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(“Centre of education and research on Mediterranean environments”) UMR at Perpignan 

University Via Domitia (Perpignan, Pyrénées-Orientales, France) over a few weeks during the 

first half of 2019. 

Finally, Hugues de Verdal conducted the experiment on the Cirad strain of Nile tilapia at the 

Palavas Experimental Aquaculture Research Station, from October 2019 to January 2020, with 

a co-designed protocol.  

To date (September 2020), results collected in the present thesis project were reported in three 

accepted articles, two being already published, in a fourth article under review and a fifth one 

still in preparation. Results were also presented during two conferences (at Montpellier and at 

Berlin). For complete references and details, please refer to the “Publications and 

communications” section. 
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1. The aquaculture sector is growing fast but must address sustainability issues 

The world human population is over 7 billion in 2020 and, according to projections, it will reach 

8 to 10 billion towards 2050 (United Nations, 2011). The increasing world population is 

accompanied by a growing demand for food. Regarding the world consumption of animal 

proteins per capita, the relative contribution of products from aquatic origins has kept increasing 

over the last 50 years, at the expense of livestock except poultry (Béné et al., 2015; OECD-

FAO, 2018). Besides, shifting future diets away from terrestrial protein towards aquatic proteins 

is expected to spare lands and feed crops (Froehlich et al., 2018). Thus, aquatic products will 

become ever more central to human food security in the future (Béné et al., 2015; OECD-FAO, 

2018). This need in aquatic products has been partially satisfied by fisheries. However, their 

production has stagnated over the last 20 years around 90 million tons annually, and many fish 

stocks dedicated to human consumption are currently overfished, suggesting a future decrease 

of landings (FAO, 2018). In contrast, aquaculture has kept increasing to reach 82 million tons 

(excluding aquatic plants) in 2018, with an average annual growth in production of +7.6% since 

1950 (Fig. 1; FAO-FIGIS, 2020). Consequently, meeting the increasing global demand for 

aquatic products will depend almost exclusively upon aquaculture. Currently, aquaculture 

production is concentrated in Asia (88.8% of world production), and more specifically in China 

(58.8% of world production; FAO-FIGIS, 2020, Fig. 2). 
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Figure 1. World aquaculture and fisheries production (using data from FAO-FIGIS, 2020; excluding aquatic 

plants). 

 

Figure 2. World aquaculture production share (in %) by geographical areas (countries were separated from 

continents when their production was over two billion tons, using data from FAO-FIGIS, 2020; excluding aquatic 

plants). 

 

Moreover, aquaculture does not fulfil the same objectives in advanced economies compared to 

emerging ones. Although developed countries consume much more fish per capita than less 

developed countries (24.9 kg/year versus 12.6 kg/year in 2015, respectively; FAO, 2018), fish 

protein represents a lower proportion of total animal protein intake (11.4% versus 26.0% in 
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2015; FAO, 2018). Thus, fishes are a crucial source of animal protein for less developed 

countries. In particular, fish protein contains several essential amino acids such as lysine and 

methionine, which are rather scarce in these countries’ diets (HLPE, 2014). Beyond proteins, 

fish products contain several other key essential nutrients. Fishes provide long-chain 

polyunsaturated fatty acids, with beneficial effects for child development and adult health. 

Moreover, fishes are an important source of essential micronutrients, such as vitamins B and 

D, and of minerals, such as calcium and iron (HLPE, 2014). Including aquatic products in the 

diet can improve nutrition balance and avoid malnutrition in least developed countries 

(Kawarazuka and Béné, 2010).  

In spite of rapid development, aquaculture still needs to overcome sustainability issues. 

Sustainability is defined as “meeting the needs of the present without compromising the ability 

of future generations to meet their own needs” (Brundtland, 1987). This concept involves three 

axes: economy, environmental impact and society. One major obstacle to a sustainable 

development of aquaculture is linked to fish feed. Fishes generally use feed more efficiently 

than terrestrial livestock (Fig. 3) but improvements are still necessary. Typical commercial fish 

feed is composed of fish meal and fish oil from marine capture fisheries, plus land animal 

protein meal and lipid (e.g. meat by-products, feathers and blood) where this is permitted by 

legislation (banned in European countries), completed by plant meals and oils (mostly cereals, 

oilseeds and pulses; Tacon et al., 2011). The proportion of each ingredient in the diet depends 

on the fish species. For carnivorous fishes such as salmonids or marine finfish, fish meal and 

fish oil used to be the main ingredients until the early 2000’s but nowadays represent less than 

25% of the diet, having been replaced by plant-based ingredients (Médale et al., 2013). In 

omnivorous or herbivorous freshwater species such as cyprinids, pangassids or cichlids, fish-

based ingredients barely represent 5% of the diet (Médale et al., 2013). Moreover, in these latter 

species, rearing practices do not necessarily involve commercial feed because several farmers 
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rather use fresh or farm-made feeds, or even let fish forage for themselves (Tacon et al., 2011). 

Commercial feeds, however, are increasingly used globally (Tacon et al., 2011).  

 

Figure 3. Feed conversion ratio, i.e. the ratio between feed intake and body weight gain, for selected aquatic and 

terrestrial farmed animal species. Dots represent means and bars indicate range. Lower values signify better feed 

use. Figure extracted from Fry et al., 2018. Giant tiger prawn: Penaeus monodon; common carp: Cyprinus carpio; 

pangas catfish: Pangasius pangasius; tilapia: Oreochromis niloticus, O. mossambicus, O. aureus, O. andersonii, 

O. spilurus; grass carp: Ctenopharyngodon idella; channel catfish: Ictalurus punctatus; whiteleg shrimp: 

Litopenaeus vannamei; rainbow trout: Oncorhynchus mykiss; Atlantic salmon: Salmo salar. 

 

Feed is expensive, costs range from 30% to 70% of total costs in intensive fish farms (Goddard, 

1996; Rana Sunil Siriwardena and Hasan, 2009; STECF, 2018). Moreover, ingredients used in 

fish feeds have undergone major increases in price since 2000, whether derived from wild fish 

or plants (Rana Sunil Siriwardena and Hasan, 2009; OECD-FAO, 2018). For instance, 

European sea bass Dicentrarchus labrax production was 83 000 tons in Europe in 2018 (FAO-

FIGIS, 2020) and it is estimated that this species consumes 1.38 kilogram of feed to gain one 

kilogram of body weight (Besson et al., 2019). If we consider that feed cost price is 1.5 € per 

kilogram, then an improvement of feed use by 5% (from 1.38 to 1.31 kilogram feed to gain one 

kilogram of body weight) would save 8 715 000 € for European sea bass production in 2018.  
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Regarding environmental impact, improving feed use could reduce global warming, 

acidification and eutrophication impacts linked to both fish feed production and consumption 

(Aubin et al., 2009; Besson et al., 2016). Aubin et al. (2009) estimated that feed alone 

(production and then consumption) accounted for 96 to 100% of the eutrophication potential, 

32 to 86% of the climate change potential and 29 to 80% of the acidification potential of a fish 

farm. These impacts were assessed for rainbow trout Oncorhynchus mykiss in freshwater 

raceways, for European sea bass in sea cages and turbot Scophtalmus maximus in an inland 

recirculating system (Aubin et al., 2009). 

Finally, from a social aspect, competition between humans and farmed fish for access to food 

sources raises questions about the true impact of aquaculture on food security (Troell et al., 

2014). For instance, anchoveta Engraulis ringens stocks along the Peruvian coast are exploited 

both for direct human consumption and fish feed production (Fréon et al., 2008). In conclusion, 

there are economic, environmental and societal reasons to improve feed use, and this is of major 

importance for finfish aquaculture sustainability and resilience. 

2. “Feed efficiency”: definition, estimation, underlying factors and improvement 

strategies 

2.1.  Definition 

The concept of “feed efficiency” can be defined as how an animal uses its feed, i.e. how much 

it eats and how much it grows. Improving feed efficiency produces the same amount of fish on 

less feed, or more fish with the same amount of feed. Thus, feed efficiency is defined by two 

key factors: feed intake of an animal (FI), and its subsequent body weight gain (BWG).  

2.2. Estimation 

Feed efficiency can be estimated in various ways. The most common indicators in the literature 

are feed conversion ratio (FCR), defined as FCR = FI/BWG, and its reciprocal, feed efficiency 
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ratio (FER), defined as FER = BWG/FI (reviewed by de Verdal et al., 2018a). These two 

indicators provide different viewpoints on efficiency; FCR indicates how much feed is required 

for a fish to gain one unit of body weight, whereas FER indicates how much body weight gain 

can be expected when feeding a fish with one unit of feed. An efficient animal is an animal with 

a low FCR or a high FER. These two indicators have the major advantage of being very tangible, 

they do not require any expertise in biology to be understood. However, the fact that they are 

ratios can raise issues. It is difficult to predict how FI and/or BWG will change when FCR or 

FER are improved (Aggrey et al., 2010). For instance, FCR can be improved if BWG increases 

while FI remains constant. The FCR can also be improved, however, if BWG decreases, but 

proportionally less than FI. The former is interesting from a farmer’s point of view, the latter 

can be undesirable.  

Other indicators have been formulated which do not use ratios but are based on linear 

relationships, such as residual feed intake (RFI; Koch et al., 1963) or residual body weight gain 

(RBWG; Koch et al., 1963). In contrast with FCR and FER, these indicators can distinguish 

between dietary energy allocated to growth or to body maintenance, by considering the 

metabolic body weight of the fish (MBW). The MBW is defined as 𝑀𝐵𝑊 =  𝐵𝑊𝑏, where BW 

is the body weight and b is a constant exponent which reflects energy loss linked to body 

maintenance. This exponent is defined as 𝐸𝐿 = 𝑎 ∗ 𝐵𝑊𝑏 (Lupatsch et al., 2003) where EL is 

the energy loss during fasting in kJ.day-1, and a and b are two species-dependent constants 

determined using statistical modelling. In fish, b is commonly reported around 0.8 (Johnston et 

al., 1991; Lemarié et al., 1992; Clarke and Johnston, 1999; Lupatsch et al., 2003). 

From a biological point of view, the RFI of an animal is the difference between its actual FI 

and its expected FI based on its MBW and BWG. Similarly, the RBWG of an animal is the 

difference between its actual BWG and its expected BWG based on its MBW and FI. The RFI 

and RBWG of each animal are calculated by linear models on the experimental population. 
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Thus, RFI and RBWG estimate whether each animal is rather efficient or inefficient relatively 

to the whole group. The equation of the linear regression used to calculate RFI is expressed as: 

𝑅𝐹𝐼 =  𝐹𝐼 −  𝜇 +  𝛼 ∗ 𝑀𝐵𝑊 + 𝛽 ∗ 𝐵𝑊𝐺 with μ the intercept of the linear regression, α the 

regression coefficient for MBW (i.e. body maintenance) of the animals, β the regression 

coefficient for BWG (i.e. growth) of the animals (Fig. 4). An efficient animal, relative to the 

whole group, has a negative RFI. Similarly, the equation used to calculate RBWG is expressed 

as: 𝑅𝐵𝑊𝐺 =  𝐵𝑊𝐺 − 𝜇 +  𝛼 ∗ 𝑀𝐵𝑊 + 𝛽 ∗ 𝐹𝐼. An efficient animal, relative to the whole 

group, has a positive RBWG.  

 

Figure 4. Illustration of the estimation of residual feed intake (RFI) from the linear relationship between feed 

intake (FI) and body weight gain (BWG). Each black dot represents an individual data and the blue line is the 

linear regression line between FI and BWG. In the present example, metabolic body weight is considered as similar 

among all individuals and thus not taken into account. 

 

These linear regressions can be extended to include extra variables that can have an impact on 

energy allocation, such as egg production in poultry (Luiting and Urff, 1991) or milk production 

in cows (Connor et al., 2013). The equation of the extended linear regression is expressed as: 

𝑅𝐹𝐼 = 𝐹𝐼 −  𝜇 +  𝛼 ∗ 𝑀𝐵𝑊 + 𝛽 ∗ 𝐵𝑊𝐺 + 𝛾 ∗ 𝑃𝑊 where PW is the production weight (of 

eggs or milk) and γ the regression coefficient for PW. To our knowledge, such model including 

production traits was never used in fish, but could be relevant, for instance, when studying fish 

grown to produce eggs (e.g. Atlantic salmon Salmo salar whose eggs are consumed).  
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2.3. Factors underlying feed efficiency 

2.3.1. Intrinsic factors 

When estimating feed efficiency traits, the processes that convert FI into BWG are treated as a 

“black box”: it is not required to understand them to estimate feed efficiency. Nonetheless, feed 

efficiency must be influenced by mechanisms that convert feed into physiologically useful 

energy (Warren and Davis; 1967; Bureau et al., 2003), namely energy stored as proteins and 

lipids that is available for physiological functions. These mechanisms include digestion of feed 

in the alimentary canal, assimilation of nutrients into the blood and their distribution within the 

animal (Warren and Davis; 1967; Bureau et al., 2003). Once energy is made available, it is 

allocated to various biological functions, such as basal metabolism, locomotion or growth 

(Warren and Davis, 1967; Bureau et al., 2003). The higher the proportion of energy allocated 

to growth, the better the feed efficiency. Feed efficiency traits are variable among species 

(reviewed by de Verdal et al., 2018a), among strains (Overturf et al., 2003), among development 

stages (Bureau and Hua, 2008; Robinson and Li, 2010) and among individuals (Kause et al., 

2006b; Quinton et al., 2007a; Grima et al., 2008; de Verdal et al., 2018b; Besson et al., 2019). 

2.3.2. Extrinsic factors 

Feed efficiency is variable among rearing environments (NRC, 2011). For instance, fish feed 

efficiency is impacted by feeding rate (Huisman, 1976; Brett, 1979), feed composition 

(Guillaume et al., 2001), water temperature (Azevedo et al., 1998; Árnason et al., 2009; Yoo 

and Lee, 2016), photoperiod (Biswas et al., 2005), and salinity (Imsland et al., 2008). For 

example, an optimal feeding rate (e.g. 2% of body weight per day in rainbow trout 

Oncorhynchus mykiss; Huisman, 1976) and an optimal temperature (e.g. 9°C in rainbow trout; 

Azevedo et al., 1998) can be identified to optimize feed efficiency, deviations from this result 

in reduced feed efficiency. However, the different environmental factors can interact: the 
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optimal feeding rate may vary with rearing temperature (Brett, 1979). Consequently, 

investigation of feed efficiency requires careful control of experimental conditions. 

2.4.  Strategies developed to improve feed efficiency 

2.4.1. At group level 

Improving feed efficiency in fish can involve nutrition (Huisman, 1976; Brett, 1979; De Silva 

and Anderson, 1995; Guillaume et al., 2001; NRC, 2011) as well as husbandry (Brett, 1979; 

Azevedo et al., 1998; Biswas et al., 2005; Imsland et al., 2008; Árnason et al., 2009; Yoo and 

Lee, 2016). These two strategies have already been widely investigated, using protocols on 

groups of fish reared in tanks with FI of the whole group used to calculate FCR or FER. One 

method commonly used to determine FI at group level is to trap, remove and count uneaten 

pellets, to calculate FI as the difference between the weight of feed given and the weight of feed 

wasted by fish (Jobling et al., 2001). 

2.4.2. At individual level 

A promising avenue to improve feed efficiency in fishes is the use of genetics and selective 

breeding programs. This is an emerging field, considering that selective breeding itself only 

started in the 1990’s in fish (reviewed by Vandeputte et al., 2019). Selective breeding requires, 

however, that feed efficiency is a heritable trait, namely that phenotypic variation among 

individuals is partly explained by genetic variation and is not determined exclusively by 

environmental variables. Heritability (h²; bounded between 0 and 1) is defined as the ratio of 

additive genetic variance over phenotypic variance, and a trait is heritable when h² > 0 (Falconer 

and Mackay, 1996). In order to accurately determine heritability and identify fish to be used as 

broodstock, feed efficiency must be estimated at individual level. That is, developing a selective 

breeding program for feed efficiency requires individual phenotyping for BWG and FI. In 

classical rearing systems, individual BWG is easy to measure by individual identification with 



28 
 

passive integrated transponder (PIT) tags (Roussel et al., 2000). In contrast, individual FI is 

much more difficult to measure in fish that are reared in large groups and eat simultaneously 

when feed is supplied. Thus, phenotyping fish for their individual FI requires specific 

approaches.  

3. Methods used to measure individual feed intake in fish 

Several techniques have been developed to measure individual FI in fish, which each has 

advantages and drawbacks.  

3.1. Use of dyed feed 

This method is suitable for fish reared in a group, coloured pellets are provided and, after 

feeding, stomach contents are collected and weighed to assess individual FI (Johnston et al., 

1994; Unprasert et al., 1999). If the stomach contains the remains of several meals, pellets 

colour is changed between each meal to reveal this (Johnston et al., 1994; Unprasert et al., 

1999). To our knowledge, however, this method has only been used to investigate feeding 

activity, not individual feed efficiency.  

It is however technically difficult to collect and accurately identify meals in the stomach content 

so that this method may not be reliable to estimate individual feed efficiency (Jobling et al., 

2001). Moreover, individuals must be sacrificed to dissect the gastrointestinal tract and collect 

stomach content (Johnston et al., 1994; Unprasert et al., 1999), so the method is not suitable for 

continuous monitoring of individual FI. Furthermore, sacrificing fish to assess individual FI is 

not compatible with current legislation for the protection of animals used for scientific purposes 

(European Union, 2010; US Government, 2015). Even if non-lethal methods such as gastric 

lavage could be used (Bromley, 1994), dyed feed is not used to estimate individual FI anymore.  
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3.2.  Use of X-radiography 

A second method for fish reared in a group is X-radiography. Pellets are produced with radio-

opaque markers that are visible by X-radiography of the gastrointestinal tract (Talbot and 

Higgins, 1983; Fig. 5). The number of ingested pellets can be counted to measure FI (Jobling 

et al., 2001). Commonly used markers are iron power (Talbot and Higgins, 1983) or ballotini 

glass beads (McCarthy et al., 1993; Silverstein et al., 2001; Boujard et al., 2006; Kause et al., 

2006a; 2006b; Quinton et al., 2007a; 2007b; Grima et al., 2008).  

 

Figure 5. X-radiography of fish feed intake. Yellow marks within fish gastrointestinal tract represent ballotini 

glass beads ingested with the feed. © L. Grima 
 

The X-radiography must be conducted within a few hours of feeding to avoid a loss of markers 

by defecation, under anaesthesia (Jobling et al., 2001). This latter is problematic because fish 

need to recover from handling and anaesthesia and so frequent measurements may bias 

measurements of FI (Jobling et al., 2001). Indeed, full recovery of feeding behaviour after 

handling may require several weeks, for example two weeks for European whitefish Coregonus 

lavaretus (Quinton et al., 2007a) and three weeks for rainbow trout Oncorhynchus mykiss 

(Grima et al., 2008). Thus, individual FI is measured on a sub-sample of the total number of 

meals. Feed intake is, however, highly variable from one meal to another in fish (Smagula and 

Adelman, 1982; Tackett et al., 1988) so FI measurements with this method have low 
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repeatability, between 0.09 and 0.32 in rainbow trout (Kause et al., 2006a; Grima et al., 2008).  

That is, correlation between two FI measurements on a same fish is low. Thus, X-radiography 

is a “one-shot” method and not suitable for continuous monitoring of individual FI (Jobling et 

al., 2001).  

3.3. Use of isogenic clonal lines 

Using isogenic clonal lines of fish is not a measurement method of individual FI by itself, but 

rather a methodological tool to distinguish between the amount of variation in FI and feed 

efficiency that can be attributed to genetics or the environment. Genetic variation in a clonal 

line is non-existent so it can be used to increase the number of measurements per genotype 

within a given environment, such as a tank. Therefore, the same genotype can also be reared in 

different environments. Clonal lines are, consequently, useful experimental tools to estimate 

accurately genetic parameters in traits such as feed efficiency. 

Grima et al. (2008) estimated individual FI of isogenic clonal rainbow trout with the X-

radiography method, but clonal lines could of course be used with other techniques to measure 

individual FI. The clones were heterozygous, obtained by mating females and males from 

different homozygous clonal lines, themselves developed in rainbow trout by chromosome set 

manipulation methods using gynogenesis techniques (Quillet et al., 2007; Grima et al., 2008). 

Ten different clonal lines were reared in six tanks to have a balanced factorial design with seven 

fish of each line per tank. This increased the accuracy of estimates of genetic parameters for FI 

and feed efficiency, these two traits being highly sensitive to environmental variation (Grima 

et al., 2008). Clonal lines cannot, however, be used in commercial conditions or to develop 

selective breeding programs for feed efficiency. 

3.4. Use of external coloured tags and video-recording 

The use of video-recording has been widely used to investigate fish feeding behaviour (e.g. 

Kadri et al., 1991; Juell et al., 1994; Damsgård and Dill, 1998; Benhaïm et al., 2017). Very few 
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studies have, however, focused on measurement of individual FI with this method. The method 

is only feasible on small groups of fish, up to 15 fish in Nile tilapia Oreochromis niloticus (de 

Verdal et al., 2017). Thus, rearing conditions differ from commercial farms but, nonetheless, 

fish can still interact with conspecifics and therefore social structures are at least partly 

maintained.  

Individual FI and feed efficiency were assessed in Atlantic halibut Hippoglossus hippoglossus 

using this method (Tuene and Nortvedt; 1995), using large numbered disc tags and direct 

observation. The first study to use this method from a viewpoint of selection, however, was by 

de Verdal et al. (2017) in Nile tilapia, using coloured T-bar tags on groups of up to 15 

individuals. Each meal was video-recorded, with feed supplied pellet by pellet to facilitate 

measurement of individual FI (Fig. 6). This method has the major advantage of being exhaustive 

because it measures individual FI for each meal. Moreover, repeatability of individual FI with 

this method is very good, with r = 0.95 after analysis of 11 meals (de Verdal et al., 2017). The 

major constraint in the application of this method is the time required, firstly for feeding pellets 

one by one, and then to analyse video-recordings. 

 

Figure 6. Nile tilapia Oreochromis niloticus tagged with external coloured tags. © C. Rodde 
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3.5. Use of individual rearing 

One final method to measure individual FI is to rear fish in isolation (Silverstein et al., 2005; 

Silverstein, 2006; Martins et al., 2006; 2011; Besson et al., 2019; Fig. 7). Each fish is given a 

known amount of feed, and, several hours after feeding, waste pellets are collected and counted 

to calculate FI as the difference between feed given and feed wasted. 

Figure 7. Two individual rearing setups. A) A system of aquaria for European sea bass Dicentrarchus labrax at 

the Ifremer Experimental Aquaculture Research Station (Palavas-les-Flots, France). An automatic feeder, 

comprising several small feed compartments (one per meal), is set on the cover of each aquarium. Cameras are 

used to monitor the room remotely. © F. Allal B) A system for Nile tilapia Oreochromis niloticus at WorldFish 

Aquaculture Extension Center (Jitra, Kedah State, Malaysia). A pill organiser, disposed on the cover of each 

aquarium, is used to hold and distribute each ration manually. © T. Quoc Trinh 
 

The major advantage of this method is being exhaustive, FI can be measured for each meal over 

several months to account for temporal variability (Besson et al., 2019). Furthermore, the FI 

can be determined a few hours after feeding. Besson et al. (2019) assessed feed efficiency of 

588 European sea bass Dicentrarchus labrax over 194 days using this methodology. It is, 

nonetheless, rather tedious to collect all the uneaten pellets in all the individual aquaria. Besson 

et al. (2019) restricted feeding to 50% of the optimal rate. The method has demonstrated that 

selecting faster-growing individuals under restricted ration improved feed efficiency of progeny 

in pigs (Nguyen et al., 2005) and rabbits (Drouilhet et al., 2016). This was true whether progeny 

was then fed at a restricted rate or ad libitum. The restricted feeding reduces, of course, the 

workload of collecting and counting wasted pellets. 
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It still remains to be demonstrated, however, that the most efficient fish under a restricted 

feeding rate in individual aquaria are also the most efficient when fed at ad libitum. Another 

drawback of this method is that it prevents fish from having normal interactions with 

conspecifics; isolation may impact individual FI and feed efficiency. Thus, more research is 

needed to establish whether individual FI and feed efficiency measured in isolation are accurate 

predictors of what would be observed in classical rearing systems. 

To summarize, various methods have been developed to measure individual FI but none of them 

are “perfect”; all have flaws from a technical and/or a biological perspective (Table 1).  

 

Table 1. Summary of the advantages and drawbacks of the various individual FI measurement methods. 

Individual FI measurement method Advantages Drawbacks 

Dyed feed Group rearing Not accurate, "one-shot" method 

X-radiography Group rearing, accurate "One-shot” method, low repeatability 

Isogenic clonal lines (in association 

with another method) 

Increase the accuracy of genetic 

parameters estimation 
Cannot be used for selective breeding 

External coloured tags and video-

recording 

Group rearing, accurate, exhaustive, 

high repeatability 

Time-consuming, groups are rather 

small 

Individual rearing design 
Accurate, exhaustive, data 

immediately available 

Loss of social interactions between 

fish 

 

Nonetheless, these methods have established that individual feed efficiency is heritable in a few 

fish species (Table 2). Therefore, individual feed efficiency can be improved by selective 

breeding. However, the various estimations of heritability (h²) vary among species and between 

methods in the same species (Table 2). In particular, the low heritability estimated by Quinton 

et al. (2007a) and Kause et al. (2016) may be due to low repeatability of the X-ray method. This 

underscores that selective breeding programs must be based upon phenotyping methods with 

high repeatability.  
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Table 2. Heritabilities reported in literature for feed efficiency (including exclusively studies measuring feed 

intake at individual level). 

h² ± SE Species Trait(s) 
Individual feed intake 

measurement method 
Reference 

0.06 ± 0.10a European white fish                                             

Coregonus lavaretus 
FER X-ray Quinton et al., 2007a 

0.07 ± 0.11b 

0.23 ± 0.09 
Rainbow trout                                                         

Oncorhynchus mykiss 
RFI X-ray with clonal lines Grima et al., 2008 

0.10 ± 0.05 

0.11 ± 0.06 

0.13 ± 0.07 

0.14 ± 0.08 

Rainbow trout 

Oncorhynchus mykiss 

FCRc,d 

RFId 

FCRe 

RFIe 

X-ray Kause et al., 2016 

0.32 ± 0.11 Nile tilapia                                                               

Oreochromis niloticus 

FCR 
External coloured tags de Verdal et al., 2018b 

0.50 ± 0.10 RFI 

0.25 ± 0.10f European sea bass                                                

Dicentrarchus labrax 
FCR 

Individual rearing 

(restricted feeding rate) 
Besson et al., 2019 

0.47 ± 0.07g 

SE: standard error; 
a
with fishmeal diet; 

b
with soybean meal diet; 

c
corrected by body weight; 

d
recorded at 27 months post 

hatching exclusively; 
e
recorded at 11, 16 and 27 months post hatching; 

f
with pedigree information exclusively; 

g
with pedigree 

and genomic information. 

 

All methods have, to date, only been applied for brief periods, and mostly to juveniles. For 

instance, individual feed efficiency was estimated over ten days in juvenile Nile tilapia by de 

Verdal et al. (2017) and over 28 days in juvenile European sea bass by Besson et al. (2019). To 

our knowledge, only Kause et al. (2006a; 2016) estimated individual feed efficiency up to 

commercial size (at 140, 750 and 2000 g in the first study and at 11, 16 and 27 months post 

hatching in the second one) in rainbow trout using the X-ray method. Nevertheless, feed 

efficiency was only estimated over three weeks at each stage, with one FI measurement per 

week. These studies did not report correlations among estimates at the three stages. Due to 

rearing infrastructures needed to measure individual FI on large fish and to rearing costs, in 

particular regarding feed (most feed is consumed during the later stages of growth; Alanärä et 

al., 2001), it is much more convenient to select for feed efficiency at juvenile stage. The aim of 

a selective breeding program would be to improve feed efficiency over the whole rearing 

period, not just over the juvenile stage, so it is essential to assess how individual feed efficiency 

of juveniles reflects individual feed efficiency up to commercial size. 
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Individual feed efficiency (or any other heritable phenotypic trait) can be improved genetically 

with two strategies: direct and indirect selection. Direct selection uses direct estimation of 

individual feed efficiency, which remains technically challenging and/or possibly inaccurate. 

Indirect selection uses measurement of traits whose variation is heritable and closely genetically 

correlated with feed efficiency. Selecting fish for the trait will, therefore, also select for feed 

efficiency. The goal, therefore, is to find traits that meet these criteria but that are also easier to 

measure than individual feed efficiency to be included in a selective breeding program. 

4. Potential traits for indirect selection on feed efficiency 

Traits presented below were chosen by two criteria: 1) a genetic correlation with feed efficiency 

that has already been reported in fish and 2) ease of measurement on individuals. 

4.1. Growth 

Individual growth is easy to measure on tagged fish and is already a selection criterion in almost 

all the commercial breeding programs in fishes, due to its economic importance. Thus, it is 

crucial to investigate any correlation with feed efficiency, in particular that selection for rapid 

growth does not degrade feed efficiency due to a negative genetic correlation. 

Reported correlations between growth and feed efficiency traits are high at a phenotypic level, 

being positive between growth and FER, and negative between growth and FCR. That is, faster-

grower fish are more efficient (reviewed by de Verdal et al., 2018a). Most studies have, 

however, focused on correlations at group level, and not at individual level, which may bias 

estimations. At individual level, de Verdal et al. (2017; 2018b) estimated a phenotypic 

correlation from -0.46 to -0.62 between growth and FCR in Nile tilapia Oreochromis niloticus 

using the video-recording method. Besson et al. (2019) reported r = -0.78 between growth and 

FCR in European sea bass Dicentrarchus labrax using the individual rearing method. However, 

it is essential to determine the contribution of genetics versus environment to any such 
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phenotypic correlations. At genetic level, Henryon et al. (2002) found a correlation between 

FER and body weight from 0.44 to 0.99 in rainbow trout Oncorhynchus mykiss, however they 

estimated FER at group (family) level. In Nile tilapia, de Verdal et al. (2018b) found no 

significant genetic correlation between individual growth and FCR whereas, in European sea 

bass, Besson et al. (2019) reported an extremely strong and significant genetic correlation 

ranging from -0.95 (without genomic information) to -0.98 (with genomic information). 

Beyond species differences, these contrasting results may also be methodological because de 

Verdal et al. (2018b) used an optimal feeding rate whereas Besson et al. (2019) restricted fish 

to 50% of optimal. The results reported by Besson et al. (2019) are, however, consistent with 

observations on pigs (Nguyen et al., 2005) and rabbits (Drouilhet et al., 2016) where there is a 

genetic correlation between growth and feed efficiency on restricted feeding rates. That is, when 

feeding rate is restricted, mechanistically faster-growing fish are the most efficient whereas, 

when feed is not restricted, some fish can also grow rapidly simply by consuming greater 

quantities of feed than others. Kause et al. (2006b) and Quinton et al. (2007a) demonstrated in 

rainbow trout and European whitefish Coregonus lavaretus that selecting for growth would 

improve individual FER even if it also increased individual FI. Indeed, according to their 

estimations, selecting for growth would increase BWG proportionally more than FI, resulting 

in improved FER. 

Regarding RFI, no significant phenotypic correlation with growth was reported by de Verdal et 

al. (2017; 2018b) for Nile tilapia. In contrast, Silverstein (2006) reported significant phenotypic 

correlations of -0.31 and -0.57, when feeding rainbow trout to satiety or on a restricted ration, 

respectively. There was no genetic correlation between growth and RFI in Nile tilapia (de 

Verdal et al., 2018b) or rainbow trout (Grima et al., 2008). Such lack of correlation may reflect 

the statistical construction of RFI itself. That is, because RFI is the residual of the linear 

relationship of FI as a function of BWG and MBW, this creates a statistical independence 
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between BWG and RFI, even if not complete because of the simultaneous inclusion of MBW 

in the model. In the case of Grima et al. (2008), MBW was not even included in the linear 

model, resulting in almost zero correlation. In contrast, the significant correlation found by 

Silverstein (2006) may be due to the fact the study did not predict FI according to a model 

calibrated on its data, but according to a bioenergetics model developed for adult fish (despite 

using juvenile fish). This bioenergetics model included several factors such as water 

temperature and energy content of the feed.  

No clear conclusions can be drawn about the potential to improve feed efficiency indirectly by 

selecting for growth traits. Any genetic correlations between these traits seem to be both 

species-dependent and feeding rate-dependent. 

4.2. Energy requirements for body maintenance and swimming activity 

4.2.1.  Weight loss during fasting 

Weight loss during fasting could be a predictor of individual feed efficiency because individuals 

with higher energy costs for body maintenance and routine activities would lose weight more 

when fasting. Similarly, under a restricted ration, fish with higher costs for maintenance and 

activity would allocate less energy to growth, thus being less efficient. When, however, fish are 

fed ad libitum, individuals may be able to compensate for higher costs by consuming more feed, 

thus appearing to be not less efficient.  

Daulé et al. (2014) selected European sea bass for one generation according to weight loss 

during fasting and produced two divergent lines: fasting-tolerant and fasting-sensitive. These 

two divergent lines did not, however, differ significantly for RFI although the authors suggested 

that a second generation of selection might result in a difference between the two lines. In Nile 

tilapia, de Verdal et al. (2018b) reported a genetic correlation of 0.80 between weight loss 

during fasting and FCR, and of 0.70 between weight loss during fasting and RFI: the most 

efficient fish were fasting-sensitive (i.e. losing weight more rapidly). In contrast, Besson et al. 
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(2019) reported that fasting-tolerant European sea bass (i.e. losing weight less rapidly) were the 

most efficient.  

Grima et al. (2008) considered both weight loss during fasting and compensatory growth during 

subsequent refeeding in rainbow trout. After feed deprivation, fish exhibit a phase of 

compensatory growth due to hyperphagia, which permits them to achieve a growth trajectory 

that converges with what would have been observed without feed deprivation (Ali et al., 2003). 

Grima et al. (2008) found no genetic correlation between RFI and weight loss during fasting or 

weight gain during refeeding. However, they found a genetic correlation between RFI and 

various linear indexes combining both weight loss at fasting and weight gain during refeeding 

(r² = 0.44-0.59).  

Therefore, any potential link between feed efficiency and weight loss during fasting requires 

confirmation. Moreover, BWG during refeeding may also provide relevant information to 

predict feed efficiency. Finally, results appear to differ among species.  

4.2.2. Metabolic rate 

The metabolic rate of an animal, to meet energy demands of maintenance and activity, can be 

quantified with two methods: directly as heat produced and indirectly by respirometry 

measuring rates of O2 consumed or CO2 produced (Speakman, 2013). Both methods are 

commonly used in terrestrial animals but, for fishes, only the second method is technically easy 

to perform. That is, the high thermal capacitance of water makes it very difficult to detect any 

heat produced by metabolism. Measuring metabolic rate as oxygen consumption requires the 

isolation of individuals but is technically easier and shorter (less than two days) to perform than 

measuring individual FI (McKenzie et al., 2014). Large numbers of animals can be measured 

simultaneously and no feed is handled (fish are fasting). Oxygen consumption of undisturbed 

fish has reasonable repeatability over the short to medium term, with r = 0.48 in European sea 

bass for measurements separated by 20 minutes (Marras et al., 2010). Repeatability can decline 



39 
 

over time, with estimates ranging from r = 0.68 for two measurements separated by 17 weeks 

in Atlantic salmon Salmo salar (McCarthy, 2000) to as low as r = 0.09 for two measurements 

separated by 15 weeks in brown trout Salmo trutta (Norin and Malte, 2011), possibly due to 

context-dependent phenotypic flexibility. 

Routine metabolic rate (RMR) is defined as the metabolic rate (i.e. energy expenditure) of post-

absorptive, undisturbed, resting animals that also includes the costs of random activity and the 

maintenance of posture and equilibrium, at their acclimation temperature (Killen et al., 2011). 

The standard metabolic rate (SMR) is defined as the minimal energy cost of living of an 

ectotherm at its acclimation temperature (Hulbert and Else, 2004). This does not include the 

costs of random activity contrary to RMR. Killen et al. (2011) reported that individual European 

sea bass with high RMR had greater weight loss during fasting (r = 0.53 with 39 fish), 

suggesting that rates of oxygen consumption reflect allocation of energy to meet costs of 

maintenance and activity. 

