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Résumé 

 

La sénescence, qui est un mécanisme antitumoral majeur, est définie comme un 
état d'arrêt irréversible de la prolifération cellulaire en réponse à un stress 
comme l'activation illégitime d'oncogènes. Les cellules qui entrent en 
sénescence subissent de profonds changements de leur épigénome. 
Les ARNs antisens sont suspectés de joue des rôles importants dans le contrôle 
du destin cellulaire et dans des processus cellulaires variés. Dans la levure, le 
variant d'histone H2A.Z co-opère avec les machineries du RNAi et de 
l'hétérochromatine pour réprimer sur les loci de gènes convergents l'apparition 
d'antisens dus à des défauts de terminaison de transcription de un des deux 
gènes.  
Chez les mammifères, l'existence et la régulation de tels transcrits antisens 
restent inconnues. De façon intéressante, la déplétion du variant d'histones 
H2A.Z est connue pour induire la sénescence. Nous nous sommes donc 
demandés si la sénescence est accompagnée de la régulation de tels transcrits 
antisens sur les gènes convergents, si la régulation par H2A.Z est conservée et 
si ces transcrits pouvaient avoir un rôle fonctionnel. 
Dans un modèle de sénescence induite par les oncogènes in vitro, nous avons 
identifiés par RNA-Seq brin spécifiques plusieurs loci de gènes convergents où 
des ARN antisens pourraient être générés par des défauts de terminaison de 
transcription sur le gène convergent. Des analyses en profondeurs sur deux loci 
ont confirmé que les transcrits antisens sont effectivement générés par un tel 
mécanisme (appelé "read-through transcriptionnel"). Nous avons appelé ces 
antisens START RNAs (pour " Senescence Triggered Antisense Read-through 
Transcripts). Nous avons par la suite montré que ces STARTs répriment 
l'expression du gène pour lequel ils sont antisens. Finalement, nous avons 
montré qu'ils sont réprimés par H2A.Z dans les cellules en prolifération. Nous 
proposons donc un modèle où la progression en sénescence s'accompagne 
d'une diminution de H2A.Z, ce qui se traduit par l'induction de transcrits antisens 
régulateurs sur une famille de loci de gènes convergents dus à des défauts de 
contrôle de la terminaison de la transcription.  
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“In science, we have to be very brave. Actually we should 

not believe in text books, or we should not believe in what 

elderly people, your teachers says to you, because that’s the 

main job of a scientist- we want to re-write text books. 

Sometimes stupid idea may cause a breakthrough. So I 

think it’s important not to stop young minds.”  

-  Shinya Yamanaka  
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A. Cellular Senescence 
 
 

Societies have traditionally taken three approaches in handling recidivist criminals: exile, exe-

cution and lifetime imprisonment. It seems that human cells use similar strategies to prevent 

rogue cells harbouring dangerous mutations from turning into fully-fledged cancers. Epithelial 

tissue, such as that lining the airways and intestines, continuously renews and sloughs off, 

thereby sentencing some precancerous cells to extra-corporeal exile. There is also a cellular 

version of the death penalty — apoptosis, a well-established anticancer mechanism. In 2005, a 

series of very elegant studies (Michaloglou et al., 2005; Chen et al., 2005; Collado et al., 2005; 

Braig et al., 2005) provided the first in vivo evidence that the body can subject potential cancer 

cells to the equivalent of a life-sentence: cellular senescence, thereby repudiating senescence 

from being denounced as a mere cell culture artefact (Sharpless and Depinho 2005).  

 

1. Introduction on Cellular Senescence: 

 

Cellular senescence refers to the specific phenomenon wherein a proliferation-competent cell 

undergoes permanent growth arrest in response to various cellular stresses. The senescent 

state is accompanied by a failure to re-enter the cell division cycle in response to mitogenic 

stimulation and by an acquired resistance to oncogenic challenge. These properties of stress-

induced irreversible proliferative arrest and resistance to both mitogenic and oncogenic stimuli, 

provide the best formal definition of the senescent state (Sharpless and Sherr 2015). 

The concept of cellular senescence was kindled in the limelight with path-breaking observa-

tions that human diploid cell types have a specific replicative limit in culture, although they can 

remain viable and metabolically active after assuming a stable, non-dividing state, a phenome-

non commonly termed as “Hayflick Limit” (Hayflick and Moorhead 1961). This is because con-

tinued cell propagation calls for telomeric attrition, which eventually leads to stable proliferative 
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arrest (Harley et al., 1990; Bodnar et al., 1998). Cultured primary mouse embryonic fibroblasts 

also exhibits such defined replicative capacity (Todaro et al., 1963) and undergo senescence, 

although telomere attrition wasn’t found to responsible to this end (Blasco et al., 1997). Instead 

chronic activation of cardinal tumour suppressors such as the retinoblastoma protein (RB) and 

the transcription factor p53 were found to be the culprit, in a way that mimics proliferative arrest 

in response to non-physiological conditions of tissue culture or oncogene challenge (herein re-

ferred to as oncogene-induced senescence (OIS) (Harvey et al., 1991; Serrano et al., 1997; 

Kamijo et al., 1997; Wright and Shay 2000; Sherr and DePinho 2000). Emerging data are lead-

ing to acknowledge that additional diverse senescence stimuli include reactive oxygen species 

(ROS), other DNA-damaging and the unfolded protein response (Kuilman et al., 2010; Rodier 

and Campisi 2011; Campisi 2013). 

Various stimuli that are known to activate senescence are cancer-associated stresses, and the 

acquired resistance of senescent cells from the onslaught of oncogenic transformation sup-

ports a role for senescence in preventing cancer progression and this barrier has been found to 

be indefinite or permanent, lasting for a lifetime. (Kuilman et al., 2010; Rodier and Campisi 

2011; Campisi 2013; Collado, Blasco and Serrano 2007; Kim and Sharpless 2006) To this 

lines, repression of RB–p53 signaling in proliferating cells can bypass the onset of cellular se-

nescence, whereas established senescent human cells in culture resist oncogenic insults that 

attempt to force cell cycle re-entry, such as the introduction of telomerase or the simian vacuo-

lating virus 40 (SV40) large T-antigen (Shay et al., 1991), which inactivates both the RB and 

the p53 pathways. This observation is consistent with an earlier finding where Lena Gurdon 

and colleague for the first time demonstrated the inability of senescent cells to phosphorylate 

RB when challenged with large T-antigen (Stein et al., 1990). By contrast, experimental 

co-inactivation of the G1 cyclin-dependent kinase (CDK) inhibitor p16INK4A and p53 in some 

senescent human cells (Beauséjour et al., 2003) or conditional deletion of Rb1 in mouse em-

bryonic fibroblasts (Sage et al., 2003) have been reported to reverse senescence, permitting 
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re-entry into the cell cycle. Nonetheless, senescence is irreversible in the sense that known 

physiological stimuli cannot force senescent cells to re-enter the cell cycle (Campisi 2013, 

Sherr and Sharpless 2015).  

With senescence at the nexus of so many diverse research areas, and with a surfeit of high-

profile papers focused on the subject, a troubling issue for the field has been obscured: name-

ly, that markers to identify, quantify and characterize senescent cells in an intact organism are 

nonspecific and unreliable. This lack of a uniform definition of what constitutes senescence 

promotes confusion and controversy, and continues to raise numerous conceptual problems 

(Sharpless and Sherr 2015).  

 

 

2. Causes and effectors of Cellular Senescence 

 

Present conception of senescence and its effector programs like diverse stress erupts largely 

from the in-vitro work i.e. from cell culture based studies. In addition to telomere erosion, sev-

eral other tumour-associated stresses have been shown to induce a senescent growth arrest 

in-vitro, including certain DNA lesions and reactive oxygen species (ROS) (Nardella et al., 

2011; Sedelnikov et al., 2004; von Zglinicki 2002). The cross-roads of the two types of stress 

have certain common telomere damage trigger that activate the DNA damage response 

(DDR), a signalling pathway in which ATM or ATR kinases block cell-cycle progression through 

stabilization of p53 and transcriptional activation of the cyclin-dependent kinase (Cdk) inhibitor 

p21. Besides these, as introduced before, oncogenic challenges in elegant in-vivo studies also 

elicit such permanent growth arrest. Oncogenic Ras acts through overexpression of Cdc6 and 

suppression of nucleotide metabolism, causing aberrant DNA replication, formation of double 

stranded DNA breaks (DSBs) and activation of the DDR pathway (Aird et al., 2013; Di Micoo et 

al., 2006) 
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However, senescence mediated via E2F3 activation or c-Myc inhibition is DDR-independent 

and involves p19Arf and p16Ink4a while inhibition of PTEN have been shown to drive senes-

cence on p53, mTOR dependent and DDR independent pathway (Sedelnikov et al., 2004, 

Lazzirini et al., 2005; Chen et al., 2005). BRAF (V600E) is also DDR-independent and induces 

senescence exploiting a metabolic pathway with prominent machinery like mitochondrial py-

ruvate dehydrogenase (PDH) at work (Kaplon et al., 2013). Several other studies underscored 

that senescence is closely linked to profound metabolic changes (Kondoh et al., 2005; Dorr et 

al., 2013). On the contrary a repertoire of studies identified that repression of tumour suppres-

sors can also lead to induction of senescence, which includes RB, PTEN, NF1 and VHL (Kim 

and Sharpless 2006; Lazzirini et al., 2005). Of these, RB inactivation engages the DDR, 

whereas the others are DDR-independent and act through p19Arf and p16Ink4a. Moreover 

there is a sort of hierarchy in the antitumorigenic role displayed by various components of the 

INK4 locus. To this end it has been shown that loss of p16 alone can drive tumorigenesis even 

in the backdrop of unalterted p19 expression, suggesting that p19 is a recessive Tumour Sup-

pressor Gene (TSG) (Sharpless et al., 2001). More over these two genes displays antigonastc 

role in certain backgrounds. To this end a study dealing with aging mouse model where in the 

mouse strain used was deficient of BubR1 (a gene that codes for mitotic checkpoint protein 

and hence undergoes premature separation of sister chromosomes and develop progressive 

aneuploidy along with various progeroid phenotypes) showed that loss of p16 ameliorated ag-

ing phenotypoe however loss of p19 exacerbated senescence and consequenty augmented 

aging and aging related phenotype (Baker et al., 2008). The complexity of the subject is further 

elevated by the fact of differential propensity in the usage of tumour suppressor machinery as 

murine cells are found to be prone in the usage of p19 than towards induction of senescence 

than p14 by human cells (Ben-Porath et al., 2005) which highlights the species-specific differ-

ences in the mode of senescence induction. Prolonged exposure to interferon-b also induces 

senescence, demonstrating that chronic viral-sensing like sensor is also crucial in mitigating 
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mitogenic signaling outside the context of neoplastic transformation (Moiseeva et al., 2006). 

Other, less broadly studied inducers of senescence include epigenetic, nucleolar and mitotic 

spindle stresses. For example, genome-wide chromatin decompression by exposure to histone 

deacetylase inhibitors triggers senescence via a p21- dependent mechanism (Romanov et al., 

2010). Epigenetic stress can also have specific effectors that promote senescence may be the 

INK4a/ARF locus, which in proliferating cells is repressed by polycomb group-mediated H3K27 

methylation and H2AK119 ubiquitination (Lapak and Burd 2014). Nucleolar stress caused by 

RNA polymerase I inhibitors triggers a robust p53-mediated senescence response (Hein et al., 

2012). Senescence can also be elicited by suboptimal expression of proteins implicated in 

spindle formation or mitotic checkpoint control, including human TACC3 and murine BubR1, 

Bub3 and Rae1, all of which engage p53 and p21 independently of the DDR, often in combina-

tion with p16Ink4a (Baker et al., 2004; Schmidt et al., 2010). It is highly likely that additional 

stressors and mechanisms that drive cells into senescence will be uncovered given the rapidly 

evolving nature of the field. Chronic influx of proinflammatory cytokines and chemokines is an 

emerging feature of senescent cells irrespective of senescence mediators or effector pathways 

(Fig. 1). Although p21-p53 and p16 nexus both qualified to be two major archetypal inducers of 

senescence and but these two pathways can be differentially exploited, however may ultimate-

ly become engaged upon sustained senescence. For example, DNA damage initially halts cell-

cycle progression through p53-mediated induction of p21, but persisted lesion calls for urgency 

by activating p16Ink4a through p38-MAPK-mediated mitochondrial dysfunction (Freund et al., 

2011; Passos et al., 2010). The extent to which effector mechanisms of in-vitro senescence 

apply to in vivo senescence has not been tested extensively. Genetic experiments using 

knockout strains for each of these tumour suppressors that dissected how senescent cells ac-

cumulate in these tissues and contribute to their deterioration, established that p16Ink4a is an 

effector of senescence and ageing. On the other hand inactivation of p21 has been shown to 

improve stem cell function in intestinal crypts and bone marrow in mutant mice with short telo-
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meres (Choudhury et al., 2007). This indicated that in situations where irreparable damage 

produces a sustained and robust p53 response, p21 acts to promote tissue deterioration by 

executing senescence. However, in the context of organismal ageing, individual cells experi-

ence multiple cellular pressures, including various kinds of genotoxic, proteotoxic and mitotic 

stresses (Seigel and Amon 2012). Thus, to advance our understanding of these processes, it 

will be imperative to have an uncoupled and unbiased approach to senescence and aging and 

to examine how combinations of diverse senescence-promoting stressors impact the actions of 

the various downstream effector pathways and the characteristics of the resulting senescent 

phenotypes. Furthermore, while cellular senescence is well recognized as an in vivo tumour 

suppressive mechanism, its irreversibility remains a topic of debate. Certain evidence indicates 

that BRAF (V600E) oncogene-induced senescence (OIS) can be reversed by activation of 

phosphatidylinositol 3-kinase (PI3K) or inhibition of PDH (Fig. 1) (Kaplon et al., 2013; 

Vredeveld et al., 2012). Although there is a claim of having senescent cells successfully dedif-

ferentiated into pluripotent stem cells (Lapasset et al., 2011), overwhelming studies from very 

prominent laboratories have shown senescence as potential impediment to cellular repro-

gramming as discussed later (Banito et al., 2009; Hong et al., 2009; Kawamura et al., 2009; Li 

et al., 2009; Marion et al., 2009; Utikal et al., 2009; Zhao et al., 2013). 
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Fig.1 Senescence-inducing stimuli and main effector pathways. 
A variety of cell-intrinsic and -extrinsic stresses can activate the cellular senescence program. These 
stressors engage various cellular signalling cascades but ultimately activate p53, p16Ink4a, or both. 
Stress types that activate p53 through DDR signalling are indicated with grey text and arrows (ROS 
elicit the DDR by perturbing gene transcription and DNA replication, as well as by shortening telo-
meres). Activated p53 induces p21, which induces a temporal cell-cycle arrest by inhibiting cyclin E–
Cdk2. p16Ink4a also inhibits cell-cycle progression but does so by targeting cyclin D–Cdk4 and cyclin 
D–Cdk6 complexes. Both p21 and p16Ink4a act by preventing the inactivation of Rb, thus resulting in 
continued repression of E2F target genes required for S-phase onset. Upon severe stress (red arrows), 
temporally arrested cells transition into a senescent growth arrest through a mechanism that is currently 
incompletely understood. Cells exposed to mild damage that can be successfully repaired may resume 
normal cell-cycle progression. On the other hand, cells exposed to moderate stress that is chronic in 
nature or that leaves permanent damage may resume proliferation through reliance on stress support 
pathways (green arrows). This phenomenon (termed assisted cycling) is enabled by p53-mediated acti-
vation of p21. Thus, the p53–p21 pathway can either antagonize or synergize with p16Ink4a in senes-
cence depending on the type and level of stress. BRAF(V600E) is unusual in that it establishes senes-
cence through a metabolic effector pathway. BRAF(V600E) activates PDH by inducing PDP2 and inhib-
iting PDK1 expression, promoting a shift from glycolysis to oxidative phosphorylation that creates se-
nescence-inducing redox stress. Cells undergoing senescence induce an inflammatory transcriptome 
regardless of the senescence inducing stress (coloured dots represent various SASP factors). Red and 
green connectors indicate ‘senescence-promoting’ and ‘senescence-preventing’ activities, respectively, 
and their thickness represents their relative importance. The dashed green connector denotes a ‘se-
nescence-reversing’ mechanism. (Deursen 2014) 
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3. Markers of Senescence  

 

Lessons acquired from cell culture experiments have identified senescent 

cells to labeled under the category of adherent class of cells and exhibits dis-

tinct morphology pattern- flattening, vacuolization and accumulation of stress 

granules (Kuilman et al., 2010; Rodier and Campisi 2011; Campisi 2013). In-

creases in cell size relative respective to proliferating cells in culture may re-

flect a continuation of anabolic processes that have refuted to be ceased, 

such as protein and membrane synthesis, in these cells that have decided to 

undergo permanent exit from the cell cycle. Senescent cells routinely express 

senescence-associated β-galactosidase (SAβ-gal) and p16INK4A, and with 

exception of p53 expressing cells, secrete proinflammatory cytokines includ-

ing interleukin-1 (IL-1), IL-6, IL-8, vascular endothelial growth factor A (VEG-

FA) and certain invasive EMT mediators like matrix metalloproteinases 

(MMPs) and these components constitutes the core of Senescence Messag-

ing Secretome (SMS) and phenotype of cells exhibiting such property and 

commonly referred to as Senecence Associated Secretory Phenotype (SASP) 

(Fig.3). (Kuilman et al., 2010; Rodier and Campisi 2011; Campisi 2013; Coppe 

et al., 2008; Rodier et al., 2009). Certain human OIS cells exhibit an atypical 

feature of heterochromatin patterning that is present in discrete nuclear sub-

domains, commonly referred to as senescence-associated heterochromatic 

foci (SAHFs) and are generally found to be associated with S-phase-

promoting gene loci, such as E2F target genes (Narita et al., 2003). Addition-

ally, a prominent feature of many senescent cells is an chronic and persistent 

DNA-damage response (Bartkova et al., 2006; Di Micco et al., 2006; Rodier et 
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al., 2011; Fumagalli et al., 2014). Although many of the features described 

above are widely but not uniformly observed in cultured senescent cells, nu-

merous problems arise when trying to use them to describe senescence in 

living animals. (Sherr and Sharpless 2015).  

 

a. Acidic β-galactosidase. Owing to the simplicity of the assay and detection 

of it in tissues, SAβ-gal activity has been one of the most familiarly used se-

nescence signature. It is measured at pH 6.0 with the artificial substrate X-gal 

(Dimri et al., 1995; Itahana, Campisi and Dimri 2007). Endogenous 

β-galactosidase (encoded by the GLB1 gene) in humans is a lysosomal en-

zyme with optimal activity displayed at pH 4.0–4.5, so its detection at subop-

timal pH 6.0 connotes its very high level of expression in senescent cells (Kurz 

et al., 2000; Lee et al., 2006). Gangliosides, keratin sulfate and various glyco-

proteins have been the canonical β-galactosidase substrates.  

 

b. p16INK4A. From the in-vivo data one can opine that p16 has been one of 

the cliché biomarker for senescence. P16 inhibits cyclin D-dependent CDK4 

and CDK6 (Serrano, Hannon and Beach 1993). CDKN2A that codes for p16 is 

located at a close proximity with CDKN2B, which encodes a second INK4 

family member, p15INK4B (Serrano and Beach 1994). Interestingly although 

the transcriptional machinery efficiently integrates exons 2 and 3 of the 

CDKN2A, thereby generating distinct transcripts originating from another up-

stream promoter and exon, however their coding sequences gets translated in 

an alternative reading frame (ARF) (Quelle et al., 1995) resulting in the gener-

ation of p14ARF in and p19ARF protein in human and mouse respectively 
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(Fig.2), a potent tumour suppressor that acts upstream of p53 (Serrano et al., 

1997; Pomerantz et al., 1998; Zhang et al., 1998; Kamijo et al., 1998). This 

information underlines the fact that both RB and p53 are regulated by prod-

ucts of the CDKN2A locus: p16INK4A and ARF, respectively. However there 

seems to be a division of labour between these two tumour suppressors in the 

context of cellular senescence. For example, p19ARF expression serves as a 

critical hallmark of mouse embryonic fibroblast exhibiting replicative senes-

cence, whereas p16INK4A is a key regulation of in-vitro senescence and es-

pecially Oncogene Induced Senescence in human cells (Chandler and Peter 

2013). It is important to point out that in malignant human tumours, deletion 

and silencing of the entire CDKN2A–CDKN2B locus and mutations inactivat-

ing p16INK4A are among the most frequent genetic events (Bignell et al 2010; 

Beroukhim et al., 2010), implying that, inactivation of RB1 and TP53 mediated 

via concurrent loss of CDKN2A–CDKN2B arms the cells to bypass tumour-

suppressive restraints that are imposed by senescence. Moreover elevated 

p16 levels have often been found to be associated to wound healing respons-

es or clastogen exposure that involves imminent inflammatory response (Burd 

et al., 2013; Waaijer et al., 2012; Sorrentino et al., 2014; Natarajan et al., 

2003; Jun and Lao 2010). The transient p16INK4A expression followed by the 

disappearance of p16INK4A-positive cells during healing and tissue repair 

raises the question of whether these cells were senescent and eliminated (for 

example, through clearance by the immune system) or whether non-

senescent immune cells entering a wound are a source of p16INK4A expres-

sion, or both (Sherr and Sharpless 2015). In regard to the study conducted by 

Sharpless cnd Colleagues that documents elevated p16 expression in the 
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Tumour Associated macrophages (TAMs) that accumulates in the implanted 

tumours fails to didn’t resolve a similar interim question whether these are 

genuine senescent tumour cells or merely expressing p16INK4A as conse-

quence of acute stress response that generally are characterized by inflam-

mation and macrophage differentiation alike to above mentioned example of 

p16INK4A activation with wounding (Demaria et al., 2014; Burd et al., 2013; 

Natarajan et al., 2003; Jun and Lau 2010; Jun and Lau 2010).  

Concomitant elevation in p16INK4A expression levels has been detected in 

lymphocytes upon aging. Abundant p16INK4A expression in peripheral blood 

T cells from aged humans and mice (Lemster et al 2008; Liu et al., 2009; Liu 

et al., 2011) is associated with a marked decline in their proliferative capacity, 

a defect that can, in part, be rescued through T cell-specific p16 inactivation 

(Liu et al., 2011; Migliaccio et al., 2005) which sheds considerable light on ex-

acerbating effect of growth arrested T-cells that plausibly cripples its from 

clearing senescent thereby encouraging the prolong secretion of proinflamma-

tory cytokines that fits with emerging model of “inflamaging” besides the fact 

that these hyporeplicative T-cell neither displays SAHF nor SASP, two of the 

commonly used hallmarks of senescence, especially in the in-vitro context. In 

the context of p16INK4A-expressing lymphocytes there appears to be lot con-

tradicting opinion regarding whether these hyporeplicative lymphocytes are 

indeed senescent, or simply depicts a functionally perturbed cell state (Lem-

ster et al., 2008; Migliaccio et al., 2005; Jaruga et al., 2000; Shi et al., 2014; 

Di Mitri et al., 2011; Liu and Sharpless 2009; Akbar and Henson 2011) while 

some argued that they these cells enters a sort of hibernation and feigns the 

state durable growth arrest as they still harness the capability of entering the 
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cell cycle (Jaruga et al., 2000; Shi et al 2014). 

