
HAL Id: tel-03211210
https://theses.hal.science/tel-03211210v1

Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Filters based fuzzy big joins
Thi To Quyen Tran

To cite this version:
Thi To Quyen Tran. Filters based fuzzy big joins. Databases [cs.DB]. Université Rennes 1; Rennes 1,
2020. English. �NNT : 2020REN1S070�. �tel-03211210�

https://theses.hal.science/tel-03211210v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Thi To Quyen TRAN
Filters based fuzzy big joins

Thèse présentée et soutenue à Lannion , le 17 Décembre 2020
Unité de recherche : IRISA

Rapporteurs avant soutenance :

Marie-Jeanne Lesot Maître de conférences HDR, Sorbonne Université, LIP6
Sofian Maabout Maître de conférences HDR, Bordeaux Université, LaBRI, CNRS

Composition du Jury :
Examinateurs : Bernd Amann Professeur, Sorbonne Université, LIP6, CNRS

Christophe Bobineau MCF, Université de Grenoble Alpes, CNRS, Grenoble INP, LIG
Olivier Pivert Professeur, Université de Rennes 1, CNRS, IRISA

Dir. de thèse : Laurent D’Orazio Professeur, Université de Rennes 1, CNRS, IRISA
Co-dir. de thèse : Anne Laurent Professeur, Université de Montpellier, LIRMM, CNRS

Thuong Cang Phan Enseignant, Université de Can Tho

ACKNOWLEDGEMENT

It is a special feeling of great pleasure and happiness to look over the past journey and
remember all my advisors, friends and family who have helped and supported me along
this long but fulfilling road.

Foremost, I would like to express my heartfelt gratitude to my advisors Professor Lau-
rent D’ORAZIO and Professor Anne LAURENT for the continuous support of my Ph.D
study and research, for their patience, facilitation, enthusiasm, and immense knowledge.
Their invaluable guidance, advice, and encouragement helped me all the time in doing
research and writing this dissertation. I believe that I could not do well my thesis without
my advisors.

I would like to say a special thank you to my co-supervisor, Dr. Thuong-Cang PHAN,
for his constant encouragement and guidance. He is a great supervisor and also a good
collaborator, as well as a good friend. He helped me a lot with being a good researcher
and a better person.

Besides my advisors, I would also like to thank my examiners, Professor Marie Jean
Lesot and Professor Sofian Maabout, who provided encouraging and constructive feed-
back. It is not an easy task when reviewing a thesis, and I am grateful for their thoughtful
and detailed comments. I would like to thank the rest of my thesis committee: Profes-
sor Bernd Amann, Professor Christophe Bobineau and Professor Olivier Pivert for their
encouragement, insightful comments, and critical questions.

I wish to sincerely thank Rennes 1 University, IRISA and ENSSAT Lab, especially Mrs.
Joëlle Thépault and Mrs. Angélique Le Pennec, who helped me to have a good location
for research in the past three years. Thank you to Mr. Christian Sauquet, manager of the
ENSSAT library for his availability, his support, and his kindness.

I give sincere thanks to Galactica platform of ISIMA Lab, especially Mr. Frédéric
Gaudet who were responsible for the cluster which were very important for my experi-
mental studies. I also thank my fellow labmates in SHAMAN team, for the discussions,
and for all the fun we have had in the last three years.

I always remember the share of Doctor Alain SALIOU and my Vietnamese friends,
who shared stress during my most difficult moments as well as the beautiful memories at

3

Lannion.
I would like to express my gratitude for to Excellence Scholarships of the French

Embassy in Vietnam, funded by France government’s scholarship, for helping me to have
the financial resources to do this research.

Last but not least, I must express my very profound gratitude to my family: my parents
who provide me with unfailing support and continuous encouragement throughout my life;
my loving husband, Thanh Nhan NGUYEN, who has been very patient, supportive and
encouraging throughout my years of study; and most of all, my little daughter, Tran An
Nhien NGUYEN, who is always beside me and kept me smiling during tough times in the
PhD pursuit. Thank you so much!

4

RÉSUMÉ EN FRANÇAIS

Motivations

Cette ère a vu une croissance massive des applications en ligne et de leurs utilisateurs,
ce qui a entraîné une énorme augmentation du volume de données à traiter. En plus, il
existe de nombreuses applications qui nécessitent un traitement de données volumineuses
de par leur nature. Cela inclut la recherche sur les webs (par exemple, Google), les cartes en
ligne (par exemple, Google Maps), les critiques de produits en ligne (par exemple, Amazon
Customer Reviews), les réseaux sociaux et professionnels en ligne (par exemple, Facebook
et LinkedIn), le streaming vidéo (par exemple, YouTube) et le partage de manèges et de
résidences (par exemple, Uber et Airbnb), etc. Cette tendance a posé de plus grands défis
pour l’extraction massive de données.

En outre, la jointure est une opération critique au sein d’un système de gestion de
données, permettant d’enrichir les données d’une source avec des informations stockées
en dehors de celle-ci. C’est pourquoi la littérature est riche en travail sur l’optimisation
des jointures, en particulier dans les systèmes parallèles et distribués [72, 19, 73, 90, 2,
4, 55, 91]. Ces dernières années, les chercheurs se sont concentrés sur le problème des
assemblages efficaces dans des environnements parallèles à grande échelle. Les premiers
résultats, concernant l’équi-jointure [91], imposent de fortes contraintes sur les données
(l’un des ensembles devant être suffisamment petit pour être distribué à toutes les ma-
chines utilisées pour le traitement) ou leur organisation (tri selon l’attribut de la jointure,
placement des données sur des nœuds spécifiques), entraînant de nombreux transferts de
données (certains inutiles) et une charge de travail importante sur les machines ou nécessi-
tant plusieurs phases d’exécution (coûteuses). Le problème est encore plus difficile lorsque
la contrainte d’égalité est libérée alors que ce type de requête est souvent nécessaire. Il est
motivé par les applications demandées par des appariements similaires. Comme exemple
de requête [109] dans les services de la recommandation d’amis sur les services de réseaux
sociaux en ligne où les préférences de l’utilisateur sont stockées sous forme de vecteurs de
bits (où un bit “ 1 ” signifie un intérêt dans un certain domaine), les applications veulent
découvrir les intérêts similaires des utilisateurs. En d’autres termes, il doit détecter toutes

5

les paires de personnes qui partagent un profil similaire. Par exemple, un utilisateur avec
la possibilité de vecteur de bits de préférence “ [1, 0, 0, 1, 1, 0, 1, 0, 0, 1] ” a des intérêts
similaires à ceux d’un utilisateur avec des préférences “ [1, 0, 0, 0, 1, 0, 1, 0, 0, 1] ” avec leur
distance est seulement 1. Il est facile de comprendre que deux personnes peuvent se faire
des amis parce qu’elles ont les mêmes passe-temps. Un autre exemple, largement util-
isé dans les moteurs de recherche basés sur le contenu d’images comme Google, Baidu,
Bing, découvrent des images dont les caractéristiques mappent en code binaire par leurs
similitudes sont supérieures à un seuil prédéfini. Un exemple supplémentaire est les in-
tégrations des données pour le nom d’un auteur qui est “Thi-To-Quyen TRAN” et qui
est référencé par plusieurs comptes sous les noms légèrement modifiés “Quyen Tran” ou
“T.T.Quyen Tran” dans différents articles. Ces requêtes sont définies comme des jointures
floues ou des jointures de similarités et jouent un rôle important dans une grande variété
d’applications, y compris le nettoyage de données [27], l’intégration de données [39], la
détection des attaques [84], l’exploration de sites de réseaux sociaux [100], la détection
de pages Web presque en double [56], la détection de plagiat [59], le regroupement de
documents [24], gestion des données maîtres [95], la bio-informatique [110].

La montée en puissance du Big Data pose des défis pour évaluations de grandes join-
tures floues efficaces et évolutives. Il existe deux directions principales pour résoudre
ce problème qui ont été examinées dans la littérature. (1) L’un utilise des techniques
d’appariement approximatives qui trouvent la plupart des résultats mais pas tous. Lorsque
le nombre d’entités est très grand ou que la mesure de similarité est coûteuse à calculer, il
peut être préférable en pratique d’appliquer des techniques approximatives. La solution la
plus populaire dans ce cas est le hachage, qui transforme un élément en une représentation
de faible dimension [112]. L’idée de base est que les éléments similaires ont une probabilité
beaucoup plus élevée d’être mappés au même code de hachage que les éléments différents.
Ainsi, les techniques de hachage peuvent être exploitées dans la phase de filtrage pour
générer des candidats avant les calculs de jointure floue. (2) L’autre utilise des techniques
de correspondance exacte qui retournent toujours la sortie correcte. Dans cette thèse, nous
nous concentrons sur les jointures floues exactes.

Selon l’exécution de la jointure, un produit cartésien et le calcul de la distance de
toutes les paires nécessitent pour une jointure floue. Par conséquent, son traitement est
très coûteux dans la base de données traditionnelle [63, 50]. De plus, lorsqu’il s’agit d’une
très grande quantité de données, la jointure floue devient un problème difficile dans un
environnement informatique parallèle distribué avec le coût élevé du brassage des données,

6

de l’espace et de l’efficacité. En conséquence, la redondance et la duplication des données
sont très difficiles à accepter.

En raison de sa simplicité, de sa tolérance aux pannes et de son évolutivité, MapReduce
[35] est de loin le modèle puissant pour les applications qui manipulent intensivement les
données. Il devient un cadre populaire utilisé pour l’analyse de données à grande échelle
en parallèle. Il est largement appliqué à la modélisation, au traitement et au calcul des
coûts dans les études de jointure floue à grande échelle [43, 99]. La plupart des solutions
existantes suivent un cadre de filtrage-vérification en plusieurs étapes pour générer des
candidats, appliquer les principes (filtre de préfixe, filtre de longueur, techniques de seg-
mentation) pour éliminer les paires sans espoir, baser aux fonctions de similarité pour
déterminer toutes les paires dans un rayon. Vernica et al. [109] a proposé une méthode
de jointure de similarité utilisant MapReduce en 4 étapes, qui utilisait la méthode de
filtrage des préfixes par index inversé sur les jetons pour prendre en charge les fonctions
de similarité basées sur des ensembles. Metwally et al. [85] a proposé un algorithme de
jointure VSMART en 2 étapes pour la jointure de similarité sur ensemble, multi-ensembles
et vecteur. Deng et al. [36] utilise des signatures pour calculer l’index inversé et traiter
en 3 étapes pour la jointure de similarité d’ensemble. [113] améliorer [36] en remplaçant
les signatures par une technique q-gram en 3 étapes. Afrati et al. [5] a proposé plusieurs
algorithmes pour effectuer des jointures floues avec la distance de Hamming, Edit et Jac-
card en une seule étape MapReduce sans filtres. D’autres algorithmes [97, 34, 29] utilisent
des pivots pour diviser les données en partitions disjointes par des travaux récursifs.

Apache Spark [117, 10] est une cadre de calcul de cluster, développé pour optimiser le
calcul interactif à grande échelle. Les caractéristiques les plus importantes de Spark par
rapport à MapReduce sont la prise en charge par ses calculs itératifs sur les mêmes données
et sa capacité à exploiter efficacement le calcul distribué en mémoire pour un traitement
rapide des données à grande échelle tout en conservant l’évolutivité et la tolérance aux
pannes de MapReduce. Spark utilise des ensembles de données distribués résilients (RDD)
[118] pour restaurer les ensembles de données persistants sur le disque afin de distribuer la
mémoire principale et fournir une série de “transformations” et “actions” pour simplifier
la programmation parallèle. Spark peut fonctionner jusqu’à 100 fois plus vite que Hadoop
MapReduce et bien plus vite que les autres frameworks [117, 10]. Ainsi, nous implémentons
des algorithmes de jointure floue basés sur Apache Spark.

7

Objectifs

En examinant ce problème, les études se concentrent sur les défis impliqués dans
l’exécution efficace des jointures floues dans le paradigme MapReduce, y compris les limi-
tations courantes en tant que relecture d’entrée par plusieurs phases, la redondance inutile
et la duplication des données intermédiaires conduisant à une transmission de données
coûteuse et à un grand E/S. Nous soutenons que les approches basées sur les filtres dans
nos études récentes [90, 91] peuvent résoudre ces problèmes. Notre équipe était intéressée
par l’utilisation des filtres Bloom [20], filtre d’intersection [90], filtre de comptage de
Bloom [42]. L’idée est de filtrer les données non pertinentes dès que possible pour ré-
duire les transferts de données et la charge de travail sur différentes machines. En outre,
les jointures floues basées sur la distance de Hamming sont intéressantes pour une variété
d’applications. Une application majeure est la correspondance biométrique, où une lecture
biométrique est prise et mise en correspondance avec un modèle stocké [102, 62, 106, 76].
Étant donné que les lectures biométriques (par exemple, les empreintes digitales, les anal-
yses d’iris ou les traits du visage) sont un processus bruyant, la chaîne binaire représentant
les caractéristiques extraites peut ne pas correspondre exactement à la chaîne de modèle.
De plus, le calcul de la distance de Hamming est montré plus rapidement que le calcul
de la distance dans l’espace d’entrée. Par conséquent, nous profitons de sa théorie pour
proposer de nouvelles approches de filtrage pour les jointures floues.

Contributions

Cette thèse se concentre sur l’amélioration des jointures floues à grande échelle. Les
principales contributions de nos travaux sont les suivantes :

— (1) Filtres flous et filtres flous d’intersection.
Notre première contribution consiste en un filtre flou et un filtre flou d’intersection
basée sur la définition “Boule de rayon r”. Ces deux filtres flous sont de petites
structures qui peuvent donner un test rapide pour détecter si un élément est sim-
ilaire à des membres dans des ensembles donnés, et de plus, lesquels sont leurs
similarités, avec un taux de faux positifs et sans taux de faux négatifs. Par effi-
cacité spatiale (vecteur bit), vitesse de réponse (O(1)), flexibilité (facilement mis à
jour), ces filtres flous peuvent être appliqués aux auto-jointures floues, aux jointures
bidirectionnelles floues, aux jointures multidirectionnelles floues, au flux jointure

8

flou.
— (2) Optimisations pour les auto-jointures et les jointures bidirectionnelles floues

basées sur Hamming à grande échelle et l’analyse des coûts en théoriques.
Notre deuxième contribution est l’étude des optimisations pour les algorithmes de
jointure floue à une seule étape utilisant des filtres Bloom, des filtres flous, des filtres
flous d’intersection. En effet, nos opérations de jointure peuvent éliminer la plupart
des données redondantes avant de les envoyer au traitement de jointure réel. Ils
peuvent également éviter le recalcule inutile. En conséquence, ils réduisent consid-
érablement les frais généraux associés. De plus, l’analyse des coûts en théoriques
de divers algorithmes de jointure floue est ensuite présentée pour comparer les
approches dans un modèle de coût plus convaincant. Cette optimisation est une
contribution extrêmement importante pour prendre en charge l’analyse évolutive
des réseaux sociaux, l’analyse du trafic Internet et l’analyse des données ADN.

— (3) Implémentations des grandes jointures floues dans Spark et évaluation expéri-
mentale
En exploitant pleinement les caractéristiques de calcul à la mémoire de Spark, les
algorithmes de jointure floue sont capables d’obtenir de meilleures performances
en mettant en cache les résultats intermédiaires et les filtres en mémoire. Nos dif-
férents algorithmes de jointures floues avec divers paramètres ont été validés avec
des expériences dans le cadre Spark. Les résultats expérimentaux indiquent que
les opérations de jointure utilisant nos filtres sont plus efficaces que les autres.
L’efficacité est ici examinée par rapport à la quantité de données intermédiaires, la
quantité totale de sortie et le temps d’exécution total. L’évaluation expérimentale
nous aide à évaluer en profondeur les performances des algorithmes de jointure.

— (4) Orientations de recherche futures.
À partir des résultats de recherche obtenus, nous étudions et proposons des direc-
tions de recherche possibles dans le futur. Un modèle de filtre flou de différence
est proposé pour optimiser les jointures floues de flux et les jointures floues récur-
sives. De plus, une solution efficace pour optimiser l’algorithme de jointure de Ver-
nica [109] est étudiée. Cette solution utilise les filtres de comptage de Bloom [42]
pour calculer les fréquences générales des jetons et éliminer deux tâches MapRe-
duce (l’une du tri des jetons et l’autre de l’étape de déduplication) par rapport
à l’algorithme d’origine. Cela conduit à de meilleures performances avec moins
d’opérations d’E/S et de communication.

9

Résumé, l’objectif de notre travail est de propositions pour les opérations de grande join-
ture floue et contributions à l’optimisation en général de la gestion de données à l’aide du
paradigme MapReduce sur des infrastructures distribuées à grande échelle.

10

TABLE OF CONTENTS

Introduction 17
Context And Motivation . 17
Contributions Of The Thesis . 20
Thesis Outline . 21

1 Related Work 23
1.1 Fuzzy Join Operations . 23
1.2 MapReduce And Big Join Parallelism . 27

1.2.1 MapReduce and HDFS . 27
1.2.2 Basic Join Algorithms in MapReduce 29
1.2.3 M-C-R Cost Model . 32
1.2.4 Spark . 32

1.3 Fuzzy Join Algorithms In MapReduce . 35
1.3.1 Single Job Fuzzy Big Join Algorithms 36
1.3.2 Multiple Jobs Fuzzy Join Algorithms 40

1.4 Filtering Techniques . 46
1.4.1 Bloom Filter And Bloom Join Algorithm 46
1.4.2 Intersection Bloom Filter And Intersection Bloom Join Algorithm . 48
1.4.3 Counting Bloom Filter . 49

1.5 Conclusion . 50

2 Fuzzy Big Joins Improvement Using Bloom Filters 53
2.1 Previous Works . 53
2.2 Improvement Of Fuzzy Big Joins Using Bloom Filters 55

2.2.1 BF-BH Algorithm . 55
2.2.2 BF-Ball-Splits Algorithm . 61

2.3 Cost Analysis . 64
2.4 Experimental Validation . 66

2.4.1 Cluster and Datasets Descriptions 66

11

TABLE OF CONTENTS

2.4.2 Fuzzy Self Join Evaluation . 66
2.4.3 Fuzzy Two-way Join Evaluation . 72

2.5 Summary . 77

3 Fuzzy Filters And Fuzzy Big Joins Optimization 79
3.1 Previous Works . 80
3.2 Fuzzy Filters . 82

3.2.1 Fuzzy Filter . 83
3.2.2 Intersection Fuzzy Filters . 86
3.2.3 Extended Intersection Fuzzy Filter 91

3.3 Optimization Of Fuzzy Big Joins . 92
3.3.1 Fuzzy Self-Joins Using Fuzzy Filters 92
3.3.2 Fuzzy Two-way Joins Using Intersection Fuzzy Filters 94
3.3.3 Fuzzy Filters Analysis And Optimization 97

3.4 Cost Analysis . 99
3.5 Experimental Validation . 100

3.5.1 Fuzzy Self Join Evaluation . 100
3.5.2 Fuzzy Two-way Join Evaluation . 103

3.6 Summary . 106

Conclusion 107
Thesis Conclusions . 107
Future Work . 109

Publications Involved in the Thesis 115

Bibliography 117

12

LIST OF FIGURES

1.1 MapReduce Execution . 28
1.2 An example of Map-side join algorithm in MapReduce 30
1.3 An example of Reduce-side join algorithm in MapReduce 31
1.4 Spark cluster architecture . 33
1.5 Example of a join in Spark . 34
1.6 A simple example of Naive algorithm execution with J = 2, d = 1 37
1.7 BH1 algorithm execution . 38
1.8 An example of BH1 algorithm execution with b = 3, d = 1 39
1.9 An example of Splitting algorithm execution with b = 4, d = 1 40
1.10 A workflow of set based fuzzy joins . 41
1.11 A dataflow of full filtering joins . 43
1.12 An example of Full Filtering Joins with τ = 0.6 43
1.13 A dataflow of Vernica joins . 44
1.14 Token ordering for Vernica joins . 45
1.15 Example of Job 3 for Vernica joins . 46
1.16 A Bloom filter BF (S) with 3 hash functions 47
1.17 R ./ S using BF in MapReduce . 48
1.18 Three approaches of IBF structure . 49
1.19 R ./ S using IBF in MapReduce . 50
1.20 Counting Bloom Filter . 50

2.1 An example for limitations of BH1 algorithms execution with b = 3, d = r = 1 54
2.2 An example for limitations of Splitting algorithms execution with b = 6, d = 2 55
2.3 An example of pre-processing stage . 56
2.4 An example of join processing stage of BF-BH1 Algorithm 58
2.5 Flowchart for preprocessing stage for BF (S) building in Spark 60
2.6 Flowchart for join processing stage of BF-BH1 algorithm in Spark 60
2.7 Flowchart for join processing stage of BF-BH1 two-way join algorithm . . . 61

13

LIST OF FIGURES

2.8 An example for join stage processing of BF-Ball-Splits Algorithm with 6-bit
strings and a threshold d = 2 . 63

2.9 Flowchart for join processing stage of BF-Ball-Splits algorithm in Spark . . 64
2.10 Exp-1,2: Running time of fuzzy self joins approaches in various thresholds . 70
2.11 Intermediate data of fuzzy self joins approaches in various thresholds . . . 71
2.12 Output result of fuzzy self joins approaches in various thresholds 73
2.13 Intermediate data of Exp-3 . 74
2.14 Total output results of Exp-3 . 74
2.15 Running time of fuzzy self join approaches in various datasets in the thresh-

old τ = 3 . 75
2.16 Intermediate data of Exp-4 and Exp-5 . 76
2.17 Total output results of Exp-4 and Exp-5 76
2.18 Running time of Exp-4 and Exp-5 . 77

3.1 BF-BH1 limitations . 80
3.2 Fuzzy filter modeling . 82
3.3 FF(S) structure . 83
3.4 Example of building FF with b = 4, r = 1, S = (0000, 1010, 1110, 1000) . . 84
3.5 FF modeling with false positives . 86
3.6 Intersection Fuzzy Filters idea . 87
3.7 IFF (S ./r T) . 88
3.8 Example of building IFF with b = 4, r = 1, S = {0000, 1010, 1110, 1000}, T =

{0000, 0100, 1101} . 90
3.9 EIFF structure . 92
3.10 FF-FJ Pre-processing stage . 93
3.11 Join processing stage of FF-FJ algorithm with b = 4, r = 1 94
3.12 Example of FF-FJ pre-processing stage . 95
3.13 Example of join processing stage of IFF-FJ algorithm 96
3.14 Example of false positive of FF . 98
3.15 Intermediate data and output results of fuzzy self joins approaches on 10GB

in various thresholds . 101
3.16 Exp-6: Running time of fuzzy self joins approaches on 10GB in various

thresholds . 102
3.17 Running time of fuzzy self join approaches in various datasets in the thresold

τ = 3 . 103

14

LIST OF FIGURES

3.18 Intermediate data of Exp-8 and Exp-9 . 104
3.19 Total output results of Exp-8 and Exp-9 105
3.20 Running time of Exp-8 and Exp-9 . 105
3.21 Difference Fuzzy Filter structure . 110
3.22 Example for limitations of Vernica joins . 112
3.23 Optimization for Vernica joins . 113

15

LIST OF TABLES

1.1 Given Datasets . 26

2.1 Notation summary . 56
2.2 Summary of costs for various Hamming distance-based join algorithms . . 65
2.3 Value of expressions from Table 2.2 when b = 20, d = 4, |S| = 105, K =

104, δS = 1%, k = 8, fBF (S) = 10−4 . 65
2.4 Input datasets used in experiments . 66
2.5 Summary of input keys of datasets used in fuzzy self joins experiments . . 67
2.6 Parameters of filters used in experiments. m: the length of the Bloom filter,

n: the number of elements being filtered, k: the number of hash functions . 68
2.7 Exp-1 - Intermediate data of fuzzy self joins of size 2GB on various thresholds 68
2.8 Exp-2 - Intermediate data of fuzzy self joins of size 10GB on various thresholds 68
2.9 Running time of the fuzzy self join approaches on 2GB in various thresholds 69
2.10 Running time of the fuzzy self join approaches on 10GB in various thresholds 71
2.11 Output results of fuzzy self join algorithms on 2GB in various threshold . . 72
2.12 Output results of fuzzy self join algorithms on 10GB in various threshold . 72
2.13 Intermediate data of fuzzy self joins in the threshold τ = 3 for various

datasets . 73
2.14 Output results of fuzzy big join approaches in the threshold τ = 3 for

various datasets . 74
2.15 Running times of fuzzy self joins in the threshold τ = 3 on various datasets 74
2.16 Input dataset keys used in fuzzy two-way joins experiments 75

3.1 List of notations . 81
3.2 Summary of costs for various Hamming distance-based join algorithms . . 99
3.3 Running time of the fuzzy self join approaches on 10GB in various thresholds102
3.4 Running times of fuzzy self joins in the theshold τ = 3 on various datasets 103

16

INTRODUCTION

Context And Motivation

This era has seen a massive growth of online applications and their users, which
has resulted in an enormous increase in the volume of data that needs to be processed.
Besides, there are numerous applications that require big data processing by their nature.
This includes web-search (e.g., Google Search), online maps (e.g., Google Maps), online
product reviews (e.g., Amazon Customer Reviews), online social and professional networks
(e.g., Facebook and LinkedIn), video streaming (e.g., YouTube), and sharing rides and
residences (e.g., Uber and Airbnb), etc. This trend has put forward greater challenges for
massive data retrieval.

