𝑡P(𝛼)𝑝𝑎𝑝(𝜃, 𝑥) +
∑︁
𝑞∈𝒬

𝑏𝑞0𝑣𝑞(𝜃)𝑒𝑡Q(𝛼−𝛽)𝑞𝑎𝑞(𝜃, 𝑥). (3.10)

where we recall that 𝛾 = (𝛼,S𝛽).

Recalling Definition 3.3.2, we note that the terms P𝛼 and Q(𝛼−𝛽) can be replaced
in Equation (3.10) by P𝜃(𝛼) and Q𝜃(𝛼− 𝛽) respectively without changing the result
since 𝑣𝑝(𝜃) = 0 implies that 𝑃𝜃(𝛼)𝑝 = 0 for any full path 𝑝 ∈ 𝒫 and similarly for any
partial path 𝑞 ∈ 𝒬.

3.3.3 Algebraic Characterization of Rescaling Equivalence

Given an admissible parameterization 𝜃 = (𝑤, 𝑏), we characterize the set of multi-
plicative changes 𝑒𝛾 with respect to 𝜃 that preserve the rescaling equivalence when

89



applied to 𝜃, leading to a more geometrical definition of rescaling equivalence in Def-
inition 3.3.4, which we illustrate in Subsection A.2.4.

Definition 3.3.3. Let 𝜃 be a parameterization. The vector 𝛾 = (𝛼,S𝛽) ∈ Supp𝜃 is
said to be 𝜃-compatible or compatible when the dependency on 𝜃 is obvious if

𝛼 ∈ ker (P𝜃) and 𝛼− 𝛽 ∈ ker (Q𝜃) . (3.11)

We denote by Comp𝜃 the set of 𝜃-compatible vectors 𝛾. With a slight abuse of notation,
we might also say that (𝛼, 𝛽) ∈ 𝑉𝜃 is 𝜃-compatible.

Remark 3.3.1. We will constantly distinguish between the case without biases and
the case with biases for the rest of this section.

∙ If 𝑏 = 0, the condition 𝛼−𝛽 ∈ ker (Q𝜃) is always satisfied using Definition 3.3.2.

∙ If 𝑏 ̸= 0, the condition 𝛼 − 𝛽 ∈ ker (Q𝜃) ensures that the rescaling coefficients
corresponding to non-zero biases 𝑏𝜈 are the same as the rescaling coefficients
obtained for the weights for neuron 𝜈.

We now define rescaling equivalence using the previous definition 3.3.3. We prove
that this definition 3.3.4 is equivalent to the three definitions of layer-, neuron- and
path-wise rescaling equivalence in Proposition 3.1.1 under the condition that the
considered parameterizations are admissible.

Definition 3.3.4 (Trajectory rescaling equivalence). 𝜃 and 𝜃′ are rescaling equivalent
if there exists 𝛾 ∈ Comp𝜃 such that 𝜃′ = 𝜃 ⊙ 𝑒𝛾.

Remark 3.3.2. Let 𝜃 be an admissible parameterization. Consider 𝜃′ ∈ Sign𝜃 and 𝛾
the unique perturbation associated with 𝜃 such that 𝜃′ = 𝜃 ⊙ 𝑒𝛾 (Proposition 3.3.5).

1. Using Proposition 3.1.1, we have 𝜃′ ∼𝑆 𝜃 if, and only if, 𝛾 ∈ Comp𝜃.

2. If 𝛾 ∈ Comp𝜃, 𝜃′ ∼𝑆 𝜃 and using Proposition 3.1.2, we have 𝑅𝜃⊙𝑒𝛾 = 𝑅𝜃.

We finally define the set Sincomp𝜃 of strongly incompatible vectors 𝛾 for reasons
that will become clearer in Section 3.4.

Definition 3.3.5. The vector 𝛾 = (𝛼,S𝛽) ∈ Supp𝜃 is said to be strongly 𝜃-incompatible
or simply strongly incompatible if

𝛼 ∈ ker (P𝜃)⊥ and ‖𝛾‖2 = 1. (3.12)

We denote by Sincomp𝜃 the set of strongly 𝜃-incompatible vectors 𝛾.
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We prove the following properties on Sincomp𝜃 in Appendix A.2.3.

Proposition 3.3.8. We denote by Comp𝜃 the complementary set of Comp𝜃. Then,
the two following properties hold for Sincomp𝜃.

(1) Sincomp𝜃 ⊂ Comp𝜃 for any admissible parameterization 𝜃.

(2) Sincomp𝜃 is compact for any parameterization 𝜃.

We provide an illustration of the tools designed in this Section in Appendix A.2.4
for particular networks (Stem and Sawtooth) to showcase their usefulness.

3.4 Locally Identifiable Parameterizations

We now investigate a possible reciprocal of Proposition 3.1.2 using the tools designed
in Section 3.3. We study parameterizations for which the property that functional
equivalence implies rescaling equivalence holds locally. We first give definitions of
locally identifiable and non-identifiable parameterizations in Subsection 3.4.1 and
derive a necessary condition as well as a sufficient condition for local identifiability in
Subsections 3.4.2 and 3.4.3.

3.4.1 Definition of Locally Identifiable Parameterizations

We first give an intuitive definition of locally identifiable parameters for which the
property that functional equivalence implies rescaling equivalence holds locally.

Definition 3.4.1. Consider 𝜃 an admissible parameterization.

∙ 𝜃 is locally identifiable if there exists a neighborhood Ω of 𝜃 such that for all
𝜃′ ∈ Ω, 𝑅𝜃′ = 𝑅𝜃 implies 𝜃′ ∼𝑆 𝜃.

∙ 𝜃 is locally non-identifiable if it is not locally identifiable, i.e. for all neighbor-
hood Ω of 𝜃, there exists 𝜃′ ∈ Ω such that 𝑅𝜃′ = 𝑅𝜃 and 𝜃′ ̸∼𝑆 𝜃.

Let us now study the notions of locally non-identifiable and restricted locally
non-identifiable parameterizations in order to leverage our geometrical definition of
rescaling equivalence in Definition 3.3.3 that uses multiplicative changes defined in
Proposition 3.3.5. Indeed, multiplicative changes only operate at constant sign.

Definition 3.4.2. Consider 𝜃 an admissible parameterization. 𝜃 is restricted locally
non-identifiable if for all neighborhood Ω of 𝜃, there exists 𝜃′ ∈ Ω ∩ Sign𝜃 such that
𝑅𝜃′ = 𝑅𝜃 and 𝜃′ ̸∼𝑆 𝜃.

91



Proposition 3.4.1. Let 𝜃 be restricted locally non-identifiable. Then, 𝜃 is locally non-
identifiable. Moreover, if 𝜃 has full support, i.e. supp(𝜃) = R𝐸 and if Sign𝜃 is open,
then 𝜃 is locally non-identifiable if, and only if, it is restricted locally non-identifiable.

Note that a locally non-identifiable parameterization is not necessarily restricted
locally non-identifiable: consider an architecture with two input neurons 𝜇1, 𝜇2, two
hidden neurons 𝜈1, 𝜈2, two output neurons 𝜂1, 𝜂2 and set: 𝑤𝜇1→𝜈1 = 1, 𝑤𝜇1→𝜈2 = 1,
𝑤𝜇2→𝜈1 = −1, 𝑤𝜇2→𝜈2 = −1 and 𝑤𝜈1→𝜂1 = 1, 𝑤𝜈1→𝜂2 = 0 and 𝑤𝜈2→𝜂1 = 0, 𝑤𝜈2→𝜂2 = 1.
Here, 𝜃 is locally non-identifiable. Indeed, neurons 𝜈1 and 𝜈2 are twins (see the
example of Figure 3-3). However, 𝜃 is not restricted locally non-identifiable since we
cannot get 𝜃′ such that: 𝜃′ has the same support as 𝜃, 𝜃′ ̸∼𝑆 𝜃 and 𝑅𝜃 = 𝑅𝜃′ .

We now provide an equivalent definition of restricted locally non-identifiable pa-
rameterizations in terms of strongly incompatible multiplicative changes (see Defini-
tion 3.3.5). The proof is given in Appendix A.3.1.

Proposition 3.4.2. Consider 𝜃 = (𝑤, 𝑏) an admissible parameterization. The fol-
lowing properties are equivalent:

1. 𝜃 is restricted locally non-identifiable.

2. for all 𝜀 > 0, there exists 𝜏 ∈ ]0, 𝜀[ and 𝛾 ∈ Sincomp𝜃 such that 𝑅𝜃⊙𝑒𝛾𝜏 = 𝑅𝜃.

3.4.2 Sufficient Condition for Restricted Local Identifiability

We now provide a necessary condition for an admissible parameterization 𝜃 to be a
restricted locally non-identifiable parameterization, i.e. a sufficient condition for 𝜃 to
be restricted locally identifiable. The proof can be found in Appendix A.3.2.

Proposition 3.4.3. Let 𝜃 = (𝑤, 𝑏) be an admissible, restricted locally non-identifiable
parameterization. Then, there exists 𝛾 ∈ Sincomp𝜃 such that, for all 𝑥 ∈ 𝒳𝜃,

⟨∇𝜃𝑅𝜃(𝑥), 𝜃 ⊙ 𝛾⟩ = 0. (3.13)

Next, let us contextualize Proposition 3.4.3 for the one-hidden-layer case. Recall
that our result in Proposition 3.2.1) states that, for irreducible parameterizations,
functional equivalence implies permutation-rescaling equivalence. In particular, ir-
reducible parameterizations are locally identifiable. In particular, as proven in Ap-
pendix A.3.2, restricted locally non-identifiable parameterizations are non irreducible.
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Proposition 3.4.4. Let 𝐺 be a one hidden layer architecture with scalar output valued
with an admissible parameterization 𝜃 = (𝑤, 𝑏) such that 𝑏 = 0 (no biases). We
assume that 𝜃 is restricted locally non-identifiable. Then there exists at least two twin
hidden neurons as defined in Definition 3.2.2.

3.4.3 Sufficient Condition for Local Identifiability

We now adopt a pure geometrical point of view to provide another sufficient con-
dition for Locally Identifiable (but non necessarily restricted) parameterizations in
Proposition 3.4.7. Here again, we focus on the scalar output case.

Definition 3.4.3. Let 𝜃 be a network parameterization and 𝑥 ∈ 𝒳𝜃. We define
𝑢(𝜃) ∈ R𝒫∪𝒬 such that, for all 𝑞 ∈ 𝒫 ∪𝒬,

𝑢𝑞(𝜃) =

⎧⎪⎨⎪⎩𝑣𝑞(𝜃) if 𝑞 ∈ 𝒫

𝑏𝑞0𝑣𝑞(𝜃) if 𝑞 ∈ 𝒬.
(3.14)

For each 𝑥 ∈ 𝒳𝜃, we further define 𝑐(𝜃, 𝑥) ∈ R𝒫∪𝒬 such that, for all 𝑞 ∈ 𝒫 ∪𝒬,

𝑐𝑞(𝜃, 𝑥) =

⎧⎪⎨⎪⎩𝑥𝑞0𝑎𝑞(𝜃, 𝑥) if 𝑞 ∈ 𝒫

𝑎𝑞(𝜃, 𝑥) if 𝑞 ∈ 𝒬.
(3.15)

With these notations and recalling that we focus on the scalar output case, we have,
for all 𝑥 ∈ R, 𝑅𝜃(𝑥) = ⟨𝑢(𝜃), 𝑐(𝜃, 𝑥)⟩.

We now define useful sets to only manipulate finitely many input points, as proven
in Appendix A.3.3.

Proposition 3.4.5. Let 𝜃 be a parameterization. There exists a neighborhood Ω𝜃 of
𝜃 and a finite set of points 𝒵𝜃 ⊂ 𝒳𝜃 that satisfy the following properties:

∙ The following equality holds

Span
𝑧∈𝒵𝜃

(𝑐(𝜃, 𝑧)) = Span
𝑥∈𝒳𝜃

(𝑐(𝜃, 𝑥)). (3.16)

∙ For all 𝜃′ ∈ Ω𝜃 and for all 𝑧 ∈ 𝒵𝜃, 𝑐(𝜃′, 𝑧) = 𝑐(𝜃, 𝑧).

We now express functional equivalence for two close parameterizations in pure
geometrical terms in the space of full and partial paths, as proven in Appendix A.3.3.
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Proposition 3.4.6. Let 𝜃 be a parameterization, and Ω𝜃, 𝒵𝜃 given as in Proposi-
tion 3.4.5. Denote by 𝒞𝜃 the vector space

𝒞𝜃 = Span
𝑥∈𝒳𝜃

(𝑐(𝜃, 𝑥)). (3.17)

Then, for any 𝜃′ ∈ Ω𝜃, if 𝑅𝜃 = 𝑅𝜃′, then 𝑢(𝜃′)− 𝑢(𝜃) ∈ 𝒞⊥
𝜃 .

Recall that in Definition 2.2.4, we expressed rescaling equivalence between 𝜃 and
𝜃′ as 𝑢(𝜃) = 𝑢(𝜃′) (using notations from Definition 3.4.3). We are now ready to state
a sufficient condition ensuring that 𝜃 is locally identifiable relying on geometrical con-
siderations in the space of the full and partial paths. The corresponding Proposition
is proven in Appendix A.3.3.

Proposition 3.4.7. Let 𝜃 be a parameterization. We assume that there exists a
neighborhood Ω of 𝜃 such that, for all 𝜃′ ∈ Ω, 𝑢(𝜃′) − 𝑢(𝜃) ∈ 𝒞⊥

𝜃 implies that 𝑢(𝜃) =
𝑢(𝜃′). Then, 𝜃 is locally identifiable.

A simple corollary of Proposition 3.4.7 is given below and proven in Appendix A.3.3.

Proposition 3.4.8. Let 𝜃 be an admissible parameterization such that 𝒞⊥
𝜃 = {0}.

Then, 𝜃 is locally identifiable.

Next, we leverage our standalone proof for the one-hidden-layer case showing
that, for irreducible parameterizations, functional equivalence implies permutation-
rescaling equivalence (Proposition 3.2.1) to check for consistency. We apply Propo-
sition 3.4.7 to the one hidden layer case (see Proposition 3.2.1) to verify that any
irreducible parameterization is indeed locally identifiable. We first prove the follow-
ing Proposition in Appendix A.3.3.

Proposition 3.4.9. Let 𝐺 be a one hidden layer architecture with scalar output valued
with an admissible parameterization 𝜃. We further assume that there are no twin
neurons, i.e. that 𝜃 is irreducible as defined in 3.2.4. Then, 𝒞⊥

𝜃 = {0}.

Using Proposition 3.4.8, we deduce that the parameterization 𝜃 given in Propo-
sition 3.4.9 is locally identifiable. Moreover, taking a closer look at the proofs, we
conjecture that if would be possible to obtain a characterization of locally identifiable
parameterizations with the condition 𝒞⊥

𝜃 = {0} for one-hidden-layer networks.
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3.4.4 Current Limitations and Discussions

We list below the limitations of our current approach and formulate various conjec-
tures that deserve further interest. First and foremost, Propositions 3.4.7 and 3.4.3
only encompass the case of local identifiability. Hence, even if we were to properly
characterize locally identifiable parameterizations, we still wouldn’t take the permu-
tations into account or non-local degenerate cases as listed in Subsection 3.2.3. We
argue that studying global identifiability is out of the scope of this work.

Next, we list a few directions that would improve our local understanding of local
identifiability, namely we wish to (1) work in the path space and only manipulate Im(𝑢)
in Proposition 3.4.7 and (2) sample a finite set of input points 𝒵𝜃 such that, if 𝜃 and 𝜃′

are close enough and coincide on 𝒵𝜃, they coincide everywhere, i.e. 𝑅𝜃 = 𝑅𝜃′ . Using
this fact, we would have a necessary and sufficient condition for local identifiability in
Proposition 3.4.7. Before jumping into the details, we mention a similar line of work
in this direction (Malgouyres and Landsberg, 2018; Malgouyres, 2020), where the
authors consider structured linear networks, without biases and without activation
functions as well as per-layer (instead of neuron-wise) rescalings. See Section 2.2.4
in the Related Work for details. In particular Malgouyres and Landsberg (2018) also
manipulate the quantities close to 𝑢(𝜃) and Im(𝑢).

First, assuming that a 𝜃 satisfies a certain condition (*), we adopt a more geo-
metrical view about the manifold Im(𝑢)− 𝑢(𝜃) (in the space of paths R𝒫) relatively
to 𝒞𝜃 in the neighborhood of 𝑢(𝜃). The proof is given in Appendix A.3.4. Note that
the knowledge of 𝑢(𝜃) allows to recover 𝜃 up to rescalings, see Definition 2.2.4.

Proposition 3.4.10. Assume that 𝜃 satisfies the following property

∀𝜀 > 0,∃𝜂 > 0,∀𝜃′, ‖𝑢(𝜃′)− 𝑢(𝜃)‖ < 𝜂 =⇒ ∃𝜃′′, 𝑢(𝜃′′) = 𝑢(𝜃′), ‖𝜃′′ − 𝜃‖ < 𝜀 (*)

Then, the two following properties are equivalent:

(i) There exists 𝜀 > 0 such that, for all 𝜃′ ∈ 𝐵(𝜃, 𝜀) such that 𝑢(𝜃′) − 𝑢(𝜃) ∈ 𝒞⊥
𝜃 ,

we have 𝑢(𝜃′) = 𝑢(𝜃).

(ii) There exists 𝜂 > 0 such that (Im(𝑢)− 𝑢(𝜃)) ∩𝐵∞(0, 𝜂) ∩ 𝒞⊥
𝜃 = {0}.

Next, we obtain necessary and sufficient condition on local identifiability, provided
that our sampling conjecture (item (1) in the following Proposition) holds. The
Proposition is proven in Appendix A.3.4.
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Proposition 3.4.11. Let assume that 𝜃 satisfies (*). Let us assume further that
there exists 𝜀, 𝑟 > 0 and a finite set 𝒵𝜃 ⊂ 𝒳𝜃 such that 𝒵𝜃 , ∪𝑧∈𝒵𝜃

𝐵(𝑧, 𝑟) ⊂ 𝒳𝜃 and
such that, for all 𝜃′ ∈ 𝐵(𝜃, 𝜀),

(1) If for all 𝑧 ∈ 𝒵𝜃, 𝑅𝜃(𝑧) = 𝑅𝜃′(𝑧), then 𝑅𝜃 = 𝑅𝜃′.

(2) For all 𝑧 ∈ 𝒵𝜃, 𝑐(𝜃′, 𝑧) = 𝑐(𝜃, 𝑧)

Then the two following properties are equivalent:

(i) 𝜃 is locally identifiable.

(ii) There exists 𝜂 > 0 such that (Im(𝑢)− 𝑢(𝜃)) ∩𝐵∞(0, 𝜂) ∩ 𝒞⊥
𝜃 = {0}.

We believe that Property (*) holds for any parameterization 𝜃. However, it is still
a conjecture at this time. We provide below concrete examples of parameterizations
𝜃 that satisfy (*), as proven in Appendix A.3.4.

Proposition 3.4.12. If all coefficients of 𝜃 = (𝑤, 𝑏) are strictly positive, then (*)
defined in Proposition 3.4.10 holds.

We conjecture that assumption (1) of Proposition 3.4.11 holds for any parameter-
ization 𝜃. On the other hand, assumption (2) is already proven in Proposition 3.4.5.

3.5 Conclusion

In this Chapter, we studied functional equivalence classes of ReLU neural networks.
We first reconciled the various definitions of rescaling equivalence found in the liter-
ature under the condition that the underlying parameterizations are admissible. We
then provided sufficient conditions – namely no dead or twin hidden neurons – in the
one-hidden-layer case such that functional equivalence implies permutation-rescaling
equivalence. Next, to investigate the case of deeper networks, we designed algebraic
and geometrical tools to characterize the rescaling equivalence with multiplicative
changes in the parameter space. Finally, we provide a sufficient condition for re-
stricted local identifiability and another sufficient condition for local identifiability.
Acknowledging that the case with deeper network is not entirely solved, we moti-
vate and contextualize these conditions with particular networks and list interesting
directions for further research.
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Chapter 4

Learning to Balance the Energy
with Equi-normalization

In this Chapter, we propose an application of the theoretical considerations on func-
tional equivalence classes in Chapter 3. We restrict ourselves to describing such classes
with the sole rescalings (see for instance Definition 2.2.2) for practicality. As proven
in Proposition A.1.1 and illustrated in Figure 4-1, rescalings preserve the function im-
plemented by the network and allow us to manipulate networks by considering their
equivalence classes or orbits. Inspired by the Sinkhorn-Knopp algorithm, we introduce
a fast iterative method for selecting, within one equivalence class, the representant
that minimizes the 𝐿2 norm of its weights. It provably converges to a unique solution.
Interleaving our algorithm with SGD during training improves the test accuracy and
amounts to perform SGD in the set of parameters quotiented by the rescaling equiv-
alence relation. For small batches, our approach offers an alternative to batch and
group normalization on CIFAR-10 and ImageNet with a ResNet-18.

4.1 Introduction

Deep Neural Networks (DNNs) have achieved outstanding performance across a wide
range of empirical tasks such as image classification (Krizhevsky et al., 2012), image
segmentation (He et al., 2017a), speech recognition (Hinton et al., 2012a), natural
language processing (Collobert et al., 2011) or playing the game of Go (Silver et al.,
2017). These successes have been driven by the availability of large labeled datasets
such as ImageNet (Deng et al., 2009), increasing computational power and the use of
deeper models (He et al., 2015a).
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Figure 4-1: Matrices 𝑊 (ℓ) and 𝑊 (ℓ+1) are updated by multiplying the columns of the
first matrix with rescaling coefficients. The rows of the second matrix are inversely
rescaled to ensure that the product of the two matrices is unchanged. The rescaling
coefficients are strictly positive to ensure functional equivalence when the matrices are
interleaved with ReLUs. This rescaling is applied iteratively to each pair of adjacent
matrices. In this Chapter, we address the more complex cases of biases, convolutions,
max-pooling or skip-connections to be able to balance modern CNN architectures.
This Figure is the layer analogous of neuron-wise rescalings depicted in Figure 2-4.

Although the expressivity of the function computed by a neural network grows
exponentially with depth (Pascanu et al., 2013; Telgarsky, 2016), in practice deep
networks are vulnerable to both over- and underfitting (Glorot and Bengio, 2010;
Krizhevsky et al., 2012; He et al., 2015a). Widely used techniques to prevent DNNs
from overfitting include regularization methods such as weight decay (Krogh and
Hertz, 1992), Dropout (Hinton et al., 2012b) and various data augmentation schemes
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2014). Un-
derfitting can occur if the network gets stuck in a local minima, which can be avoided
by using stochastic gradient descent algorithms (Bottou, 2010; Duchi et al., 2011;
Sutskever et al., 2013; Kingma and Ba, 2014), sometimes along with carefully tuned
learning rate schedules (He et al., 2015a; Goyal et al., 2017).

Training deep networks is particularly challenging due to the vanishing/exploding
gradient problem. It has been first studied for Recurrent Neural networks (RNNs)
(Hochreiter and Bengio, 2001) as well as standard feedforward networks (He et al.,
2015c; Mishkin and Matas, 2016). After a few iterations, the gradients computed dur-
ing backpropagation become either too small or too large, preventing the optimiza-
tion scheme from converging. This is alleviated by using non-saturating activation
functions such as rectified linear units (ReLUs) (Krizhevsky et al., 2012) or better
initialization schemes preserving the variance of the input across layers (Glorot and
Bengio, 2010; Mishkin and Matas, 2016). Failure modes that prevent the training
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from converging have been theoretically studied by Hanin and Rolnick (2018).
Two techniques in particular were key for vision models to achieve “super-human”

accuracy. Batch Normalization (BN) was developed to train Inception networks (Ioffe
and Szegedy, 2015). It introduces intermediate layers that normalize the features by
the mean and variance computed within the current batch. BN is effective in reducing
training time, provides better generalization capabilities after training and diminishes
the need for a careful initialization. Network architectures such as ResNet (He et al.,
2015a) and DenseNet (Huang et al., 2017a) use skip connections along with BN to
improve the information flow during both the forward and backward passes.

However, BN has some limitations. In particular, BN only works well with suffi-
ciently large batch sizes (Ioffe and Szegedy, 2015; Wu and He, 2018). For sizes below
16 or 32, the batch statistics have a high variance and the test error increases sig-
nificantly. This prevents the investigation of higher-capacity models because large,
memory-consuming batches are needed in order for BN to work in its optimal range.
In many use cases, including video recognition (Carreira and Zisserman, 2017) and
image segmentation (He et al., 2017a), the batch size restriction is even more challeng-
ing because the size of the models allows for only a few samples per batch. Another
restriction of BN is that it is computationally intensive, typically consuming 20% to
30% of the training time. Variants such as Group Normalization (GN) (Wu and He,
2018) cover some of the failure modes of BN.

In this Chapter, we introduce a novel algorithm to improve both the training
speed and generalization accuracy of networks by using their over-parameterization to
regularize them. In particular, we focus on neural networks that are positive-rescaling
equivalent (Neyshabur et al., 2015), i.e. whose weights are identical up to positive
scalings and matching inverse scalings. The main principle of our method, referred
to as Equi-normalization (ENorm), is illustrated in Figure 4-1 for the fully-connected
case. We rescale two consecutive matrices in order to minimize the joint 𝑝-norm of
these two matrices under the constraint of preserving the function implemented by
the network. We conjecture that this particular choice of rescaling coefficients ensures
a smooth propagation of the gradients during training.

4.2 Related Work

This section reviews methods improving neural network training and compares them
with ENorm. Since there is a large body of literature in this research area, we focus
on the works closest to the proposed approach and refer the reader to Section 2.1.
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From early works, researchers have noticed the importance of normalizing the input
of a learning system, and by extension the input of any layer in a DNN (LeCun et al.,
1998a). Such normalization is applied either to the weights or to the activations.
On the other hand, several strategies aim at better controlling the geometry of the
weight space with respect to the loss function. Note that these research directions
are not orthogonal. For example, explicitly normalizing the activations using BN has
smoothing effects on the optimization landscape (Santurkar et al., 2018b).

Normalizing Activations. Batch Normalization (Ioffe and Szegedy, 2015) nor-
malizes the activations by using statistics computed along the batch dimension. As
stated in the introduction, the dependency on the batch size leads BN to under-
perform when small batches are used. Batch Renormalization (BR) (Ioffe, 2017) is
a follow-up that reduces the sensitivity to the batch size, yet does not completely
alleviate the negative effect of small batches. Several batch-independent methods
operate on other dimensions, such as Layer Normalization (channel dimension) (Ba
et al., 2016) and Instance-Normalization (sample dimension) (Ulyanov et al., 2017).
Parametric data-independent estimation of the mean and variance in every layer is
investigated by Arpit et al. (2016). However, these methods are inferior to BN in
standard classification tasks. More recently, Group Normalization (GN) (Wu and
He, 2018), which divides the channels into groups and normalizes independently each
group, was shown to effectively replace BN for small batch sizes on vision tasks.

Normalizing Weights. Early weight normalization techniques only served to ini-
tialize the weights before training (Glorot and Bengio, 2010; He et al., 2015c). These
methods aim at keeping the variance of the output activations close to one along the
whole network, but the assumptions made to derive these initialization schemes may
not hold as training evolves. More recently, Salimans and Kingma (2016) propose
a polar-like re-parametrization of the weights to disentangle the direction from the
norm of the weight vectors. Note that Weight Norm (WN) does require mean-only
BN to get competitive results as well as a greedy layer-wise initialization.

Optimization Landscape. Generally, in the parameter space, the loss function
moves quickly along some directions and slowly along others. To account for this
anisotropic relation between the parameters of the model and the loss function, natural
gradient methods have been introduced (Amari, 1998). They require storing and
inverting the 𝑁×𝑁 curvature matrix, where 𝑁 is the number of network parameters.
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Several works approximate the inverse of the curvature matrix to circumvent this
problem (Pascanu and Bengio, 2013; Marceau-Caron and Ollivier, 2016; Martens
and Grosse, 2015). Another method called Diagonal Rescaling (Lafond et al., 2017)
proposes to tune a particular re-parametrization of the weights with a block-diagonal
approximation of the inverse curvature matrix. Qi et al. (2020) propose to enforce
near isometric weights for both initialization and training. Finally, Neyshabur et al.
(2015) propose a rescaling invariant path-wise regularizer and use it to derive Path-
SGD, an approximate steepest descent with respect to the path-wise regularizer.

Positioning. Unlike BN, Equi-normalization focuses on the weights and is inde-
pendent of the concept of batch. Like Path-SGD, our goal is to obtain a balanced
network ensuring a good back-propagation of the gradients, but our method explicitly
re-balances the network using an iterative algorithm instead of using an implicit reg-
ularizer. Moreover, ENorm can be readily adapted to the convolutional case whereas
Neyshabur et al. (2015) restrict themselves to the fully-connected case. In addi-
tion, the theoretical computational complexity of our method is much lower than
the overhead introduced by BN or GN (see Section 4.5). Besides, WN parametrizes
the weights in a polar-like manner, 𝑤 = 𝑔 × 𝑣/|𝑣|, where 𝑔 is a scalar and 𝑣 are
the weights, thus it does not balance the network but individually scales each layer.
Finally, Huang et al. (2017b) and Yuan and Xiao (2019) use a different projection
technique to select the representant based on Riemannian gradients while Bernstein
et al. (2020) derive a multiplicative version of the Adam optimizer.

4.3 Equi-normalization

We first define Equi-normalization in the context of simple feed forward networks
that consist of two operators: linear layers and ReLUs. The algorithm is inspired by
Sinkhorn-Knopp and is designed to balance the energy of a network, i.e., the euclidian
𝑝-norm of its weights, while preserving its function. As shown in Theorem 4.3.1, the
algorithm converges to a unique canonical network parametrization that minimizes
the euclidian 𝑝-norm of its weights among equivalent networks. When not ambiguous,
we may denote by network a parametrization 𝜃 of a given network architecture 𝐺.

4.3.1 Notation and Definitions

As defined in the Notations, we consider a ReLU network with 𝐿 linear layers, taking
as input a row vector 𝑥 ∈ R𝑁0 . For the sake of exposition, we omit a bias term at this
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stage. We rely on the layer definition of rescalings (see 2.2.2) since it is closer to the
implementation of the proposed algorithm. Recall that rescaling equivalence implies
functional equivalence as shown in Proposition A.1.1. As detailed in Chapter 3, a
functional equivalence class is not entirely described by rescaling operations. For
example, permutations of neurons inside a layer also preserve functional equivalence,
but do not change the gradient.

In what follows our objective is to seek a canonical parameter vector that is rescal-
ing equivalent to a given parameter vector. The same objective under a functional
equivalence constraint is beyond the scope of this Chapter, as there exist degenerate
cases where functional equivalence does not imply rescaling equivalence, even up to
permutations, as investigated in Chapter 3.

4.3.2 Objective Function: Canonical Representation

Given a network parameterization 𝜃 and 𝑝 > 0, we define the global 𝑝-norm of its
weights as 𝐿𝑝(𝜃) = ∑︀𝐿

ℓ=1 ‖𝑊 (ℓ)‖𝑝𝑝, where 𝑊 (ℓ) ∈ R𝑁ℓ−1×𝑁ℓ . We are interested in
minimizing 𝐿𝑝 inside an equivalence class of neural networks in order to exhibit a
unique canonical element per equivalence class. Recalling that 𝑁ℓ denotes all the
neurons of layer ℓ ∈ J0, 𝐿K, we denote the rescaling coefficients as 𝑑ℓ ∈ [0,+∞]𝑁ℓ or
as diagonal matrices1 𝐷(ℓ) = Diag(𝑑ℓ) ∈ 𝒟(|𝑁ℓ|) for ℓ ∈ J1, 𝐿−1K. Fixing the weights
𝑊 (ℓ), we refer to

(︁
𝐷(ℓ−1)

)︁−1
𝑊 (ℓ)𝐷(ℓ) as the rescaled weights, and seek to minimize

their euclidian 𝑝-norm as a function of the rescaling coefficients:

𝜙(𝑑) =
𝐿∑︁
ℓ=1

⃦⃦⃦⃦(︁
𝐷(ℓ−1)

)︁−1
𝑊 (ℓ)𝐷(ℓ)

⃦⃦⃦⃦𝑝
𝑝
. (4.1)

4.3.3 Coordinate Descent: ENorm Algorithm

We formalize the ENorm algorithm using the framework of block coordinate descent.
We denote2 by 𝑊 [:, 𝑗] (resp. 𝑊 (ℓ)[𝑖, :]) the 𝑗th column (resp. 𝑖th row) of a matrix 𝑊 (ℓ).
In what follows we assume that 𝜃 is admissible 3. Note that this is equivalent to saying
that all the rows and columns of the hidden weight matrices 𝑊 (ℓ) are non-zero, as
well as the columns (resp. rows) or 𝑊1 (resp. 𝑊𝑞). ENorm generates a sequence
of rescalings 𝑑(𝑟) by successively considering all the hidden layers ℓ ∈ J1, 𝐿 − 1K to
re-balance them as explained below.

1By convention, as explained in Definition 2.2.2, 𝐷(0) = 𝐼𝑁0 and 𝐷(𝐿) = 𝐼𝑁𝐿
.

2This corresponds respectively to the incoming and outgoing weights of a given neuron 𝜈.
3Each hidden neuron is connected to at least one input and one output neuron.
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Algorithm 1: Pseudo-code of Equi-normalization
Input: Current layer weights 𝑊 (1), . . . ,𝑊 (𝐿), number of cycles 𝑇 , norm 𝑝
Output: Balanced layer weights
// Perform T ENorm cycles
for 𝑡 = 1 . . . 𝑇 do

// 𝐷(0) and 𝐷(𝐿) are never updated, see Definition 2.2.2
for ℓ = 1 . . . 𝐿− 1 do

𝐿[𝑗]←−
⃦⃦⃦
𝑊 (ℓ)[:, 𝑗]

⃦⃦⃦
𝑝

for all 𝑗 ∈ R𝑁ℓ

𝑅[𝑖]←−
⃦⃦⃦
𝑊 (ℓ+1)[𝑖, :]

⃦⃦⃦
𝑝

for all 𝑖 ∈ R𝑁ℓ

𝐷(ℓ) ←− Diag
√︁
𝑅/𝐿

𝑊 (ℓ) ←− 𝑊 (ℓ)𝐷(ℓ)

𝑊 (ℓ+1) ←−
(︁
𝐷(ℓ)

)︁−1
𝑊 (ℓ+1)

(1) Initialization. Define 𝑑(0) = (1, . . . , 1).

(2) Iteration. At iteration 𝑟, set ℓ such that ℓ− 1 ≡ 𝑟 mod 𝐿− 1 and define
⎧⎪⎪⎨⎪⎪⎩
𝑑

(𝑟+1)
ℓ′ = 𝑑

(𝑟)
ℓ′ if ℓ′ ̸= ℓ

𝑑
(𝑟+1)
ℓ = argmin

𝑡∈[0,+∞]𝑁ℓ

𝜙
(︁
𝑑

(𝑟)
1 , . . . , 𝑑

(𝑟)
ℓ−1, 𝑡, 𝑑

(𝑟)
ℓ+1, . . . , 𝑑

(𝑟)
𝐿−1

)︁
.

Denoting 𝑢𝑣 the coordinate-wise product of two vectors and 𝑢/𝑣 for the division,

𝑑
(𝑟+1)
ℓ [𝑖] =

⎯⎸⎸⎸⎸⎷
⃦⃦⃦
𝑊ℓ+1[𝑖, :]𝑑(𝑟)

ℓ+1

⃦⃦⃦
𝑝⃦⃦⃦

𝑊ℓ[:, 𝑖]/𝑑(𝑟)
ℓ−1

⃦⃦⃦
𝑝

. (4.2)

Algorithm and pseudo-code. Algorithm 1 gives the pseudo-code of ENorm. By
convention, one ENorm cycle balances the entire network once from ℓ = 1 to ℓ = 𝐿−1.
See Appendix B.1 for illustrations showing the effect of ENorm on network’s weights.

4.3.4 Convergence

We now state our main convergence result for Equi-normalization. The proof relies
on a coordinate descent Theorem by Tseng (2001) and can be found in Appendix B.2.

Theorem 4.3.1. Let 𝑝 > 0 and (𝑑(𝑟))𝑟∈N be the sequence of rescaling coefficients
generated by ENorm from the starting point 𝑑(0) as described in Section 4.3.3. We
assume that the considered parameterization 𝜃 is admissible. Then,
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(1) Convergence. The sequence of rescaling coefficients 𝑑(𝑟) converges to 𝑑* as
𝑟 → +∞. As a consequence, the sequence of rescaled weights also converges;

(2) Minimum norm. The rescaled weights after convergence minimize the global
𝑝-norm among all rescaling equivalent weights;

(3) Uniqueness. The minimum 𝑑* does not depend on the starting point 𝑑(0).

4.3.5 Gradients & Biases

From now on, we denote the rescaled quantities (weights, biases, activations) with a
tilde. In the presence of biases, as explained in Definition 2.2.2, we define matched
rescaling equivalent biases ̃︀𝑏(ℓ) = 𝑏(ℓ)𝐷(ℓ). Thus, we have, for all ℓ ∈ J0, 𝐿K,

̃︀𝑦(ℓ) = 𝑦(ℓ)𝐷(ℓ) (4.3)

We also compute the effect of applying ENorm on the gradients in Appendix B.1.1.

4.3.6 Asymmetric Scaling

Equi-normalization is easily adapted to introduce a depth-wise penalty on each layer.
We consider the weighted loss 𝐿𝑝,(𝑐1,...,𝑐𝐿)(𝜃) = ∑︀𝐿

ℓ=1 𝑐ℓ‖𝑊 (ℓ)‖𝑝. This amounts to
modifying the rescaling coefficients as

𝑑
(𝑟+1)
ℓ [𝑖]← 𝑑

(𝑟+1)
ℓ [𝑖] (𝑐ℓ+1/𝑐ℓ)1/2𝑝 . (4.4)

In Section 4.6, we explore two natural ways of defining 𝑐ℓ: 𝑐ℓ = 𝑐𝑝(𝐿−ℓ) (uniform) and
𝑐ℓ = 1/(𝑁ℓ−1𝑁ℓ) (adaptive). In the uniform setup, we penalize layers exponentially
according to their depth: for instance, values of 𝑐 larger than 1 increase the magnitude
of the weights at the end of the network. In the adaptive setup, the loss is weighted
by the size of the matrices.

4.4 Extension to CNNs

We now extend ENorm to CNNs, by focusing on the typical ResNet architecture. We
briefly detail how we adapt ENorm to convolutional or max-pooling layers, and then
how to update an elementary block with a skip-connection. We refer the reader to
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Figure 4-2: Rescaling the weights of two consecutive convolutional layers that pre-
serves the function implemented by the CNN. Layer ℓ scales channel number 𝑖 of the
input activations by 𝛾𝑖 and layer ℓ + 1 cancels this scaling with the inverse scalar so
that the activations after layer ℓ+ 1 are unchanged.

Appendix B.3 for a more extensive discussion. Sanity checks of our implementation
are provided in Appendix B.5.1.

4.4.1 Convolutional Layers

Figure 4-2 explains how to rescale two consecutive convolutional layers. As detailed in
Appendix B.3, this is done by first properly reshaping the filters to 2D matrices, then
performing the previously described rescaling on these matrices, and then reshaping
the matrices back to convolutional filters. This matched rescaling does preserve the
function implemented by the composition of the two layers, whether they are inter-
leaved with a ReLU or not. It can be applied to any two consecutive convolutional
layers with various stride and padding parameters. Note that when the kernel size is
1 in both layers, we recover the fully-connected case of Figure 4-1.

4.4.2 Max-Pooling

The MaxPool layer operates per channel by computing the maximum within a fixed-
size kernel. We use Equation (4.3) to the convolutional case where the rescaling
matrix 𝐷(ℓ) is applied to the channel dimension of the activations 𝑦(ℓ−1). Then,

max
(︁̃︀𝑦(ℓ)

)︁
= max

(︁
𝑦(ℓ)𝐷(ℓ)

)︁
= max

(︁
𝑦(ℓ)

)︁
𝐷(ℓ). (4.5)
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Figure 4-3: Rescaling an elementary block within a ResNet-18 consists of 3 steps. (1)
Conv1 and ConvSkip are left-rescaled using the rescaling coefficients between blocks
𝑘−1 and 𝑘; (2) Conv1 and Conv2 are rescaled as two usual convolutional layers; (3)
Conv2 and ConvSkip are right-rescaled using the rescaling coefficients between blocks
𝑘 and 𝑘 + 1. Identical colors denote the same rescaling coefficients 𝐷. Coefficients
between blocks are rescaled as detailed in Section B.3.2.

