
HAL Id: tel-03211428
https://theses.hal.science/tel-03211428

Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Modeling and Automatic Generation of Test
Cases for the Autonomous Vehicle

Wei Chen

To cite this version:
Wei Chen. Formal Modeling and Automatic Generation of Test Cases for the Autonomous Vehicle.
Artificial Intelligence [cs.AI]. Université Paris-Saclay, 2020. English. �NNT : 2020UPASG002�. �tel-
03211428�

https://theses.hal.science/tel-03211428
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
0
U
PA

S
G
0
0
2

Formal Modeling and Automatic
Generation of Test Cases for the

Autonomous Vehicle

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580 : sciences et technologies de
l’information et de la communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: Université Paris-Saclay, UVSQ, Données et

Algorithmes pour une ville intelligente et durable, 78035, Versailles,
France.

Référent: Université de Versailles-Saint-Quentin-en-Yvelines

Thèse présentée et soutenue en visioconférence totale le
24/09/2020, par

Wei CHEN

Composition du jury:

Hanna KLAUDEL Présidente
Professeur, Université d’Evry-Val d’Essonne
Stephen GILMORE Rapporteur
Professeur, The University of Edinburgh
Eric LEVRAT Rapporteur
Professeur, Université de Lorraine
Stéphane GéRONIMI Examinateur
Ingénieur, Groupe PSA, Vélizy
Christian LAUGIER Examinateur
Directeur de recherche, INRIA Grenoble Rhône-Alpes
Mohamed TLIG Examinateur
Ingénieur de recherche, IRT SystemX

Leïla KLOUL Directrice
Maître de conférences HDR, Université de Versailles-
Saint-Quentin-en-Yvelines

Titre: Modélisation formelle et génération automatique de cas de test pour le véhicule

autonome

Mots clés: Véhicule autonome, Cas de test, Sûreté de fonctionnement, Modèles formels, On-

tologie, PEPA

Résumé: Les véhicules autonomes reposent

principalement sur un pilote de système intel-

ligent pour réaliser les fonctions de la conduite

autonome. Ils combinent une variété de cap-

teurs (caméras, radars, lidars,..) pour percevoir

leurs environnements. Les algorithmes de per-

ception des ADSs (Automated Driving Systems)

fournissent des observations sur les éléments en-

vironnementaux à partir des données fournies

par les capteurs, tandis que les algorithmes de

décision génèrent les actions à mettre en oeu-

vre par les véhicules. Les ADSs sont donc des

systèmes critiques dont les pannes peuvent avoir

des conséquences catastrophiques. Pour assurer

la sûreté de fonctionnement de tels systèmes, il

est nécessaire de spéci�er, valider et sécuriser la

�abilité de l'architecture et de la logique com-

portementale de ces systèmes pour toutes les sit-

uations qui seront rencontrées par le véhicule.

Ces situations sont décrites et générées comme

di�érents cas de test.

L'objectif de cette thèse est de développer

une approche complète permettant la concep-

tualisation et la caractérisation de contextes

d'exécution pour le véhicule autonome, et la

modélisation formelle des cas de test dans le con-

texte de l'autoroute. En�n, cette approche doit

permettre une génération automatique des cas

de test qui ont un impact sur les performances

et la �abilité du véhicule.

Dans cette thèse, nous proposons une

méthodologie de génération de cas de test com-

posée de trois niveaux. Le premier niveau com-

prend tous les concepts statiques et mobiles de

trois ontologies que nous dé�nissons a�n de con-

ceptualiser et de caractériser l'environnement

d'execution du véhicule autonome: une on-

tologie de l'autoroute et une ontologie de

la météo pour spéci�er l'environnement dans

lequel évolue le véhicule autonome, et une on-

tologie du véhicule qui se compose des feux

du véhicule et les actions de contrôle. Chaque

concept de ces ontologies est dé�ni en termes

d'entité, de sous-entités et de propriétés.

Le second niveau comprend les interactions

entre les entités des ontologies dé�nies. Nous

utilisons les équations de la logique du premier

ordre pour représenter les relations entre ces en-

tités.

Le troisième et dernier niveau est dédié

à la génération de cas de test qui est basée

sur l'algèbre des processus PEPA (Performance

Evaluation Process Algebra). Celle-ci est util-

isée pour modéliser les situations décrites par

les cas de test.

Notre approche permet de générer automa-

tiquement les cas de test et d'identi�er les cas

critiques. Nous pouvons générer des cas de

test à partir de n'importe quelle situation ini-

tiale et avec n'importe quel nombre de scènes.

En�n, nous proposons une méthode pour cal-

culer la criticité de chaque cas de test. Nous

pouvons évaluer globalement l'importance d'un

cas de test par sa criticité et sa probabilité

d'occurrence.

4

Title: Formal Modeling and Automatic Generation of Test Cases for the Autonomous

Vehicle

Keywords: Autonomous vehicle, Test cases, Safety analysis, Formal models, Ontology, PEPA

Abstract: Autonomous vehicles mainly rely

on an intelligent system pilot to achieve the pur-

pose of self-driving. They combine a variety of

sensors (cameras, radars, lidars,..) to perceive

their surroundings. The perception algorithms

of the Automated Driving Systems (ADSs) pro-

vide observations on the environmental elements

based on the data provided by the sensors, while

decision algorithms generate the actions to be

implemented by the vehicles. Therefore, ADSs

are safety-critical systems whose failures can

have catastrophic consequences. To ensure the

safety of such systems, it is necessary to spec-

ify, validate and secure the dependability of the

architecture and the behavioural logic of ADSs

running on vehicle for all the situations that will

be met by the vehicle. These situations are de-

scribed and generated as di�erent test cases.

The objective of this thesis is to develop a

complete approach allowing the conceptualiza-

tion and the characterization of execution con-

texts of autonomous vehicle, and the formal

modelling of the test cases in the context of the

highway. Finally, this approach has to allow an

automatic generation of the test cases that have

an impact on the performances and the depend-

ability of the vehicle.

In this thesis, we propose a three-layer test

case generation methodology. The �rst layer in-

cludes all static and mobile concepts of three

ontologies we de�ne in order to conceptualize

and characterize the driving environment for the

construction of test cases: a highway ontology

and a weather ontology to specify the environ-

ment in which evolves the autonomous vehicle,

and a vehicle ontology which consists of the vehi-

cle lights and the control actions. Each concept

of these ontologies is de�ned in terms of entity,

sub-entities and properties.

The second layer includes the interactions

between the entities of the de�ned ontologies.

We use �rst-order logic equations to represent

the relationships between these entities.

The third and last layer is dedicated to

the test case generation which is based on the

process algebra PEPA (Performance Evaluation

Process Algebra), which is used to model the

situations described by the test cases.

Our approach allows us to generate auto-

matically the test cases and to identify the crit-

ical ones. We can generate test cases from any

initial situation and with any number of scenes.

Finally we propose a method to calculate the

criticality of each test case. We can comprehen-

sively evaluate the importance of a test case by

its criticality and its probability of occurrence.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Table des matières

1 Introduction 13

1.1 Test case generation issues . 15

1.2 The Contribution of the thesis . 15

1.3 The thesis outline . 16

2 Autonomous Vehicles and Safety 19

2.1 Introduction . 19

2.2 Autonomous Vehicle . 20

2.3 Safety of Autonomous Vehicle . 23

2.4 Conclusion . 26

3 State of art 27

3.1 INTRODUCTION . 27

3.2 ONTOLOGY . 28

3.3 FORMAL METHODS . 31

3.3.1 Serial system modelling techniques 31

3.3.2 Concurrent system modelling techniques 33

3.3.2.1 Markov processes . 33

3.3.2.2 Petri Nets . 34

1

3.3.2.3 Process Algebras . 35

3.4 Conclusion . 38

4 Test Cases Generation Methodology 41

4.1 Introduction . 41

4.2 Test Case . 42

4.3 A Running Example . 44

4.4 Test Case Generation Methodology . 45

4.4.1 Basic Layer . 46

4.4.2 Interaction layer . 48

4.4.3 Generation layer . 49

4.5 Conclusion . 51

5 Scene Conceptualization and Characterization 53

5.1 Introduction . 53

5.2 Highway ontology . 54

5.2.1 Highway concept . 55

5.2.2 RoadPart concept . 56

5.2.3 Toll concept . 57

5.2.4 RoadWork concept . 57

5.2.5 Tunnel concept . 57

5.2.6 Bridge concept . 58

5.2.7 Roadway concept . 58

5.2.8 Carriageway concept . 59

5.2.9 ThroughLane concept . 59

2

5.2.10 AuxiliaryLane concept . 60

5.2.11 EntranceLane concept . 61

5.2.12 ExitLane concept . 62

5.2.13 WeaveLane concept . 62

5.2.14 Shoulder concept . 63

5.2.15 PavedShoulder . 63

5.2.16 UnpavedShoulder . 64

5.2.17 Median concept . 64

5.2.18 Symbol concept . 64

5.2.19 Marking concept . 65

5.2.20 LongitudinalMarking concept . 65

5.2.21 SpecificMarking concept . 66

5.2.22 Sign concept . 66

5.3 Weather ontology . 67

5.3.1 Daylight concept . 67

5.3.2 Temperature concept . 68

5.3.3 Pressure concept . 69

5.3.4 Humidity concept . 69

5.3.5 Wind concept . 69

5.3.6 Precipitation concept . 70

5.3.7 Rain concept . 70

5.3.8 Snow concept . 71

5.3.9 Hail concept . 71

5.3.10 Fog concept . 72

3

5.3.11 Haze concept . 72

5.4 Vehicle ontology . 73

5.4.1 Vehicle concept . 73

5.4.2 Light concept . 75

5.4.3 Action concept . 75

5.5 Conclusion . 76

6 Logical Relations for Ontologies 79

6.1 Introduction . 79

6.2 The Syntax . 80

6.2.1 Logical symbols . 80

6.2.2 Set symbols . 80

6.2.3 Function symbols . 82

6.3 Relationships . 83

6.3.1 Relationships between the highway entities 83

6.3.1.1 Inheritance relationships . 84

6.3.1.2 Composition relationships 85

6.3.1.3 Position relationships . 86

6.3.2 Relationships between the vehicle entities 88

6.3.3 Relationships between the entities of the highway and the vehicle . . . 89

6.4 Conclusion . 90

7 Formal modelling using PEPA 91

7.1 Introduction . 91

7.2 Syntax of PEPA . 92

4

7.3 General PEPA model for highway . 93

7.3.1 Component VehicleEgo . 96

7.3.2 Component VehicleA . 96

7.3.3 Components EnLO f f and ExLO f f 97

7.3.4 Components modelling the special areas 97

7.3.5 Component TollO f f . 97

7.3.6 Component BridgeO f f . 98

7.3.7 Component TunnelO f f . 98

7.3.8 Component RoadWorkO f f . 99

7.3.9 Components modelling the traffic signs 99

7.3.9.1 Component SignMO f f . 100

7.3.9.2 Component SpeedLimit . 100

7.3.10 Component Visibility . 100

7.3.11 Component Situation . 101

7.3.12 General Equation . 101

7.4 Example: A two vehicles PEPA model . 102

7.5 Automatic Generation . 108

7.5.1 Generation of the PEPA model . 108

7.5.2 Generation of the Test Cases . 109

7.5.3 Identification of the critical Test Cases 110

7.6 Conclusion . 111

8 Case Studies 113

8.1 Introduction . 113

8.2 Case Study 1: Autonomous Vehicle in a Simple Context 113

5

8.2.1 PEPA model . 114

8.2.2 Numerical Results . 118

8.3 Case Study 2: Autonomous Vehicle in a Complex Context 121

8.3.1 Numerical Results . 125

8.4 Conclusion . 127

9 Conclusions 129

6

Table des figures

2-1 Levels of driving automation . 21

2-2 V-Cycle ISO 26262 Road vehicles Functional Safety 25

2-3 V-Cycle of Autonomous vehicle development 26

4-1 Use-Case according to [Ulbrich et al., 2015] 42

4-2 The Test Case structure. 43

4-3 A scenario (red dashed line) made by actions/events (edges) and scenes (nodes) 44

4-4 A scenario representation . 44

4-5 Scenography of the running example. 45

4-6 Initial scene of the running example. 45

4-7 Test cases generation methodology. 47

4-8 Relationships (solid lines) and effects (dashed lines). 49

4-9 Vehicle insertion before Ego. 50

4-10 Vehicle insertion after Ego. 50

5-1 Concepts of highway ontology. 55

5-2 Composition of Roadway. 59

5-3 Types of lanes in highway. 60

5-4 Entrance Lane of highway. 61

7

5-5 Exit Lane of highway. 62

5-6 Weave Lane of highway. 63

5-7 Concepts of Weather ontology. 68

5-8 Concepts of vehicle ontology. 73

6-1 Relationships between the highway entities. 84

6-2 Vehicles around EgoCar. 88

7-1 Critical zone around Ego. 94

7-2 Zones in the scene. 94

7-3 Movements between zones. 94

7-4 Zones of running example. 102

7-5 Steady-state probability distribution. 108

8-1 Scenography . 114

8-2 Initial scene. 114

8-3 Zones’ numbers in the scene. 114

8-4 Steady-state probability distribution . 119

8-5 Lane probability distribution . 120

8-6 Steady-state probability distribution . 126

8-7 Sequences of critical scenarios’ states . 127

-1 Structure du cas de test. 136

-2 Méthodologie de génération de cas de test. 138

-3 Zone critique autour de Ego. 139

-4 Zones dans la scène. 139

-5 Mouvements entre zones. 139

8

Liste des tableaux

5.1 Definition of the concept EntranceLane . 55

5.2 Definition of the concept Daylight . 68

5.3 Maximum amount of water vapor contained in an air particle 69

5.4 Qualitative and Quantitative assessment of Rain 70

5.5 Qualitative and Quantitative assessment of Snow 71

5.6 Properties of concept Vehicle . 74

5.7 Properties of the lights . 76

7.1 Ontology concepts and their corresponding components or actions 95

7.2 PEPA Components and their possible actions 95

7.3 Activities of components . 107

7.4 Weights of rates . 107

7.5 State space of model PEPA . 107

8.1 Components and actions of PEPA model . 115

8.2 Set of rates . 118

8.3 Set of Weight . 119

8.4 Test cases of length 2 from State 1 . 120

8.5 Criticality of the scenarios . 121

9

8.6 Components and actions of the PEPA model 121

10

Abstract
Autonomous vehicles mainly rely on an intelligent system pilot to achieve the purpose of

self-driving. They combine a variety of sensors to perceive their surroundings, such as came-
ras, radars and lidars. The perception algorithms of the Automated Driving Systems (ADSs)
provide observations on the environmental elements based on the data provided by the sensors,
while decision algorithms generate the actions to be implemented by the vehicles. Therefore,
ADSs are safety-critical systems whose failures can have catastrophic consequences. To ensure
the safety of such systems, it is necessary to specify, validate and secure the dependability of
the architecture and the behavioural logic of ADSs running on vehicle for all the situations that
will be met by the vehicle. These situations are described and generated as different test cases.

The objective of this thesis is to develop a complete approach allowing the conceptuali-
zation and the characterization of execution contexts of autonomous vehicle, and the formal
modelling of the test cases. Finally, this approach has to allow an automatic generation of the
test cases that have an impact on the performance and the dependability of the vehicle.

Firstly, we defined a test case as a scenario describing a specific situation with the properties
of each component in the scenario. In order to conceptualize and the characterize the driving
environment for the construction of test cases, we define three ontologies: a highway ontology
and a weather ontology to specify the environment in which evolves the autonomous vehicle,
and a vehicle ontology which consists of the vehicle lights and the control actions. Each concept
of these ontologies is defined in terms of entity, sub-entities and properties. Then we use first-
order logic equations to represent the relationships between the defined entities. Finally, we
propose a three-layer test case generation methodology.

The first layer of the proposed generation methodology includes all static and mobile
concepts of our ontologies, while the second layer includes the interactions between the enti-
ties of these ontologies. The third and last layer is the test case generation layer which is based
on the process algebra PEPA (Performance Evaluation Process Algebra). The components of
a PEPA model are the entities of the ontologies and the activities are the actions performed by
these entities with their occurrence rates. We developed an algorithm to generate automatically
the PEPA models, which are then executed using Eclipse PEPA to obtain their steady-state
probability distributions.

Our approach allows us to generate automatically the test cases and to identify the critical
ones. We can generate test cases with any initial situation and any number of scenes. Finally
we propose a method to calculate the criticality of each test case. We can comprehensively
evaluate the importance of a test case by its criticality and its probability of occurrence.

Key Word: Autonomous Vehicle, Test Case, Ontology, Formal Method, PEPA

11

12

Chapitre 1

Introduction

Autonomous cars mainly rely on intelligent systems to achieve the purpose of self-driving.
They combine a variety of sensors to perceive their surroundings, such as cameras, radars and
lidars. They must evolve in an unpredictable environment and a wide context of dynamic exe-
cution, with strong interactions. The perception algorithms of the Automated Driving Systems
(ADSs) provide observations on the environmental elements based on the data provided by the
sensors, while decision algorithms generate the actions to be implemented by these vehicles.

ADSs are being developed to perform the primary aspects of the dynamic driving task
[SAE, 2014]. Since the 1970s, the research on the autonomous vehicle became a tentancy in
the industry. Lately and after years of exploration, a certain progress has been made. In early
2018, Audi expanded Traffic Light Information Vehicle-to-Infrastructure (V2I) system to Wa-
shington [Krok, 2018]. Nissan plans to continue the collaboration with NASA to adapt the
NASA technology for use in their Seamless Autonomous Mobility platform [Bartosiak, 2018].
Not only is the traditional auto industry dedicated to this research domain, but other compa-
nies, such as Google and Intel, have also participated to the development of the autonomous
vehicles. Waymo, which started as Google’s self-driving car project, canceled the design of the
steering wheel and pedals [Gain, 2017], which completely overturns the design of traditional
cars.

The developed technologies are expected to prevent accidents, reduce emissions, transport
the mobility-impaired and reduce driving related stress. For example, the U.S. Department of
Transportation (USDOT) believes that automated vehicles can reduce crash-related deaths and
injuries, improve access to transportation and reduce traffic congestion and vehicle emissions
[NHTSA, 2016]. But the autonomous vehicles also raise new safety issues which are due to the
emerging nature of the technology.

ADSs are safety-critical systems whose failures can have catastrophic consequences. Sys-
tematic technical errors of ADSs, for example bugs and flaws in the sensors or the data short-

13

comings systems, could become significant hazards akin to human errors. Fatalities caused
by immature ADSs have been reported and are considered to be on the rise [BBC, 2018]
[Everington, 2020]. Safety and reliability certification is a task yet to be solved.

As autonomous vehicles are integrated into our lives, and ADSs are given control of even
more complex driving tasks, the need for dependable, secure systems has become acute. Like
any other system that can generate potentially risky events, the autonomous vehicle must be
designed to ensure the safety of its occupants and other road users. The dependability of the
architecture and the behavioural logic of ADSs should be tested, verified, and validated before
the autonomous vehicles equipped with these systems are on the road. This emphasizes the
need of enhanced approaches and tools to assess the safety of the movements of the autonomous
vehicles in dynamic and uncertain environments.

In order to guarantee the functionality and the safety of the autonomous driving system, it
is necessary to validate the decisions of the algorithms for all the situations that will be met by
the vehicle. The complexity of demonstrating the safety of an autonomous vehicle are related
to the large number of these situations, their uncertainty, and to the on-board technologies. This
makes validation by tests in real use extremely costly, even impossible in certain cases. In order
to gain confidence that the safety requirements have been achieved, validating the ADSs of the
autonomous vehicle through digital simulation is necessary.

SVA (Simulation of Autonomous Vehicule Safety) Project [SVA, 2016] aims to respond by
digital simulation to the challenge posed by the demonstration of safety and harmlessness of
the functions on board autonomous vehicles. Launched in 2015 for a period of four years in the
framework of IRT SystemX, Paris-Saclay, France, the SVA project aims to address the issue of
autonomous vehicle validation through digital simulation, by developing methods and tools to
assist in the design and validation. The models of vehicle components and their environment
should be specified, adapted or developed in order to simulate the behaviour of the vehicle in
the event of a failure of one of its components and the impact on its operation due to external
disturbances. SVA project applies the developed methods to the TJC (Traffic Jam Chauffeur)
autonomy function, which can control the vehicle in a traffic jam situation, at a maximum speed
of 70 km/h and on a separate carriageway.

The objective of this these, which is supervised in the context of the SVA project, is to
develop a complete approach allowing, on the one hand the conceptualization and the charac-
terization of the execution contexts of the autonomous vehicle, and on the other hand, the test
cases modelling and generation. These test cases are generated to describe the driving situa-
tions. We are interested in an automatic generation method which allows generating test cases
that have an impact on the performance and the dependability of the vehicle. Generating all
possible test cases is a challenge. We focus on the test cases in the context of the highway
which is of separate carriageway type. Moreover, compared to other types of roads, there are
uniform specifications for highways.

14

1.1 Test case generation issues

Safety is a generic concept that measures the quality of service provided by a system, so
that the user has justified confidence in it. This justified trust is obtained through a qualitative
and quantitative analysis of the different properties of the service delivered by the system.

Since the ADSs are tested, verified and validated through digital simulation, the driving
environment of the autonomous vehicle must be modeled in order to be able to generate all the
possible situations the vehicle can meet in a dynamic execution context. These situations are
generated as different test cases which are applied to verify the functions and the information
needed to perform these functions, and the decisions of ADSs.

Manufacturers need a complete generation strategy to ensure the completeness of situations
that the vehicle will meet [Kone et al., 2019]. However, as the autonomous vehicle relies on the
cooperation of artificial intelligence, sensors such as radar, camera and lidar, and GPS to im-
prove the road safety and the traffic efficiency, with the development of the technologies, these
sensors provide more and more driving environment elements to ADSs. These infrastructure
elements combined to the weather conditions with their own properties may lead to the com-
binatorial explosion of the number of the situations met by the vehicle, and consequently the
scenes constituting the test cases. Therefore, generating all possible test cases becomes close
to impossible.

In this thesis, we propose therefore a test case generation approach that focuses on the most
representative test cases for testing and validating ADSs. This model-based approach allows us
to formally model these test cases and to identify the most critical ones.

1.2 The Contribution of the thesis

Before generating the test cases, we need to deal with another challenge – the conceptual
and terminological confusion in the SVA project. Different terminologies are used by project
partners with different backgrounds and different needs. Moreover, some words used in the
same terminology are ambiguous, some are redundant and thus have the same meaning, while
a same word may have different meanings. This makes the communication between partners
lack a common understanding which leads to difficulties for cooperation between them in the
project, and limits the potential for re-using and sharing their works. Thus, we need a common
vocabulary for all stakeholders who need to share information in the autonomous vehicle field.

To deal with this first challenge, we need to identify the key concepts and possible relation-
ships between the elements involved in the different execution contexts, to give clear definitions
of these elements. First of all, we must clarify the definition of a test case to identify without
ambiguity these concepts and relationships. We define a test case as a scenario describing a

15

specific situation with the properties of each element in the scenario. In order to conceptua-
lize and characterize the driving environment for the construction of test cases, we define three
ontologies: a highway ontology and a weather ontology to specify the environment in which
evolves the autonomous vehicle, and a vehicle ontology which consists of the vehicle lights and
the control actions. Each concept of these ontologies is defined in terms of entity, sub-entities
and properties. Then we use first-order logic equations to represent the relationships between
the defined entities.

Based on these ontologies, we conduct a formal modelling of the test cases. We first propose
to develop a methodology to model the environment of the autonomous vehicle, and generate
the test cases for testing the vehicle. This test cases generation methodology consists of three-
layer. The first layer involves all static and mobile concepts of our ontologies, while the second
layer includes the interactions between the entities of these ontologies. The third and last layer
is the test cases generation layer which is based on the process algebra PEPA (Performance
Evaluation Process Algebra) [Hillston, 1994].

Finally, as we are interested in the automatic generation of test cases, we propose a method
that allows the classification of these test cases in terms of their impact on the performance
and the dependability of the vehicle. We propose an approach which is integrated to the third
layer of our methodology, that allows generating automatically the test cases with any initial
situation and any number of scenes. This method allows us to identify the critical test cases. We
also propose a method to calculate the criticality of each test case to evaluate comprehensively
its importance.

1.3 The thesis outline

This thesis is structured in 9 chapters:

- In Chapter 2, we present the intelligent autonomous vehicle systems with different le-
vels of automation, the Automated Driving Systems, and the safety problems we face;

- Chapter 3 is dedicated to the state of the art in the ontologies domain and the formal
methods applied in the test case generation domain;

- In Chapter 4, we propose a definition of the test case and a methodology to generate
automatically test cases for the autonomous vehicle in the context of the highway;

- In Chapter 5, we define the three ontologies (highway, weather and vehicle) we use for
the conceptualization and characterization of test case;

- In Chapter 6, we define the relationships between the concepts of the ontologies using
the first-order logic;

- In Chapter 7, we use the Performance Evaluation Process Algebra (PEPA) for model-
ling the driving scenes and the transitions between them;

- In Chapter 8, we consider two case studies on which we apply our methodology;

16

- Chapter 9 is dedicated to the conclusions of these works and the possible future works.

[Chen and Kloul, 2020] [Chen and Kloul, 2019] [Chen and Kloul, 2018a]

17

18

Chapitre 2

Autonomous Vehicles and Safety

2.1 Introduction

Today, vehicles can be thought of as complex systems with various intelligent functions.
And the relationship between these vehicles and their drivers is expected to change significantly
over the next ten to twenty years. Indeed, automotive technology continues to advance, and
research into automotive innovation has the potential to change our lives.

An autonomous vehicle is a vehicle that is constantly in interaction with its environment. It
interprets the environment using sensors and decision algorithms, then acts according to these
interpretations. Automated Driving Systems (ADSs) of the different vehicle automation levels
are implemented to perform several driving tasks.

Although the autonomous vehicles are supposed to improve safety and to reduce the daily
loss of life due to road traffic accidents, they are safety-critical systems whose failures can have
catastrophic consequences because they bring new safety risks. It is thus necessary to ensure
the safety of the autonomous vehicle to give all the road users the justified confidence in it.

This chapter is dedicated to the autonomous vehicle system and the related safety problems.
We first present the intelligent autonomous vehicle systems with their different levels of auto-
mation and the ADSs in Section 2.2. Then, we discuss the safety problems we face and present
the safety standards in Section 2.3. The conclusion of this chapter is given in Section 2.4.

19

2.2 Autonomous Vehicle

An autonomous vehicle is a vehicle capable of detecting its environment and navigating wi-
thout requiring guidance or control by teleoperator [Cox and Wilfong, 1990] [Gehrig and Stein, 1999].
It relies on the cooperation of artificial intelligence, sensors such as radar, camera and lidar,
and GPS to improve road safety and traffic efficiency by reducing the number of road acci-
dents. New technologies in vehicle control systems also offer new employment opportunities
in different industries to develop, manufacture and maintain them.

Two regulators covering the United States have defined levels of vehicle automation. The
first agency to define these levels is the National Highway Traffic Safety Administration (NHTSA).
The NHTSA published a policy on automated vehicles in May 2013 defining the automation
levels from vehicles that do not have any of their control systems automated (level 0) to fully
automated vehicles (level 4) [USDOT, 2013]. However, its definition of the most automated
driving level was deemed too broad. Thus the Society of Automotive Engineers (SAE) In-
ternational defined new levels which are based on the NHTSA’s previous work. The vehicle
automation levels of SAE, which replaced the NHTSA levels in October 2016, are six (6).
Levels 0 to 3 of SAE are very similar to those defined by NHTSA. However, Level 4, fully
automated in the definition of NHTSA, is divided into two levels, 4 and 5 in the definition of
SAE. Currently, the SAE International levels are considered as standards and are defined as
follows [SAE International, 2014]:

— Level 0 - No Automation: the human driver does everything. Systems at this level do not
provide any automation of the dynamic driving task (DDT) but can provide warnings
[Taxonomy, 2012];

— Level 1 - Driver Assistance: an automated system on the vehicle can sometimes assist
the driver to perform parts of the driving task (steering, acceleration / braking);

— Level 2 - Partial Automation: an automated system on the vehicle can effectively per-
form parts of the driving task (steering, acceleration / braking, OEDR: Object and Event
Detection and Response), while humans continue to monitor the environment driving
and perform the rest of the driving task;

— Level 3 - Conditional Automation: an automated system can both perform parts of the
driving task (steering, acceleration / braking, OEDR) and monitor the driving environ-
ment in some cases, but the human driver must be ready to resume control when the
autonomous system requests it;

— Level 4 - High Automation: an automated system can perform the driving task and mo-
nitor the driving environment, and the human driver does not need to regain control.
However, this system can only work in certain environments and under certain condi-
tions (Ex: during a traffic jam on a highway);

— Level 5 - Full Automation: the automated system can perform all driving tasks, in all
conditions and on a road where a human can legally drive a vehicle. It is no longer
limited by an Operational Domain Design (ODD). The human pilot is only necessary

20

for the activation, deactivation and determination of waypoints and destinations.

Figure 2-1 summarizes the six levels of vehicle automation as defined in [Committee et al., 2018].

FIGURE 2-1 – Levels of driving automation

The idea of assisting drivers has led to the development of Advanced Driver Assistance
Systems (ADAS) since the early 1990s [Wilson-Jones et al., 1998]. These vehicle control sys-
tems use environmental sensors (radar, laser, vision) to improve driving comfort and road sa-
fety by helping the driver to recognize and react to potentially dangerous traffic situations
[Gietelink et al., 2006]. With the continuous improvement of vehicle automation, now we mainly
focus on the development of Automated Driving Systems (ADSs).

ADSs contribute to the road safety by performing several tasks such as: keeping the vehicle
in its lane (lateral control), intelligent regulation of the speed of movement according to the
environment in front of the vehicle (longitudinal control), collision alert, etc. [Chauvel, 2008].

21

Some systems of the different vehicle automation levels are implemented. In the following, we
present typical examples of systems for each level of vehicle automation.

Typical examples of level 0 automation system include the Forward Collision Warning
(FCW) [Chen and Parikh, 2000] [Cabrera et al., 2012], the Blind Spot Active Warning System
(BSW) Warning) [Miller and Tascillo, 2005], [Strumolo et al., 2007] and the Lane Departure
Warning (LDW) system [Batavia, 1999] [Barickman et al., 2007].

Level 1 of vehicle automation (individual automatic functions) is basically universal. A ve-
hicle equipped with a cruise control system (ACC: Autonomous Cruise Control) [Woll and Olds, 1996]
[Ioannou and Chien, 1993] is considered to be a level 1 autonomous car. Typical examples also
include an active parking assistance system with power steering, the active Lane Keeping Assis-
tance (LKA) system Type II [Kawazoe et al., 2002] [Kawazoe et al., 2001] and a combination
of ACC with the LKA Type II. LKA Type I systems refer to LKA systems which apply correc-
tive lane steering if the vehicle has to leave the lane, and LKA Type II systems refer to LKA
systems which apply corrective lane steering if the vehicle must leave the center of the lane.
LKA Type III systems center the vehicle in the middle of the lane without the driver at all times
of driving.

Level 2 (automatic multifunction) is more widespread. The General Motor Vehicle Safety
Regulation of the European Parliament and of the Council of the European Union forces the
compulsory installation of the Advanced Emergency Braking System (AEBS) [Jang et al., 2013]
since 1 November 2013 for heavy vehicles (categories M2, M3, N2, N3), and since 2014 for all
new vehicles [Regulation, 2009]. Typical examples also include the Traffic Jam Assist (TJA)
system [Bartels et al., 2015] [Siemens and Automotive, 2005] and the Key Parking system. The
TJA system helps the driver to drive monotonously in traffic jams on motorways or similar
roads with speeds up to 60 km/h. The system tracks the target vehicle ahead at a safe distance
and keeps the vehicle in the center of the lane. The driver can only activate the system if slow
vehicles are detected at the front. The driver must monitor the system at all times and must in-
tervene if necessary. In principle, the driver can remove his hands from the steering wheel and
does not need to use the pedals. Volvo Cars’ City Safety system [Distner et al., 2009], Honda’s
Collision Mitigation Brake System (CMBS) [Sugimoto and Sauer, 2005] and Tesla’s Autopilot
system [Ingle and Phute, 2016] on Model S all belong to this level.

Level 3 (restricted automation) is under development. The DISTRONIC PLUS system with
Mercedes-Benz Steering Assist and Stop&Go Pilot can automatically track vehicles in the
event of a traffic jam [Balasbramani et al., 2019]. The typical example is the TJC (Traffic Jam
Chauffeur) system [Bartels et al., 2015] [Tlig et al., 2018]. The TJC system and the TJA (Traf-
fic Jam Assist) system are similar. Once the TJC system is activated, the autonomous vehicle
takes full longitudinal and lateral control when it detects a traffic jam on a road with separate
carriageways. It allows the driver to divert his attention from his driving task in the specific
scenario of a traffic jam on a highway, although the driver must provide fallback performance,
if necessary. The driver must be able to regain control in a longer period of time if a system

22

recovery request occurs. So only secondary tasks with an appropriate reaction time are allowed.
This system applied to Audi A8 is considered to be the first production vehicle to use level 3
autonomous technology [Stanchev and Geske, 2016].

For level 4 systems, secondary tasks with long reaction times (reading a newspaper) are
allowed. Similarly, unmanned applications such as the DVP (Driverless Valet Parking) system
[Paul et al., 2017] [Abisheik and Mohan, 2017] and Audi’s Highway Pilot System [newsroom, 2019]
which includes the TJP (Traffic Jam Pilot) system [Bartels et al., 2015] are possible. Like TJC,
the TJP system allows the driver to divert his attention from his driving task in the specific
scenario of a traffic jam on a highway. But istead of the driver, the system provids fallback per-
formance if necessary. The pilot is not required to be able to regain control if a system recovery
request occurs, and all secondary tasks are allowed without limitation. The Google Waymo
vehicle [Wells and Weinstock, 2019] focuses on systems of levels 4 and 5, which offer greater
vehicle autonomy without requiring interaction with the driver.

In this thesis, we adopt the SAE International Levels of Automation as the SVA Project,
in which this thesis work lies. One of the major challenges of the SVA project is to be able to
qualify the safety of autonomous vehicle decision algorithms.

2.3 Safety of Autonomous Vehicle

Like any other system that can generate potentially risky events, the autonomous vehicle
must be designed to ensure the safety of its occupants and other road users.

Safety is a generic concept that measures the quality of service provided by a system, so
that the user has justified confidence in it. This justified trust is obtained through a qualitative
and quantitative analysis of the different properties of the service delivered by the system. Sa-
fety is often seen as one of a group of related concepts: reliability, availability, maintainability
and safety (RAMS), which are used in engineering to characterize a product or system. Re-
liability is the ability of a system to remain constantly operational for a given period of time,
while availability is the ability of a system to be operational when it is requested. Maintaina-
bility is the ability of a system to quickly return to an operational state. Thus systems whose
components are very easily removable can benefit from better maintainability than the others.
Finally, safety is the property of a system that does not harm people, the environment, or any
asset during a whole life cycle. It is concerned about failures affecting life or a single property
of the system.

The supply and use of automated vehicles are expected to improve road safety, travel times,
highway and intersection capacity, fuel efficiency, emissions per kilometre, travel choices, mo-
bility, accessibility and opportunities for sharing [Milakis et al., 2017]. The most significant
anticipated benefit of increasing vehicle automation is improved safety to reduce the loss of life
each day in roadway crashes. But this also raises new safety risks which are due to the emerging

23

nature of the technology. Following advances in robotics, autonomous vehicles are entering in-
creasingly complex environments. These new environments pose particular problems for the
concept of safety. The autonomous and secure operation of vehicles is essential for increasin-
gly complex applications in environments with human presence. Systematic technical errors of
ADSs could become significant hazards akin to human error. Appropriate solutions to assess the
safety of the movements of the autonomous vehicles in dynamic and uncertain environments
are essential.

