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Métasurface à gradient de phase diélectrique pour les applications d'optique classique 

et quantique 

Résumé :  

Ces dernières années, les diverses fonctionnalités optiques démontrées à l'aide de métasurfaces 
ont attiré une attention considérable. Les métasurfaces étant des composants optiques 
diffractifs, présentent une plus grande flexibilité. Ces dispositifs sont notamment plus compacts, 
plus légers et plus fonctionnels par rapport aux composants optiques réfractifs. Cependant, en 
termes d'efficacité, les composants réfractifs fonctionnent mieux et il est donc nécessaire 
d‘optimiser les performances des métasurfaces pour assurer leur utilisation et implémentation 
dans des dispositifs optiques. Compte tenu de cela, nous concevons des dispositifs optiques 
hybrides pour combiner les avantages des deux composants. Tout d'abord, il est démontré 
comment la dispersion d'un élément optique simple tel qu'un prisme peut être atténuée à l'aide 
d'une métasurface. En utilisant des métasurfaces à gradient de phase, les vecteurs d'onde 
sortants peuvent être contrôlés à l’aide de la dispersion diffractive de la métasurface. Nous avons 
réalisé des métasurfaces avec gradients de phase relativement petits afin de démontrer 
expérimentalement l’effet d’atténuation de la dispersion du prisme. Étendant le même principe 
aux optiques focalisantes, nous avons également conçue des métasurfaces pour corriger les 
aberrations chromatiques dans la plage de longueurs d'onde de 550 à 800 nm. De plus, il est 
montré qu'une aberration monochromatique telle qu'une aberration sphérique peut également 
être corrigée en ajoutant au front d’onde sortant un gradient de phase approprié à l’aide de 
métasurfaces. Nous montrons également des résultats théoriques et expérimentaux sur la 
realization de métasurface de grande surface, incluant les caractérisations expérimentales 
completes, pour démontrer la correction d'aberration d’une lentille disponible dans le 
commerce. Ces résultats sont très prometteurs notamment pour leurs utilisations dans des 
systèmes d'imagerie compacts. 

Ayant démontré le potentiel des métasurfaces pour l'optique classique, nous nous sommes 
ensuite intéressé à leur utilization pour des applications en optique quantique. L'expérience de 
Hong Ou Mandel, qui est l'une des expériences de base de l'optique quantique, démontre 
l'interférence quantique. Ici, nous proposons de modifier la configuration d'origine en 
remplaçant le séparateur de faisceau par une métasurface à gradient de phase. Une nouvelle 
métasurface est conçue à cet effet, appelée «métasurface à double gradients», qui confère des 
fonctionnalités supplémentaires ainsi que la fonctionnalité de séparateur de faisceau sur des 
états de polarisations mixtes. La nanofabrication de la métasurface est optimisée pour réaliser 
une transmission 50/50 dans les deux ordres diffractés pour imiter un séparateur de faisceau. Le 
contrôle supérieur qu'offrent les métasurfaces sur la phase, la polarisation et l'amplitude de la 
lumière peut être tout à fait bénéfique pour manipuler les états quantiques de la lumière. Nous 
résultats permettent d’entrevoir des applications intéressantes pour les technologies 
quantiques. 

Mots clés : Phase de gradient, Compensation de dispersion, Correction d'aberration, Composants 
hybrides, Méta-correcteur, Nanopillaires, Phase Pancharatnam-Berry Interférence à deux 
photons, Anti-groupage 



Dielectric Phase Gradient Metasurfaces for Classical and Quantum Optics Applications 

Abstract: 

In recent years, various optical functionalities have been demonstrated using metasurfaces which 
have attracted tremendous attention. Metasurfaces being diffractive optical components, show 
greater flexibility, including compactness, lightweight, arbitrary wavefront addressing 
capabilities exceeding those of refractive optical components. However, in terms of efficiency 
refractive components perform better and further optimization is required for metasurfaces in 
this direction. Considering this, here we design hybrid optical devices to combine the advantages 
of both the components. First, it is demonstrated how the dispersion of a simple optical element 
such as a prism can be mitigated using a metasurface. By employing phase gradient metasurfaces, 
the outgoing wavevectors can be controlled and hence the diffractive dispersion of metasurface. 
Utilizing this property, metasurfaces with relatively small phase gradients are designed and prism 
dispersion mitigation is experimentally demonstrated. Extending the same principle to lenses, 
metasurface to correct for lens chromatic aberration is designed in the wavelength range of 550-
800nm. Also, it is shown that monochromatic aberration such as spherical aberration can also be 
corrected by designing an appropriate phase gradient for the metasurface. Analytical 
calculations, large area metasurface fabrication and comprehensive experimental 
characterization are done to demonstrate aberration correction of commercially available lenses. 
These developments are promising for future compact imaging systems.  

Realizing the potential of metasurfaces in classical optics, they are also used for Quantum optics 
applications. However, only a few works have been done in this direction. Hong Ou Mandel 
experiment, which is one of the basic experiments of Quantum optics, demonstrates quantum 
interference. Here, we propose to modify the original setup by replacing the beam splitter with 
a phase gradient metasurface. A novel metasurface is designed for this purpose called ‘Dual 
Gradient Metasurface’ which imparts additional functionality along with the beam splitter 
functionality.  The nanofabrication of the metasurface is optimized to realize 50/50 transmission 
in the two diffracted orders to imitate a beam splitter.  The superior control that metasurfaces 
offer over the phase, polarization and amplitude of light can be quite beneficial for manipulating 
the quantum states of light. This opens doors for harnessing the potential of metasurface for 
quantum technologies.  

 
Keywords : Phase gradient, Dispersion compensation, Aberration correction, Hybrid 
components, Meta-corrector, Nanopillars, Pancharatnam-Berry phase, Two-photon 
interference, Anti-bunching 
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Introduction

This thesis was carried out in CRHEA, a CNRS laboratory that specializes in growth of semi-

conductor materials. The work was carried out in the Flatlight team in CRHEA and also

in collaboration with other research groups from Harvard University, USA and Chalmers

University, Sweden. The aim of this thesis was to realize the potential of planar optical

components called metasurface for classical and quantum optics applications. As the phase

and polarization of a light wave can be locally controlled using metasurfaces, they render

novel optical functionalities compared to conventional refractive components. A particular

arrangement of metaunits results in a phase gradient along the surface of the metasurface.

By controlling this gradient the outgoing wavevector can be controlled. This property is

utilized extensively in this work considering dielectric metasurfaces. In this work, they are

used in combination with refractive optical components known as hybrid components to de-

sign achromatic devices and mitigate lens aberrations. Also, novel optical components were

designed for applications in single photon experiments. For each of these applications, elec-

tromagnetic simulations were carried out, Nanofabrication of metasurfaces were performed

and thorough optical characterization was done. To discuss these works in detail, this thesis

is divided into 4 chapters. First, the concept of metamaterial and metasurface are introduced

by giving a general theoretical discussion and presenting the standard equations associated

with them. Metasurfaces made of different materials are introduced and the mechanism by

which abrupt phase and polarization can be achieved is discussed in detail. Some of the

interesting applications are also presented in this chapter.

Second chapter describes the design of a hybrid optical component of prism and phase

gradient metasurface combination to achieve dispersion-free devices. Metasurfaces are simu-

lated, nanofabricated and are experimentally studied by utilizing Fourier space spectroscopy

technique to measure small magnitudes of dispersion. An interesting application of achro-
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matic beam compressor is also presented. The same idea is extended to lens-metasurface

combination in the third chapter to correct lens aberrations. Detailed analytical calculations

for chromatic and spherical aberration correction are presented. For experimental demon-

stration, large area metasurfaces of centimeter scale are fabricated by employing a recent

technique. Detailed experimental characterization is carried out to study the aberrations

both quantitatively and qualitatively. Interesting techniques of phase measurement, Point

spread function measurement and Zernike analysis are demonstrated.

In the last chapter, a novel device called Dual phase gradient metasurface is discussed

for quantum optics applications. It is designed to replace beam splitter in a standard Hong

Ou Mandel experiment which demonstrates two-photon interference. It is shown that meta-

surfaces can be designed to have interesting functionalities owing to their flexibility. The

nanofabrication and classical optics characterization for dual gradient metasurface are also

carried out.
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Chapter 1

Introduction to metasurfaces

Electromagnetic waves observed in nature have a wide range of wavelengths varying from pi-

cometres to few kilometers. Visible light is made up of a narrow bandwidth whose wavelength

is of the order of hundreds of nanometers. One can find many components to manipulate light

such as lenses for focusing, prisms for dispersion, polarizers for polarizing light, diffraction

gratings etc. Motivation for coming up with such components in the first place is perhaps

found in the nature such as dispersion in rainbow, polarization in certain natural crystals

etc. Nature never seizes to amaze us. Certain butterfly species called Morpho butterflies are

known to exhibit a phenomenon called as iridescence through which they exhibit different

shades of blue color at different angles of view as shown in figure 1.1. Reason behind it is

not the commonly found pigmented coloration but arrangements of micro and nano sized

ridges in their wings in a periodic fashion which causes constructive interference of particular

wavelengths[1]. These phenomena raised questions such as can these effects be mimicked in

laboratory? Taking a step ahead, is it possible to engineer exotic photonic effects never

seen in nature? Perhaps this gave rise to the field of Nano-photonics. The term for such

engineered materials is the well known Metamaterials. The term explains itself that its func-

tionality is not so much dependent on its constituent material but the arrangement of its

smallest units.

Biomimicking has been for many years a successful technique in engineering new devices.

Same ideas were also applied in the field of metamaterials. Taking a step ahead, in 2006, a

revolutionary idea was proposed by John B Pendry that theoretically a Metamaterial could
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Figure 1.1: Nanostructures in Morpho butterfly wings [1]

be designed to work as an invisibility cloak[2]! This could be achieved by independently

controlling permittivity and permeability, both the magnitude and sign, as a function of

coordinates of the Metamaterial interface. This opened up a new field called Transformation

Optics and Cloaking was demonstrated experimentally in the microwave region of spectrum.

This work was a shining example of the extent of control one can have over light with meta-

materials. Metamaterials provide the flexibility in design which is absent in the conventional

bulk materials.

1.1 Metamaterials and metasurface

Metamaterials can be defined as a particular arrangement of antennas with size of unit

cell comparable to the wavelength of incident electromagnetic waves to achieve a particular

functionality. Electromagnetic metamaterials can be divided into 4 major categories namely

Double Positive materials (DPS), Epsilon Negative materials (ENG), Mu Negative materials

(MNG), Double Negative materials (DNG).

Double Negative materials, also called as left handed materials, are not found in nature

but physically realizable with metamaterials. Thus it encompasses all ranges of epsilon and
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Figure 1.2: Types of Metamaterials that can be realized based on permittivity and permia-
bility values [3]

mu which has enabled the realization of exotic phenomenon such as optical cloaking. By

precisely controlling the shape, size, geometry and the arrangement of the antennas one can

achieve complete control over the reflection, absorption, refraction of the electromagnetic

wave. Other than for electromagnetic waves, metamaterials are also realized for sound

waves called acoustic and elastic metamaterials. Hence metamaterials have become quite a

general term. Starting from the seminal work by Kock to locally delay the phase of light

using subwavelength metallic patches [4] followed by the work of Stork et al. and Farn

to realize grating structures with a period small compared with the wavelength of light

[5][6], the concept of high-contrast subwavelength (HCG) dielectric structures has led to

the development of ultrathin optical components. Designing the diffracting properties at

the subwavelength scale using spatially varying nanostructures, Lalanne et al. had reported

blazed gratings with high efficiencies [7][8].

Metasurfaces are two dimensional counterparts of Metamaterials, generally made with

sub wavelength scale optical components and perceived as sheet like material obeying spe-

cific boundary conditions. It can also be defined as an interface causing discontinuity in

electromagnetic fields or imparting abrupt phase, polarization and amplitude shift in inci-

dent light. The equation to describe the trajectory of the incident light on metasurface is
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called Generalized laws of refraction and reflection [9]. Generalized law of refraction (as

shown in figure 1.3):

ntSin(θt)− niSin(θi) =
λ

2π

dφ

dx
(1.1)

Generalized law reflection

Sin(θr)− Sin(θi) =
λ

2πni

dφ

dx
(1.2)

where ni and nt are the refractive indicies of incident medium and refracted medium respec-

tively. Angles θi and θt are incident angle and refracted angle respectively, θr is the reflected

angle, λ is the wavelength of incident light and dφ
dx

is the phase gradient of the meatsurface

along x-direction.

Figure 1.3: Generalized law of refraction [9]

This expression can be explained by Principle of stationary phase which is another form

of Fermat’s least action principle. It states that “The derivative of phase accumulated along

the actual light path between point A and B is zero with respect to infinitesimal variation

in the path”. In other words, between points A and B, in the vicinity of actual path taken

by light, phase variation is negligible. When this is compared to other paths between the

same points, the phase variation is large even with a slight change in trajectory. One can

also note that the equation is another form of linear momentum conservation in tangential

direction [10]. It can be seen that the equation is exactly the Snell’s law just with an added

term of phase gradient of the metasurface. It is important to note that this treatment is

justified for metasurface as long as they can be considered as sub wavelength thick surface.
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If one achieves control over phasefront and polarization of the electromagnetic fields it is

possible to achieve several optical functionalities such as lensing, vortex beams, holograms

etc. Diffractive optical elements such as metasurface offer this control and great flexibility.

Naturally, the question arises how this ‘pixelwise’ phase can be realized in a metasurface. In

the next section, a theoretical framework stemming from electromagnetic theory is provided

for subwavelength thick metasurface.

1.2 Metasurface Electromagnetic theory

The following is the macroscopic description of metasurface to characterize their optical prop-

erties in terms of permittivity ε and permeability µ [11]. By applying Maxwell’s equations

for the following boundary conditions for TE and TM polarizations, phase and amplitude of

both reflected and transmitted rays are calculated. As shown in fig 1.4(b), metasurface is

considered to be a slab of thickness ‘h’, permittivity ε2 and permeability µ2.

For both TE and TM polarization, the boundary conditions can be written as

r + 1 = t ; Y1(1− r) = Y2t,

where r = Eyr/Eyi and t = Eyt/Eyi for TE polarization. r = Exr/Exi and t = Ext/Exi

for TM polarization. The horizontal admittance for each medium is given by Yi = Hxi/Eyi

for TE polarization and Yi = Hyi/Exi for TM polarization. Here ’i’ represents index of layer.

The following relations are obtained from Maxwell’s equation.

∇XE = −µµ0
∂H

∂t
; ∇XH = εε0

∂E

∂t

Applying Maxwell’s equation in boundary condition equation, we get,

Yi =


kzi

µiµ0ω
=

√
εiµik20−k2x
µiµ0ω

, forTE

εiε0ω
kzi

= εiε0ω√
εiµik20−k2x

, forTM
(1.3)
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Figure 1.4: A) Electromagnetic theory of metasurface modelled as a thin slab for TE and
TM polarization incidence B) Subwavelength thick slab is shown with permittivity ε2 and
permiability µ2. The transmission and reflection co-efficients are indicated for each of the 3
media [11]

Here kx is the horizontal wavevector as shown in figure 1.4. From boundary condition

equation and admittance equation, the following relation for reflection and transmission

co-efficient can be written.

t = 2Y1
Y1+Y2

, r = Y1−Y2
Y1+Y2

They are very similar to the well known Fresnel equations, a minor difference is that they

are expressed in terms of horizontal wavevectors. Consider a thin slab sandwiched between

two different media as shown in figure 1.4 b). 1, 2, 3 represent 3 layers and a, b, c, d are the

co-efficients for counter propagating waves in the slab. The boundary condition for the thin

slab can be written as follows.
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1 + r = a+ b ; Y1(1− r) = Y2(a− b)

c+ d = t ; Y2(c− d) = Y3t

The co-efficients by definition are given by

a = ce−ikz2h

b = deikz2h

For extremely thin metasurface for | kzh |<< 1

a = c(1− ikz2h),

b = d(1 + ikz2h)

From the above equation one can derive the following,

a+ b = (c+ d) + ikz2h(c− d)

a− b = (c− d)− ikz2h(c+ d)

Considering that the middle layer has permittivity and/or permeability larger than the

surrounding medium, we get Y2 >> Y3 and c+ d >> c− d. This yields,

a+ b = c+ d

a− b = Y3t
Y2
− ikz2ht

Inserting these equations into the boundary conditions equations, we get,

1 + r = t

Y1(1− r) = Y3t− iY2kzht

Comparing it with electric impedence boundary conditions,
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1 + r = t

Y1(1− r) = Y3t+ Yet

One can obtain the electric admittance for the slab as following,

Ye = −iY2kzht = −i ε2k
2
0−k2z
µ0ω

h ≈ −iωε0ε2h

When the permiability µ is much larger than ε, Y2 << Y3 resulting in c − d >> c + d.

This leads to the approximation,

a+ b = c+ d− ikz2h(c− d)

a− b = c− d

This results in,

1 + r = t− ikz2hY3Y2 t
Y1(1− r) = Y3t

Comparing above equations with magnetic impedence boundary conditions,

1 + r = t+ ZmY3t

Y1(1− r) = Y3t

Finally, the magnetic impedence can be obtained as follows,

Zm = −ikz2h
Y2

= −i ε2µ2k
2
0−k2z

ε0ε2ω
h ≈ −iωµ0µ2h

The obtained electric admittance and magnetic impedence equations are valid for ho-

mogenous materials. For metamaterials, effective imepedence can be obtained by applying

boundary conditions in a similar way [12].

The most important feature of a metasurface is imparting abrupt phase. If the impedence

of the metasurface is purely imaginary, meaning that the ohmic losses are absent, the phase

can be changed arbitrarily. The reflection and transmission co-efficient when the magnetic

impedence is taken into account become,
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r = 1
2
(2Y0−Ye

2Y0+Ye
+ Zm−2Z0

Zm+2Z0
)

t = 1
2
(2Y0−Ye

2Y0+Ye
− Zm−2Z0

Zm+2Z0
)

Here Y0 and Z0 are admittance and impedence respectively of the surrounding medium.

By taking the argument function of the above complex co-efficients one can retrieve abrupt

phase shift imparted by the metasurface.

It would be interesting to look in detail the phenomenon of abrupt phase and polarization

change at antenna level. A few ways to achieve this is by utilizing Pancharatnam-Berry

phase(PB phase) and Propagation phase which is discussed in subsequent sections. Even

though the objective is to achieve abrupt phase and polarization, the approach to realize

it is different with plasmonic and dielectric metasurfaces owing to the different material

properties. Therefore, plasmonic and dielectric metasurfaces are discussed separately in the

next section.

1.3 Plasmonic metasurface

One of the first ways to realize subwavelength thick metasurface was to use gold nanorods.

As discussed in [9], plasmonic resonance of V shaped nanorods was exploited to achieve full

phase range from 0 to 2π. Two modes of resonance ‘Symmetric’ and ‘Antisymmetric’ can

be seen acting together. This gives the freedom over phase in 2 dimensions. By placing

constantly incremented phase elements from 0 to 2π at equal distance from each other,

beam deflector was realized. One can imagine that with control on phase and amplitude in 2

dimensional polarization plane, arbitrary wavefront is realizable, be it a lens, vortex beams

or holograms.

In plasmonic antennas, the resonance in play is called Localized Surface Plasmon Reso-

nance (LSPR). This can be mathematically described as a simple harmonic oscillator with

a damping force and an external field imparting energy into the system [13]. Consider ‘q’

to be a charge on the surface of a plasmonic structure of mass ‘m’ located at position ‘x

(t)’ at time t. One can model the Simple harmonic oscillator by assuming that the particle

is attached to a spring with spring constant ‘k’ driven by a harmonic incident electric field

with frequency ‘ω’. The Ohmic losses lead to charges experiencing internal damping with

damping co-efficient ‘γ’. We obtain the following equation with this model,
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Figure 1.5: V shaped plasmonic antennas for metasurface [9]

d2x

dt2
+
γ

m

dx

dt
+
k

m
x =

q

m
E0e

iωt +
2q2

3mc3

d3x

dt3
(1.4)

The dx
dt

term is the damping force, d3x
dt3

is the radiation reaction force which describes

the recoil that the charge experiences when it emits radiation. From the above treatment,

it can be realized that the maximum phase shift that can be obtained from a plasmonic

antenna is π. In other words, for the construction of a metasurface, phase coverage of 0 to

2π in antennas is required but plasmonic structures offer only 0 to π phase range which is

a limitation. Moreover poor forward scattering and high damping losses in visible region

decreases the efficiency of the final device. The above plasmonic metasurface was designed

using hybrid phase which will be discussed in the next section.

