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Abstract  

 

Oomycetes are eukaryote pathogens able to infect plants and animals. During host interaction, 

oomycetes secrete various molecules, named effectors, to counteract plant defence and modulate 

plant immunity. Two different classes of cytoplasmic effectors have been described to date, Crinklers 

(CRNs) and RxLR proteins. The translocation process allowing the entrance into the host cells is still 

unclear, and while extended research gave insight into some molecular targets and role during 

infection, most of effectors have not been characterized.   

In the root rot pathogen of legumes Aphanomyces euteiches, only the CRNs are present. Based on a 

previous study reported by our research group, we published an opinion paper focused on the 

emergence of DNA damaging effectors and their role during infection. 

Previous experiments indicate that one of these Crinklers, AeCRN5, harbours a functional translocation 

domain and once the protein reaches host nuclei, dramatically disturbs root development. Here we 

reveal that AeCRN5 binds to RNA and interferes with biogenesis of various small RNAs, implicated in 

defence mechanisms or plant development.  

Furthermore, comparative genetic analyses revealed a new class of putative effectors specific to 

Aphanomyces euteiches, composed by a large repertoire of small-secreted protein coding genes (SSP), 

potentially involved during root infection. Preliminary results on these SSPs point out that AeSSP1256, 

which contains a functional nuclear localisation signal, enhances host susceptibility. 

Functional characterisation of AeSSP1256 evidenced that this effector binds to RNA, relocalizes a plant 

RNA helicase and interferes with its activity, causing stress on plant ribosome biogenesis. 

This work highlights that various effectors target nucleic acids and reveals that two effectors from 

distinct family are able to interact with plant RNA in order to interfere with RNA related defence 

mechanisms and plant development to promote pathogen infection. 

 

Keywords: Oomycetes, nucleus, DNA damage, RNA-binding proteins, CRN, SSP. 
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I – CHAPTER I: General Introduction 

I-1. Oomycetes and fungi, The World Is Not Enough  

I-1.1. The Phantom menace 

Plants and animals have to face constantly with abiotic stresses, like environmental 

modifications due to climate change, including higher temperature, pH variation or long 

drought for instance, but also various biotic stresses due to multiple interactions with other 

organisms, from bacteria to nematodes, via fungi, oomycetes, viruses or insects. Unlike 

animals, who can move to find a better environment, plants are rooted in place and must 

adapt very quickly to changes or attacks. One of the major biotic threats are eukaryotic 

filamentous microorganisms, represented by oomycetes and fungi, which comprise several of 

the most devastating plant and animal pathogens, considered as a major threat for 

agriculture, but also for natural terrestrial or oceanic ecosystems (Beakes et al., 2012). 

 

Even if humans and most mammals are remarkably resistant to invasive fungal 

diseases, in the same time entire ecosystems are currently devastated by fungal pathogens 

(Fisher et al., 2012; Casadevall, 2017). Bats or reptiles are threatened with extinction due to 

pathogenic fungi (Fisher et al., 2012; Casadevall, 2017). Another example of feared fungus is 

Batrachochytrium dendrobatidis, considered  as  the major threat for amphibians causing a 

catastrophic loss of biodiversity (Fisher et al., 2012; Scheele et al., 2019). Fungal diseases also 

impact plant crops, destroying a third of all food crops annually and impacting the most 

important crops (rice, wheat, maize, potatoes, and soybean) (Fisher et al., 2012; Almeida et 

al., 2019). For instance, the wheat stem rust caused by the fungus P. gramini sf. tritici, which 

has being threating wheat cultures since 1998, had disastrous impact in the Middle East and 

West Asia, with reduction in yields up to 40% (Pennisi, 2010). Very recently, researchers 

warned and reported the re-emergence of this fungus in Western Europe (Saunders et al., 

2019; Bhattacharya, 2017). Another example is the rice blast disease agent Magnaporthe 

oryzae, one of the most economically devastating fungus that infect rice as well as other grass 
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species including wheat. Only on rice, annual yield losses can reach 20% in many production 

zones but the entire harvest can be lost when significant outbreak occur (Prabhu et al., 2009). 

 

Oomycetes also comprise devastating pathogens and represent the most problematic 

group of disease-causing organisms in both agriculture and aquaculture (Derevnina et al., 

2016b). However, oomycetes stand as notorious plant pathogens with remarkable examples, 

like Phytophthora infestans causing late blight triggering the Irish potato famine in 1840 (Haas 

et al., 2009). Phytophthora species are responsible of serious diseases affecting crop yields. 

The annual economic loss on tomato and potato due to P. infestans was estimated at $ 6.7 

billion (Haas et al., 2009). On soybean, for North America, the average annual yield loss caused 

by P. sojae was estimated at 1.1 million tons, from 2007 to 2014 (Allen et al., 2017). Others 

notable species are P. palmivora and P. capsici, causing agents of cocoa black pod causing yield 

losses of 20–30% annually (Adeniyi, 2019). On legumes, Aphanomyces euteiches, the causing 

agent of root rot, represent one of the major limitations to pea production worldwide (Wu et 

al., 2018). All those examples highlight the important impact of plant pathogen oomycetes, 

but some species are also responsible for devastating diseases in natural ecosystems or in 

aquaculture. For instance, members of the Saprolegnia genus, such as S. parasitica infecting 

freshwater fish, are involved in the decline of wild salmon populations around the world 

(Phillips et al., 2008; van West, 2006). Another example of killing agent is Aphanomyces astaci, 

parasite of fresh-water decapods and causing crayfish plague. Originate from North America, 

it is now present in Europe and has been nominated among the “100 of the World’s Worst 

Invasive Alien Species” in the Global Invasive Species Database (GISD). 

 

I-1.2. Defence and Resistance against pathogens 

 

Despite the impact of these diseases and the increase of dedicated research, it is still 

challenging to control fungal or oomycete attacks. To reach high-quality crops with optimal 

yields, modern agriculture had resort to intensive use of fungicides that frequently became 

ineffective due to high adaptation frequency, caused by gene mutations, leading to the 

emergence of new fungal races (Zhou et al., 2007; Lucas et al., 2015). Same problem occurs 
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with oomycete diseases control, where complex fungicidal mixtures were used for many 

years, often inefficient due to wide range of intrinsic sensitivities (Judelson and Senthil, 2005) 

or because resistance evolved against most single-site inhibitors in many oomycete pathogen 

species (Gisi and Sierotzki, 2015). Some fungicides are also inefficient because the metabolic 

pathways or key molecules they target in fungi are absent in some oomycete species. For 

instance, the class of triazole pesticides, representing the largest class of fungicides which 

target CYP51 enzymes involved in sterol biosynthesis, should not be used against 

Phytophthora or Pythium species since these oomycetes do not possess CYP51 enzymes (Tyler 

et al., 2006; Sello et al., 2015)  and are sterol auxotrophs (Kazan and Gardiner, 2017), leading 

these fungicides to be inefficient against diseases caused by these pathogens (Gaulin et al., 

2010). 

 

Fortunately, chemicals are not the only way to counteract pathogen attacks. Hosts 

have evolved innate immunity due to their long coevolution with microorganisms. The first 

layer of plant defence is based on the recognition of essential molecules derived from 

microorganisms. When the host perceives those molecules that are specific to 

microorganisms and indispensable for its life cycle and called pathogen-associated molecular 

patterns (PAMPs), it triggers and activates numerous defence responses. The PAMPs-

Triggered Immunity (PTI), comprises a set of responses including callose deposition, oxidative 

bursts or activation of defence gene (Jones and Dangl, 2006; Nicaise et al., 2009). One of the 

most famous identified PAMPs is the bacterial flg22, a conserved peptide from the protein 

flagellin, a major component of the motility organ flagellum, which is recognized by most 

plants thanks to an LRR Receptor–like Kinase (Gómez-Gómez and Boller, 2000). Numerous 

eukaryotic PAMPs correspond to cell wall components, like Pep-13, a highly conserved amino 

acid fragment within the cell wall glycoprotein GP42 from the oomycete Phytophthora sojae 

(Brunner et al., 2002), or NPP1, a cell-wall protein identified in several Phytophthora species 

as eliciting immune responses in plants (Fellbrich et al., 2002), or CBM1 from the cell wall 

protein CBEL from P. parasitica (Gaulin et al., 2006; Larroque et al., 2012). PAMPs are not only 

proteins as β-Glucans also represent a common fungal and oomycete PAMPs derived from cell 

wall fractions. Most plants recognize chitin, the main component of fungal cell wall, but also 

the branched β-Glucans from oomycete cell wall. As example branched glucan-
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chitosaccharides from the oomycete Aphanomyces euteiches induce defence and calcium  

signals in Medicago truncatula root cells (Nars et al., 2013).  

 

Faced to PTI, microorganisms evolved and secreted hundreds of pathogenesis-related 

molecules, named effectors, to modulate immunity and facilitate host colonization. In turn, 

some hosts evolve to detect specifically those molecules, leading to the Effector-Triggered-

Immunity (ETI). Perception is mediated by receptors know as resistance proteins (R) that 

directly or indirectly recognize some secreted effectors, then called avirulence proteins (AVR). 

This process was previously named gene-for-gene resistance (R/AVR) (Van Der Biezen and 

Jones, 1998). This recognition is frequently associated to a hypersensitive response (HR), a 

localized host cell death to confine the pathogen at the infection site (Jones and Dangl, 2006). 

Then, major R genes have been used by breeding companies to protect crops against fungal 

plant diseases (Stuthman et al., 2007). However, the strategy using a single resistance gene 

often turns out to be inefficient due to adaptation of pathogen populations, which have a high 

evolutionary potential and rapidly evolve by AVR genes mutations to become virulent. For 

instance, the fungus Leptosphaeria maculans, the causing agent of the phoma stem canker 

disease on oilseed rape (Brassica napus), produce new strains by mutations of genes rendering 

the corresponding major host resistance genes ineffective in only three years (Sprague et al., 

2006). Similarly, appearance of new and more virulent pathotypes of the downy mildew 

(Plasmopara halstedii) in sunflower leads researchers to identify new R genes in order to 

combine them in varieties carrying a wide range of resistance genes (Pecrix et al., 2019, 2018). 

Nowadays, major R genes are deployed in cultivars in combination with sustainable disease 

management practices like precise chemical treatments in order to prolong the use of those 

resistance genes (Mitrousia et al., 2018).  

 

In addition, another aspect of genetic resistance is related to a quantitative resistance 

with a partial reduction of symptoms and disease severity (Kamoun et al., 1999). This partial 

resistance is due to quantitative resistance genes localized in genome area named 

Quantitative Trait Loci (QTLs). Even if this resistance is frequently less efficient than gene-for-

gene resistance like R-AVR gene interaction (Hu et al., 2008; Pilet-Nayel et al., 2017), it 

appeared to be more durable, with a lower selection pressure for pathogens, which limit 

mutations, and resistance acquired by the expression of different QTLs is more difficult to 
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circumvent (Poland et al., 2009). For instance, no resistant pea, lentil cultivars are available 

against the oomycete Aphanomyces euteiches that causes the devastating root rot diseases 

of legumes. However, genome-wide association studies based on the model legume Medicago 

truncatula identified one major and several minors QTLs contributing to the tolerance (Badis 

et al., 2015; Bonhomme et al., 2014, 2019). Then some Aphanomyces resistance QTLs were 

identified in pea but fine mapping to identify underlying genes is still challenging (Hamon et 

al., 2013; Desgroux et al., 2016). In lentil, numerous QTLs were recently detected and some 

genes are under validation (Ma et al., 2020; Marzougui et al., 2019). Similarly, the oilseed rape 

(Brassica napus), threatened by stem rot caused by the fungus Sclerotinia sclerotiorum, 

represents another crop with absence of resistant lines. Currently, breeding for Sclerotinia 

resistance in B. napus is only based on germplasms with quantitative resistance genes (Wu et 

al., 2013) and the identification of new QTLs is still an active research (Qasim et al., 2020). In 

rice, where many R genes were characterized, QTLs were also identified. Then, the resistance 

in cultivars to the blast fungus Magnaporthe oryzae is controlled by a combination of both 

major genes and QTLs (Kang et al., 2016). 

 

The use of chemicals to threat animal pathogens invasion triggered also the 

development of chemical-resistance coupled with negative side-effects on the ecosystem. 

Then, alternative strategies have to be developed. In aquatic culture for instance,  biological 

control strategies are under development to control zoosporic diseases due to chytrid fungus 

and oomycetes (Frenken et al., 2019). This include for example a project of immunization 

against the oomycete Saprolegnia parasitica using a serine protease, the identification of 

stimuli able to increase the production of natural antifungal peptides produced by the skin of 

amphibians, or the modification of the pathogen fitness using secondary parasites (Frenken 

et al., 2019). While those projects are promising, much work still needs to be done to 

implement biological-control applications in aquaculture (Frenken et al., 2019). Biocontrol 

strategies are also currently develop to protect plant against pathogens (Köhl et al., 2019). 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Simplified tree of eukaryotes showing the distant relationship between oomycetes 

and fungi.  

SAR is an acronym of its constituents: Stramenopiles, Alveolates, and Rhizaria. Oomycetes and Fungi are highlight 

in red. Adapted from (McGowan and Fitzpatrick, 2020).
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I-2. Oomycetes, so close and yet so far from Fungi 

I-2.1. The false brothers 

Oomycetes were originally considered as members of the kingdom of Mycota, in the 

Opisthokonta clade, with the same classification level as the ascomycetes and basidiomycetes 

within Fungi (Lévesque, 2011).  Even if oomycetes and fungi share common characteristics, as 

filamentous growth in the form of tip-growing branching hyphae, or similar ecological role and 

feeding behaviour (Beakes et al., 2012), oomycetes form a phylogenetic lineage distinct from 

fungi, closely related to brown algae and diatoms among Stramenopiles (Straminipila) 

(Cavalier-Smith and Chao, 2006). Stramenopiles constitute one of the major eukaryotic clades, 

branching with Rhizaria and Alveolata within the ‘supergroup’ SAR (Derelle et al., 2016) (Figure 

1). Major differences at morphological and molecular levels are now evidenced, as oomycetes 

are diploid organisms while fungi are haploid during the majority of their life cycle, 

disseminate mainly asexually with biflagellated zoospores and are mostly auxotrophic for 

sterols (with few exception like Aphanomyces euteiches (Gaulin et al., 2010)). Oomycetes 

develop mostly non-septate hyphae and unlike true fungi, the main structural polysaccharide 

of the oomycete cell wall is cellulose and not chitin (Judelson, 2017), with few exception like 

A. euteiches which contains chitin derivate in the cell wall (Badreddine et al., 2008). Then, 

molecular analysis based on combined protein data and rDNA sequences, and more recently, 

large-scale genome phylogenetic studies confirmed the distant relation of oomycetes from 

true fungi (Baldauf et al., 2000; Burki, 2014; Derelle et al., 2016). 

I-2.2. Lifestyle: oomycete and fungi in front of the mirror 

Although oomycetes and fungi are evolutionarily very distantly related, both taxa 

evolved similar lifestyles. The saprophytic species, which represent a large group of fungi but 

also numerous oomycetes related to Pythium and some Saprolegnian species (Lamour and 

Kamoun, 2009), are able to develop on dead host tissue and perform the initial steps in the 

decomposition macromolecules, like cellulose or lignin on plant cells (Berg et al., 2014). On 

the other hand, many fungal and oomycete species are obligate biotrophs, meaning that they 
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are unculturable on artificial media, and grow only on living cells. Those species require 

metabolic active tissues to achieve their life cycle and then are highly adapted to their host, 

such as downy mildew Plasmopara viticola, which infects grapevine (Vitis vinifera), Albugo 

candida, the causing agent of white rust on crucifers (Kamoun et al., 2015) or the pathogenic 

fungus Blumeria graminis causing powdery mildew on barley (Thomas et al., 2001) and the 

smut fungus Ustilago maydis on corn (Banuett and Herskowitz, 1996). By contrast, many plant 

pathogenic oomycetes or fungi, especially species of the genus Phytophthora, or 

fungi/Ascomycota like Colletotrichum or Magnaporthe, display an intermediate lifestyle called 

hemibiotrophy, starting infections like biotrophs by establishing a transient biotrophic 

relationship with the host, then switch to necrotrophic phase later in the disease cycle 

(Latijnhouwers et al., 2003; Lamour and Kamoun, 2009; Thines, 2018). Finally, necrotrophic 

pathogens kill host tissues to feed during the colonisation like the fungus Botrytis cinerea, the 

causal agent of gray mold, an economically devastating disease, which serves as a model 

species for plant-necrotroph interactions (Petrasch et al., 2019). Pythium represent the largest 

genus of necrotrophic oomycetes, but some aquatic pathogenic oomycetes like Lagenisma 

coscinodisci are also efficient necrotrophic organisms, able to kill marine diatoms in few days 

by hijacking the host’s alkaloid metabolism (Vallet et al., 2019). However, the classification in 

hemibiotrophy or necrotrophy is not always clear, as for the oomycete Aphanomyces 

euteiches that causes root rot of legumes (Judelson and Ah-Fong, 2019). 

 

Both oomycetes and fungi share similar traits for host interaction. Dispersal of 

oomycetes is mediated by water or wind through asexual sporangia or directly by the release 

of asexual motile zoopores from sporangia (Tyler, 2002). Once oomycete zoospores have 

reached host surface, they encyst by shedding their flagella and secrete adhesion molecules 

(Hardham and Shan, 2009; Carzaniga et al., 2001). Asexual spores of fungi as conidies are 

transported by wind and water, before an adhesion step to the host due to the secretion of 

adhesion molecules. The germinated cyst produce hyphae able to penetrate inside cell layers, 

mainly by using a pathogenic structure called appressorium, then vegetative hyphae grow in 

intercellular space and develop haustoria which penetrated inside host cells (Fawke et al., 

2015). Oomycetes and fungi hyphae can also penetrate by natural opening such as stomata 
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Figure 2: Phylogeny of the Oomycetes. 

(A) Consensus phylogeny of the oomycete class within the greater SAR grouping, including information pertaining 

to various taxa. Adapted from (McCarthy and Fitzpatrick, 2017). (B) Maximum-likelihood phylogeny of the 65 

oomycete species based on the concatenation of 102 conserved BUSCO sequences. The stramenopile 

Hyphochytrium catenoides is included as an outgroup. All nodes have 100% bootstrap support except where 

indicated. Species are colored according to their order. Phytophthora clades are indicated as designated by Blair, 

Coffey, Park, Geiser, and Kang (2008) and Pythium clades are as designated by de Cock et al. (2015). From 

(McGowan and Fitzpatrick, 2020). 

 

(Lucas, 2020). Numerous enzymes to break the host barriers (i.e. cell wall, cutin) are also 

produced by oomycetes and fungi during the penetration and colonization steps. However, 

some oomycetes do not form haustoria, like Pythium ultimum or neither appressorium, such 

as Aphanomyces euteiches (Gaulin et al., 2008). Finally, they complete their life cycle by 

producing new asexual spores and/or by making their sexual life cycle/stage. 

I-2.3. Oomycete phylogeny, still a growing tree 

Oomycete phylogeny is still subject to revision due to new genome availability. To 

date, 65 oomycete species have publicly available genome sequences deposited in databases 

(McGowan and Fitzpatrick, 2020) and although many species are yet unsampled, the current 

consensus phylogeny of the oomycetes split them into a basal order and four major “crown” 

orders: the Peronosporales, Pythiales, Albuginales, and Saprolegniales (Beakes et al., 2014; 

McCarthy and Fitzpatrick, 2017; McGowan and Fitzpatrick, 2020) (Figure 2a). The basal order 

of oomycetes includes exclusively marine organisms which are predominantly parasites of 

seaweeds, nematodes or arthropods (Beakes et al., 2012). The Saprolegniales order is the 

most basal of the four major crown orders and includes saprophytes and animal parasites, 

such as the fish pathogen Saprolegnia (Hulvey et al., 2007), and also the plant and animal 

pathogenic Aphanomyces genus (Gaulin et al., 2007) (Figure 2a and b). The Peronosporales 

order includes the largest group of terrestrial organisms and represent the best studied order, 

comprising the well-known oomycete Phytophthora genus. It is also composed by the 

phytopathogenic Phytopythium genus as well as downy mildew such as Hyaloperonospora, 

Plasmopara or Sclerospora genera (Fletcher et al., 2019; McCarthy and Fitzpatrick, 2017; 

McGowan and Fitzpatrick, 2020) (Figure 2a and b). The Pythiales order contains animal and 
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plant pathogens, but also comprises some species able to parasitize fungi and other 

oomycetes, such as Pythium oligandrum. These mycoparasites are used as new types of 

biocontrol agents (Benhamou et al., 2012; Faure et al., 2020). The last member of the four 

crowns are the Albuginales, which include the plant pathogenic Albugo genus (Figure 2a and 

b) which causes “white blister rust” on many valuable crop species. Additionally, few species 

are members of the Lagenidiales genus, a complex taxon still unclearly defines (Spies et al., 

2016). The phylogeny of the 65 available sequenced oomycete species exposed in the recent 

paper of Mc Gowan and Fitzpatrick is presented in Figure 2b. 

I-2.4. Oomycetes, origin(s) and evolution 

The history and the evolution of oomycetes are still an ongoing research, partially 

under debate and regularly update due to the increasing number of available genomes. To 

date, the consensus hypothesis is that Stramenopiles originate from the enslavement of algal 

ancestors by a biflagellate photosynthetic organism. Then oomycetes evolved by multiple 

losses of plastids and genes for phototropism (Cavalier-Smith and Chao, 2006), even if some 

lineages like some Phytophthora species still conserve photosynthesis-related genes (Tyler et 

al., 2006). 

Molecular clock studies, based on complete genome analyses, estimated the origin of 

oomycetes around the mid-Palaeozoic Era, up to 430 million years ago (Matari and Blair, 

2014). This is supported by the discovery of preserved oomycete structures in the fossil 

records from the Carboniferous period (approximately 360 to 300 million years ago during the 

late Paleozoic Era) (Krings et al., 2011). In addition, fossils from the same period evidenced 

the parasitic lifestyle of oomycetes towards plants (Strullu-Derrien et al., 2011). By the way, 

parasitism is widespread in oomycetes lineage, reflecting the radical reconfiguration of 

lifestyle and trophic mechanism from the oomycetes ancestor, changing from carbon fixation 

by photosynthesis and/or digests microbes inside the cell, to a cellular form that processes 

complex substrates in the extracellular environment for transportation into the cell



 
 

 

 

 

 

Figure 3: Gene acquisitions from horizontal gene transfer (HGT) in oomycetes.  

The three major flows of genes are annotated in ovals. Only three broad group of eukaryotes are drawn 

schematically on the tree. Arrows indicate the direction of gene transfer. Multiple acquisitions have occurred 

from different fungal species and bacterial species. Adapted from (Jiang and Tyler, 2012).

Aphanomyces
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(Savory et al., 2015; Beakes et al., 2012). It is thought that horizontal gene transfer (HGT), 

especially from bacteria and fungi, supported this evolution for pathogenicity and virulence 

genes (Jiang and Tyler, 2012; Savory et al., 2015; McCarthy and Fitzpatrick, 2016) (Figure 3). 

Notably, HGT had a major impact upon the evolution of the secretomes of oomycetes, which 

represent all the molecules released out of the cell into the external environment such as 

hydrolytic enzymes, toxins and effectors (Jiang and Tyler, 2012; Savory et al., 2015). 

 

I-3. Effectors, the infectious Swiss knife 

This diversity of lifestyle, coupled with the wide host range and various environment 

displayed by oomycetes and fungi raised questions about genetic and molecular mechanisms 

involved in their evolution and rapid adaptation to their hosts and environmental changes 

(Raffaele and Kamoun, 2012; Judelson, 2012). One answer is that for both oomycetes and 

fungi, success of infection mainly relies on large repertoires of secreted proteins defining the 

secretome. The secretome represents all the molecules secreted by the microbe to adapt to 

new environmental resources or changes in his close environment (McCotter et al., 2016). The 

estimated size of fungi / oomycete secretome range from 4–15% of the total gene number 

(Girard et al., 2013; Pellegrin et al., 2015), with a highly variable composition closely related 

to the niche the microbes reside in (Soanes et al., 2008). This comprises a wide range of 

proteases, lipases, enzymes and small-secreted proteins (SSPs) to achieve functions such as 

nutrient acquisition, detoxification or cell wall manufacture (Feldman et al., 2020; Pellegrin et 

al., 2015). Among secreted proteins, some affect host physiology to neutralize plant defences 

and promote microorganism colonisation, the so-called effectors. Effectors include mainly 

proteins, secondary metabolites but also nucleic acids (e.g. small RNAs) (Wang et al., 2019). 

Therefore, secreted effectors evolved quickly, have different function, localization and may 

affect various host processes to enhance infection.  

 



 
 

 

 

 

Figure 4:  The evolutionary birth and death of effectors.  

(A) New effectors can emerge through gene duplication or the gain of a secretion function. Effector genes may 

also evolve de novo from noncoding sequences through the gain of a regulatory element or be acquired 

horizontally from a different pathogen species. (B) Effector genes can undergo rapid sequence evolution upon 

recognition of the encoded effector by the host. The major mechanism leading to the loss of an effector gene is 

the presence and activity of nearby transposable elements (TEs). The effects of the transposable elements can 

include repeat-induced point (RIP) mutations, epigenetic silencing or the disruption of the gene sequence. Escape 

from recognition can also be mediated by chromosomal rearrangements or the fixation of beneficial mutations. 

Rearrangements and selection for beneficial mutations are also major routes for effectors to optimize their 

function. Abbreviations: ORF, open reading frame; P, promoter regions. From (Sánchez-Vallet et al., 2018). 
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I-3.1. Effector genes evolution 

Effectors show rapid evolution within a given genome as a result of co-evolution with 

their hosts and are often associated with transfers to unrelated host (Dong et al., 2015; 

Raffaele et al., 2010). For instance, protease inhibitors produced by two sisters Phytophthora 

species evolved to target plant proteases of their respective unrelated hosts, linking effector 

specialization and host diversification (Dong et al., 2014). This close link between effectors 

and host adaptation was also revealed by comparative fungal genomic studies showing 

evidences of rapid evolution of effectors in related pathogens with different host ranges 

(Meerupati et al., 2013; Condon et al., 2013; O’Connell et al., 2012; Richards et al., 2019). 

Evasion of host recognition and effector functional optimization is achieved by sequence 

modification, gene deletion, modulation of effector genes expression and the gain of new 

effectors by horizontal gene transfer (Figure 4a) (Lo Presti et al., 2015b).  

Some HGT have been evidenced, like for the transfer of ToxA between three unrelated 

wheat pathogens, leading to isolates that are more virulent (Friesen et al., 2006). Another 

example was reported in the cotton fungal pathogen Verticillium dahlia where lineage-specific 

region that might have originated from Fusarium oxysporum increased virulence on cotton 

but not on other hosts (Chen et al., 2018). Even if the main mechanisms leading to HGT are 

poorly understood, it seems that necrotrophic pathogens are far more susceptible to the 

acquisition of effector genes, particularly with host-specific toxin coding genes (Sánchez-Vallet 

et al., 2018). In oomycetes, gene acquisition by HGT was also evidenced for a cutinase gene 

from bacteria to Phytophthora species (Belbahri et al., 2008), and more extensively reported 

between fungi and oomycetes, at least in Peronosporales (Richards et al., 2011). In addition, 

changes in secretome of Saprolegniales oomycetes due to HGT from bacterial and fungal 

donor lineages were evidenced (Misner et al., 2014). 

 In addition to HGT, other genetic events occurred to evolve effector genes. For 

instance, gene duplications combined with mutations were shown to generate new effector 

genes in the smut fungus Ustilago maydis (Dutheil et al., 2016) (Figure 4a).  

Transposable elements (TEs) were evidenced to play a major role in gene duplication 

and are significantly associated in the formation of virulence gene clusters through non-

homologous recombination (Dutheil et al., 2016). The last generation of sequencing strategies 
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greatly increased the quality of genome assemblies and gave new insight into effector 

evolution and genome organization. Firstly, it revealed that TEs content was often 

underestimated. For example, the last version of Colletotrichum higginsianum genome 

contains 7% TEs whereas it was estimated to only 1.2% in the first assembly (Dallery et al., 

2017). Then, it is now clear that many effector genes are not randomly distributed across the 

genomes and are associated with TEs and repetitive sequences in specific genome 

compartments. These results have led to the “two-speed genome” model in which some 

pathogen genomes have a bipartite architecture with essential genes in the core genome, 

protected from deleterious mutations, and the accessory genome where effector genes take 

place in a rapid evolutionary compartments (Raffaele and Kamoun, 2012; Croll and McDonald, 

2012). 

Rapid host adaptation can lead to effector recognition that triggers host defence. 

Hence, adaptive pressure on effector gene sequence can force mutations in order to modify, 

modulate or delete a given effector to escape host recognition. The most efficient mechanism 

leading to the loss of an effector gene is related to the activity of TEs. TEs can drive multiple 

effects on gene sequence, from gene disruption to repeat-induced point (RIP) mutations 

(Figure 4b). Adaptive loss of function was reported in the fungal pathogen of wheat 

Zymoseptoria tritici, where gene losses affected more than 10% of all genes in the genome, 

including both effectors and genes with conserved functions such as secondary metabolite 

gene clusters (Hartmann and Croll, 2017).  

In addition to TEs activity, two types of mutations are known to modulate effector 

genes evolution (Figure 4b) (reviewed in (Sánchez-Vallet et al., 2018)). The first type of 

mutation consists in substitutions, insertions or deletions that change the protein properties 

of a given effector. The second type of mutation concerns neutral mutations with weak but 

cumulative effects. Fixation of beneficial mutations leads to optimization of the effector 

function and can infer the past selective history at the effector locus (Sánchez-Vallet et al., 

2018). 

Transcriptional silencing of an effector gene is another mechanism involved to escape 

host recognition, which preserve the effector sequence (Gijzen et al., 2014; Whisson et al., 

2012). This was observed for the Phytophthora sojae effector gene Avr3a that is recognized in 

soybean plants carrying the resistance gene Rps3a. Silenced Avr3a alleles were transmitted 
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and persisted over multiple generations suggesting that transgenerational gene silencing at 

this locus mediated the gain of virulence phenotype (Qutob et al., 2013). 

I-3.2. Apoplastic and intracellular effectors 

During eukaryotic filamentous pathogens-plant interactions, two types of effectors can 

be distinguished depending on their localization. Apoplastic effectors proteins (AEPs) stay in 

the plant extracellular space (i.e. apoplast) while intracellular effectors proteins traffic into 

the host cell in various compartments.  

I-3.2 a. Apoplastic effectors: in front of the Wall 

The apoplast is a hostile environment notably due to secreted basal defence 

compounds like proteases, secondary metabolites or hydrolytic enzymes like chitinases 

(Doehlemann and Hemetsberger, 2013; Jashni et al., 2015). The release of PAMPs in the 

apoplast due to activity of plant chitinases or β-glucanases that disrupt microbial cell wall 

integrity leads to their perception through cell surface-localized immune receptors, such as 

Lysin motif (LysM)-containing proteins, which activates plant immune system (Cook et al., 

2015; Liu et al., 2012). Thus, to counteract this first recognition process, numerous fungal and 

some oomycete AEPs have been characterized to evade glycan-triggered immunity or to 

protect cell wall microorganism from degradation (reviewed in (Rocafort et al., 2020)). 

Phytophthora spp. for instance secrete glucanase inhibitor proteins (GIPs) to inhibit the 

degradation of pathogen β-1,3/1,6-glucans and the release of defence-eliciting 

oligosaccharides by host endoglucanases (Rose, 2002; Damasceno et al., 2008). The tomato 

fungal pathogen Cladosporium fulvum secretes two characterized AEPs, the chitin-binding 

effector protein Avr4, which protects fungal hyphae against hydrolysis by plant chitinases (van 

den Burg et al., 2006), and Ecp6, an effector which uses LysM domains that competitively 

sequesters chitin oligomers from host immune receptors leading to the perturbation of chitin-

triggered host immunity (Sánchez-Vallet et al., 2013). Other LysM effectors have been shown 

to contribute to virulence through chitin binding in other plant pathogenic fungi like 

Magnaporthe oryzae, Colletotrichum higginsianum and Verticillium dahlia (Kombrink et al., 

2017; Mentlak et al., 2012; Takahara et al., 2016). Interestingly, AEPs with similar roles to both 

Avr4 and Ecp6 have been described in the fungal wheat pathogen Zymoseptoria tritici 
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(Marshall et al., 2011; Sánchez-Vallet et al., 2020) but also in the mutualistic fungus  

Trichoderma atroviride and in the arbuscular mycorrhizal fungus Rhizophagus irregularis  

(Zeng et al., 2020; Romero-Contreras et al., 2019). This indicates that both pathogenic and 

mutualistic microbes use AEPs to evade glycan-triggered immunity. 

Thus, many characterized AEPs act to supress this glycan-triggered immunity (Rocafort 

et al., 2020) but other families of AEPs have been described. One large group of apoplastic 

effectors commonly found in fungi and oomycetes are cell wall degrading enzymes (CWDEs), 

which play a major role in pathogenicity, contributing to plant cell wall degradation. Thus, this 

family includes hundreds genes coding for enzymes such as cellulases, hemicellulases, 

pectinases, β-1,3-glucanases, glyceraldehyde hydrolases, carbohydrate binding molecules and 

other proteases able to degrade glycoproteins. The aim is to reduce the complexity of the cell 

wall structure to facilitate entry and colonization of the host. In animal pathogen interaction, 

those enzymes are absent and replaced by other specific enzymes. For instance, the plant 

pathogen oomycete A. euteiches possesses a large repertoire of CWDEs coding genes that 

target plant cell wall polysaccharides, absent in Aphanomyces astaci, the causing agent of 

crayfish plague. In turn, A. astaci shows an expansion of protease genes predicted to target 

chitin, the main component of the crayfish shell ((Gaulin et al., 2018) and see CHAPTER IV). 