The U.S. Department of Transportation (USDOT) believes that autonomous vehicles can
reduce crash-related deaths and injuries, improve access to transportation and reduce traffic
congestion and vehicle emissions [NHTSA, 2016]. Safety remains the number one priority for
the USDOT and is the specific focus of the U.S. National Highway Traffic Safety Administra-
tion (NHTSA). NHTSA presents a Voluntary Guidance [NHTSA, 2016] which offers a non-
regulatory approach to autonomous vehicle technology safety. This guidance means to support
the automotive industry, the States, and other key stakeholders as they consider and design
best practices relative to the testing and deployment of autonomous vehicle technologies. This
guidance points out that in order to design ADS without unreasonable safety risks, the overall
process should adopt and follow industry standards. autonomous vehicle safety regulation must
be resolved before the autonomous vehicles equipped with Level 3 and above ADSs are on the
road.

ISO 26262 [ISO, 2011] is adapted from the International Electrotechnical Commission
61508 standard [Brown, 2000]. This standard is the first comprehensive and voluntary auto-
motive safety standard that addresses the functional safety of electrical and/or electronic (E/E)
and software-intensive features in today’s road vehicles [Van Eikema Hommes, 2016]. It focus
on possible hazards caused by malfunctioning behaviour of E/E safety-related systems. Safety
is defined as the absence of unreasonable risk in ISO 26262. Safety analyses are applied to exa-
mine the influence of faults and failures on items or elements regarding their architecture, func-
tions and behaviour. The results of the safety analyses provide information on conditions and
causes that could lead to violation of a safety goal or safety requirement [Czerny et al., 2002].

However, many safety issues are not necessarily caused by system failures. For some sys-
tems that rely on sensing external or internal environments, potentially hazardous behaviors
may be caused due to the intended functionality or performance limitations of the system. The
absence of unreasonable risk due to potentially hazardous behaviours related to such limita-
tions is defined as the safety of the intended functionality (SOTIF). ISO/PAS 21448 SOTIF are
defined to solve the problems of performance limitations and misuse. Performance limitations
refer to the insufficiencies of the function itself and misuse is defined as the usage of the system
by a human in a way not intended by the manufacturer of the system, and for which the system
has insufficient performance, or is inadequate.

ISO/PAS 21448 SOTIF [ISO, 2019] is complementary to ISO 26262. Both are distinct and
are concerned with complementary aspects of safety. The functional safety addressed by the

24

ISO 26262 series is the focus of this work.

ISO 26262 employs safety analysis, including Failure Mode and Effect Analysis (FMEA)
[Stamatis, 2003], Fault Tree Analysis (F TA) [Ericson, 1999], Event Tree Analysis (E TA)
[Andrews and Dunnett, 2000], hazard and operability study (HAZOP) [Kletz, 2018]. These are
valid and commonly used methods in the automotive industry to evaluate the reliability, availa-
bility, maintainability and safety of ADSs [Kim, 2014] [Mehmed et al., 2014] [Becker et al., 2017].

FIGURE 2-2 – V-Cycle ISO 26262 Road vehicles Functional Safety

ISO 26262 uses a classic V-Cycle framework (Figure 2-2) to organise its requirements
[Lucas et al., 2018]. In the left side of the cycle, targets are models or representations of the
system before the implementation. The right side of the cycle corresponds to an implementation
of the system components, their integration and their validation.

The aim of the SVA project, in which this thesis work lies, is to respond by digital simu-
lation to the challenge posed by the complexity of demonstrating the safety of an autonomous
vehicle. Indeed, this complexity, which is linked both to the large number of situations that
the driver encounters on the road, their uncertainty, and to the on-board technologies, makes
validation by tests in real use extremely costly, even impossible in certain cases. In order to
gain confidence that the safety requirements have been achieved, a model-based approach is
necessary to validate the ADASs and ADSs of the autonomous vehicle.

In the SVA project, we also apply V-Cycle (Figure 2-3) to the design of the TJC system for
simulation. FMECA and FTA are the tools to identify the risk areas that exist to identify the
dependability requirements. The real code and the real hardware can be tested in a software-in-
the-loop (SIL) simulations and a real-time hardware-in-the-loop (HIL) simulation respectively.
During the development of TJC system, the initial design and specification of its controller
is supported by off-line model-in-the-loop (MIL) simulations, where the controller logic is
simulated in closed-loop with models of vehicle dynamics, sensors, actuators, and the traffic
environment. Model-based testing approaches are used at the MIL level to automate the testing
process while laying the groundwork for test coverage analysis.

25

FIGURE 2-3 – V-Cycle of Autonomous vehicle development

In order to automate reasoning on the issues of the autonomous vehicle testing process, in
this these we propose a formal model-based automatic generation approach of test cases.

2.4 Conclusion

In this chapter, we discussed the autonomous vehicles and the different automation levels
of the corresponding ADSs. We also discussed the safety notion and its importance for the
autonomous vehicle industry. Besides, we discussed the safety standard ISO 26262 which is
considered in the SVA project.

All the decisions of the system should be tested, verified and validated before the auto-
nomous vehicles equipped with ADSs are on the road. Because of the complex environments
and the numerous situations that will be met by these vehicles, it appears clearly that we need
methods and tools to model their environments and to generate the test cases (situations) for
the testing and the validation of ADSs.

In the next chapter, we discuss the state of the art of the test cases generation methods and
some related works.

26

Chapitre 3

State of art

3.1 INTRODUCTION

In this chapter, we discuss the state of the art of the methods and techniques used for test
cases generation for the autonomous vehicle. In our knowledge, test cases generation has rarely
been the subject of research works in the literature.

In [Lesemann et al., 2011], testing scenarios have been derived based on accident statistics
to represent the majority of accidents in which active safety functions could possibly miti-
gate the outcome. The authors of [Tuncali et al., 2016] also focus on collisions. Their major
objective is to find the conditions on the boundaries between safe scenarios and collision sce-
narios. The specific test case generation for autnomoous vehicles was developed based on the
S-TaLiRo tool [Annpureddy et al., 2011], that is a MATLAB [Version, 2019] toolbox for sys-
tematic testing of hybrid systems with a focus on collisions. This method does not take into
account the impact of the infrastructure and the weather conditions on the autonomous vehicle
behaviours.

Many autonomous driving systems have machine learning components [Moujahid et al., 2018]
[Navarro et al., 2017], which are difficult to test and verify. In [Tuncali et al., 2018], the au-
thors present a framework for Simulation-based Adversarial Testing of Autonomous Vehicles
(Sim-ATAV) to check closed-loop properties of autonomous driving systems that include ma-
chine learning components. The covering array is used to minimize the number of test cases.
In [Vishnukumar et al., 2017], the authors propose a methodology using machine learning and
deep neural network for testing and validating ADAS (Advanced driver assistance system) and
autonomous vehicles. All these works focus on testing and validation methods, but do not give
detailed test scenarios generation methodology.

In [Thorn et al., 2018], the U.S. National Highway Traffic Safety Administration (NHTSA)

27

proposes a framework for developing test cases and test scenarios for ADS. The core aspects
of a common ADS test scenario are making up with the tactical manoeuvring behaviours, ope-
rational design domain (ODD) elements, Object and Event Detection and Responses (OEDR)
capabilities and failure mode behaviours. The test scenarios are not formal since they are given
by the check-lists including one or more elements of each of these core components.

In [Schuldt et al., 2018], a systematic method based on a unified 4-level model is proposed
for the test case generation for advanced driver assistance systems in virtual environments. This
model can be divided into four steps: system analysis, systematic test case generation, test case
execution, and test case evaluation. In order to generate non-redundant, representative, unified,
and reproducible test cases, the boundary value analysis is used to reduce the number of test
cases. Unfortunately, test case generation is not their key research object, thus they did not give
a formal method for generating these test cases.

In the above works, some contain incomplete driving environment elements [Lesemann et al., 2011]
[Tuncali et al., 2016], some do not propose method for generating the scenarios [Moujahid et al., 2018]
[Navarro et al., 2017] [Tuncali et al., 2018] [Vishnukumar et al., 2017], and some use genera-
tion methods which are not formal [Thorn et al., 2018] [Schuldt et al., 2018]. Unlike all these
works, we propose a solution to address these problems and this solution is formal. We consi-
der building ontologies for the context of the highway as a common vocabulary to eliminate, or
at least reduce the ambiguity of used terms. Moreover, our approach allows identifying all the
interactions between the different elements of our system and these interactions are expressed
using the first order logic. Finally, we use the formal modelling technique PEPA (Performance
Evaluation Process Algebra) which allows modelling formally the situations that can be met by
the autonomous vehicle.

As we are interested in a test cases generation methodology based on ontologies and formal
methods, in the following, we focus on describing the state of the art of ontologies and formal
methods. In Section 3.2, we describe the state of the art of the ontologies as we use ontologies
for the conceptualization and characterization of the test cases. In Section 3.3, we discuss the
state of the art of the formal methods as we use a formal approach to formalize the concepts and
the relationships defined in our ontologies. The conclusion of this chapter is given in Section
3.4.

3.2 ONTOLOGY

A conceptualization is an abstract and simplified view of the world that we wish to re-
present [Gruber, 1993a]. It is the process of developing and clarifying concepts with words
and examples to arrive at precise verbal definitions. A formally represented knowledge base
includes objects, concepts, and other entities that are considered to exist in the area of interest
and the relationships that hold them [Genesereth and Nilsson, 2012].

28

An ontology is an explicit specification of a conceptualization. It is a structural frame-
work for the representation of knowledge about the world or a part of it. It mainly consists
of concepts and the relationships between them and denotes a common understanding of an
area of interest. This understanding can reduce or eliminate conceptual and terminological
confusion to help solve problems that impede communication between people, organizations,
and/or software systems. Thus an ontology can function as a unifying framework for different
points of view and serve as a basis for communication between people with different needs.
It also allows interoperability between systems obtained by translating different modelling
methods, paradigms of languages and software tools, and the advantages for the engineering
system. The benefits for the engineering system are re-usability, reliability and specification
[Uschold and Gruninger, 1996b].

The first time that the word ontology was mentioned in a discipline related to compu-
ter science is in a work on the foundations of data modelling [Mealy, 1967]. And then on-
tologies have been applied in a multitude of areas of IT. In the field of data and informa-
tion modelling, ontology theories are used to solve database integration problems and pro-
vide a solid basis for the selection of modelling concepts [Milton and Kazmierczak, 2004]
[Shanks et al., 2003] [Opdahl et al., 2001] [Fettke and Loos, 2003]. In engineering, ontology
approaches are used to reduce disproportionate costs in software maintenance and enhance soft-
ware reuse [Falbo et al., 2002a] [Falbo et al., 2002b]. In the field of artificial intelligence, tradi-
tionally, systems knowledge was defined in a strictly functional manner, in order to integrate the
steps that experts in the field generally use to solve a given problem. Authors of [Clancey, 1993]
proposed that the main concern of knowledge engineering is the modelling of systems in the
world, not replicating how people think. This is important for building the foundation for the
ontology of artificial intelligence. The ontologies of this domain have been built for engineering
and technical applications [Alberts, 1994] [Borst, 1999] [Varejão et al., 2000], business model-
ling [Grüninger et al., 2000], chemistry [López et al., 1999], biology [Consortium, 2004], ma-
terials ceramics [Pisanelli et al., 2003] and the legal [Gangemi et al., 2003] [Sagri et al., 2004].

In autonomous vehicle domain, some researchers have used ontologies for the conceptua-
lization and characterization of driving environment. But there is little work in the context of
the autonomous vehicle itself.

In [Gregoriades, 2007] Monte Carlo sampling technique is used to sample the most likely
events that can occur from the ontology of accident scenarios. Because of the differences bet-
ween autonomous driving and traditional driving cars, the types of accidents can be quite dif-
ferent. We must not only analyse existing accidents, but also prevent accidents that have never
occurred or were unexpected.

In [Hülsen et al., 2011], the authors use a description logic to describe the scenes. The first
work provides a generic description of road intersections using the concepts Car, Crossing,
RoadConnection and SignAtCrossing. They use description logic to reason about the relations
between cars and describe how a traffic intersection situation is set up in the ontology and define

29

its semantics. The results are presented for an intersection with 5 roads, 11 lanes and 6 cars
driving towards the intersection. This model is limited to intersections, and both infrastructure
and vehicle numbers are static. Generated test cases are not enough to test a system like TJC.

In [Armand et al., 2014], an ontology of recognition for the driving assistance systems is
presented. The authors define an ontology composed of concepts and their instances. This onto-
logy includes contextual concepts and context parameters. It is able to process human-like rea-
soning on global road contexts. Another ontology is proposed by Pollard et al. [Pollard et al., 2013]
for situation assessment for automated ground vehicles. It includes the sensors/actuators state,
environmental conditions and driver’s state. However, as the concepts of both ontologies have
not been sufficiently subdivided, they are not enough to describe test cases allowing to simulate
and validate ADSs.

Hummel et al. [Hummel et al., 2008a] propose an ontology to understand road infrastruc-
ture at intersections. The approach focuses on geometric details related to topological infor-
mation at several levels. All the concepts of this ontology are introduced and organized in
a hierarchical structure called taxonomy. This approach presents scene understanding frame-
works based on description logic, which can identify unreasonable sensor data by checking
consistency. However, road infrastructure at just the intersections is not enough to build test
cases for testing the functions of ADSs.

To build a knowledge base for smart vehicles and implement different types of driving assis-
tance systems, Zhao et al. [Zhao et al., 2015] propose three ontologies: map ontology, control
ontology and car ontology. They focus on algorithms for rapid decision making for autonomous
vehicle systems. They provide an ontology-based knowledge base and decision-making system
that can make safe decisions about uncontrolled intersections and narrow roads. However, the
authors did not consider the equipment of the road infrastructure in their map ontology, for
example the traffic signs which are an important part for test cases construction.

Morignot et al. [Morignot and Nashashibi, 2012] propose an ontology to relax traffic regu-
lation in unusual but practical situations, in order to assist drivers. An example of unusual but
practical situations considered is: “a truck stopping and unloading before you and your car’s
lane is delimited by a continuous line and a side-walk. After having waited for some amount
of time, you might decide to cross the continuous line". Their ontology represents the vehicles,
the infrastructure and the traffic regulation for the general road. It is based on the experience of
the members of the lab with driving license, not based on a texts corpus. That may be useful
for modelling the concepts involved in traffic regulation relaxation, but we need more rigorous
ontologies for modelling the concepts involved in general situations.

Finaly, in [Bagschik et al., 2017], the authors propose, using ontology, to create scenarios
for development of automated driving functions. They propose a process for an ontology ba-
sed scene creation and a model for knowledge representation with 5 layers: road, traffic in-
frastructure, temporary manipulation of road level and traffic infrastructure level, objects and
environment. A scene is created from first layer to fifth layer. This ontology has modelled Ger-

30

man motorways with 284 classes, 762 logical axioms and 75 semantic web rules. A number
of scenes could be automatically generated in natural language. However, the natural language
is not a machine-understandable knowledge and the transformation of natural language based
scenes to simulation data formats with such a huge ontology is a tremendous work.

Summarizing the existing research above, most of the ontologies proposed cover incom-
plete elements [Gregoriades, 2007] [Hülsen et al., 2011] [Armand et al., 2014] [Pollard et al., 2013]
[Zhao et al., 2015] or only focus on particular situations [Hummel et al., 2008a] [Morignot and Nashashibi, 2012],
and some use a natural language instead of formal language to construct the ontologies [Bagschik et al., 2017].
In our methodology, we build ontologies for the highway infrastructure elements, the weather
conditions and traffics. Moreover, we use the first order logic to describe the relationships bet-
ween the different elements of our system.

3.3 FORMAL METHODS

Formal Methods are a particular kind of mathematically rigorous techniques and tools
for the specification, design and verification of software and hardware systems. The speci-
fications used in formal methods are well-formed statements in a mathematical logic. Each
step follows from a rule of inference and hence can be checked by a mechanical process
[Alagar and Periyasamy, 2011]. These methods were originally developed for specifying and
verifying the correct behaviour of software and hardware systems and have been applied in
many system development fields, and many achievements have been made [Almeida et al., 2011].

There is a variety of formal methods for system modelling. These systems can be divided
into two major categories: serial and concurrent. In this section we discuss the state of art of
formal methods for the autonomous vehicles system modelling according to these two types of
systems.

3.3.1 Serial system modelling techniques

In serial system, the elements are processed one at a time, each being completed before
another begins. A serial system is usually considered as a function from the initial state to the
termination state. It can be described by the relationship between its input and output. These
systems can be modelled using techniques such as Z language [Meyer and Baudoin, 1978], The
Vienna Development Method (VDM) [Bjørner and Jones, 1978] and B method [Abrial, 1988].

The Z language [Meyer and Baudoin, 1978] is a specification language based on predi-
cates and Zermelo Freaenkel set theory. It is used for describing and modelling computing
systems. There are two languages in Z (the mathematical language and the schema language).
Mathematical language is used to describe the various characteristics of the system: objects

31

and their relationships. A schema language is a semi-graphical language used to construct,
organize, describe, and encapsulate blocks of formal descriptions so that they can be reused.
The program written in the Z language is used as an abstract design of computer software or
hardware systems [Spivey, 1992].

The Vienna Development Method (VDM) [Bjørner and Jones, 1978] is a functional construc-
tive specification technique that describes the function of each operation or function through
first-order predicate logic and established abstract data types. The basic idea of VDM techno-
logy is to use abstract data types, mathematical concepts and symbols to specify the function of
an operation or function, and the process of this specification is structured. This method is used
for software development since it enables to briefly and clearly indicate the software system
before the system is implemented [Jones, 1990].

The B method [Abrial, 1988] uses AMN (Abstract Machine Notation) to describe the re-
quirements model, explain the interface, and carry out intermediate design and implementation.
A complete development is a step-by-step implementation of the specification process. Step-
by-step development can reduce the complexity of large-scale software development. A hierar-
chical approach can represent high-level implementations as low-level specifications. It makes
it possible to formalize the system and its environment in an abstract way, then by successive
refinements, to add the details to the model of the system. A formal proof activity makes it
possible to verify the consistency of the abstract model and the conformity of each refinement
with the superior model, thus proving the conformity of all concrete implementations with the
abstract model.

B method has been used successfully for several industrial applications such as the de-
velopment of embedded software for line 14 of the Paris metro (METEOR) which has been
modelled, proven and generated from formal specifications B [Boulanger and Gallardo, 2000].

Another formal method called Event-B [Abrial et al., 2010] has been developed for the
use with an incremental style of modelling. Event-B is considered an evolution of B. The new
feature of Event-B are the introduced events which correspond to the transition labels between
the abstract invariants. It has a simpler notation, which is easier to learn and use. It comes with
tool support in the form of the Rodin tool [Butler and Hallerstede, 2007].

[Jarrar and Balouki, 2018] uses Event-B as a formal modelling and verification method
to guarantee bugs absence and ensure the consistency of the system by means of invariant
preservation and deadlock freedom for the air traffic control system.

In our knowledge, all these methods are mainly used for formal specification and software
development. They have not been used in autonomous vehicles area.

32

3.3.2 Concurrent system modelling techniques

Concurrent systems are much more complicated than serial systems. Autonomous vehicle
belongs to this category of systems. A concurrent system allows all the tasks to make progress
to support more than one task [GALVIN and GAGNE, 2005]. It consists of a collection of pro-
cesses communicating through shared data structures or objects [Παλαιoδήµoς, 2018]. There
exist several types of modeling technique for concurrent systems, such as Markov processes,
Petri Nets [Petri, 1962] and Process Algebra [Bergstra et al., 2001].

In our knowledge, these techniques have very few applications in autonomous vehicles
domain. In the following, we discus these applications when they exist.

3.3.2.1 Markov processes

A Markov process is a stochastic process with the Markov property. The conditional pro-
bability distribution of future states of the process depends only on the present state, and not
on any past states [Kemeny and Snell, 1976]. That means the future and past states are in-
dependent for the present state of the system. However, Markov processes lack the notion of
hierarchical system decomposition which can conquer the complexity of systems in the domain
of functional system properties [Brinksma and Hermanns, 2000].

In [Althoff and Mergel, 2011] the authors compare the Monte Carlo simulation with the
Markov chains according to their performance in the probabilistic prediction of road traffic
scenarios. The results show that Markov chains are preferred for the probabilistic occupancy of
traffic participants which helps to plan the manoeuvre of an autonomous vehicle.

The Markov decision process (MDP) is an optimal decision process for stochastic dyna-
mic systems. It is a model based on Markov process theory for sequential decision making
when outcomes are uncertain [Puterman, 2014]. A partially observable Markov decision
process (POMDP) is a generalization of MDP. It is an agent decision process which permits
uncertainty regarding the state of a Markov process and allows state information acquisition
[Monahan, 1982].

The POMDP framework is used to model a variety of autonomous vehicles sequential de-
cision processes [Brechtel et al., 2014] [Liu et al., 2015] [Widyotriatmo and Hong, 2008]. The
authors in [Brechtel et al., 2014] present a generic approach for tactical decision-making under
uncertainty in the context of driving by formulating the task of driving as a continuous POMDP
that can be automatically optimized for different scenarios. POMDP is used in [Liu et al., 2015]
to model the situation-aware decision making problem for autonomous driving on urban road.
In [Widyotriatmo and Hong, 2008], the authors propose a decision making framework for au-
tonomous vehicle to perform obstacle avoidance and operational task, which are achieved with
respect to the nonholonomic constraint and considering the uncertainties of the autonomous

33

vehicle. POMDP is adopted in this decision making framework to manage the safety and task
related assignment. All these POMDP based studies are aimed at optimizing environmental
perception and decision frameworks, rather than ensuring the safety by testing these frame-
works.

In [Raffaelli et al., 2016], test cases are generated using MaTeLo [MaTeLo, 2019], a Model
Based Testing (MBT) tool, and an ad hoc random scan Gibbs sampler (RSGS) is used to cope
with the combinatorial explosion of the number of scenes. It is an algorithm used to obtain
a series of observation samples which are approximately equal to the multidimensional pro-
bability distribution. The following state is reached by sequentially sampling all the variables
from their distribution when conditioned by the current values of all other variables and the
data. However, Gibbs sampler cannot work on the mutually influential parameters of driving
environment.

3.3.2.2 Petri Nets

Before the process algebra, the only part of concurrency theory that existed is the theory
of Petri nets, conceived by Petri starting from his thesis in 1962 [Petri, 1962]. A Petri Net
is a mathematical representation of a system. The basic idea is to describe state changes in
a system with transitions. They are suitable for describing asynchronous, concurrent systems.
The structure and dynamic behaviour of the modelled system can be analysed and used to
evaluate the system finality to improve or change the system [Petri and Reisig, 2008].

A Petri Net provides a graphic representation with formal semantics of system behaviour,
that is, a directed, bipartite graph where the two classes of vertices are called places and tran-
sitions. Places may contain tokens that may move to other places by firing actions. A token
on a place means that the corresponding condition is fulfilled or that a resource is available
[Dill et al., 2005].

In [Furda and Vlacic, 2009] and [Furda and Vlacic, 2011], the authors deal with the high-
level vehicle control tasks and address the topic of real-time decision making for autonomous
vehicles. There is a large number of factors to be considered in the decision making unit for the
selection of feasible driving manoeuvres. Petri nets are used to model this decision stage.

[Lee et al., 2009] introduced a complete parking mechanism for autonomous car-like ve-
hicles, such as micro electric vehicles, quadricycle, E-trick, new energy vehicles, golf car, to
solve the parallel parking problem. The Petri net is used to recognize suitable parking regions
and plan alternative parking routes especially in global space. This method provides an effec-
tive parking path and strategy. It also extends the case of single parking space to the case of
multiple parking space.

In order to compress the repetitive structure in the classical Petri nets and improve their
modeling ability, advanced Petri nets have been developped. Among them, Coloured Petri

34

nets (CPN) [Billington, 1989] are a backward compatible extension of the concept of Petri
nets, which allow tokens to have a data value attached to them. This value is called token
color which usually means having an object that can be identified. Thereby avoiding repeated
modelling of the same structure net.

The time was introduced to Petri Nets and this led to two basic timed versions: Timed Petri
Net (TdPN) [Ramamoorthy and Ho, 1980] and Time Petri Net (TPN) [Merlin and Farber, 1976].
TdPN are derived form classical Petri nets by associating a delay with each transition of the net.
TPNs are more general than TdPN as each transition is associated with a time interval instead
of a delay like in TdPN. Thus a TdPN can be simulated by a TPN, but the inverse is not true.
They are commonly used to evaluate the performance and reliability of complex systems.

Stochastic Petri Nets (SPNs) are a modelling formalism for the description of Discrete
Event Dynamic Systems (DEDS) to evaluate their performance and reliability. The dynamic
behaviour of complex models could be represented by means of continuous-time homogeneous
Markov chains [Kemeny and Snell, 1961]. In SPNs, changes are not immediate, but they occur
only after a random delay which is a random variable exponentially distributed. Therefore, the
state space of the SPN will grow exponentially as the size of the system increases.

An extension of SPN named Generalized Stochastic Petri Nets (GSPNs) was presented
in [Marsan et al., 1984] to reduce the state space explosion. GSPNs include two classes of
transitions: exponentially distributed timed transitions and immediate transitions. The former
are used to model the random delays associated with the execution of activities and the latter
are devoted to the representation of logical actions that do not consume time [Balbo, 2007].

In our knowledge, CPN, TdPN, TPN, SPNs and GSPNs are extension methods of Petri Net
that have not been applied in the autonomous vehicle context.

3.3.2.3 Process Algebras

All process algebras (PAs) have the same fundamental basis. They are based on actions
that can construct processes. Moreover, special operators may be used to compose processes
to create more complex behaviours. Operators follow the algebraic laws that can be used for
formal reasoning. We consider process algebra as either classical or stochastic.

a) Classical process algebra

In the late seventies, Robin Milner and Tony Hoare, respectively, proposed the Calculus of
Communicating Systems (CCS) [Milner, 1980] and Communicating Sequential Processes
(CSP) [Hoare, 1985]. They created a precedent for studying communication concurrency sys-
tems using algebraic methods. Since then, this research direction has flourished. After some
preliminary works by others, three main classical process algebra theories were developed

35

[Rooda et al., 2007]. These are CCS, CSP that we mentioned and the Algebra of Commu-
nicating Processes (ACP) proposed by the authors in [Bergstra and Klop, 1984].

Robin Milner begins his works on the process theory CCS in 1973. After years of conti-
nuous development, the first complete process algebra with a set of equations and a semantic
model was published in the book [Milner, 1980]. The expressions of the language are interpre-
ted as a labelled transition system. Given a set of action names, the set of CCS processes is
defined by BNF (Backus Normal Form) grammar.

CSS can describe parallel composition, choice between actions and scope restriction for
the evaluation of the qualitative correctness of properties of a system such as deadlock or
livelock [Milner, 1980]. This language is much used for the formalization of Web Services
[Salaün et al., 2004] [Cámara et al., 2006].

CSP was first described in a 1978 paper by Tony Hoare [Hoare, 1978], and developed by
himself in 1984 [Brookes et al., 1984] and 1985 [Hoare, 1985]. The theory of CSP itself is
also still the subject of active research. CSP is a formal language for setting up and reasoning
about processes that interact with their environments using this model of communication in
concurrent systems [Roscoe, 1997]. The most fundamental object in CSP is therefore a com-
munication event. These events are assumed to be drawn from a set which contains all possible
communications for processes in the universe under consideration.

Both CCS and CSP are based on the notion of process. The main difference between them
is that CSP has two forms of choice (internal/external or non-deterministic/deterministic). The
distinction between internal and external choices allows CSP to have a semantics in terms of
traces. CSP is well-suited to modelling and analysing systems that incorporate complex mes-
sage exchanges. The programming language Occam [May and Taylor, 1984] arises from the
concepts in CSP, which also influenced the design of programming languages such as Limbo
[Dorward et al., 1997] and Go [Meyerson, 2014].

Inspired by the contributions of Milner with the basic concepts of communication and pa-
rallelism as algebraic in nature, Bergstra and Klop present the basic process algebra ACP which
is an axiomatic-algebraic framework for studying processes [Bergstra and Klop, 1984]. This is
the first time that the term process algebra is used. In ACP a process algebra is any mathe-
matical structure, consisting of a set of atomic processes and a set of operators. ACP in many
respects is similar to CCS. It emphasizes the algebraic aspect with an equational theory with a
range of semantical models, and it is more easily amenable to formal analysis and mathematical
proof verification.

Since the objective of classical process algebra is qualitative analysis rather than quanti-
tative one, activities have no connection with time, thus only the functional characteristics of
the concurrent system can be described, and they can only qualitatively analyse the system, not
quantitatively. Therefore, quantitative analysis parameters, such as time and probability, are ad-
ded to PAs, which have evolved into timed process algebras and probabilistic process algebras,

36

respectively.

Timed process algebras like TCCS [Moller and Tofts, 1990] and Timed CSP [Reed and Roscoe, 1988],
allow each activity to be associated with an execution time to analyse the model of the real-time
system. In [Bergstra and Middelburg, 2005], a process algebra with continuous relative timing
was proposed to deal with the behaviour of hybrid systems (the systems exhibit both discrete
and continuous behaviours), such as the water-level monitor, the thermostat, the nuclear reactor,
etc.

A probabilistic process algebra allows each activity to be associated with an implementation
probability, eliminating the non-determinism of the selection operation in the process algebra.
A process algebra with the probabilistic transition system was presented in [Adão and Mateus, 2007]
for specifying and reasoning about quantum security protocols. Probabilistic extensions of pro-
cess algebras, such as Probabilistic Calculus of Communicating Systems (PCCS) [Giacalone et al., 1990],
which are based on Milner’s Synchronous Calculus of Communicating Systems (SCCS)
[Milner, 1983], use a probabilistic choice operator to allow uncertainty to be quantified.

In our knowledge, these approaches have not been applied to the domain of autonomous
vehicles. A process algebra based on basic operators of classical process algebras (CCS, CSP,
ACP) is used in [Varricchio et al., 2014] as a formal specification language to express complex
tasks for autonomous electric vehicles in a mobility-on-demand scenario. The authors proposed
an algorithm whose solution converges to the optimal continuous-time trajectory that satisfies
the task specification.

b) Stochastic Process Algebra (SPA)

Timed process algebra and Probabilistic process algebra are the basis for proposing sto-
chastic process algebra. SPA was first proposed as a tool for analysing the performance and
reliability of parallel and distributed systems in 1990 [Herzog, 1990]. Based on PA, SPAs add
the continuous-time random variables to represent time instants as well as durations of acti-
vities. The action and a random delay are considered as a single entity in SPA like Timed
Processes and Performability evaluation (TIPP) [Gotz et al., 1992], Performance Evalua-
tion Process Algebra (PEPA) [Hillston, 1994] and Extended Markovian Process Algebra
(EMPA) [Bernardo et al., 1995], while they are considered as separate entities in the timed
process algebras. The syntaxes of TIPP, PEPA and EMPA are similar. The only difference is
the representation of the duration of every action. TIPP uses general distribution, while PEPA
uses only exponentially distribution. EMPA is inspired from PEPA and TIPP as it includes
exponentially timed actions and immediate actions. SPAs are mainly used for modelling the
performance of parallel and distributed systems, analysing quantitatively and qualitatively the
dynamic behaviour of resource-sharing systems [Clark et al., 2007].

Performance Evaluation Process Algebra (PEPA) is a stochastic process algebra desi-
gned for modelling computer and communication systems introduced by Jane Hillston in the

37

1990s [Hillston, 1994]. PEPA is a simple language with a small set of operators. It is easy to rea-
son about the language and provides a great deal of flexibility to the modeller [Hillston, 1994].

A PEPA model is constructed by identifying components performing activities which are
abstracted into a continuous-time Markov process. The generation of this underlying Mar-
kov process is based on the derivation graph of the model. The derivation graph is a directed
multi-graph whose set of nodes consists of the reachable states of the model and whose arcs
represent the possible transitions between them. The edges of the corresponding Markov Chain
are labelled only by the rates of the activities which become the corresponding entries in the
infinitesimal generator matrix.

With the exception of PEPA, the other SPAs have not been applied to the domain of auto-
nomouos vehicles. Indeed, in [Cerone and Zhao, 2013] the authors use the Markovian process
algebra PEPA to describe quantitative aspects of driver behaviour to understand the relation
between driver behaviour and transport systems. A three-way junction consisting of a two-way
main road with a diverging one-way road is used as an example to illustrate their approach.
They are interested in the probability of possible collisions, the average waiting time in a queue
from arrival at the junction to finally passing the junction and the average number of cars
waiting in a queue. They have modelled the effects of driver’s experience in terms of state
transitions associated with a finite number of pre-defined probability factors. The results show
a trade-off between junction performance (reflected in number of cars in a queue and wai-
ting time) and safety (reflected in probability of possible collision) under certain conditions on
driver behaviour.

3.4 Conclusion

In this chapter, we discussed the state of art of the autonomous vehicles test cases generation
methods. We focused on describing the state of the art of the ontologies and the formal methods
used in this domain. As we have seen, there are few works dedicated to formal model-based
approaches that allow generating test cases.

Some formal methods are suitable for modeling serial systems [Meyer and Baudoin, 1978]
[Bjørner and Jones, 1978] [Abrial, 1988] [Abrial et al., 2010]. Since the autonomous vehicle is
a concurrent system, these methods are not applicable. Markov processes, Petri Nets [Petri, 1962]
and Process Algebra [Bergstra et al., 2001] and other formal methods suitable for concurrent
systems have very few applications in autonomous vehicles domain. Compared with Markov
processes and Petri Nets, Process Algebra can model more complex systems in a simpler way.
PEPA can identify all components performing activities in our system with a small set of ope-
rators. These components and their interactions are abstracted into a continuous-time Markov
process. We can use existing tools (Eclipse PEPA [Hillston and Gilmore, 2014]) to generate
this underlying Markov process.

38

In the next chapter, we present our definition of the test case for the autonomous vehicle,
and the test case generation methodology we propose.

39

40

Chapitre 4

Test Cases Generation
Methodology

4.1 Introduction

In recent decades, activities in the field of autonomous vehicle have produced various
development tools and methodologies to manage increasing complexity and testing require-
ments [Tian et al., 2018] [Bhat et al., 2018] [Schätz et al., 2015] [Wongpiromsarn et al., 2011]
[Keviczky et al., 2006]. Each of them has success criteria for analysis and evaluation. In order
to guarantee the functionality and safety of the Automated Driving Systems (ADSs), it is ne-
cessary to validate the decisions of the algorithms for all the situations that will be met by the
vehicle.

However, the large number of the highway infrastructure elements combined to the weather
conditions with their own properties may lead to the combinatorial explosion of the number of
the situations met by the vehicle, and consequently the scenes constituting the test cases. The-
refore, generating all possible test cases becomes close to impossible. Therefore, we focuses
on the most representative situations for testing and validating ADSs.

These situations are described and generated as different test cases, which are applied to
identify the functions, and the information needed to perform these functions and the decisions
of ADSs. Test cases are critical to assess the safety of ADS in a variety of operating environ-
ments and road conditions. They should be firstly specified to simulate and test the autonomous
vehicle or its modules.

In this chapter, we propose a test case definition in Section 4.2. In Section 4.3, we present
a running example “Insertion of vehicle by the right entrance lane of a highway". In order
to generate automatically the test cases for the autonomous vehicle, we propose a genaration

41

methodology with a three layers hierarchy in Section 4.4. Both the test case definition and
the methodology are illustrated through the running example, which will also be used in the
following chapters. Finally, we conclude this chapter in Section 4.5.

4.2 Test Case

In [Ulbrich et al., 2015], the authors present a definition of interfaces for the design and
test of functional modules of an automated vehicle. They define a use case in terms of scena-
rios and scenes (Figure 4-1). A scene describes a snapshot of the environment including the
scenery and the dynamic elements, as well as all actors’ and observers’ self-representations,
and the relationships between those entities. A scenario describes the temporal development
between several scenes in a sequence of scenes. It contains scenes, actions & events and goals
& values. A use-case entails a description of the functional range and the desired behaviour,
the specification of system boundaries, and the definition of one or several usage scenarios.