Thus, the activations before and after the MaxPool layer have the same scaling and
the functional equivalence is preserved.

4.4.3 Skip Connections

We now consider an elementary block of a ResNet-18 architecture as depicted in
Figure 4-3. In order to maintain functional equivalence, we only consider ResNet
architectures of type C as defined in (He et al., 2015a), where all shortcuts are learned
1 × 1 convolutions. As detailed in Appendix B.3, rescaling two consecutive blocks
requires (a) to define the structure of the rescaling process, i.e. where to insert the
rescaling coefficients and (b) a formula for computing these rescaling coefficients.

4.5 Training with Equi-normalization & SGD

ENorm & SGD. As detailed in Algorithm 2, we balance the network periodically
after updating the gradients. By design, this does not change the function imple-
mented by the network but will yield different gradients in the next SGD iteration.
Because this re-parameterization performs a jump in the parameter space, we update
the momentum as described in Appendix B.1.1 and the same matrices 𝐷(ℓ) as these
used for the weights. The number of ENorm cycles after each SGD step is an hy-
perparameter and by default we perform one ENorm cycle after each SGD step. In
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Algorithm 2: Training with Equi-normalization
Input: Initialized network
Output: Trained network
for iteration = 1 . . . 𝑁 do

Update learning rate 𝜂
Compute forward pass
Compute backward pass
Perform SGD step and update weights
Perform one ENorm cycle using matrices 𝐷(ℓ)

Update momentum buffers with the same 𝐷(ℓ)

Appendix B.4, we also explore a method to jointly learn the rescaling coefficients and
the weights with SGD, and report corresponding results.

Computational advantage over BN and GN. Table 4.1 provides the number of
elements (weights or activations) accessed when normalizing using various techniques.
Assuming that the complexity (number of operations) of normalizing is proportional
to the number of elements and assuming all techniques are equally parallelizable, we
deduce that our method (ENorm) is theoretically 50 times faster than BN and 3 times
faster than GN for a ResNet-18. In terms of memory, ENorm requires no extra-learnt
parameters, but the number of parameters learnt by BN and GN is negligible (4800
for a ResNet-18 and 26,650 for a ResNet-50). We implemented ENorm using a tensor
library. Taking full advantage of the theoretical reduction in compute would require
to design an optimized CUDA kernel.

Model ENorm BN (𝐵=256) GN (𝐵=16)
ResNet-18 12 636 40
ResNet-50 30 2,845 178

Table 4.1: Number of elements that are accessed during normalization (in million of
activations/parameters, rounded to the closest million). For BN and GN, we choose
the typical batch size B used for training.

4.6 Experiments

We analyze our approach by carrying out experiments on the MNIST and CIFAR-
10 datasets and on the more challenging ImageNet dataset. ENorm will refer to
Equi-normalization with 𝑝 = 2.
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4.6.1 MNIST Autoencoder

Training. Input data is normalized by subtracting the mean and dividing by stan-
dard deviation. The encoder has the structure FC(784, 1000)-ReLU-FC(1000, 500)-
ReLU-FC(500, 250)-ReLU-FC(250, 30) and the decoder has the symmetric struc-
ture. We use He’s initialization for the weights. We select the learning rate in
{0.001, 0.01, 0.1} and decay it linearly to zero. We use a batch size of 256 and SGD
with no momentum and a weight decay of 0.001. For path-SGD, our implementation
closely follows the original paper (Neyshabur et al., 2015) and we set the weight decay
to zero. For GN, we cross-validate the number of groups among {5, 10, 20, 50}. For
WN, we use BN as well as a greedy layer-wise initialization as in the original paper.

Results. While ENorm alone obtains competitive results compared to BN and GN,
ENorm + BN outperforms all other methods, including WN + BN. Note that here
ENorm refers to Enorm using the adaptive 𝑐 parameter as described in Subsec-
tion 4.3.6, whereas for ENorm + BN we use the uniform setup with 𝑐 = 1. We
perform a parameter study for different values and setups of the asymmetric scaling
(uniform and adaptive) in Appendix B.5.2. Without BN, the adaptive setup outper-
forms all other setups, which may be due to the strong bottleneck structure of the
network. With BN, the dynamic is different and the results are much less sensitive
to the values of 𝑐. Results without any normalization and with Path-SGD are not
displayed because of their poor performance.

4.6.2 CIFAR-10 Fully Connected

Training. We first experiment with a basic fully-connected architecture that takes
as input the flattened image of size 3072. Input data is normalized by subtracting
mean and dividing by standard deviation independently for each channel. The first
linear layer is of size 3072 × 500. We then consider 𝑝 layers 500 × 500, 𝑝 being an
architecture parameter for the sake of the analysis. The last classification is of size
500× 10. The weights are initialized with He’s scheme. We train for 60 epochs using
SGD with no momentum, a batch size of 256 and weight decay of 10−3. Cross vali-
dation is used to pick an initial learning rate in {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}.
Path-SGD, GN and WN are learned as detailed in Section 4.6.1. All results are the
average test accuracies over 5 training runs.
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Figure 4-4: Left: MNIST auto-encoder results (lower is better). Right: CIFAR-10
fully-connected results (higher is better).

Results. ENorm alone outperforms both BN and GN for any depth of the network.
ENorm + BN outperforms all other methods, including WN + BN, by a good margin
for more than 𝑝 = 11 intermediate layers. Note that here ENorm as well as ENorm +
BN refers to ENorm in the uniform setup with 𝑐 = 1.2. The results of the parameter
study for different values and setups of the asymmetric scaling are similar to these of
the MNIST setup, see Appendix B.5.2.

4.6.3 CIFAR-10 Fully Convolutional

Training. We use the CIFAR-NV architecture as described by Gitman and Gins-
burg (2017). Images are normalized by subtracting mean and dividing by standard
deviation independently for each channel. During training, we use 28 × 28 random
crops and randomly flip the image horizontally. At test time, we use 28 × 28 center
crops. We split the train set into one training set (40,000 images) and one validation
set (10,000 images). We train for 128 epochs using SGD and an initial learning rate
cross-validated on a held-out set among {0.01, 0.05, 0.1}, along with a weight decay
of 0.001. The learning rate is then decayed linearly to 10−4. We use a momentum of
0.9. The weights are initialized with He’s scheme. In order to stabilize the training,
we employ a BatchNorm layer at the end of the network after the FC layer for the
Baseline and ENorm cases. For GN we cross-validate the number of groups among
{4, 8, 16, 32, 64}. All results are the average test accuracies over 5 training runs.

Results. See Table 4.6.3. ENorm + BN outperforms all other methods, including
WN + BN, by a good margin. Note that here ENorm refers to ENorm in the uniform
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Method Average train 𝐿2 error
Baseline 0.542
BN 0.171
GN 0.171
WN + BN 0.162
ENorm 0.179
ENorm + BN 0.102

Method Test top 1 accuracy
Baseline 88.94
BN 90.32
GN 90.36
WN + BN 90.50
ENorm 89.31
ENorm + BN 91.35

Table 4.2: Left: MNIST auto-encoder results (lower is better). Right: CIFAR-10
fully convolutional results (higher is better).

setup with the parameter 𝑐 = 1.2 whereas ENorm + BN refers to the uniform setup
with 𝑐 = 1. A parameter study for different values and setups of the asymmetric
scaling can be found in Appendix B.5.2.

4.6.4 ImageNet

This dataset contains 1.3M training images and 50,000 validation images split into
1000 classes. We use the ResNet-18 model with type-C learnt skip connections as
described in Section 4.4.

Training. Our experimental setup closely follows that of GN (Wu and He, 2018).
We train on 8 GPUs and compute the batch mean and standard deviation per GPU
when evaluating BN. We use the Kaiming initialization for the weights (He et al.,
2015c) and the standard data augmentation scheme of ?. We train our models for
90 epochs using SGD with a momentum of 0.9. We adopt the linear scaling rule for
the learning rate (Goyal et al., 2017) and set the initial learning rate to 0.1𝐵/256
where the batch size 𝐵 is set to 32, 64, 128, or 256. As smaller batches lead to more
iterations per epoch, we adopt a similar rule and adopt a weight decay of 𝑤 = 10−4

for 𝐵 = 128 and 256, 𝑤 = 10−4.5 for 𝐵 = 64 and 𝑤 = 10−5 for 𝐵 = 32. We decay
the learning rate quadratically (Gitman and Ginsburg, 2017) to 10−5 and report the
median error rate on the final 5 epochs. When using GN, we set the number of groups
𝐺 to 32 and did not cross-validate this value as prior work (Wu and He, 2018) reports
little impact when varying 𝐺 from 2 to 64. In order for the training to be stable
and faster, we added a BatchNorm at the end of the network after the FC layer for
the Baseline and ENorm cases. The batch mean and variance for this additional BN
are shared across GPUs. Note that the activation size at this stage of the network is
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Figure 4-5: ResNet-18 results on the ImageNet dataset, batch size 64.

𝐵 × 1000, which is a negligible overhead (see Table 4.1).

Results. We compare the Top 1 accuracy on a ResNet-18 when using no normaliza-
tion scheme (Baseline), when using BN, GN and ENorm (our method). In both the
Baseline and ENorm settings, we add a BN at the end of the network as described in
Section 4.6.3. The results are reported in Table 4.3. The performance of BN decreases
with small batches, which concurs with prior observations (Wu and He, 2018). Our
method outperforms GN and BN for batch sizes ranging from 32 to 128. GN presents
stable results across batch sizes. Note that values of 𝑐 different from 1 did not yield
better results. The training curves for a batch size of 64 are presented in Figure 4-5.
While BN and GN are faster to converge than ENorm, our method achieves better
results after convergence in this case. Note also that ENorm overfits the training set
less than BN and GN, but more than the Baseline case.

Batch size 32 64 128 256
Baseline 66.20 68.60 69.20 69.58
BN 68.01 69.38 70.83 71.37
GN 68.94 68.90 70.69 70.64
ENorm-1 (ours) 69.70 70.10 71.03 71.14

Table 4.3: ResNet-18 results on the ImageNet dataset (test accuracy).

4.6.5 Limitations

We applied ENorm to a deeper (ResNet-50), but obtained unsatisfactory results. We
observed that learnt skip-connections, even initialized to identity, make it harder to
train without BN, even with careful layer-wise initialization or learning rate warmup.
This would require further investigation.
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4.7 Conclusion

We presented Equi-normalization, an iterative method that balances the energy of
the weights of a network while preserving the function it implements. ENorm prov-
ably converges towards a unique equivalent network that minimizes the 𝑝-norm of its
weights and it can be applied to modern CNN architectures. Using ENorm during
training adds a much smaller computational overhead than BN or GN and leads to
competitive performances in the FC case as well as in the convolutional case.

While optimizing an unbalanced network is hard (Neyshabur et al., 2015), the
criterion we optimize to derive ENorm– minimizing the 𝐿2 norm among the equiva-
lence class – is likely not optimal regarding convergence or training properties. This
limitation suggests that further research is required in this direction.
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Chapter 5

Compressing Networks with
Iterative Product Quantization

In this Chapter, we address the problem of reducing the memory footprint of convo-
lutional network architectures. We introduce a vector quantization method that aims
at preserving the quality of the reconstruction of the network outputs rather than
its weights. The principle of our approach is that it minimizes the loss reconstruc-
tion error for in-domain inputs. Our method only requires a set of unlabelled data
at quantization time and allows for efficient inference on CPU by using byte-aligned
codebooks to store the compressed weights. We validate our approach by quantizing
a high performing ResNet-50 model to a memory size of 5 MB (20× compression
factor) while preserving a top-1 accuracy of 76.1% on ImageNet object classification
and by compressing a Mask R-CNN with a 26× factor.

5.1 Introduction

There is a growing need for compressing the best convolutional networks (ConvNets)
to support embedded devices for applications like robotics and virtual or augmented
reality. Indeed, the performance of ConvNets on image classification has steadily
improved since the introduction of AlexNet (Krizhevsky et al., 2012). This progress
has been fueled by deeper and richer architectures such as the ResNets (He et al.,
2015a) and their variants ResNeXts (Xie et al., 2017) or DenseNets (Huang et al.,
2017a). these models particularly benefit from the recent progress made with weak
supervision (Yalniz et al., 2019; Mahajan et al., 2018). Compression of ConvNets has
been an active research topic in the recent years, leading to networks with a 71% top-1
accuracy on ImageNet object classification that fit in 1 MB (Wang et al., 2018a).
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in-domain

Figure 5-1: We approximate a binary classifier 𝜙 that labels images as dogs or cats by
quantizing its weights. Standard method: quantizing 𝜙 with the standard objective
function (5.1) promotes a classifier ̂︀𝜙standard that tries to approximate 𝜙 over the
entire input space and can thus perform badly for in-domain inputs. Our method:
quantizing 𝜙 with our objective function (5.2) promotes a classifier ̂︀𝜙activations that
performs well for in-domain inputs. Images lying in the hatched area of the input
space are correctly classified by 𝜙activations but incorrectly by 𝜙standard.

In this work, we propose a compression method particularly adapted to ResNet-
like architectures. Our approach takes advantage of the high correlation in the convo-
lutions by the use of a structured quantization algorithm, Product Quantization (PQ)
(Jegou et al., 2011). More precisely, we exploit the spatial redundancy of information
inherent to standard convolution filters (Denton et al., 2014). Besides reducing the
memory footprint, we produce compressed networks allowing efficient inference on
CPU, as opposed to entropy decoders (Han et al., 2016b).

Our approach departs from traditional scalar quantizers (Han et al., 2016b) and
vector quantizers (Gong et al., 2014; Carreira-Perpiñán and Idelbayev, 2017) by fo-
cusing on the accuracy of the activations rather than the weights. This is achieved
by leveraging a weighted 𝑘-means technique. To our knowledge this strategy is novel
in this context. The closest work we are aware of is the one by Choi et al. (2016), but
the authors use a different objective (their weighted term is derived from second-order
information) along with a different quantization technique (scalar quantization). Our
method targets a better in-domain reconstruction, as depicted by Figure 5-1.

Finally, we compress the network sequentially to account for the dependency of
our method to the activations at each layer. To prevent the accumulation of errors
across layers, we guide this compression with the activations of the uncompressed
network on unlabelled data: training by distillation (Hinton et al., 2015) allows for
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both an efficient layer-by-layer compression procedure and a global fine-tuning of the
codewords. Thus, we only need a set of unlabelled images to adjust the codewords.
As opposed to recent works by Mishra and Marr (2017), Lopes et al. (2017), our
distillation scheme is sequential and the underlying compression method is different.
Similarly, Wu et al. (2016) use use Vector Quantization (VQ) instead PQ, do not
finetune the learned codewords and do not compress the classifier’s weights.

We show that applying our approach to the semi-supervised ResNet-50 of Yalniz
et al. (2019) leads to a 5 MB memory footprint and a 76.1% top-1 accuracy on Ima-
geNet object classification (hence 20× compression vs. the original model). Moreover,
our approach generalizes to other tasks such as image detection. As shown in Section
5.4.3, we compress a Mask R-CNN (He et al., 2017a) with a size budget around 6
MB (26× compression factor) while maintaining a competitive performance.

5.2 Related work

Here, we review the works closest to ours and refer the reader to the Related Work
section 2.3 for a more extensive discussion.

Low-precision Training. Since early works like these of Courbariaux et al. (2015),
researchers have developed various approaches to train networks with low precision
weights. these approaches include training with binary or ternary weights (Shayer
et al., 2017; Zhu et al., 2016; Li and Liu, 2016; Rastegari et al., 2016; McDonnell,
2018), learning a combination of binary bases (Lin et al., 2017b) and quantizing the
activations (Zhou et al., 2016, 2017; Mishra et al., 2017). Some of these methods
assume the possibility to employ specialized hardware that speed up inference and
improve power efficiency by replacing most arithmetic operations with bit-wise op-
erations. However, the back-propagation has to be adapted to the case where the
weights are discrete using accumulation or projection techniques and binary networks
suffer from a significant drop in accuracy despite noticeable progress.

Quantization. Vector Quantization (VQ) and Product Quantization (PQ) have
been extensively studied in the context of nearest-neighbor search (Jegou et al., 2011;
Ge et al., 2014; Norouzi and Fleet, 2013). The idea is to decompose the original
high-dimensional space into a cartesian product of subspaces that are quantized sep-
arately with a joint codebook. To our knowledge, Gong et al. (2014) were the first
to introduce these stronger quantizers for neural network quantization, followed by
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Carreira-Perpiñán and Idelbayev (2017). As we will see in the remainder of this Chap-
ter, employing this discretization off-the-shelf does not optimize the right objective
function, and leads to a catastrophic drift of performance for deep networks.

Pruning. Network pruning amounts to removing connections according to an im-
portance criteria (typically the magnitude of the weight associated with this connec-
tion) until the desired model size/accuracy tradeoff is reached (LeCun et al., 1990).
A natural extension of this work is to prune structural components of the network,
for instance by enforcing channel-level (Liu et al., 2017b) or filter-level (Luo et al.,
2017) sparsity. However, these methods alternate between pruning and re-training
steps and thus typically require a long training time.

Dedicated Architectures. Architectures such as SqueezeNet (Iandola et al., 2016),
NASNet (Zoph et al., 2017), ShuffleNet (Zhang et al., 2017b; Ma et al., 2018), Mo-
bileNets (Sandler et al., 2018b) and EfficientNets (Tan and Le, 2019) are designed
to be memory efficient. As they typically rely on a combination of depth-wise and
point-wise convolutional filters, sometimes along with channel shuffling, they are less
prone than ResNets to structured quantization techniques such as PQ. These archi-
tectures are either designed by hand or using the framework of architecture search
(Howard et al., 2019). For instance, the respective model size and test top-1 accuracy
of ImageNet of a MobileNet are 13.4 MB for 71.9%, to be compared with a vanilla
ResNet-50 with size 97.5 MB for a top-1 of 76.2%. Moreover, larger models such
as ResNets can benefit from large-scale weakly- or semi-supervised learning to reach
better performance (Mahajan et al., 2018; Yalniz et al., 2019).

Summary. Combining some of the mentioned approaches yields high compression
factors as demonstrated by Han et al. (2016b) with Deep Compression (DC) or more
recently by Tung and Mori (2018). Moreover and from a practical point of view,
the process of compressing networks depends on the type of hardware on which the
networks will run. Recent work directly quantizes to optimize energy-efficiency and
latency time on a specific hardware (Wang et al., 2018a). Finally, the memory over-
head of storing the full activations is negligible compared to the storage of the weights
for two reasons. First, in realistic real-time inference setups, the batch size is almost
always equal to one. Second, a forward pass only requires to store the activations of
the current layer –which are often smaller than the size of the input– and not the
whole activations of the network.
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5.3 Our approach

In this section, we describe our strategy for network compression and we show how
to extend our approach to quantize a modern ConvNet architecture. The specificity
of our approach is that it aims at a small reconstruction error for the outputs of the
layer rather than the layer weights themselves. We first describe how we quantize
a single fully connected and convolutional layer. Then we describe how we quantize
a full pre-trained network and finetune it. We call the proposed algorithm iPQ for
Iterative Product Quantization.

5.3.1 Quantization of a Fully-connected Layer

We consider a fully-connected layer with weights 𝑊 ∈ R𝐶in×𝐶out and, without loss of
generality, we omit the bias since it does not impact reconstruction error.

Product Quantization (PQ). When applying the PQ algorithm to the columns of
𝑊 , we evenly split each column into 𝑚 contiguous subvectors and learn a codebook on
the resulting 𝑚𝐶out subvectors. Then, a column of 𝑊 is quantized by mapping each of
its subvector to its nearest codeword in the codebook. For simplicity, we assume that
𝐶in is a multiple of 𝑚. Hence, all the subvectors have the same dimension 𝑑 = 𝐶in/𝑚.

More formally, the codebook 𝒞 = {𝑐1, . . . , 𝑐𝑘} contains 𝑘 codewords of dimension
𝑑. Any column 𝑤𝑗 of 𝑊 is mapped to its quantized version 𝑞(𝑤𝑗) = (𝑐𝑖1 , . . . , 𝑐𝑖𝑚)
where 𝑖1 denotes the index of the codeword assigned to the first subvector of 𝑤𝑗, and
so forth. The codebook is then learned by minimizing the following objective:

‖𝑊 − ̂︁𝑊‖2
2 =

∑︁
𝑗

‖𝑤𝑗 − 𝑞(𝑤𝑗)‖2
2, (5.1)

where ̂︁𝑊 denotes the quantized weights. This objective can be efficiently minimized
with 𝑘-means. When 𝑚 is set to 1, PQ is equivalent to vector quantization (VQ) and
when 𝑚 is equal to 𝐶in, it is the scalar 𝑘-means algorithm. The main benefit of PQ is
its expressivity: each column 𝑤𝑗 is mapped to a vector in the product 𝒞 = 𝒞×· · ·×𝒞,
thus PQ generates an implicit codebook of size 𝑘𝑚.

Our algorithm. PQ quantizes the weight matrix of the fully-connected layer. How-
ever, in practice, we are interested in preserving the output of the layer, not its
weights. This is illustrated in the case of a non-linear classifier in Figure 5-1: pre-
serving the weights a layer does not necessarily guarantee preserving its output. In
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other words, the Frobenius approximation of the weights of a layer is not guaranteed
to be the best approximation of the output over some arbitrary domain (in particular
for in-domain inputs). We thus propose an alternative to PQ that directly minimizes
the reconstruction error on the output activations obtained by applying the layer to
in-domain inputs. More precisely, given a batch of 𝐵 input activations 𝑥 ∈ R𝐵×𝐶in ,
we are interested in learning a codebook 𝒞 that minimizes the difference between the
output activations and their reconstructions:

‖𝑦 − ̂︀𝑦‖2
2 =

∑︁
𝑗

‖𝑥(𝑤𝑗 − 𝑞(𝑤𝑗))‖2
2, (5.2)

where 𝑦 = 𝑥𝑊 is the output and ̂︀𝑦 = 𝑥̂︁𝑊 its reconstruction. Our objective is a
re-weighting of the objective in Equation (5.1). We can thus learn our codebook
with a weighted 𝑘-means algorithm. First, we unroll 𝑥 of size 𝐵 × 𝐶in into ̃︀𝑥 of size
(𝐵 ×𝑚) × 𝑑 i.e. we split each row of 𝑥 into 𝑚 subvectors of size 𝑑 and stack these
subvectors. Next, we adapt the EM algorithm as follows.

(1) E-step (cluster assignment). Recall that every column 𝑤𝑗 is divided into 𝑚
subvectors of dimension 𝑑. Each subvector 𝑣 is assigned to the codeword

𝑐𝑗 = argmin
𝑐∈𝒞

‖̃︀𝑥(𝑐− 𝑣)‖2
2. (5.3)

This step is performed by exhaustive exploration. Our implementation relies
on broadcasting to be computationally efficient.

(2) M-step (codeword update). Let 𝑐 ∈ 𝒞. We denote (𝑣𝑝)𝑝∈𝐼𝑐 the subvectors
that are currently assigned to 𝑐. Then, we update 𝑐← 𝑐⋆, where

𝑐⋆ = argmin
𝑐∈R𝑑

∑︁
𝑝∈𝐼𝑐

‖̃︀𝑥(𝑐− 𝑣𝑝)‖2
2. (5.4)

This step explicitly computes the solution of the least-squares problem1. Our
implementation performs the computation of the pseudo-inverse of ̃︀𝑥 before
alternating between the Expectation and Minimization steps as it does not
depend on the learned codebook 𝒞.

We initialize the codebook 𝒞 by uniformly sampling 𝑘 vectors among these we wish
to quantize. After performing the E-step, some clusters may be empty. To resolve this

1Denoting ̃︀𝑥+ the Moore-Penrose pseudo-inverse of ̃︀𝑥, we obtain 𝑐* = 1
|𝐼𝑐|̃︀𝑥+̃︀𝑥(︁∑︀𝑝∈𝐼𝑐

𝑣𝑝

)︁
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issue, we iteratively perform the following additional steps for each empty cluster of
index 𝑖. (1) Find codeword 𝑐0 corresponding to the most populated cluster ; (2) define
new codewords 𝑐′

0 = 𝑐0 + 𝑒 and 𝑐′
𝑖 = 𝑐0 − 𝑒, where 𝑒 ∼ 𝒩 (0, 𝜀) and (3) perform again

the E-step. We proceed to the M-step after all the empty clusters are resolved. We
set 𝜀 = 1e−8 and we observe that its generally takes less than 1 or 2 E-M iterations
to resolve all the empty clusters. Note that the quality of the resulting compression
is sensitive to the choice of 𝑥.

5.3.2 Convolutional Layers

Despite being presented in the case of a fully-connected layer, our approach works on
any set of vectors. As a consequence, our approach can be applied to a convolutional
layer if we split the associated 4D weight matrix into a set of vectors. There are many
ways to split a 4D matrix in a set of vectors and we are aiming for one that maximizes
the correlation between the vectors since vector quantization based methods work the
best when the vectors are highly correlated.

Given a convolutional layer, we have 𝐶out filters of size 𝐾 × 𝐾 × 𝐶in, leading
to an overall 4D weight matrix 𝑊 ∈ R𝐶out×𝐶in×𝐾×𝐾 . The dimensions along the
output and input coordinate have no particular reason to be correlated. On the other
hand, the spatial dimensions related to the filter size are by nature very correlated:
nearby patches or pixels likely share information. As depicted in Figure 5-2, we thus
reshape the weight matrix in a way that lead to spatially coherent quantization. More
precisely, we quantize𝑊 spatially into subvectors of size 𝑑 = 𝐾×𝐾 using the following
procedure. We first reshape 𝑊 into a 2D matrix of size (𝐶in×𝐾×𝐾)×𝐶out. Column
𝑗 of the reshaped matrix 𝑊r corresponds to the 𝑗th filter of 𝑊 and is divided into 𝐶in

subvectors of size 𝐾 ×𝐾. Similarly, we reshape the input activations 𝑥 accordingly
to 𝑥r so that reshaping back the matrix 𝑥r𝑊r yields the same result as 𝑥 *𝑊 . In
other words, we adopt a dual approach to the one using bi-level Toeplitz matrices to
represent the weights. Then, we apply our method exposed in Section 5.3.1 to quantize
each column of 𝑊r into 𝑚 = 𝐶in subvectors of size 𝑑 = 𝐾 × 𝐾 with 𝑘 codewords,
using 𝑥r as input activations in (5.2). We also quantize with larger subvectors, for
example subvectors of size 𝑑 = 2×𝐾 ×𝐾, see Section 5.4 for details.

In our implementation, we adapt the reshaping of 𝑊 and 𝑥 to various types of
convolutions and refer the reader to the code for more details.
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Figure 5-2: We quantize 𝐶out filters of size 𝐶in × 𝐾 × 𝐾 using a subvector size of
𝑑 = 𝐾 × 𝐾. In other words, we spatially quantize the convolutional filters to take
advantage of the redundancy of information in the network. Similar colors denote
subvectors assigned to the same codewords.

5.3.3 Network Quantization

In this section, we describe our approach for quantizing a neural network. We quantize
the network sequentially starting from the lowest layer to the highest layer, and guide
the compression of the student network by the non-compressed teacher network.

Learning the codebook. We recover the current input activations of the layer, i.e.
the input activations obtained by forwarding a batch of images through the quantized
lower layers, and we quantize the current layer using these activations. Experimen-
tally, we observed a drift in both the reconstruction and classification errors when
using the activations of the non-compressed network instead.

Finetuning the codebook. We finetune the codewords by distillation (Hinton
et al., 2015) using the non-compressed network as the teacher network and the com-
pressed network (up to the current layer) as the student network. Denoting 𝑦t (resp.
𝑦s) the output probabilities of the teacher (resp. student) network, the loss we op-
timize is the Kullback-Leibler divergence ℒ = KL(𝑦s, 𝑦t). Finetuning on codewords
is done by averaging the gradients of each subvector assigned to a given codeword.
More formally, after the quantization step, we fix the assignments once for all. Then,
denoting (𝑏𝑝)𝑝∈𝐼𝑐 the subvectors that are assigned to codeword 𝑐, we perform the SGD
update with a learning rate 𝜂

𝑐← 𝑐− 𝜂 1
|𝐼𝑐|

∑︁
𝑝∈𝐼𝑐

𝜕ℒ
𝜕𝑏𝑝

. (5.5)
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Experimentally, we find the approach to perform better than finetuning on the target
of the images as demonstrated in Table 5.3. Moreover, this approach does not require
any labelled data as it relies on distillation.

5.3.4 Global Finetuning

In a final step, we globally finetune the codebooks of all the layers to reduce any
residual drifts and we update the running statistics of the BatchNorm layers: We
empirically find it beneficial to finetune all the centroids after the whole network is
quantized. The finetuning procedure is exactly the same as described in Section 5.3.3,
except that we additionally switch the BatchNorms to the training mode, meaning
that the learnt coefficients are still fixed but that the batch statistics (running mean
and variance) are still being updated with the standard moving average procedure.

We perform the global finetuning using the standard ImageNet training set for 9
epochs with an initial learning rate of 0.01, a weight decay of 10−4 and a momentum
of 0.9. The learning rate is decayed by a factor 10 every 30 epochs. As demonstrated
in the ablation study in Table 5.3, finetuning on the true labels performs worse than
finetuning by distillation. A possible explanation is that the supervision signal coming
from the teacher network is richer than the one-hot vector used traditionally.

5.4 Experiments

5.4.1 Experimental Setup

We quantize vanilla ResNet-18 and ResNet-50 architectures pretrained on the Im-
ageNet dataset (Deng et al., 2009). Unless explicit mention of the contrary, the
pretrained models are taken from the PyTorch model zoo2. We run our method on
a 16 GB Volta V100 GPU. Quantizing a ResNet-50 with our method (including all
finetuning steps) takes about one day on 1 GPU. We detail our experimental setup
below. Our code and the compressed models are open-sourced.

Compression Regimes. We explore a large block sizes (resp. small block sizes)
compression regime by setting the subvector size of 3×3 convolutions to 𝑑= 9 (resp.
𝑑 = 18) and the subvector size of pointwise convolutions to 𝑑 = 4 (resp. 𝑑 = 8). For
ResNet-18, the block size of pointwise convolutions is always equal to 4. The number

2https://pytorch.org/docs/stable/torchvision/models.
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of codewords or centroids is set to 𝑘 ∈ {256, 512, 1024, 2048} for each compression
regime. We clamp the number of centroids to min(𝑘, 𝐶out ×𝑚/4) for stability. For
instance, the first layer of the first stage of the ResNet-50 has size 64× 64× 1 ×1,
thus we always use 𝑘 = 128 centroids with a block size 𝑑 = 8. For a given number of
centroids 𝑘, small blocks lead to a lower compression than large blocks.

Sampling the Input Activations. Before quantizing each layer, we randomly
sample a batch of 1024 training images to obtain the input activations of the current
layer and reshape it as described in Section 5.3.2. Before each iteration (E+M step)
of our method, we randomly sample 10, 000 rows from these reshaped activations.

Hyperparameters. We quantize each layer while performing 100 steps of our
method (sufficient for convergence in practice). We finetune the centroids of each
layer on the standard ImageNet training set during 2,500 iterations with a batch size
of 128 (resp 64) for the ResNet-18 (resp. ResNet-50) with a learning rate of 0.01, a
weight decay of 10−4 and a momentum of 0.9. For accuracy and memory reasons, the
classifier is always quantized with a block size 𝑑 = 4 and 𝑘 = 2048 (resp. 𝑘 = 1024)
centroids for the ResNet-18 (resp., ResNet-50). Moreover, the first convolutional layer
of size 7 × 7 is not quantized, as it represents less than 0.1% (resp., 0.05%) of the
weights of a ResNet-18 (resp. ResNet-50).

Metrics. We focus on the tradeoff between accuracy and memory. The accuracy is
the top-1 error on the standard validation set of ImageNet. The memory footprint is
calculated as the indexing cost plus the overhead of storing the centroids in float16.
As an example, quantizing a layer of size 128× 128× 3× 3 with 𝑘= 256 centroids (1
byte per subvector) and a block size of 𝑑 = 9 leads to an indexing cost of 16 kB for
𝑚 = 16, 384 blocks plus the cost of storing the centroids of 4.5 kB.

5.4.2 Image Classification Results

We report below the results of our method applied to various ResNet models. First,
we compare our method with the state of the art on the standard ResNet-18 and
ResNet-50 architecture. Next, we show the potential of our approach on a competitive
ResNet-50. Finally, an ablation study validates the pertinence of our method.

Vanilla ResNet-18 and ResNet-50. We evaluate our method on the ImageNet
benchmark for ResNet-18 and ResNet-50 architectures and compare our results to
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Model (original top-1) Compression Size ratio Model size Top-1 (%)

ResNet-18 (69.76%) Small blocks 29x 1.54 MB 65.81 ±0.04
Large blocks 43x 1.03 MB 61.10 ±0.03

ResNet-50 (76.15%) Small blocks 19x 5.09 MB 73.79 ±0.05
Large blocks 31x 3.19 MB 68.21 ±0.04

Table 5.1: Results for vanilla ResNet-18 and ResNet-50 for 𝑘 = 256 centroids.

the following methods: Trained Ternary Quantization (TTQ) (Zhu et al., 2016),
LR-Net (Shayer et al., 2017), ABC-Net (Lin et al., 2017b), Binary Weight Network
(XNOR-Net or BWN) (Rastegari et al., 2016), Deep Compression (DC) (Han et al.,
2016b) and Hardware-Aware Automated Quantization (HAQ) (Wang et al., 2018a).
We report the accuracies and compression factors in the original papers and/or in
the two surveys (Guo, 2018; Cheng et al., 2017) for a given architecture when the
result is available. We do not compare our method to DoReFa-Net (Zhou et al.,
2016) and WRPN (Mishra et al., 2017) as these approaches also use low-precision
activations and hence get lower accuracies, e.g., 51.2% top-1 accuracy for a XNOR-
Net with ResNet-18. The results are presented in Figure 5.4.2. For better readability,
some results for our method are also displayed in Table 5.1. We report the average
accuracy and standard deviation over 3 runs. Our method significantly outperforms
state of the art papers for various operating points. For instance, for a ResNet-18,
our method with large blocks and 𝑘 = 512 centroids reaches a larger accuracy than
ABC-Net (𝑀 = 2) with a compression ratio that is 2x larger. Similarly, on the
ResNet-50, our compressed model with 𝑘 = 256 centroids in the large blocks setup
yields a comparable accuracy to DC (2 bits) with a compression ratio that is 2x larger.

The work by Tung and Mori (2018) is likely the only one that remains competitive
with ours with a 6.8 MB network after compression, with a technique that prunes
the network and therefore implicitly changes the architecture. The authors report
the delta accuracy for which we have no direct comparable top-1 accuracy, but their
method is arguably complementary to ours.

Semi-supervised ResNet-50. Recent works (Mahajan et al., 2018; Yalniz et al.,
2019) have demonstrated the possibility to leverage a large collection of unlabelled
images to improve the accuracy. In particular, Yalniz et al. (2019) use the publicly
available YFCC-100M dataset (Thomee et al., 2015) to train a ResNet-50 that reaches
79.3% top-1 accuracy on the standard validation set of ImageNet. In the following,
we use this particular model and refer to it as semi-supervised ResNet-50. In the low
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Figure 5-3: Compression results for ResNet-18 and ResNet-50 architectures. We
explore two compression regimes as defined in Section 5.4.1: small block sizes (block
sizes of 𝑑= 4 and 9) and large block sizes (block sizes 𝑑= 8 and 18). The results of
our method for 𝑘 = 256 centroids are of practical interest as they correspond to a
byte-compatible compression scheme.

Size budget Best previous published method Ours
∼1 MB 70.90% (HAQ , MobileNet v2) 64.01% (vanilla ResNet-18)
∼5 MB 71.74% (HAQ, MobileNet v1) 76.12% (semi-sup. ResNet-50)
∼10 MB 75.30% (HAQ, ResNet-50) 77.85% (semi-sup. ResNet-50)

Table 5.2: Best test top-1 on ImageNet for a given size (no architecture constraint).

compression regime (block sizes of 4 and 9), with 𝑘 = 256 centroids (practical for
implementation), our compressed semi-supervised ResNet-50 reaches 76.12% top-1
accuracy. In other words, the model compressed to 5.20 MB has the performance of
a vanilla, non-compressed ResNet50 (vs. 97.5 MB for the non-compressed ResNet-50).

Comparison for a Given Size Budget. To ensure a fair comparison, we com-
pare our method for a given model size budget against the reference methods in
Table 5.2. It should be noted that our method can further benefit from advances in
semi-supervised learning to boosts the performance of the non-compressed and hence
of the compressed network.

Ablation Study. We perform an ablation study on the vanilla ResNet-18 to study
the respective effects of quantizing using the activations and finetuning by distillation
(here, finetuning refers both to the per-layer finetuning and to the global finetuning
after the quantization described in Section 5.3). We refer to our method as Act +
Distill. First, we still finetune by distillation but change the quantization: instead of
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Compression 𝑘 No act + Distill Act + Labels Act + Distill (ours)

Small blocks

256 64.76 65.55 65.81
512 66.31 66.82 67.15

1024 67.28 67.53 67.87
2048 67.88 67.99 68.26

Large blocks

256 60.46 61.01 61.18
512 63.21 63.67 63.99

1024 64.74 65.48 65.72
2048 65.94 66.21 66.50

Table 5.3: Ablation study on ResNet-18 (test top-1 accuracy on ImageNet).

quantizing using our method (see Equation (5.2)), we quantizing using the standard
PQ algorithm and do not take the activations into account, see Equation (5.1). We
refer to this method as No act + Distill. Second, we quantize using our method but
perform a standard finetuning using the image labels (Act + Labels). The results
are displayed in Table 5.3. Our approach consistently yields significantly better re-
sults. As a side note, quantizing all the layers of a ResNet-18 with the standard PQ
algorithm and without any finetuning leads to top-1 accuracies below 25% for all
operating points, which illustrates the drift in accuracy occurring when compressing
deep networks with standard methods (as opposed to our method).

5.4.3 Image Detection Results

To demonstrate the generality of our method, we compress the Mask R-CNN archi-
tecture used for image detection in many real-life applications (He et al., 2017a). We
compress the backbone (ResNet-50 FPN) in the small blocks compression regime and
refer the reader to the open-sourced compressed model for the block sizes used in the
various heads of the network. Results are displayed in Table 5.4.3. We argue that this
provides an interesting point of comparison for future work aiming at compressing
such detection architectures.

Model Size Box AP Mask AP
Non-compressed 170 MB 37.9 34.6

Compressed 6.65 MB 33.9 30.8

Table 5.4: Compression results for Mask R-CNN (backbone ResNet-50 FPN) for
𝑘 = 256 centroids (compression factor 26×).
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5.5 Conclusion

We presented a quantization method based on Product Quantization that gives state
of the art results on ResNet architectures and that generalizes to other architectures
such as Mask R-CNN. Our compression scheme does not require labeled data and the
resulting models are byte-aligned, allowing for efficient inference on CPU.

A current limitation of our method is that it takes advantage of the natural spatial
redundancy in the traditional 3×3 filters and performs worse on 1×1 filters (pointwise
convolutions), where the redundancy, if any, is less observable. This makes iPQ less
suited for mobile-efficient architectures such as MobileNets or EfficientNets (Sandler
et al., 2018a; Tan and Le, 2019). We developed a pre-conditioning technique called
Quant-Noise that is explained in the next Chapter 6.
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Chapter 6

Pre-conditioning Network
Compression with Quant-Noise

As in Chapter 5, we tackle the problem of producing compact models, maximizing
their accuracy for a given model size. To that end, we develop a pre-conditioning
technique called Quant-Noise that injects a carefully chosen quantization noise when
training the uncompressed network before compressing it with iPQ. As a result we
establish new state-of-the-art compromises between accuracy and model size both
in natural language processing and image classification. For example, applying our
method to state-of-the-art Transformer and ConvNet architectures, we can achieve
82.5% accuracy on MNLI by compressing RoBERTa to 14 MB and 80.0% top-1 ac-
curacy on ImageNet by compressing an EfficientNet-B3 to 3.3 MB. We also show the
potential of Quant-Noise for scalar int8 and int4 quantization over the standard
Quantization Aware Training (Jacob et al., 2018) procedure. Finally, we combine
product and int8 scalar quantization to take advantage of (i) the speedup provided
by int8 and the high compression ratio of iPQ.