1.4 Dielectric metasurface: Huygen’s metasurface

Realizing that plasmonic materials are not the ideal candidates for efficient metasurfaces, the

focus was shifted towards dielectric antennas. Making use of dielectric resonances, Huygen’s

metasurface was proposed. Dielectric nanoparticles with size comparable to the incident

wavelength of light behave as Mie scatterers. Following the exact Mie calculations it is pos-

sible to calculate both internal and radiating fields. Analytical expression of radiating fields

can be compared to experimental data and contribution of each mode can be extracted. This
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treatment is particularly useful in ascertaining the mechanism of transmission or reflection

at a particular wavelength.

Figure 1.6: Huygens metasurface using first Kerker’s condition. In (c), red line corresponds
to magnetic dipole contribution and blue line to electric dipole contribution. [14] [15]

In a Mie resonator typically the first resonance that occurs is the magnetic dipole mode

approximately when the effective wavelength is of the order of particle diameter. This is

followed by the electric dipole mode. Given that the particle’s size is small and is of the

order of incident wavelength, the particle can be treated as a dipole where only dipolar modes

contribute to the scattered field. The same principle can be extrapolated to cylindrical pillars

or rectangular resonators to use them as building blocks of a metasurface. The idea here

is to utilize high contrast grating structures which have high refractive index compared to

the substrate and surrounding medium to construct metasurfaces. To achieve maximum

transmission/reflection, Kerker’s first condition is utilized. This condition states that when

relative permittivity of the particle is equal to relative permeability, zero backscattering and

maximum forward scattering can be observed. This is because the electric and magnetic

dipole coefficients in the Mie scattering expansion become equal in this condition which

leads to destructive interference in the backward direction. Similarly, when electric and

magnetic dipole resonances overlap out of phase, constructive interference occurs in backward

direction. The illustration of the Kerker condition for 240 nm Germanium sphere can be

seen in figure 1.6 [14]. It can be seen that at wavelengths when electric and magnetic

dipole contributions are equal, zero backward (Kerker’s first condition) or forward scattering

(Kerker’s second condition) is achieved as as shown in figure 1.6 (b) and (c).

Finally using this property of impedance matching, Huygen’s metasurface can be designed

which will have spatially varying phase delay and minimum backward scattering.

33



1.5 Types of Dielectric metasurface

Approaches discussed so far to construct metasurface are based on resonances of the nanoan-

tennas. More convenient non-resonant mechanisms are discussed in the present section. As

in this thesis dielectric metasurfaces are extensively used, different approaches to realize

abrupt phase and polarization with dielectric metasurface is discussed in detail here.

1.5.1 As waveguides

One way to achieve full phase coverage using dielectric nanopillars is to employ the wave

guiding property of tall nanopillars of high refractive index materials. The height of the

pillars are not necessarily sub-wavelength but as long as the incident light is close to normal

incidence, generalized law of reflection and refraction can still be applied. For oblique inci-

dence, the polarization component along the height of the pillar might excite other modes

in them which will affect transmission and reflection of the metasurface. The pillar height

of a particular material is chosen such that it can give full phase coverage of 0 to 2π by

changing nanopillar diameter. The lower limit for the diameter is set by the fabrication lim-

itation and the upper limit is decided by the length of each period for achieving a particular

functionality. To have a better understanding of the mechanism, phase contribution just by

waveguiding effect was studied in [16].

φwg =
2π

λ
neffH (1.5)

where neff is the fundamental mode of the waveguide and ‘H’ is the height of the nanopil-

lar.

Following this model, the phase shift as a function of diameter of nanopillar was plotted

and compared with FDTD simulation for the same on a glass substrate as shown in figure 1.7.

It can be seen that they agree with each other with a small error in phase. Larger the diameter

better the field confinement of the fundamental mode hence lower the deviation from FDTD

plot. Also the field confinement along the propagation direction is neglected which occurs

due to the standing wave formation by reflections from opposite facets of nanopillars. Hence

the claim that waveguiding is the dominant mechanism for phase shift generation is verified.
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Figure 1.7: Waveguiding phenomenon in nanopillars. Left: TiO2 nanopillar of height
H=600nm on SiO2 substrate and source of S of wavelength 532 nm. Right: Compari-
son of Phase shift vs diameter of pillar obtained from FDTD simulation and that calculated
from HE11 fundamental mode at wavelength of 532 nm. [16]

In [16] , FDTD simulation for phase map with varying nanopillar diameter for different

incident wavelength is studied. Similarly, one can also compute transmission map to identify

the parameter space of high transmission. To achieve desired functionality of a device by

constructing spatially varying meta-units, appropriate phase element can be picked from the

map to construct a metasurface. In the same work, it was demonstrated how a Metalens can

be designed using the same technique. Consider ‘r’ to be the radial distance of a point on

the metasurface from its center. If ‘f’ is the focal distance of the metalens anf point f as the

focus, then the distance between focal point and the metasurface co-ordinate is
√
r2 + f 2.

In the case without metasurface, the wavefront would have travelled distance ‘f’ to reach

point F. Therefore the shift in the wave the metasurface has to impart is
√
r2 + f 2–f .

Denoting metasurface plane as x-y plane r co-ordinate can be written as (x,y). Calculating

the corresponding phase shift for design wavelength λd considering the fact that nanopillars

impart a phase delay we get,

Φt(x, y) = 2π − 2π

λd
(
√
x2 + y2 + f 2 − f) (1.6)

The diameter of the nanopillar corresponding to a particular phase can be picked from
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the phase map and arranged in an array to realize a metalens. This proves that one can

have tremendous control over propagation phasefront with a proper design of metasurface.

However, the phase delay imparted by the pillars is quite sensitive to its dimension. And it is

difficult to have a complete control over the nanopillar dimensions owing to the inaccuracies

in nanofabrication. Therefore to obtain an accurate phase profile one needs to take into

account the difference between the actual and expected size of the nanopillar which is a

limitation of this approach.

1.5.2 Pancharatnam Berry phase metasurface

Another interesting mechanism by which abrupt phase shift can be realized in a metasurface

is by utilizing Pancharatnam Berry phase (PB) metasurface. Before discussing about the PB

metasurface it is crucial to understand the origin of the PB phase which is a Geometric phase.

Generally, geometric phase can be defined as the phase shift resulting from the geometric

properties of the parameter space of the Hamiltonian when the system is subjected to cyclic,

adiabatic process. [17]. When at least two parameters are involved to characterize the

system and both of them are varied simultaneously over the course of a cycle then this phase

can be observed. In optics, when polarization state of light is taken along a closed circle in

the Poincaré sphere, light acquires geometric phase along with dynamic phase because of its

path length [18].

S. Pancharatnam, in 1956, had theorized this effect and M. Berry had given a general

theory including quantum systems in 1984, hence the name Pancharatnam-Berry phase. It

is given by negative of half the solid angle subtended by the closed contour traced on the

Poincaré sphere. It is best realized using a half wave plate. Half Wave Plate (HWP) is

a birefringent material which induces a relative phase retardation of half the wavelength

along its slow axis compared to the fast axis. When a linearly polarized beam is incident

on the waveplate, the resulting beam is linearly polarized with its polarization axis making

2θ with respect to the incident polarization direction. Here ’θ’ is the angle between incident

polarization axis and the fast axis of HWP. In the case of an incident circularly polarized

beam, after passing through HWP it gets converted into the opposite handed circular polar-

ized light. Consider that Right circular polarized (RCP) light is incident and irrespective of

rotation angle of HWP, LCP is obtained as output. But depending on θ the light starting

from RCP can take different trajectory on Poincare sphere to reach LCP as shown in figure
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1.8 a). Therefore the beam acquires a global phase of 2θ which is precisely the PB phase.

It has to be noted that the PB phase can be controlled by changing the rotation angle of

HWP.

(a) (b)

Figure 1.8: Pancharatnam berry metasurface description using Poincaré sphere[19]

Similar effects can be realized using a metasurface. As described in the previous section

that desired phase can be obtained using dielectric nanopillars utilizing their waveguiding

property. Extending the same idea, in asymmetric (rectangular or elliptical cross section)

nanopillars it is possible to have 2 modes simultaneously each along the length and the width

of the pillar. The length and width are chosen such that the path length difference between

the 2 modes is λ
2

or phase difference of π imitating birefringent crystals as shown in figure

1.8 b). It also has to be made sure that the transmission amplitudes are same for both the

modes for the output to be circularly polarized.

Now, since we have a HWP equivalent at nanoscale, it should be possible to obtain

different PB phase by rotating nanopillars along the vertical axis (Nanopillar height axis).

Therefore α rotation of nanopillar will result in 2α PB phase added to the output beam as

shown in the figure 1.9.

To control phase at nanoscale using metasurface, PB phase is a very reliable technique.

One of the advantages it offers is that the ‘signal’ with PB phase information has opposite

circular polarization compared to the input polarization. Therefore, it is convenient to filter

out the incident light and extract the signal using a set of Half wave plate and Quarter wave

plate. Another obvious benefit is that the phase can be precisely controlled by controlling

the rotation of pillars. Whereas in other methods, one has to rely on effective refractive
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Figure 1.9: PB phase generation by rotation of nanopillars [20]

index of the pillars which is strongly dependent on the dimension of the pillars.

Jones matrix treatment

A birefringent nanopillar is represented in Jones matrix as follows assuming that pillar cross

section is in x-y plane and transmission along x and y are equal. φx and φy are phase

retardation along x and y axis because of birefringence. [21][22]

J0 =

[
eiφx 1

1 eiφy

]
(1.7)

Applying optical rotation matrix to denote the pillar rotation along its height axis by α.

New transfer matrix can be calculated as follows.
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M = R(−α)

[
eiφx 0

0 eiφy

]
R(α) (1.8)

Rotation matrix R for α rotation can be written as

R(α) =

[
cos(α) sin(α)

−sin(α) cos(α)

]
(1.9)

Assuming that the incident polarization is LCP, the transfer matrix can be applied on

ELCP . Few steps of simplification lead to the final transmission expression.

ET = M̂.ELCP , ET =
(eiφx + eiφy)

2
.ELCP +

(eiφx − eiφy)
2

.eim2α.ERCP (1.10)

In the case of δφx − δφy = π, it can be seen that LCP input is completely converted to

RCP. By varying the phase retardation difference between x and y, one can tune the ratio of

transmission between 0 order and 1st order. The term eim2α associated with the converted

circular polarization represents PB phase. Therefore α rotation of the pillars results in 2α

PB phase. Implying that rotation of nanopillars from 0 to π yields full phase coverage of 0

to 2π! A general expression for output fields can be written as follows [23]

|Eout〉 =
√
ηE |Ein〉+

√
ηRe

i2α(x,y) |R〉+
√
ηLe

−i2α(x,y) |L〉 (1.11)

where

ηE = |1
2

(tx + tye
iφ)|2; ηR = |1

2
(tx − tyeiφ) 〈Ein |L〉|2 ; ηL = |1

2
(tx − tyeiφ) 〈Ein |R〉|2 (1.12)

Here tx and ty are the transmission along x and y axis. It can be noticed that there is

quite a lot of freedom to tune the output polarization and phase which is not offered by other

approaches of phase generation. This effect can also be realized using plasmonic structures.

But in this section the focus is only on dielectric metasurfaces as they are extensively used
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in this thesis work. The following is an example of a PB phase based beamsplitter [21] Here

in one period, the pillars are rotated from 0 to π with the intervals of π/6 placed at equal

distance from each other. This is an example of constant phase gradient which works as

a beam deflector. The deflection depends on the length of the period given by generalized

law of refraction. Incident circular polarization is almost completely converted to opposite

circular polarization deflecting at an angle with respect to the zero order.

The metasurface will show dispersion when the incident light is away from the design

wavelength. The phase retardation difference along x and y axis may not be π in that case.

In order to achieve PB phase in visible region, Titanium dioxide (TiO2) or Gallium Nitride

(GaN) are popular materials. They are high refractive index materials and birefringence with

π phase difference can be achieved with reasonable height of nanopillars. Also they exhibit

quite good transmission in visible region. Exactly similar to above, metasurfaces which

work in reflection mode can also be designed employing generalized law of reflection. There

is also possibility of realizing hybrid phase by utilizing both PB phase and propagation phase

(from waveguiding) which offers an extra dimension of freedom. Similarly, in [22], hybrid

of PB phase and resonant phase of coupled metallic nanorods is used to realized braodband

achromatic metasurface.

1.6 Applications

With the control on phase and polarization of a metaunit one can realize various function-

alities such as lens, beam splitter etc by imparting appropriate phase delay at each point on

metasurface. Apart from these, two unique applications that can be realized from abrupt

phase and polarization of metasurface are generation of vortex beams and holograms. Both

of them are discussed in this section.

1.6.1 Spin Orbit coupling

One of the major advantages of Pancharatnam Berry phase structures is that it is possible

to have control over phase and polarization of the outgoing light simultaneously. This brings

us to the discussion of optical vortices generation using PB phase metasurface. Angular
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momentum can be classified into two types broadly, Orbital Angular Momentum (OAM) and

Spin Angular Momentum (SAM). OAM further can be divided into External and Internal

OAM. External OAM is given by cross product of displacement vector of a particle from

a point of reference and its momentum vector. Internal OAM is defined for particles in

circular orbit with respect to the center of the orbit. SAM refers to the intrinsic spin of the

particle spinning along the axis passing through its center. Similar to the conservation of

linear momentum, it is also required that in a closed system, Angular momentum is always

conserved.

Figure 1.10: Spin Orbit coupling and Vortex beams generation using metasurface [24]

In the case of PB phase metasurface, when the incident circular polarization is converted

into opposite circular polarization, there is an abrupt change in angular momentum of the

system. Assuming that the incoming light is RCP, it has SAM of } in the propagation

direction. After transmitting through PB metasurface, polarization converted LCP light

will have −} SAM along the same direction. Consider a particular case that nanoantennas

are arranged in a cylindrically symmetrical fashion along the metasurface center as shown in

figure 1.10. Because the metasurface is rotationally invariant, it doesn’t exchange angular

momentum with the metasurface. But since the difference between SAM outgoing and

incoming is 2}, conservation of angular momentum dictates that this should appear as OAM.

Here V shaped plasmonic antennas are utilized to demonstrate this phenomenon. This

would produce OAM of l = ±2(q = 1). If higher order OAM is required, additional angular
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momentum has to be provided by appropriate rotation of nanoantennas. The general relation

for rotation angle of antennas is given by α = qφ + α0. The azimuthal angle with respect

to origin is given by φ, ‘q’ is the order of OAM required and α0 is the rotation of pillar at

φ = 0.[25]

As explained before, PB phase term eim2α appears with the cross polarization term.

Now by rotating azimuthally rotating antennas according to the above equation, creates

azimuthally varying phase which results in vortex beams [26].

1.6.2 Holograms

A hologram is an encoding of light field as an interference pattern to reconstruct full wave in-

formation of a certain object. The conventional techniques have drawbacks such as large pixel

size, limited bandwidth, small field of view which limits their application for 3-dimensional

holograms, large data encoding etc. Metasurface based holograms offer many advantages

such as low noise, high precision of reconstructed images as phase and amplitude can be en-

coded in ultra thin holograms [27]. Reduced pixel size also significantly improves holographic

images and eliminate undesirable diffraction orders. In order to realize a hologram using a

metasurface, the steps shown in figure 1.11 are usually followed. First, mathematically for-

mulating the object of hologram which is followed by numerically calculating the complex

amplitude and phase of each point on the holographic plane. This phase and amplitude

information is encoded in the metasurface which translates to size and shape of nanoanten-

nas at each point on metasurface. This is followed by nanofabricating the corresponding

metasurface and optically reconstructing the holographic image with an appropriate optical

setup.

The relation between scattered fields Γ over an arbitrary surface with co ordinates ξ, η, ζ

and an object wave Aobj can be described by a wave propagation integral over the object

surface Sobj as

Γ(ξ, η, ζ) =

∫∫∫
Sobj

Aobj(x, y, z)T (x, y, z; ξ, η, ζ)dxdydz (1.13)

The wave propagation integral kernel T (x, y, z; ξ, η, ζ) depends on object’s spatial dispo-
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Figure 1.11: Method for Hologram generation [27]

sition and the observation surface. Object reconstruction can be calculated by back propa-

gation integral over the observation surface as

A′obj(x, y, z) =

∫∫∫
Sobj

Γ(ξ, η, ζ)T (ξ, η, ζ;x, y, z)dξdηdζ (1.14)

Thus the hologram construction requires computation of Γ from the first equation through

Aobj from the object description and illumination conditions. From the computed Γ(ξ, η, ζ),

the information is encoded on a metasurface which enables the reconstruction of Aobj ac-

cording to the above equation. At the same time angular co-ordinates of the reconstructed

image is given by the following relation

θx =
2πλ

∆ξ
; θy =

2πλ

∆η
(1.15)

where ∆ξ and ∆η represent period of the lattice in the orthogonal directions. Holography
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realization using metasurface can be classified into 3 categories: Phase only, Amplitude only,

Phase-Amplitude combined holography.

It is popular to realize phase only hologram using an iterative or point source algorithm

to optimize the uniformity of intensity. By neglecting the amplitude information one can

calculate phase only Computer Generated Holograms (CGH). In [28] a 3D phase only holo-

gram is realized using PB metasurface. Each gold nanorod acts as a pixel and accurate phase

control is possible because of geometric nature of phase generation. In fig 2, Hologram op-

erating for large bandwidth is designed with TiO2 nanopillars is shown [29]. Subwavelength

pixel size enables the realization of holograms with high resolution and free of multiple order

diffraction.

Enormous space-bandwidth available in metasurface is a huge motivation for multiplexing

in holography for maximizing information storage. Various different types of multiplexing is

possible with PB metasurface such as Color multiplexing, Polarization multiplexing, OAM

multiplexing etc. A common strategy is to use a sub array of antennas as a pixel of the

hologram metasurface. For color multiplexing, one of the methods used is to calculate the

dimensions of the antenna such that the polarization conversion is maximized for a particular

range of wavelengths. This was realized using Silicon nanopillars as shown in the paper

[30]. To encode the hologram into phase information, Gerchberg-Saxton (GS) algorithm was

utilized.

1.7 Conclusion

Metasurfaces seem to be extremely promising in the field of nanophotonics especially to en-

gineer the phasefront of light. They provide unprecedented control over phase, polarization

and intensity of the outgoing light.In this work, I have utilized phase gradient metasur-

faces for various applications such as for mitigating prism dispersion, correcting lens aber-

rations and also for Quantum optics applications. The concepts of propogation phase and

Pancharatnam-Berry phase discussed in this section are extensively used to design these

metasurfaces.

Because of tremendous flexibility metasurfaces offer, I would like to call it the ‘Magic

surface’ as things never imagined before in Optics are achievable in miniaturized form us-
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ing metasurfaces. This thesis is about my journey of mastering this art of magic called

Metasurface!
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Chapter 2

Prism dispersion compensation

Dispersion is quite a general term used in the field of Optics, Condensed matter physics,

Signal processing. General definition is given by ‘dependence of phase velocity of a wave

on its frequency’. But in Optics, material dispersion is defined as variation of refractive

index of a medium as a function of wavelength of the light passing through it. To get a

general picture of the refractive index dependence on the frequency of incident light, Lorentz

oscillator model for a dielectric material is discussed as follows. It considers classical light

matter interaction to study the frequency dependent polarization in the material.

This model, as discussed in [1], considers electrons in the dielectric material to be bound to

the nucleus by a spring like force which has a natural frequency of ω0. Assuming that there is

also a damping force in action, the relations for permittivity and complex refractive index as a

function of incident light frequency ω can be obtained as shown in figure 2.1. The behavior of

the material across the spectrum is divided into different regions as T, A, R which stands for

Transmission, Absorption, Reflection respectively. One can notice that in the transmission

region, real part of refractive index is always increasing as a function of frequency which is

termed as the normal dispersion. Whereas the anomalous dispersion (opposite trend) can be

seen in the Absorption and the Reflection region, when ω is around the resonant frequency.

Therefore, it is observed that the materials which have their transmission band in the visible

region, such as different types of glasses, show normal dispersion. For materials with normal

dispersion and κ = 0, Cauchy proposed an empirical relation for refractive index as a function

of wavelength which is popularly known as Cauchy’s equation.
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Figure 2.1: Lorentzian model to describe susceptibilty and refractive index as a function of
frequency of light [1]

n(λ) = A+
B

λ2
+
C

λ4
+ ... (2.1)

A, B, C are called as Cauchy’s coefficients and λ is the vacuum wavelength. Major

drawbacks of this model is that it is not a general relation as it is applicable to only a

particular region of spectrum. And Cauchy’s coefficients have no physical meaning as it

is an empirical equation. Even though there are other quite accurate models for refractive

index, simplicity of Cauchy’s relation is appealing and works quite well for glass in the visible

region of the spectrum. Figure 2.2 shows the plots of refractive index for different types of

glasses.