Recently, it has been shown that a CWDE effector was protected by another AEP, acting as a 

decoy. Indeed, Phytophthora sojae displays an apoplastic effector, called PsXLP1, able to 

promote infection by protecting PsXEG1, another effector with xyloglucanase activity 

essential for full virulence but targeted for inhibition by GmGIP1, a soybean protein. Then, 

PsXLP1 binds to GmGIP1 and functions as a decoy to protect PsXEG1 from the inhibitory action 

of GmGIP1 (Ma et al., 2017). 

Some AEPs are considered as toxins, called necrosis-inducing proteins (NLPs), able to 

cause cell death. NLPs were first identified from culture filtrate of Fusarium oxysporum but 

have been isolated in oomycetes, fungi and bacteria, and have the ability to induce cell death 

and ethylene accumulation in plants (Gijzen and Nürnberger, 2006; Cobos et al., 2019). The 

structure of NLPs is remarkably conserved among long phylogenetic distance, from bacteria 

to oomycetes (Feng et al., 2014; Ottmann et al., 2009). However, the role of NLPs during 

infection is unclear. When studies reported evidences that NLPs function as virulence factors 

that increase pathogen growth in host plants or extend the host range (Veit et al., 2001; 
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Mattinen et al., 2004; Pemberton et al., 2005), others revealed that mutations in some NLP 

genes from various fungi like Fusarium oxysporum or Botrytis cinerea do not reduce their 

virulence (Cuesta Arenas et al., 2010; Bailey et al., 2002). In addition, most identified NLPs are 

perceived by the host as PAMPs leading to the stimulation of PTI, such as NLPs from 

Phytophthora species in Arabidopsis (Qutob et al., 2006, 2002), or from Pythium in various 

dicotyledonous plants (Veit et al., 2001).  

In oomycetes, particularly in Phytophthora and Pythium species, elicitins represent 

another family of small AEPs and display similar characteristics with NLPs. Elicitins are 

structurally conserved and induce a sustained oxidative burst that leads to hypersensitive 

response (HR) cell death in most case (Derevnina et al., 2016). Plants from different botanical 

families perceived elicitins as MAMPs, which induce activation of defence through MAMP-

triggered immunity (MTI) (Derevnina et al., 2016). Then, like NLPs, the role of elicitins is still 

unclear. Since elicitins bind sterol and other lipids (Osman et al., 2001) and given the fact that 

most oomycetes including Phytophthora are sterol auxotrophs, elicitins are proposed to act 

as sterol-carrier proteins (Mikes et al., 1998). As sterols and fatty acids stimulate sexual 

reproduction and oospore production in Phytophthora, elicitins could contribute to the 

appearance of more virulent strains (Chepsergon et al., 2020).    

Finally it is anticipated that some apoplastic effectors, especially cyclic peptides, could 

play a role in self-defence against competitor antimicrobial compounds, or in manipulating 

the apoplastic microbiome to promote host colonization (Snelders et al., 2018; Rocafort et al., 

2020). 

I-3.2 b. Intracellular effectors: Destroy from within 

 

The second class of effectors are secreted proteins translocated to the host cytoplasm 

or intracellular compartments. In oomycetes, the first (and the largest) family of cytoplasmic 

effectors, named RxLR effectors, were identified by comparative sequence analysis of 

predicted secreted avirulence proteins from several oomycete species, leading to the 

identification of a conserved amino acid motif, namely the RxLR-EER motif (Rehmany et al., 

2005). Thus more than 350 RxLRs effectors characterized by their R (arginine) – X (any amino 
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acid) – L (Lysine) – R (arginine) motif after signal peptide sequence, were predicted in 

Phytophthora species (Tyler et al., 2006). Then presence of RxLR genes was evidenced in 

numerous Phytophthora species, where several hundred putative RxLRs were predicted  (Haas 

et al., 2009; Jiang and Tyler, 2012), but only one in Saprolegniales species (Trusch et al., 2018). 

Finally, RxLR and RxLR-like effectors may also be present in fungi (Kale and Tyler, 2011) as in 

the endophytic fungus Piriformospora indica (named later Serendipita indica) in which 5 

proteins with a degenerated RxLR motif were predicted to be secreted but none of them were 

found to be up-regulated during colonization of barley roots (Zuccaro et al., 2011). 

RxLR proteins contain a conserved N-terminal motif in addition to a predicted signal 

peptide and a highly variable C-terminal part that allows biological function (Birch et al., 2006). 

It was proposed that the RxLR motif acts as a signal for host delivery (Whisson et al., 2007; 

Dou et al., 2008). In addition, RxLR effectors have been reported to translocate into host cells 

in the absence of the pathogen, after binding of the RxLR motif to lipids via phospholipid-

mediated endocytosis (Kale and Tyler, 2011; Kale et al., 2010). However, studies made on 

other RxLR effectors could not observed this entry mechanism and finally exclude the 

phospholipid binding as a general host entry mechanism (Gan et al., 2010; Yaeno and Shirasu, 

2013; Wawra et al., 2012). Then, pathogen-independent translocation of effectors into plant 

cells is controversially discussed and the entry mechanism of effectors is still unclear (Wawra 

et al., 2013). A recent study demonstrated that the RxLR motif of the Phytophthora infestans 

effector AVR3a was cleaved before secretion (Wawra et al., 2017). Even more recently, in the 

oomycete Saprolegnia parasitica, it was reported that the uptake process of the RxLR protein 

SpHtp3 is guided by a gp96-like receptor via its C-terminal region, but not by the N-terminal 

RxLR motif (Trusch et al., 2018). After translocation into host cell, a major part of RxLR 

effectors target nucleus, but some have a nucleo-cytoplasmic localization when others 

accumulate in membranes (Sperschneider et al., 2017), as described for the oomycete 

Hyaloperonospora arabidopsidis (Caillaud et al., 2012).  

The identification of RxLR effectors with conserved motif and the availability of 

Phytophthora infestans genome lead to the discovery of another family of intracellular 

effectors named CRNs, for CRinkling and Necrosis effectors. CRNs were first identified in the 

plant pathogenic oomycete Phytophthora infestans. To identify pathogen-secreted proteins 

potentially involved in the manipulation of host processes, a large screen of cDNA coding for 
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secreted proteins were expressed in N. benthamiana and tomato leaves. Two of which, named 

CRN1 and CRN2, presenting similarities at the sequence level were found to cause a CRinkling 

and Necrosis (CRN) phenotype when expressed in plant tissue (Torto et al., 2003). Like RxLR 

proteins, CRNs present a modular architecture with a conserved N-ter signal characterized by 

LxLFLAK-derived amino acid sequence (with possible variation) followed by a highly variable 

C-ter domain (Schornack et al., 2010). With the increasing number of available genomes, many 

studies performed on other oomycetes revealed that, in contrast to the RxLR protein family, 

CRN coding genes are widespread in oomycete lineage, and were found in all plant pathogenic 

oomycetes sequenced to date including Peronosporales (Haas et al., 2009; Tyler et al., 2006; 

Baxter et al., 2010), Albuginales (Kemen et al., 2011), Pythiales (Adhikari et al., 2013; Lévesque 

et al., 2010) and Saprolegniales (Gaulin et al., 2008). Some CRN-like coding genes were also 

predicted in the animal pathogen Aphanomyces astaci, the causing agent of the Crayfish 

plague ((Gaulin et al., 2018) and see CHAPTER IV). The identification of hundreds CRNs genes 

in Aphanomyces species, which are early divergent species among the “crown” oomycetes, 

suggests that CRNs are an ancient class of conserved oomycete effector proteins (Schornack 

et al., 2010). 

CRNs have a modular architecture with two distinct protein regions. The N-terminus 

domains, composed around 130 amino acids (aa), contains a conserved LxLFLAK or LxLFLAK-

derivate motifs (within the first 60 aa) and more diversified DWL domains. Another highly 

conserved HVLVxxP motif marks the end of the N-terminal region (Figure 5a). This N-terminal 

part is presumed to specify the secretion and the translocation of the protein into the host. 

The functionality of CRNs N-termini domain was initially tested via an infection-translocation 

assay ((Schornack et al., 2010) and see P29-30 of this manuscript for more details). In this 

study, three CRN N-termini of P. infestans (CRN2, CRN8 and CRN16) and one A. euteiches 

(AeCRN5) were fused to C-terminal domain of the P. infestans Avr3a RxLR protein, and 

introduced in Phytophthora capsici. Those strains were used to infect transgenic N. 

benthamiana leaves expressing the potato resistance protein R3a. 



 
 

 

 

 

Figure 5: CRNs structure analysis (adapted from (Amaro et al., 2017)) . 

(A) Initially CRN N-termini contain a conserved structure featuring: a signal peptide for secretion; an LXLFLAK 

domain containing the respective LXLFLAK motif connected with translocation; and a DWL domain that ends in 

a conserved HVLVVVP motif that marks the end of CRN N-terminus. This site is predicted as a hot spot for 

recombination events. In contrast, CRN C-termini were shown to exhibit a large variety of domain structures (not 

depicted here). (B) Zhang et al. (2016) redefined CRN structure. CRN N-termini (renamed header domains) from 

the two Phytophthora species analyzed (P. infestans and P. sojae) all feature an Ubiquitin like (Ubl) domain that 

is thought to be responsible for secretion and translocation into the host cell. CRN C-termini (also named CR-

toxin domains) feature distinct domain architectures, having enzymatic origins. The majority of Phytophthora 

CRN C-termini contained the depicted domain structure (NTPase + HTH + REase). (C) Summary of domain 

architectures predicted to occur in Phytophthora (from Zhang et al., 2016). The number of CRN proteins with 

each given domain architecture/composition are indicated between brackets. Figure from (Amaro et al., 2017).

A 

B 

C 
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As chimera proteins induced avirulence by the recognition of the R3a protein, it was 

concluded that those N-termini domains allow secretion and translocation of C-termini CRN 

proteins into host cells. Even more, mutations in the LxLFLAK conserved motif indicate that 

these motifs are necessary for translocation function. Importantly, N-termini domains of 

AeCRN5 and CRN16 were demonstrated to be functional, even if no signal peptide were 

predicted in the first 30 amino acids. These results demonstrate that despite the absence of 

signal peptide, which was reported for numerous CRNs (Stam et al., 2013b; Voß et al., 2018; 

Amaro et al., 2017; Adhikari et al., 2013; Gaulin et al., 2018), an unpredictable secretion signal 

is present in this region and ensure secretion of CRNs in oomycetes (Schornack et al., 2010).  

A recent study proposed to reconsider the requirement of LxLFLAK motifs in CRN 

translocation and challenged the classification of CRNs proteins as members of a larger order 

of Eukaryotic effectors (Zhang et al., 2016). In this paper, authors performed multiple in silico 

analyses using a combination of sequence alignments and structure prediction programs, 

coupled to comparative genomics to assess CRN occurrence across the Eukaryote taxon. 

Results of those analyses ruled out the presence of signal peptides and indicate that the 

proteins containing the LxLFLAK motif but also numerous proteins lacking this motif were 

predicted to have an ubiquitin-like structure, similar to those found in the N-terminal region 

of SSK1 (mitogen activated protein kinase) / Mcs4 (mitotic catastrophe suppressor 4) 

signalling proteins in fungi. The LxLFLAK motif was located in strand 2 and 3 of this ubiquitin-

like domain (Ubl), suggesting that structural features rather than sequence conservation 

underpin CRN translocation (Zhang et al., 2016). Authors then renamed the N-terminal region 

as a Header Domain (Figure 5b). SSK1 orthologs play important roles in stress responses in 

various true fungi, such as oxidative and osmotic shock, and in some cases in a 

phosphorylation-dependent manner, employing an interaction between their N-terminal 

domains and a MAPKKK heteromer (Morigasaki and Shiozaki, 2013; Yu et al., 2016). From this, 

the authors suggest that CRN Ubl N-terminal domains could facilitate translocation inside the 

host by analogous mechanisms (Zhang et al., 2016) but functional studies are require to 

support this new concept. Similarly, the classification of CRN C-termini was challenged by the 

study of Zhang and colleagues (Zhang et al., 2016). Initially 36 different conserved subdomains 

that can assemble in different combinations defining C-terminal subfamilies were identified 

in P. infestans (Haas et al., 2009). Then it has been proposed that the highly variable 
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organisation of C-termini was the result of recombination events between subdomains. 

Following studies indicated that among oomycetes, most of these subfamilies are present and 

that specific subfamilies can also be found. For example, in P. capsici, 30 of these subfamilies 

are present while 7 new subfamilies appear specific to this species (Stam et al., 2013b). 

Similarly,  in A. euteiches, 160 CRN gene models have been described, among which 12 C-

termini domains are novel subdomains (Gaulin et al., 2008). In the study of Zhang and 

colleagues, even if high levels of diversity are still present, the re-classification of CRN C-

terminal domains led to a limited set of domain configurations that were found to be 

prevalent. Numerous CRN C-termini are related to enzymatic activities (Figure 5c). For 

instance, one-fourth of all CRN C-termini analysed contains a P-loop NTPase domain, coupled 

with a nuclease domain of the restriction endonuclease (REase) superfamily. In the same way, 

approximately one-sixth of the C-termini domains harbour REase superfamily domain 

combined with protein kinase domain. Then, those NTPase or Kinase domains, but also other 

domains like HNH domain, could regulate REase activity or affinity toward nucleic acids (Zhang 

et al., 2016), suggesting that targeting nucleic acids could be a shared feature among CRNs. 

This hypothesis is supported by two studies that report the DNA binding activity of CRN 

proteins in addition to the nuclear localization of numerous CRNs (Song et al., 2015; Ramirez-

Garcés et al., 2016; Amaro et al., 2017). 

CRN-like proteins were identified outside oomycete lineage, in the fungal pathogen 

Batrachochytrium dendrobatidis (Bd) and in the fungal symbiont Rhizophagus irregularis (Sun 

et al., 2011; Lin et al., 2014). The presence of CRN-like proteins in such different organisms 

suggests a HGT event or the presence CRN genes in early eukaryote progenitors (Sun et al., 

2011; Lin et al., 2014). Bd causes chitridiomycosis and is responsible for the declines of 

amphibian population worldwide (Fisher et al., 2012; Scheele et al., 2019). Genome analyses 

of Bd strains revealed 84 CRN-like sequences presenting up to 46.5 % of similarity to CRNs of 

P. infestans, with a conserved  modular architecture, comprising both LxLFLAK-derived signal 

and C-ter domains organization (Sun et al., 2011; Joneson et al., 2011). Comparative analyses 

of Bd with its closest relative, the non-pathogenic chytrid fungus Homolaphlyctis polyrhiza, 

highlight the absence of CRN-like sequences, suggesting a link between pathogenic processes 

and CRN effectors (Joneson et al., 2011). However, 42 genes were predicted with high 

sequence similarity and canonical amino acid motifs of CRNs in the arbuscular 
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endomycorrhizal (AM) fungus Rhizophagus irregularis (Lin et al., 2014). The functional 

characterization of the RiCRN1 protein evidenced the biological role of this Crinkler in the 

establishment of the symbiosis, especially on the initiation of arbuscule development (Voß et 

al., 2018). Furthermore, the study of Zhang et al. revealed that CRN effectors are also present 

in free-living eukaryotes and land plants that are not known to have a pathogenic lifestyle, 

indicating that CRNs are widespread in Eukaryotes (Zhang et al., 2016). Thus it was proposed 

that CRN proteins could be firstly involved in inter-organismal conflicts, after which in some 

host-pathogen interactions, these proteins were co-opted as effectors (Zhang et al., 2016; 

Amaro et al., 2017). 

In contrast to oomycetes, intracellular fungal effector lacks a conserved sequence that 

facilitate their prediction; therefore, their identification relies on small-secreted proteins 

(SSPs). Typical fungal pathogens possess several hundreds and sometimes more than a thousand 

of these SSP effectors. SSPs are defined as proteins of less than 300 amino acids with a signal 

peptide and devoid of any functional domains. Many SSPs are coded by orphan genes, lacking 

known domains or similarities to known sequences, and usually are cysteine-rich proteins. 

Large repertoires of SSPs have been evidenced upon genome annotation of fungi interacting 

with plants (Duplessis et al., 2011; O’Connell et al., 2012), nematodes (Meerupati et al., 2013), 

insects (Hu et al., 2014) and human (Vivek-Ananth et al., 2018). Thus, SSPs were initially 

described as virulence effectors produced by pathogens, but finally large repertoire of SSPs 

were also predicted in mycorrhizal fungi (Martin and Selosse, 2008; Kamel et al., 2017) and 

their role in the establishment of symbiosis evidenced, like MiSSP7 from the ectomycorrhizal 

fungus Laccaria bicolor (Plett et al., 2011, 2014). SSPs were also reported in bacteria in the 

plant pathogen Pseudomonas syringae (Shindo et al., 2016), and finally within the scope of 

this PhD study, SSPs were described in oomycete genomes ((Gaulin et al., 2018) and see 

CHAPTER IV).  

Within the fungal kingdom, the proportion of SSPs ranges from 40 to 60% of the 

secretome across all lifestyles and phylogenetic groups (Feldman et al., 2020; Pellegrin et al., 

2015; Kim et al., 2016). However, it seems that this proportion may vary depending on the 

lifestyle. For instance obligate biotrophs likely encode more and diverse effector-like SSPs to 

suppress host defence compared to necrotrophs, which generally use cell wall degrading 

enzymes and phytotoxins to kill hosts (Kim et al., 2016). Comparative analyses of secretomes 
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also identified shared or lifestyle-specific SSPs between saprotrophic and Ectomycorrhizal 

(ECM) fungi, indicating that presence of SSPs is not limited to fungi interacting with living 

plants (Pellegrin et al., 2015). 

Some sequence similarity leads to the classification of SSPs in superfamily as in 

Blumeria graminis. Sequence analyses of candidate secreted effector proteins (CSEPs) of the 

powdery mildew revealed that 25% of those CSEPs, highly expressed in haustoria, contain 

features resembling catalytically inactive RNases. Thus, they are part of the superfamily of 

RnAse‐Like Proteins associated with Haustoria, the so‐called ‘RALPH’ effectors (Pedersen et 

al., 2012). Recently, a new family of small fungal effectors, that has particularly expanded in the 

fungus Magnaporthe oryzae, was described (de Guillen et al., 2015) and was called the MAX 

family for Magnaporthe Avrs and ToxB-like effectors. Despite sharing little protein sequence 

similarity, MAX effectors are characterized by a conserved structure. Those effectors have 

different shapes and surface properties suggesting that they target different host processes. 

How SSPs are addressed within the host cytoplasm is still an opening question, but 

when transiently express in planta, numerous SSPs localized  in nucleus or nucleolus, but some 

can be found in mitochondria or chloroplasts (Petre et al., 2015). Recently, plant Golgi, 

peroxisomes and microtubules were also reported as targets for fungal SSPs (Robin et al., 

2018).  

I-3.3. Intracellular effectors targets: hit the defence key players 

To promote microbial colonization, effectors could favour microbial growth by 

manipulating plant defences and/or by enhancing invader nutrition. Thus, functions and 

targets of intracellular effectors are diverse and range from altering plant cellular metabolic 

pathways, signalling cascades, RNA silencing, transcription, trafficking and interfering with 

DNA machinery.  

One of the primary mechanism targeted by intracellular effectors is to supress the host 

response by targeting crucial compounds. For instance, the two essential defence 

phytohormones salicylic acid (SA) and jasmonic acid (JA) that act antagonistically in response 

to pathogen infection (Niki et al., 1998) can be modulated by effectors. Cmu1, from the maize 

pathogenic fungus Ustilago maydis, is secreted into the host cell and acts as a chorismate 
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mutase to reduce SA levels during infection (Djamei et al., 2011). Similarly, effectors Pslsc1 

from Phytophthora sojae and Vdlsc1 from Verticillium dahliae reduce the amount of SA by 

hydrolizing isochorismate, a precursor to SA, when expressed within plant cells (Liu et al., 

2014). HaRxLR44 from the oomycete Hyaloperonospora arabidopsidis degrades Mediator 

subunit 19a (MED19A) to alter the balance of JA and SA, which affects defence-related 

transcriptional changes (Caillaud et al., 2013). Other plant metabolites can also be modulated 

by effectors. The SSP Tin2, from Ustilago maydis, prevents the degradation of the maize 

protein kinase ZmTTK1, which is responsible for the activation of genes involved in 

anthocyanin biosynthesis. This overproduction of anthocyanins turns to plant defence 

detriment, since anthocyanin biosynthesis competes with tissue lignification, promoting the 

pathogen to reach vascular tissue due to a lower content of lignin (Tanaka et al., 2014). 

Additionally, the RxLR PSE1 from Phytophthora parasitica interferes with auxin physiology 

through the redistribution of auxin efflux carrier proteins, modulating auxin content which 

enhances pathogen infection (Evangelisti et al., 2013). 

Another key point of plant defence response is the reactive oxygen species (ROS) 

production, which plays a role in MTI, phytoalexin production, callose deposition and systemic 

acquired resistance (SAR) (O’Brien et al., 2012). Crinkler PsCRN63 from Phytophthora sojae 

interacts and destabilizes plant catalases to promote plant cell death, whilst PsCRN115 inhibits 

the catalases degradation to maintain the proper H202 levels and block plant cell death (Zhang 

et al., 2015). 

Plant defence responses are also dependent on signalling pathways like MAPK cascades, which 

are essential for both MTI and ETI. Then it is not surprising to find effectors that evolved to 

block these pathways. For instance, the RxLR PexRD2 from P. infestans interacts with the 

kinase domain of MAPKKKε to interrupt plant immunity-related signalling (King et al., 2014).  

 Some effectors play a role in the disruption of various trafficking pathways that lead to 

the secretion of defence proteins. In Blumeria graminis, BEC4 Interacts with ARF-GAP protein, 

a key player of membrane vesicle trafficking in eukaryotic cells (Schmidt et al., 2014). Pi03192, 

an RxLR from P. infestans is able to prevent the re-localisation of two plant NAC transcription 

factors from the endoplasmic reticulum to the nucleus (McLellan et al., 2013). To ended, still 

in P. infestans, PexRD54 stimulate autophagosome formation through binding to the 

autophagy protein ATG8CL (Dagdas et al., 2016). This activation of autophagy suggests that 
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the pathogen produce this effector to selectively eliminate some of the molecules that the 

plant use to defend itself (Dagdas et al., 2016). 

Another major defence mechanism is RNA silencing. This process was firstly described 

in plant-virus interactions, where viral RNA is recognized as a MAMP and induces small 

interfering RNAs (siRNAs) which trigger the cleavage of viral RNAs. In response, viruses have 

developed suppressors of RNA silencing to allow the virus proliferation in the host (Vance, 

2001). This defence system is also targeted by other microbes. PSR1 and PSR2, two RxLR 

effectors from P. sojae, suppress RNA silencing and enhance susceptibility to P. sojae (Qiao et 

al., 2013). PSR1 is able to bind with a conserved nuclear protein called PSR1-interacting 

protein 1 (PINP1), which is involved in small RNA biogenesis. Alteration of small RNA 

production in plants leads to developmental defects and hyper-susceptibility to Phytophthora 

infections, which is similar to transgenic plants expressing the PSR1 protein (Qiao et al., 2015). 

A PSR2-like effector was found in the related species Phytophthora infestans with the same 

RNA silencing suppression activity, meaning that PSR2 represents a prevalent effector family 

conserved within the genus Phytophthora (Xiong et al., 2014). Then, in viruses and oomycetes, 

RNA silencing suppression is a key strategy for infection (Qiao et al., 2013). 

Inhibition or alteration of gene transcription in order to down regulate genes involved 

in defence responses is also a common process shared by various microorganisms to facilitate 

the association with the plant. In Rhizophagus irregularis, SP7 targets nucleus and interacts 

with the transcription factor ERF19 to block the plant immune system (Kloppholz et al., 2011). 

The RxLR PsAvh23 from P. sojae disrupts the formation of the ADA2-GCN5 subcomplex and 

subsequently represses the expression of defence genes by decreasing GCN5-mediated 

H3K9ac levels, suggesting that the pathogen manipulates host histone acetylation to gain 

virulence (Kong et al., 2017).  

Transcription can also be altered by effectors which bind directly to nucleic acids, like 

PsCRN108 from P. sojae which targets HSP promoters to block association with heat shock 

transcription factors (Song et al., 2015). Furthermore, nucleic acids and especially DNA itself 

could be targeted, as AeCRN13 from Aphanomyces euteiches, where it binds directly to DNA 

and triggers double strand breaks (Ramirez-Garcés et al., 2016).  
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Finally, the vast majority of intracellular effectors from different fungal and oomycete 

families, including RxLR, CRNs and SSPs, localizes in nucleus when expressed in host tissue. 

Since it was evidenced that plant DNA is altered during infection of various pathogens (Song 

and Bent, 2014) and regarding the large number of intracellular effectors that target nucleus, 

we propose that DNA-damaging effectors could be a family of proteins involved in plant-

filamentous pathogen interactions and represents the subject of the Chapter II of this thesis 

(see Chapter II: DNA-Damaging Effectors: New Players in the Effector Arena). 

 

 

 

I-4. Aphanomyces: an oomycete genus to study effectors 

and host adaptation 

 

The Aphanomyces genus belongs to the Saprolegniales order and has been shown to 

contain three major lineages, including plant pathogens, aquatic animal pathogens, and 

saprophytic species (Diéguez-Uribeondo et al., 2009), making this genus an interesting model 

to understand evolutionary mechanisms involved in adaptation of oomycetes to distantly 

related hosts and environmental niches (Figure 6). It contains around 40 species, but this 

number is inconsistent due to the difficult culture and identification of some species. 



 
 

 

 

Figure 6: Phylogeny of Aphanomyces genus, lifestyle and principal hosts. 

This consensus phylogenetic tree is based on analyses of ITS sequences of nuclear rDNA of the principal 

Aphanomyces spp identified. Principal hosts are indicated next to the species name. The phylogenetic tree 

correlates to the lifestyles species: a plant pathogen lineage, a saprophytic / opportunistic lineage and animal 

pathogenic lineage. A. laevis is generally assigned as saprotroph but one study has reported a larvicidal activity 

in mosquito larvae (Patwardhan et al., 2005). The position of A. stellatus is not yet clearly defined. It has been 

found as a free-living species but its ITS sequence analyses branched it with A. laevis into the animal parasitic 

lineage (Sarowar et al., 2019). The scheme was performed based on (Diéguez-Uribeondo et al., 2009; Patwardhan 

et al., 2005; Sarowar et al., 2019; Iberahim et al., 2018).
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Most of these species are aquatic animal parasites, such as A. invadans, A. piscicida 

and A. frigidophilus, which infect a wide range of freshwater and estuarine fishes. 

Aphanomyces astaci, the causing agent of the crayfish plague, has been nominated among the 

“100 of the World’s Worst Invasive Alien Species” in the Global Invasive Species Database 

(Gaulin et al., 2018). Two more species are related to animal parasitic lineage with less 

confident evidences. A. laevis is generally assigned as saprotroph but one study has reported 

a larvicidal activity in mosquito larvae (Patwardhan et al., 2005). Similarly, A. stellatus was 

considered as a saprotroph but one study reported that it can act as opportunistic pathogen 

on crustaceans (Royo et al., 2004). Furthermore, ITS sequence analyses branched it with A. 

laevis into the animal parasitic lineage (Sarowar et al., 2019).  

A second lineage includes species with prevalence for saprophytism as A. repetans and 

A. helicoïdes and can exhibit opportunistic parasitism, notably on crayfish (Diéguez-Uribeondo 

et al., 2009).  

The third lineage is related to plant parasitic species that is restricted to Aphanomyces 

genus in the Saprolegniales order. Within, A. cladogamus has a broad range of hosts including 

different families such as Fabaceae (e.g. common bean), Poaceae (e.g. barley), Solanaceae 

(e.g. tomato) and Chenopodiaceae (e.g. spinach). At the opposite, A. cochlioides is confidently 

reported so far only on sugar beet. In the same way, A. euteiches seems to be restricted to 

Fabaceae species (Diéguez-Uribeondo et al., 2009). 

The diversity of lifestyles and hosts in Aphanomyces species is in contrast with species of the 

Peronosporalean lineage that are mainly phytopathogens, giving to Aphanomyces genus a 

special taxonomic position towards Peronosporales, but also among Saprolegniales, mostly 

composed by aquatic animal pathogens (with few exceptions for Achlya spp. (Choi et al., 

2019).  

I-4.1. Aphanomyces euteiches, the Legume threat 

Among the most damaging Aphanomyces species is the root rot legume pathogen 

Aphanomyces euteiches. Aphanomyces euteiches Drechs was firstly described by Jones and 



 
 

 

 

Figure 7: Life cycle of Aphanomyces euteiches. 

(1) Oospores present in the soil germinate and produce a sporangium. (2) At the sporangium apex, primary 

spores release hundreds of bi‐flagellate motile zoospores through a pore of their cell wall (asexual reproduction). 

(3) Zoospores produce adhesive molecules and adhere to root cells to encyst, losing their flagella. (4) Germinated 

cyst produced coenocytic hyphae, which develop between the cells, in the extracellular space. (5) Growing 

hyphae colonize the root system and subsequently progress to hypocotyls. (6) Differentiation of hyphae into 

antheridia and oogonia leads to sexual reproduction, where haploid nuclei from antheridia are delivered into 

oogonia to produce diploid oospores. (7) Decaying tissue release oospores that can remain in soil for many years, 

ready to infect new hosts. Adapted from (Hughes and Grau, 2007).
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Drechsler (1925) after analyses on various pea diseases in the United States. Nowadays, it is 

reported that A. euteiches causes significant damages to various legume crops worldwide 

(Gaulin et al., 2007), including pea (Pisum sativum), alfalfa (Medicago sativa), faba bean (Vicia 

faba), common bean (Phaseolus vulgaris), lentil (Lens esculenta puyensis), the red and white 

clover (Trifolium pratense and T. repens) and can also infect the leguminous model plant 

Medicago truncatula (Badis et al., 2015; Bonhomme et al., 2014). However, virulence and 

symptoms are variable from one host to another. Distinct subspecific groups based on 

genotype and host preference have been defined resulting in two major pathotypes: pea-

infecting strains and alfalfa infecting strains from the USA and from France (Malvick and Grau, 

2001; Wicker et al., 2001). Economically, A. euteiches is a major concern for pea production 

and causes devastating root rot disease in many pea-growing countries including Europe 

(especially in France), Australia, New Zealand, and throughout the USA. Plants can be infected 

at any age, but germinated seeds are the most susceptible (Pilet-Nayel et al., 2018). 

Aphanomyces life cycle harbours sexual and asexual stages that occur in soil. Sexual 

reproduction leads to the formation of oospores, which can survive in soil for up to 10 years 

(Papavizas and Ayers, 1974). The presence of a root triggers oospore germination, leading to 

a germ tube and a long terminal zoosporangium that can release more than 300 bi‐flagellate 

motile zoospores (Gaulin et al., 2007) (Figure 7). The morphology of the zoospores and 

especially the structure of their two flagella is a common attribute in oomycetes. To target 

host tissue, it has been shown for various oomycetes that the motile zoospores are 

chemotactically attracted by compounds from root exudates (reviewed in (Walker and van 

West, 2007). For instance, zoospores of Aphanomyces cochlioides show chemotaxis towards 

the host derived flavone cochliophilin A (Sakihama et al., 2004). After reaching the host, the 

zoospores encyst, releasing adhesive chemicals to adhere to the host tissue, leading to the 

loss of both flagella and the formation of a primary cell wall (Figure 7). Zoospore encystment 

and germination is regulated by calcium ions (Warburton and Deacon, 1998). Unlike other 

plant pathogenic oomycete such as Phytophthora infestans, the presence of appressorium, a 

specific penetration structure, has never been reported for A. euteiches. Once entered inside 

the root tissue, A. euteiches forms extracellular coenocytic hyphae (multiple nuclei) (Gaulin et 

al., 2007) (Figure 7). Then the pathogen colonize the entire root and reach the stem, provoking 

the disintegration of cortex tissue leading to water-soaked areas of roots, which become 

brownish. After few days, haploid antheridia (male reproductive structures) and oogonia 
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(female reproductive structures) are formed. Then antheridia deliver male nuclei to oogonia 

through fertilization tubes, resulting in the formation of diploid oospores (Figure 7).  

Efficient chemical controls do not exist, fully resistant pea nor alfalfa cultivars neither. 

Then, prophylactic measures and crop rotation are preconized, such as cultivating non-host 

legume like lupin (Lupinus angustifolius) or chickpea (Cicer arietinum). However, the 

development of tolerant cultivars appears to be the most effective and promising 

management available to farmers. Various studies identified several quantitative trait loci 

(QTLs) that mediated the partial resistance in pea (Hamon et al., 2013; Desgroux et al., 2016; 

Lavaud et al., 2016). In parallel, whole genome sequencing data combined with genome-wide 

association studies (GWAS) performed on the model plant M. truncatula allowed the 

identification of promising QTLs involved in the resistance to the parasite (Bonhomme et al., 

2014, 2019). 

I-4.2. Aphanomyces euteiches – Medicago truncatula pathosystem 

To decipher the molecular interactions between host plants and A. euteiches, from 

mechanisms of partial resistance to the role of effectors in the infection process, our research 

group developed an Aphanomyces euteiches / Medicago truncatula pathosystem. Medicago 

truncatula is a well-known legume model plant closely related to the cultivated alfalfa (M. 

sativa), able to engage root symbioses with both nodulating bacteria and arbuscular 

mycorrhizae fungi (Jones et al., 2007; Parniske, 2008). Furthermore, Medicago truncatula is a 

natural host for various crop legume pathogens, including A. euteiches. Additionally, a wide 

collection of mutants and natural genotypes are available for the scientific community and 

genomic resources include sequences of almost 300 accessions (Stanton-Geddes et al., 2013). 