However certain in-vivo situations has evoked greater concerns with 

p16INK4A being readily detected in non-senescent cells: for example, it is ex-

pressed at particularly high levels in cells with inactivated RB (Aird et al., 

2013; Serrano, Hannon and Beach 1993; Shapiro et al., 1995) including many 

cancer cells (Shapiro et al., 1995; Khleif et al., 1996; Nakao et al., 1997; 

Witkiewicz et al., 2011). Hence, even with clinching evidence of p16INK4A 

expression, the growth arrest can still be blunted by mutations that inactivate 

downstream effectors of the senescence programme such as RB. This is con-

sistent with the above cited work from Lena Gurdon’s laboratory that demon-

strated using large T-antigen that senescent cells fails to make phosphorylate 

the Rb. Prima facie of such situations the matter has been further complicated 

by the unavailability of good p16 antibody for immunohistochemistry to facili-

tate its detection and distribution in mice on varied settings of senescence. 
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Fig.2 The CDKN2A–CDKN2B locus. The cyclin-dependent kinase inhibitor 2A 
(CDKN2A)–CDKN2B locus, which is less than 50 kb in overall length, encodes three 
tumour-suppressor proteins. Exons within the locus are indicated by coloured vertical 
bars, and the three promoters are indicated by arrows. The CDKN2B gene (which 
encodes p15INK4B) is specified by two exons (light blue). The CDKN2A gene en-
codes both p14ARF (p19ARF in mice; three dark blue exons) and p16INK4A (three 
red exons). RNAs transcribed from alternative first exons (designated Ex1β for ARF 
and Ex1α for INK4A) are spliced to mRNA sequences encoded by exons 2 and 3 of 
the INK4A gene, thereby generating two transcripts that are translated in alternative 
reading frames. The p16INK4A and p15INK4B proteins inhibit cyclin D-dependent 
CDK4 and CDK6 to prevent phosphorylation of the retinoblastoma protein (RB). The 
hypophosphorylated form of RB sequesters E2F transcription factors, preventing 
them from coordinately activating a suite of genes that are required for DNA replica-
tion (as shown for INK4A only). The ARF protein binds to the MDM2 E3 ubiquitin lig-
ase to prevent p53 polyubiquitylation and to facilitate p53 activation. In turn, the p53 
transcription factor regulates an extensive group of genes that are commonly induced 
by cellular stress. These include the CDK2 inhibitor p21CIP1, which inhibits 
CDK2-mediated RB phosphorylation during progression through the G1 phase of the 
cell division cycle. Inactivation of p53 leads to ARF induction, whereas inactivation of 
RB induces INK4A expression. These negative feedback loops are depicted by 
dashed lines. Silencing of the CDKN2A– CDKN2B locus in stem cells, or its frequent 
deletion in cancer cells, abrogates the tumour-suppressive functions of RB and p53 
to facilitate cellular self-renewal. (Sharpless and Sherr 2015) 
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c. DNA damage foci and typical chromatin alterations: One of the markers 

that almost invariable correlate with senescence induction is DNA damage. 

DNA damage and these type of senescent are generally classified as DNA 

damage dependent senescence that can be driven by errors erupting from 

DNA replication during S phase, cell intrinsic factors like ROS (Reactive Oxy-

gen Species) and natural extrinsic genotoxic insults such as UV or ionizing 

radiations, and therapeutically upon exposure to chemotherapeutic drugs. 

DNA-damage foci that are characterized by phosphorylated γH2AX appear-

ance or activation of 53BP1, are generally detected at dysfunctional telomere 

of replicating senescent cells (d'Adda di Fagagna et al., 2003; Takai et al., 

2003) indicating that replicative senescence to a large extent are driven by a 

coordinated role of telomeric attrition and its damage. In precancerous le-

sions, replicative errors or high ROS levels can drive DNA damage and in turn 

elicit cellular response by activating p53 and p21CIP1 that can either precipi-

tate as apoptosis or senescence (Halazonetis, Gorgoulis and Bartek 2008) 

depending on the cell type and veracity of the lesion. However it should be 

noted that such foci have been detected at other sites than that of telomere 

that also culminates to activation of ataxia telangiectasia mutated (ATM)–

p53–p21CIP1 signalling cascade of inducing effective growth arrest (Bartkova 

et al., 2006; Di Micco et al., 2006; Rodier et al., 2011; Fumagalli et al., 2014; 

Nakamura et al., 2008). However it has been shown that components that can 

have serious consequence on the integrity of chromatin structure like chroma-

tin remodelers or histone modifiers like histone deacetylase inhibitors can also 

can also activate DNA damage signaling cascade besides p16INK4A and 

SAβ-gal without any detectable telomere dysfunction or overt DNA damage 
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(Bakkenist and Kastan 2003; Munro et al., 2004).  

Altered nuclear phenotype and consequently variability in the gene expression 

pattern patterns are often observed in cells undergoing senescence besides 

down-regulation of cell cycle genes, up-regulation of senescence marker 

genes, and senescence-associated alteration of the secretome. Thus, it is 

possible that senescence is under the constraints of some unique chromatin 

modification that beholds the gene regulatory mechanisms. For example, p16, 

a functional biomarker of senescence is negatively regulated by histone H3 

Lys 27 trimethylation (H3K27me3) and its docking proteins of the polycomb 

group (Jacobs et al., 1999), which can be countered by JMJD3, the H3K27 

demethylase (Agger et al., 2009).  

The tumor suppressor promyelocytic leukemia (PML), a component of PML 

nuclear bodies (PML NBs, also known as promyelocytic oncogenic domains 

[PODs]), is a marker of senescence: During senescence, PML is up-

regulated, the size and number of PML NBs are increased and PML contrib-

utes to senescence via upregulation of p53 and Rb (Ferbeyre et al., 2000; 

Pearson et al., 2000). It has also been shown that Rb is involved in silencing 

of E2F target genes during senescence through its physical association with 

AGO2 (a key component of RNA induced silencing complex [RISC]) and mi-

croRNA (e.g., let-7) (Benhamed et al., 2012). 

To a staunch exception with mouse, human (Kosar et al., 2011; Di Micco et al 

2011; Kennedy et al., 2010) senescent cells in in-vitro displays vivid  

4,6-diamidino-2-phenylindole (DAPI)-stained foci that are detected to bear 

various hallmarks of constitutive heterochromatin such as H3K9me3 and bind-

ing of Heterochromatin Protein 1 and most critically HMGA1 to chromatin 
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(Narita et al., 2003) besides other factors that has less relevance in the light of 

heterochromatin constituency like E2F. Such structure has been termed as 

Senescence Associated Heterochromatic Foci (SAHF). Furthermore SAHF 

harbouring these repressive chromatin marks and are presumed to have 

formed during spatial repositioning of pre-existing heterochromatin (Chandra 

et al., 2012; Chandra and Narita 2013). However SAHFs per se may not 

serve as a senescence marker as certain cell types (like BJ) does not display 

SAHF owing to low p16 expression. Strikingly enrichment of H3K9me3 and 

HP1 at E2F have been documented in certain SAHF-independent settings of 

senescence. Translocation of HIRA (a histone chaperone) to PML (promyelo-

cytic leukemia nuclear) bodies lays the foundation stone for the primary step 

of chromatin condensation (Zhang et al., 2005). These subnuclear organelles 

are thought to serve as a staging ground for the formation of HIRA/ASF1A-

containing complexes, which are subsequently incorporated into chromatin 

and play an essential role in instigating SAHF formation. RNAi depletion of 

either ASF1A or HMGA1 (a SAHF component) leads to a partial bypass of 

senescence (Zhang et al., 2005; Narita et al., 2006). 

Paradoxically depending on the experimental backdrop, interference in the 

expression of genes like p53, C/EBPb, or interleukin-6 (IL-6)—also reduces 

SAHF-positivity, however that consequently abrogates senescence (Kuilman 

et al 2008; Chan et al; 2005; Ye et al., 2007; Zhang et al., 2005). Moreover, 

these foci as discussed above serves to depict certain categories of senes-

cence (like OIS), and they are limited to cell types expressing p16 and often 

can be dispensable for cellular senescence (Agger et al., 2009; Koser et al., 

2011).  
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While SAHFs are characterized microscopically (Cecco et al., 2013), a study 

recently identified another type of senescence associated chromatin alteration 

using a biochemical approach: formaldehyde-assisted isolation of regulatory 

elements (FAIRE), a method for genome-wide mapping of open chromatin re-

gions. They showed, in replicative senescent HDFs, an overall condensation 

of chromatin in euchromatic regions, with the exception of some specific 

genes. On the other hand, chromatin of repetitive sequences, including major 

classes of retrotransposon as well as pericentromeric regions, which are high-

ly condensed in normal cells, tend to become open in senescent cells. The 

decondensation of these heterochromatic regions is associated with expres-

sion of transposable elements (such as LINE1 elements) and their transposi-

tion, particularly at later time points after the induction of senescence. They 

also showed the decondensation of pericentromeric heterochromatin in late 

senescent cells. It has been recently shown the loss of chromatin during se-

nescence (Ivanov et al., 2013). They found that reduction of LMNB1 and loss 

of nuclear envelope integrity in senescent cells are associated with the ap-

pearance of cytoplasmic chromatin fragments (CCFs). These are targeted to 

autophagy for degradation, resulting in low histone content. A reduction of to-

tal histone content was seen within the deeper (or ‘‘mature’’) portions of nevi, 

a model for in vivo OIS (Ivanov et al., 2013). Thus, similar to the redistribution 

of the relative condensation of chromatin mentioned above, this reduction in 

histone content appears to be a late event during senescence. The physiolog-

ical significance of these chromatin alterations that are associated with late or 

deep senescence remains to be elucidated, or they might be considered ‘‘de-

generative’’ alterations as the investigators suggest (Cecco et al., 2013; 
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Ivanov et al., 2013). On the background of this context it is noteworthy to point 

out that In addition to autophagy, the second major protein degradative path-

way—the proteasome—also has functional relevance to the phenotype. It was 

recently shown that aberrant Ras/ERK signaling leads to senescence-

associated protein degradation (SAPD), whose targets include proteins re-

quired for cell cycle progression, cell migration, mitochondrial functions, RNA 

metabolism, and cell signaling (Descheˆnes-Simard et al 2013). Inactivation of 

individual SAPD targets is sufficient for senescence induction. Thus, in addi-

tion to autophagic ‘‘bulk’’ degradation, ‘‘selective’’ proteasomal protein degra-

dation also plays important roles in senescence. 

 

d. The SASP Although incompetent with respect to cell division, senescent 

cells still secretes a plethora of factors that plays different role in cellular mi-

croenvironment that includes metalloproteinase that degrade the extracellular 

matrix (MMPs), immune modulators and proinflammatory cytokines where in 

nuclear factor-κB (NF-κB) has been shown to be a master regulators of these 

secretome (Chien et al. 2011). Collectively this phenotype was designated as 

the senescence-associated secretory phenotype (SASP) or these factors are 

collectively termed as senescence messaging secretome (SMS) (Campisi 

2013; Collado, Blasco and Serrano 2007, Kim and Sharpless 2006). SASP 

have turned out to be a double-edged sword in respect to tumorigenesis as 

studies conducted in different laboratories showed that SASP can be both pro 

as well as anti-tumorigenic. Although counter-intuitive, initially around 10 

years ago, a seminal work conducted in Campisi’s laboratory documented 

that these secreted factors from senescent cells can promote tumorigenesis, 
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where co-incubation of senescent fibroblast with breast cancers cells subcu-

taneously in nude mice, the breast cancer cells were found to grow more rap-

idly. The SASP factors have been shown to be the part of plethora of senes-

cence associated scenarios including telomeric attrition mediated compro-

mised replicative capabilities (Acosta et al., 2013), elicitation of immune sys-

tem and its consequence on tissue morphology (Xue et al., 2007; 

Krizhanovsky et al., 2008; Lujambio et al., 2013) in wound healing responses 

(Xue et al., 2007; Krizhanovsky et al., 2008; Lujambio et al., 2013).  

 

e. Telomere shortening and dysfunction. As discussed earlier every cells 

are evolutionary bestowed with a specified replicative signature true to the cell 

type in question and the inability to add telomeric repeats to chromosome 

ends beyond the contrained limit eventually leads to telomere deprotection 

and a DNA-damage response that limits cellular proliferative lifespan (Hayflick 

1965; Todaro and Green 1963; Blackburn 1991; Lansdorp 2009; Artandi and 

DePinho 2010; Shay and Wright 2011). As a proof of concept, in turn, en-

forced expression of telomerase can bypass replicative senescence and 

maintain chromosomal integrity. Similarly, in mice that are engineered to un-

dergo telomere attrition and exhibit premature ageing phenotypes (like G3 

Terc-/- mice; Rudolph et al 1999), reactivation of telomerase can reverse de-

generative traits (Jaskelioff et al., 2011). However at this junction it is im-

portant to point out that these do not readily exhibit signs of ageing until they 

are intercrossed for several generations to allow telomere attrition (Todaro 

and Green 1963; Rudolph et al., 1999) as multiple telomeric repeats acts as a 

savior by buffering the phenotype of reduced telomerase will only show com-
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promised phenotype once the telomeric repeat reaches a critical threshold. 

Hence this observation makes it clear that telomeric attrition cannot be at-

tributed to be the sole reason of replicative senescence atleast in mice, a 

phenotype principally found to be driven by p16 in mice and unlike as in hu-

man. Many pathophysiological features of genetic disorders that are common-

ly associated to dysfunctional telomere in human closely overlaps with certain 

aspects that are commonly encountered in early ageing, such as pulmonary 

fibrosis, bone marrow failure and cirrhosis (Lansdorp et al., 2009; Armanios et 

al., 2013), highlighting the relevance of studying telomeric structure and func-

tionality to unravel to what extent cellular senescence phonotype overlaps to 

organismal ageing. However the most precise assays such as flow-cytometric 

fluorescence in situ hybridization, require assessment of telomere integrity of 

each individual chromosome, and therefore are technically cumbersome and 

require substantial numbers of viable cells can be a pitfall for experiments with 

limited cell number. Furthermore as with the expression of p16INK4A, telo-

mere shortening and dysfunction can occur in non-senescent cells, and se-

nescence can be triggered by many stresses that are independent of telomere 

shortening in human cells in-vitro.  
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f. The combination of Senescence markers 

 

Given the shortcomings of isolated senescence biomarkers described above, 

as well as the fact that senescence can occur in response to diverse stimuli, 

act through different mechanisms and, seemingly, spread by intercellular sig-

naling within stressed tissues, it has become increasingly clear that no single 

marker will faithfully represent senescence (Sherr and Sharpless 2015). 

Hence, most investigators agree that expression of a combination of generally 

used senescence markers should be used to define senescent cells in vivo 

(Sherr and Sharpless 2015). A well assumed suggestion has been to affirm 

cell cycle arrest and then superimpose “at least two additional senescence 

markers, the choice of which may vary for different settings” (Sherr and 

Depinho 2000). Going with the publication in the field of senescence the most 

overtly used combination relies on SAβ-gal and p16INK4A; however, other 

combinations of p16INK4A and SASP markers, have been used. However the 

filed have not reached to any consensus on the combination of markers that 

can qualify to ascertain senescent cells, however a recent review by Deursen 

underlined that test of irreversibility or the permanent exit to be the gold 

standard for identifying senescent cells (Deursen 2015). 
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Fig.3 Stress triggers and biomarkers of senescence. We define permanent 
growth arrest in response to various cellular stresses as the sine qua non of cellular 
senescence. The senescent state is accompanied by a failure to re-enter the cell di-
vision cycle in response to mitogens and by an acquired resistance to oncogenic 
challenge. Many forms of cellular stress can trigger cellular senescence and lead to 
the expression of the most commonly used biomarkers. The schematic depicts dif-
ferent organelles, including: the nucleus, containing damaged chromatin (X); the nu-
cleolus; rough endoplasmic reticulum and ‘free’ cytoplasmic polysomes, each with 
ribosomes; mitochondria with internal cristae producing reactive oxygen species 
(ROS); and abundant lysosomes expressing β-galactosidase. Vesicles emanating 
from the Golgi apparatus contain secreted cytokines and chemokines that can im-
pinge on surrounding cells (known as the senescence-associated secretory pheno-
type (SASP)), leading to paracrine signalling. The cyclin-dependent kinase (CDK) 
inhibitor p16INK4A in the cytoplasm prevents CDK4 and CDK6 from assembling into 
functional holoenzymes with their allosteric regulators, the D-type cyclins (not 
shown); p16INK4A binding to CDKs prevents the import of active kinases into the 
nucleus and inhibits the phosphorylation of nuclear retinoblastoma protein (RB). 
SAβ-gal, senescence-associated β-galactosidase; SAHFs, senescence-associated 
heterochromatic foci; UPR, unfolded protein response. (Sherr and Sharpless 2015) 
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4. Various conditions for Senescence Induction 

Work from various laboratories have lead us to realize that cellular senes-

cence is essentially as stress response that can occur in various conditions 

like Replicative Senescence can be induced as a consequence of telomeric 

attrition whereas Oncogene Induced Senescence has evolved as an essential 

fail safe mechanism of cell that counteracts tumorigenesis at the onslaught of 

oncogenic challenges. 

 

a. Replicative Senescence in-vitro 

 

Preliminary observations of a study that engaged explanation of primary cells 

from human tissue was that such cells exhibit a predefined finite proliferative 

limit and hence are ‘‘mortal.’’ In fact, their proliferative capacity upon explana-

tion consistently displays three phases: phase I, corresponding to a period of 

little proliferation before the first passage, during which the culture establish-

es; phase II, characterized by rapid cell proliferation; and phase III, during 

which proliferation gradually grinds to a complete halt (Hayflick and Moorhead 

1961). Commenting on the possible causes of the transition to phase III, Hay-

flick hypothesized that ‘‘The finite lifetime of diploid cell strains in-vitro may be 

an expression of aging or senescence at the cellular level” (Hayflick 1965). 

The term cellular senescence therefore denotes a phase of exhaustive prolif-

erative capacity, despite continued viability and metabolic activity. Consistent 

with Hayflick’s proposal, we now know that, with the propagation of human 

cells in culture, telomeres (the protective chromosomal termini) are progres-

sively shortened, ultimately causing cells to reach their ‘‘Hayflick limit.’’ This 
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barrier has been termed replicative (cellular) senescence, since it is brought 

about by saturated replicative capacity. Telomeric attrition attributes to failure 

of DNA polymerase to completely replicate the lagging strands. Thus, telo-

meres act as a molecular clock, reflecting the replicative history of a primary 

cell (Harley et al., 1990). When telomeres reach a critical minimal length, their 

protective structure is disrupted. This triggers a DNA damage response 

(DDR), which is associated with the appearance of foci that stain positive for 

γH2AX (a phosphorylated form of the histone variant H2A.X) and the DDR 

proteins 53BP1, NBS1, and MDC1. Moreover, the DNA damage kinases ATM 

and ATR are activated in senescent cells (D’Adda di Fagagna 2008). Follow-

ing persistent DDR, these kinases activate CHK1 and CHK2 kinases. Com-

munication between DDR-associated factors and the cell cycle machinery is 

brought about by phosphorylation and activation of several cell cycle proteins, 

including CDC25 (a family of phosphatases) and p53. Furthermore, differen-

tial expression of p53 isoforms has been linked to replicative senescence (Fu-

jita et al., 2009). Together, these changes can induce a transient proliferation 

arrest, allowing cells to repair their damage. However, if the DNA damage ex-

ceeds a certain threshold, cells are destined to undergo either apoptosis or 

senescence and this decision differs with cell types. The factors bringing 

about this differential outcome have remained largely elusive, but the cell type 

and the intensity and duration of the signal, as well as the nature of the dam-

age, are likely to be important determinants (D’Adda di Fagagna 2008). In ad-

dition to p53, prolonged replicative arrest also known to activate RB tumor 

suppressor and its signaling partners, including p16INK4A (a cyclin-

dependent kinase inhibitor acting upstream of RB). Indeed, activation of both 
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the p53 and p16INK4A–RB pathways is essential for induction of senescence 

in a variety of human cell strains (Ben-Porath and Weinberg 2005). The rela-

tive contribution of these cascades to senescence depends on the cell strain: 

While some are significantly delayed in their onset of senescence upon inacti-

vation of p16INK4A alone, others require a deficiency in p53 or in p53 as well 

as p16INK4A for the abrogation of senescence. However, such escape offers 

futile advantage as it predisposes the cell to the onslaught of a tougher quality 

control machinery known as telomeric crisis, resulting in chromosomal insta-

bility and death (Shay and Wright 2005). 

The dependence of replicative senescence on telomere shortening is evident 

from its bypass by the ectopic expression of the catalytic subunit of the te-

lomerase holoenzyme (hTERT), which elongates telomeres, thereby abrogat-

ing the effect of the end replication problem (Bodnar et al., 1998). The limited 

life span of most primary human cells is explained by the fact that, in contrast 

to stem cells, telomerase is not expressed in human somatic cells, so they are 

unable to maintain telomeres at a sufficient length to circumvent a DDR (Har-

ley et al 1990). Therefore, the ectopic expression of hTERT is a common 

practice in-vitro, allowing for the immortalization of primary human cells. Like-

wise, tumor cells often express telomerase (Shay and Bacchetti 1997), or 

elongate their telomeres through a mechanism termed alternative lengthening 

of telomeres (ALT) (Muntoni and Reddel 2005).  
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b. Oncogene Induced Senescence (OIS) in vitro 

 

Early break-through studies on mutant HRAS (HRASV12) led the startling 

revelations that, although it can immortally transform most mammalian cell 

lines and collaborate with immortalizing genes in oncogenically transforming 

primary cells, it induces p53 as well as p16 mediated cell cycle arrest when it 

is introduced alone into primary cells (and at least in one immortal rat fibro-

blast cell line) (Serrano et al., 1997), thereby highlighting the in-built fail-safe 

mechanism of a cell at work to conceal tumorigenesis. This study noted the 

striking phenotypic resemblance of such non proliferating cells to those in rep-

licative senescence, and this phenomenon has eventually come to be known 

as OIS. Unlike replicative senescence, OIS cannot be bypassed by expres-

sion of hTERT, confirming its independence from telomere attrition, however a 

recent study has indicated that oncogenes such as Ras can induce telomere 

dysfunction, including telomere attrition in primary fibroblasts, and that OIS is 

not stable in cells with high telomerase activity (Suram et al., 2012). One of 

the hallmark features shared by cells undergoing replicative senescence and 

OIS is the critical involvement of the p53 and p16INK4A–RB pathways, at 

least in certain settings. In murine cells, functional inactivation of p53 or its di-

rect upstream regulator, p19ARF, is sufficient to bypass RASV12-induced se-

nescence (Serrano et al., 1997; Kamijo et al., 1997). In human cells, 

p16INK4A seems to play a more prominent role than p53, as some cells de-

pend solely on p16INK4A for OIS (Ben-Porath and Weinberg 2005). Owing to 

such specific tumour suppressor dependency, the ease of inducing OIS differs 

with cell types. It is important to point out that OIS induced through BRAF can 
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refute the necessity of such tumour suppressor activity and can mediate OIS 

through metabolic pathways, such as the activation of Pyruvate Dehydrogen-

ase. Moreover OIS mechanisms do not seem to be universal across cell types 

and genetic contexts. The signaling routes relaying OIS by RASV12 versus 

BRAFE600 also exemplify this: Whereas RASV12-induced senescence can 

be bypassed by abrogation of the p16INK4A–RB pathway (Serrano et al., 

1997), BRAFE600-triggered senescence cannot be bypassed by functional 

inactivation of p16INK4A (Michaloglou et al., 2005). In a support for existence 

senescence independent of p53 module and DNA damage signaling, a very 

elegant study has been shown that depletion of S phase kinase-associated 

protein 2 (Skp2) can suppress tumorigenesis through Arf-p53 independent 

induction of cellular senescence (Lin et al., 2010). In the light of Ras induced 

OIS, it is interesting to note that a study has lead us to reckon on how ROS 

mediates ERK induction of p38, a component generally found to associated 

with chronic inflammation through TLR signaling, in mediating OIS response 

(Dolado et al., 2007). In the similar lines another study have highlighted the 

critical role played by the p38, Tip60 and PRAK signaling cascade in mediat-

ing Ras induced OIS, wherein the activation of PRAK through acetylation of 

Tip60 depends on the p38 mediated phosphorylation of Tip60 (Zheng et al., 

2013), although potential role of Tip60 as tumour suppressor by mediating the 

oncogene induced DNA damage response had been shown earlier (Gorrini et 

al., 2007). Recent evidence suggests the relevance of OIS also in the context 

of induced pluripotency in-vitro. As the INK4A/ARF proteins and p53 limit the 

efficiency of iPS cell formation, it has been suggested that cellular senes-

cence counteracts the induced conversion of primary cells into pluripotent 
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stem cells (Banito et al., 2009; Hong et al., 2009; Kawamura et al., 2009; Li et 

al., 2009; Marion et al., 2009; Utikal et al., 2009; Zhao et al., 2013). Alterna-

tively, increased proliferation rates associated with p53 loss may result in ac-

celerated kinetics of iPSC formation (Hanna et al., 2009). If extrapolated to in 

vivo setting, one could imagine that cancer stem cells arise from a similar re-

programming process (Krizhanovsky and Lowe 2009) preferably in aging tis-

sue where the status of p53 are largely blunted with the passage of time. This 

observation indicates that cellular senescence might suppress tumor for-

mation not only by inducing a persistent cell cycle arrest, but also plausibly by 

limiting the generation of cancer stem cells. 

