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Abstract 

Excavation operations produce several tons of soil generally contaminated by the presence of pollutants. Excavated 
soil is considered as waste and it can be either sent to landfill or destined for reuse depending on the level of 
pollution. In any case, soil should be properly treated in order to: (i) decrease the release of pollutants into the 
environment, and (ii) minimize the problems involved in civil engineering applications due to the reactions between 
cementitious phases and pollutants. In the context of this thesis, we focused on sulfates and molybdenum (Mo). 
Concerning sulfates, we considered two main issues: (i) external sulfate attack of concrete structures, which are in 
direct contact with sulfate-rich soil (e.g. dams, foundations), and (ii) the release of sulfates into solution in addition 
to the swelling and mechanical strength loss in sulfate-rich soil intended for valorization (e.g. reuse in road 
construction). In the case of Mo, its release into solution is also a serious concern as it can lead to significant risks 
for the environment. Therefore, in this thesis, we investigated the reaction of concrete in contact with sulfates, and 
the stabilization of sulfates by using alternative binders for pollution reduction and for reuse of soil. Additionally, we 
studied the interaction of Mo with alternative binders and their capacity to stabilize Mo. 

First, we studied the capacity of seven different concretes to resist external sulfate attack under similar experimental 
conditions. It was found that ordinary Portland cement had high expansions (>0.1%) due to the formation of 
ettringite in excess caused by the reaction between aluminates and sulfates. Portland cement without C3A 
presented lower expansions but gypsum was found to be responsible of cracking at later ages. Meanwhile, 
alternative binders had low expansions in the range of 0.01-0.03% explained by the absence of C3A and portlandite, 
in addition to the formation of ettringite during hydration (case of ettringite binders) and the absence of calcium 
(case of the geopolymer-based metakaolin).  

Second, we compared the capacity of four different binders to stabilize sulfates in a sulfate-spiked soil. Binders 
having high C3A content led to high volume expansions (>5%) caused by the formation of ettringite in excess. 
These binders also released heavy metals into solution due to their high clinker content. In contrast, binders 
containing ground granulated blast furnace slag (GGBS) led to low expansions (<2%), sulfate retention was about 
89% and lower heavy metals contents were detected in solution. Sulfate solubility was controlled by ettringite, which 
did not lead to expansion probably due to the low kinetics of precipitation in addition to the absence of portlandite, 
which is often related to expansive ettringite. 

Finally, we studied the interaction of Mo with three different binders and their capacity to stabilize Mo. Mo retention 
varied from one binder to another and also depended on the initial Mo concentration. At high Mo concentrations 
(>500 mg/kg of binder), the precipitation of powellite (CaMoO4) was found to be the dominant mechanism 
controlling Mo solubility. Mo was also found with calcium and sulfates probably due to the interaction of Mo with 
sulfate-bearing phases (e.g. substitution or adsorption). Moreover, Mo interacted with calcium silicate hydrates (C-
S-H), probably due to the adsorption onto C-S-H surface. The synthesis of C-S-H using 5 different Mo 
concentrations were then performed. Mo was largely immobilized (>95%) in all the synthetic C-S-H phases. The 
main mechanism of Mo stabilization was attributed to the coprecipitation of powellite. The adsorption of Mo onto 
the surface of C-S-H was assumed to be a secondary mechanism of Mo stabilization. Finally, modeling performed 
with PHREEQC showed that powellite only precipitated for Mo concentrations superior to 90 mg/kg of solid. 

 

Keywords: immobilization, alternative binders, stabilization mechanisms, concrete, soil, sulfates, molybdenum, 
modeling.  
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Résumé 

Les opérations d'excavation produisent plusieurs tonnes de sols généralement contaminés par la présence de 
polluants. Les sols excavés sont considérés comme des déchets et sont soit envoyés en décharge, soit destinés 
à être réutilisés en fonction du niveau de pollution. Dans tous les cas, les sols doivent être correctement traités afin 
de : (i) diminuer le relargage de polluants dans l'environnement, et (ii) minimiser les problèmes entrainés dans les 
projets de génie civil liés aux réactions entre les phases cimentaires et les polluants. Dans cette thèse, nous nous 
sommes concentrés sur les sulfates et le molybdène (Mo). Concernant les sulfates, nous avons considéré deux 
problématiques principales : (i) l'attaque sulfatique externe des structures en béton qui sont en contact direct avec 
des sols sulfatés (ex : barrages, fondations), et (ii) le relargage de sulfates en solution, en plus du gonflement et 
de la perte de résistance mécanique dans des sols sulfatés destinés à la valorisation (ex : réutilisation dans la 
construction de routes). Dans le cas du Mo, il peut se retrouver en solution, entraînant alors des risques importants 
pour l'environnement. Par conséquent, dans cette thèse, nous avons étudié la réaction du béton au contact des 
sulfates et la stabilisation des sulfates dans les sols en utilisant des liants alternatifs afin de réduire leur pollution 
et envisager leur réutilisation. De plus, nous nous sommes intéressés à l'interaction du Mo avec des liants alternatifs 
et leur capacité à stabiliser le Mo. 

Dans un premier temps, nous avons étudié la capacité de sept bétons différents à résister à l'attaque sulfatique 
externe dans des conditions expérimentales similaires. Le ciment Portland ordinaire a présenté des expansions 
élevées (>0,1%) en raison de la formation d'ettringite en excès provoquée par la réaction entre les aluminates et 
les sulfates. Pour le ciment Portland sans C3A, des expansions plus faibles ont été mesurées, mais l’apparition de 
fissures à plus long terme a été attribuée à la formation de gypse. Par ailleurs, les liants alternatifs ont présenté de 

faibles expansions, de l'ordre de 0,01 à 0,03%, expliquées par l'absence de C3A et de portlandite, en plus de la 
formation d'ettringite lors de l'hydratation (cas des liants ettringitiques) et de l'absence de calcium (cas du 
géopolymère à base de métakaolin).  

Dans un deuxième temps, nous avons comparé la capacité de quatre liants à stabiliser les sulfates dans des sols 

sulfatés. Les liants ayant une teneur élevée en C3A ont entrainé des expansions élevées (>5%) à cause de la 
formation d'ettringite en excès. Ces liants ont également rélargué des métaux lourds en solution du fait de leur 
teneur élevée en clinker. En revanche, les liants contenant du laitier ont conduit à de faibles expansions (<2%), la 
rétention des sulfates a été d'environ 89%, et avec un relargage limité de métaux lourds. La solubilité des sulfates 
a été contrôlée par l'ettringite, qui n'a pas conduit à une expansion, peut-être en raison de la faible cinétique de 
précipitation et de l'absence de portlandite, souvent liée à l'ettringite expansive. 

Enfin, nous avons étudié l'interaction du Mo avec trois liants différents et leur capacité à stabiliser le Mo. La rétention 
du Mo variait d'un liant à l'autre et dépendait également de la concentration initiale en Mo. À des concentrations 
élevées de Mo (>500 mg/kg de liant), la précipitation de powellite (CaMoO4) s'est avérée être le principal 
mécanisme de stabilisation du Mo. Le Mo a également été trouvé avec le calcium et les sulfates probablement en 
raison de l'interaction (substitution ou adsorption) du Mo avec des phases sulfatées (ex : 
ettringite/monosulfoaluminate). De plus, le Mo a été aussi mélangé avec des silicates de calcium hydratés (C-S-
H), probablement en raison de l'adsorption du Mo dans la surface de C-S-H. La synthèse de 5 différents C-S-H 
avec du Mo a été réalisée et le Mo a été largement immobilisé (>95%) dans toutes les phases. Le principal 
mécanisme de stabilisation du Mo a été attribué à la coprécipitation de la powellite et l'adsorption de Mo sur la 
surface de C-S-H a été considérée le mécanisme secondaire de stabilisation. Enfin, la modélisation réalisée avec 
PHREEQC a montré que le powellite a précipité uniquement pour des concentrations de Mo supérieures à 
90 mg/kg de solide. 
 
Mots clés : immobilisation, mécanismes de stabilisation, béton, sol, métaux lourds, sulfates, molybdène, 
modélisation. 
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Notations 

AAM:  Alkali-activated materials 

AAS:  Alkali-activated ground granulated blast furnace slag cement 

AFt:  Ettringite 

C-S-H:  Calcium silicate hydrate 

CS̅:  Calcium sulfate or anhydrite (CaSO4) 

C2S:  Calcium silicate or belite (Ca2SiO4) 

C3A:  Tricalcium aluminate or celite (Ca3Al2O6) 

C3S:  Tricalcium silicate or alite (Ca3SiO5) 

C4AF:  Tetracalcium alumonoferrite or brownmillerite  

CEM-SR:  Sulfate-resisting Portland cement 

CEM I:  Ordinary Portland cement of type I 

CEM III/C: Blast furnace slag CEM III/C cement  

CH:  Portlandite 

CSA:  Calcium sulfoaluminate-belite cement 

E:  Young modulus  

ESA:  External sulfate attack 

FT-IR:  Fourier transform infrared spectroscopy  

GGBS:  Ground granulated blast furnace slag 

GP:  Metakaolin geopolymer cement 

Gv:  Volume expansion 

ICP-AES: Inductively Coupled Plasma Atomic Emission Spectrometry 

L/S:  Liquid to solid ratio 

MK:  Metakaolin 

Mo:  Molybdenum  

Ms:  Calcium monosulfoaluminate 

ND:  Not determined 

NG:  Negligible 

Rc:  Compressive strength 

Rit or Rtb: Indirect tensile strength 

SEM/EDS: Scanning Electron Microscopy with Energy Dispersive Spectroscopy  

SSC:  Supersulfated GGBS cement  

TGA:  Thermogravimetric analysis  

TOC:  Total organic carbon 

v%:  Percentage by volume  

VBS: Soil methylene blue value 

w/c:  Water to cement ratio  

w/s:  Water to solid ratio 

wt%:  Percentage by weight  

XA2:  Moderately aggressive chemical environment exposure class 

XRD:  X-ray diffraction 
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General introduction 

Excavation operations produce several tons of soil generally contaminated by the presence of 

pollutants. The source of pollutants in soil can be either from natural origin (i.e. soil parent 

materials) or from anthropogenic activities (e.g. mining, oil and agriculture industries). 

Excavated soil is considered as waste and it can be either sent to landfill (disposal in 

conditioned areas) or destined for reuse depending on the level of pollution. In any case, soil 

should be properly treated in order to: (i) decrease the release of pollutants into the 

environment, and (ii) minimize the problems involved in civil engineering applications due to 

the interaction between cementitious binders and pollutants. In the context of this thesis, we 

focused on sulfates and molybdenum (Mo). 

Concerning sulfates, we considered two main issues: (i) external sulfate attack of concrete 

structures, which are in direct contact with sulfate-rich soil (e.g. dams, foundations), and (ii) 

the release of sulfates into solution, in addition to the swelling and mechanical strength loss in 

sulfate-rich soil intended for valorization (e.g. reuse in road construction). In the case of Mo, 

its release into solution is also a serious concern as it can lead to significant risks for both 

human health and for the local environment. Therefore, in this study, we investigated the 

reaction of concrete in contact with sulfates, and the stabilization of sulfates by using 

alternative binders for pollution reduction and for reuse of soil. Additionally, we studied the 

interaction of Mo with alternative binders in order to better understand the stabilization of Mo-

contaminated materials. 

Figure 1.1 outlines the context of this thesis. For ease of reading, all the objectives were 

summarized after the introduction. 

 

Figure 1.1 – Concept mapping presenting the context of the present thesis “stabilization of sulfates and molybdenum by using 

alternative binders”. 
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First, we present in Chapter 1 the literature review of this study. The first part focuses on the 

presence of sulfates in soil, their sources and concentrations. As sulfate-rich soils are an 

external source of sulfates for concrete leading to durability issues, we also discuss the 

behavior of ordinary Portland cement (OPC) and alternative binders under external sulfate 

attack (ESA). The second part of this chapter presents a general overview of the treatment of 

sulfate-rich soils by using cementitious binders. The last part of this chapter focuses on the 

presence of heavy metals in soil, and especially on Mo. This section describes the main 

immobilization mechanisms of heavy metals by using cementitious binders and refers to 

previous research works in this field. In addition, we explain the main characteristics of the 

geochemical model used in this investigation. 

Chapter 2 describes all the materials and methods used in this study. The first part of this 

chapter presents all the materials (composition, preparation and curing conditions) and the 

second part focuses on the methods used to accomplish the objectives of this research. 

Since sulfate-rich soils represent an external source of sulfates for concretes, we study in 

Chapter 3 the capacity of seven concretes to resist ESA under similar experimental conditions. 

Three different Portland cements and four alternative binders were used to fabricate the 

concretes. The alternative binders were grouped into two categories: (i) alkali-activated binders 

with or without calcium oxides, and (ii) ettringite binders (supersulfated ground granulated blast 

furnace slag (GGBS) cement and calcium sulfoaluminate cement).  Therefore, the first part of 

this chapter describes the compressive strength results obtained in the hardened state of all 

the concretes tested. The second part presents the results obtained from the longitudinal 

expansion and mass variations. Finally, we present the microstructural observations, chemical 

and mineralogical analyses and thermodynamic calculations performed in concretes before 

and after ESA. 

On the other hand, sulfate-rich soils can represent an important durability issue when they are 

treated for reuse. Therefore, Chapter 4 deals with the study of stabilization of sulfates. In the 

literature, preliminary work in this field focused mainly on the evaluation of swelling in sulfate-

rich soils. However, not much is known about the decrease in the sulfate concentration in 

solution and about the underlying sulfate stabilization mechanisms after treatment with 

cementitious and alternative binders. Hence, we studied the sulfate immobilization, swelling 

and mechanical properties of different treatments. To this end, a sulfate-spiked soil was treated 

with four different binders: one OPC, one alternative clinker (composed of ye’elimite and 

belite), one blast furnace slag Portland cement (CEM III), and one experimental binder (90% 

GGBS and 10% OPC). The first part of this chapter describes the results obtained from 

leaching tests and the results of swelling and splitting tests carried out for all the treatments. 

The third part of this chapter focuses on one specific treatment, which seemed to give the best 

results in terms of sulfate immobilization and swelling. Therefore, we present the analyses in 

the medium and long-term (leaching, geotechnical properties and modeling) and the numerical 

results obtained by modeling using the code PHREEQC. 

Finally, the release of Mo into solution results in negative impact on the environment. 

Therefore, the understanding of Mo stabilization becomes necessary in order to decrease the 

potential risk of Mo-contaminated materials. To this end, Chapter 5 focuses on the stabilization 

of Mo by using cementitious binders. In this part, we studied the interaction of Mo with three 

different binders and their capacity to immobilize Mo. Thus, the binders (one OPC, one 

experimental binder (90% GGBS and 10% OPC) and one supersulfated cement) were 
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artificially spiked with different Mo concentrations. First, we present the results obtained from 

leaching tests of Mo-spiked binders, their mineralogical characterization and modeling carried 

out with PHREEQC. The Mo stabilization mechanisms were also studied by the synthesis of 

calcium silicate hydrate (C-S-H); therefore, the results obtained from the synthetic C-S-H 

phases with Mo are presented. This includes the Mo concentration in solution after filtration of 

C-S-H as well as the microstructure and mineralogical characterization of all the synthetic 

phases, followed by the numerical calculations obtained in the modeling of C-S-H with Mo. 

 

Summary of objectives 

 

The objectives of this research were grouped in three main parts: 

 

1. Concrete under external sulfate attack 

This part of the project aims to: (i) realize a benchmark of several binders by testing their 

capacity to resist external sulfate attack under similar experimental conditions, and (ii) 

contribute to the understanding of the mechanisms associated with the expansion or non-

expansion of the binders by using microstructural and mineralogical analyses and 

thermodynamic calculations. 

2. Stabilization of sulfates 

This part of the research aims to (i) compare the capacity of several alternative binders to 

immobilize sulfates in a sulfate-spiked soil, (ii) contribute to the understanding of the sulfate 

stabilization mechanisms, and (iii) evaluate the swelling potential and the mechanical 

properties of all the treatments. 

3. Stabilization of molybdenum 

This part of the work aims to (i) compare the capacity of several binders to immobilize 

molybdenum, and (ii) contribute to the understanding of the mechanisms associated with the 

molybdenum stabilization. 
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Introduction générale 

Les opérations d'excavation produisent plusieurs tonnes de sols généralement contaminés par la présence de 

polluants. La source des polluants dans le sol peut être d'origine naturelle (c'est-à-dire provenant de la dégradation 

de la roche-mère) ou anthropique (par exemple les industries minière, pétrolière et agricole). Les sols excavés sont 

considérés comme des déchets et sont soit envoyés en décharge, soit destinés à être réutilisés en fonction du 

niveau de pollution. Dans tous les cas, les sols doivent être correctement traités afin de : (i) diminuer le relargage 

de polluants dans l'environnement, et (ii) minimiser les problèmes entrainés dans les projets de génie civil liés aux 

réactions entre les phases des liants et les polluants. Dans cette thèse, nous nous sommes concentrés sur les 

sulfates et le molybdène (Mo).  

Concernant les sulfates, nous avons considéré deux problématiques principales : (i) l'attaque sulfatique externe 

des structures en béton qui sont en contact direct avec des sols sulfatés (ex : barrages, fondations), et (ii) le 

relargage de sulfates en solution, en plus du gonflement et de la perte de résistance mécanique dans des sols 

sulfatés destinés à la valorisation (ex : réutilisation dans la construction de routes). Dans le cas du Mo, il peut se 

retrouver en solution entraînant des risques importants pour l'environnement.  

Par conséquent, dans cette thèse, nous avons étudié la réaction du béton au contact des sulfates et la stabilisation 

des sulfates dans les sols en utilisant des liants alternatifs afin de réduire leur pollution et envisager leur réutilisation. 

De plus, nous nous sommes intéressés à l'interaction du Mo avec des liants alternatifs et leur capacité à stabiliser 

le Mo. Une représentation schématique de ce projet de thèse est proposée en Figure 1.1. Les objectifs sont 

précisés à la fin de cette introduction. 

Pour commencer, nous présentons au Chapitre 1 l’état de l’art de cette étude. La première partie se concentre sur 

la présence de sulfates dans les sols, leurs sources et leurs concentrations. Étant donné que les sols sulfatés sont 

une source externe de sulfates entrainant des problèmes de durabilité dans les bétons, nous traitons le 

comportement du ciment Portland ordinaire (OPC) et des liants alternatifs vis-à-vis de l’attaque sulfatique externe. 

La deuxième partie présente un état de l’art général sur le traitement des sols sulfatés à l'aide de liants cimentaires. 

Enfin, la troisième partie s'intéresse à la présence de métaux lourds dans les sols, et notamment à celle du Mo. 

Cette section décrit les principaux mécanismes d'immobilisation des métaux lourds et fait référence aux recherches 

antérieures dans ce domaine. De plus, nous présentons une explication succincte et des exemples du modèle 

géochimique utilisé dans cette recherche. 

Le Chapitre 2 décrit les matériaux et les méthodes utilisés dans cette étude. La première partie se concentre sur 

les matériaux, leur description, leur composition, leur préparation et les conditions de stockage. La deuxième partie 

porte sur les méthodes utilisées pour atteindre les objectifs de cette recherche. 

Puisque les sols sulfatés représentent une source externe de sulfates pour les bétons, nous avons étudié, dans le 

Chapitre 3, la capacité de sept bétons à résister à l’attaque sulfatique externe dans les mêmes conditions 

expérimentales. Trois ciments Portland et quatre liants alternatifs ont été utilisés pour fabriquer ces bétons. Les 

liants alternatifs ont été regroupés en deux catégories : (i) liants alcali-activés avec ou sans oxydes de calcium et 

(ii) liants ettringitiques (ciment sursulfaté et ciment sulfoaluminaux). La première partie de ce chapitre décrit les 

résultats de résistance à la compression obtenus à l'état durci des bétons. La deuxième partie présente les résultats 

obtenus à partir des analyses effectuées dans les bétons avant et après attaque. Premièrement, les résultats de 

l'expansion longitudinale et de la variation de masse sont présentés. Finalement, nous présentons les analyses 

minéralogiques et microstructurales et des calculs thermodynamiques avant et après attaque réalisés afin de 

mettre en évidence les mécanismes d'expansion et de non-expansion des liants. 

Le Chapitre 4 est dédié à l'étude de la stabilisation des sulfates dans les sols. Dans la littérature, les travaux de 

recherche se concentrent principalement sur l'évaluation du gonflement des sols sulfatés. Dans ce projet, nous 
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avons donc étudié l'immobilisation des sulfates, le gonflement et les propriétés mécaniques de différents 

traitements. Un sol sulfaté artificiellement a été traité par quatre liants différents : un OPC, un clinker alternatif 

(composé de ye'elimite et de bélite), un ciment au laitier de haut fourneau (de type CEM III) et un liant expérimental 

(90% laitier et 10% OPC). La première partie de ce chapitre se concentre sur la justification des formulations 

utilisées pour les traitements du sol sulfaté. Ensuite, il présente les résultats obtenus lors des essais de lixiviation 

pour évaluer l’immobilisation des sulfates ainsi que les résultats des essais d’aptitude des traitements (gonflement 

et résistance mécanique). La troisième partie présente l’étude approfondie faite sur un traitement particulier du sol 

sulfaté. Ici, l’immobilisation des sulfates ainsi que les propriétés géotechniques du traitement ont été évaluées à 

court, moyen et long termes. De plus, tous les résultats expérimentaux obtenus lors des essais de lixiviation ont 

été comparés avec des calculs numériques obtenus à partir d’un modèle géochimique développé avec le logiciel 

PHREEQC. Ce travail de modélisation a été effectué afin de mieux comprendre les mécanismes de stabilisation 

des sulfates pour ce traitement en particulier. 

Enfin, le Chapitre 5 est dédié à l’étude de la stabilisation du molybdène (Mo). Nous nous sommes concentrés sur 

l'interaction du Mo avec trois liants différents (un OPC, un liant expérimental (90% laitier et 10% OPC) et un ciment 

sursulfaté) et sur leur capacité à immobiliser le Mo. Ainsi, ces trois liants ont été artificiellement dopés avec 

différentes concentrations de Mo. La stabilisation du Mo a été aussi étudiée par la synthèse du silicate de calcium 

hydraté (C-S-H). La première partie de ce chapitre présente tous les résultats expérimentaux obtenus sur les pates 

dopées en Mo. Dans un premier temps, nous présentons les résultats des tests de lixiviation réalisés sur pâte et 

leur caractérisation minéralogique suivie de la modélisation développée avec le logiciel PHREEQC. 

Deuxièmement, les résultats obtenus à partir des phases synthétiques de C-S-H avec Mo sont présentés. Cela 

comprend la concentration en Mo en solution après filtration du C-S-H ainsi que leur caractérisation minéralogique 

et microstructurale et les calculs numériques obtenus dans la modélisation sur le C-S-H avec Mo. 

 

Résumé des objectifs 

 

Les objectifs de ce travail de recherche ont été regroupés par parties : 

 

1. Béton sous attaque sulfatique externe 

Cette partie vise à : (i) réaliser un « benchmark » ou une étude comparative de plusieurs liants vis-à-vis de leur 

capacité à résister à l’attaque sulfatique externe dans des conditions expérimentales similaires, et (ii) contribuer à 

la compréhension des mécanismes associés à l'expansion ou non-expansion des liants en utilisant des analyses 

microstructurales et minéralogiques ainsi que des calculs thermodynamiques. 

2. Stabilisation des sulfates 

Cette partie vise à : (i) comparer la capacité de plusieurs liants alternatifs à immobiliser les sulfates dans un sol 

sulfaté, (ii) comprendre les mécanismes d'immobilisation des sulfates, et (iii) évaluer le potentiel de gonflement et 

les propriétés mécaniques des traitements du sol sulfaté. 

3. Stabilisation du molybdène 

Cette partie vise à : (i) comparer la capacité de plusieurs liants à immobiliser du molybdène, et (ii) contribuer à la 

compréhension des mécanismes associés à sa stabilisation. 
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1. Chapter 1 – Literature review 

 

Résumé 

Ce premier chapitre présente l’état de l’art sur la pollution des sols et leur valorisation ou mise en décharge après 

les opérations d’excavation. De plus, nous présentons l’état de l’art sur la présence des sulfates dans les sols et 

les problèmes de durabilité qu’il entraine sur les projets de génie civil. Par conséquent, nous traitons l’attaque 

sulfatique externe sur les bétons. De plus, comme les sulfates représentent aussi un problème de durabilité après 

traitement pour leur valorisation, ce chapitre présente l’état de l’art sur le traitement des sols par de ciment Portland 

et les désavantages vis-à-vis du gonflement. Enfin, comme le molybdène (Mo) dans les sols peut se relarguer en 

solution polluant l'environnement, la dernière partie de ce chapitre présente l’état de l’art sur la présence des 

métaux lourds dans les sols et les mécanismes de stabilisation par des liants cimentaires. Cette partie se focalise 

notamment sur la stabilisation de molybdène (Mo). La Table 1.11 présente un bilan de l’état de l’art fait dans cette 

thèse. 

Les sulfates : 

L’anion sulfate SO4
2-

 est trouvé dans des sols provenant des diverses sources dont on peut citer des sources 

directes ou primaires de sulfate dans son état pur, telles que les roches contenant du gypse (CaSO4∙2H2O) (forme 

de sulfate la plus répandue à l’échelle mondiale), l’anhydrite (CaSO4), le sulfate de sodium (Na2SO4) et le sulfate 

de magnésium (MgSO4). Parmi les sources secondaires de sulfate, on trouve les eaux interstitielles qui 

transportent les ions sulfate, ainsi que les minéraux riches en sulfure comme les pyrites (FeS2) lors des réactions 

d’oxydation.  

Les sols sulfatés représentent une source externe de sulfates qui, en contact avec des bétons, peuvent entrainer 

des expansions et fissurations. Ce phénomène est connu sous le nom d’attaque sulfatique externe, terme utilisé 

pour décrire les réactions chimiques entre les ions sulfate et les composants du béton (notamment à base de 

ciment Portland). L’action de sulfates sur le béton produit divers phénomènes physico-chimiques qui dépendent de 

nombreux paramètres, tels que l’origine des ions sulfate, le cation associé et sa concentration, la formulation du 

béton, etc., et conduiront à des dégradations plus ou moins importantes. Il existe des ciments Portland avec une 

chimie modifiée connus sous le nom « ciments résistants aux sulfates » ayant une expansion limitée (e.g. CEM I-

SR0 ou ciments de type CEM III/C en accord avec la norme EN 197-1). Cependant, ces matériaux ont aussi 

présenté des dégradations dans le temps (e.g. fissuration et décohésion). De ce fait, des liants alternatifs comme 

les liants ettringitiques (e.g. ciments sur-sulfaté et sulfo-alumineux) et les liants alcali-activés (e.g. laitiers alcali-

activés et géopolymères) ont été aussi testés vis-à-vis des attaques sulfatiques externes et ont montré des 

résistances supérieures à celles des ciments Portland vis-à-vis des expansions. 

Bien que les liants alternatifs soient reconnus comme étant résistants aux sulfates externes, les résultats 

disponibles dans la littérature sont difficilement comparables, notamment à cause des conditions expérimentales 

variables d’une étude à l’autre (e.g. la fabrication d’éprouvettes, le cation associé à la solution sulfatique, la 

concentration de sulfate, le temps de l’essai). Il est alors nécessaire de pouvoir comparer ces liants vis-à-vis de 

l’attaque sulfatique externe en évaluant leurs gonflements sous les mêmes conditions expérimentales. 
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L’immobilisation des sulfates : 

Concernant la mise en décharge des sols en France, l’arrêté du 12 décembre 2014 avec la décision nº20031 

établissent les valeurs limites de concentrations des sulfates en matière de lixiviation (en termes de relargage 

cumulé). En fonction de ces limites de concentration, il y a trois catégories de déchets : les déchets non dangereux 

inertes, les déchets non dangereux non inertes et les déchets dangereux (cf. Chapitre 1 - Table 1.6). L’impact 

économique de la mise en décharge des sols sulfatés est plus important dans le cas de fortes teneurs en polluants, 

d’où l’importance de réduire le relargage des sulfates en solution. L’immobilisation des sulfates peut se faire via 

l’utilisation de liants cimentaires ; on parle alors de la stabilisation. Cette technique regroupe des procédés 

chimiques permettant de réduire le potentiel dangereux d’un déchet car les polluants deviennent moins solubles, 

moins mobiles ou moins toxiques. Ce processus permet donc de transformer un déchet dangereux en un matériau 

acceptable d’un point de vue environnemental. 

La valorisation des sols sulfatés : 

L’utilisation des liants pour le traitement des sols permet d’obtenir une amélioration de leurs propriétés mécaniques 

à court et long termes. D’après Le Roux et Orsetti [1], la chaux est communément utilisée pour le traitement des 

sols grâce à l’amélioration des propriétés mécaniques (e.g. augmentation de la portance, amélioration de la 

consistance). Cependant, le traitement des sols sulfatés à la chaux ou aux liants similaires comme le ciment 

Portland, entrainent des réactions sulfatiques expansives. Ces réactions sulfatiques se produisent lors de 

l’interaction entre les oxydes de calcium, aluminium et silicium (provenant soit des sols notamment argileux, soit 

des liants) et les sulfates formant alors des minéraux expansifs tels que l’ettringite et la thaumasite (cette dernière 

phase n’est pas étudiée dans la présente étude). Ces minéraux expansifs entrainent des gonflements dans les 

sols, réduisant alors la résistance mécanique acquise et pouvant conduire à l’effondrement de la structure. Ce 

processus décrit dans ce chapitre dans les équations : Equation 6, Equation 7, Equation 8 et Equation 9. De plus, 

un schéma explicatif des réactions conduisant l’expansion du sol est présenté en Figure 1.10.  

D’après la littérature, les liants pouvant être utilisés dans le traitement des sols sulfatés limitant la formation des 

phases expansives sont les liants hydrauliques qui consomment de la chaux pendant leur processus d’hydratation 

(e.g. ciments à base de laitier de haut-fourneau, des fumées de silice et des cendres volantes). Ils peuvent aussi 

avoir des teneurs limitées en aluminates tricalciques (C3A), car en réduisant la teneur en aluminium on réduit sa 

disponibilité à réagir avec les sulfates et donc à former de l’ettringite. 

La stabilisation du molybdène (Mo) :  

Concernant la mise en décharge des sols en France, l’arrêté du 12 décembre 2014 avec la décision nº2003 

établissent les valeurs limites de concentrations en métaux lourds en matière de lixiviation (en termes de relargage 

cumulé). Concernant le molybdène (Mo), il y a trois catégories de déchets en fonction des limites de concentration 

du Mo : les déchets non dangereux inertes, les déchets non dangereux non inertes et les déchets dangereux (cf. 

Chapitre 1 - Table 1.6). L’impact économique de la mise en décharge des sols contaminés en Mo est plus important 

dans le cas de fortes teneurs en polluants, d’où l’importance de réduire le relargage des Mo en solution.  

Plusieurs métaux lourds sont des micronutriments essentiels pour les plantes, les animaux et l’Homme. 

Néanmoins, si les concentrations dépassent certains seuils, ils deviennent toxiques. C’est le cas du Mo, qui en 

excès peut entrainer une sévère toxicité dont la maladie associée est la « molybdénose ». Ce métal est trouvé 

naturellement dans les sols mais est aussi produit par des activités anthropiques (e.g. industrielles agricoles, 

métallurgiques et pétrolières). Dans le sol, le Mo se présente notamment sous la forme de molybdate (MoO4
2-

), qui 

est un anion avec le Mo en état d’oxydation +6.  

                                                
1 Annexe des critères et procédures d'admission des déchets en décharge. 
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D’après la littérature, les métaux lourds sous forme d’anions (ions de charge négative) ou de cations (ions de 

charge positive) présentent des différences importantes dans leur comportement d’adsorption ou de précipitation 

en fonction du pH (cf. Figure 1.25 and Figure 1.26). Ces réactions redox deviennent plus importantes quand les 

espèces peuvent changer son état d’oxydation. Cependant, le Mo est toujours présent sous la forme de molybdate 

pour les valeurs du pH au milieu cimentaire. 

Il est important d’immobiliser les métaux lourds présents dans les sols afin de réduire leur solubilité dans l’eau. Il 

existe différentes techniques de stabilisation qui pourraient être employées, parmi lesquelles « la stabilisation par 

des liants cimentaires » fait l’objet de cette étude. Dans la littérature, les mécanismes d’immobilisation des métaux 

lourds par des liants cimentaires sont principalement : la sorption, la substitution et la précipitation. Quelques 

auteurs ont rapporté l’immobilisation partielle de Mo par le ciment Portland dont le mécanisme de stabilisation 

identifié était la précipitation d’un minéral de faible solubilité appelé powellite (CaMoO4). D’autres ont montré une 

immobilisation partielle du Mo par substitution des anions comme le sulfate dans l’ettringite. Une compréhension 

plus approfondie des mécanismes de stabilisation du Mo par des liants cimentaires apparait nécessaire afin 

d’envisager, dans le futur, un traitement des matériaux pollués en Mo. 
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Introduction  

This chapter presents the literature review related to polluted soils and their reuse or disposal 

after excavation operations. Therefore, we present a general background on the presence of 

sulfates in soil and its effect in concrete. First, we deal with the external sulfate attack (ESA) 

and the reaction of several binders under this phenomenon. Second, since the presence of 

sulfates in soil can also lead to important durability issues when soil is treated for reuse, this 

chapter presents an overview of the treatment of sulfate-rich soil by using cementitious 

binders. In this part, we explain why the treatment of this type of soil by using Portland cement 

or lime is not suitable compared with the use of alternative binders. 

Furthermore, as molybdenum (Mo) in contaminated materials can release into solution 

polluting the environment, we present an overview of the stabilization of heavy metals by using 

cementitious binders and give details about the immobilization of Mo. Therefore, this section 

describes the main immobilization mechanisms of heavy metal-stabilization and refers to 

previous research in this field. 

Finally, the last part of this chapter provides a background on the modeling used to predict the 

behavior of pollutants in aqueous systems and presents some examples that inspired the 

modeling carried out in the current investigation. 

At the end of this chapter, Table 1.11 presents a summary of the literature review. 

 

1.1 Soil containing sulfates: a durability issue for concrete 

As mentioned previously, the presence of sulfates leads to serious concerns in civil 

engineering projects. In this part, we deal with the external sulfate attack (ESA) of concrete 

structures in direct contact with sulfate-rich soil. 

Sulfate (SO4
2-

) is an anion found in soil due to the dissolution of minerals such as gypsum 

(CaSO4∙2H2O), anhydrite (CaSO4), sodium sulfate (Na2SO4), barite (BaSO4) and magnesium 

sulfate (MgSO4). Among these minerals, gypsum (CaSO4∙2H2O) is the main form of sulfate 

found in soil [2]–[4]. Other sources of sulfates in soil are the groundwater, which transports the 

sulfate ions, and some minerals containing sulfurs such as pyrite (FeS2) after oxidation 

reactions [2].  

In France, sulfates are generally found in sedimentary rocks in the form of gypsum or anhydrite. 

The principal mines of gypsum are located in the Paris Basin where the production of gypsum 
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reaches about 68% of the national production [5]. The Paris Basin consists of three or four 

layers of gypsum alternating with sedimentary rocks, mainly marlstone, which contains lime 

and clay and therefore protect gypsum from dissolution [5]. Table 1.1 presents the water 

solubility values of different sulfate species commonly found in soils. 

Table 1.1 – Solubility in water at 20°C of different species of sulfates found in soils [3], [6], [7]. 

Sulfate specie Solubility (g/L) Sulfate specie Solubility (g/L) 

MgSO4.6H2O 440 Na2SO4 58 

FeSO4.7H2O 260 CaSO4.2H2O 2.4 [7] 

Na2SO4.10H2O 194 CaSO4 2 [7] 

K2SO4 111   

 

In the following sections, we first present an overview of the behavior of ordinary Portland 

cement (OPC)-based concretes and alternative binders under ESA. Second, we present the 

literature review related to the treatment of sulfate-rich soils with OPC or lime and with 

alternative binders. 

 

1.1.1 Ordinary Portland Cement-based binders under external 

sulfate attack 

External sulfate attack (ESA) is the process of degradation where expansive reactions are 

involved between sulfate ions coming from an external source and the phases in hardened 

matrices [8], [9]. Currently, the chemistry behind the degradation of Ordinary Portland Cement 

(OPC) under ESA has been widely studied and significant progress has been made towards 

its understanding in the last few years. In the literature, OPC is defined as a mixture of clinker 

(initially about 80% limestone and 20% clay) and calcium sulfate, which is generally added in 

the form of gypsum or semi-hydrate (CaSO4∙2H2O or CaSO4∙1/2H2O) and to slow the setting 

of the cement.  

The clinker is primarily composed of calcium oxide (CaO), silica (SiO2), alumina (Al2O3), and 

ferric oxide (Fe2O3). These oxides combine with each other to form four principal crystalline 

phases: tricalcium silicate or alite (C3S), bicalcium silicate or belite (C2S), tricalcium aluminate 

or celite (C3A) and tetracalcium aluminoferrite (C4AF) [10], [11]. An addition of water is 

necessary to hydrate the anhydrous cement. The hydrated OPC is typically composed of four 
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minerals—calcium silicate hydrate (C-S-H), portlandite (CH), ettringite (AFt), and calcium 

monosulfoaluminate (Ms). C-S-H is amorphous while the other three minerals are crystalline. 

In the following sections, we present an overview of the mechanisms of degradation of OPC 

under ESA and we describe the main parameters influencing its resistance to this type of 

attack. 

 

1.1.1.1  Mechanisms of degradation 

ESA is characterized by the ingress of sulfate ions from the environment into the concrete 

matrix. The matrix can initially present the leaching of portlandite (CH) and the decalcification 

of C-S-H [8], [12]. Subsequently, sulfate ions chemically react in the matrix with anhydrous 

calcium aluminate phases (C3A and C4AF) to form ettringite (3CaO∙Al2O3∙3CaSO4∙32H2O). It 

has also been reported that the ingress of sulfate ions into OPC materials can cause the 

transformation of Ms into AFt [12]–[14]. All of these chemical reactions lead to concrete 

expansion and cracking, which seem to appear when tensile stress due to restrained 

expansion exceeds the tensile strength of the matrix (theory of crystallization pressure) [15]–

[17]. Eventually, this damage can lead to softening and decohesion of OPC-based concretes 

[8], [9], [18]. 

According to the literature, two types of ESA have been identified in Portland cement-based 

materials: (i) an attack characterized by the formation of ettringite in hardened matrices 

containing high C3A content, and (ii) an attack characterized by the formation of gypsum in 

materials with low C3A content [14]. Therefore, several parameters should be taken into 

account in the formulation of concretes destined to be in contact with sulfates. According to 

Escadeillas and Hornin [3], the main parameters are: 

Environmental parameters: The European Standard NF EN 206-1 defines different exposure 

classes to formulate a concrete when exposed to chemical attacks. The exposure class is 

selected depending on the sulfate concentration present in either groundwater or natural soil. 

Hence, three different exposure classes are defined, and they are presented in Table 1.2: XA1 

“slightly aggressive chemical environment”, XA2 “moderately aggressive chemical 

environment” and XA3 “highly aggressive chemical environment”. This classification allows for 

improved selection of parameters for the formulation of durable concrete, such as the minimum 

cement content and the water to cement (w/c) ratio [3]. 
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Table 1.2 – Ranges of sulfate concentrations given in mg/L depending on the exposure classes of concretes under chemical 
attacks according to EN 206-1. 

Concentration of sulfate (SO4
2-

) in mg/L 

Exposure class XA1 XA2 XA3 

Groundwater ≥200 and ≤600 >600 and ≤ 3000 >3000 and ≤ 6000 

Natural soils ≥2000 and ≤3000 >3000 and ≤ 12000 >12000 and ≤ 24000 

 

Chemical parameters: The alumina content in the form of anhydrous aluminates (mainly C3A) 

seems to be the most important chemical parameter to influence the resistance of OPC 

materials to ESA. C3A reacts with sulfate ions at a late stage to form ettringite 

(3CaO∙Al2O3∙3CaSO4∙32H2O) causing expansion and degradation in the material [3], [19], 

[20]. Ettringite forms following the reaction presented in Equation 1 [3]: 

Equation 1. 3CaO∙Al2O3+ 3CaSO4∙2H2O + 26H2O → 3CaO∙Al2O3∙3CaSO4∙32H2O 

As a result, the French Standard NF P15-317 proposes 10% as the upper limit in C3A content 

for Portland cement clinker under sulfate environments, these cements are referred to as 

cements “PM”. The French Standard NF P 15-319 refers to the cements destined for being in 

contact with water at high sulfate concentrations as cements “ES” and proposed 5% as the 

upper limit in C3A content for Portland cement [3]. Similarly, the European Standard EN 197-

1 proposes that the amount of C3A should not exceed 5% when Portland cement clinker is 

used to make sulfate-resisting Portland cements. As an example, Ouyang et al. [20] studied 

ESA in four OPC-based mortars batched with a w/c ratio of 0.6 and with four different amounts 

of C3A (12%, 8.8%, 7% and 4.3%). Mortars were immersed in a sulfate solution containing 

4.3% magnesium sulfate and 2.5% sodium sulfate. They showed that expansions in mortars 

increased with increasing the C3A content. Moreover, they also verified that mortars with low 

C3A content (4.3% and 7%) presented a lower rate of expansion in time compared to the ones 

with high C3A content (8.8% and 12%). Figure 1.1 illustrates the results obtained by Ouyang 

et al. In this figure, x and y-axes represent the time given in months and the expansion given 

in percentage, respectively. 
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Figure 1.1 – Expansion in percentage as a function of time in months of OPC mortars immersed in a sulfate solution (4.3% 

magnesium sulfate and 2.5% sodium sulfate). W/c ratio = 0.6, C3A amounts: 12%, 8.8%, 7% and 4.3%. Taken from Ouyang 
et al. [20]. 

 

Physical parameters: The water to cement (w/c) ratio usually defines the porosity in OPC-

based materials. This parameter also influences their permeability and their mechanical 

strength. Several authors showed that the rate of degradation of OPC-based concretes under 

ESA increased with increasing the w/c ratio [3], [20]. Figure 1.2 shows the results of the 

influence of w/c ratio in the expansion of OPC under ESA obtained by Ouyang et al. [20], who 

studied OPC mortars immersed in a solution containing 4.3% magnesium sulfate and 2.5% 

sodium sulfate. Mortars were batched with three different w/c ratios (0.45, 0.6 and 0.8) and 

with a 12% C3A content. The authors showed that the rate of expansion in mortars increased 

with increasing the w/c ratio. 

 

Figure 1.2 – Expansion in percentage as a function of time in months of OPC mortars immersed in a sulfate solution (4.3% 

magnesium sulfate and 2.5% sodium sulfate). W/c ratios: 0.45, 0.6 and 0.8 and C3A content of 12%. Taken from Ouyang et 
al. [20]. 
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1.1.1.2  Sulfate-resisting Portland cements 

Some modifications in the chemical compositions of classical OPCs have been made by 

varying the C3A content in order to improve their durability under ESA. These cements are 

referred to as sulfate-resisting Portland cements (SR-Cements) because of the low C3A 

content [21]–[23]. Some of these materials do not contain C3A (e.g. CEM I-SR0 in accordance 

with EN 197-1). Instead, they have high amounts of tetracalcium alumino-ferrite (C4AF), which 

reacts with lower kinetics compared to C3A [21]–[23]. However, the hydration process of both 

phases C3A and C4AF are similar: first, the formation of ettringite and then, when gypsum is 

consumed, its conversion into calcium monosulfoaluminate (Ms) [23]. Tragardh and Bellmann 

[24] explained that C4AF is less reactive at low Al/Fe ratios and thus, SR-cements are made 

with raw materials containing low amounts of alumina in order to ensure the low rate of C4AF 

reaction. As a result, ettringite forms at a very slow rate and in a minor extent in these materials 

compared to the ones containing high amounts of C3A. 

The main hydration products of SR-cements are CH and C-S-H. Table 1.3 presents the three 

types of SR-cements according to the European Standard EN 197-1. 

Table 1.3 – Types of sulfate-resisting Portland cements according to EN 197-1. 

Type Amount of C3A in the clinker 

CEM I-SR 0 0% 

CEM I-SR 3 ≤3% 

CEM I-SR 5 ≤5% 

 

Several authors have shown that SR-Portland cement-based materials presented lower 

expansions than those in OPC materials when exposed to ESA [21]–[24]. Despite this, these 

materials have also presented damages. In some cases, SR-Portland cement-based materials 

showed delayed expansions and micro cracking, which have been attributed to the formation 

of gypsum. According to the literature, in these types of cement under ESA, gypsum might 

form besides ettringite, leading to the decohesion of the materials [12]–[14], [21]–[24]. 

 

1.1.1.3  Blast furnace cements 

Blast furnace cements are blended cements mainly composed of ground granulated blast 

furnace slag (GGBS) and Portland cement or Portland clinker. GGBS is a product from the 

ferrous metallurgy industry, and it is mainly composed of four oxides: lime (CaO) (30-50%), 
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silica (SiO2) (28-38%), alumina (Al2O3) (8-24%) and magnesia (MgO) (1-18%). There are also 

some minor elements such as sulfur (S), manganese oxide (MnO), iron oxide (Fe2O3), titanium 

oxide (TiO2) and alkalines (Na2O and K2O) [10], [25].  

When the liquid slag, coming out of the furnace, is rapidly cooled down, it forms a glassy 

structure which has latent hydraulic properties. This means that it is necessary to activate it in 

order to initiate its reaction with water. To this end, the pH of the system has to be high enough 

(pH 11 – 12); therefore, clinker or Portland cement is generally added to the mixture [10]. In 

these types of cement, the clinker provides the ions calcium (Ca
2+

), the hydroxides (OH
-
) 

NaOH and KOH, which activate the dissolution of the slag and the formation of C-(A)-S-H, 

which is the main hydration product of these types of cement.  

The reaction between the slag and the lime is represented in the theoretical Equation 2 (C-S-

H with an Ca/Si ratio of 1.5) [25].  

Equation 2. C5S3A + 2 C + 16H → C4AH13 + 3 CSH 

Slag + lime + water → calcium silicate hydrate 

When the slag contains high amounts of magnesium and it is activated by clinker or Portland 

cement, the phase hydrotalcite may also precipitate. 

Table 1.4 presents the three types of blast furnace slag cement depending on their proportions 

in GGBS and Portland clinker according to the European Standard EN 197-1. 

Table 1.4 – Types of blast furnace slag cement according to EN 197-1. 

Type Blast furnace slag Portland clinker 

CEM III/A 36-65% 35-64% 

CEM III/B 66-80% 20-34% 

CEM III/C 81-95% 5-19% 

 

Several studies have shown that blended cements generally improve the durability of concrete 

exposed to ESA [17], [24], [26]–[28]. In addition to the decrease in the C3A content due to the 

dilution effect [24], the addition of pozzolans to OPC produces positive impacts on sulfate 

attack because of the consumption of portlandite (CH) to produce C-(A)-S-H and reduce the 

formation of gypsum [27]. Since blended cements consume a significant proportion of CH, the 

hydration of these types of cement decreases the pH and subsequently, minor quantities of 

ettringite are formed [17], [27]. Additionally, the incorporation of GGBS densifies the 
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microstructure and decreases the porosity of concretes reducing the capillary pore size and 

therefore, the ingress of sulfate ions from the environment into the matrix [24], [26]. 

Blanc [28] showed that CEM I-based mortars presented significant expansions (0.5%) 

compared to those measured in CEM III/C-based mortars (< 0.1%) after 56 weeks of exposure 

in a sulfate solution at 50 g/L. He explained that the low expansion of CEM III/C-based mortars 

was a result of the low C3A content. Similarly, Al-Amoudi [27] showed that blended cements 

exposed to sulfate environments were highly resistant to sodium sulfate attack compared to 

classic cements. They saw that blended cements-based specimens, especially those 

containing silica fume and blast furnace slag, presented low expansions and minor strength 

loss after attack. They explained that the reduction of CH and the densification of the 

microstructure diminished the production of deleterious ettringite. 

Colas [29] studied the expansion of mortars batched with CEM I and CEM III/C cements and 

with sulfate-rich aggregates and immersed in water at 20 ºC. Figure 1.3 presents the 

expansion results obtained by Colas. From this figure, it can be observed that CEM I mortar 

expansions increased linearly in time and reached about 0.5%. In the contrary, CEM III/C 

mortars presented lower expansions and reached about 0.1% of expansion at the end of the 

tests. 

 

Figure 1.3 – Expansion of CEM I and CEM III/C-based mortars batched with two different sulfate-rich aggregates and 
immersed in water at 20 ºC. Taken from Colas [29]. 

It should be noted that some studies have shown that slag blended cements can also suffer 

some degradations under ESA in a long-time period due to the gradual loss of surface (e.g. 

delamination, dusting, scaling) [30]. 
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1.1.2 Alternative binders under external sulfate attack 

Other binders have also been reported as efficient alternatives to classical Portland cements 

under ESA [9], [20], [31]–[35]. This section describes the main chemical characteristics of two 

groups of alternative binders (alkali-activated and ettringite binders) and their behavior under 

ESA. 

 

1.1.2.1  Alkali-activated materials 

Alkali-activated materials (AAM) are made by mixing an alkaline activating solution with solid 

powders, sources of aluminosilicates (e.g. ground granulated blast furnace slag (GGBS), 

metakaolin (calcinated clay) or fly ash) [19], [36]. The chemistry of AAM depends on the nature 

of both the source of aluminosilicates and the alkali activator. The common activating solutions 

are alkali silicate-based and alkali hydroxide-based such as sodium or potassium activators 

[37].  

Some sources of aluminosilicates can contain high calcium contents (e.g. GGBS); therefore, 

the main reaction product is C-(A)-S-H. When the raw material is GGBS, the alkali-activated 

material is referred to as alkali-activated slag (AAS). On the other hand, the reaction produced 

between a source of aluminosilicates without calcium and activated by an alkali hydroxide or 

silicate solution is referred as to “geopolymerization”. This process involves the dissolution of 

alumina and silica in the alkaline solution and the chemical reaction produces a synthetic 

material with a network of three dimensions Si-O-Al-O. This structure is similar to the structures 

of organic polymers and consequently the name “geopolymers” [19], [38], [39]. 

Several studies have shown that AAM may resist better to ESA than OPCs and this resistance 

may vary depending on the raw material composition and the activator used [9], [26], [31], [32], 

[40]–[45]. For example, Allahverdi et al. [41] studied the sulfate resistance of sodium silicate 

alkali-activated slag (AAS)-based mortars and two types of Portland cement-based mortars 

immersed in a solution containing 5% of sodium sulfate. After 360 days of exposure, the 

authors observed a reduction in the compressive strength of 45% and 71% in AAS and 

Portland cement mortars, respectively. Visual inspection allowed for detection of few surface 

scaling in AAS mortars explained by the crystallization of sodium sulfate in the surface. 

Meanwhile, OPC mortars presented large damages due to cracks and scaling in the corners. 

Additionally, longitudinal expansions in AAS mortars were between 12 and 8 times lower than 

that resulted in Portland cement mortars. Figure 1.4 presents the results of longitudinal 
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expansions obtained by Allahverdi et al. This figure presents the length change in percentage 

as a function of exposure time in days. 

 

 

Figure 1.4 – Length change in percentage versus exposure time in days of alkali-activated slag mortars and Portland cement-
based mortars immersed in a solution containing 5% of sodium sulfate. Taken and modified from Allahverdi et al. [41]. 

 

Similarly, Komljenović et al. [40] showed that a sodium silicate AAS did not present expansion 

after immersion in a 5% Na2SO4 solution. The authors explained that AAS resisted better to 

ESA than OPC due to the absence of CH and the unavailability of aluminum for reaction with 

sulfates due to the formation of calcium aluminosilicate hydrate (C-A-S-H) and hydrotalcite 

(M5AH13) during hydration. On the other hand, Ye et al. [42] and Ismail et al. [43] showed that 

an AAS presented higher sulfate resistance in Na2SO4 solutions than that in MgSO4, which 

produced high decalcification of C-A-S-H. It means that degradation mechanisms of AAM 

under ESA are related with the nature of the cation associated with the sulfate ions. 

The durability of AAM under ESA has also been linked to its calcium content, in other words, 

the sulfate resistance of AAM decreases with increasing calcium content because of the 

formation of secondary phases such as ettringite and gypsum [32], [44], [45]. For example, 

Duan et al. [32] studied the influence of partial replacement of calcareous fly ash by metakaolin 

(MK) in a calcareous fly ash geopolymer under ESA. They measured the compressive strength 

before and after sulfate exposure and estimated the compressive strength loss ratio. They 

verified that the compressive strength loss of the geopolymer decreased with increasing 

replacement of MK. This was explained by the reduction of the calcium content and thus, the 

formation of expansive products which led to the degradation of the material. Figure 1.5 

illustrates the results obtained by Duan et al. where x-axis and y-axis represent the 

compressive strength loss ratio in percentage and the exposure ages in days. 
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Figure 1.5 – Compressive strength loss ratio given in percentage of a calcareous fly ash geopolymer with partial replacement 
of calcareous fly ash by metakaolin. Materials immersed in a sulfate solution containing 5% sodium sulfate. Taken from Duan 
et al. [32]. 

 

1.1.2.2  Ettringite binders 

Ettringite binders, such as supersulfated (SSC) and calcium sulfoaluminate (CSA) cements 

have also been studied under ESA showing good resistance to this phenomenon [19], [46]–

[54]. 

Calcium sulfoaluminate belite cements (CSA) 

CSA cements contain ye’elimite or tetracalcium trialuminate sulfate (C4A3S̅), gypsum (CS̅H2) 

or anhydrite (CS̅) and belite (C2S) as major constituents [51]. In the case of CSA-belite 

cements, ye’elimite (C4A3S̅) is used instead of alite (C3S) to develop early-age strength, and 

belite (C2S) is used to gain additional long-term strength [46]. Some CSA cements also contain 

ferrialuminate phases such as C4AF [55], [56]. Unlike OPC, the content of C3S and C3A phases 

are very low or absent in CSA cements [51]. With water alone, C4A3S̅ reacts to form calcium 

monosulfoaluminate (Ms) and aluminum hydroxide according to the reaction presented in 

Equation 3 [25], [55], [57]. 

Equation 3.  C4A3S̅ + 18H → C3A∙CS̅∙12H + 2AH3 

Ye’elimite + water → mosulfoaluminate + aluminum hydroxide 

The kinetics of CSA reaction is accelerated by the addition of calcium sulfate. In this case, 

ettringite is formed together with aluminum hydroxide as shown in Equation 4 [55]: 
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Equation 4.  C4A3S̅+ 2CS̅H2 + 34H → C3A∙3CS̅∙32H + 2AH3 

Ye’elimite + calcium sulfate (gypsum) + water → ettringite + aluminum hydroxide 

Other hydration products such as C-S-H, monocarboaluminate or hydrogarnet may also form 

depending on the other minor constituents present in CSA cements. In the presence of belite 

(C2S), the phase straetlingite (C4ASH8) may also precipitate [55]. 

Many studies [46]–[48] have been focused on the dimensional stability of CSA-belite cements; 

even though, the mechanisms of expansion of this binder is still a topic of discussion since 

there is a large variability of the composition of CSA cements. Some authors suggested that 

the expansions in this binder, during and after hydration, depend on diverse factors such as 

the contents of ye’elimite, calcium sulfate (dissolution rate varies as a function of the calcium 

sulfate source), free lime (CaO), and calcium hydroxide (CH) as well as the pore structure, the 

water to cement (w/c) ratio and the curing conditions [46]–[49], [58], [59].  

Various studies have shown that high ye’elimite content (>50 wt%) produce expansion and 

cracking because the crystallization pressure of ettringite increases [49], [58]. However, others 

studies suggested that CSA cements would not be expansive if the most of this ettringite forms 

before hardening [46], [48]. On the other hand, Hargis et al. [47] explained that not only the 

crystallization pressure of ettringite contributes to expansion, but also the crystallization 

pressure of the other hydrates present in CSA cements such as aluminum hydroxide (AH3), 

calcium aluminate decahydrate (CAH10), monosulfoaluminate (C4AS̅H12) and straetlingite 

(C4ASH8).  