In livestock the most efficient individuals emit less heat and consume less oxygen, being true 

of cattle (Nkrumah et al., 2006; Arndt et al., 2015; Chaves et al., 2015), poultry (Luiting et al., 

1991), and sheep (Paganoni et al., 2017). In sheep, Paganoni et al. (2017) measured oxygen 

concentrations after animals had been held in a closed respirometry chamber, which is a rough 

indicator of RMR. This measure was, nonetheless, genetically correlated with RFI (r = -0.62) 

at the hogget stage.  

In fishes, a link between individual feed efficiency and oxygen consumption has, to our 

knowledge, never been investigated. In rainbow trout Kinghorn (1983) estimated that the 

phenotypic and genetic correlations between FER and oxygen consumption were -0.42 and 

close to -1, respectively, at a family level. However, fish FI was estimated from oxygen 

consumption at a family level, which questions the accuracy of feed efficiency estimations. 
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Also, correlations estimated at family level can bias results as no intra-family variability is taken 

into account.  

Furthermore, the feeding rate used to estimate feed efficiency (restricted or ad libitum) may 

have a strong influence on the extent to which oxygen consumption reflects feed efficiency. 

Zeng et al. (2017) reported that groups of crucian carp Carassius auratus comprising 

individuals with low oxygen consumption lost less weight during fasting and were more 

efficient under a restricted feeding rate. Conversely, groups of individuals with high oxygen 

consumption were more efficient when feed was supplied to satiation.  

Beyond overall weight loss at fasting or oxygen consumption, it is also important to consider 

which substrates are used to provide energy, in particular protein versus lipid. Lipid reserves 

contain around twice as much energy per unit weight as proteins. Thus, if individual fish support 

metabolism with protein rather than with lipids during fasting, they can exhibit a stronger rate 

of weight loss than fish that rely more heavily on lipids, even if their overall rate of energy 

expenditure is lower (McKenzie et al., 2014). 

4.3.  Whole body, muscle and visceral fat content 

Due to the high energy content of lipid reserves, the amount of fat contained in the whole fish 

body, or more specifically in its muscle or viscera, may influence apparent feed efficiency. Fat 

content within fish muscle can be measured non-invasively with a “fatmeter” (Quillet et al., 

2005). After four generations of divergent genetic selection of rainbow trout based on 

intramuscular fat content, Kamalam et al. (2012) demonstrated that a lean muscle line had an 

improved FCR at group level than a fat muscle line. In coho salmon Oncorhynchus kisutch, 

Neely et al. (2008) demonstrated that selection for growth over 16 generations resulted in fish 

with a higher FER at group-level and a lower whole-body lipid content (measured in 

slaughtered fish). In European white fish, Quinton et al. (2007b) concluded that whole-body 

lipid content was not significantly genetically correlated with individual FER. However, the 
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same study found that selecting fish for growth and against lipid content led to a higher genetic 

gain (i.e. a greater improvement) for FER than selection exclusively for growth (0.73% versus 

0.49% of genetic gain, respectively). Kause et al. (2016) demonstrated that whole-fish lipid 

content was genetically correlated with individual FCR (r = 0.58) and RFI (r = 0.48) in rainbow 

trout. Similarly, muscle lipid content was also genetically correlated with FCR (0.68) and RFI 

(0.57), but no correlation was found for visceral lipid.  

From these different studies, it appears that a low fat content is linked with improved feed 

efficiency in fish. This observation has also been reported in terrestrial species such as pigs 

(Knap and Kause, 2018). Neely et al. (2008) argued that leaner animals may be sparing dietary 

protein for growth and utilizing dietary lipids for energy expenditure. As lipids contain more 

energy per unit weight, this is probably an optimal use of each type of reserve to improve feed 

efficiency. Moreover, as detailed by Knap and Kause (2018), deposition of 1 g of lipid leads to 

1.1 g of weight gain, including 0.1 g of water in the associated adipose tissue. In contrast, 

deposition of 1 g of protein leads to 4-5 g of weight gain, including 3-4 g of water. Protein 

deposition is energetically more expensive than lipid deposition (59.9 kJ/g vs. 43.5-55.3 kJ/g), 

but this higher energetic cost is outweighed by the four to fivefold increase in weight gain 

associated with protein deposition (Knap and Kause, 2018).  

There are, however, some exceptions to this line of reasoning. Grima et al. (2010) found no 

significant phenotypic correlation between RFI and muscular fat content or perivisceral fat in 

rainbow trout, and Besson et al. (2019) concluded that selecting European sea bass with fatter 

muscles could actually improve FCR. Besson et al. (2019), however, used the restricted feeding 

rate, which might influence how fish allocate dietary fat between energy expenditure and 

growth. To conclude, the link between fat deposition and individual feed efficiency in fish is 

not yet fully understood, and may depend on the feeding rate, the tissue (muscle, viscera or 

whole body) and the species. 
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4.4. Stable isotope values of fish tissues 

Carbon (δ13C) and nitrogen (δ15N) stable isotope values of a sample (e.g. animal or plant tissue) 

are defined as the ratio of heavy to light isotope (13C/12C or 15N/14N). When an animal starts 

feeding on a new diet, i.e. with stable isotope values that differ from the previous one, the stable 

isotope values of its tissues will progressively change (dynamic state) towards a new 

equilibrium (steady state), as illustrated in Fig. 8. 

 

 

Figure 8. Illustration of the change in carbon stable isotope values within an animal tissue following a diet change. 

At the beginning, a dynamic state is observed, then a steady state is reached. The same type of curve would be 

observed in the case of nitrogen stable isotope values. 
 

Stable isotope values at steady state have proven to predict individual feed efficiency in 

livestock at a phenotypic level. That is, a phenotypic correlation from -0.59 to -0.66 was 

reported between stable nitrogen values of plasma and FER in beef cattle (Wheadon et al., 2014; 

Cantalapiedra-Hijar et al., 2015) and a correlation of -0.73 between stable nitrogen values of 

muscle and FER was observed in lambs (Cantalapiedra-Hijar et al., 2016).  

In fishes, only Dvergedal et al. (2019a; 2019b) have, to my knowledge, investigated the link 

between individual stable isotope values and group feed efficiency, focussing on stable isotope 
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values at dynamic state in Atlantic salmon. The study design involved sacrificing fish 12 days 

after a diet change, to determine carbon and nitrogen stable isotope values in liver, muscle and 

mid-intestine. Stable isotope values of the tissues were genetically correlated with FCR, 

from -0.43 to -0.90. Using a ratio of stable isotope signature over BWG, these authors found a 

genetic correlation of 1 with FCR, whereas BWG alone had a genetic correlation of “only” -0.74 

with FCR (Dvergedal et al., 2019a; 2019b). Thus, these studies indicate that stable isotope 

values are promising candidates for indirect selection on feed efficiency in fish. However, fish 

FCR was estimated at group (family) level and not individual level in Dvergedal et al. (2019a; 

2019b), in contrast with stable isotope values which were determined for each fish. This could 

bias genetic estimation of parameters because intra-familial variation in FCR is not taken into 

account. 

Any tissue can be sampled to determine stable isotope values of an animal. Thus, sampling a 

tissue whose ablation is not lethal for fish, such as scales, could be more useful as a strategy to 

apply stable isotope determinations in selective breeding programs. Selective breeding would 

lead to a higher genetic gain if done directly on the fish whose stable isotope values are 

determined rather than on collaterals. 

Finally, whether one should focus on stable isotope values at dynamic state, at steady state, or 

at both to predict individual feed efficiency is still unknown. According to existing literature, 

all the options might lead to a successful prediction of individual feed efficiency. From a 

biological point of view, the mechanisms underlying stable isotope dynamics are still not 

thoroughly understood. The dynamic changes in values are due to both growth (i.e. adjunction 

of new tissues) and catabolism (i.e. replacement of tissues; Hesslein et al., 1993). At steady 

state, values appears to depend on the balance between δ13C and δ15N of the feed consumed, 

faeces and excretory products (Minagawa and Wada, 1984; Ponsard and Averbuch, 1999; Olive 
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et al., 2003). To date, therefore, stable isotope values are treated as “black box” predictors of 

individual feed efficiency. This is not, however, an obstacle for selective breeding.  

5. European sea bass and Nile tilapia as model species 

The European sea bass and Nile tilapia are both major aquaculture species but they differ widely 

in their biology and farming (Table 3).  They have both been the subject of studies of individual 

feed efficiency (de Verdal et al., 2017; de Verdal et al., 2018b; Besson et al., 2019) within 

ongoing research projects that aim to develop selective breeding programs. Thus, many 

technical aspects of measuring individual FI have already been resolved for both species. 

Information on their individual feed efficiency is of interest in itself while the comparison of 

the two species can provide added value, notably whether methods available to initiate selective 

breeding programs can be generalized across biological models and rearing conditions. 

 

Table 3. Main characteristics of biology and farming of European sea bass and Nile tilapia. 

  
European sea bass                                             

Dicentrarchus labrax 

Nile tilapia                                                      

Oreochromis niloticus 

Geographic 

distribution 

Marine European waters: North-East Atlantic 

Ocean (from Scotland and Norway to 

Morocco), Mediterranean Sea and Black Sea 

(Pickett and Pawson, 1994). 

Originally African freshwaters: Nile river from 

Uganda to Egypt, Western rift lakes down to Lake 

Tanganyika, Chad and Niger basins and West 

Africa (up to Senegal and Mauritania). Introduced 

to many other areas of Africa (e.g. Madagascar), 

to South-East Asia and the Americas (Philippart 

and Ruwet, 1982). 

Temperature 

tolerance 

Eurythermal (2-32°C as critical limits) but 

cannot grow below 10°C. Optimal temperature 

range for growth and feed efficiency from 22°C 

to 25°C (Barnabé, 1980; Person-Le Ruyet et al., 

2004). 

Temperature preferendum around 28-30°C, 

reduction of activity and feeding below 20°C. 

Upper temperature limit: 42°C (Philippart and 

Ruwet, 1982). 

Natural diet 

composition 

Carnivorous (high trophic level), natural diet is 

mainly finfish and crustaceans (Rogdakis et al., 

2010). 

Omnivorous (low trophic level), natural diet 

includes phytoplankton, macrophytes, 

zooplankton, insects and nematodes (Tesfahun 

and Temesgen, 2018). 

Rearing 

methods 

Mainly grown in sea cages in natural waters, fed 

with commercial feed. Larval production is 

typically in inland intensive hatcheries in 

temperature-controlled water (Chatain and 

Chavanne, 2009; Vandeputte at al., 2019). 

Very wide range of farming systems extensive or 

intensive (e.g. cages within lakes, land-based 

ponds or concrete tanks), with or without supply 

of commercial feed, in monoculture or polyculture 

(e.g. with rice, vegetables, other fishes or 

livestock; Modadugu and Acosta, 2004). Can 

tolerate poor water quality (hypoxia) and brackish 

salinities up to 30‰ (Philippart and Ruwet, 1982). 
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Behaviour in 

captivity 

Shoaling behaviour from larval stage onwards 

(Barnabé, 1980). Cannibalism if individuals 

have heterogeneous sizes and feed is scarce 

(Barnabé, 1980). 

Frequent aggressive interactions to establish 

dominance hierarchies can cause physical injuries 

and mortality, chronic stress, increased energy 

expenditure, reduced growth in subordinate fish 

(reviewed by Gonçalves-de-Freitas et al., 2019). 

Sexual 

dimorphism 

Females grow faster than males (Chatain et al., 

1997; Gardeur et al., 2001; Saillant et al., 2001). 

Males grow faster than females (Hulata et al., 

1986; Lind et al., 2015). 

Importance in 

aquaculture 

Mainly reared in Turkey, Greece and Spain 

(FAO-FIGIS, 2020). Production around 235 

000 tons. This is a small proportion of global 

finfish aquaculture but it is a major species for 

European aquaculture, with a high commercial 

value (STECF, 2018). 

Mainly reared in Africa (27.9%) and Asia (62.5%; 

FAO-FIGIS, 2020). Production is huge, around 

4.5 million tons. Third most reared fish in the 

world after grass carp Ctenopharyngodon idellus 

and silver carp Hypophthalmichthys molitrix. 

 

The two species however have a common asset: their genetic resources are wide. Three 

genetically distinct populations of European sea bass exist in the wild: Atlantic (AT), West 

Mediterranean (WM) and East Mediterranean (EM; Guinand et al., 2017), as a result of 

evolutionary processes that include selection by thermal regime (Duranton et al., 2018; 

Duranton et al., 2020). There may be an interaction of population by temperature on feed 

efficiency, as this has been reported for growth (Vandeputte et al., 2014). Consequently, it is 

interesting to compare individual feed efficiency of European sea bass populations at different 

temperatures. The European sea bass is already the focus of research into individual feed 

efficiency (Besson et al., 2019) at the Ifremer Aquaculture Research Station in Palavas-les-

Flots (Hérault, France).   

Wild tilapia genetic resources have permitted selection of high performance strains for 

aquaculture (Lind et al., 2019). The “Genetically improved farmed tilapia” (GIFT) strain is 

currently the most advanced in terms of genetic improvement. It was produced in the 1990’s 

from eight different strains taken from wild or recently domesticated populations (Eknath et al., 

1993). Since 2002, the GIFT strain has been reared at the WorldFish Aquaculture Extension 

Center at Jitra (Kedah State, Malaysia), with a breeding program based on growth that is in its 

18th generation (Ponzoni et al., 2010; Ponzoni et al., 2011). A genetic gain of 64% was achieved 

over the first nine generations (7.1% per generation; Ponzoni et al., 2011). In parallel with 

selection on growth, WorldFish disseminated the GIFT strain to hatcheries in several countries, 
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such as Malaysia, China, Bangladesh, Vietnam or Brazil (Ponzoni et al., 2010; Ponzoni et al., 

2011). A current objective at WorldFish is to improve individual feed efficiency in GIFT strain 

(J. Benzie, personal communication, 2020). 

6. Moving forward to estimate and select for individual feed efficiency in fishes 

The literature seems to offer promising opportunities to improve feed efficiency. Firstly, by 

selecting directly for feed efficiency, by measuring individual FI accurately. Secondly, by 

selecting indirectly on traits that are genetically correlated with feed efficiency but easier to 

measure at the individual level. However, the emergence of research on genetic improvement 

of feed efficiency is recent and many questions remain to be answered. Many critical issues 

need to be addressed to develop selective breeding programs for individual feed efficiency. In 

this thesis project, I aimed to study several major methodological issues and to identify an 

indirect selection criterion for feed efficiency. The Results section therefore comprises five 

research articles (three accepted, one under review and one still in preparation), briefly outlined 

here. 

6.1. Methodological issues in estimating individual feed efficiency 

The objective of a breeding program must be to improve feed efficiency from juvenile stage to 

commercial size but experiments have only been conducted over short periods. There is no 

evidence that estimations of individual feed efficiency over a few days or weeks are correlated 

with estimations of individual feed efficiency over the whole production cycle. This question 

will be addressed in the first chapter of the Results, an article entitled “Can individual feed 

conversion ratio at commercial size be predicted from juvenile performance in individually 

reared Nile tilapia Oreochromis niloticus?” published in Aquaculture Reports. 

Secondly, as described above, existing methods to measure individual FI have advantages and 

drawbacks. No study has ever directly compared these methods on the same fish, to determine 

whether they provide equivalent estimations of individual feed efficiency. This issue is 
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considered in the second chapter of the Results, an article entitled “The effects of feed 

restriction and isolated or group rearing on the measurement of individual feed intake and 

estimation of feed conversion ratio in juvenile Nile tilapia (Oreochromis niloticus) for selective 

breeding purposes” submitted to Frontiers in Genetics. 

Another unknown issue is the influence of feeding rate on individual feed efficiency. That is, 

as detailed above, whether the most efficient fish at a restricted feeding rate are also the most 

efficient at ad libitum feeding. This question is investigated in the third chapter, an article 

entitled “Population, temperature and feeding rate effects on individual feed efficiency in 

European sea bass (Dicentrarchus labrax)” accepted in Frontiers in Marine Science. 

6.2. Evaluation of a criterion for indirect selection  

I have focussed upon two particularly promising traits: metabolic rate as oxygen consumption, 

and tissues stable isotope values. 

The relevance of oxygen consumption was studied in the fourth chapter of the Results, an article 

entitled “An investigation of links between metabolic rate and feed efficiency in European sea 

bass Dicentrarchus labrax” in preparation for submission. 

Regarding stable isotope values, they have potential as an indirect criterion and can be 

determined without slaughtering fish by sampling scales. Nonetheless, whether one should 

focus rather on the dynamic state of stable isotope values, on the steady state, or on both after 

a diet change needs investigation. As a preliminary step, how long stable isotope values take to 

reach the steady state must be determined. Then, it may be possible to design protocols studying 

carbon and nitrogen stable isotope values, both at dynamic and steady states, as an indirect 

selection criterion for individual feed efficiency. This preliminary question was studied in the 

fifth chapter of the Results, an article entitled “Variations in incorporation rates and trophic 

discrimination factors of carbon and nitrogen stable isotopes in scales from three European sea 
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bass (Dicentrarchus labrax) populations” published in the Journal of Experimental Marine 

Biology and Ecology. 
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Chapter I 

 

Can individual feed conversion ratio at commercial size be 

predicted from juvenile performance in individually reared Nile 

tilapia Oreochromis niloticus? 

 



Contents lists available at ScienceDirect

Aquaculture Reports

journal homepage: www.elsevier.com/locate/aqrep

Can individual feed conversion ratio at commercial size be predicted from
juvenile performance in individually reared Nile tilapia Oreochromis
niloticus?

Charles Roddea,b,c,d, Béatrice Chataind, Marc Vandeputted,e, Trong Quoc Trinhc,
John A.H. Benziec,f, Hugues de Verdala,b,*
a CIRAD, UMR ISEM, F-34398 Montpellier, France
b ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
cWorldfish, Jalan Batu Maung, Bayan Lepas, 11960 Penang, Malaysia
dMARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, 34250 Palavas-les-Flots, France
eUniversité Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
f School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland

A R T I C L E I N F O
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A B S T R A C T

Feed conversion ratio (FCR), the ratio between feed intake and body weight gain, is of major interest for im-
proving aquaculture sustainability through reduced feed costs and environmental impacts. Demonstrating
whether FCR measured in juvenile fish is an accurate predictor of their performance during the whole rearing
period is critical to developing genetic improvement programs for this trait. This is especially true for estimates
obtained in individually reared fish, for which this has high implications regarding the size of the necessary
rearing structures. We obtained individual FCR from 30 male Nile tilapia Oreochromis niloticus from the GIFT
strain individually reared in a recirculating system, from 36 to 260 g mean weight. They were fed twice a day
and uneaten pellets were counted every day to determine the feed intake of each fish. Individual growth was
monitored every week. Feed conversion ratio was estimated over two-week periods and over the whole rearing
period (210 days). Phenotypic correlations between the two-week FCRs and global FCR estimations were mostly
significant (ranged from 0.38 to 0.64). A significant phenotypic correlation between growth and FCR was also
found: faster-growing fish had a better (lower) FCR. Individual breeding values for global FCR were estimated
using FCR phenotypes from the present study and previously published heritabilities for FCR in Nile tilapia.
Potential estimated genetic gain for global FCR was 2.2% per generation with 50% selection intensity. When
selecting fish on their FCR from only a two-week period, approximately 50% of the reference genetic gain could
be obtained with the same selection intensity. FCR measured during a two-week period at juvenile stage could be
a moderately accurate approximation of the whole rearing period FCR, and could be used as a lower cost
criterion to select for FCR in future genetic improvement programs using individual rearing of fish.

1. Introduction

Continuing to feed the increasing world’s human population while
reducing food production pressure on the environment is a major
challenge. Fish is seen as a key component of sustainable future diets
(Froehlich et al., 2018). Since fisheries production stagnates, meeting
the future demand for products of aquatic origin will rely on aqua-
culture (FAO, 2016). However, increasing aquaculture production will
require an increase in fish feed production which will compete for

access to ingredients with agriculture and direct human consumption
(Troell et al., 2014). Improving the ability of cultured fish to convert
feed intake into biomass could play a significant role in reducing feed
use in aquaculture and improving its sustainability through reduced
costs and environmental impacts (Besson et al., 2014, 2016; de Verdal
et al., 2018a). The ability to convert feed intake into body weight gain
can be measured by the feed conversion ratio (FCR) which is the ratio
between feed intake (FI) and body weight gain (BWG) over a given time
period. Feed conversion ratio can be improved through changes in feed
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composition and husbandry (NRC, 2011) and through selective
breeding (de Verdal et al., 2018a). The main challenge to improving
FCR in breeding programs is the capacity to accurately measure FCR at
the individual level on a large number of fish.

Measuring the individual FI of a large number of fish is particularly
difficult as fish are reared in groups, and the share of a meal eaten by
each individual is not easily recorded. Various methods have been
proposed to measure individual FI, such as X-radiography with radio-
opaque pellets (Kause et al., 2006; Grima et al., 2008) or using video
recording of small groups of fish distinguished by colored T-bar tags (de
Verdal et al., 2017, 2018b). Another option is the rearing of individual
fish in aquaria with collection of all uneaten pellets (Silverstein, 2006;
Martins et al., 2011; Besson et al., 2019). This method is tedious, but
has potential to be used for selective breeding through the identifica-
tion of Quantitative Trait Loci (QTLs) or the use of genomic selection
(Lu et al., 2017; Besson et al., 2019).

Estimating individual fish FCR beyond juvenile stages is particularly
important as the amount of feed consumed during the later stages of
growth is higher than during the younger stages (Alanärä et al., 2001).
In broiler chicken, de Verdal et al. (2013) made a long-term FCR eva-
luation and showed that selection for FCR undertaken at a given age
improves offspring FCR much more at that selection age than at other
ages. That work demonstrated it is essential to estimate the correlations
between FCRs measured at different development stages, in order to
assess the ability to use data from one given stage to select efficiently
for FCR over the whole rearing period. Due to the rearing infra-
structures needed and to rearing costs, it would be much more con-
venient to select for juvenile fish than for fish at commercial size,
especially when individual rearing is used. Whether FCR estimated at
early stages gives a reliable picture of FCR at older stages is thus critical
information in this respect.

The objective of the present study was to assess the changes over
time of three key performance traits (i.e. BWG, FI and FCR), to estimate
whether fish with the best (lowest) FCR at juvenile stage also had the
best FCR during the whole rearing period. Nile tilapia (Oreochromis
niloticus) was used as this is the second most farmed aquaculture species
in the world (FAO-FIGIS, 2019). We used the GIFT (Genetically Im-
proved Farmed Tilapia) strain (Ponzoni et al., 2010), for which phe-
notypic and genetic data on individual FCR are available (de Verdal
et al., 2018b). In the present study, male Nile tilapia were reared in-
dividually in aquaria, in order to measure individual BWG, FI and FCR
from the juvenile stage (36 g) up to commercial size (250−300 g), and
to evaluate the relevance of FCR estimated over short periods to predict
FCR over the whole grow-out period.

2. Material and methods

2.1. Ethics statement

This study utilised phenotypic data collected as part of the GIFT
selective breeding program managed by WorldFish at Jitra, Kedah
State, Malaysia (6°15′32 °N; 100°25′47 °E). All fish in the GIFT breeding
population are managed in accordance with the Guiding Principles of
the Animal Care, Welfare and Ethics Policy of the WorldFish.

2.2. Biological material

Forty individual Nile tilapia were used in the experiment, taken
from two families (20 full-sibs from each family) from the 17th gen-
eration of GIFT produced on the 27th of December 2017 at WorldFish
Aquaculture Extension Centre in Jitra. Fish were reared in two distinct
hapas in the same pond and transferred to 1500 L holding tanks (3 × 1
× 0.5 m) at 110 days post hatching (dph). During this period, PIT-tags
were injected to identify each fish individually. These 40 fish were
initially sorted from a larger group at 131 dph to have a similar body
weight at the beginning of the experiment, allowing easier comparisons

between individuals.
At 145 dph, fish were too young to be sexed. Fish were sexable only

after seven weeks of experiment (at 201 dph). Among these 40 fish,
nine were females and 31 were males, one of which jumped and died
after the beginning of the experiment. Although females were kept in
the rearing system, the study focused on the 30 remaining males (18
coming from the first family and 12 from the second one). The first
objective was to study both sexes, but the number of females was too
small to ensure a reliable statistical analysis including both sexes.

2.3. Rearing system

The rearing system consisted of two recirculating water systems, in
the same room, each including 20 aquaria, a sand and a biological filter.
Each fish was placed into a 60 L (61 × 30 × 33 cm) single plastic
aquarium at 145 dph and left for one week of acclimation time. The
experiment started at 152 dph with males weighing 36.3± 5.9 g
(mean± standard deviation). The initial coefficient of variation
( =

−CV Standard deviation Mean100 *( . )1 ) of body weight was thus
16.3%. The 30 males were shared equally (15 and 15) between both
recirculating water systems even if fish were distributed by a random
draw.

Water renewal rate was 240% per hour and each aquarium included
a constant aeration system. Water temperature was 29.1±1.2 °C,
water oxygen saturation rate was on average 7.1 mg/L (92.1% of sa-
turation), water pH was 7.0 and photoperiod was natural, around 12 h
light/12 h dark. The feed used was the same during all the experiment:
a commercial tilapia feed (Cargill®, “Starter tilapia 6113”) with 34.0%
crude protein, 5.0% crude fat, 5.0% crude fibre and 12.0% moisture,
with constant pellet size (2 mm diameter). The 100% daily feed ration
(DFR; in percentage of body weight) was calculated based on the for-
mula published by Mélard et al. (1997):

=
−DFR BW14.23 * 0.322 with BW the body weight of each fish (in g).

Throughout the experiment, fish were fed 90% of the calculated
DFR, shared equally in two meals. Fish were fed by hand twice a day at
9 a.m. and 2 p.m. (all fish were fed in less than 10 min), except on days
of body weight measurements where fish were fed only at 2 p.m. The
fish were fed 90% rather than 100% of the DFR in order to reduce the
amount of uneaten feed and thus the time needed for counting uneaten
pellets. With this feeding rate, fish were generally wasting a few pellets
at each meal, indicating that they were close to ad libitum. Furthermore,
while the equation developed by Mélard et al. (1997) was not devel-
oped on the same feed and on the same tilapia strain, a calculated ra-
tion was preferred to an “ad libitum” feed ration. Several people were
involved in the management of the experiment, and from one experi-
menter to another, the amount of feed given to a fish as “ad libitum” can
fluctuate widely, reducing repeatability of the FI measurement.

2.4. Feed intake measurement and FCR calculation

Each fish was anaesthetized with clove oil (0.5 mL per litre of water)
and weighed once a week. The DFR was updated every week for each
fish. Every day, feed given to the fish was weighed and the uneaten
pellets were counted and removed from the aquaria at least two h after
the last meal of the day. The uneaten feed weight was estimated every
day, considering that all pellets had the same weight (16.2±1.8 mg).
Daily feed intake (DFI) was calculated for each fish as the difference
between daily feed weight given and daily feed weight uneaten.

The FI, BWG and FCR for individual fish were calculated on two-
week time steps. Two-week periods were chosen instead of one-week
periods to smooth the strong weekly variation of individual BWG
(Supplementary Material 1). Bi-weekly FI values were calculated for
each fish as the sum of the DFI during two full consecutive weeks. Bi-
weekly BWG was calculated for each fish as = −BWG BW BWf i , with
BWi and BWf the body weights at the beginning and at the end of the
two-week period, respectively. Each fish was measured for FI and BWG

C. Rodde, et al. Aquaculture Reports 17 (2020) 100349

2



over 15 consecutive two-week periods (30 weeks of experiment in
total), from 152 to 362 dph. Global FI (FIg) and BWG (BWGg) were
calculated for each fish over the whole experimental period, as the sum
of all DFI values and as the difference between body weights at the end
and at the beginning of the experiment, respectively, in order to esti-
mate global FCR ( =

−FCRg FIg BWGg. 1).

2.5. Statistical analysis

All statistical analyses were performed using R software (R Core
Team, 2018). Negative and outlier bi-weekly FCR values (10 data points
out of 450) were not included in the statistical analysis. Over each
period, FCR values were considered outliers when not between M – 3 *
Sd and M+ 3 * Sd, with M the mean FCR and Sd the standard deviation
of FCR over the period. Negative FCR were due to fish losing weight and
outlier (high) FCR to fish gaining very little weight. The family and the
recirculating water system effects were not significant for any trait in
any period, and are thus not reported in the analyses.

2.5.1. Linear mixed models
The aim was to determine how fish performance traits (FI, BWG and

FCR) changed through time. Firstly, whether they could be modelled as
a function of time with only one linear regression through the whole
experiment was tested. Otherwise, a segmented regression was used in
the case of performance with sequences of increase and decrease.
Potential breakpoints and segments in fish performance were detected
using Chow test with the R package “strucchange” (Zeileis et al., 2002)
that can handle repeated measures on the same individuals. Then,
performance traits were analyzed on each separate segment with the

following repeated measures linear mixed model:

= + + +Y μ β T A ε*ij i j ij

where Yij is the phenotype (FI, BWG, FCR) of individual j measured for
the two-week measurement period i (i between 1 and 15), μ is the
general mean, β is the fixed effect of time T for every period i, Aj the
random effect of the animal j with Aj ∼ N(0;σ²a), and εij the residual (εij
∼ N(0;σ²e)). The normality of residuals was checked using the quantile-
quantile method (comparing residuals quantiles with theorical normal
quantiles), and their homoscedasticity and independence by comparing
residuals with the model fitted values. Linear mixed models and Stu-
dent tests associated to these models were realized using R packages
“lme4” (Bates et al., 2015) and “lmerTest” (Kuznetsova et al., 2017).

2.5.2. Correlation estimates and correlation temporal patterns
Individual values of FI, BWG and FCR were log-transformed (lnFI,

lnBWG, lnFCR) to achieve normal distribution, allowing Pearson cor-
relation analyses. Correlations between lnFIg, lnBWGg and lnFCRg al-
lowed the estimation of phenotypic links between the three traits over
the whole rearing period. Then, for each trait, the correlation between
each two-week period and the whole rearing period was estimated. For
each trait, pairwise correlations between the different two-week periods
were submitted to a Mantel test (R “ape” package; Paradis and Schliep,
2018) to assess whether they were significantly structured along a
temporal gradient. The Mantel test was performed between the matrix
of between-periods correlations and the matrix of time lapse between
periods.

The relevance of measuring FCR during a two-week period rather
than during the whole rearing period was then assessed. To this end, the
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Fig. 1. Mean body weight (g) over the duration of the experiment (error bars represent standard deviation).
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potential genetic gain on FCRg using direct mass selection on FCRg was
compared to the potential genetic gain on FCRg using mass selection on
FCR measured during the two-week periods which showed 1) the
highest and 2) the lowest correlation with FCRg. For each fish, an es-
timated breeding value for FCRg was obtained with the following
equation (Falconer and Mackay, 1996):

= −EBV h FCRg FCRg*( ¯ )i i
2

with EBVi the estimated breeding value of fish i for FCRg, h² the her-
itability of FCRg, FCRgi the FCRg of fish i and FCRg¯ the mean FCRg of
the 30 fish. Heritability was set to 0.32, the estimate for juvenile FCR in
GIFT Nile tilapia from de Verdal et al. (2018b).

In mass selection, the best fish are selected based on their own
phenotypes. So, the fish were ranked with three alternative methods:
with FCRg (reference method), with FCR on the two-week period
having the best correlation with FCRg, and with FCR on the two-week
period having the worst correlation with FCRg. In each case, the fifteen
best fish were identified, corresponding to a selection intensity of 50%.
These best fish were the ones that would be selected in a mass selection
program. Thus, the mean EBVs for FCRg of the fifteen best fish obtained
with each of the three methods were estimated.

3. Results

3.1. Temporal patterns of growth, BWG, FI and FCR

Fish reached commercial size (260.5±85.4 g) at 362 dph and the
variability of body weight increased through time (Fig. 1). The mean
BWGg over the full experiment was 224.5± 84.4 g. The corresponding
mean FIg was 385.0±128.6 g, resulting in a mean FCRg of
1.76±0.19.

Performance traits were modelled with segmented linear mixed
regressions as, according to the Chow test, the changes in FI, BWG and
FCR over time were best modelled with breakpoints (Fig. 2). The CV of
FCR was ranged from 11.3 to 36.2% with an average of 23.7±7.7%
(Fig. 3).

3.2. Correlation among traits and time periods

3.2.1. Correlation among traits
Over the whole experiment, the correlation between lnBWGg and

lnFIg was high and significant (r = 0.98). The correlation between
lnBWGg and lnFCRg was significant and negative (r = −0.63). Finally,
the correlation between lnFIg and lnFCRg was also significant and ne-
gative (r = −0.44).

3.2.2. Correlation among time periods within traits
All two-week lnBWG were significantly and moderately to highly

correlated with lnBWGg (r = 0.55−0.94). The same results were ob-
served for lnFI (r = 0.67−0.97 with lnFIg). Global FCR (lnFCRg) was
significantly and positively correlated with lnFCR recorded in 11 out of
the 15 two-week periods, with correlations ranged from 0.38 to 0.64
(Fig. 4). Significant and higher correlations were mainly seen during
the first half of the experiment (between 152 and 250 dph).

For each trait, the period to period correlation matrix was sig-
nificantly structured along a temporal gradient, with higher correla-
tions for closer periods (Mantel test, P< 0.001 for lnBWG and lnFI and
P<0.05 for lnFCR). However, only 19 out of 105 pairwise correlations
were significant for lnFCR (only 7 out of 14 considering exclusively
consecutive periods pairs).

3.3. Potential genetic gain for FCR

Estimated improvement in FCRg was 2.2% per generation with 50%
of selection intensity on FCRg itself. This reference genetic gain for

FCRg was compared with that projected using FCR from two-week
periods to rank the fish. When using FCR from 152 to 166 dph to rank
the fish (the period for which FCR was best correlated with FCRg, r =
0.64), the estimated genetic gain was 1.0%. When using FCR from 334
to 348 dph to rank the fish (r = 0.38 with FCRg, the worst period) the
estimated genetic gain was 1.2%. Globally, when using a two-week
period to rank the fish, approximately 50% of the reference genetic gain
can be obtained with 50% selection intensity.

4. Discussion

4.1. Temporal variation in parameters

The aim of the present study was to determine whether FCR mea-
sured in young fish would reflect their performance during the whole
rearing period. Feed intake, BWG and FCR globally increased with time
but also fluctuated through time. Two major fluctuations in the mea-
sured performance occurred, which might result from physiological
changes in the fish, since abiotic parameters were constant over time.

First, the decrease in BWG and FI between 152 and 194 dph might
be explained by sexual maturation. The mean weights during this
period (36.0 g at 152 dph and 70.3 g at 194 dph) correspond to the
weight at onset of maturity in Nile tilapia reported in the literature
(30−60 g, Galemoni de Graaf and Huisman, 1999; Gómez-Márquez
et al., 2003; Hussain, 2004). Decrease in FI linked with male maturation
has been demonstrated in several fish species (Kelly and Peter, 2006;
Leal et al., 2009; Nishiguchi et al., 2012).

Until 292 dph, FI and BWG changes through time were simulta-
neous and in similar proportions, FCR did not change strongly during
that period. However, BWG decreased between 292 and 348 dph,
without related FI decrease, leading to a significant increase in FCR
during this time frame. Even though fish were reared individually,
pheromones from the few females kept in the same water system could
be transmitted through the water exchange between tanks (Stacey and
Sorensen, 2002). Female pheromones may induce an increased alloca-
tion of energy to gonad development in male fish (Miranda et al., 2005)
and aggressive behavior (Giaquinto and Volpato, 1997), reducing in-
vestment in growth. Reports that male tilapia in a monosex group grew
faster than in a mixed-sex group may provide indirect evidence to
support this hypothesis (Macintosh and Little, 1995; Green et al., 1997;
Dan and Little, 2000; Hafeez-ur-Rehman et al., 2008). However, in-
dividual rearing may have impeded behavioral aspects of tilapia re-
productive functions, and present observations may not be completely
comparable to large populations with mixed-sex rearing systems.