It can be seen that in the visible region, different glasses show normal dispersion. It is

also found that for these materials only first two terms in Cauchy’s equation are sufficient to

calculate their refractive index. Therefore, Cauchy’s equations are very convenient to deal

with the materials that are conventionally used in optics. There are other optical components

that exhibit negative dispersion and high transmission, for example Transmission gratings.

The diffracting angle in a particular order of diffraction is proportional to the wavelength

of the outgoing light. The sense of dispersion is opposite in the case of grating compared

to that of prism, hence it is called negative dispersion. A type of grating, blazed gratings

transmits at one particular order of diffraction. Therefore, it is easy to see that combining

both refractive and diffractive devices, as they have opposite sense of dispersion, one can

realize achromatic optical components. This idea is not new and has been prevalent in the

community for some time. In [2], plano convex lens-diffractive lens hybrid component is
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Figure 2.2: Normal dispersion of various types of glasses in visible region of spectrum

used to tune the dispersion. Achromatic lens is designed as well as dispersion of lenses made

of different glasses is imitated. Utilizing similar hybrid device, reduction of chromatic and

spherical aberration is shown analytically in [3]. In [4], diffractive-refarctive hybrid corrector

is proposed for achro- and apochromatic corrections of optical systems. In this work, a

compound triplet system is proposed with diffractive lens as one of its components.

In the context of metasurface, the discussion on controlling the sign of dispersion using

metasurface in [5] is quite interesting. In this work it is shown that by controlling both phase

and antenna dispersion it is possible to realize normal, zero and negative dispersion using

metasurface. This again emphasizes the flexibility and range of functionalities that can be

achieved using metasurfaces. In [6], it is shown that to suppress chromatic aberrations one

needs to address both group delay ∂φ
∂ω

and group delay dispersion ∂2φ
∂ω2 . Here φ is the phase

shift from each nanoantenna of the metasurface and ω is the frequency of light. This has been

realized by considering the dispersive nature of the resonances of nanostructures forming the

metasurfaces. This approach is discussed in detail in the next chapter for lens chromatic

aberration correction. Such a level of refinement is necessary to obtain fully achromatic

devices but is beyond the scope of this thesis work. Here, we have followed a different

approach of imitating a blazed grating using metasurface to obtain negative dispersion. It

is nothing but a beam deflector and one can tune the amount of dispersion of deflected
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beam by tuning the period of the metasurface. Here, we use diffraction of metasurface to

generate dispersion instead of addressing dispersion of each meta-unit. However, normal and

zero dispersion cannot be achieved using this approach which upholds the generality of the

method used in [5].

The objective here is to compensate normal dispersion of conventional optical components

such as a prism, lens etc with the negative dispersion of metasurface. This can be realized

using metasurfaces which can be tuned to produce exactly equal magnitude of dispersion as of

a refractive component but with opposite sense. Recalling the discussion in the introduction

chapter (equation 1.1), generalized law of refraction for normal incidence on metasurface can

be written as

nmediumSin(θt) =
λ

2π

dφ

dx
(2.2)

Here phase gradient dφ
dx

controls the angle of deflection θt. Assuming that phase gradient

is a constant term along the metasurface, we obtain a beam deflector with λ factor denoting

the dispersion from the metasurface. This is exactly opposite to the case of a prism where the

refracting angle increases with decreasing wavelength. The aim of this chapter particularly is

to demonstrate that a phase gradient metasurface can mitigate, if not completely compensate

for, prism dispersion. Naturally the question arises that why a prism, which is typically used

to reveal dispersion, is being used to show exactly the opposite. However, our final objective

is to mitigate chromatic dispersion of a lens with metasurface which would have practical

implications. Before jumping into the case of lens, our approach is tested on prism which is

a simpler case and is shown as a proof of concept.

2.1 Prism dispersion

Consider a glass prism whose dispersion behavior is discussed in the previous section. Meta-

surface dispersion term varies as λ whereas glass dispersion follows Cauchy’s relation which

goes as λ−2. To compensate it with metasurface, an approximation is required over Cauchy’s

equation. Using Cauchy’s equation for glass,
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Figure 2.3: Linear fitting of BK7 glass dispersion from Cauchy’s equation in visible region

n(λ) = A+
B

λ2
(2.3)

The refractive index can also be written as Taylor expansion around λ0 as,

n(λ) = n(λ0) +
dn

dλ

∣∣∣
λ=λ0

(λ− λ0) +
d2n

dλ2

∣∣∣
λ=λ0

(λ− λ0)2

2!
+ ... (2.4)

From the plots in Figure 2.2, one can notice that the curve is approximately linear in the

visible region. Substituting Cauchy’s relation in the above equation and neglecting higher

order terms, we get,

n(λ) = A+
3B

λ2
0

− 2B

λ3
0

λ (2.5)

Figure 2.3 includes the plot for linear approximation for BK7 glass with λ0 = 650nm

which results in R2 value around 0.92. For smaller wavelengths, the deviation is greater

because of increasing curvature in the trend. The value λ0 can be used as a parameter to

optimize the linear approximation over the chosen range of wavelengths.
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2.2 Prism – Metasurface combination

The work discussed in this chapter especially from this section can be found in [7] .A Borosil-

icate glass (N-BK7) prism with prism angle of 30° was chosen. The phase gradient metasur-

face is glued to one of the sides of the prism using index matching oil as shown in the figure

2.4. Light ray enters the prism at the first interface at normal incidence and encounters the

second surface which is the prism-metasurface interface. The refraction at this point is given

by generalized law of refraction written for prism-metasurface-air interface.

(a)

(b)

Figure 2.4: A)Phase gradient metasurface and prism combination, B)Image of metasurface
glued to a side of prism

nair sin(θt)− nprism sin(θi) =
λ

2π

dφ

dx
(2.6)

With prism angle of 30° and normal incidence at interface 1, θi = 30◦

Sin(θt)−
nprism

2
=

λ

2π

dφ

dx
(2.7)

In the range of 500-800 nm, applying linear approximation on refractive index of glass

by substituting equation 2.5 we get

Sin(θt) =
λ

2π

dφ

dx
+
A

2
+

3B

2λ2
0

− 2B

2λ3
0

λ (2.8)
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Imposing the condition that the refracted beam is dispersion free, all the terms with λ

are grouped and equated to zero. We get the following relation for phase gradient.

dφ

dx
=

2πB

λ3
0

(2.9)

By substituting corresponding values one can determine the metasurface phase gradient

for dispersion compensation. Although, it has to be noted that here λ0 is a parameter for

design. Just to be safe, we designed 3 different phase gradients 4, 6, 8× 10−5rad/nm which

is the range of values one gets from the above relation.

2.3 FDTD simulation

The simulation and nanofabrication were performed by Prof. Federico Capasso’s group, our

collaborators at Harvard university. The ability to realize high-efficiency dielectric metasur-

faces is critically dependent on the optical properties of the constituent material which is

characterized by the complex refractive index, ñ = n+ iκ. The material should have negligi-

ble absorption loss κ ≈ 0 with relatively high refractive index (n > 2) at visible wavelengths.

Low absorption is necessary for high transmission efficiency. Along with it, high refractive

index ensures strong confinement of the light, which ultimately allows full control over the

phase of the outgoing wavefront (phase shift range from 0 to 2π).

The material should be optically smooth, having a surface roughness that is much smaller

than the wavelength of light. High surface roughness introduces extraneous light scattering,

which is a significant source of loss. To minimize roughness, the material must be amorphous

or single-crystalline, as the grain boundaries in polycrystalline materials increase roughness

and act as light-scattering centers. We chose amorphous TiO2 as our constituent material for

nanopillars. [8]. The amplitude and phase responses are related to the radius of nanopillar

meta-atoms. To quantify the phase delay from a nanopillar of given dimension, electromag-

netic FDTD (Finite-Difference Time-Domain) simulation of nanopillar arranged in a square

lattice were performed using Lumerical. The simulation was done for nanopillars of constant

height 600 nm but for varying pillar diameter and wavelengths of incident light. Since the

pillars have circular cross section, they are insensitive to incident polarization. As shown
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Figure 2.5: A) Phase and transmission maps B) FDTD Simulation setup of a unit cell.
TiO2 nanopillar placed on SiO2 substrate illuminated by plane wave source S. Constant
height H of 600 nm and varying radius R is used. Planes closed by blues lines represent
Periodic boundary condition and orange lines Perfectly Matched Layer (PML). Phase and
Transmission values are obtained after projecting the fields to a farfield plane.

in figure 2.5 B), for the FDTD simulation, Perfectly Matched Layer (PML) conditions in

the direction of light propagation (2 faces) and periodic boundary conditions along all the

in-plane directions (4 faces) were used. Dimensions of one unit cell along both x and y

axes were around 285 nm. The use of PML boundary conditions in the propagation direc-

tion results in an open space simulation while in-plane periodic boundary conditions mimic

a subwavelength array of identical nanostructures. We obtain the phase and transmission

map as shown in figure 2.5 (A). From the phase map, phase shift elements ranging from 0

to 2π are chosen to arrange in a period of metasurface equivalent to one period of a grating.

Phase elements are arranged such that the phase shift imparted by the nanopillars increases

linearly with the distance in a period. The periodicity determines the constant phase gradi-

ent value of the metasurface. From the transmission map, pillars with highest transmission

are chosen.
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Figure 2.6: Fabrication steps followed to realize the metasurface. A)Electron Beam Resist
(EBR) on fused silica with thickness tresist that ultimately sets the height of the final structure
(perspective view) B) Inverse of the final metasurface pattern imprinted into the EBR by
electron beam lithography and subsequent development of the pattern (top view). The
boxed area is an expanded cross-section of the maximum feature width, w C) Initial TiO2

deposition via ALD conformally coats sidewalls and top of the EBR and exposed substrate
(side view). TDMAT molecule used for ALD is also shown D) Completed deposition of the
TiO2 yields a film thickness greater than half the width of the maximum feature size. E)
Exposed tops of the TiO2 metasurface and residual EBR after reactive ion etching with a
mixture of Cl2 and BCl3 ions (top and side view) F) Final Metasurface after removal of
remaining EBR.[8]
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2.4 Nanofabrication

As discussed in [8], to achieve highly efficient metasurface devices while preserving the op-

tical properties of ALD (Atomic Layer Deposition)-prepared TiO2, we used the fabrication

process as shown in Figure 2.6. First step being spin coating of Electron Beam Resist (EBR)

onto a fused silica substrate to produce a layer with thickness, tresist (Figure 2.6 A). It has to

be noted that tresist sets the height of the final nanopillars. The resist was patterned using

electron beam lithography and subsequently developing in solution to remove the exposed

EBR. The exposed sample was transferred to an Atomic Layer Deposition (ALD) chamber

set to 90 °C. During the deposition, the gaseous TiO2 precursor Tetrakis (dimethylamino)

Titanium(TDMAT) coated all exposed surfaces, producing a conformal film on the top and

side of the EBR as well as on the exposed fused silica substrate (Figure 2.6 C). The ALD pro-

cess was allowed to reach a specific thickness so that all features had been completely filled

with TiO2. The residual TiO2 film that coats the top surface of the resist was removed by

reactive-ion-etching with the mixture of BCl3 and Cl2 gas (8:2). The etch depth was equal

to tfilm so that the etching process exposes the underlying resist and the top of the nanos-

tructures (Figure 2.6 E). We removed the remaining resist and left only the nanostructures

that make up our metasurface (Figure 2.6 F). Even though the figure 2.6 shows nanopillar

with rectangular cross-section, we have fabricated pillars with circular cross section in our

metasurface.

Figure 2.7 A) shows the SEM(Scanning Electron Microscopy) image of fabricated meta-

surface. Nanopillars ranging from diameter of 100 to 280 nm are included in the metasurface.

Since the phase gradient required is small (of the order of 10−5rad/nm ), the diameter varia-

tion in the SEM image is minute. Figure 2.7 B) describes the expected diffracting properties

of phase gradient metasurface with two prominent orders of diffraction. Fabricated metasur-

face was glued to a face of Borosilicate glass right angle prism as shown above. Several phase

gradient metasurfaces were fabricated, out of which the value expected to give desired result

was 4 × 10−5rad/nm. The experimental challenge was to measure angles as small as 0.10

degrees to characterize dispersion. For this, we chose Fourier plane spectroscopy technique

which gives information about the directionality of different wavelength light.
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Figure 2.7: A) SEM image of fabricated metasurface. The yellow scale bar corresponds to 1
µm B) Phase gradient metasurface functionality

2.5 Fourier Plane imaging and spectroscopy

Light emanating from sample plane can be thought of as superposition of plane waves along

directions θs. When light passes through a microscope objective, different plane wave com-

ponents get separated. A 2-dimensional equivalent of figure 2.8 a) is light emanating from

(θx, θy) is mapping onto (fθx, fθy) in the back focal plane. It is also called Fourier plane

or k-space as ‘θ’ stands for directionality of the beam which represents momentum of light.

Since it is not very convenient to capture the Fourier plane, it is relayed to a distant plane

using external optics. The most widely used setup is 4F configuration, which offers an added

advantage of being able to tune the magnification. As described in figure 2.8 b), objective

lens and tube lens are part of microscope setup and produces image at the plane IP. Lens

L1 with focal length ‘f’ is placed at ‘f’ distance from IP, resulting in back focal plane image

at the plane BFP. Bertrand lens of focal length f/2 is placed at f distance both from BFP

and from the Camera. Thus, we obtain the relayed Fourier plane image of IP. Magnification

can be adjusted by choosing the appropriate focal length of F1 and BL lenses.

Considering that the input light contains a distribution of wavevector, i.e. the incident

light exiting from a dispersive component, it would be interesting to investigate k-space

distribution with respect to wavelength. To obtain the spectra, a narrow slit is placed in

the back focal plane and the resulting cross-section of back focal plane image is fed to a

spectrometer(Figure 2.9). The resolution of back focal plane spectra depends on the width

of the slit. [11]
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(a)

(b)

Figure 2.8: Fourier plane imaging a) From a lens [9] b) Using 4F configuration. Obj-Objective
lens, TL-Tube lens, IP-Image plane, L1 -Focusing lens, BFP-Back focal plane, BL-Bertrand
lens. [10]

The setup built to study the prism-metasurface dispersion is shown in figure 2.9. A

Super continuum laser source is utilized to span the wavelength range of 500 to 800 nm. As

discussed in the calculations in the previous section, prism is placed such that the light is

incident normally at the first interface. This is chosen to avoid chromatic splitting of the

light due to dispersion inside the prism before encountering the metasurface at the second

interface. The size of the beam spot, about 1mm in diameter, is incident on the metasurface

with a size sufficiently large to illuminate the metasurface and the surrounding bare interface.

Prism-metasurface combination is imaged using a 0.2NA, 4X objective. Combination of

tube lens T (focal length f=10cm), L1 (f=10 cm), L2 (f=5cm) are used to achieve the

4F configuration for Fourier plane imaging. The tube lens reproduces the image from the

objective at its focal plane. Lens L1 placed at d=10 cm from the image results in back focal

place image at a distance of 10 cm on the image side. Lens L2, placed at a distance of

20 cm from L1, collects the back focal plane image and relays it to a distance of twice its

focal length (d= 10 cm) which is at the plane of the slit. The spectrometer used is Andor

Shamrock 500i spectrograph (500mm focal distance). The diffraction grating placed after

the slit generates the Fourier plane spectra on the intensified Istar CCD camera giving the

plot of y component of k-vector vs wavelength.

It is easy to see that for a dispersionless device, the plot of ky
k0

vs λ would render zero
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Figure 2.9: Home built Fourier plane spectroscopy setup. C- Collimator, M-Mirror, T-Tube
lens, L1,L2- convex lenses, S-Spectrometer slit, CCD-Charge Coupled Device

slope. Hence, the Fourier plane spectra was taken for prism-metasurface combination and

then compared it with the case of bare prism. As discussed earlier, metasurface with 4 phase

gradients were fabricated (Figure 2.4) and the performance of each of them were studied.

2.6 Experimental results

2.6.1 Calibration

Before jumping into studying prism and metasurface, it is necessary to calibrate the setup for

k-space. This is to determine the magnitude of ’k’ vector each pixel of CCD corresponds to.

For this purpose, a silicon substrate was used in reflection mode with a bright light source to

obtain a Fourier plane image. In figure 2.10(a), a general setup for 4F configuration for back

focal plane imaging is shown. It produces same result as our setup in figure 2.9. Because

of uniform reflection along all k-vectors from the sample one can see a uniform pattern

in k-space as shown in figure 2.10(b). The boundary of the k-space pattern is defined by
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Numerical Aperture(NA) of the objective as light reflected above this k-vector is not collected

by the objective. The upper limit of the pattern marked by blue dashed lines in the figure is

given by the circle (|kx
k0
, ky
k0
| = 0.2). The diameter joining the points (0,-0.2) and (0,0.2) in the

image occupies 546 pixels on the CCD camera. Generally, k values follow Sin(θ) trend to go

from kmin to kmax. Since relatively low NA objective is used, small angle approximation can

be considered which results in Sin(θ) ≈ θ. Encashing this, it can be safely assumed that ky
k0

increases linearly from -0.2 to 0.2. Hence each pixel corresponds to ky
k0

value of 7.3 × 10−4

units.

Figure 2.10: a)Fourier plane spectroscopy calibration setup b) Calibration result c) K-
space spectra from bare prism d) K-space spectra from metasurface of phase gradient
5 × 10−3rad/nm. Table- Comparison of measured and calculated slopes of k-space spec-
tra of a prism for different wavelength range
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Wavelength Measured slopes Calculated slopes Percentage

in nm ky/k0 per nm (e-5) ky/k0 per nm (e-5) deviation

500-600 -4.2 -4.3 2.3

600-700 -2.8 -2.9 3.5

700-800 -1.4 -1.4 0

To validate the calibration, prism dispersion was measured using this technique as shown

in 2.10 (c)(only 600-700nm wavelength range is shown) and compared with the calculated

values. Using refractive index data for BK7 glass prism and small angle approximation,

prism dispersion was calculated. As discussed earlier, slope of k-space spectra correspond to

dispersion and a good agreement between measured and calculated dispersion can be found

from the table (Figure 2.10) with a small deviation in the wavelength range of 500 to 800

nm. This study verifies that the calibration calculation is reliable and contributes negligible

error to the actual measurement. Figure 2.10 (d) is the measured k-space spectra for a

metasurface with a phase gradient of 5 × 10−3rad/nm. The zero order (Normal incident

light) and first order of diffraction (Dispersed light) are indicated. Zeroth order is unaffected

light from the metasurface, hence no dispersion. Whereas, first order diffraction line shows

significant slope indicating negative dispersion as the magnitude of k-vector is increasing

with wavelength of light. Also, the sign of the slope is a matter of convention, for instance

if the metasurface is aligned such that the first diffraction order is above zeroth order in

the k-space spectra then we would have a positive slope. It is also important to note that

prism dispersion slope is tiny compared to that of metasurface. Hence, to compensate for

prism dispersion it is required to utilize a metasurface with much lower phase gradient (of

the order of magnitude 10−5rad/nm).

2.6.2 Dispersion compensation results

Figure 2.11 is the k-space spectra for prism-metasurface combination as shown in figure 2.4.

Phase gradient with the best compensation 4×10−5rad/nm was used in the experiments. As

indicated in figure 2.11 (a), the upper curve contains dispersion compensated information.

Since the slope of the spectra line is very close to zero, it is calculated from the pixel

information. As metasurface transmission is not very high from 500 to 540 nm, this region

is not included in the discussion. To control the bandwidth and central wavelength of the
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light, the broadband signal from the super continuum is coupled to a spectral filter. The

maximum available bandwidth which is controllable with the system is around 100 nm around

the central wavelength. To obtain larger spectra, several measurements have to be realized.

