Keywords: Autonomous Vehicle, Test Case, Ontology, Formal Method, PEPA

Autonomous vehicles mainly rely on an intelligent system pilot to achieve the purpose of self-driving. They combine a variety of sensors to perceive their surroundings, such as cameras, radars and lidars. The perception algorithms of the Automated Driving Systems (ADSs) provide observations on the environmental elements based on the data provided by the sensors, while decision algorithms generate the actions to be implemented by the vehicles. Therefore, ADSs are safety-critical systems whose failures can have catastrophic consequences. To ensure the safety of such systems, it is necessary to specify, validate and secure the dependability of the architecture and the behavioural logic of ADSs running on vehicle for all the situations that will be met by the vehicle. These situations are described and generated as different test cases.

Titre:

Modélisation formelle et génération automatique de cas de test pour le véhicule autonome Mots clés: Véhicule autonome, Cas de test, Sûreté de fonctionnement, Modèles formels, Ontologie, PEPA Résumé: Les véhicules autonomes reposent principalement sur un pilote de système intelligent pour réaliser les fonctions de la conduite autonome. Ils combinent une variété de capteurs (caméras, radars, lidars,..) pour percevoir leurs environnements. Les algorithmes de perception des ADSs (Automated Driving Systems) fournissent des observations sur les éléments environnementaux à partir des données fournies par les capteurs, tandis que les algorithmes de décision génèrent les actions à mettre en oeuvre par les véhicules. Les ADSs sont donc des systèmes critiques dont les pannes peuvent avoir des conséquences catastrophiques. Pour assurer la sûreté de fonctionnement de tels systèmes, il est nécessaire de spécier, valider et sécuriser la abilité de l'architecture et de la logique comportementale de ces systèmes pour toutes les situations qui seront rencontrées par le véhicule. Ces situations sont décrites et générées comme diérents cas de test.

L'objectif de cette thèse est de développer une approche complète permettant la conceptualisation et la caractérisation de contextes d'exécution pour le véhicule autonome, et la modélisation formelle des cas de test dans le contexte de l'autoroute. Enn, cette approche doit permettre une génération automatique des cas de test qui ont un impact sur les performances et la abilité du véhicule.

Dans cette thèse, nous proposons une méthodologie de génération de cas de test com-posée de trois niveaux. Le premier niveau comprend tous les concepts statiques et mobiles de trois ontologies que nous dénissons an de conceptualiser et de caractériser l'environnement d'execution du véhicule autonome: une ontologie de l'autoroute et une ontologie de la météo pour spécier l'environnement dans lequel évolue le véhicule autonome, et une ontologie du véhicule qui se compose des feux du véhicule et les actions de contrôle. Chaque concept de ces ontologies est déni en termes d'entité, de sous-entités et de propriétés.

Le second niveau comprend les interactions entre les entités des ontologies dénies. Nous utilisons les équations de la logique du premier ordre pour représenter les relations entre ces entités.

Le troisième et dernier niveau est dédié à la génération de cas de test qui est basée sur l'algèbre des processus PEPA (Performance Evaluation Process Algebra). Celle-ci est utilisée pour modéliser les situations décrites par les cas de test.

Notre approche permet de générer automatiquement les cas de test et d'identier les cas critiques. Nous pouvons générer des cas de test à partir de n'importe quelle situation initiale et avec n'importe quel nombre de scènes. Enn, nous proposons une méthode pour calculer la criticité de chaque cas de test. Nous pouvons évaluer globalement l'importance d'un cas de test par sa criticité et sa probabilité d'occurrence. Title:

Formal Modeling and Automatic Generation of Test Cases for the Autonomous Vehicle Keywords: Autonomous vehicle, Test cases, Safety analysis, Formal models, Ontology, PEPA Abstract: Autonomous vehicles mainly rely on an intelligent system pilot to achieve the purpose of self-driving. They combine a variety of sensors (cameras, radars, lidars,..) to perceive their surroundings. The perception algorithms of the Automated Driving Systems (ADSs) provide observations on the environmental elements based on the data provided by the sensors, while decision algorithms generate the actions to be implemented by the vehicles. Therefore, ADSs are safety-critical systems whose failures can have catastrophic consequences. To ensure the safety of such systems, it is necessary to specify, validate and secure the dependability of the architecture and the behavioural logic of ADSs running on vehicle for all the situations that will be met by the vehicle. These situations are described and generated as dierent test cases.

The objective of this thesis is to develop a complete approach allowing the conceptualization and the characterization of execution contexts of autonomous vehicle, and the formal modelling of the test cases in the context of the highway. Finally, this approach has to allow an automatic generation of the test cases that have an impact on the performances and the dependability of the vehicle.

In this thesis, we propose a three-layer test case generation methodology. The rst layer includes all static and mobile concepts of three ontologies we dene in order to conceptualize and characterize the driving environment for the construction of test cases: a highway ontology and a weather ontology to specify the environment in which evolves the autonomous vehicle, and a vehicle ontology which consists of the vehicle lights and the control actions. Each concept of these ontologies is dened in terms of entity, sub-entities and properties.

The second layer includes the interactions between the entities of the dened ontologies. We use rst-order logic equations to represent the relationships between these entities.

The third and last layer is dedicated to the test case generation which is based on the process algebra PEPA (Performance Evaluation Process Algebra), which is used to model the situations described by the test cases.

Our approach allows us to generate automatically the test cases and to identify the critical ones. We can generate test cases from any initial situation and with any number of scenes. Finally we propose a method to calculate the criticality of each test case. We can comprehensively evaluate the importance of a test case by its criticality and its probability of occurrence. The objective of this thesis is to develop a complete approach allowing the conceptualization and the characterization of execution contexts of autonomous vehicle, and the formal modelling of the test cases. Finally, this approach has to allow an automatic generation of the test cases that have an impact on the performance and the dependability of the vehicle.

Table des matières 1 Introduction

Table des figures

Firstly, we defined a test case as a scenario describing a specific situation with the properties of each component in the scenario. In order to conceptualize and the characterize the driving environment for the construction of test cases, we define three ontologies: a highway ontology and a weather ontology to specify the environment in which evolves the autonomous vehicle, and a vehicle ontology which consists of the vehicle lights and the control actions. Each concept of these ontologies is defined in terms of entity, sub-entities and properties. Then we use firstorder logic equations to represent the relationships between the defined entities. Finally, we propose a three-layer test case generation methodology.

The first layer of the proposed generation methodology includes all static and mobile concepts of our ontologies, while the second layer includes the interactions between the entities of these ontologies. The third and last layer is the test case generation layer which is based on the process algebra PEPA (Performance Evaluation Process Algebra). The components of a PEPA model are the entities of the ontologies and the activities are the actions performed by these entities with their occurrence rates. We developed an algorithm to generate automatically the PEPA models, which are then executed using Eclipse PEPA to obtain their steady-state probability distributions.

Our approach allows us to generate automatically the test cases and to identify the critical ones. We can generate test cases with any initial situation and any number of scenes. Finally we propose a method to calculate the criticality of each test case. We can comprehensively evaluate the importance of a test case by its criticality and its probability of occurrence.

Chapitre 1 Introduction

Autonomous cars mainly rely on intelligent systems to achieve the purpose of self-driving. They combine a variety of sensors to perceive their surroundings, such as cameras, radars and lidars. They must evolve in an unpredictable environment and a wide context of dynamic execution, with strong interactions. The perception algorithms of the Automated Driving Systems (ADSs) provide observations on the environmental elements based on the data provided by the sensors, while decision algorithms generate the actions to be implemented by these vehicles.

ADSs are being developed to perform the primary aspects of the dynamic driving task [START_REF] Sae | Definitions for terms related to on-road motor vehicle automated driving systems[END_REF]. Since the 1970s, the research on the autonomous vehicle became a tentancy in the industry. Lately and after years of exploration, a certain progress has been made. In early 2018, Audi expanded Traffic Light Information Vehicle-to-Infrastructure (V2I) system to Washington [Krok, 2018]. Nissan plans to continue the collaboration with NASA to adapt the NASA technology for use in their Seamless Autonomous Mobility platform [Bartosiak, 2018]. Not only is the traditional auto industry dedicated to this research domain, but other companies, such as Google and Intel, have also participated to the development of the autonomous vehicles. Waymo, which started as Google's self-driving car project, canceled the design of the steering wheel and pedals [START_REF] Gain | Waymo patent shows plans to replace steering wheel & pedals with push buttons[END_REF], which completely overturns the design of traditional cars.

The developed technologies are expected to prevent accidents, reduce emissions, transport the mobility-impaired and reduce driving related stress. For example, the U.S. Department of Transportation (USDOT) believes that automated vehicles can reduce crash-related deaths and injuries, improve access to transportation and reduce traffic congestion and vehicle emissions [NHTSA, 2016]. But the autonomous vehicles also raise new safety issues which are due to the emerging nature of the technology.

ADSs are safety-critical systems whose failures can have catastrophic consequences. Systematic technical errors of ADSs, for example bugs and flaws in the sensors or the data short-comings systems, could become significant hazards akin to human errors. Fatalities caused by immature ADSs have been reported and are considered to be on the rise [BBC, 2018] [Everington, 2020]. Safety and reliability certification is a task yet to be solved.

As autonomous vehicles are integrated into our lives, and ADSs are given control of even more complex driving tasks, the need for dependable, secure systems has become acute. Like any other system that can generate potentially risky events, the autonomous vehicle must be designed to ensure the safety of its occupants and other road users. The dependability of the architecture and the behavioural logic of ADSs should be tested, verified, and validated before the autonomous vehicles equipped with these systems are on the road. This emphasizes the need of enhanced approaches and tools to assess the safety of the movements of the autonomous vehicles in dynamic and uncertain environments.

In order to guarantee the functionality and the safety of the autonomous driving system, it is necessary to validate the decisions of the algorithms for all the situations that will be met by the vehicle. The complexity of demonstrating the safety of an autonomous vehicle are related to the large number of these situations, their uncertainty, and to the on-board technologies. This makes validation by tests in real use extremely costly, even impossible in certain cases. In order to gain confidence that the safety requirements have been achieved, validating the ADSs of the autonomous vehicle through digital simulation is necessary. SVA (Simulation of Autonomous Vehicule Safety) Project [START_REF] Sva | Sva: Simulation pour la sécurité du véhicule autonome[END_REF] aims to respond by digital simulation to the challenge posed by the demonstration of safety and harmlessness of the functions on board autonomous vehicles. Launched in 2015 for a period of four years in the framework of IRT SystemX, Paris-Saclay, France, the SVA project aims to address the issue of autonomous vehicle validation through digital simulation, by developing methods and tools to assist in the design and validation. The models of vehicle components and their environment should be specified, adapted or developed in order to simulate the behaviour of the vehicle in the event of a failure of one of its components and the impact on its operation due to external disturbances. SVA project applies the developed methods to the TJC (Traffic Jam Chauffeur) autonomy function, which can control the vehicle in a traffic jam situation, at a maximum speed of 70 km/h and on a separate carriageway.

The objective of this these, which is supervised in the context of the SVA project, is to develop a complete approach allowing, on the one hand the conceptualization and the characterization of the execution contexts of the autonomous vehicle, and on the other hand, the test cases modelling and generation. These test cases are generated to describe the driving situations. We are interested in an automatic generation method which allows generating test cases that have an impact on the performance and the dependability of the vehicle. Generating all possible test cases is a challenge. We focus on the test cases in the context of the highway which is of separate carriageway type. Moreover, compared to other types of roads, there are uniform specifications for highways.

Test case generation issues

Safety is a generic concept that measures the quality of service provided by a system, so that the user has justified confidence in it. This justified trust is obtained through a qualitative and quantitative analysis of the different properties of the service delivered by the system.

Since the ADSs are tested, verified and validated through digital simulation, the driving environment of the autonomous vehicle must be modeled in order to be able to generate all the possible situations the vehicle can meet in a dynamic execution context. These situations are generated as different test cases which are applied to verify the functions and the information needed to perform these functions, and the decisions of ADSs.

Manufacturers need a complete generation strategy to ensure the completeness of situations that the vehicle will meet [START_REF] Kone | Safety demonstration of autonomous vehicles: a review and future research questions[END_REF]. However, as the autonomous vehicle relies on the cooperation of artificial intelligence, sensors such as radar, camera and lidar, and GPS to improve the road safety and the traffic efficiency, with the development of the technologies, these sensors provide more and more driving environment elements to ADSs. These infrastructure elements combined to the weather conditions with their own properties may lead to the combinatorial explosion of the number of the situations met by the vehicle, and consequently the scenes constituting the test cases. Therefore, generating all possible test cases becomes close to impossible.

In this thesis, we propose therefore a test case generation approach that focuses on the most representative test cases for testing and validating ADSs. This model-based approach allows us to formally model these test cases and to identify the most critical ones.

The Contribution of the thesis

Before generating the test cases, we need to deal with another challenge -the conceptual and terminological confusion in the SVA project. Different terminologies are used by project partners with different backgrounds and different needs. Moreover, some words used in the same terminology are ambiguous, some are redundant and thus have the same meaning, while a same word may have different meanings. This makes the communication between partners lack a common understanding which leads to difficulties for cooperation between them in the project, and limits the potential for re-using and sharing their works. Thus, we need a common vocabulary for all stakeholders who need to share information in the autonomous vehicle field.

To deal with this first challenge, we need to identify the key concepts and possible relationships between the elements involved in the different execution contexts, to give clear definitions of these elements. First of all, we must clarify the definition of a test case to identify without ambiguity these concepts and relationships. We define a test case as a scenario describing a specific situation with the properties of each element in the scenario. In order to conceptualize and characterize the driving environment for the construction of test cases, we define three ontologies: a highway ontology and a weather ontology to specify the environment in which evolves the autonomous vehicle, and a vehicle ontology which consists of the vehicle lights and the control actions. Each concept of these ontologies is defined in terms of entity, sub-entities and properties. Then we use first-order logic equations to represent the relationships between the defined entities.

Based on these ontologies, we conduct a formal modelling of the test cases. We first propose to develop a methodology to model the environment of the autonomous vehicle, and generate the test cases for testing the vehicle. This test cases generation methodology consists of threelayer. The first layer involves all static and mobile concepts of our ontologies, while the second layer includes the interactions between the entities of these ontologies. The third and last layer is the test cases generation layer which is based on the process algebra PEPA (Performance Evaluation Process Algebra) [Hillston, 1994].

Finally, as we are interested in the automatic generation of test cases, we propose a method that allows the classification of these test cases in terms of their impact on the performance and the dependability of the vehicle. We propose an approach which is integrated to the third layer of our methodology, that allows generating automatically the test cases with any initial situation and any number of scenes. This method allows us to identify the critical test cases. We also propose a method to calculate the criticality of each test case to evaluate comprehensively its importance.

The thesis outline

This thesis is structured in 9 chapters:

-In Chapter 2, we present the intelligent autonomous vehicle systems with different levels of automation, the Automated Driving Systems, and the safety problems we face; -Chapter 3 is dedicated to the state of the art in the ontologies domain and the formal methods applied in the test case generation domain; -In Chapter 4, we propose a definition of the test case and a methodology to generate automatically test cases for the autonomous vehicle in the context of the highway; -In Chapter 5, we define the three ontologies (highway, weather and vehicle) we use for the conceptualization and characterization of test case; -In Chapter 6, we define the relationships between the concepts of the ontologies using the first-order logic; -In Chapter 7, we use the Performance Evaluation Process Algebra (PEPA) for modelling the driving scenes and the transitions between them; -In Chapter 8, we consider two case studies on which we apply our methodology; -Chapter 9 is dedicated to the conclusions of these works and the possible future works. [START_REF] Chen | An advanced driver assistance test cases generation methodology based on highway traffic situation description ontologies[END_REF]] [Chen and Kloul, 2019] [Chen and Kloul, 2018a] Chapitre 2 Autonomous Vehicles and Safety

Introduction

Today, vehicles can be thought of as complex systems with various intelligent functions. And the relationship between these vehicles and their drivers is expected to change significantly over the next ten to twenty years. Indeed, automotive technology continues to advance, and research into automotive innovation has the potential to change our lives.

An autonomous vehicle is a vehicle that is constantly in interaction with its environment. It interprets the environment using sensors and decision algorithms, then acts according to these interpretations. Automated Driving Systems (ADSs) of the different vehicle automation levels are implemented to perform several driving tasks.

Although the autonomous vehicles are supposed to improve safety and to reduce the daily loss of life due to road traffic accidents, they are safety-critical systems whose failures can have catastrophic consequences because they bring new safety risks. It is thus necessary to ensure the safety of the autonomous vehicle to give all the road users the justified confidence in it.

This chapter is dedicated to the autonomous vehicle system and the related safety problems. We first present the intelligent autonomous vehicle systems with their different levels of automation and the ADSs in Section 2.2. Then, we discuss the safety problems we face and present the safety standards in Section 2.3. The conclusion of this chapter is given in Section 2.4.

Autonomous Vehicle

An autonomous vehicle is a vehicle capable of detecting its environment and navigating without requiring guidance or control by teleoperator [Cox andWilfong, 1990] [Gehrig and[START_REF] Gehrig | [END_REF]. It relies on the cooperation of artificial intelligence, sensors such as radar, camera and lidar, and GPS to improve road safety and traffic efficiency by reducing the number of road accidents. New technologies in vehicle control systems also offer new employment opportunities in different industries to develop, manufacture and maintain them.

Two regulators covering the United States have defined levels of vehicle automation. The first agency to define these levels is the National Highway Traffic Safety Administration (NHTSA). The NHTSA published a policy on automated vehicles in May 2013 defining the automation levels from vehicles that do not have any of their control systems automated (level 0) to fully automated vehicles (level 4) [START_REF] Usdot | National highway traffic safety administration's preliminary statement of policy concerning automated vehicles[END_REF]. However, its definition of the most automated driving level was deemed too broad. Thus the Society of Automotive Engineers (SAE) International defined new levels which are based on the NHTSA's previous work. The vehicle automation levels of SAE, which replaced the NHTSA levels in October 2016, are six (6). Levels 0 to 3 of SAE are very similar to those defined by NHTSA. However, Level 4, fully automated in the definition of NHTSA, is divided into two levels, 4 and 5 in the definition of SAE. Currently, the SAE International levels are considered as standards and are defined as follows [SAE International, 2014]:

-Level 0 -No Automation: the human driver does everything. Systems at this level do not provide any automation of the dynamic driving task (DDT) but can provide warnings [START_REF] Taxonomy | Definitions for terms related to on-road automated motor vehicles[END_REF]; -Level 1 -Driver Assistance: an automated system on the vehicle can sometimes assist the driver to perform parts of the driving task (steering, acceleration / braking); -Level 2 -Partial Automation: an automated system on the vehicle can effectively perform parts of the driving task (steering, acceleration / braking, OEDR: Object and Event Detection and Response), while humans continue to monitor the environment driving and perform the rest of the driving task; -Level 3 -Conditional Automation: an automated system can both perform parts of the driving task (steering, acceleration / braking, OEDR) and monitor the driving environment in some cases, but the human driver must be ready to resume control when the autonomous system requests it; -Level 4 -High Automation: an automated system can perform the driving task and monitor the driving environment, and the human driver does not need to regain control. However, this system can only work in certain environments and under certain conditions (Ex: during a traffic jam on a highway); -Level 5 -Full Automation: the automated system can perform all driving tasks, in all conditions and on a road where a human can legally drive a vehicle. It is no longer limited by an Operational Domain Design (ODD). The human pilot is only necessary for the activation, deactivation and determination of waypoints and destinations.

Figure 2-1 summarizes the six levels of vehicle automation as defined in [START_REF] Committee | Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[END_REF].

FIGURE 2-1 -Levels of driving automation

The idea of assisting drivers has led to the development of Advanced Driver Assistance Systems (ADAS) since the early 1990s [START_REF] Wilson-Jones | Driver assistance system for a vehicle[END_REF]]. These vehicle control systems use environmental sensors (radar, laser, vision) to improve driving comfort and road safety by helping the driver to recognize and react to potentially dangerous traffic situations [START_REF] Gietelink | Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations[END_REF]. With the continuous improvement of vehicle automation, now we mainly focus on the development of Automated Driving Systems (ADSs).

ADSs contribute to the road safety by performing several tasks such as: keeping the vehicle in its lane (lateral control), intelligent regulation of the speed of movement according to the environment in front of the vehicle (longitudinal control), collision alert, etc. [Chauvel, 2008]. Some systems of the different vehicle automation levels are implemented. In the following, we present typical examples of systems for each level of vehicle automation.

Typical examples of level 0 automation system include the Forward Collision Warning (FCW) [Chen andParikh, 2000] [Cabrera et al., 2012], the Blind Spot Active Warning System (BSW) Warning) [START_REF] Miller | Blind spot warning system for an automotive vehicle[END_REF], [START_REF] Strumolo | Blind-spot warning system for an automotive vehicle[END_REF] and the Lane Departure Warning (LDW) system [Batavia, 1999] [[START_REF] Barickman | Lane departure warning system research and test development[END_REF].

Level 1 of vehicle automation (individual automatic functions) is basically universal. A vehicle equipped with a cruise control system (ACC: Autonomous Cruise Control) [Woll andOlds, 1996] [Ioannou andChien, 1993] is considered to be a level 1 autonomous car. Typical examples also include an active parking assistance system with power steering, the active Lane Keeping Assistance (LKA) system Type II [START_REF] Kawazoe | Lane keeping assistance system and method for automotive vehicle[END_REF]] [Kawazoe et al., 2001] and a combination of ACC with the LKA Type II. LKA Type I systems refer to LKA systems which apply corrective lane steering if the vehicle has to leave the lane, and LKA Type II systems refer to LKA systems which apply corrective lane steering if the vehicle must leave the center of the lane. LKA Type III systems center the vehicle in the middle of the lane without the driver at all times of driving.

Level 2 (automatic multifunction) is more widespread. The General Motor Vehicle Safety Regulation of the European Parliament and of the Council of the European Union forces the compulsory installation of the Advanced Emergency Braking System (AEBS) [START_REF] Jang | The safety evaluation method of advanced emergency braking system[END_REF] since 1 November 2013 for heavy vehicles (categories M2, M3, N2, N3), and since 2014 for all new vehicles [START_REF] Regulation | regulation (ec) no 661/2009 of the european parliament and of the council of 13 july 2009 concerning type-approval requirements for the general safety of motor vehicles, their trailers and systems, components and separate technical units intended therefor[END_REF]. Typical examples also include the Traffic Jam Assist (TJA) system [Bartels et al., 2015] [Siemens and[START_REF] Siemens | Increasing comfort-boosting safety. Advanced driver assistance systems[END_REF] and the Key Parking system. The TJA system helps the driver to drive monotonously in traffic jams on motorways or similar roads with speeds up to 60 km/h. The system tracks the target vehicle ahead at a safe distance and keeps the vehicle in the center of the lane. The driver can only activate the system if slow vehicles are detected at the front. The driver must monitor the system at all times and must intervene if necessary. In principle, the driver can remove his hands from the steering wheel and does not need to use the pedals. Volvo Cars' City Safety system [START_REF] Distner | City safety-a system addressing rear-end collisions at low speeds[END_REF]], Honda's Collision Mitigation Brake System (CMBS) [START_REF] Sugimoto | Effectiveness estimation method for advanced driver assistance system and its application to collision mitigation brake system[END_REF]] and Tesla's Autopilot system [START_REF] Ingle | Tesla autopilot: semi autonomous driving, an uptick for future autonomy[END_REF] on Model S all belong to this level.

Level 3 (restricted automation) is under development. The DISTRONIC PLUS system with Mercedes-Benz Steering Assist and Stop&Go Pilot can automatically track vehicles in the event of a traffic jam [START_REF] Balasbramani | Intelligent drive assistant system[END_REF]. The typical example is the TJC (Traffic Jam Chauffeur) system [START_REF] Bartels | Adaptive delivrable d2. 1: System classification and glossary[END_REF]] [Tlig et al., 2018]. The TJC system and the TJA (Traffic Jam Assist) system are similar. Once the TJC system is activated, the autonomous vehicle takes full longitudinal and lateral control when it detects a traffic jam on a road with separate carriageways. It allows the driver to divert his attention from his driving task in the specific scenario of a traffic jam on a highway, although the driver must provide fallback performance, if necessary. The driver must be able to regain control in a longer period of time if a system recovery request occurs. So only secondary tasks with an appropriate reaction time are allowed. This system applied to Audi A8 is considered to be the first production vehicle to use level 3 autonomous technology [START_REF] Stanchev | Autonomous cars. history. state of art. research problems[END_REF].

For level 4 systems, secondary tasks with long reaction times (reading a newspaper) are allowed. Similarly, unmanned applications such as the DVP (Driverless Valet Parking) system [START_REF] Paul | Automatic valet parking[END_REF]] [Abisheik and Mohan, 2017] and Audi's Highway Pilot System [newsroom, 2019] which includes the TJP (Traffic Jam Pilot) system [START_REF] Bartels | Adaptive delivrable d2. 1: System classification and glossary[END_REF] are possible. Like TJC, the TJP system allows the driver to divert his attention from his driving task in the specific scenario of a traffic jam on a highway. But istead of the driver, the system provids fallback performance if necessary. The pilot is not required to be able to regain control if a system recovery request occurs, and all secondary tasks are allowed without limitation. The Google Waymo vehicle [START_REF] Wells | Waymo llc[END_REF] focuses on systems of levels 4 and 5, which offer greater vehicle autonomy without requiring interaction with the driver.

In this thesis, we adopt the SAE International Levels of Automation as the SVA Project, in which this thesis work lies. One of the major challenges of the SVA project is to be able to qualify the safety of autonomous vehicle decision algorithms.

Safety of Autonomous Vehicle

Like any other system that can generate potentially risky events, the autonomous vehicle must be designed to ensure the safety of its occupants and other road users.

Safety is a generic concept that measures the quality of service provided by a system, so that the user has justified confidence in it. This justified trust is obtained through a qualitative and quantitative analysis of the different properties of the service delivered by the system. Safety is often seen as one of a group of related concepts: reliability, availability, maintainability and safety (RAMS), which are used in engineering to characterize a product or system. Reliability is the ability of a system to remain constantly operational for a given period of time, while availability is the ability of a system to be operational when it is requested. Maintainability is the ability of a system to quickly return to an operational state. Thus systems whose components are very easily removable can benefit from better maintainability than the others. Finally, safety is the property of a system that does not harm people, the environment, or any asset during a whole life cycle. It is concerned about failures affecting life or a single property of the system.

The supply and use of automated vehicles are expected to improve road safety, travel times, highway and intersection capacity, fuel efficiency, emissions per kilometre, travel choices, mobility, accessibility and opportunities for sharing [START_REF] Milakis | Policy and society related implications of automated driving: A review of literature and directions for future research[END_REF]. The most significant anticipated benefit of increasing vehicle automation is improved safety to reduce the loss of life each day in roadway crashes. But this also raises new safety risks which are due to the emerging nature of the technology. Following advances in robotics, autonomous vehicles are entering increasingly complex environments. These new environments pose particular problems for the concept of safety. The autonomous and secure operation of vehicles is essential for increasingly complex applications in environments with human presence. Systematic technical errors of ADSs could become significant hazards akin to human error. Appropriate solutions to assess the safety of the movements of the autonomous vehicles in dynamic and uncertain environments are essential.

The U.S. Department of Transportation (USDOT) believes that autonomous vehicles can reduce crash-related deaths and injuries, improve access to transportation and reduce traffic congestion and vehicle emissions [NHTSA, 2016]. Safety remains the number one priority for the USDOT and is the specific focus of the U.S. National Highway Traffic Safety Administration (NHTSA). NHTSA presents a Voluntary Guidance [NHTSA, 2016] which offers a nonregulatory approach to autonomous vehicle technology safety. This guidance means to support the automotive industry, the States, and other key stakeholders as they consider and design best practices relative to the testing and deployment of autonomous vehicle technologies. This guidance points out that in order to design ADS without unreasonable safety risks, the overall process should adopt and follow industry standards. autonomous vehicle safety regulation must be resolved before the autonomous vehicles equipped with Level 3 and above ADSs are on the road.