6.1 Introduction

Many of the best performing neural network architectures in real-world applications
have a large number of parameters. For example, the current standard machine
translation architecture, Transformer (Vaswani et al., 2017), has layers that contain
millions of parameters. Even models that are designed to jointly optimize the per-
formance and the parameter efficiency, such as EfficientNets (Tan and Le, 2019), still
require dozens to hundreds of megabytes, which limits their applications to domains
like robotics or virtual assistants.
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Figure 6-1: Quant-Noise trains models to be resilient to quantization by mimicking
the effect of the quantization method during training time. This allows for extreme
compression rates without much loss in accuracy on a variety of tasks and benchmarks.

Model compression schemes reduce the memory footprint of overparametrized
models. Pruning (LeCun et al., 1990) and distillation (Hinton et al., 2015) remove
parameters by reducing the number of network weights. In contrast, quantization
focuses on reducing the bits per weight. This makes quantization particularly in-
teresting when compressing models that have already been carefully optimized in
terms of network architecture. Whereas deleting weights or whole hidden units will
inevitably lead to a drop in performance, we demonstrate that quantizing the weights
can be performed with little to no loss in accuracy.

Popular postprocessing quantization methods, like scalar quantization, replace
the floating-point weights of a trained network by a lower-precision representation,
like fixed-width integers (Vanhoucke et al., 2011). These approaches achieve a good
compression rate with the additional benefit of accelerating inference on support-
ing hardware. However, the errors made by these approximations accumulate in the
computations operated during the forward pass, inducing a significant drop in per-
formance as explained in Chapter 5.

A solution to address this drifting effect is to directly quantize the network during
training. This raises two challenges. First, the discretization operators have a null
gradient — the derivative with respect to the input is zero almost everywhere. This
requires special workarounds to train a network with these operators. The second
challenge that often comes with these workarounds is the discrepancy that appears
between the train and test functions implemented by the network. Quantization
Aware Training (QAT) (Jacob et al., 2018) resolves these issues by quantizing all the
weights during the forward and using a straight through estimator (STE) (Bengio
et al., 2013) to compute the gradient. This works when the error introduced by STE
is small, like with int8 quantization, but does not suffice in compression regimes
where the approximation made by the compression is more severe.

128



In this work, we show that quantizing only a subset of weights instead of the
entire network during training is more stable for high compression schemes. Indeed, by
quantizing only a random fraction of the network at each forward, most the weights are
updated with unbiased gradients. Interestingly, we show that our method can employ
a simpler quantization scheme during the training. This is particularly useful for
quantizers with trainable parameters, such as Product Quantizer (PQ), for which our
quantization proxy is not parametrized. Our approach simply applies a quantization
noise, called Quant-Noise, to a random subset of the weights, see Figure 6-1. We
observe that this makes a network resilient to various types of discretization methods:
it significantly improves the accuracy associated with (a) low precision representation
of weights like int8; and (b) state-of-the-art iPQ. Further, we demonstrate that
Quant-Noise can be applied to existing trained networks as a post-processing step, to
improve the performance network after quantization. In summary,

∙ We introduce the Quant-Noise technique to learn networks that are more re-
silient to a variety of quantization methods such as int4, int8, and iPQ;

∙ Adding Quant-Noise to iPQ leads to state-of-the-art trade-offs between accuracy
and model size. For instance, for natural language processing (NLP), we reach
82.5% accuracy on MNLI by compressing RoBERTa to 14 MB. Similarly for
computer vision, we report 80.0% top-1 accuracy on ImageNet by compressing
an EfficientNet-B3 to 3.3 MB;

∙ By combining iPQ and int8 to quantize weights and activations for networks
trained with Quant-Noise, we obtain extreme compression with fixed-precision
computation and achieve 79.8% top-1 accuracy on ImageNet and 21.1 perplexity
on WikiText-103.

6.2 Related Work

Here, we review the works closest to ours and refer the reader to the Related Work
section 2.3 for a more extensive discussion.

Model compression. Many compression methods focus on efficient parameteriza-
tion, via weight pruning (LeCun et al., 1990; Li et al., 2016; Huang et al., 2018a; Mittal
et al., 2018), weight sharing (Dehghani et al., 2019; Turc et al., 2019; Lan et al., 2019)
or with dedicated architectures (Tan and Le, 2019; Zhang et al., 2017b; Howard et al.,
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2019). Weight pruning is implemented during training (Louizos et al., 2017b) or as a
fine-tuning post-processing step (Han et al., 2015, 2016b). Many pruning methods are
unstructured, i.e., remove individual weights (LeCun et al., 1990; Molchanov et al.,
2017). On the other hand, structured pruning methods follow the structure of the
weights to reduce both the memory footprint and the inference time of a model (Li
et al., 2016; Luo et al., 2017; Fan et al., 2019). We refer the reader to Liu et al. (2018)
for a review of different pruning strategies. Other authors have worked on lightweight
architectures, by modifying existing models (Zhang et al., 2018a; Wu et al., 2019b;
Sukhbaatar et al., 2019a) or developing new networks, such as MobileNet (Howard
et al., 2019), ShuffleNet (Zhang et al., 2017b), and EfficientNet (Tan and Le, 2019).
Finally, knowledge distillation (Hinton et al., 2015) has been applied to sentence rep-
resentation (Turc et al., 2019; Sanh et al., 2019; Zhao et al., 2019; Jiao et al., 2019)
and to reduce the size of a BERT model (Devlin et al., 2018).

Quantization. There are extensive studies of scalar quantization to train networks
with low-precision weights and activations (Courbariaux et al., 2015; Courbariaux and
Bengio, 2016; Rastegari et al., 2016; McDonnell, 2018). These methods benefit from
specialized hardware to also improve the runtime during inference (Vanhoucke et al.,
2011). Other quantization methods such as Vector Quantization (VQ) and PQ (Je-
gou et al., 2011) quantize blocks of weights simultaneously to achieve higher com-
pression rate (Gong et al., 2014; Joulin et al., 2016; Carreira-Perpiñán and Idelbayev,
2017). Closer to our work, several works have focused at simultaneously training and
quantizing a network (Jacob et al., 2018; Krishnamoorthi, 2018; Gupta et al., 2015;
Dong et al., 2019). Gupta et al. (2015) assigns weights to a quantized bin stochas-
tically which is specific to scalar quantization, but permits training with fixed point
arithmetic. Finally, our method can be interpreted as a form of Bayesian compres-
sion (Louizos et al., 2017b), using the Bayesian interpretation of Dropout (Gal and
Ghahramani, 2016). However, we select our noise to match the weight transformation
of a quantization method without restricting it to a scale mixture prior.

6.3 Quantizing Neural Networks

In this section, we present the principles of quantization, several standard quanti-
zation methods, and describe how to combine scalar and product quantization. For
clarity, we focus on the case of a fixed real matrix 𝑊 ∈ R𝑛×𝑝. We suppose that this
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matrix is split into 𝑚× 𝑞 blocks 𝑏𝑘𝑙 as follows:

𝑊 =

⎛⎜⎜⎜⎝
𝑏11 · · · 𝑏1𝑞
... . . . ...
𝑏𝑚1 · · · 𝑏𝑚𝑞

⎞⎟⎟⎟⎠ , (6.1)

where the nature of these blocks is determined by the quantization method. A code-
book is a set of 𝐾 vectors, i.e., 𝒞 = {𝑐[1], . . . , 𝑐[𝐾]}. Quantization methods compress
the matrix 𝑊 by assigning to each block 𝑏𝑘𝑙 an index that points to a codeword 𝑐 in a
codebook 𝒞, and storing the codebook 𝒞 and the resulting indices (as the entries 𝐼𝑘𝑙 of
an index matrix 𝐼) instead of the real weights. During the inference, they reconstruct
an approximation ̂︁𝑊 of the original matrix 𝑊 such that ̂︀𝑏𝑘𝑙 = 𝑐[𝐼𝑘𝑙].

We distinguish scalar quantization, such as int8, where each block 𝑏𝑘𝑙 consists of
a single weight, from vector quantization, where several weights are quantized jointly.

6.3.1 Fixed-point Scalar Quantization

Fixed-point scalar quantization methods replace floating-point number representa-
tions by low-precision fixed-point representations. They simultaneously reduce a
model’s memory footprint and accelerate inference by using fixed-point arithmetic
on supporting hardware.

Fixed-point scalar quantization operates on blocks that represent a single weight,
i.e., 𝑏𝑘𝑙 = 𝑊𝑘𝑙. Floating-point weights are replaced by 𝑁 bit fixed-point num-
bers (Gupta et al., 2015), with the extreme case of binarization where 𝑁 = 1 (Cour-
bariaux et al., 2015). More precisely, the weights are rounded to one of 2𝑁 possible
codewords. These codewords correspond to bins evenly spaced by a scale factor 𝑠
and shifted by a bias 𝑧. Each weight 𝑊𝑘𝑙 is mapped to its nearest codeword 𝑐 by
successively quantizing with 𝑧 ↦→ round(𝑊𝑘𝑙/𝑠+ 𝑧) and dequantizing with:

𝑐 = (round(𝑊𝑘𝑙/𝑠+ 𝑧)− 𝑧)× 𝑠, (6.2)

where we compute the scale and bias as:

𝑠 = max𝑊 −min𝑊
2𝑁 − 1 and 𝑧 = round(min𝑊/𝑠).

We focus on this uniform rounding scheme instead of other non-uniform schemes (Choi
et al., 2018; Li et al., 2019), because it enables fixed-point arithmetic with implemen-
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tations in PyTorch and Tensorflow (see Appendix). The compression rate is ×32/𝑁 .
The activations are also rounded to 𝑁 -bit fixed-point numbers. With int8 for in-
stance, this leads to ×2 to ×4 faster inference on dedicated hardware. In this work,
we consider both int4 and int8 quantization.

6.3.2 Product Quantization

Several quantization methods work on groups of weights, such as vectors, to benefit
from the correlation induced by the structure of the network. In this work, we focus
on Product Quantization for its good performance at extreme compression ratio as
explained in Chapter 5.

Traditional PQ. In vector quantization methods, the blocks are predefined groups
of weights instead of single weights. The codewords are groups of values, and the
index matrix 𝐼 maps groups of weights from the matrix 𝑊 to these codewords. In
this section, we present the Product Quantization framework as it generalizes both
scalar and vector quantization. We consider the case where we apply PQ to the
columns of 𝑊 and thus assume that 𝑞 = 𝑝.

Traditional vector quantization techniques split the matrix 𝑊 into its 𝑝 columns
and learn a codebook on the resulting 𝑝 vectors. Instead, Product Quantization splits
each column into 𝑚 subvectors and learns the same codebook for each of the resulting
𝑚 × 𝑝 subvectors. Each quantized vector is subsequently obtained by assigning its
subvectors to the nearest codeword in the codebook. Learning the codebook is tradi-
tionally done using 𝑘-means with a fixed number 𝐾 of centroids, typically 𝐾 = 256
to store the index matrix 𝐼 using int8. Thus, the objective function is written as:

‖𝑊 − ̂︁𝑊‖2
2 =

∑︁
𝑘,𝑙

‖𝑏𝑘𝑙 − 𝑐[𝐼𝑘𝑙]‖2
2. (6.3)

PQ shares representations between subvectors, yielding higher compression rates than
int8 or int4 (respectively ×4 and ×8 with respect to the non-compressed model).

iPQ. When quantizing a full network rather than a single matrix, extreme com-
pression with PQ induces a quantization drift as reconstruction error accumulates as
explained in Chapter 5. Indeed, subsequent layers take as input the output of pre-
ceding layers, which are modified by the quantization of the preceding layers. This
creates a drift in the network activations, resulting in large losses of performance.
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A solution proposed in Chapter 5, called iterative PQ (iPQ), is to quantize layers
sequentially from the lowest to the highest, and finetune the upper layers as the lower
layers are quantized, under the supervision of the uncompressed (teacher) model.
Codewords of each layer are finetuned by averaging the gradients of their assigned
elements with gradient steps:

𝑐← 𝑐− 𝜂 1
|𝐽𝑐|

∑︁
(𝑘,𝑙)∈𝐽𝑐

𝜕ℒ
𝜕𝑏𝑘𝑙

, (6.4)

where 𝐽𝑐 = {(𝑘, 𝑙) | 𝑐[𝐼𝑘𝑙] = 𝑐}, ℒ is the loss function and 𝜂 > 0 is a learning rate. This
adapts the upper layers to the drift appearing in their inputs, reducing the impact of
the quantization approximation on the overall performance.

6.3.3 Combining Fixed-Point with Product Quantization

Fixed-point quantization and Product Quantization are often regarded as competing
choices, but can be advantageously combined. Indeed, PQ/iPQ compresses the net-
work by replacing vectors of weights by their assigned centroids, but these centroids
are in floating-point precision. Fixed-point quantization compresses both activations
and weights to fixed-point representations. Combining both approaches means that
the vectors of weights are mapped to centroids that are compressed to fixed-point rep-
resentations, along with the activations. This benefits from the extreme compression
ratio of iPQ and the finite-precision arithmetics of intN quantization.

More precisely, for a given matrix, we store the int8 representation of the 𝐾

centroids of dimension 𝑑 along with the log2 𝐾 representations of the centroid assign-
ments of the 𝑚× 𝑝 subvectors. The int8 representation of the centroids is obtained
with Eq. (6.2). The overall storage of the matrix and activations during a forward
pass with batch size 1 (recalling that the input dimension is n) writes

𝑀 = 8×𝐾𝑑+ log2 𝐾 ×𝑚𝑝+ 8× 𝑛 bits. (6.5)

In particular, when 𝐾 = 256, the centroid assignments are also stored in int8, which
means that every value required for a forward pass is stored in an int8 format.
We divide by 4 the float32 overhead of storing the centroids, although the storage
requirement associated with the centroids is small compared to the cost of indexing
the subvectors for standard networks. In contrast to iPQ alone where we only quantize
the weights, we also quantize the activations using int8.
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6.4 Method

Deep networks are not exposed to the noise caused by the quantization drift dur-
ing training, leading to suboptimal performance. A solution to make the network
robust to quantization is to introduce it during training. Quantization Aware Train-
ing (QAT) (Jacob et al., 2018) exposes the network during training by quantizing
weights during the forward pass. This transformation is not differentiable and gradi-
ents are approximated with a straight through estimator (STE) (Bengio et al., 2013;
Courbariaux and Bengio, 2016). STE introduces a bias in the gradients that depends
on level of quantization of the weights, and thus, the compression ratio. In this sec-
tion, we propose a simple modification to control this induced bias with a stochastic
amelioration of QAT, called Quant-Noise. The idea is to quantize a randomly selected
fraction of the weights instead of the full network as in QAT, leaving some unbiased
gradients flow through unquantized weights. Our general formulation can simulate
the effect of both quantization and of pruning during training.

6.4.1 Training Networks with Quantization Noise

We consider the case of a real matrix 𝑊 as in Section 6.3. During the training of
a network, our proposed Quant-Noise method works as follows: first, we compute
blocks 𝑏𝑘𝑙 related to a target quantization method. Then, during each forward pass,
we randomly select a subset of these blocks and apply some distortion to them, and
we compute gradients for all the weights, using STE for the distorted weights.

More formally, given a set of tuples of indices 𝐽 ⊂ {(𝑘, 𝑙)} for 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑞

and a distortion or noise function 𝜙 acting on a block, we define an operator 𝜓(· | 𝐽)
such that, for each block 𝑏𝑘𝑙, we apply the following transformation:

𝜓(𝑏𝑘𝑙 | 𝐽) =

⎧⎪⎨⎪⎩𝜙(𝑏𝑘𝑙) if (𝑘, 𝑙) ∈ 𝐽,

𝑏𝑘𝑙 otherwise.
(6.6)

The noise function 𝜙 simulates the change in the weights produced by the target
quantization method (see Section 6.4.2 for details). We replace the matrix 𝑊 by the
noisy matrix 𝑊noise during the forward pass to compute a noisy output 𝑦noise as

𝑊noise = (𝜓(𝑏𝑘𝑙 | 𝐽))𝑘𝑙 and 𝑦noise = 𝑥𝑊noise (6.7)

where 𝑥 is an input vector. During the backward pass, we apply STE, which amounts
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to replacing the distorted weights 𝑊noise by their non-distorted counterparts. Note
that our approach is equivalent to QAT when 𝐽 contains all the tuples of indices.
However, an advantage of Quant-Noise over QAT is that unbiased gradients continue
to flow via blocks unaffected by the noise. As these blocks are randomly selected
for each forward, we guarantee that each weight regularly sees gradients that are
not affected by the nature of the function 𝜙. As a side effect, our quantization
noise regularizes the network in a similar way as DropConnect (Wan et al., 2013) or
LayerDrop (Fan et al., 2019).

Composing quantization noises. As noise operators are compositionally com-
mutative, we can make a network robust to a combination of quantization methods
by composing their noise operators:

𝜓(𝑏𝑘𝑙 | 𝐽) = 𝜓1 ∘ 𝜓2(𝑏𝑘𝑙 | 𝐽). (6.8)

This property is particularly useful to combine quantization with pruning operators
during training, as well as combining scalar quantization with product quantization.

6.4.2 Adding Noise to Specific Quantization Methods

In this section, we propose several implementations of the noise function 𝜙 for the
quantization methods described in Section 6.3.

Fixed-point scalar quantization. In intN quantization, the blocks are atomic
and weights are rounded to their nearest neighbor in the codebook. The function 𝜙

replaces weight 𝑊𝑘𝑙 with the output of the rounding function defined in Eq. (6.2)

𝜙intN(𝑤) = (round(𝑤/𝑠+ 𝑧)− 𝑧)× 𝑠, (6.9)

where 𝑠 and 𝑧 are updated during training. In particular, the application of Quant-
Noise to int8 scalar quantization is a stochastic amelioration of QAT.

Product quantization. As opposed to intN, codebooks in PQ require a clustering
step based on weight values. During training, we learn codewords online and use the
resulting centroids to implement the quantization noise. More precisely, the noise
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Quantization Scheme Language Modeling Image Classification
16-layer Transformer EfficientNet-B3

Wikitext-103 ImageNet-1k

Size Compression PPL Size Compression Top-1

Uncompressed model 942 × 1 18.3 46.7 × 1 81.5

int4 quantization 118 × 8 39.4 5.8 × 8 45.3
- with QAT 118 × 8 34.1 5.8 × 8 59.4
- with Quant-Noise 118 × 8 21.8 5.8 × 8 67.8

int8 quantization 236 × 4 19.6 11.7 × 4 80.7
- with QAT 236 × 4 21.0 11.7 × 4 80.8
- with Quant-Noise 236 × 4 18.7 11.7 × 4 80.9

iPQ 38 × 25 25.2 3.3 × 14 79.0
- with QAT 38 × 25 41.2 3.3 × 14 55.7
- with Quant-Noise 38 × 25 20.7 3.3 × 14 80.0

iPQ & int8 + QNoise 38 × 25 21.1 3.1 × 15 79.8

Table 6.1: Comparison of different quantization schemes with and without
Quant-Noise on language modeling and image classification. For language modeling, we
train a Transformer on the Wikitext-103 benchmark and report perplexity (PPL) on test.
For image classification, we train a EfficientNet-B3 on the ImageNet-1k benchmark and
report top-1 accuracy on validation and use our re-implementation of EfficientNet-B3. The
original implementation of Tan and Le (2019) achieves an uncompressed Top-1 accuracy
of 81.9%. For both settings, we report model size in megabyte (MB) and the compression
ratio compared to the original model.

function 𝜙PQ assigns a selected block 𝑏 to its nearest codeword in 𝒞:

𝜙PQ(𝑣) = argmin𝑐∈𝒞‖𝑏− 𝑐‖2
2. (6.10)

Updating the codebooks online works well. However, empirically, running 𝑘-means
once per epoch is faster and does not noticeably modify the resulting accuracy. Note
that computing the exact noise function for PQ is computationally demanding. We
propose a simpler and faster alternative approximation 𝜙proxy to the operational trans-
formation of PQ and iPQ. The noise function simply zeroes out the subvectors of the
selected blocks, i.e., 𝜙proxy(𝑣) = 0. As a side note, we considered other alternatives, for
instance one where the subvectors are mapped to the mean subvector. In practice, we
found that these approximations lead to similar performance, see Section C.2. This
proxy noise function is a form of Structured Dropout and encourages correlations
between the subvectors. This correlation is beneficial to the subsequent clustering
involved in PQ/iPQ.
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% %

Figure 6-2: Performance as a function of model size. We compare models quantized
with PQ and trained with the related Quant-Noise to the state of the art. (a) Test perplexity
on Wikitext-103 (b) Dev Accuracy on MNLI (c) ImageNet Top-1 accuracy. Model size is
shown in megabytes on a log scale. Red and gray coloring indicates existing work, with
different colors for visual distinction.

Adding pruning to the quantization noise. The specific form of quantization
noise can be adjusted to incorporate additional noise specific to pruning. We simply
combine the noise operators of quantization and pruning by composing them follow-
ing Eq. (6.8). We consider the pruning noise function of Fan et al. (2019) where
they randomly drop predefined structures during training. In particular, we focus on
LayerDrop, where the structures are the residual blocks of highway-like layers (Sri-
vastava et al., 2015), as most modern architectures, such as ResNet or Transformer,
are composed of this structure. More precisely, the corresponding noise operator over
residual blocks 𝑣 is 𝜙LayerDrop(𝑣) = 0. For pruning, we do not use STE to backprop-
agate the gradient of pruned weights, as dropping them entirely during training has
the benefit of speeding convergence (Huang et al., 2016). Once a model is trained
with LayerDrop, the number of layers kept at inference can be adapted to match
computation budget or time constraint.

6.5 Experiments

We demonstrate the impact of Quant-Noise on the performance of several quantiza-
tion schemes in a variety of settings (see Appendix - Sec. C.3).

6.5.1 Improving Compression with Quant-Noise

Quant-Noise is a regularization method that makes networks more robust to the
target quantization scheme or combination of quantization schemes during training.
We show the impact of Quant-Noise in Table 1 for a variety of quantization methods.

137



Language modeling RoBERTa Image Classification

Comp. Size PPL Comp. Size Acc. Comp. Size Acc.

Unquantized
Original × 1.0 942 18.3 × 1.0 480 84.8 × 1.0 46.7 81.5
+ Sharing × 1.8 510 18.7 × 1.9 250 84.0 × 1.4 34.2 80.1
+ Pruning × 3.7 255 22.5 × 3.8 125 81.3 × 1.6 29.5 78.5

Quantized
iPQ × 24.8 38 25.2 × 12.6 38 82.5 × 14.1 3.3 79.0
+ Quant-Noise × 24.8 38 20.7 × 12.6 38 83.6 × 14.1 3.3 80.0
+ Sharing × 49.5 19 22.0 × 34.3 14 82.5 × 18.0 2.6 78.9
+ Pruning × 94.2 10 24.7 × 58.5 8 78.8 × 20.0 2.3 77.8

Table 6.2: Decomposing the impact of the different compression schemes. (a)
we train Transformers with Adaptive Input and LayerDrop on Wikitext-103 (b) we pre-
train RoBERTA base models with LayerDrop and then finetune on MNLI (c) we train an
EfficientNet-B3 on ImageNet. We report the compression ratio w.r.t. to the original model
(“Comp.”) and the resulting size in MB.

We experiment in 2 different settings: a Transformer network trained for language
modeling on WikiText-103 and a EfficientNet-B3 convolutional network trained for
image classification on ImageNet-1k. Our quantization noise framework is general
and flexible — Quant-Noise improves the performance of quantized models for every
quantization scheme in both experimental settings. Importantly, Quant-Noise only
changes model training by adding a regularization noise similar to dropout, with no
impact on convergence and very limited impact on training speed (< 5% slower).

This comparison of different quantization schemes shows that Quant-Noise works
particularly well with high performance quantization methods, like iPQ, where QAT
tends to degrade the performances, even compared to quantizing as a post-processing
step. In subsequent experiments in this section, we focus on applications with iPQ
because it offers the best trade-off between model performance and compression, and
has little negative impact on FLOPS.

Fixed-Point Product Quantization. Combining iPQ and int8 as described in
Section 6.3.3 allows us to take advantage of the high compression rate of iPQ with a
fixed-point representation of both centroids and activations. As shown in Table 6.1,
this combination incurs little loss in accuracy with respect to iPQ + Quant-Noise.
Most of the memory footprint of iPQ comes from indexing and not storing centroids,
so the compression ratios are comparable.
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Complementarity with Weight Pruning and Sharing. We analyze how Quant-
Noise is compatible and complementary with pruning (“+Prune”) and weight sharing
(“+Share”), see Appendix for details on weight sharing. We report results for Lan-
guage modeling on WikiText-103, pre-trained sentence representations on MNLI and
object classification on ImageNet-1k in Table 6.2. The conclusions are remarkably
consistent across tasks and benchmarks: Quant-Noise gives a large improvement over
strong iPQ baselines. Combining it with sharing and pruning offers additional inter-
esting operating points of performance vs size.

6.5.2 Comparison with the State of the Art

We now compare our approach on the same tasks against the state of the art. We
compare iPQ + Quant-Noise with 6 methods of network compression for Language
modeling, 8 state-of-the-art methods for Text classification, and 8 recent methods
evaluate image classification on ImageNet with compressed models. These compar-
isons demonstrate that Quant-Noise leads to extreme compression rates at a reason-
able cost in accuracy. We apply our best quantization setup on competitive models
and reduce their memory footprint by ×20− 94 when combining with weight sharing
and pruning, offering extreme compression for good performance.

Natural Language Processing. In Figure 6-2, we examine the trade-off between
performance and model size. Our quantized RoBERTa offers a competitive trade-off
between size and performance with memory reduction methods dedicated to BERT,
like TinyBERT, MobileBERT, or AdaBERT.

Image Classification. We compress EfficientNet-B3 from 46.7Mb to 3.3Mb (×14
compression) while maintaining high top-1 accuracy (78.5% versus 80% for the orig-
inal model). As shown in Figure 6-2, our quantized EfficientNet-B3 is smaller and
more accurate than architectures dedicated to optimize on-device performance with
limited size like MobileNet or ShuffleNet. We further evaluate the beneficial effect of
Quant-Noise on ResNet-50 to compare directly with the results of Chapter 5.

Incorporating pruning noise into quantization is also beneficial. For example,
with pruning iPQ+Quant-Noise reduces size by ×25 with only a drop of 2.4 PPL
in language modeling. Further, pruning reduces FLOPS by the same ratio as its
compression factor, in our case, ×2. By adding sharing with pruning, in language
modeling, we achieve an extreme compression ratio of ×94 with a drop of 6.4 PPL
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Language Modeling PPL RoBERTa Acc.

Train without Quant-Noise 25.2 Train without Quant-Noise 82.5
+ Finetune with Quant-Noise 20.9 + Finetune with Quant-Noise 83.4

Train with Quant-Noise 20.7 Train with Quant-Noise 83.6

Table 6.3: Quant-Noise: Finetuning vs training. We report performance after iPQ
quantization. We train with the 𝜑proxy noise and finetune with Quant-Noise, and use it
during the transfer to MNLI for each RoBERTa model.

with FLOPS reduction from pruning entire shared chunks of layers. For comparison,
our 10 MB model has the same performance as the 570 MB Transformer-XL base.

6.5.3 Finetuning with Quant-Noise

We explore taking existing models and post-processing with Quant-Noise instead of
training from scratch. For language modeling, we train for 10 additional epochs.
For RoBERTa, we train for 25k additional updates. Finetuning with Quant-Noise
incorporates the benefits and almost matches training from scratch (Table 6.3). In
language modeling, there is only a 0.2 PPL difference.

6.6 Conclusion

We show that quantizing a random subset of weights during training maintains per-
formance in the high quantization regime. We validate that Quant-Noise works with
a variety of different quantization schemes on several applications in text and vision.
Our method can be applied to a combination of iPQ and int8 to benefit from extreme
compression ratio and fixed-point arithmetic. Finally, we show that Quant-Noise can
be used as a post-processing step to prepare already trained networks for subsequent
quantization, to improve the performance of the compressed model.
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Chapter 7

Compressing Faces for Ultra-Low
Bandwidth Video Chat

To unlock video chat for hundreds of millions of people hindered by poor connectivity
or unaffordable data costs, we propose to authentically reconstruct faces on the re-
ceiver’s device using facial landmarks extracted at the sender’s side and transmitted
over the network. In this context, we discuss and evaluate the benefits and disad-
vantages of several deep learning approaches. In particular, we explore quality and
bandwidth trade-offs for approaches based on static landmarks, dynamic landmarks
or segmentation maps. We design a mobile-compatible architecture based on the first
order animation model of Siarohin et al. (2019). In addition, we leverage SPADE
blocks (Park et al., 2019) to refine results in important areas such as the eyes and
lips. We compress the networks down to about 3 MB, allowing models to run in
real time on iPhone 8 (CPU). This approach enables video calling at a few kbits per
second, an order of magnitude lower than currently available alternatives.

7.1 Introduction

For many smartphone users around the world, video-calling remains unavailable or
unaffordable. These users are driven out of this fundamental connectivity experience
by the prohibitive cost of data plans or because they depend on outdated technolo-
gies and infrastructures. For instance, networks might suffer from congestion, poor
coverage, power fluctuations and datarate limits – 2G networks allow for a maximum
of 30 kbits/s. However, with current technologies, an acceptable video-call quality
requires at least a stable 200 kbits/s connection.

Meanwhile, the research in generative models has now come to a point where the
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Figure 7-1: We propose to authentically reconstruct faces in real-time on mobile
devices using a stream of compressed facial landmarks extracted from driving or
target frames. The identity of the sender is transmitted one-shot to the receiver
at the beginning of the call through a reference or source frame. This approach is
compatible with end-to-end encryption (E2EE).

quality of synthetic faces are sometimes indistinguishable from real videos (Dolhan-
sky et al., 2019). To name a few, we may cite Deep video portraits (Kim et al.,
2018), X2Face (Wiles et al., 2018), FSGAN (Nirkin et al., 2019), Neural Talking
Heads (Zakharov et al., 2019), the Bilayer model (Zakharov et al., 2020) and the
First Order Model (Siarohin et al., 2019). This unprecedented performance can now
be exploited to the benefit of higher quality video calls. However, there remain im-
portant challenges to address before generative models can offer ultra-low data-rate
video-calling. In particular, to unlock duplex video-calling for users with last-mile
connectivity issues or limited data plans, the models need to be light enough to run
on mobile handsets. Generating the user’s face in real time on device is compatible
with end-to-end encryption. In addition, to deliver a more seamless and authentic
experience, the models should adapt to the current appearance of the user without
additional training. In this work, we focus on identifying the best generative strategy
compatible with real-time inference on device. We discuss the following approaches:

∙ The Neural Talking Heads model (Zakharov et al., 2019), which requires sending
a stream of landmarks in addition to an initial face embedding.

∙ The Bilayer model (Zakharov et al., 2020), where the face is reconstructed from
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a stream of landmarks and a reference frame sent once.

∙ The SegFace model, a novel architecture based on SPADE (Park et al., 2019),
adapted to face animation, which requires sending an initial face embedding
and a stream of semantic segmentation maps.

∙ The First Order Model (FOM) (Siarohin et al., 2019), which requires sending
ten landmarks, their associated motion matrices, and one reference frame.

Analyzing the FOM in depth, we observe that only sending the landmarks com-
pressed with Huffman coding (no motion matrices) achieves sufficient quality and
leads to an outstanding data-rate reduction. Compared to other approaches, this
model allows for good identity and background preservation. In summary, our con-
tributions are the following:

∙ We provide a comparative analysis of leading generative approaches for the
specific use-case of enabling ultra-low data-rate video calling.

∙ We develop a strong baseline leveraging the SPADE architecture and the seg-
mentation maps.

∙ We propose a warping based approach leveraging SPADE blocks to refine im-
portant face attributes such as eyes and lips.

∙ While previous approaches were tested on specialized hardware (servers, mobile
GPU), we provide first real-time results on mobile CPU.

7.2 Related Work

7.2.1 Face Compression Before Deep Learning

The idea of face-specific video compression is not novel and appeared with classical
computer vision tools, for instance morphings using Delaunay triangulations, Eigen-
faces, or 3D models. The first reference we found on the topic is the work of Lopez
and Huang (1995) that proposes to encode only pose parameters of a 3D head model,
which is projected to reproduce a video sequence.

Previous work (Koufakis and Buxton, 1999) use PCA to model the current frame
as a linear combination of 3 basis frames sent prior to the call. The authors rely on
known control points on the face boundaries and landmarks. The principal drawback
of the approach is the presence of triangulation artifacts, even when a large number
of control points is used. The achieved bandwidth is 1500 bits/frame. Similar usage
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of Eigenspaces are suggested in (Tuceryan and Flinchbaugh, 2000; Torres and Prado,
2002; Söderström, 2006). Among these proposals using eigenspaces, one claims an
extremely low bit-rates achievement of 100 bits/s (Son et al., 2006). However the
proposed solution is hard to scale, as it requires storing personal galleries of face
images to reconstruct videos at the receiver side.

7.2.2 Deep Compression

The emergence of Generative Adversarial Networks (GANs) stimulated the applica-
tion of deep learning to video compression. Super-resolution has been an active field
of research leveraging GANs for image and video compression. There have been a
number of research works tackling this problem (Chen et al., 2018; Ustinova and
Lempitsky, 2017; Bulat and Tzimiropoulos, 2018). However, for compressing faces,
these reconstructions methods are limited to restoring personal traits from low level
images and only work well for limited upscaling factors (around 2× in resolution).
The power of GANs for lossy image compression started to be demonstrated in the
Generative compression work of Santurkar et al. (2018a), using an auto-encoder com-
bined with adversarial training. The state-of-the-art has since improved with the
Extreme Learned Image Compression work of Agustsson et al. (2019), thanks to a
multi-scale architecture and the usage of semantic segmentation information, among
other tricks used by the authors. The work of Liu et al. (2020) surveys deep learning-
based approaches for general purpose video compression. Among them, Learned
Video Compression (Rippel et al., 2019) demonstrates for the first time the superior
capacity of an end-to-end machine learning approach over standard codecs. By fo-
cusing on faces only, we can lower the bandwidth, improve the quality and compress
models compared to using more generic methods. Therefore, we review next deep
learning approaches and their adequacy to video chat compression.

7.2.3 Deep Talking Head Approaches

3D based approaches produce realistic avatars which can be animated in real-time (Cao
et al., 2016). However, such methods require to capture a set of images of the user
(a few dozens) to build their personal face model. PAGAN (Nagano et al., 2018)
generates key face expression textures that can be deformed and blended in real-
time on mobile from a single frame. However, the reconstruction of certain features,
notably the hair, is still problematic in 3D model-based approaches. Deep video
portraits (Kim et al., 2018) is handling this issue using a rendering-to-video trans-

144



lation network, but the approach needs about a thousand images per subject for
training. Stimulated by advancements in face swapping pipelines (Korshunova et al.,
2017; Wiles et al., 2018), a number of deep generative re-enactment approaches arose.
Contrary to warping based re-enactment (Averbuch-Elor et al., 2017), learning faces
reconstructions enables extra robustness in presence of large head angles. The Face
Swapping GAN (Nirkin et al., 2019) relies on several steps: landmarks extraction,
segmentation, interpolation and inpainting. This complex pipeline may result in
robustness issues and limited bandwidth gain due to the need of sending both com-
pressed segmentations and landmarks. Similarly, the vid2vid approach ((Wang et al.,
2018b), (Wang et al., 2019b)) requires sending a “sketch” (edge map) for each frame
in order to re-enact a face, which has a relatively high bandwidth cost.

7.3 Generative Models

In this section we describe in-depth several recent face animation algorithms that
we have implemented and studied. We share our understanding of these works and
present our two model contributions, namely SegFace and Hybrid Motion-SPADE. An
overview of these different models appears in Figure 7-2. For this self-reenactment
task, unless mentioned otherwise, the goal of all these approaches is to generate a
frame based on (i) one fixed reference or source frame and (ii) position information
(e.g. landmarks) from a stream of driving or target frames (see Figure 7-1). Imple-
mentation details are located in the original paper of Oquab et al. (2020).

7.3.1 Talking Heads (NTH) and Bilayer Model

The “Talking Heads” work of Zakharov et al. (2019) learns to synthesize videos of
people from facial landmarks given one reference image. It follows an encoder-decoder
architecture with a style transfer component. A set of style parameters is computed
for the set of reference images. Then, facial landmarks are plotted as an image and
processed by an encoder network. The resulting code is decoded with style transfer,
using Adaptive Instance Normalization (Huang and Belongie, 2017) layers, adjusting
the mean and standard deviation of each feature map with the style parameters.

The networks are trained end-to-end with adversarial and perceptual losses on a
dataset of videos. The best results are achieved by performing a fine-tuning training
phase on the generator to match the reference frames as precisely as possible. This
fine-tuning phase requires several minutes on a modern server GPU. Without fine-
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Figure 7-2: Scheme of principle for the different deep generative approaches discussed
in this study. In particular, we detail two novel architectures, SegFace and Hybrid
Motion-SPADE (right) and compare them to existing NTH (Zakharov et al., 2019)
and FOM (Siarohin et al., 2019) models (left). For all models, we assume the genera-
tion is performed by the encoder-decoder pair on the receiver device, while the emitter
sends a reference frame (or several) at the beginning of inference, and streams a series
of landmarks or segmentation maps.

tuning, the identity is not preserved as well in the generated frames. In practice, a
few hundreds of frames would have to be sent at the beginning of the call.

This work was further improved in the Bilayer Synthesis approach (Zakharov
et al., 2020), where the fine-tuning step is not required anymore, and leads to visu-
ally appealing and sharp results. In our observations (see Figure 7-3), the identity
preservation suffers from a stronger uncanny valley effect. In terms of bandwidth, the
NTH and Bilayer approaches require sending 68 compressed landmarks.

7.3.2 First Order Model for Image Animation (FOM)

The “First Order Model” approach of Siarohin et al. (2019) deforms a reference source
frame to follow the motion of a driving video. While this method works on various
types of videos (Tai-chi, cartoons), we focus here on the face animation application.
FOM follows an encoder-decoder architecture with a motion transfer component. Fist,
a landmark extractor is learned using an equivariant loss, without explicit labels.
Then, two sets of ten learned landmarks are computed for the source and driving
frames, and a dense motion network uses the landmarks and the source frame to
produce a dense motion field and an occlusion map. In parallel, the encoder encodes
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the source frame. Next, the resulting feature map is warped using the dense motion
field (through a grid-sample operation (Jaderberg et al., 2015)), then multiplied with
the occlusion map. Finally, the decoder generates an image from the warped map.

The networks are trained end-to-end on video frames, using perceptual losses, and
are then optionally fine-tuned with an adversarial discriminator. The self-supervised
landmarks do not necessarily match precise locations of the face. Instead, they cor-
respond to point coordinates that are optimized to achieve the best deformation of
the source frame. Siarohin et al. (2019) describes how to improve motion approxi-
mation in landmark areas by estimating Jacobian matrices to model motion in their
neighborhood. In our observations (see Table 7.3), this approach preserves identities
better than NTH and is at least on par with the follow-up Bilayer synthesis approach.
Next, we study variants of this approach.

Variants First, our implementation does not use the Jacobian component, as we
do not observe a strong influence on the results. We refer to the resulting model as
“Motion Net (MN-10)” as it no longer uses first order approximation and employs a set
of ten landmarks. Second, we explore using off-the-shelf facial landmarks extraction
to complement the unsupervised landmarks. In this case, we only stream 20 or 68
compressed landmarks. Third, we explore a combined strategy employing both 10
self-supervised landmarks and 20 supervised ones, that we note MN-10+20. We will
introduce a fourth variant in 7.3.4, after detailing our SegFace approach below.

