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Abstract

Heat transfer is actually intimately related to the sound propagation (acoustic transfer)
in materials, as in insulators and semi-conductors the main heat carriers are acoustic pho-
nons. The concept of the presence of interfaces has been largely exploited for efficiently
manipulating phonons from long-wavelength to nanometric wavelengths, i.e., frequencies
in THz regime, responsible for thermal transport at room temperature.

In this thesis, the finite element method is used to perform transient analysis of wave-
packet propagation in different mediums. I started with a parametric study of attenuation
of acoustic wave-packets in a 2D semi-infinite elastic system with periodic circular inter-
faces. Three key parameters are investigated, including rigidity contrast, interface density
and phonon wavelength. Different energy transfer regimes (propagative, diffusive, and
localized) are identified allowing to understand the phonon contribution to thermal trans-
port. Besides the circular interfaces, mechanical response and acoustic attenuation for
different types of interfaces are also investigated, such as Eshelby’s inclusion, dendritic
shape inclusion and porous materials with ordered/disordered holes. In order to extend
the study to amorphous materials, I also considered a heterogeneous medium with ran-
dom rigidities distributed in space according to a Gaussian distribution based on the theory
of heterogeneous shear elasticity of glasses. Finally yet importantly, viscoelastic consti-
tutive laws are proposed to take into account the frequency-dependent intrinsic phonon
attenuation in glasses, with the aim of reproducing such intrinsic attenuation using a ho-
mogeneous viscous medium. Finite element simulation confirms that a continuum model
may strictly follow the atomistic attenuation (Γ) for a well-calibrated macroscopic linear
viscoelastic constitutive law. Compared with the experimental data in a-SiO2, our second
constitutive law reproduces qualitatively and quantitatively the three regimes of acoustic
attenuation versus frequency : successively Γ ∝ ω2,ω4,ω2.

KEYWORDS : Nanocomposite material ; Nanophononic material ; Amorphous
material ; Acoustic and thermal transfer ; Acosutic attenuation ; Numerical simula-
tions.
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Résumé

Le transfert de chaleur est intimement lié à la propagation du son (transfert acoustique)
dans les matériaux, par exemple dans les isolants et les semi-conducteurs, les principaux
vecteurs d’énergie sont des phonons acoustiques. Le concept de présence d’interfaces a
été largement exploité pour manipuler efficacement les phonons des longueurs d’onde
macroscopiques aux longueurs d’onde nanométriques. Les derniers correspondent aux
fréquences en régime THz, qui sont responsables du transport thermique à température
ambiante.

Dans cette thèse, la méthode des éléments finis est utilisée pour effectuer des ana-
lyses transitoires de la propagation des paquets d’ondes dans différents milieux à 2D. Elle
est commencée par une étude paramétrique de l’atténuation des paquets d’ondes dans un
système élastique semi-infini avec des interfaces circulaires périodiques. Trois paramètres
clés sont étudiés, notamment le contraste de rigidité, la densité d’interface et la longueur
d’onde des phonons. Différents régimes de transfert (propagatif, diffusif et localisé) sont
identifiés, qui permettent d’identifier la contribution des phonons à la conductivité ther-
mique. Outre les interfaces circulaires, la réponse mécanique et l’atténuation acoustique
pour différents types d’interfaces sont également étudiées, telles que l’inclusion de forme
dendritique, l’inclusion d’Eshelby, et les matériaux poreux avec des pores ordonnés /
désordonnés. Afin d’étendre l’étude aux matériaux amorphes, j’ai également considéré
un milieu hétérogène avec des rigidités aléatoires réparties dans l’espace selon une distri-
bution gaussienne basée sur la théorie de l’élasticité de cisaillement hétérogène des verres.
Enfin et surtout, deux versions de lois de comportement viscoélastiques sont proposées
pour prendre en compte l’atténuation intrinsèque des phonons dépendant de la fréquence
dans les verres, dans le but qu’un milieu visqueux homogène puisse reproduire cette atté-
nuation intrinsèque. La simulation par éléments finis confirme qu’un modèle continu peut
suivre strictement l’atténuation atomistique (Γ) avec une loi de comportement viscoélas-
tique linéaire macroscopique bien calibrée. Par rapport aux données expérimentales de a-
SiO2, notre deuxième loi de comportement reproduit qualitativement et quantitativement
les trois régimes d’atténuation acoustique en fonction de la fréquence : successivement
Γ ∝ ω2,ω4,ω2.

KEYWORDS : Matériau anocomposite ; Matériau nanophononique ; Matériau
amorphe ; Transfert acoustique et thermique ; Atténuation acoustique ; Simulation
numérique.
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General introduction

In September 2020, Apple officially released its new iPad Air equipped with the
world first mass-produced 5 nm chip manufactured by TSMC. The limits of chip ma-
nufacturing are constantly being explored and the next milestone will be 3 nm. Des-
pite this, technological developments of semiconductor device fabrication have known
an important slowing down, mainly due to the need of dealing with the heat pro-
blem [WAL 16] : for example, the extreme miniaturization of electronic devices in-
evitably leads to a local overheating and dissipation which is detrimental to the de-
vice performance and lifetime. As such, controlling, converting and recycling the heat
is the core of the current research in thermal science as well as microtechnology
[PRA 09, TER 09, MER 12, ZEN 14, FRA 14, MOO 16, ANU 16, YAN 17, VER 18].

In light of the vigorous push of the energy harvesting technology based on thermoe-
lectricity, the ubiquitous heat found an efficient way of recycling it and converting it into
a usable source of energy. Thermoelectric efficiency depends on the capability of ma-
terials of keeping a temperature gradient constant, and thus on its good thermal insula-
tion. To reduce the thermal conductivity, it is traditionally achieved by adding impurities,
nanoparticles, void, etc., which enhance the scattering of the energy carrying quanta in
materials, electrons and phonons. As the acoustic phonons are the main heat carriers in
insulators and semi-conductors, a lot of research has focused on the reduction of pho-
non contribution to the thermal conductivity using nanoscale structuring of materials. On
the other hand, with the help of periodic phononic crystal structures, novel coherent ef-
fects arise due to, for example, Bragg’s interference. Strategies come up by engineering
the phonon dispersion relation, leading to the aperture of forbidden gaps in the phonon
dispersion [LIU 00, KHE 06].

In fact, acoustic metamaterials, including phononic crystals, have been initially in-
vestigated for applications in acoustics, where sonic or ultrasonic waves in sub-MHz
frequency range play a major role. They can be shaped to realize acoustic guides, fil-
ters, lenses, with a macrostructure in millimeter lengthscale [LIU 00, KHE 06, ZHA 09,
CUM 16]. More recently, they have been introduced also in thermal science with the
similar concept for manipulating phonons but with nanometric and sub-nanometric wa-
velengths in THz frequencies range, which are the dominant heat carriers at room tempe-
rature, for realizing tunable multi-functional thermal metamaterials [LEE 16, PAR 17],
thermal cloaks and camouflage [SKL 18], etc. In both applications, it is matter of gui-
ding, filtering, hindering, the propagation of acoustic waves (phonons), responsible for
the sound propagation when their wavelength is macroscopic, and for thermal transport at
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room temperature when it is nanometric.
Amorphous materials such as glasses are natural poor conductors of heat compared to

crystalline materials. Lattice contribution to the thermal conductivity in crystalline solids
has been widely studied in the frame of the phonon gas model. However, in amorphous
solids the lack of a periodic atomic structure leads to very different scenarios for vibratio-
nal energy transport. Depending on the transport behavior, Allen and Feldman classified
the harmonic normal modes of vibration in amorphous solids as propagons, diffusons
and locons [ALL 99, FEL 99]. Propagons are phonon-like plane waves, typically having
long wavelength, that can travel at the sound velocity over long distance before scatte-
ring from disorder. This distance of ballistic propagation is the mean-free path. Diffusons
are modes that scatter over a distance less than their wavelength and moves diffusively.
Locons are localized modes and cannot transport heat [BEL 18]. Therefore, specific dy-
namics of phonons will directly affect thermal transport, with two different contributions :
a propagative one, which depends on phonon mean-free path, heat capacity, velocity and
vibrational density of states [KIT 04], and a diffusive one, involving the phonon diffu-
sivity rather than the mean-free path and velocity [LAR 14, ALL 90, ALL 99]. Due to
the wave-particle duality, phonons are nothing but acoustic vibrations with well defined
frequencies. In crystals, normal modes are phonons with infinite coherence time, but in
amorphous solids like glasses, the normal modes are not plane waves [TAN 02]. As such,
using a wavepacket with finite coherence time allows a description of the vibrations pre-
venting the permanent mixing with other plane waves. Wavepackets are thus a good re-
presentation for phononic excitations in amorphous materials, and - with a proper choice
of their coherence time - in crystals [SCH 02].

Besides the thermal transport property, the mechanical properties of amorphous mate-
rials also exhibit their unique charm. Many amorphous materials, such as metallic glasses,
polymers and oxide glasses, show a significant degree of universality. First of all, it is
now widely accepted that these materials possess heterogeneous elasticity at the nanos-
cale [BOV 05, TSA 09, MON 09b, CAP 09] and this has been used to explain numerous
vibrational anomalies in atomistically disordered materials, like glasses, in the THz fre-
quency range [TAN 10, MAR 13, SCH 15b]. Secondly, they share a common elementary
mechanism of plastic deformation that consists in local irreversible rearrangements invol-
ving few tens of particles in response to a homogeneous structure loading. The elastic res-
ponse of the surrounding medium to such a local shear transformation zone (STZ) exhibits
quadrupolar symmetric displacement field, which is well described by the Eshelby inclu-
sion with a shear eigenstrain [BUL 94, BAR 02, MAL 04, ALB 16, NIC 18], allowing
mesoscopic models as the elementary bricks of plasticity [BUL 94, MAL 04, ALB 16].
In addition, in-situ introducing a second crystalline phase into the bulk metallic glasses
has been reported to improve the global ductility and plasticity of the original brittle mate-
rials [ALB 13]. In-situ formed dendrite-phase not only displays a reinforced ductility and
a more homogeneous plastic response [HAY 00, GEN 20], but also has potentially good
sound attenuation performance due to the phonon-interface scattering, however, there is
still a lack of research on this latter.

The title of this thesis clearly describes our main work using three keywords : high fre-
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quency, thermo-mechanics and heterogeneous materials with interfaces. High frequency
indicates that we are interested in the acoustic waves at high frequencies, more speci-
fically, in the THz frequency ranges which are, as introduced, the main heat carriers
at room temperatures in semiconductors and insulators. Some heterogeneous materials
with interfaces are numerically prepared based on which simulations will be investiga-
ted, including elastic homogeneous media with periodic elastic inclusions, dendritic in-
clusions, Eshelby inclusions and disordered holes as well as heterogeneous media with
random elasticity. Considering the high frequency of the phonons, all these heteroge-
neities in the structures are at the nanoscale. Finally, based on the theory of Allen and
Feldman[FEL 99, ALL 93, ALL 90], thermo-mechanics is thus treated as to get a better
understanding of the mechanical response and transport properties of the high-frequency
acoustic waves inside the heterogeneous nanostructures above, the strong scattering of
acoustic waves giving rise to diffusive transport similar to heat.

To study the acoustic wave propagation and attenuation in such complex structured
materials, it is necessary to model phonon propagation on large scale systems, more apt
at representing real materials, where the effect of heterogeneities and interfaces can be
properly investigated. Such large systems are out of reach for atomistic simulations and
can be realistically modeled only through finite-element simulations, to catch the effect of
the interfaces and elastic heterogeneities on acoustic properties and thermal transport. Its
computing time depends on spatial discretization [GER 14, BEL 13, BON 14, ACH 12],
making thus affordable longer simulations on larger systems. More importantly, rich lite-
rature and relative research on the finite element method (FEM) help us implement easily
various types of loading and boundary conditions with specific functions, such as the per-
iodic boundary conditions and absorbing boundary conditions. In addition, the use of the
wave packets makes the spectrum of the external excitations smooth enough and cente-
red on well defined frequencies which thus avoid the numerical instability problem in
calculations caused by the extreme high-frequency excitations such as shocks. Last but
not least, to correctly describe for example highly dissipative glassy materials, the macro-
scopic elastic model is unable to reproduce the frequency-dependent acoustic attenuation
which has an atomistic origin. As such, continuum viscoelastic constitutive laws will be
developed to encode their specific frequency dependent phononic attenuation.

In the first chapter, the theoretical basis of the finite element method is presented as
well as the simple mechanical constitutive models that will be used, and a reminder about
the definitions of wave speeds. Different types of interfaces are available to construct
various heterogeneous media that will be presented there.

In the second chapter, we present a FE numerical simulation of the transient propa-
gation of an acoustic Wave-Packet in a 2D nanophononic material (with periodic elastic
inclusions), which allows to identify the effect of the elastic inclusions on the acoustic
attenuation length and thus on the transport regime for the vibrational energy. Three pa-
rameters are studied : the rigidity contrast between the inclusion and the matrix, the size
of the inclusions and the frequency of the incident wave-packet, the constant distance
between inclusions being used as reference length.

In the third chapter, mechanical response and acoustic attenuation for four types of
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interfaces will be investigated. Starting with the dendritic inclusion, we will consider the
same problem as in the last chapter but only changing the shape of the inclusions. Then,
the Eshelby’s inclusion will be embedded, which can be used to represent local plasticity
events in amorphous materials. Next, spatial disorder will be introduced in our models
including disordered porous and finally random elastic media.

In the fourth chapter, we propose to develop a model to homogenize the effective
attenuation triggered by multiple atomistic mechanisms,and characterized by a given non-
trivial frequency dependence. We will show that our models are able to bridge atomic and
macroscopic scales in amorphous materials and reproduce well the phonon attenuation
with a ω2 or ω2−ω4−ω2 dependency.

Finally, we draw general conclusions and some prospects.
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Chapter 1

Numerical & theoretical methods

How to use the finite element method to perform transient
analysis of wave-packet propagation in the heterogeneous

medium? In this first chapter, the theoretical basis of the finite
element method is presented as well as the simple mechanical

constitutive models that will be used, and a reminder about
the definitions of wave speeds. Different types of interfaces

are available to construct various heterogeneous media that
will be presented here.
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1 Finite Element code

1.1 General introduction to finite element method

In this thesis, the finite element method (FEM) is the most important numerical tool
used to perform the study of mechanical wave propagation in a solid medium. Develop-
ment of the finite element can be traced back to 1940s. With both the improvement of
theory and the leaps of calculation ability, FEM has become a reliably tool in scientific
research and engineering application [ZIE 00a, HUG 12, MIC 15, BEL 13]. In our work,
the numerical simulations are preformed using the finite element code Cast3m which is
a numerical simulation software dedicated to structural mechanics, and developed by the
French Alternative Energies and Atomic Energy Commission (CEA). It is a free code ba-
sed on the FORTRAN language, and the user language is GIBIANE. Every year, a stable
new version will be released and can be downloaded from Cast3m website.

The finite element method consists of subdividing the structure into a finite number of
elements of simple geometry and looking for approximate resolution of equations on an
appropriate basis of functions. The geometrical elements can be the following :

• One dimension : line segment

• Two dimensions : triangle or quadrangle

• Three dimensions : tetrahedron or hexahedron

As shown in Fig.1.1, we used 2D triangle and quadrangle elements to generate numerical
meshes to approximate the geometries given for example by the Transmission Electron
Microscope (TEM) or Scanning Electron Microscope (SEM) images. These meshes can
be then used in the computation. Inside each element, the interpolation functions of the
internal displacement field are chosen as to be simple but representative of the element’s
structural behavior as will be detailed later.

Multiphysics problems described by partial differential equations (PDEs), including
heat transfer, mass transport, fluid flow and electromagnetic potential, can be solved by
FEM in weak form. Compared to the initial PDE (strong form) which seeks an exact
solution at each point over a domain, weak form relaxes solution requirements and expects
an approximation of the solution.

In the following example, the case of 1D wave equation will be shown to quickly
present the derivation from the governing equation (strong form) to weak form as well as
the application of the finite element method on the weak form (known as spatial discreti-
zation).
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1. Numerical & theoretical methods

FIGURE 1.1: Finite element mesh : discrete representation of the domain in the compu-
tations. (a) Left : TEM image of a Zr-Cu-Al-Ti-Ni metallic glass with nano-crystalline
inclusions [TLI 17] Right : 2D mesh with triangle and quadrangle elements . (b) Left :
SEM of the as-cast Ti45Zr25Nb6Cu5Be17Sn2, the dendrite-phase (light gray) distributes
homogeneously in the glass-matrix (dark gray). Right : 2D mesh with triangle elements.

1.1.1 Strong form

The governing equation of 1D wave equation in an elastic bar x ∈ [0,L] with Young’s
modulus E and mass density ρ reads :

1-D wave equation :
∂2u(x, t)

∂t2 = c2 ∂2u(x, t)
∂x2

Wave speed : c =
E
ρ

where u is the unknown displacement.

1.1.2 Weak form

Now, multiplying the governing differential equation with an arbitrary scalar function
or a so called test function v(x) and then integrating over the entire domain, the corres-
ponding weak form for 1D wave equation reads :∫ L

0
ρ

∂2u(x, t)
∂t2 v(x)dx =

∫ L

0
E

∂2u(x, t)
∂x2 v(x)dx, ∀v ∈ u (1.1)

where the functional space u = {v with good properties of regularity} [ZIE 00b] . Next,
integration by parts gives∫ L

0
ρ

∂2u
∂t2 v(x)dx = E[

∂u(L, t)
∂x

v(x)− ∂u(0, t)
∂x

v(x)−
∫ L

0

∂u
∂x

∂v
∂x

dx] (1.2)
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In the right side of equation, one can specify Neumann type boundary condition, (i.e.,
derivative of the solution u) at the borders. Here, we suppose that free boundary condition
( ∂ f

∂n = 0, i.e., ∂u
∂x = 0) is imposed at x = 0 and x = L and the weak form for the wave

equation is thus : ∫ L

0
ρ

∂2u
∂t2 v+E

∂u
∂x

∂v
∂x

dx = 0 (1.3)

This is the so called weak formulation of the wave equation. It is noticed that the core
idea of weak formulation is to transform a derivative equation to an integral equation, as
such, the assumption is that any possible displacement field must have first derivatives
which may be integrated. Thus, the derivatives ∂u

∂x and ∂v
∂x are not necessarily continuous,

however, u and v must be continuous, meaning that only C0 continuity and L2 is required.
Instead in its strong form, C2 continuity is required for the displacement. In addition,
instead of satisfying the wave equation at any point, the weak form only requires an
equality over the integral domain.

1.1.3 Finite element method

For most boundary value problems the geometry and loading are too complex to find
a displacement that satisfies the governing PDE and all the boundary conditions. With the
FEM, the domain V is divided into subdomains Vh and make sure continuity exists over
subdomain boundaries. With this approach, the FEM is expected to find a set of uh ∈ Vh
to approximates the exact solution. Displacement assumption is made for each one single
element :

u(x, t) =
n

∑
i=1

ui(t)Ni(x) (1.4)

v(x) =
n

∑
i=1

viNi(x) (1.5)

where Ni(x) is the element shape function which is a piecewise differentiable linear func-
tion whose value is 1 at the node i and 0 at the other nodes, and and ui is nodal value of u.
An example of a shape function is shown in Fig.1.2.

Each point x = 0,h,2h, . . . is called node and the interval x ∈ [xi,xi+1] is called finite
element. Here, each element has two nodes and the internal kinematic relation is imposed
by the shape function as shown in Fig.1.2(b) for example where :

N1(x) =
x2− x

h

N2(x) =
x− x1

h

Therefore, the shape function Eq.1.4 for a 1-D linear element reads :

u(x, t) =
2

∑
i=1

ui(t)Ni(x) =
x2− x

h
u1(t)+

x− x1

h
u2(t) (1.6)
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1. Numerical & theoretical methods

FIGURE 1.2: Example of shape function : (a) the shape function over entire domain. (b)
the shape function inside an element.

and the derivative reads :

∂u(x, t)
∂x

=
2

∑
i=1

ui(t)
dNi(x)

dx
=−1

h
u1(t)+

1
h

u2(t) (1.7)

Numerous types of elements have been developed depending on the space dimension
of the problem (1-D, 2-D or 3-D), the geometry of the structure and the loading (beam,
shell, etc) as well as on the specific materials properties (e.g. anisotropy in carbon fi-
ber composites). The shape functions are well-defined for the standard elements, and in
practices, one can use them directly without having to derive them from the beginning.

Let’s come back to the weak form of the wave equation. Substituting the Eqs.1.4 and
1.5 , Eq.1.3 yields ∫ L

0
ρ

n

∑
i=1

Niüi

n

∑
j=1

N jv j +E
n

∑
i=1

dNi

dx
ui

n

∑
j=1

dN j

dx
v jdx = 0 (1.8)

that is
n

∑
j=1

∫ L

0
(ρ

n

∑
i=1

NiüiN j +E
n

∑
i=1

dNi

dx
ui

dN j

dx
)dx ·v j = 0 (1.9)

which must be valid for an arbitrary function v, thus for every j :

n

∑
i=1

∫ L

0
(ρNiN jdx · üi +

∫ L

0
E

dNi

dx
dN j

dx
dx ·ui) = 0 (1.10)

This is equal to write

n

∑
i=1

[M jiüi(t)+K jiui(t)] = 0 or in matrix form MÜ(t)+KU(t) = 0 (1.11)

where U is the displacement vector, M is the mass matrix whose components read

Mi j = M ji =
∫ L

0
ρNiN jdx (1.12)
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and K is the stiffness matrix, which is a sparse diagonal matrix, whose components read

Ki j = K ji =
∫ L

0
E

dNi

dx
dN j

dx
dx (1.13)

It can be noticed that the mass information is encoded in M and the rigidity is encoded
in K. Solving the original PDE is equivalent to perform matrix operations. In addition, as
said the entire domain is subdivided into a finite number of elements, as such the integral
over x ∈ [0,L] equals to the sum of the integrals over each element :∫ L

0
dx = ∑

elem

∫ xi+1

xi

dx in 1D (1.14)

Furthermore, the integral over each element is numerically solved by Gaussian quadra-
ture rules in which the values at the Gauss points x(ξi) are determined, of course, by the
shape function and the nodal values, e.g., u(x(ξi), t) = ∑

n
j=1 N j[x(ξi)]u j(t).

This procedure can be generalized to 2D and 3D problems. Various boundary condi-
tions as well as the first temporal derivative of the displacement vector can also be taken
into account. To conclude, for a wave propagation problem, we can get the space semi-
discrete form[MIC 15] :

MÜ(t)+CU̇(t)+KU(t) = F (t) (1.15)

where C is an additional damping matrix and F is the external force vector.

1.2 Mesh : spatial discretization
In the finite element method, the domain Ω is subdivided into a mesh, i.e., a collec-

tion of geometrically simple elements. On each element, piecewice polynomial functions
(shape function) are supposed which are usually of low degree. Hence, in order to get a
better approximation of PDE solution, one can refine the subdivision or increase the order
of the polynomial functions.

As shown in Fig.1.3, a set of simulations has been done based on different levels of
element size from coarse to fine. The wave propagates in a homogeneous medium with
a soft circular inclusion inside, it is clear that, in order to improve the simulation result,
mesh refinement is a good choice. However, mesh refinement increases the computational
cost by increasing the number of elements. Besides, for example, the 3rd mesh in Fig.1.3
gives a enough precision compared with the 4th one. Therefore, before starting the si-
mulation, the mesh density needs to be carefully considered, especially when computing
power is limited.

It is clear that the element size in element-based acoustic computations should be
related to the wavelength. A common rule is that at least six linear elements should be
used per wavelength [MAR 08]. Since the wavelength depends on the material as λ = 2πc

ω
,

where the c ∝
√

E/ρ is wave speed, the mesh should be adapted depending on the rigidity
and wave frequency. As such, a special attention should be payed in the case when the
medium becomes soft (low E) or the frequency becomes high (high ω). For example, in
the above case (Fig.1.3), a soft inclusion often needs a finer mesh than the rigid matrix.
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1. Numerical & theoretical methods

FIGURE 1.3: Influence of mesh size : Finite element method computed displacement
fields when wave passing through the model. Left panel : from top to bottom : 4 levels
of element size are shown from coarse to fine. Right panel : snapshots of displacement
fields. For the matrix, the Young’s modulus is 92.25 GPa. For the inclusion, the Young’s

modulus is 46.125 GPa.
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1.3 Dynamic problem : temporal discretization

1.3.1 Time discretization

Eq.1.15 gives a semi-discrete form in space. For transient analysis, the governing
equations must be discretized in both space and time. Temporal discretization involves
the integration of every term in the differential equations over a time step ∆t as shown in
Fig.1.4. The choice of the time step will be explained later.

FIGURE 1.4: Illustration of time discretization : ∆t (dt) is a time step and the indices n
and n+1 are successive time steps. Ndt is total number of time steps.

1.3.2 Time integration

Among all the FEM time integration schemes, Newmark scheme [NEW 59] is the
most common solution for a dynamic structure. We have selected the symplectic central-
difference algorithm from the Newmark scheme family, with the parameters γ= 1

2 and β=
0. We start from the space-time discretized form (combined with the central-difference
time integrator) :

KU p
n +CU̇n+ 1

2
+MÜn+1 = Fn+1 (1.16)

where M is the lumped mass matrix and C is a possible damping matrix either related
to the domain (e.g, viscous medium in Chap.4) or to the boundaries (e.g., perfect mat-
ched layer in Sec.1.4). Tab.1.1 gives an algorithm to explicit the related central difference
integration.

These chosen values of γ and β make sure that once a good time step is determined
for a set of meshing values, our calculation will always be converge. Moreover, the choice
of this Newark scheme ensures a good precision to the discrete balance equations (linear
momentum, angular momentum and energy preservation)[STA 19]. We can thus chose
automatically the initial time step for different inclusions sizes, and rigidity ratios (the
ratio of Young’s modulus between inclusions and amorphous matrix in this study), thus
facilitating a systematic parametric study. Hughes, Geradin, and Rixen [GER 14] have
done a detailed stability analysis of the Newmark scheme family. It shows that in order to
ensure the convergence, the time step ∆t :

∆t < ∆tcr =
∆l
2c

(1.17)

in the case of central-difference scheme, where the wave celerity c is a parameter depen-
ding on the propagating medium and ∆l is linked to mesh size. Therefore, when the mesh
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1. Numerical & theoretical methods

Algorithm Central difference Newmark algorithm (γ = 1/2 & β = 0)

1. Initialisation of U0,U̇0 and

Ü0 =M−1(F0−KU0− C̃ ˙̃U0)

with ˙̃U0 being and velocity at the absorbing boundary.

2. for n=0 to Ndt

3. Prediction of the displacement and the velocity

U
p
n =Un +∆tU̇n +

∆t2

2 Ün

U̇
p
n = U̇n +

∆t
2 Ün

4. Calculation of the internal force

F int
n+1 =KUn+1 + C̃ ˙̃Un+ 1

2

where

Un+1 =U
p
n

˙̃Un+ 1
2
= 1

∆t (Ũn+1− Ũn)

with the Ũn values being the Un restricted to the absorbing boundary.

5. Evaluation of the updated acceleration

Ün+1 =M−1(Fn+1−F int
n+1)

where Fn+1 is the external force at step (n+1), being 0 in our case.

6. Correction of the updated velocity

U̇n+1 = U̇
p
n + ∆t

2 Ün+1

7. end

TABLE 1.1: Flowchart for explicit central difference time integration for a case with the
perfect matched layer (PML) boundary condition in Sec.1.4.1.
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needs to be refined (∆l decreases) or when the medium becomes rigid (high E), one needs
to reduce accordingly the time step ∆t.

1.4 Boundary conditions

Illustration of boundary conditions for a mechanical problem is given in Fig. 1.5(a),
where two types of boundary conditions can be classified :{

u(X, t) = ud(X, t), on ∂Ωu

σ(X, t) ·n(X, t) = F (X, t), on ∂Ω f

The first boundary condition is Dirichlet boundary condition as it specifies the values of
the solution u, and the second type is Neumann boundary condition because it is related
to the derivative of a solution u through the constitutive law relating the stress tensor σ to
the local strains. The default configuration involves free boundary conditions (σ.n = 0),
meaning that there is no external loading.

We mainly applied three explicit boundary conditions in our finite element calcula-
tions. As shown in Fig. 1.5(b), the first one is the wave packet implantation at ∂Ωu, and
the second one is periodic boundary condition (PBC) at ∂Ωp. Both are Dirichlet boundary
conditions. The last one is absorbing boundary conditions, or Perfect Matched Layers
(PML) at ∂Ωa which is a Neumann boundary conditions.

FIGURE 1.5: (a) Illustration of boundary conditions for a mechanical problem. (b) semi-
infinite solid can be represented by only modeling the rectangle with Periodic Boundary
Conditions (PBC) and Perfect Matched Layers (PML) as drawn (Ω represents simulation

domain, ∂Ω indicates boundary conditions).

1.4.1 Periodic boundary conditions (PBC)

The periodic boundary condition reads :

uη|edge1 = uη|edge2, η = x,y (1.18)
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1. Numerical & theoretical methods

with u is the nodal displacement. To link the above condition to the displacement vector
u, we build a matrix L such that

Lu= 0 (1.19)

where L only has non-zero components at the positions corresponding to PBC (1 for
uη|edge1 and −1 for uη|edge2). The PBC is then imposed in the equilibrium equation by
adding the Lagrange multiplier Λ in the functional from which the equilibrium equation
derives. For a static problem Ku= F , the functional containing the Lagrange multiplier
to minimize is E(u,Λ) = 1

2u
TKu−Fu+ΛT (Lu−0). To find the stationary point, let

the first partial derivatives of E(u,Λ) be zero{
∂E
∂u = 0→Ku+LT Λ = F
∂E
∂Λ = 0→ Lu = 0

(1.20)

where the solution of the Lagrange multipliers Λ are the force connecting edge1 and
edge2. Notice that the second equation is the original constraint.

In the dynamic case, the equations to solve are{
Ku+Mü+LT Λ = F

Lu = 0
(1.21)

In Cast3m, the matrix L and the Langrange multipliers can be constructed by using
the operator RELA.

1.4.2 Perfect Matched Layers (PML)

The PML detailed in [LYS 69, BET 77, KIM 14, BON 14] results from the creation
of a viscous boundary that can absorb the incident wave and prevent the reflected wave.
With this method, only a finite number of nodal points need to be considered ; thus, an
infinite system may be approximated by a finite system with a special viscous boundary
condition. On this viscous boundary, the normal stress ζ and the shear stress τ are related
to the perpendicular velocity and the tangential velocity of the incident wave respectively.
It can be written as :

ζ = aρVpu̇x (1.22)
τ = bρVsu̇y (1.23)

with Vs =
√

G
ρ

is the S-wave celerity and Vp =
√

E
ρ

is the P-wave celerity, ν is Pois-
son ratio, E and G are elastic moduli, ux and uy represent the displacement caused by
the P-wave and S-wave respectively. Lysmer and Kulemeyer [LYS 69] have proposed to
use a = b = 1, which has been verified as having nice performance[KIM 14] to absorb
quasi-perfectly elastic harmonic waves : it can perfectly absorb waves perpendicular to
the boundary, and if the wave attacks the absorbing boundary with an inclined incident
angle, the absorption ratio may be as low as 50 % .
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Constitutive models

For example, for a 1D problem u(x, t), only Eq.1.22 is considered. Replacing ζ = E ∂u
∂x

and a = 1, the PML reads :
∂u
∂x

=
1

Vp

∂u
∂t

(1.24)

The corresponding weak form for 1D wave equation (Eq.1.2) together with the PML
at x = L (Eq.1.24) reads[BON 14] :∫ L

0
(E

∂u
∂x

∂v
∂x

+ρ
∂2u
∂t2 v)dx =

E
Vp

∂u
∂t

(L, t)v(L)

,∀x ∈ [0,L]
(1.25)

where v is a test function. The first term is the virtual internal work and the second term
is the virtual kinetic work. Notice that there is an additional term E

Vp
∂u
∂t (L, t)v(L) in the

RHS, which is brought by the PML and can be thought as a local damping, denoted as
C̃. Similar to the Eq.1.13, its components read C̃i j =− E

Vp
NiN j|x=L in 1D case. In Cast3m,

the damping matrix for the absorbing boundary can be constructed using the operator
AMOR.

1.4.3 Wave packet

We will study the vibrational properties of a model system (with interfaces). To study
the propagation of the vibrational energy, we excite a quasi-monochromatic wave packet
on one side of the sample around x = 0 in a small time interval around t = 0 [BEL 16,
LUO 19]. To excite the vibrations in the sample we used the excitation displacement at
∂Ωu

U(ω, t) =U0 exp
(
−(t−3t0)2

2t2
0

)
sin(ωt) (1.26)

with U0 being a constant value, ω is the frequency of this quasi-monochromatic excitation.
The coherent time t0 should be chosen carefully, the width of the wave packet increases
with the increasing t0 and a wide wave packet needs more time to enter the sample com-
pared to a narrow one. On the other hand, we require a wave packet with a well-defined
frequency, thus t0 should not be too small which leads to a broad frequency spectrum.

A wave packet is imposed into the model as Dirichlet boundary conditions :

uη(t)|∂Ωu =U(ω, t)nη, η = x or y (1.27)

Specifically, when η = x, it is longitudinal waves. When η = y, it is transverse waves.

2 Constitutive models

Constitutive equations shows how a solid deforms as a response to stresses, to loading
rate, to changes of temperature and to many other factors. This description of the intrin-
sic behavior of the solid is needed to close the system of equations of motion relating
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1. Numerical & theoretical methods

time dependent strains and stresses in continuum elasticity [SAL 12]. How to choose a
constitutive equation depends on the material properties and the specific situation. In this
section, I will introduce two fundamental stress-strain constitutive relationships used in
this thesis : linear elasticity and visco-elasticity. Elasticity will be used in the Chap. 2-4 to
model elastic media, whether homogeneous or heterogeneous, without intrinsic dissipa-
tion. Visco-elasticity will be used in the Chap. 5 to model a viscous medium where energy
looks dissipated during the wave propagation.

Let’s start from defining the 2nd order strains tensor εi j with respect to displacement
vector ui [KIT 04, FRA 12, LAN 86] :

εi j =
1
2
(

∂ui

∂x j
+

∂u j

∂xx
+

∂um

∂xi

∂um

∂x j
) (1.28)

= ε
(1)
i j + ε

(2)
i j (1.29)

by defining :

ε
(1)
i j =

1
2
(

∂ui

∂x j
+

∂u j

∂xi
) : the terms linear in the displacements

ε
(2)
i j =

1
2

∂um

∂xi

∂um

∂x j
: the terms quadratic in the displacements

For strains much less than unity (case of geometric linearity), higher order terms are
negligible , so :

εi j ≈ ε
(1)
i j =

1
2
(

∂ui

∂x j
+

∂u j

∂xx
) (1.30)

This strain tensor is refereed to as the small strain tensor, or the linearized strain tensor.
This form of the strain tensor is very convenient because it allows for a linear relationship
between strain and displacements. Since we focus on the harmonic vibrational properties
of structures which naturally means small strains, thus the linearized strain will be used
in all further discussions.