ISO 26262 [START_REF] Iso | Road vehicles-functional safety[END_REF] is adapted from the International Electrotechnical Commission 61508 standard [Brown, 2000]. This standard is the first comprehensive and voluntary automotive safety standard that addresses the functional safety of electrical and/or electronic (E/E) and software-intensive features in today's road vehicles [Van Eikema Hommes, 2016]. It focus on possible hazards caused by malfunctioning behaviour of E/E safety-related systems. Safety is defined as the absence of unreasonable risk in ISO 26262. Safety analyses are applied to examine the influence of faults and failures on items or elements regarding their architecture, functions and behaviour. The results of the safety analyses provide information on conditions and causes that could lead to violation of a safety goal or safety requirement [START_REF] Czerny | Iso 26262 functional safety draft international standard for road vehicles: Background, status, and overview[END_REF].

However, many safety issues are not necessarily caused by system failures. For some systems that rely on sensing external or internal environments, potentially hazardous behaviors may be caused due to the intended functionality or performance limitations of the system. The absence of unreasonable risk due to potentially hazardous behaviours related to such limitations is defined as the safety of the intended functionality (SOTIF). ISO/PAS 21448 SOTIF are defined to solve the problems of performance limitations and misuse. Performance limitations refer to the insufficiencies of the function itself and misuse is defined as the usage of the system by a human in a way not intended by the manufacturer of the system, and for which the system has insufficient performance, or is inadequate. ISO/PAS 21448 SOTIF [START_REF] Iso | pas 21448: Road vehicles -safety of the intended functionality[END_REF] is complementary to ISO 26262. Both are distinct and are concerned with complementary aspects of safety. The functional safety addressed by the ISO 26262 series is the focus of this work.

ISO 26262 employs safety analysis, including Failure Mode and Effect Analysis (FMEA) [Stamatis, 2003], Fault Tree Analysis (F TA) [Ericson, 1999], Event Tree Analysis (E TA) [START_REF] Andrews | Event-tree analysis using binary decision diagrams[END_REF], hazard and operability study (HAZOP) [Kletz, 2018]. These are valid and commonly used methods in the automotive industry to evaluate the reliability, availability, maintainability and safety of ADSs [Kim, 2014] [Mehmed et al., 2014] [Becker et al., 2017]. 2-2) to organise its requirements [START_REF] Lucas | Vosysmonitor, a trustzone-based hypervisor for iso 26262 mixed-critical system[END_REF]. In the left side of the cycle, targets are models or representations of the system before the implementation. The right side of the cycle corresponds to an implementation of the system components, their integration and their validation.

The aim of the SVA project, in which this thesis work lies, is to respond by digital simulation to the challenge posed by the complexity of demonstrating the safety of an autonomous vehicle. Indeed, this complexity, which is linked both to the large number of situations that the driver encounters on the road, their uncertainty, and to the on-board technologies, makes validation by tests in real use extremely costly, even impossible in certain cases. In order to gain confidence that the safety requirements have been achieved, a model-based approach is necessary to validate the ADASs and ADSs of the autonomous vehicle.

In the SVA project, we also apply V-Cycle (Figure 2-3) to the design of the TJC system for simulation. FMECA and FTA are the tools to identify the risk areas that exist to identify the dependability requirements. The real code and the real hardware can be tested in a software-inthe-loop (SIL) simulations and a real-time hardware-in-the-loop (HIL) simulation respectively. During the development of TJC system, the initial design and specification of its controller is supported by off-line model-in-the-loop (MIL) simulations, where the controller logic is simulated in closed-loop with models of vehicle dynamics, sensors, actuators, and the traffic environment. Model-based testing approaches are used at the MIL level to automate the testing process while laying the groundwork for test coverage analysis. In order to automate reasoning on the issues of the autonomous vehicle testing process, in this these we propose a formal model-based automatic generation approach of test cases.

Conclusion

In this chapter, we discussed the autonomous vehicles and the different automation levels of the corresponding ADSs. We also discussed the safety notion and its importance for the autonomous vehicle industry. Besides, we discussed the safety standard ISO 26262 which is considered in the SVA project.

All the decisions of the system should be tested, verified and validated before the autonomous vehicles equipped with ADSs are on the road. Because of the complex environments and the numerous situations that will be met by these vehicles, it appears clearly that we need methods and tools to model their environments and to generate the test cases (situations) for the testing and the validation of ADSs.

In the next chapter, we discuss the state of the art of the test cases generation methods and some related works.

Chapitre 3

State of art 3.1 INTRODUCTION

In this chapter, we discuss the state of the art of the methods and techniques used for test cases generation for the autonomous vehicle. In our knowledge, test cases generation has rarely been the subject of research works in the literature.

In [START_REF] Lesemann | A test programme for active vehicle safety -detailed discussion of the evalue testing protocols for longitudinal and stability functionality[END_REF], testing scenarios have been derived based on accident statistics to represent the majority of accidents in which active safety functions could possibly mitigate the outcome. The authors of [START_REF] Tuncali | Utilizing s-taliro as an automatic test generation framework for autonomous vehicles[END_REF]] also focus on collisions. Their major objective is to find the conditions on the boundaries between safe scenarios and collision scenarios. The specific test case generation for autnomoous vehicles was developed based on the S-TaLiRo tool [START_REF] Annpureddy | S-taliro: A tool for temporal logic falsification for hybrid systems[END_REF], that is a MATLAB [Version, 2019] toolbox for systematic testing of hybrid systems with a focus on collisions. This method does not take into account the impact of the infrastructure and the weather conditions on the autonomous vehicle behaviours.

Many autonomous driving systems have machine learning components [START_REF] Moujahid | Machine learning techniques in adas: a review[END_REF]] [Navarro et al., 2017], which are difficult to test and verify. In [START_REF] Tuncali | Simulationbased adversarial test generation for autonomous vehicles with machine learning components[END_REF], the authors present a framework for Simulation-based Adversarial Testing of Autonomous Vehicles (Sim-ATAV) to check closed-loop properties of autonomous driving systems that include machine learning components. The covering array is used to minimize the number of test cases. In [START_REF] Vishnukumar | Machine learning and deep neural network-artificial intelligence core for lab and realworld test and validation for adas and autonomous vehicles: Ai for efficient and quality test and validation[END_REF], the authors propose a methodology using machine learning and deep neural network for testing and validating ADAS (Advanced driver assistance system) and autonomous vehicles. All these works focus on testing and validation methods, but do not give detailed test scenarios generation methodology.

In [START_REF] Thorn | A framework for automated driving system testable cases and scenarios[END_REF], the U.S. National Highway Traffic Safety Administration (NHTSA) proposes a framework for developing test cases and test scenarios for ADS. The core aspects of a common ADS test scenario are making up with the tactical manoeuvring behaviours, operational design domain (ODD) elements, Object and Event Detection and Responses (OEDR) capabilities and failure mode behaviours. The test scenarios are not formal since they are given by the check-lists including one or more elements of each of these core components.

In [START_REF] Schuldt | A method for an efficient, systematic test case generation for advanced driver assistance systems in virtual environments[END_REF], a systematic method based on a unified 4-level model is proposed for the test case generation for advanced driver assistance systems in virtual environments. This model can be divided into four steps: system analysis, systematic test case generation, test case execution, and test case evaluation. In order to generate non-redundant, representative, unified, and reproducible test cases, the boundary value analysis is used to reduce the number of test cases. Unfortunately, test case generation is not their key research object, thus they did not give a formal method for generating these test cases.

In the above works, some contain incomplete driving environment elements [START_REF] Lesemann | A test programme for active vehicle safety -detailed discussion of the evalue testing protocols for longitudinal and stability functionality[END_REF]] [Tuncali et al., 2016], some do not propose method for generating the scenarios [START_REF] Moujahid | Machine learning techniques in adas: a review[END_REF]] [Navarro et al., 2017] [Tuncali et al., 2018] [Vishnukumar et al., 2017], and some use generation methods which are not formal [START_REF] Thorn | A framework for automated driving system testable cases and scenarios[END_REF]] [Schuldt et al., 2018]. Unlike all these works, we propose a solution to address these problems and this solution is formal. We consider building ontologies for the context of the highway as a common vocabulary to eliminate, or at least reduce the ambiguity of used terms. Moreover, our approach allows identifying all the interactions between the different elements of our system and these interactions are expressed using the first order logic. Finally, we use the formal modelling technique PEPA (Performance Evaluation Process Algebra) which allows modelling formally the situations that can be met by the autonomous vehicle.

As we are interested in a test cases generation methodology based on ontologies and formal methods, in the following, we focus on describing the state of the art of ontologies and formal methods. In Section 3.2, we describe the state of the art of the ontologies as we use ontologies for the conceptualization and characterization of the test cases. In Section 3.3, we discuss the state of the art of the formal methods as we use a formal approach to formalize the concepts and the relationships defined in our ontologies. The conclusion of this chapter is given in Section 3.4.

ONTOLOGY

A conceptualization is an abstract and simplified view of the world that we wish to represent [Gruber, 1993a]. It is the process of developing and clarifying concepts with words and examples to arrive at precise verbal definitions. A formally represented knowledge base includes objects, concepts, and other entities that are considered to exist in the area of interest and the relationships that hold them [START_REF] Genesereth | Logical foundations of artificial intelligence[END_REF]].

An ontology is an explicit specification of a conceptualization. It is a structural framework for the representation of knowledge about the world or a part of it. It mainly consists of concepts and the relationships between them and denotes a common understanding of an area of interest. This understanding can reduce or eliminate conceptual and terminological confusion to help solve problems that impede communication between people, organizations, and/or software systems. Thus an ontology can function as a unifying framework for different points of view and serve as a basis for communication between people with different needs. It also allows interoperability between systems obtained by translating different modelling methods, paradigms of languages and software tools, and the advantages for the engineering system. The benefits for the engineering system are re-usability, reliability and specification [START_REF] Uschold | Ontologies: Principles, methods and applications[END_REF].

The first time that the word ontology was mentioned in a discipline related to computer science is in a work on the foundations of data modelling [Mealy, 1967]. And then ontologies have been applied in a multitude of areas of IT. In the field of data and information modelling, ontology theories are used to solve database integration problems and provide a solid basis for the selection of modelling concepts [START_REF] Milton | An ontology of data modelling languages: a study using a common-sense realistic ontology[END_REF]] [Shanks et al., 2003] [Opdahl et al., 2001] [Fettke and Loos, 2003]. In engineering, ontology approaches are used to reduce disproportionate costs in software maintenance and enhance software reuse [Falbo et al., 2002a[START_REF] Falbo | An ontological approach to domain engineering[END_REF]. In the field of artificial intelligence, traditionally, systems knowledge was defined in a strictly functional manner, in order to integrate the steps that experts in the field generally use to solve a given problem. Authors of [Clancey, 1993] proposed that the main concern of knowledge engineering is the modelling of systems in the world, not replicating how people think. This is important for building the foundation for the ontology of artificial intelligence. The ontologies of this domain have been built for engineering and technical applications [Alberts, 1994] [Borst, 1999] [Varejão et al., 2000], business modelling [START_REF] Grüninger | Ontologies to support process integration in enterprise engineering[END_REF], chemistry [START_REF] López | Building a chemical ontology using methontology and the ontology design environment[END_REF], biology [START_REF] Consortium | The gene ontology (go) database and informatics resource[END_REF], materials ceramics [START_REF] Pisanelli | An ontological approach to evidence-based medicine and meta-analysis[END_REF] and the legal [START_REF] Gangemi | Some ontological tools to support legal regulatory compliance, with a case study[END_REF]] [Sagri et al., 2004].

In autonomous vehicle domain, some researchers have used ontologies for the conceptualization and characterization of driving environment. But there is little work in the context of the autonomous vehicle itself.

In [Gregoriades, 2007] Monte Carlo sampling technique is used to sample the most likely events that can occur from the ontology of accident scenarios. Because of the differences between autonomous driving and traditional driving cars, the types of accidents can be quite different. We must not only analyse existing accidents, but also prevent accidents that have never occurred or were unexpected.

In [START_REF] Hülsen | Traffic intersection situation description ontology for advanced driver assistance[END_REF], the authors use a description logic to describe the scenes. The first work provides a generic description of road intersections using the concepts Car, Crossing, RoadConnection and SignAtCrossing. They use description logic to reason about the relations between cars and describe how a traffic intersection situation is set up in the ontology and define its semantics. The results are presented for an intersection with 5 roads, 11 lanes and 6 cars driving towards the intersection. This model is limited to intersections, and both infrastructure and vehicle numbers are static. Generated test cases are not enough to test a system like TJC.

In [START_REF] Armand | Ontology-based context awareness for driving assistance systems[END_REF], an ontology of recognition for the driving assistance systems is presented. The authors define an ontology composed of concepts and their instances. This ontology includes contextual concepts and context parameters. It is able to process human-like reasoning on global road contexts. Another ontology is proposed by [START_REF] Pollard | An ontology-based model to determine the automation level of an automated vehicle for co-driving[END_REF] for situation assessment for automated ground vehicles. It includes the sensors/actuators state, environmental conditions and driver's state. However, as the concepts of both ontologies have not been sufficiently subdivided, they are not enough to describe test cases allowing to simulate and validate ADSs. Hummel et al. [Hummel et al., 2008a] propose an ontology to understand road infrastructure at intersections. The approach focuses on geometric details related to topological information at several levels. All the concepts of this ontology are introduced and organized in a hierarchical structure called taxonomy. This approach presents scene understanding frameworks based on description logic, which can identify unreasonable sensor data by checking consistency. However, road infrastructure at just the intersections is not enough to build test cases for testing the functions of ADSs.

To build a knowledge base for smart vehicles and implement different types of driving assistance systems, Zhao et al. [START_REF] Zhao | Core ontologies for safe autonomous driving[END_REF] propose three ontologies: map ontology, control ontology and car ontology. They focus on algorithms for rapid decision making for autonomous vehicle systems. They provide an ontology-based knowledge base and decision-making system that can make safe decisions about uncontrolled intersections and narrow roads. However, the authors did not consider the equipment of the road infrastructure in their map ontology, for example the traffic signs which are an important part for test cases construction. [START_REF] Morignot | An ontology-based approach to relax traffic regulation for autonomous vehicle assistance[END_REF] propose an ontology to relax traffic regulation in unusual but practical situations, in order to assist drivers. An example of unusual but practical situations considered is: "a truck stopping and unloading before you and your car's lane is delimited by a continuous line and a side-walk. After having waited for some amount of time, you might decide to cross the continuous line". Their ontology represents the vehicles, the infrastructure and the traffic regulation for the general road. It is based on the experience of the members of the lab with driving license, not based on a texts corpus. That may be useful for modelling the concepts involved in traffic regulation relaxation, but we need more rigorous ontologies for modelling the concepts involved in general situations.

Finaly, in [START_REF] Bagschik | Ontology based scene creation for the development of automated vehicles[END_REF], the authors propose, using ontology, to create scenarios for development of automated driving functions. They propose a process for an ontology based scene creation and a model for knowledge representation with 5 layers: road, traffic infrastructure, temporary manipulation of road level and traffic infrastructure level, objects and environment. A scene is created from first layer to fifth layer. This ontology has modelled Ger-man motorways with 284 classes, 762 logical axioms and 75 semantic web rules. A number of scenes could be automatically generated in natural language. However, the natural language is not a machine-understandable knowledge and the transformation of natural language based scenes to simulation data formats with such a huge ontology is a tremendous work.

Summarizing the existing research above, most of the ontologies proposed cover incomplete elements [Gregoriades, 2007] [Hülsen et al., 2011] [Armand et al., 2014] [Pollard et al., 2013] [Zhao et al., 2015] or only focus on particular situations [Hummel et al., 2008a] [Morignot andNashashibi, 2012], and some use a natural language instead of formal language to construct the ontologies [START_REF] Bagschik | Ontology based scene creation for the development of automated vehicles[END_REF]. In our methodology, we build ontologies for the highway infrastructure elements, the weather conditions and traffics. Moreover, we use the first order logic to describe the relationships between the different elements of our system.

FORMAL METHODS

Formal Methods are a particular kind of mathematically rigorous techniques and tools for the specification, design and verification of software and hardware systems. The specifications used in formal methods are well-formed statements in a mathematical logic. Each step follows from a rule of inference and hence can be checked by a mechanical process [START_REF] Alagar | Specification of Software Systems, Second Edition[END_REF]. These methods were originally developed for specifying and verifying the correct behaviour of software and hardware systems and have been applied in many system development fields, and many achievements have been made [START_REF] Almeida | An Overview of Formal Methods Tools and Techniques[END_REF].

There is a variety of formal methods for system modelling. These systems can be divided into two major categories: serial and concurrent. In this section we discuss the state of art of formal methods for the autonomous vehicles system modelling according to these two types of systems.

Serial system modelling techniques

In serial system, the elements are processed one at a time, each being completed before another begins. A serial system is usually considered as a function from the initial state to the termination state. It can be described by the relationship between its input and output. These systems can be modelled using techniques such as Z language [START_REF] Meyer | Méthodes de programmation[END_REF], The Vienna Development Method (VDM) [START_REF] Bjørner | [END_REF] and B method [Abrial, 1988].

The Z language [START_REF] Meyer | Méthodes de programmation[END_REF] is a specification language based on predicates and Zermelo Freaenkel set theory. It is used for describing and modelling computing systems. There are two languages in Z (the mathematical language and the schema language). Mathematical language is used to describe the various characteristics of the system: objects and their relationships. A schema language is a semi-graphical language used to construct, organize, describe, and encapsulate blocks of formal descriptions so that they can be reused. The program written in the Z language is used as an abstract design of computer software or hardware systems [Spivey, 1992].

The Vienna Development Method (VDM) [START_REF] Bjørner | [END_REF]] is a functional constructive specification technique that describes the function of each operation or function through first-order predicate logic and established abstract data types. The basic idea of VDM technology is to use abstract data types, mathematical concepts and symbols to specify the function of an operation or function, and the process of this specification is structured. This method is used for software development since it enables to briefly and clearly indicate the software system before the system is implemented [Jones, 1990].

The B method [Abrial, 1988] uses AMN (Abstract Machine Notation) to describe the requirements model, explain the interface, and carry out intermediate design and implementation. A complete development is a step-by-step implementation of the specification process. Stepby-step development can reduce the complexity of large-scale software development. A hierarchical approach can represent high-level implementations as low-level specifications. It makes it possible to formalize the system and its environment in an abstract way, then by successive refinements, to add the details to the model of the system. A formal proof activity makes it possible to verify the consistency of the abstract model and the conformity of each refinement with the superior model, thus proving the conformity of all concrete implementations with the abstract model.

B method has been used successfully for several industrial applications such as the development of embedded software for line 14 of the Paris metro (METEOR) which has been modelled, proven and generated from formal specifications B [START_REF] Boulanger | Validation and verification of METEOR safety software[END_REF].

Another formal method called Event-B [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF] has been developed for the use with an incremental style of modelling. Event-B is considered an evolution of B. The new feature of Event-B are the introduced events which correspond to the transition labels between the abstract invariants. It has a simpler notation, which is easier to learn and use. It comes with tool support in the form of the Rodin tool [START_REF] Butler | The rodin formal modelling tool 1[END_REF].

[[START_REF] Jarrar | Towards sophisticated air traffic control system using formal methods[END_REF] uses Event-B as a formal modelling and verification method to guarantee bugs absence and ensure the consistency of the system by means of invariant preservation and deadlock freedom for the air traffic control system.

In our knowledge, all these methods are mainly used for formal specification and software development. They have not been used in autonomous vehicles area.

Concurrent system modelling techniques

Concurrent systems are much more complicated than serial systems. Autonomous vehicle belongs to this category of systems. A concurrent system allows all the tasks to make progress to support more than one task [START_REF] Galvin | Operating system concepts 10th edition[END_REF]. It consists of a collection of processes communicating through shared data structures or objects [Παλαιoδ ήµoς, 2018]. There exist several types of modeling technique for concurrent systems, such as Markov processes, Petri Nets [Petri, 1962] and Process Algebra [START_REF] Bergstra | Handbook of process algebra[END_REF].

In our knowledge, these techniques have very few applications in autonomous vehicles domain. In the following, we discus these applications when they exist.

Markov processes

A Markov process is a stochastic process with the Markov property. The conditional probability distribution of future states of the process depends only on the present state, and not on any past states [START_REF] Kemeny | Markov Chains[END_REF]. That means the future and past states are independent for the present state of the system. However, Markov processes lack the notion of hierarchical system decomposition which can conquer the complexity of systems in the domain of functional system properties [START_REF] Brinksma | Process algebra and markov chains[END_REF].

In [START_REF] Althoff | Comparison of markov chain abstraction and monte carlo simulation for the safety assessment of autonomous cars[END_REF] the authors compare the Monte Carlo simulation with the Markov chains according to their performance in the probabilistic prediction of road traffic scenarios. The results show that Markov chains are preferred for the probabilistic occupancy of traffic participants which helps to plan the manoeuvre of an autonomous vehicle.

The Markov decision process (MDP) is an optimal decision process for stochastic dynamic systems. It is a model based on Markov process theory for sequential decision making when outcomes are uncertain [Puterman, 2014]. A partially observable Markov decision process (POMDP) is a generalization of MDP. It is an agent decision process which permits uncertainty regarding the state of a Markov process and allows state information acquisition [Monahan, 1982].

The POMDP framework is used to model a variety of autonomous vehicles sequential decision processes [START_REF] Brechtel | Probabilistic decision-making under uncertainty for autonomous driving using continuous pomdps[END_REF]] [Liu et al., 2015] [Widyotriatmo and Hong, 2008]. The authors in [START_REF] Brechtel | Probabilistic decision-making under uncertainty for autonomous driving using continuous pomdps[END_REF] present a generic approach for tactical decision-making under uncertainty in the context of driving by formulating the task of driving as a continuous POMDP that can be automatically optimized for different scenarios. POMDP is used in [START_REF] Liu | Situation-aware decision making for autonomous driving on urban road using online pomdp[END_REF] to model the situation-aware decision making problem for autonomous driving on urban road. In [START_REF] Widyotriatmo | Decision making framework for autonomous vehicle navigation[END_REF], the authors propose a decision making framework for autonomous vehicle to perform obstacle avoidance and operational task, which are achieved with respect to the nonholonomic constraint and considering the uncertainties of the autonomous vehicle. POMDP is adopted in this decision making framework to manage the safety and task related assignment. All these POMDP based studies are aimed at optimizing environmental perception and decision frameworks, rather than ensuring the safety by testing these frameworks.

In [START_REF] Raffaelli | Facing adas validation complexity with usage oriented testing[END_REF], test cases are generated using MaTeLo [MaTeLo, 2019], a Model Based Testing (MBT) tool, and an ad hoc random scan Gibbs sampler (RSGS) is used to cope with the combinatorial explosion of the number of scenes. It is an algorithm used to obtain a series of observation samples which are approximately equal to the multidimensional probability distribution. The following state is reached by sequentially sampling all the variables from their distribution when conditioned by the current values of all other variables and the data. However, Gibbs sampler cannot work on the mutually influential parameters of driving environment.

Petri Nets

Before the process algebra, the only part of concurrency theory that existed is the theory of Petri nets, conceived by Petri starting from his thesis in 1962 [Petri, 1962]. A Petri Net is a mathematical representation of a system. The basic idea is to describe state changes in a system with transitions. They are suitable for describing asynchronous, concurrent systems. The structure and dynamic behaviour of the modelled system can be analysed and used to evaluate the system finality to improve or change the system [START_REF] Petri | Petri net[END_REF].

A Petri Net provides a graphic representation with formal semantics of system behaviour, that is, a directed, bipartite graph where the two classes of vertices are called places and transitions. Places may contain tokens that may move to other places by firing actions. A token on a place means that the corresponding condition is fulfilled or that a resource is available [START_REF] Dill | The pathalyzer: A tool for analysis of signal transduction pathways[END_REF].

In [START_REF] Furda | Towards increased road safety: Real-time decision making for driverless city vehicles[END_REF] and [START_REF] Furda | Enabling safe autonomous driving in real-world city traffic using multiple criteria decision making[END_REF], the authors deal with the highlevel vehicle control tasks and address the topic of real-time decision making for autonomous vehicles. There is a large number of factors to be considered in the decision making unit for the selection of feasible driving manoeuvres. Petri nets are used to model this decision stage.

[[START_REF] Lee | Autonomous vehicle parking using hybrid artificial intelligent approach[END_REF]] introduced a complete parking mechanism for autonomous car-like vehicles, such as micro electric vehicles, quadricycle, E-trick, new energy vehicles, golf car, to solve the parallel parking problem. The Petri net is used to recognize suitable parking regions and plan alternative parking routes especially in global space. This method provides an effective parking path and strategy. It also extends the case of single parking space to the case of multiple parking space.

In order to compress the repetitive structure in the classical Petri nets and improve their modeling ability, advanced Petri nets have been developped. Among them, Coloured Petri nets (CPN) [Billington, 1989] are a backward compatible extension of the concept of Petri nets, which allow tokens to have a data value attached to them. This value is called token color which usually means having an object that can be identified. Thereby avoiding repeated modelling of the same structure net.

The time was introduced to Petri Nets and this led to two basic timed versions: Timed Petri Net (TdPN) [START_REF] Ramamoorthy | Performance evaluation of asynchronous concurrent systems using petri nets[END_REF] and Time Petri Net (TPN) [Merlin and Farber, 1976]. TdPN are derived form classical Petri nets by associating a delay with each transition of the net. TPNs are more general than TdPN as each transition is associated with a time interval instead of a delay like in TdPN. Thus a TdPN can be simulated by a TPN, but the inverse is not true. They are commonly used to evaluate the performance and reliability of complex systems.

Stochastic Petri Nets (SPNs) are a modelling formalism for the description of Discrete Event Dynamic Systems (DEDS) to evaluate their performance and reliability. The dynamic behaviour of complex models could be represented by means of continuous-time homogeneous Markov chains [START_REF] Kemeny | Finite continuous time markov chains[END_REF]. In SPNs, changes are not immediate, but they occur only after a random delay which is a random variable exponentially distributed. Therefore, the state space of the SPN will grow exponentially as the size of the system increases.

An extension of SPN named Generalized Stochastic Petri Nets (GSPNs) was presented in [START_REF] Marsan | A class of generalized stochastic petri nets for the performance evaluation of multiprocessor systems[END_REF] to reduce the state space explosion. GSPNs include two classes of transitions: exponentially distributed timed transitions and immediate transitions. The former are used to model the random delays associated with the execution of activities and the latter are devoted to the representation of logical actions that do not consume time [Balbo, 2007].

In our knowledge, CPN, TdPN, TPN, SPNs and GSPNs are extension methods of Petri Net that have not been applied in the autonomous vehicle context.

Process Algebras

All process algebras (PAs) have the same fundamental basis. They are based on actions that can construct processes. Moreover, special operators may be used to compose processes to create more complex behaviours. Operators follow the algebraic laws that can be used for formal reasoning. We consider process algebra as either classical or stochastic.

a) Classical process algebra

In the late seventies, Robin Milner and Tony Hoare, respectively, proposed the Calculus of Communicating Systems (CCS) [Milner, 1980] and Communicating Sequential Processes (CSP) [Hoare, 1985]. They created a precedent for studying communication concurrency systems using algebraic methods. Since then, this research direction has flourished. After some preliminary works by others, three main classical process algebra theories were developed [START_REF] Rooda | Process algebra[END_REF]. These are CCS, CSP that we mentioned and the Algebra of Communicating Processes (ACP) proposed by the authors in [START_REF] Bergstra | Process algebra for synchronous communication[END_REF].

Robin Milner begins his works on the process theory CCS in 1973. After years of continuous development, the first complete process algebra with a set of equations and a semantic model was published in the book [Milner, 1980]. The expressions of the language are interpreted as a labelled transition system. Given a set of action names, the set of CCS processes is defined by BNF (Backus Normal Form) grammar.

CSS can describe parallel composition, choice between actions and scope restriction for the evaluation of the qualitative correctness of properties of a system such as deadlock or livelock [Milner, 1980]. This language is much used for the formalization of Web Services [START_REF] Salaün | Describing and reasoning on web services using process algebra[END_REF]] [Cámara et al., 2006].

CSP was first described in a 1978 paper by Tony Hoare [Hoare, 1978], and developed by himself in 1984 [START_REF] Brookes | A theory of communicating sequential processes[END_REF] and 1985 [Hoare, 1985]. The theory of CSP itself is also still the subject of active research. CSP is a formal language for setting up and reasoning about processes that interact with their environments using this model of communication in concurrent systems [Roscoe, 1997]. The most fundamental object in CSP is therefore a communication event. These events are assumed to be drawn from a set which contains all possible communications for processes in the universe under consideration.