4.2. Correlations among traits and time periods

For lnFI and lnBWG, the closer two two-week periods were in time,
the higher the correlation between them, meaning that a measurement
at a given period would better predict performance at adjacent periods.
A similar result was observed for body weight in a GIFT-derived strain
of Nile tilapia when reared in mixed-sex groups (He et al., 2017). For
lnFCR, the correlation was also greater between closer measurements in
time, but these correlations were generally low and not significant,
showing that FCR measured at a given two-week period is a poor pre-
dictor of FCR at any other two-week period. However, lnFCRs for 11 out
of 15 two-week periods were significantly correlated with the global
FCRg measured over the whole experiment, suggesting that a two-week
FCR assessment may efficiently predict global FCR. Among the four
two-week periods that were not significantly correlated with FCRg,
three occurred just before or during the second BWG decrease.

A significant but moderate correlation was observed between
lnFCRg and lnBWGg (r = 0.63), showing that faster-growing fish had a
better (lower) FCR. This is in accordance with phenotypic correlations
found in the literature between FCR and growth traits of fish reared in
groups, whose values are ranged between −0.6 and −0.9 (de Verdal
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et al., 2018a). However, at genetic level, de Verdal et al. (2018b) did
not find a significant correlation between FCR and BWG (0.07±0.24)
with fish around 20−30 g. The negative phenotypic correlation ob-
served here should thus be interpreted with care in a selective breeding
context as this is a phenotypic but not a genetic correlation: selection
for BWG may improve FCR, or not, depending on the (unknown) value
of the genetic correlation.

4.3. Implications for genetic improvement programs

The genetic gain estimated for FCRg when ranking fish based on a
two-week FCR provided a substantial proportion (around 50%) of that
estimated using FCRg itself to rank the fish. The estimated genetic gain
in FCRg, when selecting fish with two-week FCR values, ranged be-
tween 1.0% and 1.2% per generation with a selection intensity of 50%.
Since FCR is tedious and expensive to estimate, applying such a low
selection intensity would allow a sufficient number of breeders for the
next generation to be obtained with the evaluation of a relatively small
number of fish, reducing the number of fish to phenotype.

As first FCR measurements (before 250 dph) were the most corre-
lated with FCRg, early measurements between 36 and 70 g (between
152 and 194 dph) would be appropriate. This would save 24–28 weeks
of fish maintenance compared to the measurement of FCRg. The benefit
of saving in time and money would need to be balanced against the
reduced selection gain in comparison with using FCRg directly to rank

the fish.
Large phenotypic variability contributes to genetic gain in a

breeding program. In the present study, the average CV of FCR (23.7%)
is in line with literature estimates for GIFT tilapia, ranging from
22.1%–23.4% (de Verdal et al., 2017, 2018b), and for other species like
European sea bass Dicentrarchus labrax (21.9%, Besson et al., 2019).
The CV of FCR was above average (between 27.5% and 36.2%) during
the three periods between 152 and 194 dph, suggesting a potentially
higher genetic gain if selection was done at that stage, provided a
constant level of heritability.

The present results suggest it could be relevant to record FCR before
250 dph, as it is more variable and better correlated to FCRg than in
later periods, thus increasing the likely response to selection. This will
need to be confirmed in additional experiments. Further work is also
needed to increase the accuracy of the approach, especially regarding
heritability estimates at the different periods, which were considered
constant and equal to the one estimated on a one-week period by de
Verdal et al. (2018b).

The need to obtain individual information to enable selection for
FCR led us to use individual rearing in the present experiment. This
method has the major advantage to allow recording individual FI every
consecutive day for several months. However, in aquaculture, fish are
always held in social groups. Studies on several species has suggested
group rearing affects FI and FCR, e.g. bluegill sunfish (Lepomis macro-
chirus, McComish, 1971); Atlantic salmon (Salmo salar, Nicieza and

Fig. 2. Feed intake (FI, g day−1), body weight gain (BWG, g day−1) and feed conversion ratio (FCR) measured over the course of the experiment (dots), with
segmented linear regressions associated (regression lines were extended until intersection).
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Metcalfe, 1999) and Nile tilapia (Schreiber et al., 1998). In the case of
Nile tilapia, Schreiber et al. (1998) suggested that individual rearing led
to better access to feed and to better growth performance. Still, using
the same GIFT strain as the present experiment, de Verdal et al. (2019)
found that agonistic behaviors were not phenotypically correlated with
growth or FCR. Even if group rearing can create competition for feed
among fish, individual rearing may induce stress, and thus be even
more detrimental to fish performance. Here, fish could not come in
contact with fellows and were disturbed every day when the uneaten
pellets were removed, and every week to be weighed. Nevertheless,
other evidence may suggest little difference between group and in-
dividual rearing. In group rearing, phenotypic correlations between
BWG and FCR or between BWG and FI were rather similar to the ones
observed in the present study (Kolstad et al., 2004; Doupé and Lymbery,
2004; de Verdal et al., 2017).

The impact of individual rearing on fish performance remains de-
batable and probably dependent on the species, the rearing conditions
and the measurement methodology used. To our knowledge, no ex-
periment has compared individual FCRs of the same fish successively
reared as a group (but assessed individually) and isolated. Such an
experiment would be very relevant for the evaluation of the reliability
of assessing individual FCR with an individual rearing design. Some
clues were provided by Besson et al. (2019) who have shown that the
average individual FCR of European sea bass was partly reflected in
subsequent group FCR differences. Beyond biological aspects, Besson
et al. (2019) also demonstrated that individual rearing is a method that
permits phenotyping several hundreds of juvenile fish in very short
periods (two weeks) with a favorable cost-benefit ratio, and is therefore

potentially promising for large-scale commercial practice.

5. Conclusion

Our results suggest that the use of FCR estimates of juveniles over
short time periods should be adequate to perform selection for FCR
until commercial size in male tilapia. Despite fluctuations of FI, BWG
and FCR over time, most of the FCR values obtained over two-week
periods were positively correlated with FCRg calculated over the whole
rearing period. This was especially true for measurements performed at
juvenile stage (around 152–194 dph, 36−70 g). Under the hypotheses
made, potential genetic improvement of FCR of approximately 1% per
generation, with 50% selection intensity, could be within reach.
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Abstract 

Measuring accurately the phenotype at the individual level is critical to the success of selective 

breeding programs. Feed efficiency, a key sustainability trait, is approached through feed 

conversion ratio (FCR = feed intake / body weight gain), which requires measurements of feed 

intake, a technical challenge in fish. We assessed two principal methods to measure feed intake 

over several consecutive days and estimating FCR in fish: a) individual rearing of fish fed with 

a restricted feed ration and b) group rearing (10 fish per group) and video-records of meals 

given to the fish. Juvenile Nile tilapia (Oreochromis niloticus) from the Genetically Improved 

Farmed Tilapia (GIFT) strain were reared over three time periods of seven days each: i) in 

groups and fed an optimal (g100) or ii) a 50% restricted (g50) feed ration with video-records of 
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all the meals and iii) in isolation and fed with a 50% restricted ration. A second strain, the Cirad 

strain, was tested in conditions i and iii. Fish were on average 10.3 g (GIFT) and 11.2g (Cirad) 

at the beginning of the experiment and were fed twice a day during all the experiment with 

ration calculated according to their body weight. In total, 237 fish were assessed in this study 

(128 and 109 fish from the GIFT and Cirad strain, respectively). Correlations were positive and 

significant between BWG.g100 and BWG.g50 (0.49), FI.g100 and FI.g50 (0.63) and between 

FI.g50 and FI.it (0.50) but not between BWG.g50 and BWG.it (0.29, NS). The phenotypic 

correlation estimated for FCR between group periods (i and ii) with fish fed an optimal or a 

50% restricted ration was low and not significant (0.22). Feed Conversion Ratio for GIFT fish 

reared in groups or in isolation and fed with a restricted ration (ii and iii) were not correlated 

either (correlations ranged from -0.13 to -0.08).  

Social interactions between fish, potentially impacting their efficiency, may explain the results. 

Therefore, selective breeding programs seeking to improve feed efficiency will need to 

carefully plan the feeding rate and the rearing system used to estimate FCR in order to optimise 

selection for the targeted production system. 
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1. Introduction 

In aquaculture, feed represents 30 to 70% of farm costs and is the primary expenditure of 

intensive fish farming (Rana et al., 2009). Several ways have been investigated to improve the 

use of feed by fish, including nutrition (Reigh and Ellis, 1992; Gaylord and Gatlin III, 2001; 

Yao et al., 2014), husbandry (Alanärä, 1996; Imsland et al., 2005; Yilmaz and Arabaci, 2010) 

and genetics (Kause et al., 2006b; de Verdal et al., 2018b; Knap and Kause, 2018; Besson et 

al., 2020). While nutrition and husbandry have been widely studied and applied in production, 

genetic approaches need more investigation to enable practical implementation. A selective 

breeding program to improve feed efficiency typically involves recording of feed conversion 

ratio (FCR), which has to be accurately measured at the individual level. Feed conversion ratio 

is the ratio between the feed consumed by a fish and its growth during the same period of time 

(FCR = feed intake / body weight gain). Measurement of individual FCR requires accurate 

measurement of individual feed intake (FI). This is particularly complex for fish as they are 

reared in water and generally in large groups. The most commonly used method of the few 

developed to date has been the X-ray method. This  uses radio-opaque glass beads included in 

the feed pellets allowing an assessment of how much feed the fish have ingested (Talbot and 

Higgins, 1983; McCarthy et al., 1993; Jobling et al., 2001; Silverstein et al., 2001; Kause et al., 

2006a; Grima et al., 2008). However, while this method is accurate to monitor feed intake in a 

one specific meal, the repeatability of FI measurement is relatively low (Kause et al., 2006a; 

Grima et al., 2008) and it is not possible to measure FI of several consecutive meals due to the 

recovery time needed between two measurements. In genetic studies, even with repeated 

measurements (five measurements at two weeks intervals), heritability of FCR remains low 

(<0.07) in whitefish, suggesting the existence of significant residual environmental variance 

(Quinton et al., 2007). 

As the FI of an individual fish in consecutive days is highly variable (Jobling and Koskela, 

1996; de Verdal et al., 2017), the ideal method to measure individual feed efficiency should 

allow the measurement of FI for each meal over several consecutive days, so that amount of 

feed eaten by a fish over a period where it achieves significant growth is known with a high 

precision. 

Two methods have been recently upscaled to meet these specific constraints in settings where 

several hundreds of fish were measured, to be able to study the genetic variation of feed 

efficiency. The first one is individual rearing of fish in aquaria fed a known restricted feed 

ration, combined with precise daily counting of uneaten pellets (Besson et al., 2019). Using this 
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method, fish can be reared for a few weeks or months, and FI can be measured accurately over 

a long period of time. An important aspect of this method is that fish are fed under a restricted 

ration, leading to a strong correlation of FCR with growth as individuals cannot express their 

own variability for satiety level (Henryon et al., 2002). This can be an advantage, as simple 

selection for growth under restricted feeding can lead to improvement in feed efficiency, which 

are suggested in fish (Besson et al., 2019) and well proven in rabbits and pigs (Nguyen et al., 

2005; Drouilhet et al., 2016). Another advantage of restricted feeding is that the amount of 

uneaten pellets to be removed and counted every day is reduced compared to what would 

happen under satiation feeding, making the workload more compatible with the evaluation of 

hundreds of fish (Besson et al., 2019). However, restricted feeding may be problematic because 

the FCR expressed in this condition may differ from that under satiation feeding. Also, as fish 

are reared in isolation, they lose all the social interactions between each other, and this can have 

a high impact on performance.  

The second method, developed some time ago (see review by Jobling et al., 2001) and adapted 

to genetic studies by de Verdal et al. (2017) consists of rearing small groups of fish in aquaria 

(ten to 15 fish together) and to video-record all the meals, pellets being provided one by one in 

several different places in the aquarium to reduce competition between fish. Using this 

methodology and having a visible identification of all the fish in the aquarium, it is possible to 

count the number of pellets eaten by each individual fish, and consequently, to estimate their 

feed intake. Measurement of FI using this method is accurate, the feed ration can be optimal 

(no need for any restriction), it permits social interactions between the fish, but it is time-

consuming, as it is necessary to analyse all the videos of all the meals.  

When used with family designs in fish, both methods produced comparable heritability 

estimates: 0.47 for FCR in European sea bass (Dicentrarchus labrax) with the isolation method 

using restricted ration and genomic information (Besson et al., 2019), and 0.32 for FCR in Nile 

tilapia (Oreochromis niloticus) with the video method using pedigree information de Verdal et 

al., 2018b). However, these two methods (isolation with a restricted feed ration vs. in groups 

with an optimal feed ration) have very different approaches. There is presently no evidence of 

correlations between feed efficiency traits measured on the same fish with these two methods, 

which although tedious, have the potential to be used for selective breeding of more efficient 

fish. As an example, using another feed efficiency trait, the residual feed intake (RFI), 

Silverstein (2006) found a significant correlation at family level between RFI of rainbow trout 

(Oncorhynchus mykiss) reared individually and RFI of fish reared in groups. He also detected 

differences among families for FI, growth and RFI when fish were fed ad-libitum but not when 
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fed a restricted ration. Besson et al. (2019) found a moderate but non-significant correlation 

between individual growth of European sea bass under restricted ration measured in isolated 

fish with growth of the same fish reared in groups under satiation. However, they found a 

relationship between individual FCR in fish reared in isolation with a restricted ration and 

subsequent ad libitum FCR in groups formed of the same fish. Given these variable results, it 

is important to determine whether both methods lead to similar FCR estimations or not, in order 

to help choose the most relevant methodology to set up selective breeding programs to improve 

feed efficiency. 

The aim of the present study was to perform a comparison of data for traits relating to feed 

efficiency collected from Nile tilapia fed under different regimes, and to assess whether or not 

correlations were significant using different approaches. Growth, FI and FCR of individual Nile 

tilapia were compared when the same fish were held in small groups and fed either an optimal 

or restricted ration (half of the optimal ration), with FI being monitored using video-recording. 

Data collected from group-reared fish were also compared with those from the same fish reared 

in isolation on the same restricted ration, thereby testing the effects of group- and individual-

rearing. These comparisons were carried out on the Genetically Improved Farmed Tilapia 

(GIFT) strain, selected for 18 generations on growth by WorldFish (Ponzoni et al., 2011). The 

data from groups fed an optimal ration and from fish reared in isolation on a restricted ration 

were compared also in a second tilapia strain named “Cirad strain”. This additional test of the 

Cirad strain, which to our knowledge has not been selected for growth, provided a replication 

study to better assess the generality of the observations with the combination of a different 

strain (GIFT vs. Cirad), a different feed (Cargill vs. le Gouessant) and a different experimental 

site (Malaysia vs. France). 

2. Materials and Methods 

2.1 Ethics statement 

This study utilised phenotypic data collected as part of the GIFT selective breeding program 

managed by WorldFish at Jitra, Kedah State, Malaysia (6°15’32°N; 100°25’47°E). All fish in 

the GIFT breeding population are managed in accordance with the Guiding Principles of the 

Animal Care, Welfare and Ethics Policy of the WorldFish including the “3-Rs” rule. Regarding 

the Cirad strain, this part of the study was carried out in accordance with the recommendations 

of Directive 2010-63-EU on the protection of animals used for scientific purposes. The 
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protocols were approved by C2EA−36 (“Comité d'éthique en expérimentation animale 

Languedoc-Roussillon”) under authorization APAFiS n° 2017112215278675 #12552 v4.  

2.2 Origin and rearing of the fish 

The study was carried out on two distinct populations (GIFT and Cirad) in two different areas 

(Malaysia and France). The GIFT strain of Nile tilapia was selected for growth using a fully 

pedigreed design for 18 generations (Ponzoni et al., 2011). The families were produced by 

natural spawning from the 4th March to the 4th of April 2019 at the WorldFish Research station 

in Jitra, Kedah State, Malaysia (6°15’32°N; 100°25’47°E). The experiment was performed on 

200 individuals from five families (40 fish per family) from the 10th of June to the 22nd of July 

2019. After hatching, each family was reared in different hapas in the same pond and transferred 

to 1500 L holding tanks (3  1  0.5 m) at 110 days post hatching (dph). All the fish were 

injected with a Passive Integrated Transponder tag (PIT-tag, Trovan®) between 53 and 84 dph 

(around 10g of BW). Fish from each family were sorted according to their body weight to make 

four homogeneous groups of ten fish which were randomly put into four plastic aquaria of 60 

L (61x30x33 cm). In total, 20 aquariums with ten fish in each were used. After anaesthesia with 

clove oil (0.5 mL per litre of water), each fish was tagged in the dorsal muscle with two coloured 

T-bar tags (Avery Dennison tags, 25 mm), one tag on each side of the body, using an Avery 

Dennison Mark III pistol Grip tool. This allowed each fish to be uniquely and individually 

identified by one colour of tag within an aquarium regardless of which side of the body was 

shown and video recorded. Commercial pelleted feed (Cargill®, “Starter tilapia 6113”) with 

34% of crude proteins, 5% of crude fat, 5% of crude fiber and 12% of moisture was used to 

feed the fish during the whole experiment. Daily water temperature ranged from 28 to 30°C 

depending on the hour of measurement. 

The Cirad strain of Nile tilapia was derived from a cross between Cirad-IRD females, originally 

from Egypt, kept in Cirad-IRD facility (Montpellier, France) for several generations and from 

males sold by FishGen (UK) in 2018 and kept in Cirad facilities in Palavas-les-Flots (France). 

This new cross was called “Cirad strain” to simplify the nomenclature for the present study. 

For this experiment, 320 fish from 16 families (20 fish per family) hatched from the 5th to the 

26th of July 2019 were used. After hatching, each family was kept isolated until the end of the 

experiment. When fish reached on average 10g of BW, fish from each family were spread into 

two 38 L aquaria (10 fish per aquarium). After anaesthesia with clove oil, each fish was tagged 

into the dorsal muscle with two coloured T-bar tags (Avery Dennison tags, 25 mm), one tag on 
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each side of the body, using an Avery Dennison Mark III pistol Grip tool. Each fish within an 

aquarium was tagged with an exclusive colour to identify each fish individually regardless of 

which side of the body was shown and video recorded. Fish were fed a commercial pelleted 

feed (Le Gouessant, “Tilapia Starter Flot 1” and “Tilapia Starter Flot 2”) with 38% of crude 

proteins, 8% of crude fat, 3.9% of crude fiber and 7% of moisture during the whole experiment. 

Water temperature was maintained at 28°C during the whole experiment. 

2.3 Experimental design and trait measurements 

The experimental design is summarized in Figure 1. The experiment consisted of three periods 

of FI measurement, and consequently, three FCR measurement periods: i) individual FI 

measured in groups (ten fish per group) with an optimal feed ration (coded g100), ii) individual 

FI measured in groups (ten fish per group) on the same fish as i) with half of the optimal feed 

ration (coded g50), iii) individual FI measured in isolation on the same fish as i) and ii) with 

half of the optimal feed ration (coded i1, i2 and it for the first week of this period, the second 

week of this period and both weeks of this period together, respectively). Fish were not 

measured in isolation with the optimal ration as they may waste too many pellets to allow 

precise counting, and the accuracy of the exact FI would thus be questionable. All fish were 

anaesthetized with clove oil (0.5 mL per litre of water) when weighed during the course of the 

experiment. No sign of stress or abnormal behaviour was seen during the experiment except the 

stress due to the normal fish interactions. 

After seven days of adaptation to group aquaria, all the individual fish were anaesthetized and 

weighed (BWi.g100). In the first period of FI measurement fish were fed twice a day with a 

100% daily feed ration (DFR, in percentage of body weight) except the weighing day when 

they were not fed. The DFR was calculated based on the formula published by Mélard et al. 

(1997): 𝐷𝐹𝑅 = 14.23  𝐵𝑊‒ 0.322 with BW the body weight of each fish (in g) at the beginning 

of each period (BWi.g100, BWi.g50, BWi.i1 and BWi.i2 were used to calculate the DFR used 

during the g100, g50, i1 and i2 periods, respectively, Figure 1). As different experimenters were 

involved in the feeding process, a calculated ration was preferred to an “ad-libitum” ration, 

which is less repeatable from one experimenter to another. This calculated ration was also 

useful to ensure that the same maximal feed ration was given at every meal. The DFR was 

equally shared for each of the two daily meals. Feed was given using two pipes going to the 

aquarium, allowing a reduction of stress since the fish did not see the experimenter when given 

the feed. Frequently, fish did not eat the entire DFR and the choice was made to stop the meal 
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when a few pellets remained uneaten after approximately one minute (corresponding actually 

to an ad-libitum ration). Uneaten pellets were removed from the aquarium using a small net.    

All the meals were recorded by video for FI.g100 and FCR.g100 estimations. At the end of this 

first period of seven days (12 meals), fish were anesthetised and weighed (BWi.g50) and the 

individual growth during that period (BWG.g100 = BWi.g50 - BWi.g100) was calculated.  

In the second period of FI measurement of seven days (12 meals) in groups, fish were fed a 

restricted ration (calculated as 50% of the DFR using the previously mentioned equation) to 

estimate the impact of a restricted ration compared to an optimal ration on FCR. As during the 

100% DFR period, all the meals were video-recorded to count the number of pellets eaten by 

each individual fish and estimate FI.g50. At the end of this second period of seven days (12 

meals), fish were anaesthetized and weighed, allowing calculation of BWG.g50 and estimation 

of FCR.g50.  

Before the beginning of the third period, the 200 fish were randomly distributed into two 

hundred 10L isolated aquariums and adapted for seven days to this new individual rearing 

system. Each fish was able to see the fish in neighbouring tanks. The third period consisted of 

two consecutive weeks with the same experimental protocol. All the fish were anaesthetized 

and weighed at the beginning and the end of each week (BWi.i1, BWi.i2 and BWend), allowing 

calculation of BWG.i1 and BWG.i2. Fish were fed twice a day (except on the day of weighing) 

with 50% DFR, as in the second period. The DFR was updated every week for each fish. Feed 

for each individual fish was weighed accurately every day and the uneaten pellets were counted 

and removed from the aquaria at least two hours after the last meal of the day. The uneaten feed 

weight was estimated assuming that all pellets had the same weight (16.2 ± 1.8 mg), and FI.i1 

and FI.i2 were calculated for each week. Knowing the BWG and FI for both periods, it was 

possible to estimate FCR.i1 and FCR.i2 for the first and the second weeks of this third period 

of the experiment. To reduce the effects of FI fluctuations from one week to another, both weeks 

were combined and global estimations were done for BWG.it, FI.it and FCR.it. 

The same measurements were performed on the Cirad strain, except the measurement of FI in 

groups with restricted ration which was not performed due to logistical reasons (i.e. limited 

infrastructure availability), with the experiment undertaken from the 8th of October 2019 to the 

16th of December 2019. The experiment was performed as described for the GIFT strain except 

that fish were fed 13 meals during the group period (an extra-meal was given the afternoon after 

weighing the fish). From the 320 fish measured in groups, a total of 133 randomly drawn fish 

were kept and measured for FI in isolation and were included in the analyses. Due to the limited 

number of aquariums available, fish were measured in three distinct batches (around 50 fish per 
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batch). The experimental protocol for each batch was similar and the batch effect was not 

significant and consequently, was not included in the present analyses. In the meantime, fish 

were identified with a passive integrated transponder tag (PIT-tag, Biolog-id®) and reared in a 

common garden environment in four 300 L tanks for five to six weeks.  

In both experiments, the weekly FI was the sum of all the daily FI of the week. Mortality was 

recorded daily and the feed ration changed accordingly during the group rearing periods. Body 

weight gain (BWG) was calculated as the difference between the body weight of each fish at 

the end and at the beginning of the week. The feed conversion ratio (FCR) was calculated as 

the ratio between FI and BWG (FCR = FI / BWG), the most efficient fish being the fish showing 

the smallest FCR values.  

The Kinovea 0.8.15 software (Copyright © 2006–2011– Joan Charmant & Contrib.) was used 

to analyse the videos of the meals and to count for the number of pellets eaten by each fish 

when reared in groups.  

2.4 Statistical analyses 

All statistical analyses were performed using the R software (R Development Core Team, 

2018). Negative FCR (35 out of the 1187 FCR measurements in total) values were not included 

in the statistical analysis. Outliers were highlighted using the boxplot.stats function of the R 

package “stats” (R Development Core Team, 2018) and were not included in the analyses. After 

checking with the Shapiro-Wilk test, data for several traits (mainly FCR) were not normally 

distributed and consequently, non-parametric tests were preferred for the data analyses. 

Wilcoxon tests were used to analyse the block effects (including the strain, experimental 

protocol and feed used) when the same traits were measured in both conditions, to assess the 

consistency of the results. Spearman correlations between traits were estimated using the R 

package “psych” (Revelle, 2015). 

3. Results 

3.1. Basic statistics 

The Nile tilapia used in this study were at the juvenile stage (Table 1), with initial BW 

(BWi.g100) on average of 10.3 ± 2.6 g and 11.2 ± 3.3 g for the GIFT and Cirad strain, 

respectively. The Cirad fish at the beginning of the isolation period were heavier than the GIFT 

fish (on average a difference of 4.2 g between both strains). The coefficient of variation of body 

weight was slightly higher for the Cirad strain (ranged from 27.5 to 41.0 %) than for the GIFT 
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strain (ranged from 23.0 to 26.9 %, Table 1). The number of individuals in each family (from 

one to 28) and the number of families (five and 16 for the GIFT and the Cirad strain, 

respectively) were too small to consider this family level as relevant for the present analyses. 

3.1.1. The GIFT strain 

During the restricted feeding period in groups, the BWG of GIFT fish was reduced and was to 

37.3 % of that of the same fish fed an optimal ration (Table 1). Feed intake during this restricted 

period was only reduced to 58.6% of the value observed with 100%DFR (from 3.48 to 2.04 g). 

Thus, FCR was lower in fish fed 100% DFR than in fish fed with 50% DFR. Interestingly, the 

coefficient of variation of BWG and FCR was higher when fish were fed under restriction than 

with an optimal ration (Table 1). Isolated GIFT fish showed similar growth, BWG, FI and FCR 

during the first and the second week of measurement (Table 1). The coefficient of variation of 

BWG, FI and FCR was lower when fish were reared in isolation (ranged from 15.9 to 22.0 %) 

than when they were reared in groups (from 26.5 to 52.7 %).  

3.1.2. The Cirad strain 

Because of the limited time infrastructure was available with the Cirad strain, it was only 

possible to compare FCR measured in groups with 100% DFR and in isolation. Therefore we 

could not assess the specific effects of social interactions and feed ration on FCR but the 

comparison of the main results can be used to assess the replicability of some results with 

another strain and a different rearing protocol. Cirad strain fish reared in groups (on the optimal 

ration) had a lower FCR than in isolation (Table 1). It is interesting to note that whatever the 

trait, similar to the GIFT fish, coefficients of variation were higher when fish were reared in 

groups than they were in isolation. 

3.1.3. Block effect 

The block effect (including the strain, site, experimental protocol and feed used) was always 

significant. Fish from Cirad strain were 8.7 % bigger at the beginning of the group rearing 

period, and 19.9 % heavier at the beginning of the isolated period than those of the GIFT strain 

(Table 1). The coefficients of variation of BWG and FI were higher for the Cirad strain than for 

the GIFT strain (Table 1). 

3.2. Phenotypic correlations 
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The details of the phenotypic correlations between the traits measured at all periods are 

presented in Table 2. The first question raised in this study was the impact of feed restriction 

on FCR in groups, which could only be estimated on the GIFT strain, as only those fish were 

subjected to a restricted feeding period in group rearing (Figure 2). The correlation between 

FCR.g100 and FCR.g50 was low and not significant (0.22) as illustrated in Figure 2. However, 

correlations were positive and significant, although not very high, between BWG.g100 and 

BWG.g50 (0.49) and between FI.g100 and FI.g50 (0.63).  

The second question raised was whether FCR measured in groups was correlated with FCR 

measured on isolated fish. This was done on the GIFT strain only with restricted ration (Table 

2 and Figure 3). The correlations between FCRs measured in groups with restricted feeding 

(FCR.g50) and FCRs measured in isolation (FCR.i1, FCR.i2 and FCR.it) were low, negative 

(from -0.13 to -0.08) and not significant (Table 2). Here again, positive and significant 

correlations were seen between FI.g50 and FI.it (0.50) but this time not between BWG.g50 and 

BWG.it (0.29, NS). Comparison between fish reared in groups fed with an optimal ration (video 

method) and fish reared in isolation and fed with a 50% restricted ration (isolation method) was 

possible both for the Cirad and for the GIFT strain (Figure 4). In both strains, BWG.g100 and 

BWG.it were significantly correlated (0.54 in the GIFT strain, 0.36 in the Cirad strain), as well 

as FI.g100 and FI.it (0.71 in the GIFT strain, 0.50 in the Cirad strain). Additionally, BWG was 

significantly correlated to FI in both periods, with higher correlations for the GIFT strain (0.85) 

than for the Cirad strain (0.52, Table 2). Here again, FCRs measured in groups with optimal 

ration and in isolation with restricted ration were not significantly correlated (correlations of -

0.17 and -0.18 for GIFT and Cirad strain, respectively).  

4. Discussion  

In selective breeding programs, it is essential to measure accurately the trait under selection. 

Furthermore, due to potential genotype by environment interactions, the environment in which 

the selective breeding program is performed needs to be as close as possible to the production 

rearing environment. No method is available to accurately measure the individual FI of fish 

reared in large groups (in tanks or ponds) during several consecutive days. Individual FI can be 

measured precisely in a single meal with the X-ray methodology, but although repeated 

measurements at several days intervals are possible, the day to day variability in individual FI 

cannot be fully taken into account (Kause et al., 2006a; Grima et al., 2008). The only two 

methods employed to date for genetic studies to precisely measure the individual FI of many 

fish during several consecutive days are group rearing with video-recording of all the meals and 
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a posteriori analysis of all the videos (de Verdal et al., 2017) or individual rearing with a 

restricted ration (Besson et al., 2019). In this last method, the variability of FI cannot be fully 

expressed due to restricted feeding, and as a consequence, FCR and BWG are strongly 

correlated (Henryon et al., 2002). The objectives of the present study were to assess the impact 

of ration level (100% DFR or 50% DFR) and of the rearing system (group rearing or isolation) 

on FCR, trait commonly used to assess feed efficiency.  

4.1. Impact of feed restriction 

Growth and FI were significantly and positively correlated when measured in groups with an 

optimal or a restricted ration. However, FCRs measured in both conditions were poorly to 

moderately correlated (0.22), and the correlation was not significantly different from zero. 

Consequently, in groups, the most efficient fish fed with an optimal ration were not always the 

most efficient fish when fed with a restricted ration. Using group measurements in rainbow 

trout, Azevedo et al. (1998) and Rasmussen and Ostenfeld (2000) found a restricted feed ration 

had a significant effect on growth (fish under the restricted ration growing less than under high 

ration) but did not impact feed efficiency. In the present experiment, BWG and FCR in group 

reared fish were more variable when fish were fed with 50% DFR (CV = 52.3 and 52.7 %, 

respectively) than when fish were fed with 100% DFR (CV =37.0 and 28.7 %, respectively) but 

the CV of FI did not change between these two periods. Using X-Ray methodology, Jobling 

and Koskela (1996) showed a similar increase in the CV of BWG under restricted feeding in 

rainbow trout, which in their case was also accompanied by an increase in the CV of FI. They 

attributed this to an increase of the social interaction when feed is restricted, which could also 

partly be the case here, although no increased variability in FI was seen. With fish fed an optimal 

ration, de Verdal et al. (2019) did not find any correlations between agonistic behaviour and 

growth and feed efficiency. However, it can be hypothesized that agonistic behaviours were 

exacerbated under restricted diets, and consequently some fish will lose more energy to deal 

with these social interactions than others.  

In rabbits and pigs selection for growth using a restricted feed ration was shown to improve 

feed efficiency of their progenies even when they were held in conditions where they were fed 

to satiety (Nguyen et al., 2005; Drouilhet et al., 2016). The proposed explanation of these results 

is that higher growth under a restricted diet is due to lower maintenance requirements, which is 

also beneficial for animals fed to satiety. The maintenance requirements of fish, as 

poikilotherms, cannot be easily compared to those of warm blooded livestock species, which 

may explain some differences observed between fish and livestock. In the present study, the 
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phenotypic correlations were high (as in livestock species) between BWG.g50 and FCR.g50, 

but not between BWG.g50 and FCR.g100, indicating that selection for growth under restricted 

feeding in groups was unlikely to improve feed efficiency in fish fed to satiation. In rainbow 

trout, it was shown that feeding a restricted ration created social hierarchies in the tanks, leading 

to some fish consistently eating a larger or smaller share of the ration given, which was less the 

case under satiation (McCarthy et al., 1992; Jobling and Koskela, 1996). Then, it seems 

reasonable not to select fish for growth under restricted feeding in groups to improve feed 

efficiency. Nevertheless, our results were based only on phenotypic correlations, which can 

influence conclusions considerably. Firm conclusions on this issue will require the estimation 

of genetic correlations.  

4.2. Impact of the social interactions 

Individual rearing systems remove all the direct social interactions between fish whereas clear 

social interactions were seen in videos of group reared fish, including an extensive repertoire 

of agonistic behaviours between fish (de Verdal et al., 2019). There were no significant 

correlations between FCR of GIFT strain reared under restricted ration when measured in 

groups (g50) or in isolation (i1, i2 or it). Using the video analyses method, de Verdal et al. 

(2019) noted that neither the amount of agonistic behaviours nor the hierarchy in Nile tilapia 

were significantly correlated with feed efficiency when fish were fed with 100% DFR. These 

results would suggest there should be limited or no effects of social interactions. However, the 

present experiment shows a clear effect of group rearing on the FCR estimations. The 

experiment of de Verdal et al. (2019) only measured agonistic behaviour but social interactions 

are broader and the present results suggest more complex interactions are involved. A number 

of studies have reported that fish reared in isolation were more efficient (Jackson et al., 2003; 

Silverstein, 2006) as a result of stress reduction. It is known that stress, by increasing the 

maintenance requirements, reduces the efficiency of the fish to convert feed (Martins et al., 

2006, 2011). From the present data, GIFT fish reared under restricted feeding in groups (g50) 

showed a FCR 37.9% higher than when reared in isolation (it). It is important to note that under 

our feed ration conditions, the coefficient of variation of FCR of fish reared in groups was 

almost twice that of the same fish reared in isolation. Group rearing could induce stress at the 

individual level, with a probable high variation between dominant and subordinate fish (Martins 

et al., 2005, 2006). This social impact, leading to an increased energy expenditure, could explain 

the differences in CVs of FCR between fish reared in groups or in isolation and why the most 

efficient fish were not the same when the rearing conditions changed. An interesting aspect of 
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our study is also the fact that the correlation between FI in isolation under restricted feeding 

and FI in groups is higher when group results are obtained under satiation than when they are 

obtained under restricted feeding (r=0.71 vs 0.50). Similar observations are made with BWG 

(r=0.54 vs 0.29). This probably highlights, as discussed before, that social hierarchies are very 

high in groups under restricted feeding, and that social interactions are less intense both in 

individual rearing and in groups fed to satiation, in accordance with the results of de Verdal et 

al. (2019) estimating non-significant phenotypic correlations between FCR and agonistic 

behaviours in juvenile Nile tilapia reared in groups and fed to satiation. Still, although both 

BWG and FI are more correlated between group satiation and isolation than between groups 

under restricted feeding and isolation, this does not lead to significant correlations of FCR 

between both methods. 

These results are probably dependent of the fish species under consideration. Nile tilapia is 

known to be a social species, with behavioural interaction between fish, which is not the case 

for all fish species. As a consequence, the difference of stress experienced by a Nile tilapia 

reared in groups or in isolation will not be comparable with other species, which may explain 

the different results found in the literature. Strand et al. (2007) indicated that juvenile perch 

(Perca fluviatilis) were much more efficient in large groups (FCR of around 1.1 when reared in 

groups of 12 fish) than in isolation (FCR of around 4.5) probably due to reduced stress when 

fish were reared in groups. Besson et al. (2019) also showed that FCR of European sea bass 

reared in individual aquaria was higher (1.38) than that of the same fish held in groups 

(approximately 1.23). Taken as a whole all these results tend to show that the individual 

efficiency of fish reared in groups or in isolation differs, depending probably on the differences 

in stress levels experienced by the fish according to the rearing conditions and species.  