Other studies showed that the expansion in CSA may increase with increasing the amounts of 

calcium sulfate due to an accelerated reaction of ye’elimite to form ettringite causing a more 

rapid expansion [46], [47], [51]. Furthermore, the microstructure of ettringite formed in CSA 

cements seems to vary depending on the presence of calcium hydroxide (CH). According to 

Trauchessec [56], in the absence of lime (cf. Equation 4), the ettringite produced has no 

expansive effects and generates high early strength in the matrix. In contrast, ettringite 

produces expansion in the presence of lime. Similarly, Ndiaye et al. [59] showed that the 

addition of calcium hydroxide (CH) to a CSA binder led to a high volume expansions of the 

matrix during a few days of hydration. Some authors explained that when free lime (CaO) is 

available, the materials expand because the rate of ettringite formation is higher than those 

with no-free CaO content [46], [50].  

Moreover, it has been reported that low w/c ratios in CSA cements may lead to large amounts 

of unhydrated cement after setting. This may represent a risk of durability if the material is later 
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in contact with water coming from the environment because of the formation of secondary 

ettringite, and thus the expansion of the material [46], [49]. Chen et al. [46] suggested that the 

interdependency of all the mentioned factors above (calcium hydroxide content, w/c ratio, 

ye’elimite content, calcium sulfate content, among others) should be verified in order to control 

the expansion in CSA cements. 

As presented above, several studies have been concentrated on the dimensional stability of 

CSA cements rather than the understanding of their resistance under sulfate attack. Therefore, 

there are many unsolved questions and some information reported in the literature with respect 

to their expansion mechanisms under ESA is contradictory. For the reasons explained above, 

Chen et al. [46] suggested that CSA-belite cements should avoid contact with sulfate solutions 

in order to reduce their risk of expansion. On the contrary, other authors suggested that CSA-

belite cements may resist better to ESA than classic Portland cements [19], [51], [52]. As 

example, Bescher et al. [52] observed that after two years of sulfate exposure, CSA-based 

mortars did not show signs of deterioration while different Portland cement-based mortars were 

highly affected. The authors pointed out that the absence of C3A content in CSA mortars may 

be one of the reasons explaining the low expansions produced during the exposure to sulfates. 

As a reminder, in CSA cements, ye’elimite (C4A3S̅) is the alumina source instead of C3A, which 

is related with the formation of expansive ettringite. Bescher et al. [52] explained that C4A3S̅ 

reacts during hydration to form ettringite; therefore, a later exposure to sulfates will cause no 

further reactions. In addition to this, they indicated that the formation of low amounts of C-S-H 

may favor the good resistance of CSA cements to magnesium sulfate attacks since C-S-H is 

the most affected phase in this type of attack. 

Figure 1.6 shows the results obtained by Bescher et al. in terms of weight change. X-axis and 

y-axis represent the age of exposure in months and the weight change in percentage, 

respectively. 
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Figure 1.6 – Weight change in percentage versus age of exposure in months of mortars immersed in a sulfate solution 
containing 10% sodium sulfate. PC: Portland cement. Taken and modified from Bescher et al. [52]. 

 

Supersulfated cements (SSC) 

According to the literature, supersulfated cements (SSC) are generally composed of blast 

furnace slag (70-90%), calcium sulfate (10-20%) (mainly gypsum or anhydrite), and an alkali 

activator [47], which is often Portland cement in small quantities (<5%) [19], [60]. The typical 

chemical composition of supersulfated cements is presented in Table 1.5. 

Table 1.5 – Typical chemical composition of a supersulfated cements [60] 

Oxyde Proportion (%) Oxyde Proportion (%) 

CaO 41 – 45 MgO 2.6 – 7 

SiO2 24 – 30 Na2O 0.3 – 0.7 

Al2O3 11 – 14 K2O 0.52 – 1.1 

Fe2O3 0.5 – 1 SO3 5 – 9 

Mn2O3 0.7 – 1.2 S < 2 

TiO2 0.4 – 0.8 P2O5 < 0.3 

 

The hydration of SSC consists of the dissolution of the slag due to the alkaline environment of 

the pore solution. The reaction of dissolved aluminum, calcium and silicon ions with the added 

calcium sulfate leads to the formation of the main hydration products C-(A)-S-H and ettringite 

(AFt). These products are formed following the Equation 5 [29]. 

Equation 5.  C5S3A + C + 3CS̅Hx + yH → C3A∙3CS̅∙32H + 3CSH 

Slag + lime + calcium sulfate (gypsum) → ettringite + calcium silicate hydrate 
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The ettringite formed during hydration is not associated with destructive swelling of the matrix 

due to the precipitation of the ettringite crystals particularly in large pores [19], [25], [61]. Minor 

hydration products such as calcium monosulfoaluminate (Ms) (C3A∙CaSO4∙12H2O) and 

hydrotalcite may also occur [61]. 

SSC cements have been reported in the literature as sulfate-resisting binders because their 

durability in sulfate attack is higher than that of OPCs [19], [25], [53], [54], [60], [62]–[64]. Such 

sulfate resistance has been mainly attributed to (i) the low content or absence of calcium 

hydroxide (CH), and (ii) the consumption of most of the free alumina, coming from the slag, to 

form ettringite during hydration without producing expansion [60].  

Grounds et al. [53] studied the sulfate resistance of SSC-based mortars cured at different 

conditions and exposed to sodium sulfate, magnesium sulfate and saturated calcium sulfate. 

The authors showed that SSC mortars, cured at 100% relative humidity (RH), did not present 

expansion or visible signs of attack after 9 months of immersion in calcium or sodium sulfate 

solutions. Meanwhile, samples cured at low RH (11%) presented expansion due to the 

rehydration of the binder; however, these mortars did not present cracking. In contrast, all SSC 

mortars exposed to magnesium sulfate presented an extensive surface damage and high 

linear expansions (about 4%) regardless of the RH. The authors explained that the main 

degradation mechanism of SSC samples exposed to magnesium sulfate consisted of the C-

S-H attack in addition to the precipitation of gypsum in large amounts.  

Niu et al. [54] also studied the resistance of SSC-based mortars immersed in a sodium sulfate 

solution. They indicated that SSC mortars presented an expansion of about 7 times lower 

(0.06%) than that in OPC (about 0.4%). The authors also attributed the low expansion of SSC 

mortars to the very small content of clinker and thus, a very low amount of CH, which was 

consumed by the pozzolanic reaction to form ettringite and C-S-H. Therefore, free CaO coming 

from the clinker was insufficient to react with the sulfate ions coming from the sodium sulfate 

solution. Figure 1.7 presents the results of expansion obtained by Niu et al. where x-axis and 

y-axis represent the time exposure in weeks and the ratio of expansion of mortars in 

percentage, respectively.  
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Figure 1.7 – Ratio of expansion in percentage versus time of exposure in weeks of supersulfated cement and OPC mortars 
immersed in a solution of 5% sodium sulfate. Taken and modified from Niu et al. [54]. 

 

Colas [29] studied the expansion of mortars batched with CEM I and SSC cements by using 

sulfate-rich aggregates and immersed in water at 20 ºC. Figure 1.3 presents the expansion 

results obtained by Colas. From this figure, it can be observed that expansion of CEM I mortars 

increased linearly in time and reached about 0.5% of expansion. In the contrary, SSC mortars 

presented very low expansions reaching about 0.02% at 407 days of tests. According to Colas, 

the low expansion of SSC mortars was explained by the low content of portlandite, which in 

CEM I-mortars led to the formation of expansive ettringite. In SSC binders, well crystallized 

ettringite forms in the interstitials; therefore, this type of ettringite is considered non-expansive. 

 

Figure 1.8 – Expansion of CEM I and SSC-based mortars batched with two different sulfate-rich aggregates and immersed in 
water at 20 ºC. Taken from Colas [29]. 
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In the next sections, we deal with the durability problem of sulfate-rich soil treated with 

cementitious binders. 

 

1.2 Valorization of sulfate-rich soil for reuse 

In this study, we use the term “reuse” to refers to the operation by which the soil, that is not 

considered as waste, is used again for civil engineering purposes. Soil containing sulfates can 

be reused after treatment. The use of cementitious binders may allow for the valorization or 

reuse of sulfate-rich soil for civil engineering applications (e.g. subgrades and backfills).  

According to the French Technical Guide GTR (Guide technique pour la réalisation des 

remblais et des couches de forme) [65] when treated soil (by lime or hydraulic binder) is 

destined to the realization of subgrades, it has to be assessed in accordance with the French 

Standard NF P 94-100 [66]. This standard proposes geotechnical experiments to verify the 

volume expansion and the indirect tensile strength of compacted soil. The performance of a 

treated soil is suitable when volume expansions are inferior to 5% and when indirect tensile 

strengths are superior to 0.2 MPa. Furthermore, the treated soil has to be evaluated in terms 

of workability and mechanical performances. 

The French technical guide GTS (Traitement des Sols à la chaux et/ou aux liants hydrauliques) 

[66] published by the Laboratoire Central des Ponts et Chaussées (LCPC) and the Service 

d’Études Techniques des Routes et Autoroutes (SETRA) explains that the mechanical 

properties of soils (e.g. workability, impermeability, stability, bearing capacity) are improved by 

adding lime (quicklime or hydrated lime), hydraulic cements (e.g. Portland cement) or other 

binders such as blast furnace slag cement, fly ash, among others. Several benefits can be 

cited when soils are treated by lime: swell and plasticity reduction, improved stability, drying 

[67]. The addition of lime increases the pH of the system (above 10) and consequently, clay 

dissolves and releases aluminates and silicates. Then, pozzolanic reaction takes place in the 

soil when pH is superior to 12. In this reaction, the calcium from the lime reacts with the 

In this previous section, we presented the reaction of different binders in contact with 

external sulfates. It was shown that Portland cement-based materials do not present 

good characteristics to resist ESA. Meanwhile alternative binders present better 

performance to ESA (low expansion and low degradation). Nonetheless, comparisons 

between these binders are difficult due to the difference in the experimental conditions. 
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aluminates and silicates (coming from the clay) and leads to the production of calcium silicate 

hydrates (C-S-H) and calcium aluminate hydrates and thus, a long-term strength in the soil 

[66]. However, when a soil containing sulfates is treated by lime or Portland cement, the 

treatment represents a potential risk to the stability and durability of the material application 

due to expansive reactions induced in the treated soil [67], [68]. 

In the following sections, we explain in detail the reactions that take place in a sulfate-rich soil 

treated with Portland cement or lime. We also present the benefits reported in the literature 

when sulfate-rich soil is treated with alternative binders. 

 

1.2.1 Swelling of sulfate-rich soil treated with lime or ordinary 

Portland cement 

Several studies have highlighted that sulfate-rich soil treated with either ordinary Portland 

cement (OPC) or lime led to volume expansions [2], [29], [68]–[74]. Moreover, it has been 

shown that soil containing clay (>10 wt%, % by weight of dry soil) and sulfate concentrations 

greater than 1 wt% produced swelling after treatment with lime or Portland cement [68], [75]. 

As mentioned previously, at high pH values (pH>10.5), clay releases alumina, which reacts 

with calcium ions (coming from OPC or lime) and the sulfates ions in the soil, and also the 

water available in the soil to form expansive products (e.g. ettringite) [68], [70], [75], [76]. As 

example, Wang et al. [74] investigated the expansion of a soil treated with Portland cement of 

type I. Figure 1.9 presents the expansion of the soil treated by different proportions of Portland 

cement. From this figure, it can be observed that expansion started immediately at the 

beginning of the curing. Additionally, the expansion was directly proportional to the amount of 

Portland cement added to the soil. The maximum expansion in the soil (6%) was obtained 

when 20% of cement was added to the soil. 
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Figure 1.9 – Expansion of a sulfate-rich soil treated by Portland cement and cured in water at 40ºC. C: Portland cement. Taken 
from Wang et al. [74]. 

 

Hunter [68] proposed a simplified geochemical system to explain the reactions of expansion in 

sulfate-rich soils treated with lime or OPC. This system is divided into four steps presented in 

Equation 6, Equation 7, Equation 8 and Equation 9. Moreover, Figure 1.10 presents a diagram 

explaining the reaction of sulfate-rich soil treated by OPC or lime. 

Equation 6. CaO + H2O→ Ca(OH)2 – lime hydration 

Equation 7. Ca(OH)2 →Ca
2+

 + 2(OH)
-
 – portlandite dissolution 

Equation 8. Al2Si2O10(OH)
2
∙nH2O+2(OH)

-
+10H2O → 2Al(OH)4

- +4H4SiO4+nH2O  

Dissolution of clay minerals because of pH > 10.5. 

 

The dissolution of clay minerals provides to the soil dissolved silica and alumina, which can 

react with calcium ions. In this example, the clay mineral presented by Hunter [68] is the 

montmorillonite. As long as the source of aluminum exists, this reaction can be applied to any 

soil (OPC is also a source of aluminum). 

 

Equation 9. 6Ca
2+

+2Al(OH)4
- +4OH

-
+3SO4

2-
+26H2O → Ca6[Al(OH)

6
]
2
(SO4)

3
26H2O  

Long-term precipitation of expansive phases: sulfate chemically reacts with calcium and 

aluminum ions and the water available in the soil to form ettringite. 

 

It should be noted that at low temperatures (<15°C), ettringite transforms into thaumasite due 

to the substitution of alumina by silica and the substitution of sulfate by carbonate. However, 

this phenomenon was not studied in the present work. 
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Figure 1.10 – Schema explaining the reaction of sulfate-rich soil treated by OPC and lime. Equation taken from Le Roux et 
Orsetti [1]. 

 

1.2.2 Treatment of sulfate-rich soil by using alternative binders 

It has been reported that the swelling potential of sulfate-rich soil decreased when they are 

treated with binders other than lime or OPC [2], [70], [71], [73], [74], [76]–[78]. Several 

researchers have focused on the use of ground granulated blast furnace slag (GGBS) to treat 

sulfate-rich soil. It has been reported that GGBS is effective because of the decrease in 

expansion while improving the mechanical properties of the soil [71], [79]–[83]. As explained 

previously, GGBS is activated by a small amount of clinker and the mixture with sulfates leads 

to the formation of small quantities of non-expansive ettringite [29], [71]. Furthermore, it is 

known that the shape, size and rate of crystallization of ettringite depend on the raw 

composition of the binder used in each treatment [84]. 

Wang et al. [74] investigated the expansion of an anhydrite soil by replacing a part of OPC by 

GGBS as a function of different curing conditions. Figure 1.11 shows the results obtained by 

Wang et al., in which the expansion in expressed in percentage as a function of the age in 

days. From this figure, it can be observed that the treatment of the anhydrite soil with 100% 

OPC led to high expansions (>4%). Moreover, it can be observed that the replacement of 50% 

of OPC by GGBS decreased the amount of expansion in the soil (<0.4%). When more than 
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50% of OPC was replaced by GGBS, the expansion was near 0.1% and did not depend on the 

curing conditions. 

 

Figure 1.11 – Expansion of an anhydrite soil treated by different mixtures of Portland cement and GGBS at different curing 
conditions. 40C: in water at 40ºC, RT: room temperature (23 ºC) C: Portland cement. Taken from Wang et al. [74]. 

 

Similarly, Celik and Nalbantoglu [70] showed the effectiveness of slag in the treatment of soils 

containing different concentrations of sulfate. They found that a soil containing 10000 mg/kg 

of dry mass of sulfates and treated with only lime presented swelling of about 8% with respect 

to the initial volume of the sample. However, when slag was added, the swelling was reduced 

to 1%. These results are presented in Figure 1.12 where three different conditions are 

presented: untreated soil without sulfates (CS), treatment of sulfate-rich soil by using 5% lime 

(CS+5L), and treatment of sulfate-rich soil by using 5% lime and 6% slag (CS+5L+6S). It can 

be observed that (i) swelling increased with increasing the sulfate concentration in the soil, and 

(ii) treatment with slag was effective for decreasing the potential swelling of sulfate-rich soils.  

 

Figure 1.12 – Swelling in percentage of a soil containing sulfates (sulfate concentrations: 0, 2000, 5000 and 10000 ppm). 
CS = natural soil without sulfates. Treatments: CS+5L = 5 wt% lime, CS+5L+6S = 5 wt% lime + 6 wt% slag. Taken from Celik 
and Nalbantoglu [70]. 
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Likewise, Wild and Tasong [81] and Tasong et al. [82] studied the expansion of a clay soil 

treated by different mixtures composed of GGBS and lime and exposed to a sodium sulfate 

solution. They showed that the treatment of the soil with 6 wt% of a binder, composed of 83% 

GGBS and 17% lime, presented expansions were inferior to 2%; while treatments with 100% 

lime led to expansions superior to 10%. The authors explained the decrease in swelling with 

the slag treatment due to the limited supply of calcium ions, and thus, the limitation of the 

growth in size of ettringite to produce expansion. 

Wild et al. [83] also demonstrated that the proportion of GGBS influenced the magnitude of 

expansion in a soil treated with a mixture of GGBS and lime. They showed that the expansions 

in the sulfate-rich soil decreased with increasing the GGBS content. The decrease in 

expansion was explained by the consumption of lime by the GGBS to be activated [83]. In this 

case, the dissolution of GGBS became the dominant reaction and the amount of lime was 

considered insufficient to enable the precipitation of large amounts of expansive phases [83]. 

Similarly, Puppala et al. [73] studied the treatment of sulfate-rich soils (sulfate concentration 

superior to 4000 mg/kg of dry mass) by using four different binders: sulfate-resisting cement, 

a binder composed of lime and fibers, GGBS and class F fly ash. All the binders were added 

in the range of 0 to 20 wt%. The authors observed a decrease in the free swelling for all the 

treatments. For example, when 10% of GGBS was used for the treatment, the swelling in the 

soil decreased 4 times with respect to the initial swelling of the soil. 

 

In the following sections, we deal with the stabilization (immobilization) of sulfates by using 

cementitious binders. 

 

1.2.3 Stabilization of sulfates by using cementitious binders 

Stabilization is the chemical process allowing for the decrease of the potential harm of a waste 

because the pollutants become less soluble, less mobile or less toxic. This process is usually 

In the previous section, we presented information about the treatment of sulfate-rich soil 

by using cementitious binders. We saw that treatment of sulfate-rich soil by using lime or 

OPC can lead to durability issues due to the swelling of the soil. We also saw that treatment 

with binders, especially those containing GGBS binders may allow for the decrease of 

swelling. 
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completed with a mechanical process called “solidification” or encapsulation of waste. In this 

case, the transfer of pollutants into solution decreases with decreasing the exposed surface. 

These chemical and physical processes allow for the transformation of harmful wastes into 

acceptable materials from an environmental viewpoint [85], [86]. 

According to the literature, from an environmental viewpoint, the existing data do not identify 

a level of sulfate in drinking-water that can cause risks in human health. However, high 

concentrations of sulfates in drinking-waters (1000 mg/l to 1200 mg/l) can produce laxative 

effects when sulfates are combined with calcium and magnesium [87]. Other studies reported 

that sulfates can be detected by taste when mean concentrations in drinking-waters are greater 

than 237 mg/l, 370 mg/l and 419 mg/l for sodium sulfate, calcium sulfate and magnesium 

sulfate salts, respectively. Unpleasant taste was indicated in drinking-waters when calcium 

sulfate and magnesium sulfate concentrations were of about 1000 mg/l and 850 mg/l, 

respectively [87]. As a result, some organizations have defined the upper limits for sulfate 

concentration in water intended for consumption: the World Health Organization (WHO) set 

500 mg/l [87] and the European Union in the Council Directive 98/89/ZC in 1998 set 250 mg/l. 

In France, soil is classified in three categories depending on the leachable sulfate 

concentrations according to the French Ministerial decree on waste classification for disposal 

(Arrêté du 12 décembre 2014) [88]. It should be noted that the definitions of inert waste, non-

hazardous and hazardous of the French Environmental code follow the European definitions 

(Directive 2008/98/EC, decision 2000/532/EC and decision 2001/573/EC). 

Table 1.6 presents the different categories of wastes in France as a function of the limits of 

leachable sulfate concentrations. 

Table 1.6 – Categories of waste as a function of the legal limits values of the leachable sulfate concentrations required by the 
French decree [88], [89]. Concentrations are given in mg/kg of dry soil and in percentage by weight of dry soil. 

Waste category Sulfate concentration 

Inert and non-hazardous 1000 mg/kg 10000 mg/L* 0.1% 

Non-inert and non-hazardous 20000 mg/kg 200000 mg/L* 2% 

Hazardous 50000 mg/kg 500000 mg/L* 5% 

* Concentrations in mg/L were estimated by assuming 100 g of dry mass and a liquid to solid (L/S) ratio of 10. 

 

The treatment of soil by using binders may be a solution to meet the sulfate limit concentration 

of 1000 mg/kg established by the French decree [88] for the “inert and non-hazardous waste” 

category. In the literature, preliminary work in this field focused mainly on the evaluation of the 

swelling phenomena in sulfate-contaminated soil (as reported in the last sections). However, 
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a few studies have deal with the decrease of leachable sulfate concentration after binder 

treatment and the sulfate stabilization mechanisms. As example, Trincal et al. [84] studied the 

effectiveness of several experimental binders to decrease sulfate leaching from gypsum-rich 

soils (maximum content of gypsum: 34 wt%). They observed that sulfates were partially 

immobilized by the formation of ettringite. Among all the formulations tested, the best result 

was obtained by adding about 5 wt% of a hydraulic binder mainly composed of ye’elimite 

(C4A3S̅) and belite (C2S). Leaching tests carried out with this formulation showed a decrease 

of 50% in the sulfate leachable concentration. Another study about the stabilization of sulfates 

was conducted by Bergmans et al. [90] who investigated the decrease of sulfate leaching in 

recycled aggregates. They showed that the sulfate concentration increased in solution with 

decreasing the leachate pH. Some authors explained that the pH dependency of sulfate 

leaching is in agreement with the ettringite solubility [90], [91]. In contrast, Colas observed that 

sulfate concentration increased in solution with increasing pH values. They showed that 55% 

of sulfates were in solution when pH leachate was 5; meanwhile 92% of sulfates were in 

solution when pH leachate was 13.5. Moreover, Colas [29] carried out leaching tests in 

excavation materials containing calcium sulfate in order to predict the behavior of sulfate-rich 

aggregates destined for the fabrication of concretes. They observed that sulfate concentration 

in solution increases with increasing the agitation rate of leaching tests. They explained that 

the kinetics of sulfate dissolution increased at high rates of agitation because the aggregates 

grains were less surrounded by other aggregates and therefore, they were in higher contact 

with the leaching solution. Figure 1.13 illustrates the results obtained by Colas for leaching 

tests of sulfate-rich aggregates with an agitation rate of 4 rpm. In this figure, x-axis and y-axis 

represent the agitation time in hours and the ratio of sulfate concentration in solution, 

respectively. As shown, sulfate concentrations (expressed in terms of SO3) increased with the 

agitation time and with the pH of the leachate solution. 

Colas [29] also indicated that sulfate concentration in solution increased with decreasing the 

grain size of aggregates. Figure 1.14 illustrates the leaching tests results carried out in sulfate-

rich aggregates by using five different grain sizes. As shown, for a pH leachate of 13.5, sulfate 

concentrations in solution were about 90%, 85%, 80%, 40% and 20% for the grain sizes of 

0/0.315 mm, 0.315/1 mm, 1/4 mm, 4/8 mm and 8/16 mm, respectively. 
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Figure 1.13 – Sulfate leaching from excavated sulfate-rich aggregates as a function of the leachate solution and the agitation 
time. pH values of NaOH: 13.5, KOH: 13.5, Ca(OH)2: 12.6, Eau=Water: 5. Taken from Colas [29]. 
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Figure 1.14 – Sulfate leaching from excavated sulfate-rich aggregates as a function of the leachate solution, grain size and 
time of agitation. Eau=Water. Taken and modified from Colas [29]. 

 

1.3 Stabilization of molybdenum 

Molybdenum (Mo) is a heavy metal placed in the group VI of the periodic table. In this section, 

we first define the term of heavy metal and then, we describe their different sources and 

species in soil. Second, we present a more detailed overview of Mo. Finally, the different 

mechanisms of stabilization of heavy metals by using cementitious binders are addressed and 

some examples reported in the literature are cited by type of mechanism. 

 



CHAPTER 1 – LITERATURE REVIEW 

 46 

1.3.1 Heavy metals in soil 

Heavy metals are metallic elements, which have an atomic weight greater than the atomic 

weight of iron (55.85 g/mol). However, two non-metallic elements – arsenic and selenium – 

are also included in this group because they have physical characteristics like metallic 

elements even if chemically they do not behave in the same way [92]–[94]. Additionally, heavy 

metals refer to the group of elements – metallic, metalloids and non-metallic – that have toxic 

properties in large amounts [94]. Heavy metals also include “traces elements” because they 

are found in nature in low concentrations (< 1000 mg/kg of dry mass of soil) [94], [95]. 

Some heavy metals are essential nutrients for plants, animals and humans. However, they are 

also toxic above specific quantities depending on each element [92], [95], [96]. Therefore, the 

release of heavy metals is a serious concern as it can lead to significant risks for both human 

health and for the local environment [94].  

The source of heavy metals in soil can be either from natural origin (mineral alteration) or from 

anthropogenic activities (e.g. lawn fertilization and urbanization) [92]–[94], [96]. In France, the 

geographical distribution of some heavy metals can be related to nonpoint source pollution 

meaning that it can derive from many different activities as industrial agriculture, lawn 

fertilization, use of pesticides or construction [97]. The French Environment and Energy 

Management Agency (ADEME from its French initials) identified and quantified the fingerprint 

of some trace heavy metals at national and departmental levels in 2007. From a quantitative 

viewpoint, the main anthropogenic sources of heavy metals in the soils in France are: animal 

excreta, mineral fertilizers, phytosanitary treatment and atmospheric deposition [97], [98]. 

Figure 1.15 presents six different anthropogenic sources of contamination of ten trace heavy 

metals: arsenic (As), cadmium (Cd), chrome (Cr), cooper (Cu), mercury (Hg), molybdenum 

(Mo), nickel (Ni), lead (Pb), selenium (Se) and zinc (Zn). It should be noted that animal excreta 

represent the main source of these heavy metals in the soils in France followed by mineral 

fertilizers [98]. 
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Figure 1.15 – Different sources of trace heavy metals in the soils in France. Source: Sogreah-ADEME, 2007 [97], [98]. 

 

1.3.2 Molybdenum in soil: origin and concentration 

Molybdenum (Mo) is considered as an essential nutriment for plants and animals. It is naturally 

found in granite rocks [99], volcanic rocks, limestone [97] and in sedimentary rocks with high 

content of organic matter (e.g. black shale), in which the concentration of Mo can reach of 

about 570 mg/kg of dry mass of soil [94]. On the other hand, Mo can be artificially found in soil 

as a result of anthropogenic activities such as industrial agriculture, in metallurgy for the 

production of alloys and in oil operations [97]. 

Concentration of Mo in soil 

According to the literature, Mo concentration is generally low in soil (in the order of a few ppm). 

Different average Mo concentrations in soil have been established: 1.8 mg/kg [94], 1 to 

2.3 mg/kg [99], 0.2 to 5 mg/kg [94], [100] (concentrations are given in mg of Mo/kg of dry mass 

of soil). The variation of Mo concentrations in soil is explained by the large Mo concentrations 

detected in a few places such as United States (Mo=30 mgMo/kgsoil), Canada 

(Mo=24 mgMo/kgsoil) and Baltic region (Mo=74 mgMo/kgsoil). In these places, Mo sources are 

either natural or anthropogenic [94], [100].  

In soil with high Mo concentrations, Mo is often associated to organic matter and to iron 

hydroxides [5]. At low Mo concentrations (in the order of a few ppm), Mo is generally present 

as a substituent in certain compounds. According to the literature, Mo can replace Fe(II), Ti 

and Al and possibly Si in some mineralogical structures [94], [99], [100]. Figure 1.16 shows 
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two models representing the substitution of an iron atom by an atom of Mo in the structure of 

iron sulfide [101], [102]. 

 

Figure 1.16 – Models of Mo-Fe-S taken from (a) Averill [101], and (b) Bostick et al. [102]. 

 

In France, Mo is naturally found in volcanic rocks and in some limestone. According to the 

database of the Soil Quality Monitoring Network (RMQS for its French initials), the 

concentrations of Mo in French soils are inferior to 0.6 mgMo/kgsoil [97]. Exceptionally, higher 

concentrations of Mo (> 2 mgMo/kgsoil) have been reported in some soils containing clays in the 

North of France (Region of Lorraine) and in the Central Massif, especially in the Chaîne des 

Puys [97]. Figure 1.17 shows a chart of France with the distribution of Mo concentrations 

detected in the surface layer (0 to 30 cm deep) of the soil. 

 

Figure 1.17 – Total molybdenum (Mo) concentrations given in mg/kg of dry mass found in the surface layer (0 to 30 cm) in the 
soils in France. Source: Gis Sol, RMQS, 2011; Inra, BDGSF, 1998 [97]. 
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Guideline limit of Mo concentrations in soil 

Large amounts of this metal can be toxic and produce an illness known as “molybdenosis”, 

which is characterized by several symptoms such as weight loss, skin depigmentation and 

osteoporosis [94], [99], [103], [104]. Mo generally occurs at low concentration in drinking-

waters and the World Health Organization (WHO) set a health-based value of 0.07 mg/l [87], 

which is derived on the basis of toxicological results and essential daily requirement for Mo. 

In France, soils are classified in three categories depending on their leachable Mo 

concentrations according to the French Ministerial decree on waste classification for disposal 

(Arrêté du 12 décembre 2014) [88]. Table 1.7 presents the different categories of wastes in 

France as a function of the limits of leachable Mo concentrations. 

Table 1.7 – Categories of waste as a function of the legal limits values of the leachable Mo concentrations required by the 
French decree [88], [89]. Mo concentrations are given in mg/kg of dry soil and in percentage by weight of soil. 

Waste category Mo concentration 

Inert and non-hazardous 0.5 mg/kg 0.05 mg/L* 0.05‰ 

Non-inert and non-hazardous 10 mg/kg 1 mg/L* 1‰ 

Hazardous 30 mg/kg 3 mg/L* 3‰ 

* Concentrations in mg/L were estimated by assuming 100 g of dry mass and a liquid to solid (L/S) ratio of 10. 

 

Chemical species of Mo in soil 

Mo is not found in nature as a free metal, but it is chemically combined with other elements. 

Mo can be present in a large range of oxidation states -2, 0, +1, +2, +3, +4, +5 and +6. At the 

lowest oxidation states (-2, 0, +1), Mo is usually found with organometallics complexes such 

as the monoxide of carbon or the nitric oxides. At the oxidation state +2, Mo is present in the 

ion Mo6Cl8
4+

.  

Mo is present in soil in the form of oxyanion with the oxidation states +4 and +6. The main Mo 

oxyanions in soil are: MoO4
2-

, MoO
4+

, MoO2
2+, MoO3, Mo2O5

2+
, MoO

3+
, Mo2O3

4+, Mo2O4
2+

 [99], 

[105]. Among these species, molybdate (MoO4
2-

) is the most common oxyanion of Mo found in 

soil. Molybdate is mostly adsorbed onto mineral surfaces under pH < 7 [94], [99], [100], [105]. 

Smedley and Kinniburgh [106] presented the dominant species of Mo in a Mo-H2O system as 

a function of the Mo concentration and the pH values. These diagrams are presented in Figure 

1.18 and they were calculated by using different databases. Aside from the variations observed 

in Figure 1.18, all the diagrams agreed that molybdate (MoO4
2-

) dominates above pH values 5-

6. 
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Figure 1.18 – Predominance diagrams showing the dominant species of Mo in a Mo-H2O system calculated using four different 
databases. Taken from Smedley and Kinniburgh [106]. 

 

In soil, Mo is also found in solid forms in which molybdenite (MoS2) is the main specie specially 

found in soil containing granite [99]. Other species are: ammonium molybdate 

((NH4)
6
Mo7O

24
4H2O), sodium molybdate dihydrate (Na2MoO42H2O) and sodium molybdate 

(Na2MoO4), which are used as lawn fertilizers when soils have Mo deficiency [94]. Table 1.8 

presents the common solid forms of Mo found in soils [94], [99], [100]. 

Cabrerizo et al. [107] investigated a soil from Paris (France) containing Mo at very low 

concentrations (leachable Mo concentrations using water resulted in 1.5 ppm). They 

determined the oxidation state of Mo and its potential mobility in this soil by carrying out 

chemical sequential extractions and synchrotron analyses. The authors estimated that about 

70% of Mo was present with the oxidation state +4 and about 30% of Mo was present with the 

oxidation state +6. They explained that Mo+4 was probably in the form of molybdenite (MoS2) 

and that Mo+6 was in the form of molybdate (MoO4
2-

) coming probably from the dissolution of 

powellite (CaMoO4) or MgMoO
4
. However, it should be noted that molybdenite is insoluble. 

In this project, we decided to study the stabilization of Mo by using sodium molybdate 

(Na2MoO4) in which Mo is found in the form of molybdate (MoO4
2-

) with the most common Mo 

oxidation state +6. A more detailed justification will be presented in later chapters. 
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Table 1.8 – Common solid forms of Mo found in soil [94], [99], [100]. 

Specie Water solubility at 20ºC (g/100 ml) Mo oxidation state 

Molybdenite MoS2 insoluble -2, +2, +4 

Powellite CaMoO4 4.1x10-3 +6 

Ferrimolybdite Fe2(MoO4)3 insoluble +6 

Wulfenite PbMoO4 1.16x10-5 +6 

Ilsemannite Mo3O8 insoluble +1 

Sodium molybdate* Na2MoO4 65 +6 

Sodium molybdate dihydrate* Na2MoO42H2O 85 +6 

Ammonium molybdate* (NH4)6Mo7O244H2O 0.4 +6 

*Used as fertilizers in soils. 

 

1.3.3 Stabilization of heavy metals by using cementitious binders 

Unlike organic pollutants, heavy metals cannot be destroyed by biochemical processes. 

Therefore, several techniques in-situ and ex-situ have been tested in order to decrease heavy 

metal contamination in soil. Among the most known techniques, it can be cited: incineration, 

separation process, electrokinetic remediation, bioleaching and phytoremediation [86], [108]–

[110]. Although some techniques are economic and ecologically interesting (e.g. bioleaching 

and phytoremediation), they require large time of treatment (in the order of several years) due 

to the high amounts of soil to treat [108]. Additionally, some of these techniques are not 

ecologically sustainable (e.g. incineration and waste disposal). As a result, in this project, the 

technique of stabilization by using cementitious binders was chosen to study the immobilization 

of Mo [86], [111]. 

The stabilization of heavy metals by using cementitious binders includes various phenomena 

such as the interactions between the pollutants and the hydration products and the physical 

encapsulation of pollutants (this last phenomenon decreases the permeability and the surface 

exposed of waste materials) [86], [112]. In this present project, we focused on the first 

phenomenon. The interactions between the pollutants and the cementitious products may 

include adsorption, precipitation or redox reactions that can affect the cement hydration 

process [113]. However, these interactions can also control the solubility of heavy metals and 

decrease their release into solution. The main mechanisms of heavy metal immobilization are 

presented as follow: 
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1.3.3.1   Oxidation-reduction (redox) 

Oxidation-reduction reactions (redox) are chemical reactions leading the change of the 

oxidation number (gain or loss of an electron) of a molecule, atom or ion. An atom is reduced 

when it gains electrons, it means that the oxidation number decreases. 

Gain of electrons (e-) → reduction 

While the loss of electrons leads to the oxidation of the atom and thus, the number oxidation 

increases. 

Loss of electrons (e-) → oxidation 

Batchelor [114] explained that oxidation-reduction reactions are important immobilization 

mechanisms for those pollutants that exist in various redox states and have different behaviors 

(e.g. chemical or toxicological) in each of these states. Generally, reduced species are less 

soluble than oxidized ones (e.g. Cr+6 is more soluble and toxic than Cr+3). In order to reduce 

species in a system, it should exist “reducing agents”, which are species able to transfer or 

donate electrons. 

Mancini et al. [115] investigated the immobilization of molybdenum (Mo) contained in bottom 

and fly ashes from a hazardous waste by using a ferrous sulfate-based additive. They 

explained that this additive presented reducing conditions, which could reduce Mo and 

therefore, decrease its solubility. The authors explained the Mo could be immobilized by the 

formation of insoluble Mo oxides such as ilsemite (Mo3O8). The redox reaction of Mo in the 

ferrous sulfate-based additive would follow the Equation 10 [115]:  

Equation 10.  

Fe
2+

→ Fe
3+ + e- 

MoO4
2-

+ e-→ Mo3O8, MoO2 

Mancini et al. [115] showed that treatment of the Mo-rich waste with the ferrous sulfate-based 

additive was effective to immobilize Mo. They indicated that Mo concentrations in solution 

decreased with increasing the proportion of the additive used for stabilization. Additionally, 

they suggested that Mo concentration in solution decreased with increasing the reducing 

conditions of the system because Mo was highly immobilized at pH values lower than 6. 

Therefore, the use of cementitious binders may represent an issue for the reduction of species 

if such reducing conditions should be guaranteed. Ordinary Portland cement (OPC) with or 

without pozzolanic additions (fly ash, silica fume, etc.) is the most common binder used to 
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immobilize heavy metals due to its low cost and its simplicity in terms of implementation [112]. 

However, the high pH (12.5 to 13.5 [112]) and electrochemical potential Eh (+100 mV to 

+200 mV [85], -100mV to +100 mV [116]) of the OPC pore solution represent an oxidizing 

internal environment and therefore, a disadvantage to the reduction of species [86], [117], 

[118]. Other binders containing GGBS have reducing internal environments due to the 

presence of sulfur in a reduced state [119], [116]. The reducing nature of the binder depends 

on the amount of GGBS and the degree of hydration [116]. This type of binder may allow the 

reduction of species and thus, their immobilization. Additionally, GGBS binders would allow 

the precipitation of some metals in the form of sulfides, which have lower water solubility than 

hydroxides [85], [112], [120]. Figure 1.19 presents the internal redox conditions of different 

cementitious materials. 

 

Figure 1.19 – Internal redox conditions of different cementitious materials (a) variation of electrochemical potential (Eh) 
expressed in mV as a function of the slag content taken from Bai et al. [119]. (b) Eh given in V for a PC: Portland cement, PC-
GGBS: Portland cement and ground granulated blast furnace slag, AAFA: alkali-activated fly ashes AAMK: alkali-activated 
metakaolin, plotted as a function of pH values, taken from Mundra et al. [116]. 

 

Kogbara et al. [121] showed that the leachable concentrations of several heavy metals (Cd, 

Ni, Zn, Cu et Pb) decreased in contaminated soil after treatment with GGBS binders. Similarly, 

Giergiczny et al. [122] showed that Pb, Cu, Zn, Cd and Mn were highly immobilized (85% - 

93%) in the solid fractions of polluted mortars composed of 85% GGBS and 15% OPC. Allan 

et al. [123] studied the immobilization of Cr(III) and Cr(VI) in soils by adding different 

proportions of OPC, bentonite and GGBS. Results obtained by Allan et al. [123] are presented 



CHAPTER 1 – LITERATURE REVIEW 

 54 

in Figure 1.20, in which Cr concentrations in solution are presented as a function of different 

soil/cement ratios. From this figure, it can be observed that the Cr concentration in solution 

decreased with increasing the proportion of slag in the treated soil. 

Deja [120] studied the immobilization of Cr(VI), Cd(II), Zn(II) et Pb(II) in spiked alkali-activated 

slag (AAS) mortars. They observed that the retention of all heavy metals by the binders were 

of about 99%. The presence of these heavy metals was not observed in the hydration products; 

therefore, their immobilization was explained by the change of oxidation state (reduction) of 

the species due to the pH and Eh of the AAS. 

 

Figure 1.20 – Leaching results of a contaminated soil containing 200 ppm of Cr(III) and treated with a mixture composed of 
Portland cement and GGBS. Taken from Allan et al. [123]. 

 

Concerning molybdenum (Mo); however, it is mostly present as molybdate (MoO4
2-

) for the pH 

values characteristic of cementitious binders (cf. Figure 1.18). Figure 1.21 presents the redox 

(Eh-pH) diagrams calculated for Mo species in which the redox conditions of slag and OPC 

are presented in Figure 1.21(a) and (b).  
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Figure 1.21 – Eh-pH diagrams for molybdenum species (a) in the system Mo-O-H with Mo: 10-10 mol/L from [124], and (b) in 
the system Mo-S-O-H (Mo=10-8, S=10-3) from [125]. Eh>0: oxidizing conditions (loss of electrons), Eh<0: reducing conditions 
(gain of electrons). Green and blue stripes show the redox internal conditions of slag and OPC binders, respectively. 

 

From Figure 1.21, it can be observed that at pH 11 to 13.5, the dominant specie of Mo remains 

in the form of molybdate (MoO4
2-

). Only extreme reducing internal environment would be able 

to reduce Mo species. Therefore, the immobilization of Mo by reducing molybdate (gain of 

electrons) seems a difficult task. Consequently, other immobilization mechanisms should be 

studied, and they are presented in the following sections. 

 

1.3.3.2  Precipitation 

Precipitation consists of the subtraction of ions present in solution in order to form a solid 

product or a solid compound with lower water solubility than the original specie. According to 

the literature, heavy metals can be immobilized by cementitious binders when they form 

species with low water solubility in the form of hydroxides, carbonates, sulfates or silicates 

[86], [126]. Even though the redox conditions of OPC (high pH and high Eh), various studies 

have reported significant immobilization of anionic heavy metals by Portland cement due to 

the precipitation of new species [86], [109], [112], [127]–[129].  
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Palomo et al. [130] studied the immobilization of Cr and Pb in a matrix composed of fly ash of 

type F activated by a NaOH solution. They verified that Pb was immobilized in the matrix due 

to the precipitation of Pb3SiO5, which has a low water solubility. In contrast, Cr was released 

into solution due to the precipitation of Na2CrO4∙4H2O, which has a very high-water solubility. 

Likewise, Minocha and Goyal [131] studied the immobilization of Mo in a Na2MoO4-spiked 

OPC at different Mo concentrations varying from 1 to 5000 ppm. After the leaching tests of Mo-

spiked OPCs, containing Mo concentrations of 1000, 1500 and 2000 ppm, Mo was found in 

solutions at concentrations of 2.5, 3 and 11 ppm, respectively. By X-ray diffraction (XRD) 

analyses, the authors observed that Mo precipitated with calcium ions to form the mineral 

powellite (CaMoO4). Similarly, Kindness et al. [132] studied the immobilization of Mo in 

Na2MoO4∙2H2O-spiked OPC pastes. Initial Mo concentration was 2000 ppm and after leaching 

tests carried out at 12 days of curing, the leachable Mo concentration was 40 times lower than 

the initial Mo concentration. Mo immobilization was explained by the precipitation of CaMoO4 

and by the substitution of sulfate (SO4
2-

) by molybdate (MoO4
2-

) in the calcium 

monosulfoaluminate phase resulting in Ca3Al2O6CaMoO4∙10-14H2O. 

 

1.3.3.3  Substitution and incorporation 

Substitution occurs when an atom or a molecule is replaced by another atom or molecule in a 

particular phase. This phenomenon takes place when several conditions are met, such as 

concentration, similarity in the atomic radius and in the electric charge compensation [133]. 

The incorporation of metallic species into mineral structures is also considered as a 

mechanism of immobilization. In this case, the incorporation can or not alter the original 

structure of the hosted mineral and decreases the solubility of the metallic specie [86], [134]. 

Several studies have reported that phases such as ettringite and calcium monosulfoaluminate 

allow for the substitution of constituents by cationic and anionic heavy metals [85].  

According to the literature, ettringite (3CaO∙Al2O3∙3CaSO4∙32H2O) and calcium 

monosulfoaluminate (3CaO∙Al2O3∙CaSO4∙12H2O) are the main phases synthetized to study 

heavy metal immobilization by hydration products [135]–[137]. These phases allow for 

substitution of cationic and anionic constituents. The anion sulfate (SO4
2-

) can be substituted 

by a few oxyanions such as chromate (CrO4
3-

), arsenate (AsO4
3-

), vanadate (VO4
3-

), borate 

B(OH)4
-
  and selenate (SeO4

2-
) due to the similar electric charge and similar structure [86], 

[126], [127], [138], [139]. For example, Figure 1.22 presents a model of arsenate incorporation 
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in ettringite by the substitution of sulfate. Moreover, Table 1.9 presents some trivalent cations 

and oxyanions that can replace the constituents of ettringite (Ca
2+

, Al
3+

, SO4
2-) [86], [127]. 

 

 

Figure 1.22 – Model of the incorporation of arsenate in ettringite by the substitution of sulfate. Taken from and cited by Cornelis 
et al. [138]. Original source: Myneni et al. [140].  

 

Table 1.9 – Possible ion substitutions in ettringite [86], [113], [127]. 

Ettringite 
constituents 

Ionic substitutions 

Ca2+ Sr2+, Ba2+ , Pb2+ , Cd2+ , Co2+ , Ni2+, Zn2+ 
Al3+ Cr3+, Si4+, Fe3+, Mn3+, Ni3+, Co3+, Ti3+ 
SO42- CO32-, OH-, CrO42-, AsO43-, NO3-, SO32-, SeO42-, VO43-, BrO31-, MoO42-, ClO31-, IO31-, B(OH)4- 

 

Hasset et al. [141] showed that sulfate (SO4
2-

) was substituted by selenate (SeO4
2-

) in the 

structure of ettringite by using XRD analyses. Figure 1.23 presents the XRD patterns obtained 

by Hasset et al. from the synthetic ettringite with selenium. From this figure, it can be observed 

that the peaks of ettringite shifted towards lower degrees with increasing the retention of 

selenate. The final phase formed was called “ettringite-selenate” 

(Ca6Al2(SeO4)
3
∙(OH)

12
∙26H2O). Similarly, McCarthy et al. [142] studied the immobilization of 

Se, Cr and B by ettringite. They showed that the peaks of synthetic ettringite shifted from its 

original position and that was attributed to the modification of the ettringite structure because 

of the substitution of sulfate by these oxyanions which have a different molecular size. 
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Figure 1.23 – XRD patterns of ettringite sulfate-selenate. Intensity normalized at 100%. Cu K𝛼 radiation. Taken from D.J. 
Hasset et al. [141]. 

 

Likewise, Zhang et al. [143] studied the immobilization of B, Cr, Se and Mo by synthetic 

ettringite. They found that ettringite was able to partially immobilize all of these oxyanions. The 

authors explained that ettringite presented the following order of preference: B(OH)
4

-
 > SeO4

2-
> 

CrO4
2-

 > MoO4
2-

. In the case of Mo, only 53% of the initial Mo concentration was immobilized. 

Molybdate (MoO4
2-

) was the last oxyanion preferred by ettringite due to the important difference 

in size with sulfate. In contrast, Mo preferred to co-precipitate with Ca
2+

 to form powellite 

(CaMoO4). Figure 1.24 presents the bond length of sulfate, chromate, vanadate and 

molybdate. From this figure, it can be observed that molybdate presents the biggest different 

in size with sulfate. 

 

Figure 1.24 – Bond length in angstrom (Å) of sulfate, chromate, vanadate and molybdate. Taken from and cited by Vollpracht 
and Brameshuber [144]. Original source: [145] 
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Similarly, Zhang et al. [143] also studied the immobilization of B, Cr, Se and Mo by synthetic 

hydrocalumite (Ca4Al2(OH)12(OH)2∙6H2O). They observed that hydrocalumite had a great 

capacity to immobilize all of these heavy metals. After XRD analyses, it was observed that Mo 

precipitated with Ca
2+

 to form powellite and molybdate-hydrocalumite. Zhang et al. proposed 

three different mechanisms of heavy metal immobilization by using synthetic ettringite and 

hydrocalumite: (i) adsorption onto their surfaces, (ii) substitution of the OH- anion in 

hydrocalumite, and (iii) substitution of SO4
2-

 in ettringite. 

Therefore, ettringite binders such as calcium sulfoaluminate cements (CSA) and supersulfated 

cements are of interest in the field of hazardous waste immobilization [55], [113], [139]. In 

addition, these cements also produce C-S-H phases than can adsorb heavy metals onto their 

surface. As an example, Peysson [85] studied the immobilization of Cr and Cd by using a 

calcium sulfo-aluminate (CSA) cement. They showed that Cr and Cd were immobilized in the 

solid fractions in percentages of 20% and 30%, respectively. They observed that the 

morphology of ettringite crystals was modified when these heavy metals were added to the 

cement; however, the chemical composition of ettringite remained the same. Similarly, Berger 

[135] studied the immobilization of Zn(II) in CSA. The author observed that Zn was partially 

immobilized in the solid fraction by the adsorption onto AH3 and C-S-H phases. 

 

1.3.3.4  Sorption 

Sorption mechanism refers to the phenomena of physical and chemical adsorption of heavy 

metals [86]. Physical adsorption occurs when metallic elements are attracted by the surface of 

another element or compound due to the electrical charge difference, while chemical 

adsorption refers to the chemical interaction between elements or compounds. Therefore, 

chemical adsorption is usually stronger than physical adsorption [86]. 

All heavy metals behave differently as a function of pH (depending on different parameters 

such as the adsorbent, temperature, concentration, nature of the metal, etc.). Heavy metals 

are adsorbed up to a specific limit (depending on each specie) from which they start again to 

pass into solution [10]. However, two general behaviors can be observed in cationic (ions with 

positive charge) and anionic (ions with a negative charge) heavy metals. Cationic heavy metals 

tend to dissolve at low pH values while anionic heavy metals tend to dissolve at high pH values 

[95], [134], [146]. This behavior is presented in Figure 1.25, in which x and y-axes represent 

the pH value and the fraction of anion/cation not soluble, respectively. 
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Figure 1.25 – Typical behavior of adsorption and desorption of heavy metals in the form of cations and anions in an aqueous 
system as a function of pH (modified graph and taken from Bourg [134]). 

 

In order to better illustrate the behavior mentioned above, Figure 1.26 presents examples of 

different heavy metals adsorbed by iron hydroxide (in the form of goethite FeOOH) as a 

function of pH. Figure 1.26(a) presents the adsorption of AsO4
3-

, SeO3
2-

, PO4
3-

, MoO4
2-

, et CrO4
2-

 

(anionic species) in the pH range 2 to 12. Meanwhile, Figure 1.26(b) presents the adsorption 

of some cationic species in the pH range 2 to 8. From Figure 1.26, it can be observed that the 

adsorption of the anionic species decreased with increasing pH values. In the contrary, the 

adsorption of cationic heavy metals increased with increasing pH. 

 

Figure 1.26 – Heavy metal adsorbed by iron hydroxide as a function of pH (a) Anionic heavy metals, and (b) cationic heavy 
metals. Figures were taken from Basta et al. [95]. 

 

The immobilization of heavy metals has been attributed in several studies to their physical 

adsorption in the hydration products of the binders. The adsorption capacity of a compound is 

correlated to its specific surface. Compounds with large specific surfaces (> 600 m2/g) seem 

to have a high capacity to immobilize heavy metals by physical adsorption [94], [147]. It is the 
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case of iron, manganese and aluminum oxides and colloidal particles [94], [95], [99], [134], 

[146]. Also, the phase C-S-H presents high sorption capacity due to its micro-porosity which 

creates a high surface area controlling the sorption properties [86], [127], [118]. 

Park [118] represented the mechanisms of immobilization of Pb, Cr and Cd by portlandite (CH) 

and C-S-H formed in OPC. Figure 1.27 illustrates the co-precipitation of Pb in the surface of 

C-S-H, the incorporation of Cr into the C-S-H structure and the partial substitution of Cd by 

calcium in the CH forming a new compound (CdCa(OH)
4
) [118]. 

 

Figure 1.27 – Immobilization of Pd, Cd and Cr by the hydration products (C-S-H and CH) of Portland cement [118]. 

 

Gougar et al. [127] presented a review of the ion immobilization of heavy metals by C-S-H. 

They gave several examples of ion immobilization by C-S-H and we cite some of them as 

follow: 

 Iodine (I) was adsorbed in the form of I-1 by a C-S-H having a Ca/Si ratio of 1.7. 

 Nickel (Ni) was present in the form of Ni(OH)
2
 and it was intermixed with C-S-H. 

 Uranium (U) was immobilized by sorption and co-precipitation in C-S-H forming a 

phase referred to as “uranyl silicate hydrate-urophane”. 

 Ni and cooper (Co) were immobilized in the surface of C-S-H, probably because of the 

substitution of calcium ions.  

 Immobilization of chromium (Cr) in poorly crystalline C-S-H explained by the 

substitution of Si.  

 Cadmium (Cd) in the form of Cd(OH)2 was incorporated into the layer structure of C-S-

H. 
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Duchesne and Laforest [148] studied the immobilization of Cr(+6) by using GGBS. They 

showed that Cr concentration decreased in solution when 100% of slag was used (Cr was 

completely immobilized at 50 days of curing). They observed the presence of Cr in C-S-H by 

SEM observations. In addition, they studied the effect of Mo in the immobilization of Cr in 

contact with 100% slag. They showed that Cr did not compete with Mo and that Mo was 

partially immobilized (60% retention) after 80 days of hydration. However, the authors did not 

give a clear explanation of the mechanism of Mo immobilization. The results of this study are 

presented in Figure 1.28, where x-axis and y-axis represent the metal concentration in solution 

(given in ppm) and the time in days, respectively. 

 

Figure 1.28 – Concentrations of Cr or Mo in solution given in ppm for samples containing 100% slag. Initial Cr and Mo 
concentrations: 20 ppm. Ratios refers to water to solid ratios. Taken from Duchesne and Laforest [148]. 

 

 

As presented in the past section, several mechanisms may be responsible for the 

immobilization of heavy metals by using cementitious binders. It was shown that Mo 

was present in the form of molybdate (MoO4
2-

) in the pH range of cementitious binders 

(pH 11 - 13). It was also shown that precipitation of powellite is likely to be the main 

phase controlling Mo solubility in binders containing high content of calcium. Other 

stabilization mechanisms as sorption and substitution also contribute to the 

immobilization of Mo. Therefore, it is necessary to evaluate the capacity of several 

binders to immobilize Mo and to contribute to the understanding of the mechanisms of 

Mo stabilization. 
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1.4 Understanding the immobilization of pollutants by using 

modeling 

Modeling is an useful tool in simulating the interactions between different elements or 

compounds in a solution [149]. Therefore, modeling is useful to better understand the 

dissolution/precipitation of elements such as sulfates and molybdenum in a defined system. 

Additionally, modeling helps to better understand the phenomena that are difficult to analyze 

experimentally. In this thesis, we focus on one specific type of models called “speciation-

solubility geochemical models”. Thus, in this section, we present the principle of this type of 

model, and we give some examples of modeling related with the topic of this thesis. 

 

1.4.1 How does the model work? 

The speciation-solubility geochemical models give information about the concentrations and 

activities of ionic and molecular species in an aqueous solution at the equilibrium. They also 

provide the Saturation Indices (SI) about different minerals in the system and the reactions 

that might happen at the equilibrium [149]. As explained by Zhu and Anderson [149], a system 

is at equilibrium if none of its properties change with time. This means that these models do 

not contain spatial or temporal information (kinetic rates are not taken into account). Figure 

1.29 shows the main components of a speciation-solubility geochemical model according to 

Zhu and Anderson [149]. 

 

Figure 1.29 – Description of a speciation-solubility geochemical model. 
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Output obtained in the model 

As mentioned above, the speciation-solubility geochemical model provides information about 

concentrations and activities of ionic and molecular species as well as the Saturation Indices 

(SI) of different minerals. This permits to know if a mineral may dissolve or precipitate at the 

equilibrium of the system. Table 1.10 presents the relations between the Ion Activity Product 

(IAP), the solubility product or equilibrium constant (Ksp), and the Saturation Index (SI). The 

equilibrium constant (Ksp) is given by the law of the mass action, which is represented in the 

Equation 11. 

Equation 11.  aA + bB ↔ cC + dD 

The distribution at equilibrium of the species at the left and right side of the reaction given in 

Equation 11 is then the constant Ksp. Equation 12 presents the constant Ksp. In this equation, 

the quantities in brackets mean activities or “effective concentrations” [150].  

Equation 12. 

Ksp = 
[C]c [D]d

[A]a [B]b
 

The IAP is the analogue product of the activities [150], and the SI is the logarithm of the 

saturation state (Ω) expressed as the ratio between IAP and Ksp. As presented in Table 1.10, 

when SI>0 the mineral can precipitate (supersaturation), when SI<0 the mineral dissolves 

(subsaturation), and S=0 means equilibrium between the mineral and the solution [149], [150]. 

Table 1.10 – Relations between IAP, Ksp, and SI taken from Zhu and Anderson [149]. 