The Super continuum source used in the experiments has maximum bandwidth of 100 nm,

hence the spectra was taken in 3 parts. The spectra in figure 2.11 a)-c) show two intensity

dispersion curves representing the zero-order transmission (lower line) and corrected first-

order diffraction of the dispersive device with the metasurface (upper line). It is important

to note that since the metasurface adds an additional transverse momentum to the refracted

light, the achromatic refraction occurs at an angle of 49.59◦ which is different from the normal

refraction at an angle of 49.22◦ for the central wavelength. To simultaneously observe and

compare the dispersive properties of the rectified first order with respect to the zero order,

it is necessary that the spot size of the incident light to be larger than metasurface, i.e. part

of the light is interacting with metasurface and part of it is normally refracted by the prism

only. Spectra collected with the bare prism is not shown but the dispersion slopes of prism

and that of prism-metasurface is compared in the table. It can be seen that the dispersion

compensation is effective in the wavelength range of 600 to 800 nm. It is expected as the

prism dispersion tends to show linear behaviour at higher wavelengths which matches well

with the metasurface dispersion.

Figure 2.11: Fourier plane spectroscopy experimental results shown as ky/k0 as a function
of wavelength. Table- Comparison of slopes of k-space spectra of bare prism and first or-
der dispersion compensated line of Prism-metasurface combination for different wavelength
range.

64



Wavelength Prism Prism + metasurface Percentage

in nm ky/k0 per nm (e-5) ky/k0 per nm (e-5) compensation (mean value)

540-600 -4.2 ± 0.1 -2.0 ± 0.5 52

600-700 -2.8 ± 0.1 -0.5 ± 0.9 82

700-800 -1.4 ± 0.1 0.2 ± 0.6 114

2.6.3 Error calculation

Figure 2.12: Error bars from raw data of fourier plane spectra of prism-metasurface combi-
nation

Quantifying error in the discussed experiments is crucial as we are dealing with extremely

small amounts of dispersion. In figure 2.12, the calculation of slope and error is discussed for

prism-metasurface combination. The k-space spectra line has considerable thickness owing

to the width of the slit which adds to the uncertainty. Also, size of one pixel sets the lower

limit for dispersion measurement. Therefore, for a given wavelength highest intensity pixel

is noted and for every 10 nm interval this value is averaged. The mean value is plotted as

shown in figure 2.11 with the computed standard error within the interval as error bars.
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By fitting the points to a straight line one obtains the slope which quantifies dispersion.

Minimum and maximum slope can be calculated by fitting different lines to the plot which

gives error around the mean slope. The values plotted are raw data and the net slope is

calculated (table of figure 2.11) after deducting the zero error obtained from the control

(blank) experiment. Therefore, in conclusion the uncertainty in measurement is determined

by the slit width and pixel size. Fabrication imperfections, misalignment in the experimental

setup, deviation of prism dispersion from linear behaviour are other sources of error.

2.7 Achromatic compression

A possible application of our hybrid optical components is the achromatic beam compressor.

The objective of the device is as shown in figure 2.13. The purpose of such optical device

is to collect optical signal using a large aperture, thus high photon flux, and compressing

it to improve the signal going to a detector or an imaging optical system. Therefore, it is

designed to deflect the rays arriving from infinity in the perpendicular direction with the

compressed beam width and rendering the deflection chromatic dispersion free. This device

could be useful in compact zoom lens system. We have proposed here a solution based on

prism metasurface combination to make the compression achromatic.

Figure 2.13: Compression of reflected beam

Compression factor ’C’ is defined as the ratio of beam width of incident light to that of

reflected light. Consider a mirror instead of the wedge, to deflect beam by 90° the mirror

has to be placed at α = 45 which would result in no compression of reflected beam. It has
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to be noted that ’C’ is the ratio of aperture size and height of the wedge for a perpendicular

reflection. The aim is to achieve compression factor of around 2. But from the triangle

formed by the wedge, cot(α)=aperture/height. Therefore, C=cot(α) and for the design it

is required that C¿2 which implies α < cot−1(2). From this, the upper limit for wedge

angle α is considered to be 27°. Instead of a mirror one can also think of using a beam

deflecting metasurface in reflection mode to achieve compression. This solution works for

monochromatic light but with broadband light metasurface produces significant dispersion

which is not convenient for practical application. Hence we have proposed a simple and

effective design to satisfy the constraints of compression and achromaticity in figure 2.14.

Figure 2.14: Device design for achromatic compression using a mirror, a prism and a meta-
surface. The rays exiting from the metasurface are obtained from ray tracing analysis with
3 wavelengths of incident light 450nm, 550nm, 650nm.

The idea is to use a mirror for reflection, a prism for Total Internal Reflection and a phase

gradient metasurface for dispersion compensation as shown in the figure 2.14. The angle α

is chosen such that compression is achieved and enables Total Internal Reflection (TIR) at

the next reflection. For TIR to occur at the top surface of the prism, α should satisfy the

condition, α > θc
2

where θc is the critical angle of the prism material. Therefore, it sets the

lower limit for α where as compression factor determines the upper limit. For example, for

the setup in figure 2.14, with prism material as BK7 and compression factor around 2, the

allowed range for α is 20.66◦ < α < 27◦. Also, it has to be made sure that the reflected rays

from the mirror reaches the top surface instead of directly reaching the metasurface. For

this, the slope of rays reflected from the mirror should be more than that of the face of prism
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to which metasurface is attached (tan(θ)). This gives the condition on the angles of prism as

θ < 90− 2α where angles are in degrees. Angle θ is the parameter for ensuring achromatic

refraction and perpendicular deflection with respect to the incident beam. Generalized law

of refraction at metasurface can be written as,

Sin(θt)− nSin(2α− θ) =
λ

2π

dφ

dr
(2.10)

Here θt is the angle of refraction, 2α−θ is the incident angle obtained from prism angles,
dφ
dr

is the phase gradient of the metasurface. Refractive index of prism ’n’ is linearized as

obtained from equation 2.5. For condition of achromaticity, grouping terms containing λ

and equating to zero we get,

2B

λ3
0

Sin(2α− θ) =
1

2π

dφ

dr
(2.11)

Here λ0 is the design wavelength. From equation 2.10, we obtain another equation to

calculate angle θ.

Sin(θt) = (A+
3B

λ2
0

)Sin(2α− θ) (2.12)

By design, the refracted light from the metasurface is supposed to be parallel to the

x-axis, which gives θt = 90◦ − θ. Substituting sin(θt) with cos(θ) and considering α = 26.7°

and BK7 glass as prism material with λ0 = 650nm, from equation 2.11 and 2.12 we get

θ = 14.22° and metasurface phase gradient to be 0.1214 rad/µm. With these parameters,

ray tracing was done using Matlab codes for 3 wavelengths 450 nm, 550 nm, 650 nm to

represent broadband light. In figure 2.14, rays refracted from the metasurface is obtained

from ray tracing results. One can see that the 3 wavelengths are almost superimposed on

each other indicating negligible dispersion. Compression factor achieved with this design

was 1.99.

In the figure 2.15, dispersion from prism with and without metasurface in our design is

discussed. In the range of 450 nm to 750 nm wavelength, prism-metasurface combination

dispersion is 2.5 times less than that of bare prism. Again, the dispersion compensation is
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Figure 2.15: Dispersion comparison of prism and prism-metasurface combination. Here the
angle of refraction refers to angle made by the refracted ray with the x-axis.

better at higher wavelengths because of better linear approximation of glass dispersion for

λ > 600nm.

The limitation in this setup is the large size of prism. The quantity δ shown in figure 2.14

is dependent on θ angle of prism. In the above case for aperture = 5mm and height of prism

= 2.51 mm and θ = 14.22◦, δ turns out to be 9.65 mm. This is large compared to height of

the prism and aperture and renders the whole device bulky. It can be seen that δ depends on

θ and this has to be minimized. From equation 2.11 and 2.12, θ depends on refractive index

of prism and α. Since the allowed range of α is limited, material of prism can be chosen such

that δ is relatively small. Here instead of BK7 glass, we study with Gallium Nitride (GaN)

as the material of prism. For crystalline GaN, the refractive index is referred from [12]. In

the range of 500-700 nm the refractive index is plotted and fit to a linear curve given by the

relation, n=2.652 − 0.421λ. The critical angle for this prism for 650 nm (n=2.378) is θc =

is 24.8◦. So, the lower limit for α is θc/2 = 12.4◦ and the upper limit governed by ’C’ is the

same as for glass as 27◦. Therefore, a wider range of angles is available for GaN compared

to BK7 glass.

The quantity δ is written as a function α and compared for BK7 glass and GaN. From

equation 2.12, by considering the refracted ray to be parallel to x-axis we have sin(θt) = cos(θ)

and by solving for θ we get tan(θ) = tan(2α) − 1
cos(2α)(A+ 3B

λ20
)
. Also from the prism angles
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tan(θ) = h
δ

where h=height of the prism. By considering a = A+ 3B
λ20

) we get

δ =
h

tan(2α)− 1
cos(2α)a

(2.13)

Employing this, the comparison of size between BK7 glass prism and GaN prism is shown

in figure 2.16 for specific parameters. One can see that with higher refractive index material,

the prism can be made less bulky. Also there is a trade-off between compression factor ’C’

and δ which represents the size of the prism. Therefore, by tuning design parameters, α and

material of prism one can realize optimized achromatic beam compressors.

Figure 2.16: The size of the prism represented by δ is shown for 4 different cases by varying
height of prism and material of prism as BK7 glass and GaN
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2.8 Conclusion

In this chapter, we have shown that to obtain achromatic devices one can combine refractive

and diffractive optical components. The tunability of metasurface dispersion by varying its

phase gradient is of great advantage. Moreover, approximately linear dispersion of glass

in visible region favors the design. Extending the same idea to other optical components

like lenses would be very beneficial as chromatic aberration is a major hurdle in imaging

systems. This is discussed in the next chapter. All in all, we demonstrate a method by which

hybrid optical components can be realized, which have the advantage of both refractive and

diffractive components. They reduce the need to polish and grind material, to manufacture

large curvature lens and can render larger apertures for an optical device. They also reduce

the need for exotic, expensive refractive materials or unusual dispersion glasses. This could

be particularly interesting for compact multilayer/cascaded optical systems.
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Chapter 3

Lens aberration correction

Making lenses has been known to mankind for many centuries. Even today, combination

of lenses are used to construct microscopes and telescopes which have brought significant

advances in various fields of science. However, lenses come with limitations in the form of

aberrations. In addition to it, they are bulky which is a hurdle for realizing compact devices.

In recent years, the idea of using metasurfaces as an alternative for conventional optical

components, especially lenses, has attracted tremendous attention.

Recalling the phase delay profile for a metalens from introduction chapter for a single

frequency ω0,

φ(r, ω0) = −ω0

c
(
√
r2 + f 2 − f) (3.1)

Based on this, metalenses have been extensively demonstrated in visible- infrared re-

gion of spectrum. However, considering the fact that metasurfaces are diffractive devices,

chromatic aberration can be seen in these metalenses. The most well known technique to

achieve chromatic aberration free metalens is to address phase, group delay and group de-

lay dispersion as discussed in [1] [2]. This can be realized by tuning the dispersion of each

nanoantenna to compensate for the overall diffractive dispersion of the metalens. In [1], this

is demonstrated by considering the first order Taylor approximation of the phase profile of
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a nanoantenna (φ(r, ω)) with respect to the frequency (ω).

φ(ω, r) = φ(ω0, r) +
∂φ

∂ω

∣∣∣
ω=ω0

(ω − ω0) (3.2)

Therefore, at a given position ’r’ and for central frequency ω0 in the bandwidth ∆ω,

the metaunit can be described by two parameters φ(ω0, r) and the dispersive term ∂φ
∂ω

(r).

For these parameters, meta unit library is constructed for nanopillars of different geometry

for a given material. The range of phase dispersion values ∆Φ′ = ( ∂φ
∂ω
|max − ∂φ

∂ω
|min)∆ω

of the library limits the maximum radius of the achromatic metalens Rmax that can be

achieved. This limit for a metalens of Numerical Aperture NA is given by (’c’-speed of light

in vacuum)[1]

Rmax ≤
∆Φ′.NA.c

∆ω(1−
√

1−NA2)
(3.3)

Similarly, the higher order terms in the Taylor expansion of phase correspond to the

spread of the wavepacket arrived at the focus. Lesser the spread higher the bandwidth

in which achromatic focusing is achievable. In [2], control over the group delay ( ∂φ
∂ω

) and

group delay dispersion ( ∂
2φ
∂ω2 ) terms is demonstrated using coupled nanopillars. Again, this

is done by creating a library of particles and performing a systematic parameter search for

appropriate dimensions at a given frequency. This method is quite cumbersome. Moreover,

it is not convenient for large area metasurfaces (centimeter scale) as the size of the device

is limited by the library size as discussed. As mentioned in [3], to design an achromatic

metalens of 1.5 mm diameter and numerical aperture of 0.075, one requires a group delay of

95 femtoseconds from the center to edge of a metalens. This would requite TiO2 nanopillars

of height around 12 µm with an aspect ratio of 200. Such high aspect ratio is quite difficult

to achieve with current fabrication technologies.

Recently, there have been several works on utilizing metasurface as corrector for lens

aberration. In [3], same approach as in [2] of addressing group delay is followed. Chromatic

aberration correction of high numerical aperture (NA=1.4) oil immersion microscope ob-

jective over the entire visible region was reported. Again, the diameter of the metasurface

was of millimeter scale. It is clear that the strict constraint of group delay and group delay

dispersion limits the overall size of the metasurface. Therefore we neglect these terms to

show that appropriate phase gradient of the metasurface is sufficient to address chromatic

as well as spherical aberration in a conventional lens. Metasurfaces for wide angle imaging
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have been discussed in [4][5]. But in this chapter we discuss a general strategy for designing

a large area metacorrector and the experimental results.

3.1 Lens aberration corrector design

Figure 3.1: Ray diagram for lens-metasurface combination[6]

The schematic for aberration correction of a plano convex lens is shown in figure 3.1.

A phase gradient metasurface is glued to the planar side of the lens. Here the paraxial

rays are incident on the lens. They encounter two interfaces, curved surface of the lens and

lens-metasurface interface. In the figure 3.1, ’R’ and ’C’ correspond to radius of spherical

surface of the lens and its center of curvature respectively. The central thickness of the lens

is d0. ’C’ is chosen as the origin for the calculations and the optical axis (red dotted lines)

is considered as z-axis. An arbitrary point ’A’ on the spherical surface has the co-ordinates

(−Rcos(θ), Rsin(θ)). The refractive index of the glass lens is ’n’.

3.1.1 For chromatic aberration

The following analytical calculation for chromatic aberration correction is discussed in our

recent work [6]. At the first interface which is the spherical face of the lens, the rays are

incident at an angle ’l’ denoted in the figure as l̂. From the figure, l = θ which is given by,
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Sin(θ) = Sin(l) =
r1

R
(3.4)

Refraction at this interface follows the well known Snell’s law. Angle of refraction ’k’

shown in figure as k̂ is given by

Sin(k) =
Sin(l)

n
(3.5)

Let the thickness of the lens at any point ’A’ (length AD) be ’d’ and at the center of the

lens be d0. Then d = d0 −R+Rcos(θ). From triangle ABD, the angle formed at A is l − k
which is given by,

Tan(l − k) =
r1 − r
d

r = r1 − d(Tan(l − k))
(3.6)

Since d and l-k are small quantities, one can make an approximation that r1 ≈ r. This

simplifies further calculation as it connects the height of a ray ’r1’ to the metasurface co-

ordinate ’r’. Normal drawn to the planar interface (black dotted lines at point B) and the

optical axis are parallel to each other. Therefore, the refracted angle at lens-metasurface

interface θt is equal to the angle ∠OFB. From the triangle OFB, we obtain,

f =
r

Tan(θt)
(3.7)

Generalized law of refraction at lens-metasurface interface is written as,

Sin(θt)− nSin(θi) =
λ

2π

dφ

dr
(3.8)

where dφ/dr is the phase gradient of the metasurface and θi which is the incident angle

is equal to l − k. Assuming that R >> r, ’l’ and ’k’ can be considered as small angles.

Therefore, Sin(l) ≈ l , Sin(k) ≈ k and Sin(l − k) ≈ l − k. Substituting these terms in the

generalized law of refraction ie from equation 3.4 and 3.5, we get
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Sin(θt)− n
r

R
(1− 1

n
) =

λ

2π

dφ

dr
(3.9)

From the linear approximation of Cauchy’s equation as obtained in the previous chapter

in equation 2.5, we get

Sin(θt) =
r

R
(A+

3B

λ2
0

− 2B

λ3
0

λ− 1) +
λ

2π

dφ

dr
(3.10)

For achromatic focusing, the refraction angle is independent of wavelength. Therefore,

grouping together λ terms and equating them to zero, we get

1

2π

dφ

dr
=

2B

λ3
0

r

R
(3.11)

Integrating with respect to ’r’, we get

φ =
2πB

λ3
0

r2

R
+ constant (3.12)

Equation 3.12 gives the phase profile of metasurface required to correct chromatic aber-

ration of a plano-convex lens. Even though the calculation is done for one dimensional radial

co-ordinate ’r’, it is also applicable to two dimensional metasurface. It has to be noted that

this phase profile is applicable only for the case when incident angle ’l’ is small. For instance,

for the case when ’R’ is comparable to the height of the ray (r1), approximations considered

doesn’t hold true. Hence from the exact calculations one would get a different phase profile.

Therefore it is also dependent on the dimensions of the lens considered.

To test the calculations, we utilized ray tracing codes in Matlab. The codes for lens

was obtained from [7] and was later modified for metasurface. A plano convex lens made

of Borosilicate glass (BK7) is considered. Its radius of curvature ’R’ and central thickness

equal to 2 cm and 2 mm respectively. The ray tracing is performed in the wavelength range

of 600 to 800 nm with an interval of 50 nm. The central wavelength λ0 is equal to 700 nm.

By considering these parameters for the setup as in figure 3.1, the raytracing codes were run

for the cases of with and without metasurface. The metasurface had phase gradient equal

77



to that obtained from equation 3.11.

Figure 3.2: Ray tracing results of focal length vs wavelength for A) Plano-convex lens B)
Lens-metasurface combination. Different colored plots correspond to different distance of
the rays (r1) from the optic axis as given in the legend [6]

Figure 3.2 is the ray tracing results for focal length as a function of incident wavelength

for different height of ray from the optics axis (r1). It is evident from figure 3.2 B) that with

metasurface, the focal length of the lens is almost constant as a function of wavelength for

a given height of ray. By comparing the slopes of plots A) and B), it can be said that the

dispersion mitigation is as high as 90% in the wavelength range of 600–800 nm for all ’r1’s.

However, strong monochromatic aberrations are still present in both the cases. Variation of

focal length as a function of ’r1’ is the signature of spherical aberration.

3.1.2 Spherical aberration calculation

Spherical aberration is associated with optical components which have spherical surfaces. In

the case of a convex lens, considering that the incident rays are parallel to the optic axis, it

is seen that the marginal rays converge more compared to the paraxial rays. This implies

that the focal length of the lens depends on the distance of the incident ray from the optic

axis, this is known as spherical aberration. It is one of the reasons why a smaller aperture

on a camera lens produces sharper images.
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Here, we calculate the phase gradient of metasurface required to correct lens spherical

aberration. The schematic shown in figure 3.1 is followed also in this case. Compared to the

previous case, one major difference is that the calculation is done for a single wavelength

instead of broadband light. Equations from 3.4 to 3.8, are applicable also for spherical

aberration case. But approximating Sin(l) to l and Sin(k) to k doesn’t give accurate results,

hence accurate values are taken. Therefore,

sin(θi) = sin(l − k) = sin(l) cos(k)− cos(l) sin(k) (3.13)

Utilizing Snell’s law from equation 3.5 and substituting equation 3.4 we get,

sin(l − k) =
r1

R

√
1− r2

1

n2R2
− r1

nR

√
1− r2

1

R2
(3.14)

Following equation 3.7, we get sin(θt) = r√
r2+f2

. The condition for spherical aberration

correction is denoted by this equation as the focal length ’f’ is taken as constant for any ’r’.

Substituting this relation and equation 3.14 into the generalized law of refraction equation

3.8, we obtain,

λ

2π

dφ

dr
=

r√
r2 + f 2

− r1

R2
(
√
n2R2 − r2

1 −
√
R2 − r2

1) (3.15)

By integrating the above equation, phase delay profile can be calculated. But, one can

notice that the equation contains two variables r and r1. The previous approximation of

r and r1 being equal to each other doesn’t give accurate results for spherical aberration

case. To experimentally demonstrate this fact, metasurfaces with both approximated and

precise values of r was designed. Since r is the metasurface co-ordinate, r1 which is the

lens co-ordinate has to be expressed in terms of r. Revisiting equation 3.6, we had r1 =

r + d(Tan(l − k)). From the curvature of lens the thickness d can be written in terms of

central thickness d0 as d = d0 −R +
√
R2 − r2

1.