2.1 Elasticity
In mechanics and materials science, elasticity is the ability of a body to resist a force

and to return to its original size and shape when that force is removed. Depending on
the strain magnitude, elasticity can be classified as linear elasticity or finite elasticity. As
the name suggests, linear elasticity represents the linear relationship between stress and
strain, which is the simplest constitutive law, known as Hooke’s law. Linear elasticity is
appropriate for traditional materials undergoing small deformations. In the limit of small
strains and at room temperature, linear elasticity is enough to model glassy materials
[WAN 12].

Hooke’s law :
In 1D, Hooke’s law can be illustrated as a single spring in Fig. 1.6 with a constant rigidity :

σ = Eε (1.31)
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Constitutive models

where E is the Young’s modulus.

FIGURE 1.6: Hooke’s model

In 3D, Hooke’s law can be written in tensor form as : σ=C : ε, whereC is the elastic
tensor. For isotropic materials, the most general form of Hooke’s law is written as :

σi j = 3K(
1
3

εkkδi j)+2G(εi j−
1
3

εkkδi j) (1.32)

where K is the bulk modulus and G is the shear modulus. The hydrostatic (or spherical)
part of strain is given by ε

sph
i j = 1

3δi jεkk and the deviatoric part, which is isochoric, is
εdev

i j = εi j− 1
3δi jεkk, where δi j is Dirac function and repeated indices indicate summation

as in Einstein’s notations.

2.2 Linear visco-elasticity

Linear visco-elasticity is related to Newton’s law for fluids that assumes a linear re-
lation between stress and strain rate. This model implies a dissipative (viscous) behavior.
There are different ways to combine linear viscosity and linear elasticity in solids, depen-
ding on their combined effect, either on the stress (force relaxation) or on the strain (creep
flow) components [BRI 08, MAR 14, CHR 12].

2.2.1 Kelvin-Voigt model :

Kelvin-Voigt model is represented in Fig.1.7. It consists of an elastic spring and a
viscous dashpot in parallel.Applying an axial stress on this Kelvin-Voigt model, σtotal
and εtotal can be defined as follows :

σtotal = σspring +σdamping

εtotal = εspring = εdamping
(1.33)

FIGURE 1.7: Kelvin-Voigt model
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Kelvin-Voigt stress-strain constitutive relation can be expressed as below :

σ = σ
ela +σ

vis

= Eε
ela +ηε̇

vis (1.34)

Where η is the viscosity. In 1D, it gives rise to the time dependent strain ε(t) = σ

E (1−
exp(−Et

η
)). It is used for example to model rubber [MAR 14].

2.2.2 Maxwell model :

The Maxwell model can be represented by a purely viscous damper and a purely
elastic spring connected in series as shown in Fig.1.8. Applying an axial stress on this
Maxwell model, σtotal and εtotal can be defined as follows :

σtotal = σspring = σdamping

εtotal = εspring + εdamping
(1.35)

FIGURE 1.8: Maxwell model

Maxwell stress-strain constitutive relation can be expressed as below :

ε̇ = ε̇
ela + ε̇

vis

= σ̇
ela/E +σ

vis/η

= σ̇/E +σ/η

(1.36)

Such a material tends exponentially to thermal equilibrium after an external stress pertur-
bation with a relaxation time τ :

τ = η/E (1.37)

Solution of the initial inhomogeneous differential equation Eq.1.36 is :

σ(t) = E
∫ t

0
dt ′γ(t− t ′)ε̇(t ′) fo a one-dimensional system (1.38)

with
γ(t) = e−t/τ (1.39)

It is used for example to model glasses near their melting temperature[MAR 14].
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Wave propagation in a homogeneous elastic medium

FIGURE 1.9: Generalized Maxwell model

2.3 Generalized visco-elasticity

2.3.1 Generalized-Maxwell model :

Fig.1.9 shows us a generalized Maxwell model[BRI 08, ROY 01] which consists of
one conservation branch (with only one spring) and N dissipation branches (with one
spring and one dashpot). As detailed later, it is simple to write the strain-stress relation in
the complex domain :

E∗(s) = E∞ +
N

∑
j=1

E j
τ js

1+ τ js
(1.40)

with s = iω+ ξ the Laplace frequency parameter (with ξ→ 0). Temporal expression of
the generalized-Maxwell model has the same form as Eq.1.38 but the γ(t) is :

γ(t) = 1+
N

∑
j=1

E j

E∞

e−t/τ j (1.41)

3 Wave propagation in a homogeneous elastic medium

3.1 Formulation

Let’s start from clarifying some notations. xi(i = 1,2, ...,n) denote coordinates where
n is space dimension. All our works are investigated in Euclidean space, so there exists
the relation that x1 = x, x2 = y and x3 = z. For displacement field : u1 = u, u2 = v and
u3 = w are respectively the displacement parallel to the axis x, y and z.

Combining Hooke’s law (Eq. 1.32) and the expression for linear strains (Eq. 1.30)
and supposing that the medium is isotropic, stresses can be expressed as a function of the
displacements ui as :

σi j = λ(
∂uk

∂xk
)δi j +G(

∂ui

∂x j
+

∂u j

∂xi
) (1.42)
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1. Numerical & theoretical methods

where the elastic constants λ and G are also called the lamé constants. The conversion
between the elastic moduli can be found in the Conversion formula.

Supposing now that the medium is homogeneous, that the medium is homogeneous
and isotropic, the elastodynamic equilibrium equation (∇ ·σi j = ρüi) can be given by
[MIC 15] :

G∇
2ui +(λ+G)∇(∇ ·ui) = ρüi (1.43)

where ∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is the Laplacian operator. The above equation is also called
Navier’s equation which expresses the propagation of free waves in an homogeneous,
isotropic and elastic medium.

We only consider waves propagating in the x-y plane indicating that the displacement
field remains invariant with respect to x3, i.e., ∂ui

∂z = 0.

Eq. 1.43 yields the set of equations :

G(
∂2

∂x2 +
∂2

∂y2 )u+(λ+G)(
∂2u
∂x2 +

∂2v
∂x∂y

) = ρ
∂2u
∂t2 (1.44)

G(
∂2

∂x2 +
∂2

∂y2 )v+(λ+G)(
∂2u
∂x∂y

+
∂2v
∂y2 ) = ρ

∂2v
∂t2 (1.45)

G(
∂2

∂x2 +
∂2

∂y2 )w = ρ
∂2w
∂t2 (1.46)

It is observed that Equations (1.44-1.46) split in two groups. Eq.1.44-1.45 are coupled
equations for u and v. They will describe wave motion in the propagation plane. Eq. 1.46
describes wave motion in the direction perpendicular to the plan x-y. Assuming a wave
propagating in the x direction. Fig. 3.1(a) and (b) show the longitudinal and transverse
waves. Such waves are named P and S waves. Fig. 3.1 (c) and (d) show the spacial waves
appearing at surface of a half-space with free boundary conditions : Rayleigh and Love
surface waves. Our work only focuses on volumic waves and not on surface waves.

3.2 Wave speed in a homogeneous elastic medium

In the above cases (a) and (b) shown in Fig.3.1, the waves propagate in the x direc-
tion and no deformation exists in plane y-z (∂ui

∂y = 0). As given in Ref. [MIC 15], the
displacement field depends only on x and time t :

u(x, t) = u(x± ct), v(x, t) = v(x± ct), w(x, t) = w(x± ct) (1.47)
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Wave propagation in a homogeneous elastic medium

FIGURE 1.10: Fundamental deformation patterns generated by Longitudinal (P), Shear
(S), Rayleigh and Love (SH) waves [MIC 15].

where c is the propagation speed of the wave. Combining ∂

∂y = 0 with Eq. 1.47, Eqs. 1.44-
1.46 can be rewritten as :

(λ+2G)
∂2u
∂x2 = c2

ρ
∂2u
∂x2 (1.48)

G
∂2v
∂x2 = c2

ρ
∂2v
∂x2 (1.49)

G
∂2w
∂x2 = c2

ρ
∂2w
∂x2 (1.50)

Equations 1.48-1.50 are uncoupled equations for the three components of the displace-
ment field and show the existence of two different waves speed c.

3.2.1 Longitudinal waves

Longitudinal waves correspond to the case where the displacements are parallel to the
direction of propagation as shown in Fig.3.1(a). The solution of c from the Eq. 1.48 is
characterized by the longitudinal wave speed cL :

cL =

√
λ+2G

ρ
=

√
K + 4

3G
ρ

=

√
E(1−ν)

ρ(1+ν)(1−2ν)
(1.51)
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3.2.2 Transverse waves

Transverse waves correspond to the waves where the displacements are orthogonal to
the propagation direction. There exist two transverse waves vibrating respectively in the
x-z and y-z plane (Eqs. 1.49 and 1.50) with a transverse wave speed cT :

cT =

√
G
ρ
=

√
E

2(1+ν)ρ
(1.52)

In 3D case, there are one longitudinal wave and two transverse waves. In 2D case, shear
wave in y-z plane exists no longer. In fact, since we will deal with two-dimensional pro-
blems with plane strain assumption, we also ignore the displacement in the z direction.

3.2.3 Phase velocity and group velocity

Wave speeds can be derived in many ways, the above being probably the simplest
one. They can also be defined through the dispersion relation (or phonon band structure),
which represents frequency ω as a function of wavevector k. In the band structure, the
branches starting from the (k,ω) point (0,0), three for 3D and two for 2D, are the acoustic
branches corresponding to the longitudinal and transverse modes. The ratio ω

k defines
the phase velocity at a given frequency. For a quasi-monochromatic wave-packet, energy
propagates not at the phase velocity but rather at the group velocity dω

dk . In a homogeneous
medium, acoustic branches are straight lines, so that the phase velocity equals to the group
velocity (ω

k = dω

dk ) and both are frequency-independent constants given by the Eqs. 1.51 or
1.52. However, in a heterogeneous medium with interfaces, the situation becomes more
complicated, not only the two speeds may be different, but also the speeds will depend on
the frequency. In the next section, I will give a brief introduction about the different types
of interfaces used in my thesis.

4 Heterogeneous materials with interfaces

Interface is a surface for 3D (or curve for 2D) with different materials properties on
both sides. In this thesis, I concentrate on the wave propagation in a heterogeneous me-
dium derived from the different interfaces. Specifically, I have a uniform homogeneous
matrix material in which inclusions with different mechanical properties to the matrix
are embedded. As shown in Fig.1.11, I illustrate three types of 2D interfaces : (a) elastic
inclusion, (b) Eshelby’s inclusion and (c) random elasticity.

4.1 Elastic inclusion

Consider a homogeneous linear elastic solid M with elastic tensor CM as shown in
Fig.1.11(a), let a sub-domain I with an interface Γ is also a homogeneous linear elastic
solid with elastic constant CI . In the case of elastic inclusions, inclusions have different

24 Haoming LUO

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



Heterogeneous materials with interfaces

FIGURE 1.11: Different interfaces in a heterogeneous medium

stiffnesses compared with matrix. The mismatch ratio of the stiffness will be denoted as
Ei
Em

where Ei (Em) is the Young’s modulus of the inclusions (matrix). This interface is es-
tablished due to the stiffness mismatch. Except that, the initial conditions and constitutive
relation are the same in both phases.

In this case, it is important to clarify the connection across the interface and the conti-
nuity conditions. Each inclusion in the composite assumed to be perfectly connected with
the matrix. There is no intermediate phase between them. In this context, the displace-
ments are continuous across the interface. Let us define [f ] as the jump of field f from
the inclusion to the matrix. For a perfect connection :

[u]Γ = 0 (1.53)

the perfect connection is ensured as long as we perform a nodal equivalence operation so
that at the interface the matrix and inclusion share the same nodes.

Stress tensor in the matrix :
σM =CM : εM (1.54)

Stress tensor inside the inclusion :

σI =CI : εI (1.55)

The stiffness ratio and the length of the interface are two factors contributing to the
heterogeneity.

4.2 Eshelby’s inclusion

Consider now a homogeneous linear elastic solid M with elastic tensor CM as shown
in Fig.1.11(b), let a sub-domain I with an interface Γ undergo a uniform permanent (in-
elastic) deformation, prescribed as "stress-free strain" or "eigenstrain" ε∗, which could be
due, for example, to a phase change, plasticity, or to thermal effects. The elastic tensor of
the inclusionCI can be identical to the matrix or not. In either, an interface is established
due to the mismatch of the strain across the interface in the stress-free state. The Eq.1.53
still holds true in the case of Eshelby’s inclusion[WEI 05, FRA 12].
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Stress tensor in the matrix :
σM =CM : εM (1.56)

Stress tensor inside the inclusion :

σI =CI : (εI −ε∗) (1.57)

with now εI = εM at the interface[FRA 12]. The eigenstrain causes in fact a surface force
at the interface between the inclusion and the matrix. In our case, we only consider the
homogeneous Eshelby’s inclusion (CI = CM), resulting in a surface force Fs = (CI :
ε∗).n with n is the normal vector at the interface.

Especially, for an ellipsoidal Eshelby’s inclusion, the relation between εI and ε∗ can
be expressed through a constant tensor as :

εI = S : ε∗ (1.58)

where the Eshelby tensor S only depends on the moduli C, the shape (aspect ratio) and
orientation of the ellipsoidal inclusion. It can be shown that Eshelby inclusion is equiva-
lent to an elastic inclusions (σ and ε must be the same in the two ellipsoids) :

σI = σH (1.59)

CI : (εI−ε∗) =CH : εI (1.60)

CI : (S−I) : ε∗ =CH : S : ε∗ (1.61)

where I the identity tensor. To ensure the equation holds, the moduli of the equivalent
elastic inclusion is thus

CH =CI : (S−I) : S−1 (1.62)

4.2 Random elasticity
Random elasticity is a generalized case of the elastic inclusion, as shown in 

Fig.1.11(c), each zone being an independent elastic solid with a random stiffness. Each 
zone is perfectly connected to the neighbor zones. In this thesis, we tune the Young’s mo-
dulus of each zone following a Gaussian distribution and the Poisson’s ratio of the entire 
heterogeneous medium will be supposed to be the same.

Stress tensor inside each elastic zone :

σn =Cn : εn, n = 1,2, ... (1.63)

The spatial statistic fluctuations of the Young’s modulus are assumed according to
a Gaussian distribution, which is the basis of heterogeneous-elasticity theory to model
glasses[MAR 13, SCH 15b].

After having presented the different tools used in the numerical calculations performed
in this thesis, we will now turn to formally talk about my work in the following chapters.
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Chapter 2

Acoustic attenuation in the presence of
elastic inclusions

Assuming elastic behavior in the matrix and in the inclusions
and perfect connection conditions, we present a FE numerical

simulation of the transient propagation of an acoustic
Wave-Packet in a 2D nanophononic material, which allows to

identify the effect of the elastic inclusions on the acoustic
attenuation length and thus on the transport regime for the

vibrational energy. Three parameters are studied : the rigidity
contrast between the inclusion and the matrix, the size of the

inclusions and the frequency of the incident wave-packet.
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2. Acoustic attenuation in the presence of elastic inclusions
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Model of bi-phasic materials : circular inclusions

1 Model of bi-phasic materials : circular inclusions

In this section, inspired by Fig. 2.1 corresponding to a nanostructuration, we used
Finite Element numerical calculations to study the vibrational properties of a 2D semi-
infinite elastic system with circular inclusions positioned along a cubic lattice. A para-
metric study of the acoustic attenuation of wave packets is performed in the nanocom-
posite : the roles of the rigidity contrast between the inclusion and the matrix, the size
of the inclusions, and the frequency of the wave-packet are studied. In fact, similar pho-
nonic structures have been investigated by J. Vasseur et al. [VAS 08, PEN 08, DEY 17],
which demonstrated the band gap in a phononic crystal constituted by cylindrical dots on
a homogeneous plate and the possibility of tailoring phonon band structures by shaping
spatiotemporal modulations of stiffness.

FIGURE 2.1: Transmission Electron Microscope image of a Zr-Cu-Al-Ti-Ni metallic
glass with nano- crystalline inclusions, taken from [TLI 17]

𝜕Ω௣: edge1

𝜕Ω௔𝜕Ω௨ Ω

𝜕Ω௣: edge2

FIGURE 2.2: 2D simulation model of a solid with circular inclusions : this semi-infinite
solid can be represented by only modeling only the part inside the red rectangule with
Periodic Boundary Conditions (PBC) and Perfect Matched Layers (PML) as drawn ; Grey
disks represent the inclusions.(Ω represents simulation domain, ∂Ω indicates boundary

conditions)
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2. Acoustic attenuation in the presence of elastic inclusions

1.1 Geometry
The computational model consists of 28 square blocs, aligned in the horizontal direc-

tion (as shown in Fig. 2.2 and Fig. 2.3) : the first two with only the matrix phase, then 
25 containing each a single circular inclusion, and finally another one without inclusion. 
The large number of squares is necessary for establishing the wave-packet and studying 
the transient behavior during its propagation from left to right. The size of each square is 
L=60 Å, thus determining the distance between inclusions. In the meantime, the radius of 
the inclusions will be considered as a control variable.

FIGURE 2.3: Schematic illustration of the central part of the sample for L=60 Å and
Φ = 2R = 20 Å : in yellow represents the matrix material, in red the inclusions. Periodic
reproduction of this sample along the vertical direction is assured by periodic boundary

conditions.

1.2 Materials properties
In order to be consistent with previous MD works of Beltukov et al [BEL 16, BEL 18],

we choose for the matrix material the amorphous silicon investigated there, assigning
to the matrix the elastic properties identified in those works. The matrix material is a
model amorphous silicon, linearly elastic with isotropic homogeneous elastic behavior
characterized by the Young’s modulus Em = 92.25 GPa, the mass density ρ= 2303 kg/m3

and the Poisson ratio ν= 0.34. For the inclusions, the Poisson’s ratio is supposed to be the
same, while the Young’s modulus Ei is taken as another control variable and defined as
Ei = Em× Ei

Em
, this latter being the stiffness ratio. We used also an isotropic, homogeneous

and linear elastic model for the inclusion here. For information, as given by Eqs.1.51 and
1.52, the speed of longitudinal wave in the matrix is cL = 7966 m/s, and the transverse
one is cT = 3856 m/s.

1.3 Boundary conditions

1.3.1 Load : wave-packets

The wave-packet is generated imposing a displacement on the left side of the first
square, and it is established in the first 2 squares before touching the first inclusions. The

30 Haoming LUO

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



Model of bi-phasic materials : circular inclusions

following 25 squares with circular inclusions constitute the useful area for the analysis,
while the last empty square allows for the implementation of the absorbing boundary
conditions. To produce the quasi-monochromatic propagating wave-packet (Fig. 2.4) at
the origin of the excitation energy, we impose the displacement on the left side of the
sample around x = 0 in a small time interval around t = 0 :

U(ω, t) =U0 exp(−(t−3t0)2

2t2
0

)sin(ωt) (2.1)

where U0 is a constant vector, ω is the frequency of this quasi-monochromatic excitation,
and t0 = π

ω
is the half period of the excitation. A displacement U0 parallel to the boun-

dary corresponds to a transverse excitation, while the one perpendicular to the boundary
to a longitudinal excitation. For the sake of simplicity, we will consider here only longi-
tudinal excitations. The amplitude U0 has been chosen as U0 = 4.9× 10−3 Å similarly
to what was done in the previous molecular dynamics simulations of propagating wave-
packets [BEL 18], small enough for preventing anharmonic effects. This choice will allow
for further comparisons of the results. In addition, it should be mentioned here that a li-
near constitutive behavior is employed in the Finite Element simulation, no anharmonicity
existing, as a results, the choice of U0 should not modify wave propagation phenomena
but only the amplitude of wave-packet.

0 2 4 6 8 10 12 14 16
-5

0

5
10-3

FIGURE 2.4: Wave packet imposed as the displacement of the left side of the sample, for
two different frequencies : 2 THz, 5 THz

Note : In the works of future chapters, we will use t0 = 3π

ω
, which gives a narrower

frequency band, therefore being more representative as a quasi-monochromatic wave pa-
cket. However, we checked that no significant disparity was observed for the quantitative
results such as the penetration length in the current chapter between whether t0 = 3π

ω
or

t0 = π

ω
.

1.3.2 PBCs & PMLs

We focused our study on a single alignment of inclusions :

• Periodic boundary conditions (PBCs) are imposed at the top and bottom of the
sample shown in Fig. 2.2 ; Lagrangian multipliers are used to realize the PBCs as
detailed in Sec.1.4.1.
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2. Acoustic attenuation in the presence of elastic inclusions

• Absorbing boundary conditions, or PML (Perfect Matched Layers) are imposed on
the right side, to avoid waves reflection. (cf. Sec.1.4.2)

1.4 Perfect connection between the matrix and the inclusions

Each inclusion of the composite is perfectly connected with the matrix. There is no
intermediate interface between them. In this context, the displacements are continuous
across the interface between the matrix and the inclusions ad shown in Eq.1.53.

1.5 Spatial and temporal discretization

In this work, we use the P-1 element which has quadrangle shape and has 4 nodes
on the corners. The pre-defined side length of quadrangle element has been chosen 1
Å for a wave packet frequency ω = 5 THz, which means that the wave has approxi-
mately 90 elements per wavelength in the matrix medium. As the frequency increases
and the wavelength becomes shorter, we have refined the mesh size accordingly. At-
tention should be payed in the case of Ei/Em > 1, where the increasing sound speed
leads to a shorter wavelength inside the inclusion, for a given frequency. Especially
for the extreme case Ei/Em = 10, wavelength in the inclusions decreases scaling as
1/
√

Ei/Em = 1/
√

10 ≈ 1/3.2, as such the wave has approximate 30 elements per wa-
velength at 5 THz. If, unfortunately, not enough elements are given, as a result, numerical
errors will accumulate and eventually lead to erroneous simulations.

We can get the space-time discretized form for a 2D plain strain problem (combined
with the central-difference time integrator) :

MÜn+1 = Fn+1−KU p
n − C̃ ˙̃Un+ 1

2
(2.2)

Here, K is stiffness matrix, M is lumped mass matrix, C̃ and ˙̃U are the damping matrix
and the velocity vector of the PML, respectively. F is a possible nonzero external force
vector. The indices n and n+ 1 are successive time steps, and the superscript p means
predictor. Time integration follows the Newmark central difference schema as presented
in Sec.1.3.2 Tab.1.1. The chosen time step is 1.59 fs and the simulations ends at 15.59 ps.

2 Equilibrium Vibrational Properties

We first characterize the vibrational response of our systems at equilibrium, before ap-
plying a traveling wave packet. We can compute the vibrational density of states (VDOS)
of the system and its vibrational modes by performing a spectral analysis, consisting
in diagonalizing the dynamical matrix. The dynamical matrix is defined as D = K−1M
[MIC 15].
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Equilibrium Vibrational Properties

2.1 Vibrational Density of States
The vibrational density of states (VDOS) corresponds to the model distribution. It is

defined as :

V DOS(ω) =
1
N

N

∑
i=1

δ(ω−ωi) (2.3)

with ωi spanning the spectrum of eigenfrequencies of the system.
The eigenvectors of the dynamical matrix are the vibrational eigenmodes (also called

normal modes), and the eigenvalues are the squared frequencies ω2
i of the related vibra-

tions [KIT 04]. This is done automatically using the command VIBR in Cast3M on suc-
cessive finite ranges of frequencies. The VDOS is then obtained by counting the number
of eigenfrequencies in the intervals with width ∆ν around each frequency ω.

V DOS(ω) =
1
N

N

∑
i=1

H(∆ν−|ω−ωi|) (2.4)

where H(n) is Heaviside function whose value is zero for negative arguments and one for
positive arguments, such as :

H(n) =

{
0, n < 0
1, n≥ 0

In Fig. 2.5 (a) we report the DOS for several rigidity contrasts ranging from 0.2 to 10,
calculated with ∆ν = 1 THz. In order to estimate the resolution of our calculation on the
basis of the chosen frequency interval width, we have calculated the DOS for different ∆ν,
going from 0.4 to 1 THz, as reported in the inset. It can be seen that the choice ∆ν= 1 THz
is reasonable and does not deteriorate too much the resolution. As usual in 2D systems
dominated by plane waves, the VDOS shows an initial ∝ ω dependence, but, due to the
presence of inclusions in our systems and finite dimension, it is then a non-monotonous
function of the frequency. It is interesting to spatially solve the VDOS and separate the
contribution of the matrix from the one of the inclusions. For that, we give the definition
of the partial VDOS (PDOS) :

PDOSM(ω) =
1
N

N

∑
i=1

δ(ω−ωi)( ∑
n∈M
‖ui(n)‖2) (2.5)

and

PDOSI(ω) =
1
N

N

∑
i=1

δ(ω−ωi)(∑
n∈I
‖ui(n)‖2) (2.6)

where ui(n) is normalized normal vector for node n, with ∑n∈M ‖ui(n)‖2 +

∑n∈I ‖ui(n)‖2 = 1. Node n may belong to I (the inclusion), to M (the matrix) or to the
both (on the interface). The fraction of the PDOS, f (ω), indicates the percentage of the
PDOS in the total VDOS :

fM(ω) =
PDOSM(ω)

PDOSM(ω)+PDOSI(ω)
=

∑n∈M ‖ui(n)‖2

∑n∈M ‖ui(n)‖2 +∑n∈i ‖ui(n)‖2 (2.7)

Haoming LUO 33

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



2. Acoustic attenuation in the presence of elastic inclusions

and
fI(ω) = 1−PDOSM(ω) (2.8)

This is shown in Fig. 2.5 (b), for Ei
Em

= 0.2 and R = 25 Å. Since the inclusion is
much softer, its vibrational modes are softer than the ones of the matrix, and indeed its
contribution to the VDOS is limited to frequencies smaller than ≈ 6 THz. The relative
ratio of the matrix to the inclusion contribution to the VDOS is reported in Fig. 2.5 (c)
for R = 25 Å and different values of Ei

Em
. It is clear that the frequencies corresponding to

a specific response of the inclusions progressively increase with the inclusion rigidity. In
the most rigid case, when Ei

Em
= 10, the high frequency modes are mainly supported by the

inclusions, while in softer cases, the response of the inclusions is mainly located below 6
THz. Only for a very weak rigidity contrast, such as Ei

Em
= 1.2, it is not possible to clearly

identify a specific range for a dominating contribution from the inclusions. From this, we
can conclude that by exploring rigidity contrasts ranging from 0.2 to 10, we are able to
observe a phenomenology corresponding to all possible situations : from the case where
the low frequency modes are mainly supported by the inclusions (low Ei

Em
) up to the case

where the the inclusions resonate at frequencies higher than the response of the matrix
( Ei

Em
= 10).

2.2 Representative normal modes
Fig. 2.6 allows to visualize the spatial extent of the eigenmodes for different frequen-

cies and rigidity contrasts.The low frequency vibrations for Ei
Em

= 0.2 are clearly supported
by the inclusions, that appear to become mute at high frequency, while the matrix domi-
nates the response at low frequency in the most rigid system with Ei

Em
= 10. If the effect

is stronger for stronger rigidity contrasts (0.2 and 10), in all cases the presence of the in-
clusions affects the eigenmodes, giving rise to a very inhomogeneous spatial distribution,
in some frequency ranges. Sometimes, it becomes difficult to locate the interfaces in the
complex shape of the vibration modes (see for example Ei/Em=0.2 and ν = 0.790191 THz
in Fig. 2.6-a) The question thus arises how such complex spatial vibrational heterogeneity
can affect the transient propagation of traveling wave-packets in our systems.
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Equilibrium Vibrational Properties
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FIGURE 2.5: From top to bottom : (a) The VDOS for R = 25 Å and Ei
Em

=
0.2,0.4,1.2,10.0 at discrete frequencies ν with width ∆ν = 1 THz. Inset : VDOS vs ν

for Ei
Em

= 0.2 and R = 25 Å. The red line corresponds to ∆ν = 1 THz, while the shaded
region to a ∆ν varying between 0.4 and 1 THz (b) VDOS (blue) and partial DOS of inclu-
sions (red) for R = 25 Å and Ei

Em
= 0.2 (c) Fraction of VDOS supported by the matrix for

R = 25 Å and different values of Ei
Em

, at discrete frequencies ν with ∆ν = 1 THz (Triangle,
square, diamond and pentagram symbol are used to indicate Ei

Em
= 0.2,0.4,1.2 and 10.0

respectively).
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2. Acoustic attenuation in the presence of elastic inclusions

FIGURE 2.6: (a) Visualization of the normal modes obtained in the system with Ei
Em

= 0.2
and R = 25 Å. The frequencies of the characteristic normal modes (from top to bottom)
are : ν = 0.325195 THz (ω = 2πν = 2.04 THz) ; ν = 0.790191 THz (ω = 4.96 THz) ; ν =
2.00000 THz (ω = 12.57 THz) ; ν = 3.99998 THz (ω = 25.13 THz) ; ν = 6.00019 THz (ω
= 37.70 THz) ; ν = 14.22239 THz (ω = 89.36 THz). (b) Visualization of one normal mode
obtained in the system with Ei

Em
= 10 and R = 25 Å. The frequency of the mode is : ν =

2.00281 (ω = 12.58 THz).

3 Wave-Packet Propagation : Different Regimes

In this section, I will focus on wave propagation in a nanocomposite material. I will
show evidence of three different regimes : propagative, diffusive and localized, induced
by the presence of interfaces. Firstly, I present the envelope of the kinetic energy which
shows the maximum amplitude of the kinetic energy at each location, as the wave-packet
goes through the sample. At the same time, visualization of the results (snapshot of wave
propagation) are given to have more intuitive pictures about them. Then, mean-free path
and diffusivity are computed for the propagative and diffusive regime, respectively. Fi-
nally, a parametric study of the different regimes of acoustic transfer is performed as a
function of the frequency (2, 5 and 7 THz) versus the relative rigidity Ei/Em and the size
of the inclusions R. The result is displayed on a phase diagram where the three aboved
mentioned regimes appear, as well as mixed regimes dicussed in the text.

3.1 Envelope of the kinetic energy
The wave-packet created on the left side of the sample, propagates along the sample, in

the x direction. Due to the presence of interfaces, and related spatial inhomogeneities, the
wave-packet wave-vector k does not remain constant, the wave-packet being scattered by
the inclusions. To understand how such scattering affects the energy transfer, we measure
the envelope of the kinetic energy induced in the system by the propagation of the wave-
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Wave-Packet Propagation : Different Regimes

packet, averaged over the y-direction. The energy envelope is defined for each excitation
frequency ω as

Pω(x) = max
t

Ek(x, t) (2.9)

where Ek(x, t) is the instantaneous kinetic energy supported by the frame located in x with
width ∆x = 2 Å.

As an example, we report in Fig. 4.4 the kinetic energy envelope (red curve) for longi-
tudinal excitations with inclusions radius R = 25 Å at a wave-packet frequency of ω = 5
THz, for different rigidity contrasts. Note that the wavelength for transverse plane waves
in the matrix at this frequency is 2πcT/ω = 48 Å, and the wavelength for longitudinal
plane waves in the matrix is 2πcL/ω = 100 Å. Instantaneous wave-packets (green and
blue curves) are shown for clarity. The positions of the inclusions are indicated by the
gray area delimited by dotted lines. It is clear that the envelope presents oscillations cor-
related with the presence of interfaces. Moreover, the inclusions cause a more or less effi-
cient attenuation of the kinetic energy along the main direction of propagation. Since the
simulations are performed at constant energy (no damping term in the numerical scheme),
the observed attenuation is not related to a global dissipation of energy, but it is due to a
redistribution of the kinetic energy in directions different from the one of propagation, so
that, when averaging this effect along the transverse y-direction, an effective attenuation
along the x-direction appears.

To confirm our interpretation of the energy envelope behavior, we report in Fig. 2.8
the displacement field at t=7.9463 s for ω = 5 THz and different rigidity contrasts. Here
we can see that at this frequency for a soft inclusion (Fig. 2.8 (a)) the wave-packet looks
pinned inside the inclusions, while for no rigidity contrast (Ei = Em) it is insensitive to
their presence and propagates without any perturbation (Fig. 2.8 (d)). It is worth under-
lying that all snapshots have been taken at the same time, which clearly shows that the
effective velocity of the wave-packet increases with the inclusion rigidity, so that when
inclusions are more rigid than the matrix the wave-packet is accelerated (Fig. 2.8(e)).
Moreover, except for the case of no contrast, the wave-packet is always spread, and thus
attenuated, along the x-direction.

3.2 Different propagation regimes
In order to understand the energy transfer along the x-direction in the different cases,

we calculate the average position of the wave-packet by the weighted arithmetic average

〈x〉(t) = ∑i xiEk(i, t)
∑i Ek(i, t)

(2.10)

Considering this average position, three propagation behaviors can be identified :

1. Propagative regime 〈x〉(t) ∝ Vt

2. Diffusive regime 〈x〉(t) ∝ (2Dt)
1
2
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2. Acoustic attenuation in the presence of elastic inclusions
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FIGURE 2.7: The envelope of kinetic energy for different rigidity contrasts for ω =

5 THz, R = 25 Å is reported as a red line, while the instantaneous distribution of ki-
netic energy is given at t=7.9463 ps (green dotted line) and at t=12.7174 ps (blue line).

Gray areas delimited by dotted lines indicate the positions of the circular inclusions.
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Wave-Packet Propagation : Different Regimes

FIGURE 2.8: Snapshots of 5 cases at the same time (t = 1.27171× 10−11 s) with ω =

5 THz and R= 25 Å (dashed cirles indicate the positions of the inclusions) (a)Ei/Em = 0.2
(b) Ei/Em = 0.4 (c) Ei/Em = 0.6 (d) Ei/Em = 1.0 (e) Ei/Em = 2.0.
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2. Acoustic attenuation in the presence of elastic inclusions

3. Localized regime 〈x〉(t) ∝ cst

The propagative regime is also called ballistic regime in literature, from which an
evident speed of the propagating wave can be observed. In this regime, interfacial effects
being weak, wave-packet can still maintains its general shape and the major parts moves
forward with few parts being scattered from their original propagation direction. In the
diffusive regime, wave-packet encounters strong scattering, being dispersed, stretched and
separated. Some parts move forward, but more is left behind. No longer a single speed can
be attributed for this wave-packet, and its propagation behavior is analogous to a diffusive
thermal transport, i.e. the Fourier’s Law, from which a diffusivity is defined. The last
regime is the localized one, for which the average position oscillates around a constant
value for a long time.

For example, fig. 2.9(a) shows a representative set of different regimes of energy trans-
fer at ω = 5 Thz :

• The case Ei
Em

=0.4 (green dots) is a clear example of diffusive regime where 〈x〉∝
√

t ;

• The case Ei
Em

=1.2 (yellow dots) yields to a propagative regime 〈x〉= vL · t.

The other cases shown in this figure are more complex :

• The most rigid case Ei
Em

=10 (red dots with blue line) is initially similar to a diffusive
regime, but becomes progressively propagative,

• In the very soft case Ei
Em

=0.2 (blue line) the wave-packet is initially pinned (〈x〉 =
cste) and progressively gets unpinned following a diffusive motion.

For Ei
Em

=0.2, as shown in Fig. 4.4 (a), the attenuation is extremely efficient and the
energy seems pinned at the interface between the first inclusion and the matrix, on the
inclusion’s side. Even if its energy is not strictly localized, the pinning induces a small
delay in the energy transfer.