IAP, Ksp 𝛀  SI Result 

IAP< Ksp < 1 Negative Mineral dissolves 

IAP > Ksp > 1 Positive Mineral can precipitate 

IAP = Ksp 1 0 equilibrium 

 

Verification and validation of the model: 

Among the codes to carried out the speciation-solubility geochemical models, we chose in this 

thesis to work with the computer code PHREEQC version 3.0 [151], a speciation and reaction 

path program produced by the US Geological Survey. This code allows to develop models that 

are built on the fundamental laws of thermodynamics. The type of model used in this study is 

a “speciation-solubility geochemical model”.  
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Verification refers to the computer code (PHREEQC in our case) used to solve the problem of 

concern. According to Zhu and Anderson [149], codes that are generally available and 

extensively used have all been verified. This is the case of PHREEQC code which has been 

used for several applications (e.g. precipitation and dissolution reactions related to 

environmental issues, prediction of hydration reactions in cement-based systems). After Zhu 

and Anderson [149], PHREEQC has been verified against other codes or hand calculations 

for assure their mathematical functionality. 

On the other hand, validation refers to the process of determining if the model produces 

realistic results and if it represents natural processes. This depends on the input (e.g. definition 

of the system and quality of the database) used in the model. It should also be remembered, 

that speciation-solubility geochemical models do not contain spatial or temporal information; 

therefore, these types of models will be inaccurate to some degree [149]. However, these 

models are approximations to the real situations and allow to predict and better understand 

the underlying phenomena at the equilibrium state. 

 

1.4.2 Immobilization of pollutants 

Sun and Selim [152] studied the retention and transport of molybdenum (Mo)-phosphate in 

soils. To this end, they calculated the speciation of an aqueous system and estimated the 

speciation of the solution for Mo in a pH range from 2 to 11. Figure 1.30 shows the results 

obtained from a model calculated with PHREEQC; from this figure, it can be observed that Mo 

was present in solution in the form of molybdate (MoO4
2-

) over the pH 5-11 and that HMoO4
-
 

was also present but at minor concentrations. 

Similarly, Carroll et al. [153] studied the transport of Mo in a biosolid-amended alkaline soil. 

The authors used a geochemical model to examine the Mo speciation and chemical reactions 

between the soil minerals and the groundwater solution. The calculations showed that about 

76% of solution contained Mo in the form of MoO4
2-

 and about 14% of Mo was present in the 

form of CaMoO4 (over the pH range of 4-12). Other minor concentrations of Mo were calculated 

in the form of MgMoO4, NaMoO4 and negligible quantities of MoO2
2+

, KMoO4
-1

, HMoO4
-1

, 

H2MoO4, MoO2OH
+
, MoO2

+1
 and MoO3

+
. 
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Figure 1.30 – Geochemical model results for the aqueous species distribution of Mo and P under the pH range 2-11. Taken 
from  Sun and Selim [152]. 

 

Reddy and Gloss [154] investigated the chemical speciation of soil leachates, extracted at 

different depth of soil, in order to evaluate the mobility of F, Mo and Se in a calcareous soil. 

They used a model for chemical speciation and ion activity calculations known as GEOCHEM. 

Concerning to Mo, the chemical speciation indicated that Mo concentrations increased with 

depth and suggested that the dominated Mo species were: MgMoO4 (41-70%), followed by 

CaMoO4 (15-38%) and MoO4
2-

 (7-16%). In a similar study, Wang et al. [155] suggested that 

wulfenite (PbMoO4) was the solid phase controlling Mo concentrations in a soil near mine 

spoils. Modeling indicated that the dissolved Mo concentrations in the leachates of the soil 

were controlled by this phase, whose solubility increases with increasing pH values. 

The estimation of the mineral assemblage in a system can also be predicted by using the 

concentration of several elements present in a solution and thus, the prediction of phases 

controlling the solubility of species. As an example, Hyks et al. [156] studied the long-term 

leaching of several elements (including Mo) from two different solid waste residues which were 

monitored for 24 months under column percolation experiment tests. Element concentrations 

in solution allowed for the estimation of phases controlling the solubility of numerous elements. 

In the case of Mo, it was suggested that it was present in the form of molybdate (MoO4
2-

) and 

it was not related to the precipitation/dissolution of ettringite. In contrast, the authors suggested 

that powellite was the possible phase controlling Mo solubility. In the case of sulfates, they 
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suggested that SO4
2-

 solubility was controlled by the dissolution of gypsum. Furthermore, the 

decrease in sulfate concentration in solution was linked to the precipitation of ettringite. 

 

  

As presented, modeling is a useful tool to predict the behavior of species in a specific 

system. Even though the kinetics of reaction are not taken into account, understanding 

the speciation in the equilibrium state allows for improving the understanding of different 

phenomena for which the experimental analyses are difficult (e.g. stabilization of 

pollutants at low molybdenum or sulfates concentrations). 
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1.5 Conclusions 

The presence of sulfates and molybdenum in contaminated materials (e.g. excavated soil and 

by-products) is a serious concern in civil engineering projects. The aim of this chapter was to 

realize an overview of polluted soil and its reuse or disposal after excavation operations. We 

focused on (i) sulfate-rich soil in contact with concrete (external sulfate attack), (ii) stabilization 

of sulfates for reuse or disposal, and (ii) stabilization of molybdenum. Table 1.11 presents a 

summary of the main conclusions of this literature review. 

Table 1.11 – Conclusions of the Chapter 1 - Literature review. 

 What is known? What is missing? 

Concrete under 

external sulfate 

attack 

- Classic Portland cements are not suitable 

binders against external sulfate attack 

(ESA) due to high C3A and portlandite 

contents. 

- Portland cement exposed to ESA present 

expansion, cracking and softening. 

- Alternative binders have shown better 

performances (minor expansion and minor 

degradation) to ESA compared to Portland 

cements. 

- Compare the capacity of several binders 

to resist ESA by using similar experimental 

conditions. 

- Better understand the mechanisms of 

expansion/non-expansion of binders under 

ESA. 

Stabilization of 

sulfates 

Sulfate-rich soil treated by:  

- OPC leads to swelling. 

- lime can lead to swelling if soil contains 

clay. 

- alternative binders containing GGBS can 

reduce the swelling potential of soil. 

A few studies deal with mechanisms of 

stabilization of sulfates by using cementitious 

binders. 

- Compare the capacity of several binders 

to stabilize sulfates. 

- Evaluate the different treatments with 

respect to the swelling and mechanical 

properties. 

- Better understand the mechanisms of 

immobilization of sulfates. 

Stabilization of 

molybdenum (Mo) 

- Several studies focused on the study of 

heavy metals by using cementitious 

binders. 

- The main mechanisms of immobilization 

are:  

o redox reactions, 

o precipitation,  

o adsorption, 

o substitution. 

- A few studies focused on the stabilization 

of Mo by using cementitious binders. 

- Evaluate the capacity of several binders to 

immobilize Mo. 

- Contribute to the understanding of the 

mechanisms of Mo stabilization. 

- Study the capacity of calcium silicate 

hydrate (C-S-H) to immobilize Mo. 
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2. Chapter 2 – Materials and Methods 

 

Résumé 

Ce deuxième chapitre présente les matériaux et méthodes utilisés pour l’étude de (i) l’attaque sulfatique externe, 

(ii) la stabilisation des sulfates, et (iii) la stabilisation du molybdène. Ce chapitre est organisé en deux parties 

principales : Matériaux et Méthodes.  

Pour faciliter la lecture, les données numériques utilisées pour la modélisation réalisée dans ce projet sont 

présentées à la fin du chapitre en annexes (cf. Annexe 1). 

Matériaux : 

La première partie de ce chapitre se concentre sur les matériaux utilisés, leur description, composition, fabrication 

et temps de cure. Les matériaux sont présentés selon trois sections distinctes : 

(i) Attaque sulfatique externe sur des bétons : 

Dans cette partie de l’étude, sept liants différents ont été utilisés afin d’évaluer leur résistance vis-à-vis de l’attaque 

sulfatique externe. L’ensemble des liants utilisés et leur composition chimique et minéralogique sont présentés en 

Table 2.1 et Table 2.2. La Table 2.3 regroupe les formulations adoptées pour la fabrication des bétons. De plus, 

un schéma est présenté en Figure 2.8 représentant les produits hydratés de ces liants. 

(ii) Stabilisation des sols sulfatés : 

Dans cette partie de l’étude, cinq formulations différentes ont été adoptées pour étudier la stabilisation des sulfates 

dans les sols. La composition des matériaux utilisés est présentée en Table 2.4. De plus, la description des 

formulations est présentée en Table 2.5 et en Figure 2.14. 

(iii) Stabilisation du molybdène : 

Dans cette partie de l’étude, trois liants différents ont été choisis pour étudier leur capacité à immobiliser le 

molybdène (Mo). Ces liants ont été dopés en Mo en utilisant six concentrations différentes. La description des 

formulations utilisées est présentée en Table 2.6. De plus, la synthèse de la phase cimentaire silicate de calcium 

hydraté (C-S-H) a été aussi réalisée afin de vérifier sa capacité à immobiliser le Mo. La description des synthèses 

est présentée en Table 2.7. 

Méthodes : 

La deuxième partie de ce chapitre présente les méthodes employées lors des essais expérimentaux. De plus, la 

modélisation est aussi présentée dans la dernière partie de ce chapitre. 

Les méthodes utilisées dans ce projet de thèse ont été regroupées en cinq parties différentes : 

(i) Caractérisation minéralogique : 

Cette partie décrit les protocoles et caractéristiques des différentes techniques d’analyses utilisées, telles que la 

diffraction à rayons X, la microscopie électronique à balayage, la thermogravimétrie et la spectroscopie infrarouge 

à transformée de Fourier. 

(ii) Analyses chimiques : 

Cette partie regroupe toutes les analyses réalisées en solution et présente les techniques suivantes : tests de 

lixiviation, chromatographie ionique et spectroscopie d’émission atomique avec plasma à couplage inductif. 
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(iii) Test réalisés sur béton : 

Cette section présente les protocoles des essais employés pour tester les bétons fabriqués. Les techniques 

décrites sont : la résistance à la compression, le protocole de l’attaque sulfatique externe et l’extraction de la 

solution porale. 

(iv) Essais géotechniques sur des sols traités : 

Cette partie regroupe les essais réalisés sur les sols sulfatés traités par les différents liants. D’abord, les protocoles 

pour évaluer les propriétés géotechniques à court-terme sont présentés : gonflement et résistance à la traction 

indirecte (essais d’aptitude). Ensuite, le protocole de maniabilité est décrit, suivi des essais géotechniques pour 

évaluer les propriétés mécaniques à moyen et long-termes des matériaux traités : résistance en compression, 

détermination de la classe mécanique et détermination du gonflement. 

(v) Modélisation : 

Cette section est divisée en trois parties : 

a. Explication des calculs réalisés pour estimer les indices de saturation sur l’étude de l’attaque 

sulfatique externe,  

b. Modèle géochimique pour comprendre l’immobilisation des sulfates, 

c. Modèle géochimique pour comprendre l’immobilisation du molybdène. 
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Introduction 

This chapter gives information related to the materials and methods used in the study of (i) 

concrete under external sulfate attack, (ii) stabilization of sulfates, and (iii) stabilization of 

molybdenum. The first part of this chapter focuses on the materials, their description, 

composition, preparation and curing conditions. In addition, a comparison of all the materials 

is presented in several diagrams showing the main hydration products of the binders. The 

second part of this chapter focuses on the methods used to accomplish the objectives of this 

research including the description of the modeling carried out in each part of the study. For 

ease of reading, at the end of this chapter, the Annex 1 presents the input of the modeling 

used in this study. 

 

2.1 Materials 

2.1.1 Concrete under external sulfate attack 

2.1.1.1  Binders 

Seven binders grouped into three categories were tested under external sulfate attack (ESA). 

The summary of these binders is presented in Table 2.1. The chemical and mineralogical 

compositions of each of the anhydrous binders are listed in Table 2.2. Figure 2.8 represents 

in a schema the main hydration products per binder used in this part of the study. This 

representation shows the hydration products normalized to 100%; therefore, the remaining 

anhydrous phases are not represented in this figure. 

Table 2.1 – Summary of binders used in the study of external sulfate attack. 

Category Portland cements Ettringite binders Alkali-activated binders 

Binder ID 
CEM I 

CEM-SR 
CEM III/C 

SSC 
CSA 

AAS 
GP 
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Table 2.2 – Chemical and mineralogical compositions of each of the anhydrous binders (% by weight). The GGBS(1) and 
GGBS(2) were used to fabricate the SSC and the AAS binder, respectively. 

 
 CEM Ia CEM-SRa CEM III/Ca GGBS(1)b GGBS(2)b Metakaolina CSAa 

O
xi

de
s 

(%
 m

as
s)

 

CaO 64.5 65.3 46.1 43.0 43.8 1.6 43.6 

SiO2 20.2 21.7 31.3 36.0 37.4 65.9 8.2 

Al2O3 5.2 3.6 10.5 11.9 10.2 25.1 18.2 

Fe2O3 3.3 6.2 0.90 0.47 0.60 4.3 7.6 

MgO 0.80 0.90 5.8 7.0 6.4 0.37 ND 

Mn2O3 ND 0.10 ND 0.17 0.20 0.01 ND 

Na2O 0.28 0.10 0.53 0.34 0.21 0.07 ND 

K2O 0.76 0.60 0.65 0.45 0.28 0.35 ND 

SO3 3.0 1.6 2.5 0.10 0.10 - 15.2 

Cl- 0.07 0.03 0.30 ND ND ND 0.05 

C
lin

ke
r 

co
m

po
si

tio
n 

(%
 m

as
s)

 

C3A 8.6 0.0 8.4 - - - - 

C3S 60.3 59.0 63.0 - - - - 

C2S 12.6 22.0 ND - - - 29.1 

C4AF 10.1 17.0 10.5 - - - - 

C4A3S̅ -  - - - - - 54.3 

C3MS2 - - - - - - 4.5 

C3FT - - - - - - 4.5 

CS̅ 5.1 2.6 3.4 - - - 0.40 

LOI 1.8 0.32 1.4 NG NG 2.6  3.8 

a: compositions were obtained from the technical data sheet of the binder 

b: compositions were determined from ICP-AES analyses 

ND: Not determined 

NG: Negligible 

LOI: loss on ignition 

 

Description of the binders: 

(i) Portland cements: 

Ordinary Portland cement (OPC): CEM I 52.5 N CE CP2 NF, with a C3A content of 8.6% and 

a C4AF content of 10.1%, referred to as “CEM I”. It has a strength class of 52.5 N in 

accordance with the European Standard EN 197-1 and a cement fineness of 4400 cm2/g. This 

cement was used to cast the control concrete. The X-ray diffraction (XRD) pattern of the 

anhydrous cement is presented in Figure 2.1. The main hydration products of this cement are 

portlandite (CH), calcium silicate hydrate (C-S-H) and ettringite (AFt) [3]. 
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Figure 2.1 – XRD pattern of the anhydrous CEM I. CS̅: anhydrite, C2S: belite, C3S: alite, C3A: celite, C4AF: brownmillerite. 

 

Sulfate-resisting (SR) Portland cement: a commercial cement without C3A and a C4AF content 

of 17%, it is referred to as “CEM-SR”. It has a strength class of 52.5 N in accordance with the 

European Standard EN 197-1 and a cement fineness of 4220 cm2/g. The XRD pattern of the 

anhydrous cement is presented in Figure 2.2. The main hydration products of this cement are 

CH and C-S-H [23]. 

 

Figure 2.2 – XRD pattern of anhydrous the sulfate-resisting (SR) Portland cement. CS̅: anhydrite, C2S: belite, C3S: alite, C3A: 
celite, C4AF: brownmillerite. 

 

Blast furnace slag cement: CEM III/C 32,5 N–LH/SR PM (according to EN 197 -1), referred to 

as “CEM III/C”. This cement has a strength class of 32.5 N and a cement fineness of 
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4400 cm2/g. It is composed of 82% ground granulated blast furnace slag (GGBS), 15% clinker 

and 3% of secondary constituents. The XRD pattern of the anhydrous cement is presented in 

Figure 2.3. The main hydration products in slag blended with clinker cements include C-(A)-S-

H (with alumina replacing some silica), hydrotalcite (M5AH13) and AFm phases such as 

C4AH13 [72], [157]. 

 

Figure 2.3 – XRD pattern of the anhydrous blast furnace slag Portland cement. Me: merwinite, CS̅: anhydrite, C2S: belite, 
C3S: alite, C3A: celite, C4AF: brownmillerite. 

 

(ii) Ettringite binders: 

Supersulfated GGBS cement (SSC): conforms to EN 15743. This experimental binder 

(prepared at the laboratory) is composed of about 75% GGBS (fineness of 5300 cm2/g), 20% 

calcium sulfate (confidential) and 5% OPC. The XRD pattern of the anhydrous cement is 

presented in Figure 2.4. The main hydration products of this binder are AFt and C-(A)-S-H. 

M5AH13 may also precipitate. 
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Figure 2.4 – XRD pattern of the anhydrous supersulfated GGBS cement. Ba: bassanite, CS̅: anhydrite. 

 

Calcium sulfoaluminate-belite cement (CSA): this commercial cement is mainly composed of 

77% sulfoaluminate clinker, 18% anhydrite and 5% limestone filler. The cement fineness is 

4500 cm2/g and the XRD pattern of the anhydrous cement is presented in Figure 2.5. The main 

hydration products of this binder are AFt and Ms [55]. Other phases such as aluminum 

hydroxide (AH3), straetlingite (C2ASH8) and calcium aluminate decahydrate (CAH10) may also 

precipitate [47]. 

 

Figure 2.5 – XRD pattern of the anhydrous calcium sulfoaluminate-belite cement. Y: yeelimite, CS̅H: gypsum, CS̅: anhydrite, 
Pe: Perovskite, C2S: belite. 
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(iii) Alkali-activated binders: 

Metakaolin-based geopolymer (GP): the formulation of this binder corresponds to the C7 

formulation used by Pouhet et al. [158]. The XRD pattern of the anhydrous metakaolin is 

presented in Figure 2.6. The metakaolin was activated by adding 79.7 wt% sodium silicate 

solution (waterglass) (% by weight of metakaolin), which had a SiO2/Na2O molar ratio of 1.7 

(27.5 wt% SiO2, 16 wt% Na2O and 55.5 wt% H2O). The low calcium content of this binder 

(<2 wt%) leads to the formation of a N-A-S-H gel and a highly cross-linked aluminosilicate gel 

(Si-O-Al-O) [159]. 

 

Figure 2.6 – XRD pattern of the anhydrous metakaolin. K: kaolinite, M: mullite, Q: quartz. 

 

Alkali-activated GGBS cement (AAS): this binder was composed of 95% GGBS and 5% 

clinker. The cement fineness of the GGBS used is 4200 cm2/g and the XRD pattern of the 

anhydrous GGBS is presented in Figure 2.7. In this case, the GGBS was activated by adding 

8 wt% sodium carbonate (Na2CO3) and an experimental admixture (confidential). The main 

hydration products of this type of binder are C-A-S-H and M5AH13 [19]. 
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Figure 2.7 – XRD pattern of the anhydrous GGBS used for the alkali-activated GGBS cement. 
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Figure 2.8 – Anhydrous and reaction products per binder used to fabricate the concretes for ESA. Hydration products were 
normalized at 100% (the remaining anhydrous phases are not represented in this figure). Expansion under external sulfate 
attack based on expansion results presented in Chapter 3. This diagram is a representation of the distribution of the anhydrous 
and reaction products of each binder and it may vary as long as the composition of the binder change, which is mostly the 
case for CSA cements. Proportions are based on the literature. 
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2.1.1.2  Aggregates 

The aggregates used —one coarse and one fine— were from southwest France. The coarse 

aggregate was an alluvial siliceous semi-rolled gravel having a particle size of Dmax ≤ 10 mm. 

The fine aggregate was a sand mainly composed of quartz having a particle size of 

Dmax ≤ 4 mm. Figure 2.9(a) and Figure 2.9(b) present the XRD patterns of the fine and coarse 

aggregates, respectively. Both aggregates present similar composition with small differences 

on the relative intensities. The aggregates were mainly composed of quartz (Q), feldspars (F) 

and micas (M). The peak observed between 2 10º and 11º was an unidentified mineral 

present in both aggregates. It should be noted that these aggregates did not have any soluble 

sulfates in their composition. 

 

Figure 2.9 – XRD patterns obtained from the aggregates used to cast the concretes. All the patterns were plotted over the 

range from 2 5° to 70º and the selected range from 2 5° to 25°. (a) Fine aggregate, and (b) coarse aggregate. C: chlorite, 
M: mica, Q: quartz, F: feldspar, A: andalusite, **: unidentified mineral. 

 

2.1.1.3  Specimen preparation and curing 

Seven different concretes were batched using the recommended limiting values of the 

moderately aggressive chemical environment exposure class (XA2) proposed by the European 

Standard NF EN 206/CN. Therefore, the minimum binder content and the maximum water to 

binder (w/b) ratio were set to 350 kg/m3 and 0.5, respectively. The coarse to fine aggregates 
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ratio was 1.1 and 25 L-batch of concrete was prepared per formulation using a concrete mixer, 

which is presented in Figure 2.10. The first layer of fresh mixture was vibrated for 30 s in a 

vibration table and then, the second layer was also vibrated for 30 s in order to expel air 

bubbles. Description and curing for all concretes are presented in Table 2.3. 

 

 

Figure 2.10 – Concrete mixer “Collomix 25 L” used to fabricate the concretes. 

 

Water to binder (w/b) ratio justification:  

Concretes from the Portland cement (OPC) category (referred to as C-I, C-0 and C-III) were 

cast with a w/b ratio of 0.5 as recommended by NF EN 206/CN. Meanwhile, for the others 

binders’ categories, the w/b ratio was adapted to the chemistry of each binder. In order to 

increase the strength of concrete with blended cement, it is recommended to decrease its w/b 

ratio [60]. Therefore, for SSC-based concretes (C-SSC) and CSA-based concretes (C-CSA), 

the w/b ratios were set to 0.38 and 0.45, respectively. 

For the metakaolin-based geopolymer (C-GP) and the sodium carbonate AAS (C-AAS) 

concretes, the w/b ratios were set to 0.42 and 0.37, respectively. In the case of C-GP, the 

effective water content consisted of the water provided by the waterglass and the 

supplementary water added to the mixture to reach the target w/b. Therefore, the total amount 

of binder was the addition of the metakaolin and the dry waterglass. For the C-AAS, the total 

amount of binder consisted of GGBS, clinker and the alkali activator (Na2CO3) (proportions are 

given in Table 2.3). 
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Curing:  

All concretes were cured for 28 days in a room at 20°C and 95% relative humidity (RH). 

Exceptionally, concretes containing GGBS (C-III, C-SSC and C-AAS) were cured for 90 days 

in order to ensure their hydration, which is known to be slower than OPCs. 

Table 2.3 – Designation (ID), composition and curing of the concretes. 

Category 
Concrete 

Binder 
(kg/m3) 

Gravel 
(kg/m3) 

Sand 
(kg/m3) 

Effective 
water content 

(kg/m3) 
w/ba 

Activator 
(wt%) 

Curing 
(d) 

Portland cement 

C-I 350 969 868 175 0.50 - 28 

C-0 350 974 903 175 0.50 - 28 

C-III 350 961 890 175 0.50 - 28/90 

Ettringite binders 
C-SSC 350 1020 946 131 0.38 - 90 

C-CSA 350 987 914 158 0.45 - 28 

Alkali-activated 
binders 

C-GP 350 1143 1059 197b 0.42c 35.7d 28 

C-AAS 350 1007 933 140 0.37e 8f 90 

a Effective water content to binder ratio 
b Total of water coming from waterglass and the supplementary water 
c Total binder consisted of metakaolin powder and the dry waterglass 
d Dry sodium silicate (dry waterglass) 
e Total binder consisted of GGBS, clinker and Na2CO3 
f Na2CO3 

 

Cube molds of 150 mm length, 150 mm width and 150 mm height were used to cast the 

concretes. Cylinder samples of 150 mm height and 29 mm ± 1 mm diameter were cored from 

the cubes 3 days before starting ESA. Then, stainless steel nuts were positioned at the 

extremities of the core samples using a highly resistant glue, which does not present creep 

behavior. These steel nuts were adapted to the extensometer device used to measure length 

variations. Materials described here are presented in Figure 2.11 and Figure 2.12. 

Furthermore, cube molds of 100x100x100 mm3 were used to cast the samples for the 

compressive strength tests. 
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Figure 2.11 – At left, core drill FLOTT type M5 S/N 320201TR used to core the cylinder samples. At right, concrete cubes. 

 

 

Figure 2.12 – One series of cylinder samples of 150 mm height and 29 mm ± 1 mm diameter with stainless steel nuts 
positioned at the extremities. 
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2.1.2 Stabilization of sulfates 

2.1.2.1  Soil and the source of sulfate 

Since a natural sulfate-rich soil was not available, it was chosen to artificially contaminate a 

soil from the Paris region. This soil was classified as a “silt” using the Unified Soil Classification 

System (USCS). It had a total organic carbon (TOC) content of about 2450 mg/kg of dry mass 

of soil  6% and no heavy metal contamination was detected. Its chemical composition is 

presented in Table 2.4. In order to study sulfate stabilization, the soil was spiked with gypsum 

(CaSO4·2H2O) at 1.8 wt% (% of weight of dry mass of soil) in order to obtain 1 wt% of sulfate 

(SO4
2-

) (10000 mg/kg of dry mass of soil). The sulfate dosage of 1 wt% is reported as the level 

where sulfate-rich soil usually presents swelling after cement treatment [160]. In addition, 

gypsum was selected as the sulfate source because sulfates are generally found in this form 

in the soils of France [5], [83]. Gypsum is reported to be the major source of sulfate that 

produces swelling in soils treated with lime [161] and it has a high water solubility (2.4 g/l at 

25 °C) [3], [6], [7], [162]. Figure 2.13 presents the XRD patterns obtained from this soil before 

and after sulfate contamination. Figure 2.13(a) shows that the soil is mainly composed of 

quartz (Q) and calcite (C). Furthermore, the peaks observed before 2 10° showed some 

traces of clays. Finally, the pattern of natural soil did not show the presence of any crystalline 

mineral containing sulfates. On the other hand, Figure 2.13(b) shows the XRD pattern in a 

selected range from 2 10° to 15º. The sulfate-spiked soil pattern revealed the presence of 

gypsum (characteristic peaks between 2 11° and 12°). 

 

Figure 2.13 - XRD pattern obtained from the natural soil and sulfate-spiked soil (a) range from 2 5° to 70º, (b) selected range 

from 2 5° to 15º showing the appearance of gypsum peaks in the sulfate-spiked soil. Q: quartz, C: calcite, F: feldspars, D: 
dolomite, **: unidentified mineral present in the original soil. 
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2.1.2.2  Binders 

Four binders, with the ability to chemically consume sulfates during their hydration process, 

were tested to stabilize sulfates contained in the soil. The chemical and mineralogical 

compositions of each of the anhydrous binders are listed in Table 2.4. The binders used in this 

part of the study were: 

- CEM I: One ordinary Portland cement (OPC) (cf. CEM I presented in section 2.1.1.1). 

- Clinker Y: One commercial sulfoaluminate clinker mainly composed of ye’elimite (C4A3S̅ 

in cement notation) and belite (C2S in cement notation). In this binder, the SO3 content is 

of about 8%, which is about half of the SO3 content found in classic calcium sulfoaluminate 

binders [51]. The main hydration phases of this type of binder are AFt, Ms, AH3 and the 

phase straetlingite (C4ASH8) may also precipitate because of the presence of C2S [55]. 

- CEM III/C: One blast furnace slag CEM III/C cement (cf. CEM III/C presented in section 

2.1.1.1). 

- 90%GGBS+10%OPC: One experimental binder composed of 90% GGBS and 10% OPC 

(the OPC designation refers to CEM I 52.5 N R CE CP2 NF). The GGBS used in this 

binder corresponds to the GGBS used for the alkali-activated slag presented in section 

2.1.1.1. The addition of Portland cement to the slag is required to provide the necessary 

alkalinity to start the reaction of GGBS [60]. In this binder, the main hydration products are 

C-(A)-S-H, hydrotalcite (M5AH13), and in contact with sulfates AFt and Ms phases may also 

precipitate. 
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Table 2.4 - Chemical and mineralogical compositions of the soil and each of the anhydrous binders (% by weight). The GGBS 
and OPC binders presented in this table were used to fabricate the experimental binder “90%GGBS+10%OPC”. 

 
 Soilb CEM Ia Clinker Ya CEM III/Ca 

Experimental binder 

 GGBSb OPCb 

O
xi

de
 c

om
po

si
tio

n 
(%

 m
as

s)
 

CaO 13.2 64.5 45.1 46.1 43.8 64.0 

SiO2 57.7 20.2 10.5 31.3 37.4 21.9 

Al2O3 7.2 5.2 23.5 10.5 10.2 3.96 

Fe2O3 2.9 3.3 9.7 0.91 0.60 3.1 

MgO 1.1 0.8 1.0 5.8 6.4 1.3 

Mn2O3 0.1 ND 0.01 ND 0.20 0.03 

Na2O 0.7 0.28 0.17 0.53 0.21 0.15 

K2O 16 0.76 0.27 0.65 0.28 0.74 

TiO2 0.64 0.00 1.3 ND 0.70 0.17 

P2O5 0.21 ND 0.11 ND 0.10 0.10 

SO3 0.05* 3.0 8.1 2.5 0.10 3.4 

Cl- - 0.07 0.01 0.30 ND ND 

C
lin

ke
r 

co
m

po
si

tio
n 

(%
 m

as
s)

 C3A - 8.6 - 8.4 - 8.0 

C3S - 60.3 - 63.0 - 53.9 

C2S - 12.6 20.3 ND - 22.2 

C4AF - 10.1 - 10.5 - 9.4 

C4A3S̅ - - 54.3 - - - 

C3MS2 - - 4.50 - - - 

C3FT - - 9.30 - - - 

CS̅ - 5.1 0.40 - - 5.7 

LOI (loss on 
ignition) 

14.6 1.8 0.23 1.40 NG 1.26 

* SO3 concentration in the natural soil. This soil was spiked with 1.8% gypsum to obtain 1% of sulfates (SO4
2-

). 

ND: Not determined, NG: Negligible 
a: compositions were obtained from the technical data sheet of the binders 

b: compositions were determined from ICP-AES analyses 

 

2.1.2.3 Specimen preparation and curing 

All of the samples were fabricated in accordance with the French Standard NF P 94-100. The 

aim of this standard is to evaluate the mechanical performance of a soil treated with either lime 

or hydraulic binders. Before sample fabrication, the soil was dried at 40 °C and reduced to a 

particle size below 5 mm. Then, it was mixed dry with 1.8% by mass of gypsum. Before 

compaction of the samples, the water content of all the formulations was determined in 

accordance with the European Standard NF EN 13286-2. This standard specifies a method 

for determining the relationship between the water content and the dry density of untreated or 

treated soils with hydraulic binders using Proctor compaction.  

The sulfate-spiked soil without treatment was used as the reference or control formulation (F1). 

For the other mixtures (F2, F3, F4 and F5), the sulfate-spiked soil was mixed dry with the 
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binders using a dosage of 10% by weight of dry soil. This binder dosage level was selected in 

order to ensure sufficient mechanical properties for all of the treatments (justification is 

presented in Chapter 4 section 4.1.2). 

Table 2.5 – Designations and compositions of all the formulations studied (% by weight of dry soil). 

Formulation Composition Watera to solid ratio (w/s) 

F1 (untreated soil) Soil + 1% SO4
2- - 0.17 

F2 Soil + 1% SO4
2-

 + 10% CEM I 0.15 

F3 Soil + 1% SO4
2-

 + 10% Clinker Y 0.15 

F4 Soil + 1% SO4
2-

+ 10% CEM III/C 0.17 

F5 Soil + 1% SO4
2-

 + 10% (90% GGBS+10% OPC) 0.17 

a Water content determined in accordance with the European Standard NF EN 13286-2 

1% sulfates = 1.8 wt% gypsum 

 

The formulations tested are described in Table 2.5 and schematically represented in Figure 

2.14. This representation shows the hydration products normalized to 100%; therefore, the 

remaining anhydrous phases are not represented in this figure. 

Compaction was carried out by using cylindrical test molds (50 mm in height and 50 mm in 

diameter) at 96% of the maximum dry density. All of the samples were protected in hermetically 

sealed bags to preserve the water content and stored in a room at 20 °C until tests were 

conducted. The preparation of samples and the materials used in this part of the study are 

presented in Figure 2.15 and in Figure 2.16. 
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Figure 2.14 – Schema of treatments tested in the study of stabilization of sulfates. Percentages are expressed in weight of dry 
soil. Hydration products were normalized at 100%. This schema is a representation of the distribution of the anhydrous and 
reaction products of each binder used for the treatments. This distribution may vary as long as the composition of the binder 
change. 
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Figure 2.15 – Preparation of soil samples. From left to right: (i) dry soil with particle size below 5 mm, (ii) addition of 1.8 wt% 
gypsum, (iii) addition of 10 wt% binder, (iv) dry mixture for homogenization, and (v) addition of water for mixture and future 
compaction. 

 

 

Figure 2.16 – From left to right: (i) compaction device with soil uncompacted, (ii) and (iii) compaction press and compacted 
soil sample, (iv) several compacted soil samples with and without cylindrical molds. 

 

2.1.3 Stabilization of molybdenum 

2.1.3.1  Molybdenum source 

Sodium molybdate (Na2MoO4) commercially purchased from Alfa Aesar (sodium molybdate 

anhydre - Mo 46.2%) was chosen to artificially contaminate three different binders with 

molybdenum (Mo). The XRD pattern of this mineral is presented in Figure 2.17. 

As presented in Chapter 1 - Table 1.8, sodium molybdate is one of the main anthropogenic 

sources of Mo in soil commonly used in the agriculture industry as a fertilizer of soil presenting 

Mo deficiency. In addition, it has the highest solubility in water among all the Mo sources 

(65 g/100 ml at 20ºC), which is an advantage when binders are spiked with Mo via the mixing 

water. Moreover, in Na2MoO4 the Mo oxidation state is +6, which is one of the most common 

and stable Mo oxidation state [144] (cf. Chapter 1 - Figure 1.18).  
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Figure 2.17 – XRD pattern of sodium molybdate (Na2MoO4). 

 

2.1.3.2  Binders 

Three binders were tested to evaluate their capacity to immobilize Mo. The binders tested in 

this part of the study were: 

- OPC: One ordinary Portland cement. (cf. CEM I presented in section 2.1.1.1). 

- SSC: Supersulfated GGBS cement (SSC) (cf. SSC presented in section 2.1.1.1). 

- 90%GGBS+10%OPC: referred to as “90-10”. This experimental binder is composed of 

90% of ground granulated blast furnace slag (GGBS) and 10% of an Ordinary Portland 

cement (OPC), (cf. 90%GGBS+10%OPC presented in section 2.1.2.2). 

 

2.1.3.3  Specimen preparation and curing 

Samples were obtained by spiking the binders at six different Na2MoO4 concentrations via the 

mixing water. Mo concentrations were chosen to observe their influence on Mo stabilization 

mechanisms and to guarantee Mo detection. First, Na2MoO4 was dissolved in the mixing 

water. Then, the binder was added to the Mo-solution keeping a liquid to binder (L/B) ratio of 

0.4. The fresh mixture was vibrated for 30 s in a vibration table in order to expel air bubbles. 

Samples were cured for 28 days in a room at 20 °C and kept into plastic molds and protected 

in hermetical recipients in order to keep a constant water content. Description and curing of all 
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formulations are presented in Table 2.6 and Figure 2.18 presents an example of Mo-spiked 

samples. 

Table 2.6 – Designation (ID) of binders and initial Mo concentration used to artificially contaminate the binders. 

Binder/ID 
Initial Mo concentration 

 
Mo (wt%) Mo (mg/kg of dry binder) a 

B1(CEM I) 
B2(90-10) 
B3(SSC) 

0 0 
Found in natural soil/contaminated 

materials 
0.005 50 

0.05 500 

0.1 1000 

To guarantee Mo detection 
1 10000 

5 50000 

10 100000 

wt%: % by weight of binder 

a 120 g of binder were used to fabricate each formulation with a water to binder (w/b) ratio of 0.4 

 

 

Figure 2.18 – At top left, Na2MoO4 at different concentrations for fabrication of samples. At bottom left, example of Mo-
spiked binders. At right, example of Mo-spiked sample after 28 days curing destined for leaching tests. 

 

2.1.3.4  Synthesis of calcium silicate hydrate (C-S-H) with Mo 

The synthesis of pure C-S-H phases was carried out in order to evaluate their capacity to 

immobilize Mo. Synthetic C-S-H phases were prepared in accordance with the protocol 

presented by Roosz et al. [163]. Synthetic C-S-H phases were made by using three different 

chemical reactants: lime (CaO), amorphous silica (SiO2) and sodium molybdate (Na2MoO4). 
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First, CaO was calcined in a furnace for 8 h at 1000 °C in order to unsure the absence of 

portlandite (Ca(OH)
2
) and calcite. Second, Na2MoO4 was dissolved in purified water 

(18 M.cm) in order to obtain five different Mo concentrations: 0, 0.25, 1, 2.5 and 5 wt% (% by 

weight of solid, solid= total mass of CaO+SiO2). These concentrations were chosen to observe 

the capacity of C-S-H to immobilize Mo at different levels in addition to guarantee Mo detection. 

Then, CaO and SiO2 were added to the Mo-solution keeping a liquid to solid (L/S) ratio of 50 

and the target stoichiometric Ca/Si ratio was set at 1.6 (the justification of this ratio is presented 

in Chapter 5). The description of all the syntheses is presented in Table 2.7. 

Table 2.7 – Description of all the syntheses of C-S-H with Mo (% by weight of solidc). 

 Solid       

ID 
CaO 
(g) 

SiO2 
(g) 

Initial Mo 
concentration 

(wt%) a 

Mo 
(g) 

Total 
reactants 

(g) 

Total 
water (g)b 

Initial Mo 
concentration 

(mg/L) 

Initial Mo 
concentration 
(mg/kg of dry 

solid) c 

CSH 

11.98 8.02 

0 0 20 1000 0 0 

CSH_0.25 0.25 0.05 20.11 1005.4 50 2500 

CSH_1 1.0 0.2 20.43 1021.5 100 10000 

CSH_2.5 2.5 0.5 21.07 1053.6 500 25000 

CSH_5 5.0 1 22.15 1107.3 1000 50000 

a % by weight of solid (total mass of CaO+SiO2) 
b Keeping a liquid to solid reactants (L/S) ratio of 50. 
c Solid = 20 g of CaO+SiO2  

All the synthetic C-S-H phases were prepared using a glovebox under nitrogen flush in order 

to minimize carbonation. Finally, all the solutions were stored in 250 ml polypropylene bottles 

and shaken in an end-over-end tumbler at 7 rpm for 30 days. The solid residue was separated 

by centrifugation and filtration using a vacuum device and 0.22 µm membrane filters and stored 

in a desiccator until analyses were performed. After filtration, pH was measured in the resulting 

solutions and then they were stabilized to 2 v% nitric acid (HNO3) solution and stored at 4 ºC 

until analyses. Materials and devices used for the synthesis of C-S-H with Mo are presented 

in Figure 2.19. 
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Figure 2.19 – At left, glovebox under nitrogen employed for the synthesis of C-S-H with Mo. At top right, end-over-end 
tumbler used to shake solutions. At bottom right, synthetic C-S-H samples obtained after filtration. 

 

2.2 Methods 

2.2.1 Mineralogical characterization 

2.2.1.1  Hydration stoppage 

Hydration of concretes and pastes were stopped before characterization. Hydration stoppage 

is necessary to suppress the further progress of hydration and to minimize carbonation. In the 

present study, hydration stoppage was carried out in accordance with RILEM TC-238 SCM 

recommendations by using isopropanol ((CH3)
2
CHOH) as an organic solvent, which replaces 

the water and then is evaporated. To this end, samples were submerged for several minutes 

into isopropanol, filtered and dried a few minutes at 40ºC. 

2.2.1.2  X-ray diffraction 

X-ray diffraction (XRD) was used to characterize crystalline phases. XRD gives patterns of 

peak positions and relative intensities that characterize different crystal structures present in 

the samples. XRD was performed using a Bruker D8 diffractometer with the Bragg-Brentano 

configuration and copper radiation (Cu Kα, λ=1.54Å). The anode voltage was 40 kV and the 

electric current intensity was 40 mA. XRD analyses were carried out on powder with particle 

size below 80 µm previously grounded manually in an agate mortar, then placed on a rotary 

sample holder. The acquisitions were made between 4° and 70° 2θ, with a step size of 0.02° 

and an acquisition time of 0.25 seconds per step. Qualitative analyses were performed for 

30 minutes and data were treated using EVA software provided with the Powder Diffraction 
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data File (PDF) of The International Centre for Diffraction Data (ICDD). For the purpose of 

comparison of the peaks of different XRD patterns, samples were spiked with 5 wt% of rutile 

(TiO2). 

2.2.1.3 Thermogravimetric analysis  

Thermogravimetric analysis (TGA) was used to identify hydration phases (both crystalline and 

amorphous). This technique measures the weight loss of a sample by increasing the 

temperature. TGA was performed using two different devices: a Netzsch STA449-F3 and a 

TG2 Mettler Toledo. All analyses were carried out on powder previously crushed to a particle 

size below 80 µm. The heating rate was 10 ºC/min over the temperature range 40-1000 ºC. 

2.2.1.4  Microscopic characterization 

Chemical and microstructural analyses were carried out using Scanning Electron Microscopy 

with Energy Dispersive Spectroscopy (SEM/EDS). For observations of samples in powder 

form, the powder was dispersed on an adhesive carbon tab and coated with carbon. SEM 

observations of fracture surfaces were carried out on unpolished sections coated with carbon 

and using secondary electron (SE) imaging; while observations of polished sections, 

previously mounted in resin and coated with carbon, were made by using back-scattered 

electrons (BSE). Polishing was conducted on samples by using isopropanol as lubricant and 

silicon carbide grinding (SiC) paper at three different grades, 800, 1200 and 4000, for 5 minutes 

per paper. Figure 2.20 presents some examples of samples used for microstructural 

observations. 

In this study, two different scanning electron microscopes were used, a JEOL JSM-6380LV 

and a JEOL JSM 7800, equipped with Rontec XFLASH 3001 and SDD X-Max 80mm2 EDS 

detectors, respectively. Images were obtained with magnifications between 50x and 10000x. 

SEM observations coupled with EDS mapping and EDS punctual analyses were also carried 

out in order to identify correlations between various chemical elements. The SEM images 

presented in this study provide a representative picture of the analyzed samples. 
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Figure 2.20 – Examples of samples used for microstructural observations. From left to right: (i) concrete fracture sections, (ii) 
soil treated samples mounted in resin, and (iii) Mo-spiked binders mounted in resin. 

 

2.2.1.5  Fourier transform infrared spectroscopy (FT-IR) 

Fourier transform infrared spectroscopy (FT-IR) is a “technique based on the vibrations of 

atoms in a molecule or in a mineral” [164]. This technique was used to identify functional 

groups in molecules to detect structural modifications. Molecular vibrations can be related to 

the symmetry of molecules. FT-IR analyses were carried out on powder using a Perkin Elmer 

UATR1 device with a diamond crystal. Data was collected over the wavenumber range 4000-

600 cm-1. Petit and Madejova [164] explained that the stretching and bending vibrations of OH 

groups absorb in the 3700-3500 and 950-650 cm-1 regions, respectively. The Si-O stretching 

modes occur in the 1050-980 cm-1, while the most intense bending bands appear in the far-

infrared region (FIR) (550-400 cm-1). However, this last region cannot be observed in the 

current FT-IR used in this project.  

 

2.2.2 Chemical analyses 

2.2.2.1  Leaching tests 

In this study, the element immobilization efficacy (sulfates and heavy metals) was evaluated 

by carrying out leaching tests in accordance with the European Standard NF EN 12457-2 as 
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required by the French Ministerial Decree of 12 December 2014 [88]. The Standard 

NF EN 12457-2 allows the characterization and evaluation of leachable constituents of waste 

materials in a single step batch procedure at natural pH condition by using distilled water as a 

leachate. In order to perform the test, samples were crushed to a particle size below 4 mm (the 

grain size distribution below 4 mm is not controlled) and placed in 1 L polypropylene bottles 

containing distilled water with a liquid to solid ratio (L/S) of 10 L/kg. All bottles were shaken for 

24 h in an end-over-end tumbler at 7 rpm. The solid residue was separated by filtration using 

a vacuum device and 0.45 µm membrane filters. Materials used for leaching tests are 

presented in Figure 2.21. After filtration, the conductivity and pH were measured in each of the 

eluates (cf. Figure 2.22), which were then stabilized to 2 v% nitric acid (HNO3) solution. All 

solutions were stored at 4 ºC until the chemical analyses were performed. A minimum of two 

specimens were used per formulation. Arithmetic average results are presented with a 

confidence interval of 95%. 

Concerning the treated soil samples, leaching tests were carried out at 28 days and 6 months 

of curing. The first age was established to evaluate the sulfate immobilization in the short-term 

and the second curing was used to evaluate the sulfate immobilization in the long-term. These 

curing times are not normalized but they are currently used in the industrial applications. 

Concerning the Mo-spiked samples, leaching tests were conducted on samples cured for 28 

days. 

 

Figure 2.21 – At left, end-over-end tumbler for leaching tests. At right, vacuum device used for filtration. 
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Figure 2.22 – At left, device for conductivity measures. At right, device for pH measures. 

 

2.2.2.2 Ion chromatography 

Leachable sulfate, chloride and fluoride concentrations were measured using ion 

chromatography (Dionex Ion Chromatography System (ICS-3000)). Before analyses, all 

solutions were diluted by factors of 10, 25 or 100 using ultrapure water (18 M.cm). In this 

study, the ICS-3000 generates a potassium hydroxide (KOH) eluent for anion exchange 

separations with a concentration range from 1 mM to 60 mM, and a flow rate of 1.5 ml/min. 

2.2.2.3 Inductively coupled plasma atomic emission spectrometry 

Major, minor and heavy metal concentrations in solutions were determined using Inductively 

Coupled Plasma Atomic Emission Spectrometry (ICP-AES) (Optima 7000 DV machine). In this 

case, all solutions were diluted by factors of 10, 25 or 100 using ultrapure water (18 M.cm) 

with 2 v% HNO3. 

2.2.3 Concrete tests 

2.2.3.1 Compressive strength tests 

Compressive strength tests were used to characterize the concretes in hardened state at 28 

days of curing in accordance with the European Standard EN 12390-3. A total of 3 samples 

were used per formulation, and arithmetic average results are presented with a confidence 

interval of 95%. The testing machine used for compressive strength tests and an example of 

a cube sample is presented in Figure 2.23. 
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Figure 2.23 – At left, testing machine “3R RP4000QC/LC” used for compressive strength tests with one cube sample. At 
right, example of a cube concrete sample of 100x100x100 mm3 used for compressive strength tests. 

 

2.2.3.2 External sulfate attack tests 

Two standardized tests were considered to study the resistance of concretes to external sulfate 

attack (ESA) and they are presented in Table 2.8. Between these two tests, the protocol 

presented by Swiss Standard SIA 262/1:2013 Appendix D was chosen to study the capacity 

of concretes under ESA because of the acceleration period and the test of duration. 

Table 2.8 – Comparison of two standardized tests to study the resistance of concretes to external sulfate attack (ESA). 

 Parameter ASTM C1012 SIA 262 

Sample 
Dimension 2.5x 2.5 x 28.5 cm 

d = 2.8± 0.2 cm 

L =15±2 cm 

Material Mortar Concrete 

 Pre-conditioning Submersion in water for 1 h Submersion in water for 1 h 

Solution of 

immersion 

Sulfate source Na2SO4 Na2SO4 

Concentration 50 g/L 50 g/L 

Volume ratio (Vol. solution/Vol. 

sample) 
4 to 5 4 to 5 

Solution renewal No No 

pH control No No 

Temperature control No No 

Damage period Drying/submersion cycles No Yes 

Test duration Test duration 6 – 12 months 3 months 

 

The principle of the SIA 262 test consists of accelerating the sulfate attack on concrete by 

exposure of samples to 4 cycles of drying/submersion followed by a consecutive submersion 

in a sulfate solution. Each drying cycle was carried out for 5 days using an oven at 50°C while 
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each submersion cycle was carried out for 2 days in a sulfate solution prepared with distilled 

water and 50 g/L of sodium sulfate (Na2SO4). The Na2SO4 solution was stored in individual 

plastic and closed buckets -one bucket per composition- and the solution to concrete volume 

ratio was kept equal to 4.5. All the buckets were stored in a room at 20ºC. The disposition of 

samples is schematically represented in Figure 2.24 and Figure 2.25. After the 

drying/submersion cycles, concretes were submerged in the Na2SO4 solution for 56 

consecutive days, without renewing the solution. The test duration was 84 days and 

measurements of length variations were done at the end of each drying/submersion cycle and 

during the subsequent submersion phase at 7, 14, 28, 42 and 56 days. A total of 8 samples 

were used per formulation. Longitudinal expansion is presented as the arithmetic average 

value of all results with a confidence interval of 95%. 

Additional concretes were tested following the same protocol (drying/submersion cycles and 

constant submersion) but using only water as the immersion solution. The aim of these 

additional tests was to verify if the expansion of concretes was either produced by the uptake 

of water or by the reaction with sulfates. A total of 3 samples were used per formulation and 

longitudinal expansion is presented as the arithmetic average value of all results with a 

confidence interval of 95%. 
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Figure 2.24 – Schematic drawing of the bucket and concrete samples used for the external sulfate attack tests. 

 

 

Figure 2.25 – At left, example of a series of samples submerged in the sulfate solution. At right, extensometer device used to 
measure length variations. 
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2.2.3.3 Pore solution extractions 

For the purpose of better understanding the behavior of the materials under ESA, pore 

solutions extractions of concretes were performed before and after sulfate attack by carrying 

out squeezing tests using a high-pressure device [165]. The squeezing process resulted in the 

extraction of some milliliters of pore solution for all the concretes except for C-SSC and C-CSA 

(a higher pressure is required to extract their pore solutions). The materials used for this test 

are presented in Figure 2.26. 

After extractions, solid residue was separated by filtration using 0.45 µm membrane filters, pH 

measurements were made and then, solutions were stabilized to 2 v% nitric acid (HNO3) and 

stored at 4ºC until analyses were performed. 

 

Figure 2.26 – High-pressure device for squeezing tests. At right, example of solution extracted from C-I concrete after external 
sulfate attack. 

2.2.4 Geotechnical properties of treated soils 

2.2.4.1 Swelling potential in the short-term 

After treatment of sulfate-rich soil, several properties have to be evaluated in order to ensure 

the mechanical stability of the soil application. In the short-term, swelling potential was 

evaluated in all of the soil treatments by carrying out volume expansion tests in accordance 

with the French Standard NF P 94-100. This standard proposes the submersion of all treated 

soil samples in water at 40 ºC for 7 days using a heated bath (presented in Figure 2.27). The 

objective of this immersion is to accelerate the hydration of binders and to verify whether the 

treatment leads to expansion of the material [74]. Before the submersion period, this standard 

recommends a specific curing time for treated soils. When soil is treated with lime, the curing 

period is 3 days  4 h. For treatments with other binders, the minimum curing time 

recommended is 4 h  15 min and the maximum curing time is 7 days. Therefore, in this study, 
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the minimum and maximum curing times were tested (results are presented in Chapter 4). 

Preliminary testing showed that a 4-h curing time appeared to be insufficient to meet the 

requirements for splitting tests. For this reason, a curing time of 7 days was chosen for both 

volume expansion and splitting tests. 

Initial geometrical measurements of samples were taken after 7 days of curing using a digital 

sliding caliper and final volumes were measured at the end of the submersion period by 

applying Archimedes’ principle (cf. Figure 2.27). Three samples were used per formulation and 

arithmetic average results are presented with a confidence interval of 95%. 

 

 

Figure 2.27 – From left to right: (i) heated bath employed for keeping water at 40ºC for volume expansion tests, (ii) device 
of Archimedes’ principle, and (iii) example of a series of samples used for volume expansion tests according to the French 
Standard NF P 94-100. 

 

2.2.4.2  Indirect tensile strength in the short-term 

Samples used to measure indirect tensile strength followed a similar preparation to that for 

volume expansion tests (cf. 2.2.4.1). At the end of the immersion period, the indirect tensile 

strength was assessed by carrying out splitting tests in accordance with European Standard 

NF EN 13286-42, which proposes diametral compression tests on compacted soil samples (cf. 

Figure 2.28). Three samples were used per formulation and arithmetic average results are 

presented with a confidence interval of 95%. 
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Figure 2.28 – Device used for splitting tests according to European Standard NF EN 13286-42. At bottom right: example of 
the fracture of a soil sample after splitting test. 

 

2.2.4.3  Criteria to assess the performance of treated soils 

The French Standard NF P 94-10 takes two criteria into account to assess the performance of 

a soil treated with hydraulic binders: (i) volume expansion, and (ii) indirect tensile strength. 

These criteria and their guideline values are presented in Table 2.9. 

Table 2.9 – Criteria and guideline values to evaluate the performance of a soil treated with hydraulic binders according to the 
French Standard NF P 94-100. 

Performance of the treated soil 

Parameter (after immersion for 7 days) 

Volume expansion (Gv) in % Indirect tensile strength (Rtb) in MPa 

Suitable  5  0.2 

Doubtful 5 < Gv  10 0.1  Rtb < 0.2 

Unsuitable > 10 < 0.1 

  

2.2.4.4 Workability delay 

In the treatment of soil, the evaluation of workability is very important in order to fix the longest 

possible duration of the construction operations. Therefore, low workability of a mixture leads 

to difficulties for construction applications. Before evaluating the workability of the mixture, the 

optimum water content of the mixture has to be determined by carrying out the Modified Proctor 

Compaction test presented by the French Standard NF P 94-093. This test is used to 
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determine the relationship between water content and dry unit weight (dry density) of soil. The 

procedure of compaction is repeated for a sufficient number of water contents to establish a 

relationship between the dry density and the water content for the mixture. Then, the 

workability delay is evaluated by carrying out delayed compaction tests according to the 

French Standard NF P 98-231-6 and using the optimum water content determined by the 

Modified Proctor Compaction test. The delay proposed by this standard is presented in Table 

2.10. 

Table 2.10 – Delay proposed by the French Standard NF P 98-231-6 for the workability test.  

Sample 1 2 3 4 5 

Estimated compaction delay (h) 0 1 3 5 7 

 

The workability delay consists of the time where the dry density reaches 98% of the initial dry 

density (a decrease in 2% of the dry density). According to the French Technical Guide GTR 

(Guide technique pour la réalisation des remblais et des couches de forme) [65], for the 

majority of constructions, a workability delay value of about 4 and 6 hours seems suitable.  

 

Figure 2.29 – Compaction curve of formulation F5 and obtained in accordance with the French Standard NF P 94-093. 

In the present study, the workability test was conducted on the formulation F5 (cf. section 

2.1.2.3 – Table 2.5). The compaction curve obtained from the Modified Proctor Compaction 

test is presented in Figure 2.29 (workability results are presented in Chapter 4 - section 

4.3.3.2). 
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2.2.4.5  Compressive strength in the medium and long-term 

In the medium-term, compressive strength tests were carried out in formulation F5 samples 

F5 (cf. section 2.1.2.3 – Table 2.5) that were previously compacted following the protocol 

presented by the French Standard NF P 94-100. All the samples measured 100 mm in height 

and 50 mm in diameter. 

All tests were conducted by using four different curing conditions: 

 60 days air  

 28 days air + 32 days in water at 20ºC 

 180 days air 

 90 days air + 90 days in water at 20ºC 

Curing in water were carried out to evaluate the sensibility of the mixture to water. Three 

samples were used per curing condition and arithmetic average results are presented with a 

confidence interval of 95%. 

Compressive strength tests conducted on samples following an air cure and a humid cure 

gives compressive strength values referred to as “Rci” and “Rc”, respectively. According to 

French Technical Guide GTR (Guide technique pour la réalisation des remblais et des couches 

de forme) [65], the Rci/Rc ratio determined at 60 days of curing indicate the mechanical 

performances of treated soils in the medium-term as a function of the methylene blue value 

(VBS), which indicates the clay content of the material. For research purposes, the mechanical 

performance was also evaluated at 180 days of curing (in the long-term). 