Both CCS and CSP are based on the notion of process. The main difference between them is that CSP has two forms of choice (internal/external or non-deterministic/deterministic). The distinction between internal and external choices allows CSP to have a semantics in terms of traces. CSP is well-suited to modelling and analysing systems that incorporate complex message exchanges. The programming language Occam [START_REF] May | Occam-an overview[END_REF] arises from the concepts in CSP, which also influenced the design of programming languages such as Limbo [START_REF] Dorward | Programming in limbo[END_REF] and Go [Meyerson, 2014].

Inspired by the contributions of Milner with the basic concepts of communication and parallelism as algebraic in nature, Bergstra and Klop present the basic process algebra ACP which is an axiomatic-algebraic framework for studying processes [START_REF] Bergstra | Process algebra for synchronous communication[END_REF]. This is the first time that the term process algebra is used. In ACP a process algebra is any mathematical structure, consisting of a set of atomic processes and a set of operators. ACP in many respects is similar to CCS. It emphasizes the algebraic aspect with an equational theory with a range of semantical models, and it is more easily amenable to formal analysis and mathematical proof verification.

Since the objective of classical process algebra is qualitative analysis rather than quantitative one, activities have no connection with time, thus only the functional characteristics of the concurrent system can be described, and they can only qualitatively analyse the system, not quantitatively. Therefore, quantitative analysis parameters, such as time and probability, are added to PAs, which have evolved into timed process algebras and probabilistic process algebras, respectively.

Timed process algebras like TCCS [START_REF] Moller | A temporal calculus of communicating systems[END_REF] and Timed CSP [START_REF] Reed | A timed model for communicating sequential processes[END_REF], allow each activity to be associated with an execution time to analyse the model of the real-time system. In [START_REF] Bergstra | Process algebra for hybrid systems[END_REF], a process algebra with continuous relative timing was proposed to deal with the behaviour of hybrid systems (the systems exhibit both discrete and continuous behaviours), such as the water-level monitor, the thermostat, the nuclear reactor, etc.

A probabilistic process algebra allows each activity to be associated with an implementation probability, eliminating the non-determinism of the selection operation in the process algebra. A process algebra with the probabilistic transition system was presented in [START_REF] Adão | A process algebra for reasoning about quantum security[END_REF] for specifying and reasoning about quantum security protocols. Probabilistic extensions of process algebras, such as Probabilistic Calculus of Communicating Systems (PCCS) [START_REF] Giacalone | Algebraic reasoning for probabilistic concurrent systems[END_REF], which are based on Milner's Synchronous Calculus of Communicating Systems (SCCS) [Milner, 1983], use a probabilistic choice operator to allow uncertainty to be quantified.

In our knowledge, these approaches have not been applied to the domain of autonomous vehicles. A process algebra based on basic operators of classical process algebras (CCS, CSP, ACP) is used in [START_REF] Varricchio | Sampling-based algorithms for optimal motion planning using process algebra specifications[END_REF] as a formal specification language to express complex tasks for autonomous electric vehicles in a mobility-on-demand scenario. The authors proposed an algorithm whose solution converges to the optimal continuous-time trajectory that satisfies the task specification.

b) Stochastic Process Algebra (SPA)

Timed process algebra and Probabilistic process algebra are the basis for proposing stochastic process algebra. SPA was first proposed as a tool for analysing the performance and reliability of parallel and distributed systems in 1990 [Herzog, 1990]. Based on PA, SPAs add the continuous-time random variables to represent time instants as well as durations of activities. The action and a random delay are considered as a single entity in SPA like Timed Processes and Performability evaluation (TIPP) [START_REF] Gotz | TIPP -a language for timed processes and performance evaluation[END_REF], Performance Evaluation Process Algebra (PEPA) [Hillston, 1994] and Extended Markovian Process Algebra (EMPA) [START_REF] Bernardo | A distributed semantics for EMPA based on stochastic contextual nets[END_REF], while they are considered as separate entities in the timed process algebras. The syntaxes of TIPP, PEPA and EMPA are similar. The only difference is the representation of the duration of every action. TIPP uses general distribution, while PEPA uses only exponentially distribution. EMPA is inspired from PEPA and TIPP as it includes exponentially timed actions and immediate actions. SPAs are mainly used for modelling the performance of parallel and distributed systems, analysing quantitatively and qualitatively the dynamic behaviour of resource-sharing systems [START_REF] Clark | Stochastic Process Algebras[END_REF].

Performance Evaluation Process Algebra (PEPA) is a stochastic process algebra designed for modelling computer and communication systems introduced by Jane Hillston in the 1990s [Hillston, 1994]. PEPA is a simple language with a small set of operators. It is easy to reason about the language and provides a great deal of flexibility to the modeller [Hillston, 1994].

A PEPA model is constructed by identifying components performing activities which are abstracted into a continuous-time Markov process. The generation of this underlying Markov process is based on the derivation graph of the model. The derivation graph is a directed multi-graph whose set of nodes consists of the reachable states of the model and whose arcs represent the possible transitions between them. The edges of the corresponding Markov Chain are labelled only by the rates of the activities which become the corresponding entries in the infinitesimal generator matrix.

With the exception of PEPA, the other SPAs have not been applied to the domain of autonomouos vehicles. Indeed, in [START_REF] Cerone | Stochastic modelling and analysis of driver behaviour[END_REF] the authors use the Markovian process algebra PEPA to describe quantitative aspects of driver behaviour to understand the relation between driver behaviour and transport systems. A three-way junction consisting of a two-way main road with a diverging one-way road is used as an example to illustrate their approach. They are interested in the probability of possible collisions, the average waiting time in a queue from arrival at the junction to finally passing the junction and the average number of cars waiting in a queue. They have modelled the effects of driver's experience in terms of state transitions associated with a finite number of pre-defined probability factors. The results show a trade-off between junction performance (reflected in number of cars in a queue and waiting time) and safety (reflected in probability of possible collision) under certain conditions on driver behaviour.

Conclusion

In this chapter, we discussed the state of art of the autonomous vehicles test cases generation methods. We focused on describing the state of the art of the ontologies and the formal methods used in this domain. As we have seen, there are few works dedicated to formal model-based approaches that allow generating test cases. Some formal methods are suitable for modeling serial systems [Meyer andBaudoin, 1978] [Bjørner and[START_REF] Bjørner | [END_REF] [Abrial, 1988] [Abrial et al., 2010]. Since the autonomous vehicle is a concurrent system, these methods are not applicable. Markov processes, Petri Nets [Petri, 1962] and Process Algebra [START_REF] Bergstra | Handbook of process algebra[END_REF] and other formal methods suitable for concurrent systems have very few applications in autonomous vehicles domain. Compared with Markov processes and Petri Nets, Process Algebra can model more complex systems in a simpler way. PEPA can identify all components performing activities in our system with a small set of operators. These components and their interactions are abstracted into a continuous-time Markov process. We can use existing tools (Eclipse PEPA [START_REF] Hillston | Pepa tools[END_REF]) to generate this underlying Markov process.

Chapitre 4

Test Cases Generation Methodology

Introduction

In recent decades, activities in the field of autonomous vehicle have produced various development tools and methodologies to manage increasing complexity and testing requirements [START_REF] Tian | Deeptest: Automated testing of deep-neural-network-driven autonomous cars[END_REF]] [Bhat et al., 2018] [Schätz et al., 2015] [Wongpiromsarn et al., 2011] [[START_REF] Keviczky | Predictive control approach to autonomous vehicle steering[END_REF]. Each of them has success criteria for analysis and evaluation. In order to guarantee the functionality and safety of the Automated Driving Systems (ADSs), it is necessary to validate the decisions of the algorithms for all the situations that will be met by the vehicle.

However, the large number of the highway infrastructure elements combined to the weather conditions with their own properties may lead to the combinatorial explosion of the number of the situations met by the vehicle, and consequently the scenes constituting the test cases. Therefore, generating all possible test cases becomes close to impossible. Therefore, we focuses on the most representative situations for testing and validating ADSs.

These situations are described and generated as different test cases, which are applied to identify the functions, and the information needed to perform these functions and the decisions of ADSs. Test cases are critical to assess the safety of ADS in a variety of operating environments and road conditions. They should be firstly specified to simulate and test the autonomous vehicle or its modules.

In this chapter, we propose a test case definition in Section 4.2. In Section 4.3, we present a running example "Insertion of vehicle by the right entrance lane of a highway". In order to generate automatically the test cases for the autonomous vehicle, we propose a genaration methodology with a three layers hierarchy in Section 4.4. Both the test case definition and the methodology are illustrated through the running example, which will also be used in the following chapters. Finally, we conclude this chapter in Section 4.5.

Test Case

In [START_REF] Ulbrich | Defining and substantiating the terms scene, situation, and scenario for automated driving[END_REF], the authors present a definition of interfaces for the design and test of functional modules of an automated vehicle. They define a use case in terms of scenarios and scenes (Figure 4-1). A scene describes a snapshot of the environment including the scenery and the dynamic elements, as well as all actors' and observers' self-representations, and the relationships between those entities. A scenario describes the temporal development between several scenes in a sequence of scenes. It contains scenes, actions & events and goals & values. A use-case entails a description of the functional range and the desired behaviour, the specification of system boundaries, and the definition of one or several usage scenarios. FIGURE 4-1 -Use-Case according to [START_REF] Ulbrich | Defining and substantiating the terms scene, situation, and scenario for automated driving[END_REF] We also define the test case in terms of scenario and scene [START_REF] Chen | An ontology-based approach to generate the advanced driver assistance use cases of highway traffic[END_REF] (Figure 4-2). In our definition, however, a scene describes a snapshot of the environment including static entities and mobile entities, as well as the relationships between these entities. This definition allows us to avoid ambiguity of the actors' and observers' self-representations. In [START_REF] Ulbrich | Defining and substantiating the terms scene, situation, and scenario for automated driving[END_REF], the authors do not explain and do not provide what are the functional range, the desired behaviour and the specification of the system boundaries. Therefore, we define a test case as follows:

A test case describes a specific driving environment for the autonomous vehicle. It consists A scenario describes the temporal development between several scenes in a sequence of scenes. It is associated with the actions of all the elements in the sequence of scenes. We distinguish between two types of actions, those made by the autonomous vehicle and those made by the environment elements, which are considered as events from the point of view of the autonomous vehicle. The changes in infrastructure (ex: appearance of an entrance lane) and in the whether (ex: the start of the rain) are also considered to be events.

A scene is a snapshot of the vehicle environment including the static and the mobile elements, and the relationships between those elements. Static elements refer to all geospatially fixed elements which include the infrastructure of the highway and the weather conditions. Mobile elements are elements that move or have the ability to move. They include the autonomous vehicle and the other traffics. Some of the static elements, such as the lighting and the weather, can change state but not their position. We call them dynamic elements, in order to distinguish them from the mobile ones.

Figure 4-3 provides an illustration of a scenario. In this graph, the vertices are the scenes and the edges represent the events or the actions, which occurrence leads to the transition from one scene to another. Each scenario begins with an initial scene and covers a certain period of time.

An example of scenario is illustrated in Figure 4-4. This scenario consists of four scenes. There are three lanes in the initial scene Scene 1. It has a red car on the left lane, and a blue car on the center lane. The red car makes the action goRightLane which leads to Scene 2, where the red car is in front of the blue one. Then it does the action decelerate which leads to Scene 3. Finally, the red car makes again the action goRightLane which leads to Scene 4 which is the last scene of this scenario. The red car is on the right lane.

A Running Example

Before we explain our test cases generation methodology, we first present a running example of the situation "Insertion of vehicle by the right entrance lane of a highway" which will be used in the following.

It is daylight and the temperature is c • C. The humidity is h % and the pressure is p mPa. The wind speed is v w km/h and its direction is d w

• (from 0 to 360 • , 180 • refers to a southerly wind).

The highway is separated into two carriageways by a median. In the scenography of this running example (Figure 4-5), a portion of one carriageway is selected. The left hard shoulder is located on the immediate outside of the median. The edge of the left hard shoulder is marked by two single solid white lines. This carriageway has three through lanes and an entrance lane. There is a chevrons marking placed between the outside lane and the entrance lane. The entrance lane is composed of an acceleration section and a taper. The right soft shoulder is located on the immediate outside of the right hard shoulder. In the beginning of the acceleration In the initial scene (Figure 8-2) of this example, the autonomous vehicle namely Ego (blue) rolls on the right lane of a separated lane road. The speed of Ego is given by v e km/h on the portion which speed is limited to 130 km/h. The Traffic Jam Chauffeur (TJC) System is active and regulates the speed of Ego with respect to a target vehicle VA (green) that is located d 1 m in front of Ego. A third vehicle V B (red) arrives on the entrance lane and wants to enter the highway. VA and V B roll at a speed equal to v 1 km/h and v 2 km/h, respectively.

Here we use the natural language to describe the situation of the running example as it is the traditional way to describe test cases. In order to have a more formal description of it, we propose in the following a model-based test case generation methodology.

Test Case Generation Methodology

Few approaches have been developped for scenarios/test cases generation. Some of these approaches only focus on collision [START_REF] Lesemann | A test programme for active vehicle safety -detailed discussion of the evalue testing protocols for longitudinal and stability functionality[END_REF]] [Tuncali et al., 2016] [Gregoriades, 2007]. Some others are limited to special situations or do not take into account several enviroment elements, which are not enough to test ADSs [START_REF] Hummel | Scene understanding of urban road intersections with description logic[END_REF]] [Hülsen et al., 2011] [Armand et al., 2014] [Pollard et al., 2013], while some are not formal [START_REF] Thorn | A framework for automated driving system testable cases and scenarios[END_REF]] [Schuldt et al., 2018] [Bagschik et al., 2017].

In order to generate representative test cases with high coverage of driving environment, we should consider all the elements in the driving environment and the interactions between these elements. Moreover, in order to have reliable test cases, a formal method to generate these test cases has to be used. Therefore, in the following, we define a methodology (Figure 4567) which consists of three layers: basic layer, interaction layer and generation layer.

The basic layer of the methodology includes the static and the mobile elements in the driving environment. This allows covering important infrastructure elements and vehicles. The actions are those made by the autonomous vehicle and the events are those made by the environment elements, which are considered as events from the point of view of the autonomous vehicle. Our method not only models the movement of vehicles, but also the appearance and disappearance of infrastructure while autonomous vehicle moves forward. The values of these elements are the values of the properties of their corresponding ontology concepts, which determine their intrinsic characteristics. The interaction layer describes the interaction relationships, between, on the one hand the static entities, and on the other hand the mobile ones. Moreover this layer describes the relationships between the static and the mobile entities. These interactions are expressed using the first order logic, which allows us to express the relationships between the different elements in our system in a simple way. Based on the concepts used in the basic layer and the formal relationships defined in the interaction layer, the generation layer build first the initial scenes, then the scenarios and the test cases from the initial. PEPA is powerful enough to model all the behaviors of the system.

More details are given in the following subsections and illustrated using the running example.

Basic Layer

We consider all static and mobile elements constituting the highway infrastructure, the weather and the vehicle. All these elements are represented using three ontologies (Highway, Weather, Vehicle) as a structural framework, which consists of a set of concepts with their definitions and relationships.

Thus, the basic layer of the methodology includes the static concepts and the mobile ones. The static concepts are those defined for the highway infrastructure and the weather while the mobile concepts are those defined for the autonomous vehicle and the other traffics. Some of the static concepts, such as the lights, can change state but not their position. They are the dynamic concepts.

In the running example, the static elements are: daylight, temperature, humidity, pressure, Each static or mobile element has a corresponding concept in one of the ontologies (see Chapter 5). Each concept is defined in terms of entity, properties and sub-entities. In the basic layer (Figure 4567), the values of Infrastructure, Weather, Ego-Car and Other actors are the values of the properties of these concepts. For example, SolidLine is the concept corresponding to static element solid line and it has the property Color. The value of this property in the running example is white.

The choice of the values depends on the goal of each test case. For example, if the goal of a test case is to test the impact of temporary road markings on the behaviour of the autonomous vehicle, the value of the property Color of concept SolidLine should be yellow. The values of the concepts properties allow us to determine the relationships between the corresponding entities in the upper layer of the methodology, that is the interaction layer.

In Figure 4-7, the actions of Ego-Car are run, accelerate and decelerate. Examples of the events of Other actors are: run, accelerate, decelerate, go to left lane and go to right lane. The dynamic elements can also produce events when they change their state. In the running example, the occurrence of the entrance lane is regarded as an event.

In addition to the elements mentioned in the running example, we also consider other elements that may appear on the highway. The highway infrastructure consists of the physical components of the highway system providing facilities essential to allow the vehicle driving on the highway. We have built a highway ontology with twenty-five (25 The weather describes the state of the atmosphere at a particular place and time. Some phenomena influence the visibility of the captors on the autonomous vehicle. The visibility of this one is reflected by the distance at which an infrastructure element or a vehicle can be clearly discerned. We have built a weather ontology which consists of twelve (12) concepts.

Vehicle ontology describes the performance of a vehicle with two main sub-entities: Light and Action. Light refers to the lights on the vehicle to illuminate the road when driving at night, or to signal other road users while Action refers to the control actions that could be made by the pilot. We have built a vehicle ontology which consist of fifteen (15) concepts.

All the concepts of the three ontologies are considered in the basic layer, and are presented in Chapter 5.

Interaction layer

The interaction layer describes the interaction relationships, between, on the one hand the static entities, and on the other hand the mobile ones. Moreover this layer describes the relationships between the static and the mobile entities.

The static concepts and the mobile concepts, which are used in the basic layer, provide the properties to build the first-order logic equations representing the interaction relationships. In the running example, we have mentioned the static elements marking and sign which have been defined in the highway ontology as concepts Marking and Sign, respectively, in the basic layer. And we have also defined a concept Symbol which has the property Type from where we learn that marking and sign are two (2) choices of values of this property. Based on the entities of their corresponding concepts and their properties values, we have defined the set SymbolSet which includes sets MarkingSet and SignSet. The former is the set of all possible markings and the latter is the set of all possible signs on the highway (see Chapter Cha:relations). Thus, we can sum up using the following equation:

∀x ∈ (MarkingSet ∨ SignSet), isSymbol(x)
where isSymbol is a defined relationship which states that any element x in set MarkingSet or SignSet is of type Symbol. FIGURE 4-8 -Relationships (solid lines) and effects (dashed lines).

We consider the traffic regulation as rules to define the features and significance of highway infrastructure, and regulate the behaviour of the vehicles. Moreover, as the weather phenomena can have an effect on the highway, the vehicle and on itself (Figure 4-8), these effects are also written as rules. All the definitions of the relationships and the rules, which are considered in the interaction layer, are provided in Chapter 6 using first order logic.

Generation layer

The task of the generation layer is to build test cases. The generated scenarios are based on the concepts used in the basic layer and the formal relationships defined in the interaction layer.

Each test case consists of a scenario and the properties values of the concept corresponding to each element in the scenario. We have defined the scenario as a sequence of scenes, assailed with goals, values and actions of the autonomous vehicle, values and events from the other actors, and values of the static elements. The change of states of the dynamic elements also make events to autonomous vehicle with the change of the values of their properties. These actions and events make a scene develop to another scene. With the same initial scene, it is evident that different actions or events lead to different scenes, and make different scenarios.

Let's consider again the running example. We consider two of several possibilities: V B inserts before or after Ego.

In the first case (Figure 4 In the second case, if Ego makes the decision to accelerate, obviously this action will lead to another scene and influence the whole scenario as showed in Figure 4-10. V B turns on the left direction lights and begins to insert after Ego. VA remains the target vehicle and Ego still follows it.

These above scenarios can be regarded as test cases when we use them with the values of the concepts' properties to test the functions of TJC system which is active and regulates the speed of Ego.

An autonomous vehicle is a safety-critical system for which all behaviours must be probabilistically predictable. Therefore, the generation of test cases requires the use of a semantically explicit formal language to improve their reliability and robustness. In this layer, we use the process algebra PEPA as the formal modelling technique of the test cases.

A PEPA model is constructed by identifying components performing activities. The compo-nents are the mobile and dynamic entities of the ontologies in the basic layer, and the activities are the actions and the events performed by these entities with their occurrence rates. The PEPA model is described in Chapter 7.

Conclusion

In this chapter, we defined a test case as a scenario describing a specific situation with the values of properties for each element in the scenario. We have also introduced our test cases generation methodology with a running example.

In the next chapter, we present the three ontologies we have built for the conceptualization and characterization of test case in the basic layer. The relationships between the concepts of the ontologies used in the interaction layer are presented in Chapter 6. Finally, for the generation layer, we use PEPA for modelling the driving scenes and scenarios in Chapter 7.

51

Chapitre 5

Scene Conceptualization and Characterization

Introduction

Engineers and researchers with different backgrounds and different needs use different terminologies in the autonomous vehicles industry. Moreover, some words used in the same terminology are ambiguous, some are redundant and thus have the same meaning, while a same word may have different meanings. This makes communication between project partners lack a common understanding, which leads to difficulties for cooperation between them and limits the potential for re-use and sharing their works. This problem also bothers the partners of the SVA project [START_REF] Project | Sva -simulation pour la sécurité du véhicule autonome[END_REF].

Because ontologies allow explicit formal specifications of the terms in a domain, in order to address the above issue, we consider building ontologies for the context of the highway to eliminate, or at least reduce conceptual and terminological confusion in the SVA project.

Sharing the common understanding is an important reason to develop ontologies. An ontology is a common understanding of an area of interest which consists mainly of a set of concepts and relationships between them [Uschold and Gruninger, 1996a]. It defines a common vocabulary for all stakeholders who need to share information in the autonomous vehicle field. It can bring together different partners and increase productivity.

Moreover, ontologies allow the reuse of knowledge not only in autonomous vehicle industry but also in other domain. For example, the ontologies built for the highway context can be used as a basis for all other types of roads. The terms of infrastructures must hold in some contexts such as road traffic, road maintenance and urban planning. When an infrastructure ontology is developed, it can be simply reused for other contexts or domains.

An ontology is an explicit specification of a conceptualization which can be realized by one or several ontologies [START_REF] Gruber | A translation approach to portable ontology specifications[END_REF]. For the conceptualization and characterization of the test cases, we need to have a common understanding of the elements involved in a scene, which is the basic element of a test case. As a scene is a snapshot of the vehicle environment including the static and the mobile elements, and the relationships among those elements, we construct three ontologies to build a semantic knowledge base of the traffic scenarios. These ontologies represent the knowledge of the road infrastructure, the weather environment and the driving control concepts of the autonomous vehicles. We conceptualize each element as an entity which is characterized by a suitable definition, a set of properties and a set of sub-entities.

Definitions are taken from dictionaries or official documents to better describe and explain the implication of the concepts. Moreover, the properties defined for each concept allow us to determine the intrinsic characteristics.

In this chapter, we introduce the ontologies we have built for the autonomous vehicle and its driving environment. A highway ontology which includes the road infrastructure is presented in Section 5.2. A weather ontology which represents visibility-related elements is presented in Section 5.3. Finally, a vehicle ontology which includes the vehicle devices and its driving control actions is presented in Section 5.4. The conclusion of this chapter is given in Section 6.4.

Highway ontology

The highway infrastructure consists of the physical components of the highway system providing facilities essential to allow the vehicle driving on the highway. It consists of all the fixed installations that have to be developed to allow the circulation of vehicles. We have built the highway ontology based on the French official documents of road development [Ministère de l 'écologie, 1988] [Ministère de l'équipement, 2000]. Figure 5-1 summarizes all the concepts defined for the highway ontology.

The highway ontology consists of three main parts: the long profile of the highway (Roadway), which consists of Carriageway, Shoulder and Median, and is used to isolate the vehicles in the opposite direction to avoid scratch, the special zones of RoadPart including Toll, Tunnle, Bridge and RoadWork, and Symbol on highway. The twenty-five (25) concepts of this ontology are defined in terms of entities, sub-entities and properties which include at least the ID. For example, the concept EntranceLane is refereed to by entity entrance_lane, and is defined as "A lane which allows vehicles wishing to access the highway to accelerate to integrate into traffic flow". It has the properties ID, Alignment(Horizontal&Vertical), Length,Width and SpeedLimit. It consists of the sub-entities Acceleration Section and Taper (Table 5.1). All the concepts of this ontology are described in the following sub-sections.

Highway concept

Entity: highway Definition: highway is an entity that represents a terrestrial infrastructure with separate carriageways, each comprising at least two lanes per direction in the current section to support the circulation of wheeled vehicles.

The Highway is a concept characterized by the following properties:

• Geometry: this is the shape of the highway. We consider three types of form:

-Line: straight highway;

-Spiral: helical highway; -Arc: curved highway.

• Topography: The topographic slope is the tangent of the inclination between two points on the highway. We consider two types of slopes:

-Slope: transverse slope; -Ramp: longitudinal slope.

• Length: this is the distance between the start and the end of a segment of the highway.

• Width: this is the distance between the two edges of the highway.

• Maximum speed: this is the maximum speed allowed on a highway in France. It generally depends on the location of the highway and the traffic conditions.

-The location of the highway -Outside built-up areas, the vehicle speed is limited to 130 km/h on the highways; -In built-up areas, the vehicle speed is limited to 90 km/h on urban highways.

-Traffic conditions: these maximum speeds are lowered to:

-110 km/h on sections of highways where the normal limit is 130 km/h in the event of rain; -100 km/h on sections of highways where this limit is lower in the event of rain; -50 km/h on all highway networks in the event of visibility of less than 50 meters; -90 km/h on highways for vehicles with a total permissible laden weight greater than 3.5 tonnes or combinations of vehicles with a total permissible gross vehicle weight greater than 3.5 tonnes, with the exception of the public transport vehicles.

The highway is an entity that includes the following sub-entity:

• Road Part (Fr: Segment) (see Sub-section 5.2.2)

RoadPart concept

Entity: road_part Definition: road_part is an entity that represents a specific part of highway, considered separately from the rest.

The RoadPart concept is characterized by the same properties as the concept Highway (5.2.1) and a private property:

• Type: this is the type of the road part.

-Toll (see Sub-section 5.2.3);

-Road Work (see Sub-section 5.2.4);

-Tunnel (see Sub-section 5.2.5);

-Bridge (see Sub-section 5.2.6).

Road_part is an entity that includes the following sub-entity:

• Roadway (Fr: Chaussée) (see Sub-section 5.2.7).

Toll concept

Entity: toll Definition: toll is an entity that represents a segment of the highway for payment. It mainly applies to the highway network of intercity links.

The Toll concept is characterized by the following properties:

• Number: this is the number of lanes in the toll station.

• Geometry: this is the shape of the lane.

• Length: this is the distance between the start and the end of a segment of the lane.

• Width: this is the distance between the two edges of the lane.

• Maximum speed: this is the maximum speed authorized on a toll lane in France.

RoadWork concept

Entity: road_work Definition: road_work is an entity that indicates construction, maintenance or improvement works on the road on one or more lanes and up to a distance of 3 m from the outside of these lanes, and this over a height of 5.5 m.

The RoadWork concept is characterized by the following properties:

• Length: this is the distance between the start and the end of a segment of the highway on which there is work.

• Width: this is the distance between the two edges of the work area on a road.

Tunnel concept

Entity: tunnel Definition: tunnel is an entity that represents an underground gallery used to allow passage to a communication route.

The Tunnel concept is characterized by the following properties:

• Geometry: this is the shape of the tunnel. In general, it follows the same type of shape as the highway of which it is a part.

• Length: this is the distance between the start and the end of the tunnel.

• Width: this is the distance between the two edges of the tunnel. In general, it is identical to the highway width of which it is a part.

• Maximum speed: this is the maximum speed allowed in a tunnel.

Bridge concept

Entity: bridge Definition: bridge is an entity that represents a construction making it possible to cross a depression or an obstacle by passing over this separation.

The Bridge concept is characterized by the following properties:

• Geometry: this is the shape of the bridge. In general, it follows the same type of shape as the highway of which it is a part.

• Length: this is the distance between the start and the end of the bridge.

• Width: this is the distance between the two edges of the highway.

• Maximum speed: this is the maximum speed allowed under the bridge.

• Material: this is the material from which a bridge is made. We consider three types of material:

-Steel; -Brick; -Wood.

Roadway concept

Entity: roadway Definition: roadway is an entity that represents a surface area of the highway separated by the central reservation used for vehicle traffic.