FIGURE 4-1 – Use-Case according to [Ulbrich et al., 2015]

We also define the test case in terms of scenario and scene [Chen and Kloul, 2018b] (Fi-
gure 4-2). In our definition, however, a scene describes a snapshot of the environment inclu-
ding static entities and mobile entities, as well as the relationships between these entities. This
definition allows us to avoid ambiguity of the actors’ and observers’ self-representations. In
[Ulbrich et al., 2015], the authors do not explain and do not provide what are the functional
range, the desired behaviour and the specification of the system boundaries. Therefore, we
define a test case as follows:

A test case describes a specific driving environment for the autonomous vehicle. It consists

42

FIGURE 4-2 – The Test Case structure.

of a scenario describing a specific situation for which values are assigned to the properties of
each element in the scenario. The choice of these values depends on the goal of each test case.

A scenario describes the temporal development between several scenes in a sequence of
scenes. It is associated with the actions of all the elements in the sequence of scenes. We
distinguish between two types of actions, those made by the autonomous vehicle and those
made by the environment elements, which are considered as events from the point of view of
the autonomous vehicle. The changes in infrastructure (ex: appearance of an entrance lane) and
in the whether (ex: the start of the rain) are also considered to be events.

A scene is a snapshot of the vehicle environment including the static and the mobile ele-
ments, and the relationships between those elements. Static elements refer to all geospatially
fixed elements which include the infrastructure of the highway and the weather conditions. Mo-
bile elements are elements that move or have the ability to move. They include the autonomous
vehicle and the other traffics. Some of the static elements, such as the lighting and the weather,
can change state but not their position. We call them dynamic elements, in order to distinguish
them from the mobile ones.

Figure 4-3 provides an illustration of a scenario. In this graph, the vertices are the scenes
and the edges represent the events or the actions, which occurrence leads to the transition from
one scene to another. Each scenario begins with an initial scene and covers a certain period of
time.

An example of scenario is illustrated in Figure 4-4. This scenario consists of four scenes.
There are three lanes in the initial scene Scene 1. It has a red car on the left lane, and a blue car
on the center lane. The red car makes the action goRightLane which leads to Scene 2, where
the red car is in front of the blue one. Then it does the action decelerate which leads to Scene 3.
Finally, the red car makes again the action goRightLane which leads to Scene 4 which is the
last scene of this scenario. The red car is on the right lane.

43

FIGURE 4-3 – A scenario (red dashed line) made by actions/events (edges) and scenes (nodes)

FIGURE 4-4 – A scenario representation

4.3 A Running Example

Before we explain our test cases generation methodology, we first present a running example
of the situation “Insertion of vehicle by the right entrance lane of a highway" which will be used
in the following.

It is daylight and the temperature is c ◦C. The humidity is h % and the pressure is p mPa.
The wind speed is vw km/h and its direction is dw

◦ (from 0 to 360 ◦, 180 ◦ refers to a southerly
wind).

The highway is separated into two carriageways by a median. In the scenography of this
running example (Figure 4-5), a portion of one carriageway is selected. The left hard shoulder
is located on the immediate outside of the median. The edge of the left hard shoulder is mar-
ked by two single solid white lines. This carriageway has three through lanes and an entrance
lane. There is a chevrons marking placed between the outside lane and the entrance lane. The
entrance lane is composed of an acceleration section and a taper. The right soft shoulder is lo-
cated on the immediate outside of the right hard shoulder. In the beginning of the acceleration

44

FIGURE 4-5 – Scenography of the running example.

section, a give way sign is placed on the right soft shoulder. There are two deflection arrows
markings on the acceleration section. The types of dashed lines (T 1, T 2, T 4) are provided
on Figure 4-5. Their definitions are those provided in the official French document for road
symbols [Ministère de l’écologie, 1988].

FIGURE 4-6 – Initial scene of the running example.

In the initial scene (Figure 8-2) of this example, the autonomous vehicle namely Ego (blue)
rolls on the right lane of a separated lane road. The speed of Ego is given by ve km/h on the
portion which speed is limited to 130 km/h. The Traffic Jam Chauffeur (TJC) System is active
and regulates the speed of Ego with respect to a target vehicle VA (green) that is located d1 m
in front of Ego. A third vehicle V B (red) arrives on the entrance lane and wants to enter the
highway. VA and V B roll at a speed equal to v1 km/h and v2 km/h, respectively.

Here we use the natural language to describe the situation of the running example as it is
the traditional way to describe test cases. In order to have a more formal description of it, we
propose in the following a model-based test case generation methodology.

4.4 Test Case Generation Methodology

Few approaches have been developped for scenarios/test cases generation. Some of these
approaches only focus on collision [Lesemann et al., 2011] [Tuncali et al., 2016] [Gregoriades, 2007].
Some others are limited to special situations or do not take into account several enviroment

45

elements, which are not enough to test ADSs [Hummel et al., 2008b] [Hülsen et al., 2011]
[Armand et al., 2014] [Pollard et al., 2013], while some are not formal [Thorn et al., 2018] [Schuldt et al., 2018]
[Bagschik et al., 2017].

In order to generate representative test cases with high coverage of driving environment, we
should consider all the elements in the driving environment and the interactions between these
elements. Moreover, in order to have reliable test cases, a formal method to generate these test
cases has to be used. Therefore, in the following, we define a methodology (Figure 4-7) which
consists of three layers: basic layer, interaction layer and generation layer.

The basic layer of the methodology includes the static and the mobile elements in the dri-
ving environment. This allows covering important infrastructure elements and vehicles. The
actions are those made by the autonomous vehicle and the events are those made by the envi-
ronment elements, which are considered as events from the point of view of the autonomous
vehicle. Our method not only models the movement of vehicles, but also the appearance and
disappearance of infrastructure while autonomous vehicle moves forward. The values of these
elements are the values of the properties of their corresponding ontology concepts, which deter-
mine their intrinsic characteristics. The interaction layer describes the interaction relationships,
between, on the one hand the static entities, and on the other hand the mobile ones. Moreover
this layer describes the relationships between the static and the mobile entities. These inter-
actions are expressed using the first order logic, which allows us to express the relationships
between the different elements in our system in a simple way. Based on the concepts used
in the basic layer and the formal relationships defined in the interaction layer, the generation
layer build first the initial scenes, then the scenarios and the test cases from the initial. PEPA is
powerful enough to model all the behaviors of the system.

More details are given in the following subsections and illustrated using the running example.

4.4.1 Basic Layer

We consider all static and mobile elements constituting the highway infrastructure, the
weather and the vehicle. All these elements are represented using three ontologies (Highway,
Weather, Vehicle) as a structural framework, which consists of a set of concepts with their
definitions and relationships.

Thus, the basic layer of the methodology includes the static concepts and the mobile ones.
The static concepts are those defined for the highway infrastructure and the weather while the
mobile concepts are those defined for the autonomous vehicle and the other traffics. Some of
the static concepts, such as the lights, can change state but not their position. They are the
dynamic concepts.

In the running example, the static elements are: daylight, temperature, humidity, pressure,

46

FIGURE 4-7 – Test cases generation methodology.

wind, highway, carriageway, median, soft shoulder, hard shoulder, through lane, entrance lane,
acceleration section, taper, sign, marking, solid line, dashed line, chevrons marking, arrows marking.
Note that the underlined static elements are the dynamic ones.

The mobile elements are autonomous vehicle Ego, target vehicle VA and vehicle V B.

Each static or mobile element has a corresponding concept in one of the ontologies (see
Chapter 5). Each concept is defined in terms of entity, properties and sub-entities. In the basic
layer (Figure 4-7), the values of Infrastructure, Weather, Ego-Car and Other actors are the
values of the properties of these concepts. For example, SolidLine is the concept corresponding
to static element solid line and it has the property Color. The value of this property in the
running example is white.

The choice of the values depends on the goal of each test case. For example, if the goal of a
test case is to test the impact of temporary road markings on the behaviour of the autonomous
vehicle, the value of the property Color of concept SolidLine should be yellow. The values
of the concepts properties allow us to determine the relationships between the corresponding

47

entities in the upper layer of the methodology, that is the interaction layer.

In Figure 4-7, the actions of Ego-Car are run, accelerate and decelerate. Examples of the
events of Other actors are: run, accelerate, decelerate, go to left lane and go to right lane.
The dynamic elements can also produce events when they change their state. In the running
example, the occurrence of the entrance lane is regarded as an event.

In addition to the elements mentioned in the running example, we also consider other ele-
ments that may appear on the highway. The highway infrastructure consists of the physical
components of the highway system providing facilities essential to allow the vehicle driving
on the highway. We have built a highway ontology with twenty-five (25) concepts based on the
French official documents [Ministère de l’écologie, 1988] [Ministère de l’équipement, 2000].

The weather describes the state of the atmosphere at a particular place and time. Some
phenomena influence the visibility of the captors on the autonomous vehicle. The visibility
of this one is reflected by the distance at which an infrastructure element or a vehicle can be
clearly discerned. We have built a weather ontology which consists of twelve (12) concepts.

Vehicle ontology describes the performance of a vehicle with two main sub-entities: Light
and Action. Light refers to the lights on the vehicle to illuminate the road when driving at night,
or to signal other road users while Action refers to the control actions that could be made by
the pilot. We have built a vehicle ontology which consist of fifteen (15) concepts.

All the concepts of the three ontologies are considered in the basic layer, and are presented
in Chapter 5.

4.4.2 Interaction layer

The interaction layer describes the interaction relationships, between, on the one hand the
static entities, and on the other hand the mobile ones. Moreover this layer describes the rela-
tionships between the static and the mobile entities.

The static concepts and the mobile concepts, which are used in the basic layer, provide the
properties to build the first-order logic equations representing the interaction relationships. In
the running example, we have mentioned the static elements marking and sign which have been
defined in the highway ontology as concepts Marking and Sign, respectively, in the basic layer.
And we have also defined a concept Symbol which has the property Type from where we learn
that marking and sign are two (2) choices of values of this property. Based on the entities of
their corresponding concepts and their properties values, we have defined the set SymbolSet
which includes sets MarkingSet and SignSet. The former is the set of all possible markings and
the latter is the set of all possible signs on the highway (see Chapter Cha:relations).

Thus, we can sum up using the following equation:

48

∀x ∈ (MarkingSet ∨SignSet), isSymbol(x)

where isSymbol is a defined relationship which states that any element x in set MarkingSet
or SignSet is of type Symbol.

FIGURE 4-8 – Relationships (solid lines) and effects (dashed lines).

We consider the traffic regulation as rules to define the features and significance of highway
infrastructure, and regulate the behaviour of the vehicles. Moreover, as the weather phenomena
can have an effect on the highway, the vehicle and on itself (Figure 4-8), these effects are also
written as rules. All the definitions of the relationships and the rules, which are considered in
the interaction layer, are provided in Chapter 6 using first order logic.

4.4.3 Generation layer

The task of the generation layer is to build test cases. The generated scenarios are based
on the concepts used in the basic layer and the formal relationships defined in the interaction
layer.

Each test case consists of a scenario and the properties values of the concept corresponding
to each element in the scenario. We have defined the scenario as a sequence of scenes, assailed
with goals, values and actions of the autonomous vehicle, values and events from the other
actors, and values of the static elements. The change of states of the dynamic elements also
make events to autonomous vehicle with the change of the values of their properties. These
actions and events make a scene develop to another scene. With the same initial scene, it is
evident that different actions or events lead to different scenes, and make different scenarios.

Let’s consider again the running example. We consider two of several possibilities: V B
inserts before or after Ego.

In the first case (Figure 4-9), Ego decelerates and V B turns on the left direction lights and
begins to insert before Ego. It follows that the radar of Ego detects this vehicle which becomes
the new target vehicle. Ego follows V B.

49

FIGURE 4-9 – Vehicle insertion before Ego.

FIGURE 4-10 – Vehicle insertion after Ego.

In the second case, if Ego makes the decision to accelerate, obviously this action will lead
to another scene and influence the whole scenario as showed in Figure 4-10. V B turns on the
left direction lights and begins to insert after Ego. VA remains the target vehicle and Ego still
follows it.

These above scenarios can be regarded as test cases when we use them with the values of
the concepts’ properties to test the functions of TJC system which is active and regulates the
speed of Ego.

An autonomous vehicle is a safety-critical system for which all behaviours must be proba-
bilistically predictable. Therefore, the generation of test cases requires the use of a semantically
explicit formal language to improve their reliability and robustness. In this layer, we use the
process algebra PEPA as the formal modelling technique of the test cases.

A PEPA model is constructed by identifying components performing activities. The compo-

50

nents are the mobile and dynamic entities of the ontologies in the basic layer, and the activities
are the actions and the events performed by these entities with their occurrence rates. The PEPA
model is described in Chapter 7.

4.5 Conclusion

In this chapter, we defined a test case as a scenario describing a specific situation with the
values of properties for each element in the scenario. We have also introduced our test cases
generation methodology with a running example.

In the next chapter, we present the three ontologies we have built for the conceptualization
and characterization of test case in the basic layer. The relationships between the concepts of the
ontologies used in the interaction layer are presented in Chapter 6. Finally, for the generation
layer, we use PEPA for modelling the driving scenes and scenarios in Chapter 7.

51

52

Chapitre 5

Scene Conceptualization and
Characterization

5.1 Introduction

Engineers and researchers with different backgrounds and different needs use different ter-
minologies in the autonomous vehicles industry. Moreover, some words used in the same ter-
minology are ambiguous, some are redundant and thus have the same meaning, while a same
word may have different meanings. This makes communication between project partners lack
a common understanding, which leads to difficulties for cooperation between them and limits
the potential for re-use and sharing their works. This problem also bothers the partners of the
SVA project [Project, 2015].

Because ontologies allow explicit formal specifications of the terms in a domain, in order
to address the above issue, we consider building ontologies for the context of the highway to
eliminate, or at least reduce conceptual and terminological confusion in the SVA project.

Sharing the common understanding is an important reason to develop ontologies. An on-
tology is a common understanding of an area of interest which consists mainly of a set of
concepts and relationships between them [Uschold and Gruninger, 1996a]. It defines a com-
mon vocabulary for all stakeholders who need to share information in the autonomous vehicle
field. It can bring together different partners and increase productivity.

Moreover, ontologies allow the reuse of knowledge not only in autonomous vehicle industry
but also in other domain. For example, the ontologies built for the highway context can be used
as a basis for all other types of roads. The terms of infrastructures must hold in some contexts
such as road traffic, road maintenance and urban planning. When an infrastructure ontology is
developed, it can be simply reused for other contexts or domains.

53

An ontology is an explicit specification of a conceptualization which can be realized by
one or several ontologies [Gruber, 1993b]. For the conceptualization and characterization of
the test cases, we need to have a common understanding of the elements involved in a scene,
which is the basic element of a test case. As a scene is a snapshot of the vehicle environment
including the static and the mobile elements, and the relationships among those elements, we
construct three ontologies to build a semantic knowledge base of the traffic scenarios. These
ontologies represent the knowledge of the road infrastructure, the weather environment and
the driving control concepts of the autonomous vehicles. We conceptualize each element as an
entity which is characterized by a suitable definition, a set of properties and a set of sub-entities.

Definitions are taken from dictionaries or official documents to better describe and explain
the implication of the concepts. Moreover, the properties defined for each concept allow us to
determine the intrinsic characteristics.

In this chapter, we introduce the ontologies we have built for the autonomous vehicle and its
driving environment. A highway ontology which includes the road infrastructure is presented
in Section 5.2. A weather ontology which represents visibility-related elements is presented
in Section 5.3. Finally, a vehicle ontology which includes the vehicle devices and its driving
control actions is presented in Section 5.4. The conclusion of this chapter is given in Section
6.4.

5.2 Highway ontology

The highway infrastructure consists of the physical components of the highway system pro-
viding facilities essential to allow the vehicle driving on the highway. It consists of all the fixed
installations that have to be developed to allow the circulation of vehicles. We have built the
highway ontology based on the French official documents of road development [Ministère de l’écologie, 1988]
[Ministère de l’équipement, 2000]. Figure 5-1 summarizes all the concepts defined for the high-
way ontology.

The highway ontology consists of three main parts: the long profile of the highway (Roadway),
which consists of Carriageway, Shoulder and Median, and is used to isolate the vehicles in
the opposite direction to avoid scratch, the special zones of RoadPart including Toll, Tunnle,
Bridge and RoadWork, and Symbol on highway. The twenty-five (25) concepts of this onto-
logy are defined in terms of entities, sub-entities and properties which include at least the ID.
For example, the concept EntranceLane is refereed to by entity entrance_lane, and is defi-
ned as "A lane which allows vehicles wishing to access the highway to accelerate to integrate
into traffic flow". It has the properties ID,Alignment(Horizontal&Vertical),Length,Width and
SpeedLimit. It consists of the sub-entities Acceleration Section and Taper (Table 5.1). All the
concepts of this ontology are described in the following sub-sections.

54

FIGURE 5-1 – Concepts of highway ontology.

TABLE 5.1 – Definition of the concept EntranceLane
Concept EntranceLane
Entity entrance_lane

Definition A lane which allows vehicles wishing to ac-
cess the highway to accelerate to integrate
into traffic flow.

Properties ID, Alignment (Horizontal & Vertical),
Length, Width, SpeedLimit

Sub-entities Acceleration Section, Taper

5.2.1 Highway concept

Entity: highway

Definition: highway is an entity that represents a terrestrial infrastructure with separate
carriageways, each comprising at least two lanes per direction in the current section to support
the circulation of wheeled vehicles.

The Highway is a concept characterized by the following properties:

• Geometry: this is the shape of the highway. We consider three types of form:
— Line: straight highway;

55

— Spiral: helical highway;
— Arc: curved highway.

• Topography: The topographic slope is the tangent of the inclination between two points
on the highway. We consider two types of slopes:
— Slope: transverse slope;
— Ramp: longitudinal slope.

• Length: this is the distance between the start and the end of a segment of the highway.

• Width: this is the distance between the two edges of the highway.

• Maximum speed: this is the maximum speed allowed on a highway in France. It gene-
rally depends on the location of the highway and the traffic conditions.
— The location of the highway

— Outside built-up areas, the vehicle speed is limited to 130 km/h on the highways;
— In built-up areas, the vehicle speed is limited to 90 km/h on urban highways.

— Traffic conditions: these maximum speeds are lowered to:
— 110 km/h on sections of highways where the normal limit is 130 km/h in the

event of rain;
— 100 km/h on sections of highways where this limit is lower in the event of rain;
— 50 km/h on all highway networks in the event of visibility of less than 50 meters;
— 90 km/h on highways for vehicles with a total permissible laden weight greater

than 3.5 tonnes or combinations of vehicles with a total permissible gross ve-
hicle weight greater than 3.5 tonnes, with the exception of the public transport
vehicles.

The highway is an entity that includes the following sub-entity:
• Road Part (Fr: Segment) (see Sub-section 5.2.2)

5.2.2 RoadPart concept

Entity: road_part

Definition: road_part is an entity that represents a specific part of highway, considered
separately from the rest.

The RoadPart concept is characterized by the same properties as the concept Highway
(5.2.1) and a private property:

• Type: this is the type of the road part.
— Toll (see Sub-section 5.2.3);

— Road Work (see Sub-section 5.2.4);

— Tunnel (see Sub-section 5.2.5);

— Bridge (see Sub-section 5.2.6).

56

Road_part is an entity that includes the following sub-entity:
• Roadway (Fr: Chaussée) (see Sub-section 5.2.7).

5.2.3 Toll concept

Entity: toll

Definition: toll is an entity that represents a segment of the highway for payment. It mainly
applies to the highway network of intercity links.

The Toll concept is characterized by the following properties:
• Number: this is the number of lanes in the toll station.

• Geometry: this is the shape of the lane.

• Length: this is the distance between the start and the end of a segment of the lane.

• Width: this is the distance between the two edges of the lane.

• Maximum speed: this is the maximum speed authorized on a toll lane in France.

5.2.4 RoadWork concept

Entity: road_work

Definition: road_work is an entity that indicates construction, maintenance or improvement
works on the road on one or more lanes and up to a distance of 3 m from the outside of these
lanes, and this over a height of 5.5 m.

The RoadWork concept is characterized by the following properties:
• Length: this is the distance between the start and the end of a segment of the highway

on which there is work.

• Width: this is the distance between the two edges of the work area on a road.

5.2.5 Tunnel concept

Entity: tunnel

Definition: tunnel is an entity that represents an underground gallery used to allow passage
to a communication route.

The Tunnel concept is characterized by the following properties:

57

• Geometry: this is the shape of the tunnel. In general, it follows the same type of shape
as the highway of which it is a part.

• Length: this is the distance between the start and the end of the tunnel.

• Width: this is the distance between the two edges of the tunnel. In general, it is identical
to the highway width of which it is a part.

• Maximum speed: this is the maximum speed allowed in a tunnel.

5.2.6 Bridge concept

Entity: bridge

Definition: bridge is an entity that represents a construction making it possible to cross a
depression or an obstacle by passing over this separation.

The Bridge concept is characterized by the following properties:
• Geometry: this is the shape of the bridge. In general, it follows the same type of shape

as the highway of which it is a part.

• Length: this is the distance between the start and the end of the bridge.

• Width: this is the distance between the two edges of the highway.

• Maximum speed: this is the maximum speed allowed under the bridge.

• Material: this is the material from which a bridge is made. We consider three types of
material:
— Steel;
— Brick;
— Wood.

5.2.7 Roadway concept

Entity: roadway

Definition: roadway is an entity that represents a surface area of the highway separated by
the central reservation used for vehicle traffic.

The Roadway concept is characterized by the same properties as the concept Highway
(5.2.1)

The roadway is an entity that includes the following sub-entities (Figure 5-2):

• Carriageway (Fr: voies de circulation) (see Sub-section 5.2.8);

• Shoulder (Fr: Accotement) (see Sub-section 5.2.14);

58

FIGURE 5-2 – Composition of Roadway.

• Median (Fr: Terre-plein central) (see Sub-section 5.2.17).

5.2.8 Carriageway concept

Entity: carriageway

Definition: carriageway is an entity that represents the paved part of it for moving traffic.

The Carriageway concept is characterized by the following properties:
• Geometry: this is the shape of the road. In general, it follows the same type of shape as

the highway of which it is a part.

• Length: this is the distance between the start and the end of a segment of the carriage-
way. In general, it has the same length as the highway of which it is a part.

• Width: this is the distance between the two edges of the road.

• Maximum speed: this is the maximum speed allowed on a carriageway in France. It
follows the same speed limit rule as on highways in France.

• Number: this is the number of lanes on a road. Each highway carriageway in France
has 2 to 4 lanes.

The carriageway is an entity that includes the following sub-entities:
• Through Lane (Fr: Voie principale) (see Sub-section 5.2.9);
• Auxiliary Lane (Fr: Voie auxiliaire) (see Sub-section 5.2.10).

5.2.9 ThroughLane concept

Entity: through_lane

59

Definition: through_lane is an entity that represents a lane for the movement of the ve-
hicles travelling from one destination to another through the traffic. It is a subdivision of the
carriageway on which a single vehicle can travel in width.

FIGURE 5-3 – Types of lanes in highway.

The T hroughLane concept is characterized by the following properties:
• Geometry: this is the shape of the lane. In general, it follows the same type of shape as

the carriageway of which it is a part.

• Length: this is the distance between the start and the end of a segment of the lane. In
general, it has the same length as the carriageway of which it is a part.

• Width: this is the distance between the two edges of the lane. It is 3.50 m on the high-
way.

• Maximum speed: this is the maximum speed allowed on a lane in France. It follows the
same speed limit rule as on highways in France.

• Type: this is the type of the through lane (Figure 5-3).
— Lane 1 (Fr: Voie 1): in relation with the direction of traffic, the rightmost lane of

those assigned to the flow of traffic.

— Lane 2 (Fr: Voie 2): immediately to the left of Lane 1 and is reserved for traffic
moving in the same direction. This lane is nearest the median if the carriageway has
two lanes of traffic in the direction.

— Lane 3 (Fr: Voie 3): immediately to the left of Lane 2 and is reserved for traffic
moving in the same direction. This lane is nearest the median if the carriageway has
three lanes of traffic in the direction.

— Lane 4 (Fr: Voie 4): immediately to the left of Lane 3 and is reserved for traffic
moving in the same direction. This lane is nearest the median if the carriageway has
four lanes of traffic in the direction.

5.2.10 AuxiliaryLane concept

Entity: auxiliary_lane

Definition: auxiliary_lane is an entity that represents a lane used to separate entering, exi-

60

ting or turning traffic from the through traffic.

The AuxiliaryLane concept is characterized by the following properties:

• Geometry: this is the shape of the lane. In general, it follows the same type of shape as
the carriageway of which it is a part.

• Length: this is the distance between the start and the end of a segment of the lane. In
general, it has the same length as the carriageway of which it is a part.

• Width: this is the distance between the two edges of the lane. It is 3.50 m on the high-
way.

• Maximum speed: this is the maximum speed allowed on a lane in France. It follows the
same speed limit rule as on highways in France.

• Type: this is the type of the auxiliary lane.
— Entrance Lane (Fr: Voie d’insertion) (see Sub-section 5.2.11);
— Exit Lane (Fr: Voie de sortie) (see Sub-section 5.2.12);
— Weave Lane (Fr: Voie d’entrecroisement) (see Sub-section 5.2.13).

5.2.11 EntranceLane concept

Entity: entrance_lane

Definition: entrance_lane is an entity that represents a speed change lane whose role is to
allow vehicles accessing a highway to accelerate to integrate into traffic flow.

The EntranceLane concept is characterized by the same properties as T hroughLane concept
(see Sub-section 5.2.9).

FIGURE 5-4 – Entrance Lane of highway.

The entrance lane is an entity that includes the two following sections (Figure 5-4):

— Acceleration Section (Fr: Section d’accélération): a section for the acceleration of
the vehicle.

61

— Taper Section (Fr: Biseau): a location between T hroughLane and AccelerationSection
where a driver must adjust its travel path.

5.2.12 ExitLane concept

Entity: exit_lane

Definition: exit_lane is an entity that represents a speed change lane, the role of which is
to allow a vehicle wishing to leave the highway to slow down at the speed imposed by the turn
encountered at the exit of the fast-flowing traffic current.

The ExitLane concept is characterized by the same properties as T hroughLane concept
(See Sub-section 5.2.9).

FIGURE 5-5 – Exit Lane of highway.

The exit lane is an entity that includes the two following sections (Figure 5-5):

— Taper Section (Fr: Biseau): a location between T hroughLane and DecelerationSection
where a driver must adjust its travel path.

— Deceleration Section (Fr: Section de décélération): a section for the deceleration of
vehicle.

5.2.13 WeaveLane concept

Entity: weave_lane

Definition: weave_lane is an entity that represents an additional lateral lane of a carriage-
way, connecting a successive and close entry and exit, intended to facilitate the intersection of
traffic currents which are inserted and dislocated concomitantly.

The WeaveLane concept is characterized by the same properties as T hroughLane concept
(See Sub-section 5.2.9).

62

FIGURE 5-6 – Weave Lane of highway.

The weave lane is an entity that includes the two following sections (Figure 5-6):

— Acceleration Section (Fr: Section d’accélération): a section for the acceleration of
the vehicle.

— Deceleration Section (Fr: Section de décélération): a section for the deceleration of
the vehicle.

5.2.14 Shoulder concept

Entity: shoulder

Definition: shoulder is an entity that represents an area extending from the limit of the
carriageway (in the geometric sense) to the limit of the highway.

The Shoulder concept is characterized by the following properties:
• Geometry: this is the shape of the lane. In general, it follows the same type of shape as

the carriageway of which it is a part.

• Length: this is the distance between the start and the end of a segment of the lane. In
general, it has the same length as the carriageway of which it is a part.

• Width: this is the distance between the two edges of the lane. It is 3.50 m on the high-
way.

The shoulder is an entity that includes the following sub-entities:
• Paved Shoulder (Fr: Bande d’arrêt d’urgence) (see Sub-section 5.2.15);

• Unpaved Shoulder (Fr: Berme) (see Sub-section 5.2.16)
.

5.2.15 PavedShoulder

Entity: paved_shoulder

63

Definition: paved_shoulder is an entity that represents an area located along the road and
specially designed to allow, in case of absolute necessity, the stopping or parking of the vehicle.
It is bounded by a broken line composed of 39 m long lines spaced by 13 m.

The PavedShoulder concept is characterized by the same properties as the Shoulder concept
(see Sub-section 5.2.14).

5.2.16 UnpavedShoulder

Entity: unpaved_shoulder

Definition: unpaved_shoulder is an entity that represents an unpaved part of the shoulder
which is not intended for use by through traffic. In addition to its normal transition function
between stabilized structures and embankments or gullies, it participates in visual clearance
and supports the Sign concept (Sub-section 5.2.22).

The Unpaved Shoulder entity is characterized by the same properties as the Shoulder
concept (See Sub-section 5.2.14).

5.2.17 Median concept

Entity: median

Definition: median is an entity that represents the reserved area that separates opposing
lanes of traffic on divided highways. It is used to install certain sign (Sub-section 5.2.22) and,
if necessary, piles of structures and landscaping.

The Median entity is characterized by the same properties as the Shoulder concept (See
Sub-section 5.2.14).

5.2.18 Symbol concept

Entity: symbol

Definition: symbol is an entity that represents a pictogram associated or not with a mention,
used to identify an interchange, to pre-signal a direction prohibited to a category of vehicles, to
indicate a direction recommended to a category of vehicles and to characterize a road.

The Symbol concept is characterized by the following properties:

• Color: this is the road symbol color with its meaning

64

— White: this color is used for normal road markings.
— Blue: this color is possibly used for parking limits in the blue zone.
— Red: this color is used for the red and white checkerboard materializing the start of

the distress routes.
— Yellow: this color is used for temporary marking.

• Type: this is the type of the symbol.
— Marking (see Sub-section 5.2.19);
— Sign (see Sub-section 5.2.22).

5.2.19 Marking concept

Entity: marking

Definition: marking is an entity that represents a signal on the ground whose geometry,
definition and use determine its legibility for the road user.

The Marking concept is characterized by the following properties:
• Color: this is the marking color with its meaning

— White: this color is used for normal road markings.
— Blue: this color is possibly used for parking limits in the blue zone.
— Red: this color is used for the red and white checker-board materializing the start of

the distress roads.
— Yellow: this color is used for temporary marking.

• Width: this is the distance between the two edges of the line of the marking.

• Type: this is the type of the marking.
— Longitudinal Marking (see Sub-section 5.2.20);
— Specific Marking (see Sub-section 5.2.21).

5.2.20 LongitudinalMarking concept

Entity: longitudinal_marking

Definition: longitudinal_marking is an entity that designates all the lines drawn in the
direction of the lanes.

The LongitudinalMarking entity is characterized by the following properties:
• Colour: this is the marking color with its meaning

— White: this color is used for normal road markings.
— Blue: this color is possibly used for parking limits in the blue zone.

65

— Red: this color is used for the red and white checker-board materializing the start of
the distress roads.

— Yellow: this color is used for temporary marking.

• Width: it is defined in relation with a different unit of measurement u depending on the
type of the road. On highways u = 7.5cm

• Type: this is the type of the longitudinal marking.
— Solid line: a line prohibiting crossing or overlapping. It means that no driver is

allowed to cross it. In addition, it is prohibited to drive on the left of a solid line,
when the latter separates the two directions of traffic.

— Dashed line: a line delimiting the lanes in order to guide traffic.

5.2.21 SpecificMarking concept

Entity: specific_marking

Definition: specific_marking is an entity that designates a special marking which gives
information or a prescription.

The Speci f icMarking concept is characterized by the following properties:
• Color: this is the marking color with its meaning

— White: this color is used for normal road markings.
— Red: this color is used for the red and white checkerboard materializing the start of

the distress routes.
— Yellow: this color is used for temporary marking.

• Type: this is the type of the specific marking.
— Arrow: indicates the direction to follow. It may announce a continuous line or the

elimination of a lane.
— Chevrons: a set of white lines or hatching lines on which vehicles must not drive,

park or stop.

5.2.22 Sign concept

Entity: sign

Definition: sign is an entity that represents a conventional signal vertically located on the
road and intended to ensure the safety of road users or informing them of the dangers.

The Sign concept is characterized by the following properties:
• Shape: a panel of sign can have the shape of a triangle, square, round, rhombus or

octagonal.

66

• Type: this is the type of the sign.
— Type A - Danger signs;
— Type AB - Intersection and priority signs;
— Type B - Prescription signs subdivided into:

— prohibition signs;
— obligation signs;
— end of prescription signs;

— Type C - Signs useful for driving vehicles;
— Type CE - Signs indicating services that may be useful to road users;
— Types D, Dp and Dv - Tracking signs;
— Type Dc - Local information signs;
— Type E - Signs and identification devices for roads;
— Type EB - Agglomeration start and end signs;
— Type G - Position crossing signs;
— Type H - Signs of cultural and tourist interest;
— Type SR - Road safety information panels;
— Types AK, K, KC and KD - Temporary traffic signs.

5.3 Weather ontology

The weather describes all the physical conditions of the atmosphere at a precise moment
and at a specific point. It includes atmospheric pressure, temperature, humidity and wind. Wea-
ther phenomena such as rain and fog can occur at different time and space scales and are
phenomena that can impact the autonomous vehicle behaviours. In general, the weather refers
to all the parameters that influence the transport traffic.

We have defined twelve (12) concepts for the weather ontology (see Figure 5-7). Some
phenomena influence the visibility of the captors on the autonomous vehicle. These concepts
are: Daylight, Precipitation, Fog and Haze. As the properties of the concept Daylight presen-
ted in Table 5.2, the visibility of the autonomous vehicle is reflected by the distance at which
an infrastructure or a vehicle can be clearly discerned. Some concepts have their properties to
show the physical quantity, such as the concepts Temperature, Pressure and Humidity. All the
concepts in this ontology are described in following sub-sections.

5.3.1 Daylight concept

Entity: daylight

67

FIGURE 5-7 – Concepts of Weather ontology.

TABLE 5.2 – Definition of the concept Daylight
Concept Daylight
Entity daylight

Definition The combination of all direct and indirect
sunlight during the daytime.

Properties Direction (from 0 to 360 ◦, 180 ◦ refers to
south light), Brightness, Visibility

Definition: daylight is an entity that represents the combination of all direct and indirect
sunlight during the daytime.

The Daylight concept is characterized by the following properties:
• Direction: from 0 to 360 ◦, 180 ◦ refers to south light

• Brightness: it is the brightness of the sun. It is represented by a real number between 0
and 1, where 0 means complete darkness and 1 means complete clarity.

• Visibility: this is the maximum visible distance for the autonomous vehicle in the day-
light. It is represented in meters.

5.3.2 Temperature concept

Entity: temperature

Definition: temperature is an entity that represents the degree of freshness or heat in the
atmosphere of a place.

The Temperature concept is characterized by the following property:

68

• Value: this is the quantitative appreciation of temperature. The unit of temperature used
is the degree Celsius (◦C).

5.3.3 Pressure concept

Entity: pressure

Definition: pressure is an entity that represents the weight that air exerts on the earth’s
surface.

The Pressure concept is characterized by the following property:
• Value: the unit of pressure used in meteorology is the hectopascal (hPa).

5.3.4 Humidity concept

Entity: humidity

Definition: humidity is an entity that represents the quantity of water vapor contained in
the air.

The Humidity concept is characterized by the following property:
• Value: it gives the humidity in the air and is expressed in grams of water per cubic meter

of air (g/m3). It is related to the temperature as indicated in Table 5.3.

TABLE 5.3 – Maximum amount of water vapor contained in an air particle
Air temperature (en ◦C) - 10 -5 0 5 10 15 20 30

Maximum amount of water vapor possible (g/m3) 2 3 4.5 6.5 9.5 13 17 30

5.3.5 Wind concept

Entity: wind

Definition: wind is an entity that represents the horizontal movement of air.

The Wind entity is characterized by the following properties:
• Speed: this is the quantitative assessment of the wind. It is commonly expressed in

km/h.

• Direction: this is the direction from which the wind comes. It is expressed in degrees
(from 0 to 360 ◦). A 180 ◦ wind is a south wind.

69

5.3.6 Precipitation concept

Entity: precipitation

Definition: precipitation is an entity that represents a meteorological phenomenon associa-
ted with humidity.

The precipitation concept is characterized by the following properties:

• Visibility: this is the maximum visible distance for the autonomous vehicle during a
precipitation. It is represented by a value with the meter as a unit.