A. euteiches reference strain used in the lab is a pea infecting strain (ATCC 201684) and M. 

truncatula genotypes display wide range of tolerance to this strain. Two accessions are 

commonly used for their opposite resistance degrees to A. euteiches, the A17 Jemalong line 

which is partially resistant, and at the opposite the highly susceptible F83005.5 line.  

A clear contrast in tolerance is evidenced with in vitro infection assays performed on 

A17 and F83005.5 lines. In both lines, upon inoculation of roots with zoospores, A. euteiches 



 
 

 

Figure 8: Infection model in the Aphanomyces euteiches/Medicago truncatula pathosystem. 

(A) Macroscopic symptoms of M. truncatula susceptible line F83005.5 and partially resistant line A17 infected 

with A. euteiches spores in in vitro conditions. Pictures were taken at 15 days post inoculation (dpi). Adapted 

from (Djébali et al., 2009). (B) Cross-sections of infected roots showing full invasion (F83005.5) and partial 

invasion (A17) by A. euteiches (in green). Plant cell walls are coloured in red. A17 plants produced antimicrobial 

phenolic compounds (in blue) in the central cylinder. Pictures were taken at 21 dpi. Adapted from (Djébali et al., 

2009). (C) Scheme of a transversal section of a root infected by A. euteiches (in green).
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On the left side, the scheme describes infection in F83005.5 were an asexual spore (S) has landed on the 

rhizoplane and germinated to produce a germ tube giving rise to an infectious hyphae that directly penetrates 

root cortex tissues (a). Hyphae develops between root cells of cortex which becomes completely colonized 6 

days post inoculation. Cortical cells died as A. euteiches develops leading to root disassembly and water-soaked 

symptoms typical of root rot disease (b). The pathogen reaches the vascular cylinder before completion of its 

cycle (not shown) (c). On the right side, the infection is depicted in the tolerant host (A17) were the plant 

produces supplementary pericycle cell layers with higher levels of lignin in their cell walls, reinforcing the root 

stele. In addition to this mechanical barrier, cells produce antimicrobial compounds (in blue) (d). These 

cytological responses restrain the advance of the pathogen to the vascular cylinder. Scheme from (Ramirez-

Garces, 2014). 

 

hyphae penetrate inside the roots and grow between cells of the outer cortex tissue within 1 

day. As mentioned above, no specialized infectious structures as appressoria or haustoria have 

been reported. The pathogen presents an intercellular development and invades the whole 

cortex area within 3 to 6 days. 15 days post inoculation (dpi) with A. euteiches zoospores, 

susceptible F83005.5 plants harbour no or few leaves and very few secondary roots, while the 

tolerant A17 plants still develop aerial part and present branched brownish roots (Figure 8a). 

At 21 dpi, most of susceptible plants are dead (Djébali et al., 2009). While oomycete cell wall 

is mostly composed by cellulose, A. euteiches has an original cell wall containing around 10% 

of chitosaccharides exposed at the cell wall surface (Badreddine et al., 2008; Nars et al., 2013). 

This structural characteristic allows the staining of hyphae using wheat-germ agglutinin lectin 

(WGA) coupled with fluorophore. Confocal analyses performed on cross section of inoculated 

A17 or F83005 roots revealed a whole colonization of all cell layers in the susceptible lines, 

indicating that the pathogen reached the central cylinder (Figure 8b). Invasion of vascular 

system in F83005 lines seems to start after 6 dpi and is confirmed at 15 and 21 dpi. In contrast, 

in the tolerant A17 plants, A. euteiches hyphae were restricted to the root cortex, where 

defence related phenolic compounds are produced (Figure 8b) (Djébali et al., 2009). In 

addition to phenolic compounds production, A17 plants produce supplementary pericycle cell 

layers coupled with a reinforcement of the cell walls that might act as a physical barrier for 

the invading hyphae (Figure 8c). Furthermore, partial resistance of A17 is correlated to an 

increase of lateral roots (Djébali et al., 2009).
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Genetic approaches coupled to the characterization of infection phenotypes in M. 

truncatula have led to the identification of a major QTL (Djébali et al., 2009). Forward GWAS 

experiments refined this result and identified several candidate genes and pinpointed two 

independent major loci (Bonhomme et al., 2014). Within the most significant locus, Single 

Nucleotide Polymorphisms (SNPs) found in the promoter and coding region of an F-box gene 

have been spotted out and linked to the variable tolerance of M. truncatula against A. 

euteiches (Bonhomme et al., 2014). Additionally, it was shown that basal levels of flavonoids 

play a significant role in resistance to A. euteiches, and could inhibit zoospore germination 

(Badis et al., 2015). Finally, recently, a local score approach technic improved GWAS 

resolution, refining the previously reported major locus, underlying a new tyrosine kinase 

candidate gene involved in resistance, and detected minor QTLs (Bonhomme et al., 2019).  

 

 

I-4.3. Insight into Aphanomyces euteiches intracellular effectors 

Before this PhD, previous analyses on A. euteiches were performed to gain insights into 

effectors biology and to unravel the biological functions of identified intracellular effectors. A 

first transcriptomic analysis on A. euteiches revealed the absence of RxLR effectors while more 

than 160 CRN genes have been detected (Gaulin et al., 2007). Among them, some are induced 

during plant colonization, such as AeCRN5 and AeCRN13. We then characterized one of these 

CRNs, AeCRN13, which harbours an N-ter domain containing a characteristic LYLALK motif 

(derivate of the LxLFLAK motif in Aphanomyces) coupled with HVLVxxP motif, followed by a C-

ter domain composed by DFA-DDC subdomains reported in Phytophthora CRN13s (Ramirez-

Garcés et al., 2016) (Figure 9a). This work reports that AeCRN13 act as a genotoxin through 

its binding to plant DNA and activates DNA-damage responses (DDR). It also provides 

evidences that the effect is conserved among CRN13 family since its closest ortholog from the 



 
 

Figure 9: Structure of AeCRN13 / AeCRN5 proteins and translocation assay of AeCRN5. 

(A) Diagram depicting the modular architecture of AeCRN13 (upper panel) and AeCRN5 (lower panel) from A. 

euteiches with the conserved N-terminus, which includes the LxLYLALK and HVVVIVP motifs, and the C-terminal 

region containing the DFA - DDC subdomains for AeCRN13 and the DN17 subdomain for AeCRN5, based on P. 

infestans Crinkler (CRN) domain nomenclature. AeCRN13 DNA binding domain HNH (AA 306-363) is indicated in 

grey box. Adapted from (Ramirez-Garcés et al., 2016). (B) The AeCRN5 N-terminus fused to C-terminal AVR3a 

conditions avirulence on R3a but not on wild-type N. benthamiana leaves. Top panels: Quantification of infection 

rates across three independent experiments (4 dpi). Bottom panels: The wild-type and transgenic R3a leaves 

inoculated with strains analyzed in top panels. Pictures were taken 4 dpi with zoospore suspensions. Lesions are 

marked by circles. Adapted from (Schornack et al., 2010).
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chitrid fungus B. dendrobatidis acts similarly. Both Ae and Bd CRN13 proteins contain an HNH 

motif widespread in metal finger endonucleases present in all life kingdoms. This motif is 

responsible of the DNA binding ability of AeCRN13 since a mutated version in this domain 

failed to bind DNA. Hence, AeCRN13 and BdCRN13 trigger DNA double strand breaks. We then 

reported that the plant senses this insult and activates the DDR pathway to repair its DNA 

(Ramirez-Garcés et al., 2016). 

Sequences analyses of AeCRN5 confirmed the presence of the conserved motifs 

LxLYLALK and HVVVIVP within the N-terminal domain. Then, DN17-like subdomain was 

revealed by comparison of the C-terminal domain with P. infestans Crinkler domain 

nomenclature (Figure 9a). To assess if the N-terminal domain of CRNs could be responsible of 

the translocation of the C-terminal domain of the protein in host cells, our research group 

collaborated with Schornack and colleagues to perform translocation assays on various CRNs 

from Peronosporales or Saprolegniales members. The principle of these assays is based on the 

recognition of the C-terminal domain of the avirulence protein Avr3a from P. infestans by the 

resistance protein R3a which takes place in the cytosol of plant cells. This recognition leads to 

ETI and full depletion of infection. Chimeric constructs containing N-terminal domains of 

CRNs, notably AeCRN5, fused to C-terminal domain of Avr3a were introduced into P. capsici.  

Inoculation of this P. capsici strains on wild-type N. benthamiana leaves (lacking R3a) leads to 

normal infection symptoms, but failed to infect R3a N. benthamiana leaves, constitutively 

expressing R3a resistance proteins, indicating recognition of the AVR3a effector domain by 

intracellular R3a (Figure 9b). These results evidenced that the N-terminal domain of AeCRN5 

can mediate the delivery of the effector protein inside host cells (Schornack et al., 2010). 
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I-5. Scope of the thesis 

I joined the LRSV research team in 2011 as CNRS engineer (IE) and I started to work on 

functional analysis of Aphanomyces euteiches effector thanks to my expertise on molecular 

biology on plant viruses developed in Paris in the team of Isabelle Jupin (Institut Jacques 

Monod).  

When I started my thesis in 2018, the major part of intracellular effectors described in 

plant pathogenic interactions was reported to target plant nucleus, such as all CRNs and 

numerous RxLR from phytopathogenic oomycetes, or numerous fungal SSPs. At this time only 

two microbial effectors were evidenced to target host DNA: AeCRN13 studied in our research 

group (Ramirez-Garcés et al., 2016) and PsCRN108 from P. sojae, a CRN which binds to DNA 

to deregulate HSP genes expression (Song et al., 2015). In addition, we also discovered by 

confocal analysis and transient expression in Nicotiana cells that AeCRN5 also target plant 

nucleus, suggesting that this CRN may also play a role at the nuclear level. While there was 

accumulating evidences that effector from bacteria target host nucleus and act as DNA-

damaging compounds in mammalian cells, only AeCRN13 was reported as a eukaryotic DNA-

damaging effector.  

The Chapter II of this manuscript consists to an opinion paper published in Trends in 

Plant Science in 2019 (doi: 10.1016/j.tplants.2019.09.012.) where I pinpoint DNA-damaging 

effectors in plant microbe interactions.  

The Chapter III reports on functional analyses of AeCRN5. Knowing that its N-terminal 

domain is an effective host-targeting signal (Schornack et al., 2010) and that AeCRN5 is nuclear 

localized in planta, this CRN gene was selected as candidate to decipher the mode of action of 

intracellular effector.   

In the same time, spectacular advances in sequencing technologies allow us to gain 

insight into Aphanomyces ssp. genomes. We took advantage of the broad host range of 

Aphanomyces genus to make comparative genome analyses between animal and plant 

Aphanomyces strains. The aim of this collaborative work was to confront the different 

secretomes and to focus on the different classes of effectors. Those analyses lead to the 

identification of a new class of oomycete effectors related to SSPs. We also undertook 
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functional characterization of a cluster of SSP genes, and identified AeSSP1256 as a small 

nuclear localized protein that enhances oomycete colonisation. The results were published in 

BMC Biology in 2018 (doi: 10.1186/s12915-018-0508-5) and represents the Chapter IV of this 

manuscript.  

We next focused on AeSSP1256 protein to decipher the role and the biological impact 

of this SSP gene on plant cells and host development. The results are provided in the Chapter 

V of this manuscript and available in BioRxiv (doi.org/10.1101/2020.06.17.157404) and 

submitted for evaluation to a peer-journal. Complementary results were obtained during this 

functional analysis and complete the chapter V of the manuscript. 

 

  



 
 

 

 

 

 

 



 
 

 

 

Chapter II 
 

DNA-Damaging Effectors:  

New Players in the Effector Arena 
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II – CHAPTER II: DNA-Damaging Effectors: New Players in the 

Effector Arena   (Camborde et al. TIPS, 2019) 
 

 

Functional analyses of A. euteiches AeCRN13 revealed that this protein targets host 

DNA to trigger DNA damages. BdCRN13, the closest ortholog in the chytrid fungus 

Batrachochytrium dendrobatidis also induces DNA damages and triggers DNA damage 

responses (DDR) when expressed in a non-related host, such as plant cell (Ramirez-Garcés et 

al., 2016).  

In this opinion paper, we discuss about DNA damage as a strategy used by pathogens during 

infection. DSBs and DDR have been evidenced in animal pathogens, especially in pathogenic 

bacteria, which produce DNA-damaging compounds. These compounds, able to cause directly 

or indirectly DNA breaks that result in mutations or cell death are named genotoxins. Several 

examples are described in the paper. We then wonder whether plant pathogens could also 

produce genotoxins and what could be the role of these compounds during infection. Finally 

we present the host defence mechanism that consists in a DDR signalling cascade, better 

characterized in animal than in plant.  
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Chapter III 
 

AeCRN5 effector from A. euteiches targets plant 

RNA and perturbs RNA silencing 
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III – CHAPTER III:  AeCRN5 effector from A. euteiches targets 

plant RNA and perturbs RNA silencing 
 

During my PhD I continued the functional analysis of AeCRN5 effector from A. 

euteiches. AeCRN5 was identified in a cDNA library generated from A. euteiches grown in close 

proximity to roots of M. truncatula (Gaulin et al., 2008). Its C-terminus was previously shown 

to trigger necrosis and to localize in nuclei in N. benthamiana cells. Furthermore, it was 

evidenced that its N-terminal domain was able to translocate the C-terminal part of the 

protein in host cells (Schornack et al., 2010). AeCRN5 harbors a DN17 domain as its C-terminus 

based on the Phytophthora CRNs domains nomenclature, without any predicted functional 

activity.  

Diana Ramirez-Garcés, a previous PhD student in the team, started the functional 

characterization of AeCRN5 during her PhD in 2014 and evidenced that AeCRN5 triggers 

necrosis when transiently express in N. benthamiana leaves or M. truncatula roots. During my 

PhD I complete the functional analysis to provide new elements to decipher the mode of 

action of AeCRN5. Briefly, we first identified that AeCRN5 could interfere with RNA silencing 

but the mechanism is still unclear, and complementary results are required to support this 

conclusion. Additionally we observed that AeCRN5 could interact with the plant SERRATE 

protein (SE), known to participate to alternative splicing and microRNA biogenesis pathway in 

plants like A. thaliana (Raczynska et al., 2014). Finally, we found that when expressed in N. 

benthamiana leaves, AeCRN5 seems to interfere with the processing of pre-miRNA, 

accumulating the longer primary transcripts (pri-miRNAs) which require the activity of 

different proteins, including the SERRATE protein. 

I decided to present the data of the next chapter formatted for submission in peer 

review journal, keeping in mind that complementary results or repetitions are required to 

support the main conclusion of this article. 
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Abstract 

 

Oomycete phytopathogens secrete and deliver effector molecules inside host cells to mediate 

infection. CRN proteins are one major class of host nuclear-localized effectors, able to 

interfere with various nuclear functions. Here we address the characterization of AeCRN5, 

from the legume root pathogen A. euteiches. AeCRN5 is a modular protein of the CRN effector 

family containing a functional plant translocation signal at its N-terminus and a cell-death 

inducing nuclear C-terminus DN17 domain. We report that AeCRN5 is induced during A. 

euteiches infection and displays a dynamic nuclear localization in plant cells, transiently 

accumulating in nuclear bodies. When expressed in host root cells using A. rhizogenes, 

AeCRN5 triggers strong developmental defects, leading to shorter root system coupled with 

an increased number of roots. A nucleic acid-protein interaction assay based on FRET-FLIM in 

N. benthamiana leaves revealed the RNA binding ability of AeCRN5 C-ter domain. 

Furthermore, using a heterologous system, AeCRN5 was shown to interfere with plant RNA 

silencing mechanism. Additionally, we observed in preliminary experiments that AeCRN5 

could associate with the SERRATE protein, a key component of the miRNA biogenesis, leading 

to a perturbation of the pri-miRNA processing. Altogether, these preliminary data report that 

AeCRN5 acts through its DN17 C-ter domain as plant RNA silencing suppressor probably to 

facilitate pathogen infection. 
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INTRODUCTION 

Plant-associated microorganisms rely on the secretion of a particular class of molecules, 

termed “effectors” to successfully establish infection. These molecules interact with plant 

targets to suppress plant defence and reprogram host metabolism, contributing in rendering 

host niche profitable to sustain the growth and the spreading of pathogens (Ökmen et al., 

2013). A substantial number of microbial effectors are addressed to plant nuclei and their 

function, assessed mainly through the identification of their plant target, are best 

characterized in bacteria (Bhattacharjee et al., 2013; Deslandes and Rivas, 2012). These 

effectors target different nature of host nuclear factors including proteins, RNA and DNA to 

perturb plant physiology by, for example, reprogramming host transcription (Bhattacharjee et 

al., 2013; Deslandes and Rivas, 2012; Canonne and Rivas, 2012).  

 

Oomycetes (Stramenopiles) are eukaryotic filamentous microorganisms comprising several of 

the most devastating plant pathogens with tremendous impacts on natural and agricultural 

ecosystems like P. infestans and P. ramorum (Thines and Kamoun, 2010). In oomycetes, two 

main classes of effectors able to target plant nucleus have been described: the RxLR effectors 

and Crinklers (CRN). Crinklers (Crinkling and Necrosis, CRN), firstly reported on the potato late 

blight agent Phytophthora infestans (Torto et al., 2003; Haas et al., 2009), have been reported 

in all plant pathogenic oomycetes sequenced to date (Amaro et al., 2017), with numbers 

ranging from 18 genes in H. arabidopsidis (Baxter et al., 2010) to more than 400 genes in P. 

infestans (Haas et al., 2009). All CRNs display a conserved LFLAK N-terminal motif, altered as 

LYLAK in Albugo sp (Kemen et al., 2011), LxLYLAR/K in Pythium sp (Lévesque et al., 2010) and 

LYLALK in A. euteiches (Gaulin et al., 2008). Phytophthora and Aphanomyces N-termini motifs 

have been shown to act as host cytoplasm-delivery signals (Schornack et al., 2010). Not all 

CRNs harbour a predicted signal peptide, although detected by mass spectrometry in culture 

medium of P. infestans (Meijer et al., 2014). CRN C-termini diversity contrasts to the 

conservation of N-termini and is thought be the result of recombination of different 

subdomains occurring after a HVLVXXP N-terminal motif that occurs prior to the C-terminus. 

First reported through a genome mining in P. infestans, these subdomains associate in 
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different combinations that define 27 CRN families (Haas et al., 2009) and do not display any 

significant similarity to known functional domains, except few cases (i.e. serine/threonine 

kinase D2 domain of PiCRN8 (van Damme et al., 2012)). New CRNs families have been reported 

upon complete genome analysis of distinct oomycete species (i.e. Phytophthora capsici, 

Pythium sp., A. euteiches, Saprolegnia) suggesting that CRNs belong to an ancient effector 

family that arose early in oomycete evolution. CRN-like sequences presenting similarities to 

Phytophthora C-termini were recently evidenced in the genome of the amphibian pathogen 

fungus Batrachochytrium dendrobatidis and the arbuscular mycorrhizal fungus Rhizophagus 

irregularis (Sun et al., 2011; Lin et al., 2014; Ramirez-Garcés et al., 2016). 

 

All Phytophthora CRNs C-termini localize to the plant nucleus where they display distinct 

subcellular localisations including nuclei, nucleoli and unidentified nuclear bodies (Stam et al., 

2013a) depicting different nuclear activities and targets. Although initially reported as 

necrosis-inducing proteins when expressed in planta, it has been shown that this is only the 

case for few CRNs as a large number do not cause cell-death (Haas et al., 2009; Shen et al., 

2013). Phytophthora CRNs have distinct pattern of expression during various life stages and 

colonization of host plants (Stam et al., 2013b). Several Phytophthora CRNs can suppress cell 

death triggered by cell-death inducers or other CRNs (Liu et al., 2011; Shen et al., 2013), reduce 

plant defense gene expression or accumulation of reactive oxygen species (ROS) in N. 

benthamiana (Rajput et al., 2014) sustaining the view that CRNs might act as suppressors of 

plant immunity, although not all promote infection (Stam et al., 2013b). Biochemical activity 

identified are kinase activity of CRN8 of P. infestans (van Damme et al., 2012), DNA damages 

capacity of CRN13 from A. euteiches (Ramirez-Garcés et al., 2016), affinity for heat shock 

protein element of PsCRN108 from P. sojae (Song et al., 2015), or affinity for transcriptional 

factor for CRN12_997 of P. capsici (Stam et al., 2013b). This work gives first insights into a new 

mode of action of an eukaryotic effector by deciphering a nuclear activity of Aphanomyces 

euteiches AeCRN5 C-terminal region. The soil born pathogen A. euteiches causes root rot 

disease on various legumes including alfalfa, clover, snap bean, stands as the most notorious 

disease agent of pea causing 20 to 100% yield losses, and infects the model legume M. 

truncatula (Gaulin et al., 2007). AeCRN5 was firstly identified in a cDNA library from M. 

truncatula roots in contact with A. euteiches (Gaulin et al., 2008) and confirm upon the 
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sequencing of the complete genome (Gaulin et al., 2018). AeCRN5 presents a modular 

architecture with an N-terminal functional LYLALK ensuring host delivery (Schornack et al., 

2010) and a DN17 family domain at its C-terminus.  

 

Here we show that AeCRN5 is induced during infection of M. truncatula roots. AeCRN5 C-ter 

is nuclear localized within the roots and triggers strong developmental defects. When 

expressed in N. benthamiana, the nuclear localisation is required to induce cell death. 

Furthermore, we observe a dynamic relocalization of AeCRN5 C-ter from nucleoplasm to 

nuclear bodies that required plant RNA. Additionally, using a FRET-FLIM assay in N. 

benthamiana leaves, we found that AeCRN5 C-ter associates to plant RNA. Finally, AeCRN5 C-

ter seems to interfere with plant gene silencing mechanism. Taken together, these results 

indicate that CRN DN17 family function targets plant RNA and interferes with RNA silencing.  

As preliminary results, we identified a putative interaction with the plant SERRATE protein, 

which seems to modulate miRNA processing. 

 



 
 

Figure 1: Amino acid sequence analyses of AeCRN5. 

(A) Diagram depicting the modular architecture of AeCRN5 from A. euteiches with the conserved N-terminus, 

which includes the LxLYLALK and HVVVIVP motifs, and the C-terminal region containing the DN17 subdomain, 

based on P. infestans Crinkler (CRN) domain nomenclature. NLS sequence is indicated in coloured box. (B) 

AeCRN5 N-terminus three-dimensional structure predicted by the Phyre2 server. The three most confident 

(>95%) protein structures used as template by Phyre2 are also represented. Those templates belong to the ubl 

domain of human ddi2 (c2n7dA), to the -Grasp (Ubiquitin-like) superfamily (d1v5oa) and to human ubiquitin-

like domain of ubiquilin 1 (c2klcA). (C) Multiple amino acid sequences alignment of the C-termini domains from 

the closest orthologs of AeCRN5 C-ter domain. Organism names and sequence accession numbers are indicated 

in front of the sequences, and correspond to Restriction Endonuclease 5 domain in Zhang et al (Zhang et al., 

2016) report. Background colours indicate residue conservation according to the legend. Alignment was 

performed by CLC Workbench (Qiagen).

1 

130 
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RESULTS 

AeCRN5 is a DN17 family protein with a modular architecture 

The AeCRN5 (Ae201684_4018.1, http://www.polebio.lrsv.ups-tlse.fr/cgi-bin/gb2/gbrowse/Ae201684_V3/) N-

terminus (1-130aa) is characterized by a LQLYLALK (47-54aa) motif and a HVVVIVPEVPL (120-

130aa) motif marking its end (Figure 1a). Although it lacks a predicted signal peptide, the 

AeCRN5 N-terminus is a functional secretion domain mediating translocation of oomycete 

effectors to plant cell (Schornack et al., 2010). A recent study proposed a new classification of 

the N-termini domains of CRNs proteins, based not only on amino acid sequences but also on 

secondary structure predictions (Zhang et al., 2016). Then we submitted AeCRN5 N-ter 

domain to three-dimensional modelling using the structure prediction server Phyre2 (Kelley 

et al., 2015). The most confident three-dimensional predictions of AeCRN5 N-terminal domain 

were based on template models from Ubiquitin family, such as the -Grasp (ubiquitin-like) 

domain superfamily or the ubI domain of human ddi2 protein (Figure 1b). This is in agreement 

with the analyses conducted by Zhang and colleagues (Zhang et al., 2016) that classify the N-

termini of CRNs as header domains containing the ubiquitin-like fold. 

 The C-terminal region shows a sequence identity of 41% with the CRN DN17 family domain 

of P. infestans (Haas et al., 2009) and harbors a nuclear localisation signal (NLS 141-156aa) 

consistent with its plant nuclear localization when expressed in Nicotiana benthamiana leaves 

(Schornack et al., 2010). CRN-like sequences including DN17 family have been reported not 

only in oomycetes, but also in pathogenic or mutualistic fungi, such as in the chytrid fungus 

Batrachochytrium dendrobatidis (Bd), a pathogen of amphibians, and in the arbuscular 

mycorrhizal fungus Rhizophagus irregularis (Ri) (Sun et al., 2011; Lin et al., 2014). Sequence 

comparison of C-terminal domain of AeCRN5 shows that it is closest to the chytrid B. 

dendrobatidis  (45% identity) than to oomycetes CRNs (maximum 41% identity) (Figure 1c). 

Although AeCRN5 C-ter domain was not included in the analyses of Zhang et al. (2016), the 

closest orthologs (included in the alignment from Figure 1C) were used in this study. Hence, 

the C-termini domains of the CRN5-like from the chytrids Bd (Bd_87128 and Bd_26694; 45% 

identity for both) and Rozella allomycis (09G_001773; 44% identity), from oomycetes such as 

Aphanomyces invadans (H310_01635; 43% identity), P. infestans (CRN5_Q2M408; 41% 

identity) or P. sojae (Physodraft-264761; 40% identity), were all predicted to contain a 

Restriction Endonuclease 5 (REase 5) domain (Zhang et al., 2016) at their C-terminus.



 
 

 

 

Figure 2: AeCRN5 is expressed during A. euteiches infection of M. truncatula. 

(A) Histograms represent the relative expression of AeCRN5 in M. truncatula roots infected by A. euteiches. 

AeCRN5 is expressed in saprophytic mycelium (S) but is significantly induced at the early stage of the infection of 

M. truncatula (1 dpi) in both tolerant (A17) and susceptible (F83005) lines. In F83005 infected plants, AeCRN5 is 

induced again at 6 dpi, whilst its expression is stable in A17 infected plants. (B) A. euteiches quantification in 

infected roots. Histograms represent the relative expression of -tubulin gene from A. euteiches in F83005 or 

A17 infected plants. For both accessions, the pathogen development is confirmed but is strongly reduced in the 

tolerant accession A17 compared to the susceptible F83005 plants. Values are the mean of three independent 

biological replicates. Error bars are standard deviation errors. Asterisks indicate that the values are significantly 

different (p-value<0.05, Student t-test). 
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AeCRN5 is induced and expressed during infection of M. truncatula  

AeCRN5 was firstly identified in a cDNA library from A. euteiches mycelium grown in close 

vicinity of Medicago truncatula roots (Gaulin et al., 2007) and the gene latter confirms in the 

genome of A. euteiches (Gaulin et al., 2018). To characterize its expression during infection, 

we conducted qRT-PCR analyses on saprophytic mycelium (i.e. grown on petri dishes with a 

standard medium) compared to infected M. truncatula roots, using the reference A17 

Jemalong accession, considered as a tolerant line, and F83005.5 accession, which is far more 

susceptible to A. euteiches (Badis et al., 2015). AeCRN5 is expressed in saprophytic mycelium 

but is significantly induced at the early stage of the infection of M. truncatula (1 dpi) in both 

tolerant and susceptible lines (Figure 2a). Expression level of AeCRN5 is maintained at 3 dpi, 

and then induced again at 6 dpi in F83005.5 infected plants, but not in the resistant A17 plants, 

where expression is stable over the time. In parallel, quantification of A. euteiches abundance 

in roots (Figure 2b) confirms its development in host and reveals a sustained development 

between 3 and 6 dpi. As expected, A. euteiches infectious mycelium development is slower in 

the resistant accession than in the susceptible one (Figure 2a and b). These results indicate 

that although AeCRN5 is expressed during infection, its expression is reduced in the A17 

tolerant plants, compare to the susceptible plants. 

  

AeCRN5 is nuclear localized and perturbs root architecture of the host plant M. truncatula 

AeCRN5 C-terminal (DN17) is nuclear localized and induces cell death symptoms when 

transiently expresses in Nicotiana benthamiana leaves (Schornack et al., 2010). To 

characterize AeCRN5 activity in host cells, we transformed M. truncatula A17 roots with a GFP-

tagged AeCRN5 C-terminal (130-370) using Agrobacterium rhizogenes-mediated 

transformation system (Boisson-Dernier et al., 2001). Two weeks after transformation, a large 

number (around 75%) of the plantlets collapsed without generating new roots, in contrast to 

control plants (around 30%) suggesting a cytotoxic activity for AeCRN5 in M. truncatula.



 
 

  

Figure 3: AeCRN5 is nuclear localized and perturbs root architecture in M. truncatula. 

(A) Representative picture of M.t. plants expressing GFP or GFP:AeCRN5 C-ter 3 weeks after transformation. 

GFP:AeCRN5 plants present reduced aerial and root systems. Scale bars: 1 cm. (B) GFP immunoblot confirms the 

presence of the proteins. Arrow indicates the GFP:AeCRN5 C-ter band (55.15 kDa). Stain free is equivalent of 

Ponceau staining. (C) Box plots depicting the decrease in the primary root length and the increase in total root 

number per plant of the plants showed in (A). Measures and statistical analyses were performed on n=60 (GFP), 

n=145 (GFP:AeCRN5 C-ter). Asterisks indicate significant differences: *, P < 0.05, (Student t-test). (D) Confocal 

analyses confirming the nuclear localisation of GFP:AeCRN5 C-terminal domain in M.t. transformed roots. Scale 

bars: 10 µm. Yellow lines indicate sections measured for GFP signal intensity showed in lower panels. n: nucleus; 

c: cytoplasm. 
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Within three weeks, plants that developed presented a reduction in development of aerial 

and root systems (Figure 3a). Presence of the protein was confirmed by immunoblot analyses 

using a GFP antibody and revealed the corresponding band (55.15 kDa) (Figure 3b). 

Quantification of primary root length and total root number (Figure 3c) indicated that AeCRN5 

transformed roots presented a shorter primary root length, but seems to stimulate root 

emergence, resulting in a higher number of roots as compare to GFP-control plants. Then, 

confocal analyses of transformed roots confirmed the nuclear localization of AeCRN5 in host 

cells (Figure 3d). These observations indicate that AeCRN5 is nuclear localized and worries the 

root architecture in the host plant M. truncatula. 

 

AeCRN5 cell-death inducing activity requires nuclear localization 

To go further we assessed whether the observed cytotoxic effect of AeCRN5 C-terminus on 

plant cells is the result of a nuclear-related localization. For this purpose a Nuclear Export 

Signal (NES) or its mutated (mNES) counterpart was fused in N-ter position to the AeCRN5 C-

terminal domain. The corresponding fusion proteins were GFP tagged and the constructs were 

expressed in N. benthamiana leaves by agroinfiltration. Necrotic lesions were observed within 

5 days with AeCRN5 construct, whereas no symptoms were detected on leaves treated with 

NES:AeCRN5, even at longer times (>8 days) (Figure 4a). The addition of a mNES restored the 

cytotoxic activity of AeCRN5 (Figure 4a). Confocal microscopy imaging carried 24h after 

agroinfiltration confirmed that GFP:AeCRN5 fusion proteins were restricted to the nucleus 

(Figure 4b). An enhancement of nuclear export of AeCRN5 protein was detected with 

NES:AeCRN5 construct, since the GFP signal was recovered also in the cytoplasm. 

Fluorescence intensity measured in cells, corroborated NES:AeCRN5 partial mislocalization 

from the nucleus (Figure 4b, lower panels). A reestablishment of green fluorescence at the 

nuclear level was obtained for the mNES:AeCRN5 construct. Immunoblot analysis confirmed 

the accumulation of the fusion proteins from 1 to 3 days after agroinfiltration (Figure 4c). 

Altogether, these results showed that the cell death phenotype requires AeCRN5 to localize 



 
 

 

Figure 4: The biological function of AeCRN5 requires nuclear localization. 

 

 

 

 

 

Figure 5: AeCRN5 transiently accumulates in nuclear bodies. 
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Figure 4: The biological function of AeCRN5 requires nuclear localization. 

(A) Representative N. benthamiana agroinfiltrated leaf, five days after infiltration. GFP:AeCRN5 triggers necrosis 

whilst GFP:NES:AeCRN5 failed to induce cell death. In contrast, the construct comprising the mutated version of 

NES, GFP:mNES:AeCRN5, recovers cell death activity. Black dot circles represent agroinfiltration area. (B) 

Confocal analyses and fluorescence intensity plots confirmed the nuclear localization of GFP:AeCRN5 and 

GFP:mNES:AeCRN5. In contrast, GFP:NES:AeCRN5 shows a nucleocytoplasmic localization similar to GFP control. 

Scale bars: 5 µm. Fluorescence plots : c : cytoplasm; n: nucleus. (C) GFP Immunoblots analyses confirmed the 

presence of all proteins (55.15 KDa, 56.92 KDa, 56.79 KDa respectively), 24 to 72h after infiltration. 