3.3 Phase diagram of propagation regimes
We have build a frequency dependent phase diagram for different dynamical regimes

based on the effective time dependence of energy transportation : propagative, diffusive,
localized or mixed. The different regimes of energy transfer and their dependence on the
parameters are summarized in Fig. 2.10 : here it can be seen that when increasing rigi-
dity contrast and frequency, an increasingly complex behaviour arises. Softer inclusions
induce the most complex behaviour over large frequency ranges. The departure from the
propagative regime is more pronounced for large rigidity contrasts (especially for softer
inclusions) and for high frequencies (when the incident wavelength becomes comparable
to the inclusions size). This effective behaviour results from various phenomena : scatte-
ring at matrix/inclusion interfaces, waves interference[XIE 18, TIA 10, MAI 17], waves
reflexion on curved surfaces inducing billiard motion[SCH 98], gallery modes along the
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Wave-Packet Propagation : Different Regimes

1 5 10 15
101

102

103

104

(a) Center position

5 10 15
101

102

103

(b) Standard deviation

FIGURE 2.9: (a) Time dependence of the wave packet center position for different rigidity
contrasts. We report as well the expected behaviors for propagative regime 〈x〉(t) ∝ Vt
(green line), diffusive regime 〈x〉(t) ∝ (2Dt)

1
2 (yellow line) and localized regime 〈x〉(t) ∝

cst (red line). (b) Standard deviation versus time calculated by Eq.2.13.
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2. Acoustic attenuation in the presence of elastic inclusions

interfaces[MCC 92, VER 06], or acoustic resonances of the inclusions. In any case, the
resulting transfer of energy belongs in a first approximation to one of the four dynamical
regimes mentioned above.
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FIGURE 2.10: Visualization of the different dynamical regimes of the Wave Packets
(propagative, diffusive, localized), as a function of the radius R of the inclusions and of

the relative rigidity Ei/Em for frequencies ω ranging from 2 to 7 THz.

3.4 Meaningful quantities for describing different dynamical re-
gimes

Different dynamical regimes lead to very different behaviors of the envelope of kinetic
energy as a function of the wave-packet path. As such, we can identify different physical
quantities for characterizing the propagation of the wave-packet in the different regimes.
For example, in case of a weak rigidity contrast (Fig. 4.4 (c)) a global exponential atte-
nuation similar to a Beer-Lambert law is observed[SWI 62, BEL 18]

Pω(x) ∝ exp(−x/Λ(ω)) (2.11)

while for larger rigidity contrasts (Fig. 4.4 (b) and (d)), the algebraic attenuation of the
envelope

Pω(x) ∝ 1/x (2.12)
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Wave-Packet Propagation : Different Regimes

is the signature of a diffusive process [BEL 18]. The spreading of the envelope can be
quantified by the standard deviation :

σ(x, t) =
√
〈(x−〈x〉)2〉

=

√
∑i(Ek(i, t)× x2

i )

∑i Ek(i, t)
−〈x〉2

(2.13)

where xi is the position of the ith frame with width ∆x in the x-direction, and Ek(i, t) is the
instantaneous total kinetic energy supported by that frame. The spreading σ(x, t) can also
be rewritten

σ(x, t) =
√

R2(t)−〈x〉2 (2.14)

by introducing R2, the squared width [BEL 16] defined as

R2(t) =
∫

∞

−∞
x2E(ω,x, t)dx∫

∞

−∞
E(ω,x, t)dx

(2.15)

In case of a diffusive process, σ2(t) is proportional to the time t, with a slope related to
the one-dimensional diffusivity.

σ
2(t) = 2D(ω)t. (2.16)
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FIGURE 2.11: Diffusivity obtained from Eq. (2.16), for different values of the rigidity
contrast Ei/Em.

The diffusive spreading of the wave packet can thus be quantified by the diffusi-
vity parameter D (Eq. 2.16). The dependence of D on the rigidity contrast is shown in
Fig. 2.11 for ω = 5 THz. It is globally increasing with ω but exhibits a deep minimum
for Ei/Em ≈ 1. The most interesting range for reducing energy transfer thus appears to be
the low-Ei/Em range, where the low diffusivity is not counterbalanced by an important

Haoming LUO 43

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



2. Acoustic attenuation in the presence of elastic inclusions

propagative contribution, as it is the case for Ei/Em ≈ 1, whose dominant contribution
to energy transfer is the propagative one. Note that the largest spreading of the wave-
packet takes place in the highest rigidity contrast case, Ei/Em = 10 (Fig. 2.9(b)), due to
the wave-packet acceleration within the inclusions.

In order to get a quantitative insight on the energy transfers, comparing the different
dynamical regimes, in presence of inclusions with rigidity contrast, we can define a para-
meter describing the spatial penetration of the energy envelope beyond the effective shape
of this latter. This is illustrated in the next section, where we extend the study mainly re-
ported here for ω = 5 THz and R = 25 Å, to a large range of inclusions volume fractions
and excitation frequencies and perform an extensive parametric study of this spatial atte-
nuation.

4 Penetration Length

Depending on the dynamical regime, the characteristic length that describes energy
transfer is not unique, which makes it difficult to compare different regimes. For example,
in the propagative regime the characteristic length is the mean free path Λ(ω) which can
be fitted by the Beer-Lambert law as mentioned above. In the diffusive regime, the energy
envelope follows an 1/x decay without any intrinsic lengthscale, which depends only on
the initial energy [BEL 18]. The ability for heat transfer is then better quantified by the
diffusivity (see previous section), which directly enters in the computation of the ther-
mal conductivity, although absent from the attenuation behavior of the envelope. Finally,
in the case of an energy envelope pinned over a small length lpin, this latter will be the
characteristic length. In order to quantify the ability of a system for energy transfer, in-
dependently on the dynamical regime, we look at the long-time penetration length. In the
following, the penetration length will be presented and be used to compare the attenuation
ability in the different regimes.

4.1 Definition of the Penetration length

The penetration length is defined as the traveled length above which the energy per
unit length remains always smaller than the maximum excitation energy per unit length
divided by e :

Pω(x≥ lp)≤
1
e

Pω(x = 0) (2.17)

This definition allows us to take into account the presence of oscillations in the energy
envelope, which would mine the standard definition of penetration length. Concerning
the three regimes cited above, this length will correspond to the mean free path in the
propagative case, be very close to lpin for a pinned energy envelope, and be representative
of the energy spread in the sample in the diffusive case. We have measured the penetration
length lp as a function of the inclusion radius, ranging from 10 to 25 Å (corresponding to
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Penetration Length

volume fractions from 8.7% to 54.5% in 2D), of the rigidity contrast, ranging from 0.2 to
10, and of the excitation frequency, ranging from 2 THz to 14 THz.

Note : In this work, we only measured the penetration length on the original en-
velopes. Due to the large oscillations causing local maximum energy (’peak’), multiple
measurements on smoothed envelopes (with different smoothing levels) would be more
convenient. We have made these modification in our analysis in other works, which has
shown us that only few cases are affected by this local peaks. As such, the current measu-
rements are still convincing.

4.2 Penetration length vs Ei
Em

& R for ω =5 THz

In Fig. 2.12 we report the radius and rigidity contrast dependence for a wave-packet
of frequency 5 THz, as representative for all frequencies. First, it can be seen that the
penetration length decays with the radius R of the inclusion, that is, with the size 2πR of
the interface. The penetration length reaches a minimum close to R = 25 Å. For larger
radii, the inclusions will be separated by less than a few angstroms, almost touching each
other, thus opening a continuous path for the acoustic energy transfer and consequently
increasing the attenuation length lp.

Second, the penetration length strongly decreases also with the rigidity contrast, but
there is a clear asymmetry between the case Ei > Em and the case Ei < Em. Indeed, the
more rigid inclusions induce an acceleration of the acoustic waves (larger sound velocity
as shown in Fig. 2.8) together with a marked broadening of the wave-packet (Fig. 2.9(b)),
and these two effects result in an increased penetration length. It can be concluded that for
the same rigidity contrast (same ratio of acoustic impedances), the softer inclusions will
more efficiently limit the penetration of the wave-packet inside the sample. However, the
penetration length is not strictly a monotonous function of the rigidity contrast, but goes
through a minimum, whose value depends on the excitation frequency. For ω = 5 THz
and R = 25 Å for example, two minima can be found, close to Ei/Em = 4 and Ei/Em =
0.4. Note that in all cases, the attenuation length remains larger than the inclusions size,
approaching the distance between three inclusions at its minimum value.

4.3 Penetration length vs Ei
Em

& ω for R=25 Å

In Fig. 2.13 we report the frequency and rigidity contrast dependence for a wave-
packet of radius 25 Å, as representative for all radii. At 5THz, the penetration length for
a more rigid inclusion is always longer than for soft inclusions, it is however possible to
reverse the situation and get a more efficient sound attenuation with rigid inclusions if
another excitation frequency is used. Indeed, as shown in Fig. 2.13 (a), the penetration
length depends on the frequency and, for rigid inclusions, displays a clear minimum at
7 THz. This effect is due to a resonance of the inclusions that will keep the acoustic energy.
Indeed, as seen in Fig. 2.13(b), the frequency of the minimum in the penetration length
evolves linearly with the sound velocity within the inclusion, meaning that inclusions
specific vibrations play a key role in determining the frequency dependence of lp. This
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2. Acoustic attenuation in the presence of elastic inclusions
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(a)

(b)

(c)

(d)

FIGURE 2.13: (a) Penetration length lp(ω) for Ei
Em

= 0.2, 0.4 and 10.0, with R = 25Å. In-
set : mean free paths Λ vs ω for Ei

Em
= 1.2 and R = 25 Å. (b) Frequency, which corresponds

to the minimum lp for each Ei
Em

for R = 25. (c) Color representation of the penetration
length in the parametric space (Ei/Em,ω) for R = 25 (d) Idem in a 3D plot.
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2. Acoustic attenuation in the presence of elastic inclusions

resonant effect is reported in the Fig. 2.13 (c) with white long-dashed line showing the
proportionality in the minimum frequency with the sound velocity (in log-linear scale).
A 3d plot (Fig. 2.13 (d) ) underlines this non-monotonous dependence of the penetration
length on the frequency, especially in the high rigidity case that appears to be the most
selective with the frequency.

To conclude this part, our numerical measurements have allowed us to definitely as-
sess the following : i) far from a resonance of the inclusions, the penetration length will
decrease with the interface size, provided that there is no inclusions percolation, ii) the
attenuation is globally more efficient for softer inclusions, apart from specific excitation
frequencies. The dependence of the penetration length on the three investigated parame-
ters (interface size, rigidity contrast and excitation frequency) is however complex and
not monotonous, although it exhibits a sufficiently smooth behavior. It should thus exist a
continuous trajectory in the three-parameter space relating local minima of the penetration
length, and suggesting an efficient optimization of the acoustic attenuation.

5 Discussion and conclusion

In the previous parts, we have shown that wavepackets dynamics results from a com-
plex mixture of scattering, resonances and propagation. The deviation from the initial
direction of propagation leads to an effective attenuation of the energy in the direction of
propagation, also described as an apparent dissipation in the transient regime. The goal
of our study was to perform a systematic parametric study of this apparent attenuation,
using modelisation tools related to continuum mechanics approaches. Our numerous fi-
nite element calculations have revealed that the dependence of the attenuation length on
the different parameters is far from simple, and exhibits the following non monotonous
behaviours : 1) with respect to the volume fraction, and thus the interface area, sugges-
ting the existence of optimal inclusions radius and interface area, allowing for an efficient
scattering without leading to any percolation between the inclusions ; 2) with respect to
the rigidity contrast. Softer inclusions clearly appear as more efficient for energy attenua-
tion, but the rigid inclusions are also able to pin the vibrational energy, and thus suddenly
decrease the attenuation length, at specific frequencies ; 3) with respect to the excitation
frequency, as due for example to the previously mentioned inclusions resonances, which
contribute to pin the energy at a given frequency or also to the reduction of the wavelength
which becomes comparable with the nanostructure characteristic length (radius and inter-
inclusions distance).

It is shown here that systems with softer inclusions have more effect on a global at-
tenuation averaged over all frequencies, thus contributing clearly to decrease the thermal
conductivity. The same conclusion holds for the diffusivity that increases with the inclu-
sions rigidity when the diffusive regime matters.

The continuum mechanics description of nano-composite materials used here is
clearly a simplified description of real systems, both perfectly periodic nanophononic
materials and nanocomposites with randomly distributed inclusions such as the one in
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Discussion and conclusion

Fig. 2.1, since only interfacial effects on the acoustic attenuation and thermal diffusi-
vity are here taken into account with model interfaces. Other scattering sources such as
anharmonicity, thermal activation, or disorder are all neglected, as well as the acoustic dis-
persion due to atomic discretization. Despite such well-circumscribed simplifications, our
parametric study uses continuum calculations to catch the physics behind energy transport
in nanophononic materials and can serve as a guide for materials design and optimization.
The model can be used as a basis that could be improved to take progressively into ac-
count additional effects. Looking at Fig. 2.13 for example, it is clear that our material can
be optimized for energy transport enhancement or inhibition, by choosing the parameters
in order to enhance or reduce the acoustic attenuation (the same for the diffusivity) at
a given wave-packet frequency. Interestingly, the figure suggests also that such a system
could be used as acoustical spectrometer : the attenuation length shows a marked decrease
at a characteristic frequency depending on the rigidity ratio, especially in the case of tou-
gher inclusions. A systematic backup of the results for given sets of parameters could now
be used to perform real time simulations [LU 18a, LU 18b].

The generalisation of our results to amorphous-based nanophononic or nanocomposite
materials, such as the one reported in Fig. 2.1, is however not so trivial, as a strong energy
dissipation due to structural disorder is already present even in the absence of interfaces
[BEL 18, DAM 15]. Such materials being today at the focus of an intense research for
technological applications, it will be of interest to extend the present parametric study to
amorphous/nano-crystalline composites, in order to assess the thermal transport regime in
presence of a strong intrinsic energy dissipation together with the artificially introduced
(through the nanostructuration) dissipation channel. This will likely require a continuum
description of the materials mechanical properties using a frequency dependent visco-
elastic constitutive law [SCH 15a, LUO 20].

Finally, it is worth noticing that these results could have direct applications for high
frequency nanophononic materials as acoustic filters for example. Such an approach is
also useful to identify the general trends affecting the phononic contribution to thermal
conductivity. It gives however an overestimation of the thermal conductivity, since more
quantitative calculation needs to take into account the atomic scale dispersive contribu-
tion to the vibrational density of states, together with atomic scale scattering processes
controlling the diffusivities in the strong diffusive regime at THz frequencies in glasses.
Within this clearly identified limitation, this parametric study on attenuation can be used
to optimize different properties : for example the acoustic attenuation at a given frequency,
but also the diffusivity of kinetic energy, and thus the thermal conductivity.
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Chapter 3

Mechanical response and acoustic
attenuation for different types of

interfaces

Four additional types of interfaces are implanted in our FE
codes : the elastic inclusion with dendritic interface, the

Eshelby’s inclusion, the disorder porous medium and random
elasticity. Different studies on the mechanical response and/or
acoustic attenuation have been carried out assuming elastic
behavior in the matrix. The four themes are independent, but
they are intimately related : they all allow exploring how to
simulate different interfacial effects on acoustic resonance,

wave packets propagation and apparent attenuation.
Depending on the application scenarios, these studies provide

a wider range of ideas for the subsequent research.
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Dendritic inclusion

———————————————————————

1 Dendritic inclusion

In this work, we look at a multi-branching tree-like shaped, dendritic structure,
whose fractal property determines a high interface density. A SEM image of the as-cast
Ti45Zr25Nb6Cu5Be17Sn2 is shown in Fig.3.1[ZHA 16]. Intuitively, this high-interface-
density composite is ideal material to enhance phonon-interface scattering compared to
the simple geometry. But a deep understanding of its dynamic properties is still lack, a
out-of-equilibrium acoustic wave propagation in such medium is needed. The dendrite
phase distributes homogeneously in the glass matrix. In the following, we will firstly give
a brief presentation of the preparation of the sample and its real materials properties. Then,
instead of looking into the whole domain, we select one characteristic cluster of dendrites
based on which we will reconstruct the mesh and study the shape-induced impact on the
wave propagation using FE simulation. Parametric studies, similar to the work for the
circular inclusion in the Chap.2, will be done for the matrix with the dendritic inclusion,
tuning the rigidity contrast Ei/Em and the frequency ω of the wave-packets. Two extreme
cases of the rigidity contrast will be considered : Ei/Em = 0.2 and 10.0.

FIGURE 3.1: Cross sectional SEM images of the as-cast Ti45Zr25Nb6Cu5Be17Sn2, the
dendrite-phase (light gray) distributes homogeneously in the glass-matrix (dark gray).

1.1 Dendrite phase in metallic glass
Bulk metallic glasses (BMGs) are promising structural materials because of their

excellent properties such as high yield strength, excellent corrosion resistance and low
stiffness[ZHA 16, JOH 99, QIA 16b, INO 11]. However, BMGs lack ductility and al-
ways fail in an apparently brittle manner, which seriously limits their applications
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3. Mechanical response and acoustic attenuation for different types of interfaces

[QIA 17, SCH 07, SCH 09, QIA 16a]. The origin of this poor ductility is the strong spatial
localization of plastic rearrangements, likely to line up along shear bands. Recently, in-situ
introducing a second ductile phase into the glass-matrix, i.e., metallic glass matrix com-
posites (MGMCs), has been reported to inhibit the catastrophic failure due to the propa-
gation of shear bands and thus improve the global plasticity. In-situ formed β-Ti dendrite-
phase displays a plastic strain of 6%[HAY 00, GEN 20]. A larger dendrite-phase size of-
fers higher ductility but decreases the yield strength of composites. In addition, the alloy
compositional design could be used to modulate the mechanical properties of the BMG,
indicating a possibility of tuning, for example, the stiffness ratio Ei/Em as discussed in
the last chapter. Besides the improvement of the ductility, the high density of interfaces
in such composites has attracted our attention, which has potentially good sound atte-
nuation performance due to the phonon-interface scattering. Our collaborator R.Yue from
the Laboratory of Solidification Processing of NWPU has provided some SEM images of
the Ti-based metallic glass containing dense dendrite phase[ZHA 16, XU 18]. The pre-
paration and mechanical properties of these materials will be presented in the following.
However, for our FE simulations we have chosen to use the same mechanical properties as
in Chapter.2, referring thus to a well known system. This choice is motivated by the pos-
sibility to compare wave-packet propagation results on circular inclusions with the ones
on dendritic inclusions and thus get a direct understanding of the impact of a fractal-like
interface shape.

1.1.1 Material composition and preparing process

Ingots with nominal composition of Ti45Zr25Nb6Cu5Be17Sn2 are prepared by arc-
melting the mixture of high purity elements (>99.9wt%) under a Ti-gettered argon at-
mosphere. The ingots were re-melted at least five times to ensure the homogeneity. Plate
samples (5×20×60, mm) are prepared by casting into a water-cooled copper mold. The
dendrite phase (light gray regions) was found to distribute uniformly within the feature-
less glass matrix (dark gray regions). Volume fractions and sizes of the dendrite phase are
analyzed by the Image-Pro Plus software and resulting in a volume fraction 65.8±2.0.

1.1.2 Mechanical properties

Alloy σy (MPa) εy (%) σu (MPa)
Ti45Zr25Nb6Cu5Be17Sn2 913 1.44 1521

εu (%) E (GPa) G (GPa) ν

10.12 85.23 ± 0.22 31.23 ± 0.13 0.365 ± 0.005

TABLE 3.1: Mechanical and intrinsic properties of the Ti45Zr25Nb6Cu5Be17Sn2 BMG
composites. Yielding strength (σy), yielding strain (εy), ultimate tensile strength ( σu),
tensile strain till necking (εu), Young’s modulus (E), shear modulus (G) and Poisson’s

ratio (ν) [XU 18].
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Dendritic inclusion

Phase component E (GPa) H (GPa)
Dendrite-phase 86.4 ± 4.1 3.78 ± 0.39
Glass-matrix 113.8 ± 2.5 6.13 ± 0.41

TABLE 3.2: Young’s modulus (E) and Hardness (H) of the dendrite-phase and glass-
matrix in the Ti45Zr25Nb6Cu5Be17Sn2 BMG composites measured by the nanoindenta-

tion. [ZHA 16].

1.2 Reconstruction of the dendritic shape inclusion

1.2.1 SEM image to FEM mesh

In the present work, instead of looking at the whole dendrite domain, we focus on a
cluster of dendritic structure as shown in Fig. 3.2(1) which is extracted from Fig. 3.1. It is
interesting to investigate on this representative zone whose global shape seems to be com-
parable to a circular inclusion, while its internal tree-like structure may induce different
acoustic features. To this aim, a non-dimensional analysis is expected to be carried out
by scaling the above cluster of dendrite and the circular inclusion to a quasi-equivalent
dimension. As shown in Fig. 3.2, this cluster of dendrite is encapsulated inside a square
block. The square block containing a dendritic inclusion is then used as elementary brick
in the Finite Element simulation.

(1) (2) (3)

(4)(5)(6)

FIGURE 3.2: Flowchart from SEM to the finite element model : (1) Region of interest
extracted from SEM image ; (2) Pixel-level labeling using Matlab toolbox Image Labe-
ler ; (3) Binary image ; (4) Contour detection ; (5) Independent zone detection ; (6) Mesh

generation.

The imaging procedure from the SEM image to a Finite Element mesh is : (1) The
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3. Mechanical response and acoustic attenuation for different types of interfaces

region of interest (ROI) is selected and extracted from the original SEM image and is
illustrated in Fig.3.2, as said previously, the ROI has a global shape comparable to a cir-
cular shape. (2) Using Matlab toobox Image Laberler, a pixel-level labeling is manually
done in which pixels belonging to either the dendritc inclusion or to the matrix are labe-
led accordingly. Of course there are human factors in the steps of determining the two
areas, but it provides a better result than any other automatic imaging methods I have
tried like Canny edge detector [CAN 86], level sets[RON 02], region growing [PAL 93],
watershed[COU 09], etc. (3) The binary labeling information is then transformed into a
binary image in which redundant parts are removed. The ROI is the white zone and the
matrix is the black zone. (4) Contour detection gives accurate interfaces between the den-
dritic cluster and the matrix, and the width of the interfaces is one pixel. (5) The interfaces
are segmented into separate zones, and each zone consists of a closed curve. Here, we have
17 independent zones. (6) To form the final geometry, we sequentially import pixels coor-
dinates of the 17 zones into COMSOL Multiphysics to create interpolation curves. Each
closed curve creates a part of the inclusion, and all those parts form the dendritic inclu-
sion inside which mechanical properties are homogeneous. The surrounding zone forms
the matrix whose mechanical properties are different from the inclusion. Finaly, P-1 tri-
angle elements are employed to generate the displayed elementary mesh including both
the inclusion and the matrix. It is essential that the number of nodes on the four bounda-
ries of the square are defined a priori as the same and the nodes are equally spaced, for
the reason of compatibility given that we will copy and arrange this elementary mesh in
the horizontal direction and implement the periodic boundary condition on the upper and
lower boundaries as shown in Fig 3.3.

1.2.2 Volume fraction of the inclusion

Beside the dendritic inclusion, we also prepare another model with circular inclusion.
In our previous work on the periodic circular inclusion, we have demonstrated the effect
of the size of inclusion and contrast of rigidity on the energy transmission of wave-packets
at different frequencies. In this work, since we are interested in the role of inclusion shape,
we should ensure the best possible equivalence of the circular and dendritic inclusions,
apart from the interface shape. To this aim, we chose equivalent geometries : Being the
side length of the square defined as L, the diameter of the circular inclusion is 5

6L, and its
counterpart, the longest axis of the dendritic inclusion, is also about 5

6L.

Therefore, the outer contour length is comparable between two types of inclusion
which can be considered as primary interface. However, the volume fraction for the den-
dritic inclusion is measured as 28.35% and for the circular inclusion is 54.54%. The latter,
which is close to twice the inclusion area of the former, intuitively allows for an efficient
scattering according to the results in Chap.2. In the following, we will analyze the role
of inclusion shape on acoustic attenuation in periodically arranged nanocomposites using
finite element simulation.
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Dendritic inclusion

1.3 Finite element simulation

We used Finite Element numerical calculations to study the vibrational properties of
a 2D semi-infinite elastic system with dendritic and circular inclusions positioned along
a cubic lattice. The computational model consists of 9 squares, aligned in the horizontal
direction. There are no initial inclusion-free block in this model. The size of each square
is defined as L, thus determining the distance between inclusions. The wave-packet with
a coherence time t = 3t0

ω
is generated imposing a displacement on the left side of the first

square, while the right side of the last square allows for the implementation of the ab-
sorbing boundary conditions. As shown in Fig. 3.3, periodic boundary conditions (PBCs)
are implemented along the vertical direction at the top and bottom of the sample. Perfect
Matched Layers (PMLs) are applied on the right side to avoid waves reflection. The tech-
nical details about the boundary conditions and the time integration scheme can be found
in Chap.1. Model material properties are same as in the Chap.2, Sec.1.2.

𝜕Ω௣: edge1

𝜕Ω௔𝜕Ω௨ Ω

𝜕Ω௣: edge2

FIGURE 3.3: 2D simulation model of a solid with dendritic inclusion : this semi-infinite
solid can be represented by only modeling only the part inside the red rectangule with Per-
iodic Boundary Conditions (PBC) and Perfect Matched Layers (PML) as drawn ; Black
patterns represent the inclusions. (Ω represents simulation domain, ∂Ω indicates boun-

dary conditions)

1.4 Acoustic transport in an isotropic homogeneous material with
dendritic inclusions

A set of transient simulations of longitudinal wave-packet propagation is done using
FEM for both the medium with dendritic and circular inclusions. From the results, we
analyze the envelope of the kinetic energy from which we can find a clear transition of
attenuation regime depending on the frequency. In addition, the penetration length and
diffusivity are calculated to compare the attenuation ability for the two types of inclusions.
In the following, the length is normalized by the inter-inclusion distance L, the kinetic
energy Ek is normalized by the Ek at x = 0, and frequency ω is normalized by ω0 =

2πvL
L
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3. Mechanical response and acoustic attenuation for different types of interfaces

where vL is longitudinal wave speed in the matrix material. Definition of the envelope is
given in Eq.2.9. With the values used in Chap.2, ω0=8.342 THz.

1.4.1 Comparison of the envelopes
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FIGURE 3.4: Comparisons of envelopes between circular and dendritic inclusions with
Ei
Em

= 0.2 for different normalized frequencies ω/ω0 (where ω0 = 2πvL/L) : total simula-
tion time steps 8400dt.

1.4.2 Comparison of the envelopes

In Fig.3.4, we present the envelopes of the kinetic energy as a function of position and
for different normalized frequencies ω/ω0 and for Ei

Em
= 0.2. Blue lines are for the circular

inclusion and the red lines are for the dendritic inclusion. Surprisingly, for low frequen-
cies, up to ω

ω0
= 1.2 included, the circular inclusions strongly attenuate the wave-packet,

which is almost unaffected by the presence of the dendritic inclusions. The circular case
corresponds actually to the studied case of ω = 5 THz in Chap.2, where we identified a
localization of the energy due to a resonance. The irregularly shaped dendritic inclusion
does not lead to such resonance phenomena. As such, we can conclude that for low fre-
quencies, long wavelengths, the high interface density of the dendritic inclusion is not
dominant in determining the wave packet attenuation. The situation is reversed above
ω

ω0
=1.56. Now the dendritic inclusions are more efficient in attenuating the wave-packet

and such attenuation strongly increases with increasing frequency, i.e., decreasing wave-
length, while in the circular case the attenuation is almost constant for frequencies above
ω

ω0
=2.16, suggesting a saturation of the attenuation effect of circular inclusions in the ma-

trix. We can understand the change of attenuation efficiency regime as due to the major
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FIGURE 3.5: Fig.3.5 on a log-log scale. Black line indicates a 1/x decay.

importance of the tree-like interface in dendritic inclusions at wavelengths comparable
with the dendritic structure lengthscale at the order of ≈ L/10.

In Fig.3.6, shapshots of displacement field are shown for low frequency ( ω

ω0
= 0.6),

medium frequency ( ω

ω0
= 1.2) and high frequency ( ω

ω0
= 4.8) at half time (4200 dt) and

at the end of time (8400 dt). For ω

ω0
= 0.6, the energy is localized and pinned to the first

inclusions in the case of circular inclusion but spreads rapidly in the dendritic ones without
huge dispersion meaning that the wavefront propagates ahead followed by a energy tail. At
the medium frequency ω/ω0 = 1.2, the energy is dispersed in space and their attenuation
length is quite comparable. At the high frequency ω/ω0 = 4.8, the energy is scattered
violently at the inclusion-matrix interfaces. In the case of circular inclusion, energy is
only scattered few times when crossing the circular interface. In addition, due the large
curvature of the circular compared with the short wavelength, there is little but existing
energy which keeps spreading ahead along the x direction. On the contrary, for dendritic
inclusion, energy is totally broken and decomposed due to the random orientations of the
normal at the surface and high interface density.

1.4.3 Comparison of the penetration length and diffusivity

In the previous section, by comparing the kinetic energy envelope, we have a first
picture of the attenuation ability in the solids with two types of inclusions. Now, we will
quantify this attenuation by calculating the penetration length and diffusivity defined in
Eq.2.17 and Eq.2.16, respectively. Two groups of stiffness ratio are considered which are
two extreme cases in the work in Chap.2 : Ei

Em
= 0.2 and 10.0.

The results of the normalized penetration length lp/L is shown in Fig.3.7 where red
triangles indicate the dendritic inclusion and the blue rounds represent the circular inclu-
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3. Mechanical response and acoustic attenuation for different types of interfaces

FIGURE 3.6: Snapshots of 3 case at 4200 × dt and 8400 × dt with Ei
Em

= 0.2 for circular
and dendritic inclusion : (a) ω/ω0 = 0.6 (b) ω/ω0 = 1.2 (c) ω/ω0 = 4.8. (see Supple-

mentary Materials for the corresponding videos ).
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Dendritic inclusion

sion. In both cases of Ei
Em

, in the low frequencies, dendritic inclusion does not exhibit its
high-interface-density advantage. Still, as wavelength decreases, dendrite begins showing
a better performance to attenuate energy transfer with the reduced crossover frequency
ωc
ω0

ranging between 1 and 1.5 depending on the stiffness ratio. Generally, for ω

ω0
> ωc

ω0
,

values of the penetration length is systematically shorter in the medium with dendritic in-
clusion, which highlights the possibility of low thermal conductance at least in the aspect
of propagative contribution.

In order to investigate the effect on the diffusive contribution to thermal transport,
we have calculated the diffusivity of a wave packet with randomly polarized amplitude,
for the frequencies for which < x >∝

√
(t). Results are shown in Fig.3.8. Generally, the

transfer regime becomes diffusive due to the strong scattering when wavelength is smaller
than the inter-inclusion distance, i.e., ω

ω0
> 1 or λm

L < 1 where λm is the estimated wave-
length in the matrix material. Similar to the penetration length, in the high frequencies,
dendritic inclusion gives a smaller diffusivity than circular ones. While, the situation is
more favorable in the case of Ei

Em
= 10 where dendritic inclusion always has a lower dif-

fusivity for all wavelengths investigated. This is due to the concurrence of the effect of
speed acceleration in rigid inclusion and the high volume fraction for circular inclusion.

Reduction of thermal conductivity can be directly ascribed to the reduction of wave
propagation for ballistic phonons (propagons) and the reduction of diffusivity for the dif-
fusive phonons (diffusons). In both case of stiffness ratio ( Ei

Em
= 0.2 and 10.0), the dendri-

tic inclusion indicates a generally better performance in reducing phonon transport than
the circular inclusion with a comparable dimension. Summarizing the above four cases,
the soft dendritic inclusion, which reduces both the attenuation length and diffusivity, pro-
vides insight into the complex interfaces that tune, hinder and reduce wave propagation.

Note however, that the waves dynamics in these nanocomposites is much more com-
plex than a simple transition from ballistic to diffusive (strongly scattered) energy transfer.
Indeed, when looking at the attenuation of kinetic energy (Fig. 3.5), it appears, that above
ωc, the nanocomposite with circular inclusions gives rise to a clear diffusive attenuation
Pω(x) ∝ 1/x combined with a reduction of oscillations, while in the same frequency range
the attenuation appears far stronger than diffusive for the dendritic inclusions, and dis-
plays intra-inclusions resonances.

1.5 Measurement of the sound speed

In our study, the wave propagation velocity will be mainly influenced by two factors :
the effective rigidity of the medium and the properties of the interfaces. The effective
rigidity of the composite will determine the wave speed at low frequency, when the wa-
velength is larger than the characteristic length of the scatterers. When the wavelength
is comparable or even smaller than the characteristic length of the scatterers, strongly
increasing scattering on the interfaces will become the key parameter determining the
wave propagation inducing the redirection of the wave-vectors on the interfaces. In the
following, we will investigate two types of wave speed : effective wave speeds at low
frequencies and the instantaneous wave speed. The latter is especially useful when the
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3. Mechanical response and acoustic attenuation for different types of interfaces
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FIGURE 3.7: Comparisons of the penetration length between the circular and dendritic
shape with Ei/Em = 0.2 and 10.0 for longitudinal waves
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FIGURE 3.8: Comparisons of the diffusivity between the circular and dendritic shape
with Ei/Em = 0.2 and 10.0 for random longitudinal waves.
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3. Mechanical response and acoustic attenuation for different types of interfaces

wave-vector can no longer be well-defined at high frequencies.

1.5.1 Long-wavelength speed

There exist two basic models for the stiffness of the two-materials composite : Voigt
model and Reuss model. These two models allow to predict properties of a composite
material made up of continuous and unidirectional fibers. As shown in Fig.1.5.1 (b), the
Voigt model supposes the case of axial loading so equal strain for the matrix and the
inclusion, which shows that the stiffness is given by a weighted average of the stiffness
of the two components, also known as the "Rule of Mixtures". In Fig.1.5.1 (c), Reuss
model supposes the case of transverse loading so equal stress, known as the inverse
Rule of Mixtures, which states that the elastic modulus of a composite can be expressed
as :

Ee f f =
1

Φi× 1
Ei
+Φm× 1

Em

(3.1)

where Ee f f is the effective young’s modulus of the composite, Ei (Em) is the Young’s
modulus of the inclusion (matrix) and Φi (Φm ) is the volume fraction of the inclusion
(matrix). Interestingly, the Voigt model gives a upper-bound modulus and the Reuss model
predicts the lower-bound modulus. Since we are in the plane strain state, our circular or
dendritic surface is in fact an infinite long fiber in the third direction as shown in Fig.1.5.1
(a). Moreover, long-wavelength longitudinal wave can be considered as static transverse
loading as the Fig.1.5.1 (c). Therefore, we can use the Reuss model (Eq.3.1) to make a
prediction of the wave speeds for materials with circular and dendritic inclusion.

FIGURE 3.9: Stiffness of long fiber composites : (a) Matrix with cylinder fibers (b) Axial
loading : Voigt model (c) Transverse loading : Reuss model. Subscript f and m indicate
fiber and matrix respectively. σ1 is the the load parallel to the fiber direction and σ2 is the
load perpendicular to the fiber direction. f is the volume fraction for the fiber and 1− f

the for the matrix.