 

 

c. Tumor suppressor loss mediated Senescence in vitro 

 

Similar to oncogene mutation or overexpression, loss of a tumor suppressor 

can also trigger senescence. This was demonstrated in-vitro using human 

primary fibroblast through loss of NF1, a protein that converts RAS to its inac-

tive GDP-bound form thereby mediating activation of oncogenic RAS. A 

strength of this approach is that it does not rely on the ectopic expression of 

RAS. In the setting of reduced NF1, RAS activation produced a marked, but 

transient, activation of the downstream ERK and AKT pathways followed by a 

profound shutdown of this signaling temporally accompanied by the appear-

ance of senescence. This global abrogation of ERK and PI3K signaling is as-

sociated with the activation of a broad transcriptional program of negative 

regulators of the RAS pathway, including Sproutys, RasGAPs, and 
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DUSP6/MKP3 (an ERK phosphatase). The authors observed a similar re-

sponse following ectopic expression of mutant RAS or of mutant B-RAF, a 

downstream target of RAS that activates ERK MAPK signaling, showing that 

these effects were not specific to NF1 deletion (Fig.4). Additionally, the au-

thors confirmed many of their findings using small-molecule inhibitors of ERK 

or PI3K signaling. Curiously, the authors also show that abnormal activation of 

PI3K signaling also leads to senescence, a result suggesting that different cir-

cuitries mediate OIS depending on the inciting oncogene (Courtois-Cox et al., 

2006).  
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Fig.4 A model of demonstrating loss of tumour suppressor mediated 
OIS. 
Activated RAS leads to growth arrest (mediated by loss of function mutation of 
a tumour suppressor NF1) as a result of potent negative feedback that abro-
gates ERK and PI3K signaling (Adopted from Bardeesy and Sharpless 2006).  
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d. Other Inducers of Senescence in-vitro 

 

Besides these canonical mediators, tampering the epigenetic landscape can 

also deploy cellular senescence. To this end, work from Livingston’s group 

has shown that shRNA mediated depletion of p400, chaperon for the histone 

variant H2A.Z, drives a p53-p21 dependent prematured senescence re-

sponse, with loss of p53 or p21 was found to rescue the phenotype to normal-

cy (Chan et al., 2005). In the similar lines, it has also been shown that H2A.Z 

suppresses p21 dependent elicitation of senescence response as depletion of 

H2A.Z was found to enhance the p21 mediated senescence induction in 

manner similar to its chaperon p400  (Gevry et al., 2007), highlighting H2A.Z 

as a regulator of p21 expression. As p21 is known to play a capital role in me-

diating replicative senescence, it remain unknown whether the senescence 

mediated through depletion of p400 or H2A.Z relates to replicative senes-

cence. Encouragingly, from the perspective of Therapy Induced Senescence 

(TIS), various epigenetic drugs were found to drive proficient senescence re-

sponse in varied settings of solid tumours. For example DU145 and LNCaP 

cancer cells cultured continuously in 400 nM 5-azacytidine, a drug makes the 

cell inhibitory to DNA methylation become senescent within 7 days (Schwarze 

et al., 2005), whereas MCF7 breast and H1299 lung cancer cells triggers a 

senescent-like growth arrest owing to attenuated Ras signaling within 10 days 

after a 24-hour exposure to 100 nM Sirtinol, a class III HDAC inhibitor (Ota et 

al., 2006) by counteracting the effects of Sirtuin 1 (SIRT1). It needs to be em-

phasized that the epigenetic facilitators of senescence are not limited to the 

above-mentioned examples.  
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e. Replicative Senescence in vivo 

 

Studies showing elevated SAb- GAL activity in the skin of elderly people 

(Herbig et al., 2006), have lead to a general opinion that senescent cells ac-

cumulates in aging tissues. In addition, a small but significant decrease in te-

lomere length has been detected in aged tissue, although this has been ob-

served in certain cell types. These studies, which relied on single senescence 

markers, were later backed by studies showing that several DNA damage and 

heterochromatinization markers—including 53BP1, γH2AX, phospho-Ser 

1981-ATM, HP-1b, and HIRA—are increased in dermal fibroblasts from aging 

baboons when compared to the younger counterpart. DNA damage markers 

were shown to co-localize with telomeres, and this correlated with increased 

p16INK4A expression (Herbig et al., 2006), suggesting that dysfunctional te-

lomeres can create DNA damage signals leading to the onset of senescence 

also in vivo. Besides, recent data indicates that end of chromosome are re-

fractory to the DNA repair machinery leading to the elicitation of persistent 

DDR response and the eventual precipitation of senescence. Conversely, 

beneficial aspects of replicative senescence have also been unraveled, in-

cluding some that are unrelated to cancer. In a mouse model of liver fibrosis, 

senescent cells were detected, as evidenced by positivity for SA-b-GAL, 

p16INK4A, p53, p21CIP1, and HMGA1 (Kuilman et al., 2013). These senes-

cent cells are found to be derived activated hepatocellular stem cells and thus 

limit the progression of fibrosis (Krizhanovsky et al 2008). In addition, two re-

ports  (Cosme-Blanco et al., 2007; Felder and Greider 2007) have provided 

evidence backing the proposal by Hayflick (Hayflick 1965) that replicative se-
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nescence limits tumorigenesis. Both studies report that mice lacking the RNA 

component of telomerase (mTR) display decreased tumor formation in the 

context of either one or two copies of mutant p53R172P replacing endoge-

nous p53 (Cosme-Blanco et al., 2007) or Em-MYC/ BCL2-driven lym-

phomagenesis (Krizhanovsky et al 2008). The lack of telomerase activity had 

been shown previously to result in an induction of apoptosis, but, in these two 

models, this response was abrogated owing to expression of the p53 mutant 

or BCL2, respectively. These studies show that cells display extensive induc-

tion of senescence in intestine, kidney, and spleen (Cosme-Blanco et al., 

2007), or in microlymphomas (Feldser and Greider 2007). This has provided 

the first direct evidence of replicative senescence preventing tumorigenesis, 

at least in the context of an apoptosis block. Telomere shortening or dysfunc-

tion initially triggers a robust stress response that, through the induction of cy-

clin dependent kinase inhibitors that impedes the replicative potential of cells. 

As such, this aspect of telomere biology is likely to act as a potent anti-cancer 

mechanism. This is consistent with a significant weakness in dealing with the 

burden of tumorigensis on the backdrop of deficient telomeric activity (mTR-/) 

when coupled with INK4a/Arf loss (Greenberg et al., 1999). In the absence of 

p53, however, dysfunctional telomere instead promotes tumorigenesis (Chin 

et al., 1999). This could occur through the inability of cells to activate a full-

throttled DDR, and through the perturbation of the apoptosis and senescence 

arms (Kuilman et al., 2013). 
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f. OIS in vivo 

 

The past decade have witnessed an overwhelming number of studies demon-

strating senescence in both murine and human lesions in-vivo. Senescence 

markers have been demonstrated in several contexts in which oncogenes or 

tumor suppressor genes were perturbed (Fig. 1). Schmitt and colleagues 

(Braig et al., 2005) reported on the tumor-suppressive role of the chromatin-

remodeling enzyme Suv39h1 in NRAS-driven lymphomagenesis, which corre-

lates with bypass of OIS in-vitro in Suv39h1-/- splenocytes. Serrano and 

coworker (Collado, Blasco and Serrano 2007) showed that conditional ex-

pression of KRASV12 from its endogenous locus in mice results in the emer-

gence of lung adenomas, as well as premalignant pancreatic intraductal neo-

plasia, most of which fail to progress to malignancy. The adenomatous stage 

is specifically found to be characterized by a low proliferative index and deco-

rated by emergence of several senescence markers, including SA-b-GAL, 

p15INK4B, p16INK4A, and several new markers. Peeper and coworkers 

(Michaloglou et al., 2005) showed that congenital human melanocytic nevi, 

which frequently harbor activating BRAF or NRAS mutations, display several 

characteristics of senescence. In addition, murine papillomas driven by 

HRASV12 expression or induced upon DMBA/TPA treatment express several 

senescence markers (Collado, Blasco and Serrano 2007; Chen et al., 2005). 

Recent evidence indicates that Myc, known mainly for its proapoptotic func-

tion, drives a subset of murine lymphomas into senescence through stromal 

secretion of TGFb (Reimann et al 2010), providing support for the premise 

that senescence in the in-vivo settings is not solely implemented in a cell au-
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tonomous manner. Moreover, expression of several senescence-associated 

genes is reduced when tumors progress beyond the senescent stage (Colla-

do, Blasco and Serrano 2007; Chen et al., 2005; Lazzerini Denchi et al., 

2005). However, particularly for cell cycle-regulating genes like p16INK4A, 

abundant expression may, in fact, be maintained during malignancy, which is 

explained either by the occurrence of other (epi)genetic aberrations including 

events occurring in parallel and downstream like blunted RB expression. In 

link with TIS, it is important to point out that application of DNA Methylation 

inhibitors (DNMTi) in the settings of Acute Leukemia or myelodysplastic syn-

drome have lead to encouraging outcomes (Griffiths et al., 2013).  

 

 

g. OIS in the context of nevus and melanoma formation 

 

Melanocytic nevi constitutes a category of benign tumors that depicts a conti-

nence against progression toward melanoma thereby offering a favorable in-

vivo settings for investigating OIS in humans, mice, and fish. In 2002, 

BRAFV599E was identified as a frequent mutation in human cancer, predomi-

nantly in melanoma (Davies et al., 2002). However interestingly in the follow-

ing year a study published that the same mutation is present in the large ma-

jority of nevi (Pollock et al 2003). Hence in spite of the presence of an onco-

genic BRAF (or, in some cases, NRAS) allele, an important and common fea-

ture of nevi is their exceedingly low proliferative activity. This characteristic is 

typically maintained for decades until the lesion gradually disappears. Nevi 

express elevated levels of p16INK4A and display increased SA-b-GAL activity 
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(Michaloglou et al 2005). Arguing against a role for replicative senescence, it 

was found that telomere length in nevi is indistinguishable from that in normal 

skin. This strongly suggests that nevi undergo OIS in vivo. Secreted IGFBP7 

has been reported to play a central role in the initiation and maintenance of 

the senescent state of nevus cells (Wajapeyee et al., 2008) however the ve-

racity of this data was challenged in a successive study. Melanoma formation 

was strongly accelerated in Cdkn2a or p53- deficient backgrounds. Recently, 

two advanced mouse models have been created that more closely resemble 

spontaneous mutation of the oncogene by conditionally expressing BrafV600E 

from its endogenous promoter (Dankort et al., 2009; Dhomen et al 2009). In 

these models, specific expression of mutant BRAF in the melanocytic com-

partment results in the formation of nevus-like benign lesions, which, depend-

ing on the model used, remain stable for several months to more than a year. 

Importantly, these melanocytic cell groups express several senescence mark-

ers, corroborating earlier observations on RASG12V that physiological expres-

sion levels of an activated oncogene can also give rise to senescence in neo-

plasms. In line with the idea that p16INK4A is not always strictly required for 

OIS in vivo (Michaloglou et al 2005) nevus formation was unimpaired in a 

p16INK4A-deficient background, although increased melanoma penetrance 

and reduced latency were observed (Dhomen et al 2009). In contrast, in com-

bination with a mutant Braf knock-in allele, loss of Pten produced aggressive 

tumors much resembling human metastatic melanoma (Dankort et al., 2009). 

These elegant models have convincingly shown that mutation of BRAF can 

drive nevus formation, and that a specific secondary lesion (e.g., Pten loss) 

collaborates to drive fulminant melanoma.  
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h. Tumor suppressor loss mediated senescence in vivo 

 

The first demonstration of tumor suppressor (PTEN) loss-induced senescence 

in vivo was demonstrated from the work of Pandolfi’s lab (Chen et al., 2005). 

Exploring the evolution of prostate cancer, they discovered senescence in 

early-stage prostate abnormalities in humans and in mice engineered to sus-

tain prostate-specific deletion of the PTEN tumour-suppressor gene. Howev-

er, in contrast to the situation in melanocytes, prostate OIS is dependent on 

p53, and co-deletion of PTEN and p53 cancelled senescence, promoting full 

blown prostate cancer. In the similar lines, work from the same lab showed 

that Pten-loss Induced Cellular senescence (PICS) could be exploited as a 

pro-senescence therapeutic intervention (Fig.5) (Alimonti et al., 2010).  

As mentioned earlier, loss of NF1 has been demonstrated to be associated to 

OIS even in in-vivo settings in the study (Courtois-Cox et al., 2006). To this 

end, the authors took advantage of tumors from human patients with neurofi-

bromatosis type I, an autosomal dominant syndrome that results from inher-

itance of a single mutant allele of nf1. In such patients, loss of NF1 potentiates 

RAS activation leading to neurofibromatosis (Fig.4). However, such tumors 

were detected to nurture low malignant potential. Correspondingly, the au-

thors show that tumors from neurofibromatosis type I patients exhibit features 

of senescence (e.g., increased p16INK4A expression and senescence-

associated β-galactosidase activity). Therefore, these data suggest that OIS 

in response to acute NF1 inactivation occurs in humans and is a barrier to 

malignancy in patients with neurofibromatosis type I. 
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Fig.5 Pharmacologic Induction of PICS:  
Loss of both gene copies (‘‘no dose’’) of PTEN sets in motion a senescence program, 
‘‘PICS,’’ in a p53- and mTOR-dependent fashion. It occurs in the absence of a DNA 
damage response and can be established also in already arrested cells. Also over-
expression of PTEN (‘‘high dose’’), or inactivation of PI3K, can cause senescence. 
Cells with a ‘‘low dose’’ (30%–50% of the normal dose in WT cells) can be forced to 
enter senescence upon pharmacologic inhibition of PTEN. (Peeper 2010) 
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5. Oncogene-induced reversible growth arrest 

 

The fact that vast majority of nevi are restricted from their progression to mel-

anoma speaks volumes in favour of robustness of OIS as a cancer counterac-

tive strategy. However this observation also underlines the fact that cells in a 

very small fraction of nevi can probably evade the clutches of OIS and as 

such can drive fulminant melanoma. Work from Bosenberg laboratory demon-

strated that disruption of Cdkn2a (Ink4a/Arf) locus alone is not sufficient to 

permit BrafV600E-induced melanoma, suggesting that activated Raf signaling 

engages an anti-proliferative response independent of Cdkn2a signaling, 

however, the combination of Braf activation and Cdkn2a loss was sufficient for 

nevi to manifest as melanoma, presumably in the setting of additional sto-

chastic events (Damsky et al., 2015). Unbiased RNA seq analysis revealed 

that mTOR signaling was strongly downregulated in growth arrested nevi but 

gets upregulated with progression to melanoma. In order to explore Braf-

induced senescence, Bosenberg and colleagues inactivated the Lkb1 (Stk11) 

tumor suppressor in melanocytes with elevated levels of Braf (Damsky et al., 

2015). Although depletion of Lkb1 promoted bypass of OIS, these cells didn’t 

reveal a propensity to be transformed to melanoma. However parallel deple-

tion of Lkb1 and Cdkn2a allowed melanoma formation indicating active Raf 

engages anti-proliferative effects via mTOR repression and Cdkn2a activa-

tion. The authors also noted a repressive effect of Lkb1 on melanoma metas-

tasis. To corroborate the role of mTOR, the authors took advantage of well-

characterized Pten;Braf melanoma model, wherein concomitant Pten inactiva-

tion and Braf activation potently cooperate to rapidly induce murine cancers. 
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By interfering with specific components of the mTORC1 or mTORC2 complex, 

this study demonstrated that coactivation of mTORC1 and mTORc2 stands 

imperative for melanoma formation (Damsky et al., 2015). The study also 

highlighted the potential role of miRNA99/100 mediation depletion of IGF2-

mTOR cascade in impeding nevi from progressing to fulminant melanoma 

formation (Fig.6) (Damsky et al., 2015). Such examples would suggest that 

melanocyte senescence is the impermanent kind, leading to the question of 

whether such ephemeral growth arrest is “real senescence” or a less deep, 

“pseudo-senescence” (Souroullas and Sharpless 2015). However existence of 

rare clonal population of non-senescent Braf expressing cells in nevi that 

might go into a sort of hibernation and can re-surface on a backdrop of pref-

erable settings (such as mTOR activation) cannot be ruled out. (Souroullas 

and Sharpless 2015). 
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Fig.6 Bypassing of OIS in Melanocytes and Progression to Melanoma: 
(A) In the presence of activated BrafV600E, expression of Pten, Lkb1, and Ink4a/Arf 
(Cdkn2a locus) in melanocytes inhibits both mTORC1 and mTORC2 signaling, im-
peding cell growth and proliferation, resulting in oncogene-induced senescence. 
(B) Inactivating mutations of Pten, Lkb1, and Cdkn2a in postarrested melanocytes 
result in elevated mTORC1/2 signaling and enhanced proliferation, bypassing senes-
cence, and promoting transformation to melanoma. (Souroullas and Sharpless 2015) 
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6. Immuno-surveillance of senescent cells 
 
 

Regarding tumor prevention, cellular senescence has long been regarded as 

a cell autonomous mechanism that exploit the various tumour suppressors for 

its induction and maintenance regime i.e. suppressing tumor development 

through the induction of a stable cell cycle arrest (Lowe at al 2004). In a very 

elegant study conducted Zender laboratory revealed expression of oncogenic 

NrasG12V alone is sufficient to trigger a robust oncogene induced senes-

cence in otherwise normal mouse hepatocytes in-vivo (Kang et al., 2011), 

highlighting the relevance of senescence induction in pre-neoplastic lesions. A 

plethora of chemokines and cytokines secreted from premalignant senescent 

hepatocytes led to the attraction of innate as well as adaptive immune cells, 

which were found in the vicinity to senescent hepatocytes, suggesting that 

precancerous senescent hepatocytes could be subjected to immune clear-

ance. Indeed, time course analyses revealed a rapid turnover of precancerous 

senescent hepatocytes, which was designated as immune-surveillance of 

precancerous senescent cells. The interesting proof of concept was gathered 

from the observation that severe combined immune-deficient (SCID) mice and 

CD4 knockout mice revealed compromised potential in the clearance of the 

NrasG12V expressing senescent hepatocytes indicating that functional se-

nescence surveillance was dependent on an intact innate and adaptive im-

mune response. Strikingly, the aborted axis of immune clearance of 

NrasG12V expressing pre-cancerous cells in these mice resulted in the de-

velopment of hepatocellular carcinomas at later time points, further showing 

that immuno-surveillance is a critical pre-requisite that needs to be met in orto 
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limit the tumorigenesis of pre-neoplastic lesion. This data of senescence spe-

cific surveillance at work has been further supported from the fact that the 

mice mutant for NrasG12V hepatocytes harboured CD4 T-cells but not in 

NrasG12V expressing p19Arf knockout mice, in which senescence induction 

has been blunted. Furthermore, CD4 T-cells have been found to be depend-

ent solely on monocytes and freshly replenished macrophages to efficiently 

kill senescent hepatocytes, nullifying any possible intervention from the kufer 

cells. Collectively, these results showed that oncogene induced senescence 

(OIS) plays an important role in the eliciting a sharp influx of specific immune 

responses against antigens expressed in precancerous cells and that a con-

tinuum of CD4 T cell mediated immune clearance of pre-malignant senescent 

cells is crucial to suppress the trajectory towards hepatocellular carcinoma 

(Fig.7) (Kang et al., 2011).  These data established a novel cell non-

autonomous role of the cellular senescence program (Kang et al., 2011). The 

discussed data are also particularly interesting against the background of an 

ongoing scientific debate regarding the stability of the senescence associated 

cell cycle arrest. While early in-vitro studies suggested the senescence asso-

ciated proliferative arrest to be irreversible (Zhu et al 1998), subsequent stud-

ies provided evidence that under certain circumstances as discussed previ-

ously in the case of melanocytic nevi, a subfraction of cells may escape the 

senescence arrest and re-enter the cell cycle (Beauséjour et al., 2003; Coppe 

et al., 2008; Kuilman et al., 2008). Obviously, the escape of even a small sub-

fraction of precancerous cells can have far-reaching consequences in-vivo, as 

there will be strong selection for such cells with subsequent tumor develop-

ment potential. Melanocytic nevi contain large numbers of senescent melano-
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cytes (Michaloglou et al 2005), however, in general these nevi are not subject 

to any kind of immune clearance (Hoenicke and Zender 2012). It remain an 

open question that whether any alternative surveillance machineries deployed 

in nevi to limit melanogenesis and if yes then the fact that certain nevi have 

been demonstrated to harbor the capacity to escape the from the senescence 

onslaught, opens a further question how the surveillance machinery are cir-

cumvented by this clonal escapist population. 

 

 

 

 

Fig.7 Schematic representation of immune responses against senescent cells 
in different disease settings. Upon senescence induction in established liver carci-
nomas, an innate immune response is triggered and senescent cells are cleared by 
macrophages, neutrophils and natural killer cells (NK cells) as demonstrated from the 
work of Xue at al., 2007. (first column). In contrast, premalignant senescent hepato-
cytes, induced by aberrant activation of oncogenic Nras, are subject to an antigen 
specific CD4 T cell mediated immune response, which also involves mono-
cytes/macrophages (second column). NK cell mediated clearance of senescent he-
patic stellate cells was shown to be crucial to restrict the progression of liver fibrosis 
in chronically damaged livers (third column). Future work is needed to address 
whether immune responses against senescent cells in aging tissues occur and which 
components of the immune system are involved. (Hoenicke and Zender 2012) 
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B. Non-coding Antisense RNAs 

 

1. Antisense transcripts- Introduction 

 

Over the last decade or so, emerging data from various laboratories have led 

us to appreciate unprecedented complexities in the regulation of gene ex-

pression. With the advent of non-coding RNAs especially with lessons learnt 

from wide spread occurrence of antisense transcripts we now realize that the 

system deviates much from the very simplified Central Dogma of genome 

regulation as it extrapolates beyond the protein coding potential. These 

noncoding or antisense transcripts that gets generated in course of transcrip-

tion are deprived of protein coding abilities and yet play a major role in gene 

regulation (Eddy et al., 2001; Pontier and Gribnau 2011; Rinn et al., 2007; 

Camblong et al., 2007; Hingay et al., 2006; Kawano et al., 2007; Beltran et al., 

2008). One of the most cliché examples of such non-coding antisense tran-

scripts is the occurrence of a very early developmentally programmed (in the 

post-implantation stages of the embryonic development) XIST (X-inactive 

specific transcript) that originates from the XIC (X-chromosome Inactivation 

Centre) in females and plays an integral role in dosage compensation by inac-

tivation one of two X chromosomes.  

The non-coding RNAs erupt in various sizes and these regulatory RNA devoid 

of protein coding potential are dissected into two major classes, non-coding 

RNA less than 200 nucleotides as small RNAs, while the others are termed as 

long non-coding RNAs (Fig.8) (lncRNAs). Technological advances have led 
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us to identify large number of lncRNAs and antisense transcripts (Guttman 

and Rinn 2012; Marcer and Mattick 2013; Mattick 2009; Esteller 2011). 

The class of RNAs that are transcribed in an opposite direction on the other 

strand to that of its sense transcripts are designated as Antisense Transcripts 

(Fig.8). Hence in principle antisense transcripts can erupt from genes either 

harbouring or with compromised protein-coding potential. The study of gene 

regulation by antisense transcription is particularly intriguing, as they imple-

ment their function by the virtue of the orientation of their genomic alignment. 

However it has also been observed that the strict complementarity of the anti-

sense transcripts to its sense counterpart does not stand to be pre-requisite in 

order to execute their regulatory function as partial complementarity in certain 

settings have been detected to do the job convincingly (Su et al., 2007; 

Wilkening et al., 2013; Pelechano et al., 2013). 

One of the key difference that bifurcates antisense RNA from non-coding 

RNAs stems from the fact that antisense RNAs do not inherently lack the pro-

tein coding potential, however their genomic orientation to these connoted 

sense transcripts obliterate the expression of its complementary sense tran-

scripts  (Shearwin, Callen and Egan 2005) whereas non-coding RNA irrespec-

tive of their structural orientation to the genes they affect are devoid of poten-

tial to get translated. However like lncRNAs, antisense transcripts also dis-

plays specific domains that enable them to interact with DNA, RNA and pro-

tein (Guttman and Rinn 2012; Mercer and Mattick 2013). 

Over last decade overwhelming number of studies indicated wide-spread oc-

currence of such antisense transcripts in varied species Katayama et al., 

2005; David et al., 2006; Kampa et al., 2004). However the much of these 
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transcripts are not evolutionarily conserved both in terms of structure and 

function (Yassour et al., 2010; Rhind et al., 2011; Goodman, Daugharthy and 

Kim 2012; Kutter et al., 2012; Raghavan et al., 2012; Nicolas et al., 2012). 