Join is a critical operation within a data management system, making it possible to en-
rich data from a source with information stored outside of it. This is why literature is rich
in working on join optimization, especially in parallel and distributed systems [72, 19, 73,
90, 2, 4, 55, 91]. In recent years, researchers have focused on the problem of efficient joins
in large scale parallel environments. The first results, concerning the equi-join [91], impose
strong constraints on the data (one of the sets having to be small enough to be distributed
to all the machines used for the treatment) or their organization (sorting according to the
join attribute, placement of data on specific nodes), leading to many data transfers (some
unnecessary) and heavy workload on machines or requiring multiple (expensive) execution
phases. The problem is even more difficult when the equality constraint is released while
this type of query is often necessary. It is motivated by applications requested by similar
matching. As a query example [109] in friends recommendation services on online social
networking services where user’s preferences are stored as bit vectors (where a “1” bit
means an interest in a certain domain), applications want to discover the similar interests
of users. In other words, what it has to do is to detect all the person pairs which share
a similar profile. For instance, a user with preference bit vector “[1, 0, 0, 1, 1, 0, 1, 0, 0, 1]”
possibility has similar interests to a user with preferences “[1, 0, 0, 0, 1, 0, 1, 0, 0, 1]” with
their distance is only 1. It is easy to understand that two people may make friends because
they have the same hobbies. Another example, widely used in image content-based search

17

Introduction

engines as Google, Baidu, Bing, discover images whose features map into binary code by
their similarities are greater than a predefined threshold. An additional instance is the
integration data for an author’s name that is “Thi-To-Quyen TRAN” and is referred by
multiple accounts under the slightly-edited names “Quyen Tran” or “T.T.Quyen Tran”
in different papers. These queries are defined as fuzzy or similarity joins, and play an
important role in a large variety of applications, including data cleaning [27], data inte-
gration [39], detecting attacks from colluding attackers [84], mining in social networking
sites [100], detecting near duplicate web-pages in web crawling [56], plagiarism detection
[59], document clustering [24], master data management [95], bioinformatics [110].

State-of-the-art. The rise of Big Data poses challenges for efficient and scalable fuzzy
big join evaluations. There are two main directions to solve this problem that have been
considered in the literature. (1) One uses approximate matching techniques that find most
of but not all results. When the number of entities is very large or the similarity measure
is costly to compute, it may be preferable in practice to apply approximate techniques.
The most popular solution in this case is hashing, which transforms an item to a low
dimensional representation [112]. The basic idea is that similar items have a much higher
probability to be mapped to the same hash code than dissimilar ones. Thus, hashing
techniques can be exploited in the filtering phase to generate candidates before the fuzzy
join computations. (2) Another one uses exact matching techniques that always return
the correct output. In this thesis, we focus on exact fuzzy joins.

According to the join execution, a Cartesian product and all pairs distance calculation
need for a fuzzy join. Therefore, its processing is very expensive in traditional database
[63, 50]. Moreover, when dealing with a very large amount of data, fuzzy join becomes a
challenging problem in a distributed parallel computing environment with the expensive
cost of data shuffle, space and efficiency. As a result, data redundancy and duplication
are very difficult to accept.

Due to its simplicity, fault tolerance, and scalability, MapReduce [35] is by far the
powerful model for data intensive applications. It becomes a popular framework used
for large scale data analysis in parallel. It is widely applied to modeling, processing and
calculating costs in large scale fuzzy join studies [43, 99]. Most existing solutions follow
a filtering-verification framework in multiple stages to generate candidates, apply the
principles (prefix filter, length filter, segmentation techniques) to prune out hopeless pairs,
based on similarity functions to determine all pairs within a radius. Vernica et al. [109]
proposed a similarity join method using 4-stage MapReduce, which utilized the prefix

18

Introduction

filtering method by inverted index on tokens to support set-based similarity functions.
Metwally et al. [85] proposed a 2-stage algorithm VSMART join for similarity join on set,
multisets and vector. Deng et al. [36] use signatures to calculate inverted index and process
in 3-stage for set similarity join. [113] improve [36] by replacing signatures with a q-gram
technique in 3-stage. Afrati et al. [5] proposed multiple algorithms to perform fuzzy joins
with Hamming, Edit and Jaccard distance in a single MapReduce stage without filters.
Others algorithms [97, 34, 29] use pivots to split data into disjoint partitions by recursive
jobs.

Apache Spark [117, 10] is an open source cluster computing framework, developed to
optimize large-scale interactive computation. The most significant characteristics of Spark
in comparison with MapReduce are Sparks’ support of iterative computations on the same
data and its capability of efficient leveraging of distributed in-memory computation for fast
large-scale data processing while it retains the scalability, fault tolerance of MapReduce.
Spark uses Resilient Distributed Datasets (RDDs) [118] to restore the persistent datasets
on disk in order to distribute main memory and provide a series of “transformations”
and “actions” to simplify parallel programming. Spark can perform up to 100 times faster
than Hadoop MapReduce and significantly faster than other frameworks [117, 10]. Thus,
we implement fuzzy join algorithms based on Apache Spark.

Motivation. In addressing this problem, the studies focus on the challenges involved
in efficiently performing fuzzy joins in the MapReduce paradigm including the common
limitations as input re-reading by multiple phases, wasteful redundancy and duplication
of intermediate data leading to expensive data transmission and large disk I/Os. We argue
that the filter-based approaches in our recent studies [90, 91] can solve these problems.
Our team was interested in using Bloom Filters [20], Intersection Filter [90], Counting
Bloom Filter [42]. The idea is to filter irrelevant data as soon as possible to reduce data
transfers and workload on different machines. Besides that, Hamming distance based
fuzzy joins are interesting for a variety of applications. One major application is biometric
matching, where a biometric reading is taken and matched with a stored template [102,
62, 106, 76]. Since biometric readings (e.g., fingerprints, iris scans, or facial features) are
a noisy process, the binary string representing the extracted features may not be an exact
match for the template string. In addition, the computation of the Hamming distance is
shown faster than the computation of the distance in the input space. Therefore, we take
advantage of its theory to propose new filter approaches for fuzzy joins.

19

Introduction

Contributions Of The Thesis

This thesis focuses on the improvement for large scale fuzzy joins. The main contri-
butions of our works are the following:

— (1) Fuzzy Filters and Intersection Fuzzy Filters.
Our first contribution consists of a Fuzzy Filter and an Intersection Fuzzy Filter
based on the “Ball of radius r” definition. These two fuzzy filters are small struc-
tures that can give a quick test for detecting if an element is similar to any members
in given sets, and moreover, which ones are their similarities, with a false positive
rate and without a false negative rate. By space efficiency (bit vector), response
speed (O(1)), flexibility (easily updated), these fuzzy filters can be applied to fuzzy
self joins, fuzzy two-way joins, fuzzy multi-way joins, fuzzy stream joins.

— (2) Optimizations for large scale Hamming based fuzzy self joins and fuzzy two
ways joins and theoretical cost analysis.
Our second contribution is the study of optimizations for single stage fuzzy join
algorithms using Bloom Filters, Fuzzy Filters, Intersection Fuzzy Filters. This is
because our join operations can eliminate most redundant data before sending them
to the actual join processing. They also can avoid the useless re-computation. As
a consequence, they significantly reduce the associated overheads. Moreover, theo-
retical cost analysis of various fuzzy join algorithms is then presented to compare
among the approaches in a map-reduce-communication cost model more convinc-
ing. This optimization is an extremely important contribution to support scalable
social network analysis, internet traffic analysis, DNA data analysis.

— (3) Fuzzy big join implementations in Spark and experimental evaluation.
By making full use of the in-memory computation characteristics of Spark, fuzzy
join algorithms are able to achieve better performance by caching the intermedi-
ate results and the filters in memory. Our different fuzzy joins algorithms with
various parameters have been validated with experiments in Spark framework. Ex-
perimental results indicate that join operations using our filters are more efficient
than the others. The efficiency here is examined with respect to the intermediate
data amount, the total output amount, and the total execution time. Experimental
evaluation helps us thoroughly evaluate the performance of the join algorithms.

— (4) Future research directions.
From the research results achieved, we study and propose possible research direc-

20

Introduction

tions in the future. A Difference fuzzy filter model is proposed to optimize fuzzy
stream joins and fuzzy recursive joins. In additional, an efficient solution for opti-
mizing the Vernica join algorithm [109] is studied. This solution uses the Counting
Bloom Filters [42] to compute the general token frequencies and eliminate two
MapReduce jobs (one of tokens sorting and one of deduplication stage) versus the
original algorithm. This leads to a better performance with less I/O operation and
the communication.

Thesis Outline

In Chapter 1 - Related work, we present the definitions that help us gain a bet-
ter understanding of the basic characteristics and features of important fuzzy joins. It
then covers specific fuzzy join operations that are used in this thesis such as fuzzy self
joins, fuzzy two-way joins, fuzzy multi-way joins and fuzzy recursive joins. Besides, we
also summarize background components that are the essentials of the MapReduce frame-
work, parallelization of the join operation in MapReduce, M-C-R cost model to compare
the costs of different algorithms, Apache Spark and its supports for fuzzy joins. Basic
concepts, terminologies, and characteristics of the Bloom filter family are described. No-
tably, we present the classification and details of fuzzy join algorithms in MapReduce. We
specifically analyze the advantages and disadvantages of each method to point out their
limitations related to our proposals.

In Chapter 2 - Fuzzy Big Joins Improvement Using Bloom Filters, we present our first
two contributions, including the optimizations for Ball Hashing fuzzy joins and Splitting
fuzzy joins. They are implemented for fuzzy self joins and fuzzy two-way joins. We first
show existing problems of the previous works that need to be addressed. We then present
our proposal to improve these limitations. In addition, we analyze fuzzy join approaches
based on the cost model and make comparisons of the different fuzzy join algorithms. At
the end of the chapter, we present experiments on the performance of the fuzzy big joins
on Spark and compare our proposal to previous methods mentioned in the literature.

In Chapter 3 - Fuzzy Filters And Fuzzy Big Joins Optimization, we present our contri-
butions, including the Fuzzy Filter, Intersection Fuzzy Filter and optimizations for fuzzy
self joins and fuzzy multi-way joins. We describe approaches to building the Fuzzy Filters
and their false probabilities. We then use the Fuzzy Filters to optimize fuzzy self joins and
multi-way joins. In addition, we analyze and make comparisons of the different algorithms

21

Introduction

based on the cost model. At the end of the chapter, we also present experiments on the
performance of the fuzzy big joins on Spark and compare our approaches that use the
Fuzzy Filters to others that use the Bloom Filters.

At Chapter Conclusion, we present the conclusions of the thesis. Besides, we discuss
open challenges and perspectives in optimization for join operations.

22

Chapter 1

RELATED WORK

Fuzzy joins (also referred to as similarity joins) have been widely studied in the research
community and extensively used in real world applications. A fuzzy join aims to group
information based on their similarity. It relies on a distance measure to find all pairs of
tuples (x, y) in the input dataset(s) with a distance below some pre-specified threshold τ .

MapReduce has emerged as a popular large-scale data processing model because of
its attractive programming interface with the abstraction of parallelism, scalability, and
reliability. Basic relational operators such as selection, projection, group and aggregation
can be implemented easily and efficiently in MapReduce. In contrast, theta-join, equi-join,
multi-way joins and fuzzy join operations are much more difficult and expensive [75]. Sig-
nificant efforts have been made to develop efficient join algorithms in recent years. Thus,
fuzzy big join processing in MapReduce became an interesting challenge for researchers.

In this chapter, we first present the foundations of fuzzy join queries. In the second part
of the chapter, we summarize the fundamentals of MapReduce to describe parallelization
of the fuzzy join operation. In addition, we enumerate the various parameters used to
analyze fuzzy join algorithms. We also present a distributed in-memory computing engine,
namely Spark to support our optimizations. The third part presents the classification and
details of recent approaches to improving the fuzzy join computation in MapReduce. We
then review some basic concepts, terminologies, characteristics of the filters as well as
filters based join algorithms in the fourth part. They are used as optimization techniques
for fuzzy big joins in our approaches. Finally, we conclude all elements help us make better
optimizations for the fuzzy big joins in this research.

1.1 Fuzzy Join Operations

The join operation [30, 31] is a fundamental operation and has been studied widely
in the database literature because it is a time consuming and data-intensive operation
in data processing. Based on a Cartesian product of relations, it combines related tuples

23

Chapter 1 – Related Work

from relation(s) according to a condition on different attribute schemes to form a new
relation with columns selected from across the multiple relations. The equi-join is a join
where the join condition uses an equality operator (=) to relate the tuples of two datasets.
Self joins, two-way joins, multi-way joins, recursive joins, etc., are instances of the equi-
join. An extended, more complex operation of the equi-join is the fuzzy join that the join
condition is specified flexible by a similarity function. We start by formally defining the
problem of this research.

Definition 1.1 (Similarity/Distance function). Let D be the domain of all possible tuples.
A similarity/distance function is a function Sim : D ×D → R

The distance function gives us a dissimilarity criterion to compare objects. Thus, the
smaller the distance between two objects, the more similar they are. Fuzzy joins have
been studied for a wide variety of entity types and representations, including strings (e.g.,
entity names), sets (e.g., tokens extracted from entity profiles), binary vectors (e.g., feature
vectors extracted from image or audio objects), graphs (e.g., biological structures), data
series (e.g., time series, trajectories), etc [12]. Based on the entity type and representation,
a wide variety of similarity and distance functions can be used, such as string edit distance,
set overlap, Hamming distance, graph edit distance, Euclidean distance, etc. Furthermore,
the similarity/distance threshold depends on the data characteristics and the application
requirements, and is typically assumed to be provided as input to the fuzzy join task. Our
works focus on Hamming distance and Jaccard similarity for fuzzy join evaluation.

Hamming distance (HD) is introduced in [54]. The Hamming distance function is
well-defined on bit strings, binary vectors and naturally extends to more general strings,
vectors, multi-field records, etc. Hamming distance between two strings s, t is the number
of positions in which they differ. It has been used in some disciplines like information
theory, cryptography, coding theory, and etc.

Jaccard similarity of sets is the ratio of the size of the intersection of the sets to the
size of the union. The more the two sets have in common, the closer the Jaccard similarity
will be to 1.0.

Definition 1.2 (Fuzzy/Similarity join). A fuzzy-join predicate F = (Sim, τ) is defined
by a similarity function Sim and a threshold τ . The result of applying F to a set of
tuples S ⊆ D is F (R) = {(x, y) | x, y ∈ R, Sim(x, y) ≥ τ}. For (x, y) ∈ F (R) we say
F (x, y) = 1.

24

1.1. Fuzzy Join Operations

Thus a fuzzy join is stated using a distance measure used to define the similarity,
where we are required to find all pairs (x, y) with a distance of at most some pre-specified
threshold. Our works aim to find distributed parallel algorithms that can efficiently return
all the (x, y) ∈ F (R)

Most of the existing work has concentrated on the fuzzy two-way joins: Given two
finite datasets S and T , a fuzzy two-way join is defined as a combination of tuples s ∈ S
and t ∈ T , such that d(s.x, t.y) ≤ τ ; where x and y are columns in S and T respectively,
d is a distance function. This specification is represented as:

S ./τ T = {(x, y) | x ∈ S, y ∈ T, d(x, y) ≤ τ}

A fuzzy self join is a specified fuzzy join case in which a dataset is joined with itself.
Fuzzy self joins are often applied for data cleaning tasks.

S ./τ S = {(x, y) | x, y ∈ S, d(x, y) ≤ τ}

Various fuzzy joins can be extended from the idea for the multi-way joins [103, 61]
and the recursive joins [88], referred as the fuzzy multi-way joins and the fuzzy recursive
joins.

— Fuzzy multi-way join is defined as a composition of multiple fuzzy two-way joins,
noted as:

S1 ./τ1 S2 ./τ2 S3 ./τ3 S4... ./τn−1 Sn

— Fuzzy recursive join: Given a dataset K, a fuzzy recursive join is defined as the
transitive closure of the dataset K:

F (x, y) = K(x, y) ∪ F (x, z) ./τ K(z, y)

For clarity, we illustrate with the following example queries relating to researchers, their
papers and their affiliations.

Example. Given three datasets S, T ,U shown in Table 1.1.
We have the kinds of fuzzy join queries expressed as follows.
— Q1-Fuzzy self join: Explore the authors who have similar research topics in

Dataset S for a recommendation application.

Q1 = S ./S.R≈S.R S

25

Chapter 1 – Related Work

Table 1.1 – Given Datasets
Dataset S

Profile (ID) Author (A) Research topics (R)
s0 Thi-To-Quyen Tran 001001010
s1 Anne Laurent 001011101
s2 Thuong-Cang Phan 011001100
s3 Van-Hoang Tran 101001010
s4 Foto N. Afrati 101110110
s5 Jeffrey D. Ullman 101011101
s6 Thanh-Nghi Do 101101010
s7 Laurent D’Orazio 111001100

Dataset U
Affiliation (AF) Country (C)

Rennes University France
Blaise Pascal University France
Can Tho University Vietnam
Stanford University America
National Technical University of Athens Greece

Dataset T
Paper (P) Author (A) Affiliation (AF)
p1 Laurent D’Orazio Univ Rennes,CNRS,IRISA,Lannion,France
p1 Thi-To-Quyen Tran Univ Rennes,CNRS,IRISA,Lannion,France
p1 Thuong-Cang Phan Can Tho University,Can Tho,Vietnam
p1 Anne Laurent Univ Montpellier, LIRMM, CNRS,Montpellier,France
p2 TC. Phan Univ Blaise Pascal
p3 Jeffrey Ullman Stanford University
p3 Foto N. Afrati National Technical University of Athens, Greece
p4 Jeffrey D. Ullman Stanford Univ
p5 L. DOrazio Rennes University
p6 F. Afrati National Technical University, Greece
p7 Foto Afrati National Technical University of Athens
p8 A. Laurent LIRMM University of Montpellier CNRS
p9 Quyen T.T Tran Can Tho University
p9 Cang T. Phan Can Tho University

— Q2-Fuzzy two-way join: Merge authors who have similar names in Dataset S for
a record linkage application.

Q2 = S ./S.A≈T.A T

— Q3-Fuzzy three-way join: Statistics of research topics by region.

Q3 = S ./S.A≈T.A T ./T.AF≈U.AF U

Definition 1.3 (Hamming distance based fuzzy join). Given a set S of b-bit strings, and
an integer 0 ≤ d ≤ b, a Hamming distance based fuzzy join is {(s1, s2) | HD (s1, s2) ≤ d}

To illustrate this concept, let us consider an example, in mining social networking sites
where user’s preferences are stored as bit vectors (where a ”1” bit means an interest in
a certain domain), applications want to discover the similar interests of users. In other
words, what it has to do is to detect all the person pairs which share a similar profile. For
instance, a user with preference bit vector “[1, 0, 0, 1, 1, 0, 1, 0, 0, 1]” possibility has similar
interests to a user with preferences “[1, 0, 0, 0, 1, 0, 1, 0, 0, 1]” with their distance is only 1.

26

1.2. MapReduce And Big Join Parallelism

Consider another example of the Hamming distance based fuzzy join for the dataset
S in Table 1.1. By the Hamming distance threshold d = 1, the output of this fuzzy self
join is {(s0, s3), (s1, s5), (s2, t7), (s3, s6)}

Definition 1.4 (Ball of radius r). The Ball of radius r (Br) contains all close elements
of any given element within a distance r.

Br(s) consists of all similar elements in the ball of radius r around of s. In other
words,

∀t ∈ Br(s), d(s, t) ≤ r

This definition is applied to compute fuzzy joins.
The Hamming ball of radius r (Br) can be obtained by flipping the value of at most

r bits of any given b-bit string. Thus, it is computed by the following formula [5] 1:

|Br| =
r∑

k=0

(
b

k

)
≈ br/r!

Example: Consider the 3-bit string (b = 3),
— r = 0, the ball of radius 0 around any given element B0(000) now is itself ({000}).
— r = 1, the B1(000) now has 1+3 = 4 elements. B1(000) = B0(000)∪{001, 010, 100}.
— r = 2, the B2(000) now has 1 + 3 + 3 = 7 elements. B2(000) = B0(000)∪B1(000)∪
{011, 101, 110}.

1.2 MapReduce And Big Join Parallelism

1.2.1 MapReduce and HDFS

MapReduce [35] is a parallel and distributed programming model to process large
amounts of data on data centers consisting of commodity hardware. This model allows
users to focus on designing their applications regardless of the distributed aspects of the
execution. Figure 1.1 illustrates MapReduce execution.

In this model, a MapReduce program is executed on multiple nodes. A MapReduce pro-
gram consists of two distinct phases, namely, the Map phase and the Reduce phase. Each
phase performs a user function on a key / value pair.

1. [5] assumes that d is much smaller than b

27

Chapter 1 – Related Work

Figure 1.1 – MapReduce Execution

During the Map phase, each Map task reads a subset (called split) of an input dataset
and applies the Map function for each key/value pair. As illustrated in Figure 1.1. The
Map function (M) takes a pair of entries (k1, v1) from a Distributed File System (DFS)
and emits a list of intermediate pairs (k2, v2).

(k1, v1) map−−→ list{(k2, v2)}

The system supports the grouping of intermediate data and sends them to the relevant
nodes to apply the Reduce phase. This communication process is called Shuffle. It starts
with Map function calls emitting data to an in-memory buffer. Once the buffer fills up,
its content is partitioned by Reduce task (using the Partitioner) and the data for each
task is sorted by key (using a key comparator than can be provided by the programmer).
The partitioned and sorted buffer content is written to a spill file in the local file system.
At some point spill files are merged and the partitions are copied to the corresponding
Reducers. It constitutes a synchronization barrier between the Map and Reduce phase
in the sense that no Reduce function call is executed until all Map output has been
transferred. Therefore, shuffle phase sometimes takes time, network bandwidth, and other
resources more than two main functions, Map and Reduce [40, 19]. In other words, the
shuffle phase can be the most expensive part of a MapReduce execution.

Each reduce task collects the intermediate key/value pairs from all the map tasks,
sorts/merges the data with the same key, and then calls the reduce function to process
the value list and generate the final results. These results are then written back to DFS.
As illustrated in Figure 1.1, the intermediate values associated with the same key k2 are
grouped together and then transmitted to the Reduce function (R) which aggregates the
values.

28

1.2. MapReduce And Big Join Parallelism

(k2, list{v2}) reduce−−−→ list{(k3, v3)}

Hadoop [8] is an open source implementation of MapReduce. Hadoop is a compound of
two parts: a data storage component called Hadoop Distributed File System (HDFS) and a
data processing component called Hadoop MapReduce Framework to achieve distributed
processing.

HDFS is a fault-tolerant distributed file system. It is designed to recognize and respond
to individual machine failures. It divides files into blocks, replicates them, and stores
them across the cluster. HDFS provides high throughput access to application data in
a distributed environment [8, 60, 78]. To support this characteristic, HDFS leverages
unusually large (for a file system) block sizes and data locality optimizations to reduce
network input/output (I/O) [60]. It is therefore suitable for applications handling large
datasets. On the other side, random access to file parts is essentially costly in comparison
with sequential access since HDFS is optimized for streaming access of large files. Files
are possible to be only appended; there is no file update support [40, 19].

Hadoop MapReduce is the processing component that distributes the workload for
operations on files stored in HDFS and automatically restarts failed work.

In our experiments, we use HDFS as a distributed storage of large data.

1.2.2 Basic Join Algorithms in MapReduce

Most join algorithms in MapReduce are derived from the literature on join processing
in parallel RDBMSs [37, 18, 47, 13, 14] and distributed RDBMSs [17, 14, 82] such as sort-
merge join, repartition join, hash join, semi-join, Bloomjoin, etc. However, they are not
always straightforward to implement within MapReduce environment because MapReduce
is originally designed to read a single input. Based on where the join processing takes
place in a MapReduce phase, we can show two main classifications of the join operation
including Map-side join and Reduce-side join [19, 91]. In this section, therefore, we describe
their implementation details and discuss the difference between these two important join
algorithms. The problem of skewed data processing in the join operation is outside of our
research scope.

Map-side join

Map-side join [72, 19] performs join operations in the map side without a shuffle and
reduce phase. This algorithm, however requires under certain strict conditions on input

29

Chapter 1 – Related Work

datasets.
— Each input dataset must be divided into the same number of partitions, be sorted

by the join key, and has the same set of the keys.
— All the tuples associated with the same key must reside in the same partition in

each dataset.
When a join job satisfies all the mentioned requirements for two input datasets, map tasks
are initiated and each map task retrieves two partitions, one from each dataset. The join
computation is conducted by the map task before the data reaches the map function and
then the result can be directly written to DFS using the map function. We illustrate the
Map-side join algorithm in an example as Figure 1.2. The two datasets S and T have the
same k partitions (k = 3) with k join keys sorted. Thus, the join job uses k mappers to
process the partitions. The two partitions with the join key 1 from the two datasets are
read by the same first mapper. The first mapper builds the cross product of all tuples
with the same join key 1. Then, the results are directly written to DFS.