We summarize the material properties, the effective Young’s modulus and the estima-
ted longitudinal wave speeds (Eq.1.51) in the Tab.3.3. From the estimated wave speeds,
it is clear that the long-wavelength wave speed increases (compared to the homogeneous
solid with Ei/Em = 1) in the case Ei/Em > 1 and decreases in the case Ei/Em < 1 whate-
ver the shape of inclusion is. We find that, both for a more rigid or a softer inclusion, the
long wavelength speed is more strongly affected for a larger volume fraction, i.e., in the
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Dendritic inclusion

TABLE 3.3: Material properties, the effective Young’s modulus and the effective lon-
gitudinal wave speed for composites with circular and dendritic inclusion with Poisson

coefficient ν = 0.347 and density ρ = 2303 kg/m3.

Circular Dendritic
Em (GPa) 92.25

Ei/Em 0.2 1.0 10 0.2 1.0 10
Ei (GPa) 18.45 92.25 922.5 18.45 92.25 922.5
Φm (%) 45.46 71.65
Φi (%) 54.54 28.35

Ee f f (GPa) 28.99 92.25 181.19 43.23 92.25 123.85
cL,e f f (m/s) 4466.1 7966.1 11164.3 5453.2 7966.1 9230.3

case of the circular inclusions. The speed at such wavelengths is thus essentially determi-
ned by the elastic moduli of the phases and the volume fraction of the secondary phase,
independently on the inclusion shape.

This conclusion however does not hold when frequency increases, since the soft den-
dritic inclusion with lower volume fraction can give stronger attenuation. At high frequen-
cies, diffusive transfer behavior can be found and there is no more well-defined wave-
vector, for this reason, we turn now to measure the instantaneous speed.

1.5.2 Instantaneous wave speed at high frequencies

When wavelength approaches the size of the scatterer, the phonon-interface scattering
becomes more important and wave speed begins to deviate from the long-wavelength
speed. Due to the strong scattering by inclusions, its transport behavior may switch to
diffusive or localized where phonons cannot be considered as propagative plane waves
anymore. As such, wave-vector cannot be defined and definition of wave speed no longer
makes sense. However, it is still interesting to look at the instantaneous speed changing
with time.

Instantaneous wave speed is defined as the derivative of the average position

cins =
∂ < x > (t)

∂t
(3.2)

Before calculating the instantaneous speed, we need to pre-treat the data of < x >.
Since when waves pass through a deeply heterogeneous medium, < x > (t) oscillates
sharply , the calculated wave speed can be unreal and meaningless, as illustrated by the
yellow dashed line shown in the right panel of Fig.3.10. Two smoothing methods are
considered here : the first one is Nearest neighbor smooth (kernel smoother) defined as :

Si =
∑

i+n
j=i−n Pj

2n
(3.3)
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3. Mechanical response and acoustic attenuation for different types of interfaces

where P is the energy envelope and n is the number of the nearest neighbors. And the
second method is Bezier interpolation smoothing. Bezier curves can be defined for any
degree n :

B(t) =
n

∑
i=0

Ci
n(1− t)n−it iPi, t ∈ [0,1] (3.4)

where Ci
n equals to the binomial coefficient and the degree n equals to the input number

of the < x > (t). It is reported that Bezier based smooth curve gives smaller fluctuations
and curvatures than other regular smoothing methods in Ref. [ZHO 11], meaning that it
can effectively reduce the oscillation of the first derivative of the < x >.

First of all, we used both methods for smoothing < x > (t) for dendritic inclusion with
Ei
Em

= 0.2 and ω

ω0
= 0.6 in which case a wave front can still be identified as shown in Fig.3.6

thus a well-defined sound speed should be given by a quasi-constant instantaneous speed.
The smoothed data of < x > (t) is shown in the left panel of Fig.3.10 by using the two
smoothing methods. In the right panel, derivative of every < x > (t) shows that Bezier
interpolation (red line) gives the most stable results of wave speed while the result from
the unsmoothed data is useless with such a huge oscillation. In addition, a plateau is ob-
served for t ∈ [8,13] in the case of Bezier curve, which gives a quasi-constant value of the
wave speed (around 3500 m/s) confirming the prediction of the existence of a well-defined
wave-vector. However, the very beginning and end of the Bezier curve should be ignored.
Because the Bezier curve must begin and end at given points, i.e., endpoint interpolation
property, causing a much sharper oscillation than with Nearest neighbor smoother (blue
line) at the two ends. Except for them, the beginning stage of acceleration before the pla-
teau corresponds to the establishment step of the wave-packet whose duration depends
inversely on the wave-packet frequency as shown in Fig.2.4. Compared to the Nearest
neighbor smoother, Bezier interpolation gives a clearer presentation and interpretation of
the instantaneous speed. Therefore, in the following work, we only use the Bezier curve
to smooth < x > to and then get the instantaneous wave speed.

FIGURE 3.10: Average position (left) and instantaneous speed (right) for dendritic inclu-
sion with Ei/Em = 0.2 and ω

ω0
= 0.6 for longitudinal waves. Yellow lines : unsmoothed

data ; Blue lines : Nearest neighbors smoother ; Red lines : Bezier interpolation.
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Dendritic inclusion

FIGURE 3.11: Instantaneous wave speed for dendritic and circular inclusion with Ei
Em

=
0.2 (< x > is smoothed by the Bezier interpolation). Red line indicates the dendritic in-

clusion and blue line indicates the circular inclusion.
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3. Mechanical response and acoustic attenuation for different types of interfaces

We selected four frequencies from low to high : ω/ω0 = 0.6, 0.96, 1.56 and 4.8 with
Ei/Em = 0.2. The corresponding instantaneous wave speeds are calculated and shown in
Fig.3.11. Firstly, for ω/ω0 = 0.6, the case of dendritic inclusion (red line), as previously
shown, exhibits a plateau indicating a quasi-constant instantaneous speed. Oppositely,
this plateau does not exist for the circular inclusion (blue line) because it is already in
the diffusive-localized regime where energy is pinned in the first inclusions. The blue
line is globally lower than the red line, meaning that energy moves slowly in the medium
with circular inclusion at any time. Looking back to the penetration length, it is much
smaller in the medium with circular inclusion at ω/ω0 =0.6 as shown in Fig.3.7(a). For
ω/ω0 = 0.96, the two lines are close to each other, indicating little difference between the
two composites. This can be confirmed by looking at the envelope and the penetration
length. ω/ω0 = 0.96 can be considered as a separation point, because in the following
two frequencies ω/ω0 = 1.56 and 4.8, the blue line is higher than the red line. Lower
instantaneous speed at any times means that, at high frequencies, dendritic inclusion is
more efficient to hinder and delay the energy transfer.

The analysis of the instantaneous speed gives a more obvious picture on the crosso-
ver of the attenuation performance from the circular inclusion at low frequencies to the
dendritic inclusion at high frequencies for Ei/Em = 0.2. We didn’t investigate on the other
frequencies nor the case of Ei/Em = 10.0 since the above cases are enough to clarify the
motivation for calculating the instantaneous speed to understand the wave propagation,
especially when the wave-vector no longer exists.

1.6 Discussion

The impact of the interface on wave packet propagation depends on the materials
properties, on the interface density and, of course, on the shape of the inclusion. As to the
shape of the interface, dendritic shape inclusion is proved to have a good performance to
hinder and redirect the wave propagation especially at higher frequencies. This is mainly
due to the fractal shape (second characteristic length), the high interface density and the
random orientation of the normal at the interface.

The case of dendritic inclusion for Ei/Em = 0.2 gives a best performance in the sense
of acoustic attenuation. The volume fraction of dendritic inclusion is much lower than that
of circular inclusion. Based on the above discussion, we can imagine that a larger dendrite
cluster with an equivalent volume fraction as the circular one would give a better attenua-
tion effect. In the future, if we want to investigate the impact on the thermal conductivity,
VDOS for different configurations will be needed.

In addition, this work can be further extended to the real materials (size, material
properties, etc). Literature shows that rigidity of the dendrites phase is able to be tuned by
tuning the elements composition ratio. This rigidity adjustment should be within a certain
range to keep a excellent plasticity performance[XU 18]. Therefore, the present results
and further research have instructive significance for material design.
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1.7 Conclusion and perspectives
We have compare the sound attenuation performance between two shapes of inclu-

sions : circular and dendritic inclusions. Our results show that the multi-branching tree
like form of dendrite enhances phonon-interface scattering and phonon attenuation spe-
cifically for wavelengths comparable with the dendritic structure lengthscales. Unlike the
circular inclusion which has only one characteristic length, the sub-interfaces inside the
dendritic inclusion provide a continuous source for the increasing sound attenuation. This
leads to a stronger reduction of both the penetration length and the apparent diffusivity
in dendritic inclusion when the wavelength becomes smaller than the first characteristic
length. The instantaneous wave speed is also globally affected, being much reduced at
high frequencies by the dendritic fine structure.
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3. Mechanical response and acoustic attenuation for different types of interfaces

2 Eshelby’s inclusion

Named after J. D. Eshelby, Eshelby’s inclusion is an useful tool in micromechanics
and makes a deep contribution to many fields of modern science research. For example,
Eshelby’s inclusion model is wildly used to the homogenization problem. It is also used
to describe the quadrupolar stress map of the shear transformation zone (STZ) induced by
plasticity in amorphous materials [BUL 94, BAR 02, MAL 04, ALB 16, NIC 18, BUL 94,
MAL 04, ALB 16]

In this work, Eshelby’s inclusion problem is numerically analyzed through Finite Ele-
ment (FE) method. We will focus on an elastic field embedded with an elliptic inclusion
induced by a ”stress-free strain” (ε∗) in 2D plane strain case. This elliptic inclusion is
placed in the center of a square matrix. The effects caused by geometry parameters will
be investigated.

We will firstly give a brief description of the Eshelby’s inclusion. Then, an elastic
medium containing an Eshelby’s inclusion is created using finite element method. Finally,
by comparing to the analytic results, we show that the Eshelby’s inclusion is correctly
added into our FE model. Therefore, we can investigate other further research based on
this model.

2.1 Ellipsoidal Eshelby’s Inclusion
First of all, I will introduce the concept of Eshelby’s inclusion and some important

analytic results. The most remarkable finding given by Eshelby is that, for an ellipsoidal
subdomain subjected to uniformly distributed ”stress-free strain”, the total strains and
stresses inside the ellipsoidal inclusion are also uniform [WEI 05, FRA 12, ESH 57]. All
these analytic results can be used to verify our FE simulations. Strains and stresses fields
for an ellipsoidal inclusion inside an infinite medium are shown below :

"Stress-free strain” (or eigenstrain) :

ε∗ is uniform inside the ellipsoidal inclusion.
Strain tensor inside the inclusion :

ε
I = S : ε

∗ (3.5)

where S is a constant tensor called the Eshelby tensor.
Stress tensor inside the inclusion :

σ
I = C : (S− I) : ε

∗ (3.6)

where C is the elastic tensor and I is a fourth order identity tensor. In our case, it is
assumed the same C inside and outside of the inclusion, meaning that there is no stiffness
contrast between the matrix and the inclusion in opposition to the case discussed in Chap.
2. By using the method of the "fictitious equivalent inclusion" with eigenstrain ε∗, many
other problems can be treated as application concerning ellipsoidal Eshelby’s inclusion.
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Particularly, an elastic inclusion and an Eshelby’s inclusion with a proper eigenstrain is
shown equivalent to each other [FRA 12].

Eshelby tensor inside the ellipsoidal inclusion (3D) :
See Mechanical Behaviour of Materials, Dominique François, et al., page 131

[FRA 12].
Eshelby tensor inside the elliptic cylinder inclusion (2D Plane strain) :

S =


1

2(1−ν) [
b2+2ab
(a+b)2 +(1−ν) b

a+b ]
1

2(1−ν) [
b2

(a+b)2 − (1−ν) b
a+b ] 0

1
2(1−ν) [

a2

(a+b)2 − (1−ν) a
a+b ]

1
2(1−ν) [

a2+2ab
(a+b)2 +(1−ν) a

a+b ] 0

0 0 1
2(1−ν) [

a2+b2

(a+b)2 +
1−ν

2 ]


where a is semi-major axis of ellipse, b is semi-minor axis and ν is Poisson’s coefficient.

2.2 Implementation in the FE code

2.2.1 Geometry

The computational model is shown in Fig.3.12. One ellipsoidal inclusion (I) is em-
bedded into a square matrix (M). a and b are the semi-axes of ellipse with a > b. L is the
length of the square matrix.

FIGURE 3.12: Model of a square matrix with an elliptic inclusion in the center.

2.2.2 Materials properties

Matrix and inclusion are assumed as the same material : Young’s modulus is 92.25
GPa, Poisson’s ratio is 0.347 and mass density is 2303 kg/m3. They are both considered
as uniform and isotropic solid respectively.

2.2.3 Dynamical analysis

We investigate a dynamical analysis of the unfolding of the Eshelby’s inclusion. At
time t = 0, we impose a step pulse of eigenstrain ε∗ inside the elliptic inclusion. The
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3. Mechanical response and acoustic attenuation for different types of interfaces

inclusion will deform under this eigenstrain. Radiation is emitted and propagates in the
form of waves in the surrounding medium. The dynamics is thus necessary to capture the
transient process. Central difference integrator is applied for the time integration, and the
time discretization is well selected to guarantee the stability of the simulation.

2.2.4 Spatial discretization

For a = 5 Å, two elliptic inclusions with b/a = 1 and b/a = 0.25 as shown in Fig.3.13
(a) and (b), respectively. The average edge length of a quadratic element is 1 Å. Number
of nodes on the elliptical curve is different, because the perimeter of the ellipse decreases
with the decreasing ratio b/a for a given a. As the perimeter decreases, we need to de-
crease the number of nodes on the elliptical curve in order to create a pertinent mesh.

(a) (b)

FIGURE 3.13: (a) Mesh for a circular inclusion. (b) Mesh for an elliptic inclusion with
b/a = 0.25.

2.2.5 Boundary conditions

Before reaching the equilibrium state, there is a transient process for the establishment
of Eshelby inclusion’s elastic field. During this process, we can observe the emitted radia-
tion in the form of wave which then propagates to the boundaries of the model. Therefore,
PMLs are implanted on boundaries of the square matrix in order to avoid reflection.

2.2.6 Loading : eigenstrain

The eigenstrain in the Eshelby inclusion can be explained, for example, as a result of
a phase change, plasticity, or thermal effects.

At t = 0, we impose a step pulse of eigenstrain ε∗ inside the elliptic inclusion, which
is uniform inside the inclusion. Eigenstrain, extracted for example from Ref.[ALB 16],
is mapped from the MD results of model a-Si bulk sample. Therefore, this eigenstrain
should reproduce the quadrupolar displacement field of a the plastic event in amorphous
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Eshelby’s inclusion

materials. Since we consider a 2D problem, we only need three components of eigens-
train :

ε
∗ =

 0.003
−0.008
0.024

 (3.7)

This uniform strain inside the inclusion results in a distributed force f at the interface
between the inclusion and the matrix :

f =∇ ·σ0 =∇ ·(C : ε∗) (3.8)

where C is the elastic constitutive tensor and σ0 is the equivalent initial stress due to the
eigenstrain.

2.2.7 Numerical damping

When looking at the establishment of inclusion’s elastic field, there are two reasons to
add a numerical damping in the entire model :

Firstly, inside the inclusion, it takes a very long time to reach the equilibrium state.
Every point oscillates with time, so the uniformity of the strain field inside the inclusion
cannot be checked. By adding a numerical damping, residual waves inside are attenuated
and finally we found a uniform strain field inside the inclusion. Secondly, outside of the
inclusion : because the incident wave cannot be entirely absorbed by PMLs, there are
still some reflected waves going back and passing through the Eshelby inclusion, thus
influencing the elastic field near the inclusion. We could also set the model length very
large to avoid this reflection, but a numerical damping is more efficient.

We select Rayleigh damping as it is efficient to attenuate both low and high frequency
waves. Rayleigh damping is expressed as :

C= αM+βK (3.9)

where M and K are respectively the mass and the stiffness matrix, α and β are damping
coefficients and both will be set as 1e-16. To explain this choice, in Fig.3.14, three groups
of damping coefficients α and β are used. The shaded region shows strains data for all the
points inside the inclusion and the middle line is the average. If this numerical damping
is too small, it takes long time to attenuate the residual waves. α = β = 1e-16 (the middle
panel Fig.3.14) is efficient to reach equilibrium. It can be seen that the third group (α =
1e-16 and β = 1e-15) gives a more efficient convergence and seems to be the upper limit
of the values for damping. Beyond these limits, it is found that stronger damping would
cause a computational instability of the Central difference integrator.

By adjusting the numerical damping, we can reduce the simulation time in transient
process. In addition, this numerical damping has no physical meaning and should be re-
moved once the establishment of elastic field is done.
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3. Mechanical response and acoustic attenuation for different types of interfaces

FIGURE 3.14: Average strain vs time ε̄I
i j(t) for different damping. The shadow region

is εn
i j range, and the middle lines are average values ε̄I

i j. In all three cases, the strains in
equilibrium state are identical respectively with a negligible error(<1%). Left : α=1e-17

and β=1e-17 ; Middle : α=1e-16 and β=1e-16 ; Right : α=1e-16 and β=1e-15.

2.3 FE simulation by varying the ratio b/a

A series of FE simulations have been done by varying not only the ratio b/a, but also
others model parameters, such as model dimension and the mesh density on the border of
the inclusions. The results of mechanical responses (strains, stresses and displacements)
inside and outside the inclusion are compared to the analytic results. It shows that our FE
simulation results are reliable. This section is structured as followed :

First of all, we concern about the strain field inside the inclusion. It shows that the
ratio of model size to inclusion size L/2a should be sufficiently large to ensure the unifor-
mity of strains inside the inclusion. By way of indication, L/2a > 5. If L/2a is enough,
simulations results give uniform strains inside the inclusion and their values agree with
the analytic results εI = S : ε∗.

Secondly, the stresses and the displacements inside the inclusion are immediately che-
cked if strain field is correct. The stress field is also uniform inside the inclusion which
is express as σI = C : (S− I) : εI . And displacement field changes linearly inside the
inclusion.

Finally, we go out of the inclusion. Displacement fields outside the inclusion will be
compared to analytic results. Near the inclusion, numerical results are identical to what
calculated Eshelby. Nevertheless, far away from the inclusion, an evident difference is
observed. This difference decreases as the model size increases, and it is supposed to be
disappeared if the model size is infinite as the analytic results are derived for an infinite
large medium. This difference is still large even when L/2a = 30.

2.3.1 Strain inside the inclusion

Due to the eigenstrain, Eshelby inclusion will interact with the surrounding medium
and end up with a final strain whose absolute values are smaller than eigenstrain’s because
of the constrains of the surrounding medium. This final strain inside the inclusion is given
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Eshelby’s inclusion

by Eq.3.5. For an ellipsoidal inclusion, S depends on the ratio b/a and Poisson’s ratio ν.
In this chapter, we have fixed ν = 0.347, thus S depends only on b/a.

Fig.3.14 shows the strain components for each points inside the inclusion (dashed
region) and the average value (middle line) as a function of time defined as :

ε̄
I
i j(t) =

N

∑
n=1

ε
n
i j(t)/N (3.10)

where N is the number of elements inside the inclusion, i, j = x or y and εn is the n-th
element’s strain tensor.

We then compare the strains reached in equilibrium state to the analytic strains.
(1)Effect of spatial discretization : precision
Here we focus on the discretization of the ellipsoidal inclusion. Technically, we cut

the circumference into n parts. Then, mesh will be created and optimized automatically
by FE software Cast3m by keeping the n nodes on the circumference. In Tab.3.4, we show
the max and min strains inside the inclusion by tuning the number of nodes n. n/C means
number of nodes per unit length where C is the ellipse circumference. It shows that a finer
mesh improves the uniformity of strains inside the inclusion from n = 60 to n = 240.

a (Å) 5
L (Å) 60 15

n 60 80 120 140 180 240 120
n/C 1.91 2.55 3.82 4.46 5.73 7.64 3.82

εmin(%) 1.607 1.619 1.602 1.66 1.655 1.659 2.046
εmax(%) 1.677 1.689 1.678 1.672 1.668 1.671 2.588

dispersion (%) 4.17 4.14 4.53 0.72 0.78 0.72 20.94

TABLE 3.4: Effect of discretization on strains inside the inclusion : b/a = 1 and a=5
Å is the major-axis of ellipse. L is the model length, n is the number of nodes on the

circumference, C is perimeter and ε is strain amplitude.

(2)Effect of system size : non-uniform strain
Non-uniform strains inside the inclusion after long-time transient process, can be due

to finite size effects when model’s length L is not large enough. For example, in Fig.3.15,
b/a = 0.25, a= 20Å, L=60 Å and ratio L/2a = 3/2. We show that, inside the inclusion,
there is a 10% dispersion of the strains in equilibrium state due to the effect of the system
size.

In Tab.3.5, we give a complete study of size effect. We adjust both discretization and
model size to compare strain fields inside the inclusion. Given L = 60 Å, we found a
dispersion about 20 % between max and min strains, which is far from an uniform strain
field. It is noted that finer meshes (n=240 and 480) could not give a more uniform strain
field but only give more confidence to us that our initial mesh is qualified. Then, we
keep n=240 but change the value of L from 60 to 240 Å. As indicated by the dispersion,
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3. Mechanical response and acoustic attenuation for different types of interfaces

FIGURE 3.15: Strains field inside the inclusion : In stead of a uniform field, dispersion
of the strains is attributed to the size effect for L=60 Å, a= 20 Å, b/a = 0.25. Along the
x direction, a dispersion of the shear strains inside the inclusion up to 10% is found in

equilibrium state (lower left plot).

a (Å) 20
L (Å) 60 90 120 180 200 240
L/2a 1.5 2.25 3 4.5 5 6

n 120 240 480 240
εmin(%) 2.046 2.038 2.038 1.98 1.855 1.717 1.692 1.959
εmax(%) 2.588 2.589 2.589 2.124 1.906 1.733 1.705 1.671

εmax−εmin
εmax

(%) 20.94 21.28 21.28 6.78 2.68 0.92 0.76 0.72

TABLE 3.5: Effect of model size on the strains inside the inclusion : b/a = 1 and a=20
Å. In the table, n is the number of nodes on the circumference, ε is the strain amplitude.
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Eshelby’s inclusion

the strains inside the inclusion become more and more uniform with increasing L. When
L/2a = 4.5, the dispersion of the strains is less than 1%.

(3)Verification
Thanks to the experience from previous tests, we finally investigated a series of FE

simulations without the problem mentioned above.
For a= 5 Å and L = 60 and 120 Å, the results with different b/a (from 0.2 to 1) are

also given in Tab.3.6 in which the analytic results are calculated according to b/a and ε∗.
Both groups (L = 60 and 120 Å) can give reliable strain field results.

b/a 1 0.9 0.8 0.6 0.5 0.3 0.2

εxx(%)
L=60 0.162 0.162 0.160 0.154 0.147 0.112 0.090

L=120 0.165 0.166 0.165 0.159 0.153 0.127 0.099
Analytic 0.164 0.165 0.164 0.158 0.151 0.123 0.097

εyy(%)
L=60 -0.557 -0.571 -0.585 -0.612 0.624 0.642 -0.644

L=120 -0.543 -0.559 -57.427 -0.061 -0.622 -0.647 -0.651
Analytic -0.550 -0.550 -0.560 -0.600 -6.140 -0.640 -0.650

γxy(%)
L=60 1.560 1.555 1.557 1.589 1.627 1.778 1.914

L=120 1.497 1.498 1.503 1.544 1.584 1.741 1.872
Analytic 1.480 14.800 -1.490 1.540 1.580 1.750 1.890

TABLE 3.6: Verification of the strain components εxx, εyy and γxy in the equilibrium state.
Numerical results are given by FE simulations with L = 60 and 120 Å.

2.3.2 Stress inside the inclusion

Stress inside the inclusion is given by Eq.3.6. Considering that εI = S : ε∗ has been
verified in previous text, stress inside the inclusion is immediately checked.

2.3.3 Displacement inside the inclusion

For an elliptical inclusion, the Eshelby tensor is constant, leads to uniform strains and
stresses inside the inclusion, so the displacement field is linear inside the inclusion. In
Fig.3.19, we can clearly find a linear change of displacement inside the inclusion with the
displacement being 0 in the center of the model.

2.3.4 Displacement outside of the inclusion

(1)Analytic results

In a 2D plane strain case, the displacement of an elliptic cylindrical inclusion is repor-
ted in Ref.[JIN 17] :
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3. Mechanical response and acoustic attenuation for different types of interfaces

u1
u2
u3

=

W111 W122 W133 0 0 W112
W211 W222 W233 0 0 W212

0 0 0 W323 W313 0




ε∗11
ε∗22
ε∗33
2ε∗23
2ε∗13
2ε∗12

 (3.11)

where [W ] is the displacement Eshelby tensor

W111 =
x1

2(1−ν)
[(1−2ν)J1(λ)+3a2

1J11(λ)+ρ1ρ2(1−ρ
2
1)n

2
1] (3.12)

W112 =
1

2(1−ν)
{[(1−2ν)J2(λ)+a2

1J21(λ)]x2 +[ρ1ρ2(1−ρ
2
1)n1n2]x1} (3.13)

W122 =
x1

2(1−ν)
[(2ν−1)J1(λ)+a2

2J12(λ)+ρ1ρ2(1−ρ
2
2)n

2
2] (3.14)

W133 =
νx1

1−ν
J1(λ),W313 = x1J1(λ), (3.15)

All the other five non-zero entries of [W ] may be obtained by the permutation with
respect to subindices (1,2), with following symmetry property :

Wikl =Wilk (3.16)

λ is a parameter related to coordinates

λ = [x2
1 + x2

2−a2−b2 +
√

(x2
1 + x2

2−a2 +b2)+4(a2−b2)x2
2] (3.17)

where x1 and x2 are x and y coordinate respectively.
The corresponding results for the J-functions are as follow :

J1(λ) =
ρ2

1ρ2b
aρ2 +bρ1

,J2(λ) =
ρ2

2ρ1a
aρ2 +bρ1

(3.18)

J12(λ) = J21(λ) =
ρ3

1ρ3
2

(aρ2 +bρ1)2 (3.19)

J11(λ) =
ρ4

1ρ2a(2aρ2 +bρ1)

3a2(aρ2 +bρ1)2 ,J22(λ) =
ρ4

2ρ1a(2bρ1 +aρ2)

3b2(aρ2 +bρ1)2 (3.20)

J3(λ) = J33(λ) = J13(λ) = J31(λ) = J23(λ) = J32(λ) = 0 (3.21)

the detailed expressions of ρ-functions and the outer unit vector ni are

ρ1 =
a√

a2 +λ
,ρ2 =

b√
b2 +λ

,n1 =
m1√

m2
1 +m2

2

,n2 =
m2√

m2
1 +m2

2

(3.22)
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Eshelby’s inclusion

FIGURE 3.16: Contour of displacement inside and outside of the inclusion. Semi-major
axis a = 5 Å, b/a=1 and L = 240 Å.

in which
m1 =

x1

a2 +λ
,m2 =

x2

b2 +λ
(3.23)

(2)Verification
Here we analyze the displacement field outside the inclusion, especially at the boun-

daries of the system.
An example of displacement field is shown in Fig.3.16 where a quadrupolar shape can

be seen. Semi-major axis a = 5 Å, b/a=1 and L = 240 Å. We saved the displacement data
and then import them in Matlab in order to compare with the analytical solution as shown
in the Fig.3.17(a). The red circles are the data from the simulation and the colored surface
represents the analytic values, and z axis is the amplitude of the displacements ‖u‖ =√

ux2 +uy2. Near the inclusion, the simulation results reproduce well the the analytic
results. Nevertheless, evident difference can be observed far from the center, especially at
the model’s boundaries.

In addition, there are two peaks of displacement which are located on the interface
between the inclusion and the matrix. This is because, when we reproduce analytic results
through matlab, discrete points cannot give all the details about displacement-especially
on the interface, as illustrated in Fig.3.17(b). Through the comparison between the red
circles and the surface (part of analytic solution) near the inclusion, we can confirm that
FE modeling gives a perfect result for displacement near the inclusion.

(3)Effect of system size at points far from the inclusion
We investigated a series of simulations by changing the model length L = 120 Å,

180 Å and 300 Å. Fig.3.18 shows the displacement amplitude, for an elliptic inclusion
(b/a = 0.9) with different L. In Fig.3.19, we plot the amplitude of the displacements
along the diagonal line. The difference mentioned above becomes smaller as L increases.
And the analytic result (blue dash line) should thus be an asymptotic line when L→ ∞.
Indeed, the analytic calculation assumes an inclusion immersed in an infinite medium.
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3. Mechanical response and acoustic attenuation for different types of interfaces

(a) (b)

FIGURE 3.17: (a) Comparison between the numerical and the analytic results. Red circles
are the numerical results and colored surface is the analytic results from Ref.[JIN 17].
L=240 Å, a=5 Å and b/a = 1. (b) Only the points outside of the inclusion (black points)
are used to reproduce analytic results outside of the inclusion. As such, the details on the

interface (green line) cannot be given.

FIGURE 3.18: Effect of model length on the displacement field : ‖u‖(x,y) for L=120
(yellow circles), 180 (green circles) or 240 Å (red circles). a=5 Å and b/a = 0.9.
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(a) Coordinated system
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(b) Displacement along diagonal line

FIGURE 3.19: (a) Coordinated system : origin is in lower left corner of L=240 Å.
X =

√
2x with x ∈ [0,L]. (b) Displacement amplitude along the diagonal line ‖u‖(X)

for L=120, 180, 240 or 300 Å. a=5 Å and b/a = 0.9.

2.4 Wave propagation in a medium with an Eshelby’s inclusion

In the previous section, we demonstrated that the Eshelby’s inclusion has been cor-
rectly placed in the elastic matrix, allowing us to continue the future research on the pro-
pagation of the wave packets in such a medium. Once the inclusion is well established,
we will impose a wave packet at 5 THz from the left boundary. Two Eshelby’s inclusions
with different eigenstrains will be considered : one Eshelby’s inclusion has an eigenstrain
ε∗ as given in Eq.3.7 , another has a smaller eigenstrain = 0.1× ε∗. The displacement
fields are shown in Figs. 3.20 and 3.21 when this wave packet is before and near the in-
clusion, respectively. Two Eshelby’s inclusion cases are in the top and middle panels, and
an elastic inclusion case with Ei/Em = 0.2 studied in Chap.2 is also given to show the
difference of the displacement fields caused by the eigenstrain.

In the top panel of Fig. 3.20, it is clear the Eshelby’s inclusion with a stronger eigens-
train influences the displacement field over a longer distance compared with the other
two cases. In Fig. 3.21, when the wave touches the inclusions, their displacement fields
are very different. In the case of the elastic inclusion, the displacement field is vertically
symmetric. However, it is not the case for the Eshelby’s inclusions with a shear-strain
dominant eigenstrain.

2.5 Conclusion and perspectives

In this work, we have extended the elastic inclusion to the Eshelby’s inclusion featured
with a ”stress-free strain” (ε∗) in 2D plane strain case. One elliptic inclusion is placed in
the center of a square matrix and the dynamic process of the inclusion establishment
can be reproduced. At the equilibrium state, mechanical responses have been verified by
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3. Mechanical response and acoustic attenuation for different types of interfaces

FIGURE 3.20: Before the wave packet touches the inclusion, comparison of displace-
ment fields for three different inclusions with R = 10 Å and ω = 5 THz : Top : an Eshelby’s
inclusion with an eigenstrain = ε∗ (Eq.3.7). Middle : an Eshelby’s inclusion with an ei-

genstrain = 0.1× ε∗. Bottom : an elastic inclusion with Ei/Em = 0.2.

FIGURE 3.21: Idem. Near the inclusion.
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Eshelby’s inclusion

the comparison with the analytic results. In addition, the effects caused by model size
are presented. So far, a numerical tool to simulate a medium with Eshelby’s inclusion is
available. Several topics can be continued based on this model :

1) The work of T. Albaret et al. [ALB 16] has presented a possibility of extracting
Eshelby inclusions associated with continuum mechanics from series of atomistic confi-
gurations, from which local plastic rearrangements are fitted through their displacement
fields on collections of Eshelby spherical inclusions, allowing determination of their trans-
formation strain tensors. Their results support the mesoscopic models that involve the
Eshelby inclusion as the elementary brick of plasticity. Based on this point, our model
should be extended to a larger size with collections of Eshelby inclusions.

2) The scattering of sound waves with Eshelby inclusion is an interesting topic. Based
on his past work on dislocations[LUN 88], F. Lund has proposed an effective description
of the role of Eshelby inclusions on scattering of sound waves in both static and dynamic
cases. The derived equations link the eigenstrain and the spatial and temporal derivatives
of the displacement field at the interface with the inclusion. The simulation based on the
presented model can be used to verify this analytic description.

3) In the limit of the ratio b/a→ 0, an Eshelby’s inclusion tends to be able to represent
a dislocation dipole. The idea of mapping the Eshelby’s inclusion and the dislocation loop
and studying the response of stringlike dislocation loop to an external stress is another
interesting point [LUN 88, ROD 09, MAU 05, CHU 16].

All these points encourage us to find an acoustic signature of plasticity in amorphous
materials. This is very interesting since the structural signature of plasticity is still a sub-
ject of debate.

Haoming LUO 83

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



3. Mechanical response and acoustic attenuation for different types of interfaces

3 Nano-porous materials : from perfectly periodic to di-
sordered holes arrangement

This is the special case where the second medium is the vacuum. The elastic contrast
is zero and no vibration exists in the pores. As such, the interfaces play really the role of
a boundary, with perfect matching, thus no roughness at this stage. This kind of system
has been interpreted in the literature using the wave-behaviour of phonons and applying
the optic laws of reflection to the propagating wave. Here we present such approaches,
which, introduced for ultrasonic phononic media (microstructure on a millimiter scale),
have been recently successfully applied to nanophononic membranes. Our purpose is to
link such approaches to the microscopic understanding of the propagation of the wave-
packet in the nanoporous medium, thanks to the insight that we can get with our FEM
simulations.

3.1 Porous structure
In recent years, periodic nanoporous materials have arisen as very promising for heat

transport control. The porous structure is composed of a host material from which perio-
dic holes are removed to create a macroscopic array of nanoscale holes in two-dimensions
(2D)[XIE 18] or three dimensions [MOO 16]. Such materials have been called nano-
phononic, as the nanometric counterpart of phononic materials, which, at their turn, are
the acoustic counterpart of photonic materials for the control of electromagnetic waves
propagation.

Phononic materials are materials structured with a periodicity, which is meant to affect
phonon propagation. Because of the additional periodicity, two major effects arise : (1)
the second periodicity defines a new Brillouin Zone much smaller than the atomistic one,
causing the branch folding : as such, a large quantity of non-dispersive optic modes arise
at very large wavelengths, and, when holes are replaced by other elements such as pillars
or spheres, forbidden gaps can appear in the dispersion at the resonance frequency of
those elements and (2) the multiple reflections of phonons by the periodic interfaces not
only hinder their propagation but also give raise to constructive or destructive interference
punctually localizing energy. Such interference only acts on waves keeping their phase
after the multiple reflections, for which reason these waves are said coherent[TIG 06].
These phenomena can be observed on long-wavelength phonons, which do not see the
atomic details of the interfaces, which are felt only like a boundary.