This species specific variation have large complicated the matters for struc-

tural and evolutionary biologist as that makes one wonder how divergent are 

the structures of these antisense transcripts as well as the mechanism of 

gene regulation untaken by these transcripts and how these non-coding RNAs 

have undergone differential selection to mediate key cellular processes from 

species to species. (Pontier and Gribnau 2011; Rinn et al., 2007; Camblong et 

al., 2007; Hingay et al., 2006; Kawano et al., 2007; Beltran et al., 2008; Carri-

eri et al., 2012).  More over it has been shown that around 30% of the human 

genome displays antisense transcription potentials. However the ratio of 

sense to antisense transcripts have detected to be abruptly low as antisense 

transcripts are in general 10 times less abundant that its corresponding sense 

(Ozsolak et al., 2010). This observation raises an important question as to un-

ravel the mechanistic underpinnings of how does this inadequate number of 

antisense transcripts mediate its function with high efficiency and precision in 

most of the settings. It is important to mention here that antisense transcripts 

not only exerts its impact on transcription, but certain studies have appreciat-

ed its role in post-transcriptional regulation as well. 

In context of the cellular localization these antisense transcripts are quite ob-

viously detected in nucleus (Derien et al 2012), with an appreciable number 

adhered to chromatin (Chu et al., 2011; Zhao et al., 2010) and to a certain ex-

tent in mitochondria where they play a crucial role in the regulation of ex-

trachromosomal genes and maternal inheritance (Djabali et al., 2012).  
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In order to unleash the complete potential of these non-coding RNAs, studies 

are currently underway to throw light on their differential expression in varied 

settings of cell fate and more importantly if a signature or bar codes of non-

coding antisense transcript is created to specify lineage identity.  

 

Fig.8 Classification of Antisense Transcripts: Antisense transcripts can be classi-
fied according to different criteria, such as their origin, genomic orientation, mode of 
action, length, stability and even the species in which they are expressed. These 
transcripts have been found to originate from independent promoters, shared bidirec-
tional promoters or cryptic promoters that are situated within genes (see the figure). 
According to their orientation with respect to sense genes, they can be further classi-
fied as head-to-head, tail-to-tail or internal (that is, when they are fully covered by the 
sense transcripts). Antisense transcripts can exert their function locally, distally, in cis 
or in trans, and they can also function in multiple subcellular compartments. Cis-
acting mechanisms of these transcripts can act either locally (for example, in promot-
er–gene interactions) or distally (for example, in enhancer–gene interactions). Trans-
acting mechanisms can also act either locally (for example, antisense transcripts af-
fecting the allele from which they originated and/or any additional allele) or distally 
(for example, antisense transcripts affecting other genes). Moreover, antisense tran-
scripts can be classified into short (<200 nucleotides) and long (>200 nucleotides) 
non-coding RNAs (ncRNAs), and stable or unstable RNAs.  
Short ncRNAs are accepted as fundamental players in gene regulation. Although 
they are widespread among eukaryotes, relevant differences exist among species; 
for example, PIWI-interacting RNAs (piRNAs) are found in animals but not in plants 
or fungi. Species-specific differences in mechanisms of action might be expected 
when these mechanisms depend on an accessory machinery, such as the RNA inter-
ference machinery, that is not present in all species. As an example, the pairing of 
sense–antisense transcripts and their consequent degradation by RNase III in Gram-
positive bacteria are not seen in Gram-negative bacteria, which suggests a different 
processing pattern of double-stranded RNAs. Similarly, any effect of an antisense 
transcript that is mediated by DNA methylation is not expected to function in Saccha-
romyces cerevisiae, in which the appropriate DNA methylation machinery is lacking. 
However, mechanisms of action that are based on the general and highly conserved 
transcription machinery — for example, transcriptional interference by chromatin 
modifications — are more likely to be conserved across species (Pelechano and 
Steinmetz 2013). 
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2. Detection of antisense transcripts 

 

Technological advances in genomics have largely driven identification of anti-

sense transcripts to a large extent. One of the impediments that invariably 

comes to the forefront while study antisense transcripts is to make sure to 

take their orientation of transcription in consideration. Overtly used approach-

es like canonical RNA-sequencing, exome sequence or microarray do not im-

bibe the feature to distinguish strand specific transcripts. Such shortcomings 

have led to the discovery of various techniques dedicated to enable the detec-

tion validation and quantify strand specific transcripts (Xu et al., 2011; Xu et 

al., 2009; van Dijk  et al., 2011; Wilkening et al., 2013; Pelechano et al., 2013; 

Perocchi, Xu, Clauder-Munster and Steinmetz 2007; Levin et al., 2010). The-

se techniques mainly relies on capturing the process of active transcription 

using techniques such as global run-on sequencing (GRO-seq) (Core, Water-

fall and Lis 2008) and by a relatively recent implemented techniques like na-

tive elongating transcript sequencing (NET-seq) (Churchman and Weissman 

2011) and Precision nuclear Run-On and Sequencing assay (PRO-seq) 

(Kwak et al., 2013) that helps to identify strand specific antisense transcripts 

via the detection of RNA Polymerase II engagement upon transcription at the 

base pair resolution with precision.  
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3. Expression of antisense transcripts 

 

The transcript itself or an aftermath of transcription as in the case of pervasive 

transcription can either mediate the function of an antisense transcript. Anti-

sense RNA can get generated at varied genomic venues as diverse as possi-

ble. This can range anything from the divergent genes (Sigova et al., 2013; 

Neil et al., 2009; Xu et al., 2009; Seila et al., 2008; Core, Waterfall and Lis 

2008) to genes sharing convergent orientations (discussed in details later). 

Moreover these antisense transcripts can get generated at cryptic promoters 

and additionally various epigenetic players like Sin3b, a histone deacetylase 

complex, as shown in yeast can regulate the accumulation of such antisense 

transcripts and in turn can mediate certain key cellular process like DNA 

damage response (Nicolas et al., 2007). Antisense transcripts associated to 

bidirectional promoters of divergent (head to head) genes are generally more 

readily detected in gene-dense topologies (Neil et al., 2009; Xu et al., 2009). 

However the frequency of such bidirectional promoter associated antisense 

transcripts varies from species to species with Drosophila having a distinctly 

low number of such antisense transcripts owing to low number of bidirectional 

promoters (Core et al., 2012). Interestingly it is of note that these antisense 

transcripts do not always arise from DNA template but can also arise from 

originate from RNA-dependent RNA polymerase (RdRP) activity (Lehmann, 

Brueckner and Cramer 2007; Wagner et al., 2013). Specifically, it has been 

proposed that, in humans, some antisense transcripts that contain non-

genomically encoded polyuracil stretches and are generated using mRNAs as 

templates (Kapranov et al., 2010). 
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4. An insight into antisense functionalities 

 

A wide milue of antisense ttranscripts have been detected and their regulatory 

roles have been deciphered and appreciated in various species (Table 1). 

One of the most interesting aspects of antisense RNAs has heralded with the 

experimental validation of their activity both in cis (the alleles located on the 

same DNA stand) as well as in trans (the alleles located on the same DNA 

stand).  Recent works from various laboratories have enabled us to distin-

guish between the activity of antisense transcripts in trans and cis. The gen-

eral perception beholds that the antisense transcripts mediate the effect at the 

site of its origin is an effect in cis. Besides antisense transcripts can interact 

with other loci by means of higher order chromatin structure that drives chro-

mosomal conformations changes and thus can effectively mediate the effects 

in trans (Rinn et al., 2007; Camblong et al., 2007; Camblong et al., 2009; Ber-

retta et al., 2008). These effects are better acknowledges in the settings that 

involves the investigation of chromosome conformational changes in the 3D 

space of the genome.  It is important to note that non-coding RNAs (like HO-

TAIR or XIST) have shown to mediate effect by recruiting chromatin-modifying 

complexes (PRC2), thereby altering gene expression (Guttman and Rinn 

2012).  

Although the advent of RNAi have greatly simplified the loss of function ap-

proached deployed to understand the function of a gene in varied experi-

mental settings, however, the genomic arrangement of antisense transcripts 

sets the empirical hurdle in dissecting the molecular function attributed to a 

specific cell fate without exacerbating sense expression which risks of com-
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promised cellular state under investigation and hence RNAi strategy in gain-

ing functional insights of antisense transcripts have been met with limited suc-

cess (Xu et al., 2011; Camblong et al., 2009; Guttman and Rinn 2012; 

Guttman et al., 2009). It is important to stress that this strategy appears a po-

tential caveat in the context of pervasive read-through transcription in the 

backdrop of convergent gene loci devoid of any intragenic region.  

As illustrated below antisense transcripts deploys various strategies to regu-

late gene expression. They can intervene with transcription initiation; can form 

transcriptional collision in the context of cotranscriptional settings besides 

their interference in occluding translation machineries. 
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Table1 Examples of functional antisense transcription across all kingdoms of 

life. 
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In order to appreciate the role of antisense transcripts in transcription initia-

tion, it important to outline that there are various epigenetic marks like DNA 

methylation via genomic imprinting by de novo DNA methytransfersase like 

DNMT3A, DNMT3B as well as by DNA methyltransferase Maintenance- 

DNMT1 (and not CpG islands which serves as a hallmarks of identifying 

ORFs), methylation of lysine 4 and lysine 27 residues of Histone H3 and cer-

tain histone variants (like H2A.Z) that decorates the 5’ end of the genes that 

plays diverse roles from partitioning the genome and thereby playing im-

portant role in genome integrity via the enrichment of epigenetic marks at 

boundary elements, enhancer region as well as the promoters. Antisense 

RNAs are often detected to play a crucial role in these activities either by se-

questering certain chromatin modifiers or by promoting promoter competition 

of basal transcription factors at these sites, which are in close proximity to ini-

tiation of transcription.  Some of the examples of antisense transcript media-

tion modulation are described below. 

For long it has been a well-established fact that the paucity of an extremely 

crucial gene HBA1 predisposes a person to certain variation of α-thalassemia. 

A very elegant study demonstrated the occurrence of a trans acting antisense 

transcripts, LUC7L render epigenetic repression of HBA1 via promoter DNA 

methylation and a consequent onset of this disease (Tufarelli et al., 2003). 

This study provides an excellent example of antisense directed genomic im-

printing. Paradoxically there are evidences that shows that antisense tran-

scription can stimulate gene expression by protecting promoters from the on-

slaught of de novo methylation (Guil and Esteller 2012) through R loop for-

mation, which involves DNA–RNA hybrids, during transcription (Ginno et al., 
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2012). However the effects mediated by antisense transcripts are not restrict-

ed only to genomic imprinting that largely accounts for effects in cis but in cer-

tain setting antisense transcripts executes its function by taking the advantage 

of its structure besides driving genomic imprinting. Antisense transcription has 

also been found to affect gene expression by being vindictive to transcription 

(Lyle et al., 2000), as antisense transcript Airn (antisense to insulin-like growth 

factor 2 receptor (Igf2r)), represses Igf2r albeit the phenotype was also found 

to be conferred to a certain extent via DNA methylation as well (Latos et al., 

2012). 

There are also various well-characterized examples of antisense transcripts 

negotiating their effects through histone modification both in cis and trans. In 

favours of its action in cis, as outlined earlier one of the befitting example in its 

assurance has been illustrated from the study of mammalian X chromosome 

inactivation, in which the long ncRNA XIST that erupts from the XIC (X-

chromosome inactivation centre) and propagates through the entire length of 

X-chromosome, sequesters Polycomb repressive complex PRC2 that tri-

methylates 27th lysine residue of Histone H3 (H3K27me3), and leads to 

chromatin compaction, which ultimately precipitates to chromosomal inactiva-

tion of X. In mice, the action of Xist can be reciprocated in cis by its antisense 

transcripts transcribed to its reverse complement orientation — X (inactive)-

specific transcript, opposite strand (Tsix). Although XIST transverses through 

the entire length of X chromosome and spreading from its centre of origin 

(XIC), antisense transcripts can also convincingly do the job by exerting a lo-

cal effect. To this end, ANRIL (antisense ncRNA in the INK4 locus; alias 

CDKN2B-AS1), that is known to upregulated in prostate cancer, mediates re-
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pression of the potent tumour suppressor locus CDKN2B–CDKN2A, that har-

bours p15 (also known as INK4B), p14 (also known as ARF or p19ARF in 

mice) and p16 (also known as INK4A). Specifically ANRIL recruits CBZ7 and 

SUZ12 in cis, which induces histone H3 lysine 27 methylation (H3K27me) 

mediated facultative heterochromatin and hence abrogates the transcriptional 

potential of this loci (Yu et al., 2008; Yap et al., 2010, Kotake et al.,2011). 

Such examples unleash the possibilities of therapeutic intervention by target-

ing such cis-acting repressive antisense transcripts to revert various deleteri-

ous phenotypes. To this end, a study that specifically abrogated the antisense 

transcript of Brain-Derived Neurotrophic Factor (BDNF), BDNF-AS — rescued 

the BDNF expression and as a consequence led to the betterment of the 

pathophysiological status (Modarresi et al., 2012). However this study did not 

resolve the molecular underpinnings BDNF-AS mediated BDNF perturbation. 

In the same lines, a seminal work from Anindya Bagchi’s laboratory made a 

seminal discovery on the regulation of Myc by a long non-coding RNA. Myc 

has been implicated in most of human cancers however the mode of Myc 

regulation has long been elusive. This work has shown that elevated levels of 

MYC are associated with the concomitant induction of PVT1. Ablation of 

PVT1 in colon cancer cell line lead to remission owing to alleviated levels of 

MYC (Tseng et al., 2014), indicating PVT1 promotes translation of MYC. 

Besides cis there are examples wherein antisense transcripts have been 

shown to mediate it effect on histone modification in trans. As outlined earlier, 

the most assuring example to this end has been the HOX transcript antisense 

RNA (HOTAIR) in mammals, antisense to homeobox C (HOXC) locus (Gupta 

et al., 2010). HOTAIR eludes the expression of HOXD locus in trans via the 
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recruitment of Polycomb group of proteins (PRC2). Besides work from our 

own laboratory have shown that the expression levels of a very large intergen-

ic non-coding RNA (vlinc), VAD (Vlinc Antisense to DDAH1) that gets gener-

ated as a consequence to the partial antisense transcription against DDAH1, 

was demonstrated to increase at the back drop of a model of OIS using WI-38 

cells and was detected to be required for the maintenance of senescence in 

this model. VAD has been shown to activate gene expression of cell cycle in-

hibitors by inhibiting the binding of the repressor H2A.Z to the INK4 locus, and 

thus promotes cellular senescence (Lazorthes et al., 2015). A perfect analogy 

to aforesaid incidences can be made to the ground-breaking discovery of 

RNAi mediated heterochromatin formation, whereby siRNA generated by the 

RNAi machinery can lead to the recruitment of various players that induce and 

spreads the heterochromatinization at the sites of constitutive heterochroma-

tin like, centromere, telomere and pericentric heterochromatin in Schizosac-

charomyces pombe (Grewal and Jia 2007). Recent work from Proudfoot’s la-

boratory also brought about a startling revelation in the aspect of trans-acting 

antisense transcripts. R-loops that are generally formed at 3’end (besides cer-

tain evidences pointing to its functional relevance at 5’ end of the gene) and 

has been attributed to job efficient termination of transcription has been 

shown to induce antisense transcription and the generation of dsRNA that re-

cruits RNAi machinery.  As outline above, RNAi ensues formation of repres-

sive histone H3 Lys9 dimethylation (H3K9me2) marks and formation of heter-

ochromatin through the recognition of this mark by heterochromatin protein 

HP1γ (also known as CBX3) would induce or stabilize pausing and conse-

quently efficient termination (Skourti-Stathaki et al., 2013). 
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Such examples of antisense transcripts mediated gene regulation at the site 

of transcription initiation are not restricted only in mammals.  In plants, the in-

tricate interplay between antisense transcripts and R loop appears to regulate 

both flowering potential as well as to adapt to cold climatic conditions in an a 

well orchestrated antagonistic manner. Antisense transcript that enables the 

plants to combat the unfavorable conditions is COLD-ASSISTED INTRONIC 

NON-CODING RNA (COOLAIR), which get transcribed antisense to FLOW-

ERING LOCUS C (FLC) that regulates the flowering phenotype. In favorable 

condition the transcription by RNA Pol II from the promoter of COOLAIR is 

abated by the R loop which ensures the transcription of FLC (Fig.9) (Sun et 

al., 2013). However another study has shown that this process can also be 

regulated by another antisense transcript COLD-INDUCED LONG ANTI-

SENSE INTRAGENIC RNA (COLDAIR; antisense to COOLAIR) by seques-

tering Polycomb proteins over the FLC locus, which in turn alleviated its ex-

pression (Heo and Sung 2011), thereby making a startling revelation that 

plant is well equipped to mediate this effect both in cis as well as in trans. But 

with the advent of extremely low temperature, the R-loop gets resolved lead-

ing to accumulation of COOLAIR that negative regulates FLC. 

 

Fig.9 R loops transcriptionally regulate ncRNAs. In plants, COOLAIR antisense 
lncRNA controls the expression of the FLC gene. R loops form over the promoter re-
gion of COOLAIR and are stabilized by the ssDNA-binding protein AtNDX. This 
causes transcriptional repression of COOLAIR and, ultimately, activation of the FLC 
gene. (Skourti-Stathaki and Proudfoot 2014). 
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A very intriguing example of antisense transcript mediating its effect both in 

cis as well as in trans to regulate gene expression in mammals can drawn 

from regulation of DiHydroflate Reductase (DHFR) expression, that plays piv-

otal role in DNA synthesis and deficiency of this gene drives Megaloblastic 

Anaemia.  In human, the DHFR locus produces an antisense transcript which 

suppresses DHFR expression as this antisense transcript overlaps the pro-

moter and 5′ region of DHFR. For the proof towards the effect mediated in cis, 

it has been shown that of this antisense RNA itself block the promoter both in 

cis, while the fact that it forms a stable triple RNA–DNA helix for advocates for 

an effect in trans (Martianov et al., 2007).  

Parallel to aforesaid mentioned examples, there are certain genomic settings 

in which the transcription of an antisense transcript occludes the pathway of 

transcription of an antagonistic sense transcript that culminates to a head-on 

collision between the two RNA Polymerases. Such genomic pandemonium 

especially relevant in the settings of pervasive transcription are termed as ‘sit-

ting duck’ interference, which can also potentially regulate the expression of 

genes in trans (Shearwin, Callen and Egan 2005).  

However the role of antisense transcripts has been shown to be involved in 

role well beyond turning on and off the gene expression. Strikingly besides the 

well-characterized role of splicing machineries, antisense transcripts have al-

so found to aid in the generation of alternative splicing variants. For example, 

differentiation of mouse Embryonic Stem Cells (mESCs) to Neural Precursor 

Cells (NPCs) is accompanied by generation of enhancer associated antisense 
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transcript that leads to the generation of a shorter isoform of the associated 

sense transcript (Onodera et al 2012).  

Although antisense transcripts draws formidable amount of attention owing to 

its capacity in transcriptional interference, the positive and negative effects 

exerted by antisense RNAs at the post-transcriptional levels, like affecting 

mRNA stability and translational efficiency, have started to surface. SymR, a 

transcript antisense to SymE that codes for an endotoxin in response to a 

DNA damage repair trigger, binds to the 5’ end of the gene that occludes the 

binding site of the 30S ribosomal subunit, thereby inhibiting SymE translation 

(Kawano et al., 2007). Besides modulating translational efficiency, antisense 

transcript can also interfere in the degradation of mRNAs by its confrontation 

of with microRNA, the class of small regulatory RNAs that evolutionary be-

stowed the crucial capability of degrading mRNA. One example, in humans 

can be drawn from the transcripts antisense to the β-site APP-cleaving en-

zyme 1 gene (BACE1), which encodes β‑secretase 1, an enzyme that ap-

pears to have a crucial role in driving Alzheimer’s disease. The antisense 

transcript forms an RNA duplex with the sense mRNA (Faghini et al., 2008) 

that conceals the binding site for the miRNA miR‑485‑5p, which consequently 

suppresses miRNA induced decay and the consequent translational repres-

sion of BACE1 (Faghini et al., 2010). This example is indicative of antisense 

transcripts fine-tuning gene expression levels as miRNA sponges (Ebert and 

Sharp 2010).  
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5. RNA Polymerase II termination pathways 
 
In order to understand the molecular underpinnings and implications of im-

paired transcription termination mediated generation of read-through anti-

sense transcripts, it is important to appreciate certain fundamental principles 

of transcription termination. 

Emerging data from studies particularly based on pervasive transcription have 

led us to acknowledge a rather underappreciated crucial role of transcription 

termination in the cell. For example, transcription termination prevents Pol II 

from interfering with downstream DNA elements, such as promoters of the 

proximal gene and instrumental in promoting recycling of polymerases 

(Rosonina et al., 2006; Gilmour and Fan 2008; Richard and Manley 2009). 

Contrary to the general perception that transcription termination is an event 

dedicated to end of the gene, it is highly dynamic and can occur upstream, 

downstream and within open reading frames (ORFs). The initial idea that ter-

mination could be modulated originated from studies conducted in prokaryotic 

organisms like bacteria, which revealed that bacteria deploys premature ter-

mination or attenuation to regulate clusters of amino acid biosynthesis genes 

(Merino and Yanofsky 2005; Naville and Gautheret 2010) a concept common-

ly now as “Operon Concept.” When the amino acid product encoded by these 

genes is present in excess, a negative feedback loop is deployed at the ge-

nomic level, whereby an RNA terminator forms within the 5′ untranslated re-

gion (UTR) of the mRNA and leads to the release of RNA polymerase before 

transcription of the protein-coding region. This particular example takes ad-

vantage of intrinsic RNA folding and coupled transcription and translation in 

bacteria, but other variations of attenuation are mediated through RNA-
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binding proteins and function independently of ribosome activity (Naville and 

Gautheret 2010). 

Compelling evidences in support of the view that sites of transcription termina-

tion also serves a the blue print of partitioning the genome has heralded with 

revelation that transcription is not bounded to its limits by discrete functional 

units such as ORFs, but rather the genome is transcribed almost to its entirety 

(Jacquier 2009). For genome-wide transcription to be in act with highest fideli-

ty call for an efficient RNA termination of RNA polymerase to mitigate any sort 

of interference with neighbouring transcriptional units (Shearwin et al., 2005). 

Emerging data indicate that impaired termination of transcription casts great 

impact on mRNA synthesis than previously expected as it leads to inefficient 

splicing and elevated degradation of the RNA (West and Proudfoot 2009), and 

connotes with alleviated initiation of transcription and hence serves as a criti-

cal fail safe mechanism by turning off transcription with failure in termination 

(Mapendano et al., 2010). This indicates that how an event generally associ-

ated to the 3’ end of the gene can influence Pol II processivity at the promot-

ers. As Pol II termination is coupled with RNA 3′-end processing, the timing of 

Pol II release can also dictate the length of the final RNA product and thus af-

fect the stability and ultimate functionality of nascent transcripts. 

Although the release of RNA polymerase and its product are clearly important, 

these two independent events needs to be tightly coordinated to render effi-

cient error-proof transcriptional rates. The remarkable speed of the Pol II 

elongation complex (~1–4 kb per min) (Ardehali and Lis 2009), and its pro-

cessivity depend on an intricate network of interactions between polymerase 

proteins and nucleic acids (DNA and RNA) and base-pairing interactions be-
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tween single-stranded RNA and DNA. The RNA–DNA hybrid of 8 nucleotides 

in length that is maintained during the elongation stage has been proposed to 

be the primary stability determinant of Pol II (Kireeva et al., 2000; Komis-

sarova et al., 2002), and as such, resolving this R loop by helicase Senataxin 

(Sen1 in yeast) may be the pivotal event that results in efficient termination 

and release of nascent transcripts (FIG. 1). ˙Pol II termination can be elicited 

through different pathways, depending on the RNA 3′-end processing signals 

and termination factors that are present at the end of a gene (Lykke-Anderson 

and Jensen 2007; Rondon et al., 2008). Two of the best-studied pathways, 

the poly(A)-dependent pathway and the Sen1-dependent pathway, are as il-

lustrated (Fig. 10) to highlight the common themes and principles involved in 

termination.  