4.3. Choice of method for use in selective breeding programs 

The final aim of the present work was to assess which methodology might be best in a selective 

breeding program targeting feed efficiency (through FCR) as one of the breeding objectives. 

To succeed in a selective breeding program, it is essential to have an accurate measure of the 

phenotype of interest, and the trait should also ideally be measured in conditions similar to 

commercial production to reduce the risk of genotype by environment interactions. Nile tilapia 

is produced in large groups in ponds/cages/tanks/raceways where social interactions occur. As 

the measure of FCR in groups and in isolation are not significantly correlated in the present 

study, selecting fish in groups seems more relevant in the case of the tilapia than measuring fish 

in isolation. As discussed in the preceding section this is likely not true for all fish species. As 
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an example, Besson et al. (2019) showed that the most efficient European sea bass measured in 

isolated aquaria tended to stay the most efficient later in life when reared in groups. One of the 

main advantages of the isolation method compared to the video method is the fact that the 

phenotypes are known immediately, whereas using the video method requires time-consuming 

video analysis in order to estimate the phenotypes. However, both methods involve a large 

amount of phenotyping work which may restrict the number of individuals and families that 

can realistically be evaluated. 

The high CV of FCR when fish were fed under restriction could be seen as an interesting feature 

for a selective breeding program, as the level of phenotypic variance is one of the criteria to 

take into consideration when choosing the best trait for which to select, with higher variances 

being preferred (Falconer and MacKay, 1996). However, we discussed that selection under a 

restricted ration may increase agonistic behaviour between fish, which would not be favourable 

in production systems, and could increase mortality in the farms. Those effects could be enough 

to outweigh the benefit of selecting from a higher observed variance. Furthermore, it was 

previously shown that agonistic behaviours were negatively correlated with growth when fish 

were reared in an environment where the level of social interactions was high (Ruzzante and 

Doyle, 1991). Thus, selecting fish for feed efficiency in groups under restricted feeding is likely 

not a valuable option. 

There is no perfect method to measure FI accurately over several days and to estimate FCR 

robustly. However, rearing different tilapia strains in different conditions (experimental 

protocols and feed) gave similar results, suggesting some level of generality of the observations 

done. The aim of the present study was to compare two methods used to estimate accurately 

individual feed efficiency in Nile tilapia during several consecutive days and to highlight the 

most relevant method to use in selective breeding programs. The most favourable outcome 

would have been to see good correlations between FCR measurements done with the group or 

with the isolation method, which would have given more opportunities for designing breeding 

programs for feed efficiency. This was not the case, and then there is no simple answer to guide 

the choice of the method. What is relatively clear is that the group method under restricted 

feeding is not adequate, as it exacerbates social hierarchies, and it is not representative either 

of the ad libitum group method or of the isolation restricted method. As the question is complex, 

selection experiments will be needed to ascertain which are more efficient and economically 

viable phenotyping methods for selective breeding for feed efficiency.  
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Table Caption 

Table 1. Basic statistics: mean ± standard deviation, minimum, maximum and coefficient of 

variation (CV) of all the traits measured during the experiment for the GIFT and the Cirad 

strain, and the p-value of the block effect calculated using Wilcoxon tests. 

Table 2. Phenotypic correlation between all the measured traits. GIFT strain correlations are 

above the diagonal, and Cirad strain correlations are below the diagonal. Bold values are 

significantly different from zero. 

 

Figure Caption 

Figure 1. Scheme of the different periods designed in the experimental protocol and 

corresponding traits measured in each period for the GIFT strain (on the top of the figure and 

in blue) and the Cirad strain (on the bottom of the figure and in green). BWi: individual body 

weight; BWend: individual body weight at the end of the experiment; BWG: body weight gain; 

FI: feed intake; FCR: feed conversion ratio; .g100: fish reared in groups with 100% DFR ration; 

.g50: fish reared in groups with 50% DFR ration; .i1, .i2 and .it: fish reared in isolated aquaria 

during the first, the second and the total of the first and second weeks of isolation period. The 

main measured traits were highlighted and the background of the frame was coloured. 

Figure 2. Relations between FCR when fish were reared in groups and fed with either an 

optimal feed ration (g100) or a 50% restricted ration (g50). Each point is representing data for 

one fish. 

Figure 3. Relations between FCR when fish were fed a restricted feed and reared in groups 

(g50) or in isolation (it). Data for GIFT only. Each point is representing data for one fish.  

Figure 4. Relations between fish reared in groups and fed with an optimal feed ration (g100) 

and fish reared in isolation with a restricted ration (it) for BWG (A), FI (B) and FCR (C). Black 

and grey circles corresponded to individuals of the GIFT and Cirad strains, respectively. The 

equation of the linear regression and the coefficient of determination R² are surrounded in black 

and grey for the GIFT and the Cirad strain, respectively. 
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Table 1 

Basic statistics: mean ± standard deviation, minimum, maximum and coefficient of variation 

(CV) of all the traits measured during the experiment for the GIFT and the Cirad strain, and the 

p-value of the block effect calculated using Wilcoxon tests.  

 

 GIFT Strain   CIRAD Strain Block effect 

  Mean ± SD Min Max CV   Mean ± SD Min Max CV  

BWi.g100 10.3 ± 2.60 5.20 16.5 24.7  11.2 ± 3.31 6.04 18.70 27.5 0.040 

BWi.g50 14.6 ± 4.18 6.30 23.7 26.9  . . . . . 

BWi.i1 21.1 ± 5.84 10.7 33.3 24.6  25.3 ± 10.6 9.98 54.9 4.00 0.007 

BWi.i2 23.7 ± 6.01 12.5 36.3 23.0   29.1 ± 11.3 12.6 60.8 38.1 0.0004 

BWG.g100 4.29 ± 1.64 1.10 8.30 37.0  3.03 ± 1.28 0.80 6.26 41.9 <0.0001 

BWG.g50 1.60 ± 0.87 0.30 4.00 52.3  . . . . . 

BWG.i1 2.97 ± 0.68 1.55 4.67 22.0  3.80 ± 0.99 1.69 6.47 25.7 <0.0001 

BWG.i2 2.58 ± 0.54 1.30 3.95 19.6  4.22 ± 1.25 1.72 7.50 29.5 <0.0001 

BWG.it 5.55 ± 1.07 2.85 7.91 18.4   8.02 ± 1.98 3.84 12.5 24.6 <0.0001 

FI.g100 3.48 ± 0.97 1.50 5.87 26.5  2.27 ± 0.76 1.04 3.90 32.6 <0.0001 

FI.g50 2.04 ± 0.61 0.91 3.64 28.2  . . . . . 

FI.i1 3.02 ± 0.62 1.80 4.16 18.0  3.75 ± 1.07 2.03 6.45 28.0 <0.0001 

FI.i2 3.35 ± 0.62 2.12 4.60 16.8  4.13 ± 1.10 2.37 6.92 25.9 <0.0001 

FI.it 6.37 ± 1.22 3.92 8.76 17.4   7.87 ± 2.15 4.40 13.4 26.9 <0.0001 

FCR.g100 0.87 ± 0.26 0.39 1.88 28.7  0.81 ± 0.22 0.40 1.44 27.5 0.041 

FCR.g50 1.60 ± 0.86 0.48 4.00 52.7  . . . . . 

FCR.i1 1.04 ± 0.20 0.68 1.59 18.9  1.00 ± 0.23 0.61 1.65 22.1 0.050 

FCR.i2 1.33 ± 0.26 0.90 2.15 19.8  1.01 ± 0.18 0.67 1.48 17.8 <0.0001 

FCR.it 1.16 ± 0.19 0.81 1.75 15.9   0.99 ± 0.14 0.73 1.32 13.9 <0.0001 

BWi: individual body weight; BWG: body weight gain; FI: feed intake; FCR: feed conversion 

ratio; .g100: fish reared in groups with 100% DFR ration; .g50: fish reared in groups with 50% 

DFR ration; .i1, .i2 and .it: fish reared in isolated aquaria during the first, the second and the 

total of the first and second week of isolation period; ne: non estimable. 
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Table 2  

Phenotypic correlation between all the measured traits. GIFT strain correlations are above the 

diagonal, and Cirad strain correlations are below the diagonal. Bold values are significantly 

different from zero.  

 
 BWG FI FCR 

  g100 g50 i1 i2 it g100 g50 i1 i2 it g100 g50 i1 i2 it 

BWG 

g100   0.49 0.56 0.34 0.54 0.73 0.54 0.85 0.85 0.85 -0.65 -0.25 0.19 0.42 0.35 

g50 .  0.30 0.18 0.29 0.40 0.59 0.57 0.56 0.56 -0.26 -0.85 0.17 0.28 0.25 

i1 0.40 .  0.54 0.91 0.49 0.24 0.61 0.69 0.65 -0.29 -0.23 -0.55 0.06 -0.32 

i2 0.25 . 0.56  0.83 0.27 0.08 0.39 0.43 0.41 -0.25 -0.15 -0.24 -0.60 -0.48 

it 0.36 . 0.85 0.90   0.44 0.21 0.59 0.66 0.63 -0.33 -0.23 -0.47 -0.24 -0.44 

FI 

g100 0.79 . 0.42 0.25 0.35   0.63 0.70 0.71 0.71 0.00 -0.10 0.11 0.36 0.26 

g50 . . . . . .  0.50 0.49 0.50 -0.11 -0.11 0.16 0.33 0.28 

i1 0.51 . 0.70 0.81 0.86 0.49 .  0.99 1.00 -0.46 -0.37 0.27 0.44 0.41 

i2 0.52 . 0.74 0.81 0.87 0.50 . 1.00  1.00 -0.46 -0.37 0.18 0.42 0.33 

it 0.52 . 0.72 0.81 0.86 0.50 . 1.00 1.00   -0.46 -0.37 0.22 0.43 0.37 

FCR 

g100 -0.66 . -0.09 -0.08 -0.11 -0.10 . -0.22 -0.22 -0.22   0.22 -0.17 -0.20 -0.22 

g50 . . . . . . . . . . .  -0.08 -0.13 -0.12 

i1 0.20 . -0.22 0.39 0.14 0.16 . 0.50 0.45 0.47 -0.18 .  0.41 0.86 

i2 0.31 . 0.12 -0.49 -0.25 0.30 . 0.07 0.08 0.08 -0.15 . 0.00  0.80 

it 0.35 . -0.11 -0.05 -0.08 0.29 . 0.41 0.37 0.39 -0.24 . 0.73 0.65   

BWG: body weight gain; FI: feed intake; FCR: feed conversion ratio; .g100: fish reared in 

groups with 100% DFR ration; .g50: fish reared in groups with 50% DFR ration; .i1, .i2 and .it: 

fish reared in isolated aquaria during the first, the second and the total of the first and second 

week of isolation period. 
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Figure 1. Scheme of the different periods designed in the experimental protocol and 

corresponding traits measured in each period for the GIFT strain (on the top of the figure and 

in blue) and the Cirad strain (on the bottom of the figure and in green). BWi: individual body 

weight; BWend: individual body weight at the end of the experiment; BWG: body weight gain; 

FI: feed intake; FCR: feed conversion ratio; .g100: fish reared in groups with 100% DFR ration; 

.g50: fish reared in groups with 50% DFR ration; .i1, .i2 and .it: fish reared in isolated aquaria 

during the first, the second and the total of the first and second weeks of isolation period. The 

main measured traits were highlighted and the background of the frame was coloured. 
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Figure 2. Relations between FCR when fish were reared in groups and fed with either an 

optimal feed ration (g100) or a 50% restricted ration (g50). Each point is representing data for 

one fish. 
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Figure 3. Relations between FCR when fish were fed a restricted feed and reared in groups 

(g50) or in isolation (it). Data for GIFT only. Each point is representing data for one fish.  
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Figure 4. Relations between fish reared in groups and fed with an optimal feed ration (g100) 

and fish reared in isolation with a restricted ration (it) for BWG (A), FI (B) and FCR (C). Black 

and grey circles corresponded to individuals of the GIFT and Cirad strains, respectively. The 
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equation of the linear regression and the coefficient of determination R² are surrounded in black 

and grey for the GIFT and the Cirad strain, respectively. 
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Abstract 

Using breeding programs to improve feed efficiency, the ratio between fish body weight gain 

(BWG) and feed intake (FI), could increase aquaculture sustainability through reduced feed 

costs and environmental impact. To this end, individual phenotypic information is required. 

Individual FI can be measured by isolating each fish. Under these conditions, restricting the 

feeding rate has proved relevant to improve feed efficiency indirectly by selecting faster-

growing animals. Moreover, a restricted feeding rate reduces the work load of collecting 

uneaten pellets after each meal. The approach assumes the most efficient fish at high and low 

feeding rates are the same, but this assumption remains untested. In European sea bass 

(Dicentrarchus labrax), feed efficiency is likely to be impacted also by population, temperature, 

and their interaction, as already demonstrated for growth in this species. To investigate these 

issues, 200 European sea bass from three wild populations, Atlantic (AT), West Mediterranean 

(WM) and East Mediterranean (EM), were reared individually at two temperatures, 18°C and 

24°C. Their BWG and FI were measured at six different feeding rates, from ad libitum (100% 
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ADL) down to fasting. A trade-off between performance at 100% ADL and at fasting was 

observed: more efficient fish at 100% ADL showed a stronger decrease in BWG (standardized 

to metabolic weight) when the feeding rate was progressively lowered and lost more weight at 

fasting. The most efficient fish were not the same depending on the feeding rate, suggesting the 

feeding rate used to phenotype fish in selective breeding programs must be the same as that 

used in commercial practices. The slope in the linear relationship between BWG and FI (both 

standardized to metabolic weight) was similar among populations and temperatures. However, 

EM fish had a higher intercept than others, suggesting this population grew more and thus was 

more efficient for an equal feeding rate. Similarly, fish reared at 18°C were more efficient for 

an equal feeding rate. When feed efficiency was studied in fish fed at 100% ADL, the 

temperature effect disappeared but the population effect remained. This highlights the complex 

interplay between population, temperature and feeding rate when evaluating individual feed 

efficiency.   
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1 Introduction 

In order to feed the increasing world’s population, including more fish in future diets could help 

provide a solution because it would spare lands and feed crops when comparing with livestock 

production (Froehlich et al., 2018). Fisheries production has not increased over the last two 

decades, thus meeting the future demand for aquatic products will rely on aquaculture (FAO, 

2018). However, to reach the fish production required, aquaculture needs to address some 

sustainability issues. The main issue is linked to fish feed which accounts for 30% to 60% of 

total costs in an intensive fish farm (Goddard, 1996). Furthermore, feed production will have 

to compete with both agriculture and human consumption for access to ingredients (Troell et 

al., 2014), and is responsible for a high proportion of the environmental impact of aquaculture 

(Aubin et al., 2009; Besson et al., 2016a).  

Improved use of feed by fish may involve fish nutrition (NRC, 2011), husbandry (De Silva and 

Anderson, 1995) and genetics (de Verdal et al., 2018a; 2018b; Besson et al., 2019). Nutrition 

and husbandry have already been widely addressed, but genetic studies are scarce. Selective 

breeding could reduce feed use in aquaculture and improve sustainability by improving feed 

efficiency of farmed fish, i.e. the ratio between fish body weight gain (BWG) and feed intake 

(FI) (Besson et al., 2014; Besson et al., 2016a). Improving feed efficiency means using less 

feed to produce the same amount of fish, or producing more fish with the same amount of feed. 

However, to perform a selective breeding program, accurate individual phenotypic information 

is required. Measuring individual BWG is easy when fish are individually tagged, but 

measuring the individual FI of a large number of fish is challenging as fish are reared in large 

groups. Individual FI can be measured using individual rearing (Silverstein, 2006; Martins et 

al., 2011; Besson et al., 2019). This implies managing the exact number of pellets eaten by each 

individual. This method has the major advantage of being exhaustive: FI can be measured for 

each meal over several months and thus the temporal variability of FI is fully considered (Rodde 

et al., 2020). Moreover, the method gives immediate results (FI can be determined only a few 

hours after feeding). Besson et al. (2019) already managed to assess the feed efficiency of 588 

European sea bass Dicentrarchus labrax in 194 days using this methodology. However, this 

method is tedious because of the need to collect all the uneaten pellets in all the individual 

aquariums. In their study, Besson et al. (2019) restricted the feeding rate to 50% of the optimal 

feeding rate. Using this methodology, it was demonstrated that selecting faster-growing 

individuals under a restricted feeding rate improved feed efficiency of the progenies in pigs 

(Nguyen et al., 2005) and in rabbits (Drouilhet et al., 2016), no matter if those progenies were 
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then fed at a restricted or an ad libitum (abbreviated as “100% ADL” in the present study) 

feeding rate. Advantageously, using a restricted feeding rate reduces the workload. The reduced 

labour costs from lowering fish feeding rate make the transfer of this phenotyping method to 

practical selective breeding programs more likely and economically viable (Besson et al., 

2019). 

However, to our knowledge, there is no existing evidence that the most efficient fish at high 

feeding rates are also the most efficient at low feeding rates, and this issue needs to be addressed 

prior to starting breeding programs. As changing the feeding rate may impact the accuracy of 

feed efficiency estimates, it is useful to study individual variation in feed efficiency according 

to the feeding rate. For this study, three populations of European sea bass identified in the wild 

were used, Atlantic (AT), West Mediterranean (WM) and East Mediterranean (EM) (Guinand 

et al., 2017). The Atlantic and Mediterranean lineages of European sea bass started to diverge 

around 300,000 years before present following spatial separation during this glacial period. 

While the differentiation between the EM and the AT European sea bass was maintained, the 

secondary contact between these two lineages led to an admixed population in West 

Mediterranean area (Duranton et al., 2018; Duranton et al., 2020). This evolutionary process 

occurred in environments whose average temperatures differed, since a North-West to South-

East temperature gradient exists in European waters (Lindgren and Håkanson, 2011). Feed 

efficiency performance in European sea bass may thus be impacted by population, rearing 

temperature, and their interaction. Population by rearing temperature interactions on growth 

have been demonstrated already in this species (Vandeputte et al., 2014) suggesting similar 

effects could be found in feed efficiency. If such differences exist, there is a potential to choose 

more efficient source populations to start a selective breeding program, and to favour some 

specific rearing sites according to the temperature gradient existing in European waters.  

In the present study, individual fish BWG and FI were measured at six different feeding rates, 

from 100% ADL down to fasting (0% ADL) to test whether feed efficiency at low feeding rates 

reflected feed efficiency at high feeding rates. A total of 200 European sea bass from AT, WM 

and EM were reared individually at two temperatures: 18°C and 24°C, corresponding to the 

average and optimal temperatures, respectively, for European sea bass growth in the West 

Mediterranean area (Person-Le Ruyet et al., 2004; Besson et al., 2016b). Moreover, 18°C and 

24°C reflect well the coldest and warmest average temperatures at which European sea bass is 

reared across Europe (Vandeputte et al., 2014). The objectives of the present study were 1) to 

assess the impact of the feed ration on the relationship between BWG and FI at individual level, 
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and 2) to determine whether the relationship between BWG and FI varies with population 

and/or temperature. 

2 Material and methods 

2.1 Ethics statement 

This study was carried out in accordance with the recommendations of Directive 2010-63-EU 

on the protection of animals used for scientific purposes. The protocols were approved by 

C2EA−36 (“Comité d'éthique en expérimentation animale Languedoc-Roussillon”) under 

authorization APAFiS n° 2018032109435819 (version 2).  

2.2 Biological material 

The 200 European sea bass used in the present study were produced by artificial fertilization 

on the 5th of February 2018 at the Ifremer Experimental Aquaculture Research Station (Palavas-

les-Flots, France, 43°31'13°N; 3°54'37°E), with a similar protocol to Doan et al. (2017). The 

Atlantic (AT) and West Mediterranean (WM) groups were produced by mating wild sires and 

wild dams from each of the populations in a full factorial mating design, thus producing pure 

AT and WM offspring. Wild AT and WM fish were initially captured in the English Channel 

and the Gulf of Lions (France), respectively. Equal numbers of eggs from 22 WM dams, 

fertilized with sperm from 40 WM sires, and eggs from 9 AT dams, fertilized by 26 AT sires, 

were used. The East Mediterranean (EM) group was produced by mating 39 wild EM sires and 

13 F1 EM x WM dams thus producing 75% EM-25% WM backcross progenies, hereafter called 

EM. Only wild EM males were available, which were initially captured in Turkey and Egypt 

(Vandeputte et al., 2014), and this is why only 75%EM-25%WM progenies could be produced. 

Hatching occurred on the 9th of February 2018. Each fish population was reared in separated 

tanks until 188 days post-hatching (dph). Fish (62 AT, 66 WM and 72 EM) were then gathered 

in a single 1000 L holding tank after the injection of PIT-tags (Biolog-id, France). At 213 dph, 

fish were fasted until the beginning of the experiment at 221 dph to stimulate their appetite. 

2.3 Rearing system 

The rearing system consisted of two independent recirculating water systems placed in the same 

room. Each rearing system was comprised of 100 aquariums (10 L each), a sand filter, a 

biological filter and a UV filter. Water renewal rate was 300% per hour in each aquarium. Water 

temperature was set at 18 and 24°C in first and second rearing systems, respectively. For the 
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first and second systems, mean oxygen saturation was respectively 114.1% (8.64 mg O2/L) and 

107.1% (7.28 mg O2/L), mean water salinity was respectively 37.2‰ and 37.4‰ and mean 

water pH was 8.3 in both cases. Photoperiod was artificial: 12 hours light/12 hours dark.  

2.4 Experimental design 

The experimental procedure consisted of three distinct periods: acclimation, reaching 100% 

ADL and phenotyping (Fig. 1). Acclimation lasted four weeks. During the first two weeks, five 

fish were reared per aquarium. Groups were then split to acclimate one fish per aquarium for 

another two weeks, as described by Besson et al. (2019). Feed, manufactured by Le Gouessant 

Aquaculture, was from the commercial diet called “Neo Start 3” with: 47% of crude protein, 

18% of crude fat, 1.5% of crude fibre, 8% of ash, 1% of phosphorus, 19 MJ/kg for digestible 

energy content, 23 g/MJ for digestible protein/digestible energy ratio. The diet used remained 

the same over the whole experiment. From the beginning of acclimation onwards, feed was 

supplied once a day in the morning (9 a.m.) by automatic feeders. During acclimation, fish were 

fed 50% of the feeding ration recommended by the feed provider with a single daily meal, and 

the number of uneaten pellets per aquarium was recorded as soon as fish were reared 

individually.  

During the second period, three rounds of one week were needed to reach 100% ADL for each 

fish (Fig. 1). Over each round, the number of pellets uneaten by each fish was manually counted 

two hours after each meal. The last week of acclimation was used as a starting point to estimate 

which fish were already fed at 100% ADL. At the end of each round, different choices were 

made according to the number of pellets wasted by each fish over the week:  

a) if the fish left a relatively low number of uneaten pellets (less than 30 pellets per day), that 

fish was considered to have reached 100% ADL and the FI of the fish was considered equal to 

its 100% ADL; 

b) if the fish left a large number of uneaten pellets (higher than 30 pellets per day), feed ration 

was decreased the week after by 10% of the feeding ration recommended by the feed provider 

to ease the wasted pellets counting;  

c) if the fish did not waste any pellets, its feed ration was increased the week after by 20% of 

the feeding ration recommended by the feed provider to reach 100% ADL.  

At 270 dph, the end of round 3, there were 99 fish reared at 18°C (28 AT, 34 WM and 37 EM) 

and 95 fish reared at 24°C (28 AT, 32 WM and 35 EM). Six fish died before 270 dph because 

they jumped out of their aquarium (five AT at 18°C and one AT at 24°C). 
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The third period of the experiment was the phenotyping period, fish were first fed for 22 days 

(from 270 to 292 dph) with an individual feeding rate taking into account the various choices 

previously made to reach 100% ADL (Fig. 1). Fish were weighed at 270, 281 and 292 dph 

(beginning, half and end of the 22 days) to update the individual feeding ration according to 

their body weight (BW) and to determine individual BWG (final BW – initial BW). Fish were 

anaesthetized with benzocaine (37.5 g per m3 of seawater) before weight measurements. 

Uneaten pellets were counted in each aquarium and removed daily. The uneaten feed weight 

was estimated every day, considering that all the pellets had the same weight (14.6 ± 1.6 mg 

with CV = 11.0 %) and cumulated over the 100% ADL step. Fish were fasted the day of weight 

measurements and the day before. Feed intake of each fish during this 100% ADL step was 

calculated as: weight of feed given – weight of feed uneaten, and converted to a % of BW per 

day to estimate 100% ADL.  

After estimation of 100% ADL, fish were successively fed 80%, 60%, 40%, 20% and 0% ADL 

for ten to 11 days at each step (Fig. 1). Individual BWG and FI were measured over each step 

as previously defined, with fish being weighed on the days indicated in Fig. 1. For ethical 

reasons, if a fish had lost weight both between 270 and 281 dph and between 281 and 292 dph 

when fed at 100% ADL (Fig. 1), or if a fish had lost weight when fed at 80%, 60% or 40% ADL, 

the next step was directly 0% ADL and then the fish was removed from the experiment. 

Moreover, five fish (two AT fish at 18°C, two AT fish at 24°C and one WM fish at 24°C) did 

not eat at all at 100% ADL (< 1% of their BW over the 22 days) and were directly removed 

from the experiment, without going through a 0% ADL step. 

2.5 Statistical analysis 

2.5.1 General data treatment 

All statistical analyses were done using R software (R Core Team, 2018). The normality of 

residuals was checked using the quantile-quantile method (comparing residuals quantiles with 

theoretical normal quantiles). The homoscedasticity and independence of the residuals were 

checked by comparing the residuals with the fitted values from the models. Linear mixed 

models and tests associated to these models were performed using R packages “lme4” (Bates 

et al., 2015), “lmerTest” (Kuznetsova et al., 2017) and “lsmeans” (Lenth, 2016). 

Individual metabolic weight (MBW) was calculated for each step (100% ADL to 0% ADL) as 

𝑀𝐵𝑊 = √(𝑊𝑖 × 𝑊𝑓)0.8 with Wi and Wf the initial and final BW of each specific feeding rate 

step (Lupatsch et al., 2003; Saravanan et al., 2012). In order to allow a more accurate 
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comparison between fish with heterogeneous BW, individual BWG and FI were standardized 

to MBW (respectively named StdBWG and StdFI) at each feeding rate step as 𝑆𝑡𝑑𝐵𝑊𝐺 =

100 ∗ 𝐵𝑊𝐺/𝑀𝐵𝑊 and 𝑆𝑡𝑑𝐹𝐼 = 100 ∗ 𝐹𝐼/𝑀𝐵𝑊 and expressed in % of MBW.day-1. 

Metabolic body weight was used instead of BW as BWG and FI in fish are more closely related 

to MBW than to BW (Paloheimo and Dickie, 1966; Warren and Davis, 1967; Fonds et al., 

1992). 

2.5.2 Temperature and population effects at 100% ADL 

To study individual feed efficiency at 100% ADL, feed efficiency ratio (FER) was calculated 

as 𝐹𝐸𝑅 = 𝐵𝑊𝐺/𝐹𝐼. The impact of temperature and population on StdBWG, StdFI and FER 

during the 100% ADL step was determined using the following linear model: 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑇𝑖 +  𝑃𝑗 + 𝑇𝑃𝑖𝑗 +  𝜀𝑖𝑗𝑘  

where Yijk is the phenotype (StdBWG, StdFI or FER) at temperature i (18 or 24°C), for 

population j (AT, WM or EM) and animal k; μ is the general mean; T is the fixed effect of 

temperature i (18 or 24°C); P is the fixed effect of population j (AT, WM or EM); TP is the 

interaction of these two effects, and εijk is the residual (εijk ∼ N(0;σe²)). Fixed effects significance 

was determined with Fisher test and then pairwise differences between temperature by 

population combinations were determined with Tukey post-hoc test. 

2.5.3 Relationship between StdBWG and StdFI at population and temperature levels  

The individual StdBWG and StdFI data of every step (100% ADL to 0% ADL) were then 

analyzed all together. Focus was firstly made on the variability between temperatures and 

populations in the relationship between StdBWG and StdFI. The following repeated measures 

linear mixed model was used to analyse this relationship: 

𝑆𝑡𝑑𝐵𝑊𝐺𝑖𝑗𝑘𝑙 = [𝜇 +  𝑇𝑖 +  𝑃𝑗 + 𝑇𝑃𝑖𝑗 + 𝐴𝑙] 

                         + [𝛽 + 𝛽𝑇𝑖 + 𝛽𝑃𝑗 +  𝛽𝑇𝑃𝑖𝑗 + 𝐵𝑙] ∗ 𝑆𝑡𝑑𝐹𝐼𝑖𝑗𝑘𝑙 

                         + 𝜀𝑖𝑗𝑘𝑙 

where StdBWGijkl and StdFIijkl are respectively StdBWG and StdFI at temperature i (18 or 24°C) 

for population j (AT, WM or EM), step k (k between 1 for 100% ADL and 6 for 0% ADL) and 

animal l; μ is the general mean, T is the fixed effect of temperature i (18 or 24°C), P is the fixed 

effect of population j (AT, WM or EM), and TP is the interaction of temperature by population: 

all those effects are the “intercept” part of the relationship since they do not depend on StdFI; 

β is the fixed effect of StdFI, βT and βP are the interactions of StdFI by temperature and 
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population, respectively, and βTP is the triple interaction of StdFI by temperature and 

population: all those effects are the “slope” part of the relationship since they depend on StdFI. 

Finally, Al and Bl are the random effects of the animal l respectively associated to intercept and 

slope, with Al ~ N(0;σ²a) and Bl ~ N(0;σ²b), and εijkl is the residual (εijkl ∼ N(0;σe²)). Fixed effects 

significance was determined with Fisher test and then pairwise differences between populations 

or temperatures were determined with Tukey post-hoc test. Data were considered as outliers 

and discarded from the analyses when their Cook’s distance (i.e. their influence) in the model 

linear mixed model was higher than 4/n (Algur and Biradar, 2017), with n the total number of 

StdBWG and StdFI measurements. The residuals of the model, i.e. εijkl, were extracted for data 

collected at 100% ADL (res100%ADL) and 0% ADL (res0%ADL). From a biological point of 

view, the higher the individual res100%ADL, the more efficient the fish at 100% ADL, and the 

lower the individual res0%ADL, the higher the body weight loss at fasting.  

2.5.4 Relationship between StdBWG and StdFI at individual level 

To assess individual variability within each temperature by population combination, parameters 

of the linear relationship between StdBWG and StdFI, i.e. intercept and slope, were calculated 

for each individual using the following model:  

𝑆𝑡𝑑𝐵𝑊𝐺𝑘 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑆𝑡𝑑𝐹𝐼𝑘 + 𝜀𝑘 

where StdBWGk and StdFIk are respectively the StdBWG and StdFI of the individual at step k 

(k between 1 for 100% ADL and 6 for 0% ADL) and εk the residual (εk ∼ N(0;σe²). This 

calculation was done exclusively for individuals with data available for at least 100% ADL, 

80% ADL, 60% ADL and 0% ADL (114 individuals out of 194). The coefficient of variation 

(𝐶𝑉 = 100 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛⁄ , expressed in %) was then estimated for intercepts 

and slopes within each population by temperature combination. 

Finally, Pearson’s correlations were estimated between res100%ADL, res0%ADL, intercepts 

and slopes. Since the number of data for individual intercepts and slopes within each 

combination of temperature by population was too low (from nine to 28) to ensure robust 

correlation analysis at combination level, it was decided to merge the data from the different 

combinations to estimate Pearson’s correlation. To avoid a bias in correlation estimations due 

to potential population and temperature effects on individual intercepts and slopes, intercepts 

and slopes were corrected by these fixed effects before merging the data. To correct for these 

effects, the following linear model was used:  

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑇𝑖 +  𝑃𝑗 + 𝑇𝑃𝑖𝑗 +  𝜀𝑖𝑗𝑘  
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where Yijk is the intercept or slope at temperature i (18 or 24°C), for population j (AT, WM or 

EM) and animal k; μ is the general mean; T is the fixed effect of temperature i (18 or 24°C); P 

is the fixed effect of population j (AT, WM or EM); TP is the interaction of these two effects, 

and εijk is the residual (εijk ∼ N(0;σe²)). In the present model, residuals are the individual 

intercepts and slopes corrected for potential temperature, population, and interaction effects. 

Thus, these residuals were extracted to estimate the correlations. 

3 Results 

3.1 Performance at 100% ADL 

All fish left some pellets uneaten and thus reached 100% ADL during the 22-day period: 95.9% 

of the fish left feed uneaten over at least nine meals out of 18 and 83.5% of the fish did so over 

at least 15 meals out of 18. Among the 194 fish that were successfully evaluated at 100% ADL, 

46 (23.7%) lost weight and were consequently discarded from the analyses. Over the 22 days, 

fish grew from 26.5 ± 10.1 g (CV = 38.1%) to 29.6 ± 11.4 g (CV = 38.4%). Individual BWG, 

StdBWG, FI and StdFI were all significantly different according to temperature. This effect 

was driven by WM and EM fish which grew faster and consumed more feed at 24°C than at 

18°C (Table 1). Individual FI was also significantly different according to population (Table 

1), with EM fish eating on average 15 and 17% less than WM and AT fish, respectively. Feed 

efficiency ratio was significantly different according to population but not according to 

temperature (Table 1), with EM fish being on average 18 and 41% more efficient than WM and 

AT fish, respectively. 

3.2 Relationship between StdBWG and StdFI at temperature and population levels 

The data from 100% ADL to 0% ADL were merged. Using Cook’s distance to detect outlier 

data, 30 data out of 729 were rejected (4.1% of the total dataset). The proportion of variance 

explained by the models with StdBWG as a linear function of StdFI ranged from R² = 0.80 to 

R² = 0.90 according to the population by temperature combination (Fig. 2). No difference was 

seen in slopes between temperatures or populations, as well as no temperature by population 

interaction (P > 0.05 in all cases with Fisher test). The intercept, i.e. the part of StdBWG 

variance that does not depend on StdFI, was significantly different among populations and 

temperatures (P < 0.001 in both cases with Fisher test), but the interaction was not significant 

(P > 0.05, Fisher test). The intercept was higher for EM than for WM (P < 0.001, Tukey test) 

which was higher than for AT (P < 0.001, Tukey test). The intercept was also significantly 
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higher at 18°C than at 24°C (P < 0. 001, Tukey test). This result means that for an equal StdFI, 

StdBWG was higher for EM fish than for WM and AT fish, and thus EM fish were the most 

efficient. Similarly, fish reared at 18°C were more efficient than fish reared at 24°C for an equal 

StdFI. 

3.3 Individual variability in the relationship between StdBWG and StdFI 

Modelling the individual relationship between StdBWG and StdFI with a linear function 

appeared suitable since 101 individuals out of 114 had a corresponding R² higher than 0.80. 

The coefficients of variation were between 14.5% and 38.8% for intercepts and between 14.4% 

and 34.0% for slopes among the six different temperature by population combinations (Fig. 3). 

No significant correlation was found between res100%ADL and res0%ADL. A significant and 

positive correlation was found between intercept and res0%ADL as well as between 

res100%ADL and slope. A significant and negative correlation was found between intercept 

and res100%ADL, between intercept and slope, as well as between res0%ADL and slope (Table 

2). 

4 Discussion 

The objective of the present study was firstly to determine whether individual feed efficiency 

at low feeding rates reflected feed efficiency at high feeding rate. This aspect is key to give new 

insights on the potential development of selective breeding programs for feed efficiency in 

European sea bass. Secondly, the present study aimed at providing a better understanding of 

the variations in the relationship between BWG and FI at population and temperature levels, 

across a range of feeding rates. Such variations are of major interest to determine the impact of 

temperature and population on feed efficiency. 

4.1 Variation in individual feed efficiency at different feeding rates 

At the individual level, there appeared to be a trade-off between performance observed at 100% 

ADL and at fasting. Due to the high and significant correlation between res100%ADL and the 

slope of the linear relationship between StdBWG and StdFI, it seemed that more efficient fish 

at 100% ADL were showing a stronger decrease in StdBWG when the feeding rate was 

progressively lowered. Moreover, these fish were losing more weight at fasting (lower 

intercept). Surprisingly, no significant correlation was found between res100%ADL and 

res0%ADL. Actually, both res0%ADL and intercept are an estimation of body weight loss at 
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fasting. These two parameters are not perfectly equivalent (r = 0.47) and the intercept of the 

linear relationship may better reflect body weight loss at fasting. Indeed, the intercept integrates 

all data from 100% down to 0% ADL (four to six measurement periods) whereas res0%ADL is 

based only on one measurement period. 