3.2 The optic-like approach to phonon scattering from periodic in-
terfaces

When phonons have very long wavelengths, they cannot see the details of the atomic
structure, they only feel the effective elastic properties of the medium and the interfaces
are felt as boundary. In this limit, the elastic theory can describe their propagation and
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Nano-porous materials : from perfectly periodic to disordered holes arrangement

FIGURE 3.22: 2D porous material : SEM images of 2D porous phononic crystals (PnC)
(A) Sinx PnC with surface roughness ηwall = 2.25 nm, with position distribution ηe f f ,p =
11.6 nm and with size distribution ηe f f ,s = 10.3 nm. Left : top view; Right : Side view
of the profile of the holes. (B) Ordered and disordered in position PnC used to tune heat

conduction at low temperature in the work of J. Maire[MAI 17].
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3. Mechanical response and acoustic attenuation for different types of interfaces

give the right phonon dispersions. Such limit is obviously macroscopic. Its applicability
is based on the assumption that the phonon can be treated as a wave and its reflection on
the surface with the geometrical reflection laws.

It is clear that it exists a wavelength threshold below which the macroscopic conti-
nuum approach will fail, but even before that limit, another limit appears for coherent
effects to take place : a wavelength threshold exists above which specular reflection al-
lows for coherent wave interference, and below which this is not true anymore. For a
perfectly planar boundary, this threshold will depend on the roughness of the interface :
intuitively, as far as the phonon wavelength is much larger than the roughness, pure reflec-
tion will take place, but when they are comparable, the wave will be mostly diffusively
scattered in all directions, losing the phase coherence needed for these phenomena to take
place.

Traditionally, the coherent effects of a periodic structure have been essentially investi-
gated in metamaterials for sound transmission guiding, filtering, hindering, which require
a periodicity in the millimeter range, and a roughness not necessarily very small.

The technological advances allowing for a high quality of materials engineering, al-
lowing for interfaces with a nm/sub-nm roughness, have opened the way to use coherent
effects in nanostructured periodic metamaterials for impacting the propagation of smaller
wavelength phonons, down to the nm-range, with the aim of affecting thermal transport
at room temperature.

Indeed, very recently, the optic-like approach has been used to interpret some data
collected on a phononic nano-porous membrane, showing an impressive agreement
[MAI 17, WAG 16]. In those studies, it was shown that standing waves with wavelength
in the micrometer range, due to coherent reflection from boundaries, could be observed
down to the coherent threshold calculated with classical approaches. Moreover, the in-
troduction of a slight disorder in the periodicity (holes size and position disorder) was
shown to destroy the coherent effects, with consequences on thermal transport at very low
temperature, where these long wavelength phonons dominate.

In this work we will present a FEM simulation of transient propagation of a wave-
packet in a similar nano-porous membrane as the one investigated in Ref.[MAI 17] as
shown in Fig.3.22 (b), at phonon wavelengths from larger to smaller than the periodicity,
with the aim of identifying the microscopic features corresponding to the coherent effects.
The first investigated system will have, by construction, no roughness, thus all phonons
are supposed to be coherent. Then, similarly to Ref.[MAI 17], we will introduce some
disorder in the pores position and size in order to disrupt the coherence.

Before introducing our model and simulations, we recall here the concept of wave-
length threshold, based on the specularity parameter.

3.2.1 Roughness

As mentioned, coherent effects, as due to constructive interference between phonons,
can arise only for wavelengths larger than a certain threshold, which depends on many
geometrical parameters such as roughness, curvature, incidence angle at the interface.
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Nano-porous materials : from perfectly periodic to disordered holes arrangement

Here we give a short introduction on the specularity parameter, which allows to calculate
in a first approximation the threshold wavelength for coherent effects. We consider a rough
surface on which a wave with wavelength λ with normal incidence is reflected. Referring
to Fig. 3.23, the profile of the surface lies on the x, y plane. y(x) indicates this profile
as a function of the position x, measuring thus the asperities. A perfectly smooth surface
would have y=constant for all x. The deviation of height causes a shift in the plane wave
phase along the surface :

φ(x) =
4π

λ
y(x) (3.24)

The variance of the phase will be

< φ
2 >=

16π2

λ2 η
2 (3.25)

with η the root mean square deviation of the height of the surface with respect to a refe-
rence height.

If the incident wave comes with a non-zero incident angle (θ1), we will have :

< φ
2 >=

16π2

λ2 η
2 cos2(θ1) (3.26)

The phase autocorrelation function (i.e., the probability to have the same phase, thus
the same height y at a distance x = ξ) is

ρφ(ξ) = e−ξ2/L (3.27)

where L is a measure of the width of the bumps on the surface. The spectrum of the
reflected way will depend on the reflected angle [ZIM 62] :

|F(s)|= e−π<φ2>
δ(s)+(1− e−π<φ2>)

L

λ
√

π < φ2 >
e
− L2

λ2<φ2>
s2

(3.28)

with s = sin(θ) and θ the angle of the reflected beam with respect to the surface normal.
The first term is a perfectly specularly reflected beam, going back to the incident direction.
While the second term represents waves reflected in all directions, thus diffused phonons.

The specularity parameter p is defined as the fraction of specularly back-reflected
waves, so :

p(λ) = e−π<φ2> (3.29)

Depending on the relation between the wavelength and the roughness, we may have
three reflection regimes :

• if λ� η, p(λ)� 1, the incident wave is affected by the roughness, so the phase
shift is very huge and the reflection is diffuse reflection.

• if λ� η, p(λ)≈ 1, the incident wave is not affected by the roughness, so the phase
shift is small and the reflection is specular reflection.
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3. Mechanical response and acoustic attenuation for different types of interfaces

FIGURE 3.23: Reflection from a rough surface and three reflection regimes : diffuse,
specular and intermediate regime [ZIM 62].

• for the intermediate regime λ ≈ η, the reflected wave will be diffused but mainly
concentrated in a cone around the specular direction.

Moreover, the roughness will have a distribution, so we can write p as the result of
such a distribution :

p(λ) =
∫

P(η)e−π<φ2>dη (3.30)

It is generally assumed that for p > 0.5 the specularly reflected portion of the wave
is important enough for giving visible coherent effects. This defines then the coherent
wavelength threshold as the wavelength for which p = 0.5.

3.2.2 Real roughness and effective roughness

The amplitude of the profile roughness of a material surface is, as defined above, the
standard deviation of the surface height. Besides the intrinsic surface roughness, other
imperfections of nano-structure, like size and position disorder, will lead to the dephasing
of the waves and the break down of coherence. If we consider a column of holes, they
represent an interface which is met at the same time by a wavepacket ingoing onto it from
the left. If holes have different size or slightly different positions, then they will be met at
different times by the traveling wave-packet, inducing a phase shift and thus acting as an
effective roughness

Let’s first consider the hole size disorder. The incident wave fronts will touch the
matter/holes interface and be reflected at different position as a function of the hole size,
which will introduce new phase shift which will be added to the surface roughness. We
note Ri the radius of the circular holes. If we note R0 the reference size for which the
phase shift is zero corresponding to the average of the size distribution and < Ri >= R0,
for each hole the phase shift is φ = 4π

λ
(Ri−R0)cos(θ1). The standard deviation of the
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Nano-porous materials : from perfectly periodic to disordered holes arrangement

phase shift due to the size is therefore :

< φ
2 >=

16π2

λ2 η
2
e f f ,s cos2(θ1) (3.31)

where ηe f f ,s is the standard deviation of the radii of the holes.
Let’s now consider the positioning disorder. Holes are translated along two directions

with a translation length defined as Dx or Dy. Suppose a reference center position x0 =
(x0,y0), the phase shift due to the reflection on the interface for a given hole with center
position xi = (xi,yi) is related to the position difference ∆x = |xi−x0|. The standard
deviation of phase shift due to the position is :

< φ
2 >=

16π2

λ2 η
2
e f f ,p cos2(θ1) (3.32)

where ηe f f ,p is the standard deviation of the position difference of the holes belonging to
the same column, i.e., building up the same interface to the wavefront coming from the
left. This standard deviation is linked to the "period" of the porous structure.

These effective roughness will be added to the real roughness from the walls of the
holes (denoted as ηwall) to give a total roughness characterizing the material. This total
roughness is given by :

η
2
total = η

2
wall +η

2
e f f ,s +η

2
e f f ,p (3.33)

3.3 Model of nano-porous structure : ordered and disordered

In this section, I will give the details about the FE simulation, including the geometries
of the model, materials properties as well as other information.

FIGURE 3.24: Illustration of effective roughness ascribed to the two types of disorder.
The grey region is the material and the white regions are the holes. Left : center aligned

circular with random radii ; Right : center non-aligned circular with identical radii.
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3. Mechanical response and acoustic attenuation for different types of interfaces

3.3.1 Model geometry

Our aim is to model the nanoporous structure of Fig. 3.22, with periodicity L=242 nm
and hole diameter φ =137.5 nm, and gradually introduce size and position disorder. These
geometrical values, of the same order of the ones in Ref.[MAI 17] have been chosen in
order to investigate the same samples as the ones experimentally investigated within the
PhD thesis of M. Hadi. For the same reason, as we will see later, the chosen material
is amorphous SiNx. We thus establish a "pseudo-periodic" model based on the previous
models in Chap.2 : equal square blocks are placed periodically along the x or y direction
with period L being also the length of the square. Inside each block, only one hole can
be placed at most. The computational model consists of 3x12 square blocks as illustrated
in Fig.3.24 : the first 3x2 blocks without hole, then 3x9 blocks containing each a single
circular hole, and finally another 1x3 blocks without hole. The large number of squares is
necessary for establishing the wave-packet and studying the transient behavior, especially
for the long-wavelength pulse e.g., 402 nm. We will investigate the wave-packet propaga-
tion for wavelengths smaller, comparable and larger than the holes periodicity and size.

It is important that here we have created three alignments of holes instead of one.
Here the reason of using an elementary cell with three holes rows can be appreciated.
Disorder along x would not affect coherence as the wavefront coming from the left would
always meet perfect interfaces, as reproduced by the periodic boundary conditions along
y. Using three rows, with disorder of size and position in both x and y directions breaks the
y-periodicity allowing to affect the coherence of the wave. However, if we use three ali-
gnments of holes with random radii or of non-aligned holes, wave front will touch earlier
a certain hole among the three in the first column, thus breaking the vertical symmetry.

3.3.2 Model material properties

The nano-structure is a model amorphous SiNx, linearly elastic with isotropic homo-
geneous elastic behavior characterized by the Young’s modulus E = 130 GPa, the mass
density ρ = 2650 kg/m3 and the Poisson ratio ν = 0.27. The above values are averaged
values reported in Ref. [GAN 18]. For information, the speed of longitudinal wave in this
bulk solid without holes is cL = 7829.4 m/s.

3.3.3 Wavelength of the wave-packets

The expression of the wave-packet is the same as defined in Eq.2.1 with t0 = 3π

ω
. We

have selected 5 representative frequencies ω given in Tab.3.7 as well as their correspon-
ding wavelength λ . Experimental measurements of acoustic phonons have been done by
our collaborators for 54 nm and 84 nm with X-ray Transient Grating techniques at the
XFEL FERMI, so here we keep these two wavelengths. We study two wavelengths com-
parable with the nanostructure (inter-hole distance) : 104 nm and 163 nm, and finally a
wavelength larger than the period (402 nm).
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Nano-porous materials : from perfectly periodic to disordered holes arrangement

TABLE 3.7: Investigated frequencies and wavelengths in the model SiNx.
λ (nm) 54 84 104 163 402

ω (×1012 rad/s) 0.9108 0.5855 0.472 0.3 0.1223

3.3.4 Implantation of the disorder

As mentioned before, two types of disorders will be introduced independently : ran-
dom diameter Φ or random translation length D defined as the deviation of the hole po-
sition from the center of the block, and thus from perfect periodicity. Therefore, the only
change we need to do is to set a random value, for each square, to specify the center
translation or the scaling of the hole taking care that the resulting hole remains within its
block.
• Random radius

We have defined a disorder parameter σ, as the standard deviation of a Gaussian distri-
bution for the sample hole size. A routine randomly picks the hole diameter from such
Gaussian distribution. We have investigated the case σ=0 (ordered), σ=10.3 and σ=40,
which lead to a scaling of the diameter by a factor α, equal to 1 for σ=0 (Φ = αΦ0). The
list of α factors for the different values of σ and for each hole in the elementary brick of
the simulation is reported in in Appendix.B, Tabs.B.1 and B.2.
• Random center position

In this case, we keep the same diameter for all holes and randomly modify their x and y
position. We define then a translation factor dx or dy, such that the shift with respect to
the center position is Dx = dxDmax and Dy = dyDmax, with Dmax = 12 nm and 45 nm. dx,
dy are assumed to be uniformly distributed between -1 and 1. The dx and dy values are
reported in Appendix.B, Tab.B.3.

In both disorder models, for each value of the disorder parameter, we have prepared
three different samples and investigated the wavepacket propagation in each of them. Final
results come from the average of the results of the three configurations. Such procedure
allows us to get rid of effects due to the specific random configuration. More samples
should be in the future prepared for each disorder configuration for improving this average
procedure.

3.3.5 Other details about FE simulation

Central difference integrator is employed for the time integration with the time dis-
cretization dt = 3.36×10−14 s and the total simulation time is 40000 × dt. We measure
the envelope of the kinetic energy induced in the system by the propagation of the wave-
packet, summed over the y-direction. Energy is supported by the frame in x with width
∆x = 2.75 nm in the x-direction.

3.4 Estimation of the coherence length
Here we will give an estimation of coherence length with respect to the disorder by
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3. Mechanical response and acoustic attenuation for different types of interfaces

neglecting the roughness from the wall (ηwall = 0). This latter is characterized by the
total roughness given by Eqs.3.31-3.33. Then, total roughness and wavelength of phonon
determine the specular parameter p(λ) (Eqs.3.29 and 3.29) which is between 0 and 1. p as
a function of λ and η is shown in Fig.3.25 (a). It shows that, depending on the roughness,
the critical wavelength increases with roughness. As mentioned, usually it is assumed that
p(λc) = 0.5 is needed to see coherent effects. As such, one can get a critical wavelength
λc, also called the coherence length.

A first estimation of the coherence length as a function of the disorder parameter σ is
135 nm for σ= 10 and 535 nm for σ= 40. The coherence length is linear with the disorder
parameter, giving the red dashed line in Fig.3.25 (b). If the wavelength of initial coherent
acoustic phonons is less than the coherence wavelength, phonons will lose their phase
after successive scattering events. Therefore, wavepackets with wavelength larger than
the coherence threshold are expected to show coherent effects, while wavepackets with
smaller wavelengths are not. Thus, we use the red line to separate the coherent phonon
regime (p > 0.5) or the incoherent regime (p < 0.5).

From the figure, we can observe that all investigated wavepackets in the perfectly
periodic sample are in the coherent regime. However, if we assume an uncertainty on the
position of the crossover between coherent and incoherent, all aperiodic cases should be
incoherent at all disorder degrees, except for λ=402 nm. For λ=402 nm, only the large
disorder should be incoherent.

FIGURE 3.25: (a) Example of specular parameter as a function of wavelength λ for dif-
ferent values of the roughness η. (b)Phase diagram of the coherence regime as a function
of the disorder parameter and of the wavelength. Coherent and non-coherent regime is

identified. White circles are the data points for the FE simulations.

3.5 Results : Envelopes of the kinetic energy
There are two ways of comparing the results of the simulations, that we call longitu-

dinal and transverse :

• Longitudinal : Observation of one disordered configuration over different wave-
lengths.
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Nano-porous materials : from perfectly periodic to disordered holes arrangement

• Transverse : Observation of one wavelength over different disordered configura-
tions.

Here, I only present a transverse survey for the envelope of the kinetic energy. For
five different wavelengths λ = 54, 84, 104, 163 and 402 nm, we have five groups of
comparison for the envelopes. As shown in Fig.3.26, in each group, the envelopes from
different disordered configurations are superposed : one ordered structure (periodic) and
four disordered structures. The yellow line (ordered structure) is observed always on the
top of other lines (disordered structure). A special case is λ = 402 nm in which in the
envelopes for weak disorder (size disorder with σ = 10 & position disorder with Dmax =
12) the envelope is indistinguishable from the envelope in the ordered one.

Inside the figures, we use black straight lines to identify an exponential decay in the
semi-log plot. The exponential decay of the energy envelope can be considered as a result
of the acoustic attenuation in the propagative regime for acoustic phonon. In most cases,
there exists a second regime after the first one, which is especially evident for the periodic
structure. In the second regime, the attenuation of the energy envelope becomes weaker
than that in the first regime. In the following, for each wavelength, we give our observa-
tions about the energy attenuation, which is inversely proportional to the mean-free path
fitted by the Beer-Lambert law, in the first and second regimes, as well as the crossover
positions between two regimes :

For λ=54 nm, the crossover for the periodic structure is at 1700 nm. Still, what we
see is that the larger the disorder, the sooner the envelope detaches from the one of the
periodic system and its energy remains smaller. There is almost one single regime for the
disordered case since the crossover is not evident.

For λ=84 nm, the crossover is around 1500 nm and arrives slightly earlier in the di-
sordered case. In the first regime, the envelopes for small disorder coincide with the en-
velopes for the periodic sample. However, the envelopes for large disorder have smaller
mean-free paths, indicating stronger attenuation. In the second regime, the envelopes of
small and large disorders join each other and their energy remains smaller than the one of
the periodic sample.

For λ=104 nm, the crossover is around 1400 nm. We are here at the wavelength cor-
responding to inter-pores distance along the propagation direction (104.5 nm). Here di-
sordered and periodic envelopes perfectly match until the crossover. Then all disordered
structures are equivalent, they almost do not present a second regime, and their energy
remains smaller than that in the periodic sample.

For λ=163 nm, the crossover is around 1600 nm for the periodic case. There is almost a
single regime for disordered case. Compared to the periodic case, reduced mean-free path
are remarked for the disordered and the reduction increases with the increasing disorder
degree.

For λ=402 nm, the crossover position is around x = 1500 nm. Especially, small disor-
der and periodic are indistinguishable which is different from the small disordered cases
for any other investigated wavelengths.

Three main observations can be summarized : (1) The envelopes for the periodic case
are always at equal or higher energy than the ones for the disordered cases. In some cases,
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3. Mechanical response and acoustic attenuation for different types of interfaces

the more the disorder, the smaller the energy of the envelope. This means that at a given
position x the stronger the disorder the smaller the kinetic energy which is transported
through x. (2) A crossover separating two regimes can be found in almost all the cases,
except for some disordered cases, and it is much more evident in the periodic case. (3)
The crossover position seems to be independent to the wavelength.
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FIGURE 3.26: Envelope of the kinetic energy P(x) for the ordered and the disordered PnC
with wavelength λ = 54, 84, 104, 163 and 402 nm. Exponential decay is illustrated as the
black lines. Crossover from the first exponential decay regime to the second exponential
regime is clearly shown for the periodic cases and the envelope in fact turns to a 1/x

decay.

3.6 Discussion
Let’s go back to the classical optic-like concept of coherence [ZIM 62] : a wave will

be said coherent if at the interface it reflects almost specularly at a single reflection angle.
If the interface is rough, a dephasing is introduced and the wave is diffused in a solid
angle whose width depends on the roughness. In a periodic system, this coherence allows
to see the pores as a diffraction grating, and intensity peaks can appear, similarly to the
Bragg diffraction. If coherence is lost, the grating is lost. The question is : if we look
at the propagation of a wave packet, and more specifically at the propagation of the vi-
brational energy, how this concept of coherence translates? We have seen that, following
the classical optic-like treatment, we should be always in a coherent case for the periodic
sample, and always in incoherent conditions for the disordered ones, except for λ=402
nm. At this wavelength, the large disordered cases lie in the incoherent regime, while the
small disordered ones in the coherent one. Indeed we see here that the energy envelope
for small disorder at 402 nm is indistinguishable from the periodic case. For those which
are incoherent, the reduction of the mean free path with respect to that in periodic struc-
ture could be thus associated to the incoherently scattered wave. Moreover, their second
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Nano-porous materials : from perfectly periodic to disordered holes arrangement

regime is not as obvious as in the periodic case.

The second regime introduces a sort of slow down of the normal dissipation found
in the first regime. Here energy remains longer in the system at large traveled distances.
Indeed, one can verify that in the periodic sample, in the first regime the Beer-Lambert
law is followed, while in the second the envelope follows a 1/x dependence. As such,
this crossover marks the change from a propagative to a diffusive regime, similarly to
Refs.[BEL 18, TLI 19]. The x position of this crossover marks the traveled distance after
which the wave-packet looses its propagative character and turns to a diffusive motion.
Thus, the diffusive character is built up during the path, and at the end it gives a crossover
when diffusion dominates on propagation. Interestingly, such crossover is always present
in the periodic case, while it is only weakly present in disordered systems, so that we can
assume almost a single propagative regime.

On the basis of all of this, we can apparently relate the presence of a diffusive regime
as an effect of coherence (coherent trapping of the energy due to multiple coherent re-
flections, which then diffusively spreads). Due to this trapping, the total envelope energy
decreases more slowly, and energy is not straight propagated anymore, but moves on in
a diffusive way. The coherence degree will thus correspond to the amount of total energy
which diffusively spreads in the second regime. By comparing the envelopes in the second
regime, it is seen that coherence decreases with disorder as expected. The reduction of the
mean free path proportional to disorder degree in the first regime is likely related again
to this trapping : in the periodic case the trapping increases the local energy because of
the back-reflection, thus it increases the mean free path. In the disordered case the mean
free path is thus reduced with respect to the ordered one because of the lack of coherent
back-reflected waves and trapping.

To summarize, we observe a first regime marked by disorder with mean free path
decreasing with disorder, and a the second regime, which comes from the constructive
interference of waves multiply reflected. This second regime is purely diffusive for a
perfectly periodic nanoporous sample while in a disordered sample there appears a mixed
regime, where, if the slope decreases, the 1/x behavior is actually not followed. This is
likely due to the coexistence of localization between pores (see maxima more pronounced
with disorder) and diffusion or anomalous diffusion. It is tempting to associate the change
of regime with an effective Ioffe-Regel crossover, induced by the nanostructure. If its
position along the traveled distance does not depend on disorder, it is clear that the regime
beyond it will be different, as we move from a pure diffusive regime for a periodic system
to a mixed one for a disordered one.

Finally, it is worth reminding that in the first approximation we neglect here the pos-
sible existence and role of surface waves on the pore surface. Also note that the dynamics
remains indeed far more complex, for example it keeps spatial oscillations in the kinetic
energy that are located between the inclusions in the aperiodic case.
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3. Mechanical response and acoustic attenuation for different types of interfaces

3.7 Conclusion and perspectives
To conclude, we investigated a series of simulations of wave propagation in a pho-

nonic crystal with ordered/disordered circular holes. Two types of disorder are indepen-
dently introduced into the model, i.e., the size of the holes and of the position of the holes.
Our results demonstrate that periodic porous structures promote the presence of a diffu-
sive regime as an apparent effect of coherence at sufficiently small wavelength or large
distance. Increasing the disorder degree has two effects : the reduction of the mean free
path in the first propagative regime, and the weakening of the crossover to the second
regime, with a second regime where the behavior is not fully diffusive, but has a mixed
and more complex character. Both effects can be brought back to results of a reduction of
the coherent multiple reflections of the wave with increasing disorder.

Wave interference effects are at the origin of new approaches for manipulating heat
flow. However, application of the coherence of phonon to manipulate phonon transport is
a challenging work. To maintain the phase of coherent phonons at room temperature, pho-
nons must scatter specularly inside the nanostructures. Therefore, nanoscale periodicity
and atomically smooth surfaces are required. Our results allow to identify the effect of co-
herence and lack of coherence on the wave-packet propagation, and thus energy transport.
Interestingly, we have shown that, since the coherence is also found in the weakly disor-
dered structure, there is a frequency-dependent tolerance range of disorder inside which
coherent effects are preserved as in a perfectly periodic structure.

Work can be extended in many ways. Firstly, further temporal and spectrum analysis
can be done to complete the work by obtaining other propagation and vibration properties,
such as effective group velocity, the DOS, etc. The experimental work in Ref.[MAI 17]
can be numerically studied to verify the reduction of the thermal conductivity due to the
coherence effect, since their Fourier-transport-equation-based FEM simulation can not
show the impact of disorder. Secondly, the shape of the holes can be easily changed to
other shapes. It is clear that our nano-porous model with disorder opens the way to a large
variety of studies.

Finally, the strong oscillations in the kinetic energy induced by disorder in our re-
sults cannot be described within a classical optic-like approach. Mechanisms are much
more complex if the nanostructures are aperiodic and it’s not a simple wave scattering
mechanism. A more comprehensive understanding is therefore necessary.
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Acoustic attenuation in a medium with heterogeneous elasticity

4 Acoustic attenuation in a medium with heterogeneous
elasticity

In this section, based on the concept of the heterogeneous-elasticity theory, acous-
tic attenuation in disordered solids containing random elasticity in space will be analy-
zed using FEM simulations. No dissipation is introduced in this frame, the attenuation
is only ascribed to the disorder-induced scattering of plane waves, still in the harmonic
approximation. The results of the frequency-dependent acoustic attenuation is measured
and compared with the results from the MD and the predictions of the theory.

4.1 Introduction of the vibrational anomalies in glasses in the tera-
hertz range

Numerous anomalies show up in atomistically disordered materials, like glasses, in the
terahertz frequency range : the most renowned is an enhancement of DOS with respect to
the Debye prediction g(ω) ∝ ω2[ALL 99, FEL 99] which gives rise to a maximum of the
reduced DOS g(ω)/ω2 (3D) called "boson peak" (BP). From inelastic scattering experi-
ments (IXS) and MD simulations [MON 09b, MON 09a, BAL 11, MAR 13, SCH 15b],
it was reported that the BP is associated with a dip of the group velocity (negative disper-
sion of the sound velocities) and a strong increase of the Brillouin line width Γ(ω) ∝ ω4,
which has been explained as disorder-induced Rayleigh-like scattering. Such a sudden
decay in the group velocity is responsible for the peak of the function C(T )/T 3, where
C is the specific heat, while the anomalous dissipative behaviour is responsible for the
unusual temperature dependence of the thermal conductivity, a plateau in the glassy ther-
mal conductivity occurring at T ≈ 10K that is for a thermal energy comparable to the
vibrational energy of the Boson peak [TLI 19, POH 01, ZEL 71].

Recently, the results of IXS [MON 09b, MON 09a, BOV 05, CAP 09] and MD si-
mulations [TAN 02, MON 09b, LEO 05, HOR 01, LÉO 06b, MAY 09, PIL 04, SCH 04,
RUO 08, DER 12] have shown that the disorder-affected local transverse elasticity play
a key role for producing the anomalies. In addition, in many materials (glassy or crys-
talline) there exist localized vibrations in addition to plane wave contribution to the low-
frequency vibrations. Therefore, models in which glasses are assumed to have quasi-local
disorders induced oscillators have been proposed. These oscillator are assumed to be
created by glass-specific soft bistable potentials, similar to those in the two level sys-
tem (TLS) model. Regardless of the associated issue of energy barriers, all these models
lead to a spatially fluctuating elastic constants, as it could also have been inferred simply
from the disordered nature of the atomic structure [TSA 09]. Starting from these points,
field-theoretical derivations of a mean-field theory of heterogeneous elasticity have been
given by W. Schirmacher, including two versions : the coherent-potential approximation
(CPA) and the self-consistent Born approximation (SCBA) [MAR 13, SCH 15b]. In he-
terogeneous elasticity theory the shear modulus G is assumed to spatially fluctuate accor-
ding to a given probability distribution. In such a spatial disorder medium, the effective
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3. Mechanical response and acoustic attenuation for different types of interfaces

frequency-dependent elastic moduli have a real and imaginary part [SCH 13, SCH 15a],
the imaginary part of the effective shear modulus being responsible for the acoustic atte-
nuation induced by disorder.

The frequency-dependent attenuation coefficient Γ predicted by the heterogeneous-
elasticity theory is compared to the MD simulation results in Ref.[MAR 13, SCH 15b] in
which a good agreement is reported. Based on the previous works, by means of the FEM
simulation, we prepared disordered computational models containing random elasticity
in space. Dynamic attenuation of the wave-packet as it goes through the samples will
be investigated. No dissipation is introduced in this frame, the attenuation is only due to
the disorder-induced scattering of the harmonic motion. The purpose is to measure the
attenuation from a transient process of wave-propagation and compare with the result
from the MD and the predictions of the theory.

This chapter is organized as follows : In Section.4.2 the basic definition and two ver-
sions of a mean-field theory for solving the stochastic equations of motion are presented.
In Section.4.3, FE simulation of wave propagation in disordered media with random elas-
ticity will be investigated and the attenuation from FE simulation is then compared to that
from MD simulation and predictions of the heterogeneous-elasticity theory. Discussion
and conclusion will be given in Sec.4.4 and Sec.4.5.

4.2 Introduction of the theory of heterogeneous elasticity

4.2.1 Basic definition

(a) Frequency-dependent elastic moduli and attenuation
By analogy with magnetic systems, but replacing the magnetic field by the volumic

forces, the longitudinal dynamic susceptibility in a glass χL(k,z) = χ′L(k,ω)+ iχ′′L(k,ω)
(k is the wave number and z = ω+ iε, ε→+0) can be expressed as [SCH 06] :

χL(k,z) =
k2

−z2 + k2v2
L(z)

= k2GL(k,z) (3.34)

where the longitudinal frequency-dependent sound velocity vL(z) is associated to the
frequency-dependent longitudinal modulus M(z) by

M(z) = ρmvL(z)2 = M′(ω)− iM′′(ω) (3.35)

GL(k,z) is the longitudinal (disorder-averaged) Green’s function which determines the
response of displacement to a perturbation of the force per unit mass.. The sound attenua-
tion coefficient (inversely proportional to the relaxation time) can be defined as

ΓL(ω) = ωM′′(ω)/M′(ω) (3.36)

The correlation function in the displacements is the one-phonon dynamical struc-
ture factor S(k,ω) which is related to the longitudinal dynamical susceptibility by the
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fluctuation-dissipation theorem[KUB 57, SCH 15b]. Defining the resonance frequency
ΩL(ω) = vL(ω)k, we obtain the dynamical structure factor

S(k,ω) =
kBT
πmω

χ
′′
L(k,ω) (3.37)

=
kBT
mω

1
π

k2 Ω2
LΓL(ω)/ω

(Ω2
L−ω2)2 +(Ω2

LΓL(ω)/ω)2
(3.38)

where m is the ratio of the mass density ρm and the number density N/V of the material,
V is the total volume of the sample and N is the total number of atoms or molecular units.

Near resonance ω = ΩL we get the ”damped-harmonic-oscillator” (DHO) function,
with which many Brillouin-scattering spectra have been fitted :

S(k,ω) =
kBT
πmω

k2 ωΓL(ω)

(Ω2
L−ω2)2 +ω2ΓL(ω)2

(3.39)

In a disordered harmonic system (heterogeneous-elasticity), there is no anharmonic
damping as due to phonon-phonon interactions. A finite Γ is explained due to the disorder
and describes static scattering. Γ is inversely proportional to the mean-free path, divided
by the wave velocity, which involves no dissipation.

Transverse properties (T ) can be defined in a similar way.

(b) Wavenumber-independent spectra
Within a generalized Debye model, which is described by the Green’s function GL,T ,

the vibrational density of states (VDOS) is given by [SCH 15b]

g(ω) =
2ω

3π

3
k3

D

∫ kD

0
dkk2(G′′L(k,ω)+2G′′T (k,ω)) (3.40)

where kD = 3
√

6π2N/V is the Debye cutoff wavenumber.
It is useful to define longitudinal and transverse susceptibility integrated up to a certain

wavenumber cutoff kξ

χ
ξ

L,T (z) =
3
k3

ξ

∫ kξ

0
dkk2

χL,T (k,z) (3.41)

kξ can be related to the correlation length ξ of the spatially fluctuating parameter,
for example the shear modulus G, denoted as ξG. More details can be found in Ref.
[SCH 15b].

4.2.2 Heterogeneous-elasticity theory

(a) Model
Heterogeneous-elasticity theory is formulated in terms of standard elasticity theory

[LAN 86]. For a linear and isotropic medium as in Eq.1.43, we can write the Hooke’s law
as

σi j = 3Kε
sph
i j +2G(r)εdev

i j (3.42)
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3. Mechanical response and acoustic attenuation for different types of interfaces

where ε
sph
i j and εdev

i j are defined in Eq.1.32 and r is the position.
Next, we introduce the spatial fluctuations of the shear modulus G as first step for

establishing the heterogeneous-elastic theory.

(b) SCBA & CPA
Now, the above theory of elasticity is generalized for allowing the elastic constants

to fluctuate in space. W. Schirmacher has given two versions of a mean-field theory for
solving the stochastic equations of motion [MAR 13, SCH 15b] : the self-consistent Born
approximation (SCBA) and the coherent-potential approximation (CPA) . I will compare
briefly the results of both. Before that, two common assumptions : (1) the breakdown of
the homogeneity is more important than that of the isotropy and (2) the fluctuations of the
shear modulus G are stronger than those of the bulk modulus.

SCBA assumes that the spatial statistic fluctuations of the shear modulus G follow a
Gaussian distribution

P(G) =
1√

2π < ∆G2 >
e−(G−G0)

2/2<∆G2> (3.43)

where G0 is the mean and < ∆G2 > is the variance and G are decorrelated. The mean-field
theory for heterogeneous shear elasticity gives the following self-consistent equations for
the macroscopic moduli [MAR 13]

G̃(ω) = G̃0−Σ(ω) = v2
T (ω) (3.44)

M̃(ω) = K̃ +
4
3

G̃(ω) = v2
L(ω) (3.45)

Σ(ω) = γG̃2
0

1
N ∑
|k|<kD

[
2
3

χL(k,ω)+χT (k,ω)] (3.46)

x̃ means the quantity x normalized by the the mass density ρ, for example, G̃(ω) =
G(ω)/ρ = G′(ω)/ρ− iG′′(ω)/ρ. The influence of the disorder is given by the complex
self-energy function Σ(ω). The k summation 1

N ∑|k|<kD k2dk is restricted to values smaller
than the Debye wavenumber kD = 3

√
6π2N/V where N is the number of atoms and V is

the volume of the sample. γ is the disorder parameter :

γ = (N/V )Vc < ∆G2 > /G2
0 (3.47)

where Vc is the coarse-graining volume. The second parameter of the theory is the ratio
K/G0. It is noticed that there exists a critical value of the disorder parameter γc beyond
which shear modulus becomes negative and the system is unstable. SCBA is limited in
small disorder case.