The Roadway concept is characterized by the same properties as the concept Highway (5.2.1)

The roadway is an entity that includes the following sub-entities (Figure 5-2):

• Carriageway (Fr: voies de circulation) (see Sub-section 5.2.8);

• Shoulder (Fr: Accotement) (see Sub-section 5.2.14); • Median (Fr: Terre-plein central) (see Sub-section 5.2.17).

Carriageway concept

Entity: carriageway Definition: carriageway is an entity that represents the paved part of it for moving traffic.

The Carriageway concept is characterized by the following properties:

• Geometry: this is the shape of the road. In general, it follows the same type of shape as the highway of which it is a part.

• Length: this is the distance between the start and the end of a segment of the carriageway. In general, it has the same length as the highway of which it is a part.

• Width: this is the distance between the two edges of the road.

• Maximum speed: this is the maximum speed allowed on a carriageway in France. It follows the same speed limit rule as on highways in France.

• Number: this is the number of lanes on a road. Each highway carriageway in France has 2 to 4 lanes.

The carriageway is an entity that includes the following sub-entities:

• Through Lane (Fr: Voie principale) (see Sub-section 5.2.9);

• Auxiliary Lane (Fr: Voie auxiliaire) (see Sub-section 5.2.10).

ThroughLane concept

Entity: through_lane Definition: through_lane is an entity that represents a lane for the movement of the vehicles travelling from one destination to another through the traffic. It is a subdivision of the carriageway on which a single vehicle can travel in width.

FIGURE 5-3 -Types of lanes in highway.

The T hroughLane concept is characterized by the following properties:

• Geometry: this is the shape of the lane. In general, it follows the same type of shape as the carriageway of which it is a part.

• Length: this is the distance between the start and the end of a segment of the lane. In general, it has the same length as the carriageway of which it is a part.

• Width: this is the distance between the two edges of the lane. It is 3.50 m on the highway.

• Maximum speed: this is the maximum speed allowed on a lane in France. It follows the same speed limit rule as on highways in France.

• Type: this is the type of the through lane (Figure 5-3).

-Lane 1 (Fr: Voie 1): in relation with the direction of traffic, the rightmost lane of those assigned to the flow of traffic.

-Lane 2 (Fr: Voie 2): immediately to the left of Lane 1 and is reserved for traffic moving in the same direction. This lane is nearest the median if the carriageway has two lanes of traffic in the direction.

-Lane 3 (Fr: Voie 3): immediately to the left of Lane 2 and is reserved for traffic moving in the same direction. This lane is nearest the median if the carriageway has three lanes of traffic in the direction.

-Lane 4 (Fr: Voie 4): immediately to the left of Lane 3 and is reserved for traffic moving in the same direction. This lane is nearest the median if the carriageway has four lanes of traffic in the direction.

AuxiliaryLane concept

Entity: auxiliary_lane Definition: auxiliary_lane is an entity that represents a lane used to separate entering, exi-ting or turning traffic from the through traffic.

The AuxiliaryLane concept is characterized by the following properties:

• Geometry: this is the shape of the lane. In general, it follows the same type of shape as the carriageway of which it is a part.

• Length: this is the distance between the start and the end of a segment of the lane. In general, it has the same length as the carriageway of which it is a part.

• Width: this is the distance between the two edges of the lane. It is 3.50 m on the highway.

• Maximum speed: this is the maximum speed allowed on a lane in France. It follows the same speed limit rule as on highways in France.

• Type: this is the type of the auxiliary lane.

-Entrance Lane (Fr: Voie d'insertion) (see Sub-section 5.2.11); -Exit Lane (Fr: Voie de sortie) (see Sub-section 5.2.12); -Weave Lane (Fr: Voie d'entrecroisement) (see Sub-section 5.2.13).

EntranceLane concept

Entity: entrance_lane Definition: entrance_lane is an entity that represents a speed change lane whose role is to allow vehicles accessing a highway to accelerate to integrate into traffic flow.

The EntranceLane concept is characterized by the same properties as T hroughLane concept (see Sub-section 5.2.9). The entrance lane is an entity that includes the two following sections (Figure 5-4):

-Acceleration Section (Fr: Section d'accélération): a section for the acceleration of the vehicle.

-Taper Section (Fr: Biseau): a location between T hroughLane and AccelerationSection where a driver must adjust its travel path.

ExitLane concept

Entity: exit_lane Definition: exit_lane is an entity that represents a speed change lane, the role of which is to allow a vehicle wishing to leave the highway to slow down at the speed imposed by the turn encountered at the exit of the fast-flowing traffic current.

The ExitLane concept is characterized by the same properties as T hroughLane concept (See Sub-section 5.2.9). The exit lane is an entity that includes the two following sections (Figure 5-5):

-Taper Section (Fr: Biseau): a location between T hroughLane and DecelerationSection where a driver must adjust its travel path. -Deceleration Section (Fr: Section de décélération): a section for the deceleration of vehicle.

WeaveLane concept

Entity: weave_lane Definition: weave_lane is an entity that represents an additional lateral lane of a carriageway, connecting a successive and close entry and exit, intended to facilitate the intersection of traffic currents which are inserted and dislocated concomitantly.

The WeaveLane concept is characterized by the same properties as T hroughLane concept (See Sub-section 5.2.9). The weave lane is an entity that includes the two following sections (Figure 5-6):

-Acceleration Section (Fr: Section d'accélération): a section for the acceleration of the vehicle. -Deceleration Section (Fr: Section de décélération): a section for the deceleration of the vehicle.

Shoulder concept

Entity: shoulder Definition: shoulder is an entity that represents an area extending from the limit of the carriageway (in the geometric sense) to the limit of the highway.

The Shoulder concept is characterized by the following properties:

• Geometry: this is the shape of the lane. In general, it follows the same type of shape as the carriageway of which it is a part.

• Length: this is the distance between the start and the end of a segment of the lane. In general, it has the same length as the carriageway of which it is a part.

• Width: this is the distance between the two edges of the lane. It is 3.50 m on the highway.

The shoulder is an entity that includes the following sub-entities:

• Paved Shoulder (Fr: Bande d'arrêt d'urgence) (see Sub-section 5.2.15);

• Unpaved Shoulder (Fr: Berme) (see Sub-section 5.2.16) .

PavedShoulder

Entity: paved_shoulder -Red: this color is used for the red and white checker-board materializing the start of the distress roads. -Yellow: this color is used for temporary marking.

• Width: it is defined in relation with a different unit of measurement u depending on the type of the road. On highways u = 7.5cm

• Type: this is the type of the longitudinal marking.

-Solid line: a line prohibiting crossing or overlapping. It means that no driver is allowed to cross it. In addition, it is prohibited to drive on the left of a solid line, when the latter separates the two directions of traffic. -Dashed line: a line delimiting the lanes in order to guide traffic.

SpecificMarking concept

Entity: specific_marking Definition: specific_marking is an entity that designates a special marking which gives information or a prescription.

The Speci f icMarking concept is characterized by the following properties:

• Color: this is the marking color with its meaning -White: this color is used for normal road markings.

-Red: this color is used for the red and white checkerboard materializing the start of the distress routes. -Yellow: this color is used for temporary marking.

• Type: this is the type of the specific marking.

-Arrow: indicates the direction to follow. It may announce a continuous line or the elimination of a lane. -Chevrons: a set of white lines or hatching lines on which vehicles must not drive, park or stop.

Sign concept

Entity: sign Definition: sign is an entity that represents a conventional signal vertically located on the road and intended to ensure the safety of road users or informing them of the dangers.

The Sign concept is characterized by the following properties:

• Shape: a panel of sign can have the shape of a triangle, square, round, rhombus or octagonal.

• Type: this is the type of the sign.

-Type A -Danger signs; -Type AB -Intersection and priority signs; -Type B -Prescription signs subdivided into: -prohibition signs; -obligation signs; -end of prescription signs; -Type C -Signs useful for driving vehicles; -Type CE -Signs indicating services that may be useful to road users; -Types D, Dp and Dv -Tracking signs; -Type Dc -Local information signs; -Type E -Signs and identification devices for roads; -Type EB -Agglomeration start and end signs; -Type G -Position crossing signs; -Type H -Signs of cultural and tourist interest; -Type SR -Road safety information panels; -Types AK, K, KC and KD -Temporary traffic signs.

Weather ontology

The weather describes all the physical conditions of the atmosphere at a precise moment and at a specific point. It includes atmospheric pressure, temperature, humidity and wind. Weather phenomena such as rain and fog can occur at different time and space scales and are phenomena that can impact the autonomous vehicle behaviours. In general, the weather refers to all the parameters that influence the transport traffic.

We have defined twelve (12) concepts for the weather ontology (see Figure 567). Some phenomena influence the visibility of the captors on the autonomous vehicle. These concepts are: Daylight, Precipitation, Fog and Haze. As the properties of the concept Daylight presented in Table 5.2, the visibility of the autonomous vehicle is reflected by the distance at which an infrastructure or a vehicle can be clearly discerned. Some concepts have their properties to show the physical quantity, such as the concepts Temperature, Pressure and Humidity. All the concepts in this ontology are described in following sub-sections.

Daylight concept

Entity: daylight The Daylight concept is characterized by the following properties:

• Direction: from 0 to 360 • , 180 • refers to south light

• Brightness: it is the brightness of the sun. It is represented by a real number between 0 and 1, where 0 means complete darkness and 1 means complete clarity.

• Visibility: this is the maximum visible distance for the autonomous vehicle in the daylight. It is represented in meters.

Temperature concept

Entity: temperature Definition: temperature is an entity that represents the degree of freshness or heat in the atmosphere of a place.

The Temperature concept is characterized by the following property:

• Value: this is the quantitative appreciation of temperature. The unit of temperature used is the degree Celsius (• C).

Pressure concept

Entity: pressure Definition: pressure is an entity that represents the weight that air exerts on the earth's surface.

The Pressure concept is characterized by the following property:

• Value: the unit of pressure used in meteorology is the hectopascal (hPa).

Humidity concept

Entity: humidity Definition: humidity is an entity that represents the quantity of water vapor contained in the air.

The Humidity concept is characterized by the following property:

• Value: it gives the humidity in the air and is expressed in grams of water per cubic meter of air (g/m 3). It is related to the temperature as indicated in Table 5.3.

TABLE 5.3 -Maximum amount of water vapor contained in an air particle Air temperature (en • C) -10 -5 0 5 10 15 20 30 Maximum amount of water vapor possible (g/m 3) 2 3 4.5 6.5 9.5 13 17 30

Wind concept

Entity: wind Definition: wind is an entity that represents the horizontal movement of air.

The Wind entity is characterized by the following properties:

• Speed: this is the quantitative assessment of the wind. It is commonly expressed in km/h.

• Direction: this is the direction from which the wind comes. It is expressed in degrees (from 0 to 360 •). A 180 • wind is a south wind.

Precipitation concept

Entity: precipitation Definition: precipitation is an entity that represents a meteorological phenomenon associated with humidity.

The precipitation concept is characterized by the following properties:

• Visibility: this is the maximum visible distance for the autonomous vehicle during a precipitation. It is represented by a value with the meter as a unit.

• Type: this is the type of the precipitation.

-Rain (see Sub-section 5.3.7); -Snow (see Sub-section 5.3.8); -Hail (see Sub-section 5.3.9).

Rain concept

Entity: rain Definition: rain is an entity that represents a precipitation in the form of drops of water falling from the clouds to the ground.

The Rain concept is characterized by the following properties:

• Intensity: it is the qualitative and quantitative appreciation of the rain. This can be expressed in millimeters/minute or millimeters/hour (1mm = 1liter/m 2). The character of the precipitation depends on the local climatology. However, in the plain and for mainland France, the equivalences in Table 5.4 can be adopted.

• Visibility: this is the maximum visible distance for the autonomous vehicle in the rain. It is represented in meters. Each rain intensity is associated with visibility as follows:

-Low: visibility above 1000meters; -Moderate: visibility between 1000 and 600 meters; -Strong: visibility within 600 meters.

• Speed: this is the speed at which rain falls. Its unit is the meter/second (m/s).

Snow concept

Entity: snow Definition: snow is an entity that represents a precipitation in the form of frozen water which falls in the form of light white flakes.

The Snow concept is characterized by the following properties:

• Intensity: it is the qualitative and quantitative appreciation of the snow. This can be expressed in millimeters/minute or millimeters/hour (1mm = 1liter/m 2). The character of the precipitation depends on the local climatology. However, in the plain and for mainland France, the equivalences in Table 5.5 can be adopted;

• Visibility: this is the maximum visible distance for the autonomous vehicle in the snow. Its unit of measurement is the meter. Each snow intensity is associated with visibility as follows:

-Low: visibility above 1000 meters; -Moderate: visibility between 1000 and 600 meters; -Strong: visibility within 600 meters.

• Speed: it is the speed of falling snow. Its unit is the meter/second (m/s).

Hail concept

Entity: hail Definition: hail is an entity that represents a precipitation in the form of ice particles formed by the attraction and accumulation of supercooled water forming 5 to 20 layers of ice on sleet.

The Hail concept is characterized by the following properties:

• Diameter: this is the diameter of an ice particle. Its shape can be spherical, conical or irregular. It is between 5 and 150 mm.

• Visibility: this is the maximum visible distance for the autonomous vehicle under hail. Its unit is the meter. Each hail intensity is associated with visibility as follows:

-Low: visibility above 1000 meters; -Moderate: visibility between 1000 and 600 meters; -Strong: visibility within 600 meters.

• Speed: this is the speed of falling hail. It is given in meters/second (m/s). It is less than 30m/s.

Fog concept

Entity: fog Definition: fog is an entity that represents a natural phenomenon made of water vapor which forms a cloud just above the ground, hampering visibility. It is still near the surface. It is formed by droplets or ice crystals.

The Fog concept is characterized by the following priority:

• Visibility: this is the maximum visible distance for the autonomous vehicle in fog. It is measured in meters. This phenomenon reduces horizontal visibility to less than 1 kilometer.

Haze concept

Entity: haze Definition: haze is an entity that represents a natural phenomenon made of fine droplets or fine ice crystals which have formed on microscopic hygroscopic particles (a substance which tends to absorb moisture from the air, by absorption or by adsorption). These droplets are so small that you can neither smell them nor distinguish them from each other. They usually form a continuous veil which reduces visibility on the surface.

The Haze Concept is characterized by the following priority:

• Visibility: this is the maximum visible distance for the autonomous vehicle in haze.

It is measured in meters. This phenomenon reduces horizontal visibility to less than 1 kilometer.

We have defined twelve (12) concepts in the weather ontology to describe the weather phenomena. We only know that the weather has an impact on the driving, but we do not know what kind of impact it is, especially, when the weather conditions interact with each others to form complex effects. Generally, when the visibility is high, the vehicle travels faster and when the visibility is low, the vehicle tends to slow down. Moreover, we do not have data on the impact of the different weather conditions on the autonomous vehicle. Therefore, in this work, we use the property of visibility to model the impact of the weather on the autonomous vehicle. If the tester is an expert in this area or has more precise test requirements, other components can be added as needed. And the results of the field test can provide us with research data.

Vehicle ontology

The vehicle refers to both the classical vehicle and the autonomous vehicle. Figure 5678shows the fifteen (15) concepts we have defined for the vehicle ontology. The concept Vehicle consists of two main sub-entities: Light and Action. Light refers to the lights on a vehicle to illuminate the road when driving at night, or to signal other road users. Action refers to the vehicle manoeuvre actions that could be made by pilot (human drivers / intelligent system). All the concepts in this ontology are described in the following sub-sections.

Vehicle concept Entity: vehicle

Definition: vehicle is an entity that represents a wheeled automobile machine. It is powered by an engine and intended for the land transport of people or goods.

The Vehicle concept is characterized by the following properties:

• Role: a vehicle can have one of the following three roles:

-EgoCar which represents the autonomous vehicle itself; -TargetCar representing the vehicle targeted by the autonomous vehicle; -OtherCar represents one of the other vehicles in a scene. Table 5.6 shows the properties of the three types of vehicles according to their roles: EgoCar, TargetCar and OtherCar.

• Category: this is the class to which the vehicle belongs. We consider vehicles authorized on the highway. Thus, five (5) vehicle classes are defined [Ministère de l'équipement, 2000] -Classe1: light vehicles; -Classe2: vehicles and truck intermediaries; -Classe3: coaches and other heavy duty 2-axle vehicles; -Classe4: coaches and other vehicles with 3 axles and more; -Classe5: motorcycle, sidecar and trike.

• Height: this is the vertical distance between the roof of the vehicle or of the rolling assembly and the ground. It is given in meters (m).

• Width: this is the horizontal distance between the left end of the vehicle and the right end of the vehicle. It is given in meters (m).

• Length: this is the horizontal distance between the front of the vehicle and the rear of all vehicles (car plus trailer). It is given in meters (m). All vehicles must not exceed 18 meters. The maximum authorized length of a trailer is 12 meters (not including the coupling device).

• Weight: this is the force exerted on the ground due to the whole vehicle. It has for unit the ton (t).

• Color: it is the visual perception of the spectral distribution of visible light from the vehicle.

• Position: this is the relative position in relation to the autonomous vehicle. We consider the path on which the vehicle is located, the distance between it and the autonomous vehicle, and its location in front, next to or behind the autonomous vehicle.

• Direction: it is the direction of movement of the vehicle: the same direction of traffic, or the opposite direction of traffic.

• Speed: it is a quantity that measures the ratio of a distance to the duration of its journey. It is given in kilometers per hour (km/h).

• Acceleration: it is a quantity which represents the modification affecting the speed of a movement as a function of time. It is given in meters per second squared (m/s 2).

Width W e W 1 W 2 Length L e L 1 L 2 Weight m e m 1 m 2 Color Blue Green Red Speed v e v 1 v 2
The vehicle is an entity that includes the following sub-entities:

• Light (Fr: Feu) (see Sub-section 5.4.2);

• Action (Fr: Action) (see Sub-section 5.4.3).

Light concept

Entity: light Definition: light is an entity that represents all of the automotive lighting on a vehicle to illuminate the road when driving at night, or to signal other road users.

The Light concept is characterized by the following properties:

• State: it is the lighting state of the lights (on, flashing, off).

• Position: this is where the lights are installed (front or rear, left or right).

• Number: this is a value that represents the number of lights on a vehicle (1-4).

• Color: this is the color of the lights.

• Type: we consider six (6) Light types:

-Parking light: they are used to help other drivers to notice the vehicle and to judge its width. There 2 white lights at the front and 2 red lights at the rear. -Headlight: they are 2 large powerful white or yellow lights at the front to illuminate the road. They have two settings:

-High-beams: the vehicle headlights are set to shine their brightest to brighten a longer distance in front of the car, than when on the low-beams setting. -Low-beams: that is the dimmer, shorter-range setting of vehicle's headlights to illuminate the road without dazzling other motorists. -Brake light: there are the red lights attached to the rear of a motor vehicle that lights up when the brakes are applied, serving as a warning to following drivers. -Direction light: these 4 orange lights in front and rear of the vehicle indicate the intention to slow down in order to change the direction of the vehicle, and remain activated during the maneuver. -Reversing Light: these 1 or 2 white light in rear of the vehicle indicate that the vehicle is in reverse. They also light up the recoil area. -Fog light: they improve the visibility in the event of fog or snow. There 2 white or yellow lights at the front and 2 red lights at the rear. The rear fog lights are never used in the event of rain as they are too dazzling.

The properties of the lights presented above are summarized in Table 5.7.

Action concept

Entity: action Definition: action is an entity that represents a maneuver that can be performed by a vehicle. The Action concept is characterized by the following propriety:

• Type: this is the type of the action.

-Run: this action indicates that the vehicle is taking the same direction and with the same speed as in the previous scene. -Enter: this action is used to enter the highway -Exit: this action is used to exit the highway, In the following, we only model the actions and not the lights because we do not need to predict how the intelligent system on the autonomous vehicle reacts to changes of the elements in the driving environment. We focus on the impact of the reactions of intelligent system when the other vehicles approach the autonomous vehicle and the scene changes caused by the actions of autonomous vehicle and the events of the other elements.

Conclusion

In this chapter, we have introduced three ontologies for the conceptualization and the characterization of the components of the test cases: a highway ontology and a weather ontology to specify the environment in which evolves the autonomous vehicle, and a vehicle ontology which consists of the vehicle devices and the control actions.

Chapitre 6

Logical Relations for Ontologies

Introduction

In the previous chapter, we have presented the concepts of three ontologies for the conceptualization and characterization of the components of the test cases. In order to represent the complex and intricate relationships between the entities of these concepts, we consider three kinds of relationships: the relationships between the highway entities, the relationships between the vehicle entities, and the relationships between the entities of the highway and the vehicle.

Logics are of particular importance in providing a logical formalism for ontologies. Propositional logic, description logic and first-order logic are used to represent the relationships in ontologies [START_REF] Farkas | A logical ontology[END_REF]] [Jiménez-Ruiz and Grau, 2011] [Peinado et al., 2004] [Horrocks and Sattler, 2001] [Berardi et al., 2004] [Witherell et al., 2010]. The language of firstorder logic is completely formal and is more expressive than propositional logic and description logic.

In our context, we need to express the relationships between the different elements in our system. As we will see, we have simple relationships such as the inheritance relationships and the composition relationships between the highway infrastructure entities. And we also have complex relationships such as the position relationships. All these relationships need to be expressed in a simple way. Furthermore, our system requires functions that define the properties of the ontologies concepts. First order logic is thus very suitable. Therefore, in this chapter, we use first-order logic to represent the different relationships that we define in the context of the ontologies we have built. Moreover, the traffic regulation and the interactions between the entities are written as logics expressions to simulate the environment of the autonomous vehicle. The syntax of the logical model, which includes the logical symbols, the set symbols and the function symbols, is presented in Section 6.2. Then all the relationships between the entities of the ontologies are presented in Section 6.3. Finally the conclusion of this chapter is given in Section 6.4.

The Syntax

In this section, we introduce the syntax of first-order logic we use when representing the relationships. We first present the logical symbols, then the non-logical ones, namely the set symbols and the function symbols.

Logical symbols

The logical symbols include two (2) quantifier symbols, seven (7) logical symbols and a set of variables.

• Quantifier symbols -Universal: ∀, which reads as "for all".

-Existential: ∃, which reads as "it exists".

• Logical connectives -conjunction: ∧, which reads as "and".

-disjunction: ∨, which reads as "or".

-implication: →, which reads as "if... then...".

-identity: =, which reads as "equal to".

-conclusion: |, which reads as "such that".

-union: ∪, which refers to the union of a collection of sets.

-concatenation: _ , which refers to a concatenation of a set of elements.

• A set of variables V , denoted by the alphabet elements.

Set symbols

The set symbols represent the sets of entities of the highway ontology, weather ontology and vehicle ontology.

As we have explained in Chapter 5, we consider that the highway is divided into several road parts.

-RoadPartSet: it is the set of all possible road parts of the highway including the special zones (toll, tunnel, bridge, road work zone).

-HighwaySet: it is a concatenation of elements from set RoadPartSet, that is HighwaySet = x 1 _x 2 _..._x n , where x i ∈ RoadPartSet, i = 1, ..., n, and n is the total number of road parts.

-RoadwaySet: it is the set of the roadways of the highway.

-CarriagewaySet: it is the set of carriageways of the highway. A highway has a maximum of two (2) carriageways.

-T hroughLaneSet: it is the set of through lanes of the highway. A carriageway has a maximum of four (4) through lanes.

-EntranceLaneSet: it is the set of entrance lanes of the highway. A road part of highway has a maximum of two (2) entrance lanes.

-WeaveLaneSet: it is the set of weave lanes of the highway. A road part of highway has one (1) weave lane, at most.

-ExitLaneSet: it is the set of exit lanes of the highway. A road part of highway has a maximum of two (2) exit lanes.

-TaperSet: it is the set of tapers of the highway. A road part of highway has a maximum of two (2) tapers.

-AccelerationSectionSet: it is the set of acceleration sections of the highway. An entrance lane of highway has one (1) acceleration section, at most.

-DecelerationSectionSet: it is the set of deceleration sections of the highway. An exit lane of highway has one (1) deceleration section, at most.

-AuxiliaryLaneSet = EntranceLaneSet ∪ WeaveLaneSet ∪ ExitLaneSet. It is the set of all possible auxiliaries lanes, that is, ∀x ∈ AuxiliaryLaneSet, x ∈ EntranceLaneSet or x ∈ WeaveLaneSet or x ∈ ExitLaneSet.

-LaneSet = T hroughLaneSet ∪ AuxiliaryLaneSet. It is the set of all possible lanes, that is, ∀x ∈ LaneSet, x ∈ T hroughLaneSet or x ∈ AuxiliaryLaneSet.

-MedianSet: it is the set of medians of the highway. A highway has one (1) median, at most.

-PavedShoulderSet: it is the set of paved shoulders of the highway. A highway has one (1) paved shoulder, at most.

-UnpavedShoulderSet: it is the set of unpaved shoulders of the highway. A highway has one (1) unpaved shoulder, at most.

-ShoulderSet = PavedShoulderSet ∪ UnpavedShoulderSet. It is the set of all possible shoulders, that is, ∀x ∈ ShoulderSet, x ∈ PavedShoulderSet or x ∈ UnpavedShoulderSet.

-TollSet: it is the set of tolls of the highway. Thus ∀x ∈ TollSet, x ∈ RoadPartSet.

-TunnelSet: it is the set of tunnels of the highway. Thus ∀x ∈ TunnelSet, x ∈ RoadPartSet.

-BridgeSet: it is the set of bridges of the highway. Thus ∀x ∈ BridgeSet, x ∈ RoadPartSet.

-RoadWorkSet: it is the set of road works areas on the highway. Thus ∀x ∈ RoadWorkSet, x ∈ RoadPartSet.

-SolidLineSet: it is the set of solid lines on the highway.

-DashedLineSet: it is the set of dashed lines on the highway.

-LongitudinalMarkingSet: it is the set of longitudinal markings of the highway.

-ArrowSet: it is the set of arrows on the highway.

-ChevronSet: it is the set of chevrons on the highway.

-Speci f icMarkingSet = ArrowSet ∪ChevronSet. It is the set of all possible specific markings, that is, ∀x ∈ Speci f icMarkingSet, x ∈ ArrowSet or x ∈ ChevronSet.

-MarkingSet = LongitudinalMarkingSet ∪ Speci f icMarkingSet. It is the set of all possible markings, that is, ∀x ∈ MarkingSet, x ∈ LongitudinalMarkingSet or x ∈ Speci f icMarkingSet.

-

SignSet = SignASet ∪SignBSet ∪SignABSet ∪SignCSet ∪SignDSet ∪SignESet ∪SignJSet ∪ SignSRSet ∪ SignKSet. It is the set of all possible signs, that is, ∀x ∈ SignSet, x ∈ SignASet or x ∈ SignBSet or x ∈ SignABSet or x ∈ SignCSet or x ∈ SignDSet or x ∈ SignESet or x ∈ SignJSet or x ∈ SignSRSet or x ∈ SignKSet . -SymbolSet = MarkingSet ∪ SignSet. It is the set of all possible symbols, that is, ∀x ∈ SymbolSet, x ∈ MarkingSet or x ∈ SignSet.
-VehicleSet: it is the set of vehicles on the highway.

-ParkingLightSet: it is the set of parking lights of the vehicle.

-HeadLightSet: it is the set of head lights of the vehicle.

-DirectionLightSet: it is the set of direction lights of the vehicle.

-FogLightSet: it is the set of fog lights of the vehicle.

-ReversingLightSet: it is the set of reversing lights of the vehicle.

-BrakeLightSet: it is the set of brake lights of the vehicle.

-LightSet = ParkingLightSet ∪HeadLightSet ∪DirectionLightSet ∪FogLightSet ∪ReversingLightSet ∪ BrakeLightSet. It is the set of all possible lights, that is, ∀x ∈ LightSet, x ∈ ParkingLightSet or x ∈ HeadLightSet or x ∈ DirectionLightSet or x ∈ FogLightSet or x ∈ ReversingLightSet or x ∈ BrakeLightSet.

-ActionSet = {Run, Accelerate, Decelerate, GoLe f tLane, GoRightLane, Enter, Exit}. It is the set of all possible actions that can be made by the vehicles.

Function symbols

The functions provide the parameters characterizing the entities which are defined as concepts properties in the ontologies introduced in Chapter 5.