 
Figure 5: AeCRN5 transiently accumulates in nuclear compartments. 

N. benthamiana agroinfiltrated leaves, 20h after infiltration. (A) Top panel: Confocal pictures revealed distinct 

GFP:AeCRN5 localizations in nuclei. a,b,c,d: nuclei.  Bottom: Enlargement pictures of the different nuclei a to d. 

(B) DAPI stained nucleus expressing GFP:AeCRN5. White arrows indicates GFP:AeCRN5 aggregates. Scale bars A 

Top: 50 µm, Bottom 10 µm. B: 1 µm. 

 

 

and to accumulate in the nucleus. This implies that AeCRN5 perturbs a nuclear-related process 

probably by interacting with a nuclear compound. 

 

AeCRN5 is transiently localized in nuclear bodies 

Upon transient expression experiments in Nicotiana cells, we observed different subcellular 

localizations of AeCRN5 C-ter domain. Indeed, time lapse confocal analyses on GFP:AeCRN5 

agroinfiltrated N. benthamiana cells revealed that the protein transiently accumulates in 

nuclear bodies, between 16h and 24h after infiltration (under control of CaMV 35s promotor) 

(Figure 5a). This rearrangement in localization is not synchronized since some nuclei harbor 

clustered GFP signal accumulation, when others not (Figure 5a). DAPI staining performed on 

infiltrated leaves during this interval of time revealed an absence of complementary 

fluorescence pattern in these aggregates, where nuclear DNA and GFP fluorescence do not 

colocalized (Figure 5b). Homogeneous nuclear localization of AeCRN5 without any aggregates 

is observed after 30 hpi. These data suggest a dynamic process for AeCRN5 nuclear localization 

and therefore activity.



 
 

 
Figure 6: AeCRN5 binds to RNA in planta. 
 
Histograms show the distribution of nuclei (%) according to classes of GFP:AeCRN5 lifetime in the absence (blue 

bars) or presence (orange bars) of the nucleic acids dye Sytox Orange. Arrows represent GFP lifetime distribution 

range. (A) In absence of RNase treatment. (B) After RNase treatment. Measurements were performed in N. 

benthamiana agroinfiltrated leaves, 24h after infiltration.  (C) Confocal pictures of nuclei expressing GFP:AeCRN5 

with or without RNase treatment.  The typical clustered GFP signal (left panel) is strongly reduce after RNase 

treatment (representative nuclei after RNase treatment: right panels). Scale bars: 10 µm.
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AeCRN5 interacts with nuclear plant RNA  

Plant nuclear bodies comprise different dynamic structures including for instance the 

nucleolus, Cajal bodies, nuclear speckles or Dicing bodies (Petrovská et al., 2015). Since RNA 

is a major component found in those compartments (Petrovská et al., 2015; Bazin et al., 2018), 

we decided to analyse whether AeCRN5 C-ter may associate with plant RNA. We developed a 

robust in planta system to test protein-nucleic acid interactions based of FRET-FLIM 

(Fluorescence Resonance Energy Transfer coupled to Fluorescence Lifetime Imaging) to 

determine whether C-terminal AeCRN5 could interact with nucleic acids, and more specifically 

to RNAs (Ramirez-Garcés et al., 2016; Camborde et al., 2017). This experiment is based on N. 

benthamiana cells expressing the GFP-fusion proteins in absence or in presence of the nucleic 

acid dye Sytox Orange. This dye can absorb energy released by GFP-tagged proteins (donor) 

during fluorescence only if GFP is in close proximity to the dye (acceptor). Such transfer of 

energy conducts to a decrease of GFP lifetime, inferring its interaction to nucleic acids. 

Additionally to GFP alone (used as a negative control since GFP proteins do not interact with 

nucleic acids), we performed measurements on cells expressing the DNA-binding protein H2B 

in fusion to GFP (GFP:H2B) as a positive control of protein-nucleic acid interactions. 

Fluorescence lifetime of GFP for all constructs is given in table 1. As expected, no significate 

decrease in GFP lifetime was observed for the GFP proteins in presence or absence of Sytox 

Orange (Table 1). In contrast, the GFP lifetime of GFP:H2B proteins decreases from 2.38 ns +/-

0.02 to 1.83 ns +/-0.04 in presence of Sytox Orange, revealing as expected a close proximity 

of GFP-tagged H2B proteins with nucleic acids (Table 1). Those results on control proteins are 

in accordance with our previous study (Ramirez-Garcés et al., 2016). In the case of 

GFP:AeCRN5, GFP lifetime was measured in nuclei harbouring a GFP clustered fluorescence, 

corresponding to nuclear bodies. In that case, GFP lifetime significantly decreases from 2.20 

ns +/-0.04 in absence of acceptor to 1.90 ns +/- 0.03 in presence of Sytox Orange, indicating 

that the C-terminal domain of AeCRN5 is in close association with nucleic acids (Table 1 and 

Figure 6a). Since Sytox Orange labels DNA and RNA, in order to discriminate the nature of 

nucleic acids targeted by AeCRN5, foliar discs were treated with RNAse and GFP lifetime was 

measured with or without Sytox Orange staining. Efficiency of this treatment was already 

confirmed on an RNA-binding protein called NSR-b, which lost the interaction with RNA in 

those conditions (Camborde et al., 2017). After RNAse treatment, in absence of Sytox, the 
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mean GFP lifetime of GFP:AeCRN5 proteins was 2.25 ns +/- 0.06 and remains at 2.24 ns +/- 

0.06 in presence of Sytox Orange, indicating an absence of FRET (Table 1  and Figure 6b). 

Interestingly, the clustered GFP signal was strongly reduced or abolished after RNase 

treatment, suggesting that accumulation of GFP:AeCRN5 in nuclear bodies requires 

interaction with host RNAs (Figure 6c). Taken together, those results reveal that the C-ter 

domain of AeCRN5 binds plant RNAs.  

Table 1: FRET-FLIM measurements for GFP, GFP:H2B and GFP:AeCRN5 in absence or presence 

of Sytox Orange dye. 

Donor Acceptor a sem (b) N (c) E (d) (e) p-value 

GFP - 2.266 0.025 25 - - 

GFP Sytox Orange 2.254 0.028 25 0.5 0.67 

GFP:H2B - 2.391 0.020 25 - - 

GFP:H2B Sytox Orange 1.831 0.038 25 24 1.89E-19 

GFP:AeCRN5 - 2.201 0.042 44 - - 

GFP:AeCRN5 Sytox Orange 1.902 0.030 36 14 5,57E-07 

GFP:AeCRN5 
- 

(RNase treatment) 
2.249 0.056 32 - - 

GFP:AeCRN5 
Sytox Orange 

(RNase treatment) 
2.243 0.061 30 0.3 0.55 

a) mean lifetime in nanoseconds (ns). For each nucleus, average fluorescence decay profiles were plotted and 

lifetimes were estimated by fitting data with exponential function using a non-linear least-squares estimation 

procedure. (b) sem.: standard error of the mean. (c) N: total number of measured nuclei. (d) E: FRET efficiency in % 

: E=1-(DA/D). (e) p-value (Student’s t test) of the difference between the donor lifetimes in the presence or 

absence of acceptor. 



 
 

 
Figure 7: AeCRN5 interferes with post transcriptional gene silencing. 
 
(A) N. Benthamiana 16c agroinfiltrated leaves. Strong fluorescence is visible in leaves expressing AeCRN5, PSR1 

or P19 proteins but not in leaves infiltrated with empty vector (EV). Pictures were taken at 3 d.p.i. (B) 

Representative GFP immunoblot on protein extracts from 3 d.p.i. leaves. Strong GFP bands confirm the 

accumulation of the GFP protein in the samples AeCRN5, PSR1 and P19. In contrast, weak bands in controls 

indicate lower accumulation. (C) GFP siRNA Northern blot. RNA were extracted from 3 d.p.i. leaves. Number 1 

and 2 under the construct names indicate independent experiments. U6 was used as loading control. Numbers 

below represent the relative abundance of GFP siRNA, with the level in the leaves expressing only GFP and empty 

vector set to 1.
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AeCRN5 interferes with post-transcriptional gene silencing mechanism  

Since AeCRN5 is localized in nuclear bodies and interacts with RNA, we test whether it may 

acts on silencing mechanisms as previously reported for others intracellular effectors from 

oomycetes (Qiao et al., 2013, 2015). To test whether AeCRN5 could disturb siRNA silencing 

defense pathway, we performed a post-transcriptional gene silencing (PTGS) assay, described 

by Qiao et al. (Qiao et al., 2013). In this system, leaves of N. benthamiana 16c which 

constitutively express GFP under the control of the cauliflower mosaic virus 35S promoter are 

dually infiltrated with a GFP vector, in combination with an ‘empty vector‘ (which not produce 

any proteins in plant). In this context, both endogenous and exogenous GFP genes are silenced 

by siRNAs induced by the infiltrated GFP construct, resulting in very low green fluorescence in 

the infiltrated zone (Figure 7a). When the empty vector is replaced by a plasmid 

p35S:AeCRN5C-ter, which expresses AeCRN5 C-terminal domain, a strong GFP fluorescence is 

observed in the treated area, suggesting an inhibition of silencing mechanism. Same distinct 

GFP fluorescence was observed when coexpressing GFP and PSR1, the Phytophthora sojae 

effector suppressor of RNA Silencing (Qiao et al., 2013, 2015). To support this finding we used 

another  positive control by coinfiltrating GFP and P19 from tombusviruses, a protein known 

to suppress siRNA-silencing pathway. A strong fluorescence in the infiltrated leaves was 

observed, similar to the one obtained in presence of AeCRN5 C-ter or PSR1 (Figure 7a). 

Fluorescence levels were confirmed by GFP immunoblotting experiments, showing a strong 

accumulation of GFP proteins in the samples obtained in presence of AeCRN5, PSR1 and P19, 

compared to empty vector (Figure 7b). P19 binds to siRNA and decreases the level of free 

siRNA which prevent their association in RISC complexes and then block the silencing process 

(Lakatos et al., 2004). In contrast, PSR1 was shown to affect small RNA biogenesis directly, not 

their activity (Qiao et al., 2013). We then examined the abundance of GFP siRNA in those N. 

benthamiana 16c leaves. Northern blot performed on two independent experiments revealed 

a decrease in the accumulation of GFP siRNA in P19 samples (Figure 7c), but lower than 

expected compared to other study (Ying et al., 2010). AeCRN5 activity leads to a strong 

decrease in GFP siRNA levels compared to the control (GFP + empty vector EV) only in one 

experiment but not in the other (Figure 7c). Similarly, PSR1 expression strongly reduced the 

abundance of GFP siRNA as previously shown (Qiao et al., 2013) but only in one experiment, 



 
 

 

Figure 8: AeCRN5 partially colocalizes with SERRATE proteins in D-bodies. 

(A) Confocal pictures of GFP:AeCRN5, DCL1:YFP, HYL1:YFP, Coilin1:YFP and HcRED:SE proteins 24h after 

infiltration in  N. benthamiana leaves. GFP:AeCRN5 has a distinct localization from Coilin1, a Cajal body marker 

and has a closer localization to D-bodies markers. Scale bars: 10 µm. (B) Confocal analyses of co-infiltrated N. 

benthamiana leaves with GFP:AeCRN5 and HcRED:SE constructs. While in 12% of the observed nuclei, AeCRN5 

partially colocalizes with SERRATE protein, 80% harboured a homogenous GFP fluorescence, without aggregates, 

in presence of HcRED:SE proteins. In nuclei expressing GFP:AeCRN5 but not HcRED:SE (around 8% of observed 

nuclei), the typical localization of GFP:AeCRN5 in dots/aggregates was confirmed. Scale bars: 10 µm.



55 
 

not in the other (Figure 7c). Altogether, these results suggest that AeCRN5 can interfere with 

PTGS mechanism but supplementary experiments are needed to support this conclusion. 

 

PRELIMINARY RESULTS 

AeCRN5 is transiently localized in nuclear Dicing-bodies  

To precise the nuclear localisation of AeCRN5 we infiltrated in N. benthamiana leaves with 

several nuclear markers to visualize Cajal bodies (such as Coilin-1) and D-bodies (such as Dicer-

like 1 DCL1, HYPONASTIC LEAVES1 HYL1 and SERRATE SE). Coilin-1, DCL1 and HYL1 are cloned 

with a YFP tag in C-ter, whereas SE was fused with HcRED in N-ter. Cloning with other 

fluorescent tags is in progress. We compared the localization of GFP:AeCRN5 with each marker 

in N. benthamiana cells 20-24h after agroinfiltration. Confocal analyses revealed a distinct 

localization for Coilin-1:YFP, with fluorescent dots close or inside nucleolus. DCL1, HYL1 and 

SE localize in D-bodies and this profile could be partially similar to AeCRN5 (Figure 8a). To go 

further we next co-infiltrated GFP:AeCRN5 and HcRED:SE and observed their localization one 

day after treatment. In 92% of the observed nuclei, both proteins were detected in same 

nuclei with two types of labelling pattern. The preferential pattern observed in 80% of the 

nuclei correspond to a homogenous GFP fluorescence, without any aggregates (Figure 8b). In 

12% of the nuclei, both proteins seems to colocalize in nuclear bodies probably D-bodies 

(Figure 8b). In nuclei expressing only GFP:AeCRN5 but not HcRED:SE (around 8% of observed 

nuclei), GFP:AeCRN5 is detected as typical clustered accumulation (Figure 8b). Although 

nuclear bodies markers and experimental repetitions are required, these suggest that AeCRN5 

could localize in D-bodies, where it could interact with the SERRATE proteins. 

 

AeCRN5 interferes with miRNA biogenesis  

SERRATE (SE) is a major actor involved in the biogenesis of micro-RNA (miRNAs) (Lobbes et al., 

2006; Wang et al., 2019). Since AeCRN5 transiently colocalizes with SE and interacts with RNA, 

we also hypothesize that AeCRN5 could perturb SE proteins during the maturation of miRNA. 

SE is involved in maturation of the primary transcripts (pri and pre-miRNA) into mature miRNA. 



 
 

 

 

Figure 9: AeCRN5 interferes with the maturation of primary miRNA transcripts. 

qPCR results showing the relative induction of 26 primary miRNA transcripts (pri+pre miRNA), 24h after 

infiltration of N. benthamiana leaves with GFP:AeCRN5 compared to GFP control leaves. No bars indicate that 

the amplification failed, probably due to wrong primer sequences. N: 10 leaves for GFP:AeCRN5, 10 leaves for 

GFP. 
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Therefore, interference in the maturation process will trigger an accumulation of primary 

miRNA transcripts. We decided to analyse several primary miRNA transcript levels, described 

in the literature as key regulators of root architecture and biotic interactions, on N. 

benthamiana leaves agroinfiltrated with GFP:AeCRN5 or GFP (as a negative control). The 

presence of the GFP:AeCRN5 localization in D-bodies from 20h to 24h after agroinfiltration 

was confirmed by confocal observations and before sampling the corresponding leaves. We 

next selected 26 miR, already sequenced and analysed in various reports (for review see 

(Couzigou and Combier, 2016). Primers for qPCR amplification were designed according to 

miRBase (Kozomara et al., 2019) (http://www.mirbase.org/) based on Nicotiana tabacum 

sequences (N. benthamiana is not available). QPCR analyses were performed on ten 

GFP:AeCRN5 and ten GFP agroinfiltrated leaves. Results revealed that most of the primary 

transcripts analysed accumulates in the AeCRN5 samples compared to the GFP controls 

(Figure 9), suggesting that AeCRN5 perturbs the miRNA biogenesis. 

 

DISCUSSION 

To favor the establishment of disease, microorganisms have gained the ability to deliver 

effector molecules inside host cells. The important number of effectors targeting host nuclei 

places this organelle, and functions related to it, as important hubs whose perturbations might 

be of crucial importance for the outcome of infection (Bhattacharjee et al., 2013; Khan et al., 

2018). A recent study reported that in average, 38% of phytopathogenic oomycete 

intracellular effectors target nucleus, close to the number reported for plant bacterial 

pathogens (35%) (Khan et al., 2018). CRN proteins are a family of nuclear-localized effectors 

widespread in oomycete lineage, with related sequences found in fungal species B. 

dendrobatidis and R. irregularis. In this work, we undertook the characterization of AeCRN5 

of the root pathogen A. euteiches. We show that AeCRN5 is express during M. truncatula 

infection and perturbs host root development. We reveal that AeCRN5 is mainly localized in 

Nuclear bodies (D-bodies) and targets plant RNA at the nuclear level as well as SERRATE 

protein, to interfere with RNA processes. 
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 AeCRN5 is a modular CRN DN17 protein family with orthologous sequences in Phytophthora 

sp. and true fungal species including the chytrid B. dendrobatidis and the endomycorrhiza R. 

irregularis. The functional translocation signal of AeCRN5 is characterized by LYLALK and 

HVVVIP motifs and the absence of an obvious signal peptide (Schornack et al., 2010; Gaulin et 

al., 2007). Since a study from Zhang et al. proposed to reconsider the N-terminal CRNs 

classification (Zhang et al., 2016), we submitted to a structure prediction server the N-terminal 

sequence of AeCRN5. This in silico analysis confirms the classification of AeCRN5 N-ter as a 

header domain containing ubiquitin-like fold. 

The C-terminus corresponds to a CRN DN17 domain family with a NLS, according to the 

classification established from Phytophthora CRNs (Haas et al., 2009; Schornack et al., 2010), 

which have no significant similarity to functional domain. Although AeCRN5 was not included 

in the analysis of Zhang and colleagues, the closest orthologs of AeCRN5 found in Bd fungus, 

other Aphanomyces species or Phytophthora species, were included and were predicted to 

contain a Restriction Endonuclease 5 domain (Zhang et al., 2016). Here we confirm this 

prediction for AeCRN5. Phytophthora CRNs were originally identified as activators of plant cell 

death upon their in planta expression (Torto et al., 2003), although not all CRNs promote 

infection including the AeCRN5 ortholog from P. capsici (Stam et al., 2013a). CRN5 sequences 

from A. euteiches were firstly reported in a cDNA library from mycelium grown in close vicinity 

of M. truncatula roots (Gaulin et al., 2008). Here we showed by qRT-PCR analysis, that AeCRN5 

is expressed during vegetative growth and expression goes up during root infection, but is 

differentially induced depending on the susceptibility of the plants. In susceptible line, an 

increase in expression is observed firstly at 1 dpi, then between 3 and 6 dpi, a stage where 

browning of roots is observed in combination to an entire colonization of the root cortex of 

M. truncatula, and the initiation of propagation to vascular tissues (Djébali et al., 2009). In 

contrast, in tolerant line, AeCRN5 expression is stable after a rapid induction at 1 dpi. This 

could be related to differential plant responses, involving for instance cross-kingdom RNAi, 

where plant transports small RNAs into pathogens to suppress the expression of virulence 

related genes. This defense response was recently reported in fungal plant association, where 

it was evidenced that Arabidopsis sRNAs are delivered into Botrytis cinerea cells to induce 

silencing of pathogenicity-related genes (Cai et al., 2018). In a same way, an alpha/beta 

hydrolase gene from Fusarium graminearum, required for fungal infection, is targeted and 
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silenced by a miRNA produced by wheat (Jiao and Peng, 2018). Interestingly, this defense 

mechanism has been recently reported in plant-oomycete interaction. Arabidopsis infection 

by Phytophthora capsici leads to an increased production of plant small interfering RNAs 

(siRNAs) which are delivered into Phytophthora to silence target genes during natural infection 

(Hou et al., 2019). However, this cross-kingdom silencing has not yet been mentioned for 

Medicago truncatula or other legume in plant-pathogen interactions. Furthermore, 

transcriptomic analyses conducted on infected F83005 susceptible accession compared to A. 

euteiches mycelium or zoospores samples indicate that only 2% of CRNs genes were induced 

at 3 and 9 dpi (1 dpi was not possible to analyse) (Gaulin et al., 2018), consistent with AeCRN5 

expression in F83005 roots. Given that 13% of CRN genes are upregulated in zoospores as 

compared to in vitro grown mycelium, a subset of AeCRNs is potentially involved at the early 

stage of Medicago infection (Gaulin et al., 2018). Finally, in P. capsici, CRNs genes were divided 

in two groups according to their expression patterns. P. capsici DN17 ortholog felt in Class 2 

where gene expression gradually increases to peak in the late infection stages (Stam et al., 

2013b), as observed for AeCRN5 gene expression in susceptible Medicago line, suggesting a 

role in the later stage of colonization.   

We further explored the function of AeCRN5 by using a GFP-tagged version of the C-terminal 

domain. As observed in N. benthamiana leaves (Schornack et al., 2010), AeCRN5 is nuclear 

localized also in host Medicago cells. Overexpression of AeCRN5 in M. truncatula roots 

displayed a cytotoxic effect leading in few days to death of transformed plants. The surviving 

dwarfed plants harbored reduced root systems with a higher number of roots. These results 

corroborate observations made during M. truncatula roots infection, where susceptible 

accessions present, within few days after A. euteiches infection, a decrease of secondary root 

development and necrosis of roots (Djébali et al., 2009). 

Confocal studies on transiently transformed N. benthamiana leaves showed that DN17 

cytotoxic effect of AeCRN5 required a plant nuclear accumulation. It is in accordance with the 

observed reduction of cell death on N. benthamiana leaves, upon nuclear exclusion of CRN8 

(D2 domain) from P. infestans (Schornack et al., 2010). Similar results were reported for P. 

sojae and P. capsici CRNs (PsCRN63 and PcCRN4) (Liu et al., 2011; Mafurah et al., 2015) and 

AeCRN13 from A. euteiches (Ramirez-Garcés et al., 2016). Our results confirm that nuclear 
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localization is an important requirement for the cell-death inducing activity of necrotic CRN 

effectors.  

We observed that AeCRN5 DN17 shuttles between nucleoplasm and plant nuclear bodies 

where DNA is excluded. Previous study on P. capsici DN17 CRN domain revealed a clustered 

distribution pattern confined to the nucleoplasm upon overexpression in N. benthamiana 

leaves (Stam et al., 2013a). Furthermore, FRET-FLIM measurements revealed the close vicinity 

of AeCRN5 C-ter domain with plant nucleic acids. This FRET-FLIM assay has been successfully 

used to demonstrate protein-RNA specific interaction in plant cells (Camborde et al., 2017). 

Here this assay confirms the RNA binding ability of AeCRN5 C-terminal domain.  

Recently, Khan and colleagues reviewed some properties of effector targets across diverse 

phytopathogens, including bacteria, fungi and oomycetes. They reported that only 1 to 3% of 

effector targets had a molecular function related to RNA processing (Khan et al., 2018). 

Candidate effectors of the fungus Blumeria graminis display similarities to microbial RNAses 

and, although not carrying hydrolytic site, are speculated to interact with host RNA; among 

these, BEC1054 has been described as a ribonuclease-like effector (Pedersen et al., 2012; 

Pliego et al., 2013). Host RNA perturbation has also been proposed for some effectors of the 

nematode M. incognita as they harbor putative RNA binding domains (Bellafiore et al., 2008). 

 The dynamics and clustered localization of AeCRN5 DN17 domain in combination with its 

proximity to plant RNA, strongly suggest a ‘nuclear bodies pattern’. Even if further 

experiments are on going to precise the subnuclear localization of AeCRN5, we decided to test 

the activity of the C-ter DN17 domain on silencing mechanisms as previously reported for 

others intracellular effectors from oomycetes (Qiao et al., 2013, 2015). Using transient 

expression assay in N. benthamiana 16c, we found that AeCRN5 DN17 domain interferes with 

post-transcriptional gene silencing, even if the effect on siRNA biogenesis is still unclear. 

Hence, the biological function of AeCRN5 could be similar to the one reported for RxLR PSR1 

from P. sojae. However, PSR1 do not interact with RNA, but with a host DEAD-box RNA 

helicase (named PINP1) required for the accumulation of endogenous small RNAs and 

considered as a positive regulator of plant immunity. Other studies describe the role of 

intracellular effectors on RNA-binding proteins (RBPs), such as Pi04089, an RxLR effector from 

P. infestans that targets a host RBP to promote infection (Wang et al., 2015), but without 

interacting with RNA. Further experiments are required to decipher the role of AeCRN5 on 
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RNAs, for instance using mutated version of AeCRN5 C-ter domain, unable to bind RNA, or by 

testing the nuclease activity of the C-terminal domain, classified as a REase5 domain by Zhang 

et al. (Zhang et al., 2016). Hence, it seems that manipulation of host RNA and related processes 

may be a common infection strategy. 

We also present some preliminary results where we detected a putative interaction of 

AeCRN5 with the SERRATE (SE) protein, localized in nuclear Dicing-bodies. Co-

immunoprecipitation experiments coupled with FRET-FLIM analyses for instance are 

necessary to confirm a physical interaction between the two partners. miRNA biogenesis is a 

highly controlled and complex process, in which SE is a core component in interaction with 

multiple protein partners. For instance, a very recent study reported the role of the 

Arabidopsis RNA-binding protein MAC5 that interacts with SE to protect pri-miRNAs from 

SERRATE-dependent exoribonuclease activities (Li et al., 2020). Due to the central role of SE 

in the miRNA biogenesis, we further tested the impact of AeCRN5 expression on miRNA 

primary transcripts accumulation in N. benthamiana leaves. Interestingly, in most of the 

selected sequences, we found a significant induction of primary transcripts in presence of 

AeCRN5 C-ter proteins. Despite we can not exclude that expression of AeCRN5 triggers an 

increase in miRNA primary transcripts production, we hypothesise that AeCRN5 interferes 

with the dicing complex where SE is a major component, perturbs its activity, resulting in an 

accumulation of pri-pre miRNA. Interestingly, the P. sojae RxLR effector PSR1 that acts on 

siRNA accumulation was also proposed to interfere with miRNA biogenesis. Indeed, even if 

qPCR measurements didn’t reveal a significant effect on pri-miRNA, RNA blotting experiments 

on 2 selected genes revealed a reduce accumulation of pre-miRNA. Then authors suggest that 

PSR1 could inhibit DCL1-mediated processing of pri-miRNAs (Qiao et al., 2013).  

 

To go further on the biological function of AeCRN5, we need to perform quantitative PCR on 

mature miR sequences to confirm our hypothesis. A mutated version of AeCRN5 C-ter domain, 

unable to bind RNA and to localize in D-bodies should not interfere with miRNA biogenesis. 

Additionally, resistance to A. euteiches in M. truncatula plants overexpressing SE or in 

opposite silenced SE gene could be measured to analyse the impact of SE activity on infection 

process. Finally, pri-miRNA or mature miRNA analyses (using RT-qPCR) in M. truncatula plants 
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infected by A. euteiches, or in AeCRN5 overexpressing M.t plants could strengthen the role of 

AeCRN5 on miRNA biogenesis. 

In conclusion, AeCRN5 is an effector with a functional Ubi N-ter domain and a C-ter domain 

that targets RNA to interfere with RNA processes such as post-transcriptional gene silencing 

or miRNA biogenesis. 

 

MATERIAL AND METHODS 

Plant material, microbial strains, and growth conditions  

M. truncatula F83005.5 or Jemalong A17 seeds were scarified, sterilized, and cultured in vitro 

for root transformation and infection as previously described (Djébali et al., 2009; Boisson-

Dernier et al., 2001). Infection of roots with zoospores of A. euteiches (strain ATCC 201684) 

was performed as Djébali et al., 2009. N. benthamiana plants were grown from seeds in 

growth chambers at 70% of humidity with a 16h/8h dark at 24/20°C temperature regime. A. 

euteiches (ATCC 201684) was grown on saprophytic conditions as previously reported 

(Badreddine et al., 2008). All E.coli strains (DH5α, DB3.5, BL21AI), A. tumefaciens (GV3101:: 

pMP90RK) and A. rhizogenes (ArquaI) used were grown in LB medium with the appropriate 

antibiotics.    

 

Sequence analyses 

AeCRN5 N-terminal domain was submitted to structure prediction Phyre2 server (Kelley et al., 

2015). Oomycetal and fungal orthologs of AeCRN5 (Ae201684_4018.1, 

http://www.polebio.lrsv.ups-tlse.fr/cgi-bin/gb2/gbrowse/Ae201684_V3/) was retrieved by 

BlastP searches on the National Center for Biotechnology Information (NCBI) website using 

AeCRN5 C-terminal domain as query. From this result, sequences from the closest orthologs 

(B. dendrobatidis Bd_26694 and Bd_87128; A. invadans H310_01635; R. allomycis 

O9G_001773; P. infestans CRN5 Q2M408.1; P. insidiosum GAY06505.1 and P. sojae 

Physodraft_264761) were extracted and C-termini domains were aligned using CLC 

Workbench software (Qiagen).  
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RNA extraction and qRT-PCR  

For AeCRN5 quantification: Samples were ground on liquid nitrogen and total RNA extracted 

using the RNAeasy kit (Qiagen). Reverse transcription was performed on 1 µg of total RNA 

using the AppliedBiosystems kit (Life Technologies-Invitrogen). cDNAs were diluted 50-fold for 

qPCR reaction. Each qPCR reaction was performed on a final volume of 10 µl corresponding to 

8 µl of PCR mix (0.5 µM of each primer and 5 µl SYBRGreen, Applied Biosystems) and 2 µl of 

the diluted cDNA and was conducted on a QuantStudio 6 (Applied Biosystems, Foster City, CA, 

USA) device using the following conditions: 5 min at 95°C, followed by 45 cycles of 15 s at 95°C 

and 1 min at 60°C. Each reaction was conducted on triplicates for cDNAs of four biological 

replicates. Primers F: 5’-GAAATTCTGCAAGAACTCCA-3’ and R: 5’-

CAATAAAGATGTTGAGAGTGGC-3’ were used for the detection of AeCRN5 

(Ae201684_4018.1). Primers F: 5’-TGTCGACCCACTCCTTGTTG-3’ and R: 5’-

TCGTGAGGGACGAGATGACT-3’ were used to assess the expression of A. euteiches’s α-tubulin 

gene (Ae_22AL7226) and normalized AeCRN5 expression. Histone 3-like of M. truncatula, 

previously described (Rey et al., 2013) was used to normalize A. euteiches abundance during 

infection. Relative expression of AeCRN5 and α-tubulin genes were calculated using the 2-

∆∆Cq method described by (Livak and Schmittgen, 2001). 

For Pri-miRNA measurements: Ten N. benthamiana leaves were agroinfiltrated with GFP or 

GFP:AeCRN5. 20h to 24h after agroinfiltration, confocal observations confirm the clustered 

localisation for GFP:AeCRN5 and the corresponding leaves were sampled and frozen in liquid 

nitrogen. Total RNA was extracted using the RNAeasy kit (Qiagen) and reverse transcription 

was performed on 1 µg of total RNA using the AppliedBiosystems kit (Life Technologies-

Invitrogen) using random primers. Primers of the 26 pri-miRNA selected were designed 

according to miRBase (Kozomara et al., 2019) (http://www.mirbase.org/) based on Nicotiana 

tabacum sequences (N. benthamiana is not available) and are listed in Supplementary Table 

1. For each gene, expression levels were standardized using N. benthamiana L23 gene 

(TC19271-At2g39460 ortholog) and F-box gene (Niben.v0.3.Ctg24993647-At5g15710 

ortholog) validated for qPCR (Liu et al., 2012).  Relative abundance was calculated using the 2-

∆∆Cq method. 
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Construction of plasmid vectors 

Sequence and names of primers used are listed in the Supplementary Table 1. AeCRN5 C-

terminal version carrying Gateway adaptors were generated by PCR on a template 

corresponding to the Ae201684_4018.1 (named Ae_1AL4462 in previous aphanoDB version). 

Full length C-terminus AeCRN5 (130aa-370aa) was generated using primer AttB1AeCRN5-F 

and AttB2AeCRN5-R. Amplicons were BP recombined in pDONR-Zeo vector (Invitrogen) and 

subsequently inserts were introduced in vector pK7WGF2 by means of LR recombination 

(Invitrogen). GFP:NES:AeCRN5 and GFP:mNES:AeCRN5 constructs were generated by adding 

NES sequence (LQLPPLERLTL) and non-functional mutated NES sequence (mNES: 

LQAPPAERATL) to the N-terminal moiety of AeCRN5. Amplicons NES:AeCRN5 and 

mNES:AeCRN5 were obtained using primers NESAeCRN5-F and AeCRN5_end-R and 

mNES_AeCRN5-F and AeCRN5_end-R respectively and introduced in pENTR/D-TOPO vector 

by means of TOPO cloning (Invitrogen) before insertion on vector  pK7WGF2. Amplification of 

the histone 2B of A. thaliana was performed on vector pBI121:H2B:YFP (Boisnard-Lorig et al., 

2001) with primers caccH2B-F and H2B-R. Amplicons were cloned in pENTR/D-TOPO and 

subsequently introduced in vector pK7WGF2 to obtain GFP:H2B fusion construct. The 

obtained pK7WGF2 recombined vectors were introduced in Agrobacterium strains for 

agroinfiltration and root transformation.  

Coilin1:YFP, DCL1:YFP, HYL1:YFP and HcRED:SE corresponds to A. thaliana genes cloned in 

pCambia1300 and were kindly provided by S. Whitham (Liu and Whitham, 2013). 