From the above expressions, r1 − r is represented by a correction factor ’c’. The idea is

to write ’c’ in terms of ’r’ so that ’r1’ can be substituted in equation 3.15 as ’r+c’. In the

following calculations, it is attempted to obtain a simple expression for ’c’. Therefore, here
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we make a few approximations to calculate the correction factor.

tan(l − k) ≈ l − k ≈ sin(l)− sin(k) =
r1

R
− r1

nR
(3.16)

Again from equation 3.6, c = d(Tan(l− k)) = (d0 −R+
√
R2 − r2

1)( r1
R
− r1

nR
). It is quite

cumbersome to solve for r1. Therefore, we change all r1 to r in the expression for correction

factor c. This approximation is justified by the fact that with respect to a quantity as small

as ’c’, r1 and r are approximately equal. From this we get the best estimation of ’c’ as,

r1 − r = c = (do −R +
√
R2 − r2)(

(n− 1)r

nR
) (3.17)

Approximating r2 << R2,

r1 − r = c = (do −
R2

2r
)(

(n− 1)r

nR
) (3.18)

Even though many approximations are applied on ’c’, we have made an attempt to keep

it as close to the real value as possible. This ensures that the results obtained are better

than that for c=0 case. Substituting it in equation 3.15 and integrating with respect to ’r’

we get,

φ(r) =
−2π

λ
[
√
f 2 + r2 +

1

R2
[(n2R2 − (r + c)2)

3
2 − (R2 − (r + c)2)

3
2 )

×1

3
(1− d0(n− 1)

nR
+

3(r + c)2(n− 1)

2nR2
)+

(n− 1)

5nR2
((n2R2 − (r + c)2)

5
2 − (R2 − (r + c)2)

5
2 )]]

(3.19)

Considering another scenario where the correction term ’c’ is considered to be zero,

ie r1 ≈ r, then the integration turns out to be relatively simple and gives the following

expression

φ(r) =
−2π

λ
[
√
f 2 + r2 +

1

3R2
((n2R2 − r2)

3
2 − (R2 − r2)

3
2 )] (3.20)
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Both the phase profiles in equation 3.19 and 3.20 are considered for spherical aberration

correction. They are called as case with ’c’ correction and case without ’c’ correction. The

experimental results of both the cases are compared to stress the importance of accurate

calculations.

Figure 3.3: Ray tracing results at focal point of A) Plano-convex lens B) Lens-metasurface
combination with ’c’ correction.

Figure 3.4: Focal point shift comparison for Plano-convex lens and Lens-metasurface com-
bination

Ray tracing analysis is carried out to simulate spherical aberration correction. Again the

setup of figure 3.1 is considered with and without metasurface. Here, the metasurface has

the phase gradient equal to that calculated from equation 3.15. For the metasurface case,

accurate calculation with ’c’ correction is considered. Here the lens parameters are radius

of curvature of 3 cm, central thickness of 3 mm and focal length f of 60mm. Ray tracing

results are shown in figure 3.3 and 3.4. In Figure 3.3, the difference between the focal plane
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of lens and lens-metasurface combination case is shown. More sharper focal point can be

seen with metasurface depicting the correction of spherical aberration. The quantitative

analysis is shown in figure 3.4. By comparing the focal length shifts for both the cases (red

and black plots), it can be inferred that the focal length of lens-metasurface combination is

nearly constant with respect to the height of the ray which implies mitigation of spherical

aberration. It can be noted that the focal length of lens-metasurface combination is higher

than the bare lens. This is expected as the phase delay imparted by the metasurface increases

with ’r’, therefore acts as a diverging lens.

3.2 Large area metasurface fabrication

Typically, dielectric metasurface fabrication is done using electron beam lithography and

subsequent steps of development, metal deposition, etching etc. But it is only suitable

for micrometer to millimeter scale fabrication and not larger dimensions. Hence, a novel

large area fabrication technique was proposed in [8]. Instead of using a dielectric material, a

negative resist is used as a constituent material of metasurface. A negative resist is hardened

by electron beam lithography and when properly patterned can form the metasurface itself.

This significantly reduces the fabrication time as it is effectively a single step process.

In [8], EBL resist maN-2410 (Microresist technology, GmbH) is used for fabrication. It

has relatively high refractive index ranging from 1.63 to 1.68 in the visible region. The resist

is spin coated on glass substrate and then patterned by single EBL exposure to yield high

exposure ratio nanofins functioning as Pancharatnam Berry (PB) phase metasurface. This

is described in figure 3.5 where 1 centimeter diameter metalens is fabricated.

For higher aspect ratio nanostructures, a problem was encountered. After development

and nitrogen drying, nanofins collapsed onto each other due to surface tension forces. This

was avoided by utilizing critical point drying technique by using surfactant-modified hexane

as intermediary liquid in the process [9]. With this, it was possible to achieve height to width

aspect ratio of 20.

Employing this technique, our collaborators at Chalmer’s university from Prof. Michael

Kall’s group had fabricated 3 different metasurfaces for lens aberration correction. Figure

3.6 shows the PB phase nanopillar dimensions which are optimized for different range of

82



Figure 3.5: Large area metasurface fabrication [8]

Figure 3.6: a) Scanning Electron Microscopy (SEM) images of fabricated large area meta-
surface. Polarization conversion efficiency plot of PB metasurface by b) FDTD simulation
c) experiment [8]

wavelengths from 400 to 750 nm. Figure a) shows the SEM images of the pillars. Fig-

ure b) and c) are the plots from FDTD (Finite Difference Time Domain) simulation and

experiment respectively for polarization conversion efficiency as a function of wavelengths

for 3 optimized dimensions of nanopillars. Optimization of PB nanopillar dimensions by

simulation is discussed in detail in the next chapter for the fabrication of our metasurface.

The fabricated metasurfaces were 1 cm in diameter designed for a plano-convex lens made

of fused silica having radius of curvature R=23 mm. Phase delay profile for each of the

metasurface is as follows. For Chromatic aberration correction, parameters R, λ0 = 650nm,

B = 0.00354m2 is substituted in equation 3.12 to obtain,

φ(r) = −3.521× r2 (3.21)
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where ’r’ is in millimeters. The negative sign in the phase delay profile indicates that

the phase gradient is pointing away from the center of the metasurface. It is acting as a

converging lens compensating for chromatic dispersion of a convex lens, analogous to the

case of prism in the previous chapter.

For the case of spherical aberration, the same parameters are followed as that for chro-

matic aberration. They are substituted in equations 3.19 and 3.20. Here, metasurface is

designed for the wavelength 650nm. The corresponding focal length ’f’ and refractive index

’n’ for fused silica at this wavelength are 50.3833 mm and 1.4565 respectively. The plano-

convex lens used had a central thickness of 2.7 mm and the metasurface substrate thickness

was around 0.5 mm. Therefore, the sum of these 2 quantities gives the total central thickness

d0 = 3.200mm. We noticed that the phase profile is considerably depended on the precision

of quantities R, n, f and d0. Therefore, the precision of these values was fixed to be 4 decimal

places and all lengths were expressed in millimeters. The final phase profile after substituting

these values are not shown here as these expressions are quite long. But it has to be noted

that we fabricate 2 separate metasurfaces for spherical aberration correction, one for precise

values of ’r’ (c-correction) and another for approximated values (no c-correction) as shown

in equation 3.19 and 3.20.

3.3 Phase measurement

After fabricating large area PB phase metasurfaces as discussed in previous section, spatially

varying phase shift along the metasurface was measured. This can be a handy tool to verify

the phase and intensity profile of the metasurface. For this purpose, we used SiD4 device

from Phasics which works on the principle of Quadriwave Lateral Sheering Interferometry

(QWLI) [10]. This device includes Modified Hartmann Grating (MHG) placed infront of a

regular CCD camera which generates interferometric pattern.

As the name QWLI suggests, MHG uses 2 dimensional periodic array of square apertures

to obtain 4 orders of diffraction which are identical waves[11]. After a few millimeters of

propogation, these 4 orders create an interferogram on the detector. From this pattern, phase

and amplitude information can be retrieved [12][13]. Phase measurement setup used for our

metasurface characterization is as shown in figure 3.7. The box with dotted line represents

the Phasics camera in which grating stands for MHG which is placed right infont of a regular
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Figure 3.7: Phase measurement setup used for characterizing the metasurfaces. LP-Linear
Polarizer, QWP- Quarter Wave Polarizer [10]

CCD. These components are already integrated into Sid4 device. It has a spatial resolution

of 29.6 µm (pixel size) and phase (optical path difference) resolution of less than 2 nm. As

PB phase metasurfaces are to be characterized, 2 sets of Linear polarizers and Quarter wave

plates are used. One pair to obtain incident circular polarization and another at the output

to let only cross circular polarization component. The desired PB phase is encoded in the

cross polarization term as explained in the equation 1.10 of introduction chapter.

The sample is illuminated using a LED source of 617 nm as coherent light causes speckles

which is not convenient for measurement. First, optical path for a clean substrate is measured

which serves as the background for actual measurement. After this, the substrate is replaced

with the metasurface and it is made sure that whole of the metasurface is illuminated.

The waveplates are set to be in cross polarization configuration. The phase and intensity

characterization of chromatic aberration metasurface is shown in Figure 3.8 and 3.9. The

experimental phase profile was compared with that obtained from equation 3.12 in figure 3.8.

The Phasics software shows the phase information as optical thickness which can be converted

to phase delay by multiplying with the factor 2π/λ. The red curve is the smoothened curve of

the phase information along the diameter (radially averaged) of 2 dimensional phase profile
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Figure 3.8: Left - Phase delay profile of chromatic aberration correction metasurface. Right
- Comparison of cross-section along the blue dotted line in the phase profile. The calculated
phase delay profile and measured data are compared.

in figure 3.8. The 2 curves match well with each other confirming that the metasurface

fabrication is as desired. In figure 3.9, intensity profile of the metasurface is shown. The

profile is supposed to be uniform as the transmission is independent of nanopillar rotation.

But from the cross-section profile, it can be noticed as one moves away from the metasurface

center, the intensity is varying rapidly as function of variation of phase gradient. This

intensity modulation can be attributed to the near field interaction between the pillars of

different rotation.

Similarly, phase characterization results of spherical aberration metasurface is shown

figure 3.10. Compared to 3.10 B), the phase profile is quite different in A) both qualitatively

and quantitatively owing to the approximation of r ≈ r1 written as no ’c’ correction case.

Again a cross section is taken along a diameter of the phase delay profile and plotted. This is

compared with the profile calculated from equations 3.19 and 3.20 with ’c’ corrected and no

’c’ corrected cases respectively. They too agree quite well with the calculated phase profile.

It is quite interesting that for chromatic aberration case, the phase profile resembles that

of a converging lens whereas for spherical aberration case, it is similar to a diverging lens

behaviour. This is also revealed in ray tracing results (figure 3.4) by shift of focal length for

each case. The same study is done for other incident wavelengths. As expected we obtain

the same phase profile in all the cases but the polarization conversion efficiency varies with

the wavelength. In figure 3.11, the intensity profile of both c-corrected and no c-corrected

spherical aberration correction metasurface is shown.The cross section of the intensity profile
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Figure 3.9: Left - Intensity profile of chromatic aberration correction metasurface. Right -
The cross-section intensity along the blue dotted line in the intensity profile. It is normalized
with respect to the maximum intensity value.

again reveals the presence of near field interaction between the nanopillars.

3.4 Point Spread Function measurement

Consider an infinitely small point source. When it is imaged through an imaging system, at

the focal point it is not possible to reproduce the point source. Instead, light waves converge

and interfere at the focus to form a 3-dimensional diffraction pattern of concentric rings with

central bright spot. The pattern is also called Airy disk and when intensity is plotted as a

function of focal plane co-ordinates we get the Point Spread Function (PSF). The resolving

power of the imaging system is evaluated by measuring radius of the central bright spot. For

example, a higher Numerical Aperture (NA) objective has better resolution as it produces

PSF with central bright spot having lower width compared to that from lower NA objective.

Even for a perfect imaging system (without aberrations), there is a fundamental limit of

resolution set by non-zero width of diffraction peaks known as diffraction limit and such

imaging systems are said to be diffraction limited. For example, in the case of microscopes,

Abbe’s diffraction limit or minimum resolvable distance is given by λ/2NA, where NA is

the Numerical Aperture of the objective lens. Therefore, the obtained image of an object is

the convolution of function of true object and the PSF of the imaging system. Conversely, if

one knows the PSF of an imaging system, by deconvolution it is possible to mathematically

create high resolution image from the captured low resolution image.
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Figure 3.10: Spherical aberration metasurface phase profile for A) No ’c’ correction case and
B) ’c’ correction case. Right - Comparison of cross-section along the blue dotted line in the
phase profile. The calculated phase delay profile and measured data are compared.

Consider (xO, yO) and (xI , yI) to be object and image plane co-ordinates. If ’M’ is the

magnification due to the imaging system, then they are related as (xI , yI)=(MxO,MyO).

The object plane field can be expressed as weighted Dirac delta function as,

O(xO, yO) =

∫ ∫
O(u, v)δ(xO − u, yO − v)du.dv (3.22)

Therefore image plane convolution is calculated as,

I(xO, yO) =

∫ ∫
O(u, v)PSF (xI/M − u, yI/M − v)du.dv (3.23)

Here PSF is the image when object is a dirac delta function or a point object.
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Figure 3.11: A) and C)- Intensity profile of spherical aberration correction metasurface for
no k-correction and k-correction case respectively. B) and D) - The cross-section intensity
along the blue dotted line in the intensity profileof A) and C) respectively. It is normalized
with respect to the maximum intensity value.

Since PSF is an useful tool for measuring aberration in the system, we employed it to

characterize the lens-metasurface combination. The home-bulit setup to capture PSF and

perform Z-scan is shown in figure 3.12. Here, a pinhole of 5 µm is approximated to be point

source for measurements. A convex lens is used to imitate object at infinity condition by

placing the pinhole at the lens focus. Since the metasurfaces are PB phase based, again 2

sets of Linear Polarizer (LP) and Quarter Wave Plate (QWP) are used to obtain circularly

polarized light at incidence and another to let only cross circular polarized light on to the

detector. The focal plane of the lens-metasurface combination is studied using a 40X micro-

scope objective and the image is relayed on to a CCD camera using a tube lens. A tunable

super continuum laser used as the source. Desired wavelength was chosen using this but

with a minimum possible bandwidth of 10 nm.

Motorized stage with lower limit of translation of a few microns was used to obtain Z-

scans of PSF around focal plane controlled by a Labview program. As shown in figure 3.13

a), PSF is plotted in x-y plane for lens-metasurface combination for 650 nm incident light. In

this nearly symmetric image, a radial average profile is taken to obtain intensity profile along
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Figure 3.12: Setup to measure PSF and perform Z-scan. The expanded form of each com-
ponent: SCL-Super Continuum Laser, P-Pinhole, FL-Focusing convex lens, TL -Tube lens,
LP-Linear polarizer, QWP-Quarter Wave Plate, LAM-Large Area Metasurface (placed on
plano-convex lens)

only one axis instead of x-y plane. This is repeated for PSFs at different z co-ordinates and

stacked together to realize z-scan as shown in figure 3.13 b). This profile is quite effective to

obtain a qualitative picture of how well the light is confined around the focus.

3.4.1 For Chromatic aberration

We characterize Chromatic aberration of Lens-Chromatic Aberration correction Metasur-

face(LCAM) combination utilizing the above discussed technique. The z-scans are performed

for various incident wavelengths ranging from 600 to 800 nm with intervals of 20 nm. The

area around the center of z-scan, as shown in figure 3.13 b) by red dotted line, is chosen and

stacked as a function of incident wavelengths. Figure 3.13 c) and d) depicts the character-

ization for plano-convex lens and LCAM combination respectively. It has to be noted that

higher the value along z-axis, more closer is the stage to the lens-metasurface setup. In the

case of lens, as expected it exhibits normal chromatic aberration where higher wavelengths

have higher focal lengths. As the metasurface is not 100% efficient, it produces many orders

of diffraction, most prominent of which are zero and first order. Therefore, there are many

foci and one has to carefully identify the first order in which PB phase is encoded. For

Chromatic Aberration correction Metasurface (CAM), the first order focal length is lower

than the zero order focus by design. When z-scans were performed around this focus, con-

trary to the lens case, LCAM combination shows quite constant focal length as a function

of wavelength indicating mitigation of lens chromatic aberration. By comparing the focal

90



Figure 3.13: PSF and Z-scan results for lens-metasurface combination a) PSF with 650
nm incident light at the focus b) Z-scan measurement for the obtained PSF around the
focal plane c) Chromatic aberration characterization of the plano-convex lens by stacking
z-scans for different wavelengths ranging from 600 to 800 nm with intervals of 20 nm. The
area around red dotted line in b) is chosen for stacking. Intensity is normalized for each
wavelength. d) The same study for lens-metasurface combination.

length shifts of both the cases it is inferred that quantitatively around 80% of chromatic

aberration is compensated in the range of 600 to 800 nm.

3.4.2 For Spherical aberration

Similar to the previous case, z-scans were performed for Lens-Spherical Aberration correction

Metasurface(LSAM) combination. Incident wavelength of 650 nm was used as the metasur-

face was designed to function at this specific wavelength. For spherical aberration case the

first order focal length is higher than the zero order focus by design which is exactly opposite

compared to the chromatic aberration correction metasurface.
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Figure 3.14: Z-scan at 650 nm wavelength for a) Plano-convex lens b) Lens-Spherical aber-
ration correction Metasurface combination

The comparison between z-scans of lens and LSAM combination is shown in figure 3.14.

For the case of lens in a), one can notice that the focal point is quite spread out and the

intensity profile around the focal plane is quite asymmetric. This pattern indicates positive

spherical aberration where rays around the periphery of the lens are bent more compared to

rays around the center. Whereas for LSAM in b), the focus is well confined and the profile is

relatively symmetric which is a signature of a less aberrated focus. It is not easy to quantify

aberration using this study. Therefore, we also calculate Modulation Transfer Function and

perform Zernike analysis as discussed in the subsequent sections.

3.5 Modulation Transfer Function study

Modulation Transfer Function(MTF) is a measure of how much of object contrast is trans-

ferred to image by the imaging system. It is convenient to define it using equally spaced lines

as shown in figure 3.15. For decreasing line spacing or increasing frequency of the object

the contrast that the imaging system is able produce decreases naturally. Generally, image

contrast percentage versus spatial frequency of the object is plotted to compare MTF of

different imaging systems.
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Figure 3.15: A schematic figure to visualize Modulation Transfer Function[14]

MTF is a variant of Optical Transfer Function(OTF) which is a general function to

describe how the optical system handles different spatial frequencies. Generally, Optical

Transfer Function is a complex-valued function in spatial frequency and is given by the

fourier transform of PSF. The absolute value of OTF corresponds to MTF. And the complex

argument of OTF is called as Phase Transfer Function (PhTF). Therefore MTF and PhTF

are both real valued functions.

OTF (k) = MTF (k)eiPhTF (k) (3.24)

Also from the image contrast, Modulation can be defined as shown in figure 3.15. This

is given by

Modulation(M) =
(Imax − Imin)

(Imax + Imin)
(3.25)

Therefore, spatial frequency(k) dependent modulation which is again MTF is given by

MTF =
Mimage(k)

Mobject

(3.26)

The comparison between MTF of lens and that of LSAM combination is shown in figure

3.16. It is obtained by performing Fast Fourier Transform (FFT) on experimentally obtained

PSF at the focal plane. The blue curves in each figures of 3.16 correspond to MTF of
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diffraction limited system. It is calculated by considering the lens pupil function as discussed

in [15]. Pupil function P(x,y) is the function of aperture of the lens which in our case is a

circle of diameter 1 cm. With co-ordinates ξ = x
λf

and η = y
λf

, MTF is given by

MTFdiffraction(ξ, η) =| F(| F(P (x, y)) |2) | (3.27)

f and λ stand for focal length of the lens and wavelength respectively. The symbol F
represents Fourier transform of a function.

Here the cutoff frequency fc is defined as for all k > fc, the contrast is equal to zero.