7.3.3 SegFace

This novel approach builds upon Park et al. (2019). Unlike MaskGAN (Lee et al.,
2020), we propose to use a face descriptor computed on a source frame, and decode
it by conditioning on face segmentation maps from a driving frame. It follows an
encoder-decoder architecture: a face descriptor is computed on a source frame and
given to a decoder network, that applies SPADE normalization blocks at each layer
using the face segmentation maps of the driving frame, ensuring all parts of the
face are correctly placed. The decoder network is trained using VGGFace2 face
embeddings (Cao et al., 2018), and segmentation maps from Yu et al. (2018a) as
inputs. Its objective during training is to reconstruct the same source frame. The
optimization is done using losses from Park et al. (2019), and the face perceptual
loss from Gafni et al. (2019). This method operates on independent frames, and
thus allows us to use high-resolution training data, leading to high quality results.
Training is achieved using CelebA (Liu et al., 2015) and Flickr-Faces-HQ datasets.
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Bandwidth The model requires a segmentation map labeled for 15 categories (eyes,
hairs, ears etc.). Sending compressed segmentation maps would require 18/25 kbits/s
at resolutions 48×/64×, knowing that there is a trade-off between the resolution of
the transmitted segmentation maps and the quality of the generated faces. We do not
build on this method further for low-bandwidth video-chat because the cost of run-
ning a face parser inference step and the bandwidth requirements are too high. The
SegFace implementation, however, allows us to observe that the generated images re-
spect the segmentation map labels almost perfectly, consistently with the conclusions
of Lee et al. (2020). We will build on this property in the next subsection with our
Hybrid Motion-SPADE approach.

7.3.4 Hybrid Motion-SPADE Model

Important quality criteria for compressed video-chat include a good synchronization
between the lips and the speech, and a good rendering of the eyes and eyebrows; there-
fore, it is crucial to generate these facial parts precisely. We propose an improvement
over the FOM-based Motion Net method, by adding SPADE normalization layers in
the upsampling blocks of the decoder network (in the last step of the FOM approach).
We draw polygons for the eyes, eyebrows, lips and inner mouth using 60 extracted
face landmarks, and use these as semantic maps for SPADE.

The dense motion network receives (i) a downsampled reference frame with (ii)
the positions of 𝑁 landmarks for that frame, and (iii) the positions of the same
landmarks for a driving frame. It outputs a motion field 𝑀 and an occlusion map 𝑂.
The encoder network outputs a feature map 𝐹𝑠. The decoder warps 𝐹𝑠 with the result
of the dense motion network 𝑀 and multiplies it element-wise with the occlusion map
𝑂, to obtain 𝐹𝑤. Then, 𝐹𝑤 is processed by a stack of five residual blocks and three
upsampling blocks that apply the SPADE normalization using a set of 60 landmarks.

Bandwidth The necessary segmentation maps are obtained by plotting the poly-
gons of the facial landmarks extracted using a landmark detector (see Figure 7-2),
rather than running a face segmentation network. Moreover, landmark coordinates
are inexpensive to transmit, while rasterized segmentation maps are more difficult
to compress, especially at higher resolutions. In terms of bandwidth, this approach
requires sending 𝑁 + 60 compressed landmarks. We experiment with 𝑁 = 10, 20, 30.
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Model variant Inputs FPS Params FLOPS int8 size BW
Motion Net 10U 18 2.9 M 1411 M 3.1 MB 1.4 kbits/s
Motion Net 20L 19 2.3 M 1293 M 2.5 MB 2.2 kbits/s
Motion Net 10U + 20L 14 3.0 M 1505 M 3.4 MB 3.6 kbits/s
Motion SPADE 10U 16 2.9 M 1198 M 3.2 MB 8.0 kbits/s
Motion SPADE 20L 19 2.3 M 1029 M 2.5 MB 8.8 kbits/s
Motion SPADE 10U + 20L 13 3.0 M 1292 M 3.4 MB 10.2 kbits/s

Table 7.1: Comparison of our approaches running on mobile in terms of compres-
sion for both model size and stream.“10U” (resp. “20L”) means that 10 unsupervised
keypoints (resp. 20 facial landmarks) are used as inputs to the dense motion net-
work. SPADE variants require 60 extra facial landmarks to draw the facial label
maps. Notes: the “int8 size” is the full combined size of the models. The number of
frames per second (FPS) is measured for the whole int8-quantized pipeline running
on an iPhone 8, including landmark detection, grid-samples and face alignment. The
#FLOPS count is for the dense motion, decoder, and unsupervised keypoint extractor
networks. The bandwidth (BW) is measured at 25 FPS with Huffman encoding.

7.4 Compression

In this section, we explain different strategies to make architectures – and in particular
our novel hybrid Motion-SPADE – compatible with low-bandwidth video calls on
mobile. We first detail the architectures and then the compression aspects for the
models and the bandwidth. Results are displayed in Table 7.1.

7.4.1 Mobile Architectures

Base blocks We rely on the open-source FbNet family of architectures (Wan et al.,
2020; Dai et al., 2020) to design mobile-capable models for our Motion Net and
Motion-SPADE approaches. These networks typically build on blocks combining
1× 1 pointwise and 3× 3 depthwise convolutions (Sandler et al., 2018a) that require
less floating-point operations than traditional 3× 3 convolutions in residual blocks.

Mobile SPADE normalization blocks When applicable, we perform a SPADE
normalization after the last 1 × 1 pointwise convolution, with kernel sizes of 1 × 1,
and 32 hidden channels. We have found these parameters to provide a good tradeoff
between speed and quality while preserving the fidelity of the SPADE approach.
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7.4.2 Landmark Stream Compression

We compress the landmarks with Huffman encoding (Huffman, 1952). In this ap-
proach, the landmark displacements are first binarized into 32 bins plus one bit sign,
and we encode the bin index with Huffman coding. This compression leads to an
average rate of 130 bits/frame for 20 landmarks, hence 3 kbits/s at 25 FPS (see Ta-
ble 7.1 for details). For reference, bandwidth requirements for audio are around 10
kbits/s, while the AV1 video codec (not widely hardware-supported to date) aims
at 30 kbits/s (Citron, 2020). Therefore, we did not explore other variants such as
Arithmetic Coding (Rissanen and Langdon, 1979) since the audio part takes most of
the bandwidth of a call with the proposed approach.

7.4.3 Model Quantization

We rely on int8 post-training quantization. As detailed in Section 2.3.5 of the Related
Work, this technique consists in uniformly quantizing both weights and activations
over 8 bits, reducing the model size by a factor 4. Moreover, int8 models traditionally
benefit from a ×2 or ×3 speed-up compared to their fp32 counterparts for both server
and mobile CPUs. The scale and zero-point 1 are calibrated after training using a few
batches of training data. When not properly calibrated, we found that the decoder
generates an image with a small amount of noise resulting in a loss of visual quality.

7.5 Experiments

7.5.1 Quantitative Evaluation

We evaluate the models using the perceptual LPIPS (Zhang et al., 2018b) and multi-
scale LPIPS-like metrics employed in Siarohin et al. (2019), that we name msVGG.
Second, as argued in Chen et al. (2020b), the cosine similarity CSIM computed be-
tween features of the pre-trained face embedding network ArcFace (Deng et al., 2019)
is one of the most effective metric to assess quality of talking heads models, we there-
fore report it. Finally, we quantify facial landmarks mismatch by running a landmark
detector on the true and generated videos and computing the Mean Square Error be-
tween each pair of landmarks. This metric is classically referred to as the Normalized
Mean Error (NME) of head pose (Bulat and Tzimiropoulos, 2017). All the generative

1The affine transform coefficients that converts an 8-bit quantized tensor (integer-valued in
[0, 255]) to its floating-point counterpart.
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approaches considered in this work are trained using different alignments and close-
ups (see Figure 7-3), so we compute our metrics using the optimal modified videos
for each method as ground truth. Ablation studies are displayed in Appendix D.1.1
and the quantitative evaluation of the models is displayed in Table D.2.

Figure 7-3: Comparison of different results using Seg2Face (48× 48), NTH, Bilayer,
and FOM adv. The model generates the face using the fixed source frame and the
facial information (such as keypoints) of the driving frame. We pasted ground truth
backgrounds to have a fair evaluation. The last column showcases the results using
our Mobile Motion-SPADE that runs at 18 FPS on an iPhone 8, whereas the other
models run on server, have at least 10× more parameters and are not necessarily
compatible with low-bandwidth video calling. Note that the alignment procedure
may differ between the models, hence the head is not centered the same on the
generated faces (last 5 columns).

7.5.2 Qualitative Evaluation and Human Study

Figure 7-3 compares results obtained using SegFace, Bilayer, NTH and FOM with
adversarial finetuning. We observe skin tones differences between targets and SegFace
results and distortions of personal traits. The Bilayer, NTH and FOM models are
qualitatively better. In the last column, we observe a side by side comparison with a
Mobile Motion-SPADE model.

Table 7.3 provides a quality assessment of different models by human raters. Par-
ticipants are asked to rate images produced by the different models by comparing
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LPIPS ↓ NME ↓ CSIM ↑

Dense MN-10 U 0.221 0.59 0.83
Dense MN-20 L 0.242 0.50 0.80
Dense MN-68 L 0.240 0.49 0.81
Mob MN-10 U 0.225 0.52 0.79
Mob MN-20 L 0.244 0.48 0.78
Mob MN-10 U + 20 L 0.218 0.46 0.80
Mob M-SPADE-10 U 0.217 0.47 0.81
Mob M-SPADE-20 L 0.242 0.44 0.79
Mob M-SPADE-10 U + 20 L 0.215 0.46 0.81

Table 7.2: Evaluation results for Motion Net approaches without adversarial fine-
tuning on the VoxCeleb2-28 video subset. Mob : Mobile models. Dense models
(64× 64 latent space) are trained on VoxCeleb. Mobile models (32× 32) are trained
on the DFDC aligned dataset. U: unsupervised keypoints; L: facial landmarks.

them in terms of identity and expression preservation, on a scale from 1 to 5. In a
first round of evaluations, we display side by side the four main dense models results,
and in the second round, Motion Net and Motion-SPADE results using six different
mobile architectures. We collect in each case 500 pairwise evaluations, each from 5
different participants. Dense approaches results present a large variability and human
scores seem to agree with metrics. Mobile models results differences are more subtle,
but the Hybrid Motion-SPADE using 10 landmarks model seems preferred.

Figure D-1 illustrates the quality performance reached on mobile. The quality of
results degrades in presence of large head rotations. Still, the Motion-SPADE results
are visually close to the targets, particularly it renders lips and teeth better. The
H264 compression results are displayed given a bandwidth of 9 kbit/s, to be compared
to the ones of the Motion-SPADE 20 model that runs the fastest on mobile. At this
bandwidth, video transmission is hardly possible using standard codecs.

7.5.3 On-device Real-time Inference

We develop a standalone app that is able to perform a real-time call between two
participants. In order to do so, we converted the models to int8, then to TorchScript
and run them on the phone’s CPU. To compress the Motion based models, we only
rely on int8 since the non-compressed models are already small. We use WebRTC
to also feature the sound during the call to make the experience more immersive.
Screenshots of the app are displayed in Figure 7-4.
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Dense models
human identity human expression

model score score
NTH 3.71±0.041 3.77±0.040

Bilayer 3.70±0.046 3.62±0.046
SegFace 3.11±0.047 3.00±0.051

FOM adv 3.99±0.042 4.00±0.041

Overall human ratings of Mobile models
MN-10 MN-20 MN-10+20

no SPADE 3.44±0.034 3.40±0.034 3.46±0.034

with SPADE 3.50±0.034 3.46±0.035 3.45±0.034

Table 7.3: Quality assessment of different dense models on DFDC-50 - Human study.
Average scores (Higher is better) with confidence intervals.

Figure 7-4: Daniel (with glasses) is calling Maxime on our iPhone app. Left: Daniel’s
phone when calling Maxime. The reference frame of Daniel (top right) of Daniel
is updated periodically. Daniel sees the face of Maxime reconstructed in real time.
Right: on the generated frame, we display the set of landmarks used to perform the
inference. The generation runs at 20 FPS on an iPhone 8 and the call uses an average
video bandwidth of 5 kbits/s.
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7.6 Conclusion

Our exploration of state-of-the art animation models led us to the following ob-
servations: The Neural Talking head results are qualitatively satisfactory, but the
fine-tuning step requirement makes the approach complex to implement in practice.
Using a full face segmentation approach seems unfit to a low bandwidth application.
The Bilayer approach and the FOM methods perform best towards reaching a cor-
rect low-bandwidth/quality trade-off on mobile. Our human study shows that FOM
results are preferred in terms of identity and expression preservation. Focusing on
this best candidate approach, we design a novel hybrid architecture taking advantage
of the high fidelity to the target thanks to the warping principle, and enhancing the
quality of important attributes with SPADE blocks. Only exploiting polygons in-
duced segments with this approach improves quality without high transmission cost.
The obtained image quality is close to the one reached by dense models while running
in real-time on Mobile CPU. The bandwidth required to send a video is lower than
the one required for sending audio. There are a number of interesting challenges to
tackle next to improve quality of the generations, e.g. generating large head rotation
movements, hands, or using pupils tracking.
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Chapter 8

Discussion

In this Chapter, we briefly summarize our contributions and sketch some interesting
future research directions.

8.1 Summary of Contributions

In this manuscript, we presented our contributions on the redundancy and efficiency
of Neural Networks in ascending order of applicability.

8.1.1 Equivalence Classes

In Chapter 3, we studied the functional equivalence classes of Neural Networks from
a local perspective in the space of parameters for networks with arbitrary depth,
relying on our standalone characterization for one-hidden-layer networks along with
algebraic and geometrical tools that we designed. This allows us to group networks
that behave similarly by orbits under the action of the rescaling the permutation
operations. Using these theoretical considerations, we developed an alternative to
SGD that operates in the quotient space in Chapter 4, called ENorm. The method
selects the representant of the current orbit that minimizes a certain energy after each
SGD step. This work aiming at properly balancing the energy of the network was
later leveraged by Nagel et al. (2019) to design a robust int8 quantization scheme
that equalizes the weights before compression.

8.1.2 Neural Network Compression

In Chapter 5, we designed a product quantization method, called iPQ, that allows us
to drastically reduce the size of a network while almost preserving its accuracy. This
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method was improved by Martinez et al. (2020), who also learn an adequate permu-
tation of the weights to enforce better redundancy when considering large quantiza-
tion blocks. Next, aiming at applying iPQ to any architecture, we developed a pre-
conditioning method called Quant-Noise that injects carefully selected quantization
noise when training the network before its compression in Chapter 6. Quant-Noise
yields competitive results for scalar quantization techniques such as int8.

8.1.3 Low-Bandwidth Video Chat

The compressed size of the network is a significant indicator of the quality of the
quantization. However, other metrics such as inference time and battery usage are
also relevant, especially for on-device, real time applications. In order to confront our
findings to real-world constraints, we developed a low-bandwidth generative video
chat called FaceGen in Chapter 7. FaceGen generates the face on the receiver side
using a GAN conditioned on a stream of landmarks plus an identity embedding sent
at the beginning of the call. FaceGen models weight a total of less than 2 MB, run in
real-time on an iPhone 8 and compress the video bandwidth to less than 10 kbits/s.

8.2 Future Directions

We list below some directions for further research on the short and longer run.

8.2.1 Equivalence Classes

Equivalence classes allow us to conveniently operate in the quotient space of neural
networks, provided that we know the right representant to manipulate.

Canonical Representant. To properly benefit from the theoretical advances re-
garding the functional equivalence classes, the question of the choice of the adequate
representant is key. For instance, with ENorm in Chapter 4, we interleave SGD up-
dates with a step that selects the representant of the current orbit that minimizes
the 𝐿2 global norm of its weights. While this particular choice leads to a fast itera-
tive algorithm and presents empirical evidence of its pertinence, this criterion is not
theoretically grounded. One possibility would be to select the adequate representant
such that the next SGD step is equivalent to a second order natural gradient update.
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Non-local Characterization. On the more theoretical side on the characterization
of the functional equivalence classes, we wish to reconcile the sufficient condition for
restricted local identifiability and the necessary condition for local identifiability in
Chapter 3 to properly characterize locally identifiable parameterizations. Next, we
argue that having a global characterization would necessitate to take the permutations
into account and to design a more general way to modify 𝜃 as follows: keep the
multiplicative updates of the form 𝑤𝑒𝛾 for non-zero weights 𝑤 or biases 𝑏 and default
back to additive updates of the form 𝑤 + 𝛿 for null parameters.

8.2.2 Neural Network Compression

Compression and quantization is a major challenge for the research industry in order
to deploy deep learning models on-device and for more privacy.

Deployment of iPQ. First, we hope that our iPQ + int8 implementation and
open-sourced code (see Chapters 5 and 6) will unlock on-device model deployment
for models with 10 to 100 million parameters. Such models would enable model
deployment off-the-shelf as follows. First, compress then model with iPQ + int8
and send it on-device. Then, decompress the iPQ part on-device to default back to
a plain int8 model to benefit from the speedup of int8. Further research directions
include designing our own kernels to perform the forward pass in the iPQ + int8
domain. This would imply to pre-compute the dot products between activations and
the codebook to build and store Look-Up Tables (LUTs) in low-level cache memory
and then lookup and sum the results. Larger block sizes, fewer codewords and larger
underlying matrices would help reduce the latency.

Compression as a Service. One of the current limitations of iPQ is that the
number of codewords and the block size has to be manually tuned using in-domain
knowledge. For instance, we observed that the classifiers in convolutional networks
are harder to compress and therefore use a block size of 4 instead of 8 and/or more
codewords for this particular layer. Conversely, some methods (see Subsection 2.3.5)
for mixed scalar quantization propose to learn the precision – the number of bits –
per layer in a fully differentiable way. One interesting direction would be to apply
such a paradigm to iPQ to foster its adoption. One orthogonal direction would be
to derive heuristics or methods to select the right compression method for a specific
task, target metrics and hardware. Currently, as explained in Section 2.3, the current
process is to tailor one of the many available methods listed in Section 2.3 – or a
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combination thereof – to a specific task by trials-and-errors. For instance, distillation
and then iPQ proved to work well in that order. Adaptability would be a determinant
factor for the broad adoption of compression methods.

Training Bigger Models. The next generation of Nvidia’s GPUs, the A100, now
natively supports int8 and int4 additionally to half-precision training in fp16. To
benefit from this theoretical speedup, we could train models with more parameters
than currently done, provided that we are able to design a training recipe to preserve
the accuracy of the network. Hence, advances in both the hardware and the training
techniques could help taking neural networks to the next level.

8.2.3 Low-Bandwidth Video Chat

While incremental changes in the current method would make face generation more
convincing, such methods also pave the way for 3D face generation.

Incremental changes. There are many possible incremental ameliorations to the
current setup of Chapter 7. For instance, we could improve the data loaders to
sample more large head rotations since the model performs currently poorly on these.
We could also be more strict when sampling the reference frame and have a neutral
expression with a person facing the camera. In the search for more efficiency, we could
also incorporate new blocks such as FBNetV3 blocks (Dai et al., 2020) and optimize
some operations performed in the Dense Motion network such as the grid sample.

3D Face Reconstruction. On the longer term, similar insights could be applied
to 3D face reconstruction, with or without the low bandwidth constraint. The idea
is to leverage (1) the growing availability of augmented and virtual reality devices
and (2) the desire of people to stay close to their relative ones that live remotely.
On traditional devices, the 3D face could be projected back to 2D images, while on
more advanced VR/AR headsets such as the Oculus Quest 2, this could provide an
immersive and realistic experience of remote presence.
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Appendix A

Proofs for Functional Equivalence
Classes

A.1 Permutation-Rescaling Equivalence

A.1.1 Reconciling Definitions

Proof of Proposition 3.1.1

Proposition. Let 𝜃 be an admissible parameterization. Then, for every 𝜃′, admissible
or not, and every 𝑎, 𝑏 ∈ {Layer,Neuron,Path,Trajectory}, 𝜃 ∼𝑎 𝜃′ ⇐⇒ 𝜃 ∼𝑏 𝜃′.

Proof. We prove successive implications.

Layer =⇒ Neuron. If 𝜃′ ∼Layer 𝜃, let us define 𝛾 ∈ R𝐻 such that, for every hidden
layer 1 ≤ ℓ ≤ 𝐿− 1,

𝐷(ℓ) = Diag(𝛾𝜈)𝜈∈𝑁ℓ
. (A.1)

By assumption on the matrices 𝐷(ℓ), we have that 𝛾𝜈 > 0 for every 𝜈 ∈ 𝐻. Let 𝜈 be
a neuron in layer ℓ = 1. Since 𝑊 ′(1) = 𝑊 (1)𝐷(1), we have for any 𝜇 ∈ prev(𝜈)

𝑤′
𝜇→𝜈 = 𝑤𝜇→𝜈𝛾𝜈 . (A.2)

Next, let 𝜈 be a neuron in layer 2 ≤ ℓ ≤ 𝐿−1 and 𝜇 ∈ prev(𝜈). Since
(︁
𝐷(ℓ−1)

)︁−1
𝑊 (ℓ)𝐷(ℓ),

the following holds

𝑤′
𝜇→𝜈 = 𝑤𝜇→𝜈𝛾𝜈/𝛾𝜇. (A.3)

Finally, let 𝜇 be a neuron in the last hidden layer 𝐿 − 1 and 𝜈 ∈ next(𝜇). Since
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𝑊𝐿 =
(︁
𝐷(𝐿−1)

)︁−1
𝑊 (𝐿), we have

𝑤′
𝜇→𝜈 = 𝑤𝜇→𝜈/𝛾𝜇. (A.4)

Finally, regarding the biases, 𝑏′(ℓ) = 𝑏(ℓ)𝐷(ℓ) for every layer 1 ≤ ℓ ≤ 𝐿 gives, for every
hidden neuron 𝜈 ∈ 𝐻, 𝑏′

𝜈 = 𝛾𝜈𝑏𝜈 . Thus, defining 𝑠 as in representation (2.8), we
obtain 𝑠(𝜃) = 𝜃′. Hence, 𝜃 ∼Neuron 𝜃

′.

Neuron =⇒ Path. If 𝜃 ∼2 𝜃
′, there exists 𝑠 as in representation (2.8) such that

𝜃′ = 𝑠(𝜃). First, we deduce that sign(𝜃) = sign(𝜃′). Next, let 𝑝 = (𝜈0, . . . , 𝜈𝐿) ∈ 𝒫 be
a full path. Then,

𝑣𝑝(𝜃′) = 𝑤′
𝜈0→𝜈1𝑤

′
𝜈1→𝜈2 . . . 𝑤

′
𝜈𝐿−1→𝜈𝐿

=
(︂
𝛾𝜈1𝑤𝜈0→𝜈1

)︂(︂
𝛾𝜈2

𝛾𝜈1

𝑤𝜈1→𝜈2

)︂
. . .
(︂ 1
𝛾𝜈𝐿

𝑤′
𝜈𝐿−1→𝜈𝐿

)︂
= 𝑤𝜈0→𝜈1𝑤𝜈1→𝜈2 . . . 𝑤𝜈𝐿−1→𝜈𝐿

= 𝑣𝑝(𝜃).

(A.5)

(A.6)

(A.7)

(A.8)

Similarly, we show that for every partial path 𝑞 ∈ 𝒬, 𝑏𝑞0𝑣𝑞(𝜃) = 𝑏′
𝑞0𝑣𝑞(𝜃

′).

Path =⇒ Trajectory. If 𝜃 ∼Path 𝜃′, since sign(𝜃′) = sign(𝜃), using Proposi-
tion 3.3.5, there exists a unique 𝛾 = (𝛼,S𝛽) ∈ Supp𝜃 such that 𝜃′ = 𝜃 ⊙ 𝑒𝛾. Let
us show that 𝛾 is 𝜃-rescaling-compatible. Let us show first that 𝛼 ∈ ker (P𝜃). Since
(P𝜃𝛼)𝑝 = 1(𝑣𝑝(𝜃) ̸= 0)P𝛼, it suffices to show that, for every full path 𝑝 ∈ 𝒫 such
that 𝑣𝑝(𝜃) ̸= 0, we have (P𝛼)𝑝 = 0. We compute

𝑣𝑝(𝜃′) = 𝑣𝑝(𝜃)
∏︁
𝑒∈𝑝

exp(𝛼𝑒) = 𝑣𝑝(𝜃) exp
⎛⎝∑︁
𝑒∈𝑝

𝛼𝑒

⎞⎠ = 𝑣𝑝(𝜃) exp((P𝛼)𝑝). (A.9)

Using the fact that 𝑣𝑝(𝜃′) = 𝑣𝑝(𝜃), we deduce that (P𝛼) = 0. Thus, 𝛼 ∈ ker (P𝜃)𝑝.
Next, let us similarly show that 𝛼−𝛽 ∈ ker (Q𝜃). Since (Q𝜃𝛼)𝑞 = 1(𝑏𝑞0𝑣𝑞(𝜃) ̸= 0)P𝛼,
it suffices to show that, for every partial path 𝑞 ∈ 𝒬 such that 𝑏𝑞0𝑣𝑞(𝜃), we have
(Q𝛼)𝑞 = 0. We compute

𝑏′
𝑞0𝑣𝑞(𝜃

′) = 𝑏𝑞0𝑣𝑞(𝜃) exp (S𝛽𝑞0) exp
⎛⎝∑︁
𝑒∈𝑞

𝛼𝑒

⎞⎠ .
Recalling that the definition of S𝛽𝑞0 is independent of the choice of the path going
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from 𝑞0 to any output neuron (see Proposition 3.3.6 since 𝛽 ∈ ker P),

𝑏′
𝑞0𝑣𝑞(𝜃

′) = 𝑏𝑞0𝑣𝑞(𝜃) exp
⎛⎝−∑︁

𝑒∈𝑞
𝛽𝑒

⎞⎠⎛⎝∑︁
𝑒∈𝑞

𝛼𝑒

⎞⎠
= 𝑏𝑞0𝑣𝑞(𝜃) exp

⎛⎝∑︁
𝑒∈𝑞

(𝛼𝑒 − 𝛽𝑒)
⎞⎠

= 𝑏𝑞0𝑣𝑞(𝜃) exp
(︁
(Q(𝛼− 𝛽))𝑞

)︁
.

Using the fact that 𝑏′
𝑞0𝑣𝑝(𝜃

′) = 𝑏𝑞0𝑣𝑞(𝜃), we deduce that (Q(𝛼− 𝛽))𝑞 = 0. Thus,
𝛼𝛽 ∈ ker (Q𝜃). Thus, we have proven that 𝜃 ∼Trajectory 𝜃

′.

Trajectory =⇒ Layer. If 𝜃 ∼Trajectory 𝜃′, there exists a 𝜃-rescaling-compatible
𝛾 = (𝛼,S𝛽) ∈ Supp𝜃 such that 𝜃′ = 𝜃 ⊙ 𝑒𝛾. Let us define

𝛿 = exp(S𝛼) ∈ R𝐻 . (A.10)

Note that 𝛿 is well-defined since 𝛼 ∈ ker (P𝜃). Let 𝜈 ∈ 𝐻 such that 𝑏𝜈 ̸= 0 and let 𝑞 be
a partial path going from 𝜈 to the output neuron such that 𝑣𝑞(𝜃) ̸= 0, possible since
𝜃 is admissible. Let us show that (S𝛽)𝜈 = (S𝛼)𝜈 . Recalling that 𝛼− 𝛽 ∈ ker (Q𝜃),

𝑏𝑞0𝑣𝑞(𝜃)
∑︁
𝑒∈𝑞

𝛼𝑒 = 𝑏𝑞0𝑣𝑞(𝜃)
∑︁
𝑒∈𝑞

𝛽𝑒. (A.11)

Thus, since 𝑏𝑞0𝑣𝑞(𝜃) ̸= 0, we deduce (S𝛽)𝜈 = (S𝛼)𝜈 . Next, let us define for every
hidden layer 1 ≤ ℓ ≤ 𝐿− 1,

𝐷(ℓ) = Diag(𝛿𝜈)𝜈∈𝑁ℓ
. (A.12)

Next, recall that 𝑤′ = 𝑤 · exp(𝛼). Let 𝑒 = 𝜇→ 𝜈 ∈ 𝐸.

∙ If 𝜇 ∈ 𝑁0, let us show that 𝑤′
𝑒 = 𝑤𝑒𝛿𝜈 for every 𝑒 ∈ 𝐸 such that 𝑤𝑒 ̸= 0. First,

We have 𝑤′
𝑒 = 𝑤𝑒 exp(𝛼𝑒). Moreover,

(S𝛼)𝜈 =
∑︁
𝑒′∈𝑞

𝛼𝑒′ (A.13)

where 𝑞 is any partial path going from 𝜈 to the output neuron such that 𝑣𝑞(𝜃) ̸=
0. Since 𝑝 = (𝜇) + 𝑞 (where + denotes path concatenation) is also such that
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𝑣𝑝(𝜃) ̸= 0, and since 𝛼 ∈ ker P𝜃, we have

0 =
∑︁
𝑒′∈𝑝

𝛼𝑒′ = 𝛼𝑒 +
∑︁
𝑒′∈𝑞

𝛼𝑒′ = 𝛼𝑒 − (S𝛼)𝜈 (A.14)

Thus, (S𝛼)𝜈 = 𝛼𝑒 and 𝑤′
𝑒 = 𝑤𝑒 exp(𝛼𝑒) = 𝑤𝑒 exp((S𝛼)𝜈) = 𝑤𝑒𝛿𝜈 .

∙ If 𝜈 ∈ 𝑁𝐿, let us show that 𝑤′
𝑒 = 𝑤𝑒/𝛿𝜇 𝑒 ∈ 𝐸 such that 𝑤𝑒 ̸= 0. Since

𝑞 = (𝜇, 𝜈) is a path going from 𝜇 to the output neuron such that 𝑣𝑞(𝜃) ̸= 0, we
have (S𝛼)𝜇 = −𝛼𝑒. Thus, 𝑤′

𝑒 = 𝑤𝑒 exp(𝛼𝑒) = 𝑤𝑒 exp((S𝛼)𝜈) = 𝑤𝑒/𝛿𝜈 .

∙ Otherwise, let us show that 𝑤′
𝑒 = 𝑤𝑒𝛿𝜈/𝛿𝜇 for every 𝑒 ∈ 𝐸 such that 𝑤𝑒 ̸= 0.

Let 𝑞 be a partial path going from neuron 𝜈 to the output neuron such that
𝑣𝑞(𝜃) ̸= 0 and let 𝑞 = (𝜇) + 𝑞. We observe that 𝑣𝑞(𝜃) ̸= 0 and that

𝛼𝑒 =
∑︁
𝑒′∈𝑞

𝛼𝑒′ −
∑︁
𝑒′∈𝑞

𝛼𝑒′ = (S𝛼)𝜈 − (S𝛼)𝜇 (A.15)

Thus, 𝑤′
𝑒 = 𝑤𝑒 exp(𝛼𝑒) = 𝑤𝑒 exp((S𝛼)𝜈 − (S𝛼)𝜇) = 𝑤𝑒𝛿𝜈/𝛿𝜇.

Thus, for all 1 ≤ ℓ ≤ 𝐿, 𝑊 ′(ℓ) =
(︁
𝐷(ℓ−1)

)︁−1
𝑊 (ℓ)𝐷(ℓ) and 𝑏

′(ℓ) = 𝑏(ℓ)𝐷(ℓ). Therefore,
𝜃′ ∼Layer 𝜃, which concludes the proof.

A.1.2 Link with Functional Equivalence

We formally prove separately that the permutation and rescaling operations preserve
the function implemented by the network. Next, we show that permutation and
rescaling operations commute, which allows us to define permutation-rescaling equiv-
alent parameters. Finally, we show that permutation-rescaling equivalence implies
functional equivalence.

Proposition A.1.1. Two rescaling equivalent parameterizations 𝜃 and 𝜃′ yield the
same realization, i.e. 𝑅𝜃(𝑥) = 𝑅𝜃′(𝑥) for all 𝑥.

Proposition A.1.2. Two permutation equivalent parameterizations 𝜃 and 𝜃′ yield
the same realization, i.e. 𝑅𝜃(𝑥) = 𝑅𝜃′(𝑥) for all 𝑥.

Proposition A.1.3. Two parameter vectors 𝜃 and 𝜃′ are permutation-rescaling equiv-
alent iff they are rescaling-permutation equivalent.
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Proof of Proposition A.1.1

Proposition. Two rescaling equivalent parameterizations 𝜃 and 𝜃′ yield the same
realization, i.e. 𝑅𝐺(𝜃, 𝑥) = 𝑅𝐺(𝜃′, 𝑥) for all 𝑥.

Proof. We show by induction that

𝑦(ℓ)(𝜃′, 𝑥) = 𝑦(ℓ)(𝜃, 𝑥)𝐷(ℓ) (A.16)

for all ℓ ∈ J0, 𝐿K. We have 𝑦(0)(𝜃′, 𝑥) = 𝑥 = 𝑥𝐼𝑁0 = 𝑦(0)(𝜃, 𝑥)𝐷(0) and, if we assume
Equation (A.16) valid for some ℓ ∈ J0, 𝐿− 2K, then using Definition 2.2.2,

𝑦(ℓ+1)(𝜃′, 𝑥) = 𝜎
(︁
𝑦(ℓ)(𝜃′, 𝑥)𝑊 ′(ℓ+1) + 𝑏′(ℓ+1)

)︁
= 𝜎

(︂
𝑦(ℓ)(𝜃, 𝑥)𝐷(ℓ)

(︁
𝐷(ℓ)

)︁−1
𝑊 (ℓ+1)𝐷(ℓ+1) + 𝑏(ℓ+1)𝐷(ℓ+1)

)︂
= 𝜎

(︁
𝑦(ℓ)(𝜃, 𝑥)𝑊 (ℓ+1) + 𝑏(ℓ+1)

)︁
𝐷(ℓ+1)

= 𝑦(ℓ+1)(𝜃, 𝑥)𝐷(ℓ+1).

(A.17)

(A.18)

(A.19)

(A.20)

For the last layer, as 𝐷(𝐿) = 𝐼𝑁𝐿
, 𝑦(𝐿)(𝜃′, 𝑥) = 𝑦(𝐿−1)(𝜃′, 𝑥)𝑊 ′(𝐿) +𝑏′(𝐿) similarly yields

𝑦(𝐿)(𝜃′, 𝑥) = 𝑦(𝐿)(𝜃, 𝑥) thus 𝑅𝐺(𝜃) = 𝑅𝐺(𝜃′).

Proof of Proposition A.1.2

Proposition. Two permutation equivalent parameterizations 𝜃 and 𝜃′ yield the same
realization, i.e. 𝑅𝐺(𝜃, 𝑥) = 𝑅𝐺(𝜃′, 𝑥) for all 𝑥.

Proof. We show by induction that

𝑦(ℓ)(𝜃′, 𝑥) = 𝑦(ℓ)(𝜃, 𝑥)𝜋(ℓ) (A.21)

for all ℓ ∈ J0, 𝐿K. We have 𝑦(0)(𝜃′, 𝑥) = 𝑥 = 𝑥𝐼𝑁0 = 𝑦(0)(𝜃, 𝑥)𝜋(0) and, if we assume
Equation (A.21) valid for some ℓ ∈ J0, 𝐿− 2K, then by Definition 2.2.6,

𝑦(ℓ+1)(𝜃′, 𝑥) = 𝜎
(︁
𝑦(ℓ)(𝜃′, 𝑥)𝑊 ′(ℓ+1) + 𝑏′(ℓ+1)

)︁
= 𝜎

(︂
𝑦(ℓ)(𝜃, 𝑥)𝜋(ℓ)

(︁
𝜋(ℓ)

)︁−1
𝑊 (ℓ+1)𝜋(ℓ+1) + 𝑏(ℓ+1)𝜋(ℓ+1)

)︂
= 𝜎

(︁
𝑦(ℓ)(𝜃, 𝑥)𝑊 (ℓ+1) + 𝑏(ℓ+1)

)︁
𝜋(ℓ+1)

= 𝑦(ℓ+1)(𝜃, 𝑥)𝜋(ℓ+1).

(A.22)

(A.23)

(A.24)

(A.25)
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For the last layer, as 𝜋(𝐿) = 𝐼𝑁𝐿
, 𝑦(𝐿)(𝜃′, 𝑥) = 𝑦(𝐿−1)(𝜃′, 𝑥)𝑊 ′(𝐿) + 𝑏′(𝐿) similarly yields

𝑦(𝐿)(𝜃′, 𝑥) = 𝑦(𝐿)(𝜃, 𝑥) thus 𝑅𝐺(𝜃) = 𝑅𝐺(𝜃′).

Proof of Proposition A.1.3

Proposition. Two parameterizations 𝜃 and 𝜃′ are permutation-rescaling equivalent
iff they are rescaling-permutation equivalent.

Proof. Let 𝜃 and 𝜃′ be permutation-rescaling equivalent parameterizations, with no
biases. There exists a parameterization 𝜃′′ such that 𝜃 ∼𝑃 𝜃′′ and 𝜃′′ ∼𝑆 𝜃′. Thus, for
every ℓ ∈ J1, 𝐿K,

𝑊
′′(ℓ) =

(︁
𝜋(ℓ−1)

)︁−1
𝑊 (ℓ)𝜋(ℓ)

𝑊
′(ℓ) =

(︁
𝐷(ℓ−1)

)︁−1
𝑊 ′′(ℓ)𝐷(ℓ)

=
(︁
𝐷(ℓ−1)

)︁−1 (︁
𝜋(ℓ−1)

)︁−1
𝑊 (ℓ)𝜋(ℓ)𝐷(ℓ)

=
(︁
𝜋(ℓ−1)

)︁−1 (︁̃︁𝐷(ℓ−1)
)︁−1

𝑊 (ℓ)̃︁𝐷(ℓ)𝜋(ℓ)

(A.26)

(A.27)

(A.28)

(A.29)

where, for every ℓ ∈ J0, 𝐿K,

̃︁𝐷(ℓ) = 𝜋(ℓ)𝐷(ℓ)
(︁
𝜋(ℓ)

)︁−1
(A.30)

We verify that ̃︁𝐷(ℓ) is a diagonal matrix with strictly positive entries, 𝐷(ℓ) ∈ 𝒟(|𝑁ℓ|).
We define

𝑊
′′′(ℓ) =

(︁̃︁𝐷(ℓ−1)
)︁−1

𝑊 (ℓ)̃︁𝐷(ℓ) (A.31)

Using Equation (A.29), we have

𝑊 ′(ℓ) =
(︁
𝜋(ℓ−1)

)︁−1
𝑊 ′′′(ℓ)𝜋(ℓ) (A.32)

Thus, there exists a parameterization 𝜃′′′ such that 𝜃 ∼𝑆 𝜃′′′ and 𝜃′′′ ∼𝑃 𝜃′, i.e. 𝜃 and
𝜃′ are rescaling-permutation equivalent. The reciprocal and the case with biases is
similar and is not displayed here.

Proof of Proposition 3.1.2

Proposition. Two parameterizations that are permutation-rescaling equivalent are
functionally equivalent.

Proof. Let 𝜃 and 𝜃′ be permutation-rescaling equivalent parameterizations. There
exists a parameterization 𝜃′′ such that 𝜃 ∼𝑃 𝜃′′ and 𝜃′′ ∼𝑆 𝜃′. Using Propositions
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A.1.2, we have 𝑅𝜃 = 𝑅𝜃′′ and 𝑅𝜃′′ = 𝑅𝜃′ . Thus, 𝑅𝜃 = 𝑅𝜃′′ .

A.1.3 One Hidden Layer Case

Proof of Proposition 3.2.1

Proposition. Let 𝐺 be a one-hidden layer architecture valued with 𝜃 and 𝜃′. Assume
that 𝜃 and 𝜃′ are irreducible. Then, 𝑅𝜃 = 𝑅′

𝜃 implies that 𝜃 ∼𝑃𝑆 𝜃′.