Trade-offs in growth performance between high and low feeding rates have been reported in 

European sea bass (Grima et al., 2010; Dupont-Prinet et al., 2010), but not specifically for feed 

efficiency. These authors identified two profiles of fish: those exploiting the available feed as 

much as possible, growing faster and losing more weight during a fasting period (“boom and 

bust”) versus those with less capacity to exploit the available feed, growing slower and losing 

less weight during feed deprivation (Dupont-Prinet et al., 2010). McKenzie et al. (2014) 

provided evidence that such variation in weight loss at fasting was linked to metabolic costs, 

but also to the composition of the reserves used. They concluded that fish tolerant to feed 

deprivation rely more on lipids whereas fish sensitive to feed deprivation rely more on proteins. 

Variation in feed efficiency at 100% ADL might be linked to the same factors as variation in 

weight loss at fasting, i.e. differences in metabolic costs or in the nature of the energy reserves 

used, but also to differences in the digestive process as observed by Dupont-Prinet et al. (2010). 

Further investigation is required to determine the physiological processes underlying these 

observations, but present results strengthen the previously noted hypothesis that some 

individuals are more adapted to feed abundance whereas others are more adapted to feed 

deprivation. In contrast, measuring feed efficiency both in isolated aquariums and in groups, 

Besson et al. (2019) highlighted that fish with lower weight loss at fasting were more efficient. 

This difference might be due to the fact that Besson et al. (2019) used genetic information 

whereas present data are only phenotypic. For instance, de Verdal et al. (2018b) found no 

phenotypic correlation between feed efficiency and weight loss at fasting in Nile tilapia 

Oreochromis niloticus but found a strong genetic correlation between the same traits. 

At the individual level, the most efficient fish at high feeding rates are not the most efficient at 

low feeding rates. Present results suggest that the feeding rate used to phenotype fish in selective 

breeding programs for feed efficiency must be the same as that used in commercial practices. 

However, the present results are only phenotypic and it is required to describe the genetic 

correlations between these traits before adding such characters in selective breeding programs.  

4.2 Variability between temperatures and populations  

In this study, WM and EM fish grew more at 24°C than at 18°C when fed at 100% ADL, but 

no population effect was significant. This contrasts with previous results (Vandeputte et al., 
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2014) showing EM had higher growth rates compared to other populations when reared at an 

average of 24.4°C. This difference may be due to the fact that Vandeputte et al. (2014) used 

EMxAT and EMxWM hybrids to extract additive effects of the EM population, whereas in the 

present study EM fish were in fact 75% EM-25% WM. Furthermore, in the present study, WM 

and EM fish showed an increase of FI and StdFI with temperature, similar to evidence of 

increase of FI with temperature reported in larger European sea bass (Lanari et al., 2002). The 

fact that AT fish did not exhibit a lower BWG and FI at 18°C than at 24°C could be explained 

by evolutionary differences between AT and the two Mediterranean populations (WM and EM). 

In particular, one possible explanation is a potential specific adaptation of AT population to 

lower temperatures, since the Atlantic Ocean is colder than the Mediterranean sea. The 

differentiation between the populations has been widely reported at the genomic level 

(Duranton et al., 2018) and associated with phenotypic variation in sex ratio, muscle fat or 

resistance to viral nervous necrosis (Guinand et al., 2017; Doan et al., 2017). Duranton et al. 

(2020) demonstrated that the maintenance of the genomic differentiation between the AT and 

Mediterranean populations was due to reproductive isolation barriers established after the 

ancient admixture of the Atlantic European sea bass with the closely related Dicentrarchus 

punctatus. In addition, the subsequent rapid fixation of some D. punctatus alleles in the Atlantic 

D. labrax could have provided a selective advantage in the Atlantic environment compared to 

ancestral D. labrax alleles (Duranton al. 2020). 

Results from the six different feeding rates (from 100% ADL to 0% ADL) showed that for an 

equal value of StdFI, fish from the EM population and fish reared at 18°C had the highest 

StdBWG, and thus were the most efficient. To explain these differences, it can be hypothesized 

that metabolic costs are not similar between the different temperatures and populations. Fish 

obtain energy from feed and invest this energy both into metabolism (to ensure routine 

requirements) and growth (Warren and Davis, 1967; Bureau et al., 2003). The use of energy 

could be differently balanced between metabolism and growth among the various populations 

and temperatures. In the case of temperature, the fact that higher temperatures increase fish 

metabolic costs is well known in various species (meta-analysis by Clarke and Johnston, 1999), 

including European sea bass (Claireaux and Lagardère, 1999). This supports the idea that fish 

reared at 24°C in the present study had higher metabolic costs and so were less efficient than 

fish reared at 18°C for an equal value of StdFI. Similarly, AT fish might have higher metabolic 

costs because their StdBWG was lower than other populations for an equal value of StdFI. 

However, differences in metabolic costs among populations have never been studied in 

European sea bass to our knowledge. Further investigation is required to assess these aspects. 
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Alternatively, the observation that AT fish were less efficient may be linked to their muscle fat 

content, higher than in the Mediterranean populations (Vandeputte et al., 2014; F. Allal, 

personal communication, 2020). Indeed, it was demonstrated in several terrestrial and aquatic 

species that the most efficient animals had the lowest muscle fat content (Knap and Kause, 

2018). As detailed by Knap and Kause (2018), deposition of 1 g of lipid leads to 1.1 g of weight 

gain, including 0.1 g of water in the associated adipose tissue. Conversely, deposition of 1 g of 

protein leads to 4-5 g of weight gain, including 3-4 g of water. Even if protein deposition is 

energetically more expensive than lipid deposition (59.9 kJ/g vs. 43.5-55.3 kJ/g), this higher 

energetic cost is small compared to the four to fivefold increase in weight gain associated to 

protein deposition (Knap and Kause, 2018). Considering an equal value of StdFI, fish reared at 

18°C were more efficient than fish reared at 24°C, which was not the case when fish were fed 

at 100% ADL, i.e. with different values of StdFI. When fed at 100% ADL, fish reared at 24°C 

had a higher FI, permitting them to compensate for probably higher metabolic costs, and 

increasing the proportion of dietary energy allocated to growth.  

Present results indicate that whatever the rearing temperature (18°C or 24°C), and for an equal 

feeding rate, the EM population had better individual feed efficiency than the AT and WM 

populations. This population effect remained when fish were fed at 100% ADL. In contrast, the 

impact of temperature on growth and feed efficiency was different whether fish were restricted 

or fed at 100% ADL. However, investigating a broader range of temperatures could give more 

generic results. Furthermore, these results still need to be validated in group rearing systems. 

4.3 Impact of individual rearing on fish performance 

The need to obtain individual data regarding European sea bass FI implied the use of an 

individual rearing system. However, whether performance exhibited in individual rearing 

reflects what would be observed in group rearing is debatable. The level of 100% ADL ranged 

from 0.53 to 0.73% and from 0.85 to 1.12% of BW.day-1 at 18°C and 24°C, respectively, which 

is low compared to group rearing. With the model developed by Lanari et al. (2002) for 

European sea bass, 100% ADL was estimated to be around 1.1% and 1.7% of BW.day-1 at 18°C 

and 24°C, respectively, for fish weighing 26.5 g (mean weight at the beginning of the 100% 

ADL step). Feed provider tables were advising an even higher feeding rate: about 1.90% and 

2.75% of BW.day-1 at 18°C and 24°C, respectively. It can be hypothesized that fish performance 

was degraded because of stress due to isolation, as it has been demonstrated that chronic stress 

lowers BWG and FI performance in European sea bass (Leal et al., 2011). Present results may 

also reflect individual variation in stress resistance because stress reaction is known to be highly 
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variable among individuals. For instance, Volckaert et al. (2012) estimated a CV of 44.4% in 

plasma cortisol (stress marker) when an acute stress is applied in European sea bass. It is 

important to note that almost one quarter of the fish lost weight at 100% ADL in the present 

study, which can be considered as a non-adaptation to this isolation rearing system. In 

particular, at 24°C, more AT and WM than EM fish lost weight at 100% ADL. It suggests an 

interaction between population and temperature may exist in the ability to adapt to the isolation 

rearing system. This ability to adapt to the individual rearing system, whatever the temperature, 

may also be linked to the coping style of European sea bass. Indeed, we showed in a preliminary 

(unpublished) experiment that shy (reactive) fish adapted better to the individual rearing system 

than bold (proactive) fish. Moreover, the proportion of bold and shy fish might be different 

from a population to another, as a genetic basis to coping style has been evidenced in European 

sea bass (Ferrari et al., 2016). Further investigation is required to confirm this hypothesis. 

Nevertheless, it is still unknown whether stress or coping style affect the ranking of the fish 

based on the feed efficiency performance. Although individual rearing certainly has lowered 

fish performance, its relevance for selective breeding was supported by Besson et al. (2019) 

who demonstrated a link between individual feed efficiency, measured using the same isolated 

rearing system, and subsequent group feed efficiency. Thus, it can be suggested that the most 

efficient fish in the present study would still be the most efficient in “classical” group rearing. 

5 Conclusion 

At the individual level, the phenotypic variability reported here in the relationship between 

StdBWG and StdFI suggests opportunities to develop genetic breeding programs for feed 

efficiency. Whether this variability is genetically determined or not still needs to be addressed. 

However, the most efficient fish at high feeding rates were not the most efficient at low feeding 

rates, stressing the fact that feeding rate must be chosen carefully before phenotyping fish for 

selective breeding. Besides, it was observed that for an equal feeding rate, whatever the 

temperature, EM fish were the most efficient. Furthermore, for an equal feeding rate and 

whatever the population, fish were more efficient when reared at 18°C than at 24°C, but this 

effect disappeared when fish were fed at 100% ADL while the population effect remained. 

These results were measured on fish reared in isolation and need to be validated in group 

rearing, as well as at other development stages. Nevertheless, investigating the interactions 

between populations and temperatures seems a promising pathway to improve on-farm feed 

efficiency.  
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Table Caption 

Table 1. Mean ± standard deviation of body weight gain (BWG), body weight gain standardized 

to metabolic body weight (StdBWG), feed intake (FI), feed intake standardized to metabolic 

body weight (StdFI) and feed efficiency ratio (FER) recorded for 22 days with fish fed at 100% 

of ad libitum feeding rate. Results are presented for Atlantic (AT), West Mediterranean (WM) 

and East Mediterranean (EM) populations reared at 18°C or 24°C.  

Table 2. Correlation matrix with phenotypic correlations above diagonal and statistical 

significance (given as p-values) of the correlations below diagonal. Correlations with associated 

p-values lower than 0.05 are considered as significant and presented in bold. res100%ADL: 

residual body weight gain at 100% ad libitum feeding rate; res0%ADL: residual body weight 

loss at fasting; intercept and slope are the intercept and slope of the linear relationship between 

body weight gain and feed intake (standardized to metabolic body weight). All parameters were 

previously corrected for potential population and temperature effects.  

 

Figure Caption 

Figure 1. Experimental schedule applied to each fish. Fish age (in days post hatching) at each 

step is indicated by the numbers. ADL: ad libitum feeding rate; BW: body weight measurement. 

Figure 2. Linear relationships between body weight gain and feed intake, standardized to 

metabolic body weight (MBW), for the different population by temperature combinations. The 

three populations are from Atlantic Ocean (AT), West Mediterranean sea (WM) and East 

Mediterranean sea (EM). Standardized body weight gain and feed intake are expressed in % of 

MBW per day. 

Figure 3. Linear relationships between body weight gain and feed intake, standardized to 

metabolic body weight (MBW), at individual level within the different population by 

temperature combinations. The three populations are from Atlantic Ocean (AT), West 

Mediterranean sea (WM) and East Mediterranean sea (EM). Standardized body weight gain 

and feed intake are expressed in % of MBW per day. Parameters presented within each 

combination are the minimum, maximum and average of the R-squared (R²) of the various 

linear relationships, the number of individuals (n) and the coefficients of variation of intercept 

(CVint) and slope (CVslope).  
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Table 1 

Mean ± standard deviation of body weight gain (BWG), body weight gain standardized to 

metabolic body weight (StdBWG), feed intake (FI), feed intake standardized to metabolic body 

weight (StdFI) and feed efficiency ratio (FER) recorded for 22 days with fish fed at 100% of 

ad libitum feeding rate. Results are presented for Atlantic (AT), West Mediterranean (WM) and 

East Mediterranean (EM) populations reared at 18°C or 24°C.  

 

BWG* 

(% of BW.day-1) 

StdBWG** 

(% of MBW.day-1) 

FI* 

(% of BW.day-1) 

StdFI** 

(% of MBW.day-1) 

FER*** Proportion of fish that 

lost weight (%) 

Combinations     

 

  

AT x 18°C 0.43 ± 0.22 a,b 0.84 ± 0.42 a,b 0.73 ± 0.16 b,c,d 1.43 ± 0.30 b,c 

 

0.57 ± 0.22 a,b 7/28 - 25.0 

WM x 18°C 0.35 ± 0.21 b 0.67 ± 0.40 b 0.61 ± 0.35 c,d 1.15 ± 0.64 c 

 

0.60 ± 0.34 a,b 5/34 - 14.7 

EM x 18°C 0.39 ± 0.20 b 0.78 ± 0.42 b 0.53 ± 0.16 d 1.05 ± 0.37 c 

 

0.71 ± 0.25 a 6/37 - 16.2 

AT x 24°C 0.47 ± 0.41 a,b 0.91 ± 0.81 a,b 0.95 ± 0.47 a,b 1.81 ± 0.96 a,b 

 

0.44 ± 0.27 b 11/28 - 39.3 

WM x 24°C 0.69 ± 0.37 a 1.29 ± 0.71 a 1.12 ± 0.58 a 2.08 ± 1.08 a 

 

0.64 ± 0.26 a,b 13/32 - 40.6 

EM x 24°C 0.65 ± 0.34 a 1.29 ± 0.69 a 0.85 ± 0.31 a,b,c  1.68 ± 0.63 a,b 

 

0.72 ± 0.21 a 4/35 - 11.4 

Populations     

 

 

AT 0.45 ± 0.31 0.88 ± 0.62 0.83 ± 0.35  1.60 ± 0.70 

 

0.51 ± 0.25 18/56 - 32.1 

WM 0.49 ± 0.33 0.92 ± 0.62 0.81 ± 0.51 1.52 ± 0.95 

 

0.61 ± 0.31 18/66 -27.3 

EM 0.52 ± 0.31 1.03 ± 0.62 0.69 ± 0.29 1.37 ± 0.60 

 

0.72 ± 0.23 10/72 - 13.9 

Temperatures    

 

 

18°C 0.39 ± 0.21 0.76 ± 0.41 0.61 ± 0.25 1.18 ± 0.49 

 

0.63 ± 0.28 18/99 - 18.2 

24°C 0.61 ± 0.37 1.19 ± 0.73 0.95 ± 0.45 1.83 ± 0.87 

 

0.63 ± 0.26 28/95 - 29.5 

Significance of the effects (p-values)    

 

 

Pop. x Temp. 

F2,142 = 2.86, 

 P = 0.061 

F2,142 = 2.59,  

P = 0.079 

F2,142 =1.93,  

P = 0.148 

F2,142 = 1.66,  

P = 0.194 

F2,142 = 1.22,  

P = 0.299  

Population 

F2,144 = 0.54, 

 P = 0.581 

F2,144 = 0.65, 

 P = 0.523 
F2,144 = 3.70, 

 P = 0.027 

F2,144 = 2.32,  

P = 0.102 
F2,144 = 7.47,  

P = 8.2×10-4   

Temperature 
F1,144 = 20.72, 

P = 1.1×10-5 

F1,144 = 19.67,  

P = 1.8×10-5 

F1,144 = 37.05,  

P = 9.9×10-9 

F1,144 = 34.64,  

P = 2.7×10-8 

F1,144 = 0.15,  

P = 0.701  

Letters indicate significant differences among population by temperature combinations (Tukey test, P ˂ 0.05). 

* Considering BWi and BWf are respectively the initial and final body weights over the period, bodyweight 

(BW) is expressed as: 𝐵𝑊 =  √(𝐵𝑊𝑖 × 𝐵𝑊𝑓). 

** Considering BWi and BWf are respectively the initial and final body weights over the period, metabolic body 

weight (MBW) is expressed as: 𝑀𝐵𝑊 =  √(𝐵𝑊𝑖 × 𝐵𝑊𝑓)0.8. 

*** 𝐹𝐸𝑅 = 𝐵𝑊𝐺/𝐹𝐼 
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Table 2 

Correlation matrix with phenotypic correlations above diagonal and statistical significance 

(given as p-values) of the correlations below diagonal. Correlations with associated p-values 

lower than 0.05 are considered as significant and presented in bold. res100%ADL: residual body 

weight gain at 100% ad libitum feeding rate; res0%ADL: residual body weight loss at fasting; 

intercept and slope are the intercept and slope of the linear relationship between body weight 

gain and feed intake (standardized to metabolic body weight). All parameters were previously 

corrected for potential population and temperature effects.  

  res100%ADL res0%ADL Intercept Slope 

res100%ADL 1 -0.08 -0.32 0.67 

res0%ADL 0.39 1 0.46 -0.35 

Intercept 2.5×10-3 < 1×10-4 1 -0.37 

Slope < 1×10-4    3×10-4 < 1×10-4 1 
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Fig. 1. Experimental schedule applied to each fish. Fish age (in days post hatching) at each step 

is indicated by the numbers. ADL: ad libitum feeding rate; BW: body weight measurement. 
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Fig. 2. Linear relationships between body weight gain and feed intake, standardized to 

metabolic body weight (MBW), for the different population by temperature combinations. The 

three populations are from Atlantic Ocean (AT), West Mediterranean sea (WM) and East 

Mediterranean sea (EM). Standardized body weight gain and feed intake are expressed in % of 

MBW per day. 
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Fig. 3. Linear relationships between body weight gain and feed intake, standardized to 

metabolic body weight (MBW), at individual level within the different population by 

temperature combinations. The three populations are from Atlantic Ocean (AT), West 

Mediterranean sea (WM) and East Mediterranean sea (EM). Standardized body weight gain 

and feed intake are expressed in % of MBW per day. Parameters presented within each 

combination are the minimum, maximum and average of the R-squared (R²) of the various 

linear relationships, the number of individuals (n) and the coefficients of variation of intercept 

(CVint) and slope (CVslope).  
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Abstract 

Feed efficiency is the amount of body weight gain (BWG) for a given feed intake (FI).  

Improving feed efficiency through selective breeding is key for sustainable aquaculture but its 

evaluation at individual level is technically challenging. We investigated whether individual 

routine metabolic rate (RMR) was a predictor of individual feed efficiency. The European sea 

bass, a major species in European mariculture, has three genetically distinct populations across 

its geographical range, in Atlantic Ocean (AT), West Mediterranean (WM) and East 

Mediterranean (EM). We compared feed efficiency and RMR of fish from these three 

populations at 18 °C or 24 °C. We held 200 fish (62 AT, 66 WM and 72 EM) in individual 

aquaria and fed them from ad libitum down to fasting. Feed efficiency was assessed for an ad 

libitum feeding rate and for a restricted feeding rate (1% of metabolic body weight.day-1). After 

being refed 12 weeks in a common tank, individual RMR was measured over 36h by 

intermittent flow respirometry. There were significant and consistent differences in mean feed 

efficiency and RMR between temperatures and among populations, whatever the feeding rate 

applied. Fish at 18 °C were more efficient and had lower RMR. Similarly, AT fish were less 

efficient and had a higher RMR than WM and EM. No temperature by population interaction 

was found. However, individual feed efficiency and RMR were not correlated, no matter if fish 

were fed at ad libitum or restricted. Therefore, although the results provide evidence of an 

association between metabolic rate and efficiency, RMR was not a predictor of individual feed 

efficiency, for reasons that require further investigation. 

Keywords: Aquaculture; genetic populations; individual rearing; oxygen consumption; 

respirometry  
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Introduction 

Including more fish in future diets can be a solution to feed the world increasing population 

more sustainably (Godfray et al., 2010; Froehlich et al., 2018). This will depend on aquaculture 

sector whose growth is particularly strong (FAO, 2018). However, feed use in aquaculture 

results in high costs (Goddard, 1996) and environmental impact (Besson et al., 2016a). 

Selective breeding to improve feed efficiency of farmed fish, i.e. the ratio between fish body 

weight gain (BWG) and feed intake (FI), is promising to make aquaculture more sustainable 

(Besson et al., 2014; Besson et al., 2016a). However, a crucial requirement is to be able to 

phenotype fish individually. Measuring the individual FI of a large number of farmed fish is 

technically challenging because they are usually reared in large groups. This problem can be 

circumvented by individual rearing in aquaria (Silverstein, 2006; Martins et al., 2011; Besson 

et al., 2019). This method has been applied to European sea bass (Dicentrarchus labrax), a 

major species for finfish aquaculture, by Besson et al. (2019). They found evidence that 

individual rearing provides a reliable estimation of individual feed efficiency for this species, 

because individual efficiency in aquaria was linked to subsequent efficiency of groups reared 

in tanks. Still, the method is time-consuming and tedious because the fish need to be kept in 

isolation at least six weeks and all uneaten food must be carefully collected daily (Besson et al., 

2019), which may impede its application on a large scale for selective breeding programs.  

It would be much easier if there were an accurate indirect predictor of individual feed efficiency 

that could be measured more easily and rapidly. Bioenergetics is promising because it is 

assumed that energy intake from feed in fish is allocated among several processes, most notably 

maintenance metabolism, activity and growth (Warren and Davis, 1967; Bureau et al., 2003). 

It is conceivable, therefore, that for a given feed intake, the most efficient fish will be those that 

allocate the least energy to maintenance and activity, and the most to growth. In terrestrial 

livestock such as cattle, sheep and poultry, there is clear evidence of a negative correlation 

between individual metabolic rate and feed efficiency (Luiting et al., 1991; Nkrumah et al., 

2006; Arndt et al., 2015; Chaves et al., 2015; Paganoni et al., 2017). Although there is some 

evidence of a link between metabolic rate and feed efficiency in groups of fishes (Kinghorn, 

1983; Zeng et al., 2017), this remains to be demonstrated at an individual level. 

This study investigated whether individual metabolic rate, measured indirectly as rates of 

oxygen uptake, was a predictor of individual feed efficiency in the European sea bass. In this 

species, individual metabolic rate is negatively correlated with mass loss during fasting (Killen 

et al., 2011; McKenzie et al., 2014), indicating a link between metabolism and non-growth 
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energy requirements, which could also relate to individual bioenergetics when feeding. 

Measuring individual oxygen consumption by respirometry on fasted (post-prandial) fish is 

technically quite simple and takes less than 2 days per animal (McKenzie et al., 2014).  

Three genetically distinct populations of European sea bass have been identified across its 

natural geographical range: Atlantic (AT), West Mediterranean (WM) and East Mediterranean 

(EM; Guinand et al., 2017). These populations started to diverge 300,000 years ago (Duranton 

et al., 2018; Duranton et al., 2020) in environments whose temperatures differed along a North-

West to South-East temperature gradient (Lindgren and Håkanson, 2011). European sea bass 

farming is by mariculture in coastal cages so it is necessary to understand whether the 

populations may differ in their bioenergetics at different water temperatures. We therefore 

investigated this, as it could have important implications for selection programs for fish to be 

reared in different areas of Europe.  

In a previous study (Rodde et al., 2020), we reared 200 European sea bass from AT, WM and 

EM populations, at two temperatures: 18°C and 24°C.  These correspond to the average and 

optimal temperatures for European sea bass growth in the West Mediterranean area, 

respectively (Besson et al., 2016b; Person-Le Ruyet et al., 2004). Furthermore, 18°C and 24°C 

are two temperatures reflecting well the coldest and warmest sites where European sea bass is 

reared across Europe (Vandeputte et al., 2014).  We measured individual BWG and FI at six 

different feeding rates, from ad libitum down to fasting. In the present study, we evaluated the 

metabolic rate of these individuals, at their acclimation temperature, to investigate how this 

related to the feed efficiency at individual and population levels. 

Material and methods 

Ethics statement 

Experimental procedures were approved by C2EA−36 (“Comité d'éthique en expérimentation 

animale Languedoc-Roussillon”) under authorisations APAFiS n° 2018032109435819 and n° 

2018100910598940. 

Animals 

Complete details of how the fish were produced, reared and evaluated for their individual feed 

efficiency are provided in Rodde et al. (2020). Briefly, 200 European sea bass from the three 

populations (62 AT, 66 WM and 72 EM) were produced by controlled breeding at the Ifremer 

Experimental Aquaculture Research Station (Palavas-les-Flots, France, 43°31'13°N; 
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3°54'37°E). When fish reached 221 days post hatching (23.4 ± 8.4 g), they were isolated to be 

able to record their individual FI. This was the starting point of the acclimation of 100 of them 

to 18°C, and of 100 others to 24°C (Rodde et al., 2020). 

Measurement of individual BWG and FI 

Fish were firstly acclimated to individual aquaria by groups of five (two weeks), and then 

individually (two other weeks). Once acclimated, three weeks were spent to determine each fish 

individual ad libitum feeding rate. After this step, 99 fish were remaining at 18°C (28 AT, 34 

WM and 37 EM) and 95 fish at 24°C (28 AT, 32 WM and 35 EM). Six fish died before because 

they jumped out of their aquarium (five AT at 18°C and one AT at 24°C). 

Fish were then fed gradually from ad libitum feeding rate down to fasting over six sequential 

steps (100%, 80%, 60%, 40%, 20% and 0% of ad libitum feeding rate). The 100% ad libitum 

step lasted 22 days and the other steps 10 to 11 days. Fish individual BWG and FI were 

measured at each step. In total, fish remained under isolation for 123 days (Rodde et al., 2020). 

After fasting, fish were grouped into two common tanks supplied with water at either 18°C or 

24°C and fed ad libitum for 12 weeks, leading to a fourfold increase in body mass. This period 

ensured that fish were in a steady nutritional state and that physiology and behaviour were not 

directly influenced by the feed deprivation or any stress linked to individual rearing (Dupont-

Prinet et al., 2010; Rubio et al., 2010; McKenzie et al., 2014). When respirometry was 

performed, the mean mass was 99.0 ± 29.7 g and 146.2 ± 40.4 g for fish at 18 and 24°C, 

respectively. 

Metabolic rate estimation 

Metabolic rate was estimated using a system of 32 individual semi-transparent respirometry 

chambers immersed in trays supplied with aerated biofiltered seawater at either 18°C or 24°C. 

The trays were shielded behind opaque black plastic to avoid any visual disturbance, with the 

fishes in dim light following an artificial photoperiod of 12 hours light/12 hours dark. The 

system was similar to the feed efficiency aquaria, in that individuals will have been aware of 

their conspecifics in adjacent chambers.  

Fish were distributed among three holding tanks per temperature, with a tank fasted 24h prior 

to respirometry then, in the afternoon, fish were netted at random from it, identified by a PIT-

tag and weighed. They were then placed into chambers (volume either 1.8 or 3.0 L) according 

to their size, such that they were free to move easily, and left for 12h to recover from handling. 
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Measurements of oxygen uptake (MO2) were made by intermittent stopped-flow respirometry 

(Steffensen, 1989) as described in McKenzie et al. (2014), but with a 15 minute cycle 

comprising eight minutes stopped flow and seven minutes flushing with aerated water. Water 

oxygen levels in the chambers were measured and recorded every ten seconds by optodes 

(Oxy10 mini; PreSens Precision Sensing GmbH) and associated software (Pre-Sens Oxy 4v2). 

During stopped flow, oxygen saturation in the chambers declined due to consumption by the 

fish, MO2 was calculated as mg O2.kg-0.80.h-1 considering the volume of the chamber and the 

solubility of oxygen in seawater at 18°C or 24°C and a salinity of 37‰ (Steffensen, 1989; 

Dupont-Prinet et al., 2010). We corrected to metabolic body weight (MBW) rather than by body 

weight (BW; MBW = BW0.8) based upon a mass exponent of 0.8 for resting metabolism in 

European sea bass (Lemarié et al., 1992; Lupatsch et al., 2003).  Following the 12h recovery 

period, measurements were then made for a further 24h. Upon removal of a batch from their 

chambers, background oxygen consumption due to bacterial respiration was measured 

(McKenzie et al., 2014). It represented about 2% of the total oxygen consumption of fish per 

cycle, and thus no correction was applied.  

Routine metabolic rate (RMR), defined as the metabolic rate of post-absorptive, undisturbed, 

resting animals that also includes the costs of random activity and the maintenance of posture 

and equilibrium (Killen et al., 2011), was taken as the mean rate of MO2 over 24h. Standard 

metabolic rate (SMR), defined as the minimal energy cost of living for an organism (Hulbert 

and Else, 2004), was estimated as the 0.25 quantile of MO2 values over the 24h period (Chabot 

et al., 2016). 

Statistical analysis 

The BWG and FI measured throughout the individual rearing experiment were standardized to 

MBW and named “StdBWG” and “StdFI”, respectively (Rodde et al., 2020). All statistical 

analyses were done using R software (R Core Team, 2018). The normality of residuals was 

checked using the quantile-quantile method (comparing residuals quantiles with theoretical 

normal quantiles). The homoscedasticity and independence of the residuals were checked by 

comparing the residuals with the fitted values from the models. Linear mixed models and tests 

associated to these models were performed using R packages “lme4” (Bates et al., 2015) and 

“lmerTest” (Kuznetsova et al., 2017). 

Relationship between StdBWG and StdFI 
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All StdBWG and StdFI data obtained from ad libitum down to fasting were merged. Among 

the 194 fish that were successfully evaluated at ad libitum feeding rate, 46 (23.7%) lost weight 

and were consequently discarded from the analyses. 

The following repeated measures linear mixed model was used: 

𝑆𝑡𝑑𝐵𝑊𝐺𝑖𝑗 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑆𝑡𝑑𝐹𝐼𝑖𝑗 + 𝐴𝑗 + 𝐵𝑗 ∗ 𝑆𝑡𝑑𝐹𝐼𝑖𝑗 + 𝜀𝑖𝑗 

where StdBWGij and StdFIij are respectively the StdBWG and StdFI at step i (i between 1 for 

ad libitum and 6 for fasting) for animal j, Aj and Bj are the random effects of the animal j 

respectively associated to intercept and slope, with Aj ~ N(0;σ²a), with Bj ~ N(0;σ²b) and εij the 

residual (εij ∼ N(0;σe²)). The residuals of the model were extracted for data collected ad libitum 

and named “resBWG”. From a biological point of view, the higher the individual resBWG is 

and the more efficient the fish are when fed ad libitum. 

Then, the following linear model was used for each fish:  

𝑆𝑡𝑑𝐵𝑊𝐺𝑖 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑆𝑡𝑑𝐹𝐼𝑖 + 𝜀𝑖 

where StdBWGi and StdFIi are respectively the StdBWG and StdFI at step i (i between 1 for ad 

libitum and 6 for fasting) for each fish, and εi the residual (εij ∼ N(0;σe²)). The intercept and 

slope of this relationship permitted to predict for each fish its StdBWG for a restricted StdFI set 

to 1% of MBW.day-1, named “PredStdBWG”. This linear model was applied only to fish 

successfully phenotyped on at least four steps out of six from ad libitum down to fasting. 

Variation in resBWG, PredStdBWG and RMR among populations and temperatures 

The following linear model was used to determine the variation of each trait at temperature and 

population levels: 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑇𝑖 +  𝑃𝑗 + 𝑇𝑃𝑖𝑗 +  𝜀𝑖𝑗𝑘  

where Yijk is the phenotypic trait considered (resBWG, PredStdBWG or RMR) at temperature 

i (18°C or 24°C), for genetic population j (AT, WM or EM) and animal k; μ is the general mean, 

T is the fixed effect of temperature, P is the fixed effect of population, TP the interaction of 

these two effects, and εijk the residuals (εijk ∼ N(0;σe²)). Regarding the three populations, their 

pairwise differences were further explored using Tukey post-hoc test. 

Link between resBWG, PredStdBWG and RMR at individual level 

The link between resBWG, PredStdBWG and RMR at individual level was investigated using 

Pearson’s correlation, for each single population by temperature combination.  

Results 
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Variation in resBWG, PredStdBWG and RMR among populations and between temperatures 

Firstly, resBWG (ad libitum feeding rate) as well as PredStdBWG (1% of MBW.day-1 feeding 

rate) were significantly different between temperatures (F1,126 = 4.75, P = 3.11×10-2 and F1,103 

= 8.88, P = 3.59×10-3, respectively) and among populations (F2,126 = 7.25, P = 1.05×10-3 and 

F2,103 = 12.32, P = 1.59×10-5, respectively). Both resBWG and PredStdBWG were higher at 

18°C than at 24°C. Using Tukey post-hoc test, it was found that AT fish had significantly lower 

resBWG and PredStdBWG than WM fish (P = 2.30×10-2 and 6.73×10-3, respectively) and EM 

fish (P = 1.02×10-3 and P = 2.79×10-5, respectively), but these traits were not significantly 

different between WM and EM fish (P = 0.70 and P = 0.31, respectively). However, no 

temperature by population interaction was found (F2,124 = 0.58, P = 0.56 and F2,101 = 0.21, P = 

0.81, respectively). 

Regarding RMR and SMR, mean individual values obtained within each temperature by 

population combination are presented in Table 1 and RMR values are shown individually in 

Figure 1. Firstly RMR was positively and strongly correlated with SMR, whatever the 

population by temperature combination (r = 0.60-0.97). Thus, we chose to focus only on RMR 

results since SMR has very similar variations. Within each population by temperature 

combination, individual RMR was moderately variable with a CV (coefficient of variation = 

100*standard deviation/mean) between 9.8 and 14.8%. Moreover, RMR differed significantly 

by temperature, with fish reared at 18°C having lower RMR (F1,116 = 130.89, P < 2.2×10-16), 

but also by population (F2,116 = 14.02, P = 3.52×10-6), whereby AT fish had a significantly 

higher RMR than WM and EM fish (P = 1.95×10-4 and P = 1.81×10-4 respectively using Tukey 

post-hoc test). In contrast, the RMR of WM and EM fish was not significantly different (P = 

0.94).  Moreover, there was no interaction effect between temperature and population on RMR 

(F2,114 = 1.67, P = 0.19).  

Correlation between performance and RMR 

As illustrated in Figure 2, a link between RMR and resBWG as well as PredStdBWG appears 

at temperature and populations levels. Indeed, fish at 18°C have a lower RMR and higher 

resBWG and PredStdBWG than 24°C. Similarly, AT fish have a higher RMR and lower 

resBWG and PredStdBWG than WM and EM fish. 

At individual level, the correlations between RMR and resBWG ranged from -0.33 to 0.39 

among the various population by temperature combinations (Figure 3), but none of them was 

significant (P > 0.05 in all cases). Similarly, the correlations between RMR and PredStdBWG 
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ranged from -0.43 to 0.15 among the various combinations (Figure 4) and none of them was 

either significant (P > 0.05 in all cases). 

Discussion 

This study is the first to attempt to relate individual variation in feed efficiency to metabolic 

rate in European sea bass. The results indicated that fish reared at 18°C were more efficient, 

both at ad libitum and 1% of MBW.day-1 feeding rates, and had lower RMR that fish at 24°C. 

Similarly, AT fish were less efficient at both feeding rates and had higher RMR than WM and 

EM fish. However, within temperature by population combinations, no clear relationship 

appeared between individual feed efficiency and RMR. 

Link between feed efficiency and RMR among populations and between temperatures 

Both resBWG and PredStdBWG results, corresponding respectively to an ad libitum and a 

restricted (1% of MBW.day-1) feeding rates, suggest fish reared at 18°C are more efficient. 

Similarly, whatever the feeding rate, WM and EM fish were more efficient than AT ones. The 

initial hypothesis made was that the most efficient fish, for a given feeding rate (1% of 

MBW.day-1 in the present study), were those allocating the least energy to maintenance and 

activity, resulting in more available energy for growth. Present RMR results tend to valid this 

hypothesis among populations and between temperatures. Indeed, RMR differed in a consistent 

way with PredStdBWG: fish at 18°C were more efficient for 1% of MBW.day-1 and had a lower 

RMR that at 24°C, AT fish were less efficient for 1% of MBW.day-1 and had a higher RMR 

than WM and EM fish.  