Table 2.11 – Criterion to evaluate mechanical performance in treated soils according to the technical guide SETRA for VBS>0.5. 

Criterion from SETRA 

Ratio VBS 

Rci

Rc60
≥0.6 >0.5 

 

2.2.4.6  Mechanical performance class in the long-term 

When treated soil is destined for geotechnical applications such as sub-grades (i.e. underlying 

ground in a pavement), it is necessary to determine the mechanical performance class in the 

long-term. In this classification, there are five different zones and thus the treated soil is 

classified into five different mechanical classes. This classification allows to estimate the 
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thickness of the sub-grade. In this study, the mechanical performance class was obtained 

according to the French Standard NF P 94-102-1. To this end, the indirect tensile strength (Rit) 

and the Young modulus (E) have to be determined. Rit and E were obtained by carrying out 

splitting tests according to NF EN 13286-42 as a function of six different curing conditions: 

 60 days air  

 28 days air + 32 days in water at 20ºC 

 28 days air + 32 days in water at 40ºC 

 180 days air 

 90 days air + 90 days in water at 20ºC 

 90 days air + 90 days in water at 40ºC 

According to the French Technical Guide GTR (Guide technique pour la réalisation des 

remblais et des couches de forme) [65], the Rit/E ratio obtained from a treated soil at 90 days 

of curing should lead to a minimum mechanical class of 5. Figure 2.30 presents the different 

zones of classification of a treated soil in accordance with their mechanical properties (Rit and 

E) [65]. Furthermore, the different zones and mechanical class are presented in Table 2.12. 

Table 2.12 – Determination of the mechanical performance class of a treated soil at 90 days curing according to the French 
Technical Guide GTR [65] and the French Standard NF P 94-102-1. 

In-situ treatment  Zone 1 Zone 2 Zone 3 Zone 4 

Mechanical class 1 2 3 4 5 

 

 

Figure 2.30 – Classification of treated soil in accordance with the mechanical properties (Rit and E) determined at 90 days of 
curing. Taken from [65]. 
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2.2.4.7 Swelling potential in the long-term 

Swelling potential was evaluated in formulation F5 in long-term following the protocol 

presented by the French Standard NF P 94-100 (cf. Chapter 2 - section 2.2.4.1). However, in 

this case, different curing conditions were chosen (industrial requirement): 

 28 days air + 32 days in water at 20ºC 

 28 days air + 32 days in water at 40ºC 

 90 days air + 90 days in water at 20ºC 

 90 days air + 90 days in water at 40ºC 

 

2.2.5 Modeling 

The modeling made in this study was carried out in order to increase the understanding of the 

phenomena involved in each part of this study and to predict the behavior of pollutants at low 

concentrations. Modeling was carried out using the computer code PHREEQC version 3.0 

[151], a speciation and reaction path program produced by the US Geological Survey. As 

explained in the literature review (cf. Chapter 1 - section 1.4), this code allows to develop 

models that are built on the fundamental laws of thermodynamics. The type of model used in 

this study is a “speciation-solubility geochemical model”. The explanation of how this model 

works is presented in Chapter 1 - section 1.4. 

 

2.2.5.1  Thermodynamic calculations of saturation index for concrete under 

external sulfate attack 

Saturation Indices (SI) of ettringite (AFt), calcium monosulfoaluminate (Ms) and gypsum were 

calculated using PHREEQC and the ion concentrations obtained from pore solution extractions 

(cf. Chapter 2 - section 2.2.3.3). The thermodynamic properties used in this work came from 

the Thermoddem database version 1.10 [166]. Any pH adjustments necessary to match 

experimental and numerical data were made by using the “pH charge” function [47]. 

In this geochemical model, the initial solutions were defined using a temperature of T=25°C 

and the pH was adjusted by PHREEQC in order to achieve a charge balance and decrease 

the uncertainty of results. All the SI were calculated before and after sulfate attack for each 

concrete except for C-SSC and C-CSA because no data was obtained from their pore solutions 

(justification was presented in Chapter 2 - section 2.2.3.3). The input data used in this part of 

the study is presented in Annex 1 (presented at the end of this chapter). 



CHAPTER 2 – MATERIALS AND METHODS 

 110 

2.2.5.2  Modeling for the study of the stabilization of sulfates 

The thermodynamic properties used in this part of the work came from the Thermoddem 

database version 1.10 [166]. Hydrogarnet phase (C3(A,F)S0.84H4.32), which is a typical 

cementitious phase in the studied system, was added to this database using the Gibbs free 

energy of formation presented by Lothenbach et al. [167]. 

In this geochemical model, the initial solution was defined using a liquid to solid ratio of 

L/S=10 L/kg, a temperature of T=25°C and a pH of 7.0. The soil was defined as a combination 

of four main constituents represented in the form of quartz (SiO2), calcite (CaCO3), illite 

(K0.85Al2.85Si3.15O10(OH)2) and magnetite (Fe2O3) in molar proportions (mol%) of 72.8%, 21.2%, 

4.4%% and 1.6%, respectively. Sulfate was introduced into the model using 10.4 mmol of 

gypsum (a constant sulfate concentration of 1% was used for all of the simulations). Finally, 

the binder was defined by its elemental chemical composition expressed in moles (cf. Chapter 

2 - section 2.1.2.2). The input data used in this part of the study is presented in Annex 1. 

2.2.5.3  Modeling for the study of stabilization of molybdenum 

Two different geochemical models were performed: (i) a geochemical model simulating the 

interaction between the C-S-H constituents with different concentrations of sodium molybdate 

(Na2MoO4), and (ii) a geochemical model representing the interactions between Na2MoO4 and 

the three binders tested (cf. Chapter 2 - section 2.1.3.2). The thermodynamic properties used 

in this work came from Minteqv4 database, enriched by typical cementitious phases from 

Thermoddem database version 1.10 [166]. The Mo reactions added to the model are 

presented in Table 2.13.  

Table 2.13 – Molybdenum reactions added to the model. 

Aqueous speciation reactions Equilibrium constants (log K) Reference 

Ca
2+

+ MoO4
-2

 = CaMoO4 2.57 [168] 

Na
+
+ MoO4

-2 
= NaMoO4 1.66 [168] 

Solid mineral   

Ca
2+

+MoO4
-2

 = CaMoO4(s) 8.05 [168] 
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Modeling of Mo-spiked binders 

In order to better understand the Mo stabilization in the binders at low Mo concentrations, 

numerical modeling was performed for all the formulations -B1(CEM I), B2(9010) and B3(SSC) 

(cf. Chapter 2 - section 2.1.3.3). Thus, Mo immobilization in the Mo-spiked binders was 

evaluated by varying the dosage of sodium molybdate (Na2MoO4) in solution in order to obtain 

Mo concentrations ranging from 0% to 10% (percentage by mass). Assuming congruent 

dissolution in the model, all the binders were defined by its elemental chemical composition 

expressed in moles (cf. Chapter 2 - Table 2.2). 

Since few thermodynamic data exist for reaction of Mo with cementitious binders, calculations 

were made by assuming powellite precipitation as the only mechanism of Mo stabilization. On 

the other hand, since the hydration of GGBS and OPC mixes is more complex than the one of 

Portland cement, in the current investigation the hydration degree of the GGBS was 

considered and assumed to be 30% at 28 days of curing (inspired by the literature review, 

[169], [170]). 

The kinetics of chemical reactions were not taken into account in this model, which represents 

only the state of equilibrium reached by the system. The results of batch-reaction calculations 

were compared to leachable Mo and leachable major element concentrations obtained 

experimentally. 

Modeling of synthetic C-S-H with Mo 

In this geochemical model, the initial solution was defined using two main constituents 

represented in the form of amorphous silica and lime. Sodium molybdate (Na2MoO4) was 

introduced into the model using different concentrations at different steps ranging from 0% to 

5%. In this model, the phenomenon of adsorption was not taken into consideration but only the 

phenomenon of the co-precipitation of powellite. 
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Annex 1 – Input modeling – PHREEQC 

 

- Estimation of saturation indices for external sulfate attack 

TITLE C-I Before attack 
SOLUTION 1 
    temp 25 
    pH 11.54 charge 
    pe 4 
    redox pe 
    units     mol/l 
    density 1 
    Ca 0.01346 
    Al 3e-05 
    Fe         2e-05 
    Mg        2e-05 
    Si         8e-05 
    Na        0.0159 
    K         0.00444 
    S(6)       0.00227 
    -water   1 # kg 
END 
 
TITLE C-I after attack 
SOLUTION 2 
    temp 25 
    pH 12.74 charge 
    pe 4 
    redox pe 
    units mol/l 
    density   1 
    Ca 0.00427 
    Al 0.00008 
    Fe 0.00001 
    Mg 0.00001 
    Si 0.00032 
    Na 1.15013 
    K 0.01545 
    S(6) 0.43466 
    -water 1 # kg 
END 
 
TITLE C-0 Before attack 
SOLUTION 3 
    temp 25 
    pH 11.74 charge 
    pe 4 
    redox pe 
    units mol/l 
    density 1 
    Ca 0.015924 
    Al 0.000029 
    Fe 0.000021 
    Mg 0.000012 
    Si 0.000111 
    Na 0.0159 
    K 0.00444 
    S(6) 0.00227 
    -water 1 # kg 
END 
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TITLE C-0 after attack 
SOLUTION 4 
    temp 25 
    pH 12.90 charge 
    pe 4 
    redox pe 
    units mol/l 
    density 1 
    Ca 0.013134 
    Al 0.000098 
    Fe 0.000050 
    Mg 0.000036 
    Si 0.000675 
    Na 0.590078 
    K 0.006882 
    S(6) 0.100579 
    -water 1 # kg 
END 
 
TITLE C-III before attack 
SOLUTION 5 
    temp 25 
    pH 12.70 charge 
    pe 4 
    redox pe 
    units mol/l 
    density 1 
    Ca 0.003578 
    Al 0.000134 
    Fe 0.000013 
    Mg 0.000005 
    Si 0.000270 
    Na 0.030196 
    K 0.006966 
    S(6) 0.001738 
    -water 1 # kg 
END 
 
TITLE C-III after attack 
SOLUTION 6 
    temp 25 
    pH 12.55 charge 
    pe 4 
    redox pe 
    units mol/l 
    density 1 
    Ca 0.003922 
    Al 0.000254 
    Fe 0.000057 
    Mg 0.000049 
    Si  0.001175 
    Na 0.582681 
    K 0.010102 
    S(6) 0.206 
    -water  1 # kg 
END 
 
TITLE AAS before attack 
SOLUTION 7 
    temp 25 
    pH 12.72 charge 
    pe 4 
    redox pe 
    units mol/l 
    density 1 
    Ca 0.000275 
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    Al 0.000371 
    Fe 0.000018 
    Mg 0.000012 
    Si  0.002496 
    Na 0.079547 
    K 0.000865 
    S(6) 0.012357 
    -water 1 # kg 
END 
 
TITLE C-AAS after attack 
SOLUTION 8 
    temp  25 
    pH  12.16 charge 
    pe 4 
    redox pe 
    units mol/l 
    density 1 
    Ca 0.003426 
    Al 0.000216 
    Fe 0.000022 
    Mg 0.000036 
    Si 0.001589 
    Na 0.988251 
    K  0.004387 
    S(6) 0.413962 
    -water 1 # kg 
END 
 
TITLE C-GP before attack 
SOLUTION 9 
    temp 25 
    pH 9.13 charge 
    pe 4 
    redox pe 
    units mol/l 
    density 1 
    Ca 0.000194 
    Al 0.000139 
    Fe 0.000012 
    Mg 0.000013 
    Si 0.000412 
    Na  0.076588 
    K 0.000112 
    S(6) 0.002449 
    -water 1 # kg 
END 
 
TITLE C-GP After attack 
SOLUTION 10 
    temp 25 
    pH  9.84 charge 
    pe 4 
    redox pe 
    units mol/l 
    density 1 
    Ca 0.000864 
    Al 0.000094 
    Fe 0.000028 
    Mg  0.000136 
    Si  0.000177 
    Na 1.051784 
    K 0.001759 
    S(6) 0.472821 
    -water 1 # kg 
END 
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- Study of the stabilization of sulfates – formulation F5 

PHASES 
C3AFS0.84H4.32 
Ca3AlFeSi0.84O7.68:4.32H2O + 12H+ = Fe+3 + 3Ca+2 + Al+3 + 8.64H2O + 0.84H4SiO4 
    log_K     67.45 
 
SOLUTION 1 # Water - 1L 
    temp 25 
    pH  7 
    pe 4 
    redox pe 
    units mg/l 
    density 1 
   #C 245 
    -water 1 # kg 
 
EQUILIBRIUM_PHASES 1 # Soil 100 g 
 
#Quartz(alpha) 0 0.860194848 
Calcite   0 0.250377259 
Illite(Al)  0 0.051573588 
#Maghemite(disordered) 0 0.018699651 
Gypsum  0 0.010406381 
 
C1SH  0 0 
MSH06  0 0 
MSH12  0 0 
Monosulfoaluminate 0 0 
Ettringite  0 0 
C3AH6  0 0 
C4AH13  0 0 
Gibbsite  0 0 
Portlandite  0 0 
C3AFS0.84H4.32 0 0 
 
REACTION 1 # 10% GGBS hydration level 
Ca11.502Si3.329Al0.981Fe0.401Mg0.198Na0.0797K0.168S0.387O21.716 0.1 #OPC 
Ca7.811Si6.226Al2.001Fe0.075Mg1.588Ti0.088Na0.068K0.059S0.0125O25.241 0.09# (10% GGBS) 
H2O 553.26 #Water for L/S=10 
0 0.001003321 0.002006642 0.003009963 0.004013284 0.005016605 0.006019926 0.007023247 0.008026569 0.00902989 0.010033211 
0.011036532 0.012039853 0.013043174 0.014046495 0.015049816 0.016053137 0.017056458 0.018059779 0.0190631 0.020066421 
moles 
END 
USE equilibrium_phases 1 
USE solution 1 
 
REACTION 2 # 20% GGBS hydration level  
Ca11.502Si3.329Al0.981Fe0.401Mg0.198Na0.0797K0.168S0.387O21.716 0.1 #OPC 
Ca7.811Si6.226Al2.001Fe0.075Mg1.588Ti0.088Na0.068K0.059S0.0125O25.241 0.18# (20% GGBS) 
H2O 553.26 
0 0.001003321 0.002006642 0.003009963 0.004013284 0.005016605 0.006019926 0.007023247 0.008026569 0.00902989 0.010033211 
0.011036532 0.012039853 0.013043174 0.014046495 0.015049816 0.016053137 0.017056458 0.018059779 0.0190631 0.020066421 
moles 
END 
USE equilibrium_phases 1 
USE solution 1 
 
REACTION 3 # 30% GGBS hydration level 
Ca11.502Si3.329Al0.981Fe0.401Mg0.198Na0.0797K0.168S0.387O21.716 0.1 #OPC 
Ca7.811Si6.226Al2.001Fe0.075Mg1.588Ti0.088Na0.068K0.059S0.0125O25.241 0.27# (30% GGBS) 
H2O 553.26 
0 0.001003321 0.002006642 0.003009963 0.004013284 0.005016605 0.006019926 0.007023247 0.008026569 0.00902989 0.010033211 
0.011036532 0.012039853 0.013043174 0.014046495 0.015049816 0.016053137 0.017056458 0.018059779 0.0190631 0.020066421 
moles 



CHAPTER 2 – MATERIALS AND METHODS 

 116 

END 
USE equilibrium_phases 1 
USE solution 1 
 
REACTION 4 # 40% GGBS hydration level 
Ca11.502Si3.329Al0.981Fe0.401Mg0.198Na0.0797K0.168S0.387O21.716 0.1 #OPC 
Ca7.811Si6.226Al2.001Fe0.075Mg1.588Ti0.088Na0.068K0.059S0.0125O25.241 0.36# (40% GGBS) 
H2O 553.26 
0 0.001003321 0.002006642 0.003009963 0.004013284 0.005016605 0.006019926 0.007023247 0.008026569 0.00902989 0.010033211 
0.011036532 0.012039853 0.013043174 0.014046495 0.015049816 0.016053137 0.017056458 0.018059779 0.0190631 0.020066421 
moles 
END 
 

- Study of the stabilization of molybdenum 

Binder B1(CEM I) 

PHASES  
Powellite  #Essigton 1990 
CaMoO4 = Ca+2 + MoO4-2  
      log_k           -8.05 
 
 
TITLE B1_Initial 
SOLUTION 1 # Eau - 1L 
    temp      25 
    pH        7 charge 
    pe        4 
    redox     pe 
    units     mol/l 
    density   1 
   #C         245 
    -water    1 # kg 
 
EQUILIBRIUM_PHASES 1 
Amorphous_silica 0 0 
Lime   0 0 
#Calcite 0 0 
Powellite 0 0 
C0.7SH 0 0 
C0.8SH 0 0 
C0.9SH 0 0 
C1SH 0 0 
C1.1SH 0 0 
C1.2SH 0 0 
C1.3SH 0 0 
C1.4SH 0 0 
C1.5SH 0 0 
C1.6SH 0 0 
Hydrotalcite 0 0 
Monosulfoaluminate 0 0 
Ettringite 0 0 
C3AH6     0 0 
C4AH13    0 0 
Gibbsite  0 0 
Portlandite 0 0 
Goethite 0 0 
Lepidocrocite 0 0 
Fe(OH)2 0 0 
Thenardite 0 0 
Mirabilite 0 0 
 
REACTION 1 # Composition B1 
    Ca1.15Si0.34Al0.102Fe0.0413Mg0.02Na0.01K0.02S0.04O2.18 1 # 100g CEM I 
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    H2O 1.2121 # 40g H2O 
    1 moles in 1 steps 
 
SAVE equilibrium_phases 1 
SAVE solution 1 
TITLE B1_Ajouts Na2MoO4 
 
USE equilibrium_phases 1 
USE solution 1 
 
REACTION 1 
    H2O        2.5 
    Na2MoO4    1 
    0  5.20833e-05  0.000520833  0.001041667  0.010416667  0.052083333  0.104166667 moles 
END 

 

Binder B2(90-10) 

REACTION 1 # Composition B2 
    Ca1.143Si0.364Al0.078Fe0.039Mg0.032Mn0Na0.005K0.016S0.042Cl0O2.217 0.1 #10%OPC for 100g  
    Ca0.781Si0.622Al0.2Fe0.008Mg0.159Mn0.003Na0.007K0.006S0.001Cl0O2.51 0.3 # 30%hyd for 90%GGBS for 100g  
    H2O 2.22 # 40g H2O 
    1 moles in 1 steps 
 
SAVE equilibrium_phases 1 
SAVE solution 1 

Binder B3(SSC) 

REACTION 1 # Composition B3 
    Ca11.502Si3.329Al0.981Fe0.401Mg0.198Na0.0797K0.168S0.387O21.716 0.05 #OPC # 5% OPC  
    Ca7.811Si6.226Al2.001Fe0.075Mg1.588Ti0.088Na0.068K0.059S0.0125O25.241 0.27# (30% GGBS hydrationt) 
    gypsum 0.20#gypsum  
    H2O 1.2121 # 40g H2O 
    1 moles in 1 steps 
 
SAVE equilibrium_phases 1 
SAVE solution 1 

 

C-S-H + Mo 

PHASES  
 
Powellite  #Essigton 1990 
CaMoO4 = Ca+2 + MoO4-2  
      log_k           -7.2 #-8.05 
 
 
TITLE Reaction avec masses initiales 
SOLUTION 1 # Eau - 1L pour 20g de solide ajouté 
    temp 25 
    pH 7 charge 
    pe 4 
    redox pe 
    units mol/l 
    density 1 
   #C 245 
    -water 1 # kg (5*200mL) 
 
EQUILIBRIUM_PHASES 1 
Amorphous_silica 0 0.13346 
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Lime   0 0.21353 
Calcite 0 0 
Powellite 0 0 
C0.7SH 0 0 
C0.8SH 0 0 
C0.9SH 0 0 
C1SH 0 0 
C1.1SH 0 0 
C1.2SH 0 0 
C1.3SH 0 0 
C1.4SH 0 0 
C1.5SH 0.075 0 
 
REACTION 1 
    Na2MoO4    1 
    H2O        312.121 
    0  0.0000000208  0.0000000417  0.0000000625  0.000000083333  0.0000001042  0.0000002083   
    0.000002083  0.000004166667  0.0000104167  0.0000208333  0.0000416667  0.00021  0.00052  0.00104   
    0.00208  0.00313  0.00417  0.00521  0.00625  0.010416667 moles 
END 

 

C-S-H + Mo low concentrations 

PHASES  
Powellite  #Essigton 1990 
CaMoO4 = Ca+2 + MoO4-2  
      log_k           -7.2 #-8.05 
 
TITLE Reaction avec masses initiales 
 
SOLUTION 1 # Eau - 1L pour 20g de solide ajouté 
    temp      25 
    pH        7 charge 
    pe        4 
    redox     pe 
    units     mol/l 
    density   1 
   #C         245 
    -water    1 # kg (5*200mL) 
 
EQUILIBRIUM_PHASES 1 
Amorphous_silica 0 0.13346 
Lime   0 0.21353 
Calcite 0 0 
Powellite 0 0 
C0.7SH 0 0 
C0.8SH 0 0 
C0.9SH 0 0 
C1SH 0 0 
C1.1SH 0 0 
C1.2SH 0 0 
C1.3SH 0 0 
C1.4SH 0 0 
C1.5SH 0.075 0 
 
REACTION 1 
    Na2MoO4    1 
    H2O        312.121 
    0  0.0000000208  0.0000000417  0.0000000625  0.000000083333  0.0000001042  0.0000002083   
    0.000002083  0.000004166667  0.0000104167  0.0000125  0.0000145833  0.0000166667  0.00001875  0.0000208333   
    0.0000416667  0.00021  0.00052  0.00104  0.00208  0.00313 moles 
END 
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3. Chapter 3 – Concrete under external sulfate attack 

Résumé 

Ce troisième chapitre présente les résultats obtenus sur l’étude de l’attaque sulfatique externe dans des bétons à 

base de liants alternatifs. 

Cette partie de la recherche visait à : (i) réaliser un benchmark de plusieurs liants en testant leur capacité à résister 

l'attaque sulfatique externe dans des conditions expérimentales similaires, et (ii) contribuer à la compréhension 

des mécanismes associés à l’expansion ou non-expansion des liants en utilisant des analyses microstructurales 

et minéralogiques et des calculs thermodynamiques. 

Ce chapitre est organisé de la manière suivante : 

(i) La première partie se concentre sur la présentation des matériaux et la caractérisation mécanique 

des bétons à l’état durci avant attaque sulfatique externe. 

(ii) Ensuite, il présente les résultats d’expansion longitudinale et de variation de masse obtenus lors de 

l’essai de l’attaque sulfatique externe afin d’évaluer et comparer la résistance des bétons vis-à-vis de 

ce phénomène. 

(iii) La troisième partie présente les analyses chimiques, minéralogiques et microstructurales réalisées 

sur l’ensemble des bétons avant et après attaque. Les résultats sont regroupés par catégorie de 

béton étudié. 

Une comparaison de tous les résultats est présentée en Table 3.3. 

Sept différents liants ont été utilisés pour fabriquer sept bétons afin de comparer leur résistance vis-à-vis de 

l’attaque sulfatique externe. Trois ciments Portland et quatre liants alternatifs ont été utilisés pour fabriquer ces 

bétons. Les liants alternatifs ont été regroupés en deux catégories : (i) liants alcali-activés avec ou sans oxydes de 

calcium et (ii) liants ettringitiques (ciment sursulfaté et ciment sulfoaluminaux).  

Les bétons étudiés sont : 

1. C-I : béton à base de ciment Portland classique (CEM I) 

2. C-0 : béton à base de ciment Portland résistant aux sulfates (CEM-SR) 

3. C-III : béton à base de laitier de haut fourneau de type CEM III/C 

4. C-SSC : béton à base de ciment sursulfaté (SSC) 

5. C-CSA : béton à base de ciment sulfoalumineux (CSA) 

6. C-GP : géopolymère à base de métakaolin 

7. C-AAS : béton à base de laitier alcali-activé par des carbonates  

La capacité à résister à l’attaque sulfatique externe a été évaluée en utilisant les mêmes conditions expérimentales 

suivant la norme Suisse SIA 262 :2013 (0,1% est la valeur maximale d’expansion recommandée par cette norme). 

Les bétons fabriqués avec des ciments Portland à haute et faible teneur en C3A ont présenté des expansions de 

0,4% et 0,07%, respectivement (la valeur limite maximale étant 0,1%). Les expansions des liants alternatifs se sont 

avérées être, quant à elles, beaucoup plus faibles (entre 0,01 à 0,03%). Les variations longitudinales sont reportées 

en Figure 3.3. 

L’expansion du béton à base du ciment Portland classique a été expliquée en raison de la formation d'ettringite en 

excès après hydratation du béton causée par la réaction entre les aluminates anhydres (C3A) et les sulfates 

provenant de la solution. Le ciment Portland sans C3A a présenté des expansions plus faibles (6 fois plus faible 
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que celle du ciment Portland classique), mais l’apparition des fissurations à des âges ultérieurs a été attribuée à la 

formation du gypse. Celle-ci s’est produite car le gypse est devenu la phase la plus stable à précipiter du fait de la 

limitation de la source d’aluminates. On rappelle que ce béton, en effet, ne présente pas de phase C3A mais il 

contient de C4AF. Même si la phase C4AF est une source d’aluminates, la littérature montre que la cinétique de 

dissolution est plus lente que celle de C3A, permettant la précipitation de l’ettringite mais en quantités relativement 

faibles comparées à celles produites dans un ciment Portland classique.  

Par ailleurs, les bétons à base de laitier de haut fourneau de type CEM III/C testés à 28 et 90 jours de cure avant 

attaque sulfatique externe ont présentés des expansions 3 et 7 fois plus faibles que celle du béton à base du ciment 

Portland classique. Ces bétons contenaient autour de 15% de clinker permettant la diminution des aluminates 

(C3A) disponibles pour réagir avec les sulfates. De plus, les résultats d’expansion ont aussi mis en évidence que 

la résistance vis-à-vis de l’attaque sulfatique externe dépendait de l’âge de cure avant l’immersion dans la solution 

riche en sulfates. En effet, les échantillons suivant une cure de 28 jours avant attaque ont présenté une expansion 

40% supérieure à celle obtenue pour les bétons suivant une cure de 90 jours. Cela pourrait s’expliquer par la 

diminution de la structure poreuse avec le temps réduisant ainsi la pénétration des ions sulfate dans les matrices. 

D’un autre côté, les faibles expansions trouvées dans les liants alternatifs ont été expliquées par l'absence de C3A 

et de portlandite en plus de la formation d'ettringite lors de l'hydratation (cas des liants ettringitiques) et de l'absence 

de calcium (cas du géopolymère à base de métakaolin teneur en CaO dans la matrice (<2 wt%, % par poids de 

liant anhydre)).  
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Introduction 

This chapter presents the results obtained in the study of concrete under external sulfate 

attack. This part of the research aimed to: (i) realize a benchmark of several binders by testing 

their capacity to resist external sulfate attack (ESA) under similar experimental conditions, and 

(ii) contribute to the understanding of the mechanisms associated with the expansion or non-

expansion of the binders by using microstructural and mineralogical analyses, and 

thermodynamic calculations. The study of concrete under external sulfate attack was carried 

out following the approach presented in Figure 3.1. 

 

Figure 3.1 – Concept mapping of the approach adopted in the study of concrete under external sulfate attack. 

 

The first part of this chapter describes the materials used in the study of ESA and the 

compressive strength results obtained in the hardened state. The second part presents the 

results obtained from the analyses carried out in the concretes before and after attack. The 

results of longitudinal expansion and mass variation are shown, followed by the microstructural 

observations, chemical and mineralogical analyses are presented. The third part of this chapter 

focuses on the discussion of all the results, which is presented by type of concrete and refers 

to previous research works in this field. Table 3.3 presents a benchmark of all the results 

obtained in this part of the study. Additionally, a few suggestions for further investigation are 

addressed.  
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3.1  Concretes 

3.1.1  Binders 

As a reminder, seven binders grouped into three categories were tested under external sulfate 

attack (ESA). The description of the binders and their chemical and mineralogical compositions 

are presented in Chapter 2 – section 2.1.1. Table 3.1 presents the summary of all the concretes 

tested in this part of the study. 

Table 3.1 – Summary of concretes tested in the study of concrete under external sulfate attack. 

Category Portland cements Ettringite binders Alkali-activated binders 

Binder ID 
CEM I 

CEM-SR 
CEM III/C 

SSC 
CSA 

AAS 
GP 

 

3.1.2 Compressive strength of the hardened concretes at 28 days 

For the purpose of comparing the concretes in the hardened state, compressive strength tests 

were carried out in all the concretes at 28 days of curing according to the protocol presented 

in Chapter 2 – section 2.2.3.1. Figure 3.2 shows the compressive strength (fc on concrete 

cubes) results expressed in MPa and obtained for each concrete at 28 days of curing.  

 

Figure 3.2 – Compressive strength (fc) on concrete cubes at 28 days of curing. All values are expressed in MPa. 
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The Standard NF EN 206/CN (French national addition to EN 206) sets C35/452 as the 

minimum strength class when using the recommended limiting values for the XA2 exposure 

class. As shown in Figure 1, C-0, C-III, C-CSA and C-AAS concretes were not conform to this 

strength class because of their low compressive strengths. However, the strength class of 

these concretes was closer to the C30/37 class set by the XA2 exposure class in the general 

European Standard EN 206:2013.  

Among all the Portland cement-based concretes, C-I reached the highest value of fc and it 

presented a difference in the compressive strength of about 10 MPa with C-0 and C-III 

concretes. In the ettringite binders´ category, C-SSC and C-CSA concretes presented a 

difference in the compressive strength of about 20 MPa. CSA-based binders are generally 

designed to develop fast compressive strength at early ages (first 7 days of curing), but not 

always very high strength in the long-term [171]–[173]. On the contrary, strength increases 

with time in slag blended cements or cements containing GGBS leading to quite high long-

term strength [174]. In the present work, binders containing GGBS ((C-III, C-SSC and C-AAS) 

were tested only at 28 days for comparison. But a few studies have shown that in these 

materials the strength increased with time. For example, Baux et al. [174] showed that SSC 

mortars with water to binder (w/b) ratios of 0.4 and 0.5 increased significantly in strength after 

28 days of curing. The increase in strength over the time was more evident in mortars batched 

with the w/b ratio of 0.4.  

On the other hand, in the alkali-activated concrete category, C-GP presented the highest 

compressive strength. In contrast, C-AAS presented the lowest compressive strength value 

among all the concretes. Kovtun et al. [175] showed that sodium carbonate AAS presented 

slow strength development. However, with increasing OPC replacement the short-term 

strength increases but it could be harmful for later age performances. 

 

3.2 External sulfate attack test results 

The resistance to ESA was studied by measuring the longitudinal expansion and mass 

changes of concretes following the protocol presented in Chapter 2 – section 2.2.3.2.  

                                                
2 Characteristic strength, i.e. value of strength below which 5% of the population of all possible strength determinations of the 

volume of concrete under consideration are expected to fall [EN 206]; the first value is for cylinders, the second for cubes. 
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3.2.1 Longitudinal expansion results  

Figure 3.3 shows the longitudinal expansions measured for each concrete during the ESA and 

expressed in percentage as a function of time in days. As a reminder, concretes containing 

GGBS (C-III, C-SSC and C-AAS) were cured for 90 days to ensure their hydration, which is 

known to be slower than OPCs. In Figure 3.3 the red dotted line represents the maximal 

guideline value of 0.1% set by the Swiss Standard. 

Expansion measured for concretes submerged in the Na2SO4 solution and cured for 28 days 

and 90 days before attack are presented in Figure 3.3(a) and Figure 3.3(b), respectively. In 

addition, expansion of concretes submerged in only water are presented in Figure 3.3(c) and 

Figure 3.3(d). In this last case, as the concretes did not present noticeable expansions 

(<0.03%), it can be assumed that expansions measured in sulfate solutions (cf. Figure 3.3(a) 

and (b)) were due to a possible effect of the sulfates, and not only to water intake. 

As shown in Figure 3.3(a), C-I had the highest expansion (0.4%±0.1%) at the end of the test 

and seemed to be in a high kinetics of swelling. In contrast, C-0 had an expansion of 

0.07%±0.02%, which was close to the upper limit of 0.1% established by the Swiss Standard. 

However, this value was about 6 times lower than the one of C-I. On the other hand, C-III cured 

for 28 days before test showed an expansion of 0.13%±0.01%, which was higher than the 

upper limit value of 0.1%. Nevertheless, when C-III was tested after 90 days of curing (cf. 

Figure 3.3(b)), the final expansion was significantly reduced to 0.05%±0.02%, which was 2 

times lower than the limit set by the Swiss Standard and about 8 times lower than the one of 

C-I.  

As shown in Figure 3.3(a) and Figure 3.3(b), alternative binder based-concretes (C-SSC, C-

CSA, C-GP and C-AAS) had expansions much lower than Portland cement–based concretes 

(range 0.01-0.03%), with values about 10 times lower than the limit of 0.1%. 

Table 3.3 presents, at the end of this chapter, a benchmark of all the results obtained in 

the study of concretes under external sulfate attack. 
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Figure 3.3 - Longitudinal expansion in percentage (%) as a function of time in days of concretes submerged in: (a) 50 g/L 
Na2SO4 and cured for 28 days before test, (b) 50 g/L Na2SO4 and cured for 90 days before test, (c) water and cured for 28 
days before test, (d) water and cured for 90 days before test. The red dotted line represents the maximal guideline value of 
0.1% set by the Swiss Standard. 

 

3.2.2 Mass variation results 

Figure 3.4 shows the mass change values measured for each concrete during the ESA and 

expressed in percentage as a function of time in days. It should be noted that the zone before 

20 days corresponds to the period of drying and immersion cycles. 

Figure 3.4(a) and Figure 3.4(b) present the mass change values measured for concretes 

submerged in the Na2SO4 solution and cured for 28 and 90 days before attack, respectively. 

In addition, the mass change graphics of concretes submerged in only water are presented in 

Figure 3.4(c) and Figure 3.4(d), in which the mass change values were of about 50% lower 

than the ones measures in the sulfate solution. 
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Figure 3.4 – Mass change in percentage (%) as a function of time in days of concretes submerged in: (a) 50 g/L Na2SO4 and 
cured for 28 days before test, (b) 50 g/L Na2SO4 and cured for 90 days before test, (c) water and cured for 28 days before test, 
(d) water and cured for 90 days before test. 

 

Figure 3.4(a) shows that C-I concrete had the highest mass change (1.6%±0.1%) at the end 

of the test and seemed to be in a high kinetics of swelling. This behavior is in agreement with 

the longitudinal expansion presented in C-I (cf. Figure 3.3(a)). C-0 had a mass change of 

0.8%±0.1%, which was of about 2 times lower than C-I. On the other hand, C-III cured for 28 

days before test showed a mass change of 1.06%±0.04%, and the trend of the curve was 

similar to the one presented for longitudinal expansion. Concerning the mass change of the C-

III concretes (cured at 28 and 90 days before test), they were almost the same for both 

concretes. 

Regarding the ettringite binder-based concretes (C-SSC and C-CSA), they presented different 

trends in the curves of mass change. In the case of C-CSA, the mass changes increased 

gradually in time and the last measure was 0.8%±0.1% (about 2 times lower than C-I). In 

contrast, C-SSC presented lower mass changes than those presented in C-CSA; however, the 

mass also seemed to increase gradually in time. At the end of the test, this concrete presented 

a mass change of 0.3%±0.1%, which was about 3 and 6 times lower than those on C-CSA and 

C-I, respectively. During the period of drying/immersion cycles, the mass change of C-SSC 
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increased gradually, and before 20 days, it decreased suddenly. From that point, the mass 

change increased gradually in time. We can also observe that the trend of the curves obtained 

for C-SSC in water and in sulfates were similar. 

Finally, alkali-activated binder based-concretes (C-GP and C-AAS) presented different trends 

of mass variation. For C-GP, the last measure was 0.7%±0.1% (about 2 times lower than C-I) 

and the trend of the curve was very similar to the one obtained for C-CSA. It means that the 

mass change increased gradually in time. For C-AAS, the mass increased during the first 30 

days of test (during the drying/immersion cycles) and after that, the mass change stopped 

increasing and seemed to stabilize at 0.4%±0.1% (about 3 times lower than C-I). 

Longitudinal expansion vs. mass change 

In order to correlate the longitudinal expansion and the mass variation measured in concretes, 

Figure 3.5 presents a plot where the x-axis and y-axis correspond to the mass change and the 

longitudinal expansion, respectively.  

 

Figure 3.5 – Mass change as a function of longitudinal expansion in percentages (%) for all concretes submerged in the 
solution at 50 g/L Na2SO4. 
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Figure 3.5 shows that when the values of mass changes exceeded 0.8%, the longitudinal 

expansions of concretes increased gradually and were near the limit value of 0.1%. This was 

the case for all the Portland cement-based concretes (C-I, C-0, C-III(28) and C-III(90)). 

Moreover, this figure suggests that concretes, having mass changes inferior to 0.8%, 

presented dimensional variations due to the water intake. Mass changes greater than 0.8% 

may be due to the formation of expansive phases. 

 

3.3 Microstructural and mineralogical characterization and 

thermodynamic calculations 

Microstructural and mineralogical analyses and thermodynamic calculations were carried out 

before and after ESA in order to improve the understanding of the mechanisms associated 

with the existence/absence of expansion in the binders tested. Figure 3.6 summarizes the 

analyses performed in all the concretes. The analyses are presented by separating the 

concretes in three categories: 

 Portland cement concretes (C-I, C-0, C-III)  

 Ettringite binder concretes (C-SSC, C-CSA)  

 Alkali-activated binder concretes (C-GP, C-AAS) 

 

Figure 3.6 – Analyses performed in all the concretes before and after external sulfate attack. 

 

As a reminder, we present a benchmark of all the results obtained in the study of concretes 

under external sulfate attack at the end of this chapter (cf. Table 3.3). 
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 EDS punctual analyses and SEM observations: 

EDS punctual analyses gave a semi-quantitative composition of the reaction products before 

and after ESA. The results are represented in charts where x-axis and y-axis plot the Al/Ca 

and S/Ca atomic ratios, respectively. Stoichiometric composition of ettringite (AFt) and calcium 

monosulfoaluminate (Ms) are located on the plots, as well as the zone of gypsum. The two 

slopes allow the identification of either AFt or Ms formation when the products are mixed with 

other anhydrous/hydration products without Al and S. Figure 3.7 presents a schema explaining 

how to read this type of plot. 

It should be noted that the number and position of EDS points were selected arbitrary avoiding 

the anhydrous grains. All the EDS plots are presented in Figure 3.8, Figure 3.11, Figure 3.14 

and Figure 3.18.  

 

Figure 3.7 – How to read the S/Ca vs. Al/Ca charts. Monosulfate = monosulfoaluminate 

 

SEM observations and qualitative EDS analyses were carried out in order to corroborate the 

presence of expansive phases after ESA and observe their morphology. SEM observations 

are presented in Figure 3.9, Figure 3.10, Figure 3.12, Figure 3.15, Figure 3.16 and Figure 3.19. 

The SEM images provide a representative picture of the analyzed samples.  

 XRD analyses: 

XRD qualitative analyses allowed to confirm the presence/absence of sulfate bearing phases, 

mainly for AFt and gypsum. All the XRD patterns are presented in Figure 3.23. As all the 
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analyses were made on concrete, several peaks were attributed to the minerals present in the 

aggregates: micas 2 8.5°-9°, chlorite in the ranges 2 12°-13° and 2 18º-19º, and feldspars 

2 13°-14°. 

 Pore solution extraction for estimation of Saturation Indices (SI): 

Pore solutions of concretes were obtained by extraction of concretes in accordance with the 

protocol presented in Chapter 2 – section 2.2.3.3. The elemental concentrations measured in 

solution are presented in Figure 3.13 and Figure 3.22. These concentrations allowed to 

estimate the Saturation Indices (SI) of ettringite (AFt), monosulfoaluminate (Ms) and gypsum 

before and after sulfate attack. SI were calculated with the code PHREEQC. As a reminder, 

SI>0 means that the mineral is in condition to precipitate, while it should be in dissolution 

condition when SI<0 [176]–[178]. SI values are presented in Table 3.2. 

 

3.3.1 Portland cement-based concretes (C-I, C-0 and C-III) 

Figure 3.8 presents the EDS punctual analyses of C-I and C-0 before (left) and after (right) 

ESA. Figure 3.8(a) and Figure 3.8(c) show the EDS analyses performed before attack. In these 

plots, it was possible to detect a few points of AFt and Ms in C-I, while only Ms was detected 

in C-0. In this last case, the low sulfate content in the cement (1.52 wt%), combined with the 

low kinetics of dissolution of C4AF (no C3A in that cement), led to the production of Ms only.  

Figure 3.8(b) and Figure 3.8(d) show the EDS analyses performed after attack. These 

analyses showed a large population of points in the AFt area (along the line between 0 and 

AFt). It means that ettringite precipitated after ESA. Moreover, XRD analyses (cf. Figure 3.23) 

confirmed presence of AFt in both concretes after attack (peaks in the ranges 2 9°-9.5° and 

2 15°-16). Concerning C-0, results suggests that the sulfate-resisting cement released 

aluminum (probably from C4AF as it was the only source of aluminum in that cement) to form 

AFt at later ages. The precipitation of AFt was also verified by the calculation of the SI (cf. 

Table 3.2), which were superior to zero in both concretes. 
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Figure 3.8 – EDS plots of Al/Ca versus S/Ca atomic ratios (AFt – ettringite, Ms – calcium monosufoaluminate) on C-I and C-0 
concretes cured for 28 days before attack (a) C-I before and (b) after attack, (c) C-0 before and (d) after attack. 

 

SEM observations allowed for identification of ettringite in both concretes C-I and C-0 after 

sulfate attack. Figure 3.9 shows large cracks filled with ettringite in addition to the presence of 

ettringite in all the studied surface of C-I concrete, in which ettringite crystals seemed thick and 

measured 6-10 μm in length. In contrast, for C-0, Figure 3.10 shows that ettringite was not 

present in all the studied surface but it was mostly grouped in the cracks and it had thinner and 

smaller crystals than those observed in C-I. 

Moreover, EDS (cf. Figure 3.8(d)) and XRD analyses (cf. Figure 3.23) and SEM observations 

(cf. Figure 3.10) showed the presence of gypsum in C-0 concrete after ESA. In this case, 

gypsum precipitated because of the unavailability or very low concentration of aluminum due 

to the low kinetics of C4AF dissolution [21]–[23], leading to the saturation of sulfate and thus 

its precipitation with calcium. The absence of gypsum in C-I was probably related to the 

presence of aluminum in high amount, coming from the dissolution of C3A, which was 

abundant in this binder and mainly led to the formation of ettringite.  
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Figure 3.9 – SEM/EDS analyses of C-I. Before ESA: (a) air void in the matrix, (b) cement-aggregate interface, (c) 
magnification image b showing the presence of small crystals. After ESA: (d) Cement matrix, (e) magnification of image d 
(zone e) showing ettringite crystals, (f) EDS spectrum obtained from point f showed in image e, (g) crack observed in the 
matrix, (h) magnification of zone h from image g showing ettringite crystals filling cracks and portlandite, (i) EDS spectrum 
obtained from portlandite observed in image h (point i). 

 

In reference to the SI of gypsum in C-0, it remained near saturation but negative. A few studies 

indicated that gypsum often forms on the surface of samples under ESA, and progressively 

grows producing cracking, which allows for rapid influx of sulfate ions towards the interior [13], 

[179]. Feng et al. [179] explained that the formation of gypsum on the surfaces of Portland 

cement-based samples is due to the leaching of portlandite(CH) near the surface providing 

calcium to react with free sulfates in solution. Despite this, Feng et al. [179] indicated that 

modeling predicts the formation of gypsum only after the ettringite has stopped forming due to 

the consumption of all aluminate sources. They pointed out that modeling does not consider 

the free solution near the solid surface where conditions for the formation of gypsum may be 

more favorable than the formation of ettringite. Feng et al. [179] also explained that ettringite 

is more favored thermodynamically than gypsum in the solid matrix when both aluminates and 
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sulfates are still available in the pore solution. This could explain why the SI of gypsum resulted 

inferior to zero although this mineral was detected in C-0 samples by using different analyses. 

 

Figure 3.10 – SEM/EDS analyses of C-0. Before ESA no gypsum nor ettringite observed: (a) air void, (b) magnification of 
image a, (c) cement matrix. After ESA: (d) cement paste-aggregate interface, (be) magnification of image d (zone e) showing 
abundant deposition of gypsum, (f) EDS spectrum obtained from gypsum observed in image e (point f), (g) crack in the cement 
matrix, (h) and (i) magnification of image g (zone h) showing the presence of small ettringite crystals. 

 

Figure 3.11 presents the EDS analyses of C-III concretes exposed to ESA at 28 and 90 days 

of curing, referred to as C-III(28d) and C-III(90d), respectively. Before attack, it was possible 

to detect a few points of Ms (cf. Figure 3.11(a)), meanwhile, analyses after attack showed that 

C-III(28d) presented a large population of points around AFt and between the AFt/Ms slopes 

(cf. Figure 3.11(b)). For C-III(90d), EDS analyses showed that the population of points was 

predominantly located around the Ms slope.  
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Figure 3.11 – EDS plots of Al/Ca versus S/Ca atomic ratios (AFt – ettringite, Ms – calcium monosufoaluminate, Mc – 
monocarbonate, Hc – hemicarbonate) on C-III concretes (a) before and (b) after attack cured for 28 days before test, (c) after 
attack cured for 90 days before test. 

 

The presence of ettringite was verified by SEM/EDS in both concretes but to a lesser extent 

than for C-I. Figure 3.12 presents the SEM/EDS observations of C-III concretes, in which 

higher magnifications were used to observe the ettringite compared to those used for C-I (cf. 

Figure 3.9).  

As shown in Figure 3.12(c) and Figure 3.12(d), ettringite crystals in C-III(28d) were observed 

in cracks and they seemed thinner than those observed in C-I. The crystals in this concrete 

measured 8-10 μm in length. On the contrary, in C-III(90d) ettringite seemed to mostly develop 

in air voids and they were grouped in small balls having a diameter of about 10 μm (cf. Figure 

3.12(e) and Figure 3.12(f)). In this last case, ettringite crystals were very small and measured 

around 2 μm in length, which was about 5 times smaller than ettringite crystals observed in C-

III(28d). XRD analyses also showed the presence of ettringite in C-III because of the peaks in 

the ranges 2 9°-9.5° and 2 15°-16 (cf. Figure 3.23). Finally, thermodynamic calculations 

showed that the Saturation Indices of AFt and Ms were superior to zero (cf. Table 3.2) meaning 
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that both minerals were in right conditions for precipitation. It should be noted that even though 

ettringite was detected in these matrices, the expansions measured were much lower than that 

in C-0, this point will be developed in more detail in the discussion section. 

 

Figure 3.12 – SEM/EDS analyses of C-III. Before ESA: (a) Air void in the cement matrix, (b) magnification of image a (black 
circle) showing the presence of ettringite in an air void. After ESA: (c), (d) C-III(28d) showing the presence of cracks filled with 
fine ettringite crystals. (e) pore of C-III(90d), (f) magnification of image e (black circle) showing the presence of ettringite 
grouped in small balls, (g) magnification of image f showing ettringite crystals morphology, (h) EDS spectrum obtained from 
image g (point h). 
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Figure 3.13 presents the element concentrations (sulfate, Na, Ca, Al, Si and Mg) measured in 

the pore solution of Portland cement-based concretes (C-I, C-0 and C-III) before and after 

ESA. Concentrations are given in mg/L and the horizontal pointed lines in Figure 3.13(a) and 

(b) indicate the initial concentrations of sulfates and Na in the immersion solution, respectively. 

As shown in Figure 3.13(a), solutions presented low concentrations of sulfates (<250 mg/L) 

before attack. After immersion in the sulfate solution, all the pore solutions presented higher 

sulfate concentrations. Regarding the C-I concrete, the sulfate concentration after ESA was 

higher than the initial concentration of sulfates in the immersion solution. This may suggest 

that (i) sulfates entered into the material and reacted to form ettringite and gypsum, and (ii) C-

I released sulfates into the solution due to the degradation of the material. Regarding the C-0 

and C-III concretes, sulfate concentrations after ESA were lower than the initial sulfate 

concentrations in the immersion solution (16000 mg/L). This may suggest that (i) sulfate 

concentrations in the matrices were not in equilibrium with the immersion solution and/or (ii) 

sulfates were still reacting in the matrices at the end of the tests to form phases such as 

gypsum and ettringite. The behavior of sulfate concentrations in solution agreed with the 

concentrations of sodium in the pore solutions (cf. Figure 3.13(b)) before and after ESA.  

Moreover, Figure 3.13(c) shows that Ca concentrations in the pore solution of C-I and C-0 

concretes decreased by 50% and 15%, respectively after attack. This was probably due to the 

consumption of free Ca in solution to react with the high concentration of sulfates to form 

gypsum and ettringite. In contrast, Ca concentration seemed constant before and after ESA in 

C-III concrete. Furthermore, Figure 3.13(d) shows that Al concentrations were a little higher 

after attack than before ESA probably due to the dissolution of aluminate phases such as C3A 

(in the case of C-I) and C4AF (for C-0) to react with sulfates to form ettringite. On the other 

hand, Figure 3.13(e) shows that silicon concentrations also increased in the pore solution after 

sulfate attack. This behavior may be explained by the dissolution of anhydrous phases such 

as C3S and C2S or the destabilization of the calcium silicate hydrate (C-S-H) [12] (which may 

explain the decohesion of C-I concrete). Finally, Mg concentrations in pore solution increased 

after attack, this was probably due to the destabilization of minerals present in the aggregates 

containing Mg (e.g. micas). 
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Figure 3.13 – Element concentrations (Sulfate, Na, Ca, Al, Si and Mg) of pore solutions of Portland cement-based concretes 
(C-I, C-0, C-III(90d)). Concentrations are expressed in mg/L and the horizontal dotted lines in (a) and (b) indicate the initial 
concentrations of sulfate and Na in the immersion solution (34000 mg/L and 16000 mg/L, respectively). 

 

3.3.2 Ettringite binders-based concretes (C-SSC and C-CSA) 

Figure 3.14 presents the chart of EDS analyses obtained from C-SSC and C-CSA concretes 

before and after ESA. For both concretes, EDS analyses showed a concentration of points 

between the two slopes (AFt and Ms) meaning that AFt and Ms were present in these two 
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concretes before and after ESA. These results were expected since these materials are 

ettringite-based binders and produce ettringite as the main mineral during hydration. 

 

Figure 3.14 – EDS plots of Al/Ca versus S/Ca atomic ratios (AFt – ettringite, Ms – calcium monosufoaluminate, Mc – 
monocarbonate, Hc – hemicarbonate) on (a) C-SSC before and (b) after attack cured for 90 days before test, (c) C-CSA before 
and (d) after attack cured for 28 days before test. 

 

Gypsum was also detected by EDS analyses in C-SSC after ESA as shown in Figure 3.14(b). 

Gypsum was formed by the reaction between calcium and the sulfate ions in excess. The 

presence of gypsum in C-SSC was verified by XRD patterns, which showed the appearance 

of a peak between 2 11° and 12° (cf. Figure 3.23). Even though, ettringite and gypsum were 

present before and after attack in these materials, we remind that non-expansion was detected 

during and after sulfate attack. A more detailed analysis about the absence of expansion in 

these binders will be presented in the discussion part. 

The presence of ettringite in these concretes (C-SSC and C-CSA) was corroborated by XRD 

analyses (cf. Figure 3.23) and SEM/EDS observations (cf. Figure 3.15 and Figure 3.16). Figure 

3.15 presents the SEM observations in C-SSC. From this figure, it can be observed that the 
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morphology of ettringite did not show significant changes before and after attack. Furthermore, 

ettringite was observed in air voids having thin crystals that measured 10-12 μm in length. For 

C-CSA concrete, Figure 3.16 also revealed that the morphology of ettringite did not change 

before and after attack. It can also be observed that this concrete presented two types of 

morphology: (i) constrained or massive ettringite crystals present in all the analyzed surface 

(cf. Figure 3.16(d)), and (ii) thick crystals of ettringite grouped in balls of about 20 μm in 

diameter (cf. Figure 3.16(f)). 

 

 

Figure 3.15 – SEM/EDS analyses of C-SSC cured for 90 days before test. Before ESA: (a) Air voids, (b), (c) magnification of 
image a showing the presence of ettringite in air voids. After ESA: (d) Air voids, (e) magnification of image d showing the 
presence of fine ettringite crystals, (f) EDS spectrum obtained from image e (point f), (g) binder paste-aggregate interface, (h), 
(i) magnification of image g showing the presence of a small crack and abundant ettringite crystals. 
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Figure 3.16 – SEM/EDS analyses of C-CSA cured for 28 days before test. Before ESA: (a) cement matrix, (b) magnification 
of image a showing the presence of abundant and interconnected ettringite crystals, (c) EDS spectrum obtained from image 
b. After ESA: (d) cement matrix showing the presence of abundant ettringite, (e) magnification of image d showing 
interconnected ettringite crystals, (f) EDS spectrum obtained from image e, (g) air void showing the presence of ettringite 
grouped in balls, (h) magnification of image g, (i) EDS spectrum obtained from image h. 

 

It should be noted that Figure 3.14(b) also shows a few points below the Ms slope in C-SSC 

after attack. These points formed a constant tendency along the y-axis, and they can be 

explained by the transformation of monosulfoaluminate to mono/hemicarbonate (Mc/Hc) due 

to carbonation, as indicated by Komljenović et al. [40]. Mc and Hc are both located on the y-

axis (Al/Ca-axis) having an Al/Ca atomic ratio of 0.5 and 0.68, respectively [40]. Furthermore, 

these points may also represent the presence of hydrotalcite as shown in Figure 3.17, where 

x-axis and y-axis plot the Mg/Si and Al/Si atomic ratios, respectively. The slopes presented in 

Figure 3.17 represent the Mg/Al atomic ratio of the hydrotalcite phases [40], [42]. In both 

materials, a decrease in the Mg/Al atomic rations were observed after ESA. A more detailed 

analysis will be presented in the discussion part. 
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Figure 3.17 – EDS plots of Mg/Si versus Al/Si atomic ratios on (a) C-SSC before and (b) after attack cured for 90 days before 
test, (c) C-AAS before and (d) after attack cured for 90 days before test. 

 

3.3.3 Alkali-activated concretes (C-AAS and C-GP) 

Figure 3.18 and Figure 3.20 present the chart of EDS punctual analyses obtained from alkali-

activated concretes (C-AAS and C-GP, respectively) before and after ESA.  

In C-AAS concrete, it was possible to detect a few points in the Ms area before attack as shown 

in Figure 3.18(a). In addition, a significant population of points was below the Ms slope and all 

along the y-axis (as observed for C-SSC). As mentioned previously, these points were 

attributed whether to the presence of AFm phases (monocarbonate (Mc) and hemicarbonate 

(Hc)) or the presence of hydrotalcite. After sulfate attack in C-AAS, it was possible to identify 

a few more points in the Ms and AFt areas as shown in Figure 3.18(b) and the points attributed 

to Mc and Hc placed all along the y-axis remained present. Further details will be given in the 

discussion.  
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Figure 3.18 – EDS plots of Al/Ca versus S/Ca atomic ratios (AFt – ettringite, Ms – calcium monosufoaluminate, Mc – 
monocarbonate, Hc – hemicarbonate) on (a) C-AAS before and (b) after attack cured for 90 days before test. 

 

On the other hand, XRD patterns (cf. Figure 3.23) and SEM/EDS analyses (cf. Figure 3.19) 

did not show the presence of ettringite in this concrete, probably because it formed at low 

quantities. According to the literature, the presence of carbonate may limit the formation of 

ettringite, probably because of the competition of carbonate and sulfate ions [42], [180]. In this 

concrete, the SI values (cf. Table 3.2) of Ms and gypsum were inferior to zero, meaning that 

these minerals did not precipitate. In contrast, the SI of ettringite was superior to zero indicating 

that this mineral might precipitate after ESA. 