The cutoff frequency for a diffraction limited system is given by fc = 1

λ×( f
D

)
[16]. Here λ is

the incident light wavelength and the ratio f
D

is known as f-number of an ideal lens where ’f’

is its focal length and ’D’ the diameter of its aperture. Similarly, the spatial frequency of a

camera is defined as fcamera = M
p

where ’M’ is the magnification of the imaging system and

’p’ is the pixel size of the camera. To study the MTF of a lens using a camera and magnifying

optics with magnification ’M’, it is required that fc < fcamera [17]. If this condition is not

satisfied then the PSF of a point source is confined to only one pixel of the camera and hence

the details cannot be studied. In our case, f=5.04 cm and D=1 cm for the plano-convex lens

used in the setup for λ=650 nm. With these values, the cutoff frequency fc is found to be

0.305 line pairs/µm as seen in figure 3.16 A) and B). For the case of LSAM, from the design

of the metasurface the focal length increases to 5.27 cm. With ’D’ and λ being the same

as previous case, the cutoff frequency for this case is found to be f ′c=0.291 line pairs/µm as

shown in figure 3.16 C) and D). In the setup, Thorlabs CMOS camera is used whose pixel

dimensions are 5.2 µm X 5.2 µm. As shown in figure 3.12, the optics on the motorized stage

imparts magnification of 40X to the image. Therefore with p=5.2 µm and M=40 we get

fcamera=7.692 line pairs/µm. Therefore, it is verified that fc < fcamera and f ′c < fcamera.

Instead of magnification factor of 40, if M=1 is used, we get fcamera=0.192 which is less than

fc and f ′c. This justifies the utilization of extended optics to magnify the PSF.

As the focal length of plano-convex lens and LSAM combination have different focal

lengths of 5cm and 5.23 cm respectively, they have different MTFdiffraction. The experi-

mentally calculated MTFs are compared with their corresponding MTFdiffraction for plano-

convex lens in figure 3.16 A), B) and for LSAM combination in figure 3.16 C), D). At lower

frequencies, the difference between the two cases is not huge. But at frequencies higher than
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Figure 3.16: MTF for plano-convex lens in A) and B) along kx and ky axis respectively (red
curve). Similarly, MTF for LSAM combination in C) and D) (green curve). In all the figures,
blue curves correspond to diffraction-limited MTF.

0.2 line pairs/µm, better contrast with LSAM combination over the plano-convex lens is

evident. This can be attributed to Spherical aberration correction.

3.6 Zernike analysis

By expressing wavefront in a polynomial form one can study aberrations in a comprehensive

manner[18]. Often, Zernike polynomials are employed for this purpose as they are composed

of terms which have similar form as the types of aberrations normally found in the optical

systems.

Zernike polynomials in circular basis are defined over a circle of unit radius. For polar

co-ordinates (r,φ), even Zernike polynomials can be defined as Zm
n (r, φ) = Rm

n (r) cos(mφ).

Whereas odd Zernike polynomials are given by Zm
n (r, φ) = Rm

n (r) sin(mφ). Where n≥m≥0,
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φ is the azimuthal co-ordinate and r is the radial co-ordinate with 0≤r≤1. It also satisfies

the condition | Zm
n (r, φ) |≤ 1. The radial component is given by

Rm
n (r) =

n−m
2∑

k=0

(−1)k(n− k)!

k!(n+m
2
− k)!(n−m

2
− k)!

rn−2k (3.28)

when (n-m) is even and 0 when (n-m) is odd. An important property of Zernike polyno-

mials is their orthogonality. When integrated over a unit disc it is given by∫
Zm
n (r, φ)Zm′

n′ (r, φ)d2r =
εmπ

2n+ 2
δm,m′δn,n′ (3.29)

Here εm is equal to 2 if m = 0 and equal to 1 if m 6= 0. Also δm,m′ = 1 if m = m′ and

equal to 0 otherwise. It is also the same for δn,n′ .

This property signifies that Zernike polynomials are independent of each other and using

them each aberration can be quantified independently. The deviation of a given wavefront

from the ideal wavefront is given by W(r,φ) which can expressed in terms of Zernike poly-

nomials as follows [19]

W (r, φ) =
∞∑
n=0

n∑
m=0

CnmN
m
n R

m
n (r)Amn (φ) (3.30)

Here Rm
n and Amn are the radial and angular components of zernike polynomials respec-

tively as mentioned before. Nm
n is the normalization factor obtained from orthogonality

condition of equation 3.29. The term Cnm is the zernike co-efficient associated with the

order of aberration n,m. Therefore error from a given wavefront can be fit to zernike poly-

nomials series using zernike co-efficients. Through this, each aberration of the wavefront can

be independently quantified.

We employ Zernike analysis to quantify spherical aberration correction from the metasur-

face. It was experimentally performed using the phase measurement setup which is same as

in figure 3.7. The only difference being here lens and lens-metasurface combination is imaged

instead of bare metasurface. The outgoing wavefront is analysed using Zernike analysis tool

of Phasics software. Circular mask or pupil of size approximately 7.5 mm in diameter is used.
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It is crucial to keep the mask size constant as the Zernike co-efficients heavily depend on it.

The resulting zernike co-efficients are as shown in figure 3.17. Here the ’defocus’ component

is set to zero and ’piston’ aberration is not shown. As discussed in [20], the defocus for this

case is nothing but the phase profile of an ideal lens, therefore it can be subtracted. Piston

component is a constant added to the optical path and just shifts the position of the focal

point. Therefore it is not a true optical aberration and hence can be neglected.

The study was performed with 617 nm LED illumination which is close to the design

wavelength for Spherical Aberration correction Metasurface (SAM). The optical thickness

and corresponding Zernike co-efficients are shown in figure 3.17 for both plano-convex lens

and LSAM combination. It can be noticed from the color bars of figure 3.17 A) and C) that

the optical thickness is significantly lower LSAM compared to the lens. For the case of lens

in figure 3.17 B), one can see that the major aberration is spherical aberration. Figure 3.17

D) is the result for LSAM for cross-polarized component in which PB phase is encoded. One

can notice that the spherical aberration of the system is drastically reduced in this case.

Quantitatively, at least 70% of the spherical aberration is mitigated with the metasurface.

However, both the Tetrafoil aberrations seem to shoot up with the metasurface. But as it is

a higher order aberration, it doesn’t contribute much to the overall imaging quality as shown

in subsequent section. When the plano-convex lens is replaced by the LSAM in the setup,

it is possible that the alignment is slightly different compared to the lens case. Therefore,

to verify this, we also analyse the co-polarized component of LSAM as shown in figure 3.18

A). The co-polarized component is nothing but the zero order of diffraction which is not

affected by the phase profile imparted by the metasurface. The similarity between figure

3.17 B) and 3.18 A) ensures that the alignment is not very different for both the cases.

Figure 3.18 B) is the analysis result for combination of lens and no c-correction SAM. It

mitigates spherical aberration only by around 25%. Much better performance of c-corrected

metasurface (Figure 3.17 d)) over no c-corrected metasurface (Figure 3.18 b)) in spherical

aberration correction can be seen. This supports the fact that accurate calculations are

crucial in spherical aberration correction metasurface design. It has to be noted that both

c-corrected and no c-corrected metasurface mitigates also both the Coma aberrations of lens

from figure 3.17 and 3.18 d).
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Figure 3.17: A) Optical thickness and B) Zernike co-efficients measured on phase mea-
surement setup for the Plano-convex lens. C) and D)- The same measurements for LSAM
combination (c-corrected) for cross-polarization component. Defocus is subtracted in both
the cases. Aberration name in the same order as in the figures - Tilt X, Tilt Y, Defocus
(=0), Astigmatism 0°, Astigmatism 45°, Coma X, Coma Y, Trefoil 0°, Trefoil 30°, Spheri-
cal aberration, Secondary astigmatism 0°, Secondary astigmatism 45°, Tetrafoil 0°, Tetrafoil
25.5°
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Figure 3.18: Zernike co-efficients measured on phase measurement setup for A) LSAM com-
bination for co-polarization component B) Lens and no c-correction Spherical aberration
correction metasurface combination for cross polarization component.

3.7 Imaging

To assess the performance of the metasurfaces, imaging of 1951 US Air Force (USAF) res-

olution target was performed. The setup as shown in figure 3.19 was used for imaging the

standard target plate with the lens-metasurface combination. Figure 3.20 shows the com-

parison between images from a normal plano-convex lens and LSAM combination. Here

illumination is chosen to be at 650 nm in the supercontinuum setup with a bandwidth of 10

nm (least possible). Again for LSAM combination cross polarization component is chosen to

avoid the background light and to obtain only the corrected image. Much better resolution

of figure 3.20 b) over a) again proves that the significant amount of spherical aberration is

mitigated. The visibility of smaller structures in the bottom panel is low owing to relatively

low polarization conversion efficiency of the metasurface but the difference caused by the

metasurface is clear.

Figure 3.21 shows the imaging result for chromatic aberration correction. Here broadband

light of 550-800 nm from the supercontinuum source is used for illumination. The images

99



Figure 3.19: Setup to perform imaging of a target. The expanded form of each component:
SCL-Super Continuum Laser, T-Target, LP-Linear polarizer, QWP-Quarter Wave Plate,
LAM-Large Area Metasurface (placed on plano-convex lens)

are captured with Thorlabs Zelux CMOS color camera (1.6 MP) by removing the IR filter

already present in the camera. Above 750 nm wavelength, the light is color coded as magenta

(Red+Blue) in the camera. Comparison between figures 3.21 a) and b) shows that the images

with LCAM combination are much sharper than that with the plano-convex lens for group

2 and 3 elements of USAF target. Again because of relatively low polarization conversion

efficiency of the metasurface, the signal to noise ratio is not very high owing to other orders

of diffraction from the metasurface. It has to be noted that even though the chromatic

aberration is corrected with the metasurface in the wavelength range of 550-800 nm, the

spherical aberration is still present in the system.

One can argue that lens-CAM-SAM combination should mitigate both spherical as well

as chromatic aberration simultaneously. Unfortunately here it is not the case as CAM adds

some amount of spherical aberration and SAM adds also chromatic aberration to the system.

But it is possible that for some design parameters the SAM and CAM compound system

might correct both Spherical and Chromatic aberration of the lens. In this thesis we haven’t

investigated in this direction.

3.8 Conclusion

In this chapter, a systematic discussion is carried out as to how a metasurface can be designed

to correct lens aberrations. Through detailed experimental studies it is shown that indeed

significant amount of lens aberration is mitigated. The essence of this chapter is that instead

of using a refractive component like an objective lens or diffractive component like a metalens,
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Figure 3.20: Imaging of USAF target with A) Plano-convex lens B)LSAM combination.
Scale bar in top panel corresponds to 35 µm, bottom panel corresponds to 28 µm

advantages of both of them is combined in the form of hybrid lens-metasurface to achieve

aberration free imaging. Even though metacorrectors have been discussed in some works,

the novelty of this work lies in the fact that the design of metasurface is convenient for large

area devices. This factor pushes the metasurface a step closer to practical applicability. In

a standard objective lens, several lenses and different types of glasses are utilized to achieve

aberration free imaging for wavelengths from violet to near infrared. One can imagine that

just a lens-metasurface combination replacing an objective lens results in orders of magnitude

miniaturization and paves the way for realizing ultra-compact optical devices. This work

is a step towards this objective; with optimized design of metasurface we believe that it is

possible in future.

It is important to ponder upon the limitations of these metasurfaces as it gives a future

direction for improvement. One of the major limitations is the relatively low polarization

conversion efficiency of 20%. This can be dealt with by choosing appropriate material which

should also be suitable for large area fabrication. Another drawback is that one needs 2

sets of linear polarizers and quarter wave plates to extract the PB phase component from
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Figure 3.21: Imaging of USAF target with A) Plano-convex lens B)LCAM combination.
Scale bar in group 2 panel corresponds to 70 µm, group 3 panel corresponds to 35 µm

the metasurface. One solution to achieve ’standalone’ metasurfaces is to design properly

optimized propagation phase metasurfaces which can be polarization independent. Also in-

stead of two metasurfaces combining the functionality of spherical aberration and chromatic

aberration correction in one metasurface is a way forward [5].
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[8] Daniel Andrén, Jade Mart́ınez-Llinàs, Philippe Tassin, Mikael Käll, and Ruggero Verre.

Large-Scale Metasurfaces Made by an Exposed Resist. ACS Photonics, 7(4):885–892,

apr 2020.

[9] Dario L Goldfarb, Juan J de Pablo, Paul F Nealey, John P Simons, Wayne M Moreau,

and Marie Angelopoulos. Aqueous-based photoresist drying using supercritical carbon

dioxide to prevent pattern collapse. Journal of Vacuum Science & Technology B: Mi-

croelectronics and Nanometer Structures Processing, Measurement, and Phenomena,

18(6):3313–3317, nov 2000.

[10] Samira Khadir, Pierre Bon, Dominique Vignaud, Elizabeth Galopin, Niall McEvoy,

David McCloskey, Serge Monneret, and Guillaume Baffou. Optical Imaging and Char-

acterization of Graphene and Other 2D Materials Using Quantitative Phase Microscopy.

ACS Photonics, 4(12):3130–3139, dec 2017.

[11] J. C. Chanteloup. Multiple-wave lateral shearing interferometry for wave-front sensing.

Applied Optics, 44(9):1559–1571, 2005.

[12] Samira Khadir, Daniel Andrén, Patrick C Chaumet, Serge Monneret, Nicolas Bonod,

Mikael Käll, Anne Sentenac, and Guillaume Baffou. Full optical characterization of

single nanoparticles using quantitative phase imaging. Optica, 7(3):243–248, 2020.

103



[13] Pierre Bon, Guillaume Maucort, Benoit Wattellier, and Serge Monneret. Quadriwave

lateral shearing interferometry for quantitative phase microscopy of living cells. Optics

Express, 17(15):13080–13094, 2009.

[14] Introduction to modulation transfer function @ www.edmundoptics.fr.

[15] G Boreman. Modulation Transfer Function in Optical and Electro-Optical Systems.

2001.

[16] B E A Saleh and M C Teich. Fundamentals of Photonics. Wiley Series in Pure and

Applied Optics. Wiley, 2019.

[17] Aline Vernier, Baptiste Perrin, Thierry Avignon, Jean Augereau, and Lionel Jacubowiez.

Measurement of the modulation transfer function (MTF) of a camera lens. In Education

and Training in Optics and Photonics, page TPE28. Optical Society of America, 2015.

[18] Vasudevan Lakshminarayanan and Andre Fleck. Zernike polynomials: a guide. Journal

of Modern Optics, 58(7):545–561, 2011.

[19] zernike aberrations @ www.telescope-optics.net.

[20] Samira Khadir, Daniel Andrén, Ruggero Verre, Qinghua Song, Serge Monneret, Patrice

Genevet, Mikael Käll, and Guillaume Baffou. Metasurface optical characterization using

quadriwave lateral shearing interferometry, 2020.

104



Chapter 4

Metasurface for Quantum Optics

applications

In recent years, tremendous progress has been made in the field of quantum technologies.

This brings us more closer to realizing something revolutionary as a realistic quantum com-

puter. Most widely used systems to study quantum principles are cold atoms and single

photons. Single photons states are relatively convenient to generate, manipulate and mea-

sure.

Until the end of 19th century light was thought to be as waves. But in the early 20th

century, to explain the photoelectric effect, Einstein proposed a revolutionary theory of light

as discrete packets of energy called ’quanta’. This gave birth to the concept of wave-particle

duality of matter which also laid the foundation for quantum mechanics. This implies that

light can exhibit properties of both wave as well as particles depending on the measurement.

Therefore to access the particle aspect of light one needs to deal with single photons.

4.1 Photon statistics

With the advent of ultrafast photodetectors it is possible to study photon statistics of even

single photons [1]. A click detector, similar to a Geiger counter, when struck by a single

photon produces a short electric pulse in response to an absorbed photon. The counting
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electronics connected to the detector registers the number of electric pulses within a defined

time period ’T’ (Figure 4.1 B). Consider a total of ’N’ number of photons are incident on

a detector for a time period of ’T’. When the counting is done within a time interval of

’t’ for n = T
t

number of intervals, a photon distribution depending on the nature of light

source is obtained. In other words, even though the average photons in each interval is the

same (N/n), the variance of the distribution can be different for different sources as shown

in figure 4.1 A).

Figure 4.1: A) Spheres in Blue, Green and Yellow color correspond to photon detection
as a function of time for antibunched photons, random light (coherent state) and bunched
photons respectively. Here ’τc’ stands for coherence time. B) Schematic of a click detector
for single photon counting.

Depending on photon statistics, light can be classified into three types namely bunched

photons, random photons and antibunched photons. A coherent light source such as a laser

yields Poissonian photon statistics which means that the photons are randomly placed which

results in random light. Thermal light has super Poissonian behaviour which is a result of

bunching of photons. On the other hand, single photon sources are antibunched which

exhibit sub Poissonian statistics.
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It is convenient to apply photon statistics utilizing photon number operator n̂. This is

because the Fock states |n〉 are eigen states of number operator which is discussed in detail

in [2] [3].

n̂i |ni〉 = ni |n〉 (4.1)

Here the eigenvalue ni of photon number operator gives the number of photons in a

specific mode ’i’.

As discussed in [3][4], photons from a coherent light source show the following statistics,

where Variance V is given by

V = 〈n2〉 − 〈n〉2 = (∆n)2 = 〈n〉 (4.2)

As variance of the distribution is equal to its mean, it represents Poissonian distribution.

An incoherent light source produces photons with random intensity fluctuations. This

gives rise to super Poissonian distribution.

V = (∆n)2 = 〈n〉+ 〈n〉2 > 〈n〉 (4.3)

As expected here the variance is invariably greater than the mean of the distribution.

On the other hand, one can say that a stream of photons are single photons when they

follow this condition.

V = (∆n)2 < 〈n〉 (4.4)

This is nothing but sub-Poissonian distribution. This cannot be explained with classical

electromagnetic theory, hence it is called non-classical light or Quantum light.

4.1.1 Degree of coherence

Another statistical quantity often used to express the photon statistics are correlation func-

tions. Degree of coherence is the normalized correlation of electric fields. First order co-

herence g(1) quantifies electric field fluctuations whereas second order coherence measures
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intensity fluctuations of two fields.

Degree of first order coherence for electric fields E1 and E2 for time delay of τ between

each other can be defined as,

g(1)(τ) =
〈E∗1(t)E2(t+ τ)〉√

〈| E1(t) |2〉〈| E2(t+ τ) |2〉
(4.5)

It is an useful quantity in optical interferometry. The visibility of an interference pattern

ν of two electric fields with equal intensities is given by the absolute value of g(1). The

visibility varies from 0 for incoherent light to 1 for coherent light.

Similarly, the degree of second order coherence is defined as follows. It is the intensity

analogue of g(1). g(2) is intensity-intensity correlation whereas g(1) is amplitude-amplitude

correlation.

g(2)(τ) =
〈E∗1(t)E∗2(t+ τ)E2(t+ τ)E1(t)〉
〈E∗1(t)E1(t)〉〈E∗2(t)E2(t+ τ)〉

g(2)(τ) =
〈I1(t)I2(t+ τ)〉
〈I1(t)〉〈I2(t+ τ)〉

(4.6)

For classical light, it can be written in the form of intensities I1 and I2.Since intensity of

light is proportional to number of photons, g(2) can also be written in terms of ’n’. It simply

means if ’n’ number of photons are detected at time ’t’, what is the probability of detecting

same number of photons at time ’t+τ ’. One can see that it is an useful quantity for studying

single photons. It is related to photon statistics explained before as g(2)(0) = 1 + V (n)−〈n〉
〈n〉2 .

Also by experimentally measuring g(2)(0) one can study the photon statistics; for bunched

light g(2)(t) > 1, for coherent light g(2)(t) = 1 and for anti bunched light g(2)(t) < 1 [3].

4.2 Hong Ou Mandel experiment

Hong Ou Mandel (HOM) effect is a result of interference of two single photons. Hence it

can be explained only by considering the quantum nature of light and there is no classical

analogue for this.