Proof. Let 𝜃 and 𝜃′ be two irreducible parameterizations such that 𝑅𝜃 = 𝑅𝜃′ . Recall
that 𝑥 ↦→ 𝑅𝜃(𝑥) and 𝑥 ↦→ 𝑅𝜃′(𝑥) are functions from R𝑁0 to R𝑁2 . Let us show that
𝜃 ∼𝑃𝑆 𝜃′. Since 𝑅𝜃 = 𝑅𝜃′ , for any output neuron 𝜂 and 𝑥 ∈ R𝑁0 ,

∑︁
𝜈∈𝑁1

𝑤𝜈→𝜂𝜎(⟨𝑤∙→𝜈 , 𝑥⟩+ 𝑏𝜈) + 𝑏𝜂⏟  ⏞  
,𝜙𝜂(𝑥)

=
∑︁
𝜈∈𝑁1

𝑤′
𝜈→𝜂𝜎(⟨𝑤′

∙→𝜈 , 𝑥⟩+ 𝑏′
𝜈) + 𝑏′

𝜂⏟  ⏞  
,𝜓𝜂(𝑥)

. (A.33)

The proof follows four steps:

1. We reduce to the scalar case by taking 𝑥 = 𝑢𝑡 + 𝑟, 𝑡 ∈ R in Equation (A.33)
for carefully chosen sets of directions 𝒰 ⊂ R𝑁0 and of offsets ℛ𝑢 ⊂ R𝑁0 (note
that ℛ𝑢 depends on 𝑢 ∈ 𝒰). We choose these sets such that, for all 𝑢 ∈ 𝒰 and
𝑟 ∈ ℛ𝑢, and for any output neuron 𝜂 ∈ 𝑁2, the breakpoints of the continuous
piecewise affine scalar function 𝑡 ↦→ 𝜙𝜂(𝑢𝑡+𝑟) are distinct, and similarly for 𝜓𝜂.

2. We fix one output neuron 𝜂 and we fix 𝑢 ∈ 𝒰 , 𝑟 ∈ ℛ𝑢. We use the identifiability
lemma A.1.1 on the functions 𝑡 ↦→ 𝜙𝜂(𝑢𝑡+ 𝑟) and 𝑡 ↦→ 𝜓𝜂(𝑢𝑡+ 𝑟) (that depend
on both 𝜂 and 𝑢) to (partially) identify the weights and biases of 𝜃 and 𝜃′.

3. We prove that the (partial) identification of the weights and biases of 𝜃 and 𝜃′

obtained in Step 2 is independent from 𝑢 and 𝑟. It allows to define the rescalings
and the permutation of the hidden neurons with respect to the output neuron
𝜂. Note that such rescalings and permutation still depend a priori on 𝜂.

4. We prove that the definitions of the rescalings and the permutation obtained
in Step 2 are independent of the considered output neuron 𝜂, allowing to show
that 𝜃 and 𝜃′ are indeed permutation and rescaling equivalent.
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Step 1. We first construct 𝒰 and then, for every 𝑢 ∈ 𝒰 , we construct ℛ𝑢.

∙ Recall that none of the vectors 𝑤∙→𝜈 and 𝑤′
∙→𝜈 equals zero for 𝜈 ∈ 𝑁1. Then,

we define 𝒰0 as R𝑁0 minus a finite union of hyperplanes as follows:

𝒰0 = R𝑁0∖

⎛⎝ ⋃︁
𝜈∈𝑁1

𝑤⊥
∙→𝜈 ∪ 𝑤′⊥

∙→𝜈

⎞⎠ (A.34)

where 𝑤⊥
∙→𝜈 = {𝑢 ∈ R𝑁0 | ⟨𝑢,𝑤∙→𝜈⟩ = 0}. In particular, for all 𝑢 ∈ 𝒰0, we have

∀𝜈 ∈ 𝑁1, ⟨𝑤∙→𝜈 , 𝑢⟩ ≠ 0,

∀𝜈 ∈ 𝑁1, ⟨𝑤′
∙→𝜈 , 𝑢⟩ ≠ 0.

(A.35)

(A.36)

Next, let 𝜂 ∈ 𝑁2 and define ℐ𝜂 = {𝜈 ∈ 𝑁1 | 𝑤𝜈→𝜂 ̸= 0}. Let 𝒥 ⊂ ℐ𝜂 and define

𝐻𝒥 ,𝜂 =
{︂
𝑢 ∈ R𝑁0

⃒⃒⃒⟨
𝑢,
∑︁
𝜈∈𝒥

𝑤𝜈→𝜂𝑤∙→𝜈

⟩
= 0

}︂
. (A.37)

Since 𝜃 is irreducible, there are no co-dependant hidden neurons (Definition 3.2.3),
hence ∑︀𝜈∈𝒥 𝑤𝜈→𝜂𝑤∙→𝜈 ̸= 0, hence 𝐻𝒥 ,𝜂 is a hyperplane of dimension 𝑁0 − 1.
Since there are finitely many sets 𝒥 , we define

𝒰1 = R𝑁0∖
(︂ ⋃︁
𝜂∈𝑁2
𝒥 ⊂ℐ𝜂

𝐻𝒥 ,𝜂

)︂
. (A.38)

Hence, for all 𝑢 ∈ 𝒰1, we have

∀𝜂 ∈ 𝑁2,∀𝒥 ⊂ ℐ𝜂,
⟨
𝑢,
∑︁
𝜈∈𝒥

𝑤𝜈→𝜂𝑤∙→𝜈

⟩
̸= 0. (A.39)

We finally define 𝒰 = 𝒰0 ∪ 𝒰1.

∙ We fix 𝑢 ∈ 𝒰 and construct ℛ𝑢 such that, for all 𝜈1 ̸= 𝜈2 ∈ 𝑁1 and 𝑟 ∈ ℛ𝑢,

𝑏𝜈1 + ⟨𝑤∙→𝜈1 , 𝑟⟩
⟨𝑤∙→𝜈1 , 𝑢⟩

̸= 𝑏𝜈2 + ⟨𝑤∙→𝜈2 , 𝑟⟩
⟨𝑤∙→𝜈2 , 𝑢⟩

,

𝑏′
𝜈1 + ⟨𝑤′

∙→𝜈1 , 𝑟⟩
⟨𝑤′

∙→𝜈1 , 𝑢⟩
̸=
𝑏′
𝜈2 + ⟨𝑤′

∙→𝜈2 , 𝑟⟩
⟨𝑤′

∙→𝜈2 , 𝑢⟩
.

(A.40)

(A.41)
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Equation (A.40) writes ⟨𝑟, 𝛼𝜈1,𝜈2⟩+ 𝛽𝜈1,𝜈2 ̸= 0, where

𝛼𝜈1,𝜈2 = 𝑤∙→𝜈1⟨𝑤∙→𝜈2 , 𝑢⟩ − 𝑤∙→𝜈2⟨𝑤∙→𝜈1 , 𝑢⟩

𝛽𝜈1,𝜈2 = 𝑏𝜈1⟨𝑤∙→𝜈2 , 𝑢⟩ − 𝑏𝜈2⟨𝑤∙→𝜈1 , 𝑢⟩.

(A.42)

(A.43)

Since 𝜃 is irreducible, there are no twin neurons (Definition 3.2.2). Define, for
any 𝜈1 ̸= 𝜈2 ∈ 𝑁1, the set 𝐻𝜈1,𝜈2 =

{︁
𝑟 ∈ R𝑁0 | ⟨𝑟, 𝛼𝜈1,𝜈2⟩+ 𝛽𝜈1,𝜈2 = 0

}︁
which

is either the empty set, a hyperplane, or the whole space R𝑁0 . Let us show
that 𝐻𝜈1,𝜈2 is not equal to R𝑁0 . For the sake of contradiction, let us assume
that 𝐻𝜈1,𝜈2 = R𝑁0 . Then, both 𝛼𝜈1,𝜈2 = 0 and 𝛽𝜈1,𝜈2 = 0. Using Equa-
tions (A.42) and (A.43), we deduce that1 𝑤∙→𝜈1 = 𝑑𝑤∙→𝜈2 and 𝑏𝜈1 = 𝑑𝑏𝜈2

with 𝑑 = ⟨𝑤∙→𝜈1 , 𝑢⟩/⟨𝑤∙→𝜈2 , 𝑢⟩ ̸= 0, which is equivalent to Γ𝜈1 = Γ𝜈2 in Defini-
tion 3.2.2, which is a contradiction since there are no hidden twin neurons in
𝜃. Thus, we have shown that 𝐻𝜈1,𝜈2 is either an affine hyperplane, or the empty
set. We similarly define 𝐻 ′

𝜈1,𝜈2 and proceed to the same reasoning with 𝜃′.

Finally, we define ℛ𝑢 as a R𝑁0 minus a finite union of hyperplanes as follows.

ℛ𝑢 = R𝑁0∖

⎛⎝ ⋃︁
𝜈1 ̸=𝜈2∈𝑁1

𝐻𝜈1,𝜈2 ∪𝐻 ′
𝜈1,𝜈2

⎞⎠ . (A.44)

Note that by construction, for all 𝜈1 ̸= 𝜈2 ∈ 𝑁1 and 𝑟 ∈ ℛ𝑢, Equations (A.40)
and (A.41) are satisfied.

Step 2. We fix an output neuron 𝜂 ∈ 𝑁2 and define ℐ = {𝜈 ∈ 𝑁1 | 𝑤𝜈→𝜂 ̸= 0} and
ℐ ′ = {𝜈 ∈ 𝑁1 | 𝑤′

𝜈→𝜂 ̸= 0}. Next, we fix 𝑢 ∈ 𝒰 and 𝑟 ∈ ℛ𝑢. Using Equation (A.33),
we have that for all 𝑡 ∈ R, 𝜙𝜂(𝑢𝑡+ 𝑟) = 𝜓𝜂(𝑢𝑡+ 𝑟). Then, for all 𝜈 ∈ 𝑁1, we define

𝑠𝜈 = sign(⟨𝑤∙→𝜈 , 𝑢⟩)

𝑎𝜈 = 𝑤𝜈→𝜂⟨𝑤∙→𝜈 , 𝑢⟩𝑠𝜈
𝑡𝜈 = −(𝑏𝜈 + ⟨𝑤∙→𝜈 , 𝑟⟩)/⟨𝑤∙→𝜈 , 𝑢⟩

𝑐 = 𝑏𝜂

(A.45)

(A.46)

(A.47)

(A.48)

and we similarly define 𝑎′
𝜈 , 𝑠′

𝜈 , 𝑡′𝜈 and 𝑐′
𝜈 . Note that these coefficients depend on 𝑢

and 𝑟, although we omit to state the dependency explicitly for the sake of clarity. We
verify that the following three conditions are met.

1Recall that ⟨𝑤∙→𝜈1 , 𝑢⟩ ≠ 0 and ⟨𝑤∙→𝜈2 , 𝑢⟩ ≠ 0 using Equation (A.35).
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∙ For all 𝜈 ∈ ℐ, 𝑎𝜈 ̸= 0. Indeed, by definition of ℐ, 𝑤𝜈→𝜂 ̸= 0 and by Equa-
tion (A.35), we have that ⟨𝑤∙→𝜈 , 𝑢⟩ ≠ 0. Similarly, for all 𝜈 ∈ ℐ ′, we have
𝑎′
𝜈 ̸= 0.

∙ For all 𝜈1 ̸= 𝜈2 ∈ ℐ, 𝑡𝜈1 ̸= 𝑡𝜈2 . This comes from Equations (A.40) and (A.41).
Similarly, for all 𝜈1 ̸= 𝜈2 ∈ ℐ ′, 𝑡′𝜈1 ̸= 𝑡′𝜈2 .

∙ For all 𝒥 ⊂ ℐ, ∑︀𝜈∈𝒥 𝑎𝜈𝑠𝜈 ̸= 0. This comes from Equation (A.39) and from the
fact that 𝑎𝜈𝑠𝜈 = 𝑤𝜈→𝜂⟨𝑤∙→𝜈 , 𝑢⟩𝑠2

𝜈 = 𝑤𝜈→𝜂⟨𝑤∙→𝜈 , 𝑢⟩.

We are now ready to apply the identification Lemma A.1.1 stated below.

Lemma A.1.1. Let ℐ, ℐ ′ two finite sets of indices, empty or not2. For 𝑖 ∈ ℐ, let
𝑎𝑖 ∈ R*, 𝑠𝑖 ∈ {−1,+1}, 𝑡𝑖 ∈ R such that the 𝑡𝑖 are distinct and 𝑐 ∈ R. Define 𝜙 as

𝜙 : 𝑡 ↦→
∑︁
𝑖∈ℐ

𝑎𝑖𝜎(𝑠𝑖(𝑡− 𝑡𝑖)) + 𝑐. (A.49)

Similarly, we define 𝑎′
𝑖, 𝑠′

𝑖, 𝑡′𝑖 for 𝑖 ∈ ℐ ′, 𝑐′ and the function 𝜓. We further assume
that, for all 𝒥 ⊂ ℐ, ∑︁

𝑖∈𝒥
𝑎𝑖𝑠𝑖 ̸= 0. (A.50)

We assume ∀𝑡, 𝜙(𝑡) = 𝜓(𝑡). Then, 𝑐 = 𝑐′ and up to a re-numbering, ℐ = ℐ ′ and for
all 𝑖 ∈ ℐ, 𝑡𝑖 = 𝑡′𝑖, 𝑠𝑖 = 𝑠′

𝑖 and 𝑎𝑖 = 𝑎′
𝑖.

We get 𝑏𝜂 = 𝑏′
𝜂 and ℐ = ℐ ′ up to a re-numbering. We distinguish between two

cases. If ℐ = ∅ and ℐ ′ = ∅, we directly proceed to Step 3. Otherwise, ℐ ̸= ∅ and
ℐ ′ ̸= ∅. We explicitly denote 𝜋 : ℐ ↦→ ℐ ′ the re-numbering of ℐ ′. Then, for all 𝜈 ∈ ℐ,

𝑠′
𝜋(𝜈) = sign(⟨𝑤′

∙→𝜋(𝜈), 𝑢⟩) = sign(⟨𝑤∙→𝜈 , 𝑢⟩) = 𝑠𝜈

𝑤′
𝜋(𝜈)→𝜂⟨𝑤′

∙→𝜋(𝜈), 𝑢⟩𝑠′
𝜋(𝜈) = 𝑤𝜈→𝜂⟨𝑤∙→𝜈 , 𝑢⟩𝑠𝜈

−(𝑏′
𝜋(𝜈) + ⟨𝑤′

∙→𝜋(𝜈), 𝑟⟩)/⟨𝑤′
∙→𝜋(𝜈), 𝑢⟩ = −(𝑏𝜈 + ⟨𝑤∙→𝜈 , 𝑟⟩)/⟨𝑤∙→𝜈 , 𝑢⟩

(A.51)

(A.52)

(A.53)

Then, using Equation (A.51) with Equation (A.52) and the fact that both 𝑠𝜈 and
𝑠𝜋(𝜈) are non-zero, we deduce that for all 𝜈 ∈ ℐ,

𝑤′
𝜋(𝜈)→𝜂⟨𝑤′

∙→𝜋(𝜈), 𝑢⟩ = 𝑤𝜈→𝜂⟨𝑤∙→𝜈 , 𝑢⟩. (A.54)
2We use the convention:

∑︀
∅ = 0.
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Step 3. We still fix an output neuron 𝜂 ∈ 𝑁2. Let us show that 𝜋 is independent
from the considered vectors 𝑢 ∈ 𝒰 and 𝑟 ∈ ℛ𝑢. To this end, we explicitly state the
a priori dependency of 𝜋 on 𝑢 and 𝑟 by writing 𝜋 = 𝜋𝑢,𝑟. Let us first fix 𝑢 ∈ 𝒰 and
show that the vectors 𝑤′

∙→𝜋𝑟,𝑢(𝜈) and 𝑤∙→𝜈 are collinear for all 𝑟 ∈ ℛ𝑢. Let 𝑟 ∈ ℛ𝑢.

∙ First, since ℛ𝑢 is open, there exists a neighborhood 𝑉 of 𝑟 such that 𝑉 ⊂ ℛ𝑢.

∙ Second, 𝜋𝑢,𝑟 is entirely determined by the relation 𝑡′𝜋𝑢,𝑟(𝜈) = 𝑡𝜈 for all 𝜈 ∈ 𝑁1,
hence by the relative ordering of the 𝑡𝜈 and 𝑡′𝜈 . Since the 𝑡𝜈 (resp. 𝑡′𝜈) are distinct
and since 𝑡𝜈 and 𝑡′𝜈 depend continuously on 𝑟, there exists a neighborhood 𝑉 ′

of 𝑟 such that, for all 𝑟′ ∈ 𝑉 ′, the relative ordering of the 𝑡𝜈 and 𝑡′𝜈 is preserved,
hence 𝜋𝑢,𝑟′ = 𝜋𝑢,𝑟.

∙ We deduce from the first two points and from Equation (A.53) applied in 𝑟 and
to any 𝑟′ ̸= 𝑟 ∈ 𝑉 ∩ 𝑉 ′ that

⟨𝑤′
∙→𝜋𝑢,𝑟(𝜈), 𝜏⟩ = 𝑑𝜈→𝜂,𝑢,𝑟⟨𝑤∙→𝜈 , 𝜏⟩ (A.55)

where 𝜏 = 𝑟′ − 𝑟 and 𝑑𝜈→𝜂,𝑢,𝑟 = ⟨𝑤′
∙→𝜋𝑢,𝑟(𝜈), 𝑢⟩/⟨𝑤∙→𝜈 , 𝑢⟩ ≠ 0. Since Equa-

tion (A.55) is valid for any small enough direction 𝜏 , we deduce that

𝑤′
∙→𝜋𝑢,𝑟(𝜈) = 𝑑𝜈→𝜂,𝑢,𝑟𝑤∙→𝜈 . (A.56)

which proves that 𝑤′
∙→𝜋𝑢,𝑟(𝜈) and 𝑤∙→𝜈 are collinear. Note that thanks to Equa-

tion (A.54), we also have

𝑑𝜈→𝜂,𝑢,𝑟 = 𝑤𝜈→𝜂

𝑤′
𝜋𝑢,𝑟(𝜈)→𝜂

. (A.57)

Next, using Equations (A.53) and (A.56), we deduce that

𝑏′
𝜋𝑢,𝑟(𝜈) = 𝑑𝜈→𝜂,𝑢,𝑟𝑏𝜈 . (A.58)

Then, using Equations (A.56) and (A.58), for any 𝑟′ ̸= 𝑟 ∈ ℛ𝑢 and for all 𝑥 ∈ R𝑁0 ,

⟨𝑥,𝑤′
∙→𝜋𝑢,𝑟′ (𝜈)⟩+ 𝑏′

𝜋𝑢,𝑟′ (𝜈) = 𝑑𝜈→𝜂,𝑢,𝑟′ (⟨𝑥,𝑤∙→𝜈⟩+ 𝑏𝜈)

= 𝑑𝜈→𝜂,𝑢,𝑟′

𝑑𝜈→𝜂,𝑢,𝑟

(︁
⟨𝑥,𝑤′

∙→𝜋𝑢,𝑟(𝜈)⟩+ 𝑏′
𝜋𝑢,𝑟(𝜈)

)︁
.

(A.59)

(A.60)
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Note that 𝑑𝜈→𝜂,𝑢,𝑟′/𝑑𝜈→𝜂,𝑢,𝑟 ̸= 0. This is equivalent to Γ𝜋𝑢,𝑟′ (𝜈) = Γ𝜋𝑢,𝑟(𝜈) in Defini-
tion 3.2.2. Since there are no hidden twin neurons in 𝜃′, we have 𝜋𝑢,𝑟′(𝜈) = 𝜋𝑢,𝑟(𝜈),
hence 𝜋𝑢,𝑟 = 𝜋𝑢 does not depend on 𝑟 ∈ ℛ𝑢. With a similar argument, we deduce
that 𝜋𝑢 does not depend on 𝑢 either and we default back to the notation 𝜋.

Equation (A.56) implies that 𝑑𝜈→𝜂,𝑢,𝑟 = 𝑑𝜈→𝜂 does not depend on 𝑢 and 𝑟. Because
both 𝑤′

𝜋(𝜈)→𝜂 ̸= 0 and 𝑤𝜈→𝜂 ̸= 0, we have 𝑑𝜈→𝜂 ̸= 0. Moreover, 𝑑𝜈→𝜂 > 0 because
Equations A.51 and A.54 imply sign(𝑤𝜈→𝜂) = sign(𝑤′

𝜋(𝜈)→𝜂). To summarize, for
𝜈 ∈ ℐ, we have

𝑤′
𝜋(𝜈)→𝜂 = 𝑤𝜈→𝜂/𝑑𝜈→𝜂

𝑤′
∙→𝜋(𝜈) = 𝑤∙→𝜈𝑑𝜈→𝜂

𝑏′
𝜋(𝜈) = 𝑏𝜈𝑑𝜈→𝜂

(A.61)

(A.62)

(A.63)

The first relation comes from Equation (A.57), the second from Equation (A.56) and
the third from Equation (A.58).

Step 4. We now prove that 𝜃 and 𝜃′ are permutation-rescaling equivalent. We
explicitly denote by ℐ𝜂 and ℐ ′

𝜂 the sets constructed in Step 2 and similarly for the
re-numbering 𝜋𝜂 to show the dependency on the output neuron 𝜂. Let us show that
the definitions of the rescaling coefficients 𝑑𝜈→𝜂 and the permutations 𝜋𝜂 in Step 2
are independent of the choice of 𝜂. Consider 𝜂1 ̸= 𝜂2 two distinct output neurons.

∙ Regarding the permutation, we first show that if 𝜈 ∈ ℐ𝜂1 ∩ ℐ𝜂2 ,

𝜋𝜂1(𝜈) = 𝜋𝜂2(𝜈). (A.64)

Equations (A.62) and (A.63) show that, for all 𝑥 ∈ R𝑁0 ,

⟨𝑤′
∙→𝜋𝜂1 (𝜈), 𝑥⟩+ 𝑏′

𝜋𝜂1 (𝜈) = 𝑑𝜈→𝜂1 (⟨𝑤∙→𝜈 , 𝑥⟩+ 𝑏𝜈)

= 𝑑𝜈→𝜂1

𝑑𝜈→𝜂2

(︁
⟨𝑤′

∙→𝜋𝜂2 (𝜈), 𝑥⟩+ 𝑏′
𝜋𝜂2 (𝜈)

)︁ (A.65)

(A.66)

Note that 𝑑𝜈→𝜂1/𝑑𝜈→𝜂2 > 0. Since 𝜃′ is irreducible, there are no twin hidden
neurons (Definition 3.2.2). Hence, we deduce that 𝜋𝜂1(𝜈) = 𝜋𝜂2(𝜈), which in
turn implies that

𝑑𝜈→𝜂1 = 𝑑𝜈→𝜂2 . (A.67)

Then, for all hidden neuron 𝜈 ∈ 𝑁1, there exists 𝜂 such that 𝜈 ∈ ℐ𝜂 since there
are no dead neurons. We define 𝜋(𝜈) = 𝜋𝜂(𝜈).

170



∙ Regarding the rescalings, Equation (A.67) implies that 𝑑𝜈→𝜂 does not depend
on 𝜂 in the sense that, if 𝜈 ∈ ℐ𝜂1 ∩ ℐ𝜂2 , 𝑑𝜈→𝜂1 = 𝑑𝜈→𝜂2 . Then, for all hidden
neuron 𝜈 ∈ 𝑁1, there exists 𝜂 such that 𝜈 ∈ ℐ𝜂 since there are no dead neurons.
We then define 𝑑𝜈 = 𝑑𝜈→𝜂.

Finally, we have shown that 𝜃 and 𝜃′ are permutation-rescaling equivalent accord-
ing to Definitions 2.2.3 and 2.2.7.

We finally prove Lemma A.1.1.

Lemma. Let ℐ, ℐ ′ two finite sets of indices, empty or not3. For 𝑖 ∈ ℐ, let 𝑎𝑖 ∈ R*,
𝑠𝑖 ∈ {−1,+1}, 𝑡𝑖 ∈ R such that the 𝑡𝑖 are distinct and 𝑐 ∈ R. Define 𝜙 as

𝜙 : 𝑡 ↦→
∑︁
𝑖∈ℐ

𝑎𝑖𝜎(𝑠𝑖(𝑡− 𝑡𝑖)) + 𝑐. (A.68)

Similarly, we define 𝑎′
𝑖, 𝑠′

𝑖, 𝑡′𝑖 for 𝑖 ∈ ℐ ′, 𝑐′ and the function 𝜓. We further assume
that, for all 𝒥 ⊂ ℐ, ∑︁

𝑖∈𝒥
𝑎𝑖𝑠𝑖 ̸= 0. (A.69)

We assume ∀𝑡, 𝜙(𝑡) = 𝜓(𝑡). Then, 𝑐 = 𝑐′ and up to a re-numbering, ℐ = ℐ ′ and for
all 𝑖 ∈ ℐ, 𝑡𝑖 = 𝑡′𝑖, 𝑠𝑖 = 𝑠′

𝑖 and 𝑎𝑖 = 𝑎′
𝑖.

Proof. We first show that |ℐ| = |ℐ ′|. The function 𝜙 is piecewise affine and has exactly
|ℐ| distinct breakpoints because all the 𝑡𝑖 are distinct and the 𝑠𝑖 are non-zero. We
denote this set of breakpoints 𝒯 = {𝑡𝑖}𝑖∈ℐ . Similarly, the function 𝜓 has exactly |ℐ ′|
breakpoints. We denote this set of breakpoints 𝒯 ′ = {𝑡′𝑖}𝑖∈ℐ′ . Note that 𝒯 may be
empty since ℐ may be empty, and similarly for 𝒯 ′.

Then, because 𝜙 = 𝜓, |ℐ| = |ℐ ′| and 𝒯 = 𝒯 ′, otherwise there would exist one
point where one function would be differentiable and the other not. Thus, up to a
re-numbering of ℐ ′, we assume ℐ = ℐ ′.

The re-ordering of the numbers 𝑡𝑖 and 𝑡′𝑖 and the fact that 𝒯 = 𝒯 ′ implies that
∀𝑖 ∈ ℐ, 𝑡𝑖 = 𝑡′𝑖. Let us show that ∀𝑖 ∈ ℐ, 𝑎𝑖 = 𝑎′

𝑖. We compute the derivative of 𝜙 in
a neighbourhood Ω of 𝑡𝑖 such that Ω ∩ 𝒯 = {𝑡𝑖}, which is possible because the 𝑡𝑖 are
distinct. For 𝑡 ∈ Ω∖{𝑡𝑖},

𝜙′(𝑡) = 𝑎𝑖𝑠𝑖1(𝑠𝑖(𝑡− 𝑡𝑖)) + 𝑓(𝑡) (A.70)
3We use the convention:

∑︀
∅ = 0.
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where the function 𝑓 is constant on Ω and where 1(𝑥) = 1 if 𝑥 > 0 and 0 otherwise.
Similarly, for 𝑡 ∈ Ω∖{𝑡𝑖}, 𝜓′(𝑡) = 𝑎′

𝑖𝑠
′
𝑖1(𝑠′

𝑖(𝑡 − 𝑡′𝑖)) + 𝑔(𝑡). Then, we use the equality
𝜙′(𝑡+𝑖 )− 𝜙′(𝑡−𝑖 ) = 𝜓′(𝑡+𝑖 )− 𝜓′(𝑡−𝑖 ) to obtain

𝑎𝑖𝑠𝑖(1(𝑠𝑖)− 1(−𝑠𝑖)) + 𝑓(𝑡+𝑖 )− 𝑓(𝑡−𝑖 ) = 𝑎′
𝑖𝑠

′
𝑖(1(𝑠′

𝑖)− 1(−𝑠′
𝑖)) + 𝑔(𝑡+𝑖 )− 𝑔(𝑡−𝑖 )

Using the facts that 𝑓(𝑡+𝑖 ) = 𝑓(𝑡−𝑖 ) and 𝑔(𝑡+𝑖 ) = 𝑔(𝑡−𝑖 ), this simplifies to

𝑎𝑖𝑠𝑖(1(𝑠𝑖)− 1(−𝑠𝑖)) = 𝑎′
𝑖𝑠

′
𝑖(1(𝑠′

𝑖)− 1(−𝑠′
𝑖)), (A.71)

which finally yields 𝑎𝑖𝑠2
𝑖 = 𝑎′

𝑖𝑠
′2
𝑖 . Since 𝑠𝑖 ∈ {−1,+1}, we deduce that 𝑠2

𝑖 = 1, and
similarly 𝑠′2

𝑖 = 1. Hence, 𝑎𝑖 = 𝑎′
𝑖 and there exists 𝜀𝑖 ∈ {−1,+1} such that 𝑠′

𝑖 = 𝜀𝑖𝑠𝑖.
We then re-write the equality 𝜙(𝑡) = 𝜓(𝑡) as follows:

∑︁
𝑖∈ℐ

𝑎𝑖

[︂
𝜎(𝑠𝑖(𝑡− 𝑡𝑖))− 𝜎(𝜀𝑖𝑠𝑖(𝑡− 𝑡𝑖))

]︂
+ 𝑐− 𝑐′ = 0. (A.72)

Next, we observe that

𝜎(𝑠𝑖(𝑡− 𝑡𝑖))− 𝜎(𝜀𝑖𝑠𝑖(𝑡− 𝑡𝑖)) =

⎧⎪⎨⎪⎩0 if 𝜀𝑖 = 1

𝑠𝑖(𝑡− 𝑡𝑖) if 𝜀𝑖 = −1
(A.73)

Let us denote 𝒥 = {𝑖 ∈ ℐ | 𝜀𝑖 = −1} and let us show that 𝒥 = ∅. Using Equa-
tion (A.73), we re-write Equation (A.72) as follows:

∑︁
𝑖∈𝒥

𝑎𝑖𝑠𝑖(𝑡− 𝑡𝑖) + 𝑐− 𝑐′ = 0 (A.74)

Since this is valid for all 𝑡 ∈ R and since we assume that ∑︀𝑖∈𝒥 𝑎𝑖𝑠𝑖 ̸= 0, we obtain
that 𝒥 = ∅, hence 𝑠′

𝑖 = 𝑠𝑖 for all 𝑖 ∈ ℐ. Finally, evaluating Equation (A.72) at any
point 𝑡 yields 𝑐 = 𝑐′, which concludes the proof.
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A.2 Algebraic and Geometric tools

A.2.1 An Algebraic Expression of 𝑅𝜃 and its Consequences.

Proof of Proposition 3.3.1

Proposition. For any parameterization 𝜃 = (𝑤, 𝑏), any 𝑥 ∈ R𝑁0 and any output
neuron 𝜈 ∈ 𝑁𝐿,

𝑅𝜃(𝑥)𝜈 =
∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) +
𝐿∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ
𝑞ℓ=𝜈

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥). (A.75)

Proof. We prove the result by induction on the number of layers 𝐿.

∙ If 𝐿 = 0, the input and output layers are the same and 𝑅𝜃(𝑥) = 𝑥. On the
other hand, 𝒫 = {(𝜇)}𝜇∈𝑁0 . Since there are no non-linearities, 𝑎𝑝(𝜃, 𝑥) = 1 for
all 𝑝, 𝑥. We also have 𝑣𝑝(𝜃) = 1 for all 𝑝. It follows that

∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) =
∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑥𝑝0 = 𝑥𝜈 (A.76)

∙ If 𝐿 = 1, there exists 𝑊 and 𝑏 such that 𝑅𝜃(𝑥) = 𝑥𝑊 + 𝑏. On the other hand,
𝒫 = {(𝜇, 𝜈)}𝜇∈𝑁0,𝜈∈𝑁1 and 𝒬1 = {(𝜈)}𝜈∈𝑁1 . Since there are no non-linearities,
𝑎𝑞(𝜃, 𝑥) = 1 for all 𝑞 ∈ 𝒫 ∪𝒬1→1. We also have 𝑣𝑝(𝜃) = 𝑤𝜇→𝜈 for all 𝑝 = (𝜇, 𝜈).
It follows that

∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) =
∑︁
𝜇∈𝑁0

𝑥𝑝0𝑤𝜇→𝜈 = (𝑥𝑊 )𝜈 (A.77)

and
𝐿∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ
𝑞ℓ=𝜈

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥) =
∑︁
𝑞∈𝒬1
𝑞0=𝜈

𝑏𝑞0 = 𝑏𝜈 (A.78)

∙ If 𝐿 ≥ 2, for any 𝑥 ∈ R𝑁0 and any 𝜈 ∈ 𝑁𝐿,

𝑅𝜃(𝑥)𝜈 =
∑︁

𝜇∈𝑁𝐿−1

𝑤𝜇→𝜈𝑦𝜇(𝜃, 𝑥) + 𝑏𝜈

=
∑︁

𝜇∈𝑁𝐿−1

𝑤𝜇→𝜈𝜎
(︁ ̃︀𝑅𝜃(𝑥)𝜇

)︁
+ 𝑏𝜈

(A.79)

(A.80)
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where ̃︀𝑅𝜃(𝑥) denotes the output of layer 𝐿− 1 of the network 𝐺 valued with 𝜃,
evaluated before the non-linearity. Using the induction hypothesis, we get, for
𝜇 ∈ 𝑁𝐿−1,

̃︀𝑅𝜃(𝑥)𝜇 =
∑︁
𝑝∈̃︀𝒫

𝑝𝐿−1=𝜇

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) +
𝐿−1∑︁
ℓ=1

∑︁
𝑞∈̃︀𝒬ℓ
𝑞𝐿−1=𝜇

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥) (A.81)

where ̃︀𝒫 = {(𝑝0, . . . , 𝑝𝐿−1) | 𝑝 ∈ 𝒫} and ̃︀𝒬ℓ = {(𝑝ℓ, . . . , 𝑝𝐿−1) | 𝑝 ∈ 𝒫}. We
then observe that

𝜎
(︁ ̃︀𝑅𝜃(𝑥)𝜇

)︁
= 1(𝑦𝜇(𝜃, 𝑥) > 0) ̃︀𝑅𝜃(𝑥)𝜇. (A.82)

We use both this fact and Equation (A.81) to rewrite Equation (A.80) as

𝑅𝜃(𝑥)𝜈 =
∑︁

𝜇∈𝑁𝐿−1

𝑤𝜇→𝜈1(𝑦𝜇(𝜃, 𝑥) > 0) ̃︀𝑅𝜃(𝑥)𝜇 + 𝑏𝜈

=
∑︁

𝜇∈𝑁𝐿−1

∑︁
𝑝∈̃︀𝒫

𝑝𝐿−1=𝜇

𝑥𝑝0𝑤𝜇→𝜈𝑣𝑝(𝜃)1(𝑦𝜇(𝜃, 𝑥) > 0)𝑎𝑝(𝜃, 𝑥)

+
∑︁

𝜇∈𝑁𝐿−1

𝐿−1∑︁
ℓ=1

∑︁
𝑞∈̃︀𝒬ℓ
𝑞𝐿−1=𝜇

𝑏𝑞0𝑤𝜇→𝜈𝑣𝑞(𝜃)1(𝑦𝜇(𝜃, 𝑥) > 0)𝑎𝑞(𝜃, 𝑥)

+ 𝑏𝜈

(A.83)

(A.84)

We next simplify Equation (A.84) using the following remarks. Recall that
we denote path concatenation with +. Let 𝑞 = 𝑞 + 𝜇 and 𝑝 = 𝑝 + 𝜇. First,
𝑤𝜇→𝜈𝑣𝑝(𝜃) = 𝑣𝑝(𝜃) by definition of 𝑣𝑝(𝜃) and similarly for 𝑞. Second, 1(𝑦𝜇(𝜃, 𝑥) >
0)𝑎𝑝(𝜃, 𝑥) = 𝑎𝑝(𝜃, 𝑥) by definition of 𝑎𝑝(𝜃, 𝑥) and similarly for 𝑞. Finally,
{𝑝 + (𝜈) | 𝑝 ∈ ̃︀𝒫 and 𝑝𝐿−1 = 𝜇}𝜇∈𝑁𝐿−1 = {𝑝 ∈ 𝒫 | 𝑝𝐿 = 𝜈} and similarly,
{𝑞 + (𝜈) | 𝑞 ∈ ̃︀𝒬ℓ and 𝑞𝐿−1 = 𝜇}𝜇∈𝑁𝐿−1 = {𝑞 ∈ 𝒬ℓ→𝐿 | 𝑞𝐿 = 𝜈}. Thus,

𝑅𝜃(𝑥)𝜈 =
∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) +
𝐿−1∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ→𝐿
𝑞𝐿=𝜈

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥) + 𝑏𝜈

=
∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) +
𝐿∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ→𝐿
𝑞𝐿=𝜈

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥)
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Proof of Proposition 3.3.2

Proposition. Let 𝒰(𝑥, 𝜃) be the set of all neighborhoods 𝑈 ⊂ R𝑁0 × R𝐸∪𝐻 of (𝑥, 𝜃).
We define, for any parameterization 𝜃,

𝒳𝜃 , {𝑥 ∈ R𝑁0 | ∃𝑈 ∈ 𝒰(𝑥, 𝜃),∀𝑞 ∈ 𝒫∪𝒬, ∀(𝑥′, 𝜃′) ∈ 𝑈, 𝑎𝑝(𝜃, 𝑥) = 𝑎𝑝(𝜃′, 𝑥′)}.

(A.85)
Then, 𝒳𝜃 is open. Moreover, let 𝜃 be a parameterization and 𝑥 ∈ 𝒳𝜃. Then, for each
full or partial path 𝑝 ∈ 𝒫 ∪ 𝒬, the function 𝑥′ ↦→ 𝑎𝑝(𝜃, 𝑥′) (resp. 𝜃′ ↦→ 𝑎𝑝(𝜃′, 𝑥)) is
locally constant in the neighborhood of 𝑥 (resp. in the neighborhood of 𝜃).

Proof. To show that 𝒳𝜃 is open, consider 𝑥 ∈ 𝒳𝜃. By definition there exists 𝑈 ∈
𝒰(𝑥, 𝜃) such that, for all 𝑝 ∈ 𝒫 ∪𝒬 and for all (𝑥′, 𝜃′) ∈ 𝑈 , 𝑎𝑝(𝜃, 𝑥) = 𝑎𝑝(𝜃′, 𝑥′). Since
𝑈 is a neighborhood of (𝑥, 𝜃), there exists two open neighborhoods 𝑉 , 𝑊 of 𝑥 (resp.
of 𝜃) such that 𝑉 ×𝑊 ⊂ 𝑈 . Considering 𝑥′ ∈ 𝑉 we now show that 𝑥′ ∈ 𝒳𝜃. This
will imply that 𝒳𝜃 is open as claimed. First, (𝑥′, 𝜃) ∈ 𝑈 , hence 𝑎𝑝(𝜃, 𝑥) = 𝑎𝑝(𝜃, 𝑥′).
Second, by definition of 𝑥 ∈ 𝒳𝜃, we have 𝑎𝑝(𝜃, 𝑥) = 𝑎𝑝(𝜃′′, 𝑥′′) for all 𝜃′′, 𝑥′′ ∈ 𝑈 .
Hence, noting that 𝑈 ∈ 𝒰(𝑥′, 𝜃) since 𝑉 is a neighborhood of 𝑥′, we deduce that for
all 𝜃′′, 𝑥′′ ∈ 𝑈 , we have 𝑎𝑝(𝜃, 𝑥′) = 𝑎𝑝(𝜃′′, 𝑥′′).

Next, let us show that the function 𝜃′ ↦→ 𝑎𝑝(𝜃′, 𝑥) is locally constant. Let 𝑥 ∈ 𝒳𝜃.
Then, there exists 𝑈 ∈ 𝒰(𝑥, 𝜃) such that, for all 𝑝 ∈ 𝒫 ∪ 𝒬 and for all (𝑥′, 𝜃′) ∈
𝑈, 𝑎𝑝(𝜃, 𝑥) = 𝑎𝑝(𝜃′, 𝑥′). As before, there are open neighborhoods 𝑉,𝑊 such that
𝑉 ×𝑊 ⊂ 𝑈 where 𝑉 ⊂ 𝑅𝑁0 is a neighborhood of 𝑥 and 𝑊 ⊂ 𝑅𝐸∪𝐻 is a neighborhood
of 𝜃. Since 𝑥 ∈ 𝑉 , we have that for all 𝜃′ ∈ 𝑊 , 𝑎𝑝(𝜃, 𝑥) = 𝑎𝑝(𝜃′, 𝑥). Thus, the function
𝜃 ↦→ 𝑎𝑝(𝜃, 𝑥) is locally constant. The proof that the function 𝑥 ↦→ 𝑎𝑝(𝜃, 𝑥) is locally
constant is similar.