 

Figure 3.19 – SEM/EDS analyses of C-AAS. Before ESA: (a) concrete matrix, (b), (c) EDS spectrum obtained from image a 
(points b and c). After ESA: (d), (e) Concrete matrix (f) EDS spectrum obtained from image e (point f). 
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In C-GP, EDS analyses did not show the presence of neither AFt nor Ms before and after ESA 

as shown in Figure 3.20. EDS plots in this material are shown at different scales in order to 

observe all the points taken in the analyses. This was a product of the very low content in 

calcium oxides (<2 wt%), leading to very high off-chart Al/Ca values. Furthermore, SEM/EDS 

analyses (cf. Figure 3.21) and XRD patterns (cf. Figure 3.23) did not show the presence of 

neither ettringite nor gypsum before and after ESA. Finally, the SI of AFt, Ms and gypsum (cf. 

Table 3.2) were inferior to zero, meaning that these minerals did not precipitate in C-GP. 

 

Figure 3.20 – EDS plots of Al/Ca versus S/Ca atomic ratios (AFt – ettringite, Ms – calcium monosufoaluminate) on (a) C-GP 
before and (b) after attack cured for 28 days before test. 

 

 

Figure 3.21 – SEM/EDS analyses of C-GP cured for 28 days before test. Before ESA: (a) air void, (b) concrete matrix, (f) 
EDS spectrum obtained from image b (point c). After ESA: (d), (e) air voids, (f) magnification of image e. 
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Figure 3.22 presents the element concentrations (sulfate, Na, Ca, Al, Si and Mg) measured in 

the pore solution of alkali-activated binders-based concretes (C-AAS and C-GP). 

Concentrations are given in mg/L and horizontal pointed lines in Figure 3.22(a) and (b) indicate 

the initial concentrations of sulfates and Na, respectively in the immersion solution. 

 

 

Figure 3.22 – Element concentrations (Sulfate, Na, Ca, Al, Si and Mg) expressed in mg/L of pore solutions of alkali-activated-
based concretes (C-AAS and C-GP). Horizontal lines in (a) and (b) indicate the initial concentrations of sulfate and Na in the 
immersion solution (34000 mg/L and 16000 mg/L, respectively). 
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Figure 3.22(a) shows the sulfate concentrations before and after attack. As shown, sulfate 

concentrations increased after attack and presented higher values than the initial sulfate 

concentration in the immersion solution. On the other hand, Na concentrations before attack 

were higher than the ones measured for Portland concretes. This can be explained by the 

composition of these two binders. As a reminder, C-AAS was activated by sodium carbonate 

(Na2CO3) and C-GP was activated by using a solution containing Si and Na. After attack, Na 

concentrations increased in the pore solution and were superior to the initial concentration of 

the immersion solution.  

Furthermore, Ca concentrations increased after ESA for both concretes. In the case of C-AAS, 

Ca concentration may come from the dissolution of GGBS or the destabilization of C-S-H. 

However, the release of Ca in C-GP may be explained by the 2 wt% CaO in the matrix and the 

dissolution of some minerals in the aggregates containing calcium such as the plagioclase 

feldspars (e.g. anorthite). Moreover, Si and Al concentrations were lower after sulfate attack. 

Two hypotheses could explain these variations: (i) in C-AAS less free Al was available because 

this concrete possibly continued hydrating over the period of the test, and (ii) in C-GP probably 

the geopolymerization of the material continued and Si and Al were consumed to build the 

network of Si-O-Al-O. As explained for Portland cement concretes, Mg concentrations in pore 

solution increased after attack probably due to the destabilization of minerals present in the 

aggregates containing Mg (e.g. micas). 
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Figure 3.23 – XRD patterns before and after external sulfate attack. Selected range varying from 8° to 20°. Minerals coming 
from the aggregates: M: Mica, C: Chlorite, F: Feldspars, **: unidentified mineral. Minerals coming from the binders: E: Ettringite, 
Ms: monosulfoaluminate, Hc/Mc: Hemi/mono-carbonates, P: Portlandite, G: Gypsum. 

 

Table 3.2 – Saturation indices of ettringite (AFt), calcium monosulfoaluminate (Ms) and gypsum before and after ESA. Values 
were calculated with PHREEQC V3. 

 C-I C-0 C-III C-AAS C-GP 

Mineral Before After Before After Before After Before After Before After 

AFt 6.0 7.1 6.4 10.0 3.9 7.6 -0.2 6.8 -3.2 -1.9 

Ms 1.0 1.4 1.3 4.0 0.0 1.9 -3.1 1.1 -4.5 -2.7 

Gypsum -0.9 -0.5 -0.9 -0.4 -1.5 -0.5 -2.0 -0.5 -2.8 -1.0 
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3.4 Benchmark of results 

Table 3.3 presents a benchmark of all the results obtained in the study of concretes under 

external sulfate attack. It should be noted that the amount of the reaction products is qualitative 

and serves for the merely purpose of comparison. 

Table 3.3 – Benchmark of concretes before and after external sulfate attack. 

Category Portland cements Ettringite 
binders 

Alkali-activated 
binders 

Concrete C-I C-0 C-III C-III C-SSC C-CSA C-AAS C-GP 

fc a (MPa) 54.5 40.8 41.5 - 59.3 40.3 33.2 49.6 

Age b (days) 28 28 28 90 90 28 90 28 

T
es

ts
 S

IA
 

26
2 

:2
01

3 

Longitudinal 
expansion 
(%) 

Sulfates 0.4 0.07 0.13 0.05 0.008 0.03 0.021 0.015 

Water 0.04 0.03 0.02 0.01 0.007 0.005 0.010 0.020 

Mass 
change (%) 

Sulfates 1.6 0.8 1.1 0.9 0.3 0.8 0.45 0.7 

Water 0.6 0.4 0.5 0.5 0.1 0.3 0.05 0.6 
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Cracking  
        

Capacity to resist ESA based 
on longitudinal expansions 
(max. guideline value: 0.1%) 

Bad Regular Regular Good Good Good Good Good 

a fc: Compressive strength at 28 days of curing 
b Age of curing in days before external sulfate attack (ESA) 
c Before ESA 
d After ESA 
 

Content 
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product 
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3.5 Discussion 

3.5.1 Portland cement-based concretes  

Ordinary Portland cement and sulfate-resisting Portland cement: 

Ordinary Portland cement-based concrete (C-I) was selected as the control material and it was 

expected that it would present the largest longitudinal expansion among all the concretes. C-I 

expansion was produced by the chemical reaction between the aluminate phases (especially 

C3A) and the high concentration of sulfates present in the immersion solution. As observed in 

Figure 3.3, C-I expansion increased slowly during the first 25 days of attack, and then it 

increased suddenly. Similar behavior has also been reported in the literature on studies carried 

out on OPC-based concretes under ESA [8], [12]–[14].  

Degradation kinetics on C-I were faster than on the sulfate-resisting Portland cement-based 

concrete (C-0) in which the expansion increased slowly and at uniform rate. About the end of 

the test (around 70 days of immersion), noticeable cracks were observed in C-I, which explains 

the high dispersion obtained in the last two expansion values. At the end of the test, 

supplementary submersion was carried out for visual inspections. After one year of 

supplementary submersion, C-I samples developed decohesion. Pictures of C-I are presented 

in Figure 22. 

 

Figure 3.24 – Pictures of some samples of the C-I concrete (a) at 70 days of tests showing the presence of cracks, and (b) 
after one year of supplementary submersion showing the decohesion of the samples. 

 

On the other hand, C-0 was expected to present lower expansion than C-I due to the slow 

reaction of C4AF and the absence of C3A. The final expansion in C-0 was indeed 6 times lower 
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than the one in C-I. Unlike C-I, C-0 did not present any noticeable cracks during and at the end 

of the test (duration test of 84 days). This result supports the fact that low or absence of C3A 

content improves the durability of materials under ESA [19], [20]. This means that the damage 

is delayed in time when the source of aluminum content has a lower kinetics of dissolution, as 

it is the case for C4AF. At the end of the test, supplementary submersion was carried out for 

visual inspections. This showed that C-0 developed cracks after 550 supplementary days. In 

C-0, calcium and aluminum ions are available from C4AF; however, this aluminate phase 

reacts with a lower kinetics compared to the one of C3A [21]–[23]. As a result, ettringite forms 

at a very slow rate and in minor quantities than in presence of C3A [24]. Therefore, cracking in 

C-0 was mostly attributed to the formation of gypsum as shown in Figure 3.8. This finding 

reinforces previous results reporting that gypsum is often formed besides ettringite in materials 

with low C3A content when exposed to high sulfate concentrations [12]–[14], [21]–[24]. 

Blast furnace slag Portland cement: 

Regarding the blast furnace slag cement-based concretes (C-III) cured for 28 days (C-III(28d)) 

and 90 days (C-III(90d)) before attack, they showed similar reaction kinetics under ESA (cf. 

Figure 3.3) but different magnitude of expansion at the end of the test. C-III(28d) presented an 

expansion 40% higher than C-III(90d), meaning that curing can be a relevant parameter 

influencing the resistance of concretes to ESA. The different behavior between these two 

concretes can be explained probably by the difference in their porosity. Hydration degree in 

slag blended cements is not very high at early ages compared to OPC and the rate of 

hardening is slower than that in OPC during the first 28 days [60], [169]. Therefore, early sulfate 

exposure of slag blended cements can affect their sulfate resistance because at early ages 

these materials present low reactivity and thus their pore network is not completely developed, 

which increases the ingress of sulfates ions and allows their reaction in the matrix [181]. This 

may indicate that slag blended cements should present lower expansions when exposure 

occurs at late ages of curing.  

Yu et al. [30] explained that slag blended cements present a smaller pore size structure that 

favor their resistance to sulfate attack. They pointed out that these materials may not show 

expansion within the period of the tests even though they present degradation. Moreover, they 

explained that failure of slag blended cements under sodium ESA is dominated by the loss of 

surface rather than expansion. The authors showed that in these types of cement, the incoming 

sulfate ions are fixed close to surface by aluminate phases such as Ms and anhydrous slag 

due to the pore structure. Only when all phases have been reacted, the sulfate ion 

concentration can increase in pore solution and when the supersaturation level is reached, fine 

crystals of ettringite can be formed from Ms to produce expansion. 
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Aside from this, C-III(28d) and C-III(90d) concretes presented lower final expansions than C-I 

(3 times and 7 times lower, respectively). According to the literature, the behavior of slag 

blended with clinker cements under ESA depends on the level of replacement and composition 

of slag [182]. Whittaker et al. [182] explained that high slag levels (>70%) improves the 

resistance of cements under ESA. Low expansion in C-III can be explained by the important 

proportion of slag (82%) and the low content of clinker (15%), which reduces the C3A content 

and thus the availability of aluminum to react with sulfates. In addition to this, clinker is 

consumed by the GGBS to be activated, it means that GGBS reaction became the dominant 

reaction and the amount of clinker can be considered insufficient to enable the precipitation of 

large amounts of expansive phases [81], [83], [183]. Moreover, the absence or low content of 

portlandite reduces the expansive nature of ettringite. Furthermore, the unavailability of 

aluminum for reaction with sulfates can also be explained by the formation of C-A-S-H and 

hydrotalcite phases [40] during hydration. Allahverdi et al. [41] pointed out that slag cements 

produce C-S-H with lower Ca/Si ratios than those in OPC, thereby increasing their capacity to 

bind more aluminum in their structure and reducing the free aluminum to react with sulfates. 

 

3.5.2 Alternative binders-based concretes 

Results presented in this paper confirmed that the use of the alternative binders studied (C-

SSC, C-CSA, C-AAS and C-GP) is useful to improve the durability of concretes under ESA 

because: (i) longitudinal expansions were inferior to the ones obtained for OPC, (ii) expansion 

were lower than the limit value of 0.1% set by the Swiss Standard, and (iii) no visual signs of 

damage was observed during and after ESA. 

3.5.2.1 Ettringite binders 

The calcium sulfoaluminate-belite cement-based concrete (C-CSA) did not show any 

significant expansion (0.03%±0.01%) after ESA and it did not develop cracks or visual 

deterioration during and after attack. These results are in agreement with Bescher et al. [52], 

who indicated that after an immersion period of two years in sulfate solutions, CSA-belite 

mortars cubes did not present visual signs of deterioration. They suggested that different 

factors may contribute to the sulfate resistance of CSA against ESA: (i) the lack of C3A, (ii) the 

formation of low amounts of C-S-H, which may favor the good resistance to sulfate attack 

because there is not decalcification of this phase, and (iii) the formation of ettringite during 

hydration, which is not deleterious for the material. Chen et al. [46] explained that if ettringite 

is formed after hydration without producing expansion, this probably means that ettringite had 
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space to grow without exerting pressure on the CSA rigid matrix. On the contrary, Hargis et al. 

[47] showed that CSA pastes presented expansion at different levels as a function of the 

gypsum content. They suggested that CSA expanded not only for the crystallization pressure 

exerted by ettringite but also by other hydrates such as monosulfoaluminate, straetlingite, 

CAH10, and AH13. 

With respect to the supersulfated GGBS cement-based concrete (C-SSC), no significant 

expansion (<0.01%) was presented after ESA and no cracks were detected during and after 

attack. This finding supports previous studies indicating the good resistance of SSC cements 

under ESA. Grounds et al. [53] showed that SSC mortars did not present expansion or visible 

signs of attack after calcium or sodium sulfate exposure. Cerulli et al. [63] showed that SSC-

based mortars did not expand very much under ESA and the authors attributed such resistance 

to the low calcium hydroxide (CH) content. They explained that hydrated lime seemed to favor 

the formation of colloidal ettringite, which could be able to absorb water responsible for a 

deleterious swelling. Similarly, Niu et al. [54] indicated that SSC mortars presented expansion 

of about 4 times lower than that in OPCs. The authors also attributed such sulfate resistance 

to the low CH content, which was consumed by the pozzolanic reaction to form ettringite and 

C-S-H; therefore, free CaO was insufficient to react with the sulfate ions coming from the 

sulfate solution. In summary, the sulfate resistance of SSC cements has been attributed in the 

literature to: (i) the low content or absence of CH, and (ii) the consumption of most of the free 

alumina, coming from the slag, to form ettringite during hydration [53], [54], [60], [63]. 

Ettringite morphology: 

Moreover, SEM observations and EDS analyses (cf. Figure 3.14, Figure 3.15 and Figure 3.16) 

showed that ettringite-based concretes (C-SSC and C-CSA) presented ettringite with different 

morphology. In C-SSC, fine ettringite of about 10-12 μm in length was observed in air voids. 

In contrast, two types of ettringite morphology were observed in C-CSA: (i) thick crystals of 

ettringite grouped in balls of about 20 μm in diameter, and (ii) constrained or massive ettringite 

in all the analyzed surface. Kharchenco et al. [184] suggested that crystallization pressure of 

ettringite and its morphology depends on the pH value of the reaction solution. Yu et al. [185] 

suggested that ettringite crystals formed during hydration, which are interlocked with each 

other, lead to a more compact structure and higher compressive strength in CSA materials. It 

should be noted that some previous studies have linked this interlocked, massive or 

constrained ettringite to expansion in OPCs [3], [181], [186]. However, this relation has been 

mostly made in heat-cured concretes when delayed ettringite formation takes place. Tosun et 

al. [186] pointed out that non-expansive ettringite would take the form of ball type and would 

form in spherical spaces such as entrapped air voids. Meanwhile, ettringite formed in narrow 
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spaces (named as massive or constrained ettringite) would exert pressure causing expansion. 

According to the literature, one can conclude that: (i) ettringite morphology depends on the 

composition of each binder and the space where it is formed, and (ii) there is no clear 

relationship between the amount and morphology of ettringite and the absence or presence of 

expansion. The presence of hydrotalcite in C-SSC was verified by EDS analyses plotted in 

Figure 3.17(a) and Figure 3.17(b). The Mg/Al atomic ratio of hydrotalcite before ESA was about 

1.68 and decreased to 1.27 after attack.  

Effect of high sodium concentrations in the solution of attack:  

According to the literature, high sodium concentrations can lead to the instability of ettringite. 

Several studies have shown that the presence of high content of alkalis (sodium or potassium) 

inhibits the formation of ettringite [187], [188]. Sodium increases the alkali conditions in the 

pore solution and modifies the stability of ettringite. High alkali conditions enhance the solubility 

of ettringite constituents, mainly sulfate, as a result, the amount of ettringite decreases in the 

hydrated binder [188]. High amounts of sodium (> 25 mass % of Na2SO4) can also lead to the 

formation of the U-phase ((CaO)4(Al2O3)0.9(SO3)
1.1

(Na2O)
0.5

:16H2O), which causes 

deterioration in the hardened materials. Elakneswaran et al. [189] investigated the formation 

of the U-phase when one Portland cement and one slag-bended cement samples were 

exposed to a sodium sulfate water solution with a concentration of 1300 mmol/L of Na2SO4. 

After several months of exposure, they detected the U-phase. However, in the present study, 

we did not detect this phase by microstructural or mineralogical characterization of samples 

after ESA. The sulfate solution used to study the external sulfate attack contained of about 

300 mmol/L of Na2SO4 (5% Na2SO4), which is about 4 times lower than the concentration used 

by Elakneswaran et al. 

 

3.5.2.2  Alkali-activated concretes (C-AAS and C-GP) 

Alkali-activated slag: 

Alkali-activated slag based-concrete (C-AAS) presented an expansion of 0.021%±0.015%, 

which is about 19 times lower than that in C-I. Moreover, C-AAS concrete did not display any 

signs of deterioration or the presence of cracks at the end of the test or during the visual 

inspection. This result is in agreement with Bakharev et al. [26] and Dzunuzović et al. [31] who 

did not find signs of deterioration during visual examination of AAS concretes exposed to a 

Na2SO4 solution. In contrast, Allahverdi et al. [41] reported surface scaling during visual 

inspection of AAS mortars under ESA due to the crystallization of sodium sulfate; however, 
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they did not detect signs of expansion or cracking. Additionally, they showed that AAS mortars 

reached negligible length changes (0.03%) compared to OPC mortars (0.36%).  

In the present study, XRD analyses in C-AAS did not show the presence of ettringite (AFt) or 

gypsum even though EDS analyses revealed a small population of points in the AFt area (cf. 

Figure 3.18(a) and (b)). SEM and XRD analyses carried out in this study are consistent with 

results reported by Dzunuzović et al. [31] who did not detect new phases in an alkali-activated 

fly ash/slag after sulfate attack. Similarly, Ye et al. [42] reported the absence of ettringite in a 

sodium carbonate AAS exposed to a Na2SO4 solution. The presence of carbonate may prevent 

or limit the formation of ettringite, probably because of the competition of carbonate and sulfate 

ions [42], [180]. In accordance with the literature, AAS materials resist better to ESA than OPC 

because of the absence of portlandite and the unavailability of aluminum for reaction with 

sulfates due to the formation of C-A-S-H and hydrotalcite phases during hydration [40]. As 

mentioned previously, materials containing slag form C-S-H with lower Ca/Si ratios than those 

in OPC, increasing the C-S-H capacity to bind more aluminum in their structure and reducing 

the free aluminum to react with sulfates [41]. 

The presence of hydrotalcite in C-AAS was corroborated by EDS analyses plotted in Figure 

3.17(c) and Figure 3.17(d). The Mg/Al atomic ratio of hydrotalcite before ESA was about 1.97 

and decreased to 1.67 after attack. Ben Haha et al. [190] showed that alkali-activated slags 

presented hydrotalcite with Mg/Al atomic ratios between 2.06 and 1.29. The authors showed 

that high amounts of aluminum reduced the Mg/Al atomic ratios of hydrotalcite. In this study, 

the decrease of Mg/Al ratio after ESA suggests that C-AAS continued hydrating despite the 

ESA. 

Metakaolin-based geopolymer: 

Finally, the metakaolin-based geopolymer (C-GP) presented a very low expansion of 

0.015%%±0.009% (about 27 times lower than that in C-I). All analyses performed in C-GP 

showed the absence of sulfate phases such as ettringite or gypsum. This finding was expected 

due to the very low content of calcium oxides (CaO) (<2 wt%, % by weight of metakaolin) in 

the metakaolin (MK). Alcamand et al. [45] explained that low or absence of CaO content in 

alkali-activated materials increases their durability with respect to sulfate attack due to the non-

formation of calcium hydroxide (CH), which is highly affected by sulfate attack. Duan et al. [32] 

studied the influence of partial replacement of calcareous fly ash by MK in a fly ash geopolymer 

under ESA. They verified that with increasing the addition of MK in the geopolymer, its 

durability to sulfate attack increased due to the decrease in the calcium content and thus the 

formation of expansive products.  
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3.6 Conclusions 

The aim of this paper was twofold: (i) to realize a benchmark of several binders by testing their 

capacity to resist external sulfate attack (ESA) under similar experimental conditions, and (ii) 

to contribute to the understanding of mechanisms associated with the expansion or non-

expansion of the binders by using microstructural and mineralogical analyses, and 

thermodynamic calculations. Table 3.4 presents the conclusions of this chapter. 

Table 3.4 – Conclusions of Chapter 3 – Concrete under external sulfate attack. 

Category Portland cements  Ettringite binders Alkali-activated binders 

What was 

done? 

Three different concretes: 

- one Ordinary Portland cement (C-
I),  

- one sulfate-resisting Portland 
cement (C-0), 

- one blast furnace slag cement (C-
III). 

Two different concretes:  

- one supersulfated GGBS 
cement (C-SSC) 

- one calcium 
sulfoaluminate (C-CSA). 

Two different concretes: 

- one calcium carbonate 
alkali-activated slag (C-
AAS) 

- one metakaolin-based 
geopolymer (C-GP). 

All concretes were exposed to an accelerated external sulfate attack in accordance with the Swiss Standard 
SIA 262-2013. 

Results C-I: maximal expansion (0.4%) and 
noticeable cracking.  

C-0: low expansion (0.07%) and no 
cracking. Visual inspections identified 
cracking after 550 days of immersion. 

C-III: no visual damage. The magnitude 
of the final expansion depended on the 
curing time before sulfate exposure. 
Concretes cured for 90 days had 40% 
less expansion than those cured for 28 
days. 

C-SSC and C-CSA: low 
expansions (range 0.01-0.03%) 
and no visual damage was 
observed.  

C-AAS and C-GP: Very low 
expansions (<0.03%) and no 
cracking or damage was 
observed during and after 
attack. 

 

Why? C-I: dense amounts of ettringite in all 
the analyzed surface due to the 
reaction between C3A and sulfates in 
solution.  

C-0: presence of gypsum in all the 
analyzed surface due to the release of 
aluminates from C4AF.  

C-III: ettringite was found in minor 
extent and in air voids. 

C-SSC and C-CSA:  

- Ettringite and calcium 
monosulfoaluminate 
formed during hydration.  

- Ettringite morphology 
differs from one concrete 
to another.  

- No portlandite 

Low expansions explained by 
the uptake of water. 

C-GP: low content of calcium 
prevented the precipitation of 
typical expansive phases.  

C-AAS: low portlandite 
content and the unavailability 
of aluminum to precipitate 
with sulfates to form 
significant amounts of 
ettringite. 
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Suggestions for further research 

 Pore solution extractions for ettringite binders 

For the purpose of better understanding the behavior of the concretes under ESA, pore 

solutions extractions were performed before and after sulfate attack by carrying out squeezing 

tests. Element concentrations can be measured in the solutions as presented in this chapter 

in Figure 3.13. This information was used to calculate the Saturation Indices of different phases 

in order to verify their dissolution or precipitation conditions. The squeezing process resulted 

in the extraction of some milliliters of pore solution for all the concretes except for C-SSC and 

C-CSA because higher pressures are required to extract their pore solutions. Therefore, it 

would be interesting to complete the study. 

 Modeling  

In this study, we calculated the saturation indices of ettringite, monosulfoaluminate and 

gypsum by using PHREEQC and the element concentrations of poral solutions. It was 

assumed that these saturation indices were the result of the state of equilibrium of the poral 

solution. It would be also interesting to estimate the equilibrium states of the reaction products 

of the hardened binders at the different steps by varying the concentration of sulfates. These 

results could be compared with experimental data if the quantification of phases was carried 

out.  

 Evaluate other parameter of concrete under external sulfate attack  

In this thesis, we studied the capacity of binders to resist external sulfate attack by measuring 

longitudinal expansions. However, other parameters can be also evaluated in order to ensure 

their capacity to resist external sulfate attack. For example, it would be interesting to measure 

their mechanical properties (e.g. compressive strength) during the period of sulfate exposure. 
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4. Chapter 4 – Stabilization of sulfates 

Résumé 

Ce quatrième chapitre présente les résultats obtenus sur l’étude de la stabilisation des sulfates dans des sols traités 

par des liants alternatifs. 

Cette partie de la recherche visait à (i) comparer la capacité de plusieurs liants alternatifs à immobiliser les sulfates 

dans un sol enrichi en sulfates dans des conditions de pH naturel, (ii) comprendre les mécanismes d'immobilisation 

des sulfates, et (iii) évaluer le potentiel de gonflement et les propriétés mécaniques des traitements du sol sulfaté. 

Ce chapitre est organisé de la manière suivante : 

(i) La première partie se concentre sur la justification des formulations utilisées pour les traitements du 

sol sulfaté.  

(ii) Ensuite, il présente les résultats obtenus lors des essais de lixiviation pour évaluer l’immobilisation 

des sulfates ainsi que les résultats des essais d’aptitude des traitements (gonflement et résistance 

mécanique). 

(iii) La troisième partie présente l’étude approfondie faite sur un traitement particulier du sol sulfaté. 

L’immobilisation des sulfates ainsi que les propriétés géotechniques du traitement ont été évaluées 

à court, moyen et long termes. 

De plus, tous les résultats expérimentaux obtenus lors des essais de lixiviation ont été comparés 

avec des calculs numériques obtenus à partir d’un modèle géochimique développé avec le code 

PHREEQC. Ce travail de modélisation a été effectué afin de mieux comprendre les mécanismes de 

stabilisation des sulfates pour ce traitement en particulier. 

 

Vu l’indisponibilité d’un sol naturellement sulfaté, il a été choisi de doper artificiellement en sulfates un sol limon 

provenant de Saclay, France. Les détails de ce dopage ont été présentés dans le Chapitre 2- section 2.1.2.3. 

Récapitulatif des formulations : 

Le sol sulfaté a été traité par quatre liants différents et cinq formulations ont été obtenues au total : 

 Formulation 1 (F1) : sol sulfaté sans traitement ; 

 Formulation 2 (F2) : sol sulfaté traité avec 10% de ciment Portland CEM I ;  

 Formulation 3 (F3) : sol sulfaté traité avec 10% d’un clinker sulfoalumineux nommé dans cette étude 

« Clinker Y » ; 

 Formulation 4 (F4) : sol sulfaté traité avec 10% de ciment CEM III/C ; 

 Formulation 5 (F5) : sol sulfaté traité avec 10% d’un liant expérimental composé de 90% de laitier et de 10% 

de ciment Portland nommé dans cette étude « liant 90-10 ». 

Concernant le dosage de liant utilisé pour ces traitements, il a été choisi d’employer 10% de liant. Cette teneur en 

liant a été déterminée suite à des essais d’aptitude réalisés en accord avec la norme française NF P 94-100 sur la 

formulation F5, sous l’hypothèse d’un durcissement plus lent comparé aux autres formulations (voir Figure 4.2). 

Concernant le temps de cure pour les essais d’aptitude, il a été choisi la cure maximale permise par la norme 

française NF P 94-100 pour des liants hydrauliques différents de la chaux. C’est-à-dire, qu’une cure normale (à 
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l’air) de 7 jours a été utilisée. Cette cure a permis d’obtenir des résistances à la traction indirecte supérieures à 

0.2 MPa pour la formulation F5 (voir Figure 4.2). 

La synthèse de l’ensemble des résultats est présenté en Table 4.5. 

Stabilisation des sulfates : 

Cette partie de l’étude s’est concentrée sur (i) l’évaluation de l’immobilisation des sulfates en accord avec la norme 

européenne NF EN 12457-2, et (ii) l’étude des propriétés géotechniques (gonflement et résistance mécanique) en 

effectuant des essais d’aptitude selon la norme française NF P 94-100. 

 Résultats des essais de lixiviation 

Lors des essais de lixiviation, il a été observé une réduction importante de la teneur en sulfates en solution pour 

toutes les formulations sauf pour F1 (sol sulfaté sans traitement). Dans ce cas, la formulation F1 a relargué en 

solution plus de 90% de la concentration initiale en sulfates. En revanche, une immobilisation de sulfates dans le 

solide de 98%, 92%, 90% et 92% a été mesurée pour les formulations F2, F3, F4 et F5, respectivement. Cela 

indique que tous ces traitements ont permis d’immobiliser des sulfates en solide, les teneurs en sulfates relargués 

étant inférieures à 1000 mg/kg de matière sèche (limite imposée par l’arrêté 12 décembre 2014 pour la catégorie 

de déchets inertes non-dangereux). D’autre part, les formulations F2 et F3 ont relargué des métaux lourds en 

solution, notamment du chrome (Cr), dépassant la limite du 0.5 mg/kg de matière sèche. Par contre, pour les 

formulations F4 et F5 (où le laitier de haut fourneau a été utilisé) la teneur en métaux lourds détectée en solution 

est restée inférieure à la limite imposée. 

 Résultats des essais d’aptitude 

Pour la formulation F1 (sol sulfaté sans traitement), un gonflement volumique égal à 7.1%  1.1% a été mesuré, 

valeur supérieure à celle de 5% recommandée par la norme française NF P 94-100. Par ailleurs, l’essai de traction 

indirecte n’a pas pu être réalisé sur cette formulation, la décohésion des échantillons rendant impossible sa 

réalisation. Pour la formulation F2, la traction indirecte obtenue est égale à 0.26 MPa  0.01 MPa, valeur dépassant 

la limite inférieure de 0.2 MPa. Cependant, la valeur limite de 5% sur le gonflement n’a pas été respectée et par 

conséquent ce traitement a été classifié comme « douteux » (voir Chapitre 2 - Table 2.11). Concernant la 

formulation F3, un gonflement de 4.2%  0.6% et une résistance à traction indirecte de 0.19 MPa  0.002 MPa ont 

été obtenus. Par conséquent, ce traitement est également considéré comme « douteux ». Enfin, les formulations 

F4 et F5 ont été classifiées comme « acceptables » car elles ont présenté des gonflements inferieurs à 2% et des 

résistances mécaniques supérieures à 0.2 MPa. Parmi ces deux formulations, la formulation F5 a été retenue pour 

approfondir la compréhension des mécanismes de stabilisation des sulfates à moyen et long termes. Le choix de 

cette formulation s’est basé sur une meilleure connaissance de la composition des matériaux utilisés, puisque le 

liant a été reproduit en laboratoire à partir de CEM I et de laitier, sans autre additif qui peut être trouvé dans les 

liants composés commerciaux. 

Étude à long terme sur la formulation F5 : 

Cette partie de l’étude s’est concentrée sur une évaluation approfondie de la formulation F5 afin de de vérifier la 

stabilisation de sulfates. Pour cela, des études minéralogiques, microstructurales et numériques ont été réalisées. 

Vu que cette solution pourrait être employé en projet de génie civil (ex : construction routière), cette formulation a 

été aussi étudiée à travers l’évaluation des propriétés géotechniques de la formulation F5 à moyen et long termes 

en utilisant des essais de maniabilité, résistance à la compression, traction indirecte et de gonflement pour 

différentes conditions de cure. 

 

 



CHAPTER 4 – STABILIZATION OF SULFATES 

 162 

 Immobilisation des sulfates à court et long termes 

Des analyses en diffractométrie de rayons X (DRX) ont montré qu’une partie de sulfates ont précipité dans la 

matrice pour former de l’ettringite. La présence d’ettringite a été confirmée à 28 jours de cure par des observations 

au microscope électronique à balayage (MEB) couplé à de la spectroscopie de rayons X à dispersion d’énergie 

(EDS). Cependant, les observations n’ont pas révélé une morphologie de l’ettringite typique (voir Figure 4.6 et 

Figure 4.11). Il faut préciser que l’ettringite ici formée n’est pas de nature gonflante, les gonflements étant inferieurs 

à 2%. De plus, les résultats expérimentaux et numériques obtenus sont cohérents avec l’hypothèse d’un dégrée 

d’hydratation du laitier de 30%. Ce modèle géochimique a révélé que l’ettringite semblait être la phase contrôlant 

la solubilité des sulfates se trouvant dans la matrice (voir Figure 4.14).  

Par ailleurs, il est important de s’assurer de l’immobilisation des sulfates à long terme. Pour cela, des essais de 

lixiviation à 6 mois ont été réalisés. Les résultats ont montré : 

- Une diminution de la teneur en sulfates à faibles concentrations de liant (2% et 5%) par rapport aux 

résultats obtenus à 28 jours de cure. 

- Après l’ajout de 7% de liant 90-10, la teneur en sulfates en solution est restée inférieure à 1000 mg/kg de 

matière sèche et constante tout au long de l’addition du liant (voir Figure 4.17). 

 Propriétés géotechniques à moyen et long termes 

Plusieurs propriétés géotechniques ont été évaluées sur la formulation F5, d’abord, le délai de maniabilité qui est 

lié au démarrage de la prise. D’après le guide technique GTR (Guide technique pour la réalisation des remblais et 

des couches de forme) [65], il peut varier entre 2 h et 24 h, voire 48 h après traitement. Ce délai est très important 

dans les traitements de sol car il fixe la durée possible des opérations de mise en œuvre. Pour la majorité des 

chantiers, une valeur entre 4 à 6 h est satisfaisante. Ainsi, le délai de maniabilité a été déterminé en utilisant le 

protocole décrit dans le Chapitre 2 – section 2.2.4.4. Un temps de maniabilité de 6 h a été obtenu, ce qui correspond 

à un délai satisfaisant. 

Concernant les essais de gonflement volumique, pour toutes les conditions de cure considérées, il est resté 

inférieur à 1% (5% est la limite maximale recommandée par la norme française NF P 94-100). 

En ce qui concerne les performances mécaniques à long terme, la classification mécanique du matériau a été 

déterminée en fonction de la résistance à la traction indirecte (Rit) et le module de Young (E) obtenus à 90 jours 

de cure. D’après le guide technique GTR, ce couple de valeurs doit conduire au minimum à une classe mécanique 

5. Cette classification permet d’estimer l’épaisseur des couches de forme (plus la zone augmente, plus l’épaisseur 

de la couche de forme augmente). La formulation F5 a été traitée sur site et classifiée entre la zone 2 et 3 (classe 

mécanique entre 3 et 4) en accord avec la norme NF P 94-102-1 et le guide technique GTR (voir Figure 4.20). La 

classification obtenue du sol traité lors de cette étude est donc très convenable pour des applications 

géotechniques comme les couches de forme. 
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Introduction 

This chapter presents the results obtained in the study of stabilization of sulfates by using 

hydraulic binders. This part of the research aimed to (i) compare the capacity of several 

alternative binders to immobilize sulfates in a sulfate-spiked soil in natural pH conditions, (ii) 

understand the sulfate immobilization mechanisms, and (iii) evaluate the swelling potential and 

the mechanical properties of sulfate-spiked soil treatments. The study of stabilization of 

sulfates was carried out following the approach presented in Figure 4.1. 

 

Figure 4.1 – Concept mapping of the approach followed in the study of stabilization of sulfates. 

 

The first part of this chapter describes the formulations used in the treatment of the sulfate-

spiked soil. Then, the results obtained from leaching tests and the evaluation of swelling and 

mechanical properties of all the treatments are presented. The third part of this chapter focuses 

on one specific treatment, which seemed to give the best results in terms of sulfate 

immobilization and swelling. A summary of results is presented in Table 4.5. Then, the 

discussion of all the results is presented and refers to previous research in this field. A few 

suggestions for further investigation are also addressed. 
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4.1  Sulfate-spiked soil treatments 

4.1.1  Formulations 

As a reminder, since a natural sulfate-rich soil was not available, it was chosen to artificially 

contaminate a soil from the Paris region with sulfates at 10000 mg/kg of dry mass (1 wt%, % 

by weight of dry soil) using 1.8 wt% gypsum. The chemical composition of this natural soil 

before sulfate contamination is presented in Chapter 2 - Table 2.4. 

Five different formulations were studied to evaluate the immobilization of sulfates in soil as 

described in Chapter 2 – section 2.1.2. The chemical and mineralogical compositions of the 

binders used were presented in Chapter 2 – Table 2.4 and the description of the formulations 

were presented in Chapter 2 - Table 2.5.  

The justification for the selection of these formulations and binders is presented as follow:  

 Formulation F1: sulfate-spiked soil without binder was used as the reference or control 

formulation (F1). 

 Formulation F2: sulfate-spiked soil treated with Portland cement (referred to as CEM I). 

CEM I was chosen to verify a large immobilization of sulfates due to the expected reaction 

between the aluminate phases (C3A) and the gypsum contained in the soil to form ettringite, 

which was expected to produce expansion in the treated soil. 

 Formulation F3: treatment with a sulfoaluminate clinker (referred to as Clinker Y). It was 

expected that this binder would also consume a large amount of sulfates because its main 

hydration product is ettringite, which is formed until sulfates are consumed and, then, 

monosulfoaluminate is precipitated [55], [191]. 

 Formulation F4: treatment with a blast furnace slag cement (referred to as CEM III/C). 

This binder was chosen to verify the effect of the proportion of slag and Portland clinker on 

the immobilization of sulfates and the reduction of swelling potential. 

 Formulation F5: the mixture 90% ground granulated blast furnace slag (GGBS) and 10% 

Ordinary Portland cement (OPC) was used. Similar to F4, this binder was chosen to verify 

the effect of the proportion of slag on the immobilization of sulfates and the decrease in 

swelling potential. 
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4.1.2  Binder dosage and curing of the treatments 

The sulfate-spiked soil treated with the mixture of 90% GGBS and 10% OPC (formulation F5) 

was selected as the reference material for selection of dosage binder and curing time of all the 

formulation because of its large amount of GGBS, leading to a delayed hydration process 

compared with the other binders. This formulation was evaluated at two different binder 

dosages: 5 wt% and 10 wt%, and at two different curing times: 4 h and 7 days for minimum 

and maximum curing times, in accordance with the French Standard NF P 94-100. In order to 

assess the treatments with both dosages (5  and 10 wt%; % by weight of dry soil), splitting 

tests were carried out in compacted soil as described in Chapter 2 – section 2.2.4 and results 

are presented in Figure 4.2. 

Figure 4.2(a) shows the indirect tensile strength values in MPa as a function of the binder 

dosage level at 4 h and 7 days of curing. The red dotted line represents the minimum limit of 

0.2 MPa set by the French Standard NF P 94-100. As observed in Figure 4.2(a), 4-h curing 

appeared to be insufficient to meet the requirements for splitting tests because of mechanical 

strength was not sufficient to perform the tests whatever the percentage of binder used in the 

treatment. In contrast, it was possible to measure indirect tensile strength values for both 

dosages at 7 days of curing but only the soil mixed with 10 wt% of binder reached the upper 

limit of 0.2 MPa (the value was 0.1 MPa for the soil treated at 5 wt% of binder). 

Furthermore, Figure 4.2(b) shows the volume expansion given in percentage as a function of 

binder dosage and curing time. The red dotted line represents the upper limit of 5% set by the 

French Standard NF P 94-100. Volume expansion results indicated that treatment at 5% of 

binder level and cured for 4 h expanded more than 5%. In contrast, curing of samples for 7 

days showed that swelling remained inferior to the upper limit of 5% (2.9% and 1.4% for 5  and 

10 wt% of binder, respectively). The same was true for sample with 10 wt% of binder cured for 

4 h (volume expansion of 3.2%). 

 

According to these results, the binder dosage level of 10 wt% was selected to ensure 

sufficient mechanical properties for all of the treatments. On the other hand, a curing of 7 

days was chosen for both volume expansion and splitting tests. It should be noted that 

leaching tests were carried out after a minimum of 28 days curing. 
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Figure 4.2 – Swelling and splitting tests for selection of binder dosage (soil treated with 5 or 10 wt% binder) and curing time 
(4 h or 7 days) for the treatment of sulfate-spiked soil. The red dotted lines represent the guideline established by French 
Standard NF P 94-100. Treatment was made with formulation F5. (a) Indirect tensile strength is expressed in MPa, and (b) 
volume expansion is given in percentage. 

 

4.2  Stabilization of sulfates results 

4.2.1  Leaching tests 

Leachable sulfate and heavy metal concentrations, conductivity, and pH of eluates extracted 

from leaching tests for each of the formulations are presented in Table 4.1. Concentrations 

exceeding the thresholds are in red bold. Leachate concentrations are expressed in mg/kg of 

dry mass of solid (solid= mass of soil+binder). Results were compared to the “inert and non-

hazardous waste” thresholds established by the French Ministerial Decree of 12 December 

2014 [88] in order to verify that no significant heavy metal concentrations were released into 

solution after binder treatment. 

Leachate concentrations of all formulations are schematically represented in radials and  

Figure 4.3 shows how to read this type of diagrams. Figure 4.4 presents all the leachate 

concentrations, in which the axes represent the concentrations measured for each element 

normalized by their thresholds, which are established by the French Decree and represented 

by the red dotted line. Outside this line, thresholds are not respected. 
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Table 4.1 - pH, conductivity values and leachable sulfate, chloride, fluoride and heavy metal concentrations of all formulations. 
Leachate concentrations are expressed in mg/kg of dry mass of soil. Red bold values indicate that the concentrations exceeded 
the thresholds established by French Decree [88]. 

Chemical species Units 

Inert and non-

hazardous waste 

Threshold 

F1 F2 F3 F4 F5 

pH - - 7.5 12.4 11.7 11.3 11.4 

Conductivity S/cm - 1662 3425 747 653 1050 

Sulfates (SO42-) mg/kg 1000 9174 138 759 986 785 

Arsenic (As) mg/kg 0.5 <0.2 <0.2 <0.2 <0.2 <0.2 

Barium (Ba) mg/kg 20 0.5 0.6 0.2 0.2 0.3 

Cadmium (Cd) mg/kg 0.04 <0.002 <0.002 <0.002 <0.002 <0.002 

Chromium (Cr) mg/kg 0.5 <0.1 0.8 2.3 <0.1 <0.1 

Copper (Cu) mg/kg 2 <0.2 0.4 <0.2 <0.2 <0.2 

Mercury (Hg) mg/kg 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 

Molybdenum (Mo) mg/kg 0.5 0.1 0.1 0.3 <0.01 0.2 

Nickel (Ni) mg/kg 0.4 <0.1 0.3 <0.1 <0.1 0.1 

Lead (Pb) mg/kg 0.5 <0.1 <0.1 <0.1 <0.1 <0.1 

Antimony (Sb) mg/kg 0.06 <0.002 <0.002 <0.002 <0.002 <0.002 

Selenium (Se) mg/kg 0.1 <0.01 <0.01 <0.01 <0.01 <0.01 

Zinc (Zn) mg/kg 4 <0.2 <0.2 <0.2 <0.2 <0.2 

Chlorides (Cl-) mg/kg 800 18.6 3.7 50.4 156.7 27.1 

Fluorides (F-) mg/kg 10 3.3 6.9 2.0 2.2 2.1 

 

 

Figure 4.3 – Diagram showing how to read the radials presented in this study. Leachate concentration given in mg/kg of dry 
mass of soil. 
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Figure 4.4 - Ratio between leachate concentrations of each formulation and the “inert and non-hazardous waste” limit for each 
element normalized by their thresholds (red dotted line). A logarithmic scale is used. 

 

As a reminder, soil was artificially contaminated with sulfates at 10000 mg/kg of dry mass of 

soil (1 wt%). When leaching tests were carried out in the untreated sulfate-spiked soil 

(formulation F1), it was found that the leachable sulfate concentration was approximately 10 

times higher than the guideline value for “inert and non-hazardous waste” (1000 mg/kg of dry 

mass of soil) established by the French Decree [88].  As shown in Table 4.1 and Figure 4.4, 

for the untreated soil (F1), the leachable sulfate concentration was about 9174 mg/kg of dry 
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mass of soil ± 16% and the content of heavy metals was much lower than the guideline values. 

In contrast, treatment of the sulfate-spiked soil with CEM I binder (formulation F2) showed a 

noteworthy decrease in leachable sulfate concentration. In this case, the sulfate concentration 

released into solution was about 138 mg/kg of dry mass of soil ± 9%, which was below the 

guideline value. Similarly, treatment of sulfate-spiked soil with the sulfoaluminate binder 

“Clinker Y” (formulation F3) significantly decreased the leachable sulfate concentration. In this 

treatment, a sulfate concentration of 759 mg/kg of dry mass of soil ± 12% was detected in 

solution. However, in both formulations F2 and F3, chromium (Cr) was also detected in solution 

at higher concentrations than the limit for “inert and non-hazardous waste” (0.5 mg/kg of dry 

mass of soil). Therefore, the use of these two binders in the treatment of the sulfate-spiked soil 

represents a disadvantage due to the high concentration of Cr released in solution. More 

details will be addressed in the discussion section. 

On the other hand, sulfate-spiked soil treated with GGBS-binders (formulations F4 and F5), 

showed the decrease in leachable sulfate concentration and leachable heavy metal 

concentrations were well within the established limits. For the formulation F4 (CEM III/C), the 

sulfate concentration released into solution was 986 mg/kg of dry mass of soil ± 21% and for 

formulation F5 (90%GGBS+10%OPC), the leachable sulfate concentration was 785 mg/kg of 

dry mass of soil ± 8%. 

For all formulations, leachable chlorides (Cl-) and fluorides (F-) concentrations were below the 

“inert and non-hazardous waste” thresholds established by the French Decree, with less than 

800 mg/kg of dry mass of soil for Cl- and less than 10 mg/kg of dry mass of soil for F-. 

 

4.2.2  Swelling and mechanical properties 

Figure 4.5 shows the mechanical and swelling results for all the formulations and obtained 

from compacted soil. The indirect tensile strength values and the volume expansion results for 

each formulation are presented in Figure 4.5(a) and Figure 4.5(b), respectively. The red dotted 

lines represent the minimum limit of 0.2 MPa for indirect tensile strength obtained by splitting 

tests and the upper limit of 5% for volume expansion set by the French Standard NF P 94-100. 

For formulation F1 (untreated soil), splitting tests were not performed because of insufficient 

mechanical strength. Therefore, an indirect tensile strength of 0 MPa is indicated in Figure 

4.5(a). 
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Figure 4.5 – Evaluation of mechanical properties and swelling for all formulations. The red dotted lines represent the guideline 
established by the French Standard NF P 94-100. (a) Indirect tensile strength is expressed in MPa, (b) volume expansion 
values are expressed in percentage. 

 

From Figure 4.5, it can be observed that formulation F1 (untreated soil) had a volume 

expansion of 7.1%  1.1%, which is greater than the maximum guideline value of 5%. The soil 

expansion was probably due to the presence of swelling clays. On the other hand, soil 

treatment with CEM I (formulation F2) presented an indirect tensile strength of 

0.26 MPa  0.01 MPa, which is higher than the minimum guideline value of 0.20 MPa. 

However, the volume expansion value was higher than 5% (6.5%  0.2%), classifying this 

treatment as “doubtful” (cf. Chapter 2 – Table 2.9). Treatment of the sulfate-spiked soil with 

the “Clinker Y” binder (formulation F3) was also classified as “doubtful” because the indirect 

tensile strength reached approximately 0.19 MPa  0.002 MPa, which was lower than the 

accepted guideline value (0.2 MPa). In addition, the volume expansion was close to the limit 

of 5% (4.2%  0.6%). 

Treatment of the sulfate-spiked soil with binders containing high levels of GGBS, such as 

CEM III/C and “90%GGBS+10%OPC” (formulations F4 and F5, respectively) resulted in a 

significant decrease in the swelling and maintained an indirect tensile strength above 

0.20 MPa. For formulations F4 and F5, the volume expansion reached 2.0%  0.6% and 

1.4%  0.2%, respectively; and the indirect tensile strengths were about 0.23 MPa  0.03 MPa 

and 0.22 MPa  0.06 MPa, respectively. As such, both treatments F4 and F5 were classified 

as “suitable”. 
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4.2.3 Mineralogical and microstructural characterization 

SEM observations were carried out on fracture sections of all the formulations and the images 

obtained are presented in Figure 4.6.  

 

Figure 4.6 – SEM images obtained from untreated and treated soils. (a), (b) Formulation F1 (untreated soil) showing sulfate 
in the form of gypsum, (c) Formulation F2 (CEM I) showing ettringite crystals, (d) Formulation F3 (Clinker Y) showing ettringite 
precipitates, (e) Formulation F4 (CEM III/C) showing agglomeration of phases and, (f) Formulation F5 (90%GGBS+10%OPC) 
showing agglomeration of phases without typical morphology of sulfate-bearing crystal. Dotted lines highlight the areas of 
interest. 
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SEM images of formulation F1 (untreated soil) are presented in Figure 4.6(a) and Figure 4.6(b). 

As shown, gypsum was the sulfate specie observed and its chemical composition (CaO to SO3 

molar ratio of 1) was verified by EDS punctual analyses.  

SEM images of fracture surfaces of formulations F2 and F3 are shown in Figure 4.6(c) and 

Figure 4.6(d), respectively. In both formulations, ettringite crystals were easily identified. For 

soil treated with CEM I binder (F2), ettringite was observed at higher magnifications than for 

soil treated with “Clinker Y” binder (F3). Conversely, for formulations containing high GGBS 

levels (F4 and F5), no expansive phases were observed on the fracture surfaces. As presented 

in Figure 4.6(e) and Figure 4.6(f), the SEM images of F4 and F5 formulations showed a 

microstructure consisting of an agglomeration of phases, without the typical morphology of 

sulfate-bearing minerals such as ettringite or gypsum. 

Additional analyses: 

As follow, we present some additional SEM/EDS analyses carried out in formulations F1 

(untreated soil), F2 (treatment with CEM I) and F3 (treatment with Clinker Y).  

 

All the results obtained from formulation F5 (90% GGBS+10% OPC) are presented in section 

4.3). 

 

 

 

Regarding the formulations F4 (treatment with CEM III) and F5 (treatment with 

90%GGBS+10%OPC), both formulations have similar composition (>80% of GGBS 

and <15% of OPC). However, we chose to further investigate formulation F5 because 

it gave better results than F4 in terms of sulfate stabilization and because their 

chemical composition was better known. These additional analyses consisted of 

mineralogical and microstructural analyses and modeling. Moreover, sulfate 

stabilization in formulation F5 was also studied in the long term in order to verify the 

capacity of this formulation to stabilize sulfates after 6 months of curing.  

On the other hand, as the treatment of soil for reuse is an important issue. It was also 

chosen to verify the geotechnical properties of formulation F5. Therefore, several 

mechanical tests were carried out in the medium and long-term. 
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Additional SEM/EDS analyses performed in F1, F2 and F3 

Formulation F1 – untreated soil 

Figure 4.7 presents SEM/EDS analyses obtained from untreated soil (formulation F1).  

 

Figure 4.7 – SEM images obtained from formulation F1 (untreated soil). (a) BSE image and EDS mapping showing the 
presence of S (in yellow), (b) BSE image showing the presence of gypsum and its EDS spectrum (spectrum (1)), (c) BSE 
image showing the presence of gypsum and its EDS spectrum (spectrum (2)), and the composition of other phases present in 
the soil (points (3), (4) and (5)). 

 

Figure 4.7(a) shows one EDS mapping analysis, which provided information about the 

distribution of sulfates in this sample, and Figure 4.7(b) shows a magnification from image (a). 
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In this case, spectrum (1) confirmed the presence of gypsum, which showed to have flattened 

and slim crystals. Moreover, Figure 4.7(c) presents another BSE image from formulation F1, 

where gypsum was also detected and identified in the spectrum (2). Points (3), (4) and (5) 

show the composition of other phases present in the soil. 

Formulation F2 – CEM I-treated soil 

Figure 4.9 presents the SEM images obtained from formulation F2. Figure 4.9(a) and Figure 

4.9(b) present the distribution of sulfates in the sample, and Figure 4.9(c) shows the EDS 

punctual analyses plotted in a chart where x-axis and y-axis plot the Al/Ca and S/Ca atomic 

ratios, respectively. Stoichiometric composition of ettringite (AFt) and calcium 

monosulfoaluminate (Ms) are located on the plot. The two slopes allow the identification of 

either AFt or Ms formation when the products are mixed with other phases without Al and S. 

Figure 4.8 presents a schema explaining how to read this type of plot. 

 

Figure 4.8 – How to read the Al/Ca vs. S/Ca EDS chart. Monosulfate = monosulfoaluminate. 

In Figure 4.9(c), punctual analyses showed a few points on the AFt and Ms slopes. 

Furthermore, Figure 4.9(d) and Figure 4.9(e) shows the presence of ettringite (AFt) and 

showed that AFt crystals were of about 2-3 µm long. The composition of ettringite is presented 

in the spectrum in Figure 4.9(f). 
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Figure 4.9 – SEM/EDS analyses obtained from formulation F2 (sulfate-spiked soil treated with CEM I). (a) BSE image showing 
the presence of ettringite, (b) BSE image and EDS mapping showing the presence of S (in yellow), (c) EDS plots of Al/Ca 
versus S/Ca atomic ratios (AFt: ettringite, Ms: calcium monosufoaluminate), (d) and (e) SE images showing the size and 
morphology of ettringite and (f) EDS spectrum showing average composition of point f from the image e. 

 

Formulation F3 – Clinker Y-treated soil 

On the other hand, Figure 4.10 presents SEM images from formulation F3. Figure 4.10(a) 

presents one BSE image where small cracks were observed. EDS punctual analyses were 

carried out and are presented in Figure 4.10(b) where the presence of ettringite was confirmed 

because of the population of points on the AFt slope. Figure 4.10(c) to Figure 4.10(e) show the 

presence of ettringite in all the analyzed sample. Observations showed that AFt crystals were 

of about 10-100 µm long and its composition is presented in spectrum (1). 
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Figure 4.10 – SEM/EDS analyses obtained from formulation F3 (sulfate-spiked soil treated with Clinker Y). (a) BSE images 
showing the presence of small cracks that indicate ettringite formation, (b) EDS plot of Al/Ca versus S/Ca atomic ratios (AFt: 
ettringite, Ms: calcium monosufoaluminate) from image a, (c) BSE images showing a large presence of ettringite, (d) 
magnification of image c, (e) magnification of image d showing the size and morphology of ettringite and EDS spectrum 
showing the average composition of the observed ettringite. 
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4.3 Focus on Formulation F5 (treatment with 

90%GGBS+10%OPC) 

Particular attention was paid to the experimental binder composed of 90% GGBS and 10% 

OPC (formulation F5) due to its capacity to immobilize sulfates (sulfate retention 92%) without 

releasing heavy metals into solution. Additionally, this treatment did not show significant 

volume expansions, as was seen in Figure 4.5. In order to better understand the sulfate 

stabilization mechanisms in this formulation, it was decided to extend the microstructural 

analyses and to compare experimental data with numerical calculations. 

 

4.3.1  Microstructural characterization 

As explained previously, the identification of mineral phases containing sulfates was difficult 

and no typical morphology of sulfate-bearing crystals such as ettringite and gypsum was 

observed on the fracture surfaces of formulation F5 (cf. Figure 4.6(f)). Therefore, SEM 

observations coupled with EDS mapping and EDS punctual analyses were carried out on 

polished sections of this formulation. Results are shown in Figure 4.11 and Figure 4.12.  

Figure 4.11(a) shows one BSE image obtained from formulation F5, where the anhydrous slag 

is highlighted by black lines. Furthermore, red dotted lines contoured the area where ettringite 

was detected and the EDS punctual analyses performed in these zones are presented in 

Figure 4.11(b). EDS mapping analyses, presented in Figure 4.11(c), provided information 

about the distribution of sulfates in this sample. They revealed that sulfates were always 

associated with calcium. The distribution of sulfates in this sample allowed the identification of 

ettringite. Figure 4.12(a) shows another BSE image obtained from formulation F5, the 

anhydrous slag grains being also highlighted by black lines. Figure 4.12(b) is a magnification 

of image (a) and the red dotted lines contoured the area where EDS punctual analyses, 

presented in Figure 4.12(c), were taken. These points correspond to the zones having high 

concentrations of sulfates presented in Figure 4.12(d). 
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Figure 4.11 – BSE images of polished section of formulation F5 at 28 days of curing. (a) indicates the zones where ettringite 
phase was found (dotted red lines) and highlighted the anhydrous slag contoured by black lines. (b) EDS plot of Al/Ca versus 
S/Ca atomic ratios (AFt: ettringite, Ms: calcium monosufoaluminate) from image (a). (c) EDS mapping showing the zonation 
of sulfur (S), calcium (Ca), aluminum (Al), sodium (Na), magnesium (Mg) and silicon (Si) elements of image (a). 
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Figure 4.12 – (a) BSE image of polished section of formulation F5 at 28 days of curing. (b) magnification of image (a) indicating 
with a dotted red line the zones where ettringite phase was found. (c) EDS plot of Al/Ca versus S/Ca atomic ratios (AFt: 
ettringite, Ms: calcium monosufoaluminate). (d) EDS mapping showing the zonation of sulfur (S). 