Figure 1.2 – An example of Map-side join algorithm in MapReduce

The algorithm does not create intermediate data as well as has no the cost incurred for the
shuffle and reduce phases because it only scans the input datasets and performs the join
computation in the map phase. Consequently, it is the most efficient join algorithm if its

30

1.2. MapReduce And Big Join Parallelism

input datasets meet all the mentioned conditions. However, this join algorithm rigorous
requirements on the input datasets. For arbitrary input datasets, therefore, the problem
can be solved by passing the input datasets through additional MapReduce jobs as a pre-
processing step that sorts and partitions the datasets in the same way. However, that also
means that this algorithm must take additional costs for the jobs of the pre-processing step
related to generating a large volume of intermediate data, shuffling them to the reducers
and performing local and remote I/O operations. In addition, this algorithm bufferres
both the two joined partitions that can lead to a memory overflow for the compute node
when the size of the two joined partitions is larger than the size of physical memory
allocated for the mapper or the case of skewed datasets.

Reduce-side join

Figure 1.3 – An example of Reduce-side join algorithm in MapReduce

Reduce-side join [114, 3, 19, 91] is a popular join algorithm because it is based on the
nature of the MapReduce framework. As implied by its name, the actual join computation
is only conducted on the reduce side.

— First, the map phase only pre-processes the tuples of input datasets to organize
them in terms of the join key. However, to identify which dataset each tuple belongs
to, it is marked by an input tag. Mappers partition all tuples of input datasets
according to the join key into intermediate ((key,tag)/value) pairs.

31

Chapter 1 – Related Work

— Then, the immediate pairs are shuffled (repartitioned) to the corresponding reduc-
ers to compute the join. All the pairs with the same join key must be sent to the
same reducer and sorted by the (join key,tag).

— When all the mappers are complete, the reducers call a reduce function for each
the join key to compute its Cartesian products on its values. The output of the
reduce function can be directly written to DFS. The Reduce-side join algorithm is
depicted as Figure 1.3.

Based on the basic operation in MapReduce, Reduce-side join is the most general type
of join algorithms without any constraints on input datasets. However, because the join
computation is only conducted on the reduce side, the entire input datasets must be sent
across the network from the mappers to the reducers. Besides that, the skewness problem
of the input datasets affects also the performance of this join algorithm.

1.2.3 M-C-R Cost Model

In order to compare the costs of different algorithms, this thesis adapts a cost model
(M − C −R) [5], where M , R, C are used to measure the effectiveness of an algorithm:

— Total map or preprocessing cost across all input records (M).
— Total communication cost (C) of passing data from the mappers to the reducers. It

represents the total amount of network resources needed for the computation. We
assume that other operations such as copying, comparing, hashing are performed
at a unit cost. The size of the intermediate data D is critical since it often correlates
with the I/O cost which dominates the overall execution time.

— Total computation cost of all reducers (R).
In this model, the number of mappers is never considered. They assume that the algorithm
uses as many mappers as is appropriate to handle the input. Since the mappers typically
operate on one input element at a time, the total map cost is not really affected by the
number of mappers, although if we use too few, then the finishing time of the entire
job will be unnecessarily high. They do not consider possible communication between
mappers to deal with data skew, since it is not in the basic MapReduce model.

1.2.4 Spark

Since Spark [117, 10] is one of the widely adopted distributed in-memory computing
system, we have developed our optimization to support fuzzy join technique in Spark.

32

1.2. MapReduce And Big Join Parallelism

Figure 1.4 – Spark cluster architecture

Spark is a fault-tolerant, distributed in-memory computing engine. Spark can run over a
variety of cluster managers, a simple cluster manager included in Spark itself known as
Standalone Scheduler, on Hadoop YARN [108], or on Apache Mesos [57]. For distributed
data storage, Spark is compatible with many file storage systems such as HDFS [114],
Cassandra [71, 7], HBase [9] and Amazon S3 [6]. Spark has a processing speed 100 times
faster than Hadoop MapReduce when cached in memory, or 10 times faster if cached
on disk [117, 10]. Spark provides advanced APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs. It also supports some advanced
components, including Spark SQL for structured data processing, MLlib for machine
learning, GraphX for computing graphs, and Spark Streaming for stream computing.

Spark cluster architecture. As shown in Figure 1.4, each Spark application runs as an
independent process on the cluster, coordinated by SparkContext in the driver program.
First, SparkContext requests the executors on the worker nodes in the cluster from the
cluster manager. These executors are processes that can run tasks and store data in
memory, or on disk for application. Next, SparkContext will send tasks to the executors
to perform. Finally, the executors return the results to SparkContext after the tasks are
executed. In Spark, an application generates multiple jobs. A job is split into several

33

Chapter 1 – Related Work

Figure 1.5 – Example of a join in Spark

stages. Each stage is a task set containing several tasks, which performs calculations and
produces intermediate results. A task is the smallest unit of work in Spark, completing a
specific job on an executor.

Spark’s Serial Job Processing Capacity. Spark is a powerful tool to support serial
job processing of large-scale datasets using RDD (Resilient Distributed Datasets). RDD
is a fault-tolerant parallel data structure that can be cached in memory and used again
for future transformations. RDDs support two types of operations: transformations and
actions. Transformations are “Lazy” operations, meaning that these operations will not
be performed immediately, but only remember their execution steps. Transformations
are only performed when an action is called. Basically, the evaluation of RDD is lazy in
nature. It means a series of transformations on an RDD is being delayed until it is really
needed. This saves a lot of time and improves efficiency.

The serial job processing of Hadoop MapReduce is carried out as a sequence of opera-
tions in which the intermediate results must be written to DFS then being read as input

34

1.3. Fuzzy Join Algorithms In MapReduce

to the following tasks. Meanwhile, Spark will read data from DFS, perform repeated
operations with RDDs, and finally write to DFS.

Spark’s Cache Mechanism. Due to the fact that RDD will be recalculated after an
Action, it is costly and time consuming if a RDD is being reused many times. Therefore,
Spark provides a mechanism called persist, allowing RDDs to be reused efficiently. Indeed,
the caching mechanism is an optimization technology for (iterative and interactive) Spark
computations. It helps save interim partial results so it can be reused in subsequent stages.
These interim results as RDDs are thus kept in memory (default) or more solid storages
like disk and/or replicated.

Figure 1.5 shows an example of a join computation S ./ T in Spark. RDD_T was
calculated and was already cached in memory. So, the join job runs stage 2, and then
stage 3, and finally, writes results to DFS.

1.3 Fuzzy Join Algorithms In MapReduce

A brute force algorithm of fuzzy join computing for a dataset S is to compare every
pair of objects, thus bearing a prohibitively O(|S|2) time complexity. Most of the existing
algorithms for fuzzy join computing are in-memory and central approaches [27, 11, 16,
49, 79, 96, 115].

In large scale data applications like social networks, computational biology, this query
may perform the join of trillions of tuples. Therefore, the parallel model like MapReduce
is a good solution to this problem and significantly improves the response time. So it
is widely applied to modeling, processing and calculating costs in large scale fuzzy join
studies [43, 99]. We classify fuzzy big join algorithms into two groups based on the number
of MapReduce processing jobs.

— Multiple stage solutions: The most popular of existing solutions [41, 85, 109, 93, 94,
15, 36] follow a filtering-verification framework in multiple stage to generate candi-
dates, apply the principles (prefix filter, length filter, segmentation techniques) to
prune out hopeless pairs, based on similarity functions to determine all pairs within
a radius. Besides, the metric partitioning based approaches [97, 34] use pivots to
split datasets into sub-clusters respectively.

— Single stage solutions: [5] proposed the algorithms using only one MapReduce job
to fuzzy big join computing.

In this section, we present the parallel approaches for fuzzy join in MapReduce related to
this study.

35

Chapter 1 – Related Work

1.3.1 Single Job Fuzzy Big Join Algorithms

[5] studies on character based fuzzy join approaches for fixed length string using Ham-
ming distance. Beside that, they also propose their extensions for variable length strings
using Edit distance and Jaccard distance. Their algorithms process in a single MapReduce
job.

Naive Algorithm

Naive algorithm [5] can be used for any data type and distance function. It relies
on a single MapReduce job. The main idea is to distribute each input record to a small
set of reducers so that any two records be mapped to at least one common reducer for
computing distance. The details of Naive algorithm for an input set S are specified as
follows:

— With a constant J > 0, let K =
(
J+1

2

)
= J(J + 1)/2 or J ≈

√
K be the number of

reducers.
— Each reducer is identified by a pair (i, j), such that 0 ≤ i ≤ j < J

Example: Consider a naive fuzzy join with J = 4, K = 10, the reducer labels are
specified as follows:

(0, 0) (1, 1) (2, 2) (3, 3)
(0, 1) (1, 2) (2, 3)
(0, 2) (1, 3)
(0, 3)

— During the Map phase, all members X of S are hashed to J buckets so as to be
sent to exactly J reducers (i, j) or (j, i) ∀i = [0, J) (key, value) pairs of the form
((i, j), X).

X
map−−→ ((i, j), X)

The total map cost and communication (data transfer from mappers to reducers)
is M = C = O(|S|J) = O(|S|

√
K)

In the example above, with the hashed values j = 2, the tuples are sent to
(0, 2), (1, 2), (2, 2), (2, 3)
Besides, with the hashed values j = 3, the tuples are sent to (0, 3), (1, 3), (2, 3), (3, 3)
Therefore, these tuples whose hashed values is 2 or 3 will be mapped to at least
one common reducer (2, 3) for computing their distance.

— A reducer receives all records with the same key (i, j), computes the distance

36

1.3. Fuzzy Join Algorithms In MapReduce

between each pair of records and outputs the pairs satisfying the similarity, that
is to say the threshold τ . Each reducer receives around |S|J/K = 2|S|(J + 1)
elements, which requires

(
2|S|/(J+1)

2

)
= O(|S|2/K) comparisons. As a consequence,

for K reducers, the total computation cost for all reducers R is O(|S|2)
The challenge is to define K in order for every pair of elements of S to be sent to exactly
one reducer and thus avoid data duplication. Each input record must be compared with
all others leading to data redundancy and inefficiency. The duplicated pairs exist in the
result. These limitations are illustrated with a simple example in Figure 1.6

Figure 1.6 – A simple example of Naive algorithm execution with J = 2, d = 1

Ball Hashing Algorithms

Ball Hashing [5] is a family of two algorithms BH1 and BH2. These algorithms rely
on the "ball of radius r" (d = r) to reduce unnecessary comparisons. This means that
each record is compared to the others within its similarity radius. To do this, there is
one reducer for each of the n possible strings of length b. The number of reducers is thus
n = 2b.

BH1

— The mappers generate all elements t in the ball of radius r of each input record
s (Br(s)) as (key, value) pairs of the form (s,−1) and (t, s) such that t 6= s and
send them to the corresponding reducers. t is a string obtained from s by changing
i ∈ [1, r) bits.

s
map−−→

(s,−1)
(t, s), ∀t ∈ Br(s), t 6= s

37

Chapter 1 – Related Work

Thus the map cost is Br per input element.
Example: The tuples 000 of B1(000) is mapped as follows:

000 map−−→

(000,−1)
(001, 000), (010, 000), (100, 000)

Figure 1.7 – BH1 algorithm execution

Figure 1.7 illustrate BH1 algorithm execution.
— Call a reducer that receives only pairs (s,−1) or does not receive a pair (s,−1)

“inactive”. On the contrary, remaining reducers that do not only receive pairs
(s,−1) but also receive pairs (t, s) are considered “active” reducers. It infers that
t is really in the input dataset and outputs all pairs of similar received strings.
Assuming that it is not possible for multiple input records to have the same join
value, the average number of strings to be sent to each reducer is |S||Br|/n. The
total cost of all |S| “active” reducers is |S|2|Br|/n.

— An issue with BH1 is data duplication due to t - s and s - t similarity. A proposed
solution is to proceed lexicographically [66]. A mapper only emits (t, s) if t > s.
However, redundant data still exist in “inactive” reducers because similar records
in Br(s) are sent to reducers although they are not elements in S. We illustrate
the BH1 algorithm on an example as Figure 1.8.

BH2

BH2 is an extension of BH1. The difference is that during the map phase, BH2

generates balls of radius r/2. Because of this, every reducer is active and checks for the
similarity between all the possible combinations of two strings it receives and eliminates
the duplicate outputs.

38

1.3. Fuzzy Join Algorithms In MapReduce

Figure 1.8 – An example of BH1 algorithm execution with b = 3, d = 1

Splitting Algorithm

Splitting algorithm [5] is based on a principle below

Lemma 1.3.1. s, t are b-bit strings. s, t are partitioned into d + 1 substrings of length
b/(d + 1). Let si and ti (1 ≤ i ≤ (d + 1)) denote each equal length substring in s and t
respectively. If HD(s, t) ≤ d, there exists at least one partition i such that si ≡ ti

Proof. To prove this lemma by contradiction, assume that @i such that si ≡ ti or in an-
other words, HD(si, ti) ≥ 1. Therefore, HD(s, t) = ∑d+1

i=1 HD(si, ti) ≥ d+1. It contradicts
that HD(s, t) ≤ d

The Splitting algorithm is composed of a single MapReduce job and is based on split-
ting strings into substrings.

— Mappers decompose each input string s into d+1 equal-length substrings s1, s2, ..., sr+1
2

and emits (si, s).
s

map−−→ ((i, si), s), i = 1..(d+ 1), si ⊂ s

Each substring of length (d+1) has 2b/(d+1) possible values. Therefore, the number
of reducers is (d+ 1)2b/(d+1). The total communication cost is (d+ 1)|S|.

— There is at least one reducer that will receive any two similar strings in S. Reducers
test each string to see if it is within distance d of all other received strings, similar to
the Naive algorithm. The processing cost is (d+ 1)|S|2/2b/(d+1). To avoid duplicate
results, when a reducer in the ith family finds that s and t are at distance r or
less, it checks that there is no j < i for in which jth substrings are also equal and

2. [5] assumes that d + 1 divided by b evenly. If otherwise, some of the last pieces will be one shorter
than the first pieces.

39

Chapter 1 – Related Work

outputs s, t if there is no such j. However, the Splitting algorithm has also the
same issue of redundant data as the Ball hashing algorithm.

Figure 1.9 – An example of Splitting algorithm execution with b = 4, d = 1

Figure 1.9 illustrates an example of the Splitting algorithm execution with b = 4, d = 1.

Anchor Points Algorithm

Anchor Points [5] algorithm is the only randomized algorithm considered. The algo-
rithm chooses a random universe. If the set is large enough, at least one string in the set
can be expected to be within distance dr/2e of any two strings in the input data. This
algorithm will not be included in our research since the paper that introduced it shown
that it is outperformed by the other algorithms [5].

Hamming Code

The Hamming Code algorithm [5] is a special case of fuzzy join technique proposed
for string data and the Hamming Distance. Since this algorithm only works when τ = 1
and the strings’ length is one less than a power of 2, it is not included in our research.

1.3.2 Multiple Jobs Fuzzy Join Algorithms

The multiple job fuzzy join algorithms rely on computing the token set overlap mea-
sure. The previous researches follow the filtering verification framework. In the filter stage,
it uses a lightweight filtering technique to identify a set of candidate pairs and prune lots
of hopeless pairs. In the verification stage, it verifies every candidate pair and remove

40

1.3. Fuzzy Join Algorithms In MapReduce

the false positives. On the other hand, the communication cost is a significant problem in
MapReduce environment. In order not to have to transfer all entire tuples of vast datasets
over the network multiple times, filtering-verification based fuzzy joins require a tokeniz-
ing step (preprocessing step) and an aggregation step (postprocessing step) to process the
tuples. Hence, its processing usually consists of three steps.

Figure 1.10 – A workflow of set based fuzzy joins

1. Preprocessing step (1) converts input tuples into a set of tokens in order to simplify
the computation. A number of tokenization approaches can be adopted such as
splitting the string into words (e.g., string “fuzzy big join” would be tokenized into
set {fuzzy, big, join}) or computing the q-grams, which are overlapping strings of
length q (e.g., 3-gram set for the string “Quyen” is {Quy, uye, yen}). In this step,
each tuple is identified by a unique ID.

2. The tuple pair generation step (2) is the core of fuzzy joins. The second stage
computes all similar pairs of sets and outputs the respective tuple ID pairs.

3. Postprocessing step (3) joins the original objects to the tuple IDs to produce pairs
of tuples as the final result.

Figure 1.10 illustrates a workflow of multiple stage fuzzy big joins. Ignoring the efficient
tokenizations and the trivial aggregation, the optimization of the algorithms is evaluated
by the second step. In recent years, a number of solutions for the distributed set based
fuzzy join have been proposed, most of which are founded on the MapReduce framework.
These researches include FullFiltering [41], VernicaJoin [109], SSJ-2R [15], V-SMART

41

Chapter 1 – Related Work

[85], MRSimJoin [97], MG-Join [93] ClusterJoin [34], MassJoin [36], FS-Join [94]. By the
comparative evaluations in the survey [43, 99], the algorithm considered to be the most
effective is the Vernica join[109]. So, in this thesis, we concentrate to study and optimize
the Vernica join algorithm. To illustrate the algorithm, we consider an example as follows.

Example: Given a dataset S = {s1, s2, s3}, s1 = {A,B,C,D}, s2 = {B,C,D,E, F},
s3 = {A,C,D, F}, a similarity function is J(si, sj) = |si∩sj|/|si∪sj| (Jaccard similarity), a
similarity threshold is τ = 0.6. Since J(s1, s2) = 1/2, J(s1, s3) = 3/5, and J(s2, s3) = 1/2,
the fuzzy join result is (s1, s3).

Full Filtering Join

Full Filtering Join [41] is a basic distributed algorithm for computing the similarity
of every document pair, which we extended with a simple post-filtering. The proposed
algorithm runs two consecutive MapReduce jobs, the first to build an inverted index [44]
and the second to compute the tuples overlap and the final result, as follows:

— Indexing job: for each document si, the mapperM1 emits the token as the key, and
a tuple consisting of document ID and length as the value, i.e. (tok,< sid, l >).
The shuffle phase of MapReduce, groups these tuples by tokens, and delivers these
inverted lists to the reducers R1, that write them to disk.
M1 : s map−−→ list{< tok, (sid, l) >}
R1 :< tok, (sid, l) > reduce−−−→< tok, list{(sid, l)} > //inverted lists

— Similarity pair generation job: For each token tok in the inverted list, the mapper
M2 generates all tuples that are associated with a key < sidi, sidj > consisting in the
pair of document IDs and a value < li, lj, 1 > including their lengths and a number
1 that represents for each their occurs. For any document pair, the reducer R2 uses
their lengths and the count of the numbers 1 to compute the Jaccard similarity
score and verify each similarity pair. Since each tuple pair is verified by a single
reducer, the output is duplicate free.
M2 :< tok, list{(sid, l)} >

map−−→ list{< (sidi, sidj), (li, lj, 1) >} //candidates
R2 :< (sidi, sidj), list{(li, lj, 1)} > reduce−−−→< sidi, sidj > //verification

A dataflow of the second step of full filtering joins is illustrated in Figure 1.11.
The running example is represented in the Figure 1.12.M1 generates inverted indexes

for all tokens of each record s1, s2, s3. Then R1 combines and produces inverted lists for
every token generated. It explores the groups of records who have common tokens. Next,

42

1.3. Fuzzy Join Algorithms In MapReduce

Figure 1.11 – A dataflow of full filtering joins

M2 generates all record pairs by combining every two of the records in the list produced.
Finally, R2 uses the record lengths, which are stored with the respective records, to
compute the Jaccard similarity and verify each record pair (s1, s2), (s1, s3), (s2, s3). Hence,
the result in this example is only (s1, s3).

Figure 1.12 – An example of Full Filtering Joins with τ = 0.6

43

Chapter 1 – Related Work

Vernica Join

Vernica et al. [109] proposed an approach that is based on prefix filtering. Vernica
joins support set-based distance functions like Jaccard Distance and Cosine Coefficient.
There are multiple options presented for each stage, however, the paper states that BTO-
PK-BRJ is the most robust and reliable option. Thus, this option is used in this research
as the representative of this technique. First, it computes prefix tokens (job 1) and builds
an inverted index on them (job 2). Then, it generates candidate pairs from the inverted
lists, using additionally the length, positional and suffix filters to prune candidates (job
3). A deduplication step is finally employed to remove duplicate result pairs generated
from different reducers (job 4). A dataflow of Venica joins is illustrated in Figure 1.13.

Figure 1.13 – A dataflow of Vernica joins

The set elements are first ordered based on some global token order. For each set, the k-
prefix of a set are its k first elements in an arbitrary yet fixed order. With appropriate prefix
sizes, a candidate pair of sets can be pruned if their prefixes have no common element.
To improve the pruning power of the prefix filter, the sets are ordered by ascending
global token frequency (GTF), i.e., rare tokens appear first in the prefix. This way, we
try to eliminate higher frequency elements from the prefix filtering and thereby expect to
minimize the number of comparisons. The prefix size depends on the similarity threshold
(small prefix for high similarity), the record length, and the similarity function.

44

1.3. Fuzzy Join Algorithms In MapReduce

Lemma 1.3.2. (Prefix filtering principle) [115, 27] Consider an ordering O of the token
universe U and a set of records, each with tokens sorted in the order of O. Let the p-prefix
of a record s (p(s, τ) ⊆ s)be the first p tokens of s. If Sim(s, t) ≥ τ , then the p-prefix of
s and the p-prefix of t must share at least one token.

Sim(s, t) ≥ τ ⇒ p(s, τ) ∩ p(s, τ) 6= ∅

In other words, if there is an intersection between their prefixes, these two strings
could be a result. The length of prefix for each similarity function can be computed as
follows.

Overlap similarity: p = |s| − τ + 1
Jaccard similarity: p = d(1− τ) · |s|e+ 1
Cosine similarity: p = d(1− τ 2) · |s|e+ 1

The first job computes the frequency of each token and the second job sorts the tokens
based on their frequencies.
M1 : s map−−→ list{< tok, 1 >}
R1 :< tok, 1 > reduce−−−→< tok, count > //global token frequency
M2 :< tok, count >

map−−→< count, tok >

R2 :< count, tok >
reduce−−−→< tok > //sorted list of tokens, single reducer

A dataflow of the token ordering for running example is illustrated in Figure 1.14.

Figure 1.14 – Token ordering for Vernica joins

45

Chapter 1 – Related Work

MapperM3 loads the resulting sort order in the setup function and creates the inverted
index on the tokens in the prefix (prefix tokens are underlined, tok). Prefix length of each
record s is calculated as |s| − dτ · |s|e+ 1. Reducer R3 generates candidate pairs from the
inverted lists that are immediately verified.
M3 : s map−−→ list{< tok, (sid, s) >} //prefix inverted lists
R3 :< tok, (sid, s) > reduce−−−→< sidi, sidj > //verified pairs
Since different reducers may generate identical result pairs, a final deduplication step is
required (Job 4). Figure 1.15 illustrates Job 3 for our running example.

Figure 1.15 – Example of Job 3 for Vernica joins

1.4 Filtering Techniques

Our research aims to improve fuzzy joins in a MapReduce environment, relying on
Filters. The main idea of filter techniques is to filter out the redundant data before it is
transferred by applying filter structures as Bloom Filter, Intersection Bloom Filter and
Counting Bloom Filter.

1.4.1 Bloom Filter And Bloom Join Algorithm

A Bloom Filter (BF) [20] is a space-efficient randomized data structure used for testing
membership in a set with a small rate of false positives. Figure 1.16 presents a Bloom
Filter structure consisting of m bits, k independent hash functions, and a set S of n
elements represented by BF (S). BF (S) can be described as follows:

46

1.4. Filtering Techniques

— The set S = {x1, x2, ..., xn} of n elements is represented by an array of m bits,
initially all set to 0.

— The filter uses k independent hash functions h1, h2, ..., hk with hi : x→ {1..m}.
— To insert an element x ∈ S, we compute h1(x), h2(x), ..., hk(x), and set the corre-

sponding positions in the bit array to 1. Once this operation has been done for each
element of S, the resulting bit array can be used as an approximate representation
of the set.

— To check if y ∈ S, we check whether for each of the k hash functions, the position
hi(y) is set to 1 in the bit array. If at least one position is set to 0, this means that
y /∈ S. Otherwise, all positions are set to 1, that is to say that y may be a member
of S with some probability.

Figure 1.16 – A Bloom filter BF (S) with 3 hash functions

BF never returns false negatives. However, it can return false positives. A false positive
element of BF is an element that does not belong to a set S while testing it on BF leads to
the opposite result. Indeed, in some cases, a hash function can return the same value for
multiple elements. As a consequence, an element that does not belong to S can also have
a hash value at its position of 1. BF is a space-efficient structure to accelerate querying.
The size of a filter is fixed, independently of the number n of elements. However, there is
a relation between the size of the structure m and the false positive probability [52]

fBF (S) = (1− (1− 1
m

)nk)k ≈ (1− e−nk/m)k

These expressions are minimized when k = ln2 · (m/n), giving a false positive probability
fmin ≈ (1/2)k ≈ (0.6185)m/n. In practice, k must be an integer, and both m/n (the
number of bits per set element) and k should be thought of as constants. For example,
when m/n = 21 and k = 8 the false positive probability is just over 0.0001.

The Bloom Join algorithm was proposed in [73] as an efficient query processing that
focuses on minimizing the amount of data transfer between different sites, based on Bloom
Filters data structure, using the MapReduce framework. Bloom filter is built based on the

47

Chapter 1 – Related Work

key of each record. In the reduce side join, map phase takes the role of filtering the input
records. In the reduce phase, copy/shuffle, sorting and reduce phase are taken place, in
the reduce function, records are selected and disjoint ones are discarded. By the Bloom
filter, this solution improves the efficiency of distributed join for large datasets.

