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јھد دϔت ϴف بـر آЫش ͙واўد کـه ̶˘ت
ϼࠢد سـرگـرم را ΄ود Μ˪قاز بـرف پـر ھای Ϸوه یاد با و

ϼࠢد ϼࠢد گارنگ رن ھای ϒ˫۰ه یاد با را گـرВنҋی ܟ܃ز ͗غ یا
غڤࠣد فـرو ماه دی بـرف در بـرՌЇه یا

ЪیاўدЯࠠد Ѣ̙وز آΟتاب بـه و
϶س ھیچ ϶س ھیچ نـه

Цیاورد تاب ای خاطـره Кنان بـه را Ӑܦی Кۍؑن
̶ۡ˘ت ھا Уدی درمان ھا ΄وҍی Иیال کـه اպن از

افـزاџد. ҆ی آјھا زҎГی بـر Кࠢدان صد بՐ̍ه

Շ̖ξه ای اϯ҈ی ͫۚؑن تـرՏρه دوم، رеچارد ش˶ܾۚ܃ر، -ویڤ͇م

O, who can hold a fire in his hand
By thinking on the frosty Caucasus?
Or cloy the hungry edge of appetite
By bare imagination of a feast?
Or wallow naked in December snow
By thinking on fantastic summer’s heat?
O, no! the apprehension of the good
Gives but the greater feeling to the worse:
Fell sorrow’s tooth doth never rankle more
Than when he bites, but lanceth not the sore.

-William Shakespeare, Richard II





Delneveshteh
A curtain is falling while another one going up, new players step into the scene,
novel stories are awaiting to be narrated. Whose turn is it? Who are the spectators?
Those who know the answers need not to play, the ones do not know are doomed
to go on forever while carrying a cumbersome burden on shoulders. What is being
considered as an achievement is nothing but a hoax to deny the pain of burdens.
The hoax is named success by people who want to call themselves persistent. Now
what if one wants not to carry on? Any compensation? Well, you either move
simply to a more complicated game or disappear forever. Though we all vanish in
the dark eventually, there is always a bigger game, here or there, a bigger story in
another universe that mention us, you and me. We are not persistent, we are the
gamblers who gamble with ourselves and bet on everything, everyday, everywhere,
and what we win is nothing meaningful, but the very thing we call it life.

The mathematics if not more sophisticated than life, I confess, is not less. The
analogy mentioned above is still valid to my eyes nevertheless I am about, with all
regrets, to tell you part of my story here, with pictures being polished and burdens
being eliminated. What are included in the forthcoming chapters whether being
called success or failure, pain or pain killer, are the outcome of forty three months
mathematical journey under the eyes of Boban Veličković, whom I would like to
express my deepest and sincerest acknowledgment and regards. Thank you Boban
for all the invaluable things you taught me, for taking my hand like a kid’s in the
dry desert of forcings with side conditions. Thank you for pulling me back from
following the mirages promising me a paradise; thank you for putting my feet on
the earth when my dreams were to fly me up to the stars shining brightly above.

In the course of my PhD, I had chance to meet or become friend with many
wonderful people in Paris, in particular in the Sophie Germain building. My mind
is currently too far from the universe, and so I am afraid that my memory cannot
compute the long list of your names correctly, so I thank you all at once; thank you
very much for being there!

My grateful thanks go to Djavid, Hassan, Mahsa, Mostafa and Parisa for being
always available to talk about everything, for their encouragements and consolations.
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My special thanks go to Mohammad for being always kind enough to discuss
about math and to answer my questions, and for pointing out many typos in my
thesis as well. I would like to offer my sincere thanks to Shahram for all the amazing
things that I learned from him in our discussions. I thank my high school math
teacher Mr. Rashvand who was an inspiration to me.

My indescribable thanks go to my father and my beloved sister Azadeh, and
to Fati’s parents as well; I have been feeling your love constantly during the days
passed far from you. While writing this, I was thinking how marvelous would it be
if I had been able to dedicate the rest about you, Fati, but miserably, the words will
shatter under my love for you. I can thereby do nothing, but leave this Delneveshteh
open to let all the potential blank pages ahead be reserved for my true love and my
thanks to you



Abstract

This thesis concerns forcing iterations using virtual models as side conditions. The
ultimate goal of such techniques is to achieve a higher forcing axiom. In the first
chapter, we present the necessary materials, including definitions and lemmata for
the later chapters. The chapter two contains the scaffolding poset which is a warm-
up for the later constructions. The notion of a virtual model and its properties are
introduced and investigated extensively in the third chapter, where we also study
how the virtual models of different types interact. We then introduce, in the fourth
chapter, the forcing notion consisting of pure side conditions which are finite sets of
countable virtual models and Magidor models. In the chapter five, we plug forcings
in our construction from the fourth chapter to form an iteration using virtual mod-
els, we analyze properties of our iteration and its quotients by Magidor models such
as the ω1-approximation. The iteration indeed gives a forcing axiom for a certain
class of proper forcings which is compatible with 2ℵ0 > ℵ2. The chapter six is de-
voted to the study of guessing models and their specialization, we introduce certain
combinatorial principles in terms of guessing models which can be considered as con-
sequences of a higher forcing axiom. We shall show their consistency and state their
consequences concerning the approachability ideal, Abraham’s maximality principle
etc.

Keywords

Approachability ideal, Approximation property, Forcing axiom, Forcing iteration,
Guessing model, Higher forcing axiom, Magidor model, Maximality principle, Su-
percompact cardinal, and Virtual model.

7



8

Nouvelles Méthodes d’Itération de Forcing
et Applications

Résumé

Dans cette thèse on considère l’itération de forcing en utilisant des modèles
virtuels comme conditions latérales. Le but ultime de ces techniques est de trou-
ver un axiome de forcing supérieur. Dans le premier chapitre, nous présentons les
matériaux nécessaires, y compris les définitions et les lemmes pour les chapitres
suivants. Le deuxième chapitre contient quelques constructions avec des conditions
latérales appelées scaffolding poset; c’est un échauffement pour les constructions
compliquées des chapitres suivants. La notion de modèle virtuel et ses propriétés
sont introduites et étudiées en détail dans le troisième chapitre, où nous étudions
également la manière dont les modèles virtuels de différents types interagissent.
Nous introduisons ensuite dans le chapitre quatre la notion de forcing qui consiste à
les conditions latérales pures qui sont des ensembles finis de modèles dénombrables
et de modèles Magidor. Dans le chapitre cinq, nous avons intégré des forcings dans
la construction du chapitre quatre pour former une itération, nous analysons les
propriétés de l’itération et de ses quotients par des modèle Magidors, par exemple
la propriété de ω1-approximation. L’itération donne en effet un axiome de forcing
pour une certaine classe de forcings propres qui est compatible avec 2ℵ0 > ℵ2. Le
dernier chapitre est consacré à l’étude des modèles d’estimation, nous introduisons
certains principes combinatoires en termes de modèles de devinettes qui peuvent être
considérés comme les conséquences d’un axiome de forcing supérieur. Nous mon-
trons leur cohérence et énonçons leurs conséquences concernant l’idéal des points
approchables, le principe de maximalité d’Abraham etc.

Mots-clés

Idéal des points approchables, Propriété d’approximation, axiome de forcing, itéra-
tion de forcing, Guessing model, axiome de forcing supérieur, Modèle Magidor,
Principe de Maximalité, Cardinal supercompact, et Modèle virtuel.
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Introduction
Motivation

In the late 60s and early 70s, the seminal contributions of Martin, Solovay and
Tennenbaum [20, 32] towards the Suslin Hypothesis uncovered two closely related
phenomena in Set Theory, forcing axioms and forcing iterations. Martin’s axiom
(MA), the Proper Forcing Axiom (PFA) and Martin’s Maximum (MM) are cele-
brated examples of forcing axioms. Martin’s Maximum gives a very satisfactory and
detailed structural analysis of Hω2 . It is very desirable to move on to Hω3 or even
bigger initial segments of the set theoretical universe. This is the main motivation
for studying higher forcing axioms. The main problem we encounter in this project
has to do with our ability to iterate forcings in a large class of forcings while staying
in the same class. The main techniques of iterating forcing are countable support
and revised countable support iterations, both developed by Shelah [31] over the
last 30 years. These iterations preserve ω1 but not necessarily ω2 and the strong
forcing axioms (e.g. PFA and MM) one obtains typically imply that the continuum
is equal to ω2. It is an outstanding open problem to develop analogs of these iter-
ation techniques which allow us to preserve ω1, ω2, or even more, and thus obtain
higher cardinal versions of strong forcing axioms. In this thesis we aim to step in
this research landscape.

Forcing with Side Conditions

Using models as side conditions in forcing constructions dates back to the work of
Todorčević [34] in the 80th. Since then set theorists employed this idea to make nice
forcing constructions, notably Mitchell [22] and Friedman [13] made independently
a breakthrough in Set Theory by showing that one can add clubs in ℵ2 with finite
conditions. In 2014, Neeman [27] introduced set theorists to an elegant and general
framework to utilize models as side conditions in forcing constructions. In particular,
he could reprove the consistency of PFA via an iterated forcing with finite support.
This prompted experts to speculate that might a higher forcing axiom exist. His
approach allows us to decouple the preservation of cardinals from the size of the
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supports in the iteration and reduce the problem to finding a suitable condition on
the type of chains of models one uses in the side condition. This approach can be
useful not only for iterating proper forcings but also for adding large objects by a
single forcing.

In 2015, Veličković discovered the notion of a virtual model and employed those
models as side conditions to build an iteration of semi-proper forcings with finite
supports. Virtual models are very powerful and seem to be very well-behaved in
the design of forcing iterations. Using this type of models as side conditions allows
us not only to generalize Neeman’s iteration theory to semiproper forcing, but also
to formulate and prove iteration theorems for certain classes of forcing notions pre-
serving two uncountable cardinals, such as ω1 and ω2. This theory was presented in
[37] and [38]. In this thesis we adapt the pure side condition forcing from [38] to two
types of models, but replacing models of size ω1 by models having a strong closure
property that we call Magidor models (see Definition 3.2.16), or more precisely κ-
Magidor models, where κ is a supercompact cardinal. We then use the forcing with
pure side conditions as the skeleton of our iteration.

Suppose that A is a transitive model satisfying ZFC, e.g A = (Vλ,∈, . . . ), where
λ is an inaccessible cardinal. A virtual model (see Definition 3.2.3) is, roughly
speaking, an elementary submodel of an elementary extension of some initial segment
of A, and thus they are not, in general, elementary in A, but they are correct about
elementarity to some extent. There are two central notions in the theory of virtual
models, namely ∈α and 'α which replace the ordinary ∈-relation and isomorphism,
where α is an ordinal in A so that Aα ≺ A. This construction is too broad in the
sense that we can use different hierarchies of the universe or require more properties
about virtual models, once it is constructed we can think about the properties needed
for the ∈α-chains, such as closure properties, or decorations etc. This is the main
subject of §3, where we introduce the notion of a virtual model, and state a number
of properties of them, mostly those properties we need for our applications. We also
introduce the notion of a κ-Magidor model inspired by Magidor’s characterization
of a supercompact cardinal κ. In order to require some degree of closure in side
condition components, we introduce the notion of the meet between a countable
model and κ-Magidor models (see Definition 3.2.26) to compensate the absence of
the intersections, and simply in a few words, we prepare the ground for our later
forcing constructions.

In §4, we give the definition of the pure side condition forcing whose conditions
are finite collections of virtual models closed under the meets, and so that at each



13

level α of the construction they form an ∈α-chain. We will be also able to decorate
these conditions in order to add clubs to ω2 or in general to add continuous objects
in generic extensions. This device, introduced by Neeman [27], consists of attaching
to each model M of an ∈-chain a finite set dp(M) which belongs to all models N

of the chain such that M ∈ N . In a stronger condition this finite set is allowed to
increase. The main point is that dp(M) controls what models can be added ∈-above
M in stronger conditions. In our situation there are some complications since we
have not ∈-chains, but certain ∈α-chains. Moreover, decoration should not intervene
in the α-isomorphism. This imposes a subtle interplay between the decorations on
different levels.

We are then ready to construct the building upon our skeleton in §5. We focus
on the iteration where we use the pure side condition forcing obtained in §4 to
iterate certain proper forcings. In [4], Asperó and Mota defined the notion of an
ℵ1.5-c.c forcing, and studied the consistency of a generalized Martin’s axiom called
MA1.5

λ . One important consequence of this forcing axiom is the failure of Moore’s
0 principle. The principle 0 states that there is a sequence (fξ)ξ∈ω1 of continuous
functions fξ : ξ → ω such that for every club C ⊆ ω1, there is some ξ ∈ C so that
for each k < ω, f−1

ξ (k) ∩ C is unbounded in C ∩ ξ. The weak variations of this
principle are 0n, where n ≥ 2 is a natural number, which are obtained similarly by
replacing ω with n. It is not known if the failure of the weakest one, namely 02,
is consistent with continuum bigger than ℵ2. In this thesis we shall introduce the
notion of a structured ℵ1.5-c.c forcing (Definition 1.4.4) where instead of arbitrary
finite collections of countable models in the definition of an ℵ1.5-c.c forcing, we
allow it contains models of size ℵ1, but the collections form ∈-chains that are closed
under intersection. We show that the corresponding forcing axiom is consistent (see
Theorem 5.1.20). In fact we start with large cardinals κ < λ and iterate structured
ℵ1.5-c.c forcings using virtual models of two types as side conditions. It is shown that
the resulting forcing is proper and λ-c.c, preserves κ and makes κ = ℵ2 and λ = ℵ3.
Furthermore, if each iterant has the ω1-approximation property, then each level of
the iteration has also the ω1-approximation property that is if every countable subset
of a given set of ordinals in generic extensions is in the ground model, then that set
is also in the ground model. In certain applications such as those in §6 we would
like to transfer a property of large cardinals to small cardinals, we have to analyze
certain quotients of the construction. One advantage of forcing with side conditions
and in particular, of our construction is that we know what the quotients are. Let
us illustrate the situation by an example. For example the κ-Magidor models have
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the strongest approximation property and we cannot expect such a property for
accessible cardinals, but yet there are weaker properties like the ω1-approximation
property which can be satisfied by accessible cardinals. In order to obtain this sort
of properties in the final extension, we have to go to an intermediate model where
κ-Magidor models still have the desirable property there, simply because κ is not
yet an accessible cardinal in such an intermediate model, and then what remains is
to show that the quotient does not kill that property. This nontechnical explanation
is called quotient by a Magidor model.

Guessing models

In [42] C. Weiß formulated some combinatorial principles that capture the essence
of some large cardinal properties, but can hold at small cardinals. These principles
usually have two parameters, a regular uncountable cardinal κ and a cardinal λ ≥ κ.
Among them there are, in increasing strength, the principles TP(κ, λ), ITP(κ, λ),
and ISP(κ, λ). We will write P(κ), if the property P(κ, λ) holds, for all λ ≥ κ. The
study of these principles was continued by M. Viale and C. Weiß in [40]. Using
them they obtained a striking result saying that any standard forcing construction
of a model of the Proper Forcing Axiom (PFA) requires at least a strongly compact
cardinal. One important concept that emerged from this work is that of a guessing
model. These models have generated considerable interest and have a number of
interesting applications, see for instance [39], [7], [8], and [35].

Given the interest of these principles, it is natural to ask if they can hold simul-
taneously at several successive regular cardinals. In this direction L. Fontanella [10]
extended the previous work of U. Abraham [2] to obtain, modulo two supercompact
cardinals, a model of ZFC in which ITP(ω2) and ITP(ω3) hold simultaneously. This
was later extended by Fontanella [11] and Unger [36] who generalized the result of
Cummings and Foreman [9] to get a model of ZFC in which ITP(ωn) holds, for all
n ≥ 2. Now, it was shown in [42] that ISP(ω2) is strictly stronger than ITP(ω2). In
fact, in the model constructed by B. König in [17], the principle ITP(ω2) holds, but
ISP(ω2) fails. One can then ask if ISP(ω2) and ISP(ω3) can hold simultaneously, or
more generally if there is a models of ZFC in which the principles ISP(ωn) hold, for
all n ≥ 2. Let us point out that in [35] Trang showed the consistency of ISP(ω3).
However, in his model CH holds, and therefore the principle ISP(ω2) fails.

One concept closely related to the above principles is that of the approachability
property on a regular uncountable cardinal λ and the associated ideal I[λ]. These
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notions were introduced by Shelah implicitly in [28], and studied by him extensively
over the past 40 years. For instance, in [29] he showed that if λ is a regular cardinal
then S<λ

λ+ ∈ I[λ+], and in [30] he showed that if κ is regular and κ+ < λ then I[λ]

contains a stationary subset of Sκ
λ . Shelah then asked in [29] if it is consistent to

have a regular λ such that I[λ+] � Sλ
λ+ is the non stationary ideal on Sλ

λ+ . This
major question was finally answered by W. Mitchell [23]. He started with a cardinal
κ that is κ+-Mahlo, and built an involved forcing construction yielding a model in
which I[ω2] � Sω1

ω2
is the non stationary ideal on Sω1

ω2
. One feature of his construction

is that it uses �κ in the ground model, and so ω3 ∈ I[ω3] in generic extensions. It
is therefore unclear if Mitchell’s method can be adapted to obtain a model in which
both I[ω2] � Sω1

ω2
and I[ω3] � Sω2

ω3
contain only non stationary sets. The connection

with the principles introduced by Weiß is the following. If κ is a regular uncountable
cardinal then ISP(κ+) implies that there is a stationary subset of Sκ

κ+ that is not in
I[κ+], but it does not imply Mitchell’s result. The main purpose of this thesis is to
formulate and show the relative consistency of a principle that we call GM+(ω3, ω1).
This statement implies ISP(ω2) and ISP(ω3) and hence the tree property at ω2 and
ω3. It also implies Mitchell’s result, namely that I[ω2] � Sω1

ω2
= NSω2 � Sω1

ω2
(see

Proposition 6.1.5). The last chapter of the thesis is devoted to the study of the
above-mentioned principles and their variations. Let us state our first theorem in
this chapter Theorem 6.2.1.

Theorem. Suppose that κ < λ are supercompact cardinals. Then in a generic
extension κ = ω2, λ = ω3, and GM+(ω3, ω1) holds.

In fact for Mitchell’s result we do not need the full strength of the principle
GM+(ω3, ω1), a weaker principle FS(ω2, ω1) suffices. In order to obtain FS(ω2, ω1)

it is enough to assume that λ is just inaccessible.
In [8], Cox and Krueger studied the indestructible version of ISP(ω2) or in our

terminology GM(ω2, ω1). They showed that it is consistent (even with the continuum
being arbitrarily large) that for every θ sufficiently large there are stationary many
indestructible ω1-guessing models of size ℵ1 in Hθ. They also gave some applications
of their principle in particular the fact that it implies the Suslin Hypothesis and
hence it does not follow from GM(ω2, ω1). To each ω1-guessing models of size ℵ1,
they correspond a tree of size and height ω1 with ω1 many branches and show that the
tree is weakly special if and only if the ω1-guessing model is indestructible meaning
that it remains ω1-guessing in any generic extension with the same ω1. We continue
this line of research and study the specialization of internally club models. In fact



16

we show that the indestructible version of our GM+(ω3, ω1), say SGM+(ω3, ω1), is
consistent modulo two supercompact cardinals, see Theorem 6.3.1.

Theorem. Suppose that κ < λ are supercompact cardinals. Then in a generic
extension. κ = ω2, λ = ω3, and SGM+(ω3, ω1) holds

Todorčević showed in [33] that, under some reasonable cardinal arithmetic as-
sumption, if every tree of size and height ℵ1 with at most ℵ1 cofinal branches is
weakly special, then every forcing which adds a new subset of ω1 whose initial seg-
ments belong to the ground model either collapses ω1 or ω2. Let us denote this
consequence by AMP(ω1). This principle and its variations studied extensively by
Golshani and Shelah in [15], where they showed, among other things, that for ev-
ery regular cardinal κ, one can force a model of AMP(κ+). However, it was not
known if one can have it for several cardinals simultaneously. The following gives
as a corollary that AMP(ω1) and AMP(ω2) are consistent simultaneously, see The-
orem 6.1.16.

Theorem. Suppose that V ⊆ W are transitive models of ZFC. Assume in V ,
SGM+(ω3, ω1) , 2ℵ0 < ℵω1 and 2ℵ1 < ℵω2 hold. Suppose that W has a new subset of
ℵV
2 . Then either W contains a real which is not in V or some cardinal ≤ 2ℵ1 in V

is no longer a cardinal in W .

We discussed briefly the contents of §3-§6. In the first chapter we introduce our
notation and bring some lemmata and material needed for the rest of the thesis. In
§2, we discuss two scaffolding posets of a forcing notion, one with chains of countable
models as side conditions and the other with chains of two types models. This is the
heart of our main constructions, and we expect it prepare the reader in dealing with
virtual models in our forcing constructions. There are three appendices, the first one
contains a diagram expressing the logical relation between the principles discussed
in the last chapter, the second one is a forcing construction with finite conditions to
force an instance of the Mapping Reflection Principle which somehow resembles the
scaffolding construction from §2, and finally the last one contains open problems
related to the content of this thesis.

Most of the results in this thesis are obtained in collaborations with the thesis
supervisor Boban Veličković, [25, 24].



Chapter One

Preliminaries

This chapter is devoted to the basic materials we need in the chapters ahead. We
first fix our notation.

We consider ZFC as our basic theory though we will work internally with some
other set theories. By a model M we mean a set or a class such that (M,∈) satisfies
a sufficient fragment of ZFC. For a model M , we let M denote its transitive collapse
and we let πM be the collapse map. We let ORD denote the class of ordinals, and
whenever M is a model, we let naturally ORDM denote the collection of ordinals
of M . For a set of ordinals C, otp(C) denotes the order type of C. For a set X

and a cardinal κ, we let Pκ(X) denote the set of all subsets of X with size less than
κ. We say that a subset S of Pκ(X) is stationary if, for every function (algebra)
F : [X]<ω → Pκ(X), there exists A ∈ S closed under F (i.e F (a) ⊆ A for every
a ∈ [A]<ω). For regular1 cardinals κ < λ, Sκ

λ denotes the set {α < λ : cof(α) = κ}
and NSλ denotes the nonstationary ideal on λ. For a cardinal θ we let Hθ denote
the collection of all sets whose transitive closure has size less than θ. If p and q are
two forcing conditions, then by p ≤ q we mean p is stronger than q. If P and Q are
two forcings, we say that P is a complete suborder of Q and write P ⊆c Q if P is a
subset of Q, and that every maximal antichain in P is a maximal antichain in Q.

1.1 Approachability Ideal
The approachability property on a regular uncountable cardinal λ and the associated
ideal I[λ] were introduced by Shelah implicitly in [28], and studied by him extensively
over the past 40 years. For instance, in [29] he showed that if λ is a regular cardinal

1In this thesis, the term ”regular cardinal” always means regular infinite.

17
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then S<λ
λ+ ∈ I[λ+], and in [30] he showed that if κ is a regular cardinal such that

κ+ < λ then I[λ] contains a stationary subset of Sκ
λ . Let us first recall the relevant

definitions from [29].

Definition 1.1.1. Let λ be a regular cardinal. A λ-approaching sequence is a λ-
sequence of bounded subsets of λ. If ā = 〈aξ : ξ < λ〉 is a λ-approaching sequence,
we let B(ā) denote the set of all δ < λ such that there is a cofinal subset c ⊆ δ with
the following properties.

1. otp(c) < δ.

2. for all γ < δ, there exists η < δ such that c ∩ γ = aη.

Definition 1.1.2. Suppose that λ is a regular cardinal. Let I[λ] be the ideal generated
by NSλ and the sets B(ā), for all λ-approaching sequences ā.

It is straightforward to check that I[λ] is a normal ideal on λ, but it may be
non proper. I[λ] is called the approachability ideal on λ. Shelah asked in [29] if it is
consistent to have a regular λ such that I[λ+] � Sλ

λ+ is the non stationary ideal on
Sλ
λ+ . This major question was finally answered by W. Mitchell [23] in the affirmative

from the optimal assumption.

Theorem 1.1.3 (Mitchell, [23]). Assume that κ is a κ+-Mahlo cardinal. Then there
is a generic extension in which I[ω2] � Sω1

ω2
= NSω2 � Sω1

ω2
.2

For convenience, let us define the Mitchell Property as follows.

Definition 1.1.4. For a regular cardinal λ, the Mitchell Property at λ+, denoted by
MP(λ+), holds if the approachability ideal on λ+ is the nonstationary ideal modulo
Sλ
λ+.

The following is a well-known fact.

Fact 1.1.5. Suppose that λ is a regular cardinal. MP(λ++) implies 2λ ≥ λ+++.

Proof. Suppose that 2λ ≤ λ++ and let ā = 〈aξ : ξ < λ++〉 be an enumeration of
[λ++]≤λ. Then the set B(ā) belongs to I[λ++] by definition, but it is easy to see
that the set of δ ∈ B(ā) of cofinality λ+ is stationary, which contradicts MP(λ++).

1.1.5

2 It is worth mentioning that the large cardinal assumption is optimal. The result is is due to
Mitchell and Shelah, independently. A proof can be found in [21].
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1.2 Models and Approximation Property
Unless otherwise stated, we assume |M | ⊆ M whenever M ≺ Hθ.

Definition 1.2.1. Suppose that M is a model of size ℵ1.

1. M is called an internally unbounded model (IU-model) if M is the union of an
∈-increasing sequence 〈Mξ : ξ < ω1〉 . Such a sequence is called an IU-sequence
for M .

2. M is called an internally club model (IC-model) if there is a continuous IU-
sequence for M . In this case, the sequence is called an IC-sequence for M .

Notice that if M is a countable elementary submodel of Hθ, and N ∈ M is an
IC-model, then by elementarity there exists, in M , an IC-sequence 〈Nξ : ξ < ω1〉 for
N . It is easy to see that N ∩M = Nδ where δ = M ∩ ω1. In particular, this shows
that N ∩M ∈ N , and that one can always thin out such a sequence to obtain an
IC-sequence consisting of elementary submodels of N .

For a set or class M we say that a set x ⊆ M is bounded in M if there is y ∈ M

such that x ⊆ y. We now recall some relevant definitions from [39].

Definition 1.2.2. Let γ be a regular cardinal. A set M is said to be γ-guessing if
for any x ⊆ M which is bounded in M , if x is γ-approximated in M i.e x ∩ a ∈ M ,
for all a ∈ M ∩ Pγ(M), then there is some g ∈ M such that x ∩M = g ∩M .

We also recall the concept of the γ-approximation property which was introduced
by Hamkins in [16].

Definition 1.2.3. Let γ be an uncountable regular cardinal. Suppose that M and N

are transitive models (sets or classes), M ⊆ N and γ ∈ M . We say the pair (M,N)

satisfies the γ-approximation property, if the following are equivalent for every set
x ∈ N which is bounded in M .

1. x ∈ M .

2. x ∩ a ∈ M , for every a ∈ M with M |= |a| < γ.

Definition 1.2.4. Let γ be an uncountable regular cardinal. Suppose that M and
N are transitive models (sets or classes), M ⊆ N and γ ∈ M . We say the pair
(M,N) satisfies the γ-covering property, if whenever x ∈ N is bounded in M and
N |= |x| < γ, there is some y ∈ M such that x ⊆ y and M |= |y| < γ.
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The above definitions are of independent interest if N is a generic extension of
M .

Definition 1.2.5. A forcing notion P has the γ-approximation property (γ-covering
property) if for every V -generic filter G ⊆ P the pair (V, V [G]) has the γ-approximation
property (γ-covering property).

It is well-known that every proper forcing has the ω1-covering property. It is
not hard to see that if two pairs (V,W ) and (W,Z) have the γ-covering property,
then (V, Z) has the γ-covering property, if in addition (V,W ) and (W,Z) have the
γ-approximation property, then (V, Z) has the γ-approximation property. Quite
recently, Krueger [18] proved that every forcing with the ω1-approximation property
has the ω1-covering property. In fact, he proved the following nice result.

Proposition 1.2.6 (Krueger, [18]). Suppose (V,W ) be a pair of transitive models
of “ZFC minus the power set axiom” with V ⊆ W . Let γ ∈ V be an uncountable
regular cardinal. Assume that for all W -cardinals µ < γ, any subset of V which is
a member of W and has W -cardinality less than µ is a member of V . If (V,W ) has
the γ-approximation property, then it has the γ-covering property.

Let us call a transitive model R powerful if it is closed under taking subsets,
i.e. if x ∈ R and y ⊆ x then y ∈ R. Cox and Krueger [7] observed that the
ω1-approximation property is connected to the notion of a guessing model.

Lemma 1.2.7. Suppose R is a powerful model, and that M ≺ R. Let also γ be a
regular cardinal in M with M ∩ γ ⊆ M . Then the following are equivalent.

1. M is a γ-guessing model.

2. The pair (M,V ) has the γ-approximation property.

1.2.7

We have the following useful corollary.

Corollary 1.2.8. Suppose that R is a powerful model. Suppose that M ≺ R is an
ω1-guessing model. Assume that P is a forcing with the ω1-approximation property.
Then, M remains an ω1-guessing model in generic extensions by P.

1.2.8
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The above corollary says that the ω1-guessing models are indestructible under
forcings with the ω1-approximation property, and hence it leads to the question that
to what extent we can have such indestructibility. The notion of an indestructible
guessing model was introduced and studied by Cox and Krueger in [8]. Recall that
a tree (T,<) of size and height ω1 is weakly special if there is a function σ : T → ω

such that if σ(r) = σ(s) = σ(t) with r < s, t, then s and t are <-comparable. It is a
well-known fact (see [5] and [6] ) that if (T,<) is a tree of size and height ω1 with
at most ℵ1 many cofinal branches, then there is a c.c.c forcing B(T ) of size ℵ1 with
the ω1-approximation property so that T is weakly special in generic extensions by
B(T ). There is a stronger version of specialization which is suitable for trees without
cofinal branches, that is a function σ : T → ω so that if s < t, σ(s) 6= σ(t), if such
a function exists we say T is special. Notice that if T has no cofinal branches then
it is special if and only if it is weakly special. It turns out that if every tree of size
and height ℵ1 without cofinal branches is special, then every tree of size and height
ω1 with at most ℵ1 many cofinal branches is weakly special. As a matter of fact,
the above mentioned forcing B(T ) can be sued to specialize a definable (modulo the
enumeration of the cofinal branches through T ) tree T ∗ ⊆ T which has no cofinal
branches i.e forcing with B(T ∗) weakly specializes T . Notice that no forcing with
the ω1-approximation property is able to add a new cofinal branch through a tree
of height ω1. We need the following lemma from [18].

Lemma 1.2.9. Suppose that R is a powerful model. If M ≺ R is an ω1-guessing
model of size ℵ1, then M is internally unbounded.

1.2.9

Definition 1.2.10. Let M be a set. We set

TM = {(Z, f) : Z ∈ M is uncountable and f : Z ∩M → 2}.