 

SEM/EDS analyses were completed by carrying out XRD analyses in the soil before (F1) and 

after treatment (F5). XRD patterns are presented in Figure 4.13 in the range from 2 5° and 

70°. The red pattern represents the untreated soil (F1) and revealed a large peak between 2 

11° and 12°, which is characteristic of the presence of gypsum. The black pattern represents 

the formulation F5 and showed a decrease in the intensity of gypsum peaks and revealed the 

appearance of new peaks between 2 9° and 10° and 15° and 16°, which are characteristic of 

ettringite. Therefore, ettringite seemed to be the phase controlling the solubility of sulfates.  

However, residual gypsum in formulation F5 revealed that gypsum was not completely 

dissolved by the (probably insufficient amount of) water provided to the system during the 

fabrication of the samples. The water to solid (w/s) ratios were presented in Chapter 2 – Table 

2.6. 
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Figure 4.13 – XRD patterns of untreated - formulation F1 (red line) and treated soil - formulation F5 (black line) from 2 5º and 

70º. Magnification in the selected range from 2 7º and 17º showing the decrease in intensity of the gypsum peak (G) and 
the appearance of ettringite peaks (E) in formulation F5. C: Chlorite; P: Phyllosilicates; F: Feldspars; **: mineral coming from 
the original soil. 

 

4.3.2  Modeling 

Numerical modeling was performed for formulation F5 in order to better understand sulfate 

stabilization mechanisms. The influence of the proportion of GGBS+OPC binder on sulfate 

immobilization in the sulfate-spiked soil was evaluated by varying the dosage of the binder 

from 0% to 20% (in percentage by dry mass of soil) as presented in Table 4.2. Assuming 

congruent dissolution in the model, this experimental binder was defined by its elemental 

chemical composition expressed in moles (cf. Chapter 2 – Table 2.4). The results of batch-

reaction calculations were compared to leachable sulfate and leachable major element 

concentrations obtained experimentally and determined after leaching tests at 28 days of 

curing.  

The kinetics of chemical reactions were not taken into consideration in this model, which 

represents only the state of equilibrium reached by the system. For some minerals defining the 

soil constituents in the model, such as quartz and iron(III) oxide (magnetite), the dissolution 
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was not permitted due to their very slow kinetics of dissolution at 20 °C in alkaline conditions 

[192]–[194]. 

Table 4.2 – Proportion of binder added to the soil to verify the sulfate stabilization mechanisms in formulation F5 (90% 
GGBS+10%OPC). For all the formulations, 1 wt% sulfates were added to the soil. Percentages are expressed by dry mass of 
soil. 

Binder (wt%) 20 15 12 10 8 7 5 2 

 

GGBS hydration degree: 

Since few thermodynamic data exist for GGBS binder, several calculations were made by 

assuming its hydration at four different degrees: 10, 20, 30 and 40%. As reported in the 

literature, the hydration of GGBS and OPC mixes is more complex than that of Portland 

cement. GGBS reacts more slowly with water and not all the GGBS binders react in the same 

way [60]. It is largely recognized that the rate of hardening of GGBS binders is slower than that 

of Portland cement during the first 28 days of curing [60]. Lothenbach et al. (2012) [169] 

showed that, over one month, approximately 70% of the slag had reacted in a system 

containing about 60% slag and a water to binder (w/b) ratio of 1.1. Taylor et al. [170] reported 

that, over two years, approximately 68% of the slag had reacted in a Portland-slag system 

containing about 50% slag and an w/b ratio of 0.4. It seems that higher hydration degrees are 

estimated in systems containing large amounts of available water. They showed that the 

degree of slag hydration in a slag-blended system also depended on the proportion of slag 

provided. This means that, over the same time period, a system containing high proportions of 

slag presents lower rates of slag reaction compared with systems containing lower slag 

amounts. Taylor et al. [170] estimated that, over two years of reaction, only 36% of slag had 

reacted in a formulation containing 90% GGBS and 10% OPC. 

Therefore, in the current investigation, it is important to consider the hydration degree of the 

GGBS as a significant factor influencing the immobilization of sulfates in formulation F5. 

Experimental vs numerical data: 

Experimental and numerical data of pH values, sulfate, calcium, aluminum, silicon and 

magnesium concentrations in solution are plotted in Figure 4.14, where element 

concentrations are given in mg/L and plotted as a function of the binder dosage (ranging from 

0 to 20 wt%, % by dry mass of soil). Experimental data are represented by black circles while 

model calculations are given by red lines. Numerical data are given for 10, 20, 30 and 40% 

GGBS hydration levels. Solution concentrations are also completed by the quantities of solid 

phases involved in the modeled reactions assuming a GGBS hydration level of 30% and are 
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presented in Figure 4.15. These quantities are divided into two groups here for ease of reading: 

silicon dominant phases (M-S-H, C-S-H and illite) are shown in Figure 4.15(a) and aluminous 

dominant phases (ettringite, hydrogarnet and gibbsite) in Figure 4.15(b). 

 

 

Figure 4.14 – Comparison between numerical and experimental data obtained from formulation F5 (90%GGBS+10%OPC). 
Element concentrations in solution are given in mg/L and plotted as a function of the binder dosage. Black circles: experimental 
data. Red lines: numerical data. Hydration GGBS levels: Line with larger dots: 40%. Solid line: 30%. Line with smaller dots: 
20% and 10%. (a) Sulfate, (b) calcium, (c) aluminum, (d) silicon, (e) magnesium, (f) pH values. 
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Figure 4.15 – Quantities of major phases calculated from the modeling of formulation F5 (90%GGBS+10%OPC) assuming a 
GGBS hydration level of 30%. All the data are plotted as a function of the binder dosage given in % by dry mass of soil. (a) 
Illite, C-S-H and M-S-H, (b) Ettringite, gibbsite and hydrogarnet. 

 

Sulfate concentration in solution: 

As shown in Figure 4.14(a), experimental and numerical data were in good agreement for the 

sulfate concentrations in solution. Experimental data and modeling showed that sulfate 

concentration in solution decreased with increasing the content of the binder added to the soil. 

Experimentally, the sulfate concentration in solution remained relatively stable for formulations 

containing more than 7% of binder. This behavior can be explained by the ettringite stability as 

shown in Figure 4.15(b). For ease of comparing, Figure 4.16(a) and Figure 4.16(b) show the 

concentrations of sulfates in solution and the amount of ettringite that precipitated in the 

system, respectively. All data were plotted as a function of the binder dosage added to the soil. 

This figure shows that the solubility of sulfates was indeed controlled by the precipitation of 

ettringite. 

In addition, modeling showed that the GGBS hydration level seemed to have an impact on the 

slope of the curve representing the sulfate concentration in solution. Depending on the GGBS 

hydration level considered, a modification on the sulfate concentration in solution was 

observed. However, the GGBS hydration level no longer affected the sulfate concentrations 

calculated beyond 15% of binder dosage. The best agreement between experimental and 

numerical data was obtained when a GGBS hydration level of 30% was assumed. 
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Figure 4.16 – Stabilization of sulfates by the precipitation of ettringite obtained from modeling using 30% as the GGBS 
hydration level. (a) sulfate concentration in solution (b) ettringite precipitated in the system. Concentrations are expressed in 
mg per 100 g of dry soil. 

 

Major element concentrations in solution: 

The results obtained for other leached elements are shown from Figure 4.14(b) to Figure 

4.14(e). As for sulfates, the most important changes were observed for formulations containing 

less than 10% of binder. Calcium, silicon and magnesium concentrations calculated in solution 

were mostly controlled by C-S-H and M-S-H as shown in Figure 4.14(b), Figure 4.14(d), Figure 

4.14(e) and Figure 4.15(a). On the other hand, aluminum concentrations in solution presented 

a more complex behavior due to the competition between aluminous phases (cf. Figure 

4.14(c)). For formulations ranging from 0% to 10% of binder, aluminum presented a first 

evolution mainly dominated by ettringite formation as shown in Figure 4.15(b). Experimental 

data for formulations with high binder dosage (>10%) showed that a maximum aluminum 

concentration was reached between 10% and 15% of binder dosage and then remained 

relatively stable. However, this behavior was not well modeled. The differences found between 

numerical and experimental results in aluminum behavior can be partially explained by the 

aluminum mineral phases used in the model. In fact, it was verified that the type of aluminum 

phase chosen to represent the soil could modify the amount of aluminum present in solution. 
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For example, it was found that decreasing the aluminum content present in the illite by 1% led 

to over a 50% reduction in the aluminum concentration in solution. It would also be interesting 

to calculate the precipitation of C-A-S-H phases, which can play an important role in the 

behavior of the concentration of aluminum in solution. Despite the differences in experimental 

and modeled aluminum concentrations, the trend of the curve shown in Figure 4.14(c) 

remained the same. 

On the other hand, pH values measured and calculated in solutions are shown in Figure 

4.14(f). The first value measured in the system without binder (untreated soil F1) was close to 

7.4. After the addition of the binder to the soil, pH increased significantly in the solution (pH 

11-12). It seems that the proportion of binder in the treatment had a little effect on the variation 

of pH in the solution since it stayed relatively constant between pH values 11 and 12. The pH 

evolution was well reproduced by the model and was mainly controlled by the C-S-H 

composition. However, the calculated values tended to be slightly lower than the experimental 

ones probably due to the database used in the model. 

 

All the results are present in the following sections. 

 In the previous section, it was shown that treatment of sulfate-spiked soil by adding 

the experimental binder “90% GGBS and 10% OPC” (formulation F5) led to: 

- high sulfate immobilization (sulfate retention of 92%), 

- decrease of the swelling (volume expansion <2%),  

- indirect tensile strength superior to 0.2 MPa. 

 

All the experimental analyses were carried out at short term (≤ 28 days of curing). 

For the purpose of evaluating this formulation in the medium and long-term (to ensure 

sulfate stabilization and the mechanical properties), additional tests were carried out: 

- Leaching tests 

- Geotechnical experiments: 

o Workability delay 

o Compressive strength 

o Mechanical performance class 

o Swelling potential 
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4.3.3  Immobilization of sulfates and geotechnical properties in the 

medium and long-term 

Since leaching tests were carried out in treated soil in the short-term (28 days of curing). It may 

be possible that this curing time can underestimate the capacity of binders containing GGBS 

to immobilize sulfates due to their low rate of hydration. Therefore, leaching tests were 

performed in formulation F5 in the long-term (at 180 days of curing).  

Furthermore, longer hydration of the binder can lead to expansive reactions; therefore, the 

geotechnical properties of formulation F5 were studied in detail evaluating the mechanical 

properties and the swelling potential at different curing conditions. 

 

4.3.3.1  Leaching tests  

Figure 4.17 groups the results of leachable sulfate concentration obtained from formulation F5. 

Concentrations are given in mg/kg of dry mass of soil and all the data were plotted as a function 

of the binder dosage (ranging from 0% to 20%). The red dotted line represents the “inert and 

non-hazardous waste threshold” set by the French Decree.  

Figure 4.17(a) and Figure 4.17(b) present the leachable sulfate concentrations obtained from 

leaching tests carried out at 28 days and 180 days of curing, respectively. Figure 4.17(c) shows 

the numerical calculations of this formulation assuming 10, 20, 30 and 40% of GGBS hydration 

degree, and Figure 4.17(d) shows the comparison of all the experimental and numerical data 

only for 30% of GGBS hydration degree. In this figure, experimental data are represented by 

markers while model calculations are given by lines. 

It can be noted that the leachable sulfate concentration at 180 days of curing, using 2 and 

5 wt% binder dosage, were 1.3 and 2.4 times than sulfate concentrations in solution obtained 

at 28 days of curing. This means that at low binder levels, sulfate was more immobilized at 

later ages. Meanwhile, for higher binder dosages (>5 w%, % by dry mass of soil), leachable 

sulfate concentrations remained relatively constant and close to the threshold of “inert and 

non-hazardous waste” of 1000 mg/kg by dry mass of soil set by the French Decree. 

Additionally, for higher binder dosages (>5 w%) leachable sulfate concentrations at 180 days 

were similar to those obtained at 28 days of curing. 

 



CHAPTER 4 – STABILIZATION OF SULFATES 

 187 

 

Figure 4.17 – Leaching results obtained from formulation F5 (90%GGBS+10%OPC) given in mg/kg of dry mass of soil. All the 
data are plotted as a function of the binder dosage. Markers: experimental data. Lines: numerical data. GGBS hydration level: 
line with larger dots: 40%. Solid line: 30%. Line with smaller dots: 20% and 10% GBBS hydration. The red dotted line represents 
the “inert and non-hazardous waste” limit set by the French Decree. (a) Leachable sulfate concentration at 28 days of curing, 
and (b) 180 days of curing. (c) Numerical calculations as a function of the GGBS hydration degree, and (d) Comparison 
between numerical and experimental data. 

 

4.3.3.2  Workability delay 

As a reminder, in the treatment of soil, the evaluation of workability is very important in order 

to determine the longest possible duration of the construction operations. Low workability of a 

mixture leads to difficulties for construction applications. The workability delay of formulation 

F5 was evaluated by carrying out delayed compaction tests according to the French Standard 

NF P 98-231 section 6 (protocol was presented in Chapter 2 – section 4.3.3.4). 

Table 4.3 presents the experimental data obtained from delayed compaction tests and Figure 

4.18 presents the dry density given in t/m3 as a function of the compaction or workability delay 

given in hours (h). Figure 4.18 shows that the workability delay was 6.5 hours at 98% of the 

initial dry density resulting in a dry density of 1.837 t/m3. According to the French Technical 

Guide GTR (Guide technique pour la réalisation des remblais et des couches de forme) [65], 
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for the majority of constructions, a workability delay value of about 4 and 6 hours seems 

suitable. Thus, the workability delay obtained for formulation F5 was conformed to the 

industrial needs. 

Table 4.3 – Experimental data obtained from the workability tests of the formulation F5 (90% GGBS+10%OPC) according to 
the French Standard NF P 98-231-6. 

Sample 1 2 3 4 5 

Water content (%) 14.5 14.1 14.0 13.6 13.1 

Dry density (t/m3) 1.875 1.874 1.866 1.854 1.826 

Compaction delay (h) 0 1 3 5 7 

 

 

Figure 4.18 – Delayed compaction of formulation F5 to evaluate the workability of the treatment. Dry density expressed in t/m3 
is plotted as a function of the compaction delay (workability) in hours. The red dotted lines indicate the 98% initial dry density 
and the final compaction delay. 

 

4.3.3.3  Compressive strength in the medium and long-term 

Compressive strength tests were carried out in formulation F5 samples according to the 

protocol presented in Chapter 2 – section 2.2.4.5. Figure 4.19 presents the compressive 

strength results given in MPa as a function of curing conditions (60 and 180 values indicate 
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the total curing time in days). Rci indicates normal curing (air cure) and Rc indicates partial 

curing in air and in water at 20ºC.  

 

Figure 4.19 – Compressive strength values in MPa for formulation F5 samples as a function of curing time and water sensibility 
at 20ºC. Long-term curing conditions: Rci60 = 60 days air; Rc60 = 28 days air + 32 days in water; Rci180 = 180 days air; 
Rc180 = 90 days air + 90 days in water.  

 

As observed in Figure 4.19, compressive strength values are about 2 times higher at 180 days 

of curing than those obtained at 60 days of curing. Furthermore, it can be noted that 

compressive strength decreased when samples were submerged in water at 20ºC. As a 

reminder, the Rci/Rc ratios allow to evaluate the mechanical performances of treated soil in 

the medium-term as a function of the methylene blue value (VBS) (cf. Chapter 2 – section 

4.3.3.5). The soil used in this study presented a VBS equal to 2.15. 

The Rci/Rc ratios obtained from compressive strength tests are presented in Table 2.11 and 

compared with the criterion presented by the French Technical Guide GTR [65] for 60 days of 

curing. It can be seen that mechanical performance criterion is accomplished for the 

formulation F5 as Rci/Rc60 was superior to 0.6 (0.84 and 0.80 for 60 days and 180 days, 

respectively). 
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Table 4.4 – Rci/Rc ratios obtained from compressive strength tests of formulation F5 and compared to the criterion to evaluate 
mechanical performance according to French Technical Guide GTR [65]. 

Criterion from SETRA  

Ratio VBS Experimental ratio 

Rci

Rc60
≥0.6 >0.5 

Rci

Rc60
=0.84 

Rci

Rc180
=0.80 

 

4.3.3.4  Mechanical performance class 

As a reminder, when treated soil is destined for geotechnical applications such as sub-grades 

(i.e. underlying ground in a pavement), it is necessary to determine the mechanical 

performance class in the long-term. In this classification, there are five different zones and 

thus, the treated soil is classified into five different mechanical classes (cf. Chapter 2 - Table 

2.12). This classification allows to estimate the thickness of the sub-grade. 

In this study, the mechanical performance class was obtained according to the French 

Standard NF P 94-102-1 and the protocol was presented in Chapter 2 – section 2.2.4.6. 

Results are presented in Figure 4.20 where tensile strength values are given in MPa and 

plotted as a function of Young modulus in MPa. As observed in Figure 4.20, all values behaved 

similarly except for the longest curing condition in water at 40ºC (90 days air + 90 days in water 

at 40ºC) and one result obtained for the same curing time but at 20ºC. As all the values 

presented a Rit/E ratio close to zones 2 and 3, the formulation F5 was classified into zone 3 

meaning that its mechanical performance class was 4. According to the French Technical 

Guide GTR [65], the Rit/E ratio obtained from a treated soil at 90 days of curing should lead to 

a minimum mechanical class of 5. 
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Figure 4.20 – Tensile strength (Rit) versus Young modulus (E) for mechanical classification of formulation F5 as a function of 
different curing conditions. Values are given in MPa and a logarithmic scale is used. The lines indicate the different five zones 
according to the European Standard NF P 94-102-1. 

 

4.3.3.5  Swelling potential in the long-term 

Swelling potential was evaluated in formulation F5 following the protocol presented in Chapter 

2 -section 2.2.4.7 in order to verify if the hydration of the binder at long term conducted to 

expansion in the soil. Results are presented in Figure 4.21 where all values are given in 

percentage as a function of the different curing conditions. For the purpose of comparison, the 

value of volume expansion obtained in short-term is also presented in this figure.  

As observed, volume expansion remained much lower than the upper limit of 5% established 

by the French Standard NF P 94-100. Moreover, the highest volume expansion among all the 

curing conditions tested was obtained at short-term using 7 days air + 7 days in water at 40ºC. 

Meanwhile, for the results in long-term, all the volume expansions remained below 1%. 
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Figure 4.21 – Swelling test results of formulation F5 using different curing conditions. Volume expansion values are given in 
percentage. 
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4.4  Summary of the results 

Table 4.5 presents a benchmark of all the results obtained in the study of stabilization of 

sulfates. It should be noted that the amount of ettringite is qualitative and serves for the merely 

purpose of comparison. 

Table 4.5 – Summary of results of chapter 4 – stabilization of sulfates. Concentrations are expressed in mg/kg of dry soil.  

 Formulation F1 F2 F3 F4 F5 

 Binder Untreated CEM I Clinker Y CEM III/C 90-10 a 

S
h

o
rt

 t
er

m
  

Sulfate in solution (mg/kg) b 9174 138 759 986 785 

Heavy metals in solution (mg/kg) - Cr: 0.8 Cr: 2.3 - - 

Volume expansion (%) c 7.1 6.5 4.2 2.0 1.4 

Tensile strength (MPa) d - 0.26 0.19 0.23 0.22 

Ettringite amount e 
 +  +    

M
ed

iu
m

 a
n

d
 lo

n
g

 t
er

m
 

Sulfate in solution (mg/kg)     907 

Workability (h)     6.5 

Compressive strength Rci/Rc60      0.84 

Mechanical class g     4 

Swelling (%)     <1 

Modeling     
1 

a Experimental binder composed of 90%ground granulated blast furnace slag and 10% ordinary Portland cement  
b Average of two values  
c Max. guideline value 5% 
d Min. guideline value 0.20 MPa 
e Qualitative estimation by using SEM/EDS and XRD 
f VBS = 2.14, criterion Rci/Rc60 ≥ 0,60 
g As function of Rit and E  

 

Content 
(qualitative) 

High High-
Moderate 

Moderate Low Not found Expansive 
product 

Done 

Legend 
     

Red cross + 
 

 
1 Modeling was carried out in F5 and showed good agreement with experimental results. Modeling was able to predict the 
stabilization of sulfates as a function of the binder dosage added to the soil. Moreover, modeling showed that sulfate solubility 
was controlled by the precipitation of ettringite. 
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4.5 Discussion 

4.5.1 Sulfate stabilization with CEM I and Clinker Y binders 

Results presented in this chapter confirm that treatment of sulfate-contaminated soil with 

cementitious binders is useful to decrease sulfate leaching. As presented previously, untreated 

sulfate-spiked soil (formulation F1) released into solution about 90% of sulfates. It was verified 

that the treatment with ordinary Portland cement (formulation F2) and Clinker Y (formulation 

F3) showed a large decrease in sulfate concentration in solution after leaching tests. For 

formulation F2, it was calculated that a mass fraction of about 99% of sulfates were fixed in 

the solid fraction. For formulation F3, the percentage of sulfates fixed in the solid fraction was 

92%. As explained in the literature, these binders provided aluminum to the system and also 

increased the pH [68], which led to the instability of gypsum contained in the soil and to the 

precipitation of ettringite as shown in Figure 4.6 and Table 4.1. Ettringite is reported to be the 

most stable phase under these conditions permitting the decrease in leachable sulfate 

concentration [187], [195]–[197]. 

Release of heavy metals into solution: 

Untreated sulfate-spiked soil (formulation F1) did not release heavy metals into solution while 

the use of binders CEM I and Clinker Y (formulation F2 and F3) might be limited to treat the 

sulfate-spiked soil because of the release of chromium (Cr) into solution in addition to the 

significant swelling measured (≥5%). In fact, chemical analyses of eluates after leaching tests 

showed that both formulations F2 and F3 released Cr into solution at concentrations that were 

higher than the established “inert and non-hazardous waste” threshold (0.5 mg/kg of dry soil) 

(cf. Table 4.1 and Figure 4.4). Previous studies have investigated the presence of Cr in 

cements [198]–[200]. Sinyoung et al. [198] conducted leaching tests in cement clinker and 

found that Cr exceeded the allowable leachable concentration established by the United States 

Environmental Protection Agency (US EPA). Eštoková et al. [200] indicated that the 

concentration of soluble Cr in binders was proportional to the OPC clinker content. That 

explains why some types of cements, such as CEM III or CEM V, have a low Cr content; in 

these cases, Cr content decreases with decreasing the OPC content. In addition, it has been 

shown that slag can reduce Cr(VI) to Cr(III) due to the reducing properties of this material. As 

reported in the literature, Cr(III) is less soluble than Cr(VI), therefore, slag binders decrease 

the leachable Cr concentration [123], [201]. 
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Swelling and tensile strength: 

In terms of swelling, both formulations F2 (CEM I-treatment) and F3 (clinker Y-treatment) had 

larger volume expansions than the expansions measured in formulations F4 (CEM III-

treatment) and F5 (90-10-treatment). Volume expansion on formulation F2 was greater than 

that measured for formulation F3 (6.5% and 4.2%, respectively) (cf. Figure 4.5) in which the 

C3A phase is not present. Greater expansion in F2 than F3 may be explained by the difference 

in the type of ettringite formed. Ettringite was observed at higher magnifications in F2 than for 

F3 (cf. Figure 4.6). Mehta in 1983 [202] reported that differences in the crystal habit and size 

of ettringite can affect the expansion behavior of the material. The author proposed two types 

of ettringite crystals. Ettringite of type 1 has large lath-like crystals ranging from 10 µm to 

100 µm and several micrometers thick and it is usually formed during the hydration of 

supersulfated cements such as the sulfoaluminate clinker used in the present formulation F3. 

This type of ettringite is not expansive. Conversely, ettringite of type 2, presenting small rod-

like crystals (1 µm to 2 µm long), is considered as expansive notably because of large amounts 

of these crystals have been found in deteriorated concretes under sulfate attacks. Additionally, 

some observations have shown that microcrystalline ettringite is capable of adsorbing large 

amounts of water on the surface, causing volume changes [17]. Type 2 ettringite is assumed 

to be the ettringite observed in formulation F2. Moreover, the marked expansion in formulation 

F2 was expected due to the large aluminate content in the form of C3A (8.6%), which reacted 

with gypsum to form ettringite. These results support previous findings in the literature where 

noteworthy swelling was reported on sulfate-contaminated soil treated with OPC or lime [73]–

[76]. 

In contrast, significant volume expansion was not expected on samples treated with the 

“Clinker Y” binder (formulation F3) because the main hydration product of sulfoaluminate 

clinker is ettringite, which usually precipitates during the consumption of the calcium sulfate 

after 1 to 2 days of hydration [55]. However, we think that the volume expansion observed for 

this formulation can be explained by a delay in hydration due to the unavailability of water at 

the beginning of the hydration process. It should be noted that the water to solid ratio (W/S) of 

formulation F3 was about 0.15, meaning that not enough water was available to hydrate the 

binder during the first few days of curing. As explained previously, volume expansion tests 

were conducted at 7 days of curing and samples were immersed in water at 40°C for 7 days. 

Under these conditions, the additional water provided to the system could lead to the 

precipitation of secondary ettringite and consequently the expansion of the samples. 
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4.5.2 Sulfate stabilization with GGBS binders 

Immobilization of sulfates: 

As presented in Table 4.1 and Figure 4.4, treatments of sulfate-spiked soil with GGBS binders 

(formulations F4 and F5) showed a large decrease in sulfate concentration in solution after 

leaching tests. It was calculated that more than 89% of sulfates were immobilized in the solid 

fraction. Reduced species of sulfur present in GGBS as sulfides and native sulfur [123], [203] 

could play an important role to decrease the leachable sulfate concentration in formulation F4 

(CEM III-treatment) and F5 (90-10 treatment). However, it should be noted that the amount of 

sulfur provided to the treatment by the addition of GGBS binder is about 0.009 wt% (% by dry 

mass of soil), which seems very low to significantly decrease the leachable sulfate 

concentration.  

Binders containing slag can also release metals into solution; however, leachable heavy metal 

concentrations obtained in this study were well within the established limits for formulations F4 

and F5. Several hypotheses can be taken into consideration to explain this:  

- pH values: the pH values measured in the eluates of formulations F4 and F5 were lower 

than those measured in formulations F2 and F3. This condition could have decreased 

the release of anionic heavy metals such as chromate, which is strongly pH dependent 

[94], [134], [204].  

- Redox reactions: as mentioned previously, GGBS has reducing properties due to 

reduced sulfur species. It has been shown that Cr(VI) can be reduced to Cr(III) when 

GGBS is added to OPC mixtures. Thus, leachable Cr concentration decreases after 

leaching tests [123], [201]. 

- Some studies have reported that Cr may be present as Cr(III) in slag products and 

indicated that Cr solubility is controlled by the formation of a phase similar to chromite 

(Fe-Cr2O4) which is a stable form [205]. 

Swelling and indirect tensile strength: 

GGBS-treated soil had volume expansions lower than 5%, which demonstrated the ability of 

GGBS binders to stabilize sulfates without producing significant swelling. This finding 

reinforces previous studies reporting the usefulness of binders other than lime or OPC in the 

treatment of sulfate-rich soil [70], [73], [79], [81], [82], [121]. Celik and Nalbantoglu [70] found 

that soil containing sulfates at a concentration of about 10000 mg/kg of dry soil that was treated 

with only lime showed swelling of about 8% with respect to the initial volume of the sample. 

However, when GGBS was added, the swelling was reduced to 1%. Similarly, Wild and Tasong 
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[81] showed a significant reduction in expansion when clays containing sulfates where 

stabilized by using 83% GGBS and 17% lime. They measured little expansion (< 2%) in the 

samples during the first 7 days of moist curing. Wild et al. [83] explained that, in a GGBS-lime 

soil system, the proportion of GGBS influenced the magnitude of expansion. Higher GGBS 

content led to lower expansions (< 5%) in sulfate-rich soils.  

The decrease in expansion in this type of system can be explained by the consumption of lime, 

which usually precipitate in the form of portlandite in clinker-rich binders, by the GGBS to be 

activated [83]. In this case, GGBS reaction became the dominant reaction and the amount of 

lime is considered insufficient to enable the precipitation of large amounts of expansive phases 

[83]. As mentioned previously, Wild et al. [83] explained that, in a sulfate-rich soil treated with 

mixtures with low lime and high slag content, gypsum is consumed and no crystalline ettringite 

can be formed. We think that the low hydration rate of the GGBS binder used in formulations 

F4 and F5 led to small volume changes over the 7 days of immersion test. 

Sulfate stabilization mechanism: 

Further research was carried out in formulation F5 (90-10 treatment) due to the high sulfate 

retention and low volume expansions. In this formulation, SEM/EDS and XRD analyses 

showed that sulfates were partially consumed by the formation of ettringite when the sulfate-

spiked soil was treated with 10 wt% of binder (cf. Figure 4.11). These experimental 

observations were confirmed by modeling, in which ettringite was the most stable phase at the 

equilibrium of the system. In this study, the precipitation of ettringite was defined as the main 

mechanism controlling the immobilization of sulfates in the treated soil. Unlike formulations F2 

and F3, the formation of ettringite in formulation F5 was not a source of large volume 

expansions. 

- GGBS hydration degree: 

As explained in section 4.3.2, the rate of hardening of GGBS binders is slower than that of 

Portland cement during the first 28 days of curing [60]. Lothenbach et al. [169] showed that, 

over one month of curing, approximately 70% of the slag had reacted in a system containing 

about 60% slag and a water to binder (w/b) ratio of 1.1. Taylor et al. [170] showed that over 

two years of curing approximately 68% of the slag had reacted in a Portland-slag system 

composed of 50% slag and with an w/b ratio of 0.4. They indicated that higher degrees of 

GGBS were reached for large amounts of available water and for high proportion of slag. Taylor 

et al. estimated that, over two years of reaction, only 36% of slag had reacted in a formulation 

containing 90% GGBS and 10% OPC. Therefore, four different GGBS hydration degrees (10, 

20, 30 and 40%) were tested in the modeling of the stabilization of sulfates by adding the 



CHAPTER 4 – STABILIZATION OF SULFATES 

 198 

experimental binder 90-10 at different proportions. It was shown that a hydration level of 30% 

for the GGBS binder enabled good agreement between numerical and experimental results. 

The low hydration level of GGBS binder at 28 days can explain the difficulty in experimentally 

identifying by SEM/EDS the phases containing sulfates in formulation F5 as well as the 

presence of other possible mechanisms of sulfate stabilization such as adsorption in 

amorphous minerals or inclusion. Wild et al. [206] studied the stabilization of sulfates in sulfate-

rich clay treated with GGBS-lime binders. They proposed that the amorphous phase C-A-S-S̅-

H was initially formed, which seems to be a precursor of ettringite formation. Similarly, Wild et 

al. [83] suggested that, in lime-slag systems, gypsum is consumed but part of the products 

formed during the reaction are not crystalline. 

Medium and long-term study in formulation F5: 

- Leaching tests: 

Leaching tests carried out in the long-term (6 months) showed that sulfates remained 

immobilized in the solid over the whole range of binder dosage levels (cf. Figure 4.17). This 

may indicate that no further reactions took place in the samples and that GGBS hydration 

degree did not increase in time, except for treatments at low binder dosages where the 

retention of sulfate was greater at 6 months of curing than that calculated at 28 days of curing.  

- Geotechnical experiments: 

The reuse of soil for civil engineering applications demands the evaluation of the geotechnical 

properties of treated soil. Therefore, several geotechnical experiments were carried out on 

formulation F5. 

Workability results indicated that the compaction delay of formulation F5 was 6.5 h, which is 

suitable for the industrial requirements (cf. Figure 4.18) for construction applications. This 

result can be explained because the binder 90%GGBS-10%OPC used in formulation F5 that 

takes time to setting due to the high amount of GGBS. This means that the hardening process 

is longer enough to manipulate the mixture. In this formulation, when the compaction delay of 

6.5 h was reached, the workability of the mixture decreases, and then, compaction becomes 

difficult. In this study, workability tests were carried out in summer season, which is important 

to know as heat speeds the chemical reactions of the constituents. This suggests that 

compaction delay may be higher in other seasons. On the other hand, compressive strength 

and swelling potential results are presented in Figure 4.19 and Figure 4.21, respectively. These 

properties in formulation F5 were investigated in the long-term as a function of different curing 

conditions. The curing conditions were inspired by the French Standard NF P 94-102-1. It was 
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verified that compressive strength of formulation F5 at 60 and 180 days of curing were superior 

to the criterion presented by the French Technical Guide GTR [65]. Additionally, volume 

expansions remained inferior to 2% for all the curing conditions tested. This indicated that no 

further chemical reactions took place in the samples. Moreover, the contact of samples with 

water at 20ºC and 40ºC did not speed the chemical reactions. Finally, formulation F5 was 

classified into the mechanical performance class 4. This classification indicated that 

formulation F5 can be used for sub-grade applications (cf. Figure 4.20).  
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4.6 Conclusions 

This part of the research aimed to (i) compare the capacity of several alternative binders to 

immobilize sulfates in a sulfate-spiked soil in natural pH conditions, (ii) understand the sulfate 

immobilization mechanisms, and (iii) evaluate the swelling potential and the mechanical 

properties of sulfate-spiked soil treatments. 

Formulations Soil spiked with 1 wt% sulfates ~10000 mgsulfates/kg of dry soil.  
Five different formulations were studied:  
- F1: untreated sulfate-spiked soil,  
- F2: ordinary Portland cement (OPC),  
- F3: alternative clinker,  
- F4: blast furnace slag Portland cement (82% slag),  
- F5: experimental binder composed of 90% ground granulated blast furnace slag and 10% OPC.  
The binder dosage used for all formulations were 10 wt%. 

 What was done? Results Why? 

Sulfate 
stabilization 

- Leaching tests at 28 
days curing according to 
the European Standard 
NF EN 12457-2. 
 
- Chemical analyses in 
solution. 
 
- Mineralogical and 
microstructural analyses 

F1: more than 90% of 
sulfates released into 
solution, no heavy metal was 
detected in solution. 

F2, F3, F4 and F5: high 
immobilization of sulfates 
(>80%).  

F2 and F3: chromium (Cr) 
released into solution in 
excess. 

Sulfate solubility controlled by the 
precipitation of ettringite in all the binders.  

F2 and F3: Cr in solution due to the high 
content of clinker. 

F4 and F5: very low content of heavy 
metal in solution attributed to:  

- Low content of clinker/Portland cement 

- Reducing properties of GGBS (known to 
reduce the solubility of anionic species). 

Swelling and 
mechanical 
properties 
assessed in 
accordance 
with the 
French 
Standard 
NF P 94-100 

- Volume expansions 
tests (5%: maximum limit 
for expansion) 

 

- Spitting tests (0.2 MPa: 
minimum value for tensile 
strength). 

Tensile strength values were 
superior to 0.2 MPa for all 
formulations except for F1 
and F3 

 

F2: volume expansions 
superior to 5%.  

F3: 4.2% of expansion. 

F4 and F5: expansions 
inferior to 2%. 

 

. 

F1 did not present mechanical properties 
due to the absence of treatment and F3 
presented 0.19 MPa  
 
F2 and F3: large volume expansions 
explained by: 
- the precipitation of expansive ettringite 
- delayed hydration due to the 
unavailability of water during the first 7 
days of curing. 
 
F4 and F5: low expansion attributed to:  
- Low kinetics of precipitation of ettringite  
- Low content of portlandite (often related 
to the formation of expansive ettringite). 

Study at 
medium and 
long-term in 
Formulation 
F5 

Leaching tests, 
 
Geotechnical 
experiments:  
- workability, 
- compressive strength, 
- swelling, 
- mechanical class 

performance. 
 
Modeling by using 
PHREEQC. 

- Stabilization of sulfates 
remained stable in time, 
- Geotechnical properties of 
the treated were acceptable 
for being used in civil 
engineering projects (e.g. 
road construction).  
- Modeling: predicted 
correctly the sulfate 
concentrations in solution as 
a function of the binder 
dosage used in the treatment. 

Sulfate concentrations in solution 
remained stable probably due to:  
 
- the low kinetics of reaction of GGBS. 
- ettringite was no longer formed due to 
the unavailability of aluminum in solution. 
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Suggestions for further research 

The results and analyses presented in this chapter showed that the treatment of sulfate-rich 

soil with GGBS binders is to be useful for the stabilization of sulfates. Below are some 

suggestions, which could be taken into consideration for future research works to improve the 

understanding of the sulfate stabilization mechanisms. 

 Use of a real sulfate-rich soil 

The current work was restricted to a soil artificially contaminated with sulfates. Nevertheless, 

this system may be expected to behave in a similar manner to a natural sulfate-rich soil where 

the main source of sulfates is gypsum. In order to ensure the stabilization of sulfates, the same 

formulations should be tested in a natural sulfate-rich soil. In this case, several factors may be 

taken into account to evaluate the stabilization of sulfates: 

- ion competition,  

- harmful effect of organic in the hydration of the binder,  

- source of sulfates and concentration. 

 Hydration degree of GGBS  

In this study, the GGBS hydration degree was estimated by modeling and based on literature. 

However, it would be interesting to experimentally estimate the GGBS hydration degree in a 

complex system such as the mixture soil and binder. 

In the literature, several methods have been used to estimate the hydration degree of GGBS-

based systems (i.e. binder paste or mortars) such as images processing [207]. In this case, 

SEM images are analyzed, and magnesium is usually used as the component indicating the 

anhydrous slag grains and thus the unreacted volume of binder can be estimated. However, 

not much information has been addressed about the hydration degree in complex systems as 

mixtures of soil and binder. In this case, several factors should be taken into consideration: 

first, the soil should be characterized, and the clay content determined. Some clays present in 

the soil may contain magnesium (Mg) and can lead to mistakes in the identification of Mg 

coming from anhydrous binders. Second, image processing should be made on polished 

sections, but the small particles present in the soil could hinder the polishing process and the 

quality of the BSE images may have an effect in the reliability of information obtained from the 

image processing. Finally, the dilution effect should be taken into consideration as the amounts 

of binder generally used to treat soil are very low (in this study varied from 2 to 20 wt%), this 

may lead to a representativeness issue because of the heterogeneity of the sample. 
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 Characterization of the particle size for leaching tests 

In this study, leaching tests were carried out in accordance with the European Standard 

NF EN 12457-2 as required by the French Decree [88]. This leaching method is presented in 

the literature as a dynamic test that simulates the worst case of leaching behaviors, mainly 

because of the L/S (10 L/kg) and the particle size used (below 4 mm) [208]. It should be noted 

that NF EN 12457-2 procedure does not require the characterization of the particle size below 

4 mm. As reported in the literature, this condition led to discrepancies between several results 

from an identical waste source [208]–[210]. Zandi et al. [210] explained that concentrations in 

eluates are underestimated when the dust fraction (<0.5 mm) is discarded from the leaching 

tests. Conversely, results are overestimated if only the finer fraction is considered because 

larger proportion of fine grain fraction leads to larger concentrations of elements in leachates. 

Therefore, further experimental investigations are needed to estimate the disparity between 

results coming from similar wastes by performing this leaching test. Characterization of particle 

size below 4 mm would increase the reliability of this leaching test. 
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5. Chapter 5 – Stabilization of molybdenum 

Résumé 

La stabilisation des matériaux contaminés au Mo (ex : sous-produits, sol excavé) peut être effectuée à l'aide de 

liants cimentaires. Dans ce chapitre, nous avons étudié la capacité de plusieurs liants cimentaires à stabiliser le 

Mo. Pour ce faire, nous avons contaminé artificiellement plusieurs liants avec du Mo et avons étudié l'interaction 

entre les liants et le Mo. Cette approche est justifiée par : 

- De très faibles concentrations de Mo dans le sol disponible qui est contaminé naturellement au Mo 

(<3 mg/kg de masse sèche). Par conséquent, l’étude des mécanismes de stabilisation du Mo à des 

concentrations aussi faibles est difficile en utilisant les techniques disponibles en laboratoire qui ont des 

limites de détection élevées. 

- Les matériaux contaminés (sol, sous-produits) sont des systèmes complexes à analyser lorsqu'ils sont 

mélangés avec des liants et plusieurs facteurs doivent être pris en considération (ex : compétition ionique, 

effet néfaste de la matière organique sur l'hydratation des liants, effet de dilution). 

Ainsi, l'étude du système « liant + Mo » semble être une première approche correcte pour étudier les mécanismes 

de stabilisation du Mo en utilisant des liants. 

Par conséquent, dans cette thèse, les échantillons étudiés ont été obtenus en dopant trois liants à différentes 

concentrations de Mo. La description des matériaux et la fabrication des échantillons ont été présentées au chapitre 

2 - section 2.1.3. Pour rappel, le molybdate de sodium (Na2MoO4) a été utilisé comme source de Mo pour 

contaminer artificiellement les liants. Nous avons décidé d'utiliser ce minéral pour les raisons suivantes : 

- Le molybdate de sodium contient le composé molybdate (MoO4
2-

), qui est l'oxyanion de Mo le plus courant 

dans la nature à un pH> 4. 

- Le molybdate est un anion contenant du Mo dans son état d'oxydation le plus élevé de +6 (l'état 

d'oxydation le plus courant du Mo). 

- Le molybdate de sodium est très soluble dans l'eau, contrairement à la molybdénite (MoS2) qui est la 

forme solide insoluble la plus courante de Mo trouvée dans les sols. 

Nous rappelons les trois liants sélectionnés : 

- B1 : ciment Portland ordinaire (OPC), pris ici comme référence. 

- B2 : liant expérimental composé de 90% de laitier de haut fourneau granulé broyé (GGBS) et 10% d'OPC. 

- B3 : ciment sursulfaté (SSC). 

Ce chapitre présente donc les résultats obtenus sur l'interaction du molybdène avec plusieurs liants contaminés 

au Mo. Ce travail vise à : (i) comparer la capacité de plusieurs liants à immobiliser le Mo, et (ii) contribuer à la 

compréhension des mécanismes associés à la stabilisation du Mo. 

L'étude de la stabilisation du Mo par des liants cimentaires a été réalisée en suivant l'approche présentée en Figure 

5.1. Ce chapitre est organisé de la manière suivante : 

(i) La première partie se concentre sur la présentation des résultats des tests de lixiviation des liants 

dopés en Mo et la compréhension des mécanismes de stabilisation à partir de la caractérisation 

minéralogique et d’un modèle géochimique développé avec le code PHREEQC. 



CHAPTER 5 – STABILIZATION OF MOLYBDENUM 

 206 

(ii) Ensuite, les résultats obtenus sur l’étude de la synthèse de C-S-H avec Mo sont présentés. Cela 

comprend le pourcentage de Mo retenu dans la fraction solide après filtration du C-S-H ainsi que la 

caractérisation microstructurale et minéralogique de toutes les phases C-S-H synthétisées. De plus, 

un modèle géochimique a été développé afin de mieux comprendre les mécanismes de stabilisation 

du Mo à de faibles concentrations. 

 

Liants dopés en Mo 

Pour étudier l'interaction du Mo avec les liants et évaluer leur capacité à immobiliser du Mo, les concentrations des 

éléments en solution ont été mesurées dans tous les éluats. La Table 5.2 et le Figure 5.4 présentent les 

concentrations de molybdène, sulfate, calcium, aluminium, sodium et silicium ainsi que les valeurs de pH des éluats 

obtenus pour tous les liants dopés en Mo.  

De manière générale, les concentrations de Mo sont restées bien inférieures aux concentrations initiales de Mo. 

Des pourcentages élevés de rétention de Mo ont ainsi été obtenus pour tous les liants en fonction des 

concentrations de Mo. De plus, une augmentation des concentrations de sulfates, d'aluminium, de sodium et de 

silicium avec la teneur initiale en Mo a été observée. En revanche, le calcium est resté relativement stable pour les 

formulations ayant des teneurs initiales en Mo inférieures à 5% en masse alors que pour des teneurs initiales en 

Mo plus élevées, la concentration du calcium a diminué en solution. Cela suggère que le Mo a été probablement 

immobilisé par la précipitation d’un minéral contenant du calcium : la powellite CaMoO4. 

Plusieurs analyses ont ensuite été réalisées sur les liants dopés en Mo afin d’identifier les mécanismes de 

stabilisation du Mo. La Figure 5.2 résume la démarche expérimentale suivie pour étudier les mécanismes de 

stabilisation du Mo par l’utilisation des liants.  

Des analyses DRX ont permis de vérifier :  

- la présence de la powellite (CaMoO4) lorsque les liants ont été dopés en Mo à des teneurs >5% en masse 

et,  

- la modification des phases existantes comme celle de l’ettringite. 

Pour la formulation à base de ciment Portland (B1), le pic caractéristique de l'ettringite a disparu lorsque le liant a 

été dopé à des teneurs en Mo supérieures à 5% en masse. Pour la formulation à base de ciment sursulfaté (B3), 

les spectres ont montré que le pic d'ettringite s’est décalé vers des degrés inférieurs et a perdu en intensité avec 

l’augmentation de la teneur en Mo.  

D’autre part, des observations au MEB/EDS ont permis de cibler d’autres mécanismes d’immobilisation comme 

l’adsorption du Mo par des C-S-H et par des phases contenant des sulfates.  

Ainsi, certaines hypothèses ont été prises en considération pour expliquer les mécanismes d'immobilisation du Mo 

en utilisant les liants B1, B2 et B3 : 

- Le Mo a été partiellement immobilisé par la précipitation de powellite, 

- Le Mo a été probablement adsorbé sur la surface des C-S-H, 

- Le Mo a été immobilisé avec des phases contenant des sulfates (AFt et Ms), 

- La molybdénite (MoS2) n'a pas été identifiée dans les liants à base de laitier B2 et B3 probablement parce 

qu’ils ne présentaient pas d'environnements internes suffisamment réducteurs ou à cause des limites de 

détection élevées des techniques utilisées. 
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Par conséquent, nous avons décidé d’utiliser la modélisation pour étudier l'immobilisation du Mo par les trois liants 

et mieux comprendre les mécanismes, notamment pour de faibles concentrations de Mo. Cette modélisation avait 

également pour but de mieux comprendre la précipitation de la powellite. De plus, nous avons également décidé 

d'étudier l'immobilisation du Mo par la synthèse de C-S-H. 

Ainsi, des calculs numériques ont montré que la précipitation de powellite contrôle partiellement la solubilité du Mo. 

Les modèles ont aussi permis de mettre en évidence l’existence d’autres mécanismes de stabilisation du Mo car 

les teneurs de Mo déterminées expérimentalement en solution se sont révélées être plus faibles que celles 

calculées par le modèle.  

L’étude de la stabilisation du Mo s’est poursuivie avec la synthèse de C-S-H. Les raisons principales de ce choix 

sont :  

- Cette phase est présente comme l'un des principaux produits d'hydratation dans les trois liants étudiés et 

les analyses EDS ont montré que les C-S-H étaient mélangés avec le Mo. 

- Selon la littérature, les phases C-S-H présentent des caractéristiques pour immobiliser les métaux lourds 

anioniques par co-précipitation ou adsorption sur leur surface. 

- Dans la littérature, les phases ettringite et monosulfoaluminate ont déjà fait l'objet de recherches pour 

expliquer l'immobilisation du Mo alors que la capacité des C-S-H à immobiliser le Mo est peu discutée. 

 

Synthèse des phases C-S-H avec du Mo : 

Le Mo a été largement immobilisé (> 95%) dans les phases de C-S-H. Par conséquent, quatre hypothèses ont été 

proposées pour expliquer l'immobilisation de Mo dans ces phases : (i) co-précipitation du Mo avec des ions calcium 

pour former de la powellite (CaMoO4), (ii) incorporation du Mo entre les feuillets de C-S-H, (iii) substitution du Si
4+

 

par Mo
6+

, et (iv) adsorption du Mo sur la surface des C-S-H. 

Les analyses en solution ont montré une diminution progressive de la concentration de calcium après filtration des 

C-S-H, ce qui peut s’expliquer par la précipitation du Mo avec des ions calcium. En effet, les analyses DRX ont 

montré la présence de powellite (cf. Figure 5.18). Les pics caractéristiques de la powellite sont devenus plus 

importants pour les concentrations de Mo les plus élevées (2,5 et 5% en masse). De plus, des analyses FT-IR (cf. 

Figure 5.21) ont montré une légère modification de l'intensité des bandes Si-O placées entre 850 et 750 cm-1. Cette 

intensité a d’ailleurs augmenté avec la concentration en Mo, ce qui peut être dû à la présence de powellite. En 

effet, la bande Mo-O chevauche la bande Si-O. Les observations au MEB/EDS ont montré la présence de taches 

blanches attribuées au Mo. De plus, les analyses EDS ont montré que le Mo était mélangé avec les C-S-H et que 

de la powellite s’était formée. Cela veut dire que la powellite a peut-être précipité à la surface des C-S-H ou que le 

Mo a été adsorbé sur la surface de ces phases.  

Finalement, les observations expérimentales et la modélisation ont montré que la powellite était le mécanisme 

contrôlant la solubilité du Mo pour les concentrations étudiées. La modélisation a aussi montré que la powellite ne 

précipitait pas pour des teneurs en Mo inférieures à 90 ppm (1,9x10-5 mol/L), c’est-à-dire que pour les 

concentrations plus faibles de Mo (<90 ppm), le Mo est plutôt immobilisé par l’adsorption sur les surfaces de C-S-

H. Ce mécanisme a notamment été observé expérimentalement. La mise en évidence de l’existence d’autres 

mécanismes d’immobilisation (substitution, inclusion) nécessiterait l’utilisation de techniques plus précises avec 

des limites de détection plus faibles. 

 

  



CHAPTER 5 – STABILIZATION OF MOLYBDENUM 

 208 

Introduction 

The release of molybdenum (Mo) into solution from contaminated materials and by-products 

(including excavated soil) is a serious concern as it can lead to significant risks for both human 

health and the environment. 

The source of Mo in soil can be either from natural origin (e.g. granite rocks, volcanic rocks 

and limestone) or from anthropogenic activities (e.g. mining, oil and agriculture industries). Mo 

concentrations in soil are relative low (in the range of 0.2-74 mg/kg of dry mass3) [94], [100], 

but they can reach about 570 mg/kg of dry mass in soil containing organic matter (e.g. black 

shale) [94]. Larger concentrations are expected from anthropogenic sources.  

Mo is considered as an essential nutriment for plants and animals; however, large amounts of 

this metal can be toxic and produce an illness known as “molybdenosis” [94], [99], [103], [104]. 

As a reminder, in France, the French Ministerial decree on waste classification for disposal 

(Arrêté du 12 décembre 2014) classifies the waste materials in three categories depending on 

the leachable Mo concentration: 0.5, 10 and 30 mg/kg of dry soil for inert and non-hazardous, 

non-inert and non-hazardous and hazardous waste, respectively (cf. Chapter 1 -Table 1.7). 

Therefore, the immobilization of Mo is required, and understanding the underlying stabilization 

mechanisms is necessary.  

Stabilization of Mo-contaminated materials, by-products and excavated soil can be done by 

using cementitious binders. Therefore, this chapter aims to: (i) compare the capacity of several 

binders to immobilize Mo in a single-step batch procedure, and (ii) contribute to the 

understanding of the mechanisms associated with Mo stabilization. To this end, we decided to 

study the stabilization of Mo from a few ppm (50 ppm) to several thousand ppm (100000 ppm), 

as: 

- Mo can be present in a large range of concentrations in natural soil/materials or anthropic 

by-products. 

- The mechanisms of stabilization can differ depending on the concentration tested. 

It should be noted that, as the available natural Mo-contaminated soil contained small amounts 

of Mo (< 3 mg/kg), which is lower than the detection limits of the laboratory techniques (e.g. X-

ray diffraction and Scanning Electron Microscopy), we decided to study higher Mo 

concentrations and their interaction with cementitious binders. In this way, we ensured the 

detection of Mo to identify its mechanisms of stabilization. However, these mechanisms may 

                                                
3 mg/kg of dry mass = ppm 
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not be the same at low Mo concentrations (<50 ppm). Therefore, modeling would help to verify 

Mo stabilization for those low Mo concentrations. 

The study of stabilization of Mo was carried out following the approach presented in Figure 

5.1. 

 

 

Figure 5.1 – Concept mapping of the approach adopted in the study of stabilization of molybdenum by using alternative 
binders. 

 

In the first part of this chapter, we present the results obtained from the study of Mo-spiked 

binders, and we provide information about the capacity of these binders to immobilize Mo. We 

study the Mo stabilization mechanisms by using mineralogical and microstructural 

characterization and modeling. We also decided to study the capacity of synthetic C-S-H to 

immobilize Mo. Therefore, in the second part of this chapter, we give the results obtained from 

the study of synthetic C-S-H phases with Mo. This includes the Mo concentration in solution 

after filtration of C-S-H, as well as the microstructure and mineralogical characterization of all 

the synthetic phases followed by the numerical calculations obtained in the modeling. Then, 

the discussion of all the results is addressed. 

 

 

All the results are presented by technique and a summary of results is shown in Table 5.10 

and Figure 5.27. 
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5.1 Molybdenum-spiked binders 

As mentioned previously, we studied the capacity of several cementitious binders to stabilize 

Mo. To this end, we artificially contaminated several binders with Mo and only investigated the 

interaction between the binders and Mo. This approach is justified by:  

- Very low Mo concentrations (<3 mg/kg of dry mass) in the available natural Mo-

contaminated soil. Hence, it is not possible to study the mechanisms of Mo stabilization at 

such low Mo concentrations by using the available technics with high detection limits (e.g. 

X-ray diffraction and Scanning Electron Microscopy). 

- Contaminated materials (soil, by-products) are complex systems to analyze when they are 

mixed with binders and several factors should be taken into consideration (e.g. ion 

competition, harmful effect of organic in the hydration of the binders, dilution effect) to study 

the interaction of all the constituents. 

Thus, the study of only “binder + Mo” seemed a correct first approach to investigate the 

mechanisms of Mo stabilization. Therefore, in this thesis, the samples investigated were 

obtained by spiking three binders at different Mo concentrations. Description of materials and 

fabrication of samples were presented in Chapter 2 - section 2.1.3. As a reminder, sodium 

molybdate (Na2MoO4) was the source of Mo used to artificially contaminate the binders. We 

decided to use this mineral because of: 

- Sodium molybdate contains the compound molybdate (MoO4
2-

), which is the most 

common oxyanion of Mo found in nature at pH > 4. 

- Molybdate is an anion containing Mo in its highest oxidation state of +6 (the most 

common oxidation state of Mo). 

- Sodium molybdate is highly soluble in water. Unlike molybdenite (MoS2), which is the 

most common insoluble solid form of Mo found in soil. 

We recall the three binders selected to study the Mo stabilization:  

- B1(CEM I): ordinary Portland cement (OPC), taken here as the reference. 

- B2(90-10): experimental binder composed of 90% ground granulated blast furnace slag 

(GGBS) and 10% OPC. 

- B3(SSC): supersulfated GGBS cement (SSC). 

Table 5.1 summarizes the different binders and Mo concentrations studied. The Mo 

concentrations for spiking the binders were chosen in order to compare the immobilization of 
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Mo as a function of the Mo concentrations and to guarantee the detection of Mo. For ease of 

reading, in this chapter, we present almost all the results as a function of the initial Mo 

concentration in mg/kg of anhydrous binder and in percentage per weight of anhydrous binder 

(wt%). 

Table 5.1 – Initial Mo concentration used to artificially contaminate the binders. % by weight of anhydrous binder. 

Binder 
Initial Mo concentration 

 
wt% mgMo/kgbinder a 

B1(CEM I) 
B2(90-10) 
B3(SSC) 

0 0 
Found in natural soil/contaminated 

materials 
0.005 50 

0.05 500 

0.1 1000 

To guarantee Mo detection 
1 10000 

5 50000 

10 100000 

a 120 g of binder were used to fabricate each formulation with a water to binder (w/b) ratio of 0.4 

 

Several techniques were used to study the immobilization of Mo in the binders and the 

mechanisms of stabilization. Figure 5.2 presents the approach followed in this part of the study. 