The same consistence between RMR and resBWG results was observed, which is more 

surprising since resBWG is estimated for fish fed ad libitum. It might have been suggested that 

fish with higher metabolic costs (i.e. RMR) would have compensated by increasing their ad 

libitum energy intake. However, present resBWG data suggest metabolic costs outweighed any 

potential compensation through an increased energy intake. This contrasts with Zeng et al. 

(2017) results showing that Chinese crucian carps (Carassius auratus) with higher RMR were 

less efficient under a restricted feeding rate but more efficient when fed at ad libitum. It may be 

explained by the fact that fish were reared as a group by Zeng et al. (2017) but individually in 

the present study. Indeed, ad libitum FI was much lower than expected in the present study 

(Rodde et al., 2020), suggesting individual rearing certainly prevented the fish from reaching 

their full feed consumption potential.  
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The fact that RMR was higher in fish reared at 24°C than in those reared at 18°C is not 

surprising:  oxygen consumption is known to increase with temperature in every fish species 

(meta-analysis by Clarke and Johnston, 1999), including European sea bass (Claireaux and 

Lagardère, 1999). In contrast, it is interesting that AT fish had a higher RMR than the two 

Mediterranean populations. This has, to our knowledge, never been reported before, although 

they are known to differ at the genomic level (Duranton et al., 2018) and in other traits such as 

growth, sex ratio, muscle fat or resistance to viral nervous necrosis (Guinand et al., 2017; Doan 

et al., 2017; Vandeputte at al., 2019). In particular, an ancient admixture occurred between the 

Atlantic European sea bass and the closely related Dicentrarchus punctatus (Duranton et al., 

2020). This led to the subsequent rapid fixation of some D. punctatus alleles in the Atlantic D. 

labrax and to the establishment of reproductive isolation barriers between Atlantic and 

Mediterranean populations (Duranton et al., 2020). This event may have provided a genetic 

basis for differences in metabolic rate between the AT population and Mediterranean ones.  

The phenotypic traits underlying such differences among populations in metabolic rate still 

need to be determined. However, it seems unlikely that variation is due to behavioural 

differences. Indeed, SMR was strongly correlated with RMR within each population by 

temperature combination. This can be explained by the fact that fish exhibited little swimming 

activity while in the individual respirometry chamber. Even if the experimental set-up permitted 

to avoid any disturbance from the outside, such little activity appears surprising. This may be 

due to the fact these fish had already experienced 123 days in isolated aquaria before being 

evaluated for RMR. Thus, the fish used here were probably much more acclimated to isolation 

than usual, resulting in a low swimming activity. Other factors may be accountable for the RMR 

differences among populations. For instance, higher RMR might be be associated to bigger 

sizes of metabolically expensive organs such as heart, liver or brain (Konarzewski and Książek, 

2013), higher mitochondrial density (i.e. energy consumption per unit mass of tissue), higher 

activity of mitochondrial enzymes or lower ATP production efficiency (i.e. ATP produced per 

unit consumption of oxygen; Norin and Metcalfe, 2018). Investigating these various hypotheses 

could provide a better understanding of the factors underlying RMR variation among 

populations.    

Link between feed efficiency and RMR at individual level 

Differences observed among populations and between temperatures revealed a consistent link 

between high feed efficiency performance and low RMR, whatever the feeding rate. In contrast, 

no correlation appeared at individual level, no matter if the feeding rate was restricted (1% of 
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MWB.day-1) or not (ad libitum). Nevertheless, there is a need for further investigation before 

concluding that RMR is of no use to improve feed efficiency in a selective breeding program.  

Firstly, only genetic correlations permit to conclude if a trait can be selected indirectly using 

another trait. At individual level, a CV of 9.8 to 14.8% was found for RMR. Similarly, Killen 

et al. (2011) found a CV of 13% for European sea bass RMR, measured with the same 

experimental set-up and corrected for metabolic body weight as well. There is a need to 

determine whether this phenotypic variation in RMR is due (at least partly) to a genetic basis. 

However, setting up an experimental design permitting to estimate genetic correlations is 

technically challenging. The number of fish phenotyped for both feed efficiency and RMR 

would need to be multiplied by at least four or five in comparison with the present study. 

Moreover, fish BWG and FI performance were measured before RMR, and not simultaneously. 

The time lapse between these measurements was 12 weeks and fish had their weight multiplied 

by four, so their development stage was not similar, and this may explain why not correlation 

is found. Metabolic rate estimation is known to have a moderate short term-repeatability in 

European sea bass (r = 0.48 for measurements separated by 20 minutes; Marras et al., 2010), 

but its longer term repeatability is, to our knowledge, unknown in this species. This is 

problematic because metabolic rate long-term repeatability is species-dependant. For instance, 

it was reported as high (r = 0.68 for measurements separated by 17 weeks) in Atlantic salmon 

Salmo salar (McCarthy, 2000) but as very low (r = 0.093 for measurements separated by 15 

weeks) in brown trout Salmo trutta (Norin and Malte, 2011). Similarly, the long-term 

repeatability of individual feed efficiency estimation was, to our knowledge, never reported in 

the case of European sea bass. Since it is not technically feasible to estimate simultaneously 

individual feed efficiency and RMR, further investigation of both traits long-term repeatability 

is required specifically for this species. 

Another information that is unknown is the type of reserves, i.e. proteins or lipids, on which 

each fish relies the most to produce its energy. Indeed, lipids provide twice as much energy as 

proteins do for an equal weight. Thus, to ensure equal maintenance costs, fish degrading lipids 

will consume a lower mass of reserves than fish degrading proteins. For instance, McKenzie et 

al. (2014) reported that European sea bass relying on proteins rather than on lipids to produce 

energy while fasting were losing more weight. Consequently, a link between the main type of 

reserves used and individual feed efficiency may exist. In particular, AT fish muscle fat content 

is higher than in the Mediterranean populations (Vandeputte et al., 2014; F. Allal, personal 

communication, 2020). Thus, AT fish may use their lipid reserves less than Mediterranean 

populations (and so they tend to accumulate them), degrading their protein reserves instead. 
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This could explain why AT fish are ultimately less efficient. This hypothesis is supported by 

results reported in several species such as pig or rainbow trout showing the most efficient 

animals had the lowest muscle fat content (Kamalam et al., 2012; Kause et al., 2016; Knap and 

Kause, 2018). 

To conclude, presents results demonstrated a variability among European sea bass populations 

regarding oxygen consumption, in addition to the well-known effect of temperature on this trait. 

Among populations and between temperatures, fish with a lower oxygen consumption were 

more efficient. However, at individual level, no significant correlation was found. Further 

investigation is still required to fully understand the link between individual feed efficiency and 

oxygen consumption in fish. 
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Table Caption 

Table 1. Mean ± standard deviation (100*standard deviation/mean) of routine metabolic rate 

(RMR), standard metabolic rate (SMR) and weight at respirometry. Results are presented for 

Atlantic (AT), West Mediterranean (WM) and East Mediterranean (EM) populations reared at 

18°C or 24°C. Within each combination of population by temperature, the correlation between 

RMR and SMR is given with p-value, as well as the number of fish. 

 

Figure Caption 

Figure 1. Routine metabolic rate (RMR) values observed for each combination of population 

by temperature. Results are presented for Atlantic (AT), West Mediterranean (WM) and East 

Mediterranean (EM) populations reared at 18°C or 24°. In the box and whisker plots presented, 

the box lower and upper limits are respectively the 0.25 and 0.75 quantiles of the RMR data 

and the box is divided by the median of the values. The whiskers lower and upper ends are 

respectively the lowest and highest RMR values. Dots represent each fish RMR. 

Figure 2. A) Residual body weight gain at ad libitum feeding rate as a function of routine 

metabolic rate (RMR) among population by temperature combinations. B) Predicted body 

weight gain as a function of RMR among population by temperature combinations. Predicted 

body weight gain is expressed in % of metabolic body weight (MBW) and is corresponding a 

level of feed intake set to 1% of MBW.day-1. Results are presented for Atlantic (AT), West 

Mediterranean (WM) and East Mediterranean (EM) populations reared at 18°C or 24°. 

Horizontal and vertical bars associated to each point are corresponding to standard errors. 

Figure 3. Individual residual body weight gain at ad libitum feeding rate as a function of 

individual routine metabolic rate (RMR). Results are presented for Atlantic (AT), West 

Mediterranean (WM) and East Mediterranean (EM) populations reared at 18°C or 24°C. The 

straight lines represent the linear regressions of individual residual body weight gain as a 

function of individual RMR in each case.  

Figure 4. Individual predicted body weight gain as a function of individual routine metabolic 

rate (RMR). Predicted body weight gain is expressed in % of metabolic body weight (MBW) 

and is corresponding a level of feed intake set to 1% of MBW.day-1. Results are presented for 

Atlantic (AT), West Mediterranean (WM) and East Mediterranean (EM) populations reared at 
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18°C or 24°C. The straight lines represent the linear regressions of individual predicted weight 

gain as a function of individual RMR in each case.  
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Table 1 

Mean ± standard deviation (100*standard deviation/mean) of routine metabolic rate (RMR), 

standard metabolic rate (SMR) and weight at respirometry. Results are presented for Atlantic 

(AT), West Mediterranean (WM) and East Mediterranean (EM) populations reared at 18°C or 

24°C. Within each combination of population by temperature, the correlation between RMR 

and SMR is given with p-value, as well as the number of fish. 

 
RMR 

(in mg O2.kg-0.8.h-1) 

SMR 

(in mg O2.kg-0.8.h-1) 

Weight at 

respirometry (in g) 

Correlation 

between RMR 

and SMR 

Number 

of fish 

Combinations 
     

AT x 18°C 78.7 ± 8.0 (10.2) 67.8 ± 4.7 (7.0) 107.6 ± 34.9 (32.5) 0.60 (P < 0.01) 18 

WM x 18°C 70.1 ± 6.9 (9.8) 63.8 ± 5.8 (9.1) 80.0 ± 20.8 (25.9) 0.88 (P < 0.001) 19 

EM x 18°C 70.3 ± 9.0 (12.9) 65.4 ± 7.2 (11.0) 107.2 ± 25.5 (23.8) 0.92 (P < 0.001) 25 

AT x 24°C 108.5 ± 15.7 (14.5) 86.8 ± 13.9 (16.0) 142.2 ± 39.8 (28.0) 0.83 (P < 0.001) 14 

WM x 24°C 91.9 ± 12.1 (13.2) 80.7 ± 10.4 (12.8) 125.5 ± 26.9 (21.4) 0.91 (P < 0.001) 17 

EM x 24°C 91.3 ± 13.6 (14.8) 80.8 ± 13.1 (16.2) 161.3 ± 42.7 (26.5) 0.97 (P < 0.001) 27 
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Fig. 1. Routine metabolic rate (RMR) values observed for each combination of population by 

temperature. Results are presented for Atlantic (AT), West Mediterranean (WM) and East 

Mediterranean (EM) populations reared at 18°C or 24°. In the box and whisker plots presented, 

the box lower and upper limits are respectively the 0.25 and 0.75 quantiles of the RMR data 

and the box is divided by the median of the values. The whiskers lower and upper ends are 

respectively the lowest and highest RMR values. Dots represent each fish RMR. 
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Fig. 2. A) Residual body weight gain at ad libitum feeding rate as a function of routine 

metabolic rate (RMR) among population by temperature combinations. B) Predicted body 

weight gain as a function of RMR among population by temperature combinations. Predicted 

body weight gain is expressed in % of metabolic body weight (MBW) and is corresponding a 

level of feed intake set to 1% of MBW.day-1. Results are presented for Atlantic (AT), West 

Mediterranean (WM) and East Mediterranean (EM) populations reared at 18°C or 24°. 

Horizontal and vertical bars associated to each point are corresponding to standard errors. 
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Fig. 3. Individual residual body weight gain at ad libitum feeding rate as a function of individual 

routine metabolic rate (RMR). Results are presented for Atlantic (AT), West Mediterranean 

(WM) and East Mediterranean (EM) populations reared at 18°C or 24°C. The straight lines 

represent the linear regressions of individual residual body weight gain as a function of 

individual RMR in each case.  
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Fig. 4. Individual predicted body weight gain as a function of individual routine metabolic rate 

(RMR). Predicted body weight gain is expressed in % of metabolic body weight (MBW) and is 

corresponding a level of feed intake set to 1% of MBW.day-1. Results are presented for Atlantic 

(AT), West Mediterranean (WM) and East Mediterranean (EM) populations reared at 18°C or 

24°C. The straight lines represent the linear regressions of individual predicted weight gain as 

a function of individual RMR in each case.  
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Chapter V 

 

Variations in isotope incorporation rates and trophic 

discrimination factors of carbon and nitrogen stable isotopes in 

scales from three European seabass (Dicentrarchus labrax) 

populations
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A B S T R A C T

Carbon (δ13C) and nitrogen (δ15N) stable isotope analyses are used in marine ecology to study trophic re-
lationships and migrations of species since they reflect dietary sources consumed which may vary geo-
graphically. However, better estimations of isotope incorporation rates and trophic discrimination factors (TDF)
under controlled conditions are required. Moreover, variability of isotope incorporation rates and TDF among
and within populations has been poorly described, especially in fish scales, whereas the use of non-lethal method
is becoming a standard. This study aimed to experimentally assess whether carbon and nitrogen isotope in-
corporation rates (λC and λN, respectively) and TDF of scales vary in the European sea bass (Dicentrarchus
labrax) among (1) Atlantic, West Mediterranean and East Mediterranean populations, (2) sexes and (3) in-
dividuals. Fish were reared under controlled conditions and switched from a diet 1 to a diet 2 with different δ13C
and δ15N values. Scales were sampled repeatedly on 16 fish within the three populations, from the day of diet
change (day 0) to the end of the experiment (day 217). Isotope incorporation rates of scales and TDF were
determined using a time-dependent model. Isotopic carbon and nitrogen half-lives (t50C and t50N) were similar
among the three populations but males had significantly lower t50C and t50N than females (29 ± 2 and
35 ± 2 days vs. 53 ± 7 and 80 ± 11 days, respectively). Females had higher growth rates but lower catabolic
rates than males. Variability of λC and λN was large within sexes: t50C ranged from 17 to 159 days and t50N
ranged from 18 to 342 days among individuals. Thus, variability between sexes and among individuals must be
considered to avoid misinterpretation in field-based studies. For the 48 fish, TDF were 4.91 ± 0.03 and
2.46 ± 0.06‰ for carbon and nitrogen, respectively, and similar between sexes and among populations. Be-
sides, TDF varied among individuals from 2.95 to 5.59‰ and from 0.93 to 3.55‰ for carbon and nitrogen,
respectively. Empirical mixing models were run to estimate how different TDF influenced estimation of the
contributions of food sources to diet of their consumer. The output differed considerably when using TDF from
fish literature or those estimated herein, which confirms that a tissue-specific TDF must be used to avoid mis-
interpretation in field-based studies. Individual variation in TDF did not, however, influence estimation of the
contributions of food sources, confirming that scales are a valid tissue for non-lethal sampling.
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1. Introduction

Analysis of carbon (δ13C) and nitrogen (δ15N) stable isotopes has
proven to be a powerful tool in marine ecology, to study trophic re-
lationships and migrations of various species through time and space
(Hansson et al., 1997; Perga and Gerdeaux, 2003; Dempson et al., 2010;
Sweeting, 2010). The δ13C and δ15N values of organisms reflect those of
assimilated dietary sources as it is generally accepted that consumers
are enriched by 1.0 and 3.5‰ in 13C and 15N, respectively, relative to
their diets (Fry and Arnold, 1982; Minagawa and Wada, 1984). How-
ever, these assumptions are not universal and reconstruction of diet
history as well as quantification of trophic relationships of organisms in
their environment require better estimations of both carbon and ni-
trogen isotope incorporation rates and trophic discrimination factors
(TDF) under controlled conditions (Wolf et al., 2009; Martínez del Rio
and Carleton, 2012).

Isotope incorporation rate is defined as the time required by an
organism to acquire the isotopic composition of its new diet (Martínez
del Rio and Carleton, 2012). This variable is essential to determine the
temporal window in which stable isotope data can be used to elucidate
the diet of an animal (Perga and Gerdeaux, 2005; Wolf et al., 2009).
Stable isotope values of an organism in a situation of disequilibrium,
after a change in diet, do not represent either the past or the present
diet (Sweeting, 2010). It is well established that isotope incorporation
rates are higher in metabolically active species, organisms or tissues,
depending on both growth rate (i.e., anabolic rate or adjunction of new
tissues) and catabolic rate (i.e., replacement of tissues; Hesslein et al.,
1993; MacNeil et al., 2006). Generally, isotope incorporation rates are
higher in liver and plasma than in muscle and red blood cells of fishes
(Carleton and Martínez del Rio, 2010). Moreover, isotope incorporation
rates vary with environmental conditions such as temperature, food
quantity and quality as well as the physiological state of the animal,
such as ontogenetic stage or level of stress (Witting et al., 2004;
Carleton and Martínez del Rio, 2010; Bloomfield et al., 2011; Carter
et al., 2019).

Trophic discrimination factor, the difference between stable isotope
values of a consumer and its diet when at isotopic equilibrium, also
fluctuates considerably. For fishes, carbon and nitrogen TDF vary from
0.2 to 4.0‰ and from −0.4 to 5.5‰, respectively (Sweeting et al.,
2007a, 2007b). Accurate values are required to interpret relationships
across trophic levels. A robust estimation of TDF is also a fundamental
requirement for mixing models that predict the proportional composi-
tion of consumers' diets from stable isotope data (Phillips et al., 2014).
Physiological mechanisms underlying TDF are not thoroughly under-
stood but result from the balance between processes of assimilation and
excretion of light versus heavy elements acquired in the food
(Minagawa and Wada, 1984; Ponsard and Averbuch, 1999; Olive et al.,
2003). Thus, TDF is influenced by both dietary and non-dietary factors
(Trueman et al., 2005; Barnes et al., 2007; Matley et al., 2016; Nuche-
Pascual et al., 2018).

In isotope-based studies, variation among individuals has been
evaluated as the variance of δ13C and δ15N values. For fishes, δ13C and
δ15N values of tissues have been shown to vary within and among po-
pulations (Barnes et al., 2008), and especially with sex (Kim et al.,
2012; Marcus et al., 2019). To date, however, studies of variation in
isotope incorporation rates and TDF within and among populations are
scarce. When distinct isotope values appear among individuals, the
assumption commonly made is that they must have been feeding on
distinct food sources (e.g. Grey, 2001). However, several studies re-
vealed an inherent variability between individuals fed with a same diet
(Matthews and Mazumder, 2004; Araújo et al., 2007; Barnes et al.,
2008). These studies underscored the need to take this variability into
account in field-studies before concluding that individuals have distinct
feeding habits. Differences in individual physiology are suggested to be
the cause of this inherent individual variability (Bearhop et al., 2004).
Isotope incorporation rates are estimated by changing from one

isotopically distinct experimental diet to another, and then sampling
tissues over time. In fishes, most isotope incorporation rate studies have
used dorsal white muscle, so individuals must be sacrificed at each
sampling point to monitor stable isotope values (Hesslein et al., 1993;
German and Miles, 2010; Madigan et al., 2012). This precludes the
study of individual variation in the kinetics of isotopic incorporation.
Using non-lethal methods, such as sampling of red blood cells, plasma,
fins and scales, would permit multiple sequential samplings on the same
individuals, to study variation in isotope incorporation rates. Moreover,
the development of non-lethal methods is desirable from a perspective
of animal welfare (European Union, 2010; Australian Government,
2013; US Government, 2015). To our knowledge, the few studies that
have sampled the same individuals over time after diet change have
shown marked variation in carbon and nitrogen isotope incorporation
rates (Hilderbrand et al., 1996; Voigt et al., 2003; Evans Ogden et al.,
2004; Kim et al., 2012). Similarly, individual variation in TDF was re-
vealed within different species (Lecomte et al., 2011; Kurle et al., 2014;
Galván et al., 2016).

In the present study, we estimated isotope incorporation rates and
TDF of carbon and nitrogen stable isotopes in the scales of 48 European
sea bass (Dicentrarchus labrax) from three distinct populations (Atlantic
AT, West Mediterranean WM and East Mediterranean EM; Guinand
et al., 2017) reared under controlled conditions. European sea bass is
highly prized by both commercial and sports fishermen, but a severe
decline in stocks has recently raised concern about the conservation
status of the species (de Pontual et al., 2019). The use of carbon and
nitrogen stable isotope analyses is a good tool to improve the man-
agement of this species because it can reveal its feeding habitats and
migrations (Cambiè et al., 2016). We assessed whether there were
differences in isotope incorporation rates and TDF among (1) the three
populations, (2) sexes and (3) individuals. Finally, empirical stable
isotope mixing models were run with different carbon and nitrogen TDF
to assess their influence on dietary predictions in field-based studies.
Scales are a superposition of an organic layer mainly composed of
proteins (mostly collagen) and an inorganic layer which is a carbonate
salt (Hutchinson and Trueman, 2006). However, scales are not an in-
alterable record: several studies support the existence of a catabolic
activity in scales with the destruction and the renewal of collagen by
cells within the scale structure, respectively named osteoclasts and
osteoblasts (Sire et al., 1990; Suzuki et al., 2000). Thus, it can be hy-
pothesized that isotope incorporation rate in scale might not be only
driven by growth.

2. Material and methods

2.1. Ethics statement

This study was carried out in accordance with the recommendations
of Directive 2010-63-EU on the protection of animals used for scientific
purposes. Protocols were approved by C2EA − 36 (“Comité d'éthique
en expérimentation animale Languedoc-Roussillon”) under the au-
thorization APAFiS n° 2,018,081,714,549,886 (version 2).

2.2. Animals and rearing conditions

A controlled feeding experiment was conducted on the three po-
pulations of European sea bass: AT, WM and EM. Fish were produced at
the Ifremer Experimental Aquaculture Research Station in Palavas-les-
Flots, France (43°31′13°N, 3°54′37°E). Fish were produced on the same
day by artificial fertilization and each population reared in triplicate in
nine separate tanks from birth to 188 days of age. At that stage, 51 AT,
46 WM and 51 EM fish were randomly selected from the different tanks,
individually identified by injecting a passive integrated transponder tag
(PIT-tag, Biolog-id®), then grouped in a 1500 L tank 21 days before the
beginning of the diet change experiment. The tank was supplied with
recirculated water treated by UV, sand filter and biological filter,
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renewal rate was 100% per hour. Water temperature was
21.1 ± 0.9 °C and oxygen saturation rate was on average 11.9 mg L−1.
An artificial photoperiod was set up to provide a light-dark ratio of
12:12 h.

2.3. Diet change experiment

For 100 days until the beginning of the diet change experiment (at
209 days post hatching), fish were fed ad libitum (approximatively
2.5% of their body weight per day) with a commercial diet (diet 1, “Neo
Supra-S", Le Gouessant Aquaculture®, Lamballe, France). Then, fish
were switched to a diet (diet 2) manufactured at the experimental fish
farm of Donzacq (INRAE, France, 43°39′20°N 0°47′24°W). Each diet was
taken from a single bag of feed, to avoid any potential variability in
δ13C and δ15N values among feed batches. Diet 2 was formulated with a
similar proximate composition to diet 1 (58% of crude protein, 13% of
fat, 8.4% of carbohydrates, 10% of ash and 0.5% of fiber) in order to
minimize nutritional stress, but it was formulated to have markedly
different δ13C and δ15N values. The differences in δ13C and δ15N values
between the two diets were achieved by inclusion of ingredients from
different origins. The values of δ13C were − 22.24 ± 0.08‰ in diet 1
vs. -25.30 ± 0.07‰ in diet 2, while δ15N was 7.98 ± 0.12‰ in diet 1
vs. 6.39 ± 0.15‰ in diet 2. Diets were supplied by an automatic self-
feeder that fish were able to activate as desired (Covès et al., 2006).

2.4. Growth and scale sampling

At the beginning of the diet change experiment (day 0, i.e. at
209 days post hatching), 16 tagged fish per population (48 fish from the
148 fish reared in total) were randomly selected. Before any handling,
all the fish were anaesthetized with benzocaine (37.5 g of ethyl 4-
aminobenzoate per m3 of seawater). The fish were weighed once a week
from day 0 to day 63, once every three weeks from day 63 to day 126
and then at days 154, 161, 175 and 217. For each individual fish,
growth rate (Kg) was estimated by fitting an exponential growth model
to fish weight data as following:

= ×W W et
Kg t

0 (1)

where Wt and W0 are the fish weights at time t and at the beginning of
the experiment respectively, Kg expressed in day−1.

At each weighing time, five to ten fully formed scales were sampled
from the dorsal area behind the head of each of the 48 selected fish,
without taking the new scales that had regenerated after the previous
samplings. Scales were obtained gently with curved pliers, taking great
care not to cause any deep wounds. The fish were then treated with a
povidone‑iodine gel to promote the healing process. Scales were care-
fully rinsed with ultra-pure water (milli-Q®, Merck-Millipore,
Molsheim, France), dried at 60 °C for 48 h and stored in a cool and dry
place pending analysis. To assess whether the sampling protocol was
stressful or not, the weights of the 48 fish were compared to those of the
other fish reared in the same tank and treated identically without any
scale sampling. At the end of the experiment, fish were dissected to be
sexed.

2.5. Carbon and nitrogen stable isotope analysis

Preliminary isotope analyses were performed to test the influence of
carbonate on δ13C values of scales (Perga and Gerdeaux, 2003). Several
scales were rinsed with hydrochloric acid (HCl, 2 mol L−1), rinsed three
times with ultra-pure water and finally dried for 12 h at 45 °C. The
differences between δ13C values of untreated and acid-washed scales
was −0.25 ± 0.15‰ and thus inferior to analytical error as previously
reported by Sinnatamby et al. (2008). Consequently, scales samples
were used in their raw form without treatment. Different scales from
the same part of a same fish, sampled a same day, had similar carbon
and nitrogen stable isotope values (−19.81 ± 0.18‰ and

9.95 ± 0.09‰, respectively). Furthermore, as C:N ratio of scales was
3.0 ± 0.1, lipid extraction was not necessary (Skinner et al., 2016).
The δ13C and δ15N values were independent of the C:N ratio
(R2 = 0.1102 between δ13C values and C:N ratio; R2 = 0.0015 between
δ15N values and C:N ratio). Between 0.3 and 2 mg of whole dried scales
per sample were packed into a tin capsule to determine δ13C and δ15N
simultaneously (scales were never cut or ground). Moreover, δ13C and
δ15N values of diets 1 and 2 were determined using pellets from dif-
ferent areas of each feed bag. Diets 1 and 2 were ground into a fine and
homogeneous powder using a mortar and a pestle. Then, approximately
0.5 mg of powder was packed and also analysed.

Continuous-flow elemental analyzer/isotope ratio mass spectro-
metry (EA/IRMS) was used to analyze δ13C and δ15N values of all
samples using an Isoprime GVI IRMS (Elementar, Langenselbold,
Germany) interfaced with an EuroEA 3000 elemental analyzer
(Eurovector, Pavia, Italia). The 13C/12C and 15N/14N ratios were ex-
pressed in conventional delta (δ) notation in per mille (‰) relative to
the levels of 13C in Vienna Pee Dee Belemnite and 15N in atmospheric
air, according to the following equation:

=x
R R

R
sample standard

standard

where x is 13C or 15N and R is the ratio of heavy to light isotope
(13C/12C or 15N/14N). Repeated measurements on alanine exhibited a
precision of± 0.11‰ and ± 0.12‰ for δ13C and δ15N values, re-
spectively. Commercial standards, alanine, wheat flour and corn flour
from IsoAnalytical Lab (Crew, United Kingdom), IAEA-N-1, IAEA-N-2,
IAEA-CH3 cellulose and USGS24 graphite from National Institute of
Standard and Technology (Gaithersburg, USA) were used for a multi-
point calibration.

2.6. Estimation of isotope incorporation rates, catabolic rates and trophic
discrimination factors

For each fish, isotope incorporation rates of carbon and nitrogen
were estimated using a single-compartment and first-order kinetic time-
dependent model (Hobson and Clark, 1992):

= + ×x x x x e( )t
x t

0 (2)

where x is carbon or nitrogen, δxt is the isotopic value of fish scale at
time t, δx∞ is the estimated asymptotic stable isotope value that fish
scales reach at the steady state with their new diet, δx0 is the isotopic
value of fish scale at the beginning of the diet change experiment, and
λx is the isotope incorporation rate (expressed in day−1). A one-com-
partment model was chosen as this is more relevant than a multi-
compartment model for scales (Heady and Moore, 2013).

Isotopic half-life, i.e. the time needed for half of the carbon or ni-
trogen in the scales to be replaced by atoms from a new diet, was cal-
culated as:

=t x ln
x
(2)

50 (3)

where t50 is the isotopic half-life (expressed in days), x is carbon or
nitrogen, and λx is the estimated value of isotope incorporation rate.

In order to estimate how long it takes to reach an equilibrium state,
the time needed for 95% of the scale carbon or nitrogen to be replaced
by atoms from a new diet was calculated as:

=t x ln
x

(20)
95 (4)

The relative contribution of growth and catabolic rates to change in
carbon and nitrogen stable isotope values were estimated using a time-
dependent model. Isotope incorporation rate (λ) is the result of join
contribution of growth rate (Kg) and catabolic rate (Kc, Hesslein et al.,
1993). For each individual, catabolic rates of carbon and nitrogen were
determined as:
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= +x Kg Kcx (5)

where x is carbon or nitrogen, Kg is estimated using eq. 1 and Kcx is the
catabolic rate (expressed in day−1).

Finally, carbon and nitrogen diet-to-fish trophic discrimination
factors (TDF) was calculated for each fish as:

=x x xdiet (6)

where Δx is the TDF (expressed in ‰), x is carbon or nitrogen, δx is the
stable isotope value measured in fish scales at the end of the experiment
(δx at day 217) or at the steady-state (δx∞ estimated by eq. 2) and δxdiet
is the stable isotope value of the diet.

2.7. Empirical mixing models

To further explore the importance of using an accurate TDF, em-
pirical mixing models were run with six different sets of carbon and
nitrogen TDF. Sets chosen were: (1) 1.5 and 2.75‰, (2) 5.01 and
2.50‰, (3) 4.83 and 2.56‰, (4) 4.90 and 2.36‰, (5) 2.95 and 0.93‰,
(6) 5.59 and 3.55‰, for carbon and nitrogen respectively. Set (1) is
from literature for fish tissues (Sweeting et al., 2007a, 2007b). Sets (2),
(3) and (4) are corresponding to the average values estimated in this
study for scales from AT, WM and EM, respectively. Sets (5) and (6) are
corresponding to minimal and maximal values estimated in this study.
These five sets reflect the variation in scale TDF at population and in-
dividual levels. The relevance of empirical mixing models was to de-
termine (1) whether it was really necessary to use TDF of scales rather
than those of others tissues from fish literature and (2) whether the
variability measured among populations or individuals influenced the

predictions of the mixing model. The contributions of the two hy-
pothetical diets (source 1 and source 2) were determined using simmr
package (“Stable Isotope Mixing Models in R", Parnell et al., 2013;
Parnell, 2019). Empirical δ13C and δ15N values of fish scales, source 1
and source 2 were − 15 and 8‰; −25 and 11‰ and − 15 and 2‰,
respectively. The carbon and nitrogen stable isotope values of sources 1
and 2 were chosen to have almost an equal contribution of 50%/50% to
the diet when estimated with carbon and nitrogen TDFs obtained on the
48 fish.

2.8. Statistical analysis and modelling

The exponential growth model and time-dependent incorporation
models were firstly applied to the combined data from all 48 fish, using
iterative nonlinear regression with the “nlme()” function from the nlme
package (Pinheiro et al., 2018) in R (version 3.5.2., R Core Team, 2018)
assuming that individual effect was a random effect with a normal
distribution. Growth rate (Kg), as carbon and nitrogen isotope in-
corporation rates (λx), catabolic rates (Kcx) and TDF (Δx) were thus
estimated for the whole fish group while taking into account variability
among individuals. Secondly, each parameter was estimated for each
population and sex, and values were compared among populations and
sexes (considered as covariates) using an analysis of variance (ANOVA;
Pinheiro and Bates, 2000). Pairwise differences were then explored
using post hoc Student tests. The standard error (SE) of the parameters,
i.e. the accuracy of the estimations made by the models, was calculated
for the whole group, the populations and sexes. We then estimated one
value of each parameter for each individual, using the same models.

Fig. 1. Fish growth according to the population: Atlantic (A, n = 16), West Mediterranean (B, n = 16) and East Mediterranean (C, n = 16) populations as well as
males (D, n= 17) and females (E, n= 31). Curved lines indicate the mean experimental growth model fitted to measured data using iterative nonlinear regression.
Points indicate the weight measured for each fish.
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The mean and the standard deviation (i.e. the variability) of each
parameter were then calculated combining all individual estimations.
The δ13C and δ15N values measured at day 217 were compared among
populations and sexes with an ANOVA applied to a linear model, con-
sidering population or sex as a fixed effect. The assumptions of nor-
mality and homoscedasticity of residuals were tested with Shapiro-Wilk
and Bartlett tests, respectively, for both nonlinear and linear models.

3. Results

3.1. Fish growth rates and survival

Fish survival was 100% throughout the experiment and no sig-
nificant difference appeared when comparing growth rates between
sampled and non-sampled fish. Among the sampled fish, the numbers of
males and females were respectively 6 and 10 for AT, 5 and 11 for WM
and 6 and 10 for EM.

During the experiment, fish grew exponentially from 22.5 ± 5.5 g
to 167.2 ± 45.3 g for AT, 22.3 ± 7.4 g to 183.6 ± 64.6 g for WM
and 23.2 ± 7.2 g to 188.2 ± 80.7 g for EM (Fig. 1). Growth rates (Kg)
were similar among populations (Table 1, p > 0.05, ANOVA). In
contrast, Kg differed significantly according to sex (Fig. 1, Table 1,
p < 0.001, ANOVA) with the 31 females having a higher Kg than the
17 males. Females grew from 25.5 ± 5.6 g to 188.9 ± 62.4 g
(0.75 g day−1) whereas males grew from 17.6 ± 4.8 g to
162.4 ± 61.8 g (0.67 g day−1). Individual growth rate varied from
0.0061 to 0.0126 (mean ± standard deviation: 0.0090 ± 0.0019) and
from 0.0066 to 0.0136 day−1 (0.0101 ± 0.0016) for males and fe-
males, respectively.

3.2. Isotope incorporation rates

To reach a new equilibrium with diet 2, δ13C and δ15N values in the
scales of the 48 fish rapidly changed with time from −17.72 ± 0.60 to
−20.25 ± 0.28‰ and from 10.85 ± 0.36 to 9.15 ± 0.36‰, re-
spectively (Fig. 2 and Fig. 3). Carbon and nitrogen isotope incorpora-
tion rates (λC and λN, respectively) were accurately estimated using a

single compartment first-order kinetic time-dependent model. Neither
λC nor λN were significantly different among the three populations
(p > 0.05, ANOVA, Table 1). The mean time necessary for half of the
carbon and nitrogen in the 48 fish scales to be replaced by new atoms
following the diet change was 33 days for carbon and 67 days for ni-
trogen. A diet steady state would be reached after 143 days and
291 days for carbon and nitrogen, respectively (Table 1).

Both λC and λN were significantly different between sexes
(p < 0.01, ANOVA, Table 1) with males having higher λC and λN than
females. Carbon and nitrogen half-lives differed markedly among in-
dividuals. Carbon half-life varied from 17 to 159 days (mean ±
standard deviation: 34 ± 32 days) and from 15 to 143 days
(45 ± 29 days), for males and females, respectively. Nitrogen half-life
varied from 18 to 107 days (54 ± 26 days) and from 34 to 342 days
(87 ± 66 days) for males and females, respectively.