Supplemental Table 1: List of primers used in this study. 

gene primer F primer R 

AeCRN5 TTCCGCGTGAAATTCTGCAA GCACATACTTGGACCAGCAC 

Ae α-
tubulin 

TGTCGACCCACTCCTTGTTG TCGTGAGGGACGAGATGACT 

attB1_Ae
CRN5-F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTGAA
GGTGACCGCTCTAGAACCC 

  

attB2_Ae
CRN5-R 

  
GGGGACCACTTTGTACAAGAAAGCTGGGTGTT
GTTATTCAAAAAGTATGGCG 

AeCRN5_
end-R 

  TTGTTATTCAAAAAGTATGGCGTAAATTTTGGC 
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NESAeCR
N5-F 

CACCCTTCAACTTCCTCCTCTTGAAAGACTTACTCTTTT
GAAGGTTGACCGCTCTAGAACCC 

  

mNESAe
CRN5-F 

CACCCTTCAAGCTCCTCCTGCTGAAAGAGCTACTCTTT
TGAAGGTGACCGCTCTAGAACCC 

  

caccH2B-
F 

CACCATGGCGAAGGCAGATAAGAAACCAGC   

H2B-R   TTAAGAACTCGTAAACTTCGTAACCGCC 

mGFP5-F GATCATATGAAGCGGCACGACTTCT  

mGFP5-
R_T7pro
m 

 
ATCGAGTAATACGACTCACTATAGGGTTCCAA
CTTGTGGCCGAGGATG 

Nb_L23 AAGGATGCCGTGAAGAAGATGT GCATCGTAGTCAGGAGTCAACC 

Nb_F-
BOX 

GGCACTCACAAACGTCTATTTC ACCTGGGAGGCATCCTGTTAT 

miR156a CGGAGGTGGAAATTTTTGAA AAAAGGGACAGTGCAACTCAA 

miR156b TCCTGCACCCATATTGAACA GAGGAAGCGGATTGAAAGTG 

miR159a TAAGCTGCCGACCTATGGAT GGCAATGAAGCTCCTGACAT 

miR159b CCAGCTAGGCTACCTCGTGA TATTGAGCGGGAGCTGTCTT 

miR160a TGGATGACTTTGAGCCCTTT GATCACGGATACGCTCCAAT 

miR160b TATTTCGGGGATATGCTTGG TTGCAGAGCTCATCGGAATA 

miR164a AACCATTGATCGGAGCTGAG GAAGAAGGGCACATGGAAAA 

miR164b GCAGGGCATGTGCACTACTA TTTGACGGAAAATCACGACA 

miR166a ATGTTGTCTGGCTCGAGGTC CCGACGACACTAAACCATGA 

miR166b GCTGGCTCGACACAATTACTC TGAGAGGAATGAAGCCTGGT 

miR167a CCAGCATGATCTGGTACGAA GGAAAAGCCAGACCTCAAGA 

miR167b TTTTCCTGTTTTGGGTTGGA TATTGGTGGCGAGTGATTGA 

miR169a GAAGGTTCAATGCCCTTTTG CTGCGGCAAATATGAGAGGT 

miR169b GATGACTTGCCTGGTCCATT AAGATGACTTGCCTGCAACC 

miR171a GAGAATTGTCCGGCCAGTAA CTAAGCTTGAGGCAGCTGGT 

miR171b GGTGAGGTTCAATCCGAAGA CGGCTCAATCTGAGATCGTT 

miR172a TGTCAACAGTTTTTGCAGATG GGATCCATAGGGAGCAAAAA 

miR172b GGCCAAAAACAGATCTCCAC ATTTTCCTGCTCCCTCCTTC 

miR319a GCCGACTCATTCATCCAAAT CTACGGAGGTGCGTTTGACT 

miR319b CCCTAGTGGGTGCAGATGAT CGAGGAACAAGGGTAATCCA 

miR390 GGAGGGATAGCACCATGAAA GCGCCAAAATGATTGAAAGT 

miR393 GATCGCATTGATCCCATTTC AGTCCGAAGGGATAGCATGA 

miR396a GCTTTATTGAACCGCAACAA TGGCTCTCTTTGTATTTTTCCA 

miR396b TTCAGTGGGGAAGAAGTTCAA CAAGTCCTATCATGCTTTTCCA 

miR399a ATTGATCCCTGCTGACGATG TACATCGGTCGTTGTTGGAA 

miR399b AGAGAAATGCGAGCGAAGAT TTCTCCTTTGGCAAATCCAG 
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Immunoblot analyses  

Samples corresponding to agroinfiltrated N. benthamiana leaves were frozen in liquid 

nitrogen. Protein extraction was performed as Schornack et al., 2010. Proteins were separated 

by SDS-PAGE and electroblotted on nitrocellulose membranes (BioRad). GFP-tagged proteins 

were revealed using anti-GFP monoclonal antibodies 1:1000 (Merck #11814460001) followed 

by Goat Anti-Mouse IgG-HRP Conjugate (BioRad #1706516). Clarity ECL (BioRad #1705060) 

was used for the revelation step. 

 

Agrobacterium-mediated transformation  

Generation of M. truncatula composite plants was performed as described by Boisson-dernier 

et al, 2001 using ARQUA-1 (A. rhizogenes) strain. Leaf infiltration were performed with A. 

tumefaciens (GV3101::pMP90RK) as described by Schornack et al., 2010. 

 

Confocal microscopy 

Foliar discs (5-8 mm of diameter) of infiltrated leaves of N. benthamiana were sampled at 

different time points after agroinfiltration and mounted on microscope slides for live cell 

imaging. For DAPI staining, discs were fixed in a PBS, 4% (v/v) paraformaldehyde solution and 

then stained with DAPI (3 µg/µL). Scans were performed on a Leica TCS SP8 device using 

wavelengths 488nm (GFP) and 350 nm (DAPI) and with a 40x water immersion lens. 

Acquisitions were performed in a sequential mode to avoid overlapping fluorescence signals. 

Images were treated with Image J software and correspond to Z projections of scanned 

tissues. 

 

Preparation of N. benthamiana epidermal leaves for FRET / FLIM experiments  

Samples were prepared as described in (Camborde et al., 2017; Ramirez-Garcés et al., 2016; 

Le Roux et al., 2015). Briefly, discs of N. benthamiana agroinfiltrated leaves were fixed 20-24 

hours after treatment by vacuum infiltrating a TBS (TRIS 25 mM, NaCl 140 mM, KCl 3 mM) 4 

% (w/v) paraformaldehyde solution before incubation 20 min at 4°C. Samples were 
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permeabilized 10 min at 37°C using a digestion buffer supplemented with 20 µg/ml of 

proteinase K (Invitrogen) as described in (Camborde et al., 2017; Escouboué et al., 2019). 

Nucleic acid staining was performed by vacuum-infiltration of a 5 µM of Sytox Orange 

(Invitrogen) solution, before incubation of the samples 30 min at room temperature. When 

RNAse treatment was performed, foliar discs were incubated 15 min at room temperature 

with 0.5 µg/ml of RNAse A (Roche) before acid nucleic staining. Foliar discs were washed with 

and mounted on TBS before observations on an inverted microscope (Eclipse TE2000E, Nikon, 

Japan).  

 

FRET / FLIM measurements  

Fluorescence lifetime measurements were performed in time domain using a streak camera 

(Camborde et al., 2017). The light source is a mode-locked Ti:sapphire laser (Tsunami, model 

3941, Spectra-Physics, USA) pumped by a 10W diode laser (Millennia Pro, Spectra-Physics) 

and delivering ultrafast femtosecond pulses of light with a fundamental frequency of 80MHz. 

A pulse picker (model 3980, Spectra-Physics) is used to reduce the repetition rate to 2MHz to 

satisfy the requirements of the triggering unit (working at 2MHz). The experiments were 

carried out at λ = 820 nm (multiphoton excitation mode). All images were acquired with a 60x 

oil immersion lens (plan APO 1.4 N.A., IR) mounted on an inverted microscope (Eclipse 

TE2000E, Nikon, Japan). The fluorescence emission is directed back into the detection unit 

through a short pass filter λ<750 nm) and a band pass filter (515/30 nm). The detector is a 

streak camera (Streakscope C4334, Hamamatsu Photonics, Japan) coupled to a fast and high-

sensitivity CCD camera (model C8800-53C, Hamamatsu). For each nucleus, average 

fluorescence decay profiles were plotted and lifetimes were estimated by fitting data with 

exponential function using a non-linear least-squares estimation procedure. Fluorescence 

lifetime of the donor (GFP) was experimentally measured in the presence and absence of the 

acceptor (Sytox Orange). FRET efficiency (E) was calculated by comparing the lifetime of the 

donor in the presence (DA) or absence (D) of the acceptor: E=1-(DA) / (D). Statistical 

comparisons between control (donor) and assay (donor + acceptor) lifetime values were 

performed by Student t-test. For each experiment, a minimum of four leaf discs removed from 

two agroinfiltrated leaves were used to collect data. 



67 
 

Post-Transcriptional Gene Silencing assay 

PTGS assays were performed as described by (Qiao et al., 2013, 2015). Briefly, N. benthamiana 

16c at the six-leaf stage (with a constitutive GFP expression) were agroinfiltrated with 

p35S::GFP vector combined with pEG100 as empty vector, or pK2GW7::AeCRN5-Cter, 

pEG101::PSR1 (Qiao et al., 2013) or pK2GW7::P19. pEG100, p35S::GFP and pEG101::PSR1 

were kindly provided by Dr W. Ma, and pK2GW7::P19 by Dr N. Pauly from LIPM lab. 

Green fluorescence was visualized using a handheld long-wavelength UV lamp (Black-Ray B-

100AP, Ultraviolet Products). Agrobacterium carrying the empty vector pEG100 was used as 

negative control whilst PSR1 and P19 constructs were used as positive controls. 

Leaves were examined 3 days after Agrobacterium infiltration in the infiltrated leaf areas and 

sampled in liquid nitrogen. GFP Immunoblots were performed after total protein extraction 

as described in this paper. To produce siRNA probe, we first amplified approx. 200bp of the 

mGFP5 using cDNA from 16c leaves (RNA extraction and RT were performed as described in 

this paper), with mGFP5-F and mGFP5-R_T7prom primers (Supplemental Table 1). The GFP 

siRNA probe was generated using the MEGAScript high-yield T7 kit (Ambion) in the presence 

of [α-32P] UTP. U6 served as a loading control. 
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IV – CHAPTER IV: Genomics analysis of Aphanomyces spp. 

identifies a new class of oomycete effector associated with host 

adaptation (Gaulin et al. BMC Biol, 2018) 

 

 

The first aim of this study was to provide a genome reference for Aphanomyces genus, 

by working on A. euteiches ATCC201684 pea strain. A combination of 454 and Illumina reads 

were generated to provide a 57 Mb assembly. In order to identify components that could 

explain adaptation to various hosts (plant vs animals), Illumina reads were assembled to 

provide a draft genome of the crayfish pathogen A. astaci and the saprotroph A. stellatus. All 

the data are publicly available in AphanoDB repository (http://www.polebio.lrsv.ups-

tlse.fr/aphanoDB/). 

Comparative analyses of A. astaci and A. euteiches proteomes lead us to identify ~300 genes 

encoding small-secreted proteins specific to Aphanomyces euteiches (AeSSP) devoid of any 

functional annotations. Transcriptomic data (RNASeq) obtained on M. truncatula roots 

(infected or not with Ae) revealed that around half of these SSPs were highly induced during 

interaction with M. truncatula. We noticed that some of these SSPs were organized in clusters.  

To evaluate the biological activity of AeSSP genes, a SSP cluster comprising six AeSSPs 

genes was selected for starting functional studies (Figure 10a). This cluster is unique because 

it is the only one that contains three AeSSPs (Ae1251, Ae1254, and Ae1256) with a predicted 

Nuclear-Localisation-Signal (NLS). This genomic architecture suggests that these proteins 

could be addressed to the host cells to target nuclear components. Sequence alignments 

revealed that AeSSP1250 and AeSSP1253 differ only by two amino acids, but the other genes 

have no sequence similarities (Figure 10b). Expression of GFP tagged versions of each gene of 

this cluster in N. benthamiana leaves confirms the nuclear localization for the three genes 

harbouring NLS (Ae1251, Ae1254, and Ae1256), whilst AeSSP1250 and AeSSP1253 display a 

nucleocytoplasmic localization when AeSSP1255 seems excluded from nucleus (Figure 10c). 

While AeSSP1251 and AeSSP1254 accumulated in the nucleolus, AeSSP1256 displays a 

subnuclear localization, spotted in dots and accumulating in a perinucleolar ring (Figure 10c 

and see paper from this chapter). Intriguingly, for each construct, same localisation was 



 
 

Figure 10: Complementary results on the SSP cluster containing AeSSP1256.
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Figure 10: Complementary results on the SSP cluster containing AeSSP1256. 

(A) Scheme of the SSP cluster organization. Six genes on the same orientation, among 8 kB, compose this cluster. 

Each gene contains a signal peptide and three genes harbour a NLS (AeSSP1251, 1254 and 1256). (B) Amino acid 

sequence alignment of the six genes, performed on CLC Workbench. AeSSP1250 and AeSSP1253 differ by only 

2AA. Except these two genes, no sequence similarities are observed among the cluster. (C) Localization of 

AeSSP1256 cluster proteins expressed in N. benthamiana leaves. For each gene, GFP was fused in C-ter and 

transform in Agrobacterium tumefaciens. Confocal analyses were conducted 24h after agroinoculation in N. 

benthamiana leaves. AeSSP1250 and AeSSP1253 have a similar nucleocytoplasmic localization (pictures 

correspond to AeSSP1250, similar pictures were obtained from AeSSP1253), when AeSSP1255 is excluded from 

nucleus. Similar nuclear localization was observed for AeSSP1251 and AeSSP1254 (pictures correspond to 

AeSSP1254), with an accumulation in nucleolus, indicating that the NLS was functional. In the same way, 

AeSSP1256 is nuclear localized but spotted in dots and accumulates in a perinucleolar ring. Same localisation was 

observed in presence (upper panels) or absence (lower panels) of their own signal peptide (SP). White dotted 

lines indicate nuclei. n: nucleus. Scale bars: 10µm.  

 

 

observed in presence or absence of their own signal peptide (SP) (Figure 10c). We then 

evidenced that the AeSSP1256 entered the plant secretory pathway thanks to its native signal 

peptide, using endoplasmic reticulum (ER) retention motif and drug assay (see Fig. 8 - BMC 

biology paper from this chapter).  

Due to the fact that A. euteiches transformation is not yet available, we used  Phytophthora 

capsici infection assay to investigate whether those SSPs could act as effectors. After 

expression of each member of the AeSSP cluster on tobacco leaves, followed by P. capsici 

inoculation, it appeared that only AeSSP1256 enhances N. benthamiana susceptibility to P. 

capsici. These data suggest that AeSSP1256 and therefore SSPs are a new class of oomycete 

effectors. 
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Chapter V 
 

A DEAD-Box RNA helicase from Medicago 

truncatula is hijacked by an RNA-binding effector 

from the root pathogen Aphanomyces euteiches 

to facilitate host infection 
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V – CHAPTER V: A DEAD-Box RNA helicase from Medicago 

truncatula is hijacked by an RNA-binding effector from the root 

pathogen Aphanomyces euteiches to facilitate host infection 
(Camborde et al., submitted and available at BioXiv: doi: https://doi.org/10.1101/2020.06.17.157404) 

 

 

In a previous study we identified among a cluster composed of six SSP that AeSSP1256 

enhances oomycete infection and harbour a nuclear-localisation when transiently express in 

Nicotiana benthamiana cells (Gaulin et al., 2018). We then undertake a functional 

characterization of AeSSP1256 to decipher its activity by using M. truncatula. Sequence 

analyses predict that AeSSP1256 sequence contains RNA binding motifs (Figure 1 from this 

Chapter). By using FRET-FLIM analyses based on a method that I developed in collaboration 

with the Imagery Platform Tri-IBIsa Genotoul (Camborde et al., 2017; Escouboué et al., 2019), 

we showed that AeSSP1256 binds plant RNA (Figure 1 from this Chapter).  

When expressed in M. truncatula roots, AeSSP1256 is localized around the nucleolus 

of the host cells and induces a strong delay in root development (Figure 2 from this Chapter). 

Furthermore, the presence of AeSSP1256 enhances the susceptibility to A. euteiches infection 

(Figure 2 from this Chapter).  

Transcriptomic analyses revealed that expression of AeSSP1256 in M. truncatula roots 

leads to a downregulation of genes implicated in ribosome biogenesis pathway (Figure 3 from 

this Chapter), suggesting that the effector provokes ribosomal stress when present in the host. 

A yeast-two hybrid approach using cDNA library obtained from A. euteiches-infected 

Medicago roots allows the identification of host targets (Supplemental Table 2 from this 

Chapter) and A. euteiches targets (complementary results of this Chapter).  

Among Medicago targets, we confirmed that AeSSP1256 associates with a nucleolar 

L7 ribosomal protein and a M. truncatula RNA helicase (MtRH10) orthologous to the 

Arabidopsis RNA helicase RH10 (Figure 4 from this Chapter).  
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Whereas MtRH10 is able to interact with nucleic acids, this association is abolished in 

the presence of AeSSP1256 (Figure 5 from this Chapter). 

 Promoter:GUS composite plants revealed that MtRH10 is expressed preferentially in 

the meristematic root cells (Figure 6 from this Chapter).  

Missense MtRH10 plants displayed similar phenotype than overexpressing AeSSP1256 

plants, leading to shorter roots with developmental delay and are more susceptible to A. 

euteiches infection (Figure 7 from this Chapter). 

 These results show that the effector AeSSP1256 facilitates pathogen infection by 

causing stress on plant ribosome biogenesis and by hijacking a host RNA helicase involved in 

root development and resistance to root pathogens.
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Abstract 

Microbial effectors from plant pathogens are molecules that target host components to 

facilitate colonization. While eukaryotic pathogens are virtually able to produce hundreds of 

effectors, the underlying molecular mechanisms allowing effectors to promote infection are 

still largely unexplored. In this study, we show that the effector AeSSP1256 from the soilborne 

oomycete pathogen Aphanomyces euteiches is a RGG/RG protein able to interact with nuclear 

RNA in vivo. Heterologous expression of AeSSP1256 delays Medicago truncatula root 

development and facilitates pathogen colonization. We found by transcriptomic analyses of 

AeSSP1256 expressing roots that AeSSP1256 downregulated genes implicated in ribosome 

biogenesis pathway. Transcriptomic analyses of AeSSP1256-expressing roots show a 

downregulation of genes implicated in ribosome biogenesis pathway. A yeast-two hybrid 

approach reveals that AeSSP1256 associates with a nucleolar L7 ribosomal protein and a M. 

truncatula RNA helicase (MtRH10) orthologous to the Arabidopsis RNA helicase RH10. 

Association of AeSSP1256 with MtRH10 impaired the capacity of MtRH10 to bind nucleic acids. 

Promoter:GUS composite plants revealed that MtRH10 is expressed preferentially in the 

meristematic root cells. Missense MtRH10 plants displayed shorter roots with developmental 

delay and are more susceptible to A. euteiches infection. These results show that the effector 

AeSSP1256 facilitates pathogen infection by causing stress on plant ribosome biogenesis and 

by hijacking a host RNA helicase involved in root development and resistance to root 

pathogens.  
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Introduction  

Plant pathogens divert host cellular physiology to promote their own proliferation by 

producing effector proteins that interact with molecular targets (Gaulin et al., 2018). 

Numerous studies indicate large variation in the effector repertoire of plant pathogens 

suggesting that a large number of molecular mechanisms are targeted.  

Oomycetes constitute a large phylum that includes important eukaryotic pathogens, 

and many of which are destructive plant or animal pathogens (Kamoun et al., 2015; van West 

and Beakes, 2014). They share common morphological characteristics with true fungi as 

filamentous growth, osmotrophic feeding or the presence of a cell wall, but they evolved 

independently (Judelson, 2017). Oomycetes are included in the Stramenopile lineage and 

have diatoms and brown algae as closest cousins. These filamentous microorganisms have the 

capacity to adapt to different environment as illustrated by their capacity to develop 

resistance to anti-oomycete chemicals or quickly overcome plant resistance (Rodenburg et al., 

2020).  

Comprehensive identification of oomycete proteins that act as effectors is challenging. 

Up to now, computational predictions of effector proteins have provide a fast approach to 

identify putative candidate effectors in oomycetes (Haas et al., 2009; Tabima and Grünwald, 

2019). Based on their predictive subcellular localization within the host cells they are classified 

as extracellular (apoplasmic) or intracellular (cytoplasmic) effectors. As example, RxLR and 

Crinklers (CRNs) constitute the two largest family of oomycetes intracellular effectors that 

contain hundreds of members per family (McGowan and Fitzpatrick, 2017). While oomycete 

effector proteins have probably different mechanism of action, what they have in common 

might be the ability to facilitate pathogen development. Nonetheless, computational 

predictions do not give any clues regarding the putative role of theses effectors since 

numerous effectors are devoid of any functional domains. Therefore, biochemical and 

molecular studies are used to discover and confirm the functional activity of these proteins. 

To promote infection oomycete intracellular effectors interfere with many host routes which 

include for example signaling such as MAPKinase cascades (King et al., 2014), phytohormone-

mediated immunity (Boevink et al. 2016; Liu et al. 2014), trafficking vesicles secretion (Du et 

al., 2015) or autophagosome formation (Dagdas et al., 2016). Growing evidences point to plant 

nucleus as an important compartment within these interactions thanks to the large portfolio 
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of putative nucleus-targeted effectors predicted in oomycete genomes. The study of 

subcellular localization of fifty-two Phytophthora infestans RxLR effectors upregulated during 

the early stage of host infection show that nucleocytoplasmic distribution is the most common 

pattern, with 25% effectors that display a strong nuclear association (Wang et al. 2019). The 

CRN family was firstly reported as a class of nuclear effector from P. infestans (Schornack et 

al., 2010), around 50% of predicted NLS-containing CRN effectors from P. capsici showed 

nuclear localization (Stam et al., 2013b) and numerous CRNs effectors from P. sojae such as 

PsCRN108, PsCRN63 or PsCRN115 harbor a nuclear localization (Song et al., 2015; Zhang et al., 

2015). In agreement with this, different mechanisms of action at the nuclear level have been 

reported for oomycete effectors such as the alteration of genes transcription (Wirthmueller 

et al., 2018; Song et al., 2015; He et al., 2019), the mislocalisation of transcription factor 

(Mclellan et al., 2013), the suppression of RNA silencing by inhibition of siRNA accumulation 

(Qiao et al., 2015; Xiong et al., 2014) or the induction of plant DNA-damage (Camborde et al. 

2019; Ramirez-Garcés et al. 2016). However specific function has been assigned to very few 

effectors. 

We previously use comparative genomics and predictive approaches on the 

Aphanomyces genus to identify putative effectors and characterized a large family of small 

secreted proteins (SSPs) (Gaulin et al., 2018). SSPs harbor a predicted N secretion signal, are 

less than 300 residues in size and devoid of any functional annotation. More than 290 SSPs 

are predicted in the legume pathogen A. euteiches (AeSSP) while 138 members with no 

obvious similarity to AeSSP members are reported in the crustacean parasite A. astaci (Gaulin 

et al., 2018). This specific SSP repertoire suggests its role in adaption of Aphanomyces species 

to divergent hosts. We have previously identified one AeSSP (AeSSP1256) based on a screen 

aiming to identify SSP able to promote infection of Nicotiana benthamiana plants by the leaf 

pathogen Phytophthora capsici. AeSSP1256 harbors a nuclear localization signal indicating its 

putative translocation to host nucleus. However, the function of this protein remained to be 

identified. 

Here we report on the functional analysis of AeSSP1256 and the characterization of its 

plant molecular target. We show that AeSSP1256 binds RNA in planta, induces developmental 

defects when expressed in M. truncatula roots and promotes A. euteiches infection. This 

phenotype is correlated with a downregulation of a set of ribosomal protein genes. A yeast 
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two hybrid approach identified a host RNA helicase (MtRH10) and a L7 ribosomal protein as 

interactors of AeSSP1256. By FRET-FLIM analyses we reveal that AeSSP1256 co-opts MtRH10 

to abolish its nucleic acid binding capacity. We provide a mechanistic explanation of this 

observation by demonstrating the implication of MtRH10 in roots development by generating 

missense and overexpressing Medicago lines. Finally we observed that silenced-MtRH10 roots 

are highly susceptible to A. euteiches infection like AeSSP1256-expressing roots, showing that 

MtRH10 as AeSSP1256 activities modify the outcome of the infection. We now present results 

supporting effector-mediated manipulation of a nuclear RNA helicase as a virulence 

mechanism during plant-eukaryotic pathogens interactions. 



 
 

Figure 1: AeSSP1256 is a RNA-binding protein 

(A) AeSSP1256 protein sequence that shows the signal peptide (underlined), GGRGG boxes (red), RGG domains 

(bolt, underlined and linked), RG motifs (bolts with asterisks) predicted with Eukaryotic Linear Motif Prediction 

(Gouw et al., 2018). (B) One day after agroinfection of N. benthamiana leaves with a AeSSP1256:GFP construct, 

infiltrated area are collected for FRET-FLIM analysis to detect protein/nucleic acid interactions as described by 

Camborde et al., 2018. Without RNAse treatment and in presence of nucleic acids dye Sytox Orange, the 

AeSSP1256:GFP lifetime decreases to shorter values, indicating that the proteins bounded to nucleic acids (top 

panel). After RNase treatment, no significant decrease in the GFP lifetime was observed in presence of Sytox 

Orange, indicating that AeSSP1256:GFP proteins were bounded specifically to RNA (bottom panel). Histograms 

show the distribution of nuclei (%) according to classes of AeSSP1256:GFP lifetime in the absence (blue bars) or 

presence (orange bars) of the nucleic acids dye Sytox Orange. Arrows represent GFP lifetime distribution range.
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Results 

 

AeSSP1256 contains RGG/RG domains and binds RNA in planta 

AeSSP1256 is a member of a large family of A. euteiches effectors devoid of any predicted 

functional domain, except the presence a peptide signal at the Nterminus (Gaulin et al., 2018). 

As showed in Figure 1A, AeSSP1256 protein is enriched in glycine (30% of the amino acid 

sequence), residues. Analysis using the Eukaryotic Linear Motif database (Gouw et al., 2018) 

revealed 3 GGRGG motifs (positions 81-85; 95-99 and 99-103). These motifs are variant 

arginine methylation site from arginine-glycine(-glycine) (RGG/RG) domains, presents in many 

ribonucleoproteins and involved in RNA binding (Thandapani et al., 2013; Bourgeois et al., 

2020).. We then noticed the presence of two di-RGG domains (RGG(X0-5)RGG) (position 75-85 

and 97-103) and one di-RG domains (RG(X0-5)RG) (position 123-126) corresponding to RGG or 

RG motifs that are spaced less than 5 residues (Chong et al., 2018). According to RGG/RG 

definition, those repeats occur in low-complexity region of the protein (position 60-180) 

(Chong et al., 2018) and are associated with di-glycine motifs and GR or GGR sequences (Figure 

1A), which are also common in RGG/RG-containing proteins (Chong et al., 2018). Considering 

that RGG/RG domains are conserved from yeast to humans (Rajyaguru and Parker, 2012) and 

represent the second most common RNA binding domain in the human genome (Ozdilek et 

al., 2017), we thereby investigated the RNA binding ability of AeSSP1256. 

To test this, we performed a FRET-FLIM assay on N. benthamiana agroinfiltrated leaves with 

AeSSP1256:GFP fusion protein in presence or absence of Sytox Orange to check its capacity to 

bind nucleic acids (Camborde et al. 2017). Briefly AeSSP1256:GFP construct is transiently 

express in N. benthamiana leaves where it accumulates in the nucleus (Gaulin et al., 2018). 

Samples are collected 24h after treatment and nucleic acids labeled with the Sytox Orange 

dye. In presence of Sytox, if the GFP fusion protein is in close proximity (<10nm) with nucleic 

acids, the GFP lifetime of the GFP tagged protein will significantly decrease, due to energy 

transfer between the donor (GFP) and the acceptor (Sytox). To distinguish RNA interactions 

from DNA interactions, an RNase treatment can be performed. In the case of a specific RNA-

protein interaction, no FRET acceptor will be available due to RNA degradation and the 

lifetime of the GFP tagged protein will then return at basal values. It appeared that GFP 



 
 

 

Figure 2: AeSSP1256 pertubs M. truncatula root development and enhances A. euteiches 

susceptibility 

M. truncatula A17 plants were transformed using Agrobacterium rhizogenes-mediated transformation system to 

produce GFP or AeSSP1256:GFP composite plants. (A) Confocal analysis of M. truncatula transformed roots 21 

days after transformation (d.a.t). The GFP control protein presents a nucleocytoplasmic localisation (upper 

panel), while AeSSP1256 effector is localized as a ring around the nucleolus (bottom panel). Scale bars: 10 µm. 

(B) Total proteins were extracted from transformed M. truncatula roots at 21 d.a.t and subjected to western-

blot analysis using anti-GFP antibodies. A representative blot shows a band around 28 kDa that represents the 
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GFP protein and a band corresponding to the AeSSP1256:GFP protein (expected size 46.5 kDa). (C) 

Representative photographs of AeSSP1256:GFP plants and GFP control plants at 21 d.a.t. Note the reduction in 

the growth of roots expressing the AeSSP1256 effector as compared to GFP control plants. Scale bar: 1cm. (D) 

Diagram depicting the total root number per plant (upper panel) and primary root length (in cm) per plant 

(bottom panel) of transformed M. truncatula plants at 21 d.a.t. n= 126 plants for GFP and n=79 plants for 

AeSSP1256:GFP. (E) qPCR results showing relative quantification of the A. euteiches  tubulin gene in M. truncatula 

GFP or AeSSP1256:GFP infected roots at 7, 14 and 21 days post inoculation (d.p.i). For each time point, 45 to 75 

plants per construct were used. Asterisks indicate significant differences (Student’s t-test; *: P < 0.05; **: 

P<0.001). 

 

 

lifetime of AeSSP1256:GFP decreased significantly in presence of Sytox Orange as reported in 

table 1 and in Figure 1B, decreasing from 2.06 +/- 0.02 ns to 1.84 +/- 0.03 ns. This indicates 

that AeSSP1256 is able to bind nucleic acids. After an RNase treatment, no significant 

difference on GFP lifetime was observed in absence (2.01 ns +/- 0.02) or in presence (1.96 ns 

+/- 0.02) of Sytox Orange, meaning that the FRET was not due to DNA interaction but was 

specific to RNA (table 1 and Figure 1B). These results indicate that AeSSP1256 is able to bind 

nuclear RNA in plant cells.  

 

Table 1: FRET-FLIM measurements for AeSSP1256:GFP with or without Sytox Orange 

Donor Acceptor a sem (b) N (c) E (d) (e) p-value 

AeSSP1256:GFP - 2.06 0.020 78 - - 

AeSSP1256:GFP Sytox  1.84 0.026 77 11 1.34E-09 

AeSSP1256:GFP 
-  

(+ RNase) 
2.01 0.026 50 - - 

AeSSP1256:GFP 
Sytox 

(+ RNase) 
1.96 0.027 50 2.6 0.17 

mean life-time in nanoseconds (ns). (b) s.e.m.: standard error of the mean. (c) N: total number of measured 

nuclei. (d) E: FRET efficiency in %: E=1-(DA/D). (e) p-value (Student’s t test) of the difference between the donor 

lifetimes in the presence or absence of acceptor.
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AeSSP1256 impairs M. truncatula root development and susceptibility to A. euteiches 

 

To check whether expression of AeSSP1256 may have an effect on the host plant, we 

transformed M. truncatula (Mt) roots, with a native version of GFP tagged AeSSP1256. As 

previously observed (Gaulin et al., 2018), confocal analyses confirmed the nuclear localization 

of the protein in root cells, with accumulation around the nucleolus as a perinucleolar ring 

(Figure 2A) despite the presence of signal peptide (Gaulin et al., 2018). Anti-GFP western blot 

analysis on total proteins extracted from transformed roots confirmed the presence of GFP-

tagged AeSSP1256 (46.7 kDa expected size) (Figure 2B). We noticed the presence of a second 

band around 28 kDa, which is probably free GFP due to the cleavage of the tagged protein. 

AeSSP1256:GFP transformed plants showed delayed development (Figure 2C), with total 

number of roots and primary root length per plant being significantly lower than values 

obtained with GFP control plants (Figure 2D). As previously observed in N. benthamiana, when 

a KDEL-endoplasmic reticulum (ER) retention signal is added to the native AeSSP1256 

construct (Gaulin et al., 2018), AeSSP1256:KDEL:GFP proteins mainly accumulates in the ER 

(Supplemental Figure 1A-C) and roots showed no significant differences in development as 

compared to GFP control roots (Supplemental Figure 1D and E). In contrast a construct devoid 

of native signal peptide (SP) shows that the proteins accumulated in root cell nuclei 

(Supplemental Figure 1B), leading to abnormal root development, with symptoms similar to 

those observed in presence of the AeSSP1256:GFP construct, including shorter primary root 

and lower number of roots (Supplemental Figure 1D and E). Altogether these data show that 

within the host, AeSSP1256 triggers roots developmental defects thanks to its nuclear 

localization.  