Definition 1.2.11. Suppose that M is an ω1-guessing IU-model. Let 〈Mξ : ξ < ω1〉
be an IU-sequence. Let T (M) =

∪
ξ<ω1

(TMξ
∩M). Let us define the ordering ≤ on

T (M) be letting (Z, f) ≤ (W, g) if and only if Z = W and f ⊆ g.

Notice that the definition of T (M) depends on the IU-sequence, but we ignore
this point as it will not lead to confusion.

Lemma 1.2.12. Suppose that M is an ω1-guessing IU-model. Then (T (M),≤) is
a tree of size and height ω1 with ℵ1 cofinal branches.
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Proof. It is clear that T (M) is of size ℵ1 since T (M) ⊆ M . By the monotonicity
of the IU-sequence and the fact that it is an ∈-chain, the predecessors of any node
in the tree forms a well-ordered set. On the other hand since the length of an IU-
sequence is ω1, T (M) is of height ω1. Any cofinal branch through T (M) induces a
countably approximated function f on Z ∩M for some uncountable set Z ∈ M , but
then since M is an ω1-guessing, there is f̄ ∈ M such that f̄ �M= f . There are ℵ1

many such functions in M , and hence M has ℵ1 cofinal branches. 1.2.12

Definition 1.2.13 ([8]). We say that an ω1-guessing model M is indestructibly
ω1-guessing if the corresponding tree T (M) is weakly special.

To justify the term indestructibly ω1-guessing model, we notice that if M is an
indestructibly ω1-guessing model in V , and that W is an extension of V with the
same ω1, then M remains ω1-guessing in W , simply because there is a witness for
the weak specialization of T (M) in W .

Lemma 1.2.14. Suppose that V ⊆ W are two transitive models of ZFC with the
same ℵ1. Assume that M is an indestructibly ω1-guessing model. Then M is a
guessing model in W .

Proof. We show that there can be no new cofinal branches through T (M) in W .
Working in W , suppose that Z ∈ M and f : Z → 2 is a function which is countably
approximated in M . We shall show that f �M is guessed in M . Let tξ = (Z, f �Mξ

).
Since M is indestructibly guessing in V , there is a weak specialization σ on T (M).
Thus there are n ∈ ω and some unbounded set S ⊆ ω1 such that for every ξ ∈ S,
σ(tξ) = n. Fix one ξ ∈ S. Working now in V , f �M can be reconstructed from
{t ∈ T (M) : t ≥ tξ and σ(t) = n}. Thus f �M belongs to V . Now in V , M is
an ω1-guessing model and that f �M is countably approximated in M , thus f �M
should be guessed in M . 1.2.14

Let us now introduce a somewhat stronger version of the indestructibility of an
ω1-guessing model.

Definition 1.2.15. Suppose that M is an IC-model. Let (Mξ)ξ<ω1 be an IC-sequence
for M . Consider the above-defined tree T (M) based on the sequence (Mξ)ξ<ω1. We
say that M is a special model if there is a function σ : T (M) → ω such that if
(Z, f) ≤ (W, g) are in T (M) with σ(Z, f) = σ(W, g) and (Z, f) ∈ TMξ

for some
ξ < ω1, then f is guessed in Mξ.
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We can consider such a function σ as a specializing function of M , and the former
one as a weak specializing function of M .

Lemma 1.2.16. Suppose that M is a special model. Then M is ω1-guessing.

Proof. Suppose that σ is a specializing function of M . Let f : Z ∩ M → 2 be
countably approximated in M , for some uncountable Z ∈ M . Let tξ = (Z, f �Mξ

).
We have that tξ ∈ T (M), for every ξ < ω1. Now, there exists n ∈ ω such that the
set S = {ξ < ω1 : σ(tξ) = n} is stationary. Since tξ < tη for every ξ < η in S, there
is, for each ξ ∈ S, some function f̄ξ ∈ Mξ such that f̄ξ �Mξ

= f �Mξ
, but then since

M is an IC-model, by Fodor’s lemma, there is a stationary set T ⊆ S and a function
f̄ ∈ M so that for every ξ ∈ T , f̄ξ = f̄ . This easily implies that f �M= f̄ �M , and
thus f is guessed in M . 1.2.16

It is clear that if M is a special model, then in any extension with the same ω1, it
remains an ω1-guessing model. The point is that, in contrast to indestructibility, we
did not assume that M is a guessing model, however notice that if M is not an ω1-
guessing model, then T (M) can have more than ω1 cofinal branches. On the other
hand, if M is not ω1-guessing, it can never turn into an ω1-guessing model in an outer
extension, but let us point out that we can specialize an ω1-guessing IC-model using
the previously mentioned Baumgartner’s forcing. Suppose that M is an ω1-guessing
model, and let T ∗(M) ⊆ T (M) be the tree consisting of (Z, f) ∈ TMξ

such that f

is not guessed in Mξ. Then T ∗(M) has no cofinal branches as M is an ω1-guessing
model. If σ∗ is a specialization function on T ∗(M), then it can induce a function
σ : T (M) → ω by letting σ(Z, f) = 0 if (Z, f) /∈ T ∗(M), and σ(Z, f) = σ∗(Z, f) + 1

if (Z, f) ∈ T ∗(M). It is clear that σ is a witness for M being a special model. Thus,
forcing with B(T ∗(M)), makes M a special model.

We now state a series of lemmata for later use.

Lemma 1.2.17. Suppose that P ∈ Hθ is a forcing notion with the ω1-approximation
property. Suppose that M ≺ Hθ is countable and contains P. Let f : M ∩ Z → 2

be a function which is not guessed in M , where Z ∈ M . If p ∈ P is (M,P)-generic,
then

p  ‘‘f̌ is not guessed in M [Ġ].”

Proof. Let G be a V -generic filter on P containing p. Assume towards a contradiction
that g ∈ M [G] is a function such that g �M [G]= f . Thus for each countable set
x ∈ M [G] ∩ V = M , g �x= f �x∈ V , and hence by elementarity, g is countably
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approximated in V , and thus g is in V by the ω1- approximation property of P.
Since p is (M,P)-generic and belongs to the generic filter G, g should be in M , and
that also f �M= g �M . Thus f is guessed in M , which is a contradiction. 1.2.17

Lemma 1.2.18. Suppose P is a forcing notion. Assume that ḟ is a P-name for a
function form Z to 2. Suppose that M is a model containing ḟ and Z. Let p ∈ P be
an (M,P)-generic condition. Suppose that p forces that ḟ �M= g, for some function
g : M ∩ Z → 2 in V . If g is guessed in M , then p decides ḟ .

Proof. Suppose that h ∈ M is a function such that h �M= g, we shall show that
p  ḟ = ȟ. Thus fix q ≤ p. Assume towards a contradiction that there is no
condition below q forcing ḟ = ȟ. Thus the following set is pre-dense below q which
belongs to M .

D = {r ∈ P : ∃ζ ∈ Z such that r  ȟ(ζ) 6= ḟ(ζ)}.

Since q is (M,P)-generic, we can find r ∈ D ∩M compatible with q. Thus there
exists ζ ∈ M ∩ Z such that r  ḟ(ζ) 6= ȟ(ζ) = ǧ(ζ) which is contradictions as r is
compatible with q and that q forces ḟ(ζ) = ǧ(ζ). 1.2.18

Lemma 1.2.19. Suppose that M ≺ Hθ is countable, and N ∈ M is an ω1-guessing
model. Assume that f : M ∩ Z → 2 is a function for some Z ∈ N ∩M such that
f �N∩M is in N . If f is guessed in M , then f �N∩M is guessed in N ∩M .

Proof. Suppose f̄ : Z → 2 in M is such that f̄ �M= f �M . For every countable
set z ∈ N ∩ M , f̄ �z= f �z∈ N ∩ M since f �N∩M∈ N and f̄ ∈ M . Therefore, f
is countably approximated in N by the elementarity of M . Using the elementarity
once more, there exists a function g ∈ N ∩ M such that g �N= f̄ �N , but it then
implies that g �N∩M= f �N∩M , and therefore, f �N∩M is guessed in N ∩M . 1.2.19

We now state a crucial lemma which reminisces the crux of the Baumgartner’s
argument in [5], regarding the countable chain condition of his forcing for specializing
trees of size and height ℵ1 without cofinal branches.

Lemma 1.2.20. Assume that M ≺ Hθ is countable, and that Z is a set in M .
Suppose that z 7→ fz is a function on [Z]ω in M such that fz is a function with
z ⊆ dom(fz). Assume that N ∈ M is an ω1-guessing model containing Z. Let
f : N ∩M ∩ Z → 2 be a function belonging to N which is not guessed in N ∩M .
Let B ∈ M be a cofinal subset of [Z]ω. Then there is a set B∗ ∈ M cofinal in B

such that for every z ∈ B∗, fz * f .
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Proof. For each ζ ∈ N ∩ Z, let

Aϵ
ζ = {z ∈ B : fz(ζ) = ϵ}, where ϵ = 0, 1.

Notice that the sequence

〈Aϵ
ζ : ζ ∈ N ∩ Z, ϵ ∈ {0, 1}〉

belongs to M . We are done if there is some ζ ∈ Z∩N such that both A0
ζ and A1

ζ are
cofinal in B, as then one can find such ζ ∈ N ∩M ∩Z, and pick A

1−f(ζ)
ζ . Therefore,

let us assume that for every ζ ∈ N ∩ Z, there is an ϵ ∈ {0, 1}, which is necessarily
unique, such that Aϵ

ζ is cofinal in B. Define now h on N ∩ Z by letting h(ζ) be ϵ if
and only if Aϵ

ζ is cofinal in [Z]ω. Clearly h is in M . Lemma 1.2.19 makes sure that
f is not guessed in M , and thus h �M 6= f . Thus, there exists ζ ∈ N ∩M ∩ Z such
that h(ζ) 6= f(ζ), but it then implies that A1−f(ζ)

ζ is cofinal in B and belongs to M .
Let B∗ be A

1−f(ζ)
ζ . 1.2.20

1.3 Strong Properness
Recall that if p is a condition in a forcing P, and A is a set, then p is said to be
(A,P)-generic, if for every q ≤ p and every dense set D ⊆ P in A, there is some
r ∈ A ∩D such that q and r are compatible.

Definition 1.3.1 (S-properness). Let P be a forcing notion, and S a collection of
sets. We say that P is S-proper if, for every A ∈ S and p ∈ A ∩ P, there is q ≤ p

that is (A,P)-generic.

Suppose that θ is a sufficiently large regular cardinal and P is a forcing in Hθ.
Now, if S is a collection of elementary submodels of Hθ, then the above notion is
useful if at least S is unbounded, it is much more useful if S is stationary, and finally
it is the most useful one if S contains a club, that is P is proper.

Definition 1.3.2. A forcing notion P is called ℵ1-proper if for every sufficiently
large θ, there is some algebra F on Hθ such that P is F-proper, where

F = {M ≺ Hθ : clF (M) = M, and |M | = ℵ1}.

The notion of strong properness, introduced by Mitchell in [22], plays a key role
in our constructions later. Let us recall the following definition.
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Definition 1.3.3. Let P be a forcing notion and A a set. We say that p ∈ P is
(A,P)-strongly generic if for all q ≤ p there is a condition q �A∈ A such that any
r ≤ q �A with r ∈ A is compatible with q.

Definition 1.3.4 (Strong properness). Let P be a forcing notion, and S a collection
of sets. We say that P is S-strongly proper if, for every A ∈ S and p ∈ A∩P, there
is q ≤ p that is (A,P)-strongly generic.

A forcing notion is called strongly proper, if it is C-strongly proper, where for
some sufficiently large regular cardinal θ, C is a club in Pω1(Hθ).

If P ∈ M ≺ Hθ, it is then clear that every (M ∩ P,P)-strongly generic condition
is (M,P)-generic, and that every strongly proper forcing is proper. It turns out that
if M is sufficiently closed then every (M,P)-generic condition is (M,P)-strongly
generic condition. We learned the following fact from [14].

Proposition 1.3.5. Suppose that M is an ω-guessing model which is sufficiently
elementary in some transitive model A. Suppose that P ∈ M is a forcing. Let p ∈ P.
Then, p is (M,P)-strongly generic if and only if it is (M,P)-generic.

Proof. For the nontrivial implication, assume towards a contradiction that there is
q ≤ p such that for every r ∈ P ∩ M , there is s ∈ M with s ≤ r such that q is
incompatible with s. Therefore the following set is dense in P ∩M .

D = {s ∈ M ∩ P : s ⊥ q}.

Since D ⊆ M and that M is ω-guessing, there is D∗ ∈ M such that D∗∩M = D. By
elementarity, D∗ is dense in P. Since q is (M,P)-generic, there exists s ∈ M ∩D∗,
and hence in D, such that q and s are compatible, but this is impossible by the
definition of D. A contradiction! 1.3.5

We have also the following proposition which connects the approximation prop-
erty with strong properness.

Proposition 1.3.6. Let P be a forcing notion, and let κ be an uncountable regular
cardinal. Suppose that P is S-strongly proper, for some stationary S ⊆ Pκ(P). Then
P has the κ-approximation property.

Proof. Work in V . Let α be an ordinal, Ẋ a P-name, and suppose some condition
p ∈ P forces that Ẋ ⊆ α and Ẋ ∩ Ž ∈ V , for all Z ∈ V with |Z|V < κ. Fix a
sufficiently large regular cardinal θ. By the stationarity of S, we can find M ≺ Hθ,
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of size less than κ, containing p,P, Ẋ, and such that M ∩ P ∈ S. Let q ≤ p

be (M ∩ P,P)-strongly generic. Since M ∩ P is of size < κ, by strengthening q if
necessary, we may assume that q decides Ẋ∩M . Since q �(M∩P) and p are compatible,
and M is elementary, they are compatible in M . Therefore, by replacing q �(M∩P)

by a stronger condition in M , we may assume that it extends p. We now argue that
q �(M∩P) decides Ẋ. Otherwise, by elementarity of M , we can find ξ ∈ α ∩M and
r0, r1 ∈ M with r0, r1 ≤ q �(M∩P) such that r0 forces ξ ∈ Ẋ and r1 forces ξ /∈ Ẋ.
Now, by the (M ∩ P,P)-strong genericity of q, we have that r0 and r1 are both
compatible with q. Let s0 be a common extension of q and r0, and s1 a common
extension of q and r1. Then s0, s1 ≤ q and force contradictory information about
ξ ∈ Ẋ. This contradicts the fact that q decides Ẋ ∩M . 1.3.6

1.4 Forcing Axioms
Let us say what we mean by a forcing axiom.

Definition 1.4.1. Fix a class of forcing notions K and an infinite cardinal κ. A
forcing axiom is a set theoretical statement FAκ(K) which states that for every
forcing P ∈ K and every collection D of dense subsets of P with |D | ≤ κ, there is
a D-generic filter G on P, i.e G ∩ D 6= ∅, for every D ∈ D . The forcing axiom
FA<κ(K) is defined naturally.

We shall use K•, where • expresses in a clear way a property of forcing notions,
to point out that the class K• consist of all forcings which have the property •. Thus
FAℵ1(Kproper) and FAκ(Kccc) refer to PFA and MAκ, respectively. In [4], Asperó and
Mota studied certain generalisations of Martin’s axiom. They introduced the notion
of an ℵ1.5-c.c forcing notion which is proper and lies between c.c.c-ness and ℵ2-c.c-
ness. Their motivation behind this notion was to get the consistency of certain
consequences of PFA together with arbitrarily large continuum.

Definition 1.4.2 ([4]). Suppose P is a forcing in Hκ, where κ is a sufficiently large
regular cardinal. We say P has the ℵ1.5-chain condition (or is ℵ1.5-c.c for short) if
and only if there is a club D ⊆ Pω1(Hκ) consisting of elementary submodels of Hκ

such that for every finite set M ⊆ D and every p ∈ P, if p ∈ M for some M ∈ M
with M ∩ ω1 = min(N ∩ ω1 : N ∈ M), then there is some condition extending p

which is (N,P)-generic, for every N ∈ M.

We weaken ℵ1.5-c.c-ness to a property which is rather structural.
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Notation 1.4.3. Suppose X is in Hθ. Let M2(X, θ) consist of finite M of elemen-
tary submodels of Hθ such that:

1. M is an ∈-chain meaning that for every distinct M,N ∈ M, either M ∈ N , or
N ∈ M , or there is some P ∈ M such that either M ∈ P ∈ N or N ∈ P ∈ M .

2. Every model in M has size at most ℵ1 and contains X.

3. M is closed under intersections i.e if N ∈ M are in M, where N is of size
ℵ1, and M is countable, then N ∩M belongs to M∩N .

Definition 1.4.4. A forcing P has the structured ℵ1.5- chain condition (or is
ℵs
1.5-c.c for short), if for every sufficiently large regular cardinal κ with P ∈ Hκ

and every M ∈ M2(P, κ), if p is in P ∩ M , for some countable M ∈ M with
M ∩ ω1 = min(N ∩ ω1 : N ∈ M), then there is a condition extending p which is
(N,P)-generic for every countable model N ∈ M.

It is easily seen that every ℵ1.5-c.c forcing is ℵs
1.5-c.c. We have also the following

as in [4].

Lemma 1.4.5. Every ℵs
1.5-c.c forcing is ℵ2-c.c.

Proof. Suppose P is an ℵs
1.5-c.c. forcing. Pick a sufficiently large regular cardinal

κ such that P ∈ Hκ. Assume towards a contradiction that P is not ℵ2-c.c, and fix
a maximal antichain A ⊆ P with |A| ≥ ℵ2. Let N ≺ Hκ be an IC-model with
A,P ∈ N . Thus there is some p ∈ A \ N . Pick a countable M ≺ Hκ such that
A,P, N, p ∈ M . Then M = {N ∩ M ∈ N ∈ M} is in M2(P, κ), and p belongs
to M and M ∩ ω1 = N ∩ M ∩ ω1. By ℵs

1.5-c.c-ness, there is some q ≤ p which is
(N ∩M,P)-generic, thus there is some r ∈ A∩N ∩M , compatible with q, but since
A is an antichain and q ≤ p, we should have that r = p, and thus p ∈ N , which is a
contradiction. 1.4.5

Remark 1.4.6. Using the above lemma, one can reformulate the ℵs
1.5-c.c-ness as

follows. Suppose P is a forcing notion. Then P is ℵs
1.5-c.c if and only if for every

sufficiently large regular cardinal κ with P ∈ Hκ, every M ∈ M2(P, κ), if p is in
P ∩ M , for some M ∈ M with M ∩ ω1 = min(N ∩ ω1 : N ∈ M), then there is a
condition extending p which is (N,P)-generic for every N ∈ M.

Letting MA1.5
κ and MA1.5

<κ be FAκ(K1.5) and FA<κ(K1.5), respectively. Asperó
and Mota proved in [3] that MA1.5

<2ℵ0 is consistent with arbitrarily large continuum.
Letting also MAs−1.5

κ denote FAκ(Ks−1.5), it is clear that MAs−1.5
κ implies MA1.5

κ ,
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and hence MAκ. The forcing axiom MAs−1.5
ℵ2

is apparently stronger than MA1.5
ℵ2

, but
thus far we are not aware of any particular consequence of MAs−1.5

ℵ2
which cannot

follow from MA1.5
ℵ2

. We hope that such a structural requirement in the definition of
ℵs−1.5-c.c can help us to understand, for example, the structure of proper forcings
of size ℵ1. Let us mention some interesting consequence of MA1.5

ℵ1
which was proved

in [3].

Definition 1.4.7. The principle 0 states that there is a sequence (fξ)ξ∈ω1 of contin-
uous functions fξ : ξ → ω such that for every club C ⊆ ω1, there is some ξ ∈ C so
that for each k < ω, f−1

ξ (k) ∩C is unbounded in C ∩ ξ. The weak variations of this
principle are 0n, where n ≥ 2 is a natural number, which are obtained similarly by
replacing ω with n. It is not known if the failure of 02 is consistent with 2ℵ0 > ℵ2.

The principle 0 was introduced by Moore. In [3], Asperó and Mota showed the
failure of 0 follows from MA1.5

ℵ1
, and thus it is consistent with 2ℵ0 > ℵ2.

1.5 Large Cardinals
Recall that an inaccessible cardinal is a regular strongly limit cardinal. An inacces-
sible cardinal is called Mahlo if the set of regular cardinals below it is stationary.

We have the following characterization of Mahlo cardinals.

Fact 1.5.1 (Folklore). The following are equivalent for every uncountable regular
cardinal κ.

1. κ is Mahlo.

2. For every sufficiently large cardinal θ and all x ∈ Hθ, there is a model M ≺ Hθ

of size less than κ such that x, κ ∈ M , and letting π be the collapse map of
M , then π(κ) is inaccessible and M is closed under < π(κ)-sequences.

1.5.1

Definition 1.5.2. A model M satisfying the above properties is called a κ-Mahlo
model in Hθ.

The most important large cardinal in this thesis is the supercompact cardinal.
We will need the following well-known theorem due to Magidor.

Fact 1.5.3 (Magidor, [19]). The following are equivalent for a regular cardinal κ.
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1. κ is supercompact.

2. For every γ > κ and x ∈ Vγ there exist κ̄ < γ̄ < κ, and an elementary
embedding j : Vγ̄ → Vγ with critical point κ̄ such that j(κ̄) = κ and x ∈ j[Vγ̄].

1.5.3



Chapter Two

Warm-up

The scaffolding poset of a given forcing P was introduced by Veličković, inspired by
[27]. Given a notion of side conditions with models, the corresponding scaffolding
poset of P helps us to understand what requirements for P are sufficient in order to
carry it along an iteration using our side conditions. In this chapter we discuses and
further study the scaffolding posets using ∈-chains of models.

2.1 Scaffolding Posets

Let C be a collection of countable elementary submodels of Hθ, and let also U be a
collection of elementary IC-submodels of Hθ.

Scaffolding Poset with One Type Model

We first define the C-based scaffolding poset of P, say M(P, C), where P ∈ M for
every M ∈ C.

Definition 2.1.1. Assume that P is C-proper. A condition p in M(P, C) is a pair
p = (Mp, wp), where

1. Mp is a finite ∈-chain of models in C.

2. wp ∈ P is (M,P)-generic, for every M ∈ Mp.

We define the ordering of M(P, C) by letting p ≤ q if and only if Mq ⊆ Mp and
wp ≤P wq.

31
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If P is C-proper, then for every model M ∈ C and every condition p ∈ M , one
can find a condition pM ≤ p such that M ∈ MpM . To see this, extend wp to a
condition z so that z is (M,P)-generic. On the other hand Mp∪{M} is an ∈-chain.
Thus the condition pM defined by MpM = Mp ∪ {M} and wpM = z is a condition
extending p and that M ∈ MpM .

Theorem 2.1.2. Suppose that θ∗ > θ is a sufficiently large regular cardinal and
M∗ ≺ Hθ∗ contains the relevant objects such that M = M∗ ∩ Hθ ∈ C. Let p be a
condition such that M ∈ Mp. Then p is (M∗,M(P, C))-generic.

Proof. Assume that D ∈ M∗ is an open dense subset of M(P, C). We may assume
that p ∈ D. Set

E = {w ∈ P : ∃q ∈ D such that Mq ⊇ Mp ∩M and wq = w}.

Notice that E belongs to M , and that E ∪ E⊥ is a dense subset of P, where

E⊥ = {z ∈ P : z ⊥ w ∀w ∈ E}.

Since wp is (M,P)-generic, there is some w ∈ (E∪E⊥)∩M such that w is compatible
with wp. On the one hand, wp is in E, therefore w cannot be in E⊥, and hence it is
in E. On the one hand by elementarity, there exists q ∈ D ∩M∗ such that wq = w,
but then q ∈ M . Let Mr = Mp ∪Mq which is easily seen to be an ∈-chain. Let
also wr be a common extension of wq and wp. Therefore for every model N in Mq,
wq is (N,P)-generic. It is now clear that r = (Mr, wr) is a common extension of p
and q. Thus p is (M∗,M(P, C))-generic.

2.1.2

Let θ∗ > θ be a sufficiently large regular cardinal, and set

C∗ = {M ≺ Hθ∗ : P, θ ∈ M, and M ∩Hθ ∈ C}.

Corollary 2.1.3. Suppose P is a proper forcing. Then, M(P, C) is C∗-proper. More-
over, if C is stationary in Hθ, then M(P, C) preserves ω1, and if C contains a club,
then M(P, C) is proper.

2.1.3

Remark 2.1.4. For a V -generic filter G on M(P, C), let MG = {M ∈ Mp : p ∈ G}.
It is easily seen that MG is an ∈-chain, and that Hθ =

∪
MG, and hence M(P, C)
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collapses θ onto ω1. Moreover, if ω1 is preserved, then MG is a sequence of length
ω1. Notice that also wG = {wp : p ∈ G} generates a V -generic filter on P.

In Appendix B, we shall give a forcing construction with finite conditions, roughly
similar to the above construction, which forces an instance of the Mapping Reflection
Principle. Notice that one can use decorations on Mp, in order to add clubs in ω1.
A condition p in the decorated version of M(P, C) is a triple p = (Mp, dp, wp), where
(Mp, wp) is as before, and dp which is called the decoration is a function from Mp

to [Hθ]
<ω such that if M ∈ N are in Mp, then dp(M) ∈ N . In extensions of p, we

allow that dp(M) can be strengthened, for each M ∈ Mp. This plausible device was
introduced by Neeman in [27]. Now, let us uncover another interesting feature of
the scaffolding poset.

Scaffolding for Finite Support Product

Recall that the product of two proper forcing is not necessarily proper, even it may
not preserve ω1. The situation is totally different for strongly proper forcings.

The following is easy to prove.

Lemma 2.1.5. Assume that P and Q are forcing notions in Hθ belonging to some
M ≺ Hθ. Suppose that (p, q) ∈ P×Q. Then (p, q) is (M,P×Q)-strongly generic if
and only if p is (M,P)-strongly generic and q is (M,Q)-strongly generic.

2.1.5

It thus follows that every finite product of C-strongly proper forcings is C-strongly
proper, but it is easily seen that the finite support infinite product of C-strongly
proper forcings is not necessarily C-strongly proper. Now, if we think of a finite
support product of forcings P = Πi∈IPi, where I is an infinite set, as a forcing which
attempts to add generics for every finite subproduct of P, then using a scaffolding-
like construction we can roughly say that the finite support product of C-strongly
proper forcings is C-strongly proper. In fact, we build a scaffolding poset suitable for
the finite support product so that in generic extensions it adds generics, for every
finite product of forcings in 〈Pα : α < κ〉, over the ground model while enjoying nice
properties of the extension such as preservation of ω1 and the ω1-approximation
property.

Definition 2.1.6. Let κ be a cardinal. Suppose 〈Pα : α < κ〉 is a sequence, in Hθ,
of C-strongly proper forcings. Let P be the finite support product of 〈Pα : α < κ〉. A
condition p in M((Pα)α<κ, C) is a pair p = (Mp, wp) such that:
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1. Mp is a finite ∈-chain of models in C containing κ and 〈Pα : α < κ〉.

2. wp ∈ P is such that for every M ∈ Mp, and every α ∈ supp(wp) ∩M , wp(α)

is (M,Pα)-strongly generic, where supp(wp) = {α < κ : wp(α) 6= 1Pα}.

We say p is stronger than q and write p ≤ q if and only if Mp ⊇ Mq, and wp ≤P wq.

Lemma 2.1.7. Suppose M ∈ C and p is a condition in M ∩M((Pα)α<κ, C). Then
there is a condition pM ≤ p such that M ∈ MpM .

Proof. We define pM as follows. Let MpM be Mp ∪ {M} which is a finite ∈-chain.
Since the support of wp is finite, it is a subset of M . Thus for each α ∈ supp(wp), we
can extend wp(α) to an (M,Pα)-strongly generic condition zα ∈ Pα. Now let wpM

be defined, with the same support as wp, by letting wpM (α) = zα. Notice that zα is
also (N,Pα)-strongly generic for every model N in MpM with α ∈ N . Thus pM is a
condition, and it is clear that pM ≤ p. 2.1.7

Lemma 2.1.8. Suppose M ∈ C contains κ and 〈Pα : α < κ〉. Let p be a condition
in M((Pα)α<κ, C) with M ∈ Mp. Then p is (M,M((Pα)α<κ, C))-strongly generic.

Proof. Define p �M as follows. Let Mp�M be Mp∩M which is an ∈-chain obviously,
and set supp(wp�M ) = supp(wp)∩M which belongs to M . For every α ∈ sup(wp�M ),
let wp�M (α) be some projection of wp(α) to M , say wp(α) �M , so that every condition
zα ∈ Pα ∩M extending wp(α) �M is compatible with wp(α). This is guaranteed of
course, by the (M,Pα)-strong genericity of wp(α). Notice that p �M belongs to
M . Suppose now q is a condition in P ∩ M extending p �M , we shall define a
common extension, say r, of p and q as follows. Let simply Mr be Mp ∪ Mq

that is a finite ∈-chain. Let also the support of wr be supp(wp) ∪ supp(wq). Now
assume that α is in the support of wr. If α is in supp(wq) \ supp(wp), then wq(α)

belongs to M , and Mp \ M forms an ∈-chain of countable models, thus we are
able to extend wq(α) inductively to a condition zα which is also (N,Pα)-strongly
generic for every model N in Mp \ Mq containing α. On the other hand wq(α),
and hence zα, is (N,Pα)-strongly generic for every model N ∈ Mq with α ∈ N , and
hence zα is (N,Pα)-strongly generic for every model N in Mr with α ∈ N . If α

is in supp(wp) ∩ M , let uα be some condition extending wq(α) and wp(α), such a
condition exists as wq(α) ≤ wp(α) �M . It is clear that uα is (N,Pα)-generic for every
N ∈ Mr with α ∈ N .
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wr(γ) =


wp(α) if α /∈ M

zα if α ∈ supp(wq) \ supp(wp)

uα if α ∈ M ∩ supp(wp)

Notice that if α is not in M , then no model in Mq contains α. Thus wp(α) is
(N,Pα)-strongly generic, for every N ∈ Mr with α ∈ N . It should be clear now
that r is a condition extending p and q. 2.1.8

The following is immediate.

Corollary 2.1.9. If C is stationary, then M((Pα)α<κ, C) preserves ω1 and has the
ω1-approximation property.

2.1.9

As in the ordinary scaffolding poset, if C contains a club, then M((Pα)α<κ, C) is
proper. Notice that also it collapses |Hθ| to ω1. We are now about to show that
forcing with M((Pα)α<κ, C) adds generic filters for finite subproducts of P. Suppose
G is a V -generic filter over M((Pα)α<κ, C). For a finite set s ⊆ κ, let

Gs := {wp �s: p ∈ G}.

Lemma 2.1.10. Gs generates a V -generic filter over Πα∈sPα.