Proof of Proposition 3.3.3

Proposition. The function 𝑥 ↦→ 𝑅𝜃(𝑥) is piecewise affine continuous and locally
affine in the neighborhood of any 𝑥 ∈ 𝑋𝜃.

Proof. The piecewise affine nature comes from Proposition 3.3.1, where we have

𝑅𝜃(𝑥)𝜈 =
∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) +
𝐿∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ→𝐿
𝑞𝐿=𝜈

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥)

=
∑︁
𝜇∈𝑁0

𝑥𝜇𝐴𝜇(𝑥) +𝐵(𝑥)
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with the following coefficients

𝐴𝜇(𝑥) =
∑︁
𝑝∈𝒫
𝑝0=𝜇
𝑝𝐿=𝜈

𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥)

𝐵(𝑥) =
𝐿∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ→𝐿
𝑞𝐿=𝜈

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥).

We notice that 𝑥 ↦→ 𝐴𝜇(𝑥) and 𝑥 ↦→ 𝐵(𝑥) are piecewise constant using Proposi-
tion 3.3.2, hence the result. The continuity comes from Equation 2.9 which shows
that 𝑥 ↦→ 𝑅𝜃(𝑥) is the composition of continuous functions.

Proof of Proposition 3.3.4

Proposition. For any 𝑥 ∈ 𝒳𝜃, the function 𝜃 ↦→ 𝑅𝜃(𝑥) is piecewise polynomial
continuous and locally polynomial in the neighborhood of any 𝜃.

Proof. The piecewise polynomial nature comes from Proposition 3.3.1, where we have

𝑅𝜃(𝑥)𝜈 =
∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) +
𝐿∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ→𝐿
𝑞𝐿=𝜈

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥)

=
∑︁
𝑝∈𝒫
𝑝𝐿=𝜈

𝑣𝑝(𝜃)𝐴𝑝(𝜃) +
𝐿∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ→𝐿
𝑞𝐿=𝜈

𝑣𝑞(𝜃)𝐵𝑞(𝜃)

with the following coefficients

𝐴𝑝(𝜃) = 𝑥𝑝0𝑎𝑝(𝜃, 𝑥)

𝐵(𝑥) = 𝑏𝑞0𝑎𝑞(𝜃, 𝑥).

We notice that 𝑥 ↦→ 𝐴𝜇(𝑥) and 𝑥 ↦→ 𝐵(𝑥) are piecewise constant using Proposi-
tion 3.3.2, hence the result. The continuity comes from Equation 2.9 which shows
that 𝜃 ↦→ 𝑅𝜃(𝑥) is the composition of continuous functions.

Proof of Proposition A.2.1

Proposition A.2.1. Let 𝑒 ∈ 𝐸. Then, for all 𝑥 ∈ 𝒳𝜃,

𝑤𝑒

(︃
𝜕𝑅𝜃(𝑥)
𝜕𝑤𝑒

)︃
𝜈

=
∑︁
𝑝∈𝒫
𝑝𝐿=𝜈
𝑒∈𝑝

𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥) +
𝐿∑︁
ℓ=1

∑︁
𝑞∈𝒬ℓ
𝑞𝐿−ℓ=𝜈
𝑒∈𝑞

𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥). (A.86)
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Proof. Let 𝜃 be a parameterization and 𝑥 ∈ 𝒳𝜃. Using Proposition 3.3.2, we deduce
that the functions 𝜃′ ↦→ 𝑎𝑝(𝜃′, 𝑥) are locally constant in the neighborhood of 𝜃 for any
full or partial path 𝑝 ∈ 𝒫 ∪𝒬. Hence,

𝜕𝑎𝑝(𝜃, 𝑥)
𝜕𝑤𝑒

= 0 (A.87)

Moreover, recalling the definition of a path value in the Notations,

𝑤𝑒
𝑣𝑝(𝜃)
𝜕𝑤𝑒

=

⎧⎨⎩0 if 𝑒 /∈ 𝑝

𝑣𝑝(𝜃) if 𝑒 ∈ 𝑝.
(A.88)

We use Proposition 3.3.1 to conclude.

A.2.2 Trajectories in the Parameter Space

Proof of Proposition 3.3.6

Proposition. We define the linear map S : ker P→ R𝐻 such that

(S𝛽)𝜈 , −
∑︁
𝑒∈𝑞

𝛽𝑒 (A.89)

where 𝑞 is the partial path going from 𝜈 to the output neuron 𝜂. Then,

1. S is well-defined (i.e., independent of the choice of 𝑞);

2. S is an isomorphism and its inverse S−1 : R𝐻 → ker P is such that for any
𝜆 ∈ R𝐻 we have S−1𝜆 = 𝛽 where for any edge 𝑒 = 𝜇→ 𝜈 ∈ 𝐸,

𝛽𝑒 ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝜆𝜇 if 𝜇 ∈ 𝑁𝐿−1 (and 𝜈 = 𝜂)

𝜆𝜈 − 𝜆𝜇 if 𝜇 ∈ 𝑁ℓ, 1 ≤ ℓ ≤ 𝐿− 2

𝜆𝜈 if 𝜇 ∈ 𝑁0.

(A.90)

Proof. Note that S is linear. The proof follows three steps.

S is well-defined. Let 𝛼 ∈ ker P. We wish to show that if 𝑞 and 𝑞′ are two partial
paths going from 𝜈 to the output neuron 𝜂, then

∑︁
𝑒∈𝑞

𝛼𝑒 =
∑︁
𝑒∈𝑞′

𝛼𝑒.

177



Let 𝑞 be a path going from some input neuron to 𝜈 and define 𝑝 = 𝑞+𝑞 and 𝑝′ = 𝑞+𝑞′

(recall that + denotes path concatenation). As 𝛼 ∈ ker P, we have

∑︁
𝑒∈𝑞

𝛼𝑒 +
∑︁
𝑒∈𝑞

𝛼𝑒 =
∑︁
𝑒∈𝑝

𝛼𝑒 = (P𝛼)𝑝 = 0 = (P𝛼)𝑝′ =
∑︁
𝑒∈𝑞

𝛼𝑒 +
∑︁
𝑒∈𝑞′

𝛼𝑒.

Thus, ∑︀𝑒∈𝑞 𝛼𝑒 = ∑︀
𝑒∈𝑞′ 𝛼𝑒 and S is well-defined.

S is injective. Let 𝛼 ∈ ker P such that S𝛼 = 0. Considering any edge 𝑒 = 𝜇 →
𝜈 ∈ 𝐸 we show that 𝛼𝑒 = 0, hence 𝛼 = 0. Let 𝑞 be a partial path going from 𝜈 to the
output neuron and 𝑞 = {𝜇}+ 𝑞. Then,

0 = (S𝛼)𝜈 − (S𝛼)𝜇 = −
∑︁
𝑒′∈𝑞

𝛼𝑒′ +
∑︁
𝑒′∈𝑞

𝛼𝑒′ = 𝛼𝑒.

S is surjective. Let 𝛾 ∈ R𝐻 and 𝛼 ∈ R𝐸 be defined for any edge 𝑒 as in (A.90).
Let 𝑞 = (𝑞0, . . . , 𝑞𝐿) be a partial path going from some neuron 𝜇 = 𝑞0 ∈ 𝑁0 ∪ 𝐻 to
the output neuron 𝜂 = 𝑞𝑘 ∈ 𝑁ℓ. If 𝜇 ∈ 𝑁0 then

∑︁
𝑒∈𝑞

𝛼𝑒 = −𝛾𝑞𝑘−1 +
𝑘−1∑︁
𝑗=2

(𝛾𝑞𝑗
− 𝛾𝑞𝑗−1) + 𝛾𝑞1 = 0

hence 𝛼 ∈ ker P. If 𝜈 ∈ 𝐻 then similarly

∑︁
𝑒∈𝑞

𝛼𝑒 = −𝛾𝑞𝑘−1 +
𝑘−1∑︁
𝑗=1

(𝛾𝑞𝑗
− 𝛾𝑞𝑗−1) = 𝛾𝑞0 = 𝛾𝜇

hence (S𝛼)𝜇 = 𝛾𝜇. This shows that (S𝛼) = 𝛾.

Proof of Proposition A.2.2

Proposition A.2.2. Consider 𝜃 = (𝑤, 𝑏) ∈ R𝐸 × R𝐻 a parameterization and define

𝑉𝜃 , Supp𝑤×S−1(Supp𝑏) ⊂ R𝐸 × ker P ⊂ R𝐸 × R𝐸.

For any (𝛼, 𝛽) ∈ 𝑉𝜃, we write 𝛾 = (𝛼,S𝛽) ∈ Supp𝑤× Supp𝑏 = Supp𝜃 and

𝜙𝜃 (𝛼, 𝛽) , 𝜃 ⊙ 𝑒𝛾 = (𝑤 ⊙ exp(𝛼), 𝑏⊙ exp(S𝛽))

where ⊙ denotes pointwise multiplication. Then,

1. The function 𝜙𝜃 : 𝑉𝜃 → Sign𝜃 is a 𝒞∞-diffeomorphism.
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2. For 𝜃′ ∈ Sign𝜃 we have 𝜙−1
𝜃 (𝜃′) = (𝛼, 𝛽) ∈ 𝑉𝜃 where for any edge 𝑒 ∈ 𝐸 and

hidden neuron 𝜈 ∈ 𝐻

𝛼𝑒 ,

⎧⎪⎨⎪⎩
log

(︁
𝑤′

𝑒

𝑤𝑒

)︁
if 𝑤𝑒 ̸= 0

0 if 𝑤𝑒 = 0.
(S𝛽)𝜈 ,

⎧⎪⎨⎪⎩
log

(︁
𝑏′

𝜈

𝑏𝜈

)︁
if 𝑏𝜈 ̸= 0

0 if 𝑏𝜈 = 0.
(A.91)

Proof. Since sign(𝜙𝜃(𝛼, 𝛽)) = sign(𝜃) for any (𝛼, 𝛽), we have 𝜙𝜃(𝛼, 𝛽) ∈ Sign𝜃. Let us
show that 𝜙𝜃 is both surjective and injective with the given expression of 𝜙−1

𝜃 . The
fact that 𝜙𝜃 and 𝜙−1

𝜃 are 𝒞∞ is clear from their expressions.

𝜙𝜃 is injective. Consider (𝛼, 𝛽), (�̃�, 𝛽) ∈ 𝑉𝜃 and assume that 𝜙𝜃(𝛼, 𝛽) = 𝜙𝜃(�̃�, 𝛽).
Consider 𝑒 ∈ 𝐸. If 𝑤𝑒 = 0 then, since supp(𝛼) ⊂ supp(𝑤) and supp(�̃�) ⊂ supp(𝑤),

we get 𝛼𝑒 = �̃�𝑒 = 0; if 𝑤𝑒 ̸= 0 then 𝑤𝑒 exp (𝛼𝑒) = 𝜙𝜃(𝛼, 𝛽)𝑒 = 𝜙𝜃(�̃�, 𝛽)𝑒 = 𝑤𝑒 exp (�̃�𝑒)
implies 𝛼𝑒 = �̃�𝑒. Overall we obtain 𝛼 = �̃�.

Consider now 𝜈 ∈ 𝐻. As 𝛽, 𝛽 ∈ S−1(Supp𝑏), we have S𝛽,S𝛽 ∈ Supp𝑏. When
𝑏𝜈 = 0 this implies (S𝛽)𝜈 = 0 = (S𝛽)𝜈 ; when 𝑏𝜈 ̸= 0, as 𝑏𝜈 exp((S𝛽)𝜈) = 𝜙𝜃(𝛼, 𝛽)𝜈 =
𝜙𝜃(�̃�, 𝛽)𝜈 = 𝑏𝜈 exp((S𝛽)𝜈) we get (S𝛽)𝜈 = (S𝛽)𝜈 ; in both cases we obtain S𝛽 = S𝛽.
Since S is an isomorphism, we deduce that 𝛽 = 𝛽.

𝜙𝜃 is surjective. Let 𝜃′ = (𝑤′, 𝑏′) ∈ Sign𝜃. Let us show that Equations (A.91)
define (𝛼, 𝛽 = S−1(𝛾)) ∈ 𝑉𝜃 such that 𝜃′ = 𝜙𝜃(𝛼, 𝛽).

Since 𝜃′ ∈ Sign𝜃, 𝑤′
𝑒 and 𝑤𝑒 have the same sign for every edge 𝑒 ∈ 𝐸. In particular,

when 𝑤𝑒 ̸= 0 we get 𝑤′
𝑒/𝑤𝑒 > 0, hence 𝛼𝑒 is well defined, and 𝛼 ∈ Supp𝑤.

Similarly, 𝛾𝜈 is well-defined for every hidden neuron 𝜈 ∈ 𝐻, and 𝛾 ∈ Supp𝑏, hence
𝛽 = S−1𝛾 satisfies 𝛽 ∈ S−1(Supp𝑏). We observe that 𝜃′ = 𝜙𝜃(𝛼, 𝛽) to conclude.

Proof of Proposition 3.3.7

Proposition. Consider 𝜃 a parametrization and 𝐵𝜃 , {𝛾 ∈ Supp𝜃 | ‖𝛾‖2 ≤ 1}.
Then, for each 𝑥 ∈ 𝒳𝜃, there exists 𝜀 > 0 such that, for every (𝛾, 𝑡) ∈ 𝐵𝜃×] − 𝜀, 𝜀[,
the following result holds:

𝑅𝜃(𝜃 ⊙ 𝑒𝛾𝑡, 𝑥) =
∑︁
𝑝∈𝒫

𝑥𝑝0𝑣𝑝(𝜃)𝑒𝑡P(𝛼)𝑝𝑎𝑝(𝜃, 𝑥) +
∑︁
𝑞∈𝒬

𝑏𝑞0𝑣𝑞(𝜃)𝑒𝑡Q(𝛼−𝛽)𝑞𝑎𝑞(𝜃, 𝑥). (A.92)

Proof. The proof follows two steps.
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Neighborhood. Let 𝑥 ∈ 𝑋𝜃. Let us show that there exists a neighborhood Ω of
𝑡 = 0 such that, for every full or partial path 𝑞 ∈ 𝒫∪𝒬 and for every (𝛼, 𝛽, 𝑡) ∈ 𝐵𝜃×Ω,
we have 𝑎𝑞(𝜃 ⊙ 𝑒𝛾𝑡, 𝑥) = 𝑎𝑞(𝜃, 𝑥).

Let 𝑞 ∈ 𝒫 ∪ 𝒬 be a full path or partial path. First we show that there exists a
neighborhood Ω𝑞 of 𝑡 = 0 such that, for every (𝛼, 𝛽, 𝑡) ∈ 𝐵𝜃 × Ω𝑞, 𝑎𝑞(𝜃 ⊙ 𝑒𝛾𝑡, 𝑥) =
𝑎𝑞(𝜃, 𝑥). We define the following continuous function:

𝑓𝜃 : 𝑉𝜃 × R −→ R𝐸∪𝐻

(𝛼, 𝛽, 𝑡) ↦→ 𝜃 ⊙ 𝑒𝛾𝑡.

Denote, for any set 𝑍 ∈ R𝐸∪𝐻 , 𝑓−1
𝜃 (𝑍) = {(𝛼, 𝛽, 𝑡) ∈ 𝑉𝜃 × R | 𝑓𝜃(𝛼, 𝛽, 𝑡) ∈ 𝑍}. By

Proposition 3.3.2, there exists an open neighborhood4 𝑍 ⊂ R𝐸∪𝐻 of 𝜃 such that, for
all 𝜃′ ∈ 𝑍, 𝑎𝑞(𝜃′, 𝑥) = 𝑎𝑞(𝜃, 𝑥). Define

𝑈 , 𝑓−1
𝜃 (𝑍 ∩ Sign𝜃) ⊂ 𝑉𝜃 × R. (A.93)

Since 𝑓𝜃 is continuous and since 𝑍 is an open set in Sign𝜃, 𝑈 is an open set in
𝑉𝜃 × R. Moreover, 𝑈 is a neighborhood of (0, 0, 0) ∈ 𝑉𝜃 × R since 𝑓𝜃(0, 0, 0) = 𝜃 ∈
𝑍 ∩ Sign𝜃. Define 𝐵𝜃(𝜀) , {𝛾 ∈ Supp𝜃 | ‖𝛾‖2 ≤ 𝜀}. Hence, there exists 𝜀𝑞 > 0 and a
neighborhood ̃︀Ω𝑞 ⊂ R of 𝑡 = 0 such that

𝐵𝜃(𝜀𝑞)× ̃︀Ω𝑞 ⊂ 𝑈. (A.94)

We observe that, for any 𝜀 > 0, 𝑓(·, ·, 𝑡) = 𝑓(·/𝜀, ·/𝜀, 𝜀𝑡). Hence, defining the rescaled
neighborhood Ω𝑞 = 𝜀𝑞 ̃︀Ω𝑞, we have

𝑓𝜃(𝐵𝜃(1)× Ω𝑞) = 𝑓𝜃(𝐵𝜃(𝜀𝑞)× ̃︀Ω𝑞) ⊂ 𝑓𝜃(𝑈) = 𝑍 ∩ Sign𝜃 . (A.95)

Thus, for every (𝛼, 𝛽, 𝑡) ∈ 𝐵𝜃 × Ω𝑞, we have 𝜃 ⊙ 𝑒𝛾𝑡 ∈ 𝑍 ∩ Sign𝜃 and therefore
𝑎𝑞(𝜃 ⊙ 𝑒𝛾, 𝑥) = 𝑎𝑞(𝜃, 𝑥). We finally define Ω = ∩𝑞Ω𝑞. Since there are finitely many
partial paths, Ω is also a neighborhood of 𝑡 = 0.

Computation. Let 𝑥 ∈ 𝑋𝜃 and (𝛼, 𝛽, 𝑡) ∈ Ω. We note 𝜃′ = 𝜃 ⊙ 𝑒𝛾𝑡. For any path
or partial path 𝑞 ∈ 𝒫 ∪𝒬, the following holds:

∙ Using the first proof step, 𝑎𝑞(𝜃′, 𝑥) = 𝑎𝑞(𝜃, 𝑥).
4Recall that we restrict ourselves to a scalar output with no output biases, see Subsection 3.3.2.
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∙ The expression of 𝑣𝑞(𝜃′) yields 𝑣𝑞(𝜃′) = 𝑣𝑞(𝜃) exp(𝑡∑︀𝑒∈𝑞 𝛼𝑒).

∙ By definition of S (Proposition 3.3.6), the biases associated with the parame-
terization 𝜃′ are equal to 𝑏′

𝜈 = 𝑏𝜈 exp(𝑡S(𝛽)𝜈) for every hidden neuron 𝜈 ∈ 𝐻.

We explicitly compute 𝜃 ⊙ 𝑒𝛾𝑡 as follows. Using Proposition 3.3.1, we have

𝜃 ⊙ 𝑒𝛾𝑡 =
∑︁
𝑝∈𝒫

𝑥𝑝0𝑣𝑝(𝜃′)𝑎𝑝(𝜃′, 𝑥)
⏟  ⏞  

𝜌1(𝑡)

+
∑︁
𝑞∈𝒬

𝑏′
𝑞0𝑣𝑞(𝜃

′)𝑎𝑞(𝜃′, 𝑥)
⏟  ⏞  

𝜌2(𝑡)

.

Using the above observations and Definition 3.3.1, the first term writes

𝜌1(𝑡) =
∑︁
𝑝∈𝒫

𝑥𝑝0𝑣𝑝(𝜃) exp
⎛⎝𝑡∑︁

𝑒∈𝑝
𝛼𝑒

⎞⎠ 𝑎𝑝(𝜃, 𝑥)

=
∑︁
𝑝∈𝒫

𝑥𝑝0𝑣𝑝(𝜃) exp (𝑡(P𝛼)𝑝) 𝑎𝑝(𝜃, 𝑥).

Similarly, the second term writes

𝜌2(𝑡) =
∑︁
𝑞∈𝒬

𝑏𝑞0 exp (𝑡S(𝛽)𝑞0) 𝑣𝑞(𝜃) exp
⎛⎝𝑡∑︁

𝑒∈𝑞
𝛼𝑒

⎞⎠ 𝑎𝑞(𝜃, 𝑥).

In particular, as the definition of (S𝛽)𝑞0 is independent of the choice of the partial
path going from 𝑞0 to the output neuron (see Proposition 3.3.6), we have

𝜌2(𝑡) =
∑︁
𝑞∈𝒬

𝑏𝑞0 exp
⎛⎝−𝑡∑︁

𝑒∈𝑞
𝛽𝑒

⎞⎠ 𝑣𝑞(𝜃) exp
⎛⎝𝑡∑︁

𝑒∈𝑞
𝛼𝑒

⎞⎠ 𝑎𝑞(𝜃, 𝑥)

=
∑︁
𝑞∈𝒬

𝑏𝑞0 exp (−𝑡Q(𝛽)𝑞) 𝑣𝑞(𝜃) exp (𝑡Q(𝛼)𝑞) 𝑎𝑞(𝜃, 𝑥)

=
∑︁
𝑞∈𝒬

𝑏𝑞0𝑣𝑞(𝜃) exp (𝑡Q(𝛼− 𝛽)𝑞) 𝑎𝑞(𝜃, 𝑥).

A.2.3 Algebraic Characterization of Rescaling Equivalence

Proof of Proposition 3.3.8

Proposition. Sincomp𝜃 is compact and Sincomp𝜃 ⊂ Comp𝜃 for any admissible pa-
rameterization 𝜃.

Proof. We prove both results successively.
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Sincomp𝜃 ⊂ Comp𝜃. Assume that 𝛾 = (𝛼,S𝛽) ∈ Sincomp𝜃. We distinguish
between two cases.

∙ If 𝑏 = 0, then 𝛽 = 0 since (𝛼, 𝛽) ∈ 𝑉𝜃, hence 𝛽 ∈ Supp𝑏 = {0} and S𝛽 = 0. The
condition ‖𝛾‖2 = 1 therefore ensures that ‖(𝛼, 0)‖2 = 1 and 𝛼 ̸= 0. Together
with the condition 𝛼 ∈ (ker (P𝜃))⊥, this implies that 𝛼 /∈ ker (P𝜃).

∙ If 𝑏 ̸= 0, we use 𝛼 ∈ (ker (P𝜃))⊥ and distinguish again between two cases.

– If 𝛼 ̸= 0, we deduce that 𝛼 /∈ (ker (P𝜃)).

– If 𝛼 = 0, let us show that 𝛼− 𝛽 /∈ ker (Q𝜃). For the sake of contradiction,
we assume that 𝛼− 𝛽 = −𝛽 ∈ ker (Q𝜃), i.e. for all 𝑞 ∈ 𝒬,

𝑏𝑞0𝑣𝑞(𝜃)
∑︁
𝑒∈𝑞

𝛽𝑒 = 0 (A.96)

Recalling that 𝛽 ∈ S−1(Supp𝑏) ⊆ ker P and recalling Proposition 3.3.6, we
deduce that, for all 𝑞 ∈ 𝒬,

𝑏𝑞0𝑣𝑞(𝜃)(S𝛽)𝑞0 = 0. (A.97)

Let us show that (S𝛽)𝜈 = 0 for every hidden neuron 𝜈 ∈ 𝐻. If 𝑏𝜈 = 0, then
(S𝛽)𝜈 = 0 since S𝛽 ∈ Supp𝑏. If 𝑏𝜈 ̸= 0, since 𝜃 is admissible, there exists
a path segment 𝑞 going from 𝜈 to the output neuron such that 𝑣𝑞(𝜃) ̸= 0.
Thus, since 𝑏𝜈𝑣𝑞(𝜃)(S𝛽)𝜈 = 𝑏𝑞0𝑣𝑞(𝜃)(S𝛽)𝑞0 = 0, we obtain (S𝛽)𝜈 = 0 again.

To summarize, we have S𝛽 = 0. Since S is an isomorphism, we deduce that
𝛽 = 0. Since 𝛼 = 0, this contradicts the condition ‖𝛾‖2 = 1.

Sincomp𝜃 is compact. By definition, Sincomp𝜃 is a bounded subset of 𝑉𝜃. Let us
show that it is closed. Let 𝛾𝑛 = (𝛼𝑛,S𝛽𝑛) ∈ Sincomp𝜃 be a sequence that converges
to some 𝛾 = (𝛼,S𝛽) ∈ Supp𝜃. For all 𝑛 ∈ N, 𝛾𝑛 satisfies:

(2) 𝛼𝑛 ∈ (ker P𝜃)⊥.

(3) ‖𝛾𝑛‖2 = 1.

As the set (ker P𝜃)⊥ is a finite-dimensional linear space, it is closed. Similarly the
unit sphere of Supp𝜃 is a closed set, hence properties (1) and (2) are also satisfied for
𝛾, showing that 𝛾 ∈ Sincomp𝜃.
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Figure A-1: Left: Stem network architecture. Right: Sawtooth network architecture.
Hidden neurons are depicted as circles whereas input and output neurons as squares.

A.2.4 Illustrations on Particular Networks

We illustrate the main tools developed in Section 3.3 on two particular networks to
showcase their usefulness.

Stem Network

We introduce a particular architecture 𝐺 defined in Figure A-1 that we call the Stem
Network. We enumerate the connections as 𝐸 = (𝜇→ 𝜈, 𝜈 → 𝜂, 𝜂 → 𝜅), the only full
path as 𝒫 = (𝜇 → 𝜈 → 𝜂 → 𝜅) and the partial paths as 𝒬 = (𝜈 → 𝜂 → 𝜅, 𝜂 → 𝜅).
Using Definition 3.3.1, we compute P and Q as follows:

P =
(︁
1 1 1

)︁
and Q =

⎛⎝0 1 1
0 0 1

⎞⎠ . (A.98)

Thus both P and Q have full rank and

ker P = {𝛼 ∈ R𝐸 | 𝛼𝜇→𝜈 + 𝛼𝜈→𝜂 + 𝛼𝜂→𝜅 = 0}

ker Q = {𝛼 ∈ R𝐸 | 𝛼𝜈→𝜂 = 0 and 𝛼𝜂→𝜅 = 0}

(A.99)

(A.100)

We value 𝐺 with 𝜃 = (𝑤, 𝑏), where 𝑤 = (𝑤𝜇→𝜈 , 𝑤𝜈→𝜂, 𝑤𝜂→𝜅) and 𝑏 = (𝑏𝜈 , 𝑏𝜂). We
assume that 𝜃 is admissible (note that this implies that 𝑣𝑝(𝜃) ̸= 0 for the only path
𝑝). In this particular case, this is equivalent to 𝑤𝑒 ̸= 0 for all 𝑒 ∈ 𝐸. Let us assume
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further that 𝑏𝜈 ̸= 0 and 𝑏𝜂 ̸= 0. Then, using the Notations,

Supp𝑤 = {𝑤′ ∈ R𝐸 | supp(𝑤′) ⊆ supp(𝑤)} = R𝐸∖{0}. (A.101)

Similarly, Supp𝑏 = R𝐻∖{0}. Using Propositions 3.3.6 and A.2.2, we deduce that

𝑉𝜃 = Supp𝑤×S−1(Supp𝑏) = R𝐸∖{0} × ker P∖{0}. (A.102)

Then, 𝛾 ∈ Supp𝜃 writes 𝛾 = (𝛼,S𝛽) with (𝛼, 𝛽) ∈ 𝑉𝜃 and the updated version of 𝜃
writes 𝜃 ⊙ 𝑒𝛾 = (𝑤 ⊙ 𝑒𝛼, 𝑏⊙ 𝑒S𝛽) = (𝑤′, 𝑏′), where

𝑤′ = (𝑤𝜇→𝜈 exp(𝛼𝜇→𝜈), 𝑤𝜈→𝜂 exp(𝛼𝜈→𝜂), 𝑤𝜂→𝜅 exp(𝛼𝜂→𝜅))

𝑏′ = (𝑏𝜈 exp(−𝛽𝜈→𝜂 − 𝛽𝜂→𝜅), 𝑏𝜂 exp(−𝛽𝜂→𝜅))

(A.103)

(A.104)

To compute 𝑏′, we used the definition of S in Propositions 3.3.6. Let us now compute
the set of 𝜃-compatible perturbations using Definition 3.3.3. First, using Defini-
tion 3.3.2, remark that P = P𝜃 and Q = Q𝜃 since 𝑣𝑝(𝜃) ̸= 0 for for only full path
𝑝 ∈ 𝒫 and since 𝑏𝜈 ̸= 0 for all 𝜈 ∈ 𝐻. Then, 𝛾 is 𝜃-compatible if, and only if,

𝛼 ∈ ker (P𝜃) and 𝛼− 𝛽 ∈ ker (Q𝜃) . (A.105)

Using Equations A.99 and A.100, we deduce that 𝛾 is 𝜃-compatible if, and only if,

0 = 𝛼𝜇→𝜈 + 𝛼𝜈→𝜂 + 𝛼𝜂→𝜅

0 = 𝛼𝜈→𝜂 − 𝛽𝜈→𝜂

0 = 𝛼𝜂→𝜅 − 𝛽𝜂→𝜅

(A.106)

(A.107)

(A.108)

Hence, −𝛼𝜂→𝜅 = −𝛽𝜂→𝜅 and −𝛽𝜈→𝜂 − 𝛽𝜂→𝜅 = −𝛼𝜈→𝜂 − 𝛼𝜂→𝜅 = 𝛼𝜇→𝜈 . Recalling
that 𝛾 ∈ Supp𝜃 and using Equation (A.102), we also have 0 = 𝛽𝜇→𝜈 + 𝛽𝜈→𝜂 +
𝛽𝜂→𝜅, hence 𝛽𝜇→𝜈 = 0. Plugging these results into Equation (A.104), and re-stating
Equation (A.103) here for clarity, we express 𝜃′ only in terms of 𝛼 as follows:

𝑤′ = (𝑤𝜇→𝜈 exp(𝛼𝜇→𝜈), 𝑤𝜈→𝜂 exp(𝛼𝜈→𝜂), 𝑤𝜂→𝜅 exp(𝛼𝜂→𝜅))

𝑏′ = (𝑏𝜈 exp(𝛼𝜇→𝜈), 𝑏𝜂 exp(−𝛼𝜂→𝜅))

(A.109)

(A.110)
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We now verify that the path-wise rescaling equivalence Definition 2.2.4 is satisfied.
For the only path 𝑝, using Equation A.109,

𝑣𝑝(𝜃′) = 𝑤𝜇→𝜈 exp(𝛼𝜇→𝜈)𝑤𝜈→𝜂 exp(𝛼𝜈→𝜂)𝑤𝜂→𝜅 exp(𝛼𝜂→𝜅)

= 𝑤𝜇→𝜈𝑤𝜈→𝜂𝑤𝜂→𝜅 exp(𝛼𝜇→𝜈 + 𝛼𝜈→𝜂 + 𝛼𝜂→𝜅)

= 𝑣𝑝(𝜃) exp(0)

= 𝑣𝑝(𝜃)

(A.111)

(A.112)

(A.113)

(A.114)

where we used Equation (A.99). Similarly, we have 𝑏𝑞0𝑣𝑞(𝜃) = 𝑏′
𝑞0𝑣𝑞(𝜃

′) for both
partial paths 𝑞 ∈ 𝒬. Let us now give an interpretation of the parameter 𝛼. Recalling
Definition 2.2.3, let us denote

𝜆 = exp(S𝛼) ∈ R𝐻 . (A.115)

We deduce that 𝜆𝜈 = exp(−𝛼𝜈→𝜂 − 𝛼𝜂→𝜅) = exp(𝛼𝜇→𝜈) and 𝜆𝜂 = exp(−𝛼𝜂→𝜅).
Then, we recover the neuron-wise rescaling equivalence. Indeed, 𝑤𝜇→𝜈 and 𝑏𝜈 are
multiplied by 𝜆𝜈 , 𝑤𝜈→𝜂 is multiplied by 𝜆𝜂/𝜆𝜈 = exp(−𝛼𝜂→𝜅−𝛼𝜇→𝜈) = exp(𝛼𝜈→𝜂), 𝑏𝜂
is multiplied by 𝜆𝜂 and 𝑤𝜂→𝜅 is multiplied by 1/𝜆𝜂 = exp(𝛼𝜂→𝜅). Thus, this examples
shows the duality between the weights and the biases to define rescaling-compatible
perturbations, where the bridge between both spaces is implemented by S. We also
use this technique to prove the Trajectory =⇒ Layer result Appendix A.1.1.

Sawtooth Network

We introduce an architecture 𝐺 in Figure A-1 called the Sawtooth Network5. We
enumerate the connections6 as 𝐸 = (𝜇→ 𝜈1, 𝜇→ 𝜈2, 𝜈1 → 𝜂, 𝜈2 → 𝜂, 𝜂 → 𝜅), the
full paths as 𝒫 = (𝜇 → 𝜈1 → 𝜂 → 𝜅, 𝜇 → 𝜈2 → 𝜂 → 𝜅) and the partial paths as
𝒬 = (𝜈1 → 𝜂 → 𝜅, 𝜈2 → 𝜂 → 𝜅, 𝜂 → 𝜅). Unlike with the previous example, we will
not display all the calculations for the sake of concision. We compute

P =
⎛⎝1 0 1 0 1

0 1 0 1 1

⎞⎠ and Q =

⎛⎜⎜⎜⎝
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

⎞⎟⎟⎟⎠ (A.116)

5When valued with a particular parameterization 𝜃, this network is able to represent a triangular
function R→ R, hence the name.

6In the BFS order.
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Thus both P and Q have full rank and

ker P = {𝛼 ∈ R𝐸 | 𝛼𝜇→𝜈1 + 𝛼𝜈1→𝜂 + 𝛼𝜂→𝜅 = 0 and 𝛼𝜇→𝜈2 + 𝛼𝜈2→𝜂 + 𝛼𝜂→𝜅 = 0}.

We value 𝐺 with 𝜃 = (𝑤, 𝑏). We assume that 𝜃 is admissible (note that this implies
that 𝑣𝑝(𝜃) ̸= 0 for both full paths). In this particular case, this is equivalent to 𝑤𝑒 ̸= 0
for all 𝑒 ∈ 𝐸. Let us assume further that 𝑏𝜈1 = 𝑏𝜈2 = 𝑏𝜂 = 0. Then,

Supp𝑤 = {𝑤′ ∈ R𝐸 | supp(𝑤′) ⊆ supp(𝑤)} = R𝐸∖{0}. (A.117)

Similarly, Supp𝑏 = {0}. Using Propositions 3.3.6 and A.2.2, we deduce that

𝑉𝜃 = Supp𝑤×S−1(Supp𝑏) =
(︁
R𝐸∖{0}

)︁
× {0}. (A.118)

Then, 𝛾 ∈ Supp𝜃 writes 𝛾 = (𝛼,S𝛽) with (𝛼, 𝛽) ∈ 𝑉𝜃, hence 𝛾 = (𝛼, 0) using
Equation A.118. The perturbed version of 𝜃 writes

𝜃 ⊙ 𝑒𝛾 = 𝜃 ⊙ 𝑒𝛾 = (𝑤 ⊙ 𝑒𝛼, 𝑏⊙ 𝑒0) = (𝑤 ⊙ 𝑒𝛼, 𝑏). (A.119)

Let us now compute the set of 𝜃-compatible perturbations using Definition 3.3.3.
First, using Definition 3.3.2, remark that P = P𝜃 since 𝑣𝑝(𝜃) ̸= 0 for for both full
paths. Then, using Definition 3.3.3, 𝛾 is 𝜃-compatible if, and only if, 𝛼 ∈ ker (P𝜃) .
This allows to verify that the path-wise rescaling equivalence Definition 2.2.4 is
satisfied as in the previous example. Using the description of ker P, for the path
𝑝1 = 𝜇 → 𝜈1 → 𝜂 → 𝜅, we have 𝑣𝑝1(𝜃) = 𝑣𝑝1(𝜃′) and similarly for the other path
𝑝2 = 𝜇 → 𝜈2 → 𝜂 → 𝜅. As in the previous example, let us give an interpretation of
the parameter 𝛼. Recalling Definition 2.2.3, let us denote

𝜆 = exp(S𝛼) ∈ R𝐻 . (A.120)

We deduce as in the previous example: 𝜆𝜈1 = exp(𝛼𝜇→𝜈1), 𝜆𝜈2 = exp(𝛼𝜇→𝜈2) and
𝜆𝜂 = exp(−𝛼𝜂→𝜅). Then, we recover the neuron-wise rescaling equivalence.
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A.3 Locally Identifiable Parameterizations

A.3.1 Definition of Locally Identifiable Parameterizations

Proof of Proposition 3.4.2

Proposition. Consider 𝜃 = (𝑤, 𝑏) an admissible parameterization. The following
properties are equivalent:

1. 𝜃 is restricted locally non-identifiable.

2. for all 𝜀 > 0, there exists 𝜏 ∈ ]0, 𝜀[ and 𝛾 ∈ Sincomp𝜃 such that 𝑅𝜃⊙𝑒𝛾𝜏 = 𝑅𝜃.

Proof. First we show 2 ⇒ 1. Let Ω be a neighborhood of 𝜃. Considering an arbitrary
𝜀 > 0, property 2 implies the existence of 𝜏 ∈ ]0, 𝜀[ and 𝛾 = (𝛼,S𝛽) ∈ Sincomp𝜃 such
that 𝑅𝜃′ = 𝑅𝜃 with 𝜃′ , 𝜙𝜃(𝜏𝛼, 𝜏𝛽) where 𝜙𝜃 is defined in Proposition A.2.2. Since 𝜃
is admissible, we can use the first point of Proposition 3.3.8 to deduce that 𝛾 ∈ Comp𝜃,
hence 𝜏𝛾 ∈ Comp𝜃. By the first point of Remark 3.3.2, it follows that 𝜃′ ̸∼𝑆 𝜃. Since
𝜃′ ∈ Sign𝜃, and since 𝜃′ ∈ Ω for 𝜀 small enough, we obtain that 𝜃 is restricted locally
non-identifiable.

We now show 1 ⇒ 2. Let 𝜃 be restricted locally non-identifiable, and consider
an arbitrary 𝜀 > 0. Since the set 𝐵(𝜀) , {(𝛼, 𝛽) ∈ 𝑉𝜃, ‖(𝛼, 𝛽)‖2 < 𝜀} is open in the
linear space 𝑉𝜃 and since the function 𝑓 , 𝜙−1

𝜃 : Sign𝜃 → 𝑉𝜃 from Proposition A.2.2
is continuous, the set 𝜙𝜃(𝐵(𝜀)) = 𝑓−1(𝐵(𝜀)) ⊂ Sign𝜃 is open in Sign𝜃, hence there
exists an open set Ω𝜀 ⊂ R𝐸∪𝐻 such that Ω𝜀 ∩ Sign𝜃 = 𝜙𝜃(𝐵(𝜀)). As 𝜃 ∈ Ω𝜀, Ω𝜀

is a neighborhood of 𝜃. Since 𝜃 is restricted locally non-identifiable, there exists
𝜃′ ∈ Ω𝜀 ∩ Sign𝜃 such that 𝑅𝜃′ = 𝑅𝜃 and 𝜃′ ̸∼𝑆 𝜃. Denote (𝛼, 𝛽) , 𝜙−1

𝜃 (𝜃′). By
construction of Ω𝜀, (𝛼, 𝛽) ∈ 𝑉𝜃 satisfies 𝜃′ = 𝜙𝜃(𝛼, 𝛽) and

‖(𝛼, 𝛽)‖2 < 𝜀 (A.121)

Since 𝜃′ ∈ Sign𝜃 and 𝜃′ ̸∼𝑆 𝜃, by the first point of Proposition 3.3.2 (remember that
𝜃 is admissible) we obtain that 𝛾 = (𝛼,S𝛽) ∈ Comp𝜃.