Figure 1.17 – R ./ S using BF in MapReduce

Figure 1.17 describes an illustration of a basic join evaluation R ./ S using the Bloom
filter in MapReduce. A Bloom filter BF (S) is first built for an input dataset S on a join
key column and is delivered across all the mappers. Each mapper receives tuples from R

or S, it eliminates tuples whose join keys are not in BF (S) and emits key/value pairs for
the remaining tuples. Then, the pairs are passed to corresponding reducers to be joined.
However, with using only the filter BF (S) for both the two inputs R and S, the algorithm
can only eliminate non-joining tuples of the dataset R (e.g., tuples with the join key values
of B and D) without eliminating non-joining tuples of the dataset S (e.g., tuples with the
join key values of C and E).

1.4.2 Intersection Bloom Filter And Intersection Bloom Join
Algorithm

Intersection Bloom filter (IBF) was introduced by our research group in [91, 90]. IBF
is a probabilistic data structure that was designed for performing the intersection of two
sets and used to denote common elements of sets with a probability of false positive.
IBF-based joins [90] are studied to solve the problem of network overhead caused by

48

1.4. Filtering Techniques

non-join data elements that produced and transmitted over the network in filter-based
join algorithms using the popular MapReduce. Figure 1.18 presents three approaches
proposed to compute the intersection filter: intersection to Bloom filters, unpartitioned
and Partitioned Bloom Filters. It filters out disjoint elements or non-joining tuples from
both datasets, not only on one input dataset. These approaches in [90] were conducted
based on cost analysis of the join process to prove the efficiency of intersection filter. Its
result showed that the proposed intersection filter gives high accuracy and reduces the
cost of both communications and disk I/O, by reducing redundant data and efficiently
filtering datasets.

Figure 1.18 – Three approaches of IBF structure

Figure 1.19 describes an illustration of an improvement for the example in the figure 1.17
using the Intersection Bloom filter. This join optimization takes the data redundancy in
both R and S before sending to the join processing.

1.4.3 Counting Bloom Filter

The Counting Bloom Filter (CBF) suggested by Fan et al. [42] is a variant BF, in
which each hash entry contains a counter with a fixed size of b counters bits, instead of
a single bit in BF. Hence CBF also needs b times the memory space consumed by BF.
Counters size b must be chosen large enough to avoid overflow. For most applications,
four bits suffice to practically obtain a negligible overflow probability [42, 23].

49

Chapter 1 – Related Work

Figure 1.19 – R ./ S using IBF in MapReduce

Figure 1.20 – Counting Bloom Filter

As shown in Figure 1.20, to insert an element, all the corresponding hashed counters are
incremented by 1. Likewise, to delete it, all of its hashed counters are decremented. To
determine if an element z ∈ S, we check if all of its hashed entries are positive. Given
only insertions, the false positive rate of CBF is the same as for BF. Based on CBF ideal,
we can build a Global Token Frequency by using their counters to improve Vernica joins.

1.5 Conclusion

This chapter presents the overview of related work about the fuzzy big joins. We
have reviewed the popular and important techniques for handling large scale datasets,
the MapReduce framework, Spark and the filters. The MapReduce programming model
enables easy development of scalable parallel applications to process vast amounts of

50

1.5. Conclusion

data. Spark, a MapReduce-like cluster computing engine, extends the MapReduce model
to better support cache and serial job processing. The Bloom filter and the Intersection
filter based on space efficiency have been applied to optimize for the join processing. The
Counting Bloom Filter saves the number of occurrences of an element and then can be
applied to build Global Token Frequency.

Furthermore, we provide a state of the art on the status of studies on fuzzy big joins
with MapReduce and the recent research. We present an overview of the prominent parallel
fuzzy join algorithms and categorize them with respect to their strategies: single job and
multiple jobs. In particular, we have studied their limitations by using the cost model
M − C − R. Through the survey, we realize that there remain a lot of non-joining data
sent to the reducers in the existing join algorithms as well as duplicated pairs in results.
Therefore, we need to look for a type of filter that has the ability to eliminate all hopeless
tuples that do not participate in the fuzzy join result.

There are some important variations of the Bloom filter such as compressed Bloom
filter [86], spectral Bloom filter [32], Bloomier filter [28], space code Bloom filter [68],
distance-sensitive Bloom filter [67], etc. A variant called Counting Bloom Filters (CBF)
[42] allows deletion of elements from the Bloom filter by using counters instead of a
single bit at every position. Besides, another version of the Bloom filter is Invertible
Bloom Filters (InvBF) [48] that supports not only the insertion, deletion, and lookup of
elements, but also enables a listing of its contents with a probability. However, all these
variant filters are not designed for our purposes. Furthermore, a SuRF [119] is a fast and
compact filter that provides exact-match filtering, range filtering, and approximate range
counts. It is a tree-based filter structure. So it does not fit with the fuzzy join problem
because it has to browse through all the branches to find its true close elements, lead
to inefficient and high costs. As a result, a fuzzy filter for optimization of fuzzy joins
should be proposed to devise better optimizations for the fuzzy big joins that are the
main subject of this research.

51

Chapter 2

FUZZY BIG JOINS IMPROVEMENT USING

BLOOM FILTERS

Afrati et al. [5] proposed multiple algorithms to perform fuzzy join in a single MapRe-
duce stage. While their algorithms have the common limitations as redundancy and dupli-
cation of data, we were interested in using Bloom Filters [20] to improve them. The idea
is to filter irrelevant data as soon as possible to reduce data transfers and workload on
different machines. This study, therefore, focuses on a theoretical analysis of various Ham-
ming distance-based similarity join algorithms in MapReduce, and their cost comparison
in a M − C −R computation.

This chapter is formed as follows. Section 2.1 provides a short description of previ-
ous work as well as points out its limitations. We then introduce an overview of our
contributions, definitions and notations. The remainder of the chapter therefore presents
our proposals in detail. Section 2.2 describes our approaches to optimize fuzzy big joins.
In addition, we take advantage of Spark to implement our algorithms. A comparative
analysis of the costs of fuzzy joining algorithms can be found in Section 2.3. Next, the
evaluation environments, experimental protocols and experiments are reported in Section
2.4. Finally, Section 2.5 includes conclusions on our work.

2.1 Previous Works

Ball Hashing is based on the ball of radius r to compute the fuzzy joins. The mappers
generate and send all elements t in the ball of radius r of each input record s to the
corresponding reducers. However, the number of elements in each Ball of radius r is
large (exponential r, depends on the string length) while not all its elements exist in the
input dataset S. That means a significant number of elements generated in each ball are
sent to the inactive reducers. As a result, they lead to data redundancy, even a serious
bottleneck for the Ball hashing algorithm [99]. Lexicographically deals only partially with

53

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

redundant data and duplication. Figure 2.1 clearly illustrates these limitations. The pairs
(000, 001), (110, 111), (101, 111), (011, 110) are removed by the lexicography.

Figure 2.1 – An example for limitations of BH1 algorithms execution with b = 3, d = r = 1

Besides, Splitting algorithm generates redundant data by sending each record to d + 1
reducers. In fact, each record just needs to be sent to some identified reducers if its actual
similar elements present in S and its substrings are known. Furthermore, a considerable
quantity of duplicate data is produced because similar strings have more than one common
substring. It wastes network resources, computing resources and reduces the efficiency of
the algorithm. Figure 2.2 presents limitations of the Splitting algorithm. With b = 6, d = 2,
each record generates 3 splits. We can see that there are hopeless candidates, which are
non matching substrings (eg. (3_01, 000001), (2_11, 111111), (3_11, 111111)). Moreover,
000000 and 000001 have more than one common split (1_00, 2_00) which leading to
wastes of verification and duplication results problem.

For these reasons above, we can take advantages from filters to be able to filter out
non-joining data of the input datasets. This chapter, therefore, makes the following main
contributions: (a) optimization for Ball Hashing and Splitting algorithms using the Bloom
filters; (b) implementations of our approaches for fuzzy self joins and fuzzy two-way joins
in MapReduce as well as in Spark; (b) comparison among the fuzzy joins using different
approaches through cost models and experiments. In order to present our contributions
and to compare the costs of different algorithms, we supply notations and parameters
used in this chapter as shown in the Table 2.1.

54

2.2. Improvement Of Fuzzy Big Joins Using Bloom Filters

Figure 2.2 – An example for limitations of Splitting algorithms execution with b = 6, d = 2

2.2 Improvement Of Fuzzy Big Joins Using Bloom
Filters

From the limitations of data redundancy, in this chapter, we propose to integrate
Bloom Filter (BF) into the fuzzy join algorithms to improve their performances.

2.2.1 BF-BH Algorithm

During the map phase, BH1 generates all elements within a distance d from s and
sends them to the reducers for combining with similar input records. It is easy to see
that not all elements in the Bd(s) belong to S. BF (S) represents all the input records. A
membership test for some key value s on BF tells whether s participates or not to the join
result. Our approach integrates BF (S) to remove elements in Bd(s) that do not belong
to S before sending it to the reducers. This solution consists of two stages:

1. Pre-processing stage: A filter BF (S) is built on a join key value set of the input
dataset S. Figure 2.3 describes an example of the preprocessing stage of BF −BH1
for the fuzzy join with 3-bit strings. The mappers scan splits of input dataset S,
extract the join key column for each tuple, and insert the join keys of S into local
Bloom filters BF (Si)local on tasktrackers. The mappers emit the local filters to one
reducer. The reducer receives all the local filters from all the mappers, merges these
filters into the global filter BF (S)global using the bit-wise OR the bit arrays. By the

55

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

Table 2.1 – Notation summary

Notation Description
M Total computation cost (map or preprocessing) for all input records

C
Total communication cost (network resources) to transfer data from
the mappers to the reducers. Other operations such as copying, com-
paring, hashing are performed at a unit cost

R Total computation cost for all reducers
S, |S| Input dataset S and its size
τ, d, r Pre-specified threshold of distance and radius of Ball
s, t, b A string s or t and its length
Br Ball of radius r
k Number of hash functions
K,n Number of reducers
D Size of intermediate data for shuffle
BF (S) Bloom filter built for a set S
fBF (S) False positive probability of BF (S)

same size m and k hash functions, then

BF (S)global = BF (
⋃
Si) =

⋃
BF (Si)local [53]

The global filter is then stored into a file on Distributed File System (DFS).

Figure 2.3 – An example of pre-processing stage

Each input record s is hashed by k functions. So, the map cost of preprocessing
stage is k|S|. The number of BF (Si)local that is transferred depends on the number
of mappers, and thus lead to the number of OR computations in the reducer.
As an option, when the size of filters is large, the filter files will be compressed in

56

2.2. Improvement Of Fuzzy Big Joins Using Bloom Filters

formats such as gzip, bzip2, etc. This compression is efficient for delivering filters to
all distributed nodes.

2. Join processing stage: BF (S) is distributed to all the computing nodes and used
to eliminate early non-similar elements of the input dataset in each ball of radius
d during the map phase. In order to start the job, the bloom filter file BF (S) is
distributed to all the compute nodes in a cluster using a distributed cache. Then,
the jobtracker will create map tasks for the input dataset S, reduce tasks, and assign
each split to one map task run on a tasktracker. Its implementation includes the
following two phases.

— Map phase using the filter: Each mapper uses an initialization function to load
the file BF (S) into memory. The mappers first read each tuple from its split,
generate all elements t in the ball of radius r (d = r) of each input record s

(Br(s)). t is a string obtained from s by changing from 1 to r bits. The map
function then queries each ti(i = 1..|Br|) of the tuple s into the BF (S). Its map
output result is given as follows:
• If all elements ti are not in BF (S), the tuple s is ignored.
• Conversely, if it exists at least one ti in BF (S), this means that ti is capable

of a real similar element of s in S. To avoid creating duplicate pairs, we
consider this possibility as one of two cases:
◦ If ti < s, the tuple is mapped as (key, value) pairs of the form (ti, s).
◦ On the contrary, if ti > s, a pair (s,−1) is emitted.
The number of reducers is thus n = 2b/2 = 2b−1

Then these filtered pairs are sent to the corresponding reducers. By this way,
both “inactive” reducers that do not receive any pair (s,−1) as well as “useless”
reducers that receive only one pair (s,−1) are almost non-existent. In other
words, there are no needless pairs any more because non joining elements are
almost filtered. A tiny amount remains due to the false positive probability of
the BF (S).

s
map−−−−→
BF (S)

(s,−1)
(t, s), ∀t ∈ Bs(d) ∩ S, t < s

When the mapper emits data, these intermediate pairs are partitioned, sorted,
merged and written to disk in a single intermediate file. Then, the framework
sends the pairs across the network to the corresponding reducers.

— Reduce phase: After filtering none relevant data, the join algorithm then proceeds

57

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

as in BH1. This reduce phase is the same as the one of the basic join. The reducer
receives the list of tuples of the form (key, value) with the same key. Then the
active reducers that receive −1 in the value call the reduce function to perform
the cross product for each key. On the contrary, the inactive reducers that do not
receive −1 are ignored. Finally, the BF-BH fuzzy join is completed by writing
the output to DFS.

Figure 2.4 – An example of join processing stage of BF-BH1 Algorithm

An example of join stage of BF − BH1 for the fuzzy join with 3-bit strings and a
threshold d = 1 is shown in Figure 2.4. In the map phase, for each Bd, the redundant
elements (in red color) that is not in BF (S) are eliminated. Then, the elements (in
black color) that pass over the BF , are considered again.
— For 000, BF (S) returns 001 that is greater than 000, thus the mapper emits a

(000,−1) pair.
— For 111, BF (S) returns 011 that is smaller than 111, thus the mapper emits a

(011, 111) pair.
— Similarly, all the green elements are filtered again. The black elements are sent

to corresponding reducers and performed join operations.
Based on these optimizations, redundant data are removed and the duplicate pairs
are prevented.

This approach will also be applied to BH2. Let us recall the assumption that hash op-
eration performs in unit time. With k hash functions, the pre-processing cost on all input
records is k|S|. However, this cost can be amortized by streaming or caching techniques.

58

2.2. Improvement Of Fuzzy Big Joins Using Bloom Filters

Each membership test also uses k hash functions, so the map cost for each record is
k|Bd|.

In the shuffle phase, after filtering, the number of intermediate elements for each record
will be reduced, instead of |Bd|. Precisely, if we note δS the ratio of similar records of S,
fBF (S) the false positive probability of the BF of S, then the cost to transfer intermediate
data from mappers to reducers is

DBF−BH1 = |S|[δS|Bd|+ fBF (S)(1− δS)|Bd|]

DBF−BH1 < |S||Bd|

As a consequence, with n = 2b−1 is the number of reducers, the processing cost in the
reduce phase is also improved, the reduction being: DBF−BH1|S|/n.

Regarding the extension for this fuzzy two-way joins S ./d T , we can consider the
possibility of filter building on one or two input datasets. If the filter is established on
both data sets, one is built on the key set of S, then the other is built on all balls of
the key set of T . This leads to a high cost for the preprocessing stage. Furthermore,
the generation of balls can be redundant if the input data contains duplicate elements.
Therefore, the Bloom filter is just necessary to be built for one of the two input datasets.
The preprocessing stage is also executed as in Figure 2.3 above. In the join processing
stage:

— For the input dataset S which is used to build BF (S) in the preprocessing stage,
each element is mapped one to one without filtering.

s
map−−→ (s, s)

— For the remaining input dataset T , each tuple t generates its ball. Each generated
element is filtered by BF (S) and then is mapped in the form of

t
map−−−−→
BF (S)

(ti, t) ∀ti ∈ Bt(d) ∩ S
With this solution, one of the two input datasets is not filtered, hence, the non-joining
tuples in T are also transferred over the network. On the other hand, the cost of ball
calculations is worth considering. Thus, if the sizes of the two input datasets are not
equal, in order to balance between the preprocessing cost and redundant data filtering
cost, we should choose to build the filter on the larger dataset. The remaining smaller
dataset will be computed its balls for filtering.

59

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

Figure 2.5 – Flowchart for preprocessing stage for BF (S) building in Spark

Figure 2.6 – Flowchart for join processing stage of BF-BH1 algorithm in Spark

Taking advantage of cache, we implement BF-BH proposals in Spark framework as in Fig-
ure 2.5 and Figure 2.6. Flatmaptopair is a map transformation which maps each partition
to a new one without shuffling data. GroupByKey and join need to shuffle the data to
build new partitions. The input dataset S is read and mapped to PairRDD_S to iden-
tify its main join keys one time, hence, its PairRDD_S partitions are cached to reuse in
the join processing stage. Its main keys ks then are extracted and create its hash values
(hi(ks)). These hash values are collected at the driver program for the filter building.
Next, the BF (S) is broadcast to all worker nodes and begins the join processing stage.
PairRDD_S generates its balls and uses the BF (S) to determine intermediate elements
to transfer and the ones to prune out. Next, these filtered elements are grouped by their
keys to create their join list. Finally, each pair elements is mapped as a result without
verification and written to DFS.

60

2.2. Improvement Of Fuzzy Big Joins Using Bloom Filters

Figure 2.7 illustrates for the join processing stage of BF-BH1 two-way join algorithm
in Spark. A PairRDD_S is created by dataset S stored in the distributed file system to
build BF (S), and also is cached in memory in the preprocessing stage. Dataset T is read,
computed and filtered by BF (S) in the cache to create a PairRDD_T. Two PairRDDs S
and T then join by their keys to create their join list. The PairRDD_S in memory is not
filtered in this case. Therefore, the non-joining elements in S are also transferred to the
join transformation. The final results are mapped without verifications or duplication.

Figure 2.7 – Flowchart for join processing stage of BF-BH1 two-way join algorithm

2.2.2 BF-Ball-Splits Algorithm

As mentioned above, Splitting algorithm generates a considerable amount of redundant
data from the non real matching substrings. As a solution for this problem, we propose
to combine Ball Hashing, Splitting and BF. Thus, this approach also requires two stages:

1. Pre-processing stage has to build a BF (S) with a cost of k|S|. This job is the same
with BF-BH1 algorithm.

61

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

2. Join stage details is described as follows:
First, each mapper uses an initialization function to load the BF (S) from distributed
caches into memory.
Then, mappers read each tuple from its splits and generate all elements in the
ball of radius d around each input record s. By the membership test in BF (S), it
determines which elements {t 6= s} in Bs(d) may actually be similar to s.
Next, each of them is divided into d + 1 equal-length substrings {si} and {ti},
i = 1..(d + 1). For each si, if there exists a substring ti of t in the intersection of
S and Bs(d) that matches with si, the pair (i_si, s) will be outputs, and then t

and si will never be considered again. In other words, only one first ti that matches
with si is mapped. By this way, mappers emit only real matching substrings of s
with existing similar elements in the input dataset S. Non matching substrings are
filtered out.

s
map−−−−→
BF (S)

(i_si, s)

si ⊂ s, i = 1..d+ 1
∀t ∈ Bs(d) ∩ S
∃ti ⊂ t, ti ≡ si

In this join stage, each record s generates |Bd| elements. Each element is cut into
d + 1 splits. Thus, with the k hash functions of BF (S), the map cost of this join
stage is k|S||Bd|(d+ 1).
When mappers emit data, these intermediate pairs are partitioned, sorted, merged
and written to disk in a single intermediate file. Then, the framework sends pairs
across the network to the corresponding reducers.
Each record is sent only if there are actual similar elements, with a small false
positive. Even if more than one similar element of s exists a common substring,
they are sent only once to a corresponding reducer. Therefore, with δS is the ratio
of similar records of S, fBF (S) the false positive probability of the BF of S, the
communication cost is

DBFBallSplits < [δS|S|+ fBF (S)(1− δS)|S|]

DBFBallSplits < (d+ 1)|S|

Finally, reducers collect, compute the distance, and output results as in Naive
algorithms. In this approach, each similar pair in S is sent to at most one re-

62

2.2. Improvement Of Fuzzy Big Joins Using Bloom Filters

ducer in general. Thus, the total computation cost for reducers is smaller than
DBFBallSplits|S|/2b/(d+1). However, duplicate pairs are also created when elements
share multiple common splits with different elements. For example,
— 000110 shares 1_00 with 000111, 2_01 with 010110.
— Besides, 000111 also shares 1_00 with 000110, 2_01 with 010111.
— Hence, 000110 and 000110 are sent to both 1_00 and 2_01 reducers. They

produce duplicate pairs in results.

Figure 2.8 – An example for join stage processing of BF-Ball-Splits Algorithm with 6-bit
strings and a threshold d = 2

An example of a join stage execution of BF − Ball − Splits for fuzzy joins with 6-bit
strings and a threshold d = 2 is shown in Figure 2.8. We consider the filtering efficiency
in this example as follows:

— For 000000, Only two similar elements (000001, 000110) in its ball of radius 2
passes the BF (S). They are cut into 3 substrings: 1_00, 2_00, 3_00. Considering
000001, there is a first 1_00 substring that matches with 000000. Thus, a pair
(1_00, 000000) is emitted. So, 1_00 and 000001 are skipped. The next 000110 has
then no remaining splits match with 000000.

— Similarity, 000001 and 000110 are also mapped with the first 1_00 split.
— For 111111, all elements in its balls are filtered out by BF (S).
— In this example, these 4 records create only 3 intermediate tuples instead of 12 as

in Splitting algorithm. They are sent to only one reducer and emit two pairs of
results. There is no redundant data as well as duplicate pairs in this case.

63

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

Figure 2.9 illustrates the join processing stage of BF-Ball-Splits algorithm in Spark. As
in BF-BH1 algorithm, a PairRDD_S is created by dataset S stored in the distributed file
system to build BF (S), and also is cached in memory in the preprocessing stage. Next,
the BF(S) is broadcast to all worker nodes. PairRDD_S generates its balls and its splits,
and then use the BF (S) to determine which splits are transferred, which ones are pruned
out. Next, these filtered elements in PairRDD_SSplits are grouped by their split keys to
create their join list. Finally, each pair elements is verified and mapped as a result.

Figure 2.9 – Flowchart for join processing stage of BF-Ball-Splits algorithm in Spark

Considering the extension for this fuzzy two-way joins S ./d T , to avoid ball calculations
for both input datasets, an Intersection Bloom Filter of splits IBF (SSplits∩TSpits) can
be applied. The problem becomes a normal IBF two-way join. However, dissimilar tuples
have also common splits. Thus, the problem of redundant intermediate data has not been
fully resolved in this solution. In addition, similar tuples have more than one common
splits lead to duplicate results. In general, this solution only filters out dissimilar splits.

2.3 Cost Analysis

Table 2.2 summarizes the costs of the different algorithms by the M-C-R cost model.
According to the processing cost, Naive algorithm is the most expensive solution, but its

64

2.3. Cost Analysis

Table 2.2 – Summary of costs for various Hamming distance-based join algorithms

Approach Pre-proc. M cost/element #Reducers Communication cost Processing
Naive 0 J ≈

√
K K |S|

√
K |S|2

BH1 0 |Bd| n = 2b |S||Bd| |S|2|Bd|/2b
BF-BH1 k|S| k|Bd| n = 2b−1 DBF−BH1 < |S||Bd| DBF−BH1|S|/2b−1

Splitting 0 d+ 1 (d+ 1)2b/(d+1) (d+ 1)|S| (d+ 1)|S|2/2b/(d+1)

BFBallSplits k|S| k|Bd|(d+ 1) (d+ 1)2b/(d+1) DBFBallSplitting < (d+ 1)|S| DBFBallSpitting|S|/2b/(d+1)

Table 2.3 – Value of expressions from Table 2.2 when b = 20, d = 4, |S| = 105, K =
104, δS = 1%, k = 8, fBF (S) = 10−4

Approach Pre-pro. M cost/element #Reducers Communication Processing
Naive 0 100 104 107 1010

BH1 0 6226 1048576 6.2× 108 6.2× 107

BF-BH1 8× 105 49808 524288 6.26× 106 6.26× 105

Splitting 0 5 80 5× 105 3.1× 109

BFBallSplits 8× 105 249040 80 103 6.2× 103

cost is independent with the change of distance. With respect to the communication cost,
Splitting algorithm is the best approach, while Ball Hashing is the most suitable solution
to the processing cost. However, Ball Hashing is sensitive to distance. With the greater
the distance d, the higher number of elements in B(d). Integrating BF in the algorithms
implies the following changes according the (M,C,R) model:

— The pre-processing cost is incurred by reading the input to generate BF (S). How-
ever this cost can be amortized, especially using streaming or caching techniques
(e.g Spark [10]).

— The map phase uses k hash functions for the membership test. In the BFBallSplit-
ting, the map phase generates Bd(s) for each input record.

— The number of reducers does not change.
— Using BF (S), redundant elements are eliminated, thus the communication cost is

reduced. This also decreases the computation cost on reducers.
We use expressions in Table 2.2 to see how these costs grow as the data size grows via

a concrete example. We choose b = 20, so n = 220 ≈ 106. We use d = 4, so B(d) = 6226.
We also take |S| be 10000. For the Naive algorithm, we take K = 10000. We assume
that the ratio of similar records of S is δS = 1%, the small false positive of BF (S) is
fBF (S) = 0.0001. Table 2.3 compares the cost values of various algorithms.

As a conclusion, no algorithm is the best. Choosing a solution depends on the context.
However, in a parallel and distributed environment, communication cost is one of the most
important factors. Experiments in our previous studies [90, 91] have proved that filtering

65

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

can significantly improve execution times.

2.4 Experimental Validation

In this section, we present experimental results obtained from the execution of fuzzy
self joins and fuzzy two-way joins using the different approaches. Together with this, our
discussion focuses on their performance aspects.