Proof. First notice that the set of conditions p with s ⊆ supp(wp) is dense. To see
this, let p ∈ M((Pα)α<κ, C). We may also assume, without loss of generality, that
for every α ∈ s, there is some model in Mp containing α. Suppose p is a condition,
and fix α ∈ s which is not in the support of wp, Let M be the least model such that
α ∈ M . We can now define qα with the same side condition as p, and set supp(wqα)

to be supp(wp) ∪ {α}. Since α is not in supp(wp), wp(α) = 1Pα which belongs to
M , on the other hand α belongs to each model above M , thus we can extend 1Pα

inductively to a condition wα which is (N,Pα)- strongly generic for every N ∈ Mp

containing α. We have finitely many α’s, and we do not add new models to the side
condition part once constructing qα. We can therefore inductively proceed to find
some extension q of p so that Mp = Mq and s ⊆ supp(wq). Thus Gs is nonempty. It
is clear that every two conditions in Gs are compatible in Gs, and thus it generates
a filter. We now show that the filter generated by Gs is V -generic. If D ∈ V is a
dense subset of Πα∈sPα. Set

E := {p ∈ M((Pα)α<κ, C) : wp �s∈ D}.
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E is dense in M((Pα)α<κ, C). To see this, fix q in M((Pα)α<κ, C). By the above
paragraph we may assume s ⊆ supp(wq), then let w ∈ D be such that w ≤ wq �s,
we can now define r by letting Mr = Mq and wr be the same as w on s, and be
wq elsewhere. Clearly r is a condition belonging to E which extends q. Thus E is a
dense subset of M((Pα)α<κ, C) in V , therefore there is some p ∈ G ∩ E, and hence
wp �s∈ Gs ∩D. 2.1.10

We have thus the following.

Theorem 2.1.11. Suppose 〈Pα : α < κ〉 is a sequence of C-strongly proper forcings.
If C is a stationary, then there is a generic extension W ⊇ V with the same ω1 such
that the pair (V,W ) has the ω1-approximation property, and that for every finite
s ⊆ κ, there is a V -generic filter Gs ∈ W on Πα∈sPα.

2.1.11

Scaffolding Poset with Two Types Models

The construction from the previous subsection can be lifted to a C ∪ U -based scaf-
folding poset, namely M(P, C ∪ U).

Definition 2.1.12. A set M ⊆ C ∪ U is called an ∈-chain if letting ∈∗ be the
transitive closure of the relation ∈ on M, then (M,∈∗) is linearly ordered.

Suppose M is an ∈-chain of models in C ∪ U which is closed under the intersec-
tions. Let ∈∗ be the transitive closure of the relation ∈ on M that is M ∈∗ N if
and only if there is an ∈-sequence (Mi)i≤k in M such that M0 = M and Mk = N .
For M ∈∗ N in M, we let

(M,N)M = {P ∈ M : M ∈∗ P ∈∗ N}.

The intervals [M,N ]M, [M,N)M and etc are defined in the same way. When p is a
condition in M(P, C ∪ U), we let [M,N)p denote [M,N)Mp .

Definition 2.1.13 (Scaffolding poset with models of two types). Assume that P is
a C ∪ U-proper forcing. A condition p in M(P, C ∪ U) is a pair p = (Mp, wp), where

1. Mp is a finite ∈-chain of models in C ∪ U closed under the intersections.

2. wp ∈ P is (M,P)-generic, for every M ∈ Mp.
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We define the ordering of M(P, C ∪U) by letting p ≤ q if and only if Mq ⊆ Mp and
wp ≤P wq.

It is easy to see that M(P, C∪U) collapses θ to ω2, and that every V -generic filter
on M(P, C ∪ U) induces a V -generic filter on P. As in the previous section, given a
model M ∈ C ∪U and a condition p ∈ M , we are able to extend p to a condition pM

so that M ∈ MpM . We remark that one can naturally design the decorated version
of M(P, C ∪ U).

Proposition 2.1.14. Suppose that θ∗ > θ is a sufficiently large regular cardinal and
M∗ ≺ Hθ∗ contains P, C and U , and is such that M := M∗ ∩ Hθ ∈ U . Let p be a
condition with M ∈ Mp. Then p is (M∗,M(P, C ∪ U))-generic.

Proof. The proof is quite similar to Theorem 2.1.2. 2.1.14

Lemma 2.1.15. Suppose that p ∈ M(P, C ∪ U). If M ∈ Mp is countable, then

Mp ∩M = Mp \
∪

{[N ∩M,N)p : N ∈ M ∩ U or N = Hθ}.

Proof. From the left-hand side to the right-hand one is easy. Let us prove the other
direction. Suppose P ∈ Mp belongs to the right-hand side above. We first state a
general claim.

Claim 2.1.16. If Q ∈∗ R in Mp are countable, then either Q ∈ R or there is some
IC-model N ∈ R such that Q ∈ [N ∩R,N)p.

Proof. We prove by induction on the number of IC-models in [Q,R]p. Suppose the
statement holds for every countable model Q,R ∈ Mp with k many IC-models in
[Q,R]p. It is obvious for k = 0. We show that it is true for k + 1. Suppose N

is the largest IC-model in [Q,R]p. It follows that N ∈ R. If Q ∈∗ N ∩ R, then
there are at most k IC-models in [Q,N ∩ R]p, and thus by applying the inductive
assumption to N ∩ R, we should have that Q ∈ N ∩ R, and hence Q ∈ R. On
the other hand if Q /∈∗ N ∩ R, we should have that N ∩ R ∈∗ Q ∈ N , and hence
Q ∈ [N ∩R,N)p. 2.1.16

Let us return to the main proof. Since P is not in [M,Hθ)p, it is ∈∗-below M i.e
P ∈∗ M . By the above claim and the fact that P does not belong to any interval
[N ∩M,N)p, for N ∈ M ∩ U , it follows that P ∈ M .

2.1.15
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The following lemma shows that the forcing with pure side conditions i.e when
there are no working parts is C ∪ U -strongly proper, we omit the proof as we will
not use it later.

Lemma 2.1.17. Let M ∈ C ∪ U . Suppose that p, q ∈ M(P, C ∪ U), and q ∈ M is
such that Mq ⊇ Mp ∩M . Then the closure of Mp ∪Mq under the intersections is
an ∈-chain.

2.1.17

Proposition 2.1.18. Suppose that θ∗ > θ is a sufficiently large regular cardinal and
M∗ ≺ Hθ∗ contains P, C and U and is such that M := M∗ ∩Hθ ∈ C ∪ U . Let p be a
condition with M ∈ Mp. Then p is (M∗,M(P, C ∪ U))-generic.

Proof. Thanks to Lemma 2.1.15 and Lemma 2.1.17, a proof quite similar to Theo-
rem 2.1.2 works also here. 2.1.18

Let θ∗ > θ be a sufficiently large regular cardinal, and set

C∗ = {M ≺ Hθ∗ : C,U ,P, θ ∈ M and M ∩Hθ ∈ C},

and
U∗ = {M ≺ Hθ∗ : C,U ,P, θ,∈ M and M ∩Hθ ∈ U}.

Corollary 2.1.19. If P is both C-proper and U-proper, then M(P, C ∪U) is also C∗-
proper and U∗-proper. Moreover, if both C and U are stationary, then M(P, C ∪ U)
preserves ω1 and ω2, and if C contains a club, then M(P, C ∪ U) is proper.

2.1.19

Suppose 〈Pα : α < κ〉 is a sequence of C ∪ U -strongly proper forcings, we would
like to construct a scaffolding poset M((Pα)α<κ, C ∪U) as in the first section so that
forcing with it preserves ω1 and ω2, and also adds generics for the finite subproducts
of P = Πα<κPα. However it turns out that the proofs given above cannot be adapted
here, and we need to require more properties about Pα. Let us address one issue, for a
condition p and a model M ∈ C∪U , we might be able to make a condition p �M∈ M ,
suppose now q ∈ M extends p �M , but it may have some α ∈ supp(wq) \ supp(wp),
as we need to amalgamate p and q, we should be able at least to extend wq(α)

to some condition which is generic for every relevant model in Mp ∪ Mq, though
this is not satisfied in general, the structured ℵ1.5-c.c-ness is a possible solution to
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it. On the other hand notice that in the definition of structured ℵ1.5-c.c-ness, the
conditions are required to be generic not strongly generic, thus if we aim to make
a suitable scaffolding poset for the finite support product using chains of two types
models as the side conditions, we will need to modify the definition of structured
ℵ1.5-c.c-ness to include the strong genericity of conditions, not the usual genericity .
Things then work smoothly as before. Our goal here is to point out that there are
some obstacles if one tries naively to iterate proper forcings using two types models
as side conditions, and that structured ℵ1.5-c.c-ness is relatively reasonable in this
context. We remark that in our iteration later, we will not need strong properness.





Chapter Three

The Theory of Virtual Models

This chapter is devoted to the study of the theory of virtual models which was
introduced by Veličković in [37] and [38]. In [38], he used virtual models of two types:
countable models and IC-models. In the this dissertation, the forcing constructions
are based on models with much stronger closure property that we call Magidor
models. This chapter mainly concerns the study of Magidor virtual models and
their interaction with countable virtual models. We start with a general framework,
but to be more precise and avoid unnecessary sophistication, the content will be
thinned out in the course of the current chapter. Some basic statements are either
originally or essentially due to Veličković [37].

3.1 General Virtual Models

We consider the language L obtained by adding a single constant symbol ĉ and a
single predicate Û to the standard language Lϵ of the set theory. Notice that it
is still possible to work with other expansions of Lϵ, but we do not see any gain
in complicating things. Let us say that an L-structure A of the form (A,∈, κ, U)

is suitable if A is a transitive set satisfying ZFC in the expanded language, where
κ, the interpretation of the constant symbol ĉ, is an inaccessible cardinal in A,
and U is the interpretation of Û . We shall often abuse notation and refer to the
structure A = (A,∈, κ, U) simply by A or A. We may also not mention the language
L, and thus unless explicitly mentioned, all model-theoretic concepts such as the
isomorphisms, the substructures and etc will be carried out within the language L.
This language and its logic will only serve as internal affairs, and should not be
confused with our external set theory which is basically usual ZFC in Lϵ-theory of

41
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sets.
Suppose that A is a suitable structure. If α is an ordinal in A, we let Aα denote

A ∩ Vα. Finally, we let

EA = {α ∈ ORDA : (Aα,∈, κ, U ∩ Aα) ≺ A}.

Note that EA is a closed, possibly empty, subset of ORDA. It is not definable in
A, but EA ∩ α is uniformly definable in A with parameter α, for each α ∈ EA. If
α ∈ EA we let nextA(α) be the least ordinal in EA above α, if such an ordinal exists.
Otherwise, we leave nextA(α) undefined. We start with a simple technical lemma.

Lemma 3.1.1. Suppose that M ≺ A. Then

1. If α ∈ EA and (M ∩ ORDA) \ α 6= ∅, then min(M ∩ ORDA \ α) ∈ EA.

2. sup(EA ∩M) = sup(EA ∩ sup(M ∩ ORDA)).

Proof. We only give the proof of the first one as it implies the second item. Let β

be the least ordinal in M \ α. We need to show that Aβ is an elementary submodel
of A. Suppose otherwise, then by the Tarski-Vaught criterion, there is a tuple
x̄ ∈ Aβ and a formula φ(y, x̄) such that A |= ∃yφ(y, x̄), but there is no a ∈ Aβ

such that A |= φ(a, x̄). Since β ∈ M and M is an elementary submodel of A, there
is such a tuple x̄ ∈ Aβ ∩ M . Now, β is the least ordinal in M above α, therefore
x̄ ∈ M ∩ Aα. Since Aα is an elementary submodel of A, there is a ∈ Aα witnessing
that Aα |= φ(a, x̄) and so A |= φ(a, x̄). Since α ≤ β, it follows that a ∈ Aβ, a
contradiction. 3.1.1

Definition 3.1.2. Suppose that M is a submodel of a suitable structure A and X

is a subset of A. Let

Hull(M,X) = {f(x̄) : f ∈ M, x̄ ∈ X<ω, f is a function, and x̄ ∈ dom(f)}.

The main reason the Hull operation is defiend in this way is that it allows us
to define the Skolem hull of M and X without referring explicitly to the ambient
model (A,∈, κ, U). We refer to the structure (Hull(M,X),∈, κ,Hull(M,X)∩U) by
Hull(M,X).

Lemma 3.1.3. Suppose that A is a suitable structure, M is an elementary submodel
of A and X is a subset of A. Let δ be sup(M ∩ ORDA), and suppose X ∩ Aδ is
nonempty. Then Hull(M,X) is the least elementary submodel of A containing M

and X ∩ Aδ as subsets.
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Proof. For each γ ∈ A, let idγ be the identity function on Aγ. Clearly, if γ ∈ M

then idγ ∈ M . Therefore, X ∩ Aδ is a subset of Hull(M,X). Let γ ∈ M be such
that X ∩Aγ is nonempty. For each z ∈ M , the constant function cz defined on Aγ is
in M , therefore M is a subset of Hull(M,X). Notice that Aγ belongs to A since A

is transitive the rank function is absolute between transitive structures, and hence
Aγ is in M be elementary.

It remains to show that Hull(M,X) is an elementary submodel of A. We check
the Tarski-Vaught criterion for Hull(M,X) and A. Let φ be an L-formula and
a1, . . . , an ∈ Hull(M,X) such that A |= ∃uφ(u, a1, . . . , an). Then we can find func-
tions f1, . . . , fn ∈ M and tuples x̄1, . . . , x̄n ∈ X<ω such that ai = fi(x̄i), for all i. If
Di is the domain of fi, this implies that x̄i ∈ Di. By the Axiom of Replacement and
the Axiom of Choice in A we can find a function g defined on D1× . . .×Dn such that
for every ȳ1 ∈ D1, . . . , ȳn ∈ Dn, if there is u such that A |= φ(u, f1(ȳ1), . . . , fn(ȳn))

then g(ȳ1, . . . , ȳn) is such a u. Thus A satisfies the following statement:

“ There exists a function g with dom(g) = D1 × · · · × Dn such that for every
(ȳ1, . . . , ȳn) in D1×· · ·×Dn, if there exists u such that φ(u, f1(ȳ1), . . . , fn(ȳn)), then
φ(g(ȳ1, . . . , ȳn), f1(ȳ1), . . . , fn(ȳn)) ”

Therefore, by the elementarity of M , we may assume that g belongs to M .
Let a = g(x̄1, . . . , x̄n). It follows that a ∈ Hull(M,X) and A |= φ(a, a1, . . . , an).
Therefore, Hull(M,X) is an elementary submodel of A.

The minimality of Hull(M,X) follows from the fact that M ⊆ Aδ, and thus
Hull(M,X) = Hull(M,X ∩ Aδ) 3.1.3

3.2 Virtual Models in Vλ

We are now about to restrict ourselves to a particular suitable structure. Let us fix an
inaccessible cardinal κ, and a cardinal λ > κ such that Vλ satisfies ZFC. From now
on, we shall write E instead of EVλ

and next(α) instead of nextVλ
(α) in this chapter

and elsewhere in this manuscript, whenever it is clear form the context. For each
α ∈ E, we shall define certain families Cα,Uα ∈ Vλ, as well as relations ∈α and ∼=α,
and the projection operation M 7→ M �α. These families, relations and operations
will be defined by a Σ1-formula with parameter Vα. If A is another suitable structure
and α ∈ EA we can interpret these formulas in A and obtain families C A

α ,U A
α , and

we can interpret the relations ∈α, ∼=α and the projection map M 7→ M � α inside
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A. We shall only consider suitable A such that the interpretation of the constant
symbol c is κ and A ⊆ Vλ. Note that if we have such an A and α ∈ EA ∩ E with
Aα = Vα then C A

α ⊆ Cα, and U A
α ⊆ Uα. Moreover, if A |= M ∈α M ′ then M ∈α M ′,

and similarly for ∼=α.

Definition 3.2.1. Suppose α ∈ E. We let Aα denote the set of all suitable structures
A that are elementary extensions of Vα and have the same cardinality as Vα.

Note that if A ∈ Aα and α ∈ A then EA ∩α = E ∩α. If A ∈ Aα we will refer to
Vα as the standard part of A. Note that if A has nonstandard elements then α ∈ EA.

Definition 3.2.2. Suppose α ∈ E. We let Vα denote the collection of all submodels
M of Vλ of size less than κ such that, if we let A = Hull(M,Vα), then A ∈ Aα and
M is an elementary submodel of A.

Definition 3.2.3. We refer to the members of Vα as the α-models. We write V<α

for
∪
{Vγ : γ ∈ E ∩ α}. Collections V≤α and V≥α are defined in the obvious way.

We will write V for V<λ . If M ∈ V , we then write η(M) for the unique ordinal α
such that M ∈ Vα.

To see that why η(M) is unique, we recall that |Hull(M,Vη(M))| = |Vη(M)|, thus
if α < β are in E, and M is both α-model and β-model, we would then have
|Vα| = |Vβ|, which is impossible. Note that also if M ∈ Vα then sup(M ∩ORD) ≥ α.
This is because if M ∩λ is bounded below α, say sup(M ∩λ) = δ, we then may work
in the suitable structure Vδ, and compute Hull(M,Vδ) which is equal to Hull(M,Vα),
but then |Vδ| = |Vα|, which is a contradiction.

In general, M is not elementary in Vλ, in fact, this only happens if M ⊆ Vα. To
see this, towards a contradiction we suppose that M ≺ Vλ is an α-model in which
M * Vα, indeed Hull(M,Vα) is elementary in Vλ and that it contains some ordinal
above α, thus by Lemma 3.1.1, there is some ordinal β ∈ Hull(M,Vα) ∩ E \ α,
but then Vβ ⊆ Hull(M,Vα), and hence |Vβ| ≤ |Vα| which is impossible. Thus it is
rational to say that M is a standard α-model if and only if M ≺ Vα.

We refer to members of V as virtual models. Notice that if A ⊆ Vλ is a suitable
structure, we can still talk about virtual models of A, so it is convenient to let V A

denote the set of all virtual models in the sense of A. We face frequently with the
situation where M is a virtual model i.e it is in V , and thus Hull(M,Vη(M)) is a
suitable structure, and we may work carefully with virtual models in Hull(M,Vη(M)).
In this case, we also write V M to denote M ∩ V Hull(M,Vη(M)).
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Vλ

M is a countable α-model.

α ∈ E

ORD

M ∩ ω1

Hull(M,Vα)
M

Definition 3.2.4. Suppose M,N ∈ V and α ∈ E. An isomorphism σ : M → N is
called an α-isomorphism if there is an isomorphism σ̄ : Hull(M,Vα) → Hull(N, Vα)

extending σ. We say that M and N are α-isomorphic and write M ∼=α N if there is
an α-isomorphism between them.

Clearly, ∼=α is an equivalence relation, for every α ∈ E, and that if σ and σ̄ exist,
they are unique. Note that also if M ∈ Vγ, for some γ < α, then the only model
α-isomorphic to M is M itself since Hull(N, Vγ) = Hull(M,Vα).

Proposition 3.2.5. Suppose α, β ∈ E and α ≤ β. if M,N ∈ V are β-isomorphic,
then they are α-isomorphic.

Proof. We may assume that η(M), η(N) ≥ β. Let σ̄ : Hull(M,Vβ) → Hull(N, Vβ)

be the β-isomorphism between them. Notice that Vα ⊆ Hull(M,Vβ),Hull(N, Vβ). It
is now evident that σ̄ �Hull(M,Vα) is an α-isomorphism. 3.2.5

We will now see that, if α < β, then for every β-model M there is a canonical
representative of the ∼=α-equivalence class of M which is an α-model.

Definition 3.2.6. Suppose α, β ∈ E and M is a β-model. Let Hull(M,Vα) be the
transitive collapse of Hull(M,Vα), and let π be the collapse map. We define M �α
to be π[M ], i.e. the image of M under the collapse map of Hull(M,Vα).

Remark 3.2.7. Note that if β < α then M �α= M , but M is not an α-model.
If β ≥ α, then Hull(M,Vα) belongs to Aα, so M �α is an α-model which is α-
isomorphic to M . Note also that if β = α, then M �α= M since Hull(M,Vα)
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is already transitive. Note that also if A ∈ Aα then V A
α ⊆ Vα. Therefore, if

A,B ∈ Aα, M ∈ V A, and N ∈ V B, we can still write M ∼=α N if M �α= N �α.
This is of course equivalent to the existence of an α-isomorphism between M and
N .

The following is straightforward.

Proposition 3.2.8. Suppose α ≤ β are in E, and M ∈ V . Then (M �β) �α= M �α.

3.2.8

We also need to define a version of the membership relation, for every α in E.

Definition 3.2.9. Suppose M,N ∈ V and α ∈ E. We write M ∈α N if there is
M ′ ∈ N with M ′ ∈ V N such that M ′ ∼=α M . If this happens, we say that M is α-in
N .

Note that if M is α-in N with M ⊆ Vα, this simply means that M ∈ N . To see
this, we may assume η(M) = α and work in the suitable structure Hull(N, Vη(N)).
Now there is M ′ such that M ′ �α⊆ Vα, but it then means that M ′ has no element
of rank above α, hence M = M ′. We notice that in general, we may have M ∈α N

even if the rank of M is higher than the rank of N . We shall often use the following
simple facts without mentioning them.

Proposition 3.2.10. Suppose M,N ∈ V with M ∈ N . Let α ∈ E, and suppose
N ′ ∈ V A, for some A ∈ Aα, and σ : N → N ′ is an α-isomorphism. Then M and
σ(M) are α-isomorphic.

Proof. Since |M | < κ < |Vα|, we conclude that M ⊆ Hull(N, Vα), and hence
Hull(M,Vα) ⊆ Hull(N, Vα). Let σ̄ be the extension of σ to Hull(N, Vα). It fol-
lows that σ̄ �Hull(M,Vα) is an isomorphism between Hull(M,Vα) and Hull(σ(M), Vα).
Hence σ̄ �M is an α-isomorphism between M and σ(M). 3.2.10

Proposition 3.2.11. Let α, β ∈ E with α ≤ β. Suppose M,N ∈ V≥β and M ∈β N .
Then M �α∈α N �α.

Proof. Fix some M ′ ∈ N with M ∼=β M ′. Since α ≤ β, we have that M ∼=α M ′.
Letting π be the collapse map of Hull(N, Vα), then π(M ′) ∈ N �α. On the other
hand, since |M ′| < κ < |Vα|, we have that Hull(M ′, Vα) ⊆ Hull(N, Vα) and that
π[M ′] = π(M ′). It follows that π �Hull(M ′,Vα) is an isomorphism between Hull(M ′, Vα)

and Hull(π(M ′), Vα). Therefore, M ∼=α π(M ′) ∈ N �α. 3.2.11
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We refer to the following proposition as the continuity of the α-isomorphism.

Proposition 3.2.12. Let α be a limit point of E. Suppose N,M ∈ V and M ∼=γ N

for unboundedly many γ below α. Then M ∼=α N .

Proof. For each γ ∈ E ∩ α, let σγ be the unique isomorphism between Hull(M,Vγ)

and Hull(N, Vγ) such that σγ[M ] = N . If γ < γ′, we have that σγ′ �Hull(M,Vγ)= σγ.
Let σ =

∪
{σγ : γ ∈ E ∩ α}. Then σ witnesses that M and N are α-isomorphic.

3.2.12

Proposition 3.2.13. Let α be a limit point of E of uncountable cofinality. Assume
that M,N ∈ V and N is countable. Suppose that M ∈γ N for unboundedly many
γ < α. Then M ∈α N .

Proof. Since N is countable and α is of uncountable cofinality, there is M ′ ∈ N

with M ′ ∈ V N such that M ∼=γ M ′, for unboundedly many γ ∈ E ∩ α. By
Proposition 3.2.12 we have that M ∼=α M ′, and hence M ∈α N . 3.2.13

Definition 3.2.14. For α ∈ E, we let Cα denote the collection of countable models
in Vα. We define similarly C<α, C≤α and C≥α. We write C for C<λ, and Cst for the
collection of standard models in C .

Proposition 3.2.15. Suppose λ is of uncountable cofinality. Then Cst contains a
club in Pω1(Vλ).

Proof. First note that since λ is of uncountable cofinality E is unbounded and thus
club in λ. Suppose M is a countable elementary submodel of (Vλ,∈, κ, U,E). Let
α = sup(M ∩ E). Note that M ∩ ORD is unbounded in α. Hence M is a standard
α-model. 3.2.15

In our forcing constructions in the later chapters, we will use two types of virtual
models, the countable ones and some nice models of size less than κ defined below.

The following definition is motivated by Magidor’s reformulation of supercom-
pactness, see Fact 1.5.3.

Definition 3.2.16. We say that a model M is a κ-Magidor model if, letting M be
the transitive collapse of M and π the collapse map, M = Vγ̄, for some γ̄ < κ with
cof(γ̄) ≥ π(κ), and Vπ(κ) ⊆ M . If κ is clear from the context, we then simply say M

is a Magidor model.

Proposition 3.2.17. Suppose κ is supercompact and µ > κ with cof(µ) ≥ κ. Then
the set of κ-Magidor models is stationary in Pκ(Vµ).
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Proof. Fix a function F : [Vµ]
<ω → Vµ. We have to find a κ-Magidor model closed

under F . Let γ > µ be such that Vγ satisfies a sufficient fragment of ZFC. Since κ

is supercompact, by Fact 1.5.3 we can find κ̄ < γ̄ < κ and an elementary embedding
j : Vγ̄ → Vγ with critical point κ̄ such that j(κ̄) = κ and such that F �[Vµ]<ω∈ j[Vγ̄].
Note that Vµ is in j[Vγ̄]. Let µ̄ be such that j(µ̄) = µ. Since cof(µ) ≥ κ, by
elementarity we must have that cof(µ̄) ≥ κ̄. Let N = j[Vµ̄]. Then N is a κ-Magidor
elementary submodel of Vµ that is closed under F , as required. 3.2.17

Definition 3.2.18. Let U κ
α be the collection of all M ∈ Vα that are κ-Magidor

models. We define U κ
<α, U κ

≤α, and U κ
≥α in the obvious way. We write U κ for U κ

<λ.
When κ is clear from the context, we omit it. We also write Ust for the standard
models in U .

Remark 3.2.19. Suppose M is a κ-Magidor α-model. Let Vγ̄ be its transitive collapse,
and let j be the inverse of the collapse map π. Let also A = Hull(M,Vα). Note that
j : Vγ̄ → A is an elementary embedding with critical point κ̄ = π(κ) and j(κ̄) = κ.

By Proposition 3.2.17 we have the following immediate corollary.

Corollary 3.2.20. Suppose κ is supercompact and λ is inaccessible. Then Ust is
stationary in Pκ(Vλ).

3.2.20

Note that both classes C and U of virtual models are closed under projections
meaning that if M ∈ C (respectively U ) and α ∈ E, then M �α∈ C (respectively
U ). We shall study some particular finite collections of these two types of models.
We start by establishing the following easy fact.

Proposition 3.2.21. Let α ∈ E. Suppose M,N,P ∈ V and M ∈α N ∈α P . If
either N is countable or P is a Magidor model then M ∈α P .

Proof. Pick N ′ ∈ P with N ′ ∈ V P which is α-isomorphic to N . We first establish
that N ′ ⊆ P . If N is countable this is immediate. Suppose P is a Magidor model.
Let N ′ be the transitive collapse of N ′, and let π be the collapse map. Then
N ′ ∈ Vκ ∩ P since |N ′| < κ. Since P is a Magidor model, we know that Vκ ∩ P is
transitive, and hence N ′ ⊆ P , but then also N ′ ⊆ P . Let σ be an α-isomorphism
between N and N ′, and let M ′ ∈ N with M ′ ∈ V N be a model that is α-isomorphic
to M . By Proposition 3.2.10 we know that σ(M ′) is α-isomorphic to M ′, and also to
M by the transitivity of ∼=α. On the other hand σ(M ′) ∈ N ′ ⊆ P and thus M ∈α P ,
as desired. 3.2.21
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Our next goal is to say when a virtual model M is active at some α ∈ E.

Definition 3.2.22. Let M ∈ V . We say that M is active at α ∈ E if η(M) ≥ α

and Hull(M,VκM
)∩E ∩α is unbounded in E ∩α, where κM = sup(M ∩ κ). We say

that M is strongly active at α if η(M) ≥ α and M ∩E ∩ α is unbounded in E ∩ α.

We are primarily interested in the case M ∈ C ∪ U . First note that if M is a
Magidor model, then VκM

⊆ M , hence M is active at some α ∈ E if and only if it is
strongly active at α. The situation is quite different for countable models. If M is
countable, then the set of α ∈ E at which M is strongly active is at most countable,
while the set of α ∈ E at which M is active can be of size |VκM

|. One feature of
our definition is that if N ∈α M , then for all γ ∈ E ∩ α, if N is active at γ then so
is M . To see this let N ′ ∈ M be such that N ′ ∼=α N . Then N ′ is also active at γ.
Since Hull(N ′, VκN′ ) ⊆ Hull(M,VκM

), it follows that M is also active at γ. Notice
that the assumption η(M) ≥ α will be essential later as M needs enough room to
contain copies of models on the α-chain below M , for example if α = next(β), and
M is a β-model such that β ∈ M , then M ∩ E ∩ α is cofinal in E ∩ α, but even
Hull(M,Vβ) has size less than |Vα|. On the other hand, since we require η(M) ≥ α

where M is strongly active at α, we must have β ∈ M as β = max(E ∩ α). We
must also have sup(M ∩ ORD) ≥ α since η(M) ≥ α. If sup(M ∩ ORD) = α then
M is a standard model. If sup(M ∩ ORD) > α, let γ = min(M ∩ ORD \ α), and
let A = Hull(M,Vη(M)). Then by Lemma 3.1.1 γ ∈ EA. Since γ ∈ M , we have that
EA ∩ (γ + 1) ∈ M and therefore we can compute α in M as the the next element of
EA ∩ (γ + 1) above β. Thus, in this case we have α ∈ M .

It will be convenient to have also the following definition.

Definition 3.2.23. Suppose M ∈ V . Let a(M) = {α ∈ E : M is active at α} and
α(M) = max(a(M)). We may also let aA(M) denote the set aA relativized to a
suitable structure A such that M ∈ V A.

Note that a(M) is a closed subset of E of size at most |Hull(M,VκM
)|, which is

less than κ if M is in C ∪ U .

Proposition 3.2.24. Let M ∈ V and N ∈ U . Suppose α ∈ E, M and N are
active at α, and M ∈α N . Then α ∈ N .

Proof. We may assume that M and N are α-models. Let A = Hull(N, Vα). Then
A ∈ Aα. Fix M∗ ∈ N with M∗ ∈ V A which is α-isomorphic to M . Since M∗

is α-equivalent to M , we have that α ∈ aA(M∗). On the other hand, we have
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aA(M∗) ∩ η(M∗) ∈ N and has size less than κN , hence aA(M∗) ∩ η(M∗) ⊆ N . It
follows that α ∈ N . 3.2.24

Proposition 3.2.25. Let M ∈ V and N ∈ U . Suppose α ∈ a(M) is a limit point
of E and M ∈γ N , for all γ ∈ E ∩ α. Then α ∈ N and M ∈α N , and hence
M �α∈ N .