Moreover, 𝑅𝜃 = 𝑅𝜃′ . We now massage 𝛾 to get a strongly non 𝜃-rescaling-
compatible 𝛾 = (�̃�,S𝛽) and 𝜏 ∈]0, 𝜀[ such that 𝑅𝜃⊙𝑒𝛾𝜏 = 𝑅𝜃 as claimed.
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Step 1: projection. We write (𝛼, 𝛽) = (𝛼⊥, 𝛽⊥) + (𝛼‖, 𝛽‖) where (𝛼⊥, 𝛽⊥) ∈ 𝑉𝜃 is
non 𝜃-rescaling-compatible, 𝛼⊥ ∈ (ker (P𝜃))⊥, and

𝑅𝜙𝜃(𝛼⊥,𝛽⊥) = 𝑅𝜙𝜃(𝛼,𝛽) = 𝑅𝜃. (A.122)

First, decompose 𝛼 ∈ Supp𝑤 ⊂ R𝐸 as

𝛼 = 𝛼⊥ + 𝛼‖, where

⎧⎪⎨⎪⎩𝛼
⊥ ∈ (ker (P𝜃))⊥

𝛼‖ ∈ ker (P𝜃)

We next construct 𝛽‖ as follows. We now extend the definition of S : : ker P → R𝐻

to T : ker P𝜃 → R𝐻 (see Proposition 3.3.6) and similarly prove that T is well-defined
(but T is not an isomorphism). Next, we define 𝛿 = T(𝛼‖) ∈ R𝐻 . Next, define

̃︀𝛿𝜈 ,
⎧⎨⎩𝛿𝜈 if 𝑏𝜈 ̸= 0

0 if 𝑏𝜈 = 0
(A.123)

Finally, define 𝛽‖ , S−1(̃︀𝛿) ∈ ker P and 𝛽⊥ , 𝛽−𝛽‖. We now show that (𝛼⊥, 𝛽⊥) ∈ 𝑉𝜃
is non 𝜃-rescaling-compatible.

∙ Let us show that 𝛼‖, 𝛼⊥ ∈ Supp𝑤. First, by definition,

𝛼⊥ ∈ (ker (P𝜃))⊥ = Im
(︁
P𝑇𝐷𝒫(𝜃)

)︁
,

where 𝐷𝒫(𝜃) is a diagonal matrix such that 𝐷𝒫(𝜃)𝑝,𝑝 = 1(𝑣𝑝(𝜃) ̸= 0) Given
𝑒 ∈ 𝐸 such that 𝑤𝑒 = 0, we show that 𝛼⊥

𝑒 = 0. It suffices to show that for every
path 𝑝 ∈ 𝒫 ,

(︁
P𝑇𝐷𝒫(𝜃)

)︁
𝑒,𝑝

= 0. This is achieved by treating two cases:

– for 𝑝 such that 𝑒 /∈ 𝑝, we have
(︁
P𝑇

)︁
𝑒,𝑝

= (P)𝑝,𝑒 = 1(𝑒 ∈ 𝑝) = 0;

– for 𝑝 such that 𝑒 ∈ 𝑝, since 𝑤𝑒 = 0, 𝐷𝒫(𝜃)𝑝,𝑝 = 1(𝑣𝑝(𝜃) ̸= 0) = 0.

Both cases yield

(︁
P𝑇𝐷𝒫(𝜃)

)︁
𝑒,𝑝

=
(︁
P𝑇

)︁
𝑒,𝑝

(𝐷𝒫(𝜃))𝑝,𝑝 = 0, (A.124)

hence 𝛼⊥
𝑒 = 0. This shows that 𝛼⊥ ∈ Supp𝑤. As 𝛼 ∈ Supp𝑤, it follows that

𝛼‖ = 𝛼− 𝛼⊥ ∈ Supp𝑤.
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∙ Let us show that 𝛽‖, 𝛽⊥ ∈ S−1(Supp𝑏). Using Equation (A.123), we deduce
that ̃︀𝛿 ∈ Supp𝑏. Hence, 𝛽‖ ∈ S−1(Supp𝑏). Since 𝛽 ∈ S−1(Supp𝑏), we also have
𝛽⊥ = 𝛽 − 𝛽‖ ∈ S−1(Supp𝑏).

∙ Let us show that 𝑤‖ − 𝛽‖ ∈ ker (Q𝜃). It suffices to show that, for every partial
path 𝑞 ∈ 𝒬,

𝑏𝑞0𝑣𝑞(𝜃)
∑︁
𝑒∈𝑞

(𝛼‖
𝑒 − 𝛽‖

𝑒 ) = 0 (A.125)

We only need to show (A.125) for any partial path 𝑞 such that 𝑏𝑞0 ̸= 0 and
𝑣𝑞(𝜃) ̸= 0. Let 𝑞 be such a partial path. Then,

∑︁
𝑒∈𝑞

𝛼‖
𝑒 = −T(𝛼‖)𝑞0 = −𝛿𝑞0 (A.126)

and ∑︁
𝑒∈𝑞

𝛽‖
𝑒 = −S(𝛽‖)𝑞0 = −̃︀𝛿𝑞0 (A.127)

We conclude using the fact that 𝛿𝑞0 = ̃︀𝛿𝑞0 .

As 𝛼‖ ∈ ker P𝜃 and 𝛼‖ − 𝛽‖ ∈ ker Q𝜃, we get that (𝛼‖, 𝛽‖) is 𝜃-rescaling compatible.
Since (𝛼, 𝛽) = (𝛼⊥, 𝛽⊥) + (𝛼‖, 𝛽‖) is non 𝜃-rescaling compatible, this implies that
(𝛼⊥, 𝛽⊥) is non 𝜃-rescaling compatible as claimed. Using the above remarks, let us
finally show that

𝑅𝜙𝜃(𝛼,𝛽) = 𝑅𝜙𝜃(𝛼⊥,𝛽⊥) (A.128)

Define 𝜃0 = 𝜙𝜃(𝛼⊥, 𝛽⊥). Let us show that (𝛼‖, 𝛽‖) is 𝜃0-rescaling-compatible. Since
(𝛼‖, 𝛽‖) is 𝜃-rescaling-compatible, if suffices to show that𝐷𝒫(𝜃) = 𝐷𝒫(𝜃0) and𝐷𝒬(𝜃) =
𝐷𝒬(𝜃0). This is indeed a trivial consequence of the fact that sign(𝜃) = sign(𝜃0), hence
(𝛼‖, 𝛽‖) is 𝜃0-rescaling-compatible. Next, using Proposition 3.3.2, we deduce that

𝑅𝜙𝜃0 (𝛼‖,𝛽‖) = 𝑅𝜃0 (A.129)

We conclude by using the fact that 𝜙𝜃0(𝛼‖, 𝛽‖) = 𝜙𝜃(𝛼, 𝛽).

Step 2: normalization. Set 𝜏 , ‖(𝛼⊥, 𝛽⊥)‖2. As (𝛼⊥, 𝛽⊥) is non 𝜃-rescaling-
compatible, it is nonzero hence 𝜏 > 0. We can thus define

̃︀𝛼 = 1
𝜏
𝛼⊥ ̃︀𝛽 = 1

𝜏
𝛽⊥ (A.130)
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so that ‖(̃︀𝛼, ̃︀𝛽)‖2 = 1. Since 𝛼⊥ ∈ (ker P𝜃)⊥, we have ̃︀𝛼 ∈ (ker P𝜃)⊥, showing that
(̃︀𝛼, ̃︀𝛽) is strongly non 𝜃-rescaling-compatible. In summary, there exists 𝜏 > 0 and a
joint perturbation direction (̃︀𝛼, ̃︀𝛽) ∈ 𝑉𝜃 that is strongly non 𝜃-rescaling-compatible
such that

𝑅
𝜙𝜃(̃︀𝛼,̃︀𝛽,𝜏) = 𝑅𝜙𝜃(𝛼⊥,𝛽⊥) = 𝑅𝜙𝜃(𝛼,𝛽) = 𝑅𝜃′ = 𝑅𝜃.

To conclude, we show that 𝜏 can be chosen arbitrarily small. By the definition of 𝛼⊥

as an orthogonal projection onto (ker P𝜃)⊥, we have ‖𝛼⊥‖2 ≤ ‖𝛼‖2. Moreover, let us
denote ‖𝑓‖ = ‖𝑓‖2,2 the operator norm of any linear map 𝑓 : 𝐸 → 𝐹 , defined as

‖𝑓‖ = sup
𝑥∈𝐸
�̸�=0

‖𝑓(𝑥)‖2

‖𝑥‖2
. (A.131)

Recalling that: 𝛽‖ = S−1(̃︀𝛿), ‖̃︀𝛿‖2 ≤ ‖𝛿‖2 and 𝛿 = T(𝛼‖), we get

‖𝛽‖‖2 ≤ ‖S−1‖‖̃︀𝛿‖2 ≤ ‖S−1‖‖𝛿‖2 ≤ ‖S−1‖‖T‖‖𝛼‖‖2. (A.132)

Next, since 𝛽⊥ = 𝛽 − 𝛽‖,

‖𝛽⊥‖2 ≤ ‖𝛽‖2 + ‖𝛽‖‖2 ≤ ‖𝛽‖2 + ‖S−1‖‖T‖‖𝛼‖‖2 (A.133)

Recalling that ‖(𝛼, 𝛽)‖2 ≤ 𝜀 with Equation (A.121), we deduce that ‖𝛼‖2 ≤ 𝜀 and
‖𝛽‖2 ≤ 𝜀. Thus,

‖𝛽⊥‖2 ≤ 𝜀(1 + ‖S−1‖‖T‖). (A.134)

Combining the above estimates, we get that 𝜏 ≤ 𝜀(2 + ‖S−1‖‖T‖) can be chosen
arbitrarily small by properly choosing 𝜀.

A.3.2 Sufficient Condition for Restricted Local Identifiability

Proof of Proposition 3.4.3

Proposition. Let 𝜃 = (𝑤, 𝑏) be an admissible, restricted locally non-identifiable pa-
rameterization. Then, there exists 𝛾 ∈ Sincomp𝜃 such that, for all 𝑥 ∈ 𝒳𝜃,

⟨∇𝜃𝑅𝜃(𝑥), 𝜃 ⊙ 𝛾⟩ = 0. (A.135)

Proof. Let 𝑛 ∈ N. Since 𝜃 is restricted locally non-identifiable parameterization,
by Proposition 3.4.2 with 𝜀 = 1/(𝑛 + 1), there exists 𝜏𝑛 ∈ ]0, 1/(𝑛+ 1)[ and 𝛾𝑛 =
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(𝛼𝑛,S𝛽𝑛) ∈ Sincomp𝜃 such that

𝑅𝜃⊙𝑒𝛾𝑛𝜏𝑛 = 𝑅𝜃. (A.136)

By Proposition 3.3.8, Sincomp𝜃 is compact, hence there exists a subsequence of 𝛾𝑛 that
converges to 𝛾 = (𝛼,S𝛽). Without loss of generality and to make notations lighter,
we assume that the sequence 𝛾𝑛 converges. Thus, lim𝑛→∞ 𝛼𝑛 = 𝛼, lim𝑛→∞ 𝛽𝑛 = 𝛽

and lim𝑛→∞ 𝜏𝑛 = 0.

Denote 𝜌𝛾,𝑥(𝑡) = 𝑅𝜃⊙𝑒𝛾𝑡(𝑥) and consider 𝑥 ∈ 𝒳𝜃. By Proposition 3.3.7, there is a
neighborhood Ω of 𝑡 = 0 such that, for each 𝑡 ∈ Ω and each 𝑛 ∈ N,

𝜌𝛾𝑛,𝑥(𝑡) =
∑︁
𝑝∈𝒫

𝑥𝑝0𝑣𝑝(𝜃)𝑒𝑡(P𝛼𝑛)𝑝𝑎𝑝(𝜃, 𝑥)
⏟  ⏞  

𝜌1,𝑛(𝑡)

+
∑︁
𝑞∈𝒬

𝑏𝑞0𝑣𝑞(𝜃)𝑒𝑡(Q(𝛼𝑛−𝛽𝑛))𝑞𝑎𝑞(𝜃, 𝑥)
⏟  ⏞  

𝜌2,𝑛(𝑡)

(A.137)

where we used that (𝛼𝑛, 𝛽𝑛) ∈ 𝐵𝜃 since 𝛾𝑛 ∈ Sincomp𝜃. In particular, we obtain that
for every 𝑛 ∈ N, 𝑡 ↦→ 𝜌𝛾𝑛,𝑥(𝑡) is 𝒞∞ in Ω.

Consider 𝑛 large enough such that 𝜏𝑛 ∈ Ω. Taylor-Lagrange’s formula yields
𝜉𝑛 ∈ ]0, 𝜏𝑛[ ⊂ Ω such that

𝜌𝛾𝑛,𝑥(𝜏𝑛) = 𝜌𝛾𝑛,𝑥(0) + 𝜏𝑛𝜌
′
𝛾𝑛,𝑥(0) + 𝜏 2

𝑛

2 𝜌
′′
𝛾𝑛,𝑥(𝜉𝑛). (A.138)

Let us show that there exists 𝐶 ≥ 0 such that, for all 𝑛 large enough,

|𝜌′′
𝛾𝑛,𝑥(𝜉𝑛)| ≤ 𝐶. (A.139)

Differentiating 𝜌1,𝑛 twice with respect to 𝑡 and evaluating at 𝜉𝑛 ∈ Ω yields

𝜌
′′

1,𝑛(𝜉𝑛) =
∑︁
𝑝∈𝒫

𝑥𝑝0𝑣𝑝(𝜃) ((P𝛼𝑛)𝑝)2 𝑒𝜉𝑛(P𝛼𝑛)𝑝𝑎𝑝(𝜃, 𝑥) (A.140)

We denote ‖P‖ = ‖P‖2,2 the spectral norm of P and similarly for Q. Recalling that
||𝛾𝑛‖2 = 1, we have ‖𝛼𝑛‖2 ≤ 1. Then, for every path 𝑝 ∈ 𝒫 ,

|(P𝛼𝑛)𝑝| ≤ ‖P𝛼𝑛‖2 ≤ ‖P‖‖𝛼𝑛‖2 ≤ ‖P‖. (A.141)
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Moreover, since 0 < 𝜉𝑛 < 𝜏𝑛 ≤ 1, we use Equation (A.141) to deduce

𝑒𝜉𝑛(P𝛼𝑛)𝑝 ≤ 𝑒|𝜉𝑛(P𝛼𝑛)𝑝| ≤ 𝑒|(P𝛼𝑛)𝑝| ≤ 𝑒‖P‖. (A.142)

Thus, 𝜌′′
1,𝑛(𝜉𝑛) is bounded from above by a term that is independent of 𝑛, namely

⃒⃒⃒
𝜌

′′

1,𝑛(𝜉𝑛)
⃒⃒⃒
≤ ‖P‖2𝑒‖P‖ ∑︁

𝑝∈𝒫
|𝑥𝑝0𝑣𝑝(𝜃)𝑎𝑝(𝜃, 𝑥)| . (A.143)

Similarly, we show that, for 𝑛 large enough,

⃒⃒⃒
𝜌

′′

2,𝑛(𝜉𝑛)
⃒⃒⃒
≤ ‖Q‖2𝑒2‖Q‖ ∑︁

𝑞∈𝒬
|𝑏𝑞0𝑣𝑞(𝜃)𝑎𝑞(𝜃, 𝑥)| . (A.144)

Summing the right hand sides of (A.143)-(A.144) yields 𝐶 ≥ 0 (independent of 𝑛)
such that (A.139) holds for 𝑛 large enough. Since

𝜌𝛾𝑛,𝑥(𝜏𝑛) = 𝑅𝐺 (𝜃 ⊙ 𝑒𝛾𝑛𝜏𝑛)) (A.136)= 𝑅𝐺(𝜃) = 𝜌𝛾𝑛,𝑥(0),

we use Equation (A.138) to obtain

0 = 𝜏𝑛𝜌
′
𝛾𝑛,𝑥(0) + 𝜏 2

𝑛

2 𝜌
′′

𝛾𝑛,𝑥(𝜉𝑛),

hence, since 𝜏𝑛 ̸= 0,
𝜌′
𝛾𝑛,𝑥(0) = −𝜏𝑛2 𝜌

′′

𝛾𝑛,𝑥(𝜉𝑛).

Using Equation (A.139), we deduce that, for 𝑛 large enough,

⃒⃒⃒
𝜌

′

𝛾𝑛,𝑥(0)
⃒⃒⃒
≤ 𝜏𝑛

𝐶

2 . (A.145)

Hence 𝜌′
𝛾𝑛,𝑥(0)→𝑛→∞ 0. Since lim𝑛→∞ 𝜌

′
𝛾𝑛,𝑥(0) = 𝜌

′
𝛾,𝑥(0), we deduce 𝜌′

𝛾,𝑥(0) = 0.

Finally, differentiating the function 𝑡 ↦→ 𝜌𝛾,𝑥(𝑡) and evaluating in 𝑡 = 0 yields:

𝜌′
𝛾,𝑥(0) = ⟨∇𝜃𝑅𝜃(𝑥), 𝜃 ⊙ 𝛾⟩ (A.146)

which concludes the proof.
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Proof of Proposition 3.4.4

Proposition. Let 𝐺 be a one hidden layer architecture with scalar output valued with
an admissible parameterization 𝜃 = (𝑤, 𝑏) such that 𝑏 = 0 (no biases). We assume
that 𝜃 is restricted locally non-identifiable. Then there exists at least two twin hidden
neurons as defined in 3.2.2.

Proof. Using Proposition 3.4.3, there exists 𝛾 = (𝛼,S𝛽) ∈ Sincomp𝜃 such that, for
all 𝑥 ∈ 𝒳𝜃, ⟨∇𝜃𝑅𝜃(𝑥), 𝜃 ⊙ 𝛾⟩ = 0. Since (𝛼, 𝛽) ∈ 𝑉𝜃 = Supp𝑤×S−1(Supp𝑏) (see
Equation (A.102)) and since 𝑏 = 0, we have S−1(Supp𝑏) = {0} and 𝛽 = 0. Then,
using Equation (A.146), notice that

⟨∇𝜃𝑅𝜃(𝑥), 𝜃 ⊙ 𝛾⟩ = 𝜌′
𝛾,𝑥(0) (A.147)

where 𝜌𝛾,𝑥 is defined in the proof of Proposition 3.4.3. Then, using Proposition 3.3.7,

0 = ⟨∇𝜃𝑅𝜃(𝑥), 𝜃 ⊙ 𝛾⟩

=
∑︁
𝑝∈𝒫

𝑥𝑝0𝑣𝑝(𝜃)P𝜃(𝛼)𝑝𝑎𝑝(𝜃, 𝑥).

(A.148)

(A.149)

Recalling that 𝛾 ∈ Sincomp𝜃 (Definition 3.3.5), we have 𝛼 ∈ ker (P𝜃)⊥ and ‖𝛾‖2 = 1.
In particular, 𝛾 = (𝛼, 0) ̸= 0, hence 𝛼 ̸= 0 and P𝜃(𝛼) ̸= 0. Moreover, since 𝜃 is
admissible, we have 𝑣𝑝(𝜃) ̸= 0 for all full path 𝑝. Hence, the vector 𝛿 ∈ R𝒫 such that
𝛿𝑝 = P𝜃(𝛼)𝑝𝑣𝑝(𝜃) is non-zero. Next, for all 𝜇 ∈ 𝑁0, deriving Equation (A.148) with
respect to 𝑥𝜇, we get, for all 𝑥 ∈ 𝒳𝜃,

∑︁
𝑝∈𝒫
𝑝0=𝜇

𝛿𝑝𝑎𝑝(𝜃, 𝑥) = 0 (A.150)

Let 𝑝 ∈ 𝒫 be a full path. Since 𝑝 is given by three neurons 𝜇, 𝜈 ∈ 𝑁0 × 𝑁1 and
since the output is scalar (output neuron 𝜂), we can write 𝑝 = 𝜇 → 𝜈 → 𝜂 with
𝜇, 𝜈 ∈ 𝑁0 × 𝑁1 and by definition, 𝑎𝑝(𝜃, 𝑥) = 𝑎𝜈(𝜃, 𝑥) since there is only one hidden
layer. Finally, we can label 𝛿𝑝 as 𝛿𝜇→𝜈 . Hence, we re-write (A.150) as

∑︁
𝜈∈𝑁1

𝛿𝜇→𝜈𝑎𝜈(𝜃, 𝑥) = 0 (A.151)

Let 𝜇 ∈ 𝑁0 such that the vector (𝛿𝜇→𝜈)𝜈∈𝑁1 is non-zero (possible since 𝛿 is non-zero).
Hence, the functions 𝑥 ↦→ 𝑎𝜈(𝜃, 𝑥) = 𝜎(⟨𝑤∙→𝜈 , 𝑥⟩+𝑏𝜈), 𝜈 ∈ 𝑁1 are linearly dependent.
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Hence, at least two separating hyperplanes Γ𝜈1 and Γ𝜈2 are the same, hence there are
at least two twin neurons.

A.3.3 Sufficient Condition for Local Identifiability

Proof of Proposition 3.4.5

Proposition. Let 𝜃 be a parameterization. There exists a neighborhood Ω𝜃 of 𝜃 and
a finite set of points 𝒵𝜃 ⊂ 𝒳𝜃 that satisfy the following properties:

∙ The following equality holds

Span
𝑧∈𝒵𝜃

(𝑐(𝜃, 𝑧)) = Span
𝑥∈𝒳𝜃

(𝑐(𝜃, 𝑥)). (A.152)

∙ For all 𝜃′ ∈ Ω𝜃 and for all 𝑧 ∈ 𝒵𝜃, 𝑐(𝜃′, 𝑧) = 𝑐(𝜃, 𝑧).

Proof. First, Span𝑧∈𝒳𝜃
(𝑐(𝜃, 𝑧)) is a vector space of finite dimension, hence it is gen-

erated by a finite set of points 𝒵𝜃 = (𝑧1, . . . , 𝑧𝑟). Moreover, since 𝑍𝜃 ⊂ 𝑋𝜃 and since
𝑋𝜃 is finite, using Proposition 3.3.2, there exists a neighborhood Ω𝜃 of 𝜃 such that
𝑐(𝜃′, 𝑧) = 𝑐(𝜃, 𝑧).

Proof of Proposition 3.4.6

Proposition. Let 𝜃 be a parameterization, and Ω𝜃, 𝒵𝜃 given as in Proposition 3.4.5.
Denote by 𝒞𝜃 the vector space

𝒞𝜃 = Span
𝑥∈𝒳𝜃

(𝑐(𝜃, 𝑥)). (A.153)

Then, for any 𝜃′ ∈ Ω𝜃, if 𝑅𝜃 = 𝑅𝜃′, then 𝑢(𝜃′)− 𝑢(𝜃) ∈ 𝒞⊥
𝜃 .

Proof. Let 𝜃′ ∈ Ω𝜃 such that 𝑅𝜃 = 𝑅𝜃′ . Using the algebraic expression of 𝑅𝜃 in
Proposition 3.3.1 and Definition 3.4.3, we have that, for all 𝑥, 𝑅𝜃(𝑥) = ⟨𝑢(𝜃), 𝑐(𝜃, 𝑥)⟩.
Then, 𝑅𝜃 = 𝑅𝜃′ implies that, for all 𝑥 ∈ R|𝑁0|,

⟨𝑢(𝜃), 𝑐(𝜃, 𝑥)⟩ = ⟨𝑢(𝜃′), 𝑐(𝜃′, 𝑥)⟩. (A.154)
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We evaluate Equation (A.154) at 𝑧 ∈ 𝒵𝜃 and using the second point of Proposi-
tion 3.4.5 to deduce that for all 𝑧 ∈ 𝒵𝜃,

⟨𝑢(𝜃′)− 𝑢(𝜃), 𝑐(𝜃, 𝑧)⟩ = 0. (A.155)

Using the first point of Proposition 3.4.5, we deduce that 𝑢(𝜃′)− 𝑢(𝜃) ∈ 𝒞⊥
𝜃 .

Proof of Proposition 3.4.7

Proposition. Let 𝜃 be a locally non-identifiable parameterization. Then, for all
neighborhood Ω of 𝜃, there exists 𝜃′ ∈ Ω such that 𝑢(𝜃′)−𝑢(𝜃) ∈ 𝒞⊥

𝜃 and 𝑢(𝜃) ̸= 𝑢(𝜃′).

Proof. Let Ω𝜃 given as in Proposition 3.4.5. Since 𝜃 is locally non-identifiable and
since Ω∩Ω𝜃 is a neighborhood of 𝜃, there exists 𝜃′ ∈ Ω∩Ω𝜃 ⊂ Ω such that 𝑅𝜃′ = 𝑅𝜃

and 𝜃′ ̸∼𝑆 𝜃. Using Proposition 3.4.6, 𝑅𝜃′ = 𝑅𝜃 implies that 𝑢(𝜃′)−𝑢(𝜃) ∈ 𝒞⊥
𝜃 . Using

Definition 2.2.4, since 𝜃′ ̸∼𝑆 𝜃, we have 𝑢(𝜃) ̸= 𝑢(𝜃′).

Proof of Proposition 3.4.9

Proposition. Let 𝐺 be a one hidden layer architecture with scalar output valued with
an admissible parameterization 𝜃. We further assume that there are no twin neurons,
i.e. that 𝜃 is irreducible as defined in 3.2.4, Then, 𝒞⊥

𝜃 = {0}.

Proof. Assume that there are no twin neurons. Let us show that 𝒞⊥
𝜃 = {0}. Since 𝐺 is

a one hidden layer architecture with scalar output, any full path 𝑝 = 𝜇→ 𝜈 → 𝜂 ∈ 𝒫
is given by an input neuron 𝜇 ∈ 𝑁0 and a hidden neuron 𝜈 ∈ 𝑁1. Indeed, 𝜂 is the
only output neuron. Using the Notations, recall that for any 𝜇 ∈ 𝑁1 and 𝜈 ∈ 𝑁2,

𝑎𝜇→𝜈→𝜂(𝜃, 𝑥) = 𝑎𝜈(𝜃, 𝑥). (A.156)

Similarly, any partial path 𝑞 = 𝜈 → 𝜂 is given by a hidden neuron 𝜈 ∈ 𝑁1 and
𝑎𝜈→𝜂(𝜃, 𝑥) = 𝑎𝜈(𝜃, 𝑥). Using Definition 3.4.3, for all 𝑥 ∈ 𝒳𝜃, 𝑐(𝜃, 𝑥) is the concate-
nation of (𝑥𝜇𝑎𝜈(𝜃, 𝑥))𝜇∈𝑁0, 𝜈∈𝑁1 and of (𝑎𝜈(𝜃, 𝑥))𝜈∈𝑁1 . For clarity, we will omit the
dependency on 𝜃 and simply write 𝑎𝜈(𝑥). For all 𝜈 ∈ 𝑁1, let 𝑑𝜈 ∈ R𝑁0 and 𝑒𝜈 ∈ R.
Then, using Proposition 3.4.5, any vector ((𝑑𝜈)𝜈∈𝑁1 , (𝑒𝜈)𝜈∈𝑁1) ∈ 𝒞⊥

𝜃 satisfies

∑︁
𝜈∈𝑁1

𝑎𝜈(𝑥)(⟨𝑑𝜈 , 𝑥⟩+ 𝑒𝜈) = 0 (A.157)
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for all 𝑥 ∈ 𝒳𝜃. Let 𝜈 ∈ 𝑁1. Since there are no twin neurons, the separating hyper-
planes Γ𝜈′ defined in 3.2.2 are all distinct for 𝜈 ′ ∈ 𝑁1. Hence, there exists 𝑥 ∈ Γ𝜈 and
a neighborhood Ω ∈ R𝑁0 of 𝑥 such that

Ω ∩
⎛⎝ ⋃︁
𝜈′∈𝑁1

Γ𝜈′

⎞⎠ = Ω ∪ Γ𝜈 . (A.158)

Define the half spaces Γ+
𝜈 = {𝑥 ∈ R𝑁0 | ⟨𝑤∙→𝜈 , 𝑥⟩+ 𝑏𝜈 > 0} and similarly for Γ−

𝜈 . Let
𝑥+ ∈ Ω ∪ Γ+

𝜈 and 𝑥− ∈ Ω ∪ Γ−
𝜈 . We have 𝑎𝜈(𝑥+) = 1 and 𝑎𝜈(𝑥−) = 0. Moreover, for

all 𝜈 ′ ̸= 𝜈, we have 𝑎𝜈(𝑥+) = 𝑎𝜈(𝑥−). We evaluate Equation (A.157) on 𝑥+ and 𝑥−

and subtract both equations to get

⟨
𝑥− − 𝑥+, 𝑧

⟩
=
⟨
𝑑𝜈 , 𝑥

+
⟩

+ 𝑒𝜈 (A.159)

where 𝑧 is a quantity that does not depend on the choice of 𝑥+ and 𝑥− defined as

𝑧 =
∑︁
𝜈′∈𝑁1
𝜈′ ̸=𝜈

𝑎𝜈′(𝑥+)𝑑𝜈′ . (A.160)

Let 𝜏 ∈ R𝑁0 be any direction such that 𝑥+ + 𝜏 ∈ Ω ∪ Γ+
𝜈 and 𝑥− + 𝜏 ∈ Ω ∪ Γ−

𝜈 .
Evaluating Equation (A.159) at 𝑥+ + 𝜏 and 𝑥− + 𝜏 yields

⟨𝑥− − 𝑥+, 𝑧⟩ − ⟨𝑑𝜈 , 𝑥+⟩ − 𝑒𝜈 = ⟨𝑑𝜈 , 𝜏⟩ . (A.161)

Since the left-hand side of Equation (A.159) does not depend on 𝜏 , we deduce that
𝑑𝜈 = 0. Since this is valid for every 𝜈 ′ ∈ 𝑁1, we deduce from Equation (A.160) that
𝑧 = 0. Then, Equation (A.159) implies that 𝑒𝜈 = 0. We apply the same reasoning to
every 𝜈 ∈ 𝐻 to deduce that 𝒞⊥

𝜃 = {0}.

Proof of Proposition 3.4.8

Proposition. Let 𝜃 be an admissible parameterization such that 𝒞⊥
𝜃 = {0}. Then, 𝜃

is locally identifiable.

Proof. Let us show that 𝜃 is locally identifiable. For the sake of contradiction, let
us assume that 𝜃 is locally non-identifiable. Then, using Proposition 3.4.7, we must
have both 𝑢(𝜃′)− 𝑢(𝜃) ∈ 𝒞⊥

𝜃 = {0} and 𝑢(𝜃) ̸= 𝑢(𝜃′), which is a contradiction.
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A.3.4 Current Limitations and Discussions

Proof of Proposition 3.4.10

Proposition. Assume that 𝜃 satisfies the following property

∀𝜀 > 0, ∃𝜂 > 0,∀𝜃′, ‖𝑢(𝜃′)− 𝑢(𝜃)‖ < 𝜂 =⇒ ∃𝜃′′, 𝑢(𝜃′′) = 𝑢(𝜃′), ‖𝜃′′ − 𝜃‖ < 𝜀 (*)

Then, the two following properties are equivalent:

(i) There exists 𝜀 > 0 such that, for all 𝜃′ ∈ 𝐵(𝜃, 𝜀) such that 𝑢(𝜃′) − 𝑢(𝜃) ∈ 𝒞⊥
𝜃 ,

we have 𝑢(𝜃′) = 𝑢(𝜃).

(ii) There exists 𝜂 > 0 such that (Im(𝑢)− 𝑢(𝜃)) ∩𝐵∞(0, 𝜂) ∩ 𝒞⊥
𝜃 = {0}.

Proof. The implication (𝑖𝑖) =⇒ (𝑖) hold even without assuming (*). Assume that
(𝑖𝑖) holds for some 𝜂 > 0. Since the function 𝑢 is polynomial, it is locally Lipschitz
and we have

𝐿 , sup
𝜃′∈𝐵(𝜃,1),𝜃′ ̸=𝜃

‖𝑢(𝜃′)− 𝑢(𝜃)‖
‖𝜃′ − 𝜃‖

<∞. (A.162)

Let 𝜀 , min(1, 𝜂/𝐿). For all 𝜃′ ∈ 𝐵(𝜃, 𝜀) that satisfies 𝑢(𝜃′) − 𝑢(𝜃) ∈ 𝒞⊥
𝜃 , we have

𝑢(𝜃′)− 𝑢(𝜃) ∈ (Im(𝑢)− 𝑢(𝜃)) ∩𝐵∞(0, 𝜂) ∩ 𝒞⊥
𝜃 = {0}. Hence, 𝑢(𝜃′) = 𝑢(𝜃).

Let us now prove (𝑖) =⇒ (𝑖𝑖) using (*). Let 𝜀 > 0 satisfying (𝑖), that we
re-write (𝑢(𝐵(𝜃, 𝜀)) − 𝑢(𝜃)) ∩ 𝒞⊥

𝜃 = {0}. Using (*), there exists 𝜂 > 0 such that
(Im(𝑢)− 𝑢(𝜃)) ∩𝐵∞(0, 𝜂) ⊂ 𝑢(𝐵(𝜃, 𝜀))− 𝑢(𝜃). We conclude that

(Im(𝑢)− 𝑢(𝜃)) ∩𝐵∞(0, 𝜂) ∩ 𝒞⊥
𝜃 ⊂= (𝑢(𝐵(𝜃, 𝜀))− 𝑢(𝜃)) ∩ 𝒞⊥

𝜃 = {0}. (A.163)

Proof of Proposition 3.4.11

Proposition. Let assume that 𝜃 satisfies (*). Let us assume further that there exists
𝜀, 𝑟 > 0 and a finite set 𝒵𝜃 ⊂ 𝒳𝜃 such that 𝒵𝜃 , ∪𝑧∈𝒵𝜃

𝐵(𝑧, 𝑟) ⊂ 𝒳𝜃 and such that,
for all 𝜃′ ∈ 𝐵(𝜃, 𝜀),

(1) If for all 𝑧 ∈ 𝒵𝜃, 𝑅𝜃(𝑧) = 𝑅𝜃′(𝑧), then 𝑅𝜃 = 𝑅𝜃′.

(2) For all 𝑧 ∈ 𝒵𝜃, 𝑐(𝜃′, 𝑧) = 𝑐(𝜃, 𝑧)

Then the two following properties are equivalent:
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(i) 𝜃 is locally identifiable.

(ii) There exists 𝜂 > 0 such that (Im(𝑢)− 𝑢(𝜃)) ∩𝐵∞(0, 𝜂) ∩ 𝒞⊥
𝜃 = {0}.

Proof. Let us show that (𝑖𝑖) =⇒ (𝑖). Since we assume (*), we leverage Proposi-
tion 3.4.10 to deduce from (𝑖𝑖) that there exists 𝜀1 > 0 such that, for all 𝜃′ ∈ 𝐵(𝜃, 𝜀1),
if 𝑢(𝜃′)− 𝑢(𝜃) ∈ 𝒞⊥

𝜃 , then 𝑢(𝜃′) = 𝑢(𝜃). Using Proposition 3.4.7, we deduce that 𝜃 is
locally identifiable.

Let us show (𝑖) =⇒ (𝑖𝑖). Since 𝜃 is locally identifiable, there exists 𝜀0 > 0 such
that, for all 𝜃′ ∈ 𝐵(𝜃, 𝜀 > 0), 𝑅𝜃 = 𝑅𝜃′ implies that 𝑢(𝜃) = 𝑢(𝜃′).

Let 𝜀′ = min(𝜀, 𝜀0) and 𝜃′ ∈ 𝐵(𝜃, 𝜀′) such that 𝑢(𝜃′) − 𝑢(𝜃) ∈ 𝒞⊥
𝜃 . Let us show

that 𝑢(𝜃) = 𝑢(𝜃′). We will then be able to conclude with Proposition 3.4.10 since 𝜃
satisfies (*).

For 𝑧 ∈, assumption (2) implies that 𝑐(𝜃′, 𝑧) = 𝑐(𝜃, 𝑧). Since 𝑢(𝜃′)− 𝑢(𝜃) ∈⊥ 𝐶𝜃,
we have

𝑅𝜃′(𝑧)−𝑅𝜃(𝑧) = ⟨𝑢(𝜃′), 𝑐(𝜃′, 𝑧)⟩ − ⟨𝑢(𝜃), 𝑐(𝜃, 𝑧)⟩

= ⟨𝑢(𝜃′), 𝑐(𝜃, 𝑧)⟩ − ⟨𝑢(𝜃), 𝑐(𝜃, 𝑧)⟩

= ⟨𝑢(𝜃′)− 𝑢(𝜃), 𝑐(𝜃, 𝑧)⟩

= 0

(A.164)

(A.165)

(A.166)

(A.167)

Using Assumption (1), we deduce that 𝑅𝜃 = 𝑅𝜃′ . Since 𝜃′ ∈ 𝐵(𝜃, 𝜀′) ⊂ 𝐵(𝜃, 𝜀0), we
have 𝑢(𝜃) = 𝑢(𝜃′).

Proof of Proposition A.3.1

Proposition A.3.1. If all coefficients of 𝜃 = (𝑤, 𝑏) are strictly positive, then (*)
defined in Proposition 3.4.10 holds.

Proof. Using Definitions 3.3.1, define L : R𝐸∪𝐻 → R𝒫∪𝒬 as L = (P,Q𝑏) where Q𝑏 is
the matrix Q multiplied column-wise by 𝑏. Then, L is such that 𝑢(𝜃) = exp(L log 𝜃).

Next, we decompose log 𝜃 = 𝑓(𝜃) + 𝑔(𝜃) where 𝑓 is the orthogonal projection
of log 𝜃 on ker L and 𝑔(𝜃) = L†L log 𝜃. We have 𝑢(𝜃) = exp(L𝑔(𝜃)) and 𝑔(𝜃) =
L† log 𝑢(𝜃).

Let 𝜀 > 0. Consider 0 < 𝜂 ≤ min𝑞∈𝒫∪𝒬 𝑢(𝜃)𝑞. For all 𝜃′ such that ‖𝑢(𝜃′)−𝑢(𝜃)‖ <
𝜂, since 𝑢(𝜃′) has all its coefficients that are strictly positive, we have 𝑢(𝜃) = 𝑢(|𝜃′|).
Hence, without loss of generality, we assume that all the coefficients of 𝜃′ are strictly
positive. Then, we have

𝑢(𝜃′) = exp(L𝑔(𝜃′)) = exp(L(𝑓(𝜃) + 𝑔(𝜃′))) = 𝑢(𝜃′′) (A.168)

198



where log 𝜃′′ , 𝑓(𝜃) + 𝑔(𝜃′). We have 𝑢(𝜃′′) = 𝑢(𝜃′). Finally, let us show that if
𝜂 is small enough, we have ‖𝜃′′ − 𝜃‖ < 𝜀. To do that, we combine the fact that
log 𝜃′′− log 𝜃 = 𝑔(𝜃′)− 𝑔(𝜃) = L†(𝑢(𝜃′)− 𝑢(𝜃)) with the continuity of the exponential
function and of L†.
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Appendix B

Proofs and Supplementary Results
for Equi-normalization

B.1 Illustration of the Effect of Equi-normalization

We apply ENorm to one randomly initialized fully connected network with 20 in-
termediary layers. All the layers have a size 500 × 500 and are initialized following
the Xavier scheme. The network has been artificially unbalanced as follows: all the
weights of layer 6 are multiplied by a factor 1.2 and all the weights of layer 12 are mul-
tiplied by 0.8, see Figure B-1. We then iterate our ENorm algorithm on the network,
without training it, to see that it naturally re-balances the network, see Figure B-2.

Figure B-1: Energy of the network (ℓ2-norm of the weights), before ENorm. Each
dot represents the norm of one column in the layer’s weight matrix.

201



Figure B-2: Energy of the network through successive ENorm iterations (without
training). One color denotes one iteration. The darker the color, the higher the
iteration number.

B.1.1 Gradients & Biases

Denoting the rescaled weights and biases with a tilde, and denoting by ℒ the loss of
the network, for every layer ℓ ∈ J0, 𝐿K, we have

𝜕ℒ
𝜕̃︀𝑦(ℓ) = 𝜕ℒ

𝜕𝑦(ℓ)

(︁
𝐷(ℓ)

)︁−1
. (B.1)

Similarly, we obtain

𝜕ℒ
𝜕̃︁𝑊 (ℓ)

= 𝐷(ℓ−1) 𝜕ℒ
𝜕𝑊 (ℓ)

(︁
𝐷ℓ
)︁−1

and 𝜕ℒ
𝜕̃︀𝑏(ℓ)

= 𝜕ℒ
𝜕𝑏(ℓ)

(︁
𝐷(ℓ)

)︁−1
. (B.2)

Equation (B.2) will be used to update the momentum (see Section 4.5).

B.2 Proof of Convergence of Equi-normalization

We now prove Theorem 4.3.1. We use the framework of block coordinate descent and
we first state a consequence of a theorem of Tseng (2001) [Theorem 4.1]1.