-Length: L → R+, where L = LaneSet ∪TaperSet ∪AccelerationSectionSet ∪DecelerationSectionSet ∪ TollSet ∪ TunnelSet ∪ BridgeSet ∪ RoadWorkSet. Length(x) provides the length of x, ∀x ∈ L.

-Width: L → R+. Width(x) provides the width of x, ∀x ∈ L.

-Height: RoadPartSet → R+. Height(x) provides the height of x, ∀x ∈ RoadPartSet.

-Material: BridgeSet → M, where M = {Steel, Brick,Wood}. Material(x) provides the material of x, ∀x ∈ BridgeSet.

-Color: VehicleSet → C, where C = {W hite, Silver, Black, Grey, Blue, Red, Brown, Green, Others}. Color(x) provides the color of x, ∀x ∈ VehicleSet.

-Type: SignSet → T , where T = {A, B, AB,C, D, E, J, SR, K}. Type(x) provides the type of x, ∀x ∈ SignSet.

-Direction: VehicleSet → D, where D = {Same, Reverse}. Direction(x) provides the direction of x, ∀x ∈ VehicleSet.

-Number: CarragewaySet → N, N ∈ {2, 3, 4}. Number(x) provides the lane number of x, ∀x ∈ CarragewaySet.

-Speed: VehicleSet → R. Speed(x) provides the speed of x, ∀x ∈ VehicleSet.

-SpeedLimit: LaneSet → R. SpeedLimit(x) provides the speed limit of x, ∀x ∈ LaneSet.

-Position: SymbolSet → P, where P = {Median, Lane,UnpavedShoulder}. Position(x) provides the position of x, ∀x ∈ SymbolSet.

-Role: VehicleSet → O, where O = {EgoCar, TargetCar, OtherCar}. Role(x) provides the role of x, ∀x ∈ VehicleSet.

-Category: VehicleSet → V , where V = {Class1,Class2,Class3,Class4,Class5}. Category(x) provides the category of x, ∀x ∈ VehicleSet.

Relationships

In order to represent the complex and intricate relationships between the entities, we consider three kinds of relationships: the relationships between the highway entities, the relationships between the vehicle entities, and the relationships between the highway and vehicle entities.

Relationships between the highway entities

There are three types of relationships between the entities of the highway ontology:

-Inheritance relationships (unary), -Composition relationships (binary), -Position relationships which consist of the longitudinal position (binary), the transverse position (binary or ternary) and the vertical position (binary).

FIGURE 6-1 -Relationships between the highway entities.

Inheritance relationships

Inheritance relationship is of "IS-A" type relationship. An inheritance relationship between two entities A and B implies that "A is a B".

Before defining relationships, we define the following inheritance relation symbols:

• isRoadPart(x) is a relationship which specifies that an entity belongs to set RoadPartSet.

• isLane is a relationship which specifies that an entity belongs to set LaneSet.

• isAuxiliaryLane is a relationship which specifies that an entity belongs to set AuxiliaryLaneSet.

• isShoulder is a relationship which specifies that an entity belongs to set ShoulderSet.

• isSymbol is a relationship which specifies that an entity belongs to set SymbolSet.

• isMarking is a relationship which specifies that an entity belongs to set MarkingSet.

• isLongitudinalMarking is a relationship which specifies that an entity belongs to set LongitudinalMarkingSet.

• isSpeci f icMarking is a relationship which specifies that an entity belongs to set Speci f icMarkingSet.

• isSign is a relationship which specifies that an entity belongs to set SignSet.

We can define 2 types of inheritance relationships: simple and combined. For example, the following combined relationship means that any element x in set EntranceLaneSet or WeaveLaneSet or ExitLaneSet is of type AuxiliaryLane, which implies that x is also a lane.

∀x ∈ (EntranceLaneSet ∨WeaveLaneSet ∨ ExitLaneSet), isAuxiliaryLane(x) → isLane(x)

We define the following four (4) simple inheritance relationships:

-∀x ∈ (T hroughLaneSet ∨ AuxiliaryLaneSet), isLane(x);

-∀x ∈ (UnpavedShoulderSet ∨ PavedShoulderSet), isShoulder(x); -∀x ∈ (TollSet ∨ TunnelSet ∨ BridgeSet ∨ RoadWorkSet), isRoadPart(x); -∀x ∈ (MarkingSet ∨ SignSet), isSymbol(x);
Finally, we define the following five (5) combined inheritance relationships:

-∀x ∈ (EntranceLaneSet ∨WeaveLaneSet ∨ExitLaneSet), isAuxiliaryLane(x) → isLane(x);

-∀x ∈ (LongitudinalMarkingSet ∨Speci f icMarkingSet), isMarking(x) → isSymbol(x); -∀x ∈ (SolidLineSet ∨DashedLineSet), isLongitudinalMarking(x) → isMarking(x) → isSymbol(x); -∀x ∈ (ArrowSet ∨ChevronSet), isSpeci f icMarking(x) → isMarking(x) → isSymbol(x);
-∀x ∈ (SignASet ∨SignBSet ∨SignABSet ∨SignCSet ∨SignDSet ∨SignESet ∨SignJSet ∨ SignSRSet ∨ SignKSet), isSign(x) → isSymbol(x);

Composition relationships

A composition relationship is a "PART-OF" relationship. In this binary relationship, involved entities are dependent of each other. Let us take an example of sets Highway and RoadPart. An element of RoadPart set is an element of Highway and thus both depend on each other. This relationship can be written as: ∀x ∈ Highway, ∃y ∈ RoadPart | hasRoadPart(x, y), where hasRoadPart is the relationship symbol which specifies that entity x is composed of y.

Before defining all the composition relationships, we define first the following composition relationship symbols:

• hasRoadPart is a relationship which specifies that an entity is composed of another entity belonging to set RoadPartSet.

• hasRoadway is a relationship which specifies that an entity is composed of another entity belonging to set RoadwaySet.

• hasCarriageway is a relationship which specifies that an entity is composed of another entity belonging to set CarriagewaySet.

• hasLane is a relationship which specifies that an entity is composed of another entity belonging to set LaneSet.

• hasSection is a relationship which specifies that an entity is composed of another entity belonging to set (AccelerationSectionSet ∪ DecelerationSectionSet ∪ TaperSet).

• hasMedian is a relationship which specifies that an entity is composed of another entity belonging to set MedianSet.

• hasShoulder is a relationship which specifies that an entity is composed of another entity belonging to set ShoulderSet.

• hasSymbol is a relationship which specifies that an entity is composed of another entity belonging to set SymbolSet.

It follows that, we define the following composition relationships:

-∀x ∈ HighwaySet, ∃y ∈ RoadPartSet | hasRoadPart(x, y); -∃x ∈ RoadPartSet, ∃y ∈ SymbolSet | hasSymbol(x, y);

-∀x ∈ RoadPartSet,

Position relationships

A position refers to a longitudinal position, a transverse position or a vertical position. A longitudinal position relationship indicates the connection order of elements in the driving direction of the vehicle. Before defining the relationships, we define the following longitudinal position relation symbols:

• connecteRoadPart is a relationship which specifies that an entity is connected to another entity belonging to set RoadPartSet.

• connecteSection is a relationship which specifies that an entity is connected to another entity belonging to set (AccelerationSectionSet ∪ DecelerationSectionSet ∪ TaperSet).

For example, ∀x, y ∈ RoadPartSet, connecteRoadPart(x, y) means that road part y is connected to road part x, and thus y is the next road part after x.

We define the following three (3) longitudinal position relationships:

-∀x ∈ RoadPartSet, ∃y ∈ RoadPartSet | connecteRoadPart(x, y); -∀x ∈ AccelerationSectionSet, ∃y ∈ TaperSet | connecteSection(x, y); -∀x ∈ DecelerationSectionSet, ∃y ∈ AccelerationSectionSet | connecteSection(x, y);
A transverse position relationship indicates the connection order of parallel elements. Before defining these relationships, we define the following transverse position relationship symbols:

• besideMedian is a relationship which specifies that an entity is adjacent to another entity belonging to set MedianSet.

• besideCarriageway is a relationship which specifies that an entity is adjacent to another entity belonging to set CarriagewaySet.

• besideLane is a relationship which specifies that an entity is adjacent to another entity belonging to set LaneSet.

• besideShoulder is a relationship which specifies that an entity is adjacent to another entity belonging to set ShoulderSet.

• MarkingBetween is a relationship which specifies that an entity belonging to set MarkingSet is between two other entities.

For example, relationship ∃x ∈ LaneSet, ∀y ∈ MedianSet | besideMedian(x, y) means that for all median y, there is a lane x adjacent to y.

Another example is: ∃x ∈ MarkingSet, ∀y, z ∈ (MedianSet ∪LaneSet ∪ShoulderSet)∧(besideMedian(y, z)∨ besideShoulder(y, z) ∨ besideLane(y, z)) | MarkingBetween(x, y, z), which means that, for all y and z belonging to set MedianSet or LaneSet or ShoulderSet, there is a marking x between y and z.

We define the following five (5 Finaly a vertical position relationship indicates the vertical connection to the ground. Before defining the vertical position relationships, we define one (1) relation symbol:

• setSymbol is a relationship which specifies that an entity belonging to set Equipment is located on another entity.

For example, ∀x ∈ SignCSet, ∃y ∈ CarriagewaySet | setSymbol(x, y) means that for each indication sign x in set SignCSet, there is a carriageway y on which x is located.

Thus we define the following three (3) vertical position relationships: Before defining the relationships between the vehicle entities, we define the following relationship symbols:

-∃y ∈ (UnpavedShoulderSet ∪ MedienSet), ∀x ∈ SignSet | setSymbol(x, y); -∃y ∈ CarriagewaySet, ∀x ∈ SignCSet | setSymbol(x, y); -∃y ∈ ArrowSet, ∃x ∈ LaneSet | setSymbol(x, y);

Relationships between the vehicle entities

• hasAheadVehicle is a relationship which specifies that an entity belonging to set VehicleSet is located ahead of EgoCar.

• hasAheadLe f tVehicle is a relationship which specifies that an entity belonging to set VehicleSet is located at the left front of EgoCar.

• hasLe f tVehicle is a relationship which specifies that an entity belonging to set VehicleSet is located at the left of EgoCar.

• hasBehindLe f tVehicle is a relationship which specifies that an entity belonging to set VehicleSet is located at the left rear of EgoCar.

• hasBehindVehicle is a relationship which specifies that an entity belonging to set VehicleSet is located behind of EgoCar.

• hasBehindRightVehicle is a relationship which specifies that an entity belonging to set VehicleSet is located at the right rear of EgoCar.

• hasRightVehicle is a relationship which specifies that an entity belonging to set VehicleSet is located at the right of EgoCar.

• hasAheadRightVehicle is a relationship which specifies that an entity belonging to set VehicleSet is located at the right front of EgoCar.

EgoCar can have a TargetCar in front, which is conceptualised using the following relationship:

∃x, y ∈ VehicleSet | (Role(x) = 'EgoCar) ∧ (Role(y) = 'TargetCar) ∧ hasAheadVehicle(x, y).
And each other car around EgoCar is considered using the following seven (7) relationships:

-∃x, y ∈ VehicleSet | (Role(x) = 'EgoCar)∧(Role(y) = 'OtherCar)∧hasAheadLe f tVehicle(x, y);

-∃x, y ∈ VehicleSet | (Role(x) = 'EgoCar)∧(Role(y) = 'OtherCar)∧hasAheadRightVehicle(x, y); -∃x, y ∈ VehicleSet | (Role(x) = 'EgoCar)∧(Role(y) = 'OtherCar)∧hasLe f tVehicle(x, y); -∃x, y ∈ VehicleSet | (Role(x) = 'EgoCar)∧(Role(y) = 'OtherCar)∧hasRightVehicle(x, y; -∃x, y ∈ VehicleSet | (Role(x) = 'EgoCar)∧(Role(y) = 'OtherCar)∧hasBehindLe f tVehicle(x, y); -∃x, y ∈ VehicleSet | (Role(x) = 'EgoCar)∧(Role(y) = 'OtherCar)∧hasBehindRightVehicle(x, y); -∃x, y ∈ VehicleSet | (Role(x) = 'EgoCar)∧(Role(y) = 'OtherCar)∧hasBehindVehicle(x, y);

Relationships between the entities of the highway and the vehicle

In order to define the relationships between the highway and vehicle entities, we consider that all vehicles obey the traffic rules. Therefore, we define the following relationship symbols:

• enters is a relationship which specifies that an entity belonging to VehicleSet is entering an entity belonging to set W = (RoadwaySet ∪ TollSet ∪ TunnelSet ∪ BridgeSet ∪ RoadWorkSet).

• leaves is a relationship which specifies that an entity belonging to set Vehicle is leaving an entity belonging to set W .

• on is a relationship which specifies that an entity belonging to set Vehicle is located on an entity belonging to set W .

Thus, we define the following four (4) binary relationships between the vehicle and highway entities:

-∃x ∈ VehicleSet, ∃y ∈ (LaneSet ∪ PavedShoulderSet) | on(x, y) -∃x ∈ VehicleSet, ∃y ∈ RoadPartSet | in(x, y) -∃x ∈ VehicleSet, ∃y ∈ (LaneSet ∪ PavedShoulderSet ∪ RoadPartSet) | enters(x, y) -∃x ∈ VehicleSet, ∃y ∈ (LaneSet ∪ PavedShoulderSet ∪ RoadPartSet) | leaves(x, y)

Conclusion

In this chapter, we have defined three kinds of relationships between the entities of the ontologies built in Chapter 5. We have also showed how to express these relationships using the first order logic.

In the next chapter, we present our test cases formalization model based on the ontological concepts defined in Chapter 5 and the logical relationships defined in Chapter 6.

Chapitre 7

Formal modelling using PEPA

Introduction

We have built three ontologies for the conceptualization and the characterization of the elements of the test cases in Chapter 5. Relationships and rules, such as traffic regulation, are expressed using a first-order logic in Chapter 6. The scenes of the test cases can be defined using the concepts and the relationships we have defined. But these scenes are static like snapshots lacking of dynamic behaviours. Therefore, they are not enough for the simulation and the validation of the functions of ADSs. This emphasizes the necessity of a model which allows us to capture the dynamicity of the scenarios.

In this chapter, we focus on the modelling of the dynamic transitions between the driving scenes to generate scenarios using a formal modelling technique that can be used to describe and analyze concurrent systems like ADSs. We are interested in the Performance Evaluation Process Algebra (PEPA) [Hillston, 1994] modelling technique to generate the scenarios according to the state-change elements of the system. PEPA can model system elements which behave and evolve individually or in cooperation with each others. Indeed, we need a formalism that allows us to model concurrent agents, like the vehicles. PEPA allows modelling such a concurrent system which can behave in an individual or competitive way. This formalism is powerful enough to model all the behaviors of the components in our system. In our knowledge, until now no work has been devoted to the formal modelling of test cases (see Chapter 3).

In this chapter, the syntax of the PEPA language is presented in Section 7.2. We introduce our general PEPA model for the highway in Section 7.3. In Section 7.4, we use the running example introduced in Chapter 4 to describe more specifically the construction of the corresponding PEPA model, and the generation of the scenarios. Moreover, we show how to identify the critical ones. Finally, Section 7.6 concludes this chapter.

Syntax of PEPA

Performance Evaluation Process Algebra (PEPA) is a stochastic process algebra designed for modelling computer and communication systems [Hillston, 1994]. This language has been developed to investigate how the compositional features of a process algebra might impact upon the practice of performance modelling.

A PEPA model is constructed by identifying the components performing activities. The main attribute which was missing from a process algebra is the quantification of time and uncertainty, which is necessary for performance evaluation. This is achieved in PEPA by associating an exponentially distributed random variable with each activity, representing its duration. The duration of the activity may be represented by a single real number parameter, which can be any positive real number or the distinguished symbol , which refers to the unspecified cooperation activity rate. If more than one activity can be simultaneously enabled by a component, each unspecified activity rate must be assigned a weight to determine the relative probabilities of possible outcomes of the activity [Hillston, 1994].

The stochastic process algebra PEPA is a simple language with a small set of operators. The operators and their syntax are defined as follows: Hiding: S def = P/L, the system behaves as component P except that any activity of a type within the set L is hidden. Its type is not witnessed upon completion. It appears as the unknown type τ and can be regarded as an internal delay by the component.

Constant: S def

= A it assigns S the behaviour of component A. In general, it assigns names to components.

PEPA abstracts activities performed by components into a continuous-time Markov pro-cess. The generation of this underlying Markov process is based on the derivation graph of the model. From a model definition M we can apply the semantic rules exhaustively to find the complete set of reachable states, the derivative set of M, ds(M). The derivation graph is a directed multi-graph whose nodes are the reachable states of the model ds(M) and whose arcs represent the possible transitions between them. In order to derivea Markov process from a PEPA model, we associate a state with each node of the derivation gragh. The edges are labelled only by the activity rates since the action type information is discarded. While multiple edges between a pair of nodes are combined by summing the corresponding tates. The rate on an edge in this modified gragh becomes the corresponding entry in the infinitesimal generator matrix [Kloul, 2006].

Like all state-based modelling techniques, there is a risk of combinatorial explosion of the state space of the underlying Markov chain. PEPA has an aggregation technique that may allow reducing the size of the model [Hillston, 1994]. It is also supported by a resolution method based on the differential equations [START_REF] Gilmore | PEPA nets: a structured performance modelling formalism[END_REF].

General PEPA model for highway

In this section, we introduce our general PEPA model for the highway. We consider the portion of a highway carriageway around the autonomous vehicle, Ego (bleu vehicle in Figure 7-1). Depending on the speed of Ego and the speed of the possible vehicle following and just before Ego, we can define a critical zone (yellow zone in Figure 7-1) in the center lane. This zone is delimited considering the minimum safe distance that must separate Ego from the other vehicles: the one just before and the one just after.

The minimum safe distances are the following distances of two seconds, which are calculated from the speed of the vehicles. The formulas for front minimum safe distances is: AMSD = 2ve, where v e is the speed of the autonomous vehicle. And the formulas for behind minimum safe distances are: BMSD = 2vt, where v t is the speed of the vehicle behind the autonomous vehicle. Here, we do not consider the influence of weather, pavement materials, road slope and vehicle performance, but we can improve the division of critical zone as needed. The formulas for minimum safe distances can be changed to: FMSD = 2ve + α and FMSD = 2vt + α, where α is the distance added caused by the influence of the other factors. Vehicles, including autonomous vehicle, determines their speeds according to different conditions. In the PEPA model, they can achieve acceleration or deceleration.

Moreover, we separate the portion of carriageway into six (6) zones as shown in Figure 7-2. We number these zones from one to six. Considering the concepts we defined in our ontologies, we build a PEPA model which consists of nineteen (19) components. Table 7.1 shows the PEPA component/action in the model corresponding to each concept in the ontologies. Moreover, the PEPA components are listed in Table 7.2 with, for each, its possible actions.

There are actions which have no corresponding concept in Table 7.1. They are used to indicate the end of an action whose concept is given in this table. For example, action enterV has the corresponding concept Enter, while action noEnterV does not. In the following, we introduce the PEPA components with the equations characterizing their behaviours. We distinguish the actions of Ego from those of the other vehicles.

ExLO f f Toll TollO f f RoadWork RoadWorkO f f Tunnel TunnelO f f Bridge BridgeO f f Sign SignAO f f , SignBO f f , SignABO f f , SignCO f f , SignDO f f , SignEO f f , SignJO f f , SignSRO f f , SignKO f f ,

Component VehicleEgo

Component VehicleEgo models the behaviour of vehicle Ego. As our objective is to generate all the scenarios describing the situations to which Ego could be confronted, we do not model its reactions when these situations occur. Therefore, we consider that Ego is always in the center lane with no lane change actions. The PEPA equation of the sequential component VehicleEgo is the following: VehicleEGO = (runVehicleEGO, e 1).VehicleEGO + (accelerateVehicleEGO, e 2).VehicleEGO + (decelerateVehicleEGO, e 3).VehicleEGO;

Action runVehicleEGO models Ego rolling on the lane without changing its direction or its speed. The actions accelerateVehicleEGO and decelerateVehicleEGO, respectively, indicate that Ego accelerates and decelerates. Variables e 1 , e 2 and e 3 are the rates of the corresponding actions. The PEPA component VehiculeEGO always returns to its initial and unique component state after completing these actions.

Component VehicleA

Now consider that a car VA is rolling on a portion of carriageway. This car represents the other traffic around Ego, as it can be in any zone. We model the behaviour of this car using component VehicleA. The PEPA equation of the sequential component VehicleA is the following: VehicleA = (runVehicleA, a1).VehicleA + (accelerateVehicleA, a2).VehicleA + (decelerateVehicleA, a3).VehicleA + (goLe f tLaneVehicleA, a4).VehicleA + (goRightLaneVehicleA, a5).VehicleA;

The action runVehicleA models VA rolling on the lane without changing its direction or its speed. The actions accelerateVehicleA and decelerateVehicleA, respectively, model the fact that VA accelerates and decelerates. goLe f tLaneVehicleA and goRightLaneVehicleA model VA changing lane to the left lane and the right lane, respectively. Variables a i , i = i, ..., 5, are the rates of the corresponding actions. Component VehicleA always returns to its initial and unique state after completing these actions.

We can have more vehicles for the construction of a scene. Thus more PEPA components can be considered in the model, such as VehicleB, VehicleC ..., which behave exactly like VehicleA. These components represent all the other traffics in the different zones.

Components EnLO f f and ExLO f f

We also model the entrance lanes and the exit lanes of the highway. They are modelled using PEPA components EnLO f f and ExLO f f , respectively. The initial state of these components corresponds to the case where we are in a highway part RoadPart with no entrance lane (for EnLO f f) and no exit lane (for ExLO f f).

The PEPA equations of the sequential component EnLO f f are the followings:

EnLO f f = (entranceOn, u 6).EnLOn; EnLOn = (enterV, u 7).EnLO f f + (noEnterV, u 8).EnLO f f ;
Action entranceOn models the case where there is an entrance lane appearing and the change of the component state to EnLOn means that the highway is ready to welcome a new vehicle from the entrance lane. Action enterV models the presence of a vehicle on the entrance lane, while action noEnterV models the case where there is no vehicle on this lane. Both actions lead to state EnLO f f which models the fact the entrance lane is passed. Variables u 6 , u 7 and u 8 are the rates of the corresponding actions.

Similarly the PEPA equations of component ExLO f f are the following:

ExLO f f = (exitOn, u 9).ExLOn; ExLOn = (exitV, u 10).ExLO f f + (noExitV, u 11).ExLO f f ; Action exitOn models the case where there is an exit lane appearing which leads to state change of the component to ExLOn. Action exitV models a vehicle exiting the highway using the exit lane, while action noExitV models the case where no vehicle exits the highway. Both actions lead to state ExLO f f . Variables u 9 , u 10 and u 11 are the rates of the corresponding actions.

Components modelling the special areas

We also consider the sub-entities belonging to the concept RoadPart defined in Chapter 5. These sub-entities are the special areas on the highway: Toll, Bridge, Tunnel and RoadWork.

In the following, we present the components modelling these concepts.

Component TollO f f

Firstly, we focus on the concept Toll whose entity represents a segment of the highway for payment, and present the PEPA component modelling it.

The PEPA equations of the sequential component TollO f f are the following:

TollO f f = (tollOn, u 1).TollOn; TollOn = (tollOut, u 2).TollOut;

TollOut = (tollO f f , u 3).TollO f f ;
The initial state TollO f f indicates that there is no toll on the current RoadPart of the highway. Action tollOn models the appearance of a toll and it leads to state TollOn. The action tollOut models the fact that Ego passed toll and the completion of this action leads to state TollOut. The component returns to state TollO f f with action tollO f f which models the fact that the toll does no longer appear in the current road portion. Variables u 1 , u 2 and u 3 are the rates of the corresponding actions.

Component BridgeO f f

The bridge in this work refers to those segments with viaducts above the highway, not the segments of the highway that serves as bridges. It is also the same as the toll and thus can be modelled following three stages: appearance, entrance and exit.

The PEPA equations of the sequential component BridgeO f f are the following:

BridgeO f f = (bridgeOn, u 21).BridgeOn; BridgeOn = (bridgeOut, u 22).BridgeOut; BridgeOut = (bridgeO f f , u 23).BridgeO f f ;
The initial state BridgeO f f indicates that there is no bridge on the current RoadPart of the highway. Action bridgeOn models the appearance of a bridge and it leads to state BridgeOn. The action bridgeOut models the fact that Ego passed bridge and the completion of this action leads to state BridgeOut. The component returns to state BridgeO f f with action bridgeO f f which models the fact that the bridge does no longer appear in the current road portion. Variables u 21 , u 22 and u 23 are the rates of the corresponding actions.

Component TunnelO f f

Similar to a bridge, a tunnel is also an infrastructure over a highway segment, but it is generally longer than the width of the bridge, so vehicles need more time to pass through this road part. Their models are similar, and we can set different activities' rates values to achieve their differences.

In the highway ontology, we have define a set of signs, which are classified as SignA, SignB, SignA, SignC, SignD, SignE, SignJ, SignSR and SignK, according to the definition provided in the official French document for road symbols [Ministère de l 'écologie, 1988]. There are shortterm and long-term signs among them. We will not expand here because there are too many signs.

In the following, we first present the components modelling short-term signs, then longterm signs.

Component SignMO f f

As all short-term signs are modelled similarly, we only present the PEPA equations of the sequential component modelling SignM, where M = {A, B, AB,C, D, E, J, SR, K}:

SignMO f f = (signMon, u 18).SignMOn;

SignMOn = (signMo f f , u 19).SignMO f f ;
The initial state is noted SignMO f f which models the absence of SignM. The state changes to SignMOn with action signMon, which models SignM's appearance. The component returns to state SignMO f f by action signMo f f , which models the end of the effect of SignM. Variables u 18 and u 19 are the rates of the corresponding actions.

Component SpeedLimit

We consider the speed limit signs as the long-term signs in our PEPA model. These are modelled using the PEPA sequential component SpeedLimit as follows: SpeedLimit = (limitLower, u 12).SpeedLimit + (limitGreater, u 13).SpeedLimit;

The initial state SpeedLimit indicates any speed limit. The action limitLower models the appearance of a speed limit sign and the information that the number on the sign is lower than the initial speed limit. The action limitGreater models a speed limit sign appearance and the information that the number on the sign is greater than the initial speed limit. Variables u 12 and u 13 are the rates of the corresponding actions. Component SpeedLimit always returns to the same state (initial state) once these actions are completed.

Component Visibility

We have defined twelve (12) concepts in the weather ontology to describe the weather phenomena. As we have explained in Chapter 5, in this work, we use the property of visibility to model the impact of the weather on the autonomous vehicle.

The PEPA equation of the sequential component Visibility modelling the corresponding concept is the following: Visibility = (visibilityLower, u 4).Visibility + (visibilityGreater, u 5).Visibility;

The initial state Visibility indicates any visibility of the environment we set. The action visibi-lityLower models a decrease in the visibility. The action visibilityGreater models an increase in the visibility. Variables u 4 and u 5 are the rates of the corresponding actions. Component Visibility always returns to the same state (initial state) once these actions are completed.

Component Situation

We consider a component noted Situation which models a situation that Ego can meet. This component has several states, and its equations depend on the number of vehicles and the types of infrastructure elements we have in the initial scene. Each derivative state Situation(XN) * S? of component Situation models a possible scene in RoadPart. In the notation of the state, X refers to a zone number, X = 1, ..., 6, N is the vehicle name, N = A, B, ..., and S is an action consequence. The number of occurrences (zero or more) of XN is equal to the number of other vehicles in each component state. The question mark in "S?" indicates zero or one occurrence of S. For example, state Situation2AEnterV models the case where VA is on Zone 2 and there is another vehicle on the entrance lane.

The component Situation is passive with respect to the actions of the other model components. The activity rates of these actions are represented by the distinguished symbol . If the frequency of the occurrence of an activity enabled by component Situation needs to be adapted, the activity rate should be assigned a weight p i , i ∈ N.