Proof. Let a = a(M) ∩ N ∩ α. Note that a is unbounded in α and has size less
κN . Since N is closed under < κN -sequences, it follows that a ∈ N , and hence
α = sup(a) ∈ N . For γ < α, let Mγ = M �γ. For γ ∈ a, we have that M ∈γ N ,
and hence Mγ ∈ N . Let Aγ = Hull(Mγ, Vγ). For γ, δ ∈ a with γ < δ, we have that
Mδ �γ= Mγ. In other words, Aγ is the transitive collapse of Hull(Mδ, Vγ) , and if
σγ,δ is the inverse of the collapse map, we have σγ,δ[Mγ] = Mδ. Each of the maps
σγ,δ is definable from Mδ and γ, and hence it belongs to N . Now, N is closed under
< κN -sequences and therefore the whole system (Aγ, σγ,δ : γ ≤ δ ∈ a) belongs to N .
Let A be the direct limit of this system, and let σγ be the canonical embedding of
Aγ to A. If we let πγ be the collapse map of Hull(M,Vγ) to Aγ, we then have that,
for every γ < δ, the following diagram commutes:

Hull(M,Vγ) Hull(M,Vδ)

Aγ Aδ

Id

πγ πδ

σγ,δ

Since Hull(M,Vα) =
∪
{Hull(M,Vγ) : γ ∈ a}, we have that A is isomorphic to

Hull(M,Vα). Therefore, its transitive collapse is Aα = Hull(M �α, Vα), and if we let
π be the collapse map, π[M ] = M �α. We can therefore identify A with Aα, and we
get that σγ[Mγ] = M �α, for any γ ∈ a. Thus M �α∈ N , as required. 3.2.25

From now on, we will concentrate exclusively on virtual models in C ∪ U . We
define an operation, that we call the meet, that will play the role of intersection for
virtual models. We only define the meet of two models of different types. Suppose
N ∈ U and M ∈ C . Let N be the transitive collapse of N , and let π be the
collapse map. Note that if N ∈ M , then N ∩M is a countable elementary submodel
of N . Then N ∩ M ∈ N since N is closed under countable sequence. Note that
π−1(N ∩M) = π−1[N ∩M ], and this model is elementary in N .

Definition 3.2.26. Suppose N ∈ U and M ∈ C . Let α = max(a(N)∩ a(M)). We
shall define N ∧M if N ∈α M . Let N be the transitive collapse of N , and let π be
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the collapse map. Set

η = sup(sup(π−1[N ∩M ] ∩ ORD) ∩ E ∩ (α + 1)).

We define the meet of N and M to be N ∧M = π−1[N ∩M ] �η.

Notice that min(E) belongs to a(N) ∩ a(M), and hence α is well-defined. To
make sense of the above definition, we need to prove the following.

Proposition 3.2.27. Under the assumptions of the above definition, N ∧M ∈ Cη.

Proof. Since η(N) ≥ α, we can form the model A = Hull(N, Vα) and, we thus have
N ≺ A and Vα ≺ A. Since N ∈ M , we have that N ∩ M ≺ N . Therefore, we
have π−1[N ∩ M ] ≺ N . Now, η ∈ E ∩ (α + 1) and so Vη ≺ Vα ≺ A. Moreover,
we should have sup(π−1[N ∩ M ] ∩ ORD) ≥ η. By Lemma 3.1.3 we have that
Hull(π−1[N ∩ M ], Vη) ≺ A and Vη ⊆ Hull(π−1[N ∩ M ], Vη). It follows that the
transitive collapse of Hull(π−1[N ∩ M ], Vη) belongs to Aη. On the other hand the
predicate of N ∧M , say UN∧M , comes through the isomorphisms above. To be more
precise we first consider the predicate of N , UN , and then compute the predicates
UN , UN ∩M and so on so forth. Thus the image of π−1[N ∩M ] under the collapse
map belongs to Cη. 3.2.27

The following proposition justifies that the meet is not too far from the ordinary
intersection.

Proposition 3.2.28. Let N ∈ U and M ∈ C . Suppose α ∈ E and the meet N ∧M

is defined and active at α. Then (N ∧M) ∩ Vα = N ∩M ∩ Vα.

Proof. Let β = max(a(N)∩ a(M)). Since the meet of N and M is defined we must
have N ∈β M . Since N ∧M is active at α, we must have α ≤ β. Let N ′ ∈ V M be
such that N ′ ∼=β N . Let σ be the β-isomorphism between N and N ′. Notice that
σ is the identity on N ∩ Vβ and thus also on N ∩ Vα. Let N denote the common
transitive collapse of N and N ′, and let π and π′ be the collapse maps. Then the
following diagram commutes.

N N ′

N

π

σ

π′
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Since N ′ ∈ M , π′−1[N ∩M ] = N ′ ∩M . On the other hand σ is the identity on
N ∩ Vα. Therefore we have the following.

(N ∧M) ∩ Vα = π−1[N ∩M ] ∩ Vα

= [σ−1π′−1[N ∩M ]] ∩ Vα

= σ−1[N ∩M ∩ Vα]

= N ∩M ∩ Vα

3.2.28

Proposition 3.2.29. Let α ∈ E. Suppose N ∈ U and M ∈ C , the meet N ∧M is
defined, and N and M are strongly active at α. Then N ∧M is strongly active at
α.

Proof. Let β = max(a(N) ∩ a(M)). Since both N and M are active at α, we must
have α ≤ β. Let N ′ ∈ M with N ′ ∈ V M be such that N ′ ∼=β N . Let σ be
the β-isomorphism between N ′ and N . Then σ �N ′∩Vβ

is the identity. Note that
N ′ ∩ M ∩ E ∩ α is unbounded in E ∩ α. Since N ′ ∩ Vα = N ∩ Vα, we must have
that N ∩M ∩ E ∩ α is also unbounded in E ∩ α. By Proposition 3.2.28, N ∧M is
strongly active at α. 3.2.29

The next proposition states the meet operation commutes with the projections.

Proposition 3.2.30. Let N ∈ U and M ∈ C . Suppose α ∈ E and the meet N ∧M

is defined and active at α. Then (N ∧M) �α= N �α ∧M �α.

Proof. First note that if N ∧M is active at α, then α ∈ a(N)∩a(M). It follows that
α is the maximum of a(N �α) ∩ a(M �α). Then note that N ∧M depends only on
max(a(N) ∩ a(M)), N , and M ∩N , where N is the transitive collapse of N . Now,
N is also the transitive collapse of N �α. In fact, if σ is the α-isomorphism between
N and N �α, and π and π′ are the collapse maps of N and N �α respectively, then
π = π′ ◦ σ. Therefore, σ �π−1[N∩M ] is an α-isomorphism between π−1[N ∩ M ] and
π′−1[N ∩M �α]. It follows that (N ∧M) �α= N �α ∧M �α. 3.2.30

Proposition 3.2.31. Let α ∈ E. Suppose N ∈ U , M ∈ C , both are active at α

and N ∈α M . Let P be another virtual model also active at α. Then P ∈α N ∧M

if only if P ∈α N and P ∈α M .

Proof. By Proposition 3.2.30 we may assume that N,M and P are all α-models.
Assume first that P ∈α N ∧M . In particular this means that N ∧M is active at α.
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In particular we have that N ∧M ⊆ N , and hence P ∈α N . Fix N ′ ∈ V M which
is α-isomorphic to N . Let N be the transitive collapse of both N and N ′ and let π

and π′ be the respective collapse maps. Note that σ = π′−1 ◦π is the α-isomorphism
between N and N ′. Then σ[N ∧ M ] = N ′ ∩ M . Pick also P ′ ∈ N ∧ M which
is α-isomorphic to P . By Proposition 3.2.10, P ′ and σ(P ′) are also α-isomorphic.
Since σ(P ′) ∈ M , by the transitivity of ∼=α we get that P is α-isomorphic to σ(P ′).
This implies that P ∈α M .

Now assume P ∈α N and P ∈α M . By Proposition 3.2.24 we know that α ∈ N .
Since P is an α-model, we conclude that P ∈ N . If also α ∈ M , we have that
N,P ∈ M and N ∧M = N ∩M . Therefore, P ∈ N ∧M . Assume now that α /∈ M

and let α∗ = min(M ∩ λ \ α). Let A = Hull(M,Vα). Since we assumed that M

is an α-model, we have that A ∈ Aα and α ∈ EA. By Lemma 3.1.1 we also have
that α∗ ∈ EA. Fix P ∗, N∗ ∈ M that are α-isomorphic to P and N respectively. By
projecting them to α∗ if necessary, we may assume P ∗, N∗ ∈ V A

α∗ . Moreover, N∗ is
a Magidor model from the point of view of A. Since P ∗ ∈α N∗ and α∗ is the least
ordinal in M above α we have

M |= ‘‘∀δ ∈ EA ∩ α∗ P ∗ ∈δ N
∗”.

Moreover, M |= ‘‘P ∗ is active at α∗”. Since α∗ is a limit point of EA, we can
apply Proposition 3.2.25 in A and conclude that α∗ ∈ N∗ and P ∗ ∈ N∗. Hence
P ∗ ∈ N∗ ∩ M . Let now σ witness the α-isomorphism between N∗ and N . Then
σ[N∗ ∩M ] = N ∧M . Hence σ(P ∗), that is α-isomorphic to P , belongs to N ∧M .
It follows that P ∈α N ∧M . 3.2.31

One feature of the meet is the following absorption property.

Proposition 3.2.32. Suppose N ∈ U , M ∈ C , and the meet N ∧ M is defined.
Let α ∈ E, and suppose P is a Magidor α-model active at α such that P ∈α N ∧M .
Then P ∧M = P ∧ (N ∧M).

Proof. Since P ∈α N ∧M and P is active at α, so is N ∧M , and hence both N and
M are active at α as well. Let P be the transitive collapse of P . Then P ∈ N ∩ Vκ,
and since N ∩ Vκ is transitive, we have P ⊆ N . Hence P ∩ (N ∧M) = P ∩M . It
follows that P ∧M = P ∧ (N ∧M). 3.2.32

Proposition 3.2.33. Let α ∈ E. Suppose N ∈ U , M ∈ C and the meet N ∧M is
defined and active at α. Suppose P ∈ V and N,M ∈α P . Then N ∧M ∈α P .
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Proof. We may assume M,N and P are all α-models. If α ∈ P then N,M ∈ P ,
and hence also N ∧ M ∈ P . Suppose now α /∈ P . Let A = Hull(P, Vα) and
let α∗ = min(P ∩ ORD \ α). Note that α∗ has uncountable cofinality in A since
otherwise α = α∗ ∈ P . By Lemma 3.1.1 we have α∗ ∈ EA. We can find N∗,M∗ ∈ P

such that N∗ ∼=α N and M∗ ∼=α M . We may assume that N∗ ∈ U A
α∗ and M∗ ∈ C A

α∗ .
Work for a moment in A. Since N∗ ∈α M∗, α∗ is the least ordinal of P above α,
and N∗,M∗ ∈ P , we have

A |= ‘‘∀γ ∈ EA ∩ α∗ N∗ ∈γ M∗”.

By applying Proposition 3.2.13 inside A we have that N∗ ∈α∗ M∗, and hence A

can compute the meet, say Q, of N∗ and M∗. Then Q ∈ P , and by applying
Proposition 3.2.30 inside A, we get Q �α= N∗ �α ∧M∗ �α. Hence we should have
Q ∼=α N ∧M . 3.2.33

Final Remark

We may mention that almost all facts about and properties of the virtual models
stated in this chapter are still valid if one uses a Mahlo cardinal instead of the
supercompact cardinal one. To be precise, one can use Fact 1.5.1 to obtain stationary
many κ-Mahlo models.



Chapter Four

Forcing with Virtual Models of
Two Types

We are now about to present the skeleton of our forcing construction. As we men-
tioned earlier, this relies on considering finite collections of virtual models in a co-
herent way, and as expected, we should be able somehow to design a virtual version
of ∈-chains of models.

4.1 Pure Side Conditions without Decorations
We start with the definition of an α-chain.

Definition 4.1.1. Let α ∈ E and let M be a subset of U ∪ C . We say M is an
α-chain if for all distinct M,N ∈ M, either M ∈α N or N ∈α M , or there is a
P ∈ M such that either M ∈α P ∈α N or N ∈α P ∈α M .

The following proposition demonstrates that our intuitive comprehension of finite
α-chains is similar to the ordinary ∈-chains.

Proposition 4.1.2. Suppose α ∈ E and M is a finite subset of U ∪ C . Then M
is an α-chain if and only if there is an enumeration 〈Mi : i < n〉 of M such that
M0 ∈α M1 ∈α · · · ∈α Mn−1.

Proof. Suppose first M is an α-chain. Define the relation < on M by letting M < N

iff κM < κN . It is straightforward to see that < is a total ordering on M. We can
then let 〈Mi : i < n〉 be the <-increasing enumeration of M. Conversely, suppose
〈Mi : i < n〉 is the enumeration such that M0 ∈α M1 ∈α · · · ∈α Mn−1. Let i < j < n.

55
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If j = i+1 then Mi ∈α Mj. Suppose j > i+1. If Mj is a Magidor model or if there
are no Magidor models between Mi and Mj by Proposition 3.2.21 we conclude that
Mi ∈α Mj. Otherwise let k < j be the largest index such that Mk is a Magidor
model. Then again by Proposition 3.2.21, we conclude that Mi ∈α Mk ∈α Mj. 4.1.2

Though the definition of an α-chain is natural and simple, yet it is not exactly
what we want to utilize as side conditions. Our side conditions are simply finite
collections of virtual models with no disciplines, but once we observe them from
the viewpoint of some level α ∈ E, they sit in an ∈α-chain. To this end we need
to introduce some notation to see how a collection of virtual models can induce
∈α-chains, these chains are exactly those objects carry information in our forcing
constructions.

Notation 4.1.3. Let α ∈ E and let M be a set of virtual models. We let

M �α= {M �α: M ∈ M}

and
Mα = {M �α: M ∈ M is active at α}.

Let α ∈ E and let M be an α-chain. Let ∈∗
α be the transitive closure of ∈α.

Then ∈∗
α is a total ordering on M. For M,N ∈ M, we say M is α-below N in M,

or equivalently N is α-above M in M, if M ∈∗
α N in M. Now using the transitivity

of ∈∗
α we can form intervals in M. Let

(M,N)αM = {P ∈ M : M ∈∗
α P ∈∗

α N}.

Similarly we can define [M,N ]αM, [M,N)αM, etc. For convenience we also allow that
the endpoints of the intervals to be ∅ or Vλ; let (∅, N)αM be {P ∈ M : P ∈∗

α N} in
the first case, and let (N, Vλ)

α
M be {P ∈ M : N ∈∗

α P} in the second case.
We fix an inaccessible cardinal κ and a cardinal λ > κ with cof(λ) ≥ κ such that

(Vλ,∈, κ) is suitable. We may assume that U is an arbitrary predicate over Vλ so
that (Vλ,∈, κ, U) is suitable though we are not going to work with U in this chapter,
so let us simply ignore it. Let also E = E(Vλ,∈,κ,U). We start with the definition of
Mκ

α, for all α ∈ E ∪ {λ}.

Definition 4.1.4 (pure side conditions). Suppose α ∈ E. We say that p = Mp

belongs to Mκ
α if:
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1. Mp is a finite subset of C≤α ∪ U κ
≤α that is closed under meets,

2. Mδ
p is a δ-chain, for all δ ∈ E ∩ (α + 1).

We let Mq ≤ Mp if for all M ∈ Mp there is N ∈ Mq such that N �η(M)= M .
Finally, let Mκ

λ =
∪
{Mκ

α : α ∈ E} with the same ordering.

Remark 4.1.5. Conditions (1) and (2) can be merged to a single condition. Let us say
that a δ-chain M consisting of models active at δ is closed under meets if for every
M,N ∈ M, if the meet M ∧N is defined and active at δ then M ∧N ∈ M. Thus
we can simply say that Mδ

p is a δ-chain closed under meets, for all δ ∈ E ∩ (α+ 1).
The order is natural since if N �η(M)= M , then N carries all the information that
M does.

Let us explain what happens after forcing with Mκ
λ, when κ < λ are supercom-

pact cardinals. Suppose G is generic over Mκ
λ. Then ω1 is preserved, but κ becomes

ω2 and λ becomes ω3 in V [G]. Let MG =
∪
G, and let Gα = G ∩Mκ

α, for α ∈ E.
One can show that for every α ∈ E and β > α, Vβ[Gα] is an ω1-guessing model
in V [G]. To see this fix some δ ∈ E \ β with cof(δ) < κ. One shows that if M is
a Magidor model in Mδ

G then M [Gα] is an ω1-guessing model in V [G]. Moreover,
if M is a Magidor model which is a limit of Magidor models in the δ-chain Mδ

G

then M ∩ Vδ is covered by the union of the previous models in Mδ
G. Therefore,

if we let G = {(M ∩ Vβ)[Gα] : M ∈ Mδ
G ∩ Uκ

δ }, then G is an increasing sequence
of ω1-guessing models which is continuous at uncountable limits and the union of
this sequence is Vβ[Gα]. We will actually present a proof not for the forcing Mκ

λ,
but for a slight variation Mκ

λ. We would like to arrange that in addition the set
{sup(M ∩ κ) : M ∈ Mδ

G} be a club in κ, for all δ ∈ E with cof(δ) < κ. In order to
achieve this we will add decorations to the conditions of Mκ

λ. This device consists
of attaching to each model M of an ∈-chain a finite set dp(M) which belongs to
all models N of the chain such that M ∈ N . In a stronger condition this finite set
is allowed to increase. The main point is that dp(M) controls what models can be
added ∈-above M in stronger conditions. In our situation there are some compli-
cations. First, we have not ∈-chain, but a δ-chain, for each δ ∈ E. It is therefore
reasonable to have decorations for each level δ ∈ E. Now, models from a higher
level project to lower levels at which they are active, but also in order to arrange
strong properness for countable models, some models from lower levels will be lifted
to higher levels and put on the chain. This imposes a subtle interplay between the
decorations on different levels. In order to describe this precisely, we need to make
some preliminary definitions.
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4.2 Pure Side Conditions with Decorations
Notation 4.2.1. Suppose Mp ∈ Mκ

λ. Let

L(Mp) = {M �α: M ∈ Mp and α ∈ a(M)}.

Definition 4.2.2. Suppose Mp ∈ Mκ
λ. We say that M ∈ L(Mp) is Mp-free if every

N ∈ Mp with M ∈η(M) N is strongly active at η(M). Let F(Mp) denote the set of
all M ∈ L(Mp) that are Mp-free.

Note that if Mq ≤ Mp then L(Mp) ⊆ L(Mq) and F(Mq)∩L(Mp) ⊆ F(Mp).
In other words, a node M ∈ L(Mp) that is not Mp-free is not Mq-free, for any
Mq ≤ Mp. We are now ready to decorate Mκ

λ.

Definition 4.2.3 (side conditions with decorations). Suppose α ∈ E ∪{λ}. We say
that a pair p = (Mp, dp) belongs to Mκ

α if Mp ∈ Mκ
α, dp is a finite partial function

from F(Mp) to Pω(Vκ), and

(>) if M ∈ dom(dp), N ∈ Mp, and M ∈η(M) N , then dp(M) ∈ N .

We say that q ≤ p if Mq ≤ Mp, and that for every M ∈ dom(dp) there exists some
γ ∈ E ∩ (η(M) + 1) such that M �γ∈ dom(dq) and dp(M) ⊆ dq(M �γ).

We refer to dp as the decoration of p. The point is that if M ∈ dom(dp) is a
δ-model then dp(M) constraints what models N with M ∈δ N can be put on Mδ

q,
for any q ≤ p. In general, M may not be Mq-free, in which case M /∈ dom(dq), but
then we have some γ ≤ δ such that M �γ is Mq-free and dp(M) ⊆ dq(M �γ). Note
that then we must have dp(M) ∈ N , for any N ∈ Mq such that M ∈δ N .

The ordering on Mκ
λ is clearly transitive. We will say that q is stronger than p if

q forces that p belongs to the generic filter, in order words, any r ≤ q is compatible
with p. We write p ∼ q if each of p and q is stronger than the other. We identify
equivalent conditions, often without saying it. Our forcing does not have greatest
lower bounds, but if p and q do have a greatest lower bound we will denote it by
p∧ q. To be precise we should refer to p∧ q as the ∼-equivalence class of a greatest
lower bound, but we ignore this point since it should not cause any confusion. Note
that if p ∈ Mκ

α and M ∈ Mp is a δ-model that is not active at δ, we may replace M

by M �α(M)
1 and we get an equivalent condition. Thus, if α ∈ E and cof(α) ≥ κ,

then Mκ
α is forcing equivalent to

∪
{Mκ

γ : γ ∈ E ∩ α}.
1Recall that α(M) = max(a(M))
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Convention 4.2.4. Suppose p ∈ Mκ
λ and δ ∈ E. If M,N ∈ Mδ

p with M ∈∗
δ N , we

will write (M,N)δp for the interval (M,N)δMp
, and similarly, for [M,N)δp, (M,N ]δp,

etc.

Suppose α, β ∈ E and α ≤ β. For every p ∈ Mκ
β, we let Mp�α = Mp �α and

dp�α = dp �F(Mp�α). It is easily seen that p �α= (Mp�α , dp�α) ∈ Mκ
α. The following is

straightforward.

Lemma 4.2.5. Suppose α, β ∈ E with α ≤ β. Let p ∈ Mκ
β and let q ∈ Mκ

α be such
that q ≤ p �α. Then there exists r ∈ Mκ

β such that r ≤ p, q.

Proof. We let Mr = Mp ∪Mq. Note that Mr is closed under meets. We define dr

by letting dr(M) = dq(M) if M ∈ dom(dq), and dr(M) = dp(M) if M ∈ dom(dp)

with η(M) > α. It is straightforward that r is as required. 4.2.5

Remark 4.2.6. The condition r from the previous lemma is the greatest lower bound
of p and q, so we will write r = p ∧ q.

Corollary 4.2.7. Suppose α ≤ β ∈ E ∪ {λ}. Then Mκ
α is a complete suborder of

Mκ
β.

4.2.7

Our goal is to prove that our poset Mκ
λ is strongly proper for an appropriate

class of models. We start by showing that if a condition p belongs to a model M we
can always add M to Mp and form a new condition.

Lemma 4.2.8. Let p ∈ Mκ
λ and M ∈ C ∪ U be such that p ∈ M . Then there is a

weakest condition pM ≤ p with M ∈ MpM .

Proof. Suppose first that M is a Magidor model. Then we let MpM = Mp ∪ {M}
and dpM = dp. It is straightforward that pM = (MpM , dpM ) is as required.

Now assume that M is countable. We let MpM be the closure of Mp ∪ {M}
under meets. Fix δ ∈ E. We show that Mδ

pM is an ∈δ-chain. We may assume that
M is active at δ since otherwise Mδ

pM = ∅. By Proposition 3.2.32 we know that
the only models added to Mδ

p in order to form Mδ
pM are M �δ and N ∧ M �δ for

N ∈ Mδ
p such that N ∧M is active at δ. Suppose N ∈ Mδ

p is such a model, and
let P be the ∈δ-predecessor of N in Mδ

p, if it exists. First note that N ∩M �δ∈ N

since N is closed under countable sequence. Therefore, N ∧M �δ∈ N . Moreover, if
P exists by Proposition 3.2.31 we have that P ∈δ N ∧M �δ. This establishes that
Mδ

pM is a δ-chain.
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Let us now define the decoration dpM . Suppose N ∈ dom(dp) is a δ-model. Then
δ ∈ M . If M is strongly active at δ, then by Proposition 3.2.28, for every Magidor
model P ∈ Mp if P ∧M is active at δ then it is strongly active at δ. Hence N is
MpM -free. We then keep N in dom(dpM ) and let dpM (N) = dp(N). Now, suppose
M is not strongly active at δ. This means that δ has uncountable cofinality in M .
Let δ̄ = sup(M ∩ δ) and note that δ̄ is a limit point of E. We claim that N �δ̄ is
MpM -free. Indeed, if there is P ∈ MpM such that N ∈δ̄ P and P is not strongly
active at δ̄, then P ∈ M , and hence η(P ) ≥ δ. Moreover, P is active but not
strongly active at δ as well. Since N ∈δ̄ P and N,P ∈ M it follows that N ∈γ P ,
for unboundedly many γ ∈ E ∩ δ ∩M . But then by Proposition 3.2.13 applied in
M we conclude that N ∈δ P , and hence N is not Mp-free, a contradiction. Notice
also that if P ∈ Mp and N ∈δ̄ P then by Proposition 3.2.13 again we must have
that N ∈δ P and thus dp(N) ∈ P . Therefore, we can replace N by N �δ̄ and let
dpM (N �δ̄) = dp(N). It is straightforward to check that pM is a weakest extension
of p such that M ∈ MpM . 4.2.8

Notation 4.2.9. For virtual models N,M , we set α(N,M) = max(a(N) ∩ a(M)).

We are now about to give the restriction of a condition to a given model. We
start with Magidor models.

Definition 4.2.10. Suppose p ∈ Mκ
λ and M ∈ L(Mp) is a Magidor model. For

N ∈ Mp, we let N �M= N �α(N,M) if κN < κM , otherwise N �M is undefined. Let

Mp�M = {N �M : N ∈ Mp}.

Let dp�M = dp �(dom(dp)∩M), and let p �M= (Mp�M , dp�M ).

Lemma 4.2.11. Suppose p ∈ Mκ
λ and M ∈ L(Mp) is a Magidor model. Then

p �M∈ Mκ
λ ∩M and p ≤ p �M .

Proof. Since p is a condition, we have that if N ∈ Mp and κN < κM , then N ∈∗
γ M ,

for all γ ∈ a(N)∩a(M). By Proposition 3.2.21 we then conclude that N ∈γ M , for all
such γ. By Proposition 3.2.24 we have that α(N,M) ∈ M , and hence N �α(N,M)∈ M .
We also have that dp�M ∈ M , thus p �M∈ M . Let us check that Mp�M ∈ Mκ

λ.
Suppose δ ∈ E. If M is not active at δ then Mδ

p�M is empty, otherwise it is equal to
(∅,M �δ)δp, which is obviously a δ-chain. To check that Mp�M is closed under meets,
suppose N �M , P �M∈ Mp�M and their meet is defined. Note that then N ∧P is also
defined and, by Proposition 3.2.30 (N ∧P ) �M= N �M ∧P �M . It is straightforward
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to check that every N ∈ dom(dp�M ) is Mp�M -free, and (>) from Definition 4.2.3
holds. Finally, the fact that p ≤ p �M follows from the definition. 4.2.11

Lemma 4.2.12. Suppose p ∈ Mκ
λ and M ∈ L(Mp) is a Magidor model. Suppose

q ∈ M ∩Mκ
λ extends p �M . Then q is compatible with p and the meet p ∧ q exists.

Proof. We define r ∈ Mκ
λ and check that it is a weakest condition extending p and

q. Let Mr = Mp ∪Mq. We check that if δ ∈ E, then Mδ
r is a δ-chain closed under

meets, meaning if P,Q ∈ Mδ
r and the meet P ∧ Q is defined and active at δ then

P ∧ Q ∈ Mδ
r. Fix such δ ∈ E. If M is not active at δ, then Mδ

r = Mδ
p and thus

has the required property since p is a condition. Now, suppose M is active at δ.
If R ∈ Mδ

r and R ∈∗
δ M , then by Proposition 3.2.21 we know that R ∈δ M , and

by Proposition 3.2.24 we get that δ ∈ M . Hence R ∈ M and therefore R ∈ Mδ
q.

Therefore, Mδ
r is the union of Mδ

q and [M �δ, Vλ)
δ
p, and hence is a δ-chain. Now

suppose P,Q ∈ Mδ
r and their meet is defined and active at δ. We need to check

that Q ∧ P ∈ Mδ
r. If both P and Q belong either to Mδ

q or Mδ
p, this follows

from the fact that p and q are conditions. Since Q ∈δ P and Mδ
q is an ∈∗

δ-initial
segment of Mδ

r, we may assume Q ∈ Mδ
q and P ∈ Mδ

p \ Mδ
q. The proof goes by

induction on the number of Magidor models on the δ-chain [M �δ, P )δp. If M ∈δ P

then M ∧ P ∈ Mδ
p and is δ-below M �δ, hence belongs to Mδ

q. On the other hand,
by Proposition 3.2.32 we have Q∧ P = Q∧ (M ∧ P ), and since Mδ

q is closed under
meets we get that Q∧P ∈ Mδ

q. In general, if N is the ∈∗
δ-largest Magidor model in

[M �δ, P )δp, by Proposition 3.2.21, we have that Q ∈δ N ∈δ P . In particular, N ∧ P

is defined and by Proposition 3.2.32 we have that Q ∧ P = Q ∧ (N ∧ P ). Now, we
are done if N ∧ P ∈ Mδ

q as q is a condition. Otherwise, it belongs to the interval
[M �δ, P )δp. Then there are fewer Magidor models in [M �δ, N ∧ P )δp and thus we
can use the induction hypothesis.

Let dr = dq ∪ dp �(dom(dp)\M). Let us check that every N ∈ dom(dr) is Mr-free.
For simplicity, let η = η(N). If N ∈ dom(dp) \M , then there is no P ∈ Mq such
that N ∈η P , and hence the conclusion follows from the fact that p is a condition.
Suppose now N ∈ dom(dq) and P ∈ Mr is such that N ∈η P . We have to check
that P is strongly active at η. We may assume that P is a countable model. If
P �η is η-below M , then P �M is defined and P �M∼=η P , therefore, the conclusion
follows from the fact that q is a condition. If P �η is η-above M , then M ∧ P is
defined and belongs to Mp. Moreover, by Proposition 3.2.31, N ∈η M ∧ P . Now
(M ∧P ) �M is defined, and belongs to Mα(M∧P,M)

q , and is strongly active at η since
N is Mq-free. Therefore, P is also strongly active at η. The fact that dr satisfies
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condition (∗) from Definition 4.2.3 is straightforward. Finally, the fact that r is the
weakest common extension of p and q follows readily from the definition. 4.2.12

By Lemma 4.2.8 and Lemma 4.2.12 we immediately get the following.

Theorem 4.2.13. The forcing Mκ
λ is U -strongly proper.

4.2.13

We now proceed to define an analogue of p �M for countable models M ∈ L(Mp).
The situation here is more subtle since p �M may not belong to the original forcing,
only its version as defined in M . We first analyze the part involving Mp. It will be
useful to make the following definition.

Definition 4.2.14. Let M be a subset of C ∪ U and M ∈ C . For δ ∈ E, we let
(M �M)δ = {N ∈ Mδ : N ∈δ M}.

Lemma 4.2.15. Let Mp ∈ Mκ
λ and δ ∈ E. Suppose M ∈ Mδ

p is countable. Then
(Mp �M)δ is a δ-chain closed under meets and

(Mp �M)δ = (∅,M �δ)δp\
∪

{[N∧M,N)δp : N ∈ (Mp �M)δ and is a Magidor model}.