2.4.1 Cluster and Datasets Descriptions

All experiments were run on the Galactica cloud project platform [45] with a com-
puter cluster of 5 nodes. Each machine has 16 CPUs, 32GB RAM and 320GB disks. The
operating system is 64-bit Ubuntu server 14.04 LTS, and the java version is 1.7.0.21. We
installed Hadoop [8] version 2.7.2 and Spark [10] version 3.0.1 on all nodes.

Spark is configured to run in standalone mode with 14 executors, 10GB memory per
executor and 5 cores per executor. HDFS is configured for data storage. The master node
is dedicated to run the HDFS NameNode and the Spark Master. We set up 50 minutes
for the timeout of all experiments.

All test datasets were produced by a data generation script of the Purdue MapReduce
Benchmarks Suite [83], called “PUMA”. The maximum number of columns in the datasets
is 39. Each column is separated by a comma and each field contains 19 characters.

We used four test datasets. These tests have the different sizes, namely, 1GB, 2GB,
5GB, and 10GB. Table 2.4 summarizes the various dataset sizes used in our experiments.

Table 2.4 – Input datasets used in experiments

Size (GB) 1GB 2GB 5GB 10GB
Cardinalities (records) 2 683 526 5 367 222 13 419 624 26 841 213

All the datasets are saved in the same text file format.

2.4.2 Fuzzy Self Join Evaluation

Experimental protocol

The experimental evaluations in this section perform fuzzy self joins using Hamming
Distance over the last 6 characters of the column 36 (fixed-length: b = 6, alphabet:

66

2.4. Experimental Validation

Σ = 10). The approaches are performed in our experiments include: Naive, BH1, BF-
BH1, Splitting, BF-Ball-Splits (BFBS). The following join query is used.

Q1 = S ./S.36≈S.36 S

Table 2.5 summarizes the input dataset keys used in our experiments.
To compare the scalability and the performance of the different algorithms, we con-

ducted two types of tests.
— First, we investigated the scalability of all methods to compute a fuzzy self joins

of the datasets 2GB (Exp-1) and 10GB (Exp-2) in Table 2.4 by increasing the
Hamming distance threshold from 0 to 4 .
Exp-1: Q1 = 2GB ./τ 2GB, τ = 0, 1, 2, 3, 4
Exp-2: Q1 = 10GB ./τ 10GB, τ = 0, 1, 2, 3, 4

— Second, we investigated the scalability of the algorithms by increasing the size of
the datasets in Table 2.4 with the Hamming distance threshold of fuzzy self joins
is 3 (Exp-3).
Exp-3: Q1 = S ./τ S, τ = 3, S = 1GB, 2GB, 5GB, 10GB

For each experiment, we run it 4 times and get the average result. Subsequently, we show
results of experiments, and summarize our conclusions for each algorithm.

Table 2.5 – Summary of input keys of datasets used in fuzzy self joins experiments

Dataset Column 36
Number of distinct keys Total of keys

1GB 3 780 20 681
2GB 4 553 41 711
5GB 5 522 103 519
10GB 6 170 206 868

In addition, to execute these experimental evaluations, we use the constant J = 6 for
the Naive algorithm and the parameters of Bloom filters as Table 2.6. The probability of
a false positive f of BF (S) is

fBF (S) = (1− (1− 1
m

)nk)k ≈ (1− e−nk/m)k

We use the same parameters: the length of the Bloom filter m = 2147483637, the num-
ber of hash functions k = 8 for all experiments. However, we can determine optimal
parameters for filters in practice to reduce computational overhead and memory cost.

67

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

Table 2.6 – Parameters of filters used in experiments. m: the length of the Bloom filter,
n: the number of elements being filtered, k: the number of hash functions

Experiment Dataset fBF (S) n k m
Exp-1 2GB 10−38 4 553 8 2 147 483 637
Exp-2 10GB 8.10−38 6 170 8 2 147 483 637

1GB 2.10−39 3 780 8 2 147 483 637
2GB 10−38 4 553 8 2 147 483 637
5GB 3.10−38 5 522 8 2 147 483 637Exp-3

10GB 8.10−38 6 170 8 2 147 483 637

Evaluation Of Approaches

As mentioned above, to compare the scalability and the performance of the different
approaches, we conducted two types of tests: (1) increasing threshold T, (2) increasing
dataset size. Besides, for comparing the efficiency of the join algorithms, we are especially
interested in three main aspects for each algorithm evaluation. They include the number
of intermediate tuples generated (i.e. shuffle read), the execution time, and the output.
The results of our experimental evaluations are described as follows.

Increasing threshold τ .
First, it is important to focus on comparing the amount of intermediate data listed in

Table 2.7 and Table 2.8. We mark the enforcement of the timeout by the letter “T” and
the out of memory by “OM”.

Table 2.7 – Exp-1 - Intermediate data of fuzzy self joins of size 2GB on various thresholds

Algorithm 0 1 2 3 4
Naive 250 266 250 266 250 266 250 266 250 266
BH1 41 711 1 044 380 23 462 057 OM OM
BFBH1 41 711 50 259 220 627 2 043 918 13 016 781
Splitting 41 711 83 422 125 133 166 844 208 555
BFBS 41 711 46 775 112 327 166 791 208 555

Table 2.8 – Exp-2 - Intermediate data of fuzzy self joins of size 10GB on various thresholds

Algorithm 0 1 2 3
Naive T T T T
BH1 206 868 5 177 006 OM OM
BFBH1 206 868 262 956 1 399 853 13 604 835
Splitting 206 868 413 736 620 604 827 472
BFBS 206 868 239 772 585 586 827 418

The intermediate data is a decisive factor that affects the total execution time of

68

2.4. Experimental Validation

the algorithms. The intermediate data of the Naive fuzzy joins is not affected by the
threshold. With J = 6 each record is copied 6 times. Thus, the number of records of
dataset is increased 6 times. On the dataset 2GB, it is always a high constant 250266.
However, the Naive fuzzy joins on 10GB runs into timeouts.

With the threshold τ = 0, the algorithms are considered as the general equi-joins while
they are performed as the fuzzy joins. In this case, the filters do not affect the amount of
intermediate data. Hence, the numbers of intermediate tuples are equal for all approaches.

The worst case of these experiments is BH1. This result is reasonable because the ball
calculation depends greatly on parameter thresholds τ . It even leads to the over memories
on the threshold 3,4 for Exp-1 or 2,3 for Exp-2.

Besides, the Bloom filter helps to eliminate almost all redundant data for the algorithm
BF-BH1 lead to the better result. Thus, BFBH1 executions do not turn into over memories
in these experiments. The intermediate data of BFBS is also better than Splitting. This
result proves that the application of the filter is effective. The Splitting algorithms generate
less intermediate tuples than BH algorithms. For larger thresholds, Splitting generates
more splits and shorter splits. Shorter splits lead to a greater probability of occurrence.
Therefore, the filtering efficiency of BFBS tends to decrease with a larger threshold. For
example, in these experiments, with the thresholds 3 and 4, the lengths of splits are
{2,2,1,1} and {2,1,1,1,1,1} respectively. The number of intermediate data of BFBS is
approximated with Splitting in the thresholds 3 and 4.

The results of these experiments are illustrated in the Figure 2.11.

Table 2.9 – Running time of the fuzzy self join approaches on 2GB in various thresholds

0 1 2 3 4Approach preproc. join preproc. join preproc. join preproc. join preproc. join
Naive 432 432 450 486 1440
BH1 9 10 25 T T
BFBH1 5 6 5 7 5 10 5 42 5 354
Splitting 9 10 15 78 438
BFBS 5 6 5 6 5 9 5 72 5 450

Next, we evaluate the efficiency of these fuzzy self join algorithms by comparing their
total execution time. Table 2.9 and 2.10 identify in detail the execution time of the pre-
processing stage and the join stage for the fuzzy self join algorithms.

With J = 6, the number of records of dataset is increased 6 times. Each pair of results
have to be verified. Thus, Naive is always the slowest approach.

The preprocessing time of filters based approaches is the time to build BF (S), 5s and

69

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

(a) Joining time on 2GB (b) Total execution time on 2GB

(c) Joining time on 10GB (d) Total execution time on 10GB

Figure 2.10 – Exp-1,2: Running time of fuzzy self joins approaches in various thresholds

9s for 2GB and 10GB respectively. On the small dataset (2GB) and the small threshold
(1,2), the execution of the Splitting and BFBS is faster than BH1 and BFBH1 due to less
intermediate data. However, on the large dataset or the larger threshold, the Splitting and
BFBS is slower than BH1 and BF-BH1 because of the distance verification at joining stage
and the duplicate output. Beside that, for a small size dataset 2GB and a small threshold
0,1,2, the filter efficiency is not clear because of the influence of the preprocessing time.
For the dataset 10GB, even with the preprocessing time, the joining time and the total
execution time of filters based approaches are always better. The Figure 2.10 demonstrates
that the BF-BH1 is the best solution about running time.

Finally, we should compare their output result. This output shows the duplication of
algorithms. The results of the total output are presented in Table 2.11, Table 2.12 and Fig-
ure 2.12. The Splitting produces a large number of duplicate results. The BFBS partially
improves this amount. The BH1, BF-BH1 give the exact answers, without duplication.

70

2.4. Experimental Validation

(a) Exp-1 (b) Exp-2

Figure 2.11 – Intermediate data of fuzzy self joins approaches in various thresholds

Table 2.10 – Running time of the fuzzy self join approaches on 10GB in various thresholds

0 1 2 3Approach preproc. join preproc. join preproc. join preproc. join
Naive T T T T
BH1 22 37 OM OM
BFBH1 9 22 9 27 9 90 9 780
Splitting 22 58 168 1740
BFBS 9 19 9 21 9 120 9 1440

Increasing Dataset Size.
We investigated the scalability of the algorithms by increasing the size of the datasets.

First, we consider the total amount of intermediate data generated by each fuzzy self join
algorithm in the threshold τ = 3 for various datasets as in Table 2.13 and Figure 2.13.

The intermediate data has significant overheads involving the communication costs.
Naive is not shown in this experiment because its execution cannot finish from the test
of 5GB . BH1 is always turned into over memory on the threshold τ = 3. BFBS does not
improve much over Splitting about intermediate data. BF-BH1 is the winner for filtering.
This means that its redundant data is the least.

Next, we examine the total output of the fuzzy big join algorithms presented in Table
2.14 and Figure 2.14. Naive and Splitting produce a large number of duplicate results.
BFBS partially improves this amount. BH1, BF-BH1 give the exact answers, without
duplication.

Lastly, the running times of the Exp-3 are demonstrated in the Table 2.15.
Figure 2.15 presents the total execution time of the fuzzy self join using the different

71

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

Table 2.11 – Output results of fuzzy self join algorithms on 2GB in various threshold

Approach 0 1 2 3 4
Naive 2 892 882 3 014 344 5 967 271 36 610 447 220 853 437
BH1 482 147 554 899 2 143 631 OM OM
BFBH1 482 147 554 899 2 143 631 18 719 562 119 394 407
Splitting 482 147 1 037 046 3 513 634 28 671 501 184 892 802
BFBS 482 147 591 441 3 173 038 28 664 535 184 892 802

Table 2.12 – Output results of fuzzy self join algorithms on 10GB in various threshold

Approach 0 1 2 3
Naive T T T T
BH1 11 885 491 13 659 772 OM OM
BFBH1 11 885 491 13 659 772 53 057 520 460 714 501
Splitting 11 885 491 25 545 263 86 781 567 706 374 942
BFBS 11 885 491 14 883 015 82 022 287 706 334 923

algorithms from 1GB to 10GB. With the small size dataset the execution time of these
approaches is not much different. Beside Naive, Splitting is the slowest in this case because
of its redundant intermediate data shuffle, verification and also duplication, even its data
shuffle is less than BH algorithms. When the dataset size increases, Splitting and BFBS
are the most severely affected algorithms. Their execution time increases rapidly. Besides,
BF-BH1 and BF-Ball-Splits demonstrate again the efficiency of filtering. Finally, BF-BH1
is also the winner for the execution time in this experiment.

2.4.3 Fuzzy Two-way Join Evaluation

Experimental protocol

The experimental evaluations in this section perform fuzzy two-way joins using Ham-
ming Distance over the last 6 characters of the column 36 (fixed-length: b = 6, alphabet:
Σ = 10). The approaches are performed in our experiments include: Naive, BH1, BF-BH1,
Splitting, BF-Ball-Splits (BFBS), IBF-Splits (IBFS). The following join query is used.

Q2 = S ./S.36≈T.38 T

Table 2.16 summarizes the input dataset keys used in our experiments.
Similar to the experiments above, we conducted two types of tests.
— First, we investigated the scalability of all methods to compute a fuzzy two-way

72

2.4. Experimental Validation

(a) Exp-1 (b) Exp-2

Figure 2.12 – Output result of fuzzy self joins approaches in various thresholds

Table 2.13 – Intermediate data of fuzzy self joins in the threshold τ = 3 for various
datasets

Approach 1GB 2GB 5GB 10GB
Naive 124 086 250 266 T T
BH1 OM OM OM OM
BFBH1 846 746 2 043 918 6 111 074 13 604 835
Splitting 82 724 166 844 414 076 827 472
BFBS 82 579 166 791 414 057 827 418

joins of the datasets 10GB ./ 10GB (Exp-4) by increasing the Hamming distance
threshold from 0 to 4.
Exp-4: Q2 = S ./τ T, S, T = 10GB, τ = 0, 1, 2, 3, 4

— Second, we investigated the scalability of the algorithms by increasing the size
of the datasets with the Hamming distance threshold of fuzzy two-way joins is 3
(Exp-5).
Exp-5: Q2 = S ./τ T, S, T = 1GB, 2GB, 5GB, 10GB, τ = 3

For each experiment, we run it 4 times and get the average result. Subsequently, we show
results of experiments, and summarize our conclusions for each algorithm.

In addition, to execute these experimental evaluations, we use J = 6 for the Naive
algorithm. The Bloom filters are built on the join key set of the column 36 of dataset S.
Hence, S is cached in memory after the preprocessing stage. The parameters of Bloom
filters and the probability of a false positive f of BF (S) are used as Table 2.6 above.

73

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

Figure 2.13 – Intermediate data of Exp-3 Figure 2.14 – Total output results of Exp-3

Table 2.14 – Output results of fuzzy big join approaches in the threshold τ = 3 for various
datasets

Approach 1GB 2GB 5GB 10GB
Naive 8 997 954 36 610 447 T T
BH1 OM OM OM OM
BFBH1 4 596 714 18 719 562 115 452 868 460 714 501
Splitting 7 040 313 28 671 501 176 911 974 706 374 942
BFBS 7 028 642 28 664 535 176 904 982 706 334 923

Evaluation Of Approaches

Figure 2.16 presents the intermediate data for the experiments Exp-4 and Exp-5.
BH1 generates a large amount of shuffle records. BF-BH1 shows the effectiveness of the
filter when it removes a large amount of redundant data. Splitting and IBFS have the
approximate amount of data transferred. BFBS prunes out redundant intermediate data
clearly on small datasets and small thresholds.

The results of the total outputs for approaches are shown in Figure 2.17. Splitting,
BFBS, IBFS generate duplicate results. BF-BH1 gives the exact answers without the

Table 2.15 – Running times of fuzzy self joins in the threshold τ = 3 on various datasets

1GB 2GB 5GB 10GBAlgorithm preproc. join preproc. join preproc. join preproc. join
Naive 120 486 T T
BH1 OM OM OM OM
BFBH1 4 22 5 42 6 354 9 780
Splitting 29 78 486 1740
BFBS 4 16 5 72 6 378 9 1440

74

2.4. Experimental Validation

(a) Joining time (b) Total execution time

Figure 2.15 – Running time of fuzzy self join approaches in various datasets in the thresh-
old τ = 3

Table 2.16 – Input dataset keys used in fuzzy two-way joins experiments

Column 38 Column 36
distinct keys Total of keys # distinct keys Total of keys

1GB 2334 7456 3780 20681
2GB 3111 14991 4553 41711
5GB 4183 37371 5522 103519
10GB 4866 74670 6170 206868

duplication.
Figure 2.18 reports the running times of the algorithms for various thresholds and

various datasets. Naive timed out on datasets of size 10GB. BH1 is also out of memory
from the threshold 3. We observe that the running time of Splitting increases rapidly
along thresholds and dataset sizes. IBFS is almost similar to Splitting, even slower than
Splitting on large datasets and large thresholds. BFBS improves better. BF-BH1 is the
winner in these experiments.

We summary some conclusions of the experiments in this section.
— Naive is the lowest-performing algorithm.
— BH1 is sensitive to large thresholds or large datasets, where the memory becomes

a bottleneck and limits scalability.
— Filters based approaches better cope when the size or the threshold increase. Our

experiments prove that filtering can significantly improve the execution times in
site of the preprocessing stage.

— Splitting, Bloom filter based Splitting are also sensitive to large thresholds. For

75

Chapter 2 – Fuzzy Big Joins Improvement Using Bloom Filters

(a) Exp-4 (b) Exp-5

Figure 2.16 – Intermediate data of Exp-4 and Exp-5

(a) Exp-4 (b) Exp-5

Figure 2.17 – Total output results of Exp-4 and Exp-5

larger threshold, Splitting generates more splits and shorter splits. Shorter splits
lead to a greater probability of occurrence. Therefore, filtering efficiency of BFBS
tends to decrease with a larger threshold. Still, IBF is inefficient for Splitting.

— Splitting and Bloom filters based Splitting approaches generate less intermediate
data than Ball Hashing approaches. However, their running times are slower be-
cause of their verification at the joining stage and their duplicate outputs.

— Overall, BF-BH1 is the best choice due to their least redundant data and without
the duplication.

76

2.5. Summary

(a) Exp-4: Joining time (b) Exp-4: Total execution time

(c) Exp-5: Joining time (d) Exp-5: Total execution time

Figure 2.18 – Running time of Exp-4 and Exp-5

2.5 Summary

In this chapter, we study theoretical details for the fuzzy big join algorithms based
on Hamming distance measure in MapReduce, applied for b-bit strings input dataset.
We propose the optimization for the Ball Hashing and Splitting algorithms, and show the
comparison through the MapReduce cost model. Our approaches eliminate the redundant
intermediate data, reduce the unnecessary comparisons and avoid the data duplication.
Through experiments, we demonstrate that the proposed solutions bring significant ef-
ficiency in comparison with current available solutions. Performing in Spark, we exploit
the capacities of Spark such as distributed and parallel processing, iterative processing,
caching mechanism, and fast computing on memory. Our optimizations can be applied
for Edit distance, Jaccard distance and further extended for variable length strings [5].

This work has led to one publication [104] in Proceedings of the 2018 IEEE Interna-
tional Conference on Fuzzy Systems (FUZZIEEE 2018).

77

Chapter 3

FUZZY FILTERS AND FUZZY BIG JOINS

OPTIMIZATION

From our study of fuzzy big joins in MapReduce in the previous chapter, we observed
various limitations of previous works. We were interested in using Bloom Filters [20] and
Intersection Filter [90] to remove irrelevant data as soon as possible to reduce data trans-
fers and workload on different machines. However, these improvements imply redundant
calculations that can affect the performance of fuzzy joins. Moreover, they filter only one
input dataset in fuzzy two-way and fuzzy multi-way joins. In this chapter, we want to
optimize the performance of fuzzy big joins by addressing such these limitations. The
main contributions of our works are:

— Fuzzy filter (FF) and intersection fuzzy filter (IFF) structure for detecting if an
element is close to any members in a set(s). Moreover, FF, IFF can determine
which records in the set(s) are real similarities of this element.

— Large scale FF based fuzzy join algorithm to avoid useless re-computation.
— Optimizations for fuzzy two-way and multi-way joins based on IFF.
— Theoretical analysis of various fuzzy join algorithms in MapReduce and their cost

comparison in a M − C −R cost model.
— Experimental evaluations of proposed approaches.

The remaining part of this chapter is organized as follows. We discuss previous work and
propose our solution for optimizing fuzzy big joins in Section 3.1. Some definitions and
notations are also introduced. Each remaining section of this chapter therefore highlights
the contribution of our work. Section 3.2 provides fuzzy filters to answer which similarities
of given element(s) are in set(s). The existing problems, concepts, and design details
for the fuzzy filter and the intersection fuzzy filter are described. Especially, the false
difference probability that affects the filtering performance is also considered and analyzed
thoroughly. Next, Section 3.3 presents an optimization for the fuzzy self joins as well as
the fuzzy multi-way join algorithms. The general algorithm and its implementation in

79

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

Spark are detailed in this section. We compare the proposal to the previous approach
through a cost model, and show the advantages of our approach in Section 3.4. The
evaluation environments, experimental protocols and experiments are reported in Section
3.5. Finally, we conclude our contributions in Section 3.6.

3.1 Previous Works

Figure 3.1 – BF-BH1 limitations

By the theoretical analysis and experiments in the previous chapter, applying filters will
improve the processing costs of fuzzy big joins. However, Ball of radius r computation is
sensitive to distance. The number of elements in Br increases with the distance d. [66] has
shown the slowness of the Ball Hashing algorithm without filters. Besides, for a finite set
of alphabets, the elements in every ball are determined. The ball recalculation for each
record is redundant and unnecessary while the processing cost of this calculation is worth
considering. On the other hand, the standard Bloom filter in BF-BH approach only has
the ability to remove non-joining tuples from one of the input datasets instead of both.
As a result, there remains a large amount of non-joining data from other input dataset(s)
sent to the reducers for the join processing.

Figure 3.1 describes an illustration of these limitations of the Ball Hashing algorithm
using the Bloom filter in MapReduce.

80

3.1. Previous Works

— A Bloom filter BF (S) is first built for an input dataset S on a join key column
and is delivered across all the mappers.

— Each mapper receives tuples from T , it generates balls of their join keys, eliminates
elements not in BF (S) and emits key/value pairs for the remaining elements. In
this example, tuples of duplicate keys (e.g. 010) are calculated balls multiple times.

— Each mapper receives tuples from S, it maps key/value pairs without filtering.
Hence, non joining tuples (e.g. 111) are also emitted. This redundancy considerably
increases associated overheads in cases of multi-way joins and iterative joins.

— Then, the pairs are passed to corresponding reducers to be joined.

Table 3.1 – List of notations

Notation Description
M Total computation cost (map or preprocessing) for all input records

C
Total communication cost (network resources) to transfer data from
the mappers to the reducers. Other operations such as copying, com-
paring, hashing are performed at a unit cost

R Total computation cost for all reducers
Σ Finite alphabet of symbols
S, |S| Input dataset S and its cardinality
τ, d, r Pre-specified threshold of distance and radius of Ball
s, t, b A string s or t and its length
Br Ball of radius r
k Number of hash functions
K,n Number of reducers
D Size of intermediate data for shuffle
\ Difference operator
∩ Intersection operator
∪ Union operator
FF (S) General Fuzzy Filter built for a set S
FF (S, r) Fuzzy Filter built for a set S with a distance r
IFF (S ./r T) General Intersection Fuzzy Filter built for S ./r T
EIFF Extended Intersection Fuzzy Filter
m Length of fuzzy filters
fFF (S), fIFF (S./rT) False positive probability of FF (S), IFF (S ./r T)

For these problems, we need to build new filter types representing the similarities of the
input datasets to be able to filter out non-joining data in one or both of input datasets,
to avoid excess calculations.

The BF, IBF and its variations [86, 32, 28, 68, 67, 48] cannot solve these problems.

81

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

SuRF [119] is a fast and compact filter that provides an exact match filtering, range
filtering, and approximate range counts. It is a tree based filter structure. So it does not
fit with the fuzzy join problem because it has to browse through all the branches to find
its real close elements, leading to inefficient and high costs. In our study, fuzzy filters have
not been proposed yet. Therefore, we propose Fuzzy Filter, Intersection Fuzzy Filter and
these filters based approaches to optimize fuzzy big joins. The complex joins can take
advantages from our proposed filters.

We supply notations used in this research as in Table 3.1.

3.2 Fuzzy Filters

This section shows the approach to build the fuzzy filter with the criteria: small size,
stored in-memory, giving quick answers, no false negative probability. With a query y, a
fuzzy filter has to give a quick test:
∃x ∈ S, d(x, y) ≤ r? Which x?
or ∃x ∈ S ∩Br(y)? Which x?
As illustrated in the Figure 3.2, we consider queries:
— y1 −→ 0/NO, because Br(y1) ∩ S = ∅
— y2 −→ 1/YES, because Br(y2) ∩ S = {x5, x6}
— y3 −→ 1/YES, because Br(y3) ∩ S = {x7}

Figure 3.2 – Fuzzy filter modeling

As shown in Figure 3.2, we can see that the output are elements that belong to the
intersection of S and Br(y):

FF (y) = Br(y) ∩ S

82

3.2. Fuzzy Filters

For convenience during this paper, we assume that all the balls of radius r in the fi-
nite alphabet set are known, regardless of the distance function. This calculation will be
discussed later.

3.2.1 Fuzzy Filter

Definition 3.1 (Fuzzy Filter). A Fuzzy Filter FF (S, τ) is a probabilistic data structure
designed to represent the similarities of a set with a false positive probability. It is defined
by a similarity function Sim and a threshold τ . The result of query y in FF (S, τ) is
FF (y, S, τ) = {x | x ∈ S, Sim(x, y) ≥ τ}.