To investigate whether AeSSP1256 modifies the outcome of the infection, AeSSP1256-

transformed roots were inoculated with A. euteiches zoospores. RT-qPCR analyses at 7, 14 and 

21 days post inoculation were performed to follow pathogen development. At each time of 

the kinetic, A. euteiches is more abundant in M. truncatula roots expressing the effector than 

in GFP control roots (respectively 1.5, 3 and 5 times more) (Figure 2E). This indicates that roots 

are more susceptible to A. euteiches in presence of AeSSP1256. Transversal sections of A17-

transformed roots followed by Wheat-Germ-Agglutinin (WGA) staining to detect the presence 

of A. euteiches, showed that the pathogen is still restricted to the root cortex either in the 



 
 

 

Figure 3: Transcriptomic analyses reveal downregulation of genes related to ribosome 

biogenesis in both AeSSP1256 roots or A. euteiches-infected root 

(A) Venn diagram on downregulated genes (number of genes) of two RNASeq experiments: F83 (M. truncatula 

F83005.5 susceptible roots infected by  A.euteiches at 9 dpi), AeSSP1256 (M. truncatula Jemalong A17 transiently 

expressing AeSSP1256:GFP). (B) The most represented GO-terms common between F83-infected line and 

AeSSP1256-expressing roots of downregulated genes are related to ‘translation and ribosome-biogenesis’. Only 

GO terms containing more than 10 genes are represented on the pie chart. Numbers on the graph indicate 

percent of genes with a GO term. (C) Comparison of RNASeq (n=4) and qRT-PCR (n=5) on selected ribosome 

biogenesis-related genes.  
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presence or absence of AeSSP1256 (Supplemental Figure 2). This phenotype is similar to the 

one observed in the natural A17 M. truncatula tolerant line infected by A. euteiches (Djébali 

et al., 2009). This data suggests that defence mechanisms like protection of the central 

cylinder (Djébali et al., 2009) are still active in AeSSP1256-expressing roots.  

 

AeSSP1256 affects the expression of genes related to ribosome biogenesis 

To understand how AeSSP1256 affects M. truncatula roots development and facilitates A. 

euteiches infection, we performed expression analyses by RNASeq using AeSSP1256-

expressing roots and GFP controls roots. 4391 genes were differentially express (DE) between 

the two conditions (p adjusted-value <10-5) (Supplemental Table 1a). Enrichment analysis of 

‘Biological process’ GO-terms showed the presence of ‘ribosome biogenesis’ and 

‘organonitrogen compound biosynthetic, cellular amide metabolic’ processes terms among 

the most enriched in AeSSP1256 roots as compared to GFP-expressing roots (Supplemental 

Table 1b). We noticed that over 90% of DE-genes from ‘ribosome biogenesis’ and ‘translation’ 

categories are downregulated in AeSSP1256-expressing roots, suggesting that expression of 

the effector within the roots affects ribosome biogenesis pathway (Supplemental Table 1a). 

To evaluate whether expression of AeSSP1256 mimics infection of M. truncatula by A. 

euteiches infection through downregulation of genes related to ribosome biogenesis, we 

analyzed RNASeq data previously generated on the susceptible F83005.5 M. truncatula line 

nine days after root infection (Gaulin et al., 2018). As shown on the Venn diagram depicting 

the M. truncatula downregulated genes in the different conditions (Figure 3A, Supplemental 

Table1c), among the 270 common downregulated genes between AeSSP1256-expressing 

roots and susceptible F83-infected lines, 58 genes (>20%) are categorized in the ‘ribosome 

biogenesis’ and ‘translation’ GO term (Figure 3B). We next selected seventeen M. truncatula 

genes to confirm the effect via qRT-PCR. First, we selected ten A. thaliana genes related to 

plant developmental control (i,e mutants with shorter roots phenotype) (Supplemental Table 

1d) by Blast searches (>80% identity) in A17 line r5.0 genome portal (Pecrix et al., 2018). In 

addition, seven nucleolar genes coding for ribosomal and ribonucleotides proteins and related 

to the ‘ribosome biogenesis’ in M. truncatula were selected for expression analysis based on 

KEGG pathway map (https://www.genome.jp/kegg-bin/show_pathway?ko03008) 

(Supplemental Table 1d). As shown on Figure 3C, all of the selected genes from M. truncatula 
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are downregulated in presence of AeSSP1256, supporting the RNAseq data. Altogether, these 

expression data show that the effector by itself mimics some effects induced by pathogen 

infection of the susceptible F83 line. At this stage of the study, results point to a perturbation 

of the ribosome biogenesis pathway of the host plant by the AeSSP1256 effector. 

 

AeSSP1256 targets a DEAD-box RNA helicase and a L7 ribosomal protein 

To decipher how AeSSP1256 can affect ribosome biogenesis pathway of the host plant and 

knowing that numerous RNA-binding proteins interact with protein partners, we searched for 

AeSSP1256 host protein targets. For this, a Yeast two hybrid (Y2H) library composed of cDNA 

from M. truncatula roots infected with A. euteiches was screened with the mature form of the 

effector. Eight M. truncatula coding genes were identified as potential protein targets 

(Supplemental Table 2a), all these genes but one (a lecithin retinol acyltransferase gene) 

correspond to putative nuclear proteins in accordance with the observed subcellular 

localization of AeSSP1256.  

To confirm the Y2H results, we first expressed AeSSP1256 and candidates in N. benthamiana 

cells to observe their subcellular localization and performed FRET-FLIM experiments to 

validate protein-protein interactions. Only two candidates showed co-localization with 

AeSSP1256, a L7 ribosomal protein (RPL7, MtrunA17_Chr4g0002321) and a predicted RNA 

helicase (MtrunA17_Chr5g0429221). CFP-tagged version of RPL7 displays a nucleolar 

localization, with partial co-localization areas in presence of AeSSP1256 (Supplemental Figure 

3, Table 2b). FRET-FLIM measurements confirmed the interaction of RPL7:CFP protein with 

AeSSP1256:YFP effector (Supplemental Figure 3, Table 2b), with a mean CFP lifetime of 2.83 

ns +/- 0.03 in absence of the SSP protein, leading to 2.46 ns +/- 0.03 in presence of 

AeSSP1256:YFP (Supplemental Table 2b).  

The second candidate is a predicted DEAD-box ATP-dependent RNA helicase 

(MtrunA17_Chr5g0429221), related to the human DDX47 RNA helicase and the RRP3 RH in 

yeast. Blast analysis revealed that the closest plant orthologs were AtRH10 in Arabidopsis 

thaliana and OsRH10 in Oryza sativa. Consequently the M. truncatula protein target of 

AeSSP1256 was named MtRH10. The conserved domains of DEAD-box RNA helicase are 

depicted in the alignment of MtRH10 with DDX47, RRP3, AtRH10, OsRH10 proteins 



 
 

 

Figure 4: AeSSP1256 interacts and re-localizes the nuclear MtRH10 RNA Helicase around the 

nucleolus 

(A) Confocal analyses on N. benthamiana agroinfiltrated leaves. The CFP:MtRH10 candidate presents a 

nucleocytoplasmic localization when expressed alone (Left panel), and is re-localized in the nucleus, mostly 

around nucleolus, in the presence of AeSSP1256:YFP proteins (Right panels). Pictures were taken at 24h post 

agroinfection. Scale bars: 10µm. (B) FRET-FLIM experiments indicate that CFP:MtRH10 and AeSSP1256:YFP 

proteins are in close association when co-expressed in N. benthamiana cells. Histograms show the distribution 

of nuclei (%) according to classes of CFP:MtRH10 lifetime in the absence (blue bars) or presence (green bars) of 

AeSSP1256:YFP. Arrows represent CFP lifetime distribution range. (C) Co-immunoprecipitation experiments 
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confirm the direct association of the two proteins. Upper panel: anti-GFP and anti-HA blots confirm the presence 

of recombinant proteins in the input fractions. Lower panel: anti-GFP and anti-HA blots on output fractions after 

GFP immunoprecipitation. Arrows indicate the corresponding proteins. (D) anti-GFP and anti-HA blots on N. 

benthamiana leaf extracts expressing the GFP:MtRH10 alone or in combination with AeSSP1256:HA protein after 

24, 48 or 72h post agroinfection. Arrows indicate the corresponding proteins. GFP:MtRH10 is degraded faster in 

presence of AeSSP1256:HA. 

 

(Supplemental Figure 4A) (Schütz et al., 2010; Gilman et al., 2017). MtRH10 CFP-tagged fusion 

protein harbors nucleocytoplasmic localization when transiently express in N. benthamiana 

cells (Figure 4A), in accordance with the presence of both putative nuclear export signals 

(NESs) (position 7-37; 87-103; 261-271) and nuclear localization signal (NLS) sequences 

(position 384-416). When MtRH10 is co-expressed with YFP-tagged version of AeSSP1256, the 

fluorescence is mainly detected as a ring around the nucleolus, indicating a partial 

relocalisation of MtRH10 to the AeSSP1256 sites (Figure 4A). FRET-FLIM measurements on 

these nuclei confirm the interaction between AeSSP1256 and the Medicago RNA helicase 

(Figure 4B), with a mean CFP lifetime of 2.86 ns +/- 0.02 in absence of the effector protein, to 

2.53 ns +/- 0.03 in presence of AeSSP1256:YFP (Table 2).   

Table 2: FRET-FLIM measurements of CFP:MtRH10 in presence or absence of AeSSP1256:YFP  

Donor Acceptor a sem (b) N (c) E (d) (e) p-value 

CFP:MtRH10 - 2.86 0.023 50 - - 

CFP:MtRH10 AeSSP1256:YFP 2.53 0.031 31 11.1 2.56E-12 

mean life-time in nanoseconds (ns). (b) s.e.m.: standard error of the mean. (c) N: total number of measured 

nuclei. (d) E: FRET efficiency in % : E=1-(DA/D). (e) p-value (Student’s t test) of the difference between the 

donor lifetimes in the presence or absence of acceptor. 

To confirm this result, co-immunoprecipitation assays were carried out. A GFP:MtRH10 

construct was co-transformed with AeSSP1256:HA construct in N. benthamiana leaves. As 

expected, the localization of GFP:MtRH10 protein in absence of AeSSP1256 was 

nucleocytoplasmic while it located around the nucleolus in the presence of the effector 



 
 

 

Figure 5: AeSSP1256 inhibits RNA binding activity of MtRH10 

(A) FRET-FLIM experiments on N. benthamiana cells expressing GFP:MtRH10 in presence or absence of nucleic 

acids dye Sytox Orange. In presence of Sytox Orange, the GFP:MtRH10 lifetime decreases to shorter values, 

indicating that the proteins bounded to nucleic acids. (B) In presence of AeSSP1256:HA, when GFP:MtRH10 is re-

localized around the nucleolus and interacts with AeSSP1256, no significant decrease in the GFP lifetime was 

observed in presence of Sytox Orange, meaning that the re-localized GFP:MtRH10 proteins were not able to 

interact with nucleic acids. Histograms show the distribution of nuclei (%) according to classes of GFP:MtRH10 

lifetime in the absence (blue bars) or presence (orange bars) of the nucleic acids dye Sytox Orange. Arrows 

represent GFP lifetime distribution range.  
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(Supplemental Figure 4B). Immunoblotting experiments using total proteins extracted from 

infiltrated leaves (24 hpi) showed that AeSSP1256:HA proteins were co-immunoprecipitated 

with GFP:MtRH10, but not with the GFP alone (Figure 4C). These data indicate that AeSSP1256 

associates with MtRH10 in the nucleus. To go further we checked the stability of the two 

proteins when expressed alone or in combination in N. benthamiana cells during 72 hours. 

While GFP:MtRH10 was still detected at 72h after agroinfiltration, it started to be degraded 

48hpi (Figure 4D). Expression of the effector alone is stable along the time. In contrast, when 

the two proteins are co-expressed, GFP:MtRH10 is almost entirely processed at 48h, and no 

more detectable at 72h (Figure 4D), suggesting that the effector enhance instability of its host 

target. Taken together, these results strongly suggest an interaction between AeSSP1256 and 

two type of components, a ribosomal protein and a nuclear RNA helicase from M. truncatula. 

 

AeSSP1256 alters the RNA binding activity of MtRH10  

DEAD-box RNA helicases are RNA binding proteins involved in various RNA-related processes 

including pre-rRNA maturation, translation, splicing, and ribosome assembly (Jarmoskaite and 

Russell, 2011). These processes are dependent to the RNA binding ability of the proteins. 

Therefore we checked whether MtRH10 is able to bind nucleic acids in planta using FRET-FLIM 

assays as described previously. As reported in Table 3 and in Figure 5A, GFP lifetime of 

GFP:MtRH10 decreased in presence of the acceptor, from 2.32 ns +/- 0.02 to 2.08 ns +/- 0.03 

due to FRET between GFP and Sytox, confirming as expected that MtRH10 protein is bounded 

to nucleic acids. 

Table 3: FRET-FLIM measurements for GFP:MtRH10 with or without Sytox Orange, in presence 

or in absence of AeSSP1256:HA 

Donor Acceptor a sem (b) N (c) E (d) (e) p-value 

GFP:MtRH10 - 2.32 0.020 60 - - 

GFP:MtRH10 Sytox Orange 2.08 0.027 60 10.3 1.30E-10 
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GFP:MtRH10 

(relocalized) 

- 

(+ AeSSP1256:HA) 
2.30 0.023 60 24 - 

GFP:MtRH10 

(relocalized) 

Sytox Orange 

(+ AeSSP1256:HA) 
2.30 0.020 60 0 0.789 

mean life-time in nanoseconds (ns). (b) s.e.m.: standard error of the mean. (c) N: total number of measured 

nuclei. (d) E: FRET efficiency in % : E=1-(DA/D). (e) p-value (Student’s t test) of the difference between the 

donor lifetimes in the presence or absence of acceptor. 

 To evaluate the role of AeSSP1256 on the function of MtRH10 we reasoned that the effector 

may perturb its binding capacity since it is required for the activity of numerous RH protein 

family (Jankowsky, 2011). We then co-expressed the GFP:MtRH10 construct with  

AeSSP1256:HA in N. benthamiana leaves and performed FRET-FLIM assays. Measurements 

made in nuclei where both proteins are detected due to the re-localization of MtRH10 

indicated that GFP lifetime of GFP:MtRH10 remained unchanged with or without Sytox (2.3 ns 

in both conditions) showing that MtRH10 was not able to bind nucleic acids in the presence 

of the effector (Table 3 and Figure 5B). These data reveal that AeSSP1256 hijacks MtRH10 

binding to RNA, probably by interacting with MtRH10. 

 

MtRH10 is expressed in meristematic root cells and its deregulation in M. truncatula impacts 

root architecture and susceptibility to A. euteiches infection 

To characterize the function of MtRH10, we firstly consider the expression of the gene by 

mining public transcriptomic databases including Legoo (https://lipm-

browsers.toulouse.inra.fr/k/legoo/), Phytozome 

(https://phytozome.jgi.doe.gov/pz/portal.html) and MedicagoEFP browser on Bar Toronto 

(http://bar.utoronto.ca/efpmedicago/cgi-bin/efpWeb.cgi). No variability was detected 

among the conditions tested in the databases and we do not detect modification of MtRH10 

expression upon A. euteiches inoculation in our RNAseq data. To go further in the expression 

of the MtRH10 gene, transgenic roots expressing an MtRH10 promoter-driven GUS ( -

glucuronidase) chimeric gene were generated. GUS activity was mainly detectable in 

meristematic cells, at the root tip or in lateral emerging roots (Figure 6A) suggesting a role in 

meristematic cell division. To assess the effect of MtRH10 on root physiology and resistance 



 
 

 

Figure 6: MtRH10 is expressed in meristematic cells of Medicago truncatula and its 

deregulation impacts root architecture 
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Figure 6: MtRH10 is expressed in meristematic cells of Medicago truncatula and its 

deregulation impacts root architecture 

(A) GUS staining of MtRH10 promoter:GUS plants 21 d.a.t. Top panel: Root tip, bottom panel: emerging lateral 

root. Arrows indicate blue cells. Scale bars: 100µm. (B) Representative longitudinal section of M. truncatula root 

tips expressing GFP or RNAi MtRH10 construct. Root apical meristem (RAM) size is determined from quiescent 

center (dot line) till the elongation/differentiation zone (EDZ), defined by the first elongated cortex cell of second 

cortical layer (arrowhead). Scale bars: 100µm. (C) Histograms of total RAM size and mean RAM cortical cell size. 

RAM of RNAi MtRH10 roots are smaller than in GFP control, but average cell size of cortical cells in RAM is not 

significantly different. Bars represent mean values and error bars are standard deviation. Asterisks indicate a 

significant p-value (t-test P < 0,0001, ns: not significant). (D) Confocal pictures of M. truncatula roots transformed 

with GFP (top) or GFP:MtRH10 construct (bottom). GFP:MtRH10 proteins harbor a nucleocytoplasmic localization 

with some fluorescence dots in the nucleolus (arrows). Bottom panels represent nucleus enlargements. n: 

nucleus, c: cytoplasm. Scale bars: 10µm. Left panel : 488nm, right panel: overlay (488nm + bright field) (E) 

Representative pictures of M. truncatula plants expressing either a GFP, a GFP:MtRH10 or RNAi MtRH10 

construct 21 d.a.t. No particular phenotype was observed in the overexpressing MtRH10 plants. At the opposite, 

developmental delay appeared in missense MtRH10 plants. Scale bar: 1cm. (F) Total root number per plant (left 

panel) and primary root length per plant (right panel) in cm. Letters a and b indicate Student’s t-test classes 

(different classes if P < 0,01). 

 

to A. euteiches, a pK7GWiWG2:RNAi MtRH10 vector was design to specifically silence the gene 

in Medicago roots. RNA helicase gene expression was evaluated by qPCR 21 days after 

transformation. Analyses confirmed a reduced expression (from 3 to 5 times) compared to 

roots transformed with a GFP control vector (Supplemental Figure 5). The silenced roots 

displayed a delay in development, which starts with a shorter root apical meristem (RAM) 

(Figure 6B and C). This reduction in not due to smaller RAM cortical cell size (Figure 6C) 

suggesting a decrease in cell number. We also observed a reduced number of roots coupled 

with shorter primary roots (Figure 6E and F). In contrast, no developmental defects were 

detected in roots overexpressing MtRH10 (Figure 6E and F). Longitudinal sections of roots 

expressing either RNAi MtRH10 or AeSSP1256 performed in elongation/differentiation zone 

(EDZ) revealed comparative defects in cortical cell shape or cell size (Supplemental Figure 6A). 

Cell area in missense MtRH10 or in AeSSP1256 roots is approximately reduced 2 times 

compared to GFP control roots (Supplemental Figure 6B) but proportionally the perimeter of 

those cells is longer than GFP cells, indicating a difference in cell shape (Supplemental Figure 



 
 

 

Figure 7: Deregulation of MtRH10 helicase gene expression in Medicago truncatula impacts 

Aphanomyces euteiches susceptibility 

Expression values (Log2 fold change) for A. euteiches tubulin or MtRH10 genes in M. truncatula infected plants 

at 7, 14 and 21 d.p.i. in overexpressing GFP:MtRH10 plants (OE MtRH10) or in RNAi MtRH10 expressing plants 

compared to GFP control plants. Plants overexpressing MtRH10 gene are less susceptible to A. euteiches 

infection. In contrast, reduced expression of MtRH10 by RNAi enhances plant susceptibility to A. euteiches. 

Asterisks indicate significant differences (Student’s t-test; *: P < 0,05, **: p < 0,01). Bars and error bars represent 

respectively means and standard errors from three independent experiments. In total, N: 91 plants for GFP, 50 

plants for GFP:MtRH10 and 50 plants for RNAi MtRH10 construct. 
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6C). We noticed that most of EDZ cells in GFP roots present a rectangular shape, which seem 

impaired in missense MtRH10 and AeSSP1256 expressing roots. Thus we measured the 

perimeter-bounding rectangle (PBR) which calculates the smallest rectangle possible to draw 

with a given cell. A perimeter/PBR ratio of 1 indicates that the cell is rectangular. As presented 

in Supplemental Figure 6D, the perimeter/PBR ratio in GFP roots is close to 1 and significantly 

different than those observed in RNAi MtRH10 and AeSSP1256 roots. This analysis reveals that 

the reduction of MtRH10 expression or the expression of the effector AeSSP1256 in Medicago 

roots, impairs the cortical cell shape. The similar phenotypic changes observed on MtRH10-

silenced roots and AeSSP1256-expressing roots, suggest that the effector may affect MtRH10 

activity in cell division regions. 

Having shown that MtRH10 is implicated in M. truncatula roots development, we test whether 

this biological function is related to pathogen colonisation. We therefore investigate by qPCR 

the presence of A. euteiches in silenced and overexpressed MtRH10 roots infected by the 

pathogen. As shown on Figure 7, overexpression of MtRH10 reduce the amount of mycelium 

in roots after 7, 14 and 21 dpi (1.8, 3.3 and 1.6 times less, respectively). We note by western-

blot analyses a slight decrease in MtRH10 amount upon the time probably due to the 

accumulation of the AeSSP1256 effector (Supplemental Figure 7). As expected in roots where 

MtRH10 is silenced to 2 to 3 times as compared to GFP control roots, qPCR analyses revealed 

approximately 5 to 10 times more of the pathogen at 7, 14 and 21 dpi (Figure 7). Taken 

together these infection assays show that MtRH10 is involved in conferring basal resistance 

to A. euteiches at the root level.  
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Discussion 

 

Protein effectors from filamentous plant pathogens such as fungi and oomycetes facilitate 

host colonization by targeting host components. However, the molecular mechanisms that 

enhance plant susceptibility to the pathogen are still poorly understood. Here we report that 

the A. euteiches AeSSP1256 RNA-binding effector facilitate host infection by downregulating 

expression of plant ribosome-related genes and by hijacking from its nucleic target MtRH10, 

a Medicago nuclear RNA-helicase (RH). Thus, the current study unravels a new strategy in 

which pathogenic oomycete triggers plant nucleolar stress to promote infection.  

AeSSP1256 is an effector from the oomycete root pathogen A. euteiches previously shown to 

enhance oomycete infection (Gaulin et al., 2018). Despite the absence of any functional 

domain, in silico RGG/RG RNA-binding motif prediction (see for review (Thandapani et al., 

2013)) prompt us to show by FRET/FLIM analysis that the secreted AeSSP1256 effector is an 

RNA-binding protein (RBP). RNAs play essential role in cell physiology and it is not surprising 

that filamentous plant pathogens may rely on RNA-dependent process to control host 

infection (for review see (Göhre et al., 2013; Pedersen et al., 2012). Moreover RBPs are key 

players in the regulation of the post-transcriptional processing and transport of RNA 

molecules (Yang et al., 2018b). However, to our knowledge only three examples of RBPs acting 

as virulence factor of plant pathogens are known. This includes the glycine-rich protein 

MoGrp1 from the rice pathogen Magnaporthe oryzae (Gao et al., 2019), the UmRrm75 of 

Ustilago maydis (Rodríguez-Kessler et al., 2012) and the secreted ribonuclease effector 

CSEP0064/BEC1054 of the fungal pathogen Blumeria graminis which probably interferes with 

degradation of host ribosomal RNA (Pennington et al., 2019). This situation is probably due to 

the absence of conventional RNA-binding domain which render this type of RBP undetectable 

by prediction algorithms. The future studies that will aim to unravel the atlas of RNA-binding 

effectors in phytopathogens should not only rely on computational analysis but will have to 

use functional approaches such as crystallization of the protein to validate function as 

performed with CSEP0064/BEC1054 effector (Pennington et al., 2019) or screening method 

like the RNA interactome capture (RIC) assay develops in mammals (Castello et al., 2012).  
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We observed that when expressed inside roots of the partially resistant Jemalong A17 M. 

truncatula line, AeSSP1256 triggers developmental defects such as shorter primary roots and 

delay in roots development. In addition, those composite plants promote infection of A. 

euteiches. This modification in the output of the infection is highly relevant since we previously 

observed that M. truncatula quantitative resistance to A. euteiches is correlated to the 

development of secondary roots (Rey et al., 2016). Defects in roots development and retarded 

growth are typical characteristics of auxin-related and ribosomal proteins mutants reported 

in Arabidopsis  (Ohbayashi et al., 2017; Wieckowski and Schiefelbein, 2012). 

This activity is dependent on the nucleolar rim localization of AeSSP1256, closed to the 

nucleolus. The nucleolus is a membrane-free subnuclear compartment essential for the highly 

complex process of ribosome biogenesis (reviewed in (Shaw and Brown, 2012). Ribosome 

biogenesis is linked to cell growth and required coordinated production of processed 

ribosomal RNA (rRNA), ribosomal biogenesis factors and ribosomal proteins (RP). In the 

nucleolus, ribosome biogenesis starts with the transcription of pre-rRNAs from rRNA genes, 

followed by their processing and assembly with RPs into two ribosome subunits (ie small and 

large subunit). In animals, perturbation of any steps of ribosome biogenesis in the nucleolus 

can cause a nucleolar stress or ribosomal stress which stimulates specific signaling pathway 

leading for example to arrest of cell growth (Pfister, 2019). The nucleolar rim localization of 

AeSSP1256 within the host cells suggested that this effector could interfere with ribosome 

biogenesis pathway to facilitate infection. This speculation was further strengthened by 

RNAseq experiments, which showed that within A17-roots, AeSSP1256 downregulated 

numerous genes implicated in ribosome biogenesis pathway, notably ribosomal protein 

genes. This effect was also detected in susceptible F83 M. truncatula lines infected by A. 

euteiches indicating that AeSSP1256, mimics some A.euteiches effects during roots invasion. 

Y2H approach led to the identification of putative AeSSP1256 plant targets and all but one 

correspond to predicted nuclear M. truncatula proteins. By a combination of multiple 

experiments as FRET-FLIM to detect protein/protein interactions, a L7 ribosomal protein 

(MtrunA17_Chr4g0002321) and a DExD/H box RNA helicase ATP-dependent 

(MtrunA17_Chr5g0429221) were confirmed as AeSSP1256-interacting proteins. The DExD/H 

(where x can be any amino acid) box protein family include the largest family of RNA-helicase 

(RH). Rather than being processive RH, several DExD/H box proteins may act as ‘RNA 
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chaperone’ promoting the formation of optimal RNA structures by unwinding locally the RNA 

(for review see (Fuller-Pace, 2006)). These proteins are of major interest due to their 

participation to all the aspects of RNA processes such as RNA export and translation, splicing 

but the most common function of these proteins is in ribosome biogenesis including assembly 

(Jarmoskaite and Russell, 2011). Specific function of RH is probably due to the presence of a 

variable C-terminal ‘DEAD’ domain in contrast to the well conserved N-terminal ‘helicase core’ 

domain (for review see (Fuller-Pace, 2006)). This structural organization was detected in the 

MtRH10. This M. truncatula protein corresponds to the ortholog of the nucleolar human 

DDX47 (Sekiguchi et al., 2006), the nuclear yeast RRP3 (O’Day, 1996) and the nucleolar 

Arabidopsis AtRH10 RNA-helicases, all involved in ribosome biogenesis (Liu and Imai 2018; 

Matsumura et al. 2016), and the nucleolar rice OsRH10 (TOGR1) involved in rRNA homeostasis 

(Wang et al. 2016).  

Like its human ortholog DDX47 (Sekiguchi et al., 2006), MtRH10 possesses a bipartite nuclear 

transport domain which can function as a nuclear localization signal (NLS) and two nuclear 

export signal (NES), and thereby it probably shuttles between the cytoplasm and the nucleus 

as reported for many others RNA helicases involved in rRNA biogenesis and splicing function 

(Sekiguchi et al. 2006; Wang et al. 2009). Fluorescence analysis showed a relocalization of the 

nucleocytoplasmic MtRH10 in the nucleoli periphery, when it is transiently co-express with 

AeSSP1256 in N. benthamiana cells. The change in MtRH10 distribution suggests that the 

interaction between the two proteins caused a mislocation of MtRH10 that can probably 

affect its activity. We thereby check the nucleic acid binding capacity of MtRH10 by FRET-FLIM 

approach. The decrease in the lifetime of GFP revealed the ability of MtRH10 to bind nucleic 

acids. Knowing that both proteins display the same properties, we further evidenced that the 

presence of AeSSP1256 effector inhibits the nucleic binding capacity of MtRH10. This 

mechanism was also reported for the RNA-binding HopU1 effector from the plant bacterial 

pathogen Pseudomonas syringae which associate to the glycin-rich RNA binding 7 protein 

(GRP7) of Arabidopsis to abolish GRP7 binding to immune gene transcripts (ie FLS2 receptor, 

(Nicaise et al., 2013)). Here we cannot exclude that AeSSP1256 also blocks the putative 

helicase activity of MtRH10, but we favored an inhibitory mechanism of AeSSP1256 on 

MtRH10 activity as complex and at least in part due to both protein-protein interaction and 

nucleic acid interaction with the two proteins. Interestingly, we also noticed that co-
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expression of both proteins led to decrease in MtRH10 probably due to degradation of the 

protein. While this observation warrants further analyses, this effect is reminiscent of other 

effector activities which destabilize their targets (for review see (Langin et al., 2020)). 

Plant genomes encode a large variety of DExD/H RH family in comparison to other organisms 

and numerous studies have shown that several are associated through their activity with plant 

development, hormone signaling or responses to abiotic stresses (for review see (Liu and Imai 

2018)). Very few studies reported that DExD/H RH could also be involved in biotic stresses, 

like responses to pathogens. One example is the DExD/H RH OsBIRH1 from rice that enhanced 

disease resistance against Alternaria brassicicola and Pseudomonas syringae through 

activation of defense-related genes (Li et al. 2008). A recent study on oomycete reports the 

binding of the Phytophthora sojae RxLR PSR1 effector to a putative nuclear DExD/H RH. 

Although the affinity for nucleic acids was not evaluated for the RH, association of both 

partners promote pathogen infection by suppressing small RNA biogenesis of the plant (Qiao 

et al., 2015). Here we showed that MtRH10 knockdown tolerant A17 lines supported higher-

level accumulation of A. euteiches in contrast to overexpressed MtRH10 lines, indicating the 

importance of MtRH10 for M. truncatula roots defense against soil-borne pathogens.  

This works reveals that MtRH10 expression is restricted at the root apical meristematic zone 

(RAM) where cells divide (ie, primary and lateral roots). Missense MtRH10 roots harbor 

defects in the primary root growth and reduced number of roots. Longitudinal sections in 

elongation zone (EDZ) of these composite roots show a significant reduction in the size and 

shape modification of cortical cells indicating that MtRH10 is required for normal cell division. 

Defect in primary roots elongation is also detected in silenced AtRH10 and OsRH10 mutant 

(Matsumura et al. 2016; Wang et al. 2016). Thus MtRH10 plays a role on Medicago root 

development as its orthologs OsRH10 and AtRH10. At the cellular level we also observed in 

AeSSP1256-expressing roots, reduction in cell size in elongation zone, with defects in cell 

shape and in adhesion between cells of the cortex, maybe due to a modification of the middle 

lamella (Zamil and Geitmann, 2017). Thus AeSSP1256 triggers similar or enhanced effect on 

host roots development as the one detected in defective MtRH10 composite plants, 

supporting the concept that the activity of the effector on MtRH10 consequently leads to 

developmental roots defects. Several reports have indicated that Arabidopsis knockout of 

genes involved in rRNA biogenesis or in ribosome assembly cause abnormal plant 
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development including restriction and retardation in roots growth (Ohtani et al., 2013; Huang 

et al., 2016, 2010). These common features suggest the existence of a common mechanism 

that regulate growth in response to insults of the ribosome biogenesis pathway, known as 

nucleolar stress response (for review see (Ohbayashi and Sugiyama, 2018)). How plant cells 

sense perturbed ribosome biogenesis and nucleolar problems is still an opening question 

(Sáez-Vásquez and Delseny, 2019), but the ANAC082 transcription factor from Arabidopsis can 

be a ribosomal stress response mediator (Ohbayashi et al., 2017). In addition the recent report 

on the activity of the nucleolar OsRH10 (TOGR1, MtRH10 ortholog) implicated in plant primary 

metabolism through is activity on rRNA biogenesis, suggests that metabolites may play a role 

in this process. Finally our current study indicates that nuclear RNA-binding effector like 

AeSSP1256, by interacting with MtRH10, can act as a stimulus of the ribosomal stress 

response.  

This work established a connection between the ribosome biogenesis pathway, a nuclear 

DExD/H RH, root development and resistance against oomycetes. Our data document that the 

RNA binding AeSSP1256 oomycete effector that the parasite expresses during infection 

downregulated expression of ribosome-related genes and hijacked MtRH10, a nuclear DExD/H 

RH involved in root development, to promote host infection. This work not only provides 

insights into plant-root oomycete interactions but also reveals the requirement of fine-tuning 

of plant ribosome biogenesis pathways for infection success.   



 
 

Supplemental Figure 1: The nuclear localization of AeSSP1256 is required for biological activity in 

M. truncatula roots. 

(A) Schematic representation of constructs used in this assay. Endoplasmic reticulum (ER) retention motif KDEL 

was added at the C-terminus of the AeSSP1256:GFP construct, in presence or absence of the native signal peptide 

(SP). (B) Confocal analyses on M. truncatula-agrotransformed roots confirmed the nucleocytoplasmic localization 

of the GFP alone (Left panel), the nuclear and perinucleolar localization of the –SP:AeSSP1256:GFP:KDEL (Middle 

panel), and the ER-localization of the AeSSP1256:GFP:KDEL (Right panel), where proteins followed ER secretion 

pathway thanks to the signal peptide but are trapped in the ER due to KDEL retention motif. Pictures were taken 

at 21 d.p.t. Scale bar: 10µm. (C) Representative anti-GFP blot control. Bands represent GFP proteins (28.4 kDa), 

-SP:AeSSP1256:GFP:KDEL (52 kDa) or AeSSP1256:GFP:KDEL (54 kDa expected for complete protein). Samples 

were harvested at 21 d.p.t. (D) Representative picture of M. truncatula plants expressing GFP, -

SP:AeSSP1256:GFP:KDEL or AeSSP1256:GFP:KDEL, at 21 d.p.t. Scale bar: 1cm. (E) Total root number per plant 

(Left panel) and primary root length (in cm) per plant (Right panel). Asterisks indicate significant differences 

(Student’s t-test; *, P<0.05). N: 40 plants for GFP and for AeSSP1256:GFP:KDEL and 35 plants for –

SP:AeSSP1256:GFP:KDEL



 
 

 

Supplemental Figure 2: Invasion of M. truncatula roots by the pathogen is unchanged in 

AeSSP1256 effector-expressing roots. 