 

 

Figure 5.2 – Approach followed to study the stabilization of Mo by using binders. 

 

The following subsections present all the results obtained in the study of the stabilization of Mo 

by using binders. 

 

5.1.1 Leaching tests results 

The immobilization of Mo was studied by carrying out paste leaching tests on the different Mo-

spiked binders, in accordance with the protocol presented in Chapter 2 – section 2.2.2.1. As a 
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reminder, in this protocol, the pastes were crushed to a particle size below 4 mm (no 

characterization of the particle size below 4 mm) and 100 g of hydrated binder were put in 

contact with 1 L of distilled water in order to keep a liquid to solid (L/S) ratio of 10. 

Figure 5.3 (at left) presents the concentrations in solution of molybdenum (Mo), calcium (Ca), 

sulfate (SO4
2-

) and sodium (Na), in the vertical axis as a function of the initial Mo concentration 

in the horizontal axis. Concentrations are given in mg/kg of binder. Figure 5.3 (at right) presents 

the same information by using a logarithmic scale, which allowed us to analyze the behavior 

of the elements at low initial Mo concentrations (<1 wt%~10000 mgMo/kgbinder).  

 

Figure 5.3 – Element concentrations in solution after paste leaching tests of all the formulations plotted as a function of the 
initial Mo concentrations. Concentrations are expressed in mg/kgbinder. (left) Linear scale, (right) logarithmic scale. (a) 
molybdenum, (b) calcium, (c) sulfate, and (d) sodium. 
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Furthermore, Table 5.2 gives all the information about the pH values and element 

concentrations measured in all the eluates and specifies the percentage of Mo retention 

calculated for each formulation. 

Table 5.2 – Paste leaching results of Mo-spiked binders. Element concentrations in the eluates are given in mg/kg of anhydrous 
binder. Each point is the arithmetic average of two values. 

 Initial Mo concentration Concentration in eluates (mg/kg of binder) b  

 (wt%)a 
(mg/kg of 

binder) 
Mo Na Ca Al Sulfate Si pH 

Retention 
of Mo (%) 

B
1 

(C
E

M
 I)

 

0 0 0 634 8625 0.28 33 0.0 13.12 - 

0.005 50 14 835 8459 0.01 42 0.8 13.03 74.0 

0.05 500 8 673 8674 0.01 37 0.0 13.11 98.4 

0.1 1000 22 1142 8311 0.02 50 0.4 12.98 97.8 

1 10000 155 3707 7356 4.3 153 1.5 13.02 98.5 

5 50000 476 15160 4396 17 3162 5.2 13.10 99.0 

10 100000 2066 28770 2692 80 8045 28 13.20 97.9 

B
2 

(9
0-

10
) 

0 0 0 320 2870 32 74 17 12.60 - 

0.005 50 34 320 2595 34 82 19 12.52 32.0 

0.05 500 63 412 2635 37 82 20 12.61 87.4 

0.1 1000 148 619 2449 39 87 23 12.55 85.0 

1 10000 563 1895 1882 63 121 30 12.58 94.4 

5 50000 1492 9858 475 190 949 53 12.94 97.0 

10 100000 6549 19315 253 391 1386 130 13.02 93.5 

B
3 

(S
S

C
) 

0 0 0 314 7852 1.0 17958 63 12.02 - 

0.005 50 4 289 7720 0.0 16928 51 11.78 92.0 

0.05 500 30 388 7344 0.0 16133 48 11.84 94.0 

0.1 1000 45 535 7344 0.3 16188 51 11.82 95.5 

1 10000 117 2044 6231 2.4 15929 47 11.95 98.8 

5 50000 140 9205 3767 3.6 21619 52 12.26 99.7 

10 100000 386 18545 1700 13.9 31995 93 12.40 99.6 

a wt%: percentage by weight of anhydrous binder. 
b by using a liquid to solid (L/S) ratio of 10 
 
 

Molybdenum 

Figure 5.3 shows that for all the formulations - B1(CEM I), B2(90-10) and B3(SSC), Mo 

concentrations in eluates increased with increasing the initial Mo concentration. However, the 

concentrations in eluates were much lower than the initial Mo concentrations used to spike the 

binders as presented in Table 5.2. For the purpose of better illustrating the retention of Mo by 

the binders, Figure 5.4 presents the curves of Mo retention as a function of the initial Mo 

concentrations using an x-axis semi-logarithmic scale.  
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Figure 5.4 – Mo retention by the formulations B1(CEM I), B2(90-10) and B3(SSC). Retention values are given in percentage 
as a function of the initial Mo concentrations in mg/kg of binder by using an x-axis semi-logarithmic scale. 

 

From Figure 5.4, it can be observed that Mo retention increased with increasing the initial Mo 

concentration. It can also be observed that at high Mo concentrations (>0.1 wt%~1000 mg/kg 

of binder) Mo was immobilized by all the binders in percentages superior to 85%. For example, 

when binders were spiked with the highest Mo concentration (10 wt% ~100000 mg/kg of 

binder), it was found that Mo concentrations in solution decreased to 2070, 6550 and 

390 mg/kg of binder for the formulations B1(CEM I), B2(90-10) and B3(SSC), respectively. It 

means that Mo retentions were 97.9, 93.5 and 99.6% for these binders. 

For the low Mo concentrations (<0.1 wt%), Mo was immobilized in the solid fractions at lower 

percentages of retention compared with those measured at high initial Mo concentrations. For 

example, for the lowest Mo concentration (0.005 wt% ~50 mgMo/kgbinder), it was seen that Mo 

concentrations in eluates decreased to 13, 34 and 4 mgMo/kgbinder for formulations B1(CEM I), 

B2(90-10) and B3(SSC), respectively. It means that Mo retentions were 74, 32 and 92% for 

these binders. This may indicate that the mechanisms of Mo stabilization differ from low to high 

Mo concentrations. Among the three binders, B3(SSC) was the one immobilizing the highest 

concentration of Mo over the whole range of initial Mo concentrations (from 92 to 99.6% of Mo 

retention). This suggests that this binder presents internal conditions allowing the stabilization 

of Mo at different Mo concentrations. Further details will be given in discussion. 
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Calcium, sodium and sulfate 

It is clearly seen from Figure 5.3 that the leachate concentrations of the major elements did 

not remain constant while increasing the initial Mo concentration. Although the binder content 

was kept at the same level, the element concentrations varied, meaning that the presence of 

Mo in the systems had significant effects on the phase formation of the compounds. 

It can be observed that the concentrations of calcium (Ca) in solution decreased with 

increasing the initial Mo concentration. This may suggest that Mo was immobilized by the 

precipitation of Ca with Mo (e.g. formation of powellite (CaMoO4)). In contrast, sulfate (SO4
2-

) 

and sodium (Na) concentrations increased gradually with increasing the initial Mo 

concentration. The case of Na could be partially or totally explained by the fact that the Mo 

was added as a sodium salt. However, it should be noted that at high sodium molybdate 

concentrations, the instability of ettringite is expected due to the high concentration on Na. 

Several studies have shown that the presence of high content of alkalis (sodium or potassium) 

inhibits the formation of ettringite [187], [188]. The presence of sodium in solution increases 

the alkali conditions in the pore solution and modifies the stability of ettringite. High alkali 

conditions enhance the solubility of ettringite constituents, mainly sulfate, as a result, the 

amount of ettringite decreases in the hydrated binder [188]. Regarding sulfate concentration 

in solution (cf. Figure 5.3(c)), it can be observed that the binder B3(SSC) released the highest 

sulfate concentration in solution (which was expected due to the high sulfate content in SSC), 

followed by the binder B1(CEM I). This may suggest that Mo was partially immobilized by the 

substitution of sulfates in the sulfates-bearing phases or that part of these sulfate-bearing 

phases did not precipitate. Further details will be addressed in the discussion section. 
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5.1.2 XRD characterization 

X-ray diffraction (XRD) analyses were carried out in all the Mo-spiked pastes at 28 days of 

curing and using rutile (TiO2) as an internal standard. These analyses were carried out in order 

to:  

- identify the formation of new Mo bearing phases, 

- identify the modification of existent crystalline phases after spiking the binders with Mo. 

Precipitation of powellite: 

As the formation of powellite (CaMoO4) was one of the hypotheses explaining the 

immobilization of Mo, we verified the appearance of the characteristic peaks of powellite in the 

XRD patterns. Therefore, Figure 5.5 shows the XRD patterns obtained from Mo-spiked binders 

and plotted in the selected ranges from 2 17º to 19º and from 2 27º to 30º. These ranges 

were selected in order to highlight the presence of powellite, which has its main peak in 

From these analyses in solution, several hypotheses of Mo immobilization were taken 

into consideration. Mo solubility was probably (partially or totally) controlled by:  

- the precipitation of powellite (CaMoO4), which is formed by the reaction 

between calcium ions and molybdate (MoO4
2-), 

- the adsorption of Mo onto the surface of amorphous phases such as the 

calcium silicate hydrate (C-S-H), 

- the substitution of sulfate by molybdate in sulfate-bearing phases such as 

ettringite and monosulfoaluminate, 

- the reduction of molybdate due to redox reactions, which could be produced 

in binders with reducing internal environments such as the binder B2(90-10) 

and B3(SSC) due to the presence of sulfur in the GGBS. 

In order to identify the Mo stabilization mechanisms, mineralogical and microstructural 

analyses were carried out in Mo-spiked binders. Moreover, modeling was performed 

with PHREEQC to predict the immobilization of Mo at low Mo concentrations (cf. Figure 

5.2). 
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between 2 28° and 29º. The peak of rutile in 2 27º-28º allowed us to confirm that the 

diagrams were correctly positioned. Moreover, ettringite (2 17.5º-18º), portlandite (2 28º-

29º), gypsum (2 29º-29.5º) and calcite (2 29º-30º) were also detected. 

In general, XRD patterns showed that powellite precipitated in all the binders containing 5 and 

10 wt% Mo (50000 and 100000 mg/kg of binder, respectively). For binder B3(SSC), a 

modification of the pattern was observed at 1 wt% Mo, in which powellite seemed to appear. 

At Mo concentrations inferior to 1 wt% (10000 mgMo/kgbinder), powellite was not identified 

probably due to: (i) the relatively high detection limits of the XRD analyses, and/or (ii) the 

presence of other immobilization mechanisms such as adsorption, substitution and inclusion. 

 

Figure 5.5 – XRD patterns obtained from Mo-spiked binders at 28 days of curing using rutile (TiO2) as internal standard and 

plotted in the selected ranges from 2 17º to 19º (left), and from 2 27º to 30º (right). (a) and (b) B1(CEM I), (c) and (d) B2(90-
10), (e) and (f) B3(SSC). P: Portlandite, R: Rutile, C: Calcite, E: Ettringite, G: Gypsum.  
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Modification of ettringite peaks: 

The substitution of sulfate by molybdate in ettringite (or monosulfoaluminate) was one of the 

hypotheses explaining the immobilization of Mo. Therefore, we decided to verify the 

modification of the characteristic peaks of ettringite in the XRD patters. Thus, Figure 5.6 

presents the patterns plotted in the selected ranges from 2 8.8º to 9.5º and from 2 15º to 17º 

(ranges selected in order to verify the modification of ettringite). Ettringite was identified in 

binders B1(CEM I) and B3(SSC) without Mo (0% Mo). Meanwhile, ettringite was not present 

as a reaction product in the formulation B2(90-10). As a reminder, formulation B1(CEM I) was 

fabricated with an OPC containing 3.4 wt% SO3, and formulation B3(SSC) was fabricated with 

a supersulfated cement. Therefore, both binders present compositions able to form ettringite 

at different proportions during hydration. On the other hand, formulation B2(90-10) was 

fabricated with 10% OPC, which is a relatively low concentration to form high amounts of 

ettringite but enough to enable the reaction of the GGBS to mainly form C-S-H. 

On the other hand, in formulation B1(CEM I), the peaks of ettringite (in 2 9º to 9.2º and 2 

15.5º to 16º) disappeared when the binder was spiked with concentrations superior to 5 wt% 

Mo (% by weight of anhydrous binder). Meanwhile, in formulation B3(SSC), ettringite peaks 

shifted towards lower degrees and also decreased in their relative intensity for concentrations 

superior to 1 wt% Mo. Ettringite was probably modified due to: (i) the effect of sodium added 

to the system or/and (ii) the substitution of sulfate by molybdate. Further details will be given 

in the discussion section. 
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Figure 5.6 – Superposed XRD patterns obtained from Mo-spiked binders at 28 days of curing using rutile (TiO2) as internal 

standard and plotted in the selected ranges from 2 8.8º to 9.5º (left), and from 2 15º to 17º (right). (a) and (b) B1(CEM I), 
(c) and (d) B2(90-10), (e) and (f) B3(SSC). 

 

5.1.3  SEM/EDS observations of Mo-spiked binders containing 

GGBS 

Oxidation-reduction (redox) and adsorption of Mo onto C-S-H surface: 

As mentioned previously, Mo could also be immobilized by binders having reducing properties 

due to redox reactions. Binders containing GGBS, such as binders B2(90-10) and B3(SSC), 

were reported to be able to reduce anionic species (e.g. chromate) and thus, decrease their 

water solubility [85], [112], [116], [119], [120]. Mo is generally present in solution as the anion 

molybdate (with a Mo oxidation state of +6) and the reduction of this anion by binders 

containing GGBS may help to decrease Mo solubility. If the reducing internal conditions of the 
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binders are enough (low pH and negative electrochemical potential) (cf. Chapter 1 – Figure 

1.19), it would be possible that molybdate transforms into molybdenite (MoS2), which has a 

Mo oxidation state of +4 (cf. Chapter 1 – Figure 1.21) [115]. Hence, particular attention was 

paid to binders B2(90-10) and B3(SSC) because of their reducing internal environments (sulfur 

in GGBS).  

Furthermore, B2(90-10) was particularly interesting because it did not form ettringite or 

monosulfoaluminate during hydration (cf. Figure 5.5) and even though it showed a high 

capacity for Mo immobilization. It means that this binder did not immobilize Mo by the 

substitution of sulfate by molybdate, but by the precipitation of powellite and probably another 

immobilization mechanism such as the reduction of molybdate or the adsorption of Mo onto 

the surface of C-S-H. In the case of B3 (SSC), aside from its reducing internal environment, it 

was also interesting to study other mechanisms of Mo stabilization, such as the presence of 

Mo in ettringite (AFt) or monosulfoaluminate (Ms) due to the substitution of sulfate by 

molybdate and the adsorption of Mo onto the surface of C-S-H. To this end, SEM/EDS 

analyses were carried out on polished sections of binders B2(90-10) and B3(SSC) spiked with 

the highest Mo concentration of 10 wt% Mo (concentration selected due to the high limits of 

detection of the SEM). 

Figure 5.7 presents a SEM image obtained from the binder B2(90-10) with 10 wt% Mo. It can 

be observed that several white spots (corresponding to Mo) were found in all the surface of 

the analyzed sample. Moreover, it seemed that C-S-H phases were surrounded by white lines, 

which also corresponded to Mo. The Ca/Mo atomic ratios of these lines were calculated in 

order to verify if powellite was present (Ca/Mo atomic ratio of 1). However, the Ca/Mo was 

much greater than 1, meaning that it was not possible to confirm that powellite was formed 

around C-S-H. However, it is probable that: (i) powellite was near other compounds containing 

calcium, as the binders initially had a high Ca content, (ii) Mo was adsorbed onto the surface 

C-S-H, and (iii) grains of sodium molybdate were not completely dissolved or reprecipitated 

accumulating in those zones. The zone of analysis (a few µm wide) was not small enough to 

isolate the Mo reaction products. 
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Figure 5.7 – SEM image from B2(90-10) 10 wt% Mo. Chemical compositions (EDS) are given in atomic concentrations (%). 

 

Figure 5.8 presents a SEM image obtained from the binder B3(SSC) with 10 wt% Mo. It can 

be observed the presence of numerous white spots in all the surface of the analyzed sample. 

EDS analyses indicated the presence of Mo near Ca and S. This may suggest that Mo 

interacted with sulfate bearing phases such as gypsum or anhydrite. Like for B2(90-10), it 

seemed that C-S-H phases were surrounded by white lines, which corresponded to Mo. 

Moreover, Mo was also detected in the zones containing ettringite.  
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Figure 5.8 – SEM image from B3(SSC) 10 wt% Mo. Chemical composition (EDS) is given in atomic concentrations (%). 

 

SEM/EDS observations were completed by EDS punctual analyses, plotted in three charts:  

(i) S/Ca vs. Mo/Ca EDS chart: 

Figure 5.9 presents the S/Ca vs. Mo/Ca EDS charts obtained from binders B2(90-10) and 

B3(SSC) with 10 wt% Mo. Figure 5.9(a) presents a schematic explanation of how to read this 

type of chart. X-axis and y-axis represent the molybdenum to calcium (Mo/Ca) and sulfur to 

calcium (S/Ca) atomic ratios, respectively. This plot helps to identify different hydration 

products (C-S-H, gypsum, ettringite AFt and monosulfoaluminate Ms), as well as powellite, 

which has a Mo/Ca atomic ratio of 1. 

From Figure 5.9(b), it can be confirmed that B2(90-10) with 10 wt% Mo did not form 

ettringite/monosulfoaluminate (AFt/Ms) during hydration, due to the relatively small amounts 

of sulfates. In this binder, the main population of points was in the zone of C-S-H containing 

more or less Mo. The Mo content reached around 20-30% in certain points. In contrast, Figure 
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5.9(b) shows that binder B3(SSC) with 10 wt% Mo presented a population of points in the 

gypsum and AFt/Ms zones and a population of points driving towards higher Mo 

concentrations. It means that Mo probably interacted with sulfate-bearing phases.  

 

Figure 5.9 – (a) Interpretation of S/Ca vs. Mo/Ca EDS charts obtained from (b) B2(90-10) and (c) B3(SSC) with 10 wt% Mo. 

 

(ii) S/Mo vs. Ca/Mo EDS chart: 

Figure 5.10 presents the S/Mo vs. Ca/Mo EDS charts obtained from binders B2(90-10) and 

B3(SSC) with 10 wt% Mo. Figure 5.10(a) presents a schematic explanation of how to read this 

type of chart. X-axis and y-axis represent the calcium to molybdenum (Ca/Mo) and 

molybdenum to sulfur (S/Ca) atomic ratios, respectively. The zones marked in the plots 

correspond to powellite, which has an Ca/Mo atomic ratio of 1 and molybdenite having an S/Mo 

atomic ratio of 2. Furthermore, it is possible to identify if Mo interacted with sulfate-bearing 

phases. 

It should be noted that no point was observed in the area of molybdenite (MoS2), meaning that 

the mixtures did not had the necessary reducing internal environments to transform molybdate 

into molybdenite, although these binders contained a high proportion of GGBS with sulfur. 
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Nonetheless, the reduction of molybdate should be confirmed for the other Mo concentrations 

and thus, the study of the Mo speciation in the samples would be necessary. It can also be 

observed that for binder B3(SSC), Mo interacted with sulfate-bearing phases. 

 

Figure 5.10 – (a) Interpretation of S/Mo vs. Ca/Mo EDS charts obtained from (b) B2(90-10) and (c) binder B3(SSC). 

 

(iii) Si/Ca vs. Mo/Ca EDS chart: 

Figure 5.11 presents the Si/Ca vs. Mo/Ca EDS charts obtained from binders B2(90-10) and 

B3(SSC) with 10 wt% Mo. Figure 5.11(a) presents a schematic explanation of how to read this 

type of chart. X-axis and y-axis represent the molybdenum to calcium (Mo/Ca) and silicon to 

calcium (Si/Ca) atomic ratios, respectively. The zones marked in the plot correspond to the C-

S-H phases having Ca/Si atomic ratios between 1.4 and 2.0 (Si/Ca of 0.7 and 0.48, 

respectively) and to the mineral powellite, which has an Mo/Ca atomic ratio of 1. The dotted 

line represents a slope allowing for identification of C-S-H mixed with powellite or for 

identification of Mo interaction with C-S-H (mainly at low Mo concentrations). 
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It can be observed that C-S-H precipitated in both materials but in minor extent in B3(SSC). In 

binder B2(90-10), Mo seemed to be adsorbed onto C-S-H (cf. Figure 5.11(b)); meanwhile, in 

binder B3(SSC), powellite seemed to be intermixed with C-S-H due to the big population of 

points placed towards the powellite area (cf. Figure 5.11(c)). Moreover, in binder B3(SSC), a 

big population of points was observed below the slope and they may indicate the presence of 

Mo in sulfate-bearing phases. 

 

Figure 5.11 – (a) Interpretation of Si/Ca vs. Mo/Ca EDS charts obtained from (b) B2(90-10) and (c) binder B3(SSC). 
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In the following section, we present the modeling performed with PHREEQC for all the binders 

studied. 

 

5.1.4 Modeling 

Modeling was carried out in order to better understand the immobilization of Mo by the 

precipitation of powellite. The modeling was performed in accordance with the method 

As mentioned previously, some hypotheses were taken into consideration to 

explain the mechanisms of Mo immobilization by using the binders B1(CEM I), 

B2(90-10) and B3(SSC): 

- the precipitation of powellite (CaMoO4),  

- the adsorption of Mo onto the surface of C-S-H, 

- the substitution of sulfate by molybdate in ettringite (AFt) and 

monosulfoaluminate (Ms), 

- redox reactions. 

After the analyses of the results presented previously, we can partially conclude 

that:  

- Mo was partially immobilized by the precipitation of powellite, 

- Mo was probably adsorbed onto the surface of C-S-H, mainly at low Mo 

concentrations (<1 wt%), 

- Mo was present in AFt and Ms, 

- Molybdenite (MoS2) was not identified in the binders probably because of 

binders containing GGBS, B2(90-10) and B3(SSC), did not present 

enough reducing internal environments (low pH and negative 

electrochemical potential) or because of the high detection limits of the 

techniques used. 

This study was completed by modeling in order to better understand the 

precipitation of powellite. Moreover, we also decided to study the immobilization 

of Mo by the synthesis of C-S-H (more details about this choice are presented in 

the corresponding section 5.2). 
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presented in Chapter 2 – section 2.2.5.3. As a reminder, the main hypotheses made in this 

modeling are:  

- The initial solution was defined by using a liquid to solid ratio of L/S=10 L/kg, a 

temperature of T=25°C and a pH of 7.0. These parameters are similar to the ones used 

in the paste leaching tests. 

- The binders were defined by their elemental chemical composition and the amount of 

water used to hydrate the binders was added to the system. 

- Molybdenum was incorporated to the solution by using sodium molybdate, which was 

added at different steps and keeping the same Mo concentrations used experimentally.  

- Congruent dissolution was assumed for all the constituents (binder and sodium 

molybdate).  

- For the binders B2(90-10) and B3(SSC), the hydration of the GGBS was assumed to 

be 30% as presented in Chapter 4 – section 4.3.2. 

- This modeling includes the thermodynamic data of powellite found in the literature 

[168]. 

- The adsorption of Mo onto C-S-H and the substitution of sulfates by molybdate in 

ettringite and monosulfoaluminate were not simulated in this modeling since few 

thermodynamic data exist for these reactions. 

- Modeling gives the concentrations of elements in the solution. This solution is assumed 

to be at the equilibrium and is compared to the element concentrations found in the 

eluates obtained experimentally after paste leaching tests. Consequently, the kinetics 

of the chemical reactions were not taken into account in this model, which represents 

only the state of equilibrium reached by the system. 

Figure 5.12 presents the numerical calculations obtained from the three binders in contact with 

Mo. Modeling data are represented by red lines, while experimental data are represented by 

circles. Calcium (Ca) and molybdenum (Mo) concentrations are expressed in mg/kg of binder 

and they are compared with experimental results. All data are plotted as a function of the initial 

Mo concentrations expressed in mg/kg of binder. 
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Figure 5.12 – Comparison between numerical and experimental data obtained from Mo-spiked binders. Molybdenum (Mo) 
and calcium (Ca) concentrations in solution and precipitation of powellite. All data are plotted as a function of the initial Mo 
concentration. Concentrations are expressed in mg/kg of binder. Circles: experimental data. Red lines: numerical data. (a), (b) 
(c) B1(CEM I), (d), (e), (f) B2(90-10), and (g), (h), (i) B3(SSC). 

 

Overall, it can be observed that modeling did not fit properly the experimental data, mainly for 

the binder B3(SSC). However, the trends of Mo and Ca concentrations were in good 

agreement. Moreover, the model showed that Mo was partially immobilized in all the binders 

and that Ca decreased while increasing Mo concentrations. This was explained by (i) the 

precipitation of powellite, which was formed in all the binders and for all the Mo concentrations 

studied except for Mo concentrations of 50 mg/kg of binder, and (ii) the instability of ettringite 

at high sodium molybdate concentrations (concentrations superior to 5 wt% Mo, % by weight 

of dry anhydrous binder).  

Regarding Ca concentrations, the discrepancies may be explained by the stability of C-S-H 

phases. In the model, the precipitation of C-S-H phases may be too stable with respect to the 

C-S-H phases that were really formed experimentally. Among all the binders, the modeling of 

the binder B3(SSC) showed the most important discrepancies between numerical calculations 

and experimental data. This model needs more adjustments in order to fit numerical and 

experimental data. One of them may be the stability of powellite with respect to the other 

phases formed in this binder. Other reason explaining the discrepancies between numerical 

and experimental results may be that the reaction between calcium and molybdenum to form 

powellite was not the only stabilization mechanism responsible for Mo immobilization. As a 
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reminder, EDS analyses showed that Mo interacted with sulfate-bearing phases and in this 

model, we did not simulate that phenomenon. 

In conclusion, modeling should be adjusted in order to represent properly the behavior of the 

Mo-spiked binders. However, numerical calculations allowed to confirm that the precipitation 

of powellite was possible in all the systems in their characteristic pH values (pH 11-13), over 

the range of Mo concentrations studied except for concentrations equal to 50 mgMo/kgbinder, for 

which Mo was probably immobilized experimentally by other stabilization mechanisms. 

In the following sections, we deal with the better understanding of Mo stabilization mechanisms 

by synthetic C-S-H phases and we perform a less complex model in order to predict the 

precipitation of powellite at low Mo concentrations. 

 

5.2 Synthetic C-S-H phases with Mo 

Justification: 

One of the hypotheses taken into consideration to explain the stabilization of Mo by using the 

binders was the immobilization of Mo by the calcium silicate hydrates (C-S-H). In order to verify 

the capacity of this phase to immobilize Mo, we decided to synthesize C-S-H. Other relevant 

justifications of this choice are listed below:  

- This phase is present as one of the main hydration products in all the three binders 

studied and EDS analyses showed that Mo was mixed with C-S-H.  

- According to the literature, C-S-H phases present characteristics to immobilize anionic 

heavy metals (e.g. chromate) by co-precipitation or adsorption onto their surface [86], 

[127], [118]. 

- In the literature, ettringite (AFt) and monosulfoaluminate (Ms) have already been a topic 

of research to explain Mo immobilization; while only recent publications deal with the 

capacity of C-S-H to immobilize Mo. 

Synthesis of C-S-H phases:  

All the syntheses were conducted following the protocol presented in Chapter 2 – section 

2.1.3.4. As a reminder, the synthesis of C-S-H phases was carried out by using three different 

chemical reactants: lime (CaO), amorphous silica (SiO2) and sodium molybdate (Na2MoO4) 

and the target stoichiometric Ca/Si ratio was set at 1.6. Five different Mo concentrations were 
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used for the synthesis of C-S-H phases. These concentrations were chosen to observe the 

capacity of C-S-H to immobilize Mo at different Mo concentrations and to guarantee Mo 

detection. Table 2.7 recalls the concentrations of the constituents used for the synthesis of C-

S-H phases. 

Table 5.3 – Description of all the syntheses of C-S-H with Mo. 

 Solid       

ID 
CaO 
(g) 

SiO2 
(g) 

Initial Mo 
concentration 

(wt%) a 

Mo 
(g) 

Total 
reactants 

(g) 

Total 
water (g)b 

Initial Mo 
concentration 

(mg/L) 

Initial Mo 
concentration 
(mg/kg of dry 

solid) c 

CSH 

11.98 8.02 

0 0 20 1000 0 0 

CSH_0.25 0.25 0.05 20.11 1005.4 50 2500 

CSH_1 1.0 0.2 20.43 1021.5 100 10000 

CSH_2.5 2.5 0.5 21.07 1053.6 500 25000 

CSH_5 5.0 1 22.15 1107.3 1000 50000 

a % by weight of CaO+SiO2 
b Keeping a liquid to solid reactants (L/S) ratio of 50. 
c Solid = 20 g of CaO+SiO2  

 

All the C-S-H phases were characterized by performing mineralogical and microstructural 

analyses. Moreover, modeling, carried out with PHREEQC, was performed in order to better 

understand the co-precipitation of powellite. In the following section, we present the 

characterization of the synthetic C-S-H phase without Mo. 

 

5.2.1 Characterization of the synthetic C-S-H without Mo 

Elements in solution after C-S-H filtration: 

Synthetic C-S-H was filtrated after one month of agitation. The solution was analyzed and the 

remaining concentrations of Ca and Si in solution are presented in Table 5.4. 

Table 5.4 – Ca and Si concentrations in solution before and after filtration of synthetic C-S-H without Mo. Final concentrations 
were measured twice and the values are the arithmetic averages. They are given with a confidence interval of 95%. pH of the 
solution is specified. 

 Ca Si pH 

Initial concentration (mg/L) 8562 3750 - 

Final concentration (mg/L) 495.3  10.9 12.55  0.04 12.84 
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It can be observed that about 6% of Ca remained in solution, meaning that 94% of Ca reacted 

to form C-S-H. As expected, lower Si concentrations (0.34% of Si) were measured in solution. 

XRD analyses: 

Figure 5.13 presents the XRD pattern obtained from synthetic C-S-H without Mo where rutile 

(TiO2) was present as an internal standard. The peak of rutile between 2 27º and 28º allowed 

us to confirm that the pattern was correctly positioned. Some peaks corresponding to 

portlandite and calcite were also identified. The eight other peaks in the XRD pattern 

correspond to C-S-H. 

 

Figure 5.13 – XRD pattern obtained from the synthetic C-S-H phase without Mo. P: Portlandite, C: Calcite, R: Rutile. 

 

SEM/EDS analyses: 

Figure 5.14 presents the SEM/EDS observations carried out in the synthetic C-S-H phase 

without Mo. It can be observed the nanocrystalline framework of the C-S-H phase. 

Furthermore, the EDS spectrum allowed us to confirm the absence of other elements in this 

phase and the calcium to silicon (Ca/Si) ratio. Moreover, Figure 5.15 presents the EDS 

punctual analyses obtained from pure C-S-H. Figure 5.15(a) presents a chart where x-axis and 

y-axis represent the Ca/Si atomic ratio and the number of EDS points, respectively. The black 

dotted line represents the Ca/Si average value of 1.62 (from a total of 100 EDS points). Figure 

5.15(b) shows a histogram of EDS punctual analyses where it can be observed that Ca/Si 

atomic ratio varied mainly from 1.4 to 1.8. 
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Figure 5.14 – SEM/EDS observations of synthetic C-S-H without Mo. 

 

 

Figure 5.15 – EDS punctual analyses obtained from synthetic C-S-H without Mo. (a) Ca/Si vs. number of EDS points, and (b) 
histogram of EDS punctual analyses. 
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5.2.2  Synthetic C-S-H phases and Mo immobilization 

After filtration of the synthetic C-S-H phases, solutions were chemically analyzed to measure 

the remaining element concentrations and therefore, to verify the retention of Mo in the solid 

fractions. Table 5.5 and Figure 5.16 show the pH values and concentrations in solution of 

molybdenum (Mo), calcium (Ca), silicon (Si) and sodium (Na). All concentrations are 

expressed in mg/kg of dry solid (solid = 20 g of CaO+SiO2). 

Table 5.5 – Element concentration in solution after synthetic C-S-H filtrations. Each point is the arithmetic average of two 
values. The results are presented with a confidence interval of 95%. 

Initial Mo concentration Final element concentrations in solution (mg/kg of dry solid*)   

(wt%) (mg/kg of dry solid) Mo Na Ca Si pH 
Mo retention 

(%) 

0 0 0.0 0.0  49178  544 628  2 12.84 0 

0.25 2500 114  2 1756  13 41885  304 71  19 12.88 95.5 

1 10000 82  0.4 5510  78 39703  230 52  20 12.79 99.2 

2.5 25000 184  0.4 14390  167 42840  568 335  29 12.73 99.3 

5 50000 140  5 22853  299 28960  265 91  3 12.66 99.7 

*Solid = 20 g of CaO+SiO2 

 

From Figure 5.16, it can be observed that Mo concentrations in solution were relatively low 

compared with the initial Mo concentrations. Mo concentration in solution was about 22 times 

lower for the initial concentration of 0.25 wt% Mo. For the other levels, Mo concentration in 

solution decreased of about more than 100 times. Mo was immobilized in the solid fractions at 

percentages of 95 to 99%. On the other hand, sodium (Na) concentration increased in solution 

with increasing the initial Mo concentration. This behavior was expected due to the use of 

sodium molybdate (Na2MoO4) as the source of Mo. Additionally, the difference between the 

final and initial Na concentrations may indicate that Na was not adsorbed onto the C-S-H 

surface due to high Na concentrations and the high Ca/Si ratio of C-S-H. According to the 

literature, Na adsorption onto C-S-H is less for high Ca/Si values due to the high surface charge 

[211], [212]. As expected, the silicon (Si) concentration in solution remained very low, 

indicating that almost all the amorphous silica reacted to form C-S-H. Concerning the 

concentration of calcium (Ca) in solution, the trend of the curve remained relatively stable until 

the a concentration of 2.5 wt% Mo, from which, Ca concentration decreased in solution. Details 

about this behavior are addressed in the discussion. 
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Figure 5.16 – Element concentrations in solution after filtration of synthetic C-S-H phases plotted as a function of the initial Mo 
concentration. Concentrations expressed in mg/kg of dry solid (a) Molybdenum, (b) sodium, (c) calcium, and (d) silicon. 
Solid = 20 g of CaO+SiO2 

 

 

Therefore, the characterization of synthetic C-S-H phases was carried out in order to 

corroborate the four hypotheses mentioned above. To this end, synthetic C-S-H phases were 

analyzed by using XRD, TGA, FT-IR and SEM/EDS. The approach followed is presented in 

As Mo was retained in the solid fractions, several hypotheses were taken into 

consideration in order to explain Mo immobilization in synthetic C-S-H phases:  

(i) Mo co-precipitated with free Ca
2+

 ions to form powellite (CaMoO4),  

(ii) Mo was incorporated in between the C-S-H layers,  

(iii) Si
4+

 was substituted by Mo
6+

, and  

(iv) Mo was adsorbed onto the C-S-H surface. 
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Figure 5.17. All the results will be presented by technique and they are summarized in the 

discussion section (cf. Table 5.10 and Figure 5.27). 

 

Figure 5.17 – Approach followed to identify the Mo stabilization mechanisms by synthetic C-S-H phases. 

 

5.2.3 XRD analyses 

Figure 5.18(a) presents the XRD patterns of all the synthetic C-S-H phases plotted in the range 

between 2 5º and 70º. In this figure, the patterns were plotted shifting the y-axis and the red 

pattern corresponds to the synthetic C-S-H without Mo (0% Mo). Moreover, all the patterns 

have several peaks characteristics of rutile (TiO2), which was the internal standard that allowed 

us to confirm that the patterns were correctly positioned. 

It can be seen that the peak of C-S-H in between 2 5º and 10º was not shifted towards lower 

degrees, which may indicate that Mo was not in between C-S-H layers. 

Overall, the mineral powellite (CaMoO4) was identified in all the synthetic C-S-H phases 

containing Mo. Furthermore, it can be observed that the relative intensity of the peaks of 

powellite increased with increasing Mo concentrations. In order to highlight the presence of 

powellite, XRD patterns were plotted in Figure 5.18(b) and Figure 5.18(c) in the selected 

ranges from 2 27º to 32º and 2 57º to 60º, respectively. All these patterns were superposed 

and normalized in respect to the rutile peak placed in 2 27º-28º. For ease of identifying 

powellite, the peaks were filled in different colors. 
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Figure 5.18 – XRD patterns of synthetic C-S-H with and without Mo using 10 wt% rutile (TiO2) as internal standard. (a) from 

2 5º to 70º, (b) superposed patterns from 2 27º and 32º, (c) superposed patterns from 2 57º and 60º. Percentages in (b) 
and (c) refers to initial Mo concentrations (wt%). 

 

Estimation of the amount of powellite: 

It is worth noting that we tried to estimate the quantity of powellite formed in all the solid 

fractions by using the XRD analyses and the Rietveld method. However, the following 

constraints and limitations were encountered: 

(i) C-S-H is not a standard phase; therefore, the information found in the available 

data base did not fit properly,  
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(ii) the software did not recognize the main peak of powellite (placed in 2 28.5º-29º) 

due to the low relative intensities and because it overlapped with the main peak of 

C-S-H placed in 2 29º-29.5º. 

Therefore, the amount of powellite formed during the synthesis of C-S-H was estimated by the 

values of the relative intensities of three peaks of powellite placed in: (i) 2 28.5º-29º, (ii) 2 

57.5º-58.5º, and (iii) 2 59º-60º. Figure 5.19 presents the XRD pattern of pure powellite taken 

from RRUFF database and the position of these three peaks. The intensity of these three 

peaks were then compared with the relative intensity of the main peak of C-S-H (2 29º-29.5º). 

The relative intensity of this C-S-H peak was normalized to 100% and the proportions of 

powellite were then calculated. Table 5.6 presents the estimation of the amounts of powellite 

precipitated in solution. It can be seen that the relative amount of powellite increased with 

increasing the Mo concentrations. Moreover, it seemed that the relative amount of C-S-H 

decreased with increasing the amount of powellite formed. We think that this may be due to a 

dilution effect. More details will be presented in the following sections. 

It should be noted that this method of estimation allowed us to have an idea of the 

amount of powellite formed in the solution. However, this method may overestimate the 

real concentrations of this mineral, mainly at the low Mo concentrations, where the 

peaks of powellite overlapped the peaks of C-S-H.  

 

Figure 5.19 – XRD pattern of pure powellite taken from RRUFF database (ID R050355.1). 
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Table 5.6 – Estimation of the proportion of powellite co-precipitated in solution by using XRD patterns. Concentrations are 
expressed in percentage by weight (wt%). 

 
Position of the peaks 

2 29º-29.5º 2 28.5º-29º 2 57.5º-58.5º 2 59º-60º 

Mo (wt%) C-S-H (wt%) Powellite (wt%) Powellite (wt%) Powellite (wt%) 

0 100 0 0 0 

0.25 96.3 3.7 3.9 5.7 

1 95.9 4.1 4.6 5.9 

2.5 93.8 6.2 6.2 6.9 

5 91.9 8.1 8.1 8.1 

 

5.2.4 TGA analyses 

TGA measurements were performed on synthetic C-S-H phases. We decided to humidify the 

synthetic phases for two days in a controlled nitrogen atmosphere using potassium sulfate 

(K2SO4) in order to have the same initial conditions before the analyses. Then, the phases 

were dried in an oven at 40 ºC in order to remove the bulk water [213]. Figure 5.20 presents 

the TGA analyses of all the synthetic C-S-H phases. Figure 5.20(a) shows the curves of 

differential thermogravimetry (DTG) data of weight loss expressed in wt%/ºC, and Figure 

5.20(b) shows the curves of weight loss data normalized to 100 wt% of the initial weight. All 

data were plotted as a function of the temperature expressed in Celsius (ºC).  

Table 5.7 presents the different percentages of weight loss estimated for all the synthetic C-S-

H phases after TGA analyses. 

Table 5.7 – Estimation of the weight loss in percentage of synthetic C-S-H phases after TGA analyses. 

ID 

Initial Mo 

concentration 

(wt%) 

Total weight loss 

(%) 

Weight loss 

between 0 and 

300°C (%) 

Weight loss 

between 300 and 

550°C (%) 

Weight loss 

between 550 and 

1000°C (%) 

CSH 0 21.3 16.67 3.52 1.08 

CSH_0.25 0.25 21.5 16.86 3.61 0.98 

CSH_1 1 19.5 14.89 3.27 1.30 

CSH_2.5 2.5 19.8 14.51 3.28 2.06 

CSH_5 5 18.6 13.90 3.14 1.57 

 



CHAPTER 5 – STABILIZATION OF MOLYBDENUM 

 239 

 

Figure 5.20 – Thermogravimetric analyses (TGA) of synthetic C-S-H phases (pre-humidified and dried at 40ºC). (a) Differential 
thermogravimetry (DTG) data of weight loss given in wt%/ºC, and (b) weight loss given in percentage. All data were plotted as 
a function of temperature from 0 to 1000ºC (heating rate 10ºC/min). 

 

Figure 5.20(a) shows a peak placed in between 100 and 200 ºC, which corresponds to the 

dehydration of C-S-H. Moreover, it can be observed that the intensity of this peak decreased 

with increasing the initial Mo concentration. The second group of peaks were placed in 

between 350 and 500 ºC, and it was attributed to portlandite (CH), which was probably present 

due to the hydration of CaO. The third group of peaks was identified in between 600 and 800 ºC 

and it was mainly associated to the presence of carbonates (mainly mono- or hemicarbonates) 

[214] and calcite (CaCO3)) due to the little carbonation of synthetic C-S-H phases during their 

preparation. 

Figure 5.20(b) shows that the weight loss of synthetic C-S-H phases decreased with increasing 

Mo concentration. Moreover, it can be observed that the total weight loss of synthetic C-S-H 

phases was about 21% for C-S-H phases without Mo and with 0.25 wt% Mo. For the other 

synthetic C-S-H phases, the weight loss decreased with increasing Mo concentration. 
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However, it can be seen that between the C-S-H without Mo and the synthetic C-S-H phase 

with 5 wt% Mo, there was a little difference of total weight loss of about 2.7%.  

Therefore, we can partially conclude that:  

(i) Mo co-precipitated with calcium to form powellite (cf. Figure 5.18). Therefore, less 

calcium was available to form C-S-H; decreasing the amount of C-S-H, which 

resulted in a decrease in the amount of bounded water. To confirm this, it would be 

then necessary to verify if Mo precipitated with free Ca ions in solution.  

(ii) The decrease in the weight loss of C-S-H can be explained by a dilution effect: the 

proportion of C-S-H decreased with increasing the Mo concentration because of 

the formation of powellite.  

 

5.2.5 FT-IR analyses 

FT-IR analyses were carried out in all the synthetic C-S-H phases in order to verify the 

modification of the vibration bands in the case of substitution of Si4+ by Mo6+. If there is a 

substitution, the Si-O group would be modified. Figure 5.21 presents the spectra obtained from 

FT-IR analyses, in which x-axis and y-axis represent the wavenumber (given in cm-1) and the 

transmittance (given in percentage), respectively. The spectra were normalized by the 

minimum value in order to compare the relative intensities of the different bands. Figure 5.21(a) 

and Figure 5.21(b) present the FT-IR spectra over the ranges from 4000 to 1100 cm-1 and 

1100 to 600 cm-1, respectively. 

From Figure 5.21(a), it can be observed that the spectra feature common absorption bands 

with some differences in their relative intensities. The main absorption bands and 

corresponding assignments were: 3600-3100 cm-1 (OH stretching), 1700-1600 cm-1 (OH), 

1600-1100 cm-1 (O-H deformation and C-O stretching), 1050-900 cm-1 (Si-O). In Figure 

5.21(b), the spectra of sodium molybdate (Na2MoO4) and powellite (CaMoO4) were also 

plotted in order to compare the position of the bands corresponding to the Mo-O group. (The 

powellite spectrum was obtained from the RRUFF ID R050355.2 database). 
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Figure 5.21 – FT-IR analyses of synthetic C-S-H phases. (a) In the 4000-600 cm-1 range, and (b) In the 1100-600 cm-1 range. 
Powellite spectrum obtained from RRUFF ID R050355.2. 

 

From these analyses, it was found that:  

(i) The band of Si-O placed between 1050 and 900 cm-1 did not show any 

modification,  

(ii) The Si-O band placed between 850 and 750 cm-1 overlapped to Mo-O band, 

(iii) The relative intensity of the bands corresponding to Mo-O/Si-O differed among all 

the samples and seemed to increase with increasing Mo concentration. 

In conclusion, we suggest that the increase in intensity in the band of Mo-O/Si-O corresponds 

to the formation of powellite. However, it is possible that at very low Mo concentrations, Mo
6+

 

would replace Si
4+

 in C-S-H. To verify this, other methods with lower detection limits should 

be used. 
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5.2.6 SEM/EDS observations 

SEM/EDS observations: 

SEM observations were performed in all the synthetic C-S-H phases in order to characterize 

their morphology and to verify the presence of Mo. The SEM images presented provide a 

representative picture of the analyzed samples. EDS analyses were also carried out in powder 

in order to confirm the calcium to silicon (Ca/Si) atomic ratios. Figure 5.22 (at left) presents the 

SEM observations of synthetic C-S-H phases. Moreover, Figure 5.22 (in the middle) shows 

EDS spectra obtained from the samples. These spectra allowed for the verification of the 

presence/absence of Mo in the samples. Finally, Figure 5.22 (at right) shows the histograms 

of the Ca/Si atomic ratios calculated from the EDS punctual analyses.  

Figure 5.22(a) shows the information about the synthetic C-S-H phase without Mo (0% Mo). 

The EDS spectrum confirmed the absence of Mo in this sample. EDS punctual analyses 

indicated that the Ca/Si atomic ratio was between 1.5 and 1.7. On the other hand, Figure 

5.22(b) to Figure 5.22(e) present the information about the synthetic C-S-H phases containing 

Mo. Overall, the SEM images show the presence of several white points placed onto the 

surface of C-S-H. The amount and intensity of the white points increased with increasing the 

concentration of Mo. The chemical compositions of these points were obtained from the EDS 

spectra, which confirmed the presence of Mo (Figure 5.22 in the middle). Regarding the Ca/Si 

atomic ratios presented in Figure 5.22 at right, it seemed that Ca/Si ratio did not present 

significant changes and therefore, we think that C-S-H was not altered by the presence of Mo. 
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Figure 5.22 - SEM/EDS analyses of synthetic C-S-H phases. Left: SE images, Middle: EDS spectra, Right: Histograms of 
the Ca/Si ratios obtained from EDS punctual analyses. (a) 0 wt% Mo, (b) 0.25 wt% Mo, (c) 1 wt% Mo, (d) 2.5 wt% Mo, and (e) 
5 wt% Mo. % by weight of solid (20 g of CaO+SiO2). 
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EDS punctual analyses: 

Figure 5.23 presents all the EDS plots obtained from the synthetic C-S-H phases. EDS 

punctual analyses were plotted in charts where x-axis and y-axis represent the Mo/Ca and 

Si/Ca atomic ratios, respectively. It should be noted that the number and position of EDS points 

were selected arbitrary in the samples (a minimum of 100 points). Figure 5.23(f) presents a 

schematic explanation of how to read this type of chart. 

 

Figure 5.23 – Si/Ca vs. Mo/Ca charts from EDS punctual analyses obtained from all the synthetic C-S-H phases. (a) 0% Mo, 
(b) 0.25% Mo, (c) 1% Mo, (d) 2.5% Mo, (e) 5% Mo. (Percentages by weight of solid (20 g of CaO+SiO2), and (f) interpretation 
of the chart. 
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Figure 5.23(a) shows the data of the synthetic C-S-H phase without Mo. It can be observed 

that no-point was placed in the horizontal axis due to the absence of Mo and that the Si/Ca 

ratio varied from 0.5 to 0.7 (Ca/Si from 2 to 1.4, respectively).  On the other hand, Figure 

5.23(b) shows the EDS data from the synthetic C-S-H with 0.25 wt% Mo. It can be observed 

that the Si/Ca atomic ratio did not change significantly and that some points appeared near the 

black dotted line, indicating the presence of Mo. Figure 5.23(c) shows the EDS information 

about the synthetic C-S-H with 1 wt% Mo, in which the Ca/Si ratio did not vary either. It can 

also be noted that a few more points appeared along the slope.  Finally, Figure 5.23(d) and 

Figure 5.23(e) present the EDS analyses for synthetic C-S-H phases with 2.5 wt% and 5 wt% 

Mo. Similar behavior was observed in both samples; however, in these samples a bigger 

population of points appeared near the slope and followed the trend towards the Mo/Ca atomic 

ratio of 1.  

These analyses indicate that:  

(i) Powellite was mixed with C-S-H. 

(ii) A proportion of Mo interacted with C-S-H surface, mainly at low Mo concentrations. 

 

Numerical calculations were carried out by using a geochemical model in order to verify the 

co-precipitation of powellite with C-S-H. This modeling allowed us to verify the precipitation of 

powellite at low Mo concentrations that were not experimentally tested (<50 mg/kg of solid).  

The following section presents the results obtained by modeling and compared with the 

experimental results. 

 

We can partially conclude that:  

- The dominant stabilization mechanism of Mo was the co-precipitation of 

powellite, 

- Mo was partially immobilized by the adsorption of Mo onto the C-S-H surface., 

mainly at low Mo concentrations (<1 wt%). 

- Other mechanisms of Mo stabilization, such as the inclusion of Mo into the C-

S-H layers and the substitution of Si4+ by Mo6+ were not identified, but they 

should be verified by other techniques having lower detection limits. 
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5.2.7 Modeling 

5.2.7.1  Numerical vs experimental data 

Figure 5.24 presents a comparison between the numerical and experimental data obtained 

from the synthetic C-S-H phases. This figure gives information about the concentrations in 

solution of molybdenum (Mo), sodium (Na), calcium (Ca) and silicon (Si) as well as the pH 

values plotted as a function of the initial Mo concentration. All concentrations are given in 

mg/kg of solid (solid = 20 g of CaO+SiO2). Experimental data are represented by circles while 

model calculations are given by red lines.  

 

Figure 5.24 – Element concentrations in solution and pH values obtained from the synthesis of C-S-H with Mo. All the data 
are plotted as a function of initial Mo concentrations. All concentrations are expressed in mg/kg of dry solid. Solid =20 g of 
CaO+SiO2. Circles: experimental data. Red lines: numerical data. (a) molybdenum, (b) sodium, (c) calcium, (d) silicon, and (e) 
pH values.  
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Overall, experimental and numerical data were in good agreement for the general trend of 

element concentrations in solution. Experimental and numerical data showed that Mo 

concentrations in solution remained relatively constant over the initial Mo concentrations 

studied (cf. Figure 5.24(a)) and that Ca concentrations decreased gradually with increasing 

Mo concentrations in solution (cf. Figure 5.24 (c)). This indicates that free calcium ions in 

solution precipitated with Mo to form powellite, which seemed to be the mineral controlling Mo 

solubility. Figure 5.24(b) shows that sodium concentrations in solution increased with 

increasing Mo concentrations due to the use of sodium molybdate as source of Mo. Figure 

5.24(d) indicates that silicon was present in very low concentrations in solution in both 

numerical and experimental calculations; however, silicon concentrations were even lower in 

modeling than experimentally. This was explained by the database used (Thermoddem 

version 1.10) for modeling, in which the thermodynamic data of C-S-H come from synthetic C-

S-H phases crystallized over one year of equilibrium (meanwhile, in this study, C-S-H was 

obtained after one month of equilibrium). This means that, in this study, some silicon remained 

in solution since the solution was not yet at the equilibrium. Finally, Figure 5.24(e) presents the 

pH values, which remained relatively stable between the values of 12.5 and 13. It can also be 

observed that values obtained by the model are slightly lower than those obtained 

experimentally but that the trend of the values was similar. 

 

 

5.2.7.2  Validation of the model – estimation the amount of powellite 

In this section, we aimed to validate the information obtained by the model and therefore, we 

estimated the amount of powellite necessary to immobilize the total concentration of Mo used 

in the synthesis of C-S-H phases. To this end, we first estimated the amount of powellite by 

hand calculations and then, we compared these values with the ones obtained by modeling.  

Hand calculations: 

How many grams of Mo were initially in solution? The demonstration is made here for the 

highest Mo concentration: 5 wt% (% by weight of solid (20 g of CaO+SiO2). 

In order to verify if powellite precipitated at low Mo concentrations, this model was first 

validated by comparing the amount of powellite obtained by modeling with the amounts 

obtained by hand calculations. 
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We set 20 g as the solid fraction used for the synthesis of C-S-H. Taking the highest Mo 

concentration  5 wt% Mo equates to 1 g of Mo in solution. 

Therefore, how many moles of powellite were necessary to immobilize 1 g of Mo? 

1 mol CaMoO4 contains 96 g Mo, then: 

1 g Mo * 1 mol CaMoO4

96 g Mo
 = 0.0104 mol CaMoO4 

As 1 mol CaMoO4 = 200.1 g CaMoO4  

Then, 0.0104 mol CaMoO4 = 2.084 g CaMoO4 

So, it is necessary to have about 2084 mg of powellite to immobilize 1 g of Mo (5 wt% Mo). 

Table 5.8 presents the amounts of powellite for each of the Mo concentrations used for the 

different C-S-H syntheses. 

Table 5.8 – Hand calculations results for the estimation of the amounts of powellite necessary to immobilize Mo concentrations 

used for the synthesis of C-S-H phases. Solid = 20 g of CaO+SiO2 

Mo (wt%) Mo (g) Powellite (mg) Powellite (mg/kg of solid) 

0 0 0 0 

0.25 0.05 104 5200 

1 0.20 417 20850 

2.5 0.50 1042 52100 

5 1.00 2084 104200 

 

Comparison between modeling and hand calculations:  

Figure 5.25(a) presents the Mo concentrations in solution obtained experimentally and by 

modeling. Figure 5.25(b) shows the comparison of the amounts of powellite calculated by 

modeling with the ones calculated by hand. Concentrations are expressed in mg/kg of solid 

(20 g of CaO+SiO2) and are plotted as a function of the initial Mo concentrations. Experimental 

data are represented by circle, while model results are represented by a red line and hand 

calculations by asterisks.  

Overall, it can be observed that the amount of powellite increased with increasing Mo 

concentrations in solution and that powellite precipitated in the system at concentrations 

between 0.25 and 5 wt% Mo (2500 and 50000 mgMo/kgsolid). Concerning the highest Mo 

concentration (5 wt% Mo), the model calculated that about 2078.6 mg/L of powellite 

precipitated, which was closed to the values calculated by hand 

(2084 mg/L~104200 mg/kgsolid). This means that modeling was able to predict accurately the 
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precipitation of powellite in the solution at concentrations between 0.25 and 5 wt% Mo (2500 

and 50000 mgMo/kgsolid) and that powellite was the dominant stabilization mechanisms because 

more than 95% of Mo was immobilized by this mineral. 

 

Figure 5.25 – Concentrations of molybdenum (Mo) and powellite plotted as a function of initial Mo concentration. 
Concentrations expressed in mg/kg of solid. (a) Molybdenum, (b) powellite. Circles: experimental data. Red lines: modeling. 
Asterisks: Hand calculations. Solid = 20 g of CaO+SiO2. 

 

Powellite values obtained by XRD were not used for validation of the model due to the low 

confidence in the values, mainly at low Mo concentrations (cf. section 5.1.2). 

 

 

5.2.7.3  Prediction of powellite at low Mo concentrations 

The precipitation of powellite was verified at low Mo concentrations (<300 mg/kg of solid). All 

the concentrations used in this model are presented in Table 5.9. Moreover, Figure 5.26 

presents the concentration of Mo in solution and the evolution of the precipitation of powellite. 

Since modeling was able to predict accurately the precipitation of powellite in the solution 

of C-S-H at Mo concentrations between 0.25 wt% and 5 wt%, we used this model to 

predict the precipitation of powellite at lower Mo concentrations (<0.03 wt%~ 300 mg/kg 

of solid).  
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All the data were plotted as a function of the initial Mo concentration. All concentrations are 

expressed in mg/kg of solid. Solid refers to the amount of CaO and SiO2 initially used to 

synthetize C-S-H (20 g in total) and using liquid to solid (L/S) ratio of 50.  