Here, if N ∧M is defined and not active at δ, by [N ∧M,N)δp we mean (∅, N)δp.

Proof. It is clear that (Mp �M)δ ⊆ (∅,M)δp. Suppose P ∈ Mδ
p and P ∈δ M .

Then, for any Magidor model N ∈ (P,M)δp, we have P ∈δ N by Proposition 3.2.21.
Then by Proposition 3.2.31 we have that P ∈δ N ∧M . Conversely, suppose P is in
(∅,M)δp, but not in (Mp �M)δ. Then, by Proposition 3.2.21 again, there must be
a Magidor model N ∈ Mδ

p such that P ∈δ N ∈δ M . Let N be the ∈∗
δ-least such

model. If N ∧ M is not active at δ, then P ∈ (∅, N)δp. Suppose N ∧ M is active
at δ. We have to show that either P = N ∧M or N ∧M ∈∗

δ P . Indeed, otherwise
we have P ∈∗

δ N ∧M . Note that there cannot be a Magidor model Q ∈ Mδ
p with

P ∈δ Q ∈δ N ∧M since then we would have Q ∈δ M as well, and this contradicts
the minimality of N . Since Mδ

p is a δ-chain, by Proposition 3.2.21 we conclude that
P ∈δ N ∧ M , but then also P ∈δ M , a contradiction. The fact that (Mp �M)δ is
a δ-chain follows from the above analysis. By Proposition 3.2.33 it is also closed
under meets. 4.2.15

Lemma 4.2.16. Let p ∈ Mκ
λ and M,N ∈ Mp. If there is γ ∈ a(M) ∩ a(N) such

that N ∈γ M , then N ∈δ M , for all δ ∈ a(M) ∩ a(N).
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Proof. Let α = α(M,N). If N ∈α M then N ∈γ M , for all γ ∈ a(M) ∩ a(N),
by Proposition 3.2.11. Now suppose N /∈α M . If M is a Magidor model we have
κM ≤ κN , and hence there is no γ such that N ∈γ M . Assume now that M

is countable. Then by Lemma 4.2.15 there is a Magidor model P ∈ Mα
p with

P ∈α M such that N �α is in the interval [P ∧M,P )αp . Now, P ∧M is active at all
γ ∈ a(N) ∩ α and N �γ is in the interval [(P ∧ M) �γ, P �γ)γp , for all such γ. But
then, by Lemma 4.2.15 again, N /∈γ M , for all γ ∈ a(M) ∩ a(N). 4.2.16

It would be useful to introduce some notation.

Notation 4.2.17. Suppose M ∈ V and M is a finite subset of V . Let α ∈ E. We
write M ∈α M if N ∈α M , for all N ∈ M.

Lemma 4.2.18. Suppose Mp ∈ Mκ
λ and δ ∈ E. Suppose M ∈ Mδ

p is a countable
model, M ∈δ M is a finite δ-chain closed under meets, and (Mp �M)δ ⊆ M. Then
the closure of Mδ

p ∪M under meets that are active at δ is a δ-chain.

Proof. Let us first show that Mδ
p ∪ M is a δ-chain. Indeed, by Lemma 4.2.15

it is obtained by adding to M the intervals [N ∧ M,N)δp, where N ∈ (Mp �M)δ

is a Magidor model, and the interval [M,Vλ)
δ
p. Consider one such interval, say

[N ∧M,N)δp. If P is the last model of M before N then P ∈δ M by the assumption
that M ∈δ M , and P ∈δ N by Proposition 3.2.21. Hence by Proposition 3.2.30 we
have that P ∈δ N ∧M . It follows that Mδ

p ∪M is a δ-chain.
Let us now consider what happens when we close Mδ

p∪M under meets that are
active at δ. Suppose Q,P ∈ Mδ

p ∪M, Q is a Magidor model, P is countable, and
Q ∈δ P . If P ∈ M then Q ∈δ P ∈δ M , and hence by Proposition 3.2.21 Q ∈δ M ,
and so Q ∈ M as well. Since M is closed under meets, we have that Q ∧ P ∈ M.
Now suppose P ∈ Mδ

p \ M. By Lemma 4.2.15 we have that P ∈ [M,Vλ)
δ
p or

P ∈ [N ∧M,N)δp, for some Magidor model N ∈ (Mp �M)δ. The two cases are only
notationally different, so let us assume that there is a Magidor model N ∈ (Mp �M)δ

such that P ∈ [N ∧M,N)δp. We may assume that Q ∈ M\Mδ
p. Note that Q ∈δ N

and Q ∈δ M , hence by Proposition 3.2.31 Q ∈δ N ∧ M . If there is a Magidor
model R ∈ Mδ

p such that Q ∈∗
δ R ∈∗

δ P , let R be the ∈∗
δ-largest such model. By

Proposition 3.2.21 we have that R ∈δ P and hence R ∧ P is defined and is below P

on the δ-chain Mδ
p. Moreover, since Mδ

p∪M is a δ-chain, also by Proposition 3.2.21,
we have Q ∈δ R. Now, by Proposition 3.2.31 we have that Q ∈δ R ∧ P , and by
Proposition 3.2.32 we have Q ∧ P = Q ∧ (R ∧ P ). Therefore, we may assume that
there are no Magidor models R ∈ Mδ

p with Q ∈δ R ∈δ P . Now, let {Pi : i < k}
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list all countable models on the chain [N ∧M,N)δp below the first Magidor model,
if it exists. Then P0 = N ∧M and P = Pj, for some j. Note that Q ∈δ Pi, for all
i < k, again by Proposition 3.2.21. Now let S be the ∈∗

δ-predecessor of Q on the
δ-chain Mδ

p∪M, if it exists, otherwise let S be ∅. Note that S ∈δ N∧M . Indeed, if
S ∈ Mδ

p this follows from Proposition 3.2.21, and the fact that there are no Magidor
models in (S,N ∧ M)δp. If S ∈ M then S ∈δ M and thus S ∈δ N ∧ M . Now, by
Proposition 3.2.21 we have that S ∈δ Pi, for all i < k. Hence, by Proposition 3.2.31
we have S ∈δ Q ∧ Pi, for all i. By Proposition 3.2.33 we have Q ∧ Pi ∈δ Pi+1, for
all i < k − 1. Since Q is a Magidor model, we also have that Q ∧ Pi ∈δ Q, for
all i < k. By Proposition 3.2.31 again, we have that Q ∧ Pi ∈δ Q ∧ Pi+1, for all
i < k − 1. Therefore, S ∈δ Q ∧ P0 ∈δ . . . ∈δ Q ∧ Pk−1 ∈δ Q, and Q ∧ P appears on
this chain. If S = ∅ then an initial segment of this chain may be nonactive at δ,
but the remainder is still a δ-chain. 4.2.18

Now, suppose p ∈ Mκ
λ and M ∈ Mp is a countable β-model, for some β ∈ E.

Let A = Hull(M,Vβ). Then A ∈ Aβ. Note that EA ∩ β = E ∩ β, and if β ∈ A

then β ∈ EA. Also, note that the definitions of Mκ
α and the order relation are Σ1

with parameter Vα. For α ∈ EA, let (Mκ
α)

A be the version of Mκ
α as defined in A.

Then (Mκ
α)

A = Mκ
α if α < β, and (Mκ

β)
A ⊆ Mκ

β. We will let V M
α = V A

α ∩M , and
(Mκ

α)
M = (Mκ

α)
A ∩M , if α ∈ EA ∩M . Suppose N ∈ Mp and N ∈δ M , for some

δ ∈ a(M)∩a(N), Then by Lemma 4.2.16, N ∈α M , where α = α(M,N). Note that
if M is a standard β-model then α < β. It may be that α /∈ M , but then, if we
let α∗ = min(M ∩ ORD \ α), we have that α∗ ∈ EA ∩M , and α∗ is of uncountable
cofinality in A. By the previous remarks, if M is a standard β-model or β ∈ M

then α∗ ∈ E ∩ (β + 1), otherwise α∗ may be in the nonstandard part of M . Since
N ∈α M , there is an α∗-model N∗ ∈ M with N∗ ∈ V A which is α-isomorphic to N .
Now, M can compute N∗ �α∗ , hence we may assume N∗ ∈ V A

α∗ . Moreover, such N∗

is unique. Indeed, if there is another model N∗∗ ∈ M with the same property, since
α∗ is the least ordinal in M above α and N∗ ∼=α N∗∗ we would have that N∗ ∼=δ N

∗∗,
for all δ ∈ EA ∩α∗ ∩M . Hence, by Proposition 3.2.12 applied in M , we would have
that N∗ = N∗∗. This justifies the following definition.

Definition 4.2.19. Suppose p ∈ Mκ
λ and let M ∈ L(Mp) be a countable β-model,

for some β ∈ E. Suppose that N ∈ Mp, and let α = α(M,N). If N ∈α M we let
α∗ = min(M ∩ ORD \ α). We define N �M to be the unique N∗ ∈ V M

α∗ such that
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N∗ ∼=α N . Otherwise we leave N �M undefined. Let

Mp�M = {N �M : N ∈ Mp}, and

dom(dp�M ) = {N �M : N ∈ dom(dp) and N ∈η(N) M}.

If N ∈ dom(dp) and N ∈η(N) M , let dp�M (N �M) = dp(N). Let p �M= (Mp�M , dp�M ).

Remark 4.2.20. Suppose N ∈ dom(dp) and let η = η(N). If N ∈η M then M is
strongly active at η since N is Mp-free. If η ∈ M then we put N in dom(dp�M ) and
keep the same decoration at N . If η /∈ M we lift N to the least level η∗ of M above
η, we put the resulting model N∗ in dom(dp�M ) and copy the decoration of N to N∗.
If P ∈ Mp is such that P �η= N then (P �M) �η∗= N∗. Moreover, from N∗ we can
recover N as N∗ �sup(η∗∩M). Thus, the function dp�M is well defined. Note also that
p �M∈ M .

Proposition 4.2.21. Suppose p ∈ Mκ
λ and M ∈ L(Mp) is a countable β-model, for

some β ∈ E. Let

α = max{α(N,M) : N ∈α(N,M) M and N ∈ Mp}.

Let α∗ = min(M ∩ ORD \ α). Then p �M∈ (Mκ
α∗)M .

Proof. Let A = Hull(M,Vβ) and work in A. It is clear that Mp�M is a finite subset
of C A

≤α∗ ∪ U A
≤α∗ . We first show that Mγ

p�M is a γ-chain closed under meets, for all
γ ∈ EA ∩ (α∗ + 1). Fix such γ and let δ = min(M ∩ ORD \ γ) and δ̄ = sup(M ∩ δ).
If δ̄ = δ then γ = δ, and hence γ ∈ M . Since Mγ

p�M = Mγ
p�M the conclusion follows

from the fact that p is a condition and Lemma 4.2.15. Let us assume now that δ̄ < δ.
Note that then δ̄, δ ∈ E, δ is of uncountable cofinality in M , and is a limit point
of E. Note that if P ∈ Mp�M is a δ-model that is active at γ then a(P ) is cofinal
in δ. Moreover, a(P ) ∈ M and since δ̄ = sup(M ∩ δ) we have that δ̄ ∈ a(P ). This
implies that Mγ

p�M �δ̄ = Mδ̄
p�M . Therefore, by Lemma 4.2.15 it is a δ̄-chain closed

under active meets. Now, suppose N,P ∈ Mδ
p�M and N ∈δ̄ P . Since δ̄ = sup(M ∩δ)

we have that N ∈ξ P , for unboundedly many ξ ∈ E ∩ δ. We conclude that N ∈δ P .
Indeed, if P is countable this follows from Proposition 3.2.13 applied in A, and
if P is a Magidor model this follows from Proposition 3.2.25, again applied in A.
Moreover, assuming N is a Magidor model and P is countable, and N �γ ∧P �γ is
defined and active at γ then, by Proposition 3.2.30, N ∧ P is defined and active at
unboundedly many ξ ∈ E ∩ δ, and hence it is also active at δ and δ̄. It follows that
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Mδ
p�M is a δ-chain closed under meets, and hence Mγ

p�M is a γ-chain closed under
meets as well.

Let us check that every P ∗ ∈ dom(dp�M ) is Mp�M -free. If P ∗ ∈ dom(dp) this is
immediate. Otherwise, P ∗ is of the form P �M , for some P ∈ dom(dp) such that
η(P ) /∈ M . Let η = η(P ) and η∗ = η(P ∗). Note that M is strongly active at η and
η∗ is the least ordinal of M above η. Suppose N ∈ Mp�M is such that P ∗ ∈η∗ N .
Then N �η∈ L(Mp) and P ∈η N . Since P is Mp-free, N must be strongly active
at η. Since η = sup(M ∩ η∗) and N ∈ M we must have that N is strongly active at
η∗ as well. This also establishes (>) from Definition 4.2.3. Indeed, if P ∗ ∈η∗ N then
P ∈η N �η, and hence dp(P ) ⊆ N , since N �η∈ L(Mp), and p is a condition. This
completes the proof that p �M∈ (Mκ

α∗)A. 4.2.21

Note that if p, q ∈ Mκ
λ are such that q ≤ p and M ∈ Mp then q �M≤ p �M .

We are planning to show that if p is a condition and M ∈ Mp is a countable
β-model then, for any q ≤ p �M with q ∈ M , p and q �β are compatible, and in
fact the meet p ∧ q �β exists. Before that we show the following special case of this
statement.

Lemma 4.2.22. Suppose p ∈ Mκ
λ and δ ∈ E. Suppose M ∈ Mδ

p is a countable
model, M ∈δ M,M ∈ Mκ

δ , and (Mp �M)γ ⊆ Mγ, for all γ ∈ E ∩ (δ + 1). Suppose
further that P /∈η(P ) M , for all P ∈ dom(dp). Let Mq be the closure of Mp ∪ M
under meets and let dq = dp. Finally, let q = (Mq, dq). Then q ∈ Mκ

λ.

Proof. Let us first check that Mγ
q is a γ-chain closed under active meets, for all

γ ∈ E. Fix γ ∈ E. If M is not active at γ then Mγ
q = Mγ

p , so this follows from the
fact that p is a condition. If M is active at γ then this follows from Lemma 4.2.18.

Thus, it remains to check that every P ∈ dom(dp) is Mq-free and dp(P ) ∈ Q, for
all Q ∈ Mq such that P ∈η(P ) Q. Now, fix one such P ∈ dom(dp) and let η = η(P ).
If M is not active at η, then no model of M is active at η, and hence Q ∈ Mp,
for all Q ∈ Mq such that P ∈η Q. The conclusion then follows from the fact that
p is a condition and dp is its decoration. Suppose now that M is active at η, but
P is either equal to M �η or is above M �η on the η-chain Mη

p. Then, again any
Q ∈ Mq such that P ∈η Q is in Mp, and the conclusion follows as above. Suppose
now that M is active at η and P ∈∗

η M �η. Note that Mη
q is obtained by closing

Mη
p ∪Mη under meets that are active at η. Suppose P is below M �η on Mη

p. By
the assumption, P /∈η M , hence by Lemma 4.2.15, there must be a Magidor model
N ∈ (Mp �M)η such that P is in the interval [N ∧M �η, N)ηp. By Proposition 3.2.21,
we have that P ∈η N and thus dq(P ) ∈ N . Note that P also belongs to the interval
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[N ∧ M �η, N)ηq . Suppose Q ∈ Mq and P ∈η Q. By replacing Q with Q �η, we
may assume that Q ∈ Mη. Note that Q cannot be a countable model since then
we would have P ∈η M . If Q is a Magidor model in Mη then Q cannot be below
N since then it would be below N ∧ M �η on Mη

q . Therefore, Q must be either
equal to N or above N on the η-chain Mη. Then we would have N ∩ Vκ ⊆ Q ∩ Vκ,
and hence dp(P ) ∈ Q. If Q ∈ Mp then Q is strongly active at η and dp(P ) ∈ Q,
since p is a condition. It remains to consider the case when Q is of the form R ∧ S,
for some Magidor model R ∈ Mη and countable S ∈ Mη

p \ Mη. Now, we must
have R = N or N ∈η R since otherwise R, and hence also R ∧ S, would be below
N ∧M �η. Since dp(P ) ∈ N , we must have dp(P ) ∈ R. Moreover, since S ∈ Mη

p,
and dp is the decoration of p, S must be strongly active at η and dp(P ) ∈ S. By
Proposition 3.2.29, R ∧ S is strongly active at η. By Proposition 3.2.28, we have
R ∧ S ∩ Vη = R ∩ S ∩ Vη, and hence dp(P ) ∈ R ∧ S = Q. 4.2.22

Lemma 4.2.23. Suppose p ∈ Mκ
λ and M ∈ L(Mp) is a countable β-model, for

some β ∈ E. Let α∗ ∈ M be such that p �M∈ (Mκ
α∗)M . Then for any q ∈ (Mκ

α∗)M

with q ≤ p �M , p and q �β are compatible, and the meet p ∧ q �β exists.

Proof. Let Mr be the closure of Mp ∪ Mq�β under meets. By Lemma 4.2.18 we
already know that Mδ

r is a δ-chain, for all δ ∈ E. Hence Mr ∈ Mκ
λ. It remains to

define the decoration dr, and check that it satisfies (>) from Definition 4.2.3. Let

Dp = {P ∈ dom(dp) : P /∈η(P ) M}.

Now, suppose P ∈ dom(dq). Let δ(P ) be the largest ordinal γ ∈ E∩ (η(P )+1) such
that M is strongly active at γ. Let

Dq = {P �δ(P ): P ∈ dom(dq)}.

Note that, for every P ∈ dom(dq), we have (P �δ(P )) �M= P , and P is active at
δ(P ). Observe that Dp and Dq are disjoint. Let dom(dr) = Dp ∪Dq and define dr

by:

dr(P ) =

dp(P ) if P ∈ Dp

dq(P �M) if P ∈ Dq and η(P ) ≤ β

We have to check that every P ∈ dom(dr) is Mr-free and condition (>) holds. By
Lemma 4.2.22 we have that (Mr, dp �Dp) is already a condition, so we may assume
P ∈ Dq. Fix one such P ∈ Dq, and let η = η(P ). Note that it suffices to show
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that the least model, say R, on the η-chain Mη
r above P is strongly active at η, and

dr(P ) ∈ R. By Lemma 4.2.15 either R ∈η M or R = N ∧M �η, for some Magidor
model N ∈ (Mp �M)η. Now, if R is of the form N ∧M �η, then, since N and M �η
are strongly active at η, by Proposition 3.2.29, so is R. Moreover, N �M∈ L(Mq)

and dq(P �M) ∈ M ∩ N . It follows that dr(P ) ∈ R. Suppose now that R ∈η M .
Let ρ = min(E ∩M \ η). Then P �M and R �M are ρ-models, R �M∈ L(Mq), and
P �M∈ρ R �M . Therefore, R �M is strongly active at ρ, and dq(P �M) ∈ R �M . Since
(R �M) ∩ Vκ = R ∩ Vκ, we get that dq(P �M) ∈ R, and hence dr(P ) ∈ R. Moreover,
since R �M is strongly active at ρ, it follows that R is strongly active at η. This
shows that all the models in dom(dr) are Mr-free and condition (>) holds for r.
The fact that r ≤ p, q �β and is in fact the weakest such condition follows from the
definition. 4.2.23

Remark 4.2.24. Suppose p ∈ Mκ
λ and M ∈ Mp is a countable β-model, for some

β ∈ E. If either M is standard or β ∈ M we have that p �M∈ Mκ
λ. In particular,

Lemma 4.2.23 shows that if p ∈ Mκ
λ then p and p �M are compatible. Now, we have

already observed that, if q ∈ Mκ
λ and q ≤ p, then q �M≤ p �M . Therefore, even

though it may not be the case that p ≤ p �M , every p forces p �M to belong to the
generic filter, and hence p is stronger than p �M .

Now, by Lemma 4.2.8 and Lemma 4.2.23 we immediately get the following.

Theorem 4.2.25. Mκ
λ is Cst-strongly proper.

Proof. Suppose M ∈ Cst and p ∈ M ∩ Mκ
λ. Let pM be the condition defined in

Lemma 4.2.8. If q ≤ pM then M ∈ L(Mq) and q �M∈ M , and by Remark 4.2.24,
q �M∈ Mκ

λ. Then, by Lemma 4.2.23 any extension r of q �M with r ∈ M is
compatible with q, and moreover q ∧ r exists. Thus, pM is a (M,Mκ

λ)-strongly
generic condition extending p. 4.2.25

Remark 4.2.26. A similar proof shows that the forcing Mκ
α is strongly proper for the

collection of all M ∈ C such that α ∈ M .

Notation 4.2.27. Let F be a filter in Mκ
λ. Then we set

MF =
∪

{Mp : p ∈ F}.

Let G be a Mκ
λ-generic filter over V . We let Gα = G ∩Mκ

α, for all α ∈ E. The
following is straightforward.
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Proposition 4.2.28. Let δ ∈ E with cof(δ) < κ. Then Mδ
G is a δ-chain.

4.2.28

Proposition 4.2.29. Let δ ∈ E with cof(δ) < κ. Suppose M ∈ Mδ
G is a Magidor

model and is not the least model in Mδ
G. Then

M ∩ Vδ =
∪

{Q ∩ Vδ : Q ∈δ M and Q ∈ Mδ
G}.

Proof. It suffices to show that if p ∈ Mκ
λ and M ∈ Mδ

p is a Magidor model that
is not the least model of Mδ

p, and x ∈ M ∩ Vδ, then there is q ≤ p and Q ∈ Mq

which is active at δ such that Q ∈δ M and x ∈ Q. Let N ∈ Mp be active at δ such
that N ∈δ M . Fix some Q∗ ∈ C such that N,M, x ∈ Q∗. By Lemma 4.2.8 there
is a condition q ≤ p such that Q∗ ∈ Mq. Since N ∈δ M and N ∈δ Q∗, if we let
Q = M ∧Q∗, by Proposition 3.2.30 N ∈δ Q, and hence Q is active at δ. Moreover,
Q ∈δ M and by Proposition 3.2.28 Q ∩ Vδ = M ∩ Q∗ ∩ Vδ and hence x ∈ Q. It
follows that the condition q and the model Q are as required. 4.2.29

Theorem 4.2.30. Assume κ is supercompact. Then Mκ
λ preserves ω1 and κ, and

collapses all cardinals between ω1 and κ to ω1.

Proof. By Proposition 3.2.15, Cst is stationary in Pω1(Vλ), and by Lemma 4.2.23, Mκ
λ

is Cst-strongly proper. Hence ω1 is preserved. By Corollary 3.2.20, U is stationary
in Pκ(Vλ), and by Theorem 4.2.13, Mκ

λ is U -strongly proper. Hence κ is preserved.
Now, fix a cardinal µ < κ. Let G be a Mκ

λ-generic filter over V . Fix α ∈ E

of cofinality less than κ. A standard density argument shows that there exists a
Magidor model N ∈ Mα

G with µ ∈ N . By Proposition 4.2.28 Mα
G is an ∈α-chain.

Let N∗ be the least Magidor model above N in Mα
G, and let I = (N,N∗)αMG

. Note
that every model in I is countable and ∈α is transitive on I. Hence if P,Q ∈ I and
P ∈α Q then P ∩ Vα ⊆ Q∩ Vα. Another standard density argument shows that, for
every x ∈ N ∩ Vα, there is P ∈ I such that x ∈ P . Thus, {P ∩ Vα : P ∈ I} is an
increasing chain of countable sets whose union covers N ∩Vα. It follows that N ∩Vα

is of cardinality at most ω1. Since µ belongs to the transitive part of N , we also get
that |µ| ≤ ω1. 4.2.30

Theorem 4.2.31. Mκ
λ collapses cardinals of the interval between κ and λ to κ.

Proof. Let α ∈ E be of cofinality less than κ, and let G be a V -generic filter over
Mκ

λ. Let Uα
G be the set of Magidor models in Mα

G. By Proposition 3.2.21, we have
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that ∈α is transitive on Uα
G. Note that if P,Q ∈ Uα then P ∩ Vα ⊆ Q ∩ Vα. Now, a

standard density argument using the stationarity of U shows that, for every x ∈ Vα,
there is P ∈ Uα

G such that x ∈ P . It follows that {P ∩ Vα : P ∈ Uα
G} is an increasing

family of sets of size < κ whose union is Vα. Therefore, Vα has cardinality ≤ κ in
V [G]. 4.2.31

Theorem 4.2.32. Suppose λ is an inaccessible cardinal. Then Mκ
λ is λ-c.c.

Proof. For each p ∈ Mκ
λ, let a(p) =

∪
{a(M) : M ∈ Mp}. Note that a(p) is a

closed subset of E of size < κ, for all p. Suppose A is a subset of Mκ
λ of cardinality

λ. Since λ is inaccessible, by a standard ∆-system argument, we can find a subset
B of A of size λ and a subset a of E such that a(p) ∩ a(q) = a, for all distinct
p, q ∈ B. Note that a is closed, and if we let γ = max(a) then γ ∈ E. Since B has
size λ, by a simple counting argument, we may assume there is M ∈ Mκ

γ such that
Mp �γ= M, for all p ∈ B. Now, pick distinct p, q ∈ B, and define Mr = Mp ∪Mq

and dr = dp ∪ dq. Let r = (Mr, dr). It is straightforward to check that r ∈ Mκ
λ and

r ≤ p, q. 4.2.32

4.3 Adding CLUBs
Definition 4.3.1. Suppose G is V -generic over Mκ

λ and α ∈ E is of cofinality less
than κ. Let Cα(G) = {κM : M ∈ Mα

G}.

Lemma 4.3.2. Let G be a V -generic filter over Mκ
λ. Then Cα(G) is a club in κ,

for all α ∈ E of cofinality < κ. Moreover, if α < β then Cβ(G) \ Cα(G) is bounded
in κ.

Proof. Let us check the second statement first. Assume that α < β in E are of
cofinality less than κ. By a standard density argument using the stationarity of U

there is p ∈ G and a Magidor model M ∈ Mp which is active at both α and β.
Therefore, any model N above M �β on the β-chain Mβ

G is also active at α. It
follows that Cβ(G) \ Cα(G) ⊆ κM .

We work in V and prove the first statement by induction on α. Let Ṁα and Ċα

be canonical Mκ
λ-names for Mα

G and Cα(G), for α ∈ E. Now, fix α ∈ E of cofinality
less than κ and suppose the statement has been proved for all ᾱ ∈ E∩α of cofinality
< κ. Suppose γ < κ and p ∈ Mκ

λ forces that γ is a limit point but not a member of
Ċα. We may assume that there is a model M ∈ Mα

p such that p forces that M is
the least model on the α-chain Ṁα such that γ ≤ κM . Then we must have γ < κM .
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Let P be the previous model on Mα
p before M . We may assume that such a model

exists since p forces that γ is a limit point of Ċα. Note that κP < γ since p forces
that γ /∈ Ċα.
Case 1. Suppose M is strongly active at α. Since P is Mp-free and we may assume
that P ∈ dom(dp), by defining dp(P ) = ∅ if necessary. Since γ < κM , we can find
δ ∈ M such that γ ≤ δ < κM . Define a condition q as follows. Let Mq = Mp, and
let dom(dq) = dom(dp). Let dq(P ) = dp(P )∪{δ}, and dq(Q) = dp(Q), for any other
Q ∈ dom(dp). Let q = (Mq, dq). Then q is a condition and forces that the next
model of Ṁα above P contains δ. Hence, it forces that there is no element of Ċα

between κP and γ, and so it forces that γ is not a limit point of Ċα, a contradiction.
Case 2. Suppose now that M is not strongly active at α. Then M is countable. Let
A = Hull(M,Vα), let α∗ be the least ordinal of M above α, and let ᾱ = sup(M ∩α).
Note that α∗ ∈ EA, ᾱ is a limit point of E of cofinality ω, and that P is also active
at ᾱ. Now, by the proof of the second part of the lemma, p forces that Ċα\Ċᾱ ⊆ κP ,
and so it also forces that γ is a limit point of Ċᾱ. By the inductive assumption Ċᾱ

is forced to be a club, so there is q ≤ p and some N ∈ Mᾱ
q such that κN = γ. Now,

for each Q ∈ (Mq �M)ᾱ, we can find a unique model Q∗ ∈ M with Q∗ ∈ V A
α∗ such

that Q∗ �ᾱ= Q. Let M∗ = {Q∗ : Q ∈ (Mq �M)ᾱ}. Working in A, M∗ is an α∗-chain
closed under meets that are active at α∗. Let M = {Q∗ �α: Q∗ ∈ M∗}. We then
have M ∈α M , and that M is an α-chain closed under meets that are active at α,
and (Mq �M)α ⊆ M. We now define a condition r. Let Mr be the closure of Mq

and M under meets. By applying Lemma 4.2.18, for all levels δ ∈ E ∩ (ᾱ, α], we
have that Mr ∈ Mκ

λ. Let dr = dq and r = (Mr, dr). Observe that Mη
r = Mη

q , for
all η ∈ E \ (ᾱ, α]. Also, if R ∈ dom(dq) and η(R) ∈ (ᾱ, α] then R /∈η(R) M , since M

is not strongly active at η(R). By Lemma 4.2.22, we conclude that r is a condition.
Also, we have that r ≤ q. Recall that N ∈ Mᾱ

q and κN = γ. Let Q be the model on
the ᾱ-chain Mᾱ

r immediately before M �ᾱ. Then Q∗ ∈ M∗, and hence Q∗ �α∈ Mr.
Let R = Q∗ �α. In other words, we lifted the model Q to level α and called this
model R. Note that κR = κQ. Then r forces that R ∈ Ṁα and γ ≤ κR < κM ,
which contradicts the fact that p forces that γ /∈ Ċα and M is the least model on
Ṁα with γ ≤ κM . This completes the proof of the lemma. 4.3.2

4.4 Quotients
In this section we analyze the quotients of Mκ

α, by some Gβ, for β < α, or by Gα∩N

for some Magidor model N � α ∈ MGα .
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Let us fix a V -generic filter Gα over Mκ
α, and let Qα denote the quotient forcing.

Recall that Qα consists of all p ∈ Mκ
λ such that p �α∈ Gα, with the induced ordering.

Forcing with this poset over V [Gα] produces a V -generic filter Gλ for Mκ
λ such that

Gλ∩Mκ
α = Gα. We first show that the pair (V [Gα], V [Gλ]) has the ω1-approximation

property. We will need the following definition.

Definition 4.4.1. In the model V [Gα], let Cst[Gα] denote the set of all M ∈ Cst

such that η(M) > α, α ∈ M , and M �α∈ Mα
Gα

.

Lemma 4.4.2. Cst[Gα] is a stationary subset of Pω1(Vλ) in the model V [Gα].