Cross-section of tolerant A17 M. truncatula lines expressing either the GFP control vector (left) or the 

effector AeSSP1256:GFP (right) construct and infected by A. euteiches, 21 days after infection. 

Mycelium was stained by Wheat Germ Agglutinin (Red) assay. Green fluorescence indicate GFP alone 

or the GFP-tagged effector. Accumulation of phenolic compounds due to the presence of the pathogen 

is visualized in blue (Djebali et al., 2009). No notable modification in the infection process is detected 

and the pathogen is still restricted to the root cortex in the effector-transformed roots as in wild type 

tolerant A17 line. CC: cortical cells. Scale bars: 100 µm 



 
 

 

Supplemental Figure 3: CFP:L7RP candidate and AeSSP1256:YFP are in close association. 

Confocal and FRET-FLIM experiments indicate that CFP:L7RP and AeSSP1256:YFP proteins are in close 

association when co-expressed in N. benthamiana cells. (A) Confocal analysis revealed partial 

colocalization of CFP:L7RP and AeSSP1256:YFP. White dashes represent nucleus membrane. Pictures 

were taken at 24h. Scale bars: 10 µm. (B) FRET-FLIM measurements. Histograms show the distribution 

of nuclei (%) according to classes of CFP:L7RP lifetime in the absence (blue bars) or presence (red bars) 

of AeSSP1256:YFP. Arrows represent CFP lifetime distribution range. 

 

 

 

 



 
 

 
Supplemental Figure 4: AeSSP1256 drives the re-localisation of the nuclear MtRH10 RNA 
helicase, around the nucleolus in N. benthamiana cells. 

(A) Multiple sequence alignment of DEAD-box RNA Helicases (RH) from Medicago truncatula (MtRH10, 

MtrunA17_Chr5g0429221), Homo sapiens (DDX47, UniprotKb: Q9H0S4), Saccharomyces cerevisiae (RRP3, UniprotKB: 

P38712), Arabidopsis thaliana (AtRH10, UniprotKB: Q8GY84) and Oryza sativa (OsRH10, UniprotKb: A2XKG2) which display 

>50% similarity. Colored boxes indicate conserved DEAD-box RH domains. Black boxes indicate putative NES and NLS 

sequences for MtRH10 protein. Alignment was performed with Multalin (http://multalin.toulouse.inra.fr/multalin/). Red: 

identical aligned residues, Blue: similar aligned residues (B) Transient expression in N. benthamiana leaves of GFP:MtRH10 

alone or in combination with AeSSP1256:HA. White dashes represent nucleus membrane. Pictures were taken by confocal 

24h after infiltration. Note the re-localisation of MtRH10 in presence of the effector, as a ring around the nucleolus. Right 

pictures are zooms of nucleus of the left panel. Scale bars: 10 µm.



 
 

 

Supplemental Figure 5: Expression of MtRH10 is reduced in M. truncatula silenced-roots. 

qPCR analyses of MtRH10 gene expression level in M. truncatula RNAi MtRH10 transformed plants. 

Each sample represents a mix of five RNAi MtRH10 plants or GFP control plants. Bars and error bars 

represent mean and standard deviation. Asterisks indicate t-test significant difference (***: p<0,0001). 

Samples were harvested 21 days post transformation. 

 

 

 

 

 

 



 
 

Supplemental Figure 6: M. truncatula cell morphology is affected in RNAi MtRH10 and 

AeSSP1256:GFP expressing roots. 

Host cell shape and size are affected by the expression of AeSSP1256:GFP construct or by the downregulation of 

MtRH10 (A) Representative longitudinal sections of GFP, AeSSP1256:GFP or RNAi MtRH10 roots. Rectangles 

show enlarged areas. CC: cortical cells. Arrow shows example of cells with shape or size perturbations. Samples 

were harvested 21 days post transformation. Scale bars: 200 µm. (B) Histograms of cortical cells area. RNAi 

MtRH10 or AeSSP1256 cells are smaller than GFP control cells. (C) Histograms of normalized cell perimeter of 

cortical cells. Each cell perimeter is proportionally recalculated for a of 500 µm² area standard cell. Normalized 

cell perimeter is longer in missense MtRH10 and AeSSP1256 samples due to proportionally longer perimeters, 

indicating a different shape compare to GFP control cells. (D) Histograms showing perimeter / perimeter 

bounding rectangle ratio. The perimeter bounding rectangle (PBR) calculates the smallest rectangle possible to 

draw with a given cell. A ratio perimeter / PBR of 1 indicates that the cell is rectangular. This graph shows that 

missense MtRH10 and AeSSP1256 cells are less rectangular than GFP cells (perimeter / PBR ratio closer to 1 in 

GFP cells). Letters a and b represent statistical different classes (t-test, different letters if p<0,001). Bars represent 

mean values and error bars are standard deviation. Three roots from three independent experiments were used 

and measurements were performed in the elongation/differentiation zone (EDZ) of the roots, using approx. 

300x600 µm selection.  



 
 

 

Supplemental Figure 7: Western blot on MtRH10-overexpressed roots infected by A. 

euteiches. 

Representative anti-GFP blot on transformed plants infected by A. euteiches after 7, 14 or 21 days post 

inoculation. Note a slight decrease of MtRH10 protein accumulation during A. euteiches infection. Each 

sample represents a mix of five GFP:MtRH10 overexpressing plants or GFP control plants. Roots were 

inoculated 21 days post transformation. Arrowhead indicates GFP:MtRH10 fusion proteins (68 kDa).  
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Material and Methods 

 

Plant material, microbial strains, and growth conditions  

M. truncatula A17 seeds were in vitro-cultured and transformed as previously described 

(Boisson-Dernier et al., 2001; Djébali et al., 2009). A. euteiches (ATCC 201684) zoospore 

inoculum were prepared as in (Badreddine et al., 2008). For root infections, each plant was 

inoculated with a total of 10 µl of zoospores suspension at 105 cells.ml-1. Plates were placed 

in growth chambers with a 16h/8h light/dark and 22/20°C temperature regime. N. 

benthamiana plants were grown from seeds in growth chambers at 70% of humidity with a 

16h/8h light/dark and 24/20°C temperature regime. E.coli strains (DH5α, DB3.5), A. 

tumefaciens (GV3101::pMP90) and A. rhizogenes (ARQUA-1) strains were grown on LB 

medium with the appropriate antibiotics. 

 

Construction of plasmid vectors and Agrobacterium-mediated transformation  

GFP control plasmid (pK7WGF2), +SPAeSSP1256:GFP and +SPAeSSP1256:YFP (named 

AeSSP1256:GFP and AeSSP1256:YFP in this study for convenience) and minus or plus signal 

peptide AeSSP1256:GFP:KDEL constructs were described in (Gaulin et al., 2018). Primers used 

in this study are listed in Supplemental Table 3. M. truncatula candidates sorted by Y2H assay 

(MtrunA17_Chr7g0275931, MtrunA17_Chr2g0330141, MtrunA17_Chr5g0407561, 

MtrunA17_Chr5g0429221, MtrunA17_Chr1g0154251, MtrunA17_Chr3g0107021, 

MtrunA17_Chr7g0221561, MtrunA17_Chr4g0002321) were amplified by Pfx Accuprime 

polymerase (Thermo Fisher; 12344024) and introduced in pENTR/ D-TOPO vector by means 

of TOPO cloning (Thermo Fisher; K240020) and then transferred to pK7WGF2, pK7FWG2 

(http://gateway.psb.ugent.be/), pAM-PAT-35s::GTW:CFP or pAM-PAT-35s::CFP:GTW binary 

vectors.  

Using pENTR/ D-TOPO:AeSSP1256, described in (Gaulin et al., 2018), AeSSP1256 was 

transferred by LR recombination in pAM-PAT-35s::GTW:3HA for co-immunoprecipitation and 

western blot experiments to create a AeSSP1256:HA construct and in pUBC-RFP-DEST (Grefen 

et al., 2010) to obtain a AeSSP1256:RFP construct for FRET FLIM analysis. For RNAi of MtRH10 

(MtrunA17_Chr5g0429221), a 328 nucleotides sequence in the 3’UTR was amplified by PCR 

(see Supplemental Table 3), introduced in pENTR/D-TOPO vector and LR cloned in 
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pK7GWiWG2(II)-RedRoot binary vector (http://gateway.psb.ugent.be/) to obtain RNAi 

MtRH10 construct. This vector allows hairpin RNA expression and contains the red fluorescent 

marker DsRED under the constitutive Arabidopsis Ubiquitin10 promoter 

(http://gateway.psb.ugent.be/), to facilitate screening of transformed roots. For MtRH10 

promoter expression analyses, a 1441nt region downstream of the start codon of MtRH10 

gene was amplified by PCR (see Supplemental Table 3), fused to β-glucuronidase gene (using 

pICH75111 vector (Engler et al., 2014)) and inserted into pCambia2200:DsRED derivative 

plasmid (Fliegmann et al., 2013) by Golden Gate cloning to generate PromoterMtRH10:GUS 

vector.  

Generation of M. truncatula composite plants was performed as described by (Boisson-

Dernier et al., 2001) using ARQUA-1 A. rhizogenes strain. For leaf infiltration, GV3101 A. 

tumefaciens transformed strains were syringe-infiltrated as described by (Gaulin et al., 2002). 

 

Cross-section sample preparation for confocal microscopy 

M. truncatula A17 plants expressing GFP or AeSSP1256:GFP constructs were inoculated with 

A. euteiches zoospores 21 days after transformation as indicated previously. Roots were 

harvested 21 days post inoculation, embedded in 5% low-melting point agarose and cutted 

using a vibratome (VT1000S; Leica, Rueil-Malmaison, France) as described in (Djébali et al., 

2009). Cross-sections were stained using Wheat Germ Agglutin (WGA)-Alexa Fluor 555 

conjugate (Thermo Fischer; W32464), diluted at 50 μg/ml in PBS for 30min to label A. 

euteiches.  

 

RNA-Seq experiments 

Roots of composite M. truncatula A17 plants expressing GFP or AeSSP1256:GFP constructs 

were harvested one week later after first root emergence. Before harvest, roots were checked 

for GFP-fluorescence by live macroimaging (Axiozoom, Carl Zeiss Microscopy, Marly le Roi, 

France) and GFP-positive roots were excised from plants by scalpel and immediately frozen in 

liquid nitrogen. Four biological replicates per condition were performed (GFP vs AeSSP1256-

expressing roots), for each biological replicate 20-40 transformed plants were used.  Total RNA 

was extracted using E.Z.N.A.® total RNA kit (Omega bio-tek) and then purified using Monarch® 

RNA Cleanup Kit (NEB). cDNA library was produced using MultiScribe™ Reverse Transcriptase 

kit using mix of random and poly-T primers under standard conditions for RT-PCR program. 
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Libraries preparation was processed in GeT-PlaGe genomic platform 

(https://get.genotoul.fr/en/; Toulouse, France) and sequenced using Illumina HiSeq3000 

sequencer. The raw data was trimmed with trmigalore (version 0.6.5) 

(https://github.com/FelixKrueger/TrimGalore) with cutadapt and FastQC options, and 

mapped to M. truncatula cv. Jemalong A17 reference genome V. 5.0 (Pecrix et al., 2018) using 

Hisat2 (version 2.1.0) (Kim et al., 2019). Samtools (version 1.9) algorithms fixmate and 

markdup (Li et al., 2009) were used to clean alignments from duplicated sequences. Reads 

were counted by HTseq (version 0.9.1) (Anders et al., 2015) using reference GFF file. The count 

files were normalized and different expression were quantified using DESeq2 algorithm (Love 

et al., 2014), false-positive hits were filtered using HTS filter (Rau et al., 2013). GO enrichment 

were done using ErmineJ  (Lee et al., 2005) and topGO (Alexa and Rahnenfuhrer  2020) 

software. RNASeq experiments on F83005.5 (F83) susceptible plants infected by A. euteiches 

and collected nine days after infection are described in (Gaulin et al., 2018).  

 

RNA extraction and qRT-PCR  

RNA was extracted using the E.Z.N.A® Plant RNA kit (Omega Bio-tek). For reverse transcription, 

1µg of total RNA were used and reactions were performed with the High-Capacity cDNA 

Reverse Transcription Kit from Applied Biosystems and cDNAs obtained were diluted 10 fold. 

qPCR reactions were performed as described in (Ramirez-Garcés et al., 2016) and conducted 

on a QuantStudio 6 (Applied Biosystems) device using the following conditions: 10min at 95°C, 

followed by 40 cycles of 15s at 95°C and 1min at 60°C. All reactions were conducted in 

triplicates.  

To evaluate A. euteiches’s infection level, expression of Ae α-tubulin coding gene 

(Ae_22AL7226, (Gaulin et al., 2008)) was analyzed and histone 3-like gene and EF1 gene of 

M. truncatula (Rey et al., 2013) were used to normalize plant abundance during infection. For 

Aphanomyces infection in plant over-expressing GFP, AeSSP1256:GFP or GFP:MtRH10, cDNAs 

from five biological samples were analyzed, given that a sample was a pool of 3 to 5 plants, 

for each time point, on three independent experiments, representing 45 to 75 transformed 

plants per construct. M. truncatula roots were harvested 7, 14 and 21 dpi. For missense 

MtRH10 experiments, downregulation of MtRH10 gene was first verified using cDNAs from 

five biological samples, given that a sample was a pool of 5 plants, harvested 21 days post 

transformation. For A. euteiches inoculation, three biological samples were analyzed, given 
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that a sample was a pool of 3 plants, for each time point, on two independent experiments, 

representing around 50 transformed missense MtRH10 plants. Relative expression of Ae α-

tubulin or MtRH10 helicase genes were calculated using the 2-∆∆Ct method (Livak and 

Schmittgen, 2001). For qPCR validation of RNAseq experiment, cDNAs from five biological 

replicates (pool of three plants) of AeSSP1256-expressing roots were extracted 21 days post 

transformation. Primers used for qPCR are listed in Supplemental Table 3. 

 

Yeast Two Hybrid assays 

An ULTImate Y2H™ was carried out by Hybrigenics‐services (https://www.hybrigenics-

services.com) using the native form of AeSSP1256 (20-208 aa) as bait against a library 

prepared from M. truncatula roots infected by A. euteiches. The library was prepared by 

Hybrigenics‐services using a mixture of RNA isolated from uninfected M. truncatula F83005.5 

(+/- 12%), M. truncatula infected with A. euteiches ATCC201684 harvested one day post 

infection (+/- 46%) and M. truncatula infected with A. euteiches harvested six days post 

infection (+/- 42%). This library is now available to others customers on Hybrigenics‐services. 

For each interaction identified during the screen performed by Hybrigenics (65 millions 

interaction tested), a ‘Predicted Biological Score (PBS)’ was given which indicates the reliability 

of the identified interaction. The PBS ranges from A (very high confidence of the interaction) 

to F (experimentally proven technical artifacts). In this study we kept eight candidates with a 

PBS value from ‘A and C’ for validation.  

 

Analysis of amino acid sequence of MtRH10 

Conserved motifs and domains of DEAD-box RNA helicase were found using ScanProsite tool 

on ExPASy web site (https://prosite.expasy.org/scanprosite/). MtRH10 putative NLS motif  

was predicted by cNLS Mapper with a cut-off score of 4.0 (Kosugi et al., 2009), and the putative 

NES motifs were predicted by NES Finder 0.2 (http://research.nki.nl/fornerodlab/NES-

Finder.htm) and the NetNES 1.1 Server (la Cour et al., 2004). 

 

Immunoblot analysis  

N. benthamiana leaves, infected M. truncatula roots or roots of M. truncatula composite 

plants were ground in GTEN buffer (10% glycerol, 25 mM Tris pH 7.5, 1 mM EDTA, 150 mM 

NaCl) with 0.2% NP-40, 10 mM DTT and protease inhibitor cocktail 1X (Merck; 11697498001). 
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Supernatants were separated by SDS-PAGE and blotted to nitrocellulose membranes. For GFP 

and GFP variant fusion proteins detection, anti-GFP from mouse IgG1κ (clones 7.1 and 13.1) 

(Merck; 11814460001) were used when monoclonal Anti-HA antibodies produced in mouse 

(Merck; H9658) were chosen to detect HA recombinant proteins. After incubation with anti-

mouse secondary antibodies coupled to horseradish peroxidase (BioRad; 170-6516), blots 

were revealed using ECL Clarity kit (BioRad; 170-5060). 

 

Co-immunoprecipitation assay 

Co-immunoprecipitation was performed on N. benthamiana infiltrated leaves expressing GFP, 

GFP:MtRH10 or AeSSP1256:HA tagged proteins. Total proteins were extracted with GTEN 

buffer and quantified by Bradford assay. 50 µg of total proteins were incubated 3H at 4°C with 

30 µl of GFP-Trap Agarose beads (Chromotek; gta-20) under gentle agitation for GFP-tagged 

protein purification. After four washing steps with GTEN buffer containing 0,05 % Tween-20, 

beads were boiled in SDS loading buffer. 

 

Confocal microscopy 

Scanning was performed on a Leica TCS SP8 confocal microscope. For GFP and GFP variant 

recombinant proteins, excitation wavelengths were 488 nm (GFP) whereas 543 nm were used 

for RFP variant proteins. Images were acquired with a 40x water immersion lens or a 20x water 

immersion lens and correspond to Z projections of scanned tissues. All confocal images were 

analyzed and processed using the Image J software.  

 

Cytological observations of transformed roots 

Roots of composite plants expressing GFP, AeSSP1256:GFP, GFP:MtRH10 or RNAi MtRH10 

were fixed, polymerized and cutted as described in (Ramirez-Garcés et al., 2016). NDPview2 

software was used to observe longitudinal root sections of GFP or missense MtRH10 plants 

and to measure RAM size. Image J software was used for all others measurements. Average 

RAM cells size were estimated by measuring all the cells from a same layer from the quiescent 

center to the RAM boundary. Mean values were then calculated from more than 200 cells. In 

the elongation zone (EDZ) of GFP, AeSSP1256:GFP or missense MtRH10 roots, cell area and 

cell perimeter were measured in rectangular selection of approximately 300x600 µm (two 

selections per root). To obtain a normalized cell perimeter, each cell perimeter is 
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proportionally recalculated for a of 500 µm² area standard cell. To estimate cell shape 

differences, considering that cortical cells in EDZ of GFP control roots are mostly rectangular, 

we measured the perimeter bounding rectangle (PBR), which represent the smallest rectangle 

enclosing the cell. Then we calculated the ratio perimeter / PBR. Rectangular cells have a 

perimeter / PBR ratio close to 1. Three roots per construct from three independent 

experiments were used. 

 

FRET / FLIM measurements  

For protein-protein interactions, N. benthamiana agroinfiltrated leaves were analysed as 

described in (Tasset et al., 2010). For protein-nucleic acid interactions, samples were treated 

as described in (Camborde et al., 2017; Escouboué et al., 2019). Briefly, 24 h agroinfiltrated 

leaf discs were fixed with a 4% (w/v) paraformaldehyde solution. After a permeabilization step 

of 10 min at 37°C using 200 µg/ml of proteinase K (Thermo Fisher; 25530049), nucleic acid 

staining was performed by vaccum-infiltrating a 5 µM of Sytox Orange (Thermo Fisher; 

S11368) solution. For RNase treatment, foliar discs were incubated 15 min at room 

temperature with 0.5 mg/ml of RNAse A (Merck; R6513) before nucleic acid staining. Then 

fluorescence lifetime measurements were performed in time domain using a streak camera 

as described in (Camborde et al., 2017). For each nucleus, fluorescence lifetime of the donor 

(GFP recombinant protein) was experimentally measured in the presence and absence of the 

acceptor (Sytox Orange). FRET efficiency (E) was calculated by comparing the lifetime of the 

donor in the presence (DA) or absence (D) of the acceptor: E=1-(DA) / (D). Statistical 

comparisons between control (donor) and assay (donor + acceptor) lifetime values were 

performed by Student t-test. For each experiment, nine leaf discs collected from three 

agroinfiltrated leaves were used. 

 

Accession Numbers 

Transcriptomic data are available at the National Center for Biotechnology Information (NCBI), 

on Gene Expression Omnibus (GEO) under accession number [GEO:GSE109500] for RNAseq 

corresponding to M. truncatula roots (F83005.5 line) infected by A. euteiches (9 dpi) and 

Sequence Read Archive (SRA) under accession number PRJNA631662 for RNASeq samples 

corresponding to M. truncatula roots (A17) expressing either a GFP construct or  a native 

AeSSP1256:GFP construct. SRA data will be release upon acceptation of the manuscript. 
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Supplemental Data 

 

The following supplemental data are available: 

 

Supplemental Figure 1: the nuclear localization of AeSSP1256 is required for biological activity 

in M. truncatula roots 

Supplemental Figure 2: invasion of M. truncatula roots by the pathogen is unchanged in 

AeSSP1256 effector-expressing roots 

Supplemental Figure 3: CFP:L7RP candidate and AeSSP1256:YFP are in close association 

Supplemental Figure 4: AeSSP1256 drives the re-localisation of the nuclear MtRH10 RNA 

helicase, around the nucleolus in N. benthamiana cells 

Supplemental Figure 5: Expression of MtRH10 is reduced in M. truncatula silenced-roots 

Supplemental Figure 6: M. truncatula cell morphology is affected in RNAi MtRH10 and 

AeSSP1256:GFP expressing roots 

Supplemental Figure 7: Western blot and confocal analyses on MtRH10-overexpressed roots 

infected by A. euteiches 

Supplemental Table 1: RNASeq data of M. truncatula roots (A17) expressing either GFP 

construct or AeSSP1256:GFP construct. ST1a. Differentially expressed genes (DE), 

padj<0,0001. ST1b. Top10 GO of DE. ST1c. Venn diagram. ST1d. qRT-PCR. 

Supplemental Table 2: Yeast two-hybrid screening. STE2a. List of putative AeSSP1256 

interactors after Y2H screening of M. truncatula roots infected by the pathogen. ST2b. FRET-

FLIM validation of CFP:L7RP candidate 

Supplemental Table 3: List of primers used in this study 
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Complementary results: Aphanomyces euteiches effectors from 

two different families interact and modulate their activity. 
 

 

As previously reported in Chapter V, in order to find proteins targeted by AeSSP1256, 

we submitted the mature form (without signal peptide) of the AeSSP1256 protein as a bait for 

yeast two-hybrid screening (Y2H) using a cDNA library generated from A. euteiches infected 

Medicago roots (see Chapter V). Results are listed in table 1. Eight Medicago truncatula genes 

were reported as potential protein targets and we revealed that two of them, a DEAD-box 

RNA helicase named MtRH10 and a L7 ribosomal protein physically interact with AeSSP1256. 

We then characterized the interaction between MtRH10 helicase and AeSSP1256 to decipher 

their role on plant resistance during A. euteiches infection (see Chapter V). 

Interestingly one gene from A. euteiches was also found as a putative partner of 

AeSSP1256. Surprisingly, this gene encodes a CRN13 Crinkler effector, composed by two 

subdomains (known as DFA and DDC) in the C-terminal part of the protein (see Chapter I-4.3 

Figure 9). All the positive clones sequenced in the Y2H screen hit with the DFA subdomain of 

AeCRN13. We already have functionally characterized this AeCRN13 effector (Ramirez-Garcés 

et al., 2016), which is known to enhance N. benthamiana susceptibility to P. capsici infection 

and has genotoxic effects when transiently expressed in plant cells. Even without predicted 

NLS, AeCRN13 accumulates in host cell nuclei, binds plant DNA thanks to an HNH-nuclease like 

domain (part of the DFA subdomain) when transiently expressed in N. benthamiana leaves. 

AeCRN13 triggers H2Ax phosphorylation of a marker of DNA-Damage Repair pathway (DDR), 

and upregulated the expression of numerous genes of the DDR pathway.
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Table 1: List of candidate proteins for interaction with AeSSP1256.  

A Yeast-Two Hybrid screening was performed by Hybrigenics Services from cDNA library obtained with M. 

truncatula roots infected or not with A. euteiches. This table lists the more confident protein candidates, ranked 

from A to D. Two proteins have been evidenced to physically interact with AeSSP1256 and are in bolt (see Chapter 

V). AeCRN13 is indicated in bolt and red and represents the only gene from A. euteiches ranked as a putative 

partner for AeSSP1256.

Name Gene number Pfam domains Potential function 

lecithin retinol 

acyltransferase 
Medtr7g117750.1 LRAT Involved in Vitamin A metabolism 

nucleosome assembly 

protein 
Medtr2g099940.1 NAP 

acts as histone chaperones, may be 

involved in regulating gene 

expression 

AT rich interactive domain 

protein 
Medtr5g024920.1 ARID; HSP20 

binds to DNA, involved in various 

biological processes, like gene 

regulation, transcriptional regulation 

and chromatin structure 

DEAD-box ATP-dependent 

RNA helicase 
Medtr5g069330.1 DEAD; Helicase C 

possess ATP-dependent helicase 

activity and RNA-binding property, 

involved in RNA biogenesis 

plant-specific B3-DNA-

binding domain protein 
Medtr1g021500.2 B3 (2x) 

DNA binding domain, transcriptional 

regulation 

endo/excinuclease amino 

terminal domain protein 
Medtr3g466410.1 GIY-YIG 

nucleotide excision repair 

endonuclease activity 

carboxy-terminal domain 

phosphatase-like protein, 

putative 

Medtr7g021190.1 NIF; BRCT 

involved in the control of the 

transcription machinery by 

inactivation of RNA polymerase-II by 

dephosphorylation 

thaliana 60S ribosomal 

protein L7 
Medtr4g008160.1 

Ribosomal_L30 

(2x) 

DNA and RNA binding domain, 

regulatory role in the translation 

machinery 

CRN13-Like Ae9AL5664 DFA binds DNA, triggers DNA damage 



 
 

 

Figure 11: AeCRN13 interacts with AeSSP1256 and is relocalized by the SSP.
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Figure 11: AeCRN13 interacts with AeSSP1256 and is relocalized by the SSP. 

(A) Confocal analyses of CFP:AeCRN13 reveal homogenous nuclear localisation when expressed alone in N. 

benthamiana cells, while it is partially relocalized in presence of AeSSP1256:YFP. Pictures were taken 24h post 

agroinoculation. Scale bars: 10µm. (B) Histograms represent FRET-FLIM results and show the distribution of 

nuclei (%) according to classes of CFP:AeCRN13 lifetime in absence (blue bars) or presence (orange bars) of 

AeSSP1256:YFP in nuclei where CFP:AeCRN13 was relocalized. Arrows represent CFP lifetime distribution range.  

(C) Same experiment than in (B) but in nuclei where CFP:AeCRN13 was not relocalized by AeSSP1256:YFP. In that 

cases, no significant decrease in CFP lifetime is observed in presence of the acceptor AeSSP1256:YFP. (D) Confocal 

pictures of N. benthamiana leaves expressing GFP:AeCRN13 in presence or absence of AeSSP1256:HA, 24h after 

agroinoculation. In presence of AeSSP1256:HA, GFP:AeCRN13 is strongly relocalized around nucleolus and in 

subnuclear compartments. Scale bars: 10 µm. (E) Co-immunoprecipitation assay on agroinoculated N. 

benthamiana leaves expressing GFP:AeCRN13 in presence or absence of AeSSP1256:HA. GFP was used as a 

negative control. Total protein extract were loaded on GFP beads to trap GFP tagged proteins. After washes and 

elution, samples were immunoblotted against GFP and HA antibodies. HA blots reveal that AeSSP1256:HA was 

co-purified with GFP:AeCRN13.  

 

Homodimers of effectors have been reported for CRN family from Phytophthora sojae and 

Rhizophagus irregularis (Voß et al., 2018), but the role of this process for infection is still 

unknown. Therefore we investigated whether AeSSP1256 makes a heterodimer with the 

genotoxic AeCRN13 effector, the consequence on the DNA damage activity of AeCRN13 and 

finally on the outcome of an infection. 

First, to observe effectors subcellular localization, we co-expressed AeSSP1256:YFP and 

CFP:AeCRN13 tagged proteins in N. benthamiana leaves. One day after agroinfiltration, 

confocal analyses confirmed the nuclear localization of CFP:AeCRN13 when expressed alone. 

In contrast, the presence of AeSSP1256:YFP contributes to a partial relocalization around the 

nucleolus of CFP:AeCRN13, in the area where AeSSP1256 is detected, notably around the 

nucleolus (Figure 11A) in most nuclei analysed (around 65% of nuclei analysed). The partial 

relocalization of a protein target to the perinucleolar space where AeSS1256 is present was 

also observed for the MtRH10 target. The reason why not all CFP:AeCRN13 proteins are 

relocalized is not known. We suspect that Fluorescent tags could disturb the interaction, or 

the expression level and/or timing of expression of both partners could play a role.  
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To confirm the protein-protein interaction we performed a FRET-FLIM assay in order to 

measure the fluorescence lifetime of the CFP:AeCRN13 proteins in the nucleus, in absence or 

in presence of AeSSP1256:YFP. In presence of AeSSP1256:YFP, analysis was conducted on 

nuclei where CFP:AeCRN13 was relocalized. In these nuclei, the CFP lifetime significantly 

decreases due to FRET effect with AeSSP1256:YFP acceptor, from 2.82 +/- 0.016 ns to 2.14 +/- 

0.031 ns, indicating a close association between the two proteins (Table 2). The distribution 

of all the measurements is plotted on Figure 11B and clearly shows the shift into shorter CFP 

lifetime. Moreover, no significant difference in CFP lifetime was observed in nuclei where 

AeCRN13 is not relocalized in presence of AeSSP1256. Value from 2.82 +/- 0.016 ns in mean 

when CFP:AeCRN13 is expressed alone and 2.75 +/- 0.02 ns in presence of AeSSP1256:YFP are 

reported (see Table 2). This result is illustrate by the Figure 11C. Altogether, these data 

indicate that the relocalization of AeCRN13 is probably due to its interaction with AeSSP1256. 

 

 

Table 2: FRET-FLIM measurements of CFP:AeCRN13 with or without AeSSP1256:YFP. 

mean life-time in nanoseconds (ns). (b) s.e.m.: standard error of the mean. (c) N: total number of measured 

nuclei. (d) E: FRET efficiency in % : E=1-(DA/D). (e) p-value (Student’s t test) of the difference between the donor 

lifetimes in the presence or absence of acceptor. 

 

 To confirm the results and to decipher whether the fluorescent tag could perturb the 

interaction, AeSSP1256 was fused to a triple HA tag, much smaller than the YFP tag (around 5 

kDa for the triple HA against 27 kDa for YFP) (cloning is described in the paper from Chapter 

V). Similar results were obtained when CFP:AeCRN13 was coexpressed with HA-tagged version 

Donor Acceptor a sem (b) N (c) E (d) (e) p-value 

CFP:AeCRN13 - 2.819 0.016 40 - - 

CFP:AeCRN13 AeSSP1256:YFP 2.138 0.031 40 24 4.59E-32 

CFP:AeCRN13 
AeSSP1256:YFP 

NO relocalization 
2.750 0.020 40 2.3 0.07 
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of AeSSP1256 where approximately half of observed nuclei harbor a relocalized CFP:AeCRN13 

around the nucleolus. Intriguingly, when a GFP:AeCRN13 construct is coexpressed with HA-

tagged version of AeSSP1256, more than 90% of observed nuclei harbor a relocalized 

GFP:AeCRN13 around the nucleolus, and this relocalization appeared stronger than observed 

with AeSSP1256:YFP (Figure 11D). This could be due to different spatial organization and 

three-dimensional structure of GFP, CFP, YFP and HA tags.  

To test whether the DNA binding ability of AeCRN13 could play a role in the interaction with 

AeSSP1256, we coexpressed in N. benthamiana a mutated version of AeCRN13, named 

AeCRN13AAA (see Ramirez-Garcès et al. 2016), with AeSSP1256:HA. AeCRN13AAA contains three 

alanine in place of the corresponding Histidine, Asparagine and Histidine of the HNH domain 

leading to a mutated protein unable to bind nucleic acids and to trigger DNA damage (see 

(Ramirez-Garcés et al., 2016)). Confocal analyses confirm the strong relocalization of the 

mutated GFP:AeCRN13AAA in presence of AeSSP1256:HA, suggesting that the HNH domain of 

AeCRN13 is not involved in the interaction with AeSSP1256 (Figure 11D). 

 

To confirm the interaction between both effectors, we performed co-immunoprecipitation 

(CoIP) assays using total proteins extracted from N. benthamiana agroinfiltrated leaves with 

AeSSP1256:HA and GFP:AeCRN13 constructs. As a control experiment, GFP construct was 

coexpressed with an AeSSP1256:HA construct. After total protein extraction 24 hours after 

treatment, samples were purified on GFP beads (protocol is described in the paper from 

Chapter V), washed, and finally loaded on polyacrylamide gels for immunoblotting. As 

expected, no AeSSP1256 was detected when only coexpressed with GFP, while GFP antibodies 

confirmed the presence of the GFP:AeCRN13 proteins (around 65 kDa) and HA antibodies 

revealed the presence of AeSSP1256:HA proteins (around 25 kDa) when both partners are 

coexpressed. This data indicates that AeSSP1256:HA was pull down with GFP:AeCRN13 and 

confirms their interaction (Figure 11E). 

We then check whether AesSP1256 and AeCRN13 effectors may also interact in host cells. The 

co-transformation of M. truncatula roots with AeSSP1256:HA and GFP:AeCRN13 constructs is 

poorly efficient. Nevertheless three weeks after transformation of A17-Jemalong Medicago 

roots, few roots where most nuclei displayed a GFP fluorescence in subnuclear compartments 



 
 

 

Figure 12: AeSSP1256 modulates the biological activity/cell death of AeCRN13. 