If more than one (say y) activity of the same action can be simultaneously enabled by component Situation, each unspecified activity rate must be assigned a weight w i , i = n, ..., m, mn = y. Thus the probability q i of possible outcomes of each activity can be calculated with the following equation:

q i = w i ∑ m i=n , n ≤ i ≤ m

General Equation

Finally, the equation of the complete PEPA model is the following:

Scenario def = Situation(XN) * S? L (VehicleEGO (VehicleA)? ... (VehicleZ)? EnLO f f ? ExLO f f ? TollO f f ? SignMO f f ? SppedLimit? Visibility?)
Variable a 1 is the rate of action runVehicleA.

Component VehicleB models the red car V B which arrives on the entrance lane and wants to insert into the highway. Generally, the PEPA equation of the sequential component VehicleB is the following: VehicleB = (runVehicleB, b1).VehicleB + (accelerateVehicleB, b2).VehicleB + (decelerateVehicleB, b3).VehicleB + (goLe f tLaneVehicleB, b4).VehicleB + (goRightLaneVehicleB, b5).VehicleB;

In the running example, it can do all vehicle manoeuvring actions except change to right lane. Thus the PEPA equation of the sequential component VehicleB is the following: VehicleB = (runVehicleB, b1).VehicleB + (accelerateVehicleB, b2).VehicleB + (decelerateVehicleB, b3).VehicleB + (goLe f tLaneVehicleB, b4).VehicleB;

Variables b i , i = 1, 2, 3, 4 are the rates of the corresponding actions. Now, we need to model the changing infrastructure of the running example, that are the entrance lane and the give way sign. We use the PEPA component EnLO f f we have defined in Section 7.3 to model the entrance lane:

EnLO f f = (entranceOn, u1).EnLOn; EnLOn = (enterV, u2).EnLO f f + (noEnterV, u3).EnLO f f ;
The short-term sign give way is one of the priority signs which is classified as a AB type in the highway ontology. To model this sign, we use component SignABO f f which is similar to SignAO f f , the component introduced in the last section:

SignABO f f = (signABon, u4).SignABOn; SignABOn = (signABo f f , u5).SignABO f f ;
Variables u i , i = 1, 2, 3, 4, 5 are the rates of the corresponding actions.

We model the possible scenarios occurring in the running example using Situation2A which initial state represents the initial scene where VehicleA is in Zone 2.

Situation def = Situation2A;
This initial state is given by the following equation: Situation2A = (runVehicleEGO,).Situation2A + (accelerateVehicleEGO,).Situation2A + (decelerateVehicleEGO,).Situation2A + (runVehicleA,).Situation2A + (entranceOn,).Situation2AEnLOn;

In the initial state Situation2A, Ego has the choice between the actions runVehicleEGO, accelerateVehicleEGO and decelerateVehicleEGO. Vehicle VA always performs action run-VehicleA. We return always to the initial state once one of these actions is completed. However, once action entranceOn, which models the presence of an entrance lane, is performed, the component Situation2A behaves as Situation2AEnLOn. Situation2AEnLOn = (runVehicleEGO,).Situation2AEnLOn + (accelerateVehicleEGO,).Situation2AEnLOn + (decelerateVehicleEGO,).Situation2AEnLOn + (runVehicleA,).Situation2AEnLOn + (noEnterV,).Situation2A + (enterV,).Situation2AEnterV ;

In the component state Situation2AEnLOn, Ego has always the choice between its three actions and vehicle VA can always perform action runVehicleA. We always return to the same state after completing one of these actions. Action noEnterV models the absence of a vehicle on the entrance lane. Its completion leads to state Situation2A. Action enterV models the presence of a vehicle on the entrance lane. Once this action is performed, it leads to state Situation2AEnterV :

Situation2AEnterV = (runVehicleEGO,).Situation2AEnterV + (accelerateVehicleEGO,).Situation2AEnterV + (decelerateVehicleEGO,).Situation2AEnterV + (runVehicleA,).Situation2AEnterV + (runVehicleB,).Situation2AEnterV + (accelerateVehicleB,).Situation2AEnterV + (decelerateVehicleB,).Situation2AEnterV + (signABon,).Situation2AEnterV Decelerate + (goLe f tLaneVehicleB, w1).Situation2AB + (goLe f tLaneVehicleB, w2).Situation2A3B + (goLe f tLaneVehicleB, w3).Situation2A4B + (goLe f tLaneVehicleB, w4).Situation2A5B;

In state Situation2AEnterV , Ego has the choice between its actions and VA can perform action runVehicleA. V B has the choice between actions runVehicleB, accelerateVehicleB and decelerateVehicleB. The component always returns to state Situation2AEnterV after these actions completion.

Action signABon is performed if there is a sign of type SignAB on the entrance lane.

Here it refers to the give way sign. If this action is performed, the component behaves as Situation2AEnterV Decelerate. When V B rolls on the entrance lane and does action goLe f tLaneVehicleB, it may arrive to Zone 2, Zone 3, Zone 4 or Zone 5. Therefore we assign to the rates of actions a weight w i , where i ∈ {1, 2, 3, 4} to simulate the possibility of V B entering each zone. The component behaves as Situation2AB, Situation2A3B, Situation2A4B, and Situation2A5B, if V B arrives to Zone 2, Zone 3, Zone 4 or Zone 5, respectively. In this state, Ego, VA and V B have the choice between their possible actions. After seeing the give way sign, V B is more likely to decelerate. We assign the activity rate a weight p 1 to adapt the frequency of the occurrence of action decelerateVehicleB. The component returns always to Situation2AEnterV Decelerate once this action is completed. Action signABo f f models the end of the impact of the sign of type SignAB. This action makes the component return to Situation2AEnterV .

Situation2AB = (runVehicleEGO,).Situation2AB + (accelerateVehicleEGO, w5).Situation2AB + (accelerateVehicleEGO, w6).Situation2A3B + (decelerateVehicleEGO,).Situation2AB + (runVehicleA,).Situation2AB + (runVehicleB,).Situation2AB + (accelerateVehicleB,).Situation2AB + (decelerateVehicleB, w7).Situation2AB + (decelerateVehicleB, w8).Situation2A3B;

State Situation2AB represents the situation where VA and V B are in Zone 2. The component has the chance to behave as Situation2A3B if action accelerateVehicleEGO or action decele-rateVehicleB is performed. We assign to rate of the first action a weight w i , where i ∈ {5, 6} to simulate the possibility that V B stays in Zone 2, or enters Zone 3, respectively. While we assign to rate of the second action a weight w i , where i ∈ {7, 8} to simulate the similar behaviours when V B performs the first action. Situation2A3B = (runVehicleEGO,).Situation2A3B + (accelerateVehicleEGO,).Situation2A3B + (decelerateVehicleEGO, w9).Situation2AB + (decelerateVehicleEGO, w10).Situation2A3B + (runVehicleA,).Situation2A3B + (runVehicleB,).Situation2A3B + (accelerateVehicleB, w11).Situation2AB + (accelerateVehicleB, w12).Situation2A3B + (decelerateVehicleB,).Situation2A3B;

State Situation2A3B models the situation where VA is in Zone 2 and V B is in Zone 3. From this state, we may have the chance to reach state Situation2AB if action decelerateVehicleEGO or action accelerateVehicleB is performed. We assign to rate of the first action a weight w i , where i ∈ {9, 10} to simulate the possibility that V B enters Zone 2, or stays in Zone 3, respectively. While we assign to rate of the second action a weight w i , where i ∈ {11, 12} to simulate the similar behaviours when V B performs the first action. Situation2A4B = (runVehicleEGO,).Situation2A4B + (accelerateVehicleEGO, w13).Situation2A4B + (accelerateVehicleEGO, w14).Situation2A5B + (decelerateVehicleEGO,).Situation2A4B + (runVehicleA,).Situation2A4B + (runVehicleB,).Situation2A4B + (accelerateVehicleB,).Situation2A4B + (decelerateVehicleB, w15).Situation2A4B + (decelerateVehicleB, w16).Situation2A5B; Sate Situation2A4B represents the situation where VA is in Zone 2 and V B is in Zone 4. The component has the chance to behave as Situation2A5B if action accelerateVehicleEGO or action decelerateVehicleB is performed. We assign to rate of the first action a weight w i , where i ∈ {13, 14} to simulate the possibility that V B stays in Zone 4, or enters Zone 5, respectively. While we assign to rate of the second action a weight w i , where i ∈ {15, 16} to simulate the similar behaviours when V B performs the first action. Situation2A5B = (runVehicleEGO,).Situation2A5B + (accelerateVehicleEGO,).Situation2A5B + (decelerateVehicleEGO, w17).Situation2A4B + (decelerateVehicleEGO, w18).Situation2A5B + (runVehicleA,).Situation2A5B + (runVehicleB,).Situation2A5B + (accelerateVehicleB, w19).Situation2A4B + (accelerateVehicleB, w20).Situation2A5B + (decelerateVehicleB,).Situation2A5B;

State Situation2A5B represents the situation where VA is in Zone 2 and V B is in Zone 5. The component has the chance to behave as Situation2A4B if action decelerateVehicleEGO or action accelerateVehicleB is performed. We assign to rate of the first action a weight w i , where i ∈ {17, 18} to simulate the possibility that V B enters Zone 4, or stays in Zone 5, respectively. While we to rate of the second action a weight w i , where i ∈ {19, 20} to simulate the similar behaviours when V B performs the first action.

Finally, the equation of the complete PEPA model of our example is the following:

Scenario def = Situation L 1 (VehicleEGO || VehicleA || VehicleB || EnLO f f || SignABO f f)
where L 1 is the actions set on which components VehicleEGO, VehicleA, VehicleB, EnLO f f and SignABO f f must cooperate individually with component Situation. It is defined as:

L 1 = {runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO, runVehicleA, goLe f tLaneVehicleB, runVehicleB, accelerateVehicleB, decelerateVehicleB, entranceOn, enterV, noEnterV, signABo f f , signABon}.

In order to test our model, we define a set of values for the rates of the actions and the assigned weights.

Currently, we can calculate the rates of some actions such as the actions corresponding to concepts Accelerate and Decelerate. For example, the rates of action accelerateVehicleB can be calculated using V B's initial speed v 1 , final speed v 2 and the distance d between the initial state and the final state of V B. The initial speed is the speed of V B before action accelerateVehicleB is performed, which is 75km/h. The final speed is the speed of V B after action accelerateVehicleB is performed, which is 85km/h and the distance is 0.1km. We can get the rate b 2 of this action using standard kinetic:

b 2 = v 2 2 -v 2 1 2d∆v = 85 2 -75 2 2 × 0.1 × 10 = 800 h -1
Unlike the values of the rates associated with actions Accelerate and Decelerate, the values of the other actions rates are set arbitrary because we unfortunately do not have them. The users of our tool can set their values according to their needs.

Table 7.3 presents the parameters values for the activities of components VehicleEGO, VehicleA, VehicleB, EnLO f f and SignABO f f . The values of the weights for this example are given arbitrarily and they are shown in Table 7.4. PEPA abstracts the activities performed by the components into a continuous-time Markov process. The PEPA model has 8 states. Each state is a tuple composed of the states of the components Situation, VehicleEGO, VehicleA, VehicleB, EnLO f f and SignABO f f as shown in Table 7.5. The initial state is (Situation2A, VehicleEGO, VehicleA, VehicleB, EnLO f f , SignABO f f). We can generate all possible scenarios and identify the critical ones from the transition graph of the whole model. One scenario includes one or several states in the transition graph which are connected. Each state of the model is regarded as a scene of a scenario. The states are the nodes of the transition graph, and the activities are the labels on the transitions. A scenario is considered as a path in the transition graph which includes at least one state. Critical scenarios are those which include critical states. We can get the steady-state probability distribution using Eclipse PEPA [START_REF] Hillston | Pepa tools[END_REF]. The probability of being in each state is provided in Figure 7-5. We can clearly see that system states State 6 and State 7 have the highest probabilities, and the sum of these probabilities is close to 1. Both states indicate that V B inserts after Ego. This means that case 2 (V B inserts after Ego) mentioned in Chapter 4 is the most likely to occur according to the sets of the values used in Table 7.3 andTable 7.4. This is normal as we considered that the give way sign makes V B more likely to decelerate.

Automatic Generation

In this section, we are interested in an automatic generation method which allows generating test cases that have an impact on the performance and the dependability of the vehicle. Because of the size of PEPA model, we propose an algorithm to generate automatically PEPA models in Sub-section 7.5.1. Then we propose an approach to generate automatically the test cases in Sub-section 7.5.2. Finally, a method to identify the critical test cases is presented in Sub-section 7.5.3.

Generation of the PEPA model

Because of the large number of the highway infrastructure elements, the number of possible vehicles, and the weather conditions, writing the PEPA components specially component Situation is tedious. Thus, we propose an algorithm to generate automatically PEPA models.

The main steps of this algorithm are the following:

Step 1. Set the number of the vehicles of type Other-Car in the model;

Step 2. Initialize all the PEPA components of the vehicles, the infrastructure and visibility with the corresponding equations in Section 7.3; Step 3. Initialize the component Situation with the scene which involves only the autonomous vehicle:

Situation = (runEGO,).Situation + (accelerateEGO,).Situation + (decelerateEGO,).Situation;

Step 4. Each time a component is added, the equation of component Situation adds the corresponding activities. For example, once component EntranceLane is added, the equation of Situation needs to include the terms " + (entranceOn,).SituationEnLOn".

Component Situation becomes:

Situation = (runEGO,).Situation + (accelerateEGO,).Situation + (decelerateEGO,).Situation + (entranceOn,).SituationEnLOn;

Step 5. Once a new state is added, the model is not closed-loop. For example, once action entranceOn is performed, component Situation behaves as SituationEnLOn. We need to complete the model with the following equation:

SituationEnLOn = (runVehicleEGO,).SituationEnLOn + (accelerateVehicleEGO,).SituationEnLOn + (decelerateVehicleEGO,).SituationEnLOn + (noEnterV,).Situation + (enterV,).SituationEnV ;

Step 6. If the model is not close-loop, go to Step 5; otherwise, build the set L of synchronisation actions. L contains all the actions of component Situation;

Step 7. Write the complete PEPA model equation which shows how the model components interact, and on which actions set they interact.

Step 8. Set all the rates and the weights to the selected values.

To start this algorithm, we need to set the number of the vehicles of type Other -Car and set T RUE to all necessary highway infrastructure. Then a file with '.pepa' suffix will be generated, which stores a complete PEPA model required.

Generation of the Test Cases

We propose an approach that allows generating automatically the test cases from any initial situation and with any number of scenes. The main steps of this approach, which is integrated to the third layer of our methodology, are the following:

Step 1. Generate all the states of the PEPA model with Eclipse PEPA. These states are regarded as the scenes of the autonomous vehicle;

Step 2. Find the pairs of states where a completed action in one of these states leads to the other state; Step 3. Generate the transition graph with the list of pairs of states;

Step 4. Set a number D to indicate the length of the scenarios that need to be generated, that is, the number of scenes of each scenario;

Step 5. Set the initial state Situation to begin the program;

Step 6. Return a list of scenarios from state Situation with D scenes in each scenario.

We need to prepare a file named 'activities.txt' of the components' equations except the component Situation which is stored in another file named 'situations.txt', and a file named 'rates.txt' that stores all activity rates and weights of possibilities. After the PEPA model is analyzed by Eclipse PEPA, a file with the suffix '.statespace' will be generated, which contains the steady-state probability distribution of PEPA model. In addition to these four files, we also need to set a number D to indicate the length of the scenarios that need to be generated and set the initial state Situation to begin the program. Then a file named 'test cases.txt' will be generated, which stores a list of scenarios (test cases) from state Situation with D scenes in each scenario.

Identification of the critical Test Cases

We want not only to find the critical scenarios, but also to sort these scenarios according to their criticality. Therefore, we propose to calculate their criticality CS as follows:

Suppose in a scenario S c , we have D states named T

1 ...T D . If T i , i ∈ [1, D] is critical, the criticality C i of state T i is set as C i =1. Otherwise if T i is not critical, C i =0.
The criticality of S c can be calculated as follows:

CS = ∑ C D C 1 D (7.1)
We also propose a method to calculate the criticality of each test case to evaluate comprehensively its importance:

Step 1. Each derivative state of component Situation is referred to by the name and the location of all the vehicles in this state (see Section 7.3).

Step 2. Zone 3 and Zone 4 being the critical zones, all the derivative states of component Situation with 3 or 4 in their name are critical states.

Step 3. All scenarios that contain one or several critical states are critical scenarios.

Step 4. Calculate the criticality of each scenario using formula (7.1).

Conclusion

In this chapter, we introduced the formal modelling language PEPA. We described more specifically the construction of the PEPA model using the running example presented in Chapter 4. We also proposed the approaches for the automatic generation of the PEPA model and the test cases, specially the critical ones with specific examples.

In the next chapter, we consider two case studies on which we apply our test cases generation methodology. And we give the critical test cases and their probabilities of occurrence in each case study.

111

Chapitre 8

Case Studies

Introduction

We have defined a test cases generation methodology in Chapter 4. With this methodology, we can generate the test cases for the context of the highway with entrance lanes, exit lanes and different road signs. The special road parts such as tolls and road works are also considered in our methodology. The weather conditions are represented as visibility. And all the other possibles vehicles around the autonomous vehicle are included.

In this Chapter, we investigate two case studies. The first case "One vehicle of type Other-Car riding with autonomous vehicle" is presented in Section 8.2. This case has only one vehicle riding around the autonomous vehicle. We chose this small model to show the complete steps allowing the generation of the scenarios and especially the critical ones. The Second case study "One vehicle of type Other-Car riding with autonomous vehicle in the context of general highway infrastructure" is a more complex case where traffic signs, entrance lanes, exit lanes, tolls and the visibility are considered. We chose it to show how we generate the PEPA model with different infrastructure elements and the visibility as the weather impact on the autonomous vehicle. This case study is presented in Section 8.3. Finally, we conclude this chapter in Section 8.4.

Case Study 1: Autonomous Vehicle in a Simple Context

We consider the situation "One vehicle of type Other-Car riding with autonomous vehicle" as a case study to show how to build the PEPA model, and how to generate all the scenarios, specially the critical ones.

The initial situation consists of static and mobile elements, which are presented in the following.

FIGURE 8-1 -Scenography

The highway is separated into two carriageways by a median. In the scenography of this example (Figure 8-1), a portion of one carriageway is selected. This carriageway has three through lanes: the right lane-Lane 1 , the center lane-Lane 2 and the left lane-Lane 3 . This portion of the road can be extended indefinitely. In this case study, the static elements are: highway, carriageway, median, through lane. The mobile elements are: autonomous vehicle Ego, other vehicle VA. The PEPA model modelling our system consists of three (3) components: VehicleEGO, VehicleA and Situation1A. These model the behaviour of the Ego car, vehicle VA, and the situation itself, respectively. The initial situation Situation1A indicates that Ego is rolling on the center lane and VA is rolling on Zone 1. The PEPA components and their actions are shown in Table 8.1. All these components and actions have been presented in Chapter 7. The PEPA equations of the sequential components VehicleEGO and VehicleA are as follows: VehicleEGO = (runVehicleEGO, e 1).VehicleEGO + (accelerateVehicleEGO, e 2).VehicleEGO + (decelerateVehicleEGO, e 3).VehicleEGO; VehicleA = (runVehicleA, a1).VehicleA + (accelerateVehicleA, a2).VehicleA + (decelerateVehicleA, a3).VehicleA + (goLe f tLaneVehicleA, a4).VehicleA + (goRightLaneVehicleA, a5).VehicleA;

PEPA model

The above equations are similar to those presented in Chapter 7

The PEPA component Situation1A has six (6) states. The behaviour of this component at its initial state is given by the following equation: Situation1A = (runVehicleEGO,).Situation1A + (accelerateVehicleEGO,).Situation1A + (decelerateVehicleEGO,).Situation1A + (runVehicleA,).Situation1A + (accelerateVehicleA,).Situation1A + (decelerateVehicleA,).Situation1A + (goLe f tLaneVehicleA, w1).Situation2A + (goLe f tLaneVehicleA, w2).Situation3A + (goLe f tLaneVehicleA, w3).Situation4A + (goLe f tLaneVehicleA, w4).Situation5A;

As stated in its equation, Ego has the choice between actions runVehicleEGO, accelerateVe-hicleEGO and decelerateVehicleEGO. Similarly, according to its equation, VA has the choice between actions runVehicleA, accelerateVehicleA, decelerateVehicleA and goLe f tLaneVehicleA.

As stated in component Situation1A equation, component VehicleEGO can perform its actions only in synchronisation with Situation1A. Similarly for the actions runVehicleA, acce-lerateVehicleA and decelerateVehicleA which can be completed by VehicleA only in cooperation with component Situation1A. Once one of these actions has been performed, component Situation1A remains in its initial state.

goRightLaneVehicleA is performed, VA arrives to Zone 1. Situation4A = (runVehicleEGO, w21).Situation4A + (runVehicleEGO, w22).Situation5A + (accelerateVehicleEGO, w23).Situation4A + (accelerateVehicleEGO, w24).Situation5A + (decelerateVehicleEGO,).Situation4A + (runVehicleA, w25).Situation4A + (runVehicleA, w26).Situation5A + (accelerateVehicleA,).Situation4A + (decelerateVehicleA, w27).Situation4A + (decelerateVehicleA, w28).Situation5A + (goLe f tLaneVehicleA,).Situation6A + (goRightLaneVehicleA,).Situation1A;

The derivative state Situation4A represents the situation where VA is in Zone 4. It can become Situation5A if one of the actions in {runVehicleEGO,accelerateVehicleEGO, runVehicleA, decelerateVehicleA} is performed. We assign to the rates of these actions a weight w i , where i ∈ {22, 24, 26, 28} to simulate the possibility that VA enters Zone 5. Similarly we assign them a weight w i , where i ∈ {21, 23, 25, 27} to simulate the possibility that VA remains in Zone 4. Once action goLe f tLaneVehicleA is performed, VA arrives to Zone 6, while if action goRightLaneVehicleA is performed, VA arrives to Zone 1. Situation5A = (runVehicleEGO, w29).Situation4A + (runVehicleEGO, w30).Situation5A + (accelerateVehicleEGO,).Situation5A + (decelerateVehicleEGO, w31).Situation4A + (decelerateVehicleEGO, w32).Situation5A + (runVehicleA, w33).Situation4A + (runVehicleA, w34).Situation5A + (accelerateVehicleA, w35).Situation4A + (accelerateVehicleA, w36).Situation5A + (decelerateVehicleA,).Situation5A + (goLe f tLaneVehicleA,).Situation6A + (goRightLaneVehicleA,).Situation1A;

The derivative state Situation5A represents the situation where VA is in Zone 5. It can become Situation4A if one of the actions in {runVehicleEGO, decelerateVehicleEGO, runVehicleA, accelerateVehicleA} is performed. We assign to the rates of these actions a weight w i , where i ∈ {29, 31, 33, 35} to simulate the possibility that VA enters Zone 4. Similarly we assign them a weight w i , where i ∈ {30, 32, 34, 36} to simulate the possibility that VA remains in Zone 5. Once action goLe f tLaneVehicleA is performed, VA arrives to Zone 6, while if action goRightLaneVehicleA is performed, VA arrives to Zone 1. Situation6A = (runVehicleEGO,).Situation6A + (accelerateVehicleEGO,).Situation6A + (decelerateVehicleEGO,).Situation6A + (runVehicleA,).Situation6A + (accelerateVehicleA,).Situation6A + (decelerateVehicleA,).Situation6A + (goRightLaneVehicleA, w37).Situation2A + (goRightLaneVehicleA, w38).Situation3A + (goRightLaneVehicleA, w39).Situation4A + (goRightLaneVehicleA, w40).Situation5A;

In component state Situation6A, Ego has the choice between its usual three actions. Similarly, VA has the choice between actions runVehicleA, accelerateVehicleA, decelerateVehicleA and goRightLaneVehicleA.

Both components VehicleEGO and VehicleA can perform their actions only in synchronisation with Situation6A. Once one of these actions has been performed, component Situation6A remains in its state.

However, once action goRightLaneVehicleA is performed, VA may arrive to Zone 2, Zone 3, Zone 4 or Zone 5. Therefore we assign to the rates of these actions a weight w i , where i ∈ {45, 46, 47, 48} to simulate the possibility of VA entering the corresponding zone. From Situation6A, we can go to Situation2A, Situation3A, Situation4A, and Situation5A according to the zone where VA arrives.

The complete PEPA model equation is the following:

Scenario def = Situation1A L 2 (VehicleEGO VehicleA)
where L 2 is the actions set on which components VehicleEGO and VehicleA must synchronise individually with Situation1A. It is defined as: L 2 ={runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO, goLe f tLaneVehicleA, goRightLaneVehicleA, runVehicleA, accelerateVehicleA, decelerateVehicleA}.) is close to 1/3. Thus according to the obtained results, VA has more chance to be in Zone 1 as the highest probability is the one to be in State 1. We can learn from Figure 8-5, which provides the probability of VA being in each lane, that VA has then 0,330708661417322 probability to be in Lane 2. Moreover, in Lane 2, VA has more chance to be in Zone 3 and Zone 5. VA has the lowest probability to be in Lane 3. This distribution is reasonable as VA enters the highway from Lane 1 before it is possible to enter Lane 2 and further enter Lane 3.

Numerical Results

PEPA

We implemented the algorithm generating the scenarios (see Chapter 7). With our program, we can generate scenarios with any initial state and any number of scenes. For example, we want to generate all possible scenarios with a length no greater than 2 scenes per scenario from State 1. In this case, we get ten (10) eligible scenarios (Table 8.4). This table shows that FIGURE 8-5 -Lane probability distribution for Scenario 1, the system is in State 1 and once the action runVehicleEGO is performed, the system remains its initial state. For Scenario 10, once the action goLe f tLaneVehicleA is performed, the system is in State 5. We can get different test cases by assigning different values to the rates (e i , a i , w i) in these scenarios. From these scenarios, if we want to find the critical ones, and sort them according to their criticality, we use the equation 7.1 defined in Chapter 7 which allows us to calculate the scenario criticality.

In each component state SituationXA, where X is a zone number, X = 1, ..., 6 there is an action which leads to another state. Zone 3 and Zone 4 being the critical zones, all the state names including 3 or 4 (Situation3A, Situation4A) indicate the critical situations when VA rolls in Zone 3 and Zone 4, respectively. Thus, all the scenarios which include these critical situations, that is State 3 and State 4, are critical scenarios which may lead to accidents. We consider the situation "One vehicle of type Other-Car riding with autonomous vehicle in the context of general highway infrastructure" as the second case study to show how to build the PEPA model of system which includes some representative infrastructure elements and whether conditions. In this situation, we choose to consider the entity toll. However, note that as toll is a sub-entity of RoadPart, like tunnel, bridge and road_work, we could have consider one of these sub-entities instead. The complete PEPA model equation is the following:

Scenario def = Situation L 3 (VehicleEGO VehicleA EnLO f f ExLO f f SpeedLimit SignABO f f SignAO f f SignBO f f SignCO f f Visibility TollO f f)
where L 3 is the actions set on which components Situation must synchronise with the other components of the model individually. It is defined as:

L 3 ={runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO, goLe f tLaneVehicleA, goRightLaneVehicleA, runVehicleA, accelerateVehicleA, decelerateVehicleA, entranceOn, enterV, noEnterV, exitOn, exitV, noExitV, limitLower, limitGreater, signABo f f , signABon, signAo f f , signAon, signBo f f , signBon, signCo f f , signCon, visibilityLower, visibilityGreater,tollOn,tollO f f ,tollOut}.

Numerical Results

This PEPA model has 1935 states, and the probability of being in each state is provided in Figure 8-6. These results are based on a set of random values for the rates and the weights in the model. Different values lead to different test cases and results. The probability is mainly concentrated in the first hundred of states, and gradually decreases. Most of the states with high We also calculate the probabilities of the system being in each scenario. The most probable scenario is: State 1, runVehicleEGO, State 1. Its occurrence probability is 0.0002791974785486466.

Conclusion

In this chapter, we use two case studies to show how we generate the scenarios and especially the critical ones. Because of the size of the PEPA models, specially the second one, we have used the algorithm presented in Chapter 7 to generate the PEPA models. We also used the algorithm presented in Chapter 7 to generate the scenarios.

So far, we can generate models of up to 6 vehicles of type Othercar. However, the model generated in this case consists of more than 3.6 million equations. This model is too large to be analyzed using the Eclipse tool.

At the same time we also get the criticality of the scenarios and the probability of their occurrence. These data can help us to choose more representative and influential scenarios to test and validate the decisions of ADSs.