Proof. We work in V . Let Ċ α
st and Ṁα be canonical Mκ

α-names for Cst[Gα] and
MGα . Suppose that p ∈ Mκ

α forces that Ḟ is an algebra on Vλ. It suffices to find
some q ≤ p and M ∈ Cst such that q forces M is closed under Ḟ and belongs to
Ċ α

st . Let θ be a sufficiently large regular cardinal. By Proposition 3.2.15, Cst is club
in Pω1(Vλ), hence we can find a countable M∗ ≺ H(θ) containing all the relevant
objects such that letting M = M∗ ∩ Vλ we have that M ∈ Cst. Let M ′ = M �α.
Note that p ∈ M ′, so we can form the condition pM

′ . Then pM
′ is (M ′,Mκ

α)-strongly
generic and pM

′ ≤ p. Let σ be the α-isomorphism between M and M ′. Note that
σ(q) = q, for all q ∈ M ∩ Mκ

α. Hence, M ∩ Mκ
α = M ′ ∩ Mκ

α. Therefore, pM
′ is

also (M,Mκ
α)-strongly generic, and thus it is (M∗,Mκ

α)-generic. Since Ḟ ∈ M∗, it
follows that pM

′ forces that M is closed under Ḟ . It also forces that M ′ belongs to
Ṁα, hence it forces that M belongs to Ċ α

st . 4.4.2

Lemma 4.4.3. Suppose that α ∈ E and let Gα be V -generic over Pκ
α. Then Qα is

Cst[Gα]-strongly proper.

Proof. Work in V [Gα]. Let p ∈ Qα, and M ∈ Cst[Gα] be such that p ∈ M . Let pM

be the condition defined in Lemma 4.2.8. Since α ∈ M we have that p �α∈ M , and
also p �α∈ M �α. Note that pM �α= (p �α)M�α. Since p �α∈ Gα and M �α∈ Mα

Gα
,

we have that pM �α∈ Gα, thus pM ∈ Qα. Let us show that pM is (M,Qα)-strongly
generic. Suppose that q ≤ pM and q �α∈ Gα. Since α ∈ M �α we should have that
have (q �M) �α= (q �α) �(M�α), and hence q �M∈ M ∩Qα. Let r ≤ q �M be such that
r ∈ M ∩ Qα. By Lemma 4.2.23, r and q are compatible in Mκ

λ and the meet r ∧ q

exists. Now, observe that the meet of r �α and q �α exists, and r �α ∧q �α= (r∧q) �α.
Since r �α, q �α∈ Gα, we conclude that r �α ∧q �α∈ Qα. It follows that q and r are
compatible in Qα. 4.4.3

Now, by Lemma 4.4.2, Lemma 4.4.3, and Proposition 1.3.6, we get the following.



4.4. Quotients 73

Corollary 4.4.4. Suppose that Gλ is V -generic over Mκ
λ, α ∈ E and Gα = Gλ∩Mκ

α.
Then the pair (V [Gα], V [Gλ]) has the ω1-approximation property.

4.4.4

Suppose now N ∈ U . Let 1N = ({N},∅). By Lemma 4.2.12, 1N is (N,Mκ
λ)-

strongly generic. Moreover, for every q ≤ 1N and r ≤ q �N with r ∈ N , q and r are
compatible, and the meet q ∧ r exists. Let MN = Mκ

λ ∩N and let

Mκ
λ �N= {q ∈ Mκ

λ : N ∈ Mq}.

Then the map p 7→ pN is a complete embedding from MN to Mκ
λ �N . Now, fix a

V -generic filter GN over MN .

Definition 4.4.5. Let Cst[GN ] denote the set of all M ∈ Cst such that N ∈ M and
N ∧M ∈ MGN

.

Lemma 4.4.6. Cst[GN ] is a stationary subset of Pω1(Vλ) in the model V [GN ].

Proof. This is very similar to the proof of Lemma 4.4.2. We work in V . Let Ċ N
st be

the canonical MN -name for Cst[GN ]. It suffices to show that if p ∈ MN and Ḟ is a
MN -name for an algebra on Vλ then there is q ≤ p and M ∈ Cst such that q forces
that M belongs to Ċ N

st and is closed under Ḟ . Let θ be a sufficiently large regular
cardinal. By Proposition 3.2.15, Cst is stationary in Pω1(Vλ), hence we can find a
countable M∗ ≺ H(θ) with Ḟ , N,Mκ

λ ∈ M∗ such that letting M = M∗∩Vλ, we have
that M ∈ Cst. Since N ∈ M the meet N ∧M is defined. Let η = η(N ∧M) and
let σ be the η-isomorphism between N ∩M and N ∧M . Note that σ(q) = q, for all
q ∈ MN . Now, pN∧M is (N ∧ M,MN)-strongly generic, hence also (N ∩ M,MN)-
strongly generic, and therefore it is (M∗,MN)-generic. Hence if pN∧M ∈ GN then
M = M∗[GN ] ∩ Vλ is closed under valGN

(Ḟ ). It follows that pN∧M forces that
M ∈ Ċ N

st and is closed under Ḟ . 4.4.6

Let QN denote the quotient forcing (Mκ
λ �N)/GN .

Lemma 4.4.7. QN is Cst[GN ]-strongly proper in the model V [GN ].

Proof. Work in V [GN ]. Let p ∈ QN and M ∈ Cst[GN ] be such that p ∈ M . Let
pM be the condition defined in Lemma 4.2.8. Since p,N ∈ M , we have p �N∈ M .
Thus, p �N∈ N ∩ M . Observe that pM �N= (p �N)N∧M . Since p �N∈ GN and
N ∧ M ∈ MGN

, we have that pM �N∈ GN , thus pM ∈ QN . Let us show that
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pM is (M,QN)-strongly generic. Suppose that q ≤ pM and q ∈ QN . Observe that
(q �M) �N= (q �N) �(N∧M), and hence q �M∈ QN . Let r ≤ q �M be such that
r ∈ M ∩QN . By Lemma 4.2.23, r and q are compatible in Mκ

λ and the meet r ∧ q

exists. Note that r �N∈ N ∩M ⊆ N ∧M , and r �N extends (q �N) �(N∧M). Hence,
again by Lemma 4.2.23, the meet of r �N and q �N exists, and r �N ∧q �N= (r∧q) �N .
Since r �N , q �N∈ GN , we have that r �N ∧q �N∈ GN . It follows that r and q are
compatible in QN . 4.4.7



Chapter Five

Iteration and Forcing Axiom

In this chapter we shall discuss an iteration with virtual models and settle a forcing
axiom for structured ℵ1.5-c.c forcings.

5.1 Virtual Model Based Iteration
Suppose κ < λ are inaccessible. Let U : Vλ → Vλ be a function, later we will work
with a bookkeeping function U , but we do not need to specify it right now. We shall
consider the construction form the previous chapter based on the suitable structure
A = (Vλ,∈, κ, U). For each Mp ∈ Mκ

λ and each γ ∈ E, we let

Mp(γ) := {M ∈ Mnext(γ)
p : γ ∈ M}.

Thus Mp(γ) consists of those models in Mp�next(γ) which are strongly active at
next(γ).

Realization

Lemma 5.1.1. Suppose Mp ∈ Mκ
λ, and γ ∈ E. Then Mp(γ) is an ∈next(γ)-chain

which is closed under meets.

Proof. Notice that Mnext(γ)
p is an ∈next(γ)-chain. It is obvious that Mp(γ) is closed

under meets. Looking at countable models between two successive Magidor mod-
els in Mnext(γ)

p , if there is some model containing γ, then on a tail every model
should contain γ, removing an initial segment of the chain gives still an ∈next(γ)-
chain together with the two Magidor models. Repeating this for every two suc-
cessive Magidor models produces bunch of ∈next(γ)-chains in which the union forms

75
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an ∈next(γ)-chain as well since from some Magidor model on every Magidor model
should contain γ. The same situation holds for the least and the last Magidor
models. 5.1.1

Definition 5.1.2. Suppose M = 〈Mi : i ≤ k〉 is an ∈α-chain of models in C ∪ U .
A realization of M is an ∈-chain 〈M∗

i : i ≤ k〉 such that:

• For each i < k, M∗
i ∈ V M∗

i+1, and M∗
k ∈ V .

• For each i ≤ k, Mi
∼=α M∗

i .

Lemma 5.1.3. Every ∈α-chain has a realization.

Proof. For each i < k, let α∗
i = min(E ∩Mi \ α), and let M ′

i ∈ Mi+1 be the unique
α∗
i+1-model such that Mi

∼=α M ′
i . Let σi witness such isomorphism between Mi and

M ′
i . We now define 〈M∗

i : i ≤ k〉 as follows.

• M∗
k = Mk.

• M∗
k−1 = M ′

k−1.

• For i < k − 1, M∗
i = σk−1 ◦ · · · ◦ σi+1(M

′
i).

By Proposition 3.2.12, each M∗
i is α-isomorphic to Mi. If i < k, then M ′

i ∈ Mi+1,
and hence σi+1(M

′
i) ∈ σi+1[Mi+1] = M ′

i+1. We have thus that M∗
i ∈ M∗

i+1. It is
easily seen that M∗

i ∈ V M∗
i+1 . Thus 〈M∗

i : i ≤ k〉 is a realization of M. 5.1.3

Remark 5.1.4. Let us say that a realization 〈M∗
i : i ≤ k〉 is a minimal realization,

if for every realization 〈Ni : i ≤ k〉 of M, Ni �η(M∗
i )
= M∗

i . One can show with
a bit more work that every ∈α-chain M has a unique minimal realization. The
construction is more or less as above, but it should have this property that each initial
segment of the realization is the minimal realization of the same initial segment of
the original sequence. This requires working with different degrees of virtualness
and applying certain projections in the course of the construction of M∗

i .

Lemma 5.1.5. Assume that M = 〈Mi : i ≤ k〉 is an ∈α-chain of models in C ∪U

which is closed under meets, and that every model in M is active at α. Suppose that
P is a forcing and Q̇ is a P-term such that P, Q̇ ∈

∩
M∩ Vα. Suppose P satisfies

the following.

1. 1P  ‘‘ Every model in M is of size at most ℵ1”.
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2. 1P  ‘‘Q̇ is an ℵs
1.5-c.c forcing”

Let G be a V -generic filter on P containing a condition which is (Mi,P)-generic,
for every i ≤ k. Let j ≤ k be such that Mj ∩ ω1 = min(Mi ∩ ω1 : i ≤ k). Then
every q ∈ Q̇G∩Mj[G] has an extension, r ≤ q which is (Mi[G],Q)-generic, for every
i ≤ k.

Proof. Suppose M∗ = 〈M∗
i : i ≤ k〉 is a realization of M with the corresponding α-

isomorphisms (σi)i≤k. Let also τ ∈ Vα ∩M∗
0 be a P-name such that 1P  τ = P(Q̇).

Now one can pick a regular cardinal θ ∈ M∗
0 ∩ α such that P, Q̇, τ ∈ Hθ. By

Proposition 3.2.28 and the fact that σi �Vα is identity, C := {M∗
i ∩ Hθ : i ≤ k} is

an ∈-chain which is closed under intersections. Set C[G] = {(M∗
i ∩Hθ)[G] : i ≤ k},

which is an ∈-chain of elementary submodels of H
V [G]
θ , and moreover it is closed

under intersections since G contains a condition which is (Mi,P)-generic, for every
i ≤ k. Furthermore, every model in C[G] contains θ and other relevant information,
and that by assumption, each model in C[G] is of size at most ℵ1. Set Q = Q̇G.
Since Q is an ℵs

1.5-c.c forcing in V [G], there is r ≤ q such that r is ((M∗
i ∩Hθ)[G],Q)-

generic, for every i ≤ k, and hence it is (M∗
i [G],Q)-generic, for every i ≤ k. On the

other one hand we can extend σi to an isomorphism σ̄i : Mi[G] → M∗
i [G], but since

σ is identity on Mi∩Hθ = M∗
i ∩Hθ, it follows that r is (Mi[G],Q)-generic, for every

i ≤ k.
5.1.5

Virtual Model Based Iteration

We define the iteration of ℵs
1.5-c.c forcing notions by induction along E.

Definition 5.1.6 (Iteration). Suppose α ∈ E. A condition p in Pκ
α is a triple

p = (Mp, dp, wp), where

1. (Mp, dp) ∈ Mκ
α.

2. wp : dom(wp) → Vλ is a finite function with dom(wp) ⊆ E ∩ α such that if
γ ∈ dom(wp), and U(γ) is a Pκ

γ-term in Vnext(γ) for an ℵs
1.5-c.c forcing, then

wp(γ) is a canonical Pκ
γ-term such that

1Pκ
γ
Pκ

γ
wp(γ) ∈ U(γ).

Otherwise, let wp(γ) be a condition in the trivial forcing.
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3. For every γ in dom(wp) and every M ∈ Mp(γ),

p �γPκ
γ

‘‘wp(γ) is (M [Ġγ], U(γ))”-generic ,

where
p �γ= (Mp �γ, dp �γ, wp �γ).

The ordering on Pκ
α is as follows. We say p is stronger than q and write p ≤ q,

if and only if

1. (Mp, dp) ≤ (Mq, dq) in Mκ
α.

2. dom(wp) ⊇ dom(wq), and for every γ ∈ dom(wq),

p � γ  wp(γ) ≤U(γ) wq(γ).

Let also Pκ
λ =

∪
α∈E Pκ

α with the same ordering. We let also Pκ
α+1 = Pκ

α ∗ U(α),
for every α ∈ E.

The ordering is transitive and whenever p ≤ q are in Pκ
λ and α is in E, p �α is

a condition in Pκ
α, and extends q �α. We remark that the decoration here in this

construction will not play any role in the proof of properness. This is important to
know since the decorations can play an auxiliary role to guarantee properness for
example see the example PΣ in Appendix B.

Remark 5.1.7. We refer to the above construction as the virtual model based iteration.

Remark 5.1.8. Suppose that A = (Vλ, κ,∈, u) is a suitable structure, where u is a
predicate on Vλ. Assume that U is a function on λ which is uniformly definable in
A from parameter α. We can consider the suitable structure B = (Vλ,∈, κ, U). We
should have that EA = EB. Notice that EA ∩ α is definable in A whenever α ∈ EA.

Proposition 5.1.9. Suppose p ∈ Pκ
β, and α ≤ β are in E. If q is a condition in Pκ

α

extending p � α, then p is compatible with q in Pκ
β.

Proof. Let (Mr, dr) be (Mp, dp) ∧ (Mq, dq) as defined in Lemma 4.2.5. Let also wr

be defined on dom(wp) ∪ dom(wq) by

wr(γ) =

{
wq(γ) if γ < α

wp(γ) if γ ≥ α
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If γ ≤ α, then Mr(γ) = Mq(γ), and if γ > α, then Mr(γ) = Mp(γ). It is now
evident that r is a condition extending p and q.

5.1.9

Remark 5.1.10. The condition r from the previous lemma is the greatest lower bound
of p and q, so we will denote it by r = p ∧ q.

Corollary 5.1.11. For every α ≤ β in E ∪ {λ}, Pκ
α ⊆c Pκ

β.

5.1.11

We aim to prove the properness of the iteration and the preservation of κ. This
will be followed from the three lemmata below, but we need to be careful since these
lemmata cannot be proved separately, basically because we have to do induction.
Let us explain what may happen. First we would like to show that if p is a condition
in Pκ

α ∩M , then p can be extended to a condition which is (M,Pκ
α)-generic. We do

this naturally by putting M in the side condition and extending the conditions in
the working part to generic conditions. If Gα is a V -generic filter, then we need to
know that N [Gα] is of size ℵ1 whenever N is a Magidor model in MG. Thus we need
to make sure that |N | gets collapsed to ω1 and that ω1 is preserved. On the other
hand for the proof of properness we need to extend conditions inside a model M to
a generic one. This seems to be circular, but as a matter of fact, Theorem 4.2.30
implies that if α ∈ E, then every Magidor model in Mα

G is of size ℵ1 in V [Gα], and
by induction one can assume the properness of the iteration up to α.

Proposition 5.1.12. Let p ∈ Pκ
α and M ∈ C ∪U be such that p ∈ M . Then there

is a condition pM ≤ p with M ∈ MpM .

Proof. Let MpM and dpM be defined by (Mp, dp)
M . If M is a Magidor model, then

MpM = Mp ∪ {M}. For every γ ∈ dom(wp), since U(γ) is forced by the maximal
condition to be an ℵ2-c.c forcing, p �γ forces that wp(γ) is (M [Gγ], U(γ))-generic .
It is evident that pM = (MpM , dpM , wp) is a condition extending pM .

Now, suppose that M is countable. If γ is in dom(wp), then wp(γ) and U(γ) are
in M . Let wpM be defined on dom(wp) as follows. One can find a Pκ

γ-term τγ so that

1Pκ
γ
 τγ ≤ wp(γ) and τγ is (M [Ġγ], U(γ))-generic.

This is possible since U(γ) is forced to be a proper forcing notion. By the ℵ2-c.c-
ness of U(γ), wpM (γ) is forced to be (N [Ġγ], U(γ))-generic for every Magidor model
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N ∈ Mp(γ), and hence it is forced to be (P [Ġγ], U(γ))-generic for every model P
in MpM (γ) since the only new models in MpM (γ) are M itself and the meets of M
and the Magidor models in Mp. Thus pM is a condition and pM ≤ p. 5.1.12

Proposition 5.1.13. Suppose p is a condition in Pκ
α, and M ∈ C ∪U is such that

α ∈ M and M �α∈ Mp with η(M) > α. Then p is (M,Pκ
α)-generic.

Proof. By assumption, Pκ
α belongs to M . Our proof relies on an induction over E.

Notice that Pκ
min(E) is C -strongly proper. Suppose the conclusion holds for every

ordinal in E ∩ α. Suppose D ⊆ Pκ
α is an open dense set belonging to M . We may

assume that p is in D. Let β := max(dom(wp) ∩M). Pick a V -generic filter Gβ on
Pκ
β so that p �β∈ Gβ. Let w0 and U be the interpretations of wp(β) and of U(β)

under Gβ, respectively. Let

∆ =
∪

{P ∩ α : P ∈ Mp �M is countable}.

Thus ∆ is at most countable, and belongs to M . Notice that if γ > β is in dom(wp),
then γ cannot be in ∆. Let F consist of conditions z ∈ U such that there exists
q ∈ D satisfying the following conditions.

1. (Mq, dq) ≤ (Mp, dp) �M .

2. M ∩ dom(wp) ⊆ dom(wq).

3. q �β∈ Gβ.

4. w
Gβ
q (β) = z.

5. ∆ ∩ dom(wq) \ (β + 1) = ∅.

Notice that w0 belongs to F . Let also F⊥ = {w ∈ U : w ⊥ z ∀z ∈ F}.
Both F and F⊥ belong to M [Gβ]. Consider now F ∗ := F ∪ F⊥ that is pre-dense
in U. Since w0 is (M [Gβ],U)-generic, there is some z ∈ F ∗ ∩ M [Gβ] compatible
with w0, but z cannot be in F⊥ as w0 belongs to F . Therefore, there is some
q ∈ D ∩M [Gβ] such that w

Gβ
q (β) = z, and that it satisfies the conditions above, in

particular (Mq, dq) ≤ (Mp �M , dp �M). Notice that q is in D ∩M , by the inductive
assumption. We shall show that p and q are compatible. Let ż be in M so that
żGβ = z. We may then find a condition r ∈ Gβ extending p �β and q �β, and also
some Pκ

β-name τβ so that r  τβ ≤ ż, wp(β), and that the maximal condition in Pκ
β

forces τβ is in U(β). Let t = ((Mp, dp)∧ (Mq, dq),∅). Suppose that γ ∈ dom(wq) is
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bigger than β and is in M . Consider the ∈γ-chain Mt(γ). Since γ > β, it avoids ∆

by the last condition above, and thus it does not belong to any countable model in
Mp(γ). Now if M is countable, we have that M ∩ ω1 = min(P ∩ ω1 : P ∈ Mt(γ)).
Since Pκ

γ is proper by the inductive assumption, if Gγ is a V -generic filter on Pκ
γ

containing t �γ, then UGγ (γ) is an ℵs
1.5-c.c forcing, and that the assumptions of

Lemma 5.1.5 are satisfied, so one can apply it to w
Gγ
q (γ) to find some condition

zγ ≤ w
Gγ
q (γ) which is (P [Gγ], U

Gγ (γ))-generic, for every P ∈ Mt(γ). We may
now find a canonical Pκ

γ-name τγ so that the maximal condition of Pκ
γ forces that

τγ ∈ U(γ) and τγ ≤ wq(γ), and that it is forced by t �γ to be a (P [Ġγ], U(γ))-generic
condition for every P ∈ Mt(γ). On the other hand, if M is Magidor, the there is
no countable model in Mp(γ) or in other words every countable model in Mt(γ)

belongs to Mq(t). This together with ℵ2-c.c-ness imply that the maximal condition
forces that wq(γ) is (P [Ġγ], U(γ))-generic, for every P ∈ Mt(γ).

We now demonstrate how to amalgamate p and q. We define s as follows. Let
Ms = Mr ∪ Mt which is easily seen to be in Mκ

α. Let also ds be defined on
dom(dr) ∪ dom(dt) by letting ds(P ) = dr(P ) if η(P ) ≤ β, and ds(P ) = dt(P ) if
η(P ) > β. Notice that (Ms, ds) belongs to Mκ

α. It remains to define ws. Let ws be
defined on dom(wp) ∪ dom(wq) ∪ dom(wr) by

ws(γ) =


wr(γ) γ < β

τγ γ ≥ β and γ ∈ M

wp(γ) γ > β and γ /∈ M

Notice that if γ > β is not in M , then there is no countable model in M

containing γ, and if N ∈ Ms(γ) is a Magidor model, then ℵ2 − c.c.-ness implies
that the maximal condition of Pκ

γ forces that wp(γ) is (N [Ġγ], U(γ))-generic. On the
other hand, since Ms(γ) = Mt(γ) and s �γ≤ t �γ, for every γ ≥ β, τγ is forced by
s �γ to be (P [Ġγ], U(γ))-generic, for every P ∈ Ms(γ). It is now easily seen that s

is a condition and that it extends both p and q. 5.1.13

Corollary 5.1.14. For every α ∈ E ∪ {λ}, Pκ
α is proper.

Proof. For α ∈ E, it is easily seen by Proposition 5.1.12 and Proposition 5.1.13.
Suppose θ > λ is a sufficiently large regular cardinal, and let M be a countable
elementary submodel of Hθ such κ, λ, E ∈ M . Then η = sup(M ∩ λ) is in E. It is
easily seen that M ∩ Vλ is an η-model. Thus the set of such models contains a club
in Pω1(Hθ). Now if p is a condition in Pκ

λ∩M , then it belongs to Pκ
γ , for some γ < η.
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Using Proposition 5.1.12, one can extend p to a condition pM by adding M ∩ Vλ to
Mp, and then use the same argument as in Proposition 5.1.13 to show that every
extension of pM is (M,Pκ

λ)-generic.
5.1.14

Corollary 5.1.15. For every α ∈ E, Pκ
α is U -strongly proper.

Proof. This follows from Proposition 5.1.13 and the fact (Proposition 1.3.5) that
being generic for Magidor models is the same as being strongly generic. 5.1.15

The following can be proved in a similar way as in Corollary 5.1.14 and in the
last corollary.

Corollary 5.1.16. For every θ sufficiently large, there exists some stationary set
U ⊆ Pκ(Hθ) such that Pκ

λ is U-strongly proper.

5.1.16

We have also the following chain condition.

Proposition 5.1.17. Pκ
λ is λ-c.c.

Proof. We follow closely the proof of Theorem 4.2.32. We give the details for
completion. Suppose A is a subset of Pκ

λ of cardinality λ. For each p ∈ Mκ
λ, let

a(p) =
∪
{a(M) : M ∈ Mp}. Note that a(p) is a closed subset of E of size < κ, for

all p. By a standard ∆-system argument, we can find a subset B of A of size λ so that
there are a and d subsets of E such that a(p)∩a(q) = a and dom(wp)∩dom(wq) = d,
for all distinct p, q ∈ B. Note that a is closed, and if we let γ = max(a) then γ ∈ E.
Since B has size λ, by a simple counting argument, we may assume there is M ∈ Mκ

γ

such that Mp �γ= M and that wp �d= wq �d, for all p ∈ B. Now, pick distinct
p, q ∈ B, and define Mr = Mp ∪ Mq, dr = dp ∪ dq, and also wr = wp ∪ wq. Let
r = (Mr, dr, wr). It is straightforward to check that r ∈ Pκ

λ and r ≤ p, q. 5.1.17

Putting everything together, we have the following.

Corollary 5.1.18. Pκ
λ preserves ω1, κ and λ, and that forces κ = ω2 and λ = ω3.

Proof. The preservation of ω1 and κ are guaranteed by Proposition 5.1.13 and
Corollary 5.1.16, respectively. The same arguments as in Theorem 4.2.30 together
with Proposition 5.1.17 show that in the generic extension by Pκ

λ, κ = ω2 and
λ = ω3. 5.1.18
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The following easy lemma says that we definitely iterate the relevant forcing
notions given by U , and hence the above facts about 〈Pκ

α : α ∈ E〉 are not superfluous
comparing to the forcing with pure side conditions.

Lemma 5.1.19. Suppose p is a condition in Pκ
α. Let β ∈ E ∩ α. Then there is a

condition q ≤ p such that β ∈ dom(wp).

Proof. Suppose β is not dom(wp). We may assume that U(β) is forced by the
maximal condition to be an ℵs

1.5-c.c forcing notion. We can then find a canonical
Pκ
β-term τ such that for every M ∈ Mp(β),

1 Pκ
β
τ is (M [Ġβ], U(β))− generic.

Thus we define q by letting (Mq, dq) = (Mp, dp) and

wq(γ) =

{
τ if γ = β

wp(γ) if γ 6= β

Thus q is a condition extending p such that β ∈ dom(wq). 5.1.19

Consistency of MAs−1.5
ℵ2

In this subsection, we establish the consistency of MAs−1.5
ℵ2

.

Theorem 5.1.20. Suppose it is consistent that there are two supercompact cardinals.
Then, the forcing axiom MAs−1.5

ℵ2
is consistent.

Proof. Suppose κ < λ are supercompact cardinals. Let F : λ → Vλ be a Laver
function. We define U : Vλ → Vλ as follows. If F (α) is a pair, we let U(α) be
the first coordinate of F (α), and otherwise let it be ∅. Notice that U is definable
from F without parameters. We consider our construction Pκ

λ in A = (Vλ,∈, κ, F, U)

based on U i.e according to Definition 5.1.6 we use U as our predicate. Let Gλ be
a V -generic filter on Pκ

λ. The following lemma concludes the theorem.

Lemma 5.1.21. Suppose P is a structured ℵ1.5-c.c forcing notion in V [Gλ], and
D ∈ V [Gλ] is a collection of dense subsets of P, of size ℵ2 in V [Gλ]. Then there
there is a D-generic filter on P.

Proof. Let Ṗ and Ḋ be Pκ
λ-terms for P and D . Pick a sufficiently large regular

cardinal µ > λ. We may assume without loss of generality that P ⊆ µ. Since F
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is a Laver function, there is an elementary embedding j : V → M where M is
closed under µ-sequences, j(λ) > µ and that F (λ) = (Ṗ, Ḋ). We have also that
j(A) = (Mj(λ),∈, κ, j(F ), j(U)) , moreover E ⊆ j(E), and hence λ ∈ j(E). Thus
every virtual model in the sense of A is a virtual model in j(A), and vice versa
every η-model in the sense j(A) with η ∈ E is a virtual model in A. Using uniform
definability of Pκ

α for α ∈ E, we have that j(Pκ
λ) is the direct limit of 〈Pκ

α : α ∈ j(E)〉.
In other words Pκ

j(λ) is the iteration of structured ℵ1.5-c.c forcings along j(E) in the
structure j(A), and hence Pκ

λ is a complete suborder of Pκ
j(λ). As a matter of fact, Pκ

λ

is the λ-th element of 〈Pκ
α : α ∈ j(E)〉. Notice that P is an ℵs

1.5-c.c forcing in M [G]

since Pκ
λ is λ-c.c. and that M is closed under under λ-sequences. Suppose Gj(λ) is a

V [Gλ]-generic filter on Pκ
j(λ)/Pκ

λ. Thus one can naturally extend j to

j∗ : V [Gλ] → M [Gj(λ)]

defined by j∗(ẋGλ) = j(ẋ)Gj(λ) . Since j(F )(λ) = (Ṗ, Ḋ), there is, in M [Gj(λ)] , a
j∗(D)-generic filter on j(P), and hence by the elementarity of j∗, there is such a
filter in V [Gλ].

5.1.21

5.1.20

The ω1-approximation Property

We now prove that the iteration has the ω1-approximation property if each U(α) is
forced to have the ω1-approximation property.

Proposition 5.1.22. Suppose 〈Pκ
α : α ∈ E〉 is a virtual model based iteration.

Assume that for each α ∈ E,

1Pκ
α
 U(α) has the ω1-approximation property.

Suppose α ≤ β are in E ∪ {λ}, and that Gβ is a V -generic filter on Pκ
β. Then

the pairs (V, V [Gα]) and (V [Gα], V [Gβ]) have the ω1-approximation property.

Proof. We prove by induction on α ∈ E∪{λ} that Pκ
α has the ω1-approximation, an

easy modification of the proof leads the same result for Pκ
β/Gα. Notice that Pκ

min(E)

is C -strongly proper, and hence has the ω1-approximation property. Suppose that
the conclusion holds for every ordinal in E ∩ α. Let ḟ : µ → 2 be a Pκ

α-name forced
by p to be a function that is countably approximated in V . We may assume that µ



5.1. Virtual Model Based Iteration 85

is a cardinal in V . Suppose δ > µ, λ is a sufficiently large regular cardinal. Pick a
countable M ≺ Vδ containing the relevant objects. Thus N = M ∩ Vλ is a standard
virtual model. Let q ≤ pN be a condition which decides ḟ �M to be some function
g : M ∩ µ → 2 in V . Notice that q is (M,Pκ

α)-generic. It is enough to show that g

is guessed in M since one can then apply Lemma 1.2.18 to show that ḟ is decided
in V .

Claim 5.1.23. g is guessed in M .

Proof. We may assume towards a contradiction that g is not guessed in M . Let
γ := max(dom(wq) ∩ M), and pick some V -generic filter Gγ+1 on Pκ

γ+1 such that
(q �γ, wGγ

q (γ)) ∈ Gγ+1. Let

∆ =
∪

{P ∩ α : P ∈ Mp �M is countable}.

Working in V [Gγ+1], we define in M [Gγ+1] an assignment x → (qx, gx) on [µ]ω

as follows.

1. qx ∈ Pκ
α.

2. (Mqx , dqx) ≤ (Mq, dq) �N .

3. M ∩ dom(wq) ⊆ dom(wqx).

4. (qx �γ, wGγ
qx (γ)) ∈ Gγ+1.

5. dom(wqx) ∩∆ \ (γ + 1) = ∅.

6. gx is a function with x ⊆ dom(gx).

7. qx  ḟ �x= ǧx �x.