• Type: this is the type of the precipitation.
— Rain (see Sub-section 5.3.7);
— Snow (see Sub-section 5.3.8);
— Hail (see Sub-section 5.3.9).

5.3.7 Rain concept

Entity: rain

Definition: rain is an entity that represents a precipitation in the form of drops of water
falling from the clouds to the ground.

The Rain concept is characterized by the following properties:

• Intensity: it is the qualitative and quantitative appreciation of the rain. This can be ex-
pressed in millimeters/minute or millimeters/hour (1mm = 1liter/m2). The character
of the precipitation depends on the local climatology. However, in the plain and for
mainland France, the equivalences in Table 5.4 can be adopted.

• Visibility: this is the maximum visible distance for the autonomous vehicle in the rain.
It is represented in meters. Each rain intensity is associated with visibility as follows:
— Low: visibility above 1000meters;
— Moderate: visibility between 1000 and 600 meters;
— Strong: visibility within 600 meters.

• Speed: this is the speed at which rain falls. Its unit is the meter/second (m/s).

TABLE 5.4 – Qualitative and Quantitative assessment of Rain
Qualitative assessment Quantitative assessment

Light rain 1 to 3 mm per hour
Moderate rain 4 to 7 mm per hour

Heavy rain 8 mm per hour and more

70

5.3.8 Snow concept

Entity: snow

Definition: snow is an entity that represents a precipitation in the form of frozen water
which falls in the form of light white flakes.

The Snow concept is characterized by the following properties:
• Intensity: it is the qualitative and quantitative appreciation of the snow. This can be ex-

pressed in millimeters/minute or millimeters/hour (1mm = 1liter/m2). The character
of the precipitation depends on the local climatology. However, in the plain and for
mainland France, the equivalences in Table 5.5 can be adopted;

• Visibility: this is the maximum visible distance for the autonomous vehicle in the snow.
Its unit of measurement is the meter. Each snow intensity is associated with visibility
as follows:
— Low: visibility above 1000 meters;
— Moderate: visibility between 1000 and 600 meters;
— Strong: visibility within 600 meters.

• Speed: it is the speed of falling snow. Its unit is the meter/second (m/s).

TABLE 5.5 – Qualitative and Quantitative assessment of Snow
Qualitative assessment Quantitative assessment

Light snow Less than 1 mm per hour
Moderate snow 1 to 5 mm per hour

Heavy snow 5 mm per hour and more

5.3.9 Hail concept

Entity: hail

Definition: hail is an entity that represents a precipitation in the form of ice particles formed
by the attraction and accumulation of supercooled water forming 5 to 20 layers of ice on sleet.

The Hail concept is characterized by the following properties:
• Diameter: this is the diameter of an ice particle. Its shape can be spherical, conical or

irregular. It is between 5 and 150 mm.

• Visibility: this is the maximum visible distance for the autonomous vehicle under hail.
Its unit is the meter. Each hail intensity is associated with visibility as follows:
— Low: visibility above 1000 meters;
— Moderate: visibility between 1000 and 600 meters;
— Strong: visibility within 600 meters.

71

• Speed: this is the speed of falling hail. It is given in meters/second (m/s). It is less than
30m/s.

5.3.10 Fog concept

Entity: fog

Definition: fog is an entity that represents a natural phenomenon made of water vapor
which forms a cloud just above the ground, hampering visibility. It is still near the surface. It is
formed by droplets or ice crystals.

The Fog concept is characterized by the following priority:

• Visibility: this is the maximum visible distance for the autonomous vehicle in fog. It
is measured in meters. This phenomenon reduces horizontal visibility to less than 1
kilometer.

5.3.11 Haze concept

Entity: haze

Definition: haze is an entity that represents a natural phenomenon made of fine droplets or
fine ice crystals which have formed on microscopic hygroscopic particles (a substance which
tends to absorb moisture from the air, by absorption or by adsorption). These droplets are so
small that you can neither smell them nor distinguish them from each other. They usually form
a continuous veil which reduces visibility on the surface.

The Haze Concept is characterized by the following priority:

• Visibility: this is the maximum visible distance for the autonomous vehicle in haze.
It is measured in meters. This phenomenon reduces horizontal visibility to less than 1
kilometer.

We have defined twelve (12) concepts in the weather ontology to describe the weather
phenomena. We only know that the weather has an impact on the driving, but we do not know
what kind of impact it is, especially, when the weather conditions interact with each others to
form complex effects. Generally, when the visibility is high, the vehicle travels faster and when
the visibility is low, the vehicle tends to slow down. Moreover, we do not have data on the
impact of the different weather conditions on the autonomous vehicle. Therefore, in this work,
we use the property of visibility to model the impact of the weather on the autonomous vehicle.
If the tester is an expert in this area or has more precise test requirements, other components
can be added as needed. And the results of the field test can provide us with research data.

72

5.4 Vehicle ontology

The vehicle refers to both the classical vehicle and the autonomous vehicle. Figure 5-8
shows the fifteen (15) concepts we have defined for the vehicle ontology.

FIGURE 5-8 – Concepts of vehicle ontology.

The concept Vehicle consists of two main sub-entities: Light and Action. Light refers to
the lights on a vehicle to illuminate the road when driving at night, or to signal other road
users. Action refers to the vehicle manoeuvre actions that could be made by pilot (human
drivers / intelligent system). All the concepts in this ontology are described in the following
sub-sections.

5.4.1 Vehicle concept

Entity: vehicle

Definition: vehicle is an entity that represents a wheeled automobile machine. It is powered
by an engine and intended for the land transport of people or goods.

The Vehicle concept is characterized by the following properties:
• Role: a vehicle can have one of the following three roles:

— EgoCar which represents the autonomous vehicle itself;
— TargetCar representing the vehicle targeted by the autonomous vehicle;
— OtherCar represents one of the other vehicles in a scene.
Table 5.6 shows the properties of the three types of vehicles according to their roles:
EgoCar, TargetCar and OtherCar.

• Category: this is the class to which the vehicle belongs. We consider vehicles authorized
on the highway. Thus, five (5) vehicle classes are defined [Ministère de l’équipement, 2000]
— Classe1: light vehicles;

73

— Classe2: vehicles and truck intermediaries;
— Classe3: coaches and other heavy duty 2-axle vehicles;
— Classe4: coaches and other vehicles with 3 axles and more;
— Classe5: motorcycle, sidecar and trike.

• Height: this is the vertical distance between the roof of the vehicle or of the rolling
assembly and the ground. It is given in meters (m).

• Width: this is the horizontal distance between the left end of the vehicle and the right
end of the vehicle. It is given in meters (m).

• Length: this is the horizontal distance between the front of the vehicle and the rear of
all vehicles (car plus trailer). It is given in meters (m). All vehicles must not exceed
18 meters. The maximum authorized length of a trailer is 12 meters (not including the
coupling device).

• Weight: this is the force exerted on the ground due to the whole vehicle. It has for unit
the ton (t).

• Color: it is the visual perception of the spectral distribution of visible light from the
vehicle.

• Position: this is the relative position in relation to the autonomous vehicle. We consider
the path on which the vehicle is located, the distance between it and the autonomous
vehicle, and its location in front, next to or behind the autonomous vehicle.

• Direction: it is the direction of movement of the vehicle: the same direction of traffic,
or the opposite direction of traffic.

• Speed: it is a quantity that measures the ratio of a distance to the duration of its journey.
It is given in kilometers per hour (km/h).

• Acceleration: it is a quantity which represents the modification affecting the speed of a
movement as a function of time. It is given in meters per second squared (m/s2).

TABLE 5.6 – Properties of concept Vehicle
ID Ego Vc1 Vc2

Role EgoCar TargetCar OtherCar
Category Class1 Class1 Class1

Height He H1 H2

Width We W1 W2

Length Le L1 L2

Weight me m1 m2

Color Blue Green Red
Speed ve v1 v2

The vehicle is an entity that includes the following sub-entities:

• Light (Fr: Feu) (see Sub-section 5.4.2);

• Action (Fr: Action) (see Sub-section 5.4.3).

74

5.4.2 Light concept

Entity: light

Definition: light is an entity that represents all of the automotive lighting on a vehicle to
illuminate the road when driving at night, or to signal other road users.

The Light concept is characterized by the following properties:

• State: it is the lighting state of the lights (on, flashing, off).

• Position: this is where the lights are installed (front or rear, left or right).

• Number: this is a value that represents the number of lights on a vehicle (1-4).

• Color: this is the color of the lights.

• Type: we consider six (6) Light types:
— Parking light: they are used to help other drivers to notice the vehicle and to judge

its width. There 2 white lights at the front and 2 red lights at the rear.
— Headlight: they are 2 large powerful white or yellow lights at the front to illuminate

the road. They have two settings:
— High-beams: the vehicle headlights are set to shine their brightest to brighten a

longer distance in front of the car, than when on the low-beams setting.
— Low-beams: that is the dimmer, shorter-range setting of vehicle’s headlights to

illuminate the road without dazzling other motorists.
— Brake light: there are the red lights attached to the rear of a motor vehicle that lights

up when the brakes are applied, serving as a warning to following drivers.
— Direction light: these 4 orange lights in front and rear of the vehicle indicate the

intention to slow down in order to change the direction of the vehicle, and remain
activated during the maneuver.

— Reversing Light: these 1 or 2 white light in rear of the vehicle indicate that the
vehicle is in reverse. They also light up the recoil area.

— Fog light: they improve the visibility in the event of fog or snow. There 2 white or
yellow lights at the front and 2 red lights at the rear. The rear fog lights are never
used in the event of rain as they are too dazzling.

The properties of the lights presented above are summarized in Table 5.7.

5.4.3 Action concept

Entity: action

Definition: action is an entity that represents a maneuver that can be performed by a ve-
hicle.

75

TABLE 5.7 – Properties of the lights
Type of lights State Position Number Color

Parking light on or off front and rear
4

(2 at the front,
2 at the rear)

white (front)
red (rear)

Headlight
high-beams,
low-beams

or off
front 2 white or yellow

Brake Light on or off rear 2 or 3 red

Reversing light on or off
rear

or rear right 1 or 2 white

Direction light flashing or off front and rear 4 orange

Fog light on or off front and rear
3 or 4

(2 at the front,
1 or 2 at the rear)

white
or yellow (front)

red (rear)

The Action concept is characterized by the following propriety:

• Type: this is the type of the action.
— Run: this action indicates that the vehicle is taking the same direction and with the

same speed as in the previous scene.
— Accelerate: this action indicates the increase in the speed of a vehicle.
— Decelerate: this action is aimed to reduce the speed of a vehicle.
— GoLeftLane: this action indicates a change in the lateral position of a vehicle. The

vehicle can move to the left lane.
— GoRightLane: this action indicates a change in the lateral position of a vehicle. The

vehicle can move to the right lane.
— Enter: this action is used to enter the highway
— Exit: this action is used to exit the highway,

In the following, we only model the actions and not the lights because we do not need
to predict how the intelligent system on the autonomous vehicle reacts to changes of the ele-
ments in the driving environment. We focus on the impact of the reactions of intelligent system
when the other vehicles approach the autonomous vehicle and the scene changes caused by the
actions of autonomous vehicle and the events of the other elements.

5.5 Conclusion

In this chapter, we have introduced three ontologies for the conceptualization and the cha-
racterization of the components of the test cases: a highway ontology and a weather ontology
to specify the environment in which evolves the autonomous vehicle, and a vehicle ontology
which consists of the vehicle devices and the control actions.

76

Analysing the knowledge in a domain is possible as soon as the specification of the terms
of the domain is made. Based on the defined ontologies, we can build instances such as maps,
roads and vehicles. In the next chapter (Chapter 6), we develop the ontologies by applying
first-order logic to model the relationships between the elements in the scenes.

77

78

Chapitre 6

Logical Relations for Ontologies

6.1 Introduction

In the previous chapter, we have presented the concepts of three ontologies for the concep-
tualization and characterization of the components of the test cases. In order to represent the
complex and intricate relationships between the entities of these concepts, we consider three
kinds of relationships: the relationships between the highway entities, the relationships between
the vehicle entities, and the relationships between the entities of the highway and the vehicle.

Logics are of particular importance in providing a logical formalism for ontologies. Pro-
positional logic, description logic and first-order logic are used to represent the relationships
in ontologies [Farkas and Sarbo, 2000] [Jiménez-Ruiz and Grau, 2011] [Peinado et al., 2004]
[Horrocks and Sattler, 2001] [Berardi et al., 2004] [Witherell et al., 2010]. The language of first-
order logic is completely formal and is more expressive than propositional logic and description
logic.

In our context, we need to express the relationships between the different elements in our
system. As we will see, we have simple relationships such as the inheritance relationships and
the composition relationships between the highway infrastructure entities. And we also have
complex relationships such as the position relationships. All these relationships need to be
expressed in a simple way. Furthermore, our system requires functions that define the properties
of the ontologies concepts. First order logic is thus very suitable.

Therefore, in this chapter, we use first-order logic to represent the different relationships
that we define in the context of the ontologies we have built. Moreover, the traffic regulation
and the interactions between the entities are written as logics expressions to simulate the envi-
ronment of the autonomous vehicle. The syntax of the logical model, which includes the logical
symbols, the set symbols and the function symbols, is presented in Section 6.2. Then all the

79

relationships between the entities of the ontologies are presented in Section 6.3. Finally the
conclusion of this chapter is given in Section 6.4.

6.2 The Syntax

In this section, we introduce the syntax of first-order logic we use when representing the
relationships. We first present the logical symbols, then the non-logical ones, namely the set
symbols and the function symbols.

6.2.1 Logical symbols

The logical symbols include two (2) quantifier symbols, seven (7) logical symbols and a
set of variables.

• Quantifier symbols
- Universal: ∀, which reads as “for all”.
- Existential: ∃, which reads as “it exists”.

• Logical connectives
- conjunction: ∧, which reads as “and”.
- disjunction: ∨, which reads as “or”.
- implication:→, which reads as “if... then...”.
- identity: =, which reads as “equal to”.
- conclusion: |, which reads as “such that”.
- union: ∪, which refers to the union of a collection of sets.
- concatenation: _ , which refers to a concatenation of a set of elements.

• A set of variables V , denoted by the alphabet elements.

6.2.2 Set symbols

The set symbols represent the sets of entities of the highway ontology, weather ontology
and vehicle ontology.

As we have explained in Chapter 5, we consider that the highway is divided into several
road parts.

— RoadPartSet: it is the set of all possible road parts of the highway including the special
zones (toll, tunnel, bridge, road work zone).

80

— HighwaySet: it is a concatenation of elements from set RoadPartSet, that is HighwaySet
= x1_x2_..._xn, where xi ∈ RoadPartSet, i = 1, ...,n, and n is the total number of road
parts.

— RoadwaySet: it is the set of the roadways of the highway.

— CarriagewaySet: it is the set of carriageways of the highway. A highway has a maxi-
mum of two (2) carriageways.

— T hroughLaneSet: it is the set of through lanes of the highway. A carriageway has a
maximum of four (4) through lanes.

— EntranceLaneSet: it is the set of entrance lanes of the highway. A road part of highway
has a maximum of two (2) entrance lanes.

— WeaveLaneSet: it is the set of weave lanes of the highway. A road part of highway has
one (1) weave lane, at most.

— ExitLaneSet: it is the set of exit lanes of the highway. A road part of highway has a
maximum of two (2) exit lanes.

— TaperSet: it is the set of tapers of the highway. A road part of highway has a maximum
of two (2) tapers.

— AccelerationSectionSet: it is the set of acceleration sections of the highway. An en-
trance lane of highway has one (1) acceleration section, at most.

— DecelerationSectionSet: it is the set of deceleration sections of the highway. An exit
lane of highway has one (1) deceleration section, at most.

— AuxiliaryLaneSet = EntranceLaneSet ∪WeaveLaneSet ∪ExitLaneSet. It is the set of
all possible auxiliaries lanes, that is, ∀x ∈ AuxiliaryLaneSet, x ∈ EntranceLaneSet or
x ∈WeaveLaneSet or x ∈ ExitLaneSet.

— LaneSet = T hroughLaneSet ∪AuxiliaryLaneSet. It is the set of all possible lanes, that
is, ∀x ∈ LaneSet, x ∈ T hroughLaneSet or x ∈ AuxiliaryLaneSet.

— MedianSet: it is the set of medians of the highway. A highway has one (1) median, at
most.

— PavedShoulderSet: it is the set of paved shoulders of the highway. A highway has one
(1) paved shoulder, at most.

— UnpavedShoulderSet: it is the set of unpaved shoulders of the highway. A highway has
one (1) unpaved shoulder, at most.

— ShoulderSet = PavedShoulderSet ∪UnpavedShoulderSet. It is the set of all possible
shoulders, that is, ∀x∈ ShoulderSet, x∈PavedShoulderSet or x∈UnpavedShoulderSet.

— TollSet: it is the set of tolls of the highway. Thus ∀x ∈ TollSet, x ∈ RoadPartSet.

— TunnelSet: it is the set of tunnels of the highway. Thus ∀x∈TunnelSet, x∈RoadPartSet.

— BridgeSet: it is the set of bridges of the highway. Thus ∀x∈BridgeSet, x∈RoadPartSet.

— RoadWorkSet: it is the set of road works areas on the highway. Thus ∀x∈RoadWorkSet,
x ∈ RoadPartSet.

— SolidLineSet: it is the set of solid lines on the highway.

81

— DashedLineSet: it is the set of dashed lines on the highway.

— LongitudinalMarkingSet: it is the set of longitudinal markings of the highway.

— ArrowSet: it is the set of arrows on the highway.

— ChevronSet: it is the set of chevrons on the highway.

— Speci f icMarkingSet = ArrowSet∪ChevronSet. It is the set of all possible specific mar-
kings, that is, ∀x ∈ Speci f icMarkingSet, x ∈ ArrowSet or x ∈ChevronSet.

— MarkingSet = LongitudinalMarkingSet ∪Speci f icMarkingSet. It is the set of all pos-
sible markings, that is, ∀x∈MarkingSet, x∈LongitudinalMarkingSet or x∈ Speci f icMarkingSet.

— SignSet = SignASet∪SignBSet∪SignABSet∪SignCSet∪SignDSet∪SignESet∪SignJSet∪
SignSRSet ∪ SignKSet. It is the set of all possible signs, that is, ∀x ∈ SignSet, x ∈
SignASet or x ∈ SignBSet or x ∈ SignABSet or x ∈ SignCSet or x ∈ SignDSet or x ∈
SignESet or x ∈ SignJSet or x ∈ SignSRSet or x ∈ SignKSet .

— SymbolSet = MarkingSet ∪ SignSet. It is the set of all possible symbols, that is, ∀x ∈
SymbolSet, x ∈MarkingSet or x ∈ SignSet.

— VehicleSet: it is the set of vehicles on the highway.

— ParkingLightSet: it is the set of parking lights of the vehicle.

— HeadLightSet: it is the set of head lights of the vehicle.

— DirectionLightSet: it is the set of direction lights of the vehicle.

— FogLightSet: it is the set of fog lights of the vehicle.

— ReversingLightSet: it is the set of reversing lights of the vehicle.

— BrakeLightSet: it is the set of brake lights of the vehicle.

— LightSet = ParkingLightSet∪HeadLightSet∪DirectionLightSet∪FogLightSet∪ReversingLightSet∪
BrakeLightSet. It is the set of all possible lights, that is, ∀x∈LightSet, x∈ParkingLightSet
or x∈HeadLightSet or x∈DirectionLightSet or x∈FogLightSet or x∈ReversingLightSet
or x ∈ BrakeLightSet.

— ActionSet = {Run,Accelerate,Decelerate,GoLe f tLane,GoRightLane,Enter,Exit}. It
is the set of all possible actions that can be made by the vehicles.

6.2.3 Function symbols

The functions provide the parameters characterizing the entities which are defined as concepts
properties in the ontologies introduced in Chapter 5.

— Length: L→R+, where L=LaneSet∪TaperSet∪AccelerationSectionSet∪DecelerationSectionSet∪
TollSet ∪TunnelSet ∪BridgeSet ∪RoadWorkSet. Length(x) provides the length of x,
∀x ∈ L.

— Width: L→ R+. Width(x) provides the width of x, ∀x ∈ L.

82

— Height: RoadPartSet→ R+. Height(x) provides the height of x, ∀x ∈ RoadPartSet.

— Material: BridgeSet→M, where M = {Steel,Brick,Wood}. Material(x) provides the
material of x, ∀x ∈ BridgeSet.

— Color: VehicleSet→C, where C = {White,Silver,Black,Grey,Blue,Red,Brown, Green,Others}.
Color(x) provides the color of x, ∀x ∈VehicleSet.

— Type: SignSet→ T , where T = {A,B,AB,C,D,E,J,SR,K}. Type(x) provides the type
of x, ∀x ∈ SignSet.

— Direction: VehicleSet → D, where D = {Same,Reverse}. Direction(x) provides the
direction of x, ∀x ∈VehicleSet.

— Number: CarragewaySet → N, N ∈ {2,3,4}. Number(x) provides the lane number of
x, ∀x ∈CarragewaySet.

— Speed: VehicleSet→ R. Speed(x) provides the speed of x, ∀x ∈VehicleSet.

— SpeedLimit: LaneSet→R. SpeedLimit(x) provides the speed limit of x, ∀x ∈ LaneSet.

— Position: SymbolSet→ P, where P = {Median,Lane,UnpavedShoulder}. Position(x)
provides the position of x, ∀x ∈ SymbolSet.

— Role: VehicleSet → O, where O = {EgoCar,TargetCar,OtherCar}. Role(x) provides
the role of x, ∀x ∈VehicleSet.

— Category: VehicleSet→V , where V = {Class1,Class2,Class3,Class4,Class5}. Category(x)
provides the category of x, ∀x ∈VehicleSet.

6.3 Relationships

In order to represent the complex and intricate relationships between the entities, we consi-
der three kinds of relationships: the relationships between the highway entities, the relation-
ships between the vehicle entities, and the relationships between the highway and vehicle enti-
ties.

6.3.1 Relationships between the highway entities

There are three types of relationships between the entities of the highway ontology:

— Inheritance relationships (unary),
— Composition relationships (binary),
— Position relationships which consist of the longitudinal position (binary), the transverse

position (binary or ternary) and the vertical position (binary).

83

All the defined relationships are summarized in Figure 6-1.

FIGURE 6-1 – Relationships between the highway entities.

6.3.1.1 Inheritance relationships

Inheritance relationship is of “IS-A” type relationship. An inheritance relationship between
two entities A and B implies that “A is a B”.

Before defining relationships, we define the following inheritance relation symbols:

• isRoadPart(x) is a relationship which specifies that an entity belongs to set RoadPartSet.

• isLane is a relationship which specifies that an entity belongs to set LaneSet.

• isAuxiliaryLane is a relationship which specifies that an entity belongs to set AuxiliaryLaneSet.

• isShoulder is a relationship which specifies that an entity belongs to set ShoulderSet.

• isSymbol is a relationship which specifies that an entity belongs to set SymbolSet.

• isMarking is a relationship which specifies that an entity belongs to set MarkingSet.

• isLongitudinalMarking is a relationship which specifies that an entity belongs to set
LongitudinalMarkingSet.

• isSpeci f icMarking is a relationship which specifies that an entity belongs to set Speci f icMarkingSet.

• isSign is a relationship which specifies that an entity belongs to set SignSet.

We can define 2 types of inheritance relationships: simple and combined. For example,
the following combined relationship means that any element x in set EntranceLaneSet or

84

WeaveLaneSet or ExitLaneSet is of type AuxiliaryLane, which implies that x is also a lane.

∀x ∈ (EntranceLaneSet ∨WeaveLaneSet ∨ExitLaneSet), isAuxiliaryLane(x)→ isLane(x)

We define the following four (4) simple inheritance relationships:

— ∀x ∈ (T hroughLaneSet ∨AuxiliaryLaneSet), isLane(x);

— ∀x ∈ (UnpavedShoulderSet ∨PavedShoulderSet), isShoulder(x);

— ∀x ∈ (TollSet ∨TunnelSet ∨BridgeSet ∨RoadWorkSet), isRoadPart(x);

— ∀x ∈ (MarkingSet ∨SignSet), isSymbol(x);

Finally, we define the following five (5) combined inheritance relationships:

— ∀x∈ (EntranceLaneSet∨WeaveLaneSet∨ExitLaneSet), isAuxiliaryLane(x)→ isLane(x);

— ∀x∈ (LongitudinalMarkingSet∨Speci f icMarkingSet), isMarking(x)→ isSymbol(x);

— ∀x∈ (SolidLineSet∨DashedLineSet), isLongitudinalMarking(x)→ isMarking(x)→
isSymbol(x);

— ∀x∈ (ArrowSet∨ChevronSet), isSpeci f icMarking(x)→ isMarking(x)→ isSymbol(x);

— ∀x∈ (SignASet∨SignBSet∨SignABSet∨SignCSet∨SignDSet∨SignESet∨SignJSet∨
SignSRSet ∨SignKSet), isSign(x)→ isSymbol(x);

6.3.1.2 Composition relationships

A composition relationship is a “PART-OF” relationship. In this binary relationship, invol-
ved entities are dependent of each other. Let us take an example of sets Highway and RoadPart.
An element of RoadPart set is an element of Highway and thus both depend on each other.
This relationship can be written as: ∀x ∈ Highway,∃y ∈ RoadPart | hasRoadPart(x,y), where
hasRoadPart is the relationship symbol which specifies that entity x is composed of y.

Before defining all the composition relationships, we define first the following composition
relationship symbols:

• hasRoadPart is a relationship which specifies that an entity is composed of another
entity belonging to set RoadPartSet.

• hasRoadway is a relationship which specifies that an entity is composed of another
entity belonging to set RoadwaySet.

• hasCarriageway is a relationship which specifies that an entity is composed of another
entity belonging to set CarriagewaySet.

• hasLane is a relationship which specifies that an entity is composed of another entity

85

belonging to set LaneSet.

• hasSection is a relationship which specifies that an entity is composed of another entity
belonging to set (AccelerationSectionSet ∪DecelerationSectionSet ∪TaperSet).

• hasMedian is a relationship which specifies that an entity is composed of another entity
belonging to set MedianSet.

• hasShoulder is a relationship which specifies that an entity is composed of another
entity belonging to set ShoulderSet.

• hasSymbol is a relationship which specifies that an entity is composed of another entity
belonging to set SymbolSet.

It follows that, we define the following composition relationships:

— ∀x ∈ HighwaySet,∃y ∈ RoadPartSet | hasRoadPart(x,y);

— ∀x ∈ RoadPartSet,∃y ∈ RoadwaySet | hasRoadway(x,y);

— ∀x ∈ RoadwaySet,∃y ∈CarriagewaySet | hasCarriageway(x,y);

— ∀x ∈CarriagewaySet,∃y ∈ LaneSet | hasLane(x,y);

— ∀x ∈ RoadwaySet,∃ ∈ LaneSet | hasLane(x,y);

— ∀x ∈ RoadPartSet,∃y ∈ LaneSet | hasLane(x,y);

— ∀x ∈ EntranceLaneSet,∃y ∈ AccelerationSectionSet | hasSection(x,y);

— ∀x ∈ EntranceLaneSet,∃y ∈ TaperSet | hasSection(x,y);

— ∀x ∈WeaveLaneSet,∃y ∈ AccelerationSectionSet | hasSection(x,y);

— ∀x ∈WeaveLaneSet,∃y ∈ DecelerationSectionSet | hasSection(x,y);

— ∀x ∈WeaveLaneSet,∃y ∈ TaperSet | hasSection(x,y);

— ∀x ∈ ExitLaneSet,∃y ∈ DecelerationSectionSet | hasSection(x,y);

— ∀x ∈ RoadwaySet,∃y ∈MedianSet | hasMedian(x,y);

— ∀x ∈ RoadwaySet,∃y ∈ ShoulderSet | hasShoulder(x,y);

— ∀x ∈ HighwaySet,∃y ∈ SymbolSet | hasSymbolt(x,y);

— ∃x ∈ RoadPartSet,∃y ∈ SymbolSet | hasSymbol(x,y);

6.3.1.3 Position relationships

A position refers to a longitudinal position, a transverse position or a vertical position. A
longitudinal position relationship indicates the connection order of elements in the driving
direction of the vehicle. Before defining the relationships, we define the following longitudinal
position relation symbols:

• connecteRoadPart is a relationship which specifies that an entity is connected to ano-
ther entity belonging to set RoadPartSet.

86

• connecteSection is a relationship which specifies that an entity is connected to another
entity belonging to set (AccelerationSectionSet∪DecelerationSectionSet∪TaperSet).

For example, ∀x,y∈RoadPartSet,connecteRoadPart(x,y) means that road part y is connec-
ted to road part x, and thus y is the next road part after x.

We define the following three (3) longitudinal position relationships:

— ∀x ∈ RoadPartSet,∃y ∈ RoadPartSet | connecteRoadPart(x,y);

— ∀x ∈ AccelerationSectionSet,∃y ∈ TaperSet | connecteSection(x,y);

— ∀x ∈ DecelerationSectionSet,∃y ∈ AccelerationSectionSet | connecteSection(x,y);

A transverse position relationship indicates the connection order of parallel elements.
Before defining these relationships, we define the following transverse position relationship
symbols:

• besideMedian is a relationship which specifies that an entity is adjacent to another
entity belonging to set MedianSet.

• besideCarriageway is a relationship which specifies that an entity is adjacent to another
entity belonging to set CarriagewaySet.

• besideLane is a relationship which specifies that an entity is adjacent to another entity
belonging to set LaneSet.

• besideShoulder is a relationship which specifies that an entity is adjacent to another
entity belonging to set ShoulderSet.

• MarkingBetween is a relationship which specifies that an entity belonging to set MarkingSet
is between two other entities.

For example, relationship ∃x ∈ LaneSet,∀y ∈MedianSet | besideMedian(x,y) means that
for all median y, there is a lane x adjacent to y.

Another example is: ∃x∈MarkingSet,∀y,z∈ (MedianSet∪LaneSet∪ShoulderSet)∧(besideMedian(y,z)∨
besideShoulder(y,z)∨besideLane(y,z)) |MarkingBetween(x,y,z), which means that, for all y
and z belonging to set MedianSet or LaneSet or ShoulderSet, there is a marking x between y
and z.

We define the following five (5) transverse position relationships:

— ∃x ∈ LaneSet,∀y ∈MedianSet | besideMedian(x,y);

— ∃x∈ (T hroughLaneSet∪AuxiliaryLaneSet∪PavedShoulderSet),∀y∈T hroughLaneSet |
besideLane(x,y);

— ∃x∈ (AuxiliaryLaneSet∪PavedShoulderSet),∀y∈AuxiliaryLaneSet | besideLane(x,y);

— ∃x∈ (MedianSet∪PavedShoulderSet),∀y∈CarriagewaySet | besideCarriageway(x,y);

87

— ∃x∈MarkingSet,∀y,z∈ (MedianSet∪LaneSet∪ShoulderSet)∧(besideMedian(y,z)∨
besideShoulder(y,z)∨besideLane(y,z)) |MarkingBetween(x,y,z).

Finaly a vertical position relationship indicates the vertical connection to the ground.
Before defining the vertical position relationships, we define one (1) relation symbol:

• setSymbol is a relationship which specifies that an entity belonging to set Equipment is
located on another entity.

For example, ∀x ∈ SignCSet,∃y ∈ CarriagewaySet | setSymbol(x,y) means that for each
indication sign x in set SignCSet, there is a carriageway y on which x is located.

Thus we define the following three (3) vertical position relationships:

— ∃y ∈ (UnpavedShoulderSet ∪MedienSet),∀x ∈ SignSet | setSymbol(x,y);

— ∃y ∈CarriagewaySet,∀x ∈ SignCSet | setSymbol(x,y);

— ∃y ∈ ArrowSet,∃x ∈ LaneSet | setSymbol(x,y);

6.3.2 Relationships between the vehicle entities

As explained before, a vehicle can have one of the three following roles: EgoCar, TargetCar
and OtherCar. EgoCar represents the autonomous vehicle (AV) itself, TargetCar represents
the vehicle targeted by the AV and OtherCar represents one of the other vehicles in a scene.
There are eight (8) binary relationships between EgoCar and the other cars (TargetCar and
OtherCar). We consider that EgoCar position is the origin point as shown in Figure 6-2.

FIGURE 6-2 – Vehicles around EgoCar.

Before defining the relationships between the vehicle entities, we define the following re-
lationship symbols:

88

• hasAheadVehicle is a relationship which specifies that an entity belonging to set VehicleSet
is located ahead of EgoCar.

• hasAheadLe f tVehicle is a relationship which specifies that an entity belonging to set
VehicleSet is located at the left front of EgoCar.

• hasLe f tVehicle is a relationship which specifies that an entity belonging to set VehicleSet
is located at the left of EgoCar.

• hasBehindLe f tVehicle is a relationship which specifies that an entity belonging to set
VehicleSet is located at the left rear of EgoCar.

• hasBehindVehicle is a relationship which specifies that an entity belonging to set VehicleSet
is located behind of EgoCar.

• hasBehindRightVehicle is a relationship which specifies that an entity belonging to set
VehicleSet is located at the right rear of EgoCar.

• hasRightVehicle is a relationship which specifies that an entity belonging to set VehicleSet
is located at the right of EgoCar.

• hasAheadRightVehicle is a relationship which specifies that an entity belonging to set
VehicleSet is located at the right front of EgoCar.

EgoCar can have a TargetCar in front, which is conceptualised using the following rela-
tionship:

∃x,y∈VehicleSet | (Role(x) = ‘EgoCar′)∧(Role(y) = ‘TargetCar′)∧hasAheadVehicle(x,y).

And each other car around EgoCar is considered using the following seven (7) relation-
ships:

— ∃x,y∈VehicleSet | (Role(x)= ‘EgoCar′)∧(Role(y)= ‘OtherCar′)∧hasAheadLe f tVehicle(x,y);

— ∃x,y∈VehicleSet | (Role(x)= ‘EgoCar′)∧(Role(y)= ‘OtherCar′)∧hasAheadRightVehicle(x,y);

— ∃x,y∈VehicleSet | (Role(x)= ‘EgoCar′)∧(Role(y)= ‘OtherCar′)∧hasLe f tVehicle(x,y);

— ∃x,y∈VehicleSet | (Role(x)= ‘EgoCar′)∧(Role(y)= ‘OtherCar′)∧hasRightVehicle(x,y;

— ∃x,y∈VehicleSet | (Role(x)= ‘EgoCar′)∧(Role(y)= ‘OtherCar′)∧hasBehindLe f tVehicle(x,y);

— ∃x,y∈VehicleSet | (Role(x)= ‘EgoCar′)∧(Role(y)= ‘OtherCar′)∧hasBehindRightVehicle(x,y);

— ∃x,y∈VehicleSet | (Role(x)= ‘EgoCar′)∧(Role(y)= ‘OtherCar′)∧hasBehindVehicle(x,y);

6.3.3 Relationships between the entities of the highway and the vehicle

In order to define the relationships between the highway and vehicle entities, we consider
that all vehicles obey the traffic rules. Therefore, we define the following relationship symbols:

89

• enters is a relationship which specifies that an entity belonging to VehicleSet is ente-
ring an entity belonging to set W = (RoadwaySet ∪TollSet ∪TunnelSet ∪BridgeSet ∪
RoadWorkSet).

• leaves is a relationship which specifies that an entity belonging to set Vehicle is leaving
an entity belonging to set W .

• on is a relationship which specifies that an entity belonging to set Vehicle is located on
an entity belonging to set W .

Thus, we define the following four (4) binary relationships between the vehicle and high-
way entities:

— ∃x ∈VehicleSet,∃y ∈ (LaneSet ∪PavedShoulderSet) | on(x,y)

— ∃x ∈VehicleSet,∃y ∈ RoadPartSet | in(x,y)
— ∃x ∈VehicleSet,∃y ∈ (LaneSet ∪PavedShoulderSet ∪RoadPartSet) | enters(x,y)

— ∃x ∈VehicleSet,∃y ∈ (LaneSet ∪PavedShoulderSet ∪RoadPartSet) | leaves(x,y)

6.4 Conclusion

In this chapter, we have defined three kinds of relationships between the entities of the
ontologies built in Chapter 5. We have also showed how to express these relationships using
the first order logic.