Better understanding of our work and its appreciation calls for outlining the 

key characteristics of poly(A)-dependent termination machineries from the 

mammalian perspective. In mammals, Poly(A) dependent termination is cate-

gorically driven by two intricately orchestrated events: polyadenylation and 

cleavage. Polyadenylation that involves incorporation of poly A residues to the 

3’ end of the evolving nascent transcript is driven by Poly-A polymerase while 

the cleavage of the nascent transcripts is facilitated in a the joint venture of 2 

components: Cleavage and Polyadenylation Specificity Factor (CPSF) and 

Cleavage stimulatory Factor (CstF). As the name implies CPSF identifies 

AAUAAA signal and mediates pausing of RNA Polymerase II while the later 

CstF cleaves the nascent transcript followed by degradation of the reminis-

cent RNA by 5’-3’ exoribonuclaese 2 (XRN2) that culminates with the matura-

tion of the nascent transcripts. 
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Fig.10 Factors involved in poly(A)-dependent and Sen1-dependent termination. 
Counterparts of termination factors in yeast and humans are shown in the same col-
our, and known interactions between RNA, RNA polymerase II (Pol II) and other fac-
tors are indicated by direct contacts. Pol II carboxy-terminal domain (CTD) phosphor-
ylation dynamics are indicated as in FIG. 1b, with Ser2-P being higher than Ser5-P in 
regions of poly(A)-dependent termination, and the reverse pattern being observed in 
regions of Sen1-dependent termination. a. In poly(A)-dependent termination in yeast, 
the 5′–3′ exoribonuclease RNA-trafficking protein 1 (Rat1; XRN2 in mammals) is re-
cruited to Pol II via proteins that interact with phosphorylated Ser2 in the CTD (such 
as regulator of Ty1 transposition 103 (Rtt103)) and poly(A) site RNA elements (such 
as the indicated A-rich and U-rich sequences). In what has been called the ‘torpedo’ 
model, Rat1 degrades the downstream RNA (dashed light blue line) that results from 
the 3′-end processing cleavage event (scissors), which may result in disruption of the 
Pol II active site hybrid. In addition to contacting the CTD, cleavage and polyadenyla-
tion factor (CPF; homologous to human cleavage and polyadenylation specificity fac-
tor (CPSF)) may also interact with the body of Pol II through its suppressor of Sua7 2 
(Ssu72) subunit. Optimal association of Rat1 with chromatin requires cleavage factor 
IA (CFIA; homologous to human cleavage stimulatory factor (CstF)), but direct con-
tacts with CFIA have not been reported. b. In Sen1-dependent termination in yeast, 
the mechanism that applies to most non-coding RNAs, Sen1 is recruited to Pol II via 
proteins that interact with Pol II Ser5-P CTD (such as Nrd1) and specific RNA ele-
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ments (such as GUAA repeats). Sen1 may unwind the Pol II active site hybrid via its 
helicase activity. c. In poly(A)-dependent termination in humans, pausing of human 
Pol II is induced when CPSF bound to the body of Pol II recognizes the AAUAAA 
signal sequence that emerges in the nascent transcript (step 1). Upon exposure of 
the GU-rich binding site, CstF dislodges CPSF (step 2). Following cleavage at the 
poly(A) site, 5′–3′ exoribonuclease 2 (XRN2) degrades the downstream RNA product, 
which may displace Pol II as described above for Rat1 (step 3). CFIIm, mammalian 
CFII (which contains the human homologue of yeast protein 1 of CFI (Pcf11)); 
DOM3Z, DOM-3 homologue Z; Nab3, nuclear polyadenylated RNA-binding 3; Rai1, 
Rat1-interacting 1. (Kuehner at al., 2011) 
 
 
 
 
 
6. Generation of Pervasive Antisense RNA at convergent genes  

 

In course of transcription, owing to impaired transcription termination, RNA 

Polymerase II originating from the promoter of a gene can continue to tran-

scribe beyond the designated termination site and thereby can lead to the 

generation of pervasive read-through transcripts by traversing the adjacent 

loci located on the opposite strand of a convergent gene pair, thereby gener-

ating its antisense. As these antisense RNAs are largely associated to con-

vergent gene pairs, they are termed Read-through Antisense RNAs. However, 

the accumulation of these transcripts can be deleterious, unless they are sup-

pressed or degraded by RNA–surveillance machineries. RNAi dependent het-

erochromatin machinery recruits cohesion complex to mediate transcription 

termination specifically at the genes arranged in convergent orientation in S. 

Pombe (Gullerova, and Proudfoot 2008) besides the fact that RNA processing 

exosome is known to associate to elongating RNA Polymerase II in Drosophi-

la (Andrulis et al., 2002). Furthermore it was proposed that in budding yeast 

that the NRD- and Rnt1-mediated fail-safe mechanisms provide a second 
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chance to terminate Pol II, and so minimize the accumulation of antisense 

transcripts (Rondon et al., 2009). 

In 2009, Grewal’s laboratory showed that in S. pombe, deletion of Pht1 

(H2AFZ homolog in yeast), gene coding for H2A.Z, along with a RNAi compo-

nent Ago2 or heterochromatin component Clr4(a Suv-39h homolog in yeast) 

leads to wide-spread synergistic increase of these read-through antisense 

transcripts that parallels to the deletion of Rrp6 (an exosome subunit, or Ex-

OSC10 in mammals) alone, implicating that H2A.Z cooperates with RNAi and 

heterochromatin factors to suppress the generation of these read-through 

transcripts in a manner similar to 3’-5’ exonuclease activity of the exosome 

(Zofall et al., 2009). This study implicated H2A.Z and heterochromatin factors 

in the suppression of potentially deleterious antisense RNAs (Fig.11) (Zofall et 

al., 2009). H2A.Z nucleosomes might directly obstruct Pol II progression, or 

facilitate loading of exosome or factors involved in structural organization of 

chromosome, which in turn might promote RNA degradation by stalling Pol II. 

Alternatively, H2A.Z might signal to Pol-II-associated exosome (Andrulis et al., 

2002) that transcription has escaped its natural termination and therefore pro-

duced an aberrant transcript. H2A.Z and ClrC (the Rik1 subunit of which re-

sembles the cleavage and polyadenylation factor CPSF-A7) may be compo-

nents of a RNA quality control mechanism, which stimulates exosome activity 

by exosome cofactors (Houseley, LaCava and Tollervey 2006). Indeed, the 

loss of the Cid14 subunit of TRAMP, implicated in exosome stimulation 

(Houseley, LaCava and Tollervey 2006) causes accumulation of antisense 

RNAs, and the Drosophila homologue of H2A.Z mediates targeting of mes-

senger RNA processing factors (Wagner at al., 2007). Grewal’s group also 
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showed that loss of Mtl1 (Mtr4 like Protein) as well co-deletion of H2A.Z and 

Cohesin leads to elevated levels of such transcriptional read-throughs (Lee et 

al., 2013; Mizuguchi et al., 2014). It has also been shown that Xap5 (FAM50 

homolog in yeast) acts similarly to H2A.Z in suppressing the generation of 

such read-through transcripts (Avner et al., 2014). A novel study demonstrates 

that Pol II termination can also occur via a roadblock mechanism in yeast via 

a transcriptional activator Reb1p, which is akin to the mechanism by which 

transcription of ribosomal DNA by Pol I is terminated (Colin et al., 2014), how-

ever the role of this factor in a settings of convergent gene pair remains un-

known.  

 

 

Fig.11 Model for antisense suppression at convergent genes. H2A.Z at the 5’ 
ends of genes contributes to suppression of read-through transcripts that are de-
graded by exosome. Antisense suppression also requires ClrC and Ago1, which 
along with H2A.Z may facilitate loading of other factors to block Pol II progression 
and/or mediate the processing of RNAs by the exosome (Zofall et al., 2009) 
 
 
 

Besides these factors, R-loops have also been shown to regulate the genera-

tion of such read-through antisense transcripts. Angelman syndrome (AS) is 

an autism-related disorder that is caused by mutations or deletions of the ma-

ternal copy of the Ube3a gene (Kishino, Lalande, Wagstaff 1997). Normally, 

neurons express only the maternal copy of this gene and silence the paternal 
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copy via the Ube3a antisense transcript. So, Ube3a mutations in the maternal 

copy result in a complete loss of the protein, a brain-specific ubiquitin E3 lig-

ase. Ube3a antisense is located immediately downstream from the Snord116 

gene, mutations of which cause a second disorder, Prader-Willi syndrome. 

The cancer drug topotecan was found to reactivate the paternal copy of 

Ube3a by reducing the antisense Ube3a transcript in neurons and therefore 

could be potentially used to treat AS (Huang et al., 2011). Even though topo-

tecan holds promise for AS treatment, it still remains unknown how it targets 

specifically Ube3a and no other genes within this locus. Importantly, topotec-

an is an inhibitor of topoisomerase, which, as mentioned above, relaxes nega-

tive supercoiling. It is now revealed that R-loop formation plays a role in the 

topotecan effect (Fig.12) (Powell et al., 2013). In essence, R loops form over 

the G-rich Snord116 gene, which in turn causes nucleosome depletion and 

chromatin decondensation in the paternal allele. Under physiological condi-

tions, Ube3a antisense transcription silences Ube3a in cis. Upon topotecan 

treatment, these R loops are stabilized and so accumulate (Fig.12). According 

to this model, this R-loop accumulation causes excessive chromatin decon-

densation, stalling of the transcriptional machinery, and inhibition of Ube3a 

antisense expression. This in turn activates paternal Ube3a expression (Pow-

ell et al., 2013). 
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Fig.12 In human neuronal cells, topoisomerase inhibitor topotecan causes accumula-
tion of R loops in the G-rich termination region of the Snord116 gene. This causes 
chromatin decondensation and blocks read-through transcription that otherwise 
forms the Ube3a antisense transcript. This activates the expression of the Ube3a 
sense transcript. Arrows indicate the direction of transcription. (Skourti-Stathaki and 
Proudfoot 2014). 
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Recently a study reported widespread accumulation of such transcripts in 

human upon subjection to osmotic stress induced by treatment with KCl, NaCl 

or sucrose. They termed these read-throughs as “downstream of gene”-

containing transcripts (DoG). DoGs have been speculated a role in maintain-

ing the integrity of the nucleus under stress (Fig.13) (Vilborg et al., 2015). 

 

 

Fig.13 Inhibiting Stress-Induced DoG Induction Correlates with Aggravated 
Nuclear Response to Osmotic Stress. Osmotic Stress-induced transcripts gener-
ated by readthrough downstream of protein-coding genes (DoGs). DoGs are regulat-
ed by IP3 receptor signaling and remain chromatin bound. Being long (often >45 kb) 
and diverse (>2,000 species), DoGs contribute significantly to the human transcrip-
tome. (Vilborg et al., 2015). 
 

 

Various factors pertaining to RNAi, heterochromatin, transcription termination, 

polyadenylation, splicing, exosomes and other epigenetic components might 

have evolved to take care in suppressing the accumulation of such pervasive 

read-through transcripts, as they can be potentially deleterious for the cell. 

These read-through antisense RNAs can form RNA:DNA hybrid which can 

affect transcription elongation. Such structures can also block replication form 

and may lead to genomic instability, while others have suggested that they 

can open up chromatin and may thus provide access to genotoxic agents 

(Fig.14) (Huertas and Aguilera 2003). 
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Fig.14 Models explaining how RNA can impair transcription and replication 
thereby can promote genomic instability. A) These non-coding transcripts if al-
lowed to accumulate they may lead to formation of RNA:DNA hybrid which may af-
fect transcription elongation. B) They may also cause blocks for replication fork may 
thus contribute to genomic instability. C) They may lead to opening-up of chromatin 
and allowing better access to genotoxic agents. (Figure adopted from Huertas and 
Aguilera 2003) 
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C. Implications of Non-coding RNAs in Cellular Se-

nescence 

 

 

1. Noncoding RNAs and Cardinal Tumour Suppressors  

As discussed previously, p16 and p53 constitutes two sorts of archetypal me-

diators of cellular senescence. Roles of both small and long noncoding regu-

latory RNAs associated to two of the major CDKIs have started to being ap-

preciated. Overwhelming evidences have led us to acknowledge that non-

coding RNAs play a pivotal role in propagating stable cell cycle arrest while 

there are evidences that the cell cycle regulators can manifest many of their 

roles through activation of microRNAs (miRs) or Long Non-coding RNAs 

(lncRNAs). 

 

a. Senescence Associated (SA) microRNAs in p53/p21 pathway:  

microRNAs (miRs) belong to the class of regulatory small RNAs upon pro-

cessing of pre-messenger RNAs with Dicer, Drosha, DGRC8 and Argonaute 

that constitute the core complex of RNA interference (RNAi) machinery. 

Interestingly, the guardian of mammalian genome, p53, has been reported to 

be an inducer of a family of microRNA, miR-34 and has been documented to 

mediate activity akin of its own through this miR (Hermaking 2010). For ex-

ample, p53 mediated miR-34a induction promotes senescence of endothelial 

cells and colon cancer cells through the disruption of E2F module (Tazawa et 

al., 2007). Besides miR-34a has also been shown to induce senescence, par-

tially by preventing expression of SIRT1 (silent mating type information regu-
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lator 2 homolog 1), which dismantles the senescence program in endothelial 

progenitor cells (Zhao and Chen 2010). Interestingly, p53 homolog ΔNp63 

suppresses transcription of three microRNAs (miR-138, miR-181a, and miR-

181b) documented so far that repress SIRT1, which consequently bestows 

ΔNp63 with the property to promote proliferation (di Val et al., 2012). Expres-

sion of another p53 dependent ncRNA that shoots up during senescence is 

let-7 (Wagner et al., 2008). Let-7 acts by repressing genes essential for cellu-

lar proliferation, like EZH2 and HMGA2. (Tzatsos et al., 2012; Markowski et 

al., 2011; Boyerinas et al., 2010; Fan et al., 2011). miR200c which is also 

known to be induced by p53, escalates its expression by several folds upon 

exposure to oxidative stress to trigger senescence via repression of a potent 

senescence suppressor ZEB1 (Magenta et al., 2011). From the perspective of 

miRs acting upstream of p53, miR885p have been reported to enhance p53 

activity by suppressing the production of CDK2 and minichromosome mainte-

nance complex component 5 (MCM5) and thus play a key role in p53 de-

pendent senescence induction in neuroblastoma cells (Afanasyeva et al., 

2011). Likewise, study conducted in HeLa and WI-38 cell lines have shown 

that miR-519 cripples the expression of players involved in DNA repair and 

calcium homeostasis thereby ensuring stress response mediated elevated 

p53 and p21 levels that consequently induces an efficient senescence induc-

tion (Abdelmohsen et al., 2008; Abdelmohsen et al., 2012). However there are 

also examples of certain obnoxious miRs like miR 25 and miR30d that act up-

stream of p53 and are known to suppress p53 expression by targeting the 3’ 

UTR and hence can manifest various paradigm of p53 activity (Kumar et al., 

2011).  
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p21 is generally known be regulated in a p53-dependent manner, although 

there are studies that have lead us to appreciate that expression of p21 is not 

always controlled by p53. In this lines various miRs with no evidence of their 

relationship with p53, can also regulate p21 expression. A good example of a 

miR that negatively regulates p21 expression can be drawn from the studies 

that revealed the mechanistic underpinning of Doxorubicin. This potent DNA 

damage inducer, is known to orchestrate senescence induction by activating 

p21 by lowering the levels of a cluster of miR that are constituted by miR-

106b, miR-93, and miR-25, suggesting a pivotal impact of this cluster in sup-

pressing senescence (Zhou et al., 2014). It is important to mention an inter-

esting study that has attributed miR106a activity in obliterating p21 expression 

in the settings of oxidative stress (Li et al., 2009). Along similar lines, it has 

been shown that oncogenic Ras(G12V)- requires p21 axis to enforce senes-

cence, however miR-106b acts up dismantling this induction while the onco-

genic microRNA cluster miR-17~92 mediates its effect by disrupting the p21 

mediated senescence induction and hence acts as a potential driver of onco-

genic transformation (Borgdorff et al., 2010; Hong et al., 2010). Other miRs 

that have been shown to perturb p21 dictated senescence induction include 

miR-130b, miR-302a, miR-302b, miR302c, miR-302d, and miR-515-3p (Fig. 

15) (Borgdorff et al., 2010). 

 

b.SA-microRNAs in the p16 Pathway: Like above-mentioned examples of 

microRNAs acting upstream of p53 and p21, certain microRNAs can also reg-

ulate the expression of p16. To this end a study showed translational inhibi-

tion of p16 by miR24 (Lal et al., 2008). This observation was further supported 
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by another study that highlighted negative correlation between miR-24 and 

p16 in osteoarthritis-associated senescence, owing to reduced and elevated 

levels of miR24 and p16 respectively (Philipot et al., 2014). Paradoxically 

there are miRs (miR-26b, miR-181a, miR-210, and miR-424) that are known 

to promote p16 influx in the cell either through the repression of chromobox 

(CBX), embryonic ectoderm development (EED), enhancer of zeste homolog 

(EZH) and suppressor of zeste 12 (Suz12). Strikingly, depletion of p16 has 

been found to collapse the SA-microRNA program, indicative of a negative 

regulatory feedback loop at work (Overhoff et al., 2014). Another study 

showed that overexpression of 4 micro-RNAs that appears to be a constituent 

of p16/RB cascade like miR-15b, miR-24, miR-25, miR-141 mitigated p16 ex-

pression by virtue of the same target MKK4, in WI-38 cells, and the joint re-

duction of these microRNAs lead to accelerated p16 expression via MKK4 

(Marasa et al., 2009). However miRNA can also take an indirect route towards 

the regulation of p16 expression by modulation the expression of p16-

upstream regulator. In this line, microRNA miR-128a have been shown to 

promote cell senescence through its interference in the expression of BMI1, 

which known to be a negative regulator of p16 (Fig.15) (Venkataraman et al., 

2010). 

 

c. Senescence Associated long noncoding (SAL) RNA affecting the 

p53/p21 pathway: Long noncoding RNAs (lncRNAs) like small ncRNAs are 

transcripts that are devoid of protein-coding potential. They typically range 

anything between 200 bases to hundreds of kilobases.  

Like the above-mentioned example in which miR act by regulating a regulator 
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of p16, some lincRNA deploys similar strategy in regulating gene expression. 

To this end it has been shown that ectopic expression of MEG3 limits the 

growth of cancer cells indicating its tumour suppressive roles, whose expres-

sion is often blunted in cancer cells  (Zhang et al., 2003). Mechanistically, 

MEG3 prevents MDMD2 expression, a well characterized negative regulator 

of p53 that mediates its function by ubiquitin degradation of p53 (Zhou et al., 

2012). MEG3 has been shown to promote senescence in cervical cancer 

cells; (Qin et al., 2013). On the contrary, another linc RNA 7SL whose expres-

sion gets escalated in several cancers, (Chen et al., 1997) acts by suppress-

ing translation of p53 via competitive triumph over RBP HuR in binding to the 

p53 3’UTR (Fig.15).  

Like p53, there are certain lincRNA committed to modulation of p21 expres-

sion. One of the most promising examples of SA linc RNA belonging to p21 

axis was surfaced when a study showed that Human lncRNA-p21 that sup-

presses translation of β-catenin and JunB, respectively. Although its direct in-

fluence in senescence induction awaits experimental accreditation, it is tran-

scriptionally induced by p53, gets upregulated in senescent cells, and re-

presses translation of two proteins, β-catenin and JunB that are known to be 

the facilitators of cell growth (Konishi et al., 2008; Marchand et al., 2011; Ye et 

al., 2007). Another p53-induced lncRNA, PINT, interacts with polycomb re-

pressor complex PRC2 to regulate the expression of TGF-β and p53 (Fig.15) 

(Marin-Bejar et al., 2013; Senturk et al., 2012; Rufini et al., 2013).  

 

d. SAL-RNAs in the p16 Pathway: There are certain evidences where lin-

cRNA has been shown to both negative and positively regulate the p16 ex-
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pression. However in most of these effects that they impinge is indirect as 

they mediate this effect by modifying chromatin architecture. In favour of neg-

ative regulation of p16 by a lincRNA, it has been shown that the lncRNA AN-

RIL (alias CDKN2B-AS1 and p15AS) is transcribed at a reverse complemen-

tation to the same locus as the INK4b/ARF/INK4a genes (Pasmant et al., 

2007). ANRIL regulates cell cycle progression in part by recruiting CBX7 and 

SUZ12, a protein component of PRC1 and PRC2 complex respectively that 

elevates the H3K27 methylation leading to heterochromatinization and conse-

quently to the suppresses INK4a and INK4b transcription (Yu et al., 2008; Yap 

et al., 2010; Kotake et al., 2011). In line to this observation, depreciated AN-

RIL expression were detected in senescent WI-38 cells whereas ANRIL 

knockdown in cancer cells display reduced proliferation (Fig.15) (Abdel-

mohsen et al., 2013; Kotake et al., 2011; Nie et al., 2015; Zhang et al., 2014). 

On the other hand, the expression levels of a very large intergenic non-coding 

RNA (vlinc), VAD (Vlinc Antisense to DDAH1) that gets generated as a con-

sequence to the partial antisense transcription against DDAH1, was demon-

strated to increase at the back drop of a model of OIS using WI-38 cells and 

was detected to be required for the maintenance of senescence in this model. 

VAD has been shown to activate gene expression of cell cycle inhibitors by 

inhibiting the binding of the repressor H2A.Z to the INK4 locus, and thus pro-

motes cellular senescence (Lazorthes et al., 2015).  
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2. Role of ncRNAs in various traits of senescence 

 

a. SASP ncRNAs: As mentioned above, acquirement of a senescent pheno-

type (albeit not strictly a senescence signature) bestows cells with properties 

enable them to a wide plethora of factors associated to chronic inflammation 

(growth factors, ECM-degrading enzymes, and cytokines), a trait known as 

SASP. These inflammatory factors re-enforce senescence and various cases 

this positive feedback loop is mediated either by elevating alleviating mi-

croRNAs, thereby underlining a joint venture between cell non-autonomous 

and autonomous factors. For example, IL-1β has been shown to deplete miR-

24, a potent repressor of p16/INK4A mRNA translation, ensuing consistent 

p16 activity. On the contrary, suppression of miR-146a/b elevates IRAK1 ac-

tivity, which in turn activates the transcription factor NF-κB that has been 

shown to be the master regulator of SASP factors leading to exaggerated re-

lease of these factors (Olivieri et al., 2013). Furthermore, IκB kinases are re-

pressed by miR-155 and miR-199a suppresses NF-κB activation (Olivieri et 

al., 2013). Intriguingly, IRAK1 can also enhance miR-146a/b levels, sugges-

tive of the presence and most importantly the necessity of a negative feed-

back loop for fine-tuning SASP (Bhaumik et al., 2009). However there are cer-

tain microRNAs that aggravates the Senescence Messaging Secretome 

(SMS). To this end it has been shown that senescence driven by oxidative 

stress has been depicted to be associated with elevated levels of miR-183, 

which in turn suppresses production of the SASP factor (Li et al., 2010). Cell 

extrinsic microRNAs present can take the advantage of paracrine signaling a 
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to modulate SASP activities via cell surface receptors such as Toll-like recep-

tors (TLRs) and hence can mimic the functionality of their ligand and thus be-

come proficient to regulate a signaling cascade. To this end, it has been 

shown that let-7 and miR21 activates the inflammatory response by binding to 

TLR7 and TLR8 receptors respectively in mice and human (Lehmann et al., 

2012; Fabbri et al., 2012).  

 

b. ncRNAs related to Telomere: The two most commonly known ncRNAs 

associated to telomere are TERC (Telomerase RNA component) and TERRA 

(Telomeric repeat containing RNA). Both of these ncRNA plays a sort of an-

tagonistic role in maintaining the integrity of the telomeric length besides en-

suing a sustained telomerase activity. TERC activity assures the maintenance 

of length of telomere and hence shuns the onset of premature senescence 

and aging, as observed in TERC-deficient mice (Samper, Flores and Blasco 

2001). Besides serving as a template for telomeric repeats TERC also serves 

as the scaffold to assemble protein components of the telomerase complex 

(Lustig 2004; Collins 2008; Greider and Blackburn 1989; Lai, Miller and Col-

lins 2003). At a sharp contrast, family of TERRA ncRNAs whose length varies 

between 100 to less than 900nt that contain several copies of the telomere 

UUAGGG repeat (Poro et al., 2010) enables them to suppress telomere elon-

gation by competitively inhibiting TERT (Schoeftner and Blasco 2008; Redon, 

Reichenbach and Lingner 2010). In the similar lines, high influx of TERRA 

ncRNAs induces premature senescence in fibroblasts through negative regu-

lation of telomere elongation (Deng, Campbell and Lieberman 2010). Howev-

er the roles played by TERRA are not always discouraging. On a positive note 
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TERRA has also been shown to be engaged in telomere protection of depro-

tected telomere, which is often the case in cancer and aging and thus plays a 

vital role in assuring genomic stability. Consistent to this, cells devoid of telo-

meric shelterin component, TRF2, strongly upregulates TERRA in an effort to 

protect telomeric ends that are susceptible to DNA damage (Porro et al., 

2014; Flynn et al., 2011). This is particular important as telomeres are sensi-

tive to this type of damage because they represent fragile sites of the genome 

that are difficult to replicate and carry intrinsic properties that inhibit DNA re-

pair processes.  