The idea begins with finding the intersection between dataset and balls. We propose
a fuzzy filter structure as follows. A Fuzzy filter FF (S) combines a Bloom filter BF (S)
to identify elements, and a table to store real similar elements in the ball of each element.
We illustrate this approach by the Figure 3.3

Figure 3.3 – FF(S) structure

The m bit Bloom filter BF (S) uses one hash function h to calculate positions for an
element of S, and sets the bit at the resulting positions. The ball list is an array of m bit
Bloom Filters, each one stores its real ball elements BF (B(si)∩S). We assume that m is
large enough, with a perfect hash function, it will not have duplicates balls at the same
hashed position. The problem of false positive will be discussed later. The Fuzzy Filter
accepts an input y and returns outputs that is one of these possibilities as follows:

— NO - Null: y is NOT in S and it has no any similar elements in S.
— NO - list of {x}: y is NOT in S and {x} may be its similar elements in S.
— YES - list of {x}: y may be an element in S and {x} may be also its similar

elements in S.

83

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

Figure 3.4 – Example of building FF with b = 4, r = 1, S = (0000, 1010, 1110, 1000)

The build operation of the fuzzy filter FF (S) is described as follows.

84

3.2. Fuzzy Filters

— (0) Hash each ball to a bit array of length m. In Σ space, it has |Σ|b ball of radius
d, with b is length of each element. In general, m = |Σ|b. While each ball has |Br|
elements, the cost of this step is C(0) = |Σ|b|Br|.
For example, in Hamming space of b-bit strings, there exist 2b balls, each ball has
about br/r! elements. This step has the cost C(0) ≈ 2bbr/r!

— (1) Hash S to a bit array of length m. C(1) = |S|
— (2) Ball list is computed by the intersection of BF (S) and BF (B(si)).

BallListi = S ∩B(si), 1 ≤ i ≤ m

BF (S ∩ B(si)) is formed by intersecting two standard Bloom filters BF (S) and
BF (B(si)) with the bitwise AND operator. This can be expressed by the following
form:
BallListi = IBF (BF (S ∩B(si))) = BF (S) &BF (B(si))
It performs the bitwise AND operation between the two bit arrays BF (S) and
BF (B(si)) with the same size m. The BallListi is now an approximate represen-
tation of the similar elements of si in S.
The cost of step (2) is C(2) = |Σ|b

In Hamming space, C(2) = 2b

— The build cost for FF (S) is

CFF (S)−build = |Σ|b|Br|+ |S|+ |Σ|b = (|Br|+ 1)|Σ|b + |S|

In Hamming space,

CFF (S)−build ≈
bd

d! 2
b + |S|+ 2b = (b

d

d! + 1)2b + |S|

For clarity, we consider an example of building FF with b = 4, r = 1, S = (0000, 1010, 1110, 1000)
illustrated in Figure 3.4

— (0) Hash 24 ball to bit array of length m = 24.
For example, Hamming ball of radius r = 1 of 0000 is hashed in BF (B(0000)) =
{0, 1, 2, 4, 8}.

— (1) Hash S to bit array of length m = 24: BF (S) = {0, 8, 10, 14}
— (2) Ball list is computed by AND operations. For example,

BallList0000 = BF (S) &BF (B(0000)) = {0, 8, 10, 14}AND {0, 1, 2, 4, 8} = {0, 8}
Consider the query examples:
— y1 = 0000 h(0000)=0−−−−−−→ BF (S(0)) = 1, B1(0000) = {s0, s8} = {0000, 1000}

85

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

— y2 = 0111 h(0111)=7−−−−−−→ BF (S(7)) = 0, B1(0111) = ∅
— y3 = 1011 h(1011)=11−−−−−−→ BF (S(11)) = 0, B1(1011) = {s10} = {1010}

By this way, each query has a quick response in O(1)
With this design, when the Fuzzy Filter returns an answer “NO”, the answer is always

the correct response. Since each of the Bloom filters has the false positive probability,
there exist “false” similar elements discovered by the Fuzzy Filter. BF (S) covers S∗ that
is a small superset of S. BF (B(si)) covers B∗(si) that is a little bigger than B(si). Thus,
BF (S) ∩ BF (B(si)) includes S∗ ∩ B∗(si). It may lead to false positives illustrated in
Figure 3.5.

— S∗ = S ∪ {x9, x10} −→ FF (y2) = {x5, x6, x9}
— B∗(y3) = B(y3) ∪ {x11, x12} −→ FF (y3) = {x5, x11}

Therefore, an answer “YES” may be the incorrect response because x may be NOT a real
similar element(s). It also means that the Fuzzy Filter returns “YES” answers with a false
positive probability. As a result, the Fuzzy filter enables us to specify a superset of similar
elements including the “YES” elements, and eliminate dissimilar elements that are the
“NO” elements. Accordingly, we should minimize false positives for the Fuzzy Filter.

Figure 3.5 – FF modeling with false positives

3.2.2 Intersection Fuzzy Filters

Definition 3.2 (Intersection Fuzzy Filter). An Intersection Fuzzy Filter IFF (S, T, τ)
is a probabilistic data structure designed to represent the similarities of sets with a false
positive probability. It is defined by a similarity function Sim and a threshold τ . The result

86

3.2. Fuzzy Filters

of query y of a set T to IFF (S, T, τ) is its similarities in the remaining set S and vice
versa.

IFF (y, S, T, τ) = {x | x ∈ S, y ∈ T, Sim(x, y) ≥ τ}

Inheriting the idea above, we propose the Intersection Fuzzy Filter (IFF) to apply to
Fuzzy two-way join (S ./r T). The model of IFF is presented in Figure 3.6. Consider
queries:

— y2 −→ Y ES, because Br(y2) ∩ T ∗ = {x1, x4}
— x2 −→ Y ES, because Br(x2) ∩ S∗ = {y1, x3}
— y4 −→ NO, because Br(y4) ∩ S∗ = ∅
— x6 −→ NO, because Br(x6) ∩ T ∗ = ∅

We observe that the similar elements of S in T are ⋃|S|i=1(Br(si)∩T ∗); the similar elements
of T in S are ⋃|T |j=1(Br(tj)∩S∗); the dissimilar elements of two datasets are (S\T ∗)∪(T \S∗).

Figure 3.6 – Intersection Fuzzy Filters idea

From these above expressions, we can specify the set fuzzy intersection by eliminating
all elements of the difference between the sets. Precisely, the Intersection Fuzzy Filter
recognizes similar elements in the set S by the intersection of balls of T and BF (S);
similar elements in the set T by the intersection of balls of S and BF (T). To achieve this
work, we propose a structure of Intersection Fuzzy Filter illustrated as in Figure 3.7.

87

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

Figure 3.7 – IFF (S ./r T)

An Intersection Fuzzy Filter structure includes: A m bit Bloom filter BF (S) uses one
hash function h to calculate positions for an element of S, and sets the bit at the resulting
positions. Similarly, a m bit Bloom filter BF (T) is also used to cover T . The ball list is
an array of m bit Bloom Filters of size m (m ×m bits matrix), each one stores its real
ball(s) BF (B(si) ∩ T)/BF (B(ti) ∩ S)/BF ((B(si) ∪ B(ti)) ∩ (S ∪ T)). Let us recall the
assumption that m is large enough, with a perfect hash function, it will not have duplicate
balls at the same hashed position. The problem of false positive will be discussed later.

The Fuzzy Filter accepts an input z and returns outputs that is one of these possibil-
ities as follows:

— NO - Null if
• z is NOT in S, T
• or z is in S but it has no any similar elements in T .
• or z is in T but it has no any similar elements in S.

— YES - list of {x}: z may be an element in T and {x} may be its similar elements
in S.

— YES - list of {y}: z may be an element in S and {y} may be its similar elements
in T .

The build operation of the intersection fuzzy filter IFF (S, T) is described as follows.
— (0) Hash each ball to a bit array of length m. In Σ space, it has |Σ|b ball of radius

d, with b is length of each element. In general, m = |Σ|b. While each ball has |Br|
elements, the cost of this step is C(0) = |Σ|b|Br|.
For example, in Hamming space of b-bit strings, there exist 2b balls, each ball has
about br/r! elements. This step has the cost C(0) ≈ 2bbr/r!

88

3.2. Fuzzy Filters

— (1) Hash S to a bit array of length m.
T is also hashed to a bit array of length m.
C(1) = |S|+ |T |

— (2) Ball list is computed for each ball at the index i, i = 0..m− 1 as follows.
• If Si = Ti = 0, it means that element at the hashed position i belongs to neither
S nor T −→ BallList at i is set to be empty.

• If Si = 1, Ti = 0, it means that element at the hashed position i may belong S,
but it does not belong T −→ BF at i is used to determine the similar elements
of si in T . Thus, BallListi = BF (B(si) &BF (T))

• Similar, if Si = 0, Ti = 1, it means that element at the hashed position i may
belong T , but it does not belong S −→ BF at i is used to determine the similar
elements of ti in S. Hence, BallListi = BF (B(ti) &BF (S))

• If in the case of Si = Ti = 1, it means that element at the hashed position i

may belong to both S and T −→ BF at i must store all similar elements of si
and ti in two datasets. Therefore, BallListi = BFi & (BF (S) |BF (T)))
It performs the bitwise operations between bit arrays with the same size m.
The BallListi is now an approximate representation of the similar elements of
si, ti in datasets .
The cost of step (2) is C(2) = |Σ|b

In Hamming space, C(2) = 2b

— The build cost of IFF is similar to FF.

CIFF (S./rT)−build = |Σ|b|Br|+ |S|+ |T |+ |Σ|b = (|Br|+ 1)|Σ|b + |S|+ |T |

In Hamming space,

CIFF (S./rT)−build ≈
bd

d! 2
b + |S|+ |T |+ 2b = (b

d

d! + 1)2b + |S|+ |T |

89

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

Figure 3.8 – Example of building IFF with b = 4, r = 1, S = {0000, 1010, 1110, 1000}, T =
{0000, 0100, 1101}

We illustrate an example of building IFF in Figure 3.8. S = {0000, 1010, 1110, 1000}, T =
{0000, 0100, 1101}, b = 4, r = 1
— (0) Hash each ball to a bit array of length m = 2b = 24.
— (1) Hash S in BF (S) = {0, 8, 10, 14}

90

3.2. Fuzzy Filters

Hash T in BF (T) = {0, 4, 13}
— (2) Ball List computing:

• With i = {1, 2, 3, 5, 6, 7, 9, 11, 12, 15}, Si = Ti = 0, thus, the balls at these
hashed positions i are empty.

• With i = 0,S0 = T0 = 1, thus the ball at this position 0 is HB0 =
BF (B(0000)) & (BF (S) |BF (T)) = {0, 1, 2, 4, 8}∧({0, 8, 10, 14}∨{0, 8, 10, 14}) =
{0, 4, 8}

• With i = 4,S4 = 0, T4 = 1, thus the ball at this position 4 is HB4 =
BF (B(0100)) &BF (S)) = {0, 4, 5, 6, 12} ∧ {0, 8, 10, 14} = {0}

• With i = 8,S8 = 1, T8 = 0, thus the ball at this position 8 is HB8 =
BF (B(1000)) &BF (T)) = {0, 8, 9, 10, 12} ∧ {0, 4, 13} = {0}

• It performs similar operations with i = 10, 13, 14. But the results of these
operations is empty. In other words, the elements at these hashed positions
have no similar elements in the remaining dataset.

Consider the query examples:
— s0 = 0000 h(0000)=0−−−−−−→ BFs0 = BFt0 = 1, B1(0000) = B1(0000) ∧ T = {0, 4, 8} =
{0000, 0100}
It means that s0 may have two similar elements 0000, 0100 in T

— t0 = 0000 h(0000)=0−−−−−−→ BFs0 = BFt0 = 1, B1(0000) = B1(0000) ∧ S = {0, 4, 8} =
{0000, 1000}
It means that t0 may have two similar elements 0000, 1000 in S

— s10 = 1010 h(1010)=10−−−−−−→ BFs10 = 1, BFt10 = 0, B1(1010) = ∅
It means that s10 has no similar elements in T

— t4 = 0100 h(0100)=4−−−−−−→ BFt4 = 1, BFs4 = 0, B1(0100) = {0}
It means that t4 may have! a similar element 0000 in S

— y = 1001 h(1001)=9−−−−−−→ BFs9 = BFt9 = 0, B1(1001) = ∅
It means that y belongs to neither S nor T , thus it is filtered out.

3.2.3 Extended Intersection Fuzzy Filter

Expand the above idea, we propose an Extended Intersection Fuzzy Filter structure
to represent similar elements of multiple input datasets. We consider a fuzzy multi-way
join

S1 ./r S2 ./r S3 ./r S4... ./r Sn

91

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

The threshold of all joins are the same r. The similar elements of Sj in Sk (j, k = 1..n)
are ⋃|Sj |

i=1(Br(si)∩ S∗k). Thus, we store BF of each datasets and a ball list to calculate the
similar elements of each pair of datasets by the same way in IFF. Figure 3.9 describes
EIFF structure.

Figure 3.9 – EIFF structure

EIFF is useful for fuzzy multi-way joins and fuzzy recursive/iterative joins, is not present
in the existing studies. In the case of the threshold of every joins are different (τ1, τ2, .., τn−1),
this fuzzy multi-way join has to use IFF for each pair of datasets to calculate their simi-
larities.

3.3 Optimization Of Fuzzy Big Joins

From the limitations of BF-Ball Hashing algorithm that we have pointed out above,
we propose optimizations for fuzzy self joins and fuzzy two-way join by using Fuzzy Filter
and Intersection Fuzzy Filter. Our optimizations reduce processing excess calculations
and remove the data redundancy in all input datasets.

3.3.1 Fuzzy Self-Joins Using Fuzzy Filters

With the integration of FF, our propose ignore the costly and redundant ball calcu-
lations. Specifically, the Fuzzy Filter based fuzzy self join algorithm (FF-FJ) consists of
two phases:

— Stage 1 (Pre-processing): A filter FF (S) is built on a join key value set of the
input dataset S. Each worker hashes tuples of input splits to find h(si), emits
a list of [< h(si) >] to one reducer for FF (S) building. Thus, the Map cost is

92

3.3. Optimization Of Fuzzy Big Joins

M = |S|, the communication cost is D = #mappers. A small modification for
the Ball List computation at reducer is applied to improve the build cost of FF.
The goal of FF is to determine which elements in an input dataset are similar to
a given element. But in fuzzy self joins, FF just needs to return the similarities of
the elements within S. Hence, the Ball List has to compute for only real elements
in S. In other words, ball computation operations are only executed at the position
i that BFi = 1. Therefore, the computation cost is the Ball List computation cost
of FF (S)

CBallList−computation = |Br||S|+ |S| = (|Br|+ 1)|S| ≈ (b
d

d! + 1)|S|

If the ball list is pre-known, the processing cost is only |S| AND operations. Figure
3.10 describe an example of pre-processing stage of FF − FJ for the fuzzy join.

Figure 3.10 – FF-FJ Pre-processing stage

— Stage 2 (Join processing): FF (S) is distributed to all the computing nodes and used
to quickly emit real similar elements of the input dataset during the map phase.
Each record s is hashed by h(s) and use the filter FF to emit the intermediate
tuple in form < h(s), (−1, s) > if h(s) > h(ti); < h(ti), (h(s), s) > if h(s) < h(ti)
for all ti in BallListh(s). The number of reducers is m = |Σ|b/2 = 2b−1

s
map−−−→
FF (S)

< h(s), (−1, s) >, ∀ti ∈ Br(s) ∩ S, h(s) > h(ti)
< h(ti), (h(s), s) >, ∀ti ∈ Br(s) ∩ S, h(ti) > h(s)

In ideal cases, regardless the false positive, our approach has no redundant interme-
diate data and no duplicated results without verification in reducers. The output
results are computed by the joins on list of elements for every keys. They join all

93

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

−1 with all remaining elements. An example of join stage of FF −FJ for the fuzzy
join with 4-bit string and threshold r = 1 is shown in Figure 3.11.

Figure 3.11 – Join processing stage of FF-FJ algorithm with b = 4, r = 1

S maps to intermediate tuples as follows:
• 0000: h(0000) = 0, 0 FF (S)−−−→= {0, 8}. Because 0 < 8, 0000 map−−−→

FF (S)
< 8, (0, 0000) >.

• 1010: h(1010) = 10, 0 FF (S)−−−→= {8, 10, 14}. Because 8 < 10, 1010 map−−−→
FF (S)

<

10, (−1, 1010) >. On the contrary, 10 < 14, 1010 map−−−→
FF (S)

< 14, (10, 1010) >.
• There are two elements 0000 that are similar to 1000 in S, these three ele-

ments are sent to only one reducer to compute the results. Reducer receives
< 8, [(−1, 1000), (0, 0000), (0, 0000)] > and emits two pairs (1000, 0000) as re-
sults.

We optimize the pre-processing costs of FF−FJ by implementing in Spark with its cache
techniques. As a result, the cost of input reading is reused.

3.3.2 Fuzzy Two-way Joins Using Intersection Fuzzy Filters

In the previous approach, we use BF to improve fuzzy two-way joins. We proved
that this algorithm reduces significantly redundant intermediate data. However, besides
the limitation of ball calculation for all elements, the algorithm can only eliminate non-
joining tuples of one dataset, without eliminating non-joining tuples of remaining dataset.
This redundancy considerably increases associated overheads in cases of fuzzy multi-way
joins and fuzzy iterative joins. For this reason, we propose optimizations for fuzzy two-way

94

3.3. Optimization Of Fuzzy Big Joins

joins using Intersection Fuzzy Filter. The Intersection Fuzzy Filter based fuzzy two-way
join (IFF-FJ) consists also two phases:

Figure 3.12 – Example of FF-FJ pre-processing stage

— Pre-processing stage: A filter IFF (S ./r T) is built on a join key value set of
the input datasets S and T . Each worker hashes tuples of input splits to find
h(si), h(tj), emits a list of [S,< h(si) >] or [T,< h(ti) >] to one reducer for
IFF (S ./r T) building. We also improve the build cost of IFF by calculating
only balls at positions i that BFi(S) = 1 or BFi(T) = 1. Figure 3.12 describes an
example of pre-processing stage of IFF−FJ . Ball computations are only executed
at positions {0, 4, 8, 10, 13, 14}
The Intersection Fuzzy Filter is then stored on Distributed File System (DFS).
When the size of filters is large, the filter files will be compressed in formats such
as gzip, bzip2, etc. This compression is really efficient for delivering filters to all
nodes.
Besides, the IFF building can detect the empty filter to early end the join operation.
This interesting characteristic, which is very useful for fuzzy multi-way joins and
fuzzy recursive/iterative joins, is not present in the existing studies. At the end
of the pre-processing stage, if the IFF is empty, the join stage is skipped and the
fuzzy join operation is finished.

95

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

Figure 3.13 – Example of join processing stage of IFF-FJ algorithm

— Join processing stage: Similar to FF − FJ , IFF (S ./r T) is distributed to all
the computing nodes and used to quickly emit real similar elements of the input
datasets during the map phase.
• Each record s is hashed by a hash function and use the filter IFF to get its

ball list. Mappers emit the intermediate tuples in form < h(ti), (tagS, s) > for
all ti in BallListh(s).

s
map−−−−−−−→

IFF (S./rT)
< h(ti), (tagS, s) >,∀ti ∈ Br(s) ∩ T

• Each record t is also hashed by a hash function and is filtered by IFF . t is only
mapped to < h(t), (tagT , t) > if BallListh(t) is not empty

t
map−−−−−−−→

IFF (S./rT)
< h(t), (tagT , t) > if BallListh(t) 6= ∅

In ideal cases, regardless of the false positive, our approach has no redundant
intermediate data and no duplicated results without verification in reducers. The
reduce function performs the cross product of the tuples of tag S that are buffered
and each incoming tuple of tag R. It is completed by writing the output to DFS.
Figure 3.13 illustrates an example of join stage of IFF −FJ for the fuzzy two-way
join with 4-bit string and threshold r = 1.
For dataset S,

96

3.3. Optimization Of Fuzzy Big Joins

• BallList1010 = BallList1110 = ∅. Thus, 1010, 1110 are pruned out.
• 0000 h(0000)0−−−−−→, BF0(T) = 1, thus BallList0 = BallList0 ∩ T = {0, 4, 8} ∩
{0, 4, 13} = {0, 4}.
0000 map−−−−−−−→

IFF (S./rT)
< 0, (S, 0000) >,< 4, (S, 0000) >

• 1000 h(1000)8−−−−−→, BF8(T) = 0, thus BallList8 = {0}.
1000 map−−−−−−−→

IFF (S./rT)
< 0, (S, 1000) >

For dataset T ,
• BallList1101 = ∅. Thus, 1101 are pruned out.
• BallList0000 6= ∅, 0000 map−−−−−−−→

IFF (S./rT)
< 0, (T, 0000) >

• BallList0100 6= ∅, 0100 map−−−−−−−→
IFF (S./rT)

< 4, (T, 0100) >
The output results of key 0 are (0000, 0000), (1000, 0000). The output result of key
4 is (0000, 0100).

3.3.3 Fuzzy Filters Analysis And Optimization

With an overview structure as above, FF can be applied to some data types (string,
vector, set), some distance functions (Hamming, edit distance) as long as the balls can
be calculated. In the Hamming space, FF uses m = 2b, the exact probabilities of filtering
are guaranteed 100%, without false probabilities. However, in practice, for a large finite
alphabet set, a large string length, to optimize memory, the filter size is designed to be
smaller than the actual set size. Hence, it may lead to a false probability.

In the case of multiple balls that have the same hash index position, the ball in this
position is the union of these collision balls. The response will include the real similar
elements and also the mistaken records in another collision ball. These records are mis-
takenly assumed to be a similar element and must be calculated the distance in the join
step.

The small false positive probability is caused by one of two cases follows
— (1) for the filter: an element in another collision ball is returned as an answer.
— (2) for the join step: an irrelevant record of S has the same hash index with an

exact answer.
Conversely, it does not exist a false negative probability. In other words, no real similar
element is not answered in the response. The false positive probability is shown in Figure
3.14

97

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

Figure 3.14 – Example of false positive of FF

— s1, s2 hash to the same position h(s1) = h(s2) = 2.
— Consider a query y = s1: BallList2 = (Br(s1) ∪Br(s2)) ∩ S = {0, 2, 5}
{0, 2} is real similarities of s1 in S
{5} is a false positive, because it belongs Br(s2) and is not a real similar element
of s1.

— In another hand, we consider s1, s2 whose hash index is 2. 2 is one of elements in
results of the query y = s1. If s1 is not similar to s2, s2 is a mistaken similarity of
s1.

The precision of the fuzzy filter depends on the similarity function complexity, the size of
FF (m), the quality of the hash function. For example, with Hamming distance threshold
r, a dataset S of b bit-strings, for n real elements (|S| = n 6 |Σ|b = 2b), the false positive
of a hash bucket list of size m bits is

fS = 1− (1− 1/m)n

Each hash ball contains |Br| ≈ br/r! elements. So its number of possible collision bits is
approximate (br/r!)(1− 1/m)br/r!. If a collision occurs, the probability of a bit 1 is out of
the real ball is

br(1− 1/m)br/r!

mr! (1− br(1− 1/m)br/r!

mr!)

However, this false bit becomes a false positive answer only if its index in hash bucket
S is also set. In other words, this false bit becomes a false positive answer only if its
elements is real in S.

The building of the matrix that includes all the balls with a reasonable alphabet,
an acceptable length of a string is feasible. For large-scale datasets, avoiding repeated

98

3.4. Cost Analysis

calculations for the pre-known balls will reduce a large workload. In cases where the set of
balls cannot be pre-calculated, the input dataset S can be read one time as a distinct key
set to compute its balls. We implement these approaches using cache in Spark to amortize
this cost.

IFF helps to optimize fuzzy two-way joins. In pre-processing stage, both of two datasets
are read to build the filter. The caching technique also takes advantage of this approach.

Another advantage of FF is the flexibility with distance, capable of equi-join and fuzzy
join. The ball list can be easily updated quickly as soon as a new record appears. This
can be applied in stream join applications. The solution given is that the AND operation
in step (3) during the building phase is not performed. The ball list stores all the balls.
The answer to each new query t is the intersection of S and the ball B(t).

3.4 Cost Analysis

Table 3.2 summarizes the costs of the different algorithms in the previous chapter and
our propose Fuzzy Filter based Fuzzy join using Hamming distance by the M − C − R
cost model.

Table 3.2 – Summary of costs for various Hamming distance-based join algorithms

ApproachPre M per elem # R C R
Naive 0 J ≈

√
K K |S|

√
K |S|2

BH1 0 |Bd| n = 2b |S||Bd| |S|2|Bd|/2b

BF-BH1 k|S|k|Bd| n = 2b−1 DBF −BH1 < |S||Bd| DBF −BH1|S|/2b−1

Splitting 0 d + 1 (d + 1)2b/(d+1) (d + 1)|S| (d + 1)|S|2/2b/(d+1)

BFBS k|S|k|Bd|(d + 1) (d + 1)2b/(d+1) DBF −Splitting < (d + 1)|S|DBF −Spitting |S|/2b/(d+1)

FF-FJ |S| 1 n = 2b−1 DF F −F J = DBF −BH1 DF F −F J |S|/2b−1

For the communication cost, BFBS is the best approach. Ball Hashing algorithms are
the most suitable solution to processing cost. Besides, integrating FF brings the following
changes according the (M,C,R) model:

— The pre-processing cost is incurred by reading the input to generate BF (S). But
FF uses k = 1 hash function, thus the preprocessing cost of FF-FJ is better than
BF-BH1. In addition, this cost can be amortized, especially using streaming or
caching techniques (e.g Spark [10]). In this case, the preprocessing cost of FF-FS
can be omitted.