In the next chapter, we present our test cases formalization model based on the ontological
concepts defined in Chapter 5 and the logical relationships defined in Chapter 6.

90

Chapitre 7

Formal modelling using PEPA

7.1 Introduction

We have built three ontologies for the conceptualization and the characterization of the
elements of the test cases in Chapter 5. Relationships and rules, such as traffic regulation, are
expressed using a first-order logic in Chapter 6. The scenes of the test cases can be defined
using the concepts and the relationships we have defined. But these scenes are static like snap-
shots lacking of dynamic behaviours. Therefore, they are not enough for the simulation and the
validation of the functions of ADSs. This emphasizes the necessity of a model which allows us
to capture the dynamicity of the scenarios.

In this chapter, we focus on the modelling of the dynamic transitions between the driving
scenes to generate scenarios using a formal modelling technique that can be used to describe
and analyze concurrent systems like ADSs. We are interested in the Performance Evaluation
Process Algebra (PEPA) [Hillston, 1994] modelling technique to generate the scenarios ac-
cording to the state-change elements of the system. PEPA can model system elements which
behave and evolve individually or in cooperation with each others.

Indeed, we need a formalism that allows us to model concurrent agents, like the vehicles.
PEPA allows modelling such a concurrent system which can behave in an individual or com-
petitive way. This formalism is powerful enough to model all the behaviors of the components
in our system. In our knowledge, until now no work has been devoted to the formal modelling
of test cases (see Chapter 3).

In this chapter, the syntax of the PEPA language is presented in Section 7.2. We introduce
our general PEPA model for the highway in Section 7.3. In Section 7.4, we use the running
example introduced in Chapter 4 to describe more specifically the construction of the corres-
ponding PEPA model, and the generation of the scenarios. Moreover, we show how to identify

91

the critical ones. Finally, Section 7.6 concludes this chapter.

7.2 Syntax of PEPA

Performance Evaluation Process Algebra (PEPA) is a stochastic process algebra designed
for modelling computer and communication systems [Hillston, 1994]. This language has been
developed to investigate how the compositional features of a process algebra might impact
upon the practice of performance modelling.

A PEPA model is constructed by identifying the components performing activities. The
main attribute which was missing from a process algebra is the quantification of time and uncer-
tainty, which is necessary for performance evaluation. This is achieved in PEPA by associating
an exponentially distributed random variable with each activity, representing its duration. The
duration of the activity may be represented by a single real number parameter, which can be
any positive real number or the distinguished symbol>, which refers to the unspecified coope-
ration activity rate. If more than one activity can be simultaneously enabled by a component,
each unspecified activity rate must be assigned a weight to determine the relative probabilities
of possible outcomes of the activity [Hillston, 1994].

The stochastic process algebra PEPA is a simple language with a small set of operators.
The operators and their syntax are defined as follows:

S def
= (α,r).P | P+Q | P ./

L
Q | P/L | A

Prefix: S def
= (α,r).P, component S carries out activity (α,r) which has action

type α and a duration which is exponentially distributed
with parameter r before behaving as P.

Choice: S def
= P+Q, S may behave either as component P or as component Q.

Cooperation: S def
= P ./

L
Q, S is the result of the cooperation or synchronisation between

components P and Q. Shared activities in the cooperation
set L determine the interactions between components P and
Q, replacing the individual activities of the individual com-
ponents P and Q with a rate reflecting the rate of the slower
participant.

Hiding: S def
= P/L, the system behaves as component P except that any activity

of a type within the set L is hidden. Its type is not witnessed
upon completion. It appears as the unknown type τ and can
be regarded as an internal delay by the component.

Constant: S def
= A it assigns S the behaviour of component A. In general, it

assigns names to components.

PEPA abstracts activities performed by components into a continuous-time Markov pro-

92

cess. The generation of this underlying Markov process is based on the derivation graph of
the model. From a model definition M we can apply the semantic rules exhaustively to find
the complete set of reachable states, the derivative set of M, ds(M). The derivation graph is
a directed multi-graph whose nodes are the reachable states of the model ds(M) and whose
arcs represent the possible transitions between them. In order to derivea Markov process from
a PEPA model, we associate a state with each node of the derivation gragh. The edges are la-
belled only by the activity rates since the action type information is discarded. While multiple
edges between a pair of nodes are combined by summing the corresponding tates. The rate on
an edge in this modified gragh becomes the corresponding entry in the infinitesimal generator
matrix [Kloul, 2006].

Like all state-based modelling techniques, there is a risk of combinatorial explosion of the
state space of the underlying Markov chain. PEPA has an aggregation technique that may allow
reducing the size of the model [Hillston, 1994]. It is also supported by a resolution method
based on the differential equations [Gilmore et al., 2003].

7.3 General PEPA model for highway

In this section, we introduce our general PEPA model for the highway. We consider the
portion of a highway carriageway around the autonomous vehicle, Ego (bleu vehicle in Figure
7-1). Depending on the speed of Ego and the speed of the possible vehicle following and just
before Ego, we can define a critical zone (yellow zone in Figure 7-1) in the center lane. This
zone is delimited considering the minimum safe distance that must separate Ego from the other
vehicles: the one just before and the one just after.

The minimum safe distances are the following distances of two seconds, which are cal-
culated from the speed of the vehicles. The formulas for front minimum safe distances is:
AMSD = 2v−e, where ve is the speed of the autonomous vehicle. And the formulas for behind
minimum safe distances are: BMSD = 2v− t, where vt is the speed of the vehicle behind the
autonomous vehicle. Here, we do not consider the influence of weather, pavement materials,
road slope and vehicle performance, but we can improve the division of critical zone as nee-
ded. The formulas for minimum safe distances can be changed to: FMSD = 2v− e+α and
FMSD = 2v− t +α, where α is the distance added caused by the influence of the other fac-
tors. Vehicles, including autonomous vehicle, determines their speeds according to different
conditions. In the PEPA model, they can achieve acceleration or deceleration.

Moreover, we separate the portion of carriageway into six (6) zones as shown in Figure
7-2. We number these zones from one to six. Zone 1 indicates the left lane. Zone 2 and Zone 5
indicate the uncritical zones in front and behind Ego. Zone 3 indicates the critical zone in front
of Ego while Zone 4 indicates the critical one behind it. Zone 6 indicates the right lane. Both
Zone 1 and Zone 6 are uncritical zones for Ego.

93

FIGURE 7-1 – Critical zone around Ego.

Another vehicle can be in any area around Ego. We model the movements of the other
vehicles between the zones with the graph in Figure 7-3. This graph shows all possibles transi-
tions between these zones. For example, a vehicle can move between Zone 1 and Zone k, and
between Zone k and Zone 6, k = 2,3,4,5. It can also move between Zone 2 and Zone 3, and
between Zone 4 and Zone 5. All vehicles in the uncritical zones can enter the critical zones and
vice versa.

FIGURE 7-2 – Zones in the scene. FIGURE 7-3 – Movements between zones.

Considering the concepts we defined in our ontologies, we build a PEPA model which
consists of nineteen (19) components. Table 7.1 shows the PEPA component/action in the mo-
del corresponding to each concept in the ontologies. Moreover, the PEPA components are listed
in Table 7.2 with, for each, its possible actions.

There are actions which have no corresponding concept in Table 7.1. They are used to
indicate the end of an action whose concept is given in this table. For example, action enterV
has the corresponding concept Enter, while action noEnterV does not.

94

TABLE 7.1 – Ontology concepts and their corresponding components or actions
Ontology Concept Components

Vehicle VehicleEGO, VehicleA
EntranceLane EnLO f f

ExitLane ExLO f f
Toll TollO f f

RoadWork RoadWorkO f f
Tunnel TunnelO f f
Bridge BridgeO f f

Sign SignAO f f , SignBO f f , SignABO f f , SignCO f f , SignDO f f ,
SignEO f f , SignJO f f , SignSRO f f , SignKO f f , SpeedLimit

Weather Visibility
Actions

Run runVehicleEGO, runVehicleA
Accelerate accelerateVehicleEGO, accelerateVehicleA
Decelerate decelerateVehicleEGO, decelerateVehicleA

GoLe f tLane goLe f tLaneVehicleA
GoRightLane goRightLaneVehicleA

Enter enterV
Exit exitV

TABLE 7.2 – PEPA Components and their possible actions
Components Actions
VehicleEGO runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO

VehicleA runVehicleA, accelerateVehicleA, decelerateVehicleA,
goLe f tLaneVehicleA, goRightLaneVehicleA

EnLO f f entranceOn, enterV , noEnterV
ExLO f f exitOn, exitV , noExitV
TollO f f tollOn, tollOut, tollO f f

RoadWorkO f f workOn, workOut, workO f f
TunnelO f f tunnelOn, tunnelOut, tunnelO f f
BridgeO f f bridgeOn, bridgeOut, bridgeO f f
SignAO f f signAon, signAo f f
SignBO f f signBon, signBo f f

SignABO f f signABon, signABo f f
SignCO f f signCon, signCo f f
SignDO f f signDon, signDo f f
SignEO f f signEon, signEo f f
SignJO f f signJon, signJo f f

SignSRO f f signSRon, signSRo f f
SignKO f f signKon, signKo f f
SpeedLimit limitLower, limitGreater
Visibility visibilityLower, visibilityGreater

95

In the following, we introduce the PEPA components with the equations characterizing
their behaviours. We distinguish the actions of Ego from those of the other vehicles.

7.3.1 Component VehicleEgo

Component VehicleEgo models the behaviour of vehicle Ego. As our objective is to ge-
nerate all the scenarios describing the situations to which Ego could be confronted, we do not
model its reactions when these situations occur. Therefore, we consider that Ego is always in
the center lane with no lane change actions. The PEPA equation of the sequential component
VehicleEgo is the following:

VehicleEGO = (runVehicleEGO,e1).VehicleEGO+(accelerateVehicleEGO,e2).VehicleEGO

+(decelerateVehicleEGO,e3).VehicleEGO;

Action runVehicleEGO models Ego rolling on the lane without changing its direction or its
speed. The actions accelerateVehicleEGO and decelerateVehicleEGO, respectively, indicate
that Ego accelerates and decelerates. Variables e1, e2 and e3 are the rates of the corresponding
actions. The PEPA component VehiculeEGO always returns to its initial and unique component
state after completing these actions.

7.3.2 Component VehicleA

Now consider that a car VA is rolling on a portion of carriageway. This car represents
the other traffic around Ego, as it can be in any zone. We model the behaviour of this car
using component VehicleA. The PEPA equation of the sequential component VehicleA is the
following:

VehicleA = (runVehicleA,a1).VehicleA+(accelerateVehicleA,a2).VehicleA

+(decelerateVehicleA,a3).VehicleA+(goLe f tLaneVehicleA,a4).VehicleA

+(goRightLaneVehicleA,a5).VehicleA;

The action runVehicleA models VA rolling on the lane without changing its direction or its
speed. The actions accelerateVehicleA and decelerateVehicleA, respectively, model the fact
that VA accelerates and decelerates. goLe f tLaneVehicleA and goRightLaneVehicleA model
VA changing lane to the left lane and the right lane, respectively. Variables ai, i = i, ...,5, are
the rates of the corresponding actions. Component VehicleA always returns to its initial and
unique state after completing these actions.

We can have more vehicles for the construction of a scene. Thus more PEPA components
can be considered in the model, such as VehicleB, VehicleC ..., which behave exactly like
VehicleA. These components represent all the other traffics in the different zones.

96

7.3.3 Components EnLO f f and ExLO f f

We also model the entrance lanes and the exit lanes of the highway. They are modelled using
PEPA components EnLO f f and ExLO f f , respectively. The initial state of these components
corresponds to the case where we are in a highway part RoadPart with no entrance lane (for
EnLO f f) and no exit lane (for ExLO f f).

The PEPA equations of the sequential component EnLO f f are the followings:

EnLO f f = (entranceOn,u6).EnLOn;

EnLOn = (enterV,u7).EnLO f f +(noEnterV,u8).EnLO f f ;

Action entranceOn models the case where there is an entrance lane appearing and the change
of the component state to EnLOn means that the highway is ready to welcome a new vehicle
from the entrance lane. Action enterV models the presence of a vehicle on the entrance lane,
while action noEnterV models the case where there is no vehicle on this lane. Both actions
lead to state EnLO f f which models the fact the entrance lane is passed. Variables u6, u7 and
u8 are the rates of the corresponding actions.

Similarly the PEPA equations of component ExLO f f are the following:

ExLO f f = (exitOn,u9).ExLOn;

ExLOn = (exitV,u10).ExLO f f +(noExitV,u11).ExLO f f ;

Action exitOn models the case where there is an exit lane appearing which leads to state change
of the component to ExLOn. Action exitV models a vehicle exiting the highway using the exit
lane, while action noExitV models the case where no vehicle exits the highway. Both actions
lead to state ExLO f f . Variables u9, u10 and u11 are the rates of the corresponding actions.

7.3.4 Components modelling the special areas

We also consider the sub-entities belonging to the concept RoadPart defined in Chapter 5.
These sub-entities are the special areas on the highway: Toll, Bridge, Tunnel and RoadWork.
In the following, we present the components modelling these concepts.

7.3.5 Component TollO f f

Firstly, we focus on the concept Toll whose entity represents a segment of the highway for
payment, and present the PEPA component modelling it.

97

The PEPA equations of the sequential component TollO f f are the following:

TollO f f = (tollOn,u1).TollOn;

TollOn = (tollOut,u2).TollOut;

TollOut = (tollO f f ,u3).TollO f f ;

The initial state TollO f f indicates that there is no toll on the current RoadPart of the highway.
Action tollOn models the appearance of a toll and it leads to state TollOn. The action tollOut
models the fact that Ego passed toll and the completion of this action leads to state TollOut.
The component returns to state TollO f f with action tollO f f which models the fact that the
toll does no longer appear in the current road portion. Variables u1, u2 and u3 are the rates of
the corresponding actions.

7.3.6 Component BridgeO f f

The bridge in this work refers to those segments with viaducts above the highway, not the
segments of the highway that serves as bridges. It is also the same as the toll and thus can be
modelled following three stages: appearance, entrance and exit.

The PEPA equations of the sequential component BridgeO f f are the following:

BridgeO f f = (bridgeOn,u21).BridgeOn;

BridgeOn = (bridgeOut,u22).BridgeOut;

BridgeOut = (bridgeO f f ,u23).BridgeO f f ;

The initial state BridgeO f f indicates that there is no bridge on the current RoadPart of the
highway. Action bridgeOn models the appearance of a bridge and it leads to state BridgeOn.
The action bridgeOut models the fact that Ego passed bridge and the completion of this action
leads to state BridgeOut. The component returns to state BridgeO f f with action bridgeO f f
which models the fact that the bridge does no longer appear in the current road portion. Va-
riables u21, u22 and u23 are the rates of the corresponding actions.

7.3.7 Component TunnelO f f

Similar to a bridge, a tunnel is also an infrastructure over a highway segment, but it is
generally longer than the width of the bridge, so vehicles need more time to pass through this
road part. Their models are similar, and we can set different activities’ rates values to achieve
their differences.

98

The PEPA equations of the sequential component TunnelO f f are the following:

TunnelO f f = (tunnelOn,u31).TunnelOn;

TunnelOn = (tunnelOut,u32).TunnelOut;

TunnelOut = (tunnelO f f ,u33).TunnelO f f ;

The initial state TunnelO f f indicates that there is no tunnel on the current RoadPart of the
highway. Action tunnelOn models the appearance of a tunnel and it leads to state TunnelOn.
The action tunnelOut models the fact that Ego passed tunnel and the completion of this action
leads to state TunnelOut. The component returns to state TunnelO f f with action tunnelO f f
which models the fact that the tunnel does no longer appear in the current road portion. Va-
riables u31, u32 and u33 are the rates of the corresponding actions.

7.3.8 Component RoadWorkO f f

Road works may make one or several lanes in a certain road part impossible. At this time,
the vehicles need to change lanes to avoid driving in these lanes. However, our model assumes
that the autonomous vehicle does not change its lane, so the road repairs included in this work
refer to those road work that do not affect the passage of the road and only need to reduce the
speed of the road.

The PEPA equations of the sequential component RoadWorkO f f are the following:

RoadWorkO f f = (roadworkOn,u41).RoadWorkOn;

RoadWorkOn = (roadworkOut,u42).RoadWorkOut;

RoadWorkOut = (roadworkO f f ,u43).RoadWorkO f f ;

The initial state RoadWorkO f f indicates that there is no road work on the current RoadPart
of the highway. Action roadworkOn models the appearance of a tunnel and it leads to state
RoadWorkOn. The action roadworkOut models the fact that Ego passed tunnel and the comple-
tion of this action leads to state RoadWorkOut. The component returns to state RoadWorkO f f
with action roadworkO f f which models the fact that the road work does no longer appear in
the current road portion. Variables u41, u42 and u43 are the rates of the corresponding actions.

7.3.9 Components modelling the traffic signs

We consider two types of traffic signs on the highway: short and long term signs. A short-
term sign represents the sign which is valid for the moment where the sign is present. A long-
term sign represents a sign which is valid for a long duration after the sign appearance, until
another sign that replaces it appears.

99

In the highway ontology, we have define a set of signs, which are classified as SignA, SignB,
SignA, SignC, SignD, SignE, SignJ, SignSR and SignK, according to the definition provided in
the official French document for road symbols [Ministère de l’écologie, 1988]. There are short-
term and long-term signs among them. We will not expand here because there are too many
signs.

In the following, we first present the components modelling short-term signs, then long-
term signs.

7.3.9.1 Component SignMO f f

As all short-term signs are modelled similarly, we only present the PEPA equations of the
sequential component modelling SignM, where M = {A,B,AB,C,D,E,J,SR,K}:

SignMO f f = (signMon,u18).SignMOn;

SignMOn = (signMo f f ,u19).SignMO f f ;

The initial state is noted SignMO f f which models the absence of SignM. The state changes to
SignMOn with action signMon, which models SignM’s appearance. The component returns to
state SignMO f f by action signMo f f , which models the end of the effect of SignM. Variables
u18 and u19 are the rates of the corresponding actions.

7.3.9.2 Component SpeedLimit

We consider the speed limit signs as the long-term signs in our PEPA model. These are
modelled using the PEPA sequential component SpeedLimit as follows:

SpeedLimit = (limitLower,u12).SpeedLimit +(limitGreater,u13).SpeedLimit;

The initial state SpeedLimit indicates any speed limit. The action limitLower models the ap-
pearance of a speed limit sign and the information that the number on the sign is lower than
the initial speed limit. The action limitGreater models a speed limit sign appearance and the
information that the number on the sign is greater than the initial speed limit. Variables u12 and
u13 are the rates of the corresponding actions. Component SpeedLimit always returns to the
same state (initial state) once these actions are completed.

7.3.10 Component Visibility

We have defined twelve (12) concepts in the weather ontology to describe the weather
phenomena. As we have explained in Chapter 5, in this work, we use the property of visibility
to model the impact of the weather on the autonomous vehicle.

100

The PEPA equation of the sequential component Visibility modelling the corresponding
concept is the following:

Visibility = (visibilityLower,u4).Visibility+(visibilityGreater,u5).Visibility;

The initial state Visibility indicates any visibility of the environment we set. The action visibi-
lityLower models a decrease in the visibility. The action visibilityGreater models an increase
in the visibility. Variables u4 and u5 are the rates of the corresponding actions. Component
Visibility always returns to the same state (initial state) once these actions are completed.

7.3.11 Component Situation

We consider a component noted Situation which models a situation that Ego can meet. This
component has several states, and its equations depend on the number of vehicles and the types
of infrastructure elements we have in the initial scene. Each derivative state Situation(XN)∗S?
of component Situation models a possible scene in RoadPart. In the notation of the state, X
refers to a zone number, X = 1, ...,6, N is the vehicle name, N = A,B, ..., and S is an action
consequence. The number of occurrences (zero or more) of XN is equal to the number of other
vehicles in each component state. The question mark in “S?” indicates zero or one occurrence
of S. For example, state Situation2AEnterV models the case where VA is on Zone 2 and there
is another vehicle on the entrance lane.

The component Situation is passive with respect to the actions of the other model compo-
nents. The activity rates of these actions are represented by the distinguished symbol >. If the
frequency of the occurrence of an activity enabled by component Situation needs to be adapted,
the activity rate > should be assigned a weight pi, i ∈ N.

If more than one (say y) activity of the same action can be simultaneously enabled by
component Situation, each unspecified activity rate>must be assigned a weight wi, i= n, ...,m,
m−n = y. Thus the probability qi of possible outcomes of each activity can be calculated with
the following equation:

qi =
wi

∑
m
i=n

,n≤ i≤ m

7.3.12 General Equation

Finally, the equation of the complete PEPA model is the following:

Scenario def
= Situation(XN)∗S? ./

L
(VehicleEGO‖(VehicleA)?‖...‖(VehicleZ)?‖EnLO f f ?‖ExLO f f ?‖

TollO f f ?‖SignMO f f ?‖SppedLimit?‖Visibility?)

101

where L is the actions set on which all the components must cooperate individually with
component Situation(XN)∗S?. This model equation states that there must be at least vehicle
Ego (component VehicleEGO) while all the other components are optional.

7.4 Example: A two vehicles PEPA model

We construct a PEPA model for the running example presented in Chapter 4. There are
three vehicles in the example: Ego-car Ego (blue car in Figure 8-2), Target car VA (red car
in Figure 8-2) and an Other car V B (green car in Figure 8-2). Since the division of zones is
based on the position of Ego which is in Lane 1, the zones of the running example are noted
as Figure 7-4. Based on the entities in the initial scene of this example, we consider six PEPA
components: VehicleEGO, VehicleA, VehicleB, EnLO f f , SignABO f f and Situation2A.

FIGURE 7-4 – Zones of running example.

We use component VehicleEGO to model the autonomous vehicle Ego with no lane change
actions. The PEPA equation of the sequential component VehicleEgo is the one defined in
Section 7.3, that is:

VehicleEGO = (runVehicleEGO,e1).VehicleEGO+(accelerateVehicleEGO,e2).VehicleEGO

+(decelerateVehicleEGO,e3).VehicleEGO;

Variables ei, i = 1,2,3 are the rates of the corresponding actions.

Component VehicleA models the green car VA which is the target car of Ego. Generally,
the PEPA equation of the sequential component VehicleA is the following:

VehicleA = (runVehicleA,a1).VehicleA+(accelerateVehicleA,a2).VehicleA

+(decelerateVehicleA,a3).VehicleA+(goLe f tLaneVehicleA,a4).VehicleA

+(goRightLaneVehicleA,a5).VehicleA;

In the running example, we suppose that VA rolls with neither lane change actions or speed
change actions. Thus the PEPA equation of the sequential component VehicleA is reduced to
the following:

VehicleA = (runVehicleA,a1).VehicleA;

102

Variable a1 is the rate of action runVehicleA.

Component VehicleB models the red car V B which arrives on the entrance lane and wants
to insert into the highway. Generally, the PEPA equation of the sequential component VehicleB
is the following:

VehicleB = (runVehicleB,b1).VehicleB+(accelerateVehicleB,b2).VehicleB

+(decelerateVehicleB,b3).VehicleB+(goLe f tLaneVehicleB,b4).VehicleB

+(goRightLaneVehicleB,b5).VehicleB;

In the running example, it can do all vehicle manoeuvring actions except change to right lane.
Thus the PEPA equation of the sequential component VehicleB is the following:

VehicleB = (runVehicleB,b1).VehicleB+(accelerateVehicleB,b2).VehicleB

+(decelerateVehicleB,b3).VehicleB+(goLe f tLaneVehicleB,b4).VehicleB;

Variables bi, i = 1,2,3,4 are the rates of the corresponding actions.

Now, we need to model the changing infrastructure of the running example, that are the
entrance lane and the give way sign. We use the PEPA component EnLO f f we have defined in
Section 7.3 to model the entrance lane:

EnLO f f = (entranceOn,u1).EnLOn;

EnLOn = (enterV,u2).EnLO f f +(noEnterV,u3).EnLO f f ;

The short-term sign give way is one of the priority signs which is classified as a AB type in
the highway ontology. To model this sign, we use component SignABO f f which is similar to
SignAO f f , the component introduced in the last section:

SignABO f f = (signABon,u4).SignABOn;

SignABOn = (signABo f f ,u5).SignABO f f ;

Variables ui, i = 1,2,3,4,5 are the rates of the corresponding actions.

We model the possible scenarios occurring in the running example using Situation2A which
initial state represents the initial scene where VehicleA is in Zone 2.

Situation def
= Situation2A;

This initial state is given by the following equation:

Situation2A = (runVehicleEGO,>).Situation2A+(accelerateVehicleEGO,>).Situation2A

+(decelerateVehicleEGO,>).Situation2A+(runVehicleA,>).Situation2A

+(entranceOn,>).Situation2AEnLOn;

In the initial state Situation2A, Ego has the choice between the actions runVehicleEGO,
accelerateVehicleEGO and decelerateVehicleEGO. Vehicle VA always performs action run-

103

VehicleA. We return always to the initial state once one of these actions is completed. However,
once action entranceOn, which models the presence of an entrance lane, is performed, the
component Situation2A behaves as Situation2AEnLOn.

Situation2AEnLOn = (runVehicleEGO,>).Situation2AEnLOn+(accelerateVehicleEGO,>).Situation2AEnLOn

+(decelerateVehicleEGO,>).Situation2AEnLOn+(runVehicleA,>).Situation2AEnLOn

+(noEnterV,>).Situation2A+(enterV,>).Situation2AEnterV ;

In the component state Situation2AEnLOn, Ego has always the choice between its three ac-
tions and vehicle VA can always perform action runVehicleA. We always return to the same
state after completing one of these actions. Action noEnterV models the absence of a ve-
hicle on the entrance lane. Its completion leads to state Situation2A. Action enterV models
the presence of a vehicle on the entrance lane. Once this action is performed, it leads to state
Situation2AEnterV :

Situation2AEnterV = (runVehicleEGO,>).Situation2AEnterV +(accelerateVehicleEGO,>).Situation2AEnterV

+(decelerateVehicleEGO,>).Situation2AEnterV +(runVehicleA,>).Situation2AEnterV

+(runVehicleB,>).Situation2AEnterV +(accelerateVehicleB,>).Situation2AEnterV

+(decelerateVehicleB,>).Situation2AEnterV +(signABon,>).Situation2AEnterV Decelerate

+(goLe f tLaneVehicleB,w1>).Situation2AB+(goLe f tLaneVehicleB,w2>).Situation2A3B

+(goLe f tLaneVehicleB,w3>).Situation2A4B+(goLe f tLaneVehicleB,w4>).Situation2A5B;

In state Situation2AEnterV , Ego has the choice between its actions and VA can perform ac-
tion runVehicleA. V B has the choice between actions runVehicleB, accelerateVehicleB and
decelerateVehicleB. The component always returns to state Situation2AEnterV after these ac-
tions completion.

Action signABon is performed if there is a sign of type SignAB on the entrance lane.
Here it refers to the give way sign. If this action is performed, the component behaves as
Situation2AEnterV Decelerate. When V B rolls on the entrance lane and does action goLe f tLaneVehicleB,
it may arrive to Zone 2, Zone 3, Zone 4 or Zone 5. Therefore we assign to the rates of actions
a weight wi, where i ∈ {1,2,3,4} to simulate the possibility of V B entering each zone. The
component behaves as Situation2AB, Situation2A3B, Situation2A4B, and Situation2A5B, if
V B arrives to Zone 2, Zone 3, Zone 4 or Zone 5, respectively.

Situation2AEnterV Decelerate = (runVehicleEGO,>).Situation2AEnterV Decelerate

+(accelerateVehicleEGO,>).Situation2AEnterV Decelerate

+(decelerateVehicleEGO,>).Situation2AEnterV Decelerate

+(runVehicleA,>).Situation2AEnterV Decelerate

+(runVehicleB,>).Situation2AEnterV Decelerate

+(accelerateVehicleB,>).Situation2AEnterV Decelerate

+(decelerateVehicleB, p1>).Situation2AEnterV Decelerate

+(signABo f f ,>).Situation2AEnterV ;

104

In this state, Ego, VA and V B have the choice between their possible actions. After seeing the
give way sign, V B is more likely to decelerate. We assign the activity rate a weight p1 to adapt
the frequency of the occurrence of action decelerateVehicleB. The component returns always
to Situation2AEnterV Decelerate once this action is completed. Action signABo f f models the
end of the impact of the sign of type SignAB. This action makes the component return to
Situation2AEnterV .

Situation2AB = (runVehicleEGO,>).Situation2AB+(accelerateVehicleEGO,w5>).Situation2AB

+(accelerateVehicleEGO,w6>).Situation2A3B+(decelerateVehicleEGO,>).Situation2AB

+(runVehicleA,>).Situation2AB+(runVehicleB,>).Situation2AB

+(accelerateVehicleB,>).Situation2AB+(decelerateVehicleB,w7>).Situation2AB

+(decelerateVehicleB,w8>).Situation2A3B;

State Situation2AB represents the situation where VA and V B are in Zone 2. The component
has the chance to behave as Situation2A3B if action accelerateVehicleEGO or action decele-
rateVehicleB is performed. We assign to rate of the first action a weight wi, where i ∈ {5,6} to
simulate the possibility that V B stays in Zone 2, or enters Zone 3, respectively. While we as-
sign to rate of the second action a weight wi, where i∈ {7,8} to simulate the similar behaviours
when V B performs the first action.

Situation2A3B = (runVehicleEGO,>).Situation2A3B+(accelerateVehicleEGO,>).Situation2A3B

+(decelerateVehicleEGO,w9>).Situation2AB+(decelerateVehicleEGO,w10>).Situation2A3B

+(runVehicleA,>).Situation2A3B+(runVehicleB,>).Situation2A3B

+(accelerateVehicleB,w11>).Situation2AB+(accelerateVehicleB,w12>).Situation2A3B

+(decelerateVehicleB,>).Situation2A3B;

State Situation2A3B models the situation where VA is in Zone 2 and V B is in Zone 3. From this
state, we may have the chance to reach state Situation2AB if action decelerateVehicleEGO or
action accelerateVehicleB is performed. We assign to rate of the first action a weight wi, where
i ∈ {9,10} to simulate the possibility that V B enters Zone 2, or stays in Zone 3, respectively.
While we assign to rate of the second action a weight wi, where i ∈ {11,12} to simulate the
similar behaviours when V B performs the first action.

Situation2A4B = (runVehicleEGO,>).Situation2A4B+(accelerateVehicleEGO,w13>).Situation2A4B

+(accelerateVehicleEGO,w14>).Situation2A5B+(decelerateVehicleEGO,>).Situation2A4B

+(runVehicleA,>).Situation2A4B+(runVehicleB,>).Situation2A4B

+(accelerateVehicleB,>).Situation2A4B+(decelerateVehicleB,w15>).Situation2A4B

+(decelerateVehicleB,w16>).Situation2A5B;

Sate Situation2A4B represents the situation where VA is in Zone 2 and V B is in Zone 4. The
component has the chance to behave as Situation2A5B if action accelerateVehicleEGO or
action decelerateVehicleB is performed. We assign to rate of the first action a weight wi, where
i ∈ {13,14} to simulate the possibility that V B stays in Zone 4, or enters Zone 5, respectively.
While we assign to rate of the second action a weight wi, where i ∈ {15,16} to simulate the

105

similar behaviours when V B performs the first action.

Situation2A5B = (runVehicleEGO,>).Situation2A5B+(accelerateVehicleEGO,>).Situation2A5B

+(decelerateVehicleEGO,w17>).Situation2A4B+(decelerateVehicleEGO,w18>).Situation2A5B

+(runVehicleA,>).Situation2A5B+(runVehicleB,>).Situation2A5B

+(accelerateVehicleB,w19>).Situation2A4B+(accelerateVehicleB,w20>).Situation2A5B

+(decelerateVehicleB,>).Situation2A5B;

State Situation2A5B represents the situation where VA is in Zone 2 and V B is in Zone 5.
The component has the chance to behave as Situation2A4B if action decelerateVehicleEGO or
action accelerateVehicleB is performed. We assign to rate of the first action a weight wi, where
i ∈ {17,18} to simulate the possibility that V B enters Zone 4, or stays in Zone 5, respectively.
While we to rate of the second action a weight wi, where i ∈ {19,20} to simulate the similar
behaviours when V B performs the first action.

Finally, the equation of the complete PEPA model of our example is the following:

Scenario def
= Situation ./

L1
(VehicleEGO || VehicleA || VehicleB || EnLO f f || SignABO f f)

where L1 is the actions set on which components VehicleEGO, VehicleA, VehicleB, EnLO f f
and SignABO f f must cooperate individually with component Situation. It is defined as:

L1 = {runVehicleEGO,accelerateVehicleEGO,decelerateVehicleEGO,runVehicleA,

goLe f tLaneVehicleB,runVehicleB,accelerateVehicleB,decelerateVehicleB,

entranceOn,enterV,noEnterV,signABo f f ,signABon}.

In order to test our model, we define a set of values for the rates of the actions and the assigned
weights.

Currently, we can calculate the rates of some actions such as the actions corresponding
to concepts Accelerate and Decelerate. For example, the rates of action accelerateVehicleB
can be calculated using V B’s initial speed v1, final speed v2 and the distance d between the
initial state and the final state of V B. The initial speed is the speed of V B before action
accelerateVehicleB is performed, which is 75km/h. The final speed is the speed of V B af-
ter action accelerateVehicleB is performed, which is 85km/h and the distance is 0.1km. We
can get the rate b2 of this action using standard kinetic:

b2 =
v2

2− v2
1

2d∆v
=

852−752

2×0.1×10
= 800 h−1

Unlike the values of the rates associated with actions Accelerate and Decelerate, the values of
the other actions rates are set arbitrary because we unfortunately do not have them. The users
of our tool can set their values according to their needs.

106

Table 7.3 presents the parameters values for the activities of components VehicleEGO,
VehicleA, VehicleB, EnLO f f and SignABO f f . The values of the weights for this example are
given arbitrarily and they are shown in Table 7.4.

TABLE 7.3 – Activities of components
Action Rate

runVehicleEGO e1 500
accelerateVehicleEGO e2 900
decelerateVehicleEGO e3 300

runVehicleA a1 400
runVehicleB b1 400

accelerateVehicleB b2 800
decelerateVehicleB b3 200

goLe f tLaneVehicleB b4 600
entranceOn u1 50

enterV u2 1
noEnterV u3 60
signABo f f u4 800
signABon u5 800

TABLE 7.4 – Weights of rates
Weight Weight
p1 5
w1 1 w11 5
w2 2 w12 5
w3 3 w13 8
w4 4 w14 2
w5 4 w15 4
w6 6 w16 6
w7 7 w17 2
w8 3 w18 8
w9 6 w19 7
w10 4 w20 3

PEPA abstracts the activities performed by the components into a continuous-time Mar-
kov process. The PEPA model has 8 states. Each state is a tuple composed of the states of the
components Situation, VehicleEGO, VehicleA, VehicleB, EnLO f f and SignABO f f as shown
in Table 7.5. The initial state is (Situation2A, VehicleEGO, VehicleA, VehicleB, EnLO f f ,
SignABO f f).

TABLE 7.5 – State space of model PEPA
State Situation Ego VA VB Entrance Lane SignAB

State 1 Situation2A VehicleEGO VehicleA VehicleB EnLO f f SignABO f f
State 2 Situation2AEnLOn VehicleEGO VehicleA VehicleB EnLOn SignABO f f
State 3 Situation2AEnterV VehicleEGO VehicleA VehicleB EnLO f f SignABO f f
State 4 Situation2AB VehicleEGO VehicleA VehicleB EnLO f f SignABO f f
State 5 Situation2A3B VehicleEGO VehicleA VehicleB EnLO f f SignABO f f
State 6 Situation2A4B VehicleEGO VehicleA VehicleB EnLO f f SignABO f f
State 7 Situation2A5B VehicleEGO VehicleA VehicleB EnLO f f SignABO f f
State 8 Situation2AEnterV Decelerate VehicleEGO VehicleA VehicleB EnLO f f SignABOn

We can generate all possible scenarios and identify the critical ones from the transition
graph of the whole model. One scenario includes one or several states in the transition graph
which are connected. Each state of the model is regarded as a scene of a scenario. The states are
the nodes of the transition graph, and the activities are the labels on the transitions. A scenario is
considered as a path in the transition graph which includes at least one state. Critical scenarios
are those which include critical states.