 

c. Other ncRNAs associated to Senescence Traits: Besides the ncRNAs 

mentioned above, several ncRNA are implicated in senescence phenotype, 

however in certain setting clinching evidence with their direct role in senes-

cence phenotype still needs to be established. Although the p53 and p16 axis 

serve two major cardinal effectors of senescence induction, they are certainly 

not the only mediators of cellular senescence. Hence ncRNAs can also regu-

late other mediators and thus can regulate the induction of senescence. To 

this end, miR-29 and miR-30 repress generation of M-MYB, which drives sim-

ultaneous abolishment of proliferating and induction of senescence  (Martinez 

and Dimaio 2011). In melanoma cells, miR- 203 can aid establishment of se-

nescence by ablation of factors that promotes cell division (e.g. E2F3A and 

E2F3B) and DNA repair while miR-205 cripples E2F1 and E2F5 production, 

thus inducing senescence (Vernier et al., 2011; Noguchi et al., 2012; Dar et 

al., 2011). miR-20a have been shown act as a negative regulation of p19ARF, 

LRF (leukemia/lymphoma-related factor) that in turn translates to onset of 
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stable senescence induction (Poliseno et al., 2008). On a different note, ele-

vated levels of miR-152 and miR- 181a in human dermal fibroblasts interfere 

with the translation of proteins related to cell adhesion like integrin α5 and col-

lagen XVI which culminates to senescence establishment (Mancini et al., 

2012). Strikingly there are evidences wherein multiple microRNAs cooperate 

in mediating a cell fate. For example, in the settings of human colorectal can-

cer cells, miR-186, miR-216b, miR-337- 3p, and miR-760 jointly impede the 

expression of the α subunit of protein kinase CKII to induce senescence (Kim 

et al., 2012). From the point of senescence induction owing to cell’s compro-

mised DNA repair capabilities, miR-494 reduces the levels of UV excision re-

pair protein RAD23 homolog B (RAD23B) that precipitates senescence in lung 

cancer cells and diploid fibroblasts (Ohdaira et al., 2012; Comegna et al., 

2014). On the other hand, the phantom class of microRNAs that prevent the 

generation of senescent cancer cells are termed Oncomirs. Oncomir miR-214 

precludes senescence in cancer cells upon radiotherapy (Voorhoeve et al., 

2006; Salim et al., 2012) and hence knockdown of microRNA-214 in therapy 

resistant lung cancer cells sensitizes them to radiotherapy and stimulates se-

nescence induction (Salim et al., 2012). The lncRNA PANDA appears to har-

bor chameleon-like characteristics. In proliferating cells, PANDA interacts with 

SAFA (scaffold-attachment factor A) and PRC thereby formulating the SAFA-

PANDA-PRC complex that acts by suppressing transcription of senescence 

promoting genes. However in senescent cells, PANDA acts by reinforcing se-

nescence as it blocks NF-YA and E2F that enables to keep proliferative genes 

at check. Together, these findings indicate that PANDA can modulate both the 

triggering and impedes senescence Puvvula et al., 2014). An intriguing exam-
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ple of an lncRNA that is expressed in non-senescent cells is MALAT1 (Tripa-

thi et al., 2013; Chandler and Peters 2013). Downregulation of MALAT1 in 

young proliferating cells and in human cervical cancer cells has lead to pro-

nounced cell cycle arrest besides reducing the tumor size, at least in part 

through the modulation of oncogenic transcription factor B-MYB (Tripathi et 

al., 2013; Abdelmohsen et al., 2013; Guo et al., 2010; Zhao et al., 2014). 

However the direct demonstration and well as the underlying molecular 

mechanistic insight of MALAT1 counteracting senescence induction or wheth-

er the loss of it directly drives senescence induction are lacking. The lincRNA 

HOTAIR has been detected to be unregulated in senescent cells where it 

serves as a scaffold RNA for a substrate for E3 ubiquitin ligases thus promot-

ing the ubiquitination and subsequent degradation of Ataxin-1 and Snurportin-

1. Supportive data of positive regulatory roles of HOTAIR in senescence can 

also be drawn from the loss-of-function study conducted in a model of senes-

cence triggered by HuR silencing wherein its suppression lead to the scarcity 

of senescent cell (Yoon et al., 2013). 
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Fig.15 ncRNAs promoting and inhibiting senescence. Schematic repre-
sentation of the main microRNAs and lncRNAs that promote (black) or inhibit 
(white) senescence phenotypes driven by p53/p21 (top left) pRB/p16 (top 
right), SASP and other mediators (bottom). Center, senescent fibroblasts dis-
playing blue color indicative of SA-β-galactosidase (SA-β-gal) activity. (Ab-
delmohsen and Gorospe 2015). 
Note: The figure in the review wrongly denotes vlinc as inhibitor of p16. It 
needs to be corrected to VAD (one of the vlincRNAs) as a inducer of p16 ex-
pression and hence acts as an mediator of in an in-vitro OIS model. 
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Part II: Results 
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Background, rationale and objectives of my PhD project in a nutshell 

 

A work from Grewal’s laboratory in 2009 revealed that in yeast (S.pombe) the 

histone variant H2A.Z suppresses antisense transcripts at convergent genes 

transcribed from opposite DNA strands, by favouring proper transcriptional 

termination. Indeed, H2AZ cooperates with heterochromatic factors to sup-

press these read-through antisense ncRNAs in a manner similar to the 3’-5’ 

exonuclease subunit, Rrp6 (also known as EXOSC10 in mammals), of the 

RNA exosome complex (Zofall et al., 2009).  

In mammals, whether such antisense transcripts (occurring by read-through 

transcription at convergent gene pairs) exist and how they are regulated is 

unknown. Interestingly, the depletion of the human H2A.Z histone variant and 

of the p400 ATPase, which mediates H2A.Z deposition in chromatin in mam-

mals, is known to induce senescence (Gevry et al., 2007). We thus wondered 

if the regulation of particular antisense transcripts at convergent gene pairs 

occurs in senescence, if their regulation by H2A.Z is conserved in mammals 

and, if so, if a functional significance can be attributed to these transcripts. 

Importantly, in a model of oncogene induced-senescence, and through the 

large use of chromosome or genome wide analyses of strand specific RNA 

expression, my PhD lab has shown that a ncRNA belonging to the vlincRNA 

(very long intergenic ncRNA) class is important for the maintenance of the se-

nescent phenotype, uncovering the importance of long non coding RNA in this 

process (Lazorthes et al., 2015). 
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The general objective of my thesis is thus to investigate the involvement in 

cellular senescence of another class of ncRNAs, which would occur specifi-

cally at convergent gene pairs generating antisense transcripts through tran-

scriptional read-through. More precisely, my research objectives are: 

- To analyze if antisense RNAs at convergent gene pairs can be observed 

in senescence due to transcriptional termination defects. 

- If yes, do these antisense RNAs imbibe regulatory properties. 

- To determine if their regulation by H2A.Z (and others factors involved in 

their regulation in yeast) is conserved in humans. 

- To study the function of some of such antisense transcripts in the induc-

tion and/or maintenance of senescence.  

 

To this end we took advantage of an established in-vitro model of OIS devel-

oped by Carl Mann’s group (Jeanblanc, M. et al., 2012), wherein WI-38 hu-

man fibroblast cell lines overexpressing hTERT harboured the following Es-

trogen Receptor (ER)-RAF-GFP. Upon oncogenic challenge by treatment of 

4-HT(hydroxy-Tamoxifen), the activated RAF elicits a pertinent growth arrest 

response that mimics OIS induction in-vivo. Owing to an in-vitro model, any 

plausible effects that can be conferred by replicative stress attributed large to 

telomeric attrition has been ameliorated by the hTERT overexpressed while 

GFP facilitates to filter out the contextual cell heterogeneity.  

Briefly, we analysed genome wide strand specific RNA-seq analysis of cells 

undergoing Oncogene Induced Senescence. This led us to identify numerous 

convergent gene loci associated with accumulation of transcripts downstream 

of the designated transcription termination site in senescent cells. These tran-
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scripts extend to generate an antisense to the next gene located in the oppo-

site strand of the convergent gene pair. We confirmed the RNA-seq data at 

two of such convergent loci. An RNAi based approach revealed that at least 

two of these transcripts are generated by transcriptional read-throughs.  

Hence we designated such pervasive transcripts as Senescence Triggered 

Antisense Read-through Transcripts (START).  Importantly, we further found 

that the two STARTs for which we performed in depth studies repress the ex-

pression of the gene for which they are antisense. Finally, we demonstrate 

that the histone variant H2A.Z suppresses the accumulation of STARTs in 

proliferative cells. Since it also prevents senescence induction, this suggests 

that expression of START is important for cellular senescence. This observa-

tion was found to be conserved for most of the genes arranged in convergent 

orientation with a certain threshold of intergenic region. This has lead us to 

prose a model that RAF directed OIS is associated with loss of H2A.Z that 

leads to the wide spread accumulation of read-through transcripts owing to 

impaired termination control. 
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Abstract 

 

Antisense RNAs are non-coding RNAs generally produced from specific promoters. 

Here, by a combination of genome-wide approaches and in depth analysis at specific 

loci, we uncover in human cells undergoing senescence a family of antisense RNAs 

produced by transcriptional read-through at convergent protein-coding genes. 

Importantly, these antisense RNAs, that we call START RNAs, regulate the expression 

of their corresponding sense RNAs. Furthermore, their induction in senescent cells is 

due to the loss of H2A.Z-mediated repression. Our results uncover a novel mechanism of 

gene expression regulation, relying on the control of the expression of read-through 

transcripts at convergent genes. 

 

Introduction 

 

Senescence is characterized by a potent and irreversible cell cycle arrest (Campisi and d'Adda 

di Fagagna 2007). It is generally considered as a major anticancer pathway by preventing the 

accumulation of cells, which have lost their normal control of cellular proliferation (Braig et 

al. 2005; Chen et al. 2005; Xue et al. 2007; Brady et al. 2011). It is associated with the setting 

up of a specific genetic program.  Recent findings have uncovered the importance of long 

non-coding RNAs (lncRNAs) as major players in the control of specific gene expression (Lee 

2012). Long non-coding RNAs have been found to regulate gene expression in cis or in trans, 

mainly by allowing the correct structuration or targeting of chromatin modifying complexes, 

such as Polycomb group proteins. In addition, some non-coding RNAs can be antisense to 

protein-coding genes	 (Faghihi and Wahlestedt 2009; Khorkova et al. 2014). Such long 
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antisense RNAs can affect the expression of the protein encoded by the gene to which they 

are antisense by various mechanisms. These antisense transcripts are generally produced by 

the activation of promoters within or downstream of protein-coding genes. In few particular 

situations or loci, such as genetic mutants in yeast, they can also be produced by 

transcriptional read-through (loss of transcription termination) at convergent gene loci (Zofall 

et al. 2009; Zhang et al. 2011; Lee et al. 2013; Powell et al. 2013; Anver et al. 2014; 

Mizuguchi et al. 2014; Dhir et al. 2015).	Here, we uncover a novel class of antisense RNAs 

produced throughout the genome by transcriptional read-through at protein-coding convergent 

genes and regulating the expression of their corresponding sense RNA in human senescent 

cells, therefore participating in the genomic response to oncogenic stress signaling. 

 

Results & Discussion 

 

In a previous manuscript, we showed the widespread occurrence of antisense transcription at 

2 human chromosomes in WI38 primary fibroblasts undergoing oncogene-induced 

senescence (Lazorthes et al. 2015). To investigate how these antisense RNAs are produced 

and what could be their function, we performed and analysed strand-specific genome-wide 

RNA-Seq data in the same cell line (WI38 hTERT RAF1-ER) either proliferative or induced 

to senescence by the activation of an inducible oncogene. At some convergent gene loci, we 

observed the occurrence of antisense transcription activated in senescence, which could 

originate from a defect in normal transcription termination on the opposite genes. RNA-Seq 

data for two such examples are shown, the LAMA2/ARHGAP18 and the KIAA1919/REV3L 

gene loci, with senescence-associated increase of antisense transcription at the LAMA2 and 

REV3L genes, respectively (Fig. 1A,B). Indeed, while an increase of transcript expression 

occurred downstream the ARHGAP18 or the KIAA1919 gene, the expression of these genes 
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did not change in senescence, suggesting that an increase of read-through transcripts occurred 

in senescence at these loci. We thus focused on these two loci for in depth studies of the 

regulation and function of these RNAs, since LAMA2 and REV3L expression were strongly 

repressed when their antisense RNAs were induced (Fig. 1A,B). Moreover, LAMA2 and 

REV3L gene products are linked to senescence-associated processes or diseases. Indeed, 

mutation of LAMA2 (Laminin, alpha 2), one of the subunits of merosin, a component of the 

extracellular matrix, causes congenital muscular dystrophy (Helbling-Leclerc et al. 1995), and 

REV3L (DNA polymerase zeta) is required for the maintenance of genomic integrity and cell 

proliferation (Lange et al. 2012).  

The senescence-associated changes in the expression of protein-coding genes and of 

intergenic regions observed at these two loci by RNA-Seq experiments (Fig. 1B) were 

confirmed by random-priming reverse transcription followed by qPCR (qRT-PCR), (Fig. 1C) 

and by strand specific qRT-PCR for the sense and antisense transcripts (Fig. 1D).  

 

We next tested whether the transcripts antisense to LAMA2 and REV3L were produced by 

transcriptional read-through, that is were included in a long RNA originating from the 

promoter of the convergent gene (ARHGAP18 and KIAA1919, respectively) and not from a 

distinct promoter located at close proximity to the 3' end of this gene. To this goal, we 

transfected senescent cells with siRNAs targeting the two ends of this putative RNA at the 

ARHGAP18 / LAMA2 locus (that is the exon 1 of ARHGAP18 or the intergenic region located 

between the two genes (See Fig. 2A)). Each of these two siRNAs decreased to the same 

extent the ARHGAP18 pre-mRNA (measured in the last intron), the intergenic region and the 

transcript antisense to LAMA2 (Fig. 2B,C), indicating that the transcript antisense to LAMA2 

is due to transcriptional read-through from the ARHGAP18 gene. Interestingly, one of these 

siRNAs is a bona fide ARHGAP18-targeting siRNA (the one targeting exon 1 of 
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ARHGAP18), which as a consequence decreased ARHGAP18 mRNA (Fig. 2A) but also the 

transcript antisense to LAMA2. Similar results were obtained using an siRNA targeting the 

intergenic region present between the KIAA1919 and REV3L convergent genes (Fig. 2D). 

Taken together, these data indicate that at least on these two loci, antisense RNAs are 

generated by transcriptional read-through from the convergent gene. From now on, the gene 

from which the read-through is produced, such as ARHGAP18 and KIAA1919, will be called 

the forward gene and the gene to which the read-through is an antisense, such as LAMA2 and 

REV3L, will be called the reverse gene. 

 

Antisense transcripts have been shown to regulate the expression of their corresponding sense 

genes (Khorkova et al. 2014). Interestingly, the expression of the ARHGAP18 and KIAA1919 

read-through RNAs strongly increased in senescence. In parallel, the reverse genes (LAMA2 

and REV3L, respectively) were strongly repressed, suggesting that the two read-through 

RNAs could inhibit their expression. Accordingly, we found that depletion of the ARHGAP18 

read-through RNA using both siRNAs led to an increase of LAMA2 pre-mRNA/mRNA 

(measured in an exon) and mRNA expression (measured in an exon-exon junction) (Fig. 2E). 

Strikingly, this increase was proportional to the decrease of ARHGAP18 read-through RNA, 

but not of ARHGAP18 mRNA (see data from Fig. 2B,C).  

Importantly, very similar results were obtained when depleting the KIAA1919 read-through 

RNA, with an increase in REV3L pre-mRNA and mRNA expression (Fig. 2F). Thus, these 

two antisense read-through RNAs possess the ability to inhibit the expression of their 

corresponding sense mRNAs. 

As a consequence of this mechanism, the siRNA targeting exon 1 of ARHGAP18 (a classical 

ARHGAP18 siRNA) led to an increase of LAMA2 expression (Fig. 2E) because it decreased 

the expression of the LAMA2 antisense. Thus, one should be very cautious when interpreting 
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siRNA-based results: some effect attributed to the depletion of the protein could actually be 

due to the depletion of the read-through RNA, representing a new class of off-target effects. 

Importantly, similar effects would be obtained using other independent siRNAs, a control 

often used in siRNA-based experiments to rule out off-target effects. 

 

We next investigated how these two read-through RNAs are repressed in proliferative cells. 

Data from yeast have uncovered several proteins involved in regulating antisense read-

through accumulation at convergent gene loci, including H2A.Z and RNA-processing 

machineries (Zofall et al. 2009; Zhang et al. 2011; Lee et al. 2013; Anver et al. 2014; 

Mizuguchi et al. 2014). We found that depleting the histone variant H2A.Z using two 

previously validated siRNAs (Mattera et al. 2010) led to an increase in ARHGAP18 and 

KIAA1919 read-through RNAs in proliferative cells (Fig. 3A,B). These data thus indicate that 

H2A.Z represses transcriptional read-through RNAs at these two loci in proliferative cells. 

Interestingly, we found that H2A.Z expression levels strongly decreased upon senescence 

induction (Fig. 3C).  

To analyse whether this global decrease in H2A.Z expression translates into a local decrease 

of H2A.Z occupancy around read-through RNAs, we performed H2A.Z ChIP-Seq 

experiments. As expected, we observed peaks of H2A.Z around transcription start sites, thus 

validating our ChIP-Seq data (Fig. 3D, see the LAMA2 and ARHGAP18 TSS and 

Supplemental Fig. S1 for metadata analysis of H2A.Z occupancy at TSS with respect to gene 

expression). Strikingly, we found that at the LAMA2/ARHGAP18 locus, H2A.Z occupancy 

decreased in senescence throughout the region expressing the read-through RNA, whereas it 

was largely unchanged on the two convergent genes (LAMA2 and ARHGAP18) (Fig. 3D). 

These data suggest that H2A.Z is located on the LAMA2-ARHGAP18 intergenic region in 

proliferative cells to prevent accumulation of the read-through RNA. Altogether, our data 



	 7	

suggest that H2A.Z is a major factor controlling the expression of antisense read-through 

RNAs at convergent gene loci. 

 

To test whether our findings could be extended, we analysed strand-specific RNA-Seq data to 

find all convergent gene loci on which transcriptional read-through activated (with respect to 

the forward gene) in senescence generates an antisense RNA. RNA polymerase II goes 

beyond the poly A site for a few hundred bases on all genes, a process which could interfere 

with the analysis we underwent. We thus restricted our analyses to loci with intergenic 

regions longer than 4 kb (which include the two loci we studied above). Indeed, this limit 

clearly separated two populations of senescence-activated read-through RNAs with respect to 

their regulation upon H2A.Z depletion (Supplemental Fig. S2). We therefore identified 68 

convergent gene loci, which could harbour activated transcriptional read-through producing 

antisense RNAs (see Supplemental Fig. S3 for a schematic representation of the pipeline and 

Supplemental Table 1 for the list of these 68 loci). 

 

Statistical analyses indicated that, like for ARHGAP18 and KIAA1919 read-through RNAs, 

transcriptional read-through at these 68 loci was significantly activated upon H2A.Z depletion 

in proliferative cells, since expression of the intergenic region was significantly activated 

compared to transcription of the forward gene (Fig. 4A). No such change was observed for 

loci harbouring antisense read-through RNAs repressed in senescence that we used as a 

control population. In addition, H2A.Z occupancy significantly decreased on their intergenic 

regions during senescence induction (Fig. 4B). Finally, the reverse genes from these 68 loci 

were significantly repressed in senescence (p value of the difference to 0, Wilcoxon test: 

2.7*10-3) and we observed a de-correlation between changes in the expression of these genes 

and of their antisense transcripts (Fig. 4C), suggesting that the read-through RNAs belonging 
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to this population inhibit the expression of the reverse gene. Thus, Figure 4 data altogether 

allow us to identify a new family of antisense RNAs with features very similar to the 

ARHGAP18 and KIAA1919 read-through RNAs and characterized by the following 

properties: 

- They are produced by senescence-induced transcriptional read-through at convergent 

protein-coding gene loci. 

- The intergenic region between the two convergent genes is larger than 4 kb.  

We call these RNAs "START RNAs" (for Senescence-Triggered Antisense Read-Through 

RNAs).  

 

We report here the first observation of antisense RNAs produced by transcriptional read-

through at human protein-coding convergent genes in a physiological context. These RNAs 

are common in senescence, representing a new family of antisense RNAs. We found that 

START RNAs can inhibit the expression of the gene to which they are antisense. Moreover, 

their expression is regulated during senescence progression. To the best of our knowledge, 

our data are the first demonstration of the regulation of specific gene expression through the 

controlled transcriptional read-though from a convergent protein-coding gene (see our model 

in Figure 4D). As such, we have uncovered a novel mechanism of gene expression regulation 

participating in the response to environmental changes.  

 

Importantly, we found that START RNAs are repressed by H2A.Z in proliferative cells. Thus, 

repression of antisense read-through RNAs by the H2A.Z histone variant, previously 

described in S. pombe (Zofall et al. 2009), is thus likely conserved in human cells.  The 

senescence-associated decrease in H2A.Z expression could therefore allow the regulation of a 

whole family of antisense RNAs, and, as a consequence, this could be a major mechanism 
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controlling the genetic program of senescence. Strikingly, depletion of H2A.Z is known to 

promote senescence (Gevry et al. 2007), supporting the hypothesis that START RNAs 

regulation could be important for senescence induction. 

 

Although we have demonstrated its occurrence in senescence, regulation of gene expression 

by such a mechanism could be more common. Indeed, we identified 99 antisense RNAs with 

similar characteristics than START RNAs except that the transcriptional read-through is 

repressed in senescence. An interesting hypothesis would be that distinct sets of proteins 

regulate antisense read-through expression at different sets of convergent genes. In agreement 

with such an hypothesis, studies in yeast have uncovered other factors than H2A.Z involved 

in the control of transcriptional read-through at convergent genes	(Zhang et al. 2011; Lee et 

al. 2013; Anver et al. 2014; Mizuguchi et al. 2014). Commitment into a given cell fate would 

as such induce a specific signature of antisense read-through RNAs that could participate in 

setting up the genetic program associated with this cell fate. 

 

The mechanism of gene regulation we uncover here, without new initiation events of the 

transcription machinery, might be a simple and rapid way to respond to stress signals, such as 

oncogenic stress as shown here. In agreement with this hypothesis, osmotic stress induces a 

widespread read-through transcription in human cells (Vilborg et al. 2015) and in S. pombe, a 

global non-coding RNA response including antisense transcripts at convergent genes  (Leong 

et al. 2014). Our findings thus suggest that stress-response genes or other classes of genes that 

need to be rapidly regulated upon environmental changes may be evolutionary selected to be 

convergent to other genes, allowing their rapid regulation by the mechanism we describe here. 

This could provide a basis for how positioning and orientation of genes within eukaryotic 

genomes are linked to the environment and are evolutionary conserved.  
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Materials and methods 

 

Cell Culture 

WI38 hTERT RAF1-ER cells were maintained in MEM supplemented with glutamine, non-

essential amino acids, sodium pyruvate, penicillin– streptomycin and 10% fetal bovine serum 

in normoxic culture conditions (5% O2). For induction of oncogene-induced senescence, cells 

were treated with 20 nM 4-HT (H7904, Sigma) for 3 days. siRNA transfection was performed 

using the Dharmafect 4 reagent (Dharmacon) according to the manufacturer’s 

recommendations, except that 100 nM of siRNA was used and an equal volume of the culture 

medium was added 24 hours after transfection, as in Jeanblanc et al.	(Jeanblanc et al. 2012). 

Cells were then harvested 48 hours later. 

 

Antibodies and western blotting 

GAPDH antibody (MAB 374) was purchased from Millipore. H3 (ab1791) and H2A.Z 

(ab4174) antibodies were purchased from Abcam.  

Whole cell protein extracts were prepared using boiling buffer (1% SDS, 1 mM sodium 

vanadate, 10 mM Tris pH 7.4, 1% Triton, 0.5 M NaCl) supplemented with protease inbibitors 

(Complete, EDTA free, Roche) and phosphatase inhibitors (P5726 and P0044, Sigma) with 

sonication until the viscosity of the sample is reduced. Western blots were performed using 

standard procedures (primary antibody dilutions to 1/1,000 except for GAPDH antibody that 

was diluted 1/10,000). 

 

RNA extraction, reverse transcription and qPCR 

Total RNA was prepared using the MasterPure RNA Purification Kit (Epicentre 

Biotechnologies) supplemented with Baseline-ZERO DNAse (Epicentre) according to the 
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manufacturers’ recommendation. RNA (200 ng) was used for each reverse transcription 

experiment. Strand-specific reverse transcriptions were performed at 55 °C using the 

Sensiscript and Omniscript enzymes (Qiagen) according to the manufacturer’s 

recommendations. Each strand-specific reverse transcription was performed with one specific 

primer (LAMA2(e64)R  for LAMA2 sense, LAMA2(e64)F for LAMA2 antisense, 

REV3L(INT32)R for REV3L sense and REV3L(INT32)F  for REV3L antisense). In each 

experiment, we included a reverse transcription reaction without primer to monitor for DNA 

contamination. Non-strand specific reverse transcriptions were performed using random 

primers and Superscript III (Invitrogen) at 50 °C according to the manufacturer’s 

recommendations. In each experiment, we included a control without the reverse transcriptase 

to monitor for DNA contamination. qPCR analysis was performed on a CFX96 Real-time 

system device (BioRad Laboratories) using the IQ SYBR Supermix (BioRad), according to 

the manufacturer’s instructions. All samples were analysed in triplicates.  