— For each tuple, the map phase spends O(1) to determine its similarities. Thus, this
M cost is already the best optimization.

99

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

— The communication cost of FF-FJ is equal to BF-BH1 because of the same filtering
way. Similarity, their processing cost are also equal.

In summary, filters based approaches improved fuzzy join evaluation. In the previous
chapter, BF-BH1 is more effective than BF-BS even for the larger communication cost.
FF-FJ is thus the best solution based on BF-BH1 optimizations.

For fuzzy two-way joins, IFF-FJ is clearly more improve because it filters both input
datasets.

3.5 Experimental Validation

In this section, we present experimental results obtained from the execution of fuzzy
self joins and fuzzy two-way joins using the different approaches. All experiments were
run on the same cluster, datasets and parameters in the previous Chapter.

3.5.1 Fuzzy Self Join Evaluation

Experimental protocol

The experimental evaluations in this section perform fuzzy self joins using Hamming
Distance over the last 6 characters of the column 36 (fixed-length: b = 6, alphabet:
Σ = 10). The approaches are performed in our experiments include: BF-BH1, BF-Ball-
Splits (BFBS) and FF. We use m = 106 to build Fuzzy Filters.

The following join query is used.

Q1 = S ./S.36≈S.36 S

To compare the scalability and the performance of the different algorithms, we con-
ducted two types of tests.

— First, we investigated the scalability of all methods to compute a fuzzy self joins
of the datasets 10GB (Exp-6) in Table 2.4 by increasing the Hamming distance
threshold from 0 to 4 .
Exp-6: Q1 = 10GB ./τ 10GB, τ = 0, 1, 2, 3, 4

— Second, we investigated the scalability of the algorithms by increasing the size of
the datasets in Table 2.4 with the Hamming distance threshold of fuzzy self joins
is 3 (Exp-7).

100

3.5. Experimental Validation

(a) Intermediate data of Exp-6 (b) Total output results of Exp-6

(c) Intermediate data of Exp-7 (d) Total output results of Exp-7

Figure 3.15 – Intermediate data and output results of fuzzy self joins approaches on 10GB
in various thresholds

Exp-7: Q1 = S ./τ S, τ = 3, S = 1GB, 2GB, 5GB, 10GB
For each experiment, we run in 4 times and get the average result. Subsequently, we show
results of experiments, and summarize our conclusions for each algorithm.

Evaluation Of Approaches

First, we compare the amount of intermediate data and total output results of Exp-6
and Exp-7 in Figure 3.15.

With the threshold τ = 0, the algorithms are considered as the general equal joins
while they are performed as the fuzzy joins. In this case, the filters do not affect the
amount of intermediate data. Hence, the numbers of intermediate tuples are equal for all
approaches.

The intermediate data and the total output results of BF-BH1 are always equal to

101

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

FF-FJ because of the same filtering technique. BFBS algorithm generates intermediate
tuples less than BFBH1 and FF-FJ algorithms.

However, the BFBS produces a large number of duplicate results. The BH1, BF-BH1
give the exact answers, without duplication.

(a) Joining time (b) Total execution time

Figure 3.16 – Exp-6: Running time of fuzzy self joins approaches on 10GB in various
thresholds

Table 3.3 – Running time of the fuzzy self join approaches on 10GB in various thresholds

0 1 2 3Approach preproc. join stage preproc. join stage preproc. join stage preproc. join stage
BFBH1 9 22 9 27 9 90 9 780
BFBS 9 19 9 21 9 120 9 1440
FF 9 16 9 19 9 60 10 600

Next, we evaluate the efficiency of these fuzzy self join algorithms by comparing their
total execution time. Table 3.3 and Figure 3.16 identify in detail the execution time of
the pre-processing stage and the join stage for the fuzzy self join algorithms on various
thresholds.

The preprocessing time of Bloom filter based approaches is the time of BF (S) building,
9s for all threshold 0,1,2,3. Similarity, the preprocessing time of FF is the time of FF (S)
building, but it has a bit increase in threshold 3 (10s). On the small threshold (0,1),
the execution of the BFBS is faster than BFBH1 due to the less of intermediate data.
However, on the larger threshold, BFBS is slower than the BF-BH1 because of the distance
verification at joining stage and the duplicate output. FF-FJ is always the best solution
about running time because its optimizations.

102

3.5. Experimental Validation

Table 3.4 – Running times of fuzzy self joins in the theshold τ = 3 on various datasets

1GB 2GB 5GB 10GBApproach preproc. join stage preproc. join stage preproc. join stage preproc. join stage
BFBH1 4 22 5 42 6 354 9 780
BFBS 4 16 5 72 6 378 9 1440
FF 4 8 5 35 6 210 10 600

Lastly, the running times of the fuzzy self join using the different algorithms from 1GB
to 10GB are demonstrated in the Table 3.4 and Figure 3.17.

(a) Joining time (b) Total execution time

Figure 3.17 – Running time of fuzzy self join approaches in various datasets in the thresold
τ = 3

By the dataset size increment, BFBS are the most severely affected algorithms. Its
execution time increase rapidly. BF-BH1 is better than BFBS. FF-FS demonstrates the
efficiency of Fuzzy Filter and it is also the winner for the execution time in these experi-
ments.

3.5.2 Fuzzy Two-way Join Evaluation

Experimental protocol

The experimental evaluations in this section perform fuzzy two-way joins using Ham-
ming Distance over the last 6 characters of the column 36 (fixed-length: b = 6, alphabet:
Σ = 10). The approaches are performed in our experiments include: BF-BH1, BF-Ball-
Splits (BFBS), and IFF-FJ(IFF). The following join query is used.

Q2 = S ./S.36≈T.38 T

103

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

Similar to the experiments above, we conducted two types of tests.

— First, we investigated the scalability of all methods to compute a fuzzy two-way
joins of the datasets 10GB ./ 10GB (Exp-8) by increasing the Hamming distance
threshold from 0 to 4.
Exp-8: Q2 = S ./τ T, S, T = 10GB, τ = 0, 1, 2, 3, 4

— Second, we investigated the scalability of the algorithms by increasing the size
of the datasets with the Hamming distance threshold of fuzzy two-way joins is 3
(Exp-9).
Exp-9: Q2 = S ./τ T, S, T = 1GB, 2GB, 5GB, 10GB, τ = 3

Evaluation Of Approaches

(a) Exp-8 (b) Exp-9

Figure 3.18 – Intermediate data of Exp-8 and Exp-9

104

3.5. Experimental Validation

(a) Exp-8 (b) Exp-9

Figure 3.19 – Total output results of Exp-8 and Exp-9

(a) Exp-8: Joining time (b) Exp-8: Total execution time

(c) Exp-9: Joining time (d) Exp-9: Total execution time

Figure 3.20 – Running time of Exp-8 and Exp-9

Figure 3.18 shows the intermediate data for the experiments Exp-8 and Exp-9. On the
small threshold (1), BFBS generates more intermediate data than BFBH1 and IFF. On

105

Chapter 3 – Fuzzy Filters And Fuzzy Big Joins Optimization

the large dataset or large threshold, BFBS takes advantage on shuffle data. IFF processes
less shuffle data than BFBH1 because it filters on both datasets.

Figure 3.19 presents total output results for the experiments Exp-8 and Exp-9. BFBS
contains large amount of duplication. BFBH1 and IFF always return the exact answers.

Figure 3.20 reports the running times of the algorithms for various thresholds and
various datasets. IFF is the winner in all experiments inspite of the preprocessing time.

3.6 Summary

In this chapter, we study theoretical details on large-scale fuzzy join algorithms in
MapReduce. We propose approaches for building a Fuzzy Filter, a scalable solution with
respect to the distance and the volume of the input datasets. This filter is a compact,
probabilistic data structure that supports very fast similarity queries by maintaining a bit
matrix, with small false positive rate and zero false negative rate. We show the relevance
of this structure in fuzzy self join. In addition, our solution for the FF-FJ algorithm is
more efficient than previous solutions without filters or with a Bloom Filter since it signifi-
cantly reduces redundant data, costly and wasteful computations, and thus produces fewer
intermediate data, eliminates duplicated results, and avoids unnecessary comparisons. Al-
though FF-FJ algorithm has false positives and an extra cost for the pre-processing step,
its efficiency in space saving and filtering often outweighs these drawbacks. We use the
MapReduce cost model and experiments to prove it.

We propose also an Intersection Fuzzy Filter for fuzzy two-way join optimization. Be-
side the same benefits with Fuzzy Filter, IFF prunes out redundant data in both datasets.
An Extended Intersection Fuzzy Filter model is proposed to improve fuzzy multi-way join,
fuzzy recursive join that will present in future work.

Another advantage of these fuzzy filter is easily updated. Thus, they can be applied
to fuzzy stream joins, fuzzy incremental joins.

This work leads to one publication [105] in Proceedings of the 29th IEEE International
Conference on Fuzzy Systems (FUZZIEEE 2020).

106

CONCLUSION

In this final chapter, we will conclude by describing the results of the optimization for
the fuzzy big joins using the Bloom filter and the Fuzzy filters in MapReduce. We will
also suggest some future research directions which would further extend its applicability.

Thesis Conclusions

MapReduce is widely considered one of the key processing frameworks for Big Data.
However, MapReduce has its own limitations. Complex operations in MapReduce are used
extensively and expensively, especially the join operation. The Fuzzy Join is one of the
key operations for analyzing large datasets in many application scenarios. With the goal
of our study, we have described and analyzed how the fuzzy big join operation can be
supported efficiently in MapReduce. For existing solutions, which is surveyed in chapter
1, it has been shown that much redundant data is involved in the fuzzy join operations.
Therefore, this thesis is dedicated to solve the problems of the joins in more efficient ways.
The main contributions of our research are the following:

— In Chapter 1, we first described the foundations of fuzzy big joins. Different strate-
gies for performing similarity joins using MapReduce have been studied. Then, we
summarized the current states of the art for parallel solutions in two types: (1)
single stage parallel fuzzy join algorithms and (2) multiple stage parallel fuzzy join
algorithms. The focus is on algorithms that can operate in a single MapReduce
step in order to avoid the overhead associated with initiating multiple MapReduce
jobs. Besides, we present a theoretical analysis of different methods, showing that
different algorithms provide different tradeoffs with respect to map cost, reducer
cost and communication cost.

— In Chapter 2, we presented our approaches to improve fuzzy joins in MapReduce
by using Bloom filters. We described MapReduce implementations of Hamming
based single stage algorithms. For each solution, we proposed a filter building stage
and a Bloom filter integration stage to reduce redundant data and duplication
results. Additionally, each proposed algorithm is implemented in Spark for fuzzy

107

self join and fuzzy two-way join. We closed this chapter with a theoretically cost
analysis, experiments of the various approaches and our recommendations for the
best approach.

— Based on the probabilistic model, we define new filter types in Chapter 3:
• The Fuzzy Filter, to represent a set and answer which similarities of an element

are present in the set. It is used to remove most of dissimilar elements in a set
and therefore ameliorate fuzzy self joins.

• The Intersection Fuzzy Filter, an extension of the Fuzzy Filter to represent sets
and their similarities. It can determine where are close ones of a given element
in another set. It is thus applied to optimize fuzzy two-way joins.

• We propose an Extended Intersection Fuzzy Filter to represent multiple sets
and their similarities. It benefits on fuzzy multi-way joins.

These filters are dynamic. They are independent with similarity measure functions,
threshold distance and easily updated. Thus, they can benefit not only static fuzzy
joins but also dynamic fuzzy joins as stream joins and iterative/recursive joins.
We explained the performance optimizations of these techniques in a theoretical
study involving both fuzzy self join and fuzzy two-ways join queries. At the end of
this chapter, we deploy experiments of fuzzy big joins implemented by the different
algorithms using Spark. Experimental comparisons of the different algorithms for
each the fuzzy join are examined with respect to the intermediate data amount,
the total output amount, and the total execution time.

Our improvements bring benefits that can be applied to solve popular problems in various
fields such as fuzzy join operations, reconciliation and deduplication, error-correction,
image content based search, data cleaning, data integration, recommendation system,
similarity genome search, etc.

Both the cost models and the experiments show that a fuzzy join operation using
the Bloom filter is more efficient than using the other solutions without filtering since
it significantly reduces redundant data, and thus produces less intermediate data. These
significantly reduce I/O and communication overheads. However, Fuzzy filters improve
even more fuzzy join computations. Although the filters have small false positives and an
extra cost for the pre-processing job, their efficiency in space-saving and filtering often
outweighs these drawbacks.

108

Future Work

A number of open problems should be solved to allow the complete development of
large-scale fuzzy joins processing in MapReduce. These problems suggest some research
directions as follows.

Fuzzy Big Joins Optimization Using Other Distance Measures

We considered a number of distance measures, but concentrated on Hamming distance
because it is in a sense the simplest measure and lets us offer the clearest view of the
various algorithmic approaches. We can continue this line of work and consider the more
challenging cases of Edit and Jaccard distances [5, 65].

Edit distance (ED) also known as Levenshtein distance, measures the minimum num-
ber of edit operations needed to transform one string into another, where edit operations
is an insertion, deletion or substitution of a single character. It can be calculated via
dynamic programming [107].

Jaccard similarity of sets is the ratio of the size of the intersection of the sets to the
size of the union. The more the two sets have in common, the closer the Jaccard similarity
will be to 1.0

We may also consider other similarities, as semantic ones [38], based on knowledge
bases to help to find out close terms. These similarities could be based on taxonomies and
ontologies, on polarities, etc. By taking such similarities into account, we may also extend
our approach to better taking into account the graduality of the similarity degrees. This
work will be based on the formal definitions of fuzzy relations [26] and fuzzy similarities,
as studied in [21, 22, 74].

Optimization For More Complex Fuzzy Join Queries

Extended Intersection Fuzzy Filter can be applied to optimize fuzzy multi-way joins
on the same join attribute and the same distance threshold. In the case of multi-way joins
on different join attribute or different distance threshold, we can use pairs of Intersection
Fuzzy Filter. These challenges will be studied more thoroughly in the future based on
multi-way join [103, 2] in MapReduce.

Fuzzy stream joins are fuzzy joins, where new data arrive continuously over time
has many important applications such as data cleaning [120] and data mining [121, 77],

109

Internet traffic analysis [33], sensor network monitoring [101], etc. For example, fuzzy
stream join queries can be used to help clean sensor data collected from various sources
that might contain inconsistency [101]. As another example [120], in the stock market, it
is crucial to find correlations among stocks so as to make trading decisions timely. In this
case, we can also perform fuzzy stream over price curves of stocks in order to obtain their
common patterns, rules, or trends.

Fuzzy recursive joins are fuzzy iterative/incremental joins where the fuzzy join oper-
ations repeat multiple times.

In these fuzzy join types, the new tuples appear continuously. Therefore, their op-
timizations need dynamic filters that can be easily updated. Our proposed fuzzy filters
satisfy this.

Specifically, in the case without false positives, when a new tuple t arrives that does
not exist yet in S (BF (t, S) = 0), the BallListh(t) will be easily recalculated by Bd(t)∩S.
And of course, the fuzzy filter does not change if t has already existed in S.

Figure 3.21 – Difference Fuzzy Filter structure

Contrarily, with a false positive, to determine if t is already in S or not, we inherit the idea
of Difference Filter [89] to propose a Difference Fuzzy Filter structure as in Figure 3.21.
It combines FF and a Lossy Hash Table LHT (S) to detect duplicate elements. LHT (S)
consists of an array of buckets, where each bucket contains fingerprints of elements of S.
The fingerprint is created by applying a cryptographic hash function hc (e.g. MD5, SHA-
2, and SHA-3) for an element. However, the position of an existing element in LHT (S)
can be overwritten by other elements. This overwriting is known as a collision. The size of

110

the LHT is m, the same with BF (S). In addition, the size of each the bucket is specified
by the cryptographic function hc, namely, typical MD5 or SHA-3 fingerprints are 128 or
1600 bits in length. When a tuple t arrives, hk(t) determines t ∈ S or not.

— If t /∈ S −→ t is a new arrive tuple. The BallListh(t) will be easily recalculated by
Bd(t) ∩ S.

— If t ∈ S, hc(t) is used to calculate the fingerprint of t and compare with existing
fingerprint in LHT at position hk(t).
• If the fingerprint of t is not in LHT (S) −→ it may be a new one or an overwritten

one. We thus also recalculate the ball of t by Bd(t) ∩ S.
• If the fingerprint of t exists in LHT (S) −→ t is already in S. Hence, the result

is returned without an update.

Filter-Verification Based Fuzzy Big Joins Optimization

Filter - verification techniques use set prefixes or signatures followed by an explicit
verification of candidate pairs to compute fuzzy joins. The parallel fuzzy big join algo-
rithms are compared in experimental studies [43]. In these surveys, Vernica Join achieved
the best performance in most experiments. Hence, we focus on Venica joins for filter -
verification based fuzzy big joins optimization.

Vernica et al. [109] proposed a 4-MapReduce jobs approach that is based on prefix fil-
tering technique to compute parallel distributed fuzzy joins. First, it uses two MapReduce
jobs to build an inverted index on tokens of input records. Then, it generates candidate
pairs from the inverted lists, using additionally the length, positional and suffix filters
to prune candidates. A deduplication step is finally employed to remove duplicate result
pairs generated from different reducers. In general, this algorithm exists the limitations:

— Multiple MapReduce jobs algorithm: The resource for each initial MapReduce task
affects the performance of a parallel distributed algorithm. Multiple jobs algorithms
require a significant cost of resources for initial, input reading, shuffle and close. In
particular, the token index has to calculate by two MapReduce jobs.

— Redundant tokens: The prefix filtering technique is based on an ordering of the
token universe to reduce candidates. It tries to eliminate higher frequency elements
from the prefix filtering and thereby expect to minimize the number of comparisons.
Clearly, by this way, rarest tokens that exist in only one record are emitted as
redundant candidates while these tokens should be omitted right from the start.

— Duplicated results and deduplication job: Duplicate pairs in the result of the verifi-

111

cation job are generated from different reducers by candidate pairs have more than
one common token in their prefix. Thus, it wastes the distance measure computa-
tion and output many times for these duplicated pairs. Moreover, this algorithm
has to pay for one more deduplication job.

These limitations are illustrated in Figure 3.22. The rarest tokens L, J,K should be
skipped. The candidate pair (s1, s4) has two common tokens Q,N . Hence, it produces
duplicate result pairs.

Figure 3.22 – Example for limitations of Vernica joins

From the limitations of Vernica joins as above, we propose the main improvements:
— Replace two jobs of index tokens building by only one job using Counting Bloom

Filters [42]. All tokens insert to a CBF to count their frequencies.
— Prune out redundant tokens in the map phase of job 3 by their counters. Each

tuple queries their tokens on built CBF to determine their prefix. If the counter
of a token in CBF is one, this token is eliminated.

— Remove early duplicated result pairs and eliminate the deduplication job by prefix
tokens overlap computing. For example, in Figure 3.22, the candidate pair (s1, s4)
has two common tokens Q,N . Thus, it produces results for only the first common
token Q. All remaining common tokens are skipped to deduplication. Therefore,
job 4 is also removed.

Our propose reduces Vernica join processing from 4 to 2 jobs. Figure 3.23 describes our
optimization.

112

— Preprocessing job:M1 reads splits of S, computes tokens and hashes to an CBFlocal.
R1 aggregates CBFlocals to a CBFglobal.

— Join job: M2 use CBF (S) to filter tokens of every tuple s and generates their
prefixes. R2 computes token overlaps of every candidate pair, skips redundant
pairs, verifies their similarities and finally, produces the results.

Figure 3.23 – Optimization for Vernica joins

Skewness Problem

Besides, skew data challenge [69, 51, 92, 46] has not been considered in the solutions
presented. However, it affects the efficiency of MapReduce algorithms. Hence, researches
for skewness problems will also be attended in the future. An option can benefit is to
replace the Bloom Filter in Fuzzy Filter structure by a Counting Bloom Filter. CBF
helps us predict the possibilities of the number of processing in reducers. Therefore, we
will try to balance this cost.

In conclusion, as listed above, there are interesting research directions to explore, and
this work, we hope, should become a contribution to the general context of the data
science.

113

PUBLICATIONS INVOLVED IN THE THESIS

Thi-To-Quyen Tran et al., « Improving Hamming distance-based fuzzy join in MapReduce
using Bloom Filters », in: 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), 2018, pp. 1–7.

Thi-To-Quyen Tran et al., « Optimization for Large-Scale Fuzzy Joins Using Fuzzy Filters
in MapReduce », in: 29th IEEE International Conference on Fuzzy Systems, FUZZ-
IEEE 2020, Glasgow, UK, July 19-24, 2020, IEEE, 2020, pp. 1–8.

115

BIBLIOGRAPHY

[1] Foto N. Afrati and Jeffrey D. Ullman, A New Computation Model for Cluster
Computing, Technical Report, 2009.

[2] Foto N. Afrati and Jeffrey D. Ullman, « Optimizing Joins in a Map-Reduce En-
vironment », in: Proceedings of the 13th International Conference on Extending
Database Technology, EDBT ’10, Association for Computing Machinery, 2010,
pp. 99–110.

[3] Foto N. Afrati et al., « Cluster Computing, Recursion and Datalog », in: Pro-
ceedings of the First International Conference on Datalog Reloaded, Datalog’10,
Springer-Verlag, 2010, pp. 120–144.

[4] Foto N. Afrati et al., « Map-Reduce Extensions and Recursive Queries », in: Pro-
ceedings of the 14th International Conference on Extending Database Technology,
EDBT/ICDT ’11, Association for Computing Machinery, 2011, pp. 1–8.

[5] Foto N. Afrati et al., « Fuzzy Joins Using MapReduce », in: ICDE, 2012, pp. 498–
509.

[6] Amazon Simple Storage Service (Amazon S3), url: https://aws.amazon.com/
s3/.

[7] Apache Cassandra, url: http://cassandra.apache.org/.

[8] Apache Hadoop, url: https://hadoop.apache.org/.

[9] Apache HBase™, url: http://hbase.apache.org/.

[10] Apache Spark™ - Lightning-Fast Unified Analytics Engine, url: http://spark.
apache.org/.

[11] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik, « Efficient Exact Set-similarity
Joins », in: Proceedings of the 32Nd International Conference on Very Large Data
Bases, 2006, pp. 918–929.

[12] Nikolaus Augsten and Michael H. Bhlen, Similarity Joins in Relational Database
Systems, 1st, Morgan & Claypool Publishers, 2013.

117

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
http://cassandra.apache.org/
https://hadoop.apache.org/
http://hbase.apache.org/
http://spark.apache.org/
http://spark.apache.org/

[13] E. Babb, « Implementing a Relational Database by Means of Specialzed Hard-
ware », in: ACM Trans. Database Syst. 4 (Mar. 1979), pp. 1–29.

[14] Mostafa Bamha and Gaétan Hains, « An Efficient Equi-semi-join Algorithm for
Distributed Architectures », in: vol. 3515, May 2005, pp. 755–763.

[15] R. Baraglia, G. De Francisci Morales, and C. Lucchese, « Document Similarity Self-
Join with MapReduce », in: 2010 IEEE International Conference on Data Mining,
2010, pp. 731–736.

[16] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant, « Scaling Up All
Pairs Similarity Search », in: Proceedings of the 16th International Conference on
World Wide Web, 2007, pp. 131–140.

[17] Philip A. Bernstein et al., « Query Processing in a System for Distributed Databases
(SDD-1) », in: ACM Trans. Database Syst. 6 (Dec. 1981), pp. 602–625.

[18] Spyros Blanas, Yinan Li, and Jignesh M. Patel, « Design and Evaluation of Main
Memory Hash Join Algorithms for Multi-Core CPUs », in: Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11,
Association for Computing Machinery, 2011, pp. 37–48.

[19] Spyros Blanas et al., « A Comparison of Join Algorithms for Log Processing in
MaPreduce », in: Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, Association for Computing Machinery, 2010, pp. 975–986.

[20] Burton H. Bloom, « Space/Time Trade-offs in Hash Coding with Allowable Er-
rors », in: Commun. ACM 13.7 (1970), pp. 422–426.

[21] Bernadette Bouchon-Meunier, Marie-Jeanne Lesot, and Maria Rifqi, « Similari-
ties in fuzzy data mining: from a cognitive view to real-world applications », in:
Computational Intelligence: Research Frontiers - IEEE World Congress on Com-
putational Intelligence, WCCI 2008, vol. 5050, Lecture Notes in Computer Science,
Hong Kong, China: Springer, June 2008, pp. 349–367.

[22] Bernadette Bouchon-Meunier et al., « Towards a conscious choice of a fuzzy sim-
ilarity measure: a qualitative point of view », in: International conference on In-
formation Processing and Management of Uncertainty in knowledge-based systems,
IPMU 2010, vol. 6178, Lecture Notes in Computer Science, Dortmund, Germany:
Springer, June 2010, pp. 1–10.

118

[23] A. Broder and M. Mitzenmacher, « Using multiple hash functions to improve IP
lookups », in: Proceedings IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the IEEE Computer and Com-
munications Society (Cat. No.01CH37213), vol. 3, 2001, 1454–1463 vol.3.