CPA version allows the use of any distribution of the shear elasticity G and the pre-
sence of the negative modulus[SCH 15b]. In CPA theory, the microscopic fluctuations of
G are averaged over a coarse-graning volume of diameter ξG, where ξG is the correlation
length of the G fluctuations, meaning that the values of Gi corresponding to the volume

100 Haoming LUO

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés
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TABLE 3.8: Comparison between the SCBA and CPA (SCBA can be included in CPA in
the weak-disorder limit)

SCBA CPA
Distribution of G Gaussian distribution Arbitrary distributions

Disorder level Weak disorder Weak & strong disorder
Can G be negative ? G > 0 G can be negative

Parameter γ and K/G0 < ∆G2 > , Gmin and ν̃.

with center ri are assumed to be statistically uncorrelated. The self-consistent equation
for G(ω) are :

G(z) = 〈 Gi

1+ ν̃

3(Gi−G(z))Λ(z)
〉i (3.48)

Λ(z) =
4
3

χ
ξG
L (z)+2χ

ξG
T (z) (3.49)

where ν̃ is an inverse effective density restricted to the correlation volume ξ3. χ
ξG
L,T is de-

fined in Eq.3.41. < ... >i denotes an average over the space. In SCBA, the shear modulus
G depends on the Σ thus the γ which is determined by the parameters of the Gaussian
distribution. However, in CPA, the fluctuations of G(r) can be any distribution.

A most studied case is when the fluctuations of the shear modulus are assumed to
follow a truncated Gaussian distribution [SCH 15b]

P(G) = P0θ(G−Gmin)e−(G−G0)
2/2<∆G2> (3.50)

where P0 is a normalizing constant, θ(x) is the Heaviside step function and Gmin is the
lower cutoff which can be negative. It was shown that the CPA theory with Gaussian
distribution of G reduces to the SCBA in the weak-disorder limit, i.e., ∆G/G0� 1. We
compare the two versions in Tab.3.8.

4.2.3 Explanation of the vibrational anomalies in glasses in terms of the
heterogeneous-elasticity theory

Frequency-dependent vibrational properties in glassy materials are not only predic-
ted by the heterogeneous-elasticity theory but also investigated by MD simulation. some
interesting results from literature are reported in Fig.3.27 which show that the BP associa-
ted anomalies can be qualitatively and quantitatively explained and reproduced in terms
of this theory by comparing to the MD simulation.

We first show the results from MD simulation, for example, the results of DOS and
attenuation are shown in Fig.3.27 (a), the Ioffe-Regel (IR) frequency is marked by the
intersection of Γπ (symbols) and frequency Ω (solid lines) where Γ and Ω are obtained
by the DHO fit as presented in Eq.3.39. In the inset figure, the boson peak frequency is
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3. Mechanical response and acoustic attenuation for different types of interfaces

given by the maximum of the reduced DOS (g(ω)/ω2) around ω = 1. The BP frequency
is near the transverse IR frequency.

In (c), the results of G′ and G′′ from the theory (SCBA) and from the above mentioned
MD simulation are compared. It can be seen that the SCBA results agree with the simula-
tions. It is said that the frequency of the dip of G′ and the strong increase of G′′ coincide
with the BP frequency. However, this range of the BP is relatively large since the location
of the dip is in fact around 0.5.

In (b), from the prediction of CPA theory, it is shown that the frequency of the BP can
be modified by tuning the disorder parameter, e.g., Gmin/G0.

As explained in Ref.[SCH 15b], within both theories (CPA & SCBA) the disorder-
induced fluctuations of the shear modulus are transformed into a frequency dependence
of the complex macroscopic shear modulus G(ω) = G′(ω)+ iG′′(ω) and G′′ is propor-
tional to the sound attenuation Γ and to the inverse mean- free path. When the mean-free
path becomes comparable to the wavelength of the vibrational excitations (phonons), the
concept of waves breaks down, and the excitations are random-matrix-type states. The
boson peak and the related anomalies appear as the consequence of such a transition from
wave-like to random-matrix-like behavior in glasses.

4.3 Wave propagation in a medium with heterogeneous elasticity

In this section, I will firstly present the computational model with random elasticity.
By spatially perturbing the Young’s modulus E thus the shear modulus G, we define a
random-elastic medium and then look at wave-packet passing through this sample. As
usual, from the envelope of the kinetic energy, frequency-dependent acoustic attenuation
is found. To quantify the attenuation length, we measure the mean-free path by fitting
the average energy envelopes with the Beer-Lambert law, then compare it to the results
reported in the MD simulations and heterogeneous-elasticity theory. This work is inspired
by the work of W. Schirmacher et al[MAR 13, SCH 15b].

4.3.1 Computational model

(a) Geometry
The computational model, as illustrated in Fig.3.28, consists of one big square block

and many small square blocks connecting to each other with perfect connection. Each
square is assumed as linear elastic, homogeneous and isotropic. The height of the model
is L = 60 nm and the length of the model is 9L. The side length of the first big square is
L and the side length of the small square is ξ. In the figure, the gray level represents the
different elasticities. The first big homogeneous square is used for the establishment of
the wave-packet, followed by the heterogeneous-elasticity sample. Just like the previous
works in the Chap.2, wave-packet is imposed at the left side, PMLs and PBCs are applied
on the other boundaries. In addition, the correlation length is set as ξ = L/3 in this work.
(b) Materials properties
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FIGURE 3.27: Some results based on the heterogeneous shear modulus in the literature
(a)From MD simulation : Resonance frequencies ΩL,T (k) (straight lines) and Brillouin
line widths ΓL,T (k) , multiplied with π. The dashed line indicates the BP position, which
is near the transverse Ioffe-Regel crossing. (Insert : Reduced density of states g(ω)/ω2 as
obtained from the velocity autocorrelation function) [MAR 13] (b) From the CPA : Redu-
ced density of states g(ω)/gD(ω) as a function of reduced frequency ω/ωD for different
values of the parameter Gmin/G0. (c) Comparison of results of MD simulations (symbols)
with the predictions of heterogeneous-elasticity theory in SCBA. Real (imaginary) part of
G is shown in upper (lower) panel as a function of frequency. The SCBA parameters are

γ− γc = 0.08 and K/G0 = 3.166 [MAR 13, SCH 15b].

FIGURE 3.28: Illustration of the disordered elasticity model with height L and correlation
length ξ. The gray level indicates the random elasticity. Wave-packets are imposed at the
left side boundary. PBCs are applied on the top and bottom boundaries. PMLs are applied

on the right side boundary.
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3. Mechanical response and acoustic attenuation for different types of interfaces

To be consistent with the works of W. Schirmacher et al[MAR 13, SCH 15b], we use
the macroscopic elastic moduli K = 30.4 GPa and G0/K = 3.166. From the extracted
data of G(ω) and cT (ω) in Fig.3.27 (c), we can get the mass density ρ ≈ 0.985 which
is independent on ω, thus we assume a constant mass density ρ = 1 kg/m3. Material
properties are summarized in Tab. 3.9 in which other properties have been derived from
the known values. The Poisson’s ratio ν = 3K−2G

2(3K+G) = 0.357. ν and ρ are homogeneous
over the entire sample.

In addition, being a material with mass density ρ = n kg/m3, that material is equiva-
lent to the present material in terms of wave properties, e.g., cL,T and λ(ω), if its elastic
muduli are scaled by a factor n/1000. For example, for ρ = 2303 kg/m3 as in Chap. 2,
the equivalent Keq = 2.303×K = 70.011 GPa.

TABLE 3.9: Material properties for the computational model
ρ (kg/m3) K (GPa) G0 (GPa) E0 (GPa) ν cT,0 (km/s)

1 30.4 9.602 26.062 0.357 3.099

Inside every correlation zone (small square with edge length ξ in Fig.3.28), a constant
Gi is assigned which follows the Gaussian distribution with a mean being the G0 and the
variance being ∆G2

G2
0

which is chosen as 0.19. It has been checked that no negative value
exists for the Gi.

(c) Wave-packets
We only consider here the transverse polarization. As presented in the SCBA and CPA,

the fluctuation of the bulk modulus is much smaller than the one of the shear modulus G.
However, this condition can not be satisfied due to the fact that Ki ∝ Gi (ν is a constant)
for a linear-elastic solid. Therefore, it is the same fluctuation for G and K. This fact will
have an impact on the longitudinal waves because their wave speed (cL =

√
M
ρ

) depends

on M, and M = K + 4
3G. But it will change nothing for the transverse waves (cT =

√
G
ρ

).
As such, we could only study the acoustic attenuation for the wave propagation with the
transverse polarization.

As before, the wave-packet (Eq.2.1) with t0 = 3π/ω is generated by imposing a
displacement on the left side of the model, and it is established in the first homogeneous
square before touching the heteregeneous-elasticity medium. A series of ω is investigated
from 0.15 to 1.2 THz.

(d) Correlation length ξ

In the SCBA and CPA theory, ξ is the correlation length of the coarse-graining volume
over which the microscopic fluctuations of G are averaged. It means that the resulting
values of Gi corresponding to the volume with center ri can be assumed to be statistically
uncorrelated. In our simulation, Gi is supposed constant inside a square zone with center
ri and edge length ξ. The value of ξ will certainly influence the k-dependent properties.
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According to the heterogeneous-elasticity theory, Boson-peak related anomalies are
ascribed to the spatially disordered shear elasticity. The boson peak frequency is given
roughly by the sound velocity, divided by the correlation length of the spatial fluctuations,
in our case the box size, i.e., ωBP = 2π× cT/ξ where cT is given in Tab.3.9. Assuming
ωBP is located at 1 THz, we estimate ξ = 19.45 nm. Considering the model height is 60
nm, we thus choose the correlation length ξ = 20 nm = L/3 to simplify the problem.

4.3.2 Measurement of the mean-free path

We prepared nine samples with random elasticity to have results which won’t depend
on the actual elasticity map in one single configuration. All values of the Gi are generated
according to the Gaussian distribution with a mean being G0 = 9.602 GPa and a variance
being 0.19 as detailed in the previous section.

The transverse wave-packet created on the left side of the sample, advances along the
sample. Due to the presence of the spatial inhomogeneity, the wave-packet is scattered by
the interfaces. We measure the envelope of the kinetic energy induced in the system by
the propagation of the wave-packet, averaged over the y-direction. The definition of the
energy envelope is given in Eq.2.9. As we have 9 samples, we average the nine envelopes
obtained from the samples at each frequency. An example is demonstrated in Fig.3.29.

The averaged envelopes for transverse wave-packets propagating in a heterogeneous-
elasticity medium with correlation length ξ = 20 and different frequencies are plotted
in Fig.3.30. To be visually clear, the envelopes are vertically shifted with respect to each
other. The perturbations induced by the disorder can still be seen despite we have averaged
from nine configurations, which is mainly ascribed to the extremely soft local elasticity
(Gi→ 0). In addition, we also prepared a sample with the height L = 90 nm for ω = 0.3
THz without modifying the correlation length. It is noticed that a significant attenuation
is found at ω = 0.3 THz which is supposed to be due to the resonance effect as the wa-
velength of the transverse wave at such frequency (λ = 64 nm) is close to the height of
the model L = 60 nm. When we enlarge the height of the model L = 90 nm, the strange
attenuation disappears and we get the energy envelope shown in Fig.3.30. To verify the
resonance effect, we let a wave-packet with ω = 0.2 THz (λ = 97 nm) propagate in the
large model with L = 90 nm, we find again a significant attenuation not present in the
model with L = 60 nm for ω = 0.2 THz.

Attenuation begins after the first homogeneous block around x = L = 60 nm, from
which point we measure the it. Wave attenuation is quantified by means of the Beer-
Lambert law, as described in Eq.2.11, from which the mean-free path is fitted. The re-
sults of the mean-free path as a function of the position x and the frequency ω is pre-
sented in Fig.3.30. Moreover, we also give the results of mean-free path derived from
MD simulations [MAR 13] and the prediction of the heterogeneous-elasticity theory
[SCH 15b, MAR 13]. It should be mentioned that the strange behavior of SCBA mean-
free path values at low frequency is only due to the poor data extraction from literature, as
these data were reported in a linear - non logarithmic - scale, contrary to the MD results.
The two groups of results remain anyway consistent with each other at low frequency.
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3. Mechanical response and acoustic attenuation for different types of interfaces

From the comparison between the results from the FE simulation and the literature,
we have the following observations : Firstly, an impressive agreement is found in the
low-frequency range below ω = 0.4 THz. Then, a difference appears for ω > 0.4 THz
and the mean-free path from FEM is longer than that from the literature, meaning that
the attenuation measured from the energy envelope varies only weakly with frequency.
In fact, the results from MD simulations are fitted from the dynamical structure factor
using the DHO model. As reported in Ref.[BEL 16], in the low-frequency range below the
Ioffe-Regel frequency, the mean-free path fitted from Beer-Lambert law and that from the
dynamical structure factor coincide with each other for transverse waves. However, near
the Ioffe-Regel frequency the mean-free path from Beer-Lambert law remains longer than
that from dynamical structure factor. In our work, the under-estimation of the attenuation
above ω= 0.4 THz is also supposed to be related to the transition of the transport regimes.
And Beer-Lambert law should not still be valid above the Ioffe-Regel frequency.

FIGURE 3.29: Demonstration of the average envelope of the kinetic energy. The black
dots are the envelopes from nine different configurations with random elasticity and the

red line is the average.

4.4 Discussion
Our results demonstrate the presence of a frequency-dependent acoustic attenuation

due to the disordered elasticity and the attenuation length or fitted mean-free path, they
agree impressively well with the simulations and the prediction of the SCBA below ω <
0.4 THz. When ω > 0.5 THz, the measured mean-free path is only weakly dependent on
the frequency. As a consequence, we cannot reproduce the predicted attenuation behavior
in the high frequency range in the present work.

One possibility for explaining why we did not observe the increasing attenuation for
ω > 0.5 THz is that the strong increase of G′′ above ω = 0.5 THz (as shown in Fig.3.27
(c)) marks the approach of the crossover from ballistic to diffusive transport regimes,
indicating a gradual failure of the Beer-Lambert model for estimating the mean-free path.
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FIGURE 3.30: Average envelopes of the kinetic energy as a function a position x and
frequency ω. L = 90 nm for ω = 0.3 THz and L = 60 nm for other frequencies. (The

envelopes are vertically shifted with respect to each other to be visually clear)

FIGURE 3.31: Comparison of the mean-free path (nm) as a function of frequency ω

(THz) from our FE simulations (yellow), MD simulations (blue) and the prediction of the
SCBA theory (gray). Data from Refs. [SCH 15b, MAR 13].
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3. Mechanical response and acoustic attenuation for different types of interfaces

The same situation is reported in Ref.[BEL 18] in which the fitted values of mean-free
path from the energy envelopes are longer than those fitted from the dynamic structure
factors.

It is also possible that we did not compare the "correct" results, since the results from
the MD simulations and theory are obtained in 3D and our FEM simulations are in 2D
although the plane strain state is assumed.

In addition, the average angle of the interfaces is another factor whose impact is not
clear. In the present model, the small squared boxes which are considered as correlation
areas are arranged as shown in Fig.3.28, generating two privileged angles for the inter-
faces of random elasticity : 0◦ and 90 ◦. Its impact on the results can be studied in the
future work.

4.5 Conclusion
Unlike the crystalline solid, a glass features properties is intimately shaped by the

intrinsic structural disorder. In this work, we built a inhomogeneous solid with random
elasticity to model glassy material. By means of FEM simulation, we have investigated a
series of transient process of the propagation of wave-packets in such disordered medium
with a weak Gaussian distribution of the shear modulus. A frequency-dependent acoustic
attenuation is found and the attenuation length is then quantified in terms of the mean-free
path which is obtained by exponential fit from the energy envelopes. Agreement with the
results in the literature is observed below a critical frequency (ω≈ 0.4 THz), while above
it the measured attenuation length varies only weakly with frequency and remains larger
than the literature results. This critical frequency is lower than the estimated Ioffe-Regel
frequency (ωIR = 1 THz) while it is at the same location as the strong increase of the
attenuation and the dip of the sound velocities in the SCBA theory likely indicating the
existence of another key frequency marking the approach to the diffusive regime.

The current work is mainly focused on the frequency-dependent attenuation length.
More vibrational properties are expected to be studied in the future works, such as the
group velocity and the vibrational density of states.

In terms of the computational time/storage cost, it is clear that the inhomogeneous
model costs significantly more than a homogeneous model with the same size. There-
fore, to reproduce such type of acoustic attenuation which has microscopic origin in FEM
simulations, useful for modeling large samples for engineering applications, we need to
develop a strategy to homogenize the microscopic properties and get a macroscopic ef-
fective constitutive law to describe the frequency-dependent acoustic attenuation. This is
exactly the objective of the next Chapter.
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Chapter 4

Effective constitutive laws for an
amorphous material (with acoustic

attenuation)

We connect atomistic and macroscopic description of acoustic
attenuation in glasses. Two versions of a continuum

visco-elastic mechanical model are proposed to encode their
specific frequency dependent phononic attenuation.
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1 Acoustic attenuation and apparent visco-elasticity

Acoustic attenuation, phonon attenuation, or sound damping, is a measure of the de-
cay of sound propagation in media. It can be related to thermal consumption of mechani-
cal energy in viscous medium due to an anharmonic mechanism, or it can result from
acoustic scattering in disordered harmonic systems. It can be temperature-dependent,
or not. Most interestingly, it is frequency-dependent. Numerous experiments and nu-
merical works (atomistic simulations) have investigated this issue [BAL 10, RUF 03,
RUF 06, MON 09a, VAC 97, MON 09b, RUO 99, MAS 04, BEN 05, MAS 06, DEV 08,
DIE 79, BUC 14, MIZ 19, WAN 19, GEL 16, SCO 03, FIO 99, BEN 96]. Nevertheless,
little consideration has been given so far to the use of those results on acoustic attenuation
at the macroscale due to the lack of adapted continuum constitutive laws. However, this
could allow macroscale dynamical simulations of acoustic properties for large structures
or composites including glasses in agreement with experimental measurements.

In this chapter, we connect atomistic and macroscopic scales, keeping the informa-
tion on the intrinsic attenuation in glasses and the frequency dependence of the phonon
attenuation. Two versions of continuum mechanical models for a viscoelastic medium are
proposed to encode this frequency-dependent property. The first version exhibits an ω2

dependence attenuation. Using finite element method, a series of transient simulations of
quasi-monochromatic wave-packets at different frequencies has been done, which shows
that a well-calibrated macroscopic linear viscoelastic constitutive law can reproduce the
microscopic frequency-dependent sound attenuation. Based on that, the second version
is proposed which gives a more complete ω2-ω4-ω2 dependence attenuation where the
different power laws are found in different frequency ranges.

1.1 Introduction on acoustic attenuation in amorphous materials
In glasses, many attenuation channels are present, whose importance depends on

phonon frequency and temperature : tunneling due to two level systems [GIL 81],
soft modes [JI 19], thermally activated relaxation processes [AYR 11], anharmoni-
city [BUC 92], and scattering induced by structural disorder [BEL 16, GEL 16, BEL 18].
This last contribution is temperature independent, and dominates acoustic attenuation
at frequencies in the GHz-THz range [DAM 17]. For lower frequencies, anharmonicity
gives rise to a phonon attenuation, or damping, Γ, inversely proportional to phonon li-
fetime, which changes with frequency as ω2. Approaching the THz range, correspon-
ding to phonon wavelengths in the nanometer scale, scattering on disorder starts to do-
minate, characterized by a Rayleigh-like dependence Γ ∝ ω4, with a progressive transi-
tion to a strong scattering regime, finally leading to a new high frequency Γ ∝ ω2 re-
gime, as reported in a number of experimental and theoretical studies [RUF 03, RUF 06,
RUF 08, LEV 06, MON 09a, BAL 10, DUV 98, AYR 11, MIZ 14]. This strong scatte-
ring takes place at frequencies comparable with the Boson Peak, i.e. the excess of modes
in the phonon density of states with respect to the Debye prediction at low frequency,
and has been explained as due to phonon scattering by nanometric elastic heterogenei-
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4. Effective constitutive laws for an amorphous material (with acoustic attenuation)

ties[TAN 02, LEO 06a, TAN 10, DUV 98, MIZ 14, MAR 13, SCH 15b]. At low tempera-
ture, molecular-dynamics simulations have been able to reproduce this attenuation crosso-
ver, with some different scaling rules [MON 09b, MAR 13, BEL 16, GEL 16, WAN 19].
The addition of anharmonicity at finite temperatures has finally provided a complete pic-
ture of combination of the different attenuation channels [RUF 08, MIZ 19].

1.2 Three regimes of acoustic attenuation vs frequency
On the whole, three regimes of acoustic attenuation versus frequency can be classi-

fied : (1)Γ ∝ ω2 due to the anharmonicity at low frequencies, with a temperature dependent
strength and quadratic power law ; (2) Γ ∝ ω4 due to Rayleigh-like scattering induced by
disorder and leading to a dramatic phonon lifetime reduction, so that the collective vibra-
tional modes loose progressively their plane wave character ; (3) Γ ∝ ω2 above Ioffe-Regel
frequency (ωIR = πΓ), where phonons cannot be considered as propagative plane waves
anymore. As such, they do not propagate anymore but are diffusive, and, at higher fre-
quency, even localized [ALL 99, BEL 16, BEL 18]. In Tabs. 4.1 and 4.2, we summarized
the experimental and numerical results on acoustic attenuation in the literature.

1.3 Acoustic attenuation in a viscous medium
In this work we propose to develop a model to homogenize the effective attenuation

triggered by multiple mechanisms, and characterized by a defined frequency dependence.
To this aim, we start from the viscous attenuation of acoustic waves in compressible New-
tonian fluids, as formulated within Stoke’s theory [STO 80] : the amplitude of a plane
wave decreases exponentially with the propagation distance, with a decay rate given, in
the low frequency limit ωτ� 1, by α = ω2τ

2c , with τ = 4η

3ρc2 where η is the dynamic visco-
sity coefficient, ρ is the fluid density and c is the speed of sound in the absence of viscosity.
This behavior leads to a typical attenuation distance l = 1/α scaling as ∝ ω−2. A similar
exponential attenuation of acoustic wave packets was also evidenced in amorphous mate-
rials below the Ioffe-Regel frequency [BEL 18], allowing defining a mean-free path from
the corresponding Beer-Lambert law for acoustic transport attenuation. This behavior is
thus similar in amorphous materials and in Newtonian liquids. Glasses could be then cha-
racterized by an effective viscoelastic behaviour for their acoustic properties, even below
the glass transition temperature (that is, in the solid state). This corresponds also to the
requirement that the internal friction in the material can be characterized by the quality
factor Q−1 = G′′/G′ where G = G′+ iG′′ is the complex elastic modulus in the linear
regime [GIL 81]. This is indeed the case in a glass [DAM 17] for frequencies below the
Ioffe-Regel crossover, where acoustic phonons (named propagons [ALL 99]) still main-
tain well-defined wave vectors and exhibit an exponential decay. A relation can be found
between the microscopic quantity (phonon attenuation) and the macroscopic one (quality
factor) : Γ/ω = Q−1 [POH 02, DAM 17, SCH 13, SCH 15b, PAR 66, CAR 98].
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TABLE 4.1: Sound attenuation of glasses in the literature - Part I : Experimental results.
(TJ : tunneling junction ; BLS : Brillouin light scattering ; BUVS : Brillouin ultraviolet

light scattering ; POT : picosecond optical technique.)

Materials Method T (K) Power
Frequency range

and/or νc

LA velocity
(m/s) Ref

v-SiO2

TJ 1 4 0.1-0.4 THz [DIE 79]

IXS
16
167 2 1-6 nm−1 [RUO 99]

IUVS 300 2 0.08-0.1nm−1 [MAS 04]

BUVS 300 2 0.005-0.075nm−1 [BEN 05]

IUVS 300 2-4
75-150 GHz

νc = 100±10 GHz 5950 [MAS 06]

POT 300 2 near 250 GHz 5940 [DEV 08]

IXS 1050 2 1-3 THz 5800 [BEN 96]

IXS 1620 4-2
1- 4THz

νc =1.5 THz 6500 [BAL 10]

d-SiO2 IXS 565 4.21 1.2-1.9 THz [RUF 03]

Li2O-
2B2O3

BLS
300
573 1 20-40 GHz 7600 [RUF 06]

IXS 573 4 1.2-2.4 THz [RUF 06]

Glycerol IXS 150.1 4-2
1-2.5 THz

νc =1.2 THz 3630 [MON 09a]

BeF2 IXS 297 2 0.6-6 THz 5500
[SCO 03]
[BUC 14]

Poly-
butadiene IXS 140 2 0.6-3.6 THz 2770

[FIO 99]
[BUC 14]
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TABLE 4.2: Sound attenuation of glasses in the literature - Part II : Numerical results
(Molecular Dynamic simulation). Symbol↘ (or↗) means a power law with a positive

(or negative) exponent.

Materials T
Pola-

rization Power νc

LA velocity
(m/s) Ref

L-J glass

0.001
TA 4-2 νc = 1 3.72

[MON 09b]
LA 4-2 νc = 1 8.75

0.001

TA

4-2 νc = 1

3.65 [MIZ 19]
0.01

1.5-4
4-2

νc1 = 0.6
νc2 = 1

0.1 1.5-2 νc = 0.9

0.2 1.5-2 νc = 0.45

0
TA 4-2 depends on Tp ≈ 2

[WAN 19]
LA 4-2 depends on Tp

0.32
LA −k4lnk breaks down

for k > 0.3

8.04
[GEL 16]

TA 3.17

a-Si
LA ↗−↘−↗ νIR,T & νIR,L depends on Λ

[BEL 16]

TA f (Λ) - 2 νIR,T
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2 A simple Constitutive model for longitudinal and
transverse attenuation in glasses

We therefore develop here a new continuum mechanical model for a viscoelastic me-
dium, where no disorder is introduced. We will show that this model is able to bridge
atomic and macroscopic scales in amorphous materials and describe phonon attenuation
in a protoype material, amorphous silicon, a wavelengths where its origin is atomistic. As
such our model proves to be able to give a continuum description of atomistic processes,
valid for out-of-equilibrium transient transport of energy (acoustic attenuation), as well as
for a general description of the effective mechanical behavior of disordered heterogeneous
materials.

We will derive the mechanical response both in frequency and time domain. The
frequency-dependent response allows to obtain the analytic expression for the figure of
merit Q−1, which is related to the phonon attenuation below the Ioffe-Regel crossover,
as Q−1 = Γ/ω. The time-domain one corresponds to the so-called stress-strain constitu-
tive law, that we need for running Finite Element simulations (FEM) for investigating the
wave-packets propagation at large scale.

2.1 Description of the model

Let’s assume an isotropic, homogeneous and viscous solid : we can express the elastic
constitutive laws describing the stress-strain relation using the Hooke’s law and separating
the hydrostatic from the deviatoric components as reminded in Chap.3 Sec.4.2.2

σi j = 3Kε
sph
i j +2Gε

dev
i j (4.1)

where K is the bulk modulus and G is the shear modulus. The hydrostatic (or spheri-
cal) part and the deviatoric part of strain are given by Eq.1.32. Stress respects the same
separation rule, and can be written as :{

σ
sph
i j = 1

3δi jσkk = 3Kε
sph
i j

σdev
i j = σi j− 1

3δi jσkk = 2Gεdev
i j

(4.2)

The interest of such separation is that in the following we will use different rheological
models : a Kelvin-Voigt (K-V) approach for the hydrostatic part and a Maxwell-like model
for the deviatoric one, as illustrated in Fig.4.1.

Here, we use the simplest version of the generalized Maxwell model called the stan-
dard linear model [ROY 01] as shown in Fig. 4.1 (right panel). The idea behind this mo-
del is that the deviatoric part will generate a viscous flow still limited by the elasticity of
the solid. The time-dependent stress-strain relation following the Standard linear model
reads :

σ
dev
i j (t)+ τaσ̇

dev
i j (t) = Eaε

dev
i j (t)+2Eaτaε̇

dev
i j (t) (4.3)
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Hydrostatic Deviatoric

��

Maxwell 

model

�� ��

Spring

��

Dashpot

��

FIGURE 4.1: Illustration of the viscoelastic models : the Kelvin-Voigt model for the
hydrostatic part and the standard linear model (one type of the generalized Maxwell model

with N=1) for the deviatoric part

where τa = ηa/Ea is the relaxation time, ηa is the viscosity and Ea is the shear modulus.
Supposing that nothing happens before t = 0, Eq.4.3 can be written on a complex plane
by means of a Laplace transform :

(1+ τas)L [σdev
i j (t)](s) = (Ea +2Eaτas)L [εdev

i j (t)](s) (4.4)

with s = iω+ ξ the Laplace frequency parameter (with ξ→ 0). We can then define the
transfer function between strain and stress :

L [σdev
i j (t)](s)

L [εdev
i j (t)](s)

= Ea(1+
τas

1+ τas
) (4.5)

Replacing s, we obtain the expression of the complex elastic modulus E∗A(ω) = E ′A(ω)+
iE ′′A(ω) for the Standard linear model :

E∗A(ω) =
L [σdev

i j (t)](s)

L [εdev
i j (t)](s)

∣∣∣∣∣
s=iω+ξ

= Ea(1+
iωτa

1+ iωτa
)

(4.6)

For the hydrostatic part, we use the Kelvin-Voigt model (left panel in Fig.4.1). This is
motivated by the fact that the hydrostatic part will mainly give rise to a delayed response,
without inducing a macroscopic flow. For this reason, the rheological contribution from
the hydrostatic part is often neglected [KAL 97], the deviatoric contribution being much
more significant at large times. Still, a more precise description of the attenuation can be
obtained if it is taken into account [FEN 13]. K-V stress-strain relation can be expressed
as :

σ
sph
i j (t) = Eb(ε

sph
i j (t)+ τbε̇

sph
i j (t)) (4.7)

where τb = ηb/Eb with Eb the bulk modulus.
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A simple Constitutive model for longitudinal and transverse attenuation in glasses

Similar to the Standard linear model, the transfer function of K-V model is given by

L [σ
sph
i j (t)](s)

L [ε
sph
i j (t)](s)

= Eb(1+ τbs) (4.8)

which allows us to define the complex modulus :

E∗B(ω) = Eb(1+ iωτb) (4.9)

It is straightforward to link such expressions to Eq. 4.2 by simply replacing the elastic
moduli 3K and 2G by their viscoelastic analogues of the trace part, i.e., E∗B, and the devia-
toric part, i.e., E∗A, respectively [ROY 01]. In the low-frequency limit (ω→ 0), it should
be : {

E∗A(ω→ 0) = Ea(1+ iωτa
1+iωτa

)|ω→0 = 2G
E∗B(ω→ 0) = Eb(1+ iωτb)|ω→0 = 3K

(4.10)

which leads to the following identities :{
Ea = 2G = E

1+ν

Eb = 3K = E
1−2ν

(4.11)

where E is the Young modulus and ν is the Poisson ratio.
We can now write down the full complex constitutive elastic tensor G∗, including

hydrostatic and deviatoric components. This tensor links the strain tensor and stress tensor
as represented in Appendix. 1. Due to the assumption of isotropy, this tensor is reduced to
a 6×6 symmetric matrix, imposing the conditions G∗11 =G∗22 =G∗33 and G∗44 =G∗55 =G∗66,
where G∗i j is the i-th row and j-th column. These 6 elements can thus be expressed in terms
of only four parameters (E,ν,τa and τb), as detailed in the Appendix. 1 :

G∗ =



E∗B+2E∗A
3

E∗B−E∗A
3

E∗B−E∗A
3 0 0 0

E∗B−E∗A
3

E∗B+2E∗A
3

E∗B−E∗A
3 0 0 0

E∗B−E∗A
3

E∗B−E∗A
3

E∗B+2E∗A
3 0 0 0

0 0 0 1
2E∗A 0 0

0 0 0 0 1
2E∗A 0

0 0 0 0 0 1
2E∗A


(4.12)

with E∗A and E∗B given in Eq. 4.6, Eq. 4.9 and Eq. 4.11.

In order to obtain the stress-strain constitutive law we need to solve the time-domain
expressions given in Eq.4.3 and Eq.4.7, reminding that the total stress is σi j = σ

sph
i j +σdev

i j .
For the deviatoric part, solution of Eq.4.3 is :

σ
dev
i j (t) = Ea[ε

dev
i j +

∫ t

0
exp(−t− t ′

τa
)
∂εdev

i j

∂t ′
dt ′] (4.13)
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4. Effective constitutive laws for an amorphous material (with acoustic attenuation)

Combining Eq. 4.7, Eq. 4.13 and Eq. 4.11, the stress-strain constitutive law then
reads :

σi j(t) =
E

1−2ν
(ε

sph
i j + τb

∂ε
sph
i j

∂t
)+

E
1+ν

[εdev
i j +

∫ t

0
exp(−t− t ′

τa
)
∂εdev

i j

∂t ′
dt ′]

(4.14)

Our approach for solving the convolution integral in Eq. 4.14 is to introduce an internal
variable tensor hi j [KAL 97, KAL 00] whose evolution indirectly includes the mechanical
history of a material. We re-formulate the Eq. 4.14 as :

σi j(t) =
E

1−2ν
(ε

sph
i j + τb

∂ε
sph
i j

∂t
)

+
E

1+ν
ε

dev
i j +hi j

(4.15)

where hi j(t) is defined by a recurrence relation :

hi j(t) =exp(−t− tn
τa

)hi j(tn)

+
E

1+ν

∫ t

tn
exp(−t− t ′

τa
)
∂εdev

i j

∂t ′
dt ′

(4.16)

where tn is any moment before t. As such, instead of computing the convolution integral
from 0, we only need to integrate from tn to t if hi j(tn) is known.

2.2 Calibration of the model

Eq.4.14 only depends on 4 material parameters, two of them related to elasticity (E
and ν), and two to viscoelasticity (τa and τb). In order to use it for running a finite element
simulation on a given material, these quantities need to be fixed to the ones of the material
under investigation. To this aim, we derive from the elastic tensor the longitudinal and
transverse quality factors and acoustic waves velocities, to be compared with the same
quantities extracted from experiments or atomistic numerical simulations, to fix the four
parameters.

By definition, isotropic longitudinal (L) and transverse (T) sound speeds are defined
as {

vL(ω)
2 =

G′11(ω)
ρ

vT (ω)
2 =

G′44(ω)
ρ

(4.17)
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A simple Constitutive model for longitudinal and transverse attenuation in glasses

similarly, the inverse quality factors are obtained as :

Q−1
L (ω) =

G′′11(ω)

G′11(ω)
and Q−1

T (ω) =
G′′44(ω)

G′44(ω)
(4.18)

where G′i j = Re(G∗i j) and G′′i j = Im(G∗i j).
It is worth noticing that by construction this model describes Γ ∝ ω2 energy-dependent

attenuation, as can be verified by substituting G′′ and G′ in the Q−1
L,T expression. This

behavior is in agreement with the energy dependence of acoustic attenuation in glasses
as observed in experiments and numerical simulations at THz energies just above the
Ioffe-Regel crossover. However, here the quality factor does not describe correctly the
attenuation anymore, since the model is well adapted only below the Ioffe-Regel crite-
rion [DAM 17]. In the low scattering regime where phonon attenuation and quality factor
can be related to each other, the former should go as ω4. Still, this Rayleigh scattering
regime is very short, and it makes the transition between two ω2 dependencies, as des-
cribed in the introduction. For this reason, as a first step for assessing the validity of our
viscoelastic model, we propose to use a ω2 dependence as a good empirical description
even in this intermediate regime [BEL 16].