 

RNA-Seq 

Total RNA was extracted as mentioned above and between 12 to 20 µg of RNA for each 

sample was submitted to BGI TECH SOLUTIONS (HONGKONG) for RNA sequencing. 

BGI treated the RNA by Ribozero kit to remove ribosomal RNA and sequenced by Illumina’s 

HiSeq technology with at least 50M clean (reads after removing adaptor pollution and low 

quality sequence) paired-end reads per sample (lncRNA-seq). The strand-specific RNA-Seq 

method relied on UNG digestion of the second strand cDNA similary to strand-specific RNA-

Seq performed by Parkhomchuk et al. and by the ENCODE project	(Parkhomchuk et al. 2009; 

Djebali et al. 2012). 64,167,442 and 64,996,364 of paired-end reads were obtained for the 

RNA-Seq in proliferative cells and in senescent cells, respectively. 70,731,623 and 
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70,504,813 of paired-end reads were obtained for the RNA-Seq in siCtrl-treated cells and in 

siH2A.Z-treated cells, respectively. 

 

ChIP-Seq 

ChIP was performed as previously described (Lazorthes et al. 2015).  10 ng of 

immunoprecipitated DNA was submitted to BGI for sequencing. Samples were sequenced by 

Illumina’s HiSeq technology with at least 40M clean single-end reads per sample. 61,088,665 

and 49,960,563 of reads were obtained for the ChIP-Seq H2A.Z in proliferative cells and in 

senescent cells, respectively. 

 

Statistical tests 

For each list of log2ratio obtained as described in the Supplemental methods (per couple of 

datasets and per part of the read-through pairs (forward gene, intergenic region, reverse gene 

and antisense part of the read-through)), we applied the statistical test of Shapiro to determine 

whether the list of ratios is normally distributed (p-value > 0.05) or not normally distributed 

(p-value < 0.05). To compare 2 lists, if at least one of the lists is not normally distributed we 

applied the Mann-Whitney-Wilcoxon test, otherwise we applied the Student t test (Student t-

test if variances from the two lists are homogenous, Welch t test if not).  In both case if the p-

value < 0.05 the mean of the 2 lists of ratios are significantly different. When we compared 

two different parts (forward gene, intergenic region, reverse gene and antisense part of the 

read-through) for the same list of read-through pairs, we applied the paired version of these 

tests. To test whether the mean of a list of ratios is significantly different from 0, we applied 

these same tests (Mann-Whitney test if the list of ratio is not normally distributed, otherwise 

Student test) with a theoretical distribution of mean equal to 0. In both cases, if the p-value < 

0.05, the mean of the list of ratios is significantly different from 0. 
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siRNA and primers 

siRNAs and primers were purchased from Eurogentec. The sequences are described in 

Supplemental Table 2. 

 

Bioinformatic analysis 

Boxplots, metadata and analysis of activated read-throughs using RNA-Seq senescence and 

proliferation are described in the Supplemental methods.  
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Legends to Figures 

 

Figure 1: Examples of two convergent gene loci with putative antisense transcripts 

generated by transcriptional read-through 

(A) WI38 hTERT RAF1-ER cells, which are immortalized by hTERT expression and contain 

an inducible RAF1 oncogene fused to an estrogen receptor (ER), were induced or not to enter 

senescence by 4-hydroxy-tamoxifen (4-HT) addition for 3 days. Total RNA was extracted and 

subjected to strand-specific RNA-Seq experiments. RNA-Seq data are shown for the 

LAMA2/ARHGAP18 and KIAA1919/REV3L convergent gene loci. Transcript variants from 

Ref Seq, visualized in UCSC browser, are also indicated. The two regions indicated by dotted 

arrows correspond to putative read-through RNAs whose expression increases in senescence. 

(B) The total number of reads from strand-specific RNA-Seq data in the indicated genomic 

regions in proliferative and senescent cells were calculated for the two loci. The log2 of the 

Sen/Prolif value is plotted. The chromosome strand of the analysed region is annotated. The 

values for the gene from which the read-through originates, the intergenic region of the read-

through, the read-through entire domain, the antisense (AS) part of the read-through (AS part 

to LAMA2 or REV3L) and the gene (sense, LAMA2 or REV3L) to which the read-through is 
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antisense are shown. (C) Same as in (A), except that total RNA was subjected to random 

qRT-PCR using the indicated primers: e1 for exon 1, e64-e65 for the exon64-exon65 

junction. Data are normalised to GAPDH mRNA expression. The mean and standard 

deviation from 3 independent experiments are shown. (D) Same as in (A), except that total 

RNA was subjected to strand-specific qRT-PCR and analysed using the indicated primers. 

Data were normalised to GAPDH mRNA expression. The mean and standard deviation from 

3 independent experiments are shown.  

 

Figure 2: LAMA2 and REV3L antisense transcripts are generated by transcriptional 

read-though and are regulatory antisense RNAs  

(A) Schematic representation of the LAMA2/ARHGAP18 and KIAA1919/REV3L loci with the 

location of siRNAs (orange) and PCR primers (purple). (B) Senescent WI38 hTERT RAF1-

ER cells were transfected using an siRNA targeting ARHGAP18 exon 1 (ARHG e1) or 

control (Ctrl). 72 hours after transfection, total RNA was extracted and subjected to random 

qRT-PCR using the indicated primers (left) or analysed by strand-specific qRT-PCR to 

monitor the expression of the region antisense to LAMA2 (right). Data are normalised to 

GAPDH mRNA expression. The mean and standard deviation from 3 independent 

experiments are shown. (C) Same as in (B), except that cells were transfected using an siRNA 

targeting the read-through region (ARHG R-th). (D) Senescent WI38 hTERT RAF1-ER cells 

were transfected using an siRNA targeting KIAA1919 read-through region (KIAA R-th). 72 

hours after transfection, total RNA was extracted and subjected to random qRT-PCR using 

the indicated primers (left) or analysed by strand-specific qRT-PCR to monitor the expression 

of the region antisense to REV3L (right). Data are normalised to GAPDH mRNA expression. 

The mean and standard deviation from 3 independent experiments are shown. (E) Same as in 

(B) and (C), except that LAMA2 (pre-mRNA/mRNA) sense expression was monitored by 
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strand-specific qRT-PCR in an exon (left panel) and the spliced LAMA2 mRNA expression 

was assessed by random qRT-PCR (right panel). (F) Same as in (D), except that REV3L (pre-

mRNA) sense expression was monitored by strand-specific qRT-PCR in an intron (left panel) 

and the spliced REV3L mRNA was assessed by random qRT-PCR (right panel). 

 

Figure 3: ARHGAP18 and KIAA1919 read-through RNAs are repressed by H2A.Z in 

proliferative cells 

(A) Proliferative WI38 hTERT RAF1-ER cells were transfected using the indicated siRNAs. 

72 hours following transfection, total RNA was prepared and subjected to random qRT-PCR 

using the indicated primers. Data are normalised to GAPDH mRNA expression. The mean 

and standard deviation from 3 independent experiments are shown. (B) Same as in (A), except 

that the H2A.Z#2 siRNA was used. (C) WI38 hTERT RAF1-ER cells were induced or not to 

enter senescence by 4-HT addition for 3 or 6 days, as indicated. Total cell extracts were 

analysed by western blot using the indicated antibodies. (D) WI38 hTERT RAF1-ER cells 

were induced or not to enter senescence by 4-HT addition for 3 days and subjected to a ChIP-

Seq experiment using H2A.Z antibodies. ChIP-Seq data showing H2A.Z enrichment at the 

LAMA2/ARHGAP18 locus in proliferative (bottom) and senescent (top) cells are shown. 

 

Figure 4: The properties of ARHGAP18 and KIAA1919 read-through RNAs can be 

generalized 

(A) Proliferative WI38 hTERT RAF1-ER cells were transfected using the H2A.Z#1 or the 

Ctrl#1 siRNA. 72 hours following transfection, total RNAs were prepared and then depleted 

of ribosomal RNA and sequenced. For the 68 activated read-through RNAs generating an 

antisense RNA at convergent gene pairs with intergenic region > 4 kb, the log 2 of the 

variation upon H2A.Z depletion (log2(siH2A.Z/siCtrl)) of the expression of the forward gene 
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(the gene from which the read-through RNA originates) and of the intergenic region were 

computed. The boxplots show the median, the 1st and 3rd quantiles and the highest and 

lowest values (excluding outliers) of the two populations. Note the significant increase (p 

value = 1.8 * 10-3, paired Wilcoxon test) of the expression of the intergenic regions compared 

to the forward genes upon H2A.Z depletion. On the right, the same analysis is shown for the 

99 loci with repressed read-through RNAs (ns: not significant). (B) Proliferative and 

senescent WI38 hTERT RAF1-ER cells were subjected to an H2A.Z ChIP-Seq analysis. 

Boxplots showing the log2 of the variation in senescence (log2(sen/prolif)) of H2A.Z 

occupancy at the indicated regions are shown after standardization. Boxplot for the TSS of the 

25% most expressed genes (TSS high) is shown as control. For the 68 activated read-through 

RNAs producing antisense RNAs at convergent gene pairs with intergenic region > 4 kb, 

boxplots of the log2(sen/prolif) of H2A.Z occupancy are shown for the forward gene TSS and 

the intergenic regions. Note that H2A.Z occupancy significantly decreased in senescence on 

the forward gene TSS and on the intergenic regions (p values of the difference to 0 being 

3.3*10-6 (Wilcoxon test) and 2.0*10-8 (Student t test), respectively). It also decreased 

significantly more on the intergenic regions of the activated read-through RNAs (p value = 

0.0064, Wilcoxon test) than on the TSS of the forward genes. (C) WI38 hTERT RAF1-ER 

cells were induced or not to enter senescence by 4-HT addition for 3 days. Total RNA was 

extracted and subjected to strand-specific RNA-Seq experiments. For the 68 activated read-

through RNAs producing antisense RNAs at convergent gene pairs with intergenic region > 4 

kb, we removed the loci for which the reverse gene is not expressed either in senescence or in 

proliferation condition, resulting in 58 loci. The log 2 of the variation in senescence 

(log2(sen/prolif)) of the expression of the antisense parts of the read-through RNAs and of the 

reverse genes (the genes to which the read-throughs are antisense) were computed and 

represented as a boxplot. Note the significant decrease (p value = 1.09 * 10-5, paired 
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Wilcoxon test) of the expression of the reverse genes compared to their antisense parts of the 

read-through RNAs. (D) Our working model of START RNA regulation and function. In 

senescence, loss of H2A.Z in the intergenic region between two convergent genes triggers an 

increase of read-through transcripts from one gene of the convergent gene pair (gene B or also 

called forward gene in this study), making an antisense to the other gene of the convergent 

gene pair (gene A or also called reverse gene in this study). START RNAs repress the 

convergent genes to which they are antisense. 











Deb et al. Supplemental methods 

 

High-throughput sequencing and bioinformatic analysis  

 

ChIP-Seq and RNA-Seq datasets (FASTQ files) were mapped to the human genome build 

(hg19). We aligned the single-end reads of the 2 H2A.Z ChIP-Seq (senescence and 

proliferation) data via Burrows-Wheeler transformation (bwa) version 0.6.2-r126 and we 

aligned paired-end reads of the 4 strand-specific RNA-Seq (senescence, proliferation, siH2AZ 

and siCtrl) data using Spliced Transcripts Alignment to a Reference (STAR) version 2.4.0. For 

these alignments all parameters are kept as default. 

After the alignment, we applied on all aligned datasets several steps using samtools software: 

we converted aligned file from Sequence Alignments/Map (sam) format into the Binary 

Alignment/Map (bam) format which stores the same data in a compressed, indexed, binary 

form. We sorted data by position on the genome, removed PCR duplicates (i.e. reads mapped 

at the exact same position on the genome) and created an index of each bam file (bai format). 

We then converted these cleaned files in wiggle files using R via the rtracklayer bioconductor 

package. We obtained the following numbers of aligned reads: 37,405,144 (paired-end, RNA-

Seq in proliferation), 35,253,773 (paired-end, RNA-Seq in senescence), 55,952,673 (paired-

end, siCtrl RNA-Seq), 56,299,579 (paired-end, siH2A.Z RNA-Seq), 40,730,057 (H2A.Z 

ChIP-Seq in senescence) and 51,574,290 (H2A.Z ChIP-Seq in proliferation). We applied on 

each dataset a normalization by these total numbers of aligned reads.  

The ChIP-Seq and RNA-Seq data were visualized and explored using the Integrative Genome 

Browser (IGB) or the UCSC genome browser. 
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Identification of activated read-throughs using RNA-Seq data from senescence and 

proliferation 

 

1) Finding transcripts regulated in senescence 

This analysis is schematized in the Supplemental Fig. 3. We first applied a succession of steps 

in order to determine all transcribed domains regulated in senescence existing in the two 

datasets (RNA-Seq in proliferation and in senescence). First, for each dataset we divided the 

entire genome into intervals of 200 bp. For each interval with a density (i.e., total number of 

aligned reads per base on the interval /length of the interval) lower than 1, we set the density 

at 1 by manually setting the total number of aligned reads per base at 200. We did such a 

correction in order to avoid dividing by zero or a number close to zero, which could distort 

our computation of the log2 ratio Senescence/Proliferation. After this step, we computed, for 

each interval, the log2 ratio of the sum of the number of reads aligned per base in Senescence 

over the sum of the number of reads aligned per base in Proliferation. We computed this ratio 

for both strands (+) and (-). Because we were looking for domains regulated in Senescence, 

we kept intervals with an absolute log2 ratio higher than 1. For each strand, we then merged 

intervals with ratios of the same sign when they were closer than 5 kb. We re-computed the 

log2 ratio Senescence over Proliferation for these new domains and removed domains shorter 

than 1 kb to restrict the analysis to long transcribed regions.  We next merged again domains 

with ratios of the same sign when they were closer than 5 kb. We re-computed the log2 ratio 

Senescence over Proliferation for these final domains and we selected domains with an 

absolute log2 ratio higher than 0.5. This final list of domains represented transcripts regulated 

in senescence and was crossed with the list of convergent genes in step 3.  
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2) Finding convergent gene loci 

We downloaded from the UCSC table browser the database hg19 (Feb. 2009 GRCh37/hg19), 

group Genes and Gene Prediction, track RefSeq Genes, table RefFlat containing all natural 

mRNAs and non-coding RNAs. For each gene (unique gene name), if the gene mapped at one 

location on the genome with only one variant, we kept for this gene one line with the 

coordinates of the gene. If the gene mapped at different places in the genome, we kept one 

line per position and counted the gene as many times as it mapped in different locations. If the 

gene mapped at one location but with more than one variant, we kept one line for the locus of 

the gene, the coordinates starting at the first start of the variants and ending at the last end of 

the variants. From this database,	we removed HIST genes and we selected convergent genes 

separated by less than 10 Mbp. We ended with a list of convergent gene loci that we used for 

step 3. 

 

3) Identifying START RNAs 

To select antisense read-throughs, we kept pairs of convergent genes when there was at least 

one domain present 500bp after one of the 2 genes and overlapping on the other gene in the  

antisense orientation. When read through occurred on both strands, we kept genes twice, one 

for each strand. Then, we cleaned our selection by removing read-throughs when the 

convergent genes overlapped and when at least one of the genes was a MIR or a LOC gene. 

We ended with 592 convergent gene pairs with a read-through from one of the convergent 

genes generating an antisense to the other gene. We then selected activated read-throughs 

with respect to the forward gene, that is when the subtraction between the log2 ratio (number 

reads senescence / number reads proliferation) on the antisense part of the read-through and 

the log2 ratio (number reads senescence / number reads proliferation) on the forward gene 

was higher than 0. Finally, we removed read-throughs when the intergenic region between the 



	 4	

2 convergent genes was less than 4 kb, ending with 68 senescence-triggered antisense read-

through RNAs (START RNAs). 

 

Boxplots and metadata  

 

Figures and statistical test were done using R.  

We computed the average number of reads per base pair on +/-1kb around the TSS of the 

forward genes and on the intergenic regions in the H2A.Z ChIP-Seq in senescence and in 

proliferation datasets. We next computed the log2ratio (mean number of reads per base pair in 

senescence + 0.01 / mean number of reads per base pair in proliferation + 0.01). To 

standardize ChIP-Seq signal levels between senescence and proliferative datasets, we 

computed the log2ratio (mean number of reads per base pair in senescence +/-1kb around the 

TSS for the 25% most expressed genes (the 5342 genes that were present in the highest 

expressed classes of both proliferation and senescence sets of data from Fig. S1) / mean 

number of reads per base pair in proliferation +/-1kb around the TSS for the 25% most 

expressed genes) and we subtracted that factor to the log2ratios obtained in senescence 

dataset. We made the boxplots without outliers of the standardized ratios. Ratios were 

considered outliers if they were lower than 1st quantile – 1,5x(3rd quantile – 1st quantile) or 

higher than 3rd quantile + 1.5x(3rd quantile – 1st quantile). 

We also computed the average number of reads per base pair on the forward genes and on the 

intergenic regions in the siH2AZ and siCtrl RNA-Seq datasets, as well as on the antisense 

parts of the read-throughs and on the reverse genes in the senescence and proliferation RNA-

Seq datasets. Then we computed the log2ratio (mean number of reads per base pair in siH2AZ 

+ 0.01 / mean number of reads per base pair in siCtrl + 0.01) and the log2ratio (mean number 

of reads per base pair in senescence + 0.01 / mean number of reads per base pair in 
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proliferation + 0.01)). For each category of read-throughs, we made boxplots without outliers 

of these ratios. 

 

For metadata analysis of H2A.Z enrichment at  +/-1kb around the TSS, we first divided the 

genes in four equal classes based on their expression in the RNA-Seq datasets in senescence 

and in proliferation. Genes smaller than 1 kb were removed. For each base in the region +/-

1kb around the TSS, we computed the average number of reads for all the genes in the 

different classes (low, medium low, medium high and high) for both senescence and 

proliferation ChIP-Seq datasets.  
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Additional data 

 

Once we confirmed that induction of cellular senescence is associated with 

loss of H2A.Z and that this feature connotes accumulation of STARTs, we 

wanted to delineate the underlying mechanism of H2A.Z loss upon senes-

cence induction and if perturbing the mehansim can affect the generation of 

STARTs.  

As outlined earlier (in the introduction) senescent cells exhibit SAPD (Senes-

cence Associated Protein Degradtion) a phenotype mediated by UPP (Ubiqui-

tin Proteasome Pathway). Additionally it has also been shown that ANP32E is 

a histone chaperone that removes H2A.Z from chromatin (Obri et al., 2014). 

Hence we reasoned that H2A.Z probably undergoes proteasomal degradation 

in cells that senesce besides the possibility of elevated ANP32E levels driven 

H2A.Z elimination upon senescence induction cannot be ruled out. To this 

end, I treated proliferative cells individually with MG132, an ubiquitin-

proteasome inhibitor and with siRNA against ANP32E an then induced 

senscence. Although each of the treatment indeed led to an appreciable by-

pass of senscent mediated H2A.Z loss, however the combinations of treat-

ments lead to a profound H2A.Z retainment (Fig.16a). This suggests that 

ANP32E and ubiquitin proteasome degradation mediates loss of H2A.Z upon 

induction of cellular senescence. Transcriptome analysis of these cells using 

primers designed at 1kb down stream of ARHGAP18 (intergenic region be-

tween ARHGAP18 and LAMA2) surprisingly revealed loss of ARHGAP18 as-

sociated START that paralleled the decrease in p16 expression levels 

(Fig.16b). These results suggest that perturbing the mechansim that drives 
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loss of H2A.Z in cells undergoing senescence is sufficient to impair senes-

cence induction and concomitantly suppress senescence associated read-

through transcripts. 

 

a) 

 

b) 
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Fig.16 a) Simultaneous depletion of ANP32E and MG132 treatment fol-
lowed by growth arrest induction leads to rescue of H2A.Z protein levels 
and b) parallels concomitant suppression of read-through transcripts 
and CDKi. 
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Part III: Discussion 
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Discussion on various facets of my PhD project 

 

This GWAS based on a model of OIS takes advantage strand specific RNA-

seq approach that lead to the identification of plethora of putative convergent 

gene loci with in-competent transcription termination based on validation of 2 

such loci. This study has shown for the first time how a histone variant H2A.Z, 

plays an integral role of RNA surveillance machinery and thereby safeguards 

the genome from the wide spread accumulation of antisense transcripts in 

mammals. These antisense transcripts are unique in a way that they get gen-

erated due to impaired termination of transcription of a gene located in a con-

vergent orientation to another gene on the opposite strand. As these impaired 

termination mediated generation of antisense RNAs are largely found to be 

associated to convergent genes, they are generally termed as read-through 

transcripts. These antisense RNAs are due to impaired termination, and are 

thus termed START (Senescence Triggered Antisense Read-through Tran-

scripts). However there are certain caveats to this study that needs to be 

acknowledged for the further evolution of this field of convergent loci associ-

ated antisense RNAs towards its implementation in translational research and 

ultimately for therapeutics.  

 

A putative senescence landscape 

OIS refers to a specific phenomenon wherein cells enter a state of irrevocable 

cell cycle arrest in response to diverse oncogenic insults, thereby represent-

ing as one of the major fail-safe mechanisms that counteract tumorigenesis. 

Various intricate works from different laboratories investigating cellular senes-
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cence in-vivo have shown that upon establishment of senescence, the 0cells 

continue to resists oncogenic insults that attempts to force cell cycle re-entry 

even upon depletion of potent Cyclin Dependent Kinase inhibitors (CDKi) like 

p16 and p53. Given the fact that cellular senescence is inherently an in-vivo 

physiological phenomena, and its reversibility have not been proven in in-vivo 

settings, it is but critical that any in-vitro models that are developed to study 

various facets of cellular senescence should adhere to this gold-standard cri-

teria of irreversibility. In-vitro OIS model used in this study takes the ad-

vantage of Tamoxifen mediated activation of oncogene RAF that facilitates 

the induction of a state of a cell cycle arrest that mimics a senescent cell. To 

rule-out the plausible interference of replication stress in mediating this arrest, 

hTERT has been overexpressed. Hence this model should not be considered 

as physiological state per se but a model that mimics a physiological state. 

Moreover the fact that the loss of p21 and p16 has been reported to reverse 

this OIS sheds considerable doubt on its claim in attaining the state of cellular 

senescence (Jeanblanc, M. et al., 2012). Whether this model represents a 

genuine senescence model or just reflects a growth arrested non-senescent 

population- a sort of quasi-steady growth arrested state, remains uncertain. 

Alternatively it is possible that these cells might have entered a sort of 

dormant growth arrested (“quiescent like”) state and re-enters cell cycle upon 

conducive cellular environment. In this regard a recent review of Sharpless 

and colleagues (Sharpless and Sherr 2015) states ”Perhaps the field should 

resist the convenience of what may be an inadequate catch-all definition and 

restrict the term senescence (as we have) to depicting states of irreversible 

stress-induced growth arrest’ and further suggests “whenever possible, sub-
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stitution of more accurate descriptors to define the phenotypes under study 

would prove far less confusing. Specific terms like cell cycle arrest, secretory 

activity, paracrine signaling, chromatin remodeling and others are more illumi-

nating. As for associated molecular events, the detection of levels of p16INK4A 

and p21CIP1, states of RB phosphorylation and telomere length, DNA-damage 

foci and secretion of specific cytokines are indisputable experimental findings 

that do not require extensive qualification. Rather than applying the term se-

nescence to what are clearly complex and possibly distinct cellular states, we 

should aim for greater clarity by using judicious choices of more explicit terms. 

The senescence field would profit from greater precision, given the im-

portance of, and widespread interest in, the many underlying biological phe-

nomena and their implications.”  

 

Such in-vtro models of OIS can indisputably be best described as oncogene-

induced pseudo-senescence or oncogene induced durable growth-arrested 

model, which nevertheless does not underestimate the potential of the out-

come of this work. Rather this work might encourage conducting similar inves-

tigation in the settings of in-vivo senescence that can probably unleash its po-

tential for translation to therapeutic intervention. 
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The surveillance machineries at work 

 

Strand specific RNA seq data followed by its validation by strand specific 

qPCR revealed that in proliferative cells convergent gene loci are accompa-

nied by certain levels read-through transcripts which gets exaggerated in in-

vitro OIS model used in this study. This suggests that these convergent loci 

which are devoid of stringent canonical transcription termination. This raise 

the question what is/are the factors involved that makes these loci susceptible 

to such transcriptional read-though, or in other words what are factors renders 

these loci prone to compromised stringency of transcription termination?  