(A) Representative N. benthamiana leaf agroinfiltrated with GFP:AeCRN13 alone or in combination with 

AeSSP1256:HA,  AeSSP1256:HA alone or in combination with INF1 (from P. infestans). No necrosis occur when 

AeSSP1256:HA is expressed alone. In contrast, necrosis appear 3 days after infiltration in cells expressing 

AeCRN13 or INF1+AeSSP1256:HA. Note that In presence of AeSSP1256:HA, cell death induced by AeCRN13 is 

strongly reduced. Pictures were taken 5 days post agroinoculation. This experiment was repeated 5 times with 

similar results. (B) Immunoblot showing induction of phosphorylated histone H2AX in N. benthamiana cells 

expressing GFP:AeCRN13 alone or in combination with AeSSP1256:HA at 2, 3 and 4 days post agroinoculation. 
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Phosphorylated H2AX is strongly reduce in samples expressing both proteins. Bleomycin is a DNA damaging agent 

and was used as a positive control as reported in (Ramirez-Garcés et al., 2016). Stain free stains total proteins 

such as Ponceau staining. (C) Histograms represent the lesion size induced by P. capsici infection on N. 

benthamiana agroinoculated with GFP, GFP:AeCRN13, AeSSP1256:HA, or GFP:AeCRN13 in combination with 

AeSSP1256:HA. When expressed alone, both effectors are able to increase N. benthamiana susceptibility to P. 

capsici but not when effectors are expressed together. One day post-agroinoculation, the infiltrated leaves were 

inoculated with P. capsici zoospores and symptoms were observed 3 days after infection. Asterisks represent 

significant differences (Student’s t-test; *, P < 0.05). Each leaf was infiltrated with GFP on the left side, and 

another construct on the right side (GFP:AeCRN13, AeSSP1256:HA, or GFP:AeCRN13+AeSSP1256:HA). More than 

30 leaves were used for each construct combination. 

 

(around 75%) and showed the AeSSP1256-ring labelling around the nucleolus were detected, 

suggesting that AeCRN13 is relocalized (Figure 11F). Although more transformation events 

coupled with immunoblots are needed to confirm the presence of both proteins, those data 

suggest that AeCRN13 is relocalized into the perinucleolar space in the presence of AeSSP1256 

when expressed in Medicago roots.  

 

To test the impact of the interaction between both effectors, we firstly evaluate 

whether AeSSP1256 may modulate the genotoxic activity of AeCRN13, as reported for 

Crinklers effectors from P. sojae (Zhang et al., 2015). Agroinfiltration of N. benthamiana leaves 

indicate as we previously observed that AeSSP1256 do not induces necrosis in N. benthamiana 

leaves, even after 10 days (not shown) (Figure 12A). In contrast, necrotic symptoms are clearly 

visible 5 days after agroinfiltration of AeCRN13 C-ter domain in Nicotiana (Ramirez-Garcés et 

al., 2016). In the co-infiltration assay, AeCRN13-induced necrosis is strongly delayed or 

inhibited (Figure 12A). This inhibitory effect seems specific to AeCRN13 as necrosis induced 

by another necrotic oomycete effector (i.e. INF1 from Phytophthora infestans) is not affected 

by the presence of AeSSP1256 (Figure 12A). Then we check DNA damage activity in leaves that 

co-express both effector by western-blot analysis. We previously observed that AeSSP1256 do 

not induce the phosphorylation state of the DNA damages Histone2A marker (not shown). As 

shown on Figure 12B the phosphorylation state of the Histone2A marker due to AeCRN13 

activity seems to decreases over time in presence of AeSSP1256. Even if western-blot analyses 
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are required to confirm the presence of both effector upon the time course, these data 

suggest that AeSSP1256 may affect host DNA damages triggered by AeCRN13.  

Since we previously reported that both proteins independently enhance susceptibility 

to P. capsici infection when transiently expressed in Nicotiana leaves, we next wonder what 

could be the effect of the interaction of these two effectors on the plant susceptibility against 

this pathogen. When each protein is expressed separately in N. benthamiana leaves, larger 

lesions due to P. capsici infection are observed than in the infected GFP control infiltrated 

leaves ((Ramirez-Garcés et al., 2016; Gaulin et al., 2018) and Figure 12C). In contrast, when 

AeSSP1256 and AeCRN13 are co-expressed, lesion size induced by P. capsici are not 

significantly different than in GFP control leaves (Figure 12C). These data suggest that 

AeSSP1256 strongly reduces the biological impact of AeCRN13 in plant.  

Altogether, these preliminary results reveal that two effectors from different families, Crinkler 

and SSPs, can physically interact when expressed in planta. Here, it seems that AeSSP1256 

acts to reduce AeCRN13 biological effects. Such antagonism interaction was already observed 

in P. infestans with two CRNs (PsCRN63 and PsCRN115) (Zhang et al., 2015). 

 



 
 

General discussion 

 and  

perspectives 
 



 
 

Figure 13: Main results of this PhD work. 

(a) AeCRN13 is a DNA damaging effector that impacts root development and triggers cell death. (b) AeCRN5 has 
a functional translocation N-ter domain and targets RNA in nuclear bodies where it perturbs siRNA biogenesis. It 
could potentially interfere with SE proteins in D-bodies and deregulate miRNA biogenesis. (c)  After secretion 
and translocation (unknown mechanism), AeSSP1256 targets nuclear RNA and  downregulates genes involved in 
ribosome biogenesis pathway. (d) AeSSP1256 also strongly interacts with a plant RNA helicase involved in 
meristem development named MtRH10. This interaction inhibits the RNA-binding activity of the helicase. (e) 
AeSSP1256 also interacts with the DNA damaging effector AeCRN13 leading to a decrease in DNA damages. It is 
still unclear if this interaction occurs inside the pathogen, during translocation, or inside host cells. Straight lines 
represent confirmed processes. Dotted lines indicate putative processes. Interrogation points indicate unknown 
mechanisms or hypothetical process.  
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General discussion and perspectives 
 

The aim of this PhD project is to develop a better understanding of the molecular mechanisms 

underlying virulence and pathogenicity of the oomycete pathogen of legumes A. euteiches 

that cause root rot diseases. The study was focus on microbial secreted proteins called 

effectors that target host components to promote pathogen invasion. Knowing that numerous 

fungal and oomycetes effectors target the nuclear compartment of the host plant we firstly 

published in TIPS (Camborde et al., 2019) a review that reports on the activity of these 

eukaryotic effectors (Chapter II). Then we focused our work on AeCRN5, a crinkler effector 

from A. euteiches previously reported as a cell-death inducing protein able to target plant 

nucleus (Chapter III). Comparative analyses of Aphanomyces spp. reveal a large family of 

small-secreted proteins (SSPs) never reported in oomycetes in contrast to fungal pathogens 

(Chapter IV). Using various technology an array of SSPs was tested for their effector activity 

and AeSSP1256 has been selected for functional characterization. We decipher the activity of 

AeSSP1256 against plant targets and identify that AeSSP1256 can interact with another 

effector from A. euteiches, AeCRN13 previously reported as a DNA-damaging effector 

(Chapter V). This PhD work showed the biological functions of two pivotal virulence factors of 

A. euteiches. In this chapter, we reflect on the major findings of this study and discuss future 

strategies to pursue our work on effectors functions. 

 

CRNs and SSPs in oomycetes 

The first aim of this work was to deepen knowledge in the repertoire and the mechanisms of 

action of intracellular effectors from the root pathogenic oomycete Aphanomyces euteiches. 

A. euteiches expression data from previous work suggested a large number of CRN coding 

genes and in opposite the absence of RxLR protein effectors. This result was confirmed by 

comparative analyses of A. euteiches, A. astaci and A. cladogamus genomes performed during 

this PhD (Chapter IV). In the same time, a study using other bioinformatic criteria detected 

between 16 to 25 RxLR-like genes in A. invadans and A. astaci respectively (McGowan and 

Fitzpatrick, 2017). As expected, authors found that 87% of the predicted RxLR proteins are 

located in Peronosporales species (McGowan and Fitzpatrick, 2017). They also confirm the 
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large expansion of putative cytoplasmic genes predicted in Phytophthora species, with 

approximately 600 RxLR genes and almost 200 CRNs genes for P. infestans, giving a huge 

number of putative cytoplasmic effectors to achieve infection. In comparison, A. euteiches has 

“only” around 160 CRNs genes. This observation raises question about the arsenal of 

intracellular effectors secreted by Aphanomyces compared to other oomycetes, especially to 

Phytophthora species. Only 2% of the CRN genes were upregulated at 3 and 9 days post 

inoculation, and 13% upregulated in zoospores as compared to in vitro grown mycelium, 

suggesting that a subset of AeCRN is present at the early stage of Medicago infection and that 

another set of CRN genes seems to be produced at later stages. These results are in 

accordance with the dynamic expression of CRN genes reported in Phytophthora (Stam et al., 

2013a), and underlines the relative low number of intracellular effector coding genes induced 

during host infection to sustain A. euteiches development. The genomic and transcriptomic 

analyses of A. euteiches also revealed a large repertoire of small-secreted protein (SSP)-

encoding genes that are highly induced during plant infection and not detected in other 

oomycetes. SSPs are widely present in fungi and are involved in the interaction between host 

and mutualistic or pathogenic microorganisms (Veneault-Fourrey and Martin, 2011; Lo Presti 

et al., 2015). This finding paves the way to new research on this type of molecules potentially 

secreted by others oomycetes like Phytophthora. 

 

Host nucleic acids as a target: Let’s play with DNA 

Despite the central role of nucleic acids in a living cell, few example of intracellular effectors 

able to interact with nucleic acids have been described to date in filamentous eukaryotic 

microorganisms. In a very recent review on intracellular effectors from filamentous 

phytopathogens, He and colleagues collected data from the literature describing verified 

targets of 41 intracellular oomycete effectors and 30 from fungi (He et al., 2020). Only three 

of these effectors target DNA and among them, two are Crinkler/CRNs proteins. The 

Phytophthora sojae effector CRN108 binds to heat-shock element (HSE) promoters to prevent 

their expression (Song et al., 2015). This CRN contains an HhH DNA binding domain, widely 

distributed in DNA repair or synthesis proteins and reported to have sequence-non-specific 

DNA-binding activity (Pavlov et al., 2002). The other CRN protein, AeCRN13, binds plant DNA 

thanks to its HNH motif (Ramirez-Garcés et al., 2016) found in more than 500 nucleases or in 
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bacterial toxins such as colicins, produced by some E. coli strains. AeCRN13 trigger DNA-

damage of the host cell (Figure 13a). The third reported effector is CgEP1 from the fungus 

Colletotrichum graminicola, presented as a double-stranded DNA-binding protein that 

modulates transcriptional activity (Vargas et al., 2016).  

DNA binding effectors from animal and plant pathogenic bacteria are also reported (see 

Chapter II). One of the most known example are the transcription activator-like effector (TALE) 

proteins. TALE proteins derived from bacteria and are built from tandem repeat units that can 

be linked to form a string-like structure, able to bind DNA. TALES are unstable proteins, able 

to follow the shape of the double helix through a conformational heterogeneity that facilitates 

macromolecular assembly (Schuller et al., 2019).  

Another example of DNA binding effector has been described in root pathogenic cyst 

nematodes. Cyst nematodes are root endoparasites that infect a wide range of crops. Then, it 

was reported that GLAND4, an effector secreted by Heterodera glycines and H. schachtii 

(parasites of soybean and sugar beet respectively), is a small DNA binding protein that 

represses gene expression of defense related genes. The C‐terminal domain of GLAND4 

possesses acidic and hydrophobic amino acids structure similar to those found in TALE 

proteins (Barnes et al., 2018).  

Finally, in the fish oomycete pathogen Saprolegnia parasitica, SpHtp3 effector contains a 

bifunctional nuclease domain and therefore degrades RNA and DNA in host cell nuclei (Trusch 

et al., 2018). 

Then it seems that targeting host DNA could be a common strategy shared by various animal 

and plant bacterial pathogens, but also nematodes and filamentous eukaryotic pathogens. 

The role on the pathogenesis depends on the type of DNA-effector interactions. Some DNA 

binding proteins, such as bacterial TALEs, CRN108 from Phytophthora or fungal CgEP1 protein, 

interfere with transcriptional activity and defense gene expression to manipulate host 

immunity. For DNA-damaging effectors, the consequences are less clear. Triggering DNA 

damage perturbs the host cell cycle and subsequently favors the colonization of the tissues. 

On the other hand, DNA damage can be sensed as a danger signal leading to the induction of 

defense responses (see Chapter II). Characterized DNA-damaging effectors are expressed at 

the later stage of infection (such as AeCRN13 and SpHtp3) and could correspond to the switch 
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to a necrophytic phase of the infection. Future studies on this type of effectors are needed to 

precise the role of DNA-damaging effectors in the outcome of the infection.  

 

Host nucleic acids as a target: Let’s play with RNA 

Among the 71 described intracellular effectors from filamentous phytopathogens reported in 

He et al., 2020, six of them (8%) target RNA trafficking or RNA processing (He et al., 2020). 

Among them, two effectors from Phytophthora sp. stabilize host RNA-binding proteins to 

regulate mRNA biogenesis and plant immunity (Huang et al., 2017; Wang et al., 2015). Two 

fungal effectors have been reported to potentially interfere with mRNA processing. One is an 

RxLR protein from Magnaporthe oryzae that interacts with a nucleoporin required for 

accumulation of PR gene transcripts (Tang et al., 2017). The other is a candidate effector from 

the wheat rust fungus Puccinia striiformis that accumulates in processing bodies where it 

interacts with a protein involved in mRNA decapping (Petre et al., 2016). Finally, two RxLR 

effectors from P. sojae (PSR1 and PSR2) suppress RNA silencing by interfering with small RNA 

biogenesis (Qiao et al., 2015; Xiong et al., 2014; Hou et al., 2019). Based on obtained results 

we can include AeCRN5 and AeSSP1256 in this list.  

However, none of these effectors was described to bind directly to RNA. This PhD work 

showed that AeCRN5 is an RNA-binding protein with modular architecture, comprising a 

functional translocation N-terminal domain folded as Ubiquitin family proteins, then classified 

as Ubi1-Header domain according to Zhang et al. (2016). The C-ter domain comprises the 

DN17 subdomain related to the usual classification based on P. infestans sequences (Haas et 

al., 2009). Interestingly, even if AeCRN5 was not included in the study of Zhang et al. (2016), 

the C-termini of the closest orthologs were described as REase5 domains, and we assumed 

after sequence alignment that AeCRN5 is a member of this REase5 family. AeCRN5 C-ter is 

nuclear localized and this localization is required to trigger necrosis in N. benthamiana leaves. 

When expressed in host cells, AeCRN5 strongly affects root development (Figure 13b). In 

addition to RNA binding ability, we found that it could interfere with PTGS mechanism, but 

the effect on siRNA accumulation is still unclear and requires additional experiments. This role 

was described in the oomycete P. sojae, with RxLR proteins PSR1 and PSR2. However, the 

mechanism and the final impact seem different since PSR1 and PSR2 were not reported to 
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bind RNA, but to interact with RNA binding proteins. PSR1 promotes infection by interacting 

with PINP1, a DEAD-box RNA helicase, to repress siRNA biogenesis in the plant hosts. PSR2 

interacts with dsRNA-binding protein 4 (DRB4), which associates with Dicer-like 4 (DCL4), to 

inhibit secondary siRNA biogenesis to interfere with trans-kingdom RNAi (Hou et al., 2019).  

In addition, we reported preliminary results about the putative localization of AeCRN5 C-ter 

in D-bodies, a direct or indirect interaction with the SERRATE protein, and then a perturbation 

in miRNA biogenesis (Figure 13b). As discussed in Chapter III, we still need to precise the 

subnuclear localization of AeCRN5 and to perform quantitative PCR on mature miR sequences 

to confirm the role of AeCRN5 on miRNA maturation. Additionally, we will construct mutated 

version of AeCRN5 C-ter domain, with substitution of the five catalytic residues conserved in 

REase5 domain in alanine amino acid (Zhang et al., 2016). We will then tested its RNA-binding 

capability, its localization in D-bodies, and expected to obtain a mutant no longer able to 

interfere with miRNA biogenesis. Additionally, pri-miRNA or mature miRNA analyses (using 

RT-qPCR) in M. truncatula plants infected by A. euteiches, or in AeCRN5 overexpressing M.t 

plants could strengthen the role of AeCRN5 on miRNA biogenesis.  

Effectors with RNAse-like activity and associated with Haustoria (RALPH) are largely detected 

in barley powdery mildew Blumeria graminis, and constitute the so-called RALPH effectors 

(Pedersen et al., 2012). This effector family contains around 120 candidate genes but few of 

them have been characterized, and two (BEC1011 and BEC1054) were predicted to adopt a 

ribonuclease structure but lack the key active amino acid sites necessary for ribonuclease 

activity, suggesting that these proteins are non-functional ribonucleases (Pliego et al., 2013; 

Spanu, 2015). Finally, a recent study evidenced the RNase-like fold of BEC1054 and reported 

its RNA-binding activity. Authors suggest that the role of this effector could be to protect rRNA 

by inhibiting the action of plant ribosome-inactivating proteins, repressing host cell death, an 

unviable interaction for this biotrophic fungus (Pennington et al., 2019). 

Functional analysis of AeSSP1256 indicates that this SSP is also an RNA-binding protein (RBP) 

(Figure 13c). Like AeCRN5, AeSSP1256 has a subnuclear localization, but with clustered 

accumulation around the nucleolus, and strongly perturbs the root development of host plant. 

Additionally, AeSSP1256 interacts with a host ribosomal protein and a DEAD-box RNA helicase. 

Transcriptomic analyses also indicate a downregulation of ribosomal protein genes implicated 

in ribosome biogenesis pathway. Thus, ribosome biogenesis and activity seems to be a 
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common target for various pathogens. For example, in addition to the role of the fungal RALPH 

effector BEC1054 on plant ribosome-inactivating proteins, the Hs32E03 effector from the 

nematode H. schachtii manipulates host ribosomal biogenesis to promote parasitism. 

Hs32E03 alters acetylation of histones involved in the transcription of rRNA, a major 

component of ribosomes, leading to an increase in rRNA levels (Vijayapalani et al., 2018). The 

additional ribosome synthesis is necessary for nematode-host interaction.  

In our study, we reveal that the RNA-binding protein AeSSP1256 interferes with a DEAD-box 

RNA helicase (named MtRH10) by inhibiting the RNA binding ability of the helicase (Figure 

13d). DEAD-box RNA helicases are also targeted by another oomycete effector (PSR1 from P. 

sojae) and represent a common target in mammal and plant-virus interactions, where DEAD-

box helicases contribute to innate immune signalling, or can block multiple steps in the viral 

replication process (Taschuk and Cherry, 2020; Wu and Nagy, 2019). Although we do not know 

the exact function of MtRH10 except its implication in Medicago roots development (Chapter 

V), DEAD-box RNA helicases are known to be key players in ribosome assembly and/or in 

ribosomal protein synthesis in eukaryotes, like in human or in plant, as well as in bacteria (Iost 

and Jain, 2019; Martin et al., 2013; Liu and Imai, 2018). Future studies will aim to decipher the 

putative link between ribosomal biogenesis pathway and MtRH10 activity in Medicago. 

Expression level of the ribosomal genes downregulated in M. truncatula expressing 

AeSSP1256 will be evaluated in the MtRH10 RNAi plants. 

AeSSP1256 is a member of a cluster, which contains 5 other SSP encoding genes. Among them, 

AeSSP1251 and AeSSP1254 also harbor a NLS sequence and present the same expression 

profile as AeSSP1256. Hence, it could be interesting to test whether those proteins can 

interact together and observe their putative synergetic association. Progress in molecular 

cloning, especially with Golden gate technology, allows to clone longer and multiple 

sequences.  

 

Target relocalization: “Come together right now over me…” 

We reported in Chapter V that AeSSP1256 can strongly relocalize MtRH10 plant helicase. 

Additionally, we presented complementary results about AeSSP1256, showing an interaction 

and relocalization with AeCRN13 (Figure 13e). 
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Target relocalization was already observed for several effectors. The fungal effector PstGSRE1 

from P. striiformis inhibits the nuclear localization of the ROS-associated transcription factor 

TaLOL2 in wheat (Qi et al., 2019). In oomycetes, P. sojae PsAvh52 recruits a host cytoplasmic 

transacetylase into nuclear speckles to promote early colonization. In P. infestans and Bremia 

lactucae, multiple effectors have been shown to interact with and prevent the nuclear 

translocation of ER-associated tail-anchored transcription factors (McLellan et al., 2013; 

Meisrimler et al., 2019). 

In N. benthamiana leaves, the AeSSP1256-AeCRN13 association reduces AeCRN13 biological 

effects. Such antagonism interaction was already observed in P. infestans with two CRNs 

(PsCRN63 and PsCRN115) (Zhang et al., 2015). In the A. euteiches natural infection, AeSSP1256 

and AeCRN13 genes show similar expression profiles, with higher level at later stages of the 

infection, supporting the idea that both protein could be present at the same time in 

Medicago roots. One role of the AeSSP1256 could be to moderate the effects of AeCRN13, for 

instance to avoid early cell death. However, later stages of infection should correspond to the 

switch in a necrotrophic phase, where cell death can occurs.  

We can not rule out the possibility that AeSSP1256 / AeCRN13 interaction does not occur 

inside the host cells, but only during the secretion process, for example to avoid CRN13 toxicity 

against A. euteiches DNA. Such association is well described as Effector-Immunity pairs in 

bacteria (Yang et al., 2018).  

AeSSP1256 contains a signal peptide that should lead the secretion outside the microorganism 

through the conventional pathway. In contrast, as many other CRNs, such signal peptide is 

absent in AeCRN13, and it is suggested that RxLR or CRNs could be secreted via unconventional 

secretory pathway (Wang et al., 2017; Amaro et al., 2017). One can suppose that both protein 

could interact within secreted microbial vesicles that are released from the pathogen and then 

address to the host cells. Here, both protein transit to reach the nucleus, where they can 

interact with other components, such as RNA for AeSSP1256, releasing free AeCRN13 that 

targets host DNA (Figure 13e). Such extracellular vesicles (EVs) have been reported in plant 

microbe interactions, especially for fungi (for review see (Rizzo et al., 2020)). However, it is 

still an open question whether mutualistic or parasitic fungi use EVs to deliver effector 

molecules to plants during interaction. Since preliminary experiments using Transmission 

Electron Microscopy on infected roots suggest the presence of EVs during A. euteiches / M. 
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truncatula infection, one perspective of this study also resides in the identification of the 

process that allow delivery of the effectors within the plant cells.  

 

Looking for a needle in a haystack 

One of the most challenging question about effector research is how to deal with hundreds 

predicted genes. Although transcriptomic data help to distinguish genes induced during 

infection and then potentially involved in host interaction, sequence analyses often failed to 

detect conserved motif related to a biological function, especially for SSP genes. 

In our study, AeSSP1256 putative RNA-binding motif was in silico identified and allowed us to 

confirm its affinity for nucleic acids by FRET-FLIM assays, but numerous effectors are devoid 

of predicted functional domain. Structure prediction of the effector can be an efficient tool to 

overcome this limitation. A recent study challenged the classification of CRN proteins by 

combining sequence analyses and structure prediction. Authors determined that most of the 

CRN C-ter domains displayed two architectural types: an NTPase domain coupled with a 

nuclease domain of the restriction endonuclease (REase) superfamily and a REase superfamily 

domain combined with an eukaryote-type protein kinase domain (see Chapter I Figure 4 and 

(Zhang et al., 2016)). Accordingly, we also predicted REase domain in the Cter of AeCRN5 and 

then confirm its RNA-binding capacity (Chapter III). Zhang and collaborators proposed that C-

ter containing REase domains that primarily act on target cell DNA, could explain the cell-

death-causing capacity reported for numerous CRNs (Zhang et al., 2016). They also suggest 

that some CRN with REases domain have evolved to target RNA (Zhang et al., 2016). Although 

experimental data are needed to support their hypothesis, future studies on CRNs should 

include experiments to detect nucleic acid-protein interactions. 

The structural prediction of proteins, performed by dedicated server such as i-Tasser or 

Phyre2, are frequently included in recent studies of effectors. Such prediction analyses were 

successfully used on CRNs (Voß et al., 2018), RxLR proteins (Deb et al., 2018), bacterial 

effectors (Dhroso et al., 2018; Borah and Jha, 2019) and fungal SSPs (Zhang et al., 2017; Gong 

et al., 2020). In this study AeCRN5 structural prediction confirms the putative fold reported by 

Zhang et al., 2016 for CRNs. Furthermore, some studies using crystallography reported the 

conserved function of sequence-unrelated proteins. It is well illustrated with Magnaporthe 
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oryzae avirulence and ToxB-like (MAX) effectors. This effector family was identified using NMR 

spectroscopy to determine the three-dimensional structures of two sequence-unrelated M. 

oryzae effectors (de Guillen et al., 2015). These analyses revealed that both proteins shared 

highly similar six β-sandwich structures stabilized by a disulfide bridge. Finally, using structural 

similarity searches, authors found that another effector from M. oryzae and an effector of the 

wheat tan spot pathogen Pyrenophora tritici-repentis, named ToxB, harbored the same 

structures, leading to the identification of the MAX effectors (de Guillen et al., 2015). Recently, 

using crystallography experiments, structural analyses on MAX effector proteins alone or in 

complex with their NLRs targets (leucine-rich repeat proteins) provided detailed insights into 

their recognition mechanisms (Guo et al., 2018). Similarly, crystal structure of the effector 

AvrLm4–7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus 

(oilseed rape), was resolved and validated to understand the specificity of recognition by two 

plant R proteins (Blondeau et al., 2015). In oomycetes, crystal structure of an RxLR effector 

from P. capsici was recently revealed (Zhao et al., 2018). 

This PhD work also reveal that effector from distinct family (SSP/CRN) may interact together 

probably to enhance/repress their activity. Structural modeling of microbial effector will help 

to predict this protein-protein association that could be not detected by in silico data mining. 

Several bioinformatics programs dedicated to effector prediction exist, such as EffectorP 2.0 

(Sperschneider et al., 2018) or even more recently EffHunter, a tool for fungal effector 

prediction (Carreón-Anguiano et al., 2020). However, the subcellular localization of the 

predicted effector within the host cell is still uncertain using this software and functional 

studies are required. It is experimentally challenging to monitor effector trafficking but 

recently some studies reported the translocation of effectors from fungi or oomycetes into 

host cells. In M. oryzae, using a long-term time-lapse imaging method, the translocation of a 

GFP-tagged SSP from a particular infectious area, called Biotrophic Interfacial Complex (BIC), 

into host cells was evidenced (Nishimura et al., 2016). In oomycetes, it was evidenced by live-

cell imaging that the RxLR effector Pi04314 from P. infestans was translocated from the 

haustorium into plant cells (Wang et al., 2017). In Aphanomyces euteiches, this kind of 

experiments is even more challenging since this pathogen doesn’t make haustorium or BIC 

and is not yet transformable.  
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Thus, another option will be to take advantage of progress in proteomic approaches in order 

to detect microbial effectors inside the host cells. This approach was used successfully on 

wheat infected by Fusarium graminearum (Fabre et al., 2019). One main limitation in this 

approach is to distinguish plant compartments from the microorganism, nevertheless plant 

cytoplasm or nuclei to identify intracellular effectors can be discriminate either by labeling the 

compartment or by collecting samples using laser-microdissection experiments. Mass 

spectrometry analysis of the proteins will give a short list of putative intracellular effectors 

and host targets. 

 

Concluding Remarks and Outlooks 

Oomycete and fungal effectors acting as virulence factors are key players in plant-microbe 

interactions. While in silico approaches allow prediction of effector repertoire in numerous 

fungi and oomycetes, further investigations are required to characterize their activity during 

host infection. Indeed the exact function of numerous effectors and how that is related to 

host immunity are still unknown. This PhD study shows that the nuclear compartment of the 

host plant is a major target for numerous oomycete effectors. While it was recently shown 

that microbial effector can target different host proteins, this work also shows that effectors 

from different family can associate and target plant nucleus. These results reveal a new layer 

of complexity in the mode of action of eukaryotic effectors. More analyses to study the 

structural relationship between effectors and between effectors and their targets are needed 

to precise the consequences of these interactions.  

However, in the coming years, the relevance of the choice of candidate effectors for functional 

characterization will be crucial. Indeed, regarding the results provided by the extensive 

research on effectors, it seems that every biological process is targeted by one or numerous 

effectors. This includes sensing, signalling, defence reaction, transcription, RNA processes, 

DNA integrity, cell development, etc. Hence, in an objective to increase crop plant resistance, 

it seems difficult to block or regulate tens of molecules that target so many processes. Then, 

understanding the mechanisms involved in the effector delivery could lead to the 

development of molecules able to break the bridge between plant cells and pathogen hyphae, 

preventing the release of those molecules in host cells. 
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Another way to improve plant fitness is to understand the role and the interaction between 

pathogens, plants and the other microorganisms present in root close proximity, named plant 

microbiome (Song et al., 2020; Turner et al., 2013). This represents an emerging topic that 

needs to go deeper in the molecular interactions between partners.  

Since relative few numbers of effector genes are expressed during plant colonisation as AeCRN 

or AeSSP effectors, numerous microbial effectors could play a role in other situation than host 

infection, especially in microbe-microbe interactions that occur in the microbiome. 

To conclude, one threat resides in the emergence of new diseases due to the acquisition of a 

new host by an existing plant pathogen. Determining the mechanisms that govern host-

specificity is crucial to understand host-switching events and variation in virulence strains. 

Effectors are part of the molecules involved in this host adaptation. In Aphanomyces, our 

comparative genome analyses between different strains underline variation in their SSP 

repertoire, suggesting that those molecules could play a role in host adaptation.  

 

Future studies will aim to elucidate the crucial roles in pathogenicity and in microbiome 

interactions of A. euteiches effectors to improve host tolerance against the pathogen. 
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Résumé 

Les oomycètes sont des microorganismes eucaryotes capables d'infecter des plantes ou des animaux. 

Lors de l'interaction avec leur hôte, les oomycètes produisent des molécules, appelées effecteurs, 

capables d’interagir avec des composants moléculaires des cellules de l’hôte afin de perturber les 

réponses de défense et ainsi favoriser le développement du microorganisme. Les Crinklers (CRNs) et 

les protéines à domaine RxLR représentent les deux grandes familles d'effecteurs cytoplasmiques 

décrites chez les oomycetes. La grande majorité de ces effecteurs ont cependant un mode d'action 

encore inconnu. Chez l'oomycète parasite racinaire des légumineuses Aphanomyces euteiches, il 

apparait que seuls les CRNs sont présents. En se basant sur des travaux précédemment publiés par 

notre équipe, nous proposons une revue sur le rôle de certains effecteurs engendrant des dommages 

sur l’ADN des cellules hôtes. De précédent travaux portant sur le Crinkler AeCRN5 ont démontré que 

cet effecteur possédait un domaine fonctionnel de translocation dans la cellule végétale et impactait 

fortement la croissance racinaire. Mes travaux révèlent que cet effecteur se lie à l'ARN de la cellule 

hôte et perturbe la biogenèse de petits ARN impliqués dans la défense ou dans la croissance de la 

plante. De plus, nous avons pu mettre en évidence une nouvelle classe d’effecteurs potentiels 

composée de petites protéines sécrétées appelées SSP, spécifiques d’Aphanomyces euteiches. Les 

premières analyses sur ces SSP ont montré que AeSSP1256 augmente la sensibilité de la plante hôte. 

L’analyse fonctionnelle de cet effecteur a révélé que AeSSP1256 est capable de se lier à l'ARN ainsi 

qu'à une RNA helicase de la plante, perturbant son activité et engendrant un stress nucleolaire, 

perturbant la biogénèse des ribosomes. 

Ces travaux mettent en évidence que les acides nucléiques peuvent être la cible de différents types 

d’effecteurs et démontrent que deux effecteurs de familles différentes sont capables de se lier aux 

ARN afin de perturber des mécanismes de défense et de croissance de la plante, favorisant le 

développement du microorganisme. 

 

Abstract 

Oomycetes are eukaryote pathogens able to infect plants and animals. During host interaction, 

oomycetes secrete various molecules, named effectors, to counteract plant defence and modulate 

plant immunity. Crinklers (CRNs) and RxLR proteins represent the two main classes of cytoplasmic 

effectors described in oomycetes to date. Most of these effectors have not been yet characterized.   

In the root rot pathogen of legumes Aphanomyces euteiches, only the CRNs are present. Based on a 

previous study reported by our research group, we published an opinion paper focused on the 

emergence of DNA damaging effectors and their role during infection. 

Previous experiments indicated that one of these Crinklers, AeCRN5, harboured a functional 

translocation domain and dramatically disturbed root development. Here we reveal that AeCRN5 binds 

to RNA and interferes with biogenesis of various small RNAs, implicated in defence mechanisms or 

plant development. Additionally, comparative genetic analyses revealed a new class of putative 

effectors specific to Aphanomyces euteiches, composed by a large repertoire of small-secreted protein 

coding genes (SSP). Preliminary results on these SSPs point out that AeSSP1256 enhances host 

susceptibility. Functional characterisation of AeSSP1256 evidenced that this effector binds to RNA, 

relocalizes a plant RNA helicase and interferes with its activity, causing stress on plant ribosome 

biogenesis.   

This work highlights that various effector target nucleic acids and reveals that two effectors from 

distinct family are able to interact with plant RNA in order to interfere with RNA related defence 

mechanisms and plant development to promote pathogen infection. 