In the following, we will use this model for simulating wave packet propaga-
tion in amorphous silicon, and compare the results with atomistic molecular dynamics
simulations[FUS 10, BEL 16, BEL 18]. In those works, amorphous silicon is described
by the Stillinger-Weber potential [STI 85], where the three body parameter Λ is tuned for
modifying the rigidity of the system. We compare here with the case Λ= 21, which gives a
good description of real amorphous silicon, with mass density ρ = 2303kg/m3 [FUS 10].

E and ν are the macroscopic elastic properties, that we fix to the ones reported in
Ref. [FUS 10]. τa and τb are found by fitting the frequency dependent quality factor Q−1 =
Γ(τa,τb,ω)/ω against the one reported in Ref.[BEL 16] for longitudinal and transverse
modes. Our best fits are reported in Fig. 4.2, together with the Γ/ω values from [BEL 16].
Optimal values for the relaxation times, together with the static values for the elastic
parameters are reported in Table 4.3.

As anticipated, the quality of the fit is limited by the approximation that we do in using
a ω2 law for representing the Rayleigh ω4 dependence of acoustic attenuation, as clearly
demonstrated by the departure of the model from the numerical data in the deviatoric part
in Fig.4.2 (a). Moreover, in the trace part (Fig.4.2 (b)), a marked hollow is visible in the
molecular dynamics measurements, which is not reproduced by our model, being due to
the attenuation of the transverse waves above the Ioffe-Regel crossover.

It is worth stressing here that by calibrating our model onto the cited molecular dy-
namics simulations, we will investigate exactly the same system but representing it as a
continuum medium, with no need of describing the inter-atomic interactions.

2.3 Finite element simulation
Once we have defined the constitutive equation (Eq. 4.14) and we have calibrated our

model on amorphous silicon, we can run finite element simulations, for investigating the
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TABLE 4.3: Parameters of the viscoelastic continuum model, fixed on atomistic molecu-
lar dynamics simulations.

E ν τa(10−15s) τb(10−15s)
92.25 GPa [FUS 10] 0.347 [FUS 10] 9.3(±0.4) 3.3(±0.1)

10-1

100

1 5 10 15
10-2

10-1

100

FIGURE 4.2: Identification of parameters τa and τb by fitting Q−1
L,T against Γ/ω (data

from Beltukov et al, 2016) [BEL 16] : (a) Evolution of Q−1
T (ω) for transverse modes with

τa = 9.3e−15. (b) Evolution of Q−1
L (ω) for longitudinal modes with τa = 9.3e−15s and

τb = 3.3e−15s.
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A simple Constitutive model for longitudinal and transverse attenuation in glasses

propagation of wavepackets in large-scale materials, and compare their out-of-equilibrium
attenuation with the one dictated by atomistic mechanisms. This method is the general
approach we will follow whatever the choice of the constitutive law.

To this aim, we prepare a system made of an horizontal line of 9 squares with a
side length of 60 Å, and a total length of 540 Å, as illustrated in Fig. 4.3. Such di-
mension is larger than the largest phonon mean free path at THz frequencies as repor-
ted in Ref. [BEL 18], assuring that we will be able to observe it. The size is also larger
than 20 times the interatomic distance (2∼4 Å reported in Ref. [VAZ 13, UKP 09]),
thus the system can be considered homogeneous and isotropic, as demonstrated in
Ref. [TSA 09, MOL 16]. The system is 2D, but we generate a quasi-monochromatic
acoustic pulse with plane strain state, which means that the strain along the third di-
rection is neglected. Still, it shares the same constitutive tensor (Eq.4.12) and the same
constitutive equation (Eq. 4.14) with the 3D case.

� = 60Å

⋯

FIGURE 4.3: 2D simulation model of solid : A semi-infinite solid can be represented by
only modeling a single layer (green zone) with Periodic Boundary Conditions (PBCs) on

the top and bottom and Perfectly Matched Layers (PMLs) on the right edge.

In order to investigate the propagation of the vibrational energy, we excite a quasi
monochromatic wave packet on the left side of the sample at position x = 0 in a small
time interval around t = 0 as given by Eq.2.1 with t0 = 3π

ω
.

A semi-infinite solid is represented by only modeling a single layer as shown
in Fig.4.3, periodic boundary conditions (PBCs) are applied at the top and the bot-
tom by means of Lagrange multipliers U top

η = Ubottom
η . On the right side of the

model, the perfectly matched layers (PMLs) are implemented to avoid wave reflec-
tion [LYS 69, CLA 77, KIM 14]. Details about these two boundary conditions are pre-
sented in Ref. [LUO 19] and in Chap.2. Moreover, plane strain state achieves the infinite
length in the third direction (perpendicular to the illustrated model).

2.4 Results compared to MD simulation
We have run a series of transient simulations, following the propagation of wave-

packets with energies in the THz range through a model amorphous silicon sample. As
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4. Effective constitutive laws for an amorphous material (with acoustic attenuation)

said before, the wave-packet is created by imposing a displacement on the left side of the
sample. Its propagation is then followed along the sample, in the x direction, which is the
initial direction of propagation of the exciting wave. In order to investigate the acoustic
attenuation due to the viscoelasticity of the medium, we measure the envelope of the
kinetic energy induced in the system by the propagation of the wave-packet along the x
direction, and averaged over the y-direction. The energy envelope is defined as Eq.2.9 for
each excitation frequency ω.

where Ek(x, t) is the instantaneous kinetic energy supported by the frame located in
x with width ∆x = 1 Å. We report in Fig. 4.4 the normalized kinetic energy envelopes
for longitudinal and transverse wave-packets. The lowest investigated frequency is ω =
6.28 THz (or ν = 1 THz). The maximum investigated frequency (50 THz for LA and
25 THz for TA) has been chosen slightly smaller than the Ioffe-Regel crossover for the
corresponding polarization [BEL 16].

10-2

10-1

100

0 50 100 150 200 250 300 350 400
10-3

10-2

10-1

100

FIGURE 4.4: Envelope of the normalized kinetic energy Pω(x)/Pω(0) for different fre-
quencies in a semi-log graph. Top : longitudinal polarization ; bottom : transverse polari-

zation. Numbers near curves represent angular frequencies ω in THz.

Far below the Ioffe-Regel limit, a global exponential attenuation similar to a Beer-
Lambert law is observed [SWI 62, BEL 18], leading to a linear behavior in the semi-log
representation :

Pω(x) ∝ exp(−x/Λ(ω)) (4.19)

By fitting the kinetic energy envelope with this law, one can get the value of the mean-free
path ΛFE (FE standing for FE simulations), which is expected to be inversely proportio-
nal to the acoustic attenuation via the wave-packet velocity thus to follow the prediction
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A simple Constitutive model for longitudinal and transverse attenuation in glasses

of Q−1 of the viscoelastic model. Our results for the mean free path of propagating lon-
gitudinal and transverse wave-packets in amorphous silicon are compared with results
from molecular dynamics simulations. [BEL 18] in Fig 4.5. Here we compare with two
different estimations from the atomistic calculations : ΛDSF is obtained from the Dyna-
mical Structure Factor as detailed in Ref. [BEL 16], while ΛBL has been calculated from
the Beer-Lambert fit of the attenuation of propagating wave-packets as in our case. It is
reported that the results of ΛDSF and ΛBL begin to deviate near the Ioffe-Regel frequency,
which indicates a crossover from weak scattering to strong scattering. As a consequence,
Beer-Lambert law gradually fails when approaching the Ioffe-Regel limit. In our case, this
model do not take into account the Ioffe-Regel limit, and no source of scattering exists
in this continuum law. As such, deviation above Ioffe-Regel frequency is only a conse-
quence of a saturation in frequency, but not representative of atomistic scale scattering.
The agreement between the mean free path from continuum Finite Element Simulations
with the ones obtained in atomistic molecular dynamics simulations is quite satisfying,
in the low frequency regime, and holds as far as we remain below the Ioffe-Regel cros-
sover, our constitutive equation having been derived in such regime, as said before. The
deviation at the highest frequencies investigated is indeed due to the approaching of the
diffusive regime.

We also observe that our FE mean-free paths are closer to ΛDSF rather than ΛBL despite
both ΛFE and ΛBL are fitted by the Beer-Lambert law. This is due to the fact that our model
has been calibrated against the attenuation obtained form the dynamical structure factor,
thus related to ΛDSF . That is to say, proper calibration of the parameters for the input
attenuation data will result in accurate reproduction of this attenuation when following
the transient wave packet propagation.
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4. Effective constitutive laws for an amorphous material (with acoustic attenuation)

FIGURE 4.5: Result obtained from finite element (FE) simulation compared to atomis-
tic analysis for longitudinal waves (blue or red) and transverse waves (green or black).
For FE simulation, solid lines with open symbols (blue or green) show the mean free
path ΛFE obtained by the exponential fit of the envelope. For DM simulation (Y. Beltu-
kov [BEL 18]), points show the results from the DHO fit of the DSF, ΛDSF ; Solid lines
show the mean free path ΛBL ; Dashed lines show the penetraion length lpen. (The Ioffe-
Regel frequencies for longitudinal and transverse waves are shown by red and black arrow

respectively.)

3 Taking into account the different attenuation regimes
(ω2 & ω4)

In the previous work, we have developed a law for describing acoustic attenuation in
an amorphous material at THz frequencies, in a limited range below the Ioffe-Regel crite-
rium. We have assumed a constant viscosity, thus leading to a ω2 behaviour in the acoustic
attenuation. However, at such energies, the dominant scattering source is the structural di-
sorder at the atomic scale [MIZ 14, DAM 17] thus leading to a ω4 behaviour, as found in
[RUF 06, MON 09a, BAL 10, AYR 11, MIZ 14, MIZ 19]. The corresponding low scat-
tering is potentially responsible for the unusual temperature dependence κ ∝ T observed
in the low temperature regime [TLI 19], while this low temperature sensitivity was also
related to anharmonic effects in the 2-level model [GIL 81, BUC 92]. The progressive
transition to a stronger scattering and to the resulting diffusive motion of initially plane
waves will be responsible for the progressive saturation which may be observed as a pla-
teau in the glassy thermal conductivity at around 10 K followed by an increase of κ with
the temperature, and is responsible for the peak in the specific heat at the same tempera-
ture [ZEL 71, POH 01, TLI 19]. Modeling amorphous materials for thermal applications
clearly needs including different frequency dependences, with at least three successive re-
gimes including Γ ∝ ωα with α≈ 2 to take account of possible anharmonic effects in the
low frequency range (low temperatures [MIZ 19]) , Γ ∝ ω4 in the low scattering regime
and then Γ ∝ ω2 again at very high frequencies in the strong scattering (diffusive) regime.
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Taking into account the different attenuation regimes (ω2 & ω4)

In order to extend the model to larger frequency ranges, we thus need to describe two
successive ω2−ω4 crossovers. This is the purpose of a second version of viscoelastic
model, which will allow to reproduce at a macroscopic level, through a single continuum
model, the combined effect of parallel sources of acoustic attenuation and their cross-
overs. As shown in Fig. 4.6, two Maxwell-like models are in parallel, with µ1 and µ2
the rigidity and η1ω−4 and η2ω−2 the frequency-dependent viscosity, respectively. The
physical idea behind this model is the asynchronous activation of the ω4 and the ω2 de-
pendence, resulting from two processes contributing additionally to the global stress in
the system.

FIGURE 4.6: Illustration of the viscoelastic model : two Maxwell-like models are in
parallel.

3.1 Description of the new model
Similar to what we did in the first version, we will derive the complex elastic modulus

in order to obtain the analytic expression of the quality factor Q−1 = G′′/G′. Holding the
relation Q−1 = Γ/ω, ideally, we expect to get a ω3-ω1-ω3 behavior from Q−1. At the
same time, the amplitude of Γ/ω and the crossover position should be clearly reproduced.

For simplicity, we directly give out the frequency-dependent elastic modulus G∗(ω) =
G′(ω)+ iG′′(ω) for the new model illustrated in Fig. 4.6 :

G∗(ω) =
µ1η1ω−4s

η1ω−4s+µ1
+

µ2η2ω−2s
η2ω−2s+µ2

=
µ1η1ω−4iω

η1ω−4iω+µ1
+

µ2η2ω−2iω
η2ω−2iω+µ2

=
µ1η1ω−3i

η1ω−3i+µ1
+

µ2η2ω−1i
η2ω−1i+µ2

(4.20)

from which G′ and G′′ can be extracted :

G′(ω) =
µ1η2

1

µ2
1ω6 +η2

1
+

µ2η2
2

µ2
2ω2 +η2

2

= µ1(
τ2

1

ω6 + τ2
1
+α

τ2
2

ω2 + τ2
2
)

(4.21)
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4. Effective constitutive laws for an amorphous material (with acoustic attenuation)

G′′(ω) =
µ2

1η1ω3

µ2
1ω6 +η2

1
+

µ2
2η2ω

µ2
2ω2 +η2

2

= µ1(
τ1ω3

ω6 + τ2
1
+α

τ2ω

ω2 + τ2
2
)

(4.22)

where τ1 = η1
µ1

, τ2 = η2
µ2

and α = µ2
µ1

. As such, there are only three parameters left to
characterize the attenuation. Finally, the quality factor Q−1 = G′′/G′ is given by :

Q−1(ω) =

τ1ω3

ω6+τ2
1
+α

τ2ω

ω2+τ2
2

τ2
1

ω6+τ2
1
+α

τ2
2

ω2+τ2
2

=
ατ2ω7 + τ1ω5 + τ1τ2

2ω3 +ατ2
1τ2ω

ατ2
2ω6 + τ2

1ω2 +(1+α)τ2
1τ2

2

(4.23)

3.2 Calibration of the model
In the following, we will calibrate the new model against silica glasses. The attenua-

tion Γ is extract from the experimental results in the literature as shown in Fig. 4.7.

FIGURE 4.7: (a) Extracted from Ref. [AYR 11] : acoustic linewidth Γ/2π of the sample
in Ref. [AYR 11] (named "this work" in the figure) at 300K compared to visible BLS re-
sult (Ref. [MAS 97]) and UV-BLS ones (Refs. [MAS 04] and [BEN 05]). The point above
the Ioffe-Regel frequency is from Ref. [MAS 97]. (b) Extracted from [BAL 10] : sound
attenuation,Γ/2π, of v-SiO2 as a function of frequency in log-log scale. The points at
high frequency (red circles) are from the work in Ref. [BAL 10] at T=1620K. Lower fre-
qeuncies data are from : picosecond optical technique (POT)[DEV 08], BUVS[MAS 06,

BEN 05], BLS [VAC 80], and a tunneling junction (TJ) technique [DIE 79].

Fig. 4.7(a) is extracted from Ref. [AYR 11]. In this figure, sound attenuation is measu-
red at 300K in the subterahertz range (from 0.01 to 0.3 THz) with different experimental
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Taking into account the different attenuation regimes (ω2 & ω4)

methods : picosecond optical techniques (POT), Brillouin light scattering (BLS) and UV-
BLS (ultraviolet Brillouin scattering). Fig. 4.7 (b) is extracted from Ref. [BAL 10]. In this
figure, sound attenuation is measured at 1620K at terahertz frequencies (> 1 THz), with
inelastic x-ray scattering (IXS). From these two figures, we can now easily get a global
image of acoustic attenuation from GHz to THz frequencies range at different tempera-
tures. The three regimes mentioned before can be clearly found in the figures. At high
frequency, a ω4-ω2 crossover appears around ν = 1.5 THz as shown in Fig. 4.7 (b). In
addition, in the subterahertz range, there should be another ω2-ω4 crossover which is not
explicitly given by the experimental data but shown as the intersection of the auxiliary
lines (ω2 and ω4 ).

Next, we will calibrate our model on silica glasses, starting from those literature data.
By adjusting the parameters of the model( τ1, τ2 and α), we give our best fit in Fig. 4.8
and values are summarized in Tab. 4.4. Experimental attenuation data are also reported
and analytic Q(ω) is indicated by the red line. In the next sections, we will detail how this
fit was obtained.

TABLE 4.4: Parameters of the new viscoelastic continuum model. Calibration on silica
glass [AYR 11, BAL 10].
τ1(s−3) τ2(s−1) α

3e39 2.7e13 1.4

3.3 Influence of the parameters on the Q−1

A good fit should give a Q−1 reproducing not only the amplitude of the acoustic
attenuation, but also at least the crossover from ω4 to ω2 around 1.5 THz. It is not easy to
reach these two conditions through a simple minimization algorithm, because most of the
time it only meets the amplitude condition but the crossover condition is ignored. To meet
the two conditions simultaneously, let’s start with a know-how to illustrate the evolution
of the amplitude and the crossover frequencies versus the three parameters τ1, τ2 and α.
This approach is necessary as the first step of the parameters identification before finding
an alternative optimization algorithm in future work.

The roles of the three parameters are displayed one by one Fig. 4.9. By default, we
set τ1 = 1e30 s−3,τ2 = 1e10 s−1 and α = 1. The chosen order of magnitude for different
parameters can be estimated based on the crossover positions presented in Appendix. D.

Let’s first consider τ2, as shown in the top panel of Fig. 4.9. We can find that the global
amplitude of the Q−1 decreases with τ2. Therefore, in the first step, we change τ2 in order
to get the same order of magnitude for Q−1 obtained in the numerical model, and the
experimental values of Γ/ω. During this process, one peak appears at ω = 1e10 rad ·s−1

whose position and amplitude are determined by two other parameters. This peak corres-
ponds to a transition between two different dominant frequency powers in the constitutive
model. This transition depends on the relation among three parameters of the model. In
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4. Effective constitutive laws for an amorphous material (with acoustic attenuation)
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FIGURE 4.8: Comparison between Γ/ω and Q−1 with τ1 = 3e39s−3, τ2 = 2.7e13s−1

and α = 1.4 (red line) or α = 0.05 (green line) . The red (green) line is the Q−1 of the
present viscoelastic model. Experimental data are from : IXS [BAL 10], POT [AYR 11],
BUVS [MAS 06, BEN 05],BLS [VAC 80] and TJ [DIE 79]. The blue dashed lines are

two power law fits representing Γ/ω ∝ ω and Γ/ω ∝ ω3, respectively.

the current configuration, (that is for τ1 = 1e30 s−3 and α = 1, it shows a ω3−ω−3 cross-
over.

Let’s now consider the variations of τ1, given the last value of τ2 considered pre-
viously. The influence of τ1 is shown in the middle panel of Fig. 4.9. Increasing τ1 pushes
to the right the above ω3-ω−3 peak horizontally. When this peak moves to the right, it
becomes small and the ω−3 part disappears first due to the collapse with the increasing ω

background. In this step, only the peak moves and the amplitude of left or right wing is
unchanged.

Finally, let’s consider the role played by the ratio α = µ1/µ2, which characterizes the
rigidity difference between the two parallel processes of dissipation contributing additio-
nally to the stress state. As shown in the bottom panel of Fig. 4.9, changing α will raise
or lower the left wing and modify the power law near the crossover between left and
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Taking into account the different attenuation regimes (ω2 & ω4)

TABLE 4.5: Estimation of the relaxation time for τ1 = 3e39 s−3 and τ2 = 2.7e13 s−1.
ω (Hz) τ1ω−4 (s) τ2ω−2 (s)
1e11 3e-5 2.7e-9
1e12 3e-9 2.7e-11
1e13 3e-13 2.7e-13
3e13 3.7e-15 3e-14

right wing. When α� 1, the left wing will drop significantly. However, when α� 1,
the crossover ω3-ω−3 will progressively disappear and the whole line, especially the part
∝ ω3, tends to a single ω power law. Between them, the ω3 tends to ω. Therefore, an
appropriate α should raise the left wing to fit the experiments data, while keeping the ω3

apparent power law as much as possible.
In addition, the relaxation times τ1ω−4 and τ2ω−2 should make sense physically,

which requires them being longer than 1e− 14 ∼ 1e− 15 s. Using the orders of magni-
tude of τ1 and τ2, we estimate the corresponding relaxation time in Tab.4.5. Relaxation
times shorten as the frequency increases, indicating that upper limit of the frequency ω

can reach 3e13 Hz.
The ω−ω3−ω behaviour observed experimentally for Γ/ω thus corresponds to one

possibility offered by our model, as a function of the relative values of the three parameters
of our model. We will now discuss the related values of the cross-over frequencies.

3.4 Crossover frequencies

In Appendix.D, we discuss in more details the conditions giving rise to a ω−ω3−
ω behavior. If these conditions are strictly met, then the crossover frequencies can be
expressed in terms of α, τ1 and τ2. We recall the two crossover frequencies evidenced in
Appendix.D :

• Position of the crossover ω - ω3 :

ω1−3 =
1

α+1
τ2

• Position of the crossover ω3 - ω :

ω3−1 = (
1
α
)1/2(

1
α+1

)1/2
τ2

Note that in the present model, the ratio ω1−3/ω3−1 depends only on α. It is limited
by :

ω3−1

ω1−3
=

√
α+1

α
, with α > 0.76 (4.24)
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4. Effective constitutive laws for an amorphous material (with acoustic attenuation)

This gives an upper limit of the ratio ω1−3/ω3−1 less than 1.52. In practice, these condi-
tions may not be strictly met. However, the results about the crossover frequencies are
still very useful because they determine the magnitude of the parameters. For example,
knowing that ω3−1 ≈ 2π∗1.5≈ 9.4e12 rad ·s−1 and α is normally supposed as 1 at first,

then we have τ2 = ω3−1/
√

0.5≈ 1.3e13 s−1 and τ1 =
τ3

2
4 ≈ 5e38 s−3.

3.5 Discussion
Provided the parameters τ1, τ2 and α in Tab.4.4, the interesting case with three prin-

cipal frequency dependencies ω-ω3-ω is only a special case offered by the visco-elastic
model. As discussed in the Appendix.D, the expression Q−1 (Eq.4.23) of the new model
has 4 different powers in the numerator (ω−1, ω−3, ω−5 and ω−7) and 3 terms in the
denominator (ω−2, ω−6 and ω−8), which could reproduce more power laws than three.

For this special case, we can write down the asymptotic approximation for the three
frequency dependencies : (1) Low frequency : Q−1

(1) ∼
α

1+α

1
τ2

ω ; (2) Intermediate fre-

quency : Q−1
(2) ∼

1
1+α

1
τ1

ω3 ; (3) High frequency : Q−1
(3) ∼

1
τ2

ω. It is noticed that the process

with viscosity η2ω−2 dominates the low and high frequency regimes, while the η1ω−4

process activates mainly in the intermediate frequencies corresponding to the Rayleigh-
like damping below the Ioffe-Regel frequency. Especially, it can be seen that, when α� 1,
Q−1
(1) tends to 1

τ2
ω, thus Q−1

(3), and the intermediate regime disappears Q−1
(2)∼ 0 as illustrated

in Fig.4.9. In contrast, when α� 1, low-frequency ω process gives a smaller value of the
quality factor compared to the high-frequency ones. This α-dependent ω process is im-
pressively adapted to describe the temperature-dependent acoustic attenuation Γ/ω ∝ ω

in the low frequencies due to anharmonicity, thermal activation, two level system, which
is also shown in the MD simulation[MIZ 19]. As such, small α corresponds to low tem-
perature and large α corresponds to a relatively high temperature.

Finally, as shown in the Tab.4.5, the frequency-dependent relaxation times given by
the fitted values of three parameters are reasonable up to ω = 30 THz which covers all
spectrum range of experimental data. Therefore, we can conclude that the values of this
model are all physically meaningful.
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Taking into account the different attenuation regimes (ω2 & ω4)

FIGURE 4.9: Evolution of Q−1 as a function of τ2, τ1 and α, respectively. The red arrow
indicates the growth direction of the parameter.
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4. Effective constitutive laws for an amorphous material (with acoustic attenuation)

4 Conclusion

In this chapter, we proposed two versions of a continuum visco-elastic model, able to
bridge the atomic and macroscopic scales in amorphous materials and describe phonon
attenuation due to atomistic mechanisms, with specific frequency dependencies.

For the first simple model, our finite element results demonstrate that the effective
sound attenuation in a continuum model may strictly follow the atomistic quality fac-
tor Q−1 for a well-calibrated macroscopic linear viscoelastic constitutive law. We are
here interested to phonons with energies in the THz range and wavelengths in the nm
range, which dominate thermal transport at room temperature. The limitation of this mo-
del consists in the assumption of a quasi-constant speed of sound (Eq. 4.17), while this
is expected to be modified due to the atomic discretization and structural disorder. This
part can be improved in the future. In addition, by choice, this model imposes a Γ ∝ ω2

behavior that does not hold at all frequencies.
This is the reason why we proposed the second version of visocelastic model which

involves two parallel sources of dissipation with a frequency dependent viscosity able
to reproduce these successive regimes ω2 - ω4 - ω2. In practice, we investigated a cali-
bration of the model on a-SiO2 which gives a quality factor Q−1 that fits well the expe-
rimental attenuation data Γ/ω [BAL 10, RUF 03, RUO 99, MAS 04, BEN 05, MAS 06,
DEV 08, DIE 79, BEN 96]. Interestingly, the frequency dependence of the viscosities in-
volves two mechanisms : one is related to an attenuation time τ1 ∝ 1/η1 ∝ ω4 (maybe
related to low acoustic scattering at the atomic scale as discussed before [GEL 16]), while
the other involves a relaxation time τ2 ∝ 1/η ∝ ω2 (maybe related to anharmonicity or
to strong acoustic scattering at small scale, as already discussed in the introduction). The
combination of these two well-known processes could be responsible for the two experi-
mentally observed crossovers. The comparison of our model with experimental data leads
to the determination of the 3 parameters involved in the model, that is : τ1 = 3e39 s−3,
τ2 = 2.7e13 s−1 and α= 1.4. These numerical values are reasonable for ω< 1e14 rad ·s−1

that is the largest frequency that can be reached at the atomic scale.
To conclude, our work has the merit to be a proof of concept : by developing the

appropriate viscoelastic law, and calibrating it against atomistic quantities thanks to ex-
perimental data, we are able to reproduce the correct acoustic attenuation. As such, our
work is of evident interest in view of the current technological interests and needs for large
scale simulations in a number of different applications ranging from acoustics, to mecha-
nical and to thermal management, where complex nanostructured heterogeneous materials
have arisen as the most promising. Such metamaterials are made of the ordered or disor-
dered intertwinning of different materials with different properties, with a heterogeneity
lengthscale (the nano/micro structure lengthscale) which can range from macroscopic to
nanometric depending on the applications. Such large scale systems can be realistically
modeled only through Finite Element Simulations, to catch the effect of the interfaces and
elastic heterogeneities on acoustic properties and thermal transport. Our model proposes
a way to identify a continuum constitutive law able to reproduce faithfully the full dy-
namical response of our system, including the apparent frequency dependent dissipative
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Conclusion

processes resulting from atomic scale acoustic scattering processes. This represents a first
decisive step for investigating the effect of a complex nano or micro structure on acoustic
attenuation, while including the atomistic contribution as well. From this first step, further
work can focus on the ability to reproduce other power laws for phonon attenuation, as
well as introducing anisotropy, and the effect of temperature, finally allowing to describe
thermal transport as well as sound propagation in metamaterials of arbitrary complexity.
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4. Effective constitutive laws for an amorphous material (with acoustic attenuation)
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General conclusions and prospects

Conclusions

In this thesis, using the FEM based numerical simulation, we studied the thermo-
mechanical properties in the heterogeneous solids, mainly focusing on two parts : (1) the
propagation and attenuation of the wave packets in the heterogeneous elastic media with
different types of interfaces showing an energy conversion from mechanical to thermal ;
(2) the acoustic attenuation in the homogeneous viscous media where the microscopic
frequency-dependent phonon attenuation in glasses can be described by effective viscoe-
lastic models.

For the first part, we have seen in detail the effect of mechanical (rigidity contrast) and
geometrical (volume fraction, shape, disorder) parameters on the properties of vibrational
energy transfer in a nanocomposite material. Our numerous finite element calculations
have revealed that the dependence of the attenuation length as well as the diffusivity on
the different parameters is far from simple, and exhibits the following non monotonous
behaviors : (1) with respect to the rigidity contrast. Softer inclusions clearly appear as
more efficient for energy attenuation, but the rigid inclusions are also able to decrease
strongly the attenuation length at specific frequencies in the case of periodic circular in-
clusion ; (2) with respect to the volume fraction. The results from the circular inclusion
suggest the existence of optimal inclusions radius and interface area, sufficiently large to
allow for an efficient scattering but sufficiently small to prevent any energy percolation
between the inclusions ; (3) with respect to the shape. The dendritic inclusion shows ap-
pealing performance to prevent wave propagation compared to the simple circular shape
when looking at the high frequency attenuation length and the diffusivity due to the high
interface density which can enhance the interface scattering. (4) with respect to the di-
sorder. From the results of the ordered/disordered porous materials, it can be seen that
the ordered structures promote the transition of transport behavior from propagative to
diffusive, thanks to the multiple reflections, the local resonances and the localization of
mechanical energy, phenomena which are disrupted when disorder is introduced.

For the second part, we have developed two continuum mechanical models based
on viscoelastic descriptions of amorphous materials, where the frequency dependence of
the microscopic phonon attenuation can be reliably reproduced once the model has been
properly calibrated on atomistic data. To do so, we have derived the analytic expression
of the speed of sound and the quality factor Q−1, which can be calibrated against sound
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General conclusions and prospects

velocity and attenuation as experimentally reported or calculated in atomistic numerical
simulations. We have proved the validity of our approach by investigating the acoustic
attenuation in amorphous silicon/silica at THz frequencies, i.e., at the frequency of the
phonons which are the most responsible for thermal transport at room temperature.

We have also explored the continuum simulation of nanostructured materials in dif-
ferent ways : (1) different heterogeneous nanostructures have been set up. They can be as
simple as periodic circular elastic inclusions or holes, or as complex as the dendrite and
random spatial arrangements ; (2) viscoelastic model can be used to describe the intrinsic
acoustic attenuation in the amorphous component. (3) Eshelby’s inclusion, that can be
used as the elementary brick of plasticity for amorphous materials, are shown to scatter
acoustic waves, thus opening the way to new structural health monitoring of glasses. As
such, our work has laid a solid foundation for understanding amorphous-based acous-
tic/thermal transport in heterogeneous architectured materials, most promising for energy
management applications.

Prospects

For the determination of the phonon contribution to the thermal conductivity, it is now
needed to take into account the atomic scale dispersive contribution to the vibrational den-
sity of states, together with atomic scale scattering processes controlling the diffusivities
above the Ioffe-Regel frequency. In addition, we also aim at finding a stable and efficient
method to obtain the vibrational density of states of the nanostructure. Indeed, as for now,
Castem fails due to the calculation singularity problem in calculating the eigenfrequen-
cies.

For the role of Eshelby’s inclusion on scattering of sound waves, the equations de-
rived by F. Lund et al. link the eigenstrain and the spatial and temporal derivatives of
the displacement field at the interface with the inclusion. Future work will thus deal with
the investigation of the scattering of sound waves with Eshelby inclusion to verify this
analytic description.

For the random elasticity, despite the agreement at low frequency compared to the co-
herent approximation method found in the literature, much needs to be understood. Spe-
cifically, the investigation of wavepacket propagation in a very large wavelength range,
going from coherent to incoherent waves, will allow to get a microscopic understanding
of the coherent concept in the case of atomic vibrational waves, marking the difference
with the optic treatment.

For the viscoelastic constitutive law, further work can focus on the ability to repro-
duce other power laws for phonon attenuation and successive cross-over frequencies, as
well as introducing mechanical anisotropy, and the effect of temperature, finally allowing
to describe thermal transport as well as sound propagation in metamaterials of arbitrary
complexity.
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Appendix A

Supplementary materials for the Chap.2

1 Contribution of phonons to thermal conductivity

In the propagative regime, the thermal conductivity results from the product of the
attenuation length characteristic of scattering processes (Fig. 2.13) with the heat capa-
city Cv and the group velocity vg, integrated over all frequencies as in the following for-
mula [KIT 04] :

κ
prop
T (T ) =

1
3

∫
ωIR

0
dωg(ω)Cv(ω,T )vg(ω)lp(ω)

while in the diffusive regime [LAR 14], it is given by the diffusivity (Fig. 2.9) as

κ
di f f
T (T ) =

∫
ω

ωmax
IR

dωg(ω)Cv(ω,T )D(ω)
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A. Supplementary materials for the Chap.2

2 1 alignment vs 10 alignments : verification of the per-
iodic boundary condition

Since we applied periodic boundary conditions on the top and bottom of the model as
shown in Fig.2.2, we only modeled one single line of inclusions to represent an infinite
number of parallel lines in the vertical direction. This idea can be easily verified through
modeling a much larger system and comparing the results. In Figs.A.1, A.2 and A.3,
we show the snapshots of displacement field for three sets of simulation with different
parameters. For each set, one can easily find that the displacement fields are equivalent
between one line of inclusions and ten lines of inclusions thus confirm the successful
implementation of the PBCs.

FIGURE A.1: Snapshots of displacement field at the same time with ω= 5 THz, Ei
Em

= 1.2
and R = 25 Å (a) 1 alignment with PBCs on the top and bottom (b) 10 parallel alignments

of inclusions on the top and bottom
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1 alignment vs 10 alignments : verification of the periodic boundary condition

FIGURE A.2: Snapshots of displacement field at the same time with ω = 5 THz, Ei
Em

=

0.2 and R = 25 Å (a) 1 alignment on the top and bottom (b) 10 parallel alignments of
inclusions on the top and bottom
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A. Supplementary materials for the Chap.2

FIGURE A.3: Snapshots of displacement field at the same time with ω = 9 THz, Ei
Em

=

0.2 and R = 25 Å (a) 1 alignment on the top and bottom (b) 10 parallel alignments of
inclusions on the top and bottom
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Appendix B

Data of disorder holes

• Random radius
For the case of random size. We prepared different values of disorder parameter σ : σ = 0
(ordered periodic holes) or σ > 0 (disordered holes). We used Gaussian distribution and
σ is the standard deviation with σ = 0, 10.3 and 40. For each σ, three configuration are
prepared for each σ to increase the number of samples. Average of three configurations
results will be the final result. Defining the amplifier α, thus the diameter of each hole is
αΦ0. The values of the amplifiers α for σ = 10.3 and 40 are listed in Tabs.B.1 and B.2.
• Random center position

For the case of random center position. We keep the same radius for all the holes but
translate the holes along x and y direction with distance Dx and Dy. The maximum of
translation distance Dmax is defined as 12 nm and 45 nm. We suppose uniform distribution
for the translation distance Dx and Dy. Defining a translation amplifier dx (or dy) with
Dx = dxDmax (or Dy = dyDmax ) and dx,dy ∈ [−1,1] are both uniformly distributed. The
values of the amplifiers dx and dy are listed in Tab.B.3.