Consider a single photon is incident on a 50/50 beam splitter with output arms ’A’
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Figure 4.2: A) Hong Ou Mandel experiment setup [5], SPDC - Spontaneous Parametric
Down Conversion, M1,M2 - Mirrors, BS-Beam splitter, D1, D2- Detectors, CM- Coincidence
Measurement.∆t corresponds to shifting of M1 position. Inset: Coincidence counts as a
function of ∆t showing HOM dip.[6] B) All 4 possible output states are shown. Side with
the blue dashed line imparts π phase shift on reflection.

and ’B’. In the case of classical light, it is known that 50% of light travels in either of the

output arms. But in the case of single photon it can be said that it has the probability of

transmitting in output A or B. This can represented in photon number states | 0〉 and | 1〉.
The two cases of one photon in output A or output B can be written as states | 1〉A | 0〉B
and | 0〉A | 1〉B respectively. Therefore, the output state is the quantum superposition of

these 2 states which is written as

ψout =
| 1〉A | 0〉B+ | 0〉A | 1〉B√

2
(4.7)

It is hard to imagine in the classical sense how a single photon can exist in a linear

superposition in probability. But when detectors are placed at each output, the probabity

wave function collapses to either one of the states, transmission or reflection from the beam

splitter. When the photon counting is performed for a sufficiently long period one should

obtain 50% of the counts for output A (or B) for a perfectly 50-50 beam splitter.
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Considering 2 identical single photons incident on a beam splitter as shown in figure 4.2,

one can observe two-photon interference effect called Hong Ou Mandel (HOM) effect [6]. A

pair of single photons are produced using Spontaneous Parametric Down Conversion (SPDC)

process using a nonlinear crystal. The beam splitter is such that the reflection from one side

acquires a π shift compared to that from other side. This scenario can be mathematically

realized utilizing creation and annihillation operators. For example, if â is an annihillation

operator and â† its corresponding creation operator then their operation on photon number

states will have these properties. â | n〉 =
√
n | n − 1〉; â† | n〉 =

√
n+ 1 | n + 1〉. And

they obey the commutation relation [â, â†] = 1 [3].

For the case of setup in figure 4.2, two creation operators â† and b̂† are considered for

2 input arms. The 50-50 beam splitter mixes these states into two output modes. This is

described by a transformation from input to beam splitter modes as â† → ĉ†+d̂†

2
; b̂† →

ĉ†−d̂†
2

. The negative sign in d̂† term when transformed from b̂† is because of the π phase shift

associated with bottom reflection as mentioned before. Therefore a unitary transformation

between these modes can be written as follows.

(
â

b̂

)
→ 1√

2

(
1 1

1 −1

)(
ĉ

d̂

)
(4.8)

The beam splitter employed here with π phase shift reflection is not unique. Other beam

splitter transformations are possible as long it is unitary. An operator ’U’ is said to be

unitary if UU † = I. This condition is necessary as it preserves the probability amplitude

between the original and transformed states. Starting from the vacuum state, the the two

identical single photons mixing in the beam splitter can be expressed as follows

Incident modes : | 1, 1〉ab = â†b̂† | 0, 0〉ab →

Beam splitter modes :
1

2
(ĉ† + d̂†)(ĉ† − d̂†) | 0, 0〉cd = (ĉ†2 − d̂†2) | 0, 0〉cd =

| 2, 0〉cd− | 0, 2〉cd√
2

(4.9)

This shows that the cross terms cancel which can be thought of as destructive interference

of two indistinguishable states. As shown in figure 4.2 b), the Feynman rules dictate that the

probability amplitudes of all the possible states are to be added to obtain the final state. The
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cancellation of states 2 and 3 demands that the two incident photons be perfectly identical in

polarization, spatiotemporal modes etc. Only under these conditions, 2 photons exit in pairs

in either of the output as seen from above calculations. If a slight change in the pathlength

as shown in figure 4.2 a) as ∆t is imparted, the photons become distinguishable. This can

be detected in co-incidence measurements as HOM dip shown in the inset of figure 4.2 [6]

4.2.1 Metasurface in quantum optics

Metasurfaces for quantum optics applications is not much explored compared to that in

classical optics. The robust control that the metasurface has over the polarization and

phase of outgoing light can be tremendously useful in quantum photonics. The terminology

“quantum metaphotonics”, concerned with the utilization of artificial photonic devices for

quantum state manipulation, has recently been proposed to describe light-matter interaction

in unconventional material parameters and extreme coupling conditions [7][8].

As an example of the important implication of quantum effects in nanophotonics, it has

been shown for example that quantum coherence could significantly enhance the generation of

surface plasmons by stimulated emission of radiation holding promise for new quantum con-

trol of nanoplasmonic devices [9]. Metasurfaces are also demonstrated to create Anisotropic

Quantum Vacuum in the vicinity of a quantum emitter to induce interference among ra-

diative decay channels hence engineering the light-matter interactions [10]. Photons are

one of the efficient systems for quantum experiments, because of the ease of preparation of

quantum states and their manipulation. It has been recently shown that metasurfaces being

classical devices doesn’t destroy the coherence of quantum light [11] . Also in the same work

an interesting phenomenon of entanglement between spin and angular momentum states

using metasurfaces have been shown reiterating that metasurfaces are an effective platform

for quantum information studies. Metasurfaces have been used as a mediator for quantum

entanglement[12]. They have been employed for multi-photon quantum state measurement

and their polarization state reconstruction[13].

Inspired by these works, in this thesis we have made an attempt to systematically explore

the potential of metasurfaces by introducing them in HOM interference experiment which is

one of the fundamental experiments in quantum optics. The idea is to replace the 50-50 beam

splitter in HOM setup with a dual phase gradient metasurface for photon state mixing. This
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is demonstrated in subsequent sections and shown that metasurfaces offer greater flexibility

over conventional optical components. We also note the similarity between our work with a

recent work on quantum interferometry with metasurface [14]. But we propose here a novel

metasurface with additional functionality which might be useful for other quantum optics

experiments.

4.3 Pancharatnam Berry phase measurement

The final objective is to design a phase gradient metasurface based on PB phase to measure

second order correlation (g(2)) function in two-photon interference experiment. But prior to

that, to study the behaviour of PB phase gradient metasurface and for the completeness of

the discussion, conventional interference measurement (g(1)) is performed with metasurfaces.

The idea is to replace the beam splitter with a Pancharatnam Berry (PB) phase gradient

metasurface in a standard Mach-Zehnder interferometer (MZI) setup. The metasurface is

designed such that the transmitted power in 0th and 1st order of diffraction are equal (1:1)

to mimic the 50:50 beam splitter in the original experiment. As discussed in the Introduction

chapter, the PB phase is associated with the first order of diffraction. Owing to PB phase

and different pathlength, the deflected beam (1st order) and undeflected beam (0 order)

have a phase difference of φ. From standard MZI equations we know that the intensity of

2 interfered beams is given by I1 + I2 + 2
√
I1I2 cos(φ). For an ideal 50-50 beam splitter,

I1 = I2 = I0. Therefore, the intensity of interfered beam is given by

I = 2I0(1 + cos(φ)) = 4I0(cos

(
φ

2

)
)2 (4.10)

Now, to design a metasurface functioning as a 50-50 beam splitter, the following strategy

is applied. Recalling equation 1.10 for transmitted field from a PB phase nanopillar from

the Introduction chapter,

ET =
(eiφx + eiφy)

2
.ELCP +

(eiφx − eiφy)
2

.eim2α.ERCP (4.11)

Here LCP is the incident polarization and the opposite circular polarization RCP has
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PB phase. From this equation, it can be seen that by substituting φx − φy = π the LCP

component (0th order) becomes zero and 100% deflection from RCP component (1st order)

can be obtained in the output. To design a 50-50 beam splitter, intensity of the transmit-

ted field can be calculated by taking the complex conjugate of the field. By equating the

transmission intensity of LCP and RCP component the following condition is obtained.

(eiφx + eiφy).(e−iφx + e−iφy) = (eiφx − eiφy).(e−iφx − e−iφy) (4.12)

Solving this, one arrives at the condition φx − φy = π
2
. It implies that by designing

nanopillars to impart phase shift of π
2

between and x and y axis one can achieve 50-50

beam deflection. Therefore, it can be said that by tuning the birefringence of PB phase

metasurfaces, the transmission ratio along 0th and 1st order of diffraction can be controlled.

4.3.1 Metasurface Simulation

The simulation, fabrication and experimental results of this metasurface are discussed in

our recent work [15]. To design the metasurface, electromagnetic simulation in Lumerical

is performed. PB phase metasurfaces can be realized by disposing Gallium Nitride (GaN)

nanopillars on Sapphire substrate with designed structural parameters to introduce proper

forward scattering phase and amplitude. The amplitude and phase responses are related

to the length and width of nanopillar and for this case meta-atoms with a constant height

of 800 nm are considered. To build this PB phase metasurface, the phase retardation dif-

ference between ordinary and extraordinary axis of a nanopillar should be π
2

as explained.

To quantify the phase retardation difference of light transmitted through GaN nanopillars,

electromagnetic simulations of subwavelength nanopillars arranged in a square lattice were

performed using the FDTD using two sources of 632.8 nm wavelength with polarization Ex

and Ey. In the FDTD simulation, perfectly matched layer (PML) conditions in the direction

of light propagation and periodic boundary conditions along all the in-plane directions were

used, respectively as shown in figure 4.3 A). The use of PML boundary conditions in the

propagation direction results in an open space simulation while in-plane periodic boundary

conditions mimic a subwavelength array of identical nanostructures. After identifying the

elements with π
2

phase difference from the phase map (figure 4.4 A), they were arranged

in an array by successively rotating by angle as shown in figure 4.3 B). Again by rotating
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pillars in the range of 0 to 180 degrees, a full phase coverage of 0 to 2π can be achieved

in a period. For example, in figure 4.3 B), one period of 3 µm is discretized into 5 equally

spaced points represented by 5 nanopillars with successive rotation of θ = 36◦ compared to

the adjacent pillar. Usually, discretization in a period is chosen such that the adjacent pillars

have sufficient gap in between them to avoid near field coupling effects. Employing the same

method, three different metasurfaces were designed with periods of array 2µm, 2.9µm, 4µm

with θ = 45◦, 36◦, 30◦ respectively. Also subwavelength period of 320 nm along y-axis was

used to suppress diffraction orders along this axis. The deflection angle of the array can be

calculated using generalized law of refraction (nt sin(θt) = ni sin(θi)+ λ
2π

dφ
dx

). Here sin(θi) = 0

as it is the normal incidence case.

Figure 4.3: A) FDTD simulation setup for a single Gallium Nitride nanopillar of height
H=800nm on Sapphire substrate with p=320 nm. The 4 faces bound by blue lines correspond
to periodic boundary condition and the top and the bottom face bound by orange lines
represent Perfectly Matched Layer (PML). ’S’ stands for source with polarization components
along both X and Y axis. The farfield monitor on the top face records Transmission(T) and
phase (φ). B) Arrangement of PB phase nanopillars in array period P=2.9µm of a phase
gradient is shown. Here successive rotation of θ = 36◦ is used and the nanopillars are equally
spaced.

Figure 4.4 A) and B) are the resulting phase and transmission maps from the simulation.

The white points and lines correspond to dimensions of nanopillars introducing relative phase

shift of π
2

or 3π
2

between x and y axis. But from our previous experience, dimensions slightly
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different from these points of Lx = 260nm and Ly = 85nm which corresponds to phase

shift of π
4

was chosen to account for phase variation due to tapering of tall nanapillars [16]

[15] . The transmission map guides us to choose the dimensions of nanopillars with high

transmission values. Also it has to be made sure that the chosen dimension of Lx, Ly have

equal transmission along x and y axis. This is because to obtain circular polarization in the

output, it is required to have equal amplitudes for Ex and Ey components. Figure 4.5 C) is

the scanning electron microscopy image of one of the fabricated metasurfaces with the period

of 3µm. Here tapering of the pillars can be noticed. The nanofabrication of the metasurface

is discussed in the next section.

Figure 4.4: Results of FDTD simulation A) Phase difference(φx− φy) map B) Transmission
map. Here the white dots and lines correspond to (Lx, Ly) with phase shift of π

2
or 3π

2
C)

Scanning Electron Microscopy (SEM) image for metasurface with array period P=2.9 µm D)
Transmission power measurement as a function of detection angle of a circularly scanning
detector for metasurface with array period P=2 µm with incident LCP polarization. [15]
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4.3.2 Experimental results

Figure 4.5: (A) (Left) Schematic of the interferometric measurement for the characterization
of the topological phase shift introduced by Pancharatnam–Berry (PB) metasurface as a
50/50 Circular polarization beam splitter. (Right) The interference fringes displacement
according to the phase gradient direction δx, resulting from the topological phase delay shift
introduced on the deflected beam. (B) The measured phase delays as a function of the
displacements are reported for three different metasurfaces, with array periods P = 4, 2.9
and 2 µm from top to bottom, respectively.[15]

To measure the angles of deflection from the metasurface, a detector scanning in a circular

fashion was employed to span all angles which is shown in figure 4.11 A). The PB metasurface

was placed exactly at the center of the scanning circle. A supercontinuum source was used to

span wavelengths of light from 480-680 nm with the intervals of 20 nm. With the polarization

LCP incident on the metasurface, angles from -30 to 30 degrees was scanned to obtain the
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data in figure 4.4 D). The results shown are for metasurface with array period of 2µm which

has deflection angle of 18.44◦ at its design wavelength of 632.8nm. It can be noticed that

zero order and first order indicated as σ− and σ+ respectively have approximately equal

transmitted power around the design wavelength. Zero order being at 0 degrees, one can

observe that the dominant 1st order and weaker -1st order show angular variation as a

function of wavelength depicting dispersion owing to diffraction from metasurface.

In a standard MZI setup, the first beam splitter is replaced by the fabricated metasurface

as shown in figure 4.5. Helium-Neon laser of wavelength 632.8 nm and Left circular polar-

ization is incident on the metasurface. Along one arm of the MZI, the first order deflection

from the metasurface imparts a phase φPB. The total phase difference between the two arms

(zero order and first order) is due to the PB phase and difference in propagation distance of

the two arms. Interference pattern is obtained on the detector by mixing both the arms in

a beam splitter. A Piezo stage capable of translation of tens of nanometer is employed to

translate the metasurface along the direction of phase gradient (x axis). This results in vari-

ation of interference pattern as shown in 4.5 A) insets. Reference point of center of the rings

is chosen where intensity is measured with respect to the peak intensity. From this, phase is

retrieved according to the equation 4.10. This is plotted as a function of translation distance

in figure 4.5 B) (blue points) for metasurfaces with array periods 2µm, 3µm, 4µm. One can

be sure that the phase variation plotted is PB phase as it is resulting from translation of the

metasurface in the plane normal to the incident beam and the propagation distance of both

arms are remaining constant throughout.

Here the key take-away point is that the overall PB phase is dependent on the position

where the beam is incident in the period of metasurface. Hence it is said to be topological

phase which is suitably utilized in HOM setup in the next section. It should not be misun-

derstood that the beam is interacting with a single nanopillar as suggested by figure 4.5 A)

but it illuminates the whole period. Even so, the phase of the transmitted beam varies with

translation along the period owing to topological phase.

4.4 HOM effect with metasurface

Extending the idea of designing metasurface for MZI, in this section a metasurface is designed

for measuring second order correlation function of single photons. A novel flat optical element
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Figure 4.6: Design of Dual Gradient Metasurface (DGM) A) and B) show the phase gradient
along positive and negative x-axis respectively. C) and D) describe the functionality of each
metasurface with blue and red rays corresponding to RCP and LCP respectively. E) Mixing
of different spatial and polarization modes of incident photons in DGM is shown. F) ∆Φ
shift of a grating with respect to the other for HOM experiment.

called Dual-Gradient Metasurface (DGM) is proposed which is constructed by superimposing

two lattices with opposite sense of phase gradients. The functionality of the metasurface with

incident light of polarizations are shown in the Figure 4.6. The incident polarization splits

into two beams with orthogonal polarization in the same basis depending on the incident

angle. For instance, an incident beam with right circular polarization creates one beam with

right circular and one with left circular polarization which is originated from the topological

Pancharatnam-Berry (PB) phase of the metasurface.
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4.4.1 Theory for Dual Gradient Metasurface

As mentioned before, from an intial photon of frequency ω0, two down converted single

photons can be produced using a nonlinear crystal through SPDC process. However, the

two single photons may not have exactly the same frequency but the sum of them is always

equal to ω0 which ensures energy conservation. Assuming the two photons to be of frequencies

ω1 = ω0

2
+ ω and ω2 = ω0

2
− ω, the resulting two photon state can be written as

|ψ0〉 =

∫
dω.S(

ω0

2
+ ω,

ω0

2
− ω)a†ω0

2
+ω
a†ω0

2
−ω |0〉 (4.13)

where S(ω1, ω2) is a spectral weight function. Here |0〉 represents vacuum state and

dagger on each mode stands for creation operator. The discussion below is borrowed from

the original work of Hong Ou Mandel [6] which is later modified for the case of metasurface.

Instead of measuring the field intensities, the HOM interferometer measures the coincidence

counting signal as,

G(2) =

∫
dτ〈E†1(t)E†1(t+ τ)E2(t+ τ)E1(t)〉 (4.14)

where the expectation value is calculated with respect to the initial state φ0. Here G(2) is

same as g(2) from equation 4.6 except that the latter is the normalized coincidence counting.

The fields E1,2 after the beam splitter relate to input fields E01,02 as

E1(t) =
√
TE01(t− τ1) + i

√
RE02(t− τ1 + δt)

E2(t) =
√
TE02(t− τ1) + i

√
RE01(t− τ1 − δt) (4.15)

where ’T’ and ’R’ are transmission and reflection coefficients of the beam splitter, τ1 ac-

counts for the propagation in the interferometer arms. Here δt represents the shifting of the

beam splitter towards one or another source creating the asymmetry in the overall propaga-

tion lengths in two arms (enters with different sign into expressions). This is equivalent to

∆t in HOM setup in figure 4.2 A). Note, that the factor ’i’ is added in front of reflection co-

efficient R to mimic the notation used in the literature related to HOM interferometer. Also
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this ensures that the beamsplitter operator 1√
2

(
1 i

i 1

)
is an unitary matrix when T = R = 1

2

which is a necessary condition as discussed before. By substituting equation 4.15 in 4.14 we

get,

G(2) =

∫
dτ | G(0) |2 [T 2 | g(τ) |2 +R2 | g(2δτ−τ) |2 −TRg(τ)∗g(2δτ−τ)+g(τ)g(2δτ−τ)∗]

(4.16)

Here G(τ) is the first order correlation function which is related to the spectral weight

function by a fourier transform as,

G(τ) =

∫
dωΦ(ω0/2 + ω, ω0/2− ω)e−iωτ (4.17)

Also g(t) = G(t)
G(0)

. For the special case when g(ω0

2
+ ω, ω0

2
− ω) is gaussian in ω with

bandwidth ∆ω results in g(τ) = e−(∆ωτ)2/2. Substituting this in equation 4.16 with T = R =
1
2

we obtain,

G2(δτ) ∼ 1− e−(∆ωδτ)2 (4.18)

We now modify the setup and add a Dual-Gradient metasurface shown in figure 4.6

instead of the 50-50 beam splitter. Here each gradient in the DGM yields a phase to the

orthogonal polarization component. To make it similar to the beam splitter in the HOM

interferometer case, the possibility to adjust the arm length to create asymmetry between

them is considered. The polarization can either be RCP or LCP, it is not fixed for the

incoming two photons. The metasurface output will be governed by a modified relation that

depends on the polarization state µ, ν of the two input fields. The following calculations are

borrowed from [17]

Eµ
1 (t) =

√
T0E

µ
01(t− τ1) + ie−iφ

µ
2

√
T1E

µ̄
02(t− τ1 + δt)

Eν
2 (t) =

√
T0E

ν
02(t− τ1) + ie−iφ

ν
2

√
T1E

ν̄
01(t− τ1 + δt) (4.19)
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where T0 and T1 are the transmission coefficients for zero and first order components

respectively. We also assumed that the transmission amplitudes do not depend on the

polarization. The coincidence counting for a pair of arbitrary polarization is given by G(2)

G(2)
µν =

∫
dτ〈Eµ†

1 (t)Eν†
2 (t+ τ)Eν

2 (t+ τ)Eµ
1 (t)〉 (4.20)

Substituting equation 4.19 in 4.20 and carrying out similar treatment as for the 50-50

beam splitter case,

G(2)
µν (δτ) ∼ 1− cos(φµ1 − φν2)e−(∆ωδτ)2 (4.21)

Here, when both incident photons have same polarization, due to nonlinear topologically

induced splitting, the photons are scattered from different phase gradients. This leads to

φµ1 − φν2 = ∆Φ, where ∆Φ is the topological phase shift between two phase gradients. We

thus get an oscillating pre-factor cos(∆Φ). One can thus make the two grating to be shifted

relative to each other by any amount. Making several measurements with different phase

delay ∆Φ allows us to change the degree of distinguishability between photon and thus

controlling the photon statistics. It is to be noted that the right hand side of equation 4.21

ranges from 0 to 2 as compared 0 to 1 in equation 4.18 which implies that the DGM offers

more control over the experiment.