These results are based on the properties values chosen. Other values will clearly lead to other results. Experts can give their own values to generate ADSs test cases using our methodology.

127

Chapitre 9

Conclusions

The autonomous vehicles industrial process showed significant acceleration state. The major companies are accelerating research on autonomous vehicles. In 2020, Google's Waymo is expected to achieve 20,000 autonomous vehicles and provide up to 1 million rides a day [Madrigal, 2018], while Baidu is expected to achieve mass production of autonomous vehicles [Millward, 2015]. Weilai will launch Level 4 autonomous vehicles with an L4 self-driving development kit, including cameras, millimeter-wave radar, lidar, GPS and other hardwares in 2022 [START_REF] Domeet Kevinbobo | After cooperating with intel mobileye, weilai north america headquarters announced[END_REF]. IHS Automotive's latest forecast is that annual sales of autonomous vehicles will reach nearly 600,000 by 2025, and that number will reach 21 millions by 2035 [Markit, 2016].

While autonomous driving systems continue to improve, autonomous vehicles equipped with high level ADSs are also being produced. From level 4, the automated systems perform the driving task and monitor the driving environment. The human driver does not need to regain control. However, the driver does not hold the steering wheel and does not monitor the surrounding environment, which is contrary to existing laws. Before pushing for changes in the law, we must first determine the safety of the developed ADSs. This is also the original intention of the SVA project, in which this thesis work lies.

The SVA project aims to respond by digital simulation to the challenge posed by the demonstration of safety and harmlessness of the functions on board autonomous vehicles. One of the major challenges is to be able to qualify the safety of autonomous vehicle decision algorithms. In this thesis, we proposed a methodology to generate all possible situations that autonomous vehicle will meet in the context of the highway. These situations are presented as test cases for testing and validating the decisions of ADSs.

In order to reduce the conceptual and the terminological confusion in our SVA project, firstly, we provide a clear definition of a test case as one or several scenarios describing the same situation applied to test one or several functions of ADSs. Then we defined three ontologies to specify, on the one hand the environment in which evolves the autonomous vehicle, and on the other hand the vehicle lights and its actions. In this thesis, we concentrate on the driving environment of the highway since the TJC system, on which SVA project works, is mainly used in highways.

We use the first-order logic to represent the different relationships that we have defined in the context of these ontologies. We defined three kinds of relationships between the entities of the defined concepts: the relationships between the highway entities, the relationships between the vehicle entities, and the relationships between the highway and vehicle entities. We redescribed the test cases with logical equations instead of natural language, thereby achieving primary formalization of a test case.

The test case generation methodology we developed consists of three layers: basic layer, interaction layer and generation layer. We introduced the construction of the highway model using the formal modelling language PEPA. We also investigated the generation of all scenarios, specially the critical ones. Solving the PEPA model allows us to compute the probability to be in each scene of a scenario, and thus in each scenario. Finally, we have applied our methodology on two case studies.

Our methodology gives a new idea of how to generate automatically the test cases and to identify the critical ones. We also proposed a method to calculate the criticality of each test case. We can comprehensively evaluate the importance of a test case by its criticality and its probability of occurrence.

In the future, more concepts can be added to expand our ontologies. We can make them suitable for all types of road and area such as the municipal roads and the parking areas. Thus our ontologies may support other uses in other contexts such as urban design.

Currently, the values of the rates of the actions other than Accelerate and Decelerate are set arbitrary because they are not available. We also do not have data on the impact of the different weather conditions on the autonomous vehicles behaviour. We could only use the property of visibility instead. In the future, if more actual test data are available or assisted by experts in the field, all data can be injected in our program.

In order to reduce the combinatorial explosion of the number of scenes, not all concepts in the ontology are modelled with PEPA in the generation layer. For example, we have defined the concept Shoulder in the highway ontology because it is part of the highway, but it is not very important in our model. In the future, we may add all the components if the computing power improves.

So far, we can generate PEPA models for up to six (6) vehicles of type Othercar around the autonomous vehicle. However, the generated model consists of more than 3.6 million equations, which makes it too large to be analyzed using the Eclipse PEPA tool. The PEPA model needs to be optimized. In the future, we can apply the aggregation technique developed for the PEPA models [Hillston, 1994] [Pourranjbar and[START_REF] Pourranjbar | [END_REF]. This technique allows reducing the size of a PEPA model if components exhibit the same behaviour, which is the case of the six vehicles of type Othercar in our model. It has been proved that the aggregated PEPA model is equivalent to the original one. Thus the state space of the underlying continuous-time Markov chain can be reduced, so that the model can include more components and/or solved in reasonable time.

Résumé

Depuis les années 1970, la recherche sur le véhicule autonome est devenue une tendance dans l'industrie. Dernièrement et après des années d'exploration, un certain progrès a été réalisé. En 2018, Audi a étendu le système d'information des feux de circulation V2I (Vehicle-to-Infrastructure) à Washington [Krok, 2018]. Nissan prévoit de poursuivre sa collaboration avec la NASA pour adapter la technologie de la NASA pour une utilisation sur sa plate-forme de mobilité autonome transparente [Bartosiak, 2018]. Non seulement l'industrie automobile traditionnelle est dédiée à ce domaine de recherche, mais d'autres sociétés, telles que Google et Intel, ont également participé au développement du véhicule autonome. Waymo, initialement projet de voiture autonome de Google, a annulé la conception du volant et des pédales [START_REF] Gain | Waymo patent shows plans to replace steering wheel & pedals with push buttons[END_REF], ce qui bouleverse complètement la conception des voitures traditionnelles. Les véhicules autonomes s'appuient principalement sur des systèmes intelligents pour atteindre l'objectif de la conduite autonome. Ils combinent une variété de capteurs pour percevoir leur environnement, tels que des caméras, des radars et des lidars. En effet, ils doivent évoluer dans un environnement imprévisible et un large contexte d'exécution dynamique, avec des interactions fortes. Les algorithmes de perception des ADSs (Automated Driving Systems) fournissent des observations sur les éléments environnementaux à partir des données fournies par les capteurs, tandis que les algorithmes de décision génèrent les actions à mettre en oeuvre par ces véhicules.

Selon les niveaux d'automatisation des véhicules de SAE (Society of Automotive Engineers), à partir du niveau 4, les systèmes automatisés exécutent la tâche de conduite et surveillent l'environnement de conduite. Le conducteur humain n'a pas besoin de reprendre le contrôle. Cependant, le conducteur ne tient pas le volant et ne surveille pas l'environnement autour, ce qui est contraire aux lois en vigueur. Avant de pousser pour des changements dans la loi, nous devons d'abord déterminer le niveau de sécurité des ADS développés.

Des ADSs sont développés pour exécuter les principaux aspects de la tâche de conduite dynamique [START_REF] Sae | Definitions for terms related to on-road motor vehicle automated driving systems[END_REF]. Les technologies développées devraient prévenir les accidents, réduire les émissions, transporter les personnes à mobilité réduite et réduire le stress lié à la conduite. Par exemple, le Département américain des transports (USDOT) estime que les véhicules automatisés peuvent réduire les décès et les blessures liés aux accidents, améliorer l'accès aux transports et réduire la congestion routière et les émissions des véhicules [NHTSA, 2016]. Mais les véhicules autonomes soulèvent également de nouveaux problèmes de sécurité qui sont dûs à la nature émergente de la technologie.

En effet, les ADSs sont des systèmes critiques dont les pannes peuvent avoir des conséquences catastrophiques. Des erreurs techniques systématiques des ADS, par exemple des bugs et des failles dans les capteurs ou des données manquantes, pourraient être à l'origine de sé-rieux dangers, semblables à des erreurs humaines. Des décès dûs à des ADSs immatures ont déjà été signalés et sont considérés comme en augmentation [BBC, 2018] [Everington, 2020]. La certification de sécurité et de fiabilité est une tâche qui reste donc à résoudre.

Comme tout autre système pouvant générer des événements potentiellement à risque, le véhicule autonome doit être conçu pour assurer la sécurité de ses occupants et des autres usagers de la route. La fiabilité de l'architecture et la logique comportementale des ADS doivent être testées, vérifiées et validées avant que les véhicules autonomes équipés de ces systèmes soient sur la route. Cela souligne la nécessité d'approches et d'outils améliorés pour évaluer la sécurité des mouvements des véhicules autonomes dans des environnements dynamiques et incertains.

Afin de garantir la fonctionnalité et la sécurité du système de conduite autonome, il est nécessaire de valider les décisions des algorithmes pour toutes les situations qui seront rencontrées par le véhicule. La complexité de la démonstration de la sécurité d'un véhicule autonome est liée au grand nombre de ces situations, à leur incertitude et aux technologies embarquées. Cela rend la validation par des tests en utilisation réelle extrêmement coûteuse, voire impossible dans certains cas. Afin de s'assurer que les exigences de sécurité ont été respectées, la validation des ADSs du véhicule autonome par simulation numérique est nécessaire.

Le projet SVA (Simulation de la sécurité des véhicules autonomes) [START_REF] Sva | Sva: Simulation pour la sécurité du véhicule autonome[END_REF], dans lequel s'inscrit ce travail de thèse, vise à répondre par la simulation numérique au défi posé par la démonstration de la sûreté de fonctionnement et de l'innocuité des fonctions à bord des véhicules autonomes. Lancé en 2015 pour une durée de quatre ans au sein de l'IRT SystemX, Paris-Saclay, France, le projet SVA vise à aborder la problématique de la validation des véhicules autonomes par la simulation numérique, en développant des méthodes et des outils d'aide à la conception et à la validation. Les modèles des composants du véhicule et leur environnement devraient être spécifiés, adaptés ou développés afin de simuler le comportement du véhicule en cas de défaillance de l'un de ses composants et l'impact sur son fonctionnement dû à des perturbations externes. Le projet SVA applique les méthodes développées à la fonction d'autonomie TJC (Traffic Jam Chauffeur), qui permet de contrôler le véhicule dans une situation d'embouteillage, à une vitesse maximale de 70 km/h et sur une chaussée séparée. L'objectif principal de ces travaux de thèse est de développer une approche complète permettant, d'une part la conceptualisation et la caractérisation des contextes d'exécution du véhicule autonome, et d'autre part, la modélisation et génération de cas de test. Ces cas de test sont générés pour décrire les situations de conduite. Nous nous intéressons à une méthode de génération automatique qui permet de générer des cas de test ayant un impact sur les performances et la fiabilité du véhicule. Générer tous les cas de test possibles est un défi. Nous nous concentrons sur les cas de test dans le contexte de l'autoroute qui est de type chaussée séparée. De plus, par rapport à d'autres types de routes, il existe des spécifications uniformes pour les autoroutes.

La sûreté de fonctionnement est un concept générique qui mesure la qualité du service fourni par un système. Cette confiance justifiée est obtenue grâce à une analyse qualitative et quantitative des différentes propriétés du service rendu par le système. Les ADSs étant testés, vérifiés et validés par simulation numérique, l'environnement de conduite du véhicule autonome doit être modélisé afin de pouvoir générer toutes les situations possibles que le véhicule peut rencontrer dans un contexte d'exécution dynamique. Ces situations sont générées sous forme de cas de test différents permettant de vérifier les fonctions et les informations nécessaires pour exécuter ces fonctions, ainsi que les décisions des ADSs.

Les méthodes formelles sont un type particulier de techniques et d'outils mathématiquement rigoureux pour la spécification, la conception et la vérification des systèmes logiciels et matériels. Les spécifications utilisées dans les méthodes formelles sont des énoncés bien formés dans une logique mathématique. Chaque étape découle d'une règle d'inférence et peut donc être vérifiée par un processus mécanique [START_REF] Alagar | Specification of Software Systems, Second Edition[END_REF]. Ces méthodes ont été initialement développées pour spécifier et vérifier le comportement correct des systèmes logiciels et matériels et ont été appliquées dans de nombreux domaines de développement de systèmes, et de nombreux accomplissements ont été réalisés [START_REF] Almeida | An Overview of Formal Methods Tools and Techniques[END_REF].

Il existe une variété de méthodes formelles de modélisation de système. Ces méthodes peuvent être classées en deux grandes catégories : les méthodes dédiées aux systèmes séries et celles dédiées aux systèmes concurrents.

Dans un système en série, les tâches sont traitées une par une, une tâche doit être terminée avant le début d'une autre. Ces systèmes peuvent être modélisés en utilisant des techniques telles que le langage Z [START_REF] Meyer | Méthodes de programmation[END_REF], la méthode de développement de Vienne (VDM) [START_REF] Bjørner | [END_REF] et la méthode B [Abrial, 1988].

Les systèmes concurrents sont beaucoup plus complexes que les systèmes en série. Un système concurrent permet à toutes les tâches de progresser pour supporter plus d'une tâche [START_REF] Galvin | Operating system concepts 10th edition[END_REF]. Il consiste en un ensemble de processus communiquant via des structures de données partagées ou des objets [Παλαιoδ ήµoς, 2018]. Il existe plusieurs types de techniques de modélisation pour les systèmes concurrents, tels que les processus de Markov [START_REF] Kemeny | Markov Chains[END_REF], les réseaux de Petri [Petri, 1962] et les algèbres de processus [START_REF] Bergstra | Handbook of process algebra[END_REF].

Bien que le véhicule autonome appartienne à la catégorie des systèmes concurrents, à notre connaissance, il existe peu de travaux dédiés aux approches formelles appliquées au domaine des véhicules autonomes.

Dans ces travaux de thèse nous nous intéressons à l'algèbre des processus, en particulier à PEPA (Performance Evaluation Process Algebra) [Hillston, 1994]. PEPA est une algèbre de processus stochastique conçue pour modéliser les systèmes informatiques et de communication. Ce langage formel a été développé pour étudier comment les caractéristiques de composition d'une algèbre de processus pourraient avoir un impact sur la pratique de la modélisation des performances. PEPA peut modéliser des éléments du système qui se comportent et évoluent Un processus de Markov en temps continu peut être derivé des composantes du modèle PEPA et de leurs interactions. Les outils existants (Eclipse PEPA [START_REF] Hillston | Pepa tools[END_REF]) permettent de générer ce processus Markov sous-jacent.

Méthodologie de génération de cas de test

Les constructeurs ont besoin d'une stratégie de génération complète pour garantir l'exhaustivité des situations auxquelles le véhicule autonome sera confronté [START_REF] Kone | Safety demonstration of autonomous vehicles: a review and future research questions[END_REF]. Cependant, comme le véhicule autonome repose sur la coopération de l'intelligence artificielle, des capteurs tels que les radars, les caméras et les lidars, et le GPS pour améliorer la sécurité routière et l'efficacité du trafic, avec le développement des technologies, ces capteurs fournissent de plus en plus d'éléments d'environnement de conduite aux ADSs. Ces éléments d'infrastructure combinés aux conditions météorologiques avec leurs propres propriétés peuvent conduire à l'explosion combinatoire du nombre des situations rencontrées par le véhicule, et par conséquent des scènes constituant les cas de test. Ainsi, générer tous les cas de test possibles devient presque impossible.

Dans cette thèse, nous proposons donc une approche de génération de cas de test qui se concentre sur les cas de test les plus représentatifs pour tester et valider les ADSs. Cette approche basée sur un modèle formel nous permet de modéliser formellement ces cas de test et d'identifier les plus critiques. Avant de présenter les détails de notre méthodologie de génération de cas de test, nous devons d'abord clarifier la définition d'un cas de test. Nous définissons un cas de test comme un environnement de conduite spécifique pour le véhicule autonome. Il consiste en un scénario décrivant une situation spécifique pour laquelle des valeurs sont attribuées aux propriétés de chaque élément du scénario. Le choix de ces valeurs dépend de l'objectif de chaque cas de test. Un scénario décrit le développement temporel entre plusieurs scènes dans une séquence de scènes. Il est associé aux actions de tous les éléments de la séquence de scènes. Une scène est un instantané de l'environnement du véhicule, y compris les éléments statiques et mobiles, et les relations entre ces éléments (Figure -1). Pour faire face à ce premier défi, nous devons identifier les concepts clés et les relations possibles entre les éléments impliqués dans les différents contextes d'exécution, pour donner des définitions claires de ces éléments. Ainsi, afin de conceptualiser et caractériser l'environnement de conduite pour la construction de cas de test, nous définissons trois ontologies : une ontologie de l'autoroute et une ontologie de la météo pour spécifier l'environnement dans lequel évolue le véhicule autonome, et une ontologie du véhicule qui se compose des feux du véhicule et des actions de contrôle. Chaque concept de ces ontologies est défini en termes d'entité, de sous-entités et de propriétés. Cette première étape constitue la couche de base de notre méthodologie qui inclut les éléments statiques et mobiles de l'environnement de conduite . Les éléments statiques font référence à tous les éléments géospatiaux fixes qui incluent l'infrastructure de l'autoroute et les conditions météorologiques. Les éléments mobiles sont des éléments qui ont la capacité de se déplacer. Ils incluent le véhicule autonome et les autres trafics. Cela permet de couvrir des éléments majeurs de l'infrastructure et des véhicules.

Les actions considérées sont celles effectuées par le véhicule autonome alors que les événements sont les actions réalisées par les éléments de l'environnement comme les autres véhicules du trafic, et qui sont considérées comme des événements du point de vue du véhicule autonome.

Notre approche permet de modéliser non seulement la circulation des véhicules, mais aussi l'apparition et la disparition des infrastructures au fur et à mesure que le véhicule autonome avance. Les valeurs de ces éléments sont les valeurs des propriétés de leurs concepts dans l'ontologie correspondante, qui déterminent leurs caractéristiques intrinsèques.

Parce que nous devons considérer toutes les relations entre différents concepts, nous considérons toutes les entités et les valeurs des propriétés correspondantes pour construire les relations entre les entités autoroute, les relations entre les entités véhicule et les relations entre les entités autoroute et véhicule. Ces relations sont exprimées en utilisant les equations de la logique du premier ordre, qui nous permet d'exprimer de manière simple les relations entre les différents éléments de notre système. Et cela constitue la deuxième couche de notre méthodologie appelée couche d'interaction.

Clairement la météo a un impact sur la conduite, mais nous ne disposons d'aucune information par le type d'impact dont il s'agit, surtout lorsque les conditions météorologiques interagissent les unes avec les autres entraînant des effets complexes. Dans ce travail, nous donnons la possibilité au véhicule autonome d'accélérer et de décélérer pour s'adapter aux différentes conditions météorologiques. Généralement, lorsque la visibilité est élevée, le véhicule se déplace plus vite et lorsque la visibilité est faible, le véhicule a tendance à ralentir. Par conséquent, dans ce travail, nous utilisons la propriété de visibilité pour modéliser l'impact de la météo sur le véhicule autonome. Si le testeur est un expert dans ce domaine ou a des exigences de test plus précises, d'autres concepts peuvent être ajoutés si nécessaire. Afin de générer les cas de test, nous nous référons à la définition d'un cas de test. Ainsi, la génération des cas de test comporte 3 étapes. Tout d'abord nous devons générer la scène FIGURE -2 -Méthodologie de génération de cas de test.

en fonction des concepts et des relations définis. Puis, les scénarios sont associés aux actions effectuées par le véhicule autonome et aux événements réalisés par les éléments de l'environnement dans la séquence des scènes. Enfin, un scénario devient un cas de test lorsque des valeurs sont affectées aux propriétés de chaque élément du scénario. Les étapes de génération des cas de test constituent la troisième et dernière couche de notre méthodologie appelée couche de génération.

A ce stade, nous formalisons les cas de test en utilisant PEPA (Performance Evaluation Process Algebra) [Hillston, 1994]. Dans notre modèle PEPA général, nous considérons la portion de chaussée d'autoroute autour du véhicule autonome, Ego (véhicule bleu sur la figure -3). En fonction de la vitesse de Ego et de la vitesse du véhicule éventuel suivant et juste avant Ego, on peut définir un zone critique (zone jaune sur la figure -3) dans la voie centrale. Cette zone est délimitée en considérant la distance minimale de sécurité qui doit séparer Ego des autres véhicules : celui juste avant et celui juste après. Les distances minimales de sécurité sont les distances parcourues par le véhicule pendant un délai d'au moins deux secondes, calculées à partir de la vitesse du véhicule.

De plus, nous séparons la portion de la chaussée en six (6) zones comme le montre la figure Compte tenu des concepts que nous avons définis dans nos ontologies, nous construisons un modèle PEPA qui se compose de dix-neuf (19) composantes. Toutes les équations qui caractérisent les comportements de ces composantes sont présentées dans le Chapitre 7.

En raison du grand nombre d'éléments de l'infrastructure autoroutière, du nombre de véhicules possibles et des conditions météorologiques, l'écriture des composantes PEPA est fastidieuse. Aussi, nous proposons d'abord un algorithme pour générer automatiquement des modèles PEPA. Par ailleurs, comme nous nous intéressons à la génération automatique des cas de test, nous proposons une méthode qui permet de classer ces cas de test en fonction de leur impact sur les performances et la fiabilité du véhicule. Nous proposons également un algorithme qui permet de générer automatiquement les cas de test à partir de n'importe quelle situation initiale et avec n'importe quel nombre de scènes. Cela aussi nous permet d'identifier les cas de test critiques. Enfin, nous proposons une méthode pour calculer la criticité de chaque cas de test afin d'évaluer de manière exhaustive son importance.

Nous avons appliqué notre méthodologie sur deux études de cas. Le premier cas " Véhicule autonome dans un contexte simple" ne comporte qu'un seul véhicule circulant autour du véhicule autonome. Nous avons choisi ce petit modèle pour montrer les étapes complètes permettant la génération des scénarios et notamment les plus critiques. La seconde étude de cas " Véhicule autonome dans un contexte complexe" est un cas plus complexe où les panneaux de signalisation, les voies d'entrée, les voies de sortie, les péages et la visibilité sont pris en compte. Nous l'avons choisi pour montrer comment nous générons le modèle PEPA avec différents éléments de l'infrastructure autoroutière et la visibilité comme impact météorologique sur le véhicule autonome.

Conclusions et Perspectives

La méthodologie de génération de cas de test que nous avons développée se compose de trois couches: une couche de base, une couche d'interaction et une couche de génération. Nous avons également étudié la génération de tous les scénarios, en particulier les plus critiques. La résolution du modèle PEPA nous permet de calculer la probabilité d'être dans chaque scène d'un scénario, et donc dans chaque scénario. Notre méthodologie donne une nouvelle idée de la façon de générer automatiquement les cas de test et d'identifier les cas critiques. Nous avons également proposé une méthode pour calculer la criticité de chaque cas de test. Nous pouvons évaluer globalement l'importance d'un cas de test par sa criticité et sa probabilité d'occurrence. À l'avenir, d'autres concepts pourront être ajoutés pour étendre nos ontologies. Nous pouvons les adapter à tous les types de routes et de zones telles que les routes municipales et les parkings. Ainsi, nos ontologies peuvent être considérées pour d'autres utilisations dans d'autres contextes tels que le design urbain.

Actuellement, les valeurs des taux des actions autres que Accelerate et Decelerate sont définies de manière arbitraire car elles ne sont pas disponibles. Nous ne disposons pas non plus de données sur l'impact des différentes conditions météorologiques sur le comportement des véhicules autonomes. Nous ne pouvons utiliser que la propriété de visibilité à la place. À l'avenir, si des données de test réelles sont disponibles ou assistées par des experts dans le domaine, toutes les données pourront être injectées dans nos programmes. Afin de réduire l'explosion combinatoire du nombre de scènes, tous les concepts de l'ontologie ne sont pas modélisés avec PEPA dans la couche de génération. Par exemple, nous avons défini le concept Shoulder dans l'ontologie autoroute car il fait partie de l'autoroute, mais ce n'est pas très important dans notre modèle. À l'avenir, nous pourrons ajouter au modèle PEPA toutes les composantes nécessaires pour modéliser les éléments non pris en compte si la puissance de calcul nous le permet.

Jusqu'à présent, nous pouvons générer des modèles PEPA pour jusqu'à six (6) véhicules autour du véhicule autonome. Cependant, le modèle généré se compose de plus de 3,6 millions d'équations, ce qui le rend trop volumineux pour être analysé à l'aide de l'outil Eclipse PEPA. Aussi le modèle PEPA doit être optimisé. À l'avenir, nous pourrons appliquer la technique d'agrégation développée pour les modèles PEPA [Hillston, 1994]. Cette technique permet de réduire la taille d'un modèle PEPA si les composantes présentent le même comportement, ce qui est le cas des six véhicules de notre système. Il a été prouvé que le modèle PEPA agrégé est équivalent au modèle original. Ainsi, l'espace d'états de la chaîne de Markov en temps continu sous-jacente peut être réduit, de sorte que le modèle peut inclure plus de composantes et/ou être résolu en un temps raisonnable. 141

2- 1

 1 Levels of driving automation . 2-2 V-Cycle ISO 26262 Road vehicles Functional Safety 2-3 V-Cycle of Autonomous vehicle development 4-1 Use-Case according to [Ulbrich et al., 2015] 4-2 The Test Case structure. 4-3 A scenario (red dashed line) made by actions/events (edges) and scenes (nodes) 4-4 A scenario representation . 4-5 Scenography of the running example. 4-6 Initial scene of the running example. 4-7 Test cases generation methodology. 4-8 Relationships (solid lines) and effects (dashed lines). 4-9 Vehicle insertion before Ego. 4-10 Vehicle insertion after Ego. 5-1 Concepts of highway ontology. 5-2 Composition of Roadway. 5-3 Types of lanes in highway. 5-4 Entrance Lane of highway. 5-5 Exit Lane of highway. 5-6 Weave Lane of highway. 5-7 Concepts of Weather ontology. 5-8 Concepts of vehicle ontology. 6-1 Relationships between the highway entities. 6-2 Vehicles around EgoCar. 7-1 Critical zone around Ego. 7-2 Zones in the scene. 7-3 Movements between zones. 7-4 Zones of running example. 7-5 Steady-state probability distribution. 8-1 Scenography . 8-2 Initial scene. 8-3 Zones' numbers in the scene. 8-4 Steady-state probability distribution . 8-5 Lane probability distribution . 8-6 Steady-state probability distribution . 8-7 Sequences of critical scenarios' states . -1 Structure du cas de test. -2 Méthodologie de génération de cas de test. -3 Zone critique autour de Ego. -4 Zones dans la scène. -5 Mouvements entre zones. Liste des tableaux 5.1 Definition of the concept EntranceLane . 5.2 Definition of the concept Daylight . 5.3 Maximum amount of water vapor contained in an air particle 5.4 Qualitative and Quantitative assessment of Rain 5.5 Qualitative and Quantitative assessment of Snow 5.6 Properties of concept Vehicle . 5.7 Properties of the lights . 7.1 Ontology concepts and their corresponding components or actions 7.2 PEPA Components and their possible actions 7.3 Activities of components . 7.4 Weights of rates . 7.5 State space of model PEPA . 8.1 Components and actions of PEPA model . 8.2 Set of rates . 8.3 Set of Weight . 8.4 Test cases of length 2 from State 1 . 8.5 Criticality of the scenarios . 8.6 Components and actions of the PEPA model 121

FIGURE 2

 2 FIGURE 2-2 -V-Cycle ISO 26262 Road vehicles Functional Safety

FIGURE 2

 2 FIGURE 2-3 -V-Cycle of Autonomous vehicle development

FIGURE 4

 4 FIGURE 4-2 -The Test Case structure.

 FIGURE 4-3 -A scenario (red dashed line) made by actions/events (edges) and scenes (nodes)

 FIGURE 4-5 -Scenography of the running example.

 FIGURE 4-6 -Initial scene of the running example.

FIGURE 4

 4 FIGURE 4-7 -Test cases generation methodology.

) concepts based on the French official documents [Ministère de l'écologie, 1988] [Ministère de l'équipement, 2000].

 -9), Ego decelerates and V B turns on the left direction lights and begins to insert before Ego. It follows that the radar of Ego detects this vehicle which becomes the new target vehicle. Ego follows V B.

FIGURE 4

 4 FIGURE 4-9 -Vehicle insertion before Ego.

 FIGURE 4-10 -Vehicle insertion after Ego.

 FIGURE 5-1 -Concepts of highway ontology.

FIGURE 5

 5 FIGURE 5-2 -Composition of Roadway.

FIGURE 5

 5 FIGURE 5-4 -Entrance Lane of highway.

FIGURE 5

 5 FIGURE 5-5 -Exit Lane of highway.

FIGURE 5

 5 FIGURE 5-6 -Weave Lane of highway.

 FIGURE 5-7 -Concepts of Weather ontology.