TABLE B.1: Distribution of the amplifier for σ =10 with 3 configurations.
Amplifier

1
1.2075 0.8989 1.2273 1.0543 0.9953 1.0535 0.9846 0.9907 1.1116
0.8463 1.0262 0.96 0.9464 1.023 1.0293 0.9749 0.9772 0.9228
0.9734 0.9775 0.8499 1.1012 0.9058 1.0338 1.0414 1.0017 1.0711

2
0.9383 1.0017 1.0722 0.9831 0.9351 0.9902 1.0778 1.0038 1.023
0.8818 0.9803 1.0389 0.9558 0.9867 1.0137 0.9162 1.0618 1.0101
1.038 0.8688 0.9984 0.9779 1.0592 0.9643 1.0944 1.1143 1.0385

3
1.0211 0.9786 0.9973 0.9364 0.9002 1.0645 1.0494 1.0349 1.0195
1.0025 0.9377 0.9402 0.916 0.8254 0.8979 0.9949 0.9842 0.9294

0.9 0.9266 1.0763 1.1892 0.8914 1.034 0.9853 1.0468 0.9878
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B. Data of disorder holes

TABLE B.2: Distribution of the amplifier for σ =40 with 3 configurations.
Amplifier

1
0.8639 0.5725 1.7052 0.8375 1.0784 1.3415 0.8565 1.1531 1.2363
0.9636 1.0559 1.279 0.9094 1.1437 1.0369 0.9474 0.9242 1.1587
1.4302 0.7607 0.9081 0.8341 0.5685 0.8089 1.0133 1.1745 0.694

2
0.7495 0.9725 1.1246 0.7016 0.7031 0.569 0.9814 1.1727 1.1156
1.2282 1.0978 0.6986 0.7356 0.8699 1.0452 1.1778 0.364 0.7812
1.0897 0.7368 1.5462 0.9389 1.0319 1.2381 1.0318 0.6139 1.441

3
0.9319 0.9161 1.2736 0.5057 1.3283 0.9148 1.5277 0.5807 0.9905
0.6925 1.1018 1.229 1.1767 0.9156 0.8426 1.0907 1.1169 1.4759
0.9173 0.4659 0.7452 0.9657 1.3669 0.9102 1.5249 1.4276 0.8763

TABLE B.3: Distribution of the amplifier for dx and dy with 3 configurations.
Amplifier

1

dx

-0.123 -0.109 0.310 0.171 0.782 0.681 -0.607 0.171 -0.239
0.531 0.419 -0.762 0.503 0.094 0.629 0.232 0.834 -0.848
-0.626 -0.448 0.920 0.0120 -0.701 0.859 -0.297 0.514 0.062

dy

-0.237 0.293 -0.675 -0.552 0.919 -0.491 -0.498 0.099 0.136
0.590 0.509 -0.003 -0.490 -0.723 -0.513 -0.053 -0.428 -0.892
-0.021 0.359 -0.319 0.398 -0.485 -0.300 0.662 0.508 0.558

2

dx

0.378 -0.695 -0.787 -0.831 -0.636 0.100 -0.196 -0.166 -0.325
-0.100 0.077 -0.991 -0.480 -0.709 0.706 -0.520 0.805 -0.262
-0.542 -0.844 0.635 -0.137 0.739 -0.298 -0.632 -0.018 0.561

dy

0.496 0.652 0.924 -0.200 -0.472 -0.710 -0.848 -0.900 0.800
-0.832 0.992 0.550 0.600 -0.728 0.244 -0.753 0.890 -0.778
0.827 -0.115 0.737 0.821 0.159 0.027 -0.520 -0.022 -0.221

3

dx

-0.517 0.150 -0.914 0.094 -0.263 -0.026 0.635 -0.299 -0.585
-0.807 -0.530 0.298 0.489 0.561 -0.106 0.289 0.752 -0.058
0.884 0.642 0.296 0.374 0.859 0.017 0.623 0.245 0.689

dy

-0.192 -0.880 -0.662 -0.407 0.251 -0.128 0.590 0.878 -0.398
-0.736 -0.291 0.463 -0.622 -0.838 -0.387 -0.243 0.100 -0.539
0.912 -0.969 -0.098 -0.633 0.551 0.022 0.066 0.174 -0.611
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Appendix C

Complex constitutive tensor &
implementation of the viscoelastic

constitutive law in FE code

1 3D complex constitutive tensor

The stress-strain constitutive law describes the relation between those two quantities.
Tensor can be expressed in matrix form, strain and stress are n× 1 vectors, constitutive
tensor is n× n matrix, where n = d2, and d is dimension of space. In 3-D case, there
should have been 9 terms but thanks to the symmetry of shear strain εi j = ε ji and shear
stress σi j = σ ji. In Voigt notation, strain and stress vector are reduced to 6 terms and read
respectively :

εi j =


ε11
ε22
ε33

2ε12
2ε13
2ε23

 and σi j =


σ11
σ22
σ33
σ12
σ13
σ23


It is conventional to express the shear strain as 2εi j = γi j which is called engineering shear
strain.

The symmetric constitutive tensor G (Gi j = G ji) can be developed as :

G=


G11 G12 G13 G14 G15 G16
G21 G22 G23 G24 G25 G26
G31 G32 G33 G34 G35 G36
G41 G42 G43 G44 G45 G46
G51 G52 G53 G54 G55 G56
G61 G62 G63 G64 G65 G66

 (C.1)
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C. Complex constitutive tensor & implementation of the viscoelastic constitutive law in
FE code

We recall that the complex constitutive law of our model (which has a form similar to
Hooke’s law) reads : σi j = E∗Bε

sph
i j +E∗Aεdev

i j from which we can find each term of tensor

G , where ε
sph
i j = 1

3δi j(ε11 + ε22 + ε33) and εdev
i j = εi j− ε

sph
i j .

For example, for σ11 :

σ11 = E∗B
ε11 + ε22 + ε33

3
+E∗A(ε11−

ε11 + ε22 + ε33

3
) (C.2)

=
E∗B +2E∗A

3
ε11 +

E∗B−E∗A
3

ε22 +
E∗B−E∗A

3
ε33 (C.3)

It is easy to find that G11 =
E∗B+2E∗A

3 , G12 =
E∗B−E∗A

3 , G13 =
E∗B−E∗A

3 and G14 = G15 =
G16 = 0

Similarly, for σ12 :

σ12 = E∗Aε12 (C.4)

=
E∗A
2
× (2ε12) (C.5)

So except G44 =
E∗A
2 , other terms equal to 0.

Therefore, one can get the expression for all terms of the tensor G as given by Eq. 4.12.
In addition, notice that Gi j is all complex number, so we use G∗ to represent the complex
constitutive tensor.

2 Finite Elements Simulations details

In this work, we developed an explicit dynamic algorithm based on the finite element
code Cast3m from CEA [VER 89, SCH 18, LUO 19]. To simplify the subscripts, we use
bold symbols to represent vectors, i.g. σ = σi j. The finite element semi-discrete in space
of a transient dynamic motion equation can be described as :

f int(t)+Mü(t) = f ext(t) (C.6)

where f int is internal force vector, M is mass matrix, u is displacement vector and f ext is
exciting force vector. Among them, f int can be obtained from

f int(t) =
∫

Ω

BTσ(ε, ε̇,h)dΩ (C.7)

with
ε(t) = Bu(t) (C.8)

where B is the strain-displacement matrix derived from the shape function of the element
used and Ω is the model domain. The calculation of σ(ε, ε̇,h) obeys the viscoelastic
constitutive law described as Eq.4.14. In practice, the convolution operation in Eq. 4.14 is
replaced by a recurrence formula based on the internal variable h which has a ”memory
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Finite Elements Simulations details

effect” [KAL 97, KAL 00, REE 98, LIN 03, ROU 17], yielding Eq. 4.15. One lineariza-
tion method dedicated for the generalized Maxwell viscosity derived by Kaliske et al.
[KAL 97, KAL 00] has been implemented in this FEM code.

In the next step, we need to discretize the motion equation (Eq. C.6) in time. We
assume a uniform partition in time and choose a time step size ∆t. Combined with the
central-difference time integrator, the space-time discretized form can be obtained :

Mün+1 = f
ext
n+1−

∫
Ω

BTσn+1(εn+1, ε̇n+ 1
2
,hn+1)dΩ (C.9)

where indices n and n+ 1 are successive time steps. And the derivative of strain at time
n+ 1

2 is :

ε̇n+ 1
2
=

1
∆t

(εn+1−εn) (C.10)

Reference to Eq.4.15, the temporally discretized constitutive law σn+1(εn+1, ε̇n+ 1
2
,hn+1)

can be expressed as a recursive equation :

σn+1 =
E

1−2ν
(ε

sph
n+1 + ε̇

sph
n+ 1

2
)+

E
1+ν

εdev
n+1 +hn+1 (C.11)

where hn+1 is the updated internal variable tensor [KAL 97] :

hn+1 = exp(−∆t
τa
)hn +

E
1+ν

τa[1− exp(−∆t
τa
)]ε̇dev

n+ 1
2

(C.12)

To resume, the RHS of Eq. C.11 shows that the updated stress consists of three part : (1)
ε gives the purely elastic stress (2) ε̇ gives the viscous stress at the current time step (3)
h records the time-dependent relaxation process. For more details about the implemented
central-difference time integrator algorithm see Ref. [LUO 19].
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C. Complex constitutive tensor & implementation of the viscoelastic constitutive law in
FE code
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Appendix D

Existence of ω - ω3 - ω behavior

In this section, we will prove the existence of the objective power law ( ω - ω3 - ω )
given by the quality factor Q−1 of the proposed viscoelastic model in the Chap. 4 Sec. 3.

As given by the Eq. 4.23, the quality factor Q−1 = G′′/G′ is :

Q(ω)−1 =
ατ2ω−1 + τ1ω−3 + τ1τ2

2ω−5 +ατ2
1τ2ω−7

ατ2
2ω−2 + τ2

1ω−6 +(1+α)τ2
1τ2

2ω−8
(D.1)

where τ1 =
η1
µ1

, τ2 =
η2
µ2

and α = µ2
µ1

.
There are 4 different powers in the numerator (ω−1, ω−3, ω−5 and ω−7) and 3 terms

in the denominator (ω−2, ω−6 and ω−8). So, a total of A7
7 = 5040 permutation provides

sufficient possibilities to seek the power law that we want. However, such large numbers
of possibilities cannot be listed out all together in this appendix. As a results, a goal-
oriented investigation is done to check the existence of the ω - ω3 - ω behavior. To this aim,
we will first deal with the numerator and denominator separately to determine the how
the parameters affect the permutation of the powers. Then, we will look for the candidate
permutation of the powers by considering the ω - ω3 - ω condition, and those permutation
that cannot meet the condition will be rejected, thus reducing the total workload. Finally,
we will combine the candidates of numerator and of denominator to confirm the existence
of the wanted power laws as well as to determine the crossover positions as a function of
the parameters.

1 α < 1

1.1 Numerator

There are 4 terms in the numerator, a pairwise comparison gives C2
4 = 6 cases listed

below :
1© τ1ω−3 > τ1τ2

2ω−5→ ω > τ2

2© ατ2ω−1 > τ1ω−3→ ω >
√

1
α

√
τ1
τ2

Haoming LUO 147

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



D. Existence of ω - ω3 - ω behavior

3© τ1ω−3 > ατ2
1τ2ω−7→ ω > α1/4(τ1τ2)

1/4

4© ατ2ω−1 > τ1τ2
2ω−5→ ω > 1

α

1/4
(τ1τ2)

1/4

5© τ1τ2
2ω−5 > ατ2

1τ2ω−7→ ω >
√

α

√
τ1
τ2

6© ατ2ω−1 > ατ2
1τ2ω−7→ ω > τ

1/3
1

Cases 1©- 6© indicate, in fact, the permutation of the four terms which depends on the
position of the six crossovers. As such, 6 conditions give 6 separators which are the ex-
pression on the right side of "ω>". Each separator judges the dominant power between the
pairwise terms as frequency sweeps. For example, case 1© means that τ1ω−3 < τ1τ2

2ω−5

if ω < α1/4(τ1τ2)
1/4 and τ1ω−3 > τ1τ2

2ω−5 if ω > α1/4(τ1τ2)
1/4. In the following, we

use i© to represent the corresponding separator instead of the inequality. For example, 1©
directly means τ2.

It is noticed that the permutation of
√

1
α

√
τ1
τ2

and
√

α

√
τ1
τ2

in 2© and 5© or

α1/4(τ1τ2)
1/4 and 1

α

1/4
(τ1τ2)

1/4 in 3© and 4© only depends on α. In this section, we
discuss the case of α < 1, and the case of α > 1 will be discussed in the next section.

In the following, we will judge the permutation of the separators 1© - 6© as a function
of τ1 and τ2. In order to simplify the formula, we note A = τ2, B =

√
τ1
τ2

, C = (τ1τ2)
1/4

and D = τ
1/3
1 .

Because α < 1, thus αn < 1
α

n
, 2© > 5© and 4© > 3©.

1© < 2© : A <
√

1
α

B→ τ3
2 <

1
α

τ1

1© < 3© : A < α1/4C→ τ3
2 < ατ1

1© < 4© : A < 1
α

1/4
C→ τ3

2 <
1
α

τ1

1© < 5© : A <
√

αB→ τ3
2 < ατ1

1© < 6© : A < D→ τ3
2 < τ1

2© < 3© :
√

1
α

B < α1/4C→ τ3
2 > ( 1

α
)3τ1

2© < 4© :
√

1
α

B < 1
α

1/4
C→ τ3

2 >
1
α

τ1

2© < 5© :
√

1
α

B <
√

αB→ not possible, it should be 2© > 5©

2© < 6© :
√

1
α

B < D→ τ3
2 < ( 1

α
)3τ1

3© < 4© : α1/4C < 1
α

1/4
C→ without condition

3© < 5© : α1/4C <
√

αB→ τ3
2 < α3τ1

3© < 6© : α1/4C < D→ τ3
2 < α3τ1

4© < 5© : 1
α

1/4
C <
√

αB→ τ3
2 < α3τ1

4© < 6© : 1
α

1/4
C < D→ τ3

2 < α3τ1

5© < 6© :
√

αB < D→ τ3
2 > α3τ1
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α < 1

Each pairwise comparison gives a new conditions about τ1, τ2 and α. Once the
relation among three parameters are given, we will get the permutation of the six
separators 1©- 6© thus the permutation of the powers in the numerator. We arrange all
the new conditions and easily find some conditions are reputed. Considering when τ2
sweeps on the parametric space related to τ1 and α, we list below all the possibilities of
permutation of the powers in the numerator for α < 1 :

N a© : τ3
2 < α3τ1

Separator 1© 3© 4© 6© 5© 2©

Power ω−7 ω−7 ω−3 ω−3 ω−3 ω−3 ω−1

N b© : α3τ1 < τ3
2 < ατ1

Separator 1© 5© 6© 3© 4© 2©

Power ω−7 ω−7 ω−5 ω−5 ω−3 ω−3 ω−1

N c© : ατ1 < τ3
2 < τ1

Separator 5© 1© 3© 6© 4© 2©

Power ω−7 ω−5 ω−5 ω−3 ω−3 ω−3 ω−1

N d© : τ1 < τ3
2 <

1
α

τ1

Separator 5© 6© 3© 1© 4© 2©

Power ω−7 ω−5 ω−5 ω−3 ω−3 ω−3 ω−1

N e© : 1
α

τ1 < τ3
2 <

1
α

3
τ1

Separator 5© 6© 3© 2© 4© 1©

Power ω−7 ω−5 ω−5 ω−5 ω−5 ω−1 ω−1

N f© : τ3
2 >

1
α

3
τ1
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D. Existence of ω - ω3 - ω behavior

Separator 5© 2© 6© 3© 4© 1©

Power ω−7 ω−5 ω−5 ω−5 ω−5 ω−1 ω−1

1.2 Denominator
Similar to the numerator, we will go through the same procedure to get the permutation

of the powers. There are three terms in the denominator, which gives only C2
3 = 3 pairwise

comparisons as listed below :
7© τ2

1ω−6 > (α+1)τ2
1τ2

2ω−8→ ω >
√

α+1τ2

8© ατ2
2ω−2 > τ2

1ω−6→ ω > ( 1
α
)1/4
√

τ1
τ2

9© ατ2
2ω−2 > (α+1)τ2

1τ2
2ω−8→ ω > (α+1

α
)1/6τ

1/3
1

Then, we compare the three separators 7©, 8© and 9© :
7© < 8© :

√
α+1A < ( 1

α
)1/4B→ τ3

2 <
(1/α)1/2

α+1 τ1

7© < 9© :
√

α+1A < (α+1
α

)1/6D→ τ3
2 <

(1/α)1/2

α+1 τ1

8© < 9© : ( 1
α
)1/4B < (α+1

α
)1/6D→ τ3

2 >
(1/α)1/2

α+1 τ1
Considering when τ2 sweeps on the parametric space related to τ1 and α, we list

below all the possibilities of permutation of the powers in the denominator for α < 1 :

D a© : τ3
2 <

(1/α)1/2

α+1 τ1

Separator 7© 9© 8©

Power ω−8 ω−6 ω−6 ω−2

D b© : τ3
2 >

(1/α)1/2

α+1 τ1

Separator 8© 9© 7©

Power ω−8 ω−8 ω−2 ω−2

1.3 Combination of the numerator and the denominator

The powers in the numerator are : ω−7, ω−5, ω−3 and ω−1.
The powers in the denominator are : ω−8, ω−6 and ω−2.
As said in the beginning, the idea is to conduct goal-oriented searches instead of listing

all possibilities. As such, we will concentrate on those combination of the numerator and
the denominator which can provide ω - ω3 - ω behavior.
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α < 1

Power ω ω3 ω

Combination
ω−7/ω−8 ω−3/ω−6 ω−7/ω−8

ω−5/ω−6 ω−5/ω−8 ω−5/ω−6

ω−1/ω−2 ω−1/ω−2

In order to obtain a ω - ω3 - ω behavior, we observe the different ω behavior given
by the different permutation of the separator. For example, N f© gives a ω−7 - ω−5 - ω−1

power law, and D b© gives a ω−8 - ω−9 - ω−7 power law. Therefore, a proper combination
of these numerator and denominator makes it possible to get the objective power law.

Note : 9 separators 1© - 9© need C2
9 = 36 pairwise comparisons among which C2

6 = 15
has been reported in the section of the numerator and the rest pairwise comparisons will
not be elaborated here due to space limitations. In short, once the relation between τ1, τ2
and α is known, the permutation of the 9 separators is known, vice versa. The detail can
be found in the corresponding manuscript (if possible).

1.4 Existence of ω - ω3 - ω behavior
N f© + D b© :

Separator 5© 8© 2© 6© 3© 4©= 9© 1© 7©

Num. power ω−7 ω−5 ω−5 ω−5 ω−5 ω−5 ω−1 ω−1 ω−1

Deno. power ω−8 ω−8 ω−8 ω−8 ω−8 ω−8 ω−2 ω−2 ω−2

Power ω1 ω3 ω3 ω3 ω3 ω3 ω1 ω1 ω1

Conditions : 
0 < α < 1
N f©+D b©→ τ3

2 >
1

α3 τ1

4©= 9©→ τ3
2 = (α+1)2ατ1

As a result, 0.76 < α < 1.
Properties :

Position of the crossover ω - ω3 :

ω1−3 =
1

α+1
τ2

Position of the crossover ω3 - ω :

ω3−1 = (
1
α
)1/2(

1
α+1

)1/2
τ2
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D. Existence of ω - ω3 - ω behavior

2 α > 1

For α > 1, we also find that at least one case gives a ω - ω3 - ω behavior.
Conditions : 

α > 1
τ3

2 > α3τ1

τ3
2 = (α+1)2ατ1

Properties :
Position of the crossover ω - ω3 :

ω1−3 =
1

α+1
τ2

Position of the crossover ω3 - ω :

ω3−1 = (
1
α
)1/2(

1
α+1

)1/2
τ2

3 Conclusion

To conclude, we discuss the existence of ω - ω3 - ω in our viscoelastic model when
some conditions are met. We give two possibilities as well as the corresponding condi-
tions. In addition, the position of crossovers are determined which can be used as a re-
ference to get the approximate magnitude of the parameter. In practice, we have slightly
relaxed the conditions when calibrating the model on A-SiO2.
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Sodium effect on static mechanical behavior of MD-modeled sodium silicate glasses.
Journal of Non-Crystalline Solids, vol. 440, 2016, p. 12–25, Elsevier BV.

[MON 09a] MONACO G., GIORDANO V. M.
Breakdown of the Debye approximation for the acoustic modes with nanometric wa-
velengths in glasses. Proceedings of the National Academy of Sciences, vol. 106, no

10, 2009, p. 3659–3663, Proceedings of the National Academy of Sciences.

[MON 09b] MONACO G., MOSSA S.
Anomalous properties of the acoustic excitations in glasses on the mesoscopic length
scale. Proceedings of the National Academy of Sciences, vol. 106, no 40, 2009,
p. 16907–16912, Proceedings of the National Academy of Sciences.

[MOO 16] MOON J., MINNICH A. J.
Sub-amorphous thermal conductivity in amorphous heterogeneous nanocomposites.
RSC Advances, vol. 6, no 107, 2016, p. 105154–105160, Royal Society of Chemistry
(RSC).

[NEW 59] NEWMARK N. M.
A method of computation for structural dynamics. Journal of the engineering mecha-
nics division, vol. 85, no 3, 1959, p. 67–94, ASCE.

[NIC 18] NICOLAS A., FERRERO E. E., MARTENS K., BARRAT J.-L.
Deformation and flow of amorphous solids : Insights from elastoplastic models. Re-
views of Modern Physics, vol. 90, no 4, 2018, American Physical Society (APS).

[PAL 93] PAL N. R., PAL S. K.
A review on image segmentation techniques. Pattern Recognition, vol. 26, no 9, 1993,
p. 1277–1294, Elsevier BV.

[PAR 66] PARKE S.
Logarithmic decrements at high damping. British Journal of Applied Physics, vol. 17,
no 2, 1966, page 271, IOP Publishing.

[PAR 17] PARK G., KANG S., LEE H., CHOI W.
Tunable Multifunctional Thermal Metamaterials : Manipulation of Local Heat Flux
via Assembly of Unit-Cell Thermal Shifters. Scientific Reports, vol. 7, no 1, 2017,
Springer Science and Business Media LLC.

[PEN 08] PENNEC Y., DJAFARI-ROUHANI B., LARABI H., VASSEUR J. O., HLADKY-
HENNION A. C.

162 Haoming LUO

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



Biblography

Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a
thin homogeneous plate. Physical Review B, vol. 78, no 10, 2008, American Physical
Society (APS).

[PIL 04] PILLA O., CAPONI S., FONTANA A., GONÇALVES J. R., MONTAGNA M.,
ROSSI F., VILIANI G., ANGELANI L., RUOCCO G., MONACO G., SETTE F.
The low energy excess of vibrational states in v-SiO2 : the role of transverse dynamics.
Journal of Physics : Condensed Matter, vol. 16, no 47, 2004, p. 8519–8530, IOP
Publishing.

[POH 01] POHL R.
Amorphous Materials : Thermal Conductivity. Encyclopedia of Materials : Science
and Technology, p. 232–237 Elsevier, 2001.

[POH 02] POHL R. O., LIU X., THOMPSON E.
Low-temperature thermal conductivity and acoustic attenuation in amorphous solids.
Reviews of Modern Physics, vol. 74, no 4, 2002, p. 991–1013, American Physical
Society (APS).

[PRA 09] PRASHER R. S., HU X. J., CHALOPIN Y., MINGO N., LOFGREEN K., VOLZ

S., CLERI F., KEBLINSKI P.
Turning Carbon Nanotubes from Exceptional Heat Conductors into Insulators. Physi-
cal Review Letters, vol. 102, no 10, 2009, American Physical Society (APS).

[QIA 16a] QIAO J., YAO Y., PELLETIER J., KEER L.
Understanding of micro-alloying on plasticity in Cu 46 Zr 47-x Al 7 Dy x (0≤ x ≤ 8)
bulk metallic glasses under compression : Based on mechanical relaxations and theo-
retical analysis. International Journal of Plasticity, vol. 82, 2016, p. 62–75, Elsevier
BV.

[QIA 16b] QIAO J., JIA H., LIAW P. K.
Metallic glass matrix composites. Materials Science and Engineering : R : Reports,
vol. 100, 2016, p. 1–69, Elsevier BV.

[QIA 17] QIAO J., SUN B., GU J., SONG M., PELLETIER J., QIAO J., YAO Y., YANG

Y.
Abnormal internal friction in the in-situ Ti60Zr15V10Cu5Be10 metallic glass matrix
composite. Journal of Alloys and Compounds, vol. 724, 2017, p. 921–931, Elsevier
BV.

[REE 98] REESE S., GOVINDJEE S.
A theory of finite viscoelasticity and numerical aspects. International Journal of Solids
and Structures, vol. 35, no 26-27, 1998, p. 3455–3482, Elsevier BV.

[ROD 09] RODRÍGUEZ N., MAUREL A., PAGNEUX V., BARRA F., LUND F.
Interaction between elastic waves and prismatic dislocation loops. Journal of Applied
Physics, vol. 106, no 5, 2009, page 054910, AIP Publishing.

Haoming LUO 163

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



Biblography

[RON 02] RONALD FEDKIW S. O.
Level Set Methods and Dynamic Implicit Surfaces. Springer New York, 2002.

[ROU 17] ROULEAU L., DEÃIJ J.-F.
Time-domain analysis of viscoelastic systems. Procedia Engineering, vol. 199, 2017,
p. 384–390, Elsevier BV.

[ROY 01] ROYLANCE D.
Engineering viscoelasticity. Department of Materials Science and Engineering–
Massachusetts Institute of Technology, Cambridge MA, vol. 2139, 2001, p. 1–37.

[RUF 03] RUFFLÉ B., FORET M., COURTENS E., VACHER R., MONACO G.
Observation of the Onset of Strong Scattering on High Frequency Acoustic Phonons
in Densified Silica Glass. Physical Review Letters, vol. 90, no 9, 2003, American
Physical Society (APS).

[RUF 06] RUFFLÉ B., GUIMBRETIÈRE G., COURTENS E., VACHER R., MONACO G.
Glass-Specific Behavior in the Damping of Acousticlike Vibrations. Physical Review
Letters, vol. 96, no 4, 2006, American Physical Society (APS).

[RUF 08] RUFFLÉ B., PARSHIN D. A., COURTENS E., VACHER R.
Boson Peak and its Relation to Acoustic Attenuation in Glasses. Physical Review
Letters, vol. 100, no 1, 2008, American Physical Society (APS).

[RUO 99] RUOCCO G., SETTE F., LEONARDO R. D., FIORETTO D., KRISCH M., LO-
RENZEN M., MASCIOVECCHIO C., MONACO G., PIGNON F., SCOPIGNO T.
Nondynamic Origin of the High-Frequency Acoustic Attenuation in Glasses. Physi-
cal Review Letters, vol. 83, no 26, 1999, p. 5583–5586, American Physical Society
(APS).

[RUO 08] RUOCCO G.
When disorder helps. Nature Materials, vol. 7, no 11, 2008, p. 842–843, Springer
Science and Business Media LLC.

[SAL 12] SALENÇON J.
Handbook of continuum mechanics : General concepts thermoelasticity. Springer
Science & Business Media, 2012.

[SCH 98] SCHIRMACHER W., EICHENGRÜN M., BREYMANN W.
Quantum chaotic scattering and resistance fluctuations in mesoscopic junctions. phy-
sica status solidi (b), vol. 205, no 1, 1998, p. 219–222, Wiley Online Library.

[SCH 02] SCHELLING P. K., PHILLPOT S. R., KEBLINSKI P.
Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics si-
mulation. Applied Physics Letters, vol. 80, no 14, 2002, p. 2484–2486, AIP Publi-
shing.

164 Haoming LUO

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



Biblography

[SCH 04] SCHOBER H. R.
Vibrations and relaxations in a soft sphere glass : boson peak and structure factors.
Journal of Physics : Condensed Matter, vol. 16, no 27, 2004, p. S2659–S2670, IOP
Publishing.

[SCH 06] SCHIRMACHER W.
Thermal conductivity of glassy materials and the “boson peak". Europhysics Letters
(EPL), vol. 73, no 6, 2006, p. 892–898, IOP Publishing.

[SCH 07] SCHUH C. A., HUFNAGEL T. C., RAMAMURTY U.
Mechanical behavior of amorphous alloys. Acta Materialia, vol. 55, no 12, 2007,
p. 4067–4109, Elsevier.

[SCH 09] SCHROERS J.
Processing of Bulk Metallic Glass. Advanced Materials, vol. 22, no 14, 2009,
p. 1566–1597, Wiley.

[SCH 13] SCHIRMACHER W.
The boson peak. physica status solidi (b), vol. 250, no 5, 2013, p. 937–943, Wiley.

[SCH 15a] SCHIRMACHER W., RUOCCO G., MAZZONE V.
Theory of heterogeneous viscoelasticity. Philosophical Magazine, vol. 96, no 7-9,
2015, p. 620–635, Informa UK Limited.

[SCH 15b] SCHIRMACHER W., SCOPIGNO T., RUOCCO G.
Theory of vibrational anomalies in glasses. Journal of Non-Crystalline Solids,
vol. 407, 2015, p. 133–140, Elsevier BV.

[SCH 18] SCHWAAB M.-É., BIBEN T., SANTUCCI S., GRAVOUIL A., VANEL L.
Interacting Cracks Obey a Multiscale Attractive to Repulsive Transition. Physical
Review Letters, vol. 120, no 25, 2018, American Physical Society (APS).

[SCO 03] SCOPIGNO T., YANNOPOULOS S. N., KASTRISSIOS D. T., MONACO G.,
PONTECORVO E., RUOCCO G., SETTE F.
High frequency acoustic modes in vitreous beryllium fluoride probed by inelastic x-ray
scattering. The Journal of Chemical Physics, vol. 118, no 1, 2003, p. 311–316, AIP
Publishing.

[SKL 18] SKLAN S. R., LI B.
Thermal metamaterials : functions and prospects. National Science Review, vol. 5, no

2, 2018, p. 138–141, Oxford University Press (OUP).

[STA 19] STASIO J. D., DUREISSEIX D., GRAVOUIL A., GEORGES G., HOMOLLE T.
Benchmark cases for robust explicit time integrators in non-smooth transient dyna-
mics. Advanced Modeling and Simulation in Engineering Sciences, vol. 6, no 1,
2019, Springer Nature.

Haoming LUO 165

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



Biblography

[STI 85] STILLINGER F. H., WEBER T. A.
Computer simulation of local order in condensed phases of silicon. Physical Review
B, vol. 31, no 8, 1985, p. 5262–5271, American Physical Society (APS).

[STO 80] STOKES G. G.
On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium
and Motion of Elastic Solids. Mathematical and Physical Papers vol.1, p. 75–129
Cambridge University Press, 1880.

[SWI 62] SWINEHART D. F.
The Beer-Lambert Law. Journal of Chemical Education, vol. 39, no 7, 1962, page
333, American Chemical Society (ACS).

[TAN 02] TANGUY A., WITTMER J., LEONFORTE F., BARRAT J.-L.
Continuum limit of amorphous elastic bodies : A finite-size study of low-frequency
harmonic vibrations. Physical Review B, vol. 66, 2002, page 174205.

[TAN 10] TANGUY A., MANTISI B., TSAMADOS M.
Vibrational modes as a predictor for plasticity in a model glass. Europhysics Letters,
vol. 90, no 1, 2010, page 16004.

[TER 09] TERMENTZIDIS K., CHANTRENNE P., KEBLINSKI P.
Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of
superlattices with rough interfaces. Physical Review B, vol. 79, no 21, 2009, American
Physical Society (APS).

[TIA 10] TIAN Z. T., WHITE B. E., SUN Y.
Phonon wave-packet interference and phonon tunneling based energy transport across
nanostructured thin films. Applied Physics Letters, vol. 96, no 26, 2010, page 263113,
AIP Publishing.

[TIG 06] VAN TIGGELEN B.
Ondes et Acoustique I, vol. 2. 2004-2006.

[TLI 17] TLILI A., PAILHÈS S., DEBORD R., RUTA B., GRAVIER S., BLANDIN J.-J.,
BLANCHARD N., GOMÈS S., ASSY A., TANGUY A., GIORDANO V.
Thermal transport properties in amorphous/nanocrystalline metallic composites : A
microscopic insight. Acta Materialia, vol. 136, 2017, p. 425–435, Elsevier BV.

[TLI 19] TLILI A., GIORDANO V. M., BELTUKOV Y. M., DESMARCHELIER P.,
MERABIA S., TANGUY A.
Enhancement and anticipation of the Ioffe–Regel crossover in amor-
phous/nanocrystalline composites. Nanoscale, vol. 11, no 44, 2019, p. 21502–21512,
Royal Society of Chemistry (RSC).

166 Haoming LUO

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



Biblography

[TSA 09] TSAMADOS M., TANGUY A., GOLDENBERG C., BARRAT J.-L.
Local elasticity map and plasticity in a model Lennard-Jones glass. Physical Review
E, vol. 80, no 2, 2009, American Physical Society (APS).

[UKP 09] UKPONG A. M.
Studies of the electronic and vibrational signatures of the unusual bonding geometries
in melt-quenched amorphous silicon. Molecular Physics, vol. 107, no 23-24, 2009,
p. 2521–2530, Informa UK Limited.

[VAC 80] VACHER R., SUSSNER H., HUNKLINGER S.
Brillouin scattering in vitreous silica below 1 K. Physical Review B, vol. 21, no 12,
1980, p. 5850–5853, American Physical Society (APS).

[VAC 97] VACHER R., PELOUS J., COURTENS E.
Mean free path of high-frequency acoustic excitations in glasses with application to
vitreous silica. Physical Review B, vol. 56, no 2, 1997, p. R481–R484, American
Physical Society (APS).

[VAS 08] VASSEUR J., HLADKY-HENNION A.-C., DUBUS B., DJAFARI-ROUHANI B.,
MORVAN B.
Design and characterization of stop-band filters using PZT layer on silicon substrate
phononic crystals. The Journal of the Acoustical Society of America, vol. 123, no 5,
2008, p. 3039–3039, Acoustical Society of America (ASA).

[VAZ 13] VAZHAPPILLY T., MICHA D. A.
Atomic modeling of structural and optical properties of amorphous silicon. Chemical
Physics Letters, vol. 570, 2013, p. 95–99, Elsevier BV.

[VER 89] VERPEAUX P., MILLARD A., CHARRAS T., COMBESCURE A.
A modern approach of large computer codes for structural analysis. , 1989, IASMiRT.

[VER 06] VERBERT J.
Réalisation et étude optique de microcavités à modes de galerie intégrées sur silicium.
Thèse de doctorat, 2006.

[VER 18] VERDIER M., LACROIX D., DIDENKO S., ROBILLARD J.-F., LAMPIN E.,
BAH T.-M., TERMENTZIDIS K.
Influence of amorphous layers on the thermal conductivity of phononic crystals. Phy-
sical Review B, vol. 97, no 11, 2018, American Physical Society (APS).

[WAG 16] WAGNER M. R., GRACZYKOWSKI B., REPARAZ J. S., SACHAT A. E.,
SLEDZINSKA M., ALZINA F., TORRES C. M. S.
Two-Dimensional Phononic Crystals : Disorder Matters. Nano Letters, vol. 16, no 9,
2016, p. 5661–5668, American Chemical Society (ACS).

Haoming LUO 167

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI130/these.pdf 
© [H. Luo], [2020], INSA Lyon, tous droits réservés



Biblography

[WAL 16] WALDROP M. M.
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