3.3. Contribution of growth and catabolic rates to isotopic incorporation

Carbon and nitrogen Kc of fish scales were similar among the three
populations (p > 0.05, ANOVA, Table 1). In contrast, KcC and KcN
differed significantly between sexes, with males having higher Kc than
females (p < 0.05, ANOVA, Table 1). Regarding KcN, it was never
significantly different from zero, except for males (p < 0.05, Student
test, Table 1). Carbon Kc varied from −0.0028 to 0.0318 day−1

(mean ± standard deviation: 0.0189 ± 0.0093 day−1) and from
−0.0060 to 0.0337 day−1 (0.0107 ± 0.0102 day−1) for males and
females, respectively. Nitrogen Kc varied from −0.0058 to
0.0315 day−1 (0.0074 ± 0.0094 day−1) and from −0.0076 to
0.0078 day−1 (0.0008 ± 0.0047 day−1) for males and females, re-
spectively.

3.4. Sensitivity of empirical mixing models to TDF

At day 217, scales from the 48 fish reached carbon and nitrogen
steady-state with the new diet. Fish scale δ13C and δ15N values mea-
sured at day 217 were close to the asymptotic values estimated by the
model. Indeed, the differences between δ13C and δ15N values measured

Table 1
Estimated parameters from eqs. 1 to 6 using iterative nonlinear regression: growth rate (Kg), carbon and nitrogen isotope incorporation rates (λC and λN), carbon and
nitrogen half-lives (t50C and t50N), time to reach carbon and nitrogen isotopic equilibria with the new diet (t95C and t95N), carbon and nitrogen catabolic rates (KcC
and KcN), KcC/λC*100 and KcN/λN*100, asymptotic values δ13C∞ and δ15N∞ as well as carbon and nitrogen asymptotic trophic discrimination factors (ΔC∞, ΔN∞).
Measured δ13C and δ15N values (δ13C217 and δ15N217) as well as carbon and nitrogen trophic discrimination factor (ΔC217, ΔN217) at day 217. Mean values are given
with standard error (± SE, n= 48 for all fish, n= 18 for AT, WM and EM populations, n = 17 and 31 for males and females, respectively). Standard error reflects
the accuracy of the estimations provided by the models fitted at whole group level as well as at population and sex levels.

All fish AT WM EM Males Females

Kg (day−1) 0.0097 ± 0.0003 0.0095 ± 0.0005 0.0098 ± 0.0005 0.0098 ± 0.0005 0.0090 ± 0.0004b 0.0101 ± 0.0003a
Carbon
λC (day−1) 0.0210 ± 0.0010 0.0231 ± 0.0019 0.0196 ± 0.0018 0.0208 ± 0.0018 0.0235 ± 0.0017a 0.0198 ± 0.0012b
t50C (day) 33 ± 2 30 ± 2 35 ± 3 33 ± 3 29 ± 2a 35 ± 2b
t95C (day) 143 ± 7 130 ± 11 153 ± 14 144 ± 13 127 ± 9a 151 ± 9b
KcC (day−1) 0.0115 ± 0.0011 0.0140 ± 0.0019 0.0098 ± 0.0018 0.0110 ± 0.0018 0.0146 ± 0.0018a 0.0098 ± 0.0013b
KcC/ λC*100 (%) 53.3 60.6 50.0 52.9 62.1 49.5
δ13C∞ (‰) −20.39 ± 0.03 −20.29 ± 0.05A −20.47 ± 0.06B −20.40 ± 0.05A,B −20.42 ± 0.05 −20.36 ± 0.04
ΔC∞ (‰) 4.91 ± 0.03 5.01 ± 0.05A 4.83 ± 0.06B 4.90 ± 0.05A,B 4.88 ± 0.05 4.94 ± 0.04
δ13C217 (‰) −20.25 ± 0.04 −20.17 ± 0.09 −20.29 ± 0.06 −20.29 ± 0.08 −20.31 ± 0.08 −20.21 ± 0.05
ΔC217 (‰) 5.05 ± 0.04 5.13 ± 0.09 5.01 ± 0.06 5.01 ± 0.08 4.99 ± 0.08 5.09 ± 0.05
Nitrogen
λN (day−1) 0.0103 ± 0.0010 0.0105 ± 0.0017 0.0108 ± 0.0017 0.0094 ± 0.0017 0.0130 ± 0.0017a 0.0087 ± 0.0012b
t50N (day) 67 ± 7 66 ± 11 64 ± 10 74 ± 14 53 ± 7a 80 ± 11b
t95N (day) 291 ± 29 285 ± 47 277 ± 45 319 ± 60 230 ± 31a 344 ± 48b
KcN (day−1) 0.0006 ± 0.0010 0.0010 ± 0.0017 0.0010 ± 0.0017 −0.0004 ± 0.0017 0.0040 ± 0.0017a −0.0014 ± 0.0012b
KcN/λN*100 (%) 5.8 9.5 9.3 0 30.8 0
δ15N∞ (‰) 8.85 ± 0.06 8.89 ± 0.09 8.95 ± 0.09 8.75 ± 0.10 8.86 ± 0.08 8.82 ± 0.08
ΔN∞ (‰) 2.46 ± 0.06 2.50 ± 0.09 2.56 ± 0.09 2.36 ± 0.10 2.47 ± 0.08 2.43 ± 0.08
δ15N217 (‰) 9.15 ± 0.05 9.18 ± 0.08 9.22 ± 0.08 9.06 ± 0.11 9.09 ± 0.08 9.19 ± 0.07
ΔN217 (‰) 2.76 ± 0.05 2.79 ± 0.08 2.83 ± 0.08 2.67 ± 0.11 2.70 ± 0.08 2.80 ± 0.07

Upper and lower case letters indicate significant differences among populations and sexes, respectively (ANOVA, p < 0.05).
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at day 217 and asymptotic values were 0.14‰ and 0.30‰, respectively
(eq. 2, Table 1). Based on δ13C and δ15N values measured at day 217,
carbon and nitrogen TDF were not significantly different among po-
pulations or sexes (p > 0.05, ANOVA, Table 1). However, when based
on the estimated asymptotic values, carbon TDF was significantly dif-
ferent among populations (p < 0.05, ANOVA, Table 1). This difference
was, however, inferior to the analytical error (less than 0.2‰ between
minimal and maximal TDF among populations). Carbon and nitrogen
TDF varied among individuals from 2.95 to 5.59‰ (mean ± standard
deviation: 4.83 ± 0.44‰) and from 0.93 to 3.55‰ (2.63 ± 0.56‰),
respectively.

In empirical mixing models, the use of average carbon and nitrogen
TDF estimated for each population, as well as minimal and maximal
TDF, had no significant influence on the relative contributions of source
1 and source 2 to fish diet (Fig. 4). Indeed, the different scale TDF led to
a predicted contribution of source 1 between 41.5 and 45.2% and a
predicted contribution of source 2 between 54.8 and 58.5%. On the
other hand, the use of carbon and nitrogen TDF estimates for fish tissues
from the literature caused a large under-estimation of the source 1
(24.4%) and over-estimation of the source 2 (75.6%), compared to the

use of specific fish scale carbon and nitrogen TDF.

4. Discussion

In the present study, non-lethal sampling of scales permitted esti-
mation of how carbon and nitrogen isotope incorporation rates, and
TDF, differed among populations, sexes and individuals of European sea
bass. This revealed variation between sexes in both carbon and nitrogen
isotope incorporation rates, among populations in carbon TDF, and was
particularly marked among individuals. Empirical mixing models
showed that (1) the specific TDF of scales is needed to obtain accurate
predictions, literature values for other tissues are not satisfactory, and
(2) the variability that existed among populations or individuals did not
influence mixing model predictions.

4.1. Variation in growth rate

Our results highlighted that growth rates of fish (Kg) were equiva-
lent between fish from AT, WM and EM populations. These results were
not in accordance with Vandeputte et al. (2014). The differences

Fig. 2. Change in δ13C values of fish scales following a diet change according to the population: Atlantic (A, n = 16), West Mediterranean (B, n = 16) and East
Mediterranean (C, n= 16) populations as well as males (D, n= 17) and females (E, n= 31). Straight lines represent the δ13C value for the new diet (diet 2). Curved
lines represent the mean single-compartment first-order kinetic model fitted to measured data using iterative nonlinear regression. Points indicate δ13C values of
scales measured for each fish.
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between both studies may be explained by the design of the experi-
mental system such as feed, temperature, rearing density, anaesthesia
frequencies or other uncontrolled effects. Fish multiplied their weight
by eight after 217 days of experimentation. The 48 fish sampled for
stable isotope analyses had similar final weights to non-sampled fish
present in the rearing system indicating that frequent scale sampling
does not markedly impact fish welfare.

Our study confirmed that Kg of European sea bass is influenced by
sex with the 31 females having 12% higher Kg than the 17 males.
Previous studies have also shown that females are larger than males at a
given age, with differences ranging between 20 and 40% (Chatain et al.,
1997; Gardeur et al., 2001; Saillant et al., 2001).

4.2. Variation in isotope incorporation rates

Isotopic carbon and nitrogen half-lives (t50C and t50N) of fish scales
were similar among the three fish populations. Carbon t50 was esti-
mated to be 33 days whereas nitrogen t50 was estimated to be 67 days
for whole scales of fish. It is important to note this result was obtained
in juvenile fish and would probably be different in other development

stages. Values estimated for nitrogen were relatively close to those re-
ported in scales of Oncorhynchus mykiss (27.7 days for nitrogen, Heady
and Moore, 2013) but different from those reported for Barbus barbus
(145 days, Busst and Britton, 2018). To our knowledge, no estimation of
t50C is available in literature for fish scales. In the present study, t50C
was half the t50N. Depending on species, tissues and environmental
conditions, t50C and t50N have almost any relationship: they can be
closely linked (Herzka and Holt, 2000; Vander Zanden et al., 2015),
t50C can be higher than t50N (Church et al., 2009; Lefebvre and Dubois,
2016) or lower (Carleton and Martínez del Rio, 2005). Such differences
between t50C and t50N indicate a decoupling of carbon and nitrogen
metabolic pathways and are dependent upon the sources of carbon and
nitrogen used for de novo synthesis of proteins in scales. Fish scale is
composed of an organic layer (mainly collagen) and an inorganic layer
(carbonate salt). However, carbonate content in the scales is very low so
the measured δ13C value of scales only represents the organic layer
(Hutchinson and Trueman, 2006). Proteins are synthesized from dietary
and non-dietary sources including proteins, lipids and carbohydrates.
Firstly, the use of dietary carbohydrates and lipids rather than dietary
proteins to build proteins of fish scales could explain such carbon and

Fig. 3. Change in δ15N values of fish scales following a diet change according to the population: Atlantic (A, n = 16), West Mediterranean (B, n = 16) and East
Mediterranean (C, n= 16) populations as well as males (D, n= 17) and females (E, n= 31). Straight lines represent the δ15N value for the new diet (diet 2). Curved
lines represent the mean single-compartment first-order kinetic model fitted to measured data using iterative nonlinear regression. Points indicate δ15N values
measured of scales for each fish.
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nitrogen decoupling (Hobson and Bairlein, 2003). Since neither car-
bohydrates nor lipids can provide the nitrogen in proteins, lower value
of t50C than t50N can be explained by an increase of the contribution of
endogenous nitrogen to synthesize amino acids, leading to a decrease of
dietary nitrogen incorporation. Conversely, it can be hypothesized that
dietary vs. non dietary contributions of carbon remain constant
(Carleton and Martínez del Rio, 2005). Secondly, Carleton and Martínez
del Rio (2005) hypothesized that dietary nitrogen incorporation is re-
duced compared to dietary carbon incorporation when nitrogen is used
to synthesize non-essential amino acids. Endogenous nitrogen is reused
after amino acid degradation to synthesize new non-essential amino
acids, instead of being excreted. In contrast, this process does not exist
with essential amino acids because they cannot be synthesized and are
obtained exclusively from feed. As scale collagen is mainly composed of
non-essential amino acids (i.e. glycine, alanine and proline) with es-
sentials estimated to comprise less than 20% of scale collagen (Kimura
et al., 1991; Kaushik, 1998), a decoupling between carbon and nitrogen
may occur.

Results of the time-dependent model indicated that Kc contributed
to 53.3% and 5.8% to λC and λN, respectively. Regarding nitrogen,
previous studies reported that KcN was close to zero in fish scales, but
did not indicate the sex of the sampled fish (Heady and Moore, 2013;
Busst and Britton, 2018). Present results are consistent with previous
studies, except for males whose KcN contributed to 30.8% to λN. In the
case of carbon, isotope incorporation rate seems to be partly driven by
catabolic rate. Thus, the hypothesis that isotope incorporation rate in
scales was not driven only by growth seems to be validated for carbon,
but not for nitrogen (except in the case of males). To estimate KcC and
KcN, we assumed the change in total weight of fish was a reliable proxy

to estimate Kg of scales. This assumption is supported by Leim (1924)
and Heidarsson et al. (2006) who proved that specific growth rate of
whole fish was correlated to specific growth rates of scales with a 1:1
ratio. Moreover, the elemental composition of scales (i.e. C:N ratio) was
constant throughout the diet change experiment (3.0 ± 0.1 for C:N
ratio, 23.29 ± 2.04% and 7.68 ± 0.67% for C and N percentages,
respectively). Consequently, we concluded that no shift in scale com-
position occurred over time and thus whole fish Kg could be used
without bias to estimate both carbon and nitrogen catabolic rates.
However, whole fish Kg likely remains a rough estimation of the true Kg
of carbon and nitrogen in scales and other factors such as moisture
concentration in whole fish could be taken into account to improve Kg
estimation in scales. Thus, further investigation is required to validate
our results.

It is interesting that males and females differed in their carbon and
nitrogen half-lives. Although females had higher Kg than males, lower
KcC and KcN were estimated. These results would support that Kg is
inversely correlated with Kc in young fish with smaller males having
higher Kc (Rossignol et al., 2011). However, the variability of t50C and
t50N was high within each sex. For example, some females reached t50C
after only 17 days whereas others needed more than 150 days. Similar
variations have been measured in muscle of leopard shark with t50C
varying from 150 to 792 days among individuals (Kim et al., 2012). As
variability of Kg within males and females was low (standard devia-
tion:mean ratio was around 0.15 for each sex), these results suggest that
such variability of λC and λN was due to the high variability of KcC and
KcN, respectively. This level of variability in growth rate is similar to
previous reports for European sea bass (Gardeur et al., 2001;
Vandeputte et al., 2014).

The results of our study provide important understanding of the
isotopic clock, which is essential to interpret diet and habitat shifts over
time in field (Phillips and Eldridge, 2006; Wolf et al., 2009; Sweeting,
2010). In field-based stable isotope studies, the identification of the
new food sources using scales of juvenile fish will require at least 143
and 291 days after a diet change for carbon and nitrogen, respectively.
Moreover, after a diet change, female European sea bass will need 19%
and 50% more time than males to reach an isotopic equilibrium for
carbon and nitrogen, respectively. The potential variability among in-
dividuals will also be important to consider to avoid misinterpretation
of field data. Our results highlight that strong variation in individual
stable isotope values can appear even if individuals are fed with a si-
milar diet. Thus, as already mentioned by Barnes et al. (2008), one
should be careful before concluding that individual variation in isotopic
values is a proof that individuals rely on distinct food sources. Varia-
bility in isotope incorporation rates was linked to the intrinsic meta-
bolism of each fish rather than to a measurement bias. Carbon and
nitrogen stable isotope values were similar among scales from the same
part of a same fish. Furthermore, neither carbonate nor lipid content of
the scales could account for the variability. The variability in isotope
incorporations rates of scales does not preclude the use of this tissue in
field-based studies. Indeed, individual variability in isotope incorpora-
tions rates of scales was less than that found for red blood cells and
muscle, two tissues frequently used in field-based studies (Kim et al.,
2012). The use of scales to elucidate ecology of fish must consider the
time required to reach an equilibrium state with diet. As individual
variability must be high, interpretation of results needs to take into
account this constraint that is true for other tissues.

4.3. Trophic discrimination factor

Our values of carbon and nitrogen TDF of scales (4.91‰ and
2.46‰, respectively) are within the range of TDF reported for fish
scales in the literature (Heady and Moore, 2013; Busst and Britton,
2016, 2018). For example, Busst and Britton (2016) reported carbon
TDF of 4.7 and 4.9‰ and nitrogen TDF of 2.4 and 2.4‰ for Barbus
barbus and Squalius cephalus scales, respectively. Accurate TDF of a

Fig. 4. Estimation of the contributions of two food sources to fish diet using
mixing models with different couples of carbon and nitrogen trophic dis-
crimination factors (TDF). TDF 1 is 1.5 and 2.75‰ estimated for fish tissues by
Sweeting et al. (2007a, 2007b). TDF 2, 3 and 4 are: 5.01 and 2.50‰, 4.83 and
2.56‰, 4.90 and 2.36‰, corresponding to the average values estimated in this
study for scales from respectively Atlantic, West Mediterranean and East
Mediterranean fish. TDF 5 and 6 are: 2.95 and 0.93‰, 5.59 and 3.55‰, cor-
responding to the minimal and maximal values estimated in this study. Grey
and white bars are the percentages of source 1 and source 2, respectively, es-
timated by the empirical mixing models.
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species can only be estimated when equilibrium with the new diet has
been reached. Therefore, if the TDF estimated using δ13C and δ15N
values measured at day 217 included any vestiges of δ13C and δ15N
values from the diet 1, prior to the diet change, they would not be valid
and reliable. The δ13C and δ15N values measured at day 217 were,
however, similar to those estimated by the model at the asymptote,
indicating that fish scales were indeed at equilibrium with their new
diet; any influence of diet 1 was negligible. The higher value of carbon
relative to nitrogen contrasts with values reported for other fish tissues
such as white muscle (Sweeting et al., 2007a, 2007b). In fact, carbon
and nitrogen TDF of scales reflect the amino acid composition of col-
lagen that differs from that of muscle (Howland et al., 2003). The
variability found among individuals for carbon and nitrogen TDF (from
2.95 to 5.59‰ and from 0.93 to 3.55‰, respectively) is broader than
that previously reported for scale collagen (Guiry and Hunt, 2020).
Individual variability of TDF in scales may vary depending upon fish
species and whether scales were analysed in their raw form or if col-
lagen, their main component, was extracted for separate analysis (e.g.
Guiry and Hunt, 2020). Our results highlighted that the output of the
mixing model considerably differs when using TDF of fish tissues from
literature (Sweeting et al., 2007a, 2007b) or TDF estimated from scales.
In isotope field-based studies, we recommend to use scale-specific TDF
to avoid any bias in the estimation of the contributions to diet of dif-
ferent food sources. Although TDF were variable in scales among po-
pulations and individuals, estimation of the contribution of each food
source to diet based upon the TDF showed almost no variability. Con-
sequently, variation in scale TDF is not an obstacle in field-based stu-
dies to accurately determine the contributions to diet of various food
sources.

To conclude, present results highlight the need to take into account
individual variation in field-based studies. In particular, individual
variation can have a strong impact when scheduling sampling cam-
paigns, to ensure all fish have reached equilibrium after a diet change,
and when discussing whether fish rely on distinct or similar food
sources.
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Selective breeding programs offer promise for sustainable improvements to feed efficiency in 

farmed fishes. Nonetheless, protocols to select for feed efficiency have not yet been developed 

due to a lack of critical information. In my thesis research, I aimed to address some major 

methodological issues in estimating individual feed efficiency and to evaluate indirect selection 

criteria for this trait. I studied two different species, the Nile tilapia Oreochromis niloticus and 

the European sea bass Dicentrarchus labrax. In Nile tilapia, I firstly estimated individual feed 

efficiency from juvenile to commercial size. I then estimated individual feed efficiency with 

two methods (individual rearing and video-recording on groups), under two feeding rates 

(optimal and restricted) and in two strains (GIFT strain in Malaysia and Cirad strain in France). 

In European sea bass, I studied individual feed efficiency in three different populations (AT, 

WM and EM) reared at two different temperatures (18°C and 24°C), with feeding rates ranging 

from ad libitum down to fasting. I finally focussed upon oxygen consumption and stable isotope 

values as potential predictors of individual feed efficiency. 

In light of my results, I will discuss whether the approaches developed can be generalized across 

biological models and rearing conditions to set up selective breeding programs. I will then 

propose some ideas to identify indirect selection criteria for feed efficiency. These ideas will 

be based upon my results plus the potential for implementing other existing tools. 

1. Which method should be used to measure individual feed intake? 

Two methods were used to measure individual FI: individual rearing and video-recording on 

groups. These methods were chosen because individual FI is measured for each meal over 

several consecutive days, unlike the use of X-radiography.  

Focussing on a single method would have advantages, such as that future studies will be easier 

to compare and efforts could be concentrated to optimise technical aspects of FI measurement. 

Technical and biological aspects of both methods must, however, be considered in the light of 

the results, before concluding that one is better than the other. 
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1.1. Technical aspects 

The goal is to develop methods that are viable for selective breeding programs, so technical 

aspects cannot be neglected. Table 4 sums up critical steps of both methods based on the 

experience gained.  

 

Table 4. Main technical aspects of the video-recording and individual rearing methods. Fish are assumed to be 

juveniles and only one person phenotypes them. 

  Video-recording method Individual rearing method  

Feeding trial 

Nile tilapia: one week necessary for acclimation 

and at least another week to estimate individual 

feed efficiency (to observe growth variability). 

 

Not used in European sea bass. 

Nile tilapia: one week necessary for acclimation and at 

least another week to estimate individual feed 

efficiency. 

 

European sea bass: four weeks necessary for 

acclimation and at least ten days to estimate individual 

feed efficiency. 

Feeding fish 

Nile tilapia: pellets are given one after another 

and by hand. About 8 minutes necessary to feed 

a group of ten fish (each weighing 10 g) with an 

optimal ration. For 200 fish: 2 hours and 40 

minutes per meal (two meals per day). Probably 

not feasible in larger Nile tilapia because the 

onset of sexual maturity increases aggressive 

behaviour and fish mortality (reviewed by 

Gonçalves-de-Freitas et al., 2019). 

 

European sea bass: not used because fish will 

probably not eat while a human being is close 

to their aquarium. 

Not species-dependent. Feed rations are prepared on a 

weekly basis: the amount of feed is weighed and 

shared equally among meals. This takes about 4 hours 

per week. About 1 hour per meal for 200 fish fed 

without automatic feeders (however European sea bass 

may not eat before the experimenter has left the room). 

About 15 minutes necessary per meal for 200 fish fed 

with automatic feeders (to check they have worked 

properly). However, automatic feeders require 

frequent cleaning and repair, in particular for use in 

seawater. 

Collecting 

and counting 

uneaten 

pellets 

(Step not included: 0 minutes) 

Not species-dependent, but strongly feeding rate-

dependent. For 200 fish wasting up to 30 pellets per 

meal under an excess feeding rate, up to three hours 

are necessary after each meal.  For 200 fish under an 

optimal (but not excessive) or restricted feeding rate, 

only 30-60 minutes are necessary after each meal. 

Using this method, all individual FI data are available 

by the end of the feeding trial. 

Analysing 

video-

recordings 

Nile tilapia: analysis requires about 20 minutes 

per meal for ten fish fed an optimal ration, and 

10 minutes for a restricted ration (50% of 

optimal). For 200 fish, 12 meals per week in a 

two-week feeding trial (one week for each 

feeding rate), video-analysis requires about 120 

hours. For a selective breeding program 

phenotyping five batches of 200 fish with an 

optimal feeding rate for one week, 400 hours 

would be necessary. Individual FI data are thus 

obtained a long time after the end of the feeding 

trial. The time needed is, however, 

experimenter-dependent. This is particularly 

long, but software to automate video-analysis 

may soon become available (H. de Verdal, 

personal communication, 2020). 

(Step not included: 0 minutes) 
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Using the video-recording method on European sea bass seems impossible because, from our 

own experience, fish stop feeding while a human being is close to their aquarium. However, 

individual rearing is feasible at medium to high scale. I managed to rear 200 fish simultaneously 

so phenotyping successive batches for a selective breeding program with about 1000 fish is 

clearly within reach. Moreover, the infrastructure and labour costs are counterbalanced by 

future reductions in feed costs due to improved feed efficiency (Besson et al., 2019). In Nile 

tilapia, individual rearing seems even more feasible because fish acclimate and grow faster than 

European sea bass when isolated. In Nile tilapia, the video-recording method seems technically 

feasible at medium scale with 200 fish for experimental purposes. This method would, however, 

be particularly tedious at higher scale for selective breeding purposes, with five batches of 200 

fish, for instance. The analysis of video-recordings would be very long (Table 4) and have high 

labour costs. This issue may, however, be solved by improvements in video-tracking software.  

1.2. Biological aspects 

In Nile tilapia, I found no correlation between individual FCR estimated by individual rearing 

compared to video-recording, in both GIFT and Cirad strains, indicating a consistent result 

whether fish are selected for enhanced growth or not. 

Nile tilapia is a social species, with aggressive interactions among conspecifics used to establish 

a dominance hierarchy (reviewed by Gonçalves-de-Freitas et al., 2019), such that the lack of 

correlation between rearing individually versus in a group is not surprising. However, de Verdal 

et al. (2019) reported no significant phenotypic correlation between individual feed efficiency 

and agonistic interactions in this species, using the video-recording method. Nile tilapia 

behaviour is, nevertheless, quite complex and includes also non-agonistic social 

communication (reviewed by Gonçalves-de-Freitas et al., 2019). 

The video-recording method is probably also not a perfect reflection of commercial rearing 

practices. Nile tilapia are farmed in large groups in ponds, tanks or cages (Modadugu and 
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Acosta, 2004) whereas the video-recording method is on small groups of ten to fifteen fish. In 

large groups, social structures are probably more complex. Furthermore, feed pellets are 

provided one by one, which may strengthen competition for feed and aggressive interactions 

and bias individual feed efficiency estimation.  

In European sea bass, Besson et al. (2019) demonstrated a link between individual FCR, 

estimated using individual rearing, and subsequent group FCR. These results suggest individual 

rearing provides an estimation of feed efficiency that is equivalent with that observed in group 

rearing. Feed efficiency should, however, be estimated at individual level even when fish are 

reared in a group, to confirm this conclusion. Moreover, I clearly observed that FI of isolated 

fish was much lower than expected, about 25% of the 200 isolated European sea bass lost weight 

even when fed at ad libitum. The extent to which isolation influences this species behaviour is 

not yet clear. On the one hand, European sea bass does not exhibit marked aggressive 

interactions with conspecifics (Barnabé, 1980) but, on the other hand, juveniles are gregarious 

and individual rearing prevents the shoaling behaviour that is systematically observed in 

captivity (Barnabé, 1980). Furthermore, European sea bass behaviour is variable among 

individuals. Some fish exhibit “shy” behaviour defined as “freezing and hiding” when exposed 

to an environment with potential threats, whereas others exhibit “bold” behaviour, taking risks 

and rapidly exploring their environment (Benhaïm et al., 2016). It seems that shy fish adapt 

better to the individual rearing system (M. Vandeputte, personal communication, 2020), with 

clear possible implications for FI and feed efficiency.  

From my various results, therefore, it is not possible to conclude that an “optimal” method 

exists to estimate individual feed efficiency across all species. Before initiating a breeding 

program for feed efficiency in a given species, careful evaluation of its behaviour seems 

necessary, to gain insight into which method might provide the best estimates of individual feed 

efficiency. For instance, it can be suggested that individual rearing may bias individual feed 
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efficiency estimation in species exhibiting dominant-subordinate relationships. Similarly, both 

methods may bias estimations in species that shoal. It can also be assumed that species which 

feel threatened by human presence may not feed in the video-recording method. All these 

aspects need to be addressed on a case-by-case basis. 

2. To what extent do developmental stage and rearing practices influence estimates of 

individual feed efficiency? 

Phenotyping fish for individual feed efficiency not only implies being able to measure 

individual FI, but must also consider their developmental stage and rearing environment, such 

as feeding rate or water temperature. 

2.1. Developmental stage 

In isolated Nile tilapia, I found that individual FCR estimated in juveniles was a good predictor 

of individual FCR up to commercial size. I concluded that selecting fish for FCR over two 

weeks at juvenile stage would improve the entire rearing FCR by about 1% per generation with 

a selection intensity of 50%. This result is particularly interesting because it implies selection 

costs could be reduced, since selecting fish at the juvenile stage avoids maintaining up to 

commercial size animals that would not be used for broodstock, thus decreasing rearing and 

labour costs. 

These results need to be consolidated by assessing heritability of individual FCR from juvenile 

stage to commercial size. I calculated genetic gain using the FCR heritability published by de 

Verdal et al. (2018b), estimated over one week at juvenile stage using the video-recording 

method. Moreover, the correlations I estimated between individual FCR at juvenile stage and 

over the whole rearing period were phenotypic. Only genetic correlations will reveal to what 

extent selecting fish at juvenile stage can improve FCR from juvenile stage to commercial size.  

Whether the same conclusions would be reached in European sea bass remains an open 

question. Ideally, this issue should be investigated whenever a selective breeding program for 
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feed efficiency is initiated in a species, because of the opportunity to reduce selection costs. 

Many species are, however, much larger than Nile tilapia at commercial size, such as European 

sea bass or Atlantic salmon Salmo salar. Phenotyping them over a whole rearing cycle would 

not be technically feasible whatever the method used.  

2.2. Rearing environment 

I aimed to determine whether most efficient fish when fed to satiety were also the most efficient 

under a restricted feeding rate. I found no significant phenotypic correlation between individual 

FCR at optimal rate and FCR at restricted (50% of the optimal) rate in Nile tilapia (GIFT strain) 

using the video-recording method. In European sea bass, I observed that the most efficient fish 

at ad libitum were much more sensitive to progressive feed deprivation and actually ended up 

losing more weight when fasting. Thus, the most efficient fish differed with feeding rate. 

Therefore, the feeding rate used to phenotype for individual feed efficiency in selective 

breeding programs must be the same as that used in commercial practices. These conclusions 

need, however, to be validated at genetic level in both species. In particular, results reported in 

European sea bass by Besson et al. (2019) at genetic level contrast with the present results 

because they suggested that the most efficient fish lost less weight at fasting.  

Surprisingly, my results differ greatly from those reported in livestock: selecting the most 

efficient animals under restricted ration improved ad libitum feed efficiency of progeny in pigs 

(Nguyen et al., 2005) and rabbits (Drouilhet et al., 2016). Feed efficiency seems to be context-

dependent in fish: some animals are more efficient at high feeding rate whereas others are more 

efficient at low feeding rate. The same observation was made by Dupont-Prinet et al. (2010) for 

growth in European sea bass. Performing better at low feeding rate is not important on the fish 

farm because animals are fed to satiety. This could, however, be a major advantage in the wild 

where fish may have to cope with feed deprivation. Since fish domestication and selection is 

recent, it can be hypothesized that some animals are still specifically adapted to feed 
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deprivation. In contrast, livestock domestication and selection being much more ancient, it may 

be that no adaptation to feed deprivation remains and, thus, no trade-off between performance 

at high and low feeding rates is observed.  

Secondly, I investigated the influence of temperature on feed efficiency in European sea bass, 

finding that EM fish were the most and AT fish the least efficient whether reared at 18 or 24°C. 

These temperatures reflect the coldest and warmest average temperatures at which European 

sea bass is reared across Europe (Vandeputte et al., 2014). From a breeder’s point of view, EM 

fish should be used across Europe because there were always more efficient, and breeding 

programs should focus on this population. This result needs, however, to be confirmed in group 

rearing and at other temperatures (for instance 21°C). 

To conclude, the results suggest rearing conditions can influence fish ranking according to 

individual feed efficiency. In a context of selective breeding, whatever the species under 

consideration, the default strategy should be to phenotype fish for individual feed efficiency in 

conditions as close as possible to rearing practices. Rearing environments are diverse and 

exploring not only individual variability but also diversity among populations or strains is 

promising to improve feed efficiency in a wide range of situations. 

So far, I have discussed methods to improve individual feed efficiency through direct selection. 

However, estimating individual feed efficiency remains tedious. This is why finding an indirect 

selection criterion for feed efficiency is of major importance.  

3. Which traits hold promise as indirect selection criteria for feed efficiency? 

Indirect selection traits must be variable, heritable and genetically correlated with individual 

feed efficiency, and technically easier to measure. I focussed upon two candidate traits: 

metabolic rate and stable isotope values. For stable isotope values, I did not directly assess a 

correlation with individual feed efficiency but investigated methodological issues that will be 

critical for implementation in future studies. I will suggest ideas to further investigate the 
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correlations of these two traits with individual feed efficiency. To conclude, I will consider two 

other potential approaches to predict individual feed efficiency: cortisol secretion and genomic 

selection. 

3.1. Perspectives provided by the experimental results 

3.1.1. From oxygen consumption to body composition 

I did not find any phenotypic correlation between oxygen consumption and individual feed 

efficiency in European sea bass. However, variation in oxygen consumption among the AT, 

WM and EM populations, and between rearing temperatures of 18 and 24°C, exhibited a clear 

link with individual feed efficiency. Fish reared at 18°C were more efficient than those reared 

at 24°C and had a lower oxygen consumption. Similarly, AT fish were the least efficient and 

had the highest oxygen consumption. 

Two main issues must be addressed to potentially use oxygen consumption as an indirect 

selection criterion. Firstly, it does not seem technically feasible to measure individual oxygen 

consumption and feed efficiency simultaneously in fish. Thus, individual feed efficiency and 

individual oxygen consumption have to be estimated at two different development stages. 

Consequently, long-term repeatability of oxygen consumption must be established before using 

the trait as an indirect selection criterion in a given species.  

Secondly, oxygen consumption estimates how much energy is required for body maintenance 

and activity, but it does not reveal which substrates are used to provide energy. Lipid contains 

about twice as much energy as protein per unit of weight. Catabolising proteins rather than 

lipids to support metabolism leads to a greater loss of weight while fish are fasting (McKenzie 

et al., 2014). When fish are fed, they store proteins and lipids to grow. However, energy 

expenditure for metabolism and activity remains, which induces catabolism and partly 

counterbalances proteins and lipids storage. This suggests that, when fed, fish relying more 

heavily on proteins to provide energy to metabolism and locomotion may be less efficient. The 
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type of reserves used as fuel for maintenance and locomotion can be assessed by measuring 

ammonia excretion while fish are fasting. Ammonia excretion reveals protein catabolism and 

is determined by sampling water (Kieffer and Wakefield, 2009). It is feasible to determine 

ammonia excretion while fish are individually reared by making them fast at the end of the 

feeding trial for feed efficiency. Such information could be complementary to metabolic rate in 

predicting individual feed efficiency. 

More generally, there is a need to determine how proteins and lipids are used by fish, not only 

for basal maintenance and activity, but also for growth. As explained by Knap and Kause 

(2018), deposition of 1 g of lipid leads to 1.1 g of weight gain, including 0.1 g of water in the 

associated adipose tissue. Conversely, deposition of 1 g of protein leads to 4-5 g of weight gain, 

including 3-4 g of water. Protein deposition is energetically more expensive than lipid 

deposition (59.9 kJ/g vs. 43.5-55.3 kJ/g), but this higher energetic cost is marginal compared to 

the four to fivefold increase in weight gain associated with protein deposition (Knap and Kause, 

2018). The fact that most efficient animals were reported to have a lower muscle or whole body 

fat content in several fish species (Neely et al., 2008; Kamalam et al., 2012; Kause et al., 2016) 

is therefore not surprising.  

Consequently, determining fish protein and fat content, as well as its variability over time while 

fish are fasting or growing, may provide indirect indicators of individual feed efficiency. This 

would be a complement to non-growth energy expenditure. Measuring fat content frequently is 

easy and not invasive in the case of muscle (Quillet et al., 2005). However, focussing on whole 

body composition rather than exclusively on muscles can be more informative because other 

compartments of the fish have large fat reserves, notably the viscera. Studying the variability 

of whole body composition over time implies fish must not be slaughtered, which might seem 

impossible. However, emerging imaging techniques that provide an accurate 3-D representation 



152 
 

of whole fish composition may resolve this issue (Hancz et al., 2003; Ceballos-Francisco et al., 

2020).  

3.1.2. Carbon and nitrogen stable isotope values 

Stable isotope values might predict individual feed efficiency, as already suggested in Atlantic 

salmon (Dvergedal et al., 2019a; 2019b) and terrestrial livestock (Wheadon et al., 2014; 

Cantalapiedra-Hijar et al., 2015; Cantalapiedra-Hijar et al., 2016). However, it remains 

unknown whether stable isotope values should be determined at dynamic state, at steady state, 

or at both to predict individual feed efficiency. Before setting up a protocol investigating this 

issue in European sea bass, I aimed to determine the time required by stable isotope values of 

scales to reach steady state after a diet change. I chose to sample scales because it is non-lethal, 

about 80-100 fish scales can be analysed for stable isotope values per day at a relatively modest 

cost per sample of about 1.5-2 €. The results highlight some key issues in developing a protocol 

to use stable isotope values to predict individual feed efficiency. 