[24] Andrei Z. Broder et al., « Syntactic Clustering of the Web », in: WWW, 1997,
pp. 1157–1166.

[25] Andrei Broder, Michael Mitzenmacher, and Andrei Broder I Michael Mitzen-
macher, « Network Applications of Bloom Filters: A Survey », in: Internet Math-
ematics, 2002, pp. 636–646.

[26] James J. Buckley and Esfandiar Eslami, « Fuzzy Relations », in: An Introduction
to Fuzzy Logic and Fuzzy Sets, Heidelberg: Physica-Verlag HD, 2002, pp. 115–139.

[27] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik, « A Primitive Operator
for Similarity Joins in Data Cleaning », in: Proceedings of the 22Nd International
Conference on Data Engineering, 2006, pp. 5–.

[28] Bernard Chazelle et al., « The Bloomier Filter: An Efficient Data Structure for
Static Support Lookup Tables », in: Proceedings of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Math-
ematics, 2004, pp. 30–39.

[29] Lu Chen et al., « Pivot-Based Metric Indexing », in: Proc. VLDB Endow. (2017),
pp. 1058–1069.

[30] E. F. Codd, « A Relational Model of Data for Large Shared Data Banks », in:
(1970), pp. 377–387.

[31] E. F. Codd, « Relational completeness of data base sublanguages », in: Database
Systems, Prentice-Hall, 1972, pp. 65–98.

[32] Saar Cohen and Yossi Matias, « Spectral Bloom Filters », in: Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data, Associa-
tion for Computing Machinery, 2003, pp. 241–252.

[33] Chuck Cranor et al., « Gigascope: A Stream Database for Network Applications »,
in: Proceedings of the 2003 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’03, San Diego, California: Association for Computing
Machinery, 2003, pp. 647–651.

119

[34] Akash Das Sarma, Yeye He, and Surajit Chaudhuri, « ClusterJoin: A Similarity
Joins Framework Using Map-Reduce », in: Proc. VLDB Endow. (2014), pp. 1059–
1070.

[35] Jeffrey Dean and Sanjay Ghemawat, « MapReduce: Simplified Data Processing on
Large Clusters », in: Commun. ACM 51.1 (2008), pp. 107–113.

[36] D. Deng et al., « MassJoin: A mapreduce-based method for scalable string simi-
larity joins », in: 2014 IEEE 30th International Conference on Data Engineering,
2014, pp. 340–351.

[37] David DeWitt and Jim Gray, « Parallel Database Systems: The Future of High
Performance Database Systems », in: Commun. ACM 35 (June 1992), pp. 85–98.

[38] Natalia Díaz Rodríguez et al., « A fuzzy ontology for semantic modelling and
recognition of human behaviour », in: Knowledge-Based Systems 66 (2014), pp. 46–
60.

[39] AnHai Doan, Alon Halevy, and Zachary Ives, Principles of Data Integration, 1st,
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012.

[40] Christos Doulkeridis and Kjetil NØrvåg, « A Survey of Large-Scale Analytical
Query Processing in MapReduce », in: (2014), pp. 355–380.

[41] Tamer Elsayed, Jimmy Lin, and Douglas W. Oard, « Pairwise Document Similarity
in Large Collections with MapReduce », in: Proceedings of the 46th Annual Meeting
of the Association for Computational Linguistics on Human Language Technolo-
gies: Short Papers, Association for Computational Linguistics, 2008, pp. 265–268.

[42] Li Fan et al., « Summary Cache: A Scalable Wide-Area Web Cache Sharing Pro-
tocol », in: IEEE/ACM Trans. Netw. 8 (June 2000), pp. 281–293.

[43] Fabian Fier et al., « Set Similarity Joins on Mapreduce: An Experimental Survey »,
in: Proc. VLDB Endow. 11 (2018), pp. 1110–1122.

[44] William B. Frakes and Ricardo Baeza-Yates, eds., Information Retrieval: Data
Structures and Algorithms, Prentice-Hall, Inc., 1992.

[45] GALACTICA, url: https://galactica.isima.fr/.

120

https://galactica.isima.fr/

[46] Yantao Gan, Xiaofeng Meng, and Yingjie Shi, « Processing Online Aggregation
on Skewed Data in Mapreduce », in: Proceedings of the Fifth International Work-
shop on Cloud Data Management, CloudDB ’13, San Francisco, California, USA:
Association for Computing Machinery, 2013, pp. 3–10.

[47] Georges Gardarin and Patrick Valduriez, « Join and Semijoin Algorithms for a
Multiprocessor Database Machine », in: ACM Transactions on Database Systems
9 (Mar. 1984), pp. 133–161.

[48] Michael Goodrich and Michael Mitzenmacher, « Invertible Bloom Lookup Tables »,
in: Jan. 2011, pp. 792–799.

[49] Luis Gravano et al., « Approximate String Joins in a Database (Almost) for Free »,
in: Proceedings of the 27th International Conference on Very Large Data Bases,
2001, pp. 491–500.

[50] Luis Gravano et al., « Approximate String Joins in a Database (Almost) for Free »,
in: Proceedings of the 27th International Conference on Very Large Data Bases,
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 491–500.

[51] Benjamin Gufler et al., « Handling Data Skew in MapReduce. », in: Jan. 2011,
pp. 574–583.

[52] D. Guo et al., « Theory and Network Applications of Dynamic Bloom Filters »,
in: INFOCOM, 2006, pp. 1–12.

[53] D. Guo et al., « The Dynamic Bloom Filters », in: IEEE Transactions on Knowl-
edge & Data Engineering 22.01 (2010).

[54] R. W. Hamming, « Error detecting and error correcting codes », in: The Bell
System Technical Journal 29 (1950), pp. 147–160.

[55] M. Al Hajj Hassan and M. Bamha, « Semi-Join Computation on Distributed File
Systems Using Map-Reduce-Merge Model », in: Proceedings of the 2010 ACM Sym-
posium on Applied Computing, SAC ’10, Association for Computing Machinery,
2010, pp. 406–413.

[56] Monika Henzinger, « Finding Near-duplicate Web Pages: A Large-scale Evaluation
of Algorithms », in: SIGIR, 2006, pp. 284–291.

121

[57] Benjamin Hindman et al., « Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center », in: Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, Boston, MA: USENIX Association,
2011, pp. 295–308.

[58] Timothy C. Hoad and Justin Zobel, « Methods for Identifying Versioned and Pla-
giarized Documents », in: JASIST 54.3 (2003), pp. 203–215.

[59] Timothy C. Hoad and Justin Zobel, « Methods for Identifying Versioned and Pla-
giarized Documents », in: JASIST 54 (2003), pp. 203–215.

[60] Alex Holmes, Hadoop in Practice, Manning Publications Co., 2012.

[61] Stratos Idreos, Erietta Liarou, and Manolis Koubarakis, « Continuous Multi-Way
Joins over Distributed Hash Tables », in: Proceedings of the 11th International
Conference on Extending Database Technology: Advances in Database Technology,
Association for Computing Machinery, 2008, pp. 594–605.

[62] Anil Jain, Karthik Nandakumar, and Abhishek Nagar, « Biometric Template Se-
curity », in: EURASIP Journal on Advances in Signal Processing (2008).

[63] Yu Jiang et al., « String Similarity Joins: An Experimental Evaluation », in: Proc.
VLDB Endow. 7 (2014), pp. 625–636.

[64] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii, « A Model of Compu-
tation for MapReduce », in: Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’10, Society for Industrial and Applied
Mathematics, 2010, pp. 938–948.

[65] B. Kimmett, A. Thomo, and V. Srinivasan, « Fuzzy joins in MapReduce: Edit and
Jaccard distance », in: IISA, 2016, pp. 1–6.

[66] Ben Kimmett, Venkatesh Srinivasan, and Alex Thomo, « Fuzzy Joins in MapRe-
duce: An Experimental Study », in: PVLDB 8.12 (2015), pp. 1514–1517.

[67] Adam Kirsch and Michael Mitzenmacher, « Distance-Sensitive Bloom Filters », in:
Proceedings of the Meeting on Algorithm Engineering & Expermiments, Society for
Industrial and Applied Mathematics, 2006, pp. 41–50.

[68] Abhishek Kumar et al., « Space-Code Bloom Filter for Efficient Traffic Flow Mea-
surement », in: Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement, Association for Computing Machinery, 2003, pp. 167–172.

122

[69] YongChul Kwon et al., « Managing Skew in Hadoop », in: IEEE Data Eng. Bull.
36 (2013), pp. 24–33.

[70] Y Kwon et al., « Managing skew in hadoop », in: IEEE Data Eng. Bull 36 (2013),
pp. 24–33.

[71] Avinash Lakshman and Prashant Malik, « Cassandra: A Decentralized Structured
Storage System », in: (2010), pp. 35–40.

[72] Kyong-Ha Lee et al., « Parallel Data Processing with MapReduce: A Survey », in:
SIGMOD Rec. 40 (2012), pp. 11–20.

[73] Taewhi Lee, Kisung Kim, and Hyoung-Joo Kim, « Join Processing Using Bloom
Filter in MapReduce », in: Proceedings of the 2012 ACM Research in Applied Com-
putation Symposium, Association for Computing Machinery, 2012, pp. 100–105.

[74] Marie-Jeanne Lesot, Maria Rifqi, and Hamid Benhadda, « Similarity measures for
binary and numerical data: a survey », in: International Journal of Knowledge
Engineering and Soft Data Paradigms 1.1 (Dec. 2008), pp. 63–84.

[75] Feng Li et al., « Distributed Data Management Using MapReduce », in: (2014).

[76] Qiming Li, Yagiz Sutcu, and Nasir Memon, « Secure Sketch for Biometric Tem-
plates », in: 2006, pp. 99–113.

[77] X. Lian and L. Chen, « Efficient Similarity Join over Multiple Stream Time Se-
ries », in: IEEE Transactions on Knowledge and Data Engineering 21.11 (2009),
pp. 1544–1558.

[78] Jimmy Lin, Shravya Konda, and Samantha Mahindrakar, Low-Latency, High-
Throughput Access to Static Global Resources within the Hadoop Framework, 2009.

[79] Jiaheng Lu et al., « String Similarity Measures and Joins with Synonyms », in:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, 2013, pp. 373–384.

[80] Wei Lu et al., « Efficient Processing of k Nearest Neighbor Joins Using MapRe-
duce », in: Proc. VLDB Endow. 5 (2012), pp. 1016–1027.

[81] Lailong Luo et al., « Optimizing Bloom Filter: Challenges, Solutions, and Com-
parisons », in: IEEE Communications Surveys & Tutorials PP (Apr. 2018).

123

[82] Lothar F. Mackert and Guy M. Lohman, « R* Optimizer Validation and Per-
formance Evaluation for Distributed Queries », in: Proceedings of the 12th Inter-
national Conference on Very Large Data Bases, VLDB ’86, Morgan Kaufmann
Publishers Inc., 1986, pp. 149–159.

[83] MapReduce Benchmarks, url: https : / / engineering . purdue . edu / ~puma /
pumabenchmarks.htm.

[84] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi, « Detectives: Detecting
Coalition Hit Inflation Attacks in Advertising Networks Streams », in: WWW,
2007, pp. 241–250.

[85] Ahmed Metwally and Christos Faloutsos, « V-SMART-Join: A Scalable MapRe-
duce Framework for All-Pair Similarity Joins of Multisets and Vectors », in: CoRR
abs/1204.6077 (2012), url: http://arxiv.org/abs/1204.6077.

[86] M. Mitzenmacher, « Compressed Bloom filters », in: IEEE/ACM Transactions on
Networking 10.5 (2002), pp. 604–612.

[87] Alper Okcan and Mirek Riedewald, « Processing Theta-joins Using MapReduce »,
in: SIGMOD, 2011, pp. 949–960.

[88] Carlos Ordonez, « Optimizing Recursive Queries in SQL », in: Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data, Associa-
tion for Computing Machinery, 2005, pp. 834–839.

[89] Thuong-Cang Phan, « Optimization for big joins and recursive query evaluation
using intersection and difference filters in MapReduce », Theses, Université Blaise
Pascal - Clermont-Ferrand II, July 2014.

[90] Thuong-Cang Phan, Laurent d’Orazio, and Philippe Rigaux, « Toward Intersection
Filter-based Optimization for Joins in MapReduce », in: Cloud-I, 2013, 2:1–2:2.

[91] Thuong-Cang Phan, Laurent d’Orazio, and Philippe Rigaux, « A Theoretical and
Experimental Comparison of Filter-Based Equijoins in MapReduce », in: TLDKS
25 (2016), pp. 33–70.

[92] Smriti R. Ramakrishnan, Garret Swart, and Aleksey Urmanov, « Balancing Re-
ducer Skew in MapReduce Workloads Using Progressive Sampling », in: Proceed-
ings of the Third ACM Symposium on Cloud Computing, SoCC ’12, San Jose,
California: Association for Computing Machinery, 2012.

124

https://engineering.purdue.edu/~puma/pumabenchmarks.htm
https://engineering.purdue.edu/~puma/pumabenchmarks.htm
http://arxiv.org/abs/1204.6077

[93] C. Rong et al., « Efficient and Scalable Processing of String Similarity Join », in:
IEEE Transactions on Knowledge and Data Engineering 25 (2013), pp. 2217–2230.

[94] Chuitian Rong et al., « Fast and Scalable Distributed Set Similarity Joins for Big
Data Analytics », in: Apr. 2017, pp. 1059–1070.

[95] Mehran Sahami and Timothy D. Heilman, « A Web-based Kernel Function for
Measuring the Similarity of Short Text Snippets », in: WWW, 2006, pp. 377–386.

[96] Sunita Sarawagi and Alok Kirpal, « Efficient Set Joins on Similarity Predicates »,
in: Proceedings of the 2004 ACM SIGMOD International Conference on Manage-
ment of Data, 2004, pp. 743–754.

[97] Yasin N. Silva and Jason M. Reed, « Exploiting MapReduce-based Similarity
Joins », in: SIGMOD, ACM, 2012, pp. 693–696.

[98] Yasin N. Silva, Jason M. Reed, and Lisa M. Tsosie, « MapReduce-based Similarity
Join for Metric Spaces », in: Cloud-I, 2012, 3:1–3:8.

[99] Yasin N. Silva et al., « An Experimental Survey of MapReduce-Based Similarity
Joins », in: Similarity Search and Applications, 2016, pp. 181–195.

[100] Ellen Spertus, Mehran Sahami, and Orkut Buyukkokten, « Evaluating similarity
measures: A large-scale study in the Orkut social network », in: SIGKDD, 2005,
pp. 678–684.

[101] S. Subramaniam et al., « Online Outlier Detection in Sensor Data Using Non-
Parametric Models », in: Proceedings of the 32nd International Conference on Very
Large Data Bases, VLDB ’06, Seoul, Korea: VLDB Endowment, 2006, pp. 187–198.

[102] Yagiz Sutcu, Qiming Li, and Nasir Memon, « Protecting Biometric Templates
With Sketch: Theory and Practice », in: Information Forensics and Security, IEEE
Transactions on (2007), pp. 503–512.

[103] Kian-Lee Tan and Hongjun Lu, « A Note on the Strategy Space of Multiway Join
Query Optimization Problem in Parallel Systems », in: SIGMOD Rec. (1991),
pp. 81–82.

[104] Thi-To-Quyen Tran et al., « Improving Hamming distance-based fuzzy join in
MapReduce using Bloom Filters », in: 2018 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), 2018, pp. 1–7.

125

[105] Thi-To-Quyen Tran et al., « Optimization for Large-Scale Fuzzy Joins Using Fuzzy
Filters in MapReduce », in: 29th IEEE International Conference on Fuzzy Systems,
FUZZ-IEEE 2020, Glasgow, UK, July 19-24, 2020, IEEE, 2020, pp. 1–8.

[106] Pim Tuyls et al., « Practical Biometric Authentication with Template Protection »,
in: 2005, pp. 436–446.

[107] Esko Ukkonen, « Algorithms for approximate string matching », in: Information
and Control (1985), pp. 100–118.

[108] Vinod Kumar Vavilapalli et al., « Apache Hadoop YARN: Yet Another Resource
Negotiator », in: Proceedings of the 4th Annual Symposium on Cloud Computing,
SOCC ’13, Santa Clara, California: Association for Computing Machinery, 2013.

[109] Rares Vernica, Michael J. Carey, and Chen Li, « Efficient Parallel Set-similarity
Joins Using MapReduce », in: SIGMOD, 2010, pp. 495–506.

[110] Sebastian Wandelt et al., « RCSI: Scalable Similarity Search in Thousand(s) of
Genomes », in: Proc. VLDB Endow. 6 (2013), pp. 1534–1545.

[111] J. Wang et al., « LS-Join: Local Similarity Join on String Collections », in: IEEE
Transactions on Knowledge and Data Engineering 29.9 (2017), pp. 1928–1942.

[112] Jingdong Wang et al., « Hashing for Similarity Search: A Survey », in: (Aug. 2014).

[113] X. Wang and D. Sun, « QJoin: A Q-Sample-Based Method for Large-Scale String
Similarity Joins », in: 2018 11th International Symposium on Computational In-
telligence and Design (ISCID), 2018, pp. 45–48.

[114] Tom White, Hadoop: The Definitive Guide, 4th, O’Reilly Media, Inc., 2015.

[115] Chuan Xiao et al., « Efficient Similarity Joins for Near-duplicate Detection », in:
ACM TODS 36.3 (2011), 15:1–15:41, (visited on 11/20/2017).

[116] Minghe Yu et al., « String Similarity Search and Join: A Survey », in: 10 (2016),
pp. 399–417.

[117] Matei Zaharia et al., « Spark: Cluster Computing with Working Sets », in: Proceed-
ings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, USENIX
Association, 2010, p. 10.

126

[118] Matei Zaharia et al., « Resilient Distributed Datasets: A Fault-Tolerant Abstrac-
tion for in-Memory Cluster Computing », in: Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’12, USENIX As-
sociation, 2012, p. 2.

[119] Huanchen Zhang et al., « SuRF: Practical Range Query Filtering with Fast Suc-
cinct Tries », in: Proceedings of the 2018 International Conference on Management
of Data, Association for Computing Machinery, 2018, pp. 323–336.

[120] Yunyue Zhu and Dennis Shasha, « StatStream: Statistical Monitoring of Thou-
sands of Data Streams in Real Time », in: Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB ’02, Hong Kong, China: VLDB En-
dowment, 2002, pp. 358–369.

[121] Yunyue Zhu and Dennis Shasha, « Efficient Elastic Burst Detection in Data Streams »,
in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’03, Washington, D.C.: Association for
Computing Machinery, 2003, pp. 336–345.

127

Titre : Jointures Floues Massives Basé Aux Filtres

Mot clés : Jointure floue, MapReduce, Filtre floue

Résumé : Une jointure floue est l’une des
opérations de traitement et d’analyse de don-
nées les plus utiles pour le Big Data dans
un contexte général. Il combine des paires de
tuples dont la distance est inférieure ou égale
à un seuil donné. La jointure floue est utilisée
dans de nombreuses applications pratiques,
mais elle est extrêmement coûteuse en temps
et en espace, et peut même ne pas être exécu-
tée sur des ensembles de données à grande
échelle. Bien qu’il y ait eu quelques études
pour améliorer ses performances en appli-
quant des filtres, une solution d’un filtre flou
efficace pour la jointure floue n’a jamais été
réalisée. Dans cette thèse, nous nous concen-
trons donc sur l’optimisation des grandes join-
tures floues à l’aide de filtres.

Pour atteindre ces objectifs, nous appli-
quons d’abord des filtres Bloom aux opéra-
tions de grande jointure floue afin d’éliminer la
plupart des éléments non joints dans les en-
sembles de données d’entrée avant d’envoyer
les données au traitement de jointure réel.
Ainsi, il réduit les données intermédiaires re-
dondantes, les comparaisons inutiles et évite
la duplication des données.

Une autre proposition importante est les
filtres flous, qui sont des structures de don-
nées probabilistes conçues pour représenter
des ensembles et leurs éléments de simila-
rité. Ils sont utilisés pour détecter rapidement
les éléments proches de l’ensemble dans des
seuils donnés avec un faible taux de faux po-
sitifs et zéro taux de faux négatifs. De plus,
ces filtres sont non seulement indépendants

avec des seuils et des fonctions de mesure
de distance, mais aussi facilement mis à jour.
Par conséquent, il peut être appliqué à un
large éventail de problèmes courants tels que
la déduplication, la correction d’erreurs, le net-
toyage des données, l’intégration de données,
les jointures récursives et les jointures de flux.
Notre amélioration réduira considérablement
le nombre de calculs redondants et les frais
généraux associés tels que les données inter-
médiaires et la communication pour les opéra-
tions de déduplication.

Nous effectuons ensuite des comparai-
sons d’analyse des algorithmes de jointure
floue convaincantes sur la base d’un modèle
de coût M − C − R. En conséquence, en
utilisant les filtres proposés, les opérations
de jointure floue peuvent minimiser les coûts
d’E/S disque et de communication. De plus,
les opérations de jointure floue basées sur
des filtres se sont avérées plus efficaces que
les solutions existantes grâce à des évalua-
tions expérimentales dans Spark. Des com-
paraisons expérimentales de différents algo-
rithmes pour les jointures floues sont exami-
nées en ce qui concerne la quantité de don-
nées intermédiaires, la quantité totale de sor-
tie, le temps total d’exécution et en particulier
les calendriers des tâches.

Bref, nos améliorations sur les opérations
de jointure contribuent à la scène mondiale
d’optimisation de la gestion des données pour
les applications MapReduce sur des infra-
structures distribuées à grande échelle.

Title: Filters Based Fuzzy Big Joins

Keywords: Fuzzy join, Similarity join, MapReduce, Fuzzy Filter

Abstract: A fuzzy or similarity join is one of
the most useful data processing and analysis
operations for Big Data in a general context.
It combines pairs of tuples for which the dis-
tance is lower than or equal to a given thresh-
old. The fuzzy join is used in many practical
applications, but it is extremely costly in time
and space, and may even not be executed
on large scale datasets. Although there have
been some studies to improve its performance
by applying filters, a solution of an effective
fuzzy filter for the join has never been con-
ducted. In this thesis, we thus focus on opti-
mizing fuzzy big joins using filters.

To achieve these objectives, we first ap-
ply Bloom filters to fuzzy big join operations
to eliminate most non-joining elements in in-
put datasets before sending data to actual join
processing. Thus, it reduces redundant inter-
mediate data, unnecessary comparisons and
avoid the data duplication.

Another important proposal is Fuzzy Fil-
ters, which are probabilistic data structures de-
signed to represent set(s) and its similarity el-
ements. They are used to fast detect close
elements of the set in given thresholds with
small false positive rate and zero false nega-
tive rate. Moreover, these filters are not only in-
dependent with thresholds and distance mea-

sure functions but also easily updated. There-
fore, it can be applied to a wide range of pop-
ular problems such as deduplication, error-
correction, data cleaning, data integration, re-
cursive joins and stream joins. Our improve-
ment will significantly reduce the number of
redundant computations, and the related over-
heads such as intermediate data, and commu-
nication for the deduplication operations.

We then make analysis comparisons of the
fuzzy join algorithms persuasive based on a
M − C − R cost model. As a result, with us-
ing the proposed filters, the fuzzy join opera-
tions can minimize disk I/O and communica-
tion costs. Moreover, the filters based fuzzy
join operations are demonstrated to be more
efficient than existing solutions through ex-
perimental evaluations in Spark. Experimental
comparisons of different algorithms for fuzzy
joins are examined with respect to intermedi-
ate data amount, the total output amount, the
total execution time, and especially task time-
lines.

Summary, our improvements on the join
operations contribute to the global scene of
optimizing data management for MapReduce
applications on large-scale distributed infras-
tructures.

	Introduction
	Context And Motivation
	Contributions Of The Thesis
	Thesis Outline

	Related Work
	Fuzzy Join Operations
	MapReduce And Big Join Parallelism
	MapReduce and HDFS
	Basic Join Algorithms in MapReduce
	M-C-R Cost Model
	Spark

	Fuzzy Join Algorithms In MapReduce
	Single Job Fuzzy Big Join Algorithms
	Multiple Jobs Fuzzy Join Algorithms

	Filtering Techniques
	Bloom Filter And Bloom Join Algorithm
	Intersection Bloom Filter And Intersection Bloom Join Algorithm
	Counting Bloom Filter

	Conclusion

	Fuzzy Big Joins Improvement Using Bloom Filters
	Previous Works
	Improvement Of Fuzzy Big Joins Using Bloom Filters
	BF-BH Algorithm
	BF-Ball-Splits Algorithm

	Cost Analysis
	Experimental Validation
	Cluster and Datasets Descriptions
	Fuzzy Self Join Evaluation
	Fuzzy Two-way Join Evaluation

	Summary

	Fuzzy Filters And Fuzzy Big Joins Optimization
	Previous Works
	Fuzzy Filters
	Fuzzy Filter
	Intersection Fuzzy Filters
	Extended Intersection Fuzzy Filter

	Optimization Of Fuzzy Big Joins
	Fuzzy Self-Joins Using Fuzzy Filters
	Fuzzy Two-way Joins Using Intersection Fuzzy Filters
	Fuzzy Filters Analysis And Optimization

	Cost Analysis
	Experimental Validation
	Fuzzy Self Join Evaluation
	Fuzzy Two-way Join Evaluation

	Summary

	Conclusion
	Thesis Conclusions
	Future Work

	Publications Involved in the Thesis
	Bibliography