The inclination of such growth arrested cells in being refractory of decorating 

their DNA with certain epigenetic modifications committed to 3’ end of the 

gene cannot be ruled out. Alternatively intergenic H2A.Z might represent posi-

tioned nucleosome and hence act as an essential factor in nucleosome posi-

tiong and thus as a barrier to such invasive transcripts and conditions associ-

ated with its loss might trigger the formation of NFR (Nucleosome Free Re-

gion) thereby facilitating the generation of such transcriptional read-throughs. 

Unlike in yeast where H2A.Z alone is incompetent to suppress antisense tran-

scripts (Zofall et al. 2009) this study demonstrates that in mammals the loss of 

H2A.Z is sufficient in elevating the accumulation of read-through transcripts 

(Model 1 and 2), however not all convergent gene loci were found to associ-

ated with such transcription read-throughs. To this end it appears that H2A.Z 

is not totally incumbent in regulation of read-through transcripts as these con-

vergent gene loci inherently displays basal level of leaky read-through tran-

scription (Model 1a and 2a). This might suggest that H2A.Z might play a dis-
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tinct non-canonical role of transcription termination selectively at these loci (in 

lieu of stringent canonical termination machinery installed at other convergent 

loci), thus rendering these selective loci error prone to transcription termina-

tion, which further gets exacerbated upon deletion of H2A.Z alone. Alterna-

tively this can also be due to the heterogeneity of cells (e.g. existence of 

growth-arrested cells or cellular states with depreciated levels of H2A.Z) in the 

proliferating cell population. 

Earlier studies have shown that cohesion mediates transcription termination 

by recruiting heterochromatin machinery (Gullerova and Proudfoot 2008) be-

sides emerging studies indicate that Rad21 facilitates long-range interaction 

(Mizuguchi et al., 2014). So is H2A.Z mediates control on transcription termi-

nation through cohesion dependent long-range interaction thereby acting as a 

genome-indexing mechanism in suppressing the accumulation of antisense 

transcripts for genes with impaired transcription termination control? 

Consistent with previous findings in yeast, our preliminary data indicated that 

depletion of 3’-5’ exonuclease activity of exosome (EXOSC10) leads to accu-

mulation of such read-through antisense transcripts in a manner similar to 

H2A.Z (Zofall et al., 2009) and also at all convergent loci that are found to af-

fected upon loss of H2A.Z. Alternatively as work from John Lis lab have 

shown that exosome associates with elongating Pol II (Andrulis et al., 2002), it 

is tempting to imagine that H2A.Z can act as a genome-indexing switch in a 

situation where once the Pol II have gone past its designated termination site 

and as a consequence invaded the next door convergent gene, H2AZ located 

at the promoter of that invaded gene might activate exosome to take care of 

this invasive transcript (Hypothesis b). Alternatively a higher order chromatin 
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structuring might promote (plausibly by Cohesin) a long-range interaction be-

tween the H2A.Z (located at the promoter of the read-through originating gene 

or local direct interaction of intergenic H2A.Z) and EXOSC10 might facilitate 

the surveillance of these error prone termination mediated read-through gen-

eration (Conjecture a&b respectively). If this is indeed the case then it might 

suggest that loss of EXOSC10 might enhace the stability of these read-

through transcripts (from getting degraded by by 3’-5’ exonuclease activity of 

Exosome) thereby facilitating the accumulation (Model 3). However the possi-

bility of H2A.Z enrichment at the intergenic region serving as a potential road-

block to the POLII progression (Model 2) and hence serving, as a genome-

indexing factor against the accumulation of such invasive deleterious errone-

ous antisense transcripts and or by activating Exosome cannot be ruled out 

(Conjecture b). Hence this works provides a hint of differential role played by 

H2A.Z at different sites of the genome. H2A.Z generally known to be enriched 

at the promoter is associated in promoting transcription whereas intergenic 

H2A.Z might represent surveillance machinery against the generation of such 

pervasive transcripts. 

It is also encouraging to hypothesize that the circuitry of H2A.Z, Cohesin, Ex-

osomes, RNAi and heterochromatin factors might orchestrate to restrict the 

generation of these antisense at the convergent genes that are more vulnera-

ble to impaired transcription. However whether all these factors are present 

even at these convergent loci and if yes, whether there are similarly opera-

tional demands further investigations (Model 2).  

A key finding of this work is that the induction of the growth arrest has been 

found to be associated to the depletion of H2A.Z levels across bodies of the 
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gene and in the intergenic regions turned out to be a common feature of the 

convergent genes that are associated elevated accumulation of read-through 

transcripts. As long as the emergence of such novel category of antisense 

RNAs are concerned it is perhaps suggestive of H2A.Z enrichment represents 

a transcriptional surveillance machinery and with emerging data in yeast indi-

cating that mRNA splicing and polyadenylation machineries (TRAMP and 

MTREC complexes respectively) also plays a vital role in restricting the ac-

cumulation of such transcriptional read-through, it can be very provocative to 

speculate that H2A.Z localized at the gene bodies and at intergenic regions 

might play role in association with splicing and polyadenylation components to 

ensure proper processing of the pre-mRNAs, however this warrants an exper-

imental validation. If this turns out to be true then the most rational question is 

to ask how does H2A.Z enrichment at the gene bodies and at the intergenic 

regions becomes dispensable in other convergent gene pairs that are associ-

ated with elevated read-through transcripts but do not correlate with change in 

H2A.Z levels or in other words what is the machinery and the mechanism at 

play that drives to bypass this fragile surveillance by H2A.Z for the accumula-

tion of unspliced read-through transcripts? Furthermore what are the players 

and mechanisms that govern the fate of other convergent gene loci that were 

not associated with accumulation of read-through transcripts either upon in-

duction of the growth arrest or loss of H2A.Z and EXOSC10? 

 

 

 

 



	
	

106	

Cause & Effect 

 

We also tried to delineate the mechanism of H2A.Z loss in the in-vitro OIS 

model used in this study and if intervening with the mechanism that directs 

loss of H2A.Z can significantly foil the generation of read-through transcripts. 

We found that by dismantling the mechanism that alleviates H2A.Z in the in-

vitro OIS model used in this study not only retains H2A.Z but also suppress 

the generation of read-through transcripts at the convergent gene loci of AR-

HAGP18 and LAMA2. Although these events paralleled p16 repression, Cell 

Proliferation Assay needs to be conducted to check if these interventions by-

pass the induction of the growth arrest and not just a mere suppression of p16 

levels as compared to its control counterpart. Besides this strategy can simul-

taneously upregulate certain mitogenic factors or other factors unrelated to 

H2A.Z that promotes cell division. Hence the observed phenotype cannot be 

attributed to solely to H2A.Z. 

However these observations failed to uncouple the two phenomena and 

hence the key question of whether the read-through transcripts per se are im-

portant for the stable growth arrest or vice versa remains unresolved. One of 

the plausible ways of uncoupling the two phenotypes will be to deploy 

CRISPR-Cas9 strategy to specifically target these read-throughs and then 

check if that allows the cell to re-enter the phase of cell division or escape se-

nescence induction. 

Nevertheless these results acknowledges the fact that there are factors that 

stand at the regulatory cross roads of mediating proper transcription termina-
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tion thereby suppressing the generation of antisense transcripts and cyclin 

dependent kinase inhibitors (CDKi).  

 

 

The players at the cross-roads of the 2 phenotypes 

 

In a quest to find factors besides H2A.Z that simultaneously regulates the in-

duction of read-through transcripts and senescence associated features, we 

investigated factors that reported to facilitate the generation of read-through 

transcripts in yeast. Preliminary data suggests that depletion of H2A.Z, EX-

OSC10 and Dicer individually lead to elevated levels of read-through tran-

scripts and p16 expression (as a read-out for growth arrested state). However 

we also found factors that uncoupled this regulation. Preliminary data re-

vealed that depletion of factor like FAM50A either individual or in combination 

with depletion of H2A.Z lead to prompt and robust induction of growth arrest 

but often failed to connote the accumulation of read-through transcripts 

whereas depletion of G9a a H3K9 methyltransfease, lead to elevated accu-

mulation of such read-through transcripts without any effect on p16 (data not 

shown). However the latter finding might also indicate that G9a acts down-

stream of p16, although there is no conclusive evidence in favour of this as-

sumption. 

On the other hand this evidence also elicits intriguing question on the aspect 

of the in-vitro OIS model used in this study as well. If loss of H2A.Z at the 

gene bodies is associated with induction of growth arrest, it is intriguing to ask 

if there is a component dedicated in the eradication of H2A.Z from gene bod-
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ies alone or there is a division of labour among the negative regulators of 

H2A.Z specific chaperons like p400 (a SWI/SNF DNA dependent ATPase) 

and SRCAP (Snf2 Related CBP Activator Protein) with that of a recently dis-

covered evictor ANP32E?  Alternatively from the epigenetic perspective it is 

worthwhile to think if certain histone modifications like that of H3K56ac de-

scribed in yeast, can drive promiscuous H2A.Z eviction primarily from the 

gene bodies plausibly due to altered specificity of the H2A.Z chaperons? Such 

findings will be beneficial from the therapeutic aspects by exploiting these 

components in achieving potential interface in abrogating tumour growth. 

 

 

Mechanistic insight of the associated growth arrest 

 

A key aspect of this study that remain unresolved is whether there are certain 

key proliferation promoting genes or genes involved as positive regulator of 

DNA damage response or facilitator of DNA repair that gets disrupted by the-

se antisense transcripts Alternatively cumulative effects on various genes that 

are abrogated by the genome-wide accumulation of various antisense tran-

scripts could drive this growth arrest? Furthermore, although this study pro-

vides evidence in the regulatory roles of the antisense RNAs at the mRNA 

level, the effect of these antisense RNAs at the protein level or a precise phe-

notypic change as a consequence of altered gene expression remains unre-

solved. Specifically this study shows that the read-through antisense tran-

scripts abrodages the gene expression of next (sense) gene located on the 

opposite strand. Specifically this study shows that the read-through antisense 
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transcripts abrodages gene expression of next (sense) gene located on the 

opposite strand. Moreover, conditions associated to the STARTs, i.e. both 

upon induction of growth arrest as well as on depletion of H2A.Z, we detected 

a profound suppression of REV3L and LAMA2, although the effect at the post 

transcrip-tion level has not been shown. However, repression of these two 

genes by their corresponding STARTs cannot be conferred the title of “pro-

growth ar-rest machinery” as depletion of these two STARTs, albeit individual-

ly, failed to evoke reversion of cellular growth (data not shown).  

Alternatively to decipher if these read-through transcripts are the direct con-

sequence of the growth arrest and are indispensible to maintain this state or 

independent of it, one can revert this growth arrest by simultaneous depletion 

of p21 and p16 and check the status of these read-throughs. If the read-

throughs can still be detected, this can suggest that they are insufficient in 

maintaining the growth-arrested cells, but this can also imply that that these 

read-through transcript acts upstream of p16 or p21 in inducing cell cycle ar-

rest. However they might act as a “memory marker” for cells that have revert-

ed back from a once-upon-a-time growth arrested state. Understanding if the-

se read-through transcripts either upstream or downstream of this growth-

arrested state might appear to be imperative in acknowledging its potential for 

therapeutic interventions.  
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The proof of read-through harboured startling revelations 

 

One of the caveats in ameliorating the negative effect of these read-throughs 

transcripts is to perturb these antisense transcripts without affecting the ex-

pression of the read-through-originating gene. As these antisense RNA origi-

nates from the same promoter as that of the read-through-originating gene 

which ironically qualifies them of being true transcription read-throughs and 

refutes the possibility of being originated from the cryptic promoter elements, 

siRNA mediated depletion of these antisense transcripts by targeting the in-

tergenic (read-through) region also leads to depletion in the mRNA read-

through originating gene. To this end, as an alternative to selectively target-

ting the read-through for degradation (as proposed earlier) one can use 

CRISPR-CAS9 to introduce a stringent Transcription Termination Site (TTS). 

Alternatively RNAi mediated depletion of the read-through-originating gene 

suppressed the expression of the read-through antisense transcripts that con-

noted the rescue in expression of the antisense gene located on the opposite 

strand. This later aspect unravel one of the key finding of this study that calls 

for revisiting the siRNA experiments that conducted so far on the genes with a 

convergent oriented partner-gene located on the opposite strand. For exam-

ple let us consider a study that involved loss of function study of a gene “X” in 

order to gain insights to the functionality of the gene “X” and this gene is lo-

cated in a convergent with another gene “y” located on the opposite strand. If 

this convergent gene loci that is comprised of “X” and “Y” with the gene “X” is 

associated to impaired transcription termination then there can be a similar 

accumulation of read-through transcripts that may transverse across these 
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two genes and further makes antisense to gene ”Y”. Prima-facie of such cir-

cumstances phenotype deciphered from loss of gene “X” cannot be attributed 

only to silenced “X” but may also due to relief in expression levels of “y” owing 

to the parallel lose of antisense read-through transcripts that was emanating 

from “X”. This is indeed one of the most interesting outcomes of this study and 

hopefully this aspect will be taken into accountability in the interpretation of 

preceding loss of function-related studies. 

The fact that these read-through antisense transcripts are functional in human 

has been recently shown in physiological background in two independent 

studies (Powell et al., 2013; Vilborg et al., 2015), however the fact the histone 

variant acts as a guardian and thus an integral part of RNA surveillance ma-

chinery against the generation of these functional read-through transcripts is 

the novel aspect of this study. 

 

 

 

Therapeutic angle 

 

The outcome of this study can manifest itself into various clinical implications. 

If a further study carried out on the backdrop of physiological OIS can reveal 

that such read-through transcripts are indispensible for the maintenance or 

the survival of the senescent cancerous cells then these novel category of an-

tisense transcripts can turn out to be a real nuisance to the cells. Indeed they 

might stand at the crucial junction where these senescent cells can drive ful-

minant growth and metastasize the adjacent cancer cells. Primafacie of such 
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menace, suppressing these transcriptional read-throughs comes at a cost of 

suppressing the expression of the gene from which the read-through tran-

script in question originates. Such effect can augment the complexity in deal-

ing with these read-throughs at the therapeutic level. The only viable option in 

that case will be to drug the read-through only if the gene from where it origi-

nates have dispensible functionalty in a given physiological setting, as other-

wise these read-through can pose a potential bone of contention. Alternatively 

if these read-through transcripts are found to drive senescence then the fac-

tors that specifically suppress these antisense RNAs can be blocked and thus 

can be clinically exploited in senescence driven therapeutic interventions. 

However discerning the tissue specificity can be a riddle in this aspect.  

 

 

 

The Holy Grail in the mystery of aging? 

 

Overwhelming studies conducted over the last decade have strongly indicated 

that aging represents the biggest risk factor for majority of human diseases. 

Aging is associated with progressive decline in tissue homeostasis and com-

promised regenerative capabilities and to an appreciable extent this is due 

depreciated levels of functional stem cell pool (Sharpless and Depinho 2007). 

Seminal work published by Norman Sharpless’s laboratory in 2006 (Krishna-

murthy et al., 2006) showed for the first time that elevated p16 expression 

with aging counteracts regenerative potential of pancreatic cells. However 

mere elevated p16 levels cannot unequivocally qualify for the evidence of se-
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nescent cells, but rather a molecular marker of aging (Krishnamurthy et al., 

2004). As the accumulation of STARTs connotes elevated p16 expression, 

there appears to be a formidable chance of these aberrant transcripts to get 

accumulated with age. Besides with emerging evidence suggesting 

H3K36me3 specific HMT suppresses the emergence of such pervasive tran-

scripts in the settings of renal carcinoma (Grosso et al., 2015), it is provoca-

tive to investigate for plausible induction and regulatory roles of these tran-

scripts in aging mouse models and cognate human tissues. This might cast a 

considerable light on the underlying mechanism by which the loss of 

H3K36me3 can impede longevity besides the suppression of aberrant tran-

scripts originating from cryptic promoter elements that has been demonstrated 

to be detrimental for the replicative lifespan in yeast (Sen et al., 2015) through 

the identification of genes that can be potentially perturbed by such pervasive 

regulatory antisense transcripts and thus might act as potential perpetrators of 

decline of tissue homeostasis upon aging. In that case elevated levels of ag-

ing associated read-through transcripts can serve as a direct read-out of stoi-

chiometry between drivers of organismal aging and facilitators of such perva-

sive transcription. 
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Models deciphered from the PhD project 

 

 

a 

 

 

b 

 

Model 1: Validation of the mechanism functional in yeast in suppressing 
antisense transcriptions in mammals using WI-38, a human fibroblast 
cell line. a) The figure represents a locus of convergent gene pair suscepta-

ble to generation of transcriptional read-throughs. b) Accompanying the loss 

of H2A.Z, which can either mediated by proteasomnal degradation or through 

specific chaperone or alternatively upon siRNA treatment, there is an accumu-

lation of read-through antisense transcripts owing to impaired transcription 

termination. 
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a 

 
 
 
 

 
 
b. 

 
 
 

 
 

Model 2: Intergenic H2A.Z serves as a potential roadblock to transcrip-
tional read-throughs. a) ChIP-seq identified enrichment of H2A.Z at a con-

vergent gene pair. b) Connotation in loss of intergenic H2A.Z and recapitula-

tion in the accumulation of read-through transcripts suggests that this owing to 

elevated transcription. Besides preliminary data also suggest that loss of other 

factors (Dicer, G9a and FAM50A) that are mostly known to associate to the 

TTS can also generate similar read-through transcripts. 
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a. 
 
 

 
 
 
 
 

b. 
 

 
 
 

Model 3. 3’-5’ Exonuclease activity of Exosome can also participate in 
the surveillance against read-through transcripts. a) Preliminary data 

suggests that EXOSC10 may also also participate in regulating the emrgence 

of read-through antisense transcripts. b) Besides the loss of H2A.Z (intergen-

ic), Dicer, G9a and FAM50A, preliminary data reveals that depletion of EX-

OSC10 can also lead to the accumulation of antisense transcripts.  This might 

suggest that loss opf EXOSC10 increases the stability of read-through tran-

scripts (by preventing its degradation by the exonuclease activity of EX-

OSC10). 
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Conjecture 
 
 

 
 

 
 

 
 
 

a. Impaired long range interaction between H2A.Z at the promoter 
and EXOSC10 or other components at 3’end of the gene that 
might facilitate its recruitment owing to loss of exclusive factors 
that promotes higher order chromatin structuring mediated tran-
scription termination at selective convergent loci might explain 
the mechanism that assists the generation of such pervasive 
transcription. 
 

a) Loss of intergenic H2A.Z might manifest in a failure to instruct 
EXOSC10 to execute its function on the RNA transcript tran-
scribed by RNA Polymerase II that has missed its designated ter-
mination site can also be a potential possibility in demonstrating 
the mechanism of generation of read-through transcripts. 
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Supplementary Table 1: list of the 68 loci harbouring STARTs

Chr
START 
Strand

Gene Forward 
Name

Gene Reverse 
Name

1 chr1 + BTBD19 PTCH2
2 chr1 + SYT11 RIT1
3 chr1 + GPR137B ERO1B
4 chr2 + CLIP4 ALK
5 chr3 + OXNAD1 RFTN1
6 chr3 + NIT2 TOMM70A
7 chr4 + SAP30 SCRG1
8 chr5 + SLF1 MCTP1
9 chr6 + KIAA1919 REV3L

10 chr6 + SYNJ2-IT1 SERAC1
11 chr7 + PTPN12 APTR
12 chr8 + SH2D4A CSGALNACT1
13 chr8 + WISP1 NDRG1
14 chr9 + UHRF2 GLDC
15 chr9 + TEK LINC00032
16 chr9 + PGM5 TMEM252
17 chr9 + OR1N2 OR1L8
18 chr9 + OR1Q1 OR1B1
19 chr11 + ZNF215 ZNF214
20 chr11 + SEC14L1P1 ALKBH3-AS1
21 chr12 + SMIM10L1 TAS2R42
22 chr12 + BORCS5 DUSP16
23 chr12 + MDM2 CPM
24 chr12 + NUDT4P1 UBE2N
25 chr14 + MIPOL1 FOXA1
26 chr14 + LRR1 RPL36AL
27 chr14 + YLPM1 PROX2
28 chr15 + NR2E3 MYO9A
29 chr16 + SNX29P1 NPIPB3
30 chr16 + ZNF771 DCTPP1
31 chr17 + MILR1 POLG2
32 chr18 + ZNF271P ZNF24
33 chr19 + ZNF586 ZNF552
34 chr20 + MCTS2P HM13-AS1
35 chr20 + STK4 KCNS1
36 chr1 - SERBP1 IL12RB2
37 chr1 - ACP6 BCL9
38 chr1 - IVNS1ABP SWT1
39 chr1 - WDR26 CNIH4
40 chr2 - TMEM127 STARD7-AS1
41 chr2 - NEMP2 MFSD6
42 chr3 - MGLL ABTB1
43 chr3 - PIK3CB FAIM
44 chr4 - LIN54 THAP9
45 chr5 - SMIM15 NDUFAF2
46 chr5 - RAPGEF6 CDC42SE2
47 chr5 - UBTD2 EFCAB9
48 chr6 - FAM162B KPNA5
49 chr6 - ARHGAP18 LAMA2
50 chr7 - ZNF394 ZNF789
51 chr9 - DDX58 ACO1
52 chr9 - LPAR1 MUSK
53 chr10 - ITGB1 CCDC7
54 chr11 - RRAS2 SPON1
55 chr11 - INTS4 AAMDC
56 chr11 - CHORDC1 NAALAD2
57 chr11 - NPAT ACAT1
58 chr12 - CSRP2 ZDHHC17
59 chr14 - CNIH1 CDKN3
60 chr14 - ADAM20P1 ADAM21
61 chr15 - SPG21 ANKDD1A
62 chr15 - UACA SALRNA2
63 chr17 - NXN RNMTL1
64 chr17 - FAM222B TRAF4
65 chr17 - ARL16 CCDC137
66 chr19 - ZNF792 ZNF30
67 chr19 - RTN2 FOSB
68 chrX - C1GALT1C1 MCTS1



Summary 

Cellular senescence represents one of the major fail-safe mechanisms that 
counteracts tumour development is defined as a state of irreversible cell cycle 
arrest as a consequence of stress response such as oncogenic challenge. Such 
cells undergoing Oncogene-induced Senescence (OIS) display profound 
alternation in their epigenome as their chromatin are largely decorated with 
prominent drivers of constitutive heterochromatin. 
Antisense RNA-mediated gene regulation has been attributed to play diverse 
roles in mediating various cellular processes and cell fates per-se. In yeast, 
histone variant H2A.Z cooperates with RNAi and heterochromatin machinery to 
regulate antisense transcription at convergent gene loci which can otherwise 
generate pervasive read-through transcripts owing to improper transcription 
termination. 
In mammals, whether such antisense transcripts (occurring by read-through 
transcription at convergent gene pairs) exist and how they are regulated remains 
unknown. Interestingly, the depletion of the human H2A.Z histone variant has 
been reported to induce cellular senescence. We thus wondered if the regulation 
of particular antisense transcripts at convergent gene pairs occurs in 
senescence, if their regulation by H2A.Z is conserved in mammals and, if so, if a 
functional significance can be attributed to these transcripts. To this end we took 
advantage of a well-established in-vitro OIS model 
Briefly, we analysed genome wide strand specific RNA-seq analysis of cells 
undergoing Oncogene Induced Senescence. This led us to identify numerous 
convergent gene loci associated with accumulation of transcripts downstream of 
the designated transcription termination site in senescent cells, and extending to 
generate an antisense to the next gene located in the opposite strand of the 
convergent gene pair. We confirmed the RNA-seq data at two of such 
convergent loci. An RNAi based approach revealed that at least two of these 
transcripts are generated by transcriptional read-throughs.  Hence we designated 
such pervasive transcripts as Senescence Triggered Antisense Read-through 
Transcripts (START).  Importantly, we further found that the two STARTs for 
which we performed in depth studies repress the expression of the gene for 
which they are antisense. Finally, we demonstrate that the histone variant H2A.Z 
suppresses the accumulation of STARTs in proliferative cells. Since it also 
prevents senescence induction, this suggests that expression of START is 
important for cellular senescence. This has lead us to propose a model that 
human cells undergoing OIS are associated with loss of H2A.Z that leads to the 
wide spread accumulation of read-through transcripts owing to impaired 
termination control. 