Zone 3 and Zone 4 being the critical zones, in the running example, component states
Situation2A3B and Situation2A4B indicate the critical situations where V B rolls in Zone 3 and

107

Zone 4, respectively. Model states State 5 and State 6 (see Table 7.5), which include the critical
situations, are regarded as the critical scenes. All the scenarios which include either state State
5 or State 6 are critical scenarios which may lead to accidents.

FIGURE 7-5 – Steady-state probability distribution.

We can get the steady-state probability distribution using Eclipse PEPA [Hillston and Gilmore, 2014].
The probability of being in each state is provided in Figure 7-5. We can clearly see that system
states State 6 and State 7 have the highest probabilities, and the sum of these probabilities is
close to 1. Both states indicate that V B inserts after Ego. This means that case 2 (V B inserts
after Ego) mentioned in Chapter 4 is the most likely to occur according to the sets of the values
used in Table 7.3 and Table 7.4. This is normal as we considered that the give way sign makes
V B more likely to decelerate.

7.5 Automatic Generation

In this section, we are interested in an automatic generation method which allows gene-
rating test cases that have an impact on the performance and the dependability of the vehicle.
Because of the size of PEPA model, we propose an algorithm to generate automatically PEPA
models in Sub-section 7.5.1. Then we propose an approach to generate automatically the test
cases in Sub-section 7.5.2. Finally, a method to identify the critical test cases is presented in
Sub-section 7.5.3.

7.5.1 Generation of the PEPA model

Because of the large number of the highway infrastructure elements, the number of pos-
sible vehicles, and the weather conditions, writing the PEPA components specially component
Situation is tedious. Thus, we propose an algorithm to generate automatically PEPA models.

108

The main steps of this algorithm are the following:

Step 1. Set the number of the vehicles of type Other-Car in the model;
Step 2. Initialize all the PEPA components of the vehicles, the infrastructure and visibility

with the corresponding equations in Section 7.3;
Step 3. Initialize the component Situation with the scene which involves only the autono-

mous vehicle:

Situation = (runEGO,>).Situation+(accelerateEGO,>).Situation+(decelerateEGO,>).Situation;

Step 4. Each time a component is added, the equation of component Situation adds the cor-
responding activities. For example, once component EntranceLane is added, the equa-
tion of Situation needs to include the terms ” + (entranceOn,>).SituationEnLOn”.
Component Situation becomes:

Situation = (runEGO,>).Situation+(accelerateEGO,>).Situation

+(decelerateEGO,>).Situation+(entranceOn,>).SituationEnLOn;

Step 5. Once a new state is added, the model is not closed-loop. For example, once action
entranceOn is performed, component Situation behaves as SituationEnLOn. We need
to complete the model with the following equation:

SituationEnLOn = (runVehicleEGO,>).SituationEnLOn
+(accelerateVehicleEGO,>).SituationEnLOn
+(decelerateVehicleEGO,>).SituationEnLOn
+(noEnterV,>).Situation+(enterV,>).SituationEnV ;

Step 6. If the model is not close-loop, go to Step 5; otherwise, build the set L of synchro-
nisation actions. L contains all the actions of component Situation;

Step 7. Write the complete PEPA model equation which shows how the model components
interact, and on which actions set they interact.

Step 8. Set all the rates and the weights to the selected values.

To start this algorithm, we need to set the number of the vehicles of type Other−Car
and set T RUE to all necessary highway infrastructure. Then a file with ‘.pepa’ suffix will be
generated, which stores a complete PEPA model required.

7.5.2 Generation of the Test Cases

We propose an approach that allows generating automatically the test cases from any initial
situation and with any number of scenes. The main steps of this approach, which is integrated
to the third layer of our methodology, are the following:

Step 1. Generate all the states of the PEPA model with Eclipse PEPA. These states are
regarded as the scenes of the autonomous vehicle;

109

Step 2. Find the pairs of states where a completed action in one of these states leads to the
other state;

Step 3. Generate the transition graph with the list of pairs of states;
Step 4. Set a number D to indicate the length of the scenarios that need to be generated,

that is, the number of scenes of each scenario;
Step 5. Set the initial state Situation to begin the program;
Step 6. Return a list of scenarios from state Situation with D scenes in each scenario.

We need to prepare a file named ‘activities.txt’ of the components’ equations except the
component Situation which is stored in another file named ‘situations.txt’, and a file named
‘rates.txt’ that stores all activity rates and weights of possibilities. After the PEPA model is
analyzed by Eclipse PEPA, a file with the suffix ‘.statespace’ will be generated, which contains
the steady-state probability distribution of PEPA model. In addition to these four files, we also
need to set a number D to indicate the length of the scenarios that need to be generated and
set the initial state Situation to begin the program. Then a file named ‘test cases.txt’ will be
generated, which stores a list of scenarios (test cases) from state Situation with D scenes in
each scenario.

7.5.3 Identification of the critical Test Cases

We want not only to find the critical scenarios, but also to sort these scenarios according to
their criticality. Therefore, we propose to calculate their criticality CS as follows:

Suppose in a scenario Sc, we have D states named T1...TD. If Ti, i ∈ [1,D] is critical, the
criticality Ci of state Ti is set as Ci=1. Otherwise if Ti is not critical, Ci=0. The criticality of Sc

can be calculated as follows:

CS =
∑

CD
C1

D
(7.1)

We also propose a method to calculate the criticality of each test case to evaluate compre-
hensively its importance:

Step 1. Each derivative state of component Situation is referred to by the name and the
location of all the vehicles in this state (see Section 7.3).

Step 2. Zone 3 and Zone 4 being the critical zones, all the derivative states of component
Situation with 3 or 4 in their name are critical states.

Step 3. All scenarios that contain one or several critical states are critical scenarios.
Step 4. Calculate the criticality of each scenario using formula (7.1).

110

7.6 Conclusion

In this chapter, we introduced the formal modelling language PEPA. We described more
specifically the construction of the PEPA model using the running example presented in Chap-
ter 4. We also proposed the approaches for the automatic generation of the PEPA model and
the test cases, specially the critical ones with specific examples.

In the next chapter, we consider two case studies on which we apply our test cases gene-
ration methodology. And we give the critical test cases and their probabilities of occurrence in
each case study.

111

112

Chapitre 8

Case Studies

8.1 Introduction

We have defined a test cases generation methodology in Chapter 4. With this methodology,
we can generate the test cases for the context of the highway with entrance lanes, exit lanes and
different road signs. The special road parts such as tolls and road works are also considered
in our methodology. The weather conditions are represented as visibility. And all the other
possibles vehicles around the autonomous vehicle are included.

In this Chapter, we investigate two case studies. The first case “One vehicle of type Other-
Car riding with autonomous vehicle" is presented in Section 8.2. This case has only one vehicle
riding around the autonomous vehicle. We chose this small model to show the complete steps
allowing the generation of the scenarios and especially the critical ones. The Second case study
“One vehicle of type Other-Car riding with autonomous vehicle in the context of general high-
way infrastructure" is a more complex case where traffic signs, entrance lanes, exit lanes, tolls
and the visibility are considered. We chose it to show how we generate the PEPA model with
different infrastructure elements and the visibility as the weather impact on the autonomous ve-
hicle. This case study is presented in Section 8.3. Finally, we conclude this chapter in Section
8.4.

8.2 Case Study 1: Autonomous Vehicle in a Simple Context

We consider the situation “One vehicle of type Other-Car riding with autonomous vehicle"
as a case study to show how to build the PEPA model, and how to generate all the scenarios,
specially the critical ones.

113

The initial situation consists of static and mobile elements, which are presented in the
following.

FIGURE 8-1 – Scenography

The highway is separated into two carriageways by a median. In the scenography of this
example (Figure 8-1), a portion of one carriageway is selected. This carriageway has three
through lanes: the right lane–Lane1, the center lane–Lane2 and the left lane–Lane3. This portion
of the road can be extended indefinitely.

FIGURE 8-2 – Initial scene.

In the initial scene (Figure 8-2), the autonomous vehicle namely Ego (blue) rolls on Lane2

of a separated lane road. One (1) vehicle VA (red) of type OtherCar is on Lane1.

In this case study, the static elements are: highway, carriageway, median, through lane. The
mobile elements are: autonomous vehicle Ego, other vehicle VA.

8.2.1 PEPA model

FIGURE 8-3 – Zones’ numbers in the scene.

As in Chapter 7, we note the zones from one to six (Figure 8-3). Zone 1 indicates Lane1.
Zone 2 and Zone 5 indicate the uncritical zones in front and behind Ego. Zone 3 indicates the
critical zone in front of Ego while Zone 4 indicates the critical one behind it. Zone 6 indicates
Lane3. Both Zone 1 and Zone 6 are uncritical zones for Ego.

114

The PEPA model modelling our system consists of three (3) components: VehicleEGO,
VehicleA and Situation1A. These model the behaviour of the Ego car, vehicle VA, and the
situation itself, respectively. The initial situation Situation1A indicates that Ego is rolling on
the center lane and VA is rolling on Zone 1. The PEPA components and their actions are shown
in Table 8.1. All these components and actions have been presented in Chapter 7.

TABLE 8.1 – Components and actions of PEPA model
Componengts Actions
VehicleEGO runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO

VehicleA runVehicleA, accelerateVehicleA, decelerateVehicleA,
goLe f tLaneVehicleA, goRightLaneVehicleA

Situation1A runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO,
runVehicleA, accelerateVehicleA, decelerateVehicleA,
goLe f tLaneVehicleA, goRightLaneVehicleA

The PEPA equations of the sequential components VehicleEGO and VehicleA are as fol-
lows:

VehicleEGO = (runVehicleEGO,e1).VehicleEGO+(accelerateVehicleEGO,e2).VehicleEGO

+(decelerateVehicleEGO,e3).VehicleEGO;

VehicleA = (runVehicleA,a1).VehicleA+(accelerateVehicleA,a2).VehicleA

+(decelerateVehicleA,a3).VehicleA+(goLe f tLaneVehicleA,a4).VehicleA

+(goRightLaneVehicleA,a5).VehicleA;

The above equations are similar to those presented in Chapter 7

The PEPA component Situation1A has six (6) states. The behaviour of this component at
its initial state is given by the following equation:

Situation1A = (runVehicleEGO,>).Situation1A+(accelerateVehicleEGO,>).Situation1A

+(decelerateVehicleEGO,>).Situation1A+(runVehicleA,>).Situation1A

+(accelerateVehicleA,>).Situation1A+(decelerateVehicleA,>).Situation1A

+(goLe f tLaneVehicleA,w1>).Situation2A+(goLe f tLaneVehicleA,w2>).Situation3A

+(goLe f tLaneVehicleA,w3>).Situation4A+(goLe f tLaneVehicleA,w4>).Situation5A;

As stated in its equation, Ego has the choice between actions runVehicleEGO, accelerateVe-
hicleEGO and decelerateVehicleEGO. Similarly, according to its equation, VA has the choice
between actions runVehicleA, accelerateVehicleA, decelerateVehicleA and goLe f tLaneVehicleA.

As stated in component Situation1A equation, component VehicleEGO can perform its
actions only in synchronisation with Situation1A. Similarly for the actions runVehicleA, acce-
lerateVehicleA and decelerateVehicleA which can be completed by VehicleA only in coopera-
tion with component Situation1A. Once one of these actions has been performed, component
Situation1A remains in its initial state.

115

Once action goLe f tLaneVehicleA is performed, VA may arrive to Zone 2, Zone 3, Zone
4 or Zone 5. Therefore we assign to the rate of this action a weight wi, where i ∈ {1,2,3,4}
to simulate the possibility of VA entering the corresponding zone. This action leads to state
Situation2A, Situation3A, Situation4A, and Situation5A according to the zone where VA ar-
rives.

Situation2A = (runVehicleEGO,w5>).Situation2A+(runVehicleEGO,w6>).Situation3A

+(accelerateVehicleEGO,w7>).Situation2A+(accelerateVehicleEGO,w8>).Situation3A

+(decelerateVehicleEGO,>).Situation2A+(runVehicleA,w9>).Situation2A

+(runVehicleA,w10>).Situation3A+(accelerateVehicleA,>).Situation2A

+(accelerateVehicleA,w11>).Situation2A+(decelerateVehicleA,w12>).Situation3A

+(goLe f tLaneVehicleA,>).Situation6A+(goRightLaneVehicleA,>).Situation1A;

The derivative state Situation2A represents the situation where VA is in Zone 2. It can become
Situation3A if one of the actions in {runVehicleEGO, accelerateVehicleEGO, runVehicleA,
decelerateVehicleA} is performed. This is because the location of the zones is related to the
location of Ego. Zones move forward with Ego. The first action runVehicleEGO can change the
location of VA to Zone 3 because Ego can be faster than VA. This is similar to the effect of action
accelerateVehicleEGO if preformed. Action runVehicleA can change the location of VA to Zone
3 because VA can be slower than Ego. This is similar to the effect of action decelerateVehicleA
if preformed. These reasons apply to all derivative states in the following.

We assign to the rates of the actions in the set a weight wi, where i ∈ {6,8,10,12} to si-
mulate the possibility that VA enters Zone 3. Similarly we assign them a weight wi, where i ∈
{5,7,9,11} to simulate the possibility that VA remains in Zone 2. Once action goLe f tLaneVehicleA
is performed, VA arrives to Zone 6, while if action goRightLaneVehicleA is performed, VA ar-
rives to Zone 1.

Situation3A = (runVehicleEGO,w13>).Situation2A+(runVehicleEGO,w14>).Situation3A

+(accelerateVehicleEGO,>).Situation3A+(decelerateVehicleEGO,w15>).Situation2A

+(decelerateVehicleEGO,w16>).Situation3A+(runVehicleA,w17>).Situation2A

+(runVehicleA,w18>).Situation3A+(accelerateVehicleA,w19>).Situation2A

+(accelerateVehicleA,w20>).Situation3A+(decelerateVehicleA,>).Situation3A

+(goLe f tLaneVehicleA,>).Situation6A+(goRightLaneVehicleA,>).Situation1A;

The derivative state Situation3A represents the situation where VA is in Zone 3. It can become
Situation2A if one of the actions in {runVehicleEGO, decelerateVehicleEGO, runVehicleA,
accelerateVehicleA} is performed. We assign to the rates of these actions a weight wi, where
i ∈ {13,15,17,19} to simulate the possibility that VA enters Zone 2. Similarly we assign
them a weight wi, where i ∈ {14,16,18,20} to simulate the possibility that VA remains in
Zone 3. Once action goLe f tLaneVehicleA is performed, VA arrives to Zone 6, while if action

116

goRightLaneVehicleA is performed, VA arrives to Zone 1.

Situation4A = (runVehicleEGO,w21>).Situation4A+(runVehicleEGO,w22>).Situation5A

+(accelerateVehicleEGO,w23>).Situation4A+(accelerateVehicleEGO,w24>).Situation5A

+(decelerateVehicleEGO,>).Situation4A+(runVehicleA,w25>).Situation4A

+(runVehicleA,w26>).Situation5A+(accelerateVehicleA,>).Situation4A

+(decelerateVehicleA,w27>).Situation4A+(decelerateVehicleA,w28>).Situation5A

+(goLe f tLaneVehicleA,>).Situation6A+(goRightLaneVehicleA,>).Situation1A;

The derivative state Situation4A represents the situation where VA is in Zone 4. It can become
Situation5A if one of the actions in {runVehicleEGO,accelerateVehicleEGO, runVehicleA,
decelerateVehicleA} is performed. We assign to the rates of these actions a weight wi, where
i ∈ {22,24,26,28} to simulate the possibility that VA enters Zone 5. Similarly we assign
them a weight wi, where i ∈ {21,23,25,27} to simulate the possibility that VA remains in
Zone 4. Once action goLe f tLaneVehicleA is performed, VA arrives to Zone 6, while if action
goRightLaneVehicleA is performed, VA arrives to Zone 1.

Situation5A = (runVehicleEGO,w29>).Situation4A+(runVehicleEGO,w30>).Situation5A

+(accelerateVehicleEGO,>).Situation5A+(decelerateVehicleEGO,w31>).Situation4A

+(decelerateVehicleEGO,w32>).Situation5A+(runVehicleA,w33>).Situation4A

+(runVehicleA,w34>).Situation5A+(accelerateVehicleA,w35>).Situation4A

+(accelerateVehicleA,w36>).Situation5A+(decelerateVehicleA,>).Situation5A

+(goLe f tLaneVehicleA,>).Situation6A+(goRightLaneVehicleA,>).Situation1A;

The derivative state Situation5A represents the situation where VA is in Zone 5. It can become
Situation4A if one of the actions in {runVehicleEGO, decelerateVehicleEGO, runVehicleA,
accelerateVehicleA} is performed. We assign to the rates of these actions a weight wi, where
i ∈ {29,31,33,35} to simulate the possibility that VA enters Zone 4. Similarly we assign
them a weight wi, where i ∈ {30,32,34,36} to simulate the possibility that VA remains in
Zone 5. Once action goLe f tLaneVehicleA is performed, VA arrives to Zone 6, while if action
goRightLaneVehicleA is performed, VA arrives to Zone 1.

Situation6A = (runVehicleEGO,>).Situation6A+(accelerateVehicleEGO,>).Situation6A

+(decelerateVehicleEGO,>).Situation6A+(runVehicleA,>).Situation6A

+(accelerateVehicleA,>).Situation6A+(decelerateVehicleA,>).Situation6A

+(goRightLaneVehicleA,w37>).Situation2A+(goRightLaneVehicleA,w38>).Situation3A

+(goRightLaneVehicleA,w39>).Situation4A+(goRightLaneVehicleA,w40>).Situation5A;

In component state Situation6A, Ego has the choice between its usual three actions. Similarly,
VA has the choice between actions runVehicleA, accelerateVehicleA, decelerateVehicleA and
goRightLaneVehicleA.

Both components VehicleEGO and VehicleA can perform their actions only in synchronisa-
tion with Situation6A. Once one of these actions has been performed, component Situation6A

117

remains in its state.

However, once action goRightLaneVehicleA is performed, VA may arrive to Zone 2, Zone
3, Zone 4 or Zone 5. Therefore we assign to the rates of these actions a weight wi, where
i ∈ {45,46,47,48} to simulate the possibility of VA entering the corresponding zone. From
Situation6A, we can go to Situation2A, Situation3A, Situation4A, and Situation5A according
to the zone where VA arrives.

The complete PEPA model equation is the following:

Scenario def
= Situation1A ./

L2
(VehicleEGO ‖ VehicleA)

where L2 is the actions set on which components VehicleEGO and VehicleA must synchronise
individually with Situation1A. It is defined as:

L2 ={runVehicleEGO,accelerateVehicleEGO,decelerateVehicleEGO,goLe f tLaneVehicleA,

goRightLaneVehicleA,runVehicleA,accelerateVehicleA,decelerateVehicleA}.

8.2.2 Numerical Results

PEPA abstracts the activities performed by components into a continuous-time Markov
process. The underlying Markov Chain of the PEPA model has 6 states. They are:

State 1: {Situation1A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
on Zone 1;

State 2: {Situation2A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
on Zone 2;

State 3: {Situation3A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
on Zone 3;

State 4: {Situation4A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
on Zone 4;

State 5: {Situation5A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
on Zone 5;

State 6: {Situation6A,VehicleEGO,VehicleA}; Ego is rolling on the center lane and VA is
on Zone 6.

TABLE 8.2 – Set of rates
Rate a1 a2 a3 a4 a5 e1 e2 e3
Value 400 800 200 600 700 500 900 300

We can get the steady-state probability distribution using the tool Eclipse Plug-in for PEPA.
The probability of being in each state is provided in Figure 8-4. These probabilities are based

118

TABLE 8.3 – Set of Weight
Weight Value Weight Value Weight Value Weight Value

w1 8 w11 2 w21 7 w31 6
w2 9 w12 4 w22 8 w32 6
w3 5 w13 2 w23 10 w33 5
w4 10 w14 8 w24 5 w34 4
w5 10 w15 4 w25 9 w35 7
w6 5 w16 10 w26 9 w36 7
w7 7 w17 3 w27 2 w37 8
w8 5 w18 9 w28 7 w38 4
w9 2 w19 5 w29 8 w39 5
w10 1 w20 1 w30 7 w40 3

on the activity rates in Table 8.2 and the weights in Table 8.3. These values are automatically
generated with our algorithm (see Chapter 7).

FIGURE 8-4 – Steady-state probability distribution

Figure 8-4 shows that the sum of the probability of the system being in State 1 (0.38582677165354323)
and State 6 (0,283464566929133) is close to 2/3. The sum of the remaining probabilities, that
is of being in the other states (State 2, State 3, State 4, State 5) is close to 1/3. Thus according
to the obtained results, VA has more chance to be in Zone 1 as the highest probability is the one
to be in State 1. We can learn from Figure 8-5, which provides the probability of VA being in
each lane, that VA has then 0,330708661417322 probability to be in Lane 2. Moreover, in Lane
2, VA has more chance to be in Zone 3 and Zone 5. VA has the lowest probability to be in Lane
3. This distribution is reasonable as VA enters the highway from Lane 1 before it is possible to
enter Lane 2 and further enter Lane 3.

We implemented the algorithm generating the scenarios (see Chapter 7). With our program,
we can generate scenarios with any initial state and any number of scenes. For example, we
want to generate all possible scenarios with a length no greater than 2 scenes per scenario
from State 1. In this case, we get ten (10) eligible scenarios (Table 8.4). This table shows that

119

FIGURE 8-5 – Lane probability distribution

for Scenario 1, the system is in State 1 and once the action runVehicleEGO is performed,
the system remains its initial state. For Scenario 10, once the action goLe f tLaneVehicleA is
performed, the system is in State 5. We can get different test cases by assigning different values
to the rates (ei, ai, wi) in these scenarios.

TABLE 8.4 – Test cases of length 2 from State 1
Scenario Initial State Action Next State

1 State 1 runVehicleEGO State 1
2 State 1 accelerateVehicleEGO State 1
3 State 1 decelerateVehicleEGO State 1
4 State 1 runVehicleA State 1
5 State 1 accelerateVehicleA State 1
6 State 1 decelerateVehicleA State 1
7 State 1 goLe f tLaneVehicleA State 2
8 State 1 goLe f tLaneVehicleA State 3
9 State 1 goLe f tLaneVehicleA State 4
10 State 1 goLe f tLaneVehicleA State 5

From these scenarios, if we want to find the critical ones, and sort them according to their
criticality, we use the equation 7.1 defined in Chapter 7 which allows us to calculate the scenario
criticality.

In each component state SituationXA, where X is a zone number, X = 1, ...,6 there is an
action which leads to another state. Zone 3 and Zone 4 being the critical zones, all the state
names including 3 or 4 (Situation3A, Situation4A) indicate the critical situations when VA
rolls in Zone 3 and Zone 4, respectively. Thus, all the scenarios which include these critical
situations, that is State 3 and State 4, are critical scenarios which may lead to accidents.

Table 8.5 presents the criticality of each scenario in Table 8.4. The criticality of both Sce-
nario 8 and Scenario 9 is 0.5, since there is a critical state, respectively, State 3 and State 4, in

120

each of these scenarios.

TABLE 8.5 – Criticality of the scenarios
Scenario 1 2 3 4 5 6 7 8 9 10

Criticality 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0

8.3 Case Study 2: Autonomous Vehicle in a Complex Context

We consider the situation “One vehicle of type Other-Car riding with autonomous vehicle
in the context of general highway infrastructure" as the second case study to show how to build
the PEPA model of system which includes some representative infrastructure elements and
whether conditions. In this situation, we choose to consider the entity toll. However, note that
as toll is a sub-entity of RoadPart, like tunnel, bridge and road_work, we could have consider
one of these sub-entities instead.

TABLE 8.6 – Components and actions of the PEPA model
Componengts Actions
VehicleEGO runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO

VehicleA runVehicleA, accelerateVehicleA, decelerateVehicleA,
goLe f tLaneVehicleA, goRightLaneVehicleA

EnLOff entranceOn, enterV , noEnterV
ExLOff exitOn, exitV , noExitV

SpeedLimit limitLower, limitGreater
SignAOff signAo f f , signAon

SignABOff signABo f f , signABon
SignBOff signBo f f , signBon
SignCOff signCo f f , signCon
Visibility visibilityLower, visibilityGreater
TollOff tollOn, tollO f f , tollOut

Situation runVehicleEGO, accelerateVehicleEGO, decelerateVehicleEGO,
runVehicleA, accelerateVehicleA, decelerateVehicleA,
goLe f tLaneVehicleA, goRightLaneVehicleA, entranceOn, enterV ,
noEnterV , exitOn, exitV , noExitV , limitLower, limitGreater, signAo f f ,
signAon, signABo f f , signABon, signBo f f , signBon, signBo f f , signBon,
signCo f f , signCon, visibilityLower, visibilityGreater, tollOn, tollO f f ,
tollOut

This is a general situation which also includes the situation considered in Case Study 1.
In the initial scene of this case study, the autonomous vehicle Ego rolls on the center lane of
a separated lane road. One (1) vehicle of type OtherCar can appear in any zone around Ego.
Zone 3 and Zone 4 are the critical zones, according to the minimum safety distance that must
separate Ego from other vehicles.

121

In the PEPA model modelling this system, there are eleven (11) components: VehicleEGO,
VehicleA, EnLO f f , ExLO f f , SpeedLimit, SignAO f f , SignABO f f , SignBO f f , SignCO f f ,
Visibility, TollO f f and Situation. These model the behaviour of the Ego car, any other vehicle,
say VA, entrance lanes, exit lanes, Speed limit signs, signs of type A, AB, B and C, tolls
and visibility, and the scene itself, respectively. The PEPA components and their actions are
shown in Table 8.6. In the following, we present only component Situation because all the
other components are similar to those presented in Chapter 7.

We suppose that Ego is always on Lane2 (Figure 8-1) with no lane change actions. The
components and the actions of this PEPA model are listed in Table 8.6. All these components
and actions have been presented in Chapter 7.

The initial situation Situation indicates that Ego is rolling on the center lane and there is no
other car. Because of the size of component Situation, here we present only its 13 first PEPA
equations as follows:

Situation = (runVehicleEGO,>).Situation+(accelerateVehicleEGO,>).Situation

+(decelerateVehicleEGO,>).Situation+(limitLower,>).SituationDecelerate

+(limitGreater,>).SituationAccelerate+(signAon,w1>).SituationDecelerate

+(signAon,w2>).SituationLe f tRight +(signBon,w3>).SituationDecelerate

+(signBon,w4>).SituationLe f tRight +(entranceOn,>).SituationEnLOn

+(exitOn,>).SituationExLOn+(visibilityLower,>).SituationDecelerate

+(visibilityGreater,>).SituationAccelerate+(tollOn,>).SituationDecelerate;

In the initial state Situation, Ego has the choice between actions runVehicleEGO, accelerateVehicleEGO
and decelerateVehicleEGO. Situation always remains in the initial state after these actions.
Once one of the actions in {limitLower, signAon, signBon, visibilityLower, tollOn} is perfor-
med, the state becomes SituationDecelerate. Executing action limitGreater or visibilityGreater
leads to derivative state SituationAccelerate. There is also the possibility that once action
signAon or signBon is performed, the component state becomes SituationLe f tRight. Finally,
the execution of action entranceOn and exitOn leads to state SituationEnLOn and SituationExLOn,
respectively.

SituationEnLOn = (runVehicleEGO,>).SituationEnLOn

+(accelerateVehicleEGO,>).SituationEnLOn

+(decelerateVehicleEGO,>).SituationEnLOn

+(limitLower,>).SituationEnLOnDecelerate+(noEnterV,>).Situation

+(enterV,>).SituationEnterV +(visibilityLower,>).SituationEnLOnDecelerate

+(visibilityGreater,>).SituationEnLOnAccelerate

+(tollOn,>).SituationEnLOnDecelerate;

122

SituationEnterV = (runVehicleEGO,>).SituationEnterV

+(accelerateVehicleEGO,>).SituationEnterV

+(decelerateVehicleEGO,>).SituationEnterV

+(goLe f tLaneVehicleA,>).Situation1A;

Component states SituationEnLOn and SituationEnterV are similar to those of the running
example (see Chapter 7). If there is a vehicle on the entrance lane, action enterV may be
performed and this leads to the derivative state SituationEnterV . When VA rolls on the entrance
lane and does action goLe f tLaneVehicleA, it arrives on Lane 3 which leads to component state
Situation1A, which is the state defined in Case Study 1.

SituationExLOn = (runVehicleEGO,>).SituationExLOn

+(accelerateVehicleEGO,>).SituationExLOn

+(decelerateVehicleEGO,>).SituationExLOn

+(signCon,w5>).SituationExLOnDecelerate

+(signCon,w6>).SituationExLOnLe f tRight +(noExitV,>).Situation

+(visibilityLower,>).SituationExLOnDecelerate

+(visibilityGreater,>).SituationExLOnAccelerate

+(tollOn,>).SituationExLOnDecelerate;

Component state SituationExLOn is similar to SituationEnLOn. But in this state, there is no
vehicle exiting using the exit lane because there is only Ego on the road. For the other states
with exit lane, for example state Situation1AExLOn, if there is a vehicle exiting, the action
exitV is performed which leads to component derivative state Situation1A.

SituationAccelerate = (runVehicleEGO,>).SituationAccelerate

+(accelerateVehicleEGO, p1>).SituationAccelerate

+(decelerateVehicleEGO,>).SituationAccelerate

+(entranceOn,>).SituationEnLOnAccelerate

+(exitOn,>).SituationExLOnAccelerate+(signAo f f ,>).Situation

+(signBo f f ,>).Situation+(tollO f f ,>).Situation;

SituationDecelerate = (runVehicleEGO,>).SituationDecelerate

+(accelerateVehicleEGO,>).SituationDecelerate

+(decelerateVehicleEGO, p2>).SituationDecelerate

+(entranceOn,>).SituationEnLOnDecelerate

+(exitOn,>).SituationExLOnDecelerate+(signAo f f ,>).Situation

+(signBo f f ,>).Situation+(tollOut,>).SituationAccelerate;

As component state Situation, derivative states SituationAccelerate and SituationDecelerate
have the same actions and behaviours. The only difference is that the rates of actions accelera-

123

teVehicleEGO and decelerateVehicleEGO increase differently.

SituationLe f tRight = (runVehicleEGO,>).SituationLe f tRight

+(accelerateVehicleEGO,>).SituationLe f tRight

+(decelerateVehicleEGO,>).SituationLe f tRight

+(entranceOn,>).SituationEnLOnLe f tRight

+(exitOn,>).SituationExLOnLe f tRight

+(signAo f f ,>).Situation+(signBo f f ,>).Situation;

Component state SituationLe f tRight is similar to the initial state Situation because there is no
other car and Ego cannot change lane. For the other situations of this case study, the rates of the
actions goLe f tLaneVehicleA and goRightLaneVehicleA increase to represent the augmentation
of the action occurrence.

The following component states SituationEnLOnAccelerate, SituationEnLOnDecelerate,
SituationEnLOnLeftRight, SituationExLOnAccelerate, SituationExLOnDecelerate and Situa-
tionExLOnLeftRight are almost similar to states SituationAccelerate, SituationDecelerate and
SituationLeftRight. The difference is that there is an entrance lane in the first ones and an exit
lane in the last ones.

SituationEnLOnAccelerate = (runVehicleEGO,>).SituationEnLOnAccelerate

+(accelerateVehicleEGO, p3>).SituationEnLOnAccelerate

+(decelerateVehicleEGO,>).SituationEnLOnAccelerate

+(signABo f f ,>).SituationEnLOn+(noEnterV,>).Situation

+(enterV,>).SituationEnterV +(tollO f f ,>).SituationEnLOn;

SituationEnLOnDecelerate = (runVehicleEGO,>).SituationEnLOnDecelerate

+(accelerateVehicleEGO,>).SituationEnLOnDecelerate

+(decelerateVehicleEGO, p4>).SituationEnLOnDecelerate

+(signABo f f ,>).SituationEnLOn+(noEnterV,>).Situation

+(enterV,>).SituationEnterV +(tollOut,>).SituationEnLOnAccelerate;

SituationEnLOnLe f tRight = (runVehicleEGO,>).SituationEnLOnLe f tRight

+(accelerateVehicleEGO,>).SituationEnLOnLe f tRight

+(decelerateVehicleEGO,>).SituationEnLOnLe f tRight

+(signABo f f ,>).SituationEnLOn+(noEnterV,>).Situation

+(enterV,>).SituationEnterV ;

124

SituationExLOnAccelerate = (runVehicleEGO,>).SituationExLOnAccelerate

+(accelerateVehicleEGO, p5>).SituationExLOnAccelerate

+(decelerateVehicleEGO,>).SituationExLOnAccelerate

+(signCo f f ,>).SituationExLOn+(noExitV,>).Situation

+(tollO f f ,>).SituationExLOn;

SituationExLOnDecelerate = (runVehicleEGO,>).SituationExLOnDecelerate

+(accelerateVehicleEGO,>).SituationExLOnDecelerate

+(decelerateVehicleEGO, p6>).SituationExLOnDecelerate

+(signCo f f ,>).SituationExLOn+(noExitV,>).Situation

+(tollOut,>).SituationExLOnAccelerate;

SituationExLOnLe f tRight = (runVehicleEGO,>).SituationExLOnLe f tRight

+(accelerateVehicleEGO,>).SituationExLOnLe f tRight

+(decelerateVehicleEGO,>).SituationExLOnLe f tRight

+(signCo f f ,>).SituationExLOn+(noExitV,>).Situation;

The complete PEPA model equation is the following:

Scenario def
= Situation ./

L3
(VehicleEGO ‖ VehicleA ‖ EnLO f f ‖ ExLO f f ‖ SpeedLimit

‖ SignABO f f ‖ SignAO f f ‖ SignBO f f ‖ SignCO f f ‖ Visibility ‖ TollO f f)

where L3 is the actions set on which components Situation must synchronise with the other
components of the model individually. It is defined as:

L3 ={runVehicleEGO,accelerateVehicleEGO,decelerateVehicleEGO,goLe f tLaneVehicleA,

goRightLaneVehicleA,runVehicleA,accelerateVehicleA,decelerateVehicleA,

entranceOn,enterV,noEnterV,exitOn,exitV,noExitV, limitLower, limitGreater,

signABo f f ,signABon,signAo f f ,signAon,signBo f f ,signBon,signCo f f ,signCon,

visibilityLower,visibilityGreater, tollOn, tollO f f , tollOut}.

8.3.1 Numerical Results

This PEPA model has 1935 states, and the probability of being in each state is provided in
Figure 8-6. These results are based on a set of random values for the rates and the weights in
the model. Different values lead to different test cases and results. The probability is mainly
concentrated in the first hundred of states, and gradually decreases. Most of the states with high

125

probability have no or only one sign.

State 14 (SituationExLOnAccelerate, VehicleEGO, VehicleA, EnLO f f , ExLOn, Speed-
Limit, SignABO f f , SignAO f f , SignBO f f , SignCO f f , Visibility, TollO f f) has the highest
probability (0.028133829166193326). This state refers to the situation where there is no sign
and no toll. While State 1918 (Situation2AEnLOn, VehicleEGO, VehicleA, EnLOn, ExLO f f ,
SpeedLimit, SignABO f f , SignAOn, SignBOn, SignCOn, Visibility, TollOut) has the smallest
probability (4,54531810598917E-07). This state refers to the situation where there are three
signs appearing at the exit of toll.

FIGURE 8-6 – Steady-state probability distribution

From the initial system state State 1 (Situation, VehicleEGO, VehicleA, EnLO f f , ExLO f f ,
SpeedLimit, SignABO f f , SignAO f f , SignBO f f , SignCO f f , Visibility, TollO f f), we gene-
rate all possible scenarios with a length no greater than 5 scenes per scenario with our test case
generation algorithm. In this case, we obtain 11835 eligible scenarios, in which there are only
two critical scenarios (Figure 8-7). They are:
• Scenario 11822: State 1, entranceOn, State 8, enterV, State 23, goLeftLaneVehicleA,

State 33, goLeftLaneVehicleA, State 52;
• Scenario 11823: State 1, entranceOn, State 8, enterV, State 23, goLeftLaneVehicleA,

State 33, goLeftLaneVehicleA, State 53.
These scenarios are critical because they include one of the critical states State 52 and State

53. The reason why the critical scenarios are so few is that they are derived from the initial
situation where there is only Ego on highway. After 4 states of scenario, VA has not frequently
moved around Ego. The criticality of both scenarios is 0.2.