4.4.2 Dual Gradient Metasurface design

Recalling the generalized law of refraction taking into account the incident polarization of

PB metasurface,

nt sin(θt)− ni sin(θi) = σ±m
λ

2π

dφ

dx
(4.22)

Here for Right Circularly Polarized (RCP) incidence σ+ = 1 and for Left Circularly

Polarized (LCP) incidence σ− = −1. Also ’m’ is the diffraction order in transmission. In a

DGM, the incident angles for two spatial modes are θ and −θ. For only one phase gradient

in the dual gradient (figure 4.6), one needs to consider the condition that if θi = θ then

θt = −θ for m=1 order. As it is based on PB phase, the first order is essentially in the
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opposite circular polarization. Considering the case of RCP incidence (σ+ = 1) and air as

the surrounding medium of metasurface (nt = ni = 1) and substituting the above conditions

in equation 4.22, we get
dφ

dx
= −2 sin(θ).

2π

λ
(4.23)

This is the phase gradient of metasurface required for the above functionality. In princi-

ple, metasurface for any θ can be designed but practically there are constraints which have to

be taken into account. First, metasurface deflection efficiency tends to decrease as incidence

angle increases. This is because metasurface has to impart higher magnitude of momentum

or phase gradient for higher θs to drive the beam from θ to −θ as shown in equation 4.23.

Therefore, higher values of θ are not favourable for metasurface performance. On the other

hand, metasurface opens many diffraction orders in transmission for lower angles of inci-

dence. But it is ideal to have only zero and first diffraction orders as undesirable diffraction

orders result in decreased efficiency in the first order. This is an obstacle for achieving 50:50

beam splitter DGM. Therefore this factor determines the lower limit of θ. Taking into ac-

count the above conditions, we impose a constraint on equation 4.22 that the orders m=-1

and 2 which are immediately next orders of 0 and 1 should cease to exist in transmission.

Assuming the same conditions for metasurface as before (θi = θ, nt = ni = 1, σ+ = 1) and

calculating refraction angle for m=-1 order in equation 4.22 we get,

sin(θt)− sin(θ) = − λ

2π

dφ

dx
(4.24)

It has to be noted that the phase gradient of the metasurface is already calculated in

equation 4.23 by imposing the condition θt = −θ when θi = θ for m=1 order. The response

of the same metasurface for m=-1 order is being calculated here. Therefore substituting

equation 4.23 in 4.22 we get,

sin(θt) = −3 sin(θ) (4.25)

Now for the condition sin(θt) > 1 or sin(θt) < −1 the m=-1 order ceases to exist.

Applying this inequality in equation 4.25, we get sin(θ) > 1
3

or sin(θ) < −1
3
. The range of

angles satisfying these inequalities are θ < −19.47◦ and θ > 19.47◦. Performing the same

calculations for m=2 order also leads to the same permissible range of θ. Therefore, we
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choose θ = 20◦ and−20◦ as the incidence angles on the metasurface. The equal and opposite

angles are necessary for obatining symmetric spatial modes in HOM setup as shown in figure

4.7.

The primary source of photons is a 400 nm laser which is fed to a nonlinear Barium

Borate(BBO) crystals. This results in down converted single photons of approximately 800

nm wavelength. Therefore, here a PB phase gradient metasurface is designed to function

at the wavelength of 800 nm. Again from equation 4.22, the array period to design the

metasurface can be calculated. For a constant phase gradient, dφ
dx

= ∆φ
∆x

. By substituting

θi = 20◦, θi = −20◦, nt = ni = 1, σ+ = 1,m = 1 and ∆φ = 2π in equation 4.22 we get ∆x =

period=1170 nm. With this array period, DGM is designed and the dimension required for

each nanopillar is obtained from FDTD simulation which is explained in the next subsection.

4.4.3 Metasurface simulation and fabrication

The FDTD simulation is done in Lumerical software for 1200 nm tall GaN nanopillars on

Sapphire substrate. The simulation setup is exactly the same as in figure 4.3 A) except that

the periodic boundary conditions are replaced by Bloch boundary conditions to account for

oblique incidence in periodic structures. Also the angle of incidence is 20◦. But from the

figure it can be seen that the source is in Sapphire substrate. The refraction angle in Sapphire

is calculated to be 11.2◦ for 20◦ incident angle in air using Snell’s law. For this oblique

incidence, the phase difference (between x and y axis) map and transmission map is computed

for Lx and Ly spanning from 50 nm to 400 nm with an interval of 10 nm as shown in figure 4.7.

The dimensions marked with red stars on the maps are chosen as they correspond to π on the

phase difference map. They also satisfy the condition of high transmission(T) and Tx = Ty

for circular polarization output as discussed before. They correspond to Lx = 370nm,

Ly = 120nm and Lx = 120nm, Ly = 370nm which are symmetric, hence either one of them

can be chosen. It can be noticed that the transmission for this case is relatively low compared

to that in figure 4.4 B). This might be due to difference in waveguiding modes at different

incident angles.

The array period of 1170 nm is discretized into 3 points on which the nanopillars with

above dimensions are arranged as shown in figure 4.7 C). Also along y axis, subwavelength

array period of 430 nm is used to avoid diffraction along this axis. To span phase from 0 to 2π,
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Figure 4.7: FDTD simulation results for single GaN nanopillars on Sapphire substrate A)
Phase difference (φx − φy) map B) Transmission (T) map. Points with red stars correspond
to dimensions (Lx, Ly) with π phase shift. C) A unit cell of DGM is shown with opposite
phase gradients (with green and yellow dotted boxes) having phase shift of ∆Φ.
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one period includes nanopillars of rotation 0◦, 60◦ and 120◦. For realizing DGM, the phase

gradient is set along positive (green dotted box) and negative x-axis (yellow dotted box) with

a phase shift between them ∆Φ as shown in the figure. This shift can be expressed in terms of

distance ∆X = ∆Φ
2π
.P where ’P’ is the array period. This is not to be mistaken with φ which

is the PB phase from each nanopillar. Six different metasurfaces with ∆Φ = 0, π
3
, 2π

3
, π, 4π

3
, 5π

3

are fabricated.

Figure 4.8: Nanofabrication steps of metasurface is shown. Here blue cylinder stands for
Sapphire substrate, red for Gallium Nitride, green for Poly(methyl methacrylate)(PMMA),
an electron beam resist, silver for Nickel. And MBE stands for Molecular Beam Epitaxy,
EBL-Electron Beam Lithography, MIBK:IPA - Methyl Isobutyl Ketone: Isopropyl Alcohol,
RIE - Reactive Ion Etching

The nanofabrication process followed is depicted in figure 4.8 [15]. It was realized by

patterning a 1200 nm thick GaN thin film grown on a double side polished c-plan sapphire

substrate via a Molecular Beam Epitaxy (MBE) RIBER system. The GaN nanopillars were

fabricated using a conventional electron beam lithography system (Raith ElphyPlus, Zeiss

Supra 40) process with metallic Nickel (Ni) hard masks through a lift-off process. To this

purpose, a double layer of around 200 nm Poly(methyl methacrylate) (PMMA) resists (495A4

then 950A2) was spin-coated on the GaN thin film, prior to baking the resist at a temperature
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of 125 °C. E-beam resist exposition was performed at 20 keV. Resist development was realized

with 3:1 Isopropyl Alcohol:Methyl Isobutyl Ketone (IPA: MIBK) and a 50 nm thick Ni mask

was deposited using E-beam evaporation. After the lift-off process in the acetone solution

for 4 hours, GaN nanopillar patterns were created using reactive ion etching (RIE, Oxford

system) with a plasma composed of Cl2CH4Ar gases. Finally, the Ni mask on the top of

GaN nanopillars was removed by using chemical etching with 1:2 solution of HCl : HNO3.

4.4.4 Experimental results

The Scanning Electron Microscopy(SEM) images of final metasurfaces after fabrication is

shown in figure 4.9. Figure A) corresponds to the metasurface with phase shift between

arrays ∆Φ = 2π
3

. The two opposite phase gradient periods are shown as red and yellow

rectangles from which the phase shift can be noticed. The dimension of nanopillars (Lx, Ly)

and array period ’P’ were measured and were found to be close to the design values. Figure

4.9 B) corresponds to the metasurface with phase shift ∆Φ = 0 and is captured by tilting

the microscope stage. Significant tapering of the nanopillars can be observed here. This is

due to the fact that the nanopillars are relatively tall (1200 nm) which results in high aspect

ratio of the pillars. It is shown in the optical characterization results (Figure 4.11 A)) that

the tapering drastically affects the performance of metasurface for oblique incidence.

Therefore, the fabrication was repeated with increased power of etching in the RIE step.

The Radio frequency (RF) , Microwave power during RIE was maintained at 20 W, 600 W

respectively compared to 20 W, 200 W in the previous fabrication. Figure 4.10 A) shows

the SEM image of the final metasurface, it corresponds to ∆Φ = 2π
3

. Figure B) is the SEM

image of metasurface corresponding to ∆Φ = π captured with the tilted stage. It can be

noticed that the pillars have very low degree of tapering. This significantly enhances the

optical performance of the metasurface as discussed figure 4.11.

The optical characterization of transmission at different angles are performed to assess

the deflection efficiency of the DGM. The supercontinuum laser is tuned to be at 800 nm

which is the design wavelength of the metasurface. A set of linear polarizer and Quarter wave

plate is used to obtain circularly polarized light which is weakly focused on the metasurface

with a convex lens as shown in figure 4.11. A detector scanning in circular fashion is used

with metasurface at the center of the scanning circle.
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Figure 4.9: SEM images of final Dual Gradient metasurface A) For ∆Φ = 2π
3

. Red and
yellow boxes indicate opposite phase gradients. Yellow scale bar measures 1 µm B) With
tilted stage for metasurface with phase shift ∆Φ = 0. Yellow scale bar measures 0.5 µm

Figure 4.11 B) and C) compares the performance of DGM for incident angle of −20◦ and

RCP incident polarization. It can be inferred from the figures that for oblique incidence

the deflection efficiency is quite sensitive to tapering of nanopillars. The optimization of

fabrication method was necessary to achieve straight nanopillars and 1:1 transmission in zero

and first order. Equal transmission is imperative to attain indistinguishability condition in

HOM experiment. The same measurement was done for all 6 metasurfaces with varying ∆Φ

and similar results were observed. The complete characterization of the metasurface was

done for incident angle of −20◦ and +20◦ for incident polarizations of RCP and LCP, one of

the results is shown in the figure 4.6. Therefore, we claim to have fabricated a DGM which

is eligible for replacing a beam splitter in HOM experiment. Single photon measurement on

DGM is still underway and the progress will be discussed in the presentation.

4.5 Discussion

We have demonstrated topological metasurfaces, based on Pancharatnam-Berry phase to

convert circular polarization state from left to right and reciprocally from right to left using

spatially oriented birefringent nanopillars for single photon interference experiments. How-

ever, there are certain drawbacks of DGM compared to a 50-50 beam splitter. Apart from
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Figure 4.10: SEM images of final Dual Gradient metasurface with optimized nanofabrication
A)For ∆Φ = 2π

3
. Red and yellow boxes indicate opposite phase gradients. Yellow scale bar

measures 1 µm B) With tilted stage for metasurface with phase shift ∆Φ = π. Yellow scale
bar measures 0.5 µm

zero and first order, other orders of diffraction were also observed in farfield measurements

with the metasurface. This considerably decreases the single photon counts obtained in both

detectors which can adversely affect coincidence measurements. By properly optimizing the

metasurface, its efficiency can be increased so that the incident photons transmit in only

either one of the channels (zero or first order) to imitate 50-50 reflection and transmission of

a beam-splitter. On the other hand, the phase and polarization control offered by DGM can

be utilized to achieve more functionalities than a conventional beam splitter can offer. One

such possibility is obtaining Bell’s states with DGM and going beyond the limits of Bell’s

No-Go theorem.

Bell’s states pertains to entangled photon states. Two particles are said to be entangled

when the quantum state of each particle cannot be described independently of the state

of the other particle. Measurement of a physical property such as polarization, spin etc of

the entangled particles can be found to be correlated[18][19]. The effect is also said to be

non-local; measurement of the property of one particle results in wavefunction collapse of the

other particle instantaneously irrespective of how far away the particles are. Consider two

entangled photons with spatial modes ’a’, ’b’ and polarization modes ’1’, ’2’ which stand

for any pair of orthogonal polarization states. Four modes can be described from them

a1, a2, b1, b2. The complete Hilbert space is spanned by the orthonormal set of Bell states
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Figure 4.11: Top image: Setup to measure transmission power as a function of refracted angle
of DGM. SCL- Supercontinuum Laser, LP-Linear Polarizer, QWP- Quarter Wave Plate,
FL- Focusing Lens. Bottom images: Transmitted power as a function of detector angle
for DGM A) with tapered nanopillars B) with nearly straight nanopillars with optimized
nanofabrication steps.
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given by

|ψ1,2〉 =
1√
2

(a1†b2† ∓ a2†b1†) |0〉

|ψ3,4〉 =
1√
2

(a1†b1† ∓ a2†b2†) |0〉 (4.26)

where |0〉 represents vacuum state and dagger on each mode stands for creation operator.

Consider one of the 4 Bell states 1√
2
(a1†b2† + a2†b1†) |0〉. It corresponds to entangled photon

pairs where if a photon is in a1/a2 mode then the other photon is bound to be in b2/b1 mode.

One of the versions of the Bell’s no-go theorem can be stated as ’All of the Bell states cannot

be distinguished using any standard linear optical measurements’[20]. It can be elaborated

as performing photon coincidence measurements with any number of linear optical elements

such as polarization beam splitters, mirrors, waveplates etc or with any combination of them,

it is not possible to distinguish all four Bell states. One of the well known setup is Innsbruck

detection scheme from which at most two out of four states can be detected[20]. This setup

uses a beam splitter, two polarization beam splitters and four detectors for single photon

detection. But by introducing an optical element such as a Dual Gradient metasurface it

might be possible to distinguish more than two Bell states owing to the superior control over

the phase of transmitted photons. The fact that in DGM the incident polarization splits

into two beams with orthogonal polarization in the same basis (right circular polarization

incident beam creates one beam with right circular and one - with left circular polarization)

makes it an unique optical element. In contrast, the linear optical elements allow to create

two beams of orthogonal polarization only in different basis, e.g. circularly polarized light

may split into a beam with vertical and another with horizontal polarization. In this context,

DGM can be considered as a non-linear optical element which technically, doesn’t violate the

Bell’s No-Go theorem. Carefully designed metasurfaces which facilitate fully deterministic

characterization of all four Bell states can open tremendous possibilities in the field Quantum

communication and cryptography.

4.6 Conclusion

In this chapter, we have explored the potential of metasurfaces in the field of Quantum

optics. Utilizing phase gradient metasurface in standard Mach-Zehnder interferometer,

Pancharatnam-Berry phase is studied in detail. Extending the same idea, a novel design
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of Dual Gradient metasurface is proposed to replace the beam splitter in Hong Ou Man-

del experiment. Theoretical calculation is performed to describe the role of DGM in HOM

experiment. A systematic approach is presented to design DGM using FDTD simulation.

Nanofabrication and classical optical characterization of the metasurfaces are also dicussed

in detail. By optimizing the fabrication method it is made sure that equal transmission is

obtained in zero and first order of diffraction which is crucial to achieve accurate results in

HOM experiment.

All in all, metasurfaces can not only replace bulky conventional optical elements in Quan-

tum optics experiments but also offer added functionalities and flexibility. This is described

in detail in the calculations of metasurface in HOM experiment. Metasurfaces hold promise

to bring a new perspective to the field of Quantum optics.
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Conclusion

We have explored here various functionalities that are achievable using phase gradient meta-

surfaces. Dielectric materials based metasurfaces are employed as they are less lossy com-

pared to plasmonic materials and favourable to work in transmission mode for visible-infrared

region of spectrum. Primarily, the idea of controlling outgoing wavevectors by controlling

the phase gradient has been used throughout this work. Various devices for classical and

quantum optics applications are been proposed.

First, hybrid optical components were designed to combine the advantages of refractive

and diffractive components. It was demonstrated with a simple example of prism by designing

a phase gradient metasurface to mitigate the prism dispersion as a proof of concept. It

was shown by fabricating metasurfaces of phase gradient as low as the order 10−5rad/nm

to compensate for prism dispersion. To experimentally measure such small magnitudes

of dispersion, properly calibrated Fourier plane imaging and spectroscopy technique was

employed. It was shown that the by tuning the phase gradient, material dispersion can be

mitigated in the wavelength range where the material refractive index varies linearly with

the wavelength. It can be approximated so for glass like materials in the visible region.

But for the material dispersion which is not linear, perfectly achromatic hybrid devices

cannot realized with this approach as there is some residual dispersion which is a limitation

of this technique. As an application, an achromatic compressor using prism-metasurface

combination was discussed in detail.

Extending the same principle to a lens, which is interesting for real applications, lens

aberration correction metasurfaces were designed. Most common lens aberrations, chro-

matic and spherical aberrations were discussed. Instead of using constant phase gradient,

radially vary phase gradient were designed as the wavevectors in rays refracted from a lens

varies radially. These phase gradient values were analytically calculated based on ray optics
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for chromatic and spherical aberrations separately. It was shown that this design is suitable

for large area metasurfaces of centimeter scale which is favourable for real applications. In

this sense, it can be said that this approach has an advantage over the other techniques such

as addressing group delay and group delay dispersion which involves accurate calculations.

However, the meta-correctors obtained from our technique can be said to be nearly achro-

matic but not perfectly achromatic as there is a trade-off between the size of the metasurface

and the achromaticity. The performance of lens-metasurface combination was studied us-

ing ray tracing and the phase gradient calculated was verified. Large area metasurfaces of

centimeter scale were fabricated separately for chromatic and spherical aberrations utilizing

a recent technique. The phase delay profiles was experimentally characterized and verified

using phase measurement setup. To asses the performance of lens-metasurface combina-

tion, point spread function measurement and z-scan was carried out. To quantify spherical

aberration correction, Zernike decomposition measurement was done on the phase front of

the hybrid device. Finally, the overall performance of the lens-metasurface combination was

assessed by imaging a standard target using the combination. To summarize the results,

chromatic aberration correction of 80% in the wavelength range of 600-800 nm and spherical

aberration correction of around 70% was achieved at 650 nm wavelength. Therefore it can

be said that lens aberration is mitigated if not completely corrected. However, we believe

that there is much room for improvement. Firstly, efficiency of the metasurfaces can be

improved by optimizing the nanopillar design both in terms of Pancharatnam-Berry phase

design and by considering near field interactions between the pillars. As discussed, with

the current design, it is not possible to correct both chromatic and spherical aberration by

using metasurfaces in cascading fashion. But it might be possible to correct various lens

aberrations using series of high efficiency metasurfaces similar to cascading lenses used in

an objective lens. The Pancharatnam-Berry phase based metasurfaces requires polarizers

and quarter wave plates to function in circular polarization mode. This can be avoided by

constructing metasurfaces with properly optimized propagation phase nanopillars which are

essentially polarization independent. Taking into account all these factors, the proposed

hybrid metacorrectors can have tremendous practical applications in imaging systems.

In quantum optics experiments with single photons, traditional optical components such

as beam splitters, waveplates etc are utilized. The control that can be achieved on phase

and polarization of light using metasurfaces can be tremendously useful in manipulating

quantum states of photons. One such application was discussed in this work for one of

the fundamental experiments of Quantum Optics, Hong Ou Mandel interference. A novel
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device, Dual gradient metasurface was proposed for this purpose which acts as a 50/50 beam

splitter but with additional functionality. A detailed theoretical calculation was carried out

and electromagnetic simulations were performed to realize this metasurface. Nanofabrication

steps followed to fabricate the metasurface were discussed in detail and proper optimization

of fabrication steps were done to achieve 50/50 transmission which is necessary to observe

quantum interference. Because of flexibility offered by metasurfaces in terms of phase and

polarization design, one can think beyond the functionalities of conventional components.

However, the performance of metasurfaces depends on the accuracy of nanofabrication. By

decreasing the degree of tapering and by obtaining accurate dimensions of nanopillars, one

can avoid undesirable diffraction orders. Designing metasurfaces to manipulate entangled

photon states can be promising for future compact quantum devices.

All in all, in this thesis various aspects of phase gradient metasurfaces are discussed as a

beam deflector, meta-corrector and as novel 50/50 beam splitter. Various stages of metasur-

face design such as analytical calculation, electromagnetic simulation, nanofabrication and

optical characterization are discussed in detail. The tremendous potential of metasurface

are realized for various applications at the same time their limitations and future prospects

are also stated.
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