FIGURE 5

 5 FIGURE 5-8 -Concepts of vehicle ontology.

 -Accelerate: this action indicates the increase in the speed of a vehicle. -Decelerate: this action is aimed to reduce the speed of a vehicle. -GoLeftLane: this action indicates a change in the lateral position of a vehicle. The vehicle can move to the left lane. -GoRightLane: this action indicates a change in the lateral position of a vehicle. The vehicle can move to the right lane.

 ∃y ∈ RoadwaySet | hasRoadway(x, y); -∀x ∈ RoadwaySet, ∃y ∈ CarriagewaySet | hasCarriageway(x, y); -∀x ∈ CarriagewaySet, ∃y ∈ LaneSet | hasLane(x, y); -∀x ∈ RoadwaySet, ∃ ∈ LaneSet | hasLane(x, y); -∀x ∈ RoadPartSet, ∃y ∈ LaneSet | hasLane(x, y); -∀x ∈ EntranceLaneSet, ∃y ∈ AccelerationSectionSet | hasSection(x, y); -∀x ∈ EntranceLaneSet, ∃y ∈ TaperSet | hasSection(x, y); -∀x ∈ WeaveLaneSet, ∃y ∈ AccelerationSectionSet | hasSection(x, y); -∀x ∈ WeaveLaneSet, ∃y ∈ DecelerationSectionSet | hasSection(x, y); -∀x ∈ WeaveLaneSet, ∃y ∈ TaperSet | hasSection(x, y); -∀x ∈ ExitLaneSet, ∃y ∈ DecelerationSectionSet | hasSection(x, y); -∀x ∈ RoadwaySet, ∃y ∈ MedianSet | hasMedian(x, y); -∀x ∈ RoadwaySet, ∃y ∈ ShoulderSet | hasShoulder(x, y); -∀x ∈ HighwaySet, ∃y ∈ SymbolSet | hasSymbolt(x, y);

) transverse position relationships: -∃x ∈ LaneSet, ∀y ∈ MedianSet | besideMedian(x, y); -∃x ∈ (T hroughLaneSet ∪AuxiliaryLaneSet ∪PavedShoulderSet), ∀y ∈ T hroughLaneSet | besideLane(x, y); -∃x ∈ (AuxiliaryLaneSet ∪PavedShoulderSet), ∀y ∈ AuxiliaryLaneSet | besideLane(x, y); -∃x ∈ (MedianSet ∪PavedShoulderSet), ∀y ∈ CarriagewaySet | besideCarriageway(x, y); -∃x ∈ MarkingSet, ∀y, z ∈ (MedianSet ∪LaneSet ∪ShoulderSet)∧(besideMedian(y, z)∨ besideShoulder(y, z) ∨ besideLane(y, z)) | MarkingBetween(x, y, z).

 FIGURE 6-2 -Vehicles around EgoCar.

 r).P, component S carries out activity (α, r) which has action type α and a duration which is exponentially distributed with parameter r before behaving as P.Choice:S def = P + Q, S may behave either as component P or as component Q. result of the cooperation or synchronisation between components P and Q. Shared activities in the cooperation set L determine the interactions between components P and Q, replacing the individual activities of the individual components P and Q with a rate reflecting the rate of the slower participant.

 Zone 1 indicates the left lane. Zone 2 and Zone 5 indicate the uncritical zones in front and behind Ego. Zone 3 indicates the critical zone in front of Ego while Zone 4 indicates the critical one behind it. Zone 6 indicates the right lane. Both Zone 1 and Zone 6 are uncritical zones for Ego.

FIGURE 7

 7 FIGURE 7-1 -Critical zone around Ego.

FIGURE 7

 7 FIGURE 7-2 -Zones in the scene. FIGURE 7-3 -Movements between zones.

 FIGURE 7-5 -Steady-state probability distribution.

FIGURE 8

 8 FIGURE 8-2 -Initial scene.

FIGURE 8

 8 FIGURE 8-3 -Zones' numbers in the scene.

FIGURE 8

 8 FIGURE 8-4 -Steady-state probability distribution

 Study 2: Autonomous Vehicle in a Complex Context

FIGURE 8

 8 FIGURE 8-7 -Sequences of critical scenarios' states

 individuellement ou en coopération les uns avec les autres. Cette technique de modélisation est suffisamment puissante pour modéliser tous les comportements d'un système.Un modèle PEPA est construit en identifiant les composantes du système effectuant des activités. Cette technique est caractérisée par un petit ensemble d'opérateurs. Ces opérateurs et leur syntaxe sont définis comme suit :S def = (α, r).P | P + Q | P L Q | P/L | A Prefix: S def = (α,r).P, la composante S effectue l'activité (α, r) qui a le type d'action α et une durée qui est exponentiellement distribuée avec le paramètre r avant de se comporter comme P. Choice: S def = P + Q, S peut se comporter soit comme la composante P, soit comme la composante Q. est le résultat de la coopération ou de la synchronisation entre les composantes P et Q. Les activités partagées dans l'ensemble de coopération L déterminent les interactions entre les composantes P et Q, en remplaçant les activités individuelles des composantes individuelles P et Q par un taux reflétant le taux du participant le plus lent. Hiding: S def = P/L, le système se comporte comme la composante P, sauf que toute activité dans l'ensemble L est masquée. Son type n'est pas observé à la fin. Il apparaît comme le type inconnu τ et peut être considéré comme un retard interne de la composanteà S le comportement de la composante A. En général, on l'utilise pour attribuer des noms aux composantes.

FIGURE - 1 -

 1 FIGURE -1 -Structure du cas de test.Pour générer les cas de test, nous devons faire face à un premier défi -la confusion conceptuelle et terminologique dans le projet SVA. Différentes terminologies sont utilisées par les partenaires du projet avec des formalismes et des besoins différents. De plus, certains mots utilisés dans la même terminologie sont ambigus, certains sont redondants et ont donc la même signification, tandis qu'un même mot peut avoir des significations différentes. Cela entraîne un manque de compréhension commune entre les partenaires du projet et des difficultés de coopération limitant ainsi le potentiel de réutilisation et de partage de leurs travaux. Ainsi, nous avons besoin d'un vocabulaire commun pour toutes les parties prenantes qui ont besoin de partager des informations dans le domaine des véhicules autonomes.

FIGURE - 3 -

 3 FIGURE -3 -Zone critique autour de Ego.

- 4 .

 4 Nous numérotons ces zones de un à six. La zone 1 indique la voie de gauche. Les zones 2 et 5 indiquent les zones non critiques devant et derrière Ego. La zone 3 indique la zone critique devant Ego tandis que la zone 4 indique la zone critique derrière lui. La zone 6 indique la voie de droite. Les zones 1 et 6 sont des zones non critiques pour Ego. Un autre véhicule peut être dans n'importe quelle zone autour de Ego. Nous modélisons les mouvements des autres véhicules entre les zones avec le graphe de la figure -5. Ce graphique montre toutes les transitions possibles entre ces zones. Par exemple, un véhicule peut se déplacer entre la zone 1 et la zone k, et entre la zone k et la zone 6, k = 2, 3, 4, 5. Il peut également se déplacer entre la zone 2 et la zone 3, et entre la zone 4 et la zone 5. Tous les véhicules dans les zones non critiques peuvent pénétrer dans les zones critiques et vice versa.

FIGURE - 4 -

 4 FIGURE -4 -Zones dans la scène. FIGURE -5 -Mouvements entre zones.

TABLE 5

 5

	.4 -Qualitative and Quantitative assessment of Rain
	Qualitative assessment Quantitative assessment
	Light rain	1 to 3 mm per hour
	Moderate rain	4 to 7 mm per hour
	Heavy rain	8 mm per hour and more

TABLE 5

 5

	.5 -Qualitative and Quantitative assessment of Snow
	Qualitative assessment Quantitative assessment
	Light snow	Less than 1 mm per hour
	Moderate snow	1 to 5 mm per hour
	Heavy snow	5 mm per hour and more

TABLE 5

 5

		.6 -Properties of concept Vehicle
	ID	Ego	Vc 1	Vc 2
	Role	EgoCar TargetCar OtherCar
	Category Class1	Class1	Class1
	Height	H e	H 1	H 2

TABLE 5

 5

			.7 -Properties of the lights	
	Type of lights	State	Position	Number	Color
	Parking light	on or off	front and rear	4 (2 at the front, 2 at the rear)	white (front) red (rear)
		high-beams,			
	Headlight	low-beams	front	2	white or yellow
		or off			
	Brake Light	on or off	rear	2 or 3	red
	Reversing light	on or off	rear or rear right	1 or 2	white
	Direction light flashing or off front and rear	4	orange
				3 or 4	white
	Fog light	on or off	front and rear	(2 at the front,	or yellow (front)
				1 or 2 at the rear)	red (rear)

TABLE 7 .

 7 1 -Ontology concepts and their corresponding components or actions

	Ontology Concept Components
	Vehicle	VehicleEGO, VehicleA
	EntranceLane	EnLO f f
	ExitLane	

TABLE 7

 7

	.3 -Activities of components	TABLE 7.4 -Weights of rates
	Action	Rate	Weight Weight
	runVehicleEGO	e 1 500	p 1 5
	accelerateVehicleEGO e 2 900	w 1 1 w 11 5
	decelerateVehicleEGO e 3 300	w 2 2 w 12 5
	runVehicleA	a 1 400	w 3 3 w 13 8
	runVehicleB	b 1 400	w 4 4 w 14 2
	accelerateVehicleB	b 2 800	w 5 4 w 15 4
	decelerateVehicleB	b 3 200	w 6 6 w 16 6
	goLe f tLaneVehicleB	b 4 600	w 7 7 w 17 2
	entranceOn	u 1 50	w 8 3 w 18 8
	enterV	u 2	1	w 9 6 w 19 7
	noEnterV	u 3 60	w 10 4 w 20 3
	signABo f f	u 4 800	
	signABon	u 5 800	

TABLE 7

 7

			.5 -State space of model PEPA		
	State	Situation	Ego	VA	VB	Entrance Lane	SignAB
	State 1	Situation2A	VehicleEGO VehicleA VehicleB	EnLO f f	SignABO f f
	State 2	Situation2AEnLOn	VehicleEGO VehicleA VehicleB	EnLOn	SignABO f f
	State 3	Situation2AEnterV	VehicleEGO VehicleA VehicleB	EnLO f f	SignABO f f
	State 4	Situation2AB	VehicleEGO VehicleA VehicleB	EnLO f f	SignABO f f
	State 5	Situation2A3B	VehicleEGO VehicleA VehicleB	EnLO f f	SignABO f f
	State 6	Situation2A4B	VehicleEGO VehicleA VehicleB	EnLO f f	SignABO f f
	State 7	Situation2A5B	VehicleEGO VehicleA VehicleB	EnLO f f	SignABO f f
	State 8 Situation2AEnterV Decelerate VehicleEGO VehicleA VehicleB	EnLO f f	SignABOn

TABLE 8

 8

		.1 -Components and actions of PEPA model
	Componengts Actions		
	VehicleEGO runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO
	VehicleA	runVehicleA,	accelerateVehicleA,	decelerateVehicleA,
		goLe f tLaneVehicleA, goRightLaneVehicleA	
	Situation1A runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO,
		runVehicleA,	accelerateVehicleA,	decelerateVehicleA,
		goLe f tLaneVehicleA, goRightLaneVehicleA	

 abstracts the activities performed by components into a continuous-time Markov process. The underlying Markov Chain of the PEPA model has 6 states. They are:We can get the steady-state probability distribution using the tool Eclipse Plug-in for PEPA. The probability of being in each state is provided in Figure8-4. These probabilities are based TABLE 8.3 -Set of Weight Weight Value Weight Value Weight Value Weight Value on the activity rates in Table 8.2 and the weights in Table 8.3. These values are automatically generated with our algorithm (see Chapter 7).

	w1	8		w11	2		w21	7		w31	6
	w2	9		w12	4		w22	8		w32	6
	w3	5		w13	2		w23	10		w33	5
	w4	10		w14	8		w24	5		w34	4
	w5	10		w15	4		w25	9		w35	7
	w6	5		w16	10		w26	9		w36	7
	w7	7		w17	3		w27	2		w37	8
	w8	5		w18	9		w28	7		w38	4
	w9	2		w19	5		w29	8		w39	5
	w10	1		w20	1		w30	7		w40	3
	State 1: {Situation1A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
	on Zone 1;								
	State 2: {Situation2A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
	on Zone 2;								
	State 3: {Situation3A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
	on Zone 3;								
	State 4: {Situation4A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
	on Zone 4;								
	State 5: {Situation5A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
	on Zone 5;								
	State 6: {Situation6A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
	on Zone 6.								
				TABLE 8.2 -Set of rates		
		Rate	a1	a2	a3	a4	a5	e1	e2	e3
	Value 400 800 200 600 700 500 900 300

TABLE 8

 8

		.4 -Test cases of length 2 from State 1
	Scenario Initial State	Action	Next State
	1	State 1	runVehicleEGO	State 1
	2	State 1	accelerateVehicleEGO	State 1
	3	State 1	decelerateVehicleEGO	State 1
	4	State 1	runVehicleA	State 1
	5	State 1	accelerateVehicleA	State 1
	6	State 1	decelerateVehicleA	State 1
	7	State 1	goLe f tLaneVehicleA	State 2
	8	State 1	goLe f tLaneVehicleA	State 3
	9	State 1	goLe f tLaneVehicleA	State 4
	10	State 1	goLe f tLaneVehicleA	State 5

Table 8 .

 8 5 presents the criticality of each scenario in Table8.4. The criticality of both Scenario 8 and Scenario 9 is 0.5, since there is a critical state, respectively, State 3 and State 4, in each of these scenarios.

		TABLE 8.5 -Criticality of the scenarios			
	Scenario	1	2	3	4	5	6	7	8	9	10
	Criticality 0.									

TABLE 8

 8 noEnterV , exitOn, exitV , noExitV , limitLower, limitGreater, signAo f f , signAon, signABo f f , signABon, signBo f f , signBon, signBo f f , signBon, signCo f f , signCon, visibilityLower, visibilityGreater, tollOn, tollO f f , tollOut This is a general situation which also includes the situation considered in Case Study 1. In the initial scene of this case study, the autonomous vehicle Ego rolls on the center lane of a separated lane road. One (1) vehicle of type OtherCar can appear in any zone around Ego. Zone 3 and Zone 4 are the critical zones, according to the minimum safety distance that must separate Ego from other vehicles.Component states SituationEnLOn and SituationEnterV are similar to those of the running example (see Chapter 7). If there is a vehicle on the entrance lane, action enterV may be performed and this leads to the derivative state SituationEnterV . When VA rolls on the entrance lane and does action goLe f tLaneVehicleA, it arrives on Lane 3 which leads to component state Situation1A, which is the state defined in Case Study 1.Component state SituationExLOn is similar to SituationEnLOn. But in this state, there is no vehicle exiting using the exit lane because there is only Ego on the road. For the other states with exit lane, for example state Situation1AExLOn, if there is a vehicle exiting, the action exitV is performed which leads to component derivative state Situation1A.As component state Situation, derivative states SituationAccelerate and SituationDecelerate have the same actions and behaviours. The only difference is that the rates of actions accelera-123 teVehicleEGO and decelerateVehicleEGO increase differently.Component state SituationLe f tRight is similar to the initial state Situation because there is no other car and Ego cannot change lane. For the other situations of this case study, the rates of the actions goLe f tLaneVehicleA and goRightLaneVehicleA increase to represent the augmentation of the action occurrence.The following component states SituationEnLOnAccelerate, SituationEnLOnDecelerate, SituationEnLOnLeftRight, SituationExLOnAccelerate, SituationExLOnDecelerate and Situa-tionExLOnLeftRight are almost similar to states SituationAccelerate, SituationDecelerate and SituationLeftRight. The difference is that there is an entrance lane in the first ones and an exit lane in the last ones.

		.6 -Components and actions of the PEPA model
	Componengts Actions		
	VehicleEGO runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO
	VehicleA	runVehicleA,	accelerateVehicleA,	decelerateVehicleA,
		goLe f tLaneVehicleA, goRightLaneVehicleA	
	EnLOff	entranceOn, enterV , noEnterV	
	ExLOff	exitOn, exitV , noExitV	
	SpeedLimit	limitLower, limitGreater	
	SignAOff	signAo f f , signAon		
	SignABOff	signABo f f , signABon		
	SignBOff	signBo f f , signBon		
	SignCOff	signCo f f , signCon		
	Visibility	visibilityLower, visibilityGreater	
	TollOff	tollOn, tollO f f , tollOut	
	Situation	runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO,
		runVehicleA,	accelerateVehicleA,	decelerateVehicleA,
		goLe f tLaneVehicleA, goRightLaneVehicleA, entranceOn, enterV ,

RoadWorkO f f workOn, workOut, workO f f TunnelO f f tunnelOn, tunnelOut, tunnelO f f BridgeO f f bridgeOn, bridgeOut, bridgeO f f SignAO f f signAon, signAo f f SignBO f f signBon, signBo f f SignABO f f signABon, signABo f f SignCO f f signCon, signCo f f SignDO f f signDon, signDo f f SignEO f f signEon, signEo f f SignJO f f signJon, signJo f f SignSRO f f signSRon, signSRo f f SignKO f f signKon,signKo f f SpeedLimit limitLower, limitGreater Visibility visibilityLower, visibilityGreater

Definition: paved_shoulder is an entity that represents an area located along the road and specially designed to allow, in case of absolute necessity, the stopping or parking of the vehicle. It is bounded by a broken line composed of 39 m long lines spaced by 13 m.

The PavedShoulder concept is characterized by the same properties as the Shoulder concept (see Sub-section 5.2.14).

UnpavedShoulder

Entity: unpaved_shoulder Definition: unpaved_shoulder is an entity that represents an unpaved part of the shoulder which is not intended for use by through traffic. In addition to its normal transition function between stabilized structures and embankments or gullies, it participates in visual clearance and supports the Sign concept (Sub-section 5.2.22).

The Unpaved Shoulder entity is characterized by the same properties as the Shoulder concept (See Sub-section 5.2.14).

Median concept

Entity: median Definition: median is an entity that represents the reserved area that separates opposing lanes of traffic on divided highways. It is used to install certain sign (Sub-section 5.2.22) and, if necessary, piles of structures and landscaping.

The Median entity is characterized by the same properties as the Shoulder concept (See Sub-section 5.2.14).

Symbol concept

Entity: symbol Definition: symbol is an entity that represents a pictogram associated or not with a mention, used to identify an interchange, to pre-signal a direction prohibited to a category of vehicles, to indicate a direction recommended to a category of vehicles and to characterize a road.

The Symbol concept is characterized by the following properties:

• Color: this is the road symbol color with its meaning -White: this color is used for normal road markings.

-Blue: this color is possibly used for parking limits in the blue zone.

-Red: this color is used for the red and white checkerboard materializing the start of the distress routes. -Yellow: this color is used for temporary marking.

• Type: this is the type of the symbol.

-Marking (see Sub-section 5.2.19); -Sign (see Sub-section 5.2.22).

Marking concept

Entity: marking Definition: marking is an entity that represents a signal on the ground whose geometry, definition and use determine its legibility for the road user.

The Marking concept is characterized by the following properties:

• Color: this is the marking color with its meaning -White: this color is used for normal road markings.

-Blue: this color is possibly used for parking limits in the blue zone.

-Red: this color is used for the red and white checker-board materializing the start of the distress roads. -Yellow: this color is used for temporary marking.

• Width: this is the distance between the two edges of the line of the marking.

• Type: this is the type of the marking.

-Longitudinal Marking (see Sub-section 5.2.20); -Specific Marking (see Sub-section 5.2.21).

LongitudinalMarking concept

Entity: longitudinal_marking Definition: longitudinal_marking is an entity that designates all the lines drawn in the direction of the lanes.

The LongitudinalMarking entity is characterized by the following properties:

• Colour: this is the marking color with its meaning -White: this color is used for normal road markings.

-Blue: this color is possibly used for parking limits in the blue zone.

Analysing the knowledge in a domain is possible as soon as the specification of the terms of the domain is made. Based on the defined ontologies, we can build instances such as maps, roads and vehicles. In the next chapter (Chapter 6), we develop the ontologies by applying first-order logic to model the relationships between the elements in the scenes.

The PEPA equations of the sequential component TunnelO f f are the following:

TunnelO f f = (tunnelOn, u 31).TunnelOn; TunnelOn = (tunnelOut, u 32).TunnelOut;

The initial state TunnelO f f indicates that there is no tunnel on the current RoadPart of the highway. Action tunnelOn models the appearance of a tunnel and it leads to state TunnelOn. The action tunnelOut models the fact that Ego passed tunnel and the completion of this action leads to state TunnelOut. The component returns to state TunnelO f f with action tunnelO f f which models the fact that the tunnel does no longer appear in the current road portion. Variables u 31 , u 32 and u 33 are the rates of the corresponding actions.

Component RoadWorkO f f

Road works may make one or several lanes in a certain road part impossible. At this time, the vehicles need to change lanes to avoid driving in these lanes. However, our model assumes that the autonomous vehicle does not change its lane, so the road repairs included in this work refer to those road work that do not affect the passage of the road and only need to reduce the speed of the road.

The PEPA equations of the sequential component RoadWorkO f f are the following:

The initial state RoadWorkO f f indicates that there is no road work on the current RoadPart of the highway. Action roadworkOn models the appearance of a tunnel and it leads to state RoadWorkOn. The action roadworkOut models the fact that Ego passed tunnel and the completion of this action leads to state RoadWorkOut. The component returns to state RoadWorkO f f with action roadworkO f f which models the fact that the road work does no longer appear in the current road portion. Variables u 41 , u 42 and u 43 are the rates of the corresponding actions.

Components modelling the traffic signs

We consider two types of traffic signs on the highway: short and long term signs. A shortterm sign represents the sign which is valid for the moment where the sign is present. A longterm sign represents a sign which is valid for a long duration after the sign appearance, until another sign that replaces it appears.

where L is the actions set on which all the components must cooperate individually with component Situation(XN) * S?. This model equation states that there must be at least vehicle Ego (component VehicleEGO) while all the other components are optional.

Example: A two vehicles PEPA model

We construct a PEPA model for the running example presented in Chapter 4. There are three vehicles in the example: Ego-car Ego (blue car in Figure 8-2), Target car VA (red car in Figure 8-2) and an Other car V B (green car in Figure 8-2). Since the division of zones is based on the position of Ego which is in Lane 1, the zones of the running example are noted as Figure 7-4. Based on the entities in the initial scene of this example, we consider six PEPA components: VehicleEGO, VehicleA, VehicleB, EnLO f f , SignABO f f and Situation2A. Variables e i , i = 1, 2, 3 are the rates of the corresponding actions.

Component VehicleA models the green car VA which is the target car of Ego. Generally, the PEPA equation of the sequential component VehicleA is the following: VehicleA = (runVehicleA, a1).VehicleA + (accelerateVehicleA, a2).VehicleA + (decelerateVehicleA, a3).VehicleA + (goLe f tLaneVehicleA, a4).VehicleA + (goRightLaneVehicleA, a5).VehicleA;

In the running example, we suppose that VA rolls with neither lane change actions or speed change actions. Thus the PEPA equation of the sequential component VehicleA is reduced to the following: VehicleA = (runVehicleA, a1).VehicleA;

Once action goLe f tLaneVehicleA is performed, VA may arrive to Zone 2, Zone 3, Zone 4 or Zone 5. Therefore we assign to the rate of this action a weight w i , where i ∈ {1, 2, 3, 4} to simulate the possibility of VA entering the corresponding zone. This action leads to state Situation2A, Situation3A, Situation4A, and Situation5A according to the zone where VA arrives.

Situation2A = (runVehicleEGO, w5).Situation2A + (runVehicleEGO, w6).Situation3A + (accelerateVehicleEGO, w7).Situation2A + (accelerateVehicleEGO, w8).Situation3A + (decelerateVehicleEGO,).Situation2A + (runVehicleA, w9).Situation2A + (runVehicleA, w10).Situation3A + (accelerateVehicleA,).Situation2A + (accelerateVehicleA, w11).Situation2A + (decelerateVehicleA, w12).Situation3A + (goLe f tLaneVehicleA,).Situation6A + (goRightLaneVehicleA,).Situation1A;

The derivative state Situation2A represents the situation where VA is in Zone 2. It can become Situation3A if one of the actions in {runVehicleEGO, accelerateVehicleEGO, runVehicleA, decelerateVehicleA} is performed. This is because the location of the zones is related to the location of Ego. Zones move forward with Ego. The first action runVehicleEGO can change the location of VA to Zone 3 because Ego can be faster than VA. This is similar to the effect of action accelerateVehicleEGO if preformed. Action runVehicleA can change the location of VA to Zone 3 because VA can be slower than Ego. This is similar to the effect of action decelerateVehicleA if preformed. These reasons apply to all derivative states in the following.

We assign to the rates of the actions in the set a weight w i , where i ∈ {6, 8, 10, 12} to simulate the possibility that VA enters Zone 3. Similarly we assign them a weight w i , where i ∈ {5, 7, 9, 11} to simulate the possibility that VA remains in Zone 2. Once action goLe f tLaneVehicleA is performed, VA arrives to Zone 6, while if action goRightLaneVehicleA is performed, VA arrives to Zone 1. Situation3A = (runVehicleEGO, w13).Situation2A + (runVehicleEGO, w14).Situation3A + (accelerateVehicleEGO,).Situation3A + (decelerateVehicleEGO, w15).Situation2A + (decelerateVehicleEGO, w16).Situation3A + (runVehicleA, w17).Situation2A + (runVehicleA, w18).Situation3A + (accelerateVehicleA, w19).Situation2A + (accelerateVehicleA, w20).Situation3A + (decelerateVehicleA,).Situation3A + (goLe f tLaneVehicleA,).Situation6A + (goRightLaneVehicleA,).Situation1A;

The derivative state Situation3A represents the situation where VA is in Zone 3. It can become Situation2A if one of the actions in {runVehicleEGO, decelerateVehicleEGO, runVehicleA, accelerateVehicleA} is performed. We assign to the rates of these actions a weight w i , where i ∈ {13, 15, 17, 19} to simulate the possibility that VA enters Zone 2. Similarly we assign them a weight w i , where i ∈ {14, 16, 18, 20} to simulate the possibility that VA remains in Zone 3. Once action goLe f tLaneVehicleA is performed, VA arrives to Zone 6, while if action In the PEPA model modelling this system, there are eleven (11) components: VehicleEGO, VehicleA, EnLO f f , ExLO f f , SpeedLimit, SignAO f f , SignABO f f , SignBO f f , SignCO f f , Visibility, TollO f f and Situation. These model the behaviour of the Ego car, any other vehicle, say VA, entrance lanes, exit lanes, Speed limit signs, signs of type A, AB, B and C, tolls and visibility, and the scene itself, respectively. The PEPA components and their actions are shown in Table 8.6. In the following, we present only component Situation because all the other components are similar to those presented in Chapter 7.

We suppose that Ego is always on Lane 2 (Figure 8 In the initial state Situation, Ego has the choice between actions runVehicleEGO, accelerateVehicleEGO and decelerateVehicleEGO. Situation always remains in the initial state after these actions. Once one of the actions in {limitLower, signAon, signBon, visibilityLower, tollOn} is performed, the state becomes SituationDecelerate. Executing action limitGreater or visibilityGreater leads to derivative state SituationAccelerate. There is also the possibility that once action signAon or signBon is performed, the component state becomes SituationLe f tRight. Finally, the execution of action entranceOn and exitOn leads to state SituationEnLOn and SituationExLOn, respectively. probability have no or only one sign.

State 14 (SituationExLOnAccelerate, VehicleEGO, VehicleA, EnLO f f , ExLOn, Speed-Limit, SignABO f f , SignAO f f , SignBO f f , SignCO f f , Visibility, TollO f f) has the highest probability (0.028133829166193326). This state refers to the situation where there is no sign and no toll. While State 1918 (Situation2AEnLOn, VehicleEGO, VehicleA, EnLOn, ExLO f f , SpeedLimit, SignABO f f , SignAOn, SignBOn, SignCOn, Visibility, TollOut) has the smallest probability (4,54531810598917E-07). This state refers to the situation where there are three signs appearing at the exit of toll.