126

FIGURE 8-7 – Sequences of critical scenarios’ states

We also calculate the probabilities of the system being in each scenario. The most probable
scenario is: State 1, runVehicleEGO, State 1. Its occurrence probability is 0.0002791974785486466.

8.4 Conclusion

In this chapter, we use two case studies to show how we generate the scenarios and espe-
cially the critical ones. Because of the size of the PEPA models, specially the second one, we
have used the algorithm presented in Chapter 7 to generate the PEPA models. We also used the
algorithm presented in Chapter 7 to generate the scenarios.

So far, we can generate models of up to 6 vehicles of type Othercar. However, the model
generated in this case consists of more than 3.6 million equations. This model is too large to be
analyzed using the Eclipse tool.

At the same time we also get the criticality of the scenarios and the probability of their
occurrence. These data can help us to choose more representative and influential scenarios to
test and validate the decisions of ADSs.

These results are based on the properties values chosen. Other values will clearly lead to
other results. Experts can give their own values to generate ADSs test cases using our metho-
dology.

127

128

Chapitre 9

Conclusions

The autonomous vehicles industrial process showed significant acceleration state. The ma-
jor companies are accelerating research on autonomous vehicles. In 2020, Google’s Waymo
is expected to achieve 20,000 autonomous vehicles and provide up to 1 million rides a day
[Madrigal, 2018], while Baidu is expected to achieve mass production of autonomous vehicles
[Millward, 2015]. Weilai will launch Level 4 autonomous vehicles with an L4 self-driving de-
velopment kit, including cameras, millimeter-wave radar, lidar, GPS and other hardwares in
2022 [domeet kevinBobo, 2019]. IHS Automotive’s latest forecast is that annual sales of auto-
nomous vehicles will reach nearly 600,000 by 2025, and that number will reach 21 millions by
2035 [Markit, 2016].

While autonomous driving systems continue to improve, autonomous vehicles equipped
with high level ADSs are also being produced. From level 4, the automated systems perform
the driving task and monitor the driving environment. The human driver does not need to regain
control. However, the driver does not hold the steering wheel and does not monitor the surroun-
ding environment, which is contrary to existing laws. Before pushing for changes in the law,
we must first determine the safety of the developed ADSs. This is also the original intention of
the SVA project, in which this thesis work lies.

The SVA project aims to respond by digital simulation to the challenge posed by the de-
monstration of safety and harmlessness of the functions on board autonomous vehicles. One
of the major challenges is to be able to qualify the safety of autonomous vehicle decision al-
gorithms. In this thesis, we proposed a methodology to generate all possible situations that
autonomous vehicle will meet in the context of the highway. These situations are presented as
test cases for testing and validating the decisions of ADSs.

In order to reduce the conceptual and the terminological confusion in our SVA project,
firstly, we provide a clear definition of a test case as one or several scenarios describing the same
situation applied to test one or several functions of ADSs. Then we defined three ontologies to

129

specify, on the one hand the environment in which evolves the autonomous vehicle, and on
the other hand the vehicle lights and its actions. In this thesis, we concentrate on the driving
environment of the highway since the TJC system, on which SVA project works, is mainly used
in highways.

We use the first-order logic to represent the different relationships that we have defined in
the context of these ontologies. We defined three kinds of relationships between the entities of
the defined concepts: the relationships between the highway entities, the relationships between
the vehicle entities, and the relationships between the highway and vehicle entities. We re-
described the test cases with logical equations instead of natural language, thereby achieving
primary formalization of a test case.

The test case generation methodology we developed consists of three layers: basic layer,
interaction layer and generation layer. We introduced the construction of the highway model
using the formal modelling language PEPA. We also investigated the generation of all scena-
rios, specially the critical ones. Solving the PEPA model allows us to compute the probability
to be in each scene of a scenario, and thus in each scenario. Finally, we have applied our me-
thodology on two case studies.

Our methodology gives a new idea of how to generate automatically the test cases and to
identify the critical ones. We also proposed a method to calculate the criticality of each test
case. We can comprehensively evaluate the importance of a test case by its criticality and its
probability of occurrence.

In the future, more concepts can be added to expand our ontologies. We can make them
suitable for all types of road and area such as the municipal roads and the parking areas. Thus
our ontologies may support other uses in other contexts such as urban design.

Currently, the values of the rates of the actions other than Accelerate and Decelerate are set
arbitrary because they are not available. We also do not have data on the impact of the different
weather conditions on the autonomous vehicles behaviour. We could only use the property of
visibility instead. In the future, if more actual test data are available or assisted by experts in
the field, all data can be injected in our program.

In order to reduce the combinatorial explosion of the number of scenes, not all concepts in
the ontology are modelled with PEPA in the generation layer. For example, we have defined the
concept Shoulder in the highway ontology because it is part of the highway, but it is not very
important in our model. In the future, we may add all the components if the computing power
improves.

So far, we can generate PEPA models for up to six (6) vehicles of type Othercar around
the autonomous vehicle. However, the generated model consists of more than 3.6 million equa-
tions, which makes it too large to be analyzed using the Eclipse PEPA tool. The PEPA model
needs to be optimized. In the future, we can apply the aggregation technique developed for the

130

PEPA models [Hillston, 1994] [Pourranjbar and Hillston, 2013]. This technique allows redu-
cing the size of a PEPA model if components exhibit the same behaviour, which is the case of
the six vehicles of type Othercar in our model. It has been proved that the aggregated PEPA
model is equivalent to the original one. Thus the state space of the underlying continuous-time
Markov chain can be reduced, so that the model can include more components and/or solved
in reasonable time.

131

Résumé

Depuis les années 1970, la recherche sur le véhicule autonome est devenue une tendance dans
l’industrie. Dernièrement et après des années d’exploration, un certain progrès a été réalisé.
En 2018, Audi a étendu le système d’information des feux de circulation V2I (Vehicle-to-
Infrastructure) à Washington [Krok, 2018]. Nissan prévoit de poursuivre sa collaboration avec
la NASA pour adapter la technologie de la NASA pour une utilisation sur sa plate-forme de
mobilité autonome transparente [Bartosiak, 2018]. Non seulement l’industrie automobile tra-
ditionnelle est dédiée à ce domaine de recherche, mais d’autres sociétés, telles que Google
et Intel, ont également participé au développement du véhicule autonome. Waymo, initiale-
ment projet de voiture autonome de Google, a annulé la conception du volant et des pédales
[Gain, 2017], ce qui bouleverse complètement la conception des voitures traditionnelles.

Les véhicules autonomes s’appuient principalement sur des systèmes intelligents pour at-
teindre l’objectif de la conduite autonome. Ils combinent une variété de capteurs pour perce-
voir leur environnement, tels que des caméras, des radars et des lidars. En effet, ils doivent
évoluer dans un environnement imprévisible et un large contexte d’exécution dynamique, avec
des interactions fortes. Les algorithmes de perception des ADSs (Automated Driving Systems)
fournissent des observations sur les éléments environnementaux à partir des données fournies
par les capteurs, tandis que les algorithmes de décision génèrent les actions à mettre en œuvre
par ces véhicules.

Selon les niveaux d’automatisation des véhicules de SAE (Society of Automotive Engi-
neers), à partir du niveau 4, les systèmes automatisés exécutent la tâche de conduite et sur-
veillent l’environnement de conduite. Le conducteur humain n’a pas besoin de reprendre le
contrôle. Cependant, le conducteur ne tient pas le volant et ne surveille pas l’environnement
autour, ce qui est contraire aux lois en vigueur. Avant de pousser pour des changements dans la
loi, nous devons d’abord déterminer le niveau de sécurité des ADS développés.

Des ADSs sont développés pour exécuter les principaux aspects de la tâche de conduite
dynamique [SAE, 2014]. Les technologies développées devraient prévenir les accidents, ré-
duire les émissions, transporter les personnes à mobilité réduite et réduire le stress lié à la
conduite. Par exemple, le Département américain des transports (USDOT) estime que les véhi-
cules automatisés peuvent réduire les décès et les blessures liés aux accidents, améliorer l’accès
aux transports et réduire la congestion routière et les émissions des véhicules [NHTSA, 2016].
Mais les véhicules autonomes soulèvent également de nouveaux problèmes de sécurité qui sont
dûs à la nature émergente de la technologie.

En effet, les ADSs sont des systèmes critiques dont les pannes peuvent avoir des consé-
quences catastrophiques. Des erreurs techniques systématiques des ADS, par exemple des bugs
et des failles dans les capteurs ou des données manquantes, pourraient être à l’origine de sé-

132

rieux dangers, semblables à des erreurs humaines. Des décès dûs à des ADSs immatures ont
déjà été signalés et sont considérés comme en augmentation [BBC, 2018] [Everington, 2020].
La certification de sécurité et de fiabilité est une tâche qui reste donc à résoudre.

Comme tout autre système pouvant générer des événements potentiellement à risque, le
véhicule autonome doit être conçu pour assurer la sécurité de ses occupants et des autres usa-
gers de la route. La fiabilité de l’architecture et la logique comportementale des ADS doivent
être testées, vérifiées et validées avant que les véhicules autonomes équipés de ces systèmes
soient sur la route. Cela souligne la nécessité d’approches et d’outils améliorés pour évaluer
la sécurité des mouvements des véhicules autonomes dans des environnements dynamiques et
incertains.

Afin de garantir la fonctionnalité et la sécurité du système de conduite autonome, il est
nécessaire de valider les décisions des algorithmes pour toutes les situations qui seront rencon-
trées par le véhicule. La complexité de la démonstration de la sécurité d’un véhicule autonome
est liée au grand nombre de ces situations, à leur incertitude et aux technologies embarquées.
Cela rend la validation par des tests en utilisation réelle extrêmement coûteuse, voire impos-
sible dans certains cas. Afin de s’assurer que les exigences de sécurité ont été respectées, la
validation des ADSs du véhicule autonome par simulation numérique est nécessaire.

Le projet SVA (Simulation de la sécurité des véhicules autonomes) [SVA, 2016], dans le-
quel s’inscrit ce travail de thèse, vise à répondre par la simulation numérique au défi posé par
la démonstration de la sûreté de fonctionnement et de l’innocuité des fonctions à bord des vé-
hicules autonomes. Lancé en 2015 pour une durée de quatre ans au sein de l’IRT SystemX,
Paris-Saclay, France, le projet SVA vise à aborder la problématique de la validation des vé-
hicules autonomes par la simulation numérique, en développant des méthodes et des outils
d’aide à la conception et à la validation. Les modèles des composants du véhicule et leur envi-
ronnement devraient être spécifiés, adaptés ou développés afin de simuler le comportement du
véhicule en cas de défaillance de l’un de ses composants et l’impact sur son fonctionnement
dû à des perturbations externes. Le projet SVA applique les méthodes développées à la fonc-
tion d’autonomie TJC (Traffic Jam Chauffeur), qui permet de contrôler le véhicule dans une
situation d’embouteillage, à une vitesse maximale de 70 km/h et sur une chaussée séparée.

L’objectif principal de ces travaux de thèse est de développer une approche complète per-
mettant, d’une part la conceptualisation et la caractérisation des contextes d’exécution du vé-
hicule autonome, et d’autre part, la modélisation et génération de cas de test. Ces cas de test
sont générés pour décrire les situations de conduite. Nous nous intéressons à une méthode de
génération automatique qui permet de générer des cas de test ayant un impact sur les perfor-
mances et la fiabilité du véhicule. Générer tous les cas de test possibles est un défi. Nous nous
concentrons sur les cas de test dans le contexte de l’autoroute qui est de type chaussée séparée.
De plus, par rapport à d’autres types de routes, il existe des spécifications uniformes pour les
autoroutes.

La sûreté de fonctionnement est un concept générique qui mesure la qualité du service

133

fourni par un système. Cette confiance justifiée est obtenue grâce à une analyse qualitative et
quantitative des différentes propriétés du service rendu par le système. Les ADSs étant testés,
vérifiés et validés par simulation numérique, l’environnement de conduite du véhicule auto-
nome doit être modélisé afin de pouvoir générer toutes les situations possibles que le véhicule
peut rencontrer dans un contexte d’exécution dynamique. Ces situations sont générées sous
forme de cas de test différents permettant de vérifier les fonctions et les informations néces-
saires pour exécuter ces fonctions, ainsi que les décisions des ADSs.

Les méthodes formelles sont un type particulier de techniques et d’outils mathématique-
ment rigoureux pour la spécification, la conception et la vérification des systèmes logiciels et
matériels. Les spécifications utilisées dans les méthodes formelles sont des énoncés bien for-
més dans une logique mathématique. Chaque étape découle d’une règle d’inférence et peut
donc être vérifiée par un processus mécanique [Alagar and Periyasamy, 2011]. Ces méthodes
ont été initialement développées pour spécifier et vérifier le comportement correct des systèmes
logiciels et matériels et ont été appliquées dans de nombreux domaines de développement de
systèmes, et de nombreux accomplissements ont été réalisés [Almeida et al., 2011].

Il existe une variété de méthodes formelles de modélisation de système. Ces méthodes
peuvent être classées en deux grandes catégories : les méthodes dédiées aux systèmes séries et
celles dédiées aux systèmes concurrents.

Dans un système en série, les tâches sont traitées une par une, une tâche doit être terminée
avant le début d’une autre. Ces systèmes peuvent être modélisés en utilisant des techniques
telles que le langage Z [Meyer and Baudoin, 1978], la méthode de développement de Vienne
(VDM) [Bjørner and Jones, 1978] et la méthode B [Abrial, 1988].

Les systèmes concurrents sont beaucoup plus complexes que les systèmes en série. Un
système concurrent permet à toutes les tâches de progresser pour supporter plus d’une tâche
[GALVIN and GAGNE, 2005]. Il consiste en un ensemble de processus communiquant via des
structures de données partagées ou des objets [Παλαιoδήµoς, 2018]. Il existe plusieurs types
de techniques de modélisation pour les systèmes concurrents, tels que les processus de Mar-
kov [Kemeny and Snell, 1976], les réseaux de Petri [Petri, 1962] et les algèbres de processus
[Bergstra et al., 2001].

Bien que le véhicule autonome appartienne à la catégorie des systèmes concurrents, à notre
connaissance, il existe peu de travaux dédiés aux approches formelles appliquées au domaine
des véhicules autonomes.

Dans ces travaux de thèse nous nous intéressons à l’algèbre des processus, en particulier
à PEPA (Performance Evaluation Process Algebra) [Hillston, 1994]. PEPA est une algèbre de
processus stochastique conçue pour modéliser les systèmes informatiques et de communica-
tion. Ce langage formel a été développé pour étudier comment les caractéristiques de compo-
sition d’une algèbre de processus pourraient avoir un impact sur la pratique de la modélisation
des performances. PEPA peut modéliser des éléments du système qui se comportent et évoluent

134

individuellement ou en coopération les uns avec les autres. Cette technique de modélisation est
suffisamment puissante pour modéliser tous les comportements d’un système.

Un modèle PEPA est construit en identifiant les composantes du système effectuant des
activités. Cette technique est caractérisée par un petit ensemble d’opérateurs. Ces opérateurs et
leur syntaxe sont définis comme suit :

S def
= (α,r).P | P+Q | P ./

L
Q | P/L | A

Prefix: S def
= (α,r).P, la composante S effectue l’activité (α,r) qui a le type d’ac-

tion α et une durée qui est exponentiellement distribuée
avec le paramètre r avant de se comporter comme P.

Choice: S def
= P+Q, S peut se comporter soit comme la composante P, soit

comme la composante Q.

Cooperation: S def
= P ./

L
Q, S est le résultat de la coopération ou de la synchronisation

entre les composantes P et Q. Les activités partagées dans
l’ensemble de coopération L déterminent les interactions
entre les composantes P et Q, en remplaçant les activités
individuelles des composantes individuelles P et Q par un
taux reflétant le taux du participant le plus lent.

Hiding: S def
= P/L, le système se comporte comme la composante P, sauf que

toute activité dans l’ensemble L est masquée. Son type n’est
pas observé à la fin. Il apparaît comme le type inconnu
τ et peut être considéré comme un retard interne de la
composante.

Constant: S def
= A cet opérateur affecte à S le comportement de la compo-

sante A. En général, on l’utilise pour attribuer des noms aux
composantes.

Un processus de Markov en temps continu peut être derivé des composantes du modèle
PEPA et de leurs interactions. Les outils existants (Eclipse PEPA [Hillston and Gilmore, 2014])
permettent de générer ce processus Markov sous-jacent.

Méthodologie de génération de cas de test

Les constructeurs ont besoin d’une stratégie de génération complète pour garantir l’exhaus-
tivité des situations auxquelles le véhicule autonome sera confronté [Kone et al., 2019]. Cepen-
dant, comme le véhicule autonome repose sur la coopération de l’intelligence artificielle, des
capteurs tels que les radars, les caméras et les lidars, et le GPS pour améliorer la sécurité rou-
tière et l’efficacité du trafic, avec le développement des technologies, ces capteurs fournissent

135

de plus en plus d’éléments d’environnement de conduite aux ADSs. Ces éléments d’infrastruc-
ture combinés aux conditions météorologiques avec leurs propres propriétés peuvent conduire
à l’explosion combinatoire du nombre des situations rencontrées par le véhicule, et par consé-
quent des scènes constituant les cas de test. Ainsi, générer tous les cas de test possibles devient
presque impossible.

Dans cette thèse, nous proposons donc une approche de génération de cas de test qui se
concentre sur les cas de test les plus représentatifs pour tester et valider les ADSs. Cette ap-
proche basée sur un modèle formel nous permet de modéliser formellement ces cas de test et
d’identifier les plus critiques.

Avant de présenter les détails de notre méthodologie de génération de cas de test, nous
devons d’abord clarifier la définition d’un cas de test. Nous définissons un cas de test comme
un environnement de conduite spécifique pour le véhicule autonome. Il consiste en un scénario
décrivant une situation spécifique pour laquelle des valeurs sont attribuées aux propriétés de
chaque élément du scénario. Le choix de ces valeurs dépend de l’objectif de chaque cas de test.
Un scénario décrit le développement temporel entre plusieurs scènes dans une séquence de
scènes. Il est associé aux actions de tous les éléments de la séquence de scènes. Une scène est
un instantané de l’environnement du véhicule, y compris les éléments statiques et mobiles, et
les relations entre ces éléments (Figure -1).

FIGURE -1 – Structure du cas de test.

Pour générer les cas de test, nous devons faire face à un premier défi - la confusion concep-
tuelle et terminologique dans le projet SVA. Différentes terminologies sont utilisées par les
partenaires du projet avec des formalismes et des besoins différents. De plus, certains mots
utilisés dans la même terminologie sont ambigus, certains sont redondants et ont donc la même
signification, tandis qu’un même mot peut avoir des significations différentes. Cela entraîne un
manque de compréhension commune entre les partenaires du projet et des difficultés de coopé-
ration limitant ainsi le potentiel de réutilisation et de partage de leurs travaux. Ainsi, nous avons
besoin d’un vocabulaire commun pour toutes les parties prenantes qui ont besoin de partager
des informations dans le domaine des véhicules autonomes.

136

Pour faire face à ce premier défi, nous devons identifier les concepts clés et les relations
possibles entre les éléments impliqués dans les différents contextes d’exécution, pour donner
des définitions claires de ces éléments. Ainsi, afin de conceptualiser et caractériser l’environ-
nement de conduite pour la construction de cas de test, nous définissons trois ontologies : une
ontologie de l’autoroute et une ontologie de la météo pour spécifier l’environnement dans le-
quel évolue le véhicule autonome, et une ontologie du véhicule qui se compose des feux du
véhicule et des actions de contrôle. Chaque concept de ces ontologies est défini en termes
d’entité, de sous-entités et de propriétés. Cette première étape constitue la couche de base de
notre méthodologie qui inclut les éléments statiques et mobiles de l’environnement de conduite
(Figure -2). Les éléments statiques font référence à tous les éléments géospatiaux fixes qui in-
cluent l’infrastructure de l’autoroute et les conditions météorologiques. Les éléments mobiles
sont des éléments qui ont la capacité de se déplacer. Ils incluent le véhicule autonome et les
autres trafics. Cela permet de couvrir des éléments majeurs de l’infrastructure et des véhicules.

Les actions considérées sont celles effectuées par le véhicule autonome alors que les évé-
nements sont les actions réalisées par les éléments de l’environnement comme les autres vé-
hicules du trafic, et qui sont considérées comme des événements du point de vue du véhicule
autonome.

Notre approche permet de modéliser non seulement la circulation des véhicules, mais aussi
l’apparition et la disparition des infrastructures au fur et à mesure que le véhicule autonome
avance. Les valeurs de ces éléments sont les valeurs des propriétés de leurs concepts dans
l’ontologie correspondante, qui déterminent leurs caractéristiques intrinsèques.

Parce que nous devons considérer toutes les relations entre différents concepts, nous consi-
dérons toutes les entités et les valeurs des propriétés correspondantes pour construire les re-
lations entre les entités autoroute, les relations entre les entités véhicule et les relations entre
les entités autoroute et véhicule. Ces relations sont exprimées en utilisant les equations de la
logique du premier ordre, qui nous permet d’exprimer de manière simple les relations entre les
différents éléments de notre système. Et cela constitue la deuxième couche de notre méthodo-
logie appelée couche d’interaction.

Clairement la météo a un impact sur la conduite, mais nous ne disposons d’aucune in-
formation par le type d’impact dont il s’agit, surtout lorsque les conditions météorologiques
interagissent les unes avec les autres entraînant des effets complexes. Dans ce travail, nous
donnons la possibilité au véhicule autonome d’accélérer et de décélérer pour s’adapter aux
différentes conditions météorologiques. Généralement, lorsque la visibilité est élevée, le vé-
hicule se déplace plus vite et lorsque la visibilité est faible, le véhicule a tendance à ralentir.
Par conséquent, dans ce travail, nous utilisons la propriété de visibilité pour modéliser l’impact
de la météo sur le véhicule autonome. Si le testeur est un expert dans ce domaine ou a des
exigences de test plus précises, d’autres concepts peuvent être ajoutés si nécessaire.

Afin de générer les cas de test, nous nous référons à la définition d’un cas de test. Ainsi,
la génération des cas de test comporte 3 étapes. Tout d’abord nous devons générer la scène

137

FIGURE -2 – Méthodologie de génération de cas de test.

en fonction des concepts et des relations définis. Puis, les scénarios sont associés aux actions
effectuées par le véhicule autonome et aux événements réalisés par les éléments de l’environne-
ment dans la séquence des scènes. Enfin, un scénario devient un cas de test lorsque des valeurs
sont affectées aux propriétés de chaque élément du scénario. Les étapes de génération des cas
de test constituent la troisième et dernière couche de notre méthodologie appelée couche de
génération.

A ce stade, nous formalisons les cas de test en utilisant PEPA (Performance Evaluation Pro-
cess Algebra) [Hillston, 1994]. Dans notre modèle PEPA général, nous considérons la portion
de chaussée d’autoroute autour du véhicule autonome, Ego (véhicule bleu sur la figure -3). En
fonction de la vitesse de Ego et de la vitesse du véhicule éventuel suivant et juste avant Ego,
on peut définir un zone critique (zone jaune sur la figure -3) dans la voie centrale. Cette zone
est délimitée en considérant la distance minimale de sécurité qui doit séparer Ego des autres
véhicules : celui juste avant et celui juste après. Les distances minimales de sécurité sont les
distances parcourues par le véhicule pendant un délai d’au moins deux secondes, calculées à
partir de la vitesse du véhicule.

De plus, nous séparons la portion de la chaussée en six (6) zones comme le montre la figure

138

FIGURE -3 – Zone critique autour de Ego.

-4. Nous numérotons ces zones de un à six. La zone 1 indique la voie de gauche. Les zones 2 et
5 indiquent les zones non critiques devant et derrière Ego. La zone 3 indique la zone critique
devant Ego tandis que la zone 4 indique la zone critique derrière lui. La zone 6 indique la voie
de droite. Les zones 1 et 6 sont des zones non critiques pour Ego.

Un autre véhicule peut être dans n’importe quelle zone autour de Ego. Nous modélisons les
mouvements des autres véhicules entre les zones avec le graphe de la figure -5. Ce graphique
montre toutes les transitions possibles entre ces zones. Par exemple, un véhicule peut se dépla-
cer entre la zone 1 et la zone k, et entre la zone k et la zone 6, k = 2,3,4,5. Il peut également
se déplacer entre la zone 2 et la zone 3, et entre la zone 4 et la zone 5. Tous les véhicules dans
les zones non critiques peuvent pénétrer dans les zones critiques et vice versa.

FIGURE -4 – Zones dans la scène. FIGURE -5 – Mouvements entre zones.

Compte tenu des concepts que nous avons définis dans nos ontologies, nous construisons
un modèle PEPA qui se compose de dix-neuf (19) composantes. Toutes les équations qui ca-
ractérisent les comportements de ces composantes sont présentées dans le Chapitre 7.

139

En raison du grand nombre d’éléments de l’infrastructure autoroutière, du nombre de vé-
hicules possibles et des conditions météorologiques, l’écriture des composantes PEPA est fas-
tidieuse. Aussi, nous proposons d’abord un algorithme pour générer automatiquement des mo-
dèles PEPA. Par ailleurs, comme nous nous intéressons à la génération automatique des cas de
test, nous proposons une méthode qui permet de classer ces cas de test en fonction de leur im-
pact sur les performances et la fiabilité du véhicule. Nous proposons également un algorithme
qui permet de générer automatiquement les cas de test à partir de n’importe quelle situation
initiale et avec n’importe quel nombre de scènes. Cela aussi nous permet d’identifier les cas de
test critiques. Enfin, nous proposons une méthode pour calculer la criticité de chaque cas de
test afin d’évaluer de manière exhaustive son importance.

Nous avons appliqué notre méthodologie sur deux études de cas. Le premier cas “ Véhi-
cule autonome dans un contexte simple" ne comporte qu’un seul véhicule circulant autour du
véhicule autonome. Nous avons choisi ce petit modèle pour montrer les étapes complètes per-
mettant la génération des scénarios et notamment les plus critiques. La seconde étude de cas
“ Véhicule autonome dans un contexte complexe” est un cas plus complexe où les panneaux
de signalisation, les voies d’entrée, les voies de sortie, les péages et la visibilité sont pris en
compte. Nous l’avons choisi pour montrer comment nous générons le modèle PEPA avec dif-
férents éléments de l’infrastructure autoroutière et la visibilité comme impact météorologique
sur le véhicule autonome.

Conclusions et Perspectives

La méthodologie de génération de cas de test que nous avons développée se compose de
trois couches: une couche de base, une couche d’interaction et une couche de génération. Nous
avons également étudié la génération de tous les scénarios, en particulier les plus critiques. La
résolution du modèle PEPA nous permet de calculer la probabilité d’être dans chaque scène
d’un scénario, et donc dans chaque scénario. Notre méthodologie donne une nouvelle idée de
la façon de générer automatiquement les cas de test et d’identifier les cas critiques. Nous avons
également proposé une méthode pour calculer la criticité de chaque cas de test. Nous pouvons
évaluer globalement l’importance d’un cas de test par sa criticité et sa probabilité d’occurrence.

À l’avenir, d’autres concepts pourront être ajoutés pour étendre nos ontologies. Nous pou-
vons les adapter à tous les types de routes et de zones telles que les routes municipales et les
parkings. Ainsi, nos ontologies peuvent être considérées pour d’autres utilisations dans d’autres
contextes tels que le design urbain.

Actuellement, les valeurs des taux des actions autres que Accelerate et Decelerate sont
définies de manière arbitraire car elles ne sont pas disponibles. Nous ne disposons pas non
plus de données sur l’impact des différentes conditions météorologiques sur le comportement

140

des véhicules autonomes. Nous ne pouvons utiliser que la propriété de visibilité à la place.
À l’avenir, si des données de test réelles sont disponibles ou assistées par des experts dans le
domaine, toutes les données pourront être injectées dans nos programmes.

Afin de réduire l’explosion combinatoire du nombre de scènes, tous les concepts de l’onto-
logie ne sont pas modélisés avec PEPA dans la couche de génération. Par exemple, nous avons
défini le concept Shoulder dans l’ontologie autoroute car il fait partie de l’autoroute, mais ce
n’est pas très important dans notre modèle. À l’avenir, nous pourrons ajouter au modèle PEPA
toutes les composantes nécessaires pour modéliser les éléments non pris en compte si la puis-
sance de calcul nous le permet.

Jusqu’à présent, nous pouvons générer des modèles PEPA pour jusqu’à six (6) véhicules
autour du véhicule autonome. Cependant, le modèle généré se compose de plus de 3,6 millions
d’équations, ce qui le rend trop volumineux pour être analysé à l’aide de l’outil Eclipse PEPA.
Aussi le modèle PEPA doit être optimisé. À l’avenir, nous pourrons appliquer la technique
d’agrégation développée pour les modèles PEPA [Hillston, 1994]. Cette technique permet de
réduire la taille d’un modèle PEPA si les composantes présentent le même comportement, ce
qui est le cas des six véhicules de notre système. Il a été prouvé que le modèle PEPA agrégé est
équivalent au modèle original. Ainsi, l’espace d’états de la chaîne de Markov en temps continu
sous-jacente peut être réduit, de sorte que le modèle peut inclure plus de composantes et/ou
être résolu en un temps raisonnable.

141

142

Bibliographie

[Abisheik and Mohan, 2017] Abisheik, M. T. J. T. S. and Mohan, V. B. J. S. M. (2017). Fully
automated valet car parking system.

[Abrial, 1988] Abrial, J. (1988). The B tool (abstract). In VDM ’88, VDM - The Way Ahead,
2nd VDM-Europe Symposium, Dublin, Ireland, September 11-16, 1988, Proceedings, pages
86–87.

[Abrial et al., 2010] Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., and
Voisin, L. (2010). Rodin: an open toolset for modelling and reasoning in Event-B. STTT,
12(6):447–466.

[Adão and Mateus, 2007] Adão, P. and Mateus, P. (2007). A process algebra for reasoning
about quantum security. Electr. Notes Theor. Comput. Sci., 170:3–21.

[Alagar and Periyasamy, 2011] Alagar, V. S. and Periyasamy, K. (2011). Specification of Soft-
ware Systems, Second Edition. Texts in Computer Science. Springer.

[Alberts, 1994] Alberts, L. (1994). Ymir: a sharable ontology for the formal representation of
engineering design knowledge. In IFIP WG, volume 5, pages 3–32.

[Almeida et al., 2011] Almeida, J. B., Frade, M. J., Pinto, J. S., and Melo de Sousa, S. (2011).
An Overview of Formal Methods Tools and Techniques, pages 15–44. Springer London,
London.

[Althoff and Mergel, 2011] Althoff, M. and Mergel, A. (2011). Comparison of markov chain
abstraction and monte carlo simulation for the safety assessment of autonomous cars. IEEE
Trans. Intelligent Transportation Systems, 12(4):1237–1247.

[Andrews and Dunnett, 2000] Andrews, J. D. and Dunnett, S. J. (2000). Event-tree analysis
using binary decision diagrams. IEEE Transactions on Reliability, 49(2):230–238.

[Annpureddy et al., 2011] Annpureddy, Y., Liu, C., Fainekos, G., and Sankaranarayanan, S.
(2011). S-taliro: A tool for temporal logic falsification for hybrid systems. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
254–257. Springer.

[Armand et al., 2014] Armand, A., Filliat, D., and Guzman, J. I. (2014). Ontology-based
context awareness for driving assistance systems. In 2014 IEEE Intelligent Vehicles Sympo-
sium Proceedings, Dearborn, MI, USA, June 8-11, 2014, pages 227–233.

[Bagschik et al., 2017] Bagschik, G., Menzel, T., and Maurer, M. (2017). Ontology based
scene creation for the development of automated vehicles. CoRR Computing Research Re-
pository, abs/1704.01006.

143

[Balasbramani et al., 2019] Balasbramani, P., Hithesh, P., Sai, G. N., and Srinuvaslu, C.
(2019). Intelligent drive assistant system.

[Balbo, 2007] Balbo, G. (2007). Introduction to generalized stochastic petri nets. In Formal
Methods for Performance Evaluation, 7th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, SFM 2007, Bertinoro, Italy,
May 28-June 2, 2007, Advanced Lectures, pages 83–131.

[Barickman et al., 2007] Barickman, F. S., Smith, L., and Jones, R. (2007). Lane departure
warning system research and test development. In 20th International Technical Conference
on the Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety Administration,
number 07-0495.

[Bartels et al., 2015] Bartels, A., Eberle, U., and Knapp, A. (2015). Adaptive delivrable d2. 1:
System classification and glossary. Automated Driving Applications and Technologies for
Intelligent Vehicles (AdaptIVe), Tech. Rep.

[Bartosiak, 2018] Bartosiak, D. (2018). Nissan and nasa extend partnership on autonomous
tech. http://www.thedrive.com/sheetmetal/17607/nissan-and-nasa-extend-p
artnership-on-autonomous-tech.

[Batavia, 1999] Batavia, P. H. (1999). Driver-adaptive lane departure warning systems. Car-
negie Mellon University Pittsburgh„ USA.

[BBC, 2018] BBC (2018). Tesla in fatal california crash was on autopilot. http://www.bb
c.com/news/world-us-canada-43604440.

[Becker et al., 2017] Becker, C., Brewer, J., Najm, W., Yount, L., and Rau, P. (2017). Functio-
nal safety considerations for foundational steering systems. In 25th International Technical
Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety Ad-
ministration.

[Berardi et al., 2004] Berardi, D., Grüninger, M., Hull, R., and McIlraith, S. (2004). Towards
a first-order ontology for semantic web services. In Proceedings of the W3C Workshop on
Constraints and Capabilities for Web Services. Citeseer.

[Bergstra and Klop, 1984] Bergstra, J. A. and Klop, J. W. (1984). Process algebra for synchro-
nous communication. Information and Control, 60(1-3):109–137.

[Bergstra and Middelburg, 2005] Bergstra, J. A. and Middelburg, C. A. (2005). Process alge-
bra for hybrid systems. Theor. Comput. Sci., 335(2-3):215–280.

[Bergstra et al., 2001] Bergstra, J. A., Ponse, A., and Smolka, S. A. (2001). Handbook of
process algebra. Elsevier.

[Bernardo et al., 1995] Bernardo, M., Busi, N., and Gorrieri, R. (1995). A distributed seman-
tics for EMPA based on stochastic contextual nets. Comput. J., 38(7):492–509.

[Bhat et al., 2018] Bhat, A., Aoki, S., and Rajkumar, R. (2018). Tools and methodologies for
autonomous driving systems. Proceedings of the IEEE, 106(9):1700–1716.

[Billington, 1989] Billington, J. (1989). Extensions to coloured petri nets. In Proceedings
of the Third International Workshop on Petri Nets and Performance Models, PNPM 1989,
Kyoto, Japan, December 11-13, 1989, pages 61–70.

[Bjørner and Jones, 1978] Bjørner, D. and Jones, C. B., editors (1978). The Vienna Deve-
lopment Method: The Meta-Language, volume 61 of Lecture Notes in Computer Science.
Springer.

144

http://www.thedrive.com/sheetmetal/17607/nissan-and-nasa-extend-partnership-on-autonomous-tech
http://www.thedrive.com/sheetmetal/17607/nissan-and-nasa-extend-partnership-on-autonomous-tech
http://www.bbc.com/news/world-us-canada-43604440
http://www.bbc.com/news/world-us-canada-43604440

[Borst, 1999] Borst, W. N. (1999). Construction of engineering ontologies for knowledge
sharing and reuse.

[Boulanger and Gallardo, 2000] Boulanger, J. and Gallardo, M. (2000). Validation and verifi-
cation of METEOR safety software, page 189–200. WIT Press.