Since x → (q, g) satisfies all the properties above, such an assignment exists in
M [Gγ+1] by elementary. By the inductive assumption and Lemma 1.2.17, g is not
guessed in M [Gγ+1]. On the one hand, Lemma 1.2.20 gives us a set B ∈ M [Gγ+1]

cofinal in [µ]ω so that for every x ∈ B∩M [Gγ+1], gx * g, and hence qx is incompatible
with q. On the other hand, the conditions 1-5 above enable us to amalgamate qx

and q, this is very similar to the proof of Proposition 5.1.13, notice that in that
proof the conditions 1-3 are expressed in the definition of F , and that here the
condition 4 plays the same role as the genericity of wq(β) there. Thus for every such
x ∈ B ∩M [Gγ+1], qx and q are compatible, and hence a contradiction. 5.1.23

5.1.22
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5.2 Quotients by Magidor Models
In this section we consider the virtual model based iteration and assume that for
each α ∈ E, U(α) is forced to be of size at most ℵ1. Suppose p is a condition and
α ∈ dom(wp), assume that M is a Magidor model in Mp. Notice that if α is in
M , then U(α) is in M as well. Since U(α) is forced to be of size ℵ1, we may find a
canonical Pκ

α-term ẇα in M so that

1Pκ
α
 wp(α) = ẇα.

We may assume without loss of generality that for each α ∈ M ∩ E and each
condition p ∈ Pκ

λ with M ∈ Mp and α ∈ dom(wp), wp(α) is in M . The first lemma
of this section states that in this case Pκ

λ is U -strongly proper in a canonical way.

Definition 5.2.1. Suppose p is a condition in Pκ
α, and M ∈ Mp is a Magidor model.

Let p �M be defined by (Mp�M , dp�M ) = (Mp, dp) �M and wp�M = wp �M .

It is clear that p �M belongs to Pκ
α ∩M .

Lemma 5.2.2. Suppose p is a condition in Pκ
α, and M ∈ Mp is a Magidor model.

If q is a condition in Pκ
α ∩M extending p �M , then q is compatible with p.

Proof. Suppose q ∈ M is a condition extending p �M . We shall show that p and
q are compatible. Let r be defined by letting (Mr, dr) = (Mp, dp) ∧ (Mq, dq). We
then define naturally wr on dom(wp)∪ dom(wq), by letting wr(γ) be wq(γ) if γ is in
M , and otherwise we let it be wp(γ). If γ /∈ M , then we have that Mr(γ) = Mp(γ),
and that γ is not in dom(wq), but if γ is in M , then γ is in dom(wq), and moreover
q �γ forces that wq(γ) ≤ wp(γ). Thus q �γ forces that wq(γ) is (P [Ġγ], U(γ))-generic
for every P ∈ Mr. It is now easily seen that r is a common extension of p and
q. 5.2.2

Remark 5.2.3. We let r in the above proof be the meet of p and q and we denote it
by p ∧ q.

Suppose N ∈ U , and α ∈ E. We set

Pκ
α �N= {p ∈ Pκ

α : N �α∈ Mp}.

and Pκ
α,N = Pκ

α ∩ N . By Lemma 5.2.2, 1N = ({N �α},∅,∅) is (N,Pκ
α)-strongly

generic, and hence it is clear that the mapping p 7→ pN�α is a complete embedding
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from Pκ
α,N to Pκ

α �N . Moreover, if p is a condition in Pκ
α �N , then there is p �N∈ Pκ

α,N

such that if q ∈ Pκ
α,N extends p �M , then p and q are compatible, and in fact the

meet p ∧ q exists.

Lemma 5.2.4. Suppose N ∈ U and α ≤ η(N) is in E. Let p be in Pκ
λ with

N ∈ Mp. Then p �α�N= (p �N) �α
Proof. It is enough to show that if M ∈ Mp, then (M �N) �α= M �α�N . This is of
course clear from the definition of M �N . 5.2.4

If Gα,N is a V -generic filter over Pκ
α ∩N , we can form the following poset

RN
α = Pκ

α �N /Gα,N .

Lemma 5.2.5 (Factorization Lemma). Suppose N ∈ U , and α ≤ β ≤ η(N) are in
E. Let Gα,N be a V -generic filter on Pκ

α ∩N . Then, in V [Gα,N ], the mapping

ρ : Pκ
β �N /Gα,N → RN

α × (Pκ
β ∩N)/Gα,N ,

defined by ρ(p) = (p �α, p �N), is a projection.

Proof. We first observe that ρ is a well-defined function since p ≤ p �α, p �N , and that
clearly ρ preserves the ordering and respects the maximal conditions. Suppose that
p ∈ Pκ

β/Gα,N and that (r, s) ∈ Pκ
α �N /Gα,N × (Pκ

β ∩ N)/Gα,N extends (p �α, p �N),
thus r �N , s �α∈ Gα,N . Fix a common extension q̄ ∈ Gα,N of them. We have that
q̄ ∧ r ≤ q̄ ≤ s �α and q̄ ∧ s ≤ q̄ ≤ r �N . It follows from Proposition 5.1.9 and
Lemma 5.2.2 that

(q̄ ∧ r) ∧ s = (q̄ ∧ s) ∧ r.

Set q = (q̄ ∧ r)∧ s. We have that q �α= (q̄ ∧ r) ≤ r and q �N= (q̄ ∧ s) ≤ s. We have
also that

q �α�N= (q �N) �α= q̄ ∈ Gα,N .

Thus q ∈ Pκ
β/Gα,N , and (q �α, q �N) ≤ (r, s). It remains to show that p and q are

compatible. We define a common extension of them, say t. Let Mt = Mp ∪Mq.
To see that this is a condition in Mκ

α, pick δ ∈ E, if δ ≤ α, then

Mδ
p ⊆ Mδ

r ⊆ Mδ
q,

and if δ > α, then
Mδ

q ⊆ Mδ
s ⊆ Mδ

p,
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and hence Mδ
t is always an ∈δ-chain. Let us define dt naturally, namely let dt be

defined on dom(dp) ∪ dom(dq) as follows.

dt(P ) =

dp(P ) if η(P ) > α and P /∈ N

dq(P ) otherwise

Every model in dom(dt) is Mt-free. This is quite similar to the proofs of
Lemma 4.2.5 and Lemma 4.2.12. We sketch a proof. If η(P ) ≤ α, then P is in
Mq�α , and thus if Q ∈ Mt is such that P ∈η(P ) Q, then Q �α∈ Mq�α. Thus Q �α,
and consequently Q is strongly active at η(P ). On the other hand if η(P ) > α is in
N , then P is in Ms, and thus if Q ∈ Mt is such that P ∈η(P ) Q, then if Q is not in
N , it should be then in Mp, but s ≤ p �N , and hence Q should be strongly active
at η(P ). Similarly one can prove that dt satisfies (>) in Definition 4.2.3. We define
wt on dom(wp) ∪ dom(wq) as follows. For each γ ∈ dom(wt),

wt(γ) =

{
wp(γ) if γ > α and γ /∈ N

wq(γ) otherwise

We observe that wt is well-defined thanks to the definition of q. Notice that also
if γ < α is in dom(wt), then Mt(γ) = Mq(γ) and wt(γ) = wq(γ). On the other
hand if γ ≥ α, then Mt(γ) = Mp(γ). Thus t is a condition in Pκ

β �N that extends p
and q. By an easy calculation we have that t �α�N= q̄ ∈ Gα,N . Thus t is a condition
in Pκ

β �N /Gα,N .
5.2.5

Lemma 5.2.6. Suppose that N ∈ U and α ≤ β ≤ η(N) are in E. Suppose Gβ,N is
a V -generic filter on Pκ

β ∩N . Then in V [Gβ,N ], RN
α is a complete suborder of RN

β .

Proof. Assume that p ∈ RN
β and q ≤ p � α is in PN

α . Since q ≤ p �α, we can from
the meet of p and q i.e the condition r = p ∧ q in Pκ

β. Thus r ∈ Pκ
β �N , and we have

that r�N = p �N ∧q �N∈ Gβ,N . 5.2.6

Final Remark

Notice that for the results in this chapter, it was enough to assume that κ is a Mahlo
cardinal, of course we have then to work with κ-Mahlo models.



Chapter Six

Guessing Models

In this chapter, we first introduce certain principles in terms of guessing models and
discuss their consequences. We then use our forcing constructions from §4 and §5
to prove their consistency.

6.1 Guessing Models

Recall that a transitive model R is called a powerful model if it is closed under
taking subsets, i.e. if x ∈ R and y ⊆ x then y ∈ R. We are mainly interested in the
case R = Vα, for some ordinal α, or R = Hθ, for some uncountable regular cardinal
θ. For a powerful model R, a regular cardinal γ and a cardinal κ, we let

Gκ,γ(R) = {M ∈ Pκ(R) : M ≺ R and M is γ-guessing}.

We are interested in combinatorial properties of Gκ,γ(R) motivated by [39] and
[40].

Definition 6.1.1. For a powerful model R, GM(κ, γ,R) is the statement that
Gκ,γ(R) is stationary in Pκ(R). GM(κ, γ) is the statement that GM(κ, γ,Hθ) holds,
for all sufficiently large regular θ.

Notice that if M is γ-guessing and γ ≤ γ′ then M is γ′-guessing. Therefore
GM(κ, γ) implies GM(κ, γ′) if γ ≤ γ′. The statement GM(κ, ω1) is a reformulation
of the principle ISP(κ) introduced by C. Weiß in [41] and further studied in [39],
[40] and [42]. The equivalence between GM(κ, ω1) and ISP(κ) was established in

89
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[40], where it was also proven that ISP(ω2) follows from PFA. Let us mention some
consequences of this principle.

Proposition 6.1.2. Assume GM(κ, ω1). Then

1. (Weiß, [41, 42]) The weak square principle �(κ, λ)1 fails, for every λ ≥ κ.

2. (Krueger, [18]) The Singular Cardinal Hypothesis holds above κ.

6.1.2

Though it was known that GM(ω2, ω1) implies the failure of CH, but Cox and
Krueger [8] observed the following which in turn implies the continuum is at least
ℵ2.

Observation 6.1.3 (Cox–Krueger, [8]). Assume GM(ω2, ω1). Then the weak Kurepa
Hypothesis fails at ω1, i.e every tree of size ℵ1 has at most ℵ1 many cofinal branches.

6.1.3

Let us also mention that in [35] Trang showed the consistency of GM(ω3, ω2)

assuming the existence of a supercompact cardinal. In his model the Continuum
Hypothesis holds. Thus GM(ω2, ω1) fails by the above observation. One of the
important features of GM(ω2, ω1) is its impact on the approachability ideal at ω2.
It was shown in [40] that under GM(ω2, ω1), the approachability property fails at
ω1, that is ω2 is not in I[ω2], however GM(ω2, ω1) does not imply MP(ω2) since
GM(ω2, ω1) is consistent with 2ℵ0 = ℵ2, but MP(ω2) implies 2ℵ0 ≥ ℵ3

2. We shall
introduce certain principles by strengthening GM(ω2, ω1) in order to control the
approachability ideal on ω2. To this end we first introduce a local principle which
implies MP(ω2) and follows from our strong version of GM(ω2, ω1).

Definition 6.1.4 (FS(κ+, γ)). Suppose that γ ≤ κ are regular uncountable cardinals.
The principle FS(κ+, γ) asserts that, for every X ∈ Hκ++, there is a collection G of
γ-guessing models of cardinality κ all containing X such that {M ∩ κ+ : M ∈ G} is
κ-closed and unbounded in κ+.

1�(κ, λ) asserts that there is a sequence 〈Cα : α ∈ Lim(λ)〉 such that

(a) For every limit ordinal α < λ, Cα is a nonempty collection of clubs in α, with |Cα| < κ.

(b) For every limit ordinal α < λ, every C ∈ Cα and every β ∈ Lim(C), C ∩ β ∈ Cβ .

(c) There is no club D ⊆ λ such that D ∩ α ∈ Cα, for every α ∈ Lim(D).

2See Fact 1.1.5
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Proposition 6.1.5. Suppose that κ is a regular uncountable cardinal and FS(κ+, κ)

holds. Then MP(κ+) holds.

Proof. Suppose that FS(κ+, κ) holds. Let ā = 〈aξ : ξ < κ+〉 be a κ+-approaching
sequence which belongs to Hκ++ . Let G be the family of κ-guessing models all
containing ā whose existence is guaranteed by FS(κ+, κ). We show that M ∩ κ+ is
not in B(ā), for any M ∈ G such that cof(M ∩ κ+) = κ. Fix one such M ∈ G. Let
δ = M ∩ κ+ and suppose that c ⊆ δ satisfies (1) and (2) of Definition 1.1.1. Let
µ = otp(c). Note that µ < δ, hence µ ∈ M . Since ā ∈ M , we have that c ∩ γ ∈ M ,
for all γ < δ, and hence c ∩ Z ∈ M , for all Z ∈ M with |Z| < κ. Since M is a
κ-guessing model, there must be d ∈ M such that c = d ∩ δ. We may assume that
d ⊆ κ+. Then c is an initial segment of d, so if ρ is the µ-th element of d then
d ∩ ρ = c. Since µ, d ∈ M , we have ρ ∈ M as well, and hence c = d ∩ ρ ∈ M . But
then δ = sup(c) belongs to M , a contradiction. 6.1.5

FS(ω2, ω1) is a local principle, i.e it refers only to Hω3 , therefore it cannot im-
ply GM(ω2, ω1). We now formulate a principle that implies both FS(ω2, ω1) and
GM(ω2, ω1). We state it for any pair of uncountable regular cardinals γ ≤ κ.

Definition 6.1.6. Let γ ≤ κ be regular uncountable cardinals. A model M of
cardinality κ+ is called strongly γ-guessing if it is the union of an ∈-increasing
chain 〈Mξ : ξ < κ+〉 of γ-guessing models of cardinality κ and Mξ =

∪
{Mη : η < ξ},

for every ξ of cofinality κ.

Lemma 6.1.7. Every strongly γ-guessing model is γ-guessing.

Proof. Suppose that M is a strongly γ-guessing model, which is witnessed by the
sequence 〈Mξ : ξ < κ+〉. Suppose that A is bounded in M , we may assume that A

is bounded in each Mξ. Since the sequence (Mξ : ξ < κ+) is closed at ordinals of
cofinality κ, a standard closure argument shows that the following set, modulo Sκ

κ+ ,
is a club in κ+.

C = {ξ < κ+ : A is γ-approximated in Mξ}

Thus for each ξ ∈ C, there is Aξ ∈ Mξ such that Aξ ∩M = A ∩Mξ. By Fodor’s
lemma, there is some η < κ+ and a stationary set S ⊆ C such that for each ξ ∈ S,
Aξ is in Mη. On the other hand |Mη| < κ+, and hence there is a stationary set
T ⊆ S, such that for every ξ, ξ′ ∈ T , Aξ = Aξ′ . Let A∗ = Aξ, for some ξ ∈ T .
Therefore, we obtain
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A∗ ∩M = A∗ ∩ (
∪
ξ∈T

Mξ) =
∪
ξ∈T

(Aξ ∩Mξ) =
∪
ξ∈T

(A ∩Mξ) = A ∩M.

6.1.7

For a powerful model R and regular cardinals γ and κ, we let

G+
κ++,γ(R) = {M ∈ Pκ++(R) : M ≺ R and M is strongly γ-guessing}.

Definition 6.1.8. For a powerful model R, GM+(κ++, γ, R) states that G+
κ++,γ(R) is

stationary in Pκ++(R). GM+(κ++, γ) is the statement that GM+(κ++, γ,Hθ) holds,
for all sufficiently large regular θ.

We have the following immediate corollary.

Corollary 6.1.9. Assume GM+(κ++, γ). Then FS(κ+, γ), GM(κ+, γ) and GM(κ++, γ)

hold.

6.1.9

We now consider the indestructible version of the above principle, but at small
cardinals. The indestructible version of guessing models were studied by Cox and
Krueger [8]. They showed that having stationary many special ω1-guessing models
of size ℵ1 follows form PFA and it is also consistent with the continuum being
arbitrarily large. Let us start with the special version of GM(ω2, ω1)

3.

Definition 6.1.10. SGM(ω2, ω1) states that for every sufficiently large regular car-
dinal θ the following set is stationary in Pω2(Hθ)

Gω2,ω1(Hθ) = {M ∈ Pω2(Hθ) : M ≺ Hθ and M is a special ω1-guessing}.

Proposition 6.1.11 (Cox–Krueger, [8]). Assume SGM(ω2, ω1). Then the Suslin
Hypothesis holds.

6.1.11

The principle SFS(ω2, ω1) is defined similarly, it states that for every X ∈ Hω3 ,
there is a collection G of special ω1-guessing models of cardinality ω1 all containing
X such that {M ∩ ω2 : M ∈ G} is ω1-closed and unbounded in ω2.

3IGMP(ω2) in Cox and Krueger’s notation
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Definition 6.1.12. A model M of cardinality ω2 is indestructibly strongly ω1-
guessing if it is the union of an increasing chain 〈Mξ : ξ < ω2〉 of special ω1-guessing
models of cardinality ω1 and Mξ =

∪
{Mη : η < ξ}, for every ξ of cofinality ω1.

We now define the principle SGM+(ω3, ω1).

Definition 6.1.13. The principle SGM+(ω3, ω1) states that Sω3,ω1(Hθ) is station-
ary, for all large enough θ, where

Sω3,ω1(Hθ) := {M ∈ Pω3(Hθ) : M is an indestructibly strongly ω1-guessing model}.

The notion of an indestructibly strongly guessing model can be thought as an
indestructible version of ω1-guessing models of size ω2 because they remain guessing
in any outer model with the same ℵ1 and ℵ2 as the ground model. The important
feature of this principle is that to achieve its consistency we need not to specialize
trees of size ℵ2, but we use our machinery together with the usual specialization of
trees of size and height ω1 without cofinal branches to make sure that such models
exist. We now give an interesting consequence of SGM+(ω3, ω1). In his PhD thesis
[1], Abraham asked if there is a forcing notion P in ZFC such that it does not add
new reals, adds a new subset of some ordinal whose initial segments belong to the
ground model and that the forcing does not collapse any cardinal. Notice that if CH
holds, then Add(ω1, 1) is countably closed and ℵ2-c.c while adding a new subset of
ω1. Recall that Foreman’s Maximality Principle (see [12]) sates that every nontrivial
forcing notion either adds a new real or collapses some cardinals. Using the forcing
with initial segments of an uncountable cardinal κ ordered with the set extension,
one can show that Foreman’s Maximality principle violates GCH and the existence
of inaccessible cardinals.

Definition 6.1.14. For a regular cardinal κ. Abraham’s Maximality Principle at
κ+ (AMP(κ+)) states that if 2κ < ℵκ+, then every forcing which adds a new subset
of κ+ whose initial segments are in the ground model, collapses some cardinal ≤ 2κ.

Towards answering the above-mentioned question of Abraham, Todorčević showed
in [33] that AMP(ℵ1) is true if every tree of size and height ℵ1 with at most ℵ1 co-
final branches is weakly special. This principle studied also by Golshani and Shelah
in [15], where they showed that AMP(κ+) is consistent for every regular cardinal κ.
Cox and Krueger [8] proved the following.

Proposition 6.1.15 (Cox–Krueger, [8]). SGM(ω2, ω1) implies AMP(ℵ1).
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6.1.15

We shall prove that SGM+(ω3, ω1) implies AMP(ℵ2), and since SGM(ω2, ω1)

follows from SGM+(ω3, ω1), we obtain the consistency of AMP(ℵ1) and AMP(ℵ2)

simultaneously.

Theorem 6.1.16. Suppose that V ⊆ W are transitive models of ZFC. Assume in
V , SGM+(ω3, ω1) holds and 2ℵ1 < ℵω2. Suppose that W has a subset of ℵV

2 which
does not belong to V . Then either PV (ω1) 6= PW (ω1) or some cardinal ≤ 2ℵ1 is no
longer a cardinal in W .

Proof. Let x ∈ W \ V be a subset of ℵV
2 . Assume that PV (ω1) = PW (ω1). We shall

show that some cardinal ≤ 2ℵ1 is no longer a cardinal in W . Since PV (ω1) = PW (ω1),
every initial segment of x belongs to V . Letting now X = {x∩ γ : γ < ω2}, we have
that X is bounded in V . Assume towards a contradiction that every cardinal ≤ 2ℵ1

remains cardinal in W . Work in W , and let µ ≥ ℵ2 be the least cardinal such that
there is a set M in V of cardinality µ such that M∩X is of size ℵ2. Thus µ ≤ 2ℵ1 . We
claim that µ = ℵ2. Suppose that µ > ℵ2 and M is a witness for that, then one can
work in V and write M as the union of an increasing sequence 〈Mξ : ξ < cofV(µ)〉
of subsets of M in V whose size are less than µ. Since µ ≤ 2ℵ1 < ℵω2 and every
cardinal ≤ 2ℵ1 is a cardinal in W , cofW (µ) = cofV (µ) 6= ω2. Thus either µ is of
cofinality at most ℵ1, which then by the pigeonhole principle, there is ξ < cof(µ)
such that |Mξ ∩ X| = ℵ2, or µ is regular, and thus there is some ξ < cof(µ) such
that M ∩ X ⊆ Mξ, but in either case we obtain a contradiction since |Mξ| < µ.
Therefore, µ = ℵ2. Let M be a witness for µ = ℵ2, and let X′ = M ∩ X. Notice
that V |= |M | = ℵ2. Since M is in V and that V satisfies SGM+(ω3, ω1), one can
cover M with an indestructibly strongly ω1-guessing model N of size ℵ2. Working
in W , x is countably approximated in N since if γ ∈ N ∩ ω2, then there is γ′ > γ

in N such that x ∩ γ′ ∈ X′ ⊆ N , and hence x ∩ γ ∈ N . On the other hand N is a
guessing model in W by SGM+(ω3, ω1) in V and that both ℵ1 and ℵ2 are cardinals
in W . Thus x is guessed in N , but then x should be in N as |x| ≤ |N |. Therefore,
x is in V which is a contradiction.

6.1.16

The following corollaries are immediate.

Corollary 6.1.17. Suppose that V ⊆ W are transitive models of ZFC. Assume in
V , SGM+(ω3, ω1) , 2ℵ0 < ℵω1 and 2ℵ1 < ℵω2 hold. Suppose that W has a new subset
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of ℵV
2 . Then either W contains a real which is not in V or some cardinal ≤ 2ℵ1 in

V is no longer a cardinal in W .

6.1.17

Corollary 6.1.18. Assume SGM+(ω3, ω1). Then AMP(ℵ1) and AMP(ℵ2) hold.

6.1.18

The following is a generalization of Proposition 6.1.11.

Proposition 6.1.19. Suppose that SGM(ω2, ω1) holds. Then every ω1-preserving
forcing which is ℵ1-proper has the ω1-approximation property.

Proof. Suppose that P is an ω1-preserving forcing which is ℵ1-proper. Assume that
p ∈ P forces ḟ is a countably approximated function on some ordinal γ. Let θ be
a sufficiently large regular cardinal with γ, ḟ ,P ∈ Hθ. Since P is ℵ1-proper, there
is an algebra F on Hθ witnessing the ℵ1-properness of P. By SGM(ω2, ω1), there is
a special ω1-guessing model M ≺ Hθ closed under F such that γ, ḟ ,P ∈ M . Thus
we may extend p to a (M,P)-generic condition pM . Let G be a V -generic filter on
P with pM ∈ G. Thus M remains a guessing model in V [G] as P preserves ω1.
Set f = ḟG. We claim that f is countably approximated in M . Let a ∈ M be a
countable subset of γ. Let Da be the set of conditions deciding ḟ �a. Then Da is
dense below p. Thus, there is some condition q in G ∩Da ∩M since G contains a
(M,P)-generic condition. By elementarity, there is some g : a → 2 in M such that
q  ǧ = ḟ �a. Let r ∈ G extends p and q. Thus r  ḟ �a= ǧ, and hence f �a= g ∈ M

in V [G]. Since M is a guessing model in V [G], there is f̄ in M , and hence in V ,
such that f̄ �M= f �M . We now work in V , both ḟ and f̄ belong to M , thus by
elementarity p  ḟ = f̄ , and hence P has the ω1-approximation property. 6.1.19

Proposition 6.1.20. Suppose that K is a class of forcings which are ℵ1-proper.
Assume that the forcing axiom FAℵ1(K) holds. If GM(ω2, ω1) holds, then every
forcing in K has the ω1-approximation property.

Proof. The proof is more or less the same as in the last proposition thus we just
sketch it. Let P ∈ K. Suppose G is a V -generic filter on P. We show that every
ω1-guessing model remains guessing in V [G], and then we are done by the previous
theorem. Suppose N ∈ V is an ω1-guessing model which is not ω1-guessing in
V [G]. Thus there is a function f in V [G] on some ordinal γ ∈ N that is countably
approximated in N but it is not guessed in N . By restricting f to N , we obtain a
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function of size ℵ1. By the forcing axiom FAℵ1(K), we can interpret such a function
in V , but then it is countably approximated in N , and thus should be guessed, hence
a contradiction!

6.1.20

Corollary 6.1.21. Under MM every stationary preserving forcing of size ℵ1 has
the ω1-approximation property. The same result holds for PFA and proper forcings
of size ℵ1.

6.1.21

It is clear that SGM+(ω3, ω1) is the strongest one among the above principles.
A schematic diagram expressing the relations between these principles can be found
in Appendix A. In the two forthcoming sections, we shall discuss the consistency of
these principles.

6.2 Consistency of GM+(ω3, ω1)

This section is devoted to the proof of the following theorem.

Theorem 6.2.1 ([24]). Suppose that κ is supercompact and λ > κ is inaccessible.
Then there is a forcing notion such that in the generic extension GM(ω2, ω1) and
FS(ω2, ω1) hold. If, in addition, λ is supercompact, then GM+(ω3, ω1) holds as well.

We assume that κ is supercompact and λ is inaccessible and analyze ω1-guessing
models in the the generic extension by Mκ

λ. Let us recall some definition from §4.
For N ∈ U , let 1N = ({N},∅). Recall that by Lemma 4.2.12, 1N is an (N,Mκ

λ)-
strongly generic condition. Moreover, for every q ≤ 1N and r ≤ q �N with r ∈ N , q
and r are compatible, and the meet q ∧ r exists. Let MN = Mκ

λ ∩N and let

Mκ
λ �N= {q ∈ Mκ

λ : N ∈ Mq}.

Then the map p 7→ pN is a complete embedding from MN to Mκ
λ �N . Now, fix a

V -generic filter GN over MN . Suppose that Gλ is a V -generic filter over Mκ
λ. For

α ∈ E, let Gα = Gλ ∩Mκ
α.

Lemma 6.2.2. Let α ∈ E. Suppose that N ∈ MGλ
is a Magidor model with α ∈ N .

Then N [Gα] is an ω1-guessing model in V [Gλ].
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Proof. Note that the projection map N 7→ N �α is an isomorphism and is the identity
on Mκ

α ∩ N . Thus, N [Gα] and (N �α)[Gα] are isomorphic as well. Therefore, by
replacing N with N �α we may assume that it is an α-model. Let N be the transitive
collapse of N , and let π be the collapse map. For convenience, let us write κ̄ for κN .
Then N = Vγ̄, for some γ̄ with cof(γ̄) ≥ κ̄ and π(κ) = κ̄. Let ᾱ = π(α). Since α ∈ N

and N is an α-model we have MN = Mκ
λ ∩ N = Mκ

α ∩ N . Let Mκ̄
ᾱ = π[Mκ

α ∩ N ].
Let p ∈ Gα be such that N ∈ Mp. By Lemma 4.2.12 p is (N,Mκ

α)-strongly generic.
Hence GN = Gα ∩ N is V -generic over Mκ

α ∩ N . It follows that Gκ̄
ᾱ = π[GN ] is

V -generic over Mκ̄
ᾱ. Note that N [Gα] = N [GN ] and its transitive collapse N [GN ] is

equal to Vγ̄[G
κ̄
ᾱ] = V

V [GN ]
γ̄ . Hence N [GN ] is an ω1-guessing model in V [GN ]. On the

other hand, by Lemma 4.4.7, the quotient forcing QN is Cst[GN ]-strongly proper, and
by Lemma 4.4.6 Cst[GN ] is stationary in Pω1(Vλ) in the model V [GN ]. It follows by
Proposition 1.3.6 that the pair (V [GN ], V [Gλ]) has the ω1-approximation property.
Thus, N [GN ] remains an ω1-guessing model in V [Gλ]. 6.2.2

A similar argument shows the following.

Lemma 6.2.3. Suppose that µ > λ and N ≺ Vµ is a κ-Magidor model containing
all the relevant parameters. Then N [Gλ] is an ω1-guessing model in V [Gλ].

6.2.3

Now, by Proposition 3.2.17 we have the following.

Theorem 6.2.4. The principle GM(ω2, ω1) holds in V [Gλ].

6.2.4

Theorem 6.2.5. The principle FS(ω2, ω1) holds in V [Gλ].

Proof. Fix X ∈ H(ω3)
V [Gλ]. We have to find a collection G of ω1-guessing models

containing X such that {M ∩ ω2 : M ∈ G} is an ω1-closed unbounded subset of ω2.
Back in V we can find α ∈ E, and a canonical Mκ

λ-name Ẋ, such that Ẋ[Gα] = X.
Fix some β ∈ E \ (α + 1) with cof(β) < κ. By a standard density argument, we
can find a Magidor model M ∈ MGβ

such that α, Ẋ ∈ M . Suppose that P ∈ MGβ

is also a Magidor model and M ∈β P . Notice that M ∩ Vβ ⊆ P ∩ Vβ, so Ẋ ∈ P ,
and hence X ∈ P [Gα]. By Lemma 6.2.2, P [Gα] is an ω1-guessing model, for all
such P . Now, by Lemma 4.3.2, the set Cβ(G) is club in ω2, and hence the family
G = {P ∈ MGβ

∩ U : M ∈β P} is as required. 6.2.5
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Finally, we observe that if λ is also supercompact, then GM+(ω3, ω1) holds in
V [Gλ] as well. In fact, we show that for all µ > λ the set of strong ω1-guessing
models is stationary in Pω3(Vµ[Gλ]).

Lemma 6.2.6. Suppose that µ > λ and N ≺ Vµ is a λ-Magidor model containing
all the relevant parameters. Then N [Gλ] is a strong ω1-guessing model.

Proof. Since N is a λ-Magidor model, its transitive collapse N equals Vγ̄, for some
γ̄ < λ. Let λ̄ = N ∩ λ. Note that cof(λ̄) ≥ κ, and hence the transitive collapse
N [Gλ] of N [Gλ] equals Vγ̄[Gλ̄]. On the other hand, by Corollary 4.4.4, the pair
(V [Gλ̄], V [Gλ]) has the ω1-approximation property. Therefore, Vγ̄[Gλ̄] and hence
also N [Gλ] remains an ω1-guessing model in V [Gλ]. To see that Vγ̄[Gλ̄] is a strong
ω1-guessing model, fix some δ ∈ E with δ > γ̄ and cof(δ) < κ. Note that if M ∈ Mδ

G

is a Magidor model with λ̄ ∈ M then by Lemma 6.2.2 M [Gλ̄] is an ω1-guessing model.
Moreover, if M ∈ Mδ

Gκ
λ

is a limit of such Magidor models then by Proposition 4.2.29,

M ∩ Vγ̄ =
∪

{Q ∩ Vδ : Q ∈δ M and Q ∈ Mδ
Gκ

λ
}.