Table 5.9 – Initial Mo concentrations used for modeling 

Waste category a Initial Mo concentration 

 wt% mg/L mg/kg of solid b mol/L 

Inert and non-hazardous 

0 0 0 0.0E+00 

1.0E-05 0.002 0.1 2.1E-08 

2.0E-05 0.004 0.2 4.2E-08 

3.0E-05 0.006 0.3 6.3E-08 

4.0E-05 0.008 0.4 8.3E-08 

5.0E-05 0.01 0.5 1.0E-07 

Non inert and non-hazardous 

1.0E-04 0.02 1 2.1E-07 

1.0E-03 0.2 10 2.1E-06 

 2.0E-03 0.4 20 4.2E-06 

 5.0E-03 1 50 1.0E-05 

 6.0E-03 1.2 60 1.3E-05 

 7.0E-03 1.4 70 1.5E-05 

 8.0E-03 1.6 80 1.7E-05 

 9.0E-03 1.8 90 1.9E-05 

 1.0E-02 2 100 2.1E-05 

 2.0E-02 4 200 4.2E-05 

 3.0E-02 3 300 6.3E-05 
a According to the French decree  
b mg/kg were calculated for 20 g of solid (CaO+SiO2) used for the synthesis of C-S-H and keeping a liquid to solid (L/S) ratio 
of 50. 
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Figure 5.26 – Modeling of the precipitation of powellite at low Mo concentrations (<300 mg/mg of solid). 

 

As observed, powellite was not able to precipitate for Mo concentrations lower than about 

90 mg/kg of solid (~1.8 mg/L or ~1.9x10-5 mol/L). As this result was similar to the one obtained 

in the modeling of binders, we can partially conclude that:  

(i) with increasing Mo concentration, the precipitation of powellite become gradually 

the main stabilization mechanism controlling Mo solubility. 

(ii) non-precipitation of powellite at Mo concentrations lower than 90 mg/kg of solid, for 

these concentrations, the stabilization mechanisms controlling the solubility of Mo 

may be adsorption onto the surface of C-S-H, the substitution of sulfate by 

molybdate or the incorporation of Mo in other hydration products. 

Further investigations should be carried out in order to identify the dominant stabilization 

mechanism at low Mo concentrations. To this end, laboratory techniques with lower detection 

limits have to be employed. 
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5.3 Summary of results 

Table 5.10 summarizes the results obtained in the study of the stabilization of Mo. All the 

results are presented by system analyzed, Mo-spiked binders B1(CEM I), B2(90-10) and 

B3(SSC) and by mechanism of stabilization for which, the results obtained by different 

techniques are explained. 

Table 5.10 – Summary of results obtained in the study of the stabilization of molybdenum 

   B1 (CEM I) B2 (90-10) B3 (SSC) Synthetic C-S-H 

 

What was 
done? 

- Binders spiked with Mo from 0.005-10 wt% (50-100000 ppm), 
- Paste leaching tests at 28 days curing and chemical analyses in 
solution, 
- Mineralogical and microstructural analyses (XRD and SEM/EDS), 
- Modeling 

- Synthesis of C-S-H phases with 0.25-
5 wt% Mo, 
- Chemical analyses in solution, 
- XRD, TGA, FT-IR and SEM/EDS 
analyses, 
- Modeling 

 Mo retention 74-98% 32-94% 92-99% 95-99% 

M
ec

h
an

is
m

 o
f 

st
ab

ili
za

ti
o

n
 

Precipitation 
of powellite 
(CaMoO4) 

XRD: powellite peaks appear for Mo 
>5 wt% (>50000 ppm) 

XRD: powellite peaks 
appear for Mo >1 wt% 
(>10000 ppm) 

XRD: powellite peaks appear for Mo 
>0.25 wt%~2500 ppm 

n/a SEM/EDS: Mo/Ca atomic ratio towards 1 with increasing Mo concentration 

n/a n/a n/a 
FT-IR: the band at 850-750 cm-1 (Si-O) 
increased in intensity due to the overlap 
with Mo-O band 

Modeling: not precipitation of powellite for Mo <0.005 wt%~50 ppm 
Modeling: not precipitation of powellite 
for Mo <0.009 wt%~90 ppm 

Adsorption of 
Mo onto C-S-H 
surface 

n/a 
SEM/EDS (10 wt% Mo): Mo found around  
C-S-H  

SEM/EDS: 
- Mo adsorbed onto C-S-H mainly at low 
Mo concentrations (<1 wt%) 
- White spots over all the surface of C-S-H 

Substitution of 
sulfate by 
molybdate 

n/a 
XRD: absence of 
ettringite peak for 
Mo > 5 wt% 

n/a: absence of 
sulfate bearing 
phases 

XRD: shift of ettringite 
peak towards lower 
degrees with increasing 
Mo concentrations 

n/a: absence of sulfate bearing phases 

n/a 
n/a: absence of 
sulfate bearing 
phases 

SEM/EDS (>10 wt% Mo): 
Mo with sulfate-bearing 
phases 

n/a 

Redox 
reactions 

n/a 
 

XRD: no 
detection of 
MoS2 

XRD: no detection of 
MoS2 

n/a 

Inclusion of 
Mo in between 
C-S-H layers 

n/a n/a n/a 
XRD: peak in between 2 5-10° no 
modified 

Substitution of 
Si4+ by Mo6+ 

n/a n/a n/a 
FT-IR: no modification of Si-O group 
(1100-900 cm-1) 

n/a: not applicable 
ppm: mg/kg of solid 
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Figure 5.27 represents the main results obtained in this study. At left, this figure presents a 

scale of the Mo concentrations studied in this thesis:  

- Experimentally a huge range of Mo concentrations were studied, varying from a few 

ppm (50 ppm) to several thousands of ppm (100000 ppm) (0.005 to 10 wt% Mo, 

respectively).  

- By modeling, we studied the stabilization of Mo from 0.1 ppm to 100000 ppm.  

In this figure, we also indicate some detections limits of the techniques used (ICP and XRD) 

as well as the different categories of waste according to the French decree. Moreover, the 

stabilization mechanisms that may immobilize Mo are specified, in which powellite is presented 

as the dominant Mo stabilization mechanisms at high Mo concentrations (>90 ppm). Thus, at 

low Mo concentrations (<90 ppm), the dominant stabilization mechanisms may be by the 

interaction of Mo with C-S-H or sulfate-bearing phases or by redox reactions. These results 

are more discussed in the following section. 

 

Figure 5.27 – Schematic representation of the study of the Mo stabilization. 
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5.4 Discussion 

5.4.1 Stabilization of molybdenum by using binders 

Experimental results showed that Mo was highly immobilized by all the binders tested: ordinary 

Portland cement -B1(CEM I), experimental binder composed of 90% ground granulated blast 

furnace slag (GGBS) and 10%OPC -B2(90-10), and supersulfated GGBS cement -B3(SSC). 

All these binders presented more or less positive characteristics to immobilize anionic heavy 

metals. The three binders contained high levels of calcium ions, which can precipitate with Mo. 

Additionally, these binders produced C-S-H at different proportions during hydration. According 

to the literature, C-S-H allow the physical adsorption of heavy metals onto their surface [109], 

[118]. Moreover, some of these binders also form ettringite (AFt) and monosulfoaluminate 

(Ms), in which anionic species can be present as substitutional compounds. The structure of 

AFt and Ms could lead to the substitution of sulfate (SO4
2-

) by molybdate (MoO4
2-

) [86], [94].  

The percentage of Mo retained in the solid fractions of these hydrated binders varied from one 

binder to another and also depended on the initial Mo concentration. For low Mo concentrations 

(0.005 wt% ~50 mgMo/kgbinder), Mo retentions were 72%, 32% and 92% for binders B1(CEM I), 

B2(90-10) and B3(SSC), respectively. Whereas for high Mo concentrations (0.05-10 wt% ~500 

to 100000 mgMo/kgbinder), Mo retentions varied from 85-99% for all the binders (cf. Figure 5.4). 

The Mo stabilization mechanisms are discussed as follow. 

Mo stabilization mechanisms: 

- Precipitation of powellite 

After paste leaching tests, calcium concentrations in solution decreased with increasing Mo 

concentrations (cf. Figure 5.3). This behavior was similar for all the binders and was partially 

explained by the formation of powellite (CaMoO4), a mineral containing calcium and the 

oxyanion molybdate (MoO4
2-

). Furthermore, XRD analyses corroborated the presence of 

powellite at high Mo concentrations (5 and 10 wt% ~50000 and 100000 mgMo/kgbinder). At lower 

Mo concentrations (<5 wt% ~50000 mgMo/kgbinder), the peaks of powellite were not identified in 

the patterns probably due to the detection limits of the XRD equipment (cf. Figure 5.27). 

Modeling was carried out in all the binders in order to corroborate the presence of powellite for 

the Mo concentrations <5 wt% ~50000 mgMo/kgbinder. Modeling showed that Mo was partially 

immobilized in all the binders by the precipitation of powellite except for binders spiked with a 

Mo concentration of 0.005 wt%~50 mgMo/kgbinder.  
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Therefore, we suggest that the powellite became gradually the main stabilization mechanism 

controlling the solubility of Mo while increasing Mo concentrations (≥500 mgMo/kgbinder). At low 

Mo concentrations (<500 mgMo/kgbinder), Mo was partially immobilized probably by other 

stabilization mechanisms such as the adsorption of Mo onto C-S-H, the substitution of sulfate 

by molybdate in ettringite or monosulfoaluminate and redox reactions. 

The identification of powellite as one of the mechanisms controlling Mo solubility was in 

agreement with the literature. Minocha et al. [131] studied the immobilization of Mo in an 

Na2MoO4-spiked ordinary Portland cement (OPC). They showed that Mo concentration in 

solution was 10 times lower than the initial Mo concentration. By performing XRD analyses, 

they observed that Mo precipitated with calcium ions to form powellite (CaMoO4). Similarly, 

Kindness et al. [132] studied the immobilization of Mo in an Mo-spiked OPC and they showed 

that leachable Mo concentration was 40 times lower than initial Mo concentration at 12 days 

of curing. They explained that Mo was immobilized by the formation of powellite, which was 

detected by XRD analyses. 

- Substitution of sulfate by molybdate (MoO4
2-

) 

XRD analyses, obtained from binder B3(SSC), showed that ettringite (AFt) possibly suffered a 

structural modification at high Mo levels (1 wt%~10000 mgMo/kgbinder). In fact, the peak of 

ettringite placed in between 2 9º and 9.5º shifted towards lower degrees, which may suggest 

that sulfate was partially substituted by molybdate (MoO4
2-

) and thus, the crystal lattice of the 

ettringite was modified due to the difference in size between these anions. According to the 

literature, the bond length of Mo-O is about ~1.76 Å, which is around 1.2 times bigger than 

sulfate (~1.49 Å) [143], [144]. Several studies have suggested that Mo was partially 

immobilized by sulfate-bearing phases. For example, Vollpracht et al. [144] studied the 

leaching of Mo in several Portland cements during hydration. After pore solution extractions, 

they found out that molybdate concentrations followed the opposite trend of the ettringite 

formation. Therefore, the authors pointed out that molybdate replaced partially to sulfate in 

ettringite. Similarly, Zhang and Reardon [143] studied the immobilization of Mo, Cr, B and Se 

by incorporation into ettringite. They showed that Mo was partially immobilized in contact with 

a solution containing ettringite because Mo concentrations decreased from 10 ppm to 4 ppm. 

However, the authors explained that Mo was the last anion preferred by ettringite due to the 

difference of size between molybdate and sulfate. Moreover, EDS analyses showed that Mo 

interacted with sulfate-bearing phases in the Mo-spiked supersulfated cement B3(SSC). 

For the other two binders, B1(CEM I) and B2(90-10), there was no evidence of the substitution 

of sulfate by molybdate. In the case of binder B2(90-10), ettringite did not precipitate in this 
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binder due to the low OPC content and thus, the low sulfate concentrations. For B1(CEM I), 

the peaks of ettringite were identified for all the Mo concentrations except for the two highest 

concentrations of Mo, in which the peaks of ettringite disappeared. Several studies have shown 

that the presence of high content of alkalis (sodium or potassium) inhibits the formation of 

ettringite [187], [188]. Sodium increases the alkali conditions in the pore solution and modifies 

the stability of ettringite. High alkali conditions enhance the solubility of ettringite constituents, 

mainly sulfate, as a result, the amount of ettringite decreases in the hydrated binder [188].  

- Redox reactions 

According to the literature, the water-solubility of anionic heavy metals may decrease with 

decreasing pH values [94], [134], [204]. Eluates from leaching tests carried out in formulations 

containing GGBS -B2(90-10) and B3(SSC)- presented lower pH values in solution than those 

measured in formulation B1(CEM I). It was firstly thought that this condition could help to 

increase the retention of Mo in the binders. However, the binder B1(CEM I) showed higher Mo 

retention than B2(90-10). pH probably has an effect more important when species are 

immobilized only by adsorption or substitution, in which pH values modifies the behavior of 

anionic species as reported in the literature [95], [134]. 

Additionally, binders containing GGBS can help to reduce molybdate (MoO4
2-

) to molybdenite 

(MoS2) according to the Eh-pH diagrams of Mo-O and Mo-O-S as a function of the redox 

conditions (cf. Chapter 1 - Figure 1.21) [124], [125]. In fact, binders containing GGBS have 

reducing internal environment due to the presence of sulfur in a reduced state [119], [116]. The 

reducing nature of the binder depends on the amount of GGBS and the degree of hydration 

[116]. Mancini et al. [115] showed that the treatment of a Mo-contaminated fly ash by using a 

ferrous sulfate-based solution may reduce molybdate to a specie with a lower Mo oxidation 

state. After treatment, they indicated that Mo concentrations in solution decreased with 

increasing the proportion of the solution used for stabilization. The authors showed that the 

reducing conditions should be very extreme (pH<6) in order to guarantee the immobilization of 

Mo. In the present study, pH values were not lower than 11 and we did not detect molybdenite 

(MoS2) neither by XRD nor EDS analyses. Further investigations are needed to confirm the 

reduction of molybdate into other species in binders containing GGBS. To detect the 

transformation of oxidation states, techniques with low detection limits are required (e.g. 

XANES). 
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- Adsorption of Mo onto the C-S-H surface 

SEM/EDS observations in binder B2(90-10) showed the presence of Mo around C-S-H phases 

(cf. Figure 5.7), which suggest different scenarios: (i) grains of Mo accumulated around this 

phase, (ii) Mo was adsorbed onto the surface of C-S-H, (iii) powellite co-precipitated in the 

surface of C-S-H. Similarly, for binder B3(SSC), EDS analyses showed that at low Mo 

concentrations, Mo seemed to interact with C-S-H. The capacity of C-S-H to immobilize Mo 

will be more detailed in the following section. 

 

5.4.2  Mo stabilization by synthetic C-S-H phases 

We decided to study the immobilization of Mo by synthetic C-S-H. This choice can be explained 

by: 

- this phase is one of the main hydration products in all the three binders studied, 

- EDS analyses in Mo-spiked binders pointed out that powellite was mixed with C-S-H 

and that Mo was probably adsorbed onto C-S-H surface.  

- ettringite and monosulfoaluminate phases have already been a topic of research to 

explain Mo immobilization [132], [143], [215], [216]; while only a few recent papers have 

been published about the capacity of C-S-H to immobilize Mo. For example, two recent 

studies published in 2020 carried out by Lange et al. [216] and Grambow et al. [217] 

studied the uptake of Mo by C-S-H phases. Both studies showed a strong retention of 

Mo (in the form of molybdate) by synthetic C-S-H phases having Ca/Si ratios between 

0.9 and 1.4. They indicated that Mo uptake increased with increasing Ca/Si ratios due 

to the increase of the positive surface of C-S-H. 

In the present study, we performed the synthesis of five different C-S-H phases with Ca/Si 

ratios of 1.6 and varying the Mo concentration from 0 to 5 wt% Mo in order to guarantee Mo 

detection by the available laboratory techniques (XRD, SEM/EDS, FT-IR and TGA).  

As presented in Table 5.5, Mo was largely immobilized (>95%) in all the synthetic C-S-H 

phases and over the whole range of Mo concentrations studied (0.25, 1, 2.5 and 5 wt%). 

Hence, four hypotheses were taken into consideration to explain Mo immobilization by C-S-H:  

(i) Mo co-precipitated with free Ca
2+

 ions to form powellite (CaMoO4),  

(ii) Mo was incorporated in between the C-S-H layers,  

(iii) Si
4+

 was substituted by Mo
6+

, and  

(iv) Mo was adsorbed onto the C-S-H surface. 
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XRD patterns showed that powellite (CaMoO4) was present in all the synthetic C-S-H phases 

containing Mo (cf. Figure 5.18). The characteristic peaks of powellite became more important 

at the highest Mo concentrations (2.5 and 5 wt%). This behavior agreed with the gradual 

decrease in Ca concentration in solution after the filtration of synthetic C-S-H phases (cf. Figure 

5.16). On the other hand, FT-IR spectra showed an increase in intensity of the Si-O bands 

(850-750 cm-1) with increasing Mo concentration (cf. Figure 5.21). We think that the increase 

in the relative intensities of the Si-O band (850-750 cm-1) may not indicate a modification of 

the Si-O group, but the appearance of the Mo-O band due to the precipitation of powellite. In 

fact, the Mo-O band overlapped with the Si-O band in 850-750 cm-1 [218]. However, 

investigations with methods with lower detections limits are required to verify the substitution 

of Si4+ by Mo6+ at very low Mo concentrations.  

Moreover, EDS punctual analyses indicated that C-S-H was mixed with powellite and that Mo 

was probably adsorbed onto the C-S-H surface at low Mo concentrations. SEM/EDS 

observations carried out in synthetic C-S-H phases showed the presence of several white 

spots in all the surfaces analyzed (cf. Figure 5.22). It is then possible that small amounts of Mo 

were adsorbed onto the surface of C-S-H phases. As mentioned previously, Lange et al. [216] 

indicated that molybdate uptake by C-S-H can be explained by the electrostatic sorption of Mo. 

High Ca/Si ratios in C-S-H increase the positive surface charge of these phases and thus, their 

electrostatic sorption capacity of anions. These authors studied low Mo concentrations 

between 5.10-6 and 1.10-7 mol/L in order to avoid supersaturation with respect to powellite. 

Concerning modeling, numerical calculations showed that powellite precipitated in the system 

and that the amount of powellite increased with increasing Mo concentrations. For the highest 

Mo concentrations, the model showed that 8.1% powellite was formed immobilizing about 99% 

of the Mo present in solution. Furthermore, the precipitation of powellite became the dominant 

stabilization mechanism with increasing Mo concentrations.  

In order to predict the precipitation of powellite at low concentrations, modeling was also 

carried at low Mo concentrations varying from 0.1 to 300 mgMo/kgbinder. It was found that 

powellite did not precipitate at Mo concentrations lower than 90 mgMo/kgsolid (cf. Figure 5.26), 

for which other stabilization mechanisms such as adsorption onto C-S-H surface, substitution 

and/or inclusion may control Mo solubility. Further investigations should be carried out in order 

to verify the Mo concentrations and conditions necessary for these phenomena to happen. To 

this end, laboratory techniques with lower detection limits have to be employed. 
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5.5 Conclusions 

The aim of this chapter was: (i) to compare the capacity of several binders to immobilize Mo in 

a single-step batch procedure, and (ii) to contribute to the understanding of the mechanisms 

associated with Mo stabilization. To this end, three different binders were studied: one Ordinary 

Portland cement (OPC), one experimental binder composed of 90% ground granulated blast 

furnace slag (GGBS) and 10% OPC, and one supersulfated GGBS cement (SSC). All the 

binders were spiked with sodium molybdate using six different concentrations from 0.005 to 

10 wt% Mo (50 to 10000 mgMo/kgbinder). We also studied the capacity of calcium silicate hydrate 

(C-S-H) to stabilize Mo. Conclusions of this chapter are summarized in Table 5.11. 

Table 5.11 – Conclusions of Chapter 5 – Stabilization of molybdenum 

Mo-
spiked 
binders 

What was 
done? 

Three different binders spiked with Na2MoO4 at different Mo concentrations: 

- one Ordinary Portland cement – B1(CEM I), 

- one experimental binder composed of 90% GGBS and 10%OPC – B2(90-10), 

- one supersulfated GGBS cement – B3(SSC). 

 

Experimental analyses:  

- Paste leaching tests in accordance with NF EN 12457-2 and chemical analyses in solution. 

- Mineralogical and microstructural characterization (XRD and SEM/EDS analyses). 

Results - Mo was highly immobilized in all the solid fractions.  

- Mo retention varied from one binder to another and depended on the initial Mo concentration.  

- XRD and EDS showed the presence of powellite (CaMoO4) at high Mo concentrations (>5 wt%). 

- SEM/EDS showed the presence of Mo near C-S-H phases.  

- Mo interacted with calcium and sulfur in B3(SSC). Probably Mo was partially immobilized by 
sulfate bearing phases (e.g. ettringite, monosulfoaluminate and gypsum). 

Synthetic 
C-S-H 
with Mo 

What was 
done? 

- Synthesis of five different C-S-H phases over one month of equilibrium.  

- Chemical analyses in solution after C-S-H filtrations.  

- Microstructural and mineralogical characterization (XRD, TGA, FT-IR and SEM/EDS). 

Results - Mo retention superior to 95% in all the solid fractions. 

- Mo stabilization mainly controlled by the co-precipitation of powellite. Immobilization of low Mo 
concentrations probably by the adsorption onto the C-S-H surface. 

- C-S-H equilibrium was not altered by the presence of Mo because Ca/Si ratios remained 
relatively stable at 1.6. 

Modeling code 
PHREEQC 

Binders:  except in binders spiked with 0.005 wt% Mo~50 ppm (% by weight of anhydrous 

binder). 

The precipitation of powellite was not the only mechanism controlling Mo solubility due to the 

discrepancies between experimental and numerical data.  

C-S-H: Gradual precipitation of powellite for Mo concentrations > 90 ppm ~1.9x10-5 mol/L.  
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Suggestions for further research: 

- Stabilization of a Mo-contaminated soil 

The stabilization of molybdenum was studied in Mo-spiked binders. The treatment of a natural 

Mo-contaminated soil would enable to corroborate the efficacy of each binder to immobilize 

Mo. In this case, several factors should be taken into consideration to evaluate the stabilization 

of Mo. We list some of them:  

o speciation of Mo,  

o ion competition,  

o harmful effect of organic matter for the hydration of the binders,  

o hydration degree of the binders due to the amount of the available water. 

The experimental identification of Mo stabilization mechanisms at low concentrations (in the 

order of 10-5 mol/kg), for which powellite is expected to not precipitate, is necessary. However, 

understanding the stabilization mechanisms of Mo requires the accurate identification of its 

chemical species in the contaminated materials [219]. Mo K-edge XANES has successfully 

been used for identification of Mo speciation in soil (including surface adsorption and mineral 

precipitation) and in aqueous solutions [220], [221]. To our knowledge, however, XAS has not 

yet been used to study the Mo stabilization mechanisms in hydraulic binders. Thus, XAS 

methods (synchrotron radiation using XANES and EXAFS spectroscopy) appear to be well 

adapted to study the immobilization of Mo by hydraulic binders, at low Mo concentration levels 

typically encountered in natural materials [108], [219]. To this end, XANES and EXAFS spectra 

obtained from Mo-treated samples have to be compared with Mo standards in order to identify 

the dominant mechanisms of Mo stabilization. Mo standards are pure minerals that contain 

Mo. For example, the synthesis of phases such as ettringite with Mo and monosulfoaluminate 

with Mo would allow the identification of sulfate substitution by molybdate. 

- Improving modeling for the prediction of Mo-uptake by cementitious binders  

Few information is found in the literature about the solubility products of the possible reactions 

involved in the interaction of Mo with cementitious binders. Some thermodynamic reactions 

have been published concerning powellite and AFm containing Mo [138], [156]. Therefore, it 

would be interesting to develop a model taking into consideration, not only the precipitation of 

powellite, but also the formation of other Mo-bearing phases such as the substitution of sulfate 

by molybdate in ettringite. However, it is also important to verify the coherence of the database 

before predicting Mo behavior in such complex systems.  
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C-S-H phases are known to have high sorption capacity due to their high specific surface; 

therefore, a model of surface adsorption of C-S-H and Mo should be carried out in order to 

better evaluate the capacity of C-S-H to immobilize Mo. This type of modeling should focus 

mainly on very low Mo concentrations (in the order of 10-5 mol/kg) for which powellite is 

expected to not precipitate. 
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General conclusions 

Excavation operations produce several tons of soil generally contaminated by the presence of 

pollutants. Excavated soil is considered as waste and it can be either sent to landfill or destined 

for reuse depending on the level of pollution. In any case, soil should be properly treated in 

order to: (i) decrease the release of pollutants into the environment, and (ii) minimize the 

problems involved in civil engineering applications due to the reactions between cementitious 

phases and pollutants. In the context of this thesis, we focused on sulfates and molybdenum 

(Mo). Concerning sulfates, we considered two main issues: (i) external sulfate attack of 

concrete structures, which are in direct contact with sulfate-rich soils (e.g. dams, foundations), 

and (ii) the release of sulfates into solution in addition to the swelling and mechanical strength 

loss in sulfate-rich soil intended for valorization (e.g. reuse in road construction). In the case 

of Mo, its release into solution is also a serious concern as it can lead to significant risks for 

the environment. 

Therefore, this study aimed to investigate the reaction of concrete in contact with sulfates, and 

the stabilization of sulfates by using cementitious and alternative binders for pollution reduction 

and for reuse of soil. Additionally, the interaction of Mo with cementitious binders was also 

studied in order to better understand the stabilization of Mo-contaminated materials. The main 

conclusions of this research were grouped in three parts and are summarized below. 

Perspectives for future research are also suggested. 

 

Concrete under external sulfate attack 

This part of the study aimed to: (i) realize a benchmark of several binders by testing their 

capacity to resist external sulfate attack under similar experimental conditions, and (ii) 

contribute to the understanding of the mechanisms associated with the expansion or non-

expansion of the binders by using microstructural and mineralogical analyses and 

thermodynamic calculations. 

Therefore, we studied the capacity of seven different concretes to resist external sulfate attack 

(ESA) under similar experimental conditions. Concretes were made of three different Portland 

cements (ordinary Portland cement, sulfate-resisting Portland cement and blast furnace slag 

cement) and four alternative binders grouped into two categories: (i) ettringite binders 

(supersulfated cement and calcium sulfoaluminate cement), and alkali-activated binders 

(alkali-activated slag and metakaolin-based geopolymer).  

The resistance to external sulfate attack was studied by measuring the longitudinal expansion 

of concrete samples according to the Swiss Standard SIA 262/1:2013 Appendix D. This test 

consists of accelerating the sulfate attack on concrete by exposure of samples to 4 cycles of 

drying/submersion followed by a consecutive submersion in a solution containing 50 g/L of 

sodium sulfate. This standard sets the maximum guideline value of longitudinal expansion to 

0.1%. Mineralogical and microstructural characterizations and thermodynamic calculations 

carried out before and after ESA contributed to the better understanding of the 

absence/presence of expansion in the binders. 
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It was found that ordinary Portland cement had the maximal expansion (0.4%) and noticeable 

cracking due to the reaction between aluminates and sulfates. In fact, dense amounts of 

ettringite were observed in all the analyzed surface of this concrete at the end of the test. In 

contrast, Portland cement without C3A presented lower expansions (0.07%) and no cracking. 

However, visual inspections allowed for the identification of cracking after 550 days of 

immersion. This cracking was explained by the precipitation of gypsum. In this type of material, 

calcium and aluminum ions are available from C4AF; however, this aluminate phase reacts 

with a lower kinetics compared to C3A and thus, ettringite forms at a very slow rate and in 

minor quantities.  

On the other hand, no visual damage was observed in blast furnace slag Portland cement-

based concretes and it was found that the magnitude of the final expansion depended on the 

curing time before sulfate exposure. Concretes cured for 90 days presented 40% less 

expansion than those cured for 28 days. This behavior can be explained probably by the 

difference in their porosity. Furthermore, low expansion in these concretes was explained by 

the formation of ettringite in minor extent than in ordinary Portland cement and developed in 

air voids. Moreover, the important proportion of slag (82%) and the low content of clinker (15%) 

reduced the C3A content and thus, the availability of rapidly soluble aluminum to react with 

sulfates. In addition to this, clinker was consumed by the GGBS to be activated, and the 

amount of clinker can be considered insufficient to enable the precipitation of large amounts 

of expansive phases. Furthermore, the unavailability of aluminum for reaction with sulfates can 

also be explained by the formation of C-A-S-H and hydrotalcite phases. 

Concerning the alternative binders (ettringite binders and alkali-activated binders), they had 

low expansions in the range of 0.01-0.03% and no visual damages were observed during and 

after ESA. Low expansions in these binders were explained by the uptake of water and the 

absence of reactions between the constituents of the hardened matrices with the sulfates in 

solution. In the case of the ettringite binders (calcium sulfoaluminate-belite cement and 

supersulfated GGBS cement), their low expansions were explained by the absence of C3A and 

portlandite in addition to the formation of ettringite during hydration. In the case of alkali-

activated binders (alkali-activated slag (AAS) binder and metakaolin-based geopolymer), the 

absence of C3A and portlandite also explained their low expansions. Furthermore, the 

unavailability of aluminum for reaction with sulfates due to the formation of C-A-S-H and 

hydrotalcite phases during hydration of the AAS binder also explained the low expansion 

reactions. In addition, in the absence of calcium (case of the metakaolin-based geopolymer), 

expansive phases such as ettringite and gypsum cannot be formed. 

Perspectives: 

Detailed perspectives were presented at the end of Chapter 3 (cf. section 3.6). Here, we recall 

the main perspectives.  

In this part of the study, we calculated the saturation indices of ettringite, monosulfoaluminate 

and gypsum by using PHREEQC and the element concentrations of poral solutions. It was 

assumed that these saturation indices were the result of the state of equilibrium of the poral 

solution. It would be also interesting to estimate the equilibrium states of the reaction products 

of the hardened binders at the different steps by varying the concentration of sulfates. These 

results could be compared with experimental data if the quantification of phases was carried 

out.  
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In this thesis, we studied the capacity of binders to resist external sulfate attack by measuring 

longitudinal expansions. However, other parameters can be also evaluated in order to ensure 

their capacity to resist external sulfate attack. For example, it would be interesting to measure 

their mechanical properties (e.g. compressive strength) during the period of sulfate exposure. 

 

Stabilization of sulfates 

This part of the thesis aimed to: (i) compare the capacity of several alternative binders to 

immobilize sulfates in a sulfate-spiked soil, (ii) contribute to the understanding of the sulfate 

stabilization mechanisms, and (iii) evaluate the swelling potential and the mechanical 

properties of all the treatments. 

Therefore, we compared the capacity of four different binders to stabilize sulfates in a sulfate-

spiked soil. To this end, the soil was treated with one ordinary Portland cement (OPC), one 

alternative clinker (composed of ye’elimite and belite), one blast furnace slag Portland cement 

(CEM III/C), and one experimental binder composed of 90% ground granulated blast furnace 

slag (GGBS) and 10% OPC. Treatment of sulfate-rich soil was assessed in accordance with 

the French Standard NF P 94-100 in which the maximum guideline value of volume expansion 

is set to 5% and the minimum tensile strength is 0.2 MPa. Furthermore, sulfate immobilization 

was studied by leaching tests carried out in accordance with the European Standard 

NF EN 12457-5, using a single step batch procedure at natural pH condition by using distilled 

water as a leachate. Mechanisms of sulfate stabilization were studied by carrying out 

mineralogical and microstructural characterization and modeling. Modeling was performed by 

using a geochemical model using the code PHREEQC.  

After leaching tests, it was observed that all the treatments led to a decrease in sulfate 

concentration in solution to values lower than 1000 mg/kg of dry soil, which is the guideline 

value established for the French Decree of 12 December 2014, for inert and non-hazardous 

waste. However, treatments with only OPC and clinker released heavy metals into solution in 

excess (mainly chromium) due to their high clinker content. Moreover, these binders led to 

high volume expansions (>5%) caused by the formation of ettringite in excess. In contrast, 

binders containing GGBS led to low volume expansions (<2%), a sulfate retention of about 

89% and low heavy metals contents were detected in solution (inferior to the guideline values 

established by the French Decree). Sulfate solubility was controlled by ettringite, which did not 

lead to expansion probably due to the low kinetics of precipitation in addition to the absence 

of portlandite, which is often related to expansive ettringite.  

Among all the treatments, the use of the experimental binder gave the better performance in 

terms of sulfate leaching, swelling and tensile strength. Therefore, this formulation was deeply 

studied at medium and long-term by performing leaching tests at 6 months in order to ensure 

the sulfate stabilization. Moreover, as the treatment of sulfate-rich soil concerns the reuse of 

soil for engineering works (e.g. road construction), this formulation was also evaluated by 

performing different geotechnical experiments (workability, compressive strength tests, 

swelling and mechanical class performance). It was found that stabilization of sulfates 

remained stable in time and geotechnical properties of the treated soil were found to be 

acceptable for being used in civil engineering projects. Moreover, the model performed in this 

binder showed that numerical calculations were in good agreement with experimental results 
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when the hydration degree of GGBS was assumed to be 30%. The geochemical model was 

then able to predict correctly the sulfate concentrations in solution as a function of the binder 

dosage used in the treatment. Modeling showed that ettringite was indeed the main 

stabilization mechanism controlling the solubility of sulfates and that sulfates were partially 

immobilized at concentrations near 1000 mg/kg from a proportion of 7% of binder added to the 

sulfate-spiked soil.  

Perspectives: 

Detailed perspectives were presented at the end of Chapter 4 (cf. section 4.6).  

The stabilization of sulfates was evaluated in a sulfate-spiked soil, it would be then interesting 

to treat a natural sulfate-rich soil with the same formulations used in this study and thus, 

corroborate their capacity to immobilize sulfates.  

On the other hand, the stabilization of sulfates in this study was satisfactory by using binders 

containing GGBS. In the modeling, the hydration degree of GGBS was assumed to be 30%. 

This hydration degree should be confirmed experimentally in a system composed of 

“soil+binder+sulfate” and by taking into account several factors such as the dilution effect of 

the binder, the amount of water available to hydrate the binder and consumed by the soil and 

the amount of clay containing magnesium, which is also present in GGBS. 

 

Stabilization of molybdenum (Mo) 

In this part of the thesis, we aimed to: (i) compare the capacity of several binders to immobilize 

molybdenum, and (ii) contribute to the understanding of the mechanisms associated with 

molybdenum stabilization. 

Hence, we studied the interaction of Mo with three different binders and their capacity to 

stabilize Mo. To this end, three binders were artificially spiked with different Mo concentrations 

using sodium molybdate. The binders studied were: one ordinary Portland cement (OPC) -

B1(CEM I), one experimental binder composed of 90% GGBS and 10%OPC -B2(90-10), and 

one supersulfated GGBS cement -B3(SSC). Immobilization of Mo was assessed by carrying 

out paste leaching tests in accordance with the European Standard NF EN 12457-5 using a 

single step batch procedure at natural pH condition. Moreover, stabilization mechanisms were 

studied by using mineralogical and microstructural analyses and a geochemical model by 

using the code PHREEQC. The synthesis of calcium silicate hydrate (C-S-H) with Mo was also 

carried out in order to study its capacity to immobilize Mo; In this case, all the phases were 

also characterized by mineralogical and microstructural analyses and studied by modeling. 

Paste leaching tests showed that Mo was retained in all the solid fractions at high Mo 

concentrations. The percentage of Mo retained in the solid fractions of these hydrated binders 

varied from one binder to another and also depended on the initial Mo concentration. For low 

Mo concentrations (0.005 wt% ~50 mg/kg of binder), Mo retentions were 72%, 32% and 92% 

for binders B1(CEM I), B2(90-10) and B3(SSC), respectively. Meanwhile for high Mo 

concentrations varying from 0.05 to 10 wt% Mo (~500-100000 mgMo/kgbinder), Mo retentions 

varied from 85-99% for all the binders. The order of Mo retention in terms of binder was 

B3>B1>B2.  
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Overall, the precipitation of powellite (CaMoO4) was found to be the main mechanism 

controlling Mo solubility in all the Mo-spiked binders, except for binders spiked with a Mo 

concentration of 0.005 wt%~50 mgMo/kgbinder. For which, Mo was partially immobilized probably 

by other stabilization mechanisms such as the adsorption of Mo onto C-S-H, the substitution 

of sulfate by molybdate in ettringite or monosulfoaluminate and by redox reactions. 

Experimental observations showed that Mo was also mixed with calcium and sulfates probably 

due to the substitution or adsorption in sulfate-bearing phases. Moreover, Mo was related to 

calcium silicate hydrates (C-S-H) probably due to the co-precipitation of powellite in the C-S-

H surface or due to the adsorption of Mo onto the C-S-H surface. The synthesis of C-S-H and 

the modeling showed that powellite precipitated only for Mo concentrations higher than 

90 mgMo/kgsolid (~1.9x10-5 mol/L). 

Perspectives: 

Detailed perspectives were presented at the end of Chapter 5 (cf. section 5.5).  

The stabilization of molybdenum was studied in Mo-spiked binders. The treatment of a real 

Mo-contaminated material would enable to corroborate the efficacy of each binder to 

immobilize Mo. In this case, several factors may be taken into consideration to evaluate the 

stabilization of Mo (e.g. ion competition, harmful effect of organic matter in the hydration of the 

binders). However, the experimental identification of Mo stabilization mechanisms at low Mo 

concentrations (in the order of 10-5 mol/kg), for which powellite is expected to not precipitate, 

is necessary. To this end, the accurate identification of Mo chemical species is necessary and 

therefore, the use of methods with low detection limits such as XAS methods (synchrotron 

radiation using XANES and EXAFS spectroscopy) and MET. 

On the other hand, few information is found in the literature about the solubility products of the 

possible reactions involved in the interaction of Mo with cementitious binders. Therefore, the 

development of a geochemical model that takes into account, not only the precipitation of 

powellite, but also the formation of other Mo-bearing phases such as the substitution of sulfate 

by molybdate in ettringite, would allow for better understanding of the Mo stabilization 

mechanisms. Moreover, C-S-H phases are known to have high sorption capacity due to their 

high specific surface; therefore, a model of surface adsorption of C-S-H and Mo should be 

carried out in order to better evaluate the capacity of C-S-H to immobilize low Mo 

concentrations (in the order of 10-5 mol/kg) for which powellite is expected to not precipitate. 
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Conclusions générales 

Les opérations d'excavation produisent plusieurs tonnes de sols généralement contaminés par la présence de 

polluants. Les sols excavés sont considérés comme des déchets et sont, soit envoyés en décharge, soit destinés 

à être réutilisés en fonction du niveau de pollution. Dans tous les cas, les sols doivent être correctement traités afin 

de : (i) diminuer le relargage de polluants dans l'environnement, et (ii) minimiser les problèmes entrainés dans les 

projets de génie civil liés aux réactions entre les phases cimentaires et les polluants. Dans cette thèse, nous nous 

sommes concentrés sur les sulfates et le molybdène (Mo). Concernant les sulfates, nous avons considéré deux 

problématiques principales : (i) l'attaque sulfatique externe des structures en béton qui sont en contact direct avec 

des sols sulfatés (ex : barrages, fondations), et (ii) le relargage de sulfates en solution, en plus du gonflement et 

de la perte de résistance mécanique dans des sols sulfatés destinés à la valorisation (ex : réutilisation dans la 

construction de routes). Dans le cas du Mo, il peut se retrouver en solution, entraînant alors des risques importants 

pour l'environnement.  

Par conséquent, dans cette thèse, nous avons étudié la réaction du béton au contact des sulfates et la stabilisation 

des sulfates en utilisant des liants cimentaires et alternatifs afin de réduire la pollution des sols et aussi envisager 

leur réutilisation dans des projets de génie civil. De plus, nous avons étudié l'interaction du Mo avec les liants 

cimentaires afin de mieux comprendre la stabilisation des sols contaminés au Mo. Les principales conclusions de 

cette recherche ont été regroupées en trois parties et sont résumées ci-dessous. Des perspectives de recherche 

sont également suggérées. 

 

Béton sous attaque sulfatique externe 

Cette partie visait à : (i) réaliser un « benchmark » ou une étude comparative de plusieurs liants vis-à-vis de leur 

capacité à résister à l’attaque sulfatique externe dans des conditions expérimentales similaires, et (ii) contribuer à 

la compréhension des mécanismes associés à l'expansion ou non-expansion des liants en utilisant des analyses 

microstructurales et minéralogiques ainsi que des calculs thermodynamiques. 

Par conséquent, nous avons étudié la capacité de sept bétons à résister à l’attaque sulfatique externe dans les 

mêmes conditions expérimentales. Trois ciments Portland et quatre liants alternatifs ont été utilisés pour fabriquer 

ces bétons. Les liants alternatifs ont été regroupés en deux catégories : (i) liants alcali-activés avec ou sans oxydes 

de calcium (laitier alcali-activé et un géopolymère à base de métakaolin) et (ii) liants ettringitiques (ciment sur-

sulfaté et ciment sulfoaluminaux). 

La résistance à l'attaque sulfate externe a été étudiée en mesurant l’expansion longitudinale d'échantillons en béton 

selon la norme suisse SIA 262/1 : 2013 Annexe D. Ce test consiste à accélérer l'attaque par l’exposition des 

échantillons à 4 cycles de séchage/immersion suivie d'une immersion consécutive dans une solution contenant 

50 g/L de sulfate de sodium. Cette norme fixe à 0,1% la valeur maximale de l'expansion longitudinale. De plus, des 

analyses minéralogiques et microstructurales et des calculs thermodynamiques avant et après attaque ont été 

réalisés afin de mettre en évidence les mécanismes d'expansion et de non-expansion des liants. 

Nous avons trouvé que, parmi tous les bétons, l’expansion maximale (0,4%) a été obtenue avec le ciment Portland 

classique. Celui-ci a, par ailleurs, présenté des fissurations en raison de la formation d'ettringite en excès 

provoquée par la réaction entre les aluminates et les sulfates. En effet, une quantité d'ettringite importante a été 

observée dans toute la surface analysée de ce béton à la fin de l'essai. En revanche, le ciment Portland sans C3A 

a présenté des expansions plus faibles (0,07%) et aucune fissuration à la fin du test. Cependant, des inspections 

visuelles à plus long terme ont permis d'identifier des fissures après 550 jours d'immersion. Cette fissuration peut 

s’expliquer par la précipitation du gypse. Dans ce type de matériau, les ions calcium et aluminium proviennent du 
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C4AF. Cependant, cette phase d'aluminate réagit avec une cinétique inférieure à celle du C3A et ainsi, l'ettringite 

se forme à une vitesse très lente et en quantités mineures.  

D'autre part, aucun dommage visuel n'a été observé dans les bétons à base de ciment Portland de laitier de haut 

fourneau et il a été constaté que l'amplitude de l'expansion finale dépendait du temps de durcissement avant 

l'exposition aux sulfates. Les bétons durcis pendant 90 jours ont présenté une expansion 40% inférieure à celle 

obtenue après 28 jours de durcissement. Ce comportement s'explique probablement par la différence de porosité. 

De plus, la faible expansion de ces bétons s’explique par la formation d'ettringite moins importante que dans le cas 

du ciment Portland ordinaire et développée dans les vides d'air. Par ailleurs, la forte proportion de laitier (82%) et 

la faible teneur en clinker (15%) conduisent à une réduction de la teneur en C3A et donc de l’indisponibilité 

d'aluminium rapidement soluble pour réagir avec les sulfates. L'indisponibilité de l'aluminium pour la réaction avec 

les sulfates peut également s'expliquer par la formation de phases C-A-S-H et d’hydrotalcite. En plus de cela, le 

clinker a été consommé par le GGBS pour être activé, et donc sa quantité peut être considérée comme insuffisante 

pour permettre la précipitation de phases expansives en proportion importante. 

Concernant les liants alternatifs (liants d'ettringite et liants activés par les alcalis), ils ont présenté de faibles 

expansions, de l'ordre de 0,01 à 0,03%, et aucun dommage visuel n'a été observé pendant et après l'attaque 

sulfatique externe. Les faibles expansions de ces liants sont expliquées par la prise d'eau et l'absence de réactions 

entre les constituants des matrices durcies et les sulfates en solution. Dans le cas des liants ettringitiques (ciment 

sulfoaluminate-bélite de calcium et ciment GGBS supersulfaté), leurs faibles expansions s’expliquent par l'absence 

de C3A et de portlandite en plus de la formation d'ettringite lors de l'hydratation. Dans le cas des liants alcali-activés 

(laitier alcali-activé et géopolymère à base de métakaolin), l'absence de C3A et de portlandite justifient leurs faibles 

expansions. De plus, l'indisponibilité de l'aluminium pour la réaction avec les sulfates en raison de la formation de 

phases C-A-S-H et hydrotalcite lors de l'hydratation du laitier alcali-activé peut être également à l’origine de faibles 

expansions. Par ailleurs, en cas d’absence d’oxydes de calcium (cas du métakaolin à base de géopolymère), les 

phases expansives telles que l'ettringite et le gypse ne peuvent pas se former. 

Perspectives : 

Les perspectives détaillées sont présentées à la fin du Chapitre 3 (cf. section 3.6). Ici, nous présentons un résumé 

de ces perspectives. 

Dans cette étude, nous avons calculé les indices de saturation de l'ettringite, du monosulfoaluminate et du gypse 

en utilisant le code PHREEQC et les concentrations en éléments mesurées dans les solutions porales. On a 

supposé que ces indices de saturation étaient le résultat de l'état d'équilibre de la solution porale. Cependant, il 

serait également intéressant d'estimer les états d'équilibre des produits de réaction des liants durcis aux différentes 

étapes en faisant varier la concentration en sulfates. Ces résultats pourraient être comparés à des données 

expérimentales si la quantification des phases était effectuée. 

D’un autre côté, dans cette thèse, nous avons étudié la capacité des liants à résister à l'attaque sulfatique externe 

en mesurant les expansions longitudinales. Cependant, d'autres paramètres peuvent également être évalués afin 

de garantir la capacité de ces liants à résister à cette attaque. Par exemple, il serait intéressant de mesurer leurs 

propriétés mécaniques (ex. résistance à la compression) pendant la période d'exposition aux sulfates. 

 

Stabilisation des sulfates 

Cette partie visait à : (i) comparer la capacité de plusieurs liants alternatifs à immobiliser les sulfates dans un sol 

sulfaté, (ii) comprendre les mécanismes d'immobilisation des sulfates, et (iii) évaluer le potentiel de gonflement et 

les propriétés mécaniques des traitements du sol sulfaté. 



GENERAL CONCLUSIONS 

 270 

Nous avons donc étudié l'immobilisation des sulfates, le gonflement et les propriétés mécaniques de différents 

traitements. Un sol artificiellement sulfaté a été traité par quatre liants différents : un OPC, un clinker alternatif 

(composé de ye'elimite et de bélite), un ciment au laitier de haut fourneau (de type CEM III) et un liant expérimental 

(90% laitier et 10% OPC). 

Les traitements du sol sulfaté ont été évalués conformément à la norme française NF P 94-100 dans laquelle la 

valeur guide maximale de l'expansion volumique est fixée à 5% et la résistance minimale à la traction est de 

0,2 MPa. Par ailleurs, l'immobilisation des sulfates a été étudiée par des tests de lixiviation réalisés conformément 

à la norme européenne NF EN 12457-5. Les mécanismes de stabilisation des sulfates ont été étudiés en effectuant 

une caractérisation minéralogique et microstructurale ainsi qu’une modélisation géochimique en utilisant le code 

PHREEQC. 

Après des tests de lixiviation, il a été observé que tous les traitements conduisaient à une diminution de la 

concentration des sulfates en solution à des valeurs inférieures à 1000 mg/kg de sol sec (valeur maximale établie 

par l'arrêté français du 12 décembre 2014, pour la catégorie des déchets inertes et non-dangereux). Cependant, 

les traitements avec l’OPC et le clinker ont conduit au relargage de métaux lourds en solution, notamment du 

chrome, du fait de leur teneur élevée en clinker. De plus, ces liants ont également entrainé des expansions élevées 

(>5%) à cause de la formation d'ettringite en excès. En revanche, les liants contenant du laitier ont conduit à de 

faibles expansions (<2%), la rétention des sulfates a été d'environ 89%, avec un relargage limité de métaux lourds. 

La solubilité des sulfates a été contrôlée par l'ettringite, qui n'a pas conduit à une expansion, peut-être en raison 

de la faible cinétique de précipitation et de l'absence de portlandite, souvent liée à l'ettringite expansive. 

Parmi tous les traitements, l'utilisation du liant expérimental contentant 90% laitier et 10% OPC a donné les 

meilleures performances en termes de lixiviation aux sulfates, de gonflement et de résistance à la traction. Par 

conséquent, cette formulation a été étudiée à moyen et long termes en réalisant des tests de lixiviation à des âges 

ultérieurs (6 mois) afin de vérifier la stabilisation des sulfates. De plus, comme le traitement des sols sulfatés 

concerne la réutilisation des sols pour des travaux d'ingénierie (ex : construction de routes), cette formulation a 

également été évaluée en réalisant différents essais géotechniques (maniabilité, essais de résistance à la 

compression, gonflement et performances de classe mécanique). Nous avons constaté que la stabilisation des 

sulfates est restée stable dans le temps et que les propriétés géotechniques du sol traité étaient satisfaisantes pour 

envisager une utilisation dans des projets de génie civil. De plus, la modélisation réalisée avec ce liant a montré 

que les résultats numériques étaient en accord avec les résultats expérimentaux lorsque le degré d'hydratation du 

laitier était supposé être de 30%. Le modèle géochimique a alors pu prédire correctement les concentrations de 

sulfates en solution en fonction du dosage de liant utilisé dans le traitement. La modélisation a montré que l'ettringite 

était en effet le principal mécanisme de stabilisation contrôlant la solubilité des sulfates et que les sulfates étaient 

partiellement immobilisés à des concentrations proches de 1000 mg/kg à partir de 7% de liant ajouté au sol sulfaté. 

Perspectives : 

Les perspectives détaillées sont présentées à la fin du Chapitre 4 (cf. section 4.6). Ici, nous présentons un résumé 

de ces perspectives. 

La stabilisation des sulfates a été évaluée ici dans un sol sulfaté. Il serait alors intéressant de traiter un sol naturel 

riche en sulfates avec les mêmes formulations utilisées dans cette étude afin de vérifier leur capacité à immobiliser 

les sulfates et ne pas produire de gonflement.  

De plus, la stabilisation des sulfates par des liants contenant du laitier s’est révélée être satisfaisante. Pour la 

modélisation, un degré d'hydratation du laitier de 30% a été supposé. Ce degré d'hydratation devrait être confirmé 

expérimentalement dans un système constitué de « sol + liant + sulfates ». Dans ce cas, plusieurs facteurs devront 

être pris en compte, tels que l'effet de dilution du liant, la quantité d'eau disponible pour hydrater le liant et celle 
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consommée par le sol, ainsi que la quantité d'argile contenant du magnésium qui est également présente dans le 

laitier. 

 

Stabilisation du molybdène (Mo) 

Cette partie visait à : (i) comparer la capacité de plusieurs liants à immobiliser du molybdène, et (ii) contribuer à la 

compréhension des mécanismes associés à sa stabilisation. 

Nous avons alors étudié l'interaction du Mo avec plusieurs liants et évalué leur capacité à stabiliser le Mo. Nous 

nous sommes concentrés sur l'interaction du Mo avec trois liants différents : un OPC (B1), un liant expérimental 

composé de 90% laitier et 10% OPC (B2) et un ciment sur-sulfaté (B3). Ainsi, ces trois liants ont été artificiellement 

dopés avec différentes concentrations de Mo. La stabilisation du Mo a été aussi étudiée par la synthèse du silicate 

de calcium hydraté (C-S-H) en utilisant cinq teneurs différentes en Mo.  

L'immobilisation du Mo a été évaluée en effectuant des tests de lixiviation sur pâte réalisés conformément à la 

norme européenne NF EN 12457-5 à des conditions de pH neutre. De plus, les mécanismes de stabilisation ont 

été étudiés en utilisant des analyses minéralogiques et microstructurales et la modélisation géochimique. 

Les tests de lixiviation sur pâte ont montré que le Mo a été largement fixé dans toutes les fractions solides, 

notamment à des teneurs élevées de Mo. Nous avons observé que la rétention du Mo augmentait avec la 

concentration initiale de Mo dans les liants. L'ordre suivant a été obtenu pour la rétention du Mo par les liants : B3> 

B1> B2.  

Dans l'ensemble, la précipitation de powellite (CaMoO4) s'est avérée être le principal mécanisme de stabilisation 

du Mo pour les concentrations étudiées sauf pour des concentrations inferieurs à 500 mg/kg of binder. De plus, le 

Mo a été mélangé avec du calcium et des sulfates, probablement en raison de la substitution ou de l'adsorption 

dans les phases sulfatées. Le Mo a été également lié aux hydrates de silicate de calcium (C-S-H) probablement 

en raison de la co-précipitation de powellite à la surface des C-S-H ou en raison de l'adsorption de Mo sur la surface 

des C-S-H. Concernant la synthèse de C-S-H, les données expérimentales et celles issues de la modélisation ont 

montré que la powellite avait co-précipité pour des teneurs en Mo supérieures à 90 ppm (1,9x10-5 mol/L). Nous 

suggérons qu’à faibles concentrations, le Mo est plutôt immobilisé par l’adsorption sur les surfaces de C-S-H, 

comme indiqué expérimentalement.   

Perspectives :  

Les perspectives détaillées sont présentées à la fin du Chapitre 5 (cf. section 5.5). Ici, nous présentons un résumé 

de ces perspectives. 

La stabilisation du Mo a été étudiée dans des liants dopés en Mo. Le traitement d'un matériau naturellement 

contaminé en Mo permettrait de vérifier l'efficacité de chaque liant à immobiliser le Mo. Dans ce cas, plusieurs 

facteurs devront être pris en compte pour évaluer la stabilisation du Mo, tels que la compétition ionique et l’effet de 

la matière organique sur l’hydratation du liant. 

L'identification expérimentale des mécanismes de stabilisation du Mo à de faibles concentrations (de l'ordre de 

10- 5 mol/kg), pour lesquels la powellite ne devrait pas précipiter, est nécessaire. Cependant, la compréhension des 

mécanismes de stabilisation du Mo nécessite l'identification précise de ses espèces chimiques dans les matériaux 

contaminés [10]. Mo K-edge XANES a été utilisé avec succès pour l'identification de la spéciation du Mo dans le 

sol (y compris l'adsorption de surface et la précipitation minérale) et dans les solutions aqueuses [11], [12]. A notre 

connaissance, la technique XAS n'a cependant pas encore été utilisée pour étudier les mécanismes de stabilisation 

du Mo dans les liants hydrauliques. Ainsi, les méthodes XAS (rayonnement synchrotron par spectroscopie XANES 

et EXAFS) semblent être bien adaptées pour étudier l'immobilisation du Mo par des liants hydrauliques, à de faibles 
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concentrations de Mo typiquement rencontrées dans les matériaux naturels [10], [13]. Pour ce faire, les spectres 

XANES et EXAFS obtenus à partir d'échantillons traités doivent être comparés aux standards du Mo afin d'identifier 

les mécanismes de stabilisation dominants. Les standards du Mo sont des minéraux purs qui contiennent du Mo. 

Par exemple, la synthèse de phases telles que l'ettringite avec Mo et le monosulfoaluminate avec Mo permettrait 

l'identification de la substitution du sulfate par le molybdate. 

D’un autre côté, peu d'informations sont disponibles dans la littérature sur les produits de solubilité des possibles 

réactions impliquées dans l'interaction du Mo avec les liants cimentaires. Certaines réactions thermodynamiques 

ont été publiées concernant la powellite et l'AFm contenant du Mo. Par conséquent, il serait intéressant de 

développer un modèle géochimique prenant en compte non seulement la précipitation de powellite, mais aussi la 

formation d'autres phases contenant du Mo comme la substitution du sulfate par le molybdate dans l'ettringite, afin 

d’améliorer la compréhension des mécanismes d’immobilisation du Mo. 

Comme les phases C-S-H sont connues pour avoir une capacité de sorption élevée en raison de leur surface 

spécifique importante, le fait de développer un modèle d'adsorption de surface avec le C-S-H et le Mo permettrait 

de mieux comprendre la capacité du C-S-H à immobiliser le Mo. Ce type de modélisation devrait se focaliser 

principalement sur de très faibles concentrations de Mo (de l'ordre de 10-5 mol/kg) pour lesquelles la powellite ne 

devrait pas précipiter. 
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