[Brechtel et al., 2014] Brechtel, S., Gindele, T., and Dillmann, R. (2014). Probabilistic
decision-making under uncertainty for autonomous driving using continuous pomdps. In
17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pages
392–399. IEEE.

[Brinksma and Hermanns, 2000] Brinksma, E. and Hermanns, H. (2000). Process algebra and
markov chains. In School organized by the European Educational Forum, pages 183–231.
Springer.

[Brookes et al., 1984] Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W. (1984). A theory of
communicating sequential processes. J. ACM, 31(3):560–599.

[Brown, 2000] Brown, S. (2000). Overview of iec 61508. design of electri-
cal/electronic/programmable electronic safety-related systems. Computing & Control
Engineering Journal, 11(1):6–12.

[Butler and Hallerstede, 2007] Butler, M. and Hallerstede, S. (2007). The rodin formal model-
ling tool 1.

[Cabrera et al., 2012] Cabrera, A., Gowal, S., and Martinoli, A. (2012). A new collision war-
ning system for lead vehicles in rear-end collisions. In 2012 IEEE Intelligent Vehicles Sym-
posium, pages 674–679. Ieee.

[Cámara et al., 2006] Cámara, J., Canal, C., Cubo, J., and Vallecillo, A. (2006). Formalizing
WSBPEL business processes using process algebra. Electr. Notes Theor. Comput. Sci.,
154(1):159–173.

[Cerone and Zhao, 2013] Cerone, A. and Zhao, Y. (2013). Stochastic modelling and analysis
of driver behaviour. ECEASST, 69.

[Chauvel, 2008] Chauvel, F. (2008). Méthodes et outils pour la conception de systèmes logi-
ciels auto-adaptatifs. PhD thesis.

[Chen and Parikh, 2000] Chen, S.-K. and Parikh, J. S. (2000). Developing a forward collision
warning system simulation. In Proceedings of the IEEE Intelligent Vehicles Symposium
2000 (Cat. No. 00TH8511), pages 338–343. IEEE.

[Chen and Kloul, 2018a] Chen, W. and Kloul, L. (2018a). An ontology-based approach to
generate the advanced driver assistance use cases of highway traffic. In KEOD, pages 73–
81.

[Chen and Kloul, 2018b] Chen, W. and Kloul, L. (2018b). An ontology-based approach to
generate the advanced driver assistance use cases of highway traffic. In Proceedings of the
10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management, IC3K 2018, Volume 2: KEOD, Seville, Spain, September 18-20,
2018., pages 73–81.

[Chen and Kloul, 2019] Chen, W. and Kloul, L. (2019). Stochastic modelling of autonomous
vehicles driving scenarios using pepa. In International Symposium on Model-Based Safety
and Assessment, pages 317–331. Springer.

145

[Chen and Kloul, 2020] Chen, W. and Kloul, L. (2020). An advanced driver assistance test
cases generation methodology based on highway traffic situation description ontologies. In
Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., and Filipe, J., editors, Knowledge
Discovery, Knowledge Engineering and Knowledge Management, pages 93–113, Cham.
Springer International Publishing.

[Clancey, 1993] Clancey, W. J. (1993). The knowledge level reinterpreted: Modeling socio-
technical systems. International journal of intelligent systems, 8(1):33–49.

[Clark et al., 2007] Clark, A., Gilmore, S., Hillston, J., and Tribastone, M. (2007). Stochastic
Process Algebras, pages 132–179. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Committee et al., 2018] Committee, S. O.-R. A. V. S. et al. (2018). Taxonomy and definitions
for terms related to driving automation systems for on-road motor vehicles. SAE Internatio-
nal: Warrendale, PA, USA.

[Consortium, 2004] Consortium, G. O. (2004). The gene ontology (go) database and informa-
tics resource. Nucleic acids research, 32(suppl_1):D258–D261.

[Cox and Wilfong, 1990] Cox, I. J. and Wilfong, G. T., editors (1990). Autonomous Robot
Vehicles. Springer.

[Czerny et al., 2002] Czerny, B. J., D’Ambrosio, J., and Debouk, R. (2002). Iso 26262 functio-
nal safety draft international standard for road vehicles: Background, status, and overview.
Origins, 9(1.2004):2003.

[Dill et al., 2005] Dill, D. L., Knapp, M., Gage, P., Talcott, C. L., Laderoute, K., and Lincoln,
P. (2005). The pathalyzer: A tool for analysis of signal transduction pathways. In Systems
Biology and Regulatory Genomics, Joint Annual RECOMB 2005 Satellite Workshops on
Systems Biology and on Regulatory Genomics, San Diego, CA, USA; December 2-4, 2005,
Revised Selected Papers, pages 11–22.

[Distner et al., 2009] Distner, M., Bengtsson, M., Broberg, T., and Jakobsson, L. (2009). City
safety—a system addressing rear-end collisions at low speeds. In Proc. 21st International
Technical Conference on the Enhanced Safety of Vehicles, number 09-0371.

[domeet kevinBobo, 2019] domeet kevinBobo (2019). After cooperating with intel mobileye,
weilai north america headquarters announced the third layoffs.

[Dorward et al., 1997] Dorward, S., Pike, R., and Winterbottom, P. (1997). Programming in
limbo. In Proceedings IEEE COMPCON 97, San Jose, California, USA, February 23-26,
1997, Digest of Papers, pages 245–250.

[Ericson, 1999] Ericson, C. A. (1999). Fault tree analysis. In System Safety Conference, Or-
lando, Florida, volume 1, pages 1–9.

[Everington, 2020] Everington, K. (2020). Video shows tesla on autopilot slam into truck on
taiwan highway.

[Falbo et al., 2002a] Falbo, R. A., Guizzardi, G., Duarte, K. C., Natali, A. C. C., et al. (2002a).
Developing software for and with reuse: An ontological approach. In ACIS Internatio-
nal Conference on Computer Science, Software Engineering, Information Technology, e-
Business, and Applications (CSITeA-02), Foz do Iguacu, Brazil. Citeseer.

[Falbo et al., 2002b] Falbo, R. d. A., Guizzardi, G., and Duarte, K. C. (2002b). An ontological
approach to domain engineering. In Proceedings of the 14th international conference on
Software engineering and knowledge engineering, pages 351–358. ACM.

146

[Farkas and Sarbo, 2000] Farkas, J. and Sarbo, J. J. (2000). A logical ontology. Computing
Science Institute, Faculty of Science, University of Nijmegen.

[Fettke and Loos, 2003] Fettke, P. and Loos, P. (2003). Ontological evaluation of reference
models using the bunge-wand-weber model. AMCIS 2003 Proceedings, page 384.

[Furda and Vlacic, 2009] Furda, A. and Vlacic, L. B. (2009). Towards increased road safety:
Real-time decision making for driverless city vehicles. In Proceedings of the IEEE Interna-
tional Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11-14 October
2009, pages 2421–2426.

[Furda and Vlacic, 2011] Furda, A. and Vlacic, L. B. (2011). Enabling safe autonomous dri-
ving in real-world city traffic using multiple criteria decision making. IEEE Intell. Transport.
Syst. Mag., 3(1):4–17.

[Gain, 2017] Gain, B. (2017). Waymo patent shows plans to replace steering wheel & pedals
with push buttons. https://driverless.wonderhowto.com/news/waymo-patent-s
hows-plans-replace-steering-wheel-pedals-with-push-buttons-0179498/.

[GALVIN and GAGNE, 2005] GALVIN, P. B. and GAGNE, G. (2005). Operating system
concepts 10th edition.

[Gangemi et al., 2003] Gangemi, A., Prisco, A., Sagri, M.-T., Steve, G., and Tiscornia, D.
(2003). Some ontological tools to support legal regulatory compliance, with a case study.
In OTM Confederated International Conferences" On the Move to Meaningful Internet Sys-
tems", pages 607–620. Springer.

[Gehrig and Stein, 1999] Gehrig, S. K. and Stein, F. (1999). Dead reckoning and cartogra-
phy using stereo vision for an autonomous car. In Proceedings 1999 IEEE/RSJ Internatio-
nal Conference on Intelligent Robots and Systems. Human and Environment Friendly Ro-
bots with High Intelligence and Emotional Quotients, October 17-21,1999, Hyundai Hotel,
Kyongju, Korea, pages 1507–1512.

[Genesereth and Nilsson, 2012] Genesereth, M. R. and Nilsson, N. J. (2012). Logical founda-
tions of artificial intelligence. Morgan Kaufmann.

[Giacalone et al., 1990] Giacalone, A., Jou, C., and Smolka, S. A. (1990). Algebraic reasoning
for probabilistic concurrent systems. In Programming concepts and methods: Proceedings
of the IFIP Working Group 2.2, 2.3 Working Conference on Programming Concepts and
Methods, Sea of Galilee, Israel, 2-5 April, 1990, pages 443–458.

[Gietelink et al., 2006] Gietelink, O., Ploeg, J., De Schutter, B., and Verhaegen, M. (2006).
Development of advanced driver assistance systems with vehicle hardware-in-the-loop si-
mulations. Vehicle System Dynamics, 44(7):569–590.

[Gilmore et al., 2003] Gilmore, S., Hillston, J., Kloul, L., and Ribaudo, M. (2003). PEPA nets:
a structured performance modelling formalism. Perform. Eval., 54(2):79–104.

[Gotz et al., 1992] Gotz, N., Herzog, U., and Rettelbach, M. (1992). TIPP – a language for
timed processes and performance evaluation. report Technical Report 4/92, IMMD VII,
University of Erlangen-Nurnberg.

[Gregoriades, 2007] Gregoriades, A. (2007). Towards a user-centred road safety management
method based on road traffic simulation. In 2007 Winter Simulation Conference, pages
1905–1914. IEEE.

[Gruber, 1993a] Gruber, T. R. (1993a). A translation approach to portable ontology specifica-
tions. Knowledge acquisition, 5(2):199–220.

147

https://driverless.wonderhowto.com/news/waymo-patent-shows-plans-replace-steering-wheel-pedals-with-push-buttons-0179498/
https://driverless.wonderhowto.com/news/waymo-patent-shows-plans-replace-steering-wheel-pedals-with-push-buttons-0179498/

[Gruber, 1993b] Gruber, T. R. (1993b). A translation approach to portable ontology specifica-
tions. Knowledge acquisition, 5(2):199–220.

[Grüninger et al., 2000] Grüninger, M., Atefi, K., and Fox, M. S. (2000). Ontologies to support
process integration in enterprise engineering. Computational & Mathematical Organization
Theory, 6(4):381–394.

[Herzog, 1990] Herzog, U. (1990). Formal description, time and performance analysis. A
framework. In Entwurf und Betrieb verteilter Systeme, Fachtagung des Sonderforschung-
sbereiche 124 und 182, Dagstuhl, 19.-21. September 1990, Proceedings, pages 172–190.

[Hillston, 1994] Hillston, J. (1994). A compositional approach to performance modelling. PhD
thesis, University of Edinburgh, UK.

[Hillston and Gilmore, 2014] Hillston, J. and Gilmore, S. (2014). Pepa tools. http://www.
dcs.ed.ac.uk/pepa/tools/.

[Hoare, 1978] Hoare, C. A. R. (1978). Communicating sequential processes. Commun. ACM,
21(8):666–677.

[Hoare, 1985] Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.
[Horrocks and Sattler, 2001] Horrocks, I. and Sattler, U. (2001). Ontology reasoning in the

shoq (d) description logic. In IJCAI, volume 1, pages 199–204.
[Hülsen et al., 2011] Hülsen, M., Zöllner, J. M., and Weiss, C. (2011). Traffic intersection

situation description ontology for advanced driver assistance. In IEEE Intelligent Vehicles
Symposium (IV), 2011, Baden-Baden, Germany, June 5-9, 2011, pages 993–999.

[Hummel et al., 2008a] Hummel, B., Thiemann, W., and Lulcheva, I. (2008a). Scene unders-
tanding of urban road intersections with description logic. In Dagstuhl Seminar Procee-
dings. Schloss Dagstuhl-Leibniz-Zentrum fr Informatik.

[Hummel et al., 2008b] Hummel, B., Thiemann, W., and Lulcheva, I. (2008b). Scene unders-
tanding of urban road intersections with description logic. In Logic and Probability for
Scene Interpretation, 24.02. - 29.02.2008.

[Ingle and Phute, 2016] Ingle, S. and Phute, M. (2016). Tesla autopilot: semi autonomous
driving, an uptick for future autonomy. International Research Journal of Engineering and
Technology, 3(9).

[Ioannou and Chien, 1993] Ioannou, P. A. and Chien, C.-C. (1993). Autonomous intelligent
cruise control. IEEE Transactions on Vehicular technology, 42(4):657–672.

[ISO, 2011] ISO, I. (2011). 26262: Road vehicles-functional safety. International Standard
ISO/FDIS, 26262.

[ISO, 2019] ISO, I. (2019). Iso/pas 21448: Road vehicles — safety of the intended functiona-
lity. 21448.

[Jang et al., 2013] Jang, H., Cho, S., and Yong, B. (2013). The safety evaluation method of
advanced emergency braking system. Transactions of the Korean Society of Automotive
Engineers, 21(5):162–168.

[Jarrar and Balouki, 2018] Jarrar, A. and Balouki, Y. (2018). Towards sophisticated air traffic
control system using formal methods. Modelling and Simulation in Engineering, 2018:1–13.

[Jiménez-Ruiz and Grau, 2011] Jiménez-Ruiz, E. and Grau, B. C. (2011). Logmap: Logic-
based and scalable ontology matching. In International Semantic Web Conference, pages
273–288. Springer.

148

http://www.dcs.ed.ac.uk/pepa/tools/
http://www.dcs.ed.ac.uk/pepa/tools/

[Jones, 1990] Jones, C. B. (1990). Systematic software development using VDM, volume 2.
Citeseer.

[Kawazoe et al., 2001] Kawazoe, H., Murakami, T., Sadano, O., Suda, K., and Ono, H. (2001).
Development of a lane-keeping support system. Technical report, SAE Technical Paper.

[Kawazoe et al., 2002] Kawazoe, H., Shimakage, M., Sadano, O., and Sato, S. (2002). Lane
keeping assistance system and method for automotive vehicle. US Patent 6,493,619.

[Kemeny and Snell, 1961] Kemeny, J. G. and Snell, J. L. (1961). Finite continuous time mar-
kov chains. Theory of Probability & Its Applications, 6(1):101–105.

[Kemeny and Snell, 1976] Kemeny, J. G. and Snell, J. L. (1976). Markov Chains. Springer-
Verlag, New York.

[Keviczky et al., 2006] Keviczky, T., Falcone, P., Borrelli, F., Asgari, J., and Hrovat, D. (2006).
Predictive control approach to autonomous vehicle steering. In 2006 American control
conference, pages 6–pp. IEEE.

[Kim, 2014] Kim, H. H. (2014). Sw fmea for iso-26262 software development. In 2014 21st
Asia-Pacific Software Engineering Conference, volume 2, pages 19–22. IEEE.

[Kletz, 2018] Kletz, T. A. (2018). Hazop & Hazan: identifying and assessing process industry
hazards. CRC Press.

[Kloul, 2006] Kloul, L. (2006). From Performance Analysis to Performance Engineering:
some Ideas and Experiments. PhD thesis.

[Kone et al., 2019] Kone, T. F., Bonjour, E., Levrat, E., Mayer, F., and Géronimi, S. (2019). Sa-
fety demonstration of autonomous vehicles: a review and future research questions. In Inter-
national Conference on Complex Systems Design & Management, pages 176–188. Springer.

[Krok, 2018] Krok, A. (2018). Audi expands traffic light information v2i to washing-
ton. https://www.cnet.com/roadshow/news/audi-v2i-traffic-light-informa
tion-washington-dc/.

[Lee et al., 2009] Lee, C., Lin, C., and Shiu, B. (2009). Autonomous vehicle parking using
hybrid artificial intelligent approach. Journal of Intelligent and Robotic Systems, 56(3):319–
343.

[Lesemann et al., 2011] Lesemann, M., Zlocki, A., Dalmau, J. M., Vesco, M., Hjort, M., Isasi,
L., Eriksson, H., Jacobson, J., Nordström, L., and Westhoff, D. (2011). A test programme
for active vehicle safety - detailed discussion of the evalue testing protocols for longitudinal
and stability functionality.

[Liu et al., 2015] Liu, W., Kim, S.-W., Pendleton, S., and Ang, M. H. (2015). Situation-aware
decision making for autonomous driving on urban road using online pomdp. In 2015 IEEE
Intelligent Vehicles Symposium (IV), pages 1126–1133. IEEE.

[López et al., 1999] López, M. F., Gómez-Pérez, A., Sierra, J. P., and Sierra, A. P. (1999).
Building a chemical ontology using methontology and the ontology design environment.
IEEE Intelligent Systems and their applications, 14(1):37–46.

[Lucas et al., 2018] Lucas, P., Chappuis, K., Boutin, B., Vetter, J., and Raho, D. (2018). Vo-
sysmonitor, a trustzone-based hypervisor for iso 26262 mixed-critical system. In 2018 23rd
Conference of Open Innovations Association (FRUCT), pages 231–238. IEEE.

[Madrigal, 2018] Madrigal, A. C. (2018). The most important self-driving car announcement
yet.

149

https://www.cnet.com/roadshow/news/audi-v2i-traffic-light-information-washington-dc/
https://www.cnet.com/roadshow/news/audi-v2i-traffic-light-information-washington-dc/

[Markit, 2016] Markit, I. (2016). Ihs clarifies autonomous vehicle sales forecast – expects 21
million sales globally in the year 2035 and nearly 76 million sold globally through 2035.

[Marsan et al., 1984] Marsan, M. A., Conte, G., and Balbo, G. (1984). A class of generalized
stochastic petri nets for the performance evaluation of multiprocessor systems. ACM Trans.
Comput. Syst., 2(2):93–122.

[MaTeLo, 2019] MaTeLo, A. (2019). 5.9 (mars 2019).
[May and Taylor, 1984] May, D. and Taylor, R. J. (1984). Occam-an overview. Microproces-

sors and Microsystems - Embedded Hardware Design, 8(2):73–79.
[Mealy, 1967] Mealy, G. H. (1967). Another look at data. In Proceedings of the November

14-16, 1967, fall joint computer conference, pages 525–534. ACM.
[Mehmed et al., 2014] Mehmed, A., Punnekkat, S., Steiner, W., Spampinato, G., and Lettner,

M. (2014). Improving dependability of vision-based advanced driver assistance systems
using navigation data and checkpoint recognition. In International Conference on Computer
Safety, Reliability, and Security, pages 59–73. Springer.

[Merlin and Farber, 1976] Merlin, P. and Farber, D. (1976). Recoverability of communication
protocols - implications of a theoretical study. IEEE Transactions on Communications,
24(9):1036–1043.

[Meyer and Baudoin, 1978] Meyer, B. and Baudoin, C. (1978). Méthodes de programmation,
volume 34. Eyrolles Paris.

[Meyerson, 2014] Meyerson, J. (2014). The go programming language. IEEE Software,
31(5):104.

[Milakis et al., 2017] Milakis, D., Van Arem, B., and Van Wee, B. (2017). Policy and society
related implications of automated driving: A review of literature and directions for future
research. Journal of Intelligent Transportation Systems, 21(4):324–348.

[Miller and Tascillo, 2005] Miller, R. H. and Tascillo, A. L. (2005). Blind spot warning system
for an automotive vehicle. US Patent 6,859,148.

[Millward, 2015] Millward, S. (2015). Baidu’s driverless cars on china’s roads by 2020.
[Milner, 1980] Milner, R. (1980). A Calculus of Communicating Systems, volume 92 of Lec-

ture Notes in Computer Science. Springer.
[Milner, 1983] Milner, R. (1983). Calculi for synchrony and asynchrony. Theor. Comput. Sci.,

25:267–310.
[Milton and Kazmierczak, 2004] Milton, S. K. and Kazmierczak, E. (2004). An ontology of

data modelling languages: a study using a common-sense realistic ontology. Journal of
Database Management (JDM), 15(2):19–38.

[Ministère de l’écologie, 1988] Ministère de l’écologie, E. d. r. e. d. r. (1988). Arrêté du 16
fÉvrier 1988 relatif à l’approbation de modifications de l’instruction interministérielle sur
la signalisation routiere, instruction interministerielle sur la signalisation routiere. Journal
officiel du 12 mars 1988.

[Ministère de l’équipement, 2000] Ministère de l’équipement, des Transports, d. L. d. T. e. d.
l. M. (2000). Décret n◦ 2000-1355 du 30/12/2000 paru au jorf n◦ 0303 du 31/12/2000. JORF
n◦0303 du 31 décembre 2000.

[Moller and Tofts, 1990] Moller, F. and Tofts, C. (1990). A temporal calculus of communica-
ting systems. pages 401–415.

150

[Monahan, 1982] Monahan, G. E. (1982). State of the art-a survey of partially observable
markov decision processes: Theory, models, and algorithms. Manage. Sci., 28(1):1–16.

[Morignot and Nashashibi, 2012] Morignot, P. and Nashashibi, F. (2012). An ontology-based
approach to relax traffic regulation for autonomous vehicle assistance. CoRR Computing
Research Repository, abs/1212.0768.

[Moujahid et al., 2018] Moujahid, A., Tantaoui, M. E., Hina, M. D., Soukane, A., Ortalda, A.,
ElKhadimi, A., and Ramdane-Cherif, A. (2018). Machine learning techniques in adas: a
review. In 2018 International Conference on Advances in Computing and Communication
Engineering (ICACCE), pages 235–242. IEEE.

[Navarro et al., 2017] Navarro, P. J., Fernandez, C., Borraz, R., and Alonso, D. (2017). A
machine learning approach to pedestrian detection for autonomous vehicles using high-
definition 3d range data. Sensors, 17(1):18.

[newsroom, 2019] newsroom, A. (2019). Audi piloted driving.

[NHTSA, 2016] NHTSA (2016). Automated driving systems 2.0: A vision for safety.

[Opdahl et al., 2001] Opdahl, A. L., Henderson-Sellers, B., and Barbier, F. (2001). Ontological
analysis of whole–part relationships in oo-models. Information and Software Technology,
43(6):387–399.

[Paul et al., 2017] Paul, B. D., Lazar, I. W. M., and Wassef, A. (2017). Automatic valet par-
king. US Patent 9,701,305.

[Peinado et al., 2004] Peinado, F., Gervás, P., and Díaz-Agudo, B. (2004). A description logic
ontology for fairy tale generation. In Procs. of the Workshop on Language Resources for
Linguistic Creativity, LREC, volume 4, pages 56–61.

[Petri, 1962] Petri, C. A. (1962). Fundamentals of a theory of asynchronous information flow.
In IFIP Congress, pages 386–390.

[Petri and Reisig, 2008] Petri, C. A. and Reisig, W. (2008). Petri net. Scholarpedia, 3(4):6477.
revision #91647.

[Παλαιoδήµoς, 2018] Παλαιoδήµoς, K. X. (2018). λίστες ταυτoχρóνως πρoσβάσιµες:
συγκριτική µελέτη της απóδoσης και υλoπoίησης ταυτóχρoνων δoµών δεδoµένων

χρησιµoπoιώντας mutex και spinlock locks, lock-free και transactional memory σε c++.
B.S. thesis.

[Pisanelli et al., 2003] Pisanelli, D. M., Zaccagnini, D., Capurso, L., and Koch, M. (2003). An
ontological approach to evidence-based medicine and meta-analysis. In MIE, volume 2003,
pages 543–8.

[Pollard et al., 2013] Pollard, E., Morignot, P., and Nashashibi, F. (2013). An ontology-based
model to determine the automation level of an automated vehicle for co-driving. In Procee-
dings of the 16th International Conference on Information Fusion, FUSION 2013, Istanbul,
Turkey, July 9-12, 2013, pages 596–603.

[Pourranjbar and Hillston, 2013] Pourranjbar, A. and Hillston, J. (2013). An aggregation
technique for large-scale pepa models with non-uniform populations. arXiv preprint
arXiv:1309.1613.

[Project, 2015] Project, S. (2015). Sva – simulation pour la sécurité du véhicule autonome.

[Puterman, 2014] Puterman, M. L. (2014). Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons.

151

[Raffaelli et al., 2016] Raffaelli, L., Vallée, F., Fayolle, G., De Souza, P., Rouah, X., Pfeiffer,
M., Géronimi, S., Pétrot, F., and Ahiad, S. (2016). Facing adas validation complexity with
usage oriented testing. arXiv preprint arXiv:1607.07849.

[Ramamoorthy and Ho, 1980] Ramamoorthy, C. V. and Ho, G. S. (1980). Performance eva-
luation of asynchronous concurrent systems using petri nets. IEEE Trans. Software Eng.,
6(5):440–449.

[Reed and Roscoe, 1988] Reed, G. M. and Roscoe, A. W. (1988). A timed model for commu-
nicating sequential processes. Theor. Comput. Sci., 58:249–261.

[Regulation, 2009] Regulation, E. (2009). 661, regulation (ec) no 661/2009 of the european
parliament and of the council of 13 july 2009 concerning type-approval requirements for
the general safety of motor vehicles, their trailers and systems, components and separate
technical units intended therefor. Official Journal of the European Communities L, 200:1–
24.

[Rooda et al., 2007] Rooda, J. E., van Beek, D. A., and Baeten, J. C. M. (2007). Process
algebra. In Handbook of Dynamic System Modeling.

[Roscoe, 1997] Roscoe, A. W. (1997). The Theory and Practice of Concurrency. Prentice Hall
PTR, Upper Saddle River, NJ, USA.

[SAE, 2014] SAE, T. (2014). Definitions for terms related to on-road motor vehicle automated
driving systems. J3016, SAE International Standard.

[SAE International, 2014] SAE International, S. (2014). Automated driving: levels of driving
automation are defined in new sae international standard j3016.

[Sagri et al., 2004] Sagri, M.-T., Tiscornia, D., and Gangemi, A. (2004). An ontology-based
model for representing “bundle-of-rights”. In OTM Confederated International Confe-
rences" On the Move to Meaningful Internet Systems", pages 674–688. Springer.

[Salaün et al., 2004] Salaün, G., Bordeaux, L., and Schaerf, M. (2004). Describing and reaso-
ning on web services using process algebra. In Proceedings of the IEEE International Confe-
rence on Web Services (ICWS’04), June 6-9, 2004, San Diego, California, USA, page 43.

[Schätz et al., 2015] Schätz, B., Voss, S., and Zverlov, S. (2015). Automating design-space
exploration: optimal deployment of automotive sw-components in an iso26262 context. In
Proceedings of the 52nd Annual Design Automation Conference, page 99. ACM.

[Schuldt et al., 2018] Schuldt, F., Reschka, A., and Maurer, M. (2018). A method for an effi-
cient, systematic test case generation for advanced driver assistance systems in virtual envi-
ronments. In Automotive Systems Engineering II, pages 147–175. Springer.

[Shanks et al., 2003] Shanks, G., Tansley, E., and Weber, R. (2003). Using ontology to validate
conceptual models. Communications of the ACM, 46(10):85–89.

[Siemens and Automotive, 2005] Siemens, V. and Automotive, A. (2005). Increasing
comfort–boosting safety. Advanced driver assistance systems (Tech. Rep. No. J71001-A-
A643-X-7600). Schwalbach, Germany: Author.

[Spivey, 1992] Spivey, J. M. (1992). Z Notation - a reference manual (2. ed.). Prentice Hall
International Series in Computer Science. Prentice Hall.

[Stamatis, 2003] Stamatis, D. H. (2003). Failure mode and effect analysis: FMEA from theory
to execution. ASQ Quality press.

152

[Stanchev and Geske, 2016] Stanchev, P. and Geske, J. (2016). Autonomous cars. history. state
of art. research problems. In Vishnevsky, V. and Kozyrev, D., editors, Distributed Computer
and Communication Networks, pages 1–10, Cham. Springer International Publishing.

[Strumolo et al., 2007] Strumolo, G. S., Elmessiri, H., DiMeo, D. M., Miller, R. H., and Shaf-
fer, A. D. (2007). Blind-spot warning system for an automotive vehicle. US Patent
7,161,472.

[Sugimoto and Sauer, 2005] Sugimoto, Y. and Sauer, C. (2005). Effectiveness estimation me-
thod for advanced driver assistance system and its application to collision mitigation brake
system. In Proceedings of the 19th International Technical Conference on the Enhanced
Safety of Vehicles, number 05-0148-O.

[SVA, 2016] SVA (2016). Sva: Simulation pour la sécurité du véhicule autonome. https:
//www.irt-systemx.fr/project/sva/.

[Taxonomy, 2012] Taxonomy, N. (2012). Definitions for terms related to on-road automated
motor vehicles. SAE document J, 3016:2014.

[Thorn et al., 2018] Thorn, E., Kimmel, S. C., Chaka, M., Hamilton, B. A., et al. (2018). A
framework for automated driving system testable cases and scenarios. Technical report,
United States. Department of Transportation. National Highway Traffic Safety

[Tian et al., 2018] Tian, Y., Pei, K., Jana, S., and Ray, B. (2018). Deeptest: Automated testing
of deep-neural-network-driven autonomous cars. In Proceedings of the 40th international
conference on software engineering, pages 303–314. ACM.

[Tlig et al., 2018] Tlig, M., Machin, M., Kerneis, R., Arbaretier, E., Zhao, L., Meurville, F.,
and Van Frank, J. (2018). Contribution à la sécurisation du véhicule autonome: Modélisa-
tion comportementale avec altarica. In Congrès Lambda Mu 21 «Maîtrise des risques et
transformation numérique: opportunités et menaces».

[Tuncali et al., 2018] Tuncali, C. E., Fainekos, G., Ito, H., and Kapinski, J. (2018). Simulation-
based adversarial test generation for autonomous vehicles with machine learning compo-
nents. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1555–1562. IEEE.

[Tuncali et al., 2016] Tuncali, C. E., Pavlic, T. P., and Fainekos, G. (2016). Utilizing s-taliro
as an automatic test generation framework for autonomous vehicles. In 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC), pages 1470–1475.
IEEE.

[Ulbrich et al., 2015] Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., and Maurer, M. (2015).
Defining and substantiating the terms scene, situation, and scenario for automated driving.
In IEEE 18th International Conference on Intelligent Transportation Systems, ITSC 2015,
Gran Canaria, Spain, September 15-18, 2015, pages 982–988.

[Uschold and Gruninger, 1996a] Uschold, M. and Gruninger, M. (1996a). Gruninger, m.: On-
tologies: Principles, methods and applications. knowledge eng. rev. 11(2), 93-155. 11.

[Uschold and Gruninger, 1996b] Uschold, M. and Gruninger, M. (1996b). Ontologies: Prin-
ciples, methods and applications. The knowledge engineering review, 11(2):93–136.

[USDOT, 2013] USDOT, U. D. o. T. (2013). National highway traffic safety administration’s
preliminary statement of policy concerning automated vehicles.

[Van Eikema Hommes, 2016] Van Eikema Hommes, Q. (2016). chapter Assessment of Safety
Standards for Automotive Electronic Control Systems. Tech Report.

153

https://www.irt-systemx.fr/project/sva/
https://www.irt-systemx.fr/project/sva/

[Varejão et al., 2000] Varejão, F. M., De Menezes, C. S., Garcia, A. C. B., De Souza, C. S., and
Fromherz, M. P. (2000). Towards an ontological framework for knowledge-based design
systems. In Artificial Intelligence in Design’00, pages 55–75. Springer.

[Varricchio et al., 2014] Varricchio, V., Chaudhari, P., and Frazzoli, E. (2014). Sampling-based
algorithms for optimal motion planning using process algebra specifications. In 2014 IEEE
International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May
31 - June 7, 2014, pages 5326–5332.

[Version, 2019] Version, M. (2019). 9.7. 0 (r2019b).

[Vishnukumar et al., 2017] Vishnukumar, H. J., Butting, B., Müller, C., and Sax, E. (2017).
Machine learning and deep neural network—artificial intelligence core for lab and real-
world test and validation for adas and autonomous vehicles: Ai for efficient and quality test
and validation. In 2017 Intelligent Systems Conference (IntelliSys), pages 714–721. IEEE.

[Wells and Weinstock, 2019] Wells, J. R. and Weinstock, B. (2019). Waymo llc.

[Widyotriatmo and Hong, 2008] Widyotriatmo, A. and Hong, K.-S. (2008). Decision making
framework for autonomous vehicle navigation. In 2008 SICE Annual Conference, pages
1002–1007. IEEE.

[Wilson-Jones et al., 1998] Wilson-Jones, R., Tribe, R. H. A. H., and Appleyard, M. (1998).
Driver assistance system for a vehicle. US Patent 5,765,116.

[Witherell et al., 2010] Witherell, P., Krishnamurty, S., Grosse, I. R., and Wileden, J. C.
(2010). Improved knowledge management through first-order logic in engineering design
ontologies. AI EDAM, 24(2):245–257.

[Woll and Olds, 1996] Woll, J. and Olds, J. (1996). Autonomous cruise control. US Patent
5,493,302.

[Wongpiromsarn et al., 2011] Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., and Murray,
R. M. (2011). Tulip: a software toolbox for receding horizon temporal logic planning.
In Proceedings of the 14th international conference on Hybrid systems: computation and
control, pages 313–314. ACM.

[Zhao et al., 2015] Zhao, L., Ichise, R., Mita, S., and Sasaki, Y. (2015). Core ontologies for
safe autonomous driving. In Proceedings of the ISWC 2015 Posters & Demonstrations Track
co-located with the 14th International Semantic Web Conference (ISWC-2015), Bethlehem,
PA, USA, October 11, 2015.

154

	Introduction
	Test case generation issues
	The Contribution of the thesis
	The thesis outline

	Autonomous Vehicles and Safety
	Introduction
	Autonomous Vehicle
	Safety of Autonomous Vehicle
	Conclusion

	State of art
	Introduction
	Ontology
	Formal Methods
	Serial system modelling techniques
	Concurrent system modelling techniques
	Markov processes
	Petri Nets
	Process Algebras

	Conclusion

	Test Cases Generation Methodology
	Introduction
	Test Case
	A Running Example
	Test Case Generation Methodology
	Basic Layer
	Interaction layer
	Generation layer

	Conclusion

	Scene Conceptualization and Characterization
	Introduction
	Highway ontology
	Highway concept
	RoadPart concept
	Toll concept
	RoadWork concept
	Tunnel concept
	Bridge concept
	Roadway concept
	Carriageway concept
	ThroughLane concept
	AuxiliaryLane concept
	EntranceLane concept
	ExitLane concept
	WeaveLane concept
	Shoulder concept
	PavedShoulder
	UnpavedShoulder
	Median concept
	Symbol concept
	Marking concept
	LongitudinalMarking concept
	SpecificMarking concept
	Sign concept

	Weather ontology
	Daylight concept
	Temperature concept
	Pressure concept
	Humidity concept
	Wind concept
	Precipitation concept
	Rain concept
	Snow concept
	Hail concept
	Fog concept
	Haze concept

	Vehicle ontology
	Vehicle concept
	Light concept
	Action concept

	Conclusion

	Logical Relations for Ontologies
	Introduction
	The Syntax
	Logical symbols
	Set symbols
	Function symbols

	Relationships
	Relationships between the highway entities
	Inheritance relationships
	Composition relationships
	Position relationships

	Relationships between the vehicle entities
	Relationships between the entities of the highway and the vehicle

	Conclusion

	Formal modelling using PEPA
	Introduction
	Syntax of PEPA
	General PEPA model for highway
	Component VehicleEgo
	Component VehicleA
	Components EnLOff and ExLOff
	Components modelling the special areas
	Component TollOff
	Component BridgeOff
	Component TunnelOff
	Component RoadWorkOff
	Components modelling the traffic signs
	Component SignMOff
	Component SpeedLimit

	Component Visibility
	Component Situation
	General Equation

	Example: A two vehicles PEPA model
	Automatic Generation
	Generation of the PEPA model
	Generation of the Test Cases
	Identification of the critical Test Cases

	Conclusion

	Case Studies
	Introduction
	Case Study 1: Autonomous Vehicle in a Simple Context
	PEPA model
	Numerical Results

	Case Study 2: Autonomous Vehicle in a Complex Context
	Numerical Results

	Conclusion

	Conclusions