Theorem B.2.1. Let 𝐷 ⊂ R𝑛 be an open set and 𝑓 : 𝐷 → R a real function of
𝐵 block variables 𝑥𝑏 ∈ R𝑛𝑏 with ∑︀𝐵

𝑏=1 𝑛𝑏 = 𝑛. Let 𝑥(0) be the starting point of the

1Note that what Tseng denotes as stationary point in his paper is actually defined as a point
where the directional derivative is positive along every possible direction, i.e. a local minimum.
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coordinate descent algorithm and 𝑋 the level set 𝑋 =
{︁
𝑥 | 𝑓(𝑥) ≤ 𝑓

(︁
𝑥(0)

)︁}︁
. We make

the following assumptions:

(1) 𝑓 is differentiable on 𝐷 ;

(2) 𝑋 is compact ;

(3) for each 𝑥 ∈ 𝐷, each block coordinate function 𝑓ℓ : 𝑡→ 𝑓(𝑥1, . . . , 𝑥ℓ−1, 𝑡, 𝑥ℓ+1, . . . , 𝑥𝐵),
where 2 ≤ ℓ ≤ 𝐵 − 1, has at most one minimum.

Under these assumptions, the sequence (𝑥(𝑟))𝑟∈N generated by the coordinate descent
algorithm is defined and bounded. Moreover, every cluster point of (𝑥(𝑟))𝑟∈N is a local
minimizer of 𝑓 .

Step 1. We apply Theorem B.2.1 to the function 𝜙. This is possible because all
the assumptions are verified as shown below. Recall that

𝜙(𝑑) =
𝐿∑︁
ℓ=1

⃦⃦⃦⃦(︁
𝐷(ℓ−1)

)︁−1
𝑊 (ℓ)𝐷(ℓ)

⃦⃦⃦⃦𝑝
𝑝

=
𝐿∑︁
ℓ=1

∑︁
𝑖,𝑗

⃒⃒⃒⃒
⃒ 𝑑ℓ[𝑗]𝑑ℓ−1[𝑖]𝑊

(ℓ)[𝑖, 𝑗]
⃒⃒⃒⃒
⃒
𝑝

. (B.3)

Assumption (1). 𝜙 is differentiable on the open set 𝐷 = (0,+∞)𝑛.

Assumption (2). 𝜙 → +∞ when ‖𝑑‖ → +∞. Let 𝑑 such that 𝜙(𝑑) < 𝑀𝑝,
𝑀 > 1. Let us show by induction that for all ℓ ∈ J1, 𝐿− 1K, ‖𝑑ℓ‖∞ < (𝐶𝑀)ℓ, where
𝐶 = max(𝐶0, 1) and

𝐶0 = max
𝑊 (ℓ)[𝑖,𝑗] ̸=0

(︃
1

|𝑊 (ℓ)[𝑖, 𝑗]|

)︃
(B.4)

∙ For the first hidden layer, index ℓ = 1. By assumption, every hidden neuron
is connected at least to one neuron in the input layer. Thus, for every 𝑗, there
exists 𝑖 such that 𝑊 (1)[𝑖, 𝑗] ̸= 0. Because 𝜙(𝑑) < 𝑀𝑝 and 𝑑0[𝑖] = 1 for all 𝑖,

(𝑑1[𝑗])𝑝
⃒⃒⃒
𝑊 (1)[𝑖, 𝑗]

⃒⃒⃒𝑝
=
(︃
𝑑1[𝑗]
𝑑0[𝑖]

)︃𝑝 ⃒⃒⃒
𝑊 (1)[𝑖, 𝑗]

⃒⃒⃒𝑝
< 𝑀𝑝 (B.5)

Thus ‖𝑑1‖∞ < 𝐶𝑀 .

∙ For any next hidden layer, index ℓ ∈ J2, 𝐿 − 1K. By assumption, every hidden
neuron is connected at least to one neuron in the previous layer. Thus, for every
𝑗, there exists 𝑖 such that 𝑊 (ℓ)[𝑖, 𝑗] ̸= 0. Because 𝜙(𝑑) < 𝑀 ,

(︃
𝑑𝑘[𝑗]
𝑑𝑘−1[𝑖]

)︃𝑝 ⃒⃒⃒
𝑊 (ℓ)[𝑖, 𝑗]

⃒⃒⃒𝑝
< 𝑀𝑝 (B.6)
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Using the induction hypothesis, we get ‖𝑑𝑘‖∞ < (𝐶𝑀)ℓ.

Thus, ‖𝑑‖∞ < (𝑀𝐶)𝐿 because 𝑀𝐶 > 1. By contraposition, 𝜙→ +∞.
Thus, there exists a ball 𝐵 such that 𝑑 /∈ 𝐵 implies 𝜙(𝑑) > 𝜙(𝑑(0)). Thus, by

contraposition, 𝑑 ∈ 𝑋 implies that 𝑥 ∈ 𝐵. Thus, 𝑋 ⊂ 𝐵 is bounded. Moreover, 𝑋 is
closed because 𝜙 is continuous thus 𝑋 is compact. Then, Assumption (2) is satisfied.

Assumption (3). We next note that

𝜙ℓ(𝑡) = 𝜙
(︁
𝑑

(𝑟)
1 , . . . , 𝑑

(𝑟)
ℓ−1, 𝑡, 𝑑

(𝑟)
ℓ+1, . . . , 𝑑

(𝑟)
𝐿−1

)︁
(B.7)

has a unique minimum as shown in Section 4.3.3, see Equation (4.2). The existence
and uniqueness of the minimum comes from the fact that each hidden neuron is
connected to at least one input and one output neuron, thus all the row and column
norms of the hidden weight matrices 𝑊 (ℓ) are non-zero, as well as the column (resp.
row) norms or 𝑊 (1) (resp. 𝑊 (𝐿)).

Step 2. We prove that 𝜙 has at most one stationary point on 𝐷 under the as-
sumption that each hidden neuron is connected either to an input neuron or to an
output neuron, which is weaker than the general admissibility assumption of Theo-
rem 4.3.1 that assumes that each hidden neuron is connected to an input neuron and
to an output neuron.

As defined in the Notations, we denote the set of all neurons in the network by
𝑉 , the set of all hidden neurons by 𝐻. For each neuron 𝜈, we define prev(𝜈) as the
neurons connected to 𝜈 that belong to the previous layer. We further denote by 𝐻

the set of hidden neurons 𝜈 belonging to layers ℓ ∈ J1, 𝐿 − 1K . We define 𝐸0 as the
set of edges whose weights are non-zero, i.e.

𝐸0 = {(ℓ, 𝑖, 𝑗) | 𝑊 (ℓ)
𝑖,𝑗 ̸= 0}. (B.8)

We now show that 𝜙 has at most one stationary point on 𝐷. Directly computing
the gradient of 𝜙 and solving for zeros happens to be painful or even intractable.
Thus, we define a change of variables as follows. We define ℎ as

ℎ : (0,+∞)𝐻 → R𝐻

𝑑 ↦→ log(𝑑)
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We next define the shift operator 𝑆 : R𝑉 → R𝐸0 such that, for every 𝑥 ∈ R𝑉 ,

𝑆(𝑥) = (𝜈 − 𝜈 ′)𝜈,𝜈′∈𝑉 s.t. 𝜈′∈prev(𝜈)

and the padding operator 𝑃 as

𝑃 : R𝐻 → R𝑉

𝑥 ↦→ 𝑦 where

⎧⎪⎨⎪⎩𝑦𝜈 = 0 if 𝜈 ∈ 𝑉 ∖𝐻;

𝑦𝜈 = 𝑥𝜈 otherwise.

We define the extended shift operator 𝑆𝐻 = 𝑆 ∘ 𝑃 . We are now ready to define our
change of variables. We define 𝜒 = 𝜓 ∘ 𝑆𝐻 where

𝜓 : R𝐸0 → R

𝑥 ↦→
∑︁
𝑒∈𝐸0

exp(𝑝𝑥𝑒) |𝑤𝑒|𝑝

and observe that
𝜙 = 𝜒 ∘ ℎ (B.9)

so that its differential satisfies

[𝐷𝜙](𝑑) = [𝐷𝜒](ℎ(𝑑))[𝐷ℎ](𝑑). (B.10)

Since ℎ is a 𝒞∞ diffeomorphism, its differential [𝐷ℎ](𝑑) is invertible for any 𝑑. It
follows that [𝐷𝜙](𝑑) = 0 if, and only if, [𝐷𝜒](ℎ(𝑑)) = 0. As 𝜒 is the composition of
a strictly convex function, 𝜓, and a linear injective function, 𝑆𝐻 (proof after Step 3),
it is strictly convex. Thus 𝜒 has at most one stationary point, which concludes this
step. Note the similarities of this step with Proposition 3.3.6 in Chapter 3.

Step 3. We prove that the sequence 𝑑(𝑟) converges. Step 1 implies that the
sequence 𝑑(𝑟) is bounded and has at least one cluster point, as 𝑓 is continuous on the
compact 𝑋. Step 2 implies that the sequence 𝑑(𝑟) has at most one cluster point. We
then use the fact that any bounded sequence with exactly one cluster point converges
to conclude the proof.

𝑆 is injective. Let 𝑥 ∈ ker𝑆𝐻 . Let us show by induction on the hidden layer
index 𝑘 that for every neuron 𝜈 at layer 𝑘, 𝑥𝜈 = 0.
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∙ 𝑘 = 1. Let 𝜈 be a neuron at layer 1. Then, there exists a path coming from an
input neuron to 𝜈0 through edge 𝑒1. By definition, 𝑃 (𝑥)𝜈0 = 0 and 𝑃 (𝑥)𝜈 = 𝑥𝜈 ,
hence 𝑆𝐻(𝑥)𝑒1 = 𝑥𝜈 − 0. Since 𝑆𝐻(𝑥) = 0 it follows that 𝑥𝜈 = 0.

∙ 𝑘 → 𝑘 + 1. Same reasoning using the fact that 𝑥𝜈𝑘
= 0 by induction.

The case where the path goes from neuron 𝜈 to some output neuron is similar.

B.3 Extension of ENorm to CNNs

B.3.1 Convolutional Layers

Let us consider two consecutive convolutional layers ℓ and ℓ+ 1, without bias. Layer
ℓ has 𝐶ℓ filters of size 𝐶ℓ−1×𝑆ℓ×𝑆ℓ, where 𝐶ℓ−1 is the number of input features and
𝑆ℓ is the kernel size. This results in a weight tensor 𝑇ℓ of size 𝐶ℓ × 𝐶ℓ−1 × 𝑆ℓ × 𝑆ℓ.
Similarly, layer ℓ + 1 has a weight matrix 𝑇ℓ+1 of size 𝐶ℓ+1 × 𝐶ℓ × 𝑆ℓ+1 × 𝑆ℓ+1. We
then perform axis-permutation and reshaping operations to obtain the 2D matrices:

𝑀ℓ of size (𝐶ℓ−1 × 𝑆ℓ × 𝑆ℓ)× 𝐶ℓ;

𝑀ℓ+1 of size 𝐶ℓ × (𝐶ℓ+1 × 𝑆ℓ+1 × 𝑆ℓ+1) .

(B.11)

(B.12)

For example, we first reshape 𝑇ℓ as a 2D matrix by collapsing its last 3 dimensions,
then transpose it to obtain 𝑀ℓ. We then jointly rescale these 2D matrices using
rescaling matrices 𝐷ℓ ∈ 𝒟(ℓ) as detailed in Section 4.3 and perform the inverse
axis permutation and reshaping operations to obtain a right-rescaled weight tensor̃︀𝑇ℓ and a left-rescaled weight tensor ̃︀𝑇ℓ+1. See Figure 4-2 for an illustration of the
procedure. This matched rescaling does preserve the function implemented by the
composition of the two layers, whether they are interleaved with a ReLU or not. It
can be applied to any two consecutive convolutional layers with various stride and
padding parameters. When the kernel size is 1 in both layers, we recover the fully-
connected case of Figure 4-1.

B.3.2 Skip Connections

We now consider an elementary block of a ResNet-18 architecture as depicted in
Figure 4-3. In order to maintain functional equivalence, we only consider ResNet
architectures of type C as defined in (He et al., 2015a), where all shortcuts are learned
1× 1 convolutions.
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Structure of the rescaling process. Consider a ResNet block ℓ. We first left-
rescale the Conv1 and ConvSkip weights using the rescaling coefficients calculated
between blocks ℓ − 1 and ℓ. We then rescale the two consecutive layers Conv1 and
Conv2 with their own rescaling coefficients, and finally right-rescale the Conv2 and
ConvSkip weights using the rescaling coefficients calculated between blocks ℓ and ℓ+1.

Computation of the rescaling coefficients. Two types of rescaling coefficients
are involved, namely these between two convolution layers inside the same block
and these between two blocks. The rescaling coefficients between the Conv1 and
Conv2 layers are calculated as explained in Section 4.4.1. Then, in order to calculate
the rescaling coefficients between two blocks, we compute equivalent block weights to
deduce rescaling coefficients.

We empirically explored some methods to compute the equivalent weight of a block
using electrical network analogies. The most accurate method we found is to compute
the equivalent weight of the Conv1 and Conv2 layers, i.e., to express the succession
of two convolution layers as only one convolution layer denoted as ConvEquiv (series
equivalent weight), and in turn to express the two remaining parallel layers ConvEquiv
and ConvSkip again as a single convolution layer (parallel equivalent weight). It is
not possible to obtain series of equivalent weights, in particular when the convolution
layers are interleaved with ReLUs. Therefore, we approximate the equivalent weight
as the parallel equivalent weight of the Conv1 and ConvSkip layers.

B.4 Implicit Equi-normalization

In Section 4.3, we defined an iterative algorithm that minimizes the global ℓ𝑝 norm
of the network

𝐿2(𝜃, 𝑑) =
𝐿∑︁
ℓ=1

⃦⃦⃦⃦(︁
𝐷(ℓ−1)

)︁−1
𝑊 (ℓ)𝐷(ℓ)

⃦⃦⃦⃦𝑝
𝑝
. (B.13)

As detailed in Algorithm 2, we perform alternative SGD and ENorm steps during
training. We now derive an implicit formulation of this algorithm that we call Implicit
Equi-normalization. Let us fix 𝑝 = 2. We denote by 𝒞(𝑅𝜃(𝑥), 𝑦) the cross-entropy
loss for the training sample (𝑥, 𝑦) and by 𝐿2(𝜃, 𝑑) the weight decay regularizer (B.13).
The loss function of the network writes

ℒ(𝜃, 𝑑) = 𝒞(𝑅𝜃(𝑥), 𝑦) + 𝜆𝐿2(𝜃, 𝑑) (B.14)
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where 𝜆 is a regularization parameter. We now consider both the weights and the
rescaling coefficients as learnable parameters and we rely on automatic differentiation
packages to compute the derivatives of ℒ with respect to the weights and to the
rescaling coefficients. We then train the network by performing iterative SGD steps
and updating all the learnt parameters. By design, the derivative of 𝒞 with respect to
any rescaling coefficient is zero. Although the additional overhead of implicit ENorm
is theoretically negligible, we observed an increase of the training time of a ResNet-
18 by roughly 30% using PyTorch 4.0 (Paszke et al., 2017). We refer to Implicit
Equi-normalization as ENorm-Impl and to Explicit Equi-normalization as ENorm.

We performed early experiments for the CIFAR10 fully-connected case. ENorm-
Impl performs generally better than the baseline but does not outperform explicit
ENorm, in particular when the network is deep. We follow the same experimental
setup than previously, except that we additionally cross-validated 𝜆. We also initialize
all the rescaling coefficients to one. Recall that ENorm or ENorm denotes explicit
Equi-normalization while ENorm-Impl denotes Implicit Equi-normalization. We did
not investigate learning the weights and the rescaling coefficients at different speeds
(e.g. with different learning rates or momentum). This may explain in part why
ENorm-Impl generally underperforms ENorm in these early experiments.

B.5 Experiments

We perform sanity checks to verify our implementation and give additional results.

B.5.1 Sanity Checks

We apply our Equi-normalization algorithm to a ResNet architecture by integrating all
the methods exposed in Section 4.4. We perform three sanity checks before proceeding
to experiments. First, we randomly initialize a ResNet-18 and verify that it outputs
the same probabilities before and after balancing. Second, we randomly initialize a
ResNet-18 and perform successive ENorm cycles (without any training) and observe
that the 𝐿2 norm of the weights in the network is decreasing and then converging, as
theoretically proven in Section 4.3, see Figure B-3.

We finally compare the evolution of the total ℓ2 norm of the network when training
it, with or without ENorm. We use the setup described in Subsection 4.6.2 and
use 𝑝 = 3 intermediary layers. The results are presented in Figure B-4. ENorm
consistently leads to a lower energy level in the network.
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Figure B-3: ENorm cycles on a randomly initialized ResNet-18 with no training.

Figure B-4: Training a fully-connected network on CIFAR-10, with (ENorm-1) or
without (Baseline) Equi-normalization.

B.5.2 Asymetric Scaling: Uniform vs. Adaptive

MNIST auto-encoder. For the uniform setup, we test for three different values
of 𝑐, without BN: 𝑐 = 1 (uniform setup), 𝑐 = 0.8 (uniform setup), 𝑐 = 1.2 (uniform
setup). We also test the adaptive setup. The adaptive setup outperforms all other
choices, which may be due to the strong bottleneck structure of the network. With
BN, the dynamics are different and the results are much less sensitive to the values
of 𝑐 (see Figures B-5 and B-6).

CIFAR10 Fully Convolutional. For the uniform setup, we test for three different
values of 𝑐, without BN: 𝑐 = 1 (uniform setup), 𝑐 = 0.8 (uniform setup), 𝑐 = 1.2
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Figure B-5: Uniform vs adaptive scaling
on MNIST, without BN.
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Figure B-6: Uniform vs adaptive scaling
on MNIST, with BN.

Method Test top 1 accuracy
ENorm uniform 𝑐 = 1 86.98
ENorm uniform 𝑐 = 0.8 79.88
ENorm uniform 𝑐 = 1.2 89.31
ENorm adaptive 89.28
ENorm + BN uniform 𝑐 = 1 91.85
ENorm + BN uniform 𝑐 = 0.8 90.95
ENorm + BN uniform 𝑐 = 1.2 90.89
ENorm + BN adaptive 90.79

Table B.1: Uniform vs adaptive scaling, CIFAR-10 fully convolutional

(uniform setup). We also test the adaptive setup (see Table B.1). Once again, the
dynamics with or without BN are quite different. With or without BN, 𝑐 = 1.2
performs the best, which may be linked to the fact that the ReLUs are cutting energy
during each forward pass. With BN, the results are less sensitive to the values of 𝑐.
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Appendix C

Supplementary Results for iPQ
and Quant-Noise

C.1 Quantization of Additional Architectures

ResNet-50. We explore the compression of ResNet-50, a standard architecture used
Computer Vision. In Table C.1, we compare Quant-Noise to iPQ Compression from
Chapter 5 and show that Quant-Noise provide consistent additional improvement.

C.2 Ablations

In this section, we examine the impact of the level of noise during training as well as
the impact of approximating iPQ during training.

C.2.1 Impact of Noise Rate

We analyze the performance for various values of Quant-Noise in Figure C-1 on a
Transformer for language modeling. For iPQ, performance is impacted by high rates
of quantization noise. For example, a Transformer with the noise function 𝜙proxy

degrades with rate higher than 0.5, i.e., when half of the weights are passed through
the noise function 𝜙proxy. We hypothesize that for large quantities of noise, a larger
effect of using proxy rather than the exact PQ noise is observed. For int8 quantization
and its noise function, higher rates of noise are slightly worse but not as severe. A
rate of 1 for int8 quantization is equivalent to the Quantization Aware Training
of (Krishnamoorthi, 2018), as the full matrix is quantized with STE, showing the
potential benefit of partial quantization during training.
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Setting Model Compression Top-1 Accuracy

Small Blocks Stock et al. (2019b) 19x 73.8
Quant-Noise 19x 74.3

Large Blocks Stock et al. (2019b) 32x 68.2
Quant-Noise 32x 68.8

Table C.1: Compression of ResNet-50 with Quant-Noise. We compare to
Stock et al. (2019b) in both the small and large blocks regime. For fair comparison,
we hold the compression rate constant. Quant-Noise provides improved performance
in both settings.
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Figure C-1: Effect of Quantization Parameters. We report the influence of the
proportion of blocks to which we apply the noise. We focus on Transformer for
Wikitext-103 language modeling. We explore two settings: iPQ and int8. For iPQ,
we use 𝜙proxy.

C.2.2 Impact of Approximating the Noise Function

We study the impact of approximating quantization noise during training. We focus
on the case of iPQ with the approximation described in Section 6.4.2. In Table C.2,
we compare the correct noise function for iPQ with its approximation 𝜙proxy. This
approximate noise function does not consider cluster assignments or centroid values
and simply zeroes out the selected blocks. For completeness, we include an inter-
mediate approximation where we consider cluster assignments to apply noise within
each cluster, but still zero-out the vectors. These approximations do not affect the
performance of the quantized models. This suggests that increasing the correlation
between subvectors that are jointly clustered is enough to maintain the performance
of a model quantized with iPQ. Since PQ tends to work well on highly correlated
vectors, such as activations in convolutional networks, this is not surprising. Using
the approximation 𝜙proxy presents the advantage of speed and practicality. Indeed,
one does not need to compute cluster assignments and centroids for every layer in the
network after each epoch. Moreover, this approach is less involved in terms of code.
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Noise Blocks PPL Quant PPL

𝜙PQ Subvectors 18.3 21.1
𝜙PQ Clusters 18.3 21.2
𝜙proxy Subvectors 18.3 21.0
𝜙proxy Clusters 18.4 21.1

Table C.2: Exact versus proxy noise function for different block selections
with iPQ. We compare exact 𝜑PQ and the approximation 𝜑proxy with blocks selected
from all subvectors or subvectors from the same cluster.

C.3 Experimental Setting

We assess the effectiveness of Quant-Noise on competitive language and vision bench-
marks. We consider Transformers for language modeling, RoBERTa for pre-training
sentence representations, and EfficientNet for image classification. Our models are
implemented in PyTorch (Paszke et al., 2017). We use fairseq (Ott et al., 2019)
for language modeling and pre-training for sentence representation tasks and Classy
Vision (Adcock et al., 2019) for EfficientNet.

Language Modeling. We experiment on the Wikitext-103 benchmark (Merity
et al., 2016) that contains 100M tokens and a vocabulary of 260k words. We train
a 16 layer Transformer following Baevski and Auli (2018) with a LayerDrop rate of
0.2 (Fan et al., 2019). We report perplexity (PPL) on the test set.

Pre-Training of Sentence Representations. We pre-train the base BERT model
(Devlin et al., 2018) on the BooksCorpus + Wiki dataset with a LayerDrop rate of
0.2. We finetune the pre-trained models on the MNLI task (Williams et al., 2018)
from the GLUE Benchmark (Wang et al., 2019a) and report accuracy. We follow the
parameters in Liu et al. (2019b) training and finetuning.

Image Classification. We train an EfficientNet-B3 model (Tan and Le, 2019) on
the ImageNet object classification benchmark (Deng et al., 2009). The EfficientNet-
B3 of Classy Vision achieves a Top-1 accuracy of 81.5%, which is slightly below
than the performance of 81.9% reported by Tan and Le (2019).

C.3.1 Training Details

Language Modeling To handle the large vocabulary of Wikitext-103, we follow
(Dauphin et al., 2017) and (Baevski and Auli, 2018). We use the adaptive softmax
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(Grave et al., 2016) and adaptive input for computational efficiency. For both in-
put and output embeddings, we use dimension size 1024 and three adaptive bands:
20K, 40K, and 200K. We use a cosine learning rate schedule (Baevski and Auli,
2018; Loshchilov and Hutter, 2016) and train with Nesterov’s accelerated gradient
(Sutskever et al., 2013). We set the momentum to 0.99 and renormalize gradients if
the norm exceeds 0.1 (Pascanu et al., 2014). During training, we partition the data
into blocks of contiguous tokens that ignore document boundaries. At test time, we
respect sentence boundaries. We set LayerDrop to 0.2. We set Quant-Noise value
to 0.05. During training time, we searched over the parameters (0.05, 0.1, 0.2) to
determine the optimal value of Quant-Noise. During training, the block size is 8.

RoBERTa The base architecture is a 12 layer model with embedding size 768 and
FFN size 3072. We follow (Liu et al., 2019b) in using the subword tokenization scheme
from (Radford et al., 2019), which uses bytes as subword units. This eliminates
unknown tokens. We train with large batches of size 8192 and maintain this batch
size using gradient accumulation. We do not use next sentence prediction (Lample
and Conneau, 2019). We optimize with Adam with a polynomial decay learning
rate schedule. We set LayerDrop to 0.2. We set Quant-Noise value to 0.1. We
did not hyperparameter search to determine the optimal value of Quant-Noise as
training RoBERTa is computationally intensive. During training time, the block size
of Quant-Noise is 8.

During finetuning, we hyperparameter search over three learning rate options
(1e-5, 2e-5, 3e-5) and batchsize (16 or 32 sentences). The other parameters are set
following (Liu et al., 2019b). We do single task finetuning, meaning we only tune
on the data provided for the given natural language understanding task. We do
not perform ensembling. When finetuning models trained with LayerDrop, we apply
LayerDrop and Quant-Noise during finetuning time as well.

EfficientNet We use the architecture of EfficientNet-B3 defined in Classy Vision
(Adcock et al., 2019) and follow the default hyperparameters for training. We set
Quant-Noise value to 0.1. During training time, we searched over the parameters
(0.05, 0.1, 0.2) to determine the optimal value of Quant-Noise. During training time,
the block size of Quant-Noise is set to 4 for all 1 × 1 convolutions, 9 for depth-wise
3 × 3 convolutions, 5 for depth-wise 5 × 5 convolutions and 4 for the classifier. For
sharing, we shared weights between blocks 9-10, 11-12, 14-15, 16-17, 19-20-21, 22-23
and refer to blocks that share the same weights as a chunk. For LayerDrop, we drop
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Model MB PPL

Trans XL Large (Dai et al., 2019) 970 18.3
Compressive Trans (Rae et al., 2019) 970 17.1
GCNN (Dauphin et al., 2017) 870 37.2
4 Layer QRNN (Bradbury et al., 2016) 575 33.0
Trans XL Base (Dai et al., 2019) 570 24.0
Persis Mem (Sukhbaatar et al., 2019b) 506 20.6
Tensorized core-2 (Ma et al., 2019) 325 18.9

Quant-Noise 38 20.7
Quant-Noise + Share + Prune 10 24.2

Table C.3: Performance on Wikitext-103. We report test set perplexity and
model size in megabytes. Lower perplexity is better.

the chunks of blocks defined previously with probability 0.2 and evaluate only with
chunks 9-10, 14-15 and 19-20-21.

C.3.2 Scalar Quantization Details

We emulate scalar quantization by quantizing the weights and the activations. The
scales and zero points of activations are determined by doing a few forward passes
ahead of the evaluation and then fixed. We use the Histogram method to compute 𝑠
and 𝑧, which aims at approximately minimizing the 𝐿2 quantization error by adjusting
𝑠 and 𝑧. This scheme is a refinement of the MinMax scheme. Per channel quantization
is also discussed in Table C.7.

C.3.3 iPQ Quantization Details

Language Modeling We quantize FFN with block size 8, embeddings with block
size 8, and attention with block size 4. We tuned the block size for attention between
the values (4, 8) to find the best performance. Note that during training with apply
Quant-Noise to all the layers.

RoBERTa We quantize FFN with block size 4, embeddings with block size 4, and
attention with block size 4. We tuned the block size between the values (4, 8) to find
the best performance. During training with apply Quant-Noise to all the layers.

EfficientNet We quantize blocks sequentially and end up with the classifier. The
block sizes are 4 for all 1 × 1 convolutions, 9 for depth-wise 3 × 3 convolutions, 5
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Model MB MNLI

RoBERTa Base + LD (Fan et al., 2019) 480 84.8
BERT Base (Devlin et al., 2018) 420 84.4
PreTrained Distil (Turc et al., 2019) 257 82.5
DistilBERT (Sanh et al., 2019) 250 81.8
MobileBERT* (Sun et al., 2020) 96 84.4
TinyBERT† (Jiao et al., 2019) 55 82.8
ALBERT Base (Lan et al., 2019) 45 81.6
AdaBERT† (Chen et al., 2020a) 36 81.6

Quant-Noise 38 83.6
Quant-Noise + Share + Prune 14 82.5

Table C.4: Performance on MNLI. We report accuracy and size in megabytes.
* indicates distillation using BERT Large. † indicates training with data augmenta-
tion. Work from Sun et al. (2019) and Zhao et al. (2019) do not report results on the
dev set. Cao et al. (2020) do not report model size. Higher accuracy is better.

for depth-wise 5 × 5 convolutions and 4 for the classifier. Note that during training
with apply Quant-Noise to all the weights in InvertedResidual Blocks (except the
Squeeze-Excitation subblocks), the head convolution and the classifier.

C.3.4 Details of Pruning and Layer Sharing

We apply the Every Other Layer strategy from Fan et al. (2019). When combining
layer sharing with pruning, we train models with shared layers and then prune chunks
of shared layers. When sharing layers, the weights of adjacent layers are shared in
chunks of two. For a concrete example, imagine we have a model with layers A, B,
C, D, E, F, G, H. We share layers A and B, C and D, E and F, G and H. To prune,
every other chunk would be pruned away, for example we could prune A, B, E, F.

C.4 Numerical Results for Graphical Diagrams

We report the numerical values displayed in Figures 6-2 in Table C.3 for language
modeling, Table C.4 for BERT, and Table C.5 for ImageNet.
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Model MB Acc.

EfficientNet-B7 (Tan and Le, 2019) 260 84.4
ResNet-50 (He et al., 2015a) 97.5 76.1
DenseNet-169 (Huang et al., 2018a) 53.4 76.2
EfficientNet-B0 (Tan and Le, 2019) 20.2 77.3
MobileNet-v2 (Sandler et al., 2018a) 13.4 71.9
Shufflenet-v2 ×1 (Ma et al., 2018) 8.7 69.4

HAQ 4 bits (Wang et al., 2018a) 12.4 76.2
iPQ ResNet-50 (Stock et al., 2019b) 5.09 76.1

Quant-Noise 3.3 80.0
Quant-Noise + Share + Prune 2.3 77.8

Table C.5: Performance on ImageNet. We report accuracy and size in megabytes.
Higher accuracy is better.

𝑝 0 0.2 0.4 0.6 0.8 1

Top-1 80.66 80.83 80.82 80.88 80.92 80.64

Table C.6: Effect of Quantization Parameters. We report the influence of the
Quant-Noise rate 𝑝 with Scalar Quantization (int8). We focus on EfficientNet for
ImageNet classification.

C.5 Further Ablations

C.5.1 Impact of Quant-Noise for the Vision setup

We provide another study showing the impact of the proportion of elements on which
to apply Quant-Noise in Table C.6.

C.5.2 Impact of the number of centroids

We quantize with 256 centroids which represents a balance between size and repre-
sentation capacity. The effect of the number of centroids on performance and size is
shown in Figure C-2 (a). Quantizing with more centroids improves perplexity — this
parameter could be adjusted based on the practical storage constraints.

C.5.3 Effect of Initial Model Size

Large, overparameterized models are more easily compressed. In Figure C-3, we
explore quantizing both shallower and skinnier models. For shallow models, the
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Figure C-2: Quantizing with a larger number of centroids. Results are shown
on Wikitext-103 valid.
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Figure C-3: (a) Effect of Initial Model Size for more shallow models (b) Effect of
Initial Model Size more skinny models

gap between quantized and non-quantized perplexity does not increase as layers are
removed (Figure C-3, left). In contrast, there is a larger gap in performance for
models with smaller FFN (Figure C-3, right). As the FFN size decreases, the weights
are less redundant and more difficult to quantize with iPQ.

C.5.4 Difficulty of Quantizing Different Model Structures

Quantization is applied to various portions of the Transformer architecture — the em-
bedding, attention, feedforward, and classifier output. We compare the quantizability
of various portions of the network in this section.

Is the order of structures important? We quantize specific network structures
first — this is important as quantizing weight matrices can accumulate reconstruction
error. Some structures of the network should be quantized last so the finetuning
process can better adjust the centroids. We find that there are small variations in
performance based on quantization order (see Figure C-4). We choose to quantize
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Figure C-4: Effect of Quantization on Model Structures. Results are shown on
the validation set of Wikitext-103. (a) Quantizing Attention, FFN, and Embeddings
in different order. (b) More Extreme compression of different structures.

FFN, then embeddings, and finally the attention matrices in Transformer networks.

Which structures can be compressed the most? Finally, we analyze which
network structures can be most compressed. During quantization, various matrix
block sizes can be chosen as a parameter — the larger the block size, the more
compression, but also the larger the potential reduction of performance. Thus, it
is important to understand how much each network structure can be compressed to
reduce the memory footprint of the final model as much as possible. In Figure C-4,
we quantize two model structures with a fixed block size and vary the block size of
the third between 4 and 32. As shown, the FFN and embedding structures are more
robust to aggressive compression, while the attention drastically loses performance as
larger block sizes are used.

C.5.5 Approach to intN Scalar Quantization

We compare quantizing per-channel to using a histogram quantizer in Table C.7.
The histogram quantizer maintains a running min/max and minimizes L2 distance
between quantized and non-quantized values to find the optimal min/max. Quan-
tizing per channel learns scales and offsets as vectors along the channel dimension,
which provides more flexibility since scales and offsets can be different.

C.5.6 LayerDrop with STE

For quantization noise, we apply the straight through estimator (STE) to remaining
weights in the backward pass. We experiment with applying STE to the backward
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Quantization Scheme Language Modeling Image Classification
16-layer Transformer EfficientNet-B3

Wikitext-103 ImageNet-1K

Size Compress Test PPL Size Compress Top-1 Acc.

Uncompressed model 942 ×1 18.3 46.7 ×1 81.5

Int4 Quant Histogram 118 ×8 39.4 5.8 ×8 45.3
+ Quant-Noise 118 ×8 21.8 5.8 ×8 67.8
Int4 Quant Channel 118 ×8 21.2 5.8 ×8 68.2
+ Quant-Noise 118 ×8 19.5 5.8 ×8 72.3

Int8 Quant Histogram 236 ×4 19.6 11.7 ×4 80.7
+ Quant-Noise 236 ×4 18.7 11.7 ×4 80.9
Int8 Quant Channel 236 ×4 18.5 11.7 ×4 81.1

+ Quant-Noise 236 ×4 18.3 11.7 ×4 81.2

Table C.7: Comparison of different approaches to int4 and int8 with and
without Quant-Noise on language modeling and image classification. For language
modeling, we train a Transformer on the Wikitext-103 benchmark. We report per-
plexity (PPL) on the test set. For image classification, we train a EfficientNet-B3 on
the ImageNet-1K benchmark. We report top-1 accuracy on the validation set. For
both setting, we also report model size in megabyte (MB) and the compression ratio
compared to the original model.

Model MB PPL

Quant-Noise + Share + Prune 10 24.2
Quant-Noise + Share + Prune with STE 10 24.5

Table C.8: Performance on Wikitext-103 when using STE in the backward
pass of the LayerDrop pruning noise.

pass of LayerDrop’s pruning noise. Results are shown in Table C.8 and find slightly
worse results.
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Appendix D

Supplementary Results for
FaceGen

D.1 Additional Comparative Results

D.1.1 Quality Evaluation: Ablation Studies

For evaluation, we assembled 28 videos of diverse persons in terms of gender, age,
skin color from the validation set of VoxCeleb2 (Chung et al., 2018), and a similar set
of 50 videos from the validation split of the DFDC dataset (Dolhansky et al., 2019).

We begin our analysis of the FOM by computing the quality of reconstruction
without first order motion approximation and with/without adversarial training in
Table D.1. While it is clear that the adversarial fine-tuning boosts the performance,
we experiment without it in the remaining of our ablation study around this model
to reduce training time for each model. Removing the first order approximation only
slightly degrades the LPIPS but not the msVGG perceptual metric. Interestingly,
the CSIM metric which is the one supposed to best reflect the identify preservation,
is slightly increased by dropping this component. A second observation is that the
fidelity of facial landmarks to the target video is negatively affected by this removal.
Since the drop of performance induced by discarding first order motion approximation
leads to important bandwidth savings and limited loss in performance, we conduct
our experiments without it. We refer to this approach as the Motion Net approach.
Next, we explore the replacement of the self-supervised landmarks of the Motion Net
approach by off-the-shelf landmarks from a state-of-the art detector. Results appear
in Table D.2. Note that the results presented in this table are obtained by our re-
implementation of the MotionNet approach, and are slightly better than these of
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FOM adv FOM w/o adv MN
msVGG ↓ 85.6 87.5 87.9
LPIPS ↓ 0.226 0.233 0.236
NME ↓ 0.51 0.53 0.54
CSIM ↑ 0.83 0.81 0.82

Table D.1: Ablation study for FOM on VoxCeleb2-28. MN: FOM without first order
approximation nor adversarial fine-tuning.

LPIPS ↓ NME ↓ CSIM ↑

Dense MN-10 U 0.221 0.59 0.83
Dense MN-20 L 0.242 0.50 0.80
Dense MN-68 L 0.240 0.49 0.81
Mob MN-10 U 0.225 0.52 0.79
Mob MN-20 L 0.244 0.48 0.78
Mob MN-10 U + 20 L 0.218 0.46 0.80
Mob M-SPADE-10 U 0.217 0.47 0.81
Mob M-SPADE-20 L 0.242 0.44 0.79
Mob M-SPADE-10 U + 20 L 0.215 0.46 0.81

Table D.2: Evaluation results for Motion Net approaches without adversarial fine-
tuning on the VoxCeleb2-28 video subset. Mob : Mobile models. Dense models
(64× 64 latent space) are trained on VoxCeleb. Mobile models (32× 32) are trained
on the DFDC aligned dataset. U: unsupervised keypoints; L: facial landmarks.

Table D.1 obtained with the original code.

We compare in Table D.2 different variants of the Motion Net approach, using
20 input landmarks, 68 input landmarks, self-supervised landmarks with dense archi-
tectures and with mobile architectures. All these dense architecture employ a latent
space of 256 × 64 × 64, and were trained on VoxCeleb. We first note that using
standard facial landmarks instead of unsupervised motion landmarks degrades the
scores of all metrics. Using 68 landmarks is not improving the quality over 20. With
mobile architectures, we reduce the latent space to 256×32×32. In addition to using
10 motion landmarks or 20 landmarks alone, combining these two sets helps boost
all quality metrics. Finally, we observe that adding the SPADE blocks preserves the
perceptual quality and brings a large improvement in NME.
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NTH Bilayer SegFace FOM MS20L

msVGG* ↓ 56.3 68.6 84.4 58.7 57.9
LPIPS* ↓ 0.165 0.200 0.304 0.153 0.167
NME* ↓ 0.38 0.55 0.55 0.50 0.44
CSIM* ↑ 0.83 0.85 0.76 0.87 0.84
kbits/s ↓ 9.7 9.7 18 4.0 8.8

Table D.3: Comparison of Bilayer, SegFace (48x48), FOM adv, NTH in terms of
quality / bandwidth (kbits/s with 25 fps) trade-offs on VoxCeleb2-28. * : Metrics
were computed using ground truth backgrounds. We also include our best mobile
model, Motion-SPADE-20L (MS20L) in the comparison.

D.1.2 Quantitative Comparative Evaluation

We compare the quality/bandwidth trade-off of different dense face animation ap-
proaches in Table D.3. As the different models were trained using different data
pre-processing (different crops, alignment), we evaluate each one in the setting allow-
ing the best generations. This means that synthesized videos need to be compared
to different source videos. Therefore, we paste the ground truth video background on
the generated result so that the metrics focus on evaluating face differences only. We
observe that the NTH results lead to better NME, and FOM to better LPIPS and
CSIM metrics. SegFace numerical results lower, partly due to a color shift appearing
in the results. Interestingly, our mobile results have better NME and msVGG scores
than the original FOM dense approach.
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Figure D-1: Qualitative results using Motion based variants on mobile architectures,
using a 32 × 32 × 256 latent space. The model generates the face given the fixed
source frame and the landmarks of the target frame. All models run in real-time on
an iPhone 8.
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analysis. PhD thesis, Tillämpad fysik och elektronik, 2006.
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