In European sea bass, individual feed efficiency is estimated with an individual rearing 

protocol. My initial hope was to change diet once fish were acclimated to isolation, then keep 

them isolated until the stable isotope values of scales reached a new equilibrium. The time 

required was, however, too long to be compatible with individual rearing as it is a tedious 

method: 143 and 291 days for carbon and nitrogen, respectively. Moreover, the time needed to 

reach equilibrium depends on growth rate (Hesslein et al., 1993). Consequently, stable isotope 

values of isolated fish may take more time than expected to reach equilibrium because FI was 

relatively low in isolation. Individual rearing may, thus, only be used during the beginning of 

the dynamic state. As no suitable method is currently available to determine individual feed 

efficiency in larger European sea bass, investigating the link between individual feed efficiency 

and stable isotope values at steady state seems out of reach. 
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The same investigation of time required for stable isotope values to reach equilibrium should 

be performed in any relevant tissue or species before trying to investigate a link with individual 

feed efficiency. Indeed, the present results for European sea bass cannot be generalized as the 

time needed to reach a new equilibrium is both tissue and species-dependent (Carleton and 

Martínez del Rio, 2005; Weidel et al., 2011; Busst and Britton, 2016). In species or strains 

exhibiting particularly high growth rates, stable isotope values will reach steady state quicker. 

Consequently, the feeding trial used to estimate individual feed efficiency may be long enough 

for stable isotope values to reach equilibrium, whether the individual rearing or video-recording 

method is used. 

Scales may, however, not be the best candidate to investigate the link between individual feed 

efficiency and nitrogen stable isotope values. According to my results, nitrogen stable isotopes 

incorporation is driven almost exclusively by growth (94.2%) in European sea bass scales. 

Determining nitrogen stable isotope values at dynamic state in scales may in fact be equivalent 

to measuring growth rate. In contrast, both growth and catabolism seem to contribute to carbon 

stable isotopes incorporation in scales. Two alternatives that could be proposed are mucus or 

blood sampling. None of them are lethal and the incorporation of carbon and nitrogen stable 

isotopes into these tissues depends on both growth and catabolism (German and Miles, 2010; 

Winter et al., 2019). 

To conclude, our results constitute a preliminary step towards investigating the link between 

individual feed efficiency and stable isotope values. How long stable isotope values take to 

reach equilibrium needs, however, to be determined on a case-by-case basis for each species by 

tissue combination. One critical point is the choice of the tissue used to measure stable isotope 

values. Its sampling should not be lethal for a selective breeding context. Moreover, if stable 

isotope values are determined at dynamic state, it should be ensured they are not exclusively 

influenced by growth rate, but also by catabolism.  
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3.2. Future prospects 

Due to time limitation, I did not investigate several strategies that I considered as interesting to 

predict individual feed efficiency. However, I want to propose two of them that seem 

particularly promising. 

3.2.1. Cortisol secretion 

Cortisol, a corticosteroid hormone, is the main indicator of the degree of stress experienced by 

fishes (reviewed by Barton, 2002). Cortisol stimulates energy expenditure for basal 

maintenance and activity in fish (reviewed by Mommsen et al., 1999; Lawrence et al., 2019). 

Consequently, it could be hypothesized that individuals which secrete the highest levels of 

cortisol will allocate less energy to growth and be less efficient. Martins et al. (2006; 2011) 

investigated this issue at phenotypic level in African catfish Clarias gariepinus and Nile tilapia 

reared individually, but found no significant correlation between RFI and basal plasma cortisol 

level. Martins et al. (2006) did, however, report correlations ranging from 0.05 to 0.42 between 

individual plasma cortisol level measured after stress and RFI in African catfish. In Nile tilapia, 

Martins et al. (2011) found a phenotypic correlation of r = 0.49 between stressed cortisol level 

and individual RFI. There is, however, no information about genetic correlation between these 

traits. 

Measuring basal cortisol level might also be relevant to evaluate impacts on fish of the methods 

used to estimate individual feed efficiency. That is, if a given phenotyping method induces 

unusual cortisol levels in a given species, it may indicate that estimations of FI and feed 

efficiency are biased. For instance, isolated Nile tilapia may secrete less cortisol than when in 

a group because they do not compete with conspecifics. This could explain why the individual 

rearing and video-recording methods did not provided correlated FCR estimations in this 

species. 
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Cortisol dynamics can be measured in various ways, but two seem particularly interesting to 

investigate the link with individual feed efficiency. The first one is water, which has the major 

advantage of being not invasive and adequate to measure both basal and stressed cortisol levels. 

However, it cannot be measured at individual level without an individual rearing design 

(reviewed by Sadoul and Geffroy, 2019). The second method is blood (plasma), which enables 

measurement of individual cortisol levels even if fish are reared in a group. However, if fish 

are reared in large groups it can be very difficult to measure basal cortisol level because 

capturing the first fish will induce cortisol secretion in the others (reviewed by Sadoul and 

Geffroy, 2019).  

To conclude, cortisol secretion may be a predictor of individual feed efficiency, but also useful 

to evaluate the phenotyping methods used for individual feed efficiency. Moreover, cortisol 

measurement does not require killing the fish, which is advantageous for selective breeding. 

3.2.2. Genomic selection 

Briefly, genomic selection is a method that emerged as DNA sequencing technologies have 

become progressively cheaper. It has permitted the discovery of many thousands of single 

nucleotide polymorphism (SNP) markers in livestock and fish genomes. In “traditional” 

selective breeding, breeding values of animals (i.e. expected phenotypic values of an animal’s 

offspring) are estimated using phenotypes and family relationships, based on the pedigree of 

the animals. In genomic selection, breeding values are estimated using phenotypes and genomic 

relationships, calculated thanks to SNP genotyping. Genomic relationships replace pedigree 

relationships. For instance, the pedigree relationship between two full sibs is 0.50, which means 

that two full sibs are expected to have 50% of their genes in common. However, in reality, two 

fullsibs may not share exactly 50% of their genes. They may share, for example, 60% or only 

40% of their genes. These deviations from the pedigree-based expectation are detected by SNP 
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genotyping, such that genomic relationships are more accurate than pedigree relationships 

(reviewed by Meuwissen et al., 2016).  

To perform genomic selection, a part of the population is phenotyped for the trait of interest 

and genotyped, and the other part is only genotyped. Then, genomic breeding values of the non-

phenotyped individuals are predicted using genomic relationships between them and the 

phenotyped animals. Thus, breeding values can be estimated without phenotyping all animals 

(reviewed by Meuwissen et al., 2016). 

Genomic selection seems particularly interesting in the case of individual feed efficiency. 

Indeed, phenotyping fish for individual feed efficiency remains particularly tedious whatever 

the method used. This is an obstacle to the inclusion of this trait in “traditional” selective 

breeding programs. Thus, being able to estimate the breeding values of all animals by 

phenotyping only a sub-sample of them is a major step forward.  

This tool has already been used in isolated European sea bass by Besson et al. (2019). Genomic 

analysis estimated individual feed efficiency breeding values, heritability and genetic 

correlations more accurately than classical pedigree information. These authors concluded that 

only 80% of the whole population had to be phenotyped to estimate all breeding values 

accurately. However, much more investigation is required before starting a genomic selection 

program for individual feed efficiency in fishes. In the GIFT strain of Nile tilapia, studies led 

by WorldFish are ongoing to develop genomic selection for individual feed efficiency, 

phenotyping this trait with the video-recording method (J. Benzie and H. de Verdal, personal 

communication, 2020). Genomic selection for individual feed efficiency might be initiated in 

virtually any species provided an adequate phenotyping method is available.  
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ConclusionS 

 In a selective breeding program, the method used to phenotype for individual feed efficiency 

will depend on the species. No “universal” method exists. 

  An in-depth understanding of the species behaviour can offer clues to determining whether 

a phenotyping method is suitable or not. 

 If technically feasible, the opportunity to select fish for individual feed efficiency at the 

juvenile stage must be investigated, as this can cut selection costs.  

 In a selective breeding program for individual feed efficiency, whatever the species, the 

default strategy should be to rear fish in an environment as close as possible to commercial 

rearing practices. 

 Investigating variability among populations or strains of a given species is promising to 

improve feed efficiency. 

 Metabolic rate might predict individual feed efficiency if complemented with information 

about ammonia excretion and body composition. 

 Investigating the link between individual feed efficiency and carbon and nitrogen stable 

isotope values shortly after a diet change is technically feasible.   

 Nonetheless, the tissues to sample must be carefully chosen. Their ablation must not be 

lethal. Moreover, their incorporation of stable isotopes must not be explained exclusively 

by growth. 
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Plus de 7 milliards de personnes vivent sur Terre en 2020 et la population mondiale devrait 

atteindre 8 à 10 milliards d’habitants d’ici 2050 selon les projections (United Nations, 2011). 

La croissance démographique mondiale s’accompagne d’une augmentation de la demande en 

denrées alimentaires, entre autres d’origine aquatique. Cette demande est partiellement 

satisfaite par la production halieutique, mais cette dernière stagne autour de 90 millions de 

tonnes par an depuis environ 20 ans (FAO, 2018). A l’inverse, la production aquacole n’a cessé 

de croître pour atteindre 82 millions de tonnes (hors végétaux aquatiques) en 2018 (FAO-FIGIS, 

2020). Par conséquent, réussir à satisfaire la demande croissante en produits d’origines 

aquatiques dépendra presque uniquement du secteur aquacole. 

Pour améliorer l’aquaculture, une vision durable est nécessaire. La durabilité est définie comme 

« la capacité à répondre aux besoins du présent sans empêcher les générations futures de 

répondre à leurs propres besoins » (Brundtland, 1987). Un des obstacles à la durabilité de 

l’aquaculture est l’aliment utilisé pour nourrir les poissons d’élevage. Ce dernier coûte cher : il 

représente 30 à 70% des coûts des piscicultures intensives (Goddard, 1996; Rana Sunil 

Siriwardena and Hasan, 2009; STECF, 2018). De plus, la production et l’utilisation de l’aliment 

sont responsables de la majeure partie de l’impact environnemental des fermes piscicoles. Entre 

autres, l’alimentation est responsable de 32 à 86% des émissions de gaz à effet de serre 

imputables aux fermes. Elle provoque aussi l’eutrophisation (96-100% de l’impact des fermes) 

et l’acidification (29-80% de l’impact des fermes) du milieu aquatique environnant (Aubin et 

al., 2009; Besson et al., 2016). Enfin, des interrogations sociales sont soulevées par le fait que 

l’alimentation aquacole entre en compétition avec l’alimentation humaine pour accéder aux 

matières premières (Troell et al., 2014). Améliorer l’utilisation de l’aliment à la ferme 

permettrait donc d’outrepasser ces différents obstacles à la durabilité de l’aquaculture. 

L’utilisation faite par un animal de son aliment peut être caractérisée par le concept 

d’« efficacité alimentaire », c’est-à-dire la relation qui existe entre la quantité d’aliment 
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consommée et le gain de masse résultant. Concrètement, améliorer l’efficacité alimentaire 

signifie produire autant de poisson avec moins d’aliment, ou plus de poisson avec autant 

d’aliment. L’efficacité alimentaire se calcule grâce à deux mesures : la quantité d’aliment 

consommée, c’est-à-dire la prise alimentaire (PA), et le gain de masse (GM). Différentes 

manières d’estimer l’efficacité alimentaire existent. Dans la plupart des cas, le ratio entre la PA 

et le GM (ou son inverse) est calculé (revue par de Verdal et al., 2018a). Dans d’autres cas, la 

PA est exprimée en fonction du GM (ou inversement) et les résidus du modèle linéaire associé 

sont utilisés comme des indicateurs de l’efficacité alimentaire (consommation alimentaire 

résiduelle ou gain de masse résiduel; Koch et al., 1963). 

L’efficacité alimentaire peut être améliorée par le biais de la nutrition (Huisman, 1976; Brett, 

1979; De Silva and Anderson, 1995; Guillaume et al., 2001; NRC, 2011) et de la zootechnie 

(Brett, 1979; Azevedo et al., 1998; Biswas et al., 2005; Imsland et al., 2008; Árnason et al., 

2009; Yoo and Lee, 2016). Une autre stratégie possible pour améliorer l’efficacité alimentaire 

est l’utilisation de la génétique par le biais de programmes de sélection. Cependant, afin de 

mener un programme de sélection génétique, il faut être capable d’estimer l’efficacité 

alimentaire au niveau individuel, et donc de mesurer la PA et le GM individuellement, ce qui 

n’est pas le cas dans les études portant sur la nutrition ou la zootechnie. Mesurer le GM 

individuel est facile grâce à l’utilisation de PIT (« passive integrated transponder ») tags 

(Roussel et al., 2000), qui permettent d’identifier les poissons individuellement. En revanche, 

mesurer la PA au niveau individuel est particulièrement difficile car les poissons sont élevés en 

larges groupes et mangent simultanément lorsque l’aliment est distribué. Mesurer la PA au 

niveau individuel requiert donc des méthodes spécifiques. 

Parmi les méthodes principalement utilisées dans la littérature, une première consiste à élever 

les poissons en larges groupes et à les nourrir avec un aliment contenant des particules 

repérables par radiographie aux rayons X une fois dans l’appareil digestif du poisson. Peu après 
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que les poissons aient été nourris, ils sont anesthésiés et passés aux rayons X (Talbot and 

Higgins, 1983; McCarthy et al., 1993; Jobling et al., 2001 ; Silverstein et al., 2001; Boujard et 

al., 2006; Kause et al., 2006a; 2006b; Quinton et al., 2007a; 2007b; Grima et al., 2008). La 

principale limite de cette méthode est le temps nécessaire aux poissons pour récupérer après 

anesthésie et manipulation, qui peut être de plusieurs semaines (Jobling et al., 2001; Quinton et 

al., 2007a; Grima et al., 2008). La PA individuelle n’est donc mesurée que sur un nombre 

marginal de repas de la période d’évaluation de l’efficacité alimentaire. Cet aspect est 

particulièrement problématique car la PA des poissons est variable au cours du temps (Smagula 

and Adelman, 1982; Tackett et al., 1988) et, par conséquent, la répétabilité des mesures de PA 

obtenues avec cette méthode est faible (entre 0.09 et 0.32; Kause et al., 2006a; Grima et al., 

2008). Réussir à mesurer la PA individuelle des poissons à chaque repas est donc nécessaire.  

Une seconde méthode consiste à élever les poissons en petits groupes (10 à 15 animaux) et à 

les filmer lors des repas, l’aliment étant distribué granulé par granulé. Les poissons sont 

distinguables les uns des autres grâce à des tags externes colorés. La PA des poissons est 

mesurée ultérieurement, en analysant les enregistrements vidéo des repas (de Verdal et al., 

2017). L’atout majeur de cette méthode est que la PA individuelle est déterminée à chaque 

repas, sans exception, ce qui permet d’obtenir une très bonne répétabilité des mesures de PA 

(de Verdal et al., 2017). En revanche, analyser les enregistrements vidéo de chaque repas 

nécessite beaucoup de temps. 

Une dernière méthode consiste à élever les poissons individuellement en aquarium. La quantité 

d’aliment distribuée à chaque poisson est connue, et les granulés non consommés sont collectés 

et comptés pour estimer la quantité de gaspillage réalisée par chaque poisson. La PA 

individuelle est alors calculée comme la différence entre la quantité d’aliment distribuée et la 

quantité d’aliment gaspillée (Silverstein et al., 2005; Silverstein, 2006; Martins et al., 2011; 

Besson et al., 2019). L’avantage majeur de cette méthode est que la PA est estimée à chaque 
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repas. Cependant, collecter et compter la quantité de granulés gaspillée à chaque repas est 

fastidieux. En élevage individuelle, restreindre le taux de nourrissage des animaux a déjà permis 

d’améliorer l’efficacité alimentaire (à taux de nourrissage restreint et ad libitum) chez le porc 

et chez le lapin (Nguyen et al., 2005; Drouilhet et al., 2016). Lorsque le taux de nourrissage est 

restreint, les animaux les plus efficaces sont tout simplement ceux qui grossissent le plus vite, 

car la PA individuelle est constante d’un animal à l’autre. De plus, restreindre le taux de 

nourrissage diminue la quantité de travail liée au gaspillage. Cependant, il n’existe encore 

aucune preuve que l’efficacité alimentaire individuelle à taux de nourrissage restreint est 

corrélée avec l’efficacité alimentaire individuelle ad libitum chez le poisson. Par ailleurs, une 

limite majeure de l’élevage individuel est que les poissons sont isolés et ne peuvent donc plus 

interagir avec leurs congénères. Cela peut potentiellement induire un biais dans les estimations 

d’efficacité alimentaire individuelle réalisées grâce à cette méthode. 

Pour résumer, toutes ces méthodes ont des atouts et des limites, mais elles ont permis de 

démontrer que l’efficacité alimentaire individuelle est un trait héritable (h² = 0.06-0.50), c’est-

à-dire améliorable grâce à la sélection génétique (Quinton et al., 2007a; Grima et al., 2008; 

Kause et al., 2016; de Verdal et al., 2018b; Besson et al., 2019). Cependant, l’héritabilité de 

l’efficacité alimentaire est bien moindre lorsque la méthode de la radiographie par rayons X est 

utilisée (Quinton et al., 2007a; Kause et al., 2016), ce qui est probablement lié à la faible 

répétabilité de la mesure.  

En outre, toutes ces méthodes n’ont été utilisées que sur des périodes courtes de la vie du 

poisson, la plupart du temps au stade juvénile. Cela s’explique par le fait que mesurer la PA 

individuelle à des stades ultérieurs nécessiterait des infrastructures bien plus volumineuses, et 

engendrerait des coûts bien plus élevés, notamment d’aliment. Cependant, l’objectif est 

d’améliorer l’efficacité alimentaire sur toute la période d’élevage, et non uniquement au stade 

juvénile. Néanmoins, aucune preuve n’existe que l’efficacité alimentaire estimée chez des 
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juvéniles reflète réellement l’efficacité alimentaire de chaque poisson sur l’ensemble de la 

période d’élevage. 

L’efficacité alimentaire, comme tout trait phénotypique héritable, peut être améliorée par 

sélection directe ou indirecte. La sélection directe repose sur une estimation individuelle de 

l’efficacité alimentaire qui, malgré les diverses méthodes présentées, reste complexe. La 

sélection indirecte, quant à elle, repose sur la mesure individuelle de traits présentant une 

variabilité et corrélés génétiquement avec l’efficacité alimentaire. En sélectionnant les poissons 

sur ces traits, on peut indirectement améliorer l’efficacité alimentaire individuelle des poissons. 

Un objectif majeur est donc d’identifier un trait qui répond aux critères précédents, mais qui 

soit aussi plus facile à mesurer au niveau individuel que l’efficacité alimentaire. 

Plusieurs traits déjà explorés dans la littérature sont la croissance (par exemple Kause et al., 

2006b; Quinton et al, 2007a; de Verdal et al., 2018b; Besson et al., 2019), la perte de masse au 

jeûne (par exemple Grima et al., 2008; Daulé et al., 2014; de Verdal et al., 2018b) ou encore le 

taux de gras intramusculaire ou total des poissons (par exemple Neely et al., 2008; Kamalam et 

al., 2012; Kause et al., 2016). Ces différents traits, bien que prometteurs, n’ont pas encore été 

suffisamment convaincants pour être utilisés comme critères de sélection indirecte pour 

l’efficacité alimentaire.  

D’autres traits phénotypiques, telles que le taux métabolique, estimée chez les poissons par la 

consommation d’oxygène (Luiting et al., 1991; Nkrumah et al., 2006; Arndt et al., 2015; Chaves 

et al., 2015; Paganini et al. 2017), ou les signatures isotopiques en 15N des tissus (Wheadon et 

al., 2014; Cantalapiedra-Hijar et al., 2015; Cantalapiedra-Hijar et al., 2016) ont déjà permis de 

prédire l’efficacité alimentaire individuelle chez les animaux terrestres. Cependant, ils sont 

restés très peu étudiés chez le poisson. Dans le cas des signatures isotopiques en 13C et 15N des 

tissus, à notre connaissance, seuls Dvergedal et al. (2019a ; 2019b) ont étudié leur lien avec 
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l’efficacité alimentaire. Cependant, ces auteurs ont estimé l’efficacité alimentaire uniquement 

à l’échelle du groupe.  

Des questions méthodologiques se posent. Lorsqu’un animal reçoit un nouvel aliment avec une 

signature isotopique différente du précédent, alors la signature isotopique de ses tissus va 

progressivement évoluer jusqu’à atteindre un équilibre. Certaines études se sont concentrées 

sur l’état transitoire des signatures isotopiques pour prédire l’efficacité alimentaire individuelle 

(Dvergedal et al., 2019a ; 2019b), alors que d’autres se sont plutôt focalisées sur l’état 

d’équilibre (Wheadon et al., 2014; Cantalapiedra-Hijar et al., 2015; Cantalapiedra-Hijar et al., 

2016). Les deux possibilités ont permis de prédire l’efficacité alimentaire, et aucun élément ne 

permet de savoir laquelle choisir préférentiellement (les deux possibilités pouvant 

potentiellement se compléter). Par ailleurs, dans un contexte de sélection génétique, il est 

préférable de développer des méthodes non létales pour déterminer de la signature isotopique 

des animaux. En effet, la sélection génétique sera plus efficace si réalisée directement sur les 

animaux dont la signature isotopique a été déterminée plutôt que sur leur collatéraux.  

Dans ce travail de thèse, deux espèces ont été étudiées pour appréhender la problématique de 

l’efficacité alimentaire individuelle : le bar européen (Dicentrarchus labrax) et le tilapia du Nil 

(Oreochromis niloticus). Ces deux espèces diffèrent beaucoup, la première étant endémique de 

l’Océan Atlantique, de la Mer Méditerranée et de la Mer Noire (Pickett and Pawson, 1994), et 

la seconde des fleuves et lacs africains (Philippart and Ruwet, 1982). Le bar européen est 

produit dans des nurseries en production intensive puis en général transféré dans des cages en 

pleine mer (Chatain and Chavanne, 2009; Vandeputte at al., 2019). En revanche, le tilapia du 

Nil est produit aussi bien en conditions extensives qu’intensives (dans des cages lacustres, 

étangs ou bassins à terre; Modadugu and Acosta, 2004). En captivité, les bars européens ont 

tendance à former des bancs, alors que les tilapias du Nil sont bien plus agressifs entre eux pour 

établir une hiérarchie avec des dominants et des dominés. Le bar européen représente une faible 
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part de la production mondiale, mais demeure une espèce clef pour l’aquaculture européenne, 

avec une forte valeur ajoutée (STCEF, 2018 ; FAO-FIGIS, 2020). En revanche, le tilapia du Nil 

est la 3ème espèce la plus élevée au monde, principalement en Asie où elle a été introduite, et 

dans une moindre mesure en Afrique (FAO-FIGIS, 2020). L’efficacité alimentaire individuelle 

de ces deux espèces a déjà été étudiée (de Verdal, 2017; de Verdal, 2018b; Besson et al., 2019), 

et donc de nombreux progrès techniques ont été déjà réalisés pour mesurer leur PA individuelle. 

Comparer ces deux modèles biologiques très différents pourrait permettre d’établir des 

protocoles de sélection de l’efficacité alimentaire individuelle qui soient le plus génériques 

possibles. 

L’objectif de ce travail de thèse a été de développer des protocoles utilisables au cours de 

programmes de sélection pour améliorer l’efficacité alimentaire. Dans ce but, j’ai cherché dans 

un premier temps à résoudre des questions d’ordre méthodologiques. Est-ce-que l’efficacité 

alimentaire individuelle estimée au stade juvénile est un bon prédicteur de l’efficacité 

alimentaire individuelle sur l’ensemble du cycle d’élevage ? Est-ce-que les méthodes de 

l’élevage individuel et de l’enregistrement vidéo fournissent des estimations équivalentes de 

l’efficacité alimentaire individuelle ? Est-ce-que l’efficacité alimentaire individuelle estimées 

à un taux de nourrissage restreint reflète l’efficacité alimentaire individuelle ad libitum ? 

Mes résultats permettent de supposer que sélectionner les tilapias du Nil sur leur efficacité 

alimentaire au stade juvénile améliorerait leur efficacité alimentaire sur l’ensemble de la 

période d’élevage. Un gain d’environ 1% par génération avec une intensité de sélection de 50% 

a été projeté. Ce résultat est particulièrement intéressant car il implique que les poissons 

pourraient être sélectionnés dès le stade juvénile, réduisant drastiquement les coûts de sélection. 

En effet, les poissons non sélectionnés n’auraient pas besoin d’être conservés jusqu’à taille 

commerciale, ce qui réduirait notamment les coûts d’alimentation. Idéalement, le même travail 
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devrait être mené pour chaque espèce afin de généraliser les résultats obtenus. Cependant, cela 

est techniquement très difficile dans le cas des espèces trop volumineuses à taille commerciale.   

Ensuite, j’ai constaté chez le tilapia du Nil que l’efficacité alimentaire individuelle estimée par 

la méthode de l’élevage individuelle n’était pas corrélée à l’efficacité alimentaire individuelle 

estimée par analyse vidéo. En revanche, Besson et al. (2019) ont déjà démontré chez le bar 

européen que l’efficacité alimentaire individuelle obtenue par isolement des poissons se 

reflétait ensuite dans l’efficacité alimentaire de groupe, une fois les poissons remis ensemble. 

Ces résultats m’ont permis de conclure qu’au sein d’un programme de sélection, la méthode de 

phénotypage des poissons doit dépendre de l’espèce considérée. Aucune méthode 

« universelle » n’existe. Une forte compréhension du comportement de chaque espèce est 

nécessaire pour décider au mieux de la méthode à utiliser.  

Par la suite, j’ai observé chez le bar européen et le tilapia du Nil que les animaux les plus 

efficaces à taux de rationnement restreint n’étaient pas les plus efficaces à satiété. J’en ai conclu 

que, dans un programme de sélection génétique, il est préférable de phénotyper les poissons 

dans des conditions les plus proches possible de celles en élevage commercial.  

Chez le bar européen, j’ai observé que les poissons issus de l’Est de la Méditerranée étaient les 

plus efficaces, et ceux issus de l’Atlantique les moins efficaces, que la température d’élevage 

soit de 18 ou 24°C (deux températures représentatives des sites d’élevage européens). Du point 

de vue d’un sélectionneur, cela signifie que la population issue de l’Est de la Méditerranée 

pourrait être utilisée partout à travers l’Europe car elle est la plus efficace quelle que soit la 

température. Cela implique aussi qu’un programme de sélection sur l’efficacité alimentaire chez 

le bar européen devrait utiliser cette population dès le départ. Cela démontre que la diversité 

des différentes populations ou souches d’une espèce est un atout pour améliorer l’efficacité 

alimentaire individuelle dans des environnements variés. Mes résultats doivent, cependant, être 

confirmés en élevage de groupe.  
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Dans un second temps, j’ai cherché à identifier des critères de sélection indirecte pour prédire 

l’efficacité alimentaire. Le taux métabolique, estimé grâce à la consommation d’oxygène, a été 

testé comme potentiel prédicteur de l’efficacité alimentaire. Ensuite, notre attention s’est portée 

sur la signature isotopique des écailles des poissons. La corrélation avec l’efficacité alimentaire 

n’a pas été directement estimée car il a fallu au préalable résoudre des questions d’ordre 

méthodologique. J’ai étudié le temps nécessaire à la signature isotopique des écailles, suite à 

un changement d’aliment, pour passer de l’état transitoire à l’état d’équilibre. Cela permettra 

de mettre en place des protocoles étudiant le lien entre efficacité alimentaire individuelle et 

signature isotopique au cours d’études ultérieures. 

Chez le bar européen, l’efficacité alimentaire individuelle n’a pas pu être prédite par le taux 

métabolique. Cependant, d’autres informations, telles que l’excrétion d’ammoniac ou la 

composition corporelle, semblent pertinentes pour compléter le taux métabolique afin de 

potentiellement prédire l’efficacité alimentaire. 

Enfin, j’ai observé dans le cas du bar européen que le temps nécessaire à la signature isotopique 

des écailles pour atteindre un équilibre était trop long pour être compatible avec une estimation 

en continu de l’efficacité alimentaire individuelle. Cependant, il paraît tout à fait possible 

d’étudier le lien entre efficacité alimentaire individuelle et signature isotopique au début de la 

phase transitoire. Ce problème pourrait être potentiellement résolu dans les espèces à croissance 

plus rapide. En effet, l’incorporation des isotopes stables dans les tissues dépend de leur 

croissance et de leur catabolisme, donc plus une espèce croît vite, et plus l’équilibre sera atteint 

tôt. En ce qui concerne le choix du tissu à prélever, deux critères semblent à prendre en compte 

dans un contexte de sélection. Premièrement, l’ablation du tissu ne doit pas être mortelle. 

Ensuite, l’incorporation des isotopes stables au sein de ce tissu ne doit pas être due uniquement 

à la croissance des poissons, mais aussi à leur catabolisme, sinon déterminer les signatures 

isotopiques lors de la phrase transitoire sera équivalent à tout simplement mesurer la croissance. 
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En conclusion, ce travail de thèse a mis en lumière des points méthodologiques critiques qu’il 

faut prendre en compte pour développer un programme de sélection génétique sur l’efficacité 

alimentaire. De plus, il a posé les bases de nouvelles approches afin d’identifier un critère de 

sélection indirecte de l’efficacité alimentaire. 
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Abstract - Individual feed efficiency in fishes: direct measurement methods and indirect predictors to 

develop selective breeding programs in two major aquaculture species: European sea bass Dicentrarchus 

labrax and Nile tilapia Oreochromis niloticus. 

In finfish aquaculture, feed is expensive and has environmental impacts. Improving feed efficiency (FE) to produce 

the same amount of fish with less feed is a major objective for sustainable aquaculture. This can be achieved by 

selective breeding but this requires methods for individual phenotyping, and measuring individual feed intake (FI) 

is technically challenging for fishes. The two best methods, to date, are either to rear fish individually or to tag 

them externally so that they can be visually identified while reared in small groups.  

I investigated some important issues related to estimation of individual FE, on two major aquaculture species, 

European sea bass Dicentrarchus labrax and Nile tilapia Oreochromis niloticus. I demonstrated that estimating 

individual FE at juvenile stage in Nile tilapia was predictive of FE over the whole production cycle. Then, I 

compared the two phenotyping methods in Nile tilapia, to discover that they did not provide equivalent estimations. 

Finally, I also found that the most efficient fish at restricted feeding were not the most efficient at satiety, in both 

species.  

Both phenotyping methods remain, however, tedious. I therefore investigated potential indirect selection criteria 

that are easier to measure. In European sea bass, there was no correlation of individual FE with individual 

metabolic rate (as oxygen consumption). Furthermore, I addressed methodological issues for implementation of 

stable isotope analyses with non-lethal sampling of fish scales as an indirect selection criterion.  

To conclude, selecting fish at juvenile stage seems reliable and will cut selection costs. Phenotyping method for 

individual FE towards selective breeding depends, however, upon the species. In particular, species collective 

behaviour must be considered when choosing the most suitable method. Furthermore, fish should be phenotyped 

at holding conditions and feeding levels that are as close as possible to commercial practices. Metabolic rate might 

be useful as an indirect criterion if coupled with measures of ammonia excretion or body composition. Scale stable 

isotope analyses are technically feasible and require further investigation. 

 

Résumé - L’efficacité alimentaire individuelle chez le poisson : méthodes de mesure directe et prédicteurs 

indirects pour développer des programmes de sélection génétique chez deux espèces aquacoles majeures : 

le bar européen Dicentrarchus labrax et le tilapia du Nil Oreochromis niloticus. 

L’aliment utilisé en pisciculture est onéreux et impacte l’environnement. Améliorer l’efficacité alimentaire (EA) 

pour produire la même quantité de poisson en utilisant moins d’aliment est un objectif majeur pour rendre 

l’aquaculture plus durable. Cet objectif pourrait être atteint grâce à la sélection génétique, mais cela nécessite des 

méthodes de phénotypage individuel, et mesurer la prise alimentaire individuelle est complexe chez le poisson. 

Les deux meilleures méthodes, à l’heure actuelle, consistent soit à élever les poissons individuellement, soit à les 

marquer avec un tag externe pour les identifier visuellement au sein de petits groupes. 

Je me suis focalisé sur des questions d’importance critique en lien avec l’estimation de l’EA individuelle, chez 

deux espèces aquacoles majeures, le bar Européen Dicentrarchus labrax et le tilapia du Nile Oreochromis 

niloticus. J’ai démontré qu’estimer l’EA individuelle au stade juvénile chez le tilapia du Nil permettait de prédire 

l’EA sur l’ensemble du cycle de production. Ensuite, j’ai comparé les deux méthodes de phénotypage chez le 

tilapia du Nil, et observé qu’elles ne fournissent pas des estimations équivalentes. Enfin, j’ai aussi constaté que les 

poissons les plus efficaces à taux de rationnement restreint n’étaient pas les plus efficaces à satiété, chez les deux 

espèces. 

Les deux méthodes de phénotypage demeurent, cependant, fastidieuses. J’ai, en conséquence, cherché de potentiels 

critères de sélection indirecte qui soient plus faciles à mesurer. Chez le bar européen, il n’y avait pas de corrélation 

entre l’EA individuelle et le taux métabolique individuel (estimé par la consommation d’oxygène). Par ailleurs, 

j’ai résolu des problèmes d’ordre méthodologique afin d’implémenter l’analyse de la signature isotopique, grâce 

à l’échantillonnage non létal des écailles, en tant que critère de sélection indirecte. 

Pour conclure, sélectionner les poissons au stade juvénile semble fiable et permettra de réduire les coûts de 

sélection. La méthode de phénotypage de l’EA individuelle à utiliser pour faire de la sélection génétique dépend, 

cependant, de l’espèce. En particulier, la structure sociale de l’espèce doit être prise en compte dans le choix de la 

méthode la plus appropriée. En outre, les poissons devraient être phénotypés dans des conditions d’élevage et de 

nourrissage aussi proches que possible de celles en élevage commercial. Le taux métabolique pourrait être 

utilisable en tant que critère de sélection indirecte si couplé avec des mesures de l’excrétion d’ammoniac ou de la 

composition corporelle. Quant à l’analyse de la signature isotopique des écailles, elle est techniquement réalisable 

et nécessite d’être plus amplement étudiée.  

 


	Can individual feed conversion ratio at commercial size be predicted from juvenile performance in individually reared Nile tilapia Oreochromis niloticus?
	Introduction
	Material and methods
	Ethics statement
	Biological material
	Rearing system
	Feed intake measurement and FCR calculation
	Statistical analysis
	Linear mixed models
	Correlation estimates and correlation temporal patterns


	Results
	Temporal patterns of growth, BWG, FI and FCR
	Correlation among traits and time periods
	Correlation among traits
	Correlation among time periods within traits

	Potential genetic gain for FCR

	Discussion
	Temporal variation in parameters
	Correlations among traits and time periods
	Implications for genetic improvement programs

	Conclusion
	Author statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary data
	References

	Variations in isotope incorporation rates and trophic discrimination factors of carbon and nitrogen stable isotopes in scales from three European sea bass (Dicentrarchus labrax) populations
	1 Introduction
	2 Material and methods
	2.1 Ethics statement
	2.2 Animals and rearing conditions
	2.3 Diet change experiment
	2.4 Growth and scale sampling
	2.5 Carbon and nitrogen stable isotope analysis
	2.6 Estimation of isotope incorporation rates, catabolic rates and trophic discrimination factors
	2.7 Empirical mixing models
	2.8 Statistical analysis and modelling

	3 Results
	3.1 Fish growth rates and survival
	3.2 Isotope incorporation rates
	3.3 Contribution of growth and catabolic rates to isotopic incorporation
	3.4 Sensitivity of empirical mixing models to TDF

	4 Discussion
	4.1 Variation in growth rate
	4.2 Variation in isotope incorporation rates
	4.3 Trophic discrimination factor

	Author contributions
	Declaration of Competing Interest
	Acknowledgements
	References