Hence if we let G be the collection of the models (M ∩ Vγ̄)[Gλ̄], for Magidor models
M ∈ Mδ

Gκ
λ

with λ̄ ∈ M , then G is an increasing ⊆-chain of length ω2 which is
continuous at ω1-limits and whose union is Vγ̄[Gλ̄]. Therefore, Vγ̄[Gλ̄] and hence
also N [Gλ] is a strong ω1-guessing model in V [Gλ], as required. 6.2.6

Now, by Proposition 3.2.17 and Lemma 6.2.6 we conclude the following.

Theorem 6.2.7. Suppose that κ < λ are supercompact cardinals. Let Gλ be a
V -generic filter over Mκ

λ. Then in V [Gλ] the principle GM+(ω3, ω1) holds.

6.2.7

Remark 6.2.8. The ω1-guessing models obtained above in V [Gλ] are IC-models. To
see this, suppose that N is a κ-Magidor model in some µ > κ. Thus its transitive
collapse N is Vγ̄, for some γ̄ < κ. By Theorem 4.2.30, we can over Vγ̄ using a
continuous increasing chain of countable models in MGλ

containing Vγ̄. Hence in
V [Gλ], Vγ̄ and consequently N is an IC-model. Therefore, whenever N [Gλ] or N [Gα]

for α ∈ E make sense, we can ensure that they are IC-models in V [Gλ].

6.3 Consistency of SGM+(ω3, ω1)
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In this section, we provide a proof for the following consistency result.

Theorem 6.3.1 ([25]). Suppose that κ is supercompact and λ > κ is inaccessible.
Then there is a forcing notion such that in the generic extension SGM(ω2, ω1) and
SFS(ω2, ω1) hold. If, in addition, λ is supercompact, then SGM+(ω3, ω1) holds as
well.

In order to prove the above theorem, we apply our iteration from §4, but as in
the previous section we need to analyze the quotients of the iteration by Magidor
models. Thus our main goal in this section is to show that the evaluation of a
Magidor model in the generic extension by Gα is a guessing model, however we will
no longer have the C -strong properness of the quotients. It would be better to fix
our iteration and prove certain lemmata about it before diving into the details of
the proof. Thus fix a supercompact cardinal κ and an inaccessible λ > κ. Our aim
is to iterate the Baumgartner forcing for the specialization of trees of size and height
ω1 with no cofinal branches, along the virtual model based iteration from §5. Notice
that the Baumgartner forcing is c.c.c and hence we do not need to require genericity
in the third clause in the definition of the iteration, however we ignore this point.
As before, we shall consider a suitable structure A = (Vλ,∈, κ, U), where U is a
predicate. We may first use an auxiliary function u : λ → λ × λ to enumerate all
the possible names, in Vλ, for trees of height and size ω1 without cofinal branches.
Thus consider the suitable structure A∗ = (Vλ,∈, κ, u), where u : λ → λ × λ is an
onto map satisfying β ≤ α whenever u(α) = (β, γ). We then define a predicate
U on the structure A∗ = (Vλ,∈, κ, u) as follows. Let U(x) = ∅ if x is not an
ordinal. For an ordinal α < λ if u(α) = (β, γ) with α, β ∈ E, we let U(α) be a
Pκ
α-name for the Baumgartner forcing B(Ṫ ) where Ṫ is the γ-th (in a prescribed

enumeration) Pκ
β-name for a tree of size and height ω1 without cofinal branches, and

otherwise let U(α) = ∅. We then work with the suitable structure A = (Vλ,∈, κ, U).
Thus let us consider, for the rest of this chapter, the virtual model based iteration
〈Pκ

α : α ∈ E ∪ {λ}〉 obtained from A. Recall that if N ∈ U and Gα,N is a V -generic
filter over Pκ

α ∩N , we can then form the following quotient

RN
α = Pκ

α �N /Gα,N .

Definition 6.3.2. Let Gα,N be a V -generic filter over Pκ
α∩N . Let Cst[Gα,N ] denote

the set of all M ∈ Cst such that α,N ∈ M and (N ∧M) �α∈ MGα,N
.

The following is analogous to Lemma 4.4.6 and can be proved similarly.
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Lemma 6.3.3. Cst[Gα,N ] is stationary in Pω1(Vλ) in the model V [Gα,N ].

6.3.3

Lemma 6.3.4. Assume that N is a Magidor model. Suppose that p ∈ RN
α . If

M ∈ C such that α, p ∈ M and (N ∧ M) �α∈ MGα,N
. Then there is a condition

pM ≤ p in RN
α such that M �α∈ MpM .

Proof. We define pM in the same way as it is in Pκ
α, except that we let wpM = wp.

Since each U(γ) is forced to be a c.c.c forcing, pM is a condition in Pκ
α. On the other

hand as in Lemma 4.4.7, (Mp, dp)
M �N= ((Mp, dp) �N)N∧M and since N ∧M is in

MGα,N
, we have that ((Mp�N , dp�N )

N∧M ,∅) ∈ Gα,N . Therefore, we should have that
pM �N= (MN∧M

p�N , dN∧M
p�N , wp �N) ∈ Gα,N . It is now clear that pM is in RN

α . 6.3.4

Lemma 6.3.5. Assume that N ∈ U . Suppose that p ∈ RN
α . If M is a countable

virtual model such that α, p,N ∈ M and (N ∧ M) �α∈ MGα,N
. Then pM�α is

(M [Gα,N ],RN
α )-generic.

Proof. Though the condition pM defined here is not obtained in the same way as
in Proposition 5.1.13, but the same proof as in Proposition 5.1.13 works here, and
thus pM is (M,Pκ

α �N)-generic. Therefore p �N is (M,Pκ
α ∩ N)-generic, and forces

that p is (M [Ġα,N ],RN
α )-generic. Since p �N is in Gα,N , p is (M [Gα,N ],RN

α )-generic.
6.3.5

We now state our key lemma.

Lemma 6.3.6. Suppose that N ∈ U and that γ ∈ a(N). Let Gγ,N be a V -generic
filter on Pκ

γ ∩N . Then in V [Gγ,N ], RN
γ has the ω1-approximation property.

Proof. We prove by induction that for every β ≤ γ, RN
β has the ω1-approximation

property over V [Gγ,N ], where in the definition of RN
β , we use Gγ,N ∩ Pκ

β. Thus fix
β, and assume that the conclusion of the lemma holds for every ordinal in E ∩ β.
Suppose that ḟ is an RN

β -term forced by some condition p to be a function on some
ordinal µ that is countably approximated in V [Gγ,N ]. One can use Lemma 6.3.3 to
pick a countable model M elementary in Vδ with δ > λ such that E, β, γ,N, p, µ and
ḟ belong to M such that (N ∧ (M ∩ Vλ)) �γ is in MGγ,N

. Set Mγ = (M ∩ Vλ) �γ
and Mβ = Mγ �β. We may then use Lemma 6.3.4 to extend p to a condition pMβ

in RN
β so that Mβ ∈ M

p
Mβ . Since p forces ḟ is countably approximated in V [Gγ,N ],

there is a condition q ≤ pMβ which decides the values of ḟ �M , thus there is a
function g : M ∩ µ → 2 such that q  ǧ = ḟ �M . Moreover, by Lemma 5.2.6 and
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Lemma 6.3.5, pMβ is (Mγ[Gγ,N ],RN
β )-generic. Therefore, it is (M [Gγ,N ],RN

β )-generic.
By Lemma 1.2.18, we are done if g is guessed in M [Gγ,N ]. Thus we may assume
towards a contradiction that g is not guessed in M [Gγ,N ].

Let α = max(dom(wq) ∩ M). Let GN
α be a V [Gγ,N ]-generic filter on RN

α con-
taining q �α, where again we use Gα,N = Gγ,N ∩ Pκ

α in order to form the quotient
RN

α . Lemma 5.2.5 together with Lemma 6.3.5 imply that q �α is (M [Gγ,N ],RN
α )-

generic, on the other hand by the inductive hypothesis, RN
α has the ω1-approximation

property over V [Gγ,N ], thus by Lemma 1.2.20 the function g is not yet guessed in
M [Gγ,N ][G

N
α ]. Since GN

α is a V [Gγ,N ]-generic filter on RN
α , the factorization lemma

implies that V [Gγ,N ][G
N
α ] = V [GN

α ][Gγ,N ].

Claim 6.3.7. The pair (V [GN
α ], V [GN

α ][Gγ,N ]) has the ω1-approximation property.

Proof. Let GN
γ be a V [GN

α ][Gγ,N ]-generic filter on RN
γ . Notice that both GN

α and
GN

γ are also V -generic filters on Pκ
γ and Pκ

α, respectively. Now, Proposition 5.1.22
implies that the pair (V [GN

α ], V [GN
γ ]) has the ω1-approximation property, and hence

the pair (V [GN
α ], V [GN

α ][Gγ,N ]) has the ω1-approximation property. 6.3.7

Notice that if α ∈ N , then U(α) is already interpreted by Gγ,N , and moreover
there is a generic filter on UGγ,N (α) in V [Gγ,N ]. Thus in this case conditions in
U(α) cannot prevent us from amalgamating the conditions in RN

β i.e if p′ and q′ are
conditions in RN

β such that α ∈ dom(wp′) ∩ dom(wq′), we do know that w
Gγ,N

p′ (α)

and w
Gγ,N

q′ (α) are compatible. Let Q be the the interpretation of U(α) under GN
α

if α is not in N , and otherwise let it be the trivial forcing, and let also, for every
p′ ∈ RN

β , zp′ = w
GN

α

p′ (α) if α /∈ N , and otherwise let it be an RN
α -name in N for the

maximal condition of the trivial forcing. These conventions are necessary to avoid
giving two almost identical arguments.

Claim 6.3.8. Q has the ω1-approximation property over V [Gγ,N ][G
N
α ], and zq is

(M [Gγ,N ][G
N
α ],Q)-generic.

Proof. It is enough to assume that α /∈ N and that Q is nontrivial, thus it is the
Baumgartner forcing for the specialization of a tree T of size and height ω1 without
branches in V [GN

α ]. Claim 6.3.7 implies that in V [GN
α ][Gγ,N ] = V [Gγ,N ][G

N
α ], T

is still a tree of size and height ω1 which has no cofinal branches. Thus Q is, in
V [Gγ,N ][G

N
α ], a c.c.c forcing with the ω1-approximation property. Therefore, zq is

also (M [Gγ,N ][G
N
α ],Q)-generic. 6.3.8
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Let H be a V [Gγ,N ][G
N
α ]-generic filter on Q containing zq. Therefore, by Claim 6.3.8

and Lemma 1.2.17 the function g is not yet guessed in M∗ := M [Gγ,N ][G
N
α ][H]. We

consider an assignment x → (qx, gx) on [µ]ω in M∗ such that:

1. qx ∈ Pκ
β �N .

2. (Mqx , dqx) ≤ (Mp, dp) �M in Mκ
β.

3. M ∩ dom(wq) ⊆ dom(wqx).

4. qx �α∈ GN
α .

5. qx �N∈ Gβ,N .

6. zqx ∈ H.

7. x ⊆ dom(gx) and qx  gx �x= ḟ �x.

Such an assignment exists in M∗ as x 7→ (q, g) witnesses it. Thus by Lemma 1.2.20,
there is a set B ∈ M∗ cofinal in [µ]ω such that for every x ∈ B ∩M∗, gx * g, but
then it implies that for such x, qx and q are incompatible. We shall show that for
every x ∈ B ∩ M∗, qx and q are compatible. Fix such an x. Then qx ∈ M∗ by
Lemma 5.2.5 and Lemma 6.3.5, and hence it is in M . Let r ∈ GN

α be a common
extension of qx �α and q �α, and let also s ∈ Gβ,N be a common extension of qx �N
and q �N . Let us also put q̂0 = qx∧q where the amalgamation is computed in Pκ

β �N .
Set

d = {ξ ∈ dom(wq0) : α ≤ ξ /∈ N}.

Let q̂ = (Mq̂0 , dq̂0 , wq̂0 �d). Notice that q̂ ∈ Pκ
β �N , and that (r, s) ≤ (q̂ �α, q̂ �N).

We now apply Lemma 5.2.5 to (r, s) and q̂ to find some condition t ∈ Pκ
β �N /Gα,N

as in the proof of Lemma 5.2.5 with t ≤ r, s, q̂ such that t �N∈ Gβ,N . Notice that
t ≤ qx, q in Pκ

β �N , but t is in RN
β , and hence q and qx are compatible in RN

β . 6.3.6

Corollary 6.3.9. Suppose that α ∈ E. Let N ∈ U be such that α ∈ N ∩ a(N).
Assume that Gα is a V -generic filter on Pκ

α such that N �α∈ MGα. Then the pair
(V [Gα ∩N ], V [Gα]) has the ω1-approximation property.

Proof. Since N is active at α, we have that α = max(a(N) ∩ (α + 1)). Thus,
the previous lemma implies that RN

α has the ω1-approximation property, and hence
(V [Gα ∩N ], V [Gα]) has the ω1-approximation property. 6.3.9
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Lemma 6.3.10. Suppose that µ > λ. Let N ≺ Vµ be a κ-Magidor model containing
the relevant objects. Suppose that Gλ is a V -generic filter on Pκ

λ. Then N [Gλ] is an
ω1-guessing model in V [Gλ].

Proof. Let η = sup(N ∩λ). Then Pκ
λ ∩N = Pκ

η ∩N =
∪

α∈N∩η Pκ
α ∩N . Let π be the

collapse map of N , and let Vγ = π[N ], λ̄ = π(λ) and κ̄ = π(κ). Thus

π[Pκ
λ ∩N ] =

∪
α∈N∩η

π[Pκ
α ∩N ].

On the other hand π[Pκ
α ∩ N ] = Pκ̄

π(α), and hence since cof(η) ≥ κ̄, we have that
π[Pκ

λ ∩N ] =
∪

α<λ̄ Pκ̄
α = Pκ̄

λ̄
. Therefore,

N [Gλ] = Vγ̄[G
κ̄
λ̄] = V

V [Gη ]
γ̄ .

Since N ∩ Vλ is active at η, Lemma 6.3.6 implies that (V [Gη ∩ N ], V [Gη]) has
the ω1-approximation, on the other hand (V [Gη], V [Gλ]) has the ω1-approximation
property by Proposition 5.1.22, and hence N [Gλ] is an ω1-guessing model in V [Gλ].

6.3.10

If λ is supercompact, one can then use a similar argument as above in Lemma 6.3.10
to conclude the following lemma.

Lemma 6.3.11. Assume that λ is a supercompact cardinal. Suppose that µ > λ

and N ≺ Vµ is a λ-Magidor model containing all the relevant objects. Then N [Gλ]

is an ω1-guessing model.

6.3.11

Proof of Theorem 6.3.1

Let Gλ be a V -generic filter on Pκ
λ. We first show that as in the last section,

GM(ω2, ω1) and FS(ω2, ω1) hold in V [Gλ], and moreover if λ is supercompact, then
GM(ω3, ω1) is also true in V [Gλ]. In fact the way we obtain many ω1-guessing
models to witness the above principles is that if N is a κ-Magidor model in some
µ > κ containing the relevant objects, such that N ∩ Vλ ∈ MGλ

, then for every
α ∈ E∪{λ}, N [Gα] is an ω1-guessing model in V [Gλ], Notice that by Remark 6.2.8,
the models we obtain in this way are IC-models. As it is easily seen the sequence
witnessing that some model M is strongly ω1-guessing models consist of ω1-guessing
models which are IC.
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Claim 6.3.12. V [Gλ] |= FS(ω2, ω1).

Proof. If N ∈ MGκ
λ

is a Magidor model and α is in a(N). Then, N [Gα] is an
ω1-guessing model in V [Gλ ∩ N ], and hence by Corollary 6.3.9, it remains an ω1-
guessing model in V [Gλ]. A proof quite similar to the one in Theorem 6.2.5 shows
that FS(ω2, ω1) holds in V [Gλ] 6.3.12

Claim 6.3.13. V [Gλ] |= GM(ω2, ω1).

Proof. This follows easily form Proposition 3.2.17 and Corollary 6.3.9. 6.3.13

Claim 6.3.14. Suppose that λ is supercompact. Then V [Gλ] |= GM+(ω3, ω1).

Proof. Suppose that µ > λ is an ordinal. Suppose that Ḟ is a Pκ
λ-name for an

algebra on Vµ, then by Proposition 3.2.17, there is a λ-Magidor model N containing
all relevant information so that Ḟ ∈ N . Lemma 6.3.10 implies that N [Gλ] is an
ω1-guessing model in V [Gλ]. A similar proof as in Lemma 6.2.6 shows that it is in
fact a strongly ω1-guessing model. 6.3.14

By the properties of the iteration from §5, we do know that Pκ
λ is λ-c.c, it

preserves ω1 and κ, and makes κ = ℵ2 and λ = ℵ3. To conclude the theorem, it is
now enough to prove the following.

Claim 6.3.15. In V [Gλ] every tree of size and height ℵ1 without cofinal branches
is special, and hence every ω1-guessing model of size ℵ1 is special.

Proof. Let T be a tree of size and height ℵ1 without cofinal branches in V [Gλ].
There exists some α ∈ E and some Pκ

α-name Ṫ such that ṪGλ = T . We may assume
that Ṫ is forced by the maximal condition to be a tree of size and height ℵ1 without
cofinal branches. By definition of u and the fact that E is a club in λ, there exists
some β ≥ α in E such that Ṫ is the δ-th Pκ

γ-name where u(β) = (γ, δ) with γ ≥ α.
Then, the maximal condition of Pκ

β+1 forces that Ṫ is a special tree. 6.3.15



Appendix One

A Schematic Diagram of the
Principles

2ℵ0 ≥ ℵ3

¬�(ω2, λ) TP(ℵ2) SCH MP(ω2)

AMP(ℵ1) SH GM(ω2, ω1) TP(ℵ3) FS(ω2, ω1)

AMP(ℵ2) SGM(ω2, ω1) GM+(ω3, ω1) SFS(ω2, ω1)

SGM+(ω3, ω1)

All the arrows are logical implications. The symbols MP, SH, SCH, AMP and
TP stand, respectively, for the Mitchell Property, the Suslin Hypothesis, the Singular
Cardinal Hypothesis, Abraham’s Maximality Principle and the Tree Property.
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Appendix Two

MRP with Finite Conditions

The Mapping Reflection Principle (MRP) was discovered and shown to be a con-
sequence of PFA by Moore [26]. It is a strong reflection principle which decides
the value of the continuum to be ℵ2, it implies SCH and the failure of the square
principle. Moore used a forcing with countable conditions to show that MRP follows
from PFA. In this appendix, we give a proper forcing with finite conditions which
forces an instance of MRP.

Definition B.0.1 (Ellentuck topology). Let X be an uncountable set. The Ellentuck
topology on [X]≤ω is the topology generated by the following sets as basic open sets.

[a,A] := {x ⊆ X : a ⊆ x ⊆ A}, where a is finite and A ⊆ X is countable .

Definition B.0.2. Suppose M and X are sets. A set Σ ⊆ [X]≤ω is called M-
stationary if for every algebra F ∈ M over X, there is some countable set A ∈ M∩Σ
closed under F .

Definition B.0.3. A function Σ is called open and stationary mapping if there are
a regular cardinal θ = θΣ and an uncountable set X = XΣ such that:

1. dom(Σ) is the collection of countable elementary submodels of Hθ containing
X.

2. For each M ∈ dom(Σ), Σ(M) is M-stationary, and also open in [X]≤ω with
respect to the Ellentuck topology.

Definition B.0.4. We say that an open mapping Σ as above reflects if there is a
continuous ∈-chain 〈Mξ : ξ < ω1〉 of models in dom(Σ) such that for every ξ < ω1,
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there is ζ < ξ so that for every η ∈ ξ \ ζ, Mη ∩ X ∈ Σ(Mξ). The sequence
〈Mξ : ξ < ω1〉 is called a reflecting sequence.

Definition B.0.5 (Moore, [26]). The Mapping Reflection Principle (MRP) states
that every open stationary mapping reflects.

Suppose Σ is an open stationary mapping. Let X = XΣ and θ = θΣ.

Definition B.0.6. We let PΣ consist of triples p = (Mp, dp, fp) satisfying the fol-
lowing.

1. Mp is a finite ∈-chain of models in dom(Σ).

2. dp : Mp → [Hθ]
<ω is a function such that if P ∈ M , then dp(P ) ∈ M .

3. fp is a regressive function with finite values on Mp, i.e for every M ∈ Mp,
fp(M) ∈ [M ]<ω, such that whenever M ∈ N are Mp and fp(N) ∈ M , then
M ∩X ∈ Σ(N).

We equip PΣ with the following ordering. Let p ≤ q if and only if

1. Mq ⊆ Mp.

2. For each M ∈ Mq, dq(M) ⊆ dp(M).

3. fq ⊆ fp.

Convention: ∅ is in Mp, for every p ∈ Mp, and fp(∅) is undefined.

Proposition B.0.7. Suppose p is a condition in PΣ. Let M be an element of
dom(Σ) containing p. Then there is a condition pM ≤ p such that M ∈ MpM .

Proof. We let pM be defined as follows. Let MpM be just Mp ∪ {M}, extend dp

as a function by letting dpM (M) = ∅, and also extend fp as a function by letting
rpM (M) be some finite set in M \ Mp. It is easily seen pM is a condition which
extends p. B.0.7

Proposition B.0.8. Suppose θ∗ > θ is a sufficiently large regular cardinal. Assume
M∗ ≺ Hθ∗ is countable and contains Σ, X,P(θ). Let M := Hθ∩M∗. Suppose p ∈ PΣ

is such that M ∈ Mp. Then p is (M∗,PΣ)-generic.
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Proof. Let p � M = (Mp ∩M,dp �M , fp �M). It is clear that p � M is a condition
belonging to M . Set

X = {(P,Q) ∈ Mp ×Mp : P ⊆ M,M ∈ Q and fp(Q) ∈ P ∈ Q}.

If (P,Q) ∈ X, then there is a finite set bQP in P , and hence in M , such that

[bQP , P ∩X] ⊆ Σ(Q).

Fix such sets. Set bP =
∪
{bQP : (P,Q) ∈ X} and B = {bP : P ∈ Mp}. Let D be a

dense subset of PΣ in M∗. We pick some regular cardinal µ with θ < µ < θ∗ and
consider the following set which is easily verified that it contains a club of [X]ω and
belongs to M∗.

E = {R ∩X : {B,X,D, p � M,Σ, θ} ⊆ R ≺ Hµ is countable }.

Since X ∈ Hθ, every algebra on X belongs to Hθ, and hence Σ(M) is M∗-stationary.
Now by M∗-stationarity of Σ(M), one can find A ∈ E∩M∗∩Σ(M). Since M ≺ Hθ∗ ,
there is R ∈ M∗ with {B,X,D, p � M,Σ, θ} ⊆ R such that A = R ∩X. Now using
the openness of Σ(M) there exists a finite set bR ⊆ A such that the interval [bR, A] is
included in Σ(M). We need to extend p � M to a condition in M so that its further
extensions in M do not violate the third condition of Definition B.0.6. To this end,
let p∗ be the same as p � M except about dp∗ , where we let it be defined as follows.

For each P ∈ Mp ∩M, dp∗(P ) = dp(P ) ∪ bP+ ,

where P+ is the next model of P in Mp ∩ M , and we let the next model of the
largest one be defined artificially as R. It is clear that p∗ is a condition belonging
to R since p � M,B, bR ∈ Hθ ∩ R. Now there exists by elementarity a condition q

extending p∗ such that q ∈ R ∩ D, but then q ∈ M since R ∈ M∗. We claim that
q is compatible with p. Put Mr = Mq ∪ Mp. Let also dr be defined on Mr as
follows dr(P ) = dq(P ) if P ∈ M , and dr(P ) = dp(P ) otherwise. It is easy to see
that Mr is an ∈-chain, and dr decorates it. Since Mp ∩M ⊆ Mq, we simply put
fr = fp ∪ fq. What remains to be shown is that whenever P ∈ Q are in Mr with
fr(Q) ∈ P , we would have that P ∩X ∈ Σ(Q). It is easily seen the only situation
that can potentially worry us is when Q /∈ M , and P ∈ Mq \Mp, but in this case
there is S ∈ Mp ∩ M such that S ∈ P ∈ S+, which implies bQS+ ⊆ bS+ ∈ P , and
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hence P ∩X ∈ [bQS+ , S+ ∩X] ⊆ Σ(Q). This concludes the proof.
B.0.8

Corollary B.0.9. PΣ is proper.

Proof. It is clear from Proposition B.0.7 and Proposition B.0.8. B.0.9

If G is a V -generic filter on PΣ, we then let

MG = {M : ∃p ∈ G such that M ∈ Mp}.

Lemma B.0.10. Suppose G is a V -generic filter on PΣ. Then MG is a continuous
∈-chain.

Proof. We show that if (Mn)n is a sequence in MG, then
∪

n<ω Mn is also in MG.
This is equivalent to saying that if M ∈ MG is not the minimal member and is
such that for every P ∈ MG below M , there is a model in MG between P and M .
Then M is the union of models below M in MG. Thus suppose countable model
M ≺ Hθ is forced, by a condition p, to be in MG with the above property. Without
loss of generality, we may assume Mp contains M and some model below M in MG

as well. Now let x ∈ M . If q ≤ p is an arbitrary condition, then one can extend q

to a condition qx such that x ∈ dqx(Qx) where Qx is the largest model below M in
Mqx , It then implies that any extension of qx which has a model above Qx should
contain x. This is possible as there is some model below M in Mq. This shows that
the set of conditions such that x belongs to some model below M is dense below p.
Thus for every x ∈ M , p forces that there is a model below M in MG containing
x. Therefore, M is the union of its predecessors in MG whenever G is a PΣ-generic
filter containing p.

B.0.10

Let fG be defined on MG by letting fG(M) = fp(M) for some, or equivalently
all, p ∈ G with M ∈ Mp.

Theorem B.0.11. PΣ adds a reflecting sequence for Σ.

Proof. Let G be a V -generic filter on PΣ. By the above lemma, MG is a continuous
∈-chain of models. Let 〈Mξ : ξ < ω1〉 be the natural enumeration of MG, i.e for
each ξ < ω1, Mξ ∈ Mξ+1 . We claim that this is a reflecting sequence for Σ. If
ξ < ω1 is a limit ordinal, then fG(Mξ) belongs to Mξ, and thus by the continuity,
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there is ζ < ξ so that fG(Mξ) ∈ Mζ , and thus for each η ∈ ξ \ ζ, fG(Mξ) ∈ Mη. It
is enough to pick q ∈ G such that Mξ,Mη ∈ Mq, and hence Mη ∩X ∈ Σ(Mξ).

B.0.11





Appendix Three

Open Problems

In this appendix, we state some questions related to the research line of this thesis.
Our fist problem concerns the concept of structured ℵ1.5-c.c-ness.

Problem C.0.1. Does every ℵ1.5-c.c forcing have the structured ℵ1.5-chain condi-
tion? Is MAs−1.5

ℵ2
equivalent to MA1.5

ℵ2
?

The second problem concerns the failure of 02 (cf Definition 1.4.7). It is not
clear whether it has an answer under MAs−1.5

ℵ2
.

Problem C.0.2. Is the failure of 02 consistent with 2ℵ0 > ℵ2?

The failure of 02 follows from MRP for sets of size ℵ1, say MRP(ℵ1), which states
that every open stationary mapping Σ with |XΣ| = ℵ1 reflects (cf Definition B.0.5).
The next natural question is the following.

Problem C.0.3. Is MRP(ℵ1) consistent with 2ℵ0 > ℵ2?

We notice that in contrast to the failure of 02, it is hard, or even impossible,
to imagine that one can force every instance of MRP(ℵ1) using a forcing of size ℵ1.
The last relevant question is about proper forcings of size ℵ1. Let Kproper,ℵ1 denote
the class of all proper forcings of size ℵ1.

Problem C.0.4. Is FAℵ1(Kproper,ℵ1) consistent with 2ℵ0 > ℵ2?

We can be more ambitious and ask the following.

Problem C.0.5. Is FAℵ2(Kproper,ℵ1) consistent with 2ℵ0 > ℵ2?

Now we turn to a subject with more combinatorial flavor. A natural question
related to the approachability ideal is the following. Recall that MP(κ+) stands for
the Mitchell Property at κ (cf Definition 1.1.4).
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Problem C.0.6. Is it consistent to have MP(ω2) and MP(ω3) simultaneity?

I am almost sure there is no problem-meter, thus let us be more ambitious again
and ask another question.

Problem C.0.7. Is it consistent to have MP(ωn), for every natural number n ≥ 2

simultaneity?

For a natural number n, one can easily define GM(ωn+1, ωn), GM+(ωn+2, ω1) and
SGM+(ωn+2, ω1), and then study their consistencies. See the first section of §5 for
the relevant definitions. Let us first define SGM+(ωn+2, ω1) (cf Definition 6.1.6).

Definition C.0.8. A model of size ℵn+1, for n ≥ 2, is an indestructibly strongly
ω1-guessing if it is the union of a sequence 〈Mξ : ξ < ωn+1〉 of indestructibly strongly
ω1-guessing models of size ωn such that for each ξ of cofinality ωn, we have that
Mξ =

∪
η<ξ Mη.

Set

Sωn+2,ω1(Hθ) := {M ∈ Pωn+2(Hθ) : M is an indestructibly strongly ω1-guessing model}.

Then we let naturally, for every n ≥ 1, SGM+(ωn+2, ω1) assert that for all suffi-
ciently large regular cardinal θ, Sωn+2,ω1(Hθ) is stationary in Pωn+2(Hθ). I am sure
no one1 reads these lines, so let us state a natural conjecture.

Conjecture C.0.9. It is consistent to have SGM+(ωn+2, ω1) simultaneously, for
every n ≥ 1.

If V is a transitive model of

T ≡ ZFC + ∀n (SGM+(ωn+2, ω1) + 2ℵn < ℵωn),

and W ⊇ V is transitive model of ZFC which contains a new subset of ωn, for some
n ∈ ω, then either W has a real which does not belong to V , or some V -cardinal
≤ supn∈ω(2

ℵn) is no longer a cardinal in W . In particular, if ℵω is strong limit in V

and ℵV
n = ℵW

n for every n ∈ ω, then RV 6= RW (cf Theorem 6.1.16). Notice that also
SGM+(ωn+2, ω1) does imply AMP(ℵn+1), MP(ωn+1) and TP(ℵn+1), for every n ≥ 1,
and possibly many other things.

1Bravo! you are an